PEDESTRIAN-VEHICLE INTERACTIONS AT
UNCONTROLLED INTERSECTIONS UNDER MIXED
TRAFFIC CONDITIONS

Submitted in partial fulfilment of the requirements
for the award of the degree of

Doctor of Philosophy

by
LALAM GOVINDA

717109

DEPARTMENT OF CIVIL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, WARANGAL
2022



PEDESTRIAN-VEHICLE INTERACTIONS AT
UNCONTROLLED INTERSECTIONS UNDER MIXED
TRAFFIC CONDITIONS

Submitted in partial fulfilment of the requirements
for the award of the degree of

Doctor of Philosophy

by
LALAM GOVINDA

717109

DEPARTMENT OF CIVIL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, WARANGAL
2022



NATIONAL INSTITUTE OF TECHNOLOGY
WARANGAL

WARANGAL

CERTIFICATE

This is to certify that the thesis entitled “Pedestrian-Vehicle Interactions at Uncontrolled
Intersections under Mixed Traffic Conditions” being submitted by Mr. Lalam Govinda for
the award of the degree of DOCTOR OF PHILOSOPHY to the Department of Civil
Engineering of NATIONAL INSTITUTE OF TECHNOLOGY, WARANGAL is a record
of bonafide research work carried out by him under my supervision and it has not been

submitted elsewhere for award of any degree.

Dr. K. V. R. RAVISHANKAR

Thesis Supervisor

Associate Professor

Department of Civil Engineering

National Institute of Technology, Warangal

Telangana, India



APPROVAL SHEET

This Thesis entitted  “PEDESTRIAN-VEHICLE INTERACTIONS AT
UNCONTROLLED INTERSECTIONS UNDER MIXED TRAFFIC CONDITIONS” by

Mr. LALAM GOVINDA is approved for the degree of Doctor of Philosophy.

Examiners

Supervisor

Chairman

Date:



DECLARATION

This is to certify that the work presented in the thesis entitled “Pedestrian-Vehicle
Interactions at Uncontrolled Intersections under Mixed Traffic Conditions™ is a bonafide
work done by me under the supervision of Dr. K. V. R. Ravishankar, Associate Professor,
Department of Civil Engineering, NIT, Warangal, Telangana, India and was not submitted
elsewhere for the award of any degree. | declare that this written submission represents my
ideas in my own words. | have adequately cited and referenced the original sources where
others’ ideas or words have been included. I also declare that I have adhered to all principles
of academic honesty and integrity and have not misrepresented or fabricated or falsified any
idea /data/ fact/source in my submission. | understand that any violation of the above will be
cause for disciplinary action by the institute and can also evoke penal action from the sources
which have thus not been properly cited or from whom proper permission has not been taken

when needed.

L. Gpowmdon

Lalam Govinda
Roll No. 717109

Date: 03/11/2022



Dedicated to

AMMA, NANNA, AKKA, ANNA, GURUVU

Vi



ACKNOWLEDGEMENTS

| express my deep sense of gratitude and acknowledgement to Dr. K.V.R.
Ravishankar, Associate Professor, Department of Civil Engineering, National Institute of
Technology, Warangal, under whose guidance this research work was carried out. It was really
a pleasure experience to work with him for his continuous guidance, valuable suggestions,
encouragement and help with regard to research matters has helped me a lot. | consider it as a

privilege to have worked with him.

I am highly indebted to my Doctoral Committee Members Prof. C.S.R.K. Prasad,
Professor, Department of Civil Engineering, Dr. Arpan Mehar, Associate Professor,
Department of Civil Engineering, Prof. D.M. Vinod Kumar, Professor, Department of
Electrical Engineering, National Institute of Technology, Warangal for their assistance,
encouragement, inspiration, and continuous monitoring of my work during the course of this

research work.

I wish to take this opportunity to express my sincere thanks to Prof. Venkaiah
Chowdary, Professor, Transportation Division, Department of Civil Engineering, National
Institute of Technology, Warangal, Dr. S. Shankar, Associate Professor, Transportation
Division, Department of Civil Engineering, National Institute of Technology, Warangal, Dr.
B. Raghuram Kadali, Assistant Professor, Transportation Division, Department of Civil
Engineering, National Institute of Technology, Warangal, Dr. Vishnu. R, Assistant Professor,
Transportation Division, Department of Civil Engineering, National Institute of Technology,
Warangal, for their valuable suggestions and encouragement throughout the course of my

research work.

I am grateful to Prof. N.V. Ramana Rao, Director, National Institute of Technology,

Warangal for extending every possible help during the course of the study.

I express my sincere acknowledgement for funding this research study by Ministry of
Human Resource and Development, Government of India. | would like to thank the
DataFromSky team for timely help in extracting video data and related academic agreement

with the institute.

I extend my sincere acknowledgement to former M. Tech students Godumala Dharma

Teja, M.R. Sai Kiran Raju and K. Vasanth Rao for their help in data collection.

Vii



I have been lucky to get so many wonderful friends in the Department of Civil
Engineering: Dr. S. Eswar, Dr. D. Abhigna, Dr. J. Jaya Krishna, Dr. K. Mahaboob Peera, Dr.
P. Yugender, Dr. L. Prasanth Sekhar, Dr. K. Aditya, Dr. Ustav Vishal, Dr. M. Anil, Dr. S.
Srikanth, Dr. D. Harinder, T. Arjun Kumar, Dr. K. Srikanth, Ramakanth, Dr. S. Chakravarthy,
Dr. R. Susmitha, J. Jithender, G. Shravan Kumar, Khalil, Ramesh Babu Kota, P. Sruthi Sekhar,
Sudhir, Someswarao, Chiranjeevi, Ch. Lalitha Sri, Anirudh, Deep Chand, A. Nithin Kumar,
Sagarika, Saraswathi, A. Aravind, Ayyappa Reddy Allu, Sudheekar Reddy, Aravind Goud,
Mani Ratnam, Vikas, Kumarapu Kumar, M. Teja, Guru Prathap Reddy, and Sathish, M.
Baburao. The dreary periods during research were enlivened up by the lighter moments we
shared together.

I would like to thank Mr. Md. Abdul Gaffar and Mr. K. Ramesh, laboratory staff of
Transportation Division.

Finally, I thank everyone, who contributed either directly or indirectly in successful
completion of this work.

I wish to express my thanks to all the Research Scholars of Transportation Division,
Department of Civil Engineering, NITW for their constant encouragement and timely help.

| express my deepest gratitude to my parents Mr. L. Appanna and Smt. L. Satyavathi,
for their love, support, and encouragement without which this work would not have been
possible. I would like to thank my brothers L. Srirama Murthy, L. Appala Naidu and sisters
Laxmi, Ratnam for their support to continue my research work. Finally, I would like to thank
many others whose names would be too numerous to mention here for their assistance,

suggestions, friendship, and insightful discussions.

L. Gipowdon

LALAM GOVINDA

viii



CONTENTS

CERTIFICATE

APPROVAL SHEET

DECLARATION

DEDICATION

ACKNOWLEDGEMENTS

CONTENTS

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

CHAPTER 1 INTRODUCTION

11
1.2

13
1.4
1.5
1.6
1.7

General
Road accident statistics
1.2.1 Global road accident statistics
1.2.2 Road accident statistics in India
1.2.3 Road accident statistics at pedestrian crossing locations
Surrogate safety measures
Pedestrian dilemma zone
Need for study
Obijectives of the study
Outline of the thesis

CHAPTER 2 LITERATURE REVIEW
2.1 General

2.2

Studies on pedestrian-vehicle interaction analysis and modelling

Page No.

Vi

vii

Xii
Xiv

XVi

'—\
R o N & w NN PR S
w

e
w N

14 -31
14
14

2.3 Studies on pedestrian gap acceptance behaviour, dilemma zone analysis and

modelling
2.3.1 Studies on Pedestrian gap acceptance behaviour

2.3.2 Studies on pedestrian dilemma zone analysis and modelling

2.4 Summary

24
24
28
31



CHAPTER 3 METHODOLOGY

3.1 General

3.2 Methodology
3.2.1 Problem statement and literature review
3.2.2 Selection of study areas and data collection
3.2.3 Data extraction
3.2.4 Data analysis and modelling
3.2.5 Conclusions

3.3 Summary

CHAPTER 4 STUDY AREA AND DATA COLLECTION
4.1 General
4.2 Study locations
4.2.1 Four legged uncontrolled intersections
4.2.2 Three legged uncontrolled intersections
4.3 Field data collection
4.4 Summary

CHAPTER 5 FIELD DATA EXTRACTION
5.1 General
5.2 Data Extraction
5.2.1 Pedestrian-vehicle interactions sample size
5.2.2 Pedestrian crossing speeds
5.2.3 Vehicular approaching speeds
5.3 Summary

32-35
32
32
34
34
34
34
35
35

36 -39
36
36
36
37
38
39

40 - 48
40
40
42
45
47
48

CHAPTER 6 DEFINING THE THRESHOLD LIMITS OF SURROGATE SAFETY

MEASURES
6.1 General

6.2 Support vector machines (SVM) algorithm for classification
6.3 Defining the threshold limits for various severity levels of P-V interactions

6.3.1 Three-legged uncontrolled intersections

6.3.2 Four-legged uncontrolled intersections

6.3.3 Comparison of threshold limits of PET and RI

6.4 Summary

49 - 63
49
49
51
52
57
63
63



CHAPTER 7 MODELLING OF PEDESTRIAN-VEHICLE INTERACTIONS  65-75
7.1 General 65
7.2 Modelling of P-V interaction severities at uncontrolled intersections 65
7.2.1 P-V interaction severity model for three-legged
uncontrolled
intersections 68

7.2.2 P-V interaction severity model for four-legged uncontrolled

Intersections /1
7.3 Validation of OL models at three-legged and four-legged intersections 73
7.4 Comparison of P-V interaction severity levels at three-legged and four-legged

uncontrolled intersections 74
7.5 Summary 75

CHAPTER 8 PEDESTRIAN DILEMMA ZONE ANALYSIS AND MODELLING 76-92
8.1 General 76
8.2 Pedestrian dilemma zone (PDZ) estimation 76

8.2.1 PDZ estimation using gap cumulative distribution (GCD) method 76

8.2.2 PDZ estimation using support vector machine (SVM) method 78
8.3 Modelling of pedestrian dilemma zone (PDZ) boundaries 82
8.3.1 PDZ model for three-legged uncontrolled intersections 84
8.3.2 Four-legged uncontrolled intersections 88
8.4 Summary 92
CHAPTER 9 SUMMARY AND CONCLUSIONS 93-97
9.1 General 93
9.2 Summary of the study 9.2
9.3 Conclusions 9.3
9.4 Contributions of the study 96
9.5 Limitations of the study and future research 97
REFERENCES

LIST OF PUBLICATIONS

xi



LIST OF FIGURES

Figure No. Title Page No.
1.1  Distribution of trip length and mode of transport in India 2
1.2 Distribution of deaths by road user type across the world 3
1.3 Decadal trend in the number of road accidents, deaths, and injuries 4
1.4 Number of accidents (%) in India from 2018 to 2020 at intersections 5
1.5  Number of persons killed (%) in India from 2018 to 2020 at intersections 6
1.6 Number of persons injured (%) in India from 2018 to 2020 at intersections 6
1.7 Share of pedestrian deaths in India from 2013 to 2020 7
1.8  Pictorial representation of TTC definition 8
1.9  Pictorial representation of PET definition 9
1.10 Location and length of pedestrian dilemma zone at an intersection 10
2.1 TTC and GT profiles of (a) Pattern 1 (b) Pattern 2 21
3.1  Flow chart for the proposed research methodology 33

4.1  4-legged uncontrolled intersection at (a) Jagadamba (b) Forest office (c) Teacher’s

colony (d) SBH colony 37
4.2  3-legged uncontrolled intersection at (a) Ramanth Nagar (b) NIT Warangal (c) KU X-

Road (d) Marripalem 38
5.1  Calibration of DFS software using location coordinates 41
5.2  Extraction of P-V trajectory data from DFS software 42
5.3  Calibration of the perspective grid in Kinovea software 42

54 Percentage of P-V interactions samples based on severity levels at (a) three-legged
intersections (b) four-legged intersections 44
5.5  Percentage of P-V interactions samples based on pedestrian gender at (a) three-legged
intersections (b) four-legged intersections 44
5.6  Percentage of P-V interactions samples based on pedestrian age at (a) three-legged
intersections (b) four-legged intersections 44
5.7 Percentage of P-V interactions samples based on vehicle type at (a) three-legged

intersections (b) four-legged intersections 45

Xii



5.8

5.9

5.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
8.1

8.2

8.3

8.4
8.5

Variation of pedestrian crossing speeds with respect to gender at (a) three-legged
intersections (b) four-legged intersections 46
Variation of pedestrian crossing speeds with respect to age at (a) three-legged
intersections (b) four-legged intersections 46

Variation of vehicular approaching speeds with respect to type of vehicle at (a) three-

legged intersections (b) four-legged intersections 48
SVM classification code in Python interface 51
SVM plots for Pm-Vaw category to define threshold limits of (a) PET (b) RI 52
SVM plots for Pr-Vaw category to define threshold limits of (a) PET (b) RI 52
SVM plots for Pm-Vaw category to define threshold limits of (a) PET (b) RI 53
SVM plots for Pr-Vaw category to define threshold limits of (a) PET (b) RI 53
SVM plots for Pm-Vcar category to define threshold limits of (a) PET (b) RI 53
SVM plots for Pr-Vear category to define threshold limits of (a) PET (b) RI 54
SVM plots for Pm-Vicv category to define threshold limits of (a) PET (b) RI 54
SVM plots for Pr-Vicv category to define threshold limits of (a) PET (b) RI 54
SVM plots for Pm-VHcv category to define threshold limits of (a) PET (b) RI 55
SVM plots for Pr-VHev category to define threshold limits of (a) PET (b) RI 55
SVM plots for Pm-Vaw category to define threshold limits of (a) PET (b) RI 58
SVM plots for Pr-Vaw category to define threshold limits of (a) PET (b) RI 58
SVM plots for Pm-Vaw category to define threshold limits of (a) PET (b) RI 58
SVM plots for Pr-Vaw category to define threshold limits of (a) PET (b) RI 59
SVM plots for Pm-Vcar category to define threshold limits of (a) PET (b) RI 59
SVM plots for Pr-Vcar category to define threshold limits of (a) PET (b) RI 59
SVM plots for Pm-Vicv category to define threshold limits of (a) PET (b) RI 60
SVM plots for Pr-Vicv category to define threshold limits of (a) PET (b) RI 60
SVM plots for Pm-VHcv category to define threshold limits of (a) PET (b) RI 60
SVM plots for Pr-VHcv category to define threshold limits of (a) PET (b) RI 61

PDZ boundary limits estimation using GCD method at 3-legged uncontrolled

intersections. 77
PDZ boundary limits estimation using GCD method at 4-legged uncontrolled

intersections. 78
SVM code in Python interface to estimate PDZ boundary limits 79
PDZ boundary limits estimation using SVM method at 3-legged intersections. 80
PDZ boundary limits estimation using SVM method at 4-legged intersections. 80

Xiii



8.6  Physical location PDZ boundaries at three-legged and four-legged intersections. 82

Xiv



LIST OF TABLES

Table No. Title Page No.
1.1  Share of accidents at road intersections by type of traffic control in India: 2020 5
1.2 Share of pedestrian deaths at pedestrian crossings in India: 2013-2020 7
2.1  Threshold values of TTCminand PET for various P-V interaction severity levels 21
2.2 Surrogate safety measures or indicators used in various studies. 22
2.3 Dilemma zone boundary limits at unsignalized intersections 29
2.4 Dilemma zone boundary limits for different vehicular speeds at intersections. 30
2.5  Lower, upper boundary limits and length of PDZ at uncontrolled mid-blocks 30
4.1  Geometric details of the study locations 39
5.1  Description of P-V interactions severity levels classification based on visual
observations 41
5.2  Total number of P-V interactions samples extracted at three-legged uncontrolled
intersections 43
5.3  Total number of P-V interactions samples extracted at four-legged uncontrolled
intersections 43
5.4  Descriptive statistics of pedestrian crossing speeds at three-legged intersections 45
5.5  Descriptive statistics of pedestrian crossing speeds at four-legged intersections 46
5.6  Descriptive statistics of vehicular approaching speeds at three-legged intersections 47
5.7  Descriptive statistics of vehicular approaching speeds at four-legged intersections 47
6.1  Threshold limits of PET for various severity levels at thee-legged intersections. 56
6.2  Threshold limits of RI for various severity levels at three-legged intersections. 56
6.3  Accuracies of classified data in SVM as three-legged intersections 57
6.4  Threshold limits of PET for various severity levels at four-legged intersections 62
6.5  Threshold limits of RI for various severity levels at four-legged intersections. 62
6.6  Accuracies of classified data in SVM as four-legged intersections 63
7.1  Description of the variables used in the regression analysis 66
7.2 Chi-square test results at three-legged and four-legged uncontrolled intersections 67
7.3 Descriptive statistics of variables used in the ordinal logistic regression 68
7.4 Ordinal logistic regression results for three-legged uncontrolled intersections 69
7.5  Ordinal logistic regression results for four-legged uncontrolled intersections. 71
7.6 Model fitting information of OLM at three-legged intersections 74
1.7 Model fitting information of OLM at four-legged intersections 74

XV



8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Confusion matrices and accuracy of testing data in SVM at three-legged and
four-legged intersections.

PDZ boundary limits at three-legged and four-legged intersections
Description of variables used in the binary logistic regression

BLR results for three-legged uncontrolled intersections

Prediction success table for developed model at three-legged intersections
Model fitting information of binary logit model at three-legged intersections
Binary logistic regression results for four-legged uncontrolled intersections
Prediction success table for developed model at four-legged intersections
Model fitting information of binary logit model at four-legged intersections

XVi

81
82
84
85
88
88
89
91
92



ABSTRACT

Pedestrians are one of the vulnerable road users and their safety is utmost important.
The pedestrian risk taking behaviour and driver yielding behaviour varies from person to
person. There is a possibility of accidents between pedestrians and vehicles at pedestrian
crossing locations due to the misunderstanding between pedestrians and drivers. Improvements
in the pedestrian facilities and safety-related issues will help to reduce the number and severity
of pedestrian-vehicle (P-V) accidents and improve the pedestrian safety. This can be possible
only with better understanding of pedestrian road crossing behaviour and their interactions with
vehicular traffic. The present study is intended to analyse and model the P-V interactions at
uncontrolled intersections to know the various factors affecting the severity of P-V interactions.
Also, intended to estimate and model the pedestrian dilemma zone (PDZ) at uncontrolled

intersections to improve the gap acceptance behaviour of pedestrians.

Four 3-legged and four 4-legged uncontrolled intersections were selected from
Warangal and Visakhapatnam cities in India. Video was recorded continuously for two hours
in the morning (7:30AM to 9:30AM) and evening (4:30PM to 6:30PM) periods from each
study location on a week day. Geometric details of all study locations were directly measured
from the field. Required pedestrian, vehicle, and geometric parameters were extracted from the
videos using MPC-HC media player, Kinovea and DataFromSky softwares. Risk indicator (RI)
was defined using post encroachment time (PET) and approaching speeds of vehicles for each

pedestrian-vehicle interaction.

The threshold limits of PET and RI were defined using support vector machine (SVM)
technique in Python interface to define the severity levels of P-V interactions at uncontrolled
intersections. The results showed that the severity of P-V interactions was inversely correlated
with threshold limits of PET and threshold limits of RI directly correlated with RI. The severity
level was higher at lower values of PET and higher values of RI. The threshold limits PET at
three-legged intersections were found to be lower than that of four-legged intersections and
threshold limits of RI at four-legged intersections were found to be lower than three-legged

intersections.

An ordinal logistic regression models were developed at uncontrolled intersections to
know the various parameters affecting the severity levels of P-V interactions. The model results

showed that the probabilities of P-V interaction severity levels increase with the presence of

XVii



male pedestrians, crossing with luggage, usage of mobile phones while crossing, pedestrians
crossing with lower crossing speeds, and pedestrians crossing at entry point of intersection.
The probabilities of severity levels also increase with the increase in speed of the vehicle, left
turning vehicles, and presence of young pedestrians. The probability of severity levels at three-
legged intersections were found to be higher than that of four-legged intersections. The

developed models were validated using various validation techniques.

The pedestrian dilemma zone (PDZ) at uncontrolled intersections was estimated using
gap cumulative distribution (GCD) and support vector machine (SVM) methods and developed
a binary logistic regression (BLR) model to estimate the PDZ boundary limits. The estimated
lower and upper boundary limits of PDZ at three-legged intersections were 7.5 m and 24.0 m
respectively using SVM method and 6.0 m and 18.5 m respectively at four-legged intersections.
The boundary limits at three-legged intersections were found to be higher than that of four-
legged intersections. The BLR model results showed that the PDZ boundary limits lies close
to the intersection in case of male and young pedestrians. They shift away from the intersection
when the pedestrians crossing at the entry point of intersection, increase in size and speed of
vehicles. The developed models were validated using classification table, model fitting criteria,

and likelihood ratio test.

The study results can be used for better understanding of P-V interactions at
uncontrolled intersections under mixed traffic conditions. The proposed threshold limits of can
be used to define the P-V interaction severity levels using pedestrian and vehicle characteristics
at uncontrolled intersections. The proposed PDZ boundary limits can be used for the practical
applications in the field to eliminate the dilemma behaviour of pedestrians while crossing the

road at uncontrolled intersections.

Keywords - Pedestrians, Pedestrian-vehicle interactions, pedestrian dilemma zone,
uncontrolled intersections, threshold limits, surrogate safety measures, support vector machine

classification, gap cumulative distribution.
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CHAPTER 1: INTRODUCTION

1.1 General

Transportation is a part in everyone’s day to day life, whether it be walking or vehicular
transportation or any other mode of transportation. Road transport provides mobility to people
and goods. However, it exposes people to risk of road accidents. For shorter distances, walking
iIs common across the world and it is the most preferable option in the developing countries
like India. Walking helps in order to save fuel consumption and environment from the
pollution. According to NHTS (National Household Travel Survey) national data 2001, the
number of walking trips decrease as the distance to travel increases and most number of
walking trips are possible at a distance of 0.26 miles to 0.50 miles. According to Census 2011
data, approximately 55.1% total worker trips in India are related to walking and approximately
70% of total workers choose to travel on foot when the work place or destination lies between
0-1 kilometres (Tiwari and Nishant, 2018). Figure 1.1 shows the distribution of trip length and
mode of transportation in India. The number of walking trips decreases year by year not only
due to increase in the vehicular volume but also due to neglecting importance of pedestrians

and their safety.

In the process of travelling, sometimes they may have to cross the road to reach their
destinations. Generally, pedestrians will cross the road at pedestrian crossing locations. Ideas,
thinking, and perception of people varies from person to person. Pedestrians are one of the
vulnerable road users and their safety is utmost important. The pedestrian risk taking behaviour
and driver yielding behaviour varies from person to person. There is a possibility of accidents
between the pedestrians and vehicles at these locations due to the misunderstanding between
them. Number and severity of these accidents also influence the GDP of the country.
Improvements in the pedestrian facilities and safety-related issues will help to reduce the
number and severity of accidents and improve pedestrian safety. This can be possible only with
better understanding of pedestrian road crossing behaviour and their interactions with vehicular

traffic.
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Figure 1.1: Distribution of trip length and mode of transport in India (Tiwari and Nishant,
2018).

1.2 Road accident statistics

Road accidents are one of the major reasons for loss of life or severe/minor injuries or property
damage and these are not constrained to a particular location on the globe. Human errors are
one of the major causes of road accidents and these errors include over speeding, distractions
to drivers, drunken driving, avoiding safety gears and red light jumping etc. Not only human
errors, other factors (weather conditions, road conditions etc.) also influence the road accidents
and a lot of research is going on to identify the factors which causes the road accidents.

1.2.1 Global road accident statistics

According to World Health Organization (WHO) road accident report 2018, road traffic injury
is the eighth leading cause of deaths for all age groups across the world and 1.35 million deaths
occurring each year due to road accidents. Among these, more than half of the deaths are
amongst pedestrians, cyclists, and motorcyclists who are the most neglecting part in road traffic
system design in many countries and the distribution of road traffic deaths across the world by
road user category are shown in figure 1.2. Across the world, the highest number of road



accident deaths are related to the motorized two and three wheelers (29%) followed by
passengers of four wheeled vehicles (28%), pedestrians (23%), others (17%), and cyclists (3%).
Over the last 15 years, the rate of road traffic deaths has remained fairly constant at around 18
deaths per 1, 00,000 population. Over the last few years, the reduction in road traffic deaths
varies significantly between the different countries of the world due to the variations in the
income levels. The risk of traffic deaths in low and middle income countries is 3 times higher

than that of high income countries.

m Pedestrians

m Cyclists
Motorized 2-3
wheelers

B Passengers of 4
wheeled vehicles

B Others

Figure 1.2: Distribution of deaths by road user type across the world (Source: World Health
Organization Report, 2018).

1.2.2 Road accident statistics in India

India is the second largest country in the world in terms of both population and road network.
With the growing number of vehicles and increase in road length, Indian roads are spattered
with blood as accidents resulting in injuries and fatalities have been mounting over the past
twenty years. There is one serious road accident occurs every minute and one death occurs
every four minutes due to a road accident in India. The GDP of any country is highly influenced
by the road accidents and India loses 3% of its GDP only due to the road accidents. As per the
statistics of the Ministry of Road Transport and Highways-2020 (MoRTH-2020), total road
accidents occurred, number of persons killed and number of persons injured over the last five
decades were shown in figure 1.3. A drastic decrease in the total number of accidents and
number of injuries, and almost equal number of road accident deaths every year from 2010 to
2020 was observed. This drastic change in the number of accidents and number of injuries is

due to the improvements in the road traffic issues for smooth traffic flow. In 2020, a total of



3,66,138 accidents occurred on Indian roads, which claimed 1,31,714 lives and caused 3,48,279
injuries. The number of persons killed in 2020 due to road accidents 12.6 per cent less than the

number of persons killed in road accidents during 2019.
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Figure 1.3: Decadal trend in the number of road accidents, deaths and injuries (Source:

http://morth-roadsafety.nic.in)
1.2.3 Road accident statistics at pedestrian road crossing locations

Pedestrian crossings are the locations where the pedestrians will cross the road safely than other
places. Generally, pedestrians will cross the road at intersections and mid-blocks crossings.
Intersections are the locations where there is a possibility of merging and diverging of traffic
and hence are prone to accidents. The share of road accidents by the type of traffic control in
India from 2018 to 2020 was shown in table 1.1. The road accident statistics from 2018 to 2020
reveals that the share of number of accidents, number of persons killed and the number of
persons injured at uncontrolled intersections were higher compared to other type of
intersections. In 2020, approximately 20% of accidents occurred at uncontrolled intersections
and around 8% of accidents occurred at other type of intersections. This large number of
accidents and persons killed at uncontrolled intersections were due to the lack of understanding
between the road users or lack of improvements in the crossing/diverging/merging facilities.
The percentage of number of accidents, number of persons killed and number of persons
injured in India from 2018 to 2020 with respect to type of intersection were shown in figures
1.4 to 1.6 respectively. According to the MoRTH (Ministry of Road Transport and Highways)

road accident statistics-2020, among the different types of intersections, T-intersections

4



accounted the highest number of accidents (10%), number of persons killed (8.4%) and number
of persons injured (9.7%) followed by four arm intersections, Y-intersections, staggered

intersections, and roundabouts respectively.

Table 1.1: Share of accidents at road intersections by type of traffic control in India: 2020

(Source: http://morth-roadsafety.nic.in)

Intersection Total accidents Persons killed Persons injured
type 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020
Uncontrolled | 24.4 | 206 | 195 | 21.9 19 179 | 233 | 194 | 184

_ Flashing 17 | 14| 2 | 18 | 15 | 18 | 16 | 12 | 19
signal/Blinker

Stop sign 14 14 1.6 1.6 1.6 1.5 1.2 1.2 1.5

Police 27 | 23 2 27 | 23 | 16 | 25 | 21 | 1.9
controlled
Trafficlight | 5o | 55 | 53 | 22 | 19 | 16 | 27 | 2 | 22
signal
Others 668 | 72 | 726 | 69.7 | 73.7 | 756 | 68.8 | 742 | 741
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Figure 1.4: Number of accidents (%) in India from 2018 to 2020 at intersections
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Figure 1.5: Number of persons killed (%) in India from 2018 to 2020 at intersections
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Figure 1.6: Number of persons injured (%) in India from 2018 to 2020 at intersections

The fatality rise is high for the pedestrians in the case of pedestrian-vehicle collisions compared
to vehicle-vehicle collisions. This has high impact on the pedestrians compared to the vehicles.
The share of pedestrian deaths due to pedestrian-vehicle accidents at pedestrian crossings in
India were shown in table 1.2 below. Figure 1.7 shows the share of pedestrian deaths in India
from 2013 to 2020. Despite some fluctuations, the pedestrian deaths are in increasing trend
over the last 10 years. Even though the number of accidents, number of persons killed, and the
number of persons injured were decreased over the years, the share of pedestrian deaths was



not decrease. This clearly shows the importance given to the pedestrians.

Table 1.2: Share of pedestrian deaths at pedestrian crossings in India: 2013-2020 (Source:

http://morth-roadsafety.nic.in)

Year 2020

Figure 1.7: Share of pedestrian deaths in India from 2013 to 2020

1.3 Surrogate Safety Measures (SSMs)

2019 | 2018 | 2017 2016 2015 2014 2013
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Accident frequency and severity are direct measures of road safety and accident data used to

measure the road safety. But the accidents are rare events and sometimes collection of sufficient

accident data is not possible. In the absence of accident data, surrogate safety measures (SSMs)

are used to predict and analyse the frequency and severity levels of possible potential traffic

conflicts using videography data. SSMs are indirect and complementary safety measures and

they don’t rely on the accident data. SSMs are more proactive, more accurate, more informative
and more time-efficient (Hyden, 1987). The basic definitions of widely used SSMs to predict

the frequency and severity levels of a possible potential traffic conflicts were discussed below.

i.  Time to collision (TTC): It was introduced by Hayward in 1971. It is defined as the time

to collision (seconds) when two vehicles continue their trajectory at the same speeds and

the same angle without any kind of evasive behaviours (Hayward, 1971). Figure 1.8 shows

7




the pictorial representation of TTC.

Wy

Figure 1.8: Pictorial representation of TTC definition (Hayward, 1971)
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Where, d1, v1, X1, w1 are the distance from conflict point, speed and width respectively for road

user 1 and dz, v2, X2, w> are the distance from conflict point, speed and width respectively for

road user 2.

ii. Post encroachment time (PET): It is the time difference between the first road user

leaving the conflict area and the second road user entering the conflict area (Allen

1978). Figure 1.9 shows the pictorial representation of PET.

Let, t1 be the time at which the first road used leaving the conflict area and t> be the

time for second road user to reach the conflict area.

PET=1t-1;

(1.5)
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Figure 1.9: Pictorial representation of PET definition (Allen 1978)

iii. Deceleration to safety time (DST): It is the necessary deceleration to reach a
nonnegative PET value if the movement of the conflicting road users remains
unchanged (Hupfer 1997).

iv. Gap time (GT): It is the time lapse between the completion time of encroachment by
one road user and the arrival time of the interacting road user if they continue with the

same speed and path (Archer 2004).

V. Risk indicator (RI): It is derived using PET and approaching speeds of vehicles by
Scholl et al. (2019). It is defined as the ratio of approaching vehicle speed over post

encroachment time.

Approaching Vehicle Speed
Post Encroachment Time (1.2)

Risk Indicator =

1.4 Pedestrian Dilemma Zone (PDZ)

When a pedestrian is crossing the road, he/she may try to find a sufficient gap and the decision
to stop/go depends on the available gap size. But sometimes pedestrian may get confused about
whether the available gap is sufficient to cross the road or not. This situation is known as the
dilemma of a pedestrian. This situation arises only when the vehicles are present within a
certain section of a roadway and this section is known as the pedestrian dilemma zone (PDZ).
Gap acceptance behaviour is the basic concept for dilemma zone analysis. PDZ is defined as

“the section of a roadway where the presence of vehicles creates a stage of confusion for
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pedestrians while crossing the road” (Pawar et al., 2016). It consists of upper and lower
boundary limits and the difference between these two limits is defined as the length of dilemma
zone. Figure 1.10 shows the physical location of a pedestrian dilemma zone for one approach
near an intersection. Do and D: are the lower and upper boundary limits respectively within
which pedestrians are in a stage of confusion to judge whether the available gap is sufficient
or not. There are several methods to estimate the dilemma zone using the filed data and the
basic procedures of various methods to estimate PDZ boundary limits were briefly discussed

below.

PDZ Length =D1 -D0

|

¢! .
I D0 = Lower limit of PDZ
|

D1 = Upper limit of PDZ

Bike o

P
_______ _----B----------_
¢ Pedesstria ¢ ,l* | Car | | Bus |
iRty Do
F D1

¢

Crosswalk

Figure 1.10: Location and length of pedestrian dilemma zone at an intersection

I Gap cumulative distribution (CGD) method: This method is proposed by Zageer
(1977) to estimate the dilemma zone boundary limits. In this method, a plot between
the cumulative percentage gap accepted/rejected on y axis and distance on x-axis is
plotted and then the distance on x-axis corresponding to 10 percentile accepted and 90
percentile rejected gaps on y-axis are taken as the lower and upper boundary limits of
dilemma zone respectively.

ii. Support vector machines (SVM) method: Pawar et. al. (2016) used to SVM
technique to find the dilemma zone boundaries at uncontrolled midblock crossing. In
this method, a plot between speeds of vehicles or pedestrians on y-axis and distances
of the vehicles from the pedestrian/vehicle trajectory paths on x-axis is plotted on a
coordinated system. A hyperplane is constructed as a decision plan to separate the

accepted and rejected gap sizes with maximum margin. The lower and upper limits of
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the dilemma zone are taken on the hyperplane corresponding to the plus or minus two
standard deviations from the mean speed.

iii. Binary logit method: This method has two alternative outputs (accept/reject) as it is a
discrete choice model. In this method, a binary logit model is developed using gap
accept/reject as dependent variable and various independent variables and the lower
and upper boundary limits of dilemma zone are estimated corresponding to the 0.1 and
0.9 probabilities.

iv. Probabilistic method: This method was proposed by Gazis et al. (1960) for estimating
the dilemma zone boundaries. A detailed procedure to determine the boundary limits
of dilemma zone is explained below.

a) Classification of speed bands: First the approaching speeds of vehicles or crossing
speeds of pedestrians are classified into bands.

b) Setting 10™ percentile and 90™ percentile boundaries classified speed bands:
Cumulative 10" percentile minimum accepted gaps and 90" percentile maximum
rejected gaps are determined for various speed bands. After that, mark the midpoint
of each speed band corresponding to the 10" percentile minimum accepted gaps and
90'" percentile maximum rejected gaps.

¢) Plotting profile: 10" and 90™ percentile profiles for the midpoints are fitted and then
lower and upper boundary limits of dilemma zone are taken on x-axis by projecting
the average speed over the profiles.

1.5 Need for study

Intersections are one of the major causes of road accidents and around 25-30% of total road
accidents in India are occurring at intersections only (MoRTH, 2020). According to the
MoRTH road accident statistics 2020 report, approximately 70% of total accidents at
intersections in India are occurring at uncontrolled intersections followed by signalized (10%),
police controlled (8%), stop sign (6%) and flashing signal/blinker (6%) intersections. This high
proportions of accidents at uncontrolled intersections in developing countries like India is
mainly due to the heterogeneous traffic conditions and difficulty in correct judgment while
crossing the road due to the large variations in vehicular speeds. 3-legged and 4-legged
uncontrolled intersections are the major locations of road accidents and they accounted for
more than 50% of total accidents at uncontrolled intersections. These road accident statistics
tells the amount of research needs to be carried out at 3-legged and 4-legged uncontrolled

intersections to explore the reasons behind these accidents.
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Despite some fluctuations, pedestrian deaths are increasing every year (MoRTH, 2020).
Intersections are one of the major pedestrian road crossing locations and they accounted for
around 24% of total pedestrian deaths at intersections in United States (National Highway
Traffic Safety Administration (NHTSA), 2020 report). This proportion may be higher in India
where the traffic is heterogeneous and non-lane based behaviour followed by the drivers. This
high proportions of pedestrian deaths at intersections are because of the higher severity levels
in pedestrian-vehicle (P-V) accidents because of the misunderstanding between vehicles and
pedestrians due to dilemma behaviour while crossing. A better understanding of P-V
interactions is required to provide better pedestrian facilities at intersections to reduce the safety

related issues.

In the past, the researchers identified various factors affecting the severity levels of P-V
interactions using accident data and surrogate safety measures (SSMs). They also proposed the
threshold limits for various severity levels of P-V interactions using either pedestrian or vehicle
characteristics. But the severity depends on both pedestrian and vehicle characteristics.
Determining the threshold limits for various P-V interaction severity levels using both
pedestrian and vehicle characteristics will better correlate the actual severity in P-V interaction

analysis and modelling.

The dilemma behaviour of pedestrians while crossing is also one of the major reasons for P-V
accidents. Misjudgement due to the dilemma behaviour of pedestrians when the vehicle lies
within a certain zone will cause the P-V accidents. Providing the lower limit (unsafe gap) and
upper limit (safe gap) for this dilemma behaviour of pedestrians (known as pedestrian dilemma

zone (PDZ)) will improve the gap acceptance behaviour and safety.
1.6 Objectives of the study
The objectives of the present research are:

1. To determine the threshold values of SSMs for various severity levels of pedestrian-
vehicle (P-V) interactions at uncontrolled intersections under mixed traffic conditions.

2. To develop P-V interaction severity model at uncontrolled intersections under mixed
traffic conditions.

3. To estimate and model the pedestrian dilemma zone (PDZ) boundaries at uncontrolled

intersections under mixed traffic conditions.
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1.7 Outline of the thesis

Chapter 1 details incudes with the global road accident statistics, road accident statistics in
India, introduction on surrogate safety measures pedestrian dilemma zone, need, and objectives

of the present study.

Chapter 2 presents the literature review of previous research carried out on pedestrian road
crossing behaviour, P-V interaction analysis and modelling using SSMs and accident data, and

pedestrian dilemma zone.

Chapter 3 presents a detailed methodology adopted for the present study with the help of a
flow chart.

Chapter 4 presents the selection of study locations, and collection of traffic data from the field

using video graphic method.

Chapter 5 deals with the extraction of required pedestrian and vehicular data from the video.
This chapter also presents the field data analysis carried out on sample size of P-V interactions,
pedestrians and vehicular speeds, and distances of vehicles from pedestrian trajectory paths at
3-legged and 4-legged uncontrolled intersections.

Chapter 6 presents the development of threshold values of surrogate safety measures to

classify various severity levels of pedestrian-vehicle interactions at uncontrolled intersections.

Chapter 7 presents the development of pedestrian-vehicle interaction model at 3-legged and

4-legged uncontrolled intersections.

Chapter 8 presents the estimation, analysis, and modelling of pedestrian dilemma zone at

uncontrolled intersections under mixed traffic conditions.

Chapter 9 deals with the summary, conclusions, major contributions, limitations and future

scope of the present research
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CHAPTER 2

LITERATURE REVIEW

2.1 General

In the present chapter, a detailed review of past research work carried out on the pedestrian risk
analysis, interactions of pedestrians with vehicular traffic and dilemma zone estimation,
analysis and modelling are presented. The review of earlier research work in the present study
is helpful to understand the amount of research carried out in the past and to find the gaps in
the earlier works related to pedestrian-vehicle interactions and dilemma zone analysis and
modelling. In the light of the scope of the study, the literature review has been done under three
heads, namely, (i) Studies on pedestrian road crossing behaviour and risk analysis, (ii) Studies
on pedestrian-vehicle interactions analysis and modelling, and (iii) Studies on dilemma zone
analysis and modelling.

2.2 Studies on pedestrian-vehicle interaction analysis and modelling

In the absence of crash data, SSMs are used to predict the severity levels of possible potential
interactions between vehicle-vehicle and pedestrian-vehicle. There are several safety indicators
to measure the severity levels and many of them are derived from similar concepts. This section
deals with the previous studies which uses the SSMs to analyse and model the number and
severity of P-V interactions. This section also, deals with the previous studies which analysed

and modelled the P-V interactions using crash data.

Lord (1996) carried out an analysis on the interactions between left turning vehicles and
pedestrians at intersections with aid of traffic conflict techniques and compared the traffic
conflict rate between Cross intersections and T-intersections by collecting data from 8 locations
in Canada. Surrogate safety indicators such as Time to Collision (TTC) and Post Encroachment
Time (PET) were used to analyse pedestrian conflicts with traffic. TTC values < 1.5 seconds
and PET values < 3.0 seconds were considered as severe conflicts. A multivariate accident
prediction model was developed involving pedestrian and vehicle flows. It was concluded that

T-intersections were more dangerous than Cross intersections due to high conflict rate.

Maki et al. (2002) analysed the P-V accidents and found that the risk of fatal accidents depends
on the vehicle type (increases in the order of sedans, SUVs, and minivans). The number of
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fatalities per 1000 accidents were higher for pedestrians compared with bicyclists. The
frequency of leg injuries was also higher in case of pedestrians. Also found that severity of
bicycle head injuries greatly affected by front-end geometry of vehicles and the cause of fatal

injuries in case of minivans were less compared to Bonnet-type vehicles for the same velocity.

Roudsari et al. (2004) compared the injury severity of pedestrian-light vehicle (P-LVT)
crashes with pedestrian-passenger vehicles. Pedestrian crash data was collected from 1994 to
1998 in six cities in USA and carried out the analysis. The study results showed that adults
struck by LTVs had higher risk of moderate injury than those struck by either van or passenger
vehicle. The study observed that the severity of pedestrian injury drastically varies with vehicle
design. The probability of death for pedestrians struck by passenger vehicles was significantly

lower than for those struck by LTVs.

Salifu (2004) developed the flow-based accident prediction models for un-signalized urban
intersections in Ghana. A three years accident data from 1996 to 1998 was collected at 91 un-
signalized intersections in Ghana. Also, collected the traffic and road geometry data at each
intersection and developed Negative Binomial models at X and T intersections separately to
predict the accident frequency. This study observed that the most influential traffic exposure
factors for X-intersection and T-intersection accidents were sum of crossing flow products and
cross product of major and minor road traffic inflows respectively. The developed flow-based

models for T-intersections better explained than that of X-intersections.

Lee and Abdel-Aty (2005) examined pedestrian-vehicle crashes based on crash data collected
at intersections in Florida. Pedestrian-vehicle crash data was collected over four years (1999-
2002) from Florida Department of Highway Safety and Motor Vehicles and carried out the
frequency analysis. A second order log-linear model was developed to estimate the number of
pedestrian crashes and the general form of developed model shown in equation 2.3 below. This
study concluded that the frequency and injury severity of pedestrian crashes depends on traffic
condition, road geometrics, environmental conditions and driver demographic factors. Middle
aged pedestrians and drivers were subjected to more pedestrian crashes compared to other age
and gender groups and trucks, vans, and buses have a smaller number of crashes than passenger
cars. Pedestrian crashes were observed to increase with the increase in average traffic volume.
On divided roads, a smaller number of crashes occurred with less number of lanes compared

to undivided roads with more number of lanes.
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Ismail et al. (2009) analysed the P-V conflicts using video data in Canada. The video data was
collected from an intersection in British Columbia, Canada and extracted the conflict indicators
(TTC, PET, GT, and DST) from the video. The study identified that a combination of indicators
proved to be useful for identification of traffic conflicts.

Kaparias et al. (2010) proposed a new technique to analyse the P-V interactions. The proposed
method can be used for conventional roads as well as shared space environments. The video
data was collected using video graphic method. The conflicts were estimated using the newly
developed Institute of Highways and Transportation Conflicts Technique (IHTCT) and the
results were compared with the existing techniques to check the accuracy and functionality of
the new technique. The study found that the newly developed technique estimated the similar
results with the Swedish Traffic Conflicts Technique (STCT).

Amin et al. (2014) developed a pedestrian crossing behaviour model at uncontrolled
intersection using adaptive neuro fuzzy inference system in India. Pedestrian age is the most
significant parameter in crossing behaviour compared to other parameters and type of
conflicting vehicle has the least effect on decision process.

Haleem et al. (2015) analysed the crash injury severity of pedestrians at non-signalized and
signalized intersections. Three years (2008-2010) pedestrian crash data at intersections on state
highways was collected in Florida and severity levels were collected intro five categories.
Mixed logit models have been developed separately for non-signalized and signalized
intersections using crash injury severity as dependent variable to know the various factors
affecting the crash severity of pedestrians. The model results showed that speed limit,
percentage of trucks, AADT (average annual daily traffic), lighting conditions, weather, and
at-fault pedestrians were significantly affecting the crash injury severity of pedestrians at
signalized intersections and pedestrian age, speed limit, pedestrian manoeuvre before crash,
heavy vehicles, dark lightning conditions, crosswalk type and dry road surface condition
significantly affect the crash injury severity at non-signalized intersections. The severity of
pedestrian crash injury at signalized intersections increases with increase in percentage of
trucks. The severity at both non-signalized and signalized intersections increases with the

increase in speed limit.

Chen and Wang (2015) simulated the P-V interaction using cellular automata (CA) and found
that the vehicle delay was not significantly affected by the small number of pedestrian flow
because of the interruption to the vehicle flow is minimal. The average waiting time of the

16



pedestrians was reduced at low vehicle flow which allows large gaps between the vehicles for
pedestrian crossing and also decreases with the increase in the number of pedestrian crossings.
The road way capacity for the vehicles decreases with the increase in the number of pedestrian

Crossings.

Zheng et al. (2015) developed a model for pedestrian-vehicle interaction outside the
crosswalks using micro simulation in United States and found that presence of bus stations,
pedestrian and vehicle volume, and crossing distance highly influence the jaywalking events.
The number of jaywalkers were affected by the number of pedestrians along the sidewalk. The
distance between the crosswalks shows the positive correlation with the number of jaywalking
events. The average yielding rate to the pedestrians at permissible crossings were higher than

that of jaywalkers.

Fu et al. (2016) evaluated pedestrian safety at un-signalized crossings during night time based
on pedestrian-vehicle interaction data collected by thermal video systems mounted on an
adjustable mast nearby to study location. Post Encroachment Time (PET) was taken as the
surrogate safety measure to evaluate the pedestrian safety. It was concluded that the pedestrian
crossing speeds and percentage of dangerous conflicts (PET < 1.5s) would be higher at night

times compared to day times.

Gorrini et al. (2016) developed a model to analyse the P-V interactions at urban unsignalized
intersections. Video data was collected from an urban unsignalized intersection in Italy and
extracted the required data from the videos. The study observed that the elderly pedestrians

walk slowly than adults due to the decline of locomotion and perceptive skills linked to aging.

Mejias et al. (2016) studied the relation between pedestrian-driver based factors and risk
related to pedestrian collisions in Spain. Logistic Regression method was developed to
determine the factors affecting pedestrian-vehicle crashes. It was identified that male, young
(<18years) and old (>65 years) pedestrians were at pedestrians at higher risk and driving under
the influence of alcohol, driving without a license and large sized vehicles were at higher risk

among drivers.

Ni et al. (2016) evaluated the pedestrian safety at intersections using three interaction patterns
approach in China. The video data was collected from four intersections in China and trajectory
data was extracted from the videos using Traffic Analyzer. The analysis was carried out on P-

V interactions using TTC (time to collision) and GT (gap time) as surrogate safety measures.
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The interactions were classified in to hard interactions, no interactions, and soft interactions
based on the trend of TTC and GT. The proposed method for P-V interactions is helpful to
better understanding the safety from behavioural perspective.

Almodfer et al. (2017) developed a novel indicator in evaluating pedestrian-vehicle conflict
analysis named as Lane based Post Encroachment Time (LPET). The study location was
marked non signalised crosswalk in Wuhan, China. Based on the indicator LPET values, the
conflicts were classified into three major categories namely serious, slight, and potential
conflicts. From the analysis it was observed that the pedestrian-vehicle lane-based conflicts
seemed to be not evenly distributed. The number and severity of conflicts increases with the
pedestrian waiting time and position of lane (starting from the entry lane). The number and
severity of conflicts would be higher in case of farther lanes compared to nearer lanes.
Pedestrian walking speeds were dependent upon the lane position, and stages of crossing but

not on the severity of the conflict.

Chen et al. (2017) analysed the P-V conflicts at intersections in China using unmanned aerial
vehicle videos. The aerial video data was collected from the study location and the pedestrian
and vehicle trajectory paths were extracted for 1494 pedestrians and 282 right turning vehicles.
PET and RTTC (relative time to collision) were calculated for each P-V interaction and the
results were compared between the pedestrian passing first (PPF) and vehicle passing first
(VPF). This study found that the VPF was more dangerous than PPF. This is due to the no
yielding behaviour of both pedestrians and vehicles to each other and the vehicle tries to

accelerate to pass the conflict area first.

Ma et al. (2017) investigated the factors influencing the pedestrian injury severity (PIS) at
intersections. 12 independent variables (pedestrian age, pedestrian gender, driver gender,
vehicle type, number of vehicles, point of first contact, traffic type, road condition, divided
type, weather condition, traffic control device condition, and hit-and-run related) were found
significantly related to PIS in case of young driver model, 7 independent variables (pedestrian
age, vehicle type, number of vehicles, point of first contact, traffic type, roadway geometry,
and weather condition) were significantly related to PIS in case of middle age driver model and
10 independent variables(pedestrian age, driver license state, vehicle type, vehicle manoeuvre
prior to the crash, point of first contact, lighting condition, divided type, intersection type,
weather condition, and hit-and-run related) were significantly related to PIS in case of older

driver model.
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Shah and Vedagiri (2017) developed a surrogate safety methodology to assess the pedestrian
safety based on post encroachment times (PET) of pedestrian-vehicle interactions. Data was
collected from an uncontrolled intersection in Mumbai, India using video graphic method and
required data extracted manually from the video. A Binary Support Vector Machine (SVM)
algorithm was developed to find the threshold PET values based on three categories of conflict
types as highly severe, severe and normal conflicts. Also, this study suggested the threshold
PET values based on pedestrian gender and crossing speeds. The proposed threshold PET
values for highly severe conflicts were 0.85 sec and 0.80 sec in case of male and female
pedestrians respectively. The threshold PET values for normal conflicts were 1.7 sec and 1.65

sec in case of male and female pedestrians respectively.

Fu et al. (2018) evaluated the pedestrian safety at unsignalized intersections using a novel
framework (distance-velocity (DV) model). Pedestrian and traffic data was collected using
video graphic method and extracted trajectory data using tracker software. The study found
that the proposed model better explains P-V interactions compared to other traffic conflict
techniques. The performance of pedestrian safety at unprotected crosswalks was low due to the
lowest yielding compliance. The proposed model can be used for simulation of P-V
interactions, safety monitoring, and treatment evaluation. The study also found that the
unprotected crosswalks perform worst for pedestrian safety than stop sign-controlled

crosswalk.

Hsu et al. (2018) proposed an MDP model to analyse the P-V interactions at unsignalized
intersections in United States. A autonomous vehicle capable of a human controlled vehicle
was created to simulate and developed the MDP model that needs to avoid collision. The
pedestrian crossing behaviour model was compared between when there is some divergence
and actually occurs. The study found that the safer interactions when pedestrians behaves

similarly to the model assumed within the MDP.

Chen et al. (2019) analysed the right-turning pedestrian-vehicle interactions at intersections
using microscopic simulation. Video data was collected from two urban intersections in China
using unmanned aerial vehicle (UAV) and extracted the required data from the videos. Various
models (vehicle maneuver model, path model, speed profile model, gap acceptance model,
pedestrian behaviour model, desired direction model, and modified social force model) were
developed and the validated the developed models. Post encroachment time (PET) was used as

the surrogate safety measure. The study found that the safety at intersections was worst due to
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the larger dimensions and turning angles of intersections. For similar turning radii and

crosswalk setback distances, 90-degree angle perform safer operations than 120-degree angle.

Scholl et al (2019) developed a surrogate video-based methodology for measurement and
evaluation of pedestrian safety. Multiple Linear Regression model was developed by defining
a novel surrogate safety measure termed as ‘Risk Index’ which is generated using Vehicle
Speed and Post Encroachment Time (PET) for conditions of before and after applying traffic
calming measures and the effectiveness of these measures were compared. This study
concluded that motorcycles pose a serious threat to traffic safety compared to other vehicle
types. Multilane roundabouts were most dangerous intersections across all safety indicators

compared to all other intersection types.

Amado et al. (2020) reviewed the P-V interactions at unsignalized intersections. The study
identified 381 studies and only nine studies were considered in this study. From each study,
the type of methodology used for data collection, and typed of model used for the analysis were
extracted and presented in this study. The review shows that videographic technique was
mostly used for collecting the P-V interaction data using video cameras. The review observed
that speed of vehicles, pedestrian attitude, adjacent yields, and the number of pedestrians
waiting at crosswalk were mostly used in the micro simulation models. The review also
observed that the heterogeneity of vehicles, pedestrians, drivers, and road environment were

not considered in the modelling of P-V interactions.

Kathuria and Vedagiri (2020) evaluated the pedestrian-vehicle interaction dynamics at un-
signalized intersections in India using SSMs (TTC, GT (gap time) and PET). Video data was
collected from four un-signalized intersections in India and extracted the required data using
Kinovia software. The analysis was carried out based on the evasive action taken by the
pedestrian and vehicle. Two types of patterns were categorized using SSM indicators like TTC,
GT and proposed a threshold value of SSMs for each pattern. The proposed threshold values
of TTCmin and PET in this study were shown in table 2.1. The study observed that the number

of critical interactions were higher in case of pattern 1 compared to pattern 2.
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Pattern 1

TTC and GT (s)
TIC/GT (s)

Time (s)

Time (s)

(a) (b)
Figure 2.1: TTC and GT profiles of (a) Pattern 1 (b) Pattern 2

Pattern 1: TTCmin and GTmin Were occur simultaneously for all categories of vehicles. In this
case, both or either pedestrian or vehicle take an evasive action.

Pattern 2: A clear distinction was observed between the occurrence of TTCmin and GTmin. In

this case, neither pedestrian nor vehicle takes evasive action.

Table 2.1: Threshold values of TTCwin and PET for various P-V interaction severity levels

Pattern Safe passage Mild interaction Critical interaction
type TTCnmin PET TTCnmin PET TTCnmin PET
(seconds) | (seconds) | (seconds) | (seconds) (seconds) | (seconds)
Pattern 1 >2.5 - 1.2t02.5 - <12 -
Pattern 2 >2.3 >2.6 1.3t02.3 1.0t0 2.6 <13 <1.0

Olszewski et al. (2020) proposed a novel surrogate safety indicator as a dangerous encounter
index based on video graphic data collected from un-signalized pedestrian crossings.
Pedestrian-vehicle encounters were classified into 4 categories. This study developed the
relationship between dangerous encounter index and the severity of pedestrian-vehicle
conflicts. The severity of conflicts increases with the increase in dangerous encounter index

and the risk-taking behaviour of pedestrians also increases.

Santhosh et al. (2020) evaluated the pedestrian safety at intersections through comparing the
frequency and severity of pedestrian conflicts. The study was conducted at T and X-

intersections under mixed traffic conditions in India. Traffic data was collected from the study
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locations using videographic method and extracted the required data from the videos.
Pedestrian vehicle conflict analysis (PVCA) method and VISSIM microsimulation were used
to analyse the P-V interactions. The study found that the reduction in number of conflicts with
the reduction in many pedestrian crossings to two crossings. The PVCA method showed that

uncontrolled intersections were unsafe than controlled intersections.

Madigan et al. (2021) proposed a new methodology for understanding the P-V interactions of
field and video data. On-site and video data were collected at an intersection in United
Kingdom in weekdays. Intrerrater reliability was estimated using the index of concordance and
compared between the two video coders before and after their joint analysis. The study found
that the proposed observation protocol provided a consistent method for identifying interaction

categories.

Muppa et al. (2022) analysed the P-V interactions at un-signalized intersections in India. The
traffic data was collected at a four-legged uncontrolled intersection in Telangana, India using
video-graphic method. The required data was extracted from the video using an automatic
tracking software. TTC and GT were calculated for each interaction type and carried out the
analysis for PPF and VPF cases. Higher values of TTC and GT were observed in case of PPF
compared to VPF. This study found that the severity of P-V interactions were higher in case of
VPF compared to PPF. Also, this study proposed the threshold values of TTC for various
severity levels. The threshold TTC for critical, nominal, and safe P-V interactions at un-
signalized intersections under mixed traffic conditions were <2.0 sec, 2.0 to 6.0 sec, and >6.0

sec respectively.

Table 2.1: Surrogate safety measures or indicators used in various studies.

S.No. Indicator Study used

1 Time t Jiang (2015); Hayward (1972); Hyden (1987); Fancher et al.
ime to
o (1998); Getmann et al. (2008); Ismail et al. (2009); Zhang
collision (TTC) )
et.al (2012); Patel et al. (2018); Nie et al. (2021)

2 Shah and Vedagiri (2017); Marisamynathan and Vedagiri
Post (2020); Alhajyaseen (2015); Allen et al. (1978); Getmann et
encroachment al. (2008); Ismail et al. (2009); Patel et al. (2018);
time (PET) Chandrappa et al. (2015); Fu et al. (2019); Goyani et al.
(2019)
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3 Deceleration to Ahmed and Tarek (2018); Hupfer (1997); Ismail et al.
safety time (2009); Ismail et al. (2010); Bagdadi & Varhelyi (2011); Zaki
(DST) etal. (2014)
4 Gap time (GT) Archer (2004); Ismail et al. (2009)
5 Time to zebra _
Varhelyi (1998)
(TT2)
6 Time to vehicle
Kumar et al. (2019)
(TTV)
7 Time to accident
Kumar et al. (2019)
(TTA)
8 Pedestrian
safety margin Almodfer et al. (2016); Hu et al. (2021)
time (PSMT)
9 Pedestrian risk )
o Cafiso et al. (2011)
indicator (PRI)
10 Delta-V Augenstein et al (2003); Ryb et al. (2007)
11 Extended Delta-
Laureshyna (2017)
\
12 Time-to-Line ]
) Winsum et al. (2000)
crossing (TTLC)
13 Reciprocal of _
Chin et al. (1992)
TTC
14 T2 Laureshyn et al. (2010)
15 Time Exposed
Time-to- Minderhoud and Bovy (2001)
collision (TET)
16 Time Integrated
Time-to- Minderhoud and Bovy (2001)
collision (TIT)
17 Relative time to
collision Zhang et.al. (2012); Chen et al. (2017)
(RTTC)
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2.3 Studies on pedestrian gap acceptance behaviour, dilemma zone analysis and
modelling

Previous works conducted on pedestrian gap acceptance behaviour, and dilemma zone
estimation and modelling are discussed in this section. Section 2.3.1 deals with the previous
studies on pedestrian gap acceptance behaviour and section 2.3.2 deals with the dilemma zone

estimation, analysis, and modelling.

2.3.1 Studies on Pedestrian gap acceptance behaviour

Harrel (1990) studied the factors influencing pedestrian cautiousness in crossing an
intersection. Pedestrian cautiousness was measured based on distance measured from the stood
pedestrian to the curb and pedestrian observation before crossing. It was concluded that older
adults and women were observed to be more cautious. It was also observed that pedestrians

were cautious at low traffic volumes as vehicles possess more speeds.

Keall (1995) studied the pedestrian exposure to risk of road accident in New Zealand. The
information related to type of pedestrian activity was collected from the New Zealand Travel
Survey and the analysis has been carried out. The study found that the pedestrian crossing time
was higher for elder and young pedestrians compared to other age pedestrians. Female
pedestrians spent higher crossing time than male pedestrians and the frequency of road crossing
declines with increase in age. The risk of injury was significantly lower in case of pedestrian

crossing at zebra crossings than crossing at other places.

Hamed (2001) analysed the behaviour of pedestrian while crossing the road. The pedestrian
risk is higher as the pedestrian is closer to the central refuge island rather than near to the curb.
Pedestrians, who involved in past traffic accidents tend to take less risk and take higher waiting
time. Pedestrians waiting time and number of attempts to cross were affected by vehicle speeds

and traffic volume.

Sun et al. (2003) developed the pedestrian-vehicle interaction model at uncontrolled midblock
crosswalks in United States. Videography method was used to collect the data from
uncontrolled midblock at the University of Illinois. For pedestrian gap acceptance behaviour
fixed critical gap model, probability-based model, binary logit model and for motorist yielding
behaviour discrete probability model, binary logit model were proposed. The results showed
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that pedestrian gap acceptance behaviour depends on group size, waiting time, and age of
pedestrians and motorist yielding behaviour depends on vehicle type, number of pedestrians
and age of motorist. PGA (pedestrian gap acceptance) binary logit model performs well for
predicting gap acceptance of pedestrians compared to probability based model and critical gap
model. Gap size, age of pedestrians and number of pedestrians waiting were used in PGA
model and number of pedestrians waiting and type of vehicle were used in MOY (motorist to
yield) model. In case of MOY model, binary logit model performs well compare to discrete

probability model.

King et al. (2009) investigated the risk associated with illegal or noncompliance pedestrian
crossing behaviour at intersections based on crash data in Australia. The analysis was carried
out by comparing relative risks in different types of crossing patterns. It was concluded that the
relative risk was 8 times higher in the case of illegally crossing pedestrians.

Yannis et al. (2010) carried out a study in Athens, Greece and developed a Multiple Linear
Regression Model involving parameters such as the size of the vehicle, presence of illegally
parked vehicles, space between the vehicle and the pedestrian. From the study results, it was
observed that the pedestrian crossing decisions were much more influenced by the distance
from the incoming vehicle than the vehicle speed. Among all vehicle types, the probability of

rolling gap acceptance decreases in case of two wheelers is approaching vehicle.

Papadimitrou et al. (2012) studied pedestrian exposure to risk in relation to crossing
behaviour by developing utility functions for pedestrian crossings at midblock, junction and no
crossing conditions. Pedestrian behaviour, as well as pedestrian exposure to risk, was primarily
influenced by parameters such as traffic volume, roadway width and walking speeds. It was
observed that the microscopic approach of analysis was much effective than the macroscopic

approach to evaluate pedestrian exposure to risk.

Jain et al. (2014) analysed the pedestrian crossing behaviour with respect to pedestrian
demographics as well as pedestrian road crossing patterns. Crossing speeds, accepted gap sizes
and safety margin for gaps were found from video graphic data collected from un-signalized
intersections at Roorkee, Uttarakhand. This study observed that most of the pedestrians tend to
take single stage perpendicular crossings. Female and older pedestrians have higher accepted

gap time and safety margin compared to other pedestrian categories.

Liu and tung (2014) analysed the pedestrian road crossing decisions at uncontrolled
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intersections. Data was collected from the study locations using video graphic method and
developed a logistic regression model to analysis the risk of pedestrians with respect to various
dependent variables. This study observed that the pedestrian crossing decision depends on the
distance between the pedestrian and the oncoming vehicle and vehicle speed. Pedestrian risk
increases with the increase in vehicle speed. Young pedestrians cross the road safely compared
to elder pedestrians. The time gap between two approaching vehicles also affects the pedestrian

crossing decision.

Asaithambi et al. (2016) studied pedestrian road crossing behaviour under mixed traffic
conditions. The study was carried out to compare the intersection performance after and before
the implementation of control measures. The pedestrian and traffic data were collected from
the uncontrolled intersections using videography method before and after installation of
signals. The results showed that accepted pedestrian gap size mainly depends on pedestrian
demographics (such as gender, age and crossing pattern) as well as traffic characteristics (such
as vehicle speed, vehicle type, and traffic volume). A Multiple Linear Regression model (MLR)
gap size model was developed for both before and after installation criteria of signals. The
average crossing speed of pedestrians was decreased after the installation of signals.
Installation of signals results in a decrease in accepted gaps in both male and female

pedestrians.

Boroujerdian et al. (2016) developed a logit model for pedestrian gap acceptance at un-
signalized crosswalk conflict zone. The results showed that the parameters like pedestrian
distance to vehicle lane, vehicle speed change, pedestrian age, pedestrian speed, and vehicle
position to the start point of pedestrian were affected the pedestrian gap acceptance behaviour.
The parameters like waiting time, vehicle type, group size, and lag or gap were not effective in
pedestrian gap acceptance behaviour.

Dutta and Vasudevan (2017) studied the pedestrian crossing behaviour and risk exposure due
to heterogeneous vehicles and lack of lane discipline. Data was collected from the un-
signalized intersections having different land use patterns. This study observed that the rolling
behaviour was higher in case of male pedestrians compared to female pedestrians indicating
the exhibition of more risk in case of male pedestrians.

Muley et al. (2017) analysed the pedestrian crossing behaviour at marked crosswalks on. Qatar
using videographic method and extracted the headways of pedestrians and vehicles. The study
found that the waiting behaviour of pedestrians was independent on pedestrian characteristics
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and depends only on traffic characteristics. The pedestrian crossing speed was significantly
affected by the gender, group, and distraction. The yielding behaviour was affected by the
crossing direction and not depends on gender. Pedestrians Crossing from the sidewalk to the
intersection required additional waiting time, which led to greater yielding rates.

Sucha et al. (2017) analysed pedestrian-driver communication and decision strategies at
crosswalks. The study made in homogenous traffic conditions. The study was conducted to get
pedestrians and driver perceptions while crossing the intersection. Pedestrian behaviour and
speed measurements were recorded with video graphic techniques. Data were extracted |
pedestrian’s parameters like vehicle distance from the crosswalk, age, gender, pedestrian
densities. The questionnaire ware prepared to know the level of difficulty while crossing the
zebra crossing. The decision of pedestrians to wait/go was influenced by the distance of vehicle

from crosswalk, speed of vehicle, direction travel, and the presence of other pedestrians.

Ravishankar and Nair (2018) analysed the pedestrian risk at uncontrolled intersections under
mixed traffic conditions in India. Data was collected from the study locations using video
graphic method and extracted the pedestrian crossing behaviour data manually from the video.
The study observed that the irregular crossings were more in case of middle age pedestrians
compared to young and old age pedestrians. The statistical results showed that male and middle
aged pedestrians have the least tendency to wait for suitable gaps and take more risks to cross
the road. Pedestrians choose the rolling gap behaviour when there was a heavy traffic condition
instead of waiting for suitable gaps.

Ramesh et al. (2018) developed a pedestrian gap acceptance model based on land use pattern
and estimated the delay at midblock locations and intersections under mixed traffic conditions.
The video data was collected from midblock locations and intersections using videographic
method and extracted the required data using KM player. The study found that the pedestrian
crossing speed was influenced by the pedestrian characteristics such as age and gender, traffic
volume, number of traffic lanes, road geometry, and land use pattern. Female pedestrians

exhibit lesser crossing speeds than male pedestrians.

Vasudevan et.al (2020) studied the gap acceptance behaviour at un-signalised intersections in
India under heterogeneous traffic conditions. Data was collected from six intersections and
extracted the required data. A binary logit model was developed to know the various factors
affecting the gap acceptance behaviour of pedestrians. The study found that the size of critical

gap reduces with the pedestrians accept the rolling gaps to cross the intersection. The pedestrian

27



crossing behaviour was strongly affected by the peer pedestrians. The pedestrian gap
acceptance behaviour was influenced by the presence of median, distractions, waiting time,

and approaching vehicle composition.

2.3.2 Studies on pedestrian dilemma zone analysis and modelling

Gates et al. (2007) analysed the driver’s behaviour in dilemma zone at intersections in USA.
Video data was collected from six intersections and extracted the required data using Sony
Vegas Video 6.0 software. This study concluded that the maximum breaking performance by
the driver is not necessary when the vehicle lies within the dilemma zone. Also, this study
found that the driver’s decision to stop/go within the dilemma zone is depends on the presence
of side-street vehicles, pedestrians, or presence of opposite left turning vehicles and the action

of vehicles in adjacent lanes.

Oda et al. (2007) evaluated the driver’s stopping behaviour in dilemma zone using KAKUMO
traffic flow simulator and found that the vehicle’s distance from the stop line heavily influence
the driver’s decision in dilemma zone. Also, observed that no significant difference in

approaching speeds of passing and stopped vehicles.

Gates and Noyce (2010) studied the effect of vehicle type, platooning, and time of the day on
the driver’s behaviour in dilemma zone at intersections in USA. Video data was collected from
six intersections and extracted the required data. From this study, it was concluded that the
vehicle type and time of the day have a significant effect on the occurrence of red light running
and deceleration rate but platooning has no significant effect on the red light running, break
response, and deceleration rate. Passenger vehicles were 3.6 times less likely to commit red
light running compared with tractor trailers and 2.5 times less likely to commit red light running

compared with single unit trucks.

Pawar et al. (2016) estimated the pedestrian dilemma zone (PDZ) at high-speed uncontrolled
midblock crossing locations under mixed traffic conditions. The video data was collected from
two midblock locations in India and extracted 1107 pedestrian observations using AVS video
editor. Lower and upper boundary limits of PDZ were estimated using various methods and
the average values from all the methods were taken as the lower and upper boundary limits of
PDZ. The observed lower and upper boundary limits of PDZ at high-speed uncontrolled
midblock locations were 49.5m and 62.0m respectively.
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Pawar and Patil (2017) estimated the boundary limits of minor-street vehicles while
maneuvering at unsignalized intersections. The video data was collected from three four-legged
medium speed (40km/h) unsignalized intersections and one three-legged high speed (60km/h)
unsignalized intersection in India. A binary logit model has been developed to estimate the DZ
boundary limits corresponding to 10% and 90% probabilities of stopping. The study results
showed that the DZ location and length vary with the light condition, traffic, and geometric
characteristics. The length of DZ varies from 74 to78 m for high-speed intersections and 22 to
26 m for medium-speed intersections. The study found that the length and location of DZ
moves farther from the intersection as size and speed of vehicles increases. Table 2.2 shows
the Proposed DZ boundary limits at three-legged and four-legged unsignalized intersections

for various approaching speeds of vehicles.

Table 2.2: Dilemma zone boundary limits at unsignalized intersections

) Approach Speed Probability of stopping
Intersection Type

(Km/h) 10% 90%

25 14 40

Four-legged 35 23 48

45 32 58

50 28 104

Three-legged 70 50 124
90 72 150

Pawar et al, (2020) modelled the dynamic distribution of dilemma zone at intersections in
heterogenous traffic conditions in India. A total of 893 drivers’ responses and vehicle
trajectories were recorded using videographic method at three intersections. The recorded
videos were processed using Advanced Video System (AVS) video editor. A binary logit
model has been developed to find the probability of stopping and the boundary limits of DZ
were estimated using the model corresponding to 10% and 90% stopping. McFadden’s pseudo-
R?, sensitivity, and specificity were used as the performance measures of the developed model.
The study found that the location of DZ shifts way from the intersection with increase in speed
and size of vehicles and the length of DZ substantially vary with speed and size of vehicles.

The dilemma zone on lane 2 shifts away from the intersection compared to DZ on lane 1 and
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the length of DZ was same on lane 1 and lane 2. Table 2.3 show the DZ boundary limits

proposed in this study for various speeds of the vehicles.

Table 2.3: Dilemma zone boundary limits for different vehicular speeds at intersections.

Approach TW Car Truck Intersection
Speed
10% 90% 10% 90% 10% 90% 10% 90%
(km/h)
40 13 56 4 56 21 48 9 55
60 21 64 20 72 35 62 22 68
80 29 72 34 89 48 72 35 81

Pawar and Yadav (2022) developed the logit models to estimate the lower and upper
boundary limits of PDZ at uncontrolled midblock sections in mixed traffic conditions. Field
data was collected from two midblock locations in India and extracted the required data. PDZ
boundary limits were estimated using cumulative gap distribution method and binary logistic
regression model was developed to estimate the boundary limits using various characteristics
of pedestrians and vehicles. This study observed that the type of vehicle, pedestrian type, and
crossing speed were significantly affect the pedestrian gap acceptance behaviour. The binary
logit model results reveals that the approaching speed of vehicle and distance between the
vehicle and pedestrian trajectory path were the significantly affect the PDZ boundary limits
and the length of PDZ. Boundary limits and the length of PDZ at uncontrolled midblock
locations proposed in this study for various vehicular speeds and vehicle types were shown in
the table 2.4.

Table 2.4: Lower, upper boundary limits and length of PDZ at uncontrolled mid-blocks

Approa 2-wheeler Car Truck

ch Lower | Upper | Leng | Lower | Upper | Leng | Lower | Upper | Leng

speed | bounda | bounda | th | bounda | bounda | th | bounda | bounda | th
(Kmph) | ry(m) | ry(m) | (m) | ry(m) [ ry(m) | (m) | ry(m) | ry(m) | (m)

40 35 74 39 42 82 40 46 86 40
60 46 86 40 54 94 40 58 98 40
80 58 98 40 66 106 40 72 112 40
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2.5 Summary

Researchers across the globe addressed the pedestrian-vehicle interactions, pedestrian gap
acceptance behaviour, and pedestrian dilemma zone analysis and modelling at uncontrolled
intersections. Analysis and modelling of P-V interactions in mixed traffic conditions is more
difficult compared to homogeneous traffic conditions. Various methodologies, techniques,
types of data used, models developed in various researches were discussed in this chapter. Each
study used different methodologies, techniques, and models to analyse P-V interactions but
most of the researchers used either TTC or PET as SSM to analyse and model the P-V
interactions using video data. The previous studies (Thakur and Biswas, 2019; Amado et al.,
2020) on P-V interactions were mainly concentrated on the discussion of various factors
influencing their interaction severity levels. The use of PET or TTC alone is insufficient to
measure the injury severity of a potential collision and inclusion of either pedestrian or vehicle

parameters will better predict the potential possible collisions (Gyimah et al.. 2016).

Studies on MLR and logit models better explained pedestrian, vehicle, and traffic parameters
whereas maximum likelihood and negative binomial models better explained pedestrian,
vehicle, traffic, and geometric parameters. Most of the studies developed MLR and logistic
regression models. The use of the latest advanced technologies like artificial intelligence and
machine learning algorithms in P-V interaction modelling techniques will better predict the
severity levels of possible P-V interactions. Pedestrian-vehicle interactions, pedestrian gap
acceptance behaviour, and pedestrian dilemma zone depends on various characteristics of

pedestrian, vehicle, geometric, environmental, and weather conditions.

A large number of parameters were used to analyse and model the pedestrian-vehicle
interactions (Makia et al., 2002; Tay et al., 2011; Alhajyaseen, 2015; Fridman et al., 2020; Lee
and Abdel-Aty, 2005; Roudsari et al. 2004; Ashton, 1977; Kloeden et al., 2001). However,
additional parameters like the presence of median, stages of crossing, distance from the
crosswalk, the gap between vehicles and pedestrian waiting time need to be considered for a

better interaction modelling approach.

Next chapter deals with the detailed methodology of the present study with flow chart.
Identification of the problem statement, selection of study locations, data collection and

extraction, data analysis and modelling will be discussed briefly in the next chapter.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 General

The methodology adopted to work out the objectives of the pedestrian-vehicle analysis and
modelling framed from the literature review is presented in this chapter. This chapter involves
several stages including the problem statement, site selection, field data collection, analysis
and modelling of the results. A detailed framework on defining the threshold values for
surrogate safety measures (SSMs), analysis and modelling of pedestrian-vehicle interactions

and pedestrian dilemma zone estimation and modelling is presented in this chapter.
3.2 Methodology

The proposed research methodology involves 5 stages/ to fulfil the objectives of the present
research work. The first step involves the identification of the research problem and reviewing
the previous literature to fix the objectives of the research. Second step consists of selection of
the right study areas for the research and collecting the required data from the study locations
using various data collection techniques. Third step involves the extraction of required data
using some softwares and field data analysis. Fourth step involves defining the threshold values
of SSMs, analysis and modelling of pedestrian-vehicle interactions and pedestrian dilemma
zone estimation, analysis and modelling. Last step involves the conclusions of the present
research. Figure 3.1 shows the flow chart of the proposed methodology for the present study.
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Figure 3.1: Flow chart for the proposed research methodology
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3.2.1 Problem statement and literature review

The problem statement of the present research work is identified and the literature related to
the problem statement is collected and reviewed. The objectives of the study are framed based

on the previous literature review.
3.2.2 Selection of study areas and data collection

The study locations include 3-legged as well as the 4-legged uncontrolled intersections with
reasonable proportion of pedestrian volume under mixed traffic condition in an urban area. The
data collection from the study locations will be performed using a video graphic survey. Two

high resolutions cameras will be used to collect the video data from each study location.
3.2.3 Data extraction

The required data from the video will be extracted using MPC-HC media player, Kinovia
software, and DataFromSky software. The extracted data from the video includes pedestrian

characteristics, vehicle characteristics, and geometric characteristics.
3.2.4 Data analysis and modelling

Extracted data will be used for the analysis and development of models related to the P-V
interactions and PDZ. Also, the data will be used for defining the threshold values of SSMs for
various P-V interaction severity levels. The below sub-sections explain how to define the

threshold values and develop models for P-V interactions and PDZ.
3.2.4.1 Defining the threshold values of surrogate safety measures (SSMs)

The threshold values of SSMs for various pedestrian-vehicle interaction severity levels will be
derived using machine learning algorithms (supported vector machine (SVM) method is used
in the present study) for different combinations of pedestrian and vehicle characteristics. In
SVM method, a plot between pedestrian speeds on y-axis and SSM on x-axis will be plotted
on a coordinated system and the threshold value for various severity levels are taken

corresponding to different pedestrian speeds.
3.2.4.2 P-V interaction analysis and modelling

The correlation analysis will be done to know the correlation between severity levels and other
independent variables and the variables which shows the correlation with severity levels will

be included in the modelling part. The variables with the significance level less than or equal
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to 5% from the regression analysis will be used for the development of models. The developed

model will be validated using one of the validation techniques.
3.2.4.3 Pedestrian dilemma zone estimation, analysis and modelling

Lower and upper boundary limits and length of PDZ will be estimated using cumulative gap
distribution method and SVM method. PDZ model will be developed to know whether the
boundary limits lies close the intersection or shifts away from the intersection with various

pedestrian and vehicle characteristics.
3.2.5 Conclusions

Finally, conclusions will be made from the results of P-V interaction analysis and modelling,
threshold values of SSMs, and PDZ analysis and modelling.

3.3 Summary

In this chapter a detailed methodology of the research work to be done was explained using
flow chart. Step by step approach adopted for conducting the study was explained in this
chapter. Selection of study locations, data collection from study locations and data extraction

will be explained in the next chapter.
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CHAPTER 4: STUDY AREA AND DATA COLLECTION

4.1 General

This chapter deals with the selection of study locations, land use characteristics of the study

areas, data collection, time and period of data collection, and data extraction.
4.2 Study locations

Selection of study location is important for any research work. The present study was related
to the pedestrian-vehicle interactions at uncontrolled intersections under mixed traffic
condition in an urban area. Visakhapatnam and Warangal cities in India were selected for the
present study and a rapid growth in population and traffic over the last two decades was
observed in these two cities. The study location includes four 4-legged uncontrolled
intersections and four 3-legged uncontrolled intersections.

4.2.1 Four-legged uncontrolled intersections

Jagadamba intersection is located near the Jagadamba theatre, Visakhapatnam, and Forest
Office, Teacher’s Colony, and SBH Colony intersections are located in Warangal in India. A
two directional traffic flow with good proportions of vehicles and pedestrians was observed at
all these study locations. Mixed type of traffic conditions were observed at all these four study
locations. Jagadamba, Forest Office, and SBH Colony intersections have four lane divided
highway on the major street but Teacher’s Colony intersection has two lane road without
divider on the major street. Forest Office intersection has the divider on the minor street road
but Jagadamba, Teacher’s Colony, and SBH Colony intersections does not have the divider for

minor street road. Figures 4.1(a) - 4.1(d) shows the 4-legged uncontrolled intersections in

Visakhapatnam and Warangal cities.

(a) (b)
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(d)

Figure 4.1: 4-legged uncontrolled intersection at (a) Jagadamba (b) Forest office (c)

Teacher’s colony (d) SBH colony
4.2.2 Three-legged uncontrolled intersections

Among the four 3-legged uncontrolled intersections, one location is selected from
Visakhapatnam city and remaining three locations are selected from Warangal city in India.
Marripalem intersection is located near to Marripalem market in Visakhapatnam city, and
Ramanth Nagar, NIT Warangal, and KU X-Road intersections located near to Kazipet railway
station, NIT Warangal, and Kakatiya University in Warangal city respectively. The traffic flow
was observed to be two directional at all the study locations with reasonable proportions of
vehicles and pedestrians. All the study locations have the similar land use characteristics
(mixed type) and traffic conditions (mixed traffic conditions). Ramanth Nagar, NIT Warangal,
and KU X-Road intersections have four lane divided highway on the major road while the
Marripalem intersection has six lane divided highway on the major road. Ramanth Nagar, NIT
Warangal, and KU X-Road intersections have median on the minor road while Marripalem

intersection does not have median on the minor road. Figures 4.3(a) - 4.2(d) shows the three-

legged uncontrolled intersections in Visakhapatnam and Warangal cities.

(a) (b)
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Figure 4.2: Three-legged uncontrolled intersection at (a) Ramanth Nagar (b) NIT Warangal
(c) KU X-Road (d) Marripalem

4.3 Field data collection

The videography method was adopted to capture required pedestrian as well as vehicular data
from the field. Video data was more appropriate to analyse the P-V interactions and dilemma
zone. Two high resolution cameras were fixed to tripods and placed at an elevation in such a
way that the movements of all pedestrians and vehicles are visible clearly for the entire
intersection. Among the two cameras, one is used to cover the movement of vehicles for a
distance of 50-60 meters from the zebra crossing line and the other is used to cover the entire
intersection. Once the cameras fixed, the movements of pedestrians and vehicles were recorded
continuously for two hours in the morning (7:30AM to 9:30AM) and evening (4:30PM to

6:30PM) on a typical weekday in clear weather conditions.

The geometric details of the study locations were directly measured from the field using tape
and visual observations. Table 4.1 shows the geometric details of all the study locations.
Except the Jagadamba intersection, all the study locations have a width of 3.5 meters for each
lane on major as well as minor roads. Jagadamba intersection has 3.0 meters width per each

lane on both minor and major roads.

38



Table 4.1: Geometric details of the study locations

S Major road Minor road
Location Intersection type

No. Lane | No. of [Median| Lane |[No. of | Median

width | lanes | (Y/N) | width | lanes | (Y/N)
1 Jagadamba, 4-legged 3 4 % 3 3 N
(Visakhapatnam) | uncontrolled

2 Forest office 4-legged 35 4 Y 35 4 Y
(Warangal) uncontrolled

3 | Teachers Colony 4-legged 35 2 N 35 2 N
(Warangal) uncontrolled

4 | SBH Colony 4-legged 35 | 4 Y 35 2 N
(Warangal) uncontrolled

5 | Ramanth Nagar 3-legged 35 4 Y 35 4 Y
(Warangal) uncontrolled

6 NIT Warangal 3-legged 35 4 Y 35 4 Y
(Warangal) uncontrolled

7 KU X-Road 3-legged 35 4 Y 35 4 Y
(Warangal) uncontrolled

8 Marripalem 3-legged 35 6 Y 35 2 N

(Visakhapatnam) | uncontrolled

4.4 Summary

A brief description of the selected study locations for the present study is given in this chapter.

The detailed process of data collection methods adopted for the present research work along

with the geometric details of the study locations is presented. The extraction of required data

from the video using various softwares and the field data analysis for the extracted data will be

discussed in the next chapter.
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CHAPTER 5: DATA EXTRACTION
5.1 General

This chapter deals with the various softwares used for extracting the required data from videos,
the process of extracting pedestrian and vehicular parameters, field data analysis on pedestrian-
vehicle (P-V) interactions sample size, crossing speeds of pedestrians, and approaching speeds

of vehicles at three-legged and four-legged uncontrolled intersections.
5.2 Data extraction

MPC: HC 1.7 media player, Kinovea version 0.8.27, and DataFromSky (DFS) softwares were
used in the present study to extract the required pedestrian, and vehicle parameters from the
recorded videos at all the locations. MPC: HC 1.7 media player was used to extract parameters
like pedestrian gender, age, crossing type, luggage carrying and/or mobile usage while
crossing, vehicle type, gap accept/reject, vehicle enter or exit to the intersection, location, lane
distribution, and severity levels of P-V interactions based on speed variations. DFS software
was used to extract the parameters like distances of vehicles from pedestrian’s trajectory paths,
crossing speeds of pedestrians, approaching speeds of vehicles. Kinovea software was used to

extract collision times of both pedestrians and vehicles to the conflict points.

Initially, the videos were imported into MPC: HC 1.7 media player and play backed the videos
to extract the required parameters. The pedestrian gender was classified into male and female
categories and pedestrian age was taken as children (<=15 years), young (15-30 years), middle
age (30-60 years), and old age (>60 years) base on the physical appearance and visual
observations (Patra et al., 2017). The crossing type, luggage, and mobile usage were classified
as pedestrians crossing straight and rolling, with luggage and without luggage, and using
mobile phones while crossing and not using mobile phones respectively. The type of
conflicting vehicle was classified as two-wheeler (2W), three-wheeler (3W), car, light
commercial vehicle (LCV), and heavy commercial vehicle (HCV). The severity levels of P-V
interactions were classified into four categories (i.e. no interactions (NI), low severe
interactions (LSI), moderately severe interactions (MSI), and severe interactions (SI)) on a
scale of 0 to 3 based on the speed variations of both vehicles and pedestrians and extracted
from the videos based on the visual observations. Table 5.1 shows description of classified P-

V interaction severity levels based on visual observations.
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Table 5.1: Description of P-V interactions severity levels classification based on visual

observations

Scale Severity Level Description
0 No interactions Both road users travel at their present speed to avoid
collision

1 Low severe Both or one of the road users must change his/her speed
interactions to avoid collision

2 Moderately severe | One road user must stop and other road user may or may
interactions not change his/her current speed to avoid collision

3 Severe interactions | Both road users must stop and proceed to avoid collision

The collected videos of each location were processed through online (https://datafromsky.com)
and dot tlgx (.tlgx) files were opened in DFS viewer software. The calibration was done using
four coordinates for each location and play backed the videos to extract the pedestrian and
vehicle parameters. Figures 5.1 and 5.2 shows the calibration of DFS software and extraction
of P-V trajectory data from software respectively. The distances of vehicles from pedestrian
trajectory paths, crossing speeds of pedestrians, and approaching speeds of conflicting vehicles
were extracted for all the P-V interaction samples. The accuracies of extracted speeds of
pedestrians and vehicles were cross checked with manual extraction and observed more than

90% accuracy in all the cases.

@ Manual Geo-Registration Wizard — =] x

Corresponding Points
| Provide at least four corresponding points with map coordinates.

S © sjsm

Point 2 83.300010 17.712750 320 632

Latitude [deg] Longitude [deg] Image X [px] Image Y [px]

Point 3 23.299920 17.712640 937 467

Point 4 83.300100 17.712730 a7 a7

Point 5 £3.300030 17.712600 650 265

Figure 5.1: Calibration of DFS software using location coordinates

41



Figure 5.2: Extraction of P-V trajectory data from DFS software

To extract the collision times of pedestrians and vehicles, first videos were imported into the
Kinovea software and plane calibration was done using perspective grid. Figure 5.3 shows the
calibration video in Kinovea using perspective grid. A grid size of 0.9 m x 0.9 m was used as
conflict area between the pedestrians and vehicles. The collision times were taken when the
first road user leaving the conflict area and second road user arriving the conflict area. These
collision times were used to calculate the post encroachment time (PET) for each P-V

interaction.

Calibration

=3 | xbeled | [mewsim

Apply

Figure 5.3: Calibration of the perspective grid in Kinovea software

5.2.1 Pedestrian-vehicle interactions sample size

Pedestrian-vehicle interactions data for 5416 samples at three-legged uncontrolled
intersections and 5693 samples at four-legged uncontrolled intersections were extracted to
define threshold limits of SSMs and development of P-V interaction models. Also, distances

of vehicles from pedestrian trajectory paths were extracted for 4356 and 4758 samples at three-
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legged and four-legged intersections respectively to estimate the pedestrian dilemma zone

(PDZ) boundary limits. Tables 5.1 and 5.2 shows the total number of samples extracted from

each selected three-legged and four-legged uncontrolled intersections respectively.

Table 5.1: Total number of P-V interactions samples extracted at three-legged uncontrolled

intersections

Total number of P-V interaction samples extracted
Purpose of Ramanth NIT KU X- Marripalem
extraction Nagar Warangal Road (Visakhap atnam) Total
(Warangal) | (Warangal) | (Warangal) P
Threshold limits of 1289 1617 1029 1481 5416
SSMs
P-V interactions 1289 1617 1029 1481 5416
model
Pedestrlan_dlle_mma 1016 1379 836 1125 4356
zone estimation

Table 5.2: Total number of P-V interactions samples extracted at four-legged uncontrolled

intersections

Total number of P-V interaction samples extracted
Purpose of Forest office | _ Teacher’s SBH Jagadamba
extraction (Warangal) Colony Road | Colony | (Visakhapa | Total
g (Warangal) | (Warangal) tnam
Threshold limits of 1581 972 1376 1764 | 5693
SSMs
P-V interaction 1581 972 1376 1764 5693
model
Pedestrian dilemma | 57, 726 1178 1483 4758
zone estimation

Figures 5.4 to 5.7 shows the percentage distribution of P-V interaction samples data based on
severity level type, pedestrian gender, pedestrian age, and vehicle type respectively.
Approximately 38% and 42% of total extracted P-V interactions at three-legged and four-
legged uncontrolled intersections respectively were related to no interactions type.
Approximately 31%, 20%, and 11% of total extracted interactions at three-legged intersections
were related to LSI, MSI, and SI respectively. Approximately 31%, 17%, and 10% of total
extracted interactions at four-legged intersections were related to LSI, MSI, and SI
respectively. The extracted percentage of P-V interactions were observed to be more in case of
male pedestrians (62% at three-legged intersections and 57% at four-legged intersections)
compared to female pedestrians (38% at three-legged intersections and 43% at four-legged
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intersections) at both the type of intersections. Approximately 12%, 33%, 39%, and 16% P-V
interactions were related to children, young, middle age, and old age pedestrians respectively
at three-legged intersections. The percentage of interactions were observed to be more in case
of middle age pedestrians compared to other age group pedestrians at both the type of
intersections. Two-wheelers have the highest percentage of interactions data (45% at three-

legged intersections and 43% four-legged intersections) compared to other vehicle types.

(b)

Figure 5.4: Percentage of P-V interactions samples based on severity levels at (a) three-

legged intersections (b) four-legged intersections

(b)
Figure 5.5: Percentage of P-V interactions samples based on pedestrian gender at (a) three-

legged intersections (b) four-legged intersections

(b)

Figure 5.6: Percentage of P-V interactions samples based on pedestrian age at (a) three-

legged intersections (b) four-legged intersections
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Figure 5.7: Percentage of P-V interactions samples based on vehicle type at (a) three-legged

intersections (b) four-legged intersections

5.2.2 Pedestrian crossing speeds

The pedestrian crossing speeds for all P-V interactions were extracted using DFS software at
three-legged and four-legged uncontrolled intersections. Tables 5.3 and 5.4 shows the
descriptive statistics of extracted pedestrian crossing speeds with respect to gender and age at
three-legged and four-legged intersections respectively. Figures 5.8 and 5.9 shows the box plots

of pedestrian crossing speeds variation with respect to gender and age respectively.

A one-way Analysis of Variance (ANOVA) at 95% significance level was carried out in
Statistical Package for the Social Sciences (SPSS) software to mathematically analyse whether
there is a significant difference in pedestrian crossing speeds with respect to gender and age of
pedestrians. From ANOVA results, it was observed that there was a significant difference
between the crossing speed of pedestrians with respect to pedestrian gender (p = 0.014) and
age (p = 0.003). Also, observed that there was a significant difference in pedestrian crossing

speeds at three-legged and four-legged uncontrolled intersections (p = 0.001).

Table 5.3: Descriptive statistics of pedestrian crossing speeds at three-legged intersections

Spg;gs(srinr}g) Male Female Children Young Middle Old
Minimum 0.43 0.35 0.54 0.45 0.39 0.32
Maximum 2.15 1.89 1.83 2.26 2.06 1.97
Average 1.20 1.01 1.15 1.29 1.06 0.99
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Table 5.4: Descriptive statistics of pedestrian crossing speeds at four-legged intersections

Male

T
Female

Pedestrian Gender

(@)

T
Male

Pedestrian Gender

(b)

Crossing Male Female Children Young Middle Old
speeds (m/s)
Minimum 0.37 0.28 0.50 0.41 0.32 0.28
maximum 2.13 1.91 1.96 2.13 1.94 1.86
average 1.12 0.97 1.07 1.15 1.08 0.97
’_ 24
Mﬂle 224
77777 Female ;;_ }
g B Ef 18 - .
= = 1.6+
£ E 14
g g 124
0.6
0.4 -
0:2_ - 02
0.0

T
Female

Figure 5.8: Variation of pedestrian crossing speeds with respect to gender at (a) three-legged

intersections (b) four-legged intersections
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Figure 5.9: Variation of pedestrian crossing speeds with respect to age at (a) three-legged
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The following observations were made from the tables 5.3 and 5.4, and figures 5.8 and 5.9 at

three-legged and four-legged uncontrolled intersections,
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e The minimum pedestrian crossing speed was observed to be lower in female
pedestrians.

e The maximum crossing speed of pedestrians was observed to be higher in male
pedestrians.

e The average crossing speed of male pedestrians was observed to be higher compared
to female pedestrians. Similar findings were observed by Montufar et al. (2007),
Huang and Ma (2010), Marisamynathan and Perumal (2014), and Varsha et al. (2016)

e Young pedestrians have higher crossing speeds compared to children, middle age, and
old age pedestrians respectively.

e The crossing speeds of pedestrians were higher at three-legged intersections compared
to four-legged intersections.

5.2.3 Vehicular approaching speeds

The approaching speeds of vehicles were extracted for each P-V interaction sample using DFS
software and analysed the variation of speeds with respect to type of vehicle. Tables 5.5 and
5.6 shows the descriptive statistics of extracted vehicular speeds at three-legged and four-
legged intersections respectively and figure 5.10 shows the variation of vehicular speeds with
respect to type of vehicle.

Table 5.5: Descriptive statistics of vehicular approaching speeds at three-legged intersections

Approaching speeds 2W 3W Car LCV HCV
(km/h)
Minimum 5.81 5.30 6.34 6.51 5.10
maximum 89.35 81.28 97.85 69.67 65.68
average 30.04 26.10 27.37 25.73 24.43

Table 5.6: Descriptive statistics of vehicular approaching speeds at four-legged intersections

Approaching speeds W W Car LCV HCV
(km/h)
Minimum 5.40 4.47 5.30 5.10 4.40
maximum 84.91 79.30 93.79 66.59 61.44
average 26.83 24.06 25.16 23.69 23.19
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Figure 5.10: Variation of vehicular approaching speeds with respect to type of vehicle at (a)

three-legged intersections (b) four-legged intersections
The following observations were made from the tables 5.5 and 5.6, and figure 5.10,

e The minimum approaching speed of vehicles was observed to be lower in HCVs at
three-legged as well as four-legged intersections

e The maximum approaching speed of vehicles was observed to be higher in cars at three-
legged and four-legged intersections.

e The average approaching speed of 2Ws was higher than that of cars, 3Ws, LCVs, and
HCVs respectively at three-legged and four-legged uncontrolled intersections.

5.3 Summary

In the present chapter, the required data of pedestrians and vehicles related to P-V interactions
were extracted using MPC: HC media player, Kinovea, and DFS softwares. The percentage
distribution of extracted interactions with respect to severity type, pedestrian gender, age, and
vehicle type at three-legged and four-legged uncontrolled intersections were presented in the
present chapter. Also, the crossing speeds of pedestrians with respect of gender and age, and
approaching speeds of vehicles with respect to type of vehicle were compared at three-legged

and four-legged intersections.

In the next chapter, defining the threshold limits of SSMs using machine learning algorithms

at three-legged and four-legged uncontrolled intersections are presented.
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CHAPTER 6: DEFINING THE THRESHOLD LIMITS OF
SURROGAGE SAFETY MEASURES

6.1 General

The severity levels of P-V interactions can be predicted using the threshold limits of surrogate
safety measures (SSMs). The present chapter is intended to propose the threshold limits of
SSMs (PET and RI) using machine learning algorithms at uncontrolled intersections in mixed
traffic conditions. The comparison of P-V interaction severity levels at three-legged and four-

legged uncontrolled intersections is also presented in the present chapter.
6.2 Support vector machines (SVM) algorithm for classification

Machine learning (ML) is one of the most popular words and it is used for a wide range of
applications in the recent decades which predicts the outcomes of an event more accurately
without being explicitly programmed to do so. Machine learning algorithms can be used for
both classification and regression purposes, and they use input data to predict a new output
values. Machine learning is often categorized into four approaches (i.e., supervised learning,
unsupervised learning, semi-supervised learning and reinforcement learning) based on how an
algorithm learns to become more accurate in its predictions. The algorithm in the supervised
machine learning is trained with both labelled inputs and desired outputs and mostly they are
used for classification, regression modelling and ensembling purposes. Classification
algorithms use the input training data to predict the likelihood of output data will fell into one
of the predetermined categories. Mostly Logistic Regression, Naive Bayes, K-Nearest
Neighbors (KNN), Decision Tree and Support Vector Machine (SVM) algorithms in machine

learning are used for classification purposes.

Logistic regression is a very basic classification algorithm which predicts the outcome of an
event based on one or more independent variables. To estimate discrete values from a set of
independent variables, logistic regression is used. By adjusting the data to a logit function, it
aids in predicting the likelihood of an event. The best fitting of this algorithm looks like S-
shape. Even though it is efficient and simple algorithm, can’t handle a larger number of

categorical variables.

The Naive Bayes classifier assumes that a certain feature's presence in a class is unrelated to
the presence of any other feature. When determining the likelihood of a specific result, a Naive

Bayes classifier would consider each of these characteristics independently, even if these

49



features are related to one another. It is an effective tool for large datasets and simple to

construct.

KNN is a straightforward algorithm that classifies any new cases by getting the consent of at
least k of its neighbours and then saves all the existing cases. KNN can be easily comprehended
by using an analogy to everyday life. It is computationally expansive, and variables should be

normalized.

SVM algorithm is one of the supervised machine learning methods, mostly used for
classification (binary and multiclass) and regression purposes. This algorithm is more effective
in high dimensional spaces and where the number of samples are less than number of
dimensions. The probability estimates cannot be directly measured using this algorithm. In this
method, the data points are plotted in n-dimensional space to perform classification by fitting
a best hyperplane to separate the two classes with largest margin. For non-linearly separable
data kernelized SVM is used to transform the one-dimensional data into two dimensions. The
transformed data in two dimensions will become linearly separable. Kernel function measures
the similarity between the data points in the newly transformed space. Important parameters of

kernelized support vector classifier (SVC) are given below,

i) Kernel function: Kernel function is a technique for transforming data from its input form
into the format needed for processing it. The term "Kernel™ is used because SVM uses a
collection of mathematical operations to provide the window through which the data can
be manipulated. The various kernel functions are;

a) Gaussian kernel: When there is no prior knowledge of the data, transformation is
performed using the Gaussian Kernel.

b) Radial basic function (RBF) kernel: It is same as gaussian kernel function but basic
method added in this function to improve the transformation.

c) Sigmoid kernel: The sigmoid kernel function, which serves as an activation function
for artificial neurons, is equivalent to a two-layer perceptron model of the neural
network.

d) Polynomial kernel: It is used in image processing. It displays the similarity of the
vectors in the training set of data in a feature space over the polynomials of the initial
variables used.

e) Linear kernel: It is used when the data is linearly separable.
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il) Gamma: The distance of a single training point is influenced by the gamma parameter.
More points being together if the gamma parameter is low, and the points must be closed
to each other in case of higher gamma parameter. Gamma parameter is useful for anon-
separable data.

iii) Cost (C) parameter: C parameter incurs the penatly for any misclassified data. The penalty
is low for misclassified data, if the C is minimal and due to the high penalty SVM aims to

reduce the number of misclassified examples if the C is big.
6.3 Defining the threshold limits for various severity levels of P-V interactions

Support vector machine (SVM) classification code in Python interface was used in the present
study to determine the threshold limits of SSMs for various P-V interaction severity levels at
three-legged as well as four-legged uncontrolled intersections. For the present study, 70% data
was used as training data for algorithm and the remaining 30% as testing data for validation
purpose. A plot between pedestrian crossing speeds on y-axis and Post Encroachment Time
(PET) or Risk Indicator (RI) on x-axis were plotted for various categories of pedestrians and
vehicles and the threshold limits were defined corresponding to mean pedestrian crossing
speed. Figure 6.1 shows the SVM code in Python interface used in the present study for
classification purpose. Linear kernel function was used in the present study as the data is two-
dimensional and linearly separable. Gamma function was set as ‘auto’ and used maximum cost
(C) parameter. The code was run for three-legged and four-legged intersections and the

classification plots were used to define the threshold limits.

Gender) & (data_clear[ ‘veh cot'] == veh_type)]

Gender.upper() + + \ren_t)'pe.upper'[))|

Figure 6.1: SVM classification code in Python interface
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6.3.1 Three-legged uncontrolled intersections

SVM code was run for various categories of pedestrians and vehicles at three-legged
uncontrolled intersections and the classification plots were taken to determine the threshold
limits. Figures 6.2 to 6.11 shows the classification plots at three-legged intersections for various
categories of pedestrians and vehicles to determine the threshold limits of PET and RI. Red
colour dots in the classification plots indicates that the severe interactions, yellow colour dots
indicate the moderately severe interactions, light blue colour dots indicate the low severe
interactions, and dark blue colour dots indicates the no interactions between the pedestrians

and vehicles. The boundary between two severity levels was separated by hyperplane.
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Figure 6.2: SVM plots for Pm-Vaw category to define threshold limits of (a) PET (b) RI
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Figure 6.3: SVM plots for Pe-Vaw category to define threshold limits of (a) PET (b) RI
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Figure 6.5: SVM plots for Pe-Vaw category to define threshold limits of (a) PET (b) RI
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Figure 6.6: SVM plots for Pm-Vcar category to define threshold limits of (a) PET (b) RI
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Figure 6.7: SVM plots for Pe-Vcar category to define threshold limits of (a) PET (b) RI
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Figure 6.8: SVM plots for Pm-Vicv category to define threshold limits of (a) PET (b) RI
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Figure 6.9: SVM plots for Pe-Vcv category to define threshold limits of (a) PET (b) RI
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Figure 6.10: SVM plots for Pu-Vhev category to define threshold limits of (a) PET (b) RI
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Figure 6.11: SVM plots for Pr-VHcv category to define threshold limits of (a) PET (b) RI

The threshold limits of PET and RI for various P-V interaction severity levels for different
combinations of pedestrians and vehicles were defined using the figures 6.2 to 6.11. The
proposed threshold limits of PET and RI for various severity levels were shown in table 6.1
and 6.2 respectively. From table 6.1, it can say that P-V interactions that occur in case of male
pedestrians and two-wheelers (Pm-Vaw) at three-legged uncontrolled intersections were severe
interactions if the PET is less than or equal to 0.9s. The interactions those occur in case of Pu-
Vow were moderately severe if the PET lies between 0.9s to 2.7s, low severe if the PET lies
between 2.7s to 4.4s, and no interactions if the PET more than 4.3s. P-V interactions that occur
in case of male pedestrians and three-wheelers (Pm-Vaw) at three-legged uncontrolled
intersections was severe interactions if the PET is less than or equal to 1.2s. The interactions
those occur in case of Pm-Vaw were moderately severe if the PET lies between 1.2s to 2.8s, low
severe if the PET lies between 2.8s to 4.8s, and no interactions if the PET more than 4.8s.

Similarly, P-V interaction severity levels can be estimated using the threshold limits of PET
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for other combinations of pedestrians and vehicles (Pm-Vcar, Pu-Vicv, Pm-Vicv, PM-VHev, Pe-
Vaw, Pr-Vaw, Pe-Vcar, PE-Vicy, and Pe-Vicy) from table 6.1.

From table 6.2, it can say that P-V interactions those occur in case of female pedestrians and
two-wheelers (Pr-Vaw) at three-legged uncontrolled intersections were severe interactions if
the RI is more than 12.2 m/s/s. The interactions those occur in case of Pr-Vow were moderately
severe interactions if Rl lies between 6.3 m/s/s to 12.2 m/s/s, low severe interactions if RI lies
between 3.5 m/s/s to 6.3 m/s/s, and no interactions if Rl less than or equal to 3.5 m/s/s.
Similarly, the interactions in case of Pr-Vaw were severe, moderately severe, low severe, and
no interactions if Rl more than 12.0 m/s/s, lies between 5.2 m/s/s to 12.0 m/s/s, lies between

3.0 m/s/s to 5.2 m/s/s, and less than or equal to 3.0 m/s/s respectively.

Table 6.1: Threshold limits of PET for various severity levels at thee-legged intersections.

) Threshold PET values (s)
Pedestrian &
Vehicle Type | No interaction | OV SeVere Moderately _ Severe
interaction | severe interaction | interaction
Pm-Vaw >4.3 4.4-2.7 2.7-0.9 <=0.9
Pm-Vaw >4.8 4.8-2.8 2.8-1.2 <=1.2
Pm-Vear >4.7 4.7-2.8 2.8-1.1 <=1.1
Pm-Vicv >5.1 5.0-3.1 3.1-1.3 <=1.3
Pm-Vhev >5.1 5.1-3.2 3.2-14 <=1.4
Pr-Vaw >4.7 4.7-2.8 2.8-1.1 <=1.1
Pr-Vaw >4.8 4.8-2.9 2.9-1.3 <=1.3
Pr-Vear >4.7 4.7-2.8 2.8-1.2 <=1.2
Pe-Vicv >5.0 5.0-2.9 2.9-1.4 <=1.4
Pe-Vhev >5.2 5.2-3.3 3.3-15 <=15

Table 6.2: Threshold limits of RI for various severity levels at three-legged intersections.

Threshold RI values (m/s/s)
Pedestrian &
Vehicle Type No Low severe Moderately Severe
interaction interaction severe interaction interaction

Pwm-Vaw <=4.4 4.4-7.6 7.6-13.3 >13.3
Pm-Vaw <=3.0 3.0-5.5 5.5-12.7 >12.7
Pm-Vcar <=3.2 3.2-5.9 5.9-12.2 >12.2
Pm-Vicv <=3.0 3.0-5.3 5.3-11.5 >11.5
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Pm-VhHev <=25 25-5.1 5.1-94 >9.4
Pe-Vow <=3.5 3.5-6.3 6.3-12.2 >12.2
Pe-Vaw <=3.0 3.0-5.2 5.2-12.0 >12.0
Pe-Vear <=3.1 3.1-5.9 5.9-12.4 >12.4
Pe-Vicv <=2.4 2.4-4.6 4.6-10.8 >10.8
Pr-Vhev <=2.5 2.5-4.6 4.6-10.0 >10.0

The performance of the classified data was described using confusion matrix and accuracies.
The accuracy of the classified data was estimated using true positives, true negatives, false
positives, and false negatives from the confusion matrix. The mathematical form of accuracy
definition was shown in equation 6.1. More than 85% accuracies of classified data were
observed for both PET and RI in all the cases of pedestrian and vehicle combinations and the

table 6.1 shows the accuracies of classified data for PET and RI at three-legged uncontrolled

intersections.

true positives+true negatives

Accurary =

true positivs+true negatives+false positives+false negatives

Table 6.3: Accuracies of classified data in SVM as three-legged intersections

Pedestrian & Vehicle Type PET (%) RI (%)
Pm-Vaw 92.95 90.34
Pm-Vaw 94.8 88.08
Pm-Vear 95.27 94.12
Pm-Vicv 87.09 92.18
Pm-Vhev 89.56 93.34
Pe-Vaw 94.69 88.97
Pe-Vaw 93.44 95.91

Pe-Vear 93.22 93.17
Pr-Vicv 90.59 91.83
PF-VHCV 88.84 90.67

6.3.2 Four-legged uncontrolled intersections

SVM code in python interface was run for different combinations of pedestrians and vehicles
at four-legged uncontrolled intersections and the classification plots were taken to determine
the threshold limits. Figures 6.12 to 6.21 shows the classification plots at four-legged
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intersections for various combinations of pedestrians and vehicles to determine the threshold
limits of PET and RI.
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Figure 6.12: SVM plots for Pu-Vaw category to define threshold limits of (a) PET (b) RI
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Figure 6.13: SVM plots for Pe-Vaw category to define threshold limits of (a) PET (b) RI
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Figure 6.14: SVM plots for Pu-Vaw category to define threshold limits of (a) PET (b) RI
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Figure 6.15: SVM plots for Pr-Vaw category to define threshold limits of (a) PET (b) RI
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Figure 6.16: SVM plots for Pu-Vcar category to define threshold limits of (a) PET (b) RI
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Figure 6.17: SVM plots for Pr-Vcar category to define threshold limits of (a) PET (b) RI
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Figure 6.18: SVM plots for Pu-Vicv category to define threshold limits of (a) PET (b) RI
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Figure 6.19: SVM plots for Pr-Vcv category to define threshold limits of (a) PET (b) RI
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Figure 6.20: SVM plots for Pu-VHev category to define threshold limits of (a) PET (b) RI
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Figure 6.21: SVM plots for Pr-VHcv category to define threshold limits of (a) PET (b) RI

The threshold limits of PET and RI for various P-V interaction severity levels for different
combinations of pedestrians and vehicles at four-legged uncontrolled intersections were
defined using the figures 6.12 to 6.21. The proposed threshold limits of PET and RI for various
severity levels were shown in table 6.4 and 6.5 respectively. From table 6.4, it can say that P-
V interactions that occur in case of male pedestrians and two-wheelers (Pm-Vaw) at four-legged
uncontrolled intersections were severe interactions if the PET is less than or equal to 1.1s. The
interactions those occur in case of Pm-Vaw were moderately severe if the PET lies between 1.1s
to 3.1s, low severe if the PET lies between 3.1s to 5.1s, and no interactions if the PET more
than 5.1s. Similarly, P-V interaction severity levels can be estimated using the threshold limits
of PET for other combinations of pedestrians and vehicles (Pm-Vaw, Pm-Vcar, PM-Vicvy, Pu-
Vicv, PM-Vhev, Pr-Vaw, Pe-Vaw, Pe-Vear, Pr-Vicv, and Pr-Vhcev) from table 6.4.

From table 6.5, it can say that P-V interactions those occur in case of male pedestrians and two-
wheelers (Pm-V2aw) at four-legged uncontrolled intersections were severe interactions if the RI
is more than 11.7 m/s/s. The interactions those occur in case of Pm-Vaow were moderately severe
interactions if R1 lies between 6.8 m/s/s to 11.7 m/s/s, low severe interactions if Rl lies between
3.2 m/s/s to 6.8 m/s/s, and no interactions if Rl less than or equal to 3.2 m/s/s. Similarly, the
interactions in case of Pm-Vaw were severe, moderately severe, low severe, and no interactions
if Rl more than 11.2 m/s/s, lies between 5.2 m/s/s to 11.2 m/s/s, lies between 2.8m/s/s to 5.2
m/s/s, and less than or equal to 2.8 m/s/s respectively.
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Table 6.4: Threshold limits of PET for various severity levels at four-legged intersections.

Threshold PET values (s)

Pedgstrian & Moderately

Vehicle Type No interaction Low severe severe _ Severe
interaction iteraction interaction

Pm-Vow >5.1 5.1-3.1 3.1-1.1 <=1.1
Pm-Vaw >5.3 5.3-3.2 3.2-1.2 <=1.2
Pm-Vear >5.2 5.2-3.2 3.2-1.3 <=1.3
Pm-Vicv >5.4 5.4-3.5 35-14 <=1.4
Pm-Vhev >5.5 5.4-3.6 3.6-15 <=15
Pe-Vow >5.2 5.2-3.1 3.1-1.2 <=1.2
Pe-Vaw >5.3 5.3-3.2 3.2-1.3 <=1.3
Pr-Vear >5.3 5.3-3.2 3.2-1.2 <=1.2
Pe-Viev >5.4 5.4-3.3 3.3-14 <=1.4
Pe-Vhev >5.4 5.4-3.3 3.3-1.6 <=1.6

Table 6.5: Threshold limits of RI for various severity levels at four-legged intersections.

Threshold RI values (m/s/s)
Vehicle Type No interaction Low severe severe _ Severe
interaction interaction interaction
Pm-Vow <=3.2 3.2-6.8 6.8-11.7 >11.7
Pm-Vaw <=2.8 2.8-5.2 5.2-11.2 >11.2
Pm-Vear <=3.1 3.1-55 5.5-11.5 >11.5
Puv-Vicv >2.7 2.7-5.0 5.0-10.0 >10.0
Pm-VHcv >2.6 2.6-4.8 4.8-9.5 >9.5
Pr-Vow <=3.2 3.2-5.6 5.6-11.4 >11.4
Pe-Vaw <=2.9 2.9-4.8 4.8-10.7 >10.7
Pr-Vear <=3.1 3.1-54 5.4-11.3 >11.3
Pe-Vicv <=2.1 2.1-45 4.5-10.6 >10.6
Pe-Vhev <=2.2 2.2-4.6 4.6-9.2 >0.2

The performance of the classified data was described using confusion matrix and accuracies.
The accuracy of the classified data was estimated using true positives, true negatives, false
positives, and false negatives from the confusion matrix. More than 80% accuracies of

classified data were observed for both PET and RI in all the cases of pedestrian and vehicle
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combinations and the table 6.6 shows the accuracies of classified data for PET and RI at four-
legged uncontrolled intersections.

Table 6.6: Accuracies of classified data in SVM as four-legged intersections.

Pedestrian & Vehicle Type PET RI
Pm-Vaw 88.28 90.09
Pm-Vaw 89.21 87.66
Pm-Vcar 91.81 87.31
Pm-Vicv 92.31 90.77
Pm-Vhev 90.00 89.53
Pr-Vow 88.56 86.35
Pr-Vaw 93.96 84.35

Pr-Vear 92.12 88.61
Pe-Vicv 90.13 83.82
Pr-VHcv 95.68 82.61

6.3.3 Comparison of threshold limits of PET and RI

The threshold limits of PET and RI for various severity levels of P-V interactions were given
in tables 6.2 and 6.3 respectively for three-legged uncontrolled intersections and tables 6.5 and
6.6 for four-legged uncontrolled intersections. From tables 6.2 to 6.5, it was observed that the
threshold limits of PET for male pedestrians were lower compared to female pedestrians and
2Ws have lower threshold limits of PET compared to Cars, 3Ws, LCVs, and HCVs
respectively. The threshold limits of PET at three-legged uncontrolled intersections were
observed to be lower than that of four-legged uncontrolled intersections. The threshold limits

of PET were lower at higher severity levels of P-V interactions.

From tables 6.3 to 6.6, it was observed that the threshold limits of RI for male pedestrians were
higher compared with female pedestrians and 2Ws have higher threshold limits of Rl compared
to Cars, 3Ws, LCVs, and HCVs respectively. The threshold limits of R1 were higher at higher
severity levels of P-V interactions. The threshold limits of RI at three-legged uncontrolled
intersections were observed to be higher than that of four-legged uncontrolled intersections.

6.4 Summary

In the present chapter, the threshold limits of PET and RI of various P-V interactions severity
levels were defined for different categories of pedestrians and vehicles using SVM algorithms

in Python interface at three-legged and four-legged uncontrolled intersections. The severity of
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P-V interactions was inversely correlated with PET and direct correlated with RI. The threshold
limits of PET were lower for severe interactions and higher of no interactions. The threshold
limits of RI were lower for no interactions and higher for severe interactions. Lower threshold
PET and higher threshold RI limits were observed for M-2W interaction category compared to

other interaction categories.

Next chapter deals with the development of P-V interactions severity models at three-legged
and four-legged uncontrolled intersections and the validation of developed models. Also, it
deals with the comparison of P-V interactions severity levels at three-legged and four-legged

uncontrolled intersections.
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CHAPTER 7: MODELLING OF PEDESTRIAN-VEHICLE
INTERACTIONS

7.1 General

Pedestrian-vehicle (P-V) accidents are one of the major reasons for fatalities and the severity
of these accidents vary with various parameters of pedestrian, vehicle, geometry, weather, and
environment. An accident is a rare event and it is difficult to collect accident data during an
accident. Many parameters are not possible to collect during an accident and their effect on
severity is unknown. Surrogate safety measures (SSMs) are an indirect safety measures which
measure the severity of a near miss traffic events. Analysis and modelling of P-V interactions
using SSMs will help to know the various factors affecting the severity of a potential possible
interaction. In the present chapter, an attempt is made to develop pedestrian-vehicle (P-V)
interaction severity model separately at three-legged and four-legged uncontrolled
intersections to know the various factors affecting the severity level. The present chapter also,

deals with the comparison of P-V interaction severities at these intersections.

7.2 Modelling of P-V interaction severities at uncontrolled intersections

The severities of P-V interactions can be modelled using various modelling techniques. Binary
logit (BL) models are used for categorical variables with two categories in the dependent
variable. Ordinal logit (OL) and multinomial logit (MNL) models are used for categorical
variables with more than two categories in the dependent variable. OL model prefers over the
MNL model when the order of the dependent variable is important. In OL, slopes are constant
across categories but intercepts are different for each category due to the parallel lines
assumption. In the present study, ordinal logit model (OLM) is used to predict the probabilities

of P-V interaction severity levels.

The probabilities of P-V interaction severity levels can be predicted in order logit model using

the following equations,

Logit(P(Y <)) = Boj + BiX1 + BoXo + - + BuXn (1)

— ) = P (@+XB)
P(Y - 0) - 1+exp (ao+XP) (2)

3 __exp(ai1+XB)  exp (ao+Xp)
P(Y=1) = 1+exp (a1 +XB)  1+exp (ap+Xp) (3)
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_ oy _ _CXP(@+XB) __exp (e +Xp)
P(Y=2) = 1+exp (az+XpB)  1+exp (ai+XpB) ?

B __exp(az+Xp) _exp (az+Xp)
P(Y=3) = 1+exp (az+Xp)  1+exp (az+Xp) v

Y = Observed P-V interaction severity level on ordinal scale (j =0, 1, 2, 3)
Bo; = Intercept corresponding to j™ severity level

X1, Xa,..., Xn = Independent variables used in the model

B1, B2, -, Pn. = Coefficients corresponding to each independent variable

Table 7.1 shows the description of the dependent and independent variables used in the analysis
and separate code/number is assigned for each. The severity level, which is defined from the
threshold limits for each P-V interaction sample was taken as the dependent variable and
pedestrian, vehicle, and geometric parameters were taken as the independent variables for the

development of OLM.

Table 7.1: Description of the variables used in the regression analysis

I\?' Variable Category/Units/Code
0.
Dependent variable: No interaction — 0, Low severe
1 Severity interaction — 1, Moderately severe interaction — 2,
Severe interaction — 3
2 Pedestrian gender (PG) Male -1, Female — 2
3 Pedestrian age (PA) Child-1, Young age-2, Middle age-3, Old age-4
4 Pedestrian speed (PS) 1-<=0.5m/s, 2 - 0.5-1.5m/s, 3—1.0-1.5m/s, 4 —
>1.5m/s
5 Luggage (Lug) 0—No, 1-Yes
6 Mobile usage (MU) 0—No, 1-Yes
7 Crossing Type (CT) 1 — Straight, 2 — Rolling
8 Pedestrian Platoon (PP) 1 - 0One, 2 - Two, 3 — More than two
9 Vehicle type (VT) Two-wheeler-1, Three-wheeler-2, Car-3, LCV-4,
HCV-5
10 Vehicle speed (VS) 1 —<=15km/h, 2 — 15-30km/h, 3 — 30-45km/h, 4 —
>45km/h
11 Vehicle direction (VD) 1 — Through, 2 — Right turn, 3 — Left turn
12 | Interaction location (IL) 1 - Entry, 2- Exit

13 Lane distribution (LD) 1 - Lane one, 2 — Lane t\]:vo, 3 — Lane three, 4 — Lane
our
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Before doing the OLR, a Chi-square test has been performed in Statistical Package for Social
Sciences (SPSS) software between the dependent variable and each independent variable at
three-legged as well as four-legged uncontrolled intersections to identify the most insignificant
variables with P-V interactions severity levels. Table 7.2 shows the Chi-square test results at
three-legged and four-legged intersections. From the table 7.2, the variables with low Chi-
square value and high p- value (p>0.05) were identified to exclude from the regression analysis.
From the Chi-square test, it was observed that pedestrian platoon, and lane distribution were
the most insignificant variables with P-V interactions severity levels at three-legged as well as
four-legged intersections. The pedestrian crossing types was significant at 90% confidence
interval at four-legged intersections and not significant at three-legged intersections. Hence,

pedestrian crossing type was included in the regression analysis.

Table 7.2: Chi-square test results at three-legged and four-legged uncontrolled intersections.

3-legged intersections 4-legged intersections
S.No. Variable type Chi- Chi-
Square df p-value | Square df p-value
value value
1 Pedestrian | 123414 | 3 | 0000 | 19516 | 3 | 0.000
gender
2 Pedestrian age | 193.689 9 0.000 135.374 9 0.000
3 Pedestrian speed | 158.84 9 0.000 243.416 9 0.000
4 Luggage 17.443 3 0.011 116.887 3 0.000
5 Mobile usage 89.222 3 0.000 37.752 3 0.001
6 Crossing type 4,587 3 0.135 6.388 3 0.094
7 Pedestrian 8653 | 6 | 038 | 5775 | 6 | 0.449
platoon
8 Vehicle type 250.967 12 0.000 231.027 12 0.000
9 Vehicle speed 133.728 9 0.000 29.681 9 0.005
10 | Vehicle direction | 187.781 6 0.000 119.834 6 0.000
11 ";tera‘?“o” 254755 | 3 | 0000 | 199.823| 3 | 0.000
ocation
12 Lane distribution | 7.879 9 0.325 9.342 9 0.274

Table 7.3 shows the descriptive statistics of the variables used in the OLR. A total of 5416 and
5693 P-V interactions at three-legged and four-legged uncontrolled intersections respectively
were used for the OLR. 70% of total data was used for the development of OLM and remaining

30% data was used for the validation of developed models.
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Table 7.3: Descriptive statistics of variables used in the ordinal logistic regression.

Three-legged intersections | Four-legged intersections
Parameter type Percentage | Number of | Percentage | Number of
of samples samples of samples samples

No interaction 38.2 2069 41.6 2368

Low severe 31.0 1679 30.8 1753

Severity Moderately 19.4 1051 174 991
severe

Severe 11.4 617 10.2 581

Gender Male 61.8 3347 57.3 3262

Female 38.2 2069 42.7 2431

Child 11.9 644 7.2 410

Age Young 32.9 1783 28 1597

Middle 39 2110 47.7 2716

Old 16.2 880 17.1 971

<0.5m/s 3.4 184 2.7 154

Ped speed 0.5-1.0m/s 39.6 2145 37.0 2105

1.0-1.5m/s 48.1 2605 47.6 2713

>1.5m/s 8.9 482 12.7 722

Luggage No 81.8 4430 85.5 4865

Yes 18.2 986 14.5 828

Mobile usage No 85.9 4654 90.3 5141

Yes 14.1 762 9.7 552

Crossing Straight 354 1917 28.0 1593

type Rolling 64.6 3499 72.0 4100

2W 45.9 2486 42.6 2425

3w 19.3 1045 22.3 1270

Vehicle type Car 16.1 872 17.3 983

LCV 11.0 596 9.5 541

HCV 8.7 471 8.3 473

<15km/h 15.7 850 17.3 982

Vehicle 15-30km/h 50.0 2708 53.0 3017

speed 30-45km/h 23.4 1268 215 1226

>45km/h 10.9 591 8.2 468

Vehicle Through 74.3 4024 78.3 4458

direction Right turn 14.4 780 12.9 734

Left turn 11.3 612 8.8 501

Interaction Entry 49.6 2688 46.2 2630

Location Exit 50.4 2728 53.8 3063

Total 100.0 5416 100.0 5693

7.2.1 P-V interaction severity model for three-legged uncontrolled intersections

An ordinal logistic regression (OLR) was performed in Statistical Package for Social Sciences
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(SPSS) software between the dependent and independent variables at 95% significance interval
to predict the probabilities of P-V interaction severity levels at three-legged uncontrolled
intersections. Table 7.4 shows the results of OLR from SPSS software at three-legged
intersections and the variables from table with p<0.05 were included in the developed ordinal
logit model (OLM) to estimate the probabilities of severity levels. From logistic regression
results, pedestrian gender, age, crossing speed, luggage, mobile usage, vehicle type, speed,
direction, and location of P-V interaction were found to have significant effect (p<0.05) on
severity levels of P-V interactions. Pedestrian crossing type has no significant effect (p>0.05)
on severities of P-V interactions. The probability of severity of an interaction increases with
the increase in independent variable, if the sign of the estimate (B) is positive and decreases

with increase in independent variable, if the sign of estimate (B) is negative.

Table 7.4: Ordinal logistic regression results for three-legged uncontrolled intersections.

Parameter type Estimate p-value Odds ratio
No interaction -1.83 0.000 0.16
Severity Low severe interaction -0.913 0.000 0.401
Moderately severe 0519 0.026 0.595
interaction
Male 0.403 0.000 1.496
Gender
Female 0? - -
Child -0.763 0.000 0.466
Age Young 0.358 0.000 1.43
Middle 0.189 0.037 1.184
Old 0? - -
<=0.5 m/s -1.014 0.000 0.363
Pedestrian 0.5-1.0 m/s -0.756 0.000 0.469
speed 1.0-1.5 m/s -0.252 0.021 0.777
>1.5m/s 02 - -
Luggage No -0.345 0.000 0.708
Yes 0? - -
Mobile usage No -0.395 0.000 0.674
Yes 02 - -
Crossing type Straight 0.091 0.126 1.09
Rolling 02 - -
2W 1.088 0.000 2.968
3W 0.718 0.000 2.05
Vehicle type Car 0.942 0.000 2.565
LCV 0.394 0.009 1.483
HCV 0a - -
Vehicle speed <=15 km/h -0.463 0.001 0.629
15-30 km/h -0.315 0.005 0.73
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30-45 km/h -0.266 0.009 0.766
>45 km/h 0a - -

) Right turn -1.31 0.000 0.27
Vehicle Through 1023 0.000 0.359
direction

Left turn 0a - -
Interaction Entry 0.816 0.000 2.261
location Exit Qa - -
a. This parameter is set to zero because it is redundant.

7.2.1.1 Effect of pedestrian, vehicle, and geometric parameters on severity of P-V
interactions at three-legged uncontrolled intersections

The effect of pedestrian, vehicle, and geometric parameters on P-V interaction severity levels
were quantified using odds ratio (OR), which is defined as the ratio of probability of an event
to the probability of a non-event. For continuous predictors, OR>1.0 indicates that the event is
more likely to occur as the predictor increases. For categorical predictors, OR compares the
odds of the event occurring at 2 different levels of predictors. OR>1.0 indicates that the event
is more likely to occur at level 1 and OR<1.0 indicates that the event is less likely to occur at
level 1. For positive estimates (OR>1), the severities (Y = 0 or 1 or 2) are increased by (OR-1)
percent for one unit increase in the variable X. For negative estimates (OR<1), the severities

(Y =0or 1or2)are decreased by (1-OR) percent for one unit increase in the variable X.

The OR of 1.496 for male pedestrians indicate that one unit increase in male pedestrians
increase the probability of P-V interaction severity level by 49.6% (i.e. (1.496-1) *100). The
probabilities of severity levels were increased by 43.0% (OR = 1.430) and 18.4% (OR =1.184)
in case of young and middle age pedestrians respectively. These higher probabilities of severity
levels in male and young pedestrians are because of higher risk-taking behaviour due to the
higher crossing speeds. The probabilities of severity levels were observed to be lower when
the pedestrians crossing without luggage (29.2% less severe) and mobile usage (32.6% less
severe). Also, the probabilities of P-V interaction severity levels were decreased by 63.7%,
53.1%, and 22.3% when the pedestrians crossing at less than or equal to 0.5 m/s, 0.5-1.0 m/s,
and 1.0-1.5 m/s respectively. The pedestrians crossing at higher speeds will take more risk than
the pedestrians crossing at lower speeds is the reason for lower probabilities of severity levels

when crossing at lesser speeds.

Vehicle type was found to be the most influencing parameters of P-V interaction severity levels
as the OR of vehicle types were observed to be the highest. The OR of 2.968, 2.050, 2.565, and
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1.483 indicate that the probability of P-V interaction severity levels were increased by 196.8%,
105.0%, 156.5%, and 48.3% for 2Ws, 3Ws, cars, and LCVs respectively. Further, the
probability of P-V interaction severity levels were decreased by 37.1%, 27.0%, and 23.4% for
the one unit increase in vehicles approaching the intersection with less than or equal to 15 km/h,
15-30 km/h, and 30-45 km/h respectively. The probability of severity of an interaction was
lower for right turning vehicles (73.0%) followed by through vehicles (64.15%). Also, the
probability increased by 126.1% for one unit increase in the interactions which occurs at entry

point of the intersection.

7.2.2 P-V interaction severity model for four-legged uncontrolled intersections

An ordinal logistic regression was performed in SPSS software for four-legged uncontrolled
intersections and the variables with p<0.05 are included in the developed OLM. Table 7.5
shows the results of OLR performed in SPSS software at four-legged intersections. From
logistic regression results, pedestrian gender, age, crossing speed, luggage, mobile usage,
vehicle type, speed, direction, and location of P-V interaction were found to have significant

effect (p<0.05) on severity levels of P-V interactions.

Table 7.5: Ordinal logistic regression results for four-legged uncontrolled intersections.

Parameter type Estimate p-value Odds ratio
No interaction -2.535 0.000 0.079
. Low severe interaction -1.785 0.000 0.168
Severity Moderately severe
. . -0.461 0.038 0.631
interaction
Male 0.377 0.000 1.458
Gender
Female 02 - -
Child -0.697 0.000 0.498
Age Young 0.494 0.000 1.638
Middle 0.176 0.017 1.193
Old 02 - -
<=0.5m/s -1.084 0.000 0.338
Pedestrian 0.5-1.0 m/s -0.797 0.000 0.45
speed 1.0-1.5 m/s -0.176 0.037 0.839
>1.5m/s 02 - -
Luggage No -0.447 0.000 0.639
Yes 02 - -
Mobile usage No -0.561 0.000 0.571
Yes 02 - -
Crossing type Straight 0.087 0.193 1.09
Rolling 02 - -
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2W 1.027 0.000 2.793
3w 0.778 0.000 2.178
Vehicle type Car 0.904 0.000 2.47
LCV 0.358 0.028 1.43
HCV 02 - -
<=15km/h -0.596 0.000 0.551
Vehicle speed 15-30km/h -0.249 0.012 0.78
30-45km/h -0.264 0.014 0.768
>45km/h 0? - -
: Right turn -1.152 0.000 0.316
J.’eh"?'e Through -0.792 0.000 0.453
irection
Left turn 02 - -
Interaction Entry 0.7 0.000 2.014
location Exit 0? - -
a. This parameter is set to zero because it is redundant.

The effect of pedestrian, vehicle, and geometric parameters on P-V interaction severity levels
were quantified using odds ratio (OR). From the table 7.5, the OR of 1.458 in case of male
pedestrians indicate that the odds of P-V interaction severity levels in male pedestrians were
1.458 times higher than the odds of the severity levels in female pedestrians. The OR of 1.638,
and 1.193 indicate that the odds of the severity levels were 1.638 times, and 1.193 times higher
in young, and middle age pedestrians respectively than the odds of severity levels in old age
pedestrians. The higher risk taking behaviour due to higher crossing speeds in male and young
pedestrians is the reason for higher odds of severity levels. The odds of P-V interaction
severities were lower when the pedestrians crossing at less than or equal to 0.5 m/s (0.338
times), 0.5-1.0 m/s (0.450 times), and 1.0-1.5 m/s (0.839 times) respectively than the odds of
severities when pedestrians crossing at more than 1.5 m/s. Further, the odds of severity levels
were lower when the pedestrians crossing without luggage (0.639 times), and mobile usage
(0.571 times) than the odds of severity levels in pedestrians crossing with luggage, and mobile
usage.

Vehicle type was found to be the most influencing parameters of P-V interaction severity levels
as the OR of vehicle types were observed to be the highest at four-legged intersections. The
OR 0f 2.793, 2.178, 2.470, and 1.430 indicate that the odds of the severity levels were 179.3%,
117.8%, 147.0% and 43.0% higher for 2Ws, 3Ws, cars, and LCVs respectively than the odds
of severity levels for HCVs. Further, the odds of severity levels were 44.9%, 22.0%, and 23.2%

lower for the vehicles approaching the intersection with less than or equal to 15 km/h, 15-30
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km/h, and 30-45 km/h respectively than the odds of severities for vehicles approaching at more
than 45 km/h. The odds of severities were lower for right turning vehicles (68.4%) followed
by through vehicles (54.7%) than the odds of severities for left turning vehicles. Also, the odds
P-V interaction severities were higher in the interactions which occurs at entry point of the
intersection (101.4% higher) than the odds of severities in the interactions which occurs at exit

point of intersection.

7.3 Validation of OL models at three-legged and four-legged intersections

In logistic regression models, log likelihood ratio test, pseudo R-square, AIC (Akaike’s
Information Criteria), and BIC (Bayesian Information Criteria) are used to measure the
goodness of fit. Deviance is a measure of lack of fit to the data and it is computed using the log
likelihood values of saturated model and fitted model. The difference between the deviance of
null model and final model gives the chi-square value. The predictors significantly improve the
model fit if the final model deviance is smaller than that of null model deviance. The equation
7.1 shows the difference in deviances of null model and final model.

D D _ n likelihood of the null model
null final = likelihood of the final model

(7.1)

Pseudo R-square values are also used in logistic regression to measure the goodness of fit.
McFadden’s pseudo R-square is most widely used and it is calculated using equation 7.2.
Tabachinick & Fidell (2007) suggested that the McFadden pseudo R? values ranging from 0.2
to 0.4 are highly satisfactory.

log likelihood of final model (7 2)

McFadden pseudo R?* =1 — ——
log likelihood of null model

AIC and BIC are computed using the following equations,
AIC = = (—loglikelihood + k) (7.3)

BIC = —2loglikelihood + log (N) X k (7.4)

Where, N is the number of points in the training data set, and k is the number of parameters in

the model.

Tables 7.6 and 7.7 shows the model fitting information of the developed ordinal logit models

at three-legged and four-legged uncontrolled intersections respectively. The McFadden pseudo
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R-square values at three-legged and four-legged intersections were 0.115 and 0.106
respectively. The deviance values of intercept only model and final were 7125.939 and
6131.676 respectively at three-legged intersections, 6306.854 and 5455.059 respectively at
four-legged intersections. The AIC values of intercept only model and final were 8654.068 and
7799.806 respectively at three-legged intersections, 8056.341 and 7344.546 respectively at
four-legged intersections. The BIC values of intercept only model and final were 8673.225 and
7346.677 respectively at three-legged intersections, 8075.997 and 7495.086 respectively at
four-legged intersections. The lower values of McFadden pseudo R-square values indicates
that the developed models were somewhat week. But, the lower deviance, AIC and BIC values
of final model compared to intercept only model indicates the good fit of the developed models
at three-legged and four-legged intersections.

Table 7.6: Model fitting information of OLM at three-legged intersections

Model fitting criteria Likelihood ratio test
Model AIC BIC -2 log Chi df i
likelihood -square 319
Interceptonly | goer 068 | 8673.225 | 8648.068 ; ; ;
model
Final model 7799.806 | 7946.677 | 7653.806 994.262 20 | 0.000
McFadden
pseudo R? 0.115

Table 7.7: Model fitting information of OLM at four-legged intersections

Model fitting criteria Likelihood ratio test
Model -2 log . .
AIC BIC likelihood Chi-square df sig.
Interceptonly | gyo6 341 | 8075.997 | 8050341 i i i
model
Final model 7344.546 7495.086 7198.546 851.795 20 0.000
McFadden
pseudo R? 0.106

7.4 Comparison of P-V interaction severity levels at three-legged and four-legged
uncontrolled intersections

Odds ratio (OR) of a variable is used to compare the probability of severity levels of P-V
interactions between three-legged and four-legged intersections. The probability of severity of
an interaction is higher, if the OR of a variable is higher and vice versa. The OR of male

pedestrians at three-legged intersections (OR = 1.496) was higher than OR of male pedestrians
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at four-legged intersections (OR = 1.458). This means that one unit increase in male pedestrians
at three-legged intersections increase the probability of P-V interaction severity level by 3.8%
compared to one unit increase in male pedestrians at four-legged intersections (the severity
level at three-legged intersections was 3.8% higher compared to four-legged intersections when
male pedestrian involves in an interaction at both locations). Further, the probability severity
level was increased by 17.5% at three-legged intersections for one unit increase in 2Ws
compared to one unit increase at four-legged intersections. Similarly, the probabilities of
severity levels were increased by 2.5%, 6.9%, 10.3%, 7.8%, and 24.7% at three legged
intersections for one unit increase in pedestrians crossing at less than or equal to 0.5m/s,
crossing without luggage, mobile usage, vehicle approaching at less than or equal to 15 km/h,
and interaction occurs at the entry point of intersection respectively compared to one unit
increase at four-legged intersections. The higher OR values of variables at three-legged
intersections indicates that the probability of P-V interaction severity was higher at three-
legged intersections compared to four-legged intersections. Hence, it was concluded that the
severity levels of P-V interactions at three-legged intersections were higher compared to four-
legged intersections. The higher approaching speeds of vehicles at three-legged intersections
is the reason for higher P-V interaction severity levels compared to four-legged intersections.

Lord (1996) also found that T-intersections were more dangerous than X-intersections.

7.5 Summary

In the present chapter, the OL models were developed to predict the severity levels of P-V
interactions at three-legged and four-legged uncontrolled intersections. The OL regression
results confirmed that the P-V interaction severity levels depends various factors of pedestrian,
vehicle, geometry at three-legged and four-legged intersections. The developed OL models
were validated using log likelihood ratio test, pseudo R-square, AIC, and BIC values and the
validation results indicate the good fit of the developed models. The severities of P-V
interactions were compared between three-legged and four-legged intersections using OR of
variables and found the higher severity levels at three-legged intersections compared to four-

legged intersections.

In the next chapter, estimation of pedestrian dilemma zone boundary limits using various
methods, modelling of PDZ boundary limits, and validation of developed models at three-

legged and four-legged uncontrolled intersections are presented.
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CHAPTER 8: PEDESTRIAN DILEMMA ZONE ESTIMATION
AND MODELLING

8.1 General

Pedestrian gap acceptance theory is the basic concept for pedestrian dilemma zone (PDZ)
analysis and modelling. PDZ is formed by the moving vehicles on the road which creates a
stage of confusion to the pedestrians while finding a suitable gap to cross the road. There is a
possibility of an interaction between the pedestrian and vehicle due to the incorrect decision
taken by the pedestrian when the vehicle lies within the limits of PDZ. The lower limit (below
which the available gap is unsafe to cross) and upper limit (above this limit the available gap
is safe to cross) of PDZ will help the pedestrians to judge whether the available gap is sufficient
or not to cross the road to avoid interactions with vehicles. Modelling of PDZ will help to know
the effect of various pedestrian and vehicle characteristics on these PDZ limits. In this chapter,
an attempt is made to estimate the boundary limits, and length of PDZ (spatial PDZ boundaries
and length) at 3-legged and 4-legged uncontrolled intersections. Also, this chapter deals with
the development of PDZ model at 3-legged and 4-legged uncontrolled intersections separately

to determine the PDZ boundary limits.
8.2 Pedestrian dilemma zone (PDZ) estimation

PDZ boundaries can be estimated using cumulative gap distribution (CGD) method, support
vector machine (SVM) method, binary logistic (BL) method, and probabilistic distribution
method. A brief explanation of estimating PDZ boundary limits using these methods is given
in section 1.4 of chapter 1. In the present study, cumulative gap distribution and support vector

machine methods were used to estimate the PDZ boundary limits.
8.2.1 PDZ estimation using gap cumulative distribution (GCD) method

This method was proposed by Zegeer (1977) for measuring dilemma zone boundaries of
vehicles corresponding to more than 10% and less than 90% of vehicles would choose to stop
at signalized intersections. Later, this method was used by Pawar et al. (2016) to estimate the
PDZ boundary limits at uncontrolled midblock crossings. In this method, a plot between
distance of vehicle from the pedestrian trajectory path when he/she accept/reject the gap on x-
axis and cumulative percentage gap accepted on y-axis is plotted and the distances
corresponding to 10% and 90% cumulative percentage accepted gaps were taken as the lower

and upper boundaries of the PDZ.
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In the present study, the GCD plots were plotted separately for 3-legged and 4-legged
uncontrolled intersections as the statistical results showed significant difference in
accepted/rejected gaps (distance) between the 3-legged and 4-legged intersections. Figures 8.1
below shows the GCD plots for estimating the PDZ boundary limits at 3-legged intersections.
The estimated lower and upper boundary limits of PDZ at 3-legged intersections corresponding
to more than 10% cumulative accepted gaps and less than 90% cumulative rejected gaps were
9.5m and 19.5m respectively. The length of PDZ (difference between upper boundary limit
and lower boundary limit) was 10.0m.

Figures 8.2 shows the GCD plots for estimating the PDZ boundary limits at 4-legged
intersections. The estimated lower and upper boundary limits of PDZ at 4-legged intersections
corresponding to more than 10% cumulative accepted gaps and less than 90% cumulative
rejected gaps were 9.0m and 16.5m respectively. The length of PDZ (difference between upper

boundary limit and lower boundary limit) was 7.5m.
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Figure 8.1: PDZ boundary limits estimation using GCD method at 3-legged uncontrolled

intersections.
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Figure 8.2: PDZ boundary limits estimation using GCD method at 4-legged uncontrolled

intersections.
8.2.2 PDZ estimation using support vector machine (SVM) method

The basic rules, various kernel functions used in the classification techniques, and use of SVM
technique for multilevel classification of various P-V interaction severity levels were discussed
in the section 6.1 of chapter 6. In the present study, SVM code in python interface was used
for the binary classification of accepted and rejected pedestrian gaps. P-V trajectory data were
plotted on a coordinated system with the approaching speeds of the vehicles on y-axis and the
distance of vehicles from pedestrian trajectory paths on x-axis for both accepted and rejected
gaps. SVM construct a hyperplane as a decision plane to separate both accepted and rejected
gaps with the maximum margin. In the present case, linear kernel function was used as the data
sets were observed to be linearly non-separable. SVM code in python interface to determine
the PDZ boundary limits is shown in figure 8.3. Figures 8.4 and 8.5 shows the profiles of both
accepted and rejected gaps at 3-legged and 4-legged uncontrolled intersections respectively. In
these figures, red profiles indicate all rejected gaps and blue profiles indicate all accepted gaps.
The overlapping profile of both accepted and rejected gaps is the best optimal hyperplane and
the distances on this plane corresponding to various vehicle speed ranges were taken as the

boundary limits of PDZ. The lower and upper boundary limits of PDZ were taken
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corresponding to the two standard deviation from the mean speed (from the normal distribution

curve about 95% values lies within limits of two standard deviation from mean).

confusion_matrix, accuracy_score

LabelEncoder

ce "11-copy ()

rain, y_test = train_test_split(x, y, test size = 2.3, random_state = 4)

, alpha = 8.9)
¢ = y_train, cmap = 'R

Figure 8.3: SVM code in Python interface to estimate PDZ boundary limits.

In the present study, 3.91 km/h and 50.63 km/h were plus or minus two standard deviation
values from mean speed (27.27 km/h) at 3-legged intersections and 4.06 km/h and 46.17 km/h
were the plus or minus two standard deviation values from mean speed (25.11 km/h) at 4-
legged intersections. The classification plots for the PDZ boundary limits estimation using
SVM method at three-legged and four-legged intersections were shown in figure 8.4 and 8.5
respectively. The estimated lower and upper boundary limits of PDZ using SVM method were
7.5m and 24.0m respectively at 3-legged uncontrolled intersections and 6.0 and 18.5
respectively at 4-legged uncontrolled intersections. The estimated length of PDZ using SVM
method was 16.5 m at 3-legged intersections and 12.5 m at 4-legged intersections.
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Figure 8.4: PDZ boundary limits estimation using SVM method at 3-legged uncontrolled

intersections.
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Figure 8.5: PDZ boundary limits estimation using SVM method at 4-legged uncontrolled
intersections.

The performance of SVM classified data was described using confusion matrix and the
accuracy of SVM classified data was estimated using true positives, true negatives, false
positives, and false negatives. The mathematical form of accuracy definition is shown in

equation 8.1 and the estimated accuracy for classified data at 3-legged and 4-legged
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intersections given in table 8.1. In the present case, the test results predict with a good accuracy

of 87.3% and 89.0% at 3-legged and 4-legged intersections respectively.

True Positives + True Negatives

Accuracy = — — - -
True Positives + False Positives +True Negatives + False Negatives

(8.1)

Table 8.1: Confusion matrices and accuracy of testing data in SVM at three-legged and four-

legged intersections.

Predicted
three-legged intersection four-legged intersection
Accepted Rejected Accepted Rejected
Accepted 207 85 302 83
Actual :
Rejected 50 767 36 680
Accuracy 87.3% 89.0%

The estimated boundary limits of PDZ using GCD and SVM methods were shown in table 8.2.
The estimated lower limit of PDZ using GCD method was higher than that of estimated limit
using SVM method at three-legged and four-legged intersections. The estimated upper limit of
PDZ at three-legged and four-legged intersections was lower in case of GCD method compared
to SVM method. GCD method overestimated the lower limit and under estimated the upper
limit compared with SVM method. SVM better estimated the PDZ boundary limits with largest
margin compared to GCD method. Figure 8.6 shows the physical location and length of PDZ
at three-legged and four-legged uncontrolled intersections estimated from SVM method. The
lower and upper boundary limits of PDZ at three-legged intersections shifts way from the
intersection or crosswalk or pedestrian trajectory path compared to four-legged intersections.
The length of PDZ at three-legged intersections was higher than that of four-legged
intersections. The higher approaching vehicular speeds due to the smaller number of conflicting
points at three-legged intersections is the reason for shifting the boundary limits away from the

intersection.
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Table 8.2: PDZ boundary limits at three-legged and four-legged intersections.

S.No. Intersection type Method used PDZ Limits(m)
Lower limit| Upper limit | Length
1 Three-legged uncontrolled GCD 9.0 19.5 105
SVM 7.5 24 16.5
2 Four-legged uncontrolled GCD 9.0 16.5 7.5
SVM 6.0 18.5 125
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Figure 8.6: Physical location PDZ boundaries at three-legged and four-legged intersections.

8.3 Modelling of pedestrian dilemma zone (PDZ) boundaries

Logistic models can be used to model the probability of one event taking place by having the
log-odds of one or more independent variables. Multinomial and order logit models can be
used to model the categorical dependent variables of more than two categories. Binary logit
model is preferred in case of categorical dependent variables with two categories. A pedestrian
perception of accepting the gap is a binary event where the probability of choosing the gap lies
between O and 1. In the present case, binary logit model is useful to capture the pedestrian
behaviour in accepting and rejecting the gap to cross the road.

_ { 0, if k'™ pedestrian reject the gap
k 1, else
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The probability of accepting a given gap i for the pedestrian Kk is given by,

P(i) = —

1+e Ui

(8.1)

U= a+ p1X; + BoXy + B3X3+ -+ fpXy (8.2)

Where, Uiis the utility of gap |,
a s the intercept used in the model
X1, X2, X3, ..., Xy are the independent variables

B1, B2, B3, -, Br, are the coefficients of independent variables.

Logistic loss (log loss) is used to measure the goodness of fit in case of logistic regression. As
the respondents are independent of one another, maximum likelihood is given by the product
of the probabilities and log transformation is given is equation 8.3.

InL = Xy,sIn(Py) + (1 — y)(1 = Py) (8.3)
Where, Pa is the probability of accepting the given gap

Pedestrian has to decide whether the available gap is sufficient or not to cross the road.
Sometimes this decision making is difficult when the vehicles are within a certain region on
the road. This region is known as pedestrian dilemma zone and it can be estimated by
developing a binary logistic regression model between dependent (gap accept/reject) and
independent variables (pedestrian age (PA), pedestrian gender (PG), pedestrian speed (PS),
location of pedestrian crossing (LPC), vehicle type (VT), vehicle distance (VD) and vehicle
approaching speed (VS)). Description of variables used in the binary logistic regression

analysis were shown in table 8.3.
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Table 8.3: Description of variables used in the binary logistic regression

classified as male and female

S. No. Variable Description Category/Code
1 Gap accept/reject Whether a pedestrian accepted or Reject-0, Accept-1
rejected the available gap
2 | Pedestrian gender (PG) Based on visual appearance Male-1, Female-2

Based on visual appearance

classified as child (<15 years),

Children-1, Young

crossing (LPC)

entry or exit of the intersection

3 Pedestrian age (PA) age-2, Middle age-3,
young age (15-30 years), middle Old age-4
age (30-60 years) and old age (>60
4 Pedestrian speed (PS) Crossing speeds of pedestrians [ Pedestrian speed (m/s)
Classified based on visual
appearance as Two-wheeler (2W), 2W-1, 3W-2, Car-3,
5 Vehicle type (VT) Three-wheeler (3W), Car, Light LCV-4, HCV-5
commercial vehicle (LCV) or
Heavy commercial vehicle (HCV)
6 Vehicle speed (VS) | Approaching speeds of the vehicles Speed in kmph
The distance of the vehicle from the
7 | Vehicle distance (VD) pedestrian trajectory path when Distance in meters
he/she accept/reject the gap
8 Location of pedestrian | Whether the pedestrian crossing at Entry-1, Exit-2

8.3.1 PDZ model for three-legged uncontrolled intersections

A binary logistic regression (BLR) was performed in Statistical Package for Social Sciences

(SPSS) software between the dependent and independent variables at 95% significance interval

to estimate the probability of gap acceptance by pedestrians at three-legged uncontrolled

intersections. Table 8.4 shows the results of the BLR for three-legged uncontrolled

intersections and the variables from the table with p<0.05 were included in the developed

binary logit model (BLM) to estimate the PDZ boundary limits. The logistic regression results

confirmed that pedestrian gender (PG), age (PA), crossing speed (PS), vehicle type (VT),

approaching speed (VS), distance of vehicle from pedestrian trajectory path, and location of
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pedestrian crossing (LPC) have significant effect (p<0.05) on the gap acceptance behaviour of
pedestrians. The positive sign of the estimate (B) indicates that with an increase in the
independent variable, the probability of accepting of a give gap by the pedestrian also increase.
The negative estimate (B) indicates that the probability of gap acceptance by pedestrians

decreases with the increase in independent variable.

Table 8.4: BLR results for three-legged uncontrolled intersections

Variable type Estimate (B) p-value Odds Ratio (OR)
Constant -2.853 0.000 0.058
Distance (D) 0.376 0.000 1.456
Pedestrian gender Male (Pm) 0.637 0.000 1.891
Child (Pc) -0.388 0.046 0.678
Pedestrian age Young (Py) 0.590 0.000 1.804
Middle (Pwmid) 0.304 0.042 1.355
Pedestrian speed (PS) 0.615 0.000 1.850
2W (Vaw) -0.368 0.026 0.692
Vehicle type 3W (Vaw) -0.965 0.000 0.380
Car (Vcar) -1.074 0.000 0.341
LCV (Vicv) -1.302 0.000 0.272
Vehicle speed (VS) -0.128 0.000 0.880
LPC | Entry -0.203 0.037 0.816

Odd ratio (OR) was used to quantify the impact of significant factors on choosing the gap
accepted versus gap rejected. For positive coefficients, the odds of Y =1 are increased by (OR-
1) percent for one unit increase in the variable X. The OR of distance was 1.456 indicates that
one unit increase in vehicle distance from P-V interaction point results in 45.6% (i.e. (1.456-
1)*100) increase in the probability of gap acceptance by the pedestrian. One unit increase in
pedestrian crossing speed (OR = 1.850) results in 85.0% increase in the probability of gap
acceptance. Further, one unit increase in vehicular speed (OR = 0.880) results in 12.0%
decrease in the probability of gap acceptance. The probability of gap acceptance was also
higher in case of male (1.891 times), and young (1.804 times) pedestrians compared to female
and old age pedestrians respectively. Further, it was also lower when the interaction occurs at
entry point of intersection (0.816 times) compared to exit point. The probability of gap
acceptance was also higher in case of 2Ws compared to 3Ws, Cars, and LCVs respectively.

The utility equation from table 8.4 can be expressed as,

85



U; = —2.853 + (0.376 x D) + (0.637 X Py) — (0.388 x P.) + (0.590 x P,) +
(0.304 X Py;g) + (0.615 x PS) — (0.368 X V,y) — (0.965 X Vay,) — (1.074 %
Vear) — (1302 X Vy¢p) — (0.128 X VS) — (0.203 X LPCrpiry) (8.4)

Female, old age pedestrians, HCVs, and exit point of pedestrian crossing were taken as the

reference variables in the BLR. These variables are redundant and the estimates set as zero.

The equations to estimate lower and upper boundary limits of PDZ were developed using utility
and probability equations corresponding to 0.9 and 0.1 probabilities respectively. After
substituting the utility equation and probability of 0.1 in equation 8.1, the obtained equation

for estimating lower boundary limit PDZ (Do) at three-legged intersections is as follows:

Dy = 1.74 — (1.69 X Py) + (1.03 X P;) — (1.57 X Py) — (0.81 X Py;4) — (1.64 X PS) +
(0.98 X Vo) + (2.57 X Vay) + (2.86 X Vo) + (3.46 X Vi) + (0.34 X VS) +
(0.54 X LPCgpery) (8.5)

After substituting the utility equation and probability of 0.9 in equation 8.1, the obtained
equation for estimating upper boundary limit PDZ (D1) at three-legged intersections is as

follows:

D; = 439 — (1.69 X Py) + (1.03 X P;) — (1.57 X Py) — (0.81 X Py;4) — (1.64 X PS) +
(0.98 X Vo) + (2.57 X Vo) + (2.86 X Vigy) + (3.46 X V) + (0.34 X VS) +
(0.54 X LPCrpery) (8.6)

8.3.1.1 Effect of pedestrian parameters on PDZ boundaries

The equations 8.5 and 8.6 are used to estimate the lower and upper boundary limits of PDZ
respectively at three-legged uncontrolled intersections. The initial observation from the binary
logistic regression confirmed that the boundary limits of PDZ significantly affected by the
pedestrian parameters like gender, age, crossing speed, and location of crossing. Pedestrian
gender and age (except children) have negative impact on the PDZ boundaries and the
boundary limits lies close to the intersection or crosswalk or pedestrian trajectory path in case
of male pedestrians compared to female pedestrians. PDZ boundary limits lies close to the
intersection in case of young pedestrians compared to old age pedestrians and they shift away
from the intersection in case of children. The boundary limits shift away from the intersection
with an increase in pedestrian age. The higher risk-taking behaviour of male and young age
pedestrians is the reason for dilemma behaviour at lesser boundary limits. The PDZ boundary
limits lies close to the intersection at higher crossing speeds of pedestrians and shifts away

from the intersection when the pedestrians crossing at the entry point of the intersection
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compared to exit point.
8.3.1.2 Effect of vehicle parameters on PDZ boundaries

The initial observations from binary logistic regression and equations 8.5 and 8.6 conformed
that the PDZ boundary limits depends on vehicle parameters like type and speed. The positive
sign of the coefficients of vehicle types and speeds in the equations 8.5 and 8.6 indicates that
the PDZ boundary limits were positively correlated with the vehicle type and speed. The
boundary limits shift away from the intersection or crosswalk or pedestrian trajectory path with
increase in the size of vehicles. Thus, the lower and upper limits of PDZ lies close to the
intersection in case of 2Ws compared to 3Ws, cars, LCVs, and HCVs respectively. Therefore,
it is concluded that the pedestrians have less dilemma with 2Ws at comparatively shorter
distances with 3Ws, cars, LCVs and HCVs respectively. Similar findings were reported by
Pawar and Yadav (2022) for midblock locations. The boundary limits of PDZ (location from
the intersection or crosswalk or pedestrian trajectory path) shifts away from the intersection
with the increase in approaching speeds of conflicting vehicles. Pedestrians will have more
dilemma at longer distances when the vehicle approaching the intersection with higher speeds.
Pawar and Patil (2017) were also observed the similar finding for minor street vehicles

dilemma zone.
8.3.1.3 Validation of BL model

The prediction success table (confusion matrix) was used to evaluate the performance of the
developed model with 0.5 as threshold value of classification. The sensitivity and specificity,
which measures the proportion of positives and negatives respectively that are correctly
identified were used to evaluate the performance of binary classification test. Table 8.5 shows
the prediction success table for the developed binary logit model at three-legged uncontrolled
intersections. From the table 8.5, the sensitivity and specificity were found to be 93.1% and
70.2% respectively. The overall prediction success rate for the developed model was 86.4%.

Overall, the developed model predicts the correct values with an accuracy of 86.4%.

The model fitting information of the developed binary logit model at three-legged intersections
was shown in table 8.6. The model fitting was assessed using a Likelihood ratio test and
McFadden’s pseudo R? value was calculated using -2log likelihoods of final model and
intercept only model (McFadden pseudo R? = 1-((-2log likelihood of final model)/(-2log
likelihood of intercept model only))). The McFadden pseudo R? value calculated in the present
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study was 0.419 (i.e. 1-(2734.760/4706.760)), which would suggest that the developed model
is highly satisfactory. Tabachinick & Fidell (2007) suggested that the McFadden pseudo R?
values ranging from 0.2 to 0.4 are highly satisfactory. Also, lower values of Akaike’s
Information Criteria (AIC), Bayesian Information Criterion (BIC), and -2log likelihood values
of the final model when compared with intercept only model indicates the good fit of the

developed model.

Table 8.5: Prediction success table for developed model at three-legged intersections

Predicted
Observed Gap Percentage
Reject Accept Correct
Gap Reject 2567 190 93.1%
Accept 339 800 70.2%
Overall Percentage 86.4%

Table 8.6: Model fitting information of binary logit model at three-legged intersections

Model fitting criteria Likelihood ratio test
Model -2 log i ; _
AIC BIC likelihood Chi-square d sig.
Intercept only model | 4708.880 | 4715.146 | 4706.878
Final model 2760.760 | 2842.240 | 2734.760 | 1972.118 12 | 0.000
McFadden pseudo R? 0.419

8.3.2 Four-legged uncontrolled intersections

A binary logistic regression was performed in SPSS software at 95% significance interval to
estimate the probability of gap acceptance by pedestrians at four-legged uncontrolled
intersections. Table 8.7 shows the results of BLR for four-legged uncontrolled intersections
and the variables from the table with p<0.05 were included in the developed BLM to estimate
the PDZ boundary limits. The logistic regression results confirmed that PG, PA, PS, VT, VS,
distance of vehicle from pedestrian trajectory path (VD), and LPC have significant effect
(p<0.05) on the gap acceptance behaviour of pedestrians at four-legged intersections.
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Table 8.7: Binary logistic regression results for four-legged uncontrolled intersections

Variable type Estimate (B) p-value Odds Ratio (OR)
Constant -4.102 0.000 0.016
Distance (D) 0.608 0.000 1.837
Pedestrian gender Male (Pwm) 0.441 0.002 1.554
Child (Pc) -1.084 0.010 0.338
Pedestrian age Young (Py) 0.664 0.002 1.942
Middle (Pwmid) 0.438 0.025 1.550
Pedestrian speed (PS) 0.710 0.000 2.034
2W (Vaw) -0.508 0.035 0.602
_ 3W (Vaw) -0.821 0.004 0.439

Vehicle type

Car (Vcar) -0.974 0.001 0.378
LCV (Vicv) -1.304 0.003 0.271
Vehicle speed (VS) -0.155 0.000 0.891
LPC Entry -0.296 0.016 0.744

The impact of significant factors on choosing the gap accepted versus gap rejected was
quantified using odd ratio (OR). The OR of distance was 1.837 indicates that one unit increase
in distance of the vehicle from pedestrian trajectory path results in 83.7% (i.e. (1.837-1)*100)
increase in the probability of gap acceptance by the pedestrian at four-legged uncontrolled
intersections. One unit increase in pedestrian crossing speed (OR = 2.034) results in 103.4%
increase in the probability of gap acceptance. Further, one unit increase in vehicular speed (OR
=0.891) results in 10.9% decrease in the probability of gap acceptance. The probability of gap
acceptance was also higher in case of male (1.554 times), and young (1.942 times) pedestrians
compared to female and old age pedestrians respectively. Further, it was also lower when the
interaction occurs at entry point of intersection (0.744 times) compared to exit point. The
probability of gap acceptance was also higher in case of 2Ws compared to 3Ws, Cars, and
LCVs respectively. The higher OR values of variables in case of four-legged intersections
increase the probability of gap acceptance compared to three-legged intersections and the lower

values decreases the probability of gap acceptance.
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The utility equation from table 8.7 can be written as,

U; = —4.102 + (0.608 x D) + (0.441 X Py;) — (1.084 X P,) + (0.664 x P,) +
(0.438 X Py;q) + (0.710 x PS) — (0.508 X Vyy) — (0.821 X Vay) — (0.974 X
Vear) — (1.304 X Vi) — (0.115 X VS) — (0.296 X LPCpyery) (8.7)

Female, old age pedestrians, HCVs, and exit point of pedestrian crossing were taken as the
reference variables in the BLR. These variables are redundant and the estimates set as zero.

The equations to estimate lower and upper boundary limits of PDZ at four-legged uncontrolled
intersections were developed using utility and probability equations corresponding to 0.9 and
0.1 probabilities respectively. After substituting the utility equation and probability of 0.1 in
equation 8.1, the developed equation for estimating lower boundary limit PDZ (Do) at four-

legged intersections is as follows:

Dy = 3.13 = (0.73 X Py) + (1.78 x P.) — (1.09 x Py) — (0.64 X Py;4) — (1.17 x PS) +
(0.83 X Vypy) + (1.35 X Vayy) + (1.60 X Vigy) + (2.14 X Vo) + (0.19 X VS) +
(0.49 X LPCgprry) (8.8)

After substituting the utility equation and probability of 0.9 in equation 8.1, the developed
equation for estimating upper boundary limit PDZ (D1) at four-legged intersections is as

follows:

D; = 10.36 — (0.73 X Py) + (1.78 x P.) — (1.09 x Py) — (0.64 X Py;4) — (1.17 x PS) +
(0.83 X Vypy) + (1.35 X V) + (1.60 X Vi) + (214 X Vi) + (0.19 X VS) +
(0.49 X LPCgpery) (8.9)

8.3.2.1 Effect of pedestrian and vehicle parameters on PDZ boundaries

The equations 8.8 and 8.9 are used to estimate the lower and upper boundary limits of PDZ
respectively at four-legged uncontrolled intersections. From the equations, it was observed that
the boundary limits of PDZ significantly affected by the pedestrian parameters like gender,
age, crossing speed and location of crossing, and vehicle parameters like type and speed. The
PDZ boundary limits lies close to the intersection in case of male and young pedestrians
compared to female and old age pedestrians respectively. They shift away from the intersection
with the increase in pedestrian age (except children). For children, the boundary limits were
higher and shifts away from the intersection compared to old age pedestrians. The boundary
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limits were higher and shifts away from the intersection when the pedestrians crossing at lower
speeds compared to pedestrians crossing at higher speeds. Also, they shift away from the
intersection when the pedestrian crossing at the entry point of the intersection compared to exit

point.

The boundary limits of PDZ shifts away from the intersection with the increase in size of
vehicles. LCVs have higher boundary limits and they shift away from the intersection
compared to 2WSs. Therefore, it is concluded that the pedestrians have more dilemma with
LCVs at comparatively longer distances with 2Ws. The boundary limits of PDZ (location from
the intersection or crosswalk or pedestrian trajectory path) at four-legged intersections shifts
away from the intersection with the increase in approaching speeds of conflicting vehicles.
Pedestrians will have more dilemma at longer distances when the vehicle approaching the
intersection with higher speeds

8.3.2.2 VValidation of BL model

The prediction success table (confusion matrix) was used to evaluate the performance of the
developed model at four-legged intersections with 0.5 as threshold value of classification.
Table 8.8 shows the prediction success table for the developed BLM at four-legged
uncontrolled intersections. From the table 8.5, the sensitivity and specificity were found to be
90.2% and 70.1% respectively. The overall prediction success rate for the developed model

was 83.5%. Overall, the developed model predict the correct values with an accuracy of 83.5%.

The model fitting information of the developed BLM at four-legged intersections was shown
in table 8.9. The McFadden pseudo R? value calculated in the present study was 0.595 (i.e., 1-
(1895.86/4686.346)), which would suggest that the developed model is highly satisfactory.
Also, lower values of Akaike’s Information Criteria (AIC), Bayesian Information Criterion
(BIC), and -2log likelihood values of the final model when compared with intercept only model

indicates the good fit of the developed model for four-legged intersections.

Table 8.8: Prediction success table for developed model at four-legged intersections

Observed Predicted
Gap Percentage
Reject Accept ~ s
Gap Reject 2209 240 90.2%
Accept 368 861 70.1%
Overall Percentage 83.5%
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Table 8.9: Model fitting information of binary logit model at four-legged intersections

Model fitting criteria Likelihood ratio test
Model -2 log i ; _
AlC BIC likelihood Chi-square d sig.
Intercept only model | 4688.346 | 4694.556 | 4686.346
Final model 1921.860 | 2002.591 | 1895.86 2790.486 12 0.000
McFadden pseudo R? 0.595

8.4 Summary

In the present chapter, estimated the boundary limits and length of PDZ at uncontrolled
intersections using GCD and SVM methods. SVM better predicted the boundary limits with
largest margin compared to GCD method. The PDZ boundary limits at three-legged
intersections were higher and shifts away from the intersection or crosswalk or pedestrian

trajectory path compared to four-legged intersections.

Binary logit models were developed separately for three-legged and four-legged uncontrolled
intersections to estimate the lower and upper boundary limits of PDZ corresponding to 0.1 and
0.9 probabilities of gap acceptance respectively. Pedestrian (gender, age, and crossing speed),
vehicle (type, approaching speed, distance from pedestrian trajectory path), and geometric
(location of crossing) parameters were found to be statistically significant with the gap
acceptance behaviour of pedestrians at uncontrolled intersections and influence the boundary
limits of PDZ. The developed models were validated using classification table, and

Nagelkerke’s pseudo R-square value.

In the next chapter, summary of the present research work and conclusions drawn from the
study are presented. Limitations of the present study, scope of future work, and the

contributions are also presented in the next chapter.
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CHAPTER 9: SUMMARY AND CONCLUSIONS

9.1 General

This chapter deals with the overall summary of the present research work, conclusions drawn
from the present research, major contributions of the present study, limitations of this study,

and future scope of the present research.
9.2 Summary of the study

Four 3-legged and four 4-legged uncontrolled intersections were selected from Warangal and
Visakhapatnam districts in India. Video graphic method was used to collect the traffic data
from all study locations. Cameras were fixed at an elevation in such a way that traffic coming
and leaving from each leg of the intersection is clearly visible. Video was recorded
continuously for two hours in the morning (7:30AM to 9:30AM) and evening (4:30PM to
6:30PM) periods from each study location on a week day. Geometric details of all study
locations were directly measured from the field. MPC-HC media player, Kinovea and
DataFromSky softwares were used to extract the pedestrian (gender, age, crossing speed,
presence of luggage and mobile phones, crossing type, and collision time) and vehicle (type,
approaching speed, distance from pedestrian trajectory path, and collision time) parameters.
Severity of P-V interactions also extracted from the video using visual observations.
Pedestrians are classified based on the characteristics of age: children (<15 years), young (15-
30 years), middle age (30-60 years) and old age (>60 years), gender: male and female, luggage:
crossing with luggage and crossing without luggage, mobile phones: using mobile phones
while crossing and crossing without using mobile phones. Severity of P-V interactions is
classified as no interaction (both road users travel at their present speed to avoid collision), low
severe interaction (both or one of the road users must change his/her speed to avoid collision),
moderately severe interaction (one road user must stop and other road user may or may not
change his/her current speed to avoid collision) and severe interaction (both road users must
stop and proceed to avoid collision). Risk indicator (R1) was calculated using approaching
speed of vehicle and post encroachment time (PET). Statistical tests were carried out on the
crossing speeds of pedestrians with respect to gender and age, and approaching speeds of

vehicles with respect to type of vehicle to know the variations in the speeds.

Threshold limits of PET and RI were defined for different categories of pedestrians (gender)
and vehicles (type) using SVM multiclass classification algorithm in Python interface at 3-

93



legged and 4-legged uncontrolled intersections. The performance of classified data was
described with confusion matrix and measured the accuracy of classified data using true
positives, true negatives, false positives, and false negatives. The results showed that there is
difference in threshold limits of PET and RI at 3-legged and 4-legged intersections.

P-V interaction severity levels were classified using threshold RI limits, pedestrian gender, and
vehicle type for all the extracted samples. Chi-square test has been carried out in Statistical
Package for the Social Sciences (SPSS) software between the dependent (severity of P-V
interactions) and independent variables and the variables with p-value less than 0.05 and lesser
Chi-square value were not included in the ordinal logistic regression (OLR). OLR has been
performed in SPSS for 95% confidence interval and estimates of variables with p<0.05 were
included in the model. Odds ratios (OR) of other variables were compared with odds ratio of
reference variable (OR of reference variable is one). The severity of a variable was higher than
that of reference variable if the OR>1.0. The severity of P-V interactions at 3-legged and 4-
legged intersections were compared using OR. The developed mode was validated using log

likelihood ratio, chi-square value, and McFadden’s pseudo R? value.

Gap cumulative distribution (GCD) and support vector machine (SVM) methods were used to
estimate the boundary limits of pedestrian dilemma zone (PDZ) at 3-legged and 4-legged
uncontrolled intersections. In GCD method, a plot between cumulative % gap
accepted/rejected on y-axis and distance on x-axis was plotted and the distances corresponding
to 10% accepted gaps and 90% rejected gaps were taken as the lower and upper boundary limits
of the PDZ. In SVM method, distances of the vehicles from the pedestrian trajectory paths and
pedestrian crossing speeds for both accepted and rejected gaps were plotted on a coordinated
system. The distances on the optimal hyperplane corresponding to —2c and +2¢ from the mean
speed were taken as the lower and upper boundary limits of PDZ. The performance of classified
data in SVM was described with confusion matrix and measured the accuracy of classified data
using true positives, true negatives, false positives, and false negatives. Boundary limits and

length of PDZ at 3-legged and 4-legged intersections were compared.

Binary logistic regression (BLR) has been performed in SPSS software at 95% confidence
interval for 3-legged and 4-legged intersections using gap accept/reject as dependent variable
and pedestrian, vehicle, and geometric characteristics as independent variables to determine
the probability of gap acceptance. The estimates of the variables from regression analysis with
p<0.05 were used for the models development. The boundary limits of PDZ were estimated
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from the BL models corresponding to 0.1 and 0.9 probabilities of pedestrian gap acceptance.

The model fitting of the developed BL models were validated with classification table, log

likelihood test, chi-square value, and Nagelkerke pseudo R,

9.3 Conclusions

The following conclusions were drawn from the present study,

1.

Average crossing speeds of male pedestrians are higher than female pedestrians. Young
pedestrians have higher crossing speeds compared to children, middle age and old age
pedestrians respectively. Higher risk-taking behaviour in case of male and young
pedestrians is the reason for higher crossing speeds. Pedestrian crossing speeds are higher
at 3-legged uncontrolled intersections compared to 4-legged uncontrolled intersections.
Approaching speeds of 2Ws are higher than cars, 3Ws, LCVs, and HCVs respectively. Easy
manoeuvre at higher speeds due to the size benefit is the reason for higher approaching
speeds in case of 2Ws. Three-legged intersections have higher approaching vehicular
speeds than four-legged intersections. Less number of conflicting points at 3-legged
intersections is the reason for higher vehicular speeds.

Severity of P-V interactions has inverse correlation with PET and direct correlation with
RI. Severity of P-V interactions increases with the increase in RI values and decrease in
PET values.

Two-wheelers have lower threshold PET limits and higher R1 limits compared to cars, 3Ws,
LCVs, and HCVs. Male pedestrians have lower threshold PET limits and higher threshold
RI limits than female pedestrians. Higher approaching speeds and crossing speeds in case
of 2Ws and male pedestrians is the reason for lower PET values. 3-legged intersections
have lower threshold PET values and higher threshold RI values compared to 4-legged
intersections.

The statistical test (Chi-square test) results reveals that pedestrian platoon size, crossing
type, and lane on which P-V interaction occurs don’t have significant effect on the severity
of P-V interactions. The severity of P-V interactions is significantly influenced by
pedestrian gender, age, crossing speed, presence of luggage and mobile phones, vehicle
type, approaching speeds, direction of vehicle travel, and location of an interaction.

The severity of P-V interactions is higher for male and young pedestrians compared to

female and other age groups respectively. Presence of luggage and usage of mobile phones
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10.

while crossing increase the severity of interactions. Increase in pedestrian crossing speed
also increases the severity of P-V interactions.

The severity of P-V interactions is higher for 2Ws compared to cars, 3Ws, LCVs, and
HCVs respectively. The increase in vehicular speeds increase the severity of P-V
interactions.

Three-legged uncontrolled intersections have higher severity levels of P-V interactions
compared with four-legged uncontrolled intersections.

Pedestrian dilemma zone boundaries shift away from the crosswalk or intersection with the
increase in pedestrian age (except for children), vehicle size, and vehicular speeds and lies
close to the intersection with the increase in pedestrian crossing speed. Also, lies close to
the intersection in case of male pedestrians and interaction occurs at the exit point of the
intersection.

The boundary limits and length of PDZ at 3-legged intersections are higher and shifts away

from the crosswalk or intersection compared with 4-legged intersections.

9.4 Contributions of the study

The major contributions of the present study are:

1.

The present study proposed the threshold limits of SSMs (for both PET and RI) using
pedestrian (gender and speed) and vehicle (type and speed) characteristics to classify the
severity levels of P-V interactions at 3-legged and 4-legged uncontrolled intersections. One
of the advanced machine learning algorithms was used in the present study for multiclass
classification purpose. The proposed threshold values can be used to predict the severity of
an interaction based on interacting pedestrian gender, vehicle type and either PET or RI.
This predicted severity levels will help to know the pedestrian safety at an uncontrolled
intersection.

This study developed the ordinal logistic regression (OLR) models for P-V interactions at
3-legged and 4-legged uncontrolled intersections to know the effect of various parameters
on severity of interactions. This study considered two new variables i.e. location of P-V
interaction (whether pedestrian is crossing at entry or exit of the intersection) and lane
distribution (lane on which P-V interaction occurs) in the OLR analysis to know their effect
on the severity of interactions. This study also considered the other less explored variables
like presence of luggage, mobile phones, pedestrian crossing type and direction of vehicle

traveling in the OLR analysis to know their effect on the severity of interactions. The OLR
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model results can be used for predicting the severity of a possible P-V interactions at
uncontrolled intersections. The predicted severities will help to know the pedestrian safety
at uncontrolled intersections more precisely.

3. This study proposed upper and lower boundary limits of PDZ at uncontrolled intersections
that helps the pedestrians to eliminate the dilemma behaviour. Also, this study developed
the PDZ models at uncontrolled intersections to know the effect of various pedestrian,
vehicle, and geometric characteristics on boundary limits of PDZ. A possible policy
direction towards the practical field applications of PDZ boundary limits proposed in the
present study will help to eliminate the dilemma behaviour of pedestrians and improve their
safety at uncontrolled intersections. The proposed PDZ boundary limits in this study can

be used for better understanding of P-V interactions using simulation tools.

9.5 Limitations of the study and future research

There are some limitations in the present study even though it addressed the majority of

parameters which affects P-V interaction severity levels and PDZ.

1. The present study didn’t consider the pedestrian age to define the threshold limits of SSMs.
But the OLR models proved that the severity of P-V interactions depends on pedestrian
age. In future, the researchers can extend their work to define the threshold limits of SSMs
using pedestrian age also. For example, the present study proposed the threshold PET limits
of M-2W category for various severity levels. In future, it can be extended to define the
threshold PET limits of M-Age-2W category for various severity levels.

2. The present study was conducted in a clear weather condition. This study omitted the effect
of weather and environmental conditions on severity of P-V interactions in developing the
OL models. In future, the researchers can be extended their work to develop P-V
interactions severity models using pedestrian, vehicle, geometric, weather, and
environmental characteristics.

3. This study estimated the spatial PDZ boundary limits at 3-legged and 4-legged
uncontrolled intersections only. In future, this research can be extended to estimate the PDZ
boundary limits at other pedestrian crossing locations also. This study didn’t estimate the
dynamic variations of the PDZ boundary limits with respect to various pedestrian, vehicle

and geometric characteristics.

97



4. The present study is limited to 3-legged and 4-legged uncontrolled intersections but a
detailed study of P-V interactions at various pedestrian crossing locations will help for

better understanding of P-V interaction severity levels.
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APPENDIX A

Support Vector Machine Code to determine threshold values of SSMs

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import confusion_matrix, accuracy_score

import numpy as np

from sklearn.preprocessing import LabelEncoder

import matplotlib.pyplot as plt

data_clear = pd.read_csv('SVM.csV')

Gender ='m’

veh_type = 2W'

data_clear_copy = data_clear[(data_clear['Gender'] == Gender) & (data_clear['veh cat] ==

veh_type)]

y = data_clear_copy.pop('sev code")

data = data_clear_copy[['Ped speed', 'speed/pet'].copy()

X = data.copy()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 23)

le = LabelEncoder()

y_train = le.fit_transform(y_train)

y_test = le.transform(y_test)

model = SVC(kernel = 'linear', gamma ='auto’, C=10000)

model fit(X_train, y_train)

predict = model.predict(X_test)

confusion_matrix(y_test, predict)

print(Accuracy Score', accuracy_score(y_test, predict))

X_train = np.array(X_train)

X_min, x_max = X_train[:, 1].min() - 1, 20

y_min,y_max =0, 3.0

XX, Yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))

Z = model.predict(np.c_[yy.ravel(), xx.ravel()])

Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, cmap = 'RdYIBu_r', alpha = 0.9)

plt.scatter(X_train[:, 1], X_train[:, O], ¢ = y_train, cmap = 'RdYIBu_r', edgecolors = 'black’)

99



plt.xlabel('Risk Indicator’)

plt.ylabel('Pedestrian Speed (m/s)’)
plt.xticks(np.arange(0, 20, 1))

plt.xlim(xx.min(), xx.max())

plt.ylim(yy.min(), yy.max())
plt.title(Gender.upper() + '-' + veh_type.upper())
plt.show()
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