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Abstract

Automatic facial expression recognition (FER) has been a key task in cognitive sci-

ence, machine intelligence, and computer vision since facial expressions are a common

technique to assess human emotions. Research into automatic facial expression recogni-

tion (FER) models has been carried out extensively in recent years. In human–computer

interaction (HCI), security monitoring, sociable robots, advanced driver assistant systems

(ADASs), clinical psychology, and emotion analysis, functional applications of FERs are

used. The FER models typically use hand-engineered techniques such as local binary

patterns (LBP), non-negative matrix factorization (NMF), and scale-invariant feature

transform (SIFT). The extracted characteristics are then given to a machine learning

classifier to understand the patterns concealed in the features. Support vector machine

(SVM), Ad-boost, and Random Forest are the standard machine learning models used for

the classification of expressions in traditional FERs. The downside of handcrafted charac-

teristics is that the classification task cannot be generalized because the algorithms adopt

unique human-designed learning styles. The precision can be influenced by the reliance

on geometry and the type of dataset. Researchers have switched to deep learning-based

FER models to address these disadvantages. In this method, models are allowed to eval-

uate the patterns independently where models can extract low and high-level features on

different face images through deep-linked convolutional neural layers. However, there are

many critical issues in the field of facial expression recognition which should be addressed.

The accuracy of the FER model is reduced due to problems such as the variations in ex-

pressing emotions, variations in lighting, and different ethnic biases. The taken research

work solves these critical issues to improve the efficiency of the FER models.

There exist multiple challenges in designing an accurate robust FER model. The

critical issue with the design of the FER model is the strong intra-class correlation of dif-

ferent emotion classes. It is a challenging task to classify accurate facial expressions due to
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high intra-class correlation. The latest convolutional neural network-based FER models

have shown significant improvement in accuracy score but lack distinguishing the micro-

expressions. Although it has improved the accuracy, FER models must consider problems

like ethnic bias and illumination variance. The CNN models also experience over-fitting

problem when trained with sparse and class imbalanced samples. The discriminative

ability of the CNN models which are used in general object classification tasks is not suf-

ficient for facial expression classification since there exists high similarity between various

emotion (label) classes. So, it is essential to design or modify existing FER model that

helps in overcoming these issues. The related works shows that the multi feature fusion

techniques could improve the accuracy of FER models. The next important problem that

arises is the selection of features. There exist various computer vision algorithms to ex-

tract object features and it is essential to investigate which features could better represent

facial expressions. These problems in the field of facial expression recognition are studied

in this research work. The research work majorly focuses on improving the classification

accuracy of FER models by considering each drawback of existing models.
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Chapter 1

Introduction

1.1 Introduction

Facial expression recognition (FER) is the process of identifying human emotions

from facial expressions and facial expression detection also observes and analyzes human

behavior traits. Facial expressions play a vital role in human nonverbal communication,

and it helps to understand the inner feelings of humans. Human emotion analysis requires

automated Facial Expression Recognition (FER) of unique facial features. According to

research, nonverbal communication may represent nearly 55% of information during the

interaction of humans [8]. Facial expressions can be voluntary or involuntary actions

that can be usually observed with a naked eye. At times, few expressions may not be

visible to the naked eye. Hence, there is a challenge to identify emotions automatically.

There is much evidence that a few facial expressions can be mapped to a particular

emotion like a smiling expression can be related to an emotional state of happiness [9].

Humans have the instinctive, natural ability to comprehend the emotion of a person just

by observing facial expressions. There is a rapid attraction in the research of automatic

facial emotion recognition in recent years. The applications of this topic include, but are

not limited to, human-computer interaction (HCI), security monitoring, sociable robots,

advanced driver assistant systems (ADASs), Augment reality (AR), Virtual reality (VR),

Psychiatry, Pain assessment, Lie detection clinical psychology, sentiment analysis, and

the entertainment business. Ekman and Friesen proposed six basic emotions related to

cross-cultural studies [10]. The essential facial emotions discussed are Anger, Disgust,
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Fear, Happiness, Sadness, and Surprise. There are other means of identifying human

emotions through speech, text, and other biomedical data such as EEG [11]. Emotion

recognition through facial features is simple as it does not require sophisticated sensors

or transducers for extracting information.

Sensor data such as Electromyography (EMG) and Electrocardiogram (ECG) can

also predict emotions. However, because of its simplicity, the camera is a favoured sen-

sor as it is not necessary to be connected to humans. Automatic FER models can

be categorised generally as two methods, traditional computer vision models and deep

learning-based FER models. In order to extract features in the images, vision-based

models typically use hand-engineered techniques such as local binary patterns (LBP),

non-negative matrix factorization (NMF), and Scale-Invariant Feature Transform (SIFT).

The extracted characteristics are then given to a machine learning classifier to understand

the patterns concealed in the features. Support Vector Machine (SVM), Adaboost, and

Random Forest are the standard machine learning models used in traditional FERs. In de-

tecting emotions, this approach has achieved good accuracy. The downside of handcrafted

characteristics is that the classification task cannot be generalised because the algorithms

adopt unique human-designed learning styles. The precision can be influenced by the

reliance on geometry and the type of dataset. Researchers have switched to deep learning-

based FER models to address these disadvantages. In this method, models are allowed to

evaluate the patterns independently. The models can extract low and high-level features

on different face images through deep-linked convolutional neural layers. The main char-

acteristic of deep learning-based FERs is that to get well trained in classifying emotions,

the models need to analyse massive number of face images. The use of GPU becomes

mandatory due to the high computation seen in deep learning models such as convolu-

tional neural networks and recurrent neural networks. Deep learning frameworks provide

building blocks for developing, training, and evaluating deep neural networks through a

high-level programming interface. GPU-accelerated libraries like NVIDIA CUDA® Deep

Neural Network library (cuDNN) are utilized by popular deep learning frameworks like

TensorFlow, PyTorch, and others to offer high-performance multi-GPU accelerated train-

ing. The models designed in this research work use Keras (running on top of TensorFlow)

deep learning API to build the various multi-feature fusion architectures. The Tensorflow

GPU-supported libraries recommend NVIDIA® GPU cards that support CUDA® ar-
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chitectures. However, the detailed requirement of the GPU specifications like Core Count,

Core Clock Speed, Memory size, type, and bandwidth depends on the application and

model complexity.

1.2 Issues in Facial Expression Recognition Models

The deep neural networks employed in FER have several issues to be tackled and in

the research work, we have considered some of the critical issues that need to be handled

to improve the efficiency and robustness of the existing deep neural network (DNN) based

FER models. The following issues below are considered in the existing DNN-based models.

� The existing FER methods are not able to significantly overcome the intra-class

correlation effect between various emotion classes.

� The available FER techniques should address the issue of overfitting during training

of deep neural networks with sparse and class imbalanced samples.

� The FER models fail to deal with illumination variance issue. The models also

show different accuracy levels in different lighting conditions. So the models should

impart illumination invariance property in the design

� There exists only few FER models that have explored the efficiency of feature fusion

DNNs. There is much scope in exploring and fusing various various handcrafted and

deep learnt features.

� There exists no significant metrics which can measure the credibility of the model’s

classification. The existing probability scores calculated for a given prediction by

DNN models are insufficient to measure the credibility of prediction.

The first issue is the intraclass correlation where certain emotions are strongly con-

nected to other emotions since they share common micro expressions which are triggered

during the emotion. The emotion of fear is strongly connected to the emotion surprise

since there exist similar action units that are triggered in both emotions. The high mis-

classification rate observed in the FER models is due to the strong intra-class correlation
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of emotions. Due to the similar emotion classes the FER models tend to get confused

in classifying the emotions and this is where the traditional single convolutional neural

network (CNN) based FER models usually fail. The detailed study of action units and

the correlation of different emotions are studied in this research. The chapter 3 does

the exploratory data analysis of various action units spatially on human face based on

facial action coding systems (FACS). The research work in The first issue is the intraclass

correlation where certain emotions are strongly connected to other emotions since they

share common micro expressions which are trigged during the emotion. The emotion of

fear is strongly connected to the emotion surprise since there exist similar action units

that are triggered in both emotions. The high misclassification rate observed in the FER

models is due to the strong intra-class correlation of emotions. Due to the similar emotion

classes the FER models tend to get confused in classifying the emotions and this is where

the traditional single convolutional neural network (CNN) based FER models usually fail.

The detailed study of action units and the correlation of different emotions are studied

in this research. The chapter 3 does the exploratory data analysis of various action units

spatially on human face based on facial action coding systems (FACS). The research work

in chapter 3 discusses the amount of correlation between each emotion class and also

gives solution on how to avoid this intra class correlation effect in classifying the emotions

by introducing a novel LogicMax layer. The chapter 3 explains different techniques to

counter the intra-class correlation effect in discriminating the facial expressions.

The next issue discussed in this research work is regarding the overfitting effect seen

in training the deep neural networks. The problem with the deep neural network is that

efficient training of models requires huge datasets. Even after the intensive training few

models tend to overfit to the provided datasets and do not generalize to the external

data. The research takes this issue into consideration. The issue of relying only on

deep features can sometimes cause issue in learning. The recent techniques like attention

models can counter this effect. But instead of relying only one deep feature we have

constructed a multi feature fusion model. In the experimentation done in the research

work, we have observed that training the DNN with multi features can make models robust

and learn faster when compared to conventional CNN related models. The selection of

features in fusing and type of fusing is discussed in the chapter 4. The chapter 4 discusses

existing multi feature fusion models and compares the efficiency of different features in
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understanding the micro expressions of face. The detailed study of different metrics of

hybrid model are compared with existing FER models. The chapter 4 also compares the

prediction capability of proposed multi feature fusion model with existing FER models to

describe the robustness of the proposed model.

The measure of credibility of various ML and DL models are discussed in the chapter

5. The section also explains why we need to measure the credibility of models. In general

there exists many FER models that can classify facial expressions but there happens

a dilemma in selection of the accurate model. The credibility of prediction needs to

be measured certainly in critical conditions. The existing classification models anyhow

describes the confidence score of prediction but deciding only on the confidence score can

be a problem since there exists many false positives and false negatives of higher confidence

scores. So, in the chapter 5 we have proposed a credibility score metric called “Rank of

Confidence” (RoC). SternNet, a novel classification model is introduced in this research

work. SternNet is a multi-stage classification model which classifies samples based on

Rank of Confidence metrics. In the chapter 5 we discuss how the RoC is calculated and

the discuss the overall flow process of SternNet.

The final issue in FER that is considered in the research work is the model reliance

on illumination variations. The variations in illumination can seriously degrade the per-

formance of FER models. The effect of illumination variance is serious issue since certain

models are trained only on specific illumination (strong/dark/weak) lighting condition.

We need to impart the illumination invariance property into our FER models. In certain

critical conditions there is a need to run DL and ML models even in presence of low light

conditions. So, the proposed model considers Near Infrared region based FER model in

designing illumination invariant classification. The proposed model uses both spatial and

temporal information for predicting the emotion class in near infra-red region (NIR).

1.3 Organization of Thesis

The organization of the research work discussed in this thesis can be described as

follows:
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� In section 2, the related works discuss the existing works of existing FER models.

The section describes the methodology and brief explanation regarding the concepts

of the design of FER models. The essential brief literature review is done in this

section to understand the existing FER models.

� In section 3, we discuss the existing works of Facial action unit coding (FACS). The

section describes how FACS information is used in designing a priority table using

LogicMax layer. The section explains how LogicMax layer helps in discriminating

highly correlated features.

� The section 4 describes the importance of HOG and VGG-Face features in modeling

the Facial features. The section also discusses the detailed procedure of extracting

HOG and CNN features on faces. The visualization and advantages of fusing the

VGG-Face and HOG features are also explained in this section. The advantages of

multi-feature fusion models over the traditional models are compared with various

metrics like accuracy, precision, recall, and F1-score.

� The section 5, explains the architecture of the SternNet. The SternNet is a classifi-

cation model which relies on stern rules in selecting the accurate class. The proposed

model considers Rank of Confidence (RoC) which is credibility measuring metrics

in classification problems.

� The section 6, demonstrates the fusing of spatial and temporal features in designing

a CNN-RNN based deep neural network. The proposed CNN-RNN model is built

in classifying expressions in Near-infrared videos. The NIR-based images/ videos

can display faces even in low-light regions. The proposed hybrid model is tested on

three different illumination conditions (strong/weak and dark).

� The section 7, demonstrates the cross-validation results of three datasets using the

proposed multi-feature fusion and conventional CNN models. The comparison of

confusion matrices and other classification metrics is discussed in this part. The vi-

sualization of prediction variations of CNN and the proposed model is also discussed

in this section.
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Literature Review

Pre-processing, deep feature learning, and deep feature classification are the three

primary processes that are frequent in automatic deep FER, and they are described in

this section. The general preprocessing techniques involve Face alignment, Data augmen-

tation, Face normalization, Illumination normalization, and Pose normalization. After

identifying the face using a set of training data, background and non-facial areas are

subsequently eliminated. The Viola-Jones face detector is a well-known and commonly

used face detection implementation. It is reliable and computationally straightforward to

detect near-frontal faces. Even while face detection is the sole process that is necessary

to enable feature learning, additional face alignment that uses the coordinates of nearby

landmarks can significantly improve FER performance because it can lessen the differ-

ence in face scale and in-plane rotation, this step is quite important. The process of facial

expression recognition pipeline of FER models is shown in the Fig. 2.2

For deep neural networks to be generalizable to a specific recognition task, there

must be enough training data. However, there aren’t enough photos in the majority of

publicly accessible FER databases to use for training. Data augmentation is therefore an

essential stage in deep FER. On-the-fly data augmentation and offline data augmentation

are the two categories into which data augmentation techniques can be categorised. Deep

learning toolkits frequently include on-the-fly data augmentation to reduce overfitting.

The input samples are randomly selected from the four corners and the center of the

image during the training stage, and they are then flipped horizontally, which can produce

a dataset that is 10 times bigger than the initial training data. Various offline data
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augmentation techniques have been developed in addition to the fundamental on-the-

fly data augmentation to further increase data on both size and diversity. The random

perturbations and transforms, such as rotation, shifting, skew, scaling, noise, contrast,

and colour jittering are the most often employed operations. For instance, to increase the

amount of data, typical noise models like salt-and-pepper and speckle noise and Gaussian

noise are used. Additionally, each pixel’s saturation and value (the S and V components

of the HSV colour space) are altered for contrast transformation to enrich the data.

Combining many processes can produce more unused training samples and increase the

network’s resistance to rotated and deviated faces. The important data augmentation

techniques implemented by the DNN models are shown in the Fig. 2.1

Normalization of illumination: In unrestricted situations, illumination and contrast

can differ in different photographs even from the same individual with the same expres-

sion, which can lead to significant intraclass variations. In, three commonly used illumi-

nation normalization techniques, including difference of Gaussian (DoG), discrete cosine

transform (DCT), and isotropic diffusion (IS)-based normalization, were assessed for il-

lumination normalization. and removed illumination normalization using homomorphic

filtering-based normalizing, which has been shown to produce the most reliable results out

of all the other procedures. Additionally, comparable research has demonstrated that his-

togram equalization in combination with lighting normalization enhances face recognition

performance over illumination normalization alone.

Paul Ekman [10] has identified anger, disgust, fear, happiness, sadness, and surprise

as six basic emotions, later neutral was added to the list. Ekman introduced FACS [7],

which is one of the iconic works made in the field of facial emotion recognition, helped

many researchers to extend the work in this field. There are numerous works in the field of

facial expression recognition. The architectures used in this field can be broadly classified

into the following categories

1. Pretraining and fine-tuning based Neural Networks.

2. Multiple feature input networks.

3. Spare blocks and layers based deep neural networks.

4. Ensemble-based deep neural networks.
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Figure 2.1 General data augmentation in four methods [2]

5. Generative adversarial networks based FER models

Pretraining and fine-tuning based Neural Networks use pre-trained networks like

AlexNet [12], VGG [13], VGG-face [14], and GoogleNet [15]. The motivation behind

using these pre-trained networks is to avoid overfitting. Kahou et al. [16] discussed the

advantages of pre-trained models. The multi-stage fine-tuning method can further boost

the performance of the FER. Multiple feature input networks are designed to tackle the

problems of image rotation, scaling, and illumination effects. Instead of feeding nor-

mal RGB images, handcrafted features like Scale-invariant feature transform (SIFT) and

mapped local binary pattern features are given as input to the deep neural networks.

Spare blocks and layers based deep neural networks are used to improve the perfor-

mance of FER. A novel loss function known as the center loss is introduced to improve

the discriminative power of CNN. Center loss [17], along with the softmax layer, is used

at the end of the CNN layer to obtain a good threshold for classification. Many loss

functions like island loss [18], and triplet loss [19] are deployed into CNN models to boost

the discriminative power of FER. Ensemble-based deep neural networks can be again

classified into multi-architecture ensembles, feature level ensembles, and decision-based
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ensembles. Multi-architecture ensemble models [20] use the different error functions like

log-likelihood loss and hinge loss to feed weights to respective networks inside the model

adaptively. Feature level ensembles concatenate important features derived from different

networks in the model into a one-dimensional feature matrix. Decision-based ensembles

adapt classification based on rules like majority voting [21], simple average [21], and

weighted average [20]. Generative adversarial networks (GANs) are widely used in recent

years in the field of facial expression recognition. The models trained with GANs can

perform image synthesis, which is realistic and accurate. They can overcome class imbal-

ance issues in different datasets by adding more training images to the dataset. Zhang et

al. [22] introduced a GAN-based FER model to synthesize images with various expressions

under random poses for multi-view facial expression recognition.

The use of deep learning techniques has increased in various computer vision prob-

lems in recent years. DNN models such as convolutional neural networks and recurrent

neural networks are commonly used in pattern recognition tasks. In this section, we

briefly discuss existing hybrid models on FER.

Multi-feature fusion models :

Tang et al. [23] proposed a two-feature fusion approach. The first model, the differ-

ential geometric fusion network, derives handcrafted features based on Euclidean distances

between important facial landmarks. The second model, known as the multi-dimensional

convolutional neural network, extracts the deep features. The effectiveness of the combi-

nation of two features was evaluated on the CK+ dataset for six emotion classes (anger,

surprise, disgust, happy, fear, and sad).

Wang et al. [24] proposed a weighted fusion of two hand-engineered features. Multi-

scale block local binary pattern uniform histogram and HOG features are initially derived

from the images and fused. The fusion model uses an SVM to classify emotions. The

model classifies seven emotions (angry, happy, sad, surprise, contempt, fear, and disgust).

The paper also explains the variations of unweighted and weighted fusion of features.

Xiaohua et al. [25] used Weber Local Descriptor (WLD) and HOG to create a hybrid

model for facial expression recognition. The experiment explains that the combination

of Weber Local Descriptor and HOG provided better results when compared with other
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Figure 2.2 General Pipeline of FER models [2]

popular features like Gabor Wavelet, LBP (local binary pattern), and AAM (Active Ap-

pearance Model). WLD extracts the edges and texture detail and is very consistent with

human perception. The studies show that the model is unaffected by noise and non-

monotonic lighting differences. Xie [26] has proposed a FER model that combines spa-

tially maximum occurrence model (SMOM) and elastic shape–texture matching (ESTM).

The SMOM is based on the statistical characteristics of training facial images, and ESTM

measures the similarity between images based on texture and shape regions. The fusion

of two features has significantly improved the classification accuracy. Lin et al. [27] have

proposed a multi-feature fusion of two-dimensional principal component analysis and local

binary pattern (LBP). The paper explains that the local texture is represented by a local

binary pattern (LBP) to extract global appearance features. The two inputs are then

given to the acyclic graph (DDAG) based support vector machine (SVM) for identifying

several prototypic facial expressions.

Viswanatha et al. [28] proposed a similar hybrid model that comprises deep and

handcrafted features. The XceptionNet model is used to extract the deep features, and

for the handcrafted features, the authors have used facial landmarks using OpenCV. Pan

et al. [29] proposed fusing HOG and CNN spatial-temporal features for video-based FER.

The authors have used VGG-16 architecture and HOG to extract temporal and spatial

characteristics. The authors discuss the importance of fusing CNN and HOG features to

extract local and abstract features of facial regions.
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The proposed work in this research also uses a multi-feature fusion model but differs

in architecture, selection of features, method of concatenation, and hyper-parameters se-

lection. The existing works have used different feature fusion methodologies, for example,

Xiaohua et al. used two hand-engineered feature fusion (WLD+HOG), Wang et al. used

LBP+HOG in the FER design.

Many existing models use unique techniques in detecting facial expressions. Breuer

and Kimmel [30] have evaluated different CNN visualization strategies and addressed

the potential of DNNs to understand emotions. Jung et al. [31] have used two different

CNN models to improve the FER accuracy. The first CNN extracts temporal information

from their respective image sequences, and the second CNN considers facial landmarks

to obtain information regarding temporal geometry. The definition of the deep region

was introduced by Zhao et al. [32] through multi-label learning (DRML), which utilizes

feed-forward networks to understand facial regions and evaluate the structural patterns of

the face by forcing the knowledge to be captured by learned weights. In the FER method,

neural networks that use pre-trained networks have been implemented, and models have

been deployed to minimize training time. The aim of using these pre-trained networks is

to use pre-trained weights trained on large datasets such as Imagenet [33]. The benefits

of choosing pre-trained networks are identified by Kahou et al. [34] in the proposed work.

Koc [35] has proposed the Sum of Pixel Slope Similarities approach for the face recog-

nition task. The authors have compared the approach with other popular recognition

models like the common vector approach (CVA), discriminative CVA, and support vector

machines. The work concludes that the recognition rate is improved when using the sur-

face normal vectors rather than the gradient vectors in each pixel. Liu et al. [36] proposed

a new Boosted Deep Belief Network (BDBN) for iteratively executing the three training

stages in a system. A selection of features that effectively characterize expression-related

facial appearance/shape changes can be learned and selected using the proposed BDBN

system. Liu et al. [37] also proposed the idea that deep belief networks are also used

to train the face parsing detectors, which are then fine-tuned using logistic regression.

Mollahosseini et al. [38] proposed a network that has two convolutional layers, each with

max-pooling and four Inception layers in between. The network is a single-component

architecture that takes registered facial images as input and categorizes them into six ba-

sic or neutral expressions. Korrami et al. [39] presented a method for determining which
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parts of the face affect CNN’s predictions. To analyze the facial expression information

of temporal sequences, a Part-based Hierarchical Bidirectional Recurrent Neural Network

(PHRNN) was proposed by Xhang et al. [40]. Kurup et al. [41] proposed an algorithm

that employs a cascaded structure in which the facial images are first subjected to feature

extraction, accompanied by feature reduction. A Deep Belief Network (DBN) is trained

semi-supervised using all available labeled and unlabeled data, and using a reconstruc-

tion error-based rating, features are selected to exclude those that do not provide details.

Datta et al. [42] proposed a model in which concatenation of geometric and texture-based

features is used to create a fast facial emotion classification system. Cai et al. [43] pro-

poses a novel island loss to enhance the discriminative power of deeply learned features

in a FER.

Kim et al. [44] discussed FER based on ensemble methods. The ensemble tech-

niques like feature-based ensembles and decision-based ensembles are also discussed in

the proposed work. To adaptively update the weights of neural networks, these multi-

architecture ensemble models use distinct cost functions such as loglikelihood loss and

hinge loss. Feature level ensembles fuse and build critical features taken from different

networks into a one-dimensional matrix of features. Other classification methods, such as

majority voting [45], simple average, and weighted average [46], are also used in designing

a FER model. The advanced FER methods use generative adversarial networks (GANs)

that can create synthetic realistic machine-made patterns. In recent years, GAN-based

frameworks were designed to develop machine-made synthetic images for multi-view facial

expression recognition with varying illumination for random poses.

FER has been investigated in the computer vision field for decades [47], [48]. Ac-

cording to the existing FER models, the approaches may be divided into two categories

that are Static image based and Dynamic image sequence-based approaches. In recent

years, the usage of deep learning approaches in different computer vision challenges has

risen. In pattern recognition tasks, Deep Neural network (DNN) models such as convolu-

tional neural networks and recurrent neural networks are often utilized. In this part, we

will go through some of the existing FER models.

Zhang et al. [49] suggested one of the still image-based approaches on the FER-
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2013 Challenge [50], the authors utilized a deep CNN accompanied by a linear one-vs-all

support vector machine (SVM) and obtained good classification accuracy. Yu et al. [51]

suggested an emotion detection module based on an ensemble of several networks, each

with a separate set of weights. Breuer and Kimmel [52] investigated the potential of

DNNs to grasp emotions by evaluating several CNN visualisation methodologies. Jung

et al. [53] improved FER accuracy by employing two separate CNN models. Zhao et al.

[10] defined the deep region using multi-label learning (DRML), which uses feed-forward

networks to understand facial regions and assess structural patterns of the face by forcing

knowledge to be captured by learnt weights. Mollahosseini et al. [54] suggested a network

with two convolutional layers, each with max-pooling, and four Inception layers between

them. The network is a one-component architecture that takes in captured facial images

and categorises them into six basic expressions along with neutral expression. The FER

approach employs neural networks that leverage pre-trained networks, and models are

deployed to save training time. The goal of using these pre-trained networks is to employ

weights that have been developed during training on huge datasets such as Imagenet [33].

Kahou et al. [55] revealed the advantages of using pre-trained networks. It is worth noting

that the temporal relationship between image frames in sequence is critical for detecting

face emotions. Recently, there has been a greater emphasis on methods that capture

spatial–temporal aspects [ [56], [57], [58]]. For video-based expression recognition, Liu

et al. [59] employed a 3D-CNN architecture. They suggested a CNN architecture with

flexible facial action parts model constraints that can learn spatial–temporal properties

as well as locate facial action parts. For FER, Khorrami et al. [60] built a CNN–RNN

architecture. They also looked at how much each network adds to the framework. Jaiswal

et al. [58] proposed a model for obtaining temporal information using a mixture of CNN

and BiLSTM, which outperformed other models in terms of accuracy. Fan et al. [57]

developed a hybrid network that extracted features using a 3DCNN architecture and

then utilized RNN to capture the temporal relationships for FER. According to the pre-

ceding discussion, multiple network integration and CNN–RNN frameworks considerably

increase FER performance. The objective of the proposed work is to learn discrimina-

tive spatial–temporal features, particularly temporal motion context information using

VGG-Face CNN-LSTM based architecture.
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Facial Expression Recognition using a Dual CNN

Model with Novel LogicMax Layer

3.1 Introduction

The existing FER models fail to classify expressions on micro-feature level. The

micro-expressions play an important role in classifying emotions. The high intraclass

correlation between expressions makes the classification task harder. Facial expressions

convey important features for recognizing human emotions. It is a challenging task to clas-

sify accurate facial expressions due to high intra-class correlation. Conventional methods

depend on the classification of handcrafted features like scale-invariant feature transform

and local binary patterns to predict the emotion. In recent years, deep learning techniques

are used to boost the accuracy of FER models. Although it has improved the accuracy in

standard datasets, FER models have to consider problems like face occlusion and intra-

class variance. In this research work, we have used two convolutional neural networks

which use vgg16 architecture as a base network using transfer learning. This chapter

explains the method to tackle issues of classifying high intra-class correlated facial ex-

pressions through an in-depth investigation of the Facial Action Coding System (FACS)

action units. We have used a novel LogicMax layer at the end of the model to boost

the accuracy of the FER model. Classification metrics like Accuracy, Precision, Recall,

and F1 score are calculated for evaluating the model performance on CK+ and JAFFE

datasets. The model is tested using 10-fold cross-validation and obtained classification
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accuracy rate of 98.62% and 94.86% on CK+ and JAFFE datasets respectively.

Figure 3.1 Information about the samples used in test data for different classes

3.2 Role of FACS in the Proposed CNN

Deep Neural Networks like Convolutional Neural Networks (CNN) try to derive

both low and high-level features automatically through training with datasets. Low-level

features are important lines, edges, and corner points, which can be extremely useful in

predicting the overall class. The initial stages of a CNN extract the low-level features,

and as we move deeper into the network, it tries to combine these low-level features into

a meaningful class. Facial Emotions are tough to classify since the problem is a sub-

classification task, which involves identifying the emotional classes that have a very slight

variance. Paul Ekman and Wallace V. Friesen developed a system known as Facial Action

Coding System (FACS) [7] that identifies different facial expressions on any human face.

The important facial features are deconstructed and properly taxonomized according to

their property using FACS. FACS helped to generate and classify independent actions

of muscles/muscle contraction and relaxation known as “Action Units” (AUs). A com-

bination of different action units on the face denotes a particular emotion, as shown in
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Table 3.1 FACS action units for different emotions. [7]

Emotion Facial Muscle Corresponding Action Units

Anger Brow lowerer+ Upper lid raiser+ Lid tightener+ Lip tightener 4+5+7+23

Disgust Nose wrinkle+ Lip corner depressor+ Lower lip depressor 9+15+16

Fear
Inner brow raiser+ Outer brow raiser+ Brow lowerer+

Upper lid raiser+ Lid tightener+ Lip stretcher+ Jaw drop
1+2+4+5+7+20+26

Happiness Cheek raiser+Lip corner puller 6+12

Sadness Inner brow raiser+Brow lowerer+Lip Corner depressor 1+4+15

Surprise
Inner brow raiser+Outer brow raiser+

Upper lid raiser(Slight)+ Jaw drop
1+2+5B+26

Table 3.2 Intensity level classification of action units in FACS. [7]

Alphabet A B C D E

Intensity Level Trace Slight Pronounced Extreme Maximum

Table 3.1. Each emotion triggers different facial expressions, and if the FER model tries to

analyze the facial expressions accurately, then the classification of emotions becomes easy.

Table 3.1. explains the importance of different action units for corresponding emotions.

FACS has scaled the intensity of the action units by introducing levels from A to E,

where A is the weakest and E as the strongest intensity, as shown in Table 3.2. From the

Table 3.1., it is evident that various emotional states have the same facial muscle moments,

for example, Disgust and Sadness emotions trigger the Lip Corner Depressor (Action

unit- 16). There is a reasonable probability of misclassifying the emotions due to these

similarities in the different emotion classes. FACS helps in modelling an excellent deep

neural network by exposing the correlation between emotions. There is much difference in

the emotion class happiness and surprise because there is no intersection of action units

in both the classes. FACS can convey important information regarding the probability

of differentiating two emotions through the study of their respective action units. We

have designed a new architecture that uses FACS information along with dual CNN in

predicting the emotion class. The inclusion of FACS information in the CNN model

improved the accuracy of the model and helped in a better understanding of the role of

action units in emotion classification. On analyzing the action units in emotions, the

majority of them lie on the crucial facial landmarks like eyebrows AU (1,2,4), eyes AU
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Figure 3.2 Overview of the proposed architecture

(5,7), and lips AU (23,16,26,12,23). A face can be symmetrically divided into two parts,

either vertically or horizontally. When a face is split vertically, two images share identical

action units since both are mirror images. When a face is horizontally split, we obtain

two asymmetric images that have different landmarks. The upper half has eyebrows, eyes,

and nose as essential landmarks, and the lower part of the face has a mouth and chin

as crucial landmarks. To improve accuracy, we designed two separate deep convolutional

networks to identify the emotion on both the upper and lower parts of the face. Each

convolutional neural network tries to extract different features in their respective sections

(upper or lower region of the face). In doing so, CNN models can spatially concentrate

on feature extraction of their respective landmarks. This complex architecture improves

the efficiency of the model and also traces each landmark’s behavior in different emotions.

Some action units are more pronounced when compared to others, for example, emotions

like surprise. In some situations, the emotion predicted on the upper face contradicts the

emotion predicted on the other half of the face. During the mismatch, there has to be a

logical conclusion on the emotion of the subject. A new layer called “LogicMax” helps

to solve the problems of mismatch by building a priority table. LogicMax is a layer that

is fitted at the end of the two CNN models to take a logical conclusion of the emotion

class of the overall face. LogicMax is a novel layer that predicts the final emotion class

of the overall face by analyzing both the outputs of two CNN. Thus, FACS information
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along with a logical approach can be imparted inside the logicMax layer to improve the

efficiency of classification.

Figure 3.3 Action units observed in few facial expressions

3.3 Design of the Proposed FER Model using Transfer Learning

and Logic-Max

ImageNet [61] is one of the knowledge transfer projects which provides huge datasets

that are useful for training models. Powerful models like Inception, VGG-16, and Resnet

are trained on ImageNet data, which consists of thousands of image categories. As the

models are pre-trained with a huge database, they have a good ability to extract the

features like edges, corners, and different shapes. It is wise to implement these models on

our problem statement as it saves a lot of computation and time.

The proposed model, as shown in Fig. 3.4 has two CNN architectures that use VGG

16 architecture [13] as its base network through transfer learning. The pre-trained network

gives better feature extraction and also saves much time when compared to training a

whole new model. The pre-trained weights of the VGG16 network are loaded into their

corresponding convolutional filters. There are many advanced pre-trained models like

Resnet 101, Inception V2, and Inception V3, but VGG 16 is selected in this work as it

has a good trade-off between loading time vs. feature extraction [62]. The proposed work
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Figure 3.4 Flow chart of the model process

considers dual CNN architecture so, the VGG 16 has been chosen for its simplicity and

fastness. The VGG16 base-network weights are disabled from training since it has good

pre-trained weights for feature extraction.

To the base network, we have added a flatten layer, a dense layer of 256 neurons,

and a dropout layer. It is followed by another dense layer with 128 neurons, a dropout

layer, and a softmax layer of seven output classes, refer to the model design in Fig. 3.5.

The training of the network involves only updating the weights of the added layers to the

base network. This same model is used twice to determine the emotion class on the upper

face and lower face. We have implemented this model using the Keras framework. In the

Fig. 3.2. representation of the model with the VGG16 as a base network and other added

layers is shown.

3.3.1 Partition of Face

The research work considers lower and upper face parts for emotion prediction. The

research in the study of facial emotion analysis in humans has revealed that the eye and

mouth movements alone play an important role in the display of micro expressions [63].

The upper half of the face considers the eyes as an essential indicator of emotion analysis

and the lower half considers the mouth as an important landmark to understand facial
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Figure 3.5 Structure of single convolutional neural network used in the model

Figure 3.6 Filter visualization from both CNN models

expression. The face can also be divided into 3 or 4 parts but the increase in the division

increases the number of CNN models which can complicate the practical design of the

FER model. Localization of faces on image or video frames is done using Haar Cascade

Classifier. The extracted face is to be partitioned into the lower and upper parts. The

partition of the face into more than two parts can make the algorithm complex and highly

computational. We have used the Dlib library [64] and Open CV tools [65] to partition

the face. Dlib’s facial landmark detector is a helpful tool to identify important facial

landmarks like eyes, nose, eyebrows, and jawline. Facial landmark extraction using Haar

cascades is also possible but, the training to detect landmarks requires huge training of the

classifier with positive and negative images to produce an accurate cascade classifier for

landmarks. Kazemi and Sullivan [66] have implemented a facial landmark detector using

an ensemble of regression trees. The algorithm can produce 68 coordinates of important
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facial landmarks. The coordinates of point 33 lie on the exact center of a face, as shown

in 3.7. We have successfully implemented a program using Opencv tools to partition a

face using the dlib landmark information. The pixels that lie above point 33 belong to the

upper part of the face, which includes the eyes, nose, and eyebrows pixels, and the pixels

that lie below point 33 belong to the lower part of the face, which includes the mouth as

an important landmark. The two face parts are given as inputs to their corresponding

CNN models for determining the emotion class, refer to Fig. 3.2.

Figure 3.7 Partition of face

Figure 3.8 Classification metrics of the model on JAFFE test data

3.3.2 Data Augmentation

The extracted face parts are data augmented with unique parameters. Data Aug-

mentation is a technique used to create artificial images from the dataset by transforming
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Table 3.3 Information about the k-fold validation process on CK+ and JAFFE datasets.

Dataset Total Samples Training Samples Testing Samples Method of Testing Data Selection

CK+ 1479 1331 148
10 -fold

cross validation

last three to

four samples

of a sequence

(includes peak

expression frame)

JAFFE 213 192 21
10 -fold

cross validation

All the samples

from the dataset

are taken for

training and testing

the image geometrics and adding random noise. The important image transformations

done in data augmentation are Rescaling, Rotation, Shear, Zooming, Width Shifting,

Height Shifting, Horizontal flipping, and Vertical Shifting. The combination of different

parameters is to be carefully chosen to generate a good synthetic dataset. Data Augmen-

tation is useful to eliminate the overfitting problem [67]. Overfitting in machine learning

occurs when the model tries to memorize the patterns instead of learning to detect com-

plex patterns in the training data. Detection of facial expressions should be robust even

in case the image is tilted, mirrored, or zoomed. Data augmentation should be carefully

performed since it can also lead to serious underfitting problems. Generally, the train-

ing and validation error helps in analyzing overfitting and underfitting problems in deep

neural networks. If the model has good training accuracy but has very less validation

accuracy, then the model is overfitting to the data. If the training accuracy is very less

than that of validation accuracy, then the model is undergoing underfitting. It is seen

that the width shifting of the training set during data augmentation does decrease the

accuracy of the model since the important landmarks get affected by high width shifting

so, width shifting is not performed during the data augmentation. Only the training set

is data augmented; the validation dataset is not data augmented but only rescaled. Ta-

ble 3.4. shows the magnitude of variations of each operation during the process of data

augmentation. Various combinations of values are applied, and the data are shown in

the Table 3.4. gave us the best results, and overfitting problems are avoided through the

proper data augmentation process.
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Figure 3.9 Confusion matrices on third fold CK+ test data during 10-fold cross-validation

3.3.3 Training and Validating the Model

We have used Google’s Collabalortoy GPU to train our model. Google’s Colab

provides GPU Nvidia 1xTesla K80, having 2496 CUDA cores and CPU Xeon Processor of

the frequency of 2.3 GHz. Input images are resized to (224x224) as the VGG16 model is

trained for (224x224) sized images. The RMSprop optimizer is used in training the model.

The loss function categorical cross-entropy is used as an error function for training the

weights of the neural layers. The cross-entropy loss function is widely used in classification

problems for deep neural networks [68]. For each batch input of images, the softmax

layer produces the predicted outputs which contain CNN scores of all emotion classes.

The softmax layer is a function that transforms arbitrary random values into a properly

ordered probability distribution. SoftMax layer function gives output ranging between
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Table 3.4 Data Augmentation on training set.

Operation Scaling factor

Rescale 1/255

Rotation Range 0 - 30

Shear Range 0 - 0.15

Zoom Range 0 - 0.15

Height shift Range 0 - 0.2

Width shift Range No

Horizontal Flip Yes

Fill mode Nearest

(0,1). The total number of classes present in the CNN model is 7. Let us consider ti and

yi be the target and the softmax score of ith class of a sample.

Softmax score for each class i= 1 to 7 : f(y)i =
eyi∑N=7
j eyj

(3.1)

Categorical Cross entropy error : −
N=7∑
i=1

tilog(yi) (3.2)

The sum of all outputs from the softmax layer equals one. In Multi-Class classifi-

cation problems, the targets are one-hot encoded, which makes only the positive emotion

class appear in the categorical loss function.

3.3.4 Exploratory Data Analysis of FACS Action Units and Emotions

The dual CNN architecture predicts the emotion on two respective inputs (upper

and lower faces). The next problem after the classification is the mismatch between the

emotions. If the prediction of two trained CNN models mismatch it defines that the ex-

pressions shown in the two spatial regions show discordance in emotions. This discordance

shows the complexity of the facial expression. This problem is solved by the LogicMax

layer. The logicMax layer carefully analyzes the two outputs and finally concludes with a

single emotion on the overall face. The priority table built inside the logicMax layer de-
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Table 3.5 One hot encoding of action units for six emotions.

Action Units Angry Disgust Fear Happy Sad Surprise

AU1 0 0 1 0 1 1

AU2 0 0 1 0 0 1

AU4 1 0 1 0 1 0

AU5 1 0 1 0 0 1

AU6 0 0 0 1 0 0

AU7 0 0 1 0 0 0

AU9 0 1 0 0 0 0

AU12 0 0 0 1 0 0

AU15 0 1 0 0 1 0

AU16 0 1 0 0 0 0

AU20 0 0 1 0 0 0

AU23 1 0 0 0 0 0

AU26 0 0 1 0 0 1

AU27 1 0 0 0 0 0



A Novel Dual CNN Architecture with LogicMax for FER 27

cides the final emotion based on certain conditions. The following information is essential

in designing the priority table.

The LogicMax is an important layer added to the end of two CNN models. The

CNN models predict the emotion class of their respective inputs (lower and upper face).

The action units shown in Table 4 are sufficient for analyzing the emotions since the FACS

considers these action units important for predicting the emotions on the face, refer to the

Table 1. If both the lower and upper face CNN models predict the same emotion class,

there is no perplexity involved in the decision-making of the overall emotion of the face.

But, if the lower and upper face CNN models predict different emotion class, there has to

be a logical conclusion on the overall emotion of the face. This logical conclusion can be

sought by doing exploratory data analysis on the different action units of emotions. The

correlation between different emotions on the lower and upper face provides an important

basis for designing the logicMax layer. The spatial distribution of important action units

of emotions is shown in Fig. 3.10. The combination of the action units is shown in the

Table 3.5. form important basics in identifying the different emotions according to FACS

(refer to the Table 3.1). The categorical action units are one hot encoded for correlation

Figure 3.10 Spatial distribution of action units on face

analysis which is shown in the Table 3.5.

There are no action units present on the upper face for emotion happiness. The emo-

tion of happiness has all the crucial facial action units present on the lower face (cheeks

and mouth). Hence, according to FACS, if the lower CNN model predicts happiness, then

it is not required to investigate the emotion class of the upper face. The correlation of
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Figure 3.11 Train and Validation graphs of upper face CNN model on CK+ dataset during

10-fold cross-validation process

emotions in the lower and upper face is analyzed using the Pearson correlation matrix.

It is clear that on the lower face, the emotions like Disgust and Sad have a good corre-

lation since they share the same action unit 15 (Lip corner depressor) refer to Table 3.5.

Therefore, there is a high probability that emotion disgust can be predicted as sad and

vice versa by the lower face CNN model. In this case, it is essential to observe the upper

face CNN model’s prediction. It is clear that on the upper face, the disgust emotion has

a unique action unit 9 (Nose wrinkle), refer to Table 3.1. We can also observe the disgust

emotion has a poor correlation with all other emotions on the upper face, as shown in

the correlation matrix refer Fig. 3.12 So, in the case of a mismatch, if the upper face

predicts a disgust emotion class, there is no need to investigate the emotion of the lower

face. We have designed priorities in predicting the final emotion in case there occurs a

mismatch between the prediction of two CNN models, refer to Table 3.6. The value of the

correlation coefficient lies between -1.0 and 1.0. The value of the correlation coefficient

determines the power of association. If the value of the correlation coefficient lies between

0.5 and 1.0, it suggests a strong positive association. The correlation coefficient between

0 and 0.5 suggests a weak positive association. The correlation coefficient below 0 to -1.0

indicates a negative correlation.

3.3.5 LogicMax And Priority Table

The LogicMax layer is a novel decision-making layer introduced in this model. The

logicMax, unlike softmax, can be tuned and modified according to the nature of the
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Figure 3.12 Correlation of different action units and emotions on upper face

Figure 3.13 Correlation of different action units and emotions on lower face

output class. The logicMax aims to impart human intelligence and logical thinking inside

a CNN model. In the proposed model, the function of logicMax is to predict the overall

emotion seen on a face by analyzing the emotions found in the lower and upper face

regions. The real discriminative power of logicMax is utilized in the situation when the

emotions predicted by the two CNN models mismatch. The mismatch is often seen in

facial expression classification tasks since the correlation is high among different emotions.

In these situations, the layer should choose any one of the two CNN model outputs. This

prioritizing should be thoroughly performed by analyzing different features that appear in

facial expressions. A set of rules is framed inside the priority table that decides the output

class by analyzing the features. For creating a priority table, three types of features are
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considered. The three types of features are explained in the below points.

� Type-1 features: Analyze and locate the unique features present in different emo-

tions. In the one-hot encoding Table 3.5., emotions like happiness and disgust have

unique action units (12,9), respectively. Action unit 12 in happiness is found on the

lower face, and action unit 9 in disgust emotion is found on the upper face. These

action units are unique since they are not found in other emotions. These features

are given the highest priority in the LogicMax. When a mismatch of emotion class

between the two CNN models at the softmax layer occurs, these unique features are

examined primarily in the input. These features can be termed “Type-1 features”.

The correlation heat map charts shown in Fig. 3.13 and one hot encoding Table

3.5. provides important information about the type-1 features.

� Type-2 features: The features which have a poor correlation with all other features

are the next vital patterns that need to be examined in the LogicMax layer. If the

unique features (type-1) are not available in the input, these types of features are

explored in the input. These features can be easily discriminated against as they

have a weak correlation with other standard features. The anger class has an action

unit 23 present on the lower face, which has a weak correlation with other action

units, refer to Fig. 3.13. The detection of anger class in the lower face suggests there

is a higher probability that the subject displays anger emotion. These features can

be termed “Type-2 features”.

� Type-3 features: The next type of features are not so important as the type-1

and type-2 features since they are trivially found among different emotions. These

features are given less importance in the priority table as they are not unique and

appear in two or more emotions. For example, action units 4 and 5 can be observed

in emotions like anger, fear, surprise, and sadness. These features create perplexity

to the classifier as they are found in different classes and have a chance to increase the

correlation among different emotion classes. These features can be termed “Type-3

features”. If any face expresses these unique features then the priority table gives

high preference to these features. If the priority table finds disgust in the upper face

and sad in the lower face, the priority table decides disgust as the overall emotion

of the face since the disgust emotion has a type-1 feature in the upper face which
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Table 3.6 Priority table inside the LogicMax layer.

Lower face

CNN output

class

Upper face

CNN output

class

LogicMax

output
Features

Neutral/ Disgust

/ Happy
Fear Fear

Fear has strong

features on upper face

Anger
Fear /Sad/

Surprise/ Happy
Anger

Anger has type-2 feature

lip tightener on mouth

Fear/ Sad/ Disgust/ Anger Neutral Neutral

Lack of emotion

is seen on upper

face for Neutral and

Happy emotions

Sad
Fear /Sad/

Surprise/ Happy
Sad

Sad has many type-3

features on the upper face

Happy
Sad/ Neutral/ Surprise

Fear/ Anger
Happy

Happy has type-1

feature Lip corner puller

on lower face

Surprise
Sad/ Neutral/ Anger

Fear/ Happy
Surprise

Surprise has type-2 feature

Jaw drop on lower face

Sad/ Neutral/ Surprise

Fear/ Happy/ Anger
Disgust Disgust

Disgust has type-1

feature Nose wrinkle

on upper face

is very unique when compared to other features but sadness doesn’t have type-1

feature in the lower face.

The basics of types - 1,2,3 help in the construction of the priority table. The priority

table contains a set of conditional statements for picking the most appropriate emotion

of the entire face by analyzing the emotions found on the lower and upper face regions.

The priority table has significantly boosted the accuracy of the model during the 10-fold

cross-validation process. If the lower CNN and upper CNN output mismatch and do not

possess the combinations shown in Table 3.6., then the upper face CNN model output is

considered as the final output class for the entire face.
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Table 3.7 Comparison of FER accuracy and other parameters on different models for CK+

dataset.

‘ Authors Method Testing Procedure Data Selection Number of Classes Performance (%)

CK+

Zhao et al. [69]

The Peak-Piloted

Deep Network

(PPDN) , 2016

10-fold cross

validation

last three frames of

each sequence

(near to peak expression)

6 97.3%

Siyue Xie

and Haifeng Hu [70]

Facial expression

recognition

with FRR-CNN, 2017

10-fold cross

validation

last three frames of

each sequence

(near to peak expression)

6 92.06%

Jung et al. [71]

Joint Fine-Tuning in

Deep Neural Networks

for Facial Expression

Recognition, 2015

10-fold cross

validation
Not mentioned 7 97.2%

Sherly Alphonse

and Dejey Dharma [72]

Novel directional

patterns

and a Generalized

Supervised

Dimension Reduction

System (GSDRS), 2019

10-fold cross

validation

last three to four

frame of

each sequence

(near to peak expression)

7 97.71%

Yang et al. [73]

Facial expression

recognition

by de-expression

residue learning, 2018

10-fold cross

validation

last three frames of

each sequence

(near to peak expression)

7 97.3%

The Proposed work

A Novel Dual CNN

Architecture with

LogicMax for Facial

Expression Recognition

10-fold cross

validation

last three to four

frames of

each sequence

(near to peak expression)

7 98.62%

Table 3.8 Comaparision of FER accuracy and other parameters on different models for JAFFE

dataset.

‘Dataset Authors Method Testing Procedure Data Selection Number of Classes Performance (%)

JAFFE

M.K.Mohd Fitri Alif et al. [74]

Fused convolutional neural

network for facial

expression recognition, 2018

10-fold cross

validation

All the images in

the dataset
7 83.72

Caifeng Shan et al. [75]

Facial expression recognition

based on Local

Binary Patterns:

A comprehensive study

10-fold cross

validation

All the images in

the dataset
7 81%

Zhao et al. [76]

Facial Expression

Recognition

via Deep Learning, 2015

10-fold cross

validation

All the images in

the dataset
7 90.95%

The Proposed work

A Novel Dual CNN

Architecture with

LogicMax for Facial

Expression Recognition

10-fold cross

validation

All the images in

the dataset
7 94.86%
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Figure 3.14 Classification metrics of the model on CK+ test data

3.4 Experimental Results and Discussion

In this section, we discuss the facial expression datasets, method of testing the

model, results, performance comparison of our model with other significant FER models,

and different metrics for evaluation. We then provide filter visualization of the CNN

models in Fig. 3.6.

3.4.1 Databases

We have used the two most popular facial expression databases extended CohnKanade

database (CK+) and the Japanese Female Facial Expression (JAFFE) database, for test-

ing the model performance.

1. CK+ database [77]: The extended Cohn-Kanade, widely known as CK+, is a

facial expression dataset for the classification of action units and facial emotion

recognition. The dataset has posed as well as non-posed expressions. The Extended

CohnKanade (CK+) dataset consists of 593 sequences across 123 different subjects.

Considering the most appropriate method, most of the FER models have taken

the last three or five frames of the sequence and used them for image-based facial

expression recognition. Each sequence in the database contains frames varying from
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Figure 3.15 Normalized confusion matrices of CK+ test data during 10-fold cross-validation

10 to 60, and in every sequence, the frames are captured such a way that there is a

shift in expression from a neutral to the peak intensity of specific emotion. Among

the given sequences, only 327 sequences with 118 subjects have the expression labels

of anger, contempt, disgust, fear, happiness, sadness, and surprise based on the

Facial Action Coding System (FACS). In this work, we have considered the last three

to four frames from each labeled sequence for classification. The seven labels taken

in this experiment for expression classification are anger, disgust, fear, happiness,

neutral, sadness, and surprise. A total of 1479 images are derived from the labeled

sequences. The process of extracting two parts of a face is achieved using the

dlib library. The images are split into two halves to get the upper and lower face

using the dlib library. For the lower face and upper CNN models, 1331 images are

used for training the model and 148 images for testing the model using the 10-

fold cross-validation process. The emotions predicted by the two CNN models are

given as input to the logicMax layer. If there exists a mismatch in the expression



A Novel Dual CNN Architecture with LogicMax for FER 35

Figure 3.16 Normalized confusion matrices of JAFFE test data during 10-fold cross-validation

classification between the two CNN models then, the LogicMax predicts the final

emotion by applying the rules set in the priority table as discussed in the LogicMax

and priority table section 3.3.5.

2. JAFFE database [78]: Japanese Female Facial Expression has a total of 213

samples, which are posed expressions taken from ten Japanese female subjects. Each

subject in the dataset has nearly three to four images of six basic expressions (anger,

disgust, fear, happiness, sadness, and surprise) and 1 image of neutral expression.

This dataset, unlike CK+, has few images for each expression. Data Augmentation

plays an important role in this dataset as it could help to extend the number of

training samples. We have taken the entire 213 images in the dataset for training

and testing the CNN models. The upper face CNN and the lower face CNN models

are trained with 192 images and tested with 21 images in each fold during the
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TRAINING SET TEST SET

divide into 10 folds of equal size

10% 90%

run experiments

using 10 different

partitionings

Figure 3.17 k fold validation process, (k=10)

10-cross validation process.

3.4.2 Classification Metrics

The important evaluation metrics of the FER model discussed in this work are Ac-

curacy, Precision, Recall, and F1-score. Let TP represents True Positives, FP represents

False Positives, FN represents False Negatives, and FP represents False Positives.

1. Accuracy: Accuracy (Acc) is useful in evaluating model performance. However,

when there exists a class imbalance problem, it is necessary to consider other im-

portant metrics like precision and recall.

Acc =
TP + TN

TP + FN + TN + FP
(3.3)

2. Precision: The precision (P) highlights the ability of the model to pick the desired

class. P depends on TP and FP. False Positives are the number of predictions the

model misclassifies as positive when the true label is negative.

P =
TP

TP + FP
(3.4)

3. Recall: Recall (R) is the other classification metric that conveys the ability of the

model to predict all the classes of interest in a dataset. R depends on TP and FN.

FN is the number of predictions the model misclassifies as negative when the true

label is positive.

R =
TP

TP + FN
(3.5)
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Figure 3.18 Confusion matrices of JAFFE test data during 10-fold cross-validation

4. F1 Score: It is necessary to maintain good precision and recall for any model. The

goal of a good classifier is to pick the correct class without any mistake (precision)

and, at the same time, pick as many as correct classes (recall). A good trade-off

is to be maintained between precision and recall. F1 score provides a decent blend

of two metrics recall, and precision. F1 score is the harmonic mean of recall and

precision.

F1 Score = 2 ∗ P ∗R
P +R

(3.6)

3.4.3 K-Fold Validation Process: Testing the Model Performance

Testing in machine learning and deep learning is a fundamental process in evaluating

the performance of the model. The popular validation techniques mentioned in the liter-

ature are the hold out method, k-fold cross-validation and leave-one-out cross-validation.
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In this work, we have used the k-fold cross-validation procedure since it is a widely used

evaluation technique in various state-of-the-art methods.

In the k-fold cross-validation process, the total data is randomly partitioned into

k equal-sized parts as shown in Fig. 3.17. In these k parts, one part is retained as the

validation data for testing, and the other (k - 1) parts are used for training the model.

The cross-validation process is then repeated k times, with each of the k folds used exactly

once as the validation data. This process results in k individual results, and the scores are

then averaged to produce a single estimation. Each sample is used for validation exactly

once, which reduces the bias on the data. The value of k is arbitrary. The 10-fold cross-

validation is commonly used in many FER models for the evaluation process. The upper

and lower face parts are partitioned from the selected data samples and given as input

to the respective CNN models. In this research work, we have used the scikit learn’s [79]

K-Folds cross-validator to split the dataset into k (k=10) consecutive folds with a shuffle.

The 10 folds are created such that each fold has nearly 10% of the total data samples for

testing. The Table 3.3. provides information about the number of training and testing

data samples used in upper and lower face CNN models. The training samples are shown

in the Table 3.3. are used to train the CNN models, and the testing is done using the

two CNN models and logicMax layer. There is no need for logicMax during the training

process since the use of logicMax is required only during the testing phase.

3.4.4 Evaluation of Model Performance and Comparison

In this section, we have shown the results of different metrics to evaluate the per-

formance of the two CNN models. We have performed a 10-fold cross-validation process

for evaluating the accuracy scores on both datasets. The confusion matrices of CNN

models and the effect of logicMax layer are discussed for both datasets. The important

performance metrics accuracy, precision, recall, and F1-Score are shown for CNN models

during cross-validation, refer to Fig. 3.14 and 3.8. The importance of the LogicMax can

be understood from the confusion matrices shown in the Fig. 3.9 and 3.18. The differences

in output during emotion classification between the lower face CNN and the upper face

CNN model are corrected by the LogicMax layer, as seen in confusion matrices shown in

the Fig. 3.9 and 3.18. A typical example of the advantage of Logicmax is seen in the
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confusion matrices, refer to Fig. 3.8. Few samples under disgust are misclassified in the

lower CNN model, but due to the unique action unit of disgust on the upper face, the

sample gets correctly classified in the upper CNN model, and using the logicMax layer the

correct class is selected by the model. The normalized confusion matrices are shown in

the Fig. 3.15, 3.16. for understanding the model. The logicMax on analyzing the outputs

from the CNN models predicts the correct class. Emotions like disgust and Sadness which

are usually hard to recognize have achieved good accuracy using the proposed algorithm.

Emotions of happiness, surprise, and disgust have scored good accuracy in both CK+

and JAFFE datasets. It is important to perform a comparison with other models under

similar test conditions. The important test conditions that have to be maintained are the

number of samples taken from the dataset for training and testing, the number of classes

(emotions) that the model can classify, the method of validating the test data, and the

iterations used for validating the data. The overall accuracy of the 10-fold cross-validation

process on the CK+ and JAFFE datasets is 98.62% and 94.86% respectively. The pro-

posed model is compared with another state-of-the-art model which has used similar test

conditions, refer to the Table 3.7 and 3.8.

The problem faced during the training of our model on the CK+ database is the

class imbalance issue. In the CK+ dataset, emotions like happiness and surprise have

more labels when compared to the labels of disgust and sadness (refer to Fig. 3.1). The

class imbalance issue can be partially solved by creating more samples through data

augmentation. However, the additional images created during the data augmentation are

useful only during the training process but not used in testing. In recent years, the class

imbalance issue is solved by generating synthetic data through GANs.

3.4.5 Filter Visualization

It is important to visualize the filters in our CNN model. Each CNN tries to capture

low-level features like edges and corner points in initial layers. In the VGG network

Fig.3.5, it is clear that as we move deeper into the network, there is a decrease in the

kernel size from the 2nd convolution layer (224x224) to the last convolution layer (14x14).

The increase in the feature maps is also seen in the architecture from 64 feature maps in

the initial convolution layers to 512 feature maps in the last convolution layer. Since it is
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difficult to visualize all the filters from each layer, we have shown the first 64 convolutional

filters in the first layer of our model in Fig. 3.6.

3.5 Concluding Remarks

The classification of facial expressions using FACS and LogicMax has improved the

accuracy rates on CK+ and JAFFE datasets. The performance of the model and other

parameters are compared with other state-of-the-art techniques, and the proposed model

achieved a good accuracy score. This work improves the precision of classifying emotions

like Happiness, Disgust, and surprise by implementing a dual CNN architecture. The

LogicMax analyzes the predicted emotions found on the upper and lower face and decides

the final class by selecting the most appropriate emotion. The proposed work can be

extended by using other correlation methods on action units. In the future, the proposed

model is planned to be implemented on embedded hardware platforms.



Chapter 4

A Novel Multi-Feature Fusion Deep Neural Network

using HOG and VGG-Face for Facial Expression

Classification

4.1 Introduction

The proposed design in this section uses a combination of self-learnt CNN and

hand-engineered features. Since the model considers two different features derived using

two unique algorithms, the efficiency of the FER is improved. A dual-input deep neural

network is finally evaluated on three popular facial expression datasets using the five-

fold and ten-fold cross-validation technique. In the following sections, the architecture

and advantages of multi-feature fusion are discussed in a detailed manner. The existing

multi-feature fusion FER are also compared in this research work. The proposed model

uses a Histogram of oriented gradients and VGG-Face-based features. The combination

of two unique features extracted through two different techniques has outperformed other

FER models. In overcoming the overfitting issue current models are generally trained on

huge datasets but when the training samples are sparse the current DNN based models

fail to overcome overfitting issues. Instead of increasing the samples, our proposed model

increases the number of features from the same limited samples. Due to the increase

in the features the DNN models tend to learn more when compared to training on only

deep learnt features. In the following section, we discuss how multi-feature fusion models



Multi feature fusion DNN based FER using HOG and VGG-Face 42

Figure 4.1 The Procedure to calculate the magnitude and direction of the gradient

possess robustness when compared to single-featured models.

4.2 Extracting HOG and CNN features

4.2.1 Extraction of HOG [1] feature descriptors

The proposed FER model is a multi-input deep neural network that considers HOG

feature descriptors as one of the input sources.

Can HOG descriptors capture micro facial expressions? HOG features count

the localized gradient changes around each pixel, and it is also intuitively beneficial for

modelling the structure of the facial muscles through edge analysis. Carcagǹı et al. [80]

have performed various experiments on selecting an appropriate hand-engineered feature

for designing a FER model. The experiment considers four important features that are

Local Binary Pattern (LBP) [81], Spatial Weber’s Local Descriptor (SWLD) [82] [83],

Compound Local Binary Pattern (CLBP) [84] and HOG features. The experiment has

revealed the performance of the four features in classifying six facial expressions. Cohn

-Kanade (CK+) dataset was used to evaluate the performance, and the results of 10-fold

cross-validation accuracies are shown as follows (LBP 91.7%, CLBP 92.3%, SWLD 86.5%,
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and HOG 95.8%). These findings revealed that HOG descriptors better model facial mus-

cles than texture-oriented descriptors and are well suited to describe facial expressions.

The experiment also shows that the texture-based features are unable to explain facial

deformation between different expressions. The facial expressions contain various micro-

expressions, which are usually facial muscle deformations. The HOG features are well

sensitive to object deformations, and hence it is well suited for facial expression recogni-

tion. Chen et al. [85] has performed facial expression detection based on facial components

and HOG. In the experiment, the authors used HOG to model various facial components

like mouth and eyebrows. The results show that HOG has performed better than Gabor

and local binary pattern features. Thus, in this work, we have included HOG features

since has shown better performance than other hand-engineered features.

The method for extracting HOG features on faces is discussed in this section. The

following measures illustrate the whole technique for extracting the characteristics of

HOG:

1. Patch creation: The image provided is sliced under certain conditions into separate

patches. The size of the patch is subjective, and patches typically have a fixed

aspect ratio (1:2). Examples of sizes for patches are (64x128) and (100x200). The

HOG descriptor for each patch obtained is computed. These image patches contain

several important facial landmark points that are essential in detecting expressions

2. Calculation of the image gradient on 8x8 cells: The collected patch is split into 8x8

cells. For each evaluation of the 8x8 cell, gradient magnitude and the direction of the

gradient are computed, refer to Fig. 4.1. The gradient orientation is scaled between

0-180 degrees. The 0-180 scale is divided into bins, the number of bins is arbitrary

(mostly 8 to 12). The corresponding magnitudes are measured at different pixels

and are positioned in each bin. The bin-histogram is transformed to a 9x1 vector

(if orientations are 9), and each cell in the patch has a 9x1 vector using the same

process, refer Fig. 4.2. The gradient variations, both in magnitude and direction,

that occur near the important facial landmark points are calculated in this step.

3. Block Normalization: To create a 16x16 block, the 8x8 cells are merged. A mixture

of four 8x8 cells creates a 16x16 block. The 16x16 block comprises four histograms,
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Figure 4.2 Creating a grid of size 16x8 and obtaining the histogram of gradients for each 8x8

cell

and normalizing these histograms is the next step. The gradients are usually de-

pendent on the intensity of the pixels. If the picture has some lighting differences,

it will change the amplitude of the gradients. Normalizing can render the gradients

independent of variations in lighting. The four histograms (9x1) are concatenated

to form a 36x1 normalized vector. This step provides better in-variance to noise

that is usually observed in facial regions. The crucial drawbacks of FER models,

such as illumination and shadowing effects on facial landmark regions, are avoided

using the block normalization technique.

4. HOG feature descriptor: Finding a feature descriptor for all image patches is the

final phase. There are seven horizontal and 15 vertical blocks on each patch, making

7 x 15 = 105 blocks inside a patch. Each block has a 36x1 dimensional vector.

The concatenation of all 105 block vectors in a patch result in 36x105x1 = 3780x1

dimensional vector. In this way, the feature descriptors on the given image of all

patches are obtained as shown in the visualization of HOG features in Fig. 4.3. The

feature descriptors contain overlapping cells of facial regions that contain crucial

patterns of micro expressions.

4.2.2 Convolutional Neural Network

A standard convolutional neural network mainly involves applying convolution op-

erations, imposing activation functions, and pooling.

The image can be directly given as the input to the CNN. The model applies filters
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Figure 4.3 Visualization of HOG features

to the image, resulting in generating feature maps. The kernel (filter) size, number of

filters, and type of padding are the essential hyper-parameters to be chosen. The hyper-

parameters determine the depth of the output feature map. Let us consider I[j,k] as the

input image, H is the kernel, and O represents the output matrix after convolution. The

equation 4.1 provides the method to determine the size of the images after convolution.

O[m,n] = (I ∗H)[m,n] =
∑
j

∑
k

H[j, k]xI[m− j, n− k] (4.1)

CNN has multiple padding systems in existence. CNN’s various padding schemes

are valid, full, and the same. The size of the output matrix after convolution is reduced

by valid-padding. At the same time, the size of the output matrix is the same as the

input matrix with the same-padding. The other significant characteristic of convolution

is the method of stride. Striding is the magnitude of shift taken by the kernel during

the convolution processing stage. During the convolution process, the kernel slides over

the image. The stride number defines the step size of the shift. If we want to reduce

the dimensions of the feature map or decrease the repetitive activity, we can increase the

stride value. Let n represents image size, f represents filter size, c represents the colour

map depth (number of channels), p is the used padding, s represent stride number, and

z is the number of filters. The below equation 4.2 shown gives the output feature map
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Figure 4.4 Architecture of VGG-Face

dimensions after the convolution of the image with the filters.

[n, n, c] ∗ [f, f, c] = [[
n+ 2p− f

s
+ 1], [

n+ 2p− f
s

+ 1], z] (4.2)

The feature maps obtained after the convolution are linked to an activation func-

tion. Generally, Rectified Linear Unit (ReLU), F(x)=Max(0,x), is the preferred activation

function in computer vision problems. ReLU is also placed after the convolutional layer to

provide non-linearity in the model. A special layer called the pooling layer, which down-

samples the features is introduced after the convolution. The pooling layer reduces the

feature map’s size by shrinking the image and retaining critical features simultaneously.

Max-pooling and average-pooling are typical CNN pooling strategies. The convolution-

ReLU-max-pooling blocks are repeated to produce the few most efficient features from an

input image. Finally, through the use of a flatten layer, the 3-dimensional feature maps

are translated to 1-dimension. A softmax activation function that produces probabili-

ties (0 to 1) for the respective output class is attached to the final fully connected layer.

VGG-Face, shown in Fig. ??, is a typical CNN model used in this work.

4.2.3 Advantages of Combining HOG and VGG-Face Features

1. The HOG features capture micro-expressions at important landmark points such

as eyes, eye-brows, and mouth. These low-level features such as edges and corner

points are essential to distinguish emotions on the face.

2. The generalization of CNN is improved by using a fine-tuned CNN model instead

of training the CNN model on smaller datasets. Fine-tuning is a transfer learning
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Table 4.1 Comparison of popular pretrained CNN models

Model Authors Year Advantages Applications and Datasets tested

AlexNet [86] Krizhevsky et al. 2012

Application of

Rectified Linear Units (ReLUs)

as activation functions

Object Detection

ImageNet [33]

VGG-16,19 [87] Simonyan et al. 2014

Implementation of deeper convolutions

through stacking uniform

convolution layers

Object Detection

ImageNet

VGG-Face [88] Parkhi et al. 2015
Compution of VGG-Face CNN descriptors

that model human faces

Face Recognition

Evaluated on exclusive face related datasets

like Labeled Faces in the Wild [89] and

YouTube faces [90]

Inception V1 [91] Szegedy et al. 2015

Implementation of convolutions with different

kernel size filters through addition of

inception modules

Object Detection

ImageNet

Res-Net 50 [92] Kaiming et al. 2015
Application of skip connections and

Batch normalization

Object Detection

ImageNet

MobileNet Howard et al. 2017
Introducing streamlined architecture that uses

depth-wise separable convolutions

Efficient model

for mobile and embedded vision

applications

Evaluated on ImageNet, Fine Grained Recognition,

Large Scale Geolocalizaton

and Face attributes

approach that focuses on preserving and transferring information obtained while

addressing one problem to a different but related problem. Since CNN’s are made

up of several layers and a large number of parameters, the usage of pre-trained

weights, which are calculated on larger databases through fine-tuning, should help

prevent the problem of overfitting. When trained on smaller datasets, the CNN

models tend to capture patterns that are specifically related to the dataset. This

behaviour can make the model over-fit and difficult to generalize on other external

data. When the CNN models use fine-tuning, we can reuse the filters that already

possess rich weights that show strong discriminative ability. The other advantage of

fine-tuning is the reduced count of epochs required to converge the error. Zavarez

et al. [93] have compared the differences with and without fine-tuning the VGG-

Face model, and the results demonstrated that fine-tuning the VGG-Face that has

already been trained on a similar domain is superior to training from scratch. The

authors have also performed cross-database facial expression recognition and the

fine-tuned VGG-Face has given state-of-the-art results on well-established datasets
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like CK+ [94], MMI [95], The Radboud Faces Database (RaFD) [96], KDEF [97],

JAFFE [98], and AR Face [99].

3. The normalization step in extracting HOG descriptors improves the performance

of the FER model by introducing in-variance to illumination, shadowing, and edge

contrast effects. The normalization of cells across larger regions such as blocks can

make features in-variant to lighting conditions on the local level.

4. HOG features are relatively constant within the cell rotations and translations, and

they are invariant to local geometric and photometric variations. Since critical facial

expressions are concentrated on small portions of the face (facial landmarks), HOG

features extract better low-level features on the face.

5. VGG-Face, compared to other famous CNN models, is exclusively trained on human

faces taken from the Internet Movie Data Base (IMDB) celebrity list. The VGG-

Face is originally designed for face recognition and thus can capture important low

and high-level features on the face. The Table 6.1 compares various CNN models

and their applications, and the VGG-Face model is selected in this architecture since

it has proved its efficiency on well-established datasets such as Labeled Faces in the

Wild and YouTube Faces.

6. The combination of HOG and VGG-Face can effectively work on collecting impor-

tant facial traits. The HOG features concentrate on local facial muscle deformations

and gather important low-level facial features. The VGG-Face features deal with

high-level features by generalizing the local features extracted on faces. The VGG-

Face extracts abstract level features from different face patterns. The multi-feature

fusion of HOG and VGG-Face also increases the efficiency of the FER since the

model depends on two unique features, which are generated using two different

methods.
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Figure 4.5 The proposed multi input hybrid FER model for facial expression classification
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4.3 Design of Multi feature-fusion model

4.3.1 Design Parameters of Multi-Feature Fusion model

The proposed model utilizes both HOG and VGG-Face features to extract features

of micro-expressions. It is crucial to choose the best design parameters to increase the

efficiency of the FER. The essential parameters for selecting the HOG features are the

cell size and the number of orientation bins. Cell size indicates the dimension of the patch

used in the single histogram computation. When a large cell size is used, the appearance

information of a comprehensive portion of the facial image is compressed into a single cell

histogram, and certain features that are important for classification are lost. On the other

side, the high-resolution analysis may be performed with small cell size, but this requires

the classifier to distinguish between valuable and irrelevant extracted information. It may

not be capable of doing well. Thus, selecting an appropriate cell size of (16,16) has given

better efficiency for our model. The number of orientation bins is the other parameter

chosen, corresponding to the quantization stages of gradient information. A minimal

number of orientations may result in some information loss and, as a result, a decrease

in FER performance. Many quantization levels, on the other hand, might spread the

information over the bins and hence decreases the FER performance. The research on

optimizing the HOG features has shown that orientation bins of 8 to 12 have significantly

interpreted HOG features in analyzing the facial muscles. The comparison of different

HOG attributes with accuracy rates is shown in Table 4.2.

The designed FER model is capable of classifying facial expressions into seven emo-

tions. Angry, disgust, fear, happy, neutral, sad, and surprise are the seven emotions that

the designed FER model in this model can identify. The other hyper-parameters of the

multi-feature fusion model are explained in Table 4.3. The prepossessing steps of the

proposed model include face extraction using the viola-jones method [100], pixel normal-

ization, and image- resizing. Data-Augmentation is not used in the proposed method

since the imported weights of VGG-Face are frozen and already trained extensively on

human faces.
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Table 4.2 HOG feature parameters vs Accuracy rates on KDEF and CK+ dataset

Orientations
Pixels per

cell

Cells per

block

Accuracy

HOG+SVM

Number of

features

11 (16, 16) (2, 2) 86%, 89% 12716

11 (8, 8) (2, 2) 85%, 87% 57024

11 (4, 4) (2, 2) 85%, 83% 240944

7 (8, 8) (2, 2) 84%, 85% 36288

7 (16, 16) (2, 2) 84%, 87% 8092

7 (4, 4) (2, 2) 84%, 82% 153328

9 (8, 8) (2, 2) 85%, 86% 46656

9 (16, 16) (2, 2) 86% ,88% 10404

9 (4, 4) (2, 2) 82%, 81% 197136

4.3.2 The architecture of the proposed FER model

Input-I : The designed FER model has two inputs. The first input is obtained from

VGG-Face [88] architecture, the inputs to the VGG-face consist batch of RGB images

of faces displaying expressions of various emotions. The pixels of the input image is

normalized and resized to the size of (224x224x3). As shown in Fig. 4.5, the images are

reshaped and given as input to the VGG-Face model. In Fig. 4.4, a sequence of (conv-relu-

pool) layers is applied to the input images, and the resulting feature maps are flattened to

generate 2622 parameters. The 2622 features are self-learnt features from the VGG-Face.

The weights of the VGG-Face are imported through transfer learning. Transfer learning

is the technique of reusing a trained model to a new problem. The VGG-Face architecture

is trained and tested extensively with massive image data extracted from datasets like

Internet Movie Data Base (IMDB) celebrity list, LFW [89], and YTF datasets [90]. It

is wise to import the VGG-Face weights instead of training with a smaller dataset. The

weights of the VGG-Face model are imported from the data provided by the Visual

Geometry Group, University of Oxford [88]. The provided weights from the source are in

MatLab format. MatConvNet is a MatLab toolbox for CNN, and the provided weights are

MatLab compatible. In this work, the weights of VGG-Face are converted from MatLab

format to Keras compatible using machine learning libraries. The detailed procedure of
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Table 4.3 Details of Hyperparameters considered for the proposed model

Type of Feature/Model Hyper Parameter Value/Function Considered

HOG
Cell Size (16.16)

Number of Orientation

Bins
11

Multi Feature

Fusion Model

Input Image Size

Branch 1 (HOG)
300x300

Input Image Size

Branch 2 (VGG-Face)
224x224x3

Number of Hidden

Layers

Branch 1 (HOG)

Three

Number of Hidden

Layers

Branch 2 (VGG-Face)

Three

Activation Unit
Rectified linear activation function

(ReLu)

Epochs Adaptive (Early Stop using Validation loss)

Early Stopping Patience

level

Patience = 8 steps

Montoring parameter = Validation Loss

Batch Size 16

Drop Out 20 - 50 %

Optimizer ADAM

Validation Split 5%

Error Function Categorical Cross Entropy

Number of Output

Classes

Six for Yale-Face and Seven for CK+,KDEF. Emotion Classes

Angry, Disgust, Sleepy, Wink, Fear, Happy, Neutral,

Sad, and Surprise
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conversion is explained by Sefik [101]. Transfer learning saves computational time and

helps the researchers concentrate on the actual problem statement. The imported model

provides 2622 deep features, and these features are combined with the HOG features in

the proposed model. In Figs. 4.18, the visualization of different feature maps is shown.

The feature map visualization at different layers explains the details of high and low-level

facial patterns.

Input-II : The corresponding input-I images are resized to (300x300x3). The sec-

ond input to the FER model is the HOG feature- vectors extracted from the input images

given to the VGG-Face. The RGB images are transformed to grayscale to achieve HOG

properties. The grayscale images are divided into patches, and for each patch, the infor-

mation about the histogram of oriented gradients is stored in the form of feature vectors.

For every input-I image, a total of 12716 HOG parameters or features are identified; refer

to Fig. 4.5. The histogramming effect in HOG makes the features transnational invariant

and adapts even in lighting changes. The in-variance of lighting and noise can also be

tackled by normalizing the histogram vectors.

Concatenation of HOG and VGG-Face features: The obtained VGG-Face

features (Input-1) are given to a series of densely connected layers. The dropout layers

added in-between the layers ensure the model does not overfit the data. The 256 HOG

features and the 256 features of the VGG-Face CNN are concatenated to form a 512

combined feature vector as shown in Fig. 4.5. This combined feature vector has both

hand-engineered and self-learnt features. A series of densely connected layers and dropout

layers connect the 512 features. A softmax activation function is attached to the FER

model’s end. The softmax layer generates the probability scores for seven output emotion

classes for each input image. The softmax layer converts randomly distributed values to

an ordered probability distribution that varies between (0,1). For each input image, the

Softmax function generates an output vector containing seven values for seven emotion

categories in which each value ranges between (0,1). The emotion class which possesses

the highest softmax score is selected as the final output emotion class of the respective

sample. In the following segment, the metrics comparison of the hybrid FER model and

traditional CNN model is explained.
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Figure 4.6 Sample images taken from CK+ dataset

Figure 4.7 Sample images taken from KDEF dataset

4.4 Datasets

We have used three facial expression datasets in our research work.

Extended Cohn-Kanade database [94] : The extended Cohn-Kanade dataset,

also known as CK+, includes sequences of images that convey emotion from a neutral

state. It contains the descriptions of the action units for peak expression (last frame)

images. There are both posed and non-posed facial expressions in the dataset. There

are 593 sequences spanning 123 different subjects in the Expanded Cohn-Kanade (CK+)

dataset, but it has labels for only 327 sequences. The dataset comprises nearly 10 to 60

frames per sequence. The frames are structured so that the first frame in the sequence

displays a neutral expression, and the other frames in the sequence display an emotion

shift. The last frame expresses the peak strength of emotion in the sequence. The sample

images of the CK+ dataset is shown in Fig. 4.6. In the Extended Cohn-Kanade (CK+)

database, only the peak frame of a sequence is fully FACS coded. In the model, the

authors Lucey et al. [94] have labeled the CK+ data according to the FACS coded emotion

labels. The work explains that the emotion labels assigned to the sequences are validated

using the FACS Investigators guide [102] and confirmed by visual inspection by emotion

researchers. The authors of CK+ have labelled the emotions according to the FACS

coded emotion labels. Since the FACS information was calculated on the expression at

the peak phase, only the last frames of the sequences are considered in this research. The
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CK+ dataset has sequences (collection of frames) that start with a neutral frame, and the

authors considered adding neutral expression class to the model adds robustness to the

model since most of the time, faces express neutral expressions. It is important to classify

between neutral and emotional faces. We only extracted the last and first frames of all

the labelled sequences in the dataset in this experiment. The dataset has a clear class

imbalance, refer to Fig. 4.9. The samples of neutral, happy, and surprise are relatively

higher than the samples of fear and sad.

The Karolinska Directed Emotional Faces [97] : The Karolinska Directed

Emotional Faces (KDEF) database includes 4900 images of human facial expressions with

a resolution of 562 x 762 pixels. In this dataset, a total number of 70 subjects are used. All

70 subjects exhibited seven distinct emotional expressions. Each expression is presented

at five different angles in this dataset (full left profile, half left profile, straight, half right

profile, full right profile). We just focused on straight poses in this proposed work. There

are 692 images of seven distinct emotions (Angry, Disgust, Fear, Happy, Neutral, Sad,

and Surprise) in the extracted images. A five-fold and ten-fold cross-validation method

is used to evaluate the classification accuracy of the proposed model. The sample images

of the KDEF dataset are shown in Fig. 4.7.

The Yale Face Database [3] : The database provides a total of 165 GIF images

which include 15 persons (14 males and 1 female). The database consists of 11 images per

subject, one for each of the following facial expressions or configurations: center-light, with

glasses, happy, left-light, with no glasses, normal, right-light, sad, sleepy, surprised, and

wink. The neutral expressions were obtained by illuminating the face in three positions

with a Luxo lamp. The other facial expressions were kept in ambient lighting, and these

illumination differences in images make the dataset challenging to classify, refer to Fig. 4.8.

In this research work, we have considered six different facial expressions from the Yale face

database. The facial expressions of normal, surprised, happy, sleepy, wink, and sad are

considered in this work. The total number of images that are extracted from this database

is 120. The samples extracted for each class are shown in Fig. 4.11. The dataset is different

compared to KDEF and CK+ since faces are subjected to illumination variations. The

other interesting new facial expressions, such as wink and sleepy, are also available in this

dataset. The dataset is tested using a five and ten-fold cross-validation process on the
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Figure 4.8 The Yale database contains 160 frontal face images covering 16 individuals taken

under 10 different conditions: A normal image under ambient lighting, one with or without

glasses, three images taken with different point light sources, and five different facial expres-

sions [3]

Figure 4.9 Sample distribution of emotion classes in CK+

fine-tuned VGG-Face CNN and the proposed multi-feature fusion model.

4.5 Results and Discussion

4.5.1 Training the proposed FER model with facial expression datasets

The preparation of a FER model using deep neural networks necessitates a GPU.

Using Google’s Colaboratory (colab), we completed the training of the FER model. Colab

provides Nvidia 1xTesla K80 GPU with 2496 CUDA cores. It has a VRAM GDDR5 of

12GB. A single-core hyper-threaded Xeon Processor with a clock speed of 2.3GHz is also
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Figure 4.10 Sample distribution of emotion classes in KDEF

Figure 4.11 Sample distribution of emotion classes in Yale-Face

Figure 4.12 Accuracy vs Epochs plot during the training of KDEF data on CNN (left) and

the proposed hybrid FER model (right)

Figure 4.13 Accuracy vs Epochs plot during the training of CK+ data on CNN (left) and the

proposed hybrid FER model (right)
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Figure 4.14 Accuracy vs Epochs plots during the training (10-fold-cross-validation) of Yale-

Face data on CNN (left) and the proposed hybrid FER model (right)

Figure 4.15 The categorical cross-entropy loss vs Epochs plot during the training of KDEF

data on CNN (left) and the proposed hybrid FER model (right)

Figure 4.16 The categorical cross-entropy loss vs Epochs plot during the training of CK+ data

on CNN (left) and the proposed hybrid FER model (right)

Figure 4.17 The categorical cross entropy loss vs Epochs plots during the training (10-fold

cross-validation) of Yale-Face data on CNN (left) and the proposed hybrid FER model (right)
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available in Colab. Preprocessing of the dual inputs follows the steps outlined in the

previous section. We have used Keras for building the deep neural network architecture.

An error function, categorical cross-entropy, is used in this model. Through updating the

weights in the neural layers, the error value measured using categorical cross-entropy is

minimized. The formula for obtaining the categorical loss is explained in equation 4.4.

The weights are updated in each epoch using an optimizer. We used the ADAM [103]

optimizer in this experiment because it incorporates the effects of the RMSProp [104]

(the ability to deal with non-stationary objectives) and ADAGrad [105] optimizers (the

ability to deal with sparse gradients). In ADAM, individual adaptive learning rates for

various parameters are calculated using estimates of the first and second moments of the

gradients. ADAM possesses various advantages, such as the magnitudes of parameter

updates are invariant to gradient rescaling, the stepsizes are constrained by the step-

size hyperparameter, and it does not require a stationary objective. The authors in the

research [103] also discussed the effectiveness of ADAM in multi-layer neural networks

and deep CNNs. The experiments provided in the paper show ADAM to be robust and

well-suited to a wide range of non-convex optimization problems in the field of machine

learning. The equations and other parameters used in the ADAM optimizer are shown

in Table 4.4. The three datasets are divided into five and ten-folds and cross-validation

testing procedure is employed in determining the accuracy scores of the model. The

training accuracy and loss vs epochs graphs are shown in Figs. 4.12 to 4.17. At the end

of the proposed model, the softmax layer produces the predicted emotion values for all

input images. The softmax layer is a function that turns random values into a properly

ordered probability distribution. The output of the Softmax layer function differs from

(0,1). In the proposed hybrid FER model, there are a total of seven/six classes. Let

us consider ti and yi be the target and the softmax score of the ith class of a sample.

The softmax activation function is explained by equation 4.3, for each class i, there exists

a softmax score according to equation 4.3. The class with the highest softmax score is

predicted as the output class of the respective sample.

Softmax score for each class i= 1 to 7 : f(y)i =
eyi∑N=7
j eyj

(4.3)

Categorical Cross entropy error : −
N=7∑
i=1

tilog(yi) (4.4)
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Parameter Value chosen Role in ADAM

Epsilon ,ε 10−8 preventing division by zero

Learning rate,η 0.001 step size in each iteration

First momentum,β1 0.9 speed of convergence

Second momentum,β2 0.99 speed of convergence

Table 4.4 Values of different parameters used in the ADAM optimizer

Table 4.5 Mean Accuracy and standard deviation scores of three models using five and ten fold

cross-validation process

Model Dataset Accuracy(5-fold cross-validation) Accuracy(10-fold cross-validation)

HOG+SVM

CK+ 88.87% (+/- 1.76%) 89.24 (+/-2.15%)

KDEF 85.56% (+/- 1.58%) 86.17% (+/-1.23%)

Yale 56.16% (+/- 0.09) 55.32% (+/- 0.05)

Fine-Tuned VGG-Face

CNN

CK+ 81.11% (+/- 2.81%) 82.31% (1.12%)

KDEF 75.84% (+/- 2.53%) 74.45% (+/- 2.31%)

Yale 48.67% (+/- 2.86%) 50.12% (+/- 1.87%)

HOG + VGG-Face

Feature-fusion

model

CK+ 98.12% (+/- 1.14%) 98.11% (+/- 2.32%)

KDEF 96.36% (+/- 1.04%) 97.84% (+/- 2.76%)

Yale-Face 95.26% (+/- 2.5%) 96.67% (+/- 2.15%)

The below equations explain the procedure to update weights using ADAM optimizer.

Table 4.4 explains the values of the parameters used in ADAM : θt+1 = θt − η·m̂t√
v̂t+ε

where

m̂t =
mt

1− βt1
, v̂t =

vt
1− βt2

and where

mt = (1− β1)gt + β1mt−1

vt = (1− β2)g2t + β2vt−1

g(gradient) = ∇J(θt,i)

The sum of all outputs from the softmax layer equals one. In Multi-Class classifica-

tion problems, the targets are one-hot encoded, making only the positive class appear in

the categorical loss function.



Multi feature fusion DNN based FER using HOG and VGG-Face 61

Figure 4.18 Filter visualization of 64 feature maps at different convolutional layers in VGG-

Face
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4.5.2 Classification Metrics

The model’s essential evaluation metrics discussed in this work are accuracy, preci-

sion, recall, and F1-score. Let TP represents True Positives, FP represents False Positives,

FN represents False Negatives, and FP represents False Positives.

1. Accuracy: Accuracy (Acc) is useful for evaluating model efficiency. However, when

there is a class imbalance problem, it is essential to consider other critical metrics,

such as precision and recall.

Acc =
TP + TN

TP + FN + TN + FP
(4.5)

2. Precision: Precision (P) underlines the ability of the model to select the class of

choice. P is based on TP and FP. False Positives are the number of predictions that

the model misclassifies as positive when the true label is negative.

P =
TP

TP + FP
(4.6)

3. Recall: Recall (R) is the other classification metric that conveys the ability of the

model to predict all classes of interest in the dataset. R is based on TP and FN.

FN is the number of predictions that the model misclassifies as negative when the

true label is positive.

R =
TP

TP + FN
(4.7)

4. F1 Score: Good precision and recall must be preserved for every model. A good

classifier aims to choose the correct class without any error (precision) and, at

the same time, to choose as many correct classes as possible (recall). A successful

trade-off between precision and recall must be preserved. The F1 score offers a good

combination of two measures of recall and precision. The F1 score is the harmonic

mean of recall and precision.

F1 Score = 2 ∗ P ∗R
P +R

(4.8)
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Figure 4.19 The normalized confusion matrix plots of the CNN (left, green) and the proposed

hybrid FER model (right, blue) on CK+ test data

Figure 4.20 The normalized confusion matrix plots of the CNN (left, green) and the proposed

hybrid FER model (right, blue) on KDEF test data
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4.5.3 Comparison of cross-validation results of the CNN and the proposed model

In this section, the authors have compared the designed multi-feature fusion model

with a conventional CNN model. For creating a CNN based FER model, the flattened

2622 features of the VGG-Face, refer to Fig. 4.4, are extended using hidden and dropout

layers and finally connected to a softmax layer containing seven classes. The 2622 features

are connected with three hidden layers (with dropout) similar to branch-2 of the proposed

model, refer to Fig. 4.5, resulting in 256 features. The 256 features are finally connected

to a softmax layer of 7 classes. The comparison of fine-tuned VGG-Face CNN model and

the proposed multi-feature fusion model explains the improvements achieved in feature

fusing CNN and HOG features. The accuracy vs epoch graphs during model training

in each fold of the cross-validation phase is shown in Fig.4.12. Compared to the CNN

model, the proposed hybrid FER model trains faster during each training fold because it

incorporates more details or features, making the deep neural network easy to find more

complex patterns of the micro-expressions. The Figs. 4.12 and 4.15 explain the accuracy

and loss value plots with epochs. It is observed that the proposed model achieves higher

training accuracy scores in a few epochs and attains maximum training capability within

a few epochs. The proposed model minimizes the cross-entropy error in less number of

epochs when compared to the traditional CNN model, refer Figs.4.15,4.16.

As validation data, we used approximately 5% of the training data. Validation

data is beneficial when constructing an impartial model. The 5% validation split aids

model generalization and helps prevent the model from overfitting to the training data.

The model was also designed with an early stopping technique to avoid over-fitting. The

early stopping technique monitors the validation loss in each epoch, and if the validation

loss does not improve, the early stopping technique interrupts the model’s training. The

patience level has been set to 8, which means that if the validation loss does not improve

for eight epochs in a row, the model’s training must be stopped. The early stopping

procedure prevents the model from being over-fitting to the data. It is due to the early

stopping procedure that the graphs of the training accuracy plots in Figs. 4.15 and 4.16

have different epochs executed for different training folds. In training the KDEF data,

refer to Figs. 4.12 and 4.15, the proposed model shows certain instability in training the

data when compared to the CNN model. The effect of a high patience value in designing
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Figure 4.21 The normalized confusion matrix plots of the CNN (up, green) and the proposed

hybrid FER model (down, blue) on Yale-Face test data

the early stop can cause the model to oscillate in training. To avoid temporary instability

assigning a low patience level can be effective since the model can stop early with a good

training accuracy without over-fitting.

The KDEF dataset yielded 692 images reflecting seven distinct facial emotions.

Unlike the CK+ dataset, the KDEF dataset’s images are not FACS encoded. The dis-

tribution of samples in each emotion class is shown in Fig. 4.10. The CK+ dataset is

trained using the same method. The CK+ dataset provided 423 images of seven different

facial expressions. The distribution of samples in each emotion class is shown in Fig. 4.9.

Since the CK+ dataset is FACS coded, the chances of achieving a reasonable accuracy

rate are high. For three datasets, the normalized confusion matrices are obtained. The
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Table 4.6 Comparison of the Proposed model with other important existing models on Yale-

Face dataset.

Author Year Methodology
Number of Classes/

No of Samples
Accuracy Testing Procedure

Xie et al. [106] 2008

spatially maximum

occurrence model (SMOM) and elastic shape–texture

matching (ESTM)

SMOM-ESTM

5 Classes

(normal, happy,surprise,

sleepy,wink)

94.7%
Leave-one-out

mechanism

Xie et al. [106] 2008
Elastic shape–texture

matching (ESTM)

5 Classes

(normal, happy,surprise,

sleepy,wink)

73.3%
Leave-one-out

mechanism

Xie et al. [106] 2008 PCA

5 Classes

(normal, happy,surprise,

sleepy,wink)

65.3%
Leave-one-out

mechanism

Xie et al. [106] 2008 SMOM

5 Classes

(normal, happy,surprise,

sleepy,wink)

92%
Leave-one-out

mechanism

Platt et al. [107]

Shan et al. [108]

Lin et al. [27]

2009

LBP + DDAG TM

Decision Directed

Acyclic Graph

4 Classes

(happiness, neutral,

sadness, surprise)

56.95%
Ten-Fold-

Cross-Validation

Friedman [109]

Shan et al [108]

Lin et al. [27]

2009 LBP + MaxWins TM

4 Classes

(happiness, neutral,

sadness, surprise)

57.26%
Ten-Fold-

Cross-Validation

Platt et al.. [107]

Lin et al. [27]
2009 LBP + DDAG SVM

4 Classes

(happiness, neutral,

sadness, surprise)

69.42%
Ten-Fold-

Cross-Validation

Friedman [109]

Lin et al. [27]
2009 LBP + MaxWins SVM

4 Classes

(happiness, neutral,

sadness, surprise)

68.42%
Ten-Fold-

Cross-Validation

Platt et al. [107]

Lin et al. [27]
2009 PCA + LBP + DDAG SVM

4 Classes

(happiness, neutral,

sadness, surprise)

62.31%
Ten-Fold-

Cross-Validation

Platt et al.. [107]

Lin et al. [27]
2009 2DPCA + DDAG SVM

4 Classes

(happiness, neutral,

sadness, surprise)

66.20%
Ten-Fold-

Cross-Validation

Friedman [109]

Lin et al. [27]
2009 2DPCA + MaxWins SVM

4 Classes

(happiness, neutral,

sadness, surprise)

65.60%
Ten-Fold-

Cross-Validation

Lin et al. [27] 2009

Mixed-feature model

(LBP+2DPCA projection

features+DDAG-based

SVM)

4 Classes

(happiness, neutral,

sadness, surprise)

81.28%
Ten-Fold-

Cross-Validation

Hedge

and

Seetha [110]

2017

Subspace based FER

using Combinational

Gabor based Feature Fusion

6 Classes

(happiness, neutral,

sadness, surprise,

wink,sleepy)

87.79%
Leave One

Out Technique

Nigam et al. [111] 2018 HOG in Wavelet domain

4 Classes

(happiness, neutral,

sadness, surprise)

75%

Three fold leave

k - samples out scheme

(k=5)

Ravi et al. [114] 2020 CNN All the samples 31.82%

Hold-Out

Validation

(70%-Training

30%-Test)

Our Proposed

model
2021

Multi-Feature Fusion

Deep Neural Network

(HOG+VGG-Face)

6 Classes

(happiness,surprise,

sadness,wink,sleepy,

normal)

95.26%,

96.67%

Five and Ten Fold

Cross-Validation
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Figure 4.22 Comparison of Precision, Recall, and F1- score information of the CNN model

(left) and Multi-Feature fusion model (right) on Yale- Face data

Figure 4.23 Comparison of Precision, Recall, and F1- score information of the CNN model

(left) and Multi-Feature fusion model (right) on CK+ data

Figure 4.24 Comparison of Precision, Recall, and F1- score information of the CNN model

(left) and Multi-Feature fusion model (right) on KDEF data



Multi feature fusion DNN based FER using HOG and VGG-Face 68

Table 4.7 Comparison of the Proposed model with other important existing models on CK+

dataset.

Author Year Methodology

Number

of

classes

Number

of samples
Accuracy Testing technique

Liu et al. [36] 2014

Facial Expression Recognition

via

Boosted Deep Belief Network

8 1308 96.7%
leave-one-subject-out

training/testing strategy

Lv et al. [37] 2014

Face parsing using Deep Belief

Neural network

and Autoencoder

7 593 91.11% 7-fold cross-validation

Mollahosseini

et al. [38]
2015

GoogLeNet and AlexNet

inspired architectures
7 309 93.2% 5-fold-cross-validation

Lin et al. [112] 2015
A two-stage multitask sparse

learning (MTSL) framework
6

96 subjects

related sequences
93.46% 10-fold cross-validation

Khorrami et al. [39] 2017
Zero-bias CNN with FACS

comparision
6 1308 95.1% 10-fold cross-validation

Zhang et al. [40] 2017 Hierarchical Bidirectional RNN 7 593 98.50% 10-fold cross-validation

Datta et al. [42] 2017
Hierarchical multi-class SVM

architectures
7 593

91.85% (one vs one)

89.26% (DAGSVMs)
10-fold cross-validation

Nwosu et al [113] 2017
Two-channel convolutional

neural network
7 350 95.72% 10-fold cross validation

Cai et al. [43] 2018
A novel Island loss using CNN

and VGG16
7 981 94.39% 10-fold cross-validation

Xie et al [40] 2018
Deep comprehensive multi-

patch aggregation CNN
6 927 93.46% 10-fold cross-validation

Kurup et al. [41] 2019

A semi-supervised emotion

recognition

algorithm with reduced features

7 1400 98.57% (HOG- Mouth) 10-fold cross-validation

Ravi et al. [114] 2020
Local binary patterns (LBP+SVM)

and CNN
7 981 89.62%

hold-out validation

70% training

30% testing

Our Proposed

model
2021

Multi-Feature Fusion Deep

Neural Network

( HOG+VGG-Face)

7 423 98.12%, 98.11% 5,10-fold cross-validation

Table 4.8 Comparison of the Proposed model with other important existing models on KDEF

dataset.

Author Year Methodology
Number of

classes

Information

about pose

KDEF

Accuracy

Testing

method

Alshamsi et al. [115] 2017

Facial Landmarks descriptor and

the Center of Gravity

descriptor.

7 Frontal poses 90.8%
Hold-out validation

70% traing and 30% testing

Koujan et al. [116] 2020 Novel 3D Morphable Model 7 Frontal poses 92.24% 5-fold cross validdation

Melaugh et al. [117] 2019
Convolutional

Neural network
7 Frontal poses 89.4% Hold-out validation

Our proposed

model
2021

Multi-Feature Fusion Deep

Neural network

(HOG+VGG-Face)

7 Frontal poses 96.36%,97.84% 5,10-fold cross validdation
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proposed hybrid FER model has achieved higher accuracy scores than the CNN model on

three datasets. The accuracy score of the CNN model on the KDEF dataset is 75.84%,

whereas the accuracy score of the proposed hybrid FER model is 96.36% (5-fold CV), refer

to Fig. 4.20. The accuracy score of the CNN model on the CK+ dataset using five-fold

cross-validation is 81.11%, whereas the accuracy score of the proposed hybrid FER model

is 98.12%, refer to Fig. 4.19. The training of the model using both handcrafted and self-

learned features has dramatically improved accuracy scores on CK+ and KDEF datasets.

The Yale-Face dataset has provided 120 images of six classes. The yale face dataset, un-

like CK+, has images of different lighting conditions. The dataset is challenging to train

as it provides only 120 images. The proposed model is instrumental in training datasets

with fewer samples since the model fuses two different unique features. The accuracy

scores have increased significantly due to the increase in features. The training graphs of

the two models are shown in Fig. 4.14. The CNN model has shown a poor classification

rate on classes like sleepy and sad in the yale face dataset. The confusion matrix, refer

to Fig. 4.21, during the cross-validation suggests the inefficiency of the CNN model to

distinguish the expressions sleepy and normal. The expressions like wink and sleepy were

also frequently incorrectly classified by the CNN model. It is observed that the proposed

model has shown great improvement in classifying the expressions like sleepy and wink.

The results of the experiment, refer to Figs. 4.21, 4.22 has shown that the proposed model

outperforms the conventional models in FER on Yale-face dataset. The detailed classifi-

cation accuracy rates of three models on three different datasets using 5-fold and 10-fold

cross-validation techniques are shown in Table 4.5.

4.5.4 Comparison of the proposed model with other popular FER models

Table 4.5 explains the mean accuracy scores and standard deviation of classifica-

tion accuracy scores using five-fold and ten-fold cross-validation of three models on CK+,

Yale-Face, and KDEF datasets, and there is a significant increase in the accuracy score.

The proposed model outperforms a conventional CNN model in terms of accuracy and

other classification metrics, refer to Figs. 4.22, 4.23 and 4.24. The proposed model is com-

pared with other existing FER models on three datasets, refer to Tables 4.6, 4.7 and 4.8.

The important aspects like the number of samples, number of classes, methodology, and
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Figure 4.25 Prediction variations of two models on KDEF test images

testing/validation procedure are also discussed in the comparison table. The combina-

tion of HOG and VGG-Face CNN features based FER model designed in this experiment

achieved a better accuracy score on CK+, Yale-face, and KDEF datasets when compared

with other important FER models discussed in Tables 4.6, 4.7 and 4.8. The prediction of

emotions of the two models on KDEF test images is shown in Fig.4.25. The accuracy of

the proposed model is seen in distinguishing the micro-expressions of KDEF data, refer to

Fig. 4.25. The emotions of fear and surprise have some correlation because of the similar

micro-expressions like an eyebrow-raiser. The emotions of sadness and anger also share

similar facial expressions. In Fig.4.25, the proposed hybrid model, unlike the CNN model,

successfully classified emotions by analyzing complex facial features.

4.6 Conclusion

The proposed FER model extracts crucial patterns of facial expressions using a

combination of HOG and CNN features. Compared to a conventional convolutional neural
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network, the proposed FER model has a better discriminating ability in classifying similar

emotions. In a traditional convolutional neural network, emotions like anger are strongly

correlated with other emotions like neutral and sadness. The faces displaying emotions

like surprise are also often misclassified as fear by the CNN model. The proposed model

succeeds in classifying similar emotions, which is a main drawback of the CNN model. The

classification metrics like precision, recall, and f1-score convey that the proposed model

has significantly improved discriminating expressions of sleepy and sadness on the Yale-

Face dataset. The comparison of classification metrics and normalized confusion matrices

show that the proposed FER model outperforms the other existing models in classifying

facial expressions on the CK+, Yale-Face, and KDEF facial expression datasets. The

proposed FER model has achieved accuracy scores of 98.11%, 97.84%, and 96.67% on

CK+, KDEF, and Yale-face facial expression databases using the 10-fold-cross-validation

process.



Chapter 5

SternNet: A Rank of Confidence based Multi-Stage

Facial Expression Classification Model

5.1 Introduction

The proposed SternNet is a multistage FER model which uses the rank of confidence

(RoC) in predicting emotions. The deep convolutional neural networks face issues in

getting trained on sparse and class imbalanced samples due to overfitting. Therefore we

are not sure how credible the CNNs are during the prediction process. The confidence

score cannot be a metric in deciding the credibility because overfitted DNN models usually

express wrong confidence scores in predicting emotions. Therefore we need to have other

metrics to judge how confident is the prediction given by the DNN model. The proposed

model Sternnet imparts stern rules in classifying emotions. The details of the RoC and

multistage SternNet model are described in this section. Initially, we perform different

experiments on CNN model in training the sparse and class imbalanced samples. The

AUC Area under curve of different classes is examined on conventional CNN models.

The later section of the work discusses the drawbacks of conventional CNN models in

predicting emotions. This work exclusively uses subject-independent CK+ data of six

emotion classes for all the experiments.

Types of FER models Automatic FER models are first designed using handcrafted

features. Handcrafted features depend on important corners, edges, and other salient
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geometrical patterns present on the face. The examples of handcrafted features are local

binary pattern [118], harris corner points [119] and HOG features [120]. The FER models

initially extract the handcrafted features and are given to a machine learning classifier to

segregate the emotions according to the patterns observed in the expressions. These con-

ventional FER models depend on the geometry and are usually biased to the training data.

At present, the advanced FER models use deep learning methods to improve the model’s

accuracy and get an unbiased method of analyzing emotions. Deep neural networks like

convolutional neural networks are used in designing advanced FER models. These state-

of-the-art FER models extract important patterns observed in different facial expressions

directly from the dataset. The series of convolutional layers extract low and high-level

features from the images and try to classify emotions even in noise. This adaptable nature

of convolutional neural networks made it a more robust and accurate classifier. The deep

learning-based FER models require a massive dataset for proper training of the neural

network. It also requires a considerable amount of time to train the neural network and

quick training requires a sophisticated GPU for its huge computation process. The deep

neural networks are prone to misclassification if the dataset possesses a class imbalance.

By constructing artificial datasets with different combinations of complexity, training set

size, and degrees of imbalance, Japkowicz [121] investigated the effects of class imbalance.

In the 1990s, Anand et al. [122] investigated the impact of imbalanced datasets on the

backpropagation algorithm in shallow neural networks. The authors show that in class

imbalanced situations, the gradient component of the minority class is much smaller than

the gradient component of the majority class. In other words, the majority class controls

the net gradient, which is in charge of updating the model’s weights. During early itera-

tions, this decreases the error of the majority group easily, but it also raises the error of

the minority group, causing the network to become trapped in a slow convergence mode.

Problem Statement In this chapter, the authors discuss the crucial drawbacks of the

conventional convolutional neural networks in classifying facial expressions. The classifi-

cation of emotions is tricky since it involves distinguishing different emotion classes that

share similar facial expressions (facial muscle movements). The difficulty of classifying

emotions on different faces varies depending on the subject. Few subjects tend to ex-

press emotions that are easy to classify and others its tough to classify. The SternNet
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model designed in this work tries to understand whether the sample is easy or difficult

to classify using an accuracy measuring parameter known as ”Rank of Confidence”. The

Rank of Confidence analyzes the face spatially in different views and scores a value that

can express the confidence of the prediction. The high confident samples are easy to be

classified correctly and low confident samples are difficult to be classified correctly. The

SternNet stage-1 deals with the high confident samples and the low confident samples

need further advanced evaluation for correct prediction hence it is dealt with advanced

FER models in SternNet stage 2.

The work done in this chapter initially implements a conventional CNN model and tries

to evaluate the performance of the classification on a class imbalanced sparse facial ex-

pression dataset. The drawbacks of the CNN model are analyzed and the steps taken for

improving/ modifying the CNN model is discussed in this chapter. The proposed design is

then compared with CNN model and other popular FER models to evaluate the efficiency

of the designed model.

Organisation of the Chapter Section 5.2 implements a conventional CNN model

(VGG16) in classifying facial expressions on extended CohnKanade facial expression

database (CK+). Section 5.2.2 discusses the reasons for the low accuracy of CNN models

in dealing with facial expressions. Section 5.3 demonstrates the design and advantage of

SternNet model. The section focuses on explaining the crucial advantages of the rank of

confidence. Section 5.4 discusses the results of different classifiers used in SternNet model

and the comparison of the proposed model with other popular models is also explained

in the section.

5.2 Experimenting with the convolutional neural network on

subject independent, class imbalanced, and sparse CK+

dataset

The database for emotion classification is taken from extended Cohn-Kanade(CK+)

[77] facial expression database. The extended Cohn-Kanade, widely known as CK+, is a
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facial expression dataset for the classification of facial action units and is popularly used

for facial emotion recognition. The dataset has posed as well as non-posed expressions.

The Extended Cohn Kanade (CK+) dataset consists of 593 sequences across 123 different

subjects. Each sequence in the database contains frames varying from 10 to 60, and in

every sequence, the frames are captured such a way that there is a shift in expression from

a neutral to the peak intensity of a specific emotion. Among the given sequences, only

327 sequences with 118 subjects have the expression labels of anger, contempt, disgust,

fear, happiness, sadness, and surprise. In this experiment, we design the FER model to

classify six emotions anger, disgust, fear, happiness, sadness, and surprise. Many papers

include multiple frames of a sequence (last 5 or 3 frames) into the training and testing

dataset. In this work, only the last image of the labeled sequence, which has the peak

intensity of emotion, is chosen and taken into the dataset.

Figure 5.1 Information about the percentage of the number of samples in each class

We have used the transfer learning technique and imported the VGG16 [13] model.

The imported model is loaded with weights that are pre-trained on the imagenet [61]

dataset. The ending layers of the VGG16 are truncated, and new layers are attached to

the network to match the output classes. To the base network, we have added a flatten

layer, a dense layer of 256 neurons, and a dropout layer. It is followed by another dense

layer with 128 neurons, a dropout layer, and a softmax layer of six output classes, refer

to the model design in Fig. 5.17. The softmax layer is modified, and a softmax layer of

six classes is added at the end of the CNN. The block diagram of the model is shown in

Fig. 5.17. All the other layers except the added layers are frozen to use the pre-trained
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Table 5.1 Information of the number of samples in each emotion class

Emotions

Total No of Samples

=309

Number of Samples Percentage of samples

Anger 45 15%

Disgust 59 19%

Fear 25 8%

Happy 69 22%

Sad 28 9%

Surprise 83 27%

weights. Let yi be the softmax score of ith class of a sample then the equation 5.1 gives

the softmax probability of prediction.

Softmax score for each class i= 1 to 6 : f(y)i =
eyi∑N=7
j eyj

(5.1)

The information of samples in each class (support) is shown in Fig. 5.1. The sam-

ples that display the emotion of fear are only 8% in the dataset. The samples of fear

and sadness are very less when compared to the samples of happiness and surprise. In

this first experiment, we have used the VGG16 model to classify facial expressions on the

extracted CK+ data. A five -fold-cross-validation method is used to analyze the clas-

sification accuracy in each emotion class. The normalized confusion matrix along with

the Receiver Operator Characteristic (ROC) curves after the five-fold-cross-validation are

shown in Fig.5.2. The precision, recall, and F1-score results are also calculated. The

accuracy score obtained after five-fold-cross-validation is 81.57% (+/-2.10%). The results

shown in the table 5.2 indicate that the classification of emotions such as fear and sad

have a low Area Under the Curve (AUC) when compared to the AUC of happiness and

surprise. The AUC Area Under the Curve (AUC) evaluates the ability of a model to

distinguish between classes (emotions). The low AUC of emotions fear and sad are seen

during the cross-validation in test-folds 1, 2, 4, and 5, refer Fig. 5.2.The class imbalance

is one of the reasons for low accuracy rates seen in emotions fear and sadness. The nor-

malized confusion matrices also indicate that the emotion sad is often predicted as anger
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Figure 5.2 The obtained normalized confusion matrices and ROC curves of five test folds using

VGG16
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Table 5.2 Five-fold-cross-validation classification metrics of VGG-16 on subject independent

CK+ test data

CK+ dataset

309 samples
Precision Recall F1-Score Test samples AUC

Anger 0.694 0.556 0.608 9 0.94

Disgust 0.826 0.898 0.856 11 0.99

Fear 0.554 0.4 0.42 5 0.92

Happy 0.864 0.986 0.92 14 1

Sad 0.568 0.526 0.518 6 0.95

Surprise 0.94 0.976 0.958 16 1

and vice-versa. In this experiment can be considered that the conventional CNNs tend to

perform poorly at classifying facial expressions with sparse and class imbalanced samples.

To overcome these issues we have designed a novel FER model in this work. The

designed model first tries to analyze the confidence of the prediction which means answer-

ing the question of how accurate is the prediction done by the FER model. On analyzing

the confidence of prediction the model tries to decide whether the sample needs further

evaluation. The designed model is named “SternNet”. The model considers stern rules in

classifying emotions and considers Facial Action Coding System (FACS) as an important

topic.

5.2.1 Facial Action Coding System

The Facial Action Coding System (FACS) was created by Paul Ekman and Wallace

V. Friesen to distinguish various facial expressions on any human face. FACS is used

to deconstruct and properly taxonomize essential facial features based on their proper-

ties. FACS assisted in the development and description of “Action Units,” which are

discrete acts of muscles/muscle contraction and relaxation (AUs). As seen in table 5.3,

six combinations of different action units on the face construct six different emotions.
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Table 5.3 FACS information about action units for six emotions. [7]

Emotion Facial Muscle Corresponding Action Units

Anger Brow lowerer+ Upper lid raiser+ Lid tightener+ Lip tightener 4+5+7+23

Disgust Nose wrinkle+ Lip corner depressor+ Lower lip depressor 9+15+16

Fear
Inner brow raiser+ Outer brow raiser+ Brow lowerer+

Upper lid raiser+ Lid tightener+ Lip stretcher+ Jaw drop
1+2+4+5+7+20+26

Happiness Cheek raiser+Lip corner puller 6+12

Sadness Inner brow raiser+Brow lowerer+Lip Corner depressor 1+4+15

Surprise
Inner brow raiser+Outer brow raiser+

Upper lid raiser(Slight)+ Jaw drop
1+2+5B+26

Table 5.4 Intensity level variations in FACS. [7]

Alphabet A B C D E

Intensity Level Trace Slight Pronounced Extreme Maximum

5.2.2 Correlation between action units in different emotions

Facial Emotions are tough to classify since the problem is a subclassification task

that involves identifying the emotional classes with a very slight difference. FACS has also

measured the action unit’s intensity by scaling the intensity levels with A to E letters,

where A is the weakest and E is maximum intensity. In the FACS coding, refer to the

table 5.3, it is evident that various emotional states have the same facial muscle moments,

for example, disgust and sad emotions trigger the same Lip Corner Depressor (Action unit-

16). There is a high probability of misclassifying the emotions due to these similarities in

the different emotion classes. There is much difference in the emotions of happiness and

surprise because there is no intersection of action units in both emotions. FACS can convey

important information about the probability of accurately differentiating two emotions

through the study of their respective action units. The inclusion of FACS information in

the FER model improved the model’s accuracy and helped in a better understanding of

action units in emotion classification.
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Table 5.5 One hot encoding of important action units that represent six emotions.

Action Units Angry Disgust Fear Happy Sad Surprise

AU1 0 0 1 0 1 1

AU2 0 0 1 0 0 1

AU4 1 0 1 0 1 0

AU5 1 0 1 0 0 1

AU6 0 0 0 1 0 0

AU7 0 0 1 0 0 0

AU9 0 1 0 0 0 0

AU12 0 0 0 1 0 0

AU15 0 1 0 0 1 0

AU16 0 1 0 0 0 0

AU20 0 0 1 0 0 0

AU23 1 0 0 0 0 0

AU26 0 0 1 0 0 1

AU27 1 0 0 0 0 0

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

On analyzing the action units in emotions, the majority of them lie on the important

facial landmarks like eyebrows AU(1, 2, 4), eyes AU(5,7), and lips AU(23, 16, 26, 12, 23),

refer to table 5.3. On performing exploratory data analysis of the FACS action units, the

correlation of action units on upper and lower facial parts is calculated. The exploratory

data analysis done on action units in this work has evaluated the correlation matrix of

different emotions on upper and lower facial parts using the Pearson correlation coefficient.

The upper face consists of eyes, nose, and cheeks as important facial landmarks and the

lower face has a mouth and some part of the cheeks as an important landmark. The spatial

correlation analysis of action units is shown in the form of heatmap in the Figs 5.4, 5.3.

On analyzing the Pearson correlation matrices the emotions sad and disgust have a good

correlation at the lower face since they share similar action units, but they have shown

poor correlation at the upper face since disgust has a unique action unit- 9 on the nose.

So the emotion of disgust shows its dominant features on the upper face when compared
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to the lower face. The correlation coefficient has a value between -1.0 and 1.0. The

power of association is determined by the correlation coefficient’s value. If the correlation

coefficient is between 0.5 and 1.0, it means there is a good positive relationship. A

small association is indicated by a correlation coefficient between 0 and 0.5. A negative

correlation is implied by a correlation coefficient between 0 and -1.0. The emotions of

fear and surprise share similar action units and hence there may be a high chance of

misidentifying the emotions of fear as a surprise and vice-versa. These correlations seen

in different emotions make the task of classifying emotions hard. So, we need to design a

special model that analyzes action units in different facial regions. In the figures 5.4 and

5.3 the correlation of emotions on upper and lower face regions are displayed in the form

of correlation heat-map. The action unit and emotion heat-maps of lower and upper face

regions clearly show the correlation of different emotions, for example on the upper face

there exists correlation between fear and surprise. In the lower face heat-map the emotions

of sad and disgust also show a high correlation. The existence of this correlation makes

the classification of micro-expressions difficult. In this next section, we explain different

methods to tackle these issues using SternNet model.

Figure 5.3 Correlation of different action units and emotions on upper face
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Figure 5.4 Correlation of different action units and emotions on lower face

Figure 5.5 Partition of face

5.3 SternNet: A multi-stage FER model

The objective of the SternNet is to separate confident samples and unconfident

samples. The sample is termed as confident if it posses a high probability of being

correctly classified. In the same way, a sample is defined as unconfident if the sample is

prone to misclassification. The SternNet analyzes different facial regions before it decides

the confidence. The face can be partitioned in various ways. The face partition is done in

three ways. The partition is done in such a way that the obtained spatial regions contain

different combinations of action units. The Fig. 5.6 shows the distribution of action units

spatially on a face.

Various data pre-processing steps were taken before applying to the SternNet. The

pre-processing of the images is discussed in the below points.

1. Face Detection: The pixels in the images should contain only the face. To extract



SternNet: A Rank of Confidence based Multi-Stage FER 83

Figure 5.6 Distribution of action units on upper and lower face

only facial region Viola-Jones [123] algorithm is used to extract the pixels that

exclusively contain the face.

2. Image Normalization: The pixels are normalized before applying to the classifier.

The range of pixels is converted from (0 to 255), to (0 to 1) by dividing each pixel

value by 255 and the image size is resized to (224,224)

3. Face Partition: To obtain three different facial regions, we have used dlib’s facial

landmark [66] library to extract the region of interests (RoIs), refer Fig.5.5.

4. The first facial region known as “Lower face-1” contains only the mouth as an im-

portant landmark, refer Fig. 5.10. The action units observed in this facial region

are AU 10- Upper Lip Raiser, AU 12- Lip Corner Puller, AU 15- Lip Corner De-

pressor, AU 17- Chin Raiser, AU 20- Lip Stretcher, AU 23- Lip Tightener, AU 24-

Lip Pressor, AU 26- Jaw drop, and AU 27- Mouth Stretch.

5. The second facial region known as “Upper face” contains eyes, eyebrows, and nose

(refer Fig. 5.10). The action units observed in this region are AU 1- Inner Brow

Raiser, AU 2- Outer Brow Raiser, AU 4- Brow Lowerer, AU 5- Upper Lid Raiser,

AU 7- Lid Tightener, and AU 9- Nose Wrinkler.

6. The third facial region known as “Lower face-2” contains mouth, nose, and cheeks

as important landmark points(refer Fig. 5.10). The important action units seen in

addition to action units related to mouth are AU 6- Cheek Raiser and AU 9- Nose

Wrinkler.
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Figure 5.7 Lower face-1 region (important landmark mouth)

Figure 5.8 Upper face region (important landmarks eyes, eyebrows, and nose).

Figure 5.9 lower face-2 region important landmarks nose, cheeks and mouth.

Figure 5.10 Different facial regions considered by StrenNet

5.3.1 SternNet Stage-1 : Finding the Rank of Confidence

To increase the samples in a sparse dataset, we have created four different images

for each sample according to the distribution of action-units . Every face has now four

unique spatial information i.e, full face, lower face-1, upper face, and lower face-2. In the

first stage, we extract the Histogram of Oriented Gradients features [124] of four images

for each sample. The HOG features visualization in four facial regions full face, lower

face-1, upper face, and lower face-2 are shown in the Figs. 5.11, 5.14 We have trained four

SVM classifiers to learn patterns using HOG features. All the SVM classifiers use the

linear kernel and implement squared hinge as the loss function. For the HOG features,
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Figure 5.11 HOG visualization of full face region

the orientations are taken as 11, pixels per cell as (16,16) and cells per block are taken as

(2,2). The SVM classifiers are trained with 247 images and tested with 62 images. The

same process is repeated and we have implemented a 5-fold-cross-validation in all the four

SVM classifiers. Now using the results of the four SVM classifiers we have allotted “Rank

of Confidence” (RoC). The SternNet aims to segregate high and low-confident samples.

Each sample is viewed from four different perspectives. A sample classified as emotion-1

by a support vector machine(SVM) classifier-1 may or may not be classified as emotion-1

by the other SVM classifiers. The sample is given the rank of confidence as 1 if all the

four SVM classifiers predict the same emotion class. It means that the prediction given

by the four SVM samples which are trained on four different HOG features (different

combinations of action units) match without any discordance. In the same way, a sample

is given a rank of confidence as 2 if any three SVM classifiers predict the same emotion

class. The samples having a rank of confidence 2, 3 are prone to misclassification since

there exists discordance between the classifiers. The pseudo-code is explained below, the

predicted emotion class from each SVM classifier is read and according to the accordance,

the rank of confidence (RoC) is assigned to each sample. Nearly average 73% of samples

in the test data possess a rank of confidence of 1, which means 73% of total samples are

high confident samples in the SternNet stage-1. The advantages of knowing the RoC can

be useful in easy evaluation and segregation of samples according to the confidence.
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Figure 5.12 HOG visualization of Lower face-1

Figure 5.13 HOG visualization of Upper face

Figure 5.14 HOG visualization of Lower face-2

After completing the SternNet stage-1, we obtain the RoC of each sample. In

StrenNet, if we consider extreme rules then only RoC-1 samples are considered as confident

samples. But it is noted that always RoC-1 samples have a higher probability of correct

prediction when compared to RoC-2 samples. Let us analyze the experimental results

after SternNet stage-1. The total number of samples present in testing data in each

fold is 62. The experimental results after five-fold cross-validation have shown that the

predicted samples that possess RoC-1 are nearly 99% correct, refer to table 5.6. In test

folds 1 and 2 the samples predicted to have RoC-1 are 100% correct. The important thing

to be noted here is the samples exclusively obtained from RoC-1 have been predicted at

an accuracy of nearly 99% (refer Table 5.6) whereas the accuracy using a single full face-
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Table 5.6 SternNet stage-1 Analysis

5-Fold-Cross-Validation Test Fold 1 Test Fold 2 Test Fold 3 Test Fold 4 Test Fold 5

Total number of

test samples
62 62 62 62 61

Number of

sample having

Rank of Confidence =1

44 42 44 46 51

Correctly classifed

RoC =1 samples
44 42 43 45 50

Accuracy of Prediction 100% 100% 97.27% 97.82% 98.04%

SVM classifier achieved an accuracy of 89% (refer Fig. 5.23. After completion of the five-

fold-cross-validation of SternNet stage-1, on average, 73% of samples that are confident

are predicted and the remaining samples which are unconfident are further evaluated in

SternNet stage-2.

5.3.2 SternNet Stage 2 : Dealing with low Confidence samples

The discordance between the predictions of different SVM classifiers results in low

confidence in the prediction and thus these low confidence samples are highly prone to

misclassification. The HOG features derived from these samples are not sufficient to

analyze the patterns and therefore other features are necessary to understand the micro-

expressions. In stage - 2 of SternNet in addition to the handcrafted HOG features, self-

learnt features from CNN are considered. We have designed a multi-feature fusion deep

neural network model that considers HOG and VGG-Face [125] features for predicting

emotions. The output emotion class of all the low confident samples is predicted by

the multi-feature fusion network. In SternNet stage-2, in addition to the obtained HOG

features of full-face region, the VGG-Face (refer Fig. 5.17) features are extracted from

the training and testing samples. We have loaded VGG-Face pre-trained weights that

are trained with massive facial image datasets like Internet Movie Data Base (IMDB)

celebrity list, LFW, and YTF datasets. The images are resized to (224,224) to match

the VGG-Face architecture. The HOG parameters such as the number of orientations

of the gradient directions and cell size are changed in SternNet stage -2. The number
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Figure 5.15 Pseudo Code for the SternNet stage-1
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Figure 5.16 Pseudo Code for the SternNet stage-2

of orientations is taken as 9 in stage-2 and the cell size is taken as (8,8). The number

of features is increased in SternNet stage-2 when compared to its stage-1. The Fig. 5.18

explains the StrenNet stage -2 procedure. The VGG-Face features of 2622 are extracted

for the first input of the model and the second input, 15488 HOG features are extracted

from the unconfident samples. The overall flowchart of the SternNet model is explained

in Fig. 5.19 .

Figure 5.17 VGG-Face Architecture
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Figure 5.18 Multi-feature fusion model, combination of VGG-Face and HOG features at Stern-

Net stage-2

Figure 5.19 Flowchart of StrenNet model
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5.4 Results and Discussion

5.4.1 Training and model validation

We have used Google’s Colaboratory [126] GPU to train our model. Google’s Colab

provides GPU Nvidia 1xTesla K80, having 2496 CUDA cores and CPU Xeon Processor of

the frequency of 2.3 GHz. Input images are resized to (224x224) as the VGG-Face model

is trained using (224x224) sized images. The RMSprop optimizer is used in training the

model. The equations used in RMSprop for updating the weights in the neural network are

shown in equations 5.3,5.4. RMSprop helps to reduce unwanted oscillations and improves

the speed of convergence. The important hyperparameters used in the RMSprop are

decay rate (β), learning rate, and epsilon. The loss function categorical cross-entropy is

used as an error function for training the weights of the neural layers. The cross-entropy

loss function is widely used in error function in classification problems for deep neural

networks [68]. If ti and yi be the target and the output predicted score of ith class of a

sample.

Categorical Cross entropy error : −
N=6∑
i=1

tilog(yi) (5.2)

In Multi-Class classification problems, the targets are one-hot encoded, making only

the positive emotion class appear in the categorical loss function.

E
[
g2
]
t

= (β)E
[
g2
]
t−1 + (1− β)g2t (5.3)

β- decay rate is taken as 0.9, gt- Gradient at time t, E [g2]t- Exponential Average of

squares of gradients.

θt+1 = θt −
η√

E [g2]t + ε
gt (5.4)

ε- epsilon is taken as 10−8, η- Learning rate is taken as 0.0001
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5.4.2 Classification metrics

The important evaluation metrics of the FER model discussed are Accuracy, Preci-

sion, Recall, and F1-score. Let TP represents True Positives, FP represents False Posi-

tives, FN represents False Negatives, and FP represents False Positives.

1. Accuracy: Accuracy (Acc) is useful in evaluating model performance. However,

when there exists a class imbalance problem, it is necessary to consider other im-

portant metrics like precision and recall.

Acc =
TP + TN

TP + FN + TN + FP
(5.5)

2. Precision: The precision (P) highlights the ability of the model to pick the desired

class. P depends on TP and FP. False Positives are the number of predictions the

model misclassifies as positive when the true label is negative.

P =
TP

TP + FP
(5.6)

3. Recall: Recall (R) is the other classification metric that conveys the ability of the

model to predict all the classes of interest in a dataset. R depends on TP and FN.

FN is the number of predictions the model misclassifies as negative when the true

label is positive.

R =
TP

TP + FN
(5.7)

4. F1 Score: It is necessary to maintain good precision and recall for any model. The

goal of a good classifier is to pick the correct class without any mistake (precision)

and, at the same time, pick as many as correct classes (recall). A good trade-off

is to be maintained between precision and recall. F1 score provides a decent blend

of two metrics recall, and precision. F1 score is the harmonic mean of recall and

precision.

F1 Score = 2 ∗ P ∗R
P +R

(5.8)
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Table 5.7 SternNet accuracies at stage-1 and stage-2

SternNet stage Model
Mean

Five fold Cross Validation Accuracy

Stage-1

SVM Lower face-1 (HOG) 84% (+/- 2.13%)

SVM Upper face (HOG) 81% (+/-1.18%)

SVM Lower face-2 (HOG) 88% (+/- 2.26)

SVM Full face (HOG) 89% (+/-2.42%)

Mean Number of Samples Predicted in test

Data (%) (HOG)
Accuracy

(73%) 45 samples 98.62% (+/ 1.65%)

Stage-2

Overall Accuracy

VGG-Face+HOG Multi fusion DNN

(100%) 62 samples
98.1%

Table 5.8 Classification Metrics of SternNet model after five-fold-cross-validation

Emotions Precision Recall F1-score Support

Anger 1 0.978 0.988 9

Disgust 1 1 1 12

Fear 1 0.92 0.938 5

Happy 0.986 0 0.992 13

Sad 0.966 0 0.982 6

Surprise 0.988 0.988 0.988 17
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Figure 5.20 Classification metrics of SVM (lower face-1)

Figure 5.21 Classification metrics of SVM (lower face-2)

5.4.3 SternNet Model Analysis

The designed model has two stages, in the first stage, four SVMs are used to analyze

emotions at different sections of the face that represent a unique combination of action

units. The accuracy results show that lower face-2 is a very easy and useful spatial region

on the face to understand emotions when compared to the upper face. The upper face

(eyebrows, eyes, nose) can predict emotions at an accuracy of 81% whereas the lower face-

2 (nose, cheeks, and mouth) can predict emotions at an accuracy of 88%. The lower face-2

has achieved higher accuracy than that of the lower face-1 (only mouth). Emotions such as

disgust contain unique action unit-9, nose wrinkle which is not seen in any other emotions,

therefore lower face-2 (includes the nose, and cheeks) has achieved good accuracy in

predicting emotion disgust. StrenNet uses the important characteristics of all the SVMs

to pick samples accurately. The stage-1 of StrenNet decides the confidence of prediction

and defines the sample whether it is simple or complex to predict. The stage-1 completes

its task by assigning rank of confidence and predicting only the confident samples (RoC=1

samples). The samples which are complex to predict (RoC greater than 1) are moved to

stage-2 for next analysis. The stage-2 of SternNet uses additional features. In stage-2
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Figure 5.22 Normalized confusion matrix of SVM (lower face-1)

Figure 5.23 Normalized confusion matrix of SVM (lower face-2)

along with HOG features deep features are added to the feature collection for prediction.

The stage-2 StrenNet uses different features when compared to stage-1 and uses deep

neural network for emotion prediction. The Figs. 5.23, and 5.28 shows the normalized

confusion matrices of individual SVMs used at the stage-1. The proposed model in this

work explains the importance of using SternNet instead of using a single full-face SVM

classifier. Stage-2 considers that the samples received are complicated to comprehend

hence derive more features. The VGG-Face is an important model when compared to

other models in the facial analysis since it is trained exclusively on faces of a massive

dataset, whereas other models use the imagenet dataset. The deep neural network is

built on a combination of VGG-Face and HOG features. The emotion class of all the
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Figure 5.24 Classification metrics of SVM (upper face)

Figure 5.25 Classification metrics of SVM (full face)

Figure 5.26 Classification metrics of upper (above) and full face (below)

unconfident samples that are passed from stage-1 are viewed by the multi-feature fusion

model. The accuracies obtained at different stages in Sternnet are shown in the table 5.7.

The overall normalized confusion matrix and the classification metrics of overall SternNet

is shown in the tables 5.9 and 5.8. The designed SternNet can also be used in other

applications and the identification of RoC helps in complicated object classification tasks.

This is a very important aspect to be considered since the present neural network models

do not measure the confidence and credibility of their prediction.

5.5 Comparision of the proposed model with other existing FER

models

The proposed model can be compared with other existing FER models which have

a similar method of sample extraction and testing procedure. The proposed model as

seen in the experiment outperforms the VGG16 model in terms of classification accuracy

and provides better results in other classification metrics. The proposed model uses the

dataset that has only one frame per labeled sequence and also is subject-independent.

There exist many models which have included more than one sample (last three or five
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Table 5.9 Confusion Matrix of SternNet model after five-fold-cross-validation

Emotions Anger Disgust Fear Happy Sad Surprise

Anger 0.978 0 0 0 0.022 0

Disgust 0 1 0 0 0 0

Fear 0 0 0.92 0.04 0 0.04

Happy 0 0 0 1 0 0

Sad 0 0 0 0 1 0

Surprise 0 0 0 0 0 0.988

Table 5.10 comparision of the proposed model with other existing standard FER models

S.No Methodology
Number of

Classes
Accuracy Validation Method

1
Simultaneous facial feature [127]

tracking
6 94.04%

Leaveone-out

cross validation

2
An enhanced independent

component-based [128]
6 93.23%

Leave one-out

cross validation

3

Graph-preserving sparse

nonnegative matrix

factorization [129]

6 94.30%
Leave one-out

cross validation

4.
Manifold structure learning

using coordinates [130]
6 94.31%

Leave one-out

cross validation

5

Spatial-Temporal Motion LBP

and Gabor Multi-orientation

Fusion Histogram [131]

6 95.8%
Leave one-out

cross validation

6
Fusing Gabor and Local Binary

Pattern Features [132]
6 96.5%

10-fold cross-

validation scheme

7 Local Binary Patterns [75]

6

84.5% Tree-Augmented-

Naive Bayes (TAN)

classifiers

5-fold cross-

validation scheme

6
91.5% SVM

(linear) LBP

10-fold cross-

validation scheme

6
92.6% SVM

(RBF) LBP

10-fold cross-

validation scheme

8

Hierarchical Deep Neural

Network Structure [133]

6
96.46% (last three frames

from sequences were used)

10-fold cross-

validation scheme

9

Using Features of

Salient Facial Patches [134]

6 94.1%
10-fold cross-

validation scheme

10 The proposed work (SternNet) 6 98.1%
5-fold cross-

validation scheme
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Figure 5.27 Normalized confusion matrix of SVM (upper face)

Figure 5.28 Normalized confusion matrix metrics of SVM (full face)

frames) per labeled sequence. The drawback of considering more than one frame per

sequence is the bias as a model can similar frames in testing and training datasets. The

important parameters that were selected in the comparison are methodology, extraction

of training and testing samples from the dataset, number of classes used in the model,

number of frames, and testing method. The table 5.10 compares SternNet with other

existing FER models and the results conclude that the proposed model achieved better

classification accuracy when compared to other models.
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5.6 Conclusion

The proposed model SternNet is multi-stage facial expression recognition model that

is built on the basics of the rank of confidence. The rank of confidence is a new metrics

proposed in the research work analyses the face in different spatial regions and measures

the confidence of the prediction. The RoC of rank 1 has a high confidence score when

compared to other samples having RoC-2 and RoC-3. The confident samples are classified

in stage-1 of SterNet and other samples are moved to stage-2 for classification. The

concept of RoC can be applied not only to FER applications but also in other classification

problems. The proposed model has achieved better performance when compared to other

existing FER models in terms of classification metrics.



Chapter 6

VGG-Face and LSTM based Deep Neural Network

for Near Infrared Facial Expression Recognition

6.1 Introduction

Facial expression recognition (FER) seeks to distinguish and categorise the mean-

ingful emotions of numerous facial muscles into discrete emotion categories. An important

premise in FER is that humans universally show six primary expressions: pleasure, sor-

row, surprise, fear, anger, and disgust, as influenced by Ekman [135]. FER has been

the subject of several investigations due to its potential applications in the realm of hu-

man–computer interaction [136]. Furthermore, facial expression recognition has a wide

range of possible applications, including the service business, criminal investigation and

interrogation, medical assistance, and so on.

There exist numerous works that can detect facial expressions in visible light. FER

models built under Uncontrolled visible (VIS) light (380–750 nm) have common issues

since in ambient circumstances VIS images can vary with place and time, resulting in con-

siderable differences in visual appearance and texture. The facial expression identification

algorithms established thus far operate well under controlled conditions, however varia-

tions in lighting or light angle pose issues for the recognition systems are major issues in

FER[1]. To satisfy the needs of real-world applications, facial expression detection should

be achievable under varied lighting situations, including near darkness. Unfortunately,

algorithms are sophisticated and not particularly dependable, for example, employing
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the same preprocessing for different lighting orientations may not produce satisfactory

results, and under favourable lighting circumstances, such preprocessing might lose vital

information. So, there is a need to search for other solutions. The Near Infrared range

(NIR) spectrum’s longer wavelengths can penetrate haze, light, fog, smoke, and other

atmospheric conditions better than visible light. This frequently results in a crisper, less

distorted image with higher contrast than what can be seen with visible light for long-

distance imaging. The current deep FER standard is RBG or grey data, although these

data are sensitive to lighting conditions. In contrast, infrared images that capture the

temporal dispersion of the skin produced emotions are not affected by changes in lighting,

which is a promising substitute for studying facial expressions

In the proposed work the authors have designed a FER model that can classify

facial expressions in Near Infrared videos and images. NIR is very similar to human

perception but eliminates the color wavelengths, resulting in most objects seeming very

similar to a black and white image. The variations in reflectivity of some objects, along

with reduced atmospheric haze and distortions in the NIR wavelength enhance the facial

details and vision at long ranges. Other imaging systems like thermal energy, show faces

quite differently from visual perception. NIR images appear similarly to visible light,

which means it can see things like faces and other written information on signs like visible

light.

The majority of facial expression recognition systems use two parts in the process

of recognizing emotions. The two steps are feature extraction and classification. Feature

extraction is the process of analyzing facial images and extracting the image’s possible

characteristics. Because various expressions have varied facial expression properties, use-

ful prospective features for enhanced classification may be obtained. Effective expression

recognition, on the other hand, remains challenging. Various hand-crafted characteristics

(e.g., HoG [137], LBP [138], SIFT [139]) are often used in conventional FER. However,

most of these qualities are incapable of simultaneously examining all aspects. The convo-

lutional neural network (CNN) has recently been used to FER with excellent results [140].

This is due to its high representation capabilities. The proposed work in this research work

uses sequence-based design for building a FER model. There are prior studies [53], [51]

focused on sequence-based techniques, in which an expression is expressed as a sequence
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of frames with known time stamps, to consider temporal information. The combination of

convolutional and recurrent neural networks (CNN–RNN) (or CNN-LSTM) frameworks

has emerged as a preferable solution because recurrent neural networks (RNN) perform

well in processing diverse sequences with contexts. RNN usually uses the characteris-

tics retrieved by CNN as input and later encodes temporal aspects. These CNN–RNN

frameworks may leverage the benefits of CNN and RNN to concurrently learn appearance

characteristics and temporal information, producing greater predictive performance than

typical image-based FER approaches.

6.2 Related Works on Facial Expression Recognition models

FER has been investigated in the computer vision field for decades [47], [48]. Ac-

cording to the existing FER models, the approaches may be divided into two categories

that are Static image-based and Dynamic image sequence-based approaches. In recent

years, the usage of deep learning approaches in different computer vision challenges has

risen. In pattern recognition tasks, Deep Neural network (DNN) models such as convolu-

tional neural networks and recurrent neural networks are often utilised. In this part, we

will go through some of the existing FER models.

Zhang et al. [49] suggested one of the still image-based approaches on the FER-

2013 Challenge [50], the authors utilised a deep CNN accompanied by a linear one-vs-all

support vector machine (SVM) and obtained good classification accuracy. Yu et al. [51]

suggested an emotion detection module based on an ensemble of several networks, each

with a separate set of weights. Breuer and Kimmel [52] investigated the potential of

DNNs to grasp emotions by evaluating several CNN visualisation methodologies. Jung

et al. [53] improved FER accuracy by employing two separate CNN models. Zhao et al.

[10] defined the deep region using multi-label learning (DRML), which uses feed-forward

networks to understand facial regions and assess structural patterns of the face by forcing

knowledge to be captured by learnt weights. Mollahosseini et al. [54] suggested a network

with two convolutional layers, each with max-pooling, and four Inception layers between

them. The network is a one-component architecture that takes in captured facial images

and categorizes them into six basic expressions along with neutral expressions. The FER
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approach employs neural networks that leverage pre-trained networks, and models are

deployed to save training time. The goal of using these pre-trained networks is to employ

weights that have been developed during training on huge datasets such as Imagenet [33].

Kahou et al. [55] revealed the advantages of using pre-trained networks. It is worth not-

ing that the temporal relationship between image frames in the sequence is critical for

detecting face emotions. Recently, there has been a greater emphasis on methods that

capture spatial–temporal aspects [ [56], [57], [58]]. For video-based expression recognition,

Liu et al. [59] employed a 3D-CNN architecture. They suggested a CNN architecture with

flexible facial action parts model constraints that can learn spatial–temporal properties

as well as locate facial action parts. For FER, Khorrami et al. [60] built a CNN–RNN

architecture. They also looked at how much each network adds to the framework. Jaiswal

et al. [58] proposed a model for obtaining temporal information using a mixture of CNN

and BiLSTM, which outperformed other models in terms of accuracy. Fan et al. [57]

developed a hybrid network that extracted features using a 3DCNN architecture and

then utilised RNN to capture the temporal relationships for FER. According to the pre-

ceding discussion, multiple network integration and CNN–RNN frameworks considerably

increase FER performance. The objective of the proposed work is to learn discrimina-

tive spatial–temporal features, particularly temporal motion context information using

VGG-Face CNN-LSTM based architecture.

6.3 Deep Neural Networks

This section describes the proposed FER model using VGG-Face and LSTM neu-

ral networks. The following topics discuss the implementation and preprocessing steps

involved in designing a spatio-temporal-based FER model.

6.3.1 Implentation of VGG-Face CNN model using transfer learning

Deep CNNs are robust models capable of capturing useful spatial information. Over-

fitting is a difficult problem in machine learning that happens while utilising smaller

datasets. The problem of overfitting is magnified in deep neural networks since they

include millions of parameters through several hidden layers. Using a fine-tuned CNN
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Figure 6.1 Architecture of VGG-Face

model instead of training the CNN model on smaller datasets improves CNN generaliza-

tion. Fine-tuning is a transfer learning strategy that focuses on maintaining and trans-

ferring knowledge gained while solving one problem to a different but related challenge.

Because CNNs are made up of numerous layers and a large number of parameters, using

pre-trained weights derived from larger databases through fine-tuning could help prevent

overfitting. When trained on smaller datasets, CNN models are more likely to catch pat-

terns that are specific to the dataset. Because of this behavior, the model may become

over-fit and difficult to generalize to additional external data. In this work, we employ

the VGG-face mode [141], which yielded state-of-the-art results on the LFW [89] and

YFT [142] databases. As illustrated in Figure 6.1, each convolutional layer is followed by

a rectification layer, and each convolutional block ends with a max pool layer. Since the

VGG- Face was built for face recognition, it can collect crucial low and high-level char-

acteristics on the face. Table 6.1 compares several CNN models and their applications,

and the VGG-Face model was chosen for this work since it has validated its efficiency on

well-established datasets such as Labeled Faces in the Wild and YouTube Faces.

The RGB image may be directly fed into the CNN. The model applies filters to

the image, resulting in feature maps. The kernel (filter) size, number of filters, and kind

of padding are the critical hyper-parameters to consider in CNN. The hyper-parameters

determine the depth of the output feature map. Consider I[j,k] as the input picture, bf

H as the kernel, and O as the output matrix after convolution. The equation ?? gives

a way for determining the size of the image after convolution. CNN employs several

padding methods. CNN’s numerous padding techniques are valid, full, and the same.

Valid-padding reduces the size of the output matrix after convolution. Whereas, the

output matrix has the same size as the input matrix with the same padding. The stride
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Table 6.1 Comparison of popular pretrained CNN models

Model Authors Year Advantages Applications and Datasets tested

AlexNet [86] Krizhevsky et al. 2012

Application of

Rectified Linear Units (ReLUs)

as activation functions

Object Detection

ImageNet [33]

VGG-16,19 [87] Simonyan et al. 2014

Implementation of deeper convolutions

through stacking uniform

convolution layers

Object Detection

ImageNet

VGG-Face [88] Parkhi et al. 2015
Compution of VGG-Face CNN descriptors

that model human faces

Face Recognition

Evaluated on exclusive face related datasets

like Labeled Faces in the Wild [89] and

YouTube faces [142]

Inception V1 [91] Szegedy et al. 2015

Implementation of convolutions with different

kernel size filters through addition of

inception modules

Object Detection

ImageNet

Res-Net 50 [92] Kaiming et al. 2015
Application of skip connections and

Batch normalization

Object Detection

ImageNet

MobileNet Howard et al. 2017
Introducing streamlined architecture that uses

depth-wise separable convolutions

Efficient model

for mobile and embedded vision

applications

Evaluated on ImageNet, Fine Grained Recognition,

Large Scale Geolocalizaton

and Face attributes

approach is another important feature of convolution. The amount of the kernel’s shift

during the convolution processing step is referred to as striding. The kernel moves across

the picture during the convolution process. The stride number specifies the shift’s step

size. We can raise the stride value to lessen the dimensions of the feature map or the

repeated activity. Let n denote the image size, f the filter size, c the colour map depth

(number of channels), p the employed padding, s the stride number, and z the number

of filters. After convolution of the feature maps with the filters, Equation6.1 yields the

resulting feature map dimensions.

O[m,n] = (I ∗H)[m,n] =
∑
j

∑
k

H[j, k]xI[m− j, n− k] (6.1)

[n, n, c] ∗ [f, f, c] = [[
n+ 2p− f

s
+ 1], [

n+ 2p− f
s

+ 1], z] (6.2)

Following the convolution, the feature maps are connected to an activation function.

The Rectified Linear Unit (ReLU) is the most often utilised activation function in com-

puter vision issues. In order to provide non-linearity in the model, ReLU is also inserted
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after the convolutional layer. Following the convolution, a special layer called the pooling

layer is applied, which down-samples the features. The pooling layer decreases the size

of the feature map by reducing the picture while keeping key features at the same time.

The equation for determining the dimensions of feature maps is given in the equation 6.2

CNN pooling techniques that are often used include max-pooling and average-

pooling. To obtain the few most efficient features from an input picture, the convolution-

ReLU-max-pooling blocks are repeated. Finally, the feature maps are converted to 1-

dimension using a flatten layer. VGG-Face, as seen in Figure 6.1, is a popular CNN

model employed in this work.

6.3.2 Frame Aggregation

Precisely assessing per-frame input features does not produce adequate results since

the frame of the subjects may vary in expression intensity. To boost performance, a

frame aggregation scheme is employed. Many approaches for aggregating frames in each

sequence have been proposed. These approaches can be divided into two categories:

decision-level aggregation and feature-level aggregation. The most convenient method in

decision-level aggregation is to simply concatenate the other frames to the input frame

but, the number of frames in each sequence may vary. To construct a fixed-length feature

vector for each sequence, two aggregation procedures have been investigated [143], [144]:

frame averaging and frame expansion.

For feature-level frame aggregation in each sequence, statistical parameters like the

average, max, average of squares, average of maximum suppression vectors, and so on are

calculated for overall frames and are concatenated to the input frame.

In this proposed model we have used decision-level frame expansion since not all

sequences taken from the Oulu CASIA dataset have a fixed number of frames. The Oulu

CASIA NIR dataset has mainly sequences of frames under three lighting conditions (dark,

weak, and normal). In this work, we have considered all the frames from various subjects

under three lighting conditions. The consideration of spatio-temporal features can also

help in designing a robust FER model that handles illumination variations. The number

of frames in each sequence is investigated in the Oulu CASIA dataset. On calculating
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Figure 6.2 Frame Averaging and Frame Expansion of videos [2]

the number of frames in each sequence we have found that the least number of frames

available in a sequence is 9. The highest number of frames available in a sequence is 47

and the mean number of frames in the Oulu CASIA sequences is 22. There can be an

option of frame averaging by making fixed frames of 22 in all sequences but, we have

considered a different method. When we remove frames in certain sequences which have

frames greater than 22 there can be considerable temporal information loss. So to avoid

this we have made 50 frames as a fixed number of frames in all sequences. Since the

maximum frame length is 47, we need to expand the frame length in all the sequences. In

the proposed work, we have stretched the frame length by adding only the last frame of

the sequence till we achieve a frame length of 50. The last frame is added to the input in

all the sequences since it expresses the highest intensity of emotion. The process of frame

aggregation techniques is shown in the figure 6.2

6.3.3 Extraction of VGG-Face based deep convolutional feature vectors

The spatial features in each input frame are obtained using VGG-Face architecture,

the input to the VGG-face consists batch of RGB images of faces displaying expressions

in each sequence. The pixels of the input image are normalized and resized to the size of

(224x224x3). As shown in Figure 6.1, the images are reshaped and given as input to the

VGG-Face model. A sequence of (conv-relu-pool) layers is applied to the input images, and

the resulting feature maps are flattened to generate 2622 parameters. The 2622 features
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Figure 6.3 Architecture of LSTM [4]

are self-learnt features from the VGG-Face. The weights of the VGG-Face are imported

through transfer learning. The weights of the VGG-Face model are imported from the

data provided by the Visual Geometry Group, University of Oxford [88]. The provided

weights from the source are in MatLab format. MatConvNet is a MatLab toolbox for

CNN, and the provided weights are MatLab compatible. In this experiment, the weights

of VGG-Face are converted from MatLab format to Keras compatible using machine

learning libraries. The detailed procedure of conversion is explained by Sefik [101]. The

spatial features are extracted using VGG-face and now the temporal information in these

features needs to be investigated.

6.3.4 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) is a kind of Recurrent Neural Network that is

particularly intended to keep the neural network output for a given input from declining

as it passes through the feedback loops. These recurrent networks outperform other neural

networks in pattern recognition, especially in time-series-related tasks. The memory of

previous input is crucial for completing sequence learning problems, and long short-term

memory networks outperform other RNN designs by addressing the vanishing gradient

problem. The fundamental LSTM unit is made up of a storage unit and three control

gates. The figure 6.3 depicts the structural unit of a LSTM cell.
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The three control gates and a memory unit structure are described in detail below.

1. Input gate: LSTM’s input consists of Ht−1 and Xt, where Ht−1 is the prior time’s

hidden state and Xt is the recently received data at the present time..

It = σ (XtWxi +Ht−1Whi + bi) (6.3)

2. Forget gate: The forgetting gate regulates the forgetting of the present node’s past

information. It may choose the network-remembered information and trigger the

function through a sigmoid. This allows for the removal of superfluous and duplicate

historical data. If the function’s result is near 1, it signifies that the memory’s

information value is greater than prior data, and it will try to retain the present

information value for the following step. If the function value is near zero, it is

demonstrated that the memory information value is less than the prior value, and

it will discard the majority of the memory information.

Ft = σ (XtWxf +Ht−1Whf + bf ) (6.4)

3. Output gate: The gate primarily regulates the data output of nodes. If the node

information reflects the critical feature, the output effect will be boosted, if it does

not represent the critical feature, the output information will be lowered. Mean-

while, it may identify the output of the previous memory update to influence the

magnitude of the next information output.

Ot = σ (XtWxo +Ht−1Who + bo) (6.5)

4. Memory cells: The goal of these memory cells is to save state information, i.e. to

keep long-term historical data. Candidate memory cells must be estimated first in

the initial stage. The computation procedure is identical to that of the previous

three gates. The distinction is that the tanh function which has a range in [-1,1]

is employed as an activation function. The below formula is the procedure for

calculating candidate memory cells at time step t. The flow of information in the

hidden state is then regulated by the input gate, forget gate, and output gate. The
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computation of the present time step memory cell incorporates upper time step

information and the present state memory cell. The calculation of current time step

memory involves both memory cell and current time step candidate memory cell

which are regulated through the forgetting gate and input gate present.

C̃t = tanh (XtWxc +Ht−1Whc + bc) (6.6)

Ct = Ft ⊗ Ct−1 + It ⊗ C̃t (6.7)

6.4 Design of Spatio-Temporal Deep Convolutional RNN FER

model

The proposed model is designed using VGG-Face and LSTM which are discussed in

previous sections. The initial module of the model does frame length expansion to tackle

the frame imbalance issue. After the frame aggregation process, the length of all sequences

is changed to 50. The obtained frames are pre-processed which includes operations like

face detection, reshaping, pixel normalization, and resizing. In the next module of the

proposed model, the spatial features of all the frames (collection of 50 frames) in the

given sequence are derived through the VGG-face CNN. The filter weights are loaded

from pre-trained model weights through transfer learning. The weights of the VGG-Face

are frozen and not trained because it already possesses rich discriminative features for

detecting facial traits as it has been extensively trained on face-related datasets. The

feature maps obtained from VGG-Face are shown in the figures 6.9 The application of

VGG-Face on each frame results in forming 2622 deep learnt features. So from each

frame, we obtain 2622 deep features and for each sequence, we obtain 13100 (2622*50)

deep features. The important facial features are now obtained using VGG-Face and now

it is necessary to investigate the temporal information in these consecutive deep learned

feature vectors. We have implemented a 3000 LSTM cell sequence in the next layer. The

following layers after the LSTM layer include dense and dropout layers. The final 256

features from the LSTM are connected with 256 spatial features taken from the last time
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Figure 6.4 Architecture of proposed Spatio-Temporal FER model using VGG-Face and LSTM
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Figure 6.5 Anger, disgust, fear, happiness, sadness, surprise images of one person from Oulu

CASIA NIR facial expression database [5], [6]

frame (50th time frame). The addition of spatial features of the recent time frame to the

temporal feature vector helps the model in recognizing recent facial expression variations

which help in recognizing emotions. The final part of the architecture is connected with

a softmax layer of 6 outputs. The designed FER model is capable of classifying facial

expressions into six emotions. Angry, disgust, fear, happy, sad, and surprise are the six

emotions that the designed FER model in this work can identify.

6.5 Datasets

Oulu-CASIA NIR and VIS facial expression database : The Oulu-CASIA

NIR and VIS facial expression database has 80 participants aged 23 to 58 years old, with

six expressions (surprise, happiness, sadness, anger, fear, and disgust). The six expressions

of one subject are shown in the figure 6.5. The dataset contains 73.8 percent of the total

subjects as male. The entire database is divided into two sections, one of which was shot

in Oulu by the Machine Vision Group of the Oulu University which has 50 students, the

majority of them are Finnish people. The other was taken in Beijing by the National

Chinese Academy of Sciences, Pattern Recognition Laboratory consisting of 30 persons,

all of whom are Chinese. The subjects were requested to sit on a chair in the observation

room in such a way that he/she could see the camera. The camera-to-face distance is

around 60 cm. All expressions are taken under three distinct lighting conditions. Normal,

weak, and dark environments Normal lighting implies that there is enough illumination.

Weak lighting indicates that just the computer display is turned on, and the individual is

seated in front of the computer on a chair. Dark illumination denotes near total darkness.

The figure 6.6 shows how effectively face characteristics like wrinkles and furrows may

be observed in NIR and VIS pictures. The images show in the figure represent the same
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Figure 6.6 Comparison of NIR (left) and VIS image from Oulu CASIA [5]

frame from the image sequence. The contours of the facial features are clearly outlined in

NIR image when compared with VIS image. There are no dark corners in the NIR image.

However, certain dark patches induced by self-occlusion may be seen in the VIS image.

In the proposed work we have considered all the images from three different illumina-

tion variations of NIR images. The total number of sequences present in each illumination

variation is 80 so, we have obtained a total of 240 sequences of 80 subjects taken under

three distinct lighting conditions. The major issue in the dataset is the frame length

imbalance observed in all the sequences. On calculating the number of frames in each

sequence we have found that the least number of frames available in a sequence is 9. The

highest number of frames available in a sequence is 47 and the mean number of frames

is 22. This imbalance issue is solved using the frame expansion technique as discussed

in the previous section. After the process of frame aggregation, the number of frames

in all sequences is 50. The total number of images considered in the proposed work is

12000 (Number of sequences in each illumination variant x Total number of illumination

variants x Number of frames present in all the sequences = 80x3x50). We have considered

subject independent classification which means the entire frames belonging to a sequence

of a subject will be either in the training fold or testing fold. We have implemented a

ten-fold cross-validation scheme to calculate the accuracy of the model.
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Figure 6.7 Lower-level feature-maps of CNN extracting minor details of facial characteristics

like lines, curves, and dots

Figure 6.8 Lower-mid level feature-maps of CNN extracting basic facial details at important

landmark points

Figure 6.9 Higher-mid level CNN feature-maps detecting facial texture and patterns at eyes,

nose, and mouth
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6.6 Results and Discussion

6.6.1 Training the proposed FER model with facial expression datasets

We trained up the FER model with Google’s Colaboratory (colab). Google Colab

provides Nvidia 1xTesla K80 GPU with 2496 CUDA cores. Colab provides 12GB of

GDDR5 VRAM. Colab also provides a single-core hyper-threaded Xeon Processor with a

clock speed of 2.3GHz.The procedures for preprocessing the input frames are discussed as

in the prior segment. Keras deep learning framework is used to create the deep neural

network architecture. In this model, an error function called categorical cross-entropy

is applied. The formula for calculating categorical loss is given in equation 6.9. In this

experiment, we utilised the ADAM [103] optimizer since it integrates the impacts of the

RMSProp [104] (the capacity to cope with non-stationary objectives) and ADAGrad [105]

optimizers (the ability to deal with sparse gradients). Individual adaptive learning rates

for various parameters are determined in ADAM using estimations of the gradient’s first

and second moments. ADAM has several benefits, including the fact that the magnitudes

of parameter updates are invariant to gradient rescaling, that the stepsizes are controlled

by the step-size hyperparameter, and that it does not need a stationary objective. The

authors also explored the efficacy of ADAM in multi-layer neural networks and deep CNNs.

The studies presented in the work demonstrate that ADAM is stable and well-suited to

a wide range of non-convex optimization problems in machine learning. Table 6.2 shows

the equations and other parameters utilised by the ADAM optimizer. The softmax layer

at the bottom of the proposed model generates the predicted emotion values for all input

images. The softmax layer is a function that converts randomly generated data into a

suitably ordered probability distribution. The Softmax layer function’s output differs from

(0,1). There are six classes in the proposed FER model. Let us consider ti and yi be the

target and the softmax score of the ith class of a sample. The softmax activation function

is explained by equation 6.8, for each class i, there exists a softmax score according to

equation 6.8. The class with the highest softmax score is predicted as the output class of

the respective sample.

Softmax score for each class i= 1 to 6 : f(y)i =
eyi∑N=6
j eyj

(6.8)
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Figure 6.10 The confusion matrix plots of fine-tuned VGG-Face model on Oulu-CASIA dataset

Figure 6.11 The Accuracy vs Epochs (left) and Categorical cross entropy loss vs Epochs

(right) plots during the training (10-fold cross-validation) of Oulu-CASIA dataset on the fine

tuned VGG-Face FER model
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Figure 6.12 Comparison of Precision, Recall, and F1- score information of the fine-tuned VGG-

Face model on NIR Oulu CASIA dataset

Figure 6.13 Comparison of Precision, Recall, and F1- score information of the proposed spatio

temporal model on NIR Oulu CASIA dataset
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Figure 6.14 The Accuracy vs Epochs (left) and Categorical cross-entropy loss vs Epochs (right)

plots during the training (10-fold cross-validation) of Oulu-CASIA dataset on the proposed

Spatio-temporal VGG-face RNN based FER model

Categorical Cross entropy error : −
N=6∑
i=1

tilog(yi) (6.9)

The below equations explain the procedure to update weights using the ADAM optimizer.

Table 6.2 explains the values of the parameters used in ADAM :

θt+1 = θt − η·m̂t√
v̂t+ε

where

m̂t =
mt

1− βt1
, v̂t =

vt
1− βt2

and where

mt = (1− β1)gt + β1mt−1

vt = (1− β2)g2t + β2vt−1

g(gradient) = ∇J(θt,i)

The sum of all outputs from the softmax layer equals one. In Multi-Class classifica-

tion problems, the targets are one-hot encoded, making only the positive class appear in

the categorical loss function.
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Figure 6.15 The normalized confusion matrix plots of the proposed Spatio-temporal FER

model on Oulu-CASIA test data
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Parameter Value chosen Role in ADAM

Epsilon ,ε 10−8 preventing division by zero

Learning rate,η 0.001 step size in each iteration

First momentum,β1 0.9 speed of convergence

Second momentum,β2 0.99 speed of convergence

Table 6.2 Values of different parameters used in the ADAM optimizer

Table 6.3 Comparison of accuracy rates of three models on Oulu-CASIA dataset

Model Dataset Accuracy(10-fold cross-validation) Method
Number of Frames

in each Sequence

Fine-tuned

VGG-Face CNN
Oulu-CASIA 74.3% 10-fold-cross-validation 1 (last frame)

Spatio-temporal

VGG-Face and LSTM

model

Oulu-CASIA 78.3% 10-fold-cross-validation
5 frames

(Frame Skipping)

Spatio-temporal

VGG-Face and LSTM

model

Oulu-CASIA 85.6% 10-fold-cross-validation
50 frames

(Frame aggregation)

6.6.2 Classification Metrics

The model’s essential evaluation metrics discussed in this work are accuracy, preci-

sion, recall, and F1 score. Let TP represents True Positives, FP represents False Positives,

FN represents False Negatives, and FP represents False Positives.

1. Accuracy: Accuracy (Acc) is useful for evaluating model efficiency. However, when

there is a class imbalance problem, it is essential to consider other critical metrics,

such as precision and recall.

Acc =
TP + TN

TP + FN + TN + FP
(6.10)

2. Precision: Precision (P) underlines the ability of the model to select the class of

choice. P is based on TP and FP. False Positives are the number of predictions that

the model misclassifies as positive when the true label is negative.

P =
TP

TP + FP
(6.11)
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Table 6.4 Comparison of classification accuracy rates of the proposed Spatio-Temporal Feature-

based VGG-Face LSTM model using 10-fold-cross-validation scheme

Author Methodology
Number of

classes
Illumination Type Accuracy

Validation

Method

Zhao et al. [145]
LBP-TOP descriptors and

support vector machine
6

Average of three

(Normal, Weak, and Dark)
69.5% 10-fold-Cross-Validation

Zhao et al. [145]
LBP-TOP descriptors and

sparse representation classifier
6

Average of three

(Normal, Weak, and Dark)
74.11% 10-fold-Cross-Validation

Wu et al. [6]
Three-Stream 3D Convolutional

Neural Network
6

Dark illumination

condition.
78.42% 10-fold-Cross-Validation

Chen et al. [146]

Three-Stream Convolutional Neural Network

with Squeeze and Excitation block

SETFNET and SETFNET global

6
Dark illumination

condition.

80.34%

81.67%
10-fold-Cross-Validation

Jung et al. [147]
Deep Temporal Geometry Network

Deep Temporal Appearance network
6 Normal illumination

74.17%

74.38%
10-fold-Cross-Validation

Jung et al. [147]
Deep temporal Appearance-

geometry network (DTAGN) Weighted
6 Normal illumination 80.62% 10-fold-Cross-Validation

Jung et al. [147] DTAGN(Joint) 6 Normal illumination 81.46% 10-fold-Cross-Validation

Jeni et al. [148]

precise 3D shape registration +

Constrained Local Models (CLM) +

Multi-class SVM

6
Average of three

(Normal, Weak, and Dark)
69.25% 10-fold-Cross-Validation

Our Proposed

model

VGG-Face based

Spatio-temporal Deep Neural Network
6

Average of three

(Normal, Weak, and Dark)
85.6% 10-fold-Cross-Validation

3. Recall: Recall (R) is the other classification metric that conveys the ability of the

model to predict all classes of interest in the dataset. R is based on TP and FN.

FN is the number of predictions that the model misclassifies as negative when the

true label is positive.

R =
TP

TP + FN
(6.12)

4. F1 Score: Good precision and recall must be preserved for every model. A good

classifier aims to choose the correct class without any error (precision) and, at

the same time, to choose as many correct classes as possible (recall). A successful

trade-off between precision and recall must be preserved. The F1 score offers a good

combination of two measures of recall and precision. The F1 score is the harmonic

mean of recall and precision.

F1 Score = 2 ∗ P ∗R
P +R

(6.13)
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6.6.3 Comparison of the proposed model with other popular FER models

The proposed model is compared with other popular FER models that classify emo-

tions from infrared videos. The comparison involves discussing the important parameters

such as the illumination method considered, validation scheme, and chosen methodology.

The table 6.4 explains the comparison of the proposed model with other prominent FER

models. Zhao et al. [145] have used the handcrafted local binary pattern to extract fea-

tures from the images. The method achieves an average accuracy of 69% and 74.11% using

SVM and SRC classifiers respectively on three illumination methods. Jung et al. [147]

have achieved an accuracy of 81.46% on the normal illumination method using a 10-fold-

cross-validation scheme. Compared with other models, our proposed model outperforms

in terms of accuracy by eliminating intra-class correlation by fusing spatial and temporal

features.

6.7 Conclusion

The proposed FER model in this work extracts crucial patterns of facial expressions

by fusing spatial and temporal features. The designed architecture takes frame aggregated

sequences as input and utilizes transfer learning to import rich discriminative filter weights

of the VGG-Face model. The obtained spatial features of each frame are concatenated and

sent as input to an LSTM model. The LSTM model derives important temporal features

in the sequence. The resultant 256 features are concatenated with the spatial features of

the recent time frame. The final layer has a softmax layer of six classes which classifies

six emotions. The comparison of classification metrics shows that the proposed model

discriminates emotions better than a conventional CNN model. The results also conclude

the proposed model outperforms other important FER models in terms of classification

accuracy rate using a 10-fold-cross-validation scheme.



Chapter 7

Conclusions and Future Scope

This chapter concludes the thesis by underlining the main contributions. It also

presents the possible directions of future work.

7.1 Conclusions

In the first contribution of the research work the classification of facial expressions

using FACS and LogicMax has improved the accuracy rate of the FER by decreasing the

influence of intra-class correlation of facial expressions. The performance of the model

outperforms other state-of-the-art techniques in terms of various classification parameters

on CK+ and Jaffe datasets. This work improves the precision of classifying emotions

like Happiness, Disgust, and surprise by implementing a dual CNN architecture with

logicMax. The dual CNN architectures are trained to classify facial expressions in upper

and lower face regions. The LogicMax analyzes the predicted emotions found on the upper

and lower face and decides the final class by selecting the most appropriate emotion. The

proposed work can be extended by using other correlation methods on action units.

The second contribution in the thesis represents the use of multi-feature fusion

design. The proposed FER model extracts crucial patterns of facial expressions using a

combination of HOG and CNN features. Compared to a conventional convolutional neural

network, the proposed FER model has a better discriminating ability in classifying similar

emotions. In a traditional convolutional neural network, emotions like anger are strongly

correlated with other emotions like neutral and sadness. The faces displaying emotions



Conclusions & Future Scope 124

like surprise are also often misclassified as fear by the CNN model. The proposed model

succeeds in classifying similar emotions, which is a main drawback of the CNN model.

The fusion of two different and complex features has shown faster categorical entropy loss

convergence. The proposed hybrid model has reached good validation accuracy within

a few epochs of training. The classification metrics like precision, recall, and f1-score

convey that the proposed model has significantly improved discriminating expressions of

sleepy and sadness on the Yale-Face dataset. The comparison of classification metrics and

normalized confusion matrices show that the proposed FER model outperforms the other

existing models in classifying facial expressions on the CK+, Yale-Face, and KDEF facial

expression datasets. The proposed FER model has achieved accuracy scores of 98.11%,

97.84%, and 96.67% on CK+, KDEF, and Yale-face facial expression databases using the

10-fold-cross-validation process.

The third contribution in the thesis represents a novel SternNet model. The authors

have designed a novel FER model known as SternNet that imparts stern rules in classifying

facial emotions. The important aspect of this work is to improve classification efficiency by

understanding the knowledge of rank of confidence. The rank of confidence measures how

accurate is the prediction made by the FER model. The knowledge of rank of confidence

makes the designers think about the credibility of the classification model. The proposed

SternNet segregates the samples according to confidence and implements a two-stage

methodology to predict subject-independent facial expressions. Combining human logical

decisions in AI improves accuracy and also adds confidence to the prediction. SternNet can

also be improved by adding more facial regions in stage-1 but it can also make the model

more complex. The classification metrics noted in SternNet outperform existing FER

models and also performed better than the conventional convolutional neural networks

like VGG16.

The three contributions are modeled for static images and in the fourth contribution,

we have used the dynamic frame model which takes an image sequence as input to the

FER model. In the design, the model extracts crucial patterns of facial expressions by

fusing spatial and temporal features. The designed architecture takes frame aggregated

sequences as input and utilizes transfer learning to import rich discriminative filter weights

of VGG-Face model. The obtained spatial features of each frame in the sequence are
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concatenated and given as input to the LSTM model to comprehend the temporal features.

The LSTM model derives important temporal features in the sequence. The resultant

256 features given by the LSTM branch are concatenated with the spatial features of the

recent time frame (last frame of the sequence). The final layer has a softmax layer of six

classes which classifies six emotions. The model is validated on Oulu CASIA Near Infrared

Region sequence dataset on three illumination variations (normal, Weak and dark). The

comparison of classification metrics shows that the proposed model discriminates emotions

better than a conventional CNN model. The results also conclude the proposed model

outperforms other important FER models in terms of classification accuracy rate using a

10-fold-cross-validation scheme and also shows good accuracy in low light scenarios.

7.2 Future Scope

The work proposed in this thesis can be extended for future research. The FER

models also face issues in the pose angles of the faces. If the DNN models are trained

on facial datasets that contain only frontal/posed faces, it is difficult to generalize faces

on other multi-view facial expressions recognition. This problem can be solved using

GANs where, the GAN-based FER models can predict even for multi-view FER. In future

applications, we try to solve the ill-posed problem and address the serious view-based

distortion encountered by the FER models. The next scope of the proposed FER models

is to add the multi-head Attention modules. The concept of the transformer model is

currently implemented on the image level through Vision Transformers which can further

boost the accuracy rates of FER models. In the future, we can also add extra attention

modules to improve the classification efficiency of the proposed models.
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P. Vincent, A. Courville, Y. Bengio, R. C. Ferrari et al., “Combining modality

specific deep neural networks for emotion recognition in video,” in Proceedings of

the 15th ACM on International conference on multimodal interaction. ACM, 2013,

pp. 543–550.

[17] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach

for deep face recognition,” in European conference on computer vision. Springer,

2016, pp. 499–515.

[18] J. Cai, Z. Meng, A. S. Khan, Z. Li, J. O’Reilly, and Y. Tong, “Island loss for

learning discriminative features in facial expression recognition,” in 2018 13th IEEE

International Conference on Automatic Face & Gesture Recognition (FG 2018).

IEEE, 2018, pp. 302–309.



Bibliography 129

[19] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face

recognition and clustering,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 815–823.

[20] S. E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, Ç. Gülçehre, R. Memisevic,
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[97] D. Lundqvist and A. Flykt, “A. öhman, the karolinska directed emotional faces

(kdef),” CD ROM from Department of Clinical Neuroscience, Psychology section,

Karolinska Institutet, vol. 91, no. 630, pp. 2–2, 1998.

[98] M. Lyons, S. Akamatsu, M. Kamachi, and J. . Gyoba, “April). coding facial expres-

sions with gabor wavelets,” in Proceedings Third IEEE international conference on

automatic face and gesture recognition. IEEE, pp. 200–205.

[99] A. Martinez and R. Benavente, “The ar face database, cvc,” Copyright of Informat-

ica (0, vol. 3505, p. 596, 1998.

[100] P. Viola and M. . Jones, “December). rapid object detection using a boosted cascade

of simple features,” in Proceedings of the 2001 IEEE computer society conference

on computer vision and pattern recognition. pp. I-I). Ieee: CVPR(Vol. 1, 2001.

[101] S. I. Serengil, “Matlab to keras conversion of weights,”

https://sefiks.com/2019/07/15/how-to-convert-matlab-models-to-keras/, 2020.

[102] P. Ekman, W. Friesen, and J. Hager, Facial action coding system: Research nexus

network research information. UT: Salt Lake City, 2002.

[103] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization. arxiv,”

2014, preprint.



Bibliography 138

[104] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop, coursera: Neural networks for

machine learning,” 2012, university of Toronto, Technical Report.

[105] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learn-

ing and stochastic optimization,” Journal of machine learning research, vol. 12, p. 7,

2011.

[106] S. Xie and H. Hu, “Facial expression recognition using hierarchical features with

deep comprehensive multipatches aggregation convolutional neural networks,” IEEE

Transactions on Multimedia, vol. 21, no. 1, pp. 211–220, 2018.

[107] J. C. Platt, N. Cristianini, and J. . Shawe-Taylor, “November),” Large margin dags

for multiclass classification, vol. 12, pp. 547–553.

[108] C. Shan, S. Gong, and P. W. . McOwan, “September). robust facial expression

recognition using local binary patterns,” in Conference on Image Processing(Vol,

I. International, Ed. pp. II-370). IEEE: 2, 2005.

[109] J. H. Friedman, “Another approach to polychotomous classification,” 1996, techni-

cal Report, Statistics Department, Stanford University.

[110] G. P. Hegde and M. Seetha, “Subspace based expression recognition using combi-

national gabor based feature fusion,” International Journal of Image, Graphics and

Signal Processing, vol. 9, p. 1, 2017.

[111] S. Nigam, R. Singh, and A. K. Misra, “Efficient facial expression recognition using

histogram of oriented gradients in wavelet domain,” Multimedia tools and applica-

tions, vol. 77, no. 21, pp. 28 725–28 747, 2018.

[112] S. Xie and H. Hu, “Facial expression recognition using hierarchical features with

deep comprehensive multipatches aggregation convolutional neural networks,” IEEE

Transactions on Multimedia, vol. 21, no. 1, pp. 211–220, 2018.

[113] L. Nwosu, H. Wang, J. Lu, I. Unwala, X. Yang, and T. Zhang, “Deep con-

volutional neural network for facial expression recognition using facial parts,”

2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing,

15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big



Bibliography 139

Data Intelligence and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech), IEEE, pp. 1318–1321, 2017.

[114] S. V. Y. R. Ravi and R. Prithviraj, “A face expression recognition using cnn and

lbp,” IEEE 2020 Fourth International Conference on Computing Methodologies and

Communication (ICCMC), 2020.

[115] H. Alshamsi, V. Kepuska, and H. Meng, “Real time automated facial expression

recognition app development on smart phones,” 8th IEEE Annual Information

Technology, Electronics and Mobile Communication Conference (IEMCON), pp.

384–392, 2017.

[116] M. R. Koujan, L. Alharbawee, G. Giannakakis, N. Pugeault, and R.-t. Roussos,

“Facial expression recognition in the wild by disentangling 3d expression from iden-

tity,” arXiv, type = preprint, archivePrefix = arXiv, eprint = 2005.05509, Tech.

Rep., 2020.

[117] R. Melaugh, N. Siddique, S. Coleman, and P. Yogarajah, “Facial expression recog-

nition on partial facial sections,” in 11th International Symposium on Image and

Signal Processing and Analysis. p, 2019, pp. 193–197.
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