
Video Compression Algorithms using Machine

Learning Approach for Encoding Time Reduction in

HEVC

Submitted in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

by

Sanagavarapu Karthik Sairam
(Roll No: 718041)

Under the supervision of

Dr. P. Muralidhar

(Associate Professor)

Department of Electronics & Communication Engineering

National Institute of Technology Warangal

Telangana, India - 506004

2022

Dedicated

To

My Family,

Teachers & Friends

i

Approval Sheet

This thesis entitled Video Compression Algorithms using Machine Learning Ap-

proach for Encoding Time Reduction in HEVC by Sanagavarapu Karthik

Sairam is approved for the degree of Doctor of Philosophy.

Examiners

Research Supervisor

Dr. P. Muralidhar

Department of ECE

NIT Warangal, India-506004

Chairman & Head

Prof. P. Sreehari Rao

Department of ECE

NIT Warangal, India-506004

Place:

Date:

Declaration

This is to certify that the work presented in this thesis entitledVideo Compression

Algorithms using Machine Learning Approach for Encoding Time Reduction

in HEVC is a bonafied work done by me under the supervision of Dr. P. Muralidhar

and was not submitted elsewhere for the award of any degree.

I declare that this written submission represents my own ideas and even considered

others ideas which are adequately cited and further referenced the original sources. I

understand that any violation of the above will cause disciplinary action by the institute

and can also evoke panel action from the sources or from whom proper permission has not

been taken when needed. I also declare that I have adhered to all principles of academic

honesty and integrity and have not misrepresented or fabricated or falsified any idea or

data or fact or source in my submission.

Place:

Date:

Sanagavarapu Karthik Sairam

Research Scholar

Roll No.: 718041

NATIONAL INSTITUTE OF TECHNOLOGY

WARANGAL, INDIA-506004

Department of Electronics & Communication Engineering

CERTIFICATE

This is to certify that the thesis work entitled Video Compression Algorithms us-

ing Machine Learning Approach for Encoding Time Reduction in HEVC is a

bonafide record of work carried out by Sanagavarapu Karthik Sairam submitted to

the faculty of Electronics & Communication Engineering department, in partial

fulfilment of the requirements for the award of the degree of Doctor of Philosophy in

Electronics and Communication Engineering, National Institute of Technol-

ogy Warangal, India-506004. The contributions embodied in this thesis have not been

submitted to any other university or institute for the award of any degree.

Place:

Date:

Dr. P. Muralidhar

Research Supervisor

Associate Professor

Department of ECE

NIT Warangal, India-506 004.

Acknowledgements

First, I take immense pleasure to convey my sincere gratitude to my supervisor

Dr. P. Muralidhar for his perpetual encouragement and supervision. His guidance has

oriented me in a proper direction and supported me with promptness and care.

I am also grateful to Prof. P. Sreehari Rao, Head, Department of ECE, for his

invaluable assistance and suggestions that he shared during my research tenure.

I take this privilege to thank all my Doctoral Scrutiny Committee members Prof.

C. B. Rama Rao, Prof. P. Sreehari Rao, and Prof. J. V. Ramana Murthy (Dept. of

Mathematics) for their detailed review, constructive suggestions, and excellent advice

during the progress of this research work. I would like to extend my thanks to Prof.

T. Kishore Kumar, Prof. N. Bheema Rao and Prof. L. Anjaneyulu for the insightful

comments and encouragement. I would also like to thank all the faculty of Dept. of ECE

who helped me during the course.

I would like to convey my sincere gratitute to P. Raveendra, J. Nandini, Y. Rama

Muni Reddy, J. Ashish, Dr. K. Krishna Reddy and C. Jayaram for thier invaluable

guidance and support. I would also like to extend my heartfelt appreciation to my family,

colleague scholars, friends, and well-wishers who helped to write my thesis with their

support. Finally, I thank my nation India, for giving me the opportunity to carry out my

research work at the NIT Warangal. A special thanks to MHRD for its financial support.

Sanagavarapu Karthik Sairam

Abstract

High-definition (HD) and ultra HD videos have recently become a prerequisite for

applications such as security cameras, television systems, etc. However, the density of

visual data grows dramatically due to the increase in video resolution, making it difficult

to store, transmit, and process HD video data. This leads to the development of the High

Efficiency Video Coding (HEVC) standard. The HEVC compresses video sequences with

50% less bitrate than the H.264 standard. The high efficiency in HEVC is achieved mainly

due to the advanced quad-tree structure and motion estimation. Motion estimation helps

to determine the motion vectors, and the quad-tree structure is obtained by recursively

splitting the largest Coding Tree Unit (CTU) until it reaches the smallest size.

The motion estimation process increases the encoding time. In addition, the search

pattern used in the motion estimation process may get trapped to local minima resulting

in inaccurate motion vectors. Moreover, HEVC uses Rate-Distortion Optimization (RDO)

search process to determine the optimal partitions in the CTU. The CTU quad-tree struc-

ture improves efficiency at the cost of high computational complexity. The complexity is

due to splitting 64×64 CTU into 85 coding units at four depths, namely depths 0, 1, 2,

and 3, and verifying the Rate-Distortion cost of each CU from bottom to top. This pro-

cess increases the encoding time. This thesis concentrates on reducing the encoding time

of the encoder by accelerating the motion estimation process and predicting the optimal

CTU partitions using a machine learning approach.

In this thesis, the first work concentrates on reducing the computational complexity

of the motion estimation process using the Multi-Level Resolution Vertical Subsampling

(MLRVS) algorithm. The MLRVS algorithm is a motion estimation approach that helps

to accelerate the motion vector calculation process. This algorithm uses three different

resolution frames, which are created using the Vertical Subsampling process. Vertical

Subsampling minimizes the Sum of Absolute Difference (SAD) computations by consider-

ing only even rows in the frame. The search operation using search patterns is performed

Abstract

in three frames, starting at the lowest resolution frame and ending at the original frame,

to determine the global minima. The complexity reduction algorithm is also proposed to

determine the skip mode early, which decreases the encoding time. Two distinct search

patterns are suggested to reduce the time needed to locate the motion vectors.

In addition to the motion estimation algorithm, the second work emphasizes re-

ducing the complexity of the conventional RDO search process by using a Convolutional

Neural Network (CNN). The CNN is trained using the CU depth data derived from the

HM reference software to predict the Coding Unit (CU) size. Supervised learning is per-

formed by giving the luminance CTU as an input and the CU depth as the output. Based

on the output (0 or 1), the decision to split the CU is chosen during the testing operation.

After determining the CU size, the motion estimation is performed for each partition using

the Multi-Resolution frame with the Cross Diamond Octagonal search pattern (MRCDO).

Besides, the CDO search pattern is used to speed up the motion vector calculation.

The CNN targets the spatial features of the image. The accuracy of the model for

the video data can be increased using spatial and temporal features. Hence, the third

work focus on reducing the computational complexity in Scalable HEVC (SHVC) by us-

ing the Early Terminated CNN (ET-CNN) and Early Terminated Long- and Short-Term

Memory (ET-LSTM) approach. SHVC is the extension of HEVC that allows the same

video encoding into various video resolutions, qualities, or frame rates. We designed

the ET-LSTM network that predicts the CU partition by taking the output features of

the ET-CNN. Using the CU depth training data, the ET-CNN learns the CU partitions

from the residual Coding Tree Unit (CTU). In addition, Horizontal Subsampling Motion

Estimation (HSME) method is proposed to find accurate motion vectors with reduced

complexity.

The fourth work utilizes the previous work scalable HEVC using ET-CNN and ET-

LSTM to encode the Region of Interest (ROI) for surgical telementoring application. The

surgical telementoring system transmits the video with high quality and less bit rate. The

transmission of high-quality video with less bitrate is very difficult to achieve. Hence, the

Region of Interest (ROI), i.e., the surgical incision region in the frame, is transmitted

with high quality, and the rest of the frame is transmitted with very low quality. We

proposed segmenting the surgical incision region using the Kernelized Correlation Filter

(KCF) object tracking technique. The KCF tracker uses a correlation filter for training,

Abstract

detection, and ROI tracking. Then the complexity-efficient SHVC encodes the segmented

region to meet the resolution of an end-user device.

The last work deals with the region-based motion estimation using YOLOv4 and

the next frame prediction using the Neural Network. Initially, YOLOv4 is trained using

the labeled data of the frame. The labeled data represents the different regions in the

frame. After training, the bounding box of each region in the test video sequence frames is

detected using YOLOv4. Then the bounding box coordinates of each region are derived,

and the centroid point of each bounding box is calculated. The motion vector of each

region in the current frame is given using the centroid point of the corresponding region in

the previous frame. This approach considerably minimizes the computational complexity

of the HEVC motion estimation process.

During the next frame prediction process, the neural network is trained with the

first five frames of the sequence as an input and the sixth frame as the output. The neural

network uses layers such as Reshape, Permute, Lambda, Gaussian Noise, Upsampling2D,

and ConvLSTM2D layers to predict the sixth frame. The images of size 96×96 with batch

size 32 are given as input. Adam optimizer and the Mean Square Error loss function are

used during training. The perceptual distance is used to determine the similarity between

the frames. The results show that the proposed approach can efficiently predict the sixth

frame.

The proposed approaches in this thesis significantly decrease the encoding time with

minor degradation in quality.

Contents

Declaration iii

Acknowledgements v

Abstract vi

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

1.1 Introduction . 1

1.2 HEVC standard . 2

1.2.1 Coding Tree Unit (CTU) . 4

1.2.2 Prediction Unit (PU) . 4

1.2.3 Transform Unit (TU) . 9

1.2.4 Quantization . 10

1.2.5 SAO filter and Entropy coding . 11

1.3 Color space representation in HEVC . 11

1.4 Motivation . 12

ix

Contents x

1.5 Problem statement . 13

1.6 Research objectives . 13

1.7 Thesis Organization . 13

2 Review of Literature 15

2.1 Introduction . 15

2.1.1 Related work on Motion Estimation 15

2.1.2 Related work on CU size decision in HEVC 19

2.1.3 Related work on CU size prediction in SHVC 22

3 Multi-Level Resolution Vertical Subsampling and Early Skip Mode De-

tection Algorithm 25

3.1 Introduction . 25

3.2 Overview of motion estimation process during inter prediction in HEVC . . 26

3.2.1 TZ search algorithm . 28

3.2.2 Median calculation in HEVC . 29

3.3 Proposed Work . 29

3.3.1 MLRVS algorithm . 30

3.3.2 Complexity reduction algorithm . 32

3.3.3 Search Patterns . 34

3.4 Experimental Results . 36

3.5 Conclusions . 40

4 Fast Convolutional Neural Network based Coding Unit Size Prediction

in HEVC 41

4.1 Introduction . 41

4.2 Rate-Distortion Optimization (RDO) search process in HEVC 43

Contents xi

4.3 Proposed work . 45

4.3.1 MRCDO search method . 45

4.3.2 CU size prediction using CNN . 46

4.4 Experimental Results . 50

4.5 Conclusions . 53

5 CU Size Prediction in Scalable Video Coding using CNN-LSTM 56

5.1 Introduction . 56

5.2 Proposed Work . 58

5.2.1 Horizontal Subsampling Motion Estimation (HSME) 58

5.2.2 Temporal correlation between frames 59

5.2.3 ET-CNN structure . 60

5.2.4 ET- LSTM design . 62

5.3 Experimental Results . 65

5.4 Conclusions . 73

6 Surgical Incision Region Encoding using Scalable High Efficiency Video

Coding 74

6.1 Introduction . 74

6.2 Background Work . 76

6.3 Proposed Method . 77

6.3.1 Analysis of Correlation between Frames 78

6.3.2 ROI Tracking using KCF Tracker 79

6.3.3 FFmpeg . 83

6.4 Experimental Results . 84

6.5 Conclusions . 88

Contents xii

7 Region-Based Motion Estimation and Next-Frame Prediction using Deep

Neural Network 89

7.1 Introduction . 89

7.2 Proposed Work . 92

7.2.1 Region-based motion estimation using YOLOv4 92

7.2.2 Next-frame prediction using Recurrent Neural Network 94

7.3 Experimental Results . 96

7.3.1 Experimental analysis of region-based motion estimation 96

7.3.2 Experimental analysis of next-frame prediction model 100

7.4 Conclusions . 104

8 Conclusions and Future Scope 105

8.1 Conclusions . 105

8.2 Future Scope . 107

Publications 108

Bibliography 110

List of Figures

1.1 Statistics of various video resolution subscribers 2

1.2 Block diagram of HEVC . 3

1.3 Coding Unit segmentation structure . 4

1.4 Pictorial representation of (a) Intra Prediction modes (b) Directional mode

29 in HEVC . 5

1.5 Uni-directional prediction . 6

1.6 Bi-directional prediction . 7

1.7 Block matching motion estimation . 7

1.8 Quadtree CTU structure in HEVC . 8

1.9 PU partition sizes with part index number for variable block size ME . . . 10

3.1 Applications of HEVC: (a) Online video streaming (b) Surveillance 26

3.2 Structure of CTU with coding unit depths ranging from 0 to 3 27

3.3 Median predictor prediction using left, top, and top right predictors. . . . 29

3.4 The framework of the proposed method. 30

3.5 Frame extraction process . 31

3.6 Flowchart of the complexity reduction method. 32

3.7 NCDD search pattern . 35

3.8 NCDH search pattern . 36

xiii

List of Figures xiv

3.9 Example RD curves of (a) BQMall (b) Cactus (c) FourPeople (d) BQSquare

video sequences . 39

4.1 Optimal CTU partitions of BasketballPass sequence 42

4.2 Three level classifier structure with split condition 44

4.3 Cross Diamond Octagonal search pattern 46

4.4 CU size prediction using CNN . 47

4.5 Loss and accuracy curves for training and validation data of the CNN model 48

4.6 CU classification based on yL output, L represents the Level 49

4.7 Reconstructed frames of (a) BasketballDrive (b) BQMall at QP=27 51

4.8 Reconstructed frames with predicted CTU partitions of (a) BasketballDrive

(b) BQMall at QP=27 . 52

4.9 Example RD curves of (a) BasketballPass (b) BQMall (c) KristenAndSara

(d) ParkScene . 53

5.1 Block diagram of SHVC . 57

5.2 Horizontal subsampling . 59

5.3 Example showing correlation between frames 60

5.4 Comparison of (a) correlation coefficient vs distance between frames (b)

Mean squared error vs distance between frames 60

5.5 ET-CNN structure . 61

5.6 Flowchart of ET-LSTM structure . 63

5.7 Training and validation loss of (a) ET-CNN (b) ET-LSTM 66

5.8 Example RD curves of (a) KristenAndSara (b) PartyScene 71

5.9 Example encoding time curves of (a) KristenAndSara (b) PartyScene . . . 72

6.1 Surgical video frame with surgical incision and background region 75

List of Figures xv

6.2 Framework of the proposed method for surgical telementoring application . 78

6.3 Example frames of the fast motion Basketball video sequence 78

6.4 Example frames of the surgical NuGrip Arthroplasty video sequence 79

6.5 Correlation and Mean Squared Error curves of general and surgical video

sequence at different distance between the frames. Note that the Basket-

ballPass represents the general video sequence and NuGrip Arthroplasty

represents the surgical video sequence . 79

6.6 Flowchart of ROI tracking using the KCF tracker 81

6.7 ROI extraction process using object tracking involves (a) Original frame

(b) ROI selction in original frame (c) Mask (d) Output frame with tracked

ROI (e) Output ROI cropped frame . 86

7.1 Example representation of motion estimation process 90

7.2 Framework to determine motion vectors using YOLOv4 93

7.3 Architecture of YOLOv4 . 94

7.4 Next-frame prediction model . 95

7.5 ConvLSTM cell internal structure . 95

7.6 Original and Augmented frames of BQSquare video sequence 96

7.7 (a) and (c) represents the original frames 3 and 4 of BQSquare, (b) and (d)

represents the output frames 3 and 4 of BQSquare with bounding boxes

detected using YOLOv4 . 97

7.8 Example frame with 4-point diamond search pattern 99

7.9 Training and validation loss curves of BQSquare HEVC video sequence . . 101

7.10 Training and validation perceptual distance curves of BQSquare HEVC

video sequence . 102

7.11 Input frames of the ApplyEyeMake video sequence 103

7.12 Output sixth frame of the ApplyEyeMake video sequence 103

List of Figures xvi

7.13 Input frames of the BQSquare HEVC video sequence 103

7.14 Output sixth frame of the BQSquare HEVC video sequence 103

List of Tables

1.1 Comparison of subjective video performance between HEVC and H.264/AVC 2

1.2 List of PU partitions in 64×64 CTU . 9

3.1 Experimental conditions . 37

3.2 Experimental outcomes of the proposed method compared to HM-16.5

standard . 38

3.3 Experimental findings of the proposed method and state-of-art techniques

using HM-16.5 as an anchor . 38

4.1 Comparison results of MRCDO and HM-16.5 51

4.2 Comparison results of proposed and state-of-the-art methods 54

5.1 Experimental Conditions . 65

5.2 Experimental results of the HSME method for the JCT-VC video sequences

under LDP configuration . 67

5.3 Experimental results of the HSME method for the JCT-VC video sequences

under RA configuration . 68

5.4 Experimental results of the proposed method for the JCT-VC video se-

quences under LDP configuration . 69

5.5 Experimental results of the proposed method for the JCT-VC video se-

quences under RA configuration . 70

xvii

List of Tables xviii

5.6 Comparison results of the proposed method and the state-of-the-art meth-

ods with SHM-12.1 as an anchor under LDP configuration 71

5.7 Comparison results of the proposed method and the state-of-the-art meth-

ods with SHM-12.1 as an anchor under RA configuration 72

6.1 Experimental Conditions to simulate the proposed method in SHM-12.1 . . 84

6.2 Experimental results of Default SHM 12.1 and proposed method for surgical

video sequences . 85

6.3 Comparison of proposed method and state-of-the-art methods segmenta-

tion accuracy for surgical videos . 86

6.4 Comparison of proposed method and state-of-the-art methods in terms of

Bit rate saving and PSNR for surgical videos 87

7.1 Bounding box coordinates of different classes in frame 3 and frame 4 of

BQSquare sequence . 98

7.2 Centroid of bounding boxes of different classes in Frame 3 and frame 4 of

BQSquare sequence . 99

7.3 Comparison results of the proposed technique and the state-of-the-art meth-

ods in terms of computation time . 100

7.4 Experimental parameters . 101

7.5 Comparison results of the proposed technique and the state-of-the-art meth-

ods . 102

List of Abbreviations

HEVC High Efficiency Video Coding

AVC Advanced Video Coding

CU Coding Unit

CTU Coding Tree Unit

QP Quantization Parameter

MV Motion Vector

SAO Sample Adaptive Offset

CTB Coding Tree Block

CB Coding Block

PB Prediction Block

ME Motion Estimation

MC Motion Compensation

SW Search Window

PU Prediction Unit

TB Transform Block

RDO Rate-Distortion Optimization

RD Rate-Distortion

SAD Sum of Absolute Difference

ROI Region of Interest

MVP Motion Vector Predictor

CBF Coded Block Flag

SR Search Range

KCF Kernelized Correlation Filter

GOP Group of Pictures

xix

Chapter 1

Introduction

1.1 Introduction

The advent of new technologies has resulted in significant growth in the consumption

of multimedia information in recent years. The video content now accounts for nearly

half of all web traffic. The giant companies such as Netflix, Amazon, etc., are using large

amounts of data to entertain subscribers with high-quality video content. The statistics

in Fig. 1.1 exhibit that the consumers are seeking higher-quality content for improved

visual experience. The high quality video content increases the bandwidth required to

transmit the data through the channel. Thus, video coding standards are increasingly

important for maintaining present coding efficiency and providing the necessary encoding

tools to accommodate new formats such as ultra-high definition (UHD) video sequences.

The Joint Collaborative Team on Video Coding (JCT-VC) created the video codec

known as the High Efficiency Video Coding (HEVC) [2] that can support UHD videos.

This standard seeks to increase encoding performance by reducing the bitrate while main-

taining the same visual quality. The metrics in Table 1.1 show that HEVC achieves ap-

proximately 50% bitrate reduction compared to its forerunner, the H.264 Advanced Video

Coding (AVC) standard [3]. HEVC improves coding efficiency using advanced tools like

Quad-tree Coding Tree Unit (CTU) structure, intra prediction, inter prediction, and in-

loop filters. These increased capabilities have piqued the interest of industry leaders,

with many already incorporating the standard into a wide range of devices. This gain

in compression efficiency comes at the expense of computational complexity, which is the

Introduction 2

Figure 1.1 Statistics of various video resolution subscribers [1]

biggest impediment to HEVC inclusion in real-time applications.

Table 1.1 Comparison of subjective video performance between HEVC and H.264/AVC [4]

Video codec

Average bitrate reduction compared

to H.264/AVC High Profile

2160p 1080p 720p 480p

HEVC 64% 62% 56% 52%

1.2 HEVC standard

HEVC is a block-based video coding standard, and its coding mechanism is remark-

ably similar to that of its ancestor, H.264/AVC. However, HEVC substitutes the Coding

Tree Unit (CTU) as a new processing unit for the macro-block structure. A simplified

block diagram of the HEVC is shown in Fig. 1.2.

A typical encoding algorithm that produces an HEVC-compatible bitstream works

as follows. Each image is divided into block-shaped areas, with the decoder informed

of the precise block partitioning. Intra prediction is applied for the first frame of the

Introduction 3

Figure 1.2 Block diagram of HEVC

sequence, and the rest of the frames use inter prediction in the sequence or between the

random-access points. The inter picture encoding process involves choosing the motion

data that consists of the selected reference picture and the Motion Vector (MV) data,

which needs to be applied to predict every block’s samples. The linear spatial transform

is applied to the residual block, which is the difference between the current and predicted

block. The resultant is quantized and then encoded by the entropy encoder.

The quantized coefficients are inverse transformed during the decoding process to

generate the approximate residual block. The residual block is added to the prediction

and then passed through the Deblocking and Sample Adaptive Offset (SAO) filters to

remove the visual artifacts that occur at the boundaries of the block and for the smooth

reconstruction of the output picture. The resultant output is stored in the Decoded Pic-

ture Buffer.

The detailed explanation of each block in the Fig. 1.2 is given below.

Introduction 4

1.2.1 Coding Tree Unit (CTU)

The video sequence is the sequence of frames, and each frame is partitioned into

square blocks called CTUs. Each CTU consists of a luma Coding Tree Block (CTB),

associated chroma CTBs and syntax components. The size L×L of the CTU can be set

to L = 16, 32, or 64 samples, with the bigger size often allowing for better compression.

The CTU can be broken down into chunks called Coding Units using the quadtree-like

structure and quadtree signaling. The CTU is connected to the quadtree’s root. A CTU

may have a single CU or may be divided into several CUs, and each CU has a segmentation

into Prediction Units (PUs), and a tree of Transform Units (TUs) linked with it as shown

in Fig. 1.3. A coding unit (CU) comprises one luma Coding Block (CB), typically two

chroma CBs, and associated syntax.

Figure 1.3 Coding Unit segmentation structure

1.2.2 Prediction Unit (PU)

The decision on coding the image area using inter or intra prediction is decided at

the CU level. The root of the PU partitioning structure is at the level of CU. Based on the

Introduction 5

(a) (b)

Figure 1.4 Pictorial representation of (a) Intra Prediction modes (b) Directional mode 29 in

HEVC

type of prediction chosen at the CU level, the CUs are further split into different sizes and

predicted from the luma and Chroma Prediction Blocks (PB). HEVC supports different

sizes of PBs ranging from 64×64 to 4×4 samples. The Intra-Picture and Inter-Picture

prediction are explained below.

1. Intra-Picture Prediction: It is used to remove spatial redundancy. The intra

Picture prediction in the region is performed by considering the already decoded

samples of the adjacent blocks as a reference. HEVC supports 33 directional, one

planar, and one DC prediction mode. Fig. 1.4 (a) shows the 35 intra prediction

modes and Fig. 1.4 (b) depicts the example representation of Intra prediction Di-

rectional mode 29. In directional mode encoding, the prediction is made using the

spatially adjacent decoded blocks as a reference and the chosen angle to cover the

current prediction unit. This method is ideal for places with strong directional

edges. All the block sizes and prediction directions support directional mode pre-

diction. The DC mode encoding merely utilizes a single value that correlates to the

mean value of the boundary samples for the prediction.

Introduction 6

2. Inter Prediction: A video is described as a collection of frames showing a contin-

uous scenario in which each frame has a strong relationship to the frames that come

after it. The moving objects change their position while the rest of the objects in

the frames remain stationary. The Interpicture prediction in video coding helps to

attain a high compression ratio since the prediction depends on the earlier coded

frames. It uses two steps: Motion Estimation (ME) and Motion Compensation

(MC). Motion Estimation (ME) is the process of determining the motion vectors

that help to predict the current frame from the previous or reference frame. Based

on the motion vectors, the contents of the blocks in the reference frame are moved

for a more accurate prediction of the current frame. This mechanism is called Mo-

tion Compensation (MC). The resultant MC frame is subtracted from the current

frame to generate the Residual frame. It contains the details about the frame where

the changes occur.

Figure 1.5 Uni-directional prediction

The prediction can be uni-directional or bi-directional based on the reference frame

as shown in Fig. 1.5 and Fig. 1.6. The current frame is predicted from the previous

frame in uni-directional prediction, previous (or earlier) and future frames in bi-

directional prediction. The motion estimation is explained below.

(a) Motion Estimation:

Initially, the ME block takes the current block and the reference frame as input.

Then the region of interest to perform the search operation is identified. The

region of interest is called a Search Window (SW). After finding the SW, the

Introduction 7

Figure 1.6 Bi-directional prediction

searching operation is performed based on the ME algorithm. The ME process

is shown in Fig. 1.7. The searching can be done by using the Full Search (FS)

algorithm; however, it gives accurate MVs at the cost of high computational

complexity. Different fast search algorithms such as Diamond Search, Three

Step Search (TSS), Hexagonal Search (HS), etc., are proposed to reduce the

search points that help determine the MV quickly.

Figure 1.7 Block matching motion estimation

Sometimes the location of the prediction in the reference frame may be outside

of the sampling grid where the intensity is uncertain. Hence the interpolation

needs to be performed to determine the intensity of the positions between the

Introduction 8

integer pixels. HEVC uses an 8-tap filter for luma and a 4-tap filter for chroma

sample interpolation.

(b) Variable Block Size Motion Estimation (VBSME):

In HEVC, the motion estimation is carried out in various dimensions, one of

which is the variance in block size, to obtain improved compression efficiency.

To do this, the current block is divided into smaller sub-blocks, and ME is run

for each sub-block. This process is known as Variable Block Size ME (VBSME).

Then the output obtained after ME for the current block will be the MV for

all the sub-blocks of the current block. However, all the sub-block sizes of the

current block are considered, and the best mode is chosen for predicting the

MC frame.

Figure 1.8 Quadtree CTU structure in HEVC

The blocks of the CTUs or CUs with a maximum size of 64x64 make up each

frame. The largest block size in HEVC is 64×64, and each CTU is separated

into Prediction Units (PUs) for inter-prediction, as shown in Fig. 1.8. A PU

may have the following three variables: partition index (idx), partition size

Introduction 9

(s), and partition depth (d), which are given in Table 1.2. The partition depth

accepts values between 0 and 3, representing each CU size. The PU partition

sizes for each CTU can be 2N×2N, N×2N, 2N×N, and N×N. The ’N’ can be

represented by the values 32, 16, 8, and 4, respectively. For instance, a CTU

with a 32×32 partition size can include PUs with 32×32, 16×32, 32×16, and

16×16 dimensions. These are known as Symmetric partition modes. Asym-

metric Partition Modes (AMPs) with PU sizes 3N/2 × 2N, 2N × 3N/2, N/2

× 2N, and 2N × N/2 are supported by HEVC in addition to these. Thus, PU

sizes 24×32, 32×24, 8×32, and 32×8 can likewise exist for the CU size 32×32.

Table 1.2 List of PU partitions in 64×64 CTU

CU Size CU depth PU and its partition sizes

64×64 0
64×64, 64×32,64×16,

64×24, 48×64,32×64,16×64,32×32

32×32 1
32×8, 32×24, 32×16, 24×32, 16×32, 8×32,

16×16

16×16 2 16×4, 16×12, 16×8, 12×16, 8×16, 4×16, 8×8

8×8 3 4×8, 8×4

Additionally, each PU sub-partition has a partition index that starts at 0. The

third column of Table 1.2 lists the different PU sizes that each CU can have.

Fig. 1.9 shows this in an illustration. Also, the partition indexes for each PU

sub-partition are shown in the figure. The PU modes 8×6, 6×8, 8×2, 2×8,

and 4×4 are typically not used for 8×8 CU size in HEVC reference software

due to the increased computational cost.

1.2.3 Transform Unit (TU)

After performing intra or inter prediction, the predicted block is subtracted from

the original block to get the residual. The block transform codes the obtained residual,

Introduction 10

Figure 1.9 PU partition sizes with part index number for variable block size ME

and the CU serves as a root of the TU. The residual CU can be taken as TU, or it may

be further split into small TUs. For the size of Transform Blocks (TBs) ranging from

32Ö32 to 4Ö4, equivalent integer basis functions to a discrete cosine transform (DCT)

are defined. Moreover, the transform derived from the Discrete Sine Transform (DST) is

suggested for the intra predicted residual TU with a 4Ö4 size.

1.2.4 Quantization

The Quantizer quantizes the resultant residual transform block coefficients. Quanti-

zation is an efficient compression tool that converts the set of values to a single quantum

value. This is achieved by splitting the transformed block element-wise, and each result-

ing element is rounded. The quantization procedure rounds higher frequency components

to zero and other frequencies to small positive or negative numbers because the human

eye is more sensitive to small changes in brightness over a vast region.

Introduction 11

1.2.5 SAO filter and Entropy coding

A nonlinear amplitude mapping is added to the inter prediction loop that seeks to

reconstruct the actual signal amplitudes more accurately. The SAO filter uses the look-up

table, defined via a few more characteristics found by histogram analysis at the encoder

side.

Finally, the entropy coding is performed to encode the quantized coefficients, motion

vector data and high level syntax elements of HEVC by using the statistical redundant

information. It allows the probability modeling for more commonly utilized bits of any

symbol. The Context Adaptive Binary Arithmetic Coding (CABAC) is used for the

entropy coding to generate the output bit stream.

1.3 Color space representation in HEVC

The RGB color space used to capture video is not a particularly effective representa-

tion for video compression. Contrarily, HEVC uses the YCbCr color space, which divides

the color space into three components and is more compatible with video coding. The

component ’Y,’ also known as luma, stands for brightness; Cb and Cr, also renowned as

chroma, represent how much color deviates from grey towards blue and red, respectively.

The luma and chroma components can be calculated by using equations (1.1), (1.2), and

(1.3).

Y = 0.299R + 0.587G+ 0.114B (1.1)

Cb = 0.564(B − Y) (1.2)

Cr = 0.713(R− Y) (1.3)

The standard sampling method has a 4:2:0 structure, which means that four luma

components are sampled for every chroma component because human vision is more

sensitive to brightness. HEVC offers 8 or 10 bits of precision for each sample pixel value,

with 8 bits being the most popular.

Introduction 12

1.4 Motivation

The HEVC standard is developed as a successor to the AVC that uses advanced

coding tools to improve efficiency. Among the advanced coding tools, the quad-tree CTU

structure is key in improving efficiency. Initially, each frame is divided into the CTUs,

and the structure of each CTU is determined using Rate-distortion Optimization (RDO)

search process. The CTU can be considered a Coding Unit (CU) or recursively split

into CUs until it reaches the smallest size. The maximum and minimum sizes of CU are

64×64 and 8×8, respectively. RDO search process consists of two stages. In the first

stage, CTU is divided into 85 CUs that cover CUs of size 64x64, 32x32, 16x16, and 8x8 at

depth 0, depth1, depth2, and depth 3, respectively. Then the Rate-Distortion (RD) cost

is calculated for each CU and determines the CU split based on the RD cost to determine

the CTU structure with optimal partitions in the second stage. This quad-tree CTU

partitioning process increases the efficiency. However, the computational complexity is

increased due to the testing of a large number of CU partitions.

The RD cost is calculated based on the distortion value during the RDO search

process. The distortion is calculated using the Sum of Absolute Difference (SAD) metric.

The SAD is obtained by calculating the absolute difference between each pixel value of

the current block and reference block and then summed together. Considering the 8×8

CU block, 64 subtractions and 63 additions are required to calculate SAD. The number

of SAD computations increases when the CU size increases. A large number of SAD

computations increases the encoding time of HEVC. In addition, the search patterns used

during motion estimation may get trapped to local minima and result in inaccurate motion

vectors.

Moreover, the best partition mode must be chosen among nine inter Prediction

Unit (PU) partition modes after determining the CU partitions. HEVC supports the PU

partition modes like Merge/Skip mode, 2N×2N, 2N×N, N×N, N×2N, nL×2N, nR×2N,

2N×nD, and 2N×nU. The partition mode with the least RD cost is chosen as the best

partition mode. The partitioning process further increases the complexity.

The above limitations are addressed in the thesis by developing the compression

algorithms that integrate the traditional HEVC algorithms with the machine learning

models to reduce the computational complexity in HEVC.

Introduction 13

1.5 Problem statement

Based on the motivation, the main aim of this Doctoral thesis is to reduce the

encoding time of the HEVC encoder by reducing the computational complexity of the

RDO search process and motion estimation.

1.6 Research objectives

The following goals are defined to achieve the main objective.

1. To develop an efficient algorithm that overcomes the local minima and accelerates

the motion estimation process.

2. To develop a method that reduces the complexity in determining the CTU structure

using a machine learning approach in HEVC and SHVC.

3. To develop a method for fast encoding of Region of Interest (ROI) in surgical video

sequence with high quality using SHVC.

1.7 Thesis Organization

The rest of the thesis is structured as follows:

Chapter 2 presents the background work on motion estimation and CU size prediction

in HEVC. It also presents different methods proposed by the authors to determine the

CTU structure in Scalable HEVC.

Chapter 3: Presents the Multi-Level Resolution Vertical Subsampling (MLRVS) al-

gorithm to reduce the computational complexity of the motion estimation. Also, the

complexity reduction method is developed to reduce the encoding time of HEVC.

Chapter 4: Presents the fast Convolutional Neural Network model to predict the CTU

structure. Besides, the MLRVS algorithm proposed in the previous chapter is used along

with the Cross Diamond Octagonal search pattern to further reduce the encoding time.

Chapter 5: Presents the CNN +LSTM deep learning approach in Scalable HEVC for

fast Coding Unit size decision. In addition, Horizontal Subsampling Motion Estimation

Introduction 14

(HSME) is used to accelerate the motion estimation process.

Chapter 6: Presents the KCF Tracker-based Region of Interest encoding using Scalable

HEVC for Surgical Telementoring applications. Simulations followed by a comparison of

results with existing works are also presented.

Chapter 7: Presents the region-based motion estimation using YOLOv4 and next frame

prediction using a deep neural network.

Chapter 8: Draws conclusions from the earlier chapters and concludes the thesis.

Chapter 2

Review of Literature

2.1 Introduction

The increased demand for compression of high-definition videos with high efficiency

leads to the development of the High Efficiency Video Coding (HEVC) standard. HEVC

uses effective compression techniques to produce a twofold gain in video efficiency over

H.264/AVC. One of the most computationally demanding blocks in video CODEC is

motion estimation (ME). Due to a big processing unit CTU and dynamic segmentation of

the prediction unit in HEVC, the complexity of ME further rises. Moreover, determining

the CTU structure in HEVC increases the encoding time. The computational complexity

in deciding the CTU structure is increased due to the conventional RDO search process.

The complexity further increases in SHVC due to the multiple layers, such as Base Layer

and Enhancement Layers.

Several authors proposed various methods to reduce the computational complexity

in HEVC and SHVC. This chapter discusses the related work on ME, CU size prediction

in HEVC, and SHVC in the following sub-sections.

2.1.1 Related work on Motion Estimation

Hsieh et al. [5] developed a power-efficient ME controller to reduce power dissipa-

tion. The dissipation is due to the large coding bandwidth required to access the current

or reference pixel values during the ME process. Vayalil et al. [6] proposed a method that

Review of Literature 16

uses the snake scan to get the data of a row or column. In addition, the residue number

system is used to improve the speed of the Sum of Absolute Difference (SAD) calcula-

tions. This approach helps to decrease the encoding time. Cebrián- Márquez et al. [7] use

the pre-analysis stage, which performs block-based ME to estimate Rate-Distortion cost.

The estimated cost is used to build the optimal quadtree by omitting many unnecessary

partitions, reducing the encoding time. Fan et al. [8] take the conventional HEVC merge

mode’s motion vector as a center and apply the ME process around it and along the axis

in a small search region. This approach improves bitrate saving. However, the encoding

time is increased.

The Test Zone (TZ) search algorithm in HEVC uses multiple search points at the

start, making it difficult for real-time implementation. Pakdaman et al. [9] use a single

search point at starting of the TZ search algorithm. The wavelet transform is used to an-

alyze the current and reference frames. After analyzing, similar points are identified and

matched to determine the single search point. Jiang et al. [10] proposed the approach to

predict the optimized motion vectors by utilizing the motion consistency of the adjoining

PUs. Similarly, the spatial correlation of neighboring CUs can be utilized to forecast the

depth of the current CU. Gogoi and Peesapati et al. [11] proposed a hardware architecture

for ME using a hybrid search pattern. The hybrid search pattern consists of hexagonal

and square global patterns and two, three, and four-point local search patterns. This

method minimizes the encoding time by 11%.

In [12], a GPU-based minimal delayed parallel ME approach is developed. The au-

thors considered the quadtree coding structure of HEVC to facilitate the parallelization

hierarchically by optimizing the ME process in the CTU, PU, and MV layers. A unique

motion vector predictor decision scheme is specifically suggested for the CTU layer to

mitigate the negative consequences of erroneous MV prediction by eliminating the CTU-

level dependencies. An innovative indexing table is created for the PU layer to implement

an effective cost derivation technique. As a result, it is possible to compute every PU’s

cost easily and effectively. In [13], an effective ME design with a coordinated algorithm

and architectural optimization is proposed. A predictive integer ME (IME) algorithm is

suggested to choose the most likely search direction and lower the number of search points

by 90.5% to reduce complexity. Additionally, a Fractional ME (FME) method based on

PU size is used to lessen the interpolation filtering. Moreover, interlaced scheduling is

Review of Literature 17

used to cascade the IME and FME computations. The authors in [14] developed a low-

power ME algorithm and HEVC architecture for consumer applications. The suggested

algorithm and architecture use sub-sampling, pixel truncation, data reuse, and heuristic

search range approaches to reduce processing resources.

In [15], for texture and depth 3D video, a motion-information-based three-dimensional

(3D) video coding methodology is proposed. The camera motion and depth information

is used to project the surrounding temporal texture and depth frames into the location

of the current frame, helping the encoder enhance its RD performance. The projected

frames are then included in the reference buffer list as virtual reference frames. The num-

ber of bits needed to represent the residual will be drastically reduced since these virtual

reference frames might resemble the current frame that needs to be encoded more than

the traditional reference frames.

Park et al. [16] suggested a quick encoding technique to effectively reduce the encod-

ing overhead of Affine ME (AME) when using a Multi-Type Tree (MTT). The suggested

approach follows a two-step process. The first step uses an early termination method

that takes advantage of parent CUs to eliminate unnecessary AME and Affine Motion

Compensation (AMC) procedures. It specifically uses motion data from the parent CU

that is already encoded. Then the number of reference frames used for AME is decreased

in the second step. Trudeau et al. [17] combine the ME with a Successive Elimination

Algorithm (SEA) that minimizes the number of computed cost functions without affect-

ing rate or distortion in the context of ME for video coding. The SEA using the SAD

metric eliminates the MV candidates in the search region that can’t overcome the current

minimum. Moreover, the authors suggested a dynamic method that generates cost-based

search orderings, eliminating 61% of the block-matching loop iterations carried out by the

Rate-Constrained SEA method (RCSEA).

In [18], a ME technique to simplify the H.265/HEVC encoding process is provided.

First, all PUs are divided into two classes, namely parent PUs, and children PUs, following

the type of PU partitioning. The proposed approach uses the best MV selection corre-

lation between child CUs and parent CU to perform the Block Matching (BM) search

operation. The BM search process of the children’s PUs is then adaptively skipped if

their parent PU selects the beginning search point as its final optimal motion vector in

the ME process. [19] introduces an innovative Zoom ME and motion compensation ap-

Review of Literature 18

proach based on the local area scaling method. A zoom vector (ZV) is proposed that

can either grow or shrink a reference block size to express and encode the zoom motion.

Block matching is then carried out by interpolating the resized reference block to the size

of the present block. In addition, a 3-D diamond search pattern is introduced to reduce

the search points and accelerate the Zoom ME.

He et al. [20] described a VLSI implementation of Fractional ME architecture in

HEVC for applications requiring UHD video. A bilinear quarter-pixel approximation is

suggested to simplify the fractional search processes. Additionally, a data reuse method

is used to lower the hardware expense of the transform. Moreover, the algorithm is fully

pipelined and achieves greater hardware utilization by employing pixel parallelism and

a separate access pattern to memory. The researchers in [21] suggest a new Integer ME

method that drastically narrows the search space. The computational cost of the pro-

posed technique is decreased without noticeably degrading coding efficiency by acquiring

additional precise Motion Vector Predictors (MVPs) in a bottom-up order and scanning

confined regions around multiple MVPs. These MVPs are derived from PUs in the CUs

at the hierarchically lower level.

In [22], an ideal fast ME approach based on a Rate-Complexity-Distortion (R-C-

D) analytical model is proposed. The ME complexity is added to the conventional R-D

model that clearly describes the R-D performance under various complexity budgets. The

proposed approach determines the R-C-D optimum search ranges for a few representative

PUs based on the R-C-D model, which is then dynamically expanded or refined in ac-

cordance with motion characteristics. The suggested method achieves R-D performance

nearly equal to a full search. Hu and Yang [23] reduce the complexity of HEVC by ini-

tially constructing the ME as a statistical inference problem at the integer pixel level

and then suggesting the confidence interval-based ME (CIME) approach. The proposed

CIME method can be used in lieu of the current fast search implemented in HEVC to

reduce the complexity.

These algorithms use fast search patterns to reduce the number of search points.

However, there is a possibility of converging to local minima due to the early termination

of the searching process. Moreover, the encoding time decreased by the state-of-the-art

motion estimation approaches is small. Hence there is a scope to further decrease the

encoding time of the encoder.

Review of Literature 19

2.1.2 Related work on CU size decision in HEVC

Shen et al. [24] proposed a method that gathers information from four spatially

nearby CTUs and a co-located CTU to narrow the CU depth search area. CTUs in

the vertical and horizontal directions are considered more important and are utilized for

depth prediction. The current CU is classified into one of five types based on the prediction

result, ranging from homogenous to fast motion zones. The depth is restricted based on

the classification outcome. Correa et al. [25] divide the frames into constrained frames

(Fcons) and Unconstrained frames (Fun-cons). The standard RDO search process in

HEVC encodes the unconstrained frames. In contrast, the rest of the frames are encoded

using the largest CTU depth of the co-located CTU in the preceding frame to reduce the

CTU partitioning complexity. The number of the constrained frames (Fcons) between

the Fun-cons is determined based on the complexity. Correa et al. [26] use the data of

spatially surrounding CTUs and the co-located CTU in the last constrained frame to

define the maximum depth of the current CTU.

Bae and Sunwoo [27] method save CU depth statistics from CTUs in the preceding

five to six frames and utilize it to determine when to terminate the CU and PU. A

weighted framework is used to give greater weightage to the nearby frames. If all the

depths are equal, the current CU and PU search is performed with the very same depth

as the final depth. Otherwise, CTU statistical properties are estimated and employed in

the decision-making process.

Shen et al. [28] use the four spatially adjacent CTU information to classify the CTU

into different classes spanning from homogeneous to the rich texture. The texture of CTU

is determined based on equation (2.1).

Dprev =
3∑

j=0

αjDj (2.1)

Where, Dj=Depth value, αj= weighting factor of each adjacent CTU

CTU belongs to type 1 ifDprev < 0.5, type2 if 0.5 < Dprev ≤ 1.5, type3 if 1.5 < Dprev ≤ 2.5

and type4 if Dprev > 2.5. The maximum CTU depth is also decided based on Dprev.

The authors in [29] determine the CU depth by using the average depth information

of the spatially co-located CTUs. The obtained information is compared to the threshold

value to determine whether the depth range belongs to {0,2} or {1,3}. In [30], the authors

Review of Literature 20

limit the search range of the present CU between maximum and minimum depths obtained

from the top and left CTUs. The present CU split decision is taken based on the depth

value. Moreover, the early termination algorithm based on the RD cost is developed for

all intra configuration that exploits the temporal correlation between neighboring frames.

The researchers in [31] decide on the CU’s splitting by performing a two-stage prediction.

In the first stage, the two most common CU depths from the previously encoded frame

are derived to form the CUControlSet. Then the depth level in each CU at the second

stage is obtained from the Co-located CU in the previous frame to form the CUPredictSet.

CUAllowableSet = CUControlSet ∪ CUPredictSet (2.2)

The CU split, if the current depth is present in the CUAllowableSet and then per-

forms RD computations for each partition. In [32], the authors decide the depth level of

the CTU by using the spatially neighboring CTUs and the co-located CTU. The segmen-

tation process of CTU terminates at depth 0 if

4∑
n=0

Cnλn ≥ α (2.3)

Where λn=Weighting factor, Cn=weight of reference CTUs.

In [33], Neighboring Mean Squared Error (NMSE), Direction Complexity (Dcom),

Sub-CU’s complexity Difference (SCCD), and Quantization Parameter Step (QStep) fea-

tures are used to determine the complexity of CU. Initially, the CUs are classified into

groups, namely Group A, Group B, and Group C, with high, small, and medium texture

complexities. For each group, different strategies are used to split the CU, such as Skipped

strategy for Group A and early termination for Group B and Group C with the actual

encoding process. Based on the features derived, the SVM is used to classify the CUs.

The authors in [34] proposed the algorithm that selects the CU using offline trained SVM

and online trained Bayesian approach. The features such as context, texture, and CU

data like QP (Quantization Parameter) and 2N×2N mode information are extracted to

train the SVM and Bayesian models. The offline and online trained models, along with

the skip mode detection techniques, are used to accelerate the CU selection process.

Mallikarachchi et al. [35] use both motion and threshold-based CU partition ap-

proaches. During motion-based CU classification, inter RD cost of N×N, CU size, and

motion complexity information is used. In the threshold approach, RD cost of inter N×N,

Review of Literature 21

Quantization parameter, and CU size data are used to decide whether to split the CU.

In addition, the motor vectors are reused to accelerate the ME. This approach efficiently

reduces the encoding time.

Kuo et al. [36] used the Predictive Coding Unit Depth (PCUD) to determine the

depth range. The PCUD is the maximum depth of the left, top left, top, and co-located

CTU of the previous frame. Then the PCUD is compared to the threshold values to detect

the depth range such as [0,1],[1,2],[0,2], and [1,3]. Moreover, the Texture-Aware Splitting

Termination is used for early CU depth decisions by analyzing the correlation between

the block’s texture and the CU size. In [37], the authors developed the two-level SVM

model to determine the CU depth. At the first level, the features like texture, RD-cost,

and context data are used to train the SVM at different CU depth levels. The features

are generated by using the HEVC reference software. The trained SVM is used to find

the CU depth. If SVM at level 1 fails, the SVM at level2 is used to predict the CU depth.

The SVM at level2 is trained using the context, texture, and coding information of CUs.

Shen et al. [38] reduce the encoding time by considering the correlation between the

frames. Firstly, the prediction mode information between the depth levels is explored,

and then the coding data between the neighboring CUs in the same frame is analyzed.

Finally, the coding information of co-located CUs in the current and previous frames is

derived. All this information is used to reduce the complexity of the encoder. In [39],

the CU size is determined based on texture homogeneity. For CUs with homogeneous

texture, early CU size decision and skip intra search is performed on CUs with small size.

The CU depth level for complex CUs is determined by collecting coding information from

neighboring CUs and then combine with texture property. In [40], the partitions in the

CTU are decided based on the edge complexity information in various directions. The

local and global edge complexity data determines the CTU structure.

In [41], the decision on CU split is taken by calculating the correlation between the

motion divergence and the CU splitting using the motion vectors of pixels. This pro-

cess requires extra hardware resources due to the calculation of pixel-wise optical flows,

increasing the encoder’s overall complexity. Bouaafia et al. [42] use the Support Vector

Machine (SVM), and Convolutional Neural Network (CNN) approaches to predict the CU

partitions during the Rate-Distortion Optimisation (RDO) search process. This approach

reduces the encoding time.

Review of Literature 22

Huang et al. [43] proposed the RD complexity optimization scheme to preselect the

CU depth and speed up the Transform Unit (TU) tree decision process. Moreover, the

early Prediction Unit (PU) and CU termination algorithms are provided to decrease the

encoding time. Lu et al. [44] minimize the complexity of the encoder by generating the

classification trees. The trees are generated using the intra and inter features obtained

after encoding the conventional HEVC algorithm. The features provide the context and

texture properties of PU, CU, and TU. Sharma and Arya [45] optimize the parameters

of the HEVC using the non-dominated sorting genetic algorithm II to improve the com-

pressed video quality. This approach concentrates on increasing the quality of video and

decreasing the file size. Yan et al. [46] reduce the complexity of the intra-prediction by

using the statistics of the rough mode decision method. In this process, the number of

most probable modes is decreased based on the PU size. The decrease in the most prob-

able modes decreases the complexity of the encoder.

Moreno et al. [47] have presented an algorithm that minimizes the encoder complex-

ity by deciding the CU size based on the early termination condition. Kim et al. [48] have

proposed a method that bypasses the interpolation process of list 1 when the bi-predicted

motion data of list 0 and list 1 are the same. This strategy lessens the intricacy of en-

coder and decoder. Lee et al. [49] have described an early skip mode scheme to reduce the

encoder’s coding time. Ahn et al. [50] use the spatial and temporal parameters to reduce

the encoder’s coding time. Here, the decision of subdividing the CU is taken based on

the motion and texture complexity. Purnachand et al. [51] have developed an algorithm

that only omits the global search step when the cost difference between the Initial Search

Point and the current bock is lower than the threshold. The threshold value, in this case,

is the lowest cost of temporal and spatially co-located blocks. By using this method and

rotating hexagonal search pattern, the complexity of the encoder is decreased.

2.1.3 Related work on CU size prediction in SHVC

The methods proposed by different authors to minimize the complexity of SHVC

are discussed below.

In [52], the authors derive the depth probabilities using the Bayesian approach by

combining the CU’s data and the correlation degree between the frames. This informa-

Review of Literature 23

tion is integrated with the texture-based all-nonzero and all-zero blocks using Lagrange

Interpolation Polynomial to terminate the depth prediction process early. Also, the mode

probabilities are derived and mixed with the Jarque-Bera test to skip the intra-mode

prediction. In [53], the researchers determine the partitions of the CTU early by using

the Decision Tree classifier. The features such as global texture, local texture, and con-

text information are used in the proposed technique to determine the partition structure.

Moreover, the one-dimensional gradient descent search is used for fast intra-mode de-

cisions. In [54], the authors use Adaptive Mode Pruning (AMP) and Mode-dependent

termination for fast intra-mode decisions. Initially, the priority of the Intra Block Copy

(IBC) and Intra Sub-partitions coding (ISP) modes are checked, and if the IBC priority is

high, the linear modes prediction is not performed. Otherwise, the ISP mode is dropped

adaptively based on the texture and correlation strength. Then the CU is categorized

and avoids the prediction of unnecessary depths using the early termination model.

Liu et al. [55] used a K-means method to determine the CU depth level by classifying

the thirteen neighboring CTUs into three cases. Tohidypour et al. [56] increase the per-

formance of SHVC with quality scalability; however, it restricts the number of EL layers

to one. Chen and Chang [57] use the Rough Mode Cost (RMC) to determine the depth

of CU and TU partition. The PU modes with larger RMC values are excluded from the

candidate list, which results in a decrease in coding time. The authors in [58] developed

a method that applies Selective Encryption over the uniformly distributed bitstream ele-

ments to preserve the statistical properties and the length of the SHVC encoded output.

The researchers in [59] use the spatial and temporal correlations and the correlation de-

gree to determine the candidate depths. Then, they use the Rate-Distortion costs and the

residual coefficients to terminate the depth and mode selection process early. Tohidypour

et al. [60] use the combination of machine learning and the Bayesian approach to decrease

the SHVC complexity. Shen and Feng [61] decrease the complexity of SHVC by utilizing

the information of motion activity and mode complexity to skip the unnecessary CU size

and mode search.

Hsuan et al. [62] reduce the coding time of EL by using the encoded information

of prediction modes, CU sizes, Rate-Distortion (RD) Costs, and motion vectors of BL

and CU sizes of the EL. Authors in [63] decrease the complexity of SHVC by using the

collocated BL and the four neighboring CUs information to determine the current CTU’s

Review of Literature 24

block depth in EL. In [64], the CTU encoded in BL utilizes the structure of the collocated

CTU present in the previous frame or the neighboring four CTUs present in the same

frame.

Wang et al. [65] suggested a strategy for Quality SHVC, which excludes depths with

low probability. Additionally, they provide an early depth decision strategy and only allow

checking a portion of the 35 defined Intra modes rather than all. Tohidypour et al. [66]

predict the current CTU structure in EL using the already decoded CTU information

in BL and EL. They build a model using the Bayes rule and then train it with a small

dataset, improving the coding speed. The method developed in [67] adaptively chooses

the best motion search range for the EL based on the correlation between BL and the

EL. Moreover, they avoid redundant computations and also terminate the mode search

in the optimal search range early to reduce the coding complexity. In [68], the authors

developed the complexity reduction method for SHVC based on the RD cost information

of the neighboring CU in the EL and the RD cost of co-located CU in BL. The optimal

threshold is selected to determine the CU depth based on the RD cost and Quantiza-

tion Parameter (QP) value. In [69], the researchers explored the relationship between the

present CU and the neighboring CUs to find the less frequently used modes. These modes

are skipped to reduce the complexity of SHVC.

The approaches discussed in section 2.1.2 and 2.1.3 concentrates on decreasing the

computational complexity of the RDO search process in HEVC and SHVC. Some of

the approaches used a very small training dataset, which led to the prediction of the

CTU partitions inaccurately. In addition, most algorithms exploit only spatial features

of the image. Moreover, the motion estimation method used in the encoder increases the

encoding time. Hence an efficient model is required that decreases the complexity of the

motion estimation and RDO search process.

Chapter 3

Multi-Level Resolution Vertical Subsampling and

Early Skip Mode Detection Algorithm

3.1 Introduction

The High Efficiency Video Coding (HEVC) or H.265 [70] standard compresses ultra

high definition video sequences with approximately 50% less bitrate than the H.264/Advanced

Video Coding standard while maintaining the same video quality [71]. The video com-

pression involves splitting the frame into Coding Tree Units (CTUs), intra and inter

predictions, finding transform and quantization for the residual block, and filtering op-

erations using deblocking [72] and Sample Adaptive Offset (SAO) [73] filters. HEVC is

widely used in ultra high definition online video streaming and surveillance applications,

which are shown in Fig. 3.1. In HEVC, complexity increases along with an increase in

efficiency and most of the time is consumed during the process of finding the RD cost for

Prediction Units (PU), and the motion estimation process.

Rui Fan et al. [74] suggested a technique that utilizes the Priority Guided Fast Partial

Internal Early Termination algorithm and motion complexity. The PU is categorized here

based on motion, i.e., smooth, medium, or complex motion. Pan et al. [75] have presented

a new algorithm called adaptive Fractional Pixel Motion Estimation skipped algorithm.

Here the children type PUs can be encoded based on the best motion vector of root PU

using Integer Pixel Motion Estimation. These algorithms use one of the search pattern

such as Three Step Search (TSS) [76], improvements in TSS [77–79], logarithmic search

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 26

(a) (b)

Figure 3.1 Applications of HEVC: (a) Online video streaming (b) Surveillance

[80], One dimension full search [81], etc., to speedup the motion estimation process. These

algorithms may reduce complexity by reducing the number of search points. However,

there is a possibility of converging to local minima due to the early termination of the

searching process. We have developed a Multi-Level Resolution Vertical Subsampling

(MLRVS) algorithm to prevent the early termination of the searching process and improve

the motion estimation speed.

The MLRVS algorithm using vertical subsampling, and the complexity reduction

algorithm helps to reduce the encoding time of the encoder. In addition, New Cross

Diamond Diamond (NCDD) and New Cross Diamond Hexagonal (NCDH) search patterns

are proposed to accelerate the motion estimation process.

3.2 Overview of motion estimation process during inter predic-

tion in HEVC

In HEVC, each frame is segmented into CTUs. It is possible to subdivide each

CTU [82] into coding units or the CTU itself as the CU. The size of CU can be 64, 32,

16, or 8. The CU contains one luma Coding Block (CB) and two associated chroma CBs.

Every CU can be additionally partitioned into Prediction Units (PU). The size of PU

should be less than or equal to the size of CU. The structure of CTU is shown in Fig. 3.2.

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 27

The CTU can be split up to a maximum depth of four. HEVC supports the PU partition

modes like Merge/Skip mode, 2NÖ2N, 2NÖN, NÖN, NÖ2N, nLÖ2N, nRÖ2N, 2NÖnD,

and 2NÖnU. The RD cost can be determined for PU partition modes by utilizing the

equation (3.1).

J = D + λ×R (3.1)

Where, R→ Number of bits required to transmit, λ → Lagrangian multiplier, D

=Distortion.

Figure 3.2 Structure of CTU with coding unit depths ranging from 0 to 3

The distortion or SAD is calculated during the motion estimation process to find

the RD cost. Motion estimation in HEVC plays a vital role in decreasing the bit rate for

storing or transmitting the video signal. The TZ search algorithm (discussed in section

3.2.1) is used for motion estimation in HEVC. During the motion estimation process,

for every block in the current frame, the appropriate matching block can be found in

the previous frame inside the search area. Generally, SAD is the widespread matching

criterion to find the distortion, which is used to find the best matching block in the

previous frame for the block in the current frame. SAD is obtained by first calculating

the absolute difference between each current block pixel and the corresponding pixel in

the reference block. Then these differences are summed together to get the final SAD

value. The SAD is calculated by using equation (3.2). Then the RD cost is calculated for

the partition modes using the SAD value. Among PU modes, the best mode is the mode

that has a lower RD cost.

SAD =
∑
k,l

|SA(k, l)− SB(k, l)| (3.2)

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 28

Where, SA(k, l)→ (k, l)th pixel in current frame-block, SB(k, l) → (k, l)th pixel in

reference frame-block. Both current frame-block and reference frame-block are equal in

size.

3.2.1 TZ search algorithm

The TZ Search algorithm [83] is explained in the following steps

1. First, calculate the median predictor (discussed in section 3.2.2).

2. After calculating the median predictor [84], check whether the zero motion vector

is the best starting point than the median predictor.

3. Now consider the median predictor as an initial starting point and perform the first

search.

4. In the first search, either diamond search [85] or square search patterns can find the

best motion vector. Here the search window can have a minimum distance of one to

maximum distance of search range. The distance at which the point with minimum

distortion occurs is considered ’Best Distance (BD).’

5. Now take the Best distance and check the following three conditions.

� If the BD is zero, the searching process stops

� If 1 < BD < iRaster, perform refinement directly.

� If BD> iRaster, perform a raster scan by taking the value of iRaster as a stride

length.

The raster search process can be done on a whole search window if the difference

between the starting position and the first phase motion vector is too significant.

6. If the best distance in the previous search is not zero, apply the star or raster

refinement. During this refinement stage, the last search’s best motion vector is

taken as the starting point. Here the distance is in the range of one to search range.

Diamond or square search patterns are used in the refinement process. During star

refinement, the distance is multiplied by two in each iteration until it reaches the

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 29

search range. During raster refinement, the distance can be divided by two in each

iteration until it goes one.

3.2.2 Median calculation in HEVC

In HEVC, the median predictor is obtained using the Predictors A, B, and C. Pre-

dictors A, B, and C are the left, top, and top right predictors for the median predictor,

as shown in Fig. 3.3. The median predictor is calculated by using equation (3.3).

Figure 3.3 Median predictor prediction using left, top, and top right predictors.

Median(A,B,C) = A+B + C −Min(A,Min(B,C))−Max(A,Max(B,C)) (3.3)

3.3 Proposed Work

The framework of the proposed method is shown in Fig. 3.4. The encoding process

involves motion estimation, inter prediction, transform, quantization, and entropy coding

to generate the bitstream. We proposed the MLRVS algorithm to accelerate the motion

estimation process. The algorithm involves vertical subsampling, and motion estimation

using newly proposed search patterns in the vertical sub-sampled frames. Besides, a com-

plexity reduction algorithm is used during the inter-prediction and quantization process to

reduce the encoding time. The MLRVS algorithm and the complexity reduction algorithm

are explained below.

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 30

Figure 3.4 The framework of the proposed method.

3.3.1 MLRVS algorithm

The MLRVS algorithm shown in Algorithm 3.1 is explained in the below steps.

Algorithm 3.1: MLRVS algorithm

Input: Prediction Block (P), Search range (Sr), Motion Vectors=(MV, MV1, MV2), zero

MV and Neighbours= (MV(0,0) and MVx, MVy, MVz),Frame (Orig), Best Distance

(BD), Distance=(D1, D2, D3)

Output: Best Motion Vector (BMV)

Initialization : MV=(0,0); TotalCost=∞

1: for tmpMV in (MV,MV x,MV y,MV z) do

2: tmpCost = getCost(tmpMV, Sr, P);

3: if tmpCost < TotalCost then

4: TotalCost← tmpCost;

5: MV ← tmpMV ;

6: end if

7: end for

8: DB = {1, 2, 4};

9: HalfResolutionframe(HR) = evenRows(Orig);

10: QuarterResolutionframe(QR) = evenRows(HR);

11: (D1,MV 1) = SearchPattern(BD,MV, Sr, P,QR);

12: (D2,MV 2) = SearchPattern(D1,MV 1, Sr/2, P,HR);

13: (D3, BMV) = SearchPattern(D2,MV 2, Sr/4, P,Orig);

14: → (Searchpattern can be NCDD or NCDH)

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 31

15: BD = D3;

16: if BD = 0 then

17: Stop the searching process

18: else

19: Perform refinement operation

20: end if

Step1 Find the median predictor using equation (3.3).

Step2 After median prediction, extract the Half Resolution (HR) and Quarter Resolution

(QR) frames using the frame extraction. To create the HR and QR frames, ver-

tical subsampling is used. The representation of the vertical subsampling frame

extraction process can be observed in Fig. 3.5. Initially, the original frame (Orig) of

(M×N) size is taken and subsampled. M and N represent the number of rows and

columns of the frame. The vertical subsampling is used to reduce the resolution of

the original frame. The HR frame, which is of size (M/2 × N), is obtained by con-

sidering the original frame’s even rows, and the QR frame is obtained by considering

the even rows of the HR frame.

Step3 After extracting QR and HR frames, apply the motion estimation process to find

the Best Motion Vector (BMV). In this algorithm, the BMV is obtained by first

calculating the Motion Vector MV1 in the QR frame. We use the search patterns

like NCDD or NCDH to find the motion vector. After the searching process, take

the MV1 of the QR frame as an initial search point in the HR frame and find the

Motion Vector MV2 in the HR frame. Finally, take the MV2 of the HR frame as an

initial search point in the original frame and find the original frame’s Best Motion

Vector (BMV) using the search pattern.

Figure 3.5 Frame extraction process

The advantage of this process is the possibility of converging towards local minima

is significantly less.

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 32

3.3.2 Complexity reduction algorithm

This section presents the complexity reduction algorithm to decrease the H.265

encoding time. The flowchart representing the complexity reduction algorithm is shown

in Fig. 3.6.

Figure 3.6 Flowchart of the complexity reduction method.

The CUs of size 2N×2N at each depth are taken, where N can be 4, 8, 16, or 32.

Then the RD cost (J) is calculated by using equation (3.1). Let ’JC ’ represents the RD

cost of Current CU and ’JB’ represents the RD cost of Best CU. Here Best CU is the CU

having lower RD cost. The Best CU cost is determined based on the condition in (3.4).

JB =

JC , if JC < JB

JB, otherwise
(3.4)

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 33

Now update the prediction data and reconstruction data.

Conventionally to determine the skip mode, check whether the RD cost of the skip

(Js) is less than the RD cost of merge mode (Jm) or not. Let ’N’ represents the maximum

number of merge candidates and skip candidates. The number of merge candidates is

signaled in the slice header. Usually, the ’N’ value is five. The merge RD cost at each

depth can be calculated using equation (3.5).

Jmd
=

1

N

N−1∑
k=0

Jmu−k
(3.5)

Similarly, the skip RD cost Jsd can be calculated using equation (3.6).

Jsd =
1

N

N−1∑
p=0

Jsv−p (3.6)

Here, ’d’ is the current CU depth, u and v represents the number of merge modes

and skip modes treated as best PU modes for particular CU size. Jmu−k
, Jsv−p represents

the rate-distortion cost of kth merge mode and pth skip mode.

During block merging, the Merge flag specifies that block merging is utilised to get

the motion data for PU. Merge index is used for determining the candidate present in the

merge list. In block merging, the skip mode with the skip flag is incorporated.

If Js < Jm, then skip the computation of RD cost for the remaining modes. Other-

wise, perform the RD computation for all other PU modes.

To determine the skip mode early, after performing the RD computations, the early

skip condition is checked by gathering the Coded Block Flag (CBF) and residual infor-

mation. The skip condition is shown in equation (3.7).

Skip mode =

True, if(residual = 0 and cbf = 0)

false, otherwise
(3.7)

Here CBF is used to indicate whether the Transform Block (TB) has any significant

non-zero coefficients or not. Generally, after calculating the prediction residual, each CU

is divided into TBs. Each TB can be 32×32, 16×16, 8×8, or 4×4 in size. The condition

of CBF is shown in equation (3.8).

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 34

CBF =

0, if all coefficients in TB are zero

1, otherwise
(3.8)

Here the time required for encoding is saved by checking the coefficients of the

quantized block. The coefficients are checked by using the CBF. If the block has all zeros,

then the coding of that block can be skipped, which saves encoding time.

Let ’earlycu’ is the variable used for the determination of the CU early. The ’earlycu’

condition is checked by using the equation (3.9).

earlycu =

True, if skip(0) is high

false, otherwise
(3.9)

Here’ skip (0)’ checks the skip flag of the luma component. If the skip flag of the

luma component is skipped, it returns true, which means the block is skipped. The

advantage of this process is for the skipped CUs, the splitting and finding of RD cost can

be avoided, which results in a decrease in encoding time.

3.3.3 Search Patterns

Two search patterns are proposed: New Cross Diamond Diamond (NCDD) and

New Cross Diamond Hexagonal (NCDH) search patterns. In these search patterns, cen-

ter biased searching is used and also allows halfway search stop. The search patterns are

explained below.

New Cross Diamond Diamond (NCDD) search and New Cross Diamond Hexag-

onal (NCDH) search

In the MLRVS algorithm, the NCDH search pattern is used, which is formed by

adding the third stage to the cross diamond hexagonal search [86], as shown in Fig. 3.8.

The NCDD and NCDH patterns shown in Fig. 3.7 and Fig. 3.8 are explained below.

Step1 Perform a small diamond search by considering the median predictor as an origin (0,

0). Here four points around the origin are considered, with distance one for finding

the best motion vector. The four search points are indicated by ’•.’ If the best

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 35

Figure 3.7 NCDD search pattern

motion vector is the same as the origin, then the searching process stops; otherwise,

move to step2.

Step2 Again, consider the median predictor and make it an origin. Now take the four

search points indicated by ’∆’ with a distance of two around the origin. If the best

motion vector after searching is the same as the origin, the search stops; otherwise,

move to step 3.

Step3 Now consider the two nearby search points indicated by ’□’ close to the best motion

vector of step 2. Here the best motion vector can be found among the three search

points, including the best motion vector of step 2.

Step4 (a) If the search pattern is NCDD, then the eight-point diamond search is applied

by considering the best motion vector of step 3 as a center. If the obtained motion

vector after searching is the same as the center, stop the searching operation. Oth-

erwise, move to step 5.

(b) If the search pattern is NCDH, then the six-point hexagonal search is applied by

considering the best motion vector of step 3 as a center. Stop the searching process

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 36

if the center point has a minimum distortion value. Otherwise, move to step 5.

Step5 Perform a small diamond search (like step 1) by considering the obtained motion

vector as the center. The point with minimum SAD value is the best matching

point.

Figure 3.8 NCDH search pattern

3.4 Experimental Results

The proposed method is evaluated using the HEVC reference software HM 16.5 [87].

Seventeen different sequences with different resolutions are used to evaluate the output

of the proposed method. We also measured the RD performance loss of the proposed

algorithm using the Bjontegaard delta bitrate (BD-BR) [88, 89] and compared it with

the state-of-the-art techniques in [49], [90] and [35]. Table 3.1 show the experimental

conditions needed to verify the performance of the MLRVS algorithm. The percentage of

Time Saving (TS) can be calculated using equation (3.10).

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 37

Timesaving(TS)(%) =
Torig − Tprop

Torig
× 100 (3.10)

With the fast encoding options, the conventional HM reference software HM 16.5 is

used as an anchor method.

Table 3.1 Experimental conditions

Maximum CU and TU size 64Ö64 and 32Ö32

Configuration Encoder randomaccess main

QP values 22, 27, 32, and 37

Maximum CU and TU depth 4 and 3

GOP Size 8

Search range 64

Number of frames to be encoded 100

As discussed before, the main objective of the proposed method is to minimize the

encoding time. The proposed method using each search pattern i.e., NCDD or NCDH is

simulated separately and analyzed the results. Table 3.2 compares the proposed method

using the NCDD search pattern (Prop +NCDD) with the standard HM 16.5. The find-

ings indicate that the encoding time is reduced by 55% at the cost of a 0.31dB de-

crease in YPSNR and an 8.06% increase in bit rate. The proposed method using NCDH

(Prop+NCDH) search pattern is also simulated and compared with HM 16.5 method.

The outcome shows that the approach proposed significantly decreased the encoding time

by 56% with minimal video quality degradation, i.e., 0.23 dB.

Table 3.3 compares the proposed methods (Prop+NCDD and Prop+NCDH) with

[49] and [90] by making HM 16.5 reference method as an anchor. The authors in [49]

reduced the encoding time by 32% using the early skip mode decision with slight RD

performance loss. The results show the complete domination of the proposed method

compared to [49] in encoding timesaving. Even though the bit rate is increased, the

proposed method’s timesaving percentage is almost 40% more than [49].

The authors in [90] use the machine learning approach to reduce the encoding time

for finding the CU size. This method reduces the encoding time by 49% on average with

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 38

Table 3.2 Experimental outcomes of the proposed method compared to HM-16.5 standard

Class Input Resolution

Prop+NCDD Prop+NCDH

BD-BR

(%)

BD-PSNR

(dB)

TS (%) BD-BR

(%)

BD-PSNR

(dB)

TS (%)

QP=22 QP=27 QP=32 QP=37 Total QP=22 QP=27 QP=32 QP=37 Total

A
PeopleOnStreet

2560x1600
7.83 -0.51 54.61 58.81 63.92 66.54 61 6.53 -0.26 60.48 62.90 66.59 70.12 65

Traffic 8.98 -0.37 57.18 63.01 67.94 70.78 65 8.64 -0.28 58.62 61.97 66.52 71.12 65

B

Cactus

1920Ö1080

11.03 -0.27 34.17 51.09 60.55 68.42 54 9.94 -0.28 34.88 48.06 61.59 68.66 53

Kimono 9.68 -0.23 39.80 52.50 67.88 76.81 59 7.07 -0.18 41.12 51.54 67.77 76.97 59

Parkscene 6.92 -0.15 30.47 51.34 69.12 74.58 56 4.18 -0.09 26.05 48.90 65.16 75.22 54

BasketballDrive 7.79 -0.42 35.40 40.85 45.55 59.51 45 5.26 -0.34 36.54 46.18 53.39 57.99 49

C

BasketballDrill

832Ö480

10.14 -0.40 27.34 35.38 45.87 54.32 41 12.07 -0.49 32.65 42.63 51.45 61.73 47

BQMall 13.44 -0.53 32.76 42.66 54.03 58.28 47 10.45 -0.43 26.46 39.74 50.79 55.50 43

PartyScene 7.05 -0.34 29.13 34.86 48.59 61.07 43 6.78 -0.14 23.92 31.05 41.58 56.28 38

D

BlowingBubbles

416Ö240

9.26 -0.36 22.10 32.88 42.60 52.15 37 4.50 -0.18 25.23 33.86 43.90 53.80 39

BQSquare 8.84 -0.42 36.99 47.71 59.22 68.61 53 4.15 -0.10 33.90 53.37 66.87 76.99 58

BasketballPass 7.36 -0.35 36.56 41.68 54.42 63.49 49 6.87 -0.33 43.01 50.01 59.02 73.33 56

RaceHorses 10.80 -0.54 29.72 36.96 45.31 57.82 42 9.34 -0.46 29.77 43.20 51.54 63.98 47

E

KristenAndSara

1280Ö720

3.39 -0.10 56.57 68.08 73.57 77.26 69 2.90 -0.06 56.98 68.01 75.21 76.61 69

Johnny 5.35 -0.12 61.13 70.85 76.24 78.36 72 2.53 -0.13 50.80 68.29 73.91 76.98 67

FourPeople 4.17 -0.15 57.98 70.77 75.92 78.35 71 2.45 -0.09 55.71 65.43 67.69 74.78 66

Stockholm 5.13 -0.14 52.10 60.32 68.41 71.31 63 4.86 -0.17 52.11 62.25 66.74 72.20 63

Average 8.06 -0.31 40.82 50.57 59.94 66.92 55 6.38 -0.23 40.48 51.60 60.56 68.36 56

Table 3.3 Experimental findings of the proposed method and state-of-art techniques using

HM-16.5 as an anchor

Class Input Resolution

Prop+NCDD Prop+NCDH [49] [90] [35]

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

A
PeopleOnStreet

2560x1600
7.83 -0.51 61 6.53 -0.26 65 3.71 -0.24 35 7.37 -0.38 56 1.89 -0.21 53

Traffic 8.98 -0.37 65 8.64 -0.28 60 5.13 -0.26 40 9.07 -0.47 52 2.01 -0.19 49

B

Cactus

1920Ö1080

11.03 -0.27 54 9.94 -0.28 53 6.30 -0.19 32 7.53 -0.24 44 1.67 -0.14 28

Kimono 9.68 -0.23 59 7.07 -0.18 59 4.20 -0.18 29 6.53 -0.27 51 1.34 -0.16 41

Parkscene 6.92 -0.15 56 4.18 -0.09 54 5.40 -0.22 31 3.63 -0.14 53 2.12 -0.09 43

BasketballDrive 7.79 -0.42 45 5.26 -0.34 49 6.20 -0.09 24 6.34 -0.15 46 1.30 -0.12 41

C

BasketballDrill

832Ö480

10.14 -0.40 41 12.07 -0.49 47 6.80 -0.21 35 9.81 -0.43 54 1.92 -0.07 34

BQMall 13.44 -0.53 47 10.45 -0.43 43 5.60 -0.22 30 9.64 -0.48 42 1.46 -0.10 32

PartyScene 7.05 -0.34 43 6.78 -0.14 38 3.92 -0.16 32 9.87 -0.76 59 2.32 -0.17 35

D

BlowingBubbles

416Ö240

9.26 -0.36 37 4.50 -0.18 39 5.42 -0.09 26 6.17 -0.37 37 1.50 -0.12 30

BQSquare 8.84 -0.42 53 4.15 -0.10 58 4.20 -0.12 31 12.34 -0.87 47 0.98 -0.06 54

BasketballPass 7.36 -0.35 49 6.87 -0.33 56 2.30 -0.18 25 10.05 -0.54 40 0.54 -0.08 51

RaceHorses 10.80 -0.54 42 9.34 -0.46 47 5.10 -0.11 33 12.89 -0.8 57 1.23 -0.13 56

E

KristenAndSara

1280Ö720

3.39 -0.10 69 2.90 -0.06 69 2.50 -0.07 38 13.35 -0.62 58 2.15 -0.06 54

Johnny 5.35 -0.12 72 2.53 -0.13 67 3.50 -0.10 28 8.09 -0.32 47 2.70 -0.11 57

FourPeople 4.17 -0.15 71 2.45 -0.09 66 2.70 -0.13 32 9.07 -0.48 36 2.61 -0.12 62

Stockholm 5.13 -0.14 63 4.86 -0.17 63 2.60 -0.05 39 8.44 -0.49 52 1.94 -0.07 61

Average 8.06 -0.31 55 6.38 -0.23 56 4.44 -0.15 32 8.83 -0.45 49 1.73 -0.11 47

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 39

(a) (b)

(c) (d)

Figure 3.9 Example RD curves of (a) BQMall (b) Cactus (c) FourPeople (d) BQSquare video

sequences

0.45dB loss in video quality and an 8.83% rise in bit rate. For a few video sequences like

RaceHorses, BasketballDrill, and PartyScene, the approach in [90] saves more encoding

time than our proposed method. The proposed method outperformed the [90] method for

the remaining video sequences in timesaving, bit rate, and YPSNR. The proposed method

can obtain more encoding time saving than the machine learning approach without sac-

rificing much coding quality. We have also compared the performance of the proposed

method with the [35] approach. The experimental findings show that the state-of-the-

art method achieved good RD performance. However, only 47% of encoding time saved,

which is less compared to our proposed method.

Fast encoding in HEVC using Early Skip mode detection and MLRVS algorithm 40

The Peak Signal to Noise Ratio (PSNR) is calculated using the equation(3.11).

PSNR = 10log10
(2bitdepth − 1)2 ∗W ∗H∑

i(Oi −Di)2
(3.11)

Where

bitdepth = each pixel bit depth

W = Number of horizontal pixels

H = Number of vertical pixels

Oi= reference picture pixel value

Di= Decoded picture pixel value

i = pixel address

As human vision is more sensitive to luminance (Y), the YPSNR is considered in-

stead of PSNR for drawing the RD curve. Fig. 3.9 shows an example of RD curves for

BQSquare, BQMall, Cactus, and FourPeople, respectively. The RD curves indicate that

the proposed approach can maintain the video’s quality the same as that of the regu-

lar HM 16.5. The RD performance loss due to the proposed method is slightly larger

than standard HM but tolerable and even smaller than the machine learning approach

method. The encoder randomaccess main configuration is used, which uses the hierar-

chical Bidirectional structures. This configuration provides higher efficiency but with a

more significant delay compared to the other configurations.

3.5 Conclusions

The MLRVS algorithm is used to minimize the encoding time of the HEVC encoder.

This algorithm uses vertical subsampling, which decreases the number of computations

needed to find the motion vector. Two search patterns are proposed, which helps to

quicken the motion estimation process. Moreover, the complexity reduction algorithm

is used to lessen the time required for coding the coefficients. The proposed algorithm

with two different search patterns is simulated individually. The results exhibit that the

proposed algorithm has reduced the encoding time by 56% with NCDH and 55% with

NCDD search patterns compared to the HM 16.5 standard. The results exhibit that our

proposed method saves more encoding time than the state-of-the-art methods with slight

RD performance loss.

Chapter 4

Fast Convolutional Neural Network based Coding

Unit Size Prediction in HEVC

4.1 Introduction

The High Efficiency Video Coding (HEVC) provides compression for video sequences

with better video quality at lower bit-rates compared to H.264/Advanced Video Coding

(AVC) standard. Advanced coding methods, such as the quad-tree Coding Tree Unit

(CTU) partition structure, improve the efficiency of HEVC. However, because of the

recurrent Rate-Distortion Optimization (RDO) search procedure, CTU partitioning takes

longer. The RDO search mechanism and motion estimation accounts for 80% of the entire

encoding time. The complexity in determining the Coding Unit (CU) size can be lowered

to reduce encoding time. The encoding time can be further reduced by improving the

speed of the motion estimation process.

The motion estimation process helps in finding the motion vector to predict the

next frame. It also helps in reducing the temporal redundancy between the current frame

and the reference frame. The frame at time ’t’ is considered the current frame, and the

frame at ’t-1’ is taken as a reference frame. The motion estimation process determines

the motion vector by finding the matching block in reference frame for each block in

the current frame. The motion vector represents the displacement between the position

of the block in the reference frame and the corresponding block position in the current

frame. Several search patterns like a Full search, Logarithmic search, a Three-step search,

Fast CNN based Coding Unit Size Prediction in HEVC 42

Hexagonal search [91], etc., can be used to find the motion vectors at a less computational

expense.

The HEVC employs a quad-tree structure to divide the frame into Coding Tree Units

(CTUs). The CTU with optimal CU partitions is considered for encoding in HEVC. The

CU partitions with minimal RD cost are treated as the optimal CU partitions determined

using the Rate-Distortion Optimization (RDO) search process. The optimal CTU parti-

tions of the BasketballPass sequence are shown in Fig. 4.1. The CU partitions show that

the smaller CUs contain more information than the large CUs. The process of determin-

ing the optimal CUs consumes more time due to the conventional RDO search process.

Some of the techniques to determine the optimal CTU partitions are provided below.

Figure 4.1 Optimal CTU partitions of BasketballPass sequence

The authors in [92] proposed a method that determines the best PU mode by apply-

ing the zero residual quad-tree process. Hyo-Song Kim and Rae-Hong Park [93] proposed

an algorithm, which determines the CU partitions fastly based on the Bayesian decision

rule. The authors in [94] reduced the encoding time by pruning the quad-tree based on

residual statistics obtained after prediction. Leng et al. [95] proposed a method that

decides the CU depth by skipping the rarely used CU depths of the past frames. Shen

et al. [96] proposed an approach that determines CU’s splitting based on RD-cost and

prediction error. Cho et al. [97] use the Bayesian rule to decide the CU split based on

the features of low-complexity RD costs. Yoo et al. [98] determine the partition of PU

having maximum probability by considering the RD cost and coded block information of

already encoded PUs. Correa et al. [99] use data mining techniques with early termination

schemes to decide CU’s partition structure.

In [100], the authors proposed a method to predict the PU mode and CU partition

Fast CNN based Coding Unit Size Prediction in HEVC 43

using the binary and multi-class SVM classifier. Helen et al. [101] use the neural network

for the analysis of CTU depth. The authors also predict the CU size using the deep

learning approach. The combination of the depth analysis method and the CU prediction

approach helps in decreasing the complexity of the encoder. Tianyi et al. [102] use the

deep learning CNN approach instead of the RDO process to predict the CTU partition

in intra mode HEVC. Mai et al. [103] use the Long and Short Term Memory (LSTM)

approach that reduces the complexity in HEVC for both intra and inter modes. The

authors in [104, 105] use the Asymmetric Kernel CNN (AK-CNN) approach that lessens

the time required for CU/PU size determination. Zhenyu et al. [106] reduced the VLSI

hardware encoder’s complexity by using the CNN approach, which is used to predict the

CU partitions. The above works concentrate on reducing the encoding time by predicting

the optimal CU partitions fastly. However, the motion estimation increases the encoding

time significantly.

We proposed the deep learning Convolutional Neural Network (CNN) approach for

CU size prediction and Multi-Resolution frame with the Cross Diamond Octagonal search

pattern (MRCDO) for motion estimation to reduce the encoding time. The combination

of the prediction approach and motion estimation method reduced the encoding time by

66.91%.

4.2 Rate-Distortion Optimization (RDO) search process in HEVC

In HEVC, each frame is divided into Coding Tree Units (CTUs). The maximum

size of CTU is 64Ö64, and the CTU can be recursively split into four equal-sized Coding

Units (CUs). The CU can have sizes of 64Ö64, 32Ö32, 16Ö16, and 8Ö8 at the depths of

0, 1, 2, and 3, respectively. The CU size is determined using the RDO search process,

which uses the top-down checking approach, as shown in Fig. 4.2. Consider the CU (Y),

which is of size 64×64. The split conditions at different depths are given below

At depth 0, JY ≥
∑4

i=1 J
Yi ,

At depth 1, JYi ≥
∑4

i,j=1 J
Yi,j and

At depth 2, JYi,j ≥
∑4

i,j,k=1 J
Yi,j,k

Where, i, j, k ∈ {1, 2, 3, 4} are the subscripts and JY represents the RD cost of CU (Y). Y,

Fast CNN based Coding Unit Size Prediction in HEVC 44

Figure 4.2 Three level classifier structure with split condition

Yi, Yi,j and Yi,j,k are the CUs present at depth0, depth1, depth2 and depth 3, respectively.

The RD cost (J) is calculated by using equation (4.1).

J = DSAD + λ×R (4.1)

Where, λ= Lagrangian multiplier, R = number of bits needed to transmit and DSAD =

Distortion.

At depth 0, if the split condition is true, split Y and represent the sub-CUs at depth

1 as
{
Yi

}4

i=1
. Then the each CU at the depth 1 is furthur split into four equal sized sub

CUs, if the split condition is satisfied at depth 1.
{
Yi,j

}4

i,j=1
represents the CUs at depth

2. Finally, the third condition decides whether the CUs at depth 2 needs to be split or

not. If the condition is true,
{
Yi,j

}4

i,j=1
is divided into four sub-CUs

{
Yi,j,k

}4

i,j,k=1
.

The RD cost calculation and split condition checking process consumes more time

in standard HEVC. For 64×64 CTU, 85 CUs (if the whole CTU is divided into 8×8 CUs)

need to be checked, including N×N size CUs. The ’N’ value can be 8, 16, 32, or 64. The

pre-coding of 85 CUs consumes more time in standard HEVC. The accurate prediction

of CU size can reduce the encoding time significantly.

Fast CNN based Coding Unit Size Prediction in HEVC 45

To reduce the encoding time, we proposed the CU size prediction using CNN and

the MRCDO motion estimation method.

4.3 Proposed work

The HEVC encoding process involves Rate-Distortion Optimization, which deter-

mines the CU size. As the RDO process consumes more time, we presented a deep learning

CU size prediction approach using CNN. The MRCDO method using the Cross Diamond

Octagonal (CDO) search pattern is also proposed to determine the motion vector quickly.

The CU size prediction and MRCDO method are discussed below.

4.3.1 MRCDO search method

The MRCDO search algorithm is a MLRVS motion estimation algorithm (discussed

in section 3.3.1) with CDO search pattern. The CDO pattern is used as a search pattern

to find motion vectors. The CDO search pattern illustrated in Fig. 4.3 is described below.

Step 1: Apply four-point diamond search pattern by considering the median predictor as

starting point i.e., origin (0, 0). The four points are indicated by ’•.’ Determine the

point which has the smallest SAD value.

Step 2: If the origin has a minimum SAD value, terminate the search operation. Otherwise,

move to step3.

Step 3: Now apply large diamond search pattern around the origin. Perform SAD com-

putations for the search points applied around the origin, which are indicated by

’▲.’

Step 4: If the origin has a minimum SAD value, stop the search operation, otherwise proceed

to Step 5.

Step 5: Consider the two surrounding points denoted by ’■’ to the minimum SAD value

point in step 3 and perform SAD computations for these two search points.

Fast CNN based Coding Unit Size Prediction in HEVC 46

Step 6: Now consider the search point in the previous step, which has the lowest SAD value

as the center and apply the octagonal pattern around it. The ’parallelogram’ symbol

represents the octagonal search points.

Step 7: Consider the previous step minimum SAD value point as center and apply the four

points as shown in step 1. The point with the lowest SAD value is considered the

best match.

Figure 4.3 Cross Diamond Octagonal search pattern

The TZ search algorithm with search patterns aids in motion estimation complexity

reduction. However, the search patterns might get trapped to local minima, which leads

to performance loss. To address the local minima problem, the MRCDO search method

is developed, which increases the probability of obtaining global minima.

4.3.2 CU size prediction using CNN

The CNN model depicted in Fig. 4.4 is trained over three CU depth levels using

the database to derive the CTU partitions. The database consists of 397 video files,

out of which 18 sequences from the Joint Collaborative Team on Video Coding (JCT-

VC) test set, 300 videos from Stanford university, and 79 sequences from Xiph.org. The

videos belong to different sizes such as (112×112), (352×288), (352×240), (416×240),

(832×480), (1280×720), and 1080p. The CU depth data is generated by encoding the

aforementioned sequences at four QPs using HEVC reference software. In addition, with

Fast CNN based Coding Unit Size Prediction in HEVC 47

the random access main configuration, 19,607,566 samples were collected. The loss and

accuracy curves for training and validation data at four different Quantization Parameter

(QP) values are shown in Fig. 4.5.

Figure 4.4 CU size prediction using CNN

The CU depth levels are represented with L, where L belongs to 1, 2, and 3. The

CU partitions are made at three different levels based on the values of Y1, Y2, and Y3

values. The average accuracy for predicting the CU partitions at level 1, level 2, and level

3 for inter mode HEVC are 86.36%, 82.18%, and 77.32%, respectively.

The video sequence is the sequence of frames, where each frame is segmented into

CTUs. We provide the luminance of CTU, which is of 64×64 size as an input to the

CNN. The elements of the luminance CTU undergo normalization, which results in all

the values of CTU are [0, 1]. The resultant CTU undergoes down-sampling that results

in CU with sizes 16×16, 32×32, and 64×64, respectively. The CNN model consists of

four convolution layers, a concatenation layer, and two fully connected layers.

The working of each layer in the CNN is discussed below.

1. Convolution layers There are four convolution layers in the CNN. At the convo-

lution layer 1, 16 filters with a kernel size of 8×8,4×4, and 2×2 are applied at three

branches B1, B2, and B3, to obtain the features. The three branches resultant fea-

tures are individually convolved with 2×2 kernel at convolution layer2, layer3 and

layer4 to extract low-level features. Layer2, layer3 and layer 4 have 24, 32 and 40

filters, respectively. Note that the kernel size is taken as stride length.

Fast CNN based Coding Unit Size Prediction in HEVC 48

(a) QP=22 (b) QP=27

(c) QP=32 (d) QP=37

Figure 4.5 Loss and accuracy curves for training and validation data of the CNN model

2. Concatenation layer and Fully Connected Layers (FCL) At the concatena-

tion layer, the feature maps obtained at the output of the last two convolution layers

at three branches are combined to generate a single vector. The output vector is

represented by ’b,’ which is of size 504 features. Then the output vector is passed

through two FCLs, and finally, the output is predicted at the output layer. The

f1(a) and f2(b) represent the features of FCL1 and FCL2.

Fig. 4.6 shows the CU classification based on the yL output. At level 1, if y1 is one,

then proceed to the prediction at level 2. The calculation of feature vectors f1(a) and

f2(b) of the fully connected layers is performed at this level. Based on the resultant

feature vectors, the output y2 is decided. If the output y2 is zero, stop the feature vector

calculation of fully connected layers at level 3. Otherwise, perform prediction at level 3 by

calculating the f1(a) and f2(b) feature vectors of FCL1 and FCL2 to predict the output.

The convolution and FCLs are activated with Rectified Linear Units (ReLU), and the

output layer is activated with sigmoid function.

Fast CNN based Coding Unit Size Prediction in HEVC 49

Figure 4.6 CU classification based on yL output, L represents the Level

During the CNN training, the features at the output of the second fully connected

layer are dropped with a 50% probability. The output yL is binary, which decides whether

the CU is to be split or not.

Equation (4.2) shows the CU size based on the yL output.

yL =


32× 32 CUs, L = 1

16× 16 CUs, L = 2

8× 8 CUs, L = 3

(4.2)

CNN delivers the probability of binary output at each level when CTU is given as an

input. The maximum and lower limits at level 1 are 0.6 and 0.4, respectively. Similarly,

the upper and lower threshold for level 2 are 0.7 and 0.3, and for level 3, they are 0.8 and

0.2. The CU is split at each level based on the threshold value.

Consider there are P training samples, the loss function Lf using cross-entropy is

given as

Lf = −1

r

r∑
r=1

[Y
(r)
L log ŶL

(r)
+ (1− Y (r)

L) log(1− ŶL
(r)
)] (4.3)

Where,

Y
(r)
L = ground-truth value of the rth training sample,

ŶL
(r)

= corresponding prediction to Y
(r)
L

During training, the stochastic gradient descent algorithm is used to optimize the

loss Lf .

Fast CNN based Coding Unit Size Prediction in HEVC 50

4.4 Experimental Results

In this section, we evaluate the proposed approach’s performance using HM 16.5

reference software. The encoder random access main configuration is used to evaluate

the proposed method. The 64-bit Windows-7 operating system with Intel(R) Core(TM)

i5 is used for our experiments. Here, the QP values of 22, 27, 32, and 37 compress the

video sequences. The RD performance of the proposed method is analyzed in terms of

Bjontegaard delta PSNR (BD-PSNR) and Bjontegaard delta bit-rate (BD-BR). Another

metric, Time Saving (TS), is used to measure the percentage of time-saving compared

to the standard HM 16.5. The percentage of time-saving is measured by using equation

(4.4).

TimeSaving(TS)(%) =
Torig − Tprop

Torig
× 100 (4.4)

Initially, we have analyzed the performance of the MRCDO method in comparison

to HM 16.5. Table 4.1 shows the comparison of MRCDO and HM 16.5 methods. It is

observed that the MRCDO method has saved the encoding time by an average value of

54.26%. We can also note that an average value of 7.76% rise in BD-BR and 0.30dB

decrease in BD-PSNR compared to the HM 16.5.

Then we analyze the proposed approach, which predicts the CU size using CNN in

combination with the MRCDO method. Our proposed method is compared with three

state-of-art methods by making the HM as an anchor. The HM uses the conventional

RDO search in combination with the TZ search algorithm.

Table 4.2 results show that the proposed method saves the encoding time by 66%,

64.99%, 67.20%, and 69.46% on average, outperforming the 59.34%, 57.98%, 55.59% and

57.87% time savings in [107] and 51.46%, 52.91%, 52.49% and 55.28% time savings in [90]

at QP=22, 27, 32 and 37, respectively. In total, our proposed method saves the encoding

time by an average of 66.91% compared to [107] @ 57.69% and [90] @ 53.03%.

The proposed method is also compared to another state-of-the-art method in [103].

The average saving of encoding time by [103] is 59.70%, which is lower than the proposed

approach. The time savings of our proposed method is at the cost of RD performance loss.

Table 4.2 shows that the average rise in BD-BR is 9.16%, which is better than [107]. But

compared to [90], the increase in BD-BR is slightly higher. Similarly, the average decrease

Fast CNN based Coding Unit Size Prediction in HEVC 51

Table 4.1 Comparison results of MRCDO and HM-16.5

Class Size
Video

Sequences

BD-BR

(%)

BD-PSNR

(dB)

TS(%)

QP=22 QP=27 QP=32 QP=37 Tot

A 2560×1600
PeopleOnStreet 5.22 -0.14 56.27 58.69 62.38 65.91 60.81

Traffic 7.33 -0.18 49.41 52.76 57.31 61.91 55.34

B 1920×1080

Kimono 5.22 -0.58 35.88 45.43 50.46 53.29 46.26

ParkScene 7.51 -0.35 14.90 28.99 38.91 45.98 32.19

Cactus 7.58 -0.17 44.01 50.97 63.72 71.06 57.44

BasketballDrive 10.43 -0.20 18.14 29.72 36.90 46.88 32.91

BQTerrace 8.09 -0.21 23.84 41.73 60.99 70.99 49.38

C 832×480

BQMall 10.77 -0.43 35.46 46.74 60.71 67.89 52.70

BasketballDrill 9.55 -0.12 28.10 62.23 69.27 77.05 59.16

RaceHorses 10.95 -0.46 18.70 29.98 32.97 43.42 31.26

PartyScene 6.23 -0.43 63.58 62.69 63.63 64.54 63.61

D 416×240

BasketballPass 7.43 -0.34 43.07 54.76 63.37 74.26 58.86

BlowingBubbles 9.06 -0.35 29.06 36.19 51.78 61.39 44.60

RaceHorses 11.27 -0.57 20.44 26.78 34.56 45.47 31.81

BQSquare 10.48 -0.47 35.81 55.83 68.75 79.65 60.01

E 1280×720

FourPeople 4.20 -0.21 67.38 80.41 87.21 89.57 81.14

KristenAndSara 3.24 -0.10 69.15 80.67 85.20 89.81 81.20

Johnny 5.12 -0.14 63.06 77.38 84.56 87.42 78.10

Average 7.76 -0.30 39.79 51.21 59.59 66.47 54.26

(a) (b)

Figure 4.7 Reconstructed frames of (a) BasketballDrive (b) BQMall at QP=27

in BD-PSNR is 0.52dB, which is lower than 0.85dB in [107] and somewhat higher than

0.47dB in [90]. The proposed method outperforms [107] in terms of BD-BR, BD-PSNR,

Fast CNN based Coding Unit Size Prediction in HEVC 52

(a) (b)

Figure 4.8 Reconstructed frames with predicted CTU partitions of (a) BasketballDrive (b)

BQMall at QP=27

and TS. Our approach is also superior to [90] and [103] in terms of time-saving (TS).

Fig. 4.7(a) and (b) show the reconstructed frames of BasketballDrive and BQMall

video sequences when QP=27. Fig. 4.8(a) and (b) display the reconstructed frames with

CU partitions predicted by the proposed method. The black boxes in Fig. 4.8 represent

the CTU, which is of size 64x64. The yellow colour boxes represent the CU partitions

present inside the CTU. The BasketballDrive frame contains more CTU blocks with no

CU partitions.

The CTU with no partitions represents that the output y1 at level 1 of CNN is zero.

If y1 is zero, the prediction at level 2 and level 3 is skipped out, which results in saving

encoding time. If the CTU block contains only four CU partitions, then the output y2 at

level 2 is zero. If y2 is zero, the prediction is not performed at level 3. A large number of

CU partitions results in more encoding time. The BQMall frame in Fig. 4.8(b) contains

more CU partitions, resulting in more encoding time than the BasketballDrive sequence.

The example RD curves for four video sequences at four different video resolutions

are shown in Fig. 4.9. The RD curves show that a slight decrease in YPSNR is observed

compared to HM-16.5. For the four video sequences, the degradation in YPSNR is less

than 1dB, which shows a negligible loss in video quality.

Fast CNN based Coding Unit Size Prediction in HEVC 53

(a) (b)

(c) (d)

Figure 4.9 Example RD curves of (a) BasketballPass (b) BQMall (c) KristenAndSara (d)

ParkScene

4.5 Conclusions

In HEVC, the CTU partition structure is determined using the RDO search pro-

cedure. The recursive RDO search process increases the encoding time. We suggested

the CU size prediction method utilizing a deep learning methodology to reduce encoding

time. The MRCDO search method is also proposed, which improves the motion estima-

tion process speed. Compared to the HM-16.5 standard, the suggested solution reduces

encoding time by 66.91 percent on average, with a 9.16 percent increase in BD-BR and

a 0.52dB loss in BD-PSNR. In terms of both encoding time and RD performance, the

suggested technique outperforms the state-of-the-art methods.

Fast CNN based Coding Unit Size Prediction in HEVC 54

Table 4.2 Comparison results of proposed and state-of-the-art methods

Class
Video

Sequence
Size

Approach BD-BR

(%)

BD-PSNR

(dB)

TS(%)

QP

22

QP

27

QP

32

QP

37
Total

A

PeopleOnStreet

2560×1600

[107] 16.02 -0.86 63.39 58.99 57.01 56.96 59.08

[90] 9.93 -0.42 52.96 54.75 57.83 62.56 57.02

[103] 2.31 -0.12 57.41 60.43 59.61 62.03 59.87

Our 6.78 -0.73 70.19 67.84 71.19 69.06 69.57

Traffic

[107] 11.26 -0.58 60.84 60.25 58.94 60.16 60.04

[90] 7.88 -0.53 54.64 58.88 62.83 64.92 60.31

[103] 2.63 -0.31 53.61 57.81 61.23 67.55 60.05

Our 7.85 -0.41 73.14 69.10 76.25 75.42 73.47

B

Kimono

1920×1080

[107] 10.41 -0.39 65.34 62.93 62.43 64.03 63.68

[90] 8.49 -0.61 49.63 56.86 61.31 65.21 58.25

[103] 3.17 -0.26 56.53 59.23 62.12 68.53 61.60

Our 9.17 -0.67 75.01 72.20 74.58 69.40 72.79

ParkScene

[107] 6.53 -0.27 61.48 60.90 60.59 62.12 61.27

[90] 3.63 -0.14 41.69 44.79 59.98 64.92 52.84

[103] 2.12 -0.31 54.40 57.41 61.30 69.71 60.70

Our 7.92 -0.44 67.84 75.05 71.91 74.48 72.32

Cactus

[107] 13.89 -0.50 60.59 58.89 58.06 58.60 59.03

[90] 7.53 -0.24 38.37 40.83 43.61 51.23 43.51

[103] 2.77 -0.29 55.41 58.74 61.21 63.53 59.72

Our 9.37 -0.52 73.58 65.78 71.83 74.56 71.43

BasketballDrive

[107] 11.62 -0.27 59.79 60.03 60.90 62.50 60.81

[90] 9.01 -0.37 58.18 62.01 65.94 68.78 63.72

[103] 3.67 -0.19 65.51 72.61 74.05 75.48 71.91

Our 8.81 -0.21 66.88 73.88 76.70 78.61 74.02

BQTerrace

[107] 13.05 -0.77 58.26 58.38 57.33 57.94 57.97

[90] 5.76 -0.57 49.55 54.74 58.34 62.34 56.24

[103] 2.45 -0.23 57.93 59.81 61.00 64.21 60.73

Our 9.48 -0.32 66.90 63.99 67.27 67.35 66.37

C

BQMall

832×480

[107] 22.01 -1.27 57.25 54.39 55.40 56.71 55.93

[90] 9.64 -0.48 52.62 42.97 35.52 37.12 42.05

[103] 2.92 -0.34 52.41 57.32 64.81 66.72 60.31

Our 11.83 -0.52 64.81 65.03 65.36 69.37 66.14

BasketballDrill

[107] 22.48 -0.98 58.21 57.25 53.76 53.20 55.60

[90] 9.81 -0.43 46.65 58.86 47.66 62.53 53.92

[103] 4.25 -0.42 58.31 55.72 50.63 57.51 55.54

Our 9.98 -0.88 63.70 64.28 65.43 66.93 65.08

RaceHorses

[107] 12.89 -0.80 59.20 57.16 54.96 56.75 57.01

[90] 6.78 -0.42 48.47 56.30 57.61 61.05 55.85

[103] 2.71 -0.18 52.31 54.60 58.31 59.45 56.15

Our 11.78 -0.53 64.36 60.82 65.43 67.30 64.47

PartyScene

[107] 14.97 -0.95 58.77 56.49 48.97 54.01 54.56

[90] 6.41 -0.40 50.76 59.47 60.64 65.68 59.13

[103] 2.21 -0.21 54.69 48.52 55.40 51.97 52.64

Our 8.36 -0.40 55.24 42.05 38.14 58.45 48.47

D

BasketballPass

416×240

[107] 18.35 -0.98 56.02 54.06 46.17 53.81 52.51

[90] 10.05 -0.54 43.69 41.03 37.46 36.69 39.71

[103] 3.42 -0.32 57.41 62.90 63.21 65.10 62.15

Our 8.89 -0.74 64.40 67.94 68.79 70.03 67.79

BlowingBubbles

[107] 13.99 -0.80 57.26 54.88 48.72 56.45 54.32

[90] 6.17 -0.37 57.15 42.45 25.73 22.81 37.03

[103] 2.81 -0.27 44.51 52.54 56.81 60.54 53.60

Our 8.93 -0.57 54.76 53.28 57.47 57.90 55.85

RaceHorses

[107] 17.08 -1.12 57.23 54.30 50.45 53.73 53.92

[90] 8.49 -0.54 51.64 55.62 59.71 62.20 57.29

[103] 2.95 -0.18 40.12 43.53 48.97 53.64 46.56

Our 10.12 -0.46 59.76 56.28 61.47 63.90 60.35

Continued on next page

Fast CNN based Coding Unit Size Prediction in HEVC 55

Table 4.2 – continued from previous page

Class
Video

Sequence
Size

Approach BD-BR

(%)

BD-PSNR

(dB)

TS(%)

QP

22

QP

27

QP

32

QP

37
Total

BQSquare

[107] 21.55 -1.71 53.73 52.82 47.41 49.93 50.97

[90] 12.34 -0.87 61.45 62.40 58.99 46.86 57.42

[103] 2.91 -0.24 47.81 49.61 57.86 59.43 53.68

Our 10.63 -0.73 54.30 58.39 60.14 68.65 60.37

E

FourPeople

1280×720

[107] 17.57 -0.96 59.49 57.58 58.01 58.67 58.43

[90] 9.07 -0.48 53.52 40.88 26.12 24.34 36.21

[103] 3.71 -0.24 61.46 59.64 60.61 61.12 60.70

Our 8.28 -0.50 67.02 67.59 69.87 70.91 68.84

KristenAndSara

[107] 24.36 -1.16 61.35 60.74 59.16 62.43 60.92

[90] 13.35 -0.62 54.44 56.94 56.05 62.61 57.51

[103] 3.60 -0.20 66.03 68.61 71.03 69.82 68.87

Our 7.17 -0.37 71.88 73.83 74.62 76.03 74.09

Johnny

[107] 23.09 -0.88 59.84 63.53 62.41 63.62 62.35

[90] 7.37 -0.39 60.93 62.61 69.53 73.15 66.55

[103] 5.13 -0.27 69.57 67.81 69.79 72.43 69.90

Our 9.59 -0.33 74.24 72.53 73.06 71.88 72.92

Average

[107] 16.17 -0.85 59.34 57.98 55.59 57.87 57.69

[90] 8.43 -0.47 51.46 52.91 52.49 55.28 53.03

[103] 3.10 -0.25 55.86 58.16 61.00 63.82 59.70

Our 9.16 -0.52 66.00 64.99 67.20 69.46 66.91

Chapter 5

CU Size Prediction in Scalable Video Coding using

CNN-LSTM

5.1 Introduction

High Efficiency Video Coding (HEVC) is a standard that compresses Ultra High

Definition (UHD) videos with a 50% less bit rate compared to the H.264 Advanced Video

Coding (AVC) [108] standard while maintaining the same video quality. Considering the

HEVC compression performance, the SHVC standard is developed. SHVC is the extension

of HEVC, which is constructed using the fundamentals of HEVC. SHVC allows encoding

the same video into various video resolutions, qualities, or frame rates. SHVC uses a

Coding Unit, Prediction Unit(PU), and Transform Unit(TU) during the coding process.

It consists of one Base Layer (BL) and multiple Enhancement Layers (ELs), shown in

Fig. 5.1. SHVC can provide quality, temporal and spatial scalability by utilizing BL

and EL. The BL represents the lowest quality video, and EL provides improved quality

compared to BL.

In SHVC, the encoding starts at the Base layer and proceeds to the Enhancement

Layers in the quality order. During the encoding process, the earlier frames from the

same layer and the lower layer frames are used for the prediction. SHVC uses Inter-

Layer Texture Prediction (ILTP) and Inter-Layer Motion Prediction (ILMP) to exploit

the correlation between the motion vector and pixel values of non-identical layers.

ILTP sets the Inter-Layer Picture (ILP) as a reference frame for EL coding. The ILP

CU Size Prediction in Scalable Video Coding using CNN-LSTM 57

Figure 5.1 Block diagram of SHVC [109]

picture is obtained using the BL picture’s interlayer processing (up-sampling) and the BL

picture is reconstructed from BL’s Decoded Picture Buffer (DPB). ILMP allows the EL

to reuse the motion vectors of BL. The SHVC encoder uses the Advanced Motion Vector

Prediction (AMVP) process during ILMP. The AMVP selects the four adjacent blocks

to the current block and one block located at the same position in the frame at other

times as candidate blocks. The additional coding information of BL, like inter-prediction

direction, motion vectors, and reference index, can be used for coding the EL.

In SHVC, the quad-tree structure is used. Due to the BL and multiple EL layers,

the RDO search process used in the SHVC provides more computational complexity than

HEVC. In addition, the motion estimation further increases the encoding time.

The proposed method helps to reduce the complexity of SHVC by accelerating the

ME, and CU size prediction process. The main contributions of this chapter are

1. We proposed the two stage Horizontal Subsampling Motion Estimation (HSME)

that uses the Cross Diamond Unsymmetrical Octagonal (CDO) search pattern to

obtain the motion vector with global minimum and to reduce the motion estimation

time.

2. We establish a large database to train CNN and LSTM for predicting the CTU

structure at inter mode which helps in reducing the complexity of SHVC.

3. We developed an Early terminated CNN+LSTM structure to predict the partitions

CU Size Prediction in Scalable Video Coding using CNN-LSTM 58

of CTU.

5.2 Proposed Work

In this section, the proposed method concentrates on reducing the motion estimation

time and CTU structure prediction time. We propose the Horizontal Subsampling Motion

Estimation (HSME) method to accelerate the motion estimation process. Then the Early

Terminated CNN is explained, and finally, the ET-LSTMmodel is designed in combination

with ET-CNN to predict the CTU partition structure in SHVC.

5.2.1 Horizontal Subsampling Motion Estimation (HSME)

In this method, two stage horizontal subsampling process is used which is shown in

Fig. 5.2. The horizontal subsampling is the process of selecting only the even columns

of the frame. Consider a frame (treated as Full Resolution (FR) frame) which is of size

M×N. ‘M’ and ‘N’ represents the rows and columns of the frame. The frame undergoes

the horizontal subsampling that results in the Half Resolution (HR) frame which is of size

M×N/2. The resultant frame HR is converted to Quarter Resolution (QR) frame using

the horizontal subsampling process. The QR frame is of size M×N/4. After creating the

HR and QR frames, the motion estimation process is performed to determine the motion

vector at each stage. The final goal of the two-stage horizontal subsampling process is to

obtain the Best Motion Vector which is a global minimum. The searching operation is

performed using the CDO search pattern (refer to section 4.3.1). The ME process starts

at QR frame and ends at the FR frame. The ME process is explained below.

Step 1: The center biased search is used to determine the motion vector. Make the median

predictor as a center and apply the CDO search pattern with the search range as

64 to the QR frame to obtain the motion vector. The motion vector obtained after

the search process is treated as M1.

Step 2: Place the M1 as a center in the HR frame and perform the search process around M1

using the CDO to calculate the motion vector. The final motion vector calculated

after search process is treated as M2. In step 2, the search range is 32.

CU Size Prediction in Scalable Video Coding using CNN-LSTM 59

Figure 5.2 Horizontal subsampling

Step 3: Finally, place the M2 as a center in FR frame and determine the motion vector

using the search pattern. The search range is 16 and the motion vector obtained

after the motion estimation process is taken as the Best Motion Vector (BMV).

The advantage of this motion estimation process is the possibility of obtaining the global

minima is remarkably high. The motion vector refinement at three frames leads to global

minimum. The higher search range at QR frame and smaller search range at FR frame

helps to reduce the motion estimation time.

5.2.2 Temporal correlation between frames

In the video sequences, the adjacent frames show similarity, and this similarity

decreases as the distance between the frames increases. Fig. 5.3 shows the example CU

partitions in adjacent frames. Consider ’frame 121’ as a reference frame. The blue color

indicates the dissimilarity between the frames. As shown in the figure, the dissimilarity

increases as the temporal distance between the reference frame and the current frame

increases.

We further evaluate the correlation between the two frames by considering 1 to 15

Group of Pictures (GOP). The evaluation is done in terms of mean square error (MSE)

and correlation coefficient (CC). Fig. 5.4 shows that the CC is greater than zero, indi-

cating a positive correlation between adjacent frames. The CC value decreases when the

temporal distance increases. Moreover, the MSE value increases as the temporal dis-

CU Size Prediction in Scalable Video Coding using CNN-LSTM 60

(a) 121 frame (b) 122 frame (c) 124 frame (d) 127 frame (e) 130 frame

Figure 5.3 Example showing correlation between frames

(a) (b)

Figure 5.4 Comparison of (a) correlation coefficient vs distance between frames (b) Mean

squared error vs distance between frames

tance increases.The CC and MSE values exhibit a long and short term dependency of CU

partitions between neighboring frames.

5.2.3 ET-CNN structure

The Early Terminated CNN (ET-CNN) structure using the deep learning approach

is shown in Fig. 5.5. The luminance of CTU (U) is given as an input to the ET- CNN

structure. There are three branches in ET-CNN structure. This structure consists of

preprocessing, convolution, concatenation, and fully connected layers. Each of the layers

is discussed below.

1. Preprocessing layer

Initially the CTU is pre-processed to reduce the variation of input samples. The

CU Size Prediction in Scalable Video Coding using CNN-LSTM 61

Figure 5.5 ET-CNN structure

pre-processing involves mean removal, and down-sampling process at layer 1 and

layer 2 which is shown in Fig. 5.5. During the mean removal process, each CU is

subtracted by their mean value to match the output structures at branches B1, B2

and B3 of layer 9. The down sampling is then applied to reduce the CU of size

64×64 to 32×32 and 16×16 at branches B2 and B1.

2. Convolution layer

After pre-processing, the processed data is passed through three convolution layers.

At layer 3, the 4×4 kernel is used for convolution with the data obtained from

layer2 with 16 filters to extract low-level features. At each convolution layer, the

same kernel is applied at three branches. At layers 4 and 5, the 2×2 kernel (with

24 filters at the fourth and 32 filters at the fifth layer) is used for convolution with

feature maps to obtain high-level features. The width of the kernel is used as a

stride length for non-overlapping operations.

3. Concatenating layer

In this layer, the features obtained from three branches collected at layer four and

layer 5 (convolution layers) are concatenated. The received feature maps together

form as a single vector ‘b’. This vector is a combination of local and global features.

4. Fully Connected Layers (FCLs)

The concatenating layer output vector ’b’ is given as an input to the FCL at three

branches. There are two FCLs in ET-CNN. Based on the features of FCLs, the

CU Size Prediction in Scalable Video Coding using CNN-LSTM 62

ET-CNN predicts the CU structure, as shown in layer 9 of Fig. 5.5.

If the CU at B1 is not split, then the prediction operation at B2 and B3 can be skipped

which saves the encoding time.

5.2.4 ET- LSTM design

Section 5.2.2 shows that the neighboring frames partition is correlated to each other.

In this section, we propose the ET- LSTM approach that learns the dependencies of CU

partitions between frames. The flowchart of the ET-LSTM approach is shown in Fig. 5.6.

As shown in figure, the CTU residue is given as an input to the ET-CNN. To find the

residue of CTU, we precode the current frame by forcing PU and CU sizes to 64×64. By

precoding the frame, approximately 2 to 3 percent of total encoding time is increased,

which is treated as an overhead. The parameters of the Early Terminated CNN are

trained over residue using the database. The database is the collection of different video

resolution sequences which are collected from Joint Collaborative Team on Video Coding

(JCT-VC) test set and Xiph.org. All the sequences are encoded by using standard HM

16.5 at QPs of 22, 27, 32 and 37 respectively.

The ET-LSTM consists of three levels, which are represented by ’L.’ Initially, the

fully connected layer features
{
f1−L

}3

L=1
(shown in Fig. 5.5) is fed as an input to the

LSTM cell in ET-LSTM. There are two fully connected layers after the LSTM cell. The

FCL consists of QP value and frame order in the GOP. Note a one-hot vector indicates

the order of the frame. The output of the LSTM cell and the first FCL is f ′
1−Lt(b) and

f ′
2−Lt(c), respectively. The initial values of a,b, and c at level 1 are 64, 64, and 48. The

y1(U, t) is the output of the second FCL, which represents either 1 or 0. The output

predicted size of CU at each level when the y1(U, t) is zero is given below.

At L=1, the CU dimension is 64×64.

At L=2, the size of CU is 32×32.

At L=3, the CU size is 16×16.

At any level, if y1(U, t) is zero, stop the prediction operation and skip the remaining

levels. For example, if y1(U, t) is zero at level L=1, skip the prediction operation for L=2

and 3 levels.This early termination helps in reducing the encoding time. If y1(U, t) is 1,

CU Size Prediction in Scalable Video Coding using CNN-LSTM 63

Figure 5.6 Flowchart of ET-LSTM structure

CU Size Prediction in Scalable Video Coding using CNN-LSTM 64

increment the level ’L’ and update the values of a, b, and c to 2a, 2b, and 2c. If the L

value is less than 4, repeat the operation with updated values by going back to the LSTM

cell else stop the prediction operation. During the CU size prediction process, ET-LSTM

considers the patterns of the co-located CTU present in the previous frame. The long and

short term correlations of CU depth are obtained using the LSTM cells across distinct

levels. The LSTM cell consists of three gates, namely the input gate iL(t), the forget gate

gL(t), and the output gate OL(t). The three gates are obtained by using equations (5.1),

(5.2) and (5.3).

iL(t) = σ(Wi · [f1−L(t), f
′
1−L(t− 1)] + bi) (5.1)

OL(t) = σ(Wo · [f1−L(t), f
′
1−L(t− 1)] + bo) (5.2)

gL(t) = σ(Wf · [f1−L(t), f
′
1−L(t− 1)] + bf) (5.3)

Where, σ(·) → sigmoid function, Wi,Wo,Wf → Three gates trainable weight parameters

and bi, bo, bf→ Biases.

At frame t, the LSTM cell updates its state by using the three gates as

cL(t) = iL(t)⊙ tanh(Wc ⊙ [f1−L(t), f
′
1−L(t− 1)] + bc) + gL(t)⊙ cL(t− 1) (5.4)

Where, Wc, bc → Parameters and biases of cL(t), ⊙ → Element-wise multiplication.

f1−L(t), f
′
1−L(t− 1) → ET-CNN feature, LSTM cell feature output of last frame

The LSTM cell output f ′
1−L(t) is calculated by using equation (5.5).

f ′
1−L(t) = OL(t)⊙ cL(t) (5.5)

To train the parameters present in equations (5.1),(5.2), (5.3), (5.4) and (5.5), ET-

LSTM need 7,57,118, and 7,59,273 additions and multiplications. The cross-entropy is

used as a loss function to train the parameters. The LSTM cell at each level is trained

by optimizing the loss as

L =
1

RT

R∑
r=1

T∑
t=1

Lr(t) (5.6)

The parameters are trained by considering ‘R’ training samples and ‘T’ frames.

Finally, the ET- LSTM able to predict the CU size by using the trained LSTM cells.

CU Size Prediction in Scalable Video Coding using CNN-LSTM 65

Table 5.1 Experimental Conditions

Configuration encoder lowdelay P scalable

Codec version SHM-12.1

QP 22, 27, 32, 37

CU Size (Max) 64×64

CU depth (Max) 4

Search range and GOP Size 64 and 8

5.3 Experimental Results

The experimental results section presents the simulation results to evaluate the

performance of the proposed method at intermode. The proposed method is compared

with the state-of-the-art methods: Fast mode decision method by R. Bailleul [110] and

Fast enhancement layer prediction by Chih-Hsuan Yeh [62].

Configuration of experiment: The proposed method is simulated in scalable HEVC

software SHM-12.1 [111] to evaluate the performance using encoding time saving, bitrate,

and PSNR parameters. The experimental parameters considered are shown in Table 5.1,

and the 64-bit Windows-7 operating system with Intel(R) Core(TM) i5 is used for our

experiments. The performance evaluation is done at four different Quantization parameter

(QP) values i.e. at QP= {22, 27, 32, 37}. The proposed method is tested by using

eighteen different video sequences which belong to five different classes. Class A belongs

to (2560×1600) video resolution. Similarly, Class B, Class C, Class D and Class E belong

to (1920×1080), (1280×720), (832×480) and (416×240) video resolutions, respectively.

These video sequences are compressed with encoder lowdelay P scalable (LDP) and

encoder randomaccess scalable10 (RA) configuration [112]. The efficiency of our proposed

method is tested by using Bjontegaard’s metric, which allows us to compute the average

saving in bitrate [BD-BR] and average PSNR gain [BD-PSNR]. The equations (5.7), (5.8)

and (5.9) represents the change in bitrate (∆ BR), saving in encoding time (TS) and

change in YPSNR (∆ YPSNR).

∆ BR(%) =
BRorig −BRprop

BRorig

× 100 (5.7)

CU Size Prediction in Scalable Video Coding using CNN-LSTM 66

(a) (b)

Figure 5.7 Training and validation loss of (a) ET-CNN (b) ET-LSTM

TS(%) =
Torig − Tprop

Torig
× 100 (5.8)

∆ Y PSNR(dB) = Y PSNRorig − Y PSNRprop (5.9)

Database for Inter-mode: The database contains 397 video files. Out of which, 300

video files of (112x112) size are taken from Stanford university, 18 sequences from the

Joint Collaborative Team on Video Coding (JCT-VC) standard test set, and 79 video

sequences of different resolutions from Xiph.org. The video sequences of the database

belongs to different video resolutions: SIF (352×240), CIF (352×288) , 240p(416×240),

480p (832×480), 720p (1280×720), 1080p and WQXGA (2560×1600). The above se-

quences are randomly divided into validation (42 sequences), testing (30 sequences) and

training (325 sequences). The above sequences are encoded at four QPs by HEVC to

generate the CU depth data. Besides, 19,607,566 samples were collected for the LDP

configuration.

Training Settings: In this paper, the ET-CNN is trained by utilizing the database (refer

to section 5.3) at inter-mode. During the ET-CNN training, the validation datasets are

tuned by the hyperparameters. For training the ET-CNN and ET-LSTM, the gradient

descent algorithm’s momentum is set to 0.8 and 0.9, respectively. Furthermore, the batch

size is 32, and the learning rate is set to 0.01 for training the CNN and LSTM. Moreover,

ET-CNN and ETLSTM is trained over 10,00,000 and 2,00,000 iterations, respectively.

CU Size Prediction in Scalable Video Coding using CNN-LSTM 67

Table 5.2 Experimental results of the HSME method for the JCT-VC video sequences under

LDP configuration

Class Video Sequence Size
BD-BR

(%)

BD-PSNR

(dB)

TS(%)

QP=22 QP=27 QP=32 QP=37 TOT

A
PeopleOnStreet

2560x1600
4.12 -0.16 53.17 54.72 59.17 62.72 57.44

Traffic 6.92 -0.24 46.52 49.76 54.29 58.86 52.35

B

Kimono

1920x1080

4.22 -0.49 36.71 42.46 49.32 51.33 44.95

ParkScene 6.49 -0.27 24.32 29.19 37.82 44.17 33.87

Cactus 6.58 -0.21 41.39 48.47 61.27 68.56 54.92

BasketballDrive 8.41 -0.17 21.34 30.82 34.79 43.62 32.64

BQTerrace 7.18 -0.24 24.86 40.83 58.74 68.00 48.10

C

BQMall

832x480

8.72 -0.39 36.41 48.76 58.74 65.91 52.45

BasketballDrill 8.46 -0.21 32.00 59.86 65.31 74.39 57.89

RaceHorses 7.95 -0.35 21.82 33.42 34.79 40.51 32.63

PartyScene 5.17 -0.37 60.54 63.51 64.17 66.00 63.55

D

BasketballPass

416x240

6.34 -0.27 41.09 52.68 59.36 71.39 56.13

BlowingBubbles 8.23 -0.25 31.03 34.39 49.56 60.24 43.80

RaceHorses 8.17 -0.42 24.51 26.89 33.42 46.51 32.83

BQSquare 7.41 -0.37 33.00 49.35 66.21 78.89 56.86

E

FourPeople

1280x720

3.26 -0.25 64.32 78.53 84.91 87.69 78.86

KristenAndSara 3.71 -0.21 70.31 78.54 83.17 86.82 79.71

Johnny 4.83 -0.17 60.91 74.68 82.53 84.31 75.60

Average 6.45 -0.28 40.23 49.82 57.64 64.44 53.03

Test Settings: CNN delivers the probability of binary output at each level when

CTU is given as an input. The maximum and lower limits at level 1 are 0.6 and 0.4,

respectively. Similarly, the upper and lower threshold for level 2 is 0.7 and 0.3, and for

level 3, they are 0.8 and 0.2. The CU is split at each level based on the threshold value.

Evaluation on training performance and prediction accuracy: The training

and validation loss for ET-CNN and ET-LSTM alongside the iterations are shown in

Fig. 5.7. The training loss is calculated using equation (5.6) at each iteration. The figure

shows that the loss converges after 3× 104 iteration. The average accuracy of 88%, 83%

and 78% obtained for CU partitions at levels L={1,2,3} while training the ET-LSTM.

Analysis of experimental results: Table 5.2 tabulate the simulation results of

HSME method. The results show that the encoding time is saved by an average of 40.23%,

CU Size Prediction in Scalable Video Coding using CNN-LSTM 68

Table 5.3 Experimental results of the HSME method for the JCT-VC video sequences under

RA configuration

Class Video Sequence Size

BD-BR

(%)

BD-PSNR

(dB)

TS(%)

QP=22 QP=27 QP=32 QP=37 TOT

A
PeopleOnStreet

2560x1600
6.18 -0.14 44.18 64.36 68.29 73.71 62.64

Traffic 6.41 -0.41 53.98 57.60 62.74 65.58 59.98

B

Kimono

1920Ö1080

5.46 -0.57 41.37 53.70 44.15 60.31 49.88

Parkscene 7.17 -0.24 25.63 35.71 46.34 51.17 39.71

Cactus 7.45 -0.19 40.89 54.64 67.99 74.17 59.42

BasketballDrive 8.91 -0.20 29.86 41.17 42.96 54.12 42.02

BQTerrace 7.67 -0.23 36.82 51.86 68.21 76.05 58.24

C

BQMall

832Ö480

8.26 -0.29 39.55 50.41 64.93 71.85 56.69

BasketballDrill 9.71 -0.32 33.16 39.63 55.43 65.82 48.51

RaceHorses 8.15 -0.36 30.55 33.35 38.52 47.91 37.58

PartyScene 3.46 -0.18 37.51 47.67 56.43 64.33 51.48

D

BasketballPass

416Ö240

6.30 -0.37 40.81 56.31 67.91 75.84 60.21

BlowingBubbles 8.51 -0.41 35.20 44.30 48.96 58.74 46.80

RaceHorses 7.85 -0.41 35.39 41.27 49.53 54.93 45.28

BQSquare 7.21 -0.37 36.84 54.31 69.21 78.39 59.69

E

FourPeople

1280Ö720

4.09 -0.14 68.87 80.81 87.28 87.96 81.23

KristenAndSara 4.31 -0.11 66.31 79.61 85.41 88.12 79.86

Johnny 5.21 -0.21 66.81 79.65 84.93 87.64 79.75

Average 6.80 -0.29 42.43 53.68 61.62 68.70 56.61

49.82%, 57.64% and 64.44% at QP values of 22, 27, 32 and 37, respectively. The results

also exhibit the domination of HSME method over the SHM-12.1 with more than 75%

of TS for 1280×720 video sequences. The encoding time of SHM-12.1 is considerable

decreased by an average of 53.03% using HSME method with 6.45% increase in BD-

BR and 0.28dB loss in BD-PSNR for LDP configuration. Similarly, 56.61% of saving in

encoding time with 6.80% rise in BD-BR and 0.29 dB loss in quality is observed for RA

configuration in Table 5.3.

Table 5.4 and Table 5.5 shows the experimental results of the proposed approach

in contrast to the conventional SHM-12.1. The results exhibit that the proposed method

achieves a significant amount of saving in encoding time at each QP value with a small

increase in bitrate and negligible decrease in YPSNR @ 2.25% and 0.02 dB for LDP

CU Size Prediction in Scalable Video Coding using CNN-LSTM 69

Table 5.4 Experimental results of the proposed method for the JCT-VC video sequences under

LDP configuration

Class Video Sequence Size
∆ YPSNR

(dB)

∆ BR

(%)

TS (%)

QP=22 QP=27 QP=32 QP=37

A
PeopleOnStreet

2560x1600
-0.03 2.13 44.12 49.21 54.00 61.57

Traffic -0.02 3.41 39.45 45.35 52.61 60.43

B

Kimono

1920x1080

-0.04 0.55 39.68 41.39 45.95 55.11

ParkScene -0.03 1.43 49.00 49.09 40.75 63.80

Cactus -0.02 2.43 47.49 47.00 47.18 55.05

BasketballDrive -0.03 3.08 50.13 52.57 58.10 63.96

BQTerrace -0.02 4.85 34.82 55.76 42.14 55.70

C

BQMall

832x480

-0.01 1.78 28.98 39.64 36.83 51.22

BasketballDrill -0.05 2.10 42.89 45.81 49.81 51.82

RaceHorses -0.02 0.74 54.53 52.62 55.35 55.77

PartyScene -0.01 0.99 52.52 54.31 54.89 53.57

D

BasketballPass

416x240

-0.04 1.00 66.32 68.14 68.99 72.32

BlowingBubbles -0.03 0.56 62.62 54.99 54.84 55.21

RaceHorses -0.05 0.56 71.58 64.81 64.08 65.87

BQSquare -0.04 2.52 55.01 53.59 54.03 50.16

E

FourPeople

1280x720

-0.01 4.12 39.26 48.48 56.83 62.64

KristenAndSara -0.02 3.95 38.89 57.53 63.19 66.70

Johnny -0.03 4.34 47.49 61.83 66.04 72.11

Average -0.02 2.25 48.04 52.34 53.64 59.61

configuration and 1.09% and 0.05 dB for RA configuration, respectively. The average time

saving TS at QP={22,27,32,37} are 48.04%, 52.34%, 53.64% and 59.61%, respectively for

LDP configuration. Similarly, 51.14%, 58.27%, 61.08% and 65.95% of saving in encoding

time is observed for RA configuration.

The proposed method is compared to state-of-the-art methods in [110] and [62]

in Table 5.6 and Table 5.7. Our method outperforms the [110] and [62] algorithms in

encoding time-saving TS for both LDP and RA configurations. For the proposed method

under LDP configuration, the average time saving is 53%, which is high compared to the

state-of-the-art methods. The average time savings of [110]and [62] algorithms are 44%

and 38%, respectively. The positive values of BD-BR and negative values of BD-PSNR

CU Size Prediction in Scalable Video Coding using CNN-LSTM 70

Table 5.5 Experimental results of the proposed method for the JCT-VC video sequences under

RA configuration

Class Video Sequence Size
∆YPSNR

(dB)

∆BR

(%)

TS(%)

QP=22 QP=27 QP=32 QP=37

A
PeopleOnStreet

2560x1600
-0.07 0.29 51.32 54.65 55.21 58.30

Traffic -0.08 1.33 48.05 48.31 49.90 56.24

B

Kimono

1920Ö1080

-0.02 0.38 43.22 54.12 60.09 67.04

Parkscene -0.06 1.35 34.43 56.44 60.32 66.01

Cactus -0.03 1.53 49.83 53.39 56.88 66.13

BasketballDrive -0.03 0.45 44.89 54.74 60.04 66.60

BQTerrace -0.06 2.52 56.87 56.96 57.52 61.65

C

BQMall

832Ö480

-0.04 0.54 33.12 43.80 52.44 62.86

BasketballDrill -0.04 1.31 43.49 46.32 51.61 55.81

RaceHorses -0.05 0.36 56.17 62.60 66.91 70.32

PartyScene -0.05 0.16 60.07 65.74 65.78 69.62

D

BasketballPass

416Ö240

-0.08 0.63 67.61 68.62 68.87 69.72

BlowingBubbles -0.04 0.18 58.68 59.52 59.61 63.86

RaceHorses -0.05 0.26 61.18 61.89 63.27 65.21

BQSquare -0.06 1.31 58.69 63.30 66.35 70.85

E

FourPeople

1280Ö720

-0.03 2.71 52.51 66.07 67.33 70.24

KristenAndSara -0.04 1.24 53.44 65.78 67.89 71.33

Johnny -0.04 2.98 47.13 66.68 69.40 75.36

Average -0.05 1.09 51.14 58.27 61.08 65.95

represent the loss in coding performance. From Table 5.6, we notice that the average

BD-BR value of our proposed method is 2.57%, which is very less compared to the BD-

BR values of [110] and [62] methods @ 6.61% and 3.13%, respectively. In addition, our

method incurs a loss of 0.14 dB BD-PSNR, which is slightly higher than [62] and better

than the [110] method. Despite the decrease of BD-PSNR values for a few sequences

compared to [110] and [62] shown in Table 5.6, the overall BD-PSNR and BD-BR are

good.

The results in Table 5.7 show that the proposed method saves more encoding time

compared to the previous methods for RA configuration. We can also observe that 1.68%

CU Size Prediction in Scalable Video Coding using CNN-LSTM 71

(a) (b)

Figure 5.8 Example RD curves of (a) KristenAndSara (b) PartyScene

Table 5.6 Comparison results of the proposed method and the state-of-the-art methods with

SHM-12.1 as an anchor under LDP configuration

Class Video Sequence Size
Proposed [110] [62]

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

A
PeopleOnStreet

2560x1600
2.76 -0.15 52 6.71 -0.19 44 2.97 -0.11 40

Traffic 3.27 -0.19 49 5.94 -0.23 44 3.64 -0.15 41

B

Kimono

1920x1080

1.91 -0.06 46 4.54 -0.13 45 1.18 -0.09 35

ParkScene 2.17 -0.11 51 7.77 -0.23 45 3.72 -0.11 42

Cactus 3.08 -0.20 45 7.76 -0.14 46 3.27 -0.06 41

BasketballDrive 1.35 -0.28 56 5.89 -0.09 44 1.21 -0.05 34

BQTerrace 2.22 -0.41 47 5.81 -0.12 46 0.85 -0.03 33

C

BQMall

832x480

2.21 -0.09 39 6.68 -0.26 44 4.54 -0.18 39

BasketballDrill 3.84 -0.14 48 8.23 -0.32 44 1.31 -0.07 33

RaceHorses 1.12 -0.04 55 5.48 -0.25 43 2.32 -0.10 37

PartyScene 1.31 -0.06 54 5.29 -0.27 44 3.32 -0.17 38

D

BasketballPass

416x240

1.78 -0.09 69 6.54 -0.34 42 4.54 -0.23 39

BlowingBubbles 1.17 -0.04 57 6.85 -0.30 43 3.64 -0.16 36

RaceHorses 0.89 -0.04 67 7.63 -0.44 41 3.92 -0.22 35

BQSquare 3.01 -0.14 53 5.99 -0.26 43 1.08 -0.09 30

E

FourPeople

1280x720

4.87 -0.17 52 7.02 -0.17 45 4.82 -0.12 44

KristenAndSara 5.00 -0.16 57 6.68 -0.15 44 7.58 -0.17 45

Johnny 4.37 -0.15 62 8.19 -0.14 45 2.49 -0.06 39

Average 2.57 -0.14 53 6.61 -0.22 44 3.13 -0.12 38

rise in BD-BR and 0.10 dB drop in YPSNR which is less than the approach in [110]

and slightly higher than the method in [62]. Our proposed method is decreasing more

CU Size Prediction in Scalable Video Coding using CNN-LSTM 72

(a) (b)

Figure 5.9 Example encoding time curves of (a) KristenAndSara (b) PartyScene

Table 5.7 Comparison results of the proposed method and the state-of-the-art methods with

SHM-12.1 as an anchor under RA configuration

Class Video Sequence Size

Proposed [110] [62]

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

BD-BR

(%)

BD-PSNR

(dB)

TS

(%)

A
PeopleOnStreet

2560x1600
2.42 -0.13 55 7.59 -0.29 43 0.71 -0.03 29

Traffic 2.95 -0.19 51 7.48 -0.19 44 0.91 -0.04 37

B

Kimono

1920Ö1080

0.62 -0.04 56 4.68 -0.11 44 0.84 -0.03 33

Parkscene 1.68 -0.14 54 6.36 -0.16 45 0.91 -0.03 35

Cactus 2.79 -0.18 57 7.48 -0.15 46 0.68 -0.02 33

BasketballDrive 0.74 -0.05 57 6.52 -0.12 43 0.63 -0.06 33

BQTerrace 1.17 -0.19 58 6.13 -0.12 47 1.21 -0.05 35

C

BQMall

832Ö480

1.50 -0.06 48 7.18 -0.25 44 1.34 -0.07 31

BasketballDrill 1.31 -0.07 49 7.86 -0.32 45 1.23 -0.08 34

RaceHorses 1.72 -0.09 64 6.15 -0.26 44 0.91 -0.03 28

PartyScene 1.13 -0.05 65 5.31 -0.24 48 1.03 -0.05 33

D

BasketballPass

416Ö240

1.36 -0.07 69 6.54 -0.35 42 1.16 -0.06 33

BlowingBubbles 1.05 -0.04 60 6.16 -0.24 44 1.33 -0.05 31

RaceHorses 1.12 -0.05 63 7.27 -0.41 39 1.26 -0.07 28

BQSquare 2.44 -0.23 65 5.12 -0.18 45 0.73 -0.03 33

E

FourPeople

1280Ö720

1.60 -0.06 64 6.21 -0.15 44 0.64 -0.02 39

KristenAndSara 1.44 -0.04 65 5.71 -0.14 45 0.81 -0.05 40

Johnny 2.46 -0.05 64 6.31 -0.11 45 1.12 -0.03 41

Average 1.68 -0.10 59 6.44 -0.21 44 0.97 -0.04 34

complexity of SHVC compared to state-of-the-art methods for most of the sequences at

different resolutions and QPs.

CU Size Prediction in Scalable Video Coding using CNN-LSTM 73

The proposed method is also evaluated using RD curves in addition to encoding

time and quality. The example RD curves and encoding time comparison graphs for

KristenAndSara and PartyScene video sequences are shown in Fig. 5.8 and Fig. 5.9.

Fig. 5.8 (a) and (b) shows that the RD curve of the proposed method almost overlaps

the SHM-12.1. This represents the proposed method can generate the same quality as

the standard SHM-12.1. The improvement in RD performance is achieved due to the

high prediction accuracy of CU partitions. Fig. 5.9 (a) and (b) show that the proposed

method takes less time to encode than SHM-12.1 for KristenAndSara and PartyScene

video sequences.

5.4 Conclusions

SHVC can provide high efficiency without much decrease in perceptual video quality.

Despite the increase in efficiency, the complexity of SHVC also increases. In this chapter,

we have proposed the HSME method that speed up the motion estimation process and

obtains the motion vector with global minimum. In addition, we have designed an ET-

LSTM network to predict the CU partition with less complexity. The ET-CNN learns

the CU partition from residual CTU by taking the output features of a fully connected

layer present in the ET-CNN. The proposed method which is the combination of HSME

and ET-CNN+ET-LSTM has reduced the encoding time by 53% for LDP and 59% for

RA configuration, which is high compared to state-of-the-art methods.

Chapter 6

Surgical Incision Region Encoding using Scalable

High Efficiency Video Coding

6.1 Introduction

Surgical telementoring has acquired heaps of interest, particularly in rural areas.

The problems that arise during the surgical procedures are complex for the inexperienced

surgeon to handle. Telementoring is the process of transferring the knowledge from the

experienced surgeon to the novice who is present at a distant location. However, the

limited bandwidth resources present in the remote areas make the telementoring system

difficult to implement. The efficient telementoring system requires transmission of Region

of Interest (ROI) of video with high quality in a limited bandwidth. In this chapter, the

surgical incision region is referred to as ROI. Approximately 5 Mbps bandwidth is required

to transmit the high-quality videos for telementoring applications which is very difficult

to achieve in disaster-affected areas.

The Scalable extension of HEVC (SHVC) [113,114] can be used in such a case that

provides highly scalable coding efficiency and allows the transmission of a single video

with different resolutions in a single bitstream. However, the complexity of SHVC makes

it unsuitable for real-time applications. The complexity is increased mainly due to the

Rate-Distortion Optimization (RDO) search process.

The surgical video frame shown in Fig. 6.1 consists of the background region and

the surgical incision region. The surgical telementoring system requires the transmission

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 75

Figure 6.1 Surgical video frame with surgical incision and background region

of the surgical incision region with high quality. Several segmentation techniques can be

used to identify the incision region in the video. The Mean Shift (MST) [115] algorithm

is used in the medical image field to identify the surgical region. However, this technique

is incapable of processing the large image of data, which results in the segmentation of

the ROI with less accuracy. The Convolutional Neural Network (CNN) helps segment the

ROI in computer vision applications; however, it increases the computational complexity.

The above techniques help to encode the ROI with high quality and the background

region with low quality. As the background region does not contain any valuable informa-

tion, the pixel values of the background region can be made zeros, resulting in the decrease

of bitrate. The ROI region in the surgical videos moves slowly, and less abrupt changes

can be observed throughout the video sequence. Hence, the object tracking technique can

be used to track and extract the ROI in the surgical video.

The main contributions of this chapter are as follows

1. The Kernelized Correlation Filter (KCF) object tracking technique is used to track

the ROI in the surgical video sequence.

2. A large database with 397 video sequences is created to train the CNN.

3. The Long- and Short-Term Memory (LSTM) network in combination with CNN is

designed to reduce the complexity of SHVC.

The proposed method extracts the ROI from the surgical video frames using the KCF

object tracker and encodes the ROI using SHVC with less complexity using the deep

learning CNN+LSTM technique.

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 76

6.2 Background Work

The surgical telementoring system requires the surgical incision region to be encoded

with high quality. Several authors suggested different algorithms to code the Region of

Interest (ROI) in a video with high quality and the remaining region with low quality.

The authors in [116] extracted the facial features using MST algorithm and encoded

them with high quality. The background region is encoded in lower quality. In [117],

the authors used the 3D morphological technique to segment the ROI region in colon

computed tomography (CT). The researchers in [118] used the H.264 encoder to encode

the segmented part of echocardiogram and CT video sequences. The segmentation is

done using the image processing techniques like squared gradient, Sobel operators, and

thresholding techniques. The Nearest Neighbor (NN) classifier is used in [119] to extract

the ROI region in ultrasound videos. The results show that the bitrate is reduced by an

average of 13.52% at the cost of high computational complexity.

In [120], a new method is proposed that allows the manual selection of the desired

region in the video and encodes the selected area with high quality for surgical telemen-

toring application. In [121], the authors designed a method that adaptively sets the ROI

location and resolution based on the predefined settings. The desired ROI location is ob-

tained by removing the background region, and then the inter-layer prediction operation

is performed on the selected ROI region. This method saves the bitrate by 33.48%. The

kernel-based MST method is used in [122] that requires the user interaction to select the

desired ROI and the related resolution. The authors encode the selected ROI using the

Huffman encoding technique. The authors in [123] use the non-parametric segmentation

to detect the surgical incision region by considering the physiological behavior of the vi-

sual system and encodes the ROI with high quality. The authors in [124] developed a

method for surgical telementoring application that performs image compression, image

denoising, and image segmentation operations on computed tomography images for the

diagnosis of congenital heart disease. The researchers in [125] reports the augmented real-

ity system that uses the 3D tracking module and the Microsoft HoloLens for training and

the telementoring surgery. The authors in [126] developed the deep CNN, which is SegNet

that uses 26 convolutional layers for image segmentation. This method is computationally

expensive.

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 77

The authors in [127] use the probability of the human attention over the frames

to allocate coding bits using the visual saliency map scheme. The experimental findings

indicate 43% saving in encoding time and 23% reduction in bitrate. In [128], the smart-

phones are used to capture the wound image. The wound part is segmented using the

mean shift algorithm, and the red-yellow-black color model analyzes the wound. Similarly,

the authors in [129] and [130] use the mean shift algorithm to detect the boundary of the

foot injury and for the classification of skin tissue. In [131], the authors use the CNN

approach to segment and analyze the wound region. The researchers in [132] proposed

the CNN method that uses the convolutions for the extraction of multiple-level features

for Diabetic Foot Ulcer (DFU) classification.

The CNN technique efficiently separates the surgical incision region from the back-

ground region. However, high computational complexity makes them less suitable for

real-time applications. The background region doesn’t contain vital information. The

encoding of the background region increases the bit rate. Some of the authors use the

HEVC encoder to encode the surgical videos with high quality. But the RDO search

process in the HEVC increases the complexity that in turn increases the encoding time.

We proposed the efficient surgical telementoring system that encodes the ROI with high

quality in less time using SHVC with CNN+LSTM for real-time performance.

6.3 Proposed Method

In this section, we first analyze the correlation between the frames for surgical and

general video sequences. Then, the object tracking using the KCF tracker is used to detect

the surgical incision region. Finally, the SHVC using CNN and LSTM (refer to section

5.2.3 and 5.2.4) is used to encode the surgical incision region with less complexity. The

framework of the proposed method is shown in Fig. 6.2. The operation of the proposed

method is explained in the following subsections.

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 78

Figure 6.2 Framework of the proposed method for surgical telementoring application

(a) Frame 1 (b) Frame 40 (c) Frame 200

Figure 6.3 Example frames of the fast motion Basketball video sequence

6.3.1 Analysis of Correlation between Frames

This section analyzes the correlation between the frames for the surgical and general

video sequences. The surgical video sequence ”NuGrip Arthroplasty” and the general

video sequence ”BasketballPass” with frames at a different distance are shown in Fig. 6.4

and Fig. 6.3. The frames in the surgical video show that the surgical incision region

movement is very small throughout the sequence.

The conventional object tracking technique is sufficient to track and extract the

surgical region. However, the objects in the general video sequence move rapidly, which

requires deep learning segmentation techniques to detect the boundary of ROI. The deep

learning techniques segment the ROI more accurately at the cost of high computational

complexity. Fig. 6.5(a) and Fig. 6.5(b) show the correlation coefficient and Mean Squared

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 79

(a) Frame 1 (b) Frame 40 (c) Frame 200

Figure 6.4 Example frames of the surgical NuGrip Arthroplasty video sequence

Error (MSE) curves of BasketballPass and NuGrip Arthroplasty video sequences. The

figures show that the correlation coefficient is high for NuGrip Arthroplasty compared to

the BasketballPass sequence. The high correlation coefficient is observed due to the small

movement of ROI in a surgical video sequence with the background region remaining

almost constant. The correlation coefficient and MSE are inversely proportional to each

other. The NUGrip Arthoplasty produces less MSE due to the high similarity between

the frames.

(a) (b)

Figure 6.5 Correlation and Mean Squared Error curves of general and surgical video sequence

at different distance between the frames. Note that the BasketballPass represents the general

video sequence and NuGrip Arthroplasty represents the surgical video sequence

6.3.2 ROI Tracking using KCF Tracker

The analysis in section 6.3.1 shows that the object movement is very small, and the

background region remains almost constant throughout the sequence. Hence, the object

tracking techniques can be used to track the ROI effectively with less computational

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 80

complexity. We use the Kernelized Correlation Filter (KCF) tracker to track the ROI

throughout the video sequence. The KCF tracker has the advantage of high efficiency.

The Flowchart of the object tracking algorithm using the KCF tracker shown in

Fig. 6.6 is discussed in the following steps.

Step 1: Take the surgical video as an input.

Step 2: Read the first frame and select the ROI using the rectangular bounding box as

shown in Fig. 6.1.

Step 3: Initialize the KCF tracker.

Step 4: Read the next frame of the surgical video sequence.

Step 5: Create the mask with the size of the surgical frame and make all the pixel values

of the mask zero.

Step 6: Check whether the ROI is tracked by the KCF tracker using the bounding box

coordinates. If tracked, go to step 7. Otherwise, treat the mask as output and go

to step 9.

Step 7: Identify the tracked bounding box coordinates and change the pixel values in

the bounding box coordinates of the mask to 255.

Step 8: Find the output by applying AND operation between mask and frame.

Step 9: Write the output to the video.

Step 10: If the frame count reaches the last frame of the surgical video sequence, Stop

the operation. Otherwise, move to step 4.

KCF Tracker

We base our methodology on KCF [133], which displays amazingly real-time perfor-

mance and accuracy comparative with the new top-performing trackers. The purpose of

the correlation filter is to estimate an optimal filter to produce the desired response for the

image input. The desired response is of Gaussian shape at the ROI location. The samples

for training are obtained by cyclically shifting the whole area around the object. During

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 81

Figure 6.6 Flowchart of ROI tracking using the KCF tracker

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 82

testing, the position where the maximum filter response is obtained represents the target

location. The KCF tracker has the advantage of high computational efficiency, obtained

by utilizing a Discrete Fourier Transform (DFT). The ”kernel trick” is also deployed to

improve the performance of the KCF tracker further. The KCF tracker is summarized

below.

Consider the cyclic shift matrix X with the dimension of M×N. ’M’ and ’N’ rep-

resent the total number of rows and columns of the matrix. Each row represents the

one-dimensional data. Let the data in the first row is x=[x1, x2, x3,....,xn−1, xn] and the

data in the remaining rows represents the cyclic shifted data of previous row. The cyclic

shifted data of the first row is [xn, x1, x2, x3,.....,xn−1]. All the cyclic shifted rows together

form a cyclic shift matrix.

During training, the tracker learns an optimal filter ’w’ that can be found by minimizing

the regression error as

min
w

∑
j

(wψ(xj)− yj)2 + λ∥w∥2 (6.1)

Where, ψ(xj) is training samples, yj is regression labels and λ ≥ 0 represents the

regularization parameter.

As the circulant matrix can be diagonalized with the help of a Discrete Fourier

Transfer (DFT) matrix, ’w’ in equation (6.1) can be calculated quickly using the Fourier

domain operation as

ŵ =
x̂⊙ ŷ

x̂⊙ x̂∗ + λ
(6.2)

Where, ⊙ → Element-wise product, * andˆindicates conjugate and DFT operation.

In KCF tracker, the ’Kernel trick’ is applied to improve the performance of the filter in

the non-linear regression. Now the ’w’ becomes

w =
∑
j

αjψ(xj) (6.3)

Where, α = Dual parameter of ’w’. For the circulant matrix, the solution of the

regression α̂ can be obtained as shown in equation (6.4).

α̂ =
ŷ

k̂xx + λ
(6.4)

Here, kxx is the first row of the kernel matrix,ˆrepresents the DFT operation.

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 83

After training, the detection operation is applied on the image patch ’z’ in the

upcoming frame within a M×N window. Then the response is obtained as :

f(z) = DFT−1(k̂xz ⊙ α̂) (6.5)

Where, k̂xz is kernel correlation. Hence, the location of the target can be deter-

mined in each frame based on the maximum response (f(z)max). Finally, to maintain the

appearance of the target, the linear interpolation is used to update the sample template

x̂ and the dual coefficients α̂ with η as a fixed learning rate is given in equation (6.6) and

(6.7)

x̂t = x̂t−1(1− η) + ηx̂t (6.6)

α̂t = α̂t−1(1− η) + ηα̂t (6.7)

The KCF tracker works efficiently when the surgical video sequence contains slow-

moving objects and a smaller number of scale changes.

6.3.3 FFmpeg

After object tracking, FFmpeg helps to convert the output video to the YUV video

sequence. FFmpeg is the leading multimedia framework, able to encode, decode and

transcode videos with different formats. FFmpeg can be obtained from the website

https://www.ffmpeg.org/. In FFmpeg, the video sequence from ’mp4’ format to ’yuv’

format can be converted by using the command below

ffmpeg -i input.mp4 -c:v rawvideo -pixel format yuv420p output.yuv

The output YUV sequence is encoded by SHVC using ET-CNN and ET-LSTM

(refer to section 5.2.3 and 5.2.4).

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 84

Table 6.1 Experimental Conditions to simulate the proposed method in SHM-12.1

Configuration encoder lowdelay P scalable

Codec version SHM-12.1

Number of layers in SHVC 2

QP 22, 27, 32, 37

CU Size (Max) 64×64

CU depth (Max) 4

Search range and GOP Size 64 and 8

6.4 Experimental Results

This section presents the experimental findings to analyze the performance of the

proposed method. The surgical telementoring system requires the wireless transmission

of high-quality video with less bit rate. However, it is extremely difficult to encode the

entire frame with high quality and less bit rate. We use the KCF tracker to track the

ROI in the frames of the video, extract it and encode it with SHVC by maintaining high

quality and less bitrate.

Configuration of Experiment: The scalable HEVC reference software SHM-

12.1 [111] is used to simulate the proposed method. The experiment is performed on Intel

Core i7 CPU using experimental parameters shown in Table 6.1. The proposed method

is analyzed in terms of Bit Rate (BR) saving and change in Peak signal-to-noise ratio

(∆PSNR), which can be calculated using equations (6.8) and (6.9).

BR Saving(%) =
BRorig −BRprop

BRorig

× 100 (6.8)

∆ PSNR(dB) = PSNRorig − PSNRprop (6.9)

The PSNR and BR can be measured using equations (6.10) and (6.11).

PSNR = 10log10
(2bitdepth − 1)2 ×W ×H∑

i(Oi −Di)2
(6.10)

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 85

Table 6.2 Experimental results of Default SHM 12.1 and proposed method for surgical video

sequences

Video
SFF PFROI PROI

Size BR PSNR Enc time Size BR PSNR Enc time Size BR PSNR Enc time

Z-Plasty [134]

1280x720

5335.61 47.46 33480.15

1280x720

1489.99 56.99 8015.82 280x254 1333.52 48.22 1694.59

Digital nerve [135] 6754.70 46.25 34496.92 481.04 62.22 4933.73 128x116 410.42 46.96 343.85

Flexor [136] 11257.54 44.73 40585.82 3493.40 51.70 13786.04 410x458 3121.35 45.08 7257.96

Finger [137] 7692.73 45.60 38648.90 703.30 60.33 5483.99 148x118 547.90 45.78 425.39

Flexor Tendom [138] 3321.21 47.83 31556.20 1345.57 56.51 7641.21 416x196 1131.67 48.53 1498.82

Volar wrist [139] 48983.94 45.39 67907.25 6736.62 56.74 13099.15 410x300 782.22 48.05 1642.18

Arthroplasty [140] 5291.82 48.30 31542.49 997.25 59.01 6276.50 264x154 907.21 48.90 1017.26

Tendon saw injury [141] 74974.65 44.61 77555.37 21481.50 51.32 24137.70 526x574 3370.66 47.09 7495.33

Subcuticular [142] 121738.53 43.04 77670.56 19603.82 52.03 22111.30 454x456 3810.55 45.74 5425.51

Where, bitdepth→ each pixel bit depth, W→Width, H→ Height, Oi → reference

frame pixel value, Di → Decoded frame pixel value, i → pixel address.

BitRate(BR) =
W ×H × TF

bpp× fps× 1000
(kbps) (6.11)

Where, bpp → bits per pixel, fps → frames per second, W → Frame width, H →

Frame height, TF → Total number of frames. Bitrate is measured in ’kbps.’

In addition, the average saving in bitrate (BD-BR) and average PSNR gain (BD-

PSNR) quantifies the RD performance loss.

Analysis of Experimental Results:

Table 6.2 shows the experimental results of the full-frame coding using SHVC (SFF),

proposed Frame with only ROI coding using SHVC (PFROI), and proposed ROI coding

using SHVC (PROI). The PFROI coding is done by selecting and tracking the ROI using

the KCF tracker, making the pixels other than ROI zero, and coding using SHVC. The

PROI coding is performed by tracking the ROI from the surgical video using the KCF

tracker, cropping the ROI, and coding the ROI using SHVC. Fig. 6.7 shows the Full frame,

mask, Frame with ROI, and cropped ROI.

During the simulation process, only one layer is chosen in SHVC, which acts as a

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 86

Table 6.3 Comparison of proposed method and state-of-the-art methods segmentation accuracy

for surgical videos

Video
Prop SegNet S-CNN MST Prop SegNet S-CNN MST

Pixel Accuracy fIOU

Z-Plasty 97.40 96.7 98.6 94.3 98.21 98.1 97.5 92.0

Digital Nerve 98.21 97.4 98.3 96.4 97.48 97.6 97.3 94.4

Flexor 97.85 96.9 97.1 93.0 96.78 95.4 94.4 86.3

Finger 97.18 98.0 98.2 94.4 98.55 97.7 98.3 94.3

Flexor Tendom 96.42 96.3 98.1 86.9 96.80 94.3 96.5 84.1

Volar Wrist 96.68 96.8 97.4 93.2 97.27 95.4 96.3 91.2

Arthroplasty 97.97 97.3 98.6 95.1 96.23 97.4 97.0 93.6

Tendon Saw Injury 98.57 97.3 98.4 94.6 96.96 97.0 97.5 92.4

Subcuticular 96.85 98.0 97.3 95.1 97.93 98.3 96.9 92.9

Average 97.45 97.18 98.0 93.66 97.35 96.80 96.85 91.14

(a) (b) (c) (d) (e)

Figure 6.7 ROI extraction process using object tracking involves (a) Original frame (b) ROI

selction in original frame (c) Mask (d) Output frame with tracked ROI (e) Output ROI cropped

frame

single layer HEVC to encode surgical videos. Based on the analysis present in [143], we

choose QP=20 for simplicity to encode surgical videos with high quality.

Table 6.3 presents the segmented accuracy results of the proposed method, SegNet

[126], S-CNN [143], and the MST [115] techniques. The segmented accuracy is calculated

using pixel accuracy, and frequency weighted IoU (fIoU). The pixel accuracy and fIoU

can be measured using equations (6.12) and (6.13).

Pixel accuracy =
TN + TP

TP + TN + FP + FN
(6.12)

Here, TP → True Positive, TN → True Negative, FP→ False Positive and FN →

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 87

False Negative.

fIoU = (
∑
k

Tk)
−1(

∑
n Tnpnn

Tn +
∑

m pnm − pnn
) (6.13)

Where, pnn=number of correctly identified pixels, pnm= number of pixels rejected

incorrectly for class m and Tn = Total number of pixels in class n.

From Table 6.3, the results show that the proposed approach achieved higher pixel

accuracy compared to the SegNet and MST techniques. Even though the pixel accuracy

is slightly less than the S-CNN, the proposed method can obtain higher fIoU than the

S-CNN and other two state-of-the-art methods.

Table 6.4 Comparison of proposed method and state-of-the-art methods in terms of Bit rate

saving and PSNR for surgical videos

Video
PROI MST SegNet S-CNN

BR

Saving(%)
PSNR

BR

Saving(%)
PSNR

BR

Saving(%)
PSNR

BR

Saving(%)
PSNR

Z-Plasty 75 0.76 90.05 -7.89 70.18 -0.12 74.86 -0.05

Digital nerve 93.92 0.71 96.61 -15.91 77.41 -0.09 76.53 -0.06

Flexor 72.27 0.35 88.41 -10.54 65.32 -0.16 63.70 -0.01

Finger 92.87 0.18 88.15 -10.99 79.36 -0.13 82.84 -0.11

Flexor Tendom 75.92 0.70 89.78 -8.65 71.15 -0.08 75.02 -0.04

Volar wrist 98.40 2.66 95.26 -10.98 76.93 -0.14 80.02 -0.04

Arthroplasty 82.85 1.60 95.93 -14.83 74.83 -0.07 74.71 -0.05

Tendon saw injury 95.50 2.48 93.78 -7.14 82.04 -0.10 86.05 -0.02

Subcuticular 96.87 2.70 98.40 -16.56 76.31 -0.19 80.55 -0.02

Average 87.06 1.34 92.93 -11.49 74.83 -0.12 77.14 -0.04

In Table 6.4, the PROI approach is compared with the MST, SegNet and S-CNN

surgical ROI segmentation techniques for surgical telementoring systems. The results

indicate that the proposed method achieves 87% less bit rate with 1.34dB improvement

in PSNR using PROI. This improvement is achieved for surgical video sequences with

slow-moving objects.

The MST technique achieves high BR savings of 92.93% which is high compared

Surgical Incision Region Encoding using Scalable High Efficiency Video Coding 88

to our proposed technique. However, 11.49 dB of PSNR loss is observed, making it

less suitable for telementoring applications. The authors in [143] use the HEVC for

encoding the ROI region. The HEVC uses the RDO search process that increases the

complexity. The complexity increases the coding time, which makes it unsuitable for real-

time telementoring applications. The SegNet approach saved the bitrate by 75%, which

is less compared to the remaining approaches. In addition, SegNet uses 26 convolutional

layers in the CNN model that increases the computational complexity.

6.5 Conclusions

This paper proposed an efficient surgical telementoring system that transmits the

surgical incision region at high quality with less bit rate. The surgical video consists of

the surgical incision region and the background region. The background region can be

removed to reduce the bit rate. The Kernelized Correlation Filter (KCF) tracker tracks

the surgical incision region, crop, and writes to the video sequence. The resultant video is

encoded using the SHVC video coder. SHVC uses the CNN+LSTM approach to predict

the CTU structure in less time. The proposed method encodes the ROI surgical video

using SHM software that saves the bit rate by 87% with a 1.34 dB improvement in video

quality (PSNR).

Chapter 7

Region-Based Motion Estimation and Next-Frame

Prediction using Deep Neural Network

7.1 Introduction

The rapid increase in video content generated by many multimedia devices requires

a large storage space. However, the storage capacity and the bandwidth for video ap-

plications is limited, necessitating efficient video compression standard. This led to the

development of the High Efficiency Video Coding (HEVC) which is more efficient than the

preceding H.264 Advanced Video Coding (AVC) standard. HEVC uses advanced coding

tools, such as the quad-tree structure, which divides the CTU block into CU blocks to

improve efficiency. The CU has a maximum size of 64×64 pixels and a minimum size of

8×8 pixels. The Rate-Distortion (RD) cost (J), which can be estimated using equation

(7.1), is used to make the split decision.

J = D + λ×R (7.1)

Where λ= Lagrangian multiplier, R = number of bits needed to transmit and D =

Distortion.

The Distortion is estimated using the Sum of Absolute Difference (SAD) block

matching technique during the Motion Estimation (ME) process. The approach for de-

termining the motion vector is called motion estimation. The motion vector represents

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 90

the displacement between the position of the matching block in reference or the previous

frame and the position of the current frame’s block. Fig. 7.1 shows an example of motion

vector calculation using ME.

Figure 7.1 Example representation of motion estimation process

Consider the yellow color block of size 2×2. The yellow color block represents the

present (or current) block of current frame and candidate block at the origin of reference

frame. The SAD is performed between the current block and candidate block by using

equation (7.2).

SAD =
∑
q,r

|SX(q, r)− SY (q, r)| (7.2)

where SX(q, r)=(q, r)th sample in Xth current frame block, and SY (q, r)=(q, r)th

sample in Yth reference frame block. Move the candidate block by one pixel towards

the left, i.e., at (-1,0), and perform the SAD calculation. Similarly perform the SAD

calculation between the current block and candidate block at different positions ((-1,-1),

(0,-1), (1,-1), (1,0), (1,1), (0,1) and (-1,1)). The position at which the SADmin is obtained

is treated as a motion vector. Based on the motion vectors, the compensated frame is

predicted. ME helps increase efficiency at the expense of high computational complexity,

resulting in increased encoding time. The computational complexity can be decreased

by directly predicting the motion compensated frame using the next-frame prediction

approach.

Several authors proposed different algorithms to reduce the complexity of the ME.

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 91

Betka et al. [144] introduce a block matching approach that addresses optimization issues

in a short amount of time. The developed approach contains two primary steps. Initially,

the motion vectors were calculated using the Stochastic Fractal Search multi-population

model. A modified fitness approximation methodology was used in the next phase to

reduce computational time. Lin et al. [145] developed a Fast Predictive Search (FPS)

method to accurately find the initial search point. In addition, video classification based

on the motion and early termination schemes are used to reduce the search points. Wu

et al. [146] improved the k-means clustering technique for estimating global motion. The

speeded-up robust feature descriptor is utilized to match feature points.

The global motion vectors were derived in two dimensional feature space via ho-

mography transformation, and the next frames were stabilized using the identified global

motion vectors.The researchers in [147] use the JAYA algorithm to reduce the system

complexity using the search location’s fitness value. Amirpour et al. [148] defined a dy-

namic search pattern to improve the search performance by considering the motion vector

information of eight neighborhood spatial blocks. Cuevas [149] proposed a method that

uses the Harmony Search optimizer fitness function to measure the matching quality of

each motion vector during the ME process. The authors in [150] proposed Variable Size

Block Matching with a cross-square search pattern to speed up the ME process. The

above algorithms use different search patterns to speed up the motion estimation process.

However, many SAD computations are required to calculate the motion vector.

In addition to the motion estimation algorithms, different next-frame prediction

approaches are also proposed. Some of them are discussed below. In [151], the authors

supply the input frame to the image autoencoder as a multiscale set. In addition, the

convolutional kernels are extracted from the image difference using a motion autoencoder.

Finally, the feature maps from the image autoencoder and the convolutional kernels are

combined using cross convolution operation to predict the next frame. In [152], the state

layer takes the temporal factor as an input in the autoencoder model. The input image

and the time difference (∆t) of the desired prediction are provided separately to two

branches of the encoder. Based on the encoder output, the decoder generates reliable

frames.

The authors in [153] use GAN for the frame prediction. The generators and dis-

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 92

criminators use the multiscale structure. The loss obtained using multiple discriminators

is cumulated and updated as model weights. In [154], the researchers dealt with high-

dimensional sequences using a reservoir computing network. This network is used in place

of the generator, which is discussed in [153]. The authors in [155] predict the human body

joints in the next frame based on the structural information. The location of joints in

the next frame is determined using the LSTM. The computational complexity in [156]

and [157] is reduced by encoding the entire input video sequence and unwinding using the

decoder for the multiple predictions. In [158], gated autoencoders predict the next frame

and use recurrent connections to forecast any length sequence. In [159], the frames and

the human actions are encoded separately. The output features of these encoders are com-

bined and given as input to the LSTM for the next-frame prediction. These techniques

generates the next-frame with low quality.

In this work, we have proposed region-based motion estimation using the YOLOv4

algorithm. The motion vector is calculated using the centroid point obtained from the

bounding box coordinates. The bounding box regions are detected using the YOLOv4 al-

gorithm. Moreover, the next-frame prediction model using ConvLSTM layers is proposed

that predicts the next frame based on the input five frames.

7.2 Proposed Work

In this section two different methods are proposed, which can be used in HEVC to

reduce the computation complexity of the encoder. The two approaches are region-based

motion estimation using YOLOv4 and the next-frame prediction using Recurrent Neural

Network.

7.2.1 Region-based motion estimation using YOLOv4

This method determines the motion vector for each region in the frame using the

YOLOv4 algorithm. The proposed framework in Fig. 7.2 involves splitting the video se-

quence into frames, detecting the bounding box for each region in frame using YOLOv4,

finding the centroid point of each region using the bounding box coordinates, and deter-

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 93

mining the motion vector based on the centroid point.

Figure 7.2 Framework to determine motion vectors using YOLOv4

Initially, the video sequence is split into frames using FFmpeg. FFmpeg is a set

of tools and libraries for working with multimedia files like video, audio, subtitles, and

metadata. The command to convert the video sequence into frames is given below.

ffmpeg -i input.mp4 -vf fps=25 image.jpg

The above command converts the mp4 video sequence into JPEG frames. The

output frames are given as input to the object detector. The YOLOv4 object detector

shown in Fig. 7.3 is used to detect bounding boxes of each region in the current and

previous frames. YOLOv4 consists of CSPDarknet-53 to extract features of the input

frame through five Residual blocks (Res1-Res5). This network contains 53 convolutional

layers with 1×1 and 3×3 sizes, and each layer is connected to batch normalization and

the Mish activation layers. The Spatial Pyramid Pooling networks (SPPnet) significantly

increases the model’s receptive field through distinct max-pooling layers with sizes of 5, 9,

and 13. The Path Aggregation Network (PANet) repeatedly extracts the features using

the top-down and the bottom-up techniques. Three YOLO heads Y1 with 19×19, Y2

with 38×38 and Y3 with 76×76 are employed to fuse and engage with feature maps of

various scales to detect the objects of various sizes.

The loss in YOLOv4 is given as

loss = −λ1
∑

(Oiln(pi) + (1−Oi)ln(1− pi))

−λ2
∑
iϵBox

∑
kϵclass

(Qikln(pik)+ (1−Qik)ln(1− pik))+λ3(1− IOU +
d2(Ac, Bc)

l2
+αv)

(7.3)

Where Oi indicates whether the predicted bounding box ‘i’ contains the object, Pi

gives the likelihood that the prediction box contains an actual object. Qik and pik gives

whether the k-class object and the probability present in the bounding box ‘i’. YOLOv4

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 94

Figure 7.3 Architecture of YOLOv4

uses the Complete Intersection Over Union (CIOU) technique [160] for calculating the

object localization offset loss, where αv is the aspect ratio and (Ac,Bc) is the center point.

The centroid is calculated from the bounding box coordinates after detecting the

objects in the current frame and the previous frames. Finally, for each region detected in

the current frame, the motion vector is calculated based on the centroid location of the

corresponding region bounding box in the previous frame.

7.2.2 Next-frame prediction using Recurrent Neural Network

This section proposes the next-frame prediction method to predict the sixth frame

based on the first five frames. The proposed technique is shown in Fig. 7.4, consisting

of layers like Reshape, Permute, Gaussian Noise, Lambda, ConvLSTM2D, and Conv2D

layers. Initially, the five frames of the sequence are given as input. Each frame is re-

shaped to 96×96 using the Reshape layer. The output is passed to the permute layer

to interchange the dimensions according to the given pattern. The permuted output is

given to the gaussian noise layer to mitigate the overfitting problem. After the gaussian

noise layer, the lambda layer is employed for simple stateless computations. Moreover, the

permute layer takes the output of the gaussian noise layer and changes the dimensions to

(96,96,5,3). The permuted output is passed through two sets of ConvLSTM2D, Dropout,

and Upsampling2D layers.

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 95

Figure 7.4 Next-frame prediction model

Figure 7.5 ConvLSTM cell internal structure

ConvLSTM is a kind of LSTM (Long Short Term Memory) where the convolution

is performed inside the LSTM cell. It helps to learn the long-term dependencies between

the images. The ConvLSTM2D structure is shown in Fig. 7.5. LSTM consists of forget

gate, output gate, and the input gate. ConvLSTM uses convolution operation in place of

matrix multiplication operation at each gate of the LSTM. LSTM takes a one-dimensional

vector as input, whereas ConvLSTM takes the 3D data as input. The ConvLSTM model

is formulated using the following equations.

it = σ(bi +Whi ∗ ht−1 +Wxi ∗Xt) (7.4)

ft = σ(bf +Whf ∗ ht−1 +Wxf ∗Xt) (7.5)

ot = σ(bo +Who ∗ ht−1 +Wxo ∗Xt) (7.6)

Ct = it ◦ tanh(bc +Wxc ∗Xt + ht−1 ∗Whc) + ft ◦ Ct−1 (7.7)

ht = ot ◦ tanh(Ct) (7.8)

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 96

(a) Original (b) Augmented

Figure 7.6 Original and Augmented frames of BQSquare video sequence

Where ft, it and ot are the outputs at time ’t’ of forget gate, input gate and output

gate, respectively. Ct represents output of cell and ht is the cell hidden state. ‘*’ and ‘◦’

represents convolution and Hadamard product operation.

Batch Normalisation uses a transformation to keep the output standard deviation

and mean close to 1 and 0, respectively. Upsampling2D layer helps to increase the dimen-

sion of the array. It is the opposite of pooling, where it repeats rows and columns of the

input.

Finally, the Upsampling2D and Lambda layer output is passed through the Conv2D

to get the output frame.

7.3 Experimental Results

In this section, the experimental analysis is done seperately for two approaches. In

section 7.3.1, experimental results for region-based motion estimation is analyzed and

section 7.3.2 discusses the experimental results of the next-frame prediction approach.

7.3.1 Experimental analysis of region-based motion estimation

The proposed method is simulated on windows machine using Intel Core i7-7500U

processor. Initially, the BQSquare video sequence is split into frames using the FFmpeg

software at the rate of 60fps. Total 600 frames are generated, out of which the regions in

400 frames are labelled and each labelled frame undergoes augmentation to increase the

number of frames.

The labeled frames are used for training the YOLOv4. The original and augmented

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 97

(a) (b)

(c) (d)

Figure 7.7 (a) and (c) represents the original frames 3 and 4 of BQSquare, (b) and (d) represents

the output frames 3 and 4 of BQSquare with bounding boxes detected using YOLOv4

frames are shown in Fig. 7.6. The YOLOv4 is trained for 44 different classes. During

training, YOLOv4 is configured with the maximum batches of 88000; batch size and

subdivisions are 64 and 32, respectively. After training, the inference is performed on the

BQSquare sequence with untrained frames. The original and the object detected frames

are shown in Fig. 7.7.

Consider frame 3 as a previous frame and frame 4 as a current frame. The bounding

box coordinates along with object ids for different regions in frame 3 and frame 4 are

given in Table 7.1. Table 7.1 shows that the BBox coordinates are the same in two frames

for some of the classes like Dining table1, Dining table3, Table with umbrella1, Table

with color umbrella1, Lady2, Man2, base, man3 and Table with color umbrella classes.

The same coordinates in two frames represent that the class remains static and observed

no movement between the frames. The center of the bounding box (Xcen,Ycen)can be

calculated by using equation (7.9).

(Xcen, Ycen) = (
(x1 + x2)

2
,
(y1 + y2)

2
) (7.9)

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 98

Where (x1,y1) represents the top-left coordinate of bounding box and (x2,y2) repre-

sents the bottom-right coordinate of bounding box. The centroid for different classes in

frame three and frame four is given in Table 7.2. Finally, the motion vector is determined

which is the displacement between the centroid point of each class in frame 4 and the

centroid location of the corresponding class in frame 3.

Table 7.1 Bounding box coordinates of different classes in frame 3 and frame 4 of BQSquare

sequence

Tracker ID Class Frame 3 BBox Coordinates Frame 4 BBox Coordinates

1 Dining table 208, 95, 326, 187 210, 96, 324, 186

2 Table with umbrella 137, 151, 300, 239 138, 151, 300, 239

3 Dining table2 302, 54, 404, 128 302, 54, 403, 128

4 Dining table1 272, 0, 363, 72 272, 0, 363, 72

5 Dining table3 380, 13, 414, 83 380, 13, 414, 83

6 Table with color umbrella 21, 24, 145, 175 23, 24, 146, 174

7 table with color 88, 0, 184, 50 88, 0, 184, 51

8 Table with umbrella1 325, 113, 415, 240 325, 113, 415, 240

9 Table with color umbrella1 0, 6, 46, 183 0, 6, 46, 183

10 Lady2 236, 0, 264, 40 236, 0, 264, 40

11 Man2 188, 0, 233, 39 188, 0, 233, 39

12 base 58, 0, 94, 16 58, 0, 94, 16

13 man3 17, 4, 38, 72 17, 4, 38, 72

14 Table with color umbrella 0, 0, 24, 143 0, 0, 24, 143

Complexity analysis of proposed and State-of-the-art methods

The authors in [47,49,50] uses block-based ME during encoding process. Consider frame

3 of 416×240 pixels in size, as shown in Fig. 7.7 (a). The frame is divided into 16×16

equal chunks and finds the matching block in the reference frame using a 4-point diamond

search pattern for each block, as shown in Fig. 7.8. The 4-point diamond search pattern

is chosen as an example to evaluate the complexity of the motion estimation process. For

each 16×16 block SAD computation, 256 subtractions and 255 additions are required.

Hence for finding the motion vector for each block, five times SAD must be performed,

which increases the complexity. The complexity is further increased when the motion

vector is calculated for all the blocks in the frame.

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 99

Table 7.2 Centroid of bounding boxes of different classes in Frame 3 and frame 4 of BQSquare

sequence

Tracker ID Class Centroid in frame 3 Centroid in frame 4
Motion

Vector

1 Dining table (267,141) (267,141) (0,0)

2 Table with umbrella (218.5,195) (219,195) (-0.5,0)

3 Dining table2 (353,91) (352.5,91) (0.5,0)

4 Dining table1 (317.5,36) (317.5,36) (0,0)

5 Dining table3 (397,48) (397,48) (0,0)

6 Table with color umbrella (83,99.5) (84.5,99) (-1.5,0.5)

7 Table with color (136,25) (136,25.5) (0,-0.5)

8 Table with umbrella1 (370,176.5) (370,176.5) (0,0)

9 Table with color umbrella1 (23,94.5) (23,94.5) (0,0)

10 Lady2 (250,20) (250,20) (0,0)

11 Man2 (210.5,19.5) (210.5,19.5) (0,0)

12 base (76,8) (76,8) (0,0)

13 man3 (27.5,38) (27.5,38) (0,0)

14 Table with color umbrella (12,71.5) (12,71.5) (0,0)

Figure 7.8 Example frame with 4-point diamond search pattern

However, using the proposed method, the regions or objects are detected directly

by using the YOLOv4 algorithm. In frame 3, only 14 regions need to be detected to find

the motion vectors in the frame. The proposed method is compared to state-of-the-art

algorithms: Modified Diamond Search Algorithm (MDSA), Cross Diamond Search (CDS)

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 100

Table 7.3 Comparison results of the proposed technique and the state-of-the-art methods in

terms of computation time

Frame

No.
MDSA CDS DS Prop

2 36.32 31.19 36.53 1.02

3 36.19 31.26 36.32 1.31

4 35.43 31.70 35.24 1.09

5 36.26 30.19 36.43 1.44

6 35.31 30.72 36.25 1.32

7 35.92 31.91 36.71 1.33

8 36.12 31.10 36.34 1.49

9 36.31 31.34 35.66 1.53

10 36.03 30.91 34.21 1.09

and Diamond Search (DS) algorithms in Table 7.3. The results show that the proposed

method decreases the computation time significantly compared to the state-of-the-art

approaches.

7.3.2 Experimental analysis of next-frame prediction model

In this approach, UCF 101 dataset is used, which contains sports as well as daily

life scenes. The proposed model is trained using the images of the ApplyEyeMake video

sequence present in the UCF101 dataset. The sequence has a resolution of 320×240 with

25 fps. A total of 2000 frames are considered, and each frame is reshaped to 96×96.

Out of 2000 frames, 1604 frames are used for training, and the rest are used for testing.

Similarly, the BQSquare HEVC video sequence frames are reshaped to 96×96 and are used

for training the next frame prediction model. The hyperparameters for the simulation of

the proposed model are given in Table 7.4.

The performance of the proposed method is evaluated using Structural Similarity

Index (SSIM), PSNR and Mean Square Error (MSE), which are given in equations (7.10),

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 101

Table 7.4 Experimental parameters

Hyperparameters

Optimizer Adam

Loss Mean Square Error

Metric Perceptual distance

Batch size 32

Height 96

Width 96

(a) (b)

Figure 7.9 Training and validation loss curves of BQSquare HEVC video sequence

(7.11), and (7.12).

SSIM =
(2µY µŶ + P1) + (2σY Ŷ + P2)

(µ2
Y + µ2

Ŷ
+ P1)(σ2

Y + σ2
Ŷ
+ P2)

(7.10)

PSNR = 10log10
Ŷ 2
max∑T

i=1(Yi − Ŷi)2
(7.11)

MSE =
1

T

T∑
i=1

(Yi − Ŷi)2 (7.12)

Where,

Y and Ŷ→ ground truth and predicted values

T→ Total number of pixels,

Ŷmax → maximum possible image intensity value,

σY and µY → variance and average of Y,

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 102

σŶ and µŶ → variance and average of Ŷ .

Table 7.5 Comparison results of the proposed technique and the state-of-the-art methods

UCF101

Approach MSE PSNR SSIM

[159] 0.008 20.44 0.613

[161] 0.009 23.36 0.674

[158] 0.054 21.03 0.632

[155] 0.011 22.81 0.641

Prop 0.003 29.35 0.880

(a) (b)

Figure 7.10 Training and validation perceptual distance curves of BQSquare HEVC video

sequence

The proposed model is compared to state-of-the-art approaches in [159], [161], [158]

and [155]. The results in Table 7.5 show that the proposed approach achieves SSIM of

0.880 and PSNR of 29.35dB at the cost of MSE loss of 0.003. Our method outperforms

the remaining approaches in terms of PSNR and SSIM values.

Another metric, such as the perceptual distance, is used to analyze the performance.

Fig. 7.9 (a) and (b) shows the training and validation loss of the proposed method for

the BQSquare video sequence. The loss curves depict that the loss is as low as 0.02,

representing that the proposed method is trained efficiently. Fig. 7.10(a) and (b) show

that the perceptual distance is considerably decreased. This showcases that the predicted

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 103

Figure 7.11 Input frames of the ApplyEyeMake video sequence

Figure 7.12 Output sixth frame of the ApplyEyeMake video sequence

frame almost resembles the original frame.

Figure 7.13 Input frames of the BQSquare HEVC video sequence

Figure 7.14 Output sixth frame of the BQSquare HEVC video sequence

The five input frames of the ApplyEyeMake and BQSquare sequences are shown in

Fig. 7.11 and Fig. 7.13. The ground truth and the generated output of the ApplyEyeMake

and BQSquare sequences are shown in Fig. 7.12 and Fig. 7.14. The output images show

that the predicted frame looks like the original frame.

Region-Based Motion Estimation and Next-Frame Prediction using Deep Neural
Network 104

7.4 Conclusions

In this work, the region-based motion estimation is performed using the YOLOv4

algorithm. This algorithm detects the bounding box of the regions present in the frame.

Then the centroid point is calculated for each bounding box in the current and reference

frames. Finally, the motion vector is calculated based on the object class and centroid

point. The proposed method significantly decreases the complexity of the motion estima-

tion process compared to the state-of-the-art techniques.

In addition, the next-frame prediction model is proposed that helps to predict the

next frame by taking the first five frames as input. This model can directly predict

the motion compensated frame by skipping the computational complex ME process in

HEVC. This model is tested on the UCF101 dataset video sequence and the HEVC video

sequence. The results show that the model predicts the next frame efficiently with high

PSNR and low MSE values compared to the state-of-the-art techniques.

Chapter 8

Conclusions and Future Scope

This chapter concludes the thesis by underlining the main contributions. It also

presents the possible directions of future work.

8.1 Conclusions

In HEVC, an advanced coding tool such as a quad-tree CTU structure is used to

improve efficiency at the cost of computational complexity. The complexity increases

due to the RDO search process determining the optimal CTU partitions. Moreover, the

motion estimation process is used to determine the motion vectors. The computational

complexity of the recursive RDO search process and motion estimation increases the

encoding time. In this thesis, different approaches are proposed to decrease the encoding

time. The contributions of the research work are concluded as follows.

Chapter 3 presents the MLRVS algorithm and the complexity reduction method

to reduce the encoder’s encoding time. The complexity reduction algorithm is used to

detect the skip mode early. The multi-resolution frame structure is created using Vertical

Subsampling to reduce the SAD computations and to obtain the motion vector with global

minima. It also helps to overcome the local minima problem. Moreover, different search

patterns like NCDD and NCDH are used to accelerate the search process to find the

motion vector. The results show that the encoding time of the encoder is decreased by

55% with the MLRVS algorithm using the NCDD search pattern and 56% with MLRVS

using the NCDH search pattern compared to the HM16.5 standard.

Conclusions & Future Scope 106

Chapter 4 proposes the CU size prediction method using a CNN deep learning

methodology to reduce the encoding time. The CNN approach is used in place of the

RDO search process, which uses spatial features to predict the CU size. In addition, the

MRCDO method enhances the speed of the motion estimation process. The MRCDO

motion estimation technique uses the CDO search pattern to speed up the motion vector

calculation. Compared to the HM-16.5 standard, the suggested solution reduces encoding

time by 66.91 percent on average, with negligible degradation in quality.

In chapter 5, SHVC is used to encode the video sequences. SHVC uses more than

one layer to provide spatial scalability. However, the complexity increases significantly

compared to HEVC due to the many layers. Hence, SHVC using an Early Terminated

CNN+LSTM structure is developed to predict the partitions of CTU. The CNN+LSTM

approach considers spatial and temporal features to predict the CTU partitions. The

proposed method achieves 53% savings in encoding time for LDP configuration and 59%

for RA configuration, which is significantly higher than state-of-the-art methods.

Chapter 6 develops an efficient surgical telementoring system that transmits the

surgical incision region at high quality with less bit rate. The surgical incision region in

the video sequence is identified by the Kernelized Correlation Filter (KCF) tracker. The

tracker tracks the surgical incision region, then crops and writes to the video sequence.

The resultant video is encoded using the SHVC video coder. SHVC uses the CNN+LSTM

model to encode the video with less complexity. The proposed method saves the bit rate

by 87% with good video quality (PSNR).

Finally, in chapter 7, we proposed the region-based motion estimation using YOLOv4.

This model helps to detect the regions present in the frame. Based on the bounding box

coordinates of the region, the centroid point is calculated, which helps to find the mo-

tion vectors fastly. The results prove that the proposed method takes less time than the

state-of-the-art approaches to determine the motion vectors of the frame.

We also proposed the next frame prediction using a deep neural network to reduce

the encoding time in HEVC. This technique uses the ConvLSTM layer to predict the

next frame based on the previous five frames. The proposed approach can be used in

HEVC to predict the motion-compensated frame by skipping the motion estimation and

compensation process. The output figures represent that the next frame can be predicted

Conclusions & Future Scope 107

accurately based on the previous frames.

8.2 Future Scope

The work proposed in this thesis can be extended for future research. Some of the

possible directions in which the problems can be further pursued are:

� This thesis uses machine learning approaches to predict the CTU partitions in

HEVC. However, this work can be extended by using the same approaches to predict

the asymmetric partition modes present in Inter prediction.

� In HEVC, the motion estimation process consumes more time. Hence, developing

Hardware accelerators for motion estimation algorithms can decrease the encoding

time.

� The computational complexity of HEVC is increased due to the quad-tree TU par-

titions. Therefore, developing the machine learning model to predict the TU parti-

tions decreases the complexity.

� Further, the current work can be extended by developing the hardware architecture

for the Motion Compensation block that helps to generate the motion compensated

frames.

Publications

List of International Journals:

1. S. Karthik Sairam, P. Muralidhar ”A motion estimation based algorithm for encod-

ing time reduction in HEVC” Defence Science Journal, Vol. 72, No. 1, January

2022, pp. 56-66, DOI : 10.14429/dsj.72.16733 (SCI)

2. S. Karthik Sairam, P. Muralidhar ” Object Tracking Based Surgical Incision Region

Encoding using Scalable High Efficiency Video Coding for Surgical Telementoring

Applications ” Radioengineering Journal, Vol. 31, No. 2, June 2022, pp. 231-242,

DOI : 10.13164/re.2022.0231(SCI)

3. S. Karthik Sairam, P. Muralidhar “A Deep Learning Approach in Scalable High

Efficiency Video Coding for fast Coding Unit size decision”, IETE Technical Review

journal, 2022, pp. 1-16, DOI: 10.1080/02564602.2022.2100492 (SCI)

4. S. Karthik Sairam, P. Muralidhar “Fast Convolutional Neural Network based Coding

Unit Size Prediction in HEVC”, Multidimensional Systems and Signal Processing

Journal. (Under Review) (SCI)

List of International Conferences:

1. S. Karthik Sairam, P. Muralidhar,“ Hybrid Fast Motion Estimation for HEVC”,6th

International Conference on Signal Processing and Integrated Networks (SPIN),2019.

2. S. Karthik Sairam, P. Muralidhar,”Fast encoding in HEVC using subsampling with

unsymmetrical octagonal search pattern”, IEEE 16th India Council International

Conference (INDICON),2019.

Publications 109

3. S. Karthik Sairam, P. Muralidhar,”Fast Encoding using X-Search Pattern and Coded

Block Flag Fast Method” First International Conference Communications, Signal

Processing and VLSI (IC2SV 2019) held at the National Institute of Technology

Warangal,2019.

Bibliography

[1] T. TK, M. Marta, B. Vittorio, and R. Naeem, “Report on HEVC compression

performance verification testing,” JCT-VC, 2014.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High

Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[3] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[4] T. TK, M. Marta, B. Vittorio, and R. Naeem, “Report on HEVC compression

performance verification testing,” JCT-VC, 2014.

[5] J. Hsieh, J. Cai, Y. Wang, and Z. Guo, “ML-Assisted DVFS Aware HEVC Motion

Estimation Design Scheme for Mobile APSoC,” IEEE Syst. J., vol. 13, no. 4, pp.

4464–4473, 2019.

[6] N. C. Vayalil, M. Paul, and Y. Kong, “A Residue Number System Hardware Design

of Fast-Search Variable-Motion-Estimation Accelerator for HEVC/H.265,” IEEE

Trans.Circuits Syst. Video Technol., vol. 29, no. 2, pp. 572–581, 2019.

[7] G. Cebrián-Márquez, J. L. Mart́ınez, and P. Cuenca, “A Motion-Based Partitioning

Algorithm for HEVC Usinga Pre-Analysis Stage,” IEEE Trans.Circuits Syst. Video

Technol., vol. 29, no. 5, pp. 1448–1461, 2019.

[8] K. Fan, R. Wang, G. Li, and W. Gao, “Efficient Prediction Methods With En-

hanced Spatial-Temporal Correlation for HEVC,” IEEE Trans.Circuits Syst. Video

Technol., vol. 29, no. 12, pp. 3716–3728, 2019.

110

Bibliography 111

[9] F. Pakdaman, M. Hashemi, and M. A. Ghanbari, “low complexity and computation-

ally scalable fast motion estimation algorithm for HEVC,” Multimed. ToolsAppl.,

vol. 79, p. 11639–11666, 2020.

[10] T. Jiang, X.and Song, T. Katayama, and J.-S. Leu, “Spatial Correlation- Based

Motion-Vector Prediction for Video-Coding Efficiency Improvement,” Symmetry,

vol. 11, no. 2, p. 129, 2019.

[11] S. Gogoi and R. Peesapati, “ A hybrid hardware orientedmotion estimation algo-

rithm for HEVC/H.265,” J. Real-Time Image Proc., vol. 18, p. 953–966, 2021.

[12] F. Luo, S. Wang, S. Wang, X. Zhang, S. Ma, and W. Gao, “ GPU-Based Hierarchi-

cal Motion Estimation for High Efficiency Video Coding,” IEEE Transactions on

Multimedia, vol. 21, no. 4, pp. 851–862, 2019.

[13] S. Y. Jou, S. J. Chang, and T. S. Chang, “Fast Motion Estimation Algorithm and

Design for Real Time QFHD High Efficiency Video Coding,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 25, no. 9, pp. 1533–1544, 2015.

[14] K. Singh and S. Rafi Ahamed, “Low Power Motion Estimation Algorithm and

Architecture of HEVC/H.265 for Consumer Applications,” IEEE Transactions on

Consumer Electronics, vol. 64, no. 3, pp. 267–275, 2018.

[15] F. Cheng, T. Tillo, J. Xiao, and B. Jeon, “Texture Plus Depth Video Coding Using

Camera Global Motion Information,” IEEE Transactions on Multimedia, vol. 19,

no. 11, pp. 2361–2374, 2017.

[16] S.-H. Park and J.-W. Kang, “Fast Affine Motion Estimation for Versatile Video

Coding (VVC) Encoding,” IEEE Access, vol. 7, pp. 158 075–158 084, 2019.

[17] L. Trudeau, S. Coulombe, and C. Desrosiers, “Cost-Based Search Ordering for Rate-

Constrained Motion Estimation Applied to HEVC,” IEEE Transactions on Broad-

casting, vol. 64, no. 4, pp. 922–932, 2018.

[18] Z. Pan, J. Lei, Y. Zhang, X. Sun, and S. Kwong, “Fast Motion Estimation Based on

Content Property for Low-Complexity H.265/HEVC Encoder,” IEEE Transactions

on Broadcasting, vol. 62, no. 3, pp. 675–684, 2016.

Bibliography 112

[19] H.-S. Kim, J.-H. Lee, C.-K. Kim, and B.-G. Kim, “Zoom Motion Estimation Using

Block-Based Fast Local Area Scaling,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 22, no. 9, pp. 1280–1291, 2012.

[20] G. He, D. Zhou, Y. Li, Z. Chen, T. Zhang, and S. Goto, “High-Throughput Power-

Efficient VLSI Architecture of Fractional Motion Estimation for Ultra-HD HEVC

Video Encoding,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 23, no. 12, pp. 3138–3142, 2015.

[21] S. Gogoi and R. Peesapati, “Design and Implementation of an Efficient Multi-

Pattern Motion Estimation Search Algorithm for HEVC/H.265,” IEEE Transac-

tions on Consumer Electronics, vol. 67, no. 4, pp. 319–328, 2021.

[22] L. Jia, C.-Y. Tsui, O. C. Au, and K. Jia, “A New Rate-Complexity-Distortion

Model for Fast Motion Estimation Algorithm in HEVC,” IEEE Transactions on

Multimedia, vol. 21, no. 4, pp. 835–850, 2019.

[23] N. Hu and E.-H. Yang, “Fast Motion Estimation Based on Confidence Interval,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 8,

pp. 1310–1322, 2014.

[24] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, “An Effective CU Size Decision

Method for HEVC Encoders,” IEEE Transactions on Multimedia, vol. 15, no. 2, pp.

465–470, 2013.

[25] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, “Complexity control

of high efficiency video encoders for power-constrained devices,” IEEE Transactions

on Consumer Electronics, vol. 57, no. 4, pp. 1866–1874, 2011.

[26] G. Correa, P. Assuncao, L. Agostini, and L. A. D. S. Cruz, “Coding Tree Depth

Estimation for Complexity Reduction of HEVC,” in 2013 Data Compression Con-

ference, 2013, pp. 43–52.

[27] J. H. Bae and M. H. Sunwoo, “Adaptive Early Termination Algorithm Using Coding

Unit Depth History in HEVC,” Journal of Signal Processing Systems, vol. 91, p.

863–873, 2019.

Bibliography 113

[28] L. Shen, Z. Zhang, and P. An, “Fast CU size decision and mode decision algorithm

for HEVC intra coding,” IEEE Transactions on Consumer Electronics, vol. 59,

no. 1, pp. 207–213, 2013.

[29] C. Yue-Feng, W. Wan-Liang, and Y. Xin-Wei, “A fast CU depth decision mechanism

for HEVC,” Information Processing Letters, vol. 115, no. 9, pp. 719–724, 2015.

[30] L. Zhuoming, Z. Yu, D. Zheng, R. Kanza, C. Yaohui, X. Zhenjian, and Y. Wenchao,

“A fast CU partition method based on CU depth spatial correlation and RD cost

characteristics for HEVC intra coding,” Signal Processing: Image Communication,

vol. 75, pp. 141–146, 2019.

[31] S. Huade, L. Fan, and C. Huanbang, “A fast CU size decision algorithm based on

adaptive depth selection for HEVC encoder,” in 2014 International Conference on

Audio, Language and Image Processing, 2014, pp. 143–146.

[32] Z. Pan, S. Kwong, Y. Zhang, J. Lei, and H. Yuan, “Fast Coding Tree Unit depth

decision for high efficiency video coding,” in 2014 IEEE International Conference

on Image Processing (ICIP), 2014, pp. 3214–3218.

[33] X. Liu, Y. Li, D. Liu, P. Wang, and L. T. Yang, “An Adaptive CU Size Decision

Algorithm for HEVC Intra Prediction Based on Complexity Classification Using

Machine Learning,” IEEE Transactions on Circuits and Systems for Video Tech-

nology, vol. 29, no. 1, pp. 144–155, 2019.

[34] B. Erabadda, T. Mallikarachchi, G. Kulupana, and A. Fernando, “iCUS: Intelligent

CU Size Selection for HEVC Inter Prediction,” IEEE Access, vol. 8, pp. 141 143–

141 158, 2020.

[35] T. Mallikarachchi, D. S. Talagala, H. K. Arachchi, and A. Fernando, “Content-

Adaptive Feature-Based CU Size Prediction for Fast Low-Delay Video Encoding in

HEVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28,

no. 3, pp. 693–705, 2018.

[36] Y.-T. Kuo, P.-Y. Chen, and H.-C. Lin, “A Spatiotemporal Content-Based CU Size

Decision Algorithm for HEVC,” IEEE Transactions on Broadcasting, vol. 66, no. 1,

pp. 100–112, 2020.

Bibliography 114

[37] B. Erabadda, T. Mallikarachchi, C. Hewage, and A. Fernando, “Quality of Expe-

rience (QoE)-Aware Fast Coding Unit Size Selection for HEVC Intra-Prediction,”

Future Internet, 2019.

[38] L. Shen, Z. Zhang, and Z. Liu, “Adaptive Inter-Mode Decision for HEVC Jointly

Utilizing Inter-Level and Spatiotemporal Correlations,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 24, no. 10, pp. 1709–1722, 2014.

[39] S. Liquan, Z. Zhang, and Z. Liu, “Effective CU Size Decision for HEVC Intra-

coding,” IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4232–4241,

2014.

[40] B. Min and R. C. C. Cheung, “A Fast CU Size Decision Algorithm for the HEVC

Intra Encoder,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 25, no. 5, pp. 892–896, 2015.

[41] J. Xiong, H. Li, Q. Wu, and F. Meng, “A Fast HEVC Inter CU Selection Method

Based on Pyramid Motion Divergence,” IEEE Transactions on Multimedia, vol. 16,

no. 2, pp. 559–564, 2014.

[42] S. Bouaafia, R. Khemiri, F. Sayadi, and M. Atri, “Fast CU Partition-Based Machine

Learning Approach for Reducing HEVC Complexity,” Journal of Real-Time Image

Processing, 02 2020.

[43] B. Huang, Z. Chen, Q. Cai, M. Zheng, and D. O. Wu, “Rate-Distortion-Complexity

Optimized Coding Mode Decision for HEVC,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 30, no. 3, pp. 795–809, 2020.

[44] Y. Lu, X. Huang, H. Liu, Y. Zhou, H. Yin, and L. Shen, “Hierarchical Classification

for Complexity Reduction in HEVC Inter Coding,” IEEE Access, vol. 8, pp. 41 690–

41 704, 2020.

[45] R. R. Sharma and K. V. Arya, “Parameter optimization for HEVC/H.265 encoder

using multi-objective optimization technique,” in 2016 11th International Confer-

ence on Industrial and Information Systems (ICIIS), 2016, pp. 592–597.

Bibliography 115

[46] S. Yan, L. Hong, W. He, and Q.Wang, “Group-Based Fast Mode Decision Algorithm

for Intra Prediction in HEVC,” in 2012 Eighth International Conference on Signal

Image Technology and Internet Based Systems, 2012, pp. 225–229.

[47] A. Jiménez-Moreno, E. Mart́ınez-Enŕıquez, and F. Dı́az-de Maŕıa, “Complexity

Control Based on a Fast Coding Unit Decision Method in the HEVC Video Coding

Standard,” IEEE Transactions on Multimedia, vol. 18, no. 4, pp. 563–575, 2016.

[48] K.-Y. Kim, H.-Y. Kim, J.-S. Choi, and G.-H. Park, “MC Complexity Reduction

for Generalized P and B Pictures in HEVC,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 24, no. 10, pp. 1723–1728, 2014.

[49] H. Lee, H. J. Shim, Y. Park, and B. Jeon, “Early Skip Mode Decision for HEVC

Encoder With Emphasis on Coding Quality,” IEEE Transactions on Broadcasting,

vol. 61, no. 3, pp. 388–397, 2015.

[50] S. Ahn, B. Lee, and M. Kim, “A Novel Fast CU Encoding Scheme Based on Spa-

tiotemporal Encoding Parameters for HEVC Inter Coding,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 25, no. 3, pp. 422–435, 2015.

[51] P. Nalluri, L. N. Alves, and A. Navarro, “Complexity reduction methods for fast

motion estimation in HEVC,” Signal Processing: Image Communication, vol. 39,

pp. 280–292, 2015.

[52] D. Wang, Y. Sun, J. Liu, F. Dufaux, X. Lu, and B. Hang, “Probability-Based Fast

Intra Prediction Algorithm for Spatial SHVC,” IEEE Transactions on Broadcasting,

vol. 68, no. 1, pp. 83–96, 2022.

[53] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, and G. Jiang, “Low-Complexity CTU

Partition Structure Decision and Fast Intra Mode Decision for Versatile Video Cod-

ing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30,

no. 6, pp. 1668–1682, 2020.

[54] X. Dong, L. Shen, M. Yu, and H. Yang, “Fast Intra Mode Decision Algorithm for

Versatile Video Coding,” IEEE Transactions on Multimedia, vol. 24, pp. 400–414,

2022.

Bibliography 116

[55] Z. Liu, T.-L. Lin, and C.-C. Chou, “Efficient prediction of CU depth and PU mode

for fast HEVC encoding using statistical analysis,” Journal of Visual Communica-

tion and Image Representation, vol. 38, pp. 474–486, 2016.

[56] H. R. Tohidypour, M. T. Pourazad, and P. Nasiopoulos, “Content adaptive com-

plexity reduction scheme for quality/fidelity scalable HEVC,” in 2013 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, 2013, pp. 1744–1748.

[57] Z.-Y. Chen and P.-C. Chang, “Rough mode cost–based fast intra coding for high-

efficiency video coding,” Journal of Visual Communication and Image Representa-

tion, vol. 43, pp. 77–88, 2017.

[58] R. A. Shah, M. N. Asghar, S. Abdullah, N. Kanwal, and M. Fleury, “SLEPX: An

Efficient Lightweight Cipher for Visual Protection of Scalable HEVC Extension,”

IEEE Access, vol. 8, pp. 187 784–187 807, 2020.

[59] D. Wang, Y. Sun, C. Zhu, W. Li, and F. Dufaux, “Fast Depth and Inter Mode

Prediction for Quality Scalable High Efficiency Video Coding,” IEEE Transactions

on Multimedia, vol. 22, no. 4, pp. 833–845, 2020.

[60] H. R. Tohidypour, H. Bashashati, M. T. Pourazad, and P. Nasiopoulos, “Fast Mode

Assignment for Quality Scalable Extension of the High Efficiency Video Coding

(HEVC) Standard: A Bayesian Approach,” in Proceedings of the 6th Balkan Con-

ference in Informatics, 2013, p. 61–65.

[61] L. Shen and G. Feng, “Content-Based Adaptive SHVC Mode Decision Algorithm,”

IEEE Transactions on Multimedia, vol. 21, no. 11, pp. 2714–2725, 2019.

[62] Y. Chih-Hsuan, L. Jie-Ru, C. Mei-Juan, Y. Chia-Hung, L. Cheng-An, and T. Kuang-

Han, “Fast prediction for quality scalability of High Efficiency Video Coding Scal-

able Extension,” Journal of Visual Communication and Image Representation,

vol. 58, pp. 462–476, 2019.

[63] X. Li, M. Chen, Z. Qu, J. Xiao, and M. Gabbouj, “An Effective CU Size Deci-

sion Method for Quality Scalability in SHVC,” Multimedia Tools and Applications,

vol. 76, 2017.

Bibliography 117

[64] W. Chou-Chen, C. Yuan-Shing, and H. Ke-Nung, “Efficient Coding Tree Unit

(CTU) Decision Method for Scalable High-Efficiency Video Coding (SHVC) En-

coder,” in Recent Advances in Image and Video Coding. Rijeka: IntechOpen,

2016, ch. 11.

[65] D. Wang, C. Zhu, Y. Sun, F. Dufaux, and Y. Huang, “Efficient Multi-Strategy Intra

Prediction for Quality Scalable High Efficiency Video Coding,” IEEE Transactions

on Image Processing, vol. 28, no. 4, pp. 2063–2074, 2019.

[66] H. R. Tohidypour, M. T. Pourazad, and P. Nasiopoulos, “Probabilistic Approach

for Predicting the Size of Coding Units in the Quad-Tree Structure of the Quality

and Spatial Scalable HEVC,” IEEE Transactions on Multimedia, vol. 18, no. 2, pp.

182–195, 2016.

[67] T. Hamid Reza, M. T. Pourazad, and P. Nasiopoulos, “Content adaptive complexity

reduction scheme for quality/fidelity scalable HEVC,” in 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, 2013, pp. 1744–1748.

[68] T. Katayama, W. Shi, T. Song, and T. Shimamoto, “Early depth determination

algorithm for enhancement layer intra coding of SHVC,” in 2016 IEEE Region 10

Conference (TENCON), 2016, pp. 3079–3082.

[69] D. Wang, C. Yuan, Y. Sun, J. Zhang, and H. Zhou, “Fast Mode and Depth Decision

Algorithm for Intra Prediction of Quality SHVC,” 2014, pp. 693–699.

[70] T. Wiegand, J.-R. Ohm, G. J. Sullivan, W.-J. Han, R. Joshi, T. K. Tan, and

K. Ugur, “Special Section on the Joint Call for Proposals on High Efficiency Video

Coding (HEVC) Standardization,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 20, no. 12, pp. 1661–1666, 2010.

[71] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison

of the Coding Efficiency of Video Coding Standards—Including High Efficiency

Video Coding (HEVC),” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, no. 12, pp. 1669–1684, 2012.

Bibliography 118

[72] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson,

M. Zhou, and G. Van der Auwera, “HEVC Deblocking Filter,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1746–1754, 2012.

[73] C.-M. Fu, E. Alshina, A. Alshin, Y.-W. Huang, C.-Y. Chen, C.-Y. Tsai, C.-W. Hsu,

S.-M. Lei, J.-H. Park, and W.-J. Han, “Sample Adaptive Offset in the HEVC Stan-

dard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22,

no. 12, pp. 1755–1764, 2012.

[74] R. Fan, Y. Zhang, and B. Li, “Motion Classification-Based Fast Motion Estimation

for High-Efficiency Video Coding,” IEEE Transactions on Multimedia, vol. 19, no. 5,

pp. 893–907, 2017.

[75] Z. Pan, J. Lei, Y. Zhang, and F. L. Wang, “Adaptive Fractional-Pixel Motion

Estimation Skipped Algorithm for Efficient HEVC Motion Estimation,” vol. 14,

no. 1, pp. 1551–6857, 2018.

[76] T. Koga, “Motion Compensated Inter-Frame Coding for Video Conferencing,” 1981.

[77] K. Chun and J. Ra, “An improved block matching algorithm based on successive

refinement of motion vector candidates,” Signal Processing: Image Communication,

vol. 6, no. 2, pp. 115–122, 1994.

[78] L.-W. Lee, J.-F. Wang, J.-Y. Lee, and J.-D. Shie, “Dynamic search-window adjust-

ment and interlaced search for block-matching algorithm,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 3, no. 1, pp. 85–87, 1993.

[79] R. Li, B. Zeng, and M. Liou, “A new three-step search algorithm for block motion

estimation,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 4, no. 4, pp. 438–442, 1994.

[80] J. Jain and A. Jain, “Displacement Measurement and Its Application in Interframe

Image Coding,” IEEE Transactions on Communications, vol. 29, no. 12, pp. 1799–

1808, 1981.

[81] M.-J. Chen, L.-G. Chen, and T.-D. Chiueh, “One-dimensional full search motion

estimation algorithm for video coding,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 4, no. 5, pp. 504–509, 1994.

Bibliography 119

[82] F. Chen, P. Wen, Z. Peng, G. Jiang, M. Yu, and H. Chen, “Hierarchical complex-

ity control algorithm for HEVC based on coding unit depth decision,” EURASIP

Journal on Image and Video Processing, vol. 96, 2018.

[83] R. Khemiri, N. Bahri, F. Belghith, F. E. Sayadi, M. Atri, and N. Masmoudi, “Fast

motion estimation for HEVC video coding,” in 2016 International Image Processing,

Applications and Systems (IPAS), 2016, pp. 1–4.

[84] R. Saran, H. B. Srivastava, and A. Kumar, “Median predictor-based lossless video

compression algorithm for IR image sequences,” in Signal Processing Algorithms,

Architectures, Arrangements, and Applications SPA 2007, 2007, pp. 87–90.

[85] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-matching

motion estimation,” IEEE Transactions on Image Processing, vol. 9, no. 2, pp.

287–290, 2000.

[86] C.-H. Cheung and L.-M. Po, “Novel cross-diamond-hexagonal search algorithms for

fast block motion estimation,” IEEE Transactions on Multimedia, vol. 7, no. 1, pp.

16–22, 2005.

[87] M. HEVC, “ Software reference test model HM 16.5,”

https://hevc.hhi.fraunhofer.de/, [online; accessed 04-July-2019].

[88] G. Bjontegaard, “Calculation of average PSNR differences between RD curves,”

ITU-T SG16/Q6 Document, 2001.

[89] B. G., “Improvements of the BD-PSNR model,” ITU-T SG16/Q6 Document, 2008.

[90] D. Liu, X. Liu, and Y. Li, “Fast CU Size Decisions for HEVC Intra Frame Coding

Based on Support Vector Machines,” in 2016 IEEE 14th Intl Conf on Dependable,

Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and

Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Sci-

ence and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), 2016, pp.

594–597.

[91] A. Hamosfakidis and Y. Paker, “A Novel Hexagonal Search Algorithm for Fast

Block Matching Motion Estimation,” EURASIP Journal on Advances in Signal

Processing, 2002.

Bibliography 120

[92] M. Ismail, J. Ma, and D. Sim, “Full depth RQT after PU decision for fast encoding

of HEVC,” in The 18th IEEE International Symposium on Consumer Electronics

(ISCE 2014), 2014, pp. 1–2.

[93] H.-S. Kim and R.-H. Park, “Fast CU Partitioning Algorithm for HEVC Using an

Online-Learning-Based Bayesian Decision Rule,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 26, no. 1, pp. 130–138, 2016.

[94] H. L. Tan, C. C. Ko, and S. Rahardja, “Fast Coding Quad-Tree Decisions Using

Prediction Residuals Statistics for High Efficiency Video Coding (HEVC),” IEEE

Transactions on Broadcasting, vol. 62, no. 1, pp. 128–133, 2016.

[95] J. Leng, L. Sun, T. Ikenaga, and S. Sakaida, “Content Based Hierarchical Fast

Coding Unit Decision Algorithm for HEVC,” in 2011 International Conference on

Multimedia and Signal Processing, vol. 1, 2011, pp. 56–59.

[96] X. Shen, L. Yu, and J. Chen, “Fast coding unit size selection for HEVC based on

Bayesian decision rule,” in 2012 Picture Coding Symposium, 2012, pp. 453–456.

[97] S. Cho and M. Kim, “Fast CU Splitting and Pruning for Suboptimal CU Partitioning

in HEVC Intra Coding,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 23, no. 9, pp. 1555–1564, 2013.

[98] H.-M. Yoo and J.-W. Suh, “Fast coding unit decision algorithm based on inter and

intra prediction unit termination for HEVC,” in 2013 IEEE International Confer-

ence on Consumer Electronics (ICCE), 2013, pp. 300–301.

[99] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz, “Fast HEVC En-

coding Decisions Using Data Mining,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 25, no. 4, pp. 660–673, 2015.

[100] L. Zhu, Y. Zhang, Z. Pan, R. Wang, S. Kwong, and Z. Peng, “Binary and Multi-

Class Learning Based Low Complexity Optimization for HEVC Encoding,” IEEE

Transactions on Broadcasting, vol. 63, no. 3, pp. 547–561, 2017.

[101] H. K. Joy, M. R. Kounte, and A. K. Joy, “Deep Learning Approach in Intra -

Prediction of High Efficiency Video Coding,” in 2020 International Conference on

Bibliography 121

Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), 2020, pp.

134–138.

[102] T. Li, M. Xu, and X. Deng, “A deep convolutional neural network approach for

complexity reduction on intra-mode HEVC,” 2017, pp. 1255–1260.

[103] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan, “Reducing Complexity

of HEVC: A Deep Learning Approach,” IEEE Transactions on Image Processing,

vol. 27, no. 10, pp. 5044–5059, 2018.

[104] Z. Chen, J. Shi, and W. Li, “ Learned Fast HEVC Intra Coding ,” IEEE Transac-

tions on Image Processing, vol. 29, pp. 5431–5446, 2020.

[105] J. Shi, C. Gao, and Z. Chen, “Asymmetric-Kernel CNN Based Fast CTU Partition

for HEVC Intra Coding,” in 2019 IEEE International Symposium on Circuits and

Systems (ISCAS), 2019, pp. 1–5.

[106] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang, “CU Partition Mode Decision

for HEVC Hardwired Intra Encoder Using Convolution Neural Network,” IEEE

Transactions on Image Processing, vol. 25, no. 11, pp. 5088–5103, 2016.

[107] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan, and L. Xu, “Machine Learning-

Based Coding Unit Depth Decisions for Flexible Complexity Allocation in High

Efficiency Video Coding,” IEEE Transactions on Image Processing, vol. 24, no. 7,

pp. 2225–2238, 2015.

[108] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video Cod-

ing Extension of the H.264/AVC Standard,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, 2007.

[109] W. Hamidouche, M. Farajallah, M. Raulet, O. Déforges, and S. El Assad, “Selective

video encryption using chaotic system in the shvc extension,” 04 2015.

[110] R. Bailleul, J. De Cock, and R. Van De Walle, “Fast mode decision for SNR scala-

bility in SHVC digest of technical papers,” in 2014 IEEE International Conference

on Consumer Electronics (ICCE), 2014, pp. 193–194.

Bibliography 122

[111] Model, “ SHVC Reference Software,” https://hevc.hhi.fraunhofer.de/svn/svn SHVC

Software/tags/SHM-12.1, [online; accessed 04-July-2021].

[112] J. Kim and E.-S. Ryu, “Qos optimal real-time video streaming in distributed wireless

image-sensing platforms,” Journal of Real-Time Image Processing, vol. 13, 09 2017.

[113] Y. Ye and P. Andrivon, “The Scalable Extensions of HEVC for Ultra-High-

Definition Video Delivery,” IEEE MultiMedia, vol. 21, no. 3, pp. 58–64, 2014.

[114] J. M. Boyce, Y. Ye, J. Chen, and A. K. Ramasubramonian, “Overview of SHVC:

Scalable Extensions of the High Efficiency Video Coding Standard,” IEEE Trans-

actions on Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 20–34,

2016.

[115] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space

analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,

no. 5, pp. 603–619, 2002.

[116] M. Xu, X. Deng, S. Li, and Z. Wang, “Region-of-Interest Based Conversational

HEVC Coding with Hierarchical Perception Model of Face,” IEEE Journal of Se-

lected Topics in Signal Processing, vol. 8, no. 3, pp. 475–489, 2014.

[117] S. Gokturk, C. Tomasi, B. Girod, and C. Beaulieu, “Medical image compression

based on region of interest, with application to colon CT images,” in 2001 Confer-

ence Proceedings of the 23rd Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society, vol. 3, 2001, pp. 2453–2456.

[118] H. Yu, Z. Lin, and F. Pan, “Applications and improvement of H.264 in medical

video compression,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 52, no. 12, pp. 2707–2716, 2005.

[119] Y. Wu, P. Liu, Y. Gao, and K. Jia, “Medical ultrasound video coding with

H.265/HEVC based on ROI extraction,” PLOS ONE, vol. 11, 11 2016.

[120] S. Khire, S. Robertson, N. Jayant, E. A. Wood, M. E. Stachura, and T. Gok-

sel, “Region-of-interest video coding for enabling surgical telementoring in low-

bandwidth scenarios,” in MILCOM 2012 - 2012 IEEE Military Communications

Conference, 2012, pp. 1–6.

Bibliography 123

[121] D. Grois, E. Kaminsky, and O. Hadar, “ROI adaptive scalable video coding for

limited bandwidth wireless networks,” in 2010 IFIP Wireless Days, 2010, pp. 1–5.

[122] T. Barsakar and V. Mankar, “A novel approach for medical video compression using

kernel based meanshift ROI coding techniques,” in 2016 Conference on Advances

in Signal Processing (CASP), 2016, pp. 212–216.

[123] M. Ghafoor, A. Tariq, M. Bakr, Jibran, W. Ahmad, and T. Zia, “Perceptually

Lossless Surgical Telementoring System Based on Non-Parametric Segmentation,”

Journal of Medical Imaging and Health Informatics, vol. 9, pp. 464–473, 03 2019.

[124] W. Xie, Z. Yao, E. Ji, H. Qiu, Z. Chen, H. Guo, J. Zhuang, Q. Jia, and M. Huang,

“Artificial Intelligence–based Computed Tomography Processing Framework for

Surgical Telementoring of Congenital Heart Disease,” ACM Journal on Emerging

Technologies in Computing Systems, vol. 17, pp. 1–24, 10 2021.

[125] P. Liu, C. Li, C. Xiao, Z. Zeshu, J. Ma, J. Gao, P. Shao, I. Valerio, T. Pawlik,

C. Ding, A. Yilmaz, and R. Xu, “AWearable Augmented Reality Navigation System

for Surgical Telementoring Based on Microsoft HoloLens,” Annals of Biomedical

Engineering, vol. 49, 06 2020.

[126] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[127] H. Wei, X. Zhou, W. Zhou, C. Yan, Z. Duan, and N. Shan, “Visual saliency based

perceptual video coding in HEVC,” in 2016 IEEE International Symposium on

Circuits and Systems (ISCAS), 2016, pp. 2547–2550.

[128] L. Wang, P. C. Pedersen, D. M. Strong, B. Tulu, E. Agu, and R. Ignotz,

“Smartphone-Based Wound Assessment System for Patients With Diabetes,” IEEE

Transactions on Biomedical Engineering, vol. 62, no. 2, pp. 477–488, 2015.

[129] A. Ramya, R.and Jenitta, “Foot injury detection using K-means clustering, mean

shift segmentation algorithm,” Int J Adv Res Basic Eng Sci Technol (IJARBEST),

vol. 3, no. 24, pp. 323–329, 2017.

Bibliography 124

[130] H. Wannous, S. Treuillet, and Y. Lucas, “Robust tissue classification for repro-

ducible wound assessment in telemedicine environments,” J. Electronic Imaging,

vol. 19, p. 023002, 04 2010.

[131] C. Wang, X. Yan, M. Smith, K. Kochhar, M. Rubin, S. M. Warren, J. Wrobel, and

H. Lee, “A unified framework for automatic wound segmentation and analysis with

deep convolutional neural networks,” in 2015 37th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 2415–

2418.

[132] M. Goyal, N. D. Reeves, A. K. Davison, S. Rajbhandari, J. Spragg, and M. H. Yap,

“DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification,”

IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 4, no. 5,

pp. 728–739, 2020.

[133] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-Speed Tracking

with Kernelized Correlation Filters,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 37, no. 3, pp. 583–596, 2015.

[134] T. McClellan, “Z-Plasty of Scar Contracture (Finger),”

https://youtu.be/wdseg3UvXrI, [online; accessed 07-July-2021].

[135] McClellan, “The digital nerve was cut,” https://youtu.be/CY1HYIBrAwQ, [online;

accessed 05-July-2021].

[136] T. McClellan, “Flexor Digitorum Profundus (FDP) Finger Tendon Repair,”

https://youtu.be/boMlEa3P43g, [online; accessed 06-July-2021].

[137] McClellan, “Foreign Body (BB) Removal from Finger,”

https://youtu.be/DWQ6WX3ImBU, [online; accessed 07-July-2021].

[138] T. McClellan, “Ganglion Cyst: Flexor Tendon Sheath (Finger),”

https://youtu.be/hDZBE8tcctE, [online; accessed 04-July-2021].

[139] McClellan, “Ganglion Cyst Volar Wrist,” https://youtu.be/ZgNJ8YDA7dY, [on-

line; accessed 04-July-2021].

Bibliography 125

[140] Vangelisti, “NuGrip Arthroplasty (Thumb Arthritis Joint Replacement Surgery),”

https://youtu.be/YZgDQl5kWFs, [online; accessed 06-July-2021].

[141] T. McClellan, “Small Finger Extensor Tendon Saw Injury Cut Repair,”

https://youtu.be/3o7cgZsd3bs, [online; accessed 04-July-2021].

[142] McClellan, “Running Subcuticular Suture,” https://youtu.be/CiW93U-3XcQ, [on-

line; accessed 05-July-2021].

[143] A. Hassan, M. Ghafoor, A. Tariq, T. Zia, and W. Ahmad, “High Efficiency Video

Coding (HEVC)–Based Surgical Telementoring System Using Shallow Convolu-

tional Neural Network,” Journal of Digital Imaging, vol. 32, 04 2019.

[144] A. Betka, N. Terki, A. Toumi, M. Hamiane, and A. Ourchani, “A new block match-

ing algorithm based on stochastic fractal search,” Applied Intelligence, vol. 49, no. 3,

p. 1146–1160, 2019.

[145] L. Lin, I.-C. Wey, and J.-H. Ding, “Fast predictive motion estimation algorithm

with adaptive search mode based on motion type classification,” Signal, Image and

Video Processing, vol. 10, pp. 171–180, 2016.

[146] M. Wu, X. Li, C. Liu, M. Liu, N. Zhao, J. Wang, X. Wan, Z. Rao, and L. Zhu,

“Robust global motion estimation for video security based on improved k-means

clustering,” Journal of Ambient Intelligence and Humanized Computing, vol. 10,

pp. 439–448, 2019.

[147] “A hybrid block-based motion estimation algorithm using jaya for video coding

techniques,” Digital Signal Processing, vol. 88, pp. 160–171, 2019.

[148] H. Amirpour, M. Ghanbari, A. Pinheiro, and M. Pereira, “Motion estimation with

chessboard pattern prediction strategy,” Multimedia Tools and Applications, vol. 78,

pp. 1–20, 08 2019.

[149] E. Cuevas, “Block-matching algorithm based on harmony search optimization for

motion estimation,” Applied Intelligence, vol. 39, no. 1, p. 165–183, 2013.

[150] G. Senbagavalli and R. Manjunath, “Motion estimation using variable size block

matching with cross square search pattern,” SN Applied Sciences, vol. 2, 2020.

Bibliography 126

[151] T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman, “Visual dynamics: Stochastic

future generation via layered cross convolutional networks,” IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), vol. 41, no. 9, pp. 2236–2250,

2019.

[152] V. Vukotic, S. Pintea, C. Raymond, G. Gravier, and J. C. van Gemert, “One-step

time-dependent future video frame prediction with a convolutional encoder-decoder

neural network,” CoRR, vol. abs/1702.04125, 2017.

[153] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction beyond

mean square error,” CoRR, vol. abs/1511.05440, 2016.

[154] J. J. Hintz, “Generative adversarial reservoirs for natural video prediction,” Ph.D.

dissertation, 2016.

[155] R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee, “Learning to gener-

ate long-term future via hierarchical prediction,” in Proc. Int. Conf. Mach. Learn.

JMLR.org, 2017, p. 3560–3569.

[156] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised learning of video

representations using lstms,” in Proceedings of the 32nd International Conference

on International Conference on Machine Learning - Volume 37. JMLR.org, 2015,

p. 843–852.

[157] M. Oliu, J. Selva, and S. Escalera, “Folded recurrent neural networks for future

video prediction,” in Computer Vision – ECCV 2018, Cham, 2018, pp. 745–761.

[158] V. Michalski, R. Memisevic, and K. Konda, “Modeling deep temporal dependencies

with recurrent ”grammar cells”,” in Proceedings of the 27th International Confer-

ence on Neural Information Processing Systems - Volume 2. Cambridge, MA, USA:

MIT Press, 2014, p. 1925–1933.

[159] E. Denton and V. Birodkar, “Unsupervised learning of disentangled representations

from video,” in Proceedings of the 31st International Conference on Neural Infor-

mation Processing Systems. Curran Associates Inc., 2017, p. 4417–4426.

[160] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss: Faster

and better learning for bounding box regression,” vol. 34, 2020, pp. 12 993–13 000.

Bibliography 127

[161] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame synthesis

using deep voxel flow,” in 2017 IEEE International Conference on Computer Vision

(ICCV), 2017, pp. 4473–4481.

