Texture based Feature Extraction Strategies for Facial
Expression Recognition

Submitted in partial fulfillment of the requirements
for the award of the degree of
DOCTOR OF PHILOSOPHY
Submitted by
Mukku Nisanth Kartheek
(Roll No. 717147)

Under the guidance of

Dr. Munaga V. N. K. Prasad
and

Dr. Raju Bhukya

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA
October 2022



DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

THESIS APPROVAL FOR Ph.D.

This is to certify that the thesis entitled, Texture based Feature Extraction Strategies
for Facial Expression Recognition, submitted by Mr. Mukku Nisanth Kartheek [Roll
No. 717147] is approved for the degree of DOCTOR OF PHILOSOPHY at National
Institute of Technology Warangal.

Examiner
Research Supervisor Research Supervisor
Dr. Munaga V N K Prasad Dr. Raju Bhukya
Center for Affordable Technologies Dept. of Computer Science and Engg.
Institute for Development & NIT Warangal
Research in Banking Technology India
India

Chairman

Dr. S. Ravi Chandra
Head, Dept. of Computer Science and Engg.
NIT Warangal

India



DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL
TELANGANA - 506004, INDIA

CERTIFICATE

This is to certify that the thesis entitled,

, submitted in partial fulfillment of requirement for
the award of degree of DOCTOR OF PHILOSOPHY to National Institute of Tech-
nology Warangal, is a bonafide research work done by Mr. Mukku Nisanth Kartheek
[Roll No. 717147] under our supervision. The contents of the thesis have not been

submitted elsewhere for the award of any degree.

Research Supervisor Research Supervisor

Dr. Munaga V N K Prasad Dr. Raju Bhukya

Center for Affordable Technologies Dept. of Computer Science and Engg.
Institute for Development & NIT Warangal

Research in Banking Technology India

India

Hyderabad Warangal

Date: 31-10-2022 Date: 31-10-2022



DECLARATION

This is to certify that the work presented in the thesis entitled “Texture based Feature
Extraction Strategies for Facial Expression Recognition” is a bonafide work done by
me under the supervision of Dr. Munaga V. N. K. Prasad and Dr. Raju Bhukya. The

work was not submitted elsewhere for the award of any degree.

I, hereby, declare that this written submission represents my ideas in my own words
and where others ideas or words have been included, I have adequately cited and
referenced the original sources. I also declare that I have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or falsified
any idea / date / fact / source in my submission. I understand that any violation of
the above will be cause for disciplinary action by the institute and can also evoke
penal action from the sources which have thus not been properly cited or from whom

proper permission has not been taken when needed.

Mukku Nisanth Kartheek

(Roll No. 717147)
Date: 31-10-2022



ACKNOWLEDGMENT

Every day spent during my Ph.D has provided me an opportunity to enhance my learning.
I take this opportunity to express my gratitude to the people who have been instrumental
in the successful completion of this thesis. First and foremost, I sincerely appreciate the
almighty God, who has granted countless blessings, strength and knowledge throughout
my life. His benevolence has made me excel and successful in all my academic pursuits.

I am extremely grateful to my supervisors, Dr. Munaga V. N. K. Prasad, Associate
Professor, Institute for Development and Research in Banking Technology (IDRBT), Hy-
derabad and Dr. Raju Bhukya, Associate Professor, Department of Computer Science and
Engineering, National Institute of Technology (NIT), Warangal for their valuable guid-
ance, continuous support, and patience during my Ph.D study. Their immense knowledge
and plentiful experience have helped me throughout my academic research.

I extend my gratitude to the Doctoral Scrutiny Committee (DSC) members comprising
of Prof. D.V.L.N. Somayajulu, Dr. S. Ravi Chandra, Dr. U. S. N. Raju and Prof. Ravi
Kumar Jatoth for their insightful comments and suggestions during my oral presentations.
I am immensely thankful to Prof. Ch. Sudhakar, Prof. R. B. V. Subramaanyam, Prof.
P. Radha Krishna and Dr. S. Ravi Chandra, Heads of Department of Computer Science
and Engineering (CSE) and chairmans of DSC, during my tenure for providing adequate
facilities in the Department to carry out the oral presentations.

I wish to express my sincere thanks to Prof. N.V. Ramana Rao (Director, NIT Waran-
gal), Dr. A. S. Ramasastri and Prof. D. Janakiram (Director, IDRBT, Hyderabad) for
providing the infrastructure and facilities to carry out my research. I am also very much
grateful to the faculty members of CSE Department, NIT Warangal and IDRBT for their
moral support throughout my research work.

On the personal level, I would also like to thank my scholar friends at IDRBT and NIT
Warangal for their valuable suggestions and for extending selfless cooperation. Last but
not the least, I would like to express my gratitude to my family. Without their tremendous
understanding and encouragement in the past few years, it would be impossible for me to

complete my study.
Mukku Nisanth Kartheek



ABSTRACT

Facial expressions form an important part of non-verbal communication as they pro-
vide an immediate means to analyze the mood of a person. In Automatic Facial Expression
Recognition (AFER) systems, the main task is to extract significant and discriminative fea-
tures from the facial images that can best classify the expressions into various categories.
From one expression to another expression, there are only minute differences and the tex-
ture based methods have been found to effectively capture those minute changes such as
skin changes, wrinkles, edges on the facial images. For accurately detecting facial expres-
sions, the relationship of neighboring pixels and the relationship of adjacent pixels with the
reference pixel is essential for detecting finer appearance changes with respect to various
facial expressions. This motivated us towards proposing some local texture based feature
descriptors for enhancing the recognition accuracy of AFER systems.

Chapter 1 in this thesis provides an introduction related to Facial Expression Recogni-
tion (FER), with an emphasis on feature extraction approaches. Next, the various bench-
mark datasets, experimental setup and performance measures related to FER have been
presented. Finally towards the end, the research objectives, overall contributions and or-
ganization of the thesis have been mentioned. In Chapter 2, the related and the relevant
state-of-the-art methods in the field of FER systems have been described. Towards the end
of this Chapter, the research findings analyzed from the literature studies have been sum-
marized.

Inspired by the Chess game rules, in Chapter 3, Chess Pattern (CP), Knight Tour Pat-
terns (kTP and KTP) and in Chapter 4, Radial Mesh Pattern (RMP), Radial Cross Pat-
tern (RCP), Chess Symmetric Pattern (CSP) and Radial Cross Symmetric Pattern (RCSP)
feature descriptors have been proposed for extracting the facial features in a local neigh-
borhood. CP has been proposed with an intention to generate different feature codes for
corner, edge and flat portions of an image. Inspired by the Knight tour problem in graph
theory, kTP (extracts features in a 3 x 3 neighborhood) and KTP (extracts features in a 5 X
5 neighborhood) feature descriptors have been proposed, which utilizes Knight moves for

generating the features. RMP generates two feature codes that are unique to corner, edge
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and flat portions of an image. RCP, CSP and RCSP feature descriptors have been proposed
for overcoming some of the limitations of the existing methods such as CP, Local Gradient
Coding (LGC) and it’s variants.

In Chapter 5, feature descriptors inspired by the shape of various graphs such as Wind-
mill graph, Generalised Petersen graph (GPG) and Triangle graph have been proposed for
facial feature extraction. Windmill Graph based Feature Descriptor methods (WGFDy, and
WGEFD,) extract features by encoding the adjacent pixel relationship and the neighboring
pixel relationship in a local neighborhood. The concept of using different weights have
been applied to the proposed CP, kTP, KTP, RMP, RCP, CSP, RCSP, WGFD;, and WGFD,
methods for determining the optimal recognition accuracy. Petersen Graph based Binary
Pattern (PGBP) extracts features based on the vertices and edges of GPG(6,2) in a local
5 x 5 neighborhood. Local Triangular Patterns (LTrP) extracts features by considering the
triangles in both vertical and horizontal directions. The features are extracted in both clock-
wise and counter clockwise directions using the proposed PGBP and LTrP methods.

In Chapter 6, Feed Forward Neural Network Structure Inspired Feature Descriptors
(FFNND;, and FFNND,) have been proposed to extract salient features in a local neighbor-
hood. FFNND; method extracts three features by capturing the adjacent pixel relationship
based on multi-distance information as like Local Mesh Pattern (LMeP), whereas, FFNND,
method extracts two features by capturing the relationship between the pixels located at a
radius (rd=2), from a reference pixel. For all the Chapters 3, 4, 5 and 6, the experiments
have been performed with respect to both six and seven expressions on different ‘in the
lab’ datasets in person independent setup to simulate a real world scenario. The experi-
ments have also been performed with respect to seven expressions on Real World Affective
Faces (RAF) and Facial Expression Research Group (FERG) datasets. In addition to six
and seven expressions, the experiments have also been performed for eight expressions on
Taiwanese Facial Expression Image Database (TFEID) and for ten expressions on Ams-
terdam Dynamic Facial Expression Set (ADFES) datasets respectively. The experimental
results demonstrated the efficiency of the proposed methods when compared to the existing

methods.
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Chapter 1

Introduction

Personal identity refers to a set of attributes (e.g., name, social security number etc.) that
are associated with a person. The process of creating, preserving and destroying the in-
dividual identities is known as identity management. Person authentication is one of the
most important activities in identity management, with the goal of determining or verifying
an individual’s identity claim. In general, a person can be recognized in three ways [1]: (i)
Knowledge based (i1) Token based and (ii1) Biometric based system. In Knowledge based
system, a person is recognized based on “what he knows” (e.g., password, social security
number etc.), whereas, in Token based system, a person is recognized based on “what he
possesses” (e.g., passport, driving license etc.). In Biometric based system, a person is
recognized based on “who he is” (physical traits) or “what he does” (behavioral traits) [2].

Formally, Biometric recognition can be defined as the science of establishing the iden-
tity of an individual based on the physical and behavioral traits of a person in a fully auto-
mated or semi-automated manner [3]. A biometric recognition system requires a person to
be physically present at the time of authentication, thus preventing the need to remember
a password or carrying a token. As a result, biometric traits cannot be easily lost, shared
or duplicated [1, 3, 4]. Negative recognition and non-repudiation methods determine the
individuals who have enrolled in a system, but later denies it and the individuals who have
utilized a system but contradicts later. The passwords and Identity (ID) cards cannot pro-
vide negative recognition and non-repudiation operations. Whereas, negative recognition

and non-repudiation are possible only with the help of biometrics.



Fingerprints, face, retina, iris, ear, palmprint, hand geometry etc. correspond to the
physiological biometric traits. Keystroke dynamics, gait, signature, voice and speaker
recognition etc. are the commonly used behavioral traits [3, 5]. All biometric traits sat-
isfy the properties such as universality, uniqueness, permanence, collectability and circum-
vention [4, 6]. In today’s world, biometric recognition has been applied in commercial
applications (security applications, financial applications and mobile applications), legal
applications (in the fields of justice and law enforcement), government applications (bor-
der control and airport applications, health care applications) and in tracking applications

(screen navigation and aviation).

1.1 Biometric Recognition System

Biometric Recognition System (BRS) involves two phases namely enrollment phase and
identification / verification phase [7]. The block diagram of an BRS is shown in figure
1.1. The five modules involved in an BRS are: sensor module, feature extractor module,
template generator module, comparator module and decision module. The sensor module
helps in acquiring the biometric characteristics of a person. At the time of biometric acqui-
sition, there might be unwanted background information and noise. Hence, pre-processing
techniques such as segmentation are performed for removing unwanted background infor-
mation and noise removal is performed by applying filters. The feature extraction module
plays a major role in an BRS as the classification is entirely dependent on the extracted
features. Depending on the biometric trait and the type of application, the number of fea-
tures extracted might be varied. When a person presents his biometric to the system for the
first time, then it is known as enrollment phase. As a part of feature extractor module, the
features are extracted from the captured biometric trait. The purpose of template generator
module is to convert the extracted features into a template and store it in a database. The
same process is repeated for feature extraction from the probe biometric at the time of iden-
tification / verification phase. The comparator module performs the comparison between
the probe template and the reference / stored template and sends the result to the decision

module. Based on the result, the decision module provides a match (accept) or a non-match
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Figure 1.1: Block diagram of Biometric Recognition System

(reject) decision.

1.2 Face Recognition

Face recognition is an interesting area of research in computer vision and is applicable in a
wide variety of domains such as in Automated Teller Machine (ATM), railway reservation
systems, passport authentication, surveillance operations etc. Although, there are many

biometric traits such as fingerprint, iris, gait, palmprint etc., face is chosen because of the

following reasons:

Everyone has almost got a “fairly unique face”.

recognition of a face is comparatively easier.

Face data can be captured with contact less devices.

No physical interaction is required on behalf of the user.

Face is the most common biometric used by human beings to recognize each other.

The face of an individual can be identified even from a long distance. Therefore,



* Face recognition does not requires an expert to interpret the comparison.
* Face recognition can use existing hardware infrastructure.

Thus, by all these advantages, the topic of face recognition is chosen for further analysis

and study.

1.2.1 Challenges in Face Recognition

Due to novel Corona virus, the companies across the globe started to move away from
traditional fingerprint scanners and started adopting Artificial Intelligence (Al) based facial
recognition technology. Although, face recognition is widely being deployed, there are still

some challenges in face recognition as follows:

Intra-personal variations
e Inter-class similarities

e [llumination variations
e Pose variations

* Facial Expressions

* Disguises

e Live Detection

¢ Occlusions

* Ageing

e Low resolution

Among all these challenges in face recognition, the area of Facial Expression Recognition
(FER) is chosen for further analysis and study. It is because, human life starts with an
emotion and ends with an emotion. In the life between birth and death, every person relates

his current situation with any one of the emotions. Overall, life is an emotional journey

4



between the life and death of a person. Also, facial expressions are common across cultures
and traditions. As, facial expressions are part and parcel of our lives, the area of FER is

chosen for research and analysis.

1.3 Facial Expression Recognition

Communication involves using verbal and nonverbal cues to convey the intended mean-
ing to others. In verbal communication, words and sounds are used to express our needs,
intentions, thoughts and emotions to others [8]. Whereas, in non verbal communication,
information is exchanged through gestures, facial expressions, eye contact, signs, body lan-
guage, paralinguistics, haptics, proxemics etc. [9]. Of all these, facial expressions are of
utmost importance as they can convey a lot of information about the unsaid internal mood
and emotions of a person. The human face can display different feelings such as fear,
happy, sad, surprise, disgust etc. which are universally understood and are common across
different cultures and traditions [10]. Also, facial expressions provide valuable information
about the person’s attitude, internal emotions, personality and they also enable us to de-
velop opinions of people surrounding us [11]. Facial expressions are considered crucial as
they can compliment or contradict the information being conveyed through verbal words.
Now a days, facial expressions are considered as soft biometrics and can act as a valuable
supplementary biometric information to automated person identification systems [12, 13].

The automatic recognition of facial expressions has become a significant practical ne-
cessity as they have been incorporated in various real life applications such as Human
Computer Interaction (HCI), deceit or lie detection, surveillance, affective computing, pain
assessment, clinical psychology, robot control and behavioral profiling etc. Because of
such wide range of applications and continuous evolution in these areas, Automated Facial
Expression Recognition (AFER) has gained increased attention among the researchers in
the recent years. The human beings have the inbuilt ability to recognize different facial
expressions. But, for a system to recognize various expressions reliably and accurately,
it is a tough task [14]. The various complexities such as spontaneous expressions, incon-

sistent acquisition conditions, ethnicity variations, illumination variations, aging factors,
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noise variations etc. are creating challenges for developing an AFER system [15].

1.3.1 Structure of Facial Expression Recognition System

FER system follows the classical pattern recognition tasks such as image acquisition, pre-
processing, feature extraction and classification. Initially, for the input images from the
dataset, pre-processing is performed for detecting the facial region. Next, feature extrac-
tion is performed to extract distinctive and valuable features from the facial images. The
extracted features are then passed on to the existing classifiers such as K Nearest Neigh-
bor (KNN), multi-class Support Vector Machine (SVM), Neural Networks etc [16] for
appropriate expression classification. The basic structure of an FER system is shown in

figure 1.2.

1.3.2 Feature Extraction

The performance of an FER system is mainly impacted by the method employed for fea-
ture extraction and the classification technique applied. Inadequately extracting the features
might degrade the performance, even after using the best classification techniques [17]. So,
it is essential to design an appropriate and reliable feature descriptor for enhancing the per-
formance of an FER system. The techniques proposed for feature extraction in the literature
can broadly be categorized as hand-crafted features, learned features and hybrid features
[18]. Hand-crafted features are pre-designed for extracting relevant facial expressions and
the learned features are obtained by making use of deep neural networks. In deep learning
approaches [19-22], the appropriate features and classification weights are learnt collec-
tively for recognizing the facial expressions. In case of hybrid features, the features ob-
tained by two feature extraction methods are combined. Also, spatial and spatio-temporal

representations are another way of classifying feature extraction techniques corresponding
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to a single frame and a sequence of frames respectively [23]. The existing methods related
to FER have been summarized in detail in Chapter 2. From the literature, the hand-crafted
features used for extracting facial features can be broadly classified into two classes namely
geometric based approaches [24-27] and appearance based approaches [11, 17, 28-37]. In
this thesis, the main emphasis is on appearance based methods as the existing methods,
[38, 39] have shown that the expressional changes typically occur on some main facial re-
gions such as the neighborhood of the mouth, nose and eyes. This implies that details of

local facial regions can be used to discriminate between expressions.

1.3.2.1 Geometric based Approaches

The geometric based approaches encode the locations, shapes, deformation, corners and
contour information of facial components for characterising the facial structure [26, 27,
40, 41]. Although, these geometric features represent facial geometry, they fail to capture
specific local information such as ridges, changes in skin texture etc. These geometric
based methods need accurate tracking and detection of facial landmarks, which becomes

difficult in different imaging conditions.

1.3.2.2 Appearance based approaches

In the literature, appearance based approaches are further classified into holistic (global)
based approaches [36, 37, 42] and local based approaches [11, 17, 28-35]. The appearance
based approaches represent the face image by applying image filters on the whole face
(global) or on specific regions (local) for extracting appearance variations (e.g. wrinkles,
skin changes) in facial images. Eigenfaces [36], Fisherfaces [37] and Linear Discriminant
Analysis (LDA) [42] are some of the most widely used global based methods. As these
global based methods are aimed at representing a facial image globally, they are unsuitable
for capturing finer appearance changes corresponding to various facial expressions [31].
The research on local based methods focuses in two directions: texture based methods and
edge based methods. The local texture based feature descriptors [11, 17, 28-30] detects
gradient variations of an image for predicting various facial expressions, whereas, the edge

based feature descriptors [31-35] uses filters to detect the edges, which are more relevant



in facial expressions.

A person’s face can depict many expressions. There is minute difference between one
expression to other expression, as conveyed by humans. In facial expression recognition, it
is very important to capture those minute details related to expressions for accurate classi-
fication. From the literature study, the local appearance based approaches [17, 28-35, 43]
have proven to be effective for facial feature extraction as they are aimed at examining the
local regions for describing the various curvilinear features (curved and straight edges),
corners etc. Also, the local texture based approaches are able to capture micro-level texture
information such as specific skin changes, ridge details and minute characteristics that are
more prevalent in facial expressions. Also, these local texture based methods can extract a
detailed set of features which are noise resistant and they only need the class labels of the
images for training purposes. The main strength of the local based methods is that, from
the available images in the dataset, the relevant features can be extracted without requiring
much training data and computing resources. Hence, in this work, local texture based fea-

ture descriptors have been proposed for facial feature extraction.

1.4 Overview of the Proposed Methods

Initially, the images from the benchmark FER datasets have been pre-processed using Vi-
ola Jones approach [44] for detecting and cropping the facial region from the entire facial
image. Histogram equalization technique [45] is then applied for normalizing the illumi-
nation effects in an image. Upon the normalized images, the proposed feature extraction
techniques have been applied and correspondingly the feature response maps have been
obtained. The entire facial image could be divided into overlapping or non-overlapping
regions for feature extraction, which could enhance the recognition performance of a sys-
tem [46]. Hence, the feature response maps have been further divided into C x C non-
overlapping blocks. Based on this block size, the feature response maps have been di-
vided into ‘T’ regions. From each of these ‘T’ regions, features extracted are concatenated
together to obtain a feature vector. The feature vectors have been generated using the

proposed methods for both training and testing images and are given as an input to a multi-
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Figure 1.3: An overall flow of the proposed methods

class SVM for predicting the class labels of testing images. An overall flow of the proposed
methods is shown in figure 1.3. Among all the stages mentioned in figure 1.3, feature de-
scriptor stage plays an important role for accurate recognition of facial expressions. Hence,
in this thesis, the main focus is on developing new feature descriptors for enhancing the

recognition accuracy of an FER system.

1.5 Benchmark Datasets

Although, people regularly recognize many distinct emotions, for the most part, research
studies have been limited to six basic categories. Anger, disgust, fear, happy, sad and sur-
prise expressions correspond to the basic six expressions. Neutral and contempt are treated
as the seventh and eighth expressions and embarrass and pride correspond to the ninth and
tenth expressions. The experiments have been performed on ten FER datasets for validating
the efficiency of the proposed feature descriptors. Among those ten datasets, eight belong

to ‘in the lab’ datasets, one dataset (Real World Affective Faces (RAF)) belongs to ‘in the
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wild’ category and the remaining dataset (Facial Expression Research Group (FERQG)) is
an animated facial expression dataset. The number of images considered for experimental

evaluation across datasets is shown in table 1.1.

 Japanese Female Facial Expression (JAFFE) dataset [47], consists of 213 facial im-
ages belonging to seven facial expressions, collected from ten Japanese female sub-
jects. For each facial expression belonging to a particular subject, there are almost

four images present in the dataset. The image size is 256 x 256 pixels.

* Multimedia Understanding Group (MUG) dataset [48] has image sequences obtained
from 86 subjects (51 male and 35 female). The image size is 896 x 896 pixels. The
images corresponding to 45 subjects from those 86 subjects were selected for experi-
mental evaluation. For each person in the dataset, there are five images corresponding

to each expression.

» Extended Cohn-Kanade dataset (CK+) dataset [49] contains 593 image sequences
captured from 123 subjects. Each sequence starts with a neutral expression and ends
with the apex of an expression. The dataset has frontal facial images belonging to
basic six expressions. The threw apex frames from each sequence are selected for
each expression class [17]. The images are captured at 30 frames per second with

images size being 640 x 480 (or) 640 x 490 pixels.

* OULU-CASIA dataset [50] has images captured from 80 subjects whose age lies in
the range of 23 to 58 years old. The expressions were captured in both Near Infra
Red (NIR) and Visual Light Scenario (VIS). Also, all expressions are recorded in
strong, dark and weak environments. For each illumination, 480 video sequences
were captured, so a total of 2880 video sequences are present in this dataset. The
image size is 320 x 240 pixels. For the basic six expressions, the three peak frames
from each expression are chosen, and the images for neutral expression were col-

lected from the onset of each recording session [17].

» Taiwanese Facial Expression Image Database (TFEID) dataset [51] from National

Yang-Ming Univeristy has 7200 stimuli collected from 20 male and 20 female sub-
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Figure 1.4: Sample images from TFEID dataset. (a) Anger (b) Disgust (c) Fear (d) Happy

(e) Neutral (f) Surprise (g) Sad.

jects. The image size is 480 x 600 pixels. In this dataset, there is almost one image
per each expression. The sample images belonging to seven expressions for TFEID

dataset are shown in figure 1.4.

» Karolinska Directed Emotional Faces (KDEF) dataset [52] is established by Karolin-
ska Institute, Sweden. This dataset contains 4900 images obtained from 70 subjects
(35 female and 35 male), whose age lies between 20 to 30 years old. The images have
been captured for seven different facial expressions from the subjects. The images
are captured twice from five different angles (+90°, +45°, 0°, —45°, —90°) respec-
tively with image size being 562x762 pixels. The frontal pose (0°) images have only

been chosen for experimental evaluation.

* Warsaw Set of Emotional Facial Expression Pictures (WSEFEP) dataset [53] has 210
images collected from 30 individuals of which 14 are male and the remaining 16 are
female. The image size is 800 x 542 pixels. The subjects have given poses for all

seven facial expressions.

* Amsterdam Dynamic Facial Expression Set (ADFES) dataset is the full form of AD-
FES dataset [54]. This dataset has three more expressions namely contempt, embar-
rassment and pride expressions apart from the basic seven expressions. 216 images
are present in this dataset. But, for experimental evaluation, only 215 images are
considered. The image size is 720 x 576 pixels. The images were captured from
22 persons of which 12 are male and the remaining 10 are female whose age lies in

between 18-25 years old.

* RAF dataset [55] contains 29,672 images captured from the real world. This dataset

11
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Figure 1.5: Sample images from RAF dataset. (a) Anger (b) Disgust (c) Fear (d) Happy
(Joy) (e) Neutral (f) Sad (g) Surprise
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Figure 1.6: Sample images of Bonnie from FERG dataset. (a) Anger (b) Disgust (c) Fear
(d) Happy (Joy) (e) Neutral (f) Sad (g) Surprise

(@

has images belonging to 6 basic and 12 compound emotions. The image size is 100
x 100 pixels. For experimental analysis, only the images belonging to basic seven
emotions are considered. The sample images belonging to seven expressions for
RAF dataset are shown in figure 1.5. The number of training and testing images

considered for experimental evaluation in RAF dataset are shown in table 1.2.

* FERG [56] has 55,767 annotated facial images from six stylized characters. MAYA
software was used to create those six characters. Every character’s images are di-
vided into seven types of expressions. The image size is 256 x 256 pixels. The
sample images belonging to seven expressions for FERG dataset are shown in figure
1.6. The number of images (subject wise) considered for experimental evaluation in
FERG dataset are shown in table 1.3 and the number of training and testing images

considered for experimental evaluation are shown in table 1.4.

1.6 Experimental Setup

For different ‘in the lab’ datasets, as a part of pre-processing, Viola Jones algorithm [44] is

used for detecting the facial region and the images are then resized into 120 x 120 image
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Table 1.2: Training and testing images in RAF dataset

Anger | Disgust | Fear | Happy | Neutral | Sad | Surprise | Total
Training | 705 717 281 | 4772 2524 | 1982 1290 12271
Testing 162 160 74 1185 680 478 329 3068
Table 1.3: Distribution of images in FERG dataset
Subject | Anger | Disgust | Fear | Joy | Neutral | Sad | Surprise | Total
Aia 1644 1596 | 1116 | 1232 | 1200 | 1469 1746 10003
Bonnie | 2059 2088 | 1255 | 1438 | 1243 | 1506 1682 11271
Jules 1479 1321 | 1858 | 1317 | 1344 | 1475 1961 10755
Malcolm | 1100 1190 | 1018 | 1089 | 1083 | 1034 1065 7579
Mery 1428 911 1035 | 1140 941 1045 1058 7558
Ray 1459 1465 | 1137 | 1114 | 1128 | 1098 1200 8601
Total 9169 8571 | 7419 | 7330 | 6939 | 7627 8712 55767
Table 1.4: Training and testing images in FERG dataset
Anger | Disgust | Fear | Joy | Neutral | Sad | Surprise | Total
Training | 8169 7571 | 6419 | 6331 | 5938 | 6627 7712 48767
Testing | 1000 1000 | 1000 | 1000 | 1000 | 1000 1000 7000
Predicted values
Positive ~ Negative
;§ Positive TP FN
2
Negative FP TN

Figure 1.7: Confusion matrix for two class classification
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responses. Then, histogram equalization method is applied for normalizing the illumina-
tion levels in the images. For experimental evaluation, Person Independent (PI) scheme
is followed. As a part of PI scheme, leave one subject out policy (for all datasets except
CK+) has been followed, i.e at each time, one subject is excluded from training and is used
for testing. In case of CK+ dataset, for each subject, as the number of images for each
expression are not balanced, ten fold PI cross validation is performed. Thus, by excluding
a subject in this manner ensures person independence. In RAF dataset, there are 12,271
training and 3068 testing facial images and an image size of 100 x 100 pixels is considered
for experimental evaluation. In FERG dataset, out of 55,767 images, 48,767 images have
been used for training, and the remaining 7,000 images (1000 from each expression, cho-
sen randomly) have been used for testing purposes and an image size of 48 x 48 pixels is
considered for experimental evaluation.

For the purpose of classification, a multi-class SVM has been utilized. The performance
of the proposed methods has been analysed in terms of recognition accuracy and confusion
matrix, which are discussed in section 1.6.1. The experiments have been performed us-
ing MATLAB R2018a tool on i5 processor with Windows 10 operating system and 16 GB
RAM. For comparison analysis, some existing variants of binary patterns have been imple-
mented in our setup and correspondingly the recognition accuracy is reported. Following
PI approach, the recognition accuracy is computed by taking the mean of accuracy obtained
from each subject / fold. The results generated by the existing variants of binary patterns
implemented in our environment setup might be different from the accuracy reported in
the papers, because of the different image size and block size considered for experimental
evaluation. For methods other than the variants of binary patterns, the comparison results

are directly taken from their corresponding papers.

1.6.1 Performance Measures

The following measures have been used to assess the performance of an FER system:

* Confusion Matrix: Confusion matrix is a combination of both actual and predicted

values. A sample confusion matrix is shown in figure 1.7. The following terminol-
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ogy is followed for confusion matrix: True Positive (TP), False Positive (FP), False

Negative (FN), True Negative (TN).

* Recognition Accuracy: Recognition accuracy is defined as the number of correctly
classified instances out of the total instances. The corresponding equation for calcu-

lating recognition accuracy is shown in eq.(1.1).

" Number of Correctly classi fied instances
Recognition Accuracy = Total number of instances (1D

1.7 Motivation, Aim & Objectives

Facial expressions can reveal the genuine intentions of a person. In social interaction, hu-
mans understand facial expressions and respond accordingly. In the same manner, can
systems understand facial expressions and respond accordingly? To achieve this task, a
system should recognize the facial expression correctly and then interpret the meaning of
it. So, the main emphasis is on accurately recognizing the facial expressions. For accu-
rate expression recognition, feature extraction stage plays a major role as the performance
of an FER system mostly depends on the extracted features. If insignificant features are
extracted, even the best classification techniques may fail to classify accurately [17]. De-
veloping new feature extraction techniques based on the knowledge obtained from previous
methods can help in improving the performance of a system. But, the most important prob-
lem in FER system lies in extracting significant and discriminative patterns from the facial
images.

In general, image processing applications require both global and local features to be
extracted for efficient classification. But, in case of facial expression recognition, different
expressions are portrayed on the same facial image. For experimental evaluation, as major-
ity of ‘in the lab’ datasets have been considered, they are mostly captured under controlled
environment. From one expression image to another expression, there are only minute dif-
ferences and those differences need to be effectively captured for accurate classification.
Convolutional Neural Network (CNN)’s can be used to automatically extract the features

from images. But, majority of the existing CNN based FER methods only extract the fea-
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tures from the entire facial image. In other words, the traditional CNN based methods may
not fully exploit the recognition-effective information encoded in expressional images.
The existing methods [38, 39] have shown that the expressional changes typically occur
on some main facial regions such as the neighborhood of the mouth, nose and eyes. This
implies that details of local facial regions can be used to discriminate between expressions.
Also, among those appearance based methods, the texture based methods [17, 57, 58] have
been found to be suitable to extract valuable features such as ridge details, specific skin
changes and minute characteristics within a local region. Also, the local texture based ap-
proaches need only the class labels of the images for training purposes. For accurately
detecting facial expressions, the neighboring pixel’s relationship with the reference pixel
is also essential for detecting finer appearance changes with respect to various expressions.
Recently, facial expressions have been applied to provide advanced level of security to bio-
metric systems. “The correct recognition of feeling can enhance the security of biometric
system. For example, a recognized expression of fear can be used to decline entry in a
secured area even if the face ID is recognized correctly” [59]. Thus, facial expressions
are currently deployed for providing advanced level of security to the existing biometric
systems. This motivated us towards proposing new local texture based feature descriptors

for enhancing the recognition accuracy of FER systems.

1.7.1 Aim

This dissertation aims to provide some texture based feature descriptors for FER systems

intended to improve overall recognition accuracy.

1.7.2 Objectives

The main objectives of this dissertation are stated as follows:
 To study and investigate the existing feature descriptors proposed for FER systems.
* To design and develop effective feature descriptors for FER systems.

* To study and investigate different weights for feature extraction.
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* To utilize the concepts of feature level fusion for maximizing the recognition accu-

racy.

1.8 Overview of the Contributions in the Thesis

In this thesis, the following contributions related to feature extraction methods have been

made for FER systems.

1. By utilizing the concept of chess game rules, a local feature descriptor named Chess
Pattern (CP) has been proposed for extracting the facial features in a local neighbor-

hood.

2. Inspired by the Knight tour problem in a n x n Chess board, novel feature descriptors
named Knight Tour Pattern in a 3 x 3 neighborhood (kTP) and Knight Tour Pattern

in a 5 x 5 neighborhood (KTP) have been proposed for facial feature extraction.

3. Radial Mesh Pattern (RMP), a combination of Radial Pattern (RP) and Mesh Pattern
(MP) has been proposed for overcoming the limitations of existing feature descriptors

such as Local Binary Pattern (LBP), Local Mesh Pattern (LMeP) and CP.

4. Three feature descriptors namely Radial Cross Pattern (RCP), Chess Symmetric Pat-
tern (CSP) and Radial Cross Symmetric Pattern (RCSP) have been proposed for over-

coming the limitations of CP, Local Gradient Coding (LGC) and it’s variants.

5. Proposed Windmill Graph based Feature Descriptors (WGFD) for facial feature ex-

traction by drawing inspiration from the Windmill Graph.

6. Proposed Petersen Graph based Binary Pattern (PGBP) for facial feature extraction

by drawing inspiration from the Generalized Petersen Graph.

7. Proposed Local Triangular Patterns (LTrP) for facial feature extraction by drawing

inspiration from the shape of a Triangle.
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8. Proposed Feed Forward Neural Network Structure Inspired Feature Descriptors (FFNND)
for facial feature extraction by drawing inspiration from the structure of a feed for-

ward neural network.

1.9 Thesis Organization

The rest of the Chapters in this thesis have been organized in the following manner: In

Chapter 2, the related and the relevant state-of-the-art methods in the field of FER systems

have been described. Towards the end of this Chapter, the research findings from the liter-

ature studies have been summarized.

In Chapter 3, local texture based feature descriptors namely CP, kTP and KTP inspired

by the chess game rules and Knight tour problem have been presented for facial feature

extraction in a local neighborhood. Both, CP and KTP methods consider 5x5 neighborhood

for extracting the multi-level information in a local neighborhood. In this thesis, the concept

of feature level fusion has been adopted in all of the works to achieve maximum recognition

accuracy.

In Chapter 4, Modified Chess Pattern (MCP) feature descriptors have been described

in detail. RMP method is a combination of RP and MP. RCP, CSP and RCSP have been

proposed to overcome the limitations of some existing methods such as CP, LGC and it’s

variants. Here, in this Chapter, the experiments have been conducted on each of these

feature descriptors independently with different weights to find out the optimal recognition

accuracy.

In Chapter 5, texture based feature descriptors namely WGFDy, WGFD,, LTrP and

PGBP inspired by shapes of Windmill graph, Generalized Petersen Graph (GPG) and Tri-

angle graph have been proposed for feature extraction in a local neighborhood. The experi-

ments have been conducted using WGFD;, and WGFD, methods independently with differ-

ent weights to determine the optimal recognition accuracy. For LTrP and PGBP methods,

only the concept of binary weights is used, as six bits are only involved for extracting each

feature.

In Chapter 6, two hand-crafted feature descriptors namely FFNND; and FFNND,, in-
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spired by the structure of a feed forward neural network have been proposed for facial
feature extraction. The proposed FFNND,; and FFNND, methods have been modelled in
such a manner to capture the adjacent pixel relationships in a local neighborhood.

In Chapter 7, the concluding remarks of the thesis and the suggestions for further anal-

ysis and study have been reported.
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Chapter 2

Literature Survey

In this Chapter, the existing methods related to face detection have been reported in section
2.1. The existing techniques related to feature extraction in the literature have been men-
tioned in section 2.2. The types of information fusion in biometrics have been reported in
section 2.3. The various types of classifiers used for facial expression recognition analysis
have been summarized in section 2.4. Towards the end of this Chapter, in section 2.5, the

research findings analyzed from the literature studies have been summarized.

2.1 Face Detection

Face detection is a significant phase of FER systems. In an image, the face region is
detected using the facial features such as skin color, texture, edge and face muscle motion.
These characteristics help in distinguishing a facial region from the background. The input
image is segmented into two parts during this phase: one representing the face region
and the other representing a non-face region. There are numerous face detection methods
available in the literature such as the Eigenspace method, Adaptive Skin Color method,
Viola—Jones method [44] and their algorithms are developed based on the Haar classifier,

Adaboost, and Contour Points [60].
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2.1.1 Eigenspace Method

Pentland et al. [61] proposed Eigenspace method for locating the face under variable poses.
Also, modular Eigenspace descriptors have been used for recognizing the facial image with
salient features. Essa et al. [62] used the Eigenspace method for locating the face in any
random image sequence. The Eigenfaces define the subspace of sample images as a face
space [63]. The distance between the observed image and face space was estimated using
the projection coefficients and the signal energy for detecting the presence of a face in an
image. Similarly, the spatio-temporal filtering method was used for detecting a face in an
image sequence. The concept of thresholding was applied to the filtered image, for causing
binary motion that aids in the analysis of ‘motion blobs’ over time. Each motion blob

represents a human head for detecting the location of the face.

2.1.2 Adaptive Skin Color Method

Skin color is a useful feature for detecting faces [64, 65]. The most commonly used color
systems are Red, Green and Blue (RGB), Cyan, Magenta and Yellow (CMY), Luminance
(Y), In-Phase (I) and Quadrature (Q) (YIQ), Luminance (Y), Blue minus Luminance (U)
and Red minus Luminance (V) (YUV), Y is the brightness (luma), Cb is Blue minus Luma
(B-Y) and Cr is Red minus Luma (R-Y) (YCbCr). Any one of the color systems is pre-
ferred based on color dependency. For color intelligence, YIQ and YUV color systems
are commonly used [66]. The components I and Q in the YIQ color model refer to hue
and saturation, respectively, where I denotes the value of face skin color in YIQ space that

changes in a specific range between 30 and 100. The equation to calculate I is shown in

eq.(2.1).

=059 R —0274+G —0.322% B 2.1)

Simultaneously, the hue range of face skin color in YUV space is between 105° and 150°.
YIQ and YUYV color systems are synthesized to create a primary face skin-color model.
If an image meets the following conditions, 30 < I < 100, 105° < 6§ < 150°, then it is

considered as a skin color. The majority of studies use skin color for face detection based
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Figure 2.1: Haar features considered for feature extraction

on a fixed threshold scheme, which results in large errors due to illumination and pose vari-
ations. To obtain the actual face region that satisfies the face geometric pattern, an iterative
thresholding algorithm has been proposed [67]. However, due to it’s high computational
cost, it is unsuitable for real-time applications. Cho et al. [68] introduced an adaptive skin
color filter that uses a linear discriminant function to separate the skin region from a com-
plex background by adaptively adjusting the threshold values. To influence illumination
and pose variations, the gamma corrective method is used. Zhao-yi et al. [66] proposed
an adaptive skin color and structure model for multi-pose color images in a complex back-
ground that greatly improves accuracy while effectively ignoring the impact of illumination

levels.

2.1.3 Haar Classifier Method

In a real-time environment, the Haar classifier is considered as a reliable face detection
method [14]. Haar features are considered for detecting facial edges, motions, lines and
skin color. Haar features are a black and white connected rectangular box, that are used
for feature extraction, as shown in figure 2.1. Haar features are easily scaled, and positions
are examined by increasing or decreasing the pixel intensities at various parts of an image.
The value of the located feature is the difference between the sum of pixels in the black and
white regions of the rectangle box [69]. During the training phase, the Haar classifier de-

tects the features that contribute to face detection problems. As a result, the computational
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cost and complexity in the testing phase are reduced, resulting in a high detection accuracy.

2.1.4 Adaboost Method

The AdaBoost is an ensemble approach for face detection [70, 71] that is widely used due
to it’s improved accuracy and low computational complexity. It is a well-known face detec-
tion method that has a low false positive rate. Adaboost’s main limitation is it’s sensitivity
to noisy data and outliers [70]. To eliminate negative samples, a set of image features is
trained with several classifiers in cascade using Adaboost. The first classifier’s output will
be used as input to the next classifier, which will be used to obtain an accurate face region.
As a result, a strong classifier was created, which aids in reducing the number of features
and, as a result, results in high detection accuracy. Kheirkhah et al. [65] proposed a color
and complex image-based hybrid and robust face detection system. This hybrid method
uses both skin color information and Adaboost-based face detection and gives better per-

formance with minimum execution time.

2.1.5 Contour Points

Face detection using contour points improves accuracy [72, 73]. In an image sequence, the
first pixel of the first frame is scanned based on skin color, and that point is considered as
the head’s first contour point. In the same way, the remaining contour points in a frame
are computed. The pixel under consideration is referred to as the seed point. The contour
point’s direction is set with the identified seed point, and the detection path can be clock-
wise or anti-clockwise. Face motion is detected when there is a shift in two consecutive
frames in a sequence and a shift in contour points above a threshold [72]. Aniruddha et al.
[73] used a contour-based method to detect and track the human face in video frames. To
accomplish the task of getting proper face contour, logical operations and Gaussian filters
have been employed. To detect and track the face in an image sequence, the scalar and
vector distances of a rectangular window drawn from four corner points of two consecutive

frames are calculated.
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2.2 Feature Extraction

The techniques proposed for feature extraction in the literature can broadly be categorized
into hand-crafted features, learned features and hybrid features [74]. Hand-crafted features
are pre-designed for extracting relevant facial expressions, whereas, the learned features
are obtained by making use of deep neural networks. The hybrid features usually refer to
the features, obtained by combining two or more of the feature extraction methods [75].
The classification of feature extraction methods related to FER is shown in figure 2.2. In
the literature, the hand-crafted features are again categorized into geometric based and

appearance based features [17].

2.2.1 Hand-crafted Features

2.2.1.1 Geometric based Features

The geometric based approaches encode the locations, shapes, deformation, corners and
contour information of facial components for characterising the facial structure [26, 27, 76].
From the facial image, fiducial points were extracted by Zhang et al. [40] as landmark
points for extracting geometrical features, by modelling the shape and locations informa-
tion. Valstar et al. [41] proposed a method for tracking the facial landmark points and
for detecting the action units in a facial image. Based on these detected action units in an
image, the facial expressions can be recognized. In figure 2.3, an illustration of the geo-
metric information from facial landmarks in the characterization of facial images is shown.
Zangeneh et al. [77] considered the first and the last images and extracted differential ge-
ometric features from the important points of the face from those two images. Oztel et al.
[78] detected the keypoints from facial images by focusing on eye and eyebrows and gen-
erated a feature set by using geometric relationships among those detected key points. For
capturing the deformities caused by the movement of facial muscles due to various facial
expressions, Sharma et al. [79] proposed a system that utilized the facial landmark points
and generated three feature sets for determining the relative distances between the facial

features.

25



Feature Extraction

Hand-crafted
Features

N

Learned Features Hybrid Features

Geometric based Appearance based
Features Features
Holistic based Local based
Features Features
Texture based Edge based
Features Features

Figure 2.2: Classification of feature extraction techniques

Jain et al. [80] proposed Square Based Diagonal Pattern (SBDP) method on geometric
model called Geometric Appearance Models (GAM) for extracting in-depth information
from Red, Green, Blue - Depth (RGB-D) images. Chouhayebi et al. [81] detected the
facial landmarks using Dlib library and extracted geometric features by considering the
spatial positions between the landmarks. The features encoded by these geometric based
approaches can describe the entire face image using a lesser number of features, which are
scale and rotation invariant. Although, these geometric features represent facial geometry,
they fail to capture specific local information such as ridges, changes in skin texture etc.
These geometric based methods need accurate tracking and detection of facial landmarks,
which becomes difficult in different imaging conditions. Also, these geometric features
require additional pre-processing techniques for localizing various face components before

the process of feature extraction.

2.2.1.2 Appearance based Methods

In the literature, appearance based approaches are further classified into holistic (global)

based approaches [36, 37, 42] and local based approaches [11, 17, 28-35]. The appear-
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Figure 2.3: Illustration of the geometric information from facial landmarks in the
characterization of facial images for FER

ance based features represent the face image by applying image filters on the whole face
(global) or on specific regions (local) for extracting appearance variations (e.g. wrinkles,

skin changes) in facial images.

2.2.1.2.1 Holistic based Features

Holistic-based methods consider the face as a whole and do not explicitly divide the face
into sub-regions. Eigenfaces [36], Fisherfaces [37], LDA [42] and Information Discrim-
inant Analysis (IDA) [82] are some of the most widely used holistic based methods. As
these holistic based methods are aimed at representing a facial image globally, they are un-
suitable for capturing finer appearance changes corresponding to various facial expressions

[31].

2.2.1.2.2 Local based Features

LBP [46] is the most popular texture based method for facial feature extraction. LBP
is computationally efficient and is also invariant to changes in monotonic illumination.
In cases of intensity fluctuations, random noises, and non-monotonic illumination levels,
the feature extraction capability of LBP is affected [83]. The process of calculating LBP
code for a sample 3 x 3 image patch is shown in figure 2.4. Lai et al. [28] proposed

Center Symmetric Local Binary Pattern (CSLBP) for greatly reducing the feature vector

27



dimensionality of LBP. In CSLBP, appropriate threshold needs to be chosen in prior from
experimental analysis and the information related to center pixel is also neglected. Tong et
al. [84] proposed LGC in a 3 x 3 neighborhood by encoding the gradient information in
horizontal, vertical and diagonal directions for generating a feature vector. Kung et al. [85]
proposed Dual Non-negative Graph Embedding (DSNGE) for efficiently representing the
facial images using identity and expression subspaces. Sun et al. [86] presented Individual
Free Representation Based Classification (IFRBC) that utilized the concepts of Variation
Training Set (VTS) and Virtual VTS for remitting the side-effect caused by individual
variations. Arshid et al. [87] presented a method for FER by drawing inspiration from
compressive sensing theory and multi-resolution approach.

Arshid et al. [88] proposed Multi-Stage Binary Patterns (MSBP) for handling imbal-
ance and local illumination by considering both gradient difference and sign difference.
Verma et al. [89] proposed Quadrilateral Senary Bit (QUEST) Pattern for encoding the
intensity changes in a local neighborhood by dividing the surrounding pixels and reference
pixel into two quadrilaterals. Swapna et al. [90] proposed a system named *Anubhav’ for
extracting the features only from active salient patches, which carry expression specific
information. In Regional Adaptive Affinitive Pattern (RADAP) [17], an adaptive global
threshold is generated for capturing the global and local invariant features in the local
neighborhood. RADAP uses the multi-distance information for capturing the expression
specific changes. Also, XRADAP, ARADAP and DRADAP operators are obtained from
RADAP by performing Xor, Adder and Decoder operations respectively. Yang et al. [91]
proposed Center Symmetric Local Gradient Coding (CSLGC) by considering the direc-
tional gradients in four directions in a center symmetric manner and used the average of
the gradients for reducing the sensitivity to noise.

In Center Symmetric Local Octonary Pattern (CSLOP) [30], the gray value of neigh-
boring pixels is compared with center pixel, also the gray values of four pairs of center-
symmetric pixels is compared. By using CSLOP, feature vector length is greatly reduced
and avoids selecting any threshold for comparison unlike CSLBP. The gradient feature map
is obtained by finding magnitudes in the horizontal and vertical directions. To this gener-

ated feature map, CSLOP operator is applied for the purpose of feature extraction. The
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features obtained are then fused with CSLOP for enhanced performance. Kas et al. [92]
proposed Multi-level Directional Cross Binary Pattern (MDCBP) for texture recognition
by combining both multi-radius and multi-orientation information. Drawing inspiration
from human vision system, Sadeghi et al. [93] proposed a method for expression recogni-
tion based on gabor filters. Kumar et al. [94] proposed Weighted Full Binary Tree-Sliced
Binary Pattern (WFBT-SBP) for analyzing an RGB image based on inter-pixel similarity
patterns.

Kola et al. [57] proposed fusion of features obtained from singular values and Wavelet
Based Local Gradient Coding - Horizontal Diagonal (LGC-HD) operator for effective facial
expression recognition. Durga et al. [16] presented a new variant of LBP method named
Local Binary Pattern - Adaptive Window (LBP-AW) that considers four neighbors and di-
agonal neighbors separately in a local neighborhood and utilized the Adaptive Window con-
cept for extracting noise robust facial features. Subhadeep et al. [95] proposed Gammadion
Binary Pattern of Shearlet Co-efficients (GBPSC) for illumination and noise invariant face
recogntion. Arya et al. [58] proposed Local Triangular Coding Patterns (LTCP), which
utilizes a set of pixels in a triangular neighborhood for extracting texture features from an
image. Verma et al. [96] proposed Cross-Centroid Ripple Pattern (CRIP) for encoding the
image features by using inter radial ripples.

The main property of local edge based (dense) feature descriptors such as Local Di-
rectional Number (LDN) [31], Local Directional Texture Pattern (LDTP) [32], Local Di-
rectional Pattern (LDP) [97], Local Directional Ternary Pattern (LDTerP) [33], Local Di-
rectional Structural Pattern (LDSP) [34], Angled Local Directional Pattern (ALDP) [35]
are extracting the micro-edge level primitives present in the facial images due to the move-
ments of facial muscles. In the local neighborhood, these edge based methods apply Kirsch
compass masks [97] in the eight possible directions and measures the edge responses that
are prominent and encode a few numbers to those specific directions. In LDP [97], the in-
put image is convolved with Kirsch masks, and the top three values are assigned the value
as one. As Kirsch masks are operated on a local 3x3 neighborhood, the presence of noise
or intensity distortions in the local regions might affect the calculations of Kirsch value

responses, which in turn may lead to assigning different code values for the patterns which
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(a) (b) (c) (d) (e)

Figure 2.4: LBP code computation. (a) Sample 3 x 3 image patch (b) Thresholding (c)
Weighting (d) Binary to Decimal conversion (e) Computed LBP

are similar and also similar code values can be assigned to various different patterns. Also,
LDP cannot differentiate the changes in intensity on both the sides of an edge, which is
necessary for obtaining crucial information such as lower or upper edges of lip, wrinkles
and eyebrows etc. For overcoming this drawback, LDN [31] was proposed, which encodes
both the directions of top negative and positive Kirsch response values. Even after pre-
serving top 'k’ positive and negative Kirsch responses, LDN is still affected by the noise
prevalent in the local neighborhood.

Positional Ternary Pattern (PTP) [98] also encodes the directions based on the top two
Kirsch responses, however, PTP aims at differentiating pixels in a flat region based on a
pre-determined threshold and PTP fails for the images taken in various imaging and lighting
conditions. In LDTP [32], the principal directional numbers are obtained in eight different
directions and the difference in intensity values of opposing pixels in the principal direc-
tions is coded as numbers. Thus, LDTP uses both structural and contrast information for
generating feature codes. In LDTerP [33], ternary patterns are proposed for extracting the
emotion related features information and also a two-level grid was developed for differ-
entiating the finer and coarse features. The finer grids are employed for capturing highly
expression specific features and the coarser grids are employed for capturing features re-
lated to a non-expression. In the smoother portions of an image, both LDTP and LDTerP
generates unstable patterns.

At every pixel, Neighborhood Aware Edge Directional Pattern (NEDP) [10] generates

feature codes by considering the gradients at the neighbors with regard to the pre-defined
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Figure 2.5: Process of feature extraction through LDDSCP. Two groups of Kirsch
compass masks (a) first group (b) second group. Process of feature extraction through
LDDSCP (c) LDDSCP code computation.
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template orientations. In ALDP [35], the Kirsch responses are obtained by convolving an
input image with Kirsch masks. From these Kirsch responses, the angular vector compo-
nents in horizontal (0°), vertical (90°), diagonal(45°) and anti-diagonal (135°) directions are
calculated. In LDSP [34], the positional information of top two Kirsch mask responses is
computed for extracting the structural information of a local neighborhood. In this LDSP,
the top Kirsch response denotes the primary edge direction and the pixel’s structure is
denoted by the structural feature code. This LDSP uses a global adaptive threshold for
filtering out flat patterns, but the drawback is that threshold needs to be known in prior for
stable feature extraction.

Local Prominent Directional Pattern (LPDP) [15] considered the statistical information
in a local region for encoding meaningful edge based features despite some positional vari-
ations. Local Dominant Directional Symmetric Coding Patterns (LDDSCP) [99] have been
proposed for effectively encoding the dominant directions of facial textures. The process
of feature extraction using LDDSCP is shown in figure 2.5. In Local Optimal Oriented
Pattern (LOOP) [11], the Kirsch responses are sorted and the assignment of weights is
done as per the sorted responses, rather than using sequential weights. Maheswari et al.
[100] proposed Local Directional Maximum Edge Patterns (LDMEP) that considered only
the dominant magnitude and orientation directions information for better extracting facial

information.

2.2.2 Learned Features

Most recent works in FER are aimed at applying deep learning based techniques for accu-
rately classifying the images into various expressions. Aneja et al. [56] proposed Deep-
Expr, a transfer learning technique to map expressions from humans to animated characters.
Hasani et al. [20] developed a 3D inception-resnet network for capturing the spatial and
temporal relationships in the static images and videos. Li et al. [55] proposed Deep Local-
ity Preserving Convolutional Neural Network (DLPCNN) to preserve the locality closeness
by maximizing the inter-class scatters. Ji et al. [101] proposed a fusion network based on
intra category common and distinctive feature representation. Xie et al. [102] presented the

Deep Attentive Multi-Path Convolutional Neural Network (DAMCNN), which combines
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Salient Expression Region Descriptor (SERD) with the Multi-Path Variation Suppressing
Network (MPVS-Net).

Wu et al. [103] proposed Adaptive Feature Mapping (AFM) for transforming the fea-
ture distribution of testing samples into that of training samples. Zhao et al. [104] proposed
an instance based transfer learning approach with multiple feature representations. Feutry
et al. [105] proposed a framework to learn anonymized representation of statistical data.
Minaee et al. [106] proposed Attentional Convolutional Network (ACN) model with less
than ten layers for classifying emotions from facial images. Sun et al. [107] adopted
Dictionary Learning Feature Space (DLFS) for training and Sparse Representation Clas-
sification for finding the emotion of query images. Verma et al. [108] proposed variants
of Hybrid Inherited Feature Learning Network (HiNet) for capturing the local contextual
information of expressive regions. Alenazy et al. [109] applied Gravitational Search Algo-
rithm (GSA) for optimizing the parameters in Deep Belief Network (DBN). Li et al. [110]
presented a framework based on Reinforcement Learning (RL) that contains two modules
namely image selector for selecting useful images and a rough emotion classifier module
that acts like a teacher for training image selector.

Xie et al. [111] proposed two branch Disentangled Generative Adversarial Network
with two independent branches for processing facial and expressional information seper-
ately. Li et al. [110] used RL for selection of relevant images for expression classification.
Mohan et al. [112] proposed Facial Expression Recognition-Network (FER-net), an CNN
for efficiently extracting the features from facial regions and the features extracted are
passed on to the softmax classifier for identifying facial expressions. Saurav et al. [113]
proposed Dual Integrated Convolutional Neural Network (DICNN) model for recognizing
‘in the wild’ facial expressions on embedded platform. Reddy et al. [114] proposed Deep
Cross Feature Adaptive Network (DCFA-CNN) for extracting both high level responses as
well as minute variations from a facial image. Chirra et al. [115] proposed a deep multi
block CNN based ensemble method for extracting features from stylish, virtual and human
characters. Fan et al. [116] proposed Hierarchial Scale CNN for extracting the informa-
tion from kernel, network and knowledge scales. There are other existing CNN based

techniques proposed recently like Visual Geometry Group (VGG) [22], Principal Compo-
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nent Analysis Network (PCANet) [117], Residual Network (ResNet) [118], Self Adaptive
Feature Learning (SAFL) [119], Image Filter based Subspace Learning (IFSL) [120] and
Auxiliary Classifier Generative Adversarial Network (AC-GAN) [121] that have shown

significant improvements in the field of FER systems.

2.2.3 Hybrid Features

Happy et al. [126] extracted both the shape (Pyramid of Histogram of Oriented Gradi-
ents (PHOG)) and appearance features (LBP) from the active facial patches. Majumder
et al. [39] proposed a deep learning based hybrid method by combining geometric fea-
tures with LBP features using autoencoders for improving the FER performance. Farooq
et al. [127] extracted one dimensional R-transform features along with Self-Organizing
Map (SOM) model on time sequential facial images. Ali et al. [122] presented a method
based on Histogram of Oriented Gradients (HOG) algorithm characteristics and Sparse
Representation based Classifier (SRC) for classifying the facial expressions with poses.
Kalsum et al. [124] proposed a hybrid feature descriptor method by combining Spatial Bag
of Features (SBoFs) with Scale-Invariant Feature Transform (SIFT) features and SBoFs
with Speed Up Robust Transform (SURF) features. In table 2.1, summary of some feature
extraction methods related to FER have been presented.

Wang et al. [125] proposed a hybrid feature representation by combining both SIFT
and deep features and utilized SVM for classification. Javad et al. [128] presented a multi-
stream CNN along with three hand-crafted features for improving the performance of FER
with limited training data. Sen et al. [129] presented an idea of combining both texture
based and geometric based features and utilized Directed Acyclic Graph Support Vector
Machine (DAGSVM) for classifying the facial expressions. Li et al. [130] proposed a
new set of salient patterns at facial key point locations and extracted both geometric and
textural features for performing facial expression classification. Jeong et al. [131] proposed
Deep Spatio Temporal Network (DJSTN) by combining both appearance and geometric
networks with joint fusion classifier. Wang et al. [132] presented Multi-parameter fusion
feature Space (Multi-block LBP and HOG features) for representing the facial expressions

and also used a Decision Voting strategy (MSDV) based on Nearest Neighbor classifier for
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predicting the facial expressions.

Gogic et al. [133] proposed an algorithm by combining gentle boost decision trees
for extracting local binary features around facial landmark points and used shallow neural
networks for classification. Shanthi et al. [134] demonstrated an approach for analyzing
the relation between the adjacent pixels and proposed a feature level fusion technique that
combined both LBP and Local Neighborhood Encoded Pattern (LNEP). Liu et al. [135]
proposed a hybrid feature extraction network by combining both the pixel level features
and deep geometric features for enhancing the discriminating power of emotional features.
For extracting discriminative facial features, Liu et al. [136] proposed a hybrid facial fea-
ture representation method by combining PHOG, Canny edge detector and LBP methods.
Kalsum et al. [123] proposed fusion of global (HOG) and local based feature descriptors

(Local Intensity Order Pattern (LIOP)) for facial emotion recognition.

2.3 Information Fusion in Biometrics

Biometric fusion is the processing of biometric modalities using several methods. Mullti-
Biometric Systems (MBS) are categorized into six types namely multi-instance, multi-
sample, multi-sensor, multi-algorithm, multi-modal & hybrid systems [137]. In multi-
instance, multi-sample, multi-sensor and multi-algorithmic fusion, a single biometric is
used for fusion. In multi-modal systems, multiple biometric modalities are used for fusion.
Multiple instances of the same biometric data are used for fusion in multi-instance systems.
In multi-sample systems, several samples of the same modality captured at different times
are fused together (e.g., left, right and frontal profiles of a face). In multi-sensor systems,
data collected from multiple sensors are fused together. Different algorithms are employed
to extract features from a single biometric modality and the information from all the desired
feature sets are fused together in multi-algorithm systems (e.g., fusion of texture related
features + geometric based features for FER). In multi-modal systems, the data obtained
from several modalities are fused together [138]. Chang et al. [139] used the term ‘hybrid’
for describing systems that integrate a subset of the five types of MBS. For example, a

hybrid system can be both multi-algorithmic as well as multi-modal in it’s design.
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Fusion can be performed at various levels such as sensor level, feature level, decision
level or score level [138]. If fusion is performed prior to matching, then it is known as
early fusion. If fusion is performed after matching, then it is known as late fusion [137].
Sensor level and feature level fusion comes under early fusion, whereas, decision level and
rank level fusion comes under late fusion. The studies from the literature reveal that feature

level fusion provides better recognition accuracy than other levels of fusion [140].

2.4 Classifiers

2.4.1 Support Vector Machine

SVM is a Machine Learning (ML) algorithm mainly used for classification / regression
problems [17, 141]. In between two classes, SVM attempts to find an optimal hyperplane
that maximizes the inter-class distance [142]. The main strength of SVM lies in handling
complex non-linear data and being robust to overfitting. Suppose {(M,,N)), I=1,....,q} be the
labelled training instances, for M, € F¥ N, € { — 1, +1}, where F" be the feature vector
corresponding to each expression. A new query (test) image () is classified using eq.(2.2)

as:

Q(B) = sign(Y _ cu N X(M;, B) + ¢) (2.2)
=1

where, X(:, :) corresponds to a kernel function, «; corresponds to Lagrange’s multipli-

ers, and ¢ corresponds to the bias parameter.

2.4.2 K-Nearest Neighbor

KNN [143-145] is an instance-based learning algorithm that performs classification or re-
gression using a non-parametric technique. The training data is made up of vectors in a
multidimensional feature space, each labelled with a class. The algorithm’s training phase
consists solely of storing these feature vectors and the classes to which they belong. The
classification step predicts an input feature or set of features by assigning the class with

the closest features to the input. Euclidean Distance (ED) and Hamming Distance (HD)
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are the two popular distance metrics for determining which features are closest features to
the input [146]. The main strength of KNN lies in the simplicity of implementation and
in quick training. However, it necessitates a large amount of storage space, testing is slow,
sensitive to noise and performs poorly with high-dimensional data. Another issue with this
classification / regression approach is that unbalanced classes can lead to inaccurate pre-
dictions (classes with more samples usually dominate the predictions, even if incorrectly).

Setting class weights is one solution to this problem.

2.4.3 Naive Bayes

Naive Bayes (NB) classifiers [147—-149] are a family of probabilistic ML classifiers, based
on the Bayes theorem that assumes strong independence between the features. The follow-
ing equation expresses the Bayes theorem:

P(B]A)(A)

P(AIB) = =55

(2.3)
The equation used to calculate the likelihood of event A occurring given that B is true is
shown in eq.(2.3). However, because these classifiers assume that features are indepen-
dent, the NB classifier will not correlate features when making a prediction in an FER
system. This is undesirable because there are obvious correlated features when making
facial expressions, such as when one is surprised, where the mouth and the eyes are clearly
correlated. However, the benefits of this classifier lies in simple implementation and it’s

ability to scale well for large datasets.

2.4.4 Hidden Markov Model

The Hidden Markov Model (HMM) [150-152] is a probabilistic model capable of pre-
dicting a sequence of unknown variables based on a set of observed variables. In an FER
system, for example, this would imply predicting happiness (hidden variable) based on a
smile (observed variable). The strength of this classifier is it’s ability to model arbitrary

features from observations, it’s ability to merge multiple HMMs to classify more data, and
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it’s incorporation of prior knowledge into the model. This classifier, however, is computa-

tionally expensive and suffers from overfitting.

2.4.5 Decision Tree

As a classifier, Decision Tree (DT) [87, 153, 154] is essentially a flowchart represented as
a tree model. An DT classifier divides the database into smaller sets of data until no more
splits are possible, and the resulting leaves are the classification classes. This classifier’s
strength include the ability to learn nonlinear data relationships, the ability to handle high-
dimensional data, and the ease of implementation. The main drawback of this classifier is
overfitting, because it can continue branching until it memorises the data during the training

step.

2.4.6 Random Forest

Random Forest (RF) [155—-157] is essentially an ensemble classifier, consisting a group of
DTs. Each DT produces a prediction, and the final prediction is based on majority voting,
which means that the most predicted class is the last prediction. It has the advantage of
reducing overfitting over just one DT, because, it reduces bias by averaging the ensemble
predictions. RF, however, has the disadvantage of becoming slower as it’s complexity

increases (e.g., by adding more DTs to the ensemble).

2.4.7 Sparse Representation Classifer

SRC [122, 158] constructs a dictionary from training facial images, with dictionary ele-
ments corresponding to facial Action Units (AU). If there are enough training samples for
each AU class, the test AU can be represented as a linear combination of only those training
samples that belong to the same AU class. Facial image differences [159], Gabor wavelet
coefficients [160] and other facial representation features [161] could be used to define the
dictionary in a variety of ways. Typically, the SRC is designed for AU detection in sub-
regions of the facial image or in facial difference images. Sparse representation could be

carried out in a robust manner that is resistant to partial occlusions.
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2.4.8 Convolutional Neural Network

CNN is a type of neural network that is primarily used in Computer Vision (Deep Learn-
ing (DL)) due to it’s ability to solve multiple image classification problems [102, 110].
CNN’s can even outperform humans in some of these tasks because they can detect and
identify underlying patterns that the human eye cannot detect. An input image is processed
by the CNN’s hidden layers, which decompose it into features. These features are then
used for classification, typically via a Softmax function that selects the class with the high-
est probability from the probability distribution as the predicted class. Different problems
require different CNN models and need fine- tuning techniques to achieve a high classifica-
tion accuracy. This is mainly caused due to over-fitting / under-fitting problem. Over-fitting

and under-fitting problems can be solved by using various ways:

By adding more layers to increase the model complexity.

* By using dropout layers [162] to randomly disable a set of nodes during training to

avoid the model memorising patterns rather than learning them.

* By tuning the model’s parameters during training, such as epochs, batch size, learn-

ing rate, and class weight etc.

* By increasing the training data set by adding more samples by using Data Augmen-

tation (DA) techniques.

* Transfer Learning (TL) can be used when the database is too small. TL employs a
pre-defined model that has already been trained on a large database, and it can be

fine-tuned for it’s own classification problem using a smaller database.

2.5 Summary

In this Chapter, the existing techniques proposed for face detection, feature extraction and
classification have been presented. Also, the various types of fusion in biometrics has been

reported. Based on the literature studies, the edge based methods were prone to be less
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discriminating for different image regions, and in smoother regions of an image, the edge
based approaches tend to generate unstable patterns. In the presence of noise, the edge
based descriptors are strongly inconsistent and are often influenced by minor local distor-
tions. In general, the output of an CNN, i.e., the feature response maps of the last layer,
will be considered as the high-level semantic concept for representing the input. However,
majority of the existing CNN based FER methods only extract the features from the entire
facial image. These methods emphasise the importance of a facial expression while ignor-
ing the information about the local details. In other words, traditional CNN based methods
may not fully exploit the recognition-effective information encoded in expressional images.
Also, the number of training images, batch size, image size, learning rate and number of
model parameters have a significant impact on the performance of a neural network.

In this thesis, face detection is done using Viola Jones method. As benchmark ‘in
the lab’ FER datasets contains less number of images, the data available for training in
those datasets is limited. In facial expressions, the difference between two expressions is
too small, and it is essential to to capture those finer appearances properly for accurate
expression recognition. From the literature, local texture based approaches have proven to
be useful for extracting such minute details from the facial images. Hence, in this thesis,
the texture based feature descriptors have been proposed for extracting significant features
from the local facial regions that are discriminative for expressional recognition. For the
purpose of classification, a multi-class SVM classifier has been considered, as SVM is
the most widely classifier in the field of ML and pattern recognition. In this thesis, for
Chapters 3 and 4, a multi-class classifier model employing «y (v — 1)/2 binary SVM models
with One Versus One (OVO) approach and linear kernel function has been followed, where
~ corresponds to the total number of classes. For Chapters 5 and 6, a multi-class SVM with
both OVO and One Versus All (OVA) approaches and linear kernel function have been

followed.
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Chapter 3

Chess Game Rules Inspired Feature

Descriptors

A brief introduction about feature extraction techniques and the importance of appearance
based methods is mentioned in section 2.2.1.2. The main contributions of this Chapter are

summarized as:

* CP, a game rules based feature descriptor has been proposed with an intention to
capture significant facial features in a local neighborhood by aiming to generate dif-

ferent feature codes for corner, edge and flat image regions.

* Inspired by the Knight’s tour problem in graph theory, new feature descriptors named
Knight Tour Patterns (kTP and KTP) have been proposed for extracting the facial

features in a local neighborhood.

* To the proposed feature descriptors, apart from binary weights, different weights
such as fibonacci, prime, natural, squares and odd have been applied to determine

the optimal recognition accuracy.

A brief description about the chess game is presented in section 3.1. In section 3.2
CP, a game rules based feature descriptor has been discussed. In section 3.3, kTP and

KTP, inspired by the Knight tour in graph theory have been described in detail. In section

42



3.4, the experimental results corresponding to CP, kTP and KTP have been presented and

analyzed. In section 3.5, the contributions in this Chapter have been summarized.

3.1

Chess Game

Chess is generally a two-player game played on a 8 x 8 chessboard with 64 squares of

alternating colors. In a chess board, the light colored squares correspond to the ‘white” and

dark colored squares correspond to the ‘black’. The horizontal and vertical rows in a chess

board are called as ranks and files respectively. There are sixteen pieces from six types

available for each player. Each piece in a chess board moves in a distinct way. The moves

of each piece are described below.

King — A King can move exactly one square in vertical, horizontal or diagonal

directions as long as no piece is blocking his path.

Queen — A Queen can move any number of vacant squares in vertical, horizontal or

diagonal directions.

Rook — A Rook can move any number of vacant squares in vertical or horizontal

directions.

Bishop — A Bishop can move any number of vacant squares in diagonal directions

only.

Knight — A Knight can jump to any square in ‘L’ shape either by moving two squares
vertically and one square horizontally (or) by moving two squares horizontally and
one square vertically. It is the only piece that can jump over a piece (either our own

or opponent’s).

Pawn — If a square is vacant, a Pawn moves one square straight forward. A Pawn
can also advance two squares straight forward if it hasn’t moved yet, as long as both

squares are empty.

Among these six chess pieces, only the moves of Rook, Bishop and Knight are considered

in this thesis. In general, Rook corresponds to Elephant, Bishop corresponds to Camel and
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Piece | King | Queen | Rook | Bishop | Knight | Pawn

Figure 3.1: Six types of black and white chess pieces available in a chess game

Knight corresponds to Horse. In figure 3.1, the six types of ‘black’ and the ‘white’ chess

pieces are shown.

3.2 Chess Pattern

The Chess Pattern (CP) was initially proposed by Tuncer et al. [163] for texture recognition.
CP is a local texture based image descriptor, which is based on the movements of chessmen
such as Rook, Bishop and Knight in a 5 x 5 neighborhood. Motivated by it’s success in the
field of texture recognition, the same CP methodology has been adopted into the field of
biometrics, towards addressing the PI FER problem. Instead of using 3 x 3 neighborhood,
the proposed CP considers 5 x 5 neighborhood in an image. A sample representation of a
5 x 5 block (B) at a pixel location (y,z) is shown in eq.(3.1). The center pixel in 5 x 5 block
is denoted by pixel (p), is shown in eq.(3.2).

Y, 2
y+1,2
y+2,z
y+3,2

y+4,z

Y,z +1
y+1,2+1
y+2,2+1
y+3,z2+1
y+4,2+1

Yy, 2+ 2
y+1,242
y+2,242
y+3,2+2
y+4,242

Y,z +3
y+1,243
y+2,2+3
y+3,2+3
y+4,24+3

Pe = By+2,z+2
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Y,z +4
y+1,2+4
y+2,24+4
y+3,z2+4

y+4,2+4

3.1

(3.2)

In a 5 x 5 neighborhood, with reference to the pixel (p.), the possible positions where



(b)

Figure 3.2: (a) The represented chessmen on the 5 x 5 block (b) CP obtains features using
the numbering scheme given to these chessmen

Rook, Bishop and Knight could move are determined and are systematically shown in
figure 3.2(a). In figure 3.2, to maintain consistency with chess game terminology, Rook,
Bishop and Knight are denoted by r, b and k respectively. Initially, the possible positions
of Rook, Bishop and Knight are determined in the 3 x 3 neighborhood, followed by the 5
x 5 neighborhood. The possible positions are named sequentially in a clockwise manner,
starting from the north direction, as shown in figure 3.2(b). The existing feature descriptors,
such as LBP, LDP, LDN and PTP generates the same feature codes for corner, edge and
flat image regions. To overcome this particular drawback, CP, a local feature descriptor has
been proposed for facial feature extraction. CP method has been modelled by considering
neighborhood pixel relationship for extracting Rook, Bishop and Knight features and by
considering the adjacent pixel relationship for extracting Rook_Knight, Rook_Bishop and

Bishop_Knight features.

3.2.1 Feature Extraction through CP

Feature extraction includes extracting six patterns based on the positions of Rook, Bishop
and Knight in a 5 x 5 neighborhood. The movements of Rook captures both vertical
and horizontal texture information, whereas Bishop captures the diagonal information and
Knight captures the information from the remaining leftover pixel positions. The pixel po-

sitions corresponding to the moves of Rook, Bishop, Knight, Rook _Knight, Rook_Bishop,
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Figure 3.3: The possible positions where (a) Rook (b) Bishop (c¢) Knight (d) Rook _Knight
(e) Rook _Bishop and (f) Knight_Bishop are placed in a 5 x 5 block

Knight_Bishop in a 5 x 5 neighborhood are shown in figure 3.3. As the positions of three
chessmen (Rook, Bishop, Knight) are considered, the features are extracted using the fol-
lowing formula of 3C; + 3C, = 6. The first three features extracted are: Rook, Bishop and
(p.) for extracting Rook, Bishop and Knight features respectively. If the result is greater
than or equal to zero, then the corresponding bit is encoded as one, else it is encoded as
zero. The resultant binary number thus formed is multiplied by weight vector (wy). The
corresponding equations for calculating Rook, Bishop and Knight features are shown in the

eqs.(3.3) to (3.6).

8
Rook = (s(ri, pe) * wy) (3.3)

i=1

1, ifu—v>0
s(u,v) = (3.4)

0, otherwise
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LBP 00111000
LDP 00010011

LDN 011110
PTP 01100110

(c) Flat

Rook = 10011001
Bishop = 10000000
Knight= 10001000
Rook_Knight = 11011001
Rook_Bishop = 11011101
Knight_Bishop = 01001111

Rook = 10011101
Bishop = 10001000
Knight = 10011100

Rook_Knight = 01011111
Rook_Bishop = 11011001
Knight_Bishop = 00011110

Rook = 10010001
Bishop = 1000000
Knight= 00001110
Rook_Knight = 11010001
Rook_Bishop = 11011111
Knight_Bishop = 01101111

(9)

(h)

(i)

Figure 3.4: Example for drawbacks of existing feature descriptors. Same feature codes are
generated for (a) corner (b) edge (c) flat regions. (d-f) Kirsch responses for patterns (a-c)
(g-1) Proposed CP generating almost different codes for different edge patterns (a-c)
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Bishop = (s(bs, pe) * w.) (3.5)

Knight = (s(ki, pe) * wa) (3.6)
i=1
8
Rook_Knight = Z(s(m, ki) * w,) (3.7)
i=1
8
Rook_Bishop = Z(s(ri, b;) * wy) (3.8)
i=1
8
Knight_Bishop = Z(s(ki, b;) * wy) 3.9

i=1

Next, the features are calculated by combining two chessmen. So, the combinations of
Rook_Knight, Rook_Bishop and Knight Bishop features are considered. Here, the num-
bered pixels in the first chessmen are compared with the numbered pixels of second chess-

men, rather than comparing with pixel (p.). Thus, Rook_Knight feature is obtained by

,,,,,,,,

3ees

(33}

If the result is positive, then the corresponding bit is encoded as one, else it is encoded as
zero. The resultant binary number thus formed is multiplied by wy. Finally, the feature
vector of CP is obtained by horizontally concatenating the features obtained from all the
six extracted features. Usually, binary weights are used in the calculation of feature vector.
Hence, the feature vector length corresponding to CP is 1536 (256 x 6 = 1536). The fea-
ture codes generated by the existing methods such as LBP, LDP, LDN, PTP and proposed
method, CP for different image portions such as corner, edge and flat are shown in figure
3.4. From the figure 3.4, an observation can be made that, two feature codes are common
between 3.4(g) and 3.4(h). Similarly, there is one feature common between 3.4(g) and
3.4(1). The existing methods generate only a single feature code, whereas, CP method gen-

erates six features. By generating more features, the different regions of an image can be
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(a) (b) (c) (d) (e) () (9)

Figure 3.5: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) Rook (c) Bishop (d) Knight (e) Rook _Knight (f) Rook Bishop and (g)
Knight Bishop features using binary weights.

easily distinguished. But, accommodating six features increases the feature vector length.
With an intention to maximize recognition accuracy and to effectively reduce the feature
vector length of CP, different weights such as fibonacci [164], prime, natural, squares and
odd weights have been applied to the CP method, which are discussed in the subsection

3.2.2.

x = {binary, fibonacci, prime, natural, squares, odd} (3.10)
binary = [128, 64, 32, 16, 8, 4, 2, 1] 3.11)
fibonacci = [21, 13, 8, 5, 3, 2, 1, 1] (3.12)
jm“ime:[197 17, 13, 11, 7, 5, 3, 2] (3.13)

natural:[& 7, 6, 5, 4, 3, 2, 1] (3.14)
squares = [64, 49, 36, 25, 16, 9, 4, 1] (3.15)
odd =15, 13, 11, 9, 7, 5, 3, 1] (3.16)

3.2.2 Different weights for feature extraction

Whenever, binary weights are used for feature extraction, the feature vector length is in-
creased drastically. As feature vector length increases, the number of comparisons required
and the computation time required also increases and feature reduction needs to be done for

selecting the best features. So, instead of proposing a feature descriptor with high dimen-
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Table 3.1: Different weights considered for feature extraction

Weights | Range | Maximum value | Length(fv)
Binary 0-255 255 256
Fibonacci | 0-54 54 55
Prime 0-77 77 78
Natural 0-36 36 37
Squares | 0-204 204 205
Odd 0-64 64 65

sions, and then applying feature reduction techniques, an alternative can be thought of to
extract features with low dimensions. Based on this idea, different weighting schemes such
as using fibonacci [164], prime, natural, squares and odd weights have been proposed and
applied to CP method for facial feature extraction, which are shown in eqs.(3.10) to (3.16).
Thus, wy can take any one of the weight values among binary, fibonacci, prime, natural,
squares and odd. Whenever, binary weights are used for feature extraction, the maximum
possible value in calculation of feature vector is 255. Alternatively, whenever, fibonacci,
prime, natural, squares and odd weights are used for feature extraction, then maximum
possible values are 54, 77, 36, 204 and 64 respectively. The different weighting schemes
considered for feature extraction with their range, maximum value and feature vector (fv)
length is shown in table 3.1. Thus, by using fibonacci, prime, natural, squares and odd
weights, the feature vector length gets reduced by 78.51%, 69.53%, 85.54%, 19.92% and
74.61% respectively with reference to binary weights. In figure 3.5, feature response maps
generated by Rook, Bishop, Knight, Rook_Knight, Rook_Bishop and Knight Bishop fea-

tures using binary weights is shown.

hist, = Hist(Rook) (3.17)
hist, = Hist(Bishop) (3.18)
histy, = Hist(Knight) (3.19)

hist, , = Hist(Rook_Knight) (3.20)
hist,, = Hist(Rook_Bishop) (3.21)
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Algorithm 3.1 Feature Extraction through CP

Input: An Input image (Img) of size N x N
Output: Feature vector (fv,,) of size [(N-4)/C]| * [(N-4)/C] * 6 * L
1: procedure CP(Img)

2: Initialization: Rook, Bishop, Knight, Rook_Bishop, Rook_Knight, Knight_Bishop
—~{}
3: Load an input image
4: for all a € range(1,N-4) do
5: for all b € range(1,N-4) do
6: Block = img(a:a+4,b:b+4)
7: Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
8: Calculate six features using the eqs.(3.3) to (3.9).
9: end for
10: end for
11: Create six feature response maps from six features by reshaping them to (N-4) x
(N-4).
12: Each feature response map is partitioned into C x C non-overlapping blocks.
13: Histograms are extracted block wise from all the feature response maps using
eqs.(3.17) to (3.22).
14: Concatenate all histograms to obtain feature vector fv,, using eq.(3.23).
15: return fu.,

16: end procedure

histy, = Hist(Knight_Bishop) (3.22)
fvep = hist, U histy U histy U hist, j, U hist, , U histy (3.23)

Six feature response maps are created from the extracted six features. Research sug-
gests that block wise feature extraction boosts up recognition accuracy [17]. Following the
same, each feature response map is then partitioned into C x C non-overlapping blocks.
Next, block wise histogram features are extracted from each of these six feature response
maps, as shown in eqs. (3.17) to (3.22). Hist(.) corresponds to the histogram extraction
function. hist,, hist,, histy, hist, y, hist, ,, histy, are the block wise histograms of Rook,
Bishop, Knight, Rook_Knight, Rook_Bishop, Knight Bishop respectively. U represents
concatenation operation and the final feature vector corresponding to CP (fv,) is formed
by concatenating all the histograms obtained from each of the six feature response maps, as
shown in eq.(3.23). The algorithm for CP is demonstrated in algorithm 3.1. For an input

image of size N x N, the computational complexity of the proposed CP method is O(N?).
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The value of ‘L’ in algorithm 3.1 depends on wy used for feature extraction. After feature
vector generation, for the purpose of classification, a multi-class SVM classifier with a lin-

ear kernel is employed for classifying the query images into various expressions.

3.3 Khnight Tour Patterns

3.3.1 Khnight’s Tour

In a ‘n x n’ chess board, a Knight’s tour is defined as the series of moves taken by the
Knight for visiting every square exactly once [165]. As per chess game rules, a Knight can
jump to any square in ‘L’ shape either by moving two squares vertically and one square
horizontally (or) by moving two squares horizontally and one square vertically. In graph
theory, finding the Knight tour is an example of the Hamiltonian path problem [166]. In
general, there are two kinds of solutions to the Knight’s tour problem namely the closed
and the open knight tours [167]. If the last square visited by the Knight is reachable from
the first square with a single Knight’s move, then the Knight’s tour is said to be closed. A
Knight’s tour in which every square is visited exactly once, but without being able to return
to the first square in a single Knight’s move is known as the open Knight’s tour. Ina ‘n x n’
chess board, the number of knight tours depend on the position at which the Knight starts.
The variants of Knight tour problem involves the chess boards of different sizes rather than
traditional 8 x 8 chess boards.

Inspired by the Knight tour problem in graph theory, novel local texture based feature
descriptors named Knight Tour Patterns (kTP and KTP) have been proposed for facial
feature extraction. Based on the Knight’s moves, kTP and KTP are proposed for extracting
facial features in 3 x 3 and 5 x 5 neighborhoods respectively. In a 3 x 3 neighborhood,
a Knight can cover only the neighboring pixels and can never reach the center pixel (p.),
by starting from any index. Hence, the series of Knight moves on the neighboring pixels
are considered for feature extraction through kTP. Indexes in a 3 x 3 block are shown in
figure 3.6(a). Sample 3 x 3 block with names given to neighboring pixels and center pixel,

is shown in 3.6(b). In a 3 x 3 block also, the pixels surrounding the pixel p. are named as
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(b) (d)

Figure 3.6: (a) Sample 3 x 3 block with indexes (b) Sample 3 x 3 block with names given
to neighboring pixels and center pixel. Numbering is given for sequence of pixels
considered for feature extraction through (c) kTP, (d) kTP,

(a) (b)

Figure 3.7: (a) Indexes in a 5 x 5 block (b) Number of possibilities of 5 x 5 Knight tour
based on starting index

per chess game rules. The four-neighbors (ry, 15, 13 and r4) logically correspond to Rook
positions and the diagonal neighbors (b, b,, b3 and b,) correspond to the Bishop positions.
Indexes in a 5 x 5 block are shown in figure 3.7(a). In a 5 x 5 neighborhood, there are many
Knight tours possible based on the starting index, as shown in figure 3.7(b). If the Knight’s
initial move starts at index (1, 1), then 304 Knight tours are possible. Similarly, there are
56 and 64 Knight tours possible, if the initial Knight move starts at indexes (2, 2) and (3, 3)
respectively. One among many such possibilities of Knight tour in a 5 x 5 neighborhood,
where the initial move starting at index (1, 1) and ending at the index of pixel p. (3, 3), has
been chosen for feature extraction through KTP. The process of feature extraction through

kTP is mentioned in subsection 3.3.2 and that of KTP is mentioned in subsection 3.3.3.
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3.3.2 Knight Tour Pattern (kTP) Feature Extraction

kTP extracts two features namely kTP, and kTP, based on Knight moves in a 3 x 3 neigh-
borhood. Starting at an index (1, 1) in a 3 x 3 neighborhood, a Knight can jump in ‘L’ shape

either in horizontal or in vertical directions.

3.3.2.1 KTP; Feature Extraction

For feature extraction through kTP, starting from index (1, 1), initially, the Knight move
in horizontal direction is considered. Generally, the neighboring pixels are compared with
pixel p., for capturing discriminative information in a local neighborhood [46, 163]. Fol-
lowing the same methodology, in the proposed kTP method, the pixels visited based on the
Knight moves are sequentially compared with pixel p, as shown in eq. (3.24) and in figure
3.6(c). The Knight moves considered for feature extraction through kTP; are as follows:
(by 1, = by = 1] = b3y = 14, = by — 13). Upon comparison with the pixel p., an eight
bit binary sequence is obtained which is then multiplied with the weight matrix (wp,), as
shown in eq.(3.25). In image processing applications, binary weights are generally used
for feature extraction. For kTP, method, apart from using binary weights, other weights
such as fibonacci, prime, natural, squares and odd have been utilized for determining the
optimal recognition accuracy. The equations corresponding to different weights have been
shown in eqs.(3.26) to (3.32). The weights considered in eqs.(3.11) to (3.16) are in a decre-
mental manner whereas the weights considered in eqs.(3.27) to (3.32) are in an incremental

manner.

kTPa = {S(b17p0)7 S(TQapc)v S(b4vpc)7 S(Tlapc)a 5(637pc)7 S(T4apc)7 S(anpc)> S(Ti’:apc)}

(3.24)

ETPy =) (KT P, % wy) (3.25)

m = {binary, fibonacci, prime, natural, squares, odd} (3.26)
binary = |1, 2, 4, & 16, 32, 64, 128] (3.27)
fibonacci = [1, 1, 2, 3, 5, 8, 13, 21} (3.28)
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(a) (b) (c)

Figure 3.8: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) kTP, and (c) kTP, using binary weights.

p?“imGZ[Q, 3.5, 7. 11, 13, 17, 19] (3.29)
natural = |1, 2, 3, 4, 5, 6, T, §] (3.30)
squares = |1, 4, 9, 16, 25, 36, 49, 64] (3.31)
odd:[l, 3,5 7 9, 11, 13, 15} (3.32)

3.3.2.2 KkTP, Feature Extraction

For feature extraction through kTP,, starting from index (1, 1), initially, the Knight move in
vertical direction is considered, as shown in figure 3.6(d). The Knight moves considered
for feature extraction through kTP, are as follows: (b;y - 13 - b, - 14 = b3y -1 —
by — 1;). Upon comparison with the pixel p., an eight bit binary sequence is obtained
which is then multiplied with the weight matrix (wy,), as shown in eqs.(3.33) and (3.34).
For kTP, method also, apart from using binary weights, other weights such as fibonacci,
prime, natural, squares and odd have been utilized for determining the optimal recognition

accuracy.

kTPb - {S(blapc)7 S(T?)apc); S<b27pc)7 S(T4apc)7 S<b37pc)7 S(prc)a S(b4apc)7 S<T27pc)}
(3.33)
KTPy =Y (KT Py. % wy) (3.34)

Two feature response maps are created from the extracted two features. Then, each

feature response map is partitioned into C x C non-overlapping blocks. Next, block wise
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histogram features are extracted from each of these two feature response maps, as shown
in eqs. (3.35) and (3.36). histyrp, and histerp, are the block wise histograms of kTP,
and kTP, respectively. The final feature vector corresponding to kTP (fvyrp) is formed by
concatenating all the histograms obtained from both of feature response maps, as shown in
eq.(3.37). The algorithm for kTP is demonstrated in algorithm 3.2. For an input image
of size N x N, the computational complexity of the proposed kTP method is O(N?). The
value of ‘L in algorithm 3.2 depends on the weight vector w,, used for feature extraction.
In figure 3.8, feature response maps generated by kTP, and kTP, using binary weights is

shown.

Algorithm 3.2 Feature Extraction through kTP

Input: An Input image (Img) of size N x N
Output: Feature vector (fvirp) of size [(N-2)/C]| * [(N-2)/C] *2* L

1: procedure KTP(Img)

2 Initialization: kTP, kTP, < { }
3 Load an input image

4: for all a € range(1,N-2) do

5: for all b € range(1,N-2) do

6 Block = img(a:a+2,b:b+2)

7 Assign the pixel values to Rook and Bishop in the 3 x 3 block.
8 Calculate kTP, features using eqs.(3.24) and (3.25)

9: Calculate kTP, features using eqgs.(3.33) and (3.34).

10: end for

11: end for

12: Create two feature response maps from two features by reshaping them to (N-2) x
(N-2).

13: Each feature response map is partitioned into C x C non-overlapping blocks.

14: Histograms are extracted block wise for both the feature response maps using
eqgs.(3.35) and (3.36).

15: Concatenate both histograms to obtain feature vector fv,rp using eq.(3.37).

16: return fuprp

17: end procedure

hiStkTpl = HZSt(/CTPl) (335)
hiStksz = HZSt(k’TPz) (336)
kaTp = hiStkTpl U h'l.Stk:TPZ (337)
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(b)

Figure 3.9: (a) Sample 5 x 5 block with numbering given to chessmen. Pixels considered
for feature extraction through (b) KTP; (c) KTP, (d) KTP;

3.3.3 Knight Tour Pattern (KTP) Feature Extraction

KTP extracts three features namely KTP,, KTP, and KTP; in a 5 x 5 local neighborhood.
Starting at an index (1, 1) in a 5 x 5 neighborhood, the Knight can cover all the twenty
five pixel positions. For feature extraction through KTP, these twenty five pixel positions
are logically divided into four groups. The first three groups contains eight pixels each,
traversed by the Knight moves sequentially and the fourth group contains pixel p. only.
Initially, starting from index (1, 1), the Knight move in horizontal direction is considered.

From there on, the pixels covered by the Knight moves are sequentially compared with the

pixel p..

3.3.3.1 KTP, Feature Extraction

For feature extraction through KTP;, the first group of pixels (bs — r; — bg — 1, — by
— 13 — bg — 1) are sequentially compared with the pixel p., as shown in eq.(3.38) and
in figure 3.9(b). Upon comparison, the corresponding binary number thus obtained is
multiplied with wy,, as shown in eq.(3.39). Thus, KTP; considers horizontal and vertical

neighbors in the 3 x 3 neighborhood and diagonal neighbors in the 5 x 5 neighborhood.
KTPC = {S(b5apc)a S(TlapC)a 8<b67pc>7 S(T27p0)7 8(b77p6)7 S(Ti’an)a 8(b87pc)7 8<T47pc)}

(3.38)
KTP, =Y (KTP. % wy) (3.39)
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3.3.3.2 KTP, Feature Extraction

For feature extraction through KTP,, the second group of pixels are sequentially compared
with the pixel p., which contains the next set of eight pixels traversed by the Knight moves
(rs — ko — bs — kg — rg — ks — b, — k3) are considered and are compared with the
pixel p., as shown in eq.(3.40) and in figure 3.9(c). Upon comparison, an eight bit binary

sequence is obtained, which is then multiplied with w,,, as shown in eq.(3.41).

KTPd = {3<r5apc)7 S(k27pc)7 S(b3apc)7 S<k87pc)7 3(7"87]%)7 8(k57pc)a S(b27pc)7 S(k?npc)}
(3.40)
KTPy =Y (KTPy. *wp) (3.41)

3.3.3.3 KTP; Feature Extraction

For feature extraction through KTP;3, the third group of pixels are sequentially compared
with the pixel p., which contains the next set of eight pixels traversed by the Knight moves
(r; - k4 = by — k¢ = 16 = ks — by — k) are considered and are compared with the
pixel p, as shown in eq.(3.42) and in figure 3.9(d). Upon comparison, an eight bit binary

sequence is obtained, which is then multiplied with w,,, as shown in eq.(3.43).

KTP@ = {5(7’7,])6), S(k47p6)7 5<b17p6)7 8(k67p0>7 S(TﬁupC)v S<k77pc)7 S(b47pc)7 S(klupC)}
(3.42)
KTP; =Y (KTP,. % wy) (3.43)

Three feature response maps are created from the extracted three features. Then, each
feature response map is partitioned into C x C non-overlapping blocks. Next, block wise
histogram features are extracted from each of these three feature response maps, as shown
in eqs.(3.44) to (3.46). histgrp,, histgxrp, and histgrp, are the block wise histograms of
KTP,, KTP, and KTP; respectively. The final feature vector corresponding to KTP (fvgrp)
is formed by concatenating all the histograms obtained from all of the three feature response
maps, as shown in eq.(3.47). The algorithm for KTP is demonstrated in algorithm 3.3. For

an input image of size N x N, the computational complexity of the proposed KTP method
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(a) (b) (c) (d)

Figure 3.10: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) KTP; (c) KTP, and (d) KTP; using binary weights.

is O(N?). The value of ‘L’ in algorithm 3.3 depends on w,, used for feature extraction.
In figure 3.10, feature response maps generated by KTP;, KTP, and KTP; using binary
weights is shown. After feature vector generation, for the purpose of classification, a multi-
class SVM classifier with a linear kernel is employed for classifying the query images into

various expressions.

Algorithm 3.3 Feature Extraction through KTP
Input: An Input image (Img) of size N x N
Output: Feature vector (fvgrp) of size [(N-4)/C]| * [(N-4)/C] *3 * L
1: procedure KTP(Img)
2 Initialization: KTP;, KTP,, KTP; < { }
3 Load an input image
4: for all a € range(1,N-4) do
5: for all b € range(1,N-4) do
6
7
8
9

Block = img(a:a+4,b:b+4)
Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
Calculate three features using the eqs.(3.38) to (3.43).

: end for

10: end for

11: Create three feature response maps from three features by reshaping them to (N-4)
x (N-4).

12: Each feature response map is partitioned into C x C non-overlapping blocks.

13: Histograms are extracted block wise for all the three feature response maps using
eqs.(3.44) to (3.46).

14: Concatenate both histograms to obtain feature vector fvxrp using eq.(3.47).

15: return fugrp

16: end procedure

histgrp, = Hist(KTPy) (3.44)

hiStKsz = HZSt(KTPz) (345)
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Table 3.2: Feature vector length comparisons of proposed methods

Method | Binary | Fibonacci | Prime | Natural | Squares | Odd
Cp 1536 330 468 222 1230 390
kTP 512 110 156 74 410 130
KTP 768 165 234 111 615 195
histgrp, = Hist(KT P,) (3.46)
fUKTP = h’iStKTpl U hiStKsz U hiStKTp3 (347)

3.4 Results and Comparison Analysis

In this section, the feature vector length comparison of proposed feature descriptors with
different weights, the experimental results and the comparison of proposed methods with
the existing methods is reported. For experimental analysis, the block size (C) is empiri-

cally chosen as 8.

3.4.1 Feature Vectors comparison

For each of the proposed methods, the feature vector length comparison using different
weights is shown in table 3.2. As CP generates six features, it’s fv length is three times the

length of kTP and two times the length of KTP.

3.4.2 Experiments for Six Expressions

The experiments for six expressions have been conducted on different ‘in the lab’ datasets.
The proposed methods have been implemented with different weights and the results have
been tabulated. In table 3.3, for each dataset, the recognition accuracy comparison of CP,
in table 3.4, the recognition accuracy comparison of kTP and in table 3.5, the recognition
accuracy comparison of KTP with different weights is shown. Among the proposed meth-
ods with different weights, kTP method with binary weights achieved an optimal recog-
nition accuracy of 62.28% on JAFFE dataset. KTP method with odd, binary and natu-

ral weights achieved an optimal recognition accuracy of 87.55%, 92.86% and 89.44% on
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Table 3.3: Recognition accuracy of CP with different weights for six expressions on
different ‘in the lab’ datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 58.74 59.02 58.82 | 58.33 58.77 | 58.92
MUG 86.23 86.37 85.79 | 86.82 85.56 | 87.41
CK+ 91.12 91.34 91.23 | 9243 91.22 | 91.56
OULU 73.96 74.58 73.68 | 74.81 74.79 | 74.92
TFEID 92.92 94.17 94.17 | 94.58 94.25 | 95.08
KDEF 84.04 83.80 83.80 | 83.57 84.29 | 83.81
WSEFEP | 86.67 86.67 86.67 | 87.22 87.22 | 87.78
ADFES | 91.67 91.67 91.67 | 91.67 91.67 | 92.42

Table 3.4: Recognition accuracy of kTP with different weights for six expressions on
different ‘in the lab’ datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 62.28 61.70 61.17 | 60.05 60.08 | 57.30

MUG 86.88 86.96 86.52 86 86.88 | 85.33
CK+ 91.23 91.77 90.59 | 91.56 91.67 | 90.91
OULU 75.76 75.97 75.69 75 76.11 | 75.21

TFEID 92.92 95.08 94.67 | 95.50 94.67 | 95.92
KDEF 83.81 84.76 84.05 82.38 83.09 | 83.57
WSEFEP | 87.78 87.78 87.78 | 88.33 88.33 | 88.33
ADFES | 90.91 94.70 91.67 | 93.18 95.45 | 91.67

Table 3.5: Recognition accuracy of KTP with different weights for six expressions on
different ‘in the lab’ datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 60.03 59.41 60 59.51 58.82 [59.93
MUG 87.26 87.11 87.26 | 87.04 86.82 | 87.55
CK+ 92.86 92.20 9243 | 91.55 92.64 | 91.77
OULU 75.97 75.90 75.28 | 75.68 75.97 | 74.24
TFEID 93.75 95 94.92 | 94.50 94.08 | 94.50
KDEF 83.57 83.81 84.05 | 82.86 83.81 | 82.38
WSEFEP | 87.78 87.78 87.78 | 89.44 88.33 | 88.33
ADFES | 93.18 93.94 9242 | 93.94 9242 19091
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Figure 3.11: Confusion matrix for six expressions on (a) CK+ dataset using KTP method
with binary weights (b) OULU dataset using kTP method with squares weights
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MUG, CK+ and WSEFEP datasets respectively. The proposed kTP method with squares
weights achieved an optimal recognition accuracy of 76.11% and 95.45% on OULU and
ADFES datasets respectively. In case of TFEID and KDEF datasets, kTP method with odd
and fibonacci weights achieved an optimal recognition accuracy of 95.92% and 84.76%
respectively. The confusion matrix obtained using KTP method with binary weights for
CK+ dataset is presented in figure 3.11(a) and for OULU dataset using kTP method with
squares weights is presented in figure 3.11(b). The confusion matrix obtained using kTP
method with fibonacci weights for KDEF dataset is presented in figure 3.12(a) and for
ADFES dataset using kTP method with squares weights is presented in figure 3.12(b). In
table 3.6, the comparison analysis of the proposed methods with the existing variants of
binary patterns, implemented in our environment setup is shown. In table 3.7, the compar-
ison analysis of the proposed methods with the existing methods is shown. In both tables
3.6 and 3.7, the proposed methods and their recognition accuracy has been highlighted in
bold. In figure 3.13, the comparison analysis of proposed method with the existing variants
of binary patterns on JAFFE and OULU datasets is shown. Among the proposed methods
(CP, kTP and KTP), which ever method gave the highest recognition accuracy, that method
is chosen as the proposed method for comparison with existing variants of binary patterns
in figure 3.13. This notion is followed throughout the thesis.

The comparison analysis for JAFFE dataset with the existing variants of binary pat-
terns is reported in the second column of table 3.6. From table 3.6, the proposed kTP
method with binary weights outperformed the existing variants of binary patterns such as
MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by 5.53%, 5.58%, 2.73%, 5.06% and
0.99% respectively. From table 3.7, the proposed kTP method also outperformed the ex-
isting methods such as ResNet50, LOOP and WLGC-HD by 2.84%, 3.56% and 1.58%
respectively. The comparison analysis for MUG dataset with the existing variants of bi-
nary patterns is reported in the third column of table 3.6. From table 3.6, the proposed
KTP method with odd weights outperformed the existing variants of binary patterns such
as MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by 1.77%, 2.36%, 1.4%, 4.07%
and 1.03% respectively. From table 3.7, the proposed KTP method also outperformed the
existing methods such as ResNet50, DAGSVM and LOOP by 0.67%, 5.27% and 2.22% re-
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spectively. In case of MUG dataset, HiNet method achieved 0.25% more than the proposed
KTP method. The proposed methods are simple when compared to HiNet method which
contains one million parameters.

The comparison analysis for CK+ dataset with the existing variants of binary patterns
is reported in the fourth column of table 3.6. From table 3.6, the proposed KTP method
with binary weights outperformed the existing variants of binary patterns such as MSBP,
LDSP, LDDSCP, RADAP and LBP + LNEP by 2.28%, 1.32%, 3.25%, 2.23% and 0.65%
respectively. From table 3.7, the proposed KTP method also outperformed the existing
methods such as ResNet50, HiNet and WLGC-HD by 3.54%, 1.46% and 20.06% respec-
tively. The comparison analysis for OULU dataset with the existing variants of binary
patterns is reported in the fifth column of table 3.6. From table 3.6, the proposed kTP
method with squares weights outperformed the existing variants of binary patterns such
as MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by 2.7%, 7.64%, 2.64%, 0.21%
and 1.11% respectively. From table 3.7, the proposed method kTP also outperformed the
existing methods such as ResNet50, HiNet and VGG16 by 3.01%, 1.81% and 2.71% re-
spectively.

The comparison analysis for TFEID dataset with the existing variants of binary patterns
is reported in the sixth column of table 3.6. From table 3.6, the proposed kTP method with
odd weights outperformed the existing variants of binary patterns such as MSBP, LDSP,
LDDSCP, RADAP and LBP + LNEP by 1.67%, 1.42%, 0.42%, 1.75% and 2.92% respec-
tively. From table 3.7, the proposed kTP method also outperformed the existing methods
such as DSNGE, DAMCNN and LIoP + HOG by 2.03%, 2.27% and 2.42% respectively.
The comparison analysis for KDEF dataset with the existing variants of binary patterns
is reported in the seventh column of table 3.6. From table 3.6, the proposed kTP method
with fibonacci weights outperformed the existing variants of binary patterns such as MSBP,
LDSP, RADAP and LBP + LNEP by 1.66%, 2.38%, 2.38% and 1.19% respectively. From
table 3.7, the proposed method kTP also outperformed the existing methods such as IFRBC,
ICVR and HOG by 6.78%, 8.45% and 2.59% respectively.

The comparison analysis for WSEFEP dataset with the existing variants of binary pat-

terns is reported in the eighth column of table 3.6. From table 3.6, the proposed KTP
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Figure 3.13: Comparison analysis of proposed method with existing variants of binary
patterns for six expressions on JAFFE and OULU datasets

method with natural weights outperformed the existing variants of binary patterns such as
MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by 2.77%, 4.44%, 5.55%, 1.66% and
0.55% respectively. From table 3.7, the proposed KTP method also outperformed the ex-
isting LOOP method by 1.66% respectively. The comparison analysis for ADFES dataset
with the existing variants of binary patterns is reported in the ninth column of table 3.6.
From table 3.6, the proposed kTP method with squares weights outperformed the existing
variants of binary patterns such as MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by
5.3%, 9.09%, 6.06%, 3.78% and 5.3% respectively. From table 3.7, the proposed KTP

method also outperformed the existing LOOP method by 3.78% respectively.

3.4.3 Experiments for Seven Expressions

The experiments for seven expressions have been conducted on different ‘in the lab’ datasets
for CP, kTP and KTP methods. In addition to these datasets, the experiments have also been
conducted for RAF and FERG datasets using kTP and KTP methods. The proposed meth-
ods have been implemented with different weights and the results have been tabulated. In
table 3.8, for each dataset, the recognition accuracy comparison of CP, in table 3.9, the
recognition accuracy comparison of kTP and in table 3.10, the recognition accuracy com-
parison of KTP with different weights is shown. Among the proposed methods with differ-

ent weights, kTP method with natural weights achieved an optimal recognition accuracy of
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Table 3.8: Recognition accuracy of CP with different weights for seven expressions on
different ‘in the lab’ datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 58.50 58.93 59.97 | 57.68 58.05 | 59.04
MUG 81.26 82.79 81.80 | 81.90 82.35 | 82.41
CK+ 85.94 86.17 85.94 | 86.13 86.22 | 86.15
OULU 72.08 72.86 72.44 | 72.08 72.56 | 72.44
TFEID 93.27 94.40 93.57 | 94.36 94.40 | 94.35
KDEF 81.43 82.05 81.63 | 82.25 82.05 | 82.04
WSEFEP | 82.86 84.29 84.76 | 84.76 84.76 | 84.76
ADFES | 92.21 92.86 92.21 91.56 92.21 | 92.21

60.99% on JAFFE dataset. kTP method with fibonacci weights achieved an optimal recog-
nition accuracy of 83.11%, 86.19% and 94.81% on MUG, WSEFEP and ADFES datasets
respectively. The proposed KTP method with natural and binary weights achieved an opti-
mal recognition accuracy of 95% and 74.52% on TFEID and OULU datasets respectively.
In case of CK+ and KDEF datasets, kTP method with squares weights and CP method with
natural weights achieved an optimal recognition accuracy of 87.22% and 82.25% respec-
tively. In case of RAF and FERG datasets, KTP method with odd and fibonacci weights
achieved an optimal recognition accuracy of 77.35% and 99.99% respectively.

The confusion matrix obtained using kTP method with fibonacci weights for MUG
dataset is presented in figure 3.14(a) and for TFEID dataset using KTP method with natural
weights is presented in figure 3.14(b). The confusion matrix obtained using KTP method
with odd weights for RAF dataset is presented in figure 3.15(a) and for FERG dataset
using KTP method with fibonacci weights is presented in figure 3.15(b). In table 3.11, the
comparison analysis of the proposed methods with the existing variants of binary patterns,
implemented in our environment setup is shown. In table 3.12, the comparison analysis of
the proposed methods with the existing methods is shown. The comparison analysis for
RAF and FERG datasets with the existing methods is reported in table 3.13. In tables 3.11,
3.12 and 3.13, the proposed methods and their recognition accuracy has been highlighted in
bold. In figure 3.16, the comparison analysis of proposed method with the existing variants
of binary patterns on CK+ and WSEFEP datasets is shown.

The comparison analysis for JAFFE dataset with the existing variants of binary patterns
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Table 3.9: Recognition accuracy of kTP with different weights for seven expressions on
different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 58.52 59.09 5897 | 60.99 5841 | 60.04
MUG 81.02 83.11 82.34 | 82.28 82.28 | 81.52
CK+ 87.03 86.88 86.70 | 85.65 87.22 | 85.99

OULU 73.81 74.11 74 72.80 73.45 | 73.39
TFEID 93.57 94.34 9434 | 94.34 93.99 | 94.70
KDEF 80.82 81.84 81.84 80 81.02 | 80.61

WSEFEP | 83.81 86.19 84.76 | 84.29 84.29 | 86.19
ADFES | 90.26 94.81 92.21 92.86 93.51 | 93.51
RAF 73.11 73.76 74.05 | 72.06 74.45 | 73.08
FERG 98.67 99.84 98.77 | 98.99 99.06 | 98.31

Table 3.10: Recognition accuracy of KTP with different weights for seven expressions on
different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 58.97 59.47 58.5 58.09 5797 | 57.45
MUG 82.16 81.08 82.98 | 82.79 83.11 | 82.35

CK+ 86.69 86.86 86.57 | 85.82 86.69 | 86.15
OULU 74.52 74.35 74.05 | 7244 74.46 | 72.62

TFEID 93.99 94.34 93.93 95 03.93 | 94.28

KDEF 81.43 81.22 81.84 | 80.61 82.04 | 81.22

WSEFEP | 85.24 84.76 84.29 | 85.71 85.71 | 85.24
ADFES | 92.86 94.16 92.86 | 92.86 92.86 | 91.56
RAF 76.37 77.12 76.99 | 76.96 77.05 | 77.35
FERG 99.73 99.99 99.94 | 99.93 99.97 | 99.90
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is reported in the second column of table 3.11. From table 3.11, the proposed kTP method
with natural weights outperformed the existing variants of binary patterns such as MSBP,
LDSP, LDDSCP, RADAP and LBP + LNEP by 4.18%, 8.5%, 3.62%, 4.79% and 1.95%
respectively. From table 3.12, the proposed kTP method also outperformed the existing
methods such as PCANet, ResNet50, LOOP and WLGC-HD by 2.64%, 3.86%, 1.32% and
2.79% respectively. The comparison analysis for MUG dataset with the existing variants of
binary patterns is reported in the third column of table 3.11. From table 3.11, the proposed
kTP method with fibonacci weights weights outperformed the existing variants of binary
patterns such as MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by 1.71%, 2.48%,
2.16%, 2.85% and 1.66% respectively. From table 3.12, the proposed kTP method also
outperformed the existing methods such as CBA and LOOP by 4.54% and 3.43% respec-
tively. In case of MUG dataset, HiNet and ResNet50 methods achieved 4.09% and 2.47%
more than the proposed kTP method. The proposed methods are simple when compared to
HiNet and ResNet50 methods which contains one million and thirty one million parameters
respectively.

The comparison analysis for CK+ dataset with the existing variants of binary patterns
is reported in the fourth column of table 3.11. From table 3.11, the proposed kTP method
with squares weights outperformed the existing variants of binary patterns such as MSBP,
LDSP, LDDSCP, RADAP and LBP + LNEP by 1.18%, 3.03%, 2.29%, 2.62% and 0.92%
respectively. From table 3.12, the proposed kTP method outperformed the existing DLFS
method by 3.5% respectively. Although, ResNet50 and HiNet methods achieved 0.09% and
1.38% better recognition accuracy than the proposed method, the proposed methods are
simple and are easily implementable. The comparison analysis for OULU dataset with the
existing variants of binary patterns is reported in the fifth column of table 3.11. From table
3.11, the proposed KTP method with binary weights outperformed the existing variants
of binary patterns such as MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by 0.77%,
10.71%,4.95%, 0.17% and 1.32% respectively. From table 3.12, the proposed method KTP
also outperformed the existing methods such as ResNet50, HiNet and VGG19 by 9.12%,
2.52% and 4.02% respectively.

The comparison analysis for TFEID dataset with the existing variants of binary patterns
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is reported in the sixth column of table 3.11. From table 3.11, the proposed KTP method
with natural weights outperformed the existing variants of binary patterns such as MSBP,
LDSP, LDDSCP, RADAP and LBP + LNEP by 1.73%, 1.85%, 4.05%, 1.73% and 1.73%
respectively. From table 3.12, the proposed KTP method also outperformed the existing
methods such as DAMCNN, Pyramid+SBDT and MSDV by 1.64%, 1.62% and 1.5% re-
spectively. The comparison analysis for KDEF dataset with the existing variants of binary
patterns is reported in the seventh column of table 3.11. From table 3.11, the proposed CP
method with natural weights outperformed the existing variants of binary patterns such as
MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by 1.03%, 1.64%, 0.41%, 2.05% and
0.41% respectively. From table 3.12, the proposed CP method also outperformed the exist-
ing methods such as DLFS, PCANet and SAFL by 3.65%, 12.66% and 1.03% respectively.

The comparison analysis for WSEFEP dataset with the existing variants of binary pat-
terns is reported in the eighth column of table 3.11. From table 3.11, the proposed kTP
method with fibonacci weights outperformed the existing variants of binary patterns such
as MSBP, LDSP and LDDSCP by 2.46%, 1.19% and 3.81% respectively. From table 3.12,
the proposed kTP method also outperformed the existing LOOP method by 1.51% respec-
tively. The comparison analysis for ADFES dataset with the existing variants of binary
patterns is reported in the ninth column of table 3.11. From table 3.11, the proposed kTP
method with fibonacci weights outperformed the existing variants of binary patterns such
as MSBP, LDSP, LDDSCP, RADAP and LBP + LNEP by 3.25%, 9.75%, 5.85%, 3.9%
and 4.55% respectively. From table 3.12, the proposed kTP method also outperformed the
existing LOOP method by 3.78% respectively. In case of RAF dataset, from table 3.13,
the proposed KTP method with odd weights outperformed the existing methods such as
DLPCNN, ICID Fusion, DCNN+RLPS and IFSL by 3.15%, 1.95%, 4.51% and 0.45%
respectively. In case of FERG dataset, from table 3.13, the proposed KTP method with
fibonacci weights outperformed the existing methods such as Deep Expr, Ensemble Multi-
Feature, Adversarial NN, Deep Emotion and LBP-AW by 10.97%, 2.99%, 1.79%, 0.69%
and 3.29% respectively.
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Figure 3.16: Comparison analysis of proposed method with existing variants of binary
patterns for seven expressions on CK+ and WSEFEP datasets

3.4.4 Experiments for Eight Expressions

The experiments for eight expressions are performed on TFEID dataset. Apart from basic
six plus neutral expressions, this dataset has one more expression named contempt. For the
experimental evaluation, 336 images belonging to eight expressions have been considered.
The proposed methods have been implemented with different weights and the results have
been tabulated. In table 3.14, the recognition accuracy comparison of CP, in table 3.15,
the recognition accuracy comparison of kTP and in table 3.16, the recognition accuracy
comparison of KTP with different weights is shown. Among the proposed methods with
different weights, CP method with odd weights achieved an optimal recognition accuracy
of 91.69% for eight expressions on TFEID dataset. The existing variants of binary patterns
have been implemented in our environment set up and correspondingly the recognition
accuracy is reported in the second column of table 3.17. In table 3.17, the proposed methods
and their recognition accuracy has been highlighted in bold. From table 3.17, the proposed
CP method outperformed recent variants of binary patterns such as MSBP, LDSP, LDDSCP,
RADAP and and LBP + LNEP by 2.15%, 5.01%, 4.03%, 1.13% and 0.88% respectively.
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Table 3.14: Recognition accuracy of CP with different weights for eight and ten
expressions on TFEID and ADFES datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
TFEID | 90.48 90.44 91.07 | 90.55 90.75 | 91.69
ADFES | 83.43 86.57 87.98 | 86.16 83.90 | 85.71

Table 3.15: Recognition accuracy of kTP with different weights for eight and ten
expressions on TFEID and ADFES datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
TFEID | 90.80 90.72 91.03 | 91.07 90.48 | 91.03
ADFES | 87.07 89.49 88.59 | 85.25 87.07 | 86.62

3.4.5 Experiments for Ten Expressions

The experiments for ten expressions are performed on ADFES dataset. Apart from ba-
sic six plus neutral expressions, this dataset has three more expressions namely contempt,
embarrass and pride. For the experimental evaluation, 215 images belonging to ten expres-
sions have been considered. The proposed methods have been implemented with different
weights and the results have been tabulated. In table 3.14, the recognition accuracy com-
parison of CP, in table 3.15, the recognition accuracy comparison of kTP and in table 3.16,
the recognition accuracy comparison of KTP with different weights is shown. Among the
proposed methods with different weights, kTP method with fibonacci weights achieved an
optimal recognition accuracy of 89.49% for ten expressions on ADFES dataset. The exist-
ing variants of binary patterns have been implemented in our environment and correspond-
ingly the recognition accuracy is reported in the third column of table 3.17. From table
3.16, the proposed kTP method outperformed recent variants of binary patterns such as
MSBP, LDSP, LDDSCP, RADAP and and LBP + LNEP by 2.32%, 9.52%, 4.53%, 4.74%
and 2.45% respectively.

Table 3.16: Recognition accuracy of KTP with different weights for eight and ten
expressions on TFEID and ADFES datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
TFEID | 91.31 90.75 91.48 | 89.89 90.72 | 89.57
ADFES | 86.67 87.12 87.12 | 86.62 87.58 | 86.21
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Table 3.17: Comparison analysis with the existing variants of binary patterns for eight and
ten expressions on TFEID and ADFES datasets

Method Eight Expressions | Ten Expressions
LBP [46] 90.95 83.54
LDP [97] 91.17 85.25
LDN [31] 88.06 85.20
CSLBP [28] 89.45 80.61
LGC [84] 89.95 85.20
LDTP [32] 86.29 82.68
LDTerP [33] 88.59 76.53
ALDP [35] 90.36 78.40
MSBP [88] 89.54 87.17
LDSP [34] 86.68 79.91
LDDSCP [99] 87.66 84.96
RADAP [17] 90.56 84.75
LBP + LNEP [134] 90.81 87.07
Ccp 91.69 87.98
kTP 91.07 89.49
KTP 91.31 87.58

3.5 Summary

In AFER systems, the main task is to accurately extract the features that best classify the
expressions. In this regard, three local texture based feature descriptors namely CP, kTP
and KTP have been presented in this Chapter. CP extracts six features based on the possible
movements of Rook, Bishop and Knight in a 5 x 5 neighborhood. CP is presented with an
intention to generate different feature codes for corner, edge and flat portions of an image.
Inspired by the Knight tour problem in graph theory, kTP and KTP feature descriptors
have been proposed which utilizes Knight moves for generating features by comparing
neighboring pixels with the center pixel in a local neighborhood. The proposed CP, kTP
and KTP methods have been implemented with different weights to determine the optimal
recognition accuracy on standard FER datasets with respect to six, seven, eight and ten
expressions. The experimental results demonstrated the efficiency of the proposed methods

when compared to the existing methods.
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Chapter 4

Modified Chess Patterns: Hand-crafted

Feature Descriptors

Sign component has proven to be an efficient factor in developing feature descriptors [92].
Hence, in this Chapter, four texture based feature descriptors namely RMP, RCP, CSP and
RCSP have been proposed for facial feature extraction by considering sign information.

The main contributions of this Chapter are summarized as:

* RMP, a combination of RP and MP has been proposed with an intention to capture
significant facial features in a local neighborhood by aiming to generate different

feature codes for edge, corner and flat image regions.

* Local texture based feature descriptors namely RCP, CSP and their fusion RCSP are
proposed and applied in a 5 x 5 neighborhood for extracting facial features by con-

sidering both the neighboring pixels relationship and the adjacent pixels relationship.

A brief description about the existing feature descriptors is presented in section 4.1.
By drawing motivation from the existing descriptors such as Local Binary Pattern (LBP),
LMeP and CP, a local texture based feature descriptor named RMP has been proposed for
the purpose of facial feature extraction in section 4.2. Inspired by CP, Local Gradient
Coding (LGC) and it’s variants, feature descriptors such as RCP, CSP and RCSP have been

proposed and are discussed in detail in sections 4.3, 4.4 and 4.5 respectively. In section
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4.6, the experimental results corresponding to RMP, RCP, CSP and RCSP with different
weights have been presented and analyzed. In section 4.7, the contributions in this Chapter

have been summarized.

4.1 Preliminaries

A brief summary about existing feature descriptors such as LBP, LMeP, LGC and it’s vari-
ants are explained in this section, as the proposed feature descriptors are developed based

on these feature descriptors.

4.1.1 Local Binary Pattern (LBP)

LBP [46] is the most widely used texture based feature descriptor for capturing the pixel’s
intensity variations in a local neighborhood (3 x 3 region). The gray levels of eight neigh-
boring pixels px (k=0,1,2,....,7) are compared with the gray level of the center pixel (p.). At

a pixel location (y, z), the LBP code is computed for the pixel p. as given in eq.(4.1) as :

7
LBP(y,z) = Z S(Pk, Pe) * ok 4.1)

k=0

where, px represent the gray level values of neighboring pixels (k=0,1.,....,7) and and p,

represent the gray value of center pixel.

4.1.2 Local Mesh Pattern (LMeP)

LMeP [168] is also a local texture based feature descriptor, that takes into consideration, the
multi-distance information of the neighboring pixels in a local neighborhood. LMeP gen-
erates three feature codes, corresponding to multi-distance information (d € [1,3]). From
a reference pixel, LMeP,; is captured by comparing the subsequent adjacent pixels at a
distance (d = 1), LMeP,, is captured by comparing the subsequent adjacent pixels at a
distance (d = 2) and LMeP,, 3 is captured by comparing the subsequent adjacent pixels at a

distance (d = 3). Thus, corresponding to three distances considered, three feature codes are
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Figure 4.1: Example of feature extraction using LMeP (a) A sample 3 x 3 image patch (b)
LMeP, (c) LMeP, and (d) LMeP;

generated, which are finally concatenated to form final LMeP. The process of calculating
LMeP code for a sample 3 x 3 image patch is shown in figure 4.1. At a given pixel location

(y, z), LMeP is computed for the pixel p. as represented in eq.(4.2) and eq.(4.3).

—

p—

LMePp,d(y7 Z) = S(:L.Ti,d,p7 l‘z) 4.2)
i=0
1 e 1
Ti,d, 3 lf Ti,d, - 1 < p - 1
Tidp = 8 ? (4.3)
TZd’p, otherwise

where, 7', =i+4d,7};,=i+d—pandd € [l, 3] and p is the number of neighbors
surrounding the pixel p.. In LMeP, as binary weights are used for feature extraction, huge
computational resources are required. Although, LMeP extracts better edge information

than LBP, it achieves better recognition rate at the cost of high computational resources.
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(b) (c) (d)

Figure 4.2: Feature extraction through LGC and LGC-HD (a) Sample mask for 3 x 3
operators (b) A sample 3 x 3 image patch (c) Computed feature code using LGC (d)
Computed feature code using LGC-HD

4.1.3 Local Gradient Coding (LGC)

Tong et al. [84] proposed LGC for facial feature extraction. LGC extracts texture features
in a 3 x 3 neighborhood. LGC operator encodes the gradient information in horizontal,
vertical and diagonal directions to generate an eight bit binary number. The binary number
thus formed is then converted into a decimal number, which is replaced in the place of pixel
p.- This process is repeated throughout the image, and all the histogram features are con-
catenated block wise to form a final feature vector. This LGC encoding captures consistent
expression specific texture features in all possible directions. The coding formula for fea-
ture extraction through LGC operator is shown in eq.(4.4). As 3 x 3 mask is considered for
LGC, usually radius (rd = 1) and number of neighbors (p = 8). In figure 4.2(a-c), feature
extraction of LGC for a sample 3 x 3 numerical example is shown. To the LGC operator,
some extensions are also proposed, which are Local Gradient Coding- based on Horizontal
and Diagonal prior principle (LGC-HD) operator, LGC-FN operator (LGC based on a 5 x

5 neighborhood horizontal and diagonal gradient prior principle) and LGC-AD operator.

LGC’;d = 5(b1,by) * 2" + 5(ry,72) * 2° + 5(bg, b3) * 27 + s(by, by) x 2*

+5(11,73) * 2> + 5(by, by) * 2% 4 5(by, bg) * 2" + 5(bg, by) % 2° 4.4)

4.1.3.1 Local Gradient Coding-Horizontal Diagonal (LGC-HD)

LGC-HD is also proposed by Tong et al. [84], further optimizes the LGC operator and
decreases the characteristic feature vector length by considering the gradient information in

horizontal and diagonal directions only. The coding formula for feature extraction through
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Figure 4.3: Feature extraction through LGC-FN and LGC-AD (a) Sample mask
considered for 5 x 5 operators (b) A sample 5 x 5 image patch for LGC-FN (c¢) Computed
feature code using LGC-FN (d) Computed feature code using LGC-AD

LGC-HD operator is shown in eq.(4.5). In figure 4.2(b,d), feature extraction of LGC-HD
for a sample 3 x 3 numerical example is shown. As 3 x 3 mask is considered for LGC-HD,

usually rd =1 and p = 6.
LGC—HD}" = 5(by, by)*2*+5(rq, ra) 2> +5(by, by) 22 +-5(by, bs) %2 +5(ba, by)+2° (4.5)

4.1.3.2 LGC-FN

LGC-FN operator [91, 169] expands LGC by considering 5 x 5 neighborhood size. LGC-
FN computes feature codes in three directions namely in horizontal and along two diagonal
directions. The coding formula for feature extraction through LGC-FN operator is shown
in eq.(4.6). A sample mask considered for 5 x 5 operators is shown in figure 4.3 (a). In
figure 4.3 (b), a sample 5 x 5 image patch is shown. In figure 4.3 (c), the computed feature

code using LGC-FN is shown.

LGC — FN = s(bs, bg) * 27 + s(b1, by) % 2° + s(by, bg) x 2° + s(bg, by) * 2°*

+5(bs, by) * 2° + 5(by, bs) * 2% + s(bg, bg) * 2' + s(by, bg) ¥ 2°  (4.6)

4.1.3.3 LGC-AD

LGC-AD operator [91, 169] computes feature codes in four directions namely in horizontal,
vertical and along two diagonal directions. Thus, LGC-AD operator is an extension of

LGC-FN operator by additionally considering vertical gradient information. The coding
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formula for feature extraction through LGC-AD operator is shown in eq.(4.7). In figure 4.3

(d), the computed feature code using LGC-AD is shown.

LGC — AD = 5(bs, bg) * 2" 4 5(by, by) * 2'° + 5(by, b3) * 2° + s(bg, by) * 2°
+5(bs, bg) * 27 + 5(by, by) * 2° + 5(ba, b3) * 2° + s(bg, by) * 2°

+5(bs, by) % 2% + s(by, b3) * 22 + s(bg, bg) * 2 + s(by, by) % 20 (4.7)

4.1.3.4 Limitations of existing descriptors

The existing feature descriptors have some limitations as follows:

» CP generates six feature codes, so it’s feature vector (fv) length is six times the fv

length of LBP. Also, it takes more computation time than traditional LBP operator.

* LGC method extracts features in a 3 x 3 neighborhood using three groups of hori-
zontal pixels and three groups of vertical pixels, but in diagonal direction, only two
groups of pixels are considered. As a result, the gradient information in the diagonal
directions is not completely captured, which negatively impacts the recognition ac-

curacy [91].

* In LGC-HD operator, fv length is reduced when compared to LGC, as it does not

take into consideration the gradient information computed in the vertical direction.

* LGC-FN operator does not consider the gradient information in vertical information

and also the characteristics of center pixel information is neglected.

* LGC-AD operator generates a fv length of 4096, which is very huge when compared

to traditional LBP operator.

* Most of the existing edge based methods generate unstable patterns in the smoother
regions of an image. Also, some of the existing variants of binary patterns generate

the same feature codes for different image portions.

So, by considering all these information, new feature descriptors are developed, which are

discussed in detail in the next sections.
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4.2 Radial Mesh Pattern (RMP) Feature Extraction

By drawing motivation from the existing descriptors such as LBP, LMeP and CP, a local
texture based feature descriptor named RMP is proposed for the purpose of facial feature
extraction. RMP is different from the existing CP. The similarities and dissimlarities with

existing descriptors are as follows:

* Both CP and RMP considers the movements of Rook, Bishop and Knight for feature

extraction in a 5 x 5 neighborhood.

* LBP generates one feature code, LMeP generates three feature codes, whereas, CP
generates six feature codes, each corresponding to Rook, Bishop, Knight, Rook_Bishop,
Rook_Knight and Knight_Bishop. Whereas, RMP generates only two feature codes,
each corresponding to Radial Pattern (RP) and Mesh Pattern (MP).

* For calculating RP, the concept of LBP is used. LBP computes feature code within
a 3 x 3 local region only. Whereas, RP takes into consideration both 3 x 3 and 5
x 5 neighborhoods, for calculating feature codes. Thus, multi-level information is

captured with RP.

* For calculating MP, the concept of LMeP is used. The computational cost of LMeP
is high as it generates three feature codes. So, we only consider one LMeP pattern (d

= 2), while designing the MP.

* Using CP, chessmen are numbered only in clockwise direction. Using LBP and
LMeP, anti-clockwise direction is considered in the process of feature extraction.
Whereas, RMP considers numbering in both anti-clockwise (for RP) as well as clock-

wise directions (for MP).

* LBP and LMeP uses only binary weights for feature extraction. Apart from binary
weights, to further reduce the feature vector length of RMP, other weights such as

fibonacci, prime, natural, squares and odd weights have been utilized.
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(a) (b) (c) (d)

Figure 4.4: Process of feature extraction through RMP (a) Numbering given to chessmen
in the 5 x 5 neighborhood as per RMP (b) Process of feature extraction through RP; (¢)
Process of feature extraction through RP, (d) Process of feature extraction through MP.

In image processing applications, selecting the neighborhood size is the key in the de-
signing phase of hand-crafted feature descriptors. In general, if more pixels are used in
designing a kernel, the more accurate is the classification. However, choosing a higher
neighborhood size leads to increased computation time during the thresholding process.
In this Chapter, for accommodating large inter-class distinctions and low intra-class varia-
tions, 5 x 5 neighborhood is adopted to explore wider information in a local neighborhood,
which allows utilizing both radii (2) and angles (8) in designing the proposed RMP feature
descriptor. Also, multi distance information is captured in a 5 x 5 neighborhood, as like the
LMeP,,. In figure 4.4 (a), for feature extraction through RMP, numbering is assigned to
the possible positions where Rook, Bishop and Knight could be placed. The numbering or-
der for Rook (r) and Bishop (b) follows anti-clockwise direction and the numbering order
for Knight (k) follows clockwise direction. Thus, RMP utilizes both anti-clockwise (for
Rook and Bishop) and clockwise directions (for Knight) in the process of feature extrac-
tion. RMP is a combination of both RP and MP. The process of feature extraction through

RP is explained in section 4.2.1 and through MP is explained in section 4.2.2.

4.2.1 Radial Pattern (RP)

Feature extraction through RP is based on the positions of Rook and Bishop in the entire 5
x 5 neighborhood. Initially, with reference to the pixel p., the possible positions of Rook

and Bishop are numbered in the 3 x 3 neighborhood followed by 5 x 5 neighborhood. The
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eight neighboring pixels in the 3 x 3 neighborhood (rd = 1) are compared with the pixel
p.. If the corresponding neighbor is greater than the pixel p., then the corresponding bit is
encoded as one, else it is encoded as zero. As a result, a sequence of eight binary numbers
is obtained, which is named as RP;. The process of feature extraction through RP; is same
as the methodology of LBP [46]. The only difference is that, in RP;, the eight neighbors
surrounding the pixel p. are named after the possible positions of Rook and Bishop. The
corresponding equation for calculating RP; is shown in eq.(4.8). The process of feature

extraction through RP; is shown in figure 4.4 (b).

RPl = {S(Tlapc)a S(blapc)7 S(TQapc)v S(anpC)y S(T3apc)7 S<b3apc)7 S(T4apc)7 S<b4’p6)}
4.8)

Next, with reference to the pixel p., the eight neighbors in the 5 x 5 neighborhood (rd =
2) corresponding to angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) are compared with
the pixel p.. If the corresponding neighbor is greater than the p., then the corresponding
bit is encoded as one, else it is encoded as zero. From this operation, a sequence of eight
binary numbers is obtained, which is named as RP,. In RP, also, the eight neighbors
surrounding the pixel p. are named after the possible positions of Rook and Bishop. The
corresponding equation for calculating RP, is shown in the eq.(4.9). The process of feature
extraction through RP; is shown in figure 4.4 (c). The final RP is obtained by performing
logical AND operation between the obtained patterns RP; and RP,. The resultant binary
number thus formed is multiplied by wy,,. The corresponding equation for calculating RP is
shown in eq.(4.10). Usually, binary weights are used in the calculation of feature vectors.
In order to minimize feature vector length and to maximize recognition accuracy, other
weights such as fibonacci [164], prime, natural, squares and odd have been utilized for
facial feature extraction. The corresponding equations for different weights are shown in
eq.(3.26) to eq.(3.32).
RPy = {s(r5,pc), $(bs, pe), $(16, Pe), $(b6; pe)s $(r7, pe), 8(b7, pe), 8(7rs, pe), 5(bs, pe) }
4.9)

RP = ((RPi A RPy). % wy,) (4.10)
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4.2.2 Mesh Pattern (MP)

The basis for designing MP is derived from LMeP. LMeP generates three feature codes
by encoding the multi-distance relationships between the neighboring pixels, surrounding
the pixel p.. But, for MP, the concept of LMeP,, is only adopted. Based on the Knight
positions in the entire 5 x 5 neighborhood, MP is obtained. Based on the numbering as-
signed, the pixels present in the possible Knight positions are compared sequentially. If
the initial pixel corresponding to Knight position is greater than the subsequent pixel, then
the corresponding bit is encoded as one, else it is encoded as zero. The eight bit sequence
thus obtained corresponds to the MP. The corresponding equations for calculating MP are
shown in eqs.(4.11) and (4.12). The resultant binary number thus formed is multiplied by
wi. The process of feature extraction through MP is shown in figure 4.4(d).
MP = {s(ky, ks), s(ka, k3), s(ks, k4), s(ka, k5), s(ks, ke), s(ke, k7), s(k7, ks), s(ks, k1) }
4.11)

MP = "(MP. xw,,) (4.12)

4.2.3 Feature Level Fusion

RMP is obtained by horizontally concatenating both RP and MP. The corresponding equa-
tion for calculating RMP is shown in eq.(4.13). The process of feature extraction through
RMP is demonstrated in figure 4.4. Aiming to develop feature descriptors with low dimen-
sionality and reduced computation time, different weighting schemes such as fibonacci,
prime, natural, squares, odd and even weights have been utilized for the purpose of feature
extraction, which are shown in eqs.(3.26) to (3.32). Thus, w,, can take any one of the weight
values among binary, fibonacci, prime, natural, squares and odd. So, corresponding to six
different weights (binary, fibonacci, prime, natural, squares and odd), six different variants
of RMP namely RMP_binary, RMP_fibonacci, RMP_prime, RMP_natural, RMP_squares
and RMP _odd have been proposed. For example, RMP_prime method uses prime weights
(shown in eq.(3.29)) and RMP_odd method uses odd weights (shown in eq. (3.32)) for

88



(a) (b) (c)

Figure 4.5: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) RP and (¢) MP using binary weights.

extracting facial features.
RMP =RPUMP (4.13)

The feature response maps generated by RP and MP methods using binary weights is
shown in figure 4.5. The feature codes generated by existing methods such as LBP, LDP,
LDN, PTP, LDDSCP, LOOP and the proposed method, RMP for different image portions
such as corner, edge and flat are shown in figure 4.6. From figure 4.6, the proposed
RMP could generate different feature codes for different image portions. The algorithm
for feature extraction through RMP is mentioned in algorithm 4.1. The value of ‘L’ in
algorithm 4.1 depends on the weight matrix used in the process of feature extraction. For
an input image of size N x N, the computational complexity of the proposed RMP method

is O(N?).

hist,, = Hist(rp) (4.14)

hist,, = Hist(mp) (4.15)

Formp = histyy U histy, (4.16)

Size(fomp) = [(N —4)/C + [(N —4)/C] % 2% L 4.17)

Two feature response maps are created from the extracted two features. Then, each fea-
ture response map is partitioned into C x C non-overlapping blocks. Next, block wise
histogram features are extracted from each of these two feature response maps, as shown
in eqs. (4.14) and (4.15). hist,, and hist,,, are the block wise histograms of RP and MP
respectively. The final feature vector (fv.y,) is formed by concatenating all the histograms
obtained from each of the two feature response maps, as shown in eq.(4.16). The equation

for calculating the size of feature vector is shown in eq.(4.17). The value of ‘L’ ineq. (4.17)
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LBP 00111000
LDP 00010011
LDN 011 110
PTP 01100110
LDDSCP 1001, 1011
LOOP 00000111

RP = 00101000
MP = 11101000

RMP = {RP, MP}
RMP_binary = {20, 23}

RP = 00111000
MP = 01101010

RMP = {RP, MP}
RMP_binary = {28, 86}

RP = 00001000
MP = 11001100

RMP = {RP, MP}
RMP_binary = {16, 51}

(9)

(h)

()

Figure 4.6: Example for drawbacks of existing feature descriptors. 5 x 5 sample image
portions corresponding to (a) corner (b) edge (c) flat image regions. (d-f) Kirsch responses
for the regions (a-c). (g) Same feature codes are generated by existing methods for
different image regions (a-c). (g-i) RMP generating different codes for different edge
patterns (a-c). In (g-1), the generated feature codes with binary weights is also shown

depends on the wy, used in the process of feature extraction. The value of ‘C’ corresponds

to the block size.

4.3 Radial Cross Pattern (RCP) Feature Extraction

RCP considers multi-radial and multi-orientation information and extracts two features
namely RCP; and RCP;, by comparing the neighboring pixels with the current pixel in

horizontal, vertical and diagonal directions.
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Algorithm 4.1 Feature Extraction through RMP

Input: An Input image (Img) of size N x N
Output: Feature vector (fv,,,,) of size [(N-4)/C] * [(N-4)/C] *2 * L

1: procedure RMP(Img)

2 Initialization: RP;, RP,, RP, MP + { }

3 Load an input image (Img)

4: for all a € range(1,N-4) do

5: for all b € range(1,N-4) do

6 Block = img(a:a+4,b:b+4)

7 Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
8 Calculate RP using eqs.(4.9) to (4.11)

9: Calculate MP using eqs.(4.11) and (4.12)

10: end for

11: end for

12: Create two feature response maps obtained from RP and MP by reshaping them to
(N-4) x (N-4).

13: Each feature response map is partitioned into C x C non-overlapping blocks.

14: Histograms are extracted block wise for both the feature response maps using
eqs.(4.14) and (4.15).

15: Concatenate all the histograms to obtain feature vector fv,,,, using eq.(4.16).

16: return fv,,,,

17: end procedure

4.3.1 RCP,

RCP; contains a set of eight pixels, which includes four pixels corresponding to Rook, con-
sidered from the 3 x 3 neighborhood (rd = 1) and the remaining four pixels corresponding
to Bishop, considered from the 5 x 5 neighborhood (rd = 2). The numbering system for
Rook and Bishop follows anti-clockwise direction as per Moore’s neighborhood [17], as
shown in figure 4.7 (a). The pixel positions corresponding to RCP; are shown in figure
4.7(b). Thus, considering pixels in this manner enables in better capturing the expression
specific texture information in eight directions (0°, 90°, 180°, 270°, 45°, 135°, 225°, 315°)
respectively. The pixel intensities present in these eight positions (1234, bs78) are com-
pared with the intensity of pixel p.. Upon comparison, if the obtained result is positive,
then the corresponding bit is encoded as one, else it encoded as zero. Thus, for eight pixel
positions, eight corresponding values (either O or 1) are obtained, which are then concate-

nated to form an eight bit binary number, which is subsequently multiplied with w,,. The
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(a) (b) (c) (d)

Figure 4.7: Process of feature extraction through RCP, CSP and RCSP (a) Numbering
scheme of chessmen followed for feature extraction (b) Feature extraction through RCP,
(c) Feature extraction through RCP, and (d) Feature extraction through CSP.

corresponding equations for calculating RCP; are shown in eqs.(4.18) and (4.19).

Generally, weight matrix contains binary weights [17, 46, 97]. Upon using binary
weights (shown in eq.(3.27)), the fv length of RCP; is 256, as like LBP. To further re-
duce the fv length, different weights such as fibonacci (shown in eq.(3.28)) [164], prime
(shown in eq.(3.29)), natural (shown in eq.(3.30)), squares (shown in eq.(3.31)) and odd
(shown in eq.(3.32)) have been considered. For prime weights, the sequence of first eight
prime numbers are considered, which is shown in eq.(3.29)). Similarly, for other weights
also, the sequence of first eight numbers in that particular series are considered. At each
time, wy,, can take any one the weight values for feature extraction. The number thus ob-
tained after multiplying with wy, is then replaced in the value of pixel p..

ROPl = {3(7"17270)7 S(TQ’pC)7 S(r37pc)7 S(T47pc)7 s(b57pc)7 S(bﬁapc>7 S(b77pc)7 S(b&pc)}
(4.18)

RCPy = (RCP,. % wy,) (4.19)

4.3.2 RCP,

RCP, contains a set of eight pixels, which includes four pixels corresponding to Bishop,
considered from the 3 x 3 neighborhood (rd = 1) and the remaining four pixels corre-
sponding to Rook, considered from the 5 x 5 neighborhood (rd = 2). The pixel positions
corresponding to RCP, are shown in figure 4.7 (c). Thus, considering pixels in this manner

enables in better capturing the information in eight directions (45°, 135°, 225°, 315°, 0°,
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90°, 180°, 270°) respectively. The pixel intensities present in these eight positions (b 234,
I's7.8) are compared with the intensity of pixel p.. Upon comparison, if the obtained result
is positive, then the corresponding bit is encoded as one, else it encoded as zero. Thus, for
eight pixel positions, eight corresponding binary values are obtained, which are then con-
catenated to form an eight bit binary number is subsequently multiplied with the wy,. The
number thus obtained after multiplying with wy, is then replaced with the value of pixel p..
The corresponding equations for calculating fv based on RCP; are shown in eqs.(4.20) and

(4.21).

RCP2 - {S(blapc>7 S(b27p0)7 S(b3apc)7 8(b47pC>7 5(T57p0)7 8(T67p0)7 S(T77p0>7 S(r87pc)}
(4.20)

RCPy =Y (RCPy. % wy) (4.21)

Algorithm 4.2 Feature Extraction through RCP

Input: An Input image (Img) of size N x N
Output: Feature vector (fv,.,) of size [(N-4)/C]| * [(N-4)/C| * 2 * L

1: procedure RCP(Img)

2 Initialization: RCP,, RCP,, RCP < { }

3 Load an input image (Img)

4: for all a € range(1,N-4) do

5: for all b € range(1,N-4) do

6 Block = img(a:a+4,b:b+4)

7 Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
8 Calculate RCP; using eqs.(4.18) and (4.19)

0: Calculate RCP; using eqs.(4.20) and (4.21)

10: end for

11: end for

12: Create two feature response maps obtained from RCP, and RCP, by reshaping
them to (N-4) x (N-4).

13: Each feature response map is partitioned into C x C non-overlapping blocks.

14: Histograms are extracted block wise for both the feature response maps using
eqs.(4.22) and (4.23).

15: Concatenate all the histograms to obtain feature vector fv,, using eq.(4.24).

16: return fv,.,

17: end procedure
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4.3.3 Feature Level Fusion

RCP is obtained by horizontally concatenating both RCP, and RCP,. Thus, RCP fea-
ture descriptor generates two feature codes, each corresponding to RCP; and RCP, and
hence, the fv length of RCP becomes 512 (incase of binary weights). The fv length be-
comes 110, 156, 74, 410, 130 and 146 whenever fibonacci, prime, natural, squares, odd
and even weights are utilized for feature extraction. Thus, by using other weights than bi-
nary weights, even if two feature codes are generated, the fv length of RCP is much lesser
than fv generated for one feature code (LBP, LDP) in all cases (expect whenever squares
weights are used for feature extraction). In eqs.(4.22) and (4.23), hist,,, and hist,,, corre-
sponds to the block wise histograms of RCP; and RCP, respectively. The corresponding
equation for calculating features (fv,,) extracted using RCP is shown in eq.(4.24). The
algorithm for feature extraction through RCP is mentioned in algorithm 4.2. The value of
‘L’ in algorithm 4.2 depends on the weight matrix used in the process of feature extrac-
tion. For an input image of size N x N, the computational complexity of the proposed RCP
method is O(N?). The feature response maps generated by RCP; and RCP, methods using

binary weights is shown in figure 4.8(a-c).

hist,ep, = Hist(RC'Py) (4.22)
hist,ep, = Hist(RCPy) (4.23)
fUrep = histycp, U hist,ep, (4.24)

4.4 Chess Symmetric Pattern (CSP) Feature Extraction

The process of feature extraction through CSP is inspired from LGC-AD operator. The
length of fv generated by LGC-AD is 4096 (very high) and also the computational com-
plexity involved in LGC-AD is very high. From LGC-AD, the concept of comparing the
horizontal, veritical and diagonal pixel information is adopted while designing the CSP
operator. The numbering assignment of Knight is done in clockwise manner. CSP operator
captures the pixel information in four diagonal directions, two vertical directions and in two

horizontal directions. Thus, by comparing the pixels as shown in figure 4.7(d), the fv length
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Algorithm 4.3 Feature Extraction through CSP

Input: An Input image (Img) of size N x N
Output: Feature vector (fv,s,) of size [(N-4)/C] * [(N-4)/C] * L

1: procedure CSP(Img)

2 Initialization: CSP < { }

3 Load an input image (Img)

4: for all a € range(1,N-4) do

5: for all b € range(1,N-4) do

6 Block = img(a:a+4,b:b+4)

7 Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
8 Calculate CSP using eqgs.(4.25) and (4.26)

9

: end for

10: end for

11: Create a feature response map obtained from CSP by reshaping it into (N-4) x (N-
4).

12: The feature response map is partitioned into C x C non-overlapping blocks.

13: Histograms are extracted block wise from the feature response map to obtain fea-
ture vector fuv.s, as shown in eq.(4.27).

14: return fv.,

15: end procedure

of CSP is 16 times lesser than the fv length of LGC-AD. The corresponding equations for
calculating CSP is shown in eq.(4.25) and eq.(4.26). In eq.(4.27), fv.y, corresponds to the
block wise histograms extracted using CSP. The algorithm for feature extraction through
CSP is mentioned in algorithm 4.3. The value of ‘L’ in algorithm 4.3 depends on the
weight matrix used in the process of feature extraction. For an input image of size N x N,
the computational complexity of the proposed CSP method is O(N?). The feature response

maps generated by CSP method using binary weights is shown in figure 4.8(d).
CSP - {S(kla k5)7 S(k27 k6)7 S(k37 k7)) 8(k4; kS)u S(kla kﬁ)u 8<k27 k5)7 S(k37 kS)) S(k4) k7>}

(4.25)
CSP =) (CSP.xwy) (4.26)
fesp = Hist(CSP) (4.27)
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(a) (b) (c) (d)

Figure 4.8: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) RCP; (c) RCP; and (c) CSP using binary weights.

4.5 Radial Cross Symmetric Pattern (RCSP) Feature Ex-
traction

RCSP is obtained by horizontally concatenating both RCP and CSP. Thus, RCSP generates
three feature codes, two feature codes corresponding to RCP; and RCP, and one feature
code corresponding to CSP. Hence, the fv length of RCSP becomes 768 (incase of binary
weights). But, as other weights are used, the fv length becomes 165, 234, 111, 615 and
195 whenever fibonacci, prime, natural, squares, and odd weights are utilized for feature
extraction. Thus, by using other weights than binary weights, even if three feature codes
are generated, the fv length of RCSP is lesser than fv generated for one feature code (LBP,
LDP) in all cases (expect whenever squares weights are used for feature extraction). The

corresponding equation for computing features using RCSP is shown in eq.(4.28).

fUresp = histyep U histes, (4.28)

4.6 Results and Comparison Analysis

In this section, the feature vector length comparison of proposed feature descriptors with
different weights, the experimental results and the comparison of proposed methods with
the existing methods is reported. For the purpose of classification, a multi-class SVM
classifier with a linear kernel is employed for classifying the query images into various

expressions.
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Table 4.1: Feature vector length comparisons of proposed methods

Method | Binary | Fibonacci | Prime | Natural | Squares | Odd
RMP 512 110 156 74 410 130
RCP 512 110 156 74 410 130
CSP 256 55 78 37 205 65
RCSP 768 165 234 111 615 195

4.6.1 Feature Vectors comparison

For each of the proposed methods, the feature vector length comparison using different
weights is shown in table 4.1. RMP and RCP methods generate two feature codes each,
hence, their fv length is twice the length of LBP (in case of binary weights). As CSP method
generates only feature code, it’s fv length is same as that of LBP. The fv length of RCSP is
thrice the length of LBP (in case of binary weights), as RCSP extracts three features in a
local neighborhood. Thus, to the proposed feature descriptors, different weights have been

applied to effectively reduce the fv length and to find out the optimal recognition accuracy.

4.6.2 Experiments for Six Expressions

The experiments for six expressions have been conducted on different ‘in the lab’ datasets.
The recognition accuracy comparison analysis using RP, MP and RMP is shown in ta-
ble 4.2 for six expressions. The experimental results from table 4.2 demonstrated that
RP contributes more when compared to MP in RMP. Although, RP contributed more, the
information captured by MP cannot be completely ignored, as it captures discriminative
information with respect to Knight pixel positions. Also, the experimental results demon-
strated that considering fusion of RP and MP, resulted in an enhanced accuracy, rather than
considering RP or MP alone. So, in this Chapter, RMP, fusion of RP and MP is employed
to better capture minute changes with respect to facial expressions in a local neighborhood.
The recognition accuracy of RMP for different weights and block sizes (C x C) on MUG
dataset for six expression classification is shown in figure 4.9. From figure 4.9, it is ob-

served that the highest recognition accuracy of 88.22% is obtained by using prime weights
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Figure 4.9: Recognition accuracy of RMP for different weights and block sizes (C x C) on
MUG dataset for six expressions classification

for block size of 8 x 8. Thus, in order to maintain an uniformity across datasets, this block
size of 8 x 8 is chosen for experimental analysis.

The proposed methods have been implemented with different weights and the results
have been tabulated. In table 4.3, for each dataset, the recognition accuracy comparison
of RMP, in table 4.4, the recognition accuracy comparison of RCP, in table 4.5, the recog-
nition accuracy comparison of CSP, and in table 4.6, the recognition accuracy comparison
of RCSP with different weights is shown. Among the proposed methods with different

weights, CSP method with fibonacci weights achieved an optimal recognition accuracy of

Table 4.3: Recognition accuracy of RMP with different weights for six expressions on
different ‘in the lab’ datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 58.27 61.17 61.64 60 58.77 | 60.03
MUG 86.96 87.19 88.22 | 86.52 88.15 | 87.11
CK+ 91.45 91.67 91.23 | 91.33 91.34 | 91.33
OULU 75.90 75.42 76.18 | 7549 76.18 | 75.56
TFEID 94.67 95 94.17 | 93.67 94.25 | 94.67
KDEF 82.86 82.86 83.80 | 83.57 83.10 | 82.86
WSEFEP | 87.78 87.78 87.22 | 87.22 87.78 | 88.33
ADFES | 90.91 93.18 9091 | 90.15 90.91 |90.91
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different ‘in the lab’ datasets

Table 4.4: Recognition accuracy of RCP with different weights for six expressions on

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 59.48 60.90 58.92 | 59.94 57.60 | 61.51
MUG 87.70 87.41 87.93 | 88.07 87.85 | 86.52
CK+ 91.99 91.88 91.66 | 91.44 92.21 | 90.67
OULU 75.97 75.14 76.18 | 74.51 75.56 | 75.49
TFEID 95.08 94.58 95.50 | 9542 95.58 | 94.17
KDEF 84.05 83.10 83.33 | 84.52 83.33 | 83.57
WSEFEP | 87.22 87.22 88.33 | 89.44 87.22 | 86.67
ADFES | 92.27 92.42 91.67 | 91.67 93.94 | 93.18

different ‘in the lab’ datasets

Table 4.5: Recognition accuracy of CSP with different weights for six expressions on

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 62.70 63.66 61.61 62.08 61.52 | 62.64
MUG 86.22 86.59 85.59 | 86.59 86.44 | 86.44
CK+ 90.79 90.70 91.13 | 91.02 90.79 | 90.69
OULU 73.33 73.54 73.13 | 7292 73.40 | 73.68
TFEID 93.50 95.08 93.75 | 95.08 92.83 | 94.25
KDEF 82.86 83.57 82.14 | 82.38 82.62 | 83.33
WSEFEP | 85.56 87.22 87.22 | 86.11 86.67 | 86.11
ADFES | 92.42 90.91 90.91 90.91 9242 | 92.42

different ‘in the lab’ datasets

Table 4.6: Recognition accuracy of RCSP with different weights for six expressions on

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 63.08 60.00 59.97 | 60.06 59.97 | 61.11
MUG 86.59 87.63 88.00 | 88.07 87.59 | 87.26
CK+ 92.21 91.99 91.88 | 91.99 9242 | 91.77
OULU 74.23 74.30 7431 | 75.10 74.30 | 74.86
TFEID 95.17 94.58 94.58 95 95.08 95
KDEF 83.81 83.57 83.33 | 84.05 83.57 | 83.33
WSEFEP | 87.22 87.22 88.33 | 88.89 86.67 | 87.78
ADFES | 91.67 92.42 9242 | 91.67 93.18 | 91.67

100




% 20.0 5
= 200
g &
N -17.5 » s
w w
:
2 15.0 3 -150
. "
3 -12.5 _9 -125
[ 5
2 =
g -10.0 2z 100
e o
I 2
= -7.5 -75
=
E -5.0 bt -50
(7]
¢ -2.5 = =25
= - s 0 0 87 0 1 pEN
< £
s -0.0 v Anger Disgust Fear H sad Surpri e
) ) : ger Disgus ar Happy Sad Surprise
Anger Disgust F;raerdi::xepsy sad Surprise Predicted
(a) (b)

Figure 4.10: Confusion matrix for six expressions on (a) JAFFE dataset using CSP
method with fibonacci weights (b) MUG dataset using RMP method with prime weights
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Figure 4.11: Confusion matrix for six expressions on (a) WSEFEP dataset using RCP
method with natural weights (b) TFEID dataset using RCP method with squares weights
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63.66% on JAFFE dataset. RMP method with prime weights achieved an optimal recog-
nition accuracy of 88.22% and 76.18% on MUG and OULU datasets respectively. The
proposed RCSP method with squares weights achieved an optimal recognition accuracy of
92.42% on CK+ dataset.

In case of TFEID and ADFES datasets, RCP method with squares weights achieved
an optimal recognition accuracy of 95.58% and 93.94% respectively. In case of KDEF
and WSEFEP datasets, RCP method with natural weights achieved an optimal recognition
accuracy of 84.52% and 89.44% respectively. The confusion matrix obtained using CSP
method with fibonacci weights for JAFFE dataset is presented in figure 4.10(a) and for
MUG dataset using RMP method with prime weights is presented in figure 4.10(b). The
confusion matrix obtained using RCP method with natural weights for WSEFEP dataset is
presented in figure 4.11(a) and for TFEID dataset using RCP method with squares weights
is presented in figure 4.11(b). In table 4.7, the comparison analysis of the proposed meth-
ods with the existing variants of binary patterns, implemented in our environment setup is
shown. In table 4.8, the comparison analysis of the proposed methods with the existing
methods is shown. In tables 4.7 and 4.8, the proposed methods and their recognition ac-
curacy has been highlighted in bold. In figure 4.12, the comparison analysis of proposed
method with existing variants of binary patterns on MUG and KDEF datasets is shown.
From table 4.7, the proposed methods outperformed the existing variants of binary patterns
on all other datasets except KDEF dataset. Although LDDSCP method achieved 0.24%
more than the proposed method in case of KDEF dataset, the proposed methods are better
as they achieved better results on other datasets also. From table 4.8, for different ‘in the

lab’ datasets, the proposed methods outperformed the existing FER methods.

4.6.3 Experiments for Seven Expressions

The experiments for seven expressions have been conducted on all the ten datasets for
RMP, RCP, CSP and RCSP methods. The proposed methods have been implemented with
different weights and the results have been tabulated. In table 4.9, for each dataset, the
recognition accuracy comparison of RMP, in table 4.10, the recognition accuracy compar-

ison of RCP, in table 4.11, the recognition accuracy comparison of CSP and in table 4.12,
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Comparison with existing variants of
binary patterns
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Figure 4.12: Comparison analysis of proposed method with existing variants of binary
patterns for six expressions on MUG and KDEF datasets

the recognition accuracy comparison of RCSP with different weights is shown. Among
the proposed methods with different weights, CSP method with fibonacci weights achieved
an optimal recognition accuracy of 62.19% on JAFFE dataset. RCP method with natural
weights achieved an optimal recognition accuracy of 96.19% and 85.71% on TFEID and
WSEFEP datasets respectively. The proposed RCP method with binary and odd weights
achieved an optimal recognition accuracy of 75.71% and 94.16% on OULU and ADFES
datasets respectively. In case of MUG, CK+ and KDEF datasets, RCSP method with natu-
ral, squares and prime weights achieved an optimal recognition accuracy of 83.75%, 88%
and 82.65% respectively. RCSP method with fibonacci and natural weights achieved an
optimal recognition accuracy of 77.64% and 99.99% on RAF and FERG datasets respec-
tively.

The confusion matrix obtained using RCSP method with squares weights for CK+
dataset is presented in figure 4.13(a) and for KDEF dataset using RCSP method with
prime weights is presented in figure 4.13(b). In table 4.13, the comparison analysis of
the proposed methods with the existing variants of binary patterns, implemented in our
environment setup is shown. In table 4.14, the comparison analysis of the proposed meth-
ods with the existing methods is shown. The comparison analysis for RAF and FERG
datasets with the existing methods is reported in table 4.15. In tables 4.13, 4.14 and 4.15,

the proposed methods and their recognition accuracy has been highlighted in bold. From
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Table 4.9: Recognition accuracy of RMP with different weights for seven expressions on
different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 59.03 60.02 59.45 | 57.07 59.43 | 58.20
MUG 82.60 82.35 82.92 | 82.54 83.49 | 82.22
CK+ 86.55 86.46 86.38 | 86.41 86.55 | 86.20
OULU 74.87 74.47 75.24 | 74.76 74.76 | 75.24
TFEID 93.99 94.64 93.63 | 93.57 93.99 | 93.63
KDEF 81.22 81.43 81.63 | 81.43 81.63 | 81.63
WSEFEP | 84.76 83.81 84.76 | 84.29 85.24 | 85.24
ADFES | 93.51 93.51 92.21 93.51 92.21 | 92.86
RAF 75.68 75.85 76.96 | 74.61 75.65 | 75.98
FERG 99.11 98.17 99.23 | 99.43 08.23 | 98.26

Table 4.10: Recognition accuracy of RCP with different weights for seven expressions on
different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 58.09 60.36 58.04 | 56.22 58.00 | 57.56
MUG 80.25 83.62 83.68 | 82.48 82.54 | 82.03
CK+ 85.98 85.96 85.88 | 86.02 8598 | 86.11
OULU 75.71 75.24 74.87 | 74.76 74.67 | 74.76
TFEID 94.36 93.99 95.12 | 96.19 94.76 | 93.99
KDEF 81.43 81.22 81.43 | 82.45 81.02 | 81.02
WSEFEP | 84.29 84.29 84.76 | 85.71 84.29 | 83.33
ADFES | 93.40 91.56 9221 | 9221 94.16 | 94.16
RAF 76.04 76.80 76.66 | 75.75 77.02 | 75.13
FERG 99.83 98.73 98.74 | 99.90 99.21 | 98.47

table 4.13, the proposed methods outperformed the existing variants of binary patterns on
all other datasets except WSEFEP dataset. From table 4.14, the proposed methods out-
performed the existing FER methods on all other datasets except MUG and CK+ datasets.
In case of MUG dataset, HiNet and ResNet50 methods achieved 3.45% and 1.83% more
than the proposed RCSP method. In case of CK+ dataset, HiNet method achieved 0.6%
better recognition accuracy than the proposed RCSP method. The proposed methods are
simple when compared to HiNet and ResNet50 methods which contains one million and
thirty one million parameters respectively. From table 4.15, the proposed RCSP method
with fibonacci weights and natural weights outperformed the existing methods on RAF and

FERG datasets respectively.
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Table 4.11: Recognition accuracy of CSP with different weights for seven expressions on
different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 61.32 62.19 61.80 | 61.73 60.32 | 60.35
MUG 80.57 81.65 81.59 | 80.95 81.08 | 81.90
CK+ 86.86 86.55 86.78 | 86.68 86.61 | 85.85
OULU 72.95 73.35 72.86 | 72.86 73.81 | 72.95
TFEID 94.64 94.29 95.00 | 94.29 94.29 | 94.64
KDEF 81.02 80.82 80.61 | 80.82 81.22 | 80.82
WSEFEP | 84.29 84.29 83.81 | 83.81 84.29 | 84.29
ADFES | 91.56 92.21 9091 | 90.91 91.56 | 91.56
RAF 72.36 71.31 72.62 | 7141 72.62 | 72.88
FERG 99.99 99.71 99.97 | 99.51 99.87 |99.10

Table 4.12: Recognition accuracy of RCSP with different weights for seven expressions
on different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 60.97 60.91 61.00 | 61.04 60.00 | 60.50
MUG 82.54 83.57 83.30 | 83.75 82.98 | 83.49
CK+ 87.68 87.30 87.62 | 87.61 88.00 | 87.24
OULU 74.76 73.96 7445 | 7345 73.66 | 73.96
TFEID 94.40 93.99 94.36 | 95.06 94.90 | 94.70
KDEF 82.65 82.24 82.65 | 82.45 82.65 | 81.63
WSEFEP | 83.81 84.76 84.29 | 85.71 83.33 | 85.24
ADFES | 92.86 92.21 92.21 91.56 93.51 | 91.56
RAF 76.27 77.64 77.15 | 76.56 77.12 | 76.89
FERG 99.99 99.46 99.44 | 99.99 99.97 | 99.87
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Figure 4.13: Confusion matrix for seven expressions on (a) CK+ dataset using RCSP
method with squares weights (b) KDEF dataset using RCSP method with prime weights

Table 4.16: Recognition accuracy comparison for eight expressions with different weights
on TFEID Dataset

Method | Binary | Fiboancci | Prime | Natural | Squares | Odd
RMP 91.31 91.31 91.34 | 90.80 91.31 |90.80
RCP 91.14 91.14 91.14 | 91.32 91.17 | 91.80
CSp 93.85 93.85 94.13 | 93.54 93.85 | 93.85
RCSP | 92091 92.32 92.28 | 9232 9232 |92.32

4.6.4 Experiments for Eight Expressions

The proposed methods have been implemented with different weights and the results have
been tabulated in table 4.16. Among the proposed methods with different weights, CSP
method with prime weights achieved an optimal recognition accuracy of 94.13%. The con-
fusion matrix obtained using CSP method with prime weights on TFEID dataset for eight
expressions is presented in figure 4.14. The comparison analysis of the proposed methods
with the existing variants of binary patterns is reported in the second column of table 4.18.
In table 4.18, the proposed methods and their recognition accuracy has been highlighted in
bold. The experimental results from table 4.18 indicate that the proposed methods outper-

formed the existing variants of binary patterns in terms of recognition accuracy.
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Table 4.17: Recognition accuracy comparison for ten expressions with different weights
on ADFES Dataset

Method | Binary | Fiboancci | Prime | Natural | Squares | Odd
RMP 88.43 87.19 87.02 | 87.42 87.98 | 85.71
RCP 85.20 86.22 86.97 | 86.02 88.03 | 86.11
CSP 85.01 84.96 84.05 | 83.54 85.01 | 85.01

RCSP 85.41 86.57 87.02 | 8541 87.12 | 86.62
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Figure 4.14: Confusion matrix for eight expressions on TFEID dataset using CSP method
with prime weights
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Figure 4.16: Comparison analysis of proposed method with existing variants of binary
patterns for eight and ten expressions on TFEID and ADFES datasets
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Table 4.18: Comparison analysis with existing variants of binary patterns for eight and ten
expressions on TFEID and ADFES datasets

Method Eight Expressions | Ten Expressions
LBP [46] 90.95 83.54
LDP [97] 91.17 85.25
LDN [31] 88.06 85.20

CSLBP [28] 89.45 80.61
LGC [84] 89.95 85.20
LDTP [32] 86.29 82.68

LDTerP [33] 88.59 76.53
ALDP [35] 90.36 78.40
MSBP [88] 89.54 87.17
LDSP [34] 86.68 79.91

LDDSCP [99] 87.66 84.96
RADAP [17] 90.56 84.75
LBP + LNeP [134] 90.81 87.07
RMP 91.34 88.43

RCP 91.80 88.03

CSp 94.13 85.01
RCSP 92.91 87.12

4.6.5 Experiments for Ten Expressions

The proposed methods have been implemented with different weights and the results have
been tabulated in table 4.17. Among the proposed methods with different weights, RMP
method with binary weights achieved an optimal recognition accuracy of 88.43%. The
confusion matrix obtained using RMP method with binary weights on ADFES dataset for
ten expressions is presented in figure 4.15. The comparison analysis of the proposed
methods with the existing variants of binary patterns is reported in the third column of
table 4.18. The comparison analysis of proposed method with the existing variants of
binary patterns for eight and ten expressions on TFEID and ADFES datasets is shown in
figure 4.16. The experimental results from table 4.18 indicate that the proposed methods

outperformed the existing variants of binary patterns in terms of recognition accuracy.
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4.7 Summary

The main objective of FER systems is to develop feature descriptors that could accurately
classify the facial expressions into various categories. Towards realizing this task, texture
based feature descriptors namely RMP, RCP, CSP and RCSP have been presented in this
Chapter. RMP, a local texture based approach generates two feature codes that are unique to
corner, edge and flat regions. RCP, CSP and RCSP feature descriptors have been proposed
for overcoming some of the limitations of the existing methods such as CP, LGC and it’s
variants. In this Chapter, apart from RMP, the experiments are conducted using RCP and
CSP independently and with their fusion RCSP by using different weights on a variety of
facial expression datasets. From the experimental results, an observation has been made
that proposed methods outperformed standard existing methods proving the robustness of
the proposed descriptors and in most of the experiments, RCP method has achieved better
recognition accuracy than other feature descriptors (RMP, CSP, RCSP). Also, by using
different weights to the proposed feature descriptors resulted in an enhanced performance

with decreased fv length.
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Chapter 5

Graph Structure Inspired Feature

Descriptors

Automatic FER is an important research area in computer vision because it has many real-
time applications. However, the main issue lies in the design of a feature descriptor that
could effectively capture the appearance changes in the facial images. Hence, towards
capturing significant features, texture based feature descriptors inspired by the shape of
various graphs have been proposed in this Chapter. The main contributions of this Chapter

are summarized as follows:

* Novel texture based feature extraction methods named WGFD, inspired by the Wind-
mill graph (Wd(4,2)) have been proposed for extracting the facial features in a local
neighborhood. To reduce the fv length of the proposed WGFD methods, the concept
of different weights (binary, fibonacci, prime, natural, squares and odd) have been

applied.

* PGBP, inspired by the Generalized Petersen Graph (GPG(6,2)) has been proposed
for extracting facial features in a local neighborhood. PGBP has been modelled in
such a manner that it effectively captures both neighboring pixel and adjacent pixel

relationship in a local neighborhood.

* LTrP named Mini Triangular Pattern (mTP) and Mega Triangular Pattern (MTP) have
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Figure 5.1: Windmill graph, Wd(4,2) with 7 vertices and 12 edges

been proposed for extracting the facial features. LTrP methods have been developed

with an intention to minimize the fv length and to maximize the recognition accuracy.

In section 5.1, the feature descriptors inspired from the shape of a Wd(4,2) graph have
been proposed. In section 5.2, PGBP method, inspired by the shape of GPG(6,2) graph
has been proposed. In section 5.3, LTrP methods, inspired by the shape of a Triangle
have been proposed. In section 5.4, the experimental results corresponding to WGFDy,
WGFD,, PGBP, mTP and MTP with have been presented and analyzed. In section 5.5, the

contributions in this Chapter have been summarized.

5.1 Windmill Graph Inspired Feature Descriptors

5.1.1 Windmill Graph

Windmill graph, Wd(a,b) is an undirected graph, constructed for a>2 and b>2 formed by
joining ‘b’ copies of the complete graph (K,) at a shared universal vertex [170]. In general,
Wd(a,b) has ((a-1)*b)+1 vertices and b*a*((a-1)/2) edges, girth 3, radius 1, diameter 2
and vertex connectivity of 1. There are many variants of Windmill graphs available in the
literature. For example, Wd(3,b) is known as Friendship graph (Fy), Wd(2,b) is known as
Star graph (S,) and Wd(3,2) is known as Butterfly graph [171]. Among many such variants,
the inspiration for feature extraction is drawn from Wd(4,2) and the graph corresponding

to Wd(4,2) is shown in figure 5.1.
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Figure 5.2: Feature extraction process of WGFD methods (a) Logical placement of Rook,
Bishop and Knight in a 5 x 5 neighborhood as per RMP (b) Pixels considered for feature
extraction using WGFDy, (c) Placement of Wd(4,2) in a 5 x 5 neighborhood, for feature
extraction using WGFDy, (d) Pixels considered for feature extraction using WGFD, (e)
Placement of Wd(4,2) in a 5 x 5 neighborhood, for feature extraction using WGFD,

5.1.2 Windmill Graph based Feature Descriptors (WGFD)

Drawing motivation from CP [163], RMP and Wd(4,2), the proposed feature descriptors
named WGFD have been modelled. RMP logically fills the 24 pixels surrounding the pixel
pe in a 5 x 5 neighborhood with Rook (ry, 13, 13, 14, Ts, Tg, I7, 1), Bishop (by, b,, bs, by,
bs, bg, by, bg) and Knight positions (ki, k;, k3, k4, ks, ke, k7, kg) as shown in figure 5.2(a).
From CP, the concept of placing chessmen in a 5 x 5 neighborhood and from RMP, the
numbering scheme for Rook, Bishop and Knight is adopted into the proposed methodology.
For the purpose of feature extraction, the inspiration is drawn from the shape of Wd(4,2)
graph. Wd(4,2) is logically placed horizontally in a 5 x 5 block for feature extraction using
WGFDy, and the pixels considered for feature extraction through WGFDy, are shown in
figure 5.2(b). The process of feature extraction using WGFD,, is shown in figure 5.2(c).
Similarly, Wd(4,2) is rotated by 90° and is placed vertically in a 5 x 5 block for feature
extraction using WGFD, and the pixels considered for feature extraction through WGFD,
are shown in figure 5.2(d). The process of feature extraction using WGFD, is shown in

figure 5.2(e).

5.1.3 WGFD, Feature Extraction

For feature extraction using WGFDy, a set of eight pixels named as per RMP are consid-

ered, as shown in figure 5.2(b-c). WGFD,, extracts two feature codes in a local neighbor-
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hood namely WGFD},, and WGFD,,. In general image processing applications, the fea-
tures extracted by the local based approaches majorly focus on capturing the relationship
between adjacent pixels or the relationship between the surrounding pixels [17, 57, 134].
Feature extraction using WGFDy, involves capturing the relationship between the adjacent
pixels as well as the relationship between the surrounding pixels. For feature extraction
of WGFD,,, four pixel positions namely r;, by, p. and b; are considered. Initially, for
capturing the adjacent pixels relationship, the pixels r;, b,, p. and bs are correspondingly
compared with pixels by, p., b3 and r;. In the same manner, for capturing the surrounding
pixels relationship, the pixels r;, by, p. and b; are compared sequentially with the pixel r3.
The process of feature extraction using WGFD, is shown in eq.(5.1). Upon comparison
with pixels as shown in eq.(5.1), a sequence of eight bit binary number is obtained. In
general image processing applications, binary weights are used for conversion of this bi-
nary number to decimal number. Upon using binary weights (shown in eq.(3.27)), the fv
length of RCP; is 256, as like LBP. To further reduce the fv length of WGFD,,, different
weights such as fibonacci (shown in eq.(3.28)) [164], prime (shown in eq.(3.29)), natural
(shown in eq.(3.30)), squares (shown in eq.(3.31)) and odd (shown in eq.(3.32)) have been
considered. The formulae for feature extraction using WGFDy,, are shown in eq.(5.1) and
eq.(5.2).
WGF Dy = {s(r7,bs), s(b2, pc), S(Pe, b3), $(bs, 17), s(17,73), 5(b2,73), $(Pe, 7'3), S(bs, 73) }
5.1
WGFD,, =Y (WGFDy. % w,,) (5.2)
For feature extraction of WGFD,,,, four pixel positions namely p, b;, rs and by are
considered. Initially, for capturing the adjacent pixels relationship, the pixels p., by, rs and
b, are correspondingly compared with pixels by, rs, by and p. respectively. In the same
manner, for capturing the surrounding pixels relationship, the pixels p., by, r5 and b, are
compared sequentially with the pixel r;. The process of feature extraction using WGFD,
is shown in eq.(5.3). Upon comparison with pixels as shown in eq.(5.3), a sequence of
eight bit binary number is obtained. The formula for feature extraction using WGFDy, is
shown in eq.(5.4). To further reduce the fv length of WGFDy,, also, the concept of different

weights have been applied. The histogram features are extracted block wise using histygrq, ,
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(a) (b)

Figure 5.3: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) WGFDy, and (c) WGFDy, using binary weights.

as shown in eq.(5.5) and using histygfg, , as shown in eq.(5.6). Finally, the obtained block
wise features (histwgfdh] , histwgfdhz) are horizontally concatenated to obtain the fv of WGFDy,
feature descriptor, as shown in eq.(5.7). The formula for calculating size of WGFDy, feature
descriptor for an input image of size N x N is shown in eq.(5.8). The algorithm for feature
extraction through WGFDy, is mentioned in algorithm 5.1. The value of ‘L’ in algorithm
5.1 and in eq.(5.8) depends on the weight matrix used in the process of feature extraction.
For an input image of size N x N, the computational complexity of the proposed WGFDy
method is O(N?). The feature response maps generated by WGFD;, method using binary

weights is shown in figure 5.3.

WGFD2 — {S(pC7b1)7 5(()1,7‘5),8(7"5,[)4), S(b47pc)a S(p(:)/rl)vs(bl)/rl)a S(T5,T1), S(b4,’l"1)}

(5.3)

WGFDy, =Y (WGFDy. % w,,) (5.4)
histugga,, = Hist(WGFDy,) (5.5)

histugga,, = Hist(WGF Dy,) (5.6)

Fugpa, = histugpa,, U histugga,, (5.7)
Size(fowgsa,) = [(N —4)/C] % [(N —4)/C % 2% L (5.8)

5.1.4 WGFD, Feature Extraction

Feature extraction using WGFD, involves capturing the relationship between the adjacent
pixels as well as the relationship between the surrounding pixels. WGFD, extracts two

feature codes in a local neighborhood namely WGFD,, and WGFD,,. For feature extrac-
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Algorithm 5.1 Feature Extraction through WGFDy,
Input: An Input image (Img) of size N x N
Output: Feature vector (fv,7q4,) Of size [(N-4)/C] * [(N-4)/C] *2 *L
1: procedure WGFDy(Img)
2 Initialization: WGFD,, , WGFDy,,, WGFD,, < { }
3 Load an input image (Img)
4: for all a € range(1,N-4) do
5: for all b € range(1,N-4) do
6
7
8
9

Block = img(a:a+4,b:b+4)
Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
Calculate WGFDy, using eqs.(5.1) and (5.2)
: Calculate WGFDy, using eqs.(5.3) and (5.4)

10: end for

11: end for

12: Create two feature response maps obtained from WGFDy,, and WGFD,, by reshap-

ing them to (N-4) x (N-4).

13: Each feature response map is partitioned into C x C non-overlapping blocks.

14: Histograms are extracted block wise for both the feature response maps using
eqgs.(5.5) and (5.6).

15: Concatenate all the histograms to obtain fv,,, ¢4, using eq.(5.7).

16: return fv,,q ¢4,

17: end procedure

tion of WGFD,,, four pixel positions namely b,, re, b; and p. are considered. Initially, for
capturing the adjacent pixels relationship, the pixels b,, 1g, by and p. are correspondingly
compared with pixels rg, by, p. and b, respectively. In the same manner, for capturing
the surrounding pixels relationship, the pixels b,, 16, by and p. are compared sequentially
with the pixel r,. The process of feature extraction using WGFD; is shown in e€q.(5.9).
Upon comparison with pixels as shown in eq.(5.9), a sequence of eight bit binary number
is obtained. The formulae for feature extraction using WGFD,, are shown in eqs.(5.9) and

(5.10). To further reduce the fv length of WGFD,, also, the concept of different weights

have been applied.
WGF D3 = {s(b2,76), 5(r6,b1), 8(b1, pc), $(pe, ba), 8(ba, 12), 5(r6,72), 8(b1,72), S(pe, 12)
(5.9)
WGFD,, = (WGFD;. xw,,) (5.10)

For feature extraction of WGFD,,, four pixel positions namely bs, p., by and rg are

considered. Initially, for capturing the adjacent pixels relationship, the pixels bs, p., by and
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rg are correspondingly compared with pixels p., by, rg and b respectively. In the same
manner, for capturing the surrounding pixels relationship, the pixels bs, p., by and rg are
compared sequentially with the pixel ry respectively. The process of feature extraction us-
ing WGFDy is shown in eq.(5.11). Upon comparison with pixels as shown in eq.(5.11), a
sequence of eight bit binary number is obtained. The formulae for feature extraction using
WGEFD,, are shown in eqs.(5.11) and (5.12). To further reduce the fv length of WGFD,,
also, the concept of different weights have been applied. The histogram features are ex-
tracted block wise using WGFD,,, as shown in eq.(5.13) and using WGFD,,, as shown in
€q.(5.14). Finally, the obtained block wise features (histygfq, , histygra, ) are horizontally
concatenated to obtain fvyfq,, as shown in eq.(5.15). The formula for calculating size of
WGEFD, feature descriptor for an input image of size N x N is shown in eq.(5.16). The
algorithm for feature extraction through WGFD, is mentioned in algorithm 5.2. The value
of ‘L’ in algorithm 5.2 and in eq.(5.16) depends on the weight matrix used in the process
of feature extraction. For an input image of size N x N, the computational complexity of
the proposed WGFD, method is O(N?). The feature response maps generated by WGFD,
method using binary weights is shown in figure 5.4. Thus, in feature extraction of WGFD
methods, both the relationship between the adjacent pixels and the surrounding pixels have
been considered for extracting robust and discriminative information in a local neighbor-

hood.

WGF-D4 — {S<b37pc)7 S(p07 b4)7 S(b47 TS)) S(T87 b3)7 S(b3) T4)7 S(pC7 T4)7 S(b47 T4), S(T87 T4)}

(5.11)

WGFD,, =Y (WGFD;. xwy,) (5.12)
histugga,, = Hist(WGFD,,) (5.13)

histugta,, = Hist(WGFD.,,) (5.14)

fowgtd, = histwgfdvl U histwgfdv2 (5.15)
Size(fowgra,) = [(N —4)/CT * [(N —4)/C| *2% L (5.16)
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Algorithm 5.2 Feature Extraction through WGFD,

1:
2
3
4.
5:
6
7
8
9

10:
11:
12:

13:
14:

15:
16:

Input: An Input image (Img) of size N x N
Output: Feature vector (fv,s4,) of size [(N-4)/C]| * [(N-4)/C] *2 * L
procedure WGFD, (Img)

Initialization: WGFD,,, WGFD,,, WGFD, «+ { }
Load an input image (Img)
for all a € range(1,N-4) do
for all b € range(1,N-4) do
Block = img(a:a+4,b:b+4)
Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
Calculate WGFD,, using eqs.(5.9) and (5.10)
Calculate WGFD,, using eqs.(5.11) and (5.12)
end for
end for
Create two feature response maps obtained from WGFD,, and WGFD,, by reshap-
ing them to (N-4) x (N-4).
Each feature response map is partitioned into C x C non-overlapping blocks.
Histograms are extracted block wise for both the feature response maps using
eqgs.(5.13) and (5.14).
Concatenate all the histograms to obtain fv,, 4, using eq.(5.15).
return fv,gsq,

17: end procedure

5.2 Petersen Graph Inspired Feature Descriptor

5.2.1 Generalized Petersen Graph

“Generalized Petersen Graph (GPG) is a connected cubic graph formed by connecting the

vertices of a regular polygon to the corresponding vertices of a star polygon” [172]. They

include the Petersen graph and generalize one of the ways of constructing the Petersen

(a) (b) (c)

Figure 5.4: (a) Happy expression image from TFEID dataset. Feature response maps

generated by (b) WGFD,, and (c) WGFD,, using binary weights.
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(a) (b) (c)

Figure 5.5: (a) Generalized Petersen Graph, GPG(6,2) (b) Sample 5 x 5 block with
numbering given for pixels for feature extraction through PGBP (c) Feature extraction
through PGBP

graph. GPG is shown in figure 5.5(a). Drawing inspiration from GPG(6,2), Petersen
Graph based Binary Pattern (PGBP), a graph based feature extraction technique has been
proposed for extracting facial features in a local 5 x 5 neighborhood. In figure 5.5(b),
numbering is given to pixels in a 5 x 5 block. In figure 5.5(c), GPG(6,2) is placed in a 5 x

5 block for the purpose of feature extraction.

5.2.2 Petersen Graph based Binary Pattern (PGBP) Feature Extrac-
tion

PGBP extracts three features from a 5 x 5 overlapping neighborhood. As seen from figure
5.5(c), there are eighteen edges in the generalized petersen graph. These 18 edges are
logically separated into three groups. The first group contains the edges (represented in
figure 5.5(c) using pink color) that are part of the inner star polygon. The second group
contains the edges (represented in figure 5.5(c) using blue color) that are connecting the
inner star polygon to outer regular polygon. The third group contains the edges (represented
in figure 5.5(c) using red color) that are part of the outer regular polygon. These three
groups are a basis for feature extraction through PGBP. Corresponding to three groups,

three features namely PGBP,, PGBP, and PGBP; are extracted.

5.2.2.1 PGBP;

For feature extraction through PGBP, the vertices of the inner star polygon are considered

(r1, by, b3, 13, by, by). Initially, starting from the pixel r;, the triangular vertices (b,, b;) are
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compared in a counter clockwise manner with the pixel p.. Next, starting from the pixel r3,
the triangular vertices (by, by) are compared in a counter clockwise manner with the pixel
pe- Thus, upon performing these operations, a six bit binary number is obtained which is
then converted into a decimal number. The corresponding equations for feature extraction
through PGBP, are shown in eqs.(5.17) to (5.19). As, there are only six bits involved in
the fv of PGBP,, only the concept of binary weights has been used for feature extraction
using PGBP. The equation corresponding to binary weights considered for PGBP is shown
in eq.(5.19).

PGBPa - {S(Tlupc)v S(b27p0)7 S(b37p6>7 S(T37pc)7 S(b4apc>7 S(bhpc)} (517)
PGBP; =Y (PGBP,. W) (5.18)
W= [1, 2, 4, 8, 16, 32] (5.19)

5.2.2.2 PGBP,

For feature extraction through PGBP,, the vertices of the inner star polygon (r;, by, bs,
3, by, by) and the vertices of outer regular polygon (rs, ks, ki, 17, ke, ks) are considered.
Initially, starting from the pixel ry, the corresponding vertices of star polygon are compared
with the vertices of outer regular polygon as shown in figure 5.5(c). The sequence of
pixels chosen for comparison follows counter clockwise manner. Thus, for PGBP,, the
pixels corresponding to both polygons are considered. Upon performing these operations,
a six bit binary number is obtained which is then converted into a decimal number. The
corresponding equations for feature extraction through PGBP, are shown in eqgs.(5.20) and

(5.21).
PGBP, = {s(r1,rs), s(b1, ka), s(ba, k1), s(r3,77), (b3, kg), $(bs, ks5)} (5.20)
PGBP, =Y (PGBP, W) (5.21)

5.2.2.3 PGBP;

For feature extraction through PGBP;, the vertices of outer regular polygon (ki, kj, rs,
ks, ke, r7) are considered. Initially, starting from the pixel k;, the corresponding vertices of

outer regular polygon are sequentially compared as shown in eq.(5.22) and in figure 5.5(c).
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(c) (d)

(a) (b)

Figure 5.6: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) PGBP; (c) PGBP, and (d) PGBP;

The sequence of pixels chosen for comparison analysis follows clockwise manner. Upon
performing these operations, a six bit binary number is obtained which is then converted
into a decimal number. The corresponding equations for feature extraction through PGBP;

are shown in eqs.(5.22) and (5.23).
PGBPC = {S(kl, ]CQ), S(l{?Q, T5>, S(T’5, ]{?5)7 S(k57 k6)7 S(k?ﬁ, 7’7), S(T7, k1>} (522)

PGBP; =) (PGBpc.x W) (5.23)

5.2.2.4 Feature Level Fusion

Literature studies suggest that feature level fusion and extracting block wise features in-
creases recognition accuracy [17]. Hence, the block wise histograms are calculated for all
the three features, as shown in eqs.(5.24) to (5.26). histygyp,, histyenp, and histyep,, corre-
spond to the block wise histograms of PGBP;, PGBP, and PGBP; respectively. Finally, all
the obtained block wise histogram features from PGBP;, PGBP, and PGBP; are horizon-
tally concatenated to obtain the feature vector corresponding to PGBP (fvp,), as shown in

eq.(5.27).

hist gy, = Hist(PGBP)) (5.24)
histpgey, = Hist(PGBP,) (5.25)
histpgrp, = Hist(PGBP3) (5.26)
JUpgp = Ristpgep, U Nistpgrp, U histygnp, (5.27)

The algorithm for feature extraction through PGBP is mentioned in algorithm 5.3. The
value of ‘L in algorithm 5.3 is 64. For an input image of size N x N, the computational

complexity of the proposed PGBP method is O(N?). The feature response maps generated
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bs 4 D4

(a) (b) (c) (d)

Figure 5.7: Procedure for extracting features through mTP (a-b) Feature extraction using

mTP; (c-d) Feature extraction using mTP,

by PGBP method using binary weights is shown in figure 5.6. Thus, in the feature extrac-

tion of PGBP method, the relationship between the adjacent pixels, relationship with the

surrounding pixels and also the multi-distance relationship between the pixels have been

considered for extracting robust and discriminative information in a local neighborhood.

Algorithm 5.3 Feature Extraction through PGBP

1:
2
3
4.
5:
6
7
8
9

10:
11:
12:
13:

14:
15:

16:
17:

Input: An Input image (Img) of size N x N
Output: Feature vector (fv,g,) of size size [(N-4)/C]| * [(N-4)/C] * 3 * L
procedure PGBP(Img)

Initialization: PGBP,, PGBP,, PGBP;, PGBP <+ { }
Load an input image (Img)
for all a € range(1,N-4) do
for all b € range(1,N-4) do
Block = img(a:a+4.,b:b+4)
Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
Calculate PGBP, using eqgs.(5.17) to (5.19)
Calculate PGBP, using eqgs.(5.20) and (5.21)
Calculate PGBP; using eqs.(5.22) and (5.23)
end for
end for
Create three feature response maps obtained from PGBP;, PGBP, and PGBP; by
reshaping each of them to (N-4) x (N-4).
Each feature response map is partitioned into C x C non-overlapping blocks.
Histograms are extracted block wise from all the three feature response maps using
eqs.(5.24) to (5.26).
Concatenate all the histograms to obtain fv,, using eq.(5.27).
return fupg,

18: end procedure
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5.3 Local Triangular Patterns (LTrP)

In this section, texture based feature descriptors inspired by the shape of a Triangle have
been proposed. Towards extracting significant features, Local Triangular Patterns (LTrP)
named mini Triangular Pattern (mTP) and Mega Triangular Pattern (MTP) have been pro-
posed for extracting the facial features in 3 x 3 and 5 x 5 neighborhoods respectively. The
proposed methods (mTP and MTP) have been inspired from CP [163] and RMP. The num-
bering scheme followed for extracting features through mTP is shown in figure 5.7(a). The
pixels in a 3 x 3 neighborhood are logically named as per the methodology employed in
KTP. The numbering scheme of chessmen as per RMP in a 5 x 5 neighborhood is shown in
figure 5.8(a) and that of MTP is shown in figure 5.8(b). From a 5 x 5 block, for MTP, only
the pixels corresponding to circular neighborhood of radius 2 (rd = 2) are considered. Thus,
mTP considers 3 x 3 circular neighborhood (rd = 1) for feature extraction, whereas, MTP
considers 5 x 5 circular neighborhood (rd = 2) for feature extraction. The procedure of
feature extraction through mTP is discussed in section 5.3.1 and through MTP is discussed

in section section 5.3.2.

5.3.1 Mini Triangular Pattern (mTP) Feature extraction

Inspired by CP, chessmen have been employed in a 3 x 3 neighborhood, as shown in fig-
ure 5.7(a). In a 3 x 3 neighborhood (rd = 1), the 4-neighbors logically constitute to Rook,
whereas diagonal neighbors constitute to Bishop. In figure 5.7(a), numbering is given to
chessmen such as Rook (ry, 1y, 13, 14) and Bishop (by, b,, b3, by). The numbering scheme
follows counter clockwise direction for extracting features. For the purpose of feature ex-
traction, the emphasis is placed on adjacent pixels, rather than comparison with the pixel
pe- This is achieved by forming four triangles (two vertical and two horizontal) with refer-
ence to four Rook positions (ry, 15, 13, 14). The vertical triangles are formed corresponding
to Rook positions (r; and ry) and the horizontal triangles are formed corresponding to Rook
positions (r3 and ry).

Initially, the position r; is chosen and is connected with two Bishop positions (bs, by)
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to form a triangle in vertical direction. Rather than comparing each of these pixel positions
with the pixel p., the subsequent pixels are compared in counter clockwise manner starting
from the Rook position (r;), as shown in figure 5.7(b). Next, the position r4 is chosen
and is connected with two Bishop positions (b,, b;) to form another triangle in vertical
direction and the subsequent pixels are compared in a clockwise manner, as shown in figure
5.7(c). Thus, by combining these two, mTP, is obtained, which is shown in eq.(5.28).
After comparing with subsequent pixels in a manner as shown in eq.(5.28), six binary
bits are obtained which are then multiplied by W to obtain fv for mTP;. The corresponding
equations for complete feature extraction through mTP; are shown in eqs.(5.28) and (5.29).

Similarly, the triangles can also be formed in horizontal direction by considering other
two Rook positions (r3, r1). So, the position r3 is chosen and is connected and compared
with two Bishop positions (b, by) in counter clockwise manner, as shown in figure 5.7(d).
Next, the position r; is chosen and is connected with two Bishop positions (bs, b,) and the
subsequent pixels are compared in a clockwise manner, as shown in figure 5.7(d). Thus, by
combining these two, mTP,, is obtained, which contains six binary bits. The six binary bits
are then multiplied by W to obtain fv for mTP,. The corresponding equations for feature
extraction through mTP, are shown in eqs.(5.30) and (5.31). The block wise histograms are
calculated for all the two features, as shown in eqs.(5.32) and (5.33). hist,rp, and histy,tp,
correspond to the block wise histograms of mTP; and mTP, respectively. Finally, all the
obtained block wise histogram features from mTP; and mTP, are horizontally concatenated
to obtain fv,,tp, as shown in eq.(5.34). The algorithm for feature extraction through mTP
is mentioned in algorithm 5.4. The value of ‘L’ in algorithm 5.4 is 64. For an input image
of size N x N, the computational complexity of the proposed mTP method is O(N?). The

feature response maps generated by mTP method are shown in figure 5.9.

mT P, = {s(ry,bs), s(bs, by), s(ba, 73), 5(r4, b2), 5(ba, by), s(by, r4)} (5.28)
mTPy =Y (mTP,. W) (5.29)
mT Py = {s(rs,by), s(bs, by), s(b1,73), 5(r1, bs), s(bs, bs), s(ba,71)} (5.30)
mTPy =Y (mTP. W) (5.31)
histyrp, = Hist(mTPy) (5.32)
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hiStmsz = stt(mTPg) (533)

fUmTp = hiStmTpl U h’iStmsz (534)

Algorithm 5.4 Feature Extraction through mTP

Input: An Input image (Img) of size N x N
Output: Feature vector (fv,,s,) of size size [(N-2)/C| * [(N-2)/C] *2 * L

1: procedure MTP(Img)

2 Initialization: mTP,, mTP,, mTP + { }

3 Load an input image (Img)

4: for all a € range(1,N-2) do

5: for all b € range(1,N-2) do

6 Block = img(a:a+2,b:b+2)

7 Assign the pixel values to Rook and Bishop in the 3 x 3 block.
8 Calculate mTP; using eqs.(5.28) and (5.29)

9: Calculate mTP, using eqs.(5.30) and (5.31)

10: end for

11: end for

12: Create two feature response maps obtained from mTP; and mTP, by reshaping
each of them to (N-2) x (N-2).

13: Each feature response map is partitioned into C x C non-overlapping blocks.

14: Histograms are extracted block wise from all the two feature response maps using
eqgs.(5.32) and (5.33).

15: Concatenate all the histograms to obtain fv,,7p using eq.(5.34).

16: return fv,,rp

17: end procedure

5.3.2 Mega Triangular Pattern (MTP) Feature extraction

In CP, all the pixels in a 5 x 5 neighborhood are considered for feature extraction and
CP extracts six features, which leads to high fv length. In order to maximize recognition
accuracy and to minimize fv length, MTP is proposed. The fv length of MTP is 128. Also,
MTP considers only twelve surrounding pixels in a 5 x 5 neighborhood rather than twenty
four surrounding pixels as like CP. The pixels considered and the numbering scheme for
feature extraction through RMP and MTP are shown in figure 5.8(a-b). From figure 5.8(b),
out of twelve neighboring pixels, eight pixels correspond to Knight positions (ky, ks, k3, kq,
ks, ke, k7, kg) and four pixels correspond to Rook positions (ry, 15, 13, 14). S0, corresponding

to four Rook positions from figure 5.8(c-f), four triangles (2 vertical and 2 horizontal) are
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(a) (b) (c)
(d) (e) (f)

Figure 5.8: Procedure for extracting features through MTP (a-b) Feature extraction using
MTP; (c-d) Feature extraction using MTP,

(b)

(c)

Figure 5.9: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) mTP; and (c) mTP,

(a)
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(a) (b) (c)

Figure 5.10: (a) Happy expression image from TFEID dataset. Feature response maps
generated by (b) MTP; and (c) MTP,

formed. Initially, the position rg 1s chosen and is connected with two Knight positions (k7,
k4). Rather than comparing each of these pixel positions with the pixel p., the emphasis
is placed on comparing subsequent pixels in counter clockwise manner, connected in the
form of a triangle, as shown in figure 5.8(c). Next, the position rg is chosen and is connected
with two Knight positions (kg, k3) and the subsequent pixels are compared in a clockwise
manner, as shown in figure 5.8(d). Thus, by combining these two, MTP, is obtained, which
contains six binary bits. These six binary bits are then multiplied by W to obtain fv of
MTP;. The corresponding equations for feature extraction through MTP; are shown in
eqgs. (5.35) and (5.36).

Similarly, the triangles can be formed in horizontal directions also. So, the position r;
is chosen and is connected with two Knight positions (ks, k) and the subsequent pixels are
compared in counter clockwise manner, connected in the form of a triangle, as shown in
figure 5.8(e). Next, the position rs5 is chosen and is connected with two Bishop positions
(ke, ki) and the subsequent pixels are compared in clockwise manner, connected in the
form of a triangle, as shown in figure 5.8(f). Thus, by combining these two, MTP,, is
obtained, which contains six binary bits. These six binary bits are then multiplied by W
to obtain feature vector MTP,. The corresponding equations for feature extraction through
MTP; are shown in eqs.(5.37) and (5.38). The block wise histograms are calculated for all
the two features, as shown in eqgs.(5.39) and (5.40). histyrp, and histyrp, correspond to the
block wise histograms of MTP; and MTP; respectively. Finally, all the obtained block wise
histogram features from MTP; and MTP, are horizontally concatenated to obtain fvyrp, as
shown in eq.(5.41). The algorithm for feature extraction through mTP is mentioned in

algorithm 5.5. For an input image of size N x N, the computational complexity of the
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proposed MTP method is O(N?). The feature response maps generated by MTP method

are shown in figure 5.10.

MTP, = {5(7‘6, k7)7 S(k% k?4), S(k?477“6); 8(7"87 k8)75 ks, ka),S(kaars)}

MTP =) (MTP,. «W

)
MTPb = {S<T7, ]{?5), 8(k5, kz), S(kQ, T7>, S(T’5, k?(;), S(k’67 kl), S(/{Zl, 7’5)}
)

MTPy =) (MTP, xW

hiStMTpl = HZSt(MTPl)

hiStMTp2 = HZSt(MTPz)

Jumrp = histyrp, U histyre,

(5.35)
(5.36)
(5.37)
(5.38)
(5.39)
(5.40)
(5.41)

Algorithm 5.5 Feature Extraction through MTP

Input: An Input image (Img) of size N x N

Output: Feature vector (fvyrp) of size size [(N-4)/C] * [(N-4)/C] *2 * L

procedure MTP(Img)

Initialization: MTP,, MTP,, MTP « { }

Load an input image (Img)
for all a € range(1,N-4) do

Block = img(a:a+4.,b:b+4)

Assign the pixel values to Rook and Knight in the 5 x 5 block.

Calculate MTP, using eqs.(5.35) and (5.36)
Calculate MTP; using eqs.(5.37) and (5.38)

1:
2
3
4
5: for all b € range(1,N-4) do
6
7
8
9

10: end for
11: end for

12: Create two feature response maps obtained from MTP; and MTP, by reshaping

each of them to (N-4) x (N-4).

13: Each feature response map is partitioned into C x C non-overlapping blocks.

14: Histograms are extracted block wise from all the two feature response maps using

€qgs.(5.39) and (5.40).

15: Concatenate all the histograms to obtain fvy;rp using eq.(5.41).

16: return fuyrp
17: end procedure
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5.4 Results and Comparison Analysis

For experimental analysis, multi-class SVM employing One vs One (OVO) and One vs All
(OVA) approaches with a linear kernel is followed. In this section, the fv length comparison
of proposed methods, the experimental results and the comparison of proposed methods

with the existing methods is reported.

5.4.1 Feature Vectors Comparison

As WGFD methods generate two features each, the fv length of WGFD methods is same
as that of RMP and RCP. Thus, to the proposed feature descriptors, different weights have
been applied to effectively reduce the fv length and to find out the optimal recognition
accuracy. PGBP method generates three feature codes, each of length six bits. Hence, the
fv length corresponding to PGBP is 192. LTrP (mTP and MTP) methods generate two
feature codes, each of length six bits. Hence, the fv length corresponding to mTP and MTP
methods is 128.

5.4.2 Experiments for Six Expressions

The experiments for six expressions have been conducted on different ‘in the lab’ datasets.
The proposed WGFD methods have been implemented with different weights and the re-
sults have been tabulated. In table 5.1, for each dataset, the recognition accuracy com-
parison of WGFD,, with different weights using OVO-SVM classifier, in table 5.2, the
recognition accuracy comparison of WGFD,, with different weights using OVA-SVM clas-
sifier is shown. In table 5.3, the recognition accuracy comparison of WGFD, with dif-
ferent weights using OVO-SVM classifier and in table 5.4, the recognition accuracy com-
parison of WGFD, with different weights using OVA-SVM classifier is shown. In ta-
bles 5.5, 5.6 and 5.7 the recognition accuracy of PGBP, mTP and MTP with OVO-SVM
and OVA-SVM classifiers for different ‘in the lab’ datasets is shown. Among the pro-
posed methods with different weights, WGFD, method with fibonacci, binary / prime and

prime weights achieved an optimal recognition accuracy of 67.58%, 91.67% and 94.70% on
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Table 5.1: Recognition accuracy of WGFDy, with different weights for six expressions
using OVO-SVM classifier for different ‘in the lab’ datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 59.97 61.61 61.67 | 61.61 61.64 | 60.58
MUG 86.88 86.81 87.05 | 86.22 86.81 | 86.30
CK+ 89.93 90.81 90.71 91.67 90.59 | 91.79
OULU 75.21 76.53 76.67 | T75.97 77.01 | 76.39
TFEID 95.08 95.08 95 94.17 95.5 95.42
KDEF 83.57 83.33 83.57 | 82.62 83.33 | 82.86
WSEFEP | 87.78 85.56 88.33 | 87.78 87.78 | 87.78
ADFES | 90.91 91.67 92.42 | 91.67 93.18 | 89.39

Table 5.2: Recognition accuracy of WGFDy, with different weights for six expressions
using OVA-SVM classifier for different ‘in the lab’ datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 60.70 63.86 62.19 | 62.72 65.06 | 62.78
MUG 88.30 87.93 87.55 | 87.19 87.85 | 87.70
CK+ 90.25 92.31 91.99 | 92.53 90.9 91.99
OULU 76.46 75.69 76.53 | 74.24 77.08 | 74.44
TFEID 94.58 95.08 94.17 | 93.63 94.67 | 94.46
KDEF 83.57 84.52 83.33 | 83.57 83.10 | 81.19
WSEFEP 90 89.44 91.11 90.56 88.89 | 89.44
ADFES | 93.94 93.94 93.18 | 91.67 93.94 | 93.94

JAFFE, WSEFEP and ADFES datasets respectively. WGFD, method with squares weights
achieved an optimal recognition accuracy of 78.12% and 96.07% on OULU and TFEID
datasets respectively. The proposed mTP method achieved an optimal recognition accuracy
of 89.26% and 92.95% on MUG and CK+ datasets respectively. MTP and mTP methods
achieved an optimal recognition accuracy of 84.52% on KDEF dataset.

The confusion matrix obtained using mTP method for CK+ dataset is presented in figure
5.11(a) and for TFEID dataset using WGFD, method with squares weights is presented in
figure 5.11(b). The confusion matrix obtained using MTP method for KDEF dataset is pre-
sented in figure 5.12(a) and for ADFES dataset using WGFD,, method with prime weights
is presented in figure 5.12(b). In table 5.8, the comparison analysis of the proposed meth-
ods with the existing variants of binary patterns, implemented in our environment setup is

shown. In table 5.9, the comparison analysis of the proposed methods with the existing
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Table 5.3: Recognition accuracy of WGFD, with different weights for six expressions
using OVO-SVM classifier for different ‘in the lab’ datasets

Table 5.4: Recognition accuracy of WGFD, with different weights for six expressions
using OVA-SVM classifier for different ‘in the lab’ datasets

Actual

Figure 5.11: Confusion matrix for six expressions on (a) CK+ dataset using mTP method

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 62.20 62.23 59.38 | 61.08 63.41 | 60.09
MUG 86.37 86 86.37 | 85.11 85.85 | 85.85
CK+ 90.37 91.24 91.13 | 91.56 90.91 | 91.89
OULU 75.56 77.71 78.06 | 76.67 78.12 | 76.94
TFEID 94.17 93.67 94.58 | 94.17 905.08 | 94.58
KDEF 84.05 84.29 83.10 | 82.62 84.05 | 82.86
WSEFEP | 87.22 88.33 87.22 | 88.89 86.11 | 86.67
ADFES | 91.67 90.91 91.67 | 89.39 90.15 | 88.64

Anger

Surprise  Sad

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 64.48 67.58 64.33 64.51 66.68 | 62.84
MUG 87.33 86.89 87.26 86.59 87.48 87.48
CK+ 90.24 91.76 91.77 92.21 90.68 | 91.98
OULU 76.64 76.67 76.60 75.42 76.74 | 75.90
TFEID 95.42 94.17 94.38 94.04 96.07 | 94.46
KDEF 83.57 83.57 83.33 84.52 84.29 | 83.10
WSEFEP | 91.67 88.89 91.67 88.33 90 91.11
ADFES 93.18 93.18 94.70 92.42 93.18 | 93.18
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Figure 5.12: Confusion matrix for six expressions on (a) KDEF dataset using MTP
method (b) ADFES dataset using WGFD,, method with prime weights

methods is shown. In tables 5.8 and 5.9, the proposed methods and their recognition accu-
racy has been highlighted in bold. The comparison analysis of proposed method with the
existing variants of binary patterns on WSEFEP and ADFES datasets is shown in figure
5.13. From table 5.8, the proposed methods outperformed the existing variants of binary
patterns on all other datasets except KDEF dataset. Although LDDSCP method achieved
0.24% more than the proposed PGBP method in case of KDEF dataset, the proposed meth-
ods are better as they achieved better results on other datasets also. From table 5.9, for
different ‘in the lab’ datasets, the proposed methods outperformed the existing FER meth-

ods.

5.4.3 Experiments for Seven Expressions

The experiments for seven expressions have been conducted on different FER datasets
using WGFD, PGBP and LTrP methods. The proposed WGFD methods have been im-
plemented with different weights the results have been tabulated. In table 5.10, for each
dataset, the recognition accuracy comparison of WGFDy, with different weights using OVO-
SVM classifier, in table 5.11, the recognition accuracy comparison of WGFDy, with dif-

ferent weights using OVA-SVM classifier is shown. In table 5.12, the recognition accu-
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Figure 5.13: Comparison analysis of proposed method with existing variants of binary
patterns for six expressions on WSEFEP and ADFES datasets

racy comparison of WGFD, with different weights using OVO-SVM classifier and in table
5.13, the recognition accuracy comparison of WGFD, with different weights using OVA-
SVM classifier is shown. In tables 5.14, 5.15 and 5.16 the recognition accuracy of PGBP,
mTP and MTP with OVO-SVM and OVA-SVM classifiers for different datasets is shown.
Among the proposed methods with different weights, WGFD;, method with prime weights
achieved an optimal recognition accuracy of 88.10% on WSEFEP dataset. WGFD, method
with fibonacci, natural and squares / fibonacci weights achieved an optimal recognition ac-
curacy of 66.13%, 90.40% and 96.19% on JAFFE, CK+ and TFEID datasets respectively.
PGBP method achieved an optimal recognition accuracy of 75.89% and 83.47% on OULU
and KDEF datasets respectively. MTP and mTP methods achieved an optimal recognition
accuracy of 87.11% and 94.16% on MUG and ADFES datasets respectively. PGBP and
MTP methods achieved an optimal recognition accuracy of 77.74% and 99.83% on RAF
and FERG datasets respectively.

The confusion matrix obtained using WGFD, method with fibonacci weights for JAFFE
dataset is presented in figure 5.14(a) and for MUG dataset using MTP method is pre-
sented in figure 5.14(b). The confusion matrix obtained using WGFDy, method with prime
weights for WSEFEP dataset is presented in figure 5.15(a) and for FERG dataset using
MTP method is presented in figure 5.15(b). In table 5.17, the comparison analysis of the

proposed methods with the existing variants of binary patterns, implemented in our envi-
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Table 5.10: Recognition accuracy of WGFDy, with different weights for seven expressions
using OVO-SVM classifier for different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 58.57 60.50 58.53 | 60.85 60.93 | 59.09
MUG 81.84 82.67 81.71 80.32 81.90 | 81.14
CK+ 86.61 86.46 86.67 | 86.25 86.77 | 86.70
OULU 73.27 73.69 73.69 | 73.04 73.57 | 72.50
TFEID 93.99 94.05 93.93 | 95.35 93.63 | 94.40
KDEF 81.22 80.82 80.61 79.59 80 80.41
WSEFEP | 84.29 82.86 85.24 | 83.33 82.86 | 82.86
ADFES | 91.56 92.21 92.86 | 92.21 92.21 | 89.61
RAF 74.64 74.09 73.60 | 71.32 74.77 | 72.69
FERG 99.57 94.46 99.29 | 98.20 99.20 | 98.31

Table 5.11: Recognition accuracy of WGFD,, with different weights for seven expressions
using OVA-SVM classifier for different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 59.58 64.16 63.29 | 60.48 62.49 | 59.50
MUG 83.11 84.38 84.32 | 83.49 84.44 | 84.25
CK+ 88.97 89.66 89.26 | 89.85 89.40 | 89.82
OULU 73.87 74.76 73.57 | 73.27 74.52 | 72.56
TFEID 95.83 96.13 94.50 | 94.08 95.42 | 95.33
KDEF 82.45 82.86 82.45 | 81.02 82.24 | 81.02
WSEFEP | 87.62 85.71 88.10 | 86.67 86.67 | 85.71
ADFES | 92.21 92.21 93.51 | 92.86 9221 | 9351
RAF 70.57 69.43 68.87 | 65.25 69.82 | 67.24
FERG 99.49 99.74 99.16 | 98.49 98.80 | 98.24

ronment setup is shown. In table 5.18, the comparison analysis of the proposed methods
with the existing methods is shown. The comparison analysis for RAF and FERG datasets
with the existing methods is reported in table 5.19. The comparison analysis of proposed
method with the existing methods on RAF and FERG datasets is shown in figure 5.16. In
tables 5.17, 5.18 and 5.19, the proposed methods and their recognition accuracy has been
highlighted in bold. From table 5.17, the proposed methods outperformed the existing vari-
ants of binary patterns for different FER datasets. From table 5.18, for different ‘in the lab’
datasets, the proposed methods outperformed the existing FER methods. From table 5.19,
the proposed PGBP and MTP methods outperformed the existing methods on RAF and
FERG datasets respectively.
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Table 5.12: Recognition accuracy of WGFD, with different weights for seven expressions
using OVO-SVM classifier for different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd

JAFFE 61.86 62.34 60.91 60.87 61 61.40
MUG 81.71 81.90 82.60 | 79.81 82.22 | 80.83
CK+ 86.95 86.64 87.21 87.37 87 86.74

OULU 72.98 73.57 73.69 | 73.33 73.96 | 72.69
TFEID 93.99 94.40 9435 | 93.63 93.99 | 94.05
KDEF 81.84 81.22 80.61 81.22 81.22 | 81.02
WSEFEP | 84.29 82.86 85.24 | 83.33 82.86 | 82.86
ADFES | 90.91 90.91 90.26 | 89.61 90.26 | 88.96
RAF 75.68 74.90 7425 | 72.56 74.98 | 74.45
FERG 98.14 98.14 98.14 | 98.14 98.14 | 98.14

Table 5.13: Recognition accuracy of WGFD, with different weights for seven expressions
using OVA-SVM classifier for different datasets

Dataset | Binary | Fibonacci | Prime | Natural | Squares | Odd
JAFFE 62.36 66.13 65.67 | 61.45 64.29 | 62.42
MUG 84.69 83.68 84.13 | 82.60 82.79 | 82.24

CK+ 88.97 89.93 89.37 | 90.40 89.41 | 89.78
OULU 74.29 74.29 7446 | 7440 73.93 | 72.50

TFEID 95.33 96.19 94.56 | 94.92 96.19 | 95.33

KDEF 83.47 82.86 82.24 | 82.45 83.27 | 82.05
WSEFEP | 87.62 87.14 87.62 | 86.19 87.62 | 86.19
ADFES | 93.51 91.56 92.86 | 92.86 92.21 | 92.86

RAF 71.25 70.08 69.39 | 66.98 71.74 69

FERG 98.74 99.13 08.14 | 98.14 08.14 | 98.14
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Figure 5.14: Confusion matrix for seven expressions on (a) JAFFE dataset using WGFD,
method with fibonacci weights (b) MUG dataset using MTP method

1000
$ ]
2 o
= 2
- 25
-] w
3
a "?,' 800
a a
-20
m ]
& & - 600
= o " >
28 15 38
42 EE
I I =400
5 -10 5
2 2
o o
@ b -200
-3
4 2
5 5
2 " a "
Anger Disgust Fear HappyNeutral Sad Surprise Anger Disgust Fear HappyNeutral Sad Surprise
Predicted Predicted

(a) (b)

Figure 5.15: Confusion matrix for seven expressions on (a) WSEFEP dataset using
WGFD;, method with prime weights (b) FERG dataset using MTP method

145



9876 IL°S8 PO'C8 | 9¢°S6 | OV'yL | 1668 | TT°L8 | VI'V9 dLIN
9II'v6 IL°S8 £9°'18 S6 WYL | 0’88 | T9°S8 | ¥S'09 dLu
1S°¢6 L9°98 LY'e8 S6 68°SL | 60°06 | 6,798 | 8L'C9 d499d
| R Y 9°'L8 Ly'e8 | L1966 | 9Y'PL | 0¥°06 | 69°V8 | €199 ‘aaom
| R Y 01°88 98'C8 | €1'96 | 9L°VyL | T868 | ¥P'¥8 | 9I'V9 ROE RN
906 6198 ¥8I8 | LTE6 | OTEL | 0£98 | S¥'I8 | ¥0°6S | [PEI]l dINT +ddT
16°06 rL8 0CT08 | LT¢6 | vEVL | 09¥8 | 9C08 | 0C9S [LT] dVAVYH
9688 8¢C8 P8 I8 | S606 | LS69 | €678 | S608 | LELS [66] JOSAAT
90°¢8 00°¢8 1908 | SI'¢6 I8¢9 | 6I¥8 | €908 | 6VCS [v€] dSAT
9¢'16 eLes CT18 | LTE6 SLeL | ¥098 | OV’ I8 | 189S [88] JISIN
LL'E8 8708 €S9L | 9¢C6 | YL'L9 | 1968 | 6S'LL | €S'IS [cel ATV
L86L s6L SELL | 8106 €SY9 | OVI8 | TI'8L | OLIS [e€] JYRLAT
1L°C8 1L°68 1808 | SI'€6 | 9889 | 80E8 | OL8L | TELIS [z€] d1aT
16°06 6C 18 C0'I8 | £v'e6 el'TL | TL98 | €0C8 | 6SLS [¥81 DO
9¢°98 vy6L 0T08 | vr'68 86'LS | IS'S8 | LE6L | OV'TS [82] 4AISO
9¢'16 18°¢8 SL08 IS°€6 | 680L | SE€E8 | S8LL | L8VS [1€] NA'T
9C°06 608 1908 | 0C98 | 9169 | 08%¥8 | OL8L | OI'CS [L6] AAT
99°L8 8¢C8 91'8L | C0T6 IL°S9 196¢€8 | 91'9L | S9°€S [97] d9'T
SHAAYV | dJAIASM | JH@ | ATHAL | 0'TIN0 | 3D | DA | HAAVI POYRIA

$19SBIEP JURIIIP JOJ SUOISSAIAXD udAds J0J surdied Areurq Jo sjuerrea Sunsixa ym sisAfeue uostredwo)) 1/ 1°G d[qeL

146



98°C6 dLIA IL°S8 dLIA
9IT'v6 dLu IL°S8 dLW
1S°€6 d99d L9°98 d9Od
IS°€6 ‘aInm Sd4Av 79°LS8 ‘aInm dH34dSM
I1S°¢€6 aIom 01°8S8 aImm
0L'C6 [€01] WAV 8918 [1T1]1dOO1
ry0°C8 dLIA 9¢°S6 dLIA
£9°'18 dLu S6 dLW
LV'€S d9Dd S6 d9Od
LV'€S ‘aInm LT°96 ‘aInmm
98°'C8 aIom J9aX £€1°96 aImm drd4dL
CC'18 [8011 TAVS 0S°¢6 [2€1] ASIN
6569 [L11]3NVDd 8€°¢6 [L8] LgS+prueidq
09'8L [L01] SA1A 9¢'¢6 [201] NNDINVA
or'vL dLIA 1668 dLIA
IWyL dLu 0¥°SS8 dLW
68°'SL d949d 60°06 d9Od
IyL ‘aInm 0¥°06 ‘aInm
WL aImm n1no ¢8°68 aImm +3D
SoL [L1] 6TDDA CL'E8 [L01] Sd1d
[45 [801] 3°NTH 9'88 [801] 1°NTH
¥'S9 [L1] 0SI1ONSOY 1€°L8 [L1] 0SIONSY
IT°L8 dLIA rI'v9 dLIN
79°'S8 dLu <09 dLWu
6L'98 d99d 8L'79 d9Od
698 ‘aanm €199 ‘aanm
|4 %] aImom DN 91'v9 aImm HAAVI
C'L8 [801] 3°NTH '8¢ [LS] AH-DDTIM
89°6L [11] dOOT L9°6S [11] dOO1
86°68 [L1] 0S1ONSY €r'Ls [L1] 0SI1ONSY
LS'8L [06] VD ce'8S [L11]3ONVDd
£deanddy POYRIA jaseje(q | AdBINDY POYIIA 1sejeq

SUOISSAIdX9 UAAIS JOJ SpOYIaW UNSIXa PIm uostredwo)) :81°S AqeL

147



£8°66 dLIN LI'9L dLIN
85°86 dLw SL dLw
LY 66 dgod PL'LL dgod
€1°66 RICRIY 89°SL ‘IO
PL'66 oM LL'YL R E RN
L96 [91] MV-dd'T O¥dd 69L [0Z1] 1SAI AV
€66 [901] uonowy deag ¥8'7L | [801] S TI+NNOA
86 [SOT] NN [BLESISAPY €T9L [€6] "Te 39 1y3apes
L6 [L1] damjea-BNIA S[qUIdsuF 0r'SL [101] uorsng QIDI
20°63 [96] 1dxg dos(q 0CTvL [6ST NNDJ1d
£oeInddy POYRIA jaseje(q | AoBINDY POURIA jIseyeq

s1ose1Ep OYH] PUt JV Y UO SuoIssaIdxa uaAas J0J spoylow Junsixa yim uostredwo)) :61°G 9[qe],

148



Comparison with existing methods Comparison with existing methods

79 102
77.84 99.3 99.83
78 100 08.2

709 ag 96.7

75.4

s 74.2

74

72.84 90 89.02

7 o

7 a6

” - :

70 82

Methods Methods

Accuracy
Accuracy
8

HDLPCNN mICID Fusion MDCNN+RLPS EIFSL M Proposed M Deep Expr W Adversarial NN Deep Emotion W LBP-AW M Proposed

(a) (b)

Figure 5.16: Comparison analysis of proposed method with existing methods for seven
expressions on (a) RAF and (b) FERG datasets

Table 5.20: Recognition accuracy comparison using WGFD methods for eight expressions
with different weights on TFEID dataset

Classifier | Method | Binary | Fibonacci | Prime | Natural | Squares | Odd
OVO-SVM | WGFDy, | 92.32 91.73 92 90.61 92 91.69
WGEFD, | 91.03 90.44 91.27 | 91.23 91.31 | 91.31
OVA-SVM | WGFDy, | 93.42 92.55 92.51 | 93.18 92.83 |93.73
WGEFD, | 93.73 93.45 92.58 | 92.86 0342 |93.42

5.4.4 Experiments for Eight Expressions

The proposed WGFD methods have been implemented with different weights and the re-
sults have been tabulated in table 5.20. In table 5.21, the recognition accuracy compari-
son using PGBP, mTP and MTP methods is shown. Among the proposed methods, MTP
method achieved an optimal recognition accuracy of 95.66%. The comparison analysis of
the proposed methods with the existing variants of binary patterns is reported in the second
column of table 5.23. In table 5.23, the proposed methods and their recognition accuracy
has been highlighted in bold. From table 5.23, the experimental results indicate that the
proposed methods outperformed the existing variants of binary patterns in terms of recog-

nition accuracy.
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Table 5.21: Recognition accuracy comparison using PGBP, mTP and MTP methods for
eight and ten expressions

Classifier | Method | Eight Expressions | Ten Expressions
PGBP 92.21 87.37
OVO-SVM | mTP 91.66 85.15
MTP 93.77 87.30
PGBP 95.28 84.75
OVA-SVM | mTP 94.01 83.33
MTP 95.56 83.79

Table 5.22: Recognition accuracy comparison using WGFD methods for ten expressions
with different weights on ADFES dataset

Classifier | Method | Binary | Fibonacci | Prime | Natural | Squares | Odd
OVO-SVM | WGFD,, | 85.71 85.71 86.16 | 84.70 87.98 | 84.70
WGFD, | 86.16 85.25 84.75 | 85.15 85.66 | 84.29
OVA-SVM | WGFD;, | 83.28 83.74 84.14 | 85.20 84.65 | 82.83
WGEFD, | 83.74 83.74 83.69 | 83.29 83.28 | 82.88

5.4.5 Experiments for Ten Expressions

The proposed WGFD methods have been implemented with different weights and the re-
sults have been tabulated in table 5.22. In table 5.21, the recognition accuracy comparison
using PGBP, mTP and MTP methods is shown. Among the proposed methods, WGFDy
method with squares weights achieved an optimal recognition accuracy of 87.98%. The
comparison analysis of the proposed methods with the existing variants of binary patterns
is reported in the third column of table 5.23. From table 5.23, the experimental results
indicate that the proposed methods outperformed the existing variants of binary patterns in

terms of recognition accuracy .

5.5 Summary

An appropriate representation of facial features can significantly aid in improving the per-
formance of an FER system. In this regard, new texture based feature descriptors inspired
by the shape of various graphs such as Windmill graph, GPG and Triangle graph have
been proposed in this Chapter. Each of WGFDy, and WGFD, methods generate two feature
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Table 5.23: Comparison analysis with existing variants of binary patterns for eight and ten

expressions on TFEID and ADFES datasets

Method Eight Expressions | Ten Expressions
LBP [46] 90.95 83.54
LDP [97] 91.17 85.25
LDN [31] 88.06 85.20
CSLBP [28] 89.45 80.61
LGC [84] 89.95 85.20
LDTP [32] 86.29 82.68
LDTerP [33] 88.59 76.53
ALDP [35] 90.36 78.40
MSBP [88] 89.54 87.17
LDSP [34] 86.68 79.91
LDDSCP [99] 87.66 84.96
RADAP [17] 90.56 84.75
LBP + LNeP [134] 90.81 87.07
WGFD, 93.73 87.98
WGFD, 93.73 86.16
PGBP 95.28 87.37
mTP 94.01 85.15
MTP 95.56 87.30
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codes by encoding both the adjacent pixel relationship and the neighboring pixel relation-
ship in a local neighborhood. The concept of using different weights (binary, fibonacci,
prime, natural, squares and odd) have been applied to the proposed WGFD methods for
determining the optimal recognition accuracy. PGBP extracts three feature codes based on
the vertices and edges of Generalised Petersen graph (GPG(6,2)) in a local neighborhood.
LTrP (mTP and MTP) methods generate two feature codes by considering the triangles in
both vertical and horizontal directions. The features are extracted both in clockwise and
counter clockwise directions using the proposed PGBP and LTrP methods. In this Chapter,
the experiments have been conducted using different weights for WGFD methods and using
binary weights for PGBP and LTrP methods. From the experimental results, an observation
has been made that proposed methods outperformed the standard existing methods proving

the robustness and efficiency of the proposed descriptors.
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Chapter 6

Feed Forward Neural Network
Structure Inspired Hand-crafted

Feature Descriptors

Automatic FER has become essential today as it has many applications in real time such as
animation, driver mood detection, lie detection, clinical psychology etc [57]. The effective-
ness of FER systems mainly depends on the extracted features. For extracting distinctive
features with low dimensions, new local texture based image descriptors named FFNND
have been proposed in this Chapter for recognizing facial expressions. The main contribu-

tions in this Chapter are summarized as follows:

* Novel texture based feature extraction methods named FFNND (FFFND,, FFNNF,),
inspired by the structure of a feed forward neural network have been proposed for
extracting the facial features in a local neighborhood. The weights in the network are

calculated based on the neighboring pixel values.

* In order to find the optimal recognition accuracy of the proposed FFNND methods,
the experiments have been performed with logsig and tanh activation functions under

varying block sizes using multi-class SVM.

In section 6.1, the feature descriptors named FFNND inspired from the structure of a

feed forward neural network have been proposed. In section 6.2, the experimental results
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corresponding to FFNND, and FFNND, have been presented and analyzed. In section 6.3,

the contributions in this Chapter have been summarized.

6.1 Feed Forward Neural Network Inspired Feature De-
scriptors (FFNND)

Initially, Tuncer et al. [173] proposed Neural Network based Image Descriptor (NND) for
texture recognition. The proposed methods have been inspired by the structure of a feed
forward neural network, as like NND and the main objective of the proposed methods is
to extract salient features in a local neighborhood. For extracting discriminative features,
two feature descriptors named FFNND; and FFNND, have been proposed in this Chapter.
FFNND; extracts three feature codes by capturing the adjacent pixel relationship based on
multi-distance information as like LMeP, whereas, FFNND, extracts two feature codes by
capturing the relationship between the pixels in a circular neighborhood located at a radius

(rd = 2), as like MTP.

6.1.1 Feature extraction using FFNND;

Feature extraction using FFNND) involves dividing an image into 3 x 3 overlapping blocks
and the pixels within each block are considered to create feed forward neural networks.
LMeP method [168] generates three feature codes based on the adjacent pixel relationship,
corresponding to multi-distance information (d € [1,3]). Hence, for each distance, one
neural network is created and thus, finally three neural networks are created. These net-
works use the pixels of the 3 x 3 overlapping blocks and the weights of these networks are
computed based on the neighboring pixels in the network and the signum function (s(x)).
In these networks, logistic sigmoid (logsig) and tangent hyperbolic (tanh) functions are
utilized as activation function. Finally, the histogram features obtained from all the three
networks are concatenated to obtain a final feature vector. The complete process of feature
extraction using FFNND; is explained in the following steps:

Step 1: Divide the input image into 3 x 3 overlapping blocks. These 3 x 3 blocks are
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chosen in order to capture finer appearance changes with respect to facial expressions in a
local neighborhood [11, 15, 17, 33].
Step 2: The pixels in a 3 x 3 neighborhood are normalized based on the following formula,

as shown in eq.(6.1):

Pm
mazimum(py)’

Pm = U)here Pm = {rlablar27b27r37b3ar47b47pC} (61)
Step 3: LMeP compares adjacent pixels for feature extraction, whereas, NND considers the
structure of a feed forward neural network for feature extraction. The proposed FFNND,

feature descriptor is developed by combining the properties of both of these descriptors.

meshy, = (1) % Wb, + b1 * Whb, + T2 * Wb, + D) (6.2)
meshy, = (71 % Wy,py + b1 * Whyry + 72 % Weyry + D) (6.3)
meshe, = a(meshy, * Wy,p, + meshy, * Weyp, + Pe) (6.4)
meshg, = o(mesh,, * Wy, + meshy, * Wy, + Pe) (6.5)
meshe, = o(meshy, * Wy, + Meshy, * Wep, + De) (6.6)

fui = o(meshe, * Wy,p, + meshq, * Wy,p, + meshe, * Wy,p, + D) (6.7)

1, ifuy > v,
Wyyy, = (6.8)

0, otherwise

The process of feature extraction using FFNND;, corresponding to distance (d = 1)
is shown in eqs.(6.2) to (6.8). Here, 1y, by, 15, by, 13, b3, 14, by correspond to the neigh-
boring pixels surrounding the center pixel (p.), set wy,,, represents the weights. Mesh
(mesh,,, meshy, , mesh,, meshy,, mesh,,) corresponds to the hidden layer outputs and fv,
corresponds to the feature code for the network formed by the pixels of LMeP;. The o(.)

function corresponds to the activation function. At each step, p. is considered as the bias.

meshy, = () % Wy, + 72 % Weyr, + T3 % Weyr, + De) (6.9)
meshy, = o(r1 % Wy, + 72 % Wey, + '3 * Wb, + Pe) (6.10)
meshe, = o(meshy, * Wy, + meshy, * Wy, + De) (6.11)
meshg, = o(meshy, * Wb, + meshy, * Wy b, + D) (6.12)
meshe, = o(meshy, * Wy, + meshy, * Wy, + Pc) (6.13)
fva = a(meshe, * Wh,p, + Meshg,Wy,p, + meshe, * Wy,p, + D) (6.14)
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Figure 6.1: The proposed feature descriptor network (FFNND, ) (a) 3 x 3 sample block (b)
Network constructed by considering adjacent pixels corresponding to d = 1 (c¢) Network
constructed by considering adjacent pixels corresponding to d = 2 (d) Network
constructed by considering adjacent pixels corresponding to d = 3.

The process of feature extraction using FFNND,, corresponding to distance (d = 2) is
shown in eqs.(6.9) to (6.14). Mesh (mesh,,, mesh,,, mesh.,, meshg,, mesh,,) corresponds
to the hidden layer outputs and fv, corresponds to the feature code for the network formed

by the pixels of LMeP;.

meshy,, = o(r) % Wy, + by * Whyb, + T'a * Wb, + Pe) (6.15)
meshy, = o (71 % Wy, + b * Whyry + T4 % Wyyry + Pe) (6.16)
meshe, = a(meshy, * Wyb, + meshy, * Wep, + Pe) (6.17)
meshg, = o(mesh,, * Wy,r, + meshy, * Wy, + Pe) (6.18)
meshe, = o(meshy, * Wy, + MeShy, * Weyp, + Pe) (6.19)
fv3 = o(meshe, * we,p, + Meshy, * Weyp, + Meshe, * Wy, + Pe) (6.20)

The process of feature extraction using FFNND,, corresponding to distance (d = 3) is
shown in eqs.(6.15) to (6.20). Mesh (mesh,,, meshy,, mesh,,, meshg,, mesh,,) corresponds
to the hidden layer outputs and fv; corresponds to the feature code for the network formed

by the pixels of LMePs. In this Chapter, as a part of experimental evaluation, different acti-
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vation functions such as logistic sigmoid (logsig) and tangent hyperbolic (tanh) have been
considered. The mathematical equations corresponding to the logsig and tanh activation

functions are shown in eqgs.(6.21) and (6.22).

1
& _ 8
tanh(g) = % (6.22)

where, logsig(.) and tanh(.) represents logistic sigmoid and tangent hyperbolic activa-
tion functions respectively.
Step 4: The feature codes fv,, fv, and fv; are normalized based on the following for-

mulae, as shown in eqs.(6.23) to (6.25).

fur = round(fu, * scale) (6.23)
fva = round( fuv, * scale) (6.24)
fvs = round(fus * scale) (6.25)

where round(.) is the rounding function used for integer conversion and scale denotes the
normalization range. As the values are normalized in step 2, fvy, fv, and fv; are in the
range [0,1]. As the values are in the range [0,1], they have been rounded and multiplied by
the scale. The scale is chosen empirically as 10 in order to greatly reduce the feature vector
length.

Step 5: Repeat the steps 2-4 for all the 3 x 3 blocks and generate three feature response
maps for an image.

Step 6: Extract the block wise histograms from the each of the obtained feature response
maps, as shown in eqs.(6.26) to (6.28). Here, hist,, , hist,, and hist,,, correspond to the

block wise histograms obtained from fv;, fv, and fv; respectively.

histym, = Hist(fv;) (6.26)
histy, = Hist(fv,) (6.27)
histm, = Hist(fuvs) (6.28)

Step 7: Concatenate all the histograms to form final feature vector (fvegng, ), as shown
in €q.(6.29).

fttnnd, = histy,, U histy,, U histy, (6.29)
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where, Vg, 1S the final fv obtained using FFNND; method. Feature extraction using
the proposed FFNND; method is shown graphically in figure 6.1. As shown in figure 6.1,
the proposed FFNND,; method generates three feature codes, as it utilizes three networks.
The process of feature extraction using FFNND; method is shown in algorithm 6.1. The

value of ‘L’ in algorithm 6.1 is 10.

Algorithm 6.1 Feature Extraction through FFNND,
Input: An Input image (Img) of size N x N
Output: Feature vector (fvynnq,) of size [(N-2)/C| * [(N-2)/C] * 3 * L
1: procedure FEFNND,(Img)
2 Initialization: fvi, fv,, fv; < { }
3 Load an input image (Img)
4 for all a € range(1,N-2) do
5: for all b € range(1,N-2) do
6:
7
8
9

Block = img(a:a+2,b:b+2)
Assign the pixel values to Rook and Bishop in the 3 x 3 block.
Calculate fv; using egs.(6.2) to (6.8)
: Calculate fv, using eqs.(6.9) to (6.14)
10: Calculate fv; using eqs.(6.15) to (6.20)

11: Normalize fvy, fv, and fv; as shown in egs. (6.23) to (6.25)

12: end for

13: end for

14: Create three feature response maps obtained from fv,, fv, and fv; by reshaping
them to (N-2) x (N-2).

15: Each feature response map is partitioned into C x C non-overlapping blocks.

16: Histograms are extracted block wise for all the three feature response maps using
eqs.(6.26) to (6.28).

17: Concatenate all the histograms to obtain fvyf,,q, using €q.(6.29).

18: return fvyuna,

19: end procedure

6.1.2 Feature extraction using FFNND,

Feature extraction using FFNND, involves dividing an image into 5 x 5 overlapping blocks
and the pixels within each block are considered to create feed forward neural networks.
FFNND, method considers circular neighborhood of radius (rd = 2), as like MTP. For
feature extraction through FFNND,, only twelve pixels surrounding the pixel p. are con-

sidered. These twelve pixels are logically divided into two groups namely horizontal group
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(a) (b) (c)

Figure 6.2: The proposed feature descriptor network (FFNND,) (a) 5 x 5 sample block
corresponding to rd = 2 (b) Network constructed by considering pixels in horizontal
direction (c) Network constructed by considering pixels in vertical direction.

(ks, 15, ky, kg, 17, k7) and vertical group (ki, 1¢, ko, k¢, 13, ks). Two neural networks are
created by separately considering the horizontal group and vertical group of pixels. A sam-
ple 5 x 5 block corresponding to circular neighborhood (rd = 2) is shown in figure 6.2(a).
In figure 6.2(b), the network created using horizontal groups of pixels and the pixel p. is
shown. In figure 6.2(c), the network created using vertical groups of pixels and the pixel p.
is shown. These networks use the pixels of the 5 x 5 circular neighborhood and the weights
of these networks are computed based on the neighboring pixels in the network and the
signum function (s(x)). In these networks, logistic sigmoid (logsig) and tangent hyperbolic
(tanh) functions are utilized as activation function. Finally, the histogram features obtained
from all the two networks are concatenated to obtain a final feature vector. The complete
process of feature extraction using FFNND; is explained in the following steps:

Step 1: Divide the input image into 5 x 5 overlapping blocks. These 5 x 5 blocks are cho-
sen for feature extraction as like MTP.

Step 2: The pixels in a 5 x 5 neighborhood are normalized based on the following formula,

as shown in eq.(6.30):
Pm = . Pm ) Wherepm = {r57k37k27r67k17k87r77k77k67r87k57k4} (630)
maximum(ppy)

Step 3: MTP compares adjacent pixels for feature extraction by drawing inspiration from
the shape of a triangle, whereas, NND considers the structure of a feed forward neural

network for feature extraction. The proposed FFNND, method is developed by considering
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the pixels in a circular neighborhood as like MTP and constructs networks as like NND.

mesh,, = (k3 % Wik, + T's * Wik + K * Wik + De) (6.31)
meshy, = 0 (k3 * Wiy, + 7's % Wiy, + ka * Wiy, + Pe) (6.32)
meshe, = o (ks * Wik, + 75 * Weg, + kg * Wik, + Pe) (6.33)
fvs = o(meshy, * Wi, + meshy, * Wy,p, + meshe, * Wip, + D) (6.34)

The process of feature extraction using FFNND,, corresponding to horizontal group of
pixels is shown in eqs.(6.31) to (6.34). Mesh (mesh,,, mesh,,, and mesh., corresponds to
the hidden layer outputs and fv, corresponds to the feature code for the network formed by

the considering horizontal group of pixels. At each step, p. is considered as the bias.

mesh,, = a(ky * Wk, + 76 * Wk, + k2 * Wik, + Pe) (6.35)
meshy, = 0 (ki * Wiy + 76 * Wegrg + k2 % Wiy, + Pe) (6.36)
meshe, = o (k1 * Wi + T6 * Wegks + k2 * Wiks + Pe) (6.37)
fus = o(meshy, * Wygp, + Meshy, * Weyp, + Mmeshe, * Wiy, + Pe) (6.38)

The process of feature extraction using FFNND,, corresponding to vertical group of
pixels is shown in eqs.(6.35) to (6.38). Mesh (mesh,,, mesh,, and mesh,, corresponds to
the hidden layer outputs and fvs corresponds to the feature code for the network formed by
the considering vertical group of pixels. At each step, p. is considered as the bias. In this
Chapter, as a part of experimental evaluation, different activation functions such as logsig
and tanh have been considered. The mathematical equations corresponding to the logsig
and tanh activation functions are shown in eqs.(6.21) and (6.22).

Step 4: The feature codes fv, and fvs are normalized based on the following formulae,

as shown in eq.(6.39) and eq.(6.40).
fvg = round(fuy * scale) (6.39)
fvs = round( fuy * scale) (6.40)

where round(.) is the rounding function used for integer conversion and scale denotes
the normalization range. As the values are normalized in step 2, fv,4 and fvs are in the range
[0,1]. As the values are in the range [0,1], they have been rounded and multiplied by the

scale. The scale is chosen empirically as 10 in order to greatly reduce the feature vector
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length.
Step 5: Repeat the steps 2-4 for all the 5 x 5 blocks and generate two feature response
maps for an image.
Step 6: Extract the block wise histograms from both the obtained feature response maps,
as shown in eqs.(6.41) and (6.42). Here, hist,,, and hist,,, correspond to the block wise
histograms obtained from fv, and fvs respectively.
histy, = Hist(fvs) (6.41)
histn, = Hist(fuvs) (6.42)
Step 7: Concatenate all the histograms to form final feature vector (fv¢sng,), as shown
in eq.(6.43).
fUtinng, = histy, U histp, (6.43)
where, fvimng, 18 the final fv obtained using FFNND, method. Feature extraction using
the proposed FFNND, method is shown graphically in figure 6.2. As shown in figure 6.2,
the proposed FFNND, method generates two feature codes, as it utilizes two networks. The
process of feature extraction using FFNND, method is shown in algorithm 6.2. The value

of ‘L in algorithm 6.1 is 10.

6.2 Results and Comparison Analysis

For experimental analysis, multi-class SVM employing One vs One (OVO) and One vs All
(OVA) approaches with a linear kernel is followed. In this section, the fv length comparison
of proposed methods, the experimental results and the comparison of proposed methods

with the existing methods is reported.

6.2.1 Feature Vectors Comparison

Although, the proposed FFNND, and FFNND, methods generate three and two feature
codes respectively, the fv length (10) is much lesser when compared to majority of the ex-
isting feature descriptors (256). The fv length of FFNND; and FFNND, methods is 30 and

20 respectively. In order to effectively reduce the fv length, furthermore, the experiments
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Algorithm 6.2 Feature Extraction through FFNND,
Input: An Input image (Img) of size N x N
Output: Feature vector fvfp,q, of size [(N-4)/C] * [(N-4)/C] *2 * L
1: procedure FFNND,(Img)
2 Initialization: fvg, fvs < { }
3 Load an input image (Img)
4: for all a € range(1,N-4) do
5: for all b € range(1,N-4) do
6
7
8
9

Block = img(a:a+4,b:b+4)

Assign the pixel values to Rook, Bishop and Knight in the 5 x 5 block.
Calculate fv, using eqgs.(6.31) to (6.34)

Calculate fvs using eqs.(6.35) to (6.38)

10: Normalize fv4 and fvs as shown in egs.(6.39) and (6.40)

11: end for

12: end for

13: Create two feature response maps obtained from fv, and fvs by reshaping them to
(N-4) x (N-4).

14: Each feature response map is partitioned into C x C non-overlapping blocks.

15: Histograms are extracted block wise for both the feature response maps using
eqs.(6.41) and (6.42).

16: Concatenate all the histograms to obtain fvyf,nq, using €q.(6.43).

17: return vy spnd,

18: end procedure

have been performed with varying block sizes to find out the optimal recognition accuracy.

6.2.2 Experiments for Six Expressions

The experiments for six expressions have been conducted on different ‘in the lab’ datasets.
The proposed FFNND methods have been implemented with logsig and tanh activation
functions under varying block sizes with multi-class SVM and the results have been tab-
ulated. In table 6.1, for each dataset, the recognition accuracy comparison of FFNND;
method with logsig activation function under varying block sizes using OVO-SVM classi-
fier is shown. In table 6.2, the recognition accuracy comparison of FFNND,; with logsig
activation function under varying block sizes using OVA-SVM classifier is shown. In table
6.3, the recognition accuracy comparison of FFNND; with tanh activation function un-
der varying block sizes using OVO-SVM classifier is shown. In table 6.4, the recognition

accuracy comparison of FFNND; with tanh activation function under varying block sizes
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Figure 6.3: Confusion matrix for six expressions on (a) MUG dataset using FFNND,
method and (b) CK+ dataset using FFNND; method

using OVA-SVM classifier is shown. In table 6.5, the recognition accuracy comparison of
FFNND, with logsig activation function under varying block sizes using OVO-SVM clas-
sifier is shown. In table 6.6, the recognition accuracy comparison of FFNND, with logsig
activation function under varying block sizes using OVA-SVM classifier is shown. In table
6.7, the recognition accuracy comparison of FFNND, with tanh activation function under
varying block sizes using OVO-SVM classifier is shown. In table 6.8, the recognition accu-
racy comparison of FFNND, with tanh activation function under varying block sizes using
OVA-SVM classifier is shown.

Among the proposed methods with different block sizes, FFNND; method with logsig
activation function achieved an optimal recognition accuracy of 67.87%, 93.17% and 82.86%
on JAFFE, CK+ and KDEF datasets with 9 x 9, 11 x 11 and 9 x 9 block sizes respectively.
FFNND, method with logsig activation function achieved an optimal recognition accuracy
of 86.22%, 72.78% and 91.67% on MUG, OULU and ADFES datasets with 8 x 8, 9 x 9
and 8 x 8 block sizes respectively. FFNND, method with tanh activation function achieved
an optimal recognition accuracy of 96.42% and 88.89% on TFEID and WSEFEP datasets
with 12 x 12 and 9 x 9 block sizes respectively. The confusion matrix obtained using

FFNND, method for MUG dataset is presented in figure 6.3(a) and for CK+ dataset us-
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Figure 6.4: Confusion matrix for six expressions on (a) TFEID dataset using FFNND,
method and (b) WSEFEP dataset using FFNND, method

ing FFNND; method is presented in figure 6.3(b). The confusion matrix obtained using
FFNND,; method for TFEID dataset is presented in figure 6.4(a) and for WSEFEP dataset
using FFNND, method is presented in figure 6.4(b). In table 6.9, the comparison analy-
sis of the proposed methods with the existing variants of binary patterns, implemented in
our environment setup is shown. In table 6.10, the comparison analysis of the proposed
methods with the existing methods is shown. In tables 6.9 and 6.10, the proposed methods
and their recognition accuracy has been highlighted in bold. The comparison analysis of
proposed method with the existing variants of binary patterns on CK+ and TFEID datasets
is shown in figure 6.5. From table 6.9, the proposed FFNND methods achieved better
recognition accuracy than existing variants of binary patterns for all other datasets except
OULU and KDEF datasets. From table 6.10, FFNND methods achieved better recogni-
tion accuracy than existing methods for JAFFE, CK+, TFEID, KDEF, WSEFEP and AD-
FES datasets. In case of MUG dataset, HiNet and ResNet50 methods achieved 1.58%
and 0.66% more than the proposed FFNND, method. Although, the other variants of bi-
nary patterns and existing methods achieved better recognition accuracy than the proposed
FFNND methods in case of OULU dataset, the proposed methods are simple, easily imple-

mentable and have lesser fv length when compared to majority of the existing methods.
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Figure 6.5: Comparison analysis of proposed method with existing variants of binary
patterns for six expressions on CK+ and TFEID datasets

6.2.3 Experiments for Seven Expressions

The experiments for seven expressions have been conducted on different FER datasets
using FFNND methods. The proposed FFNND methods have been implemented with
logsig and tanh activation functions under varying block sizes with multi-class SVM and
the results have been tabulated for seven expressions. In table 6.11, for each dataset, the
recognition accuracy comparison of FFNND; method with logsig activation function un-
der varying block sizes using OVO-SVM classifier is shown. In table 6.12, the recognition
accuracy comparison of FFNND; with logsig activation function under varying block sizes
using OVA-SVM classifier is shown. In table 6.13, the recognition accuracy comparison
of FFNND, with tanh activation function under varying block sizes using OVO-SVM clas-
sifier is shown. In table 6.14, the recognition accuracy comparison of FFNND; with tanh
activation function under varying block sizes using OVA-SVM classifier is shown. In table
6.15, the recognition accuracy comparison of FFNND, with logsig activation function un-
der varying block sizes using OVO-SVM classifier is shown. In table 6.16, the recognition
accuracy comparison of FFNND, with logsig activation function under varying block sizes
using OVA-SVM classifier is shown. In table 6.17, the recognition accuracy comparison
of FFNND, with tanh activation function under varying block sizes using OVO-SVM clas-

sifier is shown. In table 6.18, the recognition accuracy comparison of FFNND, with tanh
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activation function under varying block sizes using OVA-SVM classifier is shown.

Among the proposed methods with different block sizes, FFNND; method with a block
size of 9 x 9 achieved an optimal recognition accuracy of 66.14% on JAFFE dataset.
FFNND, method with a block size of 8 x 8 achieved an optimal recognition accuracy
of 87.27%, 80.91%, 85.71%, 92.21% and 99.83% on CK+, KDEF, WSEFEP, ADFES and
FERG datasets respectively. FENND, method with a block size of 9 x 9 achieved an opti-
mal recognition accuracy of 81.14% and 70.24% on MUG and OULU datasets respectively.
FFNND; method with a block size of 10 x 10 and 13 x 13 achieved an optimal recognition
accuracy of 95.48% and 67.44% on TFEID and RAF datasets respectively. The confusion
matrix obtained using FFNND; method for JAFFE dataset is presented in figure 6.6(a) and
for ADFES dataset using FFNND, method is presented in figure 6.6(b).

The confusion matrix obtained using FFNND, for RAF dataset is presented in figure
6.7(a) and for FERG dataset using FFNND, method is presented in figure 6.7(b). In table
6.19, the comparison analysis of the proposed methods with the existing variants of binary
patterns is shown. In table 6.20, the comparison analysis of the proposed methods with the
existing methods is shown. In tables 6.19 and 6.20, the proposed methods and their recog-
nition accuracy has been highlighted in bold. The comparison analysis of proposed method
with the existing variants of binary patterns on TFEID and ADFES datasets is shown in
figure 6.8. From table 6.19, the proposed FFENND methods achieved better recognition ac-
curacy than the existing variants of binary patterns in case of JAFFE, MUG, CK+, TFEID,
KDEF and ADFES datasets. In case of OULU and WSEFEP datasets, RADAP method
achieved 4.1% and 1.71% better recognition accuracy than the proposed FFNND, method.
Although, RADAP method achieved better recognition accuracy, the fv length of RADAP
method is very high when compared to FFNND methods. From table 6.20, the proposed
FFNND methods achieved better recognition accuracy on JAFFE, TFEID, WSEFEP, AD-
FES and FERG datasets.

From table 6.20, in case of MUG dataset, HiNet and ResNet50 methods achieved 6.06%
and 4.44% more than the proposed FFNND, method. In case of OULU dataset, HiNet and
VGG19 methods achieved 1.76% and 0.26% better recognition accuracy than the proposed
FFNND, method. In case of KDEF dataset, SAFL method achieved 0.31% better recog-
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Figure 6.6: Confusion matrix for seven expressions on (a) JAFFE dataset using FFNND;
method and (b) ADFES dataset using FFNND, method
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Figure 6.8: Comparison analysis of proposed method with existing variants of binary
patterns for seven expressions on TFEID and ADFES datasets

nition than the proposed FFNND, method. From table 6.20, in case of RAF dataset, the
proposed FFNND, method with logsig activation function achieved an optimal recognition
accuracy of 67.44%. The existing deep learning methods achieved better recognition accu-
racy than the proposed methods. This is because, RAF dataset has images captured from
real world under un-constrained environment. Although, some of the existing methods
achieved better recongition accuracy than the proposed FFNND methods, the proposed are
simple and extracts salient features in a local neighborhood with lesser fv length. In case

of FERG dataset, from table 6.20, FFNND, method outperformed the existing methods.

6.2.4 Experiments for Eight Expressions

The proposed FENND methods have been implemented with varying block sizes and the
results have been reported in table 6.21. Among the proposed methods, FFNND, method
with tanh activation function and 8 x 8 block size achieved an optimal recognition accuracy
of 92.79%. The comparison analysis of the proposed methods with the existing variants of
binary patterns is reported in the second column of table 6.23. In table 6.23, the proposed
methods and their recognition accuracy has been highlighted in bold. From table 6.23, the
experimental results indicate that the proposed FFNND, method outperformed the existing

variants of binary patterns in terms of recognition accuracy.
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Table 6.23: Comparison analysis with existing variants of binary patterns for eight and ten
expressions on TFEID and ADFES datasets

Method Eight Expressions | Ten Expressions
LBP [46] 90.95 83.54
LDP [97] 91.17 85.25
LDN [31] 88.06 85.20

CSLBP [28] 89.45 80.61
LGC [84] 89.95 85.20
LDTP [32] 86.29 82.68

LDTerP [33] 88.59 76.53
ALDP [35] 90.36 78.40
MSBP [88] 89.54 87.17
LDSP [34] 86.68 79.91

LDDSCP [99] 87.66 84.96
RADAP [17] 90.56 84.75
LBP + LNeP [134] 90.81 87.07

FFNND, 92.04 81.83

FFNND, 92.79 82.02

6.2.5 Experiments for Ten Expressions

The proposed FFNND methods have been implemented with varying block sizes and the
results have been reported in table 6.22. Among the proposed methods, FFNND, method
with logsig activation function and 10 x 10 block size achieved an optimal recognition
accuracy of 82.02%. The comparison analysis of the proposed methods with the existing
variants of binary patterns is reported in the third column of table 6.23. From table 6.23, the
proposed method outperformed recent LDSP method by 2.1% in terms of recognition ac-
curacy. The methods such as MSBP, LDDSCP, RADAP and LBP+LNeP achieved 5.15%,
2.94%, 2.73% and 5.05% more than the proposed FFNND, method, at the cost of increased

fv length.

6.3 Summary

The method employed for feature extraction plays a major role in determining the perfor-

mance of an FER system. Novel local texture based feature descriptors FENND (FFNND,
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and FFNND,) inspired by the structure of a feed forward neural network have been pro-
posed in this Chapter. The main objective of the proposed methods is to extract salient
features in a local neighborhood. FFNND, extracts three feature codes by capturing the
adjacent pixel relationship based on multi-distance information as like LMeP, whereas,
FFNND, extracts two feature codes by capturing the relationship between the pixels lo-
cated at a radius (rd=2), as like MTP. In this Chapter, the experiments have been conducted
with different block sizes using both OVO-SVM and OVA-SVM classifiers for determining
the optimal recognition accuracy. From the experimental results, an observation has been
made that proposed methods outperformed the standard existing methods in majority of
the datasets. In cases of OULU, KDEF and RAF datasets, the proposed methods could not
achieve the best recognition accuracy when compared to existing methods. But, the main
advantage of the proposed method is that the fv length of proposed FFNND methods is

much lesser when compared to majority of the existing feature descriptors.
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Chapter 7

Conclusion and Future Scope

7.1 Conclusion

Facial expressions are extremely important in the social interaction as they can display
the internal emotions and intentions of an individual. The main task in FER systems is to
develop feature descriptors that could effectively classify the facial expressions into various
categories. Hence, in this thesis, some local texture based feature descriptors have been
presented for FER systems, intended to improve the overall recognition accuracy.

In chapter 3, inspired by the chess game rules, CP, kTP and KTP feature descriptors
have been presented for extracting the facial features in a local neighborhood. CP has
been proposed with an intention to generate different feature codes for corner, edge and
flat portions of an image. Inspired by the Knight tour problem, kTP and KTP feature
descriptors have been proposed, which utilizes Knight moves for generating the features
by comparing the neighboring pixels with the pixel p. in a local neighborhood. Local
texture based feature descriptors named RMP, RCP, CSP and RCSP have been presented
in chapter 4. RMP aims to generate feature codes that are unique to corner, edge and
flat portions of an image. RCP, CSP and RCSP feature descriptors have been proposed
for overcoming some of the limitations of the existing methods such as CP, LGC and it’s
variants.

In chapter 5, new feature descriptors inspired by the shape of various graphs have been

presented for facial feature extraction. WGFD methods extracts features by encoding the
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adjacent pixel relationship and the neighboring pixel relationship with the reference pixel in
a local neighborhood. PGBP extracts features based on the vertices and edges of GPG(6,2)
graph, whereas, LTrP (mTP and MTP) methods extract features by considering the trian-
gles in both vertical and horizontal directions. Novel local texture based feature descrip-
tors FENND (FFNND, and FFNND,), inspired by the structure of a feed forward neural
network have been presented in chapter 6. The main objective of the proposed FFNND
methods is to extract salient features in a local neighborhood with lesser fv length.

In chapters 3, 4 & 5, for CP, kTP, KTP, RMP, RCP, CSP, RCSP and WGFD meth-
ods, the experiments have been conducted with different weights to determine the optimal
recognition accuracy. In chapter 6, the experiments have been conducted with different
block sizes using both OVO-SVM and OVA-SVM classifiers for determining the optimal
recognition accuracy. For all of the proposed methods mentioned in chapters 3, 4, 5 and 6,
the experiments have been performed with respect to six, seven, eight and ten expressions
for different FER datasets to validate the performance of the proposed methods. The exper-
imental results demonstrated that the efficiency of the proposed methods when compared

to the recent existing methods.

7.2 Future Scope

* Different weights: In general, the local based methods apply binary weights in the
process of feature extraction. By using other weights such as fibonacci, prime, natu-
ral, squares and odd, the feature vector length can be greatly reduced. In this thesis,
the concept of different weights has only been applied to FER problem. The pos-
sibility of using different weights for feature extraction in various image processing

applications can be further explored.

* FER combined with ageing problem: Among the factors that make FER difficult,
the most discriminating one is the age. Because of age related structural changes in
the face, the expressions of older people appeared more difficult to encode, support-
ing the theory that wrinkles and folds in older faces actually resemble emotions. As

a result, the state-of-the-art methods based on hand-crafted feature extraction may be
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inadequate for the classification of FER performed by elderly people. Hence, FER

combined with ageing is a problem that is worth studying in the future.

FER with super resolution images: The Super Resolution (SR) task is used to
create a higher resolution image from a low resolution image while attempting to
fill in the lost pixels and avoiding the pixels becoming blurred. ‘In the wild” FER
datasets have images with small sizes and most of the CNN’s are sensitive to input
image size. In such cases, SR can be used for up-scaling the images and combined

with deep networks for boosting up the performance.

Explainable AI: Humans are the best judges for classifying and explaining any
human emotion. But, in the case of Al, it displays the results of what it has learned
without explaining such results. In the field of medical image analysis, Al can predict
whether a person has pneumonia or not, by simply looking at an X-ray. However,
it will not be trusted in the end because, it does not provide any explanation, which
is critical, and instead suggests consulting with a doctor before announcing the final
results. Whereas, Explainable Al will provide output and explain it’s results in such
cases, making it far more reliable than previous Al models. In the same manner, the

concept of Explainable Al can be applied to FER for better explaining the output.
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