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ABSTRACT 

 

Conventional High Efficiency Video Coding intra and inter frame prediction techniques 

depend on similar features within the frame and between the frame. Since Intra and inter frame 

predictions through prediction calculations related to current block, its adjoining blocks and 

reference frame, which decrease the quantity of prediction mode search during the coding tree 

unit’s prediction. The conventional hevc video processing algorithms lack multi-level optimization 

and the coding unit size of High Efficiency Video Coding is larger than 16×16 blocks which 

increases computational complexity of the encoder. In addition, the prediction of the coding tree 

unit block region in the near frame is linked to adjacent samples inside a frame and the pixels of 

the border region, which introduce redundancy and noise which ultimately decrease quality of 

frame at the receiving end. 

To overcome this issue, a convolutional neural network (CNN) based sequential ensemble 

learning technique and deep neural network long short term memory (LSTM) is proposed for intra 

and inter prediction for High Efficiency Video Coding, which ensemble generation to improve the 

prediction of enormous motion varieties and provide optimal reconstruction through prediction of 

spatial adjoining frames. For High Efficiency Video Coding intra and inter frame prediction, the 

proposed approach effectively accomplishes better video coding quality by consolidating the 

predictions through convolutional neural network (CNN) ensemble and long short term memory 

(LSTM) process. The exploratory outcomes shows that the proposed convolutional neural network 

(CNN) based intra and long short term memory (LSTM) based inter prediction through sequential 

ensemble learning technique show excellent frame prediction and quality of reconstructed frames 

in terms of peak signal to noise ratio and structural similarity index compared to existing intra and 

inter prediction techniques.  
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CHAPTER-1 

 

INTRODUCTION 

 

1.1 Introduction 

 

Video Compression Algorithms are algorithms that alter video signals to reduce the amount 

of storage and bandwidth needed. For creators of embedded systems, processors, and tools that 

target video applications, understanding how video codecs function is critical. 

 

 

A video clip is made of a series of distinct images known as frames. As a result, many of 

the concepts and approaches used in still-image compression algorithms, such as JPEG, are also 

used in video compression algorithms. One method for compressing video is to remove similarities 

between subsequent video frames and compress each frame independently of  others. Employing 

the JPEG still-image compression standard to compress video streams is an example. Motion 

JPEG, or MJPEG, is a method that is sometimes used to create new video applications. Although 

recent video compression algorithms go beyond still-image reduction schemes and take advantage 

of similarities between consecutive video frames utilising Motion Estimation and Motion 

Compensation, they nevertheless leverage principles from still-image compression algorithms. As 

a result, we begin our investigation of video compression by exploring the inner workings of 

transform-based still-image compression techniques such as JPEG, as well as applying various 

Deep Neural Network and Machine Learning Algorithms to video codecs like HEVC.  

 

 

Nowadays, digital video has become an essential tool in many ways. Both video 

transmission and teleconferencing have ensured that digital video is a global phenomenon for 

industries as well as the common man. To cite an example, an increasing growth in video sharing 
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services, such as YouTube and Netflix demonstrate the major function that this medium perform 

in our day-to-day activities. Creation of mobile video and the attractiveness of high definition 

(HD), ultrahigh definition (UHD) video content have made video data the most often shared form 

of content across transmission networks worldwide. 

 

 

High-resolution, high-frame rate video contents require extreme bitrates that are unrealistic 

to be accommodated in modern transmission structures, particularly in wireless transmission 

networks. Therefore, the arena of video compression and transmission are regularly taken up by 

both academic and industry-oriented researches on discovering processes for further improving 

efficiency in compression quality. Thus, the process of compression in videos has been evolving 

constantly from the early 1990s to provide updated requirements. Over the past decades, the 

H.624/AVC (Advance Video Coding) standard was introduced as a well-known video 

compression standard. However, the H.264/AVC’s compression efficiency has been inadequate in 

meeting the demands of the exponentially increasing video traffic. Hence, the constant upgrade in 

video compression is vital to deal with the ever-increasing requirements of the visual media. In 

earlier 2013, the emergence of a next-generation video codec, i.e., HEVC/H.265(High Efficiency 

Video Coding) was designed for providing  future high-resolution video contents and effectively 

utilizing the recent parallel processing infrastructures in  modern general-purpose processor (GPP) 

including the digital signal processor (DSP). The Joint Collaborative Team on Video Coding (JCT-

VC) society, a collaboration of two prominent standardization organizations, such as the 

International Standards Organization/International Electrotechnical Commission (ISO/IEC) 

Moving Pictures Expert Groups (MPEG) and ITU Telecommunication Standardization Sector 

(ITU-T) Video Coding Experts Group (VCEG), has developed the HEVC. Now, it is estimated 

that HEVC has been instrumental for achieving half of half compression effectiveness when 

associated with  H.264/AVC. 

 

 

It is now very much easier to compress the video sequences much more professionally than 

any other conventional standards using HEVC. Further, it offers more flexible options while 

applying it to a wide range of networks. For achieving efficient compression, the cost involved is 
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high. In spite of this, such desired compression efficiencies are impossible to achieve across 

various domains of the visual media. Devices, such as mobile phones and other embedded systems, 

exploit simple encoders or simpler profiles of the codec to trade off efficiency in compression and 

quality. 

 

 

Currently, however, organizations use visual media based on various video coding 

standards designed by numerous standardizing units. Despite improvements in compression 

efficiency, HEVC presents several challenges with respect to its use, keeping in mind with limited 

processing and energy resources due to its coding requirements and characteristics. Thus, an 

improvement in inter and intra prediction is needed to further increase both coding and 

compression efficiency sufficiently with a reduced number of storage demands. 

 

 

1.1.1 Types of Image Compression 

 

Two different kinds of image compression methods are in vogue:. 

1. Lossy image compression 

            2. Lossless Image compression 

 

1.1.2 Lossy Image Compression 

 

Higher levels of data reduction are achieved with lossy compression, but the original image 

is not perfectly replicated. High compression ratio is offered. In applications like broadcast 

television, videoconferencing, and facsimile transmission, where a certain degree of inaccuracy is 

a reasonable trade-off for improved compression efficiency, lossy image compression is helpful. 

 

 

  



4 
 

1.1.3 Lossless Image Compression 

 

The only acceptable level of data reduction is lossless image compression. Comparatively 

speaking of lossy, it offers low compression ratio. Lossless image compression approaches are 

made up of two largely independent steps: (1) creating a different representation of the image with 

fewer redundant pixels, and (2) coding the representation to remove redundant codes. Applications 

including corporate papers, satellite photos, and medical imaging all benefit from lossless image 

compression. 

 

 

1.1.4 Image Compression Process 

 

Various image compression techniques convert the target image into the frequency domain. 

The altered images are finally transformed at the receiving end after being encoded using various 

encoding methods. At the receiving end, the bit streams are then obtained. The retrieved data is 

decrypted. In the end, an inverse transform is performed to produce a compressed image. 

 

 

1.1.5 Necessity of Image Compression Techniques 

 

Coding redundancy, interpixel redundancy, and phychovisal redundancy are the three 

fundamental data redundancies that can be found and used in picture compression. When one or 

more of these redundancies exist, image compression is utilised to reduce them. 

 

 

The main applications for picture compression are image transmission and storage. 

Applications for image transmission include broadcast television, teleconferencing, computer 

communications, remote sensing via satellite, aircraft, radar, or sonar, and facsimile transfer. 

Documents used in education and business, medical images produced by computer tomography 
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(CT), magnetic resonance imaging (MRI), and digital radiology, movies, satellite photos, weather 

maps, geological surveys, and other types of media all require image storage in one form or other. 

 

 

1.1.6 Image Compression Methods 

 

Data compression, which uses fewer bits to encode the actual image, is where image 

compression first emerged. Any image compression technique's primary goal is to minimise the 

image's storage footprint. It is categorised as lossy or lossless depending on the quality 

requirement. In a lossless scenario, there is no data loss because the decompressed image is 

identical to  original image. Statistical techniques including Huffman coding, Run Length coding, 

Arithmetic coding, and dictionary-based methods like Lempel-Ziv-Welch (LZW) coding, and 

these are categorised as lossless methods. The image compression literature also contains hybrid 

versions of these techniques. 

 

 

However, because the lossy approach is irreversible, data loss is a possibility. It is primarily 

categorised as methods using the spatial and frequency domains. Only the spatial elements of the 

image are considered and further processed in spatial domain approaches. It consists of Block 

Truncation Coding (BTC) and Vector Quantization. Another lossy compression technique that 

uses a fractal dimension is called fractal coding. Since the computation is much simpler with the 

frequency component, frequency domain algorithms totally convert the image to the frequency 

domain. Transformation can be done by means of  various transforms such as Fourier Transform, 

Singular Value Decomposition (SVD) based methods, Karhunen-Loeve Transform (KLT), 

Discrete Cosine Transform (DCT) and Wavelet Transform. 

 

 

Fourier transform is a well-known method for processing signals and images; however, it 

only provides information on the frequencies that appear in a signal and not their timing. In other 

words, time-frequency analysis is not committed, and it is only appropriate for stationary signals. 

However, many of the images, including those in the medical and natural sciences, are not 
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stationary in nature. Numerous time-frequency analysis techniques have been proposed, such as 

Short-Term Fourier Transform (STFT), Wigner-Ville Distribution Function (WDF), Hilbert-

Huang Transform (HHT), and Discrete Cosine Transform (DCT). These transforms have some 

limitations including size of the window and fixed resolution analysis in STFT with only partial 

time domain details in DCT and cross term problem with multi-component images in WDF. Unlike 

all other transforms, wavelets and SVD provide perfect reconstruction with multi-level 

decomposition and reduces blocking artifacts. 

 

 

In order to achieve better compression performance and good image reconstruction quality, 

near lossless approaches were developed. Joint Photographic Expert Group (JPEG) is one of the 

compression standards that can be both lossless and lossy. Lossless version of JPEG is indicated 

as JPEG-LS (LOCO-l). The advancement of JPEG is implemented as JPEG2000 which 

incorporates wavelet and the Embedded Block Coding with Optimized Truncation (EBCOT). It 

comes with many variants such as ROI coding, high fidelity ratio coding and JPEG2000 for high 

dimensional data. However, these lossy/lossless/near-lossless compression techniques may be 

embedded with several object-based image coding techniques for efficient compression of medical 

images. 

 

 

The premise behind wavelet coding is that the transforms co-efficient, which de-correlates 

an image's pixels, can be coded more effectively than original pixels themselves. The transform's 

basis functions, in this case wavelets, allow the majority of the essential visual information to be 

condensed into a small number of co-efficients, which enable the remaining co-efficient to be 

coarsely quantized or truncated to zero with little to no image distortion. 

 

 

Due to the wavelet transforms' energy compaction properties and multi resolution 

properties, as well as their capacity to handle signals, modern discrete wavelet based coders have 

outperformed discrete cosine transform-based coders in terms of still image compression, offering 

higher compression ratios and more peak signal to noise ratios (PSNR). 
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1.2 Video Sequence 

 

A video sequence has a set of image frames depicted one after another in sequence. Each 

frame has a set of pixels, and each pixel holds information, such as the intensity of the color to be 

shown. An image frame represented by  RGB (Red, Green and Blue) color space will have intensity 

values for each  RGB channel. 

 

 

1.2.1 Frames per Second 

 

In order to display a video smoothly, the rate of the depicted image sequence requires 24–

30 frames per second, which have been the benchmark in  television and movie industry for a long 

time. New video formats maintain frame rates beyond 30 frames per second for increasing the 

perceived smoothness of motion. Because the frame rate and the resolution of the video increases, 

the image level information stored in the video sequence also increases. A raw 4K video at 60 fps 

holds eight times the image information of a raw high definition (HD) at 30fps. 

 

 

1.2.2 Video Color Space 

 

The colors of an image may be denoted by using standard color components RGB(red, 

green and blue). Individual pigment component is allocated an intensity value to be shown by 

devices using the RGB color space, e.g., computer and television monitors. Typically, video 

compression and communication use a compressed color space termed YCbCr or YUV 

represented by one light intensity component i.e., luminosity (Y) and two color components i.e., 

chromatic blue (Cb or U) and chromatic red (Cr or V). The YUV color space can convert RGB 

colors to fewer bits of color and still seem attractive, much similar to the human eye. The mapping 

between the RGB and YUV color spaces may be expressed by matrix multiplication. 
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The mapping matrix coefficients vary between standards however, the International 

Telecommunication Union (ITU) has come up with released recommendations for both standard 

and HD Television (TV). The constraints of human vision may be further developed by 

compressing YUV chromatic components using color chroma subsampling (SS). 

 

 

1.3 Video Coding 

 

It’s a compression method used for discovering unwanted information in a video sequence 

and compressing it efficiently to achieve smaller video file sizes resulting in fewer bits in the video 

bit stream. This method comprises encoding and decoding, where the encoder compresses the 

video and encodes it into a bit stream, which is received by the decoder for reconstructing the 

compressed video sequence. 

 

 

1.3.1 Video Coding Standard 

 

The modern H.26X standards are grounded on the principles of H.261 video coding 

standard released earlier. H.261 introduces a new way of video coding; namely, hybrid video 

coding, where decoding techniques are involved in the encoding process that facilitate for effective 

prediction modes (PMs), so that only the difference between interframes need to be transmitted. 

Since H.261, each new H.26X standard builds on the previous one and makes proper advances for 

the requirements of the present video qualities and resolutions. 

 

 

Currently, AVC/H.264 remains one of the most broadly utilized video coding norms in HD 

television content, Blu-ray and HD streaming services, such as YouTube and Netflix. Even though 

AVC was developed for standard definition television, it has been used mostly for HD content. 

AVC was under progress from 1999 until 2003 and extended between 2003 and 2009. The 

successor of AVC is  HEVC/H.265 standard. It tries to increase the compression efficiency for HD 
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content, while maintaining high quality. HEVC was developed with Ultra HD (UHD), e.g., 4K 

and 8K resolutions. The objective of HEVC was adept to have the similar video resolution and 

perceived quality at half the bit rate when compared with AVC for HD content which was achieved 

before the release of standard model. 

 

 

1.4 Video Quality Measure 

 

The quality measures for video sequences may be measured directly or indirectly. The 

objective measurements are performed accurately using standardized measurements, where the 

pixel variances between a reference image and a compressed image are compared. The objective 

measurements can provide accurate measurements; however, it is also often required to perform 

the individual measurements for evaluating the perceived visual quality. Although an objective 

measurement points to degradation in video quality, the human eye cannot observe the degradation 

and so an individual quality possibly will be maintained at the same level. 

 

 

The most frequent objective measurements include,peak signal-to- noise ratio (PSNR), 

SSIM and mean square error (MSE). It is familiar to compare PSNR between a baseline video 

coder and a suggested improvement to the video coder at different bitrates, called Bjontegaard 

delta (BD) rate. 

 

 

1.4.1 Mean Square Error 

 

The MSE is based on two straight forward mathematical formulae, such as SAD and SSE, 

all of which are used for comparing two images pixel by pixel. SAD, SSE and MSE are the most 

commonly used in video coding for computing the variance between images in the actual video 

sequence and the compressed video sequence. The SAD formula computes the absolute pixel value 

variances as shown in Equation (1.1). SSE acquires the formula one step further by squaring the 
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pixel value variance as Equation (1.2). MSE obtains the SSE outcome and computes the mean 

pixel variance by splitting the entire pixels of the images that were compared  in Equation (1.3). 

The MSE measurement may be directly converted into a PSNR. 

 

 

The variable 𝑋 is the decoded compressed image array and 𝑌 is the actual image array 

while, h = ℎ𝑒𝑖𝑔ℎ𝑡   , 𝑁 = 𝑤𝑖𝑑𝑡ℎ   of the images and I= (X, Y). 

 

(𝐼) = ∑𝑀−1 ∑𝑁−1|[𝐴] − 𝑋[𝐴]| , whereas A=[i,j] (1.1) 

𝑖=0 𝑗=0 

 

(𝐼) = ∑𝑀−1 ∑𝑁−1(𝑌[𝐴] − 𝑋[𝐴])2 (1.2) 

𝑖=0 𝑗=0 

                   

                      MSE(I)= SSE(I)/(M-N)                                                                       (1.3) 

 

 

1.4.2 PSNR 

 

It is employed for comparing the excellence of a reference image or sequence of images to 

the compressed version of the identical image or sequence of images. It is commonly used for 

measuring the effects of video compression. It is defined as the ratio between the actual image 

signal and the noise signal introduced using lossy compression. The maximum number of pixel 

values based on the number of bits (𝐵) is squared and divided by the MSE of an image. PSNR is 

computed as follows: 

 

PSNR=10.log10((2
B-1)2)/MSE 

 

It is measured in logarithmic unit decibel (dB). For lossy compression at a depth of 8 bits, 

the PSNR is normally between 30 and 50 dB. It is often used for comparing video codes; however, 
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it must not be viewed as a representation of the perceived video quality as  PSNR value may differ 

depending on the image or video content. PSNR is applied to the individual Y, Cb and Cr 

components. Typically, a total PSNR is weighed depending on the chroma SS. 

 

 

1.4.3 Structural Similarity Index (SSIM) 

 

SSIM is used for measuring the structural similarities between images and predicting the 

perceived quality. SSIM weighs in the structural distortions, such as noise, blocking artifacts, 

blurring and ringing, which are simply observed by the human eye. Although outcomes may vary 

between SSIM and PSNR, they often correlate in image compression conditions. Changes in 

luminance, contrast, gamma and SP shifts are nonstructural distortions and do not modify the 

structure of the image. The SSIM given in Equation (1.6) is built by three components that measure 

the variance in luminosity, contrast and structure. 

 

 

If 𝑋 and 𝑌 are images to be compared using SSIM, (𝐴, ) compared the luminosity, (𝐴, 𝐵) 

compares the contrast and (𝐴, 𝐵) compares the structure. The three components can be weighted 

directly depending on the application; however, normally weighed equally as 

𝑤𝑙 =𝑤𝑐 = 𝑤𝑠 = 1 , R=(X, Y) 

 

                    (𝑅) = [(𝑅)] ∙ [(𝑅)] ∙ [(𝑅)]  (1.6) 
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1.5 Motivation 

 

 Emerging technology has driven the conventional communication towards the better 

services provisioning with respect to accuracy and speed of transmission. Based on investigation 

into the efficacy of communication system, the demand for better coding technique and high rate 

services are increasing. Traditional communication architectures are capable of transmitting low 

rate services such as voice or text data. Current communication architecture is used for very high 

rate services such as video streaming, IP Services, Multimedia services, videoconferencing etc. As 

the rate of transmission increases, the transmission errors for end-to-end communication increases. 

In case of video coding, this error is very conspicuous, as the data representing the video 

information is very high. The progressive transmission of video data over a Communication 

channel corrupts information and to recover the corrupted signal back, estimation algorithms have 

been proposed which are complex in computation. Various video coding standards like H.264 or 

HEVC were proposed for coding video data but these architectures do not specify what action a 

decoder should take when an error is detected.   

 

 

Exploitation of spatial and temporal redundancies in HEVC video data is one of the most 

important processes in video encoding procedures, contributing to the high compression capability 

of the H.265 architecture, one of the latest video codecs. Use of an LSTM based deep learning 

approach to carry out inter-frame prediction with a sequence of N previous frames to obtain a 

predicted (N+1) th frame, with which a residual frame is generated, occupying much less space 

when encoded is currently being done. With the presence of artifacts during the quantization 

process, frame distortions take place in HEVC  by CNN this can be limited by training and testing 

components through CNN-based ensemble learning method, proposed in this paper. Coordinating 

the HEVC in-loop filters to intra-coding sampling filters reduces the resolution of the processed 

frame, using CNN this can be limited by utilizing the down-sampled block for encoding the 

processed frame through CNN-based learning block method. PSNR and SSIM are low in HEVC 

predicted Frame, in order to Improve it, CNN based ensemble algorithm and LSTM are proposed. 
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1.6 Problem Statement 

 

HEVC, also known as H.265, is widely used for video processing. It performs intra and 

inter-prediction by comparing pixels and previous blocks, which results loss of valuable 

information when weak signal prediction occurs. To overcome this problem, intra and inter frame 

prediction using Convolutional Neural Network based Ensemble learning (different number of 

convolutional filters are applied to different images) and LSTM are proposed, which provide 

valuable context of blocks and ultimately improve efficiency of HEVC. 

 

 

1.7 Objectives 

 

 To study the architecture of HEVC/H.265 video coding algorithms.  

 To identify the research gap and to develop novel image compression techniques based on 

HEVC standered. 

 To increase efficiency of the existing HEVC coding algorithm. 

  To develop and implement novel video compression techniques using inter frame and intra 

frame techniques of HEVC 

 To compare the results of novel video compression algorithms with the existing algorithms 

of HEVC/H.265. 
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1.8 Organization of the Thesis 

 

This  thesis is organized in seven chapters 

Chapter 1: This chapter discusses the rationale for the study the requirement for H.265, as well as  

previous research on H.265 to increase its performance. The thesis goals are also     

summarised in this chapter. 

Chapter 2: This chapter discuses about various existing techniques and their limitation with regard  

      to high efficiency video codec intra and inter frame prediction techniques. 

Chapter 3: This chapter describes basics and different types of images. This chapter also describes  

About image compression techniques using seam carving and integer wavelet 

transform. Finally, it explains pros and cons and applications of discrete wavelet                   

      transform. 

Chapter 4: This chapter describes basics and Architecture of HEVC. 

Chapter 5:  This chapter describes basics and working of CNN and Ensemble Learning Algorithms  

to predict frames of HEVC and also explains the advantages, drawbacks and 

applications of CNN. 

Chapter 6: This chapter discusses the problems with RNN and ways to improve RNN; It also  

       Describe the architecture of LSTMs. Finally, it elucidates results and discussions  

       pertaining to LSTM for inter frame prediction of HEVC. 

Chapter 7:  This chapter concludes the study and makes recommendations for future research. 

 

 

 

 

 

 

 



15 
 

 

CHAPTER 2 

 

LITERATURE SURVEY 

 

In this chapter the related work for this research work and existing prediction techniques 

to improve HEVC/H.265 inter- and intra-coding are discussed. 

 

 

2.1 Intra coding Techniques for HEVC 

 

Cho & Kim (2013) suggested a rapid CU divide and trim for suboptimal CU segregation 

in HEVC intracoding that allows a drastic reduction in the computational complication with a 

minor degradation in RD act. This algorithm was performed based on two completing steps, such 

as primary CU split and trim decision. For CU blocks, the initial CU divide and trim tests were 

achieved at every CU depth level using Bayes decision manner on the basis of little difficulty RD 

costs and entire RD costs, respectively. However, the more the speedups of the CU splitting (CUS) 

and trim processes, the more will be the degradation in the coding efficiency because of increased 

misclassification in the divided and unsplit CU choice of the initial CUS and trim tests. 

 

 

Pastuszak & Abramowski (2016) presented a computationally scalable algorithm and 

hardware architecture for intra-encoding. The suggested encoder was used to allow the deals 

among the “compression efficiency and throughput”. The pre-option-based prediction brings about 

the samples carried out with the same resources as routine processing. Furthermore, the hardware 

expenditure was brought down, and high throughputs were gained. Still, the power saving of this 

algorithm was limited and quality loss was soaring. 
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The sampling ratio is a block  four pixels wide and two pixels high, and is shortened to the 

format 4: 𝑋: 𝑌 where 𝑋 and 𝑌 denote the row- wise chroma sampling parameters in a 4 × 2 pixel 

block (Kerr 2012). 

 

 

The result of chroma SS is a reduced image color resolution and the image quality is 

affected on a pixel level (Sullivan et al. 2012; Ohm et al. 2012); however, the human eye will 

hardly be able to observe it from a standard viewing distance due to it being more sensitive to light 

than color and spatial shift displacement produces higher error rate, which leads to poor video 

quality (Lee et al. 2014). Normally, 4: 2: 0 is used in video compression, and is implemented in 

both AVC and HEVC (Wien 2015). Typically, each sample is denoted by eight bits (0–255) of 

precision; however, ten bits (0–1024) are also used within the HEVC. 

 

 

The YUV color space can convert RGB colors to fewer bits of color and still seem attractive 

and much similar to the human eye. The mapping between RGB and YUV color spaces may be 

expressed by matrix multiplication (Sector 2015). 

 

 

HEVC was developed with Ultra HD (UHD), e.g., 4K and 8K resolution. The objective of 

HEVC was to have similar video resolution and perceived quality at half the bit rate when 

compared with AVC for HD content which was achieved before standardization (Tan et al. 2015). 

It performs coding on a pixel block basis and each image of the video sequence is divided into 

coding blocks to be encoded (Sze et al. 2014). 

 

 

PSNR is often used for comparing video codes; however, it must not be viewed as a 

representation of the perceived video quality as PSNR value may differ depending on the image 

or video content (Huynh-Thu & Ghanbari 2008). 
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2.2 Intra Prediction Mode Decision Techniques in HEVC 

 

Jain & Rao (2014) proposed a fast-intra-MD in HEVC that stops the complete full search 

prediction for the CU. This was then followed by a PU mode decision for finding the optimal 

modes HEVC encoder 35 PM. Initially, the SAD of all the modes was computed using 

downsampling method and then a three-step search algorithm was applied to eliminate any 

redundant modes. This was then followed by an early RDO quantization termination algorithm 

which will further reduce the encoding term. Then again, it requires an adaptive threshold (TH) to 

terminate the MD and further reduce encoding time. 

 

 

Gan et al. (2015) proposed a procedure with  premature termination of CU split and MD. 

In this algorithm, the variance of the input image was used, so as to end the CU parting early In 

addition, the adjacent mode was used in order to end early the RDO procedure depending on 

analysis of candidate modes (CM), which were obtained by rough MD so as to diminish the CC. 

However, a considerable reduction in time was then achieved by reducing the PSNR and thereby 

increasing the BR; i.e., PSNR was not increased that degrades the video quality. 

 

 

Ma et al. (2018) initiated a fast intracoding algorithm built on the CU extent choice and 

DIR- MD for HEVC. Initially, an agility CU extent decision scheme was introduced to choose 

diverse depth choice approaches for every major coding unit. Then, a pace DIR- MD scheme was 

initiated. Initially, the DIR modes of the parent unit and the most probable modes (MPMs) lists 

were compared. Formerly, the primary DIR mode of RDO index was used for a premature 

termination of RDO processes. However, the TH was predetermined, such that the RD charge of 

the primary direction mode was chosen as TH, which causes early termination of the RDO process 

and the prediction of CU size. 
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The computation time complexity during RD cost estimation is increased since CTU 

partition requires an additional RDO technique. To tackle these negative aspects, (Karwowski & 

Domal 2016) proposed accurate probability estimation using Context Tree Weighting (CTW) 

techniques into CABAC algorithm with sophisticate data statistics modeling that exploits 

significantly higher number of binary trees  Adaptive Context Tree Weighting (O'Neill et al. 2012) 

uses only the motion histogram information for optimizing the rate-distortion. So, on the whole, 

this affects the performance, and increases the complexity of the entropy encoder, while increasing 

memory requirement. 

  

 

2.3 Inter Coding Techniques for HEVC 

 

Lee et al. (2015) initiated a unit decision method based on block texture information to 

lower the computational difficulty of the HEVC range extension encoder. However, computation 

load on the encoder was still soaring. 

 

 

In order to identify the district with the dominant gesture and saliency-based binary form 

for the current block, Podder et al. (2016) proposed an MD in the HEVC that matures a content-

based versatile weighted expense capacity. Then again, due to the pre-processing stages of this 

technique, additional encoding time was needed that may reduce the computational time savings. 

 

 

Li et al. (2017) presented an image feature-based strategy to efficiently decrease the CC of 

interprediction coding in HEVC. In this method, the general relocation of the largest coding unit 

(LCU) at the respective location between the nearby frames was determined using ME. The extent 

of the CU was determined by xCompress CU function of the encoder as that one didn’t require the 

approximation of RD expense meant for every level of the depth. However, the TH used in the 

inter prediction process for estimating the relative motion of the LCU was fixed. 
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2.4 Interprediction Mode Decision Techniques in HEVC 

 

Purnachand et al. (2012) presented a fast ME algorithm for HEVC encoder, including 

pivoting hexagonal grids to find the global minimum. In this calculation, a versatile limit factor 

was used for an early termination. Conversely, the perseverance of the most optimum CU partition 

for individually CTU and the more superior PU mode for every CU root’s higher computational 

intricacy. 

 

 

Hsu & Hang (2014) presented a fast algorithm that comprises splitting decision (SD) and 

termination decision (TD) in creating the CU quadtree. Here, the CU-level swift decision was 

presented depends on the scrutiny in the temporal and SP neighborhoods. Hence, the candidate 

depth of CU was predicted based on the extent of its adjacent CUs and collocated CU(CCU). 

However, the efficiency of this algorithm was poor as PSNR was low, which degrades the video 

quality. 

 

 

Jiang et al. (2018) designed an efficient CU size decision algorithm based on the 

probabilistic graphical models for HEVC intercoding. In this algorithm, two main methods were 

employed. CU size ET (CUET) decision approach and CU size early skip (CUES) decision 

approach, respectively. CU pruning was modeled as a binary classification issue, which was 

mainly based on the Naive Nayes (NB) model. Moreover, a Markov random fields (MRF) model-

based method was presented to improve the algorithms performance by using the offline learning 

method which was used for obtaining statistical parameters. 

 

  

However, it requires improvement on MRF model with neighboring CUs to further 

increase the accuracy of the CU size decision process. Known from the introduction, SSIM weighs 

in the structural distortions, such as noise, blocking artifacts, blurring and ringing, which are 
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simply observed by the human eye. Although outcomes may vary between SSIM and PSNR, they 

often correlate in image compression conditions (Hore & Ziou 2010). 

 

 

All the approaches mentioned above use either intra- or intercoding and some approaches 

did not satisfy the intra- or inter-PM decision. In the proposed frame work, considering both intra- 

and intercoding and PM decision, the proposed approach increases the video quality and reduces 

the CC. 

 

 

2.5 Research Gap 

 

Some of the limitations are identified from the previous researcher’s related work is shown 

in Table 2.1. To overcome the issues identified in the conventional techniques and enhance the 

achievement of the HEVC encoder system, the proposed framework is required. 

 

Table 2.1 Previous Related Works and Their Limitations 

 

 

S. 

No

. 

 

Authors 

 

Title 

Reference 

 

   Merits 

Mode Decision Applied   Limitations 

Intramode Intermode Demerits 

1. Cho & 

Kim 

(2013) 

[89] Low 

computati

onal 

complexit

y. 

Yes No accelerate of the 

CU parting and 

pruning method 

cause coding 

effectiveness 

corruption 

because of 

expanded 
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misclassificatio

n in the 

fragmented and 

non- 

fragmented CU 

choice of the 

early CUS and 

pruning tests. 

2. Jain & 

Rao 

(2014) 

[90] Reduced 

computation

al complexity 

i.e., 

encoding 

time. 

Yes No It requires an 

adaptive TH to 

terminate the 

MD and further 

reduce the 

encoding time. 

3. Gan et al. 

(2015) 

[91] Less 

computati

onal 

complexit

y and 

encoding 

time. 

Yes No A considerable 

time reduction 

was achieved by 

reducing the 

PSNR and 

increasing the 

BR i.e., PSNR 

was not 

increased 

that degrades the 

video quality. 

4. Ding et al. 

(2016) 

[92] Higher-

gain 

time 

saving 

and less 

computa

No Yes This algorithm 

should depend 

on a suitable 

motion search 

window. 
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tional 

complexity. 

5. Podder et 

al. 

(2016) 

[93] More 

appropriate 

for real-time 

video coding 

applications 

because of 

reduced 

overall 

average 

computation

al 

complexity. 

No Yes Because of the 

pre-processing 

stages of this 

technique, an 

additional 

encoding time 

was needed that 

may reduce the 

computational 

time savings. 

6. Karwowski 

& 

Doma´nsk

i (2016) 

[94] Increased 

compression 

gain and 

reduced BR. 

No No The 

possibility 

estimation 

influences 

together the 

multifaceted 

nature and the 

memory 

request of a 

video 

decoder. 

7. Elyousf

i (2014) 

[95] Reduce

d entire 

encodi

ng 

time. 

Yes No It is not 

appropriate for 

common 

Interprediction 

configurations. 
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8. Xu et al. 

(2018) 

[96] Less 

computati

onal 

complexit

y. 

No Yes Low-motion 

regions for 

example, 

foundations 

still exist 

which 

influences the 

CUS decision. 

 

2.6 Issues in Intra and Inter coding Prediction Mode in HEVC 

 

The problems considered for this research work are as follows: 

 

1. The utilization of Krichevsky–Trofimov (KT) estimators for CABAC-CTW causes high 

computational complexity and requires a number of memory buffer reservations. 

2. The CABAC-CTW uses an angular PM for intra-prediction unit than directional modes 

that leads to high computational complexity. 

3. Complete RDO methods are not utilized because of the complication and huge 

compression time. 

4. The coding efficiency of conventional fast intra- and inter-prediction techniques require 

further improvement based on machine learning approaches. 

 

 

2.7 Plan of the Research 

 

The plan of the research work is given below: 

 

1. The functional block diagram of HEVC is described and also compared with existing video 

codec. 
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2. The Efficient Image Coding Techniques based on seam Identification and Integer Wavelet 

Transform have been implemented. 

3. Inter-prediction, and intra-prediction are achieved by proposing CNN based ensemble 

algorithms and LSTM. 

4. The parameters of HEVC such as peak signal to noise ratio and structural similarity index 

are optimised. 

 

 

2.8 Dataset 

 

The proposed techniques were implemented and tested using MATLAB 2019b. The test 

conditions endorsed in the study are as follows! 

 

• Software runs: Intel Core i7-2600 CPU @ 3.4GHz with 1TB memory. 

• HM-14.0 for HEVC 

• CTU: Size and extreme depth-:  8 × 8, 16 × 16, 32 × 32. 

• In this reseach work, four QPs: 22, 27, 32 and 37 are available. 

• Eight video sequences (VS) are considered which is publicly captured 

• 30-60 Frames per Seconds used. 
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Table 2.2 Test Video Sequences 

 

Class. Size. Sequence. 

Class A. (2460X1600). PeopleStreet. 

  Traffic. 

Class B. (1920X1080). Kimono. 

  ParkScene. 

Class C. (832X480). BQMall. 

  PartyScene. 

Class D. (416X240). BasketballPass. 

  RaceHorses. 

 

The performance metrics used in this research are Peak Signal to Noise Ratio (PSNR), 

Structural Similarity Index (SSIM). 

 

2.9  Summary 

 

In this chapter, the related works for this research work were studied and the research gap 

between the proposed and existing techniques identified by many researchers using intra- and 

intercoding MD techniques for both intra- and interprediction techniques. From this survey, 

several issues were identified in conventional intra and intercoding prediction techniques for 

HEVC are discussed. Here, the primary goal of the research work was identified. To achieve the 

goal and also to overcome the challenges, the proposed plan for intra/intercoding and prediction 

in HEVC were made in this research work using CNN based Ensemble algorithm and Neural 

Network techniques. 
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CHAPTER-3 

 

Efficient Image Coding Techniques based on seam 

Identification and Integer Wavelet Transform 

 

 In this chapter different types of image, image compression using seam carving and integer 

wavelet transform are discussed and Simulations were carried out based on the proposed method. 

 

 

 3.1 Image Definition and Types 

 

To make an image, a two-dimensional function called F(x, y) is utilised, where x and y 

are spatial coordinates. The amplitude of F at any pair of coordinates represents the intensity of 

that image at that location (x, y). A digital picture is one in which F has finite x, y, and amplitude 

values. Following are different types of images. 

 Binary Image: A binary image consists of two pixel values: 0 and 1 which represent black and 

white respectively. Binary picture is also known as a monochrome image. 

Black and White Image: A black and white image is one that has only black and white colours. 

Colour Formats in 8 Bits:-Greyscale images are another name for this style of image. There are 

266 distinct hues in total. In this style of image, 0 denotes black, 255 denotes white, and 127 

denotes grey. 

High Colour Image Formats: 16 bit colour formats are also known as High Colour Image 

Formats. 

 

An analogue image is one that contains a continuous range of position and intensity data. 

An analogue image is made up of magnitudes that are constantly changing in space. CRT image 

is a good example. A digital image consists of picture elements called Pixels, whch are the smallest 

samples of an image. 
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3.2 Image Compression using Integer Wavelet Transform 

 

Figure 3.1: Block Diagram 

 

Utilizing a wavelet transform, the compressed image is converted to the frequency domain. 

Images are split into odd and even components and then into four levels of frequency components 

in the wavelet transform. The image is then encoded using SPIHT coding, with the four frequency 

components being LL, LH, HL, and HH. The bit streams are then acquired. SPIHT decoding is 

used to decode the gathered bits. In order to create the compressed image, an inverse wavelet 

transform is eventually used. 
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3.3 Image Retargeting using seam carving 

 

By removing a seam, or continuous path of pixels (vertically or horizontally), from an 

image, the user is able to resize the image. A horizontal seam is a line of pixels that constantly 

runs from the left to the right in an image, whereas a vertical seam is a path of pixels that runs 

continuously from the top to the bottom of an image. 

 

  

Figure 3.2: Image with vertical seam 

 

3.4 Implementation of algorithms 

 

Calculating the gradient image for the original image is the first step in deciding whether 

to remove or insert a seam. The calculation of both horizontal and vertical seams frequently uses 

the gradient image. It can be created by either extracting the luminance channel from an HSV 

image or by averaging the gradient images for the R, G, and B channels. A gradient image is shown 

in Figure 3.3 as an example. Different gradient operators may be used, but the sobel operator was 

used to calculate the gradient image for this project. 

 

file:///F:/Documents and Settings/Dan/Application Data/Windows Live Writer/PostSupportingFiles/d7a57820-af04-4d31-8e76-c6a6052ed7b7/image18.png
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Figure 3.3: Gradient Image 

The energy map image is calculated once the gradient image has been computed. In 

addition to needing to be recalculated after each seam removal, the energy map picture needs to 

be generated independently for either vertical (Figure 3.4) or horizontal (Figure 3.5) seams. For 

the vertical seam case, it is calculated as follows (a horizontal energy image can also be calculated 

using the same algorithm, but with a transposed input image): The value at (i,j) in the energy map 

is equal to the product of the current value at (i,j) from the gradient image and the minimum of the 

three nearby pixels in the previous row, i.e. min((i-1,j-1),(i-1,j),(i-1,j+1)) from the energy map, for 

each pixel (i,j) in the gradient image (see Table 1). When a pixel I j) is near the edge of an image, 

just (i-1,j) and either (i-1,j-1) or (i-1,j+1) are used, depending on whether (i,j) is on the right or left 

edges, respectively. The values in the energy map picture are set to those in the gradient image for 

i=1 (the first row). 

  

file:///F:/Documents and Settings/Dan/Application Data/Windows Live Writer/PostSupportingFiles/d7a57820-af04-4d31-8e76-c6a6052ed7b7/image22.png
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Table 3.1: Pixel indices 

 

(i-1,j-1) (i-1,j) (i-1,j+1) 

(i,j-1) (i,j) (i,j+1) 

(i+1,j-1) (i+1,j) (i+1,j+1) 

  

                        

 

           Figure 3.4: Vertical Seam Energy map         Figure 3.5: Horizontal Seam Energy map 

 

Following the creation of the energy map, the best seam can be identified by first locating 

the minimum value in the last row, which corresponds to the (i,j)th pixel, saving the location of 

the pixel for use in removal, and then working backwards to locate the minimum of the (i,j)th 

pixel's three closest neighbours in the (i-1)th row and saving that pixel to the seam path. The best 

seam is produced by continuing this process up until the first row; a sample of this seam is 

displayed in Figure 3.6. 
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31 
 

 

 

Figure 3.6: Energy map with vertical seam 

 

The seam line is deleted from both the gradient image and the original RGB image after 

choosing the best seam; the remaining pixels are then relocated to the right or upward to create a 

continuous image. 

 

 

A smaller image with the same amount of scene content is left behind after repeating the 

process to remove a sequence of seams that run either horizontally or vertically. This is seen in 

Figure 3.7, which reduces an image from 640x480 pixels to 320x240 pixels. As can be seen, 

removing several seams causes artefacts in the final image. 

 

 

Figure 3.7: Resized Image 
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32 
 

The average of the two neighbouring pixels along the seam can be injected in the case of 

seam insertion, which enlarges the image. A seam can be calculated along a specified path. The 

requirement that the computation of the first N seams to be removed along a given direction needs 

to be completed before averaged pixels are inserted along each subsequent seam limits the 

maximum increase in image size in my implementation, which was previously discussed in the 

features and functionality section. In order to prevent repeatedly inserting pixels along the same 

seam, we utilise this algorithm to discover N seams. The two-dimensional DWT is a reasonably 

simple expansion of the one-dimensional DWT and is of particular importance for image 

processing and given in equation 3.1. 

 

 

𝑋𝑎,𝑏 = ∫ 𝑥(𝑡)
∞

−∞
𝜑𝑎,𝑏(𝑡)𝑑𝑡                                                                           (3.1)   

 

                        

 

 

Figure.3.8: DWT 

 

Two levels and two dimensions make up DWT. In the modified space, the single-

dimensional DWT is applied to the rows and produces the columns, resulting in the four sub-band 

areas of LL, LH, HL, and HH. 
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Figure 3.8 depicts the fundamental one-level, two-dimensional DWT methodology. 

Starting with each image row, run a one-dimensional, one-level DWT is run. Then, we apply a 

one-level, one-dimensional DWT to the columns of the modified images from the first phase. 

Figures LL, LH, HL, and HH show separate images produced by these two techniques, each of 

which has four distinct bands. Low-pass and high-pass filtering are denoted by the letters L and 

H, respectively. In most cases, the LL band corresponds to a two-fold down-sampled version of 

the original image. While the HL band aims to preserve localised vertical elements, the LH band 

attempts to preserve localised horizontal characteristics of the source image. 

 

 

Finally, the HH band isolates the image's limited high-frequency point characteristics. 

Unlike the one-dimensional DWT, two-dimensional DWT returns the picture's highest 

frequencies. More decomposition layers can be added to the converted picture's LL band to extract 

lower frequency characteristics. 

 

 

3.5 Progressive Image Transmission 

 

After the image pixels have been transformed into wavelet coefficients, SPIHT is applied. It 

is believed that the original image was composed of a set of pixel values, with the pixel locations 

(i, j). On the array, which is provided by, WT is applied. 

 

)},({),( jipDWTjic  .                             (3.2) 

 

 The wavelet coefficients are represented by c (i, j). 
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The SPIHT decoder starts with a zero reconstruction vector and updates its components after 

receiving the coded message. The inverse wavelet transform, also referred to as "progressive 

transmission," can be used to reconstruct the image by the decoder once it has the value 

(approximate or precise) of some coefficients. 

 

)},({),(ˆ jicIDWTjip                          (3.3) 

 

One of the main goals of a progressive transmission system is to send the most important 

information first, which has the biggest impact on reducing distortion. The mean squared error 

(MSE) distortion measure is used to make this decision. 

 

2

,,

2
)ˆ(

1
ˆ

1
)ˆ( jiji

i j

MSE pp
N

pp
N

ppD                 (3.4) 

 

Where jip , is the original pixel value. N is the number of pixels in an image and jip ,
ˆ  is the 

pixel value that has been rebuilt.     

 

3.6 Inverse Discrete Wavelet Transform 

 

The reconstruction of IDWT, like DWT, may be explained using filter bank theory. It's a 

matter of reversing the process. The DWT coefficients are up sampled first by inserting zeros 

between each coefficient, thereby doubling their lengths. The detail coefficients are then 

convolved with the reconstruction wavelet filter, while the approximation coefficients are 

convolved with the reconstruction scaling filter. The data are then combined to obtain the original 

signal. 
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Discrete Wavelet Transform of approximation coefficient (CA) is : 

 

Wφ(K, S) =
1

√N
∑ f(t)t ∅K,N(t), ∅K,S(t): Scaling finction                              (3.5) 

 

and detail coefficients are 

 

Wφ(K, S) =
1

√N
∑ f(t)t φK,s(t), φK,S(t): Wavelet function                             (3.6) 

 

IDWT  

 

F(t)=
1

√N
∑ 𝑊∅(𝐾, 𝑆)t ∅K,S(t)+ 

1

√N
∑ 𝑊𝜑(𝐾, 𝑆)t φK,s(t)                       (3.7) 

 

Before convolving to get the original signal, we must make our dwt coefficients periodic, 

just as we did with the signal before completing our DWT calculations on it. The first N/2-1 

coefficients from the DWT coefficients are attached to the end to achieve this. Here scaling filter 

has a length of N. To get the segment of the signal, after convolution and addition, we collect the 

coefficients from N to the length of the signal + N -1. As a result, we get back to the previous 

signal. 

 

 

3.7 Simulations and Results 

 

Measures of Image Quality 

 

Peak signal to noise ratio (PSNR) and mean square error are used to evaluate the 

reconstructed image's quality (MSE). The variance of q2 reconstruction error is also known as 
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MSE. The decoder calculates the MSE as follows between the original picture f and the rebuilt 

image g: 

MSE = q
2 = 

N

1
 

kj

kjgkjf
,

]),[],[( 2                                (3.8)  

                                                                                                                       

 

Figure 3.9: Original Image 

 

N stands for the total number of pixels in each image, whereas j and k stand for the total 

number of pixels in the image. The ratio of signal variation to reconstruction error variance is 

known as PSNR. Following is a formula for calculating the peak signal to noise ratio between two 

photographs with an 8-bit per pixel resolution. Decibels are used as the measurement unit. 

 

PSNR = 10 log10 








MSE

2255
                                               (3.9) 

 

 When PSNR reaches 40 dB or greater, the original and reconstructed images are essentially 

indistinguishable to the human eye. 
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Figure 3.10: Gradient Image                            Figure 3.11: Energy map 

 

Figure 3.12:  Horizontal Seam Carving                Figure 3.13: Seam carved retrieved image 
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Figure 3.14: Retargeted Image                                  Figure 3.15: Wavelet decomposition 

 

 

Figure 3.16: Inverse wavelet transform 

 

Pixels positions are encoded for a horizontal or vertical seam either sarting from left to 

right or top to bottom, and to identify the places, just coordinates are necessary. 
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   Figure 3.17: IWT Reconstructed Image                              Figure 3.18: Results 

 

The initial broadcast seam's state must be represented by one extra bit due to the modified 

seam transmission sequence. The seam block unit in each N X M input picture with L-scale DWT 

is 2l X 2l in size. In this case, N/2l and M/2l positions are encoded in the first pair of vertical and 

horizontal seams, and for each further pair of seams, the number of positions to be encoded is 

reduced by one. Figure 3.9 to Figure 3.18 illustrate image compression using seam carving and 

integer wavelet transform. Seam carving and integer wavelet transform based image compression 

technique provided mean square error about 0.036 and peak signal to noise ratio of 63.375 db. 

 

 

3.8 Summary 

 

In this chapter, different types of image and image compression techniques were discussed. 

This chapter also explains seam carving and integer wavelet based image compression techniques 

and its results. 
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 CHAPTER-4 

  

High Efficiency Video Coding Architecture 

 

 In this chapter, basic terminologies used in high efficiency video codec such as prediction 

unit, coding units and different coding tree units block size are described. The chapter also 

discusses performance comparison of high efficiency video codec with different video codec unit. 

 

 

4.1 Introduction 

 

Video compression and decompression or codec algorithms have been around for four 

decades. They have become a necessity in today’s era, owing to the ever- increasing resolution 

capabilities of video cameras and their increasingly high storage and transmission requirements. It 

can be seen that while an average 1080p video of length 1 minute would turn out to be 

approximately 130MB in size, the needed bandwidth to stream such videos is only between 8 to 

16 Mbps. This can be attributed to advancements in video codec algorithms. The High-Efficiency 

Video Coding standard/ H.265 is one of the latest standards in video encoding designed by MPEG 

as a successor to the H.264/ AVC standard. It promises a 25 percent to 50 percent reduction in bit 

rate without compromise in video quality. Though similar in architecture, the improved features 

in the H.265 include the use of CTUs instead of macroblocks, better in-loop filters, etc., leading to 

greater accuracy in the encoding process with a reduction in bit rate 

 

 

The general representation of the image in a computer is like a vector of pixels. A pixel is 

an abbreviation of picture element. Thus we can infer that a picture is generated by picture 

elements or pixels just like a molecule is made up of atoms. When we talk about resolution of a 

picture, we are actually talking about the pixels it has. For ex: A 200 X 200 image can be seen as 
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a square of side 200. Each pixel has representation in terms of bits, suppose if there are 4 bits for 

each pixel, the size of a 200 X 200 image with 4 bit pixel would be 200*200*4 => 160000 bits or 

approximately 20kB. 

 

 

This was for an image and HEVC is a coding standard for videos; so what is a video? We 

can say that video is a sequence of images and hence each frame of a video is an image and 

therefore if can compress those images, we can eventually compress the video. The frame rate is 

the number of frames passing per second in a video and so more the frame rate, smoother the video. 

Video compression involves spatial image compensation and temporal motion compensation. 

Video Compression is needed mainly due to low channel capacity hence transferring along 

channels becomes too inefficient and thus hence compression saves both time and space at the cost 

of computational complexity. Thus it fastens the file transfer process and also reduces space on 

disk. 

 

 

If we look at internet traffic, it is mainly due to video streaming. Approximately 80% of 

internet traffic is due to videos and 20% is due to other data. In such a scenario, where videos 

dominate the traffic over internet, we need to find more efficient video coding standard which is 

faster, saves bandwidth and is cost and quality efficient. 

 

 

 

Figure 4.1: Video and data Traffic over Internet 
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4.2 High Efficiency Video Coding Terminology 

 

The basics of H.264 are worth noting before we move on to the features of HEVC, as 

HEVC (standardized in 2013) is ultimately a better version of H.264.In the past we had the MPEG 

standard in DVDs in 1996 for video coding and now we have moved to H.265 with technological 

advancements. Every standard promises to fulfill the same or even better quality with lower cost 

and bandwidth. There are two main methods in video compression, one is the Inter-frame and 

another is Intra-frame. 

 

 

In the Interframe method, we basically compare the previous and future frames with the 

current one and we only encode what is changed, for example, in a 5sec movie clip while the actor 

is reciting a poem, only his facial expressions or his gestures change while the background is the 

same; here we only have to encode the actor and not the background, so the background data could 

be saved in many frames. 

 

 

On the other hand, in Intraframe, we look for similarity in the adjacent pixels within a 

frame.We initialize with an I-frame which is likely to be stored as a JPEG and then we divide it 

into small 16 X 16 pixels which were called Macro blocks previously. Then we move on to the 

next frame and compare its macro block with the I frame; if some blocks are roughly same, then 

we give this block the status of Predicted frame or P-frame (this was interframe). Next we give the 

completely new pixel values for pixels which have changed only for this frame, and this way we 

intracode the intercoded block. 

 

 

In the recent H.265, instead of a 16 X 16 macroblock, we have a 64 X 64 Coding Tree 

Unit. Now this is a significant difference because in H.264 standard in 2003, 1080p was the 

greatest milestone achieved but now we have achieved 4k and therefore more efficient video 

coding is possible and this is made possible with larger coding tree units. Now the second 
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improvement is in the Intraframe compression. In HEVC, we have more prediction direction 

compared with previous standards and this enables more precise compression with more options 

in various directions for pixel values. 

 

 

 

Figure 4.2: Angle definitions of angular intra prediction in HEVC for 2 to 34 modes and the 

associated displacement parameter H.265/HEVC Video Coding 

 

Actually we can further breakdown our CTUs to Coding Units or Coding Blocks(CBs) 

which can have 8 X 8 pixels and these CUs can be further partitioned in different. 

PredictionBlocks.(PBs). 

 

 

 

Figure 4.3: Breaking of CTU into CBs and PUs 

 

The motive behind the prediction block is to mathematically generate pixel values instead 

of storing them and this gives an edge for compression by reducing the size of each frame 

consecutively. For instance, look at the PU of 4 X 4 surrounded by two groups of pixels, A and B 

We can use various Intraframe prediction models which the HEVC standard offers. 
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Figure 4.4: PU of 4x4 surrounded by two group of pixels 

 

There are different prediction models for different categories, for example, if we just want 

the background of a single color, we can opt out DC type or if we want a pattern to be continued, 

then we can choose Angular. Previously, there were only nine prediction modes and thus quality 

deterioration was more critical but now in H.265/HEVC, we have35 prediction modes which is 

more than 3 times what was available in H.264. This therefore gives highly intra-compressed 

frames with better quality. 

 

 

 

Figure 4.5: Prediction of modes of HEVC 

 

The main points which demarcate HEVC from H.264 are: 
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The macroblocks are renamed Coding Tree Units (similar in structure), the previous 

macroblocks had a size range of 16 X 16 but the new CTUs have a size range of 64 X 64. The 

larger range of size for HEVC provides more clarity and smoothness. There are 35 prediction 

modes in H.265, as compared with only 9 modes in H.264. 

 

 

4.3 Block Diagram of High Efficiency Video Coding 

 

Starting from the very basic process of a video codec, we have the following flow 

diagram: 

 

 

 

 

Figure 4.6: Video CODEC 

 

It is worth noting that Encoder and Decoder together constitute a “Codec”. Each process 

in encoding has a counterpart in decoding. The previous H.264/AVC gave ~2X better compression 

than MPEG and the recent H.265/HEVC is also ~2X better than H.264; thus, with each passing 

standard, the compression rate is increasing while the size is reducing, with a better picture quality. 

Size (H.265) ~ 0.5 Size (H.264).There is a kind of trade-off in video coding: 
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Figure 4.7: Video Coding trade-offs 

 

So, we can achieve a better compression rate with better picture quality by increasing 

computational complexity. Starting with detailed algorithm of H.265 video code, there are some 

terms which we have already seen in the introduction; therefore the algorithm can be interpreted 

more effectively. Before moving on to the complex algorithm one needs certain insights to 

understand the principle behind the algorithm. 

 

 

 

Figure 4.8: Block Diagram of H.265 Video 
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Partitioning 

 

It refers to breaking up the video frame into small units. A frame or picture can be broken 

down into slices and each slice is made of several CTUs. These CTUs can be further broken down 

into coding units. A video codec processes one CTU at a time. For ex: Take a frame of a video and 

now take a macro block or CTU from it, each CTU will have a luma (brightness) component and 

red and blue color differentiating components, which are CUs. The brightness component is stored 

at a higher resolution and the color components are stored at a lower resolution as the human eye 

is more sensitive towards brightness than to colors. 

 

 

Prediction 

 

The prediction is made with respect to the current frame and very little residual is left on 

comparing the original and the predicted frame. There are two kinds of prediction, one is 

Interframe and the other is Intraframe compression. We cut down the undesired information stored 

by mathematically preceding it based on various prediction modes Inframe: N x N, 2N x 2N 

 

 

Inframe: N x N, 2N x 2N, dN x N, N x dN There are in total eight methods for partitioning 

an interceded coding unit and two main methods are merge and advanced motion vector prediction. 

On the other hand there are 35 modes of interceded in which 33 are uniquely patterned where one 

is planar and one is DC, which predicts PB by filling in the average of surrounding pixel values. 

 

 

Transform + Quantize 

 

Base on Fourier transform, Laplace transform and Z transform, the basic idea of 

transforming a compressed video after prediction is also the same. The images or frame’s blocks 

are converted to frequency domain representation followed by quantization where removal of 
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unnecessary small values takes place. These two steps reduce the size considerably by converting 

the image into frequency domain and further quantizing it to discrete integers. 

 

 

Entropy Encoding 

 

This concept is derived from the concept of Information Theory used in Digital 

Communication Systems. Entropy Encoding is done in order to convert the quantized block values 

to binary form. This is done by assigning binary values to a series of information and thus each 

specification takes its corresponding binary value. This is also referred as CABAC which stands 

for Context Adaptive Binary Arithmetic Coding which is a sophisticating and complex content 

management scheme. After this step the memory requirement is reduced and therefore better 

compression is achieved leading to increase in speed of transmission. If all these steps are done 

precisely, then after decoding you can get a video very much similar to the source. A decoder 

simply does the similar steps in reverse manner to give the output which is very similar to the 

source input but highly compressed in nature. A video file of size in GBs can be easily compressed 

to a file of size in KBs where even the changes in the compressed version are non-noticeable. 

 

 

Adaptive Filters 

 

An Adaptive filter is essentially a digital non linear filter with self-Adjusting 

characteristics. It adapts, automatically, to changes in its input signals. Contamination of a signal 

of interest by other unwanted, often larger signals or noise is a problem encountered in many 

applications. Where the signal and noise occupy fixed and separate frequency bands, conventional 

linear FIR filters with fixed coefficients can be used to extract the signal. But when there is a 

spectral overlap between the signal and noise and the band occupied by the noise is unknown or 

varies with time, fixed coefficient filters are inappropriate [118]. 
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Motion Estimation 

 

In HEVC Successive video frames may contain the same objects (still or moving). Motion 

estimation examines the movement of objects in an image sequence to try to obtain vectors 

representing the estimated motion. Motion compensation uses the knowledge of object motion so 

obtained to achieve data compression. In interframe coding, motion estimation and compensation 

have become powerful techniques to eliminate the temporal redundancy due to high correlation 

between consecutive frames [118]. 

 

 

In real video scenes, motion can be a complex combination of translation and rotation. 

Such motion is difficult to estimate and may require large amounts of processing. However, 

translational motion is easily estimated and has been used successfully for motion compensated 

coding. 

Most of the motion estimation algorithms make the following assumptions: 

1. Objects move in translation in a plane that is parallel to the camera plane, i.e., the effects of 

camera zoom, and object rotations are not considered. 

2. Illumination is spatially and temporally uniform. 

3. Occlusion of one object by another, and uncovered background are neglected. 

 

 

Summarizing all this, we have portioned the frames into various blocks, then we predicted 

the blocks after which we transformed the image values to frequency domain representation 

followed by quantization, and at the end entropy encoded for good transmission speed with much 

less memory requirement. Furthermore, we can see a more detailed H.265 coding standard where 

we have separately shown all the inter frame predicted filters. 
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4.4 Performance Comparison of high efficiency video coding 

 

Table 4.1: H.264 vs. H.265 

 

 

 

4.5 Application of high efficiency video coding 

 

1. Camcoder 

2. Broadcast 

3. Content Production and Distribution 

4. Digital Camera 

5. Internet Streaming, Download and Play 

6. Medical Imaging 

Parameter H.264/AVC H.265/HEVC 

Names Advanced Video Coding 

MPEG-4 part 10 

High Efficiency Video Coding 

MPEG-H part 2 

Approved Date 2003 2013 

Progression Successor to MPEG-2 part as 

known as H.222/H.262 

Successor to H.264/AVC or MPEG 

Part-10 

Key Improvement 1.The decline in bit rate compared 

with MPEG-2 Part is 40% -50% 

2. Available to deliver High 

Definition Sources for online and 

Transmit 

1.40%-50% Decline in bit rate at 

the same visual quality compared 

with H.264 

2.It can used to implement Ultra 

High Definition.2K,4K FOR 

Online and Broadcast 

Support Up to 8K No, It supports up to 4k only Yes 

Support up to 

300fps 

No, It supports up to 59.94 Kfps. Yes 
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7. Mobile Streaming 

8. Storage Media 

9. Wireless Display 

10. Remote Video Surveilance 

11. Video Conferencing 

12. Videophone 

13. Telepresence 

14. Digital Cinema 

15. Home Cinema 

 

 

4.6 Summary 

 

             This chapter discuss video codec architecture and different terminologies used in video 

codec. This chapter also discuss High Efficiency Video Codec Architecture, its performance 

compared to existing video codec and its applications which will be used for further enhamcement. 
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CHAPTER-5 

 

Intra-Frame Prediction Using CNN based Ensemble 

Algorithms 

 

 This chapter presents detailed information about convolutional neural network and 

different layers of convolutional neural network. It also discusses the proposed convolutional 

neural network based ensemble algorithms and simulation results for inter frame prediction of high 

efficiency video code. 

 

 

5.1 Introduction 

 

The use of deep learning to process massive amounts of data is the need of the hour. The 

popularity of hidden layers has overtaken that of conventional methods in the field of pattern 

recognition. A well-known variety of deep neural networks is convolutional neural networks. 
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Researchers have been attempting to create a system that can comprehend visual input 

since the 1950s, when AI was still in its infancy. In the years that followed, this discipline was 

referred to as computer vision. Computer vision advanced dramatically after a team of academics 

from the University of Toronto created an AI model in 2012 that outperformed the best photo 

recognition algorithms by a significant margin. CNN is a type of neural network that mimics 

human vision. Throughout history, CNNs have proved to be a vital component of many Computer 

Vision applications. 

 

 

History of Convolutional Neural Network 

 

Convnet was first utilised in the United States in the 1980s. It was employed to identify 

written digits at the time. It was mostly used in the postal business to read zip codes, pin numbers, 

and other codes of this nature. The most important thing to remember about CNNs is that they 

require a lot of data and processing power to train. It was CNNs' primary drawback at the time, 

and as a result, CNNs were best restricted to the postal sector. 

 

 

Alex Krizhevsky decided in 2012 that the department of deep learning, which uses multi-

layered neural networks, needed to be revived. Researchers were able to rebuild CNNs because to 

the availability of large collections of data, including Image Net datasets containing hundreds of 

thousands of annotated photographs and an abundance of computational resources. 
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5.2. Convolutional Neural Network 

 

CNN is a class of DNN, most usually implemented to investigate visible images.We 

assume matrix multiplications while considering a neural network. In the case of Convent, 

however, a specific approach called Convolution is used. Convolution is a mathematical method 

that combines two functions. 

 

 

 

 

Finally, the Convent must compress the image into a format that is easier to analyse while 

preserving crucial information for forecasting. 

 

 

Working of CNN 

 

One needs to consider the basics of a picture and how it's represented before learning 

how CNN works. An RGB picture is a three-plane matrix of pixel values, while a grayscale 

image is a single-plane matrix.Consider following Figure. 
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Let's have a look at some grayscale photographs to see CNN functions.  

 

 

 

In the figure above, one can see a convolution. We apply a filter/kernel to the input 

picture to get the convolved feature. The mixed feature of the next level is the same as the 

previous one.  

 

 

 

 

Multiple layers of synthetic neurons make up convolutional neural networks. Similar to 

real neurons, artificial neurons compute the weighted sum of a number of inputs and output an 
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activity value. Each layer has a set of activation routines that are transmitted down from layer to 

layer when you load an image into a convent. 

 

 

Typically, the first layer recovers fundamental details such as edges that are horizontal or 

diagonal. The following layer receives information and is tasked with identifying more intricate 

characteristics like corners and combinational edges. As we go deeper into the network, it becomes 

more capable of recognising complicated objects, faces, and other aspects. 

 

 

5.3 Pooling Layer 

 

The Pooling layer, like the Convolutional Layer, is in charge of shrinking the Convolved 

Feature's spatial size. By limiting the data, the amount of computing power needed to process it is 

decreased. Average pooling and maximum pooling are two types of pooling. 

 

 

 

Max Pooling determines a pixel's maximum value from a kernel-covered region of the 

picture. Max Pooling also acts as a Noise Suppressant. It de-noises and reduces the dimensionality 

of the data by deleting all noisy activations. 

 

 

Average Pooling returns the average of all values in the image's Kernel region. As a noise 

reduction approach, average pooling considerably reduces dimensionality. We may therefore 

confidently state that Max Pooling performs better than Average Pooling. 
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5.4 Pros and Cons of Convolutional Neural Network 

 

Pros 

1. Learning  accurate pattern and insights from the provided data. 

2. For better and accurate results one can change network. 

3. If properly configured and fed a large quantity of data, it can outperform other machine learning 

algorithms. 

 

 

Cons 

1. It requires more computational power 

2. It consists of complex architecture most of the time. 

 

 

5.5 Applications of Convolutional Neural Network  

 

1. Image recognition. 

2. Video Analysis.  

3. Natural Language Processing. 

4. Anomaly Detection. 

5. Drug Discovery. 
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6. Checker Games 

 

 

 5.6 Ensemble Algorithms 

 

Ensemble Algorithms are a form of machine learning algorithms that combine several 

different base models into a single best-fit predictive model. Ensemble Methods are Sequential 

and parallel ensemble techniques are the two most used forms of ensemble methods. Base learners 

are developed sequentially using adaptive boosting and other sequential ensemble techniques. The 

production of fundamental learners one after another promotes fundamental learners to rely on one 

another. Then, by giving previously misrepresented learners more weight, the model's performance 

is enhanced. 

 

 

Fundamental learners are built in parallel in parallel ensemble systems like random forest. 

They promote the independence of basis learners by using concurrent production of basis learners. 

The independence of base learners considerably reduces the error caused by the use of averages. 

Since most ensemble techniques in base learning employ a single algorithm, all base learners are 

homogeneous. Those with identical traits and those belong to that the same type are homogenous 

base learners. Other approaches employ heterogeneous base learners, producing heterogeneous 

ensembles. Heterogeneous base learners are made up of various types of learners. 

 

 

The practise of aggregating data using bootstraps is referred to as "bagging." Classification 

and regression are two of its most common uses. It employs decision trees, which dramatically 

minimise variance, to improve model accuracy. Reduced variance increases accuracy by 

preventing overfitting, a major problem with predictive models. 

 

 

There are two methods for bagging: bootstrapping and aggregation. Bootstrapping is a 

method of sampling that use a replacement strategy to collect samples from the whole population 
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(set). The sample with replacement approach increases the unpredictability of the selection 

process. To complete the technique, the sample is fed into the basic learning process. 

 

 

Aggregation is used in bagging to account for all potential prediction results and to 

randomise the outcome. Because all outcomes will not be taken into account without aggregation, 

projections will be incorrect. As a result, probability bootstrapping methods or the sum of all 

prediction model outputs are used to aggregate the data. 

 

 

Bagging offers the benefit of integrating weak base learners into a single strong student 

who is more stable than individual learners. It also eliminates any variance, resulting in lower 

model overfitting. One of its disadvantages is the computational expense of bagging. When the 

proper bagging process is missed, models may become more biased. 

 

 

Boosting is an ensemble strategy that learns from prior predictor failures to improve future 

predictions. A number of weak base learners are combined into a single strong learner, resulting 

in a more predictable model. Boosting is the technique of putting together a group of weak learners 

in a certain sequence so that they can learn from one another and produce more accurate 

predictions. 

 

 

Boosting strategies include gradient boosting, Adaptive Boosting (AdaBoost), and XG 

Boost. AdaBoost uses decision trees to train weak learners, which generally have one split, 

nicknamed decision stumps. In Ada Boost, the primary decision block is made up of similar-

weighted observations. 

 

 

Gradient boosting adds predictors to the ensemble in a sequential order, with preceding 

predictors correcting their successors and improving the model's accuracy. New predictors are 
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fitted to counteract the consequences of prior forecasters' mistakes.The gradient booster employs 

the gradient of descent to aid in the detection and correction of errors in learners' predictions. 

 

 

XG Boost uses decision trees with higher gradients to increase speed and performance. It 

heavily depends on the performance and speed of the target model's computations. Gradient 

boosted machines take a while to set up because model training must be done in a precise order. 

 

 

Another ensemble strategy is stacking, also referred to as stacked generalisation. This 

method functions by enabling a training algorithm to combine the predictions of numerous learning 

algorithms that have a common characteristic. Regression, density estimates, distance learning, 

and classifications have all benefited from stacking. It can also be used to determine how frequent 

bagging errors are. 

 

 

5.7 CNN Based Ensemble Algorithm 

 

The learning problem is envisioned as a better model of the relationship between a block, 

maybe preserving a texture, and its local values that satisfy its expectations with the assistance of 

neural networks. It's worth mentioning that in [62], neural networks were successfully tested for 

intrablock prediction. In this situation, [62] employed completely connected neural networks to 

analyse blocks of sizes 4x4, 8x8, 16x16, and 32x32 pixels. In this scenario, consider both fully 

related and CNN blocks. 

 

 

While totally associated neural networks perform well for small block sizes, CNNs are better 

for large block sizes, both in terms of prediction and PSNR-rate execution benefits. The neural 

network's choice is block size dependent, hence it shouldn't be sent to the decoder. This CNN 
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configuration has been implemented in an H.265 codec/Matlab.This study’s contributions are as 

follows:  

a) For intra-image prediction, proposed a completely associated CNN. 

b) Demonstrate that, because of higher block sizes, CNN produces more precise and entirely 

associated predictions. 

c) Convolutional neural networks can adapt well to changing circumstances when trained with 

masks of various sizes. In H.265, the position of the considered prediction unit inside the coding 

unit and within the coding tree unit determines the accessible context and hence the amount of 

known pixels in the region. 

d) Demonstrate a preliminary intra prediction neural network ensemble strategy: they should not 

be trained in distorted contexts, as neural networks trained on undistorted contexts function well 

in distorted circumstances. 

 

 

5.7.1. Proposed CNN-Based HEVC Intra Frame Coding Framework  

 

The proposed CNN model is employed at the CTU level of the HEVC intra frame encoder, 

which is 64X64 pixels in size. Each CTU is first encoded using intra prediction in HEVC intra 

frame coding. After residual coding, the bit stream of the CTU is produced using entropy coding, 

and the CTU is rebuilt as a reference block for internal prediction of the next CTU to be encoded. 

The proposed CNN upgrade mode is activated, allowing the learned CNN model to forecast the 

rebuilt CTU's residual and improving the reconstructed CTU's nature. As illustrated in Figure 5.1, 

the projected residual and the original CTU are combined to create a new reconstructed CTU. 

 

 

5.7.2 Classifier Mode Choice 

 

The sum of square error (SSE) is used in the rate-distribution optimization (RDO) during 

the mode choosing process as an objective estimation to provide a better reconstructed CTU. A 

second signal, cnn flag, is included in the output bit stream that signals whether the CNN 
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augmentation mode should be used. The suggested CNN based on sign would improve the 

character of each rebuilt CTU on the decoder side. As a result, by focusing on intra prediction 

accuracy, the improved replicated CTU improves coding efficiency in the proposed CNN learning-

based structure, while the CTU serves as a reference for various squares. 

 

 

A module containing a CNN model is executed and used in the HEVC encoder programme 

before intra prediction. The best CTU division results come from CNN classifier. The 

recommended work encoding strategy does not require numerous rounds to establish the optimal 

CU depth when using CNN encoding. The CU grouping calculation will help with intra encoding 

computational decrease. This means that the RDO process' hardware area can be created in intra 

coding mode. 

 

 

5.7.3. Ensemble Learning through CNN  

 

The intra predictions ensemble learning component of the framework leverages 

information to obtain reasonable predictions before applying the final deconvolution to rebuild HR 

images. Using a deep CNN, this is accomplished with ease. This module's contribution is a multi-

channel image with several intra predictions, each of which may be thought of as a single channel 

for the related image. It's challenging enough to reduce this multi-channel image to a single 

channel by making plausible internal forecasts. 

 

 

Consider this interaction as labelling, in which each block patch is selected from a 

collection of discrete Markov random field improvement procedures (MRFs). Correct expected 

functions, on the other hand, must be defined. The process of establishing final intra predictions 

from a huge number of learning candidates may not be easy, and algorithm-based movies may not 

perform well like typical regular films. It's possible that actions in close proximity are essentially 

nonlinear. 
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Furthermore, constructing and optimising functions do not ensure that their HR outputs 

may be successfully deconvolved for a reconstruction with better aesthetics. If the image doesn't 

meet the requirements of the convolution model, visual anomalies like ringing appear in the 

replicated HR image. 

 

 

 

Figure 5.1: Proposed Scalable Ensemble Learning Block CNN (SECNN) for Intra Prediction 

HEVC. 
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With these requirements, this paper resorts to a CNN arrangement, which is viewed as fit 

to manage these difficulties. The benefits are: The CNN's 2D channel is used in a continuous 

weight combination of multiple spatial areas in the same neighbourhood, which is beneficial for 

artefact elimination. 

 

 

Second, for intra ensemble development and reconstruction, the CNN structure connects two 

modules. Through the final clear image, this structure yields intra ensemble ideal. CNN is more 

representative than many earlier models, such as pair-wise MRF, and it runs quickly during testing 

since it is built on few convolution operations. 

 

 

5.8 Simulations and Results 

 

In order to achieve better performance, the minimum training data size of a PU block is 

4x4 and 8x8. However, the prediction of the current PU is generated from the top reference pixels 

and left reference pixels. A part of the information has deficiency vis-a-vis nearest reference pixels; 

this is because the nearest reference pixel is weak. Conversely, if the size of the PU block and 

reference pixel are large, the computational complexity may be better. So, for  input training data 

of CNN, this work chose 16 x 16 which includes a 8 x 8 PU block and its three nearest 8X8 

reconstruction blocks. The 8 x 8 PU block is the prediction of the use of the intra-mode in HEVC 

regular in reference training data. The output data is 16 x 16 block, which is the residual number 

of  input data and original data. Considering as the size of the current PU block is 8x8; the initial 

values of PU block are expected by the preferred mode in HEVC; and the reconstruction blocks 

are the references which are probably used for prediction of the PU block. 

The size of 16x16 is chosen for prediction for the following three reasons 

1. It consists of learning the model by training data of PU block and three nearest reference 

blocks  

2. Improved accuracy of prediction block in HEVC patterns inside the PU block. 
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3. Making reconstruction processing more accurate at the upper left three reference blocks 

provided in the reconstruction patterns 

 

 

In the experiment, the PU block of the training data was used for intra-prediction in HEVC. 

Besides, using the deep learning framework MatLab for training the network. It is easy to embed 

the observed frame network into the HEVC reference software. To confirm the general overall 

performance of the proposed scheme, implement it in reference to HM- 14.0 in MatLab. The 

learning test sequences encompass a large type of HEVC video sequences. Training datasets are 

from 10 sequences of four with quantization parameters (QPs): 22, 27, 32 and 37, with only 

luminance detail is considered. For each QP, a separate network is trained. While comparing with 

HEVC, the outcomes are evaluated with PSNR, in which the low value indicates bitrate saving 

and the high value indicates bitrate increase. After assessment with the resource of the use of the 

PSNR outcomes, moreover study the patterns that the network has observed out and show some 

figures for details. 

 

 

In the experiment, a video sequences selected for analysis are given in table 5.1. 

 

Table 5.1: CNN Ensemble learning work Sequence Classes 

 

Class. Size. Sequence. No. of Frame. Frame Rate (fps). 

Class A. (2560X1600). PeopleStreet. 150. 30. 

  Traffic. 500. 50. 

Class B. (1920X1080). Kimono. 240. 24. 

  ParkScene.  500. 50. 

Class C. (832X480). BQMall.  600. 60. 

  PartyScene.  500. 50. 
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Class D. (416X240). BasketballPass.  500. 50. 

  RaceHorses. 300. 30. 

 

A frame block considered in the video taken for processing is shown in figure 5.2 Results 

with PSNR are  presented through the proposed work block extraction are in figure 5.2. 

 

 

Figure.5.2(a):  Original extracted Frame 

 

Figure.5.2(b):  Identified Objects Frame 
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Figure.5.2(c):  Processing Frame 

  

 

 

Figure. 5.2(d):  Encoding I 

frame 

 

Figure. 5.2(e):  Encoding B 

frame 

 

Figure. 5.2(f):  Encoding P 

frame 

 

Figure. 5.2(g): Encoding  Super imposed Motion Vectors between frame 7 to 16 
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Figure. 5.2(h):  Encoding : Stretched Motion Difference for motion compensation prediction 

between frame 7 to 16 

Figure. 5.2:  Illustration of Proposed Motion Compensation Frames Extraction (from Figure 

5.2 (a) to Figure 5.2 (h)) 

 

In the following figure 5.3 and figure 5.4, analyzing the proposed Motion Learning method 

 

 

Figure. 5.3(a):  Motion Learning Frame 7 
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Figure. 5.3(b):  Motion Learning Frame 9 

 

Figure. 5.3(c):  Motion Learning Frame 11 
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Figure. 5.3(d):  Motion Learning Frame 13 

 

Figure. 5.3(e):  Motion Learning Frame 15 

Figure. 5.3:  Illustration of Proposed Motion Learning method Frames Extraction (from 

Figure 5.3 (a) to Figure 5.3 (e)) 

 

  

Figure. 5.4(a):  Intra 22 Image Figure. 5.4(b):  Intra 27 Image 

  



71 
 

Figure. 5.4(c):  Intra 32 Image Figure. 5.4(d):  Intra 37 Image 

Figure. 5.4:  Illustration of Proposed Intra Prediction Mode (22, 27, 32, 37) Frames Extraction 

(from Figure 5.4 (a) to Figure5.4 (d)) 

 

In the following figure 5.5, Processing Frame Layer wise Learning Features are illustrated 

 

  

 

Figure. 5.5(a):  Mode 22 

Actual Learning Layer 1 

Figure. 5.5(b):  Mode 22 

Exact Learning Layer 1 

Figure. 5.5(c):  Intra CTU 

Level layer 1. 

  

 

Figure. 5.5(d):  Mode 27 

Actual Learning Layer 2 

Figure. 5.5(e):  Mode 27 

Exact Learning Layer 2 

Figure. 5.5(f):  Intra CTU 

Level layer 2. 
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Figure. 5.5(g):  Mode 32 

Actual Learning Layer 3 

Figure. 5.5(h):  Mode 32 

Exact Learning Layer 3 

Figure. 5.5(i):  Intra CTU 

Level layer 3. 

  

 

Figure. 5.5(j):  Mode 37 

Actual Learning Layer 4 

Figure. 5.5(k):  Mode 37 

Exact Learning Layer 4 

Figure. 5.5(l):  Intra CTU 

Level layer 4. 

Figure.5.5:  Illustration of Proposed Processing Frame Layer wise Learning Features with Intra 

CTU Level layer with Intra Prediction Mode (22, 27, 32, 37) Frames Extraction (from Figure 

5.5(a) to Figure 5.5(l)) .Here Intra CTU Level layer has taken as estimated values along the x-

axis and standard values y-axis through similarity graph. 

 

For various GOP, it might shift significantly. Because of macro-block examination, the 

actual block frames in the GOP ought to be partitioned by four. The decoded frames are displayed 

in figure 5.6. 
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Figure. 5.6(a):  Decoding : Magnitude  values Ensemble Learning 

between frame 7 to 16 

 

Figure. 5.6(b):  Decoding : Selected Motion Vectors for Ensemble 

Training : Analysis between frame 7 to 16 
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Figure. 5.6(c):  Decoding : Selected Motion Vectors for Ensemble 

Testing and Extraction : Analysis between frame 7 to 16 

 

Figure. 5.6(d):  Decoding  Reconstructed Frame 

Figure. 5.6:  Illustration of Proposed Intra Prediction Mode (22, 27, 

32, 37) Decoded Frames Reconstruction (from Figure 5.6 (a) to Figure 

5.6 (d)) 

 

For various GOPs, it shifts significantly. Because of macro block examination, the actual 

block frames in the GOP ought to be partitioned by four. Block mode improved and comparative 

PSNR results are shown below in table 5.2. 
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Table 5.2: PSNR Comparative Results of Different Surveyed Methods. 

 

Class. Sequence. [13]. [14]. [15]. Proposed. 

Class B.      

 Kimono. 39.8 39.8 39.7 39.8 

 BQTerrace. 28.5 29.6 30.2 30.2 

Class C.      

 BasketballDrill. 31.4 32.7 33.1 33.2 

 BQMall. 28.3 29.3 29.4 29.6 

Class D.      

 BasketballPass. 30.3 31.3 31.5 31.6 

 RaceHorses. 29.5 31.3 31.5 31.6 

 

 

5.9 Summary 

 

     In this chapter the proposed algorithm was simulated and tested against various video sequences 

as shown in table 5.2. In all these sequences the implemented intra prediction algorithm shows 

better PSNR with comparison to existing algorithms as shown in table 5.2. 
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CHAPTER-6 

 

A Neural Network-based Inter-frame Prediction for High 

Efficiency Video Coding 

 

 This chapter presents details of recurrent neural network, its limitations and performance 

improvements of recurrent neural network. It also gives information about long short term memory 

and its different gates. Finally it discusses the proposed method for intra frame prediction of high 

efficiency video codec and simulation results. 

 

 

6.1 Introduction 

 

Video compression and decompression or codec algorithms have been around for four 

decades. They have become a necessity in today’s era, owing to the ever- increasing resolution 

capabilities of video cameras and their increasingly high storage and transmission requirements. It 

can be seen that while an average 1080p video of length 1 minute would turn out to be 

approximately 130MB in size, the needed bandwidth to stream such videos is only between 8 to 

16 Mbps. This can be attributed to advancements in video codec algorithms. The High-Efficiency 

Video Coding standard/ H.265 is one of the latest standards in video encoding designed by MPEG 

as a successor to the H.264/ AVC standard. It promises a 25 percent to 50 percent reduction in bit 

rate without compromise in video quality. Though similar in architecture, the improved features 

in the H.265 include the use of CTUs instead of macroblocks, better in-loop filters, etc., leading to 

greater accuracy in the encoding process with a reduction in bit rate. 

 

 

A prominent characteristic of video data is redundancy. This basically refers to the 

similarities within video data. There are two types of redundancies: spatial, referring to the 
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similarities within a specific image, and temporal, referring to the similarities between two 

consecutive frames. Using these redundancies to obtain residual frames, which are much lesser in 

size when compared to the original frames, is a pivotal part of video compression. Lesser the error 

between a reconstructed frame and the original frame, the lesser the data that is to be encoded. In 

this paper, the aim is to use an LSTM or Long Short Term based deep learning approach to do 

inter- frame prediction to come up with a reconstructed frame, which has to be made as accurate 

as possible. This is done with a sequence of N previous frames to obtain a predicted (N+1)th frame, 

with which a residual frame is generated, occupying much less space when encoded. The paper is 

structured as follows: an overview of HEVC and LSTMs is provided, followed by the construction 

of the neural network architecture for inter-frame prediction, concluding the same with results and 

comparisons. 

 

 

6.2 Recurrent Neural Networks 

 

Consider the stock market data of a certain stock as an example of sequential data. Based 

on the number of features, a machine learning mode or AI predicts the stock prices, stock volume, 

Value of Opening, and so on. Because stock price is dependent on these features, it is also primarily 

reliant on previous day’s values of the stock. In truth, the value of the previous day or days is one 

of the most essential deciding criteria for a trader.This dependency on time is achieved by 

RNN.RNN model block diagram is shown below. 

 

 

Figure 6.1 Block diagram of RNN 
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The simple unfolded diagram of RNN is shown below. 

 

 

Figure 6.2 Unfolded diagram of RNN 

 

It's now simple to see how these networks interpret stock price trends and predict the stock 

prices of the day. Each prediction at a specific time t (h t) is not only based on past days predictions, 

but also on the knowledge learned for them. To a large extent, but not totally, recurrent neural 

networks can address our sequence handling problem. For example, we'd like our computer to 

compose Shakespearean poetry. RNNs are fantastic for short contexts, but to tell a tale and 

remember it, we need RNN models that can grasp and recall the context behind the sequences in 

the same way that a human brain can. With a simple RNN, this is impossible. 

 

 

6.3 Limitations of Recurrent Neural Network 

 

RNNs are excellent at coping with short-term dependency consider simple prediction 

problem shown below [118]. 

 

The RNN isn't interested in what happened or what it meant earlier during prediction all it 

cares about is that the sky is mostly blue. The RNN prediction is shown below as a result. 
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In contrast, RNNs are unable to recognize the context after an input. It's hard to recall what 

was said in the past when making forecasts in the present. Let’s consider an example shown below. 

 

 

 

We may conclude from the following that the author has a solid grasp of the language, 

having worked in Spain for 20 years. Recurrent neural networks, on the other hand, need to 

remember this context in order to generate better predictions. A considerable quantity of irrelevant 

data may exist between the relevant data and the point when it is needed. In this situation, RNN 

fails. 

 

 

The Vanishing Gradient problem is thus at the core of the issue.To avoid vanishing gradient 

problem feed-forward RNN will be used, before one can comprehend how a feed-forward RNN 

learns, one must first understand how a feed-forward RNN works. The weight update sent to a 

single layer in a traditional feed-forward neural network is a function of learning rate, error term 

from the previous layer, and input to that layer. As a result, each layer's error term is simply the 

accumulation of errors from previous layers. As the early layers deepen, the modest values of the 

derivatives of activation functions like the sigmoid are amplified many times. As a result, as we 

get closer to the original layers, the gradient almost disappears. 

 

 

RNN is in a similar situation. Recurrent Neural Networks only store information for short 

periods of time, so if we need the information in a hurry, we can get it, but once a big quantity of 

words is fed in, the knowledge is gone. A modified variant of RNN called as LSTM can be used 

to tackle the difficulty outlined above. 
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6.4 Improvement over Recurrent Neural Network 

 

When we prepare our day's itinerary, we prioritise our appointments. We know which 

meeting might have to be cancelled to make room for something more important. It makes use of 

a function that completely changes the present data in order to include new data. As a result, all of 

the data has been changed, with no differentiation made between 'important' and 'less significant' 

material. Long Term Short Memory perform little changes to the data using multiplications and 

additions. In Long Term Short Memory, cell states are a way of communicating information. 

 

 

The likeness of LSTM to conveyor belts is another distinctive feature. In industries, they 

use conveyor belts to to move goods for numerous activities. LSTMs employ this strategy to 

shuffle data around. Information can be added, updated, or withdrawn as it progresses through the 

steps, just like a product on a conveyor line might be moulded, painted, or packed. 

 

 

The close interaction between LSTMs and conveyor belts is seen in the diagram below. 

 

 

Figure 6.3 Conveyor belt of LSTM 

 

Though the figure does not accurately depict the real architecture of an LSTM, the 

companson is available to get an idea of LSTM architecture and function. They may forget and 

recall things because of an LSTM characteristic that allows them to selectively forget and recollect 

information by tweaking it little by little rather than changing the complete information. 
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6.5 Architecture of Long Short Term Memory 

 

LSTMs (Long Short Term Memory) come under a class of neural networks called recurrent 

neural networks or RNNs. The various neurons of a recurrent neural network have an internal 

neuron state, which serves as a memory. This neuron state is used to process incoming information 

to the neural network. However, this internal memory is not stored for very long in a simple RNN, 

which in turn led to the formation of LSTMs. 

 

 

LSTMs are capable of learning short-term as well as long-term correlations in the incoming 

data. This is done through the help of three different internal layers. Each of these layers helps in 

obtaining data, selective learning or forgetting data, and providing an output to the next layer. The 

sigmoid and tanh activation functions are crucial in an LSTM. The input layer obtains information 

from the previous time step, the forget layer decides which information has to be retained and 

which information to be forgotten, and the output layer decides which information should go to 

the next layer of the LSTM network. This is very useful when dealing with temporal data and time 

series. 

 

 

Figure 6.4: An overview of an LSTM network. 

 

While dealing with image data, instead of normal matrix multiplications in neural 

networks, convolution operations are performed for better feature learning by the neural network. 

Hence, instead of a normal LSTM, a convolutional LSTM is used for the task of inter-frame 

prediction. 
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6.5.1 Forget Gate of LSTM 

 

The process of forgetting the topic is controlled by the forget gate. Below figure shows 

forget gate of LSTM. 

 

 

Figure 6.5: Forget gate of LSTM 

 

The input at that time step is x t, and h t-1 is the hidden state from the preceding cell or its 

output. The weight matrices are multiplied by the inputs, and a bias is then imposed. Then, this 

value is subjected to a sigmoid function. A vector of 0 to 1 values, one for each cell state number, 

is the result of the sigmoid function. Which data should be saved and which should be discarded 

is decided using the sigmoid function. The forget gate wants the cell state to entirely forget about 

a certain value when it outputs a '0' for that value in the cell state. In the same way, 1 means that 

the forget gate is open. 

 

 

6.5.2 Input Gate of LSTM 

 

 

Figure 6.6: Input gate of LSTM 
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The input gate is responsible for incorporating data into the cell's current state. The process 

of adding information consists of three steps, as seen in the image above. A sigmoid function 

regulates how values are added to the cell state. Similar to how the forget gate filters all data from 

h t-1 and x t, this gate also filters all data from the two sources. 

 

 

Constructing a vector that contains every possible value that could be added to the cell state 

(as determined by h t-1 and x t), the tanh function, which returns values between -1 and +1, is used 

to do this. By dividing the value of the regulatory filter (the sigmoid gate) by the generated vector, 

this crucial information may be added to the cell state (the tanh function). We ensure that only 

significant and non-redundant information is introduced to the cell state once this three-step 

process is done. 

 

 

6.5.3 Output Gate of LSTM 

 

Consider the following scenario as an example for output gate [118]. 

 

 

 

The blank space in this statement might be filled with a variety of options. The current 

input, 'brave,' is an adjective that characterizes a noun, as we already know. As a result, the 

following word will almost certainly be a noun. As a consequence, Bob may be a fantastic result. 

The output gate's task is to extract useful information from the current cell state and provide it to 

the user. The following is a description of how it works. 
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Figure 6.7: Output gate of LSTM 

 

 

The function of an output gate may be broken down into three pieces: 

1) After applying the tanh function on the cell state and generating a vector, the values are 

scaled to the range -1 to +1. 

2) Use the h t-1 and x t values to establish a filter to control the values that must be formed 

from the vector generated before. The sigmoid function is used once more in this filter. 

3) Multiplying the value of this regulatory filter by the vector produced in step 1, then 

sending the result as an output as well as to the hidden state of the next cell. If 'Bob' is excluded, 

the filter in the preceding example will lower all other values. As a result, the filter must be 

constructed and applied to the cell state vector using the input and concealed state values. 

 

 

6.6 Simulations and Results 

 

LSTM Based Inter Frame Prediction Results 

 

Inter-frame prediction was performed on a number of films with varied ranges of motion. 

Below are the video sequence, ground truth, and forecasts. 
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Figure 6.8: The simulation results are listed in the following order: picture sequence, ground 

truth, and forecast frame. 

Each sequence's residual frames are listed below. 

 

Figure.6.9: For the 6th picture of each series, residual frames were created. 

 

A. PSNR Calculations 

 

In terms of PSNR, a conventional H.265 motion vector-based inter-frame prediction is 

compared to a neural network-based prediction. 
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Table 6.1: PSNRs of a traditional motion compensation-based inter-frame prediction and our 

neural network-based prediction are compared. 

 

Image Sequence PSNR of Motion vector-based 

inter-frame prediction 

PSNR of Neural Network-

based inter-frame prediction. 

Basketball 33.15 38.91 

Blowing Bubbles 34.23 39.931 

Market 33.15 44.809 

Party 33.20 25.869 

Man Walking 33.18 38.678 

 

 

 

Figure.6.10: A graphical representation of PSNR comparison of the two methods 

SSIM Calculations 
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Unlike  PSNR, SSIM is concerned with perceived similarity between two pictures. It 

calculates how similar the two photos are visually. 

 

Table. 6.2: The SSIMs of our neural network-based prediction and a classic motion 

compensation-based inter-frame prediction are compared. 

 

Image Sequence SSIM of Motion vector-

based inter-frame 

prediction 

SSIM of Neural Network-based inter-

frame prediction. 

Basketball 97.38% 99.96 % 

Blowing bubbles 98.89% 99.99% 

Market 99.91% 99.99% 

Party 98.59 % 97.63% 

Man Walking 99.72% 99.99% 

 

 

 

 

Figure 6.11: Comparing SSIMs of a standard motion compensation-based inter-frame predict. 
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From the above columns, one can find that the average PSNR is 37.53 dB, and the average 

SSIM is 99.518%. One can also find an improvement of 11 percent in PSNR and percent 0.6 in 

SSIM. 

 

 

6.7 Summary 

      

 With the advent of powerful processors, training and implementation of complex neural 

networks for such information-intensive processes are no longer out of our hands. With a neural 

network-based implementation, one can see the better accuracy of the inter-frame prediction 

module when compared to a more primitive algorithmic approach. Further improvements in 

compression technology will enable us to transmit and store very high- quality video (8K) in much 

lower spaces than required 
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CHAPTER-7 

 

Conclusion and Scope for the Future Research 

 

The thesis provides an image resolution predicted-ensemble system that uses CNN to solve 

the intra frame prediction problem. It has been shown that image resolution prediction obtained 

using simple feed forward reproduction algorithms applying a fluctuating motion estimate setting 

typically contains appropriate data for evaluating the final image resolution picture. The use of 

CNN to introduce the reconstruction and de-convolution processes is made in this research. On 

several intra prediction frames, the proposed technique gives better results. This study makes use 

of an Ensemble-based optimum bit allocation (OBA) and rate-distortion optimization (RDO) for 

HEVC. To achieve this goal, a precise CTU-level intra prediction model is developed primarily, 

which has been found to be more accurate than two widely used models. The Ensemble-based 

RDO may be accomplished using this model, which is based on a low-resolution picture and an 

image comparability-related Lagrangian multiplier derived by Ensemble-based OBA. 

Furthermore, greater magnitude prediction and motion vectors were also achieved, which is equal 

to content information primarily in content district regions and at the  edges; for smooth areas, the 

adjustment was little or even negligible, resulting in high imperceptibility. Future work need to 

focus on improving the structure's ability to handle considerably greater super resolution 

proportions and incorporating picture resolution prediction generation into CNN network. 

 

 

 We can now train and use complex neural networks for such information-intensive tasks 

because of the development of powerful computers. When compared to a more simple algorithmic 

approach, the inter-frame prediction module's accuracy is shown to be higher with neural network-

based implementation. We will be able to broadcast and store extremely high-quality video (8K) 

in considerably less space as compression technology advances with time. 
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