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Abstract

According to the fourth assessment report of the Intergovernmental Panel on Climate Change
(IPCC), a drought can be defined as a ‘deficiency of rainfall causing water shortage’ or
‘prolonged period of abnormally dry weather with scanty rainfall to cause a serious
hydrological imbalance’. However, detection and quantification of drought events are
complex as no universal definition of drought exists. In addition, the evolution of a type of
drought to another type (e.g., meteorological to hydrological, hydrological to agricultural,
agricultural to socio-economic drought) is not adequately understood. Furthermore, because
of the effects of climatic variability and anthropogenic perturbations, it is postulated that the
frequency of the drought hazard will be increased in the coming decades. At least once every
three years, India is negatively impacted by drought conditions and is considered among the
most vulnerable and drought-prone countries in the world. Hence, it is well understood that
drought is likely to affect the overall economy of the country under the climate-sensitive
economic sectors in India. For instance, it was reported that widespread drought is likely to

impact the Indian economy by $100 billion.

This thesis delas with developing non-stationary drought indices, understanding the
propagation from one drought to another drought, analysis the agricultural drought risk,
identifying the future drought hotspot regions, and developing the seasonal Severity-Area-
Frequency (SAF) relationship curve encompassing the uncertainty associate with Global

Circulation/Climate Models (GCMs) and scenarios.

Initial part of the thesis is devoted to analyze the significance of the external factors in
developing drought index. Therefore, to develop a new direction of drought identification and
examine the drought properties, the non-stationary meteorological drought indices
incorporating the large-scale climatic oscillations are carried out over Maharashtra. Two
different drought indices, namely precipitation-based Standardized Precipitation Index (SPI)
and precipitation and potential evapotranspiration (PET) based Reconnaissance Drought
Index (RDI), are considered for the analysis. Large-scale climatic oscillations like Indian

Summer Monsoon Index (ISMI), Southern Oscillation Index (SOI), Sea Surface Temperature
\



(SST), and Indian Ocean Dipole (I0OD) are used as covariates. In the present study, to verify
the best lag (between 0 and 12) and best large-scale climate oscillations at each grid point, we
have used the Kendall correlation test at a significance level of 5%. The study is conducted
for different time scales of drought events such as 3-, 6-, 9-, 12-, 24- month time scales. The
non-stationary analysis is performed by varying the location parameter of the gamma and
lognormal distributions of SPI and RDI drought indices, respectively. The outcomes from the
analysis indicate that non-stationary modelling outperforms the stationary approach over the
study area for different drought scales. In addition, notable differences are observed while
comparing the different drought properties using stationary and non-stationary drought
indices in the case of 3-, 6-, and 9- month time scales. ISMI is likely to influence the drought
at smaller scale. However, 10D, SST, and SOI are expected to modulate the larger-scale
drought events. A comparative study with respect to the historical drought assessment reveals
that the presence of non-stationarity cannot be ignored for developing sustainable mitigation

and adaptation strategy.

In the second part, drought properties of meteorological, hydrological and agricultural drought
events are evaluated across India under non-stationary approach. Here, Standardized
Precipitation Evapotranspiration Index (SPEI), Standardized Runoff Index (SRI), and
Standardized Soil moisture Index (SSI) are used to characterize the meteorological,
hydrological, and agricultural drought, respectively. The study is performed over 1170 grid
points at a grid resolution of 0.5° Lat x 0.5° Lon over India. The runoff datasets are obtained
from five different sources (ECMWF Reanalysis 5th Generation (ERAS5), Famine Early
Warning Systems Network Land Data Assimilation System (FLDAS), Global Land Data
Assimilation System (GLDAS), Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2), and National Centers for Environmental Prediction
(NCEP)). Similarly, the soil moisture datasets are obtained from six diverse sources (Climate
Prediction Center (CPC), ERA5, FLDAS, GLDAS, MERRA-2, and NCEP). In addition to
meteorological, hydrological and agricultural droughts, socio-economic drought events are
also computed. However, the socio-economic drought is evaluated based on the stationary
approach. It is found from the analysis that the non-stationary model outperforms the
stationary analysis for meteorological, hydrological and agricultural drought indices. The

meteorological drought properties (drought events and duration) are more severe as compared
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to the hydrological drought. The large duration and more severe hydrological droughts are
observed mostly over southern and northern parts of India. The high agricultural drought
duration and severity are observed over the northern parts and some patches of northeast and
northwest regions of India. The high value of socio-economic drought severity is noticed over
Punjab and Haryana.

Despite large spatio-temporal variability in droughts, the propagation time from one drought
to another drought is not examined at local scale with the inclusion of external covariates over
India. Third part of the thesis deals with examining the propagation time from meteorological
to hydrological and from meteorological to agricultural drought. The drought propagation
time is computed based on differences between the initiation to initiation (As), peak to peak
(Ap) and termination to termination (Ae). In addition, the internal propagation of drought is
estimated with the help of the variable motion relationship of speed-time process. The
outcomes from meteorological to hydrological drought propagation show that the propagation
time in case of As varies between 4 and 9 months with 62% of total area falling under 6 to 7
months followed by 20% of the total area under 7 to 8 months. In the case of Ap, the time of
propagation varies from 9 to 12 months over 74% of the total area. About 70% of the total
area, the time of propagation in Ae ranges from 15 to 20 months. The drought development
and recovery duration are computed as 3.1 to 6 months over most of the areas. The internal
propagation of hydrological drought ranges between the magnitude of 0.4 and 0.6 per month
over most of the area in India. Similarly, the findings from meteorological to agricultural
drought propagation indicate that the time to propagation in the case of As is found to be 5 to
6 months and 6 to 7 months over 39% and 53% of the total area, respectively. Similarly, the
drought propagation over about 95% of the total area ranges from 9 to 15 months under Ap
condition. The time to propagation varies between 10 to 15 months over 32% and 15 to 20
months over 65% of the total area in the case of Ae. The DDP range from 3.1 to 6 months is
observed over about 65% of the total area. Similarly, the range between 3.1 to 6 months is
evaluated over 84% of the total area in the case of DRP. The regions with high DDP are

having high DRP across India.

In an agrarian country, the impact of hydro-meteorological variability has significant

influence on agricultural productivity. In this study, the agricultural drought risk in terms of
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the conditional probability of crop loss with respect to different drought severities is analysed.
Different drought indices namely SPEI, SSI, Vegetation Condition Index (VCI) and
Temperature Condition Index (TCI) are used to evaluate the conditional probability. The
bivariate analysis using the copula theory is performed to understand the dependency
structure between drought conditions and crop yield anomalies (cotton, groundnut, rice, and
wheat) over the Maharashtra during 1998-2015. A total of five different copulas namely,
Gaussian, Student’s t-copula, Clayton, Gumbel, and Frank are used to analyse the bivariate
joint dependence structure between yield anomalies and dominant drought indicator (SPEI,
SSI, VCI, or TCI). From the analysis, it is observed that the agricultural productivity is
significantly affected by the meteorological drought (SPEI). Under moderate drought
conditions, Ahmednagar is found to be the most affected district due to the high probability of
agricultural drought risk for cotton, groundnut, and wheat crops. With the increase in the
drought severity, the conditional probability of agricultural drought risk is likely to increase.
In addition, it is observed that the exclusion of non-stationarity will underestimate the
agricultural risk, which will significantly affect the planning and management of agricultural

sustainability over the study area.

Understanding the adverse consequences of drought events on various sectors, it is necessary
to examine the future variability of drought under different climate change scenarios.
Therefore, nineteen different GCMs from NEX-GDDP under Representative Concentration
Pathway (RCP) 4.5 and 8.5 scenarios are used to characterise the future short (3-month scale)
and long (12-month scale) term meteorological drought over Maharashtra. In addition, future
meteorological drought hotspot regions are evaluated over the study area based on different
drought properties. In order to identify the implications of temperature on drought SPEI
drought index is chosen along with SPI index. The significant findings from the analysis point
to the fact that with the increase in the monthly mean temperature and precipitation (more in
case of RCP8.5 than RCP4.5), Maharashtra is likely to be wetting and warming during the
21st century except for Konkan region as compared to historical. The drought properties like
peak and areal spread are expected to increase for both short and long-term drought
conditions in most of the regions. The frequency of severe and extreme droughts is likely to

increase in the short-term drought condition. Temperature plays an important role in
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modulating the meteorological droughts. The number of hotspot regions decreases in long-

term drought condition as compared to short-term drought condition.

In the last study, the seasonal SAF relationship curve for meteorological droughts is projected
for five different seasons namely pre-monsoon, monsoon, post-monsoon, Kharif and Rabi.
The uncertainty associated with GCMs, and scenarios is assessed using possibility theory. The
SPEI drought index is used as an indicator of meteorological drought. The significant findings
from the present analysis point to the fact that the precipitation magnitude is expected to
increase in pre-monsoon, monsoon, and Kharif seasons over most of the areas in Maharashtra.
Except for monsoon season, the potential evapotranspiration is projected to increase over 50%
of the total area. The extreme drought condition during post-monsoon, pre-monsoon and Rabi
seasons shows an increase in the frequency as compared to historical period. The SAF curve
reveals that, in most of the cases, the percentage of drought-affected area is expected to
increase for high magnitude of severity. In addition, the highest increment in the drought-

affected area is observed during the Rabi season in future.
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Chapter 1

Introduction

1.1 Climate change

“Climate change is a ‘huge threat’ t0 humanity and it is very important for governments to
take action as quickly as possible” said Giorgio Parisi after winning the Nobel Prize in
Physics 2021. In addition, he stated that the change of extreme events is expected to increase
very strongly due to the consequences of changing climate. According to the
Intergovernmental Panel on Climate Change (IPCC), climate change refers to the change in
the mean and/or the variability of its properties over an extended period usually decades or
longer as a result of natural variability or anthropogenic interventions. However, the
attribution of climate change reveals that anthropogenic induced warming is significantly
larger than the natural influences. For instance, Figure 1.1 reveals that the observed warming

during 1951 to 2010 is similar to the warming contributed due to anthropogenic forcings
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(IPCC, 2014a). In addition, it can be noted that the warming range varies from 0.5°C to 1.3°C
over the period 1951 to 2010 due to greenhouse gases (GHGs), a major forcing due to

anthropogenic activities.
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Figure 1.1: Attribution of global average surface temperature changes to the natural and

anthropogenic forcing. (Source: IPCC 2014)

The feedback mechanism plays an important role in modulating the initial forcings resulting
from the internal variations of different components of the earth’s climate system. The
feedback mechanism can either amplify (refers to positive feedback) or damp (refers to
negative feedback) the initial forcings. For example, assuming fixed relative humidity, the
atmospheric water vapour increases with increase in temperature following the Clausius—
Clapeyron law. This increase in water vapour contributes further to the warming of the
climate. According to Manabe and Wetherald (1967), this positive feedback loop amplifies a
given forcing of the surface temperature by about a factor of two. In addition, the response
time of the various components like atmosphere, land surface, ocean surface, vegetation, and
sea ice to the external perturbations plays an important role in understanding the climate
change impact. In particular, the response time of atmosphere, land surface, ocean surface,
and vegetation are much lower (hours to years) than the response time (100 to 1000 years) of

mountain glaciers, deep ocean, and ice sheets to the external perturbations.



In this sense, it is crucial to understand the impact of climate change to alleviate the adverse
consequences through sustainable management plans. Figure 1.2 depicts the graphical
representation of the causes, impact, and management practices of climate change. As
discussed earlier, the natural variability (e.g., volcanic activity, changes in the orbit of the
earth around the sun) and anthropogenic influences (e.g., urbanisation, GHGs emissions) are
primary causes of climate change. However, the anthropogenic interventions have increased
significantly imposing adverse effects on climate change as compared to the pre-industrial
period (Masson-Delmotte et al., 2018). Focusing on the hydro-climatological components, the
changing climate alters important variables like temperature, precipitation, and surface
hydrology (e.g., runoff, soil moisture) (Douville et al., 2021). Subsequently, the changeability
in these variables leads to the occurrences of extreme events such as drought, flood, extreme
precipitation, and forest fire, among others that bring severe threat to the economy and
ecosystem. Thus, it is indispensable to devise sustainable management practices in terms of
prediction, risk assessment, mitigation, and development of social awareness regarding the

implications of climate change.
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Figure 1.2: Graphical representation of causes, possible impact, and management

practices under the scenario of changing climate



As a result of climate change, the extreme events are increasing and will become more
frequent and severe. Subsequently, the adverse impacts will affect the economy substantially.
Figure 1.3 depicts the number of disasters and associated economic losses across the globe. It
IS noticed that there is an increase in the number and economic loss from 1970 to 2019
(WMO, 2021). Surprisingly, the disaster losses are likely to increase significantly under the
dual pressure of population growth and climate change. However, Figure 1.3 shows
decrement in the number of disasters during 2010-2019 based on the reported number of
disasters. Therefore, understanding the natural disasters under rapidly changing climate would

help in formulating effective adaptation strategies.
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Figure 1.3: Distribution of (a) no of reported disaster and (b) economic losses by hazard type
by decade across the globe (Data source: WMO (2021))
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1.2 Climate change and water cycle

It is well understood that most of the adverse consequences of climate change are related to
the qualitative and quantitative parameters of water. Therefore, it is necessary to understand
the implication of climate change on water. Hydrology, as a multidisciplinary science that
involves meteorology, climatology, geomorphology, and geology, among others, deals with
the distribution and various manifestations of precipitation above and below the ground.
Therefore, the climatological changes, anthropogenic influences, and variability in the ocean
characteristics like temperature, and pressure affect the hydrological/water cycle. For
instance, the changes in the GHGs concentration, and aerosols modify the global and regional
variability of evaporation and precipitation (Douville et al., 2021). A warmer climate
intensifies the moisture carrying capacity of the atmosphere, resulting in increased mean and
extreme precipitation (Allan et al., 2020, 2014; Giorgi et al., 2019). The Asian monsoon is
affected by the geographical variation in aerosols as it modulates the atmospheric circulation
(Ganguly et al., 2012; Singh et al., 2019). The melting of snow under increasing temperature
affects the seasonality of the river flows in snow-dominated basins (Allan et al., 2020).
Likewise, direct human interventions like irrigation, land use land cover (LULC) changes,
abstraction of surface and groundwater, and impoundment behind dams have substantial
consequence on water cycle. For example, irrigation has significantly altered the regional
water balance through increase in evapotranspiration (ET) and decrease in streamflow (Leng
et al., 2016). The alteration of LULC (increasing rate of urbanization) affects ET,
precipitation, runoff, and infiltration (Bosmans et al., 2017; Douville et al., 2021). In addition,
greater and more extreme precipitation is likely to occur in the urban areas due to an increase
in the sensible heat flux (Niyogi et al., 2017). Thus, all the components of the global water
cycle have been modified due to the climatic and non-climatic drivers in recent decades,
bringing new hydrological conditions (e.g., more frequent extreme conditions like floods and
droughts) that were previously unfamiliar. The present thesis work is motivated to understand
one of the extreme events i.e., drought in terms of its characteristics, propagation, and risk

under the influence of climate change.
1.3 Droughts under changing climate

Due to the detrimental effect on various societal and economic factors, the research

community has brought more attention towards the investigation of climate change impact on
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climate hazards namely floods, droughts, heatwaves, etc. However, detection and
quantification of drought events are complex as no universal definition of drought exists
(Lloyd-Hughes, 2014). According to the fourth assessment report of IPCC, the drought can be
defined as ‘deficiency of rainfall causing water shortage’ or ‘prolonged period of abnormally
dry weather with scanty rainfall to cause a serious hydrological imbalance’. Moreover, the
drought can also be linked to the deficiency in the streamflow, soil moisture, agricultural
productivity, and socio-economic conditions. As a result of climate change, the drought
events have become more severe, and more frequent with longer duration across the globe
(Toby, 2020). With varying properties, drought occurs over all hydro-climatological regions.
Due to the increase in the carbon dioxide (CO2) concentrations, the extra heat from global
warming will increase the drying rate, establishing drought more quickly and with greater
intensity (Trenberth et al., 2014). For instance, a warmer climate increases evaporation or
evapotranspiration (with the availability of adequate moisture) that reduces the surface water
and dries out soils and vegetation. The spatio-temporal variability of precipitation due to
climate change results in increasing the period of both extreme precipitation and drought. In
the context of climate change, within the “Atmosphere-Hydrology-Soil-Vegetation” system,
the deficit in one hydro-meteorological variable propagates through the hydrological cycle
and leads to the reduction in other hydro-meteorological variables. For example, the rainfall
shortage for a longer period of time gives rise to the depletion in soil moisture, reservoir
storage and streamflow etc. In this way, the deficit in precipitation (meteorological drought),
soil moisture (agricultural drought) depletion and surface water shortage (hydrological
drought) adversely affect the agricultural productivity, industrial activities and hydropower

generation leading to socio-economic drought.
1.4 Non-stationary modelling of drought

In the absence of universal definition of drought, the monitoring of drought conditions is
performed using different drought indices. For instance, but are not limited to, Standardized
Precipitation Index (SPI) (Mckee et al., 1993) and Standardized Precipitation
Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010) for meteorological drought,
Standardized Runoff Index (SRI) for hydrological drought (Shukla and Wood, 2008),
Standardized Soil Moisture Index (SSI) for agricultural drought (Hao and AghaKouchak,
2013). These indices play important role in improving drought preparedness plans and

effective risk management measures. Therefore, appropriate drought index identification has a
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significant contribution to make to regional drought assessment. The traditional estimation of
drought indices is based on the stationary probability distribution of one or more
meteorological variables. However, owing to the dual pressure of climate change and
anthropogenic interventions, the stationary assumption is no longer valid (Milly et al., 2008;
Russo et al., 2013) and hence, the reliability and accuracy of the traditional approach to
estimating droughts have been brought into question. Therefore, it is urgent to update the
procedure for evaluating droughts to include the variabilities in the environmental conditions
using nonstationary theory. The nonstationary approach makes it possible to introduce
covariates as a linear/nonlinear function in the distribution parameters of climate variables. In
addition, the significant development in the statistical theory (e.g., Extreme Value Theory
(EVT)) enables us to model the complex phenomena of nature through physically based
covariates. In this case, the covariates refer to the large or local scale variabilities that
influence the drought conditions. For example, large-scale climatic oscillations like EI Nifio-
Southern Oscillation (ENSO), Southern Oscillation Index (SOI), Indian Summer Monsoon
Index (ISMI), Indian Ocean Dipole (IOD), among others and regional scale changeability in
meteorological variables are considered. Therefore, the present study undertakes the non-

stationary approach to understand the drought characteristics under changing climate.
1.5 Understanding drought propagation phenomena

As discussed earlier, the different drought conditions are interrelated through the
“Atmosphere-Hydrology-Soil-Vegetation” system. Therefore, one drought can be translated
to another drought condition. Primarily, the drought condition starts from the lack of available
water i.e., deficit in precipitation amount. In the Indian context, the meteorological drought
can be attributed to the weaker monsoon precipitation that occurs during the month from June
to September. The prolonged deficits of meteorological drought can be translated into
hydrological drought and the translation process is called as drought propagation. The time
required to propagate from one drought to another is known as propagation time in which the
accumulated deficits from one drought reflect in another drought (Apurv et al., 2017). In
addition to the drought propagation, the internal propagation speed of drought events plays an
important role. The internal propagation speed reflects the development and recovery speed of
the development and recovery phases, respectively. The drought development is the phase
between the drought initiation and peak. Similarly, the time period between peak and recovery

is considered as the drought recovery phase. The climate and catchment characteristics play
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an important role in drought propagation and are largely affected by climate change and
anthropogenic interventions. However, under limited or no anthropogenic interventions, the
drought propagation is controlled by climate and biophysical characteristics of the
hydrographic basins (Van Loon, 2015). With this understanding, the propagation study under
the influence of climate change provides important drought characteristics at local scale
which can assist water managers and policy makers to devise sustainable management

practices.
1.6 Drought projection, hotspot and risk assessment

As compared to the past drought events, the overall scenario of future long-term drought
events is still incomplete. To devise drought mitigation strategies, it is important to evaluate
the future drought conditions under different climate change scenarios. In order to project
future scenarios, the outputs from the General Circulation Models/Global Climate Models
(GCMs) are used as credible tools. According to IPCC, the GCMs that represent physical
processes in the atmosphere, ocean, cryosphere and land surface are the most advanced tools
for simulating the response of the climate system to increasing GHGs emission. In order to
make projections for the future, fine resolution outputs are obtained from the coarser scale
outputs from GCMs using the downscaling technique. Further, the associated biases are
corrected through appropriate bias-corrected techniques. In the present day, the high-
resolution outputs can be obtained directly by different agencies namely NASA Earth
Exchange Global Daily Downscaled Projections (NEX-GDDP) and Coordinated Regional
Climate Downscaling Experiment (CORDEX). Therefore, it is prudent to analyse the future
drought characteristics under different climate change scenarios using the outputs from the
GCMs. Moreover, considering the multiple GCMs will help in enveloping the associated
uncertainties in future projections. The future projection of different drought properties will
help in identifying drought hotspot regions and a comparative analysis can be performed with
respect to the historical observations in order to enable the policymaker and government
officials to propose sustainable drought management plans to combat the foreseen drought
events. In addition to drought properties, the future projection of Severity-Area-Frequency
(SAF) relationship curve can be used for providing quantitative information about drought by
characterising various attributes of droughts like return period, areal extent, and severity. The
SAF relationship has been used to understand the nature of spatio-temporal characteristics of

drought at the regional scale. To formulate appropriate adaptation strategies, it is crucial to
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assess the risk associated with the drought conditions. Moreover, the risk assessment related
to the agricultural productivity due to the drought events is of paramount importance under
the changing climate. Understanding of the agricultural risk is complex as it is modulated by
various factors like meteorological, and hydrological variability. Thus, multivariate analysis
can be used to overcome the issue. The copula theory has gained popularity among the
researchers to analyse the joint return period of different drought properties. However, there is
a limited application of multivariate analysis to examine the drought risk on rainfed
agriculture. The outcomes will help the water and agricultural planners to formulate

sustainable agricultural management plans.
1.7 Objectives of the study

The objectives of the study are listed as follows:

1. To perform the non-stationary analysis to examine the impact of external covariates in
modelling the drought events.

2. To evaluate different drought characteristics with the use of meteorological,
hydrological, agricultural, and socioeconomic drought indices.

3. To examine the spatio-temporal characteristics of drought propagation under the
influence of external covariates.

4. To assess the agricultural drought risk on rainfed agriculture using the multivariate
analysis.

5. To investigate the spatio-temporal characteristics of droughts through Severity-Area-
Frequency (SAF) curve under different climate change scenarios and identify future

drought hotspots based on the future variability of different drought properties.

It is worth noting that the objectives 1, 4, and 5 are performed over one of the drought
provinces in India i.e., Maharashtra. However, the objectives 2, and 3 are carried out over
entire India. The reasons behind choosing Maharashtra as the study area are: (i) during 1901-
1998, 26 meteorological droughts are identified, and 11 out of 26 droughts affected more than
50% of the province (Gore and Ray, 2002); (ii) the probability of occurrence of drought
during EI Nifio years is 55% over Maharashtra, and 59% over India (Gore and Ray 2002);
(iii) 11,801 villages were affected by drought in 2013, and it is considered as the worst
drought in the region in the last 40 years (Dandekar, 2013).
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1.8 Contributions from the study

In a drought-vulnerable country like India, the analysis of drought in the context of a
nonstationary approach is limited. Moreover, in connection with drought prone areas like
Maharashtra, drought events under the influence of large-scale climatic oscillations have not
been analyzed. Therefore, the first part of the study attempts to understand the variability in
the drought properties with and without the inclusion of physical covariates in the
computation over the Maharashtra state in India. The large-scale climatic oscillations like
Indian Summer Monsoon Index (ISMI), Southern Oscillation Index (SOI), Sea Surface
Temperature (SST), and Indian Ocean Dipole (IOD) are used as covariates. From the analysis
it is found that non-stationary analysis is superior to the stationary analysis. In addition,
notable differences are observed while comparing the different drought properties using
stationary and non-stationary drought indexes. A comparative analysis of the historical
drought that occurred in 2013 reveals that non-stationarity in the meteorological data sets
cannot be ignored for developing a sustainable mitigation and adaptation strategy against

drought hazard.

Understanding the importance of non-stationarity, the second part analyses different drought
properties of meteorological, hydrological, and agricultural drought indices under non-
stationary setting. The runoff datasets are obtained from five different sources (ECMWF
Reanalysis 5th Generation (ERAS5), Famine Early Warning Systems Network Land Data
Assimilation System (FLDAS), Global Land Data Assimilation System (GLDAS), Modern-
Era Retrospective analysis for Research and Applications version 2 (MERRA-2), and
National Centers for Environmental Prediction (NCEP)). Similarly, the soil moisture datasets
are obtained from six diverse sources (Climate Prediction Center (CPC), ERA5, FLDAS,
GLDAS, MERRA-2, and NCEP). Here, Standardized Precipitation Evapotranspiration Index
(SPEI), Standardized Runoff Index (SRI), and Standardized Soil moisture Index (SSI) are
used to characterize the meteorological, hydrological, and agricultural drought, respectively.
The non-stationary modelling of SRI and SSI is performed for each different data source. The
drought properties using the ensemble mean are discussed for SRI and SSI indices. In
addition to meteorological, hydrological and agricultural droughts, socio-economic drought
events are also computed. The socio-economic drought is evaluated based on the water

consumption and water availability. Here, water consumptions from six different sectors
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namely domestic, electricity, irrigation, livestock, manufacturing, mining are used. Till date

such type of study has not been carried out over entire India.

In spite of large spatio-temporal variability in droughts, the propagation time from one
drought to another drought is not examined at local scale with the inclusion of external
covariates over India. This part deals in examining the propagation time from meteorological
to hydrological and from meteorological to agricultural drought. The drought propagation
time is computed in 1170 grids blanketing the entire India based on differences between the
initiation to initiation (As), peak to peak (Ap) and termination to termination (Ae). In addition,
the internal propagation of drought is analyzed with the help of variable motion relationship
of speed-time process. The drought indices developed using the external covariates are used
for this analysis. Additionally, for each type of drought, instantaneous drought development
speed and recovery speed are estimated to understand the rate at which drought develops and

rECOVErS.

In an agrarian country, the impact of hydro-meteorological variability has significant
influence on agricultural productivity. Therefore, assessing the risk on agricultural system due
to the effect of drought conditions is of paramount importance for agricultural sustainability.
In this study, the agricultural drought risk in terms of conditional probability of crop loss with
respect to different drought severities is analysed. Different drought indices namely SPEI,
SSI, Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used to
evaluate the conditional probability. The bivariate analysis using the copula theory is
performed to understand the dependence structure between drought conditions and crop yield
anomalies (cotton, groundnut, rice, and wheat) over the Maharashtra province in India during
1998-2015. Total of five different copulas namely, Gaussian, Student’s t-copula, Clayton,
Gumbel, and Frank are used to analyse the bivariate joint dependence structure between yield
anomalies and dominant drought indicator (SPEI, SSI, VCI, or TCI).

Finally, the future drought characteristics are projected for meteorological drought for short -
and long-term durations incorporating the outputs from nineteen GCMs under Representative
Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The GCMs are obtained from NEX-
GDDP data center. The relative changes in future projected drought properties with respect to
recent past years are analysed. Based on the four properties i.e., affected area, frequency,

severity and duration, the drought hotspot regions are identified under RCP 4.5 and 8.5
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scenarios for future time series. Additionally, the seasonal SAF relationship curve for
meteorological droughts is projected for five different seasons namely pre-monsoon,
monsoon, post-monsoon, Kharif and Rabi. The uncertainty associated with GCMs, and

scenarios is assessed using possibility theory.

1.9 Outline of the thesis

Literature relevant to climate change impact on drought, non-stationary analysis, drought

propagation, agricultural risk, and multivariate analysis are concisely reviewed in Chapter 2.

Chapter 3 presents the non-stationary modelling of meteorological drought indices over
Maharashtra. The large-scale climatic oscillations like ISMI, 10D, SOI, and SST are used as
covariates for SPI and RDI drought indices. A comparative analysis of different drought
properties is carried out using stationary and non-stationary approaches.

In Chapter 4, in addition to meteorological drought, the non-stationary analysis is carried out
for hydrological and agricultural drought indices across entire India. In addition, the socio-
economic drought analysis is performed based on gridded water demand and available water

in terms of runoff.

Chapter 5 presents the drought propagation from meteorological to hydrological and
meteorological to agricultural under the influence of external covariates. In addition, the

internal propagation of each drought type is evaluated.

In Chapter 6, a probabilistic evaluation of agricultural drought risk is performed for four
major crops (cotton, groundnut, rice, and wheat). In this study, both hydro-meteorological

(SPEI and SSI) and remote sensing based (VCI and TCI) drought indices are considered.

Chapter 7 deals with the identification of future drought hotspot regions under short- and

long-term drought conditions.

Chapter 8 presents the development of seasonal SAF relationship after analysing the

uncertainty associated with GCMs and scenarios.

Chapter 9 presents the summary and conclusions of the work described in the thesis.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the literature related to the non-stationarity in drought hazard to
investigate the impact of climate change and its importance in the evaluation of drought
characteristics, drought propagation and drought risk. Initially, literature related to the non-
stationary analysis and its significance on drought assessment are discussed. Then, the
characterizations of different types of droughts and their impacts across India are investigated.
Subsequently, the behaviour of drought propagation between different types of droughts is
reviewed. The significance of the evaluation of drought risk and its vulnerability on crop
productivity, introduction of the multivariate analysis in drought risk analysis are examined

afterwards.
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2.2 Non-stationary Analysis

Since the second half of the 20" century, climate change has been addressed as the most
important issue due to the increment in global warming. In past 30 years, the surface
temperature has increased significantly as compared to any decade (IPCC, 2014, Qin and
Thomas, 2014). In addition to the global climate change, the increasing interventions of
anthropogenic activities like increasing rate of urbanization, increasing greenhouse gases, etc.
act as catalyst for more severe and frequent extreme events. In past decades, the time-
invariant or stationary approach is used for extreme hydro-climatic event analysis that
assumes that the statistical properties of hydro-climatic variables do not change over time.
However, as above said, the factors affecting the climatic variables no longer remain
unaltered. Therefore, the inclusion of non-stationarity in the analysis of extreme hydro-
climatic events deserves attention of the research community. In addition, due to the
advancement in the computational facilities, the implementation of non-stationary to model
the extreme events of the hydro-climatic variables has gained the popularity. With this
understanding, the stationarity assumption in water resources risk management and planning
is no longer valid (Milly et al., 2008; Sivapalan and Samuel, 2009; Villarini et al., 2010).
Recent advances in understanding of ocean-atmosphere interactions demonstrate that there are
well organized modes of interannual and interdecadal variability in climate which have
significant influence on the hydro-meteorological extreme events. Therefore, recent studies
focus on non-stationary analysis in evaluating different extreme events in changing climate.
For example, Coles (2001) analysed various datasets such as maximum sea level,
precipitation, and temperature under non-stationary setting. The covariates such as Southern
Oscillation Index (SOI) and time are used to estimate the location and scale parameters of the
selected distributions. The studies showed the applicability of the non-stationarity under the
climate change scenario. Coles presented various methods for the successful use of the non-

stationarity in the hydro-climatic extremes.

Katz et al. (2002) analysed the statistics of different extremes in hydrology considering time
and large-scale climatic oscillations as covariates to estimate the distribution parameters.
Authors used maximum likelihood estimation (MLE) to estimate in order to evaluate the
parameters. They suggested to incorporate the trend in the analysis of hydrologic extremes

due to the intensification of hydrological cycle as a result of climate change.
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He et al. (2006) demonstrated the non-stationary analysis of extreme discharge implementing
the Gumbel and Log-Pearson Il distributions. They used three types of time dependent
functions to introduce the non-stationarity. Through the non-stationary analysis, authors
advocated that for more realistic and comprehensive outcomes a linkage should be established
between the climate system and the distribution parameters.

Begueria et al. (2011) used non-stationary extreme value analysis for the daily precipitation
series in northeast Spain. They used time as covariate in a generalised Pareto model. A log-
likelihood ratio was used to analyse the significance of non-stationarity over stationary
approach. At seasonal scale, the significance of non-stationary model was found for the

event’s intensity in winter and spring at a significance level of 5%.

Cheng & AghaKouchak (2014) modelled non-stationary Intensity Duration Frequency (IDF)
curves from maximum extreme rainfall series at five stations in USA. Authors considered
Generalized Extreme Value (GEV) distribution for annual maximum rainfall and time as a
covariate in the distribution. From results, they found that 60% of extreme rainfall was
underestimated by stationary model. This underestimation under stationary assumption
increases flood risk and failure in infrastructure. Moreover, Bayesian approach was also
carried out for uncertainty modelling for finding out the uncertainty in non-stationary return

levels and the results indicated higher uncertainty in lower return level.

Li et al. (2015) developed Non-stationary Standardized Precipitation Index (NSPI) using non-
stationary Gamma distribution. They used various climate indices as covariates for fitting the
precipitation data. The performance of NSPI and traditional Standardized Precipitation Index
(SPI) index was evaluated. It was found that NSPI is more robust than SPI as it incorporates
the climate variations into account. In addition, different drought properties such as drought
frequency, peak, severity, duration were computed for both NSPI and SPI. The study was

performed over Luanhe River basin.

Cancelliere (2017) reviewed on the available methods for developing the non-stationary
model for different hydrological processes. The diversification of these methods to evaluate
the drought occurrences under the assumption of non-stationarity in hydro-meteorological
variables was also explained. Author proposed a new methodology on four different
precipitation time series having varying trends to characterise the drought length. Author

suggested that the methods can be improved for incorporating the uncertainty associated with
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the evaluation of non-stationarity in hydro-meteorological series and can be used for

calculating other drought properties like severity, intensity etc.

Mukherjee et al., (2018) argued that the non-stationarity associated with climate change is
expected to modulate the parameters of the distributions of input variables which is used to
formulate different drought indices. Therefore, appropriate methodology should be formulated
to incorporate the non-stationary information in order to characterize the drought under
climate change. Subsequently, reliable information can be extracted for risk assessment and

management of infrastructure.

Rashid and Beecham (2019) developed non-stationary SPI using Generalised additive model
in Location, Scale and Shape (GAMLSS) modelling framework. Here, SOI, Sea Surface
Temperature (SST), Pacific Decadal Oscillation (PDO), Southern Annular Mode (SAM) and
Dipole Model Index (DMI) external covariates are incorporated for capturing the non-linear
characteristics of precipitation in South Australia. The obtained results demonstrate the
importance of non-stationary drought index for accurately capturing the drought
characteristics in the changing climate.

Wang et al. (2020) used both climate driven and human induced indices are incorporated in
non-stationary analysis of hydrological drought index i.e., Standardized Streamflow Index
(SSI). The significant climate covariates and human induced indices were computed from
correlation analysis and from Soil and Water Assessment Tool (SWAT) model respectively.
A comparison analysis was conducted using Akaike information criterion (AIC) between
Non-stationary SSI (NSSI) and SSI to examine the capability of NSSI. In conclusion, authors
stated that the NSSI can give more reasonable and satisfactory results by accounting the non-

stationarities in streamflow due to human activities and changing climate.

Das et. al (2020) used non-stationary Gamma distribution having climate indices in location
parameter to incorporate climate variability in the computation of meteorological drought
index. Authors compared the drought properties between the stationary and non-stationary
analysis based on the statistical performances in two Himalayan states in India. Moreover,
they performed bivariate analysis of different drought properties to provide a new concept for

the effective management practices in the changing environment.
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Bazrafshan et al. (2022) aimed to develop Non-stationary Standardized Precipitation
Evapotranspiration Index (NSPEI) for robust quantification of drought characteristics. They
varied the location parameter of the log-logistic distribution with multivariable function of
time and climate indices. The study was performed over Iran using GAMLSS algorithm. They
found that non-stationary modelling outperforms stationary modelling over 97% of total

stations across the study area.

In the similar way, there are many studies which reveal the superiority of non-stationary
analysis in different parts of the world while analysing the hydro-meteorological extremes.
These include but are not limited to Olsen et al. (2010), Villarini et al. (2010), Gilroy and
McCuen (2012), Salas and Obeysekera (2014), Mondal and Mujumdar (2015), Vasiliades et
al. (2015), Gao et al. (2016), Song et al. (2020), Das and Umamahesh (2021), Zhang et al.
(2021).

2.3 Drought characterization

Drought is the most unpredictable and least understood natural hazard (Hagman et al., 1984).
The detection and quantification of drought events are complex as no universal definition of
drought exists (Lloyd-Hughes, 2014). However, from hydrological point of view, drought
occurs due to the less availability of water in a region for a significant period of time. It can
be less in precipitation, reduction in soil moisture, low streamflow which are the primary
reason behind the meteorological, agricultural, and hydrological drought, respectively.
However, based on single variable, the drought condition can’t be characterised for a
particular region. It depends on multiple hydro-meteorological variables for capturing
different aspects of drought conditions. Therefore, the use of different drought indices is the
most common approach for drought characterisation. Drought indices can simplify the
complex interrelationship of climate related parameters with different climatic condition.
Therefore, in past studies, many researchers have introduced different drought indices for

characterizing different types of droughts. For example

Despite the lack of a precise definition of drought, there are several indices to monitor the

drought conditions (Li et al., 2015; Wilhite, 2017). To monitor the precipitation based

meteorological drought, Palmer Drought Severity Index (PDSI; Palmer, 1965) and

Standardized Precipitation Index (SPI; Mckee et al., 1993) are commonly used. Similarly, to
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monitor runoff or streamflow based hydrological drought, the Standardized Runoff Index
(SRI) is used (Shukla and Wood, 2008). Likewise, the Standardized Soil Moisture Index (SSI)
and Agricultural Standardized Precipitation Index (aSPI) are widely used for agricultural
drought (Hao and AghaKouchak, 2013; Tigkas et al., 2019). Many other drought indices have
been proposed considering one or more climate variables such as the Standardized
Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010), Vegetation
Drought Response Index (VegDRI; Brown et al., 2008), Reconnaissance Drought Index (RDI;
Tsakiris and Vangelis, 2005), Multivariate Standardized Drought Index (MSDI; Hao and
AghaKouchak 2014), and Evaporative Stress Index (ESI; Anderson et al. 2007).

Gonzélez and Valdés (2006) developed a new index i.e., Drought Frequency Index (DFI)
based on the purely probabilistic treatment. The drought index is developed on the basis of
stochastic characterisation of extreme persistent deviation sequences. The performance of the
index is examined and compared with respect to different issues such as magnitude selection,
univariate versus multivariate, threshold selection and timescale issues. The newly developed

index provides a consistent index for general drought characterization goals.

Santos et al. (2010) considered Standardized Precipitation Index (SPI) at different time scales
to characterise drought events. They applied principal component analysis (PCA) and K-
means clustering (KMC) to SPI series to evaluate spatial and temporal patterns of drought
occurrences. From fast Fourier transform algorithm (FFT) of SPI pattern, authors found
specific time period cycle at different region; for instance, 3.6-year cycle in the SPI pattern
over south and 2.4-year and 13.4-year cycles in north of Portugal. They suggested the stronger
influence of NAO in south Portugal because of which south portion experienced more

frequent dry events.

Yang et al. (2017) evaluated seven meteorological drought indices namely Palmer Drought
Severity Index (PDSI), modified PDSI (PDSI_CN), self-calibrating PDSI (scPDSI), Surface
Wetness Index (SWI), SPI, SPEI and soil moisture simulation. Authors analysed the
applicability of drought indices based on regional basis. They considered terrestrial water
storage, observed streamflow and soil moisture for computing these indices. Authors
concluded that the scPDSI is most appropriate for China. They showed some problems in
PDSI and PDSI_CN in humid and arid areas, whereas the SPI and SPEIl were more
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appropriate for humid areas rather than arid and semiarid regions. Although the seven drought
indices were able to detect the long-term trends of drought, there was a difference among the

values of drought areas computed using the seven indices.

Zhao et al. (2019) worked on socio-economic drought characterisation on the basis of
Multivariate Standardized Reliability and Resilience Index (MSRRI). They adopted cross
wavelet analysis to examine the influence of meteorological driving factors on socio-
economic droughts. From the outcomes it was observed that the MSRRI is effective for socio-
economic drought evaluation. Moreover, the comprehensive effects of ElI Nifio—Southern
Oscillation (ENSO), East Asian Summer Monsoon (EASM) and Pacific North American

(PNA) on socio-economic droughts were found.

Shah and Mishra (2020) developed integrated Drought Index (IDI) incorporating the
responses from meteorological, agricultural, hydrological drought and accounting the ground
water storage. Gaussian copula was used here to compute IDI by integrating SPI-1,
Standardized Runoff Index (SRI-4), Standardized Soil moisture Index (SSI-1) and
Standardized Ground water Index (SGI-1). Moreover, the required hydro-meteorological
variables for evaluating the IDI were simulated from Variable Infiltration Capacity (VIC)
model with SIMple Groundwater Model (VIC-SIMGM). Authors projected drought
frequency based on IDI and showed its efficiency in the assessment of drought characteristics

in both past and future climate in India.

For improvement in drought monitoring, to acquire better knowledge on its drivers and
processes, Diaz et al. (2020) presented an approach to characterise the dynamics of drought.
Based on SPEI, different drought characteristics like tracks, severity, duration, localisation,
rotation of droughts were computed to identify drought. The outcomes from the study are
used to build a model for the prediction of spatial drought tracks in India.

Agutu et al. (2020) considered three types of datasets such as remotely sensed data, in situ and
model products for analysing drought behaviour in a complex topography region i.e., Upper
Greater Horn of Africa. Precipitation, soil moisture, Vegetation Condition Index (VCI) and
total water storage dataset were chosen for characterising drought and exploring the

inconsistencies in areas. The inconsistencies were observed under extreme and moderate
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droughts as compared to severe droughts. The obtained results indicated that the 3-month time
scale sufficiently captured the agricultural drought and provided an indirect linkage with food

security situation.

Javed et al. (2021) explored the spatiotemporal dynamics of meteorological and agricultural
drought by utilising the remote sensing products and evaluated their linkage with winter
wheat and summer corn yield losses. They derived the agricultural Standardized Precipitation
Index (aSPI) for different time scales and Standardized Vegetation Supply Water Index
(SVSWI) to explore the regional scale dynamics across China. From results, the increased
frequency of drought events was found in most part of the country for 3-month aSPI.
Moreover, a good correlation was observed between 3-month aSPI and SVSWI with winter

wheat anomaly for some areas.

Similar to the above drought characterization studies, there are many studies related to
different types of drought characterisation. These include, but are not limited to Ponce et al.
(2000), Gonzélez and Valdés (2003), Tsakiris et al. (2007), Yirdaw et al. (2008), Mishra and
Singh (2010), Zargar et al. (2011), , Hao and Singh (2015), Ali et al. (2019), Ferreira et al.
(2018), Zhang et al. (2019), Xu et al. (2021), Guo et al. (2022).

2.4 Drought propagation

In the context of causative mechanisms, the deficit in the precipitation and increasing
evaporative demand propagate through the hydrologic cycle and subsequently develop into
different drought events (Hellwig et al., 2020; J. Wu et al., 2020). In other words, from
beginning to end, drought transition is encapsulated within the “Atmosphere-Hydrology-Soil-
Vegetation” system (N. Chen et al., 2020). This transition from one form to another form of
drought is known as drought propagation (Apurv et al., 2017; Haslinger et al., 2014). The
understanding of drought propagation provides valuable information to improve the accuracy
of drought analysis and prediction. In recent times, studies have been performed to analyse
the drought propagation mechanisms and their controlling factors. For example

Peters et al. (2003) investigated the reason behind the transformation of droughts through
groundwater system. In this study propagation from groundwater recharge to the discharge
was evaluated. The propagation was examined by tracking a drought in recharge through a

linear reservoir. The outcomes from the study revealed that the delay in groundwater system
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caused the decrease in recharge from high-flow to low-flow period. The resulted in an

increase in drought deficit for discharge compared with the drought deficit for recharge.

Van Loon et al. (2012)considered ten large scale models under both land-surface and global
hydrological models to evaluate the simulations of drought propagation. They computed
different types of drought characteristics, drought propagation features and hydrological
drought typology. A clear reflectance of drought characteristics on drought propagation was
found. From results, authors concluded that most of the drought propagation processes were
well reproduced by the ensemble mean of large-scale models.

Jiefeng Wu et al. (2018) proposed a framework to determine the propagation speed through a
variable motion relationship of speed-time process. They computed the Instantaneous
Development Speed (IDS) and Instantaneous Recovery Speed (IRS) for each hydrological
drought event by subdividing the individual propagation of into development and recovery
phase. At last, the IDS and IRS values are cross validated for final outcomes. The results
revealed that the variable motion method performed well in identifying the propagation
period. They also found out that the sensitivity of IDS and IRS were correlated with external

factors i.e., catchment characteristics, human activities and climate forcings.

Xu et al. (2019) used two drought indices i.e., SPI (for meteorological drought) and SRI (for
hydrological drought) for investigating the drought propagation from meteorological to
hydrological drought. Authors evaluated the correlation between two indices over three parts
of the Luanhe river basin. They observed frequent occurrences of hydrological drought,
whereas a little difference was observed in the meteorological drought characteristics between
pre- and post-human disturbance period. The shorter propagation time i.e., 1-5 months was
computed for grassland dominated subbasin. Whereas in case of forest dominated subbasin, it
was 4-7 months during rainy season. However, in dry season, drought propagation time of 7-

12 months was noticed over both grassland and forest dominated subbasins.

Apurv and Cai (2020) tried to understand the drought propagation mechanism through
physical based hydrologic model. Authors considered multiple watersheds from different
regions of contiguous United State to investigate about the controlling factors of drought
propagation. From obtained results, similar spatial pattern was found between hydrological
drought and climatic properties. Authors revealed the key watershed property i.e., storage-

discharge relationship which controls the intensity of hydrological drought.
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The interference of the construction of Three George Dam (TGD) in the modification of
drought propagation was studied by Huang et al. (2021). They examined the impact of
anthropogenic activity on meteorological drought to hydrological and agricultural drought
propagation processes. Authors used trend and attribution analysis to explore the potential
influence factors. They found significant impact of TGD which aggravate the drought
propagation characteristics. Moreover, they observed that the meteorological to hydrological
drought propagation speed was slowed down, whereas meteorological to soil moisture lag

time became shorter.

The linkage among meteorological, agricultural and groundwater drought was investigated by
H. Zhang et al. (2021) over humid and arid/semi-arid basins in China. They evaluated the
correlation and propagation among these three types of droughts through Spearman rank
correlation coefficient. SPI, SSI, and Groundwater drought index based on Gravity Recovery
and Climate Experiment (GRACE) were considered to characterise meteorological,
agricultural and groundwater drought, respectively. A strong linkage between meteorological
and agricultural drought was found. Authors argued that the groundwater extraction could be
the main factor for groundwater drought.

Ho et al. (2021) proposed a new approach to determine the drought propagation from
meteorological to hydrological drought. They calculated the propagation time at a higher
temporal resolution and considered high resolution remote-sensing data on a daily time step.
The SPI, SRI, Standardized Evapotranspiration Deficit Index (SEDI) and Standardized Soil
moisture Index (SSI) are considered. Index correlation method and temporal shift method are
used for calculating drought propagation. The outcomes from the study suggested that the soil
moisture drought showed a delayed response to the meteorological conditions. Whereas
hydrological drought propagation is controlled by precipitation along with land cover, soil

type, temperature and humidity.

Recently, Schumacher et al. (2022) worked on drought self-propagation behaviour. They
considered last 40 largest recent droughts worldwide and used Lagrangian moisture tracking
to examine the influence of soil moisture drought on precipitation. Authors found that the
drylands were mostly prone to drought self-propagation due to the enhanced soil water stress

and reduction in precipitation in these areas.
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Likewise, propagation study has been carried out over Iberian Peninsula (Lorenzo-Lacruz et
al., 2013), over China ( Zeng et al., 2015; Wu et al., 2018; Xu et al., 2019; Ding et al., 2021),
over United Kingdom (Barker et al., 2016), over South Korea (Jehanzaib and Kim, 2020;
Sattar et al., 2020, 2019), Over Contiguous United States (Tijdeman et al., 2018), over Brazil
(Bevacqua et al., 2021), over Spain (Barella-Ortiz and Quintana-Segui, 2019), over South
Africa (Botai et al., 2019), over India (Bhardwaj et al., 2020), among others.

2.5 Drought risk and vulnerability

Drought vulnerability refers to the degree of susceptibility of a region to drought, whereas
drought risk is defined as the likelihood of potential losses caused by the combined effect of
drought hazard, vulnerability and exposure. The dual effect of climate change and the rapid
economic development have aggravated the drought risk condition. Meanwhile, rural
communities are more susceptible to droughts as it has mostly agriculturally based economy
which depends on climatic variability. Therefore, it is of great practical significance to assess
the drought risk and effective utilisation of water resources for sustainable development of
agricultural productivity. Over past years, researcher have focused on the evaluation of
drought risk and its vulnerability.

Merabtene et al. (2002) determined the susceptibility of water supply system to droughts by
using a decision support system (DSS) which was integrated with three fundamental modules:
real time rainfall-runoff model, water demand forecast model and reservoir operation model.
Based on genetic algorithm, they introduced two new features to minimize drought risk and to
improve the convergence of the model to practical solutions. Authors considered reliability,
resiliency, and vulnerability to formulate Drought Risk Index (DRI). They advocated that
DSS as an efficient tool for evaluating water supply scenarios during drought conditions.

He et al. (2013) worked on the assessment of agricultural drought risk over China at 10 x 10
km grid scale. The drought risk was evaluated based on the natural disaster analysis theory. A
clear southeast—northwest spatial pattern of agricultural drought risk was found. The drought
risk was evaluated as the product of three components i.e., hazard, vulnerability and exposure.
In addition, the study area was categorized based on the classifications of low, moderate, high

and very high risk.
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Borgomeo et al. (2015) proposed vulnerability-based approach to evaluate the water resources
system vulnerability to hydrological drought condition using copula theory. From the
generated synthetic streamflow series, the marginal distribution of streamflow for each month
was produced by bootstrapping method, whereas the joint probability distribution for
consecutive month was created by copula-based method. Applying the method to London
water system, the obtained results indicated that the vulnerability of the water system is
outside the range of past drought events. The vulnerability results along with climate model

information were helpful for adopting water management options for long and severe drought.

Ahmadalipour and Moradkhani (2018) performed comprehensive assessment to evaluate the
drought vulnerability in 46 African countries. Authors considered six different components
(economy, energy, infrastructure, health, water resources, land use, society) and introduced a
composite Drought Vulnerability Index (DVI) for each country. After checking the accuracy
of DVI through various analysis, the regression models were fitted to the DVI for historical
time series and were extrapolated for future time series to project DVI. The outcomes
indicated an increase in the difference between low and highly vulnerable countries in future.
Authors suggested that the DVIs can be used in long term drought risk analysis.

A regional based drought risk evaluation method was established in Heilongjiang in China to
rank the drought risk. In this study, Liu et al. (2019) evaluated the drought risk based on
remote sensing drought monitoring and uncertainty method.. They also used the most suitable
drought monitoring model namely Temperature and vegetation polynomial model (TVPM).
For introducing the uncertainty method, they applied statistical based interval weight
determination of evaluation index method. Interval number sorting method was used to

establish drought risk evaluation model.

Drought being the most serious disaster to cause severe agricultural damage has become a
major threat to global food security. Therefore, Guo et al. (2021) attempted to simulate the
growth of rice in future time period under different scenarios by using Environmental Policy
Integrated Climate (EPIC) model. Authors used drought intensity and rice physical
vulnerability curve to evaluate the global rice yield risk to drought. The results showed an
average expected loss rate of 13.1% (£ 0.4%) in global rice yield in future. Also, the

fluctuation in rice drought risk and the area under rice yield risk will increase in future.
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Li et al. (2022) focused on the rural areas for evaluating the drought risk and water resources
allocation. Authors used SPEI drought index and computed drought duration, and severity
based on run theory. They established the vulnerability curves based on loss data, and
evaluated the risk of the cultivated areas, rural population and primary industry. From results,
it was observed that the rapid increment in green areas increased the ecological water

consumption. Subsequently, a high-risk level of drought was noticed in southern areas.

Similar to the above studies, there are many investigations on drought risk evaluation to help
the policy makers, risk division and management. These include, but are not limited to Wu
and Wilhite (2004), Pandey et al., (2010), Pulwarty and Sivakumar (2014), Blauhut et al.
(2015), Chang et al. (2016), Tsakiris (2017), Frischen et al. (2020), Meza et al. (2020), Omer
et al. (2021), Ma et al. (2022), Savari et al. (2022) .

2.6 Multivariate Analysis

Copula based multivariate analysis was developed by Sklar (1959). According to the Sklar’s
theorem, copula techniques are advantageous as they provide significant flexibility in
modelling the dependence structure between two or more random variables having
independent marginal distributions. There are two copula families: Elliptical family (Gaussian
and Student’s t-copula) and Archimedean family (Clayton, Gumbel, and Frank). In the realm

of hydrology, the use of copula to analyse the hydrological extreme is extensive. For example

Favre et al. (2004) attempted to model multivariate extreme values based on copula theory.
They tried on two different problems: first to find out the combined risk in the framework of
frequency analysis; second to model peak flows and volume jointly. From results, they found
copula as a promising way to apply in hydrology because of its applicability in wide range of

correlation.

Kao and Govindaraju (2008) used trivariate copula for analysing extreme rainfall events. The
trivariate copula family was applied to study the temporal distribution of extreme rainfall
events in Indiana, USA. Subsequently, conditional probability of peak intensity, time to peak,
percentage cumulative rainfall at 10% cumulative time increment were evaluated based on
rainfall depth and duration. The obtained results suggested that the constant cross-product

ratio theory can be applied to both discrete and continuous random variables.
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Zhang et al. (2015) investigated the uncertainties in copula analysis resulted from the
selection of marginal distribution and copula type. Thus, authors analysed hydrological
drought events based on Bayesian approach in East River Basin, China. They evaluated the
credible intervals of drought events with 20 years return period in terms of drought duration
and severity. Moreover, it was found that stronger the heavy-tailed marginal distribution,

greater the uncertainty.

In order to investigate the concurrent hydrological drought events to understand the inherent
mechanism of hydrological extremes, Zhang et al. (2017) utilised copula functions. Here,
authors selected the best suitable copula from Bayesian copula selection approach and the
appropriate marginal distribution on the basis of AIC values. They evaluated the joint
probability of concurrent drought between lake and river and observed the intensified

concurrent drought occurrence in spring, summer and autumn.

A non-stationary frequency analysis of annual extreme rainfall using Archimedean copula
was performed by Li et al. (2019) at four study regions in eastern coastal China. The rainfall
volume and intensity were considered as two index variables. The time dependent copula
function and GEV distribution were used model the joint and marginal distribution,
respectively. From results, they observed the intensifying tendency of extreme rainfall volume

and intensity.

Ballarin et al. (2021) compared univariate and multivariate approach to characterize extreme
meteorological drought events for both past and future time series under different scenarios.
They observed a significant increasing trend for temperature and intense drought events in
future for both approaches. Authors found that the univariate approach could underestimate

the risk associated with extreme events as it did not account the expected warming condition.

Likewise, there are many recent studies based on copula to examine the properties of droughts
(J. Das et al., 2020a; Favre et al., 2004; Ganguli and Reddy, 2014; Hao and AghaKouchak,
2013; Kao and Govindaraju, 2010), and floods (Grimaldi and Serinaldi, 2006; Li and Zheng,
2016; Papaioannou et al., 2016; Tosunoglu et al., 2020). Apart from hydrologic extremes,
copula has been used to model the characteristics of other extreme events such as heat waves
(Mazdiyasni et al., 2019), concurrent occurrence of different climate extremes, known as
compound extremes (Manning et al., 2018; Zscheischler and Seneviratne, 2017). However,

the application of multivariate analysis in agrometeorological studies is relatively recent. For
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instance, Bokusheva et al. (2016) and Madadgar et al. (2017) used joint distribution of rainfed

agricultural crops and drought condition over Kazakhstan and Australia, respectively.
2.7 Future projection

The fact that the extreme weather events (e.g., extreme precipitation, heat waves) have
become increasingly frequent all around the globe (Kundzewicz and Kaczmarek, 2000;
Mazdiyasni et al., 2017), was well understood and witnessed during the latter part of the 20th
century and early 21st century (IPCC, 2014). Among all the climate extremes, detection and
quantification of drought events are complex. The analysis of drought can be carried out at
short and long-term scales. The short-term forecast helps in providing the advisory to the
farmers regarding the suitable crop cultivations and reallocation of water resources among the
states (Bisht et al., 2019). In this light, numerous studies have been carried out around the
globe in terms of different future drought characteristics. For example

Hanson and Weltzin (2000) discussed about the drought disturbances in future predicted
drought conditions and their impacts on soil water availability to forests under climate
change. They revealed several conclusions regarding the sensitivity of forests to future
drought such as reduction in net primary production, mortality of stature plants etc. They also
suggested that the regional scaled climate prediction along with higher temporal resolution
and field-based experiments would be better for predicting the response of different forest

regions to climate change.

Burke et al. (2010) evaluated the drought events during 20" century and future time series to
identify any potential future changes due to increased greenhouse gases. They computed
precipitation indices and soil moisture index for different time scale. They considered outputs
from Hadley Centre regional climate model (HadRM3) for future drought analysis. They
found significant difference in soil moisture between model and reference data. Authors
performed non-stationary extreme value theory to monthly indices to project future drought

events. All drought indices showed an increment in drought occurrences in future time series.

Rajsekhar et al. (2015) conducted study on the possible changes in drought properties under
the changing climate. They considered downscaled and bias-corrected data from five GCMs

and a multivariate Drought Index to conduct the drought analysis in future time series.
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Authors identified the spatial patterns of drought properties and the distribution of potential
drought hazard areas. Drought vulnerability assessment and composite drought risk maps

were also developed to achieve an effective drought mitigation strategy.

Lehner et al. (2017) investigated drought risk and aridity under the impact of climate change
scenarios. They utilised a set of simulations from the Community Earth System Model
targeting 1.5°C and 2°C. A small change in drought risk was found in U.S. Southwest and
central plains, when warming was limited to 2°C. However, a significant increase in drought

risk was recognised in Mediterranean and central Europe under both 1.5°C and 2°C.

Martin (2018) used the outputs from 24 CMIP5 models to project duration and severity of
drought events using 6-month SPI. More frequent, long lasting drought events are projected in
dry regions. Projection of severe drought events and duration suggested an increasing trend
over wetting region. Author stated that the projected drought characteristics has significant

implications for planning and resilience.

Cook et al. (2020) analysed the drought condition incorporating future projections of
precipitation, soil moisture and runoff from Phase Six of the Coupled Model Intercomparison
Project (CMIP6). They found robust drying in the mean state in most of the parts by the end
of 21% century based on multi-model ensemble. The regional hotspots with strong dryness
were identified in western North America, Central America, Europe and the Mediterranean,
China, Australia, southern Africa, Southeast Asia, Amazon. Moreover, some regions showed
an increment in extreme drought risk by 200-300% compared to historical period. Authors
also identified severe and extensive dryness in soil moisture and runoff compared to

precipitation.

Prodhan et al. (2022) analysed the future drought and its impact on crop yield over South Asia
based on ensemble machine learning approach. Authors considered CMIP6 global climate
models and adopted SPEI drought index to characterise future drought. Moreover, they
proposed non-linear ensemble of Random Forest (RF) and Gradient Boosting Machine
(GBM) to evaluate the future risk of yield reduction under the impact of future drought.
Results indicated high drought magnitude with longer duration, whereas high drought

intensity with shorter duration. A high risk on yield loss under extreme drought condition in
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future encounters 54.15%, 29.30% and 50.66% loss in rice, wheat, and maize crops
respectively. Additionally, several past studies have examined the meteorological and
hydrological droughts incorporating the future projections from GCMs under the Coupled
Model Intercomparison Project 3 (CMIP3) and 5 (CMIP5) across the globe. For instance,
over Europe (Spinoni et al., 2018; Thober et al., 2015), over United States (Ahmadalipour et
al., 2017; Keellings and Engstrom, 2019), over China (Cao and Gao, 2019; Yao et al., 2020),
over India (Bisht et al., 2019; Gupta and Jain, 2018), over Australia (Johnson and Sharma,
2015), over the globe (Spinoni et al., 2020; Ukkola et al., 2018).

2.8 Concluding remarks

This chapter presents an overview of non-stationary analysis, its importance in drought
characterization, propagation, risk and drought projection under climate change. Based on the
discussion regarding non-stationarity analysis, it is understood that the non-stationarity
behaviour due to the changing climate cannot be ignored in the analysis of natural hazards.
The literature are mostly based on the comparison between stationary and non-stationary
analysis in different hydrological extremes. The comparative analysis comes up with the
superiority of non-stationary analysis over stationary analysis in most of the regions in
capturing the occurrences of extreme events appropriately. Non-stationary analysis can be
conducted with the use of different statistical methods incorporating various physical
covariates. Therefore, this thesis initially aims at examining the better model between
stationary and non-stationary modelling in the study area for identifying the drought
occurrences. Further, the literature focuses on the characterization of different droughts based
on both univariate and multivariate indices. The significance of different drought indices for
characterizing specific types of droughts are discussed for both stationary and non-stationary
analysis. With this understanding the next part of the thesis examines the evaluation different
drought properties like severity, duration, frequency for meteorological, hydrological,

agricultural, and socio-economic drought in India.

Based on the literature regarding the drought propagation from one type to another along with
internal drought propagation, it is crucial to understand the reason behind the transformation
of drought through hydrological system. The literature suggests the reflectance of drought
characteristics on drought propagation and about the significance of different controlling

factors on drought propagation. Therefore, one part of thesis is assigned to the investigation of
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drought propagation from meteorological to hydrological and agricultural drought along with
internal drought propagation for each drought under both stationary and non-stationary
approach. Literature based on drought risk and vulnerability suggest the necessity of
evaluating the drought risk for adopting better drought management strategies. Specifically,
the evaluation of agricultural drought risk which affects the global food security system is of
paramount importance. Further, the studies on copula based multivariate analysis show its
widespread application on hydrological system. Therefore, part of thesis is devoted to the
computation of agricultural probabilistic drought risk for four major crops based on copula

theory in the study area.

It is expected that drought risk is likely to increase in the twenty-first century. Additionally,
literature related to the future projection of drought provide the evidence of the increment in
drought occurrences in future time series under different climate change scenarios. Hence, the
last part of thesis focuses on the evaluation of meteorological drought properties and
identification of drought hotspot regions for different time scales under different climate
change scenarios. Moreover, seasonal drought analysis for pre-monsoon, monsoon, post-
monsoon, Kharif and Rabi is performed to evaluate severity-area-frequency relationship

curve.
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Chapter 3

Non-stationary modelling of drought

3.1 Introduction

As discussed in Chapter 1, the drought can be linked to the deficiency of the streamflow, soil
moisture, agricultural productivity, and socio-economic conditions (Huang et al., 2016; A.K.
Mishra and Singh, 2010; Wilhite and Glantz, 1985; X. Zhang et al., 2017). Different types of
droughts (e.g., meteorological, hydrological, agricultural, and socio-economic) put enormous
pressure on water availability, water demand, and agriculture. In this sense, the adverse
consequences of drought affect socioeconomic status and subsequently increase economic
risk and financial challenges. For instance, in an agrarian country like India, 50% of the total
agricultural land (i.e., 68% of the total area) is highly susceptible to frequent severe drought

conditions affecting about 50 million people annually (Dutta et al., 2013).

Due to the effects of climatic variability and anthropogenic perturbations, it is postulated that
the frequency of drought hazard will increase in coming decades (Li et al., 2013a; Villarini et
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al., 2011; Wang et al., 2015a). Most drought events in India are due to the low summer
monsoon precipitation as a result of climate change or natural variability (Mishra et al., 2012;
Roxy et al., 2015). While analyzing the relationships between droughts and natural variability
like ElI Nifio-Southern Oscillation (ENSO) during the period 1871-1999, WMO (1999)
reported that 11 out of 21 drought events occurred during the El Nifio years in the period
1871-1988. However, in the twenty-first century, the association between the two phenomena
appears to have strengthened as three out of four EIl Nifio years resulted in Indian droughts
over the last 14 years (Saini and Gulati, 2014). Therefore, in India, comprehensive evaluation
and periodic assessment of the characteristics and adverse impact of droughts is necessary for
adaptation and mitigation (Aadhar and Mishra, 2017; Shah and Mishra, 2015).

Despite the lack of a precise definition of drought, several indexes exist for monitoring
drought conditions (Li et al., 2015; WMO and GWP, 2016). The Palmer Drought Severity
Index (PDSI) (Palmer 1965) and Standardized Precipitation Index (SPI) (Mckee et al. 1993)
are commonly used to monitor precipitation-based meteorological droughts. Similarly, the
Standardized Runoff Index (SRI) is used to monitor runoff- or streamflow-based hydrological
droughts (Shukla and Wood 2008). Likewise, the Standardized Soil Moisture Index (SSI) and
Agricultural Standardized Precipitation Index (aSPI) are widely used to monitor agricultural
droughts (Hao and AghaKouchak, 2013; Tigkas et al., 2019). Many other drought indexes
have been proposed that consider one or more climate variables, such as the Standardized
Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al. 2010), Vegetation
Drought Response Index (VegDRI) (Brown et al., 2008), Reconnaissance Drought Index
(RDI) (Tsakiris and Vangelis, 2005), Multivariate Standardized Drought Index (MSDI) (Hao
and AghaKouchak, 2014), and Evaporative Stress Index (ESI) (Anderson et al., 2007).

Understanding the importance of non-stationarity (as discussed in Chapter 1), the
development of a non-stationary drought indices has gained significant momentum in recent
years with the inclusion of various covariates in its computation. For example, large-scale
climatic oscillations (Li et al., 2015; Rashid and Beecham, 2019), both large-scale climatic
oscillations and human induced indexes (Wang et al., 2020b), and time (Bazrafshan and
Hejabi, 2018; Park et al., 2019; Wang et al., 2015b) are used as covariates in modeling non-
stationary droughts. However, the selected covariates and their selection procedure may vary.
For instance, Li et al. (2015) selected large-scale climate indexes [e.g., Southern Oscillation
Index (SOI), Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO)]
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based on a correlation analysis; Wang et al. (2020) computed the anthropogenic influence to
incorporate as a covariate in the computation of non-stationary drought, based on the previous

literature, and time was used as a covariate by Bazrafshan and Hejabi (2018).

The interannual and interdecadal variability in regional and global precipitation is closely
linked to sea surface temperature (SST) and sea level pressure (Hu and Feng, 2001).
Considering the time lag correlations between precipitation and climate oscillations,
precipitation at monthly, seasonal, and annual scales can be predicted (He and Guan, 2013;
Peng et al., 2014). Understanding the important linkage between large-scale climatic indexes
and hydrometeorological variables, researchers analyzed the different drought indexes under
the influence of climatic oscillations. For instance, Meza (2013) modeled the SPEI drought
index using ENSO over Northern Chile; meteorological drought indexes like the SPI are
modeled using different climatic oscillation indexes over the Luanhe River Basin in China (Li
et al. 2015); non-stationary modeling of the RDI over Iran (Bazrafshan and Hejabi 2018) and
the SSI drought index over the Luanhe River Basin (Wang et al. 2020).

In a drought-vulnerable country like India, the analysis of drought in the context of a non-
stationary approach is limited (Ganguli and Reddy 2013; Salvi and Ghosh 2016). Moreover,
to the best of the authors’ knowledge, in connection with drought prone areas like
Maharashtra, drought events under the influence of large-scale climatic oscillations have not
been analyzed. Therefore, to develop a new approach to drought identification and examine
drought properties, non-stationary meteorological drought indexes incorporating large-scale
climatic oscillations are developed for Maharashtra. Two different drought indexes, SPI and
RDI, are considered for the analysis. Large-scale climatic oscillations like the Indian Summer
Monsoon Index (ISMI), the SOI, SST, and Indian Ocean Dipole (IOD) are used as covariates.
The reason behind the selection of the climatic oscillations is discussed in the Section 3.2.
The Generalized Additive Model in Location, Scale and Shape (GAMLSS) package in the R

environment.
3.2 Study area and data used

3.2.1 Study area

To analyze and model non-stationary meteorological drought events at different time scales,

Maharashtra is selected as the study area. Maharashtra lies between and 15° 61’E-22° 03’E
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latitude and 72° 64°N—80° 90°N longitude. It covers an area of around 3,07,713 km? and is the
third largest state in India. The state consists of six administrative divisions, namely Konkan,
Pune, Nashik, Aurangabad, Amaravati, and Nagpur. The average elevation of the study area is
1,200 m above mean sea level. Annual precipitation over the study area varies between 512
and 3,765 mm, with an average of 1,133 mm during 1951-2013. In the period of 1901-1998,
26 meteorological droughts have been identified and 11 droughts out of those affected more
than half of the state. Moreover, in 2013, 11801 villages were affected by a worst drought
occurred in last 40 years in Maharashtra. The maximum temperature varies between 37°C and
46°C during summer and the minimum temperature between 3°C and 12°C during winter
(1951-2013). Rainfed agricultural activity is the primary source of income for about 64% of
the total population, and the state contributes about 15% of the country’s gross domestic
product (GDP) (P. D. Udmale et al., 2014). However, there exists a significant spatial
variability of the precipitation from western (mostly wet) to eastern (mostly dry) parts of
Maharashtra. A detailed representation of the study area is shown in Figure 3.1.

2°N (b)
(a) N | @ A
40° N
20°N
N o0 0000000
%N EEEEEREREEK)
18°N
30°N
17°N
25°N 16° N ® Grid Points
72°E 73°E 74°E 75°E T76°E T77°E 78°E T79°E 80°E B1°E 82°E
20°N
22°N (C) N
15°N 21°N A
20°N
10° N
19°N
5N - Pune Division
0 290 580 1,160 1740 2,320 18°N P
- Ki s [ Nashik Division
- Nagpur Division

70°E  75°E  B0°E  BS°E  90°E  95°E 17°N
I Konkan Division

- Aurangabad Division
l:| Amaravati Division
72°E 73°E T74°E 75°E T6°E 77°E 78°E 79°E 80°E B81°E 82°E

Figure 3.1: Description of the study area. (a) location map of Maharashtra superimposed over
India map; (b) 103 grid points at a resolution of 0.5° x 0.5° over Maharashtra; (c) six different

divisions of Maharashtra state
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3.2.2 Observational datasets

The daily precipitation and temperature (maximum and minimum) data sets for this study are
obtained from the India Meteorological Department (IMD), Pune, for the period 1951-2013.
The original data are available at spatial resolution 0.25° x 0.25° and 1° x 1° for precipitation
and temperature, respectively. The precipitation datasets are derived based on 6,955 rain
gauge stations (Pai et al., 2014), and temperature data sets are prepared based on the 395
quality controlled temperature stations (Srivastava et al., 2009). The datasets can be obtained

from https://www.imdpune.gov.in/Clim Pred LRF New/Grided Data Download.html. To

simplify the analysis and interpretation of the outcomes, the precipitation and temperature
data sets are brought to a common grid point of 0.5° x 0.5° spatial resolution in this analysis.
In addition to the precipitation and temperature data, wind speed, and cloud cover data are
downloaded from the National Centers for Environmental Prediction (NCEP) reanalysis

products (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html). The spatial

resolution of wind speed and cloud cover is brought to a common grid point as precipitation
and temperature points using bilinear interpolation during 1951-2013. The bilinear
interpolation is performed using the built-in function in “Raster” package in R environment.
Here, the bilinear interpolation method is chosen among different interpolation methods as it
is easy to use and apply when the source and destination grids are rectilinear (Jones, 1999). In
addition, this method is suitable for continuous variables. In the bilinear method, the value at
targeted grid point is interpolated from the values of the four nearest grid values. In other
words, the weighted average of the four values corresponding to the four nearest grids is
computed. The weights are determined by the distance between the target grid and other grids.
The grid near to the target grid gets more weight and vice versa. The wind speed and cloud
cover data sets are used to compute the potential evapotranspiration (PET) series, which will

be further used to compute RDI at different time scales.

Table 3.1: Details of the datasets used in the present study

Dataset Temporal Resolution | Spatial Resolution Source
Precipitation 1951-2013 (Daily) 0.25° x 0.25° IMD
Temperature 1951-2013 (Daily) 0.5° x 0.5° IMD
Cloud cover 1951-2013 (Monthly) 2.5°x25° NCEP
Wind Speed 1951-2013 (Monthly) 2.5°x25° NCEP
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3.2.3 Climate covariates and its association

3.2.3.1 Indian summer monsoon index (ISMI)

Most precipitation across India occurs during the monsoon season (i.e., June—September),
which is modulated by the Asian summer monsoon and mainly due to the Indian summer
monsoon. The Asian summer monsoon is one of the most energetic components of the Earth
systems driven by convective (most important), radiative, and sensible heat sources/sinks
(Wang et al., 2001). As a result of the boreal summer, two different convective regions are
observed, one over the Bay of Bengal—India—Arabian Sea region and the other over the South
China Sea and Philippine Sea region. The former is mainly responsible for the Indian summer
monsoon, while the latter mostly accounts for the East Asia summer monsoon. In addition,
previous studies found a possible connection between monsoon indexes with precipitation
variability in China (Chang et al., 2019) and India (J. Das et al., 2020b). Therefore, the ISMI
is a good indicator of the strength of monsoon precipitation over India, and the ISMI is used
in a very limited way to analyze the characteristics of meteorological droughts. The ISMI is
defined as the difference in the zonal winds at 850 hPa over (40°E-80°E, 5°N-15°N) and
(70°E-90°E, 20°N-30°N). Because the wind variation at 850 hPa reflects the variation in
convective heating compared to upper-level circulation, 850 hPa is used to compute the ISMI
(Wang, 2000). In this context, the use of ISMI as a covariate for analyzing meteorological
droughts is reasonable. ISMI dataset can be downloaded at

http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html.

3.2.3.2 Southern oscillation index (SOI)

The SOI is generally used to characterize the ENSO and is defined as the standardized sea-
level pressure difference between Tahiti and Darwin, Australia (Cavazos and Rivas, 2004).
The negative and positive values of SOI specify El Nifio and La Nifia episodes, respectively.
These episodes exert a significant influence on the precipitation variability across the globe,
so variations in the ENSO affect the perceptions about changes in drought (Gu et al., 2007;
Hoerling et al., 2010; Trenberth, 2011; Trenberth et al., 2014). In particular, the ENSO
phenomenon causes 6.3% of global precipitation variance and helps in explaining the
variability in climate over the Northern Hemisphere (New et al., 2001). For instance, during
El Nifio episodes, there are major droughts over Southeast Asia, Australia, Brazil, Indonesia,

and some parts of Africa (Trenberth et al. 2014). In India, because the summer monsoon is
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largely affected by ENSO events (Roy, 2017; Turner et al., 2005), drought years are usually
aligned with EI Nifio episodes while La Nifia episodes bring excess precipitation to the
country (Roy et al., 2019). Moreover, in a recent study, Agilan and Umamahesh (2018)
identified the SOI as the suitable ENSO index to model extreme precipitation during monsoon
and non-monsoon periods over India. Therefore, the SOI has been introduced as a climate
covariate for modeling the non-stationarity in the different types of drought events (Li et al.,
2015; Rashid and Beecham, 2019; Wang et al., 2020b). The monthly data of SOI can be

downloaded from https://crudata.uea.ac.uk/cru/data/soi/.

3.2.3.3 Sea surface temperature (SST)

The variation in the SST, generally referred to as the SST anomaly (SSTA), has a pronounced
effect on atmospheric climate (Mamalakis et al., 2017). In addition, Alexander et al. (2009)
advocated that SSTA is considered one of the main ENSO indexes, and therefore, SSTA is
likely to modify the precipitation and temperature variability around the globe. Many
researchers have linked a precipitation anomaly with the SSTA, for example, in China (Yang
et al., 2017b), the East Asian summer monsoon (Hu and Duan, 2015), the Indian summer
monsoon (Chattopadhyay et al., 2015), and in Europe (lonita et al., 2015). Likewise, it is well
established that the SSTA is one of the major causes of the drought that prevails in many
places around the world, for example, Canada (Shabbar and Skinner, 2004), the United States
(McCabe et al., 2008), Europe (lonita et al., 2012), and India (Niranjan Kumar et al., 2013).
Therefore, selecting the SSTA as an explanatory variable in modeling the non-stationary
drought index is reasonable . The monthly mean SSTA data sets as compared to 1981-2010
mean over NINO3.4 (17°E-120°W, 5°S-5°N) region can be downloaded from

https://www.cpc.ncep.noaa.gov/data/indexes/.

3.2.3.4 Indian ocean dipole (I0D)

The 10D, in the tropical Indian Ocean, was just recently discovered and quantified with the
Dipole Mode Index (DMI) (Saji et al., 1999). The IOD is characterized by the SST difference
between the tropical western Indian Ocean (50°E—70°E, 10°S—10°N) and the tropical south-
eastern Indian Ocean (90°E-110°E, 10°S—Equator) (Saji et al. 1999). The 10D is a coupled
ocean—atmosphere phenomenon like ENSO, and the variability in the SST contributes to the
variations in rainfall and storm activities of many countries surrounding the Indian Ocean

(Paul and Rashid, 2017). In addition, studies show that the IOD makes a significant
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contribution to modulating southwest (Ashok and Saji, 2007) and northeast (Geethalakshmi et
al., 2009) monsoon precipitation. Some studies have indicated an association between the
IOD and drought events across the globe (Forootan et al., 2019; Ummenhofer et al., 2011;
Xiao et al., 2016). Moreover, a recent study postulates that with the increasing amount of
greenhouse gases, the frequency of IOD events is likely to increase (Cai et al., 2014).
Therefore, the 10D was selected as one of the covariates for non-stationary modeling of
meteorological drought over Maharashtra. The DMI datasets are collected from
https://psl.noaa.gov/gcos_wasp/Timeseries/DMI/. 1t should be noted that the ISMI, SOI, SST,
and 10D data sets were collected for the period 1951-2013.

Table 3.2: Details of the covariates used in the present study

Climate | Temporal Sources
indices | Resolution
ISMI Monthly http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-
monidx.html
SOl Monthly https://crudata.uea.ac.uk/cru/data/soi/
I0OD Monthly https://www.cpc.ncep.noaa.gov/data/indexes/
SST Monthly https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/

3.3 Methodology

Initially, the monthly hydro-meteorological variables are cumulated according to different
time scales. The large-scale oscillations are arranged based on different lag values. The
Kendall tau correlation test is performed between the monthly cumulated hydro-
meteorological variables and lag wise arranged climatic oscillations. The best lag is computed
at a significance level of 5% at each grid point. Next, the suitable distribution is fitted with
and without considering the oscillations values with selected lag. The best fit model is
selected based on AIC value and the drought indices are computed by transforming the

cumulative probability of fitted distribution to standard normal values.
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Figure 3.2: Methodological framework for the proposed study
3.3.1 Computation of SPI

The datasets discussed in Section 3.2 are collected for the period 1951-2013. At a spatial
resolution of 0.5° x 0.5°, the number of grid points covering the state is 103 [Figure 3.1(b)].
At each grid point, the monthly precipitation series is extracted by accumulating the daily
precipitation data and then the cumulative precipitation for different time periods (3-, 6-, 9-,
12-, 24- month time scales) is computed using Equation 3.1. Let, x(t) represents monthly
precipitation at time t, and for a time scale of m months, the cumulative precipitation xm(t) is

presented as follows.

t

X )= Y x(0) (31)
i=t-m+1

The traditional SPI drought index is computed by fitting a two-parameter gamma distribution

to the cumulative precipitation for different time periods and denoted as Xm(t)~gamma(y,oc).

The probability density function (PDF) of Gamma distribution is presented by
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f(x (1) p,0) = X ()>0,1>0,0>0 (3.2)

where, location and scale parameters are defined by 4, and o, respectively, and /" represents
Gamma function. The cumulative probability of xm(t) is then transformed to standard normal
values with mean 0 and standard deviation 1 (Abramowitz and Stegun, 1965). The
transformed values are called as SPI for the particular series of precipitation. In this case, the
distribution parameters are assumed to be stationary. However, to model/ incorporate the
influence of climate change signals, the parameters of the distribution need to be time-variant

(Russo et al., 2013) and hence, non-stationary modelling is necessary.
3.3.2 Computation of RDI

Unlike SPI, the computation of RDI involves two climate variables precipitation and potential
evapotranspiration (PET). The PET is computed using the Penman-Monteith method
(Penman, 1948) as it is regarded as the most suitable method to encompass climate change
(Liu and Yang, 2010). The R package SPEI is used to evaluate PET at each grid point. The
minimum climatic and geographical components required for the computation of PET in the
above-said package are temperature, wind speed, cloud cover, latitude, and elevation at each
grid point. The elevation at each grid point is extracted from the digital elevation map (DEM)

at a spatial resolution of 90m from http://srtm.csi.cgiar.org/ (last accessed on 01st December

2019). Initially, the ratio of precipitation to PET accumulated for a given time window is

evaluated. The ratio is called as the initial value (i.e., «,) of RDI (Bazrafshan and Hejabi,

2018) and determined by,

k=l

2P

a,(1) === (3.3)
> PET,

where ¢, (I) represents RDI value for the aggregation time I, P and PETy are the precipitation

(in mm) and potential evapotranspiration (in mm) of the kth month of the year, | is the
aggregation time window (in months and in the present case the aggregation time windows

are 3-, 6-, 9-, 12-, and 24- months), k defines the month number over a time window.
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Therefore, PETx defines the cumulative PET from the month k=1 to k=I. For instance, if the
starting month is June, then k=1 refers to the month of June. Then, the initial value is fitted

with the lognormal distribution, and the PDF of the lognormal distribution is presented as

f | , | I
(1) 1.0) = (I)\/— { L (log(et, (1) - u)} o

a,(1)>0, y ~ (—o,+x),0 >0

where, location and scale parameters are defined by [, and o, respectively. The cumulative
probability of ao(l) is then transformed to standard normal values with mean 0 and standard
deviation 1. The transformed values are called RDI for the particular series of initial values.
However, for more extended period or in the context of climate change, the parameters of the
probability distribution may vary with respect to time. Hence, drought characterisation under
the influence on climatic variability is of paramount importance. The classification and the

threshold values for drought identification according to SPI and RDI are presented in Table 1.

Table 3.3: Classifications and the associated ranges for SPI & RDI values (stationary and

non-stationary)

Classification Range Category
Extreme Wet SPI/RDI >2.00 EW
Severe Wet 1.5 <SPI/RDI<2.0 SW
Moderate Wet 1.0 <SPI/RDI< 1.5 MW
Near Normal -1.0 <SPI/RDI< 1.0 NN
Moderate Drought -1.5 <SPI/RDI<-1.0 MD
Severe Drought -2.0 <SPI/RDI<-1.5 SD
Extreme Drought SPI/RDI < -2 ED

3.3.3 Non-stationary modelling of drought indices

3.3.3.1 Selection of large-scale climate oscillations

In this study, four large-scale climate indexes (ISMI, SST, SOI, and 10D) are selected to
indicate climate anomalies. The measurements of the climate indexes usually exhibit sporadic

disturbances (Wang et al., 2020). Therefore, it is necessary to smooth the data series through
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moving average by continuously averaging over n samples. Moreover, the moving average
will minimize the effect of outliers in the statistical models and reduce the monthly random
variability. In the present study, the n value corresponds to the time scale of droughts, i.e., 3,
6, 9, 12, and 24 months. After smoothing the series at various n values, the large-scale climate
indexes are arranged according to different lags. It should be noted that the lag varies from 0
to 12. Next, a correlation analysis is carried out between the arranged large-scale climate
indexes (for all lags) and the obtained cumulative precipitation using Equation 3.1. Generally,
Kendall and Spearman correlation tests are used to examine the possible teleconnection
among the hydrological variables and climate patterns (McCormick et al., 2009; Niu et al.,
2014). In this study, to verify the best lag and best large-scale climate indexes at each grid
point, the Kendall correlation test was used at a significance level of 5%. For a more detailed
description of the Kendall test, interested readers are advised to consult (Kendall, 1955). The
obtained appropriate large-scale climate indexes and their best lag at each grid point are
considered as a covariate for that grid point. It is worth mentioning that the correlation

analysis is performed for both the SPI and RDI at all 103 grid points.
3.3.3.2 Computation of non-stationary drought indices

In this study, to perform a non-stationary analysis of SPI and RDI, a GAMLSS package
(Rigby and Stasinopoulos, 2005a) is used. This package is extensively used in a non-
stationarity framework in hydrological applications (Villarini et al., 2010). Moreover, in
comparison with other methods, like maximum likelihood (ML) and a two-stage method
based on weighted least squares (TSWLYS), it is found that GAMLSS outperforms these two
methods in terms of flexibility and superior treatment of non-stationarity (Debele et al., 2017).
GAMLSS is a semiparametric regression-type model that enables the user to introduce
explanatory variables or random effects (i.e., covariates in this study) as a linear or nonlinear
function with different statistical parameters (i.e., location, scale, and shape). For a detailed
description of GAMLSS, the reader may consult Rigby and Stasinopoulos (2005) and
Stasinopoulos and Rigby (2007). However, a brief description of the GAMLSS theory is

presented here.

In this analysis, the datasets (x; for i=1, 2, 3,...,n—=1, n) are assumed to be independent

and fitted with a distribution function as F,(x |&',where 6' =(6,,6,;,6,,6,)). For instance,

in case of SPI, the accumulated precipitation series for different time scales are considered as

42



Xi. The matrix @ represents the parameters of the probability distribution, such as location,
scale, shape, and kurtosis parameters. Hence, to find out the kth parameter

(k=1, 2, 3, 4 for u,0,v, 7, respectively) of a distribution associated with the explanatory

variables/covariates through the monotonic link g, () functions are defined as

9. (&) =1, :Xkﬂk+_zkzjk(7/jk) (3.5)
=

where 6 is the vector of length of dataset, Sk is the parameter vector of length Jk, the matrix of
Xk is nxJk and Zjx is the non-parametric additive function of yj. It is worth mentioning that the
selected covariates for different aggregate time scales are varied linearly in the parameter of
the selected distribution. Initially, the aggregated precipitation series at different time scales
are fitted with the stationary gamma distribution separately for all the grid points. Next, the
location parameter of the gamma distribution is described as a linear function of the selected
covariates for all the grid points over Maharashtra. Similarly, in the case of RDI, the analysis
is performed with the lognormal distribution. The selection of the best among stationary and
non-stationary approaches is evaluated using Akaike information criterion (AIC) (Akaike,
1974). The minimum value of AIC corresponds to the optimal model. Therefore, the non-

stationary model can be defined as follows:

For non-stationary SPI (SPIn): X, (t) ~ Gamma(y,, o) (3.6)
For non-stationary RDI (RDIn): «,(t) ~ log normal (s, o) (3.7

4 =b, +bC (t) +b,C,(t) +b,C,(t) +.......+ b, C, (1) (3.8)
where, bo, b1, b2, bs, ............ , bm are regression constants and Cy, Co, .......... , Cm are the

associated covariates. In GAMLSS, there are two algorithms for fitting the models, namely
the CG algorithm (named after Cole and Green, 1992) and the RS algorithm (named after
Rigby and Stasinopoulos, 1996). However, in the present study, the RS algorithm is used
because it does not require an initial value of parameters to confirm convergence and the
method is faster for large data sets. The cumulative probability of the gamma distribution (the
same will hold for lognormal distribution) obtained after the non-stationary analysis is

transformed into a standard normal variate to obtain the non-stationary SPI (SPIn). The
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classifications of the stationary and non-stationary drought indexes are presented in Table 3.1.
In this study, -1 is considered as the threshold below which all events will be referred to as a
drought. Therefore, the drought properties discussed in the next section are estimated based

on the selected threshold.
3.3.4 Identification of drought properties

Several methods exist for identifying drought properties, such as the discrete Markov process,
percentile method, run analysis, and others. Because run analysis (Yevjevich, 1967) has been
generally used for this purpose (Mishra et al., 2009; Reddy and Ganguli, 2012), it will be
applied in this study. In a run analysis, it is assumed that a drought is the sequence of values
below a threshold. Here, three different drought properties, severity, duration, and peak, are
analyzed using a threshold value of -1 for both SPI and RDI. A graphical representation of the
different drought properties is depicted in Figure 3.3. From the figure, the duration is
computed from the start of a drought event to the termination of the event. Therefore, in this
case, the minimum length of the duration is 1 month. Subsequently, severity is computed as
the cumulative magnitude of SPI during the particular duration. The minimum value of the

SPI (and similarly in the case of the RDI) during the given duration is defined as the peak.
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Figure 3.3: Graphical representation of the different drought properties such as Severity,

Duration, and Peak. The dotted line represents the truncation level
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3.4 Results

3.4.1 Spatio-temporal variability of meteorological variables

The spatiotemporal variabilities of meteorological variables, such as precipitation, mean
temperature, and PET, are analyzed over the study area. The monthly mean during 1951-2013
is computed for all variables at each grid point. The spatial variability of each variable is
plotted for each month, as shown in Figure 3.3, for monthly mean precipitation over the study

area. Similarly, the spatio-temporal variability of average temperature and PET are depicted

in Figure 3.4 and Figure 3.5, respectively.
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Figure 3.4: Spatio-temporal variability of mean monthly precipitation (in mm)
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Figure 3.6: Spatio-temporal variability of mean monthly PET (in mm)
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It can be observed from Figure 3.3 that during the monsoon season (i.e., June, July, August,
and September) the Konkan division receives a high level of precipitation, while the central
part of the Maharashtra state, such as the Nashik and Aurangabad divisions, receive much less
rainfall. The results are similar to those obtained by Subash et al. (2011). The mean
temperature variability over the study area (Figure 3.4) exhibits higher average temperature
for 8 out of 12 months over Konkan, Pune, and Aurangabad divisions. Similarly, the average
PET (Figure 3.5) over Konkan, Pune, and Aurangabad divisions is high from May to
September. However, during November and December, a higher PET is observed over the
Aurangabad division. Also note that in most cases, the mean temperature and PET trends are
similar, suggesting the sensitivity of PET to temperature.

3.4.2 Comparison between non-stationary and stationary modeling

The non-stationary model is developed by linearly varying the climatic oscillations at the
location parameter of the gamma (for SPI) and lognormal (for RDI) distributions. To develop
the stationary model, the parameters are kept constant for the chosen distributions. To check
the goodness of fit and to avoid model overfitting, the AIC is applied. The suitable lag of
large-scale climatic oscillations is assessed using a Kendall correlation test at a significance
level of 5%. The analysis is performed for all 103 grid points and different time scales. Since
there are many grid points in the study, one grid point (i.e., 20.25 latitude, 75.25 longitude) is
considered for further explanation. However, for the selected single grid point, the significant

lags are presented in Table 3.2.

Table 3.4: Significant lag of different climatic-oscillations for different time scales at the

reference point for non-stationary modelling of SPI & RDI

Climate

Oscillations ISMI el SST 10D

Time scale SPI
3-month scale 0 - - 12
6-month scale 0 - - -
9-month scale 0 - 7 -
12-month scale 0 9 8 10
24-month scale 0 - 5 12
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Time scale RDI
3-month scale 0 - - 12
6-month scale 0 - - -
9-month scale 0 - 8 -
12-month scale 0 9 8 9
24-month scale 0 0 6 12

It is observed from the analysis that for almost all grid points, the ISMI has a significant

correlation at lag zero, i.e., the current year ISMI affects the precipitation of that particular

year. The dash in the table denotes that there is no significant correlation for that particular

time scale and those climatic oscillations.

Then the different climatic oscillations

corresponding to the identified significant time lags are selected as covariates to estimate

location parameter of the frequency distribution fitted for the reference grid point. The AIC

value is used as a comparative measure between the stationary and non-stationary analyses.
Table 3.3 gives the AIC values obtained for the SPI and RDI on different time scales for the

reference grid point.

Table 3.5: The computed AIC values at the reference point for both stationary and non-

stationary approaches in case of SPI & RDI

) SPI RDI
Time scales i i i i

Non-stationary Stationary Non-stationary Stationary

3-month scale 8221.64 9041.16 -1294.49 -431.89

6-month scale 9699.02 10401.52 -539.05 217.14

9-month scale 9831.50 10291.63 -1062.95 -504.98

12-month scale 9937.53 10043.23 -1433.54 -1307.20

24-month scale 10452.01 10513.71 -1836.60 -1671.78

From the AIC values obtained for all the grid points for stationary

and non-stationary

analysis, it is concluded that the non-stationary approach outperforms the stationary approach

over all 103 grid points in the Maharashtra study region in India.
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3.4.3 Analyzing drought characteristics

According to the classification of the SPI and RDI values (Table 3.1), the occurrence
frequencies of different drought events are evaluated for both the stationary and non-
stationary approaches. The comparison is carried out for the drought categories moderate
drought (MD), severe drought (SD), and extreme drought (ED) (refer to Table 3.1). Here, for
simplicity of presentation, the occurrence frequency of different droughts is presented for the
reference point in Figure 3.6. It should be noted that the results are presented for both the SPI
and RDI

For the SPI, there is a higher frequency of SD on 3-, 12- and 24- month scales, ED on a 6-
month scale, and MD on 9-, 12-, and 24-month scales in the case of SPIn as compared to the
stationary SPI. Otherwise, the stationary SPI has a higher frequency than SPIn. Similarly, for
RDI the frequency of occurrence on all time scales is higher for the MD categories using
RDIn compared to RDI. In addition, the increase in the frequency for SD is observed for 12-
and 24-month scales using RDIn and for ED on the 3-month scale. Moreover, on 9-, 12-, and
24-month scales, the pattern of change in the drought frequency is similar for both SPI and
RDI with or without the influence of large-scale climatic oscillations. It is worth mentioning
that at other grid points, the results obtained by the SPI and SPIn are not consistent.
Therefore, it can be postulated that the large-scale climatic oscillations could cause different
effects on the drought evaluation and frequency across Maharashtra. Similar results are
obtained by Li et al. (2015) while analyzing the association of large-scale climate oscillations

with meteorological drought over the Luanhe River Basin.
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Figure 3.7: Comparison of frequency of occurrence of droughts of different categories under
stationary and non-stationary approaches for the reference grid point. The upper (lower) panel
represents the SPI (RDI) drought index

3.4.4 Analyzing drought properties

Drought properties, i.e., severity, duration, and peak, are analyzed using non-stationary and
stationary approaches. In addition, the counts of MD, SD, and ED drought events are also
examined. For comparison, the empirical probability density function for all the drought
properties across the study area are determined. The density plot of the drought properties and
number of events of different drought types are presented in Figure 3.7 and Figure 3.8,
respectively, for the SPI. In the case of the RDI, the outcomes are similar to the SPI value and
hence, the plots are not shown for the brevity. It is worth mentioning that in the case of

severity and peak, only the magnitude is considered.

It can be noticed from Figure 3.7 that there are noticeable differences in the density plots of
the results obtained based on the stationary and non-stationary approaches for 3-, 6-, and 9-
month scales. For example, for drought duration the PDFs on 3- and 6-month scales appear to
have shifted to the right for the stationary case. Conversely, for drought peak, the distribution
appears to have shifted markedly to the right for the non-stationary approach. Moreover, the
differences in the referenced PDFs decrease gradually as the time scale increases. These

results show that the association of large-scale climatic oscillations likely alter the drought
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properties. Similar observations are made when analyzing the number of events of different
drought types (Figure 3.8). Considering the ISMI as a covariate and its variability on an intra-
annual scale may be one reason for the large variabilities on smaller time scales. In addition,
the influence of SOI, SST, and 10D on precipitation is mostly noticed on an interannual scale
(J. Das et al., 2020b); hence, the inclusion of such indexes may influence drought properties
on 12- and 24-month scales. Therefore, incorporating climatic oscillations in modeling

droughts can be a feasible alternative in a changing environment.
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Figure 3.8: Probability density plot of drought properties computed for SPI at different time

scales
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Figure 3.9: Probability density plot of no. of drought events computed for the SPI drought
index at different time scales

3.4.5 Comparison with historical drought event

The central part of Maharashtra is a semiarid region owing to the very low precipitation and
high PET and is considered a drought prone area (Gore and Ray, 2002). Moreover, the 2013
drought was the region’s worst drought in the last 40 years and severely affected the central
part of Maharashtra. The reduced precipitation in 2012 is considered one of the reasons for
the 2013 drought. Therefore, this study considered the Aurangabad division (popularly known
as the Marathwada region) for a comparison of stationary and non-stationary drought indexes
on a 12-month scale. To this end, stationary and non-stationary SPI and RDI are spatially
plotted for the monsoon months over the Aurangabad division. The SPI and RDI plots are
presented in Figure 3.9 and Figure 3.10, respectively. Note that, though there is evidence of
drought conditions in the Aurangabad division, severe drought conditions were not identified
using the stationary approach. Moreover, the area under drought is larger under non-stationary
conditions compared to the stationary approach during monsoon months. Similar results are

observed in the case of the RDI. Moreover, when more than one meteorological variable is
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included, the non-stationary RDI captures more drought-affected areas compared to the non-

stationary SPI during the months of June and July.
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Figure 3.10: Regional demonstration of stationary and non-stationary SPI at 12-month scale
during the year 2013 over Aurangabad division. The upper panel shows the stationary and the

lower panel shows the non-stationary approach
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Figure 3.11: Regional demonstration of stationary and non-stationary RDI at 12-month scale
during the year 2013 Aurangabad division. The upper panel shows the stationary and the

lower panel shows the non-stationary approach
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3.5 Discussion and summary

The research reported in this chapter attempts to develop non-stationary meteorological
drought indices incorporating large-scale climatic oscillations as covariates for estimating the
location parameter of the gamma (for SPI) and lognormal (for RDI) distributions. In general,
precipitation is the major leading factor for the occurrence of meteorological drought (Zargar
et al., 2011), whereas hydrological drought is associated with human interventions along with
climate anomalies (Zhang et al., 2012). In the future, meteorological drought conditions are
likely to be modulated by large-scale oscillations, so the temporal lag association of climatic
oscillation and meteorological variables can produce reliable information for drought
management (Li et al. 2015). The non-stationary approach enables the introduction of climatic
oscillations with a lag time varying from 0 to 12 months and yields fairly good results

compared with the stationary drought index.

In the case of the non-stationary drought indexes, their time varying nature is incorporated
through covariates like the ISMI, SOI, SST, and 10D, which exert a direct or indirect
influence on precipitation series (Mishra and Singh 2010). Moreover, the non-stationary
estimation of drought indexes can incorporate the development of meteorological variables in
a changing environment. More precisely, the time-varying PDFs of meteorological variables
are updated with time, providing a robust and suitable drought assessment. In addition,
because the stationarity-based drought index is sensitive to the reference periods, evaluation
of the frequencies of extreme over other reference periods is difficult (Salvi and Ghosh,
2016). In this sense, the non-stationarity based indices are capable of capturing extreme

events because they are insensitive to the reference periods due to their time-varying nature

The variability of monthly precipitation across Maharashtra shows higher precipitation levels
across the Konkan division and minimum precipitation in central regions of Maharashtra,
such as Nashik and Aurangabad. The regional precipitation variability over India is regulated
by large-scale climatic oscillations like the ISMI, SST, 10D, and SOI (J. Das et al., 2020b;
Maity and Kumar, 2007); however, one of the reasons for the precipitation variability across
central Maharashtra can be attributed to its geographical location. Because of its location on
the leeward side of Western Ghats, central Maharashtra receives much less rainfall. It is
observed that the sensitivity of PET variability is regulated by temperature in most regions,

which is in line with the findings of Guo et al. (2017). The percentage changes in the
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frequency of drought types under stationary and non-stationary approaches vary considerably,
suggesting that large-scale climatic oscillations modulate the frequency of occurrence of
drought across the study area. A similar kind of observation was made by Li et al. (2015)
while analyzing non-stationary drought in the Luanhe River Basin. The variability in the
drought properties and occurrence of different drought categories were found to be significant
on small time scales (e.g., 3-, 6-, and 9-month scales) than on larger scales in comparisons
between the stationary and non-stationary approaches. In this sense, it is worth mentioning
that under drought mitigation practices in the context of agricultural practices (Parsons et al.,
2019), small- and medium-scale water resource management will be affected in the changing
scenario of climate change. In addition, the inclusion of large-scale climatic oscillations in the
computation of drought indexes appears to be more appropriate over the study area, and a
similar conclusion was drawn by Li et al. (2015) while studying the Luanhe River Basin.
Owing to intra-annual variability, the ISMI is responsible for modulating droughts on smaller
time scales. However, SST, 10D, and SOI are likely to affect drought events on larger scales

as the variability of these climatic oscillations is observed on interannual scales.

In the context of climate change, in addition to precipitation, other meteorological variables,
such as evaporation, relative humidity, and temperature, have profound effects on drought
occurrence (Nufiez et al., 2014; Zarch et al., 2015a). For instance, in semiarid regions, instead
of considering a single meteorological variable, multiple variables play a dominant role in
drought occurrence and effective drought monitoring (Bazrafshan, 2017). Therefore, in a
changing climate, the joint behaviour of multiple meteorological variables and the increasing
or decreasing trend of each variable may significantly influence the estimation of drought
indexes. For instance, an increase in temperature may result in the same amount of
precipitation; however, an increase in evapotranspiration can affect drought severity (Li et al.
2015). Because this type of drought index (RDI in this study) is more sensitive to changing
environmental conditions, introducing large-scale climatic oscillations as a covariate can

provide a robust way of estimating drought properties.

Summarising the findings, it is found that the non-stationary model outperforms the stationary
approach over all time scales. The ISMI is likely to influence droughts on smaller scales.
However, the IOD, SST, and SOI are expected to modulate larger-scale drought events.
Comparative study of the probability plots of drought properties reveals that, though there are

noticeable variabilities between the stationary and non-stationary conditions on all time
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scales, a significant difference is noticed on the 3-, 6-, and 9-month time scales. A
comparative study with respect to historical drought assessments reveals that the presence of
non-stationarity cannot be ignored for developing sustainable mitigation and adaptation
strategy. Hence, next chapter deals with examining the different types of droughts
(meteorological, hydrological, and agricultural) and their properties under the influence of
external covariates.
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Chapter 4

Analysing the drought properties
under different drought conditions

4.1 Introduction

From Chapter 3, it is found that the non-stationary approach outperforms the stationary
approach with the inclusion of external covariates at regional scale. Therefore, the present
chapter deals with the non-stationarity analysis of meteorological, hydrological, and
agricultural drought events across India. In case of meteorological drought, the historical
background and development of the drought index is discussed in Chapter 3. Likewise, the
present chapter presents a brief background related to the hydrological, and agricultural

drought indices under non-stationary approach.

As discussed in the earlier chapters, the global climate has changes remarkably over the last

century. Therefore, the hydrological cycle and its available water resources are greatly varied
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under the changing climate scenarios. For instance, increase in the evapotranspiration without
enhancement of precipitation has heightened the intensity and frequency of hydrological
drought (A. Dai, 2013; Sheffield et al., 2012). McCabe and Wolock (2011) concluded that the
variability of streamflow is highly sensitive to the precipitation after examining the
independent effects of temperature and precipitation in the United states. In Alpine river,
climate change is responsible for 85% decrease in the streamflow (Saidi et al., 2018).
Similarly, several studies argued that the streamflow is modulated by the climatic variability
over Indian river basins (Islam et al., 2012; Mishra and Lilhare, 2016; Panda et al., 2013; Setti
et al., 2020). In this sense, researchers have attempted to link the variability of climate
change to hydrological drought to develop robust drought index (Jehanzaib et al., 2020; Wang
et al., 2022; Zou et al., 2018). However, there is a dearth in studying the non-stationary

hydrological drought in India.

In addition to the meteorological and hydrological drought events, the variability in the
climate affects the agricultural drought. The soil moisture variability can be considered in
order to develop and evaluate the agricultural drought (Ajaz et al., 2019; Fang et al., 2021;
Zhou et al., 2021). In the absence of irrigation, soil moisture drought affects crop production
and food security in India (Mishra et al., 2017, 2014a). Therefore, the agricultural drought
analysis under non-stationary approach is necessary to devise sustainable drought
management plans. Till date, there is no study that incorporates the non-stationarity to
understand the agricultural drought. Thus, the present chapter analyses the non-stationarity in
meteorological, hydrological, and agricultural droughts across India.

With increase in global population, the direct and indirect consumption of water also
increases. It brings more challenges to deal with water security associated with different
sectors such as irrigation, infrastructure, mining etc. Therefore, when the available water fails
to meet the water demand of a specific area, the socio-economic condition is significantly
affected over that area. This situation can be named as socio-economic drought. Therefore, in
this study, for the analysis of socio-economic drought occurrences, the gridded water
consumption data is collected for six different sectors i.e., domestic, electricity, irrigation,
livestock, manufacturing, mining during 1970-2010. It should be noted that the

meteorological, hydrological, and agricultural droughts are analysed during 1982 to 2015.
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4.2 Data used

4.2.1 Runoff, soil moisture, and water consumption datasets

In the present study, the grid-wise analysis is carried out at a resolution of 0.5° Lat x 0.5° Lon
over India that includes 1170 grid points (Figure 4.1). The annual precipitation variability
over different states in India ranges between 250mm and 3000mm. Similarly, the average
temperature during winter is around 10°-25°C and during summer is around 32°-40°C. The
meteorological datasets used in the present study are discussed in Chapter 3. In addition to the
mentioned meteorological data, soil temperature dataset is obtained from NCEP reanalysis
data.

It is well understood that the different datasets with different uncertainties would result in
different outcomes. In order to incorporate the variability among the datasets, the runoff
datasets are obtained from five different sources (ERA5, FLDAS, GLDAS, MERRA-2, and
NCEP). Another important reason for choosing the datasets is due to inconsistencies in the
continuous available observed streamflow data and difficulty in obtaining the streamflow data
over the river basins that share the international boundary with neighbouring countries. The
above-said runoff datasets are obtained at 0.25° Lat x 0.25° Lon for ERA5 (for abbreviation
refer to Chapter 1) (Hersbach et al., 2020), 0.1° Lat x 0.1° Lon for FLDAS (McNally, 2018),
1° Lat x 1° Lon for GLDAS (Rodell et al., 2004), 0.5° Lat x 0.65° Lon for MERRA-2 (Gelaro
et al., 2017), and 1.915° Lat x 1.875° Lon for NCEP (Kanamitsu et al., 2002). Similarly, the
soil moisture datasets are obtained from six diverse sources (CPC, ERA5, FLDAS, GLDAS,
MERRA-2, and NCEP). The CPC soil moisture dataset is obtained at a grid resolution of 0.5°
Lat x 0.5° Lon (Fan and van den Dool, 2004). The reliability of above mentioned runoff and
soil moisture datasets on drought parameters are verified by various researchers across the
globe (Bai et al., 2016; N. Chen et al., 2020; McNally et al., 2017; Spennemann et al., 2015;
Zaussinger et al., 2018) It should be noted that the runoff datasets from all the sources are
extracted at a common resolution of 0.5° Lat x 0.5° Lon to maintain the consistency with the
meteorological datasets. The gridded water consumption data is collected for six different
sectors i.e., domestic, electricity, irrigation, livestock, manufacturing, mining during 1970-

2010. The links to the datasets are provided at the end of the present chapter.
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Figure 4.1: (a) represents the gridded locations at a resolution of 0.5° x 0.5° over India; (b)

shows different provinces/states in India

Table 4.1: Details of runoff and soil moisture datasets

Soil Spatial Temporal Source
moisture and | Resolution | Resolution
Runoff
Datasets
ERAS 0.25°x Monthly | https://cds.climate.copernicus.eu/cdsapp#!/dataset/rea
0.25° nalysis-era5-land-monthly-means?tab=overview

FLDAS 0.1°x 0.1° | Monthly | https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAHO01_
C_GL_M_001/summary

GLDAS 0.1°x 0.1° | Monthly | https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10
_M_2.0/summary?keywords=GLDAS

60




MERRAZ2 0.5°x Monthly | https://disc.gsfc.nasa.gov/datasetssy M2TMNXLND _5.
0.65° 12.4/summary?keywords=MERRA-2
NCEP 1.915° x Monthly | https://psl.noaa.gov/data/gridded/data.ncep.reanalysis
1.875° 2.html
CPC 0.5°x 0.5° | Monthly | https://www.cpc.ncep.noaa.gov/products/Soilmst_Mo
nitoring/US/Soilmst/Soilmst.shtml

4.3 Methodology

4.3.1 Computation of different non-stationary drought indices

As the indicator of meteorological drought, Standardized Precipitation Evapotranspiration
Index (SPEI) is used that represents the simplified form of the water balance using
precipitation minus potential evapotranspiration (PET) value at each month (Vicente-Serrano
et al., 2010). The present study uses Standardized Runoff Index (SRI) to represent the
hydrological drought. Similarly, Standardized Soil moisture Index (SSI) is adopted to
represent the agricultural drought. The parametric distribution namely Log-logistic is fitted to
the precipitation minus PET to estimate SPEI at all the grid points. However, in case of runoff
and soil moisture datasets different types of distributions (Gamma, Exponential, Logistic,
Lognormal, Normal, and Weibull) are examined and the best suitable distribution is
considered (according to Akaike Information Criteria (AIC) value) at each grid point to
compute SRI. The cumulative distribution functions obtained by fitting the selected
distributions are mapped onto the Normal distribution using the inverse of cumulative
standard normal Gaussian function to develop dimensionless index (Mishra et al., 2016). In
this procedure, the parameter of the selected distribution is not conditioned with external
factors (also known as covariate) and can be called as stationary approach. The SPEI and SRI
indices can be evaluated at multiple accumulation period in order to provide the drought
condition at seasonal (1-3 month), annual (12-month), or longer time-scales (Bhardwaj et al.,
2020). In the present study, 1-month scale of SPEI and SRI is considered to analyse the
drought propagation as the larger time scale might overlook the drought propagation at short

time scale.

In order to analyse the influence of large-scale climatic indices on the meteorological drought,

non-stationary analysis is carried out. Here, the framework proposed by Das et al. (2020b) and

Chapter 3 is used to perform the non-stationary modelling of SPEI drought index. Initially,

the large-scale climatic indices are arranged in a lagged fashion from no lag to 12-lag and the
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suitable lag is chosen based on the Kendall correlation analysis (Kendall, 1955) between PR
minus PET series and arranged large-scale climatic indices at a significance level of 5% .
Next, the climatic indices with selected lag are considered as covariates to develop the non-
stationary model. This analysis is performed over all the grid points individually. It should be
noted that the non-stationary modelling is performed by introducing the covariates in the
estimation of location parameter of the selected distribution in case of SPEI, SRI and SSI

drought indices.

However, in case of SRI index, only the meteorological variables (precipitation, PET, relative
humidity, and wind speed) are considered as covariates for non-stationary modelling. In case
of agricultural drought index, the meteorological variables such as precipitation, air
temperature, and soil temperature are considered as covariates. In case of SRI, fifteen
(tabulated in Table 4.1) different models and for SSI seven (tabulated in Table 4.2) models are
designed by considering the various combinations of meteorological variables and the
optimum model is selected based on the lowest AIC value among the models. Similarly, the
selection between stationary and non-stationary models is performed using the AIC value.
The entire analysis is carried out using the Generalized Additive Model in Location, Scale and
Shape (GAMLSS) package in R platform developed by Rigby and Stasinopoulos (2005).

Table 4.2: Different combination of covariates in the location parameter of the selected model

for the development of the non-stationary SRI

Model Precipitation | PET Relative humidity | Wind speed
Model 1 v - - -
Model 2 - v - -
Model 3 - - v -
Model 4 - - - v
Model 5 v v - -
Model 6 v - v -
Model 7 v - - v
Model 8 - 4 v -
Model 9 - v - V4
Model 10 - - v v
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Model 11 v v v -
Model 12 - v v v
Model 13 v - v v
Model 14 v v - v
Model 15 v v v v

Table 4.3: Different combination of covariates in the location parameter of the selected model
for the development of the non-stationary SSI

Model Precipitation | Air temperature | Soil temperature
Model 1 4 - -
Model 2 - v -
Model 3 - - v
Model 4 4 v -
Model 5 4 - v
Model 6 - v v
Model 7 4 v v

4.3.2 Computation of socio-economic drought index

The graphical representation to evaluate the socio-economic drought is presented in Figure
4.2. Initially, the threshold value of water consumption is determined as the maximum amount
of water consumption among six different sectors grid wise. Then, the water scarcity
condition is identified when the available runoff of a grid point is not sufficient to meet the
threshold value of water consumption at that grid point. This is computed by differencing the
threshold value of water consumption from the runoff value for different sources. The
negative value indicates the socio-economic drought condition whereas the positive value
indicates the sufficient availability of water to meet the water demand from each sector. A
socio-economic drought event initiates at the point when the difference between runoff and
threshold water demand is negative and continues up to the condition when runoff is more
than the threshold value of water demand. Subsequently, different drought properties i.e.,
drought severity, duration and no of droughts are also calculated. Drought severity is in the
form of water scarcity amount which is computed as the cumulative summation of required
water during a drought event, whereas the drought duration is the number of months under

socio-economic drought occurrences.
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Figure 4.2: Graphical representation of adopted methodology to identify the socio-economic

drought conditions

4.4 Results

4.4.1 Drought properties

From the analysis it is found that the non-stationary analysis outperforms the stationary
analysis at each grid point for meteorological (SPEI), hydrological (SRI) and agricultural
(SSI) drought conditions. For instance, the comparison between stationary and non-stationary
analysis is provided based on the AIC values for different indices (Table 4.4). For the brevity,
grid locations from different parts of India are chosen. The meteorological drought properties
are presented in Figure 4.3. Mostly, the high values of drought duration and severity are
observed over the southern parts of India (e.g., Karnataka (KA), Kerala (KL), and Tamil Nadu
(TN)). The regions with high value of drought duration show high value of severity.
However, the number of drought events are higher mostly over Madhya Pradesh (MP) in
central India, parts of Maharashtra (MH), Gujarat (GJ) and Rajasthan (RJ) in western parts of
India, Uttar Pradesh (UP), Uttarakhand (UK) in northern parts, and Chhattisgarh (CG), and
parts of Odisha (OD) in eastern parts of India.
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Table 4.4: The computed AIC values for the covariate (AICw) and without (AICw/0)

covariate for different drought indices

Grid SPEI SRI SSI
AlCwio AICy AlCwio | AlCw AlCwio | AICw
76.25, 33.75 (North) 9037.0 8870.2 4545 -897.2 ] 1910.0 | 1572.0
71.25,23.25 (West) 9383.6 9119.7 -254.7 | -1136.1 | 2578.2 | 2209.6
91.75,25.75 (East) 10399.5 | 10033.8 |1787.7 |1059.0 |2715.4 | 2258.7
77.75,10.75 (South) 9000.8 8647.3 -1134.0 | -2000.9 | 2774.9 | 2416.8
76.75,22.75 (Central) | 10034.8 | 9547.8 -145.1 | -1130.6 | 3085.6 | 2543.4
82.25,20.75 (Central) | 9998.6 9451.6 321.2 -908.7 | 3234.4 | 2760.4
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Figure 4.3: Different drought properties using SPEI drought index

About 94% of total area comes under the drought duration ranging between 6 and 20 months
with the highest value of 57% in the case of drought duration between 6 and 10 months.

Similarly, the severity magnitude of 3 to 9 occupies about 91% of the total area with highest
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(72%) in case of magnitude from 3 to 6. During the study period, the number of drought

events between 10 and 35 is noticed over 97% of the total area.

The duration, severity, and frequency of hydrological drought events discerned from different
datasets are presented in Figure 4.4, Figure 4.5, and Figure 4.6, respectively during 1982-
2015. From Figure 4.4, it can be noticed that maximum percentage of area i.e., 36% in ERA5,
43% in FLDAS, and 40% in NCEP is observed for the drought duration ranging from 10
months to 15 months. However, in the case of GLDAS and MERRAZ2, the maximum
percentage of area (i.e., 79% and 68%, respectively) is noticed for 5 months to 10 months
drought duration. Considering the SRI values from all the models, it is observed that more
than 85% of the total area has come under the drought duration of 5 months to 20 months.
The high value of drought duration is observed over small parts in northern region for SRI
values from ERA5, FLDAS, NCEP and southern region from NCEP.

In case of severity value ranging from 5 to 10 (Figure 4.5), the highest percentage of area is
computed as 53% in ERA5, 75% in GLDAS, 71% in MERRAZ2, and 52% in NCEP. The
regions under the high values of drought severity are similar as drought duration. As
compared to drought duration and severity, the intermodal variability is high in case of
number of drought events as presented in Figure 4.6. It can be observed from the figure that
more than 40% of the total area is under the influence of high no of drought event i.e.,
between 25 and 35 in the case of GLDAS and MERRAZ2. However, the spatial distribution of
the drought event is different between these models. For instance, the high drought events are
zoned over most parts in India except some parts in northern, northwest, and southern regions
in case of GLDAS. Conversely, mostly the western parts of the country are affected by the

large number of drought events as observed in MERRAZ2.

The hydrological drought properties obtained from the ensemble average of all the runoff
datasets (Figure 4.7) reveal that the higher value of duration and severity is observed mostly
over the southern and northern parts of India. Conversely, the low magnitude of duration and
severity is noticed over the western and northeast parts of India. The number. of drought

events are between 20 and 25 during the study period over most of the regions in India.
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Figure 4.4: Drought duration (in months) computed from different runoff datasets
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Figure 4.5: Drought severity computed from different runoff datasets
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The duration, severity, and frequency of agricultural drought events obtained from different
soil moisture datasets are presented in Figure 4.8, Figure 4.9, and Figure 4.10, respectively. It
can be noted from Figure 4.8 that the drought duration varies from 11 to 15 months for ERADS,
FLDAS, GLDAS, and MERRAZ2 over 60%, 50%, 48%, and 56% of the total area. However,
in the cases of CPC and NCEP, the ranges of drought duration vary from 6 to 10 months over
43% and 59% of total area. Over more than 95% of the total area of India, the agricultural
drought duration ranges between 6 and 20 months based on the threshold value (i.e., zero)
chosen in the present study. Figure 4.9 describes the spatial variability of agricultural drought
magnitude/severity across India during 1982-2015. It is observed that 70% to 93% of total
area come under the severity range from 5.1 to 10 while considering all the soil moisture
datasets. Unlike the drought duration, the spatial distribution of drought severity is uniform
across the India for all the data sources. The drought event numbers are plotted in Figure 4.10.
Though there is significant variability in the drought occurrences across different data
sources, the high occurrence of agricultural drought is noticed over the western parts of India
in case of all the datasets. The drought occurrence range between 20 to 25 is observed over
30% of area in CPC, 48% in ERA5, 42% in FLDAS, 45% in GLDAS, 36% in MERRA-2 and
47% in NCEP dataset.
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Figure 4.8: Drought duration (in months) computed from different soil moisture datasets
69



70 75 80 85
NCEP

0 5 10 15 20 25 30 35 40 >40

T T T T A‘ll
75 80 85 9

20 25 30 35
| s .

15
.

10
.

70 75 80 85 90 95 70 75 8 8 90 95 70 75 80 85 90 95
No of Drought Events

T —

0 5 10 15 20 25 30 35 40

Figure 4.10: Number of drought event computed from different soil moisture datasets
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The ensemble average of all the datasets for different agricultural drought properties is

presented in Figure 4.11. It can be noted that high drought duration and severity are observed

over the northern parts and some patches of northeast and northwest regions of India. About

69% of the total area comes under the drought duration ranging from 11 to 15 months.

Similarly, the severity values from 6.1 to 9 are noticed over 77% of the total area. The

ensemble average of number of drought events reveals that the agricultural drought

occurrence along the west coast and some parts in the central India is high (i.e., more than

twenty-five occurrences during the study period). Whereas the number of drought events

ranges between 21 to 25 are evident over 61% of the total area.
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Figure 4.11: Different agricultural drought properties obtained from the ensemble mean of six

different soil moisture datasets during 1982-2015

71



Different drought properties related to the socio-economic drought are computed for various
runoff datasets. The duration, severity (or water shortage in this case), and frequency of socio-
economic drought events obtained from different runoff datasets are presented in Figure 4.12,
Figure 4.13, and Figure 4.14, respectively. It can be noted from Figure 4.12 that the drought
duration up to 20 months is observed for ERAS5, FLDAS, MEERA-2 and NCEP over about
31% of the total area. However, in case of GLDAS, the percentage of area is about 24%. For
the duration between 200 to 350 months, the percentage of area is computed as 34%, 28%,
52%, 26% and 24% for ERA5, FLDAS, GLDAS, MEERA-2 and NCEP, respectively. The
spatial variability of socio-economic drought duration is found to be similar for most of the
runoff datasets. The severity (Figure 4.13) in terms of water shortage varies up to 3 meter
over 71%, 75%, 61%, 75% and 78% of area for ERA5, FLDAS, GLDAS, MEERA-2 and
NCEP, respectively. The drought event numbers are plotted in Figure 4.14. It is found that
59%, 53%, 69%, 51%, and 58% of total area is covered in case of the drought occurrences up
to 10 for ERA5, FLDAS, GLDAS, MEERA-2 and NCEP, respectively.
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Figure 4.12: Socio-economic drought duration determined using different runoff datasets
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Figure 4.14: Number of socio-economic drought events determined using different runoff
datasets
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The ensemble average of all the datasets of different socio-economic properties is presented in Figure
4.15. It can be noted that 50% of the total area is under the drought duration between 100 and 350
months. Most of the regions such as Rajasthan, Punjab, Haryana, Gujarat, some part of Maharashtra,
Tamil Nadu, some portion of Andhra Pradesh and Telangana suffer from longer drought duration
ranging from 90 to 350 months. Furthermore, in case of drought severity, around 0 to 3m of water
scarcity occurs in 71% of total area. The highest water scarcity is observed over most portions of
Punjab and Haryana.
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Figure 4.15: Different socio-economic drought properties obtained from the ensemble mean
of different runoff datasets during 1982-2010
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4.5 Discussion and summary

The research reported in this chapter attempts to develop non-stationary meteorological,
hydrological, and agricultural drought indices incorporating external large-scale climatic
oscillations and regional hydro-meteorological variabilities as covariates in estimating the
location parameter of the suitable distributions. As entire India is considered for the study, it
is cumbersome to set up a hydrological model for the entire India due to the significant
alterations in the streamflow as a result of anthropogenic activities (e.g., influence of dam)
and inconsistencies in the continuous available observed streamflow data. Thus, available
gridded runoff datasets at a resolution of 0.5° Lat x 0.5° Lon is considered. Five different
gridded runoff datasets are considered to encompass the associated uncertainties with the
datasets. Similarly, six soil moisture datasets are also collected. In addition, the drought
characteristics extracted from ensemble mean of all the datasets are analysed. To provide a
unified outcome from all the runoff and soil moisture datasets, the ensemble mean is
considered. In other words, the average prediction performance of all contributing members in
the ensemble is chosen to extract the important findings from the analysis. Combining the
multiple datasets in order to solve one problem and focusing on their consistency may obtain
the results closer to the truth (N. Chen et al., 2020).

In the changing environmental condition, the lag structure of large-scale climate indices
provide vital information about meteorological drought management (Li et al., 2015).
Similarly, the regional climatological variability influences the hydrological drought
characteristics. The precipitation variability as a leading factor of meteorological drought is
modulated by the large-scale climate indices (A.K. Mishra and Singh, 2010). Conversely, the
hydrological drought is linked with climate anomalies and human interventions (Zhang et al.,
2012). The agricultural productivity is sensitive to the short- and long-term climate change
and under the warming climate scenario it is challenging to identify the agricultural droughts
due to the complex interaction between precipitation and temperature (Mishra et al., 2014a).
Therefore, inclusion of regional precipitation and temperature variability in developing the
agricultural drought index enables to accommodate the interaction between the precipitation
and temperature. Thus, present study develops the non-stationary meteorological,
hydrological and agricultural drought indices incorporating the large-scale climate indices and
regional hydro-meteorological variability. In line with the past studies (Cheng and

Aghakouchak, 2014; J. Das et al., 2020a; Jehanzaib et al., 2021; Vasiliades et al., 2015), it is
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observed that the non-stationary analysis outperforms the stationary analysis. The inclusion of
non-stationarity helps in capturing the evolution of drought events under the changing
environment condition and provides valuable information about drought management (Li et
al., 2015).

The variability in meteorological and hydrological components influence the drought
properties (Nufiez et al., 2014; Zarch et al., 2015b). It is observed that with increase in
drought duration, the drought severity has increased under meteorological and hydrological
drought indices. The present findings are in line with the previous studies carried out over
different parts of the world (Adhyani et al., 2017; Cavus and Aksoy, 2020; Satish Kumar et
al., 2021; Spinoni et al., 2014). In case of meteorological drought, it is observed that the
drought event with short duration and low severity has high frequency, while long duration
and high severity has low frequency characteristics. The similar observations are noticed by
Ge et al. (2016) while analysing the spatiotemporal pattern of droughts in the continental
United States. The southern parts of India experience the high magnitude of drought duration
and severity. In line with the present outcomes, Mallya et al. (2015) and Mishra et al. (2021)
also identified the severe drought conditions over south India. Mishra et al. (2021) attributed
it to the deficit northeast monsoonal rainfall over consecutive years that contributes about
40% of total rainfall in southern India. In addition, Jain et al. (2019) advocated that the
dryness during the monsoon period as a result of negative IOD and warm SST bring the
exceptional drought condition over south India. In general, the meteorological drought
properties are more severe than hydrological drought properties. Like meteorological drought,
the agricultural drought events with lower duration and severity are more in numbers and vice
versa. In case of socio-economic drought, comparing the number of drought events and
drought duration, it is observed that the regions having high drought duration are associated
with lesser number of drought events. It can be concluded that in those portions, a single

drought event takes more time to recover from the water scarcity condition.

Summarising the findings, it is found that the non-stationary model outperforms the stationary
analysis for meteorological, hydrological and agricultural drought indices. It is found that the
meteorological drought properties (drought events and duration) are more severe as compared
to the hydrological drought. The large duration and more severe hydrological droughts are
observed mostly over southern and northern parts of India. The high agricultural drought

duration and severity are observed over the northern parts and some patches of northeast and
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northwest regions of India. About 69% of the total area comes under the drought duration
ranging from 11 to 15 months. Similarly, the severity values from 6.1 to 9 are noticed over
77% of the total area. The high value of socio-economic drought severity is noticed over
Punjab and Haryana. With this understanding, the next chapter deals with the investigation of
drought propagation from meteorological to hydrological and meteorological to agricultural

incorporating the non-stationary drought indices developed in the present study.
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Chapter 5

Drought propagation under the
Influence of external covariates

5.1 Introduction

Droughts are different from other natural disasters as the development is usually slow and
have significant impact on agriculture (Gupta et al., 2020; Lobell et al., 2020), water resources
(AghaKouchak et al., 2015; Pokhrel et al., 2021; Qiu et al., 2021), ecosystem (X. Feng et al.,
2021; Fu et al., 2021; Y. Zhang et al., 2021), and economic sectors (Frame et al., 2020;
Naumann et al., 2021). In addition, the recovery period after a drought event can be lengthy
and affects the ecosystem resilience and stability (L. Liu et al., 2019). Under the background
of climate change, the frequency and intensity of drought events are expected to increase
(Spinoni et al., 2018). With increasing number of drought events, regions with long recovery
time are likely to suffer a new drought event before full recovery. Moreover, the industry and

agricultural sectors have high demand for water resources with increasing rate of human
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population and development (J. Das et al., 2020c). Therefore, it is necessary to understand the
drought occurrence, and mechanism at regional scale to improve its monitoring, management,

and prediction.

In the context of causative mechanisms, the deficit in the precipitation and increasing
evaporative demand propagate through the hydrologic cycle and subsequently developing into
a hydrological drought (Han et al., 2019; Hellwig et al., 2020; Van Loon, 2015). In other
words, from beginning to the end, drought transition is encapsulated within the “Atmosphere-
Hydrology-Soil-Vegetation” system (N. Chen et al., 2020). This transition from one form to
another form of drought is known as drought propagation (Apurv et al., 2017; Haslinger et al.,
2014). The understanding of drought propagation provides valuable information to improve
the accuracy of drought analysis and prediction. Due to the dual effect of climate change and
population growth, it is difficult to analyse the spatio-temporal evolution of drought.
However, under the limited or no anthropogenic interventions, drought propagation is
primarily controlled by the climatic factors and biophysical characteristics of the study area
(Van Lanen et al., 2013; Van Loon, 2015).

In recent times, studies have been performed to analyse the drought propagation mechanisms
and their controlling factors (Apurv and Cai, 2020; J. Wu et al., 2021). The drought
propagation studies have been carried out across the globe (Barker et al., 2016; Bevacqua et
al., 2021; Bhardwaj et al., 2020; Botai et al., 2019; Jehanzaib et al., 2020; Tijdeman et al.,
2018; Y. Xu et al., 2019). It is found that the propagation time from meteorological to
hydrological drought varies with respect to the study area. For instance, Bhardwaj et al.
(2020) found four to five months for the majority of locations in India and Xu et al. (2019)
noticed that the time of propagation in grassland and forest dominated subbasins varies
between one to five months and four to seven months in northern China, respectively. In
addition, the factors (e.g., temperature, catchment characteristics, climate type, climate
change) influencing the drought propagation are studied globally (Gevaert et al., 2018; Pefia-
Gallardo et al., 2019; Van Loon and Laaha, 2015). The above-said studies did not include the
large-scale climate indices and regional hydro-meteorological variability in developing the
drought indices which would affect the drought propagation. Therefore, there is a dearth in
understanding the influence of large-scale climate indices, and regional hydro-meteorological

variables in modulating the drought events and subsequently the propagation.

79



The agricultural sector in India is the mainstay of country’s economy as it contributes to the
large share of the Gross Domestic Product (GDP), provides employment to the large portion
of population, and responsible for overall development in other sectors (J. Das et al., 2020c).
India has great variations in the climate zone with different terrains and elevations. In India,
about 56% of the net cultivated area is rainfed accounting 44% of food production. The future
climate change analysis reveals that the drought risk in India is likely to increase under
different climate change scenarios (Bisht et al., 2019; Gupta and Jain, 2018). Thus, it is
crucial to understand the mechanisms of drought propagation in India. Recently, scholars
have started investigating the drought propagation from meteorological to agricultural drought
(N. Chen et al., 2020; Ding et al., 2021a; Du et al., 2021; Wang et al., 2021; Zhu et al., 2021).
However, there is a lack of study regarding the propagation mechanism from meteorological

to agricultural drought over the agrarian country like India.

With this understanding, this chapter presents the drought propagation study that includes
from meteorological to hydrological and meteorological to agricultural drought conditions
over India. From Chapter 4, it is found that the non-stationary drought index enables to
incorporate the large-scale climatic oscillations and regional variability. In addition, the non-
stationary drought analysis outperforms the stationary analysis. Thus, meteorological,
hydrological, and agricultural drought indices used in the present study are taken from
Chapter 4. The important research questions addressed in this study are as follows: (i) What
is the time of propagation from meteorological to hydrological and agricultural drought
according to the drought initiation (As), peak (Ap), and termination (Ae); (ii) How the
meteorological, hydrological, and agricultural drought development and recovery period
varies over India; and (iii) What is the spatial variability of speed of hydrological, and
agricultural drought development and recovery across India? The outcomes will provide a
basis for the study of different droughts at regional scale and are useful to inform future early

warning and monitoring systems.
5.2 Methodology

It should be noted that the details of the hydro-meteorological datasets and large-scale
climatic oscillations used to develop the drought indices are presented in Chapter 3 and
Chapter 4. In addition, Chapter 4 describes the implementation of non-stationarity in the

computation of different drought indices. The developed indices are used here to understand
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the influence of external factors in drought propagation study. In this chapter, the concept of
drought propagation is introduced. Here, drought propagation from meteorological to
hydrological and agricultural drought is presented. In addition, the drought development
period (DDP) and drought recovery period (DRP) are analysed. The rate of change of
cumulative drought deficit for development and recovery phases are computed to evaluate the
Instantaneous Development Speed (IDS) and Instantaneous Recovery Speed (IRS),
respectively. The methodological development is similar for both the cases. Therefore, the
entire methodology is explained with respect to the propagation from meteorological to
hydrological drought. The graphical representation of drought propagation is presented in
Figure 5.1.

Drought
Termination

Figure 5.1: Graphical abstract representing different components of drought propagation

It can be seen from the figure that the drought indices developed using the non-stationary
approach is used to evaluate the drought propagation. The inter and intra propagation of
drought is known as drought propagation and internal propagation, respectively. The period
from initiation to peak is known as DDP and period from peak to termination is termed as
DRP. The drought propagation is studied for three different cases i.e., for As, Ap and Ae. It
should be noted that the entire analysis is carried out for all the grid points over India (refer to
Figure 4.1 in Chapter 4).



5.2.1 Propagation of meteorological to hydrological drought

The propagation time is the period during which the deficit in the meteorological variable
reflects as a deficit in the hydrological variable (Huang et al., 2017). In the present study, the
propagation time from SPEI to SRI is estimated based on the three different ways i.e.,
difference between the initiation to initiation, peak to peak, and termination to termination of

meteorological and hydrological drought spell (Figure 5.2).
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Figure 5.2: Graphical presentation of different drought propagation criteria (initiation to

initiation, peak to peak, and termination to termination) used in the present study

The threshold for considering an event as drought is set to zero (Jingwen Wu et al., 2018)
below which all the values are considered as drought condition. In this study, the drought
spell is defined when the SPEI and SRI values are below zero for more than and equal to three
months, consecutively. In the same way the initiation of a meteorological (hydrological)
drought event is defined if the 1-month SPEI (SRI) is below the threshold for three or more
consecutive months. Likewise, the termination of meteorological (hydrological) drought event
is considered when the 1-month SPEI (SRI) is above the threshold for three or more
consecutive months. Here, an extended period of the meteorological drought that starts twelve
months prior to the initiation of hydrological drought is considered to account the lag that
might exist between meteorological and hydrological drought. Subsequently, the difference

between the initiation to initiation (As), peak to peak (Ap) and termination to termination (Ae)
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of hydrological and the nearest meteorological drought event for each drought spell is
computed to identify the accumulation period of meteorological drought that translates to
hydrological drought using the 1-month SPEI and SRI. Lastly, the mean of the propagation
time at different drought spells is computed for three different conditions at each grid point.
Due to high seasonality in the precipitation, the correlation-based analysis is not suitable over
Indian region in order to identify the drought propagation (Bhardwaj et al., 2020). It is worth
mentioning that the drought propagation is computed for the SRI values obtained from
different runoff data sources. It should be noted that the same methodology is applied for the
propagation from meteorological to agricultural drought. In case of agricultural drought, SSI
IS used.

5.2.2 Hydrologic drought development and recovery

In this section, an important aspect of hydrological drought propagation is analysed that
focuses on the time required for drought development and drought recovery (Figure 5.3). In
other words, it defines the internal processes of drought propagation that occurs between the
development and recovery of hydrological drought (Bonsal et al., 2011; Thomas et al., 2014).
In this study, the methodology proposed by Wu et al. (2018) is used to evaluate the
propagation speeds using the variable motion relationship which incorporates the non-uniform
rates of internal drought propagation. The development phase (DP) of drought is defined as
the time difference between the initiation and peak point (As-p) and the recovery phase (RP)
is the time difference between the peak and termination point (Ap-€). The rate of change of
SRI from initiation (peak) to peak (termination) can be characterized by development speed
(recovery speed) (Parry et al., 2016a, 2016b). Here, rate of change of cumulative drought
deficit for development and recovery phases are computed to evaluate the Instantaneous

Development Speed (IDS) and Instantaneous Recovery Speed (IRS), respectively.

The Total Variability in Development Period (TVDP) and Total Variability in Recovery
Period (TVRP) are computed as the cumulative of SRI values during the development phase
and recovery phase, respectively for each identified drought spell. To compute the IDS and
IRS, the development and recovery phases are divided into intervals (i=1, 2... n-1, n) as
presented in Egs. 5.1 and 5.2. Subsequently, the average of IDS and IRS is estimated with the
help of Egs. 5.3 to 5.4. It should be noted that the temporary drought recovery events in the
development phase and drought development in the recovery phase are not included.
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Therefore, the IDS (or IRS) at at t; using the ATVDP; (or ATVRP;), which is equal to
TVDP; — TVDP;_; (or TVRP; — TVRP;_,), can be computed as follows:

ATVDP

IDS(t) = (i=12,...,n) (5.1)

IRs(t) = 2TVRA

(i=12,...,n) (5.2)

The average of IDS (or IRS) for a certain period of drought event can be computed as follows:

tn
> ATVDP
IDS = 2——(I=12,...,n) (5.3)

IRS=—(i=12,....,n) (5.4)
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Figure 5.3: Graphical presentation of drought event, drought spell, development period (DP),

and recovery period (RP)

84



5.3 Results

5.3.1 Drought development and recovery period

The duration of DP and RP is known as drought development period (DDP) and drought
recovery period (DRP), respectively. The average DDP and DRP of all the runoff datasets are
presented in Figure 5.4 and Figure 5.5, respectively. The inter-model variability of DDP and
DREP is significantly large among the models. For instance, MEERAZ2 indicates about 65% of
the total area with DDP below 3 months. Whereas GLDAS shows about 64% of total area
having DDP between 3.1 to 6 months. Similarly, the percentage area varies from 40% to 71%
for DRP between 3.1 to 6 months among the models. The spatial variability is similar in the
cases of ERA5, FLDAS, and NCEP for the corresponding high values of DDP and DRP.
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Figure 5.4: Average drought development period computed from different runoff datasets
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Figure 5.5: Average drought recovery period computed from different runoff datasets

The agricultural drought development period (DDP) and drought recovery period (DRP) are
presented in Figure 5.6 and Figure 5.7, respectively. From Figure 5.6, it can be noted that
there is spatial variability among different datasets regarding DDP. However, the range of
DDP is 3.1 to 9 months over more than 80% of the total area as computed from the SSI index
of all models. The higher DDP is observed over the northern parts of India in the cases of
CPC, FLDAS, and GLDAS datasets. Whereas high DDP over north-western parts of India is
noticed for CPC, ERA5, and MERRA-2 models’ datasets. It is observed from Figure 5.7 that
in case of DRP value ranging from 3.1 to 6 months, the highest percentage of area is
computed as 50% in CPC, 63% in ERAS5, 65% in FLDAS, 66% in GLDAS, 52% in MERRA-
2, and 76% in NCEP. The grids with high value of DDP are also associated with high value of
DRP.
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Figure 5.6: Average drought development period computed from different soil moisture

datasets
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Figure 5.7: Average drought recovery period computed from different soil moisture datasets
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Likewise, it is found that locations with the high value (greater than 10 months) of DDP are
also having high value of DRP for meteorological drought index (Figure 5.8). These regions
are mostly located over southern and northern parts of India. It is computed that the highest
areal coverage of DDP and DRP of about 59% and 46% of the total area respectively for the
time period of 3.1 to 6 months. The high DDP and DRP is noticed over some parts of
Karnataka (KA), Tamilnadu (TN), Kerala (KL), and Ladakh (LA). The ensemble mean of
DDP and DRP incorporating all runoff datasets is presented in Figure 5.9. It can be noted
from the figure that the DDP and DRP of 3.1 to 6 months is observed over most of the areas
i.e., about 78% in DDP and 67% in DRP. In addition, only 1% of the area with DDP and DRP
more than 12 months is noticed during the study period. Figure 5.10 presents the ensemble
mean of DDP and DRP considering all the soil moisture datasets. The DDP range from 3.1 to
6 months is observed over about 65% of total area. Similarly, the range between 3.1 to 6
months is evaluated over 84% of the total area. The regions with high DDP are having high
DRP across India.
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Figure 5.8: The DDP and DRP of meteorological drought using IMD data over India during
1982-2015
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Figure 5.9: The ensemble mean DDP and DRP of hydrological drought over India during
1982-2015
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Figure 5.10: The ensemble mean DDP and DRP of agricultural drought over India during
1982-2015

5.3.2 Instantaneous drought development and recovery speed

Next, the internal propagation of droughts is examined using the concept of IDS and IRS.

Here, the rate of internal drought propagation is characterised by the instantaneous
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propagation speed. It is worth noting that high value of IDS demands quick and efficient
drought management practices. Similarly, the low value of IDS suggests that there is more
time to prepare against a developing drought. The understanding of development and recovery
rate of internal drought propagation enables water managers in proposing efficient water
management strategies. The IDS and IRS of hydrological drought computed using the five
different runoff datasets are depicted in Figure 5.11 and Figure 5.12, respectively. From
Figure 5.11, information is discerned on the highest percentage of area observed with the IDS
values between 0.40 and 0.60 per month for ERA5 (57%), GLDAS (56%), MEERA2 (48%),
and NCEP (49%) and between 0.20 and 0.40 per month for FLDAS (42%). However, all the
runoff datasets agree with the highest percentage of area for the IRS values from 0.40 to 0.60

per month (Figure 5.12).
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Figure 5.11: Average instantaneous development speed computed from different runoff
datasets during 1982-2015
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Figure 5.12: Average instantaneous recovery speed computed from different runoff datasets
during 1982-2015

The IDS and IRS of agricultural drought evaluated using six different datasets are presented
in Figure 5.13 and Figure 5.14, respectively. From Figure 5.13, it can be noted that the
percentage of area in range of 0.41 to 0.60 per month for IDS is more across all the models
(48% in CPC, 46% in ERA5, 57% in FLDAS, 54% in GLDAS, 46% in MEERA-2, and 70%
in NCEP). Moreover, the IDS range between 0.20 and 0.60 per month is noticed for more
than 80% of total area in all the datasets. The similar observation is made in case of IRS
(Figure 5.14). The highest percentage of area under IRS value from 0.41 to 0.60 is observed
in the cases of CPC, FLDAS, GLDAS and NCEP. However, in ERA5 and MEERA-2
datasets, the highest percentage of area is computed in the IRS range between 0.20 and 0.40
per month. The IDS and IRS of meteorological drought is presented in Figure 5.15 using the
IMD dataset. It can be noted that about 53% and 47% of the total area comes under the range

between 0.4 and 0.6 per month in the case of IDS and IRS, respectively.
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Figure 5.13: Average instantaneous development speed computed from different soil moisture

Figure 5.14: Average instantaneous recovery speed computed from different soil moisture
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The ensemble average of IDS and IRS for hydrological drought events is plotted in Figure
5.16. It is clear from the figure that most of the area in India has the IDS and IRS values
between 0.40 and 0.60 per month. In about 82% of total area the IDS and IRS values vary
between 0.40 and 0.60 per month. Interestingly, the high values (0.60 to 0.80 per month) of
IDS and IRS are observed mostly in the eastern and southern parts of India. Conversely, the
low values (0.20 to 0.40) of IDS and IRS are noticed mostly over western and northern parts

of India.

IDS IRS

Figure 5.15: The IDS and IRS computed for the meteorological drought events
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Figure 5.16: The ensemble mean IDS and IRS computed for the hydrological drought events
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The ensemble average of IDS and IRS for agricultural drought considering the six different
datasets are presented in Figure 5.17. It is evident from the figure that most of the area in
India has the IDS and IRS values between 0.20 and 0.60 per month. Precisely, the percentage
of total area in the cases of IDS and IRS is computed as 71% and 66% for the range between
0.41 and 0.6 per month, respectively. The low values of IDS and IRS are observed over
northern and northwest regions in India. However, high values are noticed over eastern and

northeast regions over India.

Avg IDS Avg IRS

Figure 5.17: The ensemble mean IDS and IRS computed for the agricultural drought events
5.3.2 Drought propagation time

In this section, the important findings related to drought propagation (meteorological to
hydrological and meteorological to agricultural) are presented. The drought propagation from
meteorological to hydrological with respect to As, Ap, and Ae using the five different runoff
datasets are presented in Figure 5.18, Figure 5.19, and Figure 5.20, respectively. In the case of
As, the drought propagation is computed as 6 to 8 months over most of area (55% to 64%)
considering all the runoff datasets. It is found that the drought propagation in As varies
between 4 to 8 months over more than 90% of the study area as observed in the cases of
ERA5, FLDAS, GLDAS, and MERRAZ2. Three out of five datasets are in line with the
outcomes that the highest percentage of area with propagation time corresponding to Ap is 9
to 12 months (Figure 5.19). Whereas the time to propagation is computed as 6 to 9 months
over 65% of area for MERRAZ2 dataset. It is observed that the propagation time within the
range of 6 to 15 months is observed over 81 to 97% of total area considering the outputs from

all the datasets. The propagation time of meteorological to hydrological drought determined
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using Ae is more when compared with As and Ap (Figure 5.20). It is noticed that the range of

the drought propagation time over 86 to 98% of total area varies from 10 to 25 months in the

case of Ae.
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Figure 5.18: Propagation time (in months) computed from different runoff datasets for As
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Figure 5.19: Propagation time (in months) computed from different runoff datasets for Ap
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Figure 5.20: Propagation time (in months) computed from different runoff datasets for Ae

Similarly, the drought propagation with respect to initiation, peak and termination using the
six different soil moisture datasets (i.e., agricultural drought) are presented in Figure 5.21,
Figure 5.22, and Figure 5.23, respectively. The drought propagation period is evaluated as 4
to 8 months (Figure 5.21) over more than 85% of the total area in the case of As considering
all the soil moisture datasets. More than 50% of the area comes under the propagation period
between 6 to 8 months for ERA5, FLDAS, GLDAS, and NCEP and 4 to 6 months for CPC,
and MERRA-2 datasets. In case of Ap (Figure 5.22), time to propagation is computed as 6 to
9 months over 80% of area for CPC, 9 to 12 months over 50%, 51%, 58%, and 57% for
ERADS, FLDAS, GLDAS, and NCEP, respectively. The propagation time of meteorological to
agricultural drought in Ae is more as compared to As and Ap (Figure 5.23). The propagation
period is computed as 15 to 20 months over 51 to 58% of total area in case of all the datasets
except for CPC. In case of CPC, it is noticed that 88% of the total area comes under the

propagation period from 5 to 10 months.
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Figure 5.21: Propagation time (in months) from different soil moisture datasets for As
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Figure 5.22: Propagation time (in months) from different soil moisture datasets for Ap
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Figure 5.23: Propagation time (in months) from different soil moisture datasets for Ae

The ensemble mean of drought propagation time from meteorological to hydrological at three
different cases are presented in Figure 5.24. The propagation time in case of As varies
between 4 and 9 months with 62% of total area falls under 6 to 7 months followed by 20% of
total area under 7 to 8 months. The propagation time over southern, parts of eastern, parts of
northeast, and parts of northern regions is less as compared to the central parts of India. In the
case of Ap, the time of propagation varies from 9 to 12 months over 74% of the total area.
About 70% of total area, the time of propagation in Ae ranges from 15 to 20 months. The
ensemble mean of drought propagation time from meteorological to agricultural in different
cases are presented in Figure 5.25. The time to propagation in case of As is found to be 5 to 6
months and 6 to 7 months over 39% and 53% of the total area, respectively. Similarly, the
drought propagation over about 95% of total area ranges from 9 to 15 months under Ap
condition. The time to propagation varies between 10 to 15 months over 32% and 15 to 20

months over 65% of total area in case of Ae.
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Figure 5.24: Average propagation time from meteorological to hydrological drought
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Figure 5.25: Average propagation time from meteorological to agricultural drought
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5.3.3 Influence of external drivers on drought propagation

To find out the influence of external drivers/covariates on drought propagation, a comparison
between the drought propagation with and without external drivers is examined. To do so, the
percentage changes in IDS, IRS, DDP, DRP, As, Ap and Ae are computed with respect to the
hydrological drought index computed without external covariates. Figure 5.26 presents the
change in percentage of above-said drought propagation characteristics. It should be noted
that the ensemble average of five different runoff datasets are considered for the analysis. It
can be noted from the figure that except for drought propagation time in As, the drought
propagation characteristics are underestimated when computed neglecting the external
covariates. For instance, over 75% of area in IDS, 87% of area in IRS, 73% of area in DDP,
53% of area in DRP, 61% of area in Ap, and 66% of area in Ae are underestimated when
compared incorporating the influence of external covariates. In the case of As, the percentage
of change mostly varies between the ranges of -20% and 20%. The magnitude of change in
case of IDS, IRS, DDP, and DRP is higher than time to propagation. In addition, the state-
wise average percentage of change is computed. In the case of IDS, it is observed that the
highest and lowest value of percentage change (absolute) is observed over Rajasthan (RJ) and
Odisha (OD), respectively. Similarly, the highest and lowest absolute percentage is noticed
over Gujarat (GJ) and Ladakh (LA) in case of IRS, over Manipur (MN) and Ladakh (LA) in
case of DDP, over Mizoram (MZ) and Himachal Pradesh (HP) in case of DRP, over Manipur
(MN) and Punjab (PB) in case of As, over Punjab (PB) and Odisha (OD) in case of Ap, and
over Manipur (MN) and Andhra Pradesh (AP) in case of Ae.

In case of agricultural drought, over 96% of area in IDS, over 82% area in IRS, over 98% area
in DDP, over 99% area in DRP, over 64% of area in Ap, and over 98% area in Ae are
underestimated when compared with the values calculated in absence of covariates (Figure
5.27). It is found that the magnitude of change is higher in case of internal drought variability
(within the drought event) as compared to inter drought variability (between meteorological
and agricultural drought event). The highest and lowest value of mean absolute percentage
change is observed over Gujarat (GJ) and Tamilnadu (TN) in the case of IDS, respectively.
Likewise, the highest and lowest absolute percentage is noticed over Gujarat (GJ) and
Tamilnadu (TN) in the case of IRS, over Tamilnadu (TN) and Ladakh (LA) in the case of
DDP, over Madhya Pradesh (MP) and Ladakh (LA) in the case of DRP, over Arunachala

100



Pradesh (AR) and Himachal Pradesh (HP) in case of As, over Ladakh (LA) and Andhra
Pradesh in case of Ap, and over Madhya Pradesh (MN) and Ladakh (LA) in case of Ae.
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Figure 5.26: The percentage change of different drought propagation characteristics with

respect to the hydrological drought computed excluding the external drivers
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Figure 5.27: The percentage change of different drought propagation characteristics with
respect to the agricultural drought computed excluding the external drivers
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5.4 Discussion and summary

The prime motive of the present study is to investigate the propagation time from
meteorological to hydrological and agricultural drought at gridded scale which is crucial for
drought management and warning system (Huang et al., 2017). Moreover, the grid-wise
evaluation of time to propagation enables to provide useful information for the local drought
early warning and mitigation (N. Chen et al., 2020). As entire India is considered for the
study, it is cumbersome to set up a hydrological model for the entire India due to the
significant alterations in the streamflow as a result of anthropogenic activities (e.g., influence
of dam) and inconsistencies in the continuous available observed streamflow data. Similarly,
availability of in situ soil moisture datasets at regional scale covering entire India is not
possible. Thus, available gridded runoff and soil moisture datasets at a resolution of 0.5° Lat x
0.5° Lon are considered. Five different gridded runoff and six different soil moisture datasets
are considered to encompass the associated uncertainties with the datasets. In addition, the
drought characteristics extracted from ensemble mean of all the datasets are analysed. To
provide unified outcomes from all the runoff and soil moisture datasets, the ensemble mean is
considered. In other words, the average prediction performance of all contributing members in
the ensemble is chosen to extract the important findings from the analysis. Combining the
multiple datasets in order to solve one problem and focusing on their consistency may obtain
the results closer to the truth (N. Chen et al., 2020).

The analysis of DDP and DRP suggests that the grids where the period of drought
(meteorological and hydrological) development is more (less) also have a high (low) recovery
period. The present finding is in line with the outcomes of Bhardwaj et al. (2020) and Wu et
al., (2018) where they considered hydrological drought events. Incorporating the variable
motion relationship of speed-time process, hydrological drought propagation can be
identified. Traditionally, the propagation of drought is expressed as transformation of one
drought type to another type. However, the same drought type experiences the internal
propagation (Parry et al., 2016b; Thomas et al., 2014). The concept of IDS and IRS represents
the internal variability of drought events and provides crucial feedback about requisite policy
changes based on different phases of drought (Bandyopadhyay et al., 2020; Wilhite et al.,
2014). Unfortunately, the current policies do not consider the internal drought propagation in
formulating the strategies. Moreover, at local scale the combined information of IDS and IRS

can strengthen the drought prediction and early warning system. In the case of hydrological
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drought, southern and eastern parts of India show high IDS and IRS values suggesting that the
drought would develop rapidly and reach its peak and recover quickly to the normal
condition. Therefore, these shorter duration droughts need prompt and efficient drought
management practices. In the present study, the application of irrigation (as an anthropogenic
intervention) is not incorporated and assumed that the variability of soil moisture depends on
the precipitation. Because the agricultural drought depends on the precipitation variability and
availability of soil moisture that counters water loss due to evapotranspiration (Sheffield et al.,
2004). The IDS and IRS defines the speed at which the internal development and recovery of
drought occurs. Therefore, prompt, and efficient actions should be taken for high values of
IDS.

The propagation time from meteorological to hydrological and meteorological to agricultural
drought is computed at each grid point across India. The propagation time depends
completely on method being used (Bevacqua et al., 2021) and hence, the present analysis
includes three different approaches to examine the propagation time. The propagation time
with respect to As is shorter than Ap and Ae. In addition, the As is not sensitive as compared to
others and provide lowest and most smoothed out values for propagation time (Bevacqua et
al., 2021). It is observed that the concurrent meteorological drought events during the phase of
hydrological and agricultural drought development and recovery periods increase the entire
length of hydrological and agricultural events. For instance, a hydrological drought event with
duration of 45 months encompasses 3 concurrent meteorological drought events with duration
varying from 8 to 10 months. A comparative analysis (in case of As only) of the present
outcomes with Bhardwaj et al. (2020) reveals that there is a difference in the time range of
drought propagation. For instance, the present study evaluates that the propagation period
ranges between 4 and 9 months. Whereas Bhardwaj et al. (2020) computed that the
propagation period varies between 0 and 5 months. However, it is noticed that the spatial
distribution of low and high propagation period between two studies is similar. The variability
in the magnitude of propagation time might have resulted due to the inclusion of large-scale
climatic indices and regional hydro-meteorological variability in the computation of drought
indices. The present analysis at regional scale would provide efficient water management
strategies at local scale whereas the findings by Bhardwaj et al. (2020) help at the sub-basin

scale.

Summarising the findings, it is found that locations with the high value of DDP are also

having high value of DRP in both the cases (hydrological and agricultural). In case of
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hydrological drought, most of the area in India has the IDS and IRS values between 0.40 and
0.60 per month. However, the same varies between 0.20 and 0.60 per month in the case of
agricultural drought. The meteorological to hydrological propagation time in case of As varies
between 4 and 9 months with 62% of total area falling under 6 to 7 months followed by 20%
of total area under 7 to 8 months. In the case of Ap, the time of propagation varies from 9 to
12 months over 74% of the total area. For about 70% of total area, the time of propagation in
Ae ranges from 15 to 20 months. In case of As, the propagation from meteorological to
agricultural drought is found to be 5 to 6 months and 6 to 7 months over 39% and 53% of the
total area, respectively. Similarly, the drought propagation over about 95% of total area
ranges from 9 to 15 months under Ap condition. The time to propagation varies between 10 to
15 months over 32% and 15 to 20 months over 65% of total area in case of Ae. It is found that
the drought propagation and its characteristics are underestimated over most of the regions in
India when computed without the external drivers. In addition to drought propagation, it is
necessary to evaluate the agricultural risk associated with drought events. As an agrarian
country, India’s economy largely depends on agricultural productivity. Therefore, it is of
utmost importance to examine the agricultural drought risk for different crops. In this sense,
the next chapter deals with the evaluating the agricultural drought risk on rainfed agriculture

using the multivariate analysis.
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Chapter 6

Copula-based agricultural drought
risk analysis

6.1 Introduction

The agricultural drought is considered as complex natural hazard (Dai, 2011a). The nexus
between meteorology, soil, and crop systems makes agricultural drought more cumbersome to
understand (Liu et al., 2020). It measures the vulnerability in terms of crop productivity
which is sensitive to both hydrological and meteorological conditions (Tsakiris et al., 2013).
The agricultural drought, because of insufficient soil moisture in the root zone due to lack of
precipitation (Liu et al., 2018), reduces the crop productivity (Shen et al., 2019). Over arid
and semi-arid regions, the crop productivity is highly vulnerable to the seasonal variations in
hydro-meteorological variables like precipitation, soil moisture, temperature, and
evapotranspiration (Gidey et al., 2018). As a result, the balance between the food supply and

demand is affected greatly under the dual pressure of climate change and population growth.
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Globally, the overall crop productivity is likely to be affected profoundly due to the
changeability in climate as it explains about 60% of the yield variability (Matiu et al., 2017;
Ray et al., 2015). Moreover, the rainfed agriculture is highly susceptible to such kind of
climatic changeability that results in extreme weather events like droughts, heatwaves, and
heavy precipitation (Ribeiro et al., 2019; Zampieri et al., 2017). It is estimated that the
extreme weather events are responsible for 18-43% global yield variability for maize, spring
wheat, rice, and soybeans (Vogel et al., 2019). In India, the agriculture is considered as the
mainstay of economy as it contributes significantly to Gross Domestic Product (GDP),
employment and overall development of other sectors. The studies have shown downward
trends in the yield of major crops such as rice, maize, and wheat due to changing climate over
India (Gupta et al., 2017; Pathak et al., 2003; Rupa Kumar et al., 2002). The failure of crop
under the influence of extreme weather conditions entails significant economic losses and
hence, the evaluation of the risk associated with the agricultural productivity due to the
extreme conditions is of paramount importance (Madadgar et al., 2017; Xie et al., 2018).

The occurrence mechanism of agricultural drought is complex as it is modulated by the
natural, social, and economic factors (X. Liu et al., 2019b). Thus, many drought evaluation
indices are proposed to characterize the drought quantitatively. However, most of the
evaluation indices cannot integrate all the factors affecting the occurrence of drought
suggesting insufficient mechanism to describe drought occurrence. Therefore, it is required to
combine single index factors to evaluate the agricultural drought risk incorporating the
multivariate statistical analysis (Liu et al., 2019). The copula as a multivariate analysis is
being used widely. According to the Sklar’s theorem (Sklar, 1959), copula techniques are
advantageous as they provide significant flexibility in modelling the dependence structure

between two or more random variables.

Recently, the application of copula theory in drought analysis has gained popularity among
the researchers. The bivariate analysis is successfully applied in the cases of meteorological
(J. Das et al., 2020a), hydrological (Borgomeo et al., 2015; K. Feng et al., 2021), and
agricultural (Bokusheva et al., 2016; Madadgar et al., 2017; Vergni et al., 2015; H. Wu et al.,
2021) drought conditions. In case of agricultural drought, the copula theory is generally used
to examine the joint return period of different drought properties (Dai et al., 2020; Poonia et
al., 2021; Vergni et al., 2015), to predict the agricultural drought (H. Wu et al., 2021; Wu et
al., 2022), and to develop multivariate agricultural drought index (Bateni et al., 2018; P. K.
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Das et al., 2020). In some studies, researchers established the bivariate relationship to analyse
the sensitivity between drought indicators and crop yield (Bokusheva et al., 2016; Madadgar
et al., 2017). However, the risk associated with the crop yield due to the drought conditions is
not examined in the context of changing climate. In addition, over agrarian country like India,
it is of paramount interest to examine the agricultural drought risk for multiple crops.

Besides the hydro-meteorological drought indices, various remote sensing-based indices are
proposed due to the recent advancement in the satellite technology. These indices provide
accurate, flexible, and reliable findings related to agricultural drought and thus have attracted
the attention of various agriculturalists, hydrologists, meteorologists, and environmentalists
(Gidey et al., 2018). The credibility of remote sensing-based indices lies in detecting the
spatial and temporal drought occurrence which can be effectively utilised for alleviating the
risk that arises from drought. In addition, the satellite-based observations overcome some
limitations of station-based observations providing spatially explicit and dynamic large-scale
drought monitoring (Zhang et al., 2016). In this sense, the remote sensing-based indices such
as Vegetation Health Index (VHI), Vegetation Condition Index (VCI), Temperature Condition
Index (TCI) based on Normalized Difference Vegetation Index (NDVI) and Brightness
Temperature (BT) have been successfully applied in modelling crop productivity (Bokusheva
et al., 2016; Dalezios et al., 2014; Kogan et al., 2015). Liu and Kogan (1996) advocated that
NDVI images provide a useful tool to understand the large-scale climatic variability while
VCI Images enable to evaluate the severity of a regional drought. The TCI conditions are
estimated with respect to the max/min’s temperature envelope and the modified formula of

TCI reflect different response of vegetation to temperature.

Under this background, the present study aims to examine the agricultural drought risk under
stationary and non-stationary drought conditions. In this study, the agricultural drought risk is
defined as the conditional probability of crop losses under drought conditions. Here, two
hydro-meteorological drought (Standardized Precipitation Evapotranspiration Index (SPEI)
and Standardized Soil moisture Index (SSI)) and two remote sensing-based drought indices
(VCI and TCI) are considered. Based on satellite-based and station-based information,
drought conditions are evaluated and then linked with crop yield anomalies with the use of
appropriate copula functions. The primary objectives of the present study are (i) to evaluate
the dependency between yield anomalies and different drought conditions using copula, (ii) to

examine the agricultural drought risk by preserving the joint dependence, and (iii) to analyse
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the agricultural drought risk under stationary and non-stationary settings. The conditional
probability of non-exceedance of crop loss threshold is used to estimate the agricultural
drought risk that ranges from 0 (low risk) to 1 (high risk). In this study, the analysis is carried
out on four different types of rainfed crops (rice, wheat, groundnut, cotton) during their
respective cropping seasons. To the best of the authors’ knowledge, the present study is the
first of its kind to be carried out over Indian region. It is evident from Chapter 4 that the non-
stationary analysis outperforms the stationary analysis while analysing the drought conditions
Moreover, most of the applications of copula in non-stationary drought conditions are carried
out to evaluate the joint return period of different drought properties. However, there is
dearth in application of both non-stationary and copula-based approach to analyse the
agricultural risk. In addition, a comparative study of agricultural risk under stationary and
non-stationary conditions can provide valuable information regarding risk associated with
climate hazard. The outcomes from the analysis would be helpful in monitoring and
mitigating agricultural drought risk.

6.2 Description of different datasets

6.2.1 Crop yield data

The different crop yield datasets are collected over Maharashtra which is chosen as the study
area in the present analysis. Figure 6.1(a) represents the different administrative divisions in
Maharashtra province. In this study, four major crops namely cotton (cash crop) Figure 6.1(b),
groundnut (oilseed) Figure 6.1(c), and rice Figure 6.1(d) and wheat (cereals) Figure 6.1(e)
have been selected to analyse the agricultural drought risk. It should be noted that these crops
can be cultivated in any season based on the availability of irrigation requirements. However,
in this analysis, the seasons when the cultivations of crops depend on the rainfall are
considered to examine the conditional probability of non-exceedance of crop loss events with
the changing climatic conditions. Thus, for rice, Kharif (June to December) season; for wheat,
Rabi season (October to March); for groundnut, Kharif season (June to October); and for
cotton, Kharif season (July to December) have been considered. The annual values of crop
yield data (i.e., the ratio of crop production (t) to harvested area (ha)) for respective seasons
are collected during the period of 1998-2018 (for rice and wheat) and for the period of 1999-
2018 (for groundnut and cotton) in Maharashtra. It is worth mentioning that all the selected
crop datasets are not available for all the districts in Maharashtra. In this way, 25 districts
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contribute wheat production during Rabi season, 21 districts contribute rice production during
Kharif, whereas 18 and 21 districts involve in groundnut and cotton production during Kharif
season, respectively. The different crop datasets over the study area are collected from

https://www.aps.dac.gov.in/APY/Public_Reportl.aspx. Regarding the hydro-meteorological

datasets and external covariates to develop non-stationary index, the descriptions are already
provided in Chapter 4. In the present analysis the soil moisture data is downloaded from
Climate Prediction Center (CPC) global monthly soil moisture data (Fan and van den Dool,
2004). The CPC dataset is a reanalysis product that uses records from 30,000 sites managed
by international agencies and the records are quality controlled, along with concurrent
radar/satellite observations and numerical model forecasts (M. Li et al., 2020).
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Figure 6.1(a) Map of Maharashtra with districts and its location in India; (b) Districts showing
available crop data for cotton; (c) Districts showing available crop data for groundnut; (d)

Districts showing available crop data for rice; (e) Districts showing avail crop data for wheat
6.2.2 Remote sensing indices

In the present analysis, two remote sensing-based indices are used namely Vegetation
Condition Index (VCI) and Temperature Condition Index (TCI). These indices are based on
both NDVI and Brightness Temperature (BT). Therefore, they have the ability of examining
the changes in ecosystem in terms of its fluctuation within its minimum and maximum value
of BT and NDVI. The VCI identifies the vegetation stress due to the lack of moisture content
whereas TCI signifies the vegetation stress due to the high temperature. The detailed
description of the calculation of VCI and TCI were first provided by Kogan (1995, 1990). The
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range of the values of both VCI and TCI varies between 0 to 100, where the values less than
40 indicate the occurrence of drought conditions (Kogan, 2002). Therefore, for the evaluation
of the response of crop yield to different conditions of drought hazard, the weekly global map
of VCI and TCI are retrieved at 4 km spatial resolution scale from NOAA’s ftp server
(ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsh/wguo/data/\VVHP _4km/geo_TIFF/) for the period
of 1997 to 2018. Here, the reason behind the addition of weekly data for 1997 is because the

sowing period of some seasonal crops harvested in 1998 starts in Kharif season of the

previous year. The VCI and TCI are obtained by the equations as following:

(NDVI -NDVI,)
(NDVI_, —NDVI_ )

VCI =

x100 (6.1)

Tax =T
TCI = Mxloo (6.2)
(Tmax _Tmin)
where, NDVI, NDVImin, and NDVImax are the smoothed weekly NDVI, its multi-year absolute
maximum, and minimum, respectively. Similarly, T, Tmax, and Tmin are the smoothed weekly

temperature, its multi-year maximum, and minimum, respectively.

Comprising the major crop life cycle moments, the involved weeks have been selected for
different crops on seasonal basis. In detail, the analysis of this study has been performed
between week 22 (approximately in the beginning of June) and week 52 (ending of
December) for rice in Kharif, between week 40 (the beginning of October of the year n-1) and
week 13 (approximately the ending of March of the year n) for wheat in Rabi, between week
22 (beginning of June) and week 44 (end of October) for groundnut in Kharif and between

week 26 (in the beginning of July) and week 52 (end of December) for cotton in Kharif.
6.3 Methodology

The graphical representation of the adopted methodology for the analysis is presented in the
form of flow chart in Figure 6.2. Initially, the SPEI and SSI drought indices are computed by
using the hydro-meteorological datasets at each grid point. Next, the non-stationary analysis is
carried out for SPEI and SSI using different climate oscillations and regional hydrological
conditions at each grid point, respectively. A comparison between stationary and non-
stationary drought indices is carried out based on Akaike Information Criteria (AIC). The

crop loss threshold is then obtained for different crops and districts using detrend crop yield
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series. The dominant drought indicator in explaining the variability of each crop time series is
selected for each district. Subsequently, copula-based risk analysis is carried out incorporating
the crop loss threshold, crop yield anomaly, and dominant indicator at each district. In
addition, comparison of risk analysis under stationary and non-stationary settings is
performed where SPEI or SSI are selected as dominant drought indicators. Here, the
methodologies related to crop loss threshold, identification of dominant indicator, and copula-

based risk analysis are discussed, as non-stationary analysis is already explained in Chapter 4.
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Figure 6.2: Proposed flow chart of the present study
6.3.1 Calculation of crop loss threshold

The annual crop yield values of rice, wheat, groundnut, and cotton are computed as the ratio

between total annual crop production and cultivated area during the period of 1998-2018. The
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yield anomalies are computed after removing the non-climatic factors. This is performed by
removing the linear trend from the yield (Pascoa et al., 2017). In the present study, the crop
loss events are marked when the yield anomalies are below the minus one (-1) standard
deviation of the data series of annual crop yield anomalies. The motive is to focus on the
expected chance that the negative yield anomalies will not exceed the crop loss threshold of
different crops in each district. The annual crop loss threshold (t/ha) is computed for all the

selected crops over different districts in Maharashtra and presented in Figure 6.3.
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Figure 6.3: The crop loss threshold computed as -1 standard deviation of crop yield anomaly
(t/ha) for each district. The districts with no yield data are coloured in white

It can be noted from Figure 3 that the range of crop loss threshold varies between -0.9 and -
0.2 for cotton, -0.3 and -0.1 for groundnut, -0.6 and -0.1 for rice, -0.5 and -0.1 for wheat crop.
The relatively low value of standard deviation suggests that the crop loss thresholds
correspond to the values slightly below normal. Therefore, the difference between the

maximum and minimum annual yield values is small.

112



6.3.2 Selection of dominant drought indicator

To find out the dominant predictor that significantly impacts the crop production based on
different levels of drought severity, both the hydro-meteorological (SPEI and SSI) and remote
sensing-based drought indicators (VCI and TCI) are used. The selection of the dominant
indicator is carried out by considering the 182 drought indicators in case of rice in Kharif (31
-week intervals of VCI, 31-week intervals of TCI, and 5-month by 12-time scales intervals of
SPEI and SSI). Similarly, there are total of 142, 174, and 172 drought indicators for
groundnut in Kharif, cotton in Kharif, and wheat in Rabi season, respectively. A stepwise
linear regression is employed to select the best subset of drought indicators at 95% confidence
level. Subsequently, the district-wise best dominant predictor is picked up for each seasonal
crop on the basis of the largest absolute value of regression coefficients. In addition, to
evaluate the contribution of each dominant drought indicator to its respective crop yield
variability, partial correlation analysis has been conducted. A dominant indicator is selected
through stepwise regression, where the dominant indicator can estimate the variance that is
not explained by other indicators. This variance can be computed using the squared partial

correlation coefficient.
6.3.3 Copula-based risk analysis

The joint behaviour of yield anomalies and dominant drought indicator for each crop is
estimated using bivariate copula function. The copula constructs the multivariate joint
distribution for two or more correlated variables having independent marginal distributions.
Mathematically, given two correlated variables U and V with marginal distributions Fy (u)

and Fv (v), the joint probability distribution F,, (u,Vv) using copula function C can be defined

as
Fov (U, V) =C(F, (u), K, (V) (6.3)

In the present study a total of five different copulas namely, Gaussian, Student’s t-copula,

Clayton, Gumbel, and Frank are used to analyse the bivariate joint dependence structure

between yield anomalies and dominant drought indicator (SPEI, SSI, VCI, or TCI). The

Gaussian and Student’s t-copula come under Elliptical family. Similarly, Archimedean family

includes Clayton, Gumbel, and Frank copulas. The Archimedean copulas are more popular

due to their ability in capturing the wider variety of joint dependence structure. The
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asymmetrical tail behaviour with greater dependence in lower and upper tail is described by
Clayton and Gumbel copulas, respectively. The symmetric dependence with and without tail
dependence is captured by Student’s t-copula and Frank copula, respectively. The
mathematical description, and parameter range of the above-said copula functions are
presented in Table 6.1. It should be noted that these formulations might not be unique.

Therefore, it is advised to refer to the associated reference in Table 6.1.

Table 6.1: Different copulas, their mathematical description, parameter range, and suitable

references
Name Mathematical Description Parameter Range
Gaussian FL) () 1 U2 +V2 — 20UV
(Lietal., J:w _L)O EXp _ﬁ]dUdV (96[—1,1]
2013b) 27 (1_‘92) 2(1 0 )
t J.mz’l(u)J-regl(v) r((6,+2)/2) s u? —20,uv +v? Tgﬁz)/z dudy 6, [-1,1] and
(Lietal, P
- ST = [ b <(0,m)
Clayton max (u™’ +v~’ -1, O)_W 0 e[-1,0)\0
(Clayton, 1978)
Frank exp(—6u)-1)(exp(-6v)-1
(Lietal., _Elnl:l"'( p( Z( )(9 pi ) ):| 0cR\O
2013b) € p(— )_
Gumbel ) "
(Lietal., exp{_[(_ln(u)) +(_|n(V)) i| } 6 c[1,0)
2013b)

Prior to the application of copula function, the marginal distributions of yield anomalies and
dominant drought indicator are transformed to uniformly distributed values between 0 and 1.
This is performed by using Canonical Maximum Likelihood (CML) method (Genest et al.,
1995), where the kernel density estimator of cumulative distribution function (CDF) is used to
transform the marginal to uniform distribution. The estimation of marginal distributions is
performed non-parametrically and the suitable copula parameters are computed using copula
functions by means of maximum likelihood. In case of small sample size, the heavy
assumption about the marginal distribution can be avoided using the semi-parametric
approach. In addition, the use of semi-parametric method preserves the important source of

information corresponding to the climatic variables. In the present study the selection of
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appropriate copula function is carried out using the VineCopula package in R programming

(https://cran.r-project.org/web/packages/VineCopula/index.html).

After fitting the bivariate joint dependence between the yield anomalies (U) and dominant
drought indicator (V), 1000 pairs of simulated yield anomalies (Fusim (u)) and drought
indicator (Fvsim (v)) are computed based on the appropriate copula function and its parameter.
The simulated datasets are in the range [0, 1]. Subsequently, the simulated values are
transformed back to the original scale using the kernel estimations of the inverse CDF. The
data points among simulated yield anomalies (Usim) which correspond to a particular drought
condition (v*) (no drought, or moderate drought, or extreme drought conditions) among the

simulated drought indicator values (Vsim) are selected such that

U,..(uv)=U_ (ulv<v) (6.4)

sim

The drought condition according to the severity is presented in Table 6.2. By using the joint
distribution, the conditional probability of yield anomalies with respect to different drought

conditions Fy , . preserves the dependence between the marginal distributions of yield

anomalies and dominant drought indicator. The agricultural drought risk is evaluated in terms
of conditional probability of non-exceedance of crop loss threshold for each seasonal crop

over different districts and defined as
I:Usimk (_Ustd ) = I:>r(usim* < _Ustd ) (6-5)

where, -Ustg represents crop loss threshold value for different crops and districts.

Table 6.2: Classification of drought severity for SPEI, SSI, VCI, and TCI

SPEI and SSI VCl and TCI Drought Class
Greater than -0.84 Greater than 40 No Drought
Between -0.84 and -1.28 Between 40 and 20 Moderate Drought
Less than and equal to -1.28 | Less than and equal to 20 Extreme Drought
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6.4 Results

6.4.1 Identification of dominant drought indicator for different crops

The drought condition for each crop over each district is characterised by one dominant
drought indicator which is obtained from the stepwise regression analysis. Figure 6.4 presents

the district wise dominant drought indicator for different crops.
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Figure 6.4: The selected dominant drought indicator for different districts and crops

It can be noticed from the figure that for cotton (12 out of 21 districts), groundnut (6 out of 18
districts), rice (10 out of 21 districts), and wheat (15 out of 25 districts) crops, SPEI is found
to be the dominant indicator for most of the districts that implies the significance of
meteorological variables on crop production in those districts. SPEI is dominant over eastern
part of Maharashtra for wheat crop during Rabi season and western and south part of
Maharashtra for rice crop during Kharif season. However, in case of cotton, SPEI is dominant
over central part and small area from eastern part of Maharashtra. SSI as a dominating
drought indicator is observed for cotton (over 2 districts), and groundnut (over 5 districts)

crops only. The dominance of VCI is more as compared to TCI for all the crops. For wheat
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crop, the dominance of VCI is noticed over the western part of the study area. However, for
rice, mostly the eastern part of Maharashtra is dominated by VCI drought index. In case of
cotton and groundnut, the crop productivity is affected due to VCI over central part of
Maharashtra. The TCI as least dominated drought index is found for all the selected crops in
the study area. Table 6.3 represents the list of dominant drought indicators with selected week
in case of TCI and VCI or time scale and month in case of SPEI and SSI for each crop and
district. For instance, the correspondent drought conditions are characterised by the SPEI
(August with 2-month time scale) in the case of cotton and by the VCI (week 41, middle of
October) in the case of groundnut.

Table 6.3: Dominant drought indicator for each district and crop type

District Cotton_Kharif | Groundnut_Kharif | Rice_Kharif | Winter_Rabi
Ahmednagar SPEI-2-8 VCI-41 TCI-32 VCI-40
Akola VCI-38 SPEI-3-3
Amaravati TCI-52 TCI-30 TCI-33 SPEI-6-11
Aurangabad VCI-39 VCI-40 VCI-40
Beed SPEI-3-9 SPEI-12-8 SPEI-3-8 VCI-9
Bhandara VCI-52 SPEI-7-11
Buldana VCI-38 SPEI-3-3
Chandrapur SPEI-3-9 VCI-52 SPEI-7-11
Dhule VCI-38 TCI-36 VCI-33 VCI-8
Garhchiroli \VCI-51 SPEI-1-1
Gondiya
Hingoli
Jalgaon SPEI-3-9 SPEI-1-7 SPEI-1-1
Jalna SPEI-8-10 SPEI-1-7 SPEI-4-12
Kolhapur SSI-4-10 SPEI-1-1
Latur VCI-37 VCI-37 SPEI-8-8 SPEI-2-12
Nagpur SPEI-1-12 SSI-1-10 VCI-51 SPEI-4-3
Nanded SPEI-1-12 VCI-35 SPEI-4-3
Nandurbar
Nashik SPEI-6-9 SPEI-3-9 SPEI-2-9 VCI-7
Osmanabad SPEI-4-8 VCI-39 SPEI-5-8 VCI-46
Parbhani VCI-39 SPEI-4-1
Pune SSI-3-8 TCI-33 VCI-41
Raigarh SPEI-4-10
Ratnagiri SPEI-3-8
Sangli SSI-11-12 TCI-44 TCI-22 TCI-11
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Satara

SS1-2-8 SSI-6-8 SPEI-5-10 VCI-5
Sindhudurg SPEI-7-10 SPEI-5-9
Solapur SPEI-8-8 SS1-3-8 SPEI-2-10 VCI-42
Thane SPEI-6-10
Wardha SPEI-6-12 SPEI-2-7 SPEI-3-2
Washim
Yavatmal SPE|-8-8 SPEI-4-1

Figure 6.5 depicts the percentage of variance explained by the dominant indicator for different
crops. According to the figure, more than 50% of the cotton crop variability is explained by
the selected dominant drought indicator over Amaravati (50.89%), Chandrapur (57.07%),
Dhule (61.25%), Jalgaon (52.52%), Nagpur (66.83%), and Satara (63.58%) districts. Over
Kolhapur, Osmanabad, and Solapur districts, more than 50% of the groundnut yield
variability is described by the selected dominant drought indicators. In case of rice, the
highest crop yield variance is explained over Bhandara district (73.31%) followed by Dhule
(61.61%) and Raigarh (60.70%) districts by the dominant drought indicators. Similarly, the
districts Jalgaon, Parbhani, and Jalna show a percentage of explained variance higher than
70% in the case of wheat.
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6.4.2 ldentification of suitable copula for different crop types

The copula analysis is carried out using different copula functions (refer to Table 6.1) for each
pair of crop yield anomaly and drought indicator. Figure 6.6 presents the selected copula
based on the lowest AIC value for different crops and Figure 6.7 depicts the grouped bar plots
which incorporates the number of districts adopting each copula type for different type of
dominant drought indicators. It can be noted from Figure 6.6 that Frank copula is the most
selected copula type of all the crops (12 districts in case of cotton, 9 districts in case of
groundnut, 11 districts in case of rice, and 12 districts in case of wheat). Followed by Frank
copula, Clayton copula is found to be suitable for groundnut (6 districts), rice (9 districts), and
wheat (9 districts) crops. The Student’s t and Gumbel copulas are not found suitable for any
of the selected crops and rice crop, respectively. The Gaussian copula is selected as best fit
copula over 5 districts in case of cotton, 2 districts in case of groundnut, 1 district in case of

rice, and 3 districts in case of wheat crop.
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Figure 6.6: The selected copula function for each district and crop type
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From Figure 6.7, it is noticed that most of the districts whose drought conditions are
characterised by SPEI follow Frank copula (for cotton, groundnut, and wheat) and Clayton
copula (for rice). The joint probability of SSI and crop yield anomaly is better modelled using
the Frank copula for cotton (2 districts) and using both Clayton (3 districts) and Frank (2
districts) copulas for groundnut. The districts which are dominated by VCI are found to be
fitted using Clayton, Frank, Gaussian, and Gumbel copulas for cotton crops. Similarly, Frank
and Gumbel copulas for groundnut, Clayton and Frank for Rice, and Gumbel alone for wheat
are used to model the dependence structure of VCI and crop yield anomalies. Likewise, the
Gumbel and Frank Copulas can capture the joint probability between TCI and crop vyield
anomalies of wheat and cotton crops, respectively. Whereas Frank (2 districts) and Gumbel (1
district) copulas for groundnut and Clayton (1 district) and Frank (3 districts) copulas for rice

crop are selected to model the joint dependency.
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Figure 6.7: Bar plot to describe number of districts under different copula functions for each

crop
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6.4.3 Analysis of agricultural drought risk for different crops

After establishing the joint dependency using copula functions, the subsequent generated
simulations are used to evaluate the conditional distributions of crop yield anomalies under no
drought, moderate drought, and extreme drought conditions. Figure 6.8 presents the
conditional probability of crop loss under no drought condition according to the crop loss
threshold mapped in Figure 6.3. It can be noted that the conditional probability is
considerably low in the case of all crops during no drought condition. For instance, the
agricultural risk is found to be ranging from 0% to 20% chance of non-exceedance for all the
selected crop loss thresholds. Likewise, Figure 6.9 depicts the conditional probability of
agricultural drought risk during moderate drought condition. It should be noted that the
districts which are shaded in grey colour indicate the absence of moderate drought condition.
The chance of non-exceedance of cotton crop loss threshold is found to be more than 95%
over Ahmednagar district. In addition, over Aurangabad, and Akola districts, the chance of
non-exceedance of agricultural drought risk with respect to cotton crop loss threshold is
computed as 32% and 26%, respectively. In the case of groundnut, the agricultural drought
risk over Ahmednagar, Jalna, Aurangabad, and Beed is evaluated as 88%, 62%, 29%, and
23% chance of non-exceedance, respectively. Under moderate drought condition, it is
computed as 81% for Beed district, 67% for Satara district, 50% for Latur district, 44% for
Osmanabad district, and 29% for Nagpur district. The agricultural drought risk for the wheat
crop is considerably high i.e., more than 70% over Ahmednagar, Aurangabad, Beed,
Osmanabad, Pune, Satara, and Solapur districts. The affected districts are less in number in
case of extreme drought condition as compared to the no drought and moderate drought
conditions (Figure 6.10). Only two districts namely Ahmednagar and Ratnagiri are having

very high conditional probability for cotton and rice crops, respectively.
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Figure 6.8: Agricultural drought risk under no drought condition for each crop
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Figure 6.9: Agricultural drought risk under moderate drought condition for each crop. The

grey shaded area represents that the no moderate drought condition is observed
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Figure 6.10: Agricultural drought risk under extreme drought condition for each crop. The

grey shaded area represents that no extreme drought condition is observed
6.4.4 Comparison of risk under stationary and non-stationary approaches

The comparative study of agricultural risk between stationary and non-stationary approaches
is performed by considering the districts where SPEI or SSI is selected as dominant drought
indicator. Figure 6.11 presents the comparison between stationary and non-stationary drought
risk for cotton crop. It should be noted that the upper and lower panel present the stationary
and non-stationary cases, respectively. The map of districts which are affected only by SPEI
or SSI is embedded in the upper left corner map. The number of districts affected by the
moderate and extreme drought condition as a result of SPEI or SSI are more in non-stationary
case than stationary case. For instance, Ahmednagar, Jalgaon, and Osmanabad districts in
case of moderate drought and Ahmednagar district in case of extreme drought are not
captured by the stationary condition. In addition, the non-stationary conditional probability of
agricultural drought risk is high as compared to stationary approach.
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Figure 6.11: Stationary (a-c) and non-stationary (d-f) comparison of agricultural drought risk

for cotton crop. The grey shaded map (upper left corner) shows the districts where SPEI or

SSl is selected as dominant drought indicator

Similarly, Figure 6.12 depicts the comparison of agricultural drought risk for groundnut crop.
Unlike the cotton crop, significant difference is not observed between stationary and non-
stationary analysis for extreme and no drought conditions. However, Beed and Jalna districts
show high conditional probability of agricultural drought risk in the case of moderate drought
condition. In the case of rice (Figure 6.13), no moderate and extreme drought conditions are
observed under stationary condition. However, under non-stationary condition, some of the
districts (Beed, Latur, Osmanabad, Ratnagiri, and Satara) in moderate, and Ratnagiri district
in extreme drought condition exhibit high conditional probability of agricultural drought risk.
Likewise, for wheat (Figure 6.14), the significant difference of drought risk between
stationary and non-stationary drought is noticed for moderate and extreme drought conditions
over one (Wardha) and four (Akola, Buldana, Nagpur, and Nanded) districts, respectively.
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Figure 6.12: Stationary (a-c) and non-stationary (d-f) comparison of agricultural drought risk
for groundnut crop. The grey shaded map (upper left corner) shows the districts where SPEI
or SSl is selected as dominant drought indicator
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Figure 6.13: Stationary (a-c) and non-stationary (d-f) comparison of agricultural drought risk
for rice crop. The grey shaded map (upper left corner) shows the districts where SPEI or SSI

is selected as dominant drought indicator
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Figure 6.14: Stationary (a-c) and non-stationary (d-f) comparison of agricultural drought risk
for wheat crop. The grey shaded map (upper left corner) shows the districts where SPEI or

SSl is selected as dominant drought indicator
6.5 Discussion and summary

The present study aims at analysing the dependence structure between crop yield anomalies
and drought conditions using the copula-based approach. Based on the obtained dependency
structures, the agricultural drought risk is evaluated over the study area which is proposed in
terms of conditional probability of non-exceedance of crop loss threshold under three
different types of drought conditions. In addition, the agricultural drought risk is characterised
combining the advantages of both hydro-meteorological (SPEI, and SSI) and remote sensing-
based (VCI, and TCI) drought conditions. In case of hydro-meteorological drought condition,

the agricultural risk is computed and compared for stationary and non-stationary conditions.

In general, SPEI is found as significant drought indicator (Figure 6.4) over the maximum
number of districts in all the crops, suggesting the climatic factors have significant influence
on the agricultural productivity over the study area. Similar kind of finding is observed by
Kelkar et al. (2020) while analysing the impact of climate variability on crop production in
Maharashtra. However, the districts with higher explained variance do not necessarily

coincide with the selection of SPEI. For instance, the districts with higher variance explained
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is shared by all the drought indicators for cotton, by SSI for groundnut, mostly by VCI in the
case of rice, and by SPEI for wheat. A west-east gradient of suitability of SPEI is observed in
the case of rice (western districts) and wheat (eastern districts) crops. However, the yield
variability over eastern districts over rice and western districts over wheat is mostly explained
by VCI.

The most selected type of copula in all the crops is found to be Frank copula, suggesting equal
level of dependency in both the tails between drought indicators and yield anomalies. In most
of the cases of Frank models, the dominant drought condition is characterised by SPEI index.
The Clayton copula over selected districts suggest stronger dependence between the lower tail
values of dominant drought indicators and yield anomalies. Most often, the drought
conditions for Clayton models are dominated by SPEI and VVCI in the cases of rice and wheat,
respectively. On the other hand, the districts with Gumbel models are characterised by VCI
and SPEI for cotton, and TCI for both groundnut and wheat crops, suggesting high values of

the drought indicators promote positive crop yield anomalies.

In most of the cases (16 out of 23 instances), the higher probability of drought risk under
moderate and extreme drought conditions are modelled by Clayton copula. Under moderate
drought condition, the higher probability of agricultural drought risk for wheat crop is
characterised by VCI only and modelled by Clayton copula. It suggests that the higher
severity of VCI results in higher agricultural drought risk for wheat crop. Likewise, for cotton
and groundnut, the higher agricultural drought risk is modelled by Clayton copula. In spite of
different dominant drought indicators, the dependency structure between the moderate
drought condition and crop yield anomaly is similar for cotton, groundnut, and wheat crops.
In the case of rice, higher agricultural drought risk is modelled by SPEI drought indicator.
Under moderate drought condition, Ahmednagar is found to be the most affected district due
to the high probability of agricultural drought risk for cotton, groundnut, and wheat crops.
The number of cases is significantly less under extreme drought condition as compared to
moderate drought condition. However, the probability of crop loss has increased with drought
severity (from moderate to extreme). In most of the cases (considering both moderate and
extreme drought conditions), the higher probability agricultural drought risk is modelled with

SPEI or VCI as dominant drought indicator.

From the stationary and non-stationary analysis, it is observed that the number of affected
districts is more under non-stationary approach for all the crops. In the case of cotton crop,
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Ahmednagar and Jalgaon districts are not captured under stationary analysis for both
moderate and extreme drought conditions. It is found from the analysis that the stationary
approach will underestimate agricultural drought risk due to the ignorance of large-scale
oscillations and regional hydrological variability in the computation. Subsequently, this will
significantly affect the planning and management of agricultural sustainability over the study

area.

In summary, the significant findings from the present analysis point to the fact that the
drought hazard is primarily characterised by SPEI drought indicator in all the crops. The
higher probability of drought risk under moderate and extreme drought conditions are
modelled by Clayton copula suggesting greater probabilities of joint extreme low values.
With increase in the drought severity the conditional probability of agricultural drought risk is
likely to increase. In addition, it is observed that the exclusion of non-stationarity will
underestimate the agricultural risk, which will significantly affect the planning and
management of agricultural sustainability over the study area. The findings from the study
aim to contribute to device effective decision-making procedure in agricultural practices.
Understanding the adverse consequences of drought events on various sectors, it is necessary
to examine the future variability of drought under different climate change scenarios.
Therefore, next chapter deals with projecting the future changes in the drought event using
multiple General Circulation Models/Global Climate Models (GCMs) under different climate
change scenarios. In addition, identification of future drought hotspots is carried out in the
next chapter.
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Chapter 7

Identification of future
meteorological drought hotspots

7.1 Introduction

The fact that the extreme weather events (e.g., extreme precipitation, heat waves) have
become increasingly frequent all around the globe (Kundzewicz and Kaczmarek, 2000;
Mazdiyasni et al., 2017), was well understood and witnessed during the latter part of the 20th
century and early 21st century (IPCC, 2014). Among all the climate extremes, detection and
quantification of drought events are complex as no universal definition of drought exists
(Lloyd-Hughes, 2014). In addition, the drought is often mentioned as ‘creeping disaster’
(Wilhite, 2016) that develops slowly and often unnoticed and has widespread indirect
consequences (Van Loon, 2015). Therefore, the drought as a climate hazard and its manifold

aspects have become paramount importance in the changing and warming world (A. G. Dali,
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2013) and has evolved as a “hot topic” in hydro-climatology research arena (Trenberth et al.,
2014).

The analysis of drought can be carried out at short- and long-term scales. The short-term
forecast helps in providing the advisory to the farmers regarding the suitable crop cultivations
and reallocation of water resources among the states (Bisht et al., 2019). In this light,
numerous studies have been carried out around the globe in terms of different drought
characteristics like duration, severity, peak, areal extent, etc. Trenberth et al. (2014) advocated
that the frequency and intensity of the natural droughts are likely to increase significantly.
Similarly, during 1950- 2008, the global dry areas and extreme conditions have increased by
1.74% and 1.27% per decade for the global land, respectively (Dai, 2011b).

As compared to the past drought events, the overall scenario of future long-term drought
events is still incomplete (Spinoni et al., 2019). Several past studies have examined the
meteorological and hydrological droughts incorporating the future projections from GCMs
under the Coupled Model Intercomparison Project 3 (CMIP3) and 5 (CMIP5) across the
globe. For instance, over Europe (Spinoni et al., 2018; Thober et al., 2015), over United States
(Ahmadalipour et al., 2017; Keellings and Engstrom, 2019), over China (Cao and Gao, 2019;
Yao et al., 2020), over India (Bisht et al., 2019; Gupta and Jain, 2018), over Australia
(Johnson and Sharma, 2015), over the globe (Spinoni et al., 2020; Ukkola et al., 2018).
Nevertheless, most of the projections are performed at medium scale spatial resolution and
incorporating a limited number of simulations. Due to such limitations, the future projections

are associated with larger uncertainties (A. G. Dai, 2013; Lu et al., 2019).

The studies, as mentioned above, except a few, employed Standardized Precipitation Index
(SP1) as a meteorological drought indicator to characterise the drought under the future
climate change scenarios. According to the definition, SPI accounts only precipitation to
describe the drought. However, in the present climate change scenario, it is expected that with
constant relative humidity, the moisture content in the atmosphere roughly increases by 6-7%
per 1°C warming rise in the lower tropospheric temperature (Willett et al., 2007). Therefore,
water holding capacity of the atmosphere is increased under the warming climate, which
directly affects the intensity and occurrence of the precipitation events over time (Cheng and
Aghakouchak, 2014).
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To evaluate the future short and long-term drought condition over the Indian region, it is
inevitable to examine the current status of meteorological drought projection by various
researchers. Ojha et al. (2013) examined the meteorological drought frequency using SPI as
drought indicator and outputs from seventeen GCMs under CMIP3 multi-model dataset and
showed an increasing trend of drought frequency over India. Future changeability of soil
moisture drought over India was analysed by Mishra et al. (2014) using outputs from the
seven GCMs from CMIP5 experiment. They revealed that the frequency and areal extents of
soil moisture drought are likely to be increased. Aadhar and Mishra (2018) analysed the
impact of climate change on meteorological drought frequency with the help of Standardized
Precipitation Evapotranspiration Index (SPEI) as a drought index. In their study, they
incorporated meteorological variables from five CMIP5 GCMs and observed an increasing
drought frequency. Gupta and Jain (2018) used meteorological outputs from seven Regional
Climate Models (RCMs) to investigate the spatio-temporal drought projections over India.
Similarly, Bisht et al. (2019) adopted nine GCMs from the CMIP5 project to evaluate the
future drought characteristics using the SPEI index over India. All the above-said studies have
incorporated the meteorological inputs from the GCMs or RCMs. In addition, the studies have
focused on entire India and the identification of the drought hotspot regions are not
performed. Therefore, based on the past studies, identification of various drought properties
and drought hotspot at a regional scale using newly developed high-resolution outputs from
NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) would provide

useful inference to the sustainable water resources management practices.

With this understanding, this chapter attempts to identify future meteorological drought
hotspots incorporating different drought properties over a drought prone province in India,
i.e., Maharashtra. To the best of our knowledge, no such multifaceted effort has been
conducted over the Maharashtra province so far. In addition, this chapter includes the outputs
from nineteen different GCMs from NEX-GDDP for the first time to characterise the future
short (3-month scale) and long (12-month scale) term meteorological drought. In the light of
the discussion made above, the present study is motivated to find out possible answers to the
following questions, (i) whether the future projected climate change would bring frequent and
severe drought condition during the 21st century over a region, (ii) what are the possible
implications on future meteorological drought events due to the projected temperature? (iii)

How the future drought hotspots are likely to change?
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7.2 Data used

7.2.1 NEX-GDDP historical and future datasets

The description of the study area and historical meteorological datasets are already discussed
in Chapter 3. To project the future meteorological droughts (i.e., SPI and SPEI), the future
projections of meteorological datasets (precipitation, maximum (Tmax) and minimum (Tmin)
temperature) are obtained from NEX-GDDP data, which is released in June 2015 by NASA
(R. Xu et al., 2019). The spatial resolution of the datasets is 0.25° Lat and 0.25° Lon and
available at daily time scale. The NEX-GDDP datasets incorporate simulations from twenty
one GCMs from the CMIP5 experiment and are downscaled to the high resolution using bias
correction spatial disaggregation (BCSD) based downscaling methodology (Thrasher et al.,
2013). The period of the historical and future projected datasets can be obtained during 1950-
2005 and 2006-2100, respectively. The future projections of the datasets are available for two
emission scenarios, i.e., RCP 4.5 and 8.5. Recently, NEX-GDDP datasets are successfully
used in various studies over different parts of the world (Singh et al., 2019; Xu et al., 2019).
In the present study, nineteen GCMs are used from NEX-GDDP experiment based on the
complete availability of the datasets. The details of the GCMs and their respective institutions

are presented in Table 7.1.
7.2.2 Spatial resolution and time period used for analysis

In order to simplify the analysis and for meaningful interpretation of the outcomes, the
meteorological datasets (both historical and future) are extracted from the NEX-GDDP
projections using the grid point locations that blanket the study area at a spatial resolution of
0.5° Lat x0.5° Lon. Due to the present spatial resolution of IMD meteorological data, authors
could not use the NEX-GDDP datasets at 0.25° Lat x0.25° Lon. The grid points (the total
count is 103) covering the study area are presented in Figure 1(c). It should be noted that the
NEX-GDDP datasets are bias-corrected using the historical meteorological data sets from the
Terrestrial Hydrology Research Group at Princeton University (Sheffield et al., 2006).
However, it is observed that the NEX-GDDP datasets, while compared with IMD
observations, are not capturing the extreme precipitation and temperature events at the
regional scale (more discussion is presented in Section 7.4). Therefore, bias-correction is

again carried out over 103 grid points. For bias correction, 1951-2005 is chosen as
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reference/baseline period (precipitation, maximum and minimum temperature) as historical
GCMs’ datasets are available up to 2005 and the IMD temperature datasets are available from
1951. For the comparison of future meteorological drought indices, the future time span is
divided into three equal lengths of 26 years, i.e., 2022-2047, 2048-2073, and 2074-2099.
Moreover, the drought indices and their properties for the recent past, i.e., 1993-2018 is used

as historical period and compared with three segments of the future period.

Table 7.1: List of the GCMs with their respective institution used for the present study

Sl o
No. Model Institution
Commonwealth Scientific and Industrial Research
1 ACCESS1-0 - .
Organization and Bureau of Meteorology, Australia
2 BCC-CSM1-1 Beijing Climate Center, China
Canadian Centre for Climate Modelling and Analysis,
3 CanESM2
Canada
4 CCSM4 National Center for Atmospheric Research, America
5 CESM1-BGC National Center for Atmospheric Research, America
Centre National de Recherches Meteorologiques, Centre
6 CNRM-CM5 Europeen de Recherche et Formation Avancees en Calcul
Scientifique, France
Commonwealth Scientific and Industrial Research
7 CSIRO-Mk3-6-0 Organization/Queensland Climate Change Centre of
Excellence, Australia
8 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, America
9 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, America
10 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, America
11 INMCM4 Institute of Numerical Calculation, Russia
12 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France
13 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France
14 MIROC-ESM Atmosphere and Ocean Research Institute, Japan
15 | MIROC-ESM-CHEM Atmosphere and Ocean Research Institute, Japan
16 MPI-ESM-LR Max Planck Institute for Meteorology, Germany
17 MPI-ESM-MR Max Planck Institute for Meteorology, Germany
18 MRI-CGCM3 Max Planck Institute for Meteorology, Germany
19 NorESM1-M Norway Consumer Council, Norway
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7.3 Research methodology

7.3.1 Bias correction of meteorological datasets

Initially, the bias correction of the daily meteorological datasets is performed at 103 grid
points over the study area using the IMD datasets as a reference during 1951-2005 for
selected 19 GCMs. In the context of future projection, it assumes stationarity of both the scale
relationship and internal errors from the GCM (Hewitson et al., 2014). In other words, the
correction factor for the present or historical period is valid for future conditions. In the
present study, the quantile mapping method is used to correct the bias in precipitation and
temperature datasets. Based on a comparative study among different bias correction methods,
Gudmundsson et al. (2012) suggested that non-parametric quantile mapping has the best skill
in reducing the bias as no specific distribution is assumed for the distribution of datasets and

is presented as follows.
V, =R (F, (V) (7.1)

where, Vo and Vi are observed and modelled meteorological variables (here, precipitation and
temperature), Fm is the cumulative distribution function (CDF) of Vi and Fo! is the inverse
CDF corresponds to Vo. The computation is performed by using the “qmap” package in R
developed by Gudmundsson (2016) and can be downloaded from https://cran.r-
project.org/web/packages/gmap/index.html.

7.3.2 Drought indices computation: SPI and SPEI

For each realisation (i.e., simulation from each GCM), the bias-corrected daily precipitation
and temperature (maximum and minimum) datasets are converted into monthly series. In
order to isolate the effect of temperature on future projections of meteorological drought, both
SPI and SPEI are chosen in the present study. In the warming climate, though the
precipitation may increase, the atmospheric evaporative demand may be more than the
increase in rainfall (Spinoni et al., 2019). Therefore, the influence of temperature on
meteorological drought is considered through the changes in Potential Evapotranspiration

(PET), which is used in the computation of meteorological drought such as SPEI.

For each future simulation, future scenario, GCM, and grid point, the series SPI and SPEI

values are computed. Following the methodology proposed by Mckee et al. (1993) for SPI
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and by Vicente-Serrano et al. (2010) for SPEI, the precipitation and water balance component
(i.e., the difference between precipitation and PET) are fitted with Gamma and log-logistic
distribution, respectively. It is worth mentioning that for the comparison of 3-time segments
during the future with historical, the transformation obtained during the baseline period from
1951 to 2005 is used for computation of SPI and SPEI for the accumulation period of 3, and
12 months in future and historical period (i.e., between 1993 and 2018). The computation is
performed using the “SCI” package in R developed by Gudmundsson and Stagge (2015) and

can be found at https://cran.r-project.org/web/packages/SCl/index.html. The computation of

SPI and SPEI is presented in Chapter 3 and Chapter 4, respectively. However, in the present
case, PET is computed using the Hargreaves method. For estimation of PET using the
Penman-Monteith’s method, other meteorological variables like cloud cover, wind speed,
relative humidity, sunshine hour are required along with the precipitation and temperature
data. Though all the variables described above are available for the past, unfortunately, such
variables at high resolution are not available in the NEX-GDDP experiment. Moreover, it is
found that Hargreaves method is superior to the Thornthwaite method (Aadhar and Mishra,
2020; Bandyopadhyay et al., 2012) and study revealed the similarity between the Hargreaves
method and Penman-Monteith’s method in estimating PET (Kingston et al., 2009). The
classification of drought is similar to the classification as presented in Chapter 3.

7.3.3 Drought frequency, severity, duration, peak and areal spread

Different drought properties are evaluated following Das et al. (2020), i.e., with the help of
“run theory” developed by Yevjevich (1967). In the present study, the events below -1 are
considered as drought events. Therefore, a drought event is explained as the length between
when an event falls down the pre-define truncation level (i.e., -1) and joins back to the
truncation level. The graphical representation of different drought properties using run theory
is presented in Chapter 3 (Figure 3.2).

With this understanding, the frequency of the drought is defined as the count of drought event
for a given duration. The duration of drought is defined as the temporal length of a drought
event, and the minimum length is one month. Similarly, the severity of a drought event is
estimated as the absolute cumulative sum of the SPI/SPEI series for that particular drought
duration. Therefore, drought duration and drought severity are strongly correlated. The
minimum value of SPI/SPEI for a particular drought event is referred to as peak. In order to

analyse the areal spread of the drought event, the maximum areal spread at each year is
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chosen to find out the inter-annual variability. The areal spread is computed based on the

fraction of area under drought (based on the grid points which are affected by drought).

It should be noted that the analysis is carried out over each division (kindly refer to Chapter 3)
over the entire Maharashtra. Initially, the weight of each grid point corresponding to any
division shapefile is computed. The weight represents the percentage of the area of any grid
point falling within the division shapefile. For instance, if the weight value of a grid is 1 (0.6),
then the complete grid (60% of the area) comes inside the shapefile. It is worth mentioning
that, for the comparison purpose, the historical period (i.e., 1993-2018) is denoted as “T0” and
similarly, 2022-2047, 2048-2073, and 2074-2099 segments are represented as “T1”, “T2”,

and “T3”, respectively.

7.4 Results

7.4.1 Bias correction: NEX-GDDP simulations versus IMD observation

Before using the nineteen GDDP simulations to project the two different meteorological
droughts and analyse different drought properties, the correctness of the meteorological
variables like precipitation, Tmax, and Tmin are evaluated using IMD observations during the
baseline period. As discussed in the Section 7.3.1, the bias correction is carried out using the

quantile mapping technique.

Bias correction relies on the reference or baseline data (Maraun et al., 2017). The NEX-
GDDP simulation datasets were bias-corrected using the historical meteorological data sets
from the Terrestrial Hydrology Research Group at Princeton University (Sheffield et al.,
2006). Although the NEX-GDDP data have been bias-corrected during their generation
process, it further needs bias-correction using the datasets available for the region (S. Chen et
al., 2020) as the number of observation gauges over the area may be more as compared to the
historical datasets used to correct initial bias in NEX-GDDP data. In this sense, while
examining the IMD and NEX-GDDP datasets, Jain et al. (2019) noticed variability in the
daily scale datasets of NEX-GDDP as compared to IMD dataset. Presently, while comparing
with different quantiles of the IMD observational datasets, it is observed that most of the
models show discrepancy at higher quantiles. In this sense, the NEX-GDDP model outputs
are bias-corrected based on the IMD observations. For the brevity, a comparison between the

before and after bias correction of precipitation for the grid point (75.375 long, 20.125 lat) is
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presented in Figure 7.1. Moreover, for maximum and minimum temperature, the comparison

plots are depicted in Figure 7.2

Before Bias-correction
T T

After Bias-correction
T T T T
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Figure 7.1: Heatmaps of before and after bias-correction of precipitation. The unit of colorbar

isin mm

The units in Figure 7.1 and Figure 7.2 are mm and degree Celsius, respectively. The values
represent the deviation from the observed data for each model and selected quantile. It can be
noted from Figure 7.1 that the bias correction has improved the modelled outcomes for the
higher quantiles (mostly the values at 95th, 99th, and 100th quantiles). However, in case of
maximum and minimum temperature datasets, the bias is adjusted over the entire series. For
maximum and minimum temperature series, the difference is high in case of minimum
temperature than maximum temperature. It should be noted that the difference values are
different at different grid points over the study area. The future projected values of
precipitation, maximum and minimum temperature are corrected based on the correction

during the baseline period.
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Figure 7.2: Heatmaps of before and after bias-correction of maximum and minimum

temperature. The unit of colorbar is in degree C

7.4.2 Projection during the 21st century: wetting or drying warming?

To analyse the projected climatological conditions during the 21st century over the study area
under RCP4.5 and 8.5 scenarios, the precipitation, Tmax, Tmin, and PET for T1, T2, and T3
segments are compared with TO period. Figure 7.3 shows the change in the Multi Model

Mean (MMM) of precipitation between 3 different future segments and historical period. The

upper (lower) panels show the monthly precipitation variations over Amaravati, Aurangabad,

and Konkan (Nagpur, Nashik, and Pune) regions under both the RCP scenarios. For Tmax,

Tmin and PET the monthly MMMs are presented in Figure 7.4, Figure 7.5, and Figure 7.6,

respectively.
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It can be noted from Figure 7.3 that the monthly precipitation during TO is high over Konkan
as compared to the other regions as Konkan region is situated in the Western Ghats, a high
precipitation zone due to its geographical aspects. Similarly, Aurangabad and Nashik regions
receive less precipitation (within 120-160mm) during the monsoon period with comparison to
other regions during TO. During 2022-2099, the precipitation during the monsoon period is
likely to increase overall the regions except Konkan. The future projected monthly
precipitation pattern during 2022-2099 over Konkan shows no significant change under both
the scenarios. The increase in the monthly precipitation (mostly during monsoon) is higher
under RCP8.5 than RCP4.5. In particular, the monsoon precipitation is projected to increase
over Amaravati by 15-27% for RCP4.5 and 20-40% for RCP8.5, over Aurangabad by 21-34%
for RCP4.5 and 21-44% for RCP8.5, over Nagpur by 7-19% for RCP4.5 and 17-34% for
RCP8.5, over Nashik by 14-25% for RCP4.5 and 13-34% for RCP8.5, and over Pune by 10-
19% for RCP4.5 and 13-33% for RCP8.5 during 2022-2099. Moreover, monthly precipitation
is likely to increase from T1 to T3, i.e., T1I<T2<T3. In general, a wetting tendency is observed

during the 21st century under both the scenarios except Konkan.

The future projections of Tmax and Tmin are presented in Figure 7.4 and Figure 7.5,
respectively. It can be noticed from both the figures that the MMM of monthly maximum and
minimum temperature are projected to increase as compared to the historical period in both
the scenarios over all the regions. However, the increase is more in case of RCP8.5 than
RCP4.5 with the same pattern as precipitation, i.e., T1<T2<T3. The average temperature is
projected to increase over Amaravati by 0.58-3.4°C for RCP4.5 and 1.66-4.5°C for RCP8.5,
over Aurangabad by 0.43-3.3°C for RCP4.5 and 1.46-4.4°C for RCP8.5, over Konkan by
0.43-3.3°C for RCP4.5 and 1.37-3.2°C for RCP8.5, over Nagpur by 0.46-3.3°C for RCP4.5
and 1.43-4.4°C for RCP8.5, over Nashik by 0.57-3.1°C for RCP4.5 and 1.47-4.1°C for
RCP8.5, and over Pune by 0.72-2.6°C for RCP4.5 and 1.54-3.5°C for RCP8.5 during 2022-
2099. The projected temperature changes are in line with the latest report of the
Intergovernmental Panel on Climate Change (IPCC, 2014) based on the CMIP5 simulations.
Therefore, in a broader sense, the projected climatology over Maharashtra is likely to be
wetting and warming during the 21st century except for Konkan region as compared to
historical. In the Konkan region, the warmer climatology is likely to prevail with no

significant change in the monthly precipitation variability.
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Figure 7.3: Monthly precipitation variability over different regions under RCP4.5 and 8.5 scenarios
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Figure 7.4: Monthly Tmax variability over different regions under RCP4.5 and 8.5 scenarios
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The general agreement among the climate simulations projects towards a warmer world
during the 21st century (IPCC, 2014b; Meehl et al., 2007) and hence, an increase in the PET
can be expected as it is driven by the temperature. The projected PET over the study area is
presented in Figure 7.6. It can be noted from the figure that there is no significant variation in
MMM of monthly PET between the two scenarios over all the regions. However, an increase
in the PET is projected during the months from January to April over Amaravati, Aurangabad,
Nagpur, and Nashik with T1<T2<T3. The projected increase in the evaporative demand does
not necessarily intensify the drought properties over the region (Spinoni et al., 2019).
However, the collective influence of both precipitation and PET will control the
characteristics and properties of drought.

7.4.3 Drought properties & its projection during the 21st century
7.4.3.1 SPEI drought frequency

In the present study, the drought frequency is computed for severe and extreme drought
conditions. Figure 7.7 represents the SPEI drought frequency over different regions under
RCP4.5 and 8.5 scenarios for short-term scale. The grouped box plot is developed to make the
comparison of drought frequency between severe and extreme drought classes. The boxplot
represents the MMM of all the nineteen GCMSs over the grid points for a particular region. It
should be noted that the number of grid points are different for each region. In particular,
Amaravati, Aurangabad, Konkan, Nagpur, Nashik, and Pune include 25, 35, 17, 18, 30, and
29 grid points, respectively. The summation of all the individual grid points is greater than the
total number of grid points inside the Maharashtra as the inside regions share the common

boundary with other regions.

To analyse the temporal variability, three segments (T1, T2, and T3) of the future period are
compared with the historical (T0). The change in the drought frequency is computed based on
percentage change in the mean. It is projected that for all the future segments and all the
regions, the drought frequency for extreme drought condition is likely to increase under
RCP4.5 and 8.5. For instance, the percentage increase over Amaravati varies from 46 to 92%
in RCP4.5 and 38 to 115% in RCP8.5, over Aurangabad 20 to 53% in RCP4.5 and 13 to 80%
in RCP8.5, over Konkan 42 to 50% in RCP4.5 and 7 to 71% in RCP8.5, over Nagpur 50 to
100 % in RCP4.5 and 42 to 133% in RCP8.5, over Nashik 53 to 92% in RCP4.5 and 46 to
115% in RCP8.5, and over Pune 25 to 38% in RCP4.5 and 38 to 63% in RCP8.5 for short-
term drought condition.
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Figure 7.6: Monthly PET variability over different regions under RCP4.5 and 8.5 scenarios
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Figure 7.7: Grouped boxplot of historical and future drought frequency over different regions for short-term drought based on SPEI. SD and ED



Likewise, the percentage change in frequency of severe drought is likely to increase under
both the scenarios over most of the regions except Pune and Konkan region. For instance,
over Amaravati 33 to 40% in RCP4.5 and 26 to 33% in RCP8.5 and over Nashik, the

percentage increase varies from 5 to 15% in RCP4.5 and 5 to 11% in RCP 8.5, among others.

Similarly, the spatio-temporal variability of drought frequency over different regions under
RCP4.5 and 8.5 scenarios for long-term scale is presented in Figure 7.8. It is noticed that the
percentage change of severe drought frequency is likely to either decrease or remain
insignificant with respect to TO under both the scenarios over all the regions. Similarly, the
percentage change of extreme drought is projected to increase or remain unchanged no change
as compared to TO under both the scenarios except over Aurangabad (during T1 in RCP8.5).
The highest positive change is noticed over Konkan, i.e., 100 to 150% in RCP4.5 and 50 to
150% in RCP8.5.

7.4.3.2 SPI1 drought frequency

Figure 7.9 represents the SPI drought frequency over different regions under RCP4.5 and 8.5
scenarios for short-term scale. It is projected that for all the future segments (except T3 in
RCP4.5 over Aurangabad) and all the regions the drought frequency for severe drought
condition is likely to increase under RCP4.5 and 8.5. For instance, the percentage increase
over Amaravati varies from 11 to 33% in RCP4.5 and 22 to 33% in RCP8.5, over Konkan
25% in RCP4.5 and 25 to 37% in RCP8.5, over Nagpur 9 to 18 % in both RCP4.5 and 8.5,
over Nashik 12.5% in RCP4.5 and 12.5 to 25% in RCP8.5, and over Pune 10 to 20% in
RCP4.5 and 20 to 30% in RCP8.5 for short-term drought condition. Likewise, the percentage
change in frequency of extreme drought is likely to increase under both the scenarios over all
the regions with a significantly larger magnitude than severe drought in short-term drought
condition. For instance, over Nagpur and Nashik the percentage increase in RCP4.5 and 8.5
varies between 100 to 120%, and 100 to 140%, respectively, among others. Similarly, the
spatio-temporal variability of drought frequency over different regions under RCP4.5 and 8.5
scenarios for long-term scale is presented in Figure 7.10. It is noticed that except over
Amaravati (during T1 in RCP4.5) and Konkan (during T1 and T2 in RCP4.5 and T1 in
RCP8.5), the percentage change of severe drought frequency is likely to decrease or no
significant change with respect to TO under both the scenarios. Likewise, the percentage

change of extreme drought is projected to increase or no change as compared to TO under
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Figure 7.8: Grouped boxplot of historical and future drought frequency over different regions for long-term drought based on SPEI.
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Figure 7.9: Grouped boxplot of historical and future drought frequency over different regions for short-term drought based on SPI
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Figure 7.10: Grouped boxplot of historical and future drought frequency over different regions for long-term drought based on SPI
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both the scenarios except over Aurangabad (during T3 in RCP4.5), over Pune (during T3 in
RCP4.5), and over Pune (during T3 in RCP8.5). The highest positive change is noticed over
Konkan, i.e., 100 to 200% in RCP4.5 and 8.5.

7.4.3.3 SPEI drought severity

The MMM of all the climate models over the grid points is plotted in the form of boxplot and
depicted under Figure 7.11. It is observed from the figure that during short-term scale drought
the severity over Amaravati (42 t0127% in RCP4.5 and 39 to 218% in RCP8.5), Aurangabad
(19 to 100% in RCP4.5 and 20 to 172% in RCP8.5), Konkan (44 to 61% in RCP4.5 and 4 to
112% in RCP8.5), Nagpur (35 to 95% in RCP4.5 and 32 to 180% in RCP8.5), Nashik (46 to
155% in RCP4.5 and 53 to 257% in RCP8.5), and Pune (32 to 51% in RCP4.5 and 28 to 93%
in RCP8.5) is likely to increase during 21st century over both the scenarios. The percentage
change is computed for the change in mean (from the boxplot) between historical and future
segments. Similarly, percentage change of severity as compared to TO is observed for long-
term scale drought over Amaravati (up to 53% in RCP4.5 and up to 60% in RCP8.5),
Aurangabad (up to 20% in RCP4.5 and 46% in RCP8.5), Konkan (2% in RCP4.5 and up to
78% in RCP8.5), Nagpur (up to 33% in RCP4.5 and 24% in RCP8.5), Nashik (up to 33% in
RCP4.5 and up to 90% in RCP8.5). However, during long-term scale, the projected change
with respect to TO is likely to decrease during T1 and T2 in RCP8.5 over Pune (-9 to -26%),
during T2 in RCP8.5 over Konkan (-5%) and Nagpur (-3%).

7.4.3.4 SPI1 drought severity

The MMM of all the climate models over the grid points is plotted in the form of boxplot and
depicted under Figure 7.12. The grouped boxplot for each region is plotted to present the
average severity between RCP4.5 and 8.5. It is observed from the figure that during short-
term scale drought the severity over Amaravati (8 t016% in RCP4.5 and 12 to 28% in
RCP8.5), Konkan (32 to 44% in RCP4.5 and 29 to 64% in RCP8.5), Nagpur (17 to 24% in
RCP4.5 and 19 to 40% in RCP8.5), Nashik (16 to 18% in RCP4.5 and 16 to 38% in RCP8.5),
and Pune (10 to 15% in RCP4.5 and 8 to 28% in RCP8.5) is likely to increase during 21st
century over both the scenarios. The percentage change is computed for the change in mean
(from the boxplot) between historical and future segments. However, over Aurangabad, the
severity is projected to increase (7 to 25%) only in RCP8.5 scenario. Similarly, decreasing or

not significant change of severity as compared to TO is observed for long-term scale drought
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Figure 7.11: Grouped boxplot of historical and future drought severity over different regions under RCP4.5 and 8.5 scenarios. The upper panel

presents short-term drought and the lower one presents long-term drought based on SPEI
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Figure 7.12: Grouped boxplot of historical and future drought severity over different regions under RCP4.5 and 8.5 scenarios. The upper panel

presents short-term drought and the lower one presents long-term drought based on SPI
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over Aurangabad (up to -17% in RCP4.5), Konkan (-8 to -22% in RCP4.5 and T1 (-9%), T2
(-20%) in RCP8.5), Nagpur (T2 (-14%) and T3 (-9%) in RCP4.5 and T2 (-13%) in RCP8.5),
and Pune (-21 to -38% in RCP4.5 and T1 (-18%) and T2 (-37%) for RCP8.5). However,
during long-term scale, the projected change with respect to TO is likely to increase during T3
in RCP8.5 over Aurangabad (53%), Konkan (127%), Nashik (97%), Pune (67%) and under
both the scenarios over Amaravati (20 to 45% in RCP4.5 and 19 to 63% in RCP8.5). In most
of the cases, the increase in the severity under RCP8.5 is more than RCP4.5 for both the
drought scales. In addition, the lower level or minimum value of severity has increased
significantly over all the regions in short-term scale and over all the regions except for Pune
in long-term scale under RCP4.5 and RCP8.5 (except for T3).

7.4.3.5 SPEI drought duration

Figure 7.13 presents the average drought duration of MMM over different regions for short-
and long-term drought conditions and different scenarios in the form of a grouped boxplot. It
is observed from the figure that the variability of drought duration is projected to increase
significantly in future for short-term drought. Precisely, the minimum value of duration is
likely to increase significantly as compared to the historical period. The percentage change is
computed over all the region with respect to the mean value. The highest percentage increase
in the drought duration (i.e., 63%) is observed over Nashik in RCP8.5 followed by 52% over
Amaravati in RCP8.5. No significant change is observed during T1 over Konkan in RCP4.5
and over Konkan and Pune in RCP8.5. While considering the long-term scale drought
condition, the projected change in the drought duration for different regions and two scenarios
are as follows. Amaravati and Nashik have shown an increase in the percentage of drought
duration for all the time periods in RCP4.5 and RCP8.5. However, the percentage decrease in
the drought duration is noticed over Pune under both the scenarios, over Konkan in RCP4.5,
and over Nashik in RCP8.5. No significant change is noticed over Aurangabad under RCP4.5

scenario.

7.4.3.6 SPI drought duration

Figure 7.14 presents the average drought duration of MMM over different regions for short-
and long-term drought conditions and different scenarios in the form of grouped boxplot. It is
observed from the figure that the variability of drought duration is projected to decrease
significantly in future. Precisely, the minimum value of duration is likely to increase

significantly as compared to the historical period. The percentage change is computed over
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Figure 7.13: Grouped boxplot of historical and future drought duration over different regions under RCP4.5 and 8.5 scenarios. The upper panel

presents short-term drought and the lower one presents long-term drought based on SPEI
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Figure 7.14: Grouped boxplot of historical and future drought duration over different regions under RCP4.5 and 8.5 scenarios. The upper panel

Amaravati

Auran

abad

Konkan

Na

pur

Nashik

Pune

3 3 3 3 3
3-month I
A RN RN Y 25 250 . 1 L1 25 25
HDHH HHHH | | 7 i ngé HQEL o |re A
2 - 2r 0 L = [ T 2 R i 20 . LT 2t 4 - s _—
‘ - T P ; T 3 5 - B - i
P00 U509 " Hage [Heae || 500 Sl L HeoB8|0%aT | |[one|[oae
i i 150 ! L 15 H Hi TNs 151 ; 150 Tl
1 1 1 1 1
05 05 05 05 05
TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3
RCP4.5 RCP85 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP85 RCP4.5 RCP8.5 RCP4.5 RCP8.5
Amaravati 5 Aurangabad 5 Konkan 15 Nagpur 15 Nashik 15 Pune
12-month 3 i
10 . 10 o M0f - T 10 | LT 0 ) .
1356 n%a0 ) | Had 1 O g; aalmveg ] By B
! = BHps : : Lo T F 7 1 EQ 3 H : : : ; B T &
JraT et 0988 Do 00| [Bp o P el | P af s UTEB | U T e T80, ) T
TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT27T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3 TOTIT2T3
RCP4.5 RCPE.5 RCP4.5 RCP8.5 RCP4.5 RCP85 RCP4.5 RCP85 RCP4.5 RCP8.5 RCP4.5 RCP8.5

presents short-term drought and the lower one presents long-term drought based on SPI

155




all the region with respect to the mean value. Over Amaravati, Aurangabad, Nagpur, Nashik,
and Pune the change in the drought duration with respect to historical is not significant for the
short-term drought condition in RCP4.5 and in RCP8.5. In addition, there is an increase in the
drought duration of 12% and 10% during T3 in RCP8.5 over Nagpur and Nashik,
respectively. However, in Konkan, the drought duration for short-term drought condition is
likely to increase 15 to 21% in RCP4.5 and 10 to 24% in RCP8.5. While considering the long-
term scale drought condition, the projected change in the drought duration for different
regions and two scenarios are as follows. T2 and T3 over Amaravati have no significant
change in both the scenarios; however, 18% and 22% increase is projected during T1 in
RCP4.5 and RCP 8.5, respectively. Except Amaravati, the change in the drought duration is
likely to decrease or exhibits no significant change over all other regions for both the RCP
scenarios. For example, the percentage decrease over Konkan and Pune is expected in the
range of -25 to -30% and -28 to 41%, respectively under RCP4.5 and -7 to -31% and -10 to -
41%, respectively under RCP8.5.

7.4.3.7 SPEI drought peak

The MMM of average drought peak over most of the regions is projected to increase under
both the scenarios (Figure 7.15) during short and long-term drought conditions. It should be
noted that the absolute value of peak is presented in the grouped boxplot. Precisely, for short-
term drought condition, the peak over Amaravati (30 to 95% in RCP4.5 and 30 to 141% in
RCP8.5), Aurangabad (14 to 75% in RCP4.5 and 16 to 119% in RCP8.5), Konkan (3 to 52%
in RCP4.5 and 9 to 90% in RCP8.5), Nagpur (33 to 88% in RCP4.5 and 33 to 136% in
RCP8.5), Nashik (29 to 105% in RCP4.5 and 33 to 156% in RCP8.5), and Pune (up to 52% in
RCP4.5 and 2 to 92% in RCP8.5) is projected to increase during the 21st century. Similarly,
for long-term drought condition, the peak over Amaravati (26 to 33 % in RCP4.5 and 28 to
34% in RCP8.5), Aurangabad (15 to 17% in RCP4.5 and 17 to 22% in RCP8.5), Konkan (19
to 21% in RCP4.5 and 18 to 38% in RCP8.5), Nagpur (19 to 33% in RCP4.5 and 20 to 37% in
RCP8.5), Nashik (18 to 23% in RCP4.5 and 23 to 35% in RCP8.5), and Pune (4 to 7% in
RCP4.5 and 1 to 13% in RCP8.5) is likely to increase. In addition, the increase in case of
RCP85 is larger than RCP45 for both the drought conditions.
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Figure 7.15: Grouped boxplot of historical and future drought peak over different regions under RCP4.5 and 8.5 scenarios. The upper panel

presents short-term drought and the lower one presents long-term drought based on SPEI
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Figure 7.16: Grouped boxplot of historical and future drought peak over different regions under RCP4.5 and 8.5 scenarios. The upper panel

presents short-term drought and the lower one presents long-term drought based on SPI
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7.4.3.8 SP1 drought peak

The MMM of average drought peak over most of the regions is projected to increase under
both the scenarios (Figure 7.16) during short and long-term drought conditions. It should be
noted that the absolute value of peak is presented in the grouped boxplot. Precisely, for short-
term drought condition, the peak over Amaravati (14 to 16% in RCP4.5 and 16 to 24% in
RCP8.5), Aurangabad (11% in RCP4.5 and 14 to 21% in RCP8.5), Konkan (18 to 25% in
RCP4.5 and 19 to 33% in RCP8.5), Nagpur (18 to 22% in RCP4.5 and 20 to 31% in RCP8.5),
Nashik (15 to 17% in RCP4.5 and 17 to 27% in RCP8.5), and Pune (13 to 18% in RCP4.5 and
15 to 24% in RCP8.5) is projected to increase during 21st century. Similarly for long-term
drought condition, the peak over Amaravati (19 to 26 % in RCP4.5 and 16 to 27% in
RCP8.5), Aurangabad (4 to 10% in RCP4.5 and 6 to 14% in RCP8.5), Konkan (7 to 11% in
RCP4.5 and 6 to 30% in RCP8.5), Nagpur (10 to 21% in RCP4.5 and 10 to 25% in RCP8.5),
Nashik (7 to 10% in RCP4.5 and 10 to 20% in RCP8.5), and Pune (12% during T3 in
RCP8.5) is likely to increase. In addition, the increase in case of RCP8.5 is larger than
RCP4.5 for both the drought conditions.

7.4.3.9 SPEI drought areal spread

The areal spread is calculated for each month considering the number of grid points under the
classification of extreme drought and their summation in terms of area. Subsequently, the
computed area is divided by the total area to find out the fraction of area affected. An
empirical cumulative distribution function (ECDF) is computed for each GCM, and the mean
ECDF of all the GCMs is plotted against the historical period to examine the change in the
monthly areal spread. Figure 7.17 presents the monthly spatial extent of extreme drought for
short-term drought under both scenarios.

It is evident from the figure that the monthly spatial extent of extreme drought is projected to
increase with respect to historical over all the regions. Similarly, the monthly spatial extent of
extreme drought is likely to increase for long-term drought (except for Pune) as well (Figure
7.18). In particular, under short-term drought, the areal spread over Amaravati (61 to 150% in
RCP4.5 and 54 to 223% in RCP8.5), Aurangabad (17 to 94% in RCP4.5 and 17 to 152% in
RCP8.5), Konkan (3 to 98% in RCP4.5 and 11 to 158% in RCP8.5), Nagpur (60 to 143% in
RCP4.5 and 45 to 243% in RCP8.5), Nashik (137 to 300% in RCP4.5 and 144 to 419% in
RCP8.5), and Pune (5 to 69% in RCP4.5 and 49 to 111% in RCP8.5) is projected to
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Figure 7.17: The mean ECDF of monthly spatial extent of extreme drought during T1, T2, and T3 over different regions for short-term drought
based on SPEI
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based on SPEI
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increase during the 21st century. Similarly, for long-term drought, over Amaravati (50 to
131% in RCP4.5 and 64 to 118% in RCP8.5), Aurangabad (1 to 24% during T1 & T2 in
RCP4.5 and 12 to 46% in RCP8.5), Konkan (27 to 70% in RCP4.5 and 46 to 103% in
RCP8.5), Nagpur (1 to 110% in RCP4.5 and 11 to 54% in RCP8.5), and Nashik (113 to 146%
in RCP4.5 and 174 to 275% in RCP8.5) the areal spread of extreme drought is likely to

increase.
7.4.3.10 SPI drought areal spread

Figure 7.19 presents the monthly spatial extent of extreme drought for short-term drought
under both the scenarios. It is evident from the figure that the monthly spatial extent of
extreme drought is projected to increase with respect to historical over all the regions. There
is no significant difference among the three future segments and between the two scenarios.
Similarly, the monthly spatial extent of extreme drought is likely to increase for long-term
drought as well (Figure 7.20). In particular, under short-term drought, the areal spread over
Amaravati (73 to 95% in RCP4.5 and 93 to 121% in RCP8.5), Aurangabad (37 to 49% in
RCP4.5 and 62 to 84% in RCP8.5), Konkan (60 to 90% in RCP4.5 and 59 to 112% in
RCP8.5), Nagpur (126 to 141% in RCP4.5 and 120 to 165% in RCP8.5), Nashik (100 to
111% in RCP4.5 and 128 to 151% in RCP8.5), and Pune (95 to 104% in RCP4.5 and 98 to
131% in RCP8.5) is projected to increase during 21st century. Similarly, for long-term
drought, over Amaravati (43 to 204% in RCP4.5 and 96 to 214% in RCP8.5), Aurangabad (9
to 49% during T1 & T2 in RCP4.5 and 29 to 107% in RCP8.5), Konkan (44 to 167% in
RCP4.5 and 110 to 177% in RCP8.5), Nagpur (7 to 169% in RCP4.5 and 28 to 109% in
RCP8.5), Nashik (23 to 97% in RCP4.5 and 112 to 199% in RCP8.5), and Pune (8% during
T1 in RCP4.5 and 7% during T1 in RCP8.5) the areal spread of extreme drought is likely to
increase. Conversely, during T2 and T3, the areal spread of drought is projected to decrease
over Pune under both the scenarios and over Aurangabad during T3 under RCP4.5 scenario

only.
7.4.4 Temperature and its implications on meteorological drought

In the present study, the influence of temperature on meteorological drought is examined
through the SPEI drought index. Although the comparison between SPI and SPEI is available
in the literature based on GCM and Regional Climate Model (RCM) outputs (Spinoni et al.,

2019; Touma et al., 2015); however, no corresponding detailed study is available that
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incorporates the projections from the NEX-GDDP experiments. Past analysis reveals that the
increase in the drying tendency (i.e., increase in evapotranspiration) outweighs the increase in
wetting tendency (i.e., increase in the rainfall). Therefore, the future projections of drought
are likely to vary between the index that considers only precipitation and the index which
involves both precipitation and evapotranspiration (and hence temperature).

In order to examine the influence of temperature on meteorological drought, the difference in
percentage (in fraction) of different drought properties between SPEI and SPI is carried out.
Initially, the percentage of each drought properties with respect to the historical period is
computed for both SPI and SPEI over all the divisions and time scale. Then, the percentage
change in the case of SPEI is subtracted from the percentage change in the case of SPI. Here,
the assumption is that subtracting the influence of precipitation from the combine influence of
precipitation and temperature may provide an implication of temperature influence on
meteorological drought. Figure 7.21 presents the percentage difference (in fraction) of
different drought properties between SPEI and SPI. In other words, it represents the change in

the percentage of different drought properties as the inclusion of temperature.
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Figure 7.21: Percentage difference (in fraction) of different drought properties between SPEI
and SPI. It represents the increase or decrease in the drought properties in SPEI with respect
to SPI
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In the figure, for instance, T1_3 45 defines the 3-month drought condition during T1 under
RCP4.5 scenarios. It can be noted from the figure that over most of the regions and future
time segments under both the scenarios, the percentage increase in drought properties like
severity, duration and peak is more in case of SPEI than SPI for short and long-term drought
conditions. In case of extreme drought frequency, the percentage change in the short-term
drought condition decreases in SPEI than SPI in most of the cases. However, in long-term
drought condition, the percentage change in extreme drought frequency increases in SPEI in
most of the cases. A similar kind of pattern is noticed in case of severe drought frequency. In
addition, over the Konkan, the decrease in percentage in case of SPEI as compared to SPI is
observed over all the future time segments, under both the scenarios and in both drought
conditions. In the case of areal spread of extreme drought condition based on SPEI, the
decrease in the percentage is noticed over Amaravati, Aurangabad, Konkan, and Nagpur in
long-term drought condition. The highest decrease is observed in the case of Pune during
short-term drought condition.

7.4.5 ldentification of hotspot regions

The identification of meteorological hotspots during the 21% century based on SPI and SPEI
enables the agricultural and water resources planners to devise proper adaptation strategies
during different climate change scenarios. To demarcate the hotspot regions, 5% change in
the drought properties with respect mean is considered as significant. It should be noted that
there is no specific thumb rule to select the threshold to determine the significance. Here, £5%
is chosen to remain at a safe side in the rapidly changing climate scenarios. Four different
drought properties such as extreme drought frequency, severity, peak, and extreme drought

areal spread are considered to identify the hotspot zones.

The conditions based on which the hotspot is classified as follows, symbol “++++” defines a
significant increase in all the four drought properties. The sign “+” (“-””) denotes significant
increase (decrease) in three drought properties out of four in SPEI and SPI. The “=" sign
refers there is no significant change in the drought properties. The worst condition, which is
used to identify the hotspot, is coloured with dark red and suggests “++++” conditions in both
SPEI and SPI. The red colour represents “+” condition in both SPEI and SPI. The
combination of conditions such as “+” in SPEI and “=" in SPI, “=" in both SPEI and SPI, and
“="1in SPEI and “-” in SPI are denoted by pink, white, and blue, respectively. Though there

may exist a larger number of alternatives based on different combination of conditions, the
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present analysis considers the combinations that are observed over the study area. It should be

noted that if at one drought index the condition is “++++” and for the other the condition is

__% (13

or then that particular region is demarcated as dashed line. The combination like

“++++” and “+” is not observed over any region. Figure 7.22 presents the different

combinations, as discussed above.
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Figure 7.22: Identification of drought hotspots over Maharashtra for short- (two columns from

left) and long- (two columns from right) term drought conditions

It is evident from the figure that for short-term drought (four columns from left) condition,
during T2 and T3, all the regions are expected to fall in the hotspot category under both the
RCP scenarios. However, during T1, except Konkan and Pune, all other regions come under
hotspot category. The picture for long-term drought (four columns from right) condition is
quite different from the short-term. During T1 and RCP4.5 (RCP8.5), Amaravati, Nagpur, and
Nashik (Amaravati, and Nashik) are likely to come under hotspot. No hotspot region is
identified during T2 for both the scenarios and T3 in RCP4.5. However, Konkan and Nagpur
are identified under hotspot classification during T3 under RCP8.5. The less frequent and
severe drought event regions are noticed in long-term drought condition. For instance, Pune
during T1 for both the scenarios, Pune and Aurangabad (during T2 in RCP4.5), Pune and
Nagpur (during T2 in RCP8.5), Pune, Amaravati, and Nagpur (during T3 in RCP4.5), and

Pune (during T3 in RCP8.5). Moreover, for SPEI, the unrecorded past extreme events are
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likely to be noticed in future and not in case of SPI. In this sense, excluding temperature from

the computation of meteorological drought could mislead the outcomes.
7.5 Discussion and summary

Concurrent increase or decrease of future hydro-meteorological variables makes it
cumbersome to understand the regional future meteorological droughts characteristics. Hence,
the role of climate variables in modulating drought attributes at regional scale impose needs to
be examined. The present study makes an attempt to answer the three important questions in
terms of future meteorological drought characteristics and drought hotspot identification using

different drought indices and outputs from the nineteen NEX-GDDP simulations.

The monthly precipitation and temperature are expected to increase in the future climate
change scenarios with more increase evident in case of RCP8.5 than RCP4.5. Therefore, in a
broader sense, the projected climatology over Maharashtra is likely to be wetting and
warming during the 21% century. The present findings are similar to those obtained by TERI
(2014). The increase in temperature and precipitation over the study area can be attributed to
the increasing rate of global warming (YYaduvanshi et al., 2019). In addition, the compounding
changes in the season precipitation and temperature will affect the water availability
(Konapala et al., 2020). In particular, the spatio-temporal variability of precipitation and
temperature may alter the surface hydraulic conditions and can cause a shift in water balance

over and under the ground (Sapriza-Azuri et al., 2015).

The future projections of different drought properties are likely to increase mostly for the
short-term drought condition. However, the drought properties like peak and areal spread are
expected to increase for both short and long-term drought conditions. In addition, the
frequency of severe and extreme drought is projected to increase under short-term drought
condition. The present findings are in line with those obtained by Gupta and Jain (2018),
Bisht et al. (2019) using various sets of global climate model datasets. The increase in the
temperature leads to enhance the atmospheric water demand in the regions and subsequently,
is likely to increase the drought frequency (Aadhar and Mishra, 2018; Greve et al., 2014).
Therefore, in order to formulate the resilient adaptation strategies and policies to combat the
future drought events, special attention should be given to the overall development of the

farming community (P. Udmale et al., 2014).
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The comparative analysis between the SPI and SPEI demonstrates the significant importance
of temperature in modulating the future drought events (Ahmadalipour et al., 2017; Spinoni et
al., 2020). In the present study, the drought properties like severity, duration, and peak are
expected to increase more in case of SPEI as compared to SPI over most of the regions.
Though the precipitation amount is likely to increase in the future, it does not confirm the
decrease in the drought properties as atmospheric water demand is expected to increase in
future warming climate (Roderick et al., 2015; Scheff and Frierson, 2015; W. Y. Wu et al.,
2020). Moreover, the present findings suggest that agriculture over the regions can be affected
due to the crop sensitivity to evapotranspiration (Jensen and Allen, 2016; Tabari and
Hosseinzadeh Talaee, 2014). However, the long-scale water availability can be less impacted

as it primarily depends on precipitation.

From the present analysis. It is found that for short-term drought condition all the regions are
identified as meteorological drought hotspots during 2022-2047 (except Konkan and Pune),
2048-2073, and 2074-2099. However, the number of hotspot regions decreases in long-term
drought condition as compared to short-term drought condition. For instance, during 2022-
2047 and RCP4.5 (RCP8.5), Amaravati, Nagpur, and Nashik (Amaravati, and Nashik) are
likely to come under hotspot category. Konkan and Nagpur are identified under hotspot
classification during 2074-2099 under RCP8.5. In this sense, effective and sustainable
preparedness is needed to alleviate the drought risk in the future climate change scenario. In
addition, policy makers should consider the regional drought vulnerabilities while formulating
policies (Gupta and Jain, 2018). In this regard, key recommendation could be the conservation

and enhancement of water storage, groundwater recharge to improve the water use efficiency.

In summary, the significant findings from the present analysis point to the fact that with the
increase in the monthly mean temperature and precipitation (more in case of RCP8.5 than
RCP4.5), Maharashtra is likely to be wetting and warming during the 21% century except for
Konkan region as compared to historical. In Konkan region, the warmer climatology is likely
to prevail with no significant change in the monthly precipitation variability. The drought
properties like peak and areal spread are expected to increase for both short and long-term
drought conditions in most of the regions. The frequency of severe and extreme droughts is
likely to increase in the short-term drought condition with no sign of decrease at any time
segments and regions. Temperature plays an important role in modulating the meteorological
droughts and the present study notices the same in most of the cases in all the drought

properties especially in drought severity, duration, and peak. The number of hotspot regions
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decreases in long-term drought condition as compared to short-term drought condition. With
increasing drought variability in future, the next chapter deals in developing the seasonal
Severity-Area-Frequency (SAF) relationship using the future projections from GCMs under

different scenarios.
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Chapter 8

Investigating Future Seasonal
Drought Severity-Area-Frequency
(SAF) Curve

8.1 Introduction

The demand of water has increased profoundly due to population growth and expansion of
agricultural and industrial sectors. On the other hand, the dual pressure of climate change and
its spatio-temporal variability has contributed to water scarcity. The recurrent water scarcity is
likely to influence the economic and human development, and natural hazards with increased
severity can aggravate the situation (Amarasinghe et al., 2020). The modulation in the various
extreme weather events, as a result of changing climatic conditions, influences the frequency

and severity of different natural hazards (e.g., drought, flood, among others).
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At least once every three years, India is negatively impacted by drought conditions and
considered amongst the most vulnerable and drought-prone countries in the world (A.K.
Mishra and Singh, 2010; Mishra et al., 2019). In recent times, prolonged and widespread
drought condition with increased frequency has been observed over India (A.K. Mishra and
Singh, 2010; Sharma and Goyal, 2020). Hence, it is well understood that drought is likely to
affect the overall economy of the country under the climate sensitive economic sectors in
India (Shah and Mishra, 2020; P. Udmale et al., 2014). With this understanding, projection of
future drought at short- and long-term scales enable to formulate improved management
practices i.e., water harvesting schemes, land management practices, drought resistant
technologies, groundwater management practices, crop and livestock insurance etc. in order to
tackle with the adverse consequences of future drought events. General Circulation Models
(GCMs) are considered as credible tools in simulating long-term climate projections under
different climate change scenarios (Her et al., 2019; Mishra and Singh, 2009; Shivam et al.,
2017). In general, GCMs are modelled mathematically by considering the physical processes

across ocean, land and atmosphere (Sachindra et al., 2013).

However, initial parametrisation, formulation, model structure, and input data used for
development of GCMs can impose uncertainty in the final climate projections (Khan et al.,
2020; Mishra et al., 2014b). Likewise, the uncertainty associated with the future climatic
scenarios can be attributed to incomplete understanding and unpredictability about the
foreseen climate (New and Hulme, 2000). Thus, in order to devise sustainable planning and
decision- making, the practitioners should consider the uncertainty for future climate
scenarios (Hollermann and Evers, 2017). With this understanding, previous studies used
different techniques but are not limited to sensitivity analysis (Mearns et al., 1996), Monte
Carlo simulation (Shackley et al., 1998), reliability ensemble averaging (Giorgi and Mearns,
2003), imprecise probability (Ghosh and Mujumdar, 2009), Fuzzy uncertainty analysis
(Najafi and Hessami Kermani, 2017), Bayesian analysis (Das and Umamahesh, 2018). In the
present study, in order to quantify the GCM and scenario uncertainty, possibility theory is
used. The possibility theory assigns the possibility distribution based on the ability of GCMs
and emission scenarios to model the recent past under climate forcing. The possibility
approach is computationally inexpensive, straightforward, and useful in addressing partially
inconsistent knowledge and linguistic information based on intuitions (Mujumdar and Ghosh,
2008).
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The past records of different drought indices show increased aridity over many land areas
since 1950 (Dai, 2011b). Moreover, the drought risk is likely to increase in the twenty-first
century as suggested by different studies (Burke and Brown, 2008; Rind et al., 1990; Spinoni
et al., 2019). Thus, it is necessary to incorporate different drought characteristics in order to
evaluate the changes in drought events properly. For example, Severity-Area-Frequency
(SAF) relationship curve can be used for providing quantitative information about drought
through characterising various attributes of drought like return period, areal extent and
severity (Henriques and Santos, 1999). Therefore, SAF relationship has been used to
understand the nature of spatio-temporal characteristics of drought at regional scale. For
example, Reddy and Ganguli (2013) used SAF analysis to understand the drought
characteristics over western Rajasthan (India); recurrence pattern of meteorological drought
severity was carried out using SAF curve in the upper Blue Nile river region (Khadr, 2017);
SAF was used to perform the regional analysis of drought in Lake Urmia basin, Iran
(Amirataee et al., 2018) and Heihe River basin (China) (Z. Li et al., 2020). However, most of
the SAF analysis studies are executed for the historical time period. Thus, the present study
focuses on the possible future variability in the seasonal SAF curve ascertaining the

uncertainties associated with GCMs and scenarios.

The purpose of this study is to develop seasonal (pre-monsoon, monsoon, post-monsoon,
Rabi, and Kharif) SAF curve under meteorological drought condition over the study area. In
addition, the study aims to make the future projection of the seasonal SAF curve ascertaining
the uncertainty associated with GCMs and scenarios. The SPEI drought index is used as an
indicator of meteorological drought. In order to project for the future time period, nineteen
different GCMs under two different Representative Concentration Pathways (RCPs) 4.5 and
8.5 are chosen. Maharashtra, as a drought-prone state is selected to perform the analysis. To
the best of the authors’ knowledge, no such multifaceted investigation of drought has been
carried out over Maharashtra. It is expected that the outcomes from the present study can be

helpful in drought risk mitigation planning over the study area.
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8.2 Methodology

8.2.1 Possibility theory for uncertainty analysis

In order to facilitate the risk-based studies on future hydrologic extremes, modelling of GCM
and scenario uncertainty plays an important role. In the present climate change scenario, it is
relevant to evaluate the usefulness of GCMs in modelling climate change impact and to
analyse the ability of scenario to represent the present situation. In this sense, possibility
distribution is used to analyse the GCM and scenario uncertainties based on the performance
in capturing the climate change signals during the recent past. Zadeh (1999) proposed the
possibility theory to address inconsistent knowledge and incomplete information (Dubois,
2006). In the present study, the possibility theory is based on the ability of GCM and scenario
to simulate the SPEI value at 3-, 4-, and 6-month scales during recent past i.e., TO. Being a
measure of how well a GCM with a particular scenario predicts the SPEI values during TO,
the Nash-Sutcliffe Efficiency (NSE) is used which provides a measure of possibility value.
Unlike the probability, possibility is primarily ordinal and is not associated with frequency of
experiments (Mujumdar and Ghosh 2008). The possibility theory postulates that if a variable
X in the universe Q is not possible to estimate precisely, then the possibility that X can take

the value x can be expressed mathematically as (Spott, 1999)

IT, (x) : Q —[0,1] (8.1)

where, IT, (X) = 1 (IT, (x) = 0) suggests that X = x is possible (impossible) without any
restriction. The property of possibility distribution defines that there must be at least one X
such that TI,(x) = 1 and this property is known as normalization (Spott 1999). The
uncertainty analysis is carried out at each grid point under 3-, 4-, 6-month scales to access the
GCM and scenario uncertainties. In order to satisfy the normalization property, the results
obtained from NSE for nineteen GCMs and two scenarios are divided by the maximum NSE
value and the normalized value is considered as the possibility value for a corresponding

GCM and scenario.
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8.2.2 Formulation of SAF curves for Seasonal Droughts

The SAF relationship is commonly used to visualize and interpret the drought at regional
scale. The SAF curve defines the cumulative drought affected areas for the chosen severity
level under different return periods. Therefore, it enables to provide quick and effective
interpretation of drought condition in order to take sustainable mitigation measures
(Bonaccorso et al., 2015). In this study, the seasons: pre-monsoon, monsoon, post-monsoon,
Rabi and Kharif are considered for seasonal drought analysis.

It should be noted that the calculation is carried out after performing the GCM and scenario
uncertainty. The following steps are employed to derive the SAF curve over the study area: (i)
SPEI drought indicator is computed for 3-, 4- and 6-month time scales, where 3-month time
scale for pre-monsoon, post-monsoon season, 4-month time scale for monsoon and kharif
season, and 6-month time scale for rabi season, (ii) the drought indicator value less than zero
is taken into consideration for the further analysis, (iii) the frequency analysis is carried out by
considering the non-zero values using extreme value, normal, exponential, gamma,
lognormal, and Weibull distributions at each grid point for different drought time scale, (iv)
the severity as return levels for different return periods such as 5, 10, 25, 50, and 100 are
computed using the statistical parameter estimated for the corresponding grid point and
suitable distribution, (v) the spatial extent of drought occurrence is computed in terms of
percentage of area for different threshold values of drought severity, (vi) finally, the values of

severity, areal extent, and frequency are linked to construct the SAF curve.

It is worth mentioning that the analysis is carried out over each division. Initially, the weight
of each grid point corresponding to any division shapefile is computed. The weight defines
the percentage of grid area fall within the division shapefile. For example, if the weight value
of a grid is 0.7 (1), then 70% of the grid area (complete grid) comes inside the shapefile. The
computation for all the divisions is performed using “raster” package in R developed by
Hijmans et al. (2019). The present study considers five different severity values i.e., -1, -1.5, -
2, -2.5, -3 as threshold to calculate the drought-affected area below the threshold severity
level. Moreover, the threshold severity values are interpolated for the drought-affected area

using cubic interpolation technique.

In the present study, drought at 3-, 4-, and 6-month time scales are examined which represent

short-term to seasonal drought condition. The analysis would be help in identifying the
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operational definition of drought i.e., from meteorological to hydrological drought. In
particular, 3- to 4-month scale drought conditions highlight the soil moisture condition that
would help in guiding the agricultural operation. Similarly, 6-month scale drought condition

reflects the hydrological condition depending on the region and time of year.
8.3 Results

8.3.1 Uncertainty analysis and future projection of meteorological variables

The performance measure NSE is computed for nineteen GCMs under RCP4.5 and 8.5
scenarios based on their prediction of SPEI at 3-, 4-, and 6-month time scales in the recent
past (from 1993 to 2018). The possibility value is computed by dividing the maximum NSE
value with the NSE value of each model. This operation is carried out for each grid point
separately. Figure 8.1 presents the distribution of different GCMs and scenarios across the
study area for 3-month time scale. Figure 8.2 and Figure 8.3 depict the suitable GCM and
scenario for 4- and 6- month scales, respectively. It can be noted that for 3- month scale,
RCP4.5 (RCP8.5) scenario is considered as most possible scenario over 54% (46%) of total
grid points. Similarly, most possible scenario for 4-month time scale (6-month scale) is found
to be 53% (38%) of total grids for RCP4.5 and 47% (62%) of total grids for RCP8.5.
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Figure 8.1: Most suitable GCM/scenario at each grid point for 3-month time scale SPEI after

uncertainty analysis
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Considering the most possible GCM and scenario at each grid point, the spatio-temporal
variabilities with respect to TO for different variables such as precipitation, potential
evapotranspiration, maximum and minimum temperature are computed and plotted. Figure
8.4 presents the spatio-temporal variability (% change) of precipitation for different seasons
during T1, T2, and T3 time periods. Similarly, Figure 8.5, Figure 8.6, and Figure 8.7 shows
the spatio-temporal variability of potential evapotranspiration, maximum and minimum
temperature, respectively. From Figure 8.4, it can be noted that the precipitation magnitude is
projected to increase (decrease) in pre-monsoon by 65-79% (21-35%), in monsoon by 83-90%
(10-17%), in post-monsoon by 18-27% (73-82%), in Kharif by 79-86% (14-21%), in Rabi by
18-29% (71-82%) of total grid area between T1 and T3. In case of potential
evapotranspiration, it is projected to increases (decrease) in pre-monsoon by 49-57% (43-
51%), in monsoon by 24-44% (56-76%), in post-monsoon by 50-84% (16-50%), in Kharif by
50-69% (31-50%), in Rabi by 69-88% (12-31%) of total area during T1 and T3. However, the
future variability in maximum and minimum temperature is expected to increase over most of
the gridded area for all the seasons with maximum variability in case of minimum
temperature. In addition, it is noticed that the magnitude maximum and minimum temperature

is likely to increase from T1 to T3 as compared to TO.
8.3.2 Seasonal variability of SPEI under climate change

Based on the classification of SPEI, moderate, severe, and extreme drought conditions are
analysed for future periods and compared with TO. Figure 8.8 presents the season-wise
frequency of different drought conditions across the study area. The red circle in the boxplot
represents the mean frequency value. It is noted that the frequency of moderate drought
condition (Top panel of Figure 8.8) is expected to decrease during Kharif, monsoon, and pre-
monsoon seasons as compared to historical period. In case of Rabi season, the mean
frequency of moderate drought condition is likely to increase during T1 and decrease
gradually in T2 and T3. The mean frequency of severe drought condition is projected to have
no significant change in future as compared to TO during Kharif, monsoon, and pre-monsoon
seasons. However, it is likely to increase during post-monsoon and Rabi seasons. The future
projection of extreme drought condition shows an increasing frequency in post-monsoon, pre-
monsoon, and Rabi seasons, while no change is observed during Kharif and monsoon seasons

as compared to TO.
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8.3.3 Analysis of SAF curve over different regions

In this section, SAF curves are analysed over Amaravati, Aurangabad, Konkan, Nagpur,
Nashik, and Pune regions for 5-, 10-, 25-, 50-, and 100-yr return periods in different seasons
and compared with TO period. It should be noted that the severity return levels are computed
using the selected distribution for different return periods. As discussed, five different severity
values i.e., -1, -1.5, -2, -2.5, -3 are chosen to develop the SAF curve. Here, the results are

presented separately for different regions.

8.3.3.1 SAF curve for Amaravati

Figure 8.9 shows the area affected by different severity levels under different return periods
during pre-monsoon season over Amaravati region. The top, middle, and bottom panels
present for T1, T2, and T3 periods, respectively. The black line corresponds to TO period, red
line defines future simulation, and dashed red line represents the 95% confidence interval of
future simulation. During pre-monsoon season, in the case of the 5-year return period, the area

affected by different severity of drought is likely to increase for all the future time periods as
181



compared to TO. The area affected by the SPEI severity level less than -1.7 (for 10-year), -2.3
(for 25-year), -2.4 (for 50-year), and -2.9 (for 100-year) is projected to increase during T1, T2,
and T3 periods over Amaravati region. In case of monsoon season (refer to Figure 8.10 (a)),
the percentage of area is likely to increase below the SPEI severity level of -1.2 (for 5-year
during all time periods), -1.3 (for 10-year during T1), -1.4 (for 10-year during T2), -1.5 (for
10-year during T3), -1.7 (for 25-year during T1), -2.0 (for 25-year during T2), -2.1(for 25-
year during T3), -1.8 (for 50-year during T1), -2.2 (for 50-year during T2 and T3), -1.7 (for
100-year during T1), -2.3 (for 100-year during T2), and -1.9 (for 100-year during T3). During
post-monsoon season (refer to Figure 8.10 (b)), the drought affected area is likely to decrease
during T1 for all the return periods. Similarly, for T2 and T3 periods, the drought area is
projected to decrease for high return period severity values as compared to TO. In the case of
Kharif season (refer to Figure 8.10 (c)), the projected drought area is likely to increase over
more severe drought conditions for all the return periods and future time steps. Most of the
cases in Rabi season (refer to Figure 8.10 (d)), the projected drought-prone area is likely to

increase for different severity levels during the 21st century.
8.3.3.2 SAF curve for Aurangabad

The SAF curve related to the Aurangabad division is presented in Figure 8.11. Figure 8.11 (a)
describes the SAF curve for pre-monsoon season. It can be noted that for more severe drought
condition, the percentage of affected area is likely to increase for all return periods and future
time steps as compared to TO. For 50- and 100- year return periods, the entire area is projected
to affect by the drought severity between -1.5 and -1. The SAF curve for monsoon season is
presented in Figure 8.11 (b). For the future time period T2, for most of the return periods, it is
observed that the projected drought-affected area for different severity levels is likely to
decrease. In the case of T1 period, for more severe condition the percentage of area is
expected to increase. For 50- and 100-year return periods, the drought-affected area is reduced
significantly during T3 as compared to TO. Figure 8.11 (c) and Figure 8.11 (e) present the
SAF curves for post-monsoon and Rabi seasons. It can be observed that for both the seasons
that the projected drought areas under different severity levels are expected to increase for all
return periods and future time steps. However, in the Kharif season (Figure 8.11 (d)), the
future projected SAF curves under most of the return periods and time steps are likely to be
less severe than TO.
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Figure 8.10: SAF curve for Amaravati region. (a) for monsoon, (b) for post-monsoon, (c) for Kharif, (d) for Rabi
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Figure 8.11: SAF curve for Aurangabad region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi
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8.3.3.3 SAF curve for Konkan

The seasonal SAF curve for the Konkan region is presented in Figure 8.12. Figure 8.12 (a),
Figure 8.12 (b), Figure 8.12 (c), Figure 8.12 (d), and Figure 8.12 (e) denote pre-monsoon,
monsoon, post-monsoon, Kharif, and Rabi seasons, respectively. The future projected SAF
curves are likely to decrease as compared to TO for most of the return periods in pre-monsoon
season. During monsoon season, the future drought-prone area may increase for more severe
drought conditions under high return periods. For the severity level less than -1.8, the
drought-affected area is likely to increase as compared to TO. In most of the cases, an increase
in drought-affected area is observed during post-monsoon season. With increase in the return
period, the area under the drought is likely to decrease in Kharif season. For higher return
period, the area under the severe drought condition is expected to increase. During Rabi
season, the SAF curves for 50- and 100- year return periods and all future time steps are
projected to decrease as compared to TO. In case of T1 time step, the drought-affected area for
most of the severity levels is likely to reduce. However, the percentage of area under drought
may increase for the severity level less than -2.0 during T2, and T3 periods under 5- and 10-

year return periods.
8.3.3.4 SAF curve for Nagpur

The SAF curve for the Nagpur region is shown in Figure 8.13. The pre-monsoon SAF curve
(Figure 8.13 (a)) shows an increase in the percentage drought area in T2 future period. The
difference between future simulated and observed SAF curve is larger during T3 than T1.
During Monsoon season (Figure 8.13 (b)), it is observed that 0% area is affected by drought
for severity level less than -2.5 for 5- and 10- year return periods in future. The future SAF
curve under 100-year return period during T2 and T3 time steps is likely to decrease as
compared to TO. In most of the cases the future simulated area under drought is expected to
decrease in post-monsoon season (Figure 8.13 (c)). In Kharif season (Figure 8.13 (d)), for
most of the return periods, the percentage area increases (decreases) for high (low) severity
level as compared to TO. During T1 and T2, the area under drought is projected to decrease
under 100-year return period. However, the areal drought condition may increase during Rabi

season under all the return periods in future.
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Figure 8.12: SAF curve for Konkan region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi
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Figure 8.13: SAF curve for Nagpur region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi
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8.3.3.5 SAF curve for Nashik

Figure S11 depicts the SAF curve for Nashik region. In pre-monsoon season (Figure 8.14 (a)),
the increment in future projected drought-prone area is observed under all the return periods
for T1 time step. During T2 period, with increase in return period, the area under drought is
shifted towards the more severe drought condition. A similar kind of observation is also
noticed in case of T3 period. During monsoon season, in most of the cases the percentage of
areal drought has increased as compared to TO in different return periods (Figure 8.14 (b)).
The post-monsoon season (Figure 8.14 (c)) shows less variability in case of 25-, 50-, and 100-
year return periods. In general, the projected drought area is expected to increase during the
season. In Kharif season (Figure 8.14 (d)), a significant increment in the areal coverage of
drought is observed for all the return periods during T3 as compared to T1 and T2. Similar to
Nagpur region, the areal drought condition may increase during Rabi season under all the
return periods in future (Figure 8.14 (e)).

8.3.3.6 SAF curve for Pune

For Pune region, the SAF curve is presented in Figure 8.15. It is noticed that the area under
the drought is likely to decrease during pre-monsoon season (Figure 8.15 (a)) under high
return period. However, during T2 period, the drought-affected area for more severe drought
condition may increase under 5- and 10- year return periods. A gradual decrease in the
drought area is expected in future with increase in the return period during monsoon season
(Figure 8.15 (b)). However, it is observed that the SAF curves for all the return periods are
likely to increase in all future periods as compared to TO during post-monsoon season (Figure
8.15 (c)). In Kharif season (Figure 8.15 (d)), at high return levels the drought-affected areas
are likely to decrease for all the future time steps. However, for 5-, 10-, and 25- year return
periods, the SAF curve is likely to increase for severe drought conditions in future. Similar to
post-monsoon season, the areal drought condition may increase during Rabi season under all

the return periods in future (Figure 8.15 (e)).
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Figure 8.14: SAF curve for Nashik region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi
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Figure 8.15: SAF curve for Pune region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (€) for Rabi
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8.3.4 Changes in future drought-affected area

The changes in drought-affected areas are plotted using heatmaps. Figure 8.16 presents the
percentage in the drought-affected area in different seasons with respect to TO period. The
upper panel defines Amaravati region and lower panel refers to Aurangabad region. Similarly,
Figures 8.17 and Figures 8.18 present the percentage area change for Konkan (upper panel),
Nagpur (lower panel), and Nashik (upper panel), Pune (lower panel), respectively. It can be
noted that for higher magnitude of drought severity the percentage area under different return
periods is likely to increase for Amaravati. The increment in the drought prone area is
observed in case of pre-monsoon and Rabi seasons for Amaravati and Aurangabad divisions.
However, there will be significant decrement or no significant change in drought-affected area
for lower magnitude of drought severity. In a similar way, in Konkan division, there is no sign
of increment in drought-affected area during pre-monsoon season. However, during other
seasons, there is a significant increase in drought-affected area for extreme drought condition
except for T1 future period during Rabi season. Likewise, in Nagpur, pre-monsoon and Rabi
seasons and in Pune, post-monsoon and Rabi seasons are comparatively more affected by
drought in future time periods. However, as compared to other divisions, Nashik is likely to
deal with the increment in drought-affected area during most of the seasons in future as

compared to TO period.
8.4 Discussion and summary

The concurrent variability in hydro-meteorological variables makes it difficult to understand
the regional drought severity during different seasons. Hence, analysing the seasonal drought
characteristics under the influence of climate change needs to be examined. The present study
makes an attempt to understand the drought attributes during different seasons by developing
and comparing the SAF relationship for historical and future periods. The future
meteorological outputs from nineteen NEX-GDDP simulations under two emission scenarios
are used. Prior to the analysis, uncertainty associated with GCM and scenario is analysed
using the possibility theory. Based on the analysis, the most possible GCM and scenario at
each grid point for 3-, 4-, and 6-month time scale are selected. It should be noted that the
GCM/scenario with a possibility value of 1 does not mean that the selected GCM/scenario

perfectly projects the climate change at that particular grid. However, it denotes the
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Figure 8.16: Heatmaps showing percentage change in drought areal extent for Amaravati (upper) and Aurangabad (lower) divisions under

different seasons
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seasons
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Figure 8.18: Heatmaps showing percentage change in drought areal extent for Konkan (upper) and Nagpur (lower) divisions under different




nonexistence of any better GCM/scenario to capture the climate change variability at that grid
point. The future temperature for all the seasons and precipitation for pre-monsoon, monsoon,

and Kharif seasons are expected to increase.

The evaluation of drought SAF relationship curves for analysing drought characteristics
enable to compare the drought attributes during each season across the study area during TO
period. It can be clearly distinguished from the SAF curve that mild drought conditions with
less severity i.e., SPEI value between -1.5 and -1.0 cover more area for each return period.
However, in most of the cases in future period, the SAF curves for different seasons indicate
increase in area with severity magnitude less than equal to -2.0. The outcomes manifest that
the study area is sensitive towards extreme drought occurrences. Additionally, area
corresponding to high return period increases as compared to the lower return period.

The outcomes obtained from this study confirm similar types of findings resulted from
previous studies based on seasonal drought analysis associated with different range of drought
severity and return periods for evaluating drought-affected areas. Ahmed et al., (2019)
reported that large areas were drought-affected in Pakistan for higher return period by
assessing the drought characteristics with the use of SAF curves. Drought characteristics vary
regionally depending on its geographic and climatic condition. In addition, the uncertainties in
drought-affected areas may arise due to the differences in methodologies, variation in data
obtained from different sources including GCMs. Therefore, drought characteristics have
been calculated here per division wise for better understanding which appears to be more
useful to improve the socio-economic condition in Maharashtra.

From the analysis of drought characteristics among all seasons across each division of
Maharashtra, it is observed that there is an increment in percentage of the drought-affected
area especially for the higher magnitude of severity in future period. Previous studies have
already reported about the increment in drought-affected area with long term and severe
droughts in different parts of the world (Amirataee et al., 2018; Himayoun and Roshni, 2019).
In addition, it has also been suggested in recent studies that the drought events with rise in
severity and frequency will continuously increase in many regions across the world in coming
decades due to projected climate change factors (Bisht et al., 2019; Sharma and Mujumdar,
2017). Specifically, the regions with frequent drought events will be highly prone to future

drought occurrences due to climate change scenarios (Kundzewicz et al., 2008). In future, the



severe and extreme drought occurrences are expected to increase with large spatial extent over

each division.

In summary, the significant findings from the present analysis point to the fact that the
precipitation magnitude is expected to increase in pre-monsoon, monsoon, and Kharif seasons
over most of the areas in Maharashtra. Except for monsoon season, the potential
evapotranspiration is projected to increase over 50% of the total area. Increase in the
temperature profile is noticed over all the regions in Maharashtra during the 21st century. The
extreme drought condition during post-monsoon, pre-monsoon and Rabi seasons shows an
increase in the frequency as compared to historical period. The SAF curve reveals that, in
most of the cases, the percentage of drought-affected area is expected to increase for high
magnitude of severity. In addition, the highest increment in the drought-affected area is

observed during the Rabi season in future.
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Chapter 9

Summary and conclusions

9.1 Introduction

The research reported in this thesis contributes towards understanding the drought
characterization, propagation, and risk over Indian region. The drought characterization is
performed using the influence on the large-scale climatic oscillations and regional hydro-
meteorological variabilities using the gridded data. The non-stationary analysis is carried out
for meteorological, hydrological and agricultural drought events. In addition, the socio-
economic drought is evaluated using the demand from different sectors under stationary
assumption. Further, the duration of drought propagation from meteorological to hydrological
and meteorological to agricultural drought conditions is examined using the non-stationary

drought indices. Next, the agricultural drought risk is computed using the multivariate
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analysis for different crops. Here, copula is used for multivariate analysis. Future projection
of meteorological drought is evaluated using the outputs from several GCMs under different
climate change scenarios. In addition, identification of future drought hotspot regions is
carried out under different scenarios. Lastly, seasonal Severity-Area-Frequency (SAF)
relationship curve is developed after analysing the uncertainty associated with GCMs and
scenarios. The following paragraphs give a summary and conclusions of the study presented

in the thesis.

» In order to understand the influence of external drivers on the drought events, non-
stationary drought analysis is carried out over one of the most drought affected states
i.e., Maharashtra. Two different drought indices, namely precipitation-based
Standardized Precipitation Index (SPI) and precipitation and potential
evapotranspiration (PET) based Reconnaissance Drought Index (RDI), are considered
for the analysis. The large-scale climatic oscillations like Indian Summer Monsoon
Index (ISMI), Southern Oscillation Index (SOI), Sea Surface Temperature (SST), and
Indian Ocean Dipole (I0D) are used as covariates. The Generalized Additive Model in
Location, Scale and Shape (GAMLSS) package in R environment is used to perform
the analysis over 103 grid points (0.5° Lat x 0.5° Lon) covering the Maharashtra. The
study is conducted for different time scales of drought events such as 3-, 6-, 9-, 12-,
24- month time scales. The non-stationary analysis is performed by varying the
location parameter of the gamma and lognormal distributions of SPI and RDI drought
indices, respectively. Finally, different drought properties such as severity, duration,
frequency, peak are calculated for moderate, severe and extreme drought conditions. It
is found that the non-stationary model outperforms the stationary approach over all
time scales. The ISMI is likely to influence droughts on smaller scales. However, the
IOD, SST, and SOI are expected to modulate larger-scale drought events.
Comparative study of the probability plots of drought properties reveals that, though
there are noticeable variabilities between the stationary and non-stationary conditions
on all time scales, a significant difference is noticed on the 3-, 6, and 9-month time
scales. A comparative study with respect to historical drought assessments reveals that
the presence of non-stationarity cannot be ignored for developing sustainable

mitigation and adaptation strategy.
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» From Chapter 3 and Chapter 4, it is found that non-stationary analysis of drought
events has significant importance in the scenario of climate change. Thus, drought
properties of meteorological, hydrological and agricultural drought events are
evaluated across India under non-stationary approach. Here, Standardized
Precipitation Evapotranspiration Index (SPEI), Standardized Runoff Index (SRI), and
Standardized Soil moisture Index (SSI) are used to characterize the meteorological,
hydrological, and agricultural drought, respectively. The study is performed over 1170
grid points at a grid resolution of 0.5° Lat x 0.5° Lon over India. In case of SRI index,
only the meteorological variables (precipitation, PET, relative humidity, and wind
speed) are considered as covariates for non-stationary modelling. However, for SSI,
the meteorological variables such as precipitation, air temperature, and soil
temperature are considered as covariates. The runoff datasets are obtained from five
different sources (ECMWF Reanalysis 5th Generation (ERA5), Famine Early
Warning Systems Network Land Data Assimilation System (FLDAS), Global Land
Data Assimilation System (GLDAS), Modern-Era Retrospective analysis for Research
and Applications version 2 (MERRA-2), and National Centers for Environmental
Prediction (NCEP)). Similarly, the soil moisture datasets are obtained from six diverse
sources (Climate Prediction Center (CPC), ERA5, FLDAS, GLDAS, MERRA-2, and
NCEP). In addition to meteorological, hydrological and agricultural droughts, socio-
economic drought events are also computed. However, the socio-economic drought is
evaluated based on the stationary approach. It is found from the analysis that the non-
stationary model outperforms the stationary analysis for meteorological, hydrological
and agricultural drought indices. The meteorological drought properties (drought
events and duration) are more severe as compared to the hydrological drought. The
large duration and more severe hydrological droughts are observed mostly over
southern and northern parts of India. The high agricultural drought duration and
severity are observed over the northern parts and some patches of northeast and
northwest regions of India. The high value of socio-economic drought severity is

noticed over Punjab and Haryana.
» In addition to the drought properties, the drought propagation from meteorological to

hydrological and meteorological to agricultural is investigated incorporating the non-

stationary drought indices developed in Chapter 4. The drought propagation time is
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computed for 1170 grids blanketing the entire India based on differences between the
initiation to initiation (As), peak to peak (Ap) and termination to termination (Ae). In
addition, the internal propagation of drought is estimated with the help of variable
motion relationship of speed-time process. In addition, the drought development
period (DDP) and drought recovery period (DRP) are analysed. The rate of change of
cumulative drought deficit for development and recovery phases are computed to
evaluate the Instantaneous Development Speed (IDS) and Instantaneous Recovery
Speed (IRS), respectively. It is found that locations with the high value of DDP are
also having high value of DRP in both the cases (hydrological and agricultural). In
case of hydrological drought, most of the area in India has the IDS and IRS values
between 0.40 and 0.60 per month. However, the same varies between 0.20 and 0.60
per month in the case of agricultural drought. The meteorological to hydrological
propagation time in case of As varies between 4 and 9 months with 62% of total area
falling under 6 to 7 months followed by 20% of total area under 7 to 8 months. In the
case of Ap, the time of propagation varies from 9 to 12 months over 74% of the total
area. About 70% of total area, the time of propagation in Ae ranges from 15 to 20
months. In case of As, the propagation from meteorological to agricultural is found to
be 5 to 6 months and 6 to 7 months over 39% and 53% of the total area, respectively.
Similarly, the drought propagation over about 95% of total area ranges from 9 to 15
months under Ap condition. The time to propagation varies between 10 to 15 months
over 32% and 15 to 20 months over 65% of total area in case of Ae. It is found that the
drought propagation and its characteristics are underestimated over most of the regions

in India when computed with stationary analysis.

As an agrarian country, India’s economy largely depends on agricultural productivity.
Therefore, it is of utmost importance to examine the agricultural drought risk for
different crops. The agricultural drought risk in terms of conditional probability of
crop loss with respect to different drought severities is analysed. Different drought
indices namely SPEI, SSI, Vegetation Condition Index (VCI) and Temperature
Condition Index (TCI) are used to evaluate the conditional probability. The bivariate
analysis using the copula theory is performed to understand the dependence structure
between drought conditions and crop yield anomalies (cotton, groundnut, rice, and

wheat) over the Maharashtra province in India during 1998-2015. Total of five
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different copulas namely, Gaussian, Student’s t-copula, Clayton, Gumbel, and Frank
are used to analyse the bivariate joint dependence structure between yield anomalies
and dominant drought indicator. The significant findings from the present analysis
point to the fact that the drought hazard is primarily characterized by SPEI drought
indicator in all the crops. The higher probability of drought risk under moderate and
extreme drought conditions are modelled by Clayton copula suggesting greater
probabilities of joint extreme low values. With increase in the drought severity the
conditional probability of agricultural drought risk is likely to increase. In addition, it
is observed that the exclusion of non-stationarity will underestimate the agricultural
risk, which will significantly affect the planning and management of agricultural

sustainability over the study area.

Understanding the adverse consequences of drought events on various sectors, it is
necessary to examine the future variability of drought under different climate change
scenarios. Chapter 7 includes the outputs from nineteen different GCMs from NEX-
GDDP under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios to
characterize the future short (3-month scale) and long (12-month scale) term
meteorological drought over Maharashtra province. In addition, future meteorological
drought hotspot regions are evaluated over the study area based on different drought
properties. In order to identify the implications of temperature on drought, SPEI
drought index is chosen along with SPI index. The significant findings from the
analysis point to the fact that with the increase in the monthly mean temperature and
precipitation (more in case of RCP8.5 than RCP4.5), Maharashtra is likely to be
wetting and warming during the 21% century except for Konkan region as compared to
historical. In Konkan region, the warmer climatology is likely to prevail with no
significant change in the monthly precipitation variability. The drought properties like
peak and areal spread are expected to increase for both short and long-term drought
conditions in most of the regions. The frequency of severe and extreme droughts is
likely to increase in the short-term drought condition with no sign of decrease at any
time segments and regions. Temperature plays an important role in modulating the
meteorological droughts and the present study notices the same in most of the cases in

all the drought properties especially in drought severity, duration, and peak. The
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number of hotspot regions decreases in long-term drought condition as compared to

short-term drought condition.

» In the Chapter 8, the seasonal SAF relationship curve for meteorological droughts is
projected for various divisions in Maharashtra corresponding to five different seasons
namely pre-monsoon, monsoon, post-monsoon, Kharif and Rabi. The uncertainty
associated with GCMs, and scenarios is assessed using possibility theory. The SPEI
drought index is used as an indicator of meteorological drought. In order to project for
the future time period, nineteen different GCMs under two different Representative
Concentration Pathways (RCPs) 4.5 and 8.5 are chosen. The significant findings from
the present analysis point to the fact that the precipitation magnitude is expected to
increase in pre-monsoon, monsoon, and Kharif seasons over most of the areas in
Maharashtra. Except for monsoon season, the potential evapotranspiration is projected
to increase over 50% of the total area. Increase in the temperature profile is noticed
over all the regions in Maharashtra during the 21st century. The extreme drought
condition during post-monsoon, pre-monsoon and Rabi seasons shows an increase in
the frequency as compared to historical period. The SAF curve reveals that, in most of
the cases, the percentage of drought-affected area is expected to increase for high
magnitude of severity. In addition, the highest increment in the drought-affected area

is observed during the Rabi season in future.

In the continually climate change scenario, it is of great concern to revisit, rethink, and
improve the existing computational aspects of drought indexes. In general, the commonly
used drought indexes do not encompass environmental changes. Therefore, the nonstationary
estimation of drought indexes can incorporate the development of meteorological variables in
a changing environment. More precisely, the time-varying nature of meteorological variables
are updated with time, providing a robust and suitable drought assessment. Not only the
meteorological drought, the non-stationary analysis of hydrological, and agricultural drought
indices will help the water and agricultural managers to devise sustainable management
practices. To devise sustainable drought management practices, it is inevitable to understand
the propagation of drought from one form to another. In addition, the inclusion of large-scale
climate indices and regional hydro-meteorological variability in understanding the
propagation of drought enable to cope with the changing climate scenario. The grid wise

examination of drought propagation will provide important drought characteristics at local
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scale which can assist water managers and policy makers to devise sustainable management
practices. The implications from the agricultural drought risk suggest making agricultural
practices climate resistant and water effective. The outcomes obtained during the
investigation of the future drought analysis should be considered as indicative about the
response of the study area to the climate change rather than conclusive.

With respect to the different “Sustainable Development” goals proposed by United Nations
(https://sdgs.un.org/goals), the outcomes from the present study can be linked to the following
goals, (i) Climate Action, (ii) Clean Water and Sanitation, (iii) Life on Land. The goal
“Climate Action” enables to take prompt action to combat climate change and its impact. In
the present analysis, the changeability in the large-scale climatic indices is incorporated in
modeling the drought index. The variability in the large-scale climatic indices is modulated
due to the change in the climate and their interaction with the ocean. In this sense, the newly
developed drought index would help in devising the effective drought management strategies
to combat climate change. Similarly, the goal “Clean Water and Sanitation” aims to ensure
the availability and sustainable management of water. In the present study, the variability of
available water at regional scale is characterised using the hydrological drought index. In
addition, the variability in water availability due to the meteorological drought condition is
assessed through its propagation phenomena which would help in formulating the sustainable
management plans to ensure the water availability. Lastly, the goal “Life on Land” ensures to
protect, restore, and promote sustainable use of terrestrial ecosystems. Under this goal,
desertification, land degradation, and drought is considered as one of the topics to fulfil the
motive. The present study deals with the propagation of one drought to another under the
influence of climate change and future projection of drought that help in developing the

strategies to promote resilience and disaster risk management.
9.2 Scope for future studies

The present research is devoted to characterize drought events under non-stationary condition,
to understand the propagation from one drought to another drought, to evaluate the
agricultural risk associated with droughts and future projection of drought characteristics
under different climate change scenarios. However, many challenges still exist in the field of

hydrological extremes. Hence, following would be possible future works.
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Investigation of drought propagation can be improved by incorporating the catchment
characteristics, types of soil and groundwater component.

Identification of hotspots based on the internal propagation of drought and
propagation from one form to another form facilitates sustainable development
strategies.

The socio-economic drought can be examined with the combined effect of
meteorological, hydrological and agricultural drought to examine the impact of any
individual drought type on socio-economic condition.

Future drought propagation study can be carried out based on the outputs from
different GCMs under recently developed CMIP6 experiment.

Future hydrological and agricultural drought hotspots can be identified by forcing the

GCMs simulated meteorological data into hydrological model.
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