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Abstract 

According to the fourth assessment report of the Intergovernmental Panel on Climate Change 

(IPCC), a drought can be defined as a ‘deficiency of rainfall causing water shortage’ or 

‘prolonged period of abnormally dry weather with scanty rainfall to cause a serious 

hydrological imbalance’. However, detection and quantification of drought events are 

complex as no universal definition of drought exists. In addition, the evolution of a type of 

drought to another type (e.g., meteorological to hydrological, hydrological to agricultural, 

agricultural to socio-economic drought) is not adequately understood. Furthermore, because 

of the effects of climatic variability and anthropogenic perturbations, it is postulated that the 

frequency of the drought hazard will be increased in the coming decades. At least once every 

three years, India is negatively impacted by drought conditions and is considered among the 

most vulnerable and drought-prone countries in the world. Hence, it is well understood that 

drought is likely to affect the overall economy of the country under the climate-sensitive 

economic sectors in India. For instance, it was reported that widespread drought is likely to 

impact the Indian economy by $100 billion.  

This thesis delas with developing non-stationary drought indices, understanding the 

propagation from one drought to another drought, analysis the agricultural drought risk, 

identifying the future drought hotspot regions, and developing the seasonal Severity-Area-

Frequency (SAF) relationship curve encompassing the uncertainty associate with Global 

Circulation/Climate Models (GCMs) and scenarios. 

Initial part of the thesis is devoted to analyze the significance of the external factors in 

developing drought index.  Therefore, to develop a new direction of drought identification and 

examine the drought properties, the non-stationary meteorological drought indices 

incorporating the large-scale climatic oscillations are carried out over Maharashtra. Two 

different drought indices, namely precipitation-based Standardized Precipitation Index (SPI) 

and precipitation and potential evapotranspiration (PET) based Reconnaissance Drought 

Index (RDI), are considered for the analysis. Large-scale climatic oscillations like Indian 

Summer Monsoon Index (ISMI), Southern Oscillation Index (SOI), Sea Surface Temperature 
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(SST), and Indian Ocean Dipole (IOD) are used as covariates. In the present study, to verify 

the best lag (between 0 and 12) and best large-scale climate oscillations at each grid point, we 

have used the Kendall correlation test at a significance level of 5%. The study is conducted 

for different time scales of drought events such as 3-, 6-, 9-, 12-, 24- month time scales. The 

non-stationary analysis is performed by varying the location parameter of the gamma and 

lognormal distributions of SPI and RDI drought indices, respectively. The outcomes from the 

analysis indicate that non-stationary modelling outperforms the stationary approach over the 

study area for different drought scales. In addition, notable differences are observed while 

comparing the different drought properties using stationary and non-stationary drought 

indices in the case of 3-, 6-, and 9- month time scales. ISMI is likely to influence the drought 

at smaller scale. However, IOD, SST, and SOI are expected to modulate the larger-scale 

drought events. A comparative study with respect to the historical drought assessment reveals 

that the presence of non-stationarity cannot be ignored for developing sustainable mitigation 

and adaptation strategy.  

In the second part, drought properties of meteorological, hydrological and agricultural drought 

events are evaluated across India under non-stationary approach. Here, Standardized 

Precipitation Evapotranspiration Index (SPEI), Standardized Runoff Index (SRI), and 

Standardized Soil moisture Index (SSI) are used to characterize the meteorological, 

hydrological, and agricultural drought, respectively. The study is performed over 1170 grid 

points at a grid resolution of 0.5o Lat x 0.5o Lon over India. The runoff datasets are obtained 

from five different sources (ECMWF Reanalysis 5th Generation (ERA5), Famine Early 

Warning Systems Network Land Data Assimilation System (FLDAS), Global Land Data 

Assimilation System (GLDAS), Modern-Era Retrospective analysis for Research and 

Applications version 2 (MERRA-2), and National Centers for Environmental Prediction 

(NCEP)). Similarly, the soil moisture datasets are obtained from six diverse sources (Climate 

Prediction Center (CPC), ERA5, FLDAS, GLDAS, MERRA-2, and NCEP). In addition to 

meteorological, hydrological and agricultural droughts, socio-economic drought events are 

also computed. However, the socio-economic drought is evaluated based on the stationary 

approach. It is found from the analysis that the non-stationary model outperforms the 

stationary analysis for meteorological, hydrological and agricultural drought indices. The 

meteorological drought properties (drought events and duration) are more severe as compared 
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to the hydrological drought. The large duration and more severe hydrological droughts are 

observed mostly over southern and northern parts of India. The high agricultural drought 

duration and severity are observed over the northern parts and some patches of northeast and 

northwest regions of India. The high value of socio-economic drought severity is noticed over 

Punjab and Haryana. 

Despite large spatio-temporal variability in droughts, the propagation time from one drought 

to another drought is not examined at local scale with the inclusion of external covariates over 

India. Third part of the thesis deals with examining the propagation time from meteorological 

to hydrological and from meteorological to agricultural drought. The drought propagation 

time is computed based on differences between the initiation to initiation (∆s), peak to peak 

(∆p) and termination to termination (∆e). In addition, the internal propagation of drought is 

estimated with the help of the variable motion relationship of speed-time process. The 

outcomes from meteorological to hydrological drought propagation show that the propagation 

time in case of ∆s varies between 4 and 9 months with 62% of total area falling under 6 to 7 

months followed by 20% of the total area under 7 to 8 months. In the case of ∆p, the time of 

propagation varies from 9 to 12 months over 74% of the total area. About 70% of the total 

area, the time of propagation in ∆e ranges from 15 to 20 months. The drought development 

and recovery duration are computed as 3.1 to 6 months over most of the areas. The internal 

propagation of hydrological drought ranges between the magnitude of 0.4 and 0.6 per month 

over most of the area in India. Similarly, the findings from meteorological to agricultural 

drought propagation indicate that the time to propagation in the case of ∆s is found to be 5 to 

6 months and 6 to 7 months over 39% and 53% of the total area, respectively. Similarly, the 

drought propagation over about 95% of the total area ranges from 9 to 15 months under ∆p 

condition. The time to propagation varies between 10 to 15 months over 32% and 15 to 20 

months over 65% of the total area in the case of ∆e. The DDP range from 3.1 to 6 months is 

observed over about 65% of the total area. Similarly, the range between 3.1 to 6 months is 

evaluated over 84% of the total area in the case of DRP. The regions with high DDP are 

having high DRP across India. 

In an agrarian country, the impact of hydro-meteorological variability has significant 

influence on agricultural productivity. In this study, the agricultural drought risk in terms of 
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the conditional probability of crop loss with respect to different drought severities is analysed. 

Different drought indices namely SPEI, SSI, Vegetation Condition Index (VCI) and 

Temperature Condition Index (TCI) are used to evaluate the conditional probability. The 

bivariate analysis using the copula theory is performed to understand the dependency 

structure between drought conditions and crop yield anomalies (cotton, groundnut, rice, and 

wheat) over the Maharashtra during 1998-2015. A total of five different copulas namely, 

Gaussian, Student’s t-copula, Clayton, Gumbel, and Frank are used to analyse the bivariate 

joint dependence structure between yield anomalies and dominant drought indicator (SPEI, 

SSI, VCI, or TCI). From the analysis, it is observed that the agricultural productivity is 

significantly affected by the meteorological drought (SPEI). Under moderate drought 

conditions, Ahmednagar is found to be the most affected district due to the high probability of 

agricultural drought risk for cotton, groundnut, and wheat crops. With the increase in the 

drought severity, the conditional probability of agricultural drought risk is likely to increase. 

In addition, it is observed that the exclusion of non-stationarity will underestimate the 

agricultural risk, which will significantly affect the planning and management of agricultural 

sustainability over the study area. 

Understanding the adverse consequences of drought events on various sectors, it is necessary 

to examine the future variability of drought under different climate change scenarios. 

Therefore, nineteen different GCMs from NEX-GDDP under Representative Concentration 

Pathway (RCP) 4.5 and 8.5 scenarios are used to characterise the future short (3-month scale) 

and long (12-month scale) term meteorological drought over Maharashtra. In addition, future 

meteorological drought hotspot regions are evaluated over the study area based on different 

drought properties. In order to identify the implications of temperature on drought SPEI 

drought index is chosen along with SPI index. The significant findings from the analysis point 

to the fact that with the increase in the monthly mean temperature and precipitation (more in 

case of RCP8.5 than RCP4.5), Maharashtra is likely to be wetting and warming during the 

21st century except for Konkan region as compared to historical. The drought properties like 

peak and areal spread are expected to increase for both short and long-term drought 

conditions in most of the regions. The frequency of severe and extreme droughts is likely to 

increase in the short-term drought condition. Temperature plays an important role in 
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modulating the meteorological droughts. The number of hotspot regions decreases in long-

term drought condition as compared to short-term drought condition. 

In the last study, the seasonal SAF relationship curve for meteorological droughts is projected 

for five different seasons namely pre-monsoon, monsoon, post-monsoon, Kharif and Rabi. 

The uncertainty associated with GCMs, and scenarios is assessed using possibility theory. The 

SPEI drought index is used as an indicator of meteorological drought. The significant findings 

from the present analysis point to the fact that the precipitation magnitude is expected to 

increase in pre-monsoon, monsoon, and Kharif seasons over most of the areas in Maharashtra. 

Except for monsoon season, the potential evapotranspiration is projected to increase over 50% 

of the total area. The extreme drought condition during post-monsoon, pre-monsoon and Rabi 

seasons shows an increase in the frequency as compared to historical period. The SAF curve 

reveals that, in most of the cases, the percentage of drought-affected area is expected to 

increase for high magnitude of severity. In addition, the highest increment in the drought-

affected area is observed during the Rabi season in future. 
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Chapter 1  

Introduction 

 

 

1.1 Climate change 

“Climate change is a ‘huge threat’ to humanity and it is very important for governments to 

take action as quickly as possible” said Giorgio Parisi after winning the Nobel Prize in 

Physics 2021. In addition, he stated that the change of extreme events is expected to increase 

very strongly due to the consequences of changing climate. According to the 

Intergovernmental Panel on Climate Change (IPCC), climate change refers to the change in 

the mean and/or the variability of its properties over an extended period usually decades or 

longer as a result of natural variability or anthropogenic interventions. However, the 

attribution of climate change reveals that anthropogenic induced warming is significantly 

larger than the natural influences. For instance, Figure 1.1 reveals that the observed warming 

during 1951 to 2010 is similar to the warming contributed due to anthropogenic forcings 
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(IPCC, 2014a). In addition, it can be noted that the warming range varies from 0.5oC to 1.3oC 

over the period 1951 to 2010 due to greenhouse gases (GHGs), a major forcing due to 

anthropogenic activities.  

 

Figure 1.1: Attribution of global average surface temperature changes to the natural and 

anthropogenic forcing. (Source: IPCC 2014) 

The feedback mechanism plays an important role in modulating the initial forcings resulting 

from the internal variations of different components of the earth’s climate system. The 

feedback mechanism can either amplify (refers to positive feedback) or damp (refers to 

negative feedback) the initial forcings. For example, assuming fixed relative humidity, the 

atmospheric water vapour increases with increase in temperature following the Clausius–

Clapeyron law. This increase in water vapour contributes further to the warming of the 

climate. According to Manabe and Wetherald (1967), this positive feedback loop amplifies a 

given forcing of the surface temperature by about a factor of two. In addition, the response 

time of the various components like atmosphere, land surface, ocean surface, vegetation, and 

sea ice to the external perturbations plays an important role in understanding the climate 

change impact. In particular, the response time of atmosphere, land surface, ocean surface, 

and vegetation are much lower (hours to years) than the response time (100 to 1000 years) of 

mountain glaciers, deep ocean, and ice sheets to the external perturbations. 
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In this sense, it is crucial to understand the impact of climate change to alleviate the adverse 

consequences through sustainable management plans. Figure 1.2 depicts the graphical 

representation of the causes, impact, and management practices of climate change. As 

discussed earlier, the natural variability (e.g., volcanic activity, changes in the orbit of the 

earth around the sun) and anthropogenic influences (e.g., urbanisation, GHGs emissions) are 

primary causes of climate change. However, the anthropogenic interventions have increased 

significantly imposing adverse effects on climate change as compared to the pre-industrial 

period (Masson-Delmotte et al., 2018). Focusing on the hydro-climatological components, the 

changing climate alters important variables like temperature, precipitation, and surface 

hydrology (e.g., runoff, soil moisture) (Douville et al., 2021). Subsequently, the changeability 

in these variables leads to the occurrences of extreme events such as drought, flood, extreme 

precipitation, and forest fire, among others that bring severe threat to the economy and 

ecosystem. Thus, it is indispensable to devise sustainable management practices in terms of 

prediction, risk assessment, mitigation, and development of social awareness regarding the 

implications of climate change.  

 

       Figure 1.2: Graphical representation of causes, possible impact, and management 

practices under the scenario of changing climate  
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As a result of climate change, the extreme events are increasing and will become more 

frequent and severe. Subsequently, the adverse impacts will affect the economy substantially. 

Figure 1.3 depicts the number of disasters and associated economic losses across the globe. It 

is noticed that there is an increase in the number and economic loss from 1970 to 2019 

(WMO, 2021). Surprisingly, the disaster losses are likely to increase significantly under the 

dual pressure of population growth and climate change. However, Figure 1.3 shows 

decrement in the number of disasters during 2010-2019 based on the reported number of 

disasters. Therefore, understanding the natural disasters under rapidly changing climate would 

help in formulating effective adaptation strategies.  

 

Figure 1.3: Distribution of (a) no of reported disaster and (b) economic losses by hazard type 

by decade across the globe (Data source: WMO (2021)) 



5 
 

1.2 Climate change and water cycle 

It is well understood that most of the adverse consequences of climate change are related to 

the qualitative and quantitative parameters of water. Therefore, it is necessary to understand 

the implication of climate change on water. Hydrology, as a multidisciplinary science that 

involves meteorology, climatology, geomorphology, and geology, among others, deals with 

the distribution and various manifestations of precipitation above and below the ground. 

Therefore, the climatological changes, anthropogenic influences, and variability in the ocean 

characteristics like temperature, and pressure affect the hydrological/water cycle. For 

instance, the changes in the GHGs concentration, and aerosols modify the global and regional 

variability of evaporation and precipitation (Douville et al., 2021). A warmer climate 

intensifies the moisture carrying capacity of the atmosphere, resulting in increased mean and 

extreme precipitation (Allan et al., 2020, 2014; Giorgi et al., 2019). The Asian monsoon is 

affected by the geographical variation in aerosols as it modulates the atmospheric circulation 

(Ganguly et al., 2012; Singh et al., 2019). The melting of snow under increasing temperature 

affects the seasonality of the river flows in snow-dominated basins (Allan et al., 2020). 

Likewise, direct human interventions like irrigation, land use land cover (LULC) changes, 

abstraction of surface and groundwater, and impoundment behind dams have substantial 

consequence on water cycle. For example, irrigation has significantly altered the regional 

water balance through increase in evapotranspiration (ET) and decrease in streamflow (Leng 

et al., 2016). The alteration of LULC (increasing rate of urbanization) affects ET, 

precipitation, runoff, and infiltration (Bosmans et al., 2017; Douville et al., 2021). In addition, 

greater and more extreme precipitation is likely to occur in the urban areas due to an increase 

in the sensible heat flux (Niyogi et al., 2017). Thus, all the components of the global water 

cycle have been modified due to the climatic and non-climatic drivers in recent decades, 

bringing new hydrological conditions (e.g., more frequent extreme conditions like floods and 

droughts) that were previously unfamiliar. The present thesis work is motivated to understand 

one of the extreme events i.e., drought in terms of its characteristics, propagation, and risk 

under the influence of climate change. 

1.3 Droughts under changing climate 

Due to the detrimental effect on various societal and economic factors, the research 

community has brought more attention towards the investigation of climate change impact on 
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climate hazards namely floods, droughts, heatwaves, etc. However, detection and 

quantification of drought events are complex as no universal definition of drought exists 

(Lloyd-Hughes, 2014). According to the fourth assessment report of IPCC, the drought can be 

defined as ‘deficiency of rainfall causing water shortage’ or ‘prolonged period of abnormally 

dry weather with scanty rainfall to cause a serious hydrological imbalance’. Moreover, the 

drought can also be linked to the deficiency in the streamflow, soil moisture, agricultural 

productivity, and socio-economic conditions. As a result of climate change, the drought 

events have become more severe, and more frequent with longer duration across the globe 

(Toby, 2020). With varying properties, drought occurs over all hydro-climatological regions. 

Due to the increase in the carbon dioxide (CO2) concentrations, the extra heat from global 

warming will increase the drying rate, establishing drought more quickly and with greater 

intensity (Trenberth et al., 2014). For instance, a warmer climate increases evaporation or 

evapotranspiration (with the availability of adequate moisture) that reduces the surface water 

and dries out soils and vegetation. The spatio-temporal variability of precipitation due to 

climate change results in increasing the period of both extreme precipitation and drought. In 

the context of climate change, within the “Atmosphere-Hydrology-Soil-Vegetation” system, 

the deficit in one hydro-meteorological variable propagates through the hydrological cycle 

and leads to the reduction in other hydro-meteorological variables. For example, the rainfall 

shortage for a longer period of time gives rise to the depletion in soil moisture, reservoir 

storage and streamflow etc. In this way, the deficit in precipitation (meteorological drought), 

soil moisture (agricultural drought) depletion and surface water shortage (hydrological 

drought) adversely affect the agricultural productivity, industrial activities and hydropower 

generation leading to socio-economic drought. 

1.4 Non-stationary modelling of drought 

In the absence of universal definition of drought, the monitoring of drought conditions is 

performed using different drought indices. For instance, but are not limited to, Standardized 

Precipitation Index (SPI) (Mckee et al., 1993) and Standardized Precipitation 

Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010)  for meteorological drought, 

Standardized Runoff Index (SRI) for hydrological drought (Shukla and Wood, 2008), 

Standardized Soil Moisture Index (SSI) for agricultural drought (Hao and AghaKouchak, 

2013). These indices play important role in improving drought preparedness plans and 

effective risk management measures. Therefore, appropriate drought index identification has a 
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significant contribution to make to regional drought assessment. The traditional estimation of 

drought indices is based on the stationary probability distribution of one or more 

meteorological variables. However, owing to the dual pressure of climate change and 

anthropogenic interventions, the stationary assumption is no longer valid (Milly et al., 2008; 

Russo et al., 2013) and hence, the reliability and accuracy of the traditional approach to 

estimating droughts have been brought into question. Therefore, it is urgent to update the 

procedure for evaluating droughts to include the variabilities in the environmental conditions 

using nonstationary theory. The nonstationary approach makes it possible to introduce 

covariates as a linear/nonlinear function in the distribution parameters of climate variables. In 

addition, the significant development in the statistical theory (e.g., Extreme Value Theory 

(EVT)) enables us to model the complex phenomena of nature through physically based 

covariates. In this case, the covariates refer to the large or local scale variabilities that 

influence the drought conditions. For example, large-scale climatic oscillations like El Niño-

Southern Oscillation (ENSO), Southern Oscillation Index (SOI), Indian Summer Monsoon 

Index (ISMI), Indian Ocean Dipole (IOD), among others and regional scale changeability in 

meteorological variables are considered. Therefore, the present study undertakes the non-

stationary approach to understand the drought characteristics under changing climate. 

1.5 Understanding drought propagation phenomena 

As discussed earlier, the different drought conditions are interrelated through the 

“Atmosphere-Hydrology-Soil-Vegetation” system. Therefore, one drought can be translated 

to another drought condition. Primarily, the drought condition starts from the lack of available 

water i.e., deficit in precipitation amount. In the Indian context, the meteorological drought 

can be attributed to the weaker monsoon precipitation that occurs during the month from June 

to September. The prolonged deficits of meteorological drought can be translated into 

hydrological drought and the translation process is called as drought propagation. The time 

required to propagate from one drought to another is known as propagation time in which the 

accumulated deficits from one drought reflect in another drought (Apurv et al., 2017). In 

addition to the drought propagation, the internal propagation speed of drought events plays an 

important role. The internal propagation speed reflects the development and recovery speed of 

the development and recovery phases, respectively. The drought development is the phase 

between the drought initiation and peak. Similarly, the time period between peak and recovery 

is considered as the drought recovery phase. The climate and catchment characteristics play 
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an important role in drought propagation and are largely affected by climate change and 

anthropogenic interventions. However, under limited or no anthropogenic interventions, the 

drought propagation is controlled by climate and biophysical characteristics of the 

hydrographic basins (Van Loon, 2015). With this understanding, the propagation study under 

the influence of climate change provides important drought characteristics at local scale 

which can assist water managers and policy makers to devise sustainable management 

practices. 

1.6 Drought projection, hotspot and risk assessment 

As compared to the past drought events, the overall scenario of future long-term drought 

events is still incomplete. To devise drought mitigation strategies, it is important to evaluate 

the future drought conditions under different climate change scenarios. In order to project  

future scenarios, the outputs from the General Circulation Models/Global Climate Models 

(GCMs) are used as credible tools. According to IPCC, the GCMs that represent physical 

processes in the atmosphere, ocean, cryosphere and land surface are the most advanced tools 

for simulating the response of the climate system to increasing GHGs emission. In order to 

make projections for the future, fine resolution outputs are obtained from the coarser scale 

outputs from GCMs using the downscaling technique. Further, the associated biases are 

corrected through appropriate bias-corrected techniques. In the present day, the high-

resolution outputs can be obtained directly by different agencies namely NASA Earth 

Exchange Global Daily Downscaled Projections (NEX-GDDP) and Coordinated Regional 

Climate Downscaling Experiment (CORDEX). Therefore, it is prudent to analyse the future 

drought characteristics under different climate change scenarios using the outputs from the 

GCMs. Moreover, considering the multiple GCMs will help in enveloping the associated 

uncertainties in future projections. The future projection of different drought properties will 

help in identifying drought hotspot regions and a comparative analysis can be performed with 

respect to the historical observations in order to enable the policymaker and government 

officials to propose sustainable drought management plans to combat the foreseen drought 

events. In addition to drought properties, the future projection of Severity-Area-Frequency 

(SAF) relationship curve can be used for providing quantitative information about drought by 

characterising various attributes of droughts like return period, areal extent, and severity. The 

SAF relationship has been used to understand the nature of spatio-temporal characteristics of 

drought at the regional scale. To formulate appropriate adaptation strategies, it is crucial to 
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assess the risk associated with the drought conditions. Moreover, the risk assessment related 

to the agricultural productivity due to the drought events is of paramount importance under 

the changing climate. Understanding of the agricultural risk is complex as it is modulated by 

various factors like meteorological, and hydrological variability. Thus, multivariate analysis 

can be used to overcome the issue. The copula theory has gained popularity among the 

researchers to analyse the joint return period of different drought properties. However, there is 

a limited application of multivariate analysis to examine the drought risk on rainfed 

agriculture. The outcomes will help the water and agricultural planners to formulate 

sustainable agricultural management plans. 

1.7 Objectives of the study 

The objectives of the study are listed as follows: 

1. To perform the non-stationary analysis to examine the impact of external covariates in 

modelling the drought events. 

2. To evaluate different drought characteristics with the use of meteorological, 

hydrological, agricultural, and socioeconomic drought indices. 

3. To examine the spatio-temporal characteristics of drought propagation under the 

influence of external covariates. 

4. To assess the agricultural drought risk on rainfed agriculture using the multivariate 

analysis. 

5. To investigate the spatio-temporal characteristics of droughts through Severity-Area-

Frequency (SAF) curve under different climate change scenarios and identify future 

drought hotspots based on the future variability of different drought properties. 

 

It is worth noting that the objectives 1, 4, and 5 are performed over one of the drought 

provinces in India i.e., Maharashtra. However, the objectives 2, and 3 are carried out over 

entire India. The reasons behind choosing Maharashtra as the study area are: (i) during 1901-

1998, 26 meteorological droughts are identified, and 11 out of 26 droughts affected more than 

50% of the province (Gore and Ray, 2002); (ii) the probability of occurrence of drought 

during El Niño years is 55%  over Maharashtra, and 59% over India (Gore and Ray 2002); 

(iii) 11,801 villages were affected by drought in 2013, and it is considered as the worst 

drought in the region in the last 40 years (Dandekar, 2013). 
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1.8 Contributions from the study 

In a drought-vulnerable country like India, the analysis of drought in the context of a 

nonstationary approach is limited. Moreover, in connection with drought prone areas like 

Maharashtra, drought events under the influence of large-scale climatic oscillations have not 

been analyzed. Therefore, the first part of the study attempts to understand the variability in 

the drought properties with and without the inclusion of physical covariates in the 

computation over the Maharashtra state in India. The large-scale climatic oscillations like 

Indian Summer Monsoon Index (ISMI), Southern Oscillation Index (SOI), Sea Surface 

Temperature (SST), and Indian Ocean Dipole (IOD) are used as covariates. From the analysis 

it is found that non-stationary analysis is superior to the stationary analysis. In addition, 

notable differences are observed while comparing the different drought properties using 

stationary and non-stationary drought indexes. A comparative analysis of the historical 

drought that occurred in 2013 reveals that non-stationarity in the meteorological data sets 

cannot be ignored for developing a sustainable mitigation and adaptation strategy against 

drought hazard. 

Understanding the importance of non-stationarity, the second part analyses different drought 

properties of meteorological, hydrological, and agricultural drought indices under non-

stationary setting. The runoff datasets are obtained from five different sources (ECMWF 

Reanalysis 5th Generation (ERA5), Famine Early Warning Systems Network Land Data 

Assimilation System (FLDAS), Global Land Data Assimilation System (GLDAS), Modern-

Era Retrospective analysis for Research and Applications version 2 (MERRA-2), and 

National Centers for Environmental Prediction (NCEP)). Similarly, the soil moisture datasets 

are obtained from six diverse sources (Climate Prediction Center (CPC), ERA5, FLDAS, 

GLDAS, MERRA-2, and NCEP). Here, Standardized Precipitation Evapotranspiration Index 

(SPEI), Standardized Runoff Index (SRI), and Standardized Soil moisture Index (SSI) are 

used to characterize the meteorological, hydrological, and agricultural drought, respectively. 

The non-stationary modelling of SRI and SSI is performed for each different data source. The 

drought properties using the ensemble mean are discussed for SRI and SSI indices. In 

addition to meteorological, hydrological and agricultural droughts, socio-economic drought 

events are also computed. The socio-economic drought is evaluated based on the water 

consumption and water availability. Here, water consumptions from six different sectors 
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namely domestic, electricity, irrigation, livestock, manufacturing, mining are used. Till date 

such type of study has not been carried out over entire India.   

In spite of large spatio-temporal variability in droughts, the propagation time from one 

drought to another drought is not examined at local scale with the inclusion of external 

covariates over India. This part deals in examining the propagation time from meteorological 

to hydrological and from meteorological to agricultural drought. The drought propagation 

time is computed in 1170 grids blanketing the entire India based on differences between the 

initiation to initiation (∆s), peak to peak (∆p) and termination to termination (∆e). In addition, 

the internal propagation of drought is analyzed with the help of variable motion relationship 

of speed-time process. The drought indices developed using the external covariates are used 

for this analysis. Additionally, for each type of drought, instantaneous drought development 

speed and recovery speed are estimated to understand the rate at which drought develops and 

recovers. 

In an agrarian country, the impact of hydro-meteorological variability has significant 

influence on agricultural productivity. Therefore, assessing the risk on agricultural system due 

to the effect of drought conditions is of paramount importance for agricultural sustainability. 

In this study, the agricultural drought risk in terms of conditional probability of crop loss with 

respect to different drought severities is analysed. Different drought indices namely SPEI, 

SSI, Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used to 

evaluate the conditional probability. The bivariate analysis using the copula theory is 

performed to understand the dependence structure between drought conditions and crop yield 

anomalies (cotton, groundnut, rice, and wheat) over the Maharashtra province in India during 

1998-2015. Total of five different copulas namely, Gaussian, Student’s t-copula, Clayton, 

Gumbel, and Frank are used to analyse the bivariate joint dependence structure between yield 

anomalies and dominant drought indicator (SPEI, SSI, VCI, or TCI). 

Finally, the future drought characteristics are projected for meteorological drought for short -

and long-term durations incorporating the outputs from nineteen GCMs under Representative 

Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The GCMs are obtained from NEX-

GDDP data center. The relative changes in future projected drought properties with respect to 

recent past years are analysed. Based on the four properties i.e., affected area, frequency, 

severity and duration, the drought hotspot regions are identified under RCP 4.5 and 8.5 
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scenarios for future time series. Additionally, the seasonal SAF relationship curve for 

meteorological droughts is projected for five different seasons namely pre-monsoon, 

monsoon, post-monsoon, Kharif and Rabi. The uncertainty associated with GCMs, and 

scenarios is assessed using possibility theory. 

1.9 Outline of the thesis 

Literature relevant to climate change impact on drought, non-stationary analysis, drought 

propagation, agricultural risk, and multivariate analysis are concisely reviewed in Chapter 2.  

Chapter 3 presents the non-stationary modelling of meteorological drought indices over 

Maharashtra. The large-scale climatic oscillations like ISMI, IOD, SOI, and SST are used as 

covariates for SPI and RDI drought indices. A comparative analysis of different drought 

properties is carried out using stationary and non-stationary approaches. 

In Chapter 4, in addition to meteorological drought, the non-stationary analysis is carried out 

for hydrological and agricultural drought indices across entire India. In addition, the socio-

economic drought analysis is performed based on gridded water demand and available water 

in terms of runoff.  

Chapter 5 presents the drought propagation from meteorological to hydrological and 

meteorological to agricultural under the influence of external covariates. In addition, the 

internal propagation of each drought type is evaluated. 

In Chapter 6, a probabilistic evaluation of agricultural drought risk is performed for four 

major crops (cotton, groundnut, rice, and wheat). In this study, both hydro-meteorological 

(SPEI and SSI) and remote sensing based (VCI and TCI) drought indices are considered.  

Chapter 7 deals with the identification of future drought hotspot regions under short- and 

long-term drought conditions.  

Chapter 8 presents the development of seasonal SAF relationship after analysing the 

uncertainty associated with GCMs and scenarios. 

Chapter 9 presents the summary and conclusions of the work described in the thesis. 
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Chapter 2  

Literature Review 

 

 

 

2.1 Introduction 

This chapter reviews the literature related to the non-stationarity in drought hazard to 

investigate the impact of climate change and its importance in the evaluation of drought 

characteristics, drought propagation and drought risk. Initially, literature related to the non-

stationary analysis and its significance on drought assessment are discussed. Then, the 

characterizations of different types of droughts and their impacts across India are investigated. 

Subsequently, the behaviour of drought propagation between different types of droughts is 

reviewed. The significance of the evaluation of drought risk and its vulnerability on crop 

productivity, introduction of the multivariate analysis in drought risk analysis are examined 

afterwards. 
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2.2 Non-stationary Analysis 

Since the second half of the 20th century, climate change has been addressed as the most 

important issue due to the increment in global warming. In past 30 years, the surface 

temperature has increased significantly as compared to any decade (IPCC, 2014, Qin and 

Thomas, 2014). In addition to the global climate change, the increasing interventions of 

anthropogenic activities like increasing rate of urbanization, increasing greenhouse gases, etc. 

act as catalyst for more severe and frequent extreme events. In past decades, the time- 

invariant or stationary approach is used for extreme hydro-climatic event analysis that 

assumes that the statistical properties of hydro-climatic variables do not change over time. 

However, as above said, the factors affecting the climatic variables no longer remain 

unaltered. Therefore, the inclusion of non-stationarity in the analysis of extreme hydro-

climatic events deserves attention of the research community. In addition, due to the 

advancement in the computational facilities, the implementation of non-stationary to model 

the extreme events of the hydro-climatic variables has gained the popularity. With this 

understanding, the stationarity assumption in water resources risk management and planning 

is no longer valid (Milly et al., 2008; Sivapalan and Samuel, 2009; Villarini et al., 2010). 

Recent advances in understanding of ocean-atmosphere interactions demonstrate that there are 

well organized modes of interannual and interdecadal variability in climate which have 

significant influence on the hydro-meteorological extreme events. Therefore, recent studies 

focus on non-stationary analysis in evaluating different extreme events in changing climate. 

For example, Coles (2001) analysed various datasets such as maximum sea level, 

precipitation, and temperature under non-stationary setting. The covariates such as Southern 

Oscillation Index (SOI) and time are used to estimate the location and scale parameters of the 

selected distributions. The studies showed the applicability of the non-stationarity under the 

climate change scenario. Coles presented various methods for the successful use of the non-

stationarity in the hydro-climatic extremes.   

Katz et al. (2002) analysed the statistics of different extremes in hydrology considering time 

and large-scale climatic oscillations as covariates to estimate the distribution parameters. 

Authors used maximum likelihood estimation (MLE) to estimate in order to evaluate the 

parameters. They suggested to incorporate the trend in the analysis of hydrologic extremes 

due to the intensification of hydrological cycle as a result of climate change. 
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He et al. (2006) demonstrated the non-stationary analysis of extreme discharge implementing 

the Gumbel and Log-Pearson III distributions. They used three types of time dependent 

functions to introduce the non-stationarity. Through the non-stationary analysis, authors 

advocated that for more realistic and comprehensive outcomes a linkage should be established 

between the climate system and the distribution parameters. 

Beguería et al. (2011) used non-stationary extreme value analysis for the daily precipitation 

series in northeast Spain. They used time as covariate in a generalised Pareto model. A log-

likelihood ratio was used to analyse the significance of non-stationarity over stationary 

approach. At seasonal scale, the significance of non-stationary model was found for the 

event’s intensity in winter and spring at a significance level of 5%.  

Cheng & AghaKouchak (2014) modelled non-stationary Intensity Duration Frequency (IDF) 

curves from maximum extreme rainfall series at five stations in USA. Authors considered 

Generalized Extreme Value (GEV) distribution for annual maximum rainfall and time as a 

covariate in the distribution. From results, they found that 60% of extreme rainfall was 

underestimated by stationary model. This underestimation under stationary assumption 

increases flood risk and failure in infrastructure. Moreover, Bayesian approach was also 

carried out for uncertainty modelling for finding out the uncertainty in non-stationary return 

levels and the results indicated higher uncertainty in lower return level. 

Li et al. (2015) developed Non-stationary Standardized Precipitation Index (NSPI) using non-

stationary Gamma distribution. They used various climate indices as covariates for fitting the 

precipitation data. The performance of NSPI and traditional Standardized Precipitation Index 

(SPI) index was evaluated. It was found that NSPI is more robust than SPI as it incorporates 

the climate variations into account. In addition, different drought properties such as drought 

frequency, peak, severity, duration were computed for both NSPI and SPI. The study was 

performed over Luanhe River basin. 

Cancelliere (2017) reviewed on the available methods for developing the non-stationary 

model for different hydrological processes. The diversification of these methods to evaluate 

the drought occurrences under the assumption of non-stationarity in hydro-meteorological 

variables was also explained. Author proposed a new methodology on four different 

precipitation time series having varying trends to characterise the drought length. Author 

suggested that the methods can be improved for incorporating the uncertainty associated with 
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the evaluation of non-stationarity in hydro-meteorological series and can be used for 

calculating other drought properties like severity, intensity etc.  

Mukherjee et al., (2018) argued that the non-stationarity associated with climate change is 

expected to modulate the parameters of the distributions of input variables which is used to 

formulate different drought indices. Therefore, appropriate methodology should be formulated 

to incorporate the non-stationary information in order to characterize the drought under 

climate change. Subsequently, reliable information can be extracted for risk assessment and 

management of infrastructure. 

Rashid and Beecham (2019) developed non-stationary SPI using Generalised additive model 

in Location, Scale and Shape (GAMLSS) modelling framework. Here, SOI, Sea Surface 

Temperature (SST), Pacific Decadal Oscillation (PDO), Southern Annular Mode (SAM) and 

Dipole Model Index (DMI) external covariates are incorporated for capturing the non-linear 

characteristics of precipitation in South Australia. The obtained results demonstrate the 

importance of non-stationary drought index for accurately capturing the drought 

characteristics in the changing climate.  

 

Wang et al. (2020) used both climate driven and human induced indices are incorporated in 

non-stationary analysis of hydrological drought index i.e., Standardized Streamflow Index 

(SSI). The significant climate covariates and human induced indices were computed from 

correlation analysis and from Soil and Water Assessment Tool (SWAT) model respectively. 

A comparison analysis was conducted using Akaike information criterion (AIC) between 

Non-stationary SSI (NSSI) and SSI to examine the capability of NSSI. In conclusion, authors 

stated that the NSSI can give more reasonable and satisfactory results by accounting the non-

stationarities in streamflow due to human activities and changing climate.  

 

Das et. al (2020) used non-stationary Gamma distribution having climate indices in location 

parameter to incorporate climate variability in the computation of meteorological drought 

index. Authors compared the drought properties between the stationary and non-stationary 

analysis based on the statistical performances in two Himalayan states in India. Moreover, 

they performed bivariate analysis of different drought properties to provide a new concept for 

the effective management practices in the changing environment.  
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Bazrafshan et al. (2022) aimed to develop Non-stationary Standardized Precipitation 

Evapotranspiration Index (NSPEI) for robust quantification of drought characteristics. They 

varied the location parameter of the log-logistic distribution with multivariable function of 

time and climate indices. The study was performed over Iran using GAMLSS algorithm. They 

found that non-stationary modelling outperforms stationary modelling over 97% of total 

stations across the study area.  

 

In the similar way, there are many studies which reveal the superiority of non-stationary 

analysis in different parts of the world while analysing the hydro-meteorological extremes. 

These include but are not limited to Olsen et al. (2010), Villarini et al. (2010), Gilroy and 

McCuen (2012), Salas and Obeysekera (2014), Mondal and Mujumdar (2015), Vasiliades et 

al. (2015), Gao et al. (2016), Song et al. (2020), Das and Umamahesh (2021), Zhang et al. 

(2021).  

2.3 Drought characterization 

Drought is the most unpredictable and least understood natural hazard (Hagman et al., 1984). 

The detection and quantification of drought events are complex as no universal definition of 

drought exists (Lloyd-Hughes, 2014). However, from hydrological point of view, drought 

occurs due to the less availability of water in a region for a significant period of time. It can 

be less in precipitation, reduction in soil moisture, low streamflow which are the primary 

reason behind the meteorological, agricultural, and hydrological drought, respectively. 

However, based on single variable, the drought condition can’t be characterised for a 

particular region. It depends on multiple hydro-meteorological variables for capturing 

different aspects of drought conditions. Therefore, the use of different drought indices is the 

most common approach for drought characterisation. Drought indices can simplify the 

complex interrelationship of climate related parameters with different climatic condition. 

Therefore, in past studies, many researchers have introduced different drought indices for 

characterizing different types of droughts. For example 

 

Despite the lack of a precise definition of drought, there are several indices to monitor the 

drought conditions (Li et al., 2015; Wilhite, 2017). To monitor the precipitation based 

meteorological drought, Palmer Drought Severity Index (PDSI; Palmer, 1965) and 

Standardized Precipitation Index (SPI; Mckee et al., 1993) are commonly used. Similarly, to 
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monitor runoff or streamflow based hydrological drought, the Standardized Runoff Index 

(SRI) is used (Shukla and Wood, 2008). Likewise, the Standardized Soil Moisture Index (SSI) 

and Agricultural Standardized Precipitation Index (aSPI) are widely used for agricultural 

drought (Hao and AghaKouchak, 2013; Tigkas et al., 2019). Many other drought indices have 

been proposed considering one or more climate variables such as the Standardized 

Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010), Vegetation 

Drought Response Index (VegDRI; Brown et al., 2008), Reconnaissance Drought Index (RDI; 

Tsakiris and Vangelis, 2005), Multivariate Standardized Drought Index (MSDI; Hao and 

AghaKouchak 2014), and Evaporative Stress Index (ESI; Anderson et al. 2007). 

 

González and Valdés (2006) developed a new index i.e., Drought Frequency Index (DFI) 

based on the purely probabilistic treatment. The drought index is developed on the basis of 

stochastic characterisation of extreme persistent deviation sequences. The performance of the 

index is examined and compared with respect to different issues such as magnitude selection, 

univariate versus multivariate, threshold selection and timescale issues. The newly developed 

index provides a consistent index for general drought characterization goals. 

 

Santos et al. (2010) considered Standardized Precipitation Index (SPI) at different time scales 

to characterise drought events. They applied principal component analysis (PCA) and K-

means clustering (KMC) to SPI series to evaluate spatial and temporal patterns of drought 

occurrences. From fast Fourier transform algorithm (FFT) of SPI pattern, authors found 

specific time period cycle at different region; for instance, 3.6-year cycle in the SPI pattern 

over south and 2.4-year and 13.4-year cycles in north of Portugal. They suggested the stronger 

influence of NAO in south Portugal because of which south portion experienced more 

frequent dry events.  

 

Yang et al. (2017) evaluated seven meteorological drought indices namely Palmer Drought 

Severity Index (PDSI), modified PDSI (PDSI_CN), self-calibrating PDSI (scPDSI), Surface 

Wetness Index (SWI), SPI, SPEI and soil moisture simulation. Authors analysed the 

applicability of drought indices based on regional basis. They considered terrestrial water 

storage, observed streamflow and soil moisture for computing these indices. Authors 

concluded that the scPDSI is most appropriate for China. They showed some problems in 

PDSI and PDSI_CN in humid and arid areas, whereas the SPI and SPEI were more 



19 
 

appropriate for humid areas rather than arid and semiarid regions. Although the seven drought 

indices were able to detect the long-term trends of drought, there was a difference among the 

values of drought areas computed using the seven indices. 

 

Zhao et al. (2019) worked on socio-economic drought characterisation on the basis of 

Multivariate Standardized Reliability and Resilience Index (MSRRI). They adopted cross 

wavelet analysis to examine the influence of meteorological driving factors on socio-

economic droughts. From the outcomes it was observed that the MSRRI is effective for socio-

economic drought evaluation. Moreover, the comprehensive effects of El Niño–Southern 

Oscillation (ENSO), East Asian Summer Monsoon (EASM) and Pacific North American 

(PNA) on socio-economic droughts were found.  

 

Shah and Mishra (2020) developed integrated Drought Index (IDI) incorporating the 

responses from meteorological, agricultural, hydrological drought and accounting the ground 

water storage. Gaussian copula was used here to compute IDI by integrating SPI-1, 

Standardized Runoff Index (SRI-4), Standardized Soil moisture Index (SSI-1) and 

Standardized Ground water Index (SGI-1). Moreover, the required hydro-meteorological 

variables for evaluating the IDI were simulated from Variable Infiltration Capacity (VIC) 

model with SIMple Groundwater Model (VIC-SIMGM). Authors projected drought 

frequency based on IDI and showed its efficiency in the assessment of drought characteristics 

in both past and future climate in India.  

 

For improvement in drought monitoring, to acquire better knowledge on its drivers and 

processes, Diaz et al. (2020) presented an approach to characterise the dynamics of drought. 

Based on SPEI, different drought characteristics like tracks, severity, duration, localisation, 

rotation of droughts were computed to identify drought. The outcomes from the study are 

used to build a model for the prediction of spatial drought tracks in India. 

 

Agutu et al. (2020) considered three types of datasets such as remotely sensed data, in situ and 

model products for analysing drought behaviour in a complex topography region i.e., Upper 

Greater Horn of Africa. Precipitation, soil moisture, Vegetation Condition Index (VCI) and 

total water storage dataset were chosen for characterising drought and exploring the 

inconsistencies in areas. The inconsistencies were observed under extreme and moderate 
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droughts as compared to severe droughts. The obtained results indicated that the 3-month time 

scale sufficiently captured the agricultural drought and provided an indirect linkage with food 

security situation.  

Javed et al. (2021) explored the spatiotemporal dynamics of meteorological and agricultural 

drought by utilising the remote sensing products and evaluated their linkage with winter 

wheat and summer corn yield losses. They derived the agricultural Standardized Precipitation 

Index (aSPI) for different time scales and Standardized Vegetation Supply Water Index 

(SVSWI) to explore the regional scale dynamics across China. From results, the increased 

frequency of drought events was found in most part of the country for 3-month aSPI. 

Moreover, a good correlation was observed between 3-month aSPI and SVSWI with winter 

wheat anomaly for some areas.   

Similar to the above drought characterization studies, there are many studies related to 

different types of drought characterisation. These include, but are not limited to Ponce et al. 

(2000), González and Valdés (2003), Tsakiris et al. (2007), Yirdaw et al. (2008), Mishra and 

Singh (2010), Zargar et al. (2011), , Hao and Singh (2015), Ali et al. (2019), Ferreira et al. 

(2018), Zhang et al. (2019), Xu et al. (2021), Guo et al. (2022). 

2.4 Drought propagation 

In the context of causative mechanisms, the deficit in the precipitation and increasing 

evaporative demand propagate through the hydrologic cycle and subsequently develop into 

different drought events (Hellwig et al., 2020; J. Wu et al., 2020). In other words, from 

beginning to end, drought transition is encapsulated within the “Atmosphere-Hydrology-Soil-

Vegetation” system (N. Chen et al., 2020). This transition from one form to another form of 

drought is known as drought propagation (Apurv et al., 2017; Haslinger et al., 2014). The 

understanding of drought propagation provides valuable information to improve the accuracy 

of drought analysis and prediction. In recent times, studies have been performed to analyse 

the drought propagation mechanisms and their controlling factors. For example  

Peters et al. (2003) investigated the reason behind the transformation of droughts through 

groundwater system. In this study propagation from groundwater recharge to the discharge 

was evaluated. The propagation was examined by tracking a drought in recharge through a 

linear reservoir. The outcomes from the study revealed that the delay in groundwater system 
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caused the decrease in recharge from high-flow to low-flow period. The resulted in an 

increase in drought deficit for discharge compared with the drought deficit for recharge.  

Van Loon et al. (2012)considered ten large scale models under both land-surface and global 

hydrological models to evaluate the simulations of drought propagation. They computed 

different types of drought characteristics, drought propagation features and hydrological 

drought typology. A clear reflectance of drought characteristics on drought propagation was 

found. From results, authors concluded that most of the drought propagation processes were 

well reproduced by the ensemble mean of large-scale models.  

Jiefeng Wu et al. (2018) proposed a framework to determine the propagation speed through a 

variable motion relationship of speed-time process. They computed the Instantaneous 

Development Speed (IDS) and Instantaneous Recovery Speed (IRS) for each hydrological 

drought event by subdividing the individual propagation of into development and recovery 

phase. At last, the IDS and IRS values are cross validated for final outcomes. The results 

revealed that the variable motion method performed well in identifying the propagation 

period. They also found out that the sensitivity of IDS and IRS were correlated with external 

factors i.e., catchment characteristics, human activities and climate forcings.  

Xu et al. (2019) used two drought indices i.e., SPI (for meteorological drought) and SRI (for 

hydrological drought) for investigating the drought propagation from meteorological to 

hydrological drought. Authors evaluated the correlation between two indices over three parts 

of the Luanhe river basin. They observed frequent occurrences of hydrological drought, 

whereas a little difference was observed in the meteorological drought characteristics between 

pre- and post-human disturbance period. The shorter propagation time i.e., 1-5 months was 

computed for grassland dominated subbasin. Whereas in case of forest dominated subbasin, it 

was 4-7 months during rainy season. However, in dry season, drought propagation time of 7-

12 months was noticed over both grassland and forest dominated subbasins. 

Apurv and Cai (2020) tried to understand the drought propagation mechanism through 

physical based hydrologic model. Authors considered multiple watersheds from different 

regions of contiguous United State to investigate about the controlling factors of drought 

propagation. From obtained results, similar spatial pattern was found between hydrological 

drought and climatic properties. Authors revealed the key watershed property i.e., storage-

discharge relationship which controls the intensity of hydrological drought.  
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The interference of the construction of Three George Dam (TGD) in the modification of 

drought propagation was studied by Huang et al. (2021). They examined the impact of 

anthropogenic activity on meteorological drought to hydrological and agricultural drought 

propagation processes. Authors used trend and attribution analysis to explore the potential 

influence factors. They found significant impact of TGD which aggravate the drought 

propagation characteristics. Moreover, they observed that the meteorological to hydrological 

drought propagation speed was slowed down, whereas meteorological to soil moisture lag 

time became shorter.  

The linkage among meteorological, agricultural and groundwater drought was investigated by 

H. Zhang et al. (2021) over humid and arid/semi-arid basins in China. They evaluated the 

correlation and propagation among these three types of droughts through Spearman rank 

correlation coefficient. SPI, SSI, and Groundwater drought index based on Gravity Recovery 

and Climate Experiment (GRACE) were considered to characterise meteorological, 

agricultural and groundwater drought, respectively. A strong linkage between meteorological 

and agricultural drought was found. Authors argued that the groundwater extraction could be 

the main factor for groundwater drought.   

Ho et al. (2021) proposed a new approach to determine the drought propagation from 

meteorological to hydrological drought. They calculated the propagation time at a higher 

temporal resolution and considered high resolution remote-sensing data on a daily time step. 

The SPI, SRI, Standardized Evapotranspiration Deficit Index (SEDI) and Standardized Soil 

moisture Index (SSI) are considered. Index correlation method and temporal shift method are 

used for calculating drought propagation. The outcomes from the study suggested that the soil 

moisture drought showed a delayed response to the meteorological conditions. Whereas 

hydrological drought propagation is controlled by precipitation along with land cover, soil 

type, temperature and humidity.   

Recently, Schumacher et al. (2022) worked on drought self-propagation behaviour. They 

considered last 40 largest recent droughts worldwide and used Lagrangian moisture tracking 

to examine the influence of soil moisture drought on precipitation. Authors found that the 

drylands were mostly prone to drought self-propagation due to the enhanced soil water stress 

and reduction in precipitation in these areas.  
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Likewise, propagation study has been carried out over Iberian Peninsula (Lorenzo-Lacruz et 

al., 2013), over China ( Zeng et al., 2015; Wu et al., 2018; Xu et al., 2019; Ding et al., 2021), 

over United Kingdom (Barker et al., 2016), over South Korea (Jehanzaib and Kim, 2020; 

Sattar et al., 2020, 2019), Over Contiguous United States (Tijdeman et al., 2018), over Brazil 

(Bevacqua et al., 2021), over Spain (Barella-Ortiz and Quintana-Seguí, 2019), over South 

Africa (Botai et al., 2019), over India (Bhardwaj et al., 2020), among others. 

2.5 Drought risk and vulnerability 

Drought vulnerability refers to the degree of susceptibility of a region to drought, whereas 

drought risk is defined as the likelihood of potential losses caused by the combined effect of 

drought hazard, vulnerability and exposure. The dual effect of climate change and the rapid 

economic development have aggravated the drought risk condition. Meanwhile, rural 

communities are more susceptible to droughts as it has mostly agriculturally based economy 

which depends on climatic variability. Therefore, it is of great practical significance to assess 

the drought risk and effective utilisation of water resources for sustainable development of 

agricultural productivity. Over past years, researcher have focused on the evaluation of 

drought risk and its vulnerability.  

Merabtene et al. (2002) determined the susceptibility of water supply system to droughts by 

using a decision support system (DSS) which was integrated with three fundamental modules: 

real time rainfall-runoff model, water demand forecast model and reservoir operation model. 

Based on genetic algorithm, they introduced two new features to minimize drought risk and to 

improve the convergence of the model to practical solutions. Authors considered reliability, 

resiliency, and vulnerability to formulate Drought Risk Index (DRI). They advocated that 

DSS as an efficient tool for evaluating water supply scenarios during drought conditions.  

He et al. (2013) worked on the assessment of agricultural drought risk over China at 10 × 10 

km grid scale. The drought risk was evaluated based on the natural disaster analysis theory. A 

clear southeast–northwest spatial pattern of agricultural drought risk was found. The drought 

risk was evaluated as the product of three components i.e., hazard, vulnerability and exposure. 

In addition, the study area was categorized based on the classifications of low, moderate, high 

and very high risk.  
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Borgomeo et al. (2015) proposed vulnerability-based approach to evaluate the water resources 

system vulnerability to hydrological drought condition using copula theory. From the 

generated synthetic streamflow series, the marginal distribution of streamflow for each month 

was produced by bootstrapping method, whereas the joint probability distribution for 

consecutive month was created by copula-based method. Applying the method to London 

water system, the obtained results indicated that the vulnerability of the water system is 

outside the range of past drought events. The vulnerability results along with climate model 

information were helpful for adopting water management options for long and severe drought. 

Ahmadalipour and Moradkhani (2018) performed comprehensive assessment to evaluate the 

drought vulnerability in 46 African countries. Authors considered six different components 

(economy, energy, infrastructure, health, water resources, land use, society) and introduced a 

composite Drought Vulnerability Index (DVI) for each country. After checking the accuracy 

of DVI through various analysis, the regression models were fitted to the DVI for historical 

time series and were extrapolated for future time series to project DVI. The outcomes 

indicated an increase in the difference between low and highly vulnerable countries in future. 

Authors suggested that the DVIs can be used in long term drought risk analysis.  

A regional based drought risk evaluation method was established in Heilongjiang in China to 

rank the drought risk. In this study, Liu et al. (2019) evaluated the drought risk based on 

remote sensing drought monitoring and uncertainty method.. They also used the most suitable 

drought monitoring model namely Temperature and vegetation polynomial model (TVPM). 

For introducing the uncertainty method, they applied statistical based interval weight 

determination of evaluation index method. Interval number sorting method was used to 

establish drought risk evaluation model. 

Drought being the most serious disaster to cause severe agricultural damage has become a 

major threat to global food security. Therefore, Guo et al. (2021) attempted to simulate the 

growth of rice in future time period under different scenarios by using Environmental Policy 

Integrated Climate (EPIC) model. Authors used drought intensity and rice physical 

vulnerability curve to evaluate the global rice yield risk to drought. The results showed an 

average expected loss rate of 13.1% (± 0.4%) in global rice yield in future. Also, the 

fluctuation in rice drought risk and the area under rice yield risk will increase in future.  
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Li et al. (2022) focused on the rural areas for evaluating the drought risk and water resources 

allocation. Authors used SPEI drought index and computed drought duration, and severity 

based on run theory. They established the vulnerability curves based on loss data, and 

evaluated the risk of the cultivated areas, rural population and primary industry. From results, 

it was observed that the rapid increment in green areas increased the ecological water 

consumption. Subsequently, a high-risk level of drought was noticed in southern areas. 

Similar to the above studies, there are many investigations on drought risk evaluation to help 

the policy makers, risk division and management. These include, but are not limited to Wu 

and Wilhite (2004), Pandey et al., (2010), Pulwarty and Sivakumar (2014), Blauhut et al. 

(2015), Chang et al. (2016), Tsakiris (2017), Frischen et al. (2020), Meza et al. (2020), Omer 

et al. (2021), Ma et al. (2022), Savari et al. (2022) . 

2.6 Multivariate Analysis 

Copula based multivariate analysis was developed by Sklar (1959). According to the Sklar’s 

theorem, copula techniques are advantageous as they provide significant flexibility in 

modelling the dependence structure between two or more random variables having 

independent marginal distributions. There are two copula families: Elliptical family (Gaussian 

and Student’s t-copula) and Archimedean family (Clayton, Gumbel, and Frank). In the realm 

of hydrology, the use of copula to analyse the hydrological extreme is extensive. For example 

Favre et al. (2004) attempted to model multivariate extreme values based on copula theory. 

They tried on two different problems: first to find out the combined risk in the framework of 

frequency analysis; second to model peak flows and volume jointly. From results, they found 

copula as a promising way to apply in hydrology because of its applicability in wide range of 

correlation. 

Kao and Govindaraju (2008) used trivariate copula for analysing extreme rainfall events. The 

trivariate copula family was applied to study the temporal distribution of extreme rainfall 

events in Indiana, USA. Subsequently, conditional probability of peak intensity, time to peak, 

percentage cumulative rainfall at 10% cumulative time increment were evaluated based on 

rainfall depth and duration. The obtained results suggested that the constant cross-product 

ratio theory can be applied to both discrete and continuous random variables.  
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Zhang et al. (2015) investigated the uncertainties in copula analysis resulted from the 

selection of marginal distribution and copula type. Thus, authors analysed hydrological 

drought events based on Bayesian approach in East River Basin, China. They evaluated the 

credible intervals of drought events with 20 years return period in terms of drought duration 

and severity. Moreover, it was found that stronger the heavy-tailed marginal distribution, 

greater the uncertainty.  

In order to investigate the concurrent hydrological drought events to understand the inherent 

mechanism of hydrological extremes, Zhang et al. (2017) utilised copula functions. Here, 

authors selected the best suitable copula from Bayesian copula selection approach and the 

appropriate marginal distribution on the basis of AIC values. They evaluated the joint 

probability of concurrent drought between lake and river and observed the intensified 

concurrent drought occurrence in spring, summer and autumn.  

A non-stationary frequency analysis of annual extreme rainfall using Archimedean copula 

was performed by Li et al. (2019) at four study regions in eastern coastal China. The rainfall 

volume and intensity were considered as two index variables. The time dependent copula 

function and GEV distribution were used model the joint and marginal distribution, 

respectively. From results, they observed the intensifying tendency of extreme rainfall volume 

and intensity.  

Ballarin et al. (2021) compared univariate and multivariate approach to characterize extreme 

meteorological drought events for both past and future time series under different scenarios. 

They observed a significant increasing trend for temperature and intense drought events in 

future for both approaches. Authors found that the univariate approach could underestimate 

the risk associated with extreme events as it did not account the expected warming condition.  

Likewise, there are many recent studies based on copula to examine the properties of droughts 

(J. Das et al., 2020a; Favre et al., 2004; Ganguli and Reddy, 2014; Hao and AghaKouchak, 

2013; Kao and Govindaraju, 2010), and floods (Grimaldi and Serinaldi, 2006; Li and Zheng, 

2016; Papaioannou et al., 2016; Tosunoglu et al., 2020). Apart from hydrologic extremes, 

copula has been used to model the characteristics of other extreme events such as heat waves 

(Mazdiyasni et al., 2019), concurrent occurrence of different climate extremes, known as 

compound extremes (Manning et al., 2018; Zscheischler and Seneviratne, 2017). However, 

the application of multivariate analysis in agrometeorological studies is relatively recent. For 
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instance, Bokusheva et al. (2016) and Madadgar et al. (2017) used joint distribution of rainfed 

agricultural crops and drought condition over Kazakhstan and Australia, respectively. 

2.7 Future projection 

The fact that the extreme weather events (e.g., extreme precipitation, heat waves) have 

become increasingly frequent all around the globe (Kundzewicz and Kaczmarek, 2000; 

Mazdiyasni et al., 2017), was well understood and witnessed during the latter part of the 20th 

century and early 21st century (IPCC, 2014). Among all the climate extremes, detection and 

quantification of drought events are complex. The analysis of drought can be carried out at 

short and long-term scales. The short-term forecast helps in providing the advisory to the 

farmers regarding the suitable crop cultivations and reallocation of water resources among the 

states (Bisht et al., 2019). In this light, numerous studies have been carried out around the 

globe in terms of different future drought characteristics. For example 

 

Hanson and Weltzin (2000) discussed about the drought disturbances in future predicted 

drought conditions and their impacts on soil water availability to forests under climate 

change. They revealed several conclusions regarding the sensitivity of forests to future 

drought such as reduction in net primary production, mortality of stature plants etc. They also 

suggested that the regional scaled climate prediction along with higher temporal resolution 

and field-based experiments would be better for predicting the response of different forest 

regions to climate change.   

 

Burke et al. (2010) evaluated the drought events during 20th century and future time series to 

identify any potential future changes due to increased greenhouse gases. They computed 

precipitation indices and soil moisture index for different time scale. They considered outputs 

from Hadley Centre regional climate model (HadRM3) for future drought analysis. They 

found significant difference in soil moisture between model and reference data. Authors 

performed non-stationary extreme value theory to monthly indices to project future drought 

events. All drought indices showed an increment in drought occurrences in future time series.  

 

Rajsekhar et al. (2015) conducted study on the possible changes in drought properties under 

the changing climate. They considered downscaled and bias-corrected data from five GCMs 

and a multivariate Drought Index to conduct the drought analysis in future time series. 
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Authors identified the spatial patterns of drought properties and the distribution of potential 

drought hazard areas. Drought vulnerability assessment and composite drought risk maps 

were also developed to achieve an effective drought mitigation strategy.  

 

Lehner et al. (2017) investigated drought risk and aridity under the impact of climate change 

scenarios. They utilised a set of simulations from the Community Earth System Model 

targeting 1.5oC and 2oC. A small change in drought risk was found in U.S. Southwest and 

central plains, when warming was limited to 2oC. However, a significant increase in drought 

risk was recognised in Mediterranean and central Europe under both 1.5oC and 2oC.   

 

Martin (2018) used the outputs from 24 CMIP5 models to project duration and severity of 

drought events using 6-month SPI. More frequent, long lasting drought events are projected in 

dry regions. Projection of severe drought events and duration suggested an increasing trend 

over wetting region. Author stated that the projected drought characteristics has significant 

implications for planning and resilience. 

 

Cook et al. (2020) analysed the drought condition incorporating future projections of 

precipitation, soil moisture and runoff from Phase Six of the Coupled Model Intercomparison 

Project (CMIP6). They found robust drying in the mean state in most of the parts by the end 

of 21st century based on multi-model ensemble. The regional hotspots with strong dryness 

were identified in western North America, Central America, Europe and the Mediterranean, 

China, Australia, southern Africa, Southeast Asia, Amazon. Moreover, some regions showed 

an increment in extreme drought risk by 200-300% compared to historical period. Authors 

also identified severe and extensive dryness in soil moisture and runoff compared to 

precipitation.  

  

Prodhan et al. (2022) analysed the future drought and its impact on crop yield over South Asia 

based on ensemble machine learning approach. Authors considered CMIP6 global climate 

models and adopted SPEI drought index to characterise future drought. Moreover, they 

proposed non-linear ensemble of Random Forest (RF) and Gradient Boosting Machine 

(GBM) to evaluate the future risk of yield reduction under the impact of future drought. 

Results indicated high drought magnitude with longer duration, whereas high drought 

intensity with shorter duration. A high risk on yield loss under extreme drought condition in 
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future encounters 54.15%, 29.30% and 50.66% loss in rice, wheat, and maize crops 

respectively. Additionally, several past studies have examined the meteorological and 

hydrological droughts incorporating the future projections from GCMs under the Coupled 

Model Intercomparison Project 3 (CMIP3) and 5 (CMIP5) across the globe. For instance, 

over Europe (Spinoni et al., 2018; Thober et al., 2015), over United States (Ahmadalipour et 

al., 2017; Keellings and Engström, 2019), over China (Cao and Gao, 2019; Yao et al., 2020), 

over India (Bisht et al., 2019; Gupta and Jain, 2018), over Australia (Johnson and Sharma, 

2015), over the globe (Spinoni et al., 2020; Ukkola et al., 2018).  

2.8 Concluding remarks 

This chapter presents an overview of non-stationary analysis, its importance in drought 

characterization, propagation, risk and drought projection under climate change. Based on the 

discussion regarding non-stationarity analysis, it is understood that the non-stationarity 

behaviour due to the changing climate cannot be ignored in the analysis of natural hazards. 

The literature are mostly based on the comparison between stationary and non-stationary 

analysis in different hydrological extremes. The comparative analysis comes up with the 

superiority of non-stationary analysis over stationary analysis in most of the regions in 

capturing the occurrences of extreme events appropriately. Non-stationary analysis can be 

conducted with the use of different statistical methods incorporating various physical 

covariates. Therefore, this thesis initially aims at examining the better model between 

stationary and non-stationary modelling in the study area for identifying the drought 

occurrences. Further, the literature focuses on the characterization of different droughts based 

on both univariate and multivariate indices. The significance of different drought indices for 

characterizing specific types of droughts are discussed for both stationary and non-stationary 

analysis. With this understanding the next part of the thesis examines the evaluation different 

drought properties like severity, duration, frequency for meteorological, hydrological, 

agricultural, and socio-economic drought in India.  

Based on the literature regarding the drought propagation from one type to another along with 

internal drought propagation, it is crucial to understand the reason behind the transformation 

of drought through hydrological system. The literature suggests the reflectance of drought 

characteristics on drought propagation and about the significance of different controlling 

factors on drought propagation. Therefore, one part of thesis is assigned to the investigation of 
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drought propagation from meteorological to hydrological and agricultural drought along with 

internal drought propagation for each drought under both stationary and non-stationary 

approach. Literature based on drought risk and vulnerability suggest the necessity of 

evaluating the drought risk for adopting better drought management strategies. Specifically, 

the evaluation of agricultural drought risk which affects the global food security system is of 

paramount importance. Further, the studies on copula based multivariate analysis show its 

widespread application on hydrological system. Therefore, part of thesis is devoted to the 

computation of agricultural probabilistic drought risk for four major crops based on copula 

theory in the study area.  

It is expected that drought risk is likely to increase in the twenty-first century. Additionally, 

literature related to the future projection of drought provide the evidence of the increment in 

drought occurrences in future time series under different climate change scenarios. Hence, the 

last part of thesis focuses on the evaluation of meteorological drought properties and 

identification of drought hotspot regions for different time scales under different climate 

change scenarios. Moreover, seasonal drought analysis for pre-monsoon, monsoon, post-

monsoon, Kharif and Rabi is performed to evaluate severity-area-frequency relationship 

curve.  

 

 

 

 

 

 

 

 

 

 



31 
 

 

 

 

 

 

Chapter 3  
 

Non-stationary modelling of drought 
 

 

 

3.1 Introduction 

As discussed in Chapter 1, the drought can be linked to the deficiency of the streamflow, soil 

moisture, agricultural productivity, and socio-economic conditions (Huang et al., 2016; A.K. 

Mishra and Singh, 2010; Wilhite and Glantz, 1985; X. Zhang et al., 2017). Different types of 

droughts (e.g., meteorological, hydrological, agricultural, and socio-economic) put enormous 

pressure on water availability, water demand, and agriculture. In this sense, the adverse 

consequences of drought affect socioeconomic status and subsequently increase economic 

risk and financial challenges. For instance, in an agrarian country like India, 50% of the total 

agricultural land (i.e., 68% of the total area) is highly susceptible to frequent severe drought 

conditions affecting about 50 million people annually (Dutta et al., 2013).  

Due to the effects of climatic variability and anthropogenic perturbations, it is postulated that 

the frequency of drought hazard will increase in coming decades (Li et al., 2013a; Villarini et 
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al., 2011; Wang et al., 2015a). Most drought events in India are due to the low summer 

monsoon precipitation as a result of climate change or natural variability (Mishra et al., 2012; 

Roxy et al., 2015). While analyzing the relationships between droughts and natural variability 

like El Niño-Southern Oscillation (ENSO) during the period 1871–1999, WMO (1999) 

reported that 11 out of 21 drought events occurred during the El Niño years in the period 

1871–1988. However, in the twenty-first century, the association between the two phenomena 

appears to have strengthened as three out of four El Niño years resulted in Indian droughts 

over the last 14 years (Saini and Gulati, 2014). Therefore, in India, comprehensive evaluation 

and periodic assessment of the characteristics and adverse impact of droughts is necessary for 

adaptation and mitigation (Aadhar and Mishra, 2017; Shah and Mishra, 2015). 

Despite the lack of a precise definition of drought, several indexes exist for monitoring 

drought conditions (Li et al., 2015; WMO and GWP, 2016). The Palmer Drought Severity 

Index (PDSI) (Palmer 1965) and Standardized Precipitation Index (SPI) (Mckee et al. 1993) 

are commonly used to monitor precipitation-based meteorological droughts. Similarly, the 

Standardized Runoff Index (SRI) is used to monitor runoff- or streamflow-based hydrological 

droughts (Shukla and Wood 2008). Likewise, the Standardized Soil Moisture Index (SSI) and 

Agricultural Standardized Precipitation Index (aSPI) are widely used to monitor agricultural 

droughts (Hao and AghaKouchak, 2013; Tigkas et al., 2019). Many other drought indexes 

have been proposed that consider one or more climate variables, such as the Standardized 

Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al. 2010), Vegetation 

Drought Response Index (VegDRI) (Brown et al., 2008), Reconnaissance Drought Index 

(RDI) (Tsakiris and Vangelis, 2005), Multivariate Standardized Drought Index (MSDI) (Hao 

and AghaKouchak, 2014), and Evaporative Stress Index (ESI) (Anderson et al., 2007).  

Understanding the importance of non-stationarity (as discussed in Chapter 1), the 

development of a non-stationary drought indices has gained significant momentum in recent 

years with the inclusion of various covariates in its computation. For example, large-scale 

climatic oscillations (Li et al., 2015; Rashid and Beecham, 2019), both large-scale climatic 

oscillations and human induced indexes (Wang et al., 2020b), and time (Bazrafshan and 

Hejabi, 2018; Park et al., 2019; Wang et al., 2015b) are used as covariates in modeling non-

stationary droughts. However, the selected covariates and their selection procedure may vary. 

For instance, Li et al. (2015) selected large-scale climate indexes [e.g., Southern Oscillation 

Index (SOI), Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO)] 
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based on a correlation analysis; Wang et al. (2020) computed the anthropogenic influence to 

incorporate as a covariate in the computation of non-stationary drought, based on the previous 

literature, and time was used as a covariate by Bazrafshan and Hejabi (2018).  

The interannual and interdecadal variability in regional and global precipitation is closely 

linked to sea surface temperature (SST) and sea level pressure (Hu and Feng, 2001). 

Considering the time lag correlations between precipitation and climate oscillations, 

precipitation at monthly, seasonal, and annual scales can be predicted (He and Guan, 2013; 

Peng et al., 2014). Understanding the important linkage between large-scale climatic indexes 

and hydrometeorological variables, researchers analyzed the different drought indexes under 

the influence of climatic oscillations. For instance, Meza (2013) modeled the SPEI drought 

index using ENSO over Northern Chile; meteorological drought indexes like the SPI are 

modeled using different climatic oscillation indexes over the Luanhe River Basin in China (Li 

et al. 2015); non-stationary modeling of the RDI over Iran (Bazrafshan and Hejabi 2018) and 

the SSI drought index over the Luanhe River Basin (Wang et al. 2020). 

In a drought-vulnerable country like India, the analysis of drought in the context of a non-

stationary approach is limited (Ganguli and Reddy 2013; Salvi and Ghosh 2016). Moreover, 

to the best of the authors’ knowledge, in connection with drought prone areas like 

Maharashtra, drought events under the influence of large-scale climatic oscillations have not 

been analyzed. Therefore, to develop a new approach to drought identification and examine 

drought properties, non-stationary meteorological drought indexes incorporating large-scale 

climatic oscillations are developed for Maharashtra. Two different drought indexes, SPI and 

RDI, are considered for the analysis. Large-scale climatic oscillations like the Indian Summer 

Monsoon Index (ISMI), the SOI, SST, and Indian Ocean Dipole (IOD) are used as covariates. 

The reason behind the selection of the climatic oscillations is discussed in the Section 3.2. 

The Generalized Additive Model in Location, Scale and Shape (GAMLSS) package in the R 

environment.  

3.2 Study area and data used 

3.2.1 Study area 

To analyze and model non-stationary meteorological drought events at different time scales, 

Maharashtra is selected as the study area. Maharashtra lies between and 15° 61’E–22° 03’E 
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latitude and 72° 64’N–80° 90’N longitude. It covers an area of around 3,07,713 km2 and is the 

third largest state in India. The state consists of six administrative divisions, namely Konkan, 

Pune, Nashik, Aurangabad, Amaravati, and Nagpur. The average elevation of the study area is 

1,200 m above mean sea level. Annual precipitation over the study area varies between 512 

and 3,765 mm, with an average of 1,133 mm during 1951–2013. In the period of 1901-1998, 

26 meteorological droughts have been identified and 11 droughts out of those affected more 

than half of the state. Moreover, in 2013, 11801 villages were affected by a worst drought 

occurred in last 40 years in Maharashtra. The maximum temperature varies between 37°C and 

46°C during summer and the minimum temperature between 3°C and 12°C during winter 

(1951–2013). Rainfed agricultural activity is the primary source of income for about 64% of 

the total population, and the state contributes about 15% of the country’s gross domestic 

product (GDP) (P. D. Udmale et al., 2014). However, there exists a significant spatial 

variability of the precipitation from western (mostly wet) to eastern (mostly dry) parts of 

Maharashtra. A detailed representation of the study area is shown in Figure 3.1. 

 

Figure 3.1: Description of the study area. (a) location map of Maharashtra superimposed over 

India map; (b) 103 grid points at a resolution of 0.5o x 0.5o over Maharashtra; (c) six different 

divisions of Maharashtra state 
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3.2.2 Observational datasets 

The daily precipitation and temperature (maximum and minimum) data sets for this study are 

obtained from the India Meteorological Department (IMD), Pune, for the period 1951–2013. 

The original data are available at spatial resolution 0.25° × 0.25° and 1° × 1° for precipitation 

and temperature, respectively. The precipitation datasets are derived based on 6,955 rain 

gauge stations (Pai et al., 2014), and temperature data sets are prepared based on the 395 

quality controlled temperature stations (Srivastava et al., 2009). The datasets can be obtained 

from https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html. To 

simplify the analysis and interpretation of the outcomes, the precipitation and temperature 

data sets are brought to a common grid point of 0.5° × 0.5° spatial resolution in this analysis. 

In addition to the precipitation and temperature data, wind speed, and cloud cover data are 

downloaded from the National Centers for Environmental Prediction (NCEP) reanalysis 

products (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html). The spatial 

resolution of wind speed and cloud cover is brought to a common grid point as precipitation 

and temperature points using bilinear interpolation during 1951–2013. The bilinear 

interpolation is performed using the built-in function in “Raster” package in R environment. 

Here, the bilinear interpolation method is chosen among different interpolation methods as it 

is easy to use and apply when the source and destination grids are rectilinear (Jones, 1999). In 

addition, this method is suitable for continuous variables. In the bilinear method, the value at 

targeted grid point is interpolated from the values of the four nearest grid values. In other 

words, the weighted average of the four values corresponding to the four nearest grids is 

computed. The weights are determined by the distance between the target grid and other grids. 

The grid near to the target grid gets more weight and vice versa. The wind speed and cloud 

cover data sets are used to compute the potential evapotranspiration (PET) series, which will 

be further used to compute RDI at different time scales. 

Table 3.1: Details of the datasets used in the present study 

Dataset Temporal Resolution Spatial Resolution Source 

Precipitation 1951-2013 (Daily) 0.25° × 0.25° IMD 

Temperature 1951-2013 (Daily) 0.5° × 0.5° IMD 

Cloud cover 1951-2013 (Monthly) 2.5° × 2.5° NCEP 

Wind Speed 1951-2013 (Monthly) 2.5° × 2.5° NCEP 

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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3.2.3 Climate covariates and its association 

3.2.3.1 Indian summer monsoon index (ISMI) 

Most precipitation across India occurs during the monsoon season (i.e., June–September), 

which is modulated by the Asian summer monsoon and mainly due to the Indian summer 

monsoon. The Asian summer monsoon is one of the most energetic components of the Earth 

systems driven by convective (most important), radiative, and sensible heat sources/sinks 

(Wang et al., 2001). As a result of the boreal summer, two different convective regions are 

observed, one over the Bay of Bengal–India–Arabian Sea region and the other over the South 

China Sea and Philippine Sea region. The former is mainly responsible for the Indian summer 

monsoon, while the latter mostly accounts for the East Asia summer monsoon. In addition, 

previous studies found a possible connection between monsoon indexes with precipitation 

variability in China (Chang et al., 2019) and India (J. Das et al., 2020b). Therefore, the ISMI 

is a good indicator of the strength of monsoon precipitation over India, and the ISMI is used 

in a very limited way to analyze the characteristics of meteorological droughts. The ISMI is 

defined as the difference in the zonal winds at 850 hPa over (40°E–80°E, 5°N–15°N) and 

(70°E–90°E, 20°N–30°N). Because the wind variation at 850 hPa reflects the variation in 

convective heating compared to upper-level circulation, 850 hPa is used to compute the ISMI 

(Wang, 2000). In this context, the use of ISMI as a covariate for analyzing meteorological 

droughts is reasonable. ISMI dataset can be downloaded at 

http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html. 

3.2.3.2 Southern oscillation index (SOI) 

The SOI is generally used to characterize the ENSO and is defined as the standardized sea-

level pressure difference between Tahiti and Darwin, Australia (Cavazos and Rivas, 2004). 

The negative and positive values of SOI specify El Niño and La Niña episodes, respectively. 

These episodes exert a significant influence on the precipitation variability across the globe, 

so variations in the ENSO affect the perceptions about changes in drought (Gu et al., 2007; 

Hoerling et al., 2010; Trenberth, 2011; Trenberth et al., 2014). In particular, the ENSO 

phenomenon causes 6.3% of global precipitation variance and helps in explaining the 

variability in climate over the Northern Hemisphere (New et al., 2001). For instance, during 

El Niño episodes, there are major droughts over Southeast Asia, Australia, Brazil, Indonesia, 

and some parts of Africa (Trenberth et al. 2014). In India, because the summer monsoon is 

http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html
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largely affected by ENSO events (Roy, 2017; Turner et al., 2005), drought years are usually 

aligned with El Niño episodes while La Niña episodes bring excess precipitation to the 

country (Roy et al., 2019). Moreover, in a recent study, Agilan and Umamahesh (2018) 

identified the SOI as the suitable ENSO index to model extreme precipitation during monsoon 

and non-monsoon periods over India. Therefore, the SOI has been introduced as a climate 

covariate for modeling the non-stationarity in the different types of drought events (Li et al., 

2015; Rashid and Beecham, 2019; Wang et al., 2020b). The monthly data of SOI can be 

downloaded from https://crudata.uea.ac.uk/cru/data/soi/. 

3.2.3.3 Sea surface temperature (SST) 

The variation in the SST, generally referred to as the SST anomaly (SSTA), has a pronounced 

effect on atmospheric climate (Mamalakis et al., 2017). In addition, Alexander et al. (2009) 

advocated that SSTA is considered one of the main ENSO indexes, and therefore, SSTA is 

likely to modify the precipitation and temperature variability around the globe. Many 

researchers have linked a precipitation anomaly with the SSTA, for example, in China (Yang 

et al., 2017b), the East Asian summer monsoon (Hu and Duan, 2015), the Indian summer 

monsoon (Chattopadhyay et al., 2015), and in Europe (Ionita et al., 2015). Likewise, it is well 

established that the SSTA is one of the major causes of the drought that prevails in many 

places around the world, for example, Canada (Shabbar and Skinner, 2004), the United States 

(McCabe et al., 2008), Europe (Ionita et al., 2012), and India (Niranjan Kumar et al., 2013). 

Therefore, selecting the SSTA as an explanatory variable in modeling the non-stationary 

drought index is  reasonable . The monthly mean SSTA data sets as compared to 1981–2010 

mean over NINO3.4 (17°E-120°W, 5°S-5°N) region can be downloaded from 

https://www.cpc.ncep.noaa.gov/data/indexes/. 

3.2.3.4 Indian ocean dipole (IOD) 

The IOD, in the tropical Indian Ocean, was just recently discovered and quantified with the 

Dipole Mode Index (DMI) (Saji et al., 1999). The IOD is characterized by the SST difference 

between the tropical western Indian Ocean (50°E–70°E, 10°S–10°N) and the tropical south-

eastern Indian Ocean (90°E–110°E, 10°S–Equator) (Saji et al. 1999). The IOD is a coupled 

ocean–atmosphere phenomenon like ENSO, and the variability in the SST contributes to the 

variations in rainfall and storm activities of many countries surrounding the Indian Ocean 

(Paul and Rashid, 2017). In addition, studies show that the IOD makes a significant 

https://crudata.uea.ac.uk/cru/data/soi/
https://www.cpc.ncep.noaa.gov/data/indexes/
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contribution to modulating southwest (Ashok and Saji, 2007) and northeast (Geethalakshmi et 

al., 2009) monsoon precipitation. Some studies have indicated an association between the 

IOD and drought events across the globe (Forootan et al., 2019; Ummenhofer et al., 2011; 

Xiao et al., 2016). Moreover, a recent study postulates that with the increasing amount of 

greenhouse gases, the frequency of IOD events is likely to increase (Cai et al., 2014). 

Therefore, the IOD was selected as one of the covariates for non-stationary modeling of 

meteorological drought over Maharashtra. The DMI datasets are collected from 

https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/. It should be noted that the ISMI, SOI, SST, 

and IOD data sets were collected for the period 1951–2013. 

Table 3.2: Details of the covariates used in the present study 

Climate 

indices 

Temporal 

Resolution 

Sources 

ISMI Monthly http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-

monidx.html 

SOI Monthly https://crudata.uea.ac.uk/cru/data/soi/ 

IOD Monthly https://www.cpc.ncep.noaa.gov/data/indexes/ 

SST Monthly https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ 

 

3.3 Methodology 

Initially, the monthly hydro-meteorological variables are cumulated according to different 

time scales. The large-scale oscillations are arranged based on different lag values. The 

Kendall tau correlation test is performed between the monthly cumulated hydro-

meteorological variables and lag wise arranged climatic oscillations. The best lag is computed 

at a significance level of 5% at each grid point. Next, the suitable distribution is fitted with 

and without considering the oscillations values with selected lag. The best fit model is 

selected based on AIC value and the drought indices are computed by transforming the 

cumulative probability of fitted distribution to standard normal values. 

https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
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Figure 3.2: Methodological framework for the proposed study 

3.3.1 Computation of SPI 

The datasets discussed in Section 3.2 are collected for the period 1951-2013. At a spatial 

resolution of 0.5o x 0.5o, the number of grid points covering the state is 103 [Figure 3.1(b)]. 

At each grid point, the monthly precipitation series is extracted by accumulating the daily 

precipitation data and then the cumulative precipitation for different time periods (3-, 6-, 9-, 

12-, 24- month time scales) is computed using Equation 3.1. Let, x(t) represents monthly 

precipitation at time t, and for a time scale of m months, the cumulative precipitation xm(t) is 

presented as follows. 

1

( ) ( )
t

m

i t m

x t x i
= − +

=                                                                                                                    (3.1) 

The traditional SPI drought index is computed by fitting a two-parameter gamma distribution 

to the cumulative precipitation for different time periods and denoted as xm(t)~gamma(µ,σ). 

The probability density function (PDF) of Gamma distribution is presented by 
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where, location and scale parameters are defined by µ, and σ, respectively, and Γ represents 

Gamma function. The cumulative probability of xm(t) is then transformed to standard normal 

values with mean 0 and standard deviation 1 (Abramowitz and Stegun, 1965). The 

transformed values are called as SPI for the particular series of precipitation. In this case, the 

distribution parameters are assumed to be stationary. However, to model/ incorporate the 

influence of climate change signals, the parameters of the distribution need to be time-variant 

(Russo et al., 2013) and hence, non-stationary modelling is necessary.  

3.3.2 Computation of RDI 

Unlike SPI, the computation of RDI involves two climate variables precipitation and potential 

evapotranspiration (PET). The PET is computed using the Penman-Monteith method 

(Penman, 1948) as it is regarded as the most suitable method to encompass climate change 

(Liu and Yang, 2010). The R package SPEI is used to evaluate PET at each grid point. The 

minimum climatic and geographical components required for the computation of PET in the 

above-said package are temperature, wind speed, cloud cover, latitude, and elevation at each 

grid point. The elevation at each grid point is extracted from the digital elevation map (DEM) 

at a spatial resolution of 90m from http://srtm.csi.cgiar.org/ (last accessed on 01st December 

2019). Initially, the ratio of precipitation to PET accumulated for a given time window is 

evaluated. The ratio is called as the initial value (i.e., o ) of RDI (Bazrafshan and Hejabi, 

2018) and determined by,  
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where ( )o l  represents RDI value for the aggregation time l, Pk and PETk are the precipitation 

(in mm) and potential evapotranspiration (in mm) of the kth month of the year, l is the 

aggregation time window (in months and in the present case the aggregation time windows 

are 3-, 6-, 9-, 12-, and 24- months), k defines the month number over a time window. 

http://srtm.csi.cgiar.org/
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Therefore, PETk defines the cumulative PET from the month k=1 to k=l. For instance, if the 

starting month is June, then k=1 refers to the month of June.   Then, the initial value is fitted 

with the lognormal distribution, and the PDF of the lognormal distribution is presented as  

  

2

2

1 1
( ( ) | , ) exp (log( ( ) ) ;

2( ) 2

( ) 0, ( , ), 0

o o

o

o

f l l
l

l

    
  

  

 
= − − 

 

 − + 

                                   (3.4) 

where, location and scale parameters are defined by µ, and σ, respectively. The cumulative 

probability of α0(l) is then transformed to standard normal values with mean 0 and standard 

deviation 1. The transformed values are called RDI for the particular series of initial values. 

However, for more extended period or in the context of climate change, the parameters of the 

probability distribution may vary with respect to time. Hence, drought characterisation under 

the influence on climatic variability is of paramount importance. The classification and the 

threshold values for drought identification according to SPI and RDI are presented in Table 1. 

Table 3.3: Classifications and the associated ranges for SPI & RDI values (stationary and 

non-stationary) 

Classification Range Category 

Extreme Wet SPI/RDI ≥ 2.00 EW 

Severe Wet 1.5 ≤ SPI/RDI < 2.0 SW 

Moderate Wet 1.0 ≤ SPI/RDI < 1.5 MW 

Near Normal -1.0 ≤ SPI/RDI < 1.0 NN 

Moderate Drought -1.5 ≤ SPI/RDI < -1.0 MD 

Severe Drought -2.0 ≤ SPI/RDI < -1.5 SD 

Extreme Drought SPI/RDI < -2 ED 

 

3.3.3 Non-stationary modelling of drought indices 

3.3.3.1 Selection of large-scale climate oscillations 

In this study, four large-scale climate indexes (ISMI, SST, SOI, and IOD) are selected to 

indicate climate anomalies. The measurements of the climate indexes usually exhibit sporadic 

disturbances (Wang et al., 2020). Therefore, it is necessary to smooth the data series through 
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moving average by continuously averaging over n samples. Moreover, the moving average 

will minimize the effect of outliers in the statistical models and reduce the monthly random 

variability. In the present study, the n value corresponds to the time scale of droughts, i.e., 3, 

6, 9, 12, and 24 months. After smoothing the series at various n values, the large-scale climate 

indexes are arranged according to different lags. It should be noted that the lag varies from 0 

to 12. Next, a correlation analysis is carried out between the arranged large-scale climate 

indexes (for all lags) and the obtained cumulative precipitation using Equation 3.1. Generally, 

Kendall and Spearman correlation tests are used to examine the possible teleconnection 

among the hydrological variables and climate patterns (McCormick et al., 2009; Niu et al., 

2014). In this study, to verify the best lag and best large-scale climate indexes at each grid 

point, the Kendall correlation test was used at a significance level of 5%. For a more detailed 

description of the Kendall test, interested readers are advised to consult (Kendall, 1955). The 

obtained appropriate large-scale climate indexes and their best lag at each grid point are 

considered as a covariate for that grid point. It is worth mentioning that the correlation 

analysis is performed for both the SPI and RDI at all 103 grid points. 

3.3.3.2 Computation of non-stationary drought indices 

In this study, to perform a non-stationary analysis of SPI and RDI, a GAMLSS package 

(Rigby and Stasinopoulos, 2005a) is used. This package is extensively used in a non-

stationarity framework in hydrological applications (Villarini et al., 2010). Moreover, in 

comparison with other methods, like maximum likelihood (ML) and a two-stage method 

based on weighted least squares (TSWLS), it is found that GAMLSS outperforms these two 

methods in terms of flexibility and superior treatment of non-stationarity (Debele et al., 2017). 

GAMLSS is a semiparametric regression-type model that enables the user to introduce 

explanatory variables or random effects (i.e., covariates in this study) as a linear or nonlinear 

function with different statistical parameters (i.e., location, scale, and shape). For a detailed 

description of GAMLSS, the reader may consult Rigby and Stasinopoulos (2005) and 

Stasinopoulos and Rigby (2007). However, a brief description of the GAMLSS theory is 

presented here. 

In this analysis, the datasets (   1,  2,  3,....., 1,  ix for i n n= − ) are assumed to be independent 

and fitted with a distribution function as 1 2 3 4( | ,  ( , , , ))i i

x i i i i iF x where     = . For instance, 

in case of SPI, the accumulated precipitation series for different time scales are considered as 
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xi. The matrix   represents the parameters of the probability distribution, such as location, 

scale, shape, and kurtosis parameters. Hence, to find out the kth parameter 

( =1, 2, 3, 4 for , , , ,  respectively)k      of a distribution associated with the explanatory 

variables/covariates through the monotonic link ( )kg  functions are defined as 

1

( ) ( )
kJ

k k k k k jk jk

j

g X Z   
=

= = +                                                                                          (3.5) 

where θk is the vector of length of dataset, βk is the parameter vector of length Jk, the matrix of 

Xk is n×Jk and Zjk is the non-parametric additive function of γjk. It is worth mentioning that the 

selected covariates for different aggregate time scales are varied linearly in the parameter of 

the selected distribution. Initially, the aggregated precipitation series at different time scales 

are fitted with the stationary gamma distribution separately for all the grid points. Next, the 

location parameter of the gamma distribution is described as a linear function of the selected 

covariates for all the grid points over Maharashtra. Similarly, in the case of RDI, the analysis 

is performed with the lognormal distribution. The selection of the best among stationary and 

non-stationary approaches is evaluated using Akaike information criterion (AIC) (Akaike, 

1974). The minimum value of AIC corresponds to the optimal model. Therefore, the non-

stationary model can be defined as follows:  

For non-stationary SPI (SPIN): ( ) ~ ( , )m tx t Gamma                                                            (3.6) 

For non-stationary RDI (RDIN): ( ) ~ log ( , )o tt normal                                                    (3.7) 

 1 1 2 2 3 3( ) ( ) ( ) ....... ( )t o m mb b C t b C t b C t b C t = + + + + +                                                             (3.8) 

where, b0, b1, b2, b3, …………, bm are regression constants and C1, C2, ………., Cm are the 

associated covariates. In GAMLSS, there are two algorithms for fitting the models, namely 

the CG algorithm (named after Cole and Green, 1992) and the RS algorithm (named after 

Rigby and Stasinopoulos, 1996). However, in the present study, the RS algorithm is used 

because it does not require an initial value of parameters to confirm convergence and the 

method is faster for large data sets. The cumulative probability of the gamma distribution (the 

same will hold for lognormal distribution) obtained after the non-stationary analysis is 

transformed into a standard normal variate to obtain the non-stationary SPI (SPIN). The 
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classifications of the stationary and non-stationary drought indexes are presented in Table 3.1. 

In this study, -1 is considered as the threshold below which all events will be referred to as a 

drought. Therefore, the drought properties discussed in the next section are estimated based 

on the selected threshold.  

3.3.4 Identification of drought properties 

Several methods exist for identifying drought properties, such as the discrete Markov process, 

percentile method, run analysis, and others. Because run analysis (Yevjevich, 1967) has been 

generally used for this purpose (Mishra et al., 2009; Reddy and Ganguli, 2012), it will be 

applied in this study. In a run analysis, it is assumed that a drought is the sequence of values 

below a threshold. Here, three different drought properties, severity, duration, and peak, are 

analyzed using a threshold value of -1 for both SPI and RDI. A graphical representation of the 

different drought properties is depicted in Figure 3.3. From the figure, the duration is 

computed from the start of a drought event to the termination of the event. Therefore, in this 

case, the minimum length of the duration is 1 month. Subsequently, severity is computed as 

the cumulative magnitude of SPI during the particular duration. The minimum value of the 

SPI (and similarly in the case of the RDI) during the given duration is defined as the peak. 

 

Figure 3.3: Graphical representation of the different drought properties such as Severity, 

Duration, and Peak. The dotted line represents the truncation level 
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3.4 Results 

3.4.1 Spatio-temporal variability of meteorological variables 

The spatiotemporal variabilities of meteorological variables, such as precipitation, mean 

temperature, and PET, are analyzed over the study area. The monthly mean during 1951–2013 

is computed for all variables at each grid point. The spatial variability of each variable is 

plotted for each month, as shown in Figure 3.3, for monthly mean precipitation over the study 

area. Similarly, the spatio-temporal variability of average temperature and PET are depicted 

in Figure 3.4 and Figure 3.5, respectively.  

 

Figure 3.4: Spatio-temporal variability of mean monthly precipitation (in mm)  
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Figure 3.5: Spatio-temporal variability of mean monthly temperature (in oC) 

 

Figure 3.6: Spatio-temporal variability of mean monthly PET (in mm) 
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It can be observed from Figure 3.3 that during the monsoon season (i.e., June, July, August, 

and September) the Konkan division receives a high level of precipitation, while the central 

part of the Maharashtra state, such as the Nashik and Aurangabad divisions, receive much less 

rainfall. The results are similar to those obtained by Subash et al. (2011). The mean 

temperature variability over the study area (Figure 3.4) exhibits higher average temperature 

for 8 out of 12 months over Konkan, Pune, and Aurangabad divisions. Similarly, the average 

PET (Figure 3.5) over Konkan, Pune, and Aurangabad divisions is high from May to 

September. However, during November and December, a higher PET is observed over the 

Aurangabad division. Also note that in most cases, the mean temperature and PET trends are 

similar, suggesting the sensitivity of PET to temperature. 

3.4.2 Comparison between non-stationary and stationary modeling 

The non-stationary model is developed by linearly varying the climatic oscillations at the 

location parameter of the gamma (for SPI) and lognormal (for RDI) distributions. To develop 

the stationary model, the parameters are kept constant for the chosen distributions. To check 

the goodness of fit and to avoid model overfitting, the AIC is applied. The suitable lag of 

large-scale climatic oscillations is assessed using a Kendall correlation test at a significance 

level of 5%. The analysis is performed for all 103 grid points and different time scales. Since 

there are many grid points in the study, one grid point (i.e., 20.25 latitude, 75.25 longitude) is 

considered for further explanation. However, for the selected single grid point, the significant 

lags are presented in Table 3.2. 

Table 3.4: Significant lag of different climatic-oscillations for different time scales at the 

reference point for non-stationary modelling of SPI & RDI 

Climate 
Oscillations ISMI SOI SST IOD 

Time scale SPI 

3-month scale 0 - - 12 

6-month scale 0 - - - 

9-month scale 0 - 7 - 

12-month scale 0 9 8 10 

24-month scale 0 - 5 12 



48 
 

Time scale RDI 

3-month scale 0 - - 12 

6-month scale 0 - - - 

9-month scale 0 - 8 - 

12-month scale 0 9 8 9 

24-month scale 0 0 6 12 

It is observed from the analysis that for almost all grid points, the ISMI has a significant 

correlation at lag zero, i.e., the current year ISMI affects the precipitation of that particular 

year. The dash in the table denotes that there is no significant correlation for that particular 

time scale and those climatic oscillations. Then the different climatic oscillations 

corresponding to the identified significant time lags are selected as covariates to estimate 

location parameter of the frequency distribution fitted for the reference grid point. The AIC 

value is used as a comparative measure between the stationary and non-stationary analyses. 

Table 3.3 gives the AIC values obtained for the SPI and RDI on different time scales for the 

reference grid point. 

Table 3.5: The computed AIC values at the reference point for both stationary and non-

stationary approaches in case of SPI & RDI 

Time scales 
SPI RDI 

Non-stationary Stationary Non-stationary Stationary 

3-month scale 8221.64 9041.16 -1294.49 -431.89 

6-month scale 9699.02 10401.52 -539.05 217.14 

9-month scale 9831.50 10291.63 -1062.95 -504.98 

12-month scale 9937.53 10043.23 -1433.54 -1307.20 

24-month scale 10452.01 10513.71 -1836.60 -1671.78 

From the AIC values obtained for all the grid points for stationary and non-stationary 

analysis, it is concluded that the non-stationary approach outperforms the stationary approach 

over all 103 grid points in the Maharashtra study region in India.  
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3.4.3 Analyzing drought characteristics 

According to the classification of the SPI and RDI values (Table 3.1), the occurrence 

frequencies of different drought events are evaluated for both the stationary and non-

stationary approaches. The comparison is carried out for the drought categories moderate 

drought (MD), severe drought (SD), and extreme drought (ED) (refer to Table 3.1). Here, for 

simplicity of presentation, the occurrence frequency of different droughts is presented for the 

reference point in Figure 3.6. It should be noted that the results are presented for both the SPI 

and RDI 

For the SPI, there is a higher frequency of SD on 3-, 12- and 24- month scales, ED on a 6-

month scale, and MD on 9-, 12-, and 24-month scales in the case of SPIN as compared to the 

stationary SPI. Otherwise, the stationary SPI has a higher frequency than SPIN. Similarly, for 

RDI the frequency of occurrence on all time scales is higher for the MD categories using 

RDIN compared to RDI. In addition, the increase in the frequency for SD is observed for 12- 

and 24-month scales using RDIN and for ED on the 3-month scale. Moreover, on 9-, 12-, and 

24-month scales, the pattern of change in the drought frequency is similar for both SPI and 

RDI with or without the influence of large-scale climatic oscillations. It is worth mentioning 

that at other grid points, the results obtained by the SPI and SPIN are not consistent. 

Therefore, it can be postulated that the large-scale climatic oscillations could cause different 

effects on the drought evaluation and frequency across Maharashtra. Similar results are 

obtained by Li et al. (2015) while analyzing the association of large-scale climate oscillations 

with meteorological drought over the Luanhe River Basin. 
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Figure 3.7: Comparison of frequency of occurrence of droughts of different categories under 

stationary and non-stationary approaches for the reference grid point. The upper (lower) panel 

represents the SPI (RDI) drought index 

3.4.4 Analyzing drought properties 

Drought properties, i.e., severity, duration, and peak, are analyzed using non-stationary and 

stationary approaches. In addition, the counts of MD, SD, and ED drought events are also 

examined. For comparison, the empirical probability density function for all the drought 

properties across the study area are determined. The density plot of the drought properties and 

number of events of different drought types are presented in Figure 3.7 and Figure 3.8, 

respectively, for the SPI. In the case of the RDI, the outcomes are similar to the SPI value and 

hence, the plots are not shown for the brevity. It is worth mentioning that in the case of 

severity and peak, only the magnitude is considered. 

It can be noticed from Figure 3.7 that there are noticeable differences in the density plots of 

the results obtained based on the stationary and non-stationary approaches for 3-, 6-, and 9-

month scales. For example, for drought duration the PDFs on 3- and 6-month scales appear to 

have shifted to the right for the stationary case. Conversely, for drought peak, the distribution 

appears to have shifted markedly to the right for the non-stationary approach. Moreover, the 

differences in the referenced PDFs decrease gradually as the time scale increases. These 

results show that the association of large-scale climatic oscillations likely alter the drought 
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properties. Similar observations are made when analyzing the number of events of different 

drought types (Figure 3.8). Considering the ISMI as a covariate and its variability on an intra-

annual scale may be one reason for the large variabilities on smaller time scales. In addition, 

the influence of SOI, SST, and IOD on precipitation is mostly noticed on an interannual scale 

(J. Das et al., 2020b); hence, the inclusion of such indexes may influence drought properties 

on 12- and 24-month scales. Therefore, incorporating climatic oscillations in modeling 

droughts can be a feasible alternative in a changing environment. 

 

Figure 3.8: Probability density plot of drought properties computed for SPI at different time 

scales 
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Figure 3.9: Probability density plot of no. of drought events computed for the SPI drought 

index at different time scales 

3.4.5 Comparison with historical drought event 

The central part of Maharashtra is a semiarid region owing to the very low precipitation and 

high PET and is considered a drought prone area (Gore and Ray, 2002). Moreover, the 2013 

drought was the region’s worst drought in the last 40 years and severely affected the central 

part of Maharashtra. The reduced precipitation in 2012 is considered one of the reasons for 

the 2013 drought. Therefore, this study considered the Aurangabad division (popularly known 

as the Marathwada region) for a comparison of stationary and non-stationary drought indexes 

on a 12-month scale. To this end, stationary and non-stationary SPI and RDI are spatially 

plotted for the monsoon months over the Aurangabad division. The SPI and RDI plots are 

presented in Figure 3.9 and Figure 3.10, respectively. Note that, though there is evidence of 

drought conditions in the Aurangabad division, severe drought conditions were not identified 

using the stationary approach. Moreover, the area under drought is larger under non-stationary 

conditions compared to the stationary approach during monsoon months. Similar results are 

observed in the case of the RDI. Moreover, when more than one meteorological variable is 
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included, the non-stationary RDI captures more drought-affected areas compared to the non-

stationary SPI during the months of June and July. 

 

Figure 3.10: Regional demonstration of stationary and non-stationary SPI at 12-month scale 

during the year 2013 over Aurangabad division. The upper panel shows the stationary and the 

lower panel shows the non-stationary approach 

 

Figure 3.11: Regional demonstration of stationary and non-stationary RDI at 12-month scale 

during the year 2013 Aurangabad division. The upper panel shows the stationary and the 

lower panel shows the non-stationary approach 
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3.5 Discussion and summary 

The research reported in this chapter attempts to develop non-stationary meteorological 

drought indices incorporating large-scale climatic oscillations as covariates for estimating the 

location parameter of the gamma (for SPI) and lognormal (for RDI) distributions. In general, 

precipitation is the major leading factor for the occurrence of meteorological drought (Zargar 

et al., 2011), whereas hydrological drought is associated with human interventions along with 

climate anomalies (Zhang et al., 2012). In the future, meteorological drought conditions are 

likely to be modulated by large-scale oscillations, so the temporal lag association of climatic 

oscillation and meteorological variables can produce reliable information for drought 

management (Li et al. 2015). The non-stationary approach enables the introduction of climatic 

oscillations with a lag time varying from 0 to 12 months and yields fairly good results 

compared with the stationary drought index. 

In the case of the non-stationary drought indexes, their time varying nature is incorporated 

through covariates like the ISMI, SOI, SST, and IOD, which exert a direct or indirect 

influence on precipitation series (Mishra and Singh 2010). Moreover, the non-stationary 

estimation of drought indexes can incorporate the development of meteorological variables in 

a changing environment. More precisely, the time-varying PDFs of meteorological variables 

are updated with time, providing a robust and suitable drought assessment. In addition, 

because the stationarity-based drought index is sensitive to the reference periods, evaluation 

of the frequencies of extreme over other reference periods is difficult (Salvi and Ghosh, 

2016). In this sense, the non-stationarity based indices are capable of capturing extreme 

events because they are insensitive to the reference periods due to their time-varying nature 

The variability of monthly precipitation across Maharashtra shows higher precipitation levels 

across the Konkan division and minimum precipitation in central regions of Maharashtra, 

such as Nashik and Aurangabad. The regional precipitation variability over India is regulated 

by large-scale climatic oscillations like the ISMI, SST, IOD, and SOI (J. Das et al., 2020b; 

Maity and Kumar, 2007); however, one of the reasons for the precipitation variability across 

central Maharashtra can be attributed to its geographical location. Because of its location on 

the leeward side of Western Ghats, central Maharashtra receives much less rainfall. It is 

observed that the sensitivity of PET variability is regulated by temperature in most regions, 

which is in line with the findings of Guo et al. (2017). The percentage changes in the 
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frequency of drought types under stationary and non-stationary approaches vary considerably, 

suggesting that large-scale climatic oscillations modulate the frequency of occurrence of 

drought across the study area. A similar kind of observation was made by Li et al. (2015) 

while analyzing non-stationary drought in the Luanhe River Basin. The variability in the 

drought properties and occurrence of different drought categories were found to be significant 

on small time scales (e.g., 3-, 6-, and 9-month scales) than on larger scales in comparisons 

between the stationary and non-stationary approaches. In this sense, it is worth mentioning 

that under drought mitigation practices in the context of agricultural practices (Parsons et al., 

2019), small- and medium-scale water resource management will be affected in the changing 

scenario of climate change. In addition, the inclusion of large-scale climatic oscillations in the 

computation of drought indexes appears to be more appropriate over the study area, and a 

similar conclusion was drawn by Li et al. (2015) while studying the Luanhe River Basin. 

Owing to intra-annual variability, the ISMI is responsible for modulating droughts on smaller 

time scales. However, SST, IOD, and SOI are likely to affect drought events on larger scales 

as the variability of these climatic oscillations is observed on interannual scales. 

In the context of climate change, in addition to precipitation, other meteorological variables, 

such as evaporation, relative humidity, and temperature, have profound effects on drought 

occurrence (Núñez et al., 2014; Zarch et al., 2015a). For instance, in semiarid regions, instead 

of considering a single meteorological variable, multiple variables play a dominant role in 

drought occurrence and effective drought monitoring (Bazrafshan, 2017). Therefore, in a 

changing climate, the joint behaviour of multiple meteorological variables and the increasing 

or decreasing trend of each variable may significantly influence the estimation of drought 

indexes. For instance, an increase in temperature may result in the same amount of 

precipitation; however, an increase in evapotranspiration can affect drought severity (Li et al. 

2015). Because this type of drought index (RDI in this study) is more sensitive to changing 

environmental conditions, introducing large-scale climatic oscillations as a covariate can 

provide a robust way of estimating drought properties. 

Summarising the findings, it is found that the non-stationary model outperforms the stationary 

approach over all time scales. The ISMI is likely to influence droughts on smaller scales. 

However, the IOD, SST, and SOI are expected to modulate larger-scale drought events. 

Comparative study of the probability plots of drought properties reveals that, though there are 

noticeable variabilities between the stationary and non-stationary conditions on all time 
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scales, a significant difference is noticed on the 3-, 6-, and 9-month time scales. A 

comparative study with respect to historical drought assessments reveals that the presence of 

non-stationarity cannot be ignored for developing sustainable mitigation and adaptation 

strategy. Hence, next chapter deals with examining the different types of droughts 

(meteorological, hydrological, and agricultural) and their properties under the influence of 

external covariates.  
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Chapter 4  
 

Analysing the drought properties 

under different drought conditions 
 

 

 

4.1 Introduction 

From Chapter 3, it is found that the non-stationary approach outperforms the stationary 

approach with the inclusion of external covariates at regional scale. Therefore, the present 

chapter deals with the non-stationarity analysis of meteorological, hydrological, and 

agricultural drought events across India. In case of meteorological drought, the historical 

background and development of the drought index is discussed in Chapter 3.  Likewise, the 

present chapter presents a brief background related to the hydrological, and agricultural 

drought indices under non-stationary approach. 

As discussed in the earlier chapters, the global climate has changes remarkably over the last 

century. Therefore, the hydrological cycle and its available water resources are greatly varied 
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under the changing climate scenarios. For instance, increase in the evapotranspiration without 

enhancement of precipitation has heightened the intensity and frequency of hydrological 

drought (A. Dai, 2013; Sheffield et al., 2012). McCabe and Wolock (2011) concluded that the 

variability of streamflow is highly sensitive to the precipitation after examining the 

independent effects of temperature and precipitation in the United states. In Alpine river, 

climate change is responsible for 85% decrease in the streamflow (Saidi et al., 2018). 

Similarly, several studies argued that the streamflow is modulated by the climatic variability 

over Indian river basins (Islam et al., 2012; Mishra and Lilhare, 2016; Panda et al., 2013; Setti 

et al., 2020).  In this sense, researchers have attempted to link the variability of climate 

change to hydrological drought to develop robust drought index (Jehanzaib et al., 2020; Wang 

et al., 2022; Zou et al., 2018). However, there is a dearth in studying the non-stationary 

hydrological drought in India.  

In addition to the meteorological and hydrological drought events, the variability in the 

climate affects the agricultural drought. The soil moisture variability can be considered in 

order to develop and evaluate the agricultural drought (Ajaz et al., 2019; Fang et al., 2021; 

Zhou et al., 2021). In the absence of irrigation, soil moisture drought affects crop production 

and food security in India (Mishra et al., 2017, 2014a). Therefore, the agricultural drought 

analysis under non-stationary approach is necessary to devise sustainable drought 

management plans. Till date, there is no study that incorporates the non-stationarity to 

understand the agricultural drought. Thus, the present chapter analyses the non-stationarity in 

meteorological, hydrological, and agricultural droughts across India.  

With increase in global population, the direct and indirect consumption of water also 

increases. It brings more challenges to deal with water security associated with different 

sectors such as irrigation, infrastructure, mining etc. Therefore, when the available water fails 

to meet the water demand of a specific area, the socio-economic condition is significantly 

affected over that area. This situation can be named as socio-economic drought. Therefore, in 

this study, for the analysis of socio-economic drought occurrences, the gridded water 

consumption data is collected for six different sectors i.e., domestic, electricity, irrigation, 

livestock, manufacturing, mining during 1970-2010. It should be noted that the 

meteorological, hydrological, and agricultural droughts are analysed during 1982 to 2015. 
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4.2 Data used 

4.2.1 Runoff, soil moisture, and water consumption datasets 

In the present study, the grid-wise analysis is carried out at a resolution of 0.5o Lat x 0.5o Lon 

over India that includes 1170 grid points (Figure 4.1). The annual precipitation variability 

over different states in India ranges between 250mm and 3000mm. Similarly, the average 

temperature during winter is around 10o-25oC and during summer is around 32o-40oC. The 

meteorological datasets used in the present study are discussed in Chapter 3. In addition to the 

mentioned meteorological data, soil temperature dataset is obtained from NCEP reanalysis 

data. 

It is well understood that the different datasets with different uncertainties would result in 

different outcomes. In order to incorporate the variability among the datasets, the runoff 

datasets are obtained from five different sources (ERA5, FLDAS, GLDAS, MERRA-2, and 

NCEP). Another important reason for choosing the datasets is due to inconsistencies in the 

continuous available observed streamflow data and difficulty in obtaining the streamflow data 

over the river basins that share the international boundary with neighbouring countries. The 

above-said runoff datasets are obtained at 0.25o Lat x 0.25o Lon for ERA5 (for abbreviation 

refer to Chapter 1)  (Hersbach et al., 2020), 0.1o Lat x 0.1o Lon for FLDAS (McNally, 2018), 

1o Lat x 1o Lon for GLDAS (Rodell et al., 2004),  0.5o Lat x 0.65o Lon for MERRA-2 (Gelaro 

et al., 2017), and 1.915o Lat x 1.875o Lon for NCEP (Kanamitsu et al., 2002). Similarly, the 

soil moisture datasets are obtained from six diverse sources (CPC, ERA5, FLDAS, GLDAS, 

MERRA-2, and NCEP). The CPC soil moisture dataset is obtained at a grid resolution of 0.5o 

Lat x 0.5o Lon (Fan and van den Dool, 2004). The reliability of above mentioned runoff and 

soil moisture datasets on drought parameters are verified by various researchers across the 

globe (Bai et al., 2016; N. Chen et al., 2020; McNally et al., 2017; Spennemann et al., 2015; 

Zaussinger et al., 2018)  It should be noted that the runoff datasets from all the sources are 

extracted at a common resolution of 0.5o Lat x 0.5o Lon to maintain the consistency with the 

meteorological datasets. The gridded water consumption data is collected for six different 

sectors i.e., domestic, electricity, irrigation, livestock, manufacturing, mining during 1970-

2010. The links to the datasets are provided at the end of the present chapter.  
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Province ID Province ID 

Andhra Pradesh AP Mizoram MZ 

Arunachal Pradesh AR Nagaland NL 

Assam AS Odisha OD 

Bihar BR Punjab PB 

Chhattisgarh CG Rajasthan RJ 

Gujarat GJ Sikkim SK 

Haryana HR Tamil Nadu TN 

Himachal Pradesh HP Telangana TS 

Jharkhand JH Tripura TR 

Karnataka KA Uttar Pradesh UP 

Kerala KL Uttarakhand UK 

Madhya Pradesh MP West Bengal WB 

Maharashtra MH Ladakh* LA 

Manipur MN Jammu and Kashmir* JK 

Meghalaya ML   

*Selected Union territory as the areal coverage is more 

Figure 4.1: (a) represents the gridded locations at a resolution of 0.5o x 0.5o over India; (b) 

shows different provinces/states in India  

Table 4.1: Details of runoff and soil moisture datasets 

Soil 
moisture and 

Runoff 
Datasets 

Spatial 
Resolution 

Temporal 
Resolution 

Source 

ERA5 0.25°× 
0.25° 

Monthly https://cds.climate.copernicus.eu/cdsapp#!/dataset/rea
nalysis-era5-land-monthly-means?tab=overview 

FLDAS 0.1° × 0.1° Monthly https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_
C_GL_M_001/summary 

GLDAS 0.1°× 0.1° Monthly https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10
_M_2.0/summary?keywords=GLDAS 
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MERRA2 0.5°× 
0.65° 

Monthly https://disc.gsfc.nasa.gov/datasets/M2TMNXLND_5.
12.4/summary?keywords=MERRA-2 

NCEP 1.915° × 
1.875° 

Monthly https://psl.noaa.gov/data/gridded/data.ncep.reanalysis
2.html 

CPC 0.5°× 0.5° Monthly https://www.cpc.ncep.noaa.gov/products/Soilmst_Mo
nitoring/US/Soilmst/Soilmst.shtml 

4.3 Methodology 

4.3.1 Computation of different non-stationary drought indices 

As the indicator of meteorological drought, Standardized Precipitation Evapotranspiration 

Index (SPEI) is used that represents the simplified form of the water balance using 

precipitation minus potential evapotranspiration (PET) value at each month  (Vicente-Serrano 

et al., 2010). The present study uses Standardized Runoff Index (SRI) to represent the 

hydrological drought. Similarly, Standardized Soil moisture Index (SSI) is adopted to 

represent the agricultural drought. The parametric distribution namely Log-logistic is fitted to 

the precipitation minus PET to estimate SPEI at all the grid points. However, in case of runoff 

and soil moisture datasets different types of distributions (Gamma, Exponential, Logistic, 

Lognormal, Normal, and Weibull) are examined and the best suitable distribution is 

considered (according to Akaike Information Criteria (AIC) value) at each grid point to 

compute SRI. The cumulative distribution functions obtained by fitting the selected 

distributions are mapped onto the Normal distribution using the inverse of cumulative 

standard normal Gaussian function to develop dimensionless index (Mishra et al., 2016). In 

this procedure, the parameter of the selected distribution is not conditioned with external 

factors (also known as covariate) and can be called as stationary approach. The SPEI and SRI 

indices can be evaluated at multiple accumulation period in order to provide the drought 

condition at seasonal (1-3 month), annual (12-month), or longer time-scales (Bhardwaj et al., 

2020). In the present study, 1-month scale of SPEI and SRI is considered to analyse the 

drought propagation as the larger time scale might overlook the drought propagation at short 

time scale.  

In order to analyse the influence of large-scale climatic indices on the meteorological drought, 

non-stationary analysis is carried out. Here, the framework proposed by Das et al. (2020b) and 

Chapter 3 is used to perform the non-stationary modelling of SPEI drought index. Initially, 

the large-scale climatic indices are arranged in a lagged fashion from no lag to 12-lag and the 
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suitable lag is chosen based on the Kendall correlation analysis (Kendall, 1955) between PR 

minus PET series and arranged large-scale climatic indices at a significance level of 5% . 

Next, the climatic indices with selected lag are considered as covariates to develop the non-

stationary model. This analysis is performed over all the grid points individually. It should be 

noted that the non-stationary modelling is performed by introducing the covariates in the 

estimation of location parameter of the selected distribution in case of SPEI, SRI and SSI 

drought indices. 

However, in case of SRI index, only the meteorological variables (precipitation, PET, relative 

humidity, and wind speed) are considered as covariates for non-stationary modelling. In case 

of agricultural drought index, the meteorological variables such as precipitation, air 

temperature, and soil temperature are considered as covariates. In case of SRI, fifteen 

(tabulated in Table 4.1) different models and for SSI seven (tabulated in Table 4.2) models are 

designed by considering the various combinations of meteorological variables and the 

optimum model is selected based on the lowest AIC value among the models. Similarly, the 

selection between stationary and non-stationary models is performed using the AIC value. 

The entire analysis is carried out using the Generalized Additive Model in Location, Scale and 

Shape (GAMLSS) package in R platform developed by Rigby and Stasinopoulos (2005).  

 

Table 4.2: Different combination of covariates in the location parameter of the selected model 

for the development of the non-stationary SRI 

Model Precipitation PET Relative humidity Wind speed 

Model 1  - - - 

Model 2 -  - - 

Model 3 - -  - 

Model 4 - - -  

Model 5   - - 

Model 6  -  - 

Model 7  - -  

Model 8 -   - 

Model 9 -  -  

Model 10 - -   
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Model 11    - 

Model 12 -    

Model 13  -   

Model 14   -  

Model 15     

 

Table 4.3: Different combination of covariates in the location parameter of the selected model 

for the development of the non-stationary SSI 

Model Precipitation Air temperature Soil temperature 

Model 1  - - 

Model 2 -  - 

Model 3 - -  

Model 4   - 

Model 5  -  

Model 6 -   

Model 7    

4.3.2 Computation of socio-economic drought index 

The graphical representation to evaluate the socio-economic drought is presented in Figure 

4.2. Initially, the threshold value of water consumption is determined as the maximum amount 

of water consumption among six different sectors grid wise. Then, the water scarcity 

condition is identified when the available runoff of a grid point is not sufficient to meet the 

threshold value of water consumption at that grid point. This is computed by differencing the 

threshold value of water consumption from the runoff value for different sources. The 

negative value indicates the socio-economic drought condition whereas the positive value 

indicates the sufficient availability of water to meet the water demand from each sector. A 

socio-economic drought event initiates at the point when the difference between runoff and 

threshold water demand is negative and continues up to the condition when runoff is more 

than the threshold value of water demand. Subsequently, different drought properties i.e., 

drought severity, duration and no of droughts are also calculated. Drought severity is in the 

form of water scarcity amount which is computed as the cumulative summation of required 

water during a drought event, whereas the drought duration is the number of months under 

socio-economic drought occurrences. 
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Figure 4.2: Graphical representation of adopted methodology to identify the socio-economic 

drought conditions 

4.4 Results 

4.4.1 Drought properties 

From the analysis it is found that the non-stationary analysis outperforms the stationary 

analysis at each grid point for meteorological (SPEI), hydrological (SRI) and agricultural 

(SSI) drought conditions. For instance, the comparison between stationary and non-stationary 

analysis is provided based on the AIC values for different indices (Table 4.4). For the brevity, 

grid locations from different parts of India are chosen. The meteorological drought properties 

are presented in Figure 4.3. Mostly, the high values of drought duration and severity are 

observed over the southern parts of India (e.g., Karnataka (KA), Kerala (KL), and Tamil Nadu 

(TN)). The regions with high value of drought duration show high value of severity. 

However, the number of drought events are higher mostly over Madhya Pradesh (MP) in 

central India, parts of Maharashtra (MH), Gujarat (GJ) and Rajasthan (RJ) in western parts of 

India, Uttar Pradesh (UP), Uttarakhand (UK) in northern parts, and Chhattisgarh (CG), and 

parts of Odisha (OD) in eastern parts of India.  
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Table 4.4: The computed AIC values for the covariate (AICw) and without (AICw/o) 

covariate for different drought indices 

Grid SPEI SRI SSI 

AICw/o AICw AICw/o AICw AICw/o AICw 

76.25, 33.75 (North) 9037.0 8870.2 454.5 -897.2 1910.0 1572.0 

71.25,23.25 (West) 9383.6 9119.7 -254.7 -1136.1 2578.2 2209.6 

91.75,25.75 (East) 10399.5 10033.8 1787.7 1059.0 2715.4 2258.7 

77.75,10.75 (South) 9000.8 8647.3 -1134.0 -2000.9 2774.9 2416.8 

76.75,22.75 (Central) 10034.8 9547.8 -145.1 -1130.6 3085.6 2543.4 

82.25,20.75 (Central) 9998.6 9451.6 321.2 -908.7 3234.4 2760.4 

 

Figure 4.3: Different drought properties using SPEI drought index 

 About 94% of total area comes under the drought duration ranging between 6 and 20 months 

with the highest value of 57% in the case of drought duration between 6 and 10 months. 

Similarly, the severity magnitude of 3 to 9 occupies about 91% of the total area with highest 
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(72%) in case of magnitude from 3 to 6. During the study period, the number of drought 

events between 10 and 35 is noticed over 97% of the total area. 

The duration, severity, and frequency of hydrological drought events discerned from different 

datasets are presented in Figure 4.4, Figure 4.5, and Figure 4.6, respectively during 1982-

2015. From Figure 4.4, it can be noticed that maximum percentage of area i.e., 36% in ERA5, 

43% in FLDAS, and 40% in NCEP is observed for the drought duration ranging from 10 

months to 15 months. However, in the case of GLDAS and MERRA2, the maximum 

percentage of area (i.e., 79% and 68%, respectively) is noticed for 5 months to 10 months 

drought duration. Considering the SRI values from all the models, it is observed that more 

than 85% of the total area has come under the drought duration of 5 months to 20 months. 

The high value of drought duration is observed over small parts in northern region for SRI 

values from ERA5, FLDAS, NCEP and southern region from NCEP. 

In case of severity value ranging from 5 to 10 (Figure 4.5), the highest percentage of area is 

computed as 53% in ERA5, 75% in GLDAS, 71% in MERRA2, and 52% in NCEP. The 

regions under the high values of drought severity are similar as drought duration. As 

compared to drought duration and severity, the intermodal variability is high in case of 

number of drought events as presented in Figure 4.6. It can be observed from the figure that 

more than 40% of the total area is under the influence of high no of drought event i.e., 

between 25 and 35 in the case of GLDAS and MERRA2. However, the spatial distribution of 

the drought event is different between these models. For instance, the high drought events are 

zoned over most parts in India except some parts in northern, northwest, and southern regions 

in case of GLDAS. Conversely, mostly the western parts of the country are affected by the 

large number of drought events as observed in MERRA2. 

The hydrological drought properties obtained from the ensemble average of all the runoff 

datasets (Figure 4.7) reveal that the higher value of duration and severity is observed mostly 

over the southern and northern parts of India. Conversely, the low magnitude of duration and 

severity is noticed over the western and northeast parts of India. The number. of drought 

events are between 20 and 25 during the study period over most of the regions in India. 
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Figure 4.4: Drought duration (in months) computed from different runoff datasets 

 

Figure 4.5: Drought severity computed from different runoff datasets 
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Figure 4.6: Number of drought events computed from different runoff datasets 

 

Figure 4.7: Different drought properties obtained from the ensemble average of all the runoff 

datasets 
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The duration, severity, and frequency of agricultural drought events obtained from different 

soil moisture datasets are presented in Figure 4.8, Figure 4.9, and Figure 4.10, respectively. It 

can be noted from Figure 4.8 that the drought duration varies from 11 to 15 months for ERA5, 

FLDAS, GLDAS, and MERRA2 over 60%, 50%, 48%, and 56% of the total area. However, 

in the cases of CPC and NCEP, the ranges of drought duration vary from 6 to 10 months over 

43% and 59% of total area. Over more than 95% of the total area of India, the agricultural 

drought duration ranges between 6 and 20 months based on the threshold value (i.e., zero) 

chosen in the present study. Figure 4.9 describes the spatial variability of agricultural drought 

magnitude/severity across India during 1982-2015. It is observed that 70% to 93% of total 

area come under the severity range from 5.1 to 10 while considering all the soil moisture 

datasets. Unlike the drought duration, the spatial distribution of drought severity is uniform 

across the India for all the data sources. The drought event numbers are plotted in Figure 4.10. 

Though there is significant variability in the drought occurrences across different data 

sources, the high occurrence of agricultural drought is noticed over the western parts of India 

in case of all the datasets. The drought occurrence range between 20 to 25 is observed over 

30% of area in CPC, 48% in ERA5, 42% in FLDAS, 45% in GLDAS, 36% in MERRA-2 and 

47% in NCEP dataset. 

 

Figure 4.8: Drought duration (in months) computed from different soil moisture datasets 
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Figure 4.9: Drought severity computed from different soil moisture datasets 

 

Figure 4.10: Number of drought event computed from different soil moisture datasets 
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The ensemble average of all the datasets for different agricultural drought properties is 

presented in Figure 4.11. It can be noted that high drought duration and severity are observed 

over the northern parts and some patches of northeast and northwest regions of India. About 

69% of the total area comes under the drought duration ranging from 11 to 15 months. 

Similarly, the severity values from 6.1 to 9 are noticed over 77% of the total area. The 

ensemble average of number of drought events reveals that the agricultural drought 

occurrence along the west coast and some parts in the central India is high (i.e., more than 

twenty-five occurrences during the study period). Whereas the number of drought events 

ranges between 21 to 25 are evident over 61% of the total area. 

 

Figure 4.11: Different agricultural drought properties obtained from the ensemble mean of six 

different soil moisture datasets during 1982-2015 
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Different drought properties related to the socio-economic drought are computed for various 

runoff datasets. The duration, severity (or water shortage in this case), and frequency of socio-

economic drought events obtained from different runoff datasets are presented in Figure 4.12, 

Figure 4.13, and Figure 4.14, respectively. It can be noted from Figure 4.12 that the drought 

duration up to 20 months is observed for ERA5, FLDAS, MEERA-2 and NCEP over about 

31% of the total area. However, in case of GLDAS, the percentage of area is about 24%. For 

the duration between 200 to 350 months, the percentage of area is computed as 34%, 28%, 

52%, 26% and 24% for ERA5, FLDAS, GLDAS, MEERA-2 and NCEP, respectively. The 

spatial variability of socio-economic drought duration is found to be similar for most of the 

runoff datasets. The severity (Figure 4.13) in terms of water shortage varies up to 3 meter 

over 71%, 75%, 61%, 75% and 78% of area for ERA5, FLDAS, GLDAS, MEERA-2 and 

NCEP, respectively. The drought event numbers are plotted in Figure 4.14. It is found that 

59%, 53%, 69%, 51%, and 58% of total area is covered in case of the drought occurrences up 

to 10 for ERA5, FLDAS, GLDAS, MEERA-2 and NCEP, respectively. 

 

Figure 4.12: Socio-economic drought duration determined using different runoff datasets 
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Figure 4.13: Socio-economic drought severity determined using different runoff datasets 

 

Figure 4.14: Number of socio-economic drought events determined using different runoff 

datasets 
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The ensemble average of all the datasets of different socio-economic properties is presented in Figure 

4.15. It can be noted that 50% of the total area is under the drought duration between 100 and 350 

months. Most of the regions such as Rajasthan, Punjab, Haryana, Gujarat, some part of Maharashtra, 

Tamil Nadu, some portion of Andhra Pradesh and Telangana suffer from longer drought duration 

ranging from 90 to 350 months. Furthermore, in case of drought severity, around 0 to 3m of water 

scarcity occurs in 71% of total area. The highest water scarcity is observed over most portions of 

Punjab and Haryana.  

 

Figure 4.15: Different socio-economic drought properties obtained from the ensemble mean 

of different runoff datasets during 1982-2010 
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4.5 Discussion and summary 

The research reported in this chapter attempts to develop non-stationary meteorological, 

hydrological, and agricultural drought indices incorporating external large-scale climatic 

oscillations and regional hydro-meteorological variabilities as covariates in estimating the 

location parameter of the suitable distributions. As entire India is considered for the study, it 

is cumbersome to set up a hydrological model for the entire India due to the significant 

alterations in the streamflow as a result of anthropogenic activities (e.g., influence of dam) 

and inconsistencies in the continuous available observed streamflow data. Thus, available 

gridded runoff datasets at a resolution of 0.5o Lat x 0.5o Lon is considered. Five different 

gridded runoff datasets are considered to encompass the associated uncertainties with the 

datasets. Similarly, six soil moisture datasets are also collected. In addition, the drought 

characteristics extracted from ensemble mean of all the datasets are analysed. To provide a 

unified outcome from all the runoff and soil moisture datasets, the ensemble mean is 

considered. In other words, the average prediction performance of all contributing members in 

the ensemble is chosen to extract the important findings from the analysis. Combining the 

multiple datasets in order to solve one problem and focusing on their consistency may obtain 

the results closer to the truth (N. Chen et al., 2020).  

In the changing environmental condition, the lag structure of large-scale climate indices 

provide vital information about meteorological drought management (Li et al., 2015). 

Similarly, the regional climatological variability influences the hydrological drought 

characteristics. The precipitation variability as a leading factor of meteorological drought is 

modulated by the large-scale climate indices (A.K. Mishra and Singh, 2010). Conversely, the 

hydrological drought is linked with climate anomalies and human interventions (Zhang et al., 

2012). The agricultural productivity is sensitive to the short- and long-term climate change 

and under the warming climate scenario it is challenging to identify the agricultural droughts 

due to the complex interaction between precipitation and temperature (Mishra et al., 2014a). 

Therefore, inclusion of regional precipitation and temperature variability in developing the 

agricultural drought index enables to accommodate the interaction between the precipitation 

and temperature. Thus, present study develops the non-stationary meteorological, 

hydrological and agricultural drought indices incorporating the large-scale climate indices and 

regional hydro-meteorological variability. In line with the past studies (Cheng and 

Aghakouchak, 2014; J. Das et al., 2020a; Jehanzaib et al., 2021; Vasiliades et al., 2015), it is 
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observed that the non-stationary analysis outperforms the stationary analysis. The inclusion of 

non-stationarity helps in capturing the evolution of drought events under the changing 

environment condition and provides valuable information about drought management (Li et 

al., 2015). 

The variability in meteorological and hydrological components influence the drought 

properties (Núñez et al., 2014; Zarch et al., 2015b). It is observed that with increase in 

drought duration, the drought severity has increased under meteorological and hydrological 

drought indices. The present findings are in line with the previous studies carried out over 

different parts of the world (Adhyani et al., 2017; Cavus and Aksoy, 2020; Satish Kumar et 

al., 2021; Spinoni et al., 2014). In case of meteorological drought, it is observed that the 

drought event with short duration and low severity has high frequency, while long duration 

and high severity has low frequency characteristics. The similar observations are noticed by 

Ge et al. (2016) while analysing the spatiotemporal pattern of droughts in the continental 

United States. The southern parts of India experience the high magnitude of drought duration 

and severity. In line with the present outcomes, Mallya et al. (2015) and Mishra et al. (2021) 

also identified the severe drought conditions over south India. Mishra et al. (2021) attributed 

it to the deficit northeast monsoonal rainfall over consecutive years that contributes about 

40% of total rainfall in southern India. In addition, Jain et al. (2019) advocated that the 

dryness during the monsoon period as a result of negative IOD and warm SST bring the 

exceptional drought condition over south India. In general, the meteorological drought 

properties are more severe than hydrological drought properties. Like meteorological drought, 

the agricultural drought events with lower duration and severity are more in numbers and vice 

versa. In case of socio-economic drought, comparing the number of drought events and 

drought duration, it is observed that the regions having high drought duration are associated 

with lesser number of drought events. It can be concluded that in those portions, a single 

drought event takes more time to recover from the water scarcity condition.  

Summarising the findings, it is found that the non-stationary model outperforms the stationary 

analysis for meteorological, hydrological and agricultural drought indices. It is found that the 

meteorological drought properties (drought events and duration) are more severe as compared 

to the hydrological drought. The large duration and more severe hydrological droughts are 

observed mostly over southern and northern parts of India. The high agricultural drought 

duration and severity are observed over the northern parts and some patches of northeast and 



77 
 

northwest regions of India. About 69% of the total area comes under the drought duration 

ranging from 11 to 15 months. Similarly, the severity values from 6.1 to 9 are noticed over 

77% of the total area. The high value of socio-economic drought severity is noticed over 

Punjab and Haryana. With this understanding, the next chapter deals with the investigation of 

drought propagation from meteorological to hydrological and meteorological to agricultural 

incorporating the non-stationary drought indices developed in the present study. 
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Chapter 5  
 

Drought propagation under the 

influence of external covariates 
 

 

 

5.1 Introduction 

Droughts are different from other natural disasters as the development is usually slow and 

have significant impact on agriculture (Gupta et al., 2020; Lobell et al., 2020), water resources 

(AghaKouchak et al., 2015; Pokhrel et al., 2021; Qiu et al., 2021), ecosystem (X. Feng et al., 

2021; Fu et al., 2021; Y. Zhang et al., 2021), and economic sectors (Frame et al., 2020; 

Naumann et al., 2021). In addition, the recovery period after a drought event can be lengthy 

and affects the ecosystem resilience and stability (L. Liu et al., 2019). Under the background 

of climate change, the frequency and intensity of drought events are expected to increase 

(Spinoni et al., 2018). With increasing number of drought events, regions with long recovery 

time are likely to suffer a new drought event before full recovery. Moreover, the industry and 

agricultural sectors have high demand for water resources with increasing rate of human 
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population and development (J. Das et al., 2020c). Therefore, it is necessary to understand the 

drought occurrence, and mechanism at regional scale to improve its monitoring, management, 

and prediction. 

In the context of causative mechanisms, the deficit in the precipitation and increasing 

evaporative demand propagate through the hydrologic cycle and subsequently developing into 

a hydrological drought (Han et al., 2019; Hellwig et al., 2020; Van Loon, 2015). In other 

words, from beginning to the end, drought transition is encapsulated within the “Atmosphere-

Hydrology-Soil-Vegetation” system (N. Chen et al., 2020). This transition from one form to 

another form of drought is known as drought propagation (Apurv et al., 2017; Haslinger et al., 

2014). The understanding of drought propagation provides valuable information to improve 

the accuracy of drought analysis and prediction. Due to the dual effect of climate change and 

population growth, it is difficult to analyse the spatio-temporal evolution of drought. 

However, under the limited or no anthropogenic interventions, drought propagation is 

primarily controlled by the climatic factors and biophysical characteristics of the study area 

(Van Lanen et al., 2013; Van Loon, 2015). 

In recent times, studies have been performed to analyse the drought propagation mechanisms 

and their controlling factors (Apurv and Cai, 2020; J. Wu et al., 2021). The drought 

propagation studies have been carried out across the globe (Barker et al., 2016; Bevacqua et 

al., 2021; Bhardwaj et al., 2020; Botai et al., 2019; Jehanzaib et al., 2020; Tijdeman et al., 

2018; Y. Xu et al., 2019). It is found that the propagation time from meteorological to 

hydrological drought varies with respect to the study area. For instance, Bhardwaj et al. 

(2020) found four to five months for the majority of locations in India and Xu et al. (2019) 

noticed that the time of propagation in grassland and forest dominated subbasins varies 

between one to five months and four to seven months in northern China, respectively. In 

addition, the factors (e.g., temperature, catchment characteristics, climate type, climate 

change) influencing the drought propagation are studied globally (Gevaert et al., 2018; Peña-

Gallardo et al., 2019; Van Loon and Laaha, 2015). The above-said studies did not include the 

large-scale climate indices and regional hydro-meteorological variability in developing the 

drought indices which would affect the drought propagation. Therefore, there is a dearth in 

understanding the influence of large-scale climate indices, and regional hydro-meteorological 

variables in modulating the drought events and subsequently the propagation. 
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The agricultural sector in India is the mainstay of country’s economy as it contributes to the 

large share of the Gross Domestic Product (GDP), provides employment to the large portion 

of population, and responsible for overall development in other sectors (J. Das et al., 2020c). 

India has great variations in the climate zone with different terrains and elevations. In India, 

about 56% of the net cultivated area is rainfed accounting 44% of food production. The future 

climate change analysis reveals that the drought risk in India is likely to increase under 

different climate change scenarios (Bisht et al., 2019; Gupta and Jain, 2018). Thus, it is 

crucial to understand the mechanisms of drought propagation in India. Recently, scholars 

have started investigating the drought propagation from meteorological to agricultural drought 

(N. Chen et al., 2020; Ding et al., 2021a; Du et al., 2021; Wang et al., 2021; Zhu et al., 2021). 

However, there is a lack of study regarding the propagation mechanism from meteorological 

to agricultural drought over the agrarian country like India. 

With this understanding, this chapter presents the drought propagation study that includes 

from meteorological to hydrological and meteorological to agricultural drought conditions 

over India. From Chapter 4, it is found that the non-stationary drought index enables to 

incorporate the large-scale climatic oscillations and regional variability. In addition, the non-

stationary drought analysis outperforms the stationary analysis. Thus, meteorological, 

hydrological, and agricultural drought indices used in the present study are taken from 

Chapter 4. The important research questions  addressed in this study are as follows: (i) What 

is the time of propagation from meteorological to hydrological and agricultural drought 

according to the drought initiation (∆s), peak (∆p), and termination (∆e); (ii) How the 

meteorological, hydrological, and agricultural drought development and recovery period 

varies over India; and (iii) What is the spatial variability of speed of hydrological, and 

agricultural drought development and recovery across India? The outcomes will provide a 

basis for the study of different droughts at regional scale and are useful to inform future early 

warning and monitoring systems. 

5.2 Methodology 

It should be noted that the details of the hydro-meteorological datasets and large-scale 

climatic oscillations used to develop the drought indices are presented in Chapter 3 and 

Chapter 4. In addition, Chapter 4 describes the implementation of non-stationarity in the 

computation of different drought indices. The developed indices are used here to understand 
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the influence of external factors in drought propagation study. In this chapter, the concept of 

drought propagation is introduced. Here, drought propagation from meteorological to 

hydrological and agricultural drought is presented. In addition, the drought development 

period (DDP) and drought recovery period (DRP) are analysed. The rate of change of 

cumulative drought deficit for development and recovery phases are computed to evaluate the 

Instantaneous Development Speed (IDS) and Instantaneous Recovery Speed (IRS), 

respectively. The methodological development is similar for both the cases. Therefore, the 

entire methodology is explained with respect to the propagation from meteorological to 

hydrological drought. The graphical representation of drought propagation is presented in 

Figure 5.1. 

 

Figure 5.1: Graphical abstract representing different components of drought propagation 

It can be seen from the figure that the drought indices developed using the non-stationary 

approach is used to evaluate the drought propagation. The inter and intra propagation of 

drought is known as drought propagation and internal propagation, respectively. The period 

from initiation to peak is known as DDP and period from peak to termination is termed as 

DRP. The drought propagation is studied for three different cases i.e., for ∆s, ∆p and ∆e. It 

should be noted that the entire analysis is carried out for all the grid points over India (refer to 

Figure 4.1 in Chapter 4). 
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5.2.1 Propagation of meteorological to hydrological drought 

The propagation time is the period during which the deficit in the meteorological variable 

reflects as a deficit in the hydrological variable (Huang et al., 2017). In the present study, the 

propagation time from SPEI to SRI is estimated based on the three different ways i.e., 

difference between the initiation to initiation, peak to peak, and termination to termination of 

meteorological and hydrological drought spell (Figure 5.2).  

 

Figure 5.2: Graphical presentation of different drought propagation criteria (initiation to 

initiation, peak to peak, and termination to termination) used in the present study 

The threshold for considering an event as drought is set to zero (Jingwen Wu et al., 2018) 

below which all the values are considered as drought condition. In this study, the drought 

spell is defined when the SPEI and SRI values are below zero for more than and equal to three 

months, consecutively. In the same way the initiation of a meteorological (hydrological) 

drought event is defined if the 1-month SPEI (SRI) is below the threshold for three or more 

consecutive months. Likewise, the termination of meteorological (hydrological) drought event 

is considered when the 1-month SPEI (SRI) is above the threshold for three or more 

consecutive months. Here, an extended period of the meteorological drought that starts twelve 

months prior to the initiation of hydrological drought is considered to account the lag that 

might exist between meteorological and hydrological drought. Subsequently, the difference 

between the initiation to initiation (∆s), peak to peak (∆p) and termination to termination (∆e) 
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of hydrological and the nearest meteorological drought event for each drought spell is 

computed to identify the accumulation period of meteorological drought that translates to 

hydrological drought using the 1-month SPEI and SRI. Lastly, the mean of the propagation 

time at different drought spells is computed for three different conditions at each grid point. 

Due to high seasonality in the precipitation, the correlation-based analysis is not suitable over 

Indian region in order to identify the drought propagation (Bhardwaj et al., 2020). It is worth 

mentioning that the drought propagation is computed for the SRI values obtained from 

different runoff data sources. It should be noted that the same methodology is applied for the 

propagation from meteorological to agricultural drought. In case of agricultural drought, SSI 

is used.  

5.2.2 Hydrologic drought development and recovery 

In this section, an important aspect of hydrological drought propagation is analysed that 

focuses on the time required for drought development and drought recovery (Figure 5.3). In 

other words, it defines the internal processes of drought propagation that occurs between the 

development and recovery of hydrological drought (Bonsal et al., 2011; Thomas et al., 2014). 

In this study, the methodology proposed by Wu et al. (2018) is used to evaluate the 

propagation speeds using the variable motion relationship which incorporates the non-uniform 

rates of internal drought propagation. The development phase (DP) of drought is defined as 

the time difference between the initiation and peak point (∆s-p) and the recovery phase (RP) 

is the time difference between the peak and termination point (∆p-e). The rate of change of 

SRI from initiation (peak) to peak (termination) can be characterized by development speed 

(recovery speed) (Parry et al., 2016a, 2016b). Here, rate of change of cumulative drought 

deficit for development and recovery phases are computed to evaluate the Instantaneous 

Development Speed (IDS) and Instantaneous Recovery Speed (IRS), respectively.  

The Total Variability in Development Period (TVDP) and Total Variability in Recovery 

Period (TVRP) are computed as the cumulative of SRI values during the development phase 

and recovery phase, respectively for each identified drought spell. To compute the IDS and 

IRS, the development and recovery phases are divided into intervals (i=1, 2… n-1, n) as 

presented in Eqs. 5.1 and 5.2. Subsequently, the average of IDS and IRS is estimated with the 

help of Eqs. 5.3 to 5.4. It should be noted that the temporary drought recovery events in the 

development phase and drought development in the recovery phase are not included. 
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Therefore, the IDS (or IRS) at at 𝑡𝑖 using the ∆𝑇𝑉𝐷𝑃𝑖 (or ∆𝑇𝑉𝑅𝑃𝑖), which is equal to 

𝑇𝑉𝐷𝑃𝑖 − 𝑇𝑉𝐷𝑃𝑖−1 (or 𝑇𝑉𝑅𝑃𝑖 − 𝑇𝑉𝑅𝑃𝑖−1), can be computed as follows:  
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The average of IDS (or IRS) for a certain period of drought event can be computed as follows: 
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Figure 5.3: Graphical presentation of drought event, drought spell, development period (DP), 

and recovery period (RP) 
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5.3 Results 

5.3.1 Drought development and recovery period 

The duration of DP and RP is known as drought development period (DDP) and drought 

recovery period (DRP), respectively. The average DDP and DRP of all the runoff datasets are 

presented in Figure 5.4 and Figure 5.5, respectively. The inter-model variability of DDP and 

DRP is significantly large among the models. For instance, MEERA2 indicates about 65% of 

the total area with DDP below 3 months. Whereas GLDAS shows about 64% of total area 

having DDP between 3.1 to 6 months. Similarly, the percentage area varies from 40% to 71% 

for DRP between 3.1 to 6 months among the models. The spatial variability is similar in the 

cases of ERA5, FLDAS, and NCEP for the corresponding high values of DDP and DRP. 

 

Figure 5.4: Average drought development period computed from different runoff datasets 
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Figure 5.5: Average drought recovery period computed from different runoff datasets 

The agricultural drought development period (DDP) and drought recovery period (DRP) are 

presented in Figure 5.6 and Figure 5.7, respectively. From Figure 5.6, it can be noted that 

there is spatial variability among different datasets regarding DDP. However, the range of 

DDP is 3.1 to 9 months over more than 80% of the total area as computed from the SSI index 

of all models. The higher DDP is observed over the northern parts of India in the cases of 

CPC, FLDAS, and GLDAS datasets. Whereas high DDP over north-western parts of India is 

noticed for CPC, ERA5, and MERRA-2 models’ datasets. It is observed from Figure 5.7 that 

in case of DRP value ranging from 3.1 to 6 months, the highest percentage of area is 

computed as 50% in CPC, 63% in ERA5, 65% in FLDAS, 66% in GLDAS, 52% in MERRA-

2, and 76% in NCEP. The grids with high value of DDP are also associated with high value of 

DRP. 
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Figure 5.6: Average drought development period computed from different soil moisture 

datasets 

 

Figure 5.7: Average drought recovery period computed from different soil moisture datasets 
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Likewise, it is found that locations with the high value (greater than 10 months) of DDP are 

also having high value of DRP for meteorological drought index (Figure 5.8). These regions 

are mostly located over southern and northern parts of India. It is computed that the highest 

areal coverage of DDP and DRP of about 59% and 46% of the total area respectively for the 

time period of 3.1 to 6 months. The high DDP and DRP is noticed over some parts of 

Karnataka (KA), Tamilnadu (TN), Kerala (KL), and Ladakh (LA). The ensemble mean of 

DDP and DRP incorporating all runoff datasets is presented in Figure 5.9. It can be noted 

from the figure that the DDP and DRP of 3.1 to 6 months is observed over most of the areas 

i.e., about 78% in DDP and 67% in DRP. In addition, only 1% of the area with DDP and DRP 

more than 12 months is noticed during the study period. Figure 5.10 presents the ensemble 

mean of DDP and DRP considering all the soil moisture datasets. The DDP range from 3.1 to 

6 months is observed over about 65% of total area. Similarly, the range between 3.1 to 6 

months is evaluated over 84% of the total area. The regions with high DDP are having high 

DRP across India. 

  

Figure 5.8: The DDP and DRP of meteorological drought using IMD data over India during 

1982-2015 
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Figure 5.9: The ensemble mean DDP and DRP of hydrological drought over India during 

1982-2015 

 

Figure 5.10: The ensemble mean DDP and DRP of agricultural drought over India during 

1982-2015 

5.3.2 Instantaneous drought development and recovery speed 

Next, the internal propagation of droughts is examined using the concept of IDS and IRS. 

Here, the rate of internal drought propagation is characterised by the instantaneous 
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propagation speed. It is worth noting that high value of IDS demands quick and efficient 

drought management practices. Similarly, the low value of IDS suggests that there is more 

time to prepare against a developing drought. The understanding of development and recovery 

rate of internal drought propagation enables water managers in proposing efficient water 

management strategies. The IDS and IRS of hydrological drought computed using the five 

different runoff datasets are depicted in Figure 5.11 and Figure 5.12, respectively. From 

Figure 5.11, information is discerned on the highest percentage of area observed with the IDS 

values between 0.40 and 0.60 per month for ERA5 (57%), GLDAS (56%), MEERA2 (48%), 

and NCEP (49%) and between 0.20 and 0.40 per month for FLDAS (42%). However, all the 

runoff datasets agree with the highest percentage of area for the IRS values from 0.40 to 0.60 

per month (Figure 5.12).  

 

Figure 5.11: Average instantaneous development speed computed from different runoff 

datasets during 1982-2015 
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Figure 5.12: Average instantaneous recovery speed computed from different runoff datasets 

during 1982-2015 

The IDS and IRS of agricultural drought evaluated using six different datasets are presented 

in Figure 5.13 and Figure 5.14, respectively. From Figure 5.13, it can be noted that the 

percentage of area in range of 0.41 to 0.60 per month for IDS is more across all the models 

(48% in CPC, 46% in ERA5, 57% in FLDAS, 54% in GLDAS, 46% in MEERA-2, and 70% 

in NCEP). Moreover, the IDS range between 0.20 and 0.60 per month is noticed for more 

than 80% of total area in all the datasets. The similar observation is made in case of IRS 

(Figure 5.14). The highest percentage of area under IRS value from 0.41 to 0.60 is observed 

in the cases of CPC, FLDAS, GLDAS and NCEP. However, in ERA5 and MEERA-2 

datasets, the highest percentage of area is computed in the IRS range between 0.20 and 0.40 

per month. The IDS and IRS of meteorological drought is presented in Figure 5.15 using the 

IMD dataset. It can be noted that about 53% and 47% of the total area comes under the range 

between 0.4 and 0.6 per month in the case of IDS and IRS, respectively. 
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Figure 5.13: Average instantaneous development speed computed from different soil moisture 

datasets  

 

Figure 5.14: Average instantaneous recovery speed computed from different soil moisture 

datasets 
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The ensemble average of IDS and IRS for hydrological drought events is plotted in Figure 

5.16. It is clear from the figure that most of the area in India has the IDS and IRS values 

between 0.40 and 0.60 per month. In about 82% of total area the IDS and IRS values vary 

between 0.40 and 0.60 per month. Interestingly, the high values (0.60 to 0.80 per month) of 

IDS and IRS are observed mostly in the eastern and southern parts of India. Conversely, the 

low values (0.20 to 0.40) of IDS and IRS are noticed mostly over western and northern parts 

of India. 

 

Figure 5.15: The IDS and IRS computed for the meteorological drought events 

 

Figure 5.16: The ensemble mean IDS and IRS computed for the hydrological drought events 
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The ensemble average of IDS and IRS for agricultural drought considering the six different 

datasets are presented in Figure 5.17. It is evident from the figure that most of the area in 

India has the IDS and IRS values between 0.20 and 0.60 per month. Precisely, the percentage 

of total area in the cases of IDS and IRS is computed as 71% and 66% for the range between 

0.41 and 0.6 per month, respectively. The low values of IDS and IRS are observed over 

northern and northwest regions in India. However, high values are noticed over eastern and 

northeast regions over India. 

 

Figure 5.17: The ensemble mean IDS and IRS computed for the agricultural drought events 

5.3.2 Drought propagation time 

In this section, the important findings related to drought propagation (meteorological to 

hydrological and meteorological to agricultural) are presented. The drought propagation from 

meteorological to hydrological with respect to ∆s, ∆p, and ∆e using the five different runoff 

datasets are presented in Figure 5.18, Figure 5.19, and Figure 5.20, respectively. In the case of 

∆s, the drought propagation is computed as 6 to 8 months over most of area (55% to 64%) 

considering all the runoff datasets. It is found that the drought propagation in ∆s varies 

between 4 to 8 months over more than 90% of the study area as observed in the cases of 

ERA5, FLDAS, GLDAS, and MERRA2. Three out of five datasets are in line with the 

outcomes that the highest percentage of area with propagation time corresponding to ∆p is 9 

to 12 months (Figure 5.19). Whereas the time to propagation is computed as 6 to 9 months 

over 65% of area for MERRA2 dataset. It is observed that the propagation time within the 

range of 6 to 15 months is observed over 81 to 97% of total area considering the outputs from 

all the datasets. The propagation time of meteorological to hydrological drought determined 
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using ∆e is more when compared with ∆s and ∆p (Figure 5.20). It is noticed that the range of 

the drought propagation time over 86 to 98% of total area varies from 10 to 25 months in the 

case of ∆e.  

 

Figure 5.18: Propagation time (in months) computed from different runoff datasets for ∆s 

 

Figure 5.19: Propagation time (in months) computed from different runoff datasets for ∆p 
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Figure 5.20: Propagation time (in months) computed from different runoff datasets for ∆e 

Similarly, the drought propagation with respect to initiation, peak and termination using the 

six different soil moisture datasets (i.e., agricultural drought) are presented in Figure 5.21, 

Figure 5.22, and Figure 5.23, respectively. The drought propagation period is evaluated as 4 

to 8 months (Figure 5.21) over more than 85% of the total area in the case of ∆s considering 

all the soil moisture datasets. More than 50% of the area comes under the propagation period 

between 6 to 8 months for ERA5, FLDAS, GLDAS, and NCEP and 4 to 6 months for CPC, 

and MERRA-2 datasets. In case of ∆p (Figure 5.22), time to propagation is computed as 6 to 

9 months over 80% of area for CPC, 9 to 12 months over 50%, 51%, 58%, and 57% for 

ERA5, FLDAS, GLDAS, and NCEP, respectively. The propagation time of meteorological to 

agricultural drought in ∆e is more as compared to ∆s and ∆p (Figure 5.23). The propagation 

period is computed as 15 to 20 months over 51 to 58% of total area in case of all the datasets 

except for CPC. In case of CPC, it is noticed that 88% of the total area comes under the 

propagation period from 5 to 10 months. 
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Figure 5.21: Propagation time (in months) from different soil moisture datasets for ∆s 

 

Figure 5.22: Propagation time (in months) from different soil moisture datasets for ∆p 
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Figure 5.23: Propagation time (in months) from different soil moisture datasets for ∆e 

The ensemble mean of drought propagation time from meteorological to hydrological at three 

different cases are presented in Figure 5.24. The propagation time in case of ∆s varies 

between 4 and 9 months with 62% of total area falls under 6 to 7 months followed by 20% of 

total area under 7 to 8 months. The propagation time over southern, parts of eastern, parts of 

northeast, and parts of northern regions is less as compared to the central parts of India. In the 

case of ∆p, the time of propagation varies from 9 to 12 months over 74% of the total area. 

About 70% of total area, the time of propagation in ∆e ranges from 15 to 20 months. The 

ensemble mean of drought propagation time from meteorological to agricultural in different 

cases are presented in Figure 5.25. The time to propagation in case of ∆s is found to be 5 to 6 

months and 6 to 7 months over 39% and 53% of the total area, respectively. Similarly, the 

drought propagation over about 95% of total area ranges from 9 to 15 months under ∆p 

condition. The time to propagation varies between 10 to 15 months over 32% and 15 to 20 

months over 65% of total area in case of ∆e. 
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Figure 5.24: Average propagation time from meteorological to hydrological drought  

 

Figure 5.25: Average propagation time from meteorological to agricultural drought  
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5.3.3 Influence of external drivers on drought propagation 

To find out the influence of external drivers/covariates on drought propagation, a comparison 

between the drought propagation with and without external drivers is examined. To do so, the 

percentage changes in IDS, IRS, DDP, DRP, ∆s, ∆p and ∆e are computed with respect to the 

hydrological drought index computed without external covariates. Figure 5.26 presents the 

change in percentage of above-said drought propagation characteristics. It should be noted 

that the ensemble average of five different runoff datasets are considered for the analysis. It 

can be noted from the figure that except for drought propagation time in ∆s, the drought 

propagation characteristics are underestimated when computed neglecting the external 

covariates. For instance, over 75% of area in IDS, 87% of area in IRS, 73% of area in DDP, 

53% of area in DRP, 61% of area in ∆p, and 66% of area in ∆e are underestimated when 

compared incorporating the influence of external covariates. In the case of ∆s, the percentage 

of change mostly varies between the ranges of -20% and 20%. The magnitude of change in 

case of IDS, IRS, DDP, and DRP is higher than time to propagation. In addition, the state-

wise average percentage of change is computed. In the case of IDS, it is observed that the 

highest and lowest value of percentage change (absolute) is observed over Rajasthan (RJ) and 

Odisha (OD), respectively. Similarly, the highest and lowest absolute percentage is noticed 

over Gujarat (GJ) and Ladakh (LA) in case of IRS, over Manipur (MN) and Ladakh (LA) in 

case of DDP, over Mizoram (MZ) and Himachal Pradesh (HP) in case of DRP, over Manipur 

(MN) and Punjab (PB) in case of ∆s, over Punjab (PB) and Odisha (OD) in case of ∆p, and 

over Manipur (MN) and Andhra Pradesh (AP) in case of ∆e.  

In case of agricultural drought, over 96% of area in IDS, over 82% area in IRS, over 98% area 

in DDP, over 99% area in DRP, over 64% of area in ∆p, and over 98% area in ∆e are 

underestimated when compared with the values calculated in absence of covariates (Figure 

5.27). It is found that the magnitude of change is higher in case of internal drought variability 

(within the drought event) as compared to inter drought variability (between meteorological 

and agricultural drought event). The highest and lowest value of mean absolute percentage 

change is observed over Gujarat (GJ) and Tamilnadu (TN) in the case of IDS, respectively. 

Likewise, the highest and lowest absolute percentage is noticed over Gujarat (GJ) and 

Tamilnadu (TN) in the case of IRS, over Tamilnadu (TN) and Ladakh (LA) in the case of 

DDP, over Madhya Pradesh (MP) and Ladakh (LA) in the case of DRP, over Arunachala 
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Pradesh (AR) and Himachal Pradesh (HP) in case of ∆s, over Ladakh (LA) and Andhra 

Pradesh in case of ∆p, and over Madhya Pradesh (MN) and Ladakh (LA) in case of ∆e.  

 

Figure 5.26: The percentage change of different drought propagation characteristics with 

respect to the hydrological drought computed excluding the external drivers 

 

Figure 5.27: The percentage change of different drought propagation characteristics with 

respect to the agricultural drought computed excluding the external drivers 
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5.4 Discussion and summary 

The prime motive of the present study is to investigate the propagation time from 

meteorological to hydrological and agricultural drought at gridded scale which is crucial for 

drought management and warning system (Huang et al., 2017). Moreover, the grid-wise 

evaluation of time to propagation enables to provide useful information for the local drought 

early warning and mitigation (N. Chen et al., 2020). As entire India is considered for the 

study, it is cumbersome to set up a hydrological model for the entire India due to the 

significant alterations in the streamflow as a result of anthropogenic activities (e.g., influence 

of dam) and inconsistencies in the continuous available observed streamflow data. Similarly, 

availability of in situ soil moisture datasets at regional scale covering entire India is not 

possible. Thus, available gridded runoff and soil moisture datasets at a resolution of 0.5o Lat x 

0.5o Lon are considered. Five different gridded runoff and six different soil moisture datasets 

are considered to encompass the associated uncertainties with the datasets. In addition, the 

drought characteristics extracted from ensemble mean of all the datasets are analysed. To 

provide unified outcomes from all the runoff and soil moisture datasets, the ensemble mean is 

considered. In other words, the average prediction performance of all contributing members in 

the ensemble is chosen to extract the important findings from the analysis. Combining the 

multiple datasets in order to solve one problem and focusing on their consistency may obtain 

the results closer to the truth (N. Chen et al., 2020).  

The analysis of DDP and DRP suggests that the grids where the period of drought 

(meteorological and hydrological) development is more (less) also have a high (low) recovery 

period. The present finding is in line with the outcomes of Bhardwaj et al. (2020) and Wu et 

al., (2018) where they considered hydrological drought events. Incorporating the variable 

motion relationship of speed-time process, hydrological drought propagation can be 

identified. Traditionally, the propagation of drought is expressed as transformation of one 

drought type to another type. However, the same drought type experiences the internal 

propagation (Parry et al., 2016b; Thomas et al., 2014). The concept of IDS and IRS represents 

the internal variability of drought events and provides crucial feedback about requisite policy 

changes based on different phases of drought (Bandyopadhyay et al., 2020; Wilhite et al., 

2014). Unfortunately, the current policies do not consider the internal drought propagation in 

formulating the strategies. Moreover, at local scale the combined information of IDS and IRS 

can strengthen the drought prediction and early warning system. In the case of hydrological 
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drought, southern and eastern parts of India show high IDS and IRS values suggesting that the 

drought would develop rapidly and reach its peak and recover quickly to the normal 

condition. Therefore, these shorter duration droughts need prompt and efficient drought 

management practices. In the present study, the application of irrigation (as an anthropogenic 

intervention) is not incorporated and assumed that the variability of soil moisture depends on 

the precipitation. Because the agricultural drought depends on the precipitation variability and 

availability of soil moisture that counters water loss due to evapotranspiration (Sheffield et al., 

2004). The IDS and IRS defines the speed at which the internal development and recovery of 

drought occurs. Therefore, prompt, and efficient actions should be taken for high values of 

IDS. 

The propagation time from meteorological to hydrological and meteorological to agricultural 

drought is computed at each grid point across India. The propagation time depends 

completely on method being used (Bevacqua et al., 2021) and hence, the present analysis 

includes three different approaches to examine the propagation time. The propagation time 

with respect to ∆s is shorter than ∆p and ∆e. In addition, the ∆s is not sensitive as compared to 

others and provide lowest and most smoothed out values for propagation time (Bevacqua et 

al., 2021). It is observed that the concurrent meteorological drought events during the phase of 

hydrological and agricultural drought development and recovery periods increase the entire 

length of hydrological and agricultural events. For instance, a hydrological drought event with 

duration of 45 months encompasses 3 concurrent meteorological drought events with duration 

varying from 8 to 10 months. A comparative analysis (in case of ∆s only) of the present 

outcomes with Bhardwaj et al. (2020) reveals that there is a difference in the time range of 

drought propagation. For instance, the present study evaluates that the propagation period 

ranges between 4 and 9 months. Whereas Bhardwaj et al. (2020) computed that the 

propagation period varies between 0 and 5 months. However, it is noticed that the spatial 

distribution of low and high propagation period between two studies is similar. The variability 

in the magnitude of propagation time might have resulted due to the inclusion of large-scale 

climatic indices and regional hydro-meteorological variability in the computation of drought 

indices. The present analysis at regional scale would provide efficient water management 

strategies at local scale whereas the findings by Bhardwaj et al. (2020) help at the sub-basin 

scale.  

Summarising the findings, it is found that locations with the high value of DDP are also 

having high value of DRP in both the cases (hydrological and agricultural). In case of 
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hydrological drought, most of the area in India has the IDS and IRS values between 0.40 and 

0.60 per month. However, the same varies between 0.20 and 0.60 per month in the case of 

agricultural drought. The meteorological to hydrological propagation time in case of ∆s varies 

between 4 and 9 months with 62% of total area falling under 6 to 7 months followed by 20% 

of total area under 7 to 8 months. In the case of ∆p, the time of propagation varies from 9 to 

12 months over 74% of the total area. For about 70% of total area, the time of propagation in 

∆e ranges from 15 to 20 months. In case of ∆s, the propagation from meteorological to 

agricultural drought is found to be 5 to 6 months and 6 to 7 months over 39% and 53% of the 

total area, respectively. Similarly, the drought propagation over about 95% of total area 

ranges from 9 to 15 months under ∆p condition. The time to propagation varies between 10 to 

15 months over 32% and 15 to 20 months over 65% of total area in case of ∆e. It is found that 

the drought propagation and its characteristics are underestimated over most of the regions in 

India when computed without the external drivers. In addition to drought propagation, it is 

necessary to evaluate the agricultural risk associated with drought events. As an agrarian 

country, India’s economy largely depends on agricultural productivity. Therefore, it is of 

utmost importance to examine the agricultural drought risk for different crops. In this sense, 

the next chapter deals with the evaluating the agricultural drought risk on rainfed agriculture 

using the multivariate analysis. 
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Chapter 6  
 

Copula-based agricultural drought 

risk analysis 
 

 

 

6.1 Introduction 

The agricultural drought is considered as complex natural hazard (Dai, 2011a). The nexus 

between meteorology, soil, and crop systems makes agricultural drought more cumbersome to 

understand (Liu et al., 2020).  It measures the vulnerability in terms of crop productivity 

which is sensitive to both hydrological and meteorological conditions (Tsakiris et al., 2013). 

The agricultural drought, because of insufficient soil moisture in the root zone due to lack of 

precipitation (Liu et al., 2018), reduces the crop productivity (Shen et al., 2019). Over arid 

and semi-arid regions, the crop productivity is highly vulnerable to the seasonal variations in 

hydro-meteorological variables like precipitation, soil moisture, temperature, and 

evapotranspiration (Gidey et al., 2018). As a result, the balance between the food supply and 

demand is affected greatly under the dual pressure of climate change and population growth.   
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Globally, the overall crop productivity is likely to be affected profoundly due to the 

changeability in climate as it explains about 60% of the yield variability (Matiu et al., 2017; 

Ray et al., 2015). Moreover, the rainfed agriculture is highly susceptible to such kind of 

climatic changeability that results in extreme weather events like droughts, heatwaves, and 

heavy precipitation (Ribeiro et al., 2019; Zampieri et al., 2017). It is estimated that the 

extreme weather events are responsible for 18-43% global yield variability for maize, spring 

wheat, rice, and soybeans (Vogel et al., 2019). In India, the agriculture is considered as the 

mainstay of economy as it contributes significantly to Gross Domestic Product (GDP), 

employment and overall development of other sectors. The studies have shown downward 

trends in the yield of major crops such as rice, maize, and wheat due to changing climate over 

India (Gupta et al., 2017; Pathak et al., 2003; Rupa Kumar et al., 2002). The failure of crop 

under the influence of extreme weather conditions entails significant economic losses and 

hence, the evaluation of the risk associated with the agricultural productivity due to the 

extreme conditions is of paramount importance (Madadgar et al., 2017; Xie et al., 2018).  

The occurrence mechanism of agricultural drought is complex as it is modulated by the 

natural, social, and economic factors (X. Liu et al., 2019b). Thus, many drought evaluation 

indices are proposed to characterize the drought quantitatively. However, most of the 

evaluation indices cannot integrate all the factors affecting the occurrence of drought 

suggesting insufficient mechanism to describe drought occurrence. Therefore, it is required to 

combine single index factors to evaluate the agricultural drought risk incorporating the 

multivariate statistical analysis (Liu et al., 2019). The copula as a multivariate analysis is 

being used widely. According to the Sklar’s theorem (Sklar, 1959), copula techniques are 

advantageous as they provide significant flexibility in modelling the dependence structure 

between two or more random variables.  

Recently, the application of copula theory in drought analysis has gained popularity among 

the researchers. The bivariate analysis is successfully applied in the cases of meteorological 

(J. Das et al., 2020a), hydrological (Borgomeo et al., 2015; K. Feng et al., 2021), and 

agricultural (Bokusheva et al., 2016; Madadgar et al., 2017; Vergni et al., 2015; H. Wu et al., 

2021) drought conditions. In case of agricultural drought, the copula theory is generally used 

to examine the joint return period of different drought properties (Dai et al., 2020; Poonia et 

al., 2021; Vergni et al., 2015), to predict the agricultural drought (H. Wu et al., 2021; Wu et 

al., 2022), and to develop multivariate agricultural drought index (Bateni et al., 2018; P. K. 
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Das et al., 2020). In some studies, researchers established the bivariate relationship to analyse 

the sensitivity between drought indicators and crop yield (Bokusheva et al., 2016; Madadgar 

et al., 2017). However, the risk associated with the crop yield due to the drought conditions is 

not examined in the context of changing climate. In addition, over agrarian country like India, 

it is of paramount interest to examine the agricultural drought risk for multiple crops.    

Besides the hydro-meteorological drought indices, various remote sensing-based indices are 

proposed due to the recent advancement in the satellite technology. These indices provide 

accurate, flexible, and reliable findings related to agricultural drought and thus have attracted 

the attention of various agriculturalists, hydrologists, meteorologists, and environmentalists 

(Gidey et al., 2018). The credibility of remote sensing-based indices lies in detecting the 

spatial and temporal drought occurrence which can be effectively utilised for alleviating the 

risk that arises from drought. In addition, the satellite-based observations overcome some 

limitations of station-based observations providing spatially explicit and dynamic large-scale 

drought monitoring (Zhang et al., 2016). In this sense, the remote sensing-based indices such 

as Vegetation Health Index (VHI), Vegetation Condition Index (VCI), Temperature Condition 

Index (TCI) based on Normalized Difference Vegetation Index (NDVI) and Brightness 

Temperature (BT) have been successfully applied in modelling crop productivity (Bokusheva 

et al., 2016; Dalezios et al., 2014; Kogan et al., 2015). Liu and Kogan (1996) advocated that 

NDVI images provide a useful tool to understand the large-scale climatic variability while 

VCI Images enable to evaluate the severity of a regional drought. The TCI conditions are 

estimated with respect to the max/min’s temperature envelope and the modified formula of 

TCI reflect different response of vegetation to temperature.  

Under this background, the present study aims to examine the agricultural drought risk under 

stationary and non-stationary drought conditions. In this study, the agricultural drought risk is 

defined as the conditional probability of crop losses under drought conditions.  Here, two 

hydro-meteorological drought (Standardized Precipitation Evapotranspiration Index (SPEI) 

and Standardized Soil moisture Index (SSI)) and two remote sensing-based drought indices 

(VCI and TCI) are considered. Based on satellite-based and station-based information, 

drought conditions are evaluated and then linked with crop yield anomalies with the use of 

appropriate copula functions. The primary objectives of the present study are (i) to evaluate 

the dependency between yield anomalies and different drought conditions using copula, (ii) to 

examine the agricultural drought risk by preserving the joint dependence, and (iii) to analyse 
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the agricultural drought risk under stationary and non-stationary settings. The conditional 

probability of non-exceedance of crop loss threshold is used to estimate the agricultural 

drought risk that ranges from 0 (low risk) to 1 (high risk). In this study, the analysis is carried 

out on four different types of rainfed crops (rice, wheat, groundnut, cotton) during their 

respective cropping seasons. To the best of the authors’ knowledge, the present study is the 

first of its kind to be carried out over Indian region. It is evident from Chapter 4 that the non-

stationary analysis outperforms the stationary analysis while analysing the drought conditions 

Moreover, most of the applications of copula in non-stationary drought conditions are carried 

out to evaluate the joint return period of different drought properties.  However, there is 

dearth in application of both non-stationary and copula-based approach to analyse the 

agricultural risk. In addition, a comparative study of agricultural risk under stationary and 

non-stationary conditions can provide valuable information regarding risk associated with 

climate hazard. The outcomes from the analysis would be helpful in monitoring and 

mitigating agricultural drought risk. 

6.2 Description of different datasets 

6.2.1 Crop yield data 

The different crop yield datasets are collected over Maharashtra which is chosen as the study 

area in the present analysis. Figure 6.1(a) represents the different administrative divisions in 

Maharashtra province. In this study, four major crops namely cotton (cash crop) Figure 6.1(b), 

groundnut (oilseed) Figure 6.1(c), and rice Figure 6.1(d) and wheat (cereals) Figure 6.1(e) 

have been selected to analyse the agricultural drought risk. It should be noted that these crops 

can be cultivated in any season based on the availability of irrigation requirements. However, 

in this analysis, the seasons when the cultivations of crops depend on the rainfall are 

considered to examine the conditional probability of non-exceedance of crop loss events with 

the changing climatic conditions. Thus, for rice, Kharif (June to December) season; for wheat, 

Rabi season (October to March); for groundnut, Kharif season (June to October); and for 

cotton, Kharif season (July to December) have been considered. The annual values of crop 

yield data (i.e., the ratio of crop production (t) to harvested area (ha)) for respective seasons 

are collected during the period of 1998-2018 (for rice and wheat) and for the period of 1999-

2018 (for groundnut and cotton) in Maharashtra. It is worth mentioning that all the selected 

crop datasets are not available for all the districts in Maharashtra. In this way, 25 districts 
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contribute wheat production during Rabi season, 21 districts contribute rice production during 

Kharif, whereas 18 and 21 districts involve in groundnut and cotton production during Kharif 

season, respectively. The different crop datasets over the study area are collected from 

https://www.aps.dac.gov.in/APY/Public_Report1.aspx. Regarding the hydro-meteorological 

datasets and external covariates to develop non-stationary index, the descriptions are already 

provided in Chapter 4. In the present analysis the soil moisture data is downloaded from 

Climate Prediction Center (CPC) global monthly soil moisture data (Fan and van den Dool, 

2004). The CPC dataset is a reanalysis product that uses records from 30,000 sites managed 

by international agencies and the records are quality controlled, along with concurrent 

radar/satellite observations and numerical model forecasts (M. Li et al., 2020). 

 

Figure 6.1(a) Map of Maharashtra with districts and its location in India; (b) Districts showing 

available crop data for cotton; (c) Districts showing available crop data for groundnut; (d) 

Districts showing available crop data for rice; (e) Districts showing avail crop data for wheat 

6.2.2 Remote sensing indices 

In the present analysis, two remote sensing-based indices are used namely Vegetation 

Condition Index (VCI) and Temperature Condition Index (TCI). These indices are based on 

both NDVI and Brightness Temperature (BT). Therefore, they have the ability of examining 

the changes in ecosystem in terms of its fluctuation within its minimum and maximum value 

of BT and NDVI. The VCI identifies the vegetation stress due to the lack of moisture content 

whereas TCI signifies the vegetation stress due to the high temperature. The detailed 

description of the calculation of VCI and TCI were first provided by Kogan (1995, 1990). The 

https://www.aps.dac.gov.in/APY/Public_Report1.aspx
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range of the values of both VCI and TCI varies between 0 to 100, where the values less than 

40 indicate the occurrence of drought conditions (Kogan, 2002). Therefore, for the evaluation 

of the response of crop yield to different conditions of drought hazard, the weekly global map 

of VCI and TCI are retrieved at 4 km spatial resolution scale from NOAA’s ftp server 

(ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/VHP_4km/geo_TIFF/) for the period 

of 1997 to 2018. Here, the reason behind the addition of weekly data for 1997 is because the 

sowing period of some seasonal crops harvested in 1998 starts in Kharif season of the 

previous year. The VCI and TCI are obtained by the equations as following: 

( )min

max min

100
( )

NDVI NDVI
VCI

NDVI NDVI

−
= 

−
                                                                                       (6.1) 

( )

( )
max

max min

100
T T

TCI
T T

−
= 

−
                                                                                                       (6.2) 

where, NDVI, NDVImin, and NDVImax are the smoothed weekly NDVI, its multi-year absolute 

maximum, and minimum, respectively. Similarly, T, Tmax, and Tmin are the smoothed weekly 

temperature, its multi-year maximum, and minimum, respectively. 

Comprising the major crop life cycle moments, the involved weeks have been selected for 

different crops on seasonal basis. In detail, the analysis of this study has been performed 

between week 22 (approximately in the beginning of June) and week 52 (ending of 

December) for rice in Kharif, between week 40 (the beginning of October of the year n-1) and 

week 13 (approximately the ending of March of the year n) for wheat in Rabi, between week 

22 (beginning of June) and week 44 (end of October) for groundnut in Kharif and between 

week 26 (in the beginning of July) and week 52 (end of December) for cotton in Kharif. 

6.3 Methodology 

The graphical representation of the adopted methodology for the analysis is presented in the 

form of flow chart in Figure 6.2. Initially, the SPEI and SSI drought indices are computed by 

using the hydro-meteorological datasets at each grid point. Next, the non-stationary analysis is 

carried out for SPEI and SSI using different climate oscillations and regional hydrological 

conditions at each grid point, respectively. A comparison between stationary and non-

stationary drought indices is carried out based on Akaike Information Criteria (AIC). The 

crop loss threshold is then obtained for different crops and districts using detrend crop yield 

ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/VHP_4km/geo_TIFF/
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series. The dominant drought indicator in explaining the variability of each crop time series is 

selected for each district. Subsequently, copula-based risk analysis is carried out incorporating 

the crop loss threshold, crop yield anomaly, and dominant indicator at each district. In 

addition, comparison of risk analysis under stationary and non-stationary settings is 

performed where SPEI or SSI are selected as dominant drought indicators. Here, the 

methodologies related to crop loss threshold, identification of dominant indicator, and copula-

based risk analysis are discussed, as non-stationary analysis is already explained in Chapter 4.   

 

Figure 6.2: Proposed flow chart of the present study 

6.3.1 Calculation of crop loss threshold 

The annual crop yield values of rice, wheat, groundnut, and cotton are computed as the ratio 

between total annual crop production and cultivated area during the period of 1998-2018. The 
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yield anomalies are computed after removing the non-climatic factors. This is performed by 

removing the linear trend from the yield (Páscoa et al., 2017). In the present study, the crop 

loss events are marked when the yield anomalies are below the minus one (-1) standard 

deviation of the data series of annual crop yield anomalies. The motive is to focus on the 

expected chance that the negative yield anomalies will not exceed the crop loss threshold of 

different crops in each district. The annual crop loss threshold (t/ha) is computed for all the 

selected crops over different districts in Maharashtra and presented in Figure 6.3. 

 

Figure 6.3: The crop loss threshold computed as -1 standard deviation of crop yield anomaly 

(t/ha) for each district. The districts with no yield data are coloured in white 

It can be noted from Figure 3 that the range of crop loss threshold varies between -0.9 and -

0.2 for cotton, -0.3 and -0.1 for groundnut, -0.6 and -0.1 for rice, -0.5 and -0.1 for wheat crop. 

The relatively low value of standard deviation suggests that the crop loss thresholds 

correspond to the values slightly below normal. Therefore, the difference between the 

maximum and minimum annual yield values is small. 
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6.3.2 Selection of dominant drought indicator 

To find out the dominant predictor that significantly impacts the crop production based on 

different levels of drought severity, both the hydro-meteorological (SPEI and SSI) and remote 

sensing-based drought indicators (VCI and TCI) are used. The selection of the dominant 

indicator is carried out by considering the 182 drought indicators in case of rice in Kharif (31 

-week intervals of VCI, 31-week intervals of TCI, and 5-month by 12-time scales intervals of 

SPEI and SSI). Similarly, there are total of 142, 174, and 172 drought indicators for 

groundnut in Kharif, cotton in Kharif, and wheat in Rabi season, respectively. A stepwise 

linear regression is employed to select the best subset of drought indicators at 95% confidence 

level. Subsequently, the district-wise best dominant predictor is picked up for each seasonal 

crop on the basis of the largest absolute value of regression coefficients. In addition, to 

evaluate the contribution of each dominant drought indicator to its respective crop yield 

variability, partial correlation analysis has been conducted. A dominant indicator is selected 

through stepwise regression, where the dominant indicator can estimate the variance that is 

not explained by other indicators. This variance can be computed using the squared partial 

correlation coefficient. 

6.3.3 Copula-based risk analysis     

The joint behaviour of yield anomalies and dominant drought indicator for each crop is 

estimated using bivariate copula function. The copula constructs the multivariate joint 

distribution for two or more correlated variables having independent marginal distributions. 

Mathematically, given two correlated variables U and V with marginal distributions FU (u) 

and FV (v), the joint probability distribution  ( , )UVF u v using copula function C can be defined 

as  

 ( , ) ( ( ), ( ))UV U VF u v C F u F v=                                                                                                  (6.3)  

In the present study a total of five different copulas namely, Gaussian, Student’s t-copula, 

Clayton, Gumbel, and Frank are used to analyse the bivariate joint dependence structure 

between yield anomalies and dominant drought indicator (SPEI, SSI, VCI, or TCI). The 

Gaussian and Student’s t-copula come under Elliptical family. Similarly, Archimedean family 

includes Clayton, Gumbel, and Frank copulas. The Archimedean copulas are more popular 

due to their ability in capturing the wider variety of joint dependence structure. The 
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asymmetrical tail behaviour with greater dependence in lower and upper tail is described by 

Clayton and Gumbel copulas, respectively. The symmetric dependence with and without tail 

dependence is captured by Student’s t-copula and Frank copula, respectively. The 

mathematical description, and parameter range of the above-said copula functions are 

presented in Table 6.1. It should be noted that these formulations might not be unique. 

Therefore, it is advised to refer to the associated reference in Table 6.1.  

Table 6.1: Different copulas, their mathematical description, parameter range, and suitable 

references 

Name Mathematical Description Parameter Range 

Gaussian 

(Li et al., 
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Prior to the application of copula function, the marginal distributions of yield anomalies and 

dominant drought indicator are transformed to uniformly distributed values between 0 and 1. 

This is performed by using Canonical Maximum Likelihood (CML) method (Genest et al., 

1995), where the kernel density estimator of cumulative distribution function (CDF) is used to 

transform the marginal to uniform distribution. The estimation of marginal distributions is 

performed non-parametrically and the suitable copula parameters are computed using copula 

functions by means of maximum likelihood. In case of small sample size, the heavy 

assumption about the marginal distribution can be avoided using the semi-parametric 

approach. In addition, the use of semi-parametric method preserves the important source of 

information corresponding to the climatic variables. In the present study the selection of 
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appropriate copula function is carried out using the VineCopula package in R programming 

(https://cran.r-project.org/web/packages/VineCopula/index.html).   

After fitting the bivariate joint dependence between the yield anomalies (U) and dominant 

drought indicator (V), 1000 pairs of simulated yield anomalies (FUsim (u)) and drought 

indicator (FVsim (v)) are computed based on the appropriate copula function and its parameter. 

The simulated datasets are in the range [0, 1]. Subsequently, the simulated values are 

transformed back to the original scale using the kernel estimations of the inverse CDF. The 

data points among simulated yield anomalies (Usim) which correspond to a particular drought 

condition (v*) (no drought, or moderate drought, or extreme drought conditions) among the 

simulated drought indicator values (Vsim) are selected such that 

*

*( , ) ( | )sim simU u v U u v v=                                                                                                      (6.4) 

The drought condition according to the severity is presented in Table 6.2. By using the joint 

distribution, the conditional probability of yield anomalies with respect to different drought 

conditions 𝐹𝑈𝑠𝑖𝑚∗  preserves the dependence between the marginal distributions of yield 

anomalies and dominant drought indicator. The agricultural drought risk is evaluated in terms 

of conditional probability of non-exceedance of crop loss threshold for each seasonal crop 

over different districts and defined as 

* *( ) ( )
simU std sim stdF U Pr U U− =  −                                                                                              (6.5) 

where, -Ustd represents crop loss threshold value for different crops and districts.  

Table 6.2: Classification of drought severity for SPEI, SSI, VCI, and TCI 

SPEI and SSI VCI and TCI Drought Class 

Greater than -0.84 Greater than 40 No Drought 

Between -0.84 and -1.28 Between 40 and 20 Moderate Drought 

Less than and equal to -1.28 Less than and equal to 20 Extreme Drought 

 

https://cran.r-project.org/web/packages/VineCopula/index.html


116 
 

6.4 Results 

6.4.1 Identification of dominant drought indicator for different crops 

The drought condition for each crop over each district is characterised by one dominant 

drought indicator which is obtained from the stepwise regression analysis. Figure 6.4 presents 

the district wise dominant drought indicator for different crops.  

 

Figure 6.4: The selected dominant drought indicator for different districts and crops 

It can be noticed from the figure that for cotton (12 out of 21 districts), groundnut (6 out of 18 

districts), rice (10 out of 21 districts), and wheat (15 out of 25 districts) crops, SPEI is found 

to be the dominant indicator for most of the districts that implies the significance of 

meteorological variables on crop production in those districts. SPEI is dominant over eastern 

part of Maharashtra for wheat crop during Rabi season and western and south part of 

Maharashtra for rice crop during Kharif season. However, in case of cotton, SPEI is dominant 

over central part and small area from eastern part of Maharashtra. SSI as a dominating 

drought indicator is observed for cotton (over 2 districts), and groundnut (over 5 districts) 

crops only. The dominance of VCI is more as compared to TCI for all the crops. For wheat 
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crop, the dominance of VCI is noticed over the western part of the study area. However, for 

rice, mostly the eastern part of Maharashtra is dominated by VCI drought index. In case of 

cotton and groundnut, the crop productivity is affected due to VCI over central part of 

Maharashtra. The TCI as least dominated drought index is found for all the selected crops in 

the study area. Table 6.3 represents the list of dominant drought indicators with selected week 

in case of TCI and VCI or time scale and month in case of SPEI and SSI for each crop and 

district. For instance, the correspondent drought conditions are characterised by the SPEI 

(August with 2-month time scale) in the case of cotton and by the VCI (week 41, middle of 

October) in the case of groundnut. 

Table 6.3: Dominant drought indicator for each district and crop type 

District Cotton_Kharif Groundnut_Kharif Rice_Kharif Winter_Rabi 
Ahmednagar SPEI-2-8 VCI-41 TCI-32 VCI-40 

Akola VCI-38 ---- ---- SPEI-3-3 
Amaravati TCI-52 TCI-30 TCI-33 SPEI-6-11 

Aurangabad VCI-39 VCI-40 ---- VCI-40 
Beed SPEI-3-9 SPEI-12-8 SPEI-3-8 VCI-9 

Bhandara ---- ---- VCI-52 SPEI-7-11 
Buldana VCI-38 ---- ---- SPEI-3-3 

Chandrapur SPEI-3-9 ---- VCI-52 SPEI-7-11 
Dhule VCI-38 TCI-36 VCI-33 VCI-8 

Garhchiroli ---- ---- VCI-51 SPEI-1-1 
Gondiya ---- ---- ---- ---- 
Hingoli ---- ---- ---- ---- 
Jalgaon SPEI-3-9 SPEI-1-7 ---- SPEI-1-1 
Jalna SPEI-8-10 SPEI-1-7 ---- SPEI-4-12 

Kolhapur ---- SSI-4-10 ---- SPEI-1-1 
Latur VCI-37 VCI-37 SPEI-8-8 SPEI-2-12 

Nagpur SPEI-1-12 SSI-1-10 VCI-51 SPEI-4-3 
Nanded SPEI-1-12 ---- VCI-35 SPEI-4-3 

Nandurbar ---- ---- ---- ---- 
Nashik SPEI-6-9 SPEI-3-9 SPEI-2-9 VCI-7 

Osmanabad SPEI-4-8 VCI-39 SPEI-5-8 VCI-46 
Parbhani VCI-39 ---- ---- SPEI-4-1 

Pune ---- SSI-3-8 TCI-33 VCI-41 
Raigarh ---- ---- SPEI-4-10 ---- 

Ratnagiri ---- ---- SPEI-3-8 ---- 
Sangli SSI-11-12 TCI-44 TCI-22 TCI-11 
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Satara SSI-2-8 SSI-6-8 SPEI-5-10 VCI-5 
Sindhudurg ---- SPEI-7-10 SPEI-5-9 ---- 

Solapur SPEI-8-8 SSI-3-8 SPEI-2-10 VCI-42 
Thane ---- ---- SPEI-6-10 ---- 

Wardha SPEI-6-12 SPEI-2-7 ---- SPEI-3-2 
Washim ---- ---- ---- ---- 

Yavatmal SPEI-8-8 ---- ---- SPEI-4-1 

 

Figure 6.5 depicts the percentage of variance explained by the dominant indicator for different 

crops. According to the figure, more than 50% of the cotton crop variability is explained by 

the selected dominant drought indicator over Amaravati (50.89%), Chandrapur (57.07%), 

Dhule (61.25%), Jalgaon (52.52%), Nagpur (66.83%), and Satara (63.58%) districts. Over 

Kolhapur, Osmanabad, and Solapur districts, more than 50% of the groundnut yield 

variability is described by the selected dominant drought indicators. In case of rice, the 

highest crop yield variance is explained over Bhandara district (73.31%) followed by Dhule 

(61.61%) and Raigarh (60.70%) districts by the dominant drought indicators. Similarly, the 

districts Jalgaon, Parbhani, and Jalna show a percentage of explained variance higher than 

70% in the case of wheat. 

 

Figure 6.5: The percentage variance of each crop variability explained by the selected 

dominant drought indicator 
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6.4.2 Identification of suitable copula for different crop types 

The copula analysis is carried out using different copula functions (refer to Table 6.1) for each 

pair of crop yield anomaly and drought indicator. Figure 6.6 presents the selected copula 

based on the lowest AIC value for different crops and Figure 6.7 depicts the grouped bar plots 

which incorporates the number of districts adopting each copula type for different type of 

dominant drought indicators. It can be noted from Figure 6.6 that Frank copula is the most 

selected copula type of all the crops (12 districts in case of cotton, 9 districts in case of 

groundnut, 11 districts in case of rice, and 12 districts in case of wheat). Followed by Frank 

copula, Clayton copula is found to be suitable for groundnut (6 districts), rice (9 districts), and 

wheat (9 districts) crops. The Student’s t and Gumbel copulas are not found suitable for any 

of the selected crops and rice crop, respectively. The Gaussian copula is selected as best fit 

copula over 5 districts in case of cotton, 2 districts in case of groundnut, 1 district in case of 

rice, and 3 districts in case of wheat crop.  

 

Figure 6.6: The selected copula function for each district and crop type 
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From Figure 6.7, it is noticed that most of the districts whose drought conditions are 

characterised by SPEI follow Frank copula (for cotton, groundnut, and wheat) and Clayton 

copula (for rice). The joint probability of SSI and crop yield anomaly is better modelled using 

the Frank copula for cotton (2 districts) and using both Clayton (3 districts) and Frank (2 

districts) copulas for groundnut. The districts which are dominated by VCI are found to be 

fitted using Clayton, Frank, Gaussian, and Gumbel copulas for cotton crops. Similarly, Frank 

and Gumbel copulas for groundnut, Clayton and Frank for Rice, and Gumbel alone for wheat 

are used to model the dependence structure of VCI and crop yield anomalies. Likewise, the 

Gumbel and Frank Copulas can capture the joint probability between TCI and crop yield 

anomalies of wheat and cotton crops, respectively. Whereas Frank (2 districts) and Gumbel (1 

district) copulas for groundnut and Clayton (1 district) and Frank (3 districts) copulas for rice 

crop are selected to model the joint dependency. 

 

Figure 6.7: Bar plot to describe number of districts under different copula functions for each 

crop 



121 
 

6.4.3 Analysis of agricultural drought risk for different crops 

After establishing the joint dependency using copula functions, the subsequent generated 

simulations are used to evaluate the conditional distributions of crop yield anomalies under no 

drought, moderate drought, and extreme drought conditions. Figure 6.8 presents the 

conditional probability of crop loss under no drought condition according to the crop loss 

threshold mapped in Figure 6.3. It can be noted that the conditional probability is 

considerably low in the case of all crops during no drought condition. For instance, the 

agricultural risk is found to be ranging from 0% to 20% chance of non-exceedance for all the 

selected crop loss thresholds. Likewise, Figure 6.9 depicts the conditional probability of 

agricultural drought risk during moderate drought condition. It should be noted that the 

districts which are shaded in grey colour indicate the absence of moderate drought condition. 

The chance of non-exceedance of cotton crop loss threshold is found to be more than 95% 

over Ahmednagar district. In addition, over Aurangabad, and Akola districts, the chance of 

non-exceedance of agricultural drought risk with respect to cotton crop loss threshold is 

computed as 32% and 26%, respectively. In the case of groundnut, the agricultural drought 

risk over Ahmednagar, Jalna, Aurangabad, and Beed is evaluated as 88%, 62%, 29%, and 

23% chance of non-exceedance, respectively. Under moderate drought condition, it is 

computed as 81% for Beed district, 67% for Satara district, 50% for Latur district, 44% for 

Osmanabad district, and 29% for Nagpur district. The agricultural drought risk for the wheat 

crop is considerably high i.e., more than 70% over Ahmednagar, Aurangabad, Beed, 

Osmanabad, Pune, Satara, and Solapur districts. The affected districts are less in number in 

case of extreme drought condition as compared to the no drought and moderate drought 

conditions (Figure 6.10). Only two districts namely Ahmednagar and Ratnagiri are having 

very high conditional probability for cotton and rice crops, respectively.  
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Figure 6.8: Agricultural drought risk under no drought condition for each crop 

 

Figure 6.9: Agricultural drought risk under moderate drought condition for each crop. The 

grey shaded area represents that the no moderate drought condition is observed 
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Figure 6.10: Agricultural drought risk under extreme drought condition for each crop. The 

grey shaded area represents that no extreme drought condition is observed 

6.4.4 Comparison of risk under stationary and non-stationary approaches 

The comparative study of agricultural risk between stationary and non-stationary approaches 

is performed by considering the districts where SPEI or SSI is selected as dominant drought 

indicator. Figure 6.11 presents the comparison between stationary and non-stationary drought 

risk for cotton crop. It should be noted that the upper and lower panel present the stationary 

and non-stationary cases, respectively. The map of districts which are affected only by SPEI 

or SSI is embedded in the upper left corner map. The number of districts affected by the 

moderate and extreme drought condition as a result of SPEI or SSI are more in non-stationary 

case than stationary case. For instance, Ahmednagar, Jalgaon, and Osmanabad districts in 

case of moderate drought and Ahmednagar district in case of extreme drought are not 

captured by the stationary condition. In addition, the non-stationary conditional probability of 

agricultural drought risk is high as compared to stationary approach.  
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Figure 6.11: Stationary (a-c) and non-stationary (d-f) comparison of agricultural drought risk 

for cotton crop. The grey shaded map (upper left corner) shows the districts where SPEI or 

SSI is selected as dominant drought indicator 

Similarly, Figure 6.12 depicts the comparison of agricultural drought risk for groundnut crop. 

Unlike the cotton crop, significant difference is not observed between stationary and non-

stationary analysis for extreme and no drought conditions. However, Beed and Jalna districts 

show high conditional probability of agricultural drought risk in the case of moderate drought 

condition. In the case of rice (Figure 6.13), no moderate and extreme drought conditions are 

observed under stationary condition. However, under non-stationary condition, some of the 

districts (Beed, Latur, Osmanabad, Ratnagiri, and Satara) in moderate, and Ratnagiri district 

in extreme drought condition exhibit high conditional probability of agricultural drought risk. 

Likewise, for wheat (Figure 6.14), the significant difference of drought risk between 

stationary and non-stationary drought is noticed for moderate and extreme drought conditions 

over one (Wardha) and four (Akola, Buldana, Nagpur, and Nanded) districts, respectively. 
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Figure 6.12: Stationary (a-c) and non-stationary (d-f) comparison of agricultural drought risk 

for groundnut crop. The grey shaded map (upper left corner) shows the districts where SPEI 

or SSI is selected as dominant drought indicator 

 

Figure 6.13: Stationary (a-c) and non-stationary (d-f) comparison of agricultural drought risk 

for rice crop. The grey shaded map (upper left corner) shows the districts where SPEI or SSI 

is selected as dominant drought indicator 
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Figure 6.14: Stationary (a-c) and non-stationary (d-f) comparison of agricultural drought risk 

for wheat crop. The grey shaded map (upper left corner) shows the districts where SPEI or 

SSI is selected as dominant drought indicator 

6.5 Discussion and summary 

The present study aims at analysing the dependence structure between crop yield anomalies 

and drought conditions using the copula-based approach. Based on the obtained dependency 

structures, the agricultural drought risk is evaluated over the study area which is proposed in 

terms of conditional probability of non-exceedance of crop loss threshold under three 

different types of drought conditions. In addition, the agricultural drought risk is characterised 

combining the advantages of both hydro-meteorological (SPEI, and SSI) and remote sensing-

based (VCI, and TCI) drought conditions. In case of hydro-meteorological drought condition, 

the agricultural risk is computed and compared for stationary and non-stationary conditions. 

In general, SPEI is found as significant drought indicator (Figure 6.4) over the maximum 

number of districts in all the crops, suggesting the climatic factors have significant influence 

on the agricultural productivity over the study area. Similar kind of finding is observed by 

Kelkar et al. (2020) while analysing the impact of climate variability on crop production in 

Maharashtra. However, the districts with higher explained variance do not necessarily 

coincide with the selection of SPEI. For instance, the districts with higher variance explained 
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is shared by all the drought indicators for cotton, by SSI for groundnut, mostly by VCI in the 

case of rice, and by SPEI for wheat. A west-east gradient of suitability of SPEI is observed in 

the case of rice (western districts) and wheat (eastern districts) crops. However, the yield 

variability over eastern districts over rice and western districts over wheat is mostly explained 

by VCI.  

The most selected type of copula in all the crops is found to be Frank copula, suggesting equal 

level of dependency in both the tails between drought indicators and yield anomalies. In most 

of the cases of Frank models, the dominant drought condition is characterised by SPEI index. 

The Clayton copula over selected districts suggest stronger dependence between the lower tail 

values of dominant drought indicators and yield anomalies. Most often, the drought 

conditions for Clayton models are dominated by SPEI and VCI in the cases of rice and wheat, 

respectively. On the other hand, the districts with Gumbel models are characterised by VCI 

and SPEI for cotton, and TCI for both groundnut and wheat crops, suggesting high values of 

the drought indicators promote positive crop yield anomalies. 

In most of the cases (16 out of 23 instances), the higher probability of drought risk under 

moderate and extreme drought conditions are modelled by Clayton copula. Under moderate 

drought condition, the higher probability of agricultural drought risk for wheat crop is 

characterised by VCI only and modelled by Clayton copula. It suggests that the higher 

severity of VCI results in higher agricultural drought risk for wheat crop. Likewise, for cotton 

and groundnut, the higher agricultural drought risk is modelled by Clayton copula. In spite of 

different dominant drought indicators, the dependency structure between the moderate 

drought condition and crop yield anomaly is similar for cotton, groundnut, and wheat crops. 

In the case of rice, higher agricultural drought risk is modelled by SPEI drought indicator. 

Under moderate drought condition, Ahmednagar is found to be the most affected district due 

to the high probability of agricultural drought risk for cotton, groundnut, and wheat crops. 

The number of cases is significantly less under extreme drought condition as compared to 

moderate drought condition. However, the probability of crop loss has increased with drought 

severity (from moderate to extreme). In most of the cases (considering both moderate and 

extreme drought conditions), the higher probability agricultural drought risk is modelled with 

SPEI or VCI as dominant drought indicator.  

From the stationary and non-stationary analysis, it is observed that the number of affected 

districts is more under non-stationary approach for all the crops. In the case of cotton crop, 
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Ahmednagar and Jalgaon districts are not captured under stationary analysis for both 

moderate and extreme drought conditions. It is found from the analysis that the stationary 

approach will underestimate agricultural drought risk due to the ignorance of large-scale 

oscillations and regional hydrological variability in the computation. Subsequently, this will 

significantly affect the planning and management of agricultural sustainability over the study 

area.  

In summary, the significant findings from the present analysis point to the fact that the 

drought hazard is primarily characterised by SPEI drought indicator in all the crops. The 

higher probability of drought risk under moderate and extreme drought conditions are 

modelled by Clayton copula suggesting greater probabilities of joint extreme low values. 

With increase in the drought severity the conditional probability of agricultural drought risk is 

likely to increase. In addition, it is observed that the exclusion of non-stationarity will 

underestimate the agricultural risk, which will significantly affect the planning and 

management of agricultural sustainability over the study area. The findings from the study 

aim to contribute to device effective decision-making procedure in agricultural practices. 

Understanding the adverse consequences of drought events on various sectors, it is necessary 

to examine the future variability of drought under different climate change scenarios. 

Therefore, next chapter deals with projecting the future changes in the drought event using 

multiple General Circulation Models/Global Climate Models (GCMs) under different climate 

change scenarios. In addition, identification of future drought hotspots is carried out in the 

next chapter.  
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Chapter 7  
 

Identification of future 

meteorological drought hotspots 
 

 

 

7.1 Introduction 

The fact that the extreme weather events (e.g., extreme precipitation, heat waves) have 

become increasingly frequent all around the globe (Kundzewicz and Kaczmarek, 2000; 

Mazdiyasni et al., 2017), was well understood and witnessed during the latter part of the 20th 

century and early 21st century (IPCC, 2014). Among all the climate extremes, detection and 

quantification of drought events are complex as no universal definition of drought exists 

(Lloyd-Hughes, 2014). In addition, the drought is often mentioned as ‘creeping disaster’ 

(Wilhite, 2016) that develops slowly and often unnoticed and has widespread indirect 

consequences (Van Loon, 2015). Therefore, the drought as a climate hazard and its manifold 

aspects have become paramount importance in the changing and warming world (A. G. Dai, 
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2013) and has evolved as a “hot topic” in hydro-climatology research arena (Trenberth et al., 

2014). 

The analysis of drought can be carried out at short- and long-term scales. The short-term 

forecast helps in providing the advisory to the farmers regarding the suitable crop cultivations 

and reallocation of water resources among the states (Bisht et al., 2019). In this light, 

numerous studies have been carried out around the globe in terms of different drought 

characteristics like duration, severity, peak, areal extent, etc. Trenberth et al. (2014) advocated 

that the frequency and intensity of the natural droughts are likely to increase significantly. 

Similarly, during 1950- 2008, the global dry areas and extreme conditions have increased by 

1.74% and 1.27% per decade for the global land, respectively (Dai, 2011b).  

As compared to the past drought events, the overall scenario of future long-term drought 

events is still incomplete (Spinoni et al., 2019). Several past studies have examined the 

meteorological and hydrological droughts incorporating the future projections from GCMs 

under the Coupled Model Intercomparison Project 3 (CMIP3) and 5 (CMIP5) across the 

globe. For instance, over Europe (Spinoni et al., 2018; Thober et al., 2015), over United States 

(Ahmadalipour et al., 2017; Keellings and Engström, 2019), over China (Cao and Gao, 2019; 

Yao et al., 2020), over India (Bisht et al., 2019; Gupta and Jain, 2018), over Australia 

(Johnson and Sharma, 2015), over the globe (Spinoni et al., 2020; Ukkola et al., 2018). 

Nevertheless, most of the projections are performed at medium scale spatial resolution and 

incorporating a limited number of simulations. Due to such limitations, the future projections 

are associated with larger uncertainties (A. G. Dai, 2013; Lu et al., 2019).  

The studies, as mentioned above, except a few, employed Standardized Precipitation Index 

(SPI) as a meteorological drought indicator to characterise the drought under the future 

climate change scenarios. According to the definition, SPI accounts only precipitation to 

describe the drought. However, in the present climate change scenario, it is expected that with 

constant relative humidity, the moisture content in the atmosphere roughly increases by 6-7% 

per 1oC warming rise in the lower tropospheric temperature (Willett et al., 2007). Therefore, 

water holding capacity of the atmosphere is increased under the warming climate, which 

directly affects the intensity and occurrence of the precipitation events over time (Cheng and 

Aghakouchak, 2014).  
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To evaluate the future short and long-term drought condition over the Indian region, it is 

inevitable to examine the current status of meteorological drought projection by various 

researchers. Ojha et al. (2013) examined the meteorological drought frequency using SPI as 

drought indicator and outputs from seventeen GCMs under CMIP3 multi-model dataset and 

showed an increasing trend of drought frequency over India. Future changeability of soil 

moisture drought over India was analysed by Mishra et al. (2014) using outputs from the 

seven GCMs from CMIP5 experiment. They revealed that the frequency and areal extents of 

soil moisture drought are likely to be increased. Aadhar and Mishra (2018) analysed the 

impact of climate change on meteorological drought frequency with the help of Standardized 

Precipitation Evapotranspiration Index (SPEI) as a drought index. In their study, they 

incorporated meteorological variables from five CMIP5 GCMs and observed an increasing 

drought frequency. Gupta and Jain (2018) used meteorological outputs from seven Regional 

Climate Models (RCMs) to investigate the spatio-temporal drought projections over India. 

Similarly, Bisht et al. (2019) adopted nine GCMs from the CMIP5 project to evaluate the 

future drought characteristics using the SPEI index over India. All the above-said studies have 

incorporated the meteorological inputs from the GCMs or RCMs. In addition, the studies have 

focused on entire India and the identification of the drought hotspot regions are not 

performed. Therefore, based on the past studies, identification of various drought properties 

and drought hotspot at a regional scale using newly developed high-resolution outputs from 

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) would provide 

useful inference to the sustainable water resources management practices.   

With this understanding, this chapter attempts to identify future meteorological drought 

hotspots incorporating different drought properties over a drought prone province in India, 

i.e., Maharashtra. To the best of our knowledge, no such multifaceted effort has been 

conducted over the Maharashtra province so far. In addition, this chapter includes the outputs 

from nineteen different GCMs from NEX-GDDP for the first time to characterise the future 

short (3-month scale) and long (12-month scale) term meteorological drought. In the light of 

the discussion made above, the present study is motivated to find out possible answers to the 

following questions, (i) whether the future projected climate change would bring frequent and 

severe drought condition during the 21st century over a region, (ii) what are the possible 

implications on future meteorological drought events due to the projected temperature? (iii) 

How the future drought hotspots are likely to change? 
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7.2 Data used 

7.2.1 NEX-GDDP historical and future datasets 

The description of the study area and historical meteorological datasets are already discussed 

in Chapter 3. To project the future meteorological droughts (i.e., SPI and SPEI), the future 

projections of meteorological datasets (precipitation, maximum (Tmax) and minimum (Tmin) 

temperature) are obtained from NEX-GDDP data, which is released in June 2015 by NASA 

(R. Xu et al., 2019). The spatial resolution of the datasets is 0.25o Lat and 0.25o Lon and 

available at daily time scale. The NEX-GDDP datasets incorporate simulations from twenty 

one GCMs from the CMIP5 experiment and are downscaled to the high resolution using bias 

correction spatial disaggregation (BCSD) based downscaling methodology (Thrasher et al., 

2013). The period of the historical and future projected datasets can be obtained during 1950-

2005 and 2006-2100, respectively. The future projections of the datasets are available for two 

emission scenarios, i.e., RCP 4.5 and 8.5. Recently, NEX-GDDP datasets are successfully 

used in various studies over different parts of the world (Singh et al., 2019; Xu et al., 2019). 

In the present study, nineteen GCMs are used from NEX-GDDP experiment based on the 

complete availability of the datasets. The details of the GCMs and their respective institutions 

are presented in Table 7.1. 

7.2.2 Spatial resolution and time period used for analysis 

In order to simplify the analysis and for meaningful interpretation of the outcomes, the 

meteorological datasets (both historical and future) are extracted from the NEX-GDDP 

projections using the grid point locations that blanket the study area at a spatial resolution of 

0.5o Lat ×0.5o Lon. Due to the present spatial resolution of IMD meteorological data, authors 

could not use the NEX-GDDP datasets at 0.25o Lat ×0.25o Lon. The grid points (the total 

count is 103) covering the study area are presented in Figure 1(c).  It should be noted that the 

NEX-GDDP datasets are bias-corrected using the historical meteorological data sets from the 

Terrestrial Hydrology Research Group at Princeton University (Sheffield et al., 2006). 

However, it is observed that the NEX-GDDP datasets, while compared with IMD 

observations, are not capturing the extreme precipitation and temperature events at the 

regional scale (more discussion is presented in Section 7.4). Therefore, bias-correction is 

again carried out over 103 grid points. For bias correction, 1951-2005 is chosen as 
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reference/baseline period (precipitation, maximum and minimum temperature) as historical 

GCMs’ datasets are available up to 2005 and the IMD temperature datasets are available from 

1951. For the comparison of future meteorological drought indices, the future time span is 

divided into three equal lengths of 26 years, i.e., 2022-2047, 2048-2073, and 2074-2099. 

Moreover, the drought indices and their properties for the recent past, i.e., 1993-2018 is used 

as historical period and compared with three segments of the future period. 

Table 7.1: List of the GCMs with their respective institution used for the present study 

Sl. 

No. 
Model Institution 

1 ACCESS1-0 
Commonwealth Scientific and Industrial Research 

Organization and Bureau of Meteorology, Australia 

2 BCC-CSM1-1 Beijing Climate Center, China 

3 CanESM2 
Canadian Centre for Climate Modelling and Analysis, 

Canada 

4 CCSM4 National Center for Atmospheric Research, America 

5 CESM1-BGC National Center for Atmospheric Research, America 

6 CNRM-CM5 

Centre National de Recherches Meteorologiques, Centre 

Europeen de Recherche et Formation Avancees en Calcul 

Scientifique, France 

7 CSIRO-Mk3-6-0 

Commonwealth Scientific and Industrial Research 

Organization/Queensland Climate Change Centre of 

Excellence, Australia 

8 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, America 

9 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, America 

10 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, America 

11 INMCM4 Institute of Numerical Calculation, Russia 

12 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 

13 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 

14 MIROC-ESM Atmosphere and Ocean Research Institute, Japan 

15 MIROC-ESM-CHEM Atmosphere and Ocean Research Institute, Japan 

16 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 

17 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 

18 MRI-CGCM3 Max Planck Institute for Meteorology, Germany 

19 NorESM1-M Norway Consumer Council, Norway 
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7.3 Research methodology 

7.3.1 Bias correction of meteorological datasets 

Initially, the bias correction of the daily meteorological datasets is performed at 103 grid 

points over the study area using the IMD datasets as a reference during 1951-2005 for 

selected 19 GCMs. In the context of future projection, it assumes stationarity of both the scale 

relationship and internal errors from the GCM (Hewitson et al., 2014). In other words, the 

correction factor for the present or historical period is valid for future conditions. In the 

present study, the quantile mapping method is used to correct the bias in precipitation and 

temperature datasets. Based on a comparative study among different bias correction methods, 

Gudmundsson et al. (2012) suggested that non-parametric quantile mapping has the best skill 

in reducing the bias as no specific distribution is assumed for the distribution of datasets and 

is presented as follows.  

  1( ( ))o o m mV F F V−=                                                                                                                 (7.1) 

where, Vo and Vm are observed and modelled meteorological variables (here, precipitation and 

temperature), Fm is the cumulative distribution function (CDF) of Vm and Fo
-1 is the inverse 

CDF corresponds to Vo. The computation is performed by using the “qmap” package in R 

developed by Gudmundsson (2016) and can be downloaded from https://cran.r-

project.org/web/packages/qmap/index.html. 

7.3.2 Drought indices computation: SPI and SPEI 

For each realisation (i.e., simulation from each GCM), the bias-corrected daily precipitation 

and temperature (maximum and minimum) datasets are converted into monthly series. In 

order to isolate the effect of temperature on future projections of meteorological drought, both 

SPI and SPEI are chosen in the present study. In the warming climate, though the 

precipitation may increase, the atmospheric evaporative demand may be more than the 

increase in rainfall (Spinoni et al., 2019). Therefore, the influence of temperature on 

meteorological drought is considered through the changes in Potential Evapotranspiration 

(PET), which is used in the computation of meteorological drought such as SPEI.  

For each future simulation, future scenario, GCM, and grid point, the series SPI and SPEI 

values are computed. Following the methodology proposed by Mckee et al. (1993) for SPI 

https://cran.r-project.org/web/packages/qmap/index.html
https://cran.r-project.org/web/packages/qmap/index.html
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and by Vicente-Serrano et al. (2010) for SPEI, the precipitation and water balance component 

(i.e., the difference between precipitation and PET) are fitted with Gamma and log-logistic 

distribution, respectively. It is worth mentioning that for the comparison of 3-time segments 

during the future with historical, the transformation obtained during the baseline period from 

1951 to 2005 is used for computation of SPI and SPEI for the accumulation period of 3, and 

12 months in future and historical period (i.e., between 1993 and 2018). The computation is 

performed using the “SCI” package in R developed by Gudmundsson and Stagge (2015) and 

can be found at https://cran.r-project.org/web/packages/SCI/index.html. The computation of 

SPI and SPEI is presented in Chapter 3 and Chapter 4, respectively. However, in the present 

case, PET is computed using the Hargreaves method. For estimation of PET using the 

Penman-Monteith’s method, other meteorological variables like cloud cover, wind speed, 

relative humidity, sunshine hour are required along with the precipitation and temperature 

data. Though all the variables described above are available for the past, unfortunately, such 

variables at high resolution are not available in the NEX-GDDP experiment. Moreover, it is 

found that Hargreaves method is superior to the Thornthwaite method (Aadhar and Mishra, 

2020; Bandyopadhyay et al., 2012) and study revealed the similarity between the Hargreaves 

method and Penman-Monteith’s method in estimating PET (Kingston et al., 2009).  The 

classification of drought is similar to the classification as presented in Chapter 3. 

7.3.3 Drought frequency, severity, duration, peak and areal spread 

Different drought properties are evaluated following Das et al. (2020), i.e., with the help of 

“run theory” developed by Yevjevich (1967). In the present study, the events below -1 are 

considered as drought events. Therefore, a drought event is explained as the length between 

when an event falls down the pre-define truncation level (i.e., -1) and joins back to the 

truncation level. The graphical representation of different drought properties using run theory 

is presented in Chapter 3 (Figure 3.2). 

With this understanding, the frequency of the drought is defined as the count of drought event 

for a given duration. The duration of drought is defined as the temporal length of a drought 

event, and the minimum length is one month. Similarly, the severity of a drought event is 

estimated as the absolute cumulative sum of the SPI/SPEI series for that particular drought 

duration. Therefore, drought duration and drought severity are strongly correlated. The 

minimum value of SPI/SPEI for a particular drought event is referred to as peak. In order to 

analyse the areal spread of the drought event, the maximum areal spread at each year is 

https://cran.r-project.org/web/packages/SCI/index.html
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chosen to find out the inter-annual variability. The areal spread is computed based on the 

fraction of area under drought (based on the grid points which are affected by drought).  

It should be noted that the analysis is carried out over each division (kindly refer to Chapter 3) 

over the entire Maharashtra. Initially, the weight of each grid point corresponding to any 

division shapefile is computed. The weight represents the percentage of the area of any grid 

point falling within the division shapefile. For instance, if the weight value of a grid is 1 (0.6), 

then the complete grid (60% of the area) comes inside the shapefile. It is worth mentioning 

that, for the comparison purpose, the historical period (i.e., 1993-2018) is denoted as “T0” and 

similarly, 2022-2047, 2048-2073, and 2074-2099 segments are represented as “T1”, “T2”, 

and “T3”, respectively. 

7.4 Results 

7.4.1 Bias correction: NEX-GDDP simulations versus IMD observation 

Before using the nineteen GDDP simulations to project the two different meteorological 

droughts and analyse different drought properties, the correctness of the meteorological 

variables like precipitation, Tmax, and Tmin are evaluated using IMD observations during the 

baseline period. As discussed in the Section 7.3.1, the bias correction is carried out using the 

quantile mapping technique.  

Bias correction relies on the reference or baseline data (Maraun et al., 2017). The NEX-

GDDP simulation datasets were bias-corrected using the historical meteorological data sets 

from the Terrestrial Hydrology Research Group at Princeton University (Sheffield et al., 

2006). Although the NEX-GDDP data have been bias-corrected during their generation 

process, it further needs bias-correction using the datasets available for the region (S. Chen et 

al., 2020) as the number of observation gauges over the area may be more as compared to the 

historical datasets used to correct initial bias in NEX-GDDP data. In this sense, while 

examining the IMD and NEX-GDDP datasets, Jain et al. (2019) noticed variability in the 

daily scale datasets of NEX-GDDP as compared to IMD dataset. Presently, while comparing 

with different quantiles of the IMD observational datasets, it is observed that most of the 

models show discrepancy at higher quantiles. In this sense, the NEX-GDDP model outputs 

are bias-corrected based on the IMD observations. For the brevity, a comparison between the 

before and after bias correction of precipitation for the grid point (75.375 long, 20.125 lat) is 
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presented in Figure 7.1. Moreover, for maximum and minimum temperature, the comparison 

plots are depicted in Figure 7.2  

 

Figure 7.1: Heatmaps of before and after bias-correction of precipitation. The unit of colorbar 

is in mm 

The units in Figure 7.1 and Figure 7.2 are mm and degree Celsius, respectively. The values 

represent the deviation from the observed data for each model and selected quantile. It can be 

noted from Figure 7.1 that the bias correction has improved the modelled outcomes for the 

higher quantiles (mostly the values at 95th, 99th, and 100th quantiles). However, in case of 

maximum and minimum temperature datasets, the bias is adjusted over the entire series. For 

maximum and minimum temperature series, the difference is high in case of minimum 

temperature than maximum temperature. It should be noted that the difference values are 

different at different grid points over the study area. The future projected values of 

precipitation, maximum and minimum temperature are corrected based on the correction 

during the baseline period. 
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Figure 7.2: Heatmaps of before and after bias-correction of maximum and minimum 

temperature. The unit of colorbar is in degree C 

7.4.2 Projection during the 21st century: wetting or drying warming? 

To analyse the projected climatological conditions during the 21st century over the study area 

under RCP4.5 and 8.5 scenarios, the precipitation, Tmax, Tmin, and PET for T1, T2, and T3 

segments are compared with T0 period. Figure 7.3 shows the change in the Multi Model 

Mean (MMM) of precipitation between 3 different future segments and historical period. The 

upper (lower) panels show the monthly precipitation variations over Amaravati, Aurangabad, 

and Konkan (Nagpur, Nashik, and Pune) regions under both the RCP scenarios. For Tmax, 

Tmin and PET the monthly MMMs are presented in Figure 7.4, Figure 7.5, and Figure 7.6, 

respectively. 
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It can be noted from Figure 7.3 that the monthly precipitation during T0 is high over Konkan 

as compared to the other regions as Konkan region is situated in the Western Ghats, a high 

precipitation zone due to its geographical aspects. Similarly, Aurangabad and Nashik regions 

receive less precipitation (within 120-160mm) during the monsoon period with comparison to 

other regions during T0. During 2022-2099, the precipitation during the monsoon period is 

likely to increase overall the regions except Konkan. The future projected monthly 

precipitation pattern during 2022-2099 over Konkan shows no significant change under both 

the scenarios. The increase in the monthly precipitation (mostly during monsoon) is higher 

under RCP8.5 than RCP4.5. In particular, the monsoon precipitation is projected to increase 

over Amaravati by 15-27% for RCP4.5 and 20-40% for RCP8.5, over Aurangabad by 21-34% 

for RCP4.5 and 21-44% for RCP8.5, over Nagpur by 7-19% for RCP4.5 and 17-34% for 

RCP8.5, over Nashik by 14-25% for RCP4.5 and 13-34% for RCP8.5, and over Pune by 10-

19% for RCP4.5 and 13-33% for RCP8.5 during 2022-2099. Moreover, monthly precipitation 

is likely to increase from T1 to T3, i.e., T1<T2<T3. In general, a wetting tendency is observed 

during the 21st century under both the scenarios except Konkan.  

The future projections of Tmax and Tmin are presented in Figure 7.4 and Figure 7.5, 

respectively. It can be noticed from both the figures that the MMM of monthly maximum and 

minimum temperature are projected to increase as compared to the historical period in both 

the scenarios over all the regions. However, the increase is more in case of RCP8.5 than 

RCP4.5 with the same pattern as precipitation, i.e., T1<T2<T3. The average temperature is 

projected to increase over Amaravati by 0.58-3.4oC for RCP4.5 and 1.66-4.5oC for RCP8.5, 

over Aurangabad by 0.43-3.3oC for RCP4.5 and 1.46-4.4oC for RCP8.5, over Konkan by 

0.43-3.3oC for RCP4.5 and 1.37-3.2oC for RCP8.5, over Nagpur by 0.46-3.3oC for RCP4.5 

and 1.43-4.4oC  for RCP8.5, over Nashik by 0.57-3.1oC for RCP4.5 and 1.47-4.1oC for 

RCP8.5, and over Pune by 0.72-2.6oC for RCP4.5 and 1.54-3.5oC for RCP8.5 during 2022-

2099. The projected temperature changes are in line with the latest report of the 

Intergovernmental Panel on Climate Change (IPCC, 2014) based on the CMIP5 simulations. 

Therefore, in a broader sense, the projected climatology over Maharashtra is likely to be 

wetting and warming during the 21st century except for Konkan region as compared to 

historical. In the Konkan region, the warmer climatology is likely to prevail with no 

significant change in the monthly precipitation variability.  
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Figure 7.3: Monthly precipitation variability over different regions under RCP4.5 and 8.5 scenarios 
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Figure 7.4: Monthly Tmax variability over different regions under RCP4.5 and 8.5 scenarios 
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Figure 7.5: Monthly Tmin variability over different regions under RCP4.5 and 8.5 scenario
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The general agreement among the climate simulations projects towards a warmer world 

during the 21st century (IPCC, 2014b; Meehl et al., 2007) and hence, an increase in the PET 

can be expected as it is driven by the temperature. The projected PET over the study area is 

presented in Figure 7.6. It can be noted from the figure that there is no significant variation in 

MMM of monthly PET between the two scenarios over all the regions. However, an increase 

in the PET is projected during the months from January to April over Amaravati, Aurangabad, 

Nagpur, and Nashik with T1<T2<T3. The projected increase in the evaporative demand does 

not necessarily intensify the drought properties over the region (Spinoni et al., 2019). 

However, the collective influence of both precipitation and PET will control the 

characteristics and properties of drought. 

7.4.3 Drought properties & its projection during the 21st century 

7.4.3.1 SPEI drought frequency 

In the present study, the drought frequency is computed for severe and extreme drought 

conditions. Figure 7.7 represents the SPEI drought frequency over different regions under 

RCP4.5 and 8.5 scenarios for short-term scale. The grouped box plot is developed to make the 

comparison of drought frequency between severe and extreme drought classes. The boxplot 

represents the MMM of all the nineteen GCMs over the grid points for a particular region. It 

should be noted that the number of grid points are different for each region. In particular, 

Amaravati, Aurangabad, Konkan, Nagpur, Nashik, and Pune include 25, 35, 17, 18, 30, and 

29 grid points, respectively. The summation of all the individual grid points is greater than the 

total number of grid points inside the Maharashtra as the inside regions share the common 

boundary with other regions.  

To analyse the temporal variability, three segments (T1, T2, and T3) of the future period are 

compared with the historical (T0). The change in the drought frequency is computed based on 

percentage change in the mean. It is projected that for all the future segments and all the 

regions, the drought frequency for extreme drought condition is likely to increase under 

RCP4.5 and 8.5. For instance, the percentage increase over Amaravati varies from 46 to 92% 

in RCP4.5 and 38 to 115% in RCP8.5, over Aurangabad  20 to 53% in RCP4.5 and 13 to 80% 

in RCP8.5, over Konkan 42 to 50% in RCP4.5 and 7 to 71% in RCP8.5, over Nagpur 50 to 

100 % in  RCP4.5 and 42 to 133% in RCP8.5, over Nashik 53 to 92% in RCP4.5 and 46 to 

115% in RCP8.5, and over Pune 25 to 38% in RCP4.5 and 38 to 63% in RCP8.5 for short-

term drought condition. 
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Figure 7.6: Monthly PET variability over different regions under RCP4.5 and 8.5 scenarios 
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Figure 7.7: Grouped boxplot of historical and future drought frequency over different regions for short-term drought based on SPEI. SD and ED 

refers to Severe Drought and Extreme Drought, respectively



146 
 

Likewise, the percentage change in frequency of severe drought is likely to increase under 

both the scenarios over most of the regions except Pune and Konkan region. For instance, 

over Amaravati 33 to 40% in RCP4.5 and 26 to 33% in RCP8.5 and over Nashik, the 

percentage increase varies from 5 to 15% in RCP4.5 and 5 to 11% in RCP 8.5, among others.  

Similarly, the spatio-temporal variability of drought frequency over different regions under 

RCP4.5 and 8.5 scenarios for long-term scale is presented in Figure 7.8. It is noticed that the 

percentage change of severe drought frequency is likely to either decrease or remain 

insignificant with respect to T0 under both the scenarios over all the regions. Similarly, the 

percentage change of extreme drought is projected to increase or remain unchanged no change 

as compared to T0 under both the scenarios except over Aurangabad (during T1 in RCP8.5). 

The highest positive change is noticed over Konkan, i.e., 100 to 150% in RCP4.5 and 50 to 

150% in RCP8.5. 

7.4.3.2 SPI drought frequency 

Figure 7.9 represents the SPI drought frequency over different regions under RCP4.5 and 8.5 

scenarios for short-term scale. It is projected that for all the future segments (except T3 in 

RCP4.5 over Aurangabad) and all the regions the drought frequency for severe drought 

condition is likely to increase under RCP4.5 and 8.5. For instance, the percentage increase 

over Amaravati varies from 11 to 33% in RCP4.5 and 22 to 33% in RCP8.5, over Konkan 

25% in RCP4.5 and 25 to 37% in RCP8.5, over Nagpur 9 to 18 % in both RCP4.5 and 8.5, 

over Nashik 12.5% in RCP4.5 and 12.5 to 25% in RCP8.5, and over Pune 10 to 20% in 

RCP4.5 and 20 to 30% in RCP8.5 for short-term drought condition. Likewise, the percentage 

change in frequency of extreme drought is likely to increase under both the scenarios over all 

the regions with a significantly larger magnitude than severe drought in short-term drought 

condition. For instance, over Nagpur and Nashik the percentage increase in RCP4.5 and 8.5 

varies between 100 to 120%, and 100 to 140%, respectively, among others.   Similarly, the 

spatio-temporal variability of drought frequency over different regions under RCP4.5 and 8.5 

scenarios for long-term scale is presented in Figure 7.10. It is noticed that except over 

Amaravati (during T1 in RCP4.5) and Konkan (during T1 and T2 in RCP4.5 and T1 in 

RCP8.5), the percentage change of severe drought frequency is likely to decrease or no 

significant change with respect to T0 under both the scenarios. Likewise, the percentage 

change of extreme drought is projected to increase or no change as compared to T0 under  
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Figure 7.8: Grouped boxplot of historical and future drought frequency over different regions for long-term drought based on SPEI.  
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Figure 7.9: Grouped boxplot of historical and future drought frequency over different regions for short-term drought based on SPI 
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Figure 7.10: Grouped boxplot of historical and future drought frequency over different regions for long-term drought based on SPI
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both the scenarios except over Aurangabad (during T3 in RCP4.5), over Pune (during T3 in 

RCP4.5), and over Pune (during T3 in RCP8.5). The highest positive change is noticed over 

Konkan, i.e., 100 to 200% in RCP4.5 and 8.5. 

7.4.3.3 SPEI drought severity 

The MMM of all the climate models over the grid points is plotted in the form of boxplot and 

depicted under Figure 7.11. It is observed from the figure that during short-term scale drought 

the severity over Amaravati (42 to127% in RCP4.5 and 39 to 218% in RCP8.5), Aurangabad 

(19 to 100% in RCP4.5 and 20 to 172% in RCP8.5), Konkan (44 to 61% in RCP4.5 and 4 to 

112% in RCP8.5), Nagpur (35 to 95% in RCP4.5 and 32 to 180% in RCP8.5), Nashik (46 to 

155% in RCP4.5 and 53 to 257% in RCP8.5), and Pune (32 to 51% in RCP4.5 and 28 to 93% 

in RCP8.5) is likely to increase during 21st century over both the scenarios. The percentage 

change is computed for the change in mean (from the boxplot) between historical and future 

segments. Similarly, percentage change of severity as compared to T0 is observed for long-

term scale drought over Amaravati (up to 53% in RCP4.5 and up to 60% in RCP8.5), 

Aurangabad (up to 20% in RCP4.5 and 46% in RCP8.5), Konkan (2% in RCP4.5 and up to 

78% in RCP8.5), Nagpur (up to 33% in RCP4.5 and 24% in RCP8.5), Nashik (up to 33% in 

RCP4.5 and up to 90% in RCP8.5). However, during long-term scale, the projected change 

with respect to T0 is likely to decrease during T1 and T2 in RCP8.5 over Pune (-9 to -26%), 

during T2 in RCP8.5 over Konkan (-5%) and Nagpur (-3%). 

7.4.3.4 SPI drought severity 

The MMM of all the climate models over the grid points is plotted in the form of boxplot and 

depicted under Figure 7.12. The grouped boxplot for each region is plotted to present the 

average severity between RCP4.5 and 8.5. It is observed from the figure that during short-

term scale drought the severity over Amaravati (8 to16% in RCP4.5 and 12 to 28% in 

RCP8.5), Konkan (32 to 44% in RCP4.5 and 29 to 64% in RCP8.5), Nagpur (17 to 24% in 

RCP4.5 and 19 to 40% in RCP8.5), Nashik (16 to 18% in RCP4.5 and 16 to 38% in RCP8.5), 

and Pune (10 to 15% in RCP4.5 and 8 to 28% in RCP8.5) is likely to increase during 21st 

century over both the scenarios. The percentage change is computed for the change in mean 

(from the boxplot) between historical and future segments. However, over Aurangabad, the 

severity is projected to increase (7 to 25%) only in RCP8.5 scenario. Similarly, decreasing or 

not significant change of severity as compared to T0 is observed for long-term scale drought  
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Figure 7.11: Grouped boxplot of historical and future drought severity over different regions under RCP4.5 and 8.5 scenarios. The upper panel 

presents short-term drought and the lower one presents long-term drought based on SPEI 
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Figure 7.12: Grouped boxplot of historical and future drought severity over different regions under RCP4.5 and 8.5 scenarios. The upper panel 

presents short-term drought and the lower one presents long-term drought based on SPI
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over Aurangabad (up to -17% in RCP4.5), Konkan (-8 to -22% in RCP4.5 and T1 (-9%), T2 

(-20%) in RCP8.5), Nagpur (T2 (-14%) and T3 (-9%) in RCP4.5 and T2 (-13%) in RCP8.5), 

and Pune (-21 to -38% in RCP4.5 and T1 (-18%) and T2 (-37%) for RCP8.5). However, 

during long-term scale, the projected change with respect to T0 is likely to increase during T3 

in RCP8.5 over Aurangabad (53%), Konkan (127%), Nashik (97%), Pune (67%) and under 

both the scenarios over Amaravati (20 to 45% in RCP4.5 and 19 to 63% in RCP8.5). In most 

of the cases, the increase in the severity under RCP8.5 is more than RCP4.5 for both the 

drought scales. In addition, the lower level or minimum value of severity has increased 

significantly over all the regions in short-term scale and over all the regions except for Pune 

in long-term scale under RCP4.5 and RCP8.5 (except for T3). 

7.4.3.5 SPEI drought duration 

Figure 7.13 presents the average drought duration of MMM over different regions for short- 

and long-term drought conditions and different scenarios in the form of a grouped boxplot. It 

is observed from the figure that the variability of drought duration is projected to increase 

significantly in future for short-term drought. Precisely, the minimum value of duration is 

likely to increase significantly as compared to the historical period. The percentage change is 

computed over all the region with respect to the mean value. The highest percentage increase 

in the drought duration (i.e., 63%) is observed over Nashik in RCP8.5 followed by 52% over 

Amaravati in RCP8.5. No significant change is observed during T1 over Konkan in RCP4.5 

and over Konkan and Pune in RCP8.5. While considering the long-term scale drought 

condition, the projected change in the drought duration for different regions and two scenarios 

are as follows. Amaravati and Nashik have shown an increase in the percentage of drought 

duration for all the time periods in RCP4.5 and RCP8.5. However, the percentage decrease in 

the drought duration is noticed over Pune under both the scenarios, over Konkan in RCP4.5, 

and over Nashik in RCP8.5. No significant change is noticed over Aurangabad under RCP4.5 

scenario. 

7.4.3.6 SPI drought duration 

Figure 7.14 presents the average drought duration of MMM over different regions for short- 

and long-term drought conditions and different scenarios in the form of grouped boxplot. It is 

observed from the figure that the variability of drought duration is projected to decrease 

significantly in future. Precisely, the minimum value of duration is likely to increase 

significantly as compared to the historical period. The percentage change is computed over  
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Figure 7.13: Grouped boxplot of historical and future drought duration over different regions under RCP4.5 and 8.5 scenarios. The upper panel 

presents short-term drought and the lower one presents long-term drought based on SPEI 
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Figure 7.14: Grouped boxplot of historical and future drought duration over different regions under RCP4.5 and 8.5 scenarios. The upper panel 

presents short-term drought and the lower one presents long-term drought based on SPI 
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all the region with respect to the mean value. Over Amaravati, Aurangabad, Nagpur, Nashik, 

and Pune the change in the drought duration with respect to historical is not significant for the 

short-term drought condition in RCP4.5 and in RCP8.5. In addition, there is an increase in the 

drought duration of 12% and 10% during T3 in RCP8.5 over Nagpur and Nashik, 

respectively. However, in Konkan, the drought duration for short-term drought condition is 

likely to increase 15 to 21% in RCP4.5 and 10 to 24% in RCP8.5. While considering the long-

term scale drought condition, the projected change in the drought duration for different 

regions and two scenarios are as follows. T2 and T3 over Amaravati have no significant 

change in both the scenarios; however, 18% and 22% increase is projected during T1 in 

RCP4.5 and RCP 8.5, respectively. Except Amaravati, the change in the drought duration is 

likely to decrease or exhibits no significant change over all other regions for both the RCP 

scenarios. For example, the percentage decrease over Konkan and Pune is expected in the 

range of -25 to -30% and -28 to 41%, respectively under RCP4.5 and -7 to -31% and -10 to -

41%, respectively under RCP8.5. 

7.4.3.7 SPEI drought peak 

The MMM of average drought peak over most of the regions is projected to increase under 

both the scenarios (Figure 7.15) during short and long-term drought conditions. It should be 

noted that the absolute value of peak is presented in the grouped boxplot. Precisely, for short-

term drought condition, the peak over Amaravati (30 to 95% in RCP4.5 and 30 to 141% in 

RCP8.5), Aurangabad (14 to 75% in RCP4.5 and 16 to 119% in RCP8.5), Konkan (3 to 52% 

in RCP4.5 and 9 to 90% in RCP8.5), Nagpur (33 to 88% in RCP4.5 and 33 to 136% in 

RCP8.5), Nashik (29 to 105% in RCP4.5 and 33 to 156% in RCP8.5), and Pune (up to 52% in 

RCP4.5 and 2 to 92% in RCP8.5) is projected to increase during the 21st century. Similarly, 

for long-term drought condition, the peak over Amaravati (26 to 33 % in RCP4.5 and 28 to 

34% in RCP8.5), Aurangabad (15 to 17% in RCP4.5 and 17 to 22% in RCP8.5), Konkan (19 

to 21% in RCP4.5 and 18 to 38% in RCP8.5), Nagpur (19 to 33% in RCP4.5 and 20 to 37% in 

RCP8.5), Nashik (18 to 23% in RCP4.5 and 23 to 35% in RCP8.5), and Pune (4 to 7% in 

RCP4.5 and 1 to 13% in RCP8.5) is likely to increase. In addition, the increase in case of 

RCP8.5 is larger than RCP4.5 for both the drought conditions.
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Figure 7.15: Grouped boxplot of historical and future drought peak over different regions under RCP4.5 and 8.5 scenarios. The upper panel 

presents short-term drought and the lower one presents long-term drought based on SPEI 
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Figure 7.16: Grouped boxplot of historical and future drought peak over different regions under RCP4.5 and 8.5 scenarios. The upper panel 

presents short-term drought and the lower one presents long-term drought based on SPI 
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7.4.3.8 SPI drought peak 

The MMM of average drought peak over most of the regions is projected to increase under 

both the scenarios (Figure 7.16) during short and long-term drought conditions. It should be 

noted that the absolute value of peak is presented in the grouped boxplot. Precisely, for short-

term drought condition, the peak over Amaravati (14 to 16% in RCP4.5 and 16 to 24% in 

RCP8.5), Aurangabad (11% in RCP4.5 and 14 to 21% in RCP8.5), Konkan (18 to 25% in 

RCP4.5 and 19 to 33% in RCP8.5), Nagpur (18 to 22% in RCP4.5 and 20 to 31% in RCP8.5), 

Nashik (15 to 17% in RCP4.5 and 17 to 27% in RCP8.5), and Pune (13 to 18% in RCP4.5 and 

15 to 24% in RCP8.5) is projected to increase during 21st century. Similarly for long-term 

drought condition, the peak over Amaravati (19 to 26 % in RCP4.5 and 16 to 27% in 

RCP8.5), Aurangabad (4 to 10% in RCP4.5 and 6 to 14% in RCP8.5), Konkan (7 to 11% in 

RCP4.5 and 6 to 30% in RCP8.5), Nagpur (10 to 21% in RCP4.5 and 10 to 25% in RCP8.5), 

Nashik (7 to 10% in RCP4.5 and 10 to 20% in RCP8.5), and Pune (12% during T3 in 

RCP8.5) is likely to increase. In addition, the increase in case of RCP8.5 is larger than 

RCP4.5 for both the drought conditions. 

7.4.3.9 SPEI drought areal spread 

The areal spread is calculated for each month considering the number of grid points under the 

classification of extreme drought and their summation in terms of area. Subsequently, the 

computed area is divided by the total area to find out the fraction of area affected. An 

empirical cumulative distribution function (ECDF) is computed for each GCM, and the mean 

ECDF of all the GCMs is plotted against the historical period to examine the change in the 

monthly areal spread. Figure 7.17 presents the monthly spatial extent of extreme drought for 

short-term drought under both scenarios.  

It is evident from the figure that the monthly spatial extent of extreme drought is projected to 

increase with respect to historical over all the regions. Similarly, the monthly spatial extent of 

extreme drought is likely to increase for long-term drought (except for Pune) as well (Figure 

7.18). In particular, under short-term drought, the areal spread over Amaravati (61 to 150% in 

RCP4.5 and 54 to 223% in RCP8.5), Aurangabad (17 to 94% in RCP4.5 and 17 to 152% in 

RCP8.5), Konkan (3 to 98% in RCP4.5 and 11 to 158% in RCP8.5), Nagpur (60 to 143% in 

RCP4.5 and 45 to 243% in RCP8.5), Nashik (137 to 300% in RCP4.5 and 144 to 419% in  

RCP8.5), and Pune (5 to 69% in RCP4.5 and 49 to 111% in RCP8.5) is projected to  
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Figure 7.17: The mean ECDF of monthly spatial extent of extreme drought during T1, T2, and T3 over different regions for short-term drought 

based on SPEI 
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Figure 7.18: The mean ECDF of monthly spatial extent of extreme drought during T1, T2, and T3 over different regions for long-term drought 

based on SPEI
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increase during the 21st century. Similarly, for long-term drought, over Amaravati (50 to 

131% in RCP4.5 and 64 to 118% in RCP8.5), Aurangabad (1 to 24% during T1 & T2 in 

RCP4.5 and 12 to 46% in RCP8.5), Konkan (27 to 70% in RCP4.5 and 46 to 103% in 

RCP8.5), Nagpur (1 to 110% in RCP4.5 and 11 to 54% in RCP8.5), and Nashik (113 to 146% 

in RCP4.5 and 174 to 275% in RCP8.5) the areal spread of extreme drought is likely to 

increase. 

7.4.3.10 SPI drought areal spread 

Figure 7.19 presents the monthly spatial extent of extreme drought for short-term drought 

under both the scenarios. It is evident from the figure that the monthly spatial extent of 

extreme drought is projected to increase with respect to historical over all the regions. There 

is no significant difference among the three future segments and between the two scenarios. 

Similarly, the monthly spatial extent of extreme drought is likely to increase for long-term 

drought as well (Figure 7.20). In particular, under short-term drought, the areal spread over 

Amaravati (73 to 95% in RCP4.5 and 93 to 121% in RCP8.5), Aurangabad (37 to 49% in 

RCP4.5 and 62 to 84% in RCP8.5), Konkan (60 to 90% in RCP4.5 and 59 to 112% in 

RCP8.5), Nagpur (126 to 141% in RCP4.5 and 120 to 165% in RCP8.5), Nashik (100 to 

111% in RCP4.5 and 128 to 151% in RCP8.5), and Pune (95 to 104% in RCP4.5 and 98 to 

131% in RCP8.5) is projected to increase during 21st century. Similarly, for long-term 

drought, over Amaravati (43 to 204% in RCP4.5 and 96 to 214% in RCP8.5), Aurangabad (9 

to 49% during T1 & T2 in RCP4.5 and 29 to 107% in RCP8.5), Konkan (44 to 167% in 

RCP4.5 and 110 to 177% in RCP8.5), Nagpur (7 to 169% in RCP4.5 and 28 to 109% in 

RCP8.5), Nashik (23 to 97% in RCP4.5 and 112 to 199% in RCP8.5), and Pune (8%  during 

T1 in RCP4.5 and 7% during T1 in RCP8.5) the areal spread of extreme drought is likely to 

increase. Conversely, during T2 and T3, the areal spread of drought is projected to decrease 

over Pune under both the scenarios and over Aurangabad during T3 under RCP4.5 scenario 

only. 

7.4.4 Temperature and its implications on meteorological drought 

In the present study, the influence of temperature on meteorological drought is examined 

through the SPEI drought index. Although the comparison between SPI and SPEI is available 

in the literature based on GCM and Regional Climate Model (RCM) outputs (Spinoni et al., 

2019; Touma et al., 2015); however, no corresponding detailed study is available that  
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Figure 7.19: The mean ECDF of monthly spatial extent of extreme drought during T1, T2, and T3 over different regions for short-term drought 

based on SPI 
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Figure 7.20: The mean ECDF of monthly spatial extent of extreme drought during T1, T2, and T3 over different regions for long-term drought 

based on SPI
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incorporates the projections from the NEX-GDDP experiments. Past analysis reveals that the 

increase in the drying tendency (i.e., increase in evapotranspiration) outweighs the increase in 

wetting tendency (i.e., increase in the rainfall). Therefore, the future projections of drought 

are likely to vary between the index that considers only precipitation and the index which 

involves both precipitation and evapotranspiration (and hence temperature).  

In order to examine the influence of temperature on meteorological drought, the difference in 

percentage (in fraction) of different drought properties between SPEI and SPI is carried out.  

Initially, the percentage of each drought properties with respect to the historical period is 

computed for both SPI and SPEI over all the divisions and time scale. Then, the percentage 

change in the case of SPEI is subtracted from the percentage change in the case of SPI. Here, 

the assumption is that subtracting the influence of precipitation from the combine influence of 

precipitation and temperature may provide an implication of temperature influence on 

meteorological drought. Figure 7.21 presents the percentage difference (in fraction) of 

different drought properties between SPEI and SPI. In other words, it represents the change in 

the percentage of different drought properties as the inclusion of temperature.  

 

Figure 7.21: Percentage difference (in fraction) of different drought properties between SPEI 

and SPI. It represents the increase or decrease in the drought properties in SPEI with respect 

to SPI 
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In the figure, for instance, T1_3_45 defines the 3-month drought condition during T1 under 

RCP4.5 scenarios. It can be noted from the figure that over most of the regions and future 

time segments under both the scenarios, the percentage increase in drought properties like 

severity, duration and peak is more in case of SPEI than SPI for short and long-term drought 

conditions. In case of extreme drought frequency, the percentage change in the short-term 

drought condition decreases in SPEI than SPI in most of the cases. However, in long-term 

drought condition, the percentage change in extreme drought frequency increases in SPEI in 

most of the cases. A similar kind of pattern is noticed in case of severe drought frequency. In 

addition, over the Konkan, the decrease in percentage in case of SPEI as compared to SPI is 

observed over all the future time segments, under both the scenarios and in both drought 

conditions. In the case of areal spread of extreme drought condition based on SPEI, the 

decrease in the percentage is noticed over Amaravati, Aurangabad, Konkan, and Nagpur in 

long-term drought condition. The highest decrease is observed in the case of Pune during 

short-term drought condition. 

7.4.5 Identification of hotspot regions 

The identification of meteorological hotspots during the 21st century based on SPI and SPEI 

enables the agricultural and water resources planners to devise proper adaptation strategies 

during different climate change scenarios. To demarcate the hotspot regions, ±5% change in 

the drought properties with respect mean is considered as significant. It should be noted that 

there is no specific thumb rule to select the threshold to determine the significance. Here, ±5% 

is chosen to remain at a safe side in the rapidly changing climate scenarios. Four different 

drought properties such as extreme drought frequency, severity, peak, and extreme drought 

areal spread are considered to identify the hotspot zones.  

The conditions based on which the hotspot is classified as follows, symbol “++++” defines a 

significant increase in all the four drought properties. The sign “+” (“-”) denotes significant 

increase (decrease) in three drought properties out of four in SPEI and SPI. The “=” sign 

refers there is no significant change in the drought properties. The worst condition, which is 

used to identify the hotspot, is coloured with dark red and suggests “++++” conditions in both 

SPEI and SPI. The red colour represents “+” condition in both SPEI and SPI. The 

combination of conditions such as “+” in SPEI and “=” in SPI, “=” in both SPEI and SPI, and 

“=” in SPEI and “-” in SPI are denoted by pink, white, and blue, respectively. Though there 

may exist a larger number of alternatives based on different combination of conditions, the 
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present analysis considers the combinations that are observed over the study area. It should be 

noted that if at one drought index the condition is “++++” and for the other the condition is 

“=” or “-” then that particular region is demarcated as dashed line. The combination like 

“++++” and “+” is not observed over any region. Figure 7.22 presents the different 

combinations, as discussed above. 

  

Figure 7.22: Identification of drought hotspots over Maharashtra for short- (two columns from 

left) and long- (two columns from right) term drought conditions 

It is evident from the figure that for short-term drought (four columns from left) condition, 

during T2 and T3, all the regions are expected to fall in the hotspot category under both the 

RCP scenarios. However, during T1, except Konkan and Pune, all other regions come under 

hotspot category. The picture for long-term drought (four columns from right) condition is 

quite different from the short-term. During T1 and RCP4.5 (RCP8.5), Amaravati, Nagpur, and 

Nashik (Amaravati, and Nashik) are likely to come under hotspot. No hotspot region is 

identified during T2 for both the scenarios and T3 in RCP4.5. However, Konkan and Nagpur 

are identified under hotspot classification during T3 under RCP8.5. The less frequent and 

severe drought event regions are noticed in long-term drought condition. For instance, Pune 

during T1 for both the scenarios, Pune and Aurangabad (during T2 in RCP4.5), Pune and 

Nagpur (during T2 in RCP8.5), Pune, Amaravati, and Nagpur (during T3 in RCP4.5), and 

Pune (during T3 in RCP8.5). Moreover, for SPEI, the unrecorded past extreme events are 
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likely to be noticed in future and not in case of SPI. In this sense, excluding temperature from 

the computation of meteorological drought could mislead the outcomes. 

7.5 Discussion and summary 

Concurrent increase or decrease of future hydro-meteorological variables makes it 

cumbersome to understand the regional future meteorological droughts characteristics. Hence, 

the role of climate variables in modulating drought attributes at regional scale impose needs to 

be examined. The present study makes an attempt to answer the three important questions in 

terms of future meteorological drought characteristics and drought hotspot identification using 

different drought indices and outputs from the nineteen NEX-GDDP simulations. 

The monthly precipitation and temperature are expected to increase in the future climate 

change scenarios with more increase evident in case of RCP8.5 than RCP4.5. Therefore, in a 

broader sense, the projected climatology over Maharashtra is likely to be wetting and 

warming during the 21st century. The present findings are similar to those obtained by TERI 

(2014). The increase in temperature and precipitation over the study area can be attributed to 

the increasing rate of global warming (Yaduvanshi et al., 2019). In addition, the compounding 

changes in the season precipitation and temperature will affect the water availability 

(Konapala et al., 2020). In particular, the spatio-temporal variability of precipitation and 

temperature may alter the surface hydraulic conditions and can cause a shift in water balance 

over and under the ground (Sapriza-Azuri et al., 2015). 

The future projections of different drought properties are likely to increase mostly for the 

short-term drought condition. However, the drought properties like peak and areal spread are 

expected to increase for both short and long-term drought conditions. In addition, the 

frequency of severe and extreme drought is projected to increase under short-term drought 

condition. The present findings are in line with those obtained by Gupta and Jain (2018), 

Bisht et al. (2019) using various sets of global climate model datasets. The increase in the 

temperature leads to enhance the atmospheric water demand in the regions and subsequently, 

is likely to increase the drought frequency (Aadhar and Mishra, 2018; Greve et al., 2014). 

Therefore, in order to formulate the resilient adaptation strategies and policies to combat the 

future drought events, special attention should be given to the overall development of the 

farming community (P. Udmale et al., 2014). 
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The comparative analysis between the SPI and SPEI demonstrates the significant importance 

of temperature in modulating the future drought events (Ahmadalipour et al., 2017; Spinoni et 

al., 2020). In the present study, the drought properties like severity, duration, and peak are 

expected to increase more in case of SPEI as compared to SPI over most of the regions. 

Though the precipitation amount is likely to increase in the future, it does not confirm the 

decrease in the drought properties as atmospheric water demand is expected to increase in 

future warming climate (Roderick et al., 2015; Scheff and Frierson, 2015; W. Y. Wu et al., 

2020). Moreover, the present findings suggest that agriculture over the regions can be affected 

due to the crop sensitivity to evapotranspiration (Jensen and Allen, 2016; Tabari and 

Hosseinzadeh Talaee, 2014). However, the long-scale water availability can be less impacted 

as it primarily depends on precipitation.  

From the present analysis. It is found that for short-term drought condition all the regions are 

identified as meteorological drought hotspots during 2022-2047 (except Konkan and Pune), 

2048-2073, and 2074-2099. However, the number of hotspot regions decreases in long-term 

drought condition as compared to short-term drought condition. For instance, during 2022-

2047 and RCP4.5 (RCP8.5), Amaravati, Nagpur, and Nashik (Amaravati, and Nashik) are 

likely to come under hotspot category. Konkan and Nagpur are identified under hotspot 

classification during 2074-2099 under RCP8.5. In this sense, effective and sustainable 

preparedness is needed to alleviate the drought risk in the future climate change scenario. In 

addition, policy makers should consider the regional drought vulnerabilities while formulating 

policies (Gupta and Jain, 2018). In this regard, key recommendation could be the conservation 

and enhancement of water storage, groundwater recharge to improve the water use efficiency.  

In summary, the significant findings from the present analysis point to the fact that with the 

increase in the monthly mean temperature and precipitation (more in case of RCP8.5 than 

RCP4.5), Maharashtra is likely to be wetting and warming during the 21st century except for 

Konkan region as compared to historical. In Konkan region, the warmer climatology is likely 

to prevail with no significant change in the monthly precipitation variability. The drought 

properties like peak and areal spread are expected to increase for both short and long-term 

drought conditions in most of the regions. The frequency of severe and extreme droughts is 

likely to increase in the short-term drought condition with no sign of decrease at any time 

segments and regions. Temperature plays an important role in modulating the meteorological 

droughts and the present study notices the same in most of the cases in all the drought 

properties especially in drought severity, duration, and peak. The number of hotspot regions 
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decreases in long-term drought condition as compared to short-term drought condition. With 

increasing drought variability in future, the next chapter deals in developing the seasonal 

Severity-Area-Frequency (SAF) relationship using the future projections from GCMs under 

different scenarios. 
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Chapter 8  
 

Investigating Future Seasonal 

Drought Severity-Area-Frequency 

(SAF) Curve 
 

 

 

8.1 Introduction 

The demand of water has increased profoundly due to population growth and expansion of 

agricultural and industrial sectors. On the other hand, the dual pressure of climate change and 

its spatio-temporal variability has contributed to water scarcity. The recurrent water scarcity is 

likely to influence the economic and human development, and natural hazards with increased 

severity can aggravate the situation (Amarasinghe et al., 2020). The modulation in the various 

extreme weather events, as a result of changing climatic conditions, influences the frequency 

and severity of different natural hazards (e.g., drought, flood, among others).  



172 
 

At least once every three years, India is negatively impacted by drought conditions and 

considered amongst the most vulnerable and drought-prone countries in the world (A.K. 

Mishra and Singh, 2010; Mishra et al., 2019). In recent times, prolonged and widespread 

drought condition with increased frequency has been observed over India (A.K. Mishra and 

Singh, 2010; Sharma and Goyal, 2020). Hence, it is well understood that drought is likely to 

affect the overall economy of the country under the climate sensitive economic sectors in 

India (Shah and Mishra, 2020; P. Udmale et al., 2014). With this understanding, projection of 

future drought at short- and long-term scales enable to formulate improved management 

practices i.e., water harvesting schemes, land management practices, drought resistant 

technologies, groundwater management practices, crop and livestock insurance etc. in order to 

tackle with the adverse consequences of future drought events. General Circulation Models 

(GCMs) are considered as credible tools in simulating long-term climate projections under 

different climate change scenarios (Her et al., 2019; Mishra and Singh, 2009; Shivam et al., 

2017). In general, GCMs are modelled mathematically by considering the physical processes 

across ocean, land and atmosphere (Sachindra et al., 2013).  

However, initial parametrisation, formulation, model structure, and input data used for 

development of GCMs can impose uncertainty in the final climate projections (Khan et al., 

2020; Mishra et al., 2014b). Likewise, the uncertainty associated with the future climatic 

scenarios can be attributed to incomplete understanding and unpredictability about the 

foreseen climate (New and Hulme, 2000). Thus, in order to devise sustainable planning and 

decision- making, the practitioners should consider the uncertainty for future climate 

scenarios (Höllermann and Evers, 2017). With this understanding, previous studies used 

different techniques but are not limited to sensitivity analysis (Mearns et al., 1996), Monte 

Carlo simulation (Shackley et al., 1998), reliability ensemble averaging (Giorgi and Mearns, 

2003), imprecise probability (Ghosh and Mujumdar, 2009), Fuzzy uncertainty analysis 

(Najafi and Hessami Kermani, 2017), Bayesian analysis (Das and Umamahesh, 2018). In the 

present study, in order to quantify the GCM and scenario uncertainty, possibility theory is 

used. The possibility theory assigns the possibility distribution based on the ability of GCMs 

and emission scenarios to model the recent past under climate forcing. The possibility 

approach is computationally inexpensive, straightforward, and useful in addressing partially 

inconsistent knowledge and linguistic information based on intuitions (Mujumdar and Ghosh, 

2008). 
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The past records of different drought indices show increased aridity over many land areas 

since 1950 (Dai, 2011b). Moreover, the drought risk is likely to increase in the twenty-first 

century as suggested by different studies (Burke and Brown, 2008; Rind et al., 1990; Spinoni 

et al., 2019). Thus, it is necessary to incorporate different drought characteristics in order to 

evaluate the changes in drought events properly. For example, Severity-Area-Frequency 

(SAF) relationship curve can be used for providing quantitative information about drought 

through characterising various attributes of drought like return period, areal extent and 

severity (Henriques and Santos, 1999). Therefore, SAF relationship has been used to 

understand the nature of spatio-temporal characteristics of drought at regional scale. For 

example, Reddy and Ganguli (2013) used SAF analysis to understand the drought 

characteristics over western Rajasthan (India); recurrence pattern of meteorological drought 

severity was carried out using SAF curve in the upper Blue Nile river region (Khadr, 2017); 

SAF was used to perform the regional analysis of drought in Lake Urmia basin, Iran 

(Amirataee et al., 2018) and Heihe River basin (China) (Z. Li et al., 2020). However, most of 

the SAF analysis studies are executed for the historical time period. Thus, the present study 

focuses on the possible future variability in the seasonal SAF curve ascertaining the 

uncertainties associated with GCMs and scenarios.  

The purpose of this study is to develop seasonal (pre-monsoon, monsoon, post-monsoon, 

Rabi, and Kharif) SAF curve under meteorological drought condition over the study area. In 

addition, the study aims to make the future projection of the seasonal SAF curve ascertaining 

the uncertainty associated with GCMs and scenarios. The SPEI drought index is used as an 

indicator of meteorological drought. In order to project for the future time period, nineteen 

different GCMs under two different Representative Concentration Pathways (RCPs) 4.5 and 

8.5 are chosen. Maharashtra, as a drought-prone state is selected to perform the analysis. To 

the best of the authors’ knowledge, no such multifaceted investigation of drought has been 

carried out over Maharashtra. It is expected that the outcomes from the present study can be 

helpful in drought risk mitigation planning over the study area.  
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8.2 Methodology 

8.2.1 Possibility theory for uncertainty analysis  

In order to facilitate the risk-based studies on future hydrologic extremes, modelling of GCM 

and scenario uncertainty plays an important role. In the present climate change scenario, it is 

relevant to evaluate the usefulness of GCMs in modelling climate change impact and to 

analyse the ability of scenario to represent the present situation. In this sense, possibility 

distribution is used to analyse the GCM and scenario uncertainties based on the performance 

in capturing the climate change signals during the recent past. Zadeh (1999) proposed the 

possibility theory to address inconsistent knowledge and incomplete information (Dubois, 

2006). In the present study, the possibility theory is based on the ability of GCM and scenario 

to simulate the SPEI value at 3-, 4-, and 6-month scales during recent past i.e., T0. Being a 

measure of how well a GCM with a particular scenario predicts the SPEI values during T0, 

the Nash-Sutcliffe Efficiency (NSE) is used which provides a measure of possibility value. 

Unlike the probability, possibility is primarily ordinal and is not associated with frequency of 

experiments (Mujumdar and Ghosh 2008). The possibility theory postulates that if a variable 

X in the universe Ω is not possible to estimate precisely, then the possibility that X can take 

the value x can be expressed mathematically as (Spott, 1999) 

( ) : [0,1]X x →
                                                                                                                 (8.1) 

where, ( )X x  = 1 ( ( )X x  = 0) suggests that X = x is possible (impossible) without any 

restriction. The property of possibility distribution defines that there must be at least one x  

such that ( )X x  = 1 and this property is known as normalization (Spott 1999). The 

uncertainty analysis is carried out at each grid point under 3-, 4-, 6-month scales to access the 

GCM and scenario uncertainties. In order to satisfy the normalization property, the results 

obtained from NSE for nineteen GCMs and two scenarios are divided by the maximum NSE 

value and the normalized value is considered as the possibility value for a corresponding 

GCM and scenario.  



175 
 

8.2.2 Formulation of SAF curves for Seasonal Droughts 

The SAF relationship is commonly used to visualize and interpret the drought at regional 

scale. The SAF curve defines the cumulative drought affected areas for the chosen severity 

level under different return periods. Therefore, it enables to provide quick and effective 

interpretation of drought condition in order to take sustainable mitigation measures 

(Bonaccorso et al., 2015).  In this study, the seasons: pre-monsoon, monsoon, post-monsoon, 

Rabi and Kharif are considered for seasonal drought analysis.  

It should be noted that the calculation is carried out after performing the GCM and scenario 

uncertainty. The following steps are employed to derive the SAF curve over the study area: (i) 

SPEI drought indicator is computed for 3-, 4- and 6-month time scales, where 3-month time 

scale for pre-monsoon, post-monsoon season, 4-month time scale for monsoon and kharif 

season, and 6-month time scale for rabi season, (ii) the drought indicator value less than zero 

is taken into consideration for the further analysis, (iii) the frequency analysis is carried out by 

considering the non-zero values using extreme value, normal, exponential, gamma, 

lognormal, and Weibull distributions at each grid point for different drought time scale, (iv) 

the severity as return levels for different return periods such as 5, 10, 25, 50, and 100 are 

computed using the statistical parameter estimated for the corresponding grid point and 

suitable distribution, (v) the spatial extent of drought occurrence is computed in terms of 

percentage of area for different threshold values of drought severity, (vi) finally, the values of 

severity, areal extent, and frequency are linked to construct the SAF curve. 

It is worth mentioning that the analysis is carried out over each division. Initially, the weight 

of each grid point corresponding to any division shapefile is computed. The weight defines 

the percentage of grid area fall within the division shapefile. For example, if the weight value 

of a grid is 0.7 (1), then 70% of the grid area (complete grid) comes inside the shapefile. The 

computation for all the divisions is performed using “raster” package in R developed by 

Hijmans et al. (2019). The present study considers five different severity values i.e., -1, -1.5, -

2, -2.5, -3 as threshold to calculate the drought-affected area below the threshold severity 

level. Moreover, the threshold severity values are interpolated for the drought-affected area 

using cubic interpolation technique.  

In the present study, drought at 3-, 4-, and 6-month time scales are examined which represent 

short-term to seasonal drought condition. The analysis would be help in identifying the 
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operational definition of drought i.e., from meteorological to hydrological drought. In 

particular, 3- to 4-month scale drought conditions highlight the soil moisture condition that 

would help in guiding the agricultural operation. Similarly, 6-month scale drought condition 

reflects the hydrological condition depending on the region and time of year.  

8.3 Results 

8.3.1 Uncertainty analysis and future projection of meteorological variables 

The performance measure NSE is computed for nineteen GCMs under RCP4.5 and 8.5 

scenarios based on their prediction of SPEI at 3-, 4-, and 6-month time scales in the recent 

past (from 1993 to 2018). The possibility value is computed by dividing the maximum NSE 

value with the NSE value of each model. This operation is carried out for each grid point 

separately. Figure 8.1 presents the distribution of different GCMs and scenarios across the 

study area for 3-month time scale. Figure 8.2 and Figure 8.3 depict the suitable GCM and 

scenario for 4- and 6- month scales, respectively. It can be noted that for 3- month scale, 

RCP4.5 (RCP8.5) scenario is considered as most possible scenario over 54% (46%) of total 

grid points. Similarly, most possible scenario for 4-month time scale (6-month scale) is found 

to be 53% (38%) of total grids for RCP4.5 and 47% (62%) of total grids for RCP8.5. 

 

Figure 8.1: Most suitable GCM/scenario at each grid point for 3-month time scale SPEI after 

uncertainty analysis 
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Figure 8.2: Most suitable GCM/scenario at each grid point for 4-month time scale SPEI after 

uncertainty analysis 

 

Figure 8.3: Most suitable GCM/scenario at each grid point for 6-month time scale SPEI after 

uncertainty analysis 
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Considering the most possible GCM and scenario at each grid point, the spatio-temporal 

variabilities with respect to T0 for different variables such as precipitation, potential 

evapotranspiration, maximum and minimum temperature are computed and plotted. Figure 

8.4 presents the spatio-temporal variability (% change) of precipitation for different seasons 

during T1, T2, and T3 time periods. Similarly, Figure 8.5, Figure 8.6, and Figure 8.7 shows 

the spatio-temporal variability of potential evapotranspiration, maximum and minimum 

temperature, respectively. From Figure 8.4, it can be noted that the precipitation magnitude is 

projected to increase (decrease) in pre-monsoon by 65-79% (21-35%), in monsoon by 83-90% 

(10-17%), in post-monsoon by 18-27% (73-82%), in Kharif by 79-86% (14-21%), in Rabi by 

18-29% (71-82%) of total grid area between T1 and T3. In case of potential 

evapotranspiration, it is projected to increases (decrease) in pre-monsoon by 49-57% (43-

51%), in monsoon by 24-44% (56-76%), in post-monsoon by 50-84% (16-50%), in Kharif by 

50-69% (31-50%), in Rabi by 69-88% (12-31%) of total area during T1 and T3. However, the 

future variability in maximum and minimum temperature is expected to increase over most of 

the gridded area for all the seasons with maximum variability in case of minimum 

temperature. In addition, it is noticed that the magnitude maximum and minimum temperature 

is likely to increase from T1 to T3 as compared to T0.  

8.3.2 Seasonal variability of SPEI under climate change 

Based on the classification of SPEI, moderate, severe, and extreme drought conditions are 

analysed for future periods and compared with T0. Figure 8.8 presents the season-wise 

frequency of different drought conditions across the study area. The red circle in the boxplot 

represents the mean frequency value. It is noted that the frequency of moderate drought 

condition (Top panel of Figure 8.8) is expected to decrease during Kharif, monsoon, and pre-

monsoon seasons as compared to historical period. In case of Rabi season, the mean 

frequency of moderate drought condition is likely to increase during T1 and decrease 

gradually in T2 and T3. The mean frequency of severe drought condition is projected to have 

no significant change in future as compared to T0 during Kharif, monsoon, and pre-monsoon 

seasons. However, it is likely to increase during post-monsoon and Rabi seasons. The future 

projection of extreme drought condition shows an increasing frequency in post-monsoon, pre-

monsoon, and Rabi seasons, while no change is observed during Kharif and monsoon seasons 

as compared to T0. 
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Figure 8.4: Spatio-temporal variability of precipitation (in 

percentage) for different seasons 

 

     Figure 8.5: Spatio-temporal variability of potential 

evapotranspiration (in percentage) for different seasons 
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Figure 8.6: Spatio-temporal variability of maximum temperature (in 

percentage) for different seasons 

 

     Figure 8.7: Spatio-temporal variability of minimum temperature (in 

percentage) for different seasons 
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Figure 8.8: Number of events of different drought conditions such as moderate (upper), severe 

(middle), and extreme (lower) for all the seasons 

8.3.3 Analysis of SAF curve over different regions 

In this section, SAF curves are analysed over Amaravati, Aurangabad, Konkan, Nagpur, 

Nashik, and Pune regions for 5-, 10-, 25-, 50-, and 100-yr return periods in different seasons 

and compared with T0 period. It should be noted that the severity return levels are computed 

using the selected distribution for different return periods. As discussed, five different severity 

values i.e., -1, -1.5, -2, -2.5, -3 are chosen to develop the SAF curve. Here, the results are 

presented separately for different regions.  

8.3.3.1 SAF curve for Amaravati 

Figure 8.9 shows the area affected by different severity levels under different return periods 

during pre-monsoon season over Amaravati region. The top, middle, and bottom panels 

present for T1, T2, and T3 periods, respectively. The black line corresponds to T0 period, red 

line defines future simulation, and dashed red line represents the 95% confidence interval of 

future simulation. During pre-monsoon season, in the case of the 5-year return period, the area 

affected by different severity of drought is likely to increase for all the future time periods as 
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compared to T0. The area affected by the SPEI severity level less than -1.7 (for 10-year), -2.3 

(for 25-year), -2.4 (for 50-year), and -2.9 (for 100-year) is projected to increase during T1, T2, 

and T3 periods over Amaravati region. In case of monsoon season (refer to Figure 8.10 (a)), 

the percentage of area is likely to increase below the SPEI severity level of -1.2 (for 5-year 

during all time periods), -1.3 (for 10-year during T1), -1.4 (for 10-year during T2), -1.5 (for 

10-year during T3), -1.7 (for 25-year during T1), -2.0 (for 25-year during T2), -2.1(for 25-

year during T3), -1.8 (for 50-year during T1), -2.2 (for 50-year during T2 and T3), -1.7 (for 

100-year during T1), -2.3 (for 100-year during T2), and -1.9 (for 100-year during T3). During 

post-monsoon season (refer to Figure 8.10 (b)), the drought affected area is likely to decrease 

during T1 for all the return periods. Similarly, for T2 and T3 periods, the drought area is 

projected to decrease for high return period severity values as compared to T0. In the case of 

Kharif season (refer to Figure 8.10 (c)), the projected drought area is likely to increase over 

more severe drought conditions for all the return periods and future time steps. Most of the 

cases in Rabi season (refer to Figure 8.10 (d)), the projected drought-prone area is likely to 

increase for different severity levels during the 21st century.  

8.3.3.2 SAF curve for Aurangabad 

The SAF curve related to the Aurangabad division is presented in Figure 8.11. Figure 8.11 (a) 

describes the SAF curve for pre-monsoon season. It can be noted that for more severe drought 

condition, the percentage of affected area is likely to increase for all return periods and future 

time steps as compared to T0. For 50- and 100- year return periods, the entire area is projected 

to affect by the drought severity between -1.5 and -1. The SAF curve for monsoon season is 

presented in Figure 8.11 (b). For the future time period T2, for most of the return periods, it is 

observed that the projected drought-affected area for different severity levels is likely to 

decrease. In the case of T1 period, for more severe condition the percentage of area is 

expected to increase. For 50- and 100-year return periods, the drought-affected area is reduced 

significantly during T3 as compared to T0. Figure 8.11 (c) and Figure 8.11 (e) present the 

SAF curves for post-monsoon and Rabi seasons. It can be observed that for both the seasons 

that the projected drought areas under different severity levels are expected to increase for all 

return periods and future time steps. However, in the Kharif season (Figure 8.11 (d)), the 

future projected SAF curves under most of the return periods and time steps are likely to be 

less severe than T0. 
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Figure 8.9: SAF curve for pre-monsoon season over Amaravati region. The top, middle, and bottom panels present for T1, T2, and T3 periods, 

respectively. The black line corresponds to T0 period, red line defines future simulation, and dashed red line represents the 95% confidence 

interval 
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Figure 8.10: SAF curve for Amaravati region. (a) for monsoon, (b) for post-monsoon, (c) for Kharif, (d) for Rabi 
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Figure 8.11: SAF curve for Aurangabad region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi
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8.3.3.3 SAF curve for Konkan 

The seasonal SAF curve for the Konkan region is presented in Figure 8.12. Figure 8.12 (a), 

Figure 8.12 (b), Figure 8.12 (c), Figure 8.12 (d), and Figure 8.12 (e) denote pre-monsoon, 

monsoon, post-monsoon, Kharif, and Rabi seasons, respectively. The future projected SAF 

curves are likely to decrease as compared to T0 for most of the return periods in pre-monsoon 

season. During monsoon season, the future drought-prone area may increase for more severe 

drought conditions under high return periods. For the severity level less than -1.8, the 

drought-affected area is likely to increase as compared to T0. In most of the cases, an increase 

in drought-affected area is observed during post-monsoon season. With increase in the return 

period, the area under the drought is likely to decrease in Kharif season. For higher return 

period, the area under the severe drought condition is expected to increase. During Rabi 

season, the SAF curves for 50- and 100- year return periods and all future time steps are 

projected to decrease as compared to T0. In case of T1 time step, the drought-affected area for 

most of the severity levels is likely to reduce. However, the percentage of area under drought 

may increase for the severity level less than -2.0 during T2, and T3 periods under 5- and 10- 

year return periods. 

8.3.3.4 SAF curve for Nagpur 

The SAF curve for the Nagpur region is shown in Figure 8.13. The pre-monsoon SAF curve 

(Figure 8.13 (a)) shows an increase in the percentage drought area in T2 future period. The 

difference between future simulated and observed SAF curve is larger during T3 than T1. 

During Monsoon season (Figure 8.13 (b)), it is observed that 0% area is affected by drought 

for severity level less than -2.5 for 5- and 10- year return periods in future. The future SAF 

curve under 100-year return period during T2 and T3 time steps is likely to decrease as 

compared to T0. In most of the cases the future simulated area under drought is expected to 

decrease in post-monsoon season (Figure 8.13 (c)). In Kharif season (Figure 8.13 (d)), for 

most of the return periods, the percentage area increases (decreases) for high (low) severity 

level as compared to T0. During T1 and T2, the area under drought is projected to decrease 

under 100-year return period. However, the areal drought condition may increase during Rabi 

season under all the return periods in future. 
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Figure 8.12: SAF curve for Konkan region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi 
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Figure 8.13: SAF curve for Nagpur region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi
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8.3.3.5 SAF curve for Nashik 

Figure S11 depicts the SAF curve for Nashik region. In pre-monsoon season (Figure 8.14 (a)), 

the increment in future projected drought-prone area is observed under all the return periods 

for T1 time step. During T2 period, with increase in return period, the area under drought is 

shifted towards the more severe drought condition. A similar kind of observation is also 

noticed in case of T3 period. During monsoon season, in most of the cases the percentage of 

areal drought has increased as compared to T0 in different return periods (Figure 8.14 (b)). 

The post-monsoon season (Figure 8.14 (c)) shows less variability in case of 25-, 50-, and 100- 

year return periods. In general, the projected drought area is expected to increase during the 

season. In Kharif season (Figure 8.14 (d)), a significant increment in the areal coverage of 

drought is observed for all the return periods during T3 as compared to T1 and T2. Similar to 

Nagpur region, the areal drought condition may increase during Rabi season under all the 

return periods in future (Figure 8.14 (e)). 

8.3.3.6 SAF curve for Pune 

For Pune region, the SAF curve is presented in Figure 8.15. It is noticed that the area under 

the drought is likely to decrease during pre-monsoon season (Figure 8.15 (a)) under high 

return period. However, during T2 period, the drought-affected area for more severe drought 

condition may increase under 5- and 10- year return periods. A gradual decrease in the 

drought area is expected in future with increase in the return period during monsoon season 

(Figure 8.15 (b)). However, it is observed that the SAF curves for all the return periods are 

likely to increase in all future periods as compared to T0 during post-monsoon season (Figure 

8.15 (c)). In Kharif season (Figure 8.15 (d)), at high return levels the drought-affected areas 

are likely to decrease for all the future time steps. However, for 5-, 10-, and 25- year return 

periods, the SAF curve is likely to increase for severe drought conditions in future. Similar to 

post-monsoon season, the areal drought condition may increase during Rabi season under all 

the return periods in future (Figure 8.15 (e)). 
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Figure 8.14: SAF curve for Nashik region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi 
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Figure 8.15: SAF curve for Pune region. (a) for pre-monsoon, (b) for monsoon, (c) for post-monsoon, (d) for Kharif, (e) for Rabi
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8.3.4 Changes in future drought-affected area 

The changes in drought-affected areas are plotted using heatmaps. Figure 8.16 presents the 

percentage in the drought-affected area in different seasons with respect to T0 period. The 

upper panel defines Amaravati region and lower panel refers to Aurangabad region. Similarly, 

Figures 8.17 and Figures 8.18 present the percentage area change for Konkan (upper panel), 

Nagpur (lower panel), and Nashik (upper panel), Pune (lower panel), respectively. It can be 

noted that for higher magnitude of drought severity the percentage area under different return 

periods is likely to increase for Amaravati. The increment in the drought prone area is 

observed in case of pre-monsoon and Rabi seasons for Amaravati and Aurangabad divisions. 

However, there will be significant decrement or no significant change in drought-affected area 

for lower magnitude of drought severity. In a similar way, in Konkan division, there is no sign 

of increment in drought-affected area during pre-monsoon season. However, during other 

seasons, there is a significant increase in drought-affected area for extreme drought condition 

except for T1 future period during Rabi season. Likewise, in Nagpur, pre-monsoon and Rabi 

seasons and in Pune, post-monsoon and Rabi seasons are comparatively more affected by 

drought in future time periods. However, as compared to other divisions, Nashik is likely to 

deal with the increment in drought-affected area during most of the seasons in future as 

compared to T0 period. 

8.4 Discussion and summary 

The concurrent variability in hydro-meteorological variables makes it difficult to understand 

the regional drought severity during different seasons. Hence, analysing the seasonal drought 

characteristics under the influence of climate change needs to be examined. The present study 

makes an attempt to understand the drought attributes during different seasons by developing 

and comparing the SAF relationship for historical and future periods. The future 

meteorological outputs from nineteen NEX-GDDP simulations under two emission scenarios 

are used. Prior to the analysis, uncertainty associated with GCM and scenario is analysed 

using the possibility theory. Based on the analysis, the most possible GCM and scenario at 

each grid point for 3-, 4-, and 6-month time scale are selected. It should be noted that the 

GCM/scenario with a possibility value of 1 does not mean that the selected GCM/scenario 

perfectly projects the climate change at that particular grid. However, it denotes the 
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Figure 8.16: Heatmaps showing percentage change in drought areal extent for Amaravati (upper) and Aurangabad (lower) divisions under 

different seasons 
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Figure 8.17: Heatmaps showing percentage change in drought areal extent for Konkan (upper) and Nagpur (lower) divisions under different 

seasons 
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Figure 8.18: Heatmaps showing percentage change in drought areal extent for Konkan (upper) and Nagpur (lower) divisions under different 

seasons



 
 
 

nonexistence of any better GCM/scenario to capture the climate change variability at that grid 

point. The future temperature for all the seasons and precipitation for pre-monsoon, monsoon, 

and Kharif seasons are expected to increase.  

The evaluation of drought SAF relationship curves for analysing drought characteristics 

enable to compare the drought attributes during each season across the study area during T0 

period. It can be clearly distinguished from the SAF curve that mild drought conditions with 

less severity i.e., SPEI value between -1.5 and -1.0 cover more area for each return period. 

However, in most of the cases in future period, the SAF curves for different seasons indicate 

increase in area with severity magnitude less than equal to -2.0. The outcomes manifest that 

the study area is sensitive towards extreme drought occurrences. Additionally, area 

corresponding to high return period increases as compared to the lower return period.  

The outcomes obtained from this study confirm similar types of findings resulted from 

previous studies based on seasonal drought analysis associated with different range of drought 

severity and return periods for evaluating drought-affected areas. Ahmed et al., (2019) 

reported that large areas were drought-affected in Pakistan for higher return period by 

assessing the drought characteristics with the use of SAF curves. Drought characteristics vary 

regionally depending on its geographic and climatic condition. In addition, the uncertainties in 

drought-affected areas may arise due to the differences in methodologies, variation in data 

obtained from different sources including GCMs. Therefore, drought characteristics have 

been calculated here per division wise for better understanding which appears to be more 

useful to improve the socio-economic condition in Maharashtra.  

From the analysis of drought characteristics among all seasons across each division of 

Maharashtra, it is observed that there is an increment in percentage of the drought-affected 

area especially for the higher magnitude of severity in future period. Previous studies have 

already reported about the increment in drought-affected area with long term and severe 

droughts in different parts of the world (Amirataee et al., 2018; Himayoun and Roshni, 2019).  

In addition, it has also been suggested in recent studies that the drought events with rise in 

severity and frequency will continuously increase in many regions across the world in coming 

decades due to projected climate change factors (Bisht et al., 2019; Sharma and Mujumdar, 

2017). Specifically, the regions with frequent drought events will be highly prone to future 

drought occurrences due to climate change scenarios (Kundzewicz et al., 2008). In future, the 
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severe and extreme drought occurrences are expected to increase with large spatial extent over 

each division.  

In summary, the significant findings from the present analysis point to the fact that the 

precipitation magnitude is expected to increase in pre-monsoon, monsoon, and Kharif seasons 

over most of the areas in Maharashtra. Except for monsoon season, the potential 

evapotranspiration is projected to increase over 50% of the total area. Increase in the 

temperature profile is noticed over all the regions in Maharashtra during the 21st century. The 

extreme drought condition during post-monsoon, pre-monsoon and Rabi seasons shows an 

increase in the frequency as compared to historical period. The SAF curve reveals that, in 

most of the cases, the percentage of drought-affected area is expected to increase for high 

magnitude of severity. In addition, the highest increment in the drought-affected area is 

observed during the Rabi season in future.  
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Chapter 9  
 

Summary and conclusions 
 

 

 

 

9.1 Introduction 

The research reported in this thesis contributes towards understanding the drought 

characterization, propagation, and risk over Indian region. The drought characterization is 

performed using the influence on the large-scale climatic oscillations and regional hydro-

meteorological variabilities using the gridded data. The non-stationary analysis is carried out 

for meteorological, hydrological and agricultural drought events. In addition, the socio-

economic drought is evaluated using the demand from different sectors under stationary 

assumption. Further, the duration of drought propagation from meteorological to hydrological 

and meteorological to agricultural drought conditions is examined using the non-stationary 

drought indices. Next, the agricultural drought risk is computed using the multivariate 
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analysis for different crops. Here, copula is used for multivariate analysis. Future projection 

of meteorological drought is evaluated using the outputs from several GCMs under different 

climate change scenarios. In addition, identification of future drought hotspot regions is 

carried out under different scenarios. Lastly, seasonal Severity-Area-Frequency (SAF) 

relationship curve is developed after analysing the uncertainty associated with GCMs and 

scenarios. The following paragraphs give a summary and conclusions of the study presented 

in the thesis. 

➢ In order to understand the influence of external drivers on the drought events, non-

stationary drought analysis is carried out over one of the most drought affected states 

i.e., Maharashtra. Two different drought indices, namely precipitation-based 

Standardized Precipitation Index (SPI) and precipitation and potential 

evapotranspiration (PET) based Reconnaissance Drought Index (RDI), are considered 

for the analysis.  The large-scale climatic oscillations like Indian Summer Monsoon 

Index (ISMI), Southern Oscillation Index (SOI), Sea Surface Temperature (SST), and 

Indian Ocean Dipole (IOD) are used as covariates. The Generalized Additive Model in 

Location, Scale and Shape (GAMLSS) package in R environment is used to perform 

the analysis over 103 grid points (0.5o Lat x 0.5o Lon) covering the Maharashtra. The 

study is conducted for different time scales of drought events such as 3-, 6-, 9-, 12-, 

24- month time scales. The non-stationary analysis is performed by varying the 

location parameter of the gamma and lognormal distributions of SPI and RDI drought 

indices, respectively. Finally, different drought properties such as severity, duration, 

frequency, peak are calculated for moderate, severe and extreme drought conditions. It 

is found that the non-stationary model outperforms the stationary approach over all 

time scales. The ISMI is likely to influence droughts on smaller scales. However, the 

IOD, SST, and SOI are expected to modulate larger-scale drought events. 

Comparative study of the probability plots of drought properties reveals that, though 

there are noticeable variabilities between the stationary and non-stationary conditions 

on all time scales, a significant difference is noticed on the 3-, 6, and 9-month time 

scales. A comparative study with respect to historical drought assessments reveals that 

the presence of non-stationarity cannot be ignored for developing sustainable 

mitigation and adaptation strategy. 
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➢ From Chapter 3 and Chapter 4, it is found that non-stationary analysis of drought 

events has significant importance in the scenario of climate change. Thus, drought 

properties of meteorological, hydrological and agricultural drought events are 

evaluated across India under non-stationary approach. Here, Standardized 

Precipitation Evapotranspiration Index (SPEI), Standardized Runoff Index (SRI), and 

Standardized Soil moisture Index (SSI) are used to characterize the meteorological, 

hydrological, and agricultural drought, respectively. The study is performed over 1170 

grid points at a grid resolution of 0.5o Lat x 0.5o Lon over India. In case of SRI index, 

only the meteorological variables (precipitation, PET, relative humidity, and wind 

speed) are considered as covariates for non-stationary modelling. However, for SSI, 

the meteorological variables such as precipitation, air temperature, and soil 

temperature are considered as covariates. The runoff datasets are obtained from five 

different sources (ECMWF Reanalysis 5th Generation (ERA5), Famine Early 

Warning Systems Network Land Data Assimilation System (FLDAS), Global Land 

Data Assimilation System (GLDAS), Modern-Era Retrospective analysis for Research 

and Applications version 2 (MERRA-2), and National Centers for Environmental 

Prediction (NCEP)). Similarly, the soil moisture datasets are obtained from six diverse 

sources (Climate Prediction Center (CPC), ERA5, FLDAS, GLDAS, MERRA-2, and 

NCEP). In addition to meteorological, hydrological and agricultural droughts, socio-

economic drought events are also computed. However, the socio-economic drought is 

evaluated based on the stationary approach. It is found from the analysis that the non-

stationary model outperforms the stationary analysis for meteorological, hydrological 

and agricultural drought indices. The meteorological drought properties (drought 

events and duration) are more severe as compared to the hydrological drought. The 

large duration and more severe hydrological droughts are observed mostly over 

southern and northern parts of India. The high agricultural drought duration and 

severity are observed over the northern parts and some patches of northeast and 

northwest regions of India. The high value of socio-economic drought severity is 

noticed over Punjab and Haryana. 

 

➢ In addition to the drought properties, the drought propagation from meteorological to 

hydrological and meteorological to agricultural is investigated incorporating the non-

stationary drought indices developed in Chapter 4. The drought propagation time is 
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computed for 1170 grids blanketing the entire India based on differences between the 

initiation to initiation (∆s), peak to peak (∆p) and termination to termination (∆e). In 

addition, the internal propagation of drought is estimated with the help of variable 

motion relationship of speed-time process. In addition, the drought development 

period (DDP) and drought recovery period (DRP) are analysed. The rate of change of 

cumulative drought deficit for development and recovery phases are computed to 

evaluate the Instantaneous Development Speed (IDS) and Instantaneous Recovery 

Speed (IRS), respectively. It is found that locations with the high value of DDP are 

also having high value of DRP in both the cases (hydrological and agricultural). In 

case of hydrological drought, most of the area in India has the IDS and IRS values 

between 0.40 and 0.60 per month. However, the same varies between 0.20 and 0.60 

per month in the case of agricultural drought. The meteorological to hydrological 

propagation time in case of ∆s varies between 4 and 9 months with 62% of total area 

falling under 6 to 7 months followed by 20% of total area under 7 to 8 months. In the 

case of ∆p, the time of propagation varies from 9 to 12 months over 74% of the total 

area. About 70% of total area, the time of propagation in ∆e ranges from 15 to 20 

months. In case of ∆s, the propagation from meteorological to agricultural is found to 

be 5 to 6 months and 6 to 7 months over 39% and 53% of the total area, respectively. 

Similarly, the drought propagation over about 95% of total area ranges from 9 to 15 

months under ∆p condition. The time to propagation varies between 10 to 15 months 

over 32% and 15 to 20 months over 65% of total area in case of ∆e. It is found that the 

drought propagation and its characteristics are underestimated over most of the regions 

in India when computed with stationary analysis. 

 

➢ As an agrarian country, India’s economy largely depends on agricultural productivity. 

Therefore, it is of utmost importance to examine the agricultural drought risk for 

different crops. The agricultural drought risk in terms of conditional probability of 

crop loss with respect to different drought severities is analysed. Different drought 

indices namely SPEI, SSI, Vegetation Condition Index (VCI) and Temperature 

Condition Index (TCI) are used to evaluate the conditional probability. The bivariate 

analysis using the copula theory is performed to understand the dependence structure 

between drought conditions and crop yield anomalies (cotton, groundnut, rice, and 

wheat) over the Maharashtra province in India during 1998-2015. Total of five 
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different copulas namely, Gaussian, Student’s t-copula, Clayton, Gumbel, and Frank 

are used to analyse the bivariate joint dependence structure between yield anomalies 

and dominant drought indicator. The significant findings from the present analysis 

point to the fact that the drought hazard is primarily characterized by SPEI drought 

indicator in all the crops. The higher probability of drought risk under moderate and 

extreme drought conditions are modelled by Clayton copula suggesting greater 

probabilities of joint extreme low values. With increase in the drought severity the 

conditional probability of agricultural drought risk is likely to increase. In addition, it 

is observed that the exclusion of non-stationarity will underestimate the agricultural 

risk, which will significantly affect the planning and management of agricultural 

sustainability over the study area. 

 

➢ Understanding the adverse consequences of drought events on various sectors, it is 

necessary to examine the future variability of drought under different climate change 

scenarios. Chapter 7 includes the outputs from nineteen different GCMs from NEX-

GDDP under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios to 

characterize the future short (3-month scale) and long (12-month scale) term 

meteorological drought over Maharashtra province. In addition, future meteorological 

drought hotspot regions are evaluated over the study area based on different drought 

properties. In order to identify the implications of temperature on drought, SPEI 

drought index is chosen along with SPI index. The significant findings from the 

analysis point to the fact that with the increase in the monthly mean temperature and 

precipitation (more in case of RCP8.5 than RCP4.5), Maharashtra is likely to be 

wetting and warming during the 21st century except for Konkan region as compared to 

historical. In Konkan region, the warmer climatology is likely to prevail with no 

significant change in the monthly precipitation variability. The drought properties like 

peak and areal spread are expected to increase for both short and long-term drought 

conditions in most of the regions. The frequency of severe and extreme droughts is 

likely to increase in the short-term drought condition with no sign of decrease at any 

time segments and regions. Temperature plays an important role in modulating the 

meteorological droughts and the present study notices the same in most of the cases in 

all the drought properties especially in drought severity, duration, and peak. The 
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number of hotspot regions decreases in long-term drought condition as compared to 

short-term drought condition. 

 

➢ In the Chapter 8, the seasonal SAF relationship curve for meteorological droughts is 

projected for various divisions in Maharashtra corresponding to five different seasons 

namely pre-monsoon, monsoon, post-monsoon, Kharif and Rabi. The uncertainty 

associated with GCMs, and scenarios is assessed using possibility theory. The SPEI 

drought index is used as an indicator of meteorological drought. In order to project for 

the future time period, nineteen different GCMs under two different Representative 

Concentration Pathways (RCPs) 4.5 and 8.5 are chosen. The significant findings from 

the present analysis point to the fact that the precipitation magnitude is expected to 

increase in pre-monsoon, monsoon, and Kharif seasons over most of the areas in 

Maharashtra. Except for monsoon season, the potential evapotranspiration is projected 

to increase over 50% of the total area. Increase in the temperature profile is noticed 

over all the regions in Maharashtra during the 21st century. The extreme drought 

condition during post-monsoon, pre-monsoon and Rabi seasons shows an increase in 

the frequency as compared to historical period. The SAF curve reveals that, in most of 

the cases, the percentage of drought-affected area is expected to increase for high 

magnitude of severity. In addition, the highest increment in the drought-affected area 

is observed during the Rabi season in future. 

In the continually climate change scenario, it is of great concern to revisit, rethink, and 

improve the existing computational aspects of drought indexes. In general, the commonly 

used drought indexes do not encompass environmental changes. Therefore, the nonstationary 

estimation of drought indexes can incorporate the development of meteorological variables in 

a changing environment. More precisely, the time-varying nature of meteorological variables 

are updated with time, providing a robust and suitable drought assessment. Not only the 

meteorological drought, the non-stationary analysis of hydrological, and agricultural drought 

indices will help the water and agricultural managers to devise sustainable management 

practices. To devise sustainable drought management practices, it is inevitable to understand 

the propagation of drought from one form to another. In addition, the inclusion of large-scale 

climate indices and regional hydro-meteorological variability in understanding the 

propagation of drought enable to cope with the changing climate scenario. The grid wise 

examination of drought propagation will provide important drought characteristics at local 
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scale which can assist water managers and policy makers to devise sustainable management 

practices. The implications from the agricultural drought risk suggest making agricultural 

practices climate resistant and water effective. The outcomes obtained during the 

investigation of the future drought analysis should be considered as indicative about the 

response of the study area to the climate change rather than conclusive. 

With respect to the different “Sustainable Development” goals proposed by United Nations 

(https://sdgs.un.org/goals), the outcomes from the present study can be linked to the following 

goals, (i) Climate Action, (ii) Clean Water and Sanitation, (iii) Life on Land. The goal 

“Climate Action” enables to take prompt action to combat climate change and its impact. In 

the present analysis, the changeability in the large-scale climatic indices is incorporated in 

modeling the drought index. The variability in the large-scale climatic indices is modulated 

due to the change in the climate and their interaction with the ocean. In this sense, the newly 

developed drought index would help in devising the effective drought management strategies 

to combat climate change. Similarly, the goal “Clean Water and Sanitation” aims to ensure 

the availability and sustainable management of water. In the present study, the variability of 

available water at regional scale is characterised using the hydrological drought index. In 

addition, the variability in water availability due to the meteorological drought condition is 

assessed through its propagation phenomena which would help in formulating the sustainable 

management plans to ensure the water availability. Lastly, the goal “Life on Land” ensures to 

protect, restore, and promote sustainable use of terrestrial ecosystems. Under this goal, 

desertification, land degradation, and drought is considered as one of the topics to fulfil the 

motive. The present study deals with the propagation of one drought to another under the 

influence of climate change and future projection of drought that help in developing the 

strategies to promote resilience and disaster risk management.       

9.2 Scope for future studies 

The present research is devoted to characterize drought events under non-stationary condition, 

to understand the propagation from one drought to another drought, to evaluate the 

agricultural risk associated with droughts and future projection of drought characteristics 

under different climate change scenarios. However, many challenges still exist in the field of 

hydrological extremes. Hence, following would be possible future works.  
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➢ Investigation of drought propagation can be improved by incorporating the catchment 

characteristics, types of soil and groundwater component. 

➢ Identification of hotspots based on the internal propagation of drought and 

propagation from one form to another form facilitates sustainable development 

strategies. 

➢ The socio-economic drought can be examined with the combined effect of 

meteorological, hydrological and agricultural drought to examine the impact of any 

individual drought type on socio-economic condition. 

➢ Future drought propagation study can be carried out based on the outputs from 

different GCMs under recently developed CMIP6 experiment.  

➢ Future hydrological and agricultural drought hotspots can be identified by forcing the 

GCMs simulated meteorological data into hydrological model.  
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