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ABSTRACT

Object detection is a crucial and challenging task in the field of autonomous or semi-
autonomous driving systems, embedded vision, smart transportation and robotics. Over the
last decade, many researchers have proposed different object detection algorithms. Most of
the research is devoted to improve either detection accuracy or inference speed, as these two-
evaluation metrics play a crucial role while evaluating the performance of object detection
algorithm. However deep neural networks are computationally expensive and are difficult to
deploy on low-end edge devices because of low memory footprint storage space, power
hungry devices and limited computational power. Therefore, in this dissertation, a series of
object detection algorithms have been presented, to develop a faster, light weight and more
efficient object detector which can detect multi-scale objects, smaller and occluded targets
accurately without losing any detection accuracy and be able to run on any low-end edge

device in near real-time.

An important application area of object detection is pedestrian detection and vehicle
detection. They are used extensively in complex applications, including video surveillance,
self-driving cars, etc. In this dissertation, a series of works on object detection (especially
detecting pedestrians and vehicles) is presented, starting from heavy YOLOvV2PD network
and moves towards light-weight EfficientLiteDet network. The main work of this dissertation
was divided into two parts: algorithms employing traditional approach and efficient approach.
In the first part traditional approach was employed for designing object detection algorithms.

In this work, YOLOV2 (“YOU ONLY LOOK ONCE Version 2”)-based pedestrian
detection (referred to as YOLOV2PD) algorithm was developed which is more suitable for
detecting smaller and densely distributed pedestrians. This architecture adopts a Multi-layer
Feature Fusion (MLFF) strategy, which helps to improve the model’s feature extraction
ability and, when one repeated convolution layer is removed from the final layer,
computational complexity was reduced. Both the network structure and loss function were
improved to make the model more accurate and faster. A novel Single shot Multi-scale

detection network with feature fusion and multi-scale attention mechanism was adopted in

xiii



this work in order to achieve optimal trade-off balance between detection accuracy and speed
while detecting small-scale and occluded objects for autonomous driving. This network, is
referred to as Single shot Multi-scale Attentive Detector, in short (SSAD) and it would build
feature relations of the feature map in spatial space. The designed model learns to highlight
pedestrian and vehicle regions on the extracted feature map and suppress irrelevant regions,
from the global relation information and thus provide reliable guidance for autonomous

driving. SSAD design is very simple, highly accurate and computationally efficient.

In the second part, efficient approach was employed for designing object detection
algorithms. In this part, our goal was to design a light weight object detector which can run in
near real-time on any low-end edge device. To achieve real-time pedestrian detection without
any loss in detection accuracy, an Optimized MobileNet+SSD network was developed. This
network lets the components work in coordination in such a manner that their strengths are
improved and the number of parameters is decreased compared to recent detection
architectures. A concatenation feature fusion module is introduced for adding contextual
information in our network to improve detection accuracy of pedestrians. The designed
network when deployed on low-end edge device Jetson Nano runs with 34.01 FPS. To
improve detection accuracy and speed while detecting occluded, denser and tiny objects a
novel light-weight detector was proposed and which is referred to as EfficientLiteDet. Based
on Tiny-YOLOvV4, one more prediction head was introduced in this network to detect multi-
scale targets effectively. In order to detect tiny and occluded denser targets, Transformer
Prediction Heads (TPH) were deployed by replacing original YOLOv4 anchor detection
heads. To explore the potential of self-attention mechanism in TPH, this model integrates
“convolutional block attention model (CBAM)” to locate attention region on scenarios with
denser targets. Besides efficiency, our qualitative and quantitative analysis show that
EfficientLiteDet network is more efficient, faster and light-weight and it can be deployed on

any low-end edge device to achieve real-time detection performance.

Xiv
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Chapter 1

Introduction

1.1 Introduction

Recently, computer vision (CV) has been extensively researched in the fields of object
detection for industrial automation, consumer electronics, medical imaging, military, and
video surveillance [1]. It is predicted that the computer vision market will be worth $50
billion by the end of 2020. Since the beginning, the objective of computer vision systems has
been automatic processing, analysis and interpretation of images, using classical algorithms
including: cascade Speeded up robust features (SURF) [2], Haar like features [3], Scale-
Invariant Feature Transform (SIFT) [4], shape contexts [5], Deformable Part-Based Model
(DPM) [6], Histogram of Gradients (HOG) [7] and Local Binary Patterns (LBP) [8]. In 2012,
significant advances were made in image processing methods, one of which was the use of
deep learning techniques. This has led to further research and applications, the results of
which have shown progress in the majority of computer vision challenges. For example, there
are many research activities that are conducted in the area of computer vision, and one of the
main aims is to determine whether or not there are any instances of objects from the specified
varieties (e.g., animals, vehicles, and pedestrians) in an image, and if present, return the
spatial location and extent of a single object (by bounding box). In contrast to significant
progress in object detection focusing on still images, video object detection has received scant
attention.

Murthy et al. [9] stated that the goals of object detection are to achieve both high
accuracy and high efficiency by developing robust object detection algorithms. They are
discussed in the form of tree diagram shown in Figure 1.1. Two of the main sub-branches of
Object detection are pedestrian detection and vehicle detection areas, which deals with

detecting specific pedestrian and vehicle classes.
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Figure 1.1 Goals of ideal Object Detector.

The embedded vision system of autonomous vehicle technology was initially very
difficult to develop in the field of CV; however, owing to continuous improvements of
hardware computational power, many researchers have attempted to develop reliable vision
systems for autonomous driving cars. Compared to generic object detection, pedestrian
detection and vehicle detection have their own differentiated characteristics, and from a
practical and landing space perspectives. For example, driverless car systems, intelligent
robots, intelligent video surveillance and intelligent transportation system (ITS) use both
pedestrian and vehicle detection systems. Classical machine learning based methods
employed for pedestrian and vehicle detection provide faster detection speed. However, such
classical methods could only achieve good detection results under specific conditions,
although they lose detection accuracy greatly in the presence of poor lighting conditions or

occlusion situations and fail to satisfy real-time requirements.

Pedestrian and vehicle detection methods based on convolutional neural networks
(CNN’s) have achieved significant improvements both in terms of speed and accuracy and
have become current mainstream methods. Deep convolutional neural network-based

detection methods are basically classified into two types. They are region proposal based
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frameworks i.e. two-stage detector such as Region based Convolutional Neural Network
(RCNN) series [10-13] and Regression/Classification i.e. one-stage detector such as You
Only Look Once (YOLO) series [14-18], Single-shot Multi-box Detector (SSD) series [19-
21]. Figure 1.2 shows the block diagram of general object detection algorithm of one stage
and two-stage detectors. Despite two-stage detectors achieving higher detection accuracy,
they run slower and are not suitable to deploy on low-end edge devices. One-stage detectors
lose some part of detection accuracy but run at a higher speed. Therefore, we can achieve a
better trade-off balance between detection accuracy and speed using one-stage detectors when

deployed on edge devices for autonomous driving application.

feature
map

.Input Bounding Final
image boxes detections

(@) One-stage Object Detector.

Multi-class BB
Classifier
Input Image Region of Interest : Regressor
(ROI) \ /
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Vector
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(b) Two-stage Object Detector.

Figure 1.2 Block diagram of general Object Detection.



1.2 Motivation & Problem Statement

1.2.1 Motivation

Recently, in the field of automobile industry, there has been a great increase in
technological innovation though the number of accidents has grown greatly due to various
factors. So, to resolve this challenge, all automobile companies have been moving towards
developing advanced unmanned or driver-assistance driving systems and they include many
vision sensors and deploy complex algorithms. Since safety is top priority and plays a crucial
role in vision-based systems, there is a need to develop faster, accurate and better real-time
object detection algorithm. Therefore, great efforts have been devoted to improve both
detection accuracy and speed in order to achieve real-time detection performance. Many
applications of autonomous driving run on edge devices and demand online processing of
data with low latency. Light-weight models have fewer operations; allowing them to process
input with low latency. Also, these networks are small, so they can easily fit onto on-chip
memory and help to reduce read/write latency. This further improves the inference speed.

However large-scale Deep CNN based algorithms require high computational and
large memory footprint resources and need a huge number of fine-tuning parameters. To
realize real-time object detection, it requires powerful Graphics Processing Unit (GPU)
computing power. However, it is difficult to deploy these heavy models on any low-end edge
device due to limited computational power and memory constraints. Therefore, there is a need
to develop a faster, efficient and light-weight object detection algorithms to operate on low-

end edge devices for autonomous driving applications.

1.2.2 Problem Statement

The goal of this work is to design and develop faster, light weight and more efficient
object detection algorithms which can detect multi-scale objects, smaller and occluded targets
accurately without losing detection accuracy and be able to run on any low-end edge device in
near real-time. Therefore, the developed algorithm should be light-weight, smaller, have
higher inference speed, lower memory footprint and consume low power. So, the problem can
be stated as “Design and Development of efficient Embedded Vision based Object Detectors”.
The outline of the thesis is shown in Figure 1.3. Chapters 3 and 4 employ traditional approach

and Chapters 5 and 6 employ efficient approach.
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1.3

Research Objectives

The objectives of the proposed work are to design faster, light-weight and more

efficient embedded vision-based object detection networks for autonomous driving

application, while detecting multi-scale, tiny and occluded targets and also to achieve a trade-

off balance between detection accuracy and speed.

1.

1.4

Develop a robust detection algorithm to detect smaller and densely distributed

pedestrians accurately in real-time road scenes without losing any detection accuracy.

To design and develop an efficient object detection algorithm in order to achieve
optimal trade-off balance between detection accuracy and speed while detecting small-

scale and occluded objects for autonomous driving system.

To design and develop light-weight object detector for detecting smaller pedestrians
accurately without losing any detection accuracy, and implement the model in real-

time on a low-end edge device.

To design and develop an efficient, light-weight and rapid object detector which is
particularly good at detecting multi-scale targets, tiny and occluded denser targets
(pedestrians and vehicles) accurately and effectively in real-time on a low-end edge

device Jetson TX2.

Thesis Organization

The thesis is organized into seven chapters. This section gives a summary of all chapters.

Chapter 1: Gives the introduction, background, and rationale for research.

Chapter 2: The second chapter begins with an overview of traditional and deep learning-based

object detection, pedestrian detection and vehicle detection techniques. It also puts forth the

idea of deploying deep learning models into various embedded platforms for real-time object

detection. Then, some techniques and evaluation methods used in the literature to mitigate

object detectors for autonomous driving application are discussed.



Chapter 3: In this chapter, we introduced YOLOV2PD network, since state-of-the-art detectors
such as SSD and Yolov3 achieve higher detection accuracy, but they fail to detect smaller and
denser objects accurately. Two networks were proposed and validated the robustness of
YOLOV2PD network. The performance of the proposed detector was validated on multiple

datasets and compared with state-of-the-art pedestrian detectors.

Chapter 4: In this chapter, to handle and detect multi-objects effectively, Single shot Multi-
scale Detector (SSD) performs detection on the extracted multi-scale feature maps but fails to
detect smaller and occluded objects accurately, since shallow layers lack semantic

information.

To overcome this problem, the concept of Single-shot Multi-scale Attentive Detector
(SSAD) was introduced which incorporates pixel-wise feature relations and follows human
vision mechanism. To improve detection accuracy of occluded objects, a multi-scale attention
unit (MAU) is embedded into SSAD model. The performance of SSAD model was validated
on multiple datasets and compared with state-of-the-art object detectors in terms of efficiency

and detection accuracy.

Chapter 5: In this chapter, Optimized MobileNet+SSD was developed for detecting smaller
pedestrians accurately in real-time and the same model was implemented effectively on low-
end edge device Jetson Nano evaluation board. This model lets the components work in
coordination in such a manner that their strengths are improved and the number of parameters
decreased compared to SOTA detection architectures. A concatenation feature fusion module
was inserted for adding contextual information in the network to improve detection accuracy
of smaller pedestrians. The performance of optimized MobileNet+SSD was validated on

multiple datasets and compared with state-of-the-art pedestrian detectors.

Chapter 6: Tackling real-time pedestrian and vehicle detection tasks captured by high-speed
moving vehicle scenarios has two problems. One is target scale varies drastically and the
captured images contain both tiny targets and high-density targets, which bring occlusion
between targets. To solve the two issues, an efficient light weight real-time detection
algorithm was introduced, which is referred to as EfficientLiteDet. One more prediction head
is introduced in this model to detect multi-scale targets effectively and three transformer

encoders were introduced in the neck part to improve detection of tiny and occluded denser



targets. To focus only on particular targets, Convolutional block attention module (CBAM)
was introduced. The performance of EfficientLiteDet was validated on multiple datasets and
compared with state-of-the-art object detectors. The proposed model achieves real-time
inference on edge device Jetson TX2, which ensures that EfficientLiteDet model can be used

in real-world scenarios for autonomous driving application.

Chapter 7: This chapter presents a summary of the results and conclusions from work carried
out in the earlier chapters. The limitations and future work research directions are also

indicated.



Chapter 2

2. Literature Survey

This chapter is devoted to the review of research work reported in literature in the area of
object detection, pedestrian detection, vehicle detection and its low-end embedded vision
design. The consolidated findings and results of various researchers for different methods and
techniques are discussed. The literature review was carried out in four parts. In the first part,
review of various object detection techniques along its pros and cons was discussed. In the
second part, review of Pedestrian detection techniques along its pros and cons was discussed.
In the third part, a review of Vehicle detection techniques along its pros and cons was done.

At last, deployment of CNN models on low-end edge devices was discussed.

2.1. Object Detection

Obiject detection is applied in wide areas of computer vision (CV), including defence
(surveillance), iris recognition, face detection, Human-computer interaction (HCI), robot
vision, security, medical imaging, smart transportation, automated vehicle systems, image
retrieval system, machine inspection, etc. For continuous video surveillance for a few hours,
sensors generate petabytes of image data. The generated data is further reduced to geospatial
data and then integrated with other collected data to generate a clear-cut picture of the current
situation. One of the most important tasks involving object detection is to track
vehicles/suspicious people from collected raw data [1]. Crucial applications of object
detection include detecting faulty electric wires, detecting unattended baggage, detecting
driver drowsiness on highways, detecting vehicles parked in restricted areas, detecting objects
present or coming onto the road (for self-driving vehicles), and also detecting stray animals in
industrial areas.

Generally, Object detection is classified into two types: traditional learning-based

object detectors and Deep learning-based object detectors.



2.1.1. Traditional learning-based object detectors

P. Viola and M. Jones (VJ) performed facial detection without any restrictions (skin
colour segmentation) [11, 12]. The implementation of VJ detector is simple and straight
forward; i.e., a sliding window is moved along all possible locations and the image is scaled;
then it checks whether a human face is present in any of the windows. Using VJ detector,
detection speed improved drastically by including three techniques; integral image, detection
cascades and feature selection. N. Dalal and B. Triggs [7] first implemented the “histogram of
oriented gradients” (HOG) feature descriptor which was an improved version of “scale-
invariant feature transform” (SIFT) [4], [24] and shape contexts [5]. HOG descriptor
computes on dense grid cells. To balance both feature invariance (which includes translation
and illumination) and linearity (on discriminating different objects classes), overlap local
contrast normalization (on blocks) is applied, which improves detection accuracy. HOG
detector is not only used in pedestrian detection but also to detect multiple object classes.

The deformable part-based model (DPM) [6] was at its peak for traditional object
detection methods and was the winner of VOC detection challenges in 2008 and 2009. DPM
is an improved version of HOG detector. Initially, DPM was implemented by P. Felzenszwalb
[15], but later R. Girshick [10, 25, 26, 27] made refinements to DPM detector. The main
theme of DPM is “divide and conquer”, where the training period is the proper way of
learning, and decomposition of objects and the inference period are considered an ensemble
of different parts in object detection.

2.1.2. Deep learning-based object detectors

Deep learning-based Object detectors is further classified into two groups. They are
“one-stage detection” that completes in one step and “two-stage detection”, which completes
with "coarse to fine" stages. RCNN [10] architecture, using selective search method [28]
extracts a set of object region proposals. Each object region proposal is transformed into a
fixed image size by rescaling it, and then applied to convolutional neural network model
which is pre-trained on ImageNet, i.e., AlexNet [29], for feature extraction. SVM classifier
[30] predicts the object presence within each region proposal and also recognizes object
classes. RCNN method, drawbacks are: It consumes more time to train the network, as we
need to classify 2000 object region proposals per image, and it cannot be implemented in real-
time.Fast RCNN detector [11] was implemented by R. Girshick and is an improvement on
RCNN [10]. Fast RCNN allows us to train simultaneously both detector and bounding box

regressor; mean average precision (mAP) accuracy increased from 58.5% (RCNN) to 70.0%
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(Fast RCNN) on PASCAL VOC-2007 dataset [100]. All the advantages of RCNN and
SPPNet are successfully integrated with Fast RCNN, but still, the detection speed is limited.
A Faster RCNN detector [12] was implemented shortly after the introduction of Fast RCNN
by S. Ren et al. To overcome the drawbacks of Fast RCNN, a network referred to as region
proposal network (RPN) was introduced in Faster RCNN. Fast RCNN performs both region
proposal generation and detection tasks. Except for RPN, Faster RCNN and Fast RCNN are
very similar. Initially, first ROI pooling is performed, and then the pooled area is fed to CNN
and two fully connected layers are used for softmax classification and bounding box
regressor. It is the first near-real-time object detector tested on MS-COCO dataset [101]; it
achieved mAP = 42.7%, VOC-2012, mAP = 70.4%, and 17 fps with ZFNet [31]. Despite
Faster RCNN being much faster than Fast RCNN, there is computational redundancy at the

final stage.

He et al. [13] introduced Mask R-CNN, and it is the extension of Faster RCNN. The
main aim of Mask RCNN is to solve instance segmentation problems in CV applications; i.e.,
to separate different objects in an image or a video. Additionally, a mask branch on each
region of interest (ROI) is included in Mask R-CNN for predicting an object works in parallel
with class label and bounding box (BB) regression branches. It is conceptually simple to train,
flexible, and is a general framework for instance segmentation of objects. But the main
drawback is it adds small computational overhead on the network and runs with a speed of

nearly 5 Fps.

R. Joseph et al. [14] implemented YOLO architecture. YOLO is the strongest, fastest,
and simplest object detection algorithm used in real-time object detection. All previous object
detection algorithms use regions to localize objects within the image, but the YOLO approach
is entirely different; the entire image is applied to a single CNN. YOLO network splits the
entire image into regions, and for each region, it predicts bounding boxes and class
probabilities. The main drawbacks of YOLO object detector are: detection of small objects in
an image, where localization accuracy drops off when compared to two-stage detectors. To
the basic YOLO detector, R. Joseph [14] later made improvements and implemented
YOLOvV2 and YOLOvV3 [15, 16] which have achieved better detection accuracy without

scarifying detection speed.

Liu et al. [19-21] implemented a series of single shot multi-box detector (SSD) for

detecting objects. This is designed purely for real-time object detection in the deep learning

11



era. Instead of taking two shots as in RCNN series, one for generating region proposals and
another for detecting the object of each proposal, it uses only a single shot to detect multiple
objects within an image. To improve the detection accuracy of SSD, particularly in detecting
small objects, they introduced “multi-reference and multi-resolution detection” techniques. To
improve Fast RCNN’s real-time speed detection accuracy, SSD eliminated region proposal
network (RPN). The main drawback of SSD is at the cost of speed, detection accuracy
increases with increase in number of default boundary boxes. SSD detector has more
classification errors when compared to RCNN but low localization errors while dealing with

similar categories.

Wu et al. [32] implemented SqueezeDet, a lightweight, single shot, extremely fast,
fully-CNN for detecting objects in an autonomous driving system. To deploy Deep CNN for
real-time object detection, the model should address some important problems, such as speed,
accuracy, model size, and power efficiency. It is a single forward pass object detector, used to
extract a high dimensional, low-resolution feature maps for the applied input images; it uses
stacked convolution filters. Second, it uses ConvDet, a convolutional layer fed with a feature
map as input that produces a large number of bounding boxes and also predicts the object’s
category. Finally, by applying filtering to these bounding boxes, it outputs final object
detections. The backbone model of SqueezeDet is SqueezeNet [33], and the model size is less
than 8 MB, which is very small compared to AlexNet [29] without losing any accuracy. For
an input image of size 1242x375, this model achieved 57.2 frames per second (FPS) on the

KITTI dataset [106] and consumed only 1.4 joules energy per image.

Law et al. [35] implemented CornerNet for object detection, wherein the object is
detected by a pair of key points using a CNN instead of drawing an anchor box around the
detected object. So, the need for designing anchor boxes which are usually used in one stage
detectors is eliminated by detecting objects as paired key points; i.e., top-left and top-right
corners respectively. They introduced a new type of pooling layer referred to as corner
pooling, which helps the network to localize corners better. The CNN outputs the heat map
for all top-left corners and bottom-right corners, along with an embedded vector map for each
detected corner. On MS-COCO dataset [101], CornerNet achieved 42.2% average precision
(AP) which outperforms existing one-stage detectors. So to overcome this drawback, Duan et
al. [36] implemented CenterNet by introducing a third key point at the center to detect each
object. CenterNet achieved 47% AP, and inference speed is slower than CornerNet.
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2.2. Pedestrian Detection

An important application area of object detection is pedestrian detection. Pedestrian
detection is indispensable both in unmanned and advanced driver-assisted driving systems,
and researchers’ efforts have been directed to this area. It is used extensively in complex
applications, including video surveillance, self-driving cars, etc. Earlier pedestrian detection
methods used were HOG detector [7] and the integral channel features (ICF) detector [36],
which rely purely on feature representation, classifier design [37], and acceleration detection
[38]; others, such as “detection by components” [40], gradient-based representation [41], and
deformable part-based model (DPM) [6,25,26], are time-consuming, require complex steps,

are expensive and require a high level of human interference.

One of the direct applications of real-time pedestrian detection is that it should
automatically locate pedestrians accurately with on-shelf cameras, since it plays a crucial role
in robotics and unmanned driving systems. Despite tremendous progress having been
achieved recently, this task still remains challenging due to the complexity of road scenes,
such as them being crowded, occluded, containing deformations and exhibiting lighting
changes. Currently, unmanned driving systems are among the major fields of research in
computer vision, for which the real-time detection of pedestrians is essential to avoid possible
accidents. Although deep learning-based techniques improve detection accuracy, there is still
a huge gap between human and machine perception. Therefore, when detecting objects in a
shadowy environment or objects captured at night, lower detection accuracy is achieved. This
is the major drawback of reliable vision-based detection systems since self-driving cars in
real-time extremely complex environments should be able to detect objects in daytime or at
night. Nevertheless, current state-of-the-art (SOTA) real-time pedestrian detection still falls

short of the fast and accurate human perception levels.

The first computer vision task that applied deep learning was pedestrian detection
[42]. Real-time pedestrian detection using the Improved Tiny Yolov3 network [43] was
proposed by Yi. This network applies the K-means clustering algorithm prior to the dataset
training dataset to find the best prior bounding boxes in order to achieve better detection
accuracy. The network effectiveness is validated only on the extracted pedestrian related
images from PASCAL VOC-2007 [100] dataset. But this network fails to achieve better
detection accuracy while detecting smaller and dense pedestrians. R Benson et al. [44]

implemented the fastest technique to achieve a frame rate of 100 frames per second (FPS) for
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pedestrian detection. After 2012, the deep learning era started, which has greatly improved the
detection accuracy of pedestrian detection. However, their run time on each image is slightly

or markedly slower, taking a few seconds.

S. Paisitkriangkrai et al. [45] proposed, constructed a network based on low-level
vision features and incorporated spatial pooling to improve translational invariance which in
turn improves the robustness of pedestrian detection process. They optimize directly the area
under the ROC curve and which helps to focus on detection performance. The ConvNet [46]
method uses convents for detecting pedestrians. It employs convolutional sparse coding to
initialize each layer at the start and later performs fine-tuning to perform object detection.
RPN-BF [48] is a perfect fusion of Region Proposal Networks (RPN) and Boosted Random
Forest Classifier. RPN proposed in Faster RCNN [12] generates candidate bounding boxes,
high-resolution feature maps, and confidence scores. To shape Boosted Forest Classifier, it
also employs real-boost algorithm for using information obtained from RPN. The two-stage

detector showed good performance results on pedestrian test datasets.

Li Z et al. [47] proposed a network structure which integrates both region generation
and prediction modules for accurate localization and speed up parallel processing for real-
time small-scale pedestrian detection. They adopted feature pyramid strategy in the generation
module to extract useful features, at the other end, higher level contextual features were
extracted using deconvolution layers. The proposed network performance was validated on
INRIA [102], CALTECH [103] and ETH [105] pedestrian datasets.

Li J et al. [49] proposed scale-aware Fast-RCNN method for detecting pedestrians of
various scales, and applied anchor box mechanism onto multiple feature layers. They
proposed multi-sub networks which are used to detect multi-scale pedestrians effectively and
outputs from all sub-networks were combined adaptively to produce final detected results that
are more robust to large variance in instance scales. This algorithm selects weights of large-
size or small-size sub-network based on the proposal height. However, this method is not
accurate, if a large proposal contains very small targets. The effectiveness of this network was
validated on the widely used pedestrian datasets such as INRIA, ETH and CALTECH. In
addition, Ouyang et al. [50] proposed a unified deep neural network for jointly learning four
key components, namely, feature extraction + deformation + occlusion and classification for
pedestrian detection This network performance was validated on CALTECH old and new
datasets [103].
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Y Pang et al. [51] introduced a mask-guided attention network for detecting occluded
pedestrians, which emphasizes only visible regions and suppresses occluded regions by
modulating full body features. The proposed network performance was validated on both
CALTECH and CITY PERSONSs datasets. However, this method fails to achieve satisfactory
results on heavily occluded pedestrians. Detecting occluded pedestrians is very hard as their
appearance varies greatly depending upon the occlusion rate. To handle occlusion, Zhang et
al. [52] proposed a simple and compact method by incorporating a channel-wise attention
network on Faster RCNN detector while detecting occluded pedestrians. The proposed
network performance was validated on two pedestrian datasets CALTECH and CITY
PERSON:S.

Song et al. [53] proposed a novel method by integrating both somatic topological line
localization and temporal feature aggregation for detecting small-scale pedestrians, who are
relatively far from the camera. This method also eliminates ambiguities in occluded
pedestrians by introducing a post-processing scheme based on Markov Random Field (MRF).
This network achieved competitive performance on both CALTECH and CITY PERSONSs
pedestrian datasets.

Y Zhang et al. [54] proposed “key-point-guided super-resolution network” (KGSNet)
for detecting small-scale and heavily occluded pedestrians. Initially, this network is trained to
generate a super-resolution pedestrian image and then a part estimation module encodes the
semantic information of four human body parts. In this network, super resolution and
classification networks were optimized alternatively and trained in end-to-end fashion. The
proposed network performance is validated on two widely used pedestrian datasets
CALTECH and CITY PERSONSs. This network was able to achieve best results on small-
scale and heavily occluded pedestrians over existing state-of-the-art (SOTA) pedestrian

detectors.

C Lin et al. [55] proposed a graininess-aware feature learning method for detecting
small-scale and occluded pedestrians. Attention mechanism was used to generate graininess-
aware feature maps and then to enhance the features, a zoom-in-zoom-out module was
introduced. By integrating the two modules into CNN, they formed an end-to-end trainable
pedestrian detector. The proposed network performance was validated on three widely used
pedestrian datasets CALTECH, INRIA and KITTI [106].
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W. Y Hsu et al. [56] proposed a new ratio-and-scale-aware YOLO (RSA-YOLO)
which achieves extremely good results while detecting small-scale pedestrians. They
introduced ratio-aware mechanism for dynamically adjusting various hyperparameters of
YOLOvV3 network. In order to solve the misdetection of extremely small pedestrians, they
introduced scale-aware mechanism in which they used multi-resolution fusion technique. The
proposed network performance was validated on INRIA, ETH and PASCAL VOC-2012
pedestrian datasets.

Moreover, existing algorithms could achieve higher detection accuracy but they fail to
detect small-scale pedestrians who are relatively far from the cameras. To handle this issue, B
Han et al. [57] proposed a novel small-scale sense (SSN) network, which can generate some
proposal regions and is effective when detecting small-scale pedestrians. Based on cross
entropy loss they proposed novel loss function to increase the loss contribution of small-scale
pedestrians which are hard to detect. This network performance was validated on two
pedestrian datasets CALTECH and VIP [57].

Yang Fan et al. [58] proposed SSD for online pedestrian detection on input fed video
using Kalman filter. They adopted SSD as baseline detector and fusion modules to improve
the detection accuracy while detecting medium and far-scale pedestrians. This method
performs post-processing together by combining the fusion module and Kalman filter so that
it effectively reduces miss rate and provides better performance at faster speed. The proposed
network performance was validated on CALTECH and Private [58] datasets.

Cheng. Y et al. [59] proposed an enhanced SSD for detecting small-scale pedestrians.
The proposed pedestrian detection with enhanced SSD depicts small-scale objects and most of
the missed pedestrian targets (dense targets). They adopted SSD as baseline detector and
made dense connections among convolutional blocks in order to improve detection
performance while detecting small-scale pedestrians. They also modified matching strategy of
SSD and added extra loss that can keep more information on denser objects. This network
has performed experimentation on CALTECH and PASCAL VOC datasets.

G Brazil et al. [60] proposed a pedestrian detection network to handle occlusion
problem in urban autonomous driving scenario. They leverage semantic segmentation on their
network to boost pedestrian detection accuracy. To enable joint supervision on both
pedestrian detection and semantic segmentation they introduced semantic segmentation
infusion network. The proposed network performance was validated on both CALTECH and

KITTI pedestrian datasets.
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Z.Cai et al. [61] designed a complexity-aware cascaded pedestrian detector by
combining features of different complexities. They formulated cascaded learning as
Lagrangian optimization that accounts for accuracy and complexity. To optimize this, they
introduced complexity aware cascade training (CompACT) technique. This method is able to
achieve optimal trade-off balance between detection accuracy and complexity by pushing
higher features to later cascaded stages. Therefore, the proposed network enables to use high
complexity features in a single detector. This network performance is validated on CALTECH
and KITTI datasets and surpasses SOTA detector results.

Z Liu et al. [62] proposed an efficient pedestrian detector which would achieve good
trade-off balance between detection accuracy and speed. They adopted YOLOV2 as a baseline
detector and then modified the network structure and number of network parameters and
made the network more suitable for detecting pedestrians. To achieve higher detection
accuracy on CALTECH dataset, they employed weak semantic segmentation after shared
layers and scale aware structure in the proposed network. They performed experiments on
INRIA and CALTECH pedestrian datasets.

X Du et al [63] developed an efficient pedestrian detector by fusion of multiple deep
neural networks. They adopted SSD as baseline detector to generate pedestrian candidates.
Next, to provide majority ground truth pedestrian annotations, a candidate generator was
designed. Then ensemble learning classifier was employed to improve detection accuracy.
Finally, the classifier, classifies the generated candidates based on the opinion of fusion
network and multiple deep verification networks by utilizing soft-rejection fusion technique.
This network performance is evaluated on KITTI, INRIA, ETH and CALTECH datasets. Cao
Jingwei et al. [64] proposed an intelligent pedestrian detection algorithm to work under
complex scenarios. They adopted YOLOv3 and modified the grid size, and improved
prediction head based on receptive field and applied soft-NMS algorithm. This proposed
network detection performance was validated on INRIA and PASCAL VOC 2012 datasets.

To maintain a trade-off balance between detection accuracy and speed, one stage
pedestrian detector was proposed by Ma J [65]. First, they designed multi-scale convolution
module to extract corresponding features at multiple scales. Second, they applied attention
mechanism module across channels to represent various occlusion patterns. Finally, the
enhanced features were passed through classification and regression modules to perform
object localization and anchor box regression. The designed method was extensively
performed on CALTECH and CITYPERSONS pedestrian datasets.
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In pedestrian detection, the main difficulties and challenges faced are (a) small
pedestrian detection; (b) hard negatives; (c) real-time pedestrian detection from HD video; (d)
dense and occluded pedestrians. The widely used datasets for evaluating the pedestrian
detection performance are PASCAL VOC, INRIA, CALTECH, ETH, KITTI and CITY
PERSONSs.

2.3. Vehicle Detection

Like pedestrian detection, vehicle detection is very necessary both in unmanned and
advanced driver-assisted driving systems. Recently traditional handcrafted feature methods
such as HOG [7] and Haar-wavelet [66] have been used to extract local features. Initially
HOG features were used only for pedestrian detection, and then modified and used for
vehicle-detection applications as well. Relevant study of both hand-crafted and deep CNN’s
based techniques are discussed in [9]. ACF [67] was refined and applied to vehicle detection
area but it continues to produce unsatisfactory results. This is due to intra-class interferences

because of different perspectives, which becomes a negative factor for vehicle detection.

Wu J et al. [68] constructed improved YOLOV2 algorithm to solve issues such as lack
of vehicle-type recognition, low speed and low detection accuracy. They applied k-means++
algorithm to figure out optimal k anchor boxes prior to network training on vehicle dataset.
This model achieved 94.78% mAP when validated on Beijing Institute of Technology (BIT)-
Vehicle dataset [107]. Song H et al. [69] constructed a highway vehicle dataset which has
many small annotated vehicles, and provided a complete dataset for vehicle detection. The
proposed network employed new segmentation method to extract image features and divide
the image into remote area and proximal area and then deploy in YOLOvV3 network. They
trained and tested the constructed highway vehicle dataset [69] on modified YOLOv3

network.

X Wang et al [70] introduced SPP module in Tiny-YOLOv3 and modified grid size to
improve the detection accuracy of dense vehicles. They combined context feature information
and increased two scale detections to three in the proposed network. In order to improve
denser vehicle detection, they modified grid size and figure out the best number of anchor
boxes by applying k-means clustering algorithm on KITTI dataset, prior to network training.

From the experimental results, this network achieves 91.03% detection accuracy and 144 FPS
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on KITTI dataset. Limited computational power and memory constraints on an autonomous
vehicle limit the deployment of deep neural networks on edge device. Therefore, Chen L et al.
[71] proposed a light weight and faster vehicle detector by applying group convolution on
DenseNet. By applying group convolution in the proposed network, they could reduce
floating point operations and in turn make the detector as light weight and fast as possible.
They designed certain guidelines to optimally select the group number in group convolution
which maximizes the overall detection speed. They performed experiments on both PASCAL
VOC 2007+12 and vehicle [71] datasets.

Liu W et al. [72] proposed a two-stage vehicle detector especially for detecting tiny
vehicles in traffic complex scenes. The proposed network has two stages, backward feature
enhancement network (BFEN) stage and a spatial layout preserving network (SLPN) stage. In
the first stage, high quality region proposals for multi-scales were generated, and in the next
stage, it progressively integrates ROI features, while preserving spatial layouts. This network
performance was validated on KITTI and DETRAC [108] vehicle datasets. Jamiya S et al.
[39] proposed a lightweight deep-CNN model named Little-YOLO-SPP to predict vehicles in
darker environments and achieve real-time performance. To extract best features from the
dataset they improved feature extraction layers using SPPNet. In order to improve the
detection performance, they proposed Generalized loU loss function for anchor box
regression. This network robustness was verified and achieves 77.44% mAP on PASCAL
VOC 2007, 2012 [100] and 52.95% mAP on MS COCO 2014 [101] datasets. This network
fails to detect some vehicles and few false labelling of detected vehicles.

X. Hu et al. [74] proposed a scale-insensitive CNN model i.e SINet to overcome scale-
sensitivity problem for fast vehicle detection task. This network proposes, context-aware ROI
pooling to maintain contextual information and retain the original structure of small-scale
objects, and to minimize intra-class distance of features they constructed a multi-branch
decision network. This network detection performance was validated on two datasets, namely
KITTI and HIGHWAY [69] datasets. Hoanh Nguyen et al. [75] proposed an improved Faster
RCNN for faster vehicle detection to overcome large vehicle scale-variation, heavy occlusion,
or truncation of the vehicles in the captured images. This model adopted MobileNet as
backbone network, and adopted soft NMS algorithm on Faster RCNN to solve the issue of
duplicate region proposals. The model performance was validated on KITTI vehicle dataset
and achieved higher detection accuracy and speed compared to Fast RCNN. Xueru Dai et al
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[76] proposed HybridNet, a faster two-stage cascaded vehicle detection system. This network
solves the issue of large intra-class differences caused by occlusion, truncation and different
viewpoints. This network has regression modes in each stage and incorporates a transitional
stage to map generated proposals from the first stage to the next stage for refinement of
extracted features. This model is validated only on KITTI and PASCAL VOC datasets.

The widely used datasets for evaluating the vehicle detection performance are
PASCAL-VOC [100], Highway [69], KITTI [106] and Udacity [109].

2.4 Deployment of CNN models on low-end Edge devices

The primary requirements to be fulfilled for real-time object detection using deep
learning on any embedded platforms are the following: high accuracy, high speed, small
model size, and better energy efficiency. The various embedded platforms available for real-
time object detection using deep learning are FPGA and Nvidia Jetson Variants such as Zynqg,

Pynqg, Jetson Nano, Jetson TX1, TX2 and Xavier evaluation boards.

Subarna Tripathi et al. [151] proposed LcDet, a fully-convolutional neural network for
generic object detection that aims to work in embedded systems. They designed and develop
an end-to-end TensorFlow (TF)-based model and additionally, employed 8-bit quantization
on the learned weights. LcDet achieved better accuracy compared with state-of-the-art CNN-
based face detection methods, while reducing the model size by 12x and memory-BW by 16x
compared to one of the best real-time CNN-based object detectors YOLO. Huizi Mao et al.
[152] proposed a pipelined object detection implementation on the embedded platform. They
made some additional modifications on Fast R-CNN method to fit the specific platform and
achieve trade-off between speed and accuracy on embedded systems in order to make full use
of limited computation resources. This detection system can run Fast R-CNN at 1.85 FPS.
Chen L et al. [71] proposed a light weight and faster vehicle detector by applying group
convolution on DenseNet. By applying group convolution in the proposed network, they
could reduce floating point operations and in turn make the detector light weight and faster.
They performed experiments on both PASCAL VOC 2007+12 and vehicle [71] datasets and

implemented the model in real-time on Jetson TX2 and achieved 10FPS.
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Chapter 3

YOLOV2PD: An Efficient Pedestrian Detection Algorithm

This chapter focuses on design and development of an efficient pedestrian detection
algorithm for accurate smaller and densely distributed pedestrians in real-time road scenes
without losing any detection accuracy. To show the effectiveness of the proposed model, yet
another model named YOLOv2 Model A was proposed and the robustness of YOLOvV2PD,
and YOLOv2 Model A models verified, particularly while detecting small-scale and densely
distributed pedestrians. Finally, the proposed network performance was validated on multiple

pedestrian datasets and compared with state-of-the-art (SOTA) algorithms.

3.1 Introduction

Commonly, most of the object detection algorithm were aiming to detect one category of
objects, such as animals, faces, humans or vehicles. In this work, pedestrian is employed as
one object to be detected. Real-time pedestrian detection is an important task for unmanned
driving systems and video surveillance. One of the direct applications of real-time pedestrian
detection is that it should automatically locate pedestrians accurately with on-shelf cameras,
since it plays a crucial role in robotics and unmanned driving systems. Despite tremendous
progress having been achieved recently, this task still remains challenging due to the
complexity of road scenes, such as them being crowded, occluded, containing deformations
and exhibiting lighting changes. Currently, unmanned driving systems are among the major
fields of research in CV, for which real-time detection of pedestrians is essential to avoid
possible accidents. Although deep learning-based techniques improve detection accuracy,
there is still a huge gap between human and machine perception [47]. A complex background,
low-resolution images, lighting conditions, and occluded and distant smaller objects reduces

the model accuracy. To date, most researchers in this field have focused only on colour-
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image-based object detection. Therefore, when detecting objects in a shadowy environment or
objects captured at night, lower detection accuracy is achieved.

This is the major drawback of reliable vision-based detection systems since self-
driving cars in real-time extremely complex environments should be able to detect objects in
daytime or at night. Nevertheless, current state-of-the-art (SOTA) real-time pedestrian

detection still falls short of fast and accurate human perception levels [77].

Currently, pedestrian detection methods are classified into two categories: traditional
and deep learning-based methods. Traditional methods cover various traditional machine
learning algorithms such as Voila Jones (VJ) detector [22], Deformable part model (DPM)
[25], Histogram of oriented gradient (HOG) [7] and multi-scale gradient histograms [78].
These methods are time-consuming, require complex steps, are expensive, and require a high
level of human interference. In the recent evolution of deep learning techniques since 2012,
such techniques have become very popular and deep convolutional neural network (CNN)-
based pedestrian detection methods have achieved better performance than traditional time
slot methods [79-80]. The first deep learning-based object detection model was RCNN [10].
This method generates a region of interest by using a selective search window for deep
learning-based object detection, implemented in all RCNN series. Deep learning time slot
methods cover both two-stage detectors such as RCNN [10], Fast-RCNN [11], Faster RCNN
[12], Mask-RCNN [13], SPPNet [86] and single-stage detectors such as YOLO [14-17] and
SSD [19-21] series. Therefore, in the current scenario for real-time pedestrian detection, these

methods are not quite suitable.

Generally, the speed of deep learning-based object detection methods is low, with
these methods being unable to meet real-time requirements of self-driving cars. Therefore, to
improve both speed and detection accuracy, YOLO network was proposed [14], as a single
end-to-end object regression detector. A year later, YOLOv2 [15] was developed to overcome
the drawbacks of the YOLO [14] network. To improve the speed of the detection algorithm
without losing any part of detection accuracy, YOLOv2 [15] was proposed. However, when
detecting smaller objects in complex environments, it achieves low detection accuracy.
Therefore, in this chapter, YOLOvV2 (“You Only Look Once Version 2”) based pedestrian
detection algorithm (referred to as YOLOvV2PD) was proposed, which would be more suitable
for detecting smaller and densely distributed pedestrians in real-time complex road scenes.
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The contributions of this work are summarized as follows:

= YOLOV2PD model adopts the multi-layer feature fusion (MLFF) strategy to improve
the model’s feature extraction ability and, at the higher end, one convolution layer is
eliminated.

= Moreover, intuitively, to test the effectiveness of YOLOv2PD model, another model
referred to as YOLOv2 Model A is implemented and compared.

= The loss function of YOLOvV2PD model is improved by applying normalization,
which reduces the effect of different pedestrian sizes in an image, and which
potentially optimizes the detected bounding boxes.

= Through qualitative and quantitative experiments conducted on Pascal Voc-
2007+2012 Pedestrian, INRIA, Caltech pedestrian and City Persons datasets, we
validate the effectiveness of YOLOvV2PD algorithm, showing that it has better

detection performance on smaller pedestrians.

3.2. Overview of YOLO and YOLOvV2
The YOLOV2 [15] model performs an end-to-end training CNN to detect smaller and densely

distributed pedestrians in near real time. YOLO [14] is a fast one-stage object detector that
directly predicts the class probability and bounding box for detected objects. Initially, the
applied input image is divided into S x S grid cells and every grid cell can predict only one
object, as shown in Figure 3.1. If the object center falls into a grid cell, then that grid cell is
solely responsible for detecting that object. Each grid cell directly predicts class probabilities,
confidence scores, and B bounding boxes. Each bounding box (BB) has five components: (X,
y, w, h, confidence). (X, y) coordinates refer to the box center with respect to grid cell
location. (w, h) coordinates refer to the BB width and height dimensions. These (X, y, w, h)
coordinate values are normalized in the range of 0 to 1. C refers to the box confidence score,
which reflects how likely the BB contains an object and how accurate the BB is. The box
confidence score will be zero if the object does not exist in that grid cell. Otherwise,
Intersection over union (loU) between the ground truth and predicted BB should be equal to
the confidence score. Then, under a given threshold, most of the boxes with low confidence

scores are removed. To eliminate redundant BB, non-maximum suppression is finally applied.
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Figure 3.1 Flow of YOLO detection algorithm.

Since each cell generates B bounding box predictions, total outputs relative to BB
predictions are S x S x B x 5. There is also the possibility of multiple objects existing in a
single cell. To overcome this problem, the anchor box mechanism is introduced. Therefore,
the anchor box mechanism makes it possible for YOLOV2 to detect multiple objects falling in
a single cell. By predefining the number of anchor boxes to be used in the model, and as a
result of the anchor box, one more dimension is added in the output labels, one object is

assigned to each anchor box.

Table.3.1 shows YOLOvV2 [15] network architecture, which consists of 30 layers (LO
to L29), including 22 convolutional layers, 5 max. Pooling layers, and two route and one
reorg layers. The 25" and 27" layers are referred to as route layers. The aim of the route layer
is to merge two different convolutional layers; for example, L27 (Layer 27) is formed by
merging two layers: L26 and L24. Finally, the extracted features from the previous layer are

reorganized to predict the BB and probability of the pedestrian at the detection layer.

An input image of fixed size (416 x 416) is fed into the detection algorithm. Table 3.1
shows the flow of YOLOv2 algorithm in terms of how the image size changes its dimensions.
To the end at L29 (layer 29), the output image size is 13 x 13 x 30, which is finally reduced to
a 13 x 13 grid size. Each cell generates 30 output values (i.e., 5 x 6), where 5 represents 5
predictive borders generated by every 13 x 13 grid cell and the remaining 25 (i.e., 30-5)
correspond to each predictive border outputting 25. Of these 6 values, one value corresponds

to the probability of a pedestrian. The remaining five values correspond to the box center

position (tx, ty), width and height of BB (tw, th) and box confidence score.

24



Table 3.1 YOLOv2 Network Architecture.

Lﬁ%‘?r Conv.Type & Input Filters Conv.Output
LO Conv_3*3_416*416*3 32 416*416*32
L1 Max.pool/2 208*208*32
L2 Conv_3*3_208*208*32 64 208*208*64
L3 Max.pool/2 104*104*128
L4 Conv_3*3_104*104*64 128 104*104*128
L5 Conv_1*1_104*104*128 64 104*104*64
L6 Conv_3*1_104*104*64 128 104*104*128
L7 Max.pool/2 52*52*128
L8 Conv_3*3_52*52*128 256 52*52*256
L9 Conv_1*1_52*52*256 128 52*52*128
L10 Conv_3*3_52*52*128 256 52*52*256
L11 Max.pool/2 26*26*256
L12 Conv_3*3_26*26*256 512 26*26*512
L13 Conv_1*1 26*26*512 256 26*26*256
L14 Conv_3*3_26*26*256 512 26*26*512
L15 Conv_1*1 26*26*512 256 26*26*256
L16 Conv_3*3_26*26*256 512 26*26*512
L17 Max.pool/2 13*13*512
L18 Conv_3*3_13*13*512 1024 13*13*1024
L19 Conv_1*1_13*13*1024 512 13*13*512
L20 Conv_3*3_13*13*512 1024 13*13*1024
L21 Conv_1*1_13*13*1024 512 13*13*512
L22 Conv_3*3_13*13*512 1024 13*13*1024
L23 Conv_3*3_13*13*1024 1024 13*13*1024
L24 Conv_3*3_13*13*1024 1024 13*13*1024
L25 Route (L16) 26*26*512
L26 Reorg 13*13*2048
L27 Route (L26-L24) 13*13*3072
L28 Conv_3*3_13*13*3072 1024 13*13*1024
L29 Conv_1*1_13*13*1024 30 13*13*30

To improve object detection performance further, a pre-trained model was adopted. In
many CNN versions, VGG-16 [87] is generally preferred as a pre-trained model. To improve
both the accuracy and speed, another pre-trained model called Darknet-19 was adopted in
Yolov2 algorithm. The detection speed of Yolov2 is 4x faster while it maintained the same

accuracy as VGG-16.
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For an input image of size 224 x 224, the detection performances of the models VGG-
16 and Yolov2 were compared by Simonyan et al. [87]. From their comparisons, it was
apparent that GoogleNet [88]+Yolov2 uses only 8.52 billion Flops (Floating Point Operations
per second), VGG-16[87]+Yolov2 requires 30.69 billon Flops, whereas Darknet-19
[89]+YOLOV2 needs only 5.58 billion Flops. Since it is lightweight and has a smaller

network, it is more suitable for real-time pedestrian detection.

3.3. Proposed Methodology

3.3.1 Anchor Boxes Selected Based on K-means Clustering

The proposed YOLOV2PD model applies K-means clustering [90] algorithm on Pascal
Voc-2007+2012 pedestrian dataset during training and selects the optimal number of anchor
boxes of different sizes. It works by replacing traditional Euclidean distance with the distance
function of YOLOv2 while implementing K-means clustering algorithm. Therefore, the error
obtained is made irrelevant with respect to anchor box sizes by adopting intersection over
union (loU) as an evaluation metric, as shown in equation 3.1.

d (box, centroid) = 1 — IOU (box, centroid) (3.2)

where box is the sample; centroid is cluster center point;
loU (box, centroid) is the overlap ratio between cluster and center boxes.

Based on the clustering results analysis, the K value was chosen to be 6; therefore, six
different anchor box sizes would be applied in order to improve the positioning accuracy.
Finally, by implementing the K-means clustering algorithm on the training dataset, a suitable
number of different anchor box sizes are selected for pedestrian detection, which in turn

improves positioning accuracy.

3.3.2 Improved Loss Function

Since images are captured using a video surveillance camera, some of the pedestrian
images might be bigger, with pedestrians being nearer the camera, while some pedestrian
images might be smaller, with pedestrians being located far away from the camera during
detection. Therefore, pedestrians would appear smaller in the image when they are far from
the camera, and vice versa. As such, sizes may vary in the captured images, even though the

pedestrian is identical.
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During YOLOV2 training, objects of different sizes show different effects on the
network and produce large errors, particularly for images with smaller and densely distributed
objects. To overcome this drawback, loss calculation for bounding box (BB) width and height

was improved by applying normalization. Equation (3.2) shows the improved loss function as:

hos LTI = 207 + (v = 5071+
coord ZZﬁ[( + (%)2] +

B obj noobj (32)
ZZH[(C o C ) noobj ZZH(C - C ) ]+

i=0 j=0 ij i=0 j= ij
s2  obj

ZH Z [pi (C) - ﬁi (C)]2

c e classes
where (X, Vi) coordinates represent the center of the box,
(wi , h;) coordinates are the width and height of the box,

Ci is confidence prediction, and pi(C) is the conditional class probability for class c in cell i.

f\

)7 A,, i, G, and p, (C) are the corresponding prediction values of X; Vi, Wi, hj, Cj,
and pi(c),

A

coord

Corresponds to the weight of position loss, with a value of 5,

Corresponds to the weight of the classification loss, with a value of 0.5,

noobj

S2: S x S grid cells, B: Bounding Boxes (BBs),

obj
|__J| =1, Corresponds to the j" BB in cell i that is responsible for detecting the pedestrian,
ij

else 0,

obj

I I =1, if the pedestrian is located in the cell i, else 0.

From Equation (3.2), the first term determines the BB localization loss error, the
second term determines the BB confidence loss error with objects and without objects, and the
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third term determines the classification loss error. Equation (3.2) in the proposed method was

. .. Wi - Wi h — ﬁ . .
compared with original YOLOv2 [16] — and # term is used instead of

W, — Wi and h — ﬁi ,which would reduce the effect of different pedestrian sizes in an image,

and which in turn potentially optimizes the detected bounding box.

3.3.3 Network Design

Multi-layer Feature Fusion (MLFF) Approach: In pedestrian detection, variations among
pedestrians include occlusion, illumination changes, colour, height, and contour, whereas
local features exist only in the lower layers of CNN. Therefore, to use local features fully, an
MLFF approach was implemented in YOLOV2PD. The Reorg aim is to keep feature maps of
layers the same. Part (a) passes through the following 3 x 3 and 1 x 1 convolution layers and
then a down-sampling factor of Reorg/8 is applied, as shown in Figure. 3.2. Similarly, part (b)
and part (c) perform the same operations, but with down-sampling factors of 4 and 2,
respectively. Part (a), (b) local features, and part (c) global features of one layer are fused.
This is done so that the network would distinguish tiny differences among pedestrians and

also improve the network understanding of local features.

YOLOV2 is a fast and accurate object detection model. YOLOvV2 network can detect
9000 classes and variations among multiple objects are wide such as vehicles, fruits, sofas and
animals. There are three repeated 3 x 3 x 1024 convolutional layers in YOLOv2 network.
Generally, at the higher end, repeated convolution operation deals with multiple classes and
widely differing objects, such as fruits, animals, and vehicles. However, our main concern is
only detecting the pedestrian class and feature differences among pedestrians are minute.
Thus, the model performance may not improve due to repeated convolution layers at the
higher end and, due to their presence, the model becomes more complex. Therefore, repeated
convolution layers are removed from the higher end in the proposed models. This strategy
would achieve almost competitive performance and reduce the time complexity of Yolov2
network. Thus, three repeated 3 x 3 x 1024 convolution layers are reduced to two in the

proposed model, as shown in Figure. 3.2.

A novel YOLOV2PD network structure is designed by adopting MLFF approach
and one unwanted convolutional layer is removed at the higher end. Moreover, intuitively, to

test the effectiveness of the proposed model, another model, referred to as YOLOv2 Model A,
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was implemented and compared. YOLOv2 Model A removed two 3 x 3 x 1024 convolution

layers and YOLOV2PD model removed only one 3 x 3 x 1024 convolution layer when

compared with YOLOV2 network.

416
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Table. 3.2 shows the comparison between YOLOv2, YOLOv2 Model A, and YOLOv2PD
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Figure 3.2 YOLOV2PD Network Architecture.

network architecture.

Table 3.2 YOLOvV2, YOLOV2 Model A, and YOLOV2PD Network Architectures.

Laver YOLOV2 YOLOV2 Model A YOLOV2PD
LO Conv_3*3 416*416*32 | Conv_3*3_416*416*32 | Conv_3*3_416*416*32
L1 Maxpool/2 Maxpool/2 Maxpool/2
L2 Conv_3*3 208*208*64 | Conv_3*3 208*208*64 | Conv_3*3 208*208*64
L3 Maxpool/2 Maxpool/2 Maxpool/2
L4 | Conv_3*3 104*104*128 | Conv_3*3 104*104*128 | Conv_3*3 104*104*128
L5 | Conv 1*1 104*104*64 | Conv_1*1 104*104*64 | Conv_1*1 104*104*64
L6 Conv_3*3 104*104*128 | Conv_3*3 104*104*128 | Conv_3*3 104*104*128
L7 Maxpool/2 Maxpool/2 Maxpool/2
L8 Conv_3*3 52*52*256 Conv_3*3 52*52*256 Conv_3*3 52*52*256
L9 Conv_1*1 52*52*128 Conv_1*1 52*52*128 Conv_1*1 52*52*128
L10 Conv_3*3 52*52*256 Conv_3*3 52*52*256 Conv_3*3 52*52*256
L11 Maxpool/2 Maxpool/2 Maxpool/2
L12 Conv_3*3 26*26*512 Conv_3*3 26*26*512 Conv_3*3 26*26*512
L13 Conv_1*1 26*26*256 Conv_1*1 26*26*256 Conv_1*1 26*26*256
L14 Conv_3*3 26*26*512 Conv_3*3 26*26*512 Conv_3*3 26*26*512
L15 Conv_1*1 26*26*256 Conv_1*1 26*26*256 Conv_1*1 26*26*256
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L16 Conv_3*3_26*26*512 Conv_3*3_26*26*512 Conv_3*3_26*26*512

L17 Maxpool/2 Maxpool/2 Maxpool/2

L18 Conv_3*3 13*13*1024 | Conv_3*3 13*13*1024 | Conv_3*3 13*13*1024

L19 Conv_1*1 13*13*512 Conv_1*1 13*13*512 Conv_1*1 13*13*512

L20 Conv_3*3 13*13*1024 | Conv_3*3 13*13*1024 | Conv_3*3 13*13*1024

L21 Conv_1*1 13*13*512 Conv_1*1 13*13*512 Conv_1*1 13*13*512

L22 | Conv_3*3 13*13*1024 | Conv_3*3 13*13*1024 | Conv_3*3 13*13*1024

L23 | Conv_3*3 13*13*1024 Route-L16 Conv_3*3 13*13*1024

L24 | Conv_3*3 13*13*1024 | Conv_3*3 13*13*512 Route-L6

L25 Route-L.16 Conv_1*1 13*13*64 Conv_3*3 _13*13*128

L26 Conv_1*1* 13*13*64 Reorg Conv_1*1 13*13*32

L27 Reorg Route-L.26 L22 Reorg

L28 Route-L27 L.24 Conv_3*3 13*13*1024 Route-L10

L29 Conv_3*3 13*13*1024 Conv_1*1 13*13*30 Conv_3*3 13*13*256

L30 Conv_1*1 13*13*30 Detection Conv_1*1 13*13*64

L31 Detection Reorg

L32 Route-L16

L33 Conv_3*3 13*13*512

L34 Conv_1*1 13*13*64

L35 Reorg

L36 Route-1.35 L31 L27 L23

L37 Conv_3*3 13*13*1024

L38 Conv_1*1 13*13*30
Detection

3.4 Experimental Discussions

To showcase the power of YOLOV2PD model performance, it was evaluated on
multiple datasets and the proposed model was compared with several state-of-the-art
pedestrian detection models. The effectiveness of the proposed model was verified both
quantitatively and qualitatively.

3.4.1. Datasets

(i) Pascal Voc-2007+2012 Pedestrian: This dataset contains 20 object classes and around
17,125 labeled images; it is a complete dataset generally used for object detection and
classification. An unsupervised learning method (K-means clustering) is applied during
training. Since manual annotation of a dataset is a complex and huge project, around 10,080
pedestrian and non-pedestrian images (referred to as the Pascal Voc-2007+2012 Pedestrian
dataset) were extracted from Pascal dataset [100].

(i) INRIA: The INRIA Pedestrian dataset [102] contains 1826 pedestrians, with image

resolution 64 x 128. The pedestrian images captured in this dataset possess a complex
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background, illumination changes, various degrees of occlusion, variations in human posture,

and individuals wearing different clothes.

(iii) Caltech Pedestrian: The Caltech pedestrian dataset [103] contains a set of video
sequences of 640 x 480 in size captured from an urban environment. It includes training (set
00 to set 05) subsets and testing (set 06 to set 10) subsets. It contains 250k video frames, 350k
bounding boxes and 2.3k pedestrians (“person” or “people” labels) are annotated. The training
dataset is formed by extracting every image after every 30 frames from set 00 to set 05 and

testing images are extracted from set 06 to set 10.

(iv) City Persons: This dataset [104] contains 2975 training set, 500 validation images and
1525 testing images. This dataset contains a large number of images under a variety of
conditions. The image resolution used for training is 1024 x 2048. This model is trained on

3475 training images and performance is evaluated on 1525 testing images.
The summary of datasets used in the YOLOvV2PD algorithm is shown in below Table.3.3

Table 3.3 Summary of datasets used for experimentation of YOLOvV2PD network.

Datasets Training Images Testing Images
Pascal Voc-2007+2012 Pedestrian 9072 1008
INRIA 614 228
Caltech Pedestrian 4250 4024
City Persons 3475 1525

3.4.2. Training and Evaluation of Performance Parameters
The experiments were carried out on a workstation during the training phase; the testing phase
was also performed on the same workstation. DarkNet was chosen as a feature extractor for
all of the models, which was trained on a huge ImageNet dataset. The experimental setup of
the workstation was: Windows 10 pro OS, Intel Xeon 64-bit CPU @3.60 GHz, 64 GB RAM,
Nvidia Quadro P4000 GPU, CUDA 10.0 & CUDNN 7.4 GPU acceleration library and
Tensorflow 1.x deep learning framework.

The model training was carried out on Pascal Voc-2007+2012 Pedestrian dataset
(9072) training images and tested on 1008 testing images, since we are only concerned with

pedestrian images. The input image size was resized to 416 x 416 resolution and various data
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augmentation techniques were applied such as colour shifting, flipping, cropping, and random
sampling, in order to enhance the training process.

All the three models were trained for 100 epochs, with an initial learning rate of 0.001,
and later learning rate is divided by 10 at 60 and 80 epochs respectively. During the model
training, it randomly selects a new input image of different resolution after every 20 epochs.
Since multi-scale training strategy improves model robustness, it can perform better
prediction on images with different resolutions. While training Caltech dataset, the original
images are up-sampled to 1024 x 1024 pixels, one mini-batch contains 16 images, learning
rate is 10 and the model training is stopped after 85 epochs. Initially the learning rate was set
to 0.005 for the first 50 epochs and 0.0005 for the rest 35 epochs. For City Persons dataset, we

set a mini-batch that contains 2 images, and training was stopped after 85 epochs.

Average precision (AP) and inference speed (FPS-Frames per second) are standard
techniques preferred to evaluate model performance. Intersection over union (loU) is a good
performance metric used to measure the accuracy of the designed model on a test dataset. loU
is simply computed as the area of intersection divided by the area of union. loU helps to
determine whether a predicted bounding box is a True Positive (TP), False positive (FP) or
False Negative (FN) by defining a threshold of >0.5.

(i) Recall: A measure of how good the model is at finding all of the positives.

(i) Precision: A measure of the accuracy of our predictions. These two terms are inversely

proportional to each other.

True Negative True Positive
= r — - :
Recall Predicted Results © True Positive + False Negative (33)
- True Positive True Positive
Precision= True Positive + False Positive (3.4)

Actual Results

(iii) Average Precision (AP): This is the area under the precision- recall curve, which shows
the correlation between precision and recall at different confidence scores. A higher AP value
indicates better detection accuracy.

The performance of the model while validating INRIA, Caltech and City Persons test
datasets was visualized using a plot between the number of false positives per image and the
Miss Rate (MR).

32



(iv) Miss-Rate (MR): The ratio between the number of FNs and the total number of positive

samples (N) is referred to as the MR.
Miss Rate (MR) = FN/N (3.5)
There is another relationship between the miss rate and recall expressed as:

Recall = 1 — Miss Rate (MR) (3.6)

3.5 Results & Discussions

The analysis of the training stage of all three models is depicted in Figure. 3.3. Average
loss is indicated on y-axis, while x-axis indicates the number of iterations performed in
training. It is clear from Figure.3.3 that the average loss curve is not stable up to
approximately 10000 iterations. Compared with all other models, the average loss curve of
YOLOV2PD model decreases faster initially, followed by that of YOLOv2 Model A. The
reason for this is that both YOLOvV2PD and YOLOv2 Model A adopted a multi-layered
feature fusion strategy, so they obtained more local features, which accelerated the training
convergence. During the training stage, initially YOLOv2PD model first reached a minimum
average loss value (overall lowest value = 0.54), followed by YOLOv2 Model A and
YOLOvV2 models. Therefore, the YOLOV2PD model is more suitable for detecting small
pedestrians on Pascal Voc-2007+2012 pedestrian dataset.

—YOLOv2PD
—YOLOv2
YOLOvZ Model A

‘ Ayerage Loss ‘ \

10K 156 208 K 30K 35K

Iterations

Figure 3.3 Analysis of training stage of all three models.
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Figure. 3.4 shows the precision vs. recall (PR) curve obtained on the Pascal Voc-2007+2012
pedestrian dataset of all three models. The graph shows that, with increasing recall value at

the convergence point, the precision gradually starts decreasing.

—YOLOv2
—YOLOvZPD
YOLOv2 Modelt

Precision

Recall

Figure 3.4 PR curves of all three models on Pascal VVoc-2007+2012 pedestrian dataset.

3.5.1 Quantitative Analysis

To further validate the proposed method’s effectiveness, the experimental results were
examined using several quantitative performance metrics. With different input image
resolutions of 416 x 416, 544 x 544, and 608 x 608, YOLOV2PD achieves comparable
detection performance when compared with YOLOv2 Model A and YOLOv2. Table.3.4
compares the detection performance of all models for different image resolutions with respect
to AP and inference speed (FPS) parameters. The proposed network YOLOV2PD achieves
AP, that is, detection performance of 79.5, 80.7 and 82.3 respectively. From these results, it is
clear that, as the applied input image resolution increases, the AP value increases but at the
same time inference speed decreases.

To have a model that runs at higher inference speed, an image size of 416 x 416 is the
best choice. As the input image size increases, inference speed decreases since these terms are
directly proportional to each other. However, we are concerned with detecting smaller and
densely distributed pedestrians, so 416 x 416 images are not quite suitable as they miss the
detection of many smaller objects. Therefore, we consider selecting a 544 x 544 image size

for detecting smaller and densely distributed pedestrians.
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Table 3.4 Evaluation results of all three models on pedestrian test dataset (loU@0.5).

Input Size Model Averag(;l;r)ecision Infertzr;geS)Speed
YOLOv2 75.2 45.1

416 x 416 | YOLOvV2 Model A 77.1 54
YOLOvV2PD 79.5 47.2
YOLOv2 76.5 32

544 x 544 | YOLOv2 Model A 78.3 38.2
YOLOvV2PD 80.7 36.3
YOLOv2 78.2 26.1

608 x 608 | YOLOv2 Model A 80.4 32.1
YOLOvV2PD 82.3 30.6

From the experimental results, our proposed algorithm runs at 36.3 FPS in real time on
544 x 544 image resolution. In this study, if AP is considered, then an image size of 544 x
544 would be the best choice as the proposed model achieves 80.7% detection accuracy,
which is 2.1% higher than that of YOLOv2 [16]. The proposed model runs at 30.6 FPS for
608 x 608 image resolution, but the inference speed falls by 5.7 FPS compared to 544 x 544

image resolution.

The evaluation results of all three models on INRIA test dataset are expressed in terms
of average precision and inference speed (milliseconds). Table.3.5 shows the detected results
on INRIA test dataset for different image resolutions. At 544 x 544 test image resolution, the
proposed model achieves 91.2% AP, which constitutes an improvement by 6.6% and 11.4%
compared with YOLOv2 Model A and YOLOv2 models, respectively. This is because the
proposed model uses MLFF strategy while detecting smaller pedestrians.

Table 3.5 Detection results of all three models on INRIA Test dataset. (loU@0.5)

Input Size Model Average Precision (AP) Infere(r;(;eS)Speed
YOLOv2 79.8 32
544 x 544 | YOLOV2 Model A 84.6 38.2
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YOLOv2 82.5 26.1
608 x 608 | YOLOv2 Model A 87.1 32.1
YOLOvV2PD 93.4 30.6

To test the robustness of the proposed model, testing was performed on INRIA

algorithms.

Table.3.6 shows a comparison of YOLOv2PD model performance with advanced

accuracy when detecting pedestrians.

Table 3.6 Comparison of YOLOvV2PD results with recent SOTA methods on INRIA.

pedestrian dataset and YOLOvV2PD model performance was compared with several SOTA

existing algorithms evaluated in terms of average MR and runtime (FPS) on a reasonable test
dataset. Our model achieves better detection performance than YOLOv2 [15], Spatial Pooling
[86] and Y-PD [62] and improved by 4.7%, 3.4% and 1.3% respectively, but lags behind F-
DNN [63] and YOLOvV3 [16] by 1% and 0.6% respectively. Obviously, on INRIA pedestrian

test dataset, the proposed model achieves a better trade-off balance between speed and

Models/Avg.MR (%) Reasonable Runtime (FPS)

Vi [22] 72.5 <1
HOG [7] 46 <1
YOLOV2 [15] 12,5 32

Very Fast [44] 16 >100
Spatial Pooling [86] 11.2 <1
RPN + BF [47] 6.9 ~4
Y-PD [62] 9.1 73
F-DNN [63] 6.8 ~6
YOLOV3 [16] 7.2 20
Proposed 7.8 36.3

Table.3.7 shows a comparison of the proposed model performance with the

precision, and detection speed.
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Table 3.7 Comparison of YOLOvV2PD detection results with recent SOTA methods on
Caltech dataset (loU@0.75).

Models/LAMR (%) Reasonable Preg\s{ieorsg(;P) Runtime (sec)
RPN + BF [47] 9.58 0.324 0.5
SA-FastRCNN [49] 9.68 0.344 0.59
UDN + SS [50] 11.52 0.331 0.28
M-GAN [51] 6.83 - -
Faster RCNN + ATT-Vbb [52] 10.33 - -
TTL(MRF) + LSTM [53] 7.4 - -
SSNet [57] 8.92 0.36 0.43
SDS-RCNN [60] 7.36 0.355 0.21
CompactACT + Deep [61] 11.75 0.334 1
Y-PD [62] 18.4 0.321 -
Proposed 7.48 0.381 0.29

From Table.3.7, it is clear that, on Caltech test dataset, the proposed model has better
detection performance than RPN + BF [47], SA-FastRCNN [49], UDN + SS [50], Faster
RCNN + ATT-Vbb [52], SSNet [57], CompactACT + Deep [61], and Y-PD [62] models on
the reasonable subset [h € (50, «)]. However, the proposed model, average miss rate falls
behind those of M-GAN [51], TTL (MRF) + LSTM [52] and SDS-RCNN [60] models by
0.65%, 0.80% and 0.12% respectively.

The proposed model performance assessment is also done on City Persons pedestrian
dataset [104]. Table.3.8 shows the experimental results of the proposed model and the results
were compared with several state-of-the-art approaches. The proposed model was evaluated

on reasonable subset only and considered loU @0.5.
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Table.3.8 Comparison of the metrics parameters and testing time of several SOTA relevant
approaches with that of the City Persons dataset (Reasonable subset loU@0.5).

Models/Avg.MR (%) Reasonable Testing time (sec/img)
RPN + BF [47] 15.5 0.5
DDFE [91] 12.9 0.22
YOLOV2 [15] 14.5 0.32
SA-FastRCNN [49] 12.7 0.59
TTL(MRF) + LSTM [53] 14.4 0.25
F-DNN [63] 13.6 0.16
YOLOv3 [16] 121 0.38
Proposed 13.8 0.29

Table.3.8 shows the experimental results of the proposed method comparison with
several SOTA approaches, namely, RPN+BF [47], DDFE [91], YOLOv2 [15], SA-
FastRCNN [49], TTL (MRF) + LSTM [53], FDNN [63] and YOLOV3 [16]. On Reasonable
scenario, the proposed model achieves a comparative log-average Miss rate when compared
to other SOTA detectors. However, this model fails to achieve low log-average miss rate and
falls behind YOLOV3 [16] model.

3.5.2 Qualitative Analysis on multiple datasets and small-scale Pedestrian

Detection

Pascal Voc-2007+2012 pedestrian dataset contains 20 different classes and every class
may have small objects. Since our main aim is detecting smaller and densely distributed
pedestrians in this dataset, a dataset was made manually by collecting 330 images that mainly
include smaller and dense pedestrians to evaluate the proposed model’s performance. Figure.
3.5 shows qualitative detected results of small-scale pedestrian detection on all three models
and these were compared with YOLOvV3 [47] SOTA detector. From these detection results, it
is evident that the proposed model can produce better prediction on smaller and densely
distributed pedestrians than other models.
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(a) YOLOv2 (b) YOLOv2 Model A (c) YOLOv2PD

Figure 3.5 Detection results of YOLOv2, YOLOv2 Model A and YOLOV2PD Models
(544x544).

Figure 3.6 shows qualitative detection results on both Pascal 2007+2012 pedestrian
and INRIA test datasets. To show the findings more intuitively, regarding real-time
performance of the proposed algorithm and to achieve a perfect balance between detection
speed and accuracy, a real-time test video is fed to all three models. The detection results of

the randomly selected 79" frame on all the models is shown in Figure.3.7.
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(c) (d)

Figure 3.6 Sample detected results of YOLOvV2PD on Pascal 2007+2012 Pedestrian and
INRIA test datasets (544x544).

(a) YOLOv2 (b) YOLOv2 Model A (c) YOLOv2PD (d) YOLOv3

Figure 3.7 Real-time detection results of YOLOv2, YOLOv2 Model A, YOLOv2PD and
YOLOv3 Models (544x544) on test video.

The running time of all the three models on a real-time input test video is evaluated.

The detection speed on an input image of size 544 x 544 was 32 FPS for YOLOvV2, 38.2 FPS
for YOLOvV2 Model A, 36.3 FPS for YOLOv2PD and 20 FPS for YOLOV3.
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3.6 Summary

This chapter presented an accurate pedestrian detection algorithm while detecting
smaller and densely distributed pedestrians. In this work three new contributions were
presented. Our first contribution involved designing two pedestrian detection models
YOLOV2PD and YOLOv2 Model A and prove the effectiveness of YOLOv2PD model
through experimental results. The second contribution was introduction of Multi-layer Feature
Fusion (MLFF) strategy in the proposed model to improve the model’s feature extraction
ability, and reduced network complexity by removing one convolution layer from the higher
end. And the last contribution is that loss function is improved by applying normalization on
the bounding box loss error. However, the proposed model runs in real time, there is still
room for improvement of the speed, miss rate on INRIA, City Persons datasets and miss

detection of small similar and occluded pedestrians.
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Chapter 4

SSAD: Single Shot Multi-scale Attentive Detector

This chapter’s main objective is to discuss the development of an efficient
object detection algorithm and to achieve optimal trade-off balance between detection
accuracy and speed while detecting small-scale and occluded objects. In this work, Single
shot Multi-scale Detector (SSD) was adopted as baseline network and two modules named as
feature fusion and Multi-scale Attention Unit (MAU) were introduced and the network is
referred to as “Single shot Multi-scale Attentive Detector” (SSAD). Both qualitative and
guantitative analysis of the proposed model were verified on multiple autonomous driving
datasets and a comparative analysis was made with existing state of the art (SOTA) object

detection algorithms.

4.1. Introduction

In order to improve safety driving and reduce driver fatigue, there is a need to develop
intelligent driving technology [92]. The first task is to guarantee driver’s safety in intelligent
driving system, which is possible by assisted driving system (ADS) [93]. So, improving
driver’s safety is a key component of research in intelligent driving system. For assisted
driving system in smart cars, a collision avoidance warning system (CAWS) [94] is required.
The captured images of pedestrians and vehicles by car cameras are to be identified,
classified, localized and detected by detection technology, which faces challenges due to
complex scene information. Driver assistance systems not only require an extremely high
accuracy of object detection but also cannot miss small targets that are difficult to detect in
complex scenes. There are wide applications of detecting pedestrians and vehicles for
autonomous driving, covers areas such as smart robots, smart intelligence video surveillance,

smart cars, assisted smart driving system and intelligent transportation system (ITS).
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Commonly object detection methods are classified into traditional learning methods
and deep learning methods. Traditional machine learning based detection methods primarily
focus only on manual feature extraction. The following sequence of steps such as post-
processing, feature extraction, classifier learning and detection were carried out by traditional
detection methods; however, these methods run with higher detection speed. Under specific
conditions, these methods achieve good detection results, while detection accuracy is greatly
sacrificed under poor lighting or occlusion situations. Therefore, traditional learning detection
methods are not suitable practically and don’t satisfy real-time requirements.

After 2012, deep learning-based detection methods use Convolutional Neural
Networks (CNN’s) for detecting pedestrians and vehicles. The features are extracted by
traversing through the entire image, classified by a classifier and finally non-maximum
suppression suppresses the output detected results. CNN based pedestrian and vehicle
detection methods have achieved great success in terms of speed and detection accuracy and
have become current state-of-the art mainstream methods. Recently, there has been a
tremendous growth and rapid development using deep learning-based pedestrian and vehicle
detection methods [47],[91], [95-97] however, some problems remain. One of the major
problems is to maintain trade-off balance between detection accuracy and speed. In addition,
research in autonomous driving system is in full swing, and the available detection
technologies should accurately and quickly detect both pedestrians and vehicles. In order to
improve both detection accuracy and efficiency, a multi-scale attention unit (MAU) module is
introduced, in the proposed model.

Our main goal is to improve, one-stage SSD based detector for autonomous driving
system from a different perspective. The proposed model focus only on the crucial regions of
the feature map from which intrinsic feature relations are extracted and which are helpful for
detecting occluded pedestrian and vehicles. This key idea came from the human vision (HV)
system. At first glance, while perceiving a scene, we humans figure out the contents instantly
through global dependency analysis. When our eyeball focus on a particular point, the
intensity of the surrounding regions decreases. A MAU module is designed which is similar
to human vision system. MAU has the capability to analyse the importance of features at
different locations by using global feature relations. This MAU generates an attention map
matrix which highlights only useful regions and suppresses unnecessary regions.

Driver assistance systems not only require an extremely high accuracy of object

detection but also cannot miss small targets that are difficult to detect in complex scenes. So
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one of the major problem is in-balance of detection accuracy and speed and their trade-off.
Therefore, in this chapter, a novel Single shot Multi-scale detection network was proposed to
improve both detection accuracy and efficiency. To achieve optimal trade-off balance
between detection accuracy and speed, SSD was adopted as baseline detector in the proposed
model. A combination of SSD + Feature Fusion + Multi-scale Attention Unit (MAU) is
referred to as ‘Single shot Multi-scale Attentive Detector’ (SSAD). The merits of the original
SSD [19] structure are preserved in SSAD model and which is more robust and effective

while learning object features.
The contributions of this chapter are summarized as follows:

= The proposed one-stage detector incorporates pixel-wise feature relations and follows
the human vision mechanism. The SSAD model learns to highlight pedestrian and
vehicle regions on the extracted feature map and also suppress irrelevant regions, from
the global relation information and thereby provide reliable guidance for autonomous
driving.

= SSAD model is more accurate and preserves the simplicity and efficiency of SSD.

= To verify the robustness of the SSAD model, it was validated on four challenging
datasets for autonomous driving scenario. Evaluation results on multiple datasets show
that SSAD model competes favourably with SOTA one-stage SSD based series

detectors in terms of efficiency and detection accuracy.

4.2. Overview of Single Shot Detector (SSD) Series

SSD is referred as regression-based object detector. This model can solve the conflict
caused by translational invariance and variability and can achieve better detection accuracy as
well as speed. The structure of SSD + VGG backbone network for an input image 300x300
size is shown in Figure 4.1. Each selected feature map consists of K frames which varies in
size and width to height ratio. Each frame is also referred to as anchor box. Figure 4.1 shows
bounding boxes on feature maps of different convolution layers. B class score and 4 position
parameters are predicted by default at every bounding box. B x K x w x h class score and 4 x
K x w x h position parameters need to be detected for the w-h feature image. It requires a size
3 x 3 (B + 4) x Knumber of w x h convolution kernel for the processing of the feature map.

The convolution result is considered to be the last feature for bounding box and classification
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regression. The sum of bounding box regression’s position loss and classification regression’s

confidence loss is referred to as total loss function.
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Figure 4.1 SSD300 with VGG-16 backbone network through Conv5_3 layer.

Figure 4.2 shows that the designed SSAD model is simple and more effective in
refining the contextual semantics when compared to state-of-the-art (SOTA) one-stage SSD-
based detectors. Fu et al. [21] proposed Deconvolutional SSD (DSSD), with a highly complex
feature pyramid network (FPN) [98] and the information flows through various convolutional
layers.

Compared to SSD [19], DSSD achieved higher detection accuracy but was
computationally expensive and relatively more complex. Li et al. [20] proposed Feature-fused
Single-shot Detector (FSSD) for multi-scale feature aggregation; it is a combination of SSD +
Feature Fusion modules, and achieves only a marginal improvement in the detection but by
scarifying the speed when compared to SSD [19]. Whereas proposed SSAD model refines the
various targets information from each layer by employing a single efficient MAU and also
retains the original SSD structure (see Figure 4.2(d)).

45



Feature Map m Prediction Module
@ Multl_-scale_ @ Concatenation
Attention unit

PM

(a)

(b)

(©)

46



O —d@@»@

=
=

Figure 4.2 Various structures of one stage SSD-based detectors (a) SSD (b) DSSD (c) FSSD
and (d) SSAD (Proposed).
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4.2.1 Visual Attention Mechanism

In order to exploit the salient visual information and facilitate visual tasks in various
object recognition applications, visual attention (VA) mechanism was applied. Saliency-based
VA model [110] selects only specific locations from the extracted saliency maps. Recurrent
Neural Network (RNN) is employed in RAM [111] model, and to discover specific targets
reinforcement learning was applied. To classify real objects through CNN, classification was
performed by Attention Net [112] and RA-CNN [113] models. The above discussed models
focus only on single instance problems. To discover a global contextual guidance in multi-
object recognition applications, AC-CNN [117] and Relation Net [114] were proposed. AC-
CNN [115] uses stacked Long Short-Term Memory (LSTM) units to examine the global
context. Practically Relation Net [114] is a two-stage detector, would generate more attentive
features, since it correlates the geometrical features and information appearance between the
region proposals and performs slightly better than AC-CNN [117]. For detecting pedestrians a
dual attention network was proposed in CSANet [116]. This network models the attention
mechanism of feature maps from both the channel and spatial dimensions. MSCMANEet [65]
model performs multi-scale feature extraction and uses an attention module on the extracted

feature maps from both channel and spatial dimensions.
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4.2.2 Self-attention

In the field of Natural Language Processing (NLP), to model long-range dependencies
of a sentence, a self-attention mechanism is a widely adopted technique. An attention memory
network was constructed in LSTMN [115] which discovers the relations between tokens and
also improves memorization capability of LSTM network. To generate a two-dimensional
embedded matrix, structured self-attentive [118] applies self-attention mechanism in
bidirectional LSTM on each row part of the sentence. This technique also provides global
dependencies between the input and output of a transformer [119] model. So in the proposed
work, transformer [119] concept was adopted to develop long-range dependencies from the
extracted feature maps itself. Therefore, our model was highly capable of focusing on
different regions while detecting multi-scale pedestrians and vehicles effectively and

accurately.

4.3 Proposed Methodology

To handle and detect multi-scale objects effectively, SSD [19] performs detection on
the extracted multi-scale feature maps. Yet, SSD fails to detect smaller objects, since shallow
layers lack semantic information. The solutions to the above problem are: inject semantic
information from deeper layers to the shallower layers exhaustively or construct a network
with more CNN layers to obtain refined feature maps. One major concern is one-stage
detectors, should run in real-time, and improve SSD detection accuracy but with an extra
computational cost. Prior to the prediction module (PM), MAU module is embedded into SSD
[19] in order to improve the detection accuracy. Figure 4.3 shows SSAD architecture and used
ResNet101 (conv1-5) [79] used as backbone (see Table 4.1) network. Conv. (6 to 9) (i.e.,
pyramidal convolutional) blocks follow SSD [19]. Conv-3 to 9 feature maps detect multi-
objects with different scales. In SSAD model, an MAU module is inserted between extracted

feature map and prediction module (PM).
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Figure.4.3 SSAD Architecture.

4.3.1 Multi-scale Attention Unit (MAU)

In the proposed model, Self-attention Mechanism (SAM) [24] was adapted for
attention map visualization. By using an attention map, SAM produces global dependencies
between the two sequences, which map a query and a set of key-value pairs to an output. The
input features motivate the attention module in SAM and are much helpful to refine the
features. So in order to construct global feature correlations among extracted pixels, we
consider our problem as a similar query problem to estimate relevant information from the
input feature maps.

Assume at a given scale s € {1, 2, ....S}, z° € R® * N js the feature map, where C
represents number of channel locations and N represents total spatial locations in the extracted
feature map. Initially linear transformation is applied on the input feature map z° and it is
divided into three different feature spaces m, n, 0 i.e. m(z%) = wm' Z°,

n(z% =w,' z° and
0(Z)=wo' 2
where Wm'", Wn', Wo' € REXC with C’ = C/8.

The final matrix is obtained after multiplying m(z®) and n(z°) matrices as shown in

Figure 4.3, to generate an attention map score matrix A® € RN X NS By applying softmax

operation, each row of the attention map score matrix is normalized:
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Where, Kis is known as multi-scale attention map, which describes the pixel relations
when querying the i" location of the feature map. To reduce the computational cost, the input
feature map Zz° is linearly transformed into m(z%) and n(z°). The resultant matrix after
multiplying both m(z°) and n(z®) would compute the similarity features and then generate an
N x N multi-scale attention map which reveals the feature global relations among extracted

pixels.

—S
Then matrix multiplication is performed between o(z®) and A . So the refined feature
map is determined efficiently at every possible location as the sum of the weighted individual
features. Therefore, the resulting matrix multiplication is summed up to the input feature map
z:

S

2= 2+ (A OZ)) (4.2)

—S
where Ai multi-scale attention map, which relates the long-range dependencies from
the extracted feature maps from all locations. Therefore, it only highlights crucial regions of

the feature map and guides the detector effectively with the modified information.

Table 4.1 Architecture of SSAD + ResNet-101backbone (Input image size is 513 x 513).

Layers Output Size Specifications

Conv 1 256x256 Conv_ 7x7x, s2, 64

Conv 2_x 128x128 {Conv_ 1x1, 64, conv_3x3, 128, conv_1x1, 256} x3

Conv 3 X 64x64 {Conv_ 1x1, 128, conv_3x3, 128, conv_1x1, 512} x4
Conv 4 _x 32x32 {Conv_ 1x1, 256, conv_3x3, 256, conv_1x1, 1024} x23
Conv 5 X 8x8 {Conv_ 1x1, 512, conv_3x3, 512, conv_1x1, 2048} x3
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4.3.2 Semantic feature fusion

FSSD [20], model fuses the contextual information from layer4 and layer5 into layer3
to enhance its semantics. From thorough experimentation, it is clear that feature fusion alone
does not improve the detection accuracy much (refer Table.4.4). However it decreases the
detection accuracy slightly, with extra computational cost, because all three layers possess
different receptive fields and capabilities.

In this model, both concatenation and 1x1 conv. transformation were applied, which
would neutralize the relative importance of these layers and important features in layer3 were
lost. So to overcome this problem, an MAU is inserted after feature fusion operation, which
gives considerable improvement (refer Table.4.4). So MAU uses semantics from deeper
layers to discover crucial information which resides in original layer3. Inferior performance
was observed by applying MAU alone, which was compared with a combination of feature
fusion and attention mechanisms simultaneously. This clearly shows that these two operations
are complementary to each other.

The semantic feature fusion process is expressed as:

23 =W? Concat {3, 2%, 2°} + b? (4.3)
where z° € R * N s the feature map at various layers, W2 € R * < and b® € R3, When
concatenation is applied, three layers (from 3 to 5) are up sampled through bilinear

interpolation which aligns their sizes with that of original layer 3.

4.4 Experimental Discussions

To showcase the power of SSAD model, it was tested and evaluated on multiple
datasets and the performance was compared with existing state-of-the-art object detection
models. The robustness of the proposed algorithm was verified both quantitatively and
qualitatively.

4.4.1. Datasets

(i) Pascal Voc-2007+2012: The proposed model is trained on two mainstream datasets:
PASCAL VOC 2007 and VOC 2012 [100]. The number of images in Pascal 2007 +12 has
9963 and 22,531 images respectively. The trained model is finally tested on PASCAL VOC-
2007 test dataset particularly for three classes i.e. car, bus and pedestrian. SGD is the

optimizer solution used during the model training.

51



(if) INRIA: The INRIA Pedestrian dataset [102] contains 1826 pedestrians, with an image
resolution 64 x 128. The pedestrian images captured in this dataset possess a complex
background, illumination changes, various degrees of occlusion, variations in human posture,

and with individuals wearing different clothes.

(iii) Caltech Pedestrian: The Caltech pedestrian dataset [103] contains a set of video
sequences of 640 x 480 in size captured from an urban environment. It includes training (set
00 to set 05) subsets and testing (set 06 to set 10) subsets. It contains 250k video frames, 350k
bounding boxes and 2.3k pedestrians (“person’ or “people” labels) are annotated. The training
dataset is formed by extracting every image after every 30 frames from set 00 to set 05 and

testing images are extracted from set 06 to set 10.

(iv) City Persons: This dataset [104] contains 2975 training set, 500 validation images and
1525 testing images. This dataset contains a large number of images under a variety of
conditions. The image resolution used for training is 1024 x 2048. This model is trained on

3475 training images and the performance is evaluated on 1525 images.
The summary of datasets used for experimentation of SSAD algorithm is shown in Table 4.2.

Table 4.2 Summary of datasets used in experimentation of SSAD Network.

Datasets Training Images Testing Images
Pascal Voc-2007+2012 32494 4098
INRIA 614 228
Caltech Pedestrian 4250 4024
City Persons 3475 1525

4.4.2. Training and Evaluation of Performance Parameters

The experiments were carried out on a workstation during the training phase; and the
testing phase was also performed on the same workstation. The experimental setup of the
workstation is as follows: Windows 10 pro OS, Intel Xeon 64-bit CPU @3.60 GHz, 64 GB
RAM, Nvidia Quadro P4000 GPU, CUDA 10.0 & CUDNN 7.4 GPU acceleration library and
Pytorch [120] deep learning framework.

The proposed SSAD network was evaluated on PASCAL-VOC 2007 test dataset

specifically on three different classes: Car, Bus and Pedestrian. Stochastic Gradient Descent
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(SGD) optimizer solution was adopted in the proposed model. Our proposed network is
trained on NVIDIA Quadro P4000 GPU work station. SSAD321 network was trained for 160
epochs where the learning rate initially used is 0.001 and decreased by 1/10th after the 80th
and 120th epochs respectively. SSAD513 network was trained for 110 epochs where the
learning rate initially used was 0.01 and later on decreased by 1/10th after the 60th and 80th
epochs respectively. The weights of ResNet-50 & 101 backbone model was pre-trained on
ImageNet [4] dataset. Using the settings of SSD, DSSD and FSSD, SSAD model was trained
and evaluated on PASCAL VOC-2007+12 dataset for two input resolutions 321x321 and
513x513.

While training SSAD model on Caltech dataset, one mini-batch would contain 8
images, and the learning rate was 10, and the training was stopped after 100 epochs. During
the SSAD model training on City Persons, 2975 training images and performance were
evaluated on 500 validation images. Initially, the learning rate was set to 0.005 for the first
50k iterations and 0.0005 for the rest 35k iterations. For City Persons dataset, a mini-batch
that contains 2 images, and training was stopped after 85k iterations.

The same anchor box mechanism was followed as in original SSD [19] structure. The
various aspect ratio (ar) {1, 2, 0.5} for anchor boxes on conv_3, 8 & 9 feature maps and {1, 2,
0.5, 3, .3} for anchor boxes on conv_4 to conv_7. Each anchor box has both minimum and

maximum scale, where the Smin Scale, is spaced regularly over the feature map layers and Smax,

IS the Smin Of next layer. Anchor box normalization is calculated using:

WwW=s.,a
" and (4.4)
S

NV ar , Where (4.5)
S= \/Smax ' \/Smin (4.6)

for ar =1, else s = Smin. TO solve the class imbalance problem hard negative mining was

h=

applied during the network training. Adopted same loss function and data augmentation
techniques as used in SSD [15].
The qualitative performance metrics such as Average Precision (AP), mean average

precision (mAP), frames per second (FPS) or testing time (seconds/image) and parameters
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size (MB) were evaluated on the proposed model. Log-average miss rate of 2% is calculated
for INRIA dataset.

4.5 Quantitative and Qualitative Analysis

In order to test the robustness of the proposed model, both quantitative and qualitative
test results analysis were performed on four different challenging detection datasets: PASCAL
VOC 2007 + 2012 [100], INRIA Pedestrian [102], Caltech pedestrian [103] and City Persons
[104] for autonomous driving. Stochastic Gradient Descent (SGD) is the optimizer solution
applied while training all the four datasets.

The proposed model was initially tested on PASCAL VOC-2007 test dataset, for
detecting pedestrians and various types of vehicles. The primary goal of the proposed model
was comparing speed and detection accuracy with one-stage state-of-the-art detectors. The
evaluation metrics are Average Precision (AP) and Mean Average Precision (mAP)
complying with the PASCAL challenge protocols. The performance parameters such as
Average Precision (AP), Mean Average Precision (mAP), frames per second (FPS) and
parameters size (MB) were calculated and compared with one-stage SOTA detectors. From
Table 4.3 it is clear that the proposed model achieves large improvement in detection
accuracy compared to YOLOvV2PD, YOLOv3 one-stage SSD-based detectors while detecting
pedestrians and vehicles.

Table 4.3 Comparison of speed and accuracy on Pascal VVoc 2007 test dataset.

Models Back bone Bus Car Person mAP | FPS | No.of Test Param.
Anchors Image (MB)

Faster-RCNN | ResNet 101 | 78.60 | 76.6 | 80.70 | 78.63 | 2.4 | 6000 | 1000%600 | 134.7M
[12]

Yolov2 [15] Darknet 19 79.8 76.5 81.3 |79.20 | 32 -- 544*544

SSD300 [19] | VGG16 82.7 78.8 82.6 | 8137 | 46 8732 300*300 | 56.8M

SSD321 [21] | Resnet101 81.4 75.6 815 | 79.50 | 11.2 | 17080 321*321 | 56.8M

RetinaNet300 | ResNet101 | 67.2 | 58.8 | 70 |65.33 | 11.4 | 15354 | 300300 | 55.7M
[121]

RetinaNet500 | ResNet101 | 73 | 712 | 789 |7437 | 7.1 | 35964 | 500%500 | 55.7M
[121]
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SSD512[19] | VGG16 85.1 | 843 | 855 |84.97 | 19 | 24564 | 512*512 -
SSD513 ResNet101 | 81.1 | 837 | 857 |8350| 6.8 | 43688 | 513*513 | 57.5M
[121]

FSSD513 VGG16 866 | 869 | 804 |84.63| 43 | 24564 - -
[20]

YOLOV2PD | Darknetld | 805 | 79.2 | 823 | 80.7 | 363 - 544*544 -
[122]

YOLOV3 [16] | Darknets3 | 85.1 | 84 | 821 |83.73| 30 - 544*544 -
SSAD 300 | VGG16 826 | 782 | 837 |8150|11.8| 8732 | 300%300 | 29.4M
SSAD 321 ResNet101 | 81.7 | 77 | 821 |80.27|27.4 | 10325 | 321*321 | 66.7M
SSAD512 | VGG16 853 | 847 | 865 | 8550 | 3.4 | 24564 | 512*512 | 176.2M
SSAD 513 ResNet101 | 855 | 84.8 | 865 | 8560 | 16 | 25844 | 513*513 | 67.2M

4.5.1 Ablation study on PASCAL VOC 2007 test dataset

The proposed SSAD model was explored using various effects of MAU, semantic
feature fusion in terms of both detection accuracy and speed. Here the evaluation results of
four models, SSD513 + ResNet101 (only), SSD513 + Resnet101 + Feature Fusion, SSD513 +
ResNet101+MAU, and SSD513 + ResNet101 + Feature Fusion + MAU on PASCAL-VOC
2007 test dataset were verified. From Table 4.4, it is observed that feature fusion module
alone does not lead to much improvement in detection accuracy. On the other hand, it creates
a little more computational overhead. Whereas, significant performance improvement was
given by multi-scale attention unit alone. So combining MAU and feature fusion modules
gave further boost in detection accuracy parameter. Therefore, finally MAU module has the

ability to analyse contextual semantics at different levels and select crucial information for

guiding a better and more accurate objects detection.
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Table 4.4 Ablation study on Pascal VVoc-2007 test dataset (test image 513x513 size).

. Mean Average
Models Method Time (sec) Precision (MAP)
SSD + ResNet101 -- 0.1518 79.86
SSD + ResNet101 | Feature-Fusion 0.1576 79.42
SSD + ResNet101 | Multi-scale attention 0.1592 82.17
SSD + ResNet101 | Feature-Fusion + 0.1623 85.6
Multi-scale attention

4.5.2 INRIA Pedestrian

The Quantitative test results analysis carried out on multiple autonomous driving
datasets on SSAD model were discussed in detail. Table 4.5 shows the test results of INRIA
person dataset of the proposed model and make a comparison with the state-of-the-art

detection algorithms.

Table 4.5 Comparison of the Miss rate with several SOTA approaches on INRIA dataset.

Models Miss rate (%)
LDCF [123] 14
Spatial Pooling [86] 116
MT-LDCF [124] 11
MCF [125] 9
NNNF [126] 10
YOLOV2PD [122] 78
Y-PD [62] 9.1
YOLOV3 [16] 7.2
YOLOV4 [17] 6.7
SSAD 6.4
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For fair comparison of our model with several SOTA models were considered LDCF
[123], Spatial Pooling [86], MT-LDCF [124], MCF [125], NNNF [126], Y-PD [62],
YOLOV2PD [122], Yolov3 [16] and YOLOv4 [17]. For INRIA Person dataset, the proposed
model achieved lowest log-average miss rate of 6.4%, which was superior to that of several
SOTA detectors.
4.5.3 Caltech Pedestrian

The quantitative test results analysis of the proposed model was performed on Caltech
Pedestrian dataset [103]. Table 4.6 shows the experimental results of the proposed model and
these were compared with several SOTA approaches. The evaluation results of the proposed

model was on Caltech reasonable subset only and considered loU @0.5.

Table 4.6 Comparison of testing time performance metric with several SOTA relevant
approaches with that of the Caltech pedestrian dataset (Reasonable subset loU@0.5).

Models Reasonable Test time (s/img)
RPN+BF [47] 9.58 0.5
FDNN [63] 8.6 0.16
TLL-TFA [53] 7.4 0.25
RTPD [127] 8.9 0.13
SSNet [57] 8.92 0.43
SA-Fast RCNN [ 49] 9.68 0.59
YOLOV2PD [122] 7.48 0.29
MSCM-ANet [65] 7.1 0.06
SSAD 6.91 0.05

To test the effectiveness of proposed model, testing was performed on Caltech
pedestrian dataset [19]. Table 4.6 shows the experiment results of the proposed method and
the comparisons with several SOTA approaches, namely, RPN+BF [47], FDNN [63], TLL-
TFA [53], RTPD [127], SSNet [57], SA-Fast RCNN [49], YOLOV2PD [122] and MSCM-
ANet [65]. On Reasonable scenario, the proposed model achieves a decent low log-average
miss rate and test time than compared to the other SOTA detectors.
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4.5.4 City Persons

The quantitative assessments of the proposed model were performed on City person’s
pedestrian dataset [104]. Table 4.7 shows the experimental results of the proposed model
which was compared with the results of several state-of-the-art approaches. The proposed

model tested qualitative results on City person’s reasonable subset only and considered loU

@0.5.

Table 4.7 Comparison of the metrics parameters and testing time of several SOTA relevant
approaches with that of the City Persons dataset (Reasonable subset loU@0.5).

Models Back bone Reasonable | Param. (MB) TesF time
(s/img)
DDFE [91] ResNet 50 12.9 168.8 0.22
FPN [98] ResNet 50 15.4 - _
Rep Loss [128] ResNet 50 14.6 188.5 0.35
AMSNet [129] ResNet 50 13.9 - -
CSANet [116] ResNet 50 12 - 0.32
TLL+MRF [53] ResNet 50 14.4 230.5 0.41
ALFNet [130] ResNet 50 13.1 191.1 0.27
MSCM-Anet [65] ResNet 50 11.95 154.1 0.15
Cascade RCNN [69] HRNet 11.2 B -
Cascade RCNN [69] SwinT 9.2 B -
SSAD ResNet 50 12.6 97.7 0.11

The robustness of the proposed model, was made on City person’s dataset [104].
Table 4.7 shows the experimental results of the proposed method and the comparison with the
several SOTA approaches, namely, DDFE [91], FPN [98], RepLoss [128], AMSNet [129],
CSANet [116], TLL+MRF [53], ALFNet [130] MSCM-Net [65] and Cascade RCNN [69].
On reasonable scenario, the proposed model achieves a better log-average Miss rate and low
testing time when compared to other SOTA detectors. The proposed model outperforms over
other SOTA detectors in terms of Parameters (MB) size and testing time. However, SSAD

model fails to achieve low log-average miss rate and falls behind MSCMNet [65] and
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Cascade RCNN [69] models. Figure.4.4 shows the detected results of proposed network on
City person’s dataset.
4.5.5 Qualitative Analysis

Figure 4.4 shows qualitative test results of the proposed model on city persons test

datasets. The applied test image size is 513x513.

Figure 4.4 Detected results of City Persons dataset on SSAD Network.

4.5.6 Visualization of Multi-scale Attention map

To visualize the effectiveness of multi-scale attention map mechanism, on SSAD
model at different scales is investigated. In this work multi-scale attention maps were
projected onto original images. The sample visualization of attention map is shown on
PASCAL VOC-2007 test dataset [100] and shown on three classes. i.e., Car, Bus and
Pedestrian. The multi-scale attention map only highlights the required classes and their
locations, which indicate the feature relations; it helps the proposed model to concentrate
more on useful and important regions as shown in Figure 4.5. It also guides the model to
focus on small targets in shallower layers, while in deeper layers, it highlights bigger targets.
Finally, it is observed clearly that the multi-scale attention map rejects unwanted regions and
focuses mainly on crucial regions and this would help in quick determination of negative

anchor boxes.
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Figure 4.5 Visualization of PASCAL VOC 2007 test set using attention map.
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4.6 Summary

This chapter proposed a new novel framework for effective pedestrian and vehicle
detection for autonomous driving systems. In this work, two new contributions are presented.
The first contribution in that the, proposed model learns to highlight pedestrian and vehicle
regions on extracted feature maps and suppress irrelevant regions from global relation
information and provide reliable guidance for autonomous driving. Therefore, SSAD network
is highly capable of focusing on different regions for detecting multi-scale and occluded
pedestrians and vehicles effectively and accurately. Second contribution is that prior to the
prediction module (PM), a Multi-scale Attention Unit (MAU) module is embedded into SSD
in order to improve detection accuracy and preserves the simplicity and efficiency of SSD.
Therefore, SSAD network is simple, efficient and achieves higher detection accuracy while
detecting smaller and occluded pedestrians and vehicles in different environmental conditions.
However, SSAD network is heavy so it fails to achieve real-time performance when deployed

on any low-end edge device for autonomous driving application.
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Chapter 5

Optimized MobileNet+SSD: A Real-time Pedestrian

Detection

The main goal of this chapter is to design and develop a real-time pedestrian detection
algorithm without losing any detection accuracy while detecting smaller pedestrians.
Secondly, the proposed algorithm is implemented in real-time on a low-end edge device
Jetson Nano board. Both quantitative and qualitative analysis of the proposed model was
verified on PASCAL VOC- 2007 test dataset and a comparative analysis was made with
existing state of the art detection algorithms. Real-time performance of the proposed model
was verified on Jetson Nano board and a comparative analysis was made with existing state-

of-the-art pedestrian detection algorithms.

5.1 Introduction

Computer vision (CV) has had major growth in numerous fields such as robotics,
medical imaging, microscopy, image retrieval, face recognition, and modern industrial
applications. In recent years, pedestrian detection is a challenging problem in CV applications
like semi-autonomous vehicles and self-driving cars. It is also an indispensable and
remarkable task in an intelligent video surveillance system. It has a clear-cut uses in
automotive applications because of its use in safety systems. This was offered by many car
manufacturers (e.g. Ford, Nissan, GM, Volvo) as an advanced driver assistance system
(ADAS) option in 2017.

In daily life, we often drive through busy environments, traffic, and challenging
weather conditions. Road accidents are one of the major causes of death. So, there is a need
to design safer automobiles by providing tools to inform and warn the driver about

pedestrians as well as other relevant information. This can save many lives in road accidents
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I.e. the concept of self-driving cars. For pedestrian detection, the designed network should be
able to differentiate between multi-scale pedestrians and other complicated objects that are
also present in the image backgrounds. For that, we need to withdraw the features of
pedestrians such as shape, colour, and behaviour. The intra-class variations of pedestrians
such as clothing, backgrounds, lightning, articulation and occlusion are the main challenges.
The detection is more precise if the expected and plausible features are extracted perfectly
from the images.

A feature is an interesting part of an image and the main focus of feature extraction is
to extract information from the image and make some decisions at every image point so that
the given features of any object are present in that image. So the extraction of image
information can be done by convolutional neural networks (CNNs) as at present they have
very good capability of high-level feature extraction of an image and are also useful in low-
level feature detections. Deep convolutional neural network (DCNN) is classified basically
into two categories, base and detection network. AlexNet [29], VGGNet [87], Xception [131],
ResNet [79], DenseNet [80] and MobileNet [81] are widely used baseline networks. High-
level features are provided by classification or detection by base network. MobileNet uses
convolution to produce high-level features just like other base networks as well to decrease
the number of network parameters. For image classification, a fully connected (FC) layer is
the final layer of CNN. Classification layers can be removed and replaced by detection
networks.

Examples of detection layers include Feature-Fused [132], Feature Pyramid Network
(FPN) [39], RCNN (“Region-based Convolutional Neural Network™) series [10-13], YOLO
(“You Only Look Once”) series [14-16], SSD (“Single Shot Multi-Box Detector”) series [19-
21] etc. The use of SSD on the last convolutional layer results in a detection task.

Some studies on pedestrian detection [9] [133] use different types of targets as well as
detection networks that are implemented using either traditional methods or deep learning-
based methods. Traditional methods widely used in machine learning are “Histogram of
Oriented Gradients” (HOG) [7], Haar-like features using patterns of motion and appearance
[66], deformable models [25], etc. Deep learning-based methods include RCNN series [10-
13], YOLO series [14-16], and SSD300/512 [19]. However, there is still a need for further
optimization in these networks for real-time multi-scale pedestrian detection on low-end edge

devices. Therefore, in this chapter, a real-time pedestrian detection algorithm was proposed
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without having any loss in detection accuracy and also verified the real-time implementation

on Jetson Nano board.

The contributions of this work are summarized as follows:

The SDD + VGG [19] model fails to detect smaller pedestrians, and to offset this,
shallow convolution layers conv4 3 and conv5_3 are concatenated in the proposed
Optimized MobileNet+SSD network which improves feature map information and this
in-turn improves detection performance.

A concatenation feature fusion module is introduced which can add contextual
information in the proposed Optimized MobileNet+SSD network in order to improve
the detection accuracy of pedestrians.

The proposed network seeks to extract the best hyper-parameters because, fine-tuning
hyper parameters such as depth, stride, filter, shape, optimizer, etc., plays a vital role
in the optimization of the network and also helps in reducing computational power
while execution.

Finally, from experimental results, it is verified that the proposed model outperforms
on Pascal-Voc 2007 test dataset, and shows better detection effect while detecting
denser and small-scale pedestrians during low light and darker images and runs at
34.01 FPS on Jetson Nano board.

5.2. Methods and Materials

5.2.1. Overview of Single Shot Detector (SSD)
The architecture of SSD+VGG backbone network shown in Figure 5.1. SSD is referred to as

regression-based object detector. The model can solve conflict caused by translational

invariance and variability and can achieve better detection accuracy as well as speed. Each

selected feature map which consists of K frames varies in size and width to height ratio. Each

frame is termed as anchor box. Figure 5.1 shows bounding boxes on feature maps of different

convolution layers. B class score and 4 position parameters are predicted by default at every

bounding box. B x K x w x h class score and 4 x K x w x h position parameters need to be

detected for w-h feature image. It requires a size 3 x 3 (B + 4) x K number of w x h
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convolution kernel for processing the feature map. The convolution result is considered to be
the last feature for bounding box and classification + regression.

Image
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Figure 5.1 SSD300 with VGG-16 backbone network through Conv5_3 layer.

The mathematical expression for bounding boxes for every feature map is

— Swin * (Smax - Snin)* (K-1 .
S = Mn ( M(aﬁ,l_l)“"'”) & (K varies from [1, M]) (5.1)
M indicates the count of feature maps and Swmin and Swmax are settable parameters. The same
five types of aspect ratios, a = {1, 2, 3, 0.5, 0.33} generate anchor boxes to tune the fairness of
feature vectors in training as well as while testing experiments. So, each bounding box can be

mathematically expressed as:

S
a = K 2
" Ja, 4
Wi =S,4/a, (5.3)

Here hy and W represent the height and width of the corresponding bounding box

respectively. When the aspect ratio is one, a bounding box s, = Ji +/Sy+1 Should be added.

The centre of every bounding box varies from (0029 (i+05)

W ) and if [fi| represents the size of
k k

K™ feature unit, i, j € [0, [f[]. Figure 5.2 shows that a dog is perfectly matched to a bounding
box in the 4x4 feature map while it is not matched to any of the bounding boxes in the 8x8
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feature map. Since the bounding boxes with different scales do not match with the dog box,
they were considered as negatives during training.

The intersection over union (loU) can be mathematically expressed as:

( AREA (C) N AREA (D))

loU= “"AREA (C) UAREA (D)) (5.4)

If the calibration and bounding box Intersection over union value exceeds 0.5, it

indicates that for the respective category, the bounding box matches the calibration box.
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8x8 feature map 4x4 feature map

Figure 5.2 SSD Multiple Bounding Boxes for Localization and Confidence.

The sum of bounding box regression’s position loss i.e. Lioc (r, I, g), and the classification
regression confidence loss is referred to as total loss function and is expressed as shown

below:
L(S, r,C,I, g) = ﬁ (Lconf (S' C) + aLIoc(r’ I’ g) (55)

where ‘r’ and‘s’ are eigenvectors of position loss and confident loss respectively, «is a
parameter to tune both position and confidence loss; ‘I’ is the offset including the scaling
offset of the height and width and translational offset of the centre of the predicted boxes, ‘N’
represents the number of bounding boxes matching the calibration box for a given category

and ‘g’ is the calibration box of the target actual position.

5.2.2 Standard convolution and Depth wise convolution

Figure 5.3 shows MobileNet’s standard convolution layers (left side) and depth-wise
and point-wise separable convolutional layers (right side). Conv_Dw _Pw is a deep and
separable convolution structure that consists of two layers, namely, Pointwise (Pw) and

Depth-wise layers (Dw). The Dw layer uses 3x3 kernels and the Pw layer uses 1x1 kernels
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which are also called deep convolutional layers and common convolutional layers
respectively. So, the result of each convolution is then processed by batch normalization (BN)

algorithm and ReL.U6 activation.

3x3 Conv. 3x3 Depth wise Conv.
¥ Batch Norm
Batch Norm
l ReLUé6
RelLU

1x1 Point wise Conv.

Batch Norm

ReL.U6

Figure 5.3 Standard convolution (left) and Depth wise convolution modules (right) with Batch
Norm and ReLU6.

The Mobilenet architecture uses depthwise separable convolution (DSC). It uses the
standard convolution but just once on the very first layer. After the first layer, all further
layers have DSC.

Depthwise separable convolution (DSC) module is just a combination of depthwise +
pointwise convolution. The main difference between standard and depthwise separable is that
unlike the former, the latter performs convolution on each image channel separately. For an
image having 3 image channels, it performs convolution separately and creates an output
image that also has image channels. Each channel has then a separate set of weights. The
main motive of depthwise operation is applied to a single channel at a time. This results in
more precision in edge detection, color filtering, etc. In depthwise separable convolution, if
the dimensions of the input feature map (Dr x Dr x Q), are applied to a filter of kernel size
(Dk % Dk x 1), it produces an output feature map (Dr x De x P). This is then processed by
pointwise convolution (1x1lconvolution) on P channels. The final output feature map

generated is Dk x Dk %X Q X Dr X Dr.
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The objective of doing pointwise convolution is to combine separate channels in the
output of depthwise convolution to create new features. Using the two methods results in
separate filtering and combining unlike in standard convolution where the two are one
process. Another advantage of depthwise separable over standard is that even though they
both finally result in filtering data and making new features, standard convolution needs much
more computational work to get the result and hence needs to learn more weights. Meanwhile,
DSC implements convolution operations much more efficiently and uses fewer parameters.
Table 5.1 shows the computation cost and the number of parameters required for both

standard convolution and depthwise separable convolution.

Table 5.1 Computation cost and no. of parameters required for Standard convolution and
DSC.

Layer Parameter Size Computation Cost
Standard Conv DixDkxQxR DkxDkxQxRxDrxDr
Depthwise Conv DixDkxQ DxDkxQxDgxDe
Depthwise Separable Conv DixDyxQ + DkxDkxQxDexDr + QxRxDgxDe
1x1xQxR

Therefore the reduction of computation cost obtained is :

_ DxDxQxDg xDf +QxRxDg xDg — 1 N 1
K
Therefore the parameters reduce to :
_ DgxDxQ+1x1xQxR _ 1 N 1
- Dy xDg xQ xR -5 2 (5.7)
K K R D K
When width multiplier “o” was applied, the computation cost of DSC is given by:
D, xD, xaQxD,. xD, +aQx aR x D. x D, (5.8)
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Experiments have proved that using a 3 x 3 kernel and saving computation time by the
new approach is about 9 times faster without making any difference in detection. MobileNet

uses up to 13 depthwise convolutions in a row.
5.2.3 MobileNet
MobileNet [81] model was proposed by Google and is a type of base architecture

highly suited for embedded-based vision applications with low computing power. The
MobileNet architecture uses depthwise separable convolutions instead of standard
convolution. This reduces the number of parameters significantly compared to the network
with normal convolution with the same amount of depth in the network, which results in
lightweight deep neural networks. The “Batch Normalization” layer was included in each
layer of the newly appended structure to prevent the gradient’s disappearance. MobileNet is
easy to train and takes relatively less time while training, which is highly desired for real-time
implementation. This makes the network more reliable compared to VGG-16 [87] and other
available architectures.
5.2.4 Jetson Nano Evaluation Board

Nvidia Jetson Nano board is an embedded developer kit mainly meant for developing
embedded systems that need high processing power for CV, deep learning, machine learning,
and image/video processing applications. Figure 5.4 shows Nvidia Jetson Nano evaluation
board.

The specifications of Jetson Nano are Maxwell architecture based graphics processing
unit (GPU), 128 CUDA cores, quad-core ARM A57 central processing unit (CPU) works at
1.43 GHz with 4GB of LPDDR4 memory, data transfer at 25.6 giga bits per seconds (Gbps),
operates with Linux operating system, 4K video encoding and decoding at 60 FPS, and has a
processing power of 472 GFLOPS. Since the Jetson Nano board consumes low power i.e. less
than 5 watts, has in-built GPU cores, and is low cost compared to other embedded boards, it is

a popular board for implementing real-time pedestrian detection algorithms.
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Figure 5.4 Nvidia Jetson Nano Evaluation Board.

5.3 Proposed Methodology
Figure 5.5 shows that the Optimized MobileNet+SSD network is composed of 21

convolutional layers. The target feature layers for detection are Conv 4_3, Conv 13, Conv
14 2, Conv 15 2, Conv 16_2 and Conv 17_2. This network enhances the information of the
newly added shallow convolutional layer Conv 5 3 to detect smaller and denser objects.
Since Conv 4 _3 and Conv 5_3 feature maps are different in terms of size, to make the same
size, the Conv 5_3 layer is followed by a deconvolution layer (2x up-sampled). On both
layers, 3x3x256 convolution layer and applied normalization with 10, 20 different scales were
used incorporating better features to fuse. Finally, both convolutional layers were
concatenated before applying a 1x1x256 convolutional layer which reduces dimensions and
feature recombination to generate the final fusion feature map as shown in Figure 5.6.

A feature fusion concatenation module was introduced in the proposed network, which
would inject contextual information into shallower layer Conv 4_3 since this layer lacks
semantic information and is an important supplement for detecting small-scale and dense
pedestrians. Therefore, the detection performance of small-scale pedestrians was improved by
passing the captured semantic information in convolutional forward computation back

towards shallower layers.
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Figure 5.5 Optimized MobileNet+SSD backbone network through Conv4_3 layer.

While designing the most effective feature fusion concatenation module, we
explored different layer feature fusion trials. Finally, Conv 4 _3 and Conv 5_3 shallow layers
were selected and fused as these layers would introduce less background noise while detecting
small-scale pedestrians. Higher shallower layers after Conv 5_3 possess large receptive fields
and would introduce more background noises while detecting small-scale pedestrians. The

flow of the proposed detection algorithm is shown in Figure 5.7.
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Figure 5.6 Feature Fusion Concatenation Module.
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Figure 5.7 Flowchart of the proposed algorithm.

5.4 Experimental Discussions

To showcase the power of the Optimized MobileNet+SSD model, it was evaluated on
two datasets and made comparative analysis with the existing state-of-the-art pedestrian
detection models. The effectiveness of the proposed model is verified both quantitatively and
qualitatively.

5.4.1. Datasets

The proposed methodology was trained on Pascal Voc-2007 [100] trainVal dataset
and tested on Pascal VVoc-2007 dataset.

(i) Pascal VOC 2007: The “Pascal Visual Object Classes Dataset” is Pascal Voc-2007 test
dataset, and a collection of images of around 20 classes. During the training, the model used
Pascal Voc-2007 trainVal (5011 images). The ‘Test’ image set contains around 4952 images.
Since the Pascal dataset background is more complicated, the degree of occlusion and human
postures is different, and the size of the humans is not the same. Therefore, several images
were used to improve the generalization of the trained network to meet complex real-time

traffic scene environment.
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(i) Caltech Pedestrian [103]: This dataset contains a set of video sequences of 640x480 size.
It includes some train (set 00 to set 05) subsets and test (set 06 to set 10) subsets. There are
about 350,000 bounding boxes in 250,000 frames and 2300 pedestrians were annotated and
only “person” and “people” were used in our experiments. Finally, the proposed model was
only tested on Caltech pedestrian dataset.
5.4.2. Experimental Setup

The experiments were carried out on a workstation during the training phase and
finally, the testing phase was performed both on the workstation and Jetson Nano evaluation
board. Table 5.2 shows the experimentation configuration setup. Figure 5.8 shows the
experimental setup and real-time pedestrian detection captured on the Jetson Nano evaluation
board. In order to know or monitor the performance of core components such as GPU, CPU,
memory and other used by Jetson Nano during the testing the dataset. First install jetson stats
package and then in terminal window run sudo jtop and which will display a dashboard and to

get individual stats of each core components click on the bottom tab-menu.

On system we need to integrate CUDA then GPU will be enabled. During the network
testing, when GPU=1 then model would run on GPU and it delivers higher inference speed.
Whereas when GPU=0 then the network would run on CPU and it delivers very low inference

speed.

Table 5.2 Experimental configuration setup.

Names Experimental Configuration

oS Windows 10 Pro

CPU/GHz Intel Xeon 64 bit CPU @3.60

RAM/GB 64

GPU NVIDIA Quadro P4000, 8 GB, 1792 CUDA cores
GPU acceleration library | CUDA10.0, CUDNN?7.4

Tensor flow [134] 2.X

Keras 2.2.X
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Figure 5.8 Experimental setup and captured results on Jetson Nano Evaluation board.

5.4.3. Training and Evaluation of Performance Parameters

The model training was performed on trainVal (5011) images of Pascal VOC-2007
dataset and tested on Pascal Voc-2007 test (4952) images. The input image size was set to
300 x 300 and various data augmentation techniques were applied such as flipping, cropping,
and random sampling to enhance the training process. We followed the standard evaluation
methods used in [19]. The proposed method used ADAM (Adaptive Moment Estimation)
optimizer instead of SGD optimizer while training Pascal Voc-2007 dataset. The hyper-
parameter values used while training the proposed model are batch size 8, weight decay
0.005, epsilon 10, betal and beta2 0.9, 0.999, iteration steps 150, learning rate .001 and 110
epochs. To evaluate the robustness of the proposed network, the commonly used performance
parameters for pedestrian detection such as Recall, Precision, Average Precision (AP), speed
(Frames per second-FPS) and memory footprint were employed.
(i) Recall: Recall is defined as the % of total relevant results correctly classified by the
algorithm.

True Negative True Positive (59)
Predicted Results True Positive + False Negative '

Recall =

(i) Precision: This is defined as % of results that are relevant i.e. represents the accuracy of

prediction.

True Positive True Positive

Precision= Or = —
ISl Actual Results True Positive + False Positive (5.10)

(iii) Average Precision (AP): It is the area under the precision-recall curve and it shows the
correlation between precision and recall at a different level of confidence scores.

True Positive + True Negative
Total

Accuracy = (5.11)
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5.5 Results & Discussions

The proposed model’s test results on Pascal Voc-2007 test dataset were drawn between
Precision versus Recall as in Figure 5.9. This graph depicts that with an increase in recall
value at the convergence point, the precision starts gradually decreasing. The predictor built
on Keras runs predictions over the entire dataset, matches predictions to ground-truth boxes,
computes precision-recall curves for pedestrian class, and samples 11 equidistant points from
the precision-recall curves to compute the average precision for the pedestrian class, giving an

AP value.
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Figure 5.9 Precision-Recall curve of Optimized MobileNet+SSD Network.

5.5.1 Quantitative Analysis on Pascal Voc dataset

The robustness of the proposed model robustness was verified both quantitatively and
qualitatively on the widely used pedestrian dataset. Table 5.3 shows the comparison of
average precision (AP), speed (FPS) and weight file of the proposed model with the state-of-
the-art (SOTA) models on Pascal Voc-2007 test dataset.

Table 5.3 Comparison of quantitative metrics of the proposed model with the existing SOTA
models. (loU@0.5).

Models AP (%) Speed (Quadro P4000) | Weight (MB)
Fast RCNN [11] 68.4 0.5 513
Faster RCNN [12] 70.4 7 522
57.9 45 753

YOLO [14]
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YOLOV?2 [15] 76.8 38 203
SSD 300 (VGG16) [19] 714 46 100
SSD 512 (VGG16) [19] 76.8 19 103
100Hz DPM [22] 16 100 -

30Hz DPM [22] 26.1 33 3

Yolov3 [16] 78.12 35 247
Tiny Yolov3 [16] 68.54 220 33.9
Improved Tiny Yolov3 [43] | 73.98 206 33.1
Proposed method 80.04 155 23.6

Comparing the results of Table 5.3 with existing SOTA models, the proposed model
achieves better detection performance; the AP value reaches 80.04% on Pascal Voc-2007 test
dataset, which is +3.24%, +1.92%, +11.5%, and +6.06% higher compared to SSD 512 [19],
Yolov3 [16], Tiny Yolov3 [16] and Improved Tiny Yolov3 [43], respectively.

From the evaluation results, it is clear that the speed of Tiny-Yolov3 [43] is 220 fps,
while that of the proposed model is only 155 fps. At the same time, the proposed model file is
23.6 MB, which is much smaller compared to Tiny Yolov3 [16] model file. The proposed
model surpasses Improved Tiny Yolov3 [43] model both in terms of accuracy and weight file.
To test the robustness of the proposed model, it was also tested on the Caltech pedestrian test
dataset and achieved competitive results.

For real-time implementation, the proposed model was tested on a low-cost edge
device Jetson Nano board. After training the proposed model on Quadro P4000 GPU, the
whole model was tested on Nvidia Jetson Nano evaluation board with the same system
environment. Generally, more CUDA cores represent higher computational power, with the
same memory and frequency conditions. The number of cores on Jetson Nano is 256 which is
only 1/7th of Quadro P4000 (1792) GPU. But Jetson Nano consumes less energy and has
much lower computational power.

To test the validity of the proposed algorithm more intuitively, a captured real-time
road video under low light conditions was fed for model detection verification. Figure 5.10
shows a comparison of the proposed model detection speed (FPS) with existing SOTA
models on the Pascal Voc-2007 test dataset.
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By using the same video for verification, the detection speed of all SOTA detectors on
Jetson Nano was far slower compared to on Quadro P4000 GPU. From Figure 5.10, it is clear
that the proposed model runs with a speed of 34.01 fps on Jetson Nano which is quite higher
compared to SSD 512 [19], Yolov3 [16], Tiny Yolov3 [16], and Improved Tiny Yolov3 [43]
SOTA models.
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Figure 5.10 Comparison of detection speed of the proposed model with the existing SOTA

models. (On Jetson Nano board).

5.5.2 Qualitative Analysis on Pascal Voc and Caltech datasets

The model was trained on low-resolution images with a size of 300 x 300. This
results in a fall in detection accuracy on low-resolution images. Nevertheless, with optimized
MobileNet as a backbone model, the proposed model can detect and identify pedestrian class
with an appreciable amount of accuracy.

Figure 5.11 shows qualitative sample detected images of both Pascal VVoc-2007 and
Caltech pedestrian test datasets. This model accurately detected different samples varying
from a few people to several. The model perfectly segregates different persons without
intermixing them, giving precise detection results.

The proposed model was tested on low-resolution images and the detected results are

shown in Figure 5.12. So, this model has a better detection effect while detecting dense and
smaller pedestrians during low light and darker pictures while tiny-yolov3 [43] fails to detect

pedestrians in darker pictures.
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Figure 5.12 Detection examples on sample images from Pascal Voc-2007 and Caltech
datasets on low-resolution images (512x512).
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Since Pascal Voc-2007 dataset contains many small objects, our concern is only the
pedestrian class, and thus around 300 images were manually gathered that cover mainly
smaller pedestrians for testing the performance of the proposed model. Detection results of
the original SSD, YOLOv3 and Optimized MobileNet+SSD models are shown in Figure 5.13.

(c) Optimized MobileNet+SSD detection results

Figure 5.13 Detection results of (a) Original-SSD (b) YOLOv3 (c) Optimized MobileNet
+SSD (512x512).
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Figure 5.13 shows clearly that the proposed model performs better compared to the
original SSD [19], YOLOv3 [16] while detecting small-scale and denser pedestrians in real-
time.

To test the validity of the proposed algorithm more intuitively, we captured real-time
road video under low light conditions and test results of randomly selected frames 498, 520,
and 798 on Jetson Nano board, shown in Figure 5.14. The proposed algorithm was shown to

have good adaptability to detect pedestrians under complex environments for real-time video.

From Figure 5.14, it is clear that the proposed model when tested on Jetson Nano
works better while detecting small-scale and denser pedestrians in real-time but fails to detect

both occluded and distant smaller pedestrians.
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Figure 5.14 Detection effect of the Optimized MobileNet+SSD Network on Jetson Nano.
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5.6. Summary

This chapter proposed a new novel framework for small-scale real-time pedestrian
detection for assisted driving system. In this work, four new contributions were presented.
First contribution, looked at exploiting the contextual information, to achieve considerable
improvement in the proposed model without losing any detection accuracy. Second
contribution is that the number of network parameters decreased in this model while detection
accuracy was still preserved. Third contribution was that by optimally fine tuning the hyper
parameters, data augmentation techniques, optimizer, batch normalization etc., which helps in
reducing computational power while model execution. Finally, the fourth contribution was
real-time implementation of the proposed algorithm on a low-end edge device Jetson Nano.
The proposed model’s effectiveness was verified using qualitative and quantitative analysis
on PASCAL-VOC 2007 test dataset and a comparative analysis was made with existing state-
of-the-art pedestrian detection algorithms. Moreover, the proposed model was able to achieve

competitive results on Caltech pedestrian dataset.

Therefore, the proposed model is lighter, faster, more efficient and achieves real-time
detection performance on a low-end edge device while detecting smaller pedestrians in
complex environmental road scenes. Although the proposed model achieves better detection
accuracy while detecting small-scale pedestrians, it fails to detect occluded and denser
pedestrians accurately. However, the detection speed needs to be improved further on low end

edge device.
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Chapter 6

EfficientLiteDet: A Real-time Pedestrian and Vehicle Detection
Algorithm

This chapter focusses on design and development of a highly efficient, light-
weight and fast multi-object detection algorithm to detect tiny and occluded objects and to
operate in real-time on an edge device. Since there is a necessity for efficient and accurate
pedestrian and vehicle detection algorithms based on vision sensors in real-time for
autonomous driving system. Secondly, the proposed algorithm is implemented in real-time on
a low-end edge device Jetson Tx2 board. To verify the effectiveness of the proposed model
both quantitative and qualitative analysis on multiple autonomous datasets were obtained and
made comparative analysis with the existing state-of-the-art object detection algorithms.

6.1 Overview

Recently, in the field of automobile industry there has been a great increase in
technological innovation though the number of accidents has grown greatly due to various
factors. So, to resolve this challenge, all automobile companies have been moving towards
developing advanced unmanned or driver-assistance driving systems and they include many
vision sensors and deploy complex algorithms. Since safety is top priority and plays a crucial
role in vision-based systems, there is a need to develop accurate and real-time performance of
detection algorithms. Therefore, great efforts have been devoted to improve both detection
accuracy and speed in order to achieve real-time detection performance. The most
representative algorithms for accurate detection of pedestrians and vehicles are Fast and
Faster region-based convolutional neural network (Fast/Faster-RCNN) [11-12], SSD [19-21]
and YOLO series [14-17]. However, these large scale DCNN based algorithms require high

computational and memory resources and need a very large number of fine-tuning parameters.
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To realize the real-time object detection, it requires powerful GPU (Graphics Processing Unit)
computing power. However, it is difficult to deploy these heavy models on any low-end edge
device due to limited computational power and memory constraints. Therefore, there is a need
to develop a light-weight detection algorithm to operate on edge devices in real-world
applications [136]. Many researchers have proposed lightweight algorithms based on deep
learning in many fields such as Object detection [18], [81-83], [135], Pedestrian detection
[43], [137] Vehicle detection [71], [73] etc.

Many researchers have already proposed light-weight object detection algorithms to
achieve either higher detection accuracy or higher speed under limited hardware constraints.
Various lightweight networks such as Tiny-YOLO series [14-17], MobileNet series [81-83]
and ShuffleNet series [84-85] are available. Tiny-Yolo models are light-weight models of
original YOLO series. Tiny-YOLOv2 model uses 9 convolutional layers out of 19
convolutional layers (DarkNet19) used in original YOLOvV2 in order to reduce network
complexity. Similarly, Tiny-YOLOv3 model uses 21 convolutional layers out of 53
convolutional layers (DarkNet53) used in original YOLOv3. Along the same lines, Tiny-
YOLOvV4 is a lightweight model of the original YOLOv4 and uses CSPDarkNet53-Tiny
backbone network

Since safety is top priority and plays a crucial role in vision-based systems, there is a
need to develop accurate and real-time performance of detection algorithms. Therefore, great
efforts has been devoted to improve both detection accuracy and speed in order to achieve
real-time detection performance. Directly applying existing models to tackle real-time
pedestrian and vehicle detection tasks captured by high-speed moving vehicle scenarios poses
two problems. First, the target scale varies drastically because the vehicle speed changes
greatly. Second, captured images contain both tiny targets and high-density targets, which
brings in occlusion between targets. Therefore, in this chapter, to solve these two issues, a
real-time object detection algorithm is proposed which is referred to as EfficientLiteDet
(Efficient Light -weight Detector.

Therefore, an efficient lightweight model is designed for detecting pedestrians and
vehicles in real-time on a low-end edge device and the same model was verified by

implementing it in real-time on Jetson Nano board.
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The contributions of this work are summarized as follows:

= One more prediction head is inserted which can accurately detect multi-scale objects,
especially tiny targets. The proposed model introduced Transformer prediction head
(TPH) which can accurately detect occluded and denser targets.

= In order to focus only on particular targets, we introduced attention mechanism i.e.
CBAM in our model.

= To improve the efficiency of the proposed model, mosaic, mix-up and traditional data
augmentation techniques were employed during training.

= Experimental results show that when our model was deployed on Nvidia Jetson TX2
board, it runs with 35.1 FPS and achieves real-time detection performance.

6.2 Proposed Methodology

The framework of the proposed model is shown in Figure 6.1. So by modifying Tiny-
YOLOvVA4 [17] and enable it for detecting pedestrians and vehicle targets. This model supports
both feature reuse and propagation which in turn reduce both number of parameters and
computational complexity. Therefore, it is optimal to select this model which works to
achieve real-time performance. The proposed light-weight detection algorithm is composed of
Modified CSPResNet50 backbone [136], spatial pyramid pooling network (SPPNet) [86],
path aggregation network (PANet) [138] as neck, introduced transformer encoder [139] in

both neck and at the backbone end and three-scale transformer prediction head as a head.

6.2.1 Extra Prediction Head for detecting small-targets

Through investigation it is clear that both Caltech [103] and Highway [108] datasets
contain several extremely small instances, so in order to detect smaller targets accurately one
more prediction head is introduced. Therefore, this three-head prediction head structure can
ease the negative influence caused by violent object scale variance. As shown in Figure 6.1,
the prediction head (head.1) added is generated from low-level, high-resolution feature map,
which is highly sensitive to smaller targets. Although by introducing additional prediction
head, both memory cost and computational cost increases, but the performance of the model

while detecting smaller targets increases.
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Figure 6.1 EfficientLiteDet Architecture (Proposed Algorithm).

6.2.2 Transformer Encoder Block

Inspired by transformer vision [139] some of the convolutional blocks and CSP
bottleneck blocks in original version of YOLOv4 were replaced with transformer encoder
blocks. The structure of transformer encoder block is shown in Figure 6.2. Compared to
original bottleneck block in CSPDarknet53, we believe that transformer encoder block can
capture global information and abundant contextual information. Each transformer encoder
has two sub-layers, in which the first sub-layer is multi-head attention layer followed by
Multi-layer Perception (MLP) a fully connected layer, and between sub-layers, residual
connections were used. Transformer encoder blocks increase the ability to capture different
local information. It also explores feature representation potential with self-attention
mechanism [119]. On the Caltech dataset, transformer encoder blocks achieve better detection

performance on occluded objects with high-density.
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Figure 6.2 Transformer Encoder Architecture.

Based on Tiny-YOLOv4, transformer encoder blocks were applied in the head part to
form Transformer Prediction Head (TPH) and at the end of backbone. This is because at the
lower end of the network, the feature maps have low resolution. Applying TPH on low-
resolution feature maps can decrease expensive computation and memory cost. Moreover,
when the resolution of input images are enlarged, some of the TPH blocks are removed at the
early layers to make the training process available.

6.2.3 Convolutional Block Attention Module (CBAM)
CBAM [140] is a simple and efficient attention module. Since it is a lightweight

module, it can be easily integrated into most CNN architectures, and trained in end-to-end
manner. Given a feature map, CBAM sequentially infers the attention map along two separate
dimensions of channel and spatial, and then multiplies the attention map with the input feature
map to perform adaptive feature refinement. Figure 6.3 shows the architecture of CBAM
module. After integrating CBAM into different models on different classification and
detection datasets, the performance of the model get vastly improved, which proves the
effectiveness of this module. Using CBAM can extract the attention area to help

EfficientLiteDet resist confusing information and focus only on useful targets.
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Figure 6.3 CBAM Architecture.

6.2.4 Multi-scale Testing

During the inference phase, initially multi-scale testing of the proposed model was
performed. The implementation details of multi-scale-testing were performed in three steps.
a) Scaling the testing image to 1.3 times. b) Reducing the image to 1 time, 0.83 times, and
0.67 times. ¢) Flipping the images horizontally, respectively. Both NMS [141] and Soft-NMS
[142] exclude some boxes, while weighted box fusion (WBF) [143] merges all bounding
boxes to form the final result. Therefore, it can tackle all inaccurate predictions of the
proposed model. To ensemble the final model, WBF method was adopted as it performs much
better than NMS. Finally, six different-scaling images were fed to EfficientLiteDet and WBF

was used to fuse testing predictions.

6.2.5 Jetson TX2 Evaluation Board

Jetson Tx2 consumes just 7.5 watts and is known to be a power-efficient and fastest
supercomputer employed in most Al autonomous machines and advanced robots. Figure 6.4
shows Nvidia Jetson TX2 evaluation board. The specifications of Jetson TX2 board are: 256
CUDA cores, Nvidia PASCAL GPU architecture, two 64-bit Denver CPU cores and quad
A57 ARM Cortex CPUs, dual operating modes, inbuilt 8GB LPDDR4 RAM memory,
supports a maximum of 32GB external memory, and has a maximum data transfer rate of 59.7
Gbps. It supports only Linux operating system, supports both Ethernet and WiFi connectivity,
Bluetooth 4.1, video encoding and decoding 8K @60 FPS and delivers performance over 1.5
Tera FLOPS. So in terms of efficiency and performance in computer vision it is an optimal
choice to deploy light-weight algorithms on low-cost edge device. Therefore, in order to test
the real-time performance, the proposed algorithm was deployed on Jetson Tx2 evaluation

board.
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Figure 6.4 Nvidia Jetson TX2 Evaluation board.

6.3 Experimental Discussions

To showcase the robustness of EfficientLiteDet model, both quantitative and
qualitative results analysis were obtained and a comparison was made with existing state-of-
the-art object detection models. In order to show the effectiveness of EfficientLiteDet
algorithm, the proposed model was evaluated on multiple popular pedestrian and vehicle
datasets INRIA [102], Caltech [103], Udacity [107], Highway [108] and Pascal VVoc-2007
[100].

6.3.1. Datasets

(i) INRIA: INRIA [100] pedestrian dataset contains 614 positive and 1218 negative images of
which 1237 bounding-boxes were labelled for person class. Since it includes 1218 negative
images without labels, INRIA dataset is very popular and has made laudable contributions to
pedestrian detection. For testing 288 images were used to evaluate the model performance.
The proposed model followed standard evaluation metrics, average precision (AP) and
detection time were evaluated on test dataset and this was compared with several state-of-the-
art (SOTA) models.

(if) Caltech: The Caltech Pedestrian [103] dataset was introduced in 2012, and contains
around ten hours of video captured with 600 x 400 resolution at 30 FPS. The dataset was
collected from an urban traffic environment and contains about 250,000 frames of which
346,621 were bounding box labelled. 1t was composed of two subsets: set00 to set05 training
images and set06-set10 testing images. As a rule of thumb, we extracted every 30" frame
from the subsets and thus extracted 4024 training images and performed testing on 4024
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images respectively. This dataset was unique compared to all other datasets, since around
50% of the annotated pedestrian instances were smaller than 50 pixels and this is rare in other
datasets. The proposed model followed standard evaluation metrics, and evaluated average
precision (AP) on pedestrian heights a) all pixels and b) 20-60 pixels and compared with
SOTA models.

(iii) Udacity: The Udacity [107] dataset is a popular vehicle dataset which has videos captured
on highway roads. It contains 404,916 and 5614 video frames for training and testing. Since
the collected frames contain severe lighting changes, busy traffic, occlusion and sharp road
curves, it is a challenging vehicle dataset. So every 30" frame was extracted from the video
and created a dataset which possesses 10,797 images for training, 2700 images for validation
while testing was performed on 5614 images. The proposed model followed standard
evaluation metrics, and measured average precision (AP) and detection speed (FPS) on test
dataset which was then compared with SOTA models.

(iv) Highway: The Highway [108] dataset is a captured video from the highway monitoring
video of Hangzhou city. The images captured in this dataset cover the far distance of the
highway and contain vehicles with wide changes in their scale. This dataset is challenging and
robust due to the fact that it captured images from 23 surveillance cameras under
circumstances which include, drastic changes in environmental conditions, different lighting

conditions and at different times.

The captured video contains 11,129 video frames of 1920 x1080 resolution and 57,290
bounding boxes were labelled. The dataset annotated smaller objects in the vicinity and thus it
contains smaller vehicles with wide scale changes. This dataset had 42.17% cars, 7.74% buses
and 50.09% trucks and on an average 5.15 annotated instances, which was higher compared to
KITTI [50] dataset. Out of 11,129 video frames, 70% (8792) images were used for training
and 30% (2337) images used for testing. The proposed model followed standard evaluation
metrics, and evaluated mean average precision (mAP) and detection speed (FPS) on test
dataset which were then compared with several SOTA models.

(v) PASCAL VOC-2007: “Pattern Analysis, Statistical Modeling, and Computational
Learning Visual Object Classes (PASCAL VOC)” 2007 [100] dataset consists of 20 different
classes and 9963 labelled images. This dataset has complicated backgrounds, various sizes of

human beings, high degree of occlusion, different costumes and various postures of human
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beings which would improve the trained model performance in order to meet complex real-
time traffic scene. Of the 9963 labelled images, training set contains 5011 images while
testing set contains 4972 images. The proposed model followed standard evaluation metrics
and evaluated mean average precision (mAP) and detection speed (FPS) on test dataset which

was then compared with several SOTA models.

The summary of the datasets used for experimentation on the proposed algorithm is shown in
Table 6.1.

Table 6.1 Summary of datasets used in experimentation of EfficientLiteDet Model.

Datasets Training Images Testing Images
INRIA 614 228
Caltech Pedestrian 4250 4024
Udacity 13497 5614
Highway 8792 2337
Pascal Voc-2007 5011 4972

6.3.2. Experimental Setup

The experiments were carried out on a workstation during the training phase and
finally, the testing phase was performed both on the workstation and Jetson Tx2 evaluation
board. Figure 6.5 shows the experimental setup and captured real-time pedestrian detection on
Jetson Nano evaluation board. The experimental environment during the proposed model
training is: Google Colab, single Tesla V100 GPU, CUDA 10.0, CUDNN10.4 GPU

acceleration library, Pytorch 1.2 deep learning framework.

Figure 6.5 Experimental setup and captured results on Jetson Tx2 Evaluation board.
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6.3.3. Training and Evaluation of Performance Parameters

The proposed model training settings are consistent from the baseline [7] and
implemented on Pytorch framework. The proposed algorithm was trained for 300 epochs on
all training datasets and SGD was the optimizer solution used during the training process. We
used a learning rate of IrxBatchsize/64 (linear scaling), with an initial learning rate= 0.001
and cosine learning schedule. The weight decay was 0.0004 and SGD momentum was 0.9.
The batch size was 16 by default. Other batch sizes which include single GPU training also
work well. The input size was evenly drawn from 448 to 832 with 32 strides. FPS and latency
were all measured with FP16-precision and batch=1 on a single Tesla VV100.

The proposed model adopts the architecture of CSPResNet50 backbone and
aggregation of spatial pooling pyramid, path aggregation and Transformer Encoder networks.
Some of the training strategies were slightly modified compared to the original Tiny-Yolov4
[17], adding EMA weights updating, cosine learning schedule, and loU loss. We use
BCEwithLogit Loss for training class and object branch and loU Loss for training reg branch.
The general training tricks are orthogonal to improvement of EfficientLiteDet, and thus put
them on the baseline. To boost the proposed model performance, both Mosaic and Mix-Up
augmentation strategies were included while model training. Mosaic is an efficient
augmentation strategy proposed by ultralytics-YOLOV5 [144]. It is then widely used in
YOLOv4 [17] and other detectors [18]. Mix-Up was originally designed for image
classification task but then modified in BoF [145] for object detection training. So, we
adopted mix-up, random-horizontal-flip, color-jitter, multi-scale and mosaic data
augmentation techniques in our model. When training neural network models for computer
vision problems, data augmentation is a technique often used to improve performance and
reduce generalization errors. When using a model to make predictions, image data
augmentation on test dataset can also be applied to allow the model to make predictions on
multiple versions of images. The prediction of the augmented images can be averaged to
obtain better prediction performance. The test images were scaled to three different sizes in
multi-scale-testing strategy, and then flipped horizontally, so that a total of six different
images were obtained. After testing six different images and fusing the results, the final test
result was obtained.

During the testing stage of any dataset on our network: (i) batch size was set to 1, (ii)
load the best weight file into the model, (iii) then feed the test images path and (iv) validate

the network performance in terms of evaluation metrics: Precision, Recall, Mean Average
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Precision (MAP), thresholds ranging from [0.5: 0.95], Average Precision AP50 (loU@0.5),
Weight file (MB), Billion Floating Point Operations (BFLOPS) and detection speed (FPS) or
time (milliseconds) on workstation were calculated. Our networks were tested only on
benchmark datasets, still we left with KITTI and DETRAC datasets and not considered as
they focus more on vehicles and widely used for 3D object detection. Yet our networks would
produce satisfactory results on KITTI and DETRAC datasets.

6.4 Results & Discussions

INRIA: The results of EfficientLiteDet model were compared with several SOTA models on
INRIA test dataset, which include ACF [67], YOLOv2 [15], YOLOvV3 [16], Tiny-YOLOv4
[17] and RSA-YOLO [56]. Table 6.2 shows the comparison of the proposed model with
SOTA models evaluated in terms of average precision (AP) and detection speed parameters.
From the table below, it is clear that our model achieves 89% AP which is +2.7% higher
compared to Tiny-Yolov4 though it runs slower than Tiny-YOLOv4. Figure 6.6 shows
sample detection results on INRIA test dataset.

Table 6.2 Comparison experiment on INRIA pedestrian dataset.

Models %AP (loU@0.5) | Detection time (ms)
ACF [67] 83.17 65.9
ACF+CNN [67] 84.87 295.9
YoloV2 [15] 87.6 11.9
Yolov3 [16] 83.54 13.5
Improved Yolov3 [43] 90.42 9.6
Y-PD [62] 88.1 13.7
Tiny YOLOV4 [17] 86.3 3.7
YOLOvV2PD [122] 93.2 275
Optimized SSD+MobileNet [137] 82.4 12.6
RSA-YOLO [56] 94 39
Proposed 89 7
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Figure 6.6 Detection results on INRIA Pedestrian dataset (544x544).

Caltech: Compared qualitative results of EfficientLiteDet model with several SOTA models
on Caltech test dataset which includes Checkerboards+ [147], RPN+BF [47], TA-CNN [149],
SDS-RCNN [60], SCN [150] and SA-RCNN [49]. Table 6.3 shows the proposed model
analysis of precision-recall on Caltech pedestrian datasets for all pedestrian heights (all

pixels) and small-scale pedestrian height (20-60 pixels).

Table 6.3 Comparison experiment on Caltech Pedestrian dataset.

Models (Almfels) (20-(?0A FF:iers) WAP @ (0.7)
CCF [146] 42.95 24.85 31.1
Checkboards+ [147] 42.22 24 30.1
LDCF [148] 38.54 21.67 27.2
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RPN+BF [47] 44.49 24.35 32.4
TA-CNN [149] 37.38 18.64 25.1
SDS-RCNN [60] 47.38 28 355
UDN+ [50] 44,95 25.59 33.1
Y-PD [62] 45.26 18.4 321
SA-RCNN [49] 46.63 27.11 34.44
YOLOV2PD [122] 45.94 28.7 37.3
SCN [150] 47.62 29.46 36

Proposed 46.74 32.57 38.2

From Table 6.3 it is clear that EfficientLiteDet model achieves 32.57% AP, on
pedestrian height (20-60 pixels) i.e. smaller pedestrians, which is comparatively better
compared to other SOTA algorithms. But our model achieves 46.74% AP on pedestrian
height (all pixels) and underperformed compared to SCN [150] model. Under loU @0.7, the
proposed model achieves 38.2% AP which is higher compared to Y-PD [62], SA-RCNN [49]
and SCN [150]. Figure 6.7 shows detection results on Caltech test dataset. From the detection

results, it is clear that our model detects smaller pedestrians more accurately and efficiently.
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Figure 6.7 Detection results on Caltech Pedestrian dataset (544x544).

Udacity: The qualitative results of EfficientLiteDet model were compared with several SOTA
models on Udacity test dataset, which include Faster-RCNN [11], SSD+MobileNet [81],
Tiny-YOLOV2 [15], Tiny-YOLOvV3 [16] and Tiny-YOLOvV4 [17] algorithms. Table 6.4 shows
the comparison of test results of the proposed model on SOTA models and it was evaluated in

terms of average precision (0.5:0.95), mean average precision (mAP) and detection speed

parameters.

Table 6.4 Comparison experiment on Udacity dataset.

Models Q/;F()w% (8/.05?;?5) sEeeeth(t;%ré)
Faster RCNN [12] 71.5 32.7 0.8
SSD+MobileNet (512x512) [81] 73.4 39.4 68
Tiny-Yolov2 (544x544) [15] 66.3 35.1 138
Tiny Yolov3 (416x416) [16] 68.5 38.6 202
Optimized MobileNet+SSD (544x544) [137] |  74.6 41.3 155
Tiny Yolov4 (544x544) [17] 75.9 42 270
Proposed (544x544) 77.8 44.6 143

From the above results, it is clear that our model achieves 77.8% mAP value which is
+9.3%, +3.2% and +1.9% higher compared to Tiny-YOLOv3 [16], Tiny-YOLOv4 [17] and
Optimized MobileNet+SSD [137] SOTA models. Figure 6.8 shows sample detection results
on Udacity test dataset.
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Figure 6.8 Detection results on Udacity dataset (544x544).

Highway: Compared the qualitative results of EfficientLiteDet model with several SOTA
models on Highway vehicle test dataset (considered car, bus, truck classes) which include
Faster-RCNN [12], Tiny-YOLOvV4 [17] and Scaled Tiny-YOLOv4 [18] algorithms. Table 6.5
shows the comparison of test results of the proposed model on SOTA models and was

evaluated in terms of recall, mean average precision (mAP) and detection speed parameters.

Table 6.5 Comparison experiment on Highway Vehicle dataset.

Recall MAP@ .
Models (%) 0.5 (%) Detection Speed (FPS)
Faster RCNN [12] 77.2 55.6 5.3
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Tiny-Yolov2 [15] 89.4 62.1 138
Tiny-Yolov3 [16] 81.3 68.4 202
Tiny Yolov4 [17] 87.5 76.2 270
Scaled Tiny-Yolov4 [18] 86.9 78.3 371
Proposed (544x544) 88 80.1 111

From the above results, it is clear that proposed model achieves 80.1% mAP value
which is +11.7%, +3.9% and +1.8% higher compared to Tiny-YOLOv3 [16], Tiny-YOLOv4
[17], and Scaled Tiny-YOLOvV4 [18] SOTA models, respectively. Figure 6.9 shows sample

detection results on Highway vehicle test dataset.
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Figure 6.9 Detection results on Highway Vehicle dataset (544x544).

PASCAL VOC-2007: Compared the qualitative results of EfficientLiteDet model with several
SOTA models on PASCAL VOC-2007 test dataset (considered person, car, bus, bicycle and
motorbike classes) which include Faster-RCNN [12], SSD+MobileNet [81], Tiny-YOLOv3
[16], Tiny-YOLOvV4 [17], Pelee [135], Optimized MobileNet+SSD [137], and DLNetV2 [71]
algorithms. Table 6.6 shows the comparison of test results of EfficientLiteDet model on
several SOTA models, evaluated in terms of mean average precision (mAP), detection speed

and model size parameters.

Table 6.6 Comparison experiment on PASCAL VOC-2007 test dataset.

Models h/;?zdeel MAP@ Detection
(MB) 0.5 (%) Speed (FPS)
Faster RCNN [12] 522 70.4 0.5
SSD+MobileNet (300X300) [81] 5.77 71.6 61
SSDLite+MobileNetv2 (300x300) [81] | 6.8 67 80
YOLO (416x416) [14] 75.3 57.9 45
Yolov2 (288X288) [15] 67.13 69 47
Yolov2 (544x544) [15] 203 73.4 38
Tiny-Yolov2 (416X416) [15] 42 63.88 210
Yolov3 (416x416) [16] 240 79.3 30
Yolov3 (544x544) [16] 247 81.6 17
Tiny Yolov3 (544x544) [16] 35 68.54 202
YOLOV2PD [122] 64 80.7 36.3
SSAD" (Proposed) 67.2 85.6 17
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Optimized MobileNet+SSD [137] 23.6 80.04 155
Pelee (304X304) [135] 5.43 70.9 120
Improved Tiny-Yolov3 (544x544) [43] 13.9 73.98 207
DLNetV2(544x544) [71] 23.6 75.4 46
Lite-YOLO-SPP (416x416) [73] 14.2 77.44 177
Tiny Yolov4 (544x544) [17] 23.1 84.9 270
Proposed (416x416) 14.8 80.5 147
Proposed (544X544) 14.8 87.3 143

From the above results, it is clear that our model achieves 87.3% mAP value which is
+18.76%, +7.26%, +16.4%, +13.32%, +11.9% and 6.8% higher compared to Tiny-YOLOv3
[16], Optimized MobileNet+SSD [137], Pelee [135],
DLNetV2 [71] and Tiny-YOLOv4 [17] SOTA models respectively. The size of our model
was 14.8 MB which is far smaller and more light-weight compared to Tiny-YOLOv3 [16],
DLNetv2 [71] and Tiny-YOLOv4 [17] models. Figure 6.10 shows sample detection results on
VOC-2007 test dataset. From these results, it is obvious that our light-weight EfficientLiteDet
algorithm is able to detect smaller and occluded denser targets more accurately and

efficiently.
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Figure 6.10 Detection results on PASCAL VOC-2007 test dataset (544x544).

To test the robustness and show the real-time performance of the proposed lightweight
model, the whole model was deployed on a low-end edge device, Nvidia Jetson TX2.
Compared to Tesla V100 GPU, this board has limited computational power but it consumes
very little energy. Figure 6.11 shows the experimental setup of Jetson TX2 board and the

detection results on test video in real-time was verified.
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Figure 6.11 Real-time detection results on Jetson TX2 board on a test video.

During the testing phase of EfficientLiteDet model on Jetson TX2 board, runs with
35.1 FPS and achieve real-time detection performance. Figure 6.12 shows the comparison of
the proposed model with several SOTA models during testing on Jetson TX2 board and it was
evaluated in terms of speed (FPS), BFLOPS and weight file (MB) parameters. From Figure
6.12, it is clear that EfficientLiteDet model runs in real-time and generates smaller weight file
compared to Tiny-YOLO state-of-the-art (SOTA) models.
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Figure 6.12 Comparison experiment of various SOTA models tested on Jetson TX2.
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6.5 Summary

This chapter has proposed a faster, more efficient, accurate and light weight
framework for real-time pedestrian detection for autonomous driving system. In the proposed
model, best characteristics of ResNet, YOLOv4 and EfficientDet were adopted. In this work,
four new contributions were presented. Our first contribution was one more prediction head is
inserted which could accurately detect multi-scale objects especially tiny targets. Second
contribution was the introduction of transformer encoder blocks in the neck part which helps
to detect both occluded and denser targets accurately. The third contribution was CBAM
attention module adopted in this model to focus only on particular targets i.e. pedestrians and
vehicles. The last contribution was that to improve the efficiency of the proposed model,
multi-scale testing was performed during the inference phase. The proposed algorithm was
implemented in real-time on a low-end edge device Jetson TX2 board. Therefore, from the
experimental results, it is clear that our EfficientLiteDet model is more efficient, faster,
lightweight and real-time object detector, and it is more easily adaptable on low-end edge

devices.
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Chapter 7

Conclusions, Limitations and Future Work

7.1 Conclusions

Deep neural networks (DNNs) achieve tremendous performance across various domains
ranging from industrial automation, intelligent transportation system, self-driving cars to
embedded vision. However, DNNs are resource intensive, and therefore difficult to deploy on
low-end edge devices which have limited computational capabilities and memory constraints.
Therefore, to run DNNs efficiently on such low-end edge devices, neural networks that are
light-weight, faster, more accurate and more power-efficient should be developed. The goal of
this thesis is improving the efficiency of DNNs without losing detection accuracy while
detecting multi-scale objects (pedestrians and vehicles) which are smaller, occluded and
denser. The same DNNs are deployed on low end edge devices to achieve detection
performance in near real-time.

In chapter 3, a robust real-time object detection algorithm was developed. A novel
YOLOV2PD network was proposed for the accurate detection of smaller and more densely
distributed pedestrians. The structure of YOLOvV2PD was designed to improve the network’s
feature extraction ability by adopting MLFF strategy and, at the higher end, one repeated
convolutional layer was removed. To improve detection accuracy, the loss function was
improved by applying normalization. From the experimental results, this network achieved
80.7% AP, which is 2.1% higher than that of YOLOv2 Model on Pascal Voc-2007+2012
pedestrian test dataset. The robustness of YOLOV2PD network was validated on a real-time
test video and ran with 36.3 FPS compared with SOTA YOLOv2 Model. Quantitative
analysis shows that YOLOvV2PD network achieved 7.8 average MR on INRIA and 0.381 AP

on Caltech pedestrian test datasets.

In chapter 4, an accurate and simple one-shot SSD-based detector, termed SSAD, for
effective pedestrian and vehicle detection for autonomous driving system was developed.

Specifically, SSAD utilizes a fast and light-weight MAU to discover feature dependencies to
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extract only useful and relevant regions and suppress irrelevant regions. To improve the
detection accuracy of occluded objects, a multi-scale attention unit (MAU) was embedded
into SSAD network. Our network improves the detection accuracy of original SSD by a large
margin at a small extra computational cost. Based on qualitative and quantitative result
analysis, SSAD network achieves superior detection results on four challenging datasets with
considerable differences in the image aspect ratio. In particular, it achieves better performance
than other SOTA one-stage detectors such as YOLOvV2PD, YOLOv3, and MSCM-Net.

In chapter 5, Optimized MobileNet+SSD was developed for detecting smaller
pedestrians accurately in real-time and the same network was implemented effectively on
low-end edge device Jetson Nano board. Our network lets the components work in
coordination in such a manner that their strengths are improved and the number of parameters
is decreased compared to SOTA detection architectures. To improve detection accuracy while
detecting smaller pedestrians, a feature fusion concatenation module was introduced for
injecting contextual information into SSAD network. The performance of optimized
MobileNet+SSD was validated on PASCAL VOC-2007 test dataset and compared with state-
of-the-art pedestrian detectors. When our model was deployed on low end edge device Jetson
Nano, it ran with 34.01 FPS on a real-time test video.

In chapter 6, some cutting-edge techniques i.e. extra prediction head, transformer
encoder block both in neck and backbone end, CBAM and some bag of tricks i.e. data
augmentation techniques were adopted on Tiny-YOLOv4 baseline model. This led to light-
weight pedestrian and vehicle detector referred to as EfficientLiteDet. Our network adopts the
best characteristics of ResNet, YOLOv4 and EfficientDet. From the qualitative and
quantitative results, it is clear that our network is particularly good at detecting multi-scale
targets, smaller and occluded denser targets accurately and effectively in real-time. It achieves
real-time inference on edge device Jetson TX2, which ensures that EfficientLiteDet model can
be used in real-world scenarios. Since EfficientLiteDet model is very efficient, lightweight
and real-time detector, it is more easily adaptable on low-end edge devices. The experimental
results on five popular used pedestrian and vehicle datasets, demonstrated the robustness and

effectiveness of EfficientLiteDet network.

In summary, this thesis takes important steps towards developing more efficient, ultra-

light-weight and faster object detection algorithms for autonomous driving system.

104



7.2 Limitations & Future Work

In this section, limitations and the potential research direction for future research is
presented. Although YOLOV2PD network achieves better detection accuracy while detecting
smaller and densely distributed pedestrians in real urban environment scene, still there is a

room for improvement in detecting occluded pedestrians and inference speed.

An efficient SSAD object detection algorithm was developed in order to achieve
optimal trade-off balance between detection accuracy and speed while detecting small-scale
and occluded objects. SSAD achieves excellent results by using feature fusion and attention

mechanisms.

Since both YOLOV2PD and SSAD networks are heavier but achieves higher detection
accuracy and runs with low inference speed so they are not quite suitable to deploy on edge

devices.

So, light-weight algorithms were developed such as Optimized MobileNet+SSD and
EfficientLiteDet and which are deployed on low-end edge devices. First an Optimized
MobileNet+SSD was developed to detect smaller pedestrians in real-time without losing any
detection accuracy where we incorporated a light-weight feature extractor network
(MobileNet) as backbone. However, Optimized MobileNet+SSD network can detect only

class i.e., pedestrians and fails to detect occluded pedestrians accurately.

Second a highly efficient, lighter and faster multi-object detection network i.e.,
EfficientLiteDet was developed to detect tiny and occluded objects and operates in real-time.
In our network we adopted CSPResNet50 as a feature extractor and a light-weight CBAM
attention module was employed to achieve our goals. However, EfficientLiteDet fails to
detect heavily occluded pedestrians accurately and also fails when the test images contain

heavy rain or dense haze.

The performance of CNN depends on lot of features we use and combine them
effectively. But some of the universal features (referred as “Bag of Freebies”-BOF) such as
Batch normalization, Weights normalization, Layer normalization, Self-adversial training
(SAT), Mosaic data augmentation, Cross-Stage-partial-connections (CSP), DropBlock
regularization, Optimal hyperparameters, Random training shapes, Cosine Annealing
Scheduler, Weighted Residual Connections (WRC) and Data augmentation during training

and testing were applied in most of the SOTA networks, tasks and datasets. Therefore, by

105



combing above features more in a network which would improve the network training
without impacting inference speed. By incorporating universal features such as Mish
activation, Spatial Pyramidal Pooling (SPP), Path Aggregation Network (PANet),
Transformer Encoder (TE), Attention modules (SE, CBAM) and DIoU NMS (referred as
“Bag of Specials” -BoS) in our network would improve the detection accuracy of specific
targets but at the cost of little increase in inference speed. Therefore, BoF and BoS would

boost the detection accuracy and inference speed of the network.

The efficient networks introduced in this dissertation were manually designed i.e., fine
tuning of network parameters. Neural architecture search (NAS) allows us to design hardware
specific efficient neural networks automatically. All the networks designed in this dissertation
adopt pre-trained backbone model for feature extraction. But for specific domain application
while detecting only pedestrians and vehicles, an efficient light weight backbone model can
be developed with fewer parameters and fewer FLOPS. Therefore, the developed network can
achieve more than 100 FPS.

However, the networks developed can be adopted to cross domains for detecting

various objects.

I hope that the steps taken in this dissertation would work towards designing efficient
DNNSs, alongside future research in the area.
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