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ABSTRACT

Drought is a complex natural hazard that affects ecosystems and society in several
ways and it is important to quantify drought at the river basin scale. Drought is difficult
to model and predict due to the complicated relationships between the components of
the water cycle and the land surface atmospheric interactions. One of the most
significant challenges is the lack of spatial and temporal consistency in the in-situ
measurements available for drought monitoring. Droughts can also be caused due to
the deficiency of water from a variety of sources/components, including surface water,
groundwater, and soil moisture. Consistent and accurate measurement of each of these
components independently and then integrating them into a total water storage
measurement is difficult. As a result, the Gravity Recovery And Climate Experiment
(GRACE) mission’s measurements are exceptionally valuable. In recent years,
researchers have been evaluating the potential of Terrestrial Water Storage (TWS)
anomalies in drought monitoring methodologies. The GRACE provides consistent
spatial and temporal global TWS observations, and studies have demonstrated that
TWS anomalies are suited for drought related studies worldwide. Therefore, it is
proposed to use remote sensing products to help understand drought conditions in four
basins of South India.

In the first section, monthly and seasonal correlation among six drought indices
namely GRACE Drought Severity Index (GRACE DSI), Standardized Precipitation
Index (SPI), Self-Calibrated Palmer Drought Severity Index (SC PDSI), Standardized
Precipitation Evapotranspiration Index (SPEI), Combined Climatologic Deviation
Index (CCDI) and GRACE Groundwater Drought Index (GGDI) with Terrestrial Water
Storage Anomalies (TWSA) are analysed using the Pearson’s correlation coefficient
(r) from 2003 to 2016 for four river basins of South India. The considered river basins
are Godavari River Basin (GRB), Krishna River Basin (KRB), Cauvery River Basin
(CRB) and Pennar and East flowing rivers between Pennar and Cauvery River Basin
(PCRB). Basin scale drought events are evaluated using CCDI, GRACE DSI,
SC PDSI, SPI12 and SPEI12 at seasonal and monthly time scale. The four seasons
considered are (i) post-monsoon rabi (Jan-Mar), (ii) pre-monsoon (Apr-Jun), (iii)
monsoon (Jul-Sep) and (iv) post-monsoon kharif (Oct-Dec) respectively.
Characteristics of drought event analysis are calculated for monthly CCDI. The results
showed that TWSA is highly correlated with GGDI and CCDI. Seasonally, high spatial
correlations between CCDI and GGDI with TWSA are evident for all the river basins.
KRB experienced severe drought that lasted for 29 months, longer than in the rest of
basins between 2003 and 2005. Overall, GGDI and CCDI indices are found to be
effective for examining and evaluating the drought conditions at the basin scale.
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In the second section, the drought characteristics are analysed and assessed using
GGDI during 2003 to 2016. The spatial distribution, temporal evolution of drought,
and trend characteristics are also analysed. Then, the relationship between GGDI and
climate factors are evaluated by the method of Wavelet Coherence. The results indicate
the following points: (i) GRACE’s quantitative results are consistent and robust for
drought assessment, (ii) Out of the four basins, severe drought is noticed in CRB
between 2012 and 2015, with severity 27 and duration of 42 months, (iii) Other than
GRB, the remaining three basins displayed significant negative trends at monthly and
seasonal scales and (iv) The Wavelet Coherence method revealed that climate factors
have a substantial effect on GGDI, and the impact of Southern Oscillation Index (SOI)
on drought is significantly high, followed by Sea Surface Temperature (SST) Index
(namely, NINO3.4) and Multivariate El Niño–Southern Oscillation Index (MEI) in all
the basins. This study provides reliable and robust quantitative result of GRACE water
storage variations that shares new insights for further drought investigation.

In the third section, the reconstruction of TWSA is performed using Multi Layer
Perceptron’s (MLP) to obtain a continuous TWSA time series from 1960 to 2020. The
MLP model is developed by considering Global Land Data Assimilation System
(GLDAS) evaluated TWSA, precipitation and temperature as predictors and GRACE
TWSA as predictand. The predictor and predictand datasets from January 2003 to
December 2013 ( 75% of the samples) are used for training the MLP model, and those
from January 2014 to June 2017 ( 25% of the samples) are used for testing the
performance of trained model at both grid and basin scales. During the testing period
(2014 to 2017), the MLP modeled TWSA is highly correlated with the observed
TWSA in four basins with correlation coefficient varying between 0.89 to 0.95. Then,
the model developed TWSA is converted to seasonal GroundWater Storage Anomalies
(GWSA) (GWSAGRACE) and validated using observation well based GWSAs
(GWSAOBS) which are evaluated from a dense network of groundwater well
measurements from 1996 to 2020. At grid and basin scale, a good correlation is
observed between seasonal GWSAGRACE and GWSAOBS . PCRB and CRB exhibited
high correlations between GWSAGRACE and GWSAOBS in all the seasons at all grids
when compared with GRB and KRB. At basin scale the highest correlation between
GWSAGRACE and GWSAOBS is observed in PCRB (r= 0.81) followed by CRB (r=
0.79) and GRB (r= 0.72).

In the fourth section, drought frequency analysis is performed only for GRB by
developing Severity-Duration-Frequency (SDF) and Severity-Area-Frequency (SAF)
curves using CCDI and 12-month SPI (SPI12) from 1960 to 2020. CCDI is calculated
from the reconstructed TWSA and SPI12 is evaluated using precipitation data from
India Meteorological Department (IMD). In this section, SPI12 based SAF and SDF
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curves are compared with the CCDI based SAF and SDF curves. Using Fuzzy
C-Means (FCM) clustering approach, homogeneous drought regions are identified and
therefore, optimum number of clusters are assigned as four. The best fit copula for
observed and simulated severity and duration are: region 1-Clayton, Region 2 and 3
-Gumbel, Region 4- Frank copula. SDF and SAF curves are developed and analysed
using the best fit copulas. The research findings conclude that the SDF curves are
concave upward indicating an increase in severity with an increase in duration. The
rate of increase of severity is small for shorter durations compared to that of longer
durations of drought. The SAF curves with steeper slopes and high variability in
topographical and hydrological characteristics have been observed over GRB. From
these curves, for a specified percentage of area and return period, the drought severity
can be calculated and the information can be used for crop management and
agricultural water demands. Good agreement is observed between SPI12 and CCDI
based SAF and SDF curves. Therefore, drought frequency analysis can be performed
using the reconstructed TWSA for any river basin in India.

The results obtained based on the application of different statistical techniques used
in this study, make it possible to recommend GRACE mascon solutions for drought
and groundwater related studies over the region with similar climatic, hydrogeological
and groundwater withdrawal conditions. Also, the reconstructed TWSA from 1960 to
2020, resulting in a 60-year TWSA time series can be utilised to research any long-
term climate related applications. Overall, the findings of this research offer a view of
potential conditions of drought in the four basins of South India.

Keywords: Drought, GRACE, Terrestrial Water Storage, Drought Indices, CCDI,
GGDI, SPI, Severity, Duration, Teleconnections, Reconstruction, Groundwater Storage,
Drought Frequency Analysis.
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CHAPTER 1

INTRODUCTION

1.1 GRAVITY RECOVERY AND CLIMATE EXPERIMENT (GRACE)

1.1.1 GRACE Mission Overview

Many of today’s most critical climate science problems are dependent on
understanding how water moves across the planet. However, this isn’t always
straightforward to quantify. Water can be found in plain sight, such as in a lake or it
might be hidden underground. It can evaporate in a matter of seconds as sunlight heats
the Earth’s surface or it can be held as ice in a glacier for years. Irrespective of whether
water is visible or invisible, liquid, solid or vapour, mass of water remains constant and
has a gravitational pull. The changing pull of gravity around Earth is tracked precisely
by Gravity Recovery And Climate Experiment (GRACE) by observing the movement
of Earth’s water masses from deepest ocean depths to the top of the Himalayas.

The GRACE and GRACE Follow-On (GRACE FO) satellite gravity missions are
jointly launched by United States and German space agencies i.e., National Aeronautics
and Space Administration (NASA) and Deutsches Zentrum für Luft- und Raumfahrt
(DLR). GRACE mission is launched on 17 March 2002 and ended on 27 October 2017,
providing more than 15 years of continuous Earth’s gravity field variations. GRACE
FO mission launched on 22 May 2018 will continue in observing and monitoring the
movement of Earth’s water changes in rivers, lakes, soil moisture, underground water
storage, ice sheets and glaciers.

The GRACE mission consists of two co-orbital satellites with the inter-satellite
separation of approximately 220 km, flying in tandem in a polar, near-circular orbit at
an altitude of 450 km with 89.5° inclination (see Fig. 1.1). The GRACE mission is
unique among the Earth observation satellite missions, as it detects the gravity changes
by measuring the inter-satellite distance, rather than imaging the Earth. The change in
distance between the satellites is undoubtedly invisible to the naked eye, but extremely
precise minuscule changes in the distance are measured by the K-Band microwave
Ranging (KBR) system with an accuracy of 1 µm.s−1 located on each satellite (Tapley
et al., 2004). Non-gravitational accelerations are measured and filtered out, leaving
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only gravity-induced accelerations to be evaluated. The satellite’s precise location over
the Earth is then determined by satellite Global Positioning System (GPS) receivers to
within a centimetre or less. GRACE satellites will use all of this precise data to create
monthly maps of the Earth’s average gravity field with unprecedented accuracy.

(a) (b)

Figure 1.1: (a) GRACE mission and (b) GRACE FO mission. Source:
https://www.jpl.nasa.gov/

1.1.2 Satellite Gravimetry

One of the fundamental forces that emerges from the presence of mass is gravity.
According to Newton’s law of gravitation, every particle attracts every other particle by
a force F pointing along the line intersecting both points. The magnitude of the force
is proportional to the product of the two point masses (m1 and m2) and inversely
proportional to the square of the distance between the particles (d).

F = G
m1 ·m2

d2
(1.1)

where, G= universal gravitational constant. Redistribution of masses on or near the
Earth’s surface (m1) creates a change in the gravitational field that affects the satellite
(m2) when Eq. 1.1 is applied to an Earth-satellite system. Over short periods of time,
changes in water storage create the most substantial redistribution of mass on the Earth’s
surface (Wahr et al., 2004). No other substance moves as quickly as water storage
changes, with the exception of sudden land mass shift during earthquakes (Han et al.,
2005). Analysing temporal fluctuations in the gravity field is a useful technique for
estimating mass movements, whether one is investigating hydrology, climatology, or
oceanography.

GRACE gravity observations have been processed using various approaches. The
global Spherical Harmonics (SH) basis function is the traditional processing approach
that has been applied over the decade in parameterizing the Earth’s gravity field
(Bettadpur, 2012; Wahr et al., 1998). Regional mass concentration (mascon) function
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is an alternative processing strategy that has been operational in parameterizing the
gravitational field over the recent years (Luthcke et al., 2015; Save et al., 2016;
Watkins et al., 2015). The gravity field variations based on GRACE measurements are
represented in Fig. 1.2.

Figure 1.2: Gravity field variations based on GRACE measurements.
(red bulges: stronger gravity; blue depressions: weaker gravity)

The observed monthly changes in gravity are caused by fluctuations in mass. These
mass variations (estimated by either spherical harmonic or mascon functions) are
considered/assumed as a thin layer of water thickness over the surface of Earth. In
reality, majority of the changes in gravity are caused by water storage fluctuations in
land ice masses, hydrologic reservoirs and in atmosphere by moving ocean. The
vertical extent of these changes are estimated in centimeters of Equivalent Water
Height (EWH). EWH is an imaginary uniform water layer (density = 1000 kg/m3) of
thickness h which denotes the Terrestrial Water Storage (TWS) anomaly.

1.1.3 GRACE Data Products

Multiple processing stages are used to process data from GRACE satellite sensors
(KBR, GPS, accelerometer, and star camera). The output of each processing step is
labelled as a different data product (Bettadpur, 2012). Level-0, Level-1A, Level-1B,
Level-2 and Level-3 are the official five classifications for GRACE data. In this thesis,
Level-3 data products known as GRACE mascon’s are used for the analysis.

1.1.3.1 Level-3 mascon’s

The monthly gravity anomalies from Level-2 are converted into surface mass
anomalies (EWH) and maps it to a geographical grid in Level-3. Different
post-processing filters and geophysical data adjustments are implemented depending
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on the Level-2 input data type. Mascon’s are equivalent to Level-3 products, that
predict mass changes (in terms of EWH) in concentrated blocks over Earth’s surface.
There is no need for further filtering and the method promises to be more effective than
existing methods at preventing signal leakage. Presently three agencies are providing
mascon solutions from GRACE mission namely: (i) Goddard Space Flight Center
(GSFC) (Luthcke et al., 2015), (ii) Jet Propulsion Laboratory (JPL) (Watkins et al.,
2015) and Center for Space Research (CSR) (Save et al., 2016). These mascon
products do not need post-processing and hence can be used directly in studies related
to hydrology, climatology, or oceanography. In this thesis, GRACE datasets from JPL
centre are used for the drought analysis over South Indian River Basins.

1.1.4 Total Water Storage (TWS)

Water can be stored in the atmosphere, biosphere, lithosphere, cryosphere and other
parts of the Earth’s system. Water is constantly moving through the atmosphere, on the
surface and beneath the Earth’s surface. The total amount of water remains relatively
constant, but the location in which it is held varies greatly. Hydrological analyses are
performed to estimate where and how much water is present at any given time. All the
hydrological analyses are performed using the application of a mass balance. The mass
balance for every system can be calculated using the Reynold’s transport theorem. The
mass balance within a control volume can be defined as

δS

δt
=

∑
i

Ii −
∑
i

Oi (1.2)

where, δS
δt

= derivative of total mass with respect to time t;
∑

i Ii = sum of all
incoming masses;

∑
iOi = sum of all outgoing masses. The above equation states that

the difference in the storage is due to the difference between inflow and outflow masses
within a system.

Because the total water storage on Earth is constant, a mass balance is only
applicable when a specific control volume is defined. In most of the hydrological
studies, the basins, sub basins and other watersheds are considered as control volumes.
The fact that a watershed has only one lateral flow, run-off at the outlet, makes it an
ideal control volume. Precipitation and evapotranspiration are the other vertical fluxes
that influence total water storage. Considering these fluxes, mass balance is written as

δS

δt
= P − E −R (1.3)

where, S= change of water stored in the system in time t; P= precipitation entering into
the system; E and R are evapotranspiration and runoff leaving the system respectively.
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When examining a river basin, water can be stored in a variety of ways. Water is
mostly stored on the surface (rivers, lakes and snow accumulation), in the soil (soil
moisture), or in the deeper earth (aquifers in the form of groundwater). TWS is the
combination of all waters present above and below the earth’s surface. Changes in the
Earth’s gravity field, as measured by the GRACE and GRACE FO missions, can be
used to identify variations in TWS. According to GRACE, it’s unclear which part of the
hydrological cycle caused the change in the mass. Only data regarding the overall mass
change within a given area is retrieved. By removing the mean of a specific period, mass
anomalies are calculated and they are frequently denoted as EWH.

When employing GRACE for hydrological purposes, there are two distinct goals.
Eq.1.3 is used to compare the storage fluctuations to the sum of precipitation,
evaporation and run-off within the basin. The alternative method focuses on the
various components that make up the word “terrestrial water storage”. These
components include surface water, groundwater, soil moisture, snow water equivalent
and canopy water storage, as given in Eq.1.4.

∆TWS = ∆GWS +∆SMS +∆SWE +∆SWS +∆CWS (1.4)

where, ∆TWS = change in terrestrial water storage; ∆GWS = change in groundwater
storage; ∆SMS = change in soil moisture storage; ∆SWE = change in snow water
equivalent; ∆SWS = change in surface water storage; ∆CWS = change in canopy
water storage. From the above equation, often it is assumed that temporal variations in
the surface water (∆SWS) are insignificantly small. The snow component (∆SWE)

is minimal or absent in some warmer locations. Then Eq.1.4 can be rewritten as

∆TWS = ∆GWS +∆SMS +∆CWS (1.5)

The variations in TWS are directly related to the changes in the components that make
up TWS. By rearranging Eq.1.5, the changes in groundwater storage can be derived as
shown in Eq.1.6 .

∆GWS = ∆TWS − (∆SMS +∆CWS) (1.6)

1.1.5 Applications of GRACE

The GRACE dataset over land denotes the time variation in TWS that represents the
vertically integrated water column comprising groundwater, surface water, snow water,
soil moisture and canopy water storages. TWS interacts with the water balance and
climate energy on a variety of scales and fronts, making it an important part of the

5



Earth system (Famiglietti, 2004). Understanding and defining the Earth’s climate
system requires accurate information of TWS. However, little is known about global
water storage prior to the GRACE project because in-situ measurements are expensive
and difficult to maintain and earlier remote sensing missions are limited to surface
water and groundwater storage (Ramillien et al., 2008).

Each component of TWS contributes to the water cycle in different ways with
respect to space and time. On seasonal to annual time scales, soil moisture and snow
are important components of climate modelling (Dirmeyer et al., 2005). Groundwater
storage, on the other hand, is a sign of long-term mechanisms and, as a result, has a
longer memory in land surface activities. Groundwater is a major source for drinking
and irrigation which makes it vulnerable to anthropogenic influences throughout the
world (Famiglietti et al., 2011a). These effects, however, are difficult to predict and
characterise in models, and groundwater monitoring is lacking throughout the globe.
As a result, GRACE measurements provide a plethora of data for monitoring and
tracking the global hydrological cycle at all levels.

GRACE data can be used for a variety of purposes in hydrology, including drought
monitoring, groundwater monitoring, assessment of flood potential, ice mass change,
Glacial Isostatic Adjustment (GIA), sea-level budget, earthquakes and weather
forecasts. The extent and applicability of this knowledge will expand when
improvements to the existing GRACE product and increased accuracy from future
missions are made. In this thesis, GRACE datasets are used for drought evaluation over
South India River Basins.

1.2 DROUGHT MONITORING

Drought has been defined in a variety of ways throughout the course of several decades
of research. Despite the fact that all the definitions are linked, distinct types of droughts
vary in length and impact local resources in different ways. Meteorological drought is
described as periods of unusually low or no precipitation. The impacts of precipitation
working through reservoirs, streamflow and groundwater are referred to as hydrological
drought. Agriculture drought refers to how crops react to increasing heat stress and
lack of water in the soil. Finally, socioeconomic drought is linked to economic supply
and demand of water and agricultural products, which are impacted significantly by
hydrological, meteorological and agricultural droughts. Therefore, monitoring drought
is an essential feature to study in all these sectors (Tallaksen and Van Lanen, 2004).

In recent decades, with changing climate, drought-related calamities have escalated
worldwide (Allen et al., 2011; Kang and Sridhar, 2017, 2018; Thilakarathne and
Sridhar, 2017). Like many other countries, the frequency of occurrence of droughts
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increased several fold in India since 1965 (Bisht et al., 2018a; Setti et al., 2020;
Shewale and Kumar, 2005). The average drought length and severity in India will
continue to increase in the future (2010 to 2099) compared to the historic period (1979
to 2005), which leads to serious regional drought problems (Bisht et al., 2019).
Drought depends mainly on seasonal variations in precipitation resulting in the
occurrence of extreme events (Bisht et al., 2018b; Van Loon and Van Lanen, 2013).
Drought conditions are exacerbated by rising water demand as a result of population
growth, irrigated agriculture and industrialization. The geographical area of India is
approximately 3.28 million km2, of which around 1.07 million km2 are exposed to
various types of drought conditions (Mishra et al., 2009). Increased demand for water
leads to overexploitation of surface and subsurface water resources, resulting in
conflicts among water users during drought periods. Drought monitoring at the river
basin level is therefore necessary for proper evaluation of water resources,
management and mitigation strategies.

Drought is a recurrent feature of climate occurring in all climatic regimes.
Precipitation, timing, intensity, duration, temperature, humidity and wind speed play
significant roles in the occurrence of droughts and its effect accumulate gradually over
a significant period of several months to years. Subsequently, drought management
plans have uncertainties as it is difficult to accurately assess the start and end time,
known as a creeping phenomenon. Drought indices are suitable tools for monitoring,
quantifying, evaluating droughts and become predominant in drought characterisation
as they reduce the complexity of the drought phenomenon to a single numerical value.
Drought indicators have become key and decisive features over time for drought
monitoring and early warning systems (Vicente-Serrano et al., 2011). Despite the fact
that there are various drought indexes accessible, there is substantial controversy about
their efficiency and applicability (Sehgal et al., 2017).

Over the last few decades, Standardized Precipitation Index (SPI), Palmer Drought
Severity Index (PDSI) and Standardized Precipitation Evapotranspiration Index (SPEI)
have been the most extensively used drought indices worldwide (Hayes et al., 2011).
Despite their suitability for a variety of water-related sectors, these indices have their
limitations. For instance, SPI is extensively related to precipitation, which does not
take into account other important variables that bias the characterisation of drought.
Similarly, PDSI is calculated using duration and weighting factors derived from the
dataset observed over United State regions and therefore limits its implementation to
other climate zones (Palmer, 1965; Zhang et al., 2018). PDSI also lacks multi time
scale features compared to SPI, making it difficult to compare with runoff and reservoir
storage. Wells et al. (2004) proposed a new drought index called Self-Calibrated PDSI
(SC PDSI), which can be applied to any region considering the local variations. Some
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studies by Dai (2011a); Kang and Sridhar (2019); Mishra and Singh (2010); Zhang et al.
(2015a) examined the competency and shortcomings of PDSI, SPI and SPEI in depth.
It can be inferred from the above discussion that more than one drought index is to be
used to analyse and evaluate drought at regional or basin scales.

1.3 DROUGHT MONITORING USING GRACE

For global socio-economic security, monitoring and understanding the droughts, as
well as how they are evolving in space and time, is critical. At present, remote sensing
capabilities have increased several fold, capturing the spatial and temporal variations in
land surface fluxes at larger scales than before. Hydrological, meteorological and
agricultural droughts are therefore monitored using remote sensing products. Despite
the fact that satellite remote sensing has greatly benefited us in this challenge, most
satellite missions only observe Earth’s near surface features. Therefore, GRACE
mission assessed changes in water storage both above and below the earths surface,
making it unique for drought related studies. TWS has been recently applied in
monitoring and characterizing regional droughts and water availability conditions
(Girotto et al., 2017; Zhao et al., 2017a,b). Cao et al. (2015) introduced the Total
Storage Deficit Index (TSDI) from TWS changes over Northwest China. Yi and Wen
(2016) developed the GRACE Hydrological Drought Index (GHDI). For the
quantification of drought, Sinha et al. (2017) developed the Water Storage Deficit
Index (WSDI). Zhao et al. (2017b) developed a new global gridded Drought Severity
Index (DSI) from TWS changes called GRACE DSI. Sinha et al. (2019) proposed the
Combined Climatologic Deviation Index (CCDI) utilizing TWS and precipitation over
Indian River Basins. From the previous studies, spatial and temporal evaluations of
drought were identified using TWSA and these studies reported that longer duration
and higher severity of drought causes long recovery time (Chang et al., 2019; Zhang
et al., 2019). Therefore, monitoring and understanding the properties of drought using
GRACE datasets, and how are they evolving at continental to global scales in space
and time is the biggest challenges in drought research.

1.4 GRACE TWS CHANGES AND LINKS WITH TELECONNECTIONS

Drought is a dynamic natural phenomenon with high frequency and long duration
characteristics that impact ecosystems and society in many ways (Kang and Sridhar,
2017, 2018; Mishra and Singh, 2011). Drought is a common natural calamity that, due
to its long-term persistence and frequency, has a significant impact on agriculture,
water resources and socio-economic development (Cammalleri et al., 2017; Kang and
Sridhar, 2018; Sahoo et al., 2015). Thus, effective evaluation and monitoring of
droughts are extremely necessary. Drought monitoring mainly depends on the
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observed station data (hydrological and meteorological). Due to the lack of observed
data and the spatial heterogeneity of the regional environment, obtaining exact drought
characteristics is difficult (Long et al., 2014). Due to large-scale climate variations in
India, the spatio-temporal availability of surface and groundwater is very diverse and
affects the agricultural and industrial productivity of the country (Bhuvaneswari et al.,
2013). The drought occurred in India during 2016 affected 330 million people with
more than $100 billion loss in the economy (ASSOCHAM Report, 2016). From this
perspective, it is crucial to understand the variations of surface and groundwaters and
its association with teleconnections for the conservation of water resources.

GRACE assess the changes in water storage both above and below the Earth’s
surface, making it unique and useful for drought related studies when compared to the
traditional univariate drought indicators. Utilizing the GRACE data, many studies have
investigated drought characteristics throughout the world. These studies only verified
the drought characteristics using GRACE data but not the association between GRACE
based droughts and teleconnection factors. It is clear from earlier studies that
teleconnection factors have a major effect on drought (Dai, 2011b; Wang et al., 2015a).
Many attempts have been made in the past to establish the relationship between climate
variability and TWS from GRACE, with most studies focused on El Niño Southern
Oscillation (ENSO). To evaluate the association between Multivariate ENSO Index
(MEI) and GRACE mass anomalies, Phillips et al. (2012) utilized monthly TWS.
Huang et al. (2016) concluded that hydrological drought over the Columbia River
Basin is greatly influenced by ENSO and Arctic Oscillation (AO). Over the entire
world, Ni et al. (2018) examined the links between ENSO and TWS. Vissa et al. (2019)
evaluated the relationship between ENSO induced groundwater changes derived from
GRACE and Global Land Data Assimilation System (GLDAS) over India. Liu et al.
(2020) explored the role of teleconnections over TWS variations within the Asian and
Eastern European regions. Other studies related to linkage between GRACE and
teleconnections include Anyah et al. (2018); Han et al. (2019); Ndehedehe et al.
(2017); and Wang et al. (2020). Thus, climate variables influence the drought directly
or indirectly that results in detailed investigation between them.

1.5 GROUNDWATER STORAGE CHANGES

From water balance perspective, GroundWater Storage (GWS) change is considered as
the difference between recharge (lateral inflow, seepage from surface water etc.) and
discharge (groundwater withdraws and lateral outflow) within the aquifer system.
However, in-situ hydrological observations make it challenging to directly calculate
groundwater recharge and discharge rates (Alley et al., 1999). On the other hand,
observation well measurements are the principal source of groundwater system.
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Groundwater levels can be further converted to GWS changes by multiplying them
with storage coefficients. Hydrological models, such as Land Surface Models (LSMs)
and Hydrological Water Balance Models, can monitor GWS variations in addition to
in-situ well measurements (HWBMs). The majority of established LSMs are capable
of simulating water and energy fluxes between the land surface and the atmosphere, but
they fall short of simulating GWS variations (Rodell et al., 2004). On the other hand,
HWBMs are designed to assess global water resources. Thus, human water uses, such
as irrigation, household and industrial water consumption are taken into account
(Bierkens, 2015). As a result, groundwater is often simulated in these models in arid
and semi-arid regions. However, due to the inadequate parameterization of HWBMs,
limited knowledge regarding recharge/abstractions of groundwater and estimation of
accurate GWS changes remains a challenge (Döll et al., 2014). At regional or basin
scales, groundwater flow models can be employed to evaluate regional/basin specific
GWS variations. However, extensive hydrogeological data (water level readings,
hydraulic parameters, aquifer characteristics, geology) and climatic forcing data are
required to build a reliable regional groundwater model, which are often difficult to
obtain.

At present, remote sensing capabilities have increased many folds, capturing the
spatial and temporal water storage changes above and below the Earth’s surface when
compared to observation well measurements and global models. Therefore, remote
sensing based estimates of water storage changes can be used to track global GWS
variations from space. For almost two decades, the GRACE and GRACE FO missions
have provided unprecedented monthly TWS fluctuations globally (Tapley et al., 2004).
GWS changes can be estimated by subtracting soil moisture, snow water and surface
water from TWS (Yeh et al., 2006). As a result, GRACE is a useful tool for estimating
GWS changes, particularly in areas where monitoring groundwater levels is poor or
unmonitored. Many studies have used GRACE data to assess GWS changes,
particularly its depletion, in many regions, including USA (Famiglietti et al., 2011b;
Scanlon et al., 2012), India (Long et al., 2016; Rodell et al., 2009; Tiwari et al., 2009)
and California’s Central Valley (Longuevergne et al., 2010; Strassberg et al., 2007).

1.6 RECONSTRUCTION OF GRACE TWS

The GRACE twin satellites have provided the gravitational field changes with
unprecedented spatio-temporal resolution over the earth, that can interpret TWS
changes, giving a novel method to evaluate hydrological features (Tapley et al., 2004).
GRACE missions have been so effective that the result is now widely used in a variety
of sectors, considerably advancing our understanding of TWS, ice melting, sea-level
change, earthquakes etc. (Tapley et al., 2004, 2019). But GRACE applications are still
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limited to study the long-term water cycle behaviour as the data is limited to short
period i.e., 2002 to 2017 (GRACE) and 2018 to date (GRACE FO).

The GRACE product of the earth’s gravity field began in April 2002. The GRACE
mission was originally planned for a period of 5 years producing perfect monthly gravity
variations till 2010. In spite of this, GRACE mission has been operational for another
seven years till 2017, with regular rest intermissions to extend the life of the deteriorated
power supply (Flechtner et al., 2014). GRACE data was last available in June 2017,
however the GRACE FO satellite mission started delivering the output from June 2018,
creating an 11-month missing data between the two operations. The extended GRACE
FO data improves GRACE applications and increases the potential to detect previously
unknown processes. However, the one year lag between two missions have hampered
the continuous investigation of GRACE and GRACE FO’s 18 years of observations to
date. In the GRACE and GRACE FO dataset, a total of 34 data gaps are found in which
majority are solitary or paired as shown in Fig. 1.3 and hence do not pose a significant
difficulty. However, filling the one year gap between GRACE and GRACE FO missions
(between July 2017 to May 2018) is challenging.

Figure 1.3: GRACE and GRACE FO data records with gaps (The red boxes indicates
the missing months GRACE gravity fields).

Global LSM and HWBM can simulate historical hydrology and energy fluxes using
long-term climate datasets (Rodell et al., 2004). The model simulations can then be used
to estimate long-term TWS. However, present model uncertainties, combined with the
poor quality of forcing data, severely limit the model’s capacity to reproduce real-world
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conditions (Qian et al., 2006). As a result, inconsistencies between TWS Anomalies
(TWSA) derived from GRACE and surface/hydrological models should be expected. In
recent years, there has been a growing interest in combining GRACE data with outputs
from global LSMs to improve TWSA estimation (Long et al., 2014; Nie et al., 2016).
GRACE data provide a more reliable estimate of TWS changes than global models and
the model simulations of historical hydro-meteorological variables can predict long term
TWS time series. Although the TWS simulations from the models include uncertainties,
their close fitting correlations with GRACE measurements allow for the development of
reliable long-term TWSA datasets.

Because of GRACE’s high sensitivity in detecting TWSA, researchers have
previously attempted to reconstruct TWSA by developing empirical relationships
between TWSA and meteorological and hydrological variables. TWS variations
predicted in many basins on the basis of water balance are linearly correlated with
TWSA from GRACE. In the Amazon Basin, Nie et al. (2016) used a linear model to
relate the TWS estimated from GLDAS with GRACE and rebuilt TWSA from 1948 to
2012. Humphrey et al. (2017) took it a step further by building a polynomial regression
model between GRACE TWSA and precipitation and temperature in the Amazon
Basin, based on a similar principle used by Nie et al. (2016). Increase of machine
learning technologies has greatly improved our ability to mimic and anticipate the
environment throughout the world. Machine learning approaches contributed in
developing new possibilities in earth system modelling and successfully used in land
cover mapping, weather prediction and soil type mapping etc. (Bauer et al., 2015;
Rogan et al., 2008). For the reconstruction of TWSA, machine learning approaches are
beneficial where physical models are indeterminate and standard statistical approaches
are inadequate. Machine learning techniques like Artificial Neural Network (ANN)
(Long et al., 2014) and deep Convolutional Neural Network (CNN) (Sun et al., 2019)
have been used to reconstruct TWSA over recent years. Also, many researchers have
used multiple learning-based techniques to reconstruct TWSA. Liu et al. (2020) used
ANN, Multiple Linear Regression (MLR) and AutoRegressive eXogenous (ARX)
models to predict (2017 to 2018) and reconstruct (1992 to 2002) TWSA with climate
inputs. Sun et al. (2020) predicted and reconstructed the GRACE TWSA using MLR,
Seasonal Auto Regressive Integrated Moving Average with eXogenous (SARIMAX)
variables and Deep Neural Network (DNN) covering 60 river basins throughout the
world. Though the machine learning based reconstructed TWSA may have the effect
of climate variability and human intervention, the reconstructed TWSA results over
high human intervention basins may not correlate well with GRACE measurements.
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1.7 DROUGHT FREQUENCY ANALYSIS

Drought is a natural threat considered when precipitation deficits are encountered for
extended periods. Drought is the temporary deviation from normal weather conditions
that may occur in a variety of climates. Whereas, aridity is a permanent climate feature
based on long-term climatic conditions in an area (Araghi et al., 2018; Karamouz et al.,
2012). As a result of climate change, aridity and drought are expected to increase,
that may have significant implications on agriculture and ecosystem (Dai, 2013; Lobell
et al., 2008). The characteristics of dryness are recognized as an important factor in
water resource planning and management (Shiau, 2006). Drought can be characterized
by various factors such as severity, intensity and duration, and is therefore described
as a complex natural disaster (Kang et al., 2019; Mishra and Singh, 2010). In contrast
to other natural disasters, droughts also impact over a large region (Kang and Sridhar,
2017; Sehgal and Sridhar, 2019; Sehgal et al., 2017; Wilhite et al., 2014). Thus, during
the analysis of drought condition, multivariate complexity and spatial variations should
be considered.

Almost every three years, India faces drought in different parts of the country. Over
the last few decades, India has experienced long and severe droughts, and similarly, in
recent times, frequency has also increased in many parts of the country (Bisht et al.,
2019). During June to September, a significant amount (about 70-90 %) of annual
rainfall occurs due to the Southwest monsoon in India (Bisht et al., 2018a,b). Since most
of the country depends on monsoon rainfall, drought may be caused when monsoon fails
(Kumar et al., 2013). In India,the distribution of drought conditions have been studied
by several researchers (Das et al., 2016; Gupta et al., 2020; Janga Reddy and Ganguli,
2012). Vulnerability of drought is amplified by climate change that adversely affects
India’s water supplies. Therefore, the regional study of near-future spatial and temporal
characteristics of drought will provide immense knowledge for decision-makers and
planners to frame policies to mitigate the impacts of drought hazards.

Numerous research on the spatial and temporal distribution of monsoon rainfall
have been carried out. Few researchers find a rise in average precipitation over the
monsoon season along with inter-annual variability (Chaturvedi et al., 2012; Fan et al.,
2012). Globally, various regional studies have been carried out to understand the
characteristics of spatial and temporal drought. Multivariate modeling, such as
Severity-Duration-Frequency (SDF) and Severity-Area-Frequency (SAF) curves can
help to assess the regional drought risk (Mishra and Singh, 2010; Reddy and Ganguli,
2013). These drought curves are evaluated for different return periods based on
mathematical relationships between severity, intensity, interarrival time, duration and
area coverage. To denote all characteristics of droughts, these curves quantitatively
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relate the severity, duration/area and return period (Kang and Sridhar, 2020; Rajsekhar
et al., 2015a).

1.8 OBJECTIVES OF THE STUDY

The focus of the present work is to monitor TWSA and evaluate its effect on drought
over South Indian River Basins namely, Godavari River Basin (GRB), Krishna River
Basin (KRB), Cauvery River Basin (CRB) and Pennar and East flowing Rivers between
Pennar and Cauvery River Basins (PCRB)
This main objective, for the sake of more clarity, is subdivided into four sub objectives
as given below.

• Assessment of monthly and seasonal droughts using GRACE terrestrial water
storage.

• Utilizing GGDI for drought characterization and its linkage to Teleconnection
factors.

• Reconstruction of TWSA and its validation with in-situ groundwater well
measurements.

• Analysis of Severity-Duration-Frequency and Severity-Area-Frequency curves
for GRB.

1.9 OUTLINE OF THE THESIS

The work carried out in this investigation is presented in the following chapters. The
thesis comprises of eight chapters: introduction, literature review, study area and data
collection, four chapters for each sub objective, and conclusions.

The introduction chapter (chapter 1) provides an overview of the GRACE satellite
mission, its various data products and contributions to understanding the earth system
mass change. Then monitoring of drought using drought indices, understanding drought
properties (duration and severity) and their evolution in space and time are discussed.

Chapter 2 deals with the literature review covering each of the problems studied by
earlier research. The summary of each of the research paper is critically reviewed and
briefly explained.

Chapter 3 deals with the study area and data collection. This chapter is followed by
four chapters for each sub objective under consideration.
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Chapter 4 deals with spatial and temporal variations of GRACE terrestrial water
storage with respect to various drought indices to offer insights into assessing future
droughts using remote sensing data.

Chapter 5 deals with GRACE groundwater drought index for drought
characterization and its linkage to teleconnection factors.

Chapter 6 deals with the reconstruction of GRACE terrestrial water storage beyond
GRACE period (1990 to 2020) and its validation with the in-situ groundwater well
measurements.

Chapter 7 deals with the drought frequency analysis and development of
Severity-Duration-Frequency and Severity-Area-Frequency curves for Godavari River
Basin. (Note: Similar studies can be done for all other basins in Southern India.)

Chapter 8 deals with summary of the study followed by conclusions and an outlook
for possible future extensions of this work.
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CHAPTER 2

LITERATURE REVIEW

A detailed review of the research work carried out by the previous investigators on
drought assessment using GRACE, reconstruction of TWSA and its linkage with
teleconnection factors are discussed in this chapter.

2.1 DROUGHT MONITORING USING GRACE

Rodell and Famiglietti (2002) computed TWS as the sum of soil moisture, surface water
(reservoir storage), groundwater (observation wells) and snow depth from 1982-1996
over Illinois, United States. Monthly, seasonal and yearly TWS changes are estimated
with expected uncertainty in TWS changes in Illinois over 145,800 km2. Uncertainty
was typically too large to allow detection of monthly TWS changes, while seasonal and
annual changes are detectable about half the time. However, given a 200,000 km2 or
larger area, and assuming that the estimated water storage changes are representative
of progressively bigger regions, the same monthly, seasonal and annual fluctuations
are often detectable. Results conclude that the rate of detectability increases and the
uncertainty decreases with the increase of spatial extent of the study region i.e., 300,000
km2 or larger for monthly changes and 200,000 km2 and larger for seasonal and annual
changes. According to the authors, the most influenceable component of TWS is the
soil moisture followed by groundwater, snow depth and reservoir storage.

Syed et al. (2008) compared the TWS Changes (TWSC) derived from GRACE and
GLDAS worldwide. The results of TWSC matched well with the GLDAS simulations.
The GLDAS simulated TWSC revealed a number of critical features of spatial and
temporal land water storage fluctuations. Although global TWSC averages are evenly
split between soil moisture and snow water equivalent, zonal TWSC averages show the
importance of soil moisture storage at low latitudes against snow storage at high
latitudes. According to the findings, GRACE can aid with a better knowledge of how
TWS responds to climate change and variability with longer time series.

Chen et al. (2010) demonstrated the capability of TWS from GRACE to observe
and quantify the 2005 Amazon drought event (worst drought of the century) and to
compare GRACE results with climate and LSMs over the same 2005 drought event. In
the summer of 2005, GRACE detected a large drop in TWS in the Central Amazon
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Basin, compared to the average of five previous summers in the GRACE era. On the
other hand, climate and LSMs underestimated the intensity of drought in 2005. TWS
observations from GRACE are supported by in-situ water level data from river gauge
stations, as well as collected precipitation data from satellite remote sensing. The
results displayed how GRACE gravity measurements can be used to monitor large
scale drought and flood occurrences, as well as to test advanced climate and LSMs.

Houborg et al. (2012) used GRACE Data Assimilation System (DAS) for drought
assessment over United States. This study developed drought indicators to investigate
the possibility of more comprehensive drought conditions over the United States.
Previous drought monitor studies lacked the continuous observed measurements of
groundwater and soil moisture, which are both important for drought research.
Extensive observed groundwater and soil moisture datasets are used in this study to
measure advances in hydrological modelling competence as a result of TWS data
assimilation. This study illustrates that data assimilation may be the key to attaining
TWS’s full potential in hydrological applications.

Thomas et al. (2014) used GRACE’s TWSA to develop a quantitative approach for
evaluating hydrological and meteorological drought occurrence and severity. Further
GRACE is used to estimate the associated regional water storage deficit. The storage
deficit method accurately predicted the onset, termination and duration of hydrological
droughts and correlated well with the meteorological drought databases. The findings of
this study could eventually be used to develop a complete framework for hydrological
drought monitoring.

Yi and Wen (2016) estimated TWS changes in the continental United States (US)
using GRACE from 2003 to 2012 and developed GRACE Hydrological Drought Index
(GHDI) for drought monitoring. From 2003 to 2012, TWS showed opposing patterns
in the North and South of the continental US. In 2006, the equivalent water thickness is
decreased by -5.1 cm in the Central South. A good correlation was observed between
GHDI and Palmer Hydrological Drought Index, indicating that the index can be used
for drought monitoring. GHDI can be expanded for global drought monitoring because
of its minimal dependence on hydrological parameters. This is especially advantageous
for countries that lack adequate hydrological monitoring equipment.

Zhao et al. (2017b) developed a new monthly global gridded GRACE DSI dataset
using TWS changes from 2002-2014. The GRACE DSI captured key worldwide
drought occurrences over the last decade and has good spatio-temporal agreement with
PDSI and SPEI. The findings of study conclude that GRACE DSI can be used for
drought monitoring in the regions where ground observation are limited. The study

17



concludes that the developed global gridded GRACE DSI dataset can used to evaluate
droughts at regional or global scale.

Sinha et al. (2017) derived and analysed Water Storage Deficit Index (WSDI) for
India river basins. The method relies on fluctuations in TWS from GRACE to calculate
drought intensity and severity. Results showed that drought severity and duration
coincide well with the major meteorological droughts reported in India. Drought
events between April 2002 to April 2015 have been well recognised and quantified
using this method across four homogeneous rainfall zones of India. WSDI values
displayed an increasing trend in West-Central India and a decreasing trend in in
North-Western and Central India. The findings suggest a high level of confidence in
WSDI’s ability to accurately characterise drought at wide spatial scales.

Sun et al. (2018) used GRACE CSR mascon data from 2003 to 2015 to assess
drought conditions in the Yangtze River Basin. Water Storage Deficits (WSD) are used
to evaluate drought events, while the drought severity is assessed using the WSDI and
compared with SPI, PDSI, SPEI and Standardized Runoff Index (SRI). The findings
showed that there exists a good correlation between WSDI and SPI, PDSI, SRI and
SPEI. The droughts identified by the WSDI are in good agreement with the previous
studies. GRACE CSR mascon data may be used to analyse drought features in the
YRB, and the WSDI provides for strong and reliable drought characterization across
large areas, according to the findings. This study accurately captured major drought
occurrences over a huge geographic area, making it a good substitute for large-scale
regions and regions with few hydro-meteorological sites, where typical approaches
based on rich site observations are impractical to adopt.

Sinha et al. (2019) proposed a novel drought index named CCDI that incorporates
all the aspects of agricultural, meteorological, hydrological and human-induced drought
occurrences. CCDI is evaluated as a combined effect of variations in TWS from GRACE
and precipitation over Ganga, Godavari, Krishna and Mahanadi River Basins in India.
In addition, CCDI is compared to SPI, SPEI, PDSI, SRI and GRACE DSI in order
to assess the index ability to predict the occurrence of droughts. The CCDI proved
to be effective in identifying drought events over the study regions. In comparison to
other drought indices, the results have shown a better understanding of overall drought
conditions. The findings reveal an appreciable level of confidence in CCDI’s ability to
quantify droughts, which will further improve with better quantification and expanded
availability of TWS information from GRACE and GRACE FO missions.

Vishwakarma (2020) reviewed the potential of GRACE TWS for drought
monitoring. As a result of continuous climate change, droughts may become more
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severe and last for longer durations in the future. So, for global socio-economic
security, monitoring and understanding the duration and intensity of droughts, as well
as how they evolve in place and time, is critical. Although satellite remote sensing
aided us much in this attempt, most satellite missions only observe Earth’s near-surface
features. GRACE, a recent geodetic satellite mission, assessed changes in water
storage both above and below the earth’s surface, making it unique and useful for
drought studies. Before using this innovative dataset, one need be aware of its specific
challenges and characteristics. The author discussed key properties of several GRACE
products. The author also went through some of the limitations of the GRACE mission
that one should be aware of, as well as some of the most recent improvements in
GRACE data processing that could open up a lot of doors in the near future.

2.2 TWSA AND ITS LINKAGE TO TELECONNECTIONS

Zhang et al. (2015b) examined TWS changes from GRACE in combination with
Tropical Rainfall Measuring Mission (TRMM) and in-situ river gauges; along with
hydrological models: GLDAS and WaterGAP Global Hydrology Model (WGHM) in
the Yangtze River Basin for 2006 and 2008 droughts. Then links between TWS and
ENSO are evaluated. The droughts are clearly quantified by TWS deficit estimations
and a normalized TWS anomaly provided an alternative and relevant
hydro-climatological index in the basin. Findings showed that the association between
TWS anomalies and drought occurrences are closely related to ENSO variability.

Ndehedehe et al. (2017) examined the association of three global climate
teleconnections named Atlantic Multi-decadal Oscillation (AMO), Indian Ocean
Dipole (IOD) and ENSO with changes in TWS from GRACE and Modern-Era
Retrospective Analysis for Research and Applications (MERRA) over West Africa.
The positive phase of AMO coincided with above-normal rainfall (wet conditions) in
the Sahel region, while the negative phase coincided with drought conditions,
confirming the statistically significant relationship (r = 0.62) between AMO and SPI.
In the Volta basin, ENSO appeared to be more linked with TWS from GRACE. Also, a
strong association between TWS from MERRA and AMO, ENSO events are observed
throughout the coastal West African countries. The findings suggest that ENSO and
AMO are the two key climatic indices that affect TWS in West Africa.

Anyah et al. (2018) employed Independent Component Analysis (ICA) method to
evaluate the relationship between TWS changes and teleconnections namely ENSO,
IOD, North Atlantic Oscillation (NAO), Madden-Julian Oscillation (MJO) and
Quasi-Biennial Oscillation (QBO) over Africa for the period 2003–2014. The linkages
between Climatic Indices (CIs) and TWS are extracted using Pearson correlation
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analysis and certain strong CI-rainfall associations are discovered. The findings
revealed that there exists a substantial link between CIs and TWS over the study
region. Furthermore, the findings showed that the CIs’ first prominent Independent
Component (IC) is linked to NAO and characterised by large TWS reductions over
Southern Africa.

Forootan et al. (2019) used probabilistic methodologies to evaluate drought indices
based on TWS for 156 river basins during 2003-2016. The drought features such as
trends, occurrences, area-extent and frequency are extracted for 3, 6, 12 and 24 month
timescales. Using Canonical Correlation Analysis (CCA), link between global
hydro-meteorological droughts and Sea Surface Temperature (SST) fluctuations are
determined. This association is then utilised to identify areas where droughts and
teleconnections are closely linked. The findings showed that hydrological droughts (3
to 6 months) occur more frequently than other periods. The ENSO displayed a
significant impact on hydrological droughts in Northern Asia and much of the
Australian continent from 2006 to 2011. At regional scale, hydrological droughts are
also influenced by IOD and NAO.

Vissa et al. (2019) aimed to quantify the inter-annual variations of GroundWater
Storage Changes (GWSCs) over India. GWSCs are calculated using GRACE and
GLDAS-Noah LSM model during 2003 to 2015. Over the six lake sites, the estimated
GWSCs are validated using satellite altimetry. Cross correlation and plotting analysis
are used to examine the variability of GWSC and altimetry water level heights. The
non-parametric Mann–Kendall trend test and Sen’s slope method are used to evaluate
annual changes in TWSA from GRACE and GWSC. The findings showed a decrease
in GWSC and TWSA over Northern India, Southern and Western Central India. The
decline of GWSC is enhanced during El Niño, whereas increment of GWSC is evident
during the La Niña phase. The results concluded that variations in inter-annual
GWSCs over India are mainly due to precipitation changes.

Han et al. (2019) investigated the TWSA dynamics and assessed their relationships
with teleconnections in the Yunnan Province, China. Results concluded that TWSA
showed a decreasing trend during different time scales. In humid areas, the main
driving factor for variations in TWSA is precipitation magnitude. Good correlation is
observed between TWSA and AO, ENSO. This study adds to our understanding of
how teleconnections may affect TWSA dynamics in a changing environment.

Wang et al. (2020) used the GRACE Groundwater Drought Index (GGDI) as a
metric for assessing drought in North China plain from 2003 to 2015. The spatial
temporal evolution of drought characteristics and trends are comprehensively identified
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during 2003 to 2015. Following that, utilising cross wavelet transform technology, the
linkages between GGDI and teleconnection factors are explained. The GRACE’s
quantitative results for drought evaluation are reliable and robust. The cross-wavelet
transform revealed a significant influence of teleconnection factors on drought
evolution. The GRACE gravity satellite can provide new insight into drought
monitoring and can be used to other locations, according to the findings.

Liu et al. (2020) characterized the spatiotemporal variations in TWS based on
GRACE, LSM and precipitation observations over Asian and Eastern European
regions. The linkages between TWS and the global major teleconnections are then
investigated. From 2002 to 2017, there was a general decrease in TWS, with five
hotspots of negative TWS trends. TWS partitioning demonstrated that these negative
trends are mostly caused by excessive groundwater exploitation and warming-induced
surface water loss. The findings also revealed that ENSO, AO, and NAO are the three
most powerful factors influencing TWS fluctuations. The findings offer light on
differences in TWS and its components in Asian and Eastern European areas with
limited food and water availability.

2.3 RECONSTRUCTION OF TWSA

Sun (2013) predicted the groundwater level changes by downscaling GRACE satellite
data. In many places around the world, in-situ groundwater monitoring networks have
declined in recent years. Because of the uncertainty in GRACE data and the difficulty
in disaggregating specific TWS components, the use of GRACE data for local-scale
groundwater resource management has been limited. The nonparametric ANN models
used in this study are developed using Parameter-elevation Regressions on Independent
Slopes Model (PRISM) monthly precipitation, maximum and minimum temperatures
and GRACE ∆TWS as inputs; and groundwater level change as the target variable.
Monthly and seasonal water level fluctuations for numerous wells across the United
States are estimated using ensemble ANN models. Results conclude that, GRACE
displayed a considerable impact on the performance of ANN ensembles, especially
when the cyclic pattern of groundwater hydrograph is interrupted by extreme climate
events. When continuous in-situ measurements are unavailable, the results support the
basic hypothesis that downscaled ∆TWS can be used to infer or predict groundwater
level changes.

Zhang et al. (2016) used GRACE TWS to characterize the hydrological drought in
the Yangtze River Basin. ANN method is used to extend the TWSA data to a longer
period (1979–2012). The reconstructed TWSA using ANN model matched well with
the observed TWSA from GRACE (Nash–Sutcliff efficiency = 0.83). Then using a
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multi-decadal TWS time series, WSD and drought recovery time are defined. A simple
statistical approach is used to evaluate the drought recovery time. The results conclude
that YRB experienced hydrological drought 29 times between 1979 and 2012. The
average drought recovery time for the entire basin is 3.3 months. Drought conditions
prevailed from 2003 to 2008, owing to below-average precipitation, high temperatures,
and intense human activity. The findings show that GRACE data may be used to rebuild
the TWS time series for a wide river basin, which can be used to define hydrological
drought and investigate spatio-temporal trends.

Humphrey et al. (2017) proposed a new approach which statistically relates
anomalies in atmospheric drivers (e.g., precipitation and temperature) to monthly
GRACE anomalies. The study statistically correlated GRACE TWSA with the
anomalies observed by the major atmospheric factors. The gridded subdecadal TWS
changes are reconstructed for the period 1985–2015. The findings show that the
proposed product, and more broadly, the offered approach, can be used as a simple
benchmark for evaluating TWS. Finally, this method is employed to bridge the gap
between the GRACE and GRACE FO missions in terms of data. The data set presented
here is best suited for regional and global investigations of climate-driven TWS
variability from monthly to subdecadal time scales.

Jing et al. (2020) aimed to develop a data-driven model for simulating TWS
dynamics by correlating climate forcings with GRACE TWSAs over the Pearl River
Basin in China. Random Forest (RF) and eXtreme Gradient Boost (XGB) are two
ensemble learning techniques that are used to learn the relationships. TWSA of the
basin is reconstructed from prior decades and compared to the TWSA generated by
global LSMs. Results conclude that the RF and XGB algorithms performed well and
reproduced the spatial pattern. The temporal characteristics of the reconstructed
TWSA are closely matched with the GRACE and LSMs. This study proposed a multi
scale GRACE drought index and the index matched well with SPEI at different time
scales. The outcomes of this study show that machine learning may be used to forecast
TWS dynamics from climatic forcing data and produce results that are comparable to
complicated physical models.

Li et al. (2020) aimed to compare multiple data-driven algorithms and find the most
reliable ones for predicting gridded TWSC from GRACE in 2017-2018 and
reconstructing them using climate inputs up to 1992. To compare alternative
methodologies, such as the MLR, ANN, and ARX approaches, a methodological
framework is first constructed. Second, metrics are created to assess the predictability
of the results. Finally, utilising the identified approaches, gridded TWSC within 26
regions is predicted and reconstructed. The results conclude that the projected TWSC
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correlated well with the observed TWSC, which is better than the TWSC simulated
using hydrological models. In summary, MLR is more robust and feasible approach for
both filling the gap between GRACE missions and reconstructing long period TWSC
fields globally.

Sun et al. (2020) reconstructed missing monthly data at grid size in 60 river basins
around the world using six GRACE solutions and three learning-based models,
including DNN, MLR, and SARIMAX. The three learning-based models were proven
to be reliable for reconstructing GRACE data in humid environments with little or no
human participation. In most of the basins, DNN models slightly outperformed
SARIMAX model and significantly outperformed MLR model. At the basin scale, the
three GRACE mascon datasets outperformed the spherical harmonics. Models with
spherical harmonic solutions performed similarly in all the basins, whereas the model
with mascon solution differed significantly in some basins. The findings can be used to
fill in data gaps between the GRACE missions, as well as selecting appropriate
GRACE solutions for regional hydrological studies.

Li et al. (2021) presented a new long-term global reconstructed TWSA fields by
merging machine learning with time series and statistical decomposition approaches.
According to the findings, the reconstructed TWSA matched well with the GRACE
FO observation at global scale. The reconstruction approach is more reliable when
compared to satellite laser ranging solutions and observed global mean sea level change.
The findings offered a realistic method for recreating historical TWSA as well as filling
the GRACE data gap.

2.4 GROUNDWATER STORAGE CHANGES AND ITS VALIDATION WITH
WELL MEASUREMENTS

Rodell et al. (2007) estimated GWS variations using GRACE (which includes
groundwater, soil moisture and snow) and GLDAS (soil moisture and snow) datasets
over Mississippi River Basin, USA. Water level records from 58 observation wells in
the basin’s unconfined aquifers are used to validate the findings. The GRACE-GLDAS
based GWS variations for the Mississippi River Basin and the two sub-basins
>900,000 km2 matched well with the observation well-based GWS. The performance
of the technique is poor for sub-basins with an extent of around 500,000 km2.
Continuing to improve GRACE processing methods will certainly improve the
technique’s skill in the future while also boosting the temporal resolution.

Strassberg et al. (2007) considered TWS from GRACE as the combination of GWS
and SMS. Then SMS from GLDAS is subtracted from TWS to obtain GWS (i.e.,
GWS=TWS-SMS). These GRACE-GLDAS based GWS are compared with GWS
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variations obtained from 2,719 observation well datasets. Results conclude that a
favourable correlation is observed between seasonal GWS obtained from GRACE and
observation well network with R = 0.58. These findings suggest usage of GRACE to
track GWS fluctuations in semiarid areas where irrigation pumping causes
considerable seasonal GWS variations.

Rodell et al. (2009) evaluated the GWS variations for Indian states using TWSC
observations from GRACE and simulated soil-water variations from hydrological
modelling system. According to the findings, groundwater depletion amounted to a net
loss of 109 km3 of water, which is twice the capacity of India’s largest reservoir. Other
TWS components did not appear to play a substantial role in the reported drop in
overall water levels. According to the study, unsustainable groundwater extraction for
irrigation and other anthropogenic activities are most likely to blame. If efforts to
ensure sustainable groundwater usage are not done promptly, the repercussions for
residents of the region include a decline in agricultural output and potable water
shortages, resulting in severe socioeconomic stress.

Shamsudduha et al. (2012) tested the ability of GRACE satellite measurements to
trace intra-annual (seasonal) and interannual ∆GWS in the Bengal Basin using in-situ
groundwater levels and distributed specific yield estimates during January 2003 to
December 2007. The results conclude that the GRACE (CSR, GRGS) based ∆GWS
correlated well with in-situ well measurements. Spherical harmonic product of CSR
correlated well when compared with the GRGS products. Groundwater depletion
estimated from borehole hydrographs is within the range of ∆GWS estimated from
GRACE. The significant increase in groundwater abstraction for dry-season irrigation
and extensive public water supply during the last two decades is principally responsible
for groundwater depletion from 2003 to 2007.

Chen et al. (2014) re-assessed long-term GWS variation in the Northwest India
using TWS and global forward modeling method. Using the global forward modelling
method, this study successfully reduced the leakage errors in GRACE estimates and
increased the accuracy of GWSC from GRACE. According to the results, the
groundwater loss remained pronounced from January 2003 to December 2012,
particularly in the first five years (01/2003–12/2007). The depletion rates are 20.4±7.1
Gigatonnes (Gt) per year on average over a ten-year time frame and 29.4±8.4
gigatonnes per year in the first five years. The study region’s yearly GWS fluctuations
are highly associated with yearly precipitation anomalies. Groundwater depletion
reached over 80 Gt in 2009, the driest season of the decade, while net additions of
roughly 24 and 35 Gt are seen in the two comparatively rainy seasons of 2008 and
2011, respectively.
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Bhanja et al. (2016) validated the GWSAs obtained from a combination of
GRACE and LSM with GWSA obtained from in-situ groundwater level measurements
over 12 Indian River Basins from 2005-2013. For comparison with in-situ data, two
GRACE products, RL05 SH and mascon products, are used. This study also produced
a high-resolution specific yield map for India which is used for calculating GWS. The
GRACE-estimated GWSA corresponded well with observed GWSA in most of the
River Basins, according to the findings. GRACE-SH estimates matched well in terms
of RMSE when compared to the observed GWS anomaly, but GRACE-mascon
estimates showed superior correlation. This study used the Hodrick-Prescott filter, a
non-parametric trend estimation approach, to compare the performance of two GRACE
estimations. GRACE-mascon estimates clearly outperformed the GRACE-SH
estimates in reproducing observed GWSA trends, with GRACE-mascon estimates
showing significant strong association in 10 of the 12 basins. This study recommends
GRACE-mascon solutions for groundwater related studies with similar meteorological,
hydrogeological, or groundwater depletion conditions.

Asoka et al. (2017) used GRACE groundwater anomaly, groundwater well
observations, daily precipitation dataset and irrigated area map to explore the driving
mechanisms of groundwater variability. The analysis showed that long-term
precipitation changes are influencing GWS variability in most parts of India. Between
2002 and 2013, this study discovered that GWS in Northern India decreased by 2
cm/yr while increasing by 1 to 2 cm/yr in Southern India. According to the findings,
changes in precipitation account for a considerable portion of the total variability in
GWS over North-Central and Southern India. Variations in GWS in North Western
India are mostly explained by variations in irrigation abstraction, which is driven by
changes in precipitation.

Bhanja and Mukherjee (2019) estimated the usable GWS using both satellite and
in-situ measurements in India. In-situ observation well data are utilised to estimate the
total useable GWS. Despite increased precipitation, the usable GWS estimations
suggest substantial rates of GWS depletion (>5 km3/yr) in North-East India (Assam).
According to GRACE estimations, the growth of recent GWS-depletion zones in the
Indus, Ganges, and Brahmaputra Basins is centred in unconsolidated sediments or
lithotype. In contrast, Southern and Central Indian states displayed replenishing GWS
trends. The study discovered that the states with highest rates of groundwater depletion
are subjected to water-intensive agricultural methods. The authors suggest that the
developed approach is useful to develop management alternatives for sustainable
groundwater usage in various parts of the world.
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Chen et al. (2019) compared different TWS solutions from GRACE and their
effects on the spatial and temporal variations of GWS estimated from 2003 to 2013 in
the Songhua River Basin. Monthly TWSA data from 1982 to 2002 are reconstructed
using ANN technique, which performed well according to correlation coefficient
Nash-Sutcliff Efficiency (NSE). The GWS fluctuations are validated using in-situ
groundwater level measurements. The main drivers of GWS spatio-temporal changes,
as well as their inter- and intra-annually changing properties are investigated.
According to the study, changes of GWS showed a ”downward fluctuation”
(1982–1994), a ”stable upward” (1998–2008) and a ”decreasing dramatically”
(2009–2013) period, respectively. The results conclude that, declining GWS trend is
observed at a rate of 1.04±0.59 mm/yr from 1982 to 1994. With increased climatic and
anthropogenic influences, several severe fluctuations characterised the GWS variations.

Meghwal et al. (2019) examined the linkage between climate and groundwater
variability in Western India using GRACE and well measurement data from 1996 to
2016. TWS and GWS, as measured by GRACE, have decreased (at a rate of -3.67
km3/yr) in WI between 2002 and 2016. Analysis of GWS change associated with the
monitoring wells and GRACE revealed distinct patterns in two states (Gujarat and
Rajasthan). During 1996-2016, the variability of GWS associated with observation
wells is strongly coupled with the precipitation. However, GWS is strongly linked with
groundwater pumping and policies related to lowering groundwater abstraction for
irrigation. Groundwater pumping for irrigation is the primary cause of groundwater
depletion in Rajasthan. The findings highlighted the importance of controlling
groundwater supplies in India.

Rateb et al. (2020) compared GWS changes from GRACE with groundwater level
monitoring data and with regional, global hydrological and LSMs over 14 major U.S.
aquifers from 2002–2017. The GRACE data revealed declining GWS trends in the six
aquifers, which are linked to long-term droughts. In most aquifers, GWS changes
agreed well with observed data. Regional groundwater models (eight) showed similar
or greater GWS trends when compared to GRACE. Global hydrological models that
include groundwater pumping, overestimated GWS depletion in South-Central and
South Western U.S. According to the findings, global LSMs tend to track GWS
dynamics better than global hydrological models. By combining remote sensing,
monitoring, and modelling data, this study emphasises the importance of considering
all data sources to constrain GWS uncertainties.

Bhanja et al. (2020) assessed GWS changes from GRACE using in-situ
observation well measurements over India’s major river basins for the period
2003–2014. The long-term trends in GWS are computed and analysed with respect to
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changing precipitation trends. The authors also looked at long-term changes in
precipitation patterns using SPI1 and SPI12 from 1961 to 2014. Both 1961-2014 and
2003-2014 (the study period), experienced long-term decreasing precipitation patterns
in the Ganges and Brahmaputra Basins. Whereas, indeterminate or increasing
precipitation trends are observed in other basins. However, in-situ measurements found
decreased GWS (at rates of >0.4 km3/yr) in the Ganges-Brahmaputra River Basin
due to its agricultural productivity. The findings are utilized to better understand and
predict long-term GWS conditions, as well as their relationship with precipitation
patterns and thus used to develop sustainable groundwater management techniques in
India’s water-stressed regions.

Sarkar et al. (2020) examined the GWS changes from GRACE during 2003-2016
for Indian regions that are stressed with groundwater crisis. The study revealed that
maximum GWS change is occurred in Delhi, Northern Uttar Pradesh and some parts
of Haryana by -7.52 cm/yr. The groundwater depletion rates are also increased in the
study regions between 2003 to 2016. The results conclude that, in spite of quantified
rainfall, metro cities (Delhi, Chennai, Bengaluru, Kolkata and Mumbai) suffered a major
depletion in GWS. The GWSC derived from GRACE agreed reasonably with in-situ
well observations thereby justifying remote sensing approach.

2.5 DROUGHT FREQUENCY ANALYSIS

Kim et al. (2002) investigated the spatio-temporal characteristics of drought for
sustainable water resource management in the Conchos River Basin, Mexico. PDSI is
used as indicator to evaluate the drought characteristics. Frequency analysis method is
adopted to investigate the spatio-temporal variations of drought based on drought
intensity. Then kriging estimator is used to examine the spatial distribution of drought.
The spatial and temporal characteristics of PDSI are utilized in developing the drought
intensity-areal-frequency curves. The developed curves contain drought severity and
area with respect to the return period to describe the spatial and recurrence patterns of
droughts. The analysis showed occurrence of severe drought in the year 1990 with a
large areal extent and with a return period of 80 to 100 years.

Shiau (2003) introduced a theoretical derivation for univariate and bivariate
distribution return periods based on stochastic approach. As the extreme hydrological
events are complex in nature, the bivariate distribution is considered as a better
approach to represent these events (droughts and floods) than the univariate
distribution. The return periods are defined using either two joint random variables or
separate single variable for bivariate distribution. Assuming the bivariate distribution
with the Gumbel marginal distributions, flood peak and flood volume are modelled for
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Pachang River, Southern Taiwan using the daily streamflow data. Also, the properties
associated with the univariate and bivariate distributions are discussed. The results
exhibited a good agreement between the models and observed streamflow data.

Mishra and Desai (2005) analysed the spatial and temporal variations of drought
using SPI at multiple timescales (1, 3, 6, 9, 12 and 24 month) in the Kansabati River
Basin, India. The basin is divided into 25 grid cells and at each grid inverse distance
method is adopted for spatial interpolation of precipitation dataset. The monthly SPI
is evaluated using the rain gauge station data for the period 1965–2001. Using the
gridded SPI series drought severity, duration and frequency are evaluated at multiple
timescales. Then, SAF curves are developed using the spatio-temporal characteristics
of SPI. The SAF curves are constructed to depict drought severity and area at different
return periods so as to describe the spatial and recurrence patterns of drought. Results
conclude that SPI1 and SPI3 based droughts (short-term) are high in 1979 with return
periods of 80 to 100 years over the entire basin. Medium and long-term droughts are
frequent in 1980’s with a return period of 50 to 100 years. The 1980 droughts affected
agriculture, reservoir storage and groundwater in the basin.

Shiau (2006) constructed a two-dimensional copula for drought severity and
duration. The copula parameters are estimated using Inference Function for Margins
(IFM) method. The drought severity and duration are assumed to be distributed as
gamma and exponential distributions. Then several copulas are tested for drought
severity and duration to determine the best fitted copula and Galambos copula is
concluded as the best fit to the observed drought. SPI is used to determine the drought
severity and duration for Wushantou (Taiwan). The results conclude that the copula is
fitted well for the drought severity and duration, considered as useful tool in exploring
the relations of drought variables.

Shiau et al. (2007) examined the hydrological droughts using copulas in the Yellow
river, China. The drought characteristics (severity and duration) are evaluated using the
monthly streamflow data. Since droughts are complex in nature, single index is
insufficient for comprehensive drought evaluation. Therefore, bivariate distribution is
applied to model drought severity and duration jointly for drought assessment and
copulas is used to achieve this purpose. Clayton copula is used to jointly describe the
drought severity and duration. Then the bivariate return periods are also evaluated to
explore the noticeable historic droughts. The results conclude that severe drought has
occurred during 1930-1933 with a return period of 105 years. Also, low return period
of 4.4 years is encountered during 1997–1998 drought because of drastically reduced
streamflow in the Yellow River during 1997 due to human activities.
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Bondarabadi et al. (2008) evaluated the spatial characteristics of drought over
Razavi and Southern Khorasan provinces in Iran using SPI12. Drought maps are
generated using thin plate smoothing splines method. The SPI12 maps are classified
into several clusters and then the area enclosed by each SPI category is evaluated and
Probability Density Functions (PDFs) are fitted with different return periods. Then,
SAF curves corresponding to different return periods are developed for the study
region. Results conclude that droughts with 2 to 5 year return period are anticipated to
cover ∼30% of the region. And droughts with 20 to 50 year return periods may cover
∼70% of the region. Thus, severe droughts are expected to occur with high return
periods and less areal coverage.

Mishra and Singh (2009) used SPI to investigate the impact of climate change on
SAF curves in the Kansabati River Basin, India. The generated SAF curves based on
expected rainfall using a specified Global Climate Model (GCM) and scenario
uncertainty are compared to past droughts. To project precipitation from six GCMs,
the Bayesian Neural Network (BNN) downscaling method is used. Then SPI is
evaluated at 3 and 12-month timescale and SAF curves are constructed for 2001-2050
and 2051-2100 periods. The results have shown that the basin experienced severe
droughts during 2001-2050 compared to the drought occurred in 1980. The SAF
curves described the spatial and return patterns of droughts in the study region and are
useful in anticipating the drought severity with percentage of areal extent over the
future periods. The authors suggested to derive SAF curves using several GCMs to
overcome the biases in GCM simulations and uncertainties in scenarios.

Shiau and Modarres (2009) investigated the multi-attributes of drought based on
copula in terms of SDF curves for two rain gauge stations in Iran. The drought
properties: severity, duration and frequency are defined using SPI3 calculated from
rainfall series during 1954-2003. A joint distribution function is employed for drought
severity and duration using copulas. The drought frequency is then related to the
copula-based distribution function to develop SDF curves. From the developed SDF
curves, for a given return period and duration, Anzali station experienced greater
drought severity compared to Abadan station. These SDF curves are concave
downwards indicating that drought severity increases with duration.

Janga Reddy and Ganguli (2012) developed SDF curves using copula-based
bivariate probabilistic approach over Western Rajasthan, India. SPI at 6-month time
scale is used to analyse the drought characteristics. The joint distribution of severity
and duration are modelled using Plackett, Archimedean, Elliptical and Extreme Value
copula families. The Gumbel-Hougaard and Extreme Value copulas are performed
better in modelling the drought characteristics compared to other copulas based on
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upper tail dependence coefficient and statistical techniques. Then SDF curves are
derived with the conditional return periods evaluated using the best performing copula.
The results conclude that SDF curves are helpful in planning and management of water
resources at drought prone areas.

Reddy and Ganguli (2013) analysed the spatio-temporal variations of drought and
developed Intensity-Area-Frequency (IAF) curves for Western Rajasthan, India. The
meteorological droughts are analysed using SPI6 at spatial resolution of 0.5◦×0.5◦.
Seasonal trends are evaluated using Mann Kendall trend test and results showed
increased number of grids under drought for the study region. Then three copula
families namely Frank, Gumbel-Hougaard and Plackett are used to model the joint
dependence between intensity and areal extent of drought. The drought properties are
best represented by Gumbel-Hougaard copula based on upper tail dependence and
goodness of fit tests. Then IAF curves are derived with the conditional return periods
evaluated using the best performing copula. The developed IAF curves could estimate
drought intensities for a specified areal extent and return periods. The results conclude
that for a drought event with 8.8 Percentage Area Under Drought (PAUD) and 50-year
return period produced an intensity of 1.55. Whereas, drought event with 90 PAUD and
50-year return period produced an intensity of 2.13. Therefore, the developed IAF
curves are useful in spatial assessment of drought events and the associated risks.

Reddy and Singh (2014) examined the usefulness of two metaheuristic methods
namely Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) in
estimating the copula parameters and developing SDF curves over Texas, USA. In this
study, drought characteristics are evaluated using SPI and drought risk analysis is
performed by copula methods. For accurate estimation of copula model, GA and PSO
techniques are applied. First, the drought characteristics are modelled separately with
different probability distribution functions and the best model is concluded for copula
modelling. Then three copula families namely Extreme Value, Plackett and Student’s-t
are used to model the joint dependence between drought severity and duration and the
performance is evaluated using Kolmogorov–Smirnov (KS), Akaike Information
Criteria (AIC) and tail dependence tests. The performance measures conclude that
Gumbel-Hougaard copula is the best fitted model and used for the development of SDF
curves. The results conclude that the meta-heuristic techniques are useful in accurate
estimation of copula parameters and derivation of SDF curves.

Rajsekhar et al. (2015b) developed the hydrologic drought atlas that describes the
spatial variation of severity for 3, 6, 12 and 24-months durations and corresponding to
10, 25, 50 and 100-year return periods for Texas state. The drought characteristics are
derived using the Variable Infiltration Capacity (VIC) model from stream flow data at
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monthly timescale. The drought severity and duration are evaluated using Standardized
StreamFlow Index (SSFI) and suitable marginal distributions are selected from Gamma,
Exponential, Weibull and Log-normal distributions. Then the joint dependence between
drought severity and duration is modelled using various copula families and SDF curves
are developed using the best performed copula. The developed SDF curves are used
to prepare the drought atlas for Texas which depicts the drought severity for a given
duration and return period. The results conclude that SDF curves displayed convex
(concave) pattern in arid and semiarid regions. Also, decreasing pattern are observed
for drought severities from West to East of Texas.

Rajsekhar et al. (2015a) evaluated the socioeconomic impacts of drought due to
climate change for the state of Texas. The author reviewed the effects of changing
climate variability on the features of various drought kinds. Through a relative entropy
technique, downscaled and bias-corrected data from five GCMs are utilised to produce
an ensemble of precipitation, temperature and wind speed for drought study. After that,
a unique multivariate drought index is used to quantify all physical types of droughts in
one place. The geographical patterns of drought features are studied using multivariate
frequency analysis for each planning zone in Texas to identify the distribution of
prospective drought hazard areas as a result of climate change, resulting in the drought
hazard index. A drought vulnerability assessment is also conducted, with numerous
socioeconomic aspects taken into account, resulting in the formulation of
socioeconomic drought vulnerability index. A set of composite drought risk maps are
created, which combined hazard and vulnerability analyses. Overall, the findings are
expected to aid Texas in developing an efficient drought mitigation strategy.

Amirataee et al. (2018) developed SAF curves using one-month SPI during 1971-
2013 in Lake Urmia Basin, Iran. The joint probability distribution of drought severity
and drought area is then modelled using seven distinct copula functions. Using AIC,
Bayesian Information Criteria (BIC), and Root Mean Square Error (RMSE), the Frank
copula is identified as the best acceptable copula for constructing the joint probability
distribution of severity and percentage of area under drought.The drought SAF curves
are developed using the Frank copula. According to the findings, majority of the study
areas are affected by severe/extreme drought and non-drought (wet) behaviours.

Ahmed et al. (2019a) used Global Precipitation Climatology Centre (GPCC)
gauge-based gridded precipitation data to reconstruct historical droughts and
downscale future precipitation projected by seven GCMs from the Coupled Model
Inter-comparison Project phase 5 (CMIP5) under four Representative Concentration
Pathway (RCP) scenarios. Downscaling and bias correction are accomplished using
the Support Vector Machine (SVM) and quantile mapping respectively. Statistical
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measures are used to evaluate the model’s performance. The SPI is utilised to describe
the seasonal droughts for distinct crop growth periods using historical and future
precipitation data. Drought SAF curves are produced for the historical period
(1961–2010) and three future periods (2010-2039, 2040-2069 and 2070-2099). At 95
percent confidence level, the uncertainty band of future drought SAF curves is
computed using Bayesian bootstrap. Results conclude that droughts with longer return
periods affect bigger areas than droughts with shorter return periods, according to
historical SAF curves. Drought estimates for the future revealed an increase in
impacted area for droughts of lower severity, return period and reduction for droughts
of higher severity and return period.

Alamgir et al. (2020) examined variations in SAF curves of seasonal droughts in
Bangladesh using SPI from nineteen CMIP5 GCMs. Drought properties are estimated
for the four climatic seasons namely: winter, pre-monsoon, monsoon and
post-monsoon. For three time periods (2010–2039, 2040-2069 and 2070-2099),
changes in the SAF curves are calculated. The Bayesian bootstrap approach is used to
calculate the SAF curves. The results conclude that moderate and severe droughts
occurred for longest return periods and are more likely to damage the region than other
drought types. During all return periods and severity categories, the kharif season
drought is found to be the most acute and affected major areas of the country. Droughts
in the monsoon and kharif seasons are expected to become more severe and last longer
in Bangladesh, according to projections.

2.6 CONCLUDING REMARKS

A detailed review is carried out in the above sections and the following observations are
made:

• The pertinence and robustness of GRACE satellite remote sensing data can be
used to estimate total water storage necessary for drought studies at regional and
basin scales.

• GRACE can help to a better understanding of how terrestrial water storage
responds to climate change and variability with longer time series.

• Spatial correlation analysis is useful in identifying the drought areas that are
strongly affected with TWSA by considering the relationship between drought
indices and TWSA. Therefore, utilizing the existing indices to identify the right
index in the river basins where hydro-meteorological datasets are scarce is
expected to offer insights in assessing droughts using remote sensing data.
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• Teleconnection factors have a major effect on drought and very few studies have
investigated the associations between droughts evaluated using GRACE and
teleconnections. A comprehensive and systematic analysis between GRACE and
teleconnections is vague and in particular for India. Therefore, this study
addresses the drought situation in South Indian River Basins with GGDI and
identifying the linkages between drought and teleconnections.

• Machine learning techniques have recently advanced and proved to be effective
in data prediction and reconstruction. In this study, a learning-based model,
namely Multi Layer Perceptron (MLP) is used to reconstruct TWSA to obtain a
continuous time series from 1960 to 2020.

• In evaluating groundwater variations and trends, GRACE-based estimates have
proven valuable at regional and basin scales. Very few studies, particularly in
India, have compared GRACE groundwater storage estimates with observation
well measurements. In this study, the reconstructed TWSA using MLP is
converted to groundwater storage anomalies and validated with observation well
measurements.

• The SAF and SDF curves can describe the spatial and return patterns of droughts
and can be useful in anticipating the drought severity with percentage of areal
extent over the future periods.

• The SAF and SDF curves can be helpful in planning and management of water
resources at drought-prone areas.
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CHAPTER 3

STUDY AREA AND DATA COLLECTION

3.1 STUDY AREA

India is the seventh largest country in the world comprising 22 major river basins (India-
WRIS, 2012) of which four are selected for the present study. The Godavari River
Basin (GRB) is located in the Deccan Plateau and has a tropical climate with annual
precipitation from 760 mm to 1550 mm and annual maximum temperature from 31° C
to 34° C. Major part of the basin is covered by agricultural land (60%) followed by forest
area (30%) and water bodies (2%) as per the 2005–06 Land Use-Land Cover (LULC)
(www.india-wris.nrsc.gov.in) data. The Krishna River Basin (KRB) falls in the Deccan
Plateau and Western Ghats and its annual precipitation and mean temperature are 860
mm and 26 °C, respectively. Approximately 76% of the basin is covered by agricultural
areas and 10% by forests. The Cauvery River Basin (CRB) falls in three agro-climatic
zones with tropical and sub-tropical climates. The mean annual precipitation is 1075
mm and mean monthly temperature varies from 23 °C to 28 °C. The basin is dominated
by agricultural lands with 66% followed by forest areas with 21%. The Pennar River
Basin (PRB) falls in two agro-climate zones with mean annual precipitation of 770 mm,
and mean minimum and maximum temperature of 21 °C and 32 °C. From the LULC
assessment of 2005–06, 59%, 20%, and 5% of the basin are covered with agricultural
lands, forests, and water bodies, respectively. Additional details of these river basins are
shown in Table. 3.1 and Fig. 3.1.

Table 3.1: River basin details considered in the study

S. No Basin Name Area
(Sq.km)

Mean Annual
Rainfall (mm)

Maximum
Temperature

(°C)

Minimum
Temperature

(°C)

Elevation
(m)

1 Godavari River Basin (GRB) 3,12,810 1095 33 20 1665
2 Krishna River Basin (KRB) 2,54,750 860 32 20 1900

3

Pennar and East
flowing rivers
between Pennar and
Cauvery River Basin (PCRB)

1,17,890 770 32 21 1440

4 Cauvery River Basin (CRB) 85,630 1075 34 17 2630
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Figure 3.1: Study region showing river basins considered in the study. (1. GRB, 2.
KRB, 3. PCRB and 4. CRB)

3.2 DATA

3.2.1 Meteorological Data

In the present study, gridded precipitation and temperature data from the India
Meteorological Department (IMD) are considered for 1960–2020 with a spatial
resolution of 1° × 1° and monthly temporal resolution for the study area (Rajeevan
et al., 2008; Srivastava et al., 2009).

3.2.2 Self-Calibrated Palmer Drought Severity Index (SC PDSI)

The SC PDSI dataset is collected from the Climate Research Unit (CRU) website at a
spatial resolution of 0.5°×0.5°. New updated versions are available each year, and CRU
TS4.03 is the current update (http://www.cru.uea.ac.uk/data).

3.2.3 GRACE Terrestrial Water Storage Anomaly

In this study, the latest release of GRACE monthly mass grids (RL 06) processed at
JPL (https://grace.jpl.nasa.gov) are used for analysis. The GRACE data is considered
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from 2002–2017 and GRACE FO is considered from 2018-2020. The JPL RL06
surface mass data form a unique framework, which estimates monthly gravity fields at
3 × 3 degree equal-area spherical cap mass concentration using a priori constraints that
minimise the impact of measurement errors (Wiese et al., 2016). Correction of the
Glacial Isostatic Adjustment (GIA) has been applied. GRACE JPL mascon data does
not need a smoothing filter, as the spherical cap mascon performs as a smoothing
function by decreasing the signal strength at spatial scales below 3°. Lost signals are
restored by applying gridded scaling factors. Despite its effectiveness, there are
long-term limitations for scaling factors in the application of groundwater variations
(Landerer and Swenson, 2012). Dataset leakage errors are effectively reduced by the
use of scaling factors and Coastline Resolution Improvement (CRI) filters. Residual
errors interpret GRACE measurement errors in addition to lost inter-annual signals.

3.2.4 Global Land Data Assimilation System (GLDAS)

The latest release of the GLDAS Noah model, namely NOAH10 M 2.0 and
NOAH10 M 2.1 products that are consistent with the GRACE product, is used in this
study (https://disc.gsfc.nasa.gov/). Because GLDAS products are not available
continuously from 1960 to 2020, both GLDAS Noah versions 2.0 and 2.1 are selected
to obtain data from 1960 to 2020. GLDAS NOAH10 M 2.0 version products are
considered form 1960-2000, and GLDAS NOAH10 M 2.1 version products are
considered for the period 2000-2020, with the spatial resolution of 1° × 1°. From
GLDAS, TWSA is calculated by incorporating soil moisture storage (∆SMS) and
canopy water storage (∆CWS). Because the GLDAS Noah model cannot evaluate
changes in groundwater storages (∆GWS), TWSA is calculated using only two
components (GLDASTWSA = ∆SMS + ∆CWS). As, GLDAS products are as
reliable as GRACE products, GLDAS-based TWSA is used as a predictor for GRACE
TWSA reconstruction and prediction.

3.2.5 In-situ Groundwater Well Measurements

In this study, seasonal (during January, May, August and November, respectively)
in-situ observation well data from 1973 locations covering GRB (822), KRB (550),
CRB (275), and PCRB (326) basins, accessed from Central Ground Water Board
(CGWB, India) between January 1996 and December 2020 are used (see Fig. 3.2). The
groundwater observation well data is available for four seasons namely: (i)
Post-monsoon rabi (January), (ii) Pre-monsoon (May), (iii) Monsoon (August) and (iv)
Post-monsoon kharif (November) respectively. Most (>87%) of the studied wells are
considered to be within shallow, unconfined aquifers (CGWB, 2014b), though certain
areas of Southern Indian states are found to have higher percentage of confined wells.
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The data is processed to have temporal continuity i.e., at least three seasonal data
should be available out of four from 1996-2020 over the study region.

Figure 3.2: Study region showing major river basins of South India and groundwater
observation well locations.

3.2.6 Climate Data

Monthly climate oscillations namely NINO 3.4, Multivariate ENSO Index (MEI),
Southern Oscillation Index (SOI), and Dipole Mode Index (DMI) during 2003–2016
are utilized in the study. Monthly Sea Surface Temperature (SST) anomaly data
(NINO3.4) is obtained from http://www.esrl.noaa.gov/. For ENSO, the MEI is selected
and obtained from https://www.esrl.noaa.gov/. The SOI data is obtained from the
NOAA Earth System Research Laboratory (https://psl.noaa.gov/). The Indian Ocean
Dipole (IOD) is measured as DMI due to the dipole mode in the tropical Indian Ocean,
and the DMI data is obtained from http://www.jamstec.go.jp.
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CHAPTER 4

ASSESSMENT OF MONTHLY AND SEASONAL DROUGHTS
USING GRACE TERRESTRIAL WATER STORAGE

The purpose of the present work is to monitor TWSA and assess its impact on drought
in the South Indian River Basins. This main objective is subdivided into four sub
objectives, each of which is examined in depth and presented in different chapters. The
first sub objective is covered in the chapter. The first sub objective deals with spatial
and temporal variations of TWS with respect to various drought indices to offer
insights into assessing future droughts using remote sensing data.

4.1 INTRODUCTION

Drought is one of the extremes of water availability and one of most serious threat to
sustainable socio-economic development of a region (Nagarajan, 2010). According to
the Water Resource Institute (WRI), a quarter of the world’s population is experiencing
severe water stress in 2019 and this percentage is expected to double by 2050. These
forecasts are based on models and they are only as accurate as our current understanding
of drought’s spatio-temporal properties. As a result, number of research groups are
investigating into current and past drought events to get novel insights.

Drought indices are suitable tools for monitoring, quantifying and evaluating
drought. These drought indices become predominant in drought characterisation as
they reduce the complexity of drought phenomenon to a single numerical value.
GRACE-related drought indices have been recently applied in monitoring and
characterizing regional droughts and water availability conditions. Despite their
suitability for a variety of water-related sectors, these indices have their limitations.
Identifying the right index to quantify storage or drought becomes a problem when it is
not known and what suitable index is to be considered over the study regions.
Therefore, there is a need in understanding the correlation between GRACE TWS and
other drought indices, to validate and illustrate the relevance of these indices to
forecast drought in certain areas (Yang et al., 2020; Zhao et al., 2017b).

The distinguishing features of this study includes the assessment of spatial
correlation on a seasonal scale between TWSA from GRACE and other indices (SPI,
SPEI, SC PDSI, GRACE DSI, GGDI and CCDI). This is considered important in
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identifying the spatial extent of drought-hit areas as the relationship between drought
indices and TWSA has some physical significance. These insights are important as
seasonal correlations analysis between drought indices and TWSA can be useful to
examine the applicability of certain drought indices for individual river basins. It
should be noted that accurate quantification of beginning and end of drought period is
difficult. However, a drought event captured by a drought index offers the signal of
both past and future drought. As each drought index is different by construct and
variables involved, differences in characterizing drought events are expected among the
indices. Therefore, analysis of several indices is performed in this study. Seasonal and
monthly drought events offer additional insights into identifying suitable ones from
among the indices including SPI, SPEI, SC PDSI, CCDI, GRACE DSI and GGDI. The
four basins considered in this study are driven by monsoon rainfall where 75% of the
annual rainfall generally occurs during this period.

Spatial correlation analysis is useful in identifying the drought areas that are
strongly affected with TWSA by considering the relationship between drought indices
and TWSA. As the influence of TWSA with drought indices is spatially unrevealed.
With the above perspective, significant seasonal correlation analysis between drought
indices and TWSA could be considered as a standard to examine the applicability of
certain drought indices for individual river basins. Therefore, utilizing the existing
indices to identify the right index in the basins where hydro-meteorological datasets
are scarce is expected to offer insights in assessing droughts using remote sensing data.
The flowchart of the first sub-objective is presented in Fig. 4.1.

Drought Indices

GRACE 
DSI

SC_PDSI CCDISPI SPEI GGDI

Data

GRACE Precipitation Temperature

Seasonal correlation 

analysis of TWSA with 

SPI,SPEI,CCDI,GRACE 

DSI,GGDI and SC_PDSI

Monthly correlation 

analysis among 

drought indices

Monthly 

drought event 

analysis

Drought 

characteristics 

using CCDI

Figure 4.1: Flow chart of first sub objective

For analysis purpose, the first sub objectives is further divided as given below.

• To quantify six drought indices: SPI, SPEI, SC PDSI, GRACE DSI, GGDI and
CCDI using precipitation, temperature and TWSA datasets.
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• To analyse the correlation between above mentioned six drought indices and
TWSA using statistical techniques.

• To determine suitable drought indices based on correlation analysis, and

• Apply drought indices to detect seasonal drought patterns impacted by the
changes in TWSA over a decade between 2002 and 2016.

4.2 METHODOLOGY

4.2.1 Processing and Analysis of Data

Drought indices namely SPI and SPEI are evaluated using gridded precipitation and
temperature datasets. GRACE is also increasingly used in water availability assessments
(Sridhar et al., 2019) and a similar approach is employed for drought assessment in
this study. The missing monthly GRACE datasets are filled by the linear interpolation
method (Sun et al., 2018). The indices SPI and SPEI are evaluated using R-Studio
(package: SPEI; version 3.5.1; https://www.r-project.org/) for the 3, 6 and 12-month
time scales. For the calculation of CCDI, GGDI and GRACE DSI, GRACE monthly
mass grids (RL 06) are used. The potential impact of short reference period (2002-2016)
and long reference period (1975-2016) are evaluated over TWSA (Cammalleri et al.,
2019). From the analysis, major variations are not observed in between short and long
reference period. For this study the base line period is considered from January 2004
to December 2009, i.e., a short reference period. Furthermore, evaluation of different
5-year periods to consider the reference period has shown no significant differences.
Positive TWSA indicates more water and negative value indicates less water than in the
past. SC PDSI dataset is collected from the CRU TS website at a spatial resolution of
0.5°×0.5° is directly used for the analysis. The considered variables are resampled and
clipped to the same spatial extent of 1°×1° using the MATLAB toolkit.

The study analysed correlation of drought indices, such as SPI, SPEI, SC PDSI,
GRACE DSI, GGDI and CCDI with the TWSA dataset. Correlation analysis is
performed for four seasons: post-monsoon rabi (January to March), pre-monsoon
(April to June), monsoon (July to September) and post-monsoon kharif (October to
December). The indices SPI and SPEI are evaluated for 3, 6 and 12-month time scales.
GRACE DSI, GGDI and CCDI are calculated by following the procedures of Sinha
et al. (2019); Thomas et al. (2017); Zhao et al. (2017a) respectively. The Pearson’s
correlation analysis (see Eq. 4.1) is performed for all grids covering the river basins
between each drought index and the TWSA to obtain the correlation coefficients.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1(yi − ȳ)2
(4.1)
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where r = Pearson’s correlation coefficient; x represents the TWSA dataset; and y

represents the drought index. i is 1, 2. . . .n; x̄,ȳ are the means of x and y scores
respectively; n = the total number of observations; r ranges between -1 and +1, the
highest r (positive or negative) represents the higher correlation between x and y.

Then t-test is performed to determine the significant difference between the means
of two datasets (e.g., TWSA and SPI) and is calculated for their corresponding p values
at the 95% confidence level. Significance is indicated when p < 0.05. Spatial maps are
prepared using ArcGIS 10.3 for the correlation coefficients along with p values.

The drought categories for SPI are considered from McKee et al. (1993). For
GRACE DSI and CCDI, the drought categories are considered from the United States
Drought Monitor (USDM) that are classified into D0, D1, D2, D3 and D4 categories
(Svoboda et al., 2002; Zhao et al., 2017a). Note that the categories of drought
presented in this study depend on the range of drought indices obtained for four river
basins.

4.2.2 Standardized Precipitation Index (SPI)

The SPI is a dimensionless meteorological drought index which requires single
hydrological variable i.e., precipitation, to characterize drought events. It is simple to
analyse, spatially invariant and can be applied to evaluate meteorological, hydrological
and agricultural drought phenomenon with this index. Using SPI, the temporal analysis
of drought events can be evaluated at 3, 6, 9, 12, 24, 36 and 48-month time scales. To
evaluate SPI for a given year i, month j and for time scale of k, the following steps are
used:

• For a specific period of interest j, cumulative precipitation series is evaluated
Xk
ij(i = 1, 2, . . . , n), where each term denotes the sum of precipitation of k − 1

previous successive months.

• The aggregated monthly precipitation series (say k = 12 months) is fitted with
cumulative probability distributions (for e.g., gamma distribution). The gamma
distribution function is defined as

g(x) =
1

βαΓ(α)
xα−1e

−x
β (4.2)

where, Γ(α)= gamma function, α= shape parameter and β= scale parameter. The
shape and scale parameters are estimated using method of maximum likelihood.

• For a specific month and time, the estimated parameters are utilized in finding
the cumulative probability distribution of the precipitation event. The cumulative
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probability, G(x) is obtained by integrating g(x) i.e.,

G(x) =

∫ x

0

g(x)dx =

∫ x

0

1

β̂αΓ(α̂)
xα̂−1e

− x

β̂ dx (4.3)

• A mixed (containing zero values and continuous precipitation amount) two
parameter gamma distribution function is employed and the corresponding
Cumulative Distribution Function (CDF) is given as

F (x) = q + (1− q)G(x) (4.4)

where, q= probability of zero precipitation and G(x)= distribution function
calculated for non-zero precipitation.

• An equiprobability transformation (Panofsky et al., 1958) is carried out from the
CDF of mixed distribution to the CDF of standard normal distribution (zero mean
and unit variance), which is given as

SPI = ψ−1(F (x)) (4.5)

• This transformed probability in Eq. 4.5 is the SPI. The negative SPI value
specifies that the precipitation is below average (dry condition) and positive SPI
value indicates above average precipitation (wet condition).

A drought period is defined as the successive number of SPI values below a threshold
(approximately 0.8). According to McKee et al. (1993), droughts are classified into four
categories namely mild (D0), moderate (D1), severe (D2) and extreme (D3) droughts as
given in Table 4.1. In this study, SPI is computed over 3, 6 and 12-month time scales
with monthly gridded precipitation data at a spatial resolution of 1°×1° from 2002 to
2016.

Table 4.1: Drought categories related to Dry (D) conditions for SPI

Drought Category SPI
D0: Mild (abnormal) Drought 0 to -0.99
D1: Moderate Drought -1.00 to -1.49
D2: Severe Drought -1.50 to -1.99
D3: Extreme Drought ≤ −2

4.2.3 Standardized Precipitation Evapotranspiration Index (SPEI)

Several drought indices have been developed to characterise droughts by considering
one or more climatic variables like precipitation, temperature, runoff,
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evapotranspiration and soil moisture. To quantify meteorological drought, SPI is
considered as the most widely used drought index because it is less data intensive and
simple to calculate. As SPI can be calculated at different time scales, it helps in
understanding the effect of rainfall deficit on various hydrological components (McKee
et al., 1993). The limitation of SPI is that it does not consider other climate variables
like evapotranspiration in quantifying the droughts. Therefore, SPI may not reproduce
the true water deficit that is intensified by climate change. By considering all the
advantages of SPI, Vicente-Serrano et al. (2010) developed SPEI which can be
calculated at 1 to 48-month time scale representing hydrological, agricultural and
meteorological droughts (Maccioni et al., 2015). For calculating SPEI, Potential
EvapoTranspiration (PET) is evaluated first. For the estimation of PET,
Penman-Monteith, Thornthwaite and Hargreaves are the most widely used methods. In
the present study, Hargreaves method is adopted to calculate PET because of its
simplicity and lower data requirement. Then, difference between precipitation and PET
is estimated as shown in Eq. 4.6.

Di = Pi − PET (4.6)

where, Pi= precipitation at ith month, Di= surplus or deficit in the ith month.

The Di values are then aggregated, probability distributions are fitted and the best
fitted distribution is chosen using L-moments method because, it is more robust for
outliers and is effective in characterizing various distribution functions compared to
other methods. The CDF of the best fitted distribution is then normalized to evaluate
SPEI for the selected region. Therefore, SPEI is estimated at three different monthly
time scales (3, 6 and 12) using the IMD precipitation and temperature data available at
the spatial resolution of 1°×1° from 2002 to 2016. Positive SPEI indicates wet
condition and negative SPEI indicates a dry condition. Drought characteristics are well
assessed with SPEI, as the index is consistent and flexible in terms of space and time in
reproducing water deficiencies at different time scales.

4.2.4 Self-Calibrated Palmer Drought Severity Index (SC PDSI)

Palmer (1965) developed an index called PDSI to assess moisture demand and supply
on the basis of a two-layer soil water balance model. Wells et al. (2004), within the
framework of PDSI, proposed SC PDSI model that automatically adjusts the climatic
characteristics (K) and the duration factors evaluated from historical climate data for a
particular location. The SC PDSI is calculated from the precipitation and temperature
time series with fixed parameters of soil/surface characteristics at each location. This
study considered the global gridded monthly SC PDSI (0.5°×0.5°) values from 2002 to
2016.
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4.2.5 GRACE Drought Severity Index (GRACE DSI)

This is a satellite-based drought index derived from the variations in TWSA from
GRACE. GRACE DSI provides comparison of drought characteristic across regions
and time intervals, without considering any impact of uncertainties related to soil water
balance models or the influence of meteorological data. It also integrates the variations
in water storage due to human interventions including withdrawal of groundwater. In
this study, GRACE JPL RL06 land water storage data are used for the evaluation of
GRACE DSI following the procedure developed by Zhao et al. (2017a). GRACE DSI
is calculated as

GRACE −DSIu,v =
TWSu,v − TWSv

σv
(4.7)

where u is the year from 2002–2016; v is the month ranging from January to December;
and TWSv and σv are mean and standard deviation of monthly anomalies, respectively.
GRACE DSI is dimensionless quantity. Drought categories related to Wet (W) and Dry
(D) conditions for GRACE DSI are presented in Table 4.2.

Table 4.2: Drought categories related to Wet (W) and Dry (D) conditions for GRACE
DSI and CCDI

Drought Category GRACE DSI and CCDI
W4: Exceptionally Wet 2 or greater
W3: Extremely Wet 1.6 to 1.99
W2: Severely Wet 1.3 to 1.59
W1: Moderately Wet 0.8 to 1.29
W0: Abnormally Wet 0.5 to 0.79
N: Near Normal 0.49 to -0.49
D0: Abnormally Dry -0.5 to -0.79
D1: Moderately Dry -0.8 to -1.29
D2: Severely Dry -1.3 to -1.59
D3: Extremely Dry -1.6 to -1.99
D4: Exceptionally Dry -2 or less

4.2.6 Combined Climatologic Deviation Index (CCDI)

CCDI integrates meteorological, hydrological and agricultural drought occurrences by
incorporating precipitation and TWSA for drought assessment. Thus, the CCDI
accounts for variations in surface and subsurface water storages. In this study, IMD
gridded precipitation data and TWSA from JPL RL06 are used in calculating CCDI
from 2002-2016 for the four river basins following the procedure proposed by Sinha
et al. (2019). CCDI is calculated using the equations provided below i.e., from Eq. 4.8
to Eq. 4.14.
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Precipitation anomalies are calculated as

PAx = Px − Pµ (4.8)

where, PAx is precipitation anomaly, Px represents monthly deviations of precipitation
and Pµ represents the mean monthly deviations.

PAclimy =

∑12
y=1 PAx,y

N
(4.9)

TWSAclimy =

∑12
y=1 TWSAx,y

N
(4.10)

PAresx = PAx − PAclimx,y (4.11)

TWSAresx = TWSAx − TWSAclimx,y (4.12)

CDx = PAresx + TWSAresx (4.13)

CCDIx =
CDx − CDµ

CDσ

(4.14)

where subscript x varies from 1 to 177 months (the study period considered i.e., April
2002 to December 2016); y denotes each month of the calendar from 1 to 12; N is the
total count of the considered month; clim and res denote time series of climatology and
residuals, respectively; and µ and σ are the mean and standard deviation respectively.

4.2.7 GRACE Groundwater Drought Index (GGDI)

The dimensionless GGDI is implemented to examine the drought characteristics related
to groundwater. Firstly, monthly climatology, Ci (climatology for month i) is calculated
as follows:

Ci =
1

ni

ni∑
1

GWSAi (4.15)

where, i represents month (i = 1, 2, . . . 12) and n represents number of years. In the
present study, TWSA from GRACE is considered from 2002-2016 with n = 15. The
monthly climatology Ci is calculated for each month individually using GWSA. The
effect of seasonality is removed by using the monthly climatology Thomas et al. (2017).
Secondly, the monthly climatology is subtracted from GWSA to obtain GroundWater
Storage Deviation (GWSD), that signifies the net deviation in the volume of GWSA
based on seasonal variability. Finally, the GWSD is normalized by removing the mean
and divided by standard deviation as follows:

GGDI =
GWSDt − x̄GWSD

SGWSD

(4.16)
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where, x̄GWSD and SGWSD are the mean and standard deviation of GWSD respectively.
GGDI is the normalized net deviation in GWS volume and the GGDI classification is
given in Table 4.3. For detailed information regarding GGDI, one can refer to Thomas
et al. (2017).

Table 4.3: Classification of the GGDI

Grade Classification GGDI
I No drought −0.5 < GGDI
II Mild drought −1.0 < GGDI ≤ −0.5
III Moderate drought −1.5 < GGDI ≤ −1.0
IV Severe drought −2.0 < GGDI ≤ −1.5
V Extreme drought GGDI ≤ −2.0

The ’run theory’ approach is used to determine the characteristics of drought, such
as severity and duration from the considered drought indices. Drought duration is the
period of time where the index remains below the fixed threshold (threshold value of
-0.8). The minimum duration of drought is considered as one month, as the drought
event is defined at aggregation of monthly time scale. Drought severity is the cumulative
values of index within the drought duration.

4.3 RESULTS

4.3.1 Seasonal Analysis

Seasonal correlation analysis is performed for four seasons over four river basins using
Pearson’s correlation test. The t-test is evaluated to determine the significant difference
between the means of two datasets for their corresponding ‘p’ values at the 95%
confidence level for four seasons. The post-monsoon kharif and pre-monsoon seasons
(see Fig. 4.2) have shown significant correlation for all the four basins considered in
this study. In the monsoon season, parts of CRB and PCRB have shown insignificant
correlation as they are not normally impacted by monsoon rains whereas the remaining
parts have shown significant correlation. In the post-monsoon rabi season, parts of
GRB, CRB and PCRB have shown insignificant correlation and the remaining part
exhibited significant correlation. The correlation analysis as presented in this study
offered insights into spatial and temporal variability between the basins.

4.3.1.1 Correlation between TWSA and SPI

To identify a suitable index for the assessment of storage and drought conditions, a
Pearson correlation coefficient analysis is performed for TWSA and SPI for 3, 6 and
12 months represented by SPI3, SPI6 and SPI12. The results have shown significant
correlation between TWSA and SPI in all seasons for KRB as shown in Fig. 4.2(a),
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4.2(b) and 4.2(c) for SPI3, SPI6 and SPI12 respectively.

The post-monsoon kharif season has indicated high positive significant correlation
followed by the post-monsoon rabi season for SPI. The pre-monsoon and monsoon
seasons have shown positive correlation, with a few negative correlations in the upper
Western Ghats and Southern Tungabhadra River for SPI 3, 6 and 12 months. CRB has
shown significant correlation in post-monsoon kharif and pre-monsoon seasons and
insignificant correlation is observed for both the monsoon and post-monsoon rabi
seasons.

(a)

(b)

(c)

Figure 4.2: Pearson’s correlation between (a) GRACE TWSA and SPI3, (b) GRACE
TWSA and SPI6 and (c) GRACE TWSA and SPI12
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From Fig. 4.2(c), GRB has shown almost positive significant correlation in the post-
monsoon kharif season followed by the pre-monsoon and monsoon seasons with some
negative significant correlations. In the post-monsoon rabi season, insignificant positive
and negative correlations are observed in the mid to upper portions of GRB. In case
of SPI3 and SPI6, GRB has shown significant positive correlation for post-monsoon
kharif season whereas, for monsoon and pre-monsoon seasons significant positive and
negative correlations are observed. PCRB has shown a significant positive correlation
for SPI12 whereas, for SPI3 and SPI6 significant positive and negative correlation are
observed in the pre-monsoon season. In the monsoon season, insignificant positive and
negative correlations are observed in the middle and coastlines of PCRB. The post-
monsoon kharif season has shown significant positive correlations. The post-monsoon
rabi season has shown insignificant correlation in the South and significant correlation
for remaining portion between TWSA and SPI.

4.3.1.2 Correlation between TWSA and SPEI

Similar analysis of correlation is performed between TWSA and SPEI for 3, 6 and 12
months represented by SPEI3, SPEI6 and SPEI12 respectively. The correlation of
TWSA with SPEI3, SPEI6 and SPEI12 are presented in Fig. 4.3(a), Fig. 4.3(b) and
Fig. 4.3(c) respectively. The post-monsoon rabi season has indicated highly significant
positive correlation in SPEI6 and SPEI12, partly positive and negative significant
correlation in SPEI3. The GRB has presented almost significant positive correlation in
the post-monsoon kharif season (SPEI3 and SPEI6). The monsoon season of SPEI3
and SPEI6 and the pre-monsoon season of SPEI6 have exhibited more positive and a
few negative significant correlations. The monsoon season of SPEI12, the
pre-monsoon season of SPEI3 and SPEI12 have exhibited partially significant positive
and negative correlations. The post-monsoon rabi season has indicated significant
positive and negative correlations, and insignificant positive and negative correlations
in the middle portion for SPEI6 and SPEI12. PCRB has shown positive correlation in
the post-monsoon kharif and pre-monsoon seasons for SPEI. In the post-monsoon rabi
season, insignificant correlations are observed in the South. Similarly, during the
monsoon season, insignificant correlations (middle and coast) are observed. In CRB,
highly significant positive correlations are observed in post-monsoon kharif and
pre-monsoon seasons. Whereas, insignificant correlations are observed in the monsoon
and post-monsoon rabi seasons at SPEI3, SPEI6 and SPEI12.

48



(a)

(b)

(c)

Figure 4.3: Pearson’s correlation between (a) GRACE TWSA and SPEI3, (b) GRACE
TWSA and SPEI6 and (c) GRACE TWSA and SPEI12

4.3.1.3 Correlation between TWSA and GRACE DSI

The analysis of TWSA and GRACE DSI Pearson correlation has shown highly positive
correlation in almost all seasons as shown in Fig. 4.4. KRB has shown positive
significant correlation in all seasons. GRB has indicated highly significant positive
correlations in the pre-monsoon, post-monsoon kharif and monsoon seasons; however,
insignificant correlations are observed in the middle and upper portions of the
post-monsoon rabi season. CRB has shown significant highly positive correlations in
the post-monsoon kharif and pre-monsoon seasons whereas insignificant correlations
are observed in the monsoon and post-monsoon rabi seasons. PCRB has shown a
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highly significant positive correlation in the pre-monsoon season. Insignificant positive
correlations are observed in the post-monsoon rabi (down south) and monsoon seasons
(along the coast and middle portion).

Figure 4.4: Pearson’s correlation between GRACE TWSA and GRACE DSI

4.3.1.4 Correlation between TWSA and CCDI

The correlation of TWSA with CCDI has shown highly positive correlations for all
seasons as shown in Fig. 4.5. KRB has shown highly significant positive correlation
for all seasons due to anomalies of precipitation and TWS. GRB has shown highly
significant positive correlation in the pre-monsoon and post-monsoon kharif seasons,
followed by the monsoon season. In the post-monsoon rabi season, an insignificant
positive correlation is noted over the upper portions of GRB. CRB has shown significant
highly positive correlations in the post-monsoon kharif followed by the pre-monsoon
season. The monsoon season has shown insignificant correlations followed by the post-
monsoon rabi season. CCDI has shown the changes in surface, near surface and storage
in the subsurface layers similar to TWSA.

Figure 4.5: Pearson’s correlation between GRACE TWSA and CCDI

4.3.1.5 Correlation between TWSA and SC PDSI

Similar assessment of correlation for TWSA with SC PDSI has shown positive
correlation in almost all seasons as shown in Fig. 4.6. KRB has shown significant
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positive correlation in the post-monsoon kharif and rabi seasons followed by the
pre-monsoon and monsoon seasons. GRB has shown significant positive correlation in
the post-monsoon kharif followed by pre-monsoon and monsoon seasons. CRB has
shown highly significant positive correlations in the post-monsoon kharif and
pre-monsoon seasons, whereas insignificant correlations are observed in the monsoon
and post-monsoon rabi seasons. PCRB has shown both significant positive and
negative correlation in the pre-monsoon season. The post-monsoon rabi season has
shown insignificant correlation specifically in the South and significant positive
correlation in the North and middle portion of PCRB. The post-monsoon kharif has
shown significant positive correlation.

Figure 4.6: Pearson’s correlation between GRACE TWSA and SC PDSI

4.3.1.6 Correlation between TWSA and GGDI

The analysis of TWSA and GGDI Pearson correlation has shown highly positive
correlation in almost all seasons as shown in Fig. 4.7. KRB has shown positive
significant correlation in all seasons. GRB has shown highly significant positive
correlations in the monsoon and post-monsoon rabi seasons. CRB and PCRB have
shown significant highly positive correlations in the post-monsoon kharif and
pre-monsoon seasons.

Figure 4.7: Pearson’s correlation between GRACE TWSA and GGDI
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4.3.2 Monthly Analysis

4.3.2.1 Correlation Analysis Among Commonly Used Drought Indices

The correlation matrix of CCDI, GRACE DSI, GGDI, SC PDSI, SPEI12 and SPI12
drought indices over four basins is shown in Table 4.4. The correlation matrix of drought
indices is evaluated from January 2003 to December 2016. The SPI and SPEI time series
are compared over a 12-month time scale. There is a general agreement across multiple
drought indices, despite some differences among the indices considered. The estimated
correlation coefficients (r) between CCDI and GRACE DSI for GRB, KRB, CRB and
PCRB are 0.79, 0.8, 0.92 and 0.81 respectively.

Table 4.4: Correlation matrix of drought indices for four river basins.

CCDI GRACE DSI SC PDSI SPEI12 SPI12 GGDI
GRB

CCDI 1
GRACE DSI 0.79 1
SC PDSI 0.26 0.22 1
SPEI12 0.18 0.17 0.15 1
SPI12 0.73 0.59 0.30 0.78 1
GGDI 0.93 0.77 0.28 0.15 0.7 1

KRB
CCDI 1
GRACE DSI 0.80 1
SC PDSI 0.82 0.67 1
SPEI12 0.60 0.52 0.53 1
SPI12 0.80 0.66 0.78 0.75 1
GGDI 0.93 0.79 0.79 0.48 0.76 1

CRB
CCDI 1
GRACE DSI 0.92 1
SC PDSI 0.78 0.75 1
SPEI12 0.59 0.59 0.68 1
SPI12 0.74 0.67 0.68 0.71 1
GGDI 0.94 0.93 0.78 0.56 0.71 1

PCRB
CCDI 1
GRACE DSI 0.81 1
SC PDSI 0.83 0.70 1
SPEI12 0.50 0.51 0.65 1
SPI12 0.75 0.61 0.77 0.74 1
GGDI 0.93 0.84 0.82 0.51 0.71 1

52



A high correlation is observed between GGDI and CCDI, GRACE DSI. GGDI is
also correlated well with SPEI12, SPI12 and SC PDSI in all the river basins as shown in
Table 4.4. As CCDI, GGDI and GRACE DSI are more responsive to TWSA variations
from GRACE, there is a good correlation among CCDI, GGDI and GRACE DSI. The
highest correlation between these three indices is observed in CRB. GRACE DSI is
calculated using a single variable i.e., TWSA. Whereas, CCDI is evaluated using the
combined effect of precipitation and TWSA. Therefore, the difference in correlation
is observed between CCDI and GRACE DSI as the precipitation anomaly is included
along with TWSA.

Similarly, scatter plots of CCDI with other indices (SC PDSI, SPEI12 and SPI12)
are also plotted for all basins and represented in Fig. 4.8.

(a)GRB

(b)KRB

(c)CRB

(d)PCRB

Figure 4.8: Basin wide scatter plots for (a) GRB, (b) KRB, (c) CRB and (d) PCRB
between TWSA from GRACE and CCDI
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As CCDI integrates precipitation and TWSA for drought assessment, SPI12 is
evaluated using precipitation and a good correlation of 0.73, 0.80, 0.74 and 0.75 is
observed between CCDI and SPI12 subsequent to GRACE DSI. Comparatively, CCDI
has shown a good correlation with SPEI12 and SC PDSI in the remaining three river
basins (KRB, PCRB and CRB) as shown in Table 4.4. GRACE DSI is highly
correlated with CCDI, moderately correlated with SPI12 and SPEI12, and poorly
correlated with SC PDSI.

GGDI is evaluated using TWSA from GRACE and LSM data (soil moisture and
canopy water storage from GLDAS). Along with CCDI and GRACE DSI, GGDI has
displayed high correlations with SPI12, SPEI12 and SC PDSI in all the basins, except
GRB. Among four basins, the highest correlation between GGDI and other indices is
observed in CRB, followed by PCRB. GGDI has shown a correlation of >0.7 with
SPI12 in all the basins.

The SC PDSI has shown high correlation with CCDI and GRACE DSI compared
to other drought indices for KRB, CRB and PCRB except GRB. Additionally,
SC PDSI has shown good correlation with SPI12 followed by SPEI12. Among the
four river basins, the lowest correlation coefficient of r = 0.15 is observed between
SC PDSI and SPEI12 for GRB. SC PDSI is capable at mid-term and long-term time
spans whereas SPEI12 is convenient at a long-term span. SPI12 and SPEI12 are
evaluated using precipitation and evapotranspiration and resulted in good correlation of
0.78, 0.75, 0.71 and 0.74 for GRB, KRB, CRB and PCRB respectively. SPI12 is well
correlated with CCDI (0.80), GRACE DSI (0.66), SC PDSI (0.78) and SPEI12 (0.75)
for KRB and poorly correlated with other indices for GRB with the lowest being 0.3
between SPI12 and SC PDSI. SPEI12 is well correlated with the remaining indices for
CRB and poorly correlated for GRB. The major part of GRB consists of agricultural
lands i.e., 60% and the forest area covers approximately 30%. Demand for surface
water exceeds the availability. Therefore, the availability of water storage is less in
GRB, which effects the correlation of TWSA with SPI12 and SC PDSI.

4.3.2.2 Basin Wide Drought Event Analysis

The time series of CCDI, GGDI, GRACE DSI, SC PDSI, SPEI12, SPI12 and TWSA
for the four river basins considered in the study are represented in Fig. 4.9. The solid
red, solid green, light green, black, orange, dashed blue and blue lines represent CCDI,
GGDI, GRACE DSI, SPI12, SC PDSI, SPEI12 and TWSA; the light red shaded area
signifies the period of drought events described by the values of these four drought
indices given by NRAA, India (NRAA, 2013). For the characterisation, dry spells of
three or more months of drought are taken into account in this study (Thomas et al.,
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2014). Drought events identified by the indices are denoted as ‘DE’ with the event order
and river basin name. For instance, the drought event for GRB is denoted as DE1GRB.

Figure 4.9: Monthly time series of TWSA from GRACE, CCDI, GRACE DSI, SPEI12,
SC PDSI and SPI12. (Red bands indicate major drought events).
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In Fig. 4.9, with reference to CCDI, GGDI, GRACE DSI, SC PDSI, SPEI12,
SPI12 and TWSA; four drought events are observed in GRB i.e., during January
2003–August 2003 (DE1GRB), April 2004–May 2005 (DE2GRB), September
2008–May 2010 (DE3GRB) and September 2015–February 2016 (DE4GRB). Among
the four drought events, DE1GRB and DE3GRB are characterised as D1 (moderate
drought), DE2GRB is represented as D2 (severe drought) and DE4GRB as D0
(abnormal drought). DE3GRB is the longest drought period observed in GRB
extending for 21 months between 2008 and 2010.

From Fig. 4.9, three drought events are observed for KRB, DE3KRB is
characterised as D2 (severe drought) during July 2012–April 2013, DE1KRB and
DE2KRB as D1 (moderate drought) during January 2003–May 2005 and June
2012–April 2013, respectively. DE3KRB is the most severe drought identified in the
KRB. The longest drought period observed in KRB is DE1KRB, which continued for
29 months from 2003 to 2005.

Three drought events are observed for CRB, DE1CRB is characterised as D3
(extreme drought) from January 2003 to August 2005, which is the longest drought
period as shown in Fig. 4.9. DE2CRB and DE3CRB comes under D1 (moderate) and
D3 (extreme) respectively. Three drought events are observed for PCRB during
January 2003–July 2005 (DE1PCRB: characterised as D1), 12 July–13 August
(DE2PCRB characterised as D0) and 14 July–15 September (DE3PCRB characterised
as D0) as shown in Fig. 4.9. Overall, CCDI and GGDI are observed as good predictors
of drought for the four basins considered in the study.

4.3.3 Basin Wide Drought Characteristics Using CCDI

The severity and duration characteristics of CCDI for all the basins are presented in
Table 4.5. In GRB, severity is observed as 11.72 for 22 months of duration (September
2008 to June 2010). A total of 62 months of drought duration is observed in GRB. In
KRB, the highest severity (12.01) is observed for 17 months from January 2003 to May
2004. In PCRB, the highest severity (14.79) is observed for 16 months from January
2003 to April 2004. In CRB, the highest severity (18.89) is observed during the same
period as in KRB. Drought duration of 62 months for GRB, 67 months for KRB, 71
months for PCRB and 78 months for CRB are observed.
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Table 4.5: Summary of drought severity and duration from CCDI.

Time period Severity Duration
(No. of months)

GRB
Jan to Nov 2003 8.37 11
Mar 2004 to Jun 2005 10.84 16
Sep 2008 to Jun 2010 11.72 22
Feb to Jul 2012 2.29 6
Aug 2015 to Feb 2016 3.29 7

KRB
Jan 2003 to May 2004 12.01 17
Jul 2004 to Jun 2005 9.90 12
May 2012 to May 2013 7.46 13
Jun to Dec 2014 2.00 7
Jul 2015 to Jun 2016 12.46 13
Aug to Dec 2016 2.51 5

PCRB
Jan 2003 to Apr 2004 14.79 16
Aug 2004 to Aug 2005 10.36 13
May 2012 to Jul 2013 8.79 15
Jun 2014 to Oct 2015 9.07 17
Jan to May 2016 0.97 5
Aug to Dec 2016 6.68 5

CRB
Jan 2003 to May 2004 18.89 17
Jul 2004 to Aug 2005 11.59 14
Dec 2006 to Jun 2007 0.91 7
May 2012 to May 2013 8.14 13
Jul 2013 to Jul 2014 6.34 13
Sep to Dec 2014 1.32 4
Feb to Jun 2015 0.70 5
Aug to Dec 2016 8.04 5

4.4 DISCUSSIONS

This study has investigated six different drought indices in four river basins of South
India at three different time scales with TWSA. SPI, a precipitation-based drought
index, is linked with various physical processes, topography, atmospheric and oceanic
circulation, and local processes in India. Using a single precipitation indicator can be
problematic in evaluating the Indian monsoon cycle as moisture, terrain and vegetation
can affect variation in precipitation at the regional and basin scales (Wang et al.,
2015b). The results suggest that SPI has shown almost good significant correlation in
the pre-monsoon season and post-monsoon kharif followed by the monsoon and
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post-monsoon rabi seasons. Significant correlation between TWSA and SPI is evident,
indicating that TWSA can be used in combination with SPI for drought assessment.
The agricultural land areas for GRB, KRB, PCRB and CRB are 59.57%, 75.86%,
58.64% and 66.21% respectively (www.india-wris.nrsc.gov.in). Due to different crop
patterns in the agricultural land during monsoon and post-monsoon seasons,
insignificant correlation is observed between TWSA and all other indices.

SPEI indicates the availability of water driven by climate demand similar to that of
PDSI, whereas SPI does not include soil moisture. SPEI is the summation of
precipitation and evapotranspiration and measures normalised changes in moisture
availability. Evapotranspiration is mainly used to define soil moisture changes and
water content in vegetation (Vicente-Serrano et al., 2010). Water levels and moisture
conditions are affected by meteorological conditions (physical geography and human
interventions) both spatially and temporally (Jing et al., 2015). A few studies have
reported that SPEI is useful to examine variations temporally (Fei et al., 2016; Li et al.,
2012). In arid regions, as precipitation and evapotranspiration can be constraints, SPEI
produces poor fit results (Beguerı́a et al., 2014). From this study, it is concluded that
SPEI 3, 6 and 12 months have agreed well with TWSA and can be used as a suitable
tool for drought assessment over large areas.

Correlation between SC PDSI and TWSA has shown a better fit. In the calculation
of SC PDSI, soil moisture is considered to be evaluated with evapotranspiration
(demand) and precipitation (supply) using the water balance equation. SC PDSI is
considered as a multifactorial water budget indicator that takes into account monthly
precipitation, temperature and soil properties. Soil moisture storage is calibrated by
separating the soil column into layers with available moisture at field capacity. The
detailed procedure for the evaluation of PDSI and SC PDSI can be found in Alley
(1984); Karl (1986); Wells et al. (2004). SC PDSI has shown good positive fit for all
the seasons except in the monsoon season of PCRB and CRB, and the post-monsoon
rabi of GRB, PCRB and CRB. This result is observed in other studies in which PDSI is
constant, while the values of TWS decreased in the summer and spring (Dai et al.,
2004; Long et al., 2013). This can be inferred from the fact that variation in the
correlation is largely related to the spatial extent of precipitation and more commonly
to the atmospheric circulation (Mika et al., 2005). Seasonal fluctuation is observed
mainly in large river basins. A high correlation is noted between TWSA and SC PDSI
for China (Dai, 2011b). It is clear that the correlation between TWSA and SC PDSI
have shown highly positive correlation compared to all other indices followed by
CCDI.
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GGDI is evaluated using TWSA comprising surface and subsurface water
components. GGDI is highly correlated with TWSA as it is based on direct
measurements of the water balance components that account for water supply (from
rainfall) and demand (from evapotranspiration and runoff) (Zhao et al., 2017b). GGDI
and CCDI are also strongly correlated as source for the evaluation of these indices are
the same i.e., TWSA from GRACE.

CCDI is a combined with anomalies of precipitation and TWSA. This explains
changes in surface, near surface and groundwater conditions. It is important to
understand that the combination of precipitation and storage differences may have
triggered disagreements with other indices while it has been proved to be reasonable
for good correlation with TWSA. It is also observed that CCDI and SC PDSI
correlations are almost identical in all the river basins for all seasons except for GRB.

The dataset of TWSA is a combination of hydroclimatic and anthropogenic factors.
Various river basins of varying physical characteristics are considered in this study;
therefore, different correlation values with drought indices have been observed. CCDI
and GGDI has performed well compared to all other indices. Subsequently, SC PDSI,
GRACE-DSI, SPEI12 and SPI12 have exhibited good correlation. It is concluded from
the results that CCDI and GGDI have performed better to characterise storage and
drought.

In this study, the correlation matrix for drought indices: CCDI, GGDI, GRACE
DSI, SC PDSI, SPEI12 and SPI12 suggest that (see Table 4.4) all the basins had
demonstrated high correlation between CCDI and GGDI, as both are calculated using
TWSA dataset comprising all forms of water stored above and below the land surface.
SPI12 and SPEI12 are more responsive to precipitation and evapotranspiration,
resulting in a high correlation between them. The SC PDSI has shown a better fit for
CCDI and GGDI than other drought indices considered for analysis. This is because
SC PDSI considers the soil moisture content of the model algorithm, which is also the
main component in TWSA. Notwithstanding the inconsistencies between the drought
indices and the method used to compute the indices, it is clear that droughts can be
better understood by a combination of indices.

4.5 CONCLUSIONS

During the period between 2002 and 2016, this study examined and evaluated the
drought conditions in four major river basins in India. GRACE-satellite data provided
important benefits to the field of hydrology, revealing information about large-scale
groundwater depletion and droughts. CCDI, GGDI, GRACE DSI, SC PDSI, SPEI12
and SPI12 are used to analyse and characterise the stressed regions with TWSA in four
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river basins. In addition, multiple drought indices are compared and similarities and
differences in drought conditions are investigated. Furthermore, basin scale drought
events are evaluated using CCDI, GGDI, GRACE DSI, SPEI12, SPI12 and SC PDSI.
Drought characteristics are evaluated to observe the severity and duration among all
the basins using CCDI. The following conclusions are made from the study of the first
sub objective.

• CCDI and GGDI correlated well with TWSA in capturing both spatial and
temporal drought conditions over four river basins.

• CRB experienced strongest association between CCDI and GGDI with other
indices when compared to other basins.

• KRB manifested high storage anomalies leading to strong seasonal fluctuation in
drought indices.

• From the drought event analysis of KRB, as it stands out among other basins
during 2003 to 2005, the most severe drought lasted for 29 months. Assessment
of these extreme hydrologic conditions are critical and possible when the analysis
is aided with remote-sensing data for better management of regions the water
resources.

• Drought severity and duration are evaluated using CCDI. From a total of 180
months, a period of 62 months for GRB, 67 for KRB, 71 for PCRB and 78 for
CRB are observed. Knowledge about duration and spatial extent of drought from
both hindcast and real-time analysis of drought indices within the context of
TWSA serves as a powerful tool for planning and management of the land and
water resources of these major river basins.

• Although differences are found between indices, the shifting trend and peak time
are consistent.
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CHAPTER 5

GGDI FOR DROUGHT CHARACTERIZATION AND ITS
LINKAGE TO TELECONNECTION FACTORS

This chapter deals with the second sub objective that evaluates drought characteristics
using GRACE groundwater drought index and its linkage to teleconnection factors.

5.1 INTRODUCTION

Due to large-scale climate variations in India, the spatio-temporal availability of surface
and groundwater is very diverse and affects the agricultural and industrial productivity
of the country (Bhuvaneswari et al., 2013). The 2016 drought in India affected 330
million people with more than $100 billion loss in the economy. From this perspective,
for the conservation of water resources, it is crucial to understand the variations of
surface water and groundwater and its association with the teleconnection in India.

Many studies have investigated drought characteristics at regional and basin scales
throughout the world using TWSA. These studies verified the capabilities of drought
using GRACE data only but not the associations between droughts evaluated using
GRACE data and teleconnection factors. It is clear from earlier studies that
teleconnection factors have a major effect on drought (Dai, 2011a; Wang et al., 2015a).
Many worldwide attempts have been made over past to establish the relationship
between climate variability and TWSA, with most studies focused on ENSO. Climate
variables directly or indirectly influence the drought that results in detailed
investigation between them.

To the best of our knowledge, previous studies have focused on the relationship of
several atmospheric variables like precipitation, temperature, vapor pressure and
humidity with teleconnections in India (Gehlot et al., 2021; Gupta and Jain, 2020,
2021; Sharma et al., 2020). Nonetheless, a comprehensive and systematic analysis
between GRACE and teleconnections is vague and in particular for India. Therefore,
the second sub objective addresses the research gap by exploring the drought situation
over South Indian River Basins with GGDI and identifying the linkages between
drought and large-scale climate oscillations during 2003-2016. The effect of four
major climate oscillations namely MEI, SOI, DMI and NINO3.4 on GGDI are assessed
using TWSA dataset from GRACE during 2003–2016. The detailed analysis is
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accomplished for GRB, KRB, PCRB and CRB to illustrate the linkages between GGDI
and climate oscillations. Also, gridded monthly and seasonal drought trends are
evaluated using the Modified Mann-Kendall (MMK) trend test. Seasonal trends are
evaluated for four seasons of India namely (i) post-monsoon rabi, (ii) pre-monsoon,
(iii) monsoon and (iv) post-monsoon kharif. Flowchart of the second sub objective is
presented in Fig. 5.1.

Data
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Terrestrial water storage
Soil moisture, canopy water 

storage
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GRACE groundwater drought index (GGDI)

GGDI identified 
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Figure 5.1: Flow chart of second sub objective

5.2 METHODOLOGY

5.2.1 Retrieval of Groundwater Storage Change from GRACE and GLDAS

TWSA is derived from GRACE satellite observations. The GWSA at any time t, has
been calculated by subtracting Soil Moisture Storage Anomalies (SMSA), Canopy
Water Storage Anomalies (CWSA) from TWSA. The SMSA has been calculated for
GLDAS Noah land surface model using the following equation

SMSAt = SMSt − SMS2004−2009 (5.1)

where, SMSAt = soil moisture storage anomaly w.r.t time t, SMSt = soil moisture
storage at time t, SMS2004−2009 = average soil moisture storage w.r.t the base line period
from January 2004 to December 2009, same as that of GRACE. Similarly, CWSA has
been calculated for GLDAS Noah land surface model using the following equation

CWSAt = CWSt − CWS2004−2009 (5.2)
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where, CWSAt = canopy water storage anomaly w.r.t time t, CWSt = canopy water
storage at time t, CWS2004−2009 = average canopy water storage w.r.t the base line
period from January 2004 to December 2009, same as that of GRACE. Therefore,
GWSA is calculated as:

GWSAt = TWSAt − SMSAt − CWSAt (5.3)

5.2.2 Modified Mann-Kendall (MMK) Trend Test

This study implemented MMK trend test to evaluate the spatial drought trend
characteristics over four river basins of South India from 2003-2016. Consider a
sequence XT and divide it by the mean of this series to obtain a new series Xt. Null
hypothesis (H0) is: no trend in the series over time. Alternate hypothesis (H1) is:
existence of increasing or decreasing trend. The trend estimator β of the rank for the
new series is calculated as:

β = median

(
xi − xj
i− j

)
1 ≤ i < j ≤ n (5.4)

where β > 0 represents upward trend and β < 0 represents downward trend. If the trend
part Tt of the new series Xt is linear then trend part is removed to obtain the stationary
series Yt.

Yt = Xt − Tt = Xt − β × t (5.5)

The rank corresponding to series Yt is calculated and its corresponding autocorrelation
coefficient ri is obtained.

ri =

∑n−i
k=1(Rk − R̄)(Rk+i − R̄)∑n

k=1 (Rk − R̄)2
(5.6)

where R̄ is the average rank and Ri is the rank of yi. The variance V (S) of the trend
statistic S of autocorrelation series is obtained as follows:

V (S) = η × n(n− 1)(2n+ 5)

18
(5.7)

η = 1 +
2

n(n− 1)(n− 2)
×

n−1∑
i=1

(n− i)(n− i− 1)(n− i− 2)ri (5.8)
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The test statistic Z is calculated as

Z =


S−1√
V (S)

S > 0

0 S = 0

S+1√
V (S)

S < 0

(5.9)

At α significance level, the null hypothesis of no trend is rejected if the absolute value
of standardized test statistic Z is greater than the theoretical value Z1−α/2. For example,
at the 5% significance level, the null hypothesis is rejected if Z > 1.96. A higher
magnitude of Z value indicates that the trend is more statistically significant.

5.2.3 Teleconnections

The atmospheric circulation transmits energy and water mass across very long
distances to remote locations due to the interaction of ocean-atmosphere and
land-atmosphere. As a result, climatologic fluctuations are transmitted via atmospheric
circulation through heat, moisture and momentum fluxes. These transmitted
atmospheric circulations are delivered in the form of precipitation and evaporation via
the large-scale continental water cycle and ocean circulation (Wallace and Gutzler,
1981). As a result, atmospheric circulation can be thought of as a driving force that
influences both land and sea, resulting in significant climate fluctuation (Alexander
et al., 2002). This variability shows patterns that occur on a variety of time ranges,
including diurnal, daily, weekly and monthly time scales, as well as intra-seasonal,
seasonal and interannual time scales. As a result, teleconnections serve as a conceptual
framework for summarising atmospheric interactions and describing transport
processes, as well as a method for converting climate variability into a set of indices.
The term teleconnection is introduced by Walker in 1924 (British meteorologist) to
assess the correlations between atmospheric pressure, temperature and rainfall. A
teleconnection map describes the connection between a region of interest and all other
locations in the domain. Table 5.1 represents the commonly used climate indices,
including their full names and acronyms. In the present study, the effect of four major
climate oscillations, namely, MEI, SOI, DMI and NINO3.4 on TWSA are assessed for
Indian River Basins. Fig. 5.2 represents the regions used to monitor ENSO, SOI and
IOD events.

El Niño Southern Oscillation (ENSO): ENSO is a periodic fluctuation in sea
surface temperature (El Niño) and the air pressure of the overlying atmosphere
(Southern Oscillation) across the equatorial Pacific Ocean. ENSO is thought to be the
most important source of global inter-annual climate fluctuation. In many places of the
world, the presence of an El Niño, or its polar opposite, La Niño, sufficiently alters the

64



Table 5.1: The commonly used climate indices, including their full names and
acronyms

Index full name Acronym
El Niño Southern Oscillation ENSO
Southern Oscillation Index SOI
Multivariate ENSO Index MEI
North Atlantic Oscillation NAO
Oceanic Nino Index ONI
Pacific Decadal Oscillation PDO
Arctic Oscillation AO
Pacific North America PNA
Antarctic Oscillation AAO
Indian Ocean Dipole IOD
Sea Surface Temperature SST
Indian Summer Monsoon Index ISMI

Figure 5.2: Regions used to monitor ENSO, SOI and IOD events.

general flow of the atmosphere to affect weather conditions. ENSO has been described
by four indices namely Nino 1+2, Nino 3, Nino 4 and Nino 3.4 that are defined by SST
anomalies in a specific region of the equatorial Pacific. The Niño 3.4 is the most
widely used index covering the region between 5°S-5°N latitudes and 170°W-120°W
longitudes. El Niño (warm sea surface temperature) conditions are indicated by
positive values, whilst La Niño (cold sea surface temperature) conditions are indicated
by negative values of the index.

Southern Oscillation Index (SOI): The SOI is a standardised index that is based on
observed changes in sea level pressure between Tahiti and Darwin, Australia. During
El Niño and La Niño phases, the SOI measures the large-scale air pressure fluctuations
between the western and eastern tropical Pacific. Smoothed time series of the SOI
often correlate well with variations in ocean temperatures in the eastern tropical Pacific.
At Tahiti, the negative phase of the SOI reflects below-normal air pressure, while at
Darwin, it represents above-normal air pressure. During El Niño (La Niño) occurrences,
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prolonged periods of negative (positive) SOI values are associated with exceptionally
warm (cold) ocean waters in the eastern tropical Pacific.

Multivariate ENSO Index (MEI): The MEI is a method that combines both oceanic
and atmospheric variables to characterize the intensity of an ENSO event. The MEI
is calculated from the first principal component of the six primary observed variables
like sea level pressure, sea surface temperature, zonal and meridional components of
surface wind, surface air temperature and total cloudiness fraction of the sky across
the tropical Pacific. MEI is calculated using the Comprehensive Ocean Atmosphere
Data Set (COADS). The MEI is calculated for each of the twelve sliding bi-monthly
periods, such as December/January, January/February and so on. El Nino is represented
by positive MEI values, while La Nina is represented by negative MEI values.

Dipole Mode Index (DMI): The IOD events are determined by the changes in the
tropical Indian Ocean. IOD events are defined by long-term fluctuations in the SSTs
over the tropical Western and Eastern Indian oceans. The IOD is generally assessed
using an index defined as the difference between two tropical Indian ocean SST
anomalies. The DMI is also known as IOD. IOD West covers the region between 50°E
to 70°E and 10°S to 10°N. IOD East covers the region between 90°E to 110°E and
10°S to 0°S (see Fig. 5.2). When DMI is positive (or negative) then the water in the
tropical Eastern Indian ocean is cooler (or warmer) and the water in tropical Western
Indian ocean is warmer (or cooler) than the average.

Correlation analysis has been widely used to extract teleconnection patterns. As a
method of building teleconnection maps, correlation analysis is simple and straight
forward. The teleconnection map is a representation of the correlation between two
points. For example, Wallace and Gutzler, 1981 performed the correlation analysis to
examine the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO)
and the Pacific-North America (PNA). Principal Component Analysis (PCA) is also a
very commonly used approach to determine teleconnections patterns that are spatially
and temporally orthogonal (Diaz et al., 2001). Furthermore, an enhanced PCA method
known as rotated PCA has gained popularity for producing teleconnection patterns
(McCabe et al., 2004). On the other hand, Empirical Orthogonal Teleconnection
(EOT), has been established to detect teleconnections by utilising linear regressions
(Van den Dool et al., 2000). Other statistical methods, such as Multi-channel Singular
Spectrum Analysis (MSSA) and Independent Component Analysis (ICA) (Eicker
et al., 2016) have been used to successfully identify teleconnection patterns for climate
studies. In recent studies, Wavelet transforms approach is considered as a powerful tool
in analysing the relationship between meteorological connections with the large-scale
climatic oscillations (Han et al., 2019).
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5.2.4 Wavelet Transforms

The Fourier transform is a useful tool for examining the components of a stationary
signal in which the signal parameters do not change. However, observation signals
are frequently non-stationary. As a result, it necessitates more precise information on
frequency variation across time. The Fourier transform provides information which
is only related to the frequency domain. Whereas, the Wavelet transform produces a
spectrum that is localised not only in frequency but also in time domains (Farge, 1992).

The Wavelet transform is based on a principle that is similar to that of the Fourier
transformations. It does, however, provide you a lot more versatility when it comes to
analysing all of the frequencies in a time series, from stationary to non-stationary and
short to long term (Percival and Walden, 2000). This method is frequently utilised in
the field of hydro-climatology and is widely employed in signal processing (Jiang et al.,
2003; Xu et al., 2019). Wavelet Transformations (WT) are divided into two types:
Continuous WT (CWT) and Discrete WT (DWT). These two methods of WT have
significant distinctions, which are summarised below. The time-frequency spectrum
generated by the CWT is used in this study to examine the relationship between climate
indices and TWS.

A wavelet is a wave-like oscillation whose amplitude starts at zero, grows and then
drops back to zero. According to Farge (1992), a mother wavelet transformation basis
function ψ(t), satisfies the condition

Cψ = 2π

∫ ∞

∞

|Ψ(ω)|2

|ω|
dω <∞ (5.10)

where, Cψ = admissibility constant. Integral is considered over all frequencies ω.
Ψ(ω) = Fourier transform of the wavelet ψ(t). In general, with sufficient decay, the
mother wavelet satisfies the following conditions.

Ψ(0) =

∫ ∞

∞
ψ(t)dt = 0 (5.11)

∥ψ(t)∥ =

∫ ∞

∞
|ψ(t)|2 dt = 1 (5.12)

where, ∥.∥ represents the magnitude. As a result of these two conditions, the wavelet
function oscillates along time axis and decays rapidly in both directions of time.
Therefore, CWT with respect to wavelet ψ(t), for a time series x(t) is defined as given
below (Farge, 1992).

Ws(τ, s) =

∫ ∞

∞
x(t)

1√
s
ψ∗ t− τ

s
dt = 0 (5.13)
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where, Ws(τ, s) = wavelet transform, with τ = time shift and s = scale factor. ψ =

wavelet function and ψ∗ = complex conjugate. (s, τ) = (1, 0) represents basic or
mother wavelet.

The basic or mother wavelet is denoted by τ = 0 and s = 1. The wavelet transform’s
flexibility comes from the scale variations in a time series, which allow it to capture
both long and short frequencies. Also, the time series can be divided into high and low
frequencies with s > 1 corresponds to high frequency of ψ. In general, by varying s
and τ values, we obtain the wavelet spectrum at various time and frequency scales. The
Morlet wavelet is one of the most widely used wavelet functions in hydro-climatology
(Araghi et al., 2018) and is represented by below equation.

φ0(θ) = π−1/4eiω0θe−θ
2/2 (5.14)

where, φ0 represents mother wavelet; ω0, θ denotes frequency and time respectively;
with increase in ω0, time resolution decreases and scale resolution increases, and vice
versa.

5.2.4.1 Wavelet Coherence

Within the time-frequency space, wavelet coherence can be used to determine the
relationship between two time series by estimating the correlation between them that
varies between 0 and 1. In accordance with Torrence and Webster (1999) and Grinsted
et al. (2004), coefficient of wavelet coherence between the two sets of time series data
can be denoted as follows:

R2(s, τ) =
|S(s−1Wxy(s, τ))|2

S(s−1 |Wx(s, τ)|2 .S(s−1 |Wy(s, τ)|2)
(5.15)

where, R2(s, τ) = coherence coefficient for a given time shift τ and scale s.
Wxy(s, τ) = cross wavelet transforms between two series x and y. The wavelet
coherence varies between 0 and 1 (Liu, 1994). The smoothing operator S is
represented as given below (Chang et al., 2019):

S(W ) = Sscale(Stime(Wxy(s, τ))) (5.16)

The smoothing along wavelet axis (scale and time) are represented as Sscale and Stime
respectively. Designing the smoothing operator so that it has a similar footprint as the
wavelet used is a common process and Torrence and Webster (1999) proposed a
suitable smoothing operator for the Morlet wavelet, details can be found in Grinsted
et al. (2004). Using Monte Carlo method, the statistical significance level is estimated
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using 1000 ensemble surrogate pairs with Auto Regressive 1 (AR1) coefficients as the
input datasets. Then we evaluate wavelet coherence for each pair and for each scale
calculate the significance level using only values outside the cone of influence.
Grinsted et al. (2004) specified that resolution chosen when computing the scale
smoothing has a major impact on the significance level. Therefore, the number of
scales per octave should be high enough to capture the rectangle shape of the scale
smoothing operator while minimizing computing time. In the present study, the
wavelet coherence is examined at 5% significance level or at the confidence interval
> 95%.

5.3 RESULTS

5.3.1 Changing Characteristics of TWSA

Seasonal and annual scale analysis of TWSA is performed for four basins. The results
have shown distinct seasonal and annual TWSA characteristics over these river basins
as shown in Fig. 5.3.

Figure 5.3: Multiscale (seasonal and annual) TWSA variations from 2003 to 2016.
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In the monsoon and post-monsoon kharif seasons, the GRB has shown positive
TWSA values, while negative TWSA values are detected in the pre-monsoon season.
The positive and negative TWSA values are shown by the post-monsoon rabi season.
On annual basis, TWSA displayed a significant upward trend with the highest values
observed in 2013 and 2014. The TWSA in the GRB tends to decrease from 2003 to
2005, leading to a significant drought between 2003-2005 (see Fig. 5.3). Except for
2015, the KRB has shown positive TWSA values in the monsoon and post-monsoon
kharif seasons. Except for the post-monsoon rabi season in 2011, the pre-monsoon and
post-monsoon kharif seasons displayed negative TWSA values. Annual TWSA has
shown a significant upward, downward trend and most of the negative trends are
observed between 2003-2005 and 2012-2016, leading to severe droughts. The CRB
and PCRB have shown positive and negative TWSA for post-monsoon kharif and
pre-monsoon seasons respectively as shown in Fig. 5.3. Positive and negative TWSA
values are observed in the monsoon and post-monsoon rabi seasons, with most of the
negative values between 2003-2005 and 2012-2016. Annual TWSA has shown a
downward trend between 2012 and 2016, leading to severe drought, followed by the
2003-2005 event. Overall, from the beginning of the 21st century, TWSA has shown a
downward trend over the four river basins on seasonal and annual scales.

5.3.2 Basin Wise Drought Event Analysis

The temporal characteristics of drought and major drought events based on GGDI from
2003 to 2016 are shown in Fig. 5.4. The solid red line represents the GGDI and green
shaded region indicates the period of drought events. The GGDI has shown upward
and downward trends over each river basin with different change characteristics,
demonstrating that the droughts reported using GGDI are increasing in these river
basins during 2003–2016. For all the four basins, major decreasing trends are observed
between 2003-2005, 2011-2013 and 2014-2016. From GGDI it is observed that
droughts have become more frequent across these river basins in recent years. For the
drought characterization, dry spells of more than three months are considered for
drought event analysis (Thomas et al., 2014). The identified drought events are denoted
as ‘DE’, followed by event order for that particular basin.

Four major drought events are detected with reference to GGDI in GRB i.e., during
(i) DE1 - January to December 2003, (ii) DE2 - March 2004 to July 2005, (iii) DE3
- June 2008 to July 2010 and (iv) DE4 - August 2015 to February 2016 as shown in
Fig. 5.4. The longest drought event over GRB extended for 26 months between 2008
and 2010 (DE3). Among four drought events DE1, DE2 and DE4 are characterized as
moderate drought and DE3 as severe drought.
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Figure 5.4: Monthly GGDI and precipitation time series with major drought events
(green bands and ‘DE’ represents drought event).
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Five major drought events are observed in KRB (i) DE1 - January 2003 to May
2004, (ii) DE2 - July 2004 to July 2005, (iii) DE3 - June 2012 to May 2013, (iv) DE4
- June to November 2014 and (v) DE5 - July 2015 to June 2016 as shown in Fig. 5.4.
Among these drought events DE1, DE3 and DE4 are characterized as mild drought,
DE2 as moderate drought and DE5 as extreme drought. For KRB, the longest drought
is observed for 17 months between 2003 and 2004 (DE1).

Four major drought events are identified over CRB (i) DE1 - January 2003 to May
2004, (ii) DE2 - July 2004 to August 2005, (iii) DE3 - June 2012 to November 2015
and (iv) DE4 - August to December 2016 as shown in Fig. 5.4. DE1, DE3 and DE4 are
characterized as severe drought and DE2 as moderate drought, with the longest drought
extended for 42 months between 2012 to 2015 (DE3).

Five major drought events are observed in PCRB (i) DE1 - January 2003 to May
2004, (ii) DE2 - July 2004 to August 2005, (iii) DE3 - June 2012 to July 2013, (iv)
DE4 - June 2014 to February 2016 and (v) DE5 - August to December 2016 as shown
in Fig. 5.4. DE1 and DE3 are characterized as moderate drought; DE2, DE4 and DE5
are characterized as severe drought, with the longest drought extended for 21 months
between 2014 to 2016 (DE4). Overall, for the four river basins of South India, GGDI
can be considered as a strong indicator of drought.

5.3.3 SPEI12 based Drought Event Analysis

The SPEI12 time series with major drought events represented in red bands for four
river basins are shown in Fig. 5.5. The SPEI12 has shown upward and downward
trends over each river basin during 2003–2016. For all the four basins, major decreasing
trends are observed between 2003-2004, 2012-2013 and 2014-2016. From the SPEI12
it is evident that droughts have become more recurrent and prolonged across four river
basins in recent years.

Four major drought events are evident in GRB (i) DE1 - January 2003 to August
2003, (ii) DE2 - February 2009 to September 2010, (iii) DE3 - November 2011 to April
2013 and (iv) DE4 - April 2014 to December 2016 as shown in Fig. 5.5. DE1 and
DE3 are characterized as moderate drought; DE2 and DE4 are characterized as severe
drought, with the longest drought extended for 33 months between 2014 to 2016 (DE4).

Four major drought events are observed in KRB (i) DE1 - January 2003 to April
2004, (ii) DE2 - February 2009 to January 2010, (iii) DE3 - November 2011 to June
2013 and (iv) DE4 - February 2014 to December 2016 as shown in Fig. 5.5. DE1, DE2
and DE3 are characterized as moderate drought; DE4 is characterized as severe drought,
with the longest drought extended for 35 months between 2014 to 2016 (DE4).
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Figure 5.5: Monthly SPEI12 time series with major drought events (red bands and ‘DE’
represents drought event).
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Four major drought events are observed in CRB (i) DE1 - January 2003 to May
2004, (ii) DE2 - June 2012 to October 2013, (iii) DE3 - January 2014 to December
2015 and (iv) DE4 - May 2016 to December 2016 as shown in Fig. 5.5. DE1, DE2 and
DE4 are characterized as moderate drought; DE3 is characterized as severe drought,
with the longest drought extended for 24 months between 2014 to 2015 (DE3).

Four major drought events are observed in PCRB (i) DE1 - January 2003 to April
2004, (ii) DE2 - February 2009 to May 2010, (iii) DE3 - November 2011 to September
2013 and (iv) DE4 - January 2014 to December 2015 as shown in Fig. 5.5. DE1, DE2
and DE3 are characterized as moderate drought; DE4 is characterized as severe drought,
with the longest drought extended for 24 months between 2014 to 2015 (DE4).

The comparative analysis of GGDI with SPEI12 is done using Fig. 5.4 and 5.5. In
GRB, drought events are commonly observed during 2008-2010 and 2015-2016 for
GGDI and SPEI12. In KRB, three major drought events are observed between
2003-2004, 2012-2013 and 2015-2016 for both SPEI12 and GGDI. In CRB, for both
SPEI12 and GGDI two major drought events are observed during 2003-2005 and
2012-2015. In PCRB, 2003-2004 and 2012-2016 are the two major drought events
noticed for both SPEI12 and GGDI. Variations in the drought duration are observed
between GGDI and SPEI12 based droughts. More drought events are observed using
GGDI when compared with the SPEI12. As each drought index is different by
construct and variables involved and differences in characterizing drought events are
expected among the indices. So, variations in the drought events are observed between
GGDI and SPEI12. Therefore, GGDI based drought analysis is important and may
offer additional insights in identifying the extreme droughts for the river basins in
which 50% of the population depends on agriculture.

5.3.4 Basin Wise Drought Characteristics Using GGDI

The drought characteristics (severity and duration) calculated from GGDI for four river
basins is presented in Table 5.2. For GRB, the highest severity of 14.64 is observed for
a duration of 26 months between June 2008 to July 2010. In KRB, the highest severity
of 15.72 is observed for a duration of 12 months (July 2015 to June 2016), followed
by 11.56 severity with a duration of 17 months (January 2003 to May 2004). The CRB
experienced the height drought period among all the four basins, with severity of 27.02
observed for 42 months from June 2012 to November 2015. PCRB observed the highest
severity 16.33 for a duration of 17 months (January 2003 to May 2004), followed by
severity of 13.38 with the highest duration of 21 months (June 2014 to February 2016)
in this basin. All the four basins experienced droughts during 2003 to 2005 and 2015 to
2016.

74



Table 5.2: Drought severity and duration from GGDI for GRB, KRB, CRB and PCRB

Time period Severity Duration
(No. of months)

GRB
Jan 2003 to Dec 2003 8.72 12
Mar 2004 to Jul 2005 12.91 17
Jun 2008 to Jul 2010 14.64 26
Aug 2015 to Feb 2016 4.87 7

KRB
Jan 2003 to May 2004 11.56 17
Jul 2004 to Jul 2005 10.08 13
Jun 2012 to May 2013 8.47 12
Jun to Nov 2014 1.56 6
Jul 2015 to Jun 2016 15.72 12
Aug to Dec 2016 5.41 5

CRB
Jan 2003 to May 2004 19.27 17
Jul 2004 to Aug 2005 10.56 14
Jun 2012 to Nov 2015 27.02 42
Aug to Dec 2016 6.71 5

PCRB
Jan 2003 to May 2004 16.33 17
Jul 2004 to Aug 2005 12.52 14
Jun 2012 to Jul 2013 9.71 14
Jun 2014 to Feb 2016 13.38 21
Aug to Dec 2016 7.14 5

5.3.5 Analysis of Gridded Monthly and Seasonal Drought Trends based on GGDI

Gridded monthly and seasonal drought trends are performed using MMK trend test
during 2003-2016 and presented in Fig. 5.6. GRB has shown monthly significant
positive and negative trends from January to December (see Fig. 5.6). From January to
July, GRB has shown positive trends at different significant levels (0.01, 0.05 and 0.1
significance level). The highest significant positive trends are observed in the month of
May at the upper part of the basin, whereas the bottom part has shown downward trend
from January to July. From August to December, significant negative trends are
observed at 0.1, 0.05 and 0.01 significance level in the downward region of the basin.
The highest significant negative trends are seen during August and September. Highly
fluctuating positive and negative trends are observed in GRB compared to the other
three basins.
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Figure 5.6: Monthly and seasonal trends of GGDI using the MMK test.

KRB displayed no significant monthly positive and negative trends from January to
July. From August to December significant negative trends are observed at 0.01, 0.05
and 0.1 significance level. Most of the negative trends are observed in the month of
September followed by August. No significant positive trends are observed in KRB.
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PCRB and CRB have shown no significant monthly positive and negative trends
from January to July (see Fig. 5.6). From August to December significant negative
trends are observed at 0.01, 0.05 and 0.1 significance level. A complete downward trend
is observed over CRB in the month of November and PCRB in the month of December.

The four seasons have shown significant positive trends over GRB. In KRB, CRB
and PCRB, post-monsoon rabi and pre-monsoon seasons have shown upward and
downward (no significant) trends. In comparison, KRB, CRB and PCRB have shown
significant negative trends in the monsoon and post-monsoon kharif seasons. As shown
in Fig. 5.6, most of the significant negative trends are observed in the post-monsoon
kharif followed by the monsoon season. Overall, from season to season, significant
positive trends are converted to significant negative trends, with highest significant
negative trends have shown in post-monsoon kharif season. Decrease in precipitation is
observed during 2002 to 2016 which led to nearly four major drought events.

5.3.6 Gridded Monthly and Seasonal Trends based on Precipitation

The monthly and seasonal precipitation trends using the MMK trend test for four river
basins during 2003-2016 are shown in Fig. 5.7. GRB has shown monthly significant
downward trends in lower and middle parts of the basin during January to December
expect in March and June. Whereas upper part of the basin has shown significant
upward trend expect in May and August. From January, August to December, GRB
has shown significant downward trend (0.05 and 0.1 significance level). Highest
significant positive trends are observed in the month of June and July at 0.01 and 0.05
levels, whereas downward trends are observed during November, December and
January at 0.01, 0.05 and 0.1 significance level respectively. Highest significant
negative trends are showed during August and September. Highly fluctuating positive
and negative trends are observed in GRB compared to other three basins.

During February to April and December, KRB displayed monthly significant
positive trends at 0.01, 0.05 and 0.1 significance level in upper part of the basin
whereas other portion of the basin has shown significant negative trends (see Fig. 5.7).
The basin is covered with significant negative trends in the months of May, September,
October and November at 0.1 significance level. No significant positive trends are
observed in KRB. Also, monthly significant positive trends are observed in June,
August and December for PCRB and in the month of June and December for CRB at
0.01 and 0.05 significance level. Highly significant negative trends are observed during
October in PCRB and CRB. Significant positive and negative trends are observed
during January to May and September to November in PCRB and CRB at 0.01, 0.05
and 0.1 significance level.
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Figure 5.7: Monthly and seasonal precipitation trends using the MMK trend test over
the four river basins during 2003–2016.

Seasonally (see Fig. 5.7), significant positive trends are observed during the
pre-monsoon and monsoon seasons at 0.01, 0.05 significance level in GRB and KRB
respectively. Significant negative and positive trends are observed during
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post-monsoon rabi and kharif seasons over GRB, KRB, CRB and PCRB at 0.01, 0.05
and 0.1 significance level. Whereas, in case of pre-monsoon and monsoon seasons
PCRB and CRB have shown most significant negative trends at 0.05 and 0.01 levels.
Highly significant positive trends are observed in CRB compared to all other basins.
Overall, from the analysis, GGDI is strongly influenced by variability of precipitation
in the study region. Results stated that study region experienced significant decreasing
trend in precipitation and GGDI. Assessment of GGDI and precipitation variability has
shown a significant linear trend at both monthly and seasonal time scales.

5.3.7 The Correlation between GGDI and Teleconnection Factors

In this study, MEI, NINO3.4, SOI and DMI are chosen to describe the influences of
teleconnections over droughts. Moreover, Wavelet coherence is employed to evaluate
the link between GGDI and climate factors at South Indian River Basins during 2003-
2016. The 95% confidence level is presented as thick contour and the relative phase
relationship is represented by arrows with anti-phase pointing left and in-phase pointing
right as shown in Fig. 5.8, 5.9, 5.10 and 5.11.

The Wavelet coherence between monthly GGDI and climate factors for GRB are
presented in Fig. 5.8. The coherence at interannual variability is observed continuously

Figure 5.8: Wavelet coherence between monthly GGDI and MEI, SOI, NINO 3.4 and
DMI for GRB.
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between 2007-2016 on time scales of 20-36 months and intermittency is observed
between 4-12 months at different years for MEI. In the case of SOI, coherence at
interannual variability is observed between 2002-2005 and 2007-2016 periods on time
scales varying from 16-40 months. For NINO3.4, intermittency is reduced between
2002-2007 period for time scales of 10-34 months and intermittency is observed at
different years between 4-10 months. Compared to other teleconnections at different
scales during different years, the effect of DMI is weak.

For KRB, the Wavelet coherence between GGDI and climate factors are provided
in Fig. 5.9. High Wavelet coherence is noticed at an annual scale characterizing the
dominant effect of groundwater for MEI, SOI, NINO 3.4 and DMI. Interannual
variability is detected at time scales of 2 to 14 months for MEI, 4-10 months for SOI
and 2-10 months for NINO3.4. Whereas, for DMI interannual variability is high
varying for all months.

Figure 5.9: Wavelet coherence between monthly GGDI and MEI, SOI, NINO 3.4 and
DMI for KRB.

For CRB, the Wavelet coherence between monthly GGDI and climate factors are
presented in Fig. 5.10. The influence of MEI is observed over the time scales of 10-30
months for the period 2002-2011. Interannual variability of SOI is observed between
10–12-month time scale, whereas annual variability is observed for the time scale of
16-32 months over the period of 2002-2012. Annual variability of NINO3.4 is
observed between 2002-2011 for an 18–32-month time scale and interannual
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variability is observed for the time scale of 6-16 months. Influence of DMI is highly
significant for the time scale of 14-40 months for the period 2002-2009, the annual
variability is significantly high compared to NINO3.4, SOI and MEI.

Figure 5.10: Wavelet coherence between monthly GGDI and MEI, SOI, NINO 3.4 and
DMI for CRB.

For PCRB, the Wavelet coherence between monthly GGDI and climate factors are
presented in Fig. 5.11. The annual variability of MEI is significantly dominant for
all the years between the time scale of 16-32 months. Interannual variability is also
observed between the time scale of 4-10 months at different years. The influence of
interannual variability is observed at different years between the time scale of 2-14
months. Whereas, annual variability is seen for all the years between 16-32 months.
Annual variability is comparatively less in NINO3.4 when compared with MEI, SOI
and DMI. Interannual variability is observed between the time scales of 4-14 months
over different years of 2009-2016. Annual variability of DMI is highly significant for
16–32 month time scales between the years 2002-2010 and continued for 33 to 40 month
time scales for all the years. Also, interannual variability is observed between 4 to 14
month time scales for different years.
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Figure 5.11: Wavelet coherence between monthly GGDI and MEI, SOI, NINO 3.4 and
DMI for PCRB.

5.3.8 Spatial Distribution of Drought

Generally, most of the drought events are seen during 2003-2005, 2008-2010,
2012-2013 and 2014-2016. Spatial distribution of the yearly average GGDI time series
is plotted to depict the spatial variation of drought throughout the basins as shown in
Fig. 5.12. 2003, 2015 and 2016 are the most drought affected years in all the river
basins. KRB has shown the severe drought throughout the basin in 2016 followed by
PCRB and CRB. For GRB, the GGDI varied between -0.5 to -2 during 2003-2005,
2009, 2012, 2015 and 2016. For KRB, it varied between -0.5 to -2 for the years
2003-2005, 2009, 2012-2016. For CRB and PCRB, a range from -0.5 to -2 for the
years 2003-2005 and 2012-2016 are noticed. KRB is the severely affected basin during
the past decade compared to other basins. Drought had been considerably relieved
during 2006, 2007 and 2011. Therefore, appropriate drought-resistant measures should
be implemented in these river basins to reduce the impact of drought disaster and
improve the capability of drought resistance.
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Figure 5.12: Spatial distribution of yearly averaged GGDI time series for GRB, KRB,
CRB and PRB.

5.4 DISCUSSION

5.4.1 Influencing Factors of Drought

Droughts in India pose extraordinary challenges to the food production,
socio-economic aspects, livelihood and gross domestic product. India has a long
history of droughts with lasting effects on crops, surface and subsurface water
resources and rural livelihoods (Mishra and Singh, 2010; Mooley and Parthasarathy,

83



1983). Water availability and crop production are affected by the recent drought of
2015-2016 over large parts of Southern India with reduced reservoir storage.
Additionally, the 2015-16 drought affected around 330 million people and caused
groundwater depletion in the South Indian states (Mishra, 2020). Failure of monsoon
rainfall or its receipt in smaller quantities may often result in drought over major parts
of India. There are many factors influencing the drought. These factors include
anthropogenic factors along with natural factors, which cannot be overlooked. Due to
the uneven distribution of rainfall spatially and temporally, surface and subsurface
water resources are scarce over India. Mishra (2020) stated that the 2015-2018 drought
affected groundwater and surface water availability in Southern India and is linked to
climate indices. Farmers disproportionately use electricity and fossil fuels to pump
groundwater to compensate for the lack of rainfall. In particular, cultivation costs for
rice and other rainy season (kharif) crops are also rising due to increased use of energy
and diesel for pumping of groundwater (Gautam, 2012). Excessive withdrawal of
groundwater to save crops in drought conditions has drained groundwater in most parts
of the world and then ultimately trigger a drought crisis.

Researchers have established that climate factors play a major role in the process of
drought formation (Dai, 2011a; Sehgal and Sridhar, 2018). Additionally, the Wavelet
coherence results have shown that climate factors (MEI, SOI, DMI and NINO3.4) have
an extreme influence on drought evolution. In particular, for Indian regions, MEI, SOI
and NINO3.4 have the greatest influence on drought (see Figs. 5.8, 5.9, 5.10 and 5.11).
There are several teleconnections that influence the variability of TWSA along with its
components over India. Though earlier studies primarily focused on the effect of
ENSO over TWSA (Ni et al., 2018; Vissa et al., 2019), it is unlikely to consider a
single indicator to represent all climatic variability features over large regions (Zhu
et al., 2017). In the current study, four widely used climate factors are considered and
their links with GGDI are evaluated; the results show that for each river basin the
teleconnections differ considerably with GGDI. Therefore, TWSA attributions and
predictions or indices calculated using TWSA (eg., GGDI) centered on a single
teleconnection should be treated with caution and multiple teleconnections are
suggested for the assessment of TWSA and their components.

The coherence of GGDI with teleconnections (MEI, SOI, DMI and NINO3.4) at
∼32 months period may be due to the correlation between climate indices (correlation
of MEI with SOI/DMI/NINO3.4) as shown in Figs. 5.8, 5.9, 5.10 and 5.11. Therefore,
analyzing the standalone effect of teleconnection factors on the GGDI series may
provide better correlation between GGDI and teleconnection after removing the effect
of other influential time series (Aryal and Zhu, 2020; Tan et al., 2016).
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5.4.2 Uncertainty Analysis

Numerous areas of uncertainty are encountered in the present study. First, to avoid the
uncertainty induced by observational and data processing, modern mascon solution
data is considered instead of the spherical harmonic coefficients data (Swenson and
Wahr, 2006). The mascon solutions developed by various organizations still have
ambiguities due to diverse background models as well as data processing approaches.
In addition, the JPL mascon solutions considered different hydrological models to
adjust the scale factors, which eventually contributes to the presence of uncertainty.
Second, to minimize the GLDAS uncertainty, the ensemble mean of several
hydrological models (Noah, VIC, CLM, Mosaic) is suggested (Cao et al., 2015).
However, similar to GRACE data, the Noah model has the same spatial resolution.
Thus, this study adopted the GLDAS Noah model outputs to reduce the uncertainty
related to spatial resolution in evaluating water storage calculations. Finally, using
linear interpolation techniques, the missing GRACE data is filled out, which may
trigger some uncertainties. However, since the approach is prevalent, easy and
extensively used in the handling of missing data, the similar techniques is used in
filling the GRACE dataset gaps (Sun et al., 2018) and the results suggest that the linear
interpolation approach is appropriate.

5.4.3 Advantages and Limitations

GRACE satellite gravimetry plays an important role in the identification of drought in
regions where data related to water storage variations is inadequate (Yirdaw et al.,
2008). To reduce the influence of various errors in the GRACE spherical harmonic
coefficients, various filtering processes are applied, yet results suggest the possibility
of weak signals in the derived product. Therefore, scale factors are applied to recover
the signal leakage caused by the filtering processes (Landerer and Swenson, 2012). In
order to resolve these data processing errors, GRACE mascon solutions, which are
equal to or superior to traditional GRACE spherical harmonic coefficients, are adopted
in the current research (Hamed and Rao, 1998). Therefore, using GRACE mascon
solutions, changing characteristics of TWSA, in identifying the teleconnections with
GGDI and hence the drought situation over river basins in Southern India are explored.
In regions where hydrometeorological data is minimal, GRACE data is an important
means of estimating and managing the drought. The GGDI is a normalized index that
can be used to objectively compare spatio-temporal drought, providing strong evidence
for evaluating surplus and deficit groundwater availability. This study positively
established the drought events between 2003-2005, 2008-2010 and 2013-2015, which
are consistent with the results of Sinha et al. (2019). Severe drought events between
2008-2010 for GRB, 2015-2016 for KRB and 2003-2004 for PCRB are also reported
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by Kumar et al. (2021), which are consistent with the drought events obtained using
GGDI in this study (see Fig. 5.4 and Table 5.2). Moreover, the interaction of GGDI
with climate indices has shown that teleconnections have a substantial effect on
drought across Southern India’s River Basins.

Though GGDI can be used to effectively and expediently categorize drought
characteristics, there are still some limitations. GRACE datasets have only been
available since 2002, covering only a few years of data; with longer temporal datasets,
the results will therefore be more accurate (Thomas et al., 2014). Though GRACE data
resolution is relatively low, but it considers the changes in water storage (including soil
water and surface snow) that comes from rainfall, evapotranspiration, river
transportation and deep underground infiltration. GRACE is the key technology in
gravity satellite sensors to improve accuracy and monitoring gravity field in terrestrial
hydrology. GRACE provides realistic spatiotemporal variations of vertically integrated
measurement of water storage. The new GRACE FO satellite dataset will provide a
valuable solution for the long-term evaluation of TWS variations and their associated
studies, resulting in significant improvements in our knowledge of GRACE related
studies. Moreover, the effect of anthropogenic activities (groundwater extraction,
regional water division, mining) over mass changes of the earth surface cannot be
overlooked (Tang et al., 2013). These effects are the influence of human activities and
generally be ignored due to the lack of observed datasets, difficulties in the collection
and measurement of relevant information. Therefore, analyzing the influence of
anthropogenic activities on variations in water storage may provide a fresh insight into
the future of science.

5.5 CONCLUSIONS

In the present study, during 2003-2016, the drought characteristics are examined and
evaluated using GGDI over GRB, KRB, CRB and PCRB. The spatial distribution,
temporal evolution of drought and trend characteristics are analyzed using GGDI.
Then, using the Wavelet coherence method, the relationship between GGDI and
climate factors is evaluated. GRACE datasets provide significant benefits in detecting
droughts and revealing information about large-scale groundwater depletion, where
hydrometeorological data is limited and data related to water storage variations is
insufficient. This study provided reliable and robust quantitative results of GRACE
water storage variations that provide a new approach to link surface and subsurface
condition while investigating the drought and this methodology can be applied to any
other regions. The key findings from this part of the study are given as follows:

• The distinct seasonal and annual variations of TWSA are observed in four river
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basins. The pre-monsoon and post-monsoon rabi seasons have shown negative
TWSA values; while monsoon and post-monsoon kharif seasons have shown
positive variations of TWSA in all the river basins. Annually, TWSA values have
shown significant upward and downward trends with most of the negative trends
are observed between 2003-2005 and 2012-2016, indicating severe droughts.

• The GGDI-identified drought events have shown different temporal change
characteristics in all the river basins. The most severe drought event is observed
in CRB between 2012-2016 and followed by GRB between 2008-2010. All the
four basins have shown drought events between 2003-2005 and KRB, CRB and
PCRB experienced droughts between 2012-2016.

• Drought severity and duration are evaluated using GGDI for four river basins.
The CRB experienced the longest drought period among all the four basins, with
a severity of 27.02 observed for 42 months during June 2012 to November 2015.

• The monthly and seasonal trends are evaluated using MMK test. Significant
monthly negative trends are observed during August to December in KRB, CRB
and PCRB. Seasonal negative trends are also significant in monsoon and
post-monsoon kharif seasons in CRB, KRB and PCRB except GRB.

• The Wavelet coherence analysis effectively demonstrated the teleconnection links
between climate indices and drought events. The influence of SOI on drought
is significantly high followed by NINO3.4 and MEI in all the basins. SOI has
the strongest impact in detecting the progression of drought compared to other
climate indices in these river basins.
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CHAPTER 6

RECONSTRUCTION OF TWSA AND ITS VALIDATION WITH
IN SITU GROUNDWATER WELL MEASUREMENTS

This chapter deals with the third sub objective that the reconstruction of GRACE
terrestrial water storage from 1990 to 2020 and its validation with the in-situ
groundwater well measurements.

6.1 INTRODUCTION

GRACE was originally intended to last for five years, but it got extended for another
ten years till October 2017. The GRACE FO mission was initiated in May 2018,
however between July and October 2018, the main instrument processing unit failed.
As a result, there has been a one-year data gap. Many studies have attempted to bridge
the gap between GRACE and GRACE FO satellite missions by utilizing various
satellite observations. There is, however, no single satellite mission capable of filling
this void with equal quality. As GRACE observations are the only ones that provide
direct estimates of TWS, bridging the gap between these two missions is very
important. Also, in order to investigate climate related applications, it is desirable to
reconstruct TWSA prior to the period of record from the GRACE mission.

Machine learning techniques have recently advanced, opening new opportunities in
hydrology and related domains (Hamshaw et al., 2018). Machine learning techniques
proved to be effective in solving most complex problems, such as data prediction and
reconstruction. In this study, a learning based model, namely MultiLayer Perceptron
(MLP) is used to reconstruct (1960-2002) and predict (2017-2018) TWSA to obtain a
continuous time series from 1960 to 2020. The ANN model is evaluated at both grid
and basin scales, and its performance is compared to that of the existing GRACE and
GRACE FO solutions. The learning based model developed will precisely reconstruct
TWSA prior to the GRACE mission (1960-2002) and between the two missions (2017-
2018).

In evaluating groundwater variations and trends, GRACE estimates have proven
valuable at regional and global scales (Rodell et al., 2007). Using a satellite-based
approach, previous studies have reported rapid groundwater storage depletion at basin
or continental scales in various parts of the world. (Richey et al., 2015; Rodell et al.,
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2009; Voss et al., 2013). In order to improve algorithms related to data retrieval
techniques, satellite data products must be validated using ground estimates. As
GRACE gravity processing algorithms are constantly evolving over time, GRACE
outputs need additional validation studies all over the world (Watkins et al., 2015).
Only a few studies have compared GRACE observations to groundwater level
measurements around the world. Very few studies, particularly in India, have
compared GRACE groundwater storage estimates with observation well networks
(Bhanja et al., 2014; Chinnasamy et al., 2013; Long et al., 2016).

This is one of the first studies to reconstruct TWSA and validate it using a vast
network of in-situ observation well data (∼2000 observation wells) collected across
Indian River Basins. The reconstructed TWSA datasets from four river basins are
converted to Groundwater Storage Anomalies (GWSAGRACE) and then validated
using the GWSAs obtained from groundwater observation well data (GWSAOBS).
Because the observation well data is available from 1996 to 2020, the GWSAGRACE is
also considered from 1996 to 2020, despite the reconstruction being from 1960 to
2020. The findings will aid hydrologists in selecting appropriate GRACE solutions for
hydrologic applications in regional basin studies. The findings of this study could be
used to fill gaps in GRACE data and promote the use of GRACE products to
investigate long-term hydroclimatic aspects in global and basin-scale hydrologic
research.

6.2 METHODOLOGY

Predictive models seek to identify a relationship between a group of predictors (GLDAS
TWSA, precipitation, maximum temperature and minimum temperature) and the target
variable (GRACE TWSA) (Bishop, 2006). In this study, MLP model is employed to
predict (2017-2018) and reconstruct (1960-2002) TWSA to obtain a continuous time
series from 1960-2020. Then, the model developed TWSA (1960-2020) is converted to
GWSA. The obtained monthly GWSA is converted to seasonal GWSA for four seasons
and validated using GWSA obtained from seasonal groundwater level monitoring sites
from 1996 to 2020 across south Indian river basins. The methodology for reconstructing
TWSA and validating it with (GWSAOBS) is presented in Fig. 6.1.

6.2.1 Artificial Neural Networks (ANN)

The biological neural network in the brain, which consists of a billion linked neurons, is
the basis for ANN. With advancements in information processing, ANNs have been used
to simulate the brain’s distributed storage properties and massive parallel processing.
An ANN is a data processing system composed of a densely connected network of
simple processing components known as neurons. These neurons are arranged in layers
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Figure 6.1: Flow chart of third sub objective

within the network by connecting to neurons in the next layer. The ”weight,” which is
analogous to the signal intensity in a biological neural network, represents the strength
of these connections between two neighbouring layers. During the training/learning
phase, the weights of the interconnections are adjusted until the inputs produce desired
output. To produce the desired output, different training rules for weight adjustment
are required depending on the training data provided to the network (Long et al., 2014).
MLP is a popular and widely used ANN model (Bishop and Nasrabadi, 2006; Long
et al., 2014). MLP is used in this study to reconstruct TWSA dataset from 1960 to
2020. A brief overview of MLP is provided below.

6.2.2 Multi Layer Perceptron (MLP)

The MLP is made up of a network of interconnected nodes or neurons. The neurons
are linked by weights and the output signals can be modified using a simple nonlinear
transfer, or activation function (Sun, 2013). The commonly used activation functions
are Unit step (Heaviside), Linear and Logistic (sigmoid). The connecting weights, scale
the output of a node and feeds it forward as an input to the nodes in the next layer of
the network. As a result of this information processing direction, the MLP is known as
a feed-forward neural network, as shown in Fig. 6.2 (Bishop , 1995).

MLP may include one or more hidden layers, which are followed by an output
layer. The output of one layer becomes the input of the following layer and so on. The
input and output layers are the first and last of the neural network, whereas the other
layers function as hidden layers within the network. Each neural link has its own
weight. Perceptron activation functions (sigmoid) are the same for each layer.
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Figure 6.2: Structure of MLP.

Depending on the application, output layer could be a sigmoid or linear function (Long
et al., 2014). The widely known MLP learning method uses back propagation
technique, which is a generalisation of the Least Mean Squared rule (Du and Swamy,
2013). Back propagation is a weight correction technique that propagates errors from
one layer to the next, beginning with the output layer and working backwards. The
performance of MLP model is determined by the variables specified, the training
dataset and the number of hidden layers. The use of a small number of hidden layers
may result in a lower precision detection of the nonlinear function. Choosing a larger
number of hidden layers, on the other hand, may overfit the training data. As a result,
the optimal number of hidden layers for the analysis is determined.

MLP is a mathematical model that represents a functional mapping between
predictors x and the target variable y (Bishop and Nasrabadi, 2006).

y = f(x) + ε (6.1)

where, f is the mapping function and ε is process noise. An MLP is created by a series
of transformations that combine layers one by one. First stage is to develop associations
between the input and hidden layers. Let {xi}Mi=1 represents M predictors and a hidden
layer containing K hidden neurons.

ak =
m∑
i=1

W
(1)
ki xi +W

(1)
k0 , k = 1, ..., K (6.2)

where, ak = hidden neuron;
{
W

(1)
ki

}M
i=1

= unknown weights with respect to input

neuron; W (1)
k0 = bias term; superscript represents the layer number. Next, the above

equation is passed through a transfer function in order to produce outputs from hidden
neurons.

zk = ψ(ak), k = 1, ..., K (6.3)
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where, zk represents the output; ψ denotes the transfer function i.e., sigmoid function,
which ranges in [0, 1]. Finally, linear transfer functions are used to establish the
connection between hidden and output layers.

yj =
K∑
k=1

W
(2)
jk zk +W

(2)
j0 (6.4)

where, yj represents the output neuron i.e., model predictants (j = 1, . . . , J);{
W

(2)
jk

}K
k=1

= unknown weights of the output layer; W
(2)
j0 = bias term. Back

propagation techniques is used to solve unknowns in Eq. 6.2 and 6.4 during the
training period in order to acquire the appropriate weights in each layer.

6.2.2.1 Performance Metrics

The performances of the developed MLPs are measured using Pearson’s correlation
coefficient (r) and Nash-Sutcliff Efficiency (NSE).

Pearson’s correlation coefficient It is a measure of linear correlation between two
datasets which is represented as given below.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1(yi − ȳ)2
(6.5)

where r = Pearson’s correlation coefficient; x represents the TWSA dataset; and y

represents the drought index. i is 1, 2. . . .n; x̄,ȳ are the means of x and y scores; n =
the total number of observations; r ranges between -1 and +1, the highest r (positive or
negative) represents the higher correlation between x and y.

Nash-Sutcliff Efficiency (NSE) The NSE measures the predictive skill of a model
corresponding to the mean of observations. The NSE ranges between −∞ to 1.

NSE = 1−
∑n

i=1(xi − yi)
2∑n

i=1(yi − y)2
(6.6)

where, number of observations are represented by n; x and y are the observed and
simulated datasets; x, y are the means of x and y scores. The highest NSE (positive)
value, better the correlation between x and y.

6.2.3 Retrieval of Groundwater Storage Change from Observation Wells

From 1996 to 2020, seasonal observation well data from GRB, KRB, CRB and PCRB
are considered. Using the procedure outlined below, observation well data are converted
into seasonal GWSAs.
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• Calculate groundwater level anomalies (∆h) for individual wells by subtracting
mean water level depths from seasonal observation values at all sites and reversing
the sign for the depth conversion.

∆h = −(GWLindividual well −MeanGWLdepth) (6.7)

The obtained ∆h for each river basin are provided in Table 6.1.

• Calculate observed groundwater storage (GWSOBS) by multiplying Sy with ∆h

at each observation well. The basin averaged Sy values are considered form
Bhanja et al. (2016) and provided in Table 6.1.

GWSOBS = Sy ×∆h (6.8)

Table 6.1: Basin wise number of observation wells, mean specific yield (Sy) and
groundwater level (GWL) depth range

Basin No of wells Specific yield (Sy) GWL depth range (∆h)(m)∗

GRB 822 0.023 ∼35
KRB 550 0.022 ∼48
PCRB 275 0.023 ∼49
CRB 326 0.024 ∼59
*According to the total number of observation wells used for each basin.

• ConvertGWSOBS to groundwater storage anomaliesGWSAOBS by substracting
it from the average GWS observed during January 2004 to December 2009.

GWSAOBS = GWSOBS −GWS2004−2009 (6.9)

6.2.4 Retrieval of Groundwater Storage Change from GRACE and GLDAS

In this study, the MLP method is used to reconstruct monthly TWSA from 1960-2020.
These monthly TWSA datasets are converted to seasonal GWSA from 1996-2020 over
four river basins using the procedure outlined below. The GWSA at any time t, is
calculated by subtracting SMSA and CWSA (obtained from the GLDAS Noah model)
from TWSA. The GLDAS Noah modelled datasets are considered from 1996-2020,
allowing them to be related with the reconstructed TWSA (1996-2020). The following
equation is used to determine SMSA using the Noah land surface model.

SMSAt = SMSt − SMS2004−2009 (6.10)
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Similarly, CWSA for the Noah model is estimated using the following equation.

CWSAt = CWSt − CWS2004−2009 (6.11)

where, SMSAt, CWSAt are the soil moisture and canopy water storage anomalies
w.r.t time t respectively; SMSt, CWSt are the soil moisture and canopy water storage
at time t respectively; SMS2004−2009, CWS2004−2009 are the average soil moisture and
canopy water storage derived respectively from the base period of Jan 2004 to Dec 2009
and with the same base time period as TWSA. Then GWSA is calculated as:

GWSAt = TWSAt − SMSAt − CWSAt (6.12)

Now the obtained seasonal GWSA from GRACE and GLDAS (GWSAGRACE) from
1996-2020 are validated using the observation well-based seasonal GWSA
(GWSAOBS) from 1996-2020 over the study region.

6.2.5 Processing and Analysis of Data

For the development of an MLP model, four predictors (precipitation, maximum
temperature, minimum temperature and GLDAS TWSA) and a predictand (TWSA
from GRACE) are used. The GRACE TWSA is the combination of soil moisture,
groundwater and canopy water storages as given in Eq. 6.13. The GLDAS Noah model
products (soil moisture and canopy water storage) are considered to evaluate TWSAs.
Like GRACE, GLDAS dataset play a major role in evaluating TWSA. As a result,
TWSA is calculated from GLDAS by adding ∆SMS and ∆CWS. Because the
GLDAS Noah model cannot evaluate changes in groundwater storages (∆GWS), the
TWSA is calculated using only two components, as given in Eq. 6.14.

∆TWSGRACE = ∆SMS +∆GWS +∆CWS (6.13)

∆TWSGLDAS = ∆SMS +∆CWS (6.14)

All the input datasets for the MLP model development are shown in Fig 6.3. Previous
research has shown that GLDAS datasets have a strong resemblance to GRACE.
Temperature is most likely a proxy for evapotranspiration and precipitation is the major
factor that affects variations in TWSA. These two variables are frequently utilised in
GRACE data reconstruction (Humphrey et al., 2017; Long et al., 2014). In all the four
basins, TWSA exhibited average correlations with precipitation, with the best
association in GRB (see Table 6.2). Maximum and minimum temperatures exhibited
strong association with TWSA in four river basins. The inverse relationship between
temperature and TWSA is shown by the negative correlation, as expected (Table 6.2).
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Figure 6.3: Input TWSA from GRACE and GLDAS Noah models, precipitation,
maximum and minimum temperature for the development of MLP model.
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Table 6.2: Correlation between predictand (TWSA) and perdictors (NOAH TWSA,
precipitation (P), maximum temperature (TMax) and minimum temperature (TMin).

River Basins GRACE TWSA
NOAH TWSA P Tmax Tmin

GRB 0.82 0.55 -0.70 -0.48
KRB 0.75 0.44 -0.74 -0.59
CRB 0.85 0.41 -0.72 -0.54
PCRB 0.84 0.51 -0.77 -0.54

The lowest TWSA anomalies are observed during 2003-2005 and 2015-2017 in all
the basins because of occurance of severe drought during these periods (Kumar et al.,
2021). A strong correlation is observed between GRACE TWSA and NOAH TWSA
with a correlation of 0.82, 0.85 and 0.84 for GRB, CRB and PCRB respectively. On
the other hand, KRB has a lower correaltion of 0.75 when compared to the other basins
(see Table 6.2). During the dry and wet periods, both the GRACE and GLDAS derived
TWSA agreed well, with GRACE TWSA experiencing greater crest and trough in few
years. NOAH TWSA has less variability than GRACE TWSA because it only
considers soil moisture and canopy water storage for the evaluation of TWSA. The
correlation strength between GLDAS and GRACE is largely determined by the
climatology and the model’s structure/parameterization. As a result, along with
precipitation and temperature, GLDAS derived TWSA (see Eq. 6.14) is used as one of
the predictors for the development of an MLP model.

The predictor and predictand datasets from January 2003 to December 2013 (∼75%
of the samples) are used to train the ANN model, while the datasets from January 2014
to June 2017 (∼25% of the samples) are used to test the trained model performance
at both grid and basin scales, as shown in Fig. 6.3. The trained ANN model is used
to reconstruct and predict the TWSA from 1960-2020. The reconstructed TWSA for
the period 2018-2020 is validated against the existing GRACE FO datasets. TWSA
reconstruction is carried out from 1960 to 2020, resulting in a 60-year TWSA time
series that could be utilised to investigate any long-term climate related applications.

The neural networks are trained at the grid scale in this study. First the training
method (the Levenberg-Marquardt algorithm), learning rate (0.05), epochs (1000) and
cost function (Mean Squared Error, MSE) are set using the trail and error method. The
training is terminated when the MSE is less than 0.001, or when the number of
iterations reached 1000. Once the termination requirements are met, the final model
parameters and model prediction performance are recorded. These values are constant
across all grid cells in the study. Second, grid search approach is used to modify the
model hyper parameters to find the best one (i.e., the number of hidden layers, neurons

96



and activation function) at each grid cell. The range of hidden layers is set from 1 to 2;
the neurons number of each hidden layer varies between 3 to 15. The activation
functions are ”tansig”, ”logsig” and ”purelin”, the most used functions in the field of
hydrology.

The groundwater observation well data are available for four seasons namely, (i)
post-monsoon rabi, (ii) pre-monsoon, (iii) monsoon and (iv) post-monsoon kharif,
respectively. The seasonal observation well data is converted into groundwater storage
anomalies. Then the monthly TWSA is converted into seasonal GWSAs
(GWSAGRACE) and validated with reference to GWSA obtained from groundwater
observation well measurements (GWSAOBS) at both grid and basin scale. For each
grid, Pearson’s correlation analysis is performed between GWSAGRACE and
GWSAOBS to obtain the correlation coefficients.

6.3 RESULTS AND DISCUSSIONS

6.3.1 Model Evaluation at Grid and Basin Scale

The basin-scale study allows for a thorough evaluation of various models for
reconstruction and prediction of TWSA. The actual training is performed at the grid
level, whereas basin-scale analysis is done using grid averaged TWSA. During the
training and testing period, the developed MLP model achieved high accuracy. The
magnitudes and spatial patterns of two common metrics (NSE and r) produced by the
observed and modelled TWSA during the testing period are compared. The NSE and r
are both greater than 0.8 for the majority of grids in each basin as shown in Fig. 6.4.
The GRB and KRB have relatively high NSE and r values. When compared to GRB
and KRB, CRB and PCRB experienced lower NSE and r values. In general, high NSE
and r levels are found in humid locations, while low values are found in dry places.
GRB experienced a sub-humid climate, but CRB and PCRB experienced a semi-arid
climate, resulting in the variation of NSE and r values (see Fig. 6.5 and Table 6.3).
Another factor for the variations in NSE and r values is the area equipped for
irrigation. In India, >60% of area is under irrigation with groundwater because of
erratic nature of precipitation, increase in population and demand of water for
irrigation, domestic and industrial usage. CRB and PCRB experienced more
groundwater usage for irrigation compared to GRB and KRB, because of which low
NSE and r values are observed between observed and modelled TWSA during the
testing period (see Fig. 6.6). Also GroundWater Abstraction Ratio (GWAR) defined as
the ratio of groundwater withdrawals to groundwater availability is also high for CRB
(52%) and PCRB (64%) and low for GRB (36%) and KRB (42%) resulting in high and
low NSE and r values between observed and modelled TWSA (see Table 6.3).
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Figure 6.4: Spatial distributions of NSE and r values obtained from observed and MLP
modelled TWSA during the testing period. 

 

 

Figure 6.5: The Aridity Index (AI) map of India with major river basins. Higher AI
values denote humid conditions and lower AI values representing higher aridity. Source:
(https://data.apps.fao.org/catalog//iso/221072ae-2090-48a1-be6f-5a88f061431a)
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Table 6.3: Basin-wide characteristics, aridity index and percentage of GroundWater
Abstraction Ratio (GWAR) values.

Basin Area
(Sq.km)

P
(mm)

Aridity Index
(AI) Climate Groundwater abstraction

ratio (GWAR) (%)
GRB 3,12,812 1093.21 0.5 to 0.65 Sub humid 36
KRB 2,54,750 859.11 0.2 to 0.5 Semi-arid 42
CRB 1,17,889 770.18 0.5 to 0.65 Sub humid 52
PCRB 85,626 1075.23 0.5 to 0.65 Sub humid 64
Source: (https://data.apps.fao.org/catalog//iso/221072ae-2090-48a1-be6f-5a88f061431a)
and Amarasinghe et al., 2005.

Figure 6.6: Area irrigated with groundwater based on Food and Agricultural
Organization (FAO) Global Map of Irrigated Areas (http://www.fao.org/).

To examine the reconstructed TWSA more intuitively, the modeled and observed
TWSA are compared during the test period, January 2014 to June 2017 (Fig. 6.7). The
observed TWSA is highly correlated with the MLP modelled TWSA in four basins,
with correlation coefficient ranging from 0.89 to 0.95. Out of four river basins, GRB
exhibited the highest correlation (0.95), followed by KRB with 0.92, CRB with 0.9 and
PCRB with 0.89. Groundwater abstractions are more in CRB and PCRB resulting in
low correlation between the modeled and observed TWSA when compared with GRB
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and KRB during the testing period (Amarasinghe et al., 2005; Meghwal et al., 2019).
The trained leader MLP model for each basin is used for the reconstruction of GRACE
TWSA from 1990 to 2020.

Figure 6.7: Scatterplots comparing observed and modelled TWSA during the test
period derived by the MLP model.

6.3.2 Basin Scale Evaluation of the Reconstructed TWSA

The neural network model is developed at the grid scale using the training dataset and
validated using the testing dataset. As shown in Fig. 6.8, the MLP model with the best
correlation between the observed and modelled TWSA during the testing period is
used to reconstruct the GRACE TWSA from 2003 to 2017. TWSA showed increasing
interannual variability throughout the training period and decreasing interannual
variability during the testing period. Increase in TWSA is due to the increase in
precipitation anomalies during 2003-2013 in South India (Mishra et al., 2021;
Satish Kumar et al., 2021).

Decreasing trends are observed in TWSA during the testing period because of
precipitation variability. During 2015-2018, South India experienced worst drought,
with precipitation deficits of more than 40%, resulting in a drop in TWSA (see Fig.
6.8) (Mishra et al., 2021). According to the findings, the developed MLP model
performed well in each river basin. When compared to the observed TWSA, the
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Figure 6.8: The training TWSA (green line), testing TWSA (black line) and the MLP
model based TWSA (dotted red line) at the basin scale.

reconstructed TWSA is slightly underestimated in KRB and CRB during the training
period (2003-2013). In general, the correlation is dependent on the aridity values.
Higher correlations are primarily found in humid basins and low NSE values are found
in relatively dry areas. CRB and PCRB experienced sem-arid to sub-humid climate
resulting in low correlations between observed and reconstructed TWSA (see Fig. 6.5
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and Table 6.3). During the training and testing period, the remaining river basins (GRB
and PCRB) have shown a good correlation between observed and modelled GRACE
TWSA because of subhumid climate in both the basins (see Fig. 6.5 and Table 6.3)
(Liu et al., 2021; Sun et al., 2020).

Along with the observed TWSA from 2003 to 2017, the observed GRACE FO
TWSA from 2018 to 2020 is also considered. As a result, the trained MLP models for
each basin are used to predict the TWSA from 2017-2020 and validate the results
against observed GRACE FO TWSA from 2018-2020. From the results (see Fig. 6.9)
it is clear that there exists a good correlation between the predicted (2017-2018) and
observed GRACE FO TWSA for four river basins. A decreasing trend is observed in
all the four basins during 2017-2019. During 2016–18, South India experienced worst
drought because of the failure of monsoon rainfall, with a precipitation deficit of
∼45% (Mishra et al., 2021). Because of the rainfall deficit drought has occurred during
2016–18 that led to the decreasing trends of TWSA during 2017-2019.

Figure 6.9: Comparison of reconstructed TWSA (blue line) and GRACE FO TWSA
(red dotted line).

The best MLP model developed for each basin is used to reconstruct the past TWSA
using the predictor datasets to obtain the reconstructed TWSA prior to the GRACE
period (1960-2002). The MLP model based reconstructed TWSA time series from 1960
to 2002, as well as the observed (2003-2017), predicted (2017-2018) and GRACE FO
(2018-2020) time series in the four basins is shown in Fig. 6.10.
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Figure 6.10: The MLP model based TWSA from 1960-2020 (dotted blue line). (The
shaded region represents the reconstructed TWSA).

The long term TWSA series experienced decreasing and increasing trends during
1960-2020. GRB and KRB displayed decreasing trends during 1965-67, 1972-74,
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1984-1988, 2002-2003, 2009-2010, 2014-2016 and 2017-2018. CRB and PCRB
exhibited decreasing TWSA during 1965-67, 1968-1970, 1972-975, 1986-1988,
1996-1998, 2000-2003 and 2015-2018. Among the four basins CRB and PCRB
experienced more decreasing and increasing trends compared to GRB and KRB
because of anthropogenic abstractions of groundwater for irrigation purposes and
climate factors (Asoka et al., 2017; Mishra et al., 2021). The decreasing TWSA trends
during 1960-2020 matches with the previously occurred hydrological and
meteorological droughts over Indian regions (Satish Kumar et al., 2021). The major
hydrological and meteorological droughts are occurred in India during 1695-67,
1968-70, 1972-73, 1980-81, 1986-88, 2000-2003, 2009-2010 and 2015-2018 (Mishra,
2020). These previously observed droughts matches well with the reconstructed
GRACE TWSA series from 1960-2020.

6.3.3 Grid Wise Seasonal Comparison of GWSAGRACE with GWSAOBS

The reconstructed TWSA is converted to seasonal GWSA (GWSAGRACE) and
validated against the seasonal GWSA obtained from the in-situ observation well
network (GWSAOBS) during 1996-2020. This period is considered from 1996 to
2020, as the groundwater levels provided by Central Ground Water Board (CGWB,
India) are available from 1996 onwards. In this study, comparison of seasonal
GWSAGRACE with GWSAOBS is carried out using the Pearson’s correlation analysis
from 1996-2020 at grid scale over GRB, KRB, CRB and PCRB (see Fig. 6.11). Each
grid had a minimum of 3 and a maximum of 60 observation wells over the study area.
All the in situ observation well data is converted to GWSAOBS using the procedure
described in the methodology section. The Inverse Distance Weightage (IDW)
approach is used for each grid to convert the GWSAOBS at all observation well
locations covering that grid into an average GWSAOBS , which is then validated with
GWSAGRACE . In the post-monsoon rabi season, all the four basins exhibited
moderate correlations between GWSAGRACE and GWSAOBS . Only a few grids in
the GRB and CRB displayed high positive correlations. Because of the limited
availability of surface water during the post-monsoon rabi season, groundwater is used
more for irrigation. As a result, there are moderate correlations between
GWSAGRACE and GWSAOBS in the post-monsoon rabi season. During the
pre-monsoon season, except for KRB, remaining three basins (GRB, PCRB and CRB)
exhibited highly positive correlations between GWSAGRACE and GWSAOBS . KRB,
on the other hand, showed highly positive correlations on the Eastern side and negative
correlation on the Western side of the basin. The majority of crops planted during the
Rabi season in India are harvested during the pre-monsoon season. As a result,
groundwater usage is lower than in Rabi season. Therefore, good correlations are
observed between GWSAGRACE and GWSAOBS in the pre-monsoon season.
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Figure 6.11: Grid wise seasonal correlation between GWSAGRACE and GWSAOBS

During the monsoon season, GRB exhibited moderate correlation between
GWSAGRACE and GWSAOBS over the entire basin, with the exception of a few grids
with low correlations in the Western part of the basin. KRB also experienced moderate
to high correlation, while PCRB experienced moderate to low correlation. In the
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monsoon season, CRB experienced good correlation between GWSAGRACE and
GWSAOBS . Because of the monsoon rainfall fluctuations, more than 60% of the
geographical area in South India is being irrigated using groundwater. Therefore,
fluctuations in the correlation can be observed between GWSAGRACE and
GWSAOBS because of the abstractions of groundwater for irrigation purposes. In the
post-monsoon Kharif season, GRB exhibited moderate correlations, with the exception
of a few grids with low correlations over the Western part of the basin. The KRB had
high correlations in the Eastern part and moderate correlation in the Western part of the
basin. Over the entire basins, PCRB and CRB showed strong correlations between
GWSAGRACE and GWSAOBS .

6.3.4 Basin Wise Seasonal Comparison of GWSAGRACE with GWSAOBS

Pearson’s correlation estimates (r) between seasonal GWSAGRACE and GWSAOBS

are shown in Fig. 6.12. There is a strong significant correlation between GWSAGRACE

and GWSAOBS in all the four basins. The ‘r′ values provided a vital information on
closeness in the data magnitude. The highest correlation is observed in PCRB (r= 0.81)
followed by CRB (r= 0.79) and GRB (r= 0.72). The least correlation is noticed in KRB
with r= 0.68. The peaks of GWSAGRACE and GWSAOBS are well matched in CRB
and PCRB. An increasing trend is observed in GWSAs from 2005 to 2011 in all the
basins except GRB. Subsequently, a decreasing trend in GWSAs is observed from 2011
to 2014 in the KRB, CRB and PCRB.

The GWSAGRACE and GWSAOBS exhibited strong seasonality for all the four
seasons across all the basins (see Fig. 6.12). The GWSAGRACE accurately matched
the seasonality pattern from 1996 to 2013, but from 2014 to 2020, the pattern is
slightly under or over estimated in all the four basins. During the monsoon season
(June to September), the entire Indian region experiences the majority of the
precipitation (National Climate Centre (NCC), 2013); however, in the Southern part of
the country, the monsoon season extends into the months of October and November
(NCC, 2013). As a result, the lowest GWS values are obtained during the pre-monsoon
season, whereas the highest GWS values are obtained during the monsoon season in all
the basins. Climate factors such as precipitation and evapotranspiration have an impact
on seasonality in the groundwater storage, especially in areas with shallow
groundwater tables (Eltahir and Yeh, 1999; Sridhar et al., 2018). Because the entire
Southern part of India has a distinct monsoon season, the majority of the annual
precipitation (>74%) has occurred during the months of June to September
(Guhathakurta and Rajeevan, 2008). Other factors that effect groundwater inflow are
modelled from canals and surface water bodies and agricultural return flow (Hoekema
and Sridhar, 2011, 2013; Mukherjee et al., 2007). Pumping associated with irrigation,
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Figure 6.12: Comparison of GWSAGRACE with GWSAOBS in four river basins.

on the other hand, has significantly reduced groundwater storage (Saha and Agrawal,
2006). Other factors, such as baseflow and inter-aquifer flow, are also critical in
maintaining groundwater storage.
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6.3.5 Groundwater Storage Anomaly from Satellite-based Estimations

Between 1996 and 2020, GWSAGRACE estimates show the emergence of intense
groundwater depletion zones in GRB, KRB, CRB and PCRB as shown in Fig. 6.13.
Also, four river basins have decreasing GWSA in 2004-2005, 2012 and 2016-2019.
Negative GWSAs are observed in GRB from 2003 to 2005, 2010 to 2012 and 2016 to
2019. 1997-1998, 2003-2005, 2012 and 2016-2019 for KRB. 2003-2005, 2012-2013,
2014-2015 and 2017-2020 for CRB and PCRB. Overall, CRB and PCRB have more
negative GWSAs than GRB and KRB. The negative GWSA denotes a decrease in
water storage and the occurrence of droughts.

The GWSAGRACE are consistent with previous studies on drought events
conducted in Southern part of India (Bhanja et al., 2016; Mishra et al., 2021; Panda and
Wahr, 2016; Soni and Syed, 2015). The 2015 drought had an impact on crop output
and water availability in the central and Southern parts of the country (Mishra et al.,
2016; Prakash, 2018). The 2015-2016 drought affected a large portion of South India,
resulting in decreased reservoir storage and hydro-electric production. The 2015-2016
drought, which affected approximately 330 million people in ten states, particularly in
India’s Southern regions, resulted in significant groundwater depletion (UNICEF,
2016). From Mishra et al. (2021), there was a severe drought and worsened water
scarcity in Southern India from 2016 to 2018. GWSAGRACE fluctuations in the
current study are consistent with earlier records of occurrence of drought events in the
Southern region of India, indicating that GRACE dataset can be used to evaluate
drought-related studies.
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Figure 6.13: Maps of annual GWSA between 1996 and 2020.
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6.4 CONCLUSIONS

In the present study, we reconstructed (1990-2002) and predicted (2017-2018) TWSA
data by using the MLP model based on GRACE mascon’s solution. The performance
of the models is evaluated at the grid and basin level across GRB, KRB, CRB and
PCRB. For the first time, we compared GWSAGRACE with GWSAOBS at seasonal
scale between 1996 and 2020, using recently available GRACE datasets, i.e., RL06
mascon solutions. In South India, more than 1950 in-situ groundwater observation
wells are utilised for water level data. Pearson’s correlation analysis is used to compare
seasonal GWSAGRACE with GWSAOBS at grid and basin scales from 1996 to 2020.
In climatologically and hydro-geologically varied parts of South India, GRACE-based
estimates matched well with ground estimates. The key findings from this part of the
study are given as follows:

• All of the MLP models for each river basin performed reasonably well in
reconstructing and predicting the TWSA at grid and basin scales.

• At the grid scale, the TWSA correlated well with the MLP modelled TWSA in
four basins, with correlation coefficient ranging from 0.89 to 0.95. At the basin
scale, GRB exhibited the highest correlation (r=0.95) between the modelled and
observed TWSA, followed by KRB with r=0.92, CRB with r=0.9 and PCRB with
r=0.89.

• The GWSAGRACE obtained from reconstructed TWSA is correlated well with
GWSAOBS at grid and basin scales from 1996-2020 across four river basins.

• The GWSAGRACE estimates correlated well with GWSAOBS with highest
correlation observed in PCRB (r= 0.81) followed by CRB (r= 0.79) and GRB
(r= 0.72).

• Overall, the MLP technique is more effective at reconstructing TWSA and
potentially bridging the gap between two satellite missions. It can also be used to
rebuild pre-GRACE era changes in water storage.

Based on the findings of this study, we recommend using GRACE mascon solutions for
groundwater assessments throughout the region, as well as in other parts of the world
with similar meteorological, hydrogeological and groundwater withdrawal conditions.
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CHAPTER 7

ANALYSIS OF SEVERITY-DURATION-FREQUENCY AND
SEVERITY-AREA-FREQUENCY CURVES FOR GRB

This chapter deals with the fourth sub objective that the evaluation of drought
frequency analysis and the development of Severity-Duration-Frequency (SDF) and
Severity-Area-Frequency (SAF) curves only for Godavari River Basin. This type of
evaluation can be conducted on all the other basins under consideration in this study.

7.1 INTRODUCTION

Regional drought curves of SDF and SAF are developed under the conditions of
drought in GRB, as it is one of the largest river basins with relatively high water
potential in India. Currently, the concept of Copula has been widely used to measure
the bivariate and multivariate joint probability distributions in Hydrology and water
management engineering (Ganguli, 2014; Thilakarathne and Sridhar, 2017). In
modeling the characteristics of two or more dependent variables such as drought
severity, duration and area of drought, the Copula functions are highly effective and
efficient. This is because of the function that maintains a strong correlation between
the variables considered and is not bound to the identical distribution of marginal
probability with regard to long-term predictions. The methodology for the
development of SDF and SAF curves is provided in the form of flowchart in Fig. 7.1.

Reconstructed TWSA is used to calculate CCDI from 1960-2020. Then IMD
precipitation dataset is used to evaluate 12-month SPI (SPI12). With the calculated
CCDI and SPI12, the SDF and SAF curves are developed over GRB from 1960-2020.
Here SPI12 based SAF and SDF curves are used as a standard metric to compare CCDI
based SAF and SDF curves. The aim of this section is to check, whether the
reconstructed TWSA can be utilized in developing SAF and SDF curves or not.

The analysis include: (i) identification of homogeneous drought regions by using
Fuzzy C-Means Clustering approach; (ii) quantification of the changes in drought
climatology with SPI12 (iii) development of SDF curves by employing copula-based
methodology, by analysing the changes in joint return period of severity and duration
and (iv) examination of SAF curves to identify the changes in drought return periods
covering a specific percentage of areal extent and the corresponding severity values.
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Figure 7.1: Flow chart of fourth sub objective.

7.2 METHODOLOGY

7.2.1 Fuzzy C-Means Clustering

Dunn (1973) proposed the concept of Fuzzy C-Means (FCM) clustering and Bezdek
(1981) expanded it further. Consider a cluster c with M objects where Yk is the data
vector for kth (k = 1, 2, . . . ,M) object. The technique of FCM minimizes the objective
function as given below

J(U, V ) =
M∑
j=1

c∑
i=1

uθik ∥Yk − Vi∥2 (7.1)

where uik denotes the kth point membership value in the ith cluster, Vi is the centre of
the ith cluster (i = 1, 2, . . . , c), ∥Yk − Vi∥2 is the squared Euclidean distance between
kth data point and Vi. θ is the fuzziness index or the fuzzifier that can have any value>1.
The number of clusters and the data vector of the cluster center are randomly selected
in the FCM algorithm and the membership matrix is then calculated as

uti<k =

[
c∑
j=1

(
∥yk − ci∥
∥yk − cj∥

) 2
θ−1

]−1

(7.2)

with the updated membership values, new cluster centers are calculated as follows

Vi =

∑M
k=1 u

θ
ikyk∑M

k=1 u
θ
ik

(7.3)
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using new cluster centers, the membership matrix is updated as

ut+1
i<k =

[
c∑
j=1

(
∥yk − ci∥
∥yk − cj∥

) 2
θ−1

]−1

(7.4)

if
∥∥ut+1

i<k − uti<k
∥∥ < ε the algorithm will stop. If not, it goes back to step 1. In the

present analysis, three validity indices are used to check the efficiency of clustering.

7.2.1.1 Separation Index (Si)

The compactness and separation function (Si) proposed by Xie and Beni (1991) is
defined as the ratio of variance within clusters to the variance between clusters. The Si
value is lower, the clustering is better.

Si(U, V : X) =

∑c
i=1

∑M
k (uaik) ∥ci − yk∥2

M min
i ̸=k

∥vi − yk∥2
(7.5)

7.2.1.2 Fuzziness Partition Index (Fpi)

The membership (fuzziness) that various classes share (Bezdek, 1974) is calculated by
the Fuzziness partition index.

Fpi(U) =
1

m

c∑
i=1

M∑
k=1

u2ik (7.6)

7.2.1.3 Partition Entropy (Pe)

Partition entropy is represented as

Pe(U) =
1

m

c∑
i=1

M∑
k=1

uik loga(uik) (7.7)

Lower the Pe value, better the clustering and it varies between 0 and log(c). The Fuzzy
C Means clustering analysis is performed using R software (package: ppclust; version
3.5.1; https://www.r-project.org/)

7.2.2 Copula Function

Copula is a function developed by Sklar (1959) that joins or couples two or more random
variables. It transforms two or more marginal distributions into bivariate or multivariate
distributions of random variables. Let X and Y be a pair of random variables with
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marginal cumulative distribution functions FX(x) and FY (y). From Sklar’s theorem,
using Copula function C, the joint distribution function FXY (x, y) of the two dependent
random variables can be expressed as

P (X ≤ x, Y ≤ y) = FXY (x, y) = C(FX(x), FY (y)) = C(u, v) (7.8)

where, FXY (x, y)= joint CDF of the considered random variables X and Y . u and v are
two uniformly distributed random variables expressed as u = FX(x) and v = FY (y).
The bivariate copula is a distribution function C(•) with mapping C : [0, 1]2 → [0, 1].
Each element (u, v) in the domain satisfies the following properties

• C(u, 0) = 0 = C(0, v) ∀ u, v ∈ [0, 1]2

• C(u, 1) = u;C(1, v) = v ∀ u, v ∈ [0, 1]2 and

• If C(u, v) is a joint distribution function, then C(u2, v2)−C(u2, v1)−C(u1, v2)+
C(u1, v1) > 0 for 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1.

Copulas are established from different families and further information about
different copula families and their properties are found in Nelsen (2007). The
significant copula classes are Archimedean, Extreme, Elliptical and Plackett copulas.
In this study, Gumbel, Clayton and Frank from Archimedean class, Galambos from
Extreme class and Plackett copulas are used to model joint dependence of drought
variables. The Cumulative Distribution Functions (CDF) expressions, the
corresponding Probability Density Functions (PDF) and the associated copula family
set parameters are given in Table 7.1.

Table 7.1: Expression for CDF (C(u, v)) and parameter space of the copula families.

Copula family C(u, v) Parameter Space
Clayton (u−θ + v−θ − 1 )−

1
θ θ ≥ 0

Frank −1
θ
ln

[
1 + (e−θu−1)(e−θv−1)

e−θ−1

]
θ ̸= 1

Gumbel exp
{
−
[
(−ln u)θ + (−ln v)θ

] 1
θ

}
θ ≥ 1

Galambos uv exp
{[

(−ln u)−θ + (−ln v)−θ
]− 1

θ

}
θ ≥ 0

Plackett 1
2(θ−1)

(s− q) θ ≥ 0

Note: u and v represents two dependent CDFs, θ is the copula parameter,
s = 1 + (θ − 1)(u+ v) and q =

√
s2 − 4uv θ(θ − 1).
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7.2.2.1 Copula Parameter Estimation

The most frequently used methods for estimating copula parameters are: (i) Method of
Moments (MoM; Genest and Rivest (1993)), (ii) Inference From Margins (IFM; Joe
(1997)), (iii) Exact Maximum Likelihood (EML) and (iv) Maximum
Pseudo-Likelihood (MPL; Genest et al. (1995)) methods. The MPL method is used in
the present study for copula parameter estimation. In the MPL method, pseudo
log-likelihood function is used the estimate copula parameters. Let
X ∈ Xi,1, Xi,2, ..., Xi,d are the observations of random variables from d-dimensional
random vector X . The pseudo-observations are defined with the ranks of the observed
data and estimating the empirical CDF using the following expression

U = Ui,d =
Ranked data of Xi,d

n+ 1
∀ i = 1, 2, ..., n (7.9)

Ui,d =
1

n+ 1

n∑
j=1

1 {Xj,d ≤ Xi,d} ∀ i = 1, 2, ..., n; j ̸= i; d = 1, 2, ..., n (7.10)

where, Ui,d= vector of pseudo-sample; For bivariate case,
U = {Ui,1, Ui,2} , ∀ i = 1, 2, ..., n. Then on substituting the empirical CDFs into
bivariate copula density produces log-likelihood function (Genest and Favre, 2007) of
the form.

LU(θ) =
n∑
i=1

log [cθ(Ui,1, Ui,2)] =
n∑
i=1

log

[
cθ

(
Ri

n+ 1
,
Si

n+ 1

)]
∀ i ∈ {1, ..., n}

(7.11)
where, cθ= bivariate copula density; Ri, Si are the ranks of observed data. Maximizing
the rank-based pseudo log-likelihood function gives the parameter θ using the following
expression

θ̂ = arg max [ln LU(θ)] (7.12)

7.2.2.2 Goodness of Fit

Identification of appropriate copula model is performed using distance-based statistics,
such as Anderson–Darling (AD) and Akaike Information Criterion (AIC) methods are
used to estimate the performance of fitted copulas. The empirical formulae of AD and
AIC statistics are given as follows

AD = max
1≤i≤n, 1≤j≤n

∣∣∣Ĉn ( in , jn)− Cpθ
(
i
n
, j
n

)∣∣∣√
Cpθ

(
i
n
, j
n

) [
1− Cpθ

(
i
n
, j
n

)] (7.13)
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where, i and j denotes order statistics of the random variable u and v respectively.

AIC(m) = n log(MSE) + 2m (7.14)

where, m= number of fitted parameters; n= number of observations; MSE= Mean
Square Error of the fitted copula model and is expressed as follows

MSE =
1

n−m

n∑
i=1

(Oi − Pi)
2 (7.15)

where, Oi, Pi are the observed and simulated variables respectively. The best copula
model represents the lowest AD and AIC test statistics (Amirataee et al., 2018;
Janga Reddy and Ganguli, 2012).

7.2.3 Drought Frequency Analysis

In the present study, the definition of runs is adopted to measure the characteristics of
drought (severity and duration) (Yevjevich, 1967). Suppose, Xt is a drought variable
with a time series t, then a run is a portion of the time series where all the values are
either above or below a fixed threshold X0. Therefore, value above (or below) the
threshold is denoted as positive run (or negative run). As the threshold level may vary
or constant with time, the drought properties mainly depend on the chosen threshold
(Mishra and Singh, 2010). A threshold of 20 percentile (about a threshold value of -0.8)
of SPI12 vaule is selected so that a value below that threshold indicates an occurrence
of drought (Reddy and Ganguli, 2013).

Several researchers have studied the drought properties using univariate frequency
analysis (Cancelliere and Salas, 2004; Tallaksen et al., 1997). Therefore, researchers
like Gupta et al. (2020); Janga Reddy and Ganguli (2012); Kim et al. (2006); Rajsekhar
et al. (2015a); Shiau and Shen (2001) have generalized univariate cases to bivariate
frequency analysis since the joint behavior of multiple characteristics is not revealed in
univariate cases. It is therefore important to examine the joint actions of drought
characteristics for regional drought assessment and planning. This has led to the
development of SDF and SAF curves.

7.2.3.1 Severity-Duration-Frequency (SDF) Analysis

The SDF curves are useful multivariate tools for regional and global drought frequency
analysis. The following are few studies from literature that performed SDF analysis for
drought characteristics at different parts of the world. SDF analysis for wet periods and
derived ISO-severity maps with return periods are performed for Greece by Dalezios
et al. (2000). Similarly, for Iran, Saghafian et al. (2003) established SDF curves and
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ISO-severity maps. Using either empirical or semi-empirical formulations, these studies
developed SDF curves. An analytical approach using copula for the derivation of SDF
curves is presented by Shiau and Modarres (2009). Adarsh et al. (2018); Gupta et al.
(2020); Halwatura et al. (2015); Janga Reddy and Ganguli (2012); Rad et al. (2017);
Samantaray et al. (2019) are other notable studies that have derived SDF curves based
on copula. The following steps are involved in the derivation of the SDF curves using
copula in this study.

• Standard goodness of fit statistics is selected to assess the best fitting marginal
distribution for severity and duration.

• A joint and conditional marginal distribution is constructed for severity and
duration using a best fit copula method.

• Relationship among severity, duration and frequency is established in terms of
return period for drought events using the conditional recurrence interval provided
by Shiau et al. (2007).

TS|D(s|d) =
1

γ
(
1− FS|D(s|d)

) (7.16)

where, d = drought duration, s = drought severity, γ = arrival rate, FS|D(s | d)
and TS|D(s | d) are the conditional CDF and conditional recurrence interval of S
given D = d respectively. The expression for conditional CDF is given below

FS|D(s|d) =
∂FS,D(s, d)

∂FD(d)
(7.17)

where FS,D(s, d)= joint CDF and FD(d) represents the CDF of drought duration.

• SDF curves for different return periods is derived from Eq. 7.16 and 7.17.

7.2.3.2 Severity-Area-Frequency (SAF) Analysis

The return period of a drought with severity covering a particular percentage of areal
extent is defined by SAF curves and it indicates that drought has occurred (Burke and
Brown, 2010). Few earlier studies that developed SAF curves are Amirataee et al.
(2018); Bonaccorso et al. (2015); Gupta et al. (2020); Hisdal and Tallaksen (2003);
Kim et al. (2002); Loukas and Vasiliades (2004); Mishra and Singh (2009); Santos
(1983); Tase (1976). To evaluate SAF curves, the following procedure is adopted.
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• Using run theory, annual severity is estimated at each grid point.

• Different thresholds of severity are computed for various areal extents and is
expressed in terms of percentage of total area for each year.

• The parameters of different distributions are calculated using L-moments and the
best fit distribution is identified for severity values for various areal extents.

• Finally, the frequency analysis is performed to calculate the return periods
involved with different drought severity values for various percentage areal
extents.

7.3 RESULTS

7.3.1 Formation of Homogeneous Regions

For GRB, the FCM concept is applied to the matrix containing mean annual
precipitation, standard deviation, skewness and kurtosis. The selected variables are
normalized before the application of cluster analysis because of the variation in the
units. The efficiency of FCM depends on the fuzzifier index and optimum number of
clusters. So, the clusters are varied from 2 to 6 (Urcid and Ritter, 2012) with a fuzzifier
index of 2 (Pal and Bezdek, 1995). The optimum number of clusters are selected using
validity indices Si, Fpi and Pe as discussed in the methodology that are provided in
Table 7.2. The Si and Pe values are minimum at four and Fpi value is minimum at five
number of clusters. Therefore, optimum number of clusters are assigned as four as
shown in Fig. 7.2.

Table 7.2: Statistics of the validity indices

Clusters Si Fpi Pe

2 0.67 0.83 0.87
3 0.57 0.77 0.78
4 0.35 0.74 0.73
5 0.39 0.72 0.74
6 0.41 0.76 0.77
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Figure 7.2: Clusters identified by FCM for GRB.

7.3.2 Characterization of Drought using SPI12

The SPI12 values are computed for each homogenous region for GRB using IMD (1960-
2020) monthly precipitation dataset. The method of runs (Yevjevich, 1967) is applied
to the SPI12 series with a threshold of -0.8 to evaluate drought characteristics (severity,
duration and drought events) for four homogeneous regions. Top five drought events for
each region of GRB are presented in Table 7.3. The most severe and longest drought
is observed from August 2001 to June 2005 with a severity of 40.29 and a duration
of 47 months for region 3. In region 1, with a severity of 39.23 and a duration of 43
months, the longest drought period is observed between October 1984 and April 1988.
For region 2, the most severe drought is observed from July 1972 to May 1975, with a
severity of 32.21 and a duration of 35 months. Whereas for region 4, the most recent
drought occurred from June 2008 to August 2010 with 26.32 severity and 27 months
of drought duration. All regions experienced droughts during 1971-1975, 2002-2003
and 2008-2010 periods. The scatterplot and histogram for observed dataset of drought
intensity versus duration in these defined regions are shown in Fig. 7.3.
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Table 7.3: The severe drought events (top five) based on SPI12 for each region.

Region Starting month Ending month Severity Duration (months)

Region 1

August 1971 August 1973 26.42 13
October 1984 April 1988 39.23 43
September 2000 May 2002 18.56 21
July 201 September 2013 35.39 27
July 2014 July 2016 28.61 26

Region 2

July 1972 May 1975 32.21 35
July 1982 August 1983 17.78 14
June 1987 August 1988 20.77 15
January 1996 April 1998 29.45 28
July 2004 August 2005 26.93 14

Region 3

August 1971 July 1973 32.34 24
September 1991 September 1993 29.43 25
August 2001 June 2005 40.29 47
June 2008 August 2010 33.95 27
July 2014 June 2016 37.96 24

Region 4

August 1965 July 1967 24.81 24
July 1974 August 1975 25.29 14
June 1981 June 1983 32.17 25
August 1997 July 1999 38.63 24
June 2008 August 2010 26.32 27

Figure 7.3: Scatterplot and histograms of severity and duration (months) for four
regions of GRB.
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The drought properties for each homogeneous region based on SPI12 from IMD
dataset are shown in Table 7.4. Region 2 and 4 exhibited more number of drought when
compared to region 1 and 3. The maximum severity of 40.29 is observed in region 3
followed by region 1 and 4. Region 1 and 3 has a longer drought inter-arrival time and
hence it experiences fewer droughts. Maximum duration of 47 months is observed for
region 3 followed by a severity of 43 months in region 1.

Table 7.4: Drought properties for each homogeneous region based on SPI12

Drought
characteristics

SPI12 from 1960-2020
Region1 Region2 Region3 Region4

Number of droughts 17 26 21 26
Mean interarrival time (months) 27.3 23.6 29.3 21.6
Mean severity 6.7 8.1 12.5 8.4
Maximum severity 39.23 32.2 40.29 38.63
Mean duration (months) 6.1 5.6 9.6 6.8
Maximum duration (months) 43 35 47 27

The drought characteristics evaluated using SPI12 for each homogeneous drought
region is presented in Fig. 7.4. The regions 2 and 4 experienced the highest number of
drought events, followed by region 3. Whereas, the mean inter-arrival time is maximum
for regions 3, followed by region 1. In case of maximum severity and duration, regions
1 and 3 experienced the highest values. With respect to the drought characteristics,
decreasing trend is observed from region to region.

Figure 7.4: Drought characteristics for various homogeneous drought regions. (Units:
Maximum duration and mean interarrival time are in months and no units for number of
droughts and maximum severity).
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Overall, regions 1 and 3 has fewer droughts with higher severity and high mean
arrival time. Therefore, it is expected to experience a greater number of droughts with
high mean arrival time, severity and duration for most part of the GRB. Gupta and Jain
(2018) reported that, in most regions of the country, increase in the PET is observed at
a higher rate compared to the rainfall. Increased dryness is therefore anticipated in the
latter part of the 21st century, leading to a rise in the severity and duration of droughts.

The frequency of occurrence of different droughts classes (moderate, severe and
extreme) over four homogeneous regions are presented in Fig. 7.5. The occurrence of
moderate droughts is higher in all the regions for the study period. For region 4, the
occurrence of moderate droughts are higher compared to other regions. Significant
increase in the occurrence of moderate and severe droughts are observed in almost all
regions. Extreme droughts are highly expected in region 2 and 3 of GRB. The
availability of water in India depends primarily on the precipitation during monsoon
season (June-September) where 70% of the annual rainfall occurs; therefore existence,
movement and distribution of droughts are highly dependent on monsoon rainfall.
Evaporation rate is expected to increase due to global warming which results in the
drier conditions on the ground and increase of water vapor in the atmosphere over
time.

Figure 7.5: Frequency of occurrence of droughts for four homogeneous regions .

7.3.3 Drought Frequency Analysis using SPI12

7.3.3.1 Severity-Duration-Frequency (SDF) Analysis

The distribution with minimum Kolmogorov-Smirnov (KS) and Anderson-Darling
(AD) values are selected for the frequency analysis as shown in Table 7.5.
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Clayton-copula is the best-fit copula for region 1; Gumbel-copula was the best-copula
for region 2 and 3; and Frank-copula suits best for region 4 according to Log
Likelyhood (L-L) and AIC values as shown in Table 7.6. To analyse and visualize the
results, scatter plots between observed and randomly simulated severity and durations
from each best fitted copula class are plotted and presented in Fig 7.6. Then joint
probability plots between severity and duration for four homogeneous regions are
shown in Fig. 7.7.

Table 7.5: Best fit probability distributions for drought severity and duration.

Variable Distribution KS AD KS AD KS AD KS AD
Region 1 Region 2 Region 3 Region 4

Drought
severity

Exponential 0.22 1.19 0.25 1.93 0.23 1.57 0.28 2.32
Normal 0.29 3.01 0.26 1.81 0.29 1.46 0.27 2.27
Log normal 0.12 0.48 0.21 1.38 0.16 0.58 0.17 1.15
Gamma 0.21 1.01 0.19 1.33 0.16 0.72 0.22 1.39
Weibul 0.17 0.82 0.21 1.34 0.16 0.66 0.21 1.23
Gumbel 0.25 2.06 0.25 1.96 0.24 1.43 0.28 2.31

Drought
duration
(months)

Exponential 0.21 0.87 0.24 1.93 0.18 0.9 0.27 1.52
Normal 0.29 2.06 0.24 1.98 0.25 1.28 0.29 2.02
Log normal 0.22 0.91 0.28 2.26 0.18 0.72 0.22 1.38
Gamma 0.23 1.01 0.26 2.07 0.17 0.73 0.27 1.46
Weibul 0.17 0.86 0.27 2.06 0.17 0.72 0.21 1.32
Gumbel 0.28 1.62 0.25 2.27 0.21 1.14 0.3 2.06

Table 7.6: Best fitted copula model and copula parameter (θ), L-L and AIC values.

Copula parameter L-L AIC Parameter L-L AIC
Region 1 Region 2

Clayton 6.38 17.51 -55.75 5.67 17.24 -45.84
Frank 24.54 29.64 -65.27 18.9 20.59 -48.14
Gumbel 5.36 24.94 -59.88 4.21 16.12 -42.21
Galambos 4.85 22.38 -57.25 3.55 17.68 -43.65
Plackett 28.71 30.12 -64.01 18.45 20.15 -44.09

Region 3 Region 4
Clayton 5.63 15.07 -42.87 5.31 16.05 -37.77
Frank 17.15 17.58 -43.16 13.79 15.83 -36.92
Gumbel 3.93 14.87 -37.25 5.12 19.89 -39.52
Galambos 3.78 18.28 -39.32 4.77 20.22 -40.74
Plackett 20.35 22.18 -40.96 24.36 25.35 -42.15
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Figure 7.6: Scatterplots between observed and simulated severity duration values from
best fit copula for each homogeneous region.

Figure 7.7: Joint probability plots between severity and duration for four homogeneous
regions.
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Further, best parameter values are analyzed and probabilities of duration are
calibrated using inverse cumulative distribution of different univariate distributions
fitted. Then joint probability dependence of various return periods is calculated by
using inverse h-function of best-fit copula. For each homogenous region SDF curves
are developed as shown in Fig. 7.8. Region 2,3 and 4 display higher severity for
different return periods suggesting that a higher frequency of drought can be expected
in the regions under consideration. Moreover, the SDF curves are concave upward for
all the regions, specifying an increase in severity with an increase in duration.

Figure 7.8: Joint probability plots between severity and duration for four homogeneous
regions.

7.3.3.2 Severity-Area-Frequency (SAF) Analysis

For various spatial extents, gamma distribution is selected as the best fit. Distribution
of the parameters are calculated using L-moments method. The SAF curves at various
return periods (5, 10, 25, 50, 75, 100 years) are shown in Fig. 7.9. For regions 1-
4; 1971-1976, 1984-1989, 1995-2000 and 2000-2005 respectively, are considered as
most severe drought periods in comparison with projected SAF curves. It is observed
from Fig. 7.9 that region 1 experienced more severity values and region 3 has a steeper
slope compared to other regions that specifies drought risk is expected for small spatial
extent. As the percentage of the area increases, the severity decreases and vice versa. It
is observed from the SAF curves that severity values between 10 to 30 for 50% of the
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area and decrease with increasing areal extent. Also, it is possible to estimate drought
severity quantiles for specified percentage areal extent and return periods.

Figure 7.9: Drought SAF curves at various return periods for four homogeneous
regions.

7.3.4 Drought Frequency Analysis using CCDI and SPI12

With the reconstructed TWSA from chapter 6 and precipitation datasets, CCDI and
SPI12 time series have been generated for GRB from 1960-2020. A good correlation is
observed between SPI12 and CCDI time series as shown in Fig. 7.10.

Figure 7.10: CCDI and SPI12 time series for GRB from 1960-2020.
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The dry and wet spells between the two indices matched well (see Fig. 7.10). The
obtained SPI12 and CCDI are used to develop basin averaged SAF and SDF curves
for GRB. The SPI12 based drought frequency curves are used as a standard metric to
compare with the frequency curves developed using CCDI.

The SDF curves developed using SPI12 and CCDI time series for GRB are shown
in Fig. 7.11. Both SPI12 and CCDI based SDF curves displayed higher severity for
different return periods suggesting that a higher frequency of drought can be expected
in the regions under consideration. Both the SDF curves are concave upward, specifying
an increase in severity with an increase in duration. Only variation is that, CCDI based
SDF curve displayed droughts with shorter duration and severity when compared with
the SPI12 based SDF curve.

Figure 7.11: Basin averaged SDF curves developed using SPI12 and CCDI for GRB.

The developed SAF curves using SPI12 and CCDI time series for GRB are shown in
Fig. 7.12. CCDI based SAF curve has a steeper slope compared to SPI12 based SAF
curve that specifies drought risk is expected for small spatial extent. For SPI12 based
SAF curve, at 50% of the area the corresponding severity varies between 10 for 5-year
return period to 25 for 100-year return period. Whereas for CCDI based SAF curve, the
severity varies between 5 for 5-year return period to 20 for 100-year return period. Most
severe drought are observed using the SPI12 based SAF curve when compared with the
other. Overall, there is a good match between both the SAF curves developed using
SPI12 and CCDI. Therefore, reconstructed GRACE TWSA can be utilized as a metric
to develop SAF and SDF curves over Indian river basins.
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Figure 7.12: Basin averaged SAF curves developed using SPI12 and CCDI for GRB.

7.4 DISCUSSIONS

Closer analysis of the results shows that rising severity and duration of drought are
noticed in almost all regions over all time-progressive regions. The study of the
occurrence of various droughts (moderate, serious and extremely severe) reveals that
the frequency of droughts is likely to increase in most regions, with the exception of
region 1. The SDF curves show that for most of the regions considered, the severity
rate increases with duration. However, critical drought events are likely to occur over
multiple time scales in four homogeneous regions. In addition, the derived SAF curves
suggest that droughts are likely to cover a greater areal scale for lesser severity values
in all the regions.

Previously analyzed SAF study reports that greater areal extent of drought is
expected in latter part of century (Gupta and Jain, 2018). Whereas steeper SAF curve
slopes with high variability in topographical and hydrological characteristics have been
observed for Indian regions. The SAF curves that have been developed can help to
compare past droughts with future droughts. Therefore, it is noted from the results that
India is experiencing severe droughts in GRB and has a major impact on population.
Lack of soil moisture can also cause prolonged droughts, so turbulent heat flux and
boundary layer distribution should be regulated because of surface energy loss
(Alapaty et al., 1997; Sehgal et al., 2017). The local hydrological system depends
primarily on soil moisture availability, absence of soil moisture disrupts agricultural
production. In India, over 50 per cent of people depend primarily on agriculture.
Historically, the share of agriculture in India in the total Gross Domestic Product
(GDP) has gradually decreased from 39% in 1983 to 14% in 2014 (Ministry of
Agriculture and Farmers’ Welfare, 2016). Agriculture, therefore is economically and
socially important for India’s well-being. People’s migration can be seen in almost all
parts of the country due to lower agricultural profits and a lack of water availability. As
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per the results of the study, severe droughts are expected in the twenty-first century,
leading to the shortage of availability of water in basins. Therefore, it effects the
long-term damage of plant species and leads to desertification.

Also, an increase in population results in the increase of energy demand. Presently
after China and United States, India is the third largest user of energy. So, demand
for electricity is increasing which directly affects the availability of water in the river
basins over future periods. Therefore, better preparedness, monitoring and prediction of
drought can be considered as the best adaptation technique for mitigating the hazard due
to future droughts. Policies should be framed in case of local and regional vulnerabilities
for successful mitigation of drought risk induced by climate change.

7.5 CONCLUSIONS

A regional study of the meteorological drought over India is carried out using SPI12
drought index, taking into account four distinct homogeneous drought regions. The run
theory approach is used to determine the characteristics of drought, such as severity and
duration. Copula-based methodology is adopted to derive SDF curves by analyzing the
changes in the joint return period of severity and duration. SAF curves are developed
which examine the changes in drought return periods covering a specific percentage
of areal extent. A detailed spatiotemporal study of the occurrence, distribution and
frequency of drought is performed over India in the twenty-first century to quantify
drought risk. Then the CCDI based SAF and SDF curves are compared with the SPI12
based SAF and SDF curves. The key research outcomes are highlighted below:

• The occurrence of moderate and extreme drought conditions have increased
gradually in almost all regions, while major increases in severe drought are
expected in regions 2 and 3.

• For GRB, a high number of droughts with a high mean arrival time, high severity
and duration are likely to be noticed in the future.

• It is observed from the SDF curves that region 2, 3 and 4 show higher severity for
different return periods, indicating higher drought frequencies. Almost all SDF
curves are concave upwards, indicating an increase in severity and duration.

• The rate of increase of drought severity is higher for longer durations whereas it
decreases for shorter periods.

• Using the derived SAF relationships, it is possible to estimate drought severity
quantiles for specified percentage areal extent and return periods.
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• It is observed from the SAF curves that severity values vary between 10 to 30 for
50% of the area and decrease with increasing areal extent.

• A good match is observed between SPI12 and CCDI based SAF and SDF curves.
From the results it is concluded that the reconstructed TWSA can be utilized as a
metric to develop SAF and SDF curves for Indian river basins.
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CHAPTER 8

CONCLUSIONS

This Chapter is organized as follows: Section 8.1 presents the summary of this thesis.
Section 8.2 presents the conclusions of the study. Section 8.3 present future research
directions for this research work.

8.1 SUMMARY OF THE THESIS

The potential of Gravity Recovery And Climate Experiment (GRACE) Terrestrial Water
Storage Anomaly (TWSA) is analysed with different drought indices for Godavari River
Basin (GRB), Krishna River Basin (KRB), Cauvery River Basin (CRB) and Pennar
and East flowing Rivers between Pennar and Cauvery River Basins (PCRB). Seasonal
and monthly correlation analysis of Combined Climatologic Deviation Index (CCDI)
and GRACE Groundwater Drought Index (GGDI) are seen as the best drought indices
applicable to the study regions. The GGDI is then, used to evaluate drought conditions
and identify the linkages between GGDI and teleconnections over the study region. The
TWSA dataset is limited to 15 years and hence, long term drought analysis is difficult
to achieve. Therefore, reconstruction of TWSA is performed and validation is done
with respect to in-situ groundwater well measurements. Severity-Duration-Frequency
(SDF) and Severity-Area-Frequency (SAF) curves are developed for GRB using the
reconstructed TWSA based CCDI as well as India Meteorological Department (IMD)
precipitation based Standardized Precipitation Index at 12 month time scale (SPI12).
The SPI12 based SAF and SDF curves are used as a standard metric to compare CCDI
based SAF and SDF curves. The significant contributions of the study are presented in
the next section.

8.2 CONCLUSIONS

• GGDI and CCDI are considered as the best drought indices for drought
assessment at both seasonal and monthly scales for GRB, KRB, CRB and PCRB.

• The findings reveal an appreciable level of confidence in utilizing GGDI and
CCDI ability to quantify droughts, which will further improve with better
quantification and expanded availability of TWS information from GRACE FO
mission.
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• Extreme drought events are observed in KRB and CRB during 2003-2005 and
2012-2015 with a severity of 21.91 and 27.02 respectively.

• The association between TWSA and drought occurrences is closely related to SOI
variability followed by NINO3.4.

• The MLP approach is effective in generating reconstructed TWSA and potentially
bridge the gap between GRACE and GRACE FO missions over the study regions.

• The reconstructed TWSA can be used to analyse long-term climate related
application in any river basin.

• A good match is observed between SDF / SAF curves developed using SPI12 and
CCDI. Therefore, reconstructed TWSA can be utilized as a metric to develop SDF
and SAF curves for Indian River Basins.

• The derived SAF curves can be useful to understand spatial characteristics of
drought events (i.e., spatial coverage and severity values) and the associated risks.

• The derived drought SDF curves give risks associated with various values of
drought severities at different return periods. This information can be very useful
for environmental and agricultural planning in the drought prone regions.

• The results obtained based on the application of different statistical techniques
used in this study, make it possible to recommend GRACE mascon solutions for
drought and groundwater related studies over the region with similar climatic,
hydrogeological and groundwater withdrawal conditions.

8.3 FUTURE SCOPE FOR THE RESEARCH WORK

• The entire hydrological mass change in a region is represented by TWS which
is a sum of changes in soil moisture, surface water, groundwater, snow mass and
canopy water. As a result, predicting change in one component is difficult and we
require model-based estimations or in-situ measurements of other components.
Since model uncertainties vary in space and time and in-situ information is scarce,
using GRACE for hydrological studies concerning one component of TWS is a
challenge. Therefore, separation of TWS signals into individual components e.g.,
soil moisture, groundwater in recent studies is still an active research field.

• In order to access changes in smaller geographical areas or basins (only a few tens
of kilometers) improving the spatial resolution of GRACE products (now around
300-400 km on the Earth’s surface) remains a technological and methodological
challenge.
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• As GRACE spatial resolution is around 300-400 km on the Earth’s surface, spatial
downscaling of GRACE by assimilating it with other hydrological observations
can be performed to produce higher spatial resolution TWS products.

• With the launch of GRACE FO mission, reconstruction of TWSA is carried out
in this study from 1960 to 2020, resulting in a 60-year TWSA time series that can
be utilised to research any long-term climate-related applications.

• For better understanding of the behaviour of groundwater level change across the
river basins, there is a need to understand the variation in the groundwater levels
and availability with the changing aquifer system.

As a result of continuous developments, the GRACE products will become even more
useful for studying hydrological and agricultural droughts worldwide. There is no
doubt that GRACE based drought indices are an excellent tool to study hydrological
and agricultural drought.
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