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Abstract

The intensity and frequency of rainfall extremes have increased all over the world as a result of
climate change. The increase in intensity and frequency of rainfall extremes has significant
impact on human life and infrastructure, particularly by contributing to floods. Floods are the
most common natural disasters in India that have significant impact on human life and
infrastructure. Due to lack of proper flood forecasting and warning system, authorities are
frequently struggling to evacuate the people from the flood prone areas. If the information about
floods and flood inundation extent is made available to the public with sufficient lead time, they
can be better prepared to deal with floods. Therefore, it is necessary to understand the rainfall
characteristics over the study basins and to develop an integrated hydrologic and hydraulic
model based on rainfall forecasts from the Numerical Weather Prediction (NWP) models to
forecast floods with sufficient lead time. In the present research work, Nagavali and
Vamsadhara basin are considered as study area. These two medium sized east flowing basins
in Peninsular India are prone to frequent flooding due to heavy rainfall in the monsoon season
and tropical cyclones formed by low pressure depressions in the Bay of Bengal (BoB) during
pre- and post-monsoon seasons. Based on the proposed objectives of the research work, detailed
methodology for the research is developed. With the developed methodology, work has been

carried out in five modules.

In the first module, trends in rainfall and rainfall extremes over Nagavali and Vamsadhara river
basins are studied at three time steps (long-term (1901-2018), pre-1950, and post-1950) with
four different Mann-Kendall (MK) tests using daily gridded India Meteorological Department
(IMD) rainfall data of 118 years (1901-2018). The spatial patterns of the trends are evaluated
with the kriging interpolation method. Magnitude in rainfall and rainfall extremes (Consecutive
Dry Days (CDD), Consecutive Wet Days (CWD), annual total precipitation in wet days
(PRCPTQT), annual count of days when rainfall is greater than 10 mm (R10MM), greater than
20 mm (R20MM), greater than 40 mm (R40MM), 95th percentile of rainfall on wet days
(R95PTOT), monthly maximum 1-day rainfall (RX1DAY), and monthly maximum
consecutive 5-day precipitation (RX5DAY)) are analyzed using the Sen’s slope method. Except
in the monsoon season, a decreasing trend is observed in all the rainfall extremes in post-1950
compared to pre-1950 period. Whereas, in the monsoon an increasing trend is observed for the
extremes in post-1950 period. Overall period (i.e. 1901-2018) an increasing trend is observed

for rainfall and rainfall extremes in pre-monsoon (March—May), monsoon (June—September)
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seasons and a decreasing trend in winter season (December—February) for both basins. No
obvious trends are evident in the post-monsoon season (October—November). At the annual
scale, rainfall and rainfall extremes exhibited an increasing trend. Overall, Nagavali basin
experienced more extreme rainfall events indicating the higher vulnerability of floods while the
middle and lower portions of Vamsadhara basin shown increase in rainfall extremes. A vast
majority of the people in both the basins are dependent on agriculture for their livelihoods, and
the increasing trends in rainfall and rainfall extremes in the lower and middle portions of both
basins are causing frequent floods. Therefore, this study deserves careful extension, especially
in the lower and middle portions of both basins, to evaluate extreme hydrologic-hydraulic flow

regimes.

In the second module, Advanced Research Weather Research and Forecasting (WRF) model is
used to conduct, a total of 56 numerical experiments and to find a suitable microphysical
scheme for the prediction of track and intensity of the Tropical Cyclones (TCs) over North
Indian Ocean (NI1O). The performance of seven microphysical schemes (Ferrier, Lin, Morrison,
Thompson, WSM3, WSM5, and WSM6) are evaluated using error metrics, namely Mean
Absolute Error (MAE), Mean Square Error (MSE), Skill Score (SS), Direct Positional Error
(DPE) and average track error with respect to observations provided by IMD. From the
sensitivity experiments, it is found that the WSM3 scheme can be used as a suitable
microphysical scheme for the prediction of TCs over NIO. Along with the track and intensity,
rainfall of TCs is well predicted by WRF model. Although WRF model is able to predict rainfall
for TCs, the WRF model is sensitive to initial and boundary conditions, grid resolution,
representation of physical parameterization schemes, and geographical location. Hence, to
overcome the limitations of WRF model, rainfall forecasts from the National Center for
Environmental Prediction - Global Forecast System (NCEP-GFS) model are used to forecast
floods in the lower and middle portions of both basins.

In the third module, performance skill of the National Center for Environmental Prediction -
Global Forecast System (NCEP-GFS) model is evaluated for day-1 to day-5 forecast with a
threshold of 1 mm/day in Nagavali and Vamsadhara river basins. From the results, the model
predicted the rainfall with a correlation coefficient of greater than 0.3 and probability of
detection greater than 0.6 for day-1 and day-3 forecasts. The bias in rainfall prediction shifted
from overestimation to underestimation by 30% as forecast lead time increased. The total mean
error is decomposed into hit, false, and missed bias. The main sources of total mean error are

hit bias and false bias. However, missed bias influenced total mean error as lead time increased.
vii



Bias correction is applied for the rainfall events with a rainfall intensity greater than 12 mm/day.
Root Mean Square Error (RMSE) improved by more than 18% for day-1 forecast in both
Nagavali and Vamsadhara basins, and the improvement ranged between 3% to 9% for other
days. In Nagavali basin, relative bias (BIAS) and Mean Error (ME) improved and ranged from
44% to 65% for day-1 to day-5 forecast, whereas in Vamsadhara basin, it ranged from 65% to
93%. This module helped to develop the bias correction factors for GFS forecast rainfall of
Nagavali and Vamsadhara basins. Bias corrected GFS forecast rainfall is given as input to the

integrated hydrology and hydraulic model developed in fourth module.

In fourth module of the research work, an integrated hydrologic and hydraulic modeling
framework is developed with Soil and Water Assessment Tool (SWAT) model and the Two
Dimensional (2D) Hydrological Engineering Centre — River Analysis System (HEC-RAS)
model. Bias corrected NCEP-GFS rainfall forecasts with a 48-hour lead time are given as input
to the integrated model and simulated the streamflow, flood area extent, and depth for the
historical flood events (i.e., 1991 - 2018) with peak discharges of 1200 m?/s in Nagavali basin
and 1360 m®/s in Vamsadhara basin. The integrated model predicted flood inundation depths
are in good agreement with observed inundation depths provided by the Central Water
Commission (CWC). The inundation maps generated by the integrated modeling system with
a 48-hour lead time for cyclone Titli demonstrated an accuracy of more than 75%. The results
from this module can be exported into Web-GIS based platform for the visualization and

dissemination of flood inundation maps to the public.

In the fifth module of the work, a Web-GIS based user interface system has been developed by
using various programming languages (HTML, CSS, and JavaScript) and software (Visual
Studio Code and GeoServer) for the visualization and dissemination of flood inundation maps.
The Web-GIS based user interface system displays the flood inundation information as spatial
maps and depths in the legend. Finally, integrated model presented in this research work is
automated using R and Python programming languages. Methodology developed in this
research work can be extended for other river basins. The insights gained from this research are
useful for the public and government agencies for dissemination of early warning during the
flood events, resource mobilization to protect communities, and sustainable water resources

planning and management.

Keywords: Automation, Flood Inundation Area, Flood Forecasts, HEC-RAS, Integrated Model,
Rainfall Extremes, SWAT, WRF, and Web-GIS.
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Chapter - 1 Introduction

1.1 Background

Over the years, climate on the Earth has changed significantly in both space and time. The
spatio-temporal variability of climate and climate drivers have caused changes in the frequency,
magnitude, duration, spatial extent, and timing of weather and climate extremes such as floods,
droughts, and tropical cyclones, which have significant impact on human life and infrastructure
(Han and Coulibaly 2017). The extreme events caused by climate change over the past two
decades have resulted in a direct loss of X 265.5 trillion in terms of purchasing power parity and
a human loss of more than 4.9 million across the globe (Mohanty 2020). Rainfall is one of the
most important climate variable that vary both in space and time, and its response in modifying
the basin scale hydrological processes are critical for water resources management. The uneven
distribution of rainfall intensities leads to increased incidents of extreme events and their

intensities often lead to floods or droughts (Roy and Balling 2004).

Floods are one of the most common natural hazards, causing significant damage to human lives,
and infrastructure in both developing and developed countries in the world (Chowdhuri et al.
2020; Han and Coulibaly 2017; Sravani 2018). Flood is defined as “High-water stages in which
water over flows its natural or artificial banks onto normally dry land, such as river inundating
its floodplain” (Natarajan and Radhakrishnan 2020). The recently published World Disaster
Report by International Federation of Red Cross and Red Crescent Societies “IFRC” reported
that floods (41%) constituted the largest percentage of all known disasters between 2008 and
2017 all over the world and affected as many as 730 million people, which is over a third of the
estimated 2 billion people affected by natural hazards (IFRC 2020).

Past experiences indicate that floods and their impact can be mitigated but cannot be eliminated
completely. The measures of flood risk mitigation can be divided into three major categories:
(i) structural measures (ii) non-structural measures and (iii) a combination of structural and non-
structural measures. Structural flood protection measures such as dams, levees, embankments,
and flood wall, emphasize modifying a flood characteristic to reduce peak evaluations and
spatial extent (Sudheer et al. 2019). However, these measures will not completely eliminate the
hydraulic risk due to the impossibility of building larger structures to handle extremely low

probability events (Perumal et al. 2011). As a result, experts have advocated a shift away from



structural flood protection measures to non-structural flood protection measures that reduce
flood exposure (Jain et al. 2018). Flood forecasting is an important non-structural measure for
preventing flood damage and reducing flood-related deaths and it is only beneficial if accurate
forecasts are made with sufficient lead time (Nanditha and Mishra 2021). In recent years,
technological advancements have enhanced the accuracy of real-time flood forecasting and
warning systems. The use of rainfall observations from satellites, weather radars, and
Numerical Weather Prediction (NWP) models significantly improved the capability of flood
forecasting and warning systems in detecting extreme rainfall events that may cause flooding
and the warnings are issued several days ahead when compared to flood forecasting systems
based on the observed rainfall and streamflow (Kumar et al. 2020).

1.2 Extreme Climate Scenarios in India

India, with its unique geophysical conditions, climatic conditions, and topography, frequency,
magnitude, duration, spatial extent, pattern and timing of weather and climate extremes are
changing and ranked among the top ten most vulnerable countries in the globe in terms of
climate change (Eckstein et al. 2021). Over the past five decades, the annual mean temperature
has risen by approximately 0.7° C, including an increase of 0.63°C for the warmest day and
0.4°C for the coldest night. The Sea Surface Temperature (SST) has risen by 1° C. Since 1951,
summer monsoon rainfall has declined by 6% with an increase in frequent dry and wet spells
(Krishnan et al. 2020). As a result of these changing phenomena, cyclones are occurring more
frequently throughout the country, droughts are affecting more than half of the country, and
floods of unprecedented magnitude are causing catastrophic damage to people and socio-
economic aspects of the country (Krishnan et al. 2020). Figure 1.1 shows the various disaster
prone areas in India. The major disasters in the country include droughts, floods, tropical

cyclones, earthquakes, and hot and cold waves.

Over the past few decades, several researchers have reported an increase in extreme rainfall
events across India on a national and regional scale (Bisht et al. 2018a,b; Deshpande et al. 2016;
Dubey and Sharma 2018; Goswami et al. 2006; Jain et al. 2017; Guhathakurta et al. 2011;
Krishnamurthy et al. 2009). In addition to that, the frequency and intensity of Tropical Cyclones
(TCs) are also increasing over the years (Mohanty et al. 2012). The increasing trend in rainfall
extremes and the frequency of TCs lead to severe flooding across the country.



Figure 1.1 Natural hazard map of India (Source: MOI, 2022)



Among all the natural disasters, flooding is becoming more common in India as extreme
weather events become very common, accounting for half of the natural disasters (Patankar
2020). Figure 1.2 shows the flood prone areas in the country (NDMA, 2022). Based on the
flood patterns in India, the country has four distinct regions: the Brahmaputra river region, the
North-West river region, the Ganges river region, and the Central India and Deccan region.
Brahmaputra river region is located in the North-Eastern Parts of India. Continuous rainfall in
this region has resulted in frequent floods. The frequent earthquakes and landslides in this area
have disrupted the natural regime of river flow. As a result, regions that are expected to be
flood-proof may not be so secure. North-West river region is located in the North-Western
states of India. Compared to other regions of India, this region is relatively less prone to floods.

The Ganges river basin covers most of North India and a few states in Western India. This
region is prone to severe floods due to heavy rainfall, river erosion, and massive sediment
deposits. The Central India and Deccan river basins cover all states of southern India. The
region is characterized by coastal states, which are prone to maritime flooding during cyclonic
disturbances. In this region, most rivers have adequate water carrying capacity within the
natural banks, except in the lower reaches and the delta area. In those areas, the overall slope
of the bed is very low, which aggravates flooding problems, since the water cannot easily drain

into the sea due to opposing tidal intrusion (Mohanty et al. 2020).

According to flood statistics from the Government of India, the flood-affected area in India has
increased from 25 million hectares (Mha) in 1952 to 49.815 Mha in 2011 (Bhanduri 2019).
Between 1953 and 2011, floods claimed 1,653 lives per year on average and caused % 2709
billion in economic losses, includes housing, public property, and crop damage, according to
government records (Joshi 2020). Flood damage is caused by a number of factors, including
rapid population growth, rapid urbanization, increased development and other activities in flood
plains, and global warming (Leon et al. 2014; Bhatt et al. 2017).
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Figure 1.2 Flood prone area in India according to NDMA (Source: NDMA, 2022)




1.3 Rainfall forecasts from Numerical Weather Prediction (NWP) Models

Rainfall is the most important natural weather element required for an effective operational
flood forecasting system in a catchment (Bisht et al. 2018a,b; Damrath et al. 2000; Deng et al.
2018; Ning et al. 2017; Prakash et al. 2018; Sun et al. 2017). Rainfall forecasts are currently
provided using conventional methods such as satellite observations, weather radars, and NWP
models. Among the observations, satellites and weather radars provide qualitative forecasts,
while NWP models provide quantitative forecasts (Sridevi et al. 2020). Hence, quantitative
rainfall forecasts from NWP models that represents land-atmospheric interactions continue to
be the primary source of rainfall data for input into any hydrological model for flood
forecasting, water management and disaster assessments among other applications (Sridhar et
al. 2013; Shahrban et al. 2016; Sujatha and Sridhar 2017; Sridhar and Valayamkunnath 2018).

The NWP modeling is a method of forecasting future atmospheric conditions by solving a set
of mathematical equations that describe the physical phenomenon of the atmosphere. Typical
examples of these equations are equations of heat exchange, continuity equations, balance
equations of water vapour, equations of motion, parameterizations for solar radiation, and laws
of energy conservation, etc. Since 1946, NWP models are being used to forecast rainfall,
temperature, and many other meteorological variables from the oceans to the top of the
atmosphere (Shrestha et al. 2012). These models are available at both global and regional scales
across the world. The global models are defined for the whole world, while the regional model
is defined for a particular section of the atmosphere. Advanced Research Weather Research and
Forecasting (WRF), Global Forecasting System (GFS), European Center for Medium-Range
Weather Forecasts (ECMWF) are some examples of NWP models.

1.3.1 Advanced Research Weather Research and Forecasting (WRF) Model

The WRF modeling system has been in development for the past eighteen years. The current
edition is Version 4, available since June 2018. The modeling software is in the public domain
and freely available for community use. The Mesoscale and Microscale Meteorology Division
of National Center for Atmospheric Research (NCAR) is currently maintaining and supporting
a subset of the overall WRF code that includes the WRF Preprocessing System (WPS), WRF
Software Framework (WSF), Advanced Research WRF (WRF) dynamic solver, WRF Data
Assimilation (WRF-DA) system, and hybrid data assimilation capabilities.



WREF is designed to be a flexible, state-of-the-art atmospheric simulation system that is portable
and efficient on available parallel computing platforms. WREF is suitable for use in a broad
range of applications across scales ranging from meters to thousands of kilometers, including
idealized simulations (e.g. les, convection, baroclinic waves), data assimilation research,
parameterization research, forecast research, coupled-model applications, fire research,
hurricane research, real-time NWP, regional climate research, and teaching, etc.. A detailed

description about the model can be found at Wang et al. 2018.

1.3.2 Global Forecasting System

The Global Forecast System (GFS) of the National Center for Environmental Prediction
(NCEP) is a medium range hydrostatic NWP model run by the U.S. National Weather Service
(NWS). The GFS provides deterministic and probabilistic guidance on weather data for the next
16 days in GRIB2 format. The National Oceanic and Atmospheric Administration (NOAA)
Grid point Statistical Interpolation (GSI) 3-D variational ensemble Kalman filter-variational
hybrid system is used by the GFS modelling system for data assimilation (Mccorkle et al. 2018).
The GFS files are available at a horizontal resolution of 0.25°x0.25° and can be downloaded
from NCAR research data archive. The forecast is updated four times per day (00, 06, 12, and
18 UTC). One of the GFS model output variables is accumulated precipitation, where the

precipitation forecasts are accumulations starting from the model runtime.

The GFS model went through a major upgrade, and its version 15 forecasts have been available
since 12 June 2019. In version 15, the Finite-Volume Cubed-Sphere (FV3) dynamical core
replaced the Global Spectral Model (GSM) as the core model. In the GSM model, the horizontal
resolutions were T1543 (12.5 km), from 0 to 240 h (0-10 d), and T574 (~ 34 km), from 240 to
384 h (10-16 d). However, in the FV3 model, the horizontal resolution of the model is about
13 km for days 0—16. The model runs are re-gridded to produce precipitation forecasts at 0.25°
resolution (NCEP, 2015).

1.4 Evaluation of NWP Model Forecasts

All the NWP models are based on the principle of hydrostatic equilibrium (Saur 2017). With
advancements in computational power, most of the NWP models are able to provide rainfall
forecasts with a lead time of 1 — 15 days (Kumar et al. 2020). Accurate rainfall forecasts from

NWP models will help in reducing the uncertainty in streamflow forecasts. However, the
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rainfall forecasts from NWP models are subject to three types of error (i) Location, (ii) Timing,
and (iii) Magnitude, which may limit their usefulness for streamflow forecasting, since
hydrological models are sensitive to errors in rainfall forecasts (Sridevi et al. 2020). Therefore,
the skill of NWP model rainfall forecasts needs to be verified before using them for any

hydrometeorological applications.

Verification of a forecast involves comparing the forecast value with an observation of what
actually occurred or with some reasonable estimate of the actual value. It can be qualitative or
quantitative. In either case, it should provide information about the nature of the forecast error.
Verification of forecast is important to monitor and improve the forecast quality, and to compare

the quality of different forecast systems.

To verify the NWP model forecasts, several methods are available (i) eyeball method (ii)
dichotomous method (iii) multi-category method (iv) continuous verification method and (v)
probabilistic forecast method. The eyeball method is the oldest and most reliable method for
verifying data. Data is presented as time series plots and spatial maps, and the degree of
agreement between the observed and forecast data is evaluated using the human eye. However,
this method is not quantitative and is prone to human errors. The dichotomous method returns
‘Yes’ if the model predicts rainfall and ‘No’ if there is no rain. In this method contingency table
is used to verify the forecast which includes a large variety of contingency statistics including
Probability of Detection (POD), False Alarm Ration (FAR), Critical Success Index (CSl), and
True Skill Score (TSS), etc. Multi-category methods also start with a contingency table that
shows the frequency of forecast and observed values in different bins. The advantage of this
method is that it allows quick identification of forecast error. However, it is difficult to condense
the results into a single value. Continuous verification method measures the difference between
the forecast value and the observed value using several statistical indices such as Correlation
Coefficient (CC), Mean Error (ME), Root Mean Square Error (RMSE), Bias (BIAS) etc. This

method needs a set of values to verify the forecast (Broorks et al. 2017).

1.5 Hydrologic and Hydraulic Models for the Simulation of Floods

A hydrological model represents the natural hydrological cycle in a simplified form and is
mainly used for understanding, forecasting and managing water resources. The best hydrologic
model is the one which is less complex and uses minimum amount of data to produce results

that are similar to the observed values. The hydrologic model converts the rainfall into run-off
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by considering various hydrological processes including rainfall, evapotranspiration, and
surface and sub-surface water flow. The input data required for hydrologic model includes
rainfall, temperature, relative humidity, solar radiation, wind speed, Land Use and Land Cover
(LULC), Digital Elevation Model (DEM) data, and soil data (Godara and Bruland 2019).

Over the past few decades, several hydrological models have been developed such as
Hydrologiska Byrans Vattenbalansavdelning (HBV), MIKE SHE, Statkraft Hydrologic
Forecasting Toolbox (SHyFT), Hydrologic Engineering Center-Hydrologic Modelling System
(HEC-HMS), TOPMODEL, Soil and Water Assessment Tool (SWAT), etc. for effective
management of water resources. Among all the models SWAT is a physically based semi-
distributed watershed-scale hydrological model developed by the United States Department of
Agriculture (USDA) Agricultural Research Service (ARS). The model is designed to predict
the impact of land management practices on hydrology, sediment and contaminant transport in
large and complex catchments at the Hydrological Response Unit (HRU) level. For the SWAT
model to produce accurate hydrologic predictions, only a small amount of direct calibration is

required.

Hydraulic models compute open channel flow based on St. Venant equations. Most commonly
used hydraulic models are one dimensional or two dimensional or a combination of both (1D-
2D). The hydraulic model converts the run-off into flood inundation levels. The input data
required for hydraulic model includes runoff, LULC, soil characteristics, upstream and
downstream boundary conditions. Most commonly used hydraulic models include Hydrologic
Engineering Center-River Analysis System (HEC-RAS), MIKE 1D and 2D, BreZO,
LISSFLOOD-FP, FLO-2D, etc. Among these models, HEC-RAS is one of the most
comprehensive and efficient event-based model for preparing flood inundation maps. It can
perform 1D, 2D, and combined 1D and 2D modelling. In 2D modelling, HEC-RAS can solve
shallow water or diffusive wave equations, allowing the model to run more quickly and have
increased stability. The algorithms used in HEC-RAS 2D unsteady flow modelling are capable
of handling sudden release of water, supercritical, subcritical, and mixed flow regimes without

enabling any additional options.



1.6 Flood Forecasting and Warning System

Flood forecasting and early warning is one of the most effective flood risk management
strategies to minimize the negative impact of floods (ESCAP 2017). A typical flood forecasting
and warning system is composed of three major elements: (i) flood detection (ii) flood
forecasting and warning and (iii) flood response. The schematic representation of flood

forecasting and warning system is shown in Figure 1.3.

Flood detection involves the continuous monitoring of hydrometeorological data from the
catchment of interest. Flood forecasting involves the use of hydrologic and hydraulic models.
Hydrological models are used to convert rainfall into runoff through a set of mathematical
equations, while hydraulic models convert runoff into flood extent. Flood warnings are issued
at this stage to the people and public agencies to plan rescue operations (Jain et al. 2018).

Flood Detection Flood Forecasting & Warning Flood Response
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Figure 1.3 Schematic diagram of flood forecasting and warning system (Source: Jain et al. 2018)

1.7 Web-GIS for Dissemination for Flood Inundation Information

A User-Interface System (UIS) is an integrated set of software and hardware components that
are used for collection, organization, storage, processing and communication of information
among the users. Geographical Information System (GIS) is an information system that can
acquire, store, and process spatial data. Combining GIS with web technologies enables users to
process spatial data, perform spatial analysis and display generated results in the form
interactive maps or graphs through the web browser (Mishra et al. 2020). Web-GIS is a
distributed open source technology that provides a graphical user interface for accessing spatial
data, performing spatial analysis, and visualizing web-services through a web browser. There
are several technology levels to publish map data on the web, ranging from sites that simply
10



public static web maps to more sophisticated sites which support dynamic and interactively
customizable maps. Web-GIS technologies are useful to publish flood inundation data and

disseminate information to the public.
1.7.1 Web-GIS Architecture

The architecture of the Web-GIS is similar to the typical client/server three-tier architecture and
is shown in Figure 1.4. Three tier architecture is one in which an interface is stored on the client
side, the application on the server side, and a database on database server. The client side
typically consists of a web browser while the server side consists of a web server, map server,
web GIS software and a database. The web server communicates between the client and the
map server. The map server provides the web server with the map content generated from the
database. A web interface is required to take inputs from user interactions and display the

requested data.
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Figure 1.4 A typical Web-GIS Architecture (Source: Olaya 2018).
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1.7.2 Web-GIS systems for flood data dissemination

The goal of flood risk communication is to provide flood related information to wide range of
users, ranging from the general public at local level to administrative bodies at governance
level. In recent years, Web-GIS based platform has been recognized as a powerful tool for data
distribution, as it is cheap, reliable, interactive, and can easily reach people in a short period of
time. Researchers have developed Web-GIS platforms for dissemination of flood inundation
information in different parts of the world, including lowa Flood Information System (IFIS)
(Demir et al. 2018), Flood disaster Cyber-infrastructure platform (CyberFlood) (Wan et al.
2014), Spatial Decision Support System (SDSS) (Horita et al. 2015), geospatial Decision
Support Tool (DST) (Knight et al. 2015), Intelligent Hydro-Informatics Integration Platform
(IHIP) (Chang et al. 2018) , Web-based Flood Risk Information System (WebFRIS) (Mohanty

and Karmakar 2021), and many others to provide real-time information about floods.

National Remote Sensing Center (NRSC) in India is the nodal agency for distributing natural
disasters related information. NRSC developed a web application called Disaster Management
Support Services under Bhuvan to provide forecasts and issue early warning about the natural
disasters such as floods, droughts, forest fires, earthquakes, landslides, and cyclones across the

country.

1.8 Research Motivation

The intensity and frequency of rainfall extremes have changed as a result of climate change,
which has a significant impact on human life and infrastructure, particularly by contributing to
floods. Floods are the most common natural disasters in India that have significant impact on
human lives and infrastructure. In recent years, India has been hit by some of the most unusual
extreme precipitation events, resulting in flooding and significant loss of life. On 26" July 2005,
Mumbai received 994 mm of rainfall in 24 hours, leading to flash floods and landslides that
claimed 419 lives and damaged 16000 cattle. During the floods, more than 100000 residential
and commercial establishments as well as 30000 vehicles were damaged (Gupta 2007). In 2007,
Bihar state received unprecedented rainfall of more than 300 to 400% than in normal days in
the second half of July. The same was repeated in August and simultaneously heavy rainfall in
the upper catchments led to severe floods in the state and claimed 519 lives and more than 20
million people got affected causing an economic damage of % 150 billion (FMISC 2007). Heavy

rainfall in October 2009 in the Krishna river basin resulted in severe floods in Kurnool city that
12



claimed more than 40 lives and caused significant damage to infrastructure (Ramachandraiah
2011). During 16-18 June 2013, Uttarakhand experienced an extreme rainfall event with a
rainfall intensity of more than 200 mm/day, resulting in large floods that killed over 6000 people
and caused economic losses of more than X 285 billion (Nandargi et al. 2016). In December
2015, Chennai and its suburbs experienced extremely heavy rainfall (490 mm/day), inundating
the coastal districts of Chennai, Kancheepuram, and Tiruvallur, affecting over 4 million people
causing economic damages of approximately X 225 billion (Narasimhan et al. 2016). A multi-
day extreme precipitation event (200 mm/day) in Kerala in August 2018 caused massive
flooding, killing 483 people and causing an economic loss of more than X 3975 billion (Mishra
et al. 2018). Because of a tropical depression that formed over the Bay of Bengal (BoB) in
October 2020, Musi River received 192 mm of rainfall in 24 hours, caused flooding in
Hyderabad, killing more than 30 people and caused an economic loss of X 6717 million
(Somasekhar 2020). If information on floods and flood inundation extents is available to the
public with sufficient lead time, people and government agencies will be able to deal with floods

in a more effective way.

1.9 Need for the flood forecasting model and information dissemination to

the public

The Central Water Commission (CWC) is the nodal agency in India for providing deterministic
flood forecasts based on observed precipitation and streamflow across major rivers and their
tributaries. Currently, CWC provides flood warnings at 324 stations, including 128 reservoir
inflow forecasts and 196 water level forecasts (CWC 2020). During extreme weather events,
local agencies use CWC water level forecasts to plan rescue operations (Harsha 2020).
However, water level estimates at a point are inconsistent and sparse over large areas, resulting
in uncertainty in estimating flood inundation area and flood depth, making rescue operations
difficult for local agencies. This is especially true following the recent floods in Assam, Tripura,
Karnataka, Tamil Nadu, and Kerala (CWC-FRMD 2020). Local administrations can make
better decisions and be better prepared if they have flood forecasts with inundation areas rather
than deterministic flood forecasts. Countries such as the United States, the European Union and
Japan have already shifted their focus to flood forecasting and inundation areas (Harsha 2020).
In India, public and government officials have limited information about the flood inundation
extent and depth. As a result, there is a need for development of integrated hydrologic and

hydraulic models with enough lead time to provide flood forecasts as well as flood inundation
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extent and depth. The results from the integrated hydrologic and hydraulic model can be
exported into Web-GIS compatible formats using GIS software for visualization and analysis
in the web-based platform (Santillan et al. 2020).

Nagavali and Vamsadhara are two east flowing medium sized river basins that are prone to
flooding due to heavy rainfall in the monsoon season and TCs formed by low pressure
depressions in the BOB during the pre- and post-monsoon seasons. In both basins, an increase
in annual average rainfall of 100 mm has been observed over the previous two decades. The
uplands of these basins are hilly, resulting in frequent flooding of low-lying areas due to
extreme rainfall events. Over the last few decades, the frequency of prolonged floods has
increased, causing severe damage to crops, life, and property in both basins' delta regions.
According to the Andhra Pradesh State Disaster Management Authority (APSDMA), the
Nagavali basin experienced more than 12 flood events, while the Vamsadhara basin
experienced nine flood events. Authorities frequently struggle to evacuate villagers during
floods due to a lack of a weather and flood forecasting system in the area. Hence, in the present
research work it is proposed to develop an integrated hydrologic and hydraulic model and to

apply it on Nagavali and Vamsadhara river basins to forecast floods and inundation area extent.

1.10 Aim and Objectives of the Study

The aim of the present research work is to develop an integrated hydrologic and hydraulic model
that forecasts streamflow and generates flood inundation extent based on rainfall forecasts
which will be published in Web-GIS based user interface system for the public use. Based on

the aim of the research work, the objectives are framed as follows:

++ ldentification of trends in rainfall characteristics over the study area.

«» Assessment of microphysical schemes on the track, intensity and rainfall prediction
of tropical cyclones using Numerical Weather Prediction Models.

+«»+ Evaluation of rainfall forecasts available in the public domain from standard
modelling mechanism.

« Development of an integrated modelling framework to forecast floods with well-
established hydrologic and hydraulic models.

¢+ Development of Web-GIS based framework for flood forecast data visualization and

dissemination.

14



1.11 Organization of the Thesis

This thesis has seven chapters which include introduction, literature review, methodology,
study area and database preparation, model set-up, results and discussions, and summary and
conclusions. The research motivation, problem statement, and research objectives are presented
in the introduction chapter. Literature review on rainfall extremes, floods due to extreme rainfall
events, prediction of track and intensity of tropical cyclones by NWP model, evaluation of GFS
rainfall forecasts, importance of integrated hydrologic and hydraulic models and flood
forecasting, and development of Web-GIS have been presented in second chapter. The research
methodology is presented in third chapter. The details about study area, data used, database
preparation, and various model set-ups such as WRF, SWAT, and HEC-RAS for predicting
tropical cyclones, simulating streamflow, and generation of flood inundation maps, respectively
are presented in fourth chapter. Results and discussions are given in fifth and sixth chapters,
while summary, conclusions, and limitations of the present research are explained in the

concluding chapter.
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Chapter - 2 Literature Review

2.1 General

Rainfall extremes in the Indian sub-continent are expected to be more often because of global
warming. The increase in extreme events causes flooding in India, which has significant impact
on human life and infrastructure. CWC is the nodal agency in India that provides deterministic
flood forecasts across major rivers and their tributaries. However, the water level estimates at a
point are not consistent or dense enough over large areas, and often lead to uncertainty in
estimating the flood inundation area and flood depth, making rescue operations difficult for
local agencies. Hence, there is a clear need for the modeling framework that can provide data
about the present and future state of occurring floods. In this chapter, literature pertaining to
rainfall and rainfall extremes, prediction of TCs using WRF model, and performance evaluation
of rainfall forecasts from NWP models is presented. The literature required to develop an
integrated hydrologic and hydraulic model to forecast floods and development of Web-GIS
based data distribution system for the real-time distribution of flood inundation areas has been

discussed in the following sections.

2.2 Trends in Rainfall and Rainfall Extremes over India

The spatio-temporal variations in rainfall in India may lead to natural disasters like floods and
droughts which have adverse impact on human life and socioeconomic aspects of the country.
Hence, there is a need to understand the characteristics of rainfall and rainfall extremes in a
river basin to enhance water resources management strategies. Rainfall and extreme rainfall
events have been extensively studied in India at regional and national scales using gridded
rainfall data provided by India Meteorological Department (IMD) and these have drawn
different conclusions (Bisht et al. 2018b,a; Roy and Balling 2004; Goswami et al. 2006;
Guhathakurta and Rajeevan 2008; Deshpande et al. 2016; Rajeevan et al. 2008; Ghosh et al.
2012; Guhathakurta et al. 2011, 2015, 2017). Some studies reported no clear trend in rainfall
over a period of longer than a century at monthly, seasonal, and annual scales over India (Ghosh
et al. 2012; Rajeevan et al. 2008). However, Kumar et al. (2010), reported an increase in the
magnitudes of winter, pre, and post monsoon rainfall and decrease in annual and monsoon

rainfall at the national scale.
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Roy and Balling (2004) studied the annual trends in seven extreme rainfall measurements,
including total rainfall, 1, 5, and 30-day cumulative rainfall, and total rainfall at the 90", 95™
and 97.5™ percentiles, at 129 gauge stations distributed across India. They found that, out of
903 time series data sets, 61 showed decreasing trend, and 114 showed increasing trend. The
increasing trend in rain extremes has been widely distributed across the country, from the
northwest Himalayas to the Deccan Plateau in the south, whereas a decreasing trend has been
mostly found in the eastern parts of the Gangetic Plain and parts of Uttaranchal. Goswami et al.
(2006) found an increasing trend in the frequency and magnitude of extreme rainfall events
accompanied by a decreasing trend in the frequency of moderate rainfall events and no trend
was found in seasonal mean rainfall over Central India. The increasing trends in extreme rainfall
events at annual and decadal over central India may be attributable to variations in SST over
the tropical Indian Ocean (Rajeevan et al. 2008). Guhathakurta and Rajeevan (2008)
investigated rainfall patterns across 36 meteorological subdivisions in India. They reported that,
the contributions from June, July, and September rainfall were decreasing for a few sub-
divisions while August rainfall contributions were increasing to the annual rainfall. This is an
indication that the frequency and magnitude of heavy rainfall events are increasing in the
August month across the country. Dash et al. (2009) studied the characteristics of rainfall events
in India. Based on the intensity of rainfall events, a decreasing trend was observed in low and
moderate rainfall events in the hilly region and west central India, but increasing trends in heavy
rain events in North-East India. On the basis of the duration of rainfall events, the rainfall event
was classified as short, long, wet, dry, and prolonged dry spell. In terms of trends, a decreasing
trend in the long spell events and an increasing trend in other categories was observed. The
decreasing trend in the long spell events was observed in the west central region of India and
increasing trends in other categories were observed in the hilly region, west central region and

peninsular India.

Guhathakurta et al. (2011) studied the impact of climate change on extreme rainfall events.
They reported that the trends in heavy rainfall events were increasing in peninsular, east and
north east India while decreasing in Central and North India. Ghosh et al. (2012) found that the
trends in extreme rainfall events within the country were not uniform. Vittal et al. (2013) also
found similar results. At a national level, rainfall extremes reported an upward trend whereas
at a regional scale, rainfall extremes were exhibited a non-uniform trend. The authors also noted
a significant difference in rainfall characteristics (intensity, frequency, and duration) before and

after 1950. Guhathakurta et al. (2015) analyzed trends in monsoon rainfall in India as a whole
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and four homogeneous regions. The trends in rainfall exhibited multi-decadal variability of
rainfall in the country as well as in the regions. However, the phases of multi-decadal variability
were different between the country and regions. The change point for all India southwest
monsoon was observed in 1965, while the change points for Central, Northwest, Peninsular,
and Northeast India were 1926, 1942, 1946, and 1961, respectively. During the southwest
monsoon in India, moderate rainfall events (5 mm/day to 100 mm/day) decreased significantly,
whereas rainfall events with intensity greater than 100 mm/day were unaffected. Deshpande et
al. (2016) examined the temporal changes in rainfall and temperature extremes over major river
basins in India. The extreme weather events were defined using thresholds of 10 cm for rainfall
and 40°C and 10°C for maximum and minimum temperatures. They found that the number of
dry days (zero rainfall) increased across the river basins except at some portions in the Krishna
and Peninsular river basins. The rivers in the central part of India show an increasing trend for
heavy rainfall events. An increase in the monthly maximum temperature has also been observed
in Krishna, Peninsular, and West coast river basins, whereas no such trend was found with

regarded to minimum temperature.

Dubey and Sharma (2018) used 19 climate extreme indices based on rainfall and temperature
data from regional climate models to analyze the historical and future climate predictions for
Banas river basin in Rajasthan. They observed a significant trend in the number of warm days
and nights, and a significantly decreasing trend in the number of cold days and nights. The total
annual precipitation and the number of days with precipitation intensity greater than 10 mm/day
and 20 mm/day in the basin have shown a decreasing trend, while consecutive dry days
demonstrate an increasing trend for the historical and future periods. Bisht et al. (2018a, b)
analyzed trends in rainfall and rainfall extremes at seasonal and annual scales of over 85 river
basins in India from 1901 to 2015. They found that rainfall and rainfall extremes showed an
increasing trend for most of the river basins. The Authors found that trends in rainfall and
rainfall extremes showed significant difference during pre and post urbanization. Based on the
aforementioned literature, it is clear that the patterns and variability rainfall characteristics have
been widely investigated at national and regional scales and have drawn different conclusions.
Some authors suggested that it is important to carry out trend analysis for rainfall characteristics
for a basin at regional level rather than at national level for making better decisions, while others

have not been so enthusiastic with the idea.
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2.3 Evaluation of NWP Model Forecasts

Increasing rainfall and extreme rainfall events are causing frequent floods in the Indian
subcontinent and coastal regions in particular are at high risk for tropical cyclones which form
over the BoB. Using NWP models will improve the forecast capability of rainfall and tropical
cyclones. WRF is the most commonly used NWP model for predicting the track and intensity
of tropical cyclones. In addition to the WRF model, several NWP models are also used for
forecasting rainfall. However, the NWP model rain forecasts are subject to three types of errors:
location, timing, and magnitude, which may limit their applicability for hydrometeorological
applications. Therefore, the skill of NWP model forecasts needs to be evaluated before using

them for any hydrometeorological application.
2.3.1 Prediction of Tropical Cyclones over Indian Region using WRF Model

The WRF model has excellent ability to forecast extreme weather events on a high-resolution
grid for the research and operational purposes (Moya-Alvarez et al. 2019). However, the ability
of the WRF model to predict weather events depends on the initial and boundary conditions,
representation of physical parameterization schemes, grid resolution, and geographical location
(Di et al. 2015). Accurate representation of cloud processes in NWP models is crucial for the
prediction of weather events, particularly for the track and intensity prediction of TCs.
Representation of cloud processes plays an important role for the production and distribution
of heat, mass, and momentum in the atmosphere in both horizontal and vertical directions based
on precipitation, winds, and turbulence. The representation of physical parameterization
schemes in NWP model is important, when the cloud processes and their effects are unresolved
by the model (Deshpande et al. 2012; Sandeep et al. 2018). In the past two decades, based on
several assumptions, researchers have developed a number of physical parameterization
schemes for the prediction of weather events. Among all the physical parameterization schemes,
Cloud Microphysics (CMP), Cumulus Parameterization Scheme (CPS), Planetary Boundary
Layer (PBL), radiation (longwave and shortwave), and land-surface schemes are being used for
weather predictions (Jandaghian et al. 2018). The cloud process in the model can be implicitly
treated by CPS and explicitly treated by CMP schemes. CPS reduces convective instability in
a model through the redistribution of temperature and moisture in a grid column (Wang and
Seaman 1997). CMP schemes represent cloud and precipitation processes (e.g. condensation,
nucleation, coalescence, phase changes, etc.) according to atmospheric conditions in terms of
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temperature, wind, and moisture. Both CPS and CMP schemes control the spatio-temporal
variations of rainfall and yield different profiles of moistening and heating in the atmosphere.
Without double counting the thermo-dynamical impact, both types of schemes represent the

convective activity (Deshpande et al. 2012; Sandeep et al. 2018).

Numerous studies have been conducted to assess the impact of physical parameterization
schemes on the prediction of track and intensity of TCs using WRF model. Among all schemes
in the WRF model, convective processes play an important role in the development of TCs and
boundary layer dynamics in intensification (Chandrasekar and Balaji 2012; Deshpande et al.
2012; Pattanayak et al. 2012; Raju et al. 2011). Microphysical schemes have significant impact
on the track prediction of TCs (Raju et al. 2011). Pattanaik and Rama Rao, (2009) found that
the movement of Nargis cyclone was captured well with a landfall error of 30 to 40 kilometers
(km) by WRF Single Moment 3-Class (WSM3) CMP scheme along with Grell-Deveyani (GD)
CPS, Yonsei University (YSU) PBL schemes. (Raju etal., 2011, 2012) conducted 11 sensitivity
experiments with different combinations of CPS, CMP, and PBL schemes to find a suitable
combination of physical schemes for the track and intensity prediction of Nargis cyclone. They
reported that Nargis cyclone was simulated well by Ferrier CMP scheme in combination with
Kain-Fritsch (KF) CPS, and YSU PBL schemes. The best set suitable schemes were further
used to predict multiple cyclones over the BoB. The experiments revealed that the best suitable
schemes predicted the track, intensity, and timing of landfall reasonably well with a mean track
error of 98 km at the time of landfall. Pattanayak et al. (2012) found that the track and intensity
of TC Nargis was simulated well by Ferrier CMP scheme along with YSU PBL, Simplified
Arakawa Schubert (SAS) CPS schemes. With the same CPS and PBL schemes, Kessler CMP
scheme provided better results for TC Vardah (Sandeep et al. 2018). Kanase and Salvekar
(2015) showed that WSM6 scheme in combination with Bettes-Miller-Janjic (BMJ) CPS and
YSU PBL schemes simulated better results for TC Laila. Based on the sensitivity experiments
conducted by Srinivas et al. (2013) and Lakshmi and Annapurnaiah (2016), the Lin scheme
improved the results for TCs Sidr, Nisha, Tane, Jal, Nargis, and Hudhud along with a
combination of Kain-Fritsch (KF) CPS and YSU PBL schemes. With the same combination of
CMP and PBL schemes, Choudhury and Das (2017) (Choudhury and Das 2017) suggested the
Goddard scheme and Ferrier scheme by Raju et al. (2011) and Reddy et al. (2014) for the
prediction of TCs. Osuri et al. (2012) and Mahala et al. (2015) reported that TCs over NIO were
simulated well by WRF Single Moment-3 (WSM3) scheme with the same CPS and PBL

schemes.
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Based on the previous studies, it may be difficult to identify a suitable microphysical scheme
for the prediction of TCs over NIO region. Therefore, it is necessary to conduct numerical
experiments to revalidate the suggested microphysical schemes for the prediction of TCs over

NIO region.
2.3.2 Verification of GFS Model Forecasts

Several studies examined the skill of rainfall forecast by various NWP models: these models
include Limited area Analysis and Forecast System (LAFS) (Bhowmik et al. 2007), the Global
Spectral Model (GSM) running at National Center for Medium Range weather Forecasting
(NCMRWF) (Mandal et al. 2007), the NCEP-GFS (Dube et al. 2014; Durai and Bhowmik 2014;
Durai et al. 2010; Mukhopadhyay et al. 2019; Prakash et al. 2016b; Sharma et al. 2015; Sridevi
et al. 2020, 2018; Ganai et al. 2021), the Regional Meso-Scale Weather Simulation Model
(Singh et al. 2014), and the UK Met Office Unified Model (Dube et al. 2014; Durai et al. 2015;
Satyanarayana and Kar 2016; Sharma et al. 2017; Ashrit et al. 2020) over the Indian region.

Durai et al. (2010) evaluated the skill of GFS five-day rainfall forecasts during the monsoon
season of the year 2008 against the observed rainfall based on gauge measurements and Kalpana
— 1 satellite using various accuracy and skill measures. They found that around the 25 mm/day
forecast threshold, expect for day-1 forecast, the bias for rainfall prediction moved from
overestimation to underestimation. When there were rainfall thresholds of more than 10
mm/day, the model's accuracy plummeted dramatically. Despite its bias in rainfall prediction,
the model was far better at predicting the presence of rain than the magnitude and location of
peak values. Dube et al. (2014) verified rainfall forecasts from GFS/T574 and NCMRWF
Unified Model (NCUM) for heavy rainfall observed over Uttarakhand region of India on June
17 -18, 2013 using Contiguous Rain Area (CRA) method. They reported that the NCUM model
captured the circulation features more realistically than GFS model prediction. However, the
NCUM model’s skill in forecasting rainfall was reasonable up to 3 days and forecast skill

decreased as lead time increased (Satyanarayana and Kar 2016).

Durai and Bhowmik (2014) verified the prediction skill of GFS T574 and GFS T1534 models
over the Indian region for the 2011 summer monsoon season. They reported that both the
models were capable of predicting rainfall, specific humidity, and lower tropospheric wind
circulation. However, the magnitude of error for these parameters increased as the forecast lead

time increased. Sharma et al. (2015) evaluated the medium range rainfall forecasts of
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NCMRWEF’s Global Forecast System (NGFS) over Indian regions during monsoon seasons
from 2010 to 2013 using feature based Contiguous Rain Area (CRA) method. The error in
rainfall forecast was decomposed into rainfall pattern, location, and volume. They reported that
the pattern error contributed more to rainfall forecast error than rainfall volume. Durai et al.
(2015) verified quantitative precipitation forecasts from four operational Ensemble Prediction
System (EPS) of ECMRWF, UKMO, NCEP, and Japan Meteorological Agency (JMA) over
India in the short to medium range time scales. They found that EPS could reproduce seasonal
mean rainfall over climatologically heavy rainfall regions. The forecast skill of NCEP and
UKMO appeared to be similar to the ensemble mean forecast of EPS. Prakash et al. (2016)
evaluated the skill of GFS T574 and GFS T1534 models over South Asia during peak monsoon
months. They reported that GFS T1534 performed marginally better than GFS T574. Similar
findings were reported for India by Sridevi et al. (2020, 2018). Mukhopadhyay et al., (2019)
verified the skill of GFS T1534 model over Indian subcontinent during monsoon seasons in
2016 and 2017 using averaged gauge observations from IMD and rainfall from TRMM satellite
data. The model accurately predicted moderate rainfall events. It overestimated rainfall events
with light intensity and underestimated rainfall with heavy intensity. The spatio-temporal
variations in rainfall were reasonably well captured. The authors suggested further development
in the model with adequate input in initial conditions and data to enhance the model's skill in
forecasting heavy rainfall events. Similar findings were reported by Ganai et al., (2021). Ashrit
et al., (2020) evaluated the capabilities of different numerical models from the NCMRWF in
forecasting extreme rainfall event across Kerala during August 2018. They reported that the
model forecasts were accurate for short-term lead times (up to 3 days) mainly in terms of timing

and to some extent in terms of rainfall intensity.

Based on previous studies, it is clear that the skill of rainfall forecasts from NWP models has
been verified across India, and that the models are capable of capturing rainfall over various
climatological regions. Though the models are able to capture rainfall, the accuracy in
predicting location and magnitude varies considerably which causes systematic bias in
forecasting rainfall. Hence, post-processing of rainfall forecasts to reduce bias may be required
for operational purposes. The most commonly used post-processing methods are Neural
Network (NN) method, Logistic Regression (LR), Bayesian Model Average (BMA), Model
Output Statistic (MOS) method, Running Mean (RM), etc. (Durai and Bhradwaj 2014; Fan and
Van 2011; Yang et al. 2020; Zarei et al. 2021). Although every bias correction method has its

advantages and disadvantages, there is no perfect method for bias correction. For instant, MOS
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requires long training periods from a static model, while NN and BMA require extensive
computational resources. Furthermore, NWP model centers make frequent changes to
numerical procedures, physical parameterizations and model resolutions (Durai and Bhradwaj
2014). To overcome the ever changing NWP model base, Ebert (2001) introduced the concept
of Frequency Matching Method (FMM). The method can apply dynamic bias correction and
requires fewer computational resources. Since 2004, FMM has been implemented to bias
correct GFS provided rainfall forecasts at NCEP in the United States (Zhu and Toth 2004).
Many studies have demonstrated that, FMM is good enough to bias correct rainfall forecasts
over the region of interest (Wang et al. 2020; Zhu and Luo 2015; Yang et al. 2020; Guo et al.
2021). Wang et al. (2020) suggested that applying bias correction to rainfall forecasts at basin
level may improve forecast accuracy. Hence, for any hydrometeorological applications, the
NWP model forecasts at the basin level need to be verified rather than at country level to use in

modeling applications.

2.4 Flood Forecasting and Warning System

Flood forecasting and early warning is one of the most effective flood risk management
strategies to minimize the negative impacts of floods (ESCAP 2017). The CWC is the nodal
agency in India that provides deterministic flood forecasts based on observed precipitation and
streamflow across the major rivers and their tributaries (CWC 2020). During extreme weather
events, local agencies use CWC water level forecasts to plan rescue operations (Harsha 2020).
However, water level estimates at a point were inconsistent and sparse over large areas,
resulting in uncertainty in estimating flood inundation area and flood depth, making rescue
operations difficult for local agencies. As a result, there is a need for integrated hydrologic and
hydraulic models to be developed with enough lead time to provide flood forecasts as well as

inundation extent and depth.
2.4.1 Integrated Hydrologic and Hydraulic Models

Integrating hydrologic and hydraulic models can be a powerful method of modeling extreme
hydrometeorological events using current computing resources (Leon et al., 2014; Sridhar et
al., 2019). Biancamaria et al., (2009) coupled an ISBA hydrologic model with a LISFLOOD-
FP hydrodynamic model to simulate runoff in an ungauged Ob River basin in the Arctic region.
The best modeling results were obtained with a river depth of 10 m and a Manning coefficient

of 0.015. Bonnifait et al., (2009) coupled n-TOPMODEL hydrologic model with a CARIMA
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one dimensional hydraulic model to reconstruct a flood event in the Gard region of France in
2002 for post-event surveys. They suggested that the coupled model was useful for critical
analysis and extrapolation of discharge rating curves. Schumann et al., (2013) integrated the
VIC model with LISFLOOD-FP for flood inundation forecasting over the Lower Zambezi
River in Africa. The model simulated inundation extent showed an agreement of 86% when
compared with the observed flood map. Grimaldi et al., (2013) proposed a hydrologic and
hydraulic model for a small and ungauged watershed using WFIUH hydrologic model and
FLO-2D hydraulic model. For peak flow estimation, the model was tested using an event-based
approach, a semi-continuous approach, and a fully-continuous approach. They found that the
fully continuous approach accurately predicted peak flows when compared to observed flows.

Nam et al., (2014) integrated the super-tank hydrologic model with the one-dimensional HEC-
RAS model to study Vu Gia-Thu Bon River in central Vietham. The model predicted flood
inundation depth and extent which agreed well with field observations. Nguyen et al., (2016,
2015) developed HiResFlood-UCI, an integrated hydrologic and hydraulic model for flash
flood modeling at decameter resolution by combining the NWS’s hydrologic model (HL-
RDHM) with the hydraulic model (BreZo). The model was able to produce spatially distributed,
high resolution flow information while maintaining hydrograph quality. Mai and De Smedt,
(2017) linked the WetSpa and HEC-RAS models for flood prediction in Vietnam. Hydrographs
were accurately predicted, with Nash-Sutcliffe efficiencies greater than 0.8. In particular, the
time of concentration and flow volumes of peak flows, were predicted accurately. They
suggested that the model was suitable for predicting inundation and assessing flood risks.
Duvvuri, (2019) integrated SWAT model with HEC-RAS model to generate flood inundation
maps in the flood prone areas of Cauvery river basin in India. The model was able to produce
spatially distributed high-resolution flood inundation areas. Loi et al., (2019) developed an
integrated hydrologic and hydraulic model based on SWAT and HEC-RAS to provide flood
forecasting and warnings in the Vu Gia — Thu Bon river basin, Quang Nam province, Vietnam.
The results showed that the model was able to predict the magnitude and timing of peak floods.
Sholichin and Qadri, (2020) integrated SWAT model with HEC-RAS to identify inundation
areas in the Bila river basin in Indonesia. The authors reported that the integrated model was
able to predict flood inundation areas. The flood inundation maps can be exported into Web-
GIS based platforms for visualization and dissemination of flood related information in real-

time.
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2.5 Flood Area Visualization and Public Dissemination Systems

Visualization and public dissemination system based on Web-GIS provides a graphical user
interface for accessing spatial data, performing spatial analysis, and visualizing web-services
through a web browser. Auynirundronkool et al. (2012) developed a method for automatic real-
time flood detection involving a data retrieval service, a flood Sensor Observation Service
(SOS) and a web-based flood detection service in a sensor web environment. The methodology
developed was tested in central Thailand. The results indicated that the proposed approach
could be useful for automatic instant flooding detection. Wan et al. (2014) developed a global
CyberFlood with cloud computing service integration and crowdsourcing data collection. The
model allows the public to update information on new flood events through smartphones or the
internet. It provides location-based flood alerts to the public and local agencies for planning
rescue operations. Horita et al. (2015) developed SDSS for flood risk management based on
Wireless Sensor Networks (WSN) and Volunteer Geographic Information (VGI) for the town
of Sao Carlos in Brazil. SDSS was able to provide valuable information by combining WSN

and VGI data for emergency agencies for rescue operations during floods.

Knight et al. (2015) developed a DST that helps operational users take better decisions during
extreme weather events. Flood information from LISSFLOOD-FP and SWAB models was
incorporated into DST tool. The user interface enables users to adjust the input parameters
according to the current situation to get flood information. Lagmay et al. (2017) developed a
Web-GIS interface based on mashups of freely available source code that provides real-time
information about natural disasters such as floods, tropical cyclones, earthquakes, tsunamis, and
volcanic eruptions. This tool is heavily used by the Philippine government to plan prevention
and mitigation measures when extreme events occur. Chang et al. (2018) developed an IHIP
that used machine learning, visualization, and system design techniques to create a user-friendly
web interface for improving online forecast capabilities and flood risk management in the
Tiwan City. The IHIP framework consists of five layers including data access, data integration,
servicer, functional subsystem, and user applications, and one database for flood prediction.
The IHIP provides information about rainfall and floods in real-time which helps the
communities in making better decisions during the floods. Mohanty and Karmakar (2021)
developed a WebFRIS for Jagatsinghpur district in India using various open source tools and
packages. The WebFRIS provides crucial information to town planners, water professionals,

local bodies, flood experts, and also public on flood risk management. In the above literature,
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it has been observed that open source based Web-GIS frameworks are widely used for

disseminating flood inundation areas.

2.6 Critical Appraisal of Literature Review

Changing climate has altered the frequency, magnitude, duration, spatial extent, and timing of
weather and climate extremes such as tropical cyclones, floods, and droughts. Rainfall is one
of the most important climate variables that varies both in space and time. Rainfall and rainfall
extremes in the Indian sub-continent are expected to be impacted by warming climate in future
(Ali et al. 2019). Recent studies by Bisht et al., 2018, Dubey and Sharma, 2018, Jain et al.,
2017, reported a significant increasing trend in rainfall extremes across India at national and
regional levels. However, the trends are not uniform across the country with regard to floods
and droughts (Ghosh et al. 2012). Floods are the most common natural disasters in India
causing significant damage to human lives and infrastructure. For instance, recent floods in
Hyderabad in 2020, Kerala in 2018, and Chennai in 2015 caused huge damage to humans and
property. Early information about floods will help the public and government officials to take
necessary action during extreme flood events. Flood forecasting and early warning system is an
effective tool to minimize the negative impact of floods (Harsha 2020). With advancements in
computational resources, an integrated hydrologic and hydraulic model can be a powerful
method in modeling such extreme hydrometeorological events (Sravani 2018). Members of the
general public and government officials will make better decisions during extreme events, if
information is available in real-time through Web-GIS based interface systems. Detailed
methodology is presented in the subsequent chapters based on the objectives proposed in

chapter-1 and the literature review of the proposed objectives.
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Chapter - 3 Methodology

3.1 General

Based on the objectives presented in the chapter — 1 and literature review in chapter - 2, the
overall research methodology is prepared which is shown in Figure 3.1. The overall
methodology is divided into five major components that include analysis of trends and patterns
in rainfall characteristics over the study area, forecasting rainfall using WRF model, bias
correction of NCEP-GFS (hereafter GFS) based rainfall forecasts, development of an integrated
hydrologic and hydraulic modeling system for forecasting floods, and development of an Web-
GIS based graphical user interface for visualization and dissemination of flood inundation

information.

Trends in rainfall and rainfall extremes (Consecutive Dry Days (CDD), Consecutive Wet Days
(CWD), annual total precipitation in wet days (PRCPTOT), annual count of days when rainfall
is greater than 10 mm (R10MM), greater than 20 mm (R20MM), greater than 40 mm (R40MM),
95" percentile of rainfall on wet days (R95PTOT), monthly maximum 1-day rainfall
(RX1DAY), and monthly maximum consecutive 5-day precipitation (RX5DAY)) are examined
using four different Mann-Kendall (MK) tests to study the trends and patterns in rainfall
characteristics and to identify critical areas that are prone to floods in the selected study area.

To forecast floods, rainfall forecasts from NWP models such as WRF and GFS have been used.
The mechanism used by WRF model for weather forecasting is shown in Figure 3.2. A simple
multiplication bias correction scheme is used to apply bias corrections to GFS rainfall forecasts.
The Bias corrected NWP model forecasts are given as input to the calibrated and validated
SWAT model to forecast streamflow with lead-time. The forecasted streamflow are given as
upstream boundary condition in HEC-RAS model to determine the flood inundation extent.

An integrated hydrologic and hydraulic modeling system is developed based on SWAT and 2D
HEC-RAS models to simulate floods using rainfall forecasts from NWP models. Geospatial
data such as Digital Elevation Model (DEM), LULC, and soil maps are required to set-up
SWAT model. The daily meteorological like rainfall, maximum, and minimum temperature are
used to simulate the streamflow. Uncertainty in Sequential Uncertainty Fitting — 2 (SUFI-2)
algorithm in the SWAT-CUP is used for calibration, validation, and sensitivity analysis. The

observed streamflow at various gauge stations is used to calibrate and validate the SWAT model
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on daily basis. Once the SWAT model calibration and validation is completed, the SWAT
model will simulate the streamflow for the selected extreme events. The simulated streamflow
will be given as upstream boundary condition for the generation of flood inundation extent. The
flood inundation maps are further exported into GeoServer to publish the layers in Web-GIS
platform. Two river basins (Nagavali and VVamsadhara) which are prone to frequent floods due
to heavy rainfall in the monsoon season and tropical cyclones in the pre- and post-monsoon

season are chosen as study areas for this research.
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Figure 3.1 Overall methodology of the research work
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Figure 3.2 Mechanism used by WRF model to forecast weather parameters
3.2 Calculation of Rainfall Extremes

The rainfall extremes play an important role in understanding their hydrological impacts in a
river basin. Based on the daily values of temperature and precipitation, the joint
CCI/WCRP/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI)
defined a total of 27 indices out of which 11 are for precipitation extremes and 16 for
temperature extremes to gain insight into the changes in extremes (Yang et al. 2016). Among
the 11 precipitation indices, 9 are selected to investigate the characteristics of rainfall extremes
over Nagavali and Vamsadhara basins. The rainfall extremes are calculated at various temporal
scales (i.e., monthly, seasonal, and annual) using RClimDex package in R developed and
maintained by Xuebin Zhang and Yang Fang at Climate Research Division (CRD) or ETCCDI
(Bronaugh 2019). It is the most commonly used package for calculating rainfall extremes. The
package also conducts simple quality control on input data before calculating the rainfall

extremes. The detailed description of rainfall extremes are presented in Table 3.1.
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Table 3.1 Selected list of rainfall extremes in the present study and their definitions (Source: http://etccdi.pacificclimate.org/list_27_indices.shtml)

Extremes | Units Definitions
CDD Day | Maximum length of dry spell, Maximum number of consecutive days with RR < 1 mm. Count the largest number of consecutive
days where RRij <1 mm
CwWD Day | Maximum length of wet spell, Maximum number of consecutive days with rainfall > 1 mm. Count the largest number of consecutive
days where RRij > 1 mm
PRCPTOT | mm | Total amount of rainfall in wet days. if i represents the number of days in j, then
I
PRCPTOT = Z RRj;
=1
R10MM | Day | Number of days when RR > 10mm. Count the number of days where RRij > 10mm.
R20MM | Day | Number of days when RR > 20mm. Count the number of days where RRij > 20mm.
RNNMM | Day | Number of days when RR > nnmm. Count the number of days where RRij > nnmm. (Where nn = User defined threshold)
R95PTOT | mm | Total rainfall when RR > 95p. Let RRwj be the daily precipitation amount on a wet day w (RR > 1 mm) in period I and let RRwn
be the 95th percentile of RR on wet days. If W represents the number of wet days in the period, then
w
R95p; = Z RRy; where RR;; > RR95
w=1
RX1DAY | Day | Maximum 1-day rainfall. The maximum 1-day values for period j are RX1DAY] = max(RRij)
RX5DAY | Day | Maximum 5-day rainfall. Let RRKj be the rainfall amount for the 5-day interval ending k period j. The maximum 5-day values for

period j are RX5DAY] = max(RRKj)

Note: *RRjj is the daily rainfall amount on the day i in period j. For RNNMM, a threshold of 40 mm is chosen, and the extreme is R40MM
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The data format for calculating rainfall extremes is presented in Table 3.2. For calculating
CDD, the software counts the number of consecutive days with rainfall less than 1mm. For
instance, CDD for the data provided in Table 3.2 is 4 days.

Table 3.2 Data format for computing rainfall extremes

Year Jday IMD Gridded Data
1901 1 0

1901 2 0

1901 3 0.7

1901 4 0

1901 5 3

1901 6 1.5

1901 7 2

1901 8 0

3.3 Trends in Rainfall and Rainfall Extremes

The most common method used for detecting trends in time series data is the original Mann-
Kendall (MK) test. The MK test has proven to be useful in determining significant trends in
hydrologic data at different probability levels (Yadav et al. 2014; Bisht et al. 2018a), which
assumes spatial and temporal independence in hydrological time series data (Adarsh and
Janga Reddy 2015; Deshpande et al. 2016; Dubey and Sharma 2018; Guhathakurta et al.
2015). It is well documented that the presence of either positive or negative autocorrelation
influences the significance of trend (Kumar et al. 2009). The original MK test assumes no
serial correlation in the hydrological time series data. However, most often, hydrological
time series data are autocorrelated and lead to a disproportionate false rejection of null
hypothesis (Hamed 2008; Hamed and Rao 1998; Yue et al. 2003). Similarly, the presence of
long-term persistence can lead to underestimation of serial correlation and overestimation of
significance of trends (Su et al. 2018). To overcome these effects, trend analysis is performed
in this research using four kinds of MK tests i.e., the original Mann-Kendall test (MK1),
Mann-Kendall test with trend-free pre-whitening (MK2), modified Mann-Kendall test
(MK3), and Mann-Kendall test with long-term persistence (MK4). The detailed description
of the four MK tests is provided in the following sections.

31



3.3.1 Mann-Kendall Test (MK1)

The original Mann-Kendall (MK) (Kumar et al. 2009) test is widely used for detecting trends
in a hydrological time series dataset. If x;, x,, X3, ... ... ... , Xn, 1S the time series of length n,
then the MK1 test statistics S is given by:

S = zn: zn: sign(xj — x;) (3.1)

i=1 j=i+1

Where, sign(xj — xi) =40 if (xj — xl-) =0 (3.2)

Null hypothesis(Hy): There is no trend in a hydrological time series dataset. Alternate
hypothesis(H,): There exists an increasing or decreasing trend in a hydrological time series

dataset. As S is normally distributed, the mean E(S) and variance of statistic S in eq. (3.1) is

given below:
ES)=0 (3.3
-1D@Zn+S
v(s) = nn-1)(2n+S) (3.4)
18
The MK standardized test statistics Z is given by:
(21 550
(V(S)2 (3.5)
Z=40 S=0
S+1 §<0
\ZORE

The negative values of S indicate decreasing trend and vice versa. The test statistic Z gives
Significance Levels (SL) for rejecting null hypothesis. Confidence Level (CL) for rejecting
the null hypothesis is given by:

CL=1-SL (3.6)
The magnitude of trend is determined by Theil-Sen approach (TSA) (Kumar et al. 2009). The

mathematical expression for TSA slope is given in eq. (3.7):

B = median [%] foralli<j (3.7)
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If the condition —Z is satisfied then H,, is accepted at a significance

k(1+%)

level of a, otherwise, H; is accepted.

3.3.2 Mann-Kendall Test with trend-free pre-whitening (MK2)

Yue et al., (2003) showed that there will be an increase (decrease) in S value when
autocorrelation is positive (negative) which is underestimated (overestimated) by the original
variance V(S). Thus, when trend analysis is conducted for the present data using MK1, it will
show positive or negative trends when actually there is no trend. So, trend free pre-whitening
treatment is adopted where lag-1 serial correlation components are removed from the series
prior to applying MK test for trend detection. The following steps are used to determine trend
analysis using MK-2 test. Calculate lag-1 (k = 1) autocorrelation coefficient (r;) using eq.
(3.8):

1 _ _ _
— I = X) (X — %) 3.8
T = n—k (3.8)
1 _
- N1 (X — X)?
If the condition *‘Zn_z) <n < % 2 s satisfied, then the series is assumed to

be independent at 10% significance level and there is no need of pre-whitening. Otherwise,

pre-whitening is required for the series before applying MK1 test.

Eq. (3.9) is used to remove the trend in time series data to get detrended time series. The

value of £ is obtained from eq. (3.7):

x{ = x;— (B x1) (3.9)
Eq. (3.8) is used to calculate lag-1 autocorrelations for detrended time series given by eq.
(3.9). To remove the lag-one autoregressive component from the detrended series to get a

residual series will be the following expression:

Yi =% =T XXy (3.10)

Yet again, (8 x i) value is added to the residual series as follows:

yi=yi+ (B x0D) (3.11)
MK1 test is applied to the blended series Y; to determine the significance of the trend.
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3.3.3 Modified Mann-Kendall test 3 (MK3)

Sometimes, removing lag-one autocorrelation is not enough for many hydrological time
series datasets. Hamed and Rao, (1998) proposed a modified Mann Kendall test where the
effect of all significant autocorrelation coefficients are removed from a data set. The

modified variance of S is used i.e., V(S)* instead of V(S) which is given as follows:
V(S)" = V(S)% (3.12)
Where n*is effective sample size. Hamed and Rao (1998) proposed an equation for the

calculation of nﬁ which is given below:

n o 2 - , .
P o g Z(n—l)(n—L—l)(n—l—Z)ri (3.13)

n*

Where n is actual number of observations, r; is lag-i significant autocorrelation coefficient
of rank i of time series. After calculating V(S)*, substitute it in place of V(S) in eq. (3.4)

when calculating Z from eq. (3.5).

3.3.4 Mann-Kendall test with long-term persistence (MK4)

In addition to the lag-one autocorrelation i.e. short-term persistence, the presence of Long-
Term Persistence (LTP) or the Hurst Phenomenon (Hp) (Hurst, 1951) can considerably
influence the significance of trends in hydrological time series dataset. To overcome LTP,
Mann Kendall test with LTP is taken into consideration (Hamed 2008). The following steps
are used to determine trend analysis using MK4 test. The procedure for calculating Hp is
given as follows: A new time series x; is calculated from eq. (3.9). Using the ranks (R;) of
the detrended time series x;, Z variate is calculated as follows:

7, =gt (nR—-I-l) (3.14)

Where n is observation size, 1 is inverse of standard normal distribution function with zero
mean and standard deviation is 1. For a given H, the elements of Hurst matrix are determined

as follows:
Co(Hp) =[pj-1] fori=1inj=1n (3.15)

Where p, represents lag-l autocorrelation coefficient which is given below:

pl=%[|1+1|2Hp_2|1|2Hp+|l—1|2Hp] forl > 1 (3.16)
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To calculate the exact value of H,,, the maximizing likelihood function is used as given below

-1
Z"Co(Hp)] Z
2y,
Where transpose of Z (Z7) is obtained from MK-1 test, C,(H,) is the Hurst matrix, y,

(3.17)

1
logL(Hp) = —Elog|Cn(Hp)| —

represents the variance. Eq. (3.17) is solved for different values of H ranging from 0.5 to 0.98
with 0.01 step interval and the H,, value which produces maximum L(H,,) detected, as the

answer.

The mean and Standard Deviation of H,, in terms of n (Hamed 2008) are as follows:

Hi, = 0.5 — 2.87n709067 (3.18)

0y, = 0.77654n"%5 — 0.0062 (3.19)

H —_
Then, calculate Z, as pa—“H” for a significance of trend at 10% significance level. For
Hp
significant H, calculate the modified variance for S, recommended by Kumar et al (2009)

/ 2 =1l —pli=1ll—plj—k|l+pli—k
V(s) =zz_sm_1<plj I pll. I. plj — k| +pli I) (3.20)

Where p,; is calculated from eq. (3.16). As the modified variance (V(S)H') is a biased

estimator, correction is needed for bias as follows:
V(S) = V(S)H' x b (3.21)

b=ay+aH,+ aszz + a3Hp3 + (7L4,Hp4 (3:22)

Where, a,, a4, a,, as, and a, are coefficients which depends on the number of observations
given by Kumar et al (2009). The modified variance V(S)Hp' obtained from eq. (3.20) is
substituted in place of V(S) eq. (3.4) in MK1 test. The Mann Kendall Z statistics are tested

for significance levels with the threshold values.

3.3.5 Pettit’s Test

Pettit’s test is commonly used for a significant change point in time series data. It tests Ho:
The T variables follow one or more distributions that have the same location parameter (no
change), against the alternative hypothesis: a change point exists. The non-parametric
statistic is defined as:
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Ky = max|Ut,T| (3.23)

Where, Uyr = Zie1 Xj—ee159n (Xi — X)) (3.24)
The change point in the time series is located at K, provided that the statistic is significant.
The significance probability of K is approximated for p < 0.05 with the following equation:

—6 K?

3.3.6 Software Packages Used for Trend Analysis

Two open source packages in R Version (3.5.3) namely “modifiedmk” (Patakamuri and
O’Brien 2019) and “HKprocess” (Tyralis 2016) are used to perform MK tests. The
“modifiedmk” is used to perform MK 1, MK2, and MK3 tests and Sen’s slope test. Another
package “HKprocess” is used to perform MK4 test. To get the spatial patterns of trends from

point observations, kriging interpolation is applied using geospatial software.

3.4 Rainfall Forecasts from Numerical Weather Prediction (NWP) Models

The NWP modeling is a method of forecasting the future atmospheric conditions by solving
a set of mathematical equations that describe the physical phenomenon of the atmosphere.
The meteorological variable in the atmosphere change over time, so if the initial conditions
are known, the governing equations in NWP models can be solved and new values of
meteorological variables can be obtained. The simplest form of NWP model is given as

follows:

AA
~=F@) (3.26)

Where, AA gives the change in forecast variable at a particular location in space, At represents
the change in time, and F(A) represents the factors that are responsible for changes in the
values of A. The mathematical expression for finding the forecast value of the meteorological

variable is given in the following equation:
AForecast —  pinitial 4 F(A) (3.27)

Eqg. (3.27) means that, the forecast value of any meteorological variable can be estimated by
finding their initial values and then adding all the factors that are responsible for changes in
the meteorological variable over a period of time. With advancements in computational

power, most of the NWP models are able to provide rainfall forecasts with a lead time of 1
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to 15 days. Accurate rainfall forecasts from NWP models will help in reducing the
uncertainty in streamflow forecasts. However, the rainfall forecasts from NWP models are
subjected to three types of errors (i) Location, (ii) Magnitude, and (iii) Timing, which may
limit the usefulness for streamflow forecasting. Therefore, the skill of NWP model forecasts

needs be evaluated before using them for any hydrometeorological applications.

3.4.1 Evaluation of WRF Model Forecasts

Statistical analysis is the most common method to find the uncertainty in model forecasts
with respect to observations. The Direct Positional Error (DPE) has been calculated by using
Haversine formula which gives the geographical distance between two points on a sphere.

The mathematical expression for Haversine for any two points on a sphere is as follows:

d
Haversine (;) = haversine (9, — @;) + cos(@,) cos(@,) haversine(1, — ;) (3.28)

Where, haversine is the haversine function which is given as follows:

0
haversine (8) = sin? (E) (3.29)

Where, d is the distance between the two points, r is the radius of the earth (6378 km), @,
and @, are the latitudes of point2 1 and 2, 1, and A, are longitudes of points 1 and 2. The

value of d in eq. (3.28) can be obtained by using the following equation:

d = 2rarcsin (\/haversine (@, — ©,) + cos(@,) cos(®,) haversine(A, — /11)) (3.30)

Mean Sea Level Pressure (MSLP) and Maximum Sustained Wind (MSW) are measured at
each time step and evaluated against IMD observations. The Mean Absolute Error (MAE),
Mean Square Error (MSE) have been calculated with respect to IMD observations. MAE is
an average prediction error that is used to measure the forecast accuracy. MSE is a measure
to determine the quality of a forecast with a positive value. If the value of MAE and MSE
are close to zero, the quality of the forecast is better. The Skill Score (SS) of DPE, MSLP
and MSW have been calculated with respect to reference forecast. The mathematical
expressions for the MAE and MSE, SS for MAE, MSE and DPE are as follows:

n

1
Mean Absolute Error (MAE) = HZ |P; — Pl (3.31)
=1

i
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n

1
Mean Square Error (MSE) = HZ (P, — P,)? (3.32)
i=1
MSEg; i
Skill Score (SS;) = 1 — ———mulation (3.33)
MSEReference
DPEg; -
Skill Score (SSppy) = 1 — ——mulation (3.34)
DPEReference

In the above equations, P is simulated value of parameter, P, is observed value of parameter,
and n is number of observations. SS is the relative accuracy score of a forecast over a
reference forecast. The reference forecast has been chosen based on the numerical
experiments conducted by Srinivas et al. (2013). By conducting 65 numerical experiments,
Srinivas et al. (2013) suggested that Lin scheme provided better results for track and intensity
prediction of 21 TCs over BoB. Hence, sensitivity experiments using Lin scheme considered
are as a reference forecast and the skill score for all the other microphysical schemes are

calculated. Positive values of SS indicate that the model is more skilled and vice-versa.
3.4.2 Evaluation of GFS Rainfall Forecasts

The verification of GFS model rainfall forecasts are carried out against IMD gridded rainfall
data at the same resolution (0.25° x 0.25°). Model performance is evaluated using several
accuracy and skill measures (Broorks et al. 2017) for day-1 to day-5 forecasts of 24-h

accumulated rainfall over Nagavali and VVamsadhara basins.

3.4.2.1 Statistical Metrics

Statistical metrics such as CC, RMSE, ME, and BIAS are used to quantify the difference
between GFS rainfall forecasts and observed data. CC refers to the degree of linear agreement
between the forecasted and reference datasets. The absolute average error is measured using
RMSE, which gives more weight to larger errors. ME refers to the averaged magnitude
differences between the forecasted and reference datasets. Bias measures the average error
trend in forecasted rainfall relative to observed rainfall. The mathematical equation for CC,
RMSE, ME, and RBIAS are given as follows (Prakash et al. 2016a):

Y (0;-0)(Si—9)

cC =
\/z;;lcoi— 0)2 Jz’{;l(s— 5?2

(3.35)
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i

1 n
RMSE = jﬁz =1(si — 0))? (3.36)

BIAS = E=BC 90 100 (3.37)
1 n
ME = —z S, — 0,) (3.38)

Where, O is the observed rainfall data, S is the GFS forecasted rainfall data, O is the mean
of observed rainfall, S is the mean of the forecasted rainfall, and n is the total number of

observations.

3.4.2.2 Contingency Statistics

Due to the high spatial and temporal variability of rainfall, the standard method proposed by
World Meteorological Organization (MWO) is insufficient for the verification of rainfall
forecasts provided by NWP models (WMO 1977). For measuring the skill of the NWP model
for rainfall forecasts, contingency statistics based on frequency of occurrence are more
appropriate (Durai et al. 2010). Contingency statistics are used to evaluate the GFS model’s
skill to distinguish between dichotomous estimation. The dichotomous estimation will return
‘Yes’ if the model predicts rainfall and ‘No’ if there is no rain. A threshold value is always
used to distinguish between rain and no-rain events. Therefore, a threshold of 1 mm/day is
considered. The contingency statistics used in the present study are POD, FAR, CSI, and
TSS. POD measures the fraction of observed rain events that are correctly forecasted by the
model. FAR indicates the fraction of forecasted rain events that are observed to be no-rain
events. CSI measures the fraction of rainfall events that are correctly diagnosed by the model.
TSS measures the ability of the model to distinguish between the occurrence and non-
occurrence of an event. The mathematical equations for POD, FAR, CSI, and TSS are given
as follows (Sharma et al. 2021).
H

POD = (3.39)

FAR = HL-I-F (3.40)

CSI = ﬁ (3.41)

7SS = (HXCN)—(M XF) (3.42)

~ (H+M)x (F+CN)
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Where, H is the number of observed rain events that are correctly forecasted, F is the number
of rainfall events forecasted but not detected, M is the number of observed rainfall events
that are not forecasted, CN is the number of no rainfall events in both observed and forecasted
data. The detailed information aboutH, F, M and CN are presented in Table 1. The rainfall
threshold for calculating these statistics is set at 1mm/day. The day is considered to be dry if

rainfall is less than 1 mm/day. A wet day is one in which the rainfall exceeds 1 mm/day.

Table 3.3 The contingency classification used to verify the forecasts by calculating POD,
FAR, CSI, and TSS with a threshold of 1 mm/day

Observed
Forecast i i
Rain No Rain
Rain Hit (H) False (F)
No Rain Miss (M) Correct Negative (CN)

3.4.2.3 Error Decomposition

Error decomposition analysis is used to evaluate the error components in precipitation
estimates (Tian et al. 2009). The method divides mean error into three independent
components: hit bias (HB), missed bias (MB), and false bias (FB). When the mean error is
calculated across the entire dataset, it does not provide detailed information about the source
of the error. When the mean error is decomposed, the three possible error sources can be
distinguished. When rain events are correctly forecasted by GFS model, but rainfall intensity
Is incorrectly estimated, HB occurs. MB denotes the error caused by rain events that are
incorrectly forecasted as no-rain events. The error caused by no-rain events that are
incorrectly forecasted as rain events is referred to as FB. The value of HB can be either
positive or negative, while MB is always negative and FB is always positive. The

mathematical expressions for HB, MB, and FB are given as follows (Deng et al. 2018):

1 H
HB = —Z (S — 0,) (3.43)
n h=1
1 M
MB = — —Z 0, (3.44)
Ntam=1
1 F
FB = —Z 5 3.45
LS (3.45)



Total Bias (TB) or ME can be expressed as follows:

TB or ME = HB + MB + FB (3.46)

Where, n is the total number of observations, H is the total number of hit precipitation events.

M is the total number of missed precipitation events, and F is the total number of false events.

The sum of HB, MB, and FB is always equal to mean error. As MB and FB always have
opposite signs, they may cancel each other out, resulting in a smaller mean error than
individual components. Therefore, breaking down the mean error into independent
components may aid us in better understanding the error nature of forecasted rainfall and the

uncertainties of retrieval processes.

3.4.2.4 Bias Correction

Accurate rainfall estimates have the potential to reduce uncertainty in hydrological
simulations. GFS rainfall forecast bias is corrected using a simple multiplication bias
correction scheme. The Bias Factor (BF) is calculated as the ratio of gridded rainfall to GFS
rainfall forecasts. To obtain bias corrected rainfall estimates, GFS rainfall forecasts are
multiplied by BF. The mathematical expression for calculating BF is given in eq. (3.47)
(Lekula et al. 2018):

=1 0;

n
i=1Si

BF = (3.47)

Where, i is the grid location and n is the total number of grids analyzed. Following bias
correction, SS of BIAS, RMSE, and ME are calculated with respect to the reference value to
find if there is any improvement in the model forecast. The mathematical expressions are
given below for calculating SS for BIAS, RMSE, and ME:

BIASafter bias correction

SSpias =1 — (3.48)

BIASbefore bias correction

RMSEafter bias correction

SSpusy = 1 (3.49)

RMSEbefore bias correction

MEafter bias correction (350)

SSME == 1_

MEbefore bias correction
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3.5 Soil and Water Assessment Tool (SWAT)

Soil and Water Assessment Tool (SWAT) model works on a daily time step continuous
simulating model for a long period. The model is a computationally efficient, physical based
model and capable of simulating high-level spatial details by dividing the watershed into
smaller sub-watersheds (Arnold et al. 2012). The HRU’s are the percentages of sub-
watershed area comprising homogeneous land use, management, and soil characteristics.
SWAT model allows users to estimate the anticipated scenarios of a watershed by using
different climate data and LULC patterns as inputs. In addition, it is capable of assessing the
variability in stream flow by considering the future projected climate variables. SWAT model
requires daily meteorological data i.e., either from a measured data set or generated by a
weather generator model. The water balance equation, which governs the hydrological

components of SWAT model, is as follows:

t
SWy = SWy + Z(Rdayi - qurfi —Eq — Wseepi - ngi) (3.51)

i=1
Where, SW;; is soil water content at the end of the day (mm), SW, is the amount of initial
soil water content on day i (mm), t is the time in days, R,qy,; is the amount of precipitation
on day i (Mm), Qg s; is the amount of surface runoff on day i (mm), E,; is the amount of
evapotranspiration on day i (mm), Wi,y is the amount of water entering the vadose zone

from the soil profile on day i (mm) and Q,,; is the amount of return flow on day i (mm).

3.6 Hydrological Engineering Centre - River Analysis System (HEC-RAS)

HEC-RAS is an integrated software designed to perform one-dimensional (1D), two-
dimensional (2D), and combined one-dimensional and two-dimensional (1D/2D) hydraulic
calculations for a full network of natural or constructed channels, overbank or floodplain
areas, levee protected areas; etc. HEC-RAS model performs 1D and 2D computations using
St. Venenat equations of conservation of mass and conservation of momentum. 1D model
solves St. Venenat equations along one dimension, while 2D model solves St. Venenat
equations in two dimensions. 1D modeling can be difficult in some rivers due to certain
topographic and hydraulic features. These features include undefined boundaries between
channels and overbanks, high-gradient flows in off-channel storage areas, unclear flow

directions, flow direction that changes significantly, and river bends. The use of 2D modeling
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will overcome the drawbacks of 1D modelling. HCE-RAS 2D modelling comprising several
components including terrain data, LULC, 2D computational mesh, and unsteady flow data.
2D model performs the calculations based on Shallow Water Equations (SWE) or Diffusive
Wave Equations (DWE). SWEs are also called as Navier-Stokes equations and are derived
from conservation of mass as well as momentum equations. The mathematical expression for
the SWE is as follows:

ou ( ou 617) B gaH (62u 0%v

M (W& )2 & gu, 2y 3.52
ot T " ax TV ax ax 6x2+6x2> G+ fo (3.52)

ou . N 9 v : . oH .
Where, a—lt‘ is local acceleration with time, u ﬁ +v i is advective acceleration, g = is

2 2

hydrostatic Pressure, v; (37"‘ a—x’;) is viscosity, csu is bed friction, and fv is Coriolis

Effect. 2D DWE is the default option in HEC-RAS because it allows the computations to run
faster and with greater stability. For DWE, the bottom fiction is equal to the pressure gradient.
The water surface slope is balanced by the friction slope. This means the local and advective
acceleration, viscosity and Coriolis Effect are not considered. The mathematical expression

for DWE is as follows:

0H
ga + cu= 0 (3.53)

3.7 Flood Frequency Analysis

Flood Frequency Analysis (FFA) is a technique used by hydrologists to predict flow values
corresponding to specific return periods. FFA uses annual peak flow data to calculate
statistical information such as mean, standard deviation and skewness for creating frequency
distribution graphs. Several statistical distributions are available for FFA such as Normal,
Log-Normal, Pearson, Log-Pearson, Gumbel, Exponential, and Weibull. Once the best
distribution is selected, flood frequency curves are plotted. The flood frequency curves are
then used to estimate the design flow values corresponding to specific return periods. In the
present research, four 2-parameter distributions, namely, Log-Pearson Type-Ill, Log-
Normal, Weibull, and Gumbel are used to calculate the return periods. The mathematical

expressions for the distributions are as follows;
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Log-Pearson 1 yWoi-1ev/(o*n)

Type - I Ol o) = o i r(Y,) .
Log-Normal £l o) = J;Tiexp {— W} (3.55)
Weibull £, Ol o) = ai 2_1 exp [— (%)0] (3.56)
Gumbel £ Ol o) = %exp [(%) ~exp (% ;” )] (3.57)

Where, y is flood discharge values, u is the mean, and o is the standard deviation.

3.8 Development of Web-GIS based User Interface

The development of Web-GIS based user interface systems for flood visualization includes
the use of various design and programming languages, as well as the use of mapping libraries,
frameworks, GIS software, and web servers. In the current research, programming languages
includes HyperText Markup Language (HTML), Cascading Style Sheet (CSS), and
JavaScript (JS) are used. For mapping libraries and web servers, OpenLayers and GeoServer

are used.

HTML is standard markup language that web browsers use to interpret and compose texts,
images, and other material into visual and audible web pages and web applications. Default
characteristics of every item of HTML markup are fed into the browser and these
characteristics can be altered or enhanced by the use of CSS. Inclusion of CSS defines the
look and layout of content. HTML can embed programs written in a scripting language such
as JS which affect the behavior and content of web pages. Web browsers receive HTML
documents from a webserver or from local storage and render them into multimedia web
pages. The example scripts of HTML, CSS, and JavaScript used in the present research are

shown in Figures 3.3, 3.4, and 3.5 respectively.

OpenLayers is a widely used open source JS mapping library for displaying map data in web
browsers. It provides an API for building rich web-based geographic applications similar to
Google and Bing maps. OpenLayers makes it easy to put a dynamic map on any web page.

It can display map tiles, vector data, and markers loaded from various sources such as OSM,
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MapBox, GeoServer, MapServer etc. The example script of OpenLayers is shown in Figure

3.6.

html

charset="utf-8"
Real-time Flood Forecastig

name="v
content

rel="s
rel='
rel="s

target="_blank
ITW" style="width: 10

Figure 3.3 HTML script for Web-GIS based user interface system development

html,
body {
height: 1eevh;
padding: ©;
margin: ;
font-tamily: sans-serif;
font-size: small;
h
ttheader {
padding: 1@px;
background-color: WMbei
h
#map {
width: 98.7vw;
height: 8evh;
h
#footer {
background-color: Mbisque;

¥

Figure 3.4 CSS script for designing the appearance of Web-GIS based user interface system

45



() 1

fullScreenContraol ol.control.FullScreen();
zoomSliderContraol ol.control.Zoomslider();
scalelLineControl = ol.control.ScaleLine();
updatelLegend = resolution

graphicUrl = wmsSource.getlLegendUrl(resolution);

img = document.getElementById('legend');

img.src = graphicurl;

ol .control.MousePosition

map =
target: "map’,

keyboardEventTarget: document,
controls: ol.control.defaults().extend(
fullScreenControl,

scalelLineControl,
zoomSliderControl
)3
layers: |
ol.layer.Group({
title: 'Base maps’,
layers: [

Figure 3.5 JavaScript to add the content to Web-GIS based user interface system

layers: [
ol.layer.Group({
title: maps ',
layers: [
ol.layer.Group({

title: 'Bing :
type: 'ba
combine:
visible: s

layers: |
ol.layer.Tile({
source: ol.source
key: "a Fj Eg
imagery

Figure 3.6 OpenLayers script to import data to Web-GIS based user interface system
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GeoServer is an open-source server written in Java that allows users to share, process and
edit geospatial data. Designed for interoperability, it publishes data from any major spatial
data source using open standards. GeoServer has evolved to become an easy method of
connecting existing information to virtual globes such as Google Earth as well as to web-
based maps such as OpenLayers, Google Maps and Bing Maps. GeoServer functions as the
reference implementation of the Open Geospatial Consortium Web Feature Service standard,
and also implements the Web Map Service, Web Coverage Service and Web Processing
Service specifications. GeoServer reads a variety of data formats, including PostGIS, Oracle
Spatial, ArcSDE, MySQL, Shapefiles, and GeoTIFF etc. Through standard protocols it
produces KML, GML, Shapefile, GeoRSS, PDF, GeoJSON, JPEG, GIF, SVG, PNG and
more. In addition, one can edit data via the WFS transactional profile (WFS-T). GeoServer
includes an integrated OpenLayers client for previewing data layers. In the present research
work, GeoServer is used to publish flood inundation maps on a web interface. GeoServer

interface with various layers used in the present research work is shown in Figure 3.7.

. ). Geoserver Logged in as admin. | ] Logout
h Layer Preview I

About & Status

List of all layers configured in GeoServer and provides previews in various formats for each.
1 Server Status
GeoServer Logs << < 1 |> >> Results1to?7 (outof 7items) , Search
25| Contact Information
@ About GeoServer

Type Title Name Common Formats All Formats

8 Mosaiccog C0G:Mosaiccog Openlayers  KML Select one v
Data

(5] Layer Preview Nagavali-Boundary-line NV_Test:Nagavali-Boundary-line Openlayers GML KML Select one v
Workspaces

Stores
Layers & Nagavali_FIM NV_Test:Nagavali_FIM OpenLayers  KML Select one v
@l Layer Groups

D Styles Nagavali_streams NV_Test:Nagavali_streams Openlayers GML KML Select one v
Services
& wMTS
i WCs B Vamsadhara_FIM NV_Test:Vamsadhara_FIM Openlayers  KML Select one v
i wrs
& wMs

Vamsadhara-Boundary-line NV_Test:Vamsadhara-Boundary-line OpenLayers GML KML Select one v

Vamsadhara_Streams NV_Test:Vamsadhara_Streams Openlayers GML KML Select one v

Settil
ettings << (< 11> [ >> Results 1to7 (out of 7 items)

Figure 3.7 GeoServer interface with various layers used in the present research work

3.9 Procedure for Automation of the Research Work

The overall methodology includes downloading GFS forecasts, extraction of rainfall
forecasts over the study area, bias correction of GFS rainfall forecasts, feeding rainfall data
into SWAT model to obtain discharge hydrograph, assimilating simulated discharge
hydrograph as upstream boundary condition in 2D HEC-RAS model to get flood inundation
extent and depth, and finally uploading flood inundation maps into Web-GIS based user
interface system automated using R and Python languages. The flowchart for the automation

of research work is shown in Figure 3.8.
47



Download GFS Data

Pre-Processing of GFS
forecasts

A 4

Extraction of Rainfall
data

!

Bias Correction of Rainfall
Forecasts

\ 4

Converting Rainfall data into SWAT
format

A 4

Calibrated SWAT Model

\ 4

SWAT Simulated Streamflow

Y

Calibrated HEC-RAS Model

A\ 4

Flood Inundation Extent

A 4

Data Upload to Geo-server

v

Publishing the data in Web-
GIS Interface

Figure 3.8 Methodology for the automation of the proposed research work

3.10 Closure

This chapter describes the overall methodology for developing an integrated hydrologic and

hydraulic model based on SWAT and HEC-RAS for preparing flood inundation maps for the

study river basins. The flowchart for the prediction of weather parameters using WRF model

is given. The procedure for calculating rainfall extremes from daily time series data, trend

analysis in rainfall and rainfall extremes, evaluation of NWP model forecasts, description of
SWAT and HEC-RAS models to simulate floods and flood inundation extent, and flood

frequency analysis for the calculation return periods, has been explained. Programming

languages, mapping libraries, and web servers required to develop Web-GIS based user

interface system have been explained. The flowchart for the automation of overall

methodology is given.
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Chapter - 4 Study Area and Database Preparation

4.1 Study Area

The selection of the study area is important for evaluating the efficient performance of the
proposed methodology. The Nagavali and Vamsadhara river basins are selected in the present
study. Location map of the study area is shown in Figure 4.1. These two river basins plays
an important role in meeting irrigation and water supply demands in south Odisha and north
Andhra Pradesh. The Nagavali and Vamsadhara rivers are two independent, adjacent and
interstate eastern flowing rivers located between latitudes of 18° 10 to 19° 45 N and
longitudes of 82° 54 to 84° 20 E. Both the rivers originate at Thuamul Rampur block of
Kalahandi district of south Odisha, flow through nine districts and drain into the Bay of
Bengal (BoB) at Bontala Koduru and Kalingapatnam in northeast Andhra Pradesh,
respectively. The total length of Nagavali river from headwaters to its mouth in the Bay of
Bengal is approximately 256 km, with a catchment area of 9510 square kilometers (sg.km),
and Vamsadhara river is about 254 km, with a catchment area of 10830 sg.km. Annual
rainfall ranges between 1200 and 1400 mm in both basins, with average minimum and
maximum temperatures of 8 °C and 43 °C, respectively.

83°0'0"E 53"39‘0 "E 84°0'0"E
L L

19°30'0"N
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19°30'0"N

AN 7
Moy L

h S J -E r4
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< i E .3 Lo

K India 3 a g
~— 3 ® = 2
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1 >
fj{\m‘ ’ - g
© = [ ©
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= @
3
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\ 2 Y
\ - 2 =
. h
3
O IMD Grid Pgints === Mahendra Tanaya River Nagavali Basin
Harabhangi River i T T T
——— Nagavali River - Vamsadhara Basin 83°0'0"E 83°30'0"E 84°0'0"E
Jhanjavati River
! Suvarnamukhi River Vattigeddavagu River 40 80 160 KM
Vamsadhara River Vegavati River | I |

Figure 4.1 Geographical Location of the Nagavali and Vamsadhara River Basins, India
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The Nagavali basin has elevations ranging from 0 to 1634 m, while the Vamsadhara basin
has elevations ranging from 0 to 1505 m. The people in the catchment area rely primarily on
agriculture. Paddy, cotton, red gram, sugarcane, groundnut, and sesame are among the crops
grown in the basins during both Kharif and Rabi seasons. The field visit photos which shows

the LULC, dam site, water depth measuring device are shown in Figure 4.2.

4.2 Data Used

The input data used in the present study includes hydrometeorological data and geospatial
data. Details about the data which includes spatial resolution, organization name, and web
source are given Table 4.1. The majority of the spatial, rainfall and temperature data used in
the present research are freely available to the public. The observed streamflow and water
levels are obtained from the Mahanadi & Eastern Rivers Organization (M&ERO),
Bhubaneswar, India. The detailed explanation of the data used in the present research is
described in the following sections.

Figure 4.2 Field observation photos of Nagavali and Vamsadhara basins
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Table 4.1 Details of the datasets used in the present research study

Spatial Organization
Dataset ) Web Source
Resolution Name
Rainfall 0.25° x 0.25° https://www.imdpune.gov.in/Clim
IMD Pred LRF New/Grided Data D
Temperature 1°x1° ownload.html
Mahanadi & Eastern Rivers
Stream Gauge ) o
pata | CWC, India Organization (M&ERO),
ata
Bhubaneswar.
https://rda.ucar.edu/datasets/ds083
FNL Data 1°x 1° NCEP - FNL o
GFS Rainfall and
https://rda.ucar.edu/datasets/ds084
Temperature 0.25° x 0.25° | NCEP - GFS y
Forecasts =
SRTM DEM 30mx30m SRTM https://earthexplorer.usgs.gov/
https://bhuvan-
Land Use Land i . .
1:250k NRSC appl.nrsc.gov.in/thematic/themati
Cover (LULC) _
c/index.php
) https://www.isric.org/explore/soil-
Soil Data 1 km x 1 km ISRIC

geographic-databases

4.2.1 HydroMeteorological Data

Hydrometeorological data include rainfall, temperature, and streamflow. IMD provides daily
rainfall (0.25° x 0.25°) records for a period of 120 years (i.e., 1901-2020) and temperature
(1° x 1°) records for a period of 70 years (i.e., 1951-2020) in the gridded format. The average

annual rainfall over Nagavali and Vamsadhara basins are 1230 mm and 1260 mm,

respectively for 120 years. In both basins, the maximum temperature ranged between 20 °C

to 43 °C and the minimum temperature ranged between 8 °C to 30 °C for 70 years. There are

no missing records in the daily rainfall and temperature records. Rainfall data has been
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https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://rda.ucar.edu/datasets/ds083.2/
https://rda.ucar.edu/datasets/ds083.2/
https://rda.ucar.edu/datasets/ds084.1/
https://rda.ucar.edu/datasets/ds084.1/
https://earthexplorer.usgs.gov/
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://www.isric.org/explore/soil-geographic-databases
https://www.isric.org/explore/soil-geographic-databases

verified with the rain gauge data provided by M&ERO and a good correlation of 0.79 is found
between them. The details of the gauge data are given in Table 4.2.

The gauge data over a period of more than 25 years for both basins is obtained from M&ERO.
Observed streamflow and water level data are provided by gauge stations at Srikakulam in
the Nagavali basin and Gunupur, Kashinagar in the Vamsadhara basin. SWAT model is
calibrated and validated using observed streamflow at Srikakulam and Kashinagar in the
Nagavali and Vamsadhara basins, respectively. Water levels at Srikakulam are used to
calibrate the HEC-RAS model in the Nagavali basin, while water levels at Kashinagar are

used to calibrate in the Vamsadhara basin.

Table 4.2 Details of the gauge data in Nagavali and Vamsadhara basins

Nag;:tio;nthe Latitude Longitude | River Name Aval:i)laattili ty _?;;2
Gunupur 19°05'00" N | 83°48'20"E | Vamsadhara 031105512907189 GDSQ
Kasinagar 18°50'54" N | 83°52'23"E | Vamsadhara 031 10075129(? 109' GDSQ

Gudari 19°23'00" N | 83°47'32"E | Vamsadhara 03110055129559 G
Kutragada 19°36'40" N | 83°33'52"E | Vamsadhara 031 10075129(? 179' G
Mahendragarh | 19°13'24" N | 84° 15'45"E | Vamsadhara 031100751295179 G
Mohana 19° 26'41"N | 84° 15'41"E | Vamsadhara 031 10075129(? 179' G
Gottabarrage | 18°42'00"N | 83°58' 00"E | Vamsadhara 031 100751295 179' G

Srikakulam 18°18'48"N | 85°53'03"E Nagavali 031 105’5129(? 189_ GDSQ
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4,2.2 Geospatial Data

The geospatial data used in this study include DEM, LULC, and a soil map. The Shuttle
Radar Topography Mission (SRTM) 30 m DEM is obtained from the US Geological Survey
(USGS) earth explorer. The maximum elevations of the Nagavali and Vamsadhara basins are
1634 m and 1505 m, respectively. LULC data for both basins is obtained from Bhuvan,
National Remote Sensing Center, at a scale of 1:250 km (Bhuvan-NRSC). There are 10 land
cover patterns identified in both basins, such as built-up land, current fallow, deciduous
forest, scrub forest, agricultural land, evergreen forest, plantation, shifting cultivation,
wasteland, and waterbodies. The spatial plots of DEM and LULC maps of both basins are
shown in Figure 4.2. The percentage of LULC in each basin is given in Table 4.3. Soil
classification map is obtained from the International Soil Reference and Information Centre
(ISRIC) soil data site. The soil map of the study area is shown in Figure 4.3. Loam, sandy
loam, sandy clayey loam, and clayey loam soils are the important soil types found in both

basins.

Land Use/Land Cover

. |:| Agricultural Land - Evergreen Forest - Shifting Cultivation
E!evano: g:} :] Current Fallow Land- Deciduous Forest- Wasteland
— [ Piantation [0 scrubForest [l Waterbodies
0 B Buit-up Land

40 20 0 40 80 120
KM

Figure 4.3 DEM and LULC of Nagavali and Vamsadhara basins
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Table 4.3 Percentage area of each LULC in Nagavali and Vamsadhara Baisns

LULC Nagavali Basin (%) Vamsadhara Basin (%)

Built-up Land 1.14 1.03
Current Fallow 12.21 6.34
Deciduous Forest 29.34 51.45
Scrub forest 1.53 0.68
Agricultural land 26.19 16.38
Evergreen Forest 3.06 2.81
Plantation 2.94 0.75
Shifting Cultivation 1.62 1.2

Wasteland 19.05 17.79
Waterbodies 291 1.57

30

[:‘ Laom Soil :] Sandy Loam Soil - Clayey Loam Soil - Sandy Calyey Loam Soil

30

90
KM

Figure 4.4 Soil Map of Nagavali and Vamsadhara Basin
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4.2.3 GFS Forecast Data

In the present analysis, daily rainfall forecast data from GFS model are extracted for an area
bounded between 18° - 20° N and 82.75° - 84.50° E at 0.25° x 0.25° grid resolution for a
period of 2041 days i.e., from June 1, 2015 to December 31, 2020. A total of 28 grids falling
over Nagavali and Vamsadhara basins. Out of these, 12 grids are over Nagavali basin and the
remaining over Vamsadhara basin. Typical rainfall patterns for a day over Nagavali and
Vamsadhara basins are shown in Figure 4.5.

IMD GFS Day-1 GFS Day-2

"
¢

Rainfall

(mm/day)

300

) Izso
. . 200

GFS Day-3

100

} o X

-

80 40 0 80 160 240
KM

Figure 4.5 Rainfall map of various products on 11 - October - 2018 over study basins

4.2.4 Final Analysis Data

The NCEP Final (FNL) data has a horizontal resolution of 1° x 1° and available at six hour
intervals. The FNL data is produced by Global Data Assimilation System (GDAS) through
assimilating the observations from Global Telecommunications System (GTS). The
meteorological variables in FNL data include, but are not limited to, cloud top pressure,

surface winds, perceptible water, humidity, air temperature, and so on.
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4.3 Details about the Tropical Cyclone

Regional Specialized Meteorological Centre (RMSC) issues national bulletins to public on
cyclone formation from the stage of depression (D) onwards. During the stages of depression
or deep depression, RMSC issues bulletins based on 00, 03, 06, 12, and 18 UTC observations.
When the system intensifies into a cyclonic storm over the NIO, these bulletins are issued at
3-hour intervals based on previous observations. These bulletins contain present status of the
system, expected damage and action suggested. These bulletins are completely made for
national users and disseminated through various modes of communication (i.e. All India

Radio, National TV, Telephone, SMS, print electronic media).

A set of 8 TCs formed over NIO during 2014 to 2018 are considered in the present study in
order to assess the impact of microphysical schemes on their track and intensity predictions.
Among the TCs, two had formed over AS and the remaining were in BoB. The details about
the cyclones are given in Table 4.3. The best tracks provided by the study cyclones are shown

in Figure 4.6 and the brief summery is given below.

Table 4.4 Details about the tropical cyclones

S.No Period Cyclone Name Landfall Category

1 7 =17 Oct 2014 Hudhud Visakhapatnam | Very Severe Cyclonic Storm
2 25—-31 Oct 2014 Nilofar No Landfall Very Severe Cyclonic Storm
3 21 -28 Oct 2016 Kyant No Landfall Cyclonic Storm

4 29 Nov — 05 Dec 2017 Ockhi South Gujarat Very Severe Cyclonic Storm

Coast

5 19 — 22 Sept 2018 Daye Gopalpur Cyclonic Storm

6 8 —13 Oct 2018 Titli Palasa Very Severe Cyclonic Storm
7 10 -19 Nov 2018 Gaja Puducherry Very Severe Cyclonic Storm
8 13 - 18 Dec 2018 Phethai Yanam Severe Cyclonic Storm
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Figure 4.6 Best tracks of the TCs provided by RMSC.
Hudhud

In the morning of 6th Oct 2014, cyclone Hudhud formed as a low-pressure area (LPA) over
BoB. It gradually intensified into Very Severe Cyclonic Storm (VSCS) in the afternoon of
10th Oct 2014. It made landfall near Visakhapatnam with northwestward movement on the
morning of 12th Oct 2014 as VSCS and moved in the same direction. It then gradually
weakened into a Well-Marked Low-Pressure Area (WMLA) on the evening of 14th Oct 2014
over eastern Utter Pradesh.

Nilofar

A VSCS Nilofar formed as an LPA over the southeast Arabian Sea (AS) on the morning of
21st Oct 2014. The cyclone initially moved northwestward on the day of formation and then
recurved to northeastwards. It exhibited rapid intensification as well as rapid weakening and

weakened into a WMLA near the North Gujarat coast on the morning of 31st Oct 2014.
Kyant

Cyclone Kyant formed as a depression (D) over east central BoB on 21st Oct 2016. The track
followed by this system is rare in nature as it experienced two re-curvatures during its life
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period. The rate of intensification was very slow and steady, taking about 4 days to become
a cyclonic storm (CS) from the stage of D and the rate of weakening was rapid as it reduced
to a WMLA from the CS stage within 30 hours on the morning of 28th Oct 2016.

Ockhi

Cyclone Ockhi formed as an LPA over Andaman Sea on 22nd Nov 2017. There was a rapid
intensification during its genesis, as it intensified into CS within 6 hours from the stage of
deep depression (DD). While moving west-northwestwards, Ockhi further intensified into
Severe Cyclonic Storm (SCS) over Lakshadweep area early in the morning of 01st Dec 2017
and VSCS over southeast AS on the afternoon of the same day. It then moved northwestwards
and attained the maximum intensity on afternoon of 2nd Dec 2017. It moved north-
northwestwards and then northeastwards, crossed the south coast of Gujarat between Surat
and Dahanu as a WMLA early in the morning of 06th Dec 2017.

Daye

Daye is the first cyclonic storm formed over NIO in the month of September after 2005. It
formed as a D over east central parts of BoB on the afternoon of 19th Sept 2018. Moving
nearly west-northwestwards, it intensified into DD on the morning of 20th Sept 2018 and
into CS on the same day/night. It made landfall close to Gopalpur as a CS during 1900-2000
UTC of 20th Sept 2018. It continued to move west-northwestwards, and weakened into an

LPA over south Haryana on the morning of 24th Sept 2018.
Titli

Titli cyclone formed as an LPA over the southeast BoB on the morning of 7th Oct 2018.
Moving nearly west-northwestwards, it intensified into DD on the morning of 8th Oct 2018
and further into a CS around noon of 9th Oct 2018. It then moved northwestwards and on the
early morning of 10th Oct 2018, it intensified into SCS. It then moved north-northwestwards
and further intensified into VSCS around noon of 10th Oct 2018 and crossed the northern
Andhra Pradesh and south Odisha coasts near Palasa during 2300 to 0000 UTC as a VSCS.
Moving further west-northwestwards, it weakened into an SCS around the noon of 11th Oct
2018 and CS in the same evening. Under the influence of southwesterly winds, the system
recurved northeastwards from 11th evening and gradually weakened into an LPA over

Gangetic West Bengal and adjoining Bangladesh on the morning of 13th Oct 2018.
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Gaja

VSCS Gaja originated from an LPA which formed over the Gulf of Thailand and adjoining
Malay Peninsula on the morning of 8th Nov 2018. Under favorable conditions it concentrated
into a D over southeast BoB n the morning of 10th Nov. Moving west-northwestwards, it
intensified into DD in the same evening and further intensified into CS early in the morning
of 11th Nov 2018. It then moved nearly westwards till early hours of 12th Nov 2018.
Thereafter, it recurved south-southwestwards and followed an anticlockwise looping track
till 13th Nov 2018. It then moved west-southwestwards and intensified into an SCS
southwest BoB on the morning of 15th Nov 2018 and into VSCS on the same night. Moving
further west-southwestwards it crossed Tamil Nadu and Puducherry coast between
Nagapattinam and Vedaranniyam during 1900 to 2100 UTC of 16th Nov 2018. Thereafter, it
moved nearly westwards, and weakened rapidly into an SCS, CS, and DD over interior Tamil
Nadu on 16th Nov 2018. It then moved west-southwestwards and weakened into a D on the
same evening over central Kerala. Moving nearly westwards, it emerged into southeast AS
in the same mid night. Moving nearly westwards, it intensified into a DD over southeast AS
in the early morning of 17th Nov 2018. Thereafter, it moved nearly west-northwestwards and
crossed Lakshadweep Islands on 17th Nov 2018 afternoon as DD. It continued to move west-
northwestwards and weakened into a D over the same region around the noon of 19th Nov
2018, WMLA in the same mid night and LPA on 21st Nov 2018.

Phethai

An SCS Phethai formed as an LPA over Equatorial Indian Ocean and adjoining central parts
of south BoB on the evening of 9th December 2018. It laid as a WMLA over the same area
on the morning of 11th December 2018. It continued to be WMLA till the morning of 13th
and under favorable conditions it concentrated into a D over southeast BOB. Moving north-
northwestwards, it intensified into DD over the same area on the same day at midnight.
Continuing to move in the same direction, it intensified into a CS on the evening of 15th and
into SCS on the afternoon of 16th. It maintained its intensity of SCS till the early morning of
17th and weakened into CS in the same morning. Continuing to move north-northwestwards
and then northwards, it crossed Andhra Pradesh (close to south of Yanam and 40 km south
to Kakinada) coast during the 17th afternoon as a CS. After landfall, the cyclone moved
north-northeastwards and weakened rapidly into a DD near Kakinada coast in the same
evening. Continuing to move in the same direction, it again crossed Andhra Pradesh coast

near Tuni and weakened into a D over coastal Andhra Pradesh during the same day midnight.
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It further weakened into WMLA over northwest and adjoining west central BoB and coastal
Odisha in the early morning of 18th and into LPA northwest BoB and adjoining Odisha in

the same morning.

4.4 Software’s and Programming Languages used

Various GIS software's, modelling software, and programming languages are used in this
research. These include ArcGIS, QGIS, WRF, SWAT, HEC-RAS, R-program, Python,
HTML, CSS, JavaScript, OpenLayers, and GeoServer. ArcGIS and QGIS software are used
for analyzing vector data and generating spatial maps from interpolation techniques. The
WRF model is used for predicting the track, intensity, and rainfall of tropical cyclones in the
BoB. SWAT model is used for streamflow simulation in QGIS environment. HEC-RAS
model is used for the generation of flood inundation extent and inundation depth.
Programming language R is used for the preparation of hydrometeorological data in SWAT
and HEC-RAS format and for the SWAT simulations using SWATPIusR package.
Programming language Python is used to automate HEC-RAS model by connecting it to
HECRASController module. Other programming languages such as HTML, CSS,
JavaScript, OpenLayers, and GeoServer are used develop a Web-GIS based interface for the

timely dissemination of flood related information.

4.5 Initialization, Calibration, and Validation of Models

Based on the methodology framework proposed, different models are used in the study. Each
of those model set-ups is explained in the following sections.

4.5.1 WRF Model

WREF (version 4.0) model is used to forecast rainfall during extreme weather events like TCs
along with its track and intensity. The initial and boundary conditions for the prediction of
TCs are considered from the 1° x 1° resolutions of NCEP-FNL model forecasts with 6-hour
interval. The model is designed with two-way nested domains with 27 km horizontal
resolution for the outer domain and 9 km horizontal resolution for the inner domain. The
WRF domain configuration is presented in Figure 4.7. The terrain data of 10m resolution
from the USGS has been used for both domains. The model utilized a total of seven

microphysical schemes, namely, Lin, Thompson, Ferrier, Morrison, WSM3, WSM5, and
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WSMG6 for both domains. The KF CPS is used for the outer domain. YSU PBL scheme, Rapid
Radiative Transfer Model (RRTM) for long-wave radiation, and Dudhia scheme for short-
wave radiation have been used for both the inner and outer domains.

WPS Domain Configuration

20°N

10°N

e

10°8

BO°E T°E BOE S0°E 100°E
Figure 4.7 WRF Model Domain Configuration

The various microphysics schemes deal with the mixing ratios of the prognostic variables
with different approaches under different assumptions. The mixing ratios of the prognostic
variables in all the microphysical schemes considered in the study are presented in Table 4.5.
Lin scheme includes all the prognostic variables. It is a most sophisticated scheme of WRF
model and suitable for research studies (Lin et al. 1983). The new Eta Ferrier scheme has an
ability to predict the changes in water vapor and estimates the precipitation ice density along
with mixing ratios (Rogers et al. 2001). Thompson scheme used in the present study is a
double-moment scheme which includes the prediction of ice concentration (Thompson et al.
2004). The scheme assumes that the snow size distribution depends on both water and ice
content and temperature (Castro et al. 2019). Morrison’s scheme is also a double-moment
scheme which predicts the mixing ratios and concentrations of all prognostic variables. The
scheme uses Kohler’s theory to calculate the homogeneity and heterogeneity in the nucleation
process and quasi-stationary saturation adjustment algorithm for droplet concentration
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(Morrison et al. 2009). WSM3 is a simple ice scheme, which predicts only the liquid
hydrometers (i.e., Qv, Qc, and Qr). The expressions considered by WSM3 to predict liquid
hydrometers are assumed to be above freezing point. Further, the scheme considers Q. as Qi
and Qr as Qs when the temperature is less than or equal to freezing point. The WSM5 scheme
predicts the mixing ratios of all prognostic variables except graupel (Hong et al. 2004). The
WSM6 scheme is similar to that of WSM3, but includes a more complex process for
predicting the mixing ratios of all the prognostic variables (Hong and Lim 2006). Compared
to the double-moment schemes, single-moment schemes have the capability to simulate the
TCs with smaller eye, stronger tangential wind, high positive temperature and closer latent

heating area to cyclone center, and smaller radius of maximum wind (Li et al. 2020).

For sensitivity experiments, a total of 8 TCs are selected to study the sensitivity of
microphysical schemes for the prediction of track and intensity of TCs over the NIO region
that occurred from 2014 to 2018. The model initiation time and simulation period for the TCs
are presented in Table 4.6. The detailed description about WRF model configuration is
presented in Table 4.7. The simulated results of the TCs are validated against the best track

given by IMD.

Table 4.5 The mixing ratios of the prognostic variables in the Microphysical Schemes

Microphysical _ )
Schemes Mixed Phase Variable Processes

Ferrier Water Vapor (Qv), Cloud Water (Qc), Rain (Qr), Ice (Qi)
Lin Water Vapor, Cloud Water, Rain, Ice, Snow (Qs), and Graupel (Qg)
Morrison Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel
Thompson Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel
WSM3 Water Vapor, Cloud Water/Ice and rain/snow
WSM5 Water Vapor, Cloud Water, Rain, Ice, and Snow
WSM6 Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel

62



Table 4.6 Model initiation dates and simulation time considered for the study

Tropical Simulation Intensity Stages of
P Initial Date: Time | End Date: Time ) TCs for Model
Cyclone Period (h) e e
Initialization
_ _ Severe Cyclonic
Hudhud 09-10-2014: 00 13-10-2014: 00 96 Storm (SCS)

: _ _ Severe Cyclonic
Nilofar 27-10 -2014: 00 | 31-10-2014:00 96 Storm (SCS)
Kyant 23-10-2016: 00 | 27-10-2016: 00 96 Depression (D)

. ] ) Severe Cyclonic
Ockhi 01-12-2017: 00 05-12-2017: 00 96 Storm (SCS)
Daye 20-09-2018: 00 | 22-09-2018: 00 48 Depression (D)
Titi | 09-10-2018:00 | 13-10-2018: 00 96 Deep Depression

(DD)

Gaja | 12-11-2018:00 | 16-11-2018: 00 96 Cyc'o(rgg)s’torm

Phethai | 14-12-2018:00 | 18-12-2018: 00 96 Deep ?Degr)ess'on

Table 4.7 Details of WRF Model Configuration

Model

WRF 4.0

Domain Center

10° N and 80° E

Number of Domains

2 (dO1 = 27 km, d02 = 9 km)

Initial and Boundary Conditions

GFS ANL data (0.5° x 0.5°)

Cumulus Physics

Kain — Fritsch (Kain 2004)

Short-wave Radiation

Dudhia (Dudhia 1989)

Long-wave Radiation

RRTM (Mlawer et al. 1997)

Planetary Boundary Layer

Yonsei University (Hong et al. 2006)

Microphysics

Ferrier, Lin, Morrison, Thompson, WRF Single
Moment 3 — Class (WSM3), WRF Single Moment 5
— Class (WSM5), WRF Single Moment 6 — Class
(WSMS6).
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4.5.2 SWAT Model-Set-up

Initially, to set-up the SWAT model, DEM, LULC and soil data are projected into common
projection as WGS 1984 UTM 44N. The Nagavali river basin is delineated into 34 sub-basins
and 2153 hydrological response units (HRUs) and the VVamsadhara river basin is delineated
into 30 sub-basins and 2183 HRUs based on the homogeneity of soil, land use, slope and 100
hectares (Ha) of threshold area (Figure 4.8). The Natural Resources Conservation Service
(NRCS) method is used to simulate daily runoff by SWAT model. Observed daily streamflow
is used to calibrate and validate the simulated streamflow. The SWAT model performance is
evaluated using the coefficient of determination (R?), Nash Sutcliff Efficiency (NSE), and
percent bias (PBIAS). The values of R? ranged between 0 and 1. The values of NSE ranged
between - to 1 and they provide a measure of how well the simulated output matches the
observed data along a 1:1 line. The optimal value for PBIAS is 0, a positive value represents
model underestimation, while a negative value represents model overestimation. The model
performance is considered satisfactory if the NSE is greater than 0.6 and PBIAS is within +/-
25% (Moriasi et al. 2007).
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Figure 4.8 SWAT simulated sub-basins and observed gauge locations in Nagavali and

Vamsadhara basins
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The mathematical expressions for R? and PBIAS are given in equations 3.30 and 3.32. The

expression for NSE is given below:

n obs sim2
i=1(0i —0; )

b bs }?
Z?=1(01? S_Ofnesan

NSE =1 — (4.1)

Where, 025 is the i observed data, 05™ is the i simulated data, 0225, is the mean of

observed data and n is the number of observations.
4.5.3 SWAT Model Calibration, Validation, and Sensitivity Analysis

SUFI-2 algorithm in the SWAT-CUP is used for calibration, validation, and sensitivity
analysis. The observed streamflow at Srikakulam and Kashinagar stations is used to calibrate
and validate the SWAT model on daily basis over Nagavali and Vamsadhara basins,
respectively. The model is run for a total of 29 years, from 1986 to 2014. Of the 29 years, the
first 5 years (1986-1990) are considered as warm-up period, the next 15 years (1991-2005)
are considered for calibration, and the last 9 years (2006-2014) are considered for validation.
The calibrated parameters and their fitted values for Nagavali and Vamsadhara basins are
shown in Table 4.8. During the calibration and validation periods, the NSE values for daily
streamflow at Srikakulam gauge station in Nagavali basin are 0.59 and 0.57, respectively,
and 0.64 and 0.59 at Kashinagar gauge station in Vamsadhara basin. The PBIAS values
during the calibration period is 0.8% in Nagavali basin and 6.5% in Vamsadhara basin. The
PBIAS values during the validation period is 7% and 11% over Nagavali and Vamsadhara
basins, respectively. From the PBIAS values, it is observed that the SWAT model

underestimated the streamflow during the calibration and validation period in both basins.

Table 4.8 Statistics for the calibration and validation of daily streamflow over Nagavali and

Vamsadhara basins

) ) Gauging Calibration Validation
River Basin

Station Period R? | NSE | PBIAS | Period R? | NSE | PBIAS

Nagavali Srikakulam | 1991-005 | 0.59 | 0.59 0.8 | 2006-014 | 0.58 | 0.57 7

Vamsadhara | Kashinagar | 1991-005 | 0.66 | 0.64 6.5 2006-014 | 0.60 | 0.59 11
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A total of 17 parameters are considered during the calibration. Sensitivity analysis is
conducted to identify the most sensitive parameters using P-value. Among the parameters,
manning’s n value for the main channel (CH_N2), curve number (CN2), groundwater revap
coefficient (GW_REVAP), effective hydraulic conductivity in main channel alluvium
(CH_K?2), deep aquifer percolation fraction (RCHRG_DP), effective hydraulic conductivity
in tributary channel alluvium (CH_KZ1), threshold depth of water in the shallow aquifer
required for return flow to occur (GWQMN), and manning's "n" value for the tributary
channels (CH_N1) are the most sensitive parameters for streamflow simulations in the
Nagavali basin. In Vamsadhara basin, CN2, CH_K1, CH_N1, CH_N2, and GW_Delay are
the most sensitive parameters for streamflow simulations. The calibrated parameters and their
fitted values for Nagavali and Vamsadhara basins are shown in Table 4.9.

Table 4.9 Calibrated parameters and fitted values of the sensitive parameters over Nagavali
and Vamsadhara basins

Fitted Value
S.No Parameter_Name Minimum | Maximum i i
- value value Nagavali Basin | Vamsadhara

Basin
1 R_CN2.mgt -0.1 0.1 -0.04 -0.088
2 V__ALPHA_BF.gw 0.3 1 0.99 0.479
3 A__GW_DELAY.gw -30 90 45.60 -23.2
4 A__GWQMN.gw -1000 1000 -873.33 713.33
5 V__GW_REVAP.gw 0.02 0.2 0.05 0.093
6 A__REVAPMN.gw -750 750 -77.50 -375.50
7 | V_ALPHA_BF D.gw 0 1 0.64 0.723
8 A__RCHRG_DP.gw -0.05 0.05 0.04 0.035
9 R__SOL_AWC.sol -0.05 0.05 -0.01 -0.029
10 V__ESCO.hru 0.3 0.6 0.41 0.439
11 | V__LAT_TTIME.hru 0 120 94.00 12.4
12 V__SLSOIL.hru 0 120 14.80 27.6
13 V__CANMX.hru 0 20 127 2.20
14 V__CH_N2.rte 0.01 0.15 007 0.055
15 V__CH_K2.rte 0 100 69.67 53.00
16 V__CH_K1.sub 0 100 43.00 84.33
17 V__CH_N1.sub 0.01 15 0.10 0.143
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4.5.4 HEC-RAS Model Set-up

Flood inundation extent and depth are predicted for Nagavali and Vamsadhara basins using
two dimensional 2D HEC-RAS model developed by the U.S. Army Corps of Engineers, with
unsteady flow and the diffusive wave equations (Brunner, 2016). The user can perform one-
dimensional (1D), 2D, as well as coupled 1D and 2D hydraulic calculations with the model.
Using 2D unsteady modeling, the river and its floodplain can be discretized into a group of
individual cells, which are also known as computational cells. The computational cells store
information about the elevation as well as roughness values at that specific location. The
model calculates the Water Surface Elevation (WSE) at the center of the cell at each time

step using a finite volume approach.

The terrain for 2D HEC-RAS model in both Nagavali and Vamsadhara basins is developed
using SRTM DEM with a resolution of 30 m. The 2D flow area is marked by a polygon,
which specifies the extent of the area in which 2D flow calculation can be performed in lateral
and longitudinal directions, assuming velocity in z-direction is negligible. Based on the 2D
flow area, a 2D computational mesh is defined with cell spacing of 100 m x 100 m, yielding
95735 and 77322 computational cells in Nagavali and Vamsadhara basins, respectively.
During the generation of 2D computational mesh, the cell size is selected based on the
computational time step and model stability. A time step of one minute is chosen for both
basins to accurately predict the hydrograph and fulfill the courant condition. The courant
number is a dimensionless value representing the time step taken by a water particle to travel
from one cell to another in a computational mesh. SWAT simulated discharge is applied to
the upstream boundary conditions at three different locations in Nagavali basin and two
different locations in Vamsadhara basin, with a calculated energy slope of 0.001816 and
0.001327, respectively. The downstream boundary condition in both basins is set to normal
depth. The roughness values are assigned to 2D computational mesh in both basins using
NRSC LULC map. Banklines are established at every 10 km interval in both basins to extract
depth information. Figure 4.9 illustrates a schematic representation of 2D HEC-RAS model

setup for Nagavali and Vamsadhara basins.
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Figure 4.9 2D HEC-RAS model setup for Nagavali and Vamsadhara basins.
4.5.5 Validation of HEC-RAS Model

Two approaches are used to validate the flood inundation maps generated by the HEC-RAS
model. In the first approach, the simulated depths for historical events are compared with
observed water levels at the Srikakulam and Kashinagar gauge stations in Nagavali and
Vamsadhara basins, respectively. In the second approach, the inundation maps generated by
HEC-RAS model for Titli cyclone over Vamsadhara basin using SWAT simulated discharge
from IMD rainfall and GFS forecasts are validated against the flood inundation map provided
by Bhuvan-NRSC. Based on overlapping areas between the inundation map generated by the
model and the inundation map provided by NRSC, the performance of HEC-RAS model is
assessed (Tamiru and Dinka 2021). The intersection tool is used to get the percentage of
overlapping area between NRSC flood inundation maps and the HEC-RAS model.

4.5.6 Integration of SWAT and HEC-RAS Model

The calibrated and validated SWAT model is used to generate the discharge hydrograph,
which is then linked with 2D HEC-RAS model to generate flood inundation extent and depth.
The SWAT model simulates discharge when it receives input parameters such as rainfall and
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temperature. The HEC-RAS model subsequently assimilated the simulated discharge as

upstream boundary conditions in both basins to generate flood inundation extent and depth.
4.5.7 Setting-up the GeoServer

To display the flood inundation extent on the web interface, the spatial data must be fed into
GeoServer and OpenlLayers. To achieve this, a workspace needs to be created in the
GeoServer and services such as Web Map Service (WMS) and Web Feature Service (WFS)
should be enabled. Once the workspace has been created, a new data store needs to be created,
which will become the data source. The vector data store is created with Shapefile, and the
raster data store with GeoTIFF. Once the vector and raster data stores have been created, all
the layers need to be published with proper coordinate system and styles. The publishing
process can be automated using GeoServer's REST API. Once the layers are published and
available, OpenLayers can access them to display on the web interface. To access the layers
from GeoServer, a WMS or WFS request has to be generated which will need to be sent to
the GeoServer requesting data. The code used by OpenLayers to access the layers with WMS
request is presented in Figure 4.10.

The Uniform Resource Locator (URL) given in Figure 4.10 contains information about the
name of the workspace in which the layers are stored. This code generates and sends a WMS
request to the GeoServer whenever a particular layer is to be accessed and retrieves the data
in the form of tiles. OpenLayers then displays these tiles on the web interface. Using layer
switcher, these tiles can be turned on or off. Code has been written to access all the required

layers as they are updated in the database and GeoServer.

new ol.layer.Tile({
title: "Na ali Boundary"',
visible:
SOuUrce: ne
url:
params:
serverlype:

transition: @,

Figure 4.10 Code used by OpenLayers to publish layers from GeoServer
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4.5.8 Automation of SWAT and HEC-RAS Models

SWAT and HEC-RAS models are automated using R and Python programming languages to
forecast floods and flood inundation extent at regular intervals on a daily time scale. To run
the SWAT model in a programming environment, SWATPIusR package needs to be
installed. After installing SWATPIusR package, SWAT executable has to be copied into the
folder where the SWAT project is stored. SWATPIusR package offers support for SWAT
2012 version and SWAT+ version. If the SWAT project is created using SWAT 2012,
"run_swat2012" command has to be selected to run SWAT model in R environment. The

script for running SWAT model in R environment is given in Figure 4.11.

The HECRASController module in python is required to run HEC-RAS model in a
programming environment. It will be installed during HEC-RAS model installation and does
not require any further installation. The script for running HEC-RAS model is python

environment when is given in Figure 4.12.

g_sim_nag <- run_swat20l2(project_path = "F:\\SPARC\\N_RSWAT\\TXTInOUt",
output = define_output(file = "rch",
variable = "FLOwW_OUT",
unit = 1:34),
start_date = "2021-01-01",
end_date = "2021-01-10")

Figure 4.11 Script for running SWAT model in R environment

import win3Zcom.client

from osgeo import gdal

EC = win3Zcom.client.Dispatch("RASel0.HECRASController")
RC.ShowERAS ()

#Nagavali HEC-RAS File

RC.Project Open (r"F:\SPARC\Inundation Maps\Nagavali 2d 1d -
Copy\Nagavali 2d 1d.prj")
Simulation=RC.Compute CurrentPlan (None,None, True)
RC.Project Save ()

RC.QuitRAS ()

src = gdal.Open(r"F:\SPARC\Inundation Maps\Nagavali 2d 1d -
Copy\N 1d 2d\Depth (Max) .Nagavali SRTM DEM.tif")

srcl = r"F:\SPARC\Inundation Maps\data dir\Inundation Maps
\Nagavali FIM.tif"

ds = gdal.Translate(srcl,src)

ds None

Figure 4.12 Script for running HEC-RAS model is python environment
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4.6 Closure

Two medium sized east flowing river systems, namely, Nagavali and Vamsadhara basins are
chosen as study areas in the present research work. Geospatial database in the required format
for the hydrologic and hydraulic models is prepared using ArcGIS software. The
hydrometeorological data in the required format for hydrologic and hydraulic models are
prepared using R and python programming language. Initialization, calibration, and
validation of various models (WRF, SWAT, and HEC-RAS) have been explained.
Explanation about the GeoServer to publish flood inundation maps via web-interface with
OpenLayers and automation of SWAT and HEC-RAS models in programming environment
is given in this chapter.
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Chapter - 5 Results and Discussions (Part-I)
5.1 General

For the selected study area, trends and patterns in rainfall characteristics are analyzed using
various trend analysis methods explained in chapter 3. Based on the trends and patterns in
rainfall characteristics over the study area, the predictions of track and intensity of tropical
cyclones are analyzed using WRF model. A detailed explanation about the trends and patterns
in rainfall characteristics, and track and intensity prediction of tropical cyclones using WRF

model are given in the following sections.

5.2 Trends in Rainfall and Rainfall Extremes

Monthly, seasonal, and annual trends in rainfall and rainfall extremes are analyzed using four
different MK tests (i.e., MK1/MK2/MK3/MK4) for 28 grids covering Nagavali and
Vamsadhara basins (Figure 4.1) at a confidence level of 90% or higher. If any grid is showing
either positive or negative trends in at least 3 tests, then it is considered as threshold value
and the trends of those grids are analyzed. The total number of grids showing significant
trends (positive/negative) at a 90% confidence level are presented in Table 5.1. The spatial
patterns of trends in rainfall and rainfall extremes are mapped using kriging interpolation
method. Detailed analysis of the annual and seasonal results are presented in the following
sections and the monthly results are presented in Appendix-A.

5.2.1 Trends in Seasonal and Annual Rainfall

The Z statistics of the trends in seasonal and annual rainfall are evaluated and presented in
Table Al (Appendix-A). As illustrated, 4 out of 12 grids in Nagavali basin and 3 out of 16
grids in Vamsadhara basin showed negative trends in winter. In the pre-monsoon and
Monsoon seasons, positive trends are observed in both the basins. The anecdotal evidence for
positive trends in pre-monsoon can be tied to the landfall of cyclones in this region that are
formed in BoB (Uddin et al. 2019). It is observed that the grids that are showing significant
trends (positive/negative) in the pre-monsoon and monsoon seasons have also shown some
similar trends at the annual scale. In the post-monsoon season, however a negative trend is
observed in Nagavali basin and no significant trend is observed in Vamsadhara basin. The
spatial patterns of trends in seasonal and annual rainfall using four MK tests are presented in

Figure 5.1.
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Table 5.1 Total number of IMD grids showing significant trends (> 90% confidence level) for rainfall and rainfall extremes in both Nagavali and

Vamsadhara Basin

Rainfall CDD CWD PRCPTOT R10MM R20MM R40MM R95PTOT RX1DAY RX5DAY
N+/N- | V+/V- | N+/N- | V+/V- | N+/N- | V+/V- | N+/N- | V+/V- | N+/N- | V+/V- | N+/N- | V+/V- | N+/N- | V+/V- | N+/N- V+/V- N+/N- V+/V- N+/N- V+/V-

Annual 2/1 710 2/0 2/0 2/1 6/0 2/1 7/0 2/1 7/0 4/1 6/1 4/0 0/0 5/0 1/0 4/0 0/0 1/0 2/0
Winter 0/4 0/3 0/3 0/1 0/4 0/3 0/2 0/1 0/8 0/1 0/1 0/0 0/0 0/2 0/0 0/2 0/6 0/1 0/2 0/6

Pre-
Long-Term Monsoon 2/0 9/0 0/4 0/7 0/1 2/0 5/0 6/0 3/0 5/0 2/0 4/0 1/0 7/0 2/0 3/0 3/0 8/0 0/0 9/0
Monsoon 5/1 9/1 2/0 2/4 2/1 5/0 6/1 8/0 212 9/2 5/1 8/0 6/1 6/0 4/1 6/0 3/1 2/0 1/1 7/0
Mzgzgon 0/1 0/0 3/0 1/0 0/0 1/0 0/0 0/1 0/1 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Annual 0/0 0/0 0/0 0/0 0/0 0/2 0/0 0/0 2/0 1/0 0/0 0/0 0/1 0/0 0/1 0/0 0/1 0/0 0/0 0/0
Winter 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0 1/0 1/1 1/0 1/1 0/0 0/4 0/0 1/0 0/0 0/1
Pre- 2/0 0/0 0//0 0/0 9/0 2/0 3/0 0/0 4/0 4/0 2/0 3/0 0/0 0/0 0/0 0/0 2/0 3/0 5/0 0/0

Pre-1950 Monsoon

Monsoon 0/0 0/3 0/0 0/0 2/0 0/2 0/0 0/3 0/0 0/0 0/0 0/1 0/0 0/1 0/0 0/1 017 0/5 0/0 0/2
Mzg:gon 2/0 0/0 0/0 0/0 10/0 0/1 0/0 0/0 4/0 4/0 2/0 3/0 2/0 2/0 0/0 0/0 2/0 3/0 5/0 0/0
Annual 0/2 2/0 1/0 0/0 1/10 0/2 0/2 2/0 1/5 3/2 0/1 1/0 2/1 1/0 2/1 1/0 1/2 2/0 0/2 0/0
Winter 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Pre-
Post-1950 Monsoon 0/4 0/1 0/0 0/0 0/6 0/6 0/4 0/1 0/4 0/6 0/1 0/4 5/0 12/0 0/0 1/0 0/0 0/0 0/0 0/0
Monsoon 0/3 6/0 2/1 2/1 0/10 0/2 0/3 6/0 1/5 6/1 0/1 3/0 0/1 3/0 1/2 1/0 2/2 3/0 0/2 4/0
Mzg::)-on 0/3 0/1 0/0 0/0 0/7 0/5 0/4 0/1 0/4 0/5 0/1 0/0 0/1 0/0 0/0 1/0 3/0 0/0 0/0 0/1

Total 13/19 | 33/9 10/8 7/13 | 26/40 | 16/23 | 16/17 | 29/7 | 19/31 | 39/17 | 16/8 29/7 21/5 32/4 17/5 14/7 20/19 22/6 12/7 22/10

Note: N indicates Nagavali Basin, V indicates Vamsadhara Basin, + sign indicates number of grids showing increasing trend, - sign indicates

number of grids showing decreasing trend.
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Figure 5.1Trends in seasonal and annual rainfall
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From these figures, it is evident that the grids with decreasing trends in winter are present in
both basins except at the lower portion of Vamsadhara basin. However, no significant trend is
found in the northern parts of Vamsadhara basin. The grids with increasing trends in the pre-
monsoon are present in the lower portion of Nagavali basin and at all locations in Vamsadhara
basin. Due to barotropic and baroclinic instabilities caused by tropical depressions formed in
BoB and their interactions with mean monsoonal flow (Krishnamurthy et al. 2009), the grids
showing increasing trends in monsoon and annual rainfall are present in the lower and middle
portions of both the basins. Whereas, in the post-monsoon season decreasing trends are present

in the middle of Nagavali basin.

The Z statistics of trends in the seasonal and annual rainfall for pre-1950 are evaluated and
presented in Table A2 (Appendix-A). In Nagavali basin, an increasing trend is observed at
grids NG6 and NG11 in the pre-monsoon season and no obvious trends are found for rest of
the seasons and in annual scale. In Vamsadhara basin, a decreasing trend is observed in the
monsoon season and no significant trend is observed in other seasons and in annual scale. From
the spatial patterns it is observed that, the grids show an increasing trend in the pre-monsoon
season at the middle and upper portions of the Nagavali basin. In Vamsadhara basin, the grids
with decreasing trend are present in the middle portion of the basin. The Z statistics of trends
in seasonal and annual rainfall for post-1950 period are evaluated and presented in Table A2
(Appendix-A). In winter season, no significant trends are observed in both the basins. Except
winter season, a decreasing trend is observed in Nagavali basins in all other seasons and in
annual scale. In Vamsadhara basin, a decreasing trend is observed at grid VG13 in both the
pre- and post-monsoon seasons. Whereas, an increasing trend is observed in the monsoon

season and in annual scale.

The spatial patterns trends in seasonal and annual rainfall for the period of post-1950 are
presented in Figure Al and A2 (Appendix-A). From these figures, it is evident that the grids
showing decreasing trend in the pre-monsoon are present in the lower and middle portions of
the Nagavali basin and at the upper portion of the Vamsadhara basin. Whereas, in the post-
monsoon, the grids with decreasing trend are presented in all portions of the Nagavali basin
and upper portion of the Vamsadhara basin. In the monsoon season, the grids showing
decreasing trends in Nagavali basin are present at lower and middle portions of the basin
whereas, in Vamsadhara the grids with increasing trend are present all over the basin. The grids
showing decreasing trends at annual scales in Nagavali basin are present at middle and lower

portions of the basins and the grids with increasing trend in Vamsadhara basin are present in
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the middle portion of the basin. The girds which showed significant trends in post-1950 in both

the basins showed similar trends in the overall period (i.e., 1901-2018) trend analysis.

5.2.2 Trends in Rainfall Extremes

The Z statistics of annual rainfall extremes at three time periods (i.e., long-term, pre-1950, and
post-1950) have been computed. However, only the Z statistics of long-term annual rainfall
extremes are presented in Table A3 (Appendix-A). In pre-1950, no obvious trends are observed
for all the extremes in both basins. Whereas, post-1950, an increasing trend for CDD and
decreasing trend for all other rainfall extremes is observed in Nagavali basin. However, an
increasing trend is observed for the extremes CWD, R10MM, R40MM, R95PTOT, and
RX1DAY at very few grid points (i.e., < 2). The results of R95PTOT for these basins are in
good agreement with results by Bisht at al., (2018a). In Vamsadhara basin, no significant trend
observed for extremes CDD and RX5DAY. An increasing trend is observed for extremes
PRCPTOT, R20MM, R40MM, R95PTOT, and RX1DAY. However, CWD has shown
decreasing trend and both the trends are observed for RLOMM. In the long-term, an increasing
trend is observed for all rainfall extremes in Nagavali basin. However, a decreasing trend is
observed at grid NG12 for CWD and at grid NG3 for PRCPTOT, R10MM, and R20MM in
Nagavali basin. In Vamsadhara basin, no significant trend is observed for R40MM and
RX1DAY. Whereas, an increasing trend is observed for other rainfall extremes. The trends in
RIO5PTOT and RX5DAY are found to be in good agreement with Bisht et a., (2018a).

The spatial patterns of the trends in long-term annual rainfall extremes are presented in Figures
5.2 and 5.3. Increasing trends in CDD at a rate of 2 days per decade are present in the upper
portion of both basins and as expected the same grids showed a decreasing trend for CWD.
Interestingly, the rate of decrease in CWD is also found to be the same. For extremes,
PRCPTOT, R10MM, and R20MM a decreasing trend is observed in the lower portion of
Nagavali basin and the upper portion of Vamsadhara basin. For CWD, the grids showing
increasing trends are observed in both the basins except at the upper portion of the Nagavali
basin. The grids showing increasing trends for PRCPTOT, R10MM, and R20MM are observed
in the lower and middle portions of both the basins. For extremes, RO5PTOT, RX1DAY, and
RX5DAY increasing trends are seen in the middle and upper portions of Nagavali basin. In
Vamsadhara basin, the grids showing increasing trends for RO5PTOT are observed in the lower
portion of the basin and for RX5DAY at the middle and upper portions of the basin because of

cyclonic storms as they produce rainfall for more than 5 days (Dash et al. 2009).
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Figure 5.2 Annual trends in rainfall extremes for CDD, CWD, PRCPTOT, R10MM, R20MM,
and R40MM
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Figure 5.3 Annual trends in rainfall extremes for RO5PTOT, RX1DAY, and RX5DAY

The Z statistics of rainfall extremes in monsoon are presented in Table A4 (Appendix-A). In
winter season, no trend is evident for R40MM and R95PTOT in Nagavali basin and R20MM
in Vamsadhara basin. Except CDD, a decreasing trend is observed for all rainfall extremes in
winter season. In both pre-monsoon and monsoon seasons, a positive trend is observed for all
rainfall extremes except CDD and R10MM in Vamsadhara basin and CWD in Nagavali basin
at one grind in the monsoon season. In Vamsadhara basin, a clear negative trend is observed
for CDD in the pre-monsoon season. In the monsoon season a negative trend is observed over
three grids and a positive trend for two grids in the basin. For CWD in Nagavali basin, a
negative trend is observed at NG8 in pre-monsoon season and at NG12 in monsoon. A positive
trend is observed at NG4 and NG11 in monsoon season. At grid NG3, a negative trend is
observed for all rainfall extremes except for CDD and CWD. For R1I0MM in Vamsadhara
basin, a clear positive trend is observed during pre-monsoon season. In the monsoon season a
positive trend is observed at nine grids and a negative trend at three grids. No significant trend
is observed for rainfall extremes in post-monsoon season except for CDD where it showed a
positive trend for a few grids in both basins. The spatial patterns of rainfall extremes in all

seasons are computed. However, only the spatial patterns of rainfall extremes for the monsoon
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season are presented in Figures 5.4 and 5.5 and the spatial patterns of winter season are
presented in Figures A6 to A8 (Appendix-A). Increasing trends for CDD in winter season are
seen in all parts of Nagavali basin. For the extremes, CWD, R10MM, and RX1DAY decreasing
trends are present in most of Nagavali basin. For RO5PTOT and RX5DAY, decreasing trend is
present in the middle and upper portions of Nagavali basin and in the middle for R20MM. In
Vamsadhara basin, decreasing trends for CWD, R10MM, and PRCPTOT are present in the
middle portion of the basin. For extremes, RO5PTOT and RX1DAY decreasing trends are seen
in the upper portion of the basin and for R4AOMM and RX5DAY decreasing trends are seen in
the middle and upper portions of the basin.

CcDD

CWD

PRCPTOT

W 3.409 B 2698 B 2070

°No Trend A ing Trend ¥ D g Trend

Figure 5.4 Monsoon trends in rainfall extremes for CDD, CWD, and PRCPTOT
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Figure 5.5 Monsoon trends in rainfall extremes R1I0MM, R20MM, R40MM R95PTOT,
RX1DAY, and RX5DAY.
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In pre-monsoon season, the decreasing trend for CDD is seen in both the basins except at the
lower portion of Vamsadhara basin. In Nagavali basin, the grids with decreasing trends for
CWD and increasing trends for PRCPTOT are observed in the lower and middle portions. The
increasing trends for R20MM, R95PTOT, and RX1DAY are seen in the middle and upper
portions of Nagavali basin. For R40MM, increasing trend is seen in the upper portion of the
basin. In Vamsadhara basin, increasing trend is seen in the entire basin except for CDD and

CWD. For CWD, an increasing trend is seen in the upper portion of the basin.

In monsoon season, increasing trends with all rainfall extremes for all portions of the Nagavali
basin are evident except at grid point NG12 in the upper portion of the basin for CWD.
Interestingly, grid NG3 in the lower portion of Nagavali basin has shown a decreasing trend
for all rainfall extremes except CDD. In Vamsadhara basin, the increasing trend for all the
rainfall extremes are seen in the lower and middle portions of the basin except for CDD, CWD,
and RX5DAY. CDD has shown a decreasing trend at a few grids in all portions of the basin
and an increasing trend at a few grids in the upper portion of the basin. For CWD and
RX5DAY, the grids shown increasing trends are present in the entire basin. In the upper portion
of Vamsadhara basin, a decreasing trend for RIOMM is seen. In post-monsoon season, an
increasing trend for CDD is seen in the middle and upper portions of Nagavali basin and in the
middle portion of Vamsadhara basin. In post-monsoon season, no significant trend is observed
in rainfall extremes except for CDD where it showed increasing trend in all parts of Nagavali

basin and upper portion of Vamsadhara basin.

In winter, no significant trend is evident in pre- and post-1950 period for all the rainfall
extremes in both basins. In the pre-1950 period, an increasing trend is observed for most of the
extremes in both Nagavali and Vamsadhara basins in pre- and post-monsoon seasons. In post-
1950 period, a decreasing trend is observed in pre- and post-monsoon seasons. In monsoon
season, in post-1950 period, a decreasing trend is observed in all extremes in Nagavali basin
compared to pre-1950 period. In Vamsadhara basin an increasing trend is observed in all
extremes in post-1950 period and decreasing trend in pre-1950 period. The spatial patterns of

rainfall extremes for the post-1950 period are presented in Figures A9 to A1l (Appendix-A).
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5.3 Magnitude of the Trends

The magnitudes of rainfall and rainfall extremes are calculated using the Sen’s slope method.
It is observed that the annual rainfall in Nagavali basin increased at the rate of 2 mm/decade
and in Vamsadhara basin it increased at the rate of 8.5 mm/decade in the last 118 years. The
maximum rate of increase in seasonal rainfall is observed in the monsoon season. Rainfall in
the monsoon season also increased at the rate of 4 mm/decade in Nagavali basin and 9

mm/decade in Vamsadhara basin.

5.4 Drivers of Rainfall VVariability

Both Nagavali and Vamsadhara basins have shown significant trends in rainfall and rainfall
extremes in the past 118 years at various temporal scales. The trend analysis has been carried
out using high resolution daily gridded data. According to Tank et al. (2006), changes in data
observation practices and irregular spatial distribution of rainfall stations, inhomogeneities are
introduced in the time series data which could impact the computation of extreme indices. Due
to this, there might be uncertainties in trend analysis carried out using gridded products. In the
present study, regions with higher density of rainfall stations has shown significant trends in
both Nagavali and Vamsadhara basins. It is also known that BoB is one of the hot spots for the
genesis of tropical cyclones which propagates either westwards or northwards, playing a major
role in rainfall extremes (Krishnamurthy et al. 2009). Both Nagavali and Vamsadhara basins
are coastal basins with coastal plains adjoining BoB and receive high rainfall in pre- and post-
monsoon seasons due to cyclonic storms. Hence, the results exhibited significant increasing
trend in the pre-monsoon season. Another possible reason for increasing trends in rainfall and
rainfall extremes in both basins is because of changes in LULC. In the last three decades, the
forest cover in Nagavali basin has decreased rapidly because of urbanization (Rao et al. 2019).
The increasing trend in Nagavali basin may be attributed to the effect of urbanization, as Bisht
et al. (2018a) suggested that the basin showed a decreasing trend in pre-urbanization era (1901-
1970), an increasing trend in post-urbanization era (1971-2015) and an increasing trend over
the long term for both annual and monsoon rainfall. In Vamsadhara basin no significant
changes in land use and land cover are found. Hence, the results from trend analysis results in
Vamsadhara basin for rainfall and rainfall extremes at various temporal scales are in good

agreement with data from existing literature.
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With regard to spatial patterns in rainfall and rainfall extremes, Vamsadhara basin showed
significant increasing trends in lower and middle portion of the basin when compared with
Nagavali basin. These increasing trends may be attributed to local convective processes as well
as extreme topography of the region, as the Eastern Ghats are densely located in the middle

and upper portions of Vamsadhara basin.

5.5 Simulation of Tropical Cyclones over BoB for the Prediction of Track

and Intensity

From the trend analysis, it is observed that the rainfall extremes are increasing in the lower and
middle portions of Nagavali and Vamsadhara basins. The increasing trends in rainfall extremes
in the lower and middle portions of both basins may be attributed to TCs that are formed in
BoB. Hence, in this research work, WRF model is used to capture rainfall and movement of
previous tropical cyclones over Nagavali and Vamsadhara basins. From the literature
mentioned in section 2.3.1, it is observed that numerous studies have been conducted for the
prediction of TCs using WRF model. However, it is difficult to identify a suitable
microphysical scheme (CMP) for the prediction of TCs. Therefore, numerical experiments are

conducted using WRF model to find a suitable microphysical scheme for the prediction of TCs.

In the present research work, a total of seven CMP schemes, Lin, Ferrier, Morrison, Thompson,
WREF Single Moment 3-Class (WSM3), WSM5, and WSM6 are studied. The sensitivity of the
seven CMP schemes is analyzed by studying eight TCs (Daye, Kyant, Gaja, Hudhud, Nilofar,
Ockhi, Phethai, and Titli) over NIO that occurred between 2014 and 2018 to determine the
optimum combination physical parameterization schemes for the prediction of TC. Except
Daye cyclone, the simulation period for the selected TCs is 96 h. However, for Daye cyclone
the simulation period is 48 h as the lifespan of the cyclone itself is only 48 h. The model errors
for MSW, MSLP, and track position are calculated with respect to the observed values.

5.5.1 Track and Intensity of Errors

The predicted tracks of the selected cyclones for all the combinations of CMP schemes and the
best track provided by IMD are shown in Figures 5.6 and 5.7. The direct positional errors (DPE)
for the selected TCs are shown in Figure 5.8 and 5.9. From the results, it is observed that, the
intensity stages (Depression, Deep Depression, Cyclonic Storm, Severe Cyclonic Storm, and

Very Severe Cyclonic Storm) of TCs during the model initialization have a significant impact
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on track prediction. The cyclones initiated at deep depression or higher stages showed an
increasing trend in average track error from the model initiation to the end of the simulation.
Whereas, the cyclones initiated at the depression stage showed a decreasing trend in average
track error till the 48 h of model simulation and then gradually increased to the end of the
simulation. Except for cyclones Daye and Kyant, the predicted track is close to the observed
track during the initial stages of the model simulation with an average error of 64 km for all
the schemes. The results are in good agreement with previous studies (Osuri et al. 2012; Kanase
and Salvekar 2015). Subsequently, as the time of simulation increased the predicted track also
started moving away from the best track. At the end of the simulation period, the average track
error is found to be 247 km. For cyclone Kyant, an average track error of 88 km is found during
the initial stages which gradually reduced to 67 km up to the 48 h of the model simulation and
then gradually increased to 347 km at the end. Similarly, for cyclone Daye, the average track
error is gradually reduced from 162 km to 78 km from the model initiation to the end of the

simulation.

The model performance is evaluated by calculating MAE, MSE, and average track errors at
every 24h interval (i.e., 24h, 48h, 72h, and 96h). The 24 hourly average track error for TCs are
presented in Figure 5.10 and 5.11. The WSM3 scheme simulated cyclones Nilofar, Kyant,
Ockhi, Daye, and Phethai with an average track error ranging from 83 to 190 km, 45 to 195
km, 42 to 75 km, 102 to 47 km, and 113 to 115 km, respectively at 24h to end of the simulation
time. Hudhud cyclone is well simulated by all CMP schemes with a maximum average track
error of 63 km at 24 h simulation time. From then, the average track error gradually increased
to 555 km at the end of the simulation with a least error of 219 km by WSM6 scheme. Cyclone
Gaja is well simulated by Ferrier with least average track errors of 110, 264, 231, and 139 km
at 24, 48, 72, and 96h of the model simulation time. In case of Titli the average track has been
considered for the overall simulation period because, Morrison scheme provided the least
average track error of 64 km and 39 km during the initial stages of model simulation while
WSM6 scheme produced the least error of 111 km and 37 km at the end of the simulation.
Hence, WSM6 scheme is considered to provide superior results for Titli cyclone. The single
moment or double moment schemes did not show any significant variations in TCs track
prediction. The deviations in the predicted tracks may be attributed to the variations in the
intensification process during the model simulation. The schemes which showed rapid
intensification process during the model simulation showed minimum deviation from the

observed track and vice-versa (Park et al. 2020).
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Figure 5.6 Observed and predicted tracks of TCs Daye, Kyant, Gaja, and Hudhud
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Figure 5.7 Observed and predicted tracks of TCs Phethai, Titli, Nilofar, and Ockhi
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The MAE and MSE of MSW for all CMP are calculated and the results of TC Hudhud are
shown in Figure 5.12. In the case of Nilofar, Kyant, Daye, and Phethai cyclones WSM3
indicates the lowest MAE and MSE. The lowest MAE for the TCs ranged from 4.73 to 17.08
m/s, 6.84 to 4.63 m/s, 8.60 to 1.45 m/s, and 7.16 to 3.66 m/s for MSW at 24h to the end of the
simulation. The lowest MSE for the TCs ranged from 10.14 to 11.31 m?/s?, 2.89 to 4.97 m?/s?,
6.56 to 0.88 m?/s?, and 2.29 to 6.29 m?/s>. The lowest MAE and MSE for Gaja cyclone is
obtained from the Ferrier scheme and ranged from 4.19 to 9.94 m/s and 5.77 to 13.46 m?/s?
respectively. For Hudhud, Titli and Ockhi cyclones, WSM6 and Lin scheme provided the
lowest MAE ranging from 2.44 to 9.49 m/s, 5.08 to 3.91 m/s and 4.85 to 3.85 m/s respectively
and MSE ranged from 1.60 to 1.48 m?%s? 5.39 to 8.63 m?%s? and 6.44 to 12.45 m?/s?,
respectively. The schemes which predicted MSW well also predicted MSLP for the respective
TCs.

The intensity of TC is influenced by the auto conversion process between the hydrometers and
the amount of latent heat released during the conversion process (Kanase et al. 2014). To assess
the impact of various microphysical schemes on the intensity of TCs, the vertical profile of the
area averaged mixing ratios is calculated at every 3-hour interval. An average value of the
prognostic variables over all the time steps has been taken for the analysis. The averaged values
of the prognostic variables for cyclone Hudhud are presented in Figure 5.13 and for other
cyclones presented in Figures B1 to B7 (Appendix-B). From the results, it is observed that
WSM3 scheme predicted only liquid hydrometers for all the cyclones. It indicates that WSM3
scheme assumed that the temperature of the clouds is above freezing point. Compared to other
microphysical schemes, WSM3 scheme produced significant amounts of cloud water and rain
in the lower troposphere for cyclones Nilofar, Kyant, Daye, and Phethai. For cyclones Kyant,
Daye, and Phethai, all the microphysical schemes showed significant decrease in frozen
hydrometers in middle troposphere. This results in slowing down the vertical acceleration of
intense updrafts in the eye wall of the storm, which might be the reason for inhibiting storm
intensification (Maw and Min 2017). For the cyclone Nilofar, the frozen hydrometers predicted
by all microphysical schemes in middle troposphere are in negligible quantity and the liquid
hydrometers predicted by Lin, WSM5 and WSM6 in the lower troposphere are also in
negligible quantity. Compared to Ferrier, Morrison, and Thompson schemes which produced
cloud water and rain in the lower troposphere WSM3 scheme produced more amount. The
presence of cloud water and rain in the lower troposphere helps in its intensification. Therefore,

the WSM3 scheme produced more intensity for the cyclones Nilofar, Daye, Kyant, and Phethai.
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The WSM6 scheme has produced a significantly large amount of cloud water and rain in lower
troposphere compared to WSM3 for cyclone Hudhud, Ockhi, and Titli. The presence of cloud
water and rain in the lower troposphere which helps in the release of latent heat and cyclone
intensification, WSM6 scheme provided high intensity for cyclones Hudhud, Ockhi and Titli.
Other microphysical schemes showed significant decrease in the frozen hydrometers in the
middle troposphere which prevents the intensification of cyclones. In the case of Gaja cyclone,
Ferrier, Lin, Thompson, and WSM6 schemes have produced cloud water in the lower
troposphere and all the schemes have produced negligible quantities of all the other prognostic
variables. Compared to other schemes, due to the presence of a large amount of cloud water in

the lower troposphere, Ferrier scheme has predicted Gaja cyclone with more intensity.
5.5.2 Skill Score

SS is calculated to obtain information about the improvement in the model forecast over
reference forecast. It is easy to identify any improvement in the model performance as SS
provides a single value. In the present study, sensitivity experiments with Lin scheme are
considered as a reference forecast and the skill score for all other microphysical schemes is
calculated. The skill scores for the DPE, MSW and MSLP at the end of the simulation are
provided in Table 5.2 to 5.4.

The WSM3 scheme showed an improvement of 18%, 17%, 19% and 41% in DPE for cyclones
Nilofar, Kyant, Daye, and Phethai respectively. The WSM6 scheme showed an improvement
of 17%, 35% and 58% in DPE for the cyclones Hudhud, Ockhi, and Titli. For Gaja cyclone,
Ferrier scheme showed an improvement of 35% over the reference forecast. Similar results are
obtained for MSW and MLSP.

Table 5.2 Skill score for Direct Positional Error

Cyclone/CMP Ferrier Morrison Thompson WSM3 WSM5
Hudhud 052 -0.07 0.07 -0.16 0.04
Nilofar 0.13 0.08 0.08 0.18 0.17

Kyant -0.44 -0.31 0.06 0.17 0.08
Ockhi -054 -0.12 0.07 -0.04 -0.04
Daye -0.09 -0.16 0.04 0.19 0.08
Titli 0.49 0.28 0.37 0.21 0.01
Gaja 0.35 0.20 0.21 0.26 0.19
Phethai -0.11 -0.17 0.10 0.41 0.03
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Table 5.3 Skill score for Maximum Sustained Wind

Cyclone/CMP | Ferrier Morrison | Thompson | WSM3 WSM5 WSM6
Hudhud 0.33 0.18 0.10 -1.33 0.00 0.43
Nilofar 0.22 0.01 0.23 0.47 0.21 0.11

Kyant 0.15 0.26 0.66 0.70 0.61 0.53

Ockhi -0.24 -0.56 -0.38 -0.90 -0.33 0.01

Daye 0.01 -0.08 -0.02 0.17 -0.10 -0.07

Titli 0.13 0.15 0.05 0.09 -0.17 0.26

Gaja 0.62 0.61 0.33 -0.16 0.18 0.14

Phethai 0.27 0.12 0.20 0.47 0.33 0.26
Table 5.4 Skill score for Mean Sea Level Pressure

Cyclone/CMP | Ferrier Morrison | Thompson | WSM3 WSM5 WSM6
Hudhud 0.45 -0.30 0.50 -0.16 0.51 0.74
Nilofar 0.41 0.05 0.30 0.70 0.44 0.25

Kyant 0.24 0.37 0.38 0.68 0.62 0.07
Ockhi -0.85 -0.25 -0.94 -1.68 -0.92 0.15
Daye -0.02 0.21 0.18 0.29 0.11 0.10
Titli 0.11 0.22 0.03 0.35 -0.15 0.35
Gaja 0.47 0.41 0.43 -0.23 0.03 0.33
Phethai 0.23 0.10 0.31 0.40 0.28 0.20

5.6 Rainfall Prediction by WRF Model

Rainfall intensity and distribution of TCs are influenced mainly by the interaction of storm

with the Earth’s surface as well as humidity, and intensity of TC. In recent years, most of these

parameters have been incorporated into WRF model for predicting the track, intensity, and

rainfall of TCs. In this study, rainfall produced by Titli cyclone is predicted using WRF model

with seven CMP schemes. The time series plot of rainfall predicted by WRF model along with

IMD observed rainfall for cyclone Titli is shown in Figure 5.14. From the results, it is observed

that the pattern of rainfall predicted by WRF model is in good agreement with observed data,

but rainfall is overestimated byWRF model. WSM6 scheme predicted a maximum rainfall of

220 mm for TC Titli that predicted the track and intensity as well.
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Figure 5.14 Rainfall predicted by WRF model for TC Titli

5.7 Closure

In this chapter, the spatio-temporal variations of trends in rainfall characteristics over Nagavali
and Vamsadhara basins are analyzed to identify areas that are vulnerable to floods. Using WRF
model, the performance of various microphysical schemes on the track and intensity prediction

of tropical cyclones over NIO are assessed.
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Chapter - 6 Results and Discussions (Part-Il)

6.1 General

For the selected study area, based on the trends and patterns in rainfall characteristics and
prediction of TCs using WRF model, the skill of GFS based rainfall forecasts have been
evaluated and bias correction applied. After evaluating the skill of GFS based rainfall forecasts,
an integrated hydrologic and hydraulic model based on SWAT and HEC-RAS is developed
which simulates floods using GFS rainfall forecasts with a lead time of 48 hours. A Web-GIS
based user interface system is developed for the visualization and timely dissemination of flood
related information. Finally, the overall methodology is automated using R and Python
programming languages. A detailed explanation about the evaluation of GFS rainfall forecasts,
development of integrated hydrologic and hydraulic model, development of Web-GIS based
user interface system, and the automation of the overall methodology is given in the following

sections.

6.2 Evaluation of GFS based Rainfall Forecasts

From the section 5.6, it is clear that WRF model is able to predict rainfall for an extreme event.
Although WRF model is able to predict rainfall for an extreme event, the model is sensitive to
initial and boundary conditions, grid resolution, representation of physical parameterization
schemes, and geographical location. For the prediction of rainfall in real-time, the initial and
boundary conditions of the model need to be updated at regular intervals. A small error in initial
conditions during the initialization of the model causes a large error in the forecast with an
increase in simulation time. To avoid these kind of problems, rainfall predicted by WRF model
for TC Titli is compared with GFS based rainfall forecasts. The time series plot of the WRF
predicted rainfall, GFS based rainfall forecast, and observed data for TC Titli is shown in
Figure 6.1. From the results, it observed that rainfall predicted by WRF model and GFS based

rainfall forecast are in good agreement with the observed rainfall provided by IMD.
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Figure 6.1 Rainfall predicted by WRF model along with GFS based rainfall forecast and

observed data for Titli cyclone

Although GFS model is able to forecast rainfall, it is suffering from three types of errors (i)
location, (ii) magnitude, and (iii) timing. This may limit the usefulness of GFS rainfall forecasts
to simulate the streamflow. Hence, the skill of GFS based rainfall forecasts needs be verified

before using them for any hydrometeorological applications.

6.2.1 Spatial Characteristics of Statistical Indices

The box plots of statistical indices (CC, BIAS, RMSE, and ME) of GFS rainfall forecasts from
day-1 to day-5 against IMD rainfall over the Nagavali and Vamsadhara basins are presented in
Figures 6.2 and 6.3, respectively. From the box plots of CC, it is observed that day-1 forecasts
have shown the highest correlation in both basins and gradually decreased with an increase in
lead time. The decrease in CC with the increase in lead time may be attributed to the variations
in the SST and rainfall relationship. As the lead time increases, the relationship between SST
and rainfall shifts from positive to negative because of the periodic forcing imposed by the
northward propagating monsoon intra seasonal oscillations (Sahai et al. 2013). Durai and Das,
(2019) suggested that rainfall forecasts from NWP models with a CC greater than 0.3 are
considered good. In both basins, the magnitude of CC for day-2 and day-3 forecasts is within
the acceptable range. From the magnitude of CC, it is observed that, GFS model is able to
capture rainfall forecasts in both basins with a lead time of 3 days. The BIAS values indicated
that, on average, the GFS model overestimated the rainfall in both the basins. The average

overestimation for day-1 forecast is more than 38% in Nagavali basin and 40% percent in
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Vamsadhara basin. In both basins, the overestimation of rainfall is gradually reduced from day-

1 to day-3 and then increased on day-4 and day-5. Similar results are obtained for ME in both

basins. The random component of the forecast error is measured using RMSE. It showed an

average value of approximately 12 mm/day in Nagavali basin and 14 mm/day in Vamsadhara

basin and no significant changes are found with increase in lead time.
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Figure 6.3 CC, BIAS, RMSE, and ME for Vamsadhara basin

The spatial distribution of statistical indices (CC, BIAS, RMSE, and ME) of GFS rainfall
forecasts from day-1 to day-5 are presented in Figure 6.4. The magnitude of day-1 CC ranged
between 0.3 to 0.5 in both Nagavali and Vamsadhara basins, with maximum values in middle
and upper portions. Rainfall forecasts from NWP models with a CC greater than 0.3 are
considered good (Durai and Das 2019). In both basins, the magnitude of CC decreased with a
decrease in forecast lead time. The magnitude of CC decreased to less than 0.3 for day-2 to
day-5 forecasts in all parts of Nagavali basin. The magnitude of CC for day-2 and day-3
forecasts is within the acceptable range (greater than 0.3) in all parts of Vamsadhara basin. In
contrast, the magnitude of CC is less than 0.3 in all parts of the basin for day-4 and day-5
forecasts. The CC values showed that the trend in rainfall forecasts is in good agreement with

observed data in both basins from day-1 to day-3.
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From the spatial patterns of BIAS (Figure 6.4), the model overestimated the rainfall in day-1
forecast in most parts of both Nagavali and Vamsadhara basins. The overestimation for day-1
forecast is ranged between 20% to 80%. Rainfall forecasts shifted from overestimation to
underestimation as forecast length increased. In Vamsadhara basin, shift from overestimation
to underestimation occurred in almost all parts of the basin. In Nagavali basin, however, the
shift occurred mainly in the lower portion of the basin. The magnitude of RMSE ranged from
9to 27 mm/day for day-1 to day-5 forecasts. The RMSE displayed similar spatial patterns from
day-1 to day-5. In almost all parts of Vamsadhara basin, RMSE values greater than 12 mm/d
are observed. The spatial distribution of RMSE values from day-1 to day-5 did not differ
significantly in Nagavali basin. However, a decrease in the magnitude of RMSE values is
observed throughout the basin. For day-1 to day-5 forecasts, the magnitude of ME ranged
between -2 to 12 mm/day. The spatial patterns of ME shows that the highest values (greater
than 4 mm/day) of ME are found along the boundary of Nagavali basin (adjacent to
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Vamsadhara basin). Lower ME values (-2 to 4 mm/day) are found in all parts of both basins
except along Nagavali basin boundary. The magnitude of ME changed from positive to
negative as the forecast lead time increased, but no significant difference is observed in spatial
plots of ME from day-1 to day-5. From the results of BIAS and ME, it is observed that GFS
model overestimated rainfall forecasts on day-1. GFS model underestimated the rainfall from
day-2 forecast onwards due to the forecast lead time. The findings are consistent with those of
Durai and Das (2019).

6.2.2 Analysis of Contingency Statistics

The contingency statistics (POD, FAR, CSI, and TSS) of GFS rainfall forecasts from day-1 to
day-5 are calculated for yes/no rainfall condition at a threshold of 1 mm/day for both basins
(Figures 6.5 and 6.6).

0.9 0.70
0.65
0.8
c 0.783
]
° [=]
7] 0.733 .2 0.60 -
] o.716 |
2 0.7+ 0.689 ox
o X
s E
© « 0.55 0.523 0.523 0.520
] < 0516 :
= 0.509
'_'-: 0.6 E
o @ 0.50
[=) 1N
I
o
0.5
0.45 4
0'4 T T T T T 0'40 T T T T T
0.50 0.55
= 0.50 0.408
0.45 ..
-]
] 2 I:-]u/aas
o <]
g 0.423 3 0.45 0.449
8 s = 0.429
© 0.40 4 0399 | T 0.427 -
3 0.388 0.389 n 0.40
w 0.
© S
‘£ 0.35
(5] 0.35 1
0.30 4 0.30
T T T T T T T T T T
GFS1 GFS2 GFS3 GFS4 GFS5 GFs1 GFSs2 GFs3 GFS4 GFs5
Forecast Day Forecast Day

[_125%~75% 1 Range within 1.51QR --- MedianLine + Mean + Outliers
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Figure 6.6 POD, FAR, CSI, and TSS for Vamsadhara basin for GFS five-day rainfall forecasts

From Figures 6.5 and 6.6, it is observed that the POD values of GFS forecasts are good and the
highest value of 0.783 is found in Nagavali basin and 0.759 in Vamsadhara basin. A slight
decrease in POD values is observed with an increase in lead time. Although there is a decrease
in POD values with an increase in lead time, the GFS model is able to capture at least 68% of
the rainfall events over the Nagavali basin and 70% of rainfall events in Vamsadhara basin.
The FAR values indicate that, from day-1 to day-5 forecasts, the GFS model is unable to
capture approximately 50% of rainfall events over Nagavali basin and 48% of rainfall events
over Vamsadhara basin. The fraction of rainfall events correctly detected by the model is
measured by CSI. CSI has highest value of 0.423 and 0.435 on day-1 forecast in Nagavali and
Vamsadhara basins, respectively. The values of CSI indicated that the GFS model is able to
forecast nearly 40% of rainfall events. TSS assessed the model's ability to distinguish between
the occurrence and non-occurrence of events. From the values of TSS, the ability of GFS model

to distinguish between the occurrence and non-occurrence of events is more than 40%.
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The spatial distribution of contingency statistics (POD, FAR, CSI, and TSS) is presented in
Figure 6.7. The results show that POD is greater than 0.6 for a threshold of 1 mm/day in all
parts of Nagavali and Vamsadhara basins for day-1 and day-2 forecast. With the forecast lead
time, POD is decreasing in lower Nagavali basin and upper middle and upper portion of
Vamsadhara basin. Despite the forecast lead time, the minimum POD values in Nagavali and
Vamsadhara basins are 0.55 and 0.5, respectively. POD values indicated that the GFS model
is able to detect more than 50% of rainfall events with a five-day lead time. Higher FAR values
of FAR are evident in all parts of Nagavali basin, except for the upper middle portion. Higher
FAR values are found in the lower middle and lower portions of Vamsadhara basin. Lower
FAR values are found in the upper middle and upper portion of the basin. With an increase in
forecast lead time, FAR increased in almost all parts of the basin. CSI score over most parts of
the basin is in between 0.4 and 0.5 for day-1 to day-5 forecast. The results shown by CSI are
consistent with Durai and Das (2019).

Figure 6.7 POD, FAR, CSI, and TSS for GFS five-day rainfall forecast
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TSS score is more than 0.4 in all parts of both basins for day-1. The value of TSS decreased as
forecast lead time increased. The lower portion of Nagavali basin and upper most middle
portion of Vamsadhara basin had the greatest reduction in TSS value. Even with increased lead
time, the GFS model distinguished more than 30% of rainfall events on day-5 forecast.

Error Decomposition

The total bias of GFS day-1 to day-5 forecast are decomposed into three independent
components such as HB, MB, and FB. Box plots are an easy method to express the
characteristics of a data set, such as symmetry, outliers, and variance. The box plots for HB,
MB, FB and TB are shown in Figure 6.8. These biases are calculated for both Nagavali and
Vamsadhara basins using total daily dataset. From the results, HB and FB are more dominant
than MB in GFS rainfall forecasts. The magnitude of HB gradually decreased from day-1 to
day-3 forecast and a small increase is observed on day-4 and day-5 forecast. The results

obtained by MB and FB are comparable to those obtained by HB.
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Figure 6.8 Decomposed error components of GFS rainfall forecasts
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To further investigate the influence of HB, FB, and MB on total bias, the spatial distribution of
the decomposed error components is presented in Figure 6.9. From the spatial patterns, it is
evident that the spatial distribution of ME is mainly influenced by HB and FB. All of the error
decomposed components displayed similar spatial patterns, with a change in magnitude. For
day 1 to day 5, the magnitude of HB ranged from -1.6 to 2.8 mm/day, MB ranged from 0.06 to
-2 mm/day, and FB ranged from 0.6 to 5.3 mm/day. The higher values of HB (greater than 2
mm/day) are located in the lower middle portion of Vamsadhara basin and the middle portion
of Nagavali basin along the boundary adjacent to Vamsadhara for day-1 forecast. The
magnitude of HB changed from positive to negative as forecast lead time increased, following
the same spatial patterns as day-1 forecast. The change in HB from positive to negative
suggested that the GFS model forecasts overestimated the rainfall on day-1 and gradually

underestimated as lead time increased.

FB (mm/day) MB (mm/day) HB (mm/day)

O

ME (mm/day)

Figure 6.9 Decomposed error components for GFS rainfall forecasts
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Higher MB values are found in the upper middle portion of Vamsadhara basin along Nagavali
boundary and in the lower portion of Nagavali basin. With increasing lead time, the magnitude
of MB gradually increased. The increase in magnitude of MB indicates that the number of
missing events in GFS model forecast increased as lead time increased. The spatial distribution
of FB is comparable to that of HB. The magnitude range of FB gradually decreased from 0.8
to 5.3 mm/day to 0.6 to 4.2 mm/day as forecast lead time increased. The decrease in magnitude
of FB with forecast lead time indicated a reduction in false events. From the results, HB is
always contributing to ME. Compared to MB, FB is the major influencing component of ME
at the beginning of the GFS forecast; on the other hand, MB influenced ME with forecast lead

time.

6.2.3 Intensity Distribution Plots

The intensity distribution of rainfall amount provided unique insights into error dependence on
rain rate as well as the potential impact of errors on hydrological applications. This is due to
the fact that most hydrological processes, such as surface runoff, are highly sensitive to both
intensity distribution and total rainfall amounts. The intensity distribution is calculated as the
ratio of the total amount of rainfall in each bin to the total amount of rainfall observed over the
entire study period. Figure 6.10 depicts the intensity distribution plots of total, hit, missed, and
false rainfall. From the intensity distribution of total rainfall, the GFS model forecasts
underestimated the rainfall with rain rate less than 12 mm/day and greater than 64 mm/day.
The model, on the other hand, overestimated the rainfall, with rain rates ranging from 12
mm/day to 64 mm/day. The intensity distribution of hit events followed a similar pattern to the
intensity distribution of total rainfall, indicating that hit bias is a significant contributor to total
bias. Missed rainfall forecasts ranged from 1 mm/day to 32 mm/day for day-1 to day-5 forecast.
The number of missing rainfall events in the forecast gradually increased as the forecast lead
time increased. The model forecasted false rainfall is greater than the missed rainfall, with rain
rates ranging from 2 mm/day to 64 mm/day. The number of false rainfall events in the forecast
gradually decreased as lead time increased.
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Figure 6.10 Intensity distribution plots of GFS rainfall forecast over Nagavali and Vamsadhara
basins: a) Total Rainfall, b) Hit Rainfall, c) Missed Rainfall, and d) False Rainfall.

6.2.4 Bias Correction of Rainfall

The GFS rainfall forecasts are corrected for bias using the simple multiplication scheme
mentioned in chapter 111. Bias factors are calculated and verified by dividing the entire dataset
into two parts: dataset-1 (from June 2015 to December 2018) and dataset-2 (from January 2019
to December 2020). The bias factors are calculated with datasetl and validated with dataset?2.
The intensity distribution plots (Fig. 6(a) and 6(b)) show that the GFS model overestimated the
rainfall events with intensities greater than 12mm/day, resulting in false alarms. The categorical
rainfall thresholds chosen for calculating the bias factors are 8mm, 12mm, 16mm, and 20mm.
The dataset-1 is divided into two groups for each threshold. For instance, to calculate the bias
factor at a threshold of 8mm, dataset-1 is divided into two groups as rainfall less than or equal
to 8 mm/day and greater than 8 mm/day. The bias factors for rainfall forecasts from day-1 to
day-5 for both Nagavali and Vamsadhara basins at different thresholds are presented in Table
6.1. To avoid underestimation of rainfall, the bias factors are applied to dataset-2 for rainfall

events with intensity greater than the threshold value.
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Table 6.1 Calculated bias factors for the GFS five-day (i.e., day-1 to day-5) rainfall forecasts

using IMD gridded observed data from June 2015 to December 2018 over Nagavali

and VVamsadhara basins

Forecast
day RI<8 | RI>8 |[RI<I2 |RI>12 | RI<16 | RI>16 | RI<20 | RI>20
GFS1 1.059 | 0.612 | 0.888 | 0.648 | 0.727 0.655 | 1.059 0.612
GFS2 0.987 0.717 0.888 0.787 0.762 0.801 0.987 0.717
GFS3 0.936 0.831 0.891 0.891 0.779 1.004 0.936 0.831
GFS4 0681 | 0933 | 0.854 | 0.877 | 0.698 1.203 | 0.681 0.933
GFS5 0940 | 0.765 | 0.853 | 0.833 | 0.754 | 0.899 | 0.940 0.765

Note: RI indicates rainfall intensity in mm/day.

After recalculating the statistical indices for bias corrected GFS rainfall forecasts, skill scores
are calculated to see if there is any improvement in forecast after bias correction. The skill
scores for statistical indices at different threshold values are presented in Table 6.2. The
magnitude of CC over both Nagavali and Vamsadhara basins improved slightly at all threshold
values after bias correction as per Table 6.2. Based on the skill score values of BIAS, RMSE,
and ME in both basins, a significant improvement is observed after bias correction at all
threshold values. Over the Nagavali basin, the improvement in BIAS and ME ranged between
38 to 64%, 44 to 65%, 22 to 53%, and 3 to 53% at thresholds of 8, 12, 16, and 20 mm/day,
respectively with a maximum improvement on day-1 forecast. The RMSE improved by a
maximum of 23%, 23%, 21% and 17% for day-1 forecast at thresholds of 8, 12, 16, and 20
mm/day, respectively. From day-2 to day-5, the improvement in RMSE ranged from 4 to 8%,
5 to 9%, 3 to 7%, and 0 to 5% at thresholds of 8, 12, 16, and 20 mm/day, respectively. Over
Vamsadhara basin, the improvement in BIAS and ME ranged from 14 to 57%, 65 to 93%, 31
t0 68%, and 4 to 42% at thresholds of 8, 12, 16, and 20 mm/day, respectively. The improvement
in RMSE ranged from 2 to 18%, 3 to 18%, 2 to 16%, and 0 to 14% at the respective threshold
values. From the skill score values, it is observed that the bias correction for rainfall with
intensity greater than 12 mm/day in both basins showed maximum improvement when

compared with other thresholds.
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Table 6.2 Percentage improvement in statistical indices of GFS rainfall forecast for the study

basins over a two-year period (i.e., from January 2019 to December 2020)

Nagavali Basin Vamsadhara Basin
Forecast

BIAS RMSE ME BIAS RMSE ME
Day

8/12/16/20 | 8/12/16/20 | 8/12/16/20 | 8/12/16/20 | 8/12/16/20 | 8/12/16/20

Day-1 | 64/65/57/53 | 23/23/21/17 | 64/65/57/53 | 57/7758/42 | 18/18/16/14 | 57/77/58/42

Day-2 | 59/62/38/22 8/9/7/5 59/62/38/22 | 24/93/58/34 5/5/4/3 24/93/58/34

Day-3 | 38/44/22/3 4/5/1/0 38/44/22/3 | 16/76/68/5 2/3/2/0 16/76/68/5

Day-4 | 43/49/23/3 5/5/3/0 43/49/23/3 | 14/65/31/4 3/3/2/0 14/65/31/4

Day-5 | 52/53/29/11 717/5/2 52/53/29/11 | 15/85/46/18 3/3/2/1 15/85/46/18

Note: 8/12/16/20 indicates the threshold values considered for the calculation of bias factors
and 64/65/57/53 indicates the improvement in the model forecast after the bias

correction at respective threshold values.

To further investigate the influence of bias correction of GFS rainfall forecasts over both
basins, the spatial distribution of statistical indices before and after the bias correction are
presented in Figure 6.11 and 6.12. From the spatial patterns of spatial indices, it is evident that
the magnitude of CC improved from day-1 to day-5 in all parts of both basins after bias
correction. For day-1 and day-2 forecasts, the maximum improvement in CC is observed in the
lower parts of both basins. Whereas, from day-3 to day-5 an improvement in CC is observed
in all parts of both basins. From the spatial patterns of BIAS, it is observed that the
overestimation of rainfall decreased significantly from day-1 to day-5 in all parts of both basins.
For day-1 forecasts, before bias correction, the overestimation ranged from 55 % to 90% in the
middle and upper portions of Nagavali basin and in the middle portion of Vamsadhara basin.
After bias correction, the overestimation in the middle and upper portions of Nagavali basin
and in the middle portion of Vamsadhara basin decreased to 21 — 38%. Similarly, from day-2
to day-5 the overestimation of rainfall decreased significantly in all parts of both basins. The
spatial patterns of ME followed similar patterns of BIAS in both Nagavali and Vamsadhara
basins. Spatial patterns of RMSE showed that its magnitude decreased significantly from day-
1 to day-5 in all parts of both basins after bias corrections. The spatial patterns of ME followed

a pattern similar to BIAS in both basins.
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Figure 6.12 CC, BIAS, RMSE, and ME for the dataset-2 after bias correction
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6.3 Forecasting of Floods using Integrated Model

From the analysis of trends and patterns in rainfall characteristics, it is observed that the lower
and middle portions of Nagavali and Vamsadhara basins are vulnerable to frequent floods due
to heavy rainfall in the monsoon season and TCs that are formed over BoB during the pre- and
post-monsoon seasons. Due to lack of flood forecasting and warning system, authorities
frequently struggle to evacuate villagers during floods. Hence, there is a need for an integrated
modelling framework to forecast floods and flood inundation extent. In the present study, an
integrated hydrologic and hydraulic model is developed based on SWAT and 2D HEC-RAS

models for simulation of floods using GFS based rainfall forecasts.

The SWAT model is used in this study to estimate streamflow in both Nagavali and
Vamsadhara basins. The estimated streamflow is calibrated and validated using SUFI-2
algorithm in SWAT-CUP. SWAT model evaluation includes a sensitivity analysis to identify
the parameters for streamflow simulations. The simulated streamflow from SWAT model is
given as input to HEC-RAS model to predict flood inundation extent and flood depth. The

following sections provide a detailed explanation of the results.
6.3.1 Flood Frequency Analysis

The National Disaster Management Authority (NDMA) recommended a discharge threshold
of 1500 m®/s for modeling flood events in Nagavali and Vamsadhara basins in its hazard
assessment report for Andhra Pradesh and Odisha states (RMSI 2015). A study by Hajaj et al.
(2019) found that the Nagavali basin has been flooded more than nine times since 1990. It
suggests that flood events with discharges of less than 1500 m®/s caused floods in the basin. As
a result, in the present analysis, a flood frequency analysis has been performed instead of
considering NDMA's recommended threshold for modelling of floods. Flood frequency
analysis uses annual maximum discharge collected at gauge stations to provide information on
both the magnitude and frequency of floods. In the present study, stationary and nonstationary
flood frequency analysis is conducted to estimate flood peaks for different return periods of 2,
5, 10, 25, 50, and 100 years in Nagavali and Vamsadhara basins. In both stationary and
nonstationary analyses, four distributions, namely, Log-Pearson Type-lll, Log-Normal,
Weibull, and Gumbel are used to estimate the peak discharges (Yang et al. 2019). The
parameters of the distributions are estimated by maximum likelihood estimation method. Two
open source R programming based packages, namely, “extremes” (Gilleland 2020; Gilleland
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and Katz 2016) and “gamlss” (Rigby et al. 2005) are used to perform stationary and
nonstationary analysis. Under the stationary assumption, best fit distribution is selected based

on Akaike Information Criterion (AIC) value.

Compared to other distributions, Log-Pearson Type-I1I provided the minimum AIC of 459 in
Nagavali basin and 741 in Vamsadhara basin. Under the nonstationary assumption, six
different cases are set for each distribution, where the scale and location parameters vary with
time (Table 6.3). Log-Pearson Type-Ill distribution performed best for the nonstationary
analysis. The residuals for Log-Pearson Type-III distribution are presented in Table 6.4 and

6.5 for Nagavali and Vamsadhara basins, respectively.

Table 6.3 Location and Scale parameters with time t in nonstationary analysis

Models | Location Scale

M1 U= Ho+pqxt o = Constant

M2 U= g+ g *t 0= 0g+tog*t

M3 L= Ug+ ty *xt+ py xt? o = Constant

M4 L= Ug+ py *t+ py xt? 0= 0yg+o*t

M5 U= o+ py xt+ py *t% + ug * t3 0= 0y+ o0 *t

M6 U= o+ py xt+ py *t% + ug * t3 0= 0yg+toxt+ o, *t?

Table 6.4 Residuals of Log-Pearson Type-I111 distribution over Nagavali basin

Model AIC Mean Variance Coefficient of Coefficient of
Skewness Kurtosis
M1 459.357 0 1.03 0.975 0.897
M2 457.801 0 1.03 0.815 0.625
M3 453.050 0 1.03 0.739 0.912
M4 453.050 0 1.03 0.739 0.912
M5 459.357 0 1.03 0.975 0.897
M6 456.668 0 1.03 0.604 0.274
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All the six models have the same mean and variance in the both basins. The M3 and M4 models
have the smallest AIC values, while M3 has the smallest Kurtosis value in the Vamsadhara
basin compared to M4. Therefore, M3 model has been selected for the calculation of peak
discharges under nonstationary conditions. The estimated peak discharges for basins under
stationary and nonstationary analysis are shown in Table 6.6. From the statistics, it is found
that peak discharges estimated by the non-stationary method at various return periods are less
than the peak discharges estimated by stationary method. The difference in peak discharge
estimates from stationary and non-stationary techniques is relatively small during short return
periods and increased with the length of return period. The smaller difference between peak
discharges calculated by stationary and non-stationary methods may be attributed to the fact
that only time is considered as a covariate in calculating return periods. This may be because
only time is considered as covariate in the calculation of design floods. Flood events with
discharges greater than or equal to 2-year return period discharge calculated using the

nonstationary method are considered for flood simulation in this study.

Table 6.5 Residuals of Log-Pearson Type-I111 distribution over Vamsadhara basin

Model AIC Mean Variance o?%eg :/(\:/Ineens:[s gfole{l?r(t:(l)esri]st
M1 741.090 0 1.02 0.081 -0.886
M2 742.419 0 1.02 0.171 -1.148
M3 741.005 0 1.02 0.080 -0.765
M4 741.005 0 1.02 0.080 -1.148
M5 741.090 0 1.02 0.082 -0.886
M6 742.646 0 1.02 0.270 -1.272

Table 6.6 Estimated peak discharges of the study basins with different return periods using

Log-Pearson Type-I1I distribution

Peak Discharge (m®/s)
Return Period Nagavali River Vamsadhara River
(T years) Stationary Nonstationary Stationary Nonstationary
Analysis Analysis Analysis Analysis
1223 1200 1365 1360
1948 1877 2634 2596
10 2650 2490 3841 3774
25 3750 3443 5960 5837
50 4770 4252 8110 7916
100 5989 5195 10900 10605
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6.3.2 SWAT Simulated Streamflow

SWAT model underestimated the streamflow during the calibration and validation period in
both basins. The observed versus simulated streamflow during the calibration and validation
period at Srikakulam and Kashinagar stations in Nagavali and Vamsadhara basins, respectively
are presented in Figure 6.13 and 6.14. During the calibration and validation period, the time
series plot of simulated streamflow reflected rainfall patterns over Nagavali and Vamsadhara
basins and matched with observed streamflow. In Nagavali and VVamsadhara basins, the
monsoon season produced the most streamflow (i.e., from June to September). In Nagavali
basin, SWAT model overestimated the streamflow flow from 2004 to 2009. The overestimation
of streamflow in Nagavali basin may be attributed to uncertainty in gridded products caused

by inhomogeneity in observation practices and irregular distribution of observation stations.

Streamflow in both basins has been increasing since 1991. The annual average streamflow has
increased at a rate of 14 m®/s in Nagavali basin and 16 m®/s in Vamsadhara basin. According
to the observed flow data, the average annual flow in Nagavali basin is 83.52 m%/s and in
Vamsadhara basin it is 88.72 m®/s. The highest peak flow of 5624.74 m®s is recorded in
Nagavali basin on August 04, 2006, while 7321.54 m%/s is recorded in Vamsadhara basin on
October 07, 2007. The peak flow recorded in Vamsadhara basin on October 07, 2007, could
have been caused by measurement error or spurious data, as there is no scientific evidence of
heavy rainfall or a cyclone passing over the basin at that time. The Vamsadhara basin received
secondary peak of 4250 m®/s on September 07, 2014. According to SWAT simulated
streamflow, the average annual flow in Nagavali basin is 79.71 m®s and 72.50 m%/s in
Vamsadhara basin. The highest peak flow evidenced in the simulated streamflow is 6753 m®/s
on August 04, 2006 in Nagavali basin and 3884 m®/s on September 07, 2014 in Vamsadhara
basin. The SWAT simulated peak flows that are in good agreement with observed flow. The
maximum annual discharge in Nagavali basin is 2070 Billion Cubic Meters (BCM) in 2010,
while the maximum annual discharge in Vamsadhara basin is 2295 BCM in 2006. Minimal
annual discharges of 212 and 252 BCM in 2002 are observed in Nagavali and VVamsadhara

basins.
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Figure 6.13 Observed and simulated streamflow in Nagavali basin
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The Nagavali and Vamsadhara basins are frequently flooded as a result of heavy rainfall during

the monsoon season and tropical cyclones during the pre- and post-monsoon seasons. Based

on a 2-year return period peak discharge (1200 m®/s in Nagavali basin and 1360 m®/s in the

Vamsadhara basin), Nagavali basin is flooded 16 times, while Vamsadhara basin is flooded 9

times between 1991 and 2014. In Nagavali basin, 11 flood events occurred during the monsoon

season, four during the post-monsoon season, and the rest during the pre-monsoon season. In

Vamsadhara basin, six events occurred during the monsoon season and the rest during the post-

monsoon season. The flood inundation maps for historical events from 1991 to 2014 are

generated using HEC-RAS model with discharge hydrographs as inputs from SWAT model.
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Flood inundation maps for historical events in Nagavali basin are shown in Figures 6.15 and

6.16. Figure 6.17 shows flood inundation maps of Vamsadhara basin.

Based on historical flood events, the flood inundation area in the Nagavali basin varied from
182 to 229 sq.km, with a minimum inundation area in 1992 and a maximum inundation area in
2006. The flood inundation area predicted by integrated hydrologic and hydraulic model over
Nagavali basin for different flood events are in good agreement with Igbal and Yarrakula,
(2020). Over 115 villages across 10 mandals namely, Vangara, Veeragattam, Regidi,
Palakonda, Burja, Santhakaviti, Ponduru, Amudalavalasa, Etcherla and Srikakulam rural in
Srikakulam district, Andhra Pradesh are affected due to floods in Nagavali Basin. In
Vamsadhara basin, the flood inundation area is varied from 245 to 309 sg.km, with a minimum
inundation area in 1995 and a maximum inundation area in 2003. In the years 1994 and 2013,
Vamsadhara basin received streamflow over 1000 m®/s for more than three consecutive days,
resulting in an increase in the inundation area despite a lower peak discharge when compared
to previous flood events. More than 139 villages across 11 mandals namely, Bhamini, Kotturu,
Hiramandal, Jalumuru, L N Peta, Sarubujjili, Narasannapeta, Polaki, Amudalavalasa,
Srikakulam rural and Gara have been affected in Vamsadhara basin by floods. Average area of
220 sq. km and at least 1 lakh people in115 villages in Nagavali basin, and an area of 272 sq.km
and 1.25 lakh people in 135 villages in Vamsadhara basin are vulnerable to floods.
Geographical locations of the villages in both basins that are prone to floods are shown in
Figure 6.18.

6.3.4 Validation of Flood Inundation Depth

The flood inundation depth predicted by 2D HEC-RAS model is compared with observed data
from gauge stations in Nagavali and Vamsadhara basins at Srikakulam and Kashinagar,
respectively. Graphical representation of observed vs simulated flood depths is shown in Figure
6.19. The inundation depths provided by 2D HEC-RAS model in both basins are clearly in
good agreement with observed depths. Flood inundation depths predicted by the model ranged
from 2.70 to 4.51 m and 2.28 to 3.77 m for Nagavali and Vamsadhara basins, respectively. In
contrast, the observed inundation depths in the respective basins varied from 2.55 to 6.05 m

and 2.16 to 3.65 m, respectively.
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Date: 29-Jul-1991
Peak Discharge: 1356 m’/s
Inundation area: 187.328 sq. km
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Date: 28-Jul-1992
Peak Discharge: 1987 m’/s
Inundation area: 203.319 sq. km

Date: 01-Sep-1992
Peak Discharge: 1822 m"/s
Inundation area: 203.028 sq. km

Date: 07-Sep-1992
Peak Discharge: 1302 m’/s
Inundation area: 182.164 sq. km

Date: 05-Sep-1994
Peak Discharge: 1494 m’/s
Inundation area: 192.903 sq. km

Date: 11-May-1995
Peak Discharge: 1681 m¥/s
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Date: 04-Jul-2006
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Figure 6.15 Flood inundation maps generated by HEC-RAS model using SWAT simulated discharge as upstream boundary from 1991 — 2006
over the Nagavali basin
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Peak Discharge: 1371 m¥/s
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Figure 6.16 Flood inundation maps generated by HEC-RAS model using SWAT simulated discharge as upstream boundary from 2008 - 2014

over Nagavali basin
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Figure 6.17 Flood inundation maps generated by HEC-RAS model using SWAT simulated discharge as upstream boundary from

1991 - 2014 over Vamsadhara basin
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Figure 6.18 Habitats vulnerable to floods in Nagavali and Vamsadhara basins
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Figure 6.19 Observed versus simulated flood inundation depths a) Srikakulam gauge station in

Nagavali basin and b) Kashinagar gauge station in Vamsadhara basin
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Except for two floods in Nagavali basin in August 2006 and October 2014, the 2D HEC-RAS
model overestimated inundation depths in both basins. Except for those two flood events, the
difference in observed and simulated depths in Nagavali basin ranged from 0.04 to 0.20 m, and
in Vamsadhara basin it ranged from 0.04 to 0.29 m. The flood inundation depth is
underestimated by 1.58 m and 0.32 m in Nagavali basin for the flood events in August 2006
and October 2014.

6.3.5 Flood Inundation Modeling of Tropical Cyclone Titli

Tropical Cyclone Titli is a powerful cyclonic storm that hit Vamsadhara basin in October 2018.
According to state government records, the basin received 426 mm and 352 mm of rainfall on
11" October at the Booravilli and Kanchili_ARG gauge stations, respectively and 153 mm at
Sarubujji and Levidi gauge stations on 12" October 2018, resulting in an increase in water
levels and floods in the basin on 13" October 2018. Flooding from cyclone Titli affected nearly
25,000 families in over 200 villages in Vamsadhara basin. A total of 1, 39,844 hectares of
agricultural crops as well as 14,378 hectares of horticultural crops were damaged, with a
combined loss of X 3600 crores (TNIE 2018; GOI-UNDP 2018).

The SWAT model, which had been calibrated and validated, is used to estimate streamflow for
Titli cyclone, which hit Vamsadhara basin from October 8" to October 12, 2018. The basin
experienced heavy rainfall on 11" and 12" October. According to IMD gridded data, the basin
received 148 mm of rainfall on October 11" and 133 mm on October 12". On October 11", the
GFS model forecasted rainfall of 186 mm, 131 mm, 107 mm, 70 mm, and 50 mm from day-1
to day-5. The WRF model predicted a rainfall of 215 mm on 11" October 2018 for TC Titli.
The streamflow for Titli cyclone is simulated using observed rainfall, WRF predicted rainfall,
and bias corrected GFS rainfall forecasts. Peak discharges simulated by the SWAT model are
4332 m®/s for observed rainfall, 2924 m®/s for WRF predicted rainfall, and 2281, 2661, 1536,
1090, and 700 m®s for GFS 1-day to 5-day forecasts, respectively. SWAT simulated
streamflow revealed that GFS 1-day and 2-day streamflow’s are in good agreement with the
observed streamflow. The streamflow simulated by the SWAT model using 3-day to 5-day
GFS forecasts are less than half of the observed streamflow. The underestimation of streamflow
using 3-day to 5-day forecasts are mainly due to variations in rainfall intensity. For further

analysis, GFS 1-day and 2-day forecasts are considered. The hydrograph for the observed and

123



simulated discharge based on IMD rainfall, WRF predicted rainfall, and GFS day-1 and day-2

forecasts are shown in Figure 6.20.
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Figure 6.20 Hydrograph for observed and simulated discharge based on IMD rainfall, WRF

predicted rainfall, and GFS day-1 and day-2 forecasts of Titli cyclone in

Vamsadhara basin

The simulated discharges from SWAT model are used as an upstream boundary condition in
the 2D HEC-RAS model to generate inundation maps during Titli Cyclone (Figure 6.21). The
inundation area for Titli cyclone has varied from 290.674 to 311.601 sq.km for streamflow
hydrographs from various sources (IMD, WRF, GFS, and observed gauge data). The flood
inundation maps generated by 2D HEC-RAS model are validated with Bhuvan-NRSC flood
inundation map and are evaluated based on overlapping area. Intersection tool is used to
calculate the area that overlapped between the observed and simulated inundation maps
(Tamiru and Dinka 2021). From the calculated overlapping areas, it is observed that 2D HEC-
RAS model is able to predict at least 75% of the inundation area when compared to Bhuvan-

NRSC data. From the simulated flood inundation maps, it is observed that more than 150
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villages are affected, and an area of 177 sq.km of crops (agriculture and horticulture) are
damaged in Vamsadhara basin. The areas of crops affected by the cyclone are in good

agreement with observed statistics (Sphere-India 2018).

The inundation depth from 2D HEC-RAS model is further compared with the observed depth.
When SWAT model simulated discharge using IMD rainfall is given as the upstream boundary
condition, 2D HEC-RAS model overestimated the inundation depth by 0.12 m. For other
simulations, using observed gauge data and SWAT simulated discharge with WRF predicted
rainfall and GFS day-1 and d-2ay rainfall forecasts, the 2D HEC-RAS model underestimated
inundation depth by 0.38, 0.41, 0.46, and 0.53 m, respectively. The overestimation and
underestimation of flood inundation depths for the tropical cyclone Titli may be attributed to
variations in peak discharges. The results showed that the developed integrated hydrologic and
hydraulic model is able to predict runoff, flood inundation extent and inundation depth with a

lead time of 48 hours.
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Figure 6.21 Flood inundation maps for the tropical cyclone Titli from various sources

6.4 Web-GIS based User Interface System for Flood Visualization and

Dissemination

A Web-GIS based user interface system for flood visualization and dissemination is developed
using HTML, CSS, and JavaScript. The pictorial representation of the interface is shown in
Figure 6.22. The base maps for satellite view and terrain view are taken from Bing maps
OpenStreetMap (OSM), respectively. Using GeoServer, a database is prepared to store the
information about flood inundation extent, stream network, and boundary in the form of raster
and vector layers for both Nagavali and Vamsadhara basins. All the layers from the GeoServer
are imported into the user interface system. By default, the interface loads with the flood
inundation maps for both basins along with satellite image in the background. The legend is
provided in the interface, which gives information about flood inundation depth. Layer
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switcher is added in the interface for users to enable or disable layers. Complete script for the

development of Web-GIS based user interface system is given in Appendix-C.

6.5 Automation of Integrated Model

In order to provide information about the floods and flood inundation extent in real-time, the
overall methodology presented in this research is automated by using both R and python
programming languages. A script is written in R-program to download and pre-process the
GFS forecasts. The pre-processing of GFS forecasts involves extracting rainfall and
temperature data for both Nagavali and Vamsadhara basins and applying for bias correction to
rainfall with intensity greater than 12 mm/day. After bias correction, rainfall and temperature
data are converted into SWAT format. SWATplusR package in R program is used to run the
calibrated and validated SWAT model for both basins in order to generate discharge
hydrographs. The generated discharge hydrograph at various locations in Nagavali and
Vamsadhara basins are then used as upstream boundary conditions in the respective basins in
2D HEC-RAS model using R script. HECRASController module in python program is used to
run 2D HEC-RAS model to forecast floods and flood inundation extent. Flood inundation maps
are further updated into GeoServer data and then exported into Web-GIS base user interface
system for visualization and dissemination. Public and government agencies can access the
data through web browser in real-time to issue early warnings and plan rescue operations. The
script for the automation of the model is given in Appendix-D.

R Real-time Flood Forecastin i Vi RG INIA EXAS : ;
e f g Over the Nagavali and ::?ZF T TEXAS A&M
(1£2)) NIT Warangal ‘/PA R( : Vamsadhara Basins TECH AoV TS

Jhari

v U Base Layers
v & vamsadhara
Inundation Area

Base maps
OSM
® Bing Maps

Figure 6.22 Web-GIS based platform for flood visualization and dissemination system
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6.6 Closure

In this chapter, the skill of GFS model in forecasting rainfall over the study area is analyzed
and a bias in GFS rainfall forecast is identified. An integrated hydrological and hydraulic model
based on SWAT and 2D HEC-RAS is developed to forecast flood and flood inundation extent
based on bias corrected GFS rainfall with a lead-time of 48 hours. A Web-GIS based user
interface system is developed for visualization and dissemination of flood related information

and the whole procedure is automated using R and python programming languages.
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Chapter - 7 Summary and Conclusions

7.1 Summary

The purpose of the present research work is to develop an integrated hydrologic and hydraulic
model that forecasts streamflow and generates flood inundation extent based on rainfall
forecasts which will be published in Web-GIS based user interface system for the public use.
To achieve this, the spatial and temporal variations of trend in rainfall and rainfall extremes
over the Nagavali and VVamsadhara basins are examined using the long-term rainfall time series
at three time periods (i.e., long-term (1901-2018), pre-1950, and post-1950) which provides
extensive information about variations in rainfall patterns over the basins. From the trend
analysis, it is observed that rainfall extremes are increasing in the lower and middle portions
of the Nagavali and Vamsadhara basins. The increasing trends in rainfall extremes in the lower
and middle portions of both basins may be attributed to TCs that are formed in BoB. Hence,
WRF model is used to assess the impact of microphysical schemes prediction of previous
tropical cyclones over the Nagavali and Vamsadhara basins. WRF model performance is
assessed using direct positional error, mean absolute error, mean square error, and skill score
calculated based on the observations provided by IMD to find a suitable microphysical scheme

for the prediction of tropical cyclones.

Further, the skill of GFS model to forecast rainfall is examined using statistical metrics (CC,
RMSE, ME, and BIAS), as well as contingency statistics (POD, FAR, CSI, and TSS) and it is
found that the model performed well in forecasting rainfall over study basins. A simple bias
correction is applied to GFS rainfall forecasts to improve rainfall accuracy. After that, an
integrated hydrologic and hydraulic model based on SWAT and 2D HEC-RAS model is
developed which is capable of providing flood forecasts using bias corrected GFS rainfall with
a lead time of 48 hours. To visualize and disseminate flood related information in real-time,
Web-GIS based user interface system has been developed. Finally, the overall methodology is

automated using R and python programming languages.
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7.2 Conclusions
The following are the important conclusions from the present research work:

e In the long-term trend analysis, an increasing trend in rainfall and rainfall extremes is
observed in pre-monsoon and monsoon seasons.

e The increasing trends in rainfall and rainfall extremes are located in the lower and
middle portions of both basins resulting in flood in this region, causing significant
damage to human lives, agriculture, and infrastructure.

e WSM3 scheme can be used as a suitable microphysical scheme for the prediction of
track and intensity of tropical cyclones over NIO.

e The rainfall forecasts from NCEP GFS model are in good agreement with observed
data for day-1 to day-3 forecasts.

e Bias correction needs to be applied to GFS rainfall forecasts with an intensity greater
than 12 mm/day before utilizing them for hydrometeorological applications.

e The integrated model based on SWAT and HEC-RAS is able to predict at least 75% of
the flood inundation area.

e The integrated model is able to provide flood forecasts with a lead time of 48 h, which
is crucial for government agencies in issuing early warnings to the public during flood
events and evacuating people from vulnerable areas.

e Web-GIS based user interface system enables users to access information about flood

inundation extent and depth in real-time to take necessary action during the floods.

7.3 Research Contributions
The following are the important research contributions of the present research work:

e Detailed basin level trends in rainfall and rainfall extremes are found out for the study
basins.

e Suitable microphysical scheme for the prediction of tropical cyclones over the study
area is found out.

e Bias in GFS rainfall forecasts over Nagavali and Vamsadhara basins are evaluated.

e An integrated model based on SWAT and HEC-RAS is developed to forecast

streamflow and flood inundation extent with lead time.
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Web-GIS based user interface is developed for visualization and dissemination of flood
inundation and depth maps

A robust and simple approach is developed for automating the process from data
download to flood forecasting using an integrated model based on SWAT and HEC-

RAS, and to publish layers through a Web-GIS based user interface system.

7.4 Limitations

The limitations of the present research work are as follows:

Very high resolution spatial and temporal rainfall data is not used in the present study.
Due to requirement of high computational resources, WRF model is not used further to
forecast rainfall.

Flood forecasts are only available on daily timescale.

The archival information about past flood events are not available to the users in the

current version of Web-GIS based user interface system.

7.5 Scope for Further Research

The scope of the further research related to this work is as follows:

Localized rainfall forecasts from the WRF model can be used to forecast floods.
Dynamic changes in LULC and soil moisture information can be incorporated in the
integrated model.

The integrated model can be updated to sub-daily time scale for the simulation of
floods.

Web-GIS based user-interface system can be improved further to make it more user

friendly and more rich in information.
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Appendix-A

The main aim of this research is to target water resource management and agricultural usage.

The of monthly analysis are presented in Appendix-A.
Trends in Monthly Rainfall

The Z statistics for the monthly rainfall for 28 grids, 12 of which are over Nagavali and 16 over
Vamsadhara is studied using four different Mann-Kendall (MK) tests and are presented in
Appendix-A Table A9.

In the Nagavali basin, no long-term trend is observed in January, October, and November. A
negative trend is observed at less than 3 out of 12 grids in February, May, August, September,
and December. A positive trend is observed over a very few grids (i.e., < 2) during March,

April, May, and June. However, a positive trend is observed for 9 grids in July.

In the Vamsadhara basin, no long-term trend is observed between September and February. A
negative trend is observed at VG14 in June. However, a positive trend is observed from March
to August. Over the Vamsadhara basin, out of 16 grids, a positive trend is observed over 4 grids
in March, 2 in April, 8 in both May and July, 6 in June and 3 in August, respectively. This
implies the temporal and spatial variability of rainfall trends even in a relatively small

watersheds in this region.

The spatial patterns of trends in the monthly rainfall using four MK tests are presented in
Appendix-A Figures A12 — A15. From the figures, it is observed that most of the grids in the
lower and upper portion of the Nagavali basin shown decreasing trends except in May and
September. In the Vamsadhara basin, the grids showing the decreasing trends are seen in the
upper portion of the basin. The grids showing the increasing trends are present in the lower and

middle portions of both the basins.
Trends in Monthly Rainfall Extremes

The trends in monthly rainfall extremes are evaluated and presented in this section. The Z
statistics of the rainfall extremes in July are provided in Appendix-A Table A10 as it is the
peak month of monsoon season. The spatial patterns of the rainfall extremes for July are
presented in Appendix-A Figures A16 — A18. The detailed analysis of rainfall extremes in each

month are presented in the following sections.
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Consecutive Dry Days

No significant trend is observed for CDD in January, April and December in the Nagavali
basin. In the Vamsadhara basin no significant trend is observed between October and February.
Negative trend is observed in March, May, July, and August in both the basins except at one
or two grids in the Nagavali basin. A positive trend is observed in February, June and
September.

From the spatial patterns, it is observed that the grids showing the trends (positive/negative)
are present in the lower portions of both the basins except for March and September. In March,
the grids showed a decreasing trend for both the basins. In September, positive trend is present
in all portions of the Nagavali basin. The grids showing a decreasing trend in the Vamsadhara
basin are present in the lower and middle portions of the basin and a positive trend in the upper

portion.
Consecutive Wet Days

A very few grids in both the basins have shown significant trends for CWD. No significant
trend is observed between October and January. In both the basins, a negative trend is observed
for a few grids in February and June. A positive trend is observed in both the basins except at
grid NG12 in the Nagavali basin from March to August. In September, a negative trend in the

Nagavali basin and a positive trend in the Vamsadhara basin are observed.

In the Nagavali basin, the grids showing positive trends are present in the lower and middle
portions except at grid NG12 in July and August, whereas a decreasing trend is seen in the
upper portion of the basin. In the Vamsadhara basin, the grids showing decreasing trends are
present in the middle and upper portions of the basin except at VG2 in April, where it showed

an increasing trend in the lower portion of the basin.
Actual Total Wet Day Precipitation (PRCPTOT)

A clear positive trend is observed for PRCPTOT from March to August except at NG8 and
NG10 in April, VG14 in June and NG3 in August where a negative trend is observed in both
the basins. A negative trend is observed in February and September. No significant trend is

observed between October and January.

The grids with decreasing trends are present in the middle and upper portions of the Nagavali
basin except at NG3 in August and September where it showed decreasing trend in the lower
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portion of the basin. In March, an increasing trend is present in the upper portion of the basin
whereas from April to June it is in the lower portion of the basin. In July, an increasing trend
is present in all parts of the Nagavali basin. In the Vamsadhara basin, the grids with decreasing
trends are present in the upper portion of the basin and increasing trends are present in the

lower and middle portions of the basin.
Heavy Rainfall Days (R10MM)

A negative trend is observed in February, September, and November and positive trend from
May to July in both the basins. No significant trend is observed in March and April over the
Nagavali basin whereas a positive trend is observed in the Vamsadhara basin. In August, a
negative trend in the Nagavali basin and a positive trend in the Vamsadhara basin is observed
except at grid VG10. No significant trend is observed in January and from October to

December.

The grids with decreasing trends are present in the upper portions of both the basins except at
grid NG2 in February, grid NG3 in August and September where they showed decreasing
trends in the lower portion of the Nagavali basin. The grids with increasing trends are present
in both the basins except over the upper portion of the Vamsadhara basin.

Very Heavy Rainfall Days (R20MM)

A positive trend is observed for R20MM in both the basins in March and from May to August
and a negative trend in February and September. In April and November, a negative trend is
observed only in the Vamsadhara basin and no significant trend is observed in the Nagavali

basin. No significant trend is observed during January and December.

In the Nagavali basin, the grids with decreasing trends in August are present in the lower
portion of the basin and in the middle portion of the basin in November. Whereas, the grids
showing a decreasing trend in February and increasing trends in June and July are present in
the entire basin. The grids with increasing trend are seen in March and May in the upper portion
of the basin and in August in the middle portion of the basin. In the Vamsadhara basin, the
grids with decreasing trend are present in the middle and upper portions of the basin and

increasing trend are seen in the lower sections of the basin.
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Number of Days with Rainfall greater than 40 mm (R40MM)

No significant trend is observed for the grids having rainfall greater than 40 mm in January,
February, and from September to December. A positive trend is observed in all the months
except in April at grids VG11 and VG13 in the Vamsadhara basin. The grids showing
increasing trend are present in the upper portion of the Nagavali basin. In the Vamsadhara
basin, the grids showing decreasing trend are present in the upper portion of the basin and the
opposite in the lower portion. Whereas, an increasing trend is present in May over the upper

portion.
Very Wet Days (R95PTOT)

A positive trend is observed for very wet days in March, June, and July in both the basins. No
significant trend is observed in January and from August to December. A negative trend is
observed in February in both the basins. In April, a positive trend is observed in the Nagavali
basin and a negative trend in the Vamsadhara basin. Whereas in May, a positive trend is

observed in the Vamsadhara basin and a negative trend in the Nagavali basin.

The grids showing both increasing or decreasing trends are present in the middle and upper
portions of the Nagavali basin. In the Vamsadhara basin, the grids showing a decreasing trend
are present in the upper portion and increasing trend in the lower portion of the basin. Whereas
in May, the grids showing increasing trend are present in the middle and upper portions of the
basin.

Monthly Maximum One-Day and Five-Day Precipitation (RX1DAY and RX5DAY)

A positive trend is observed from April to July in both the basins. In the Nagavali basin, a
negative trend is observed in August, November, and December. No significant trend is
observed in January, February, September, and October for both RX1DAY and RX5DAY. In
the Vamsadhara basin, no significant trend is observed in January, February, and from August
to December except at VG14 grid in November where it showed a negative trend for RX1DAY.

The grids showing increasing trend are present in the middle and upper portions of the Nagavali
basin and at the lower and middle portions of the Vamsadhara basin. The grids showing
decreasing trends are present in the upper portion of both the basins except at one grid in the

lower portion of the Nagavali basin.
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Table Al. Z statics of seasonal and annual rainfall trend analysis (Note: Bold number indicates significant trends confidence level at 90% or above (Z > 1.65); NG represents

Gird point over Nagavali Bain, VG represent Grid point over Vamsadhara Basin.)

Grid DJF MAM JJAS ON Annual

Id MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4
NG1 -1.67/-1.50/-2.30/-1.63 0.23/0.56/0.25/0.26 1.19/0.60/0.76/0.99 -0.80/-0.73/-0.80/-0.76 0.33/-0.03/0.47/0.25
NG2 -1.82/-1.84/-2.04/-2.01 0.92/1.25/0.91/1.03 0.31/0.04/0.24/0.31 -0.25/0.03/-0.23/-0.25 0.30/0.19/0.58/0.27
NG3 -1.41/-1.47/-2.00/-1.53 -0.17/0.00/-0.18/-0.18 -2.77/-3.49/-2.12/-2.60 -0.36/-0.16/-0.36/-0.35 -2.67/-3.16/-3.52/-2.18
NG4 -0.49/-0.59/-0.86/-0.57 2.18/2.37/1.96/2.29 2.42/2.32/1.99/3.24 0.25/0.48/0.23/0.26 2.54/2.51/2.40/12.54
NG5 -1.45/-1.43/-1.64/-1.48 -0.23/0.00/-0.23/-0.27 -0.10/-0.37/-0.10/-0.09 -0.38/-0.27/-0.41/-0.39 -0.25/-0.40/-0.22/-0.27
NG6 -1.37/-1.43/-2.06/-1.47 0.23/0.51/0.22/0.27 -0.21/-0.60/-0.19/-0.21 -0.41/-0.22/-0.41/-0.41 -0.72/-0.96/-0.77/-0.72
NG7 -0.95/-0.97/-1.04/-1.03 2.54/2.53/2.54/2.96 3.05/2.84/2.96/3.05 0.02/0.22/0.02/0.02 2.60/2.43/2.60/2.93
NG8 -1.52/-1.37/-1.71/-1.70 -0.58/-0.42/-0.68/-0.66 0.69/0.53/0.61/0.58 -1.10/-0.92/-1.19/-1.10 -0.08/-0.14/-0.08/-0.08
NG9 -1.82/-1.72/-1.82/-2.04 1.26/1.29/1.26/1.40 1.78/1.51/1.70/2.11 -1.05/-0.85/-1.13/-1.06 1.17/0.99/1.38/1.19
NG10 | -1.82/-1.75/-2.04/-2.07 -0.74/-0.55/-0.74/-0.76 2.64/2.21/1.95/2.64 -1.88/-1.66/-2.04/-1.77 1.60/1.44/1.76/1.29
NG11 | -1.01/-0.85/-1.01/-1.16 1.50/1.60/1.71/1.60 2.00/1.75/1.76/2.13 -1.23/-0.99/-1.33/-1.23 1.52/1.31/1.83/1.48
NG12 | -2.68/-2.49/-3.11/-2.68 0.74/1.01/0.64/0.70 -0.69/-0.94/-0.65/-0.67 -0.82/-0.58/-0.82/-0.80 -0.66/-0.91/-0.66/-0.65
VG1 -0.77/-0.76/-1.09/-0.86 1.91/2.00/1.91/2.21 3.08/2.88/3.05/4.37 0.48/0.65/0.49/0.47 2.2212.27/2.22/2.41
VG2 -0.84/-0.94/-1.09/-0.93 2.96/2.86/2.96/3.47 4.47/4.29/4.56/4.99 0.10/0.29/0.12/0.10 3.25/3.22/3.25/3.62
VG3 -1.48/-1.49/-1.85/-1.67 2.02/2.03/2.02/2.33 3.44/3.31/3.54/3.44 0.37/0.57/0.38/0.37 2.04/2.29/2.78/2.37
VG4 -0.76/-0.85/-0.76/-0.79 4.05/3.96/5.62/4.23 4.81/4.78/4.10/5.72 -0.27/0.01/-0.27/-0.25 4.22/4.15/5.03/3.87
VG5 -1.10/-1.16/-1.10/-1.23 3.87/3.86/4.36/3.87 5.14/5.26/4.48/4.77 -0.32/-0.12/-0.35/-0.32 3.89/3.91/3.68/4.00
VG6 -1.57/-1.79/-1.64/-1.79 0.77/0.82/0.68/0.92 2.13/2.08/2.18/2.20 0.30/0.48/0.27/0.32 0.96/1.20/1.39/1.19
VG7 -1.55/-1.84/-1.57/-1.88 2.98/3.05/3.58/2.84 2.98/2.95/2.67/3.42 -0.85/-0.70/-0.91/-0.80 2.25/2.27/2.05/2.21
VG8 -1.39/-1.61/-1.36/-1.61 2.77/3.00/2.23/2.60 2.84/2.96/2.46/2.49 -0.65/-0.52/-0.60/-0.65 2.13/2.24/2.39/2.17
VG9 -1.43/-1.65/-3.19/-1.60 2.04/2.11/2.25/2.42 2.42/2.42/2.50/2.40 -0.08/0.04/-0.08/-0.09 1.40/1.48/2.25/1.77
VG10 | -1.61/-1.47/-1.63/-1.89 0.79/0.96/0.95/0.73 -1.36/-1.66/-1.25/-1.53 -1.06/-0.94/-1.13/-1.05 -1.60/-1.83/-1.97/-1.57
VG11 | -1.32/-1.38/-1.34/-1.61 1.66/1.84/1.87/1.57 0.48/0.40/0.42/0.53 -1.04/-0.98/-1.04/-0.99 -0.46/-0.41/-0.42/-0.44
VG12 | -1.11/-1.18/-1.11/-1.36 1.89/1.98/1.38/1.74 -0.71/-0.79/-0.65/-0.73 -0.56/-0.52/-0.45/-0.55 -0.34/-0.30/-0.33/-0.32
VG13 | -1.46/-1.77/-2.09/-1.86 0.34/0.20/0.40/0.35 -1.07/-1.17/-0.89/-1.04 -0.41/-0.37/-0.41/-0.40 -0.92/-0.94/-0.96/-0.87
VG14 | -2.03/-1.86/-2.03/-2.26 0.11/0.15/0.12/0.10 -1.22/-1.46/-1.15/-1.22 -0.88/-0.70/-0.88/-0.90 -1.47/-1.67/-1.68/-1.43
VG15 | -1.11/-1.16/-1.12/-1.32 1.01/1.12/1.38/0.96 0.39/0.30/0.36/0.43 -0.70/-0.60/-0.78/-0.69 -0.67/-0.78/-1.07/-0.69
VG16 | -1.23/-1.38/-1.24/-1.48 0.84/0.96/0.98/0.80 0.22/0.19/0.20/0.27 -0.39/-0.40/-0.44/-0.38 -0.65/-0.66/-0.59/-0.64
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Table A2. Z statics of seasonal and annual rainfall of pre- and post-1950

. Pre-1950 Post-1950

erid DJF MAM JJAS ON Annual DJF MAM JJAS ON Annual

'd MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4
NG1 0.38/0.49/0.46/0.38 1.39/1.70/1.67/1.42 -0.02/-0.65/-0.02/-0.02 1.39/1.70/1.67/1.42 1.19/1.06/1.19/1.47 0.37/0.15/0.40/0.36 -1.66/-1.62/-1.66/-1.63 0.05/0.07/0.03/0.03 -1.66/-1.62/-1.66/-1.63 | -0.36/0.17/-0.27/-0.25
NG2 -0.06/0.35/-0.09/-0.07 1.47/1.94/1.78/1.40 -0.82/-1.44/-1.10/-0.97 1.47/1.94/1.78/1.40 0.97/1.09/0.97/1.17 -0.36/-0.81/-0.36/-0.37 | -1.33/-1.46/-1.33/-1.45 | -0.91/-1.03/-0.91/-0.65 | -1.33/-1.46/-1.33/-1.45 | -0.42/-0.11/-0.49/-0.37
NG3 | -0.16/-0.15/-0.15/-0.18 1.52/1.90/1.52/1.51 -0.30/-0.70/-0.30/-0.33 1.52/1.90/1.52/1.51 0.33/0.09/0.33/0.36 -0.62/-1.10/-0.62/-0.65 | -1.80/-2.04/-2.50/-1.87 | -3.40/-3.96/-3.26/-2.18 | -1.80/-2.04/-2.50/-1.87 | -3.28/-3.52/-2.90/-2.50
NG4 0.38/0.68/0.39/0.45 1.25/1.68/1.25/1.21 -0.73/-1.06/-0.73/-0.80 1.25/1.68/1.25/1.21 -0.18/-0.06/-0.16/-0.21 0.34/0.18/0.34/0.39 -0.89/-0.89/-0.89/-0.98 1.08/1.55/1.08/0.77 -0.89/-0.89/-0.89/-0.98 1.45/1.47/1.45/1.42
NG5 -0.60/0.01/-0.50/-0.71 1.51/1.75/1.51/1.48 -0.03/-0.47/-0.03/-0.04 1.51/1.75/1.51/1.48 0.95/0.58/0.79/1.16 0.78/0.57/0.78/0.70 -0.61/-0.65/-0.61/-0.69 | -1.20/-1.30/-0.87/-1.10 | -0.61/-0.65/-0.61/-0.69 | -0.64/-0.39/-0.64/-0.66
NG6 | -0.36/-0.25/-0.53/-0.41 1.67/2.03/1.67/1.69 -0.13/-0.42/-0.13/-0.16 1.67/2.03/1.67/1.69 0.50/0.25/0.50/0.59 0.13/-0.31/0.13/0.13 -1.57/-1.68/-1.57/-1.71 | -2.68/-2.58/-2.68/-2.26 | -1.57/-1.68/-1.57/-1.71 | -2.24/-2.24/-2.24/-2.27
NG7 0.01/0.03/0.01/0.01 1.27/1.58/1.27/1.21 -0.33/-0.65/-0.33/-0.39 1.27/1.58/1.27/1.21 0.14/0.04/0.14/0.16 1.16/1.10/1.16/1.27 -0.12/-0.35/-0.12/-0.13 0.11/-0.10/0.14/0.10 -0.12/-0.35/-0.12/-0.13 0.85/0.24/0.85/1.01
NG8 | -0.65/-0.01/-0.68/-0.78 1.49/1.73/1.49/1.45 0.00/-0.30/0.00/0.00 1.49/1.73/1.49/1.45 0.92/0.66/0.81/1.16 0.51/0.25/0.51/0.54 -1.48/-1.49/-1.48/-1.65 | -1.65/-1.58/-1.37/-1.32 | -1.48/-1.49/-1.48/-1.65 | -1.59/-1.29/-1.46/-1.47
NG9 | -0.54/-0.13/-0.56/-0.65 1.29/1.59/1.29/1.26 0.12/-0.16/0.17/0.15 1.29/1.59/1.29/1.26 0.80/0.56/0.72/0.99 0.45/0.20/0.45/0.49 -1.01/-1.18/-1.01/-1.11 | -1.76/-2.00/-1.76/-1.66 | -1.01/-1.18/-1.01/-1.11 | -1.17/-1.28/-1.28/-1.21
NG10 | -0.62/-0.15/-0.64/-0.75 1.54/1.89/1.54/1.50 -0.57/-0.66/-0.57/-0.69 1.54/1.89/1.54/1.50 1.12/0.58/1.00/1.43 0.30/0.12/0.30/0.34 -1.93/-1.91/-1.93/-1.99 | -0.34/-0.48/-0.35/-0.23 | -1.93/-1.91/-1.93/-1.99 | -0.69/-0.38/-0.69/-0.50
NG11 | -0.63/-0.20/-0.65/-0.75 1.67/1.80/1.67/1.89 0.05/-0.20/0.07/0.06 1.19/1.54/1.19/1.16 0.89/0.58/0.89/1.11 0.97/0.79/0.97/1.11 -2.31/-2.10/-3.17/-2.30 | -1.08/-1.25/-1.09/-0.85 | -1.11/-1.25/-1.11/-1.22 | -0.68/-0.74/-0.68/-0.64
NG12 | -1.31/-0.97/-1.04/-1.42 1.04/1.37/1.04/0.94 0.33/-0.37/0.38/0.26 1.67/1.80/1.67/1.89 0.65/0.15/0.65/0.54 -1.39/-1.80/-1.39/-1.39 | -0.45/-0.78/-0.45/-0.48 | -0.23/-0.38/-0.23/-0.23 | -2.31/-2.10/-3.17/-2.30 | -0.86/-0.75/-0.86/-0.90
VG1 0.22/0.34/0.60/0.25 1.19/1.65/1.19/1.07 -0.39/-0.85/-0.37/-0.51 1.04/1.37/1.04/0.94 0.02/-0.04/0.02/0.02 0.56/0.52/0.56/0.63 -0.54/-0.81/-0.54/-0.55 0.93/0.84/1.14/0.81 -0.45/-0.78/-0.45/-0.48 1.35/1.18/1.35/1.48
VG2 0.12/0.13/0.15/0.13 1.20/1.66/1.20/1.08 -0.33/-0.47/-0.36/-0.42 1.19/1.65/1.19/1.07 0.23/0.32/0.23/0.25 0.32/0.31/0.33/0.36 -0.87/-0.80/-0.87/-0.96 1.34/1.00/1.45/1.30 -0.54/-0.81/-0.54/-0.55 1.30/0.99/1.30/1.51
VG3 | -0.59/-0.22/-0.79/-0.68 1.40/1.80/1.40/1.29 -0.59/-0.82/-0.65/-0.68 1.20/1.66/1.20/1.08 0.17/0.28/0.17/0.18 -0.57/-0.76/-0.57/-0.65 | -0.47/-0.74/-0.66/-0.47 1.70/1.48/1.70/1.71 -0.87/-0.80/-0.87/-0.96 1.01/0.96/1.01/1.23
VG4 0.07/0.09/0.07/0.07 1.04/1.41/1.21/0.94 -0.02/-0.32/-0.02/-0.02 1.40/1.80/1.40/1.29 0.79/0.63/0.79/0.88 0.84/0.54/0.84/0.85 -0.58/-0.75/-0.55/-0.64 1.29/1.12/1.20/0.98 -0.47/-0.74/-0.66/-0.47 1.29/1.26/1.45/1.13
VG5 | -0.49/-0.32/-0.87/-0.58 1.09/1.46/1.31/1.00 -0.75/-1.13/-0.81/-0.92 1.04/1.41/1.21/0.94 -0.24/-0.08/-0.26/-0.27 | -0.01/-0.19/-0.01/-0.01 | -0.96/-0.93/-0.96/-1.14 2.17/1.81/2.42/1.72 -0.58/-0.75/-0.55/-0.64 1.77/1.46/1.59/1.83
VG6 | -1.46/-1.20/-1.83/-1.79 1.19/1.54/1.19/1.16 -1.96/-1.92/-1.96/-2.15 1.09/1.46/1.31/1.00 -0.43/-0.15/-0.46/-0.49 | -1.10/-1.31/-1.32/-1.20 | -1.11/-1.25/-1.11/-1.22 1.78/1.74/2.36/1.88 -0.96/-0.93/-0.96/-1.14 0.57/0.52/1.06/0.75
VG7 | -0.85/-1.03/-1.66/-1.15 1.27/1.27/1.48/1.06 0.27/-0.09/0.27/0.30 1.27/1.27/1.48/1.06 0.74/0.75/0.74/0.70 0.75/0.49/0.75/0.85 -0.59/-0.76/-0.59/-0.64 1.52/1.16/1.70/1.20 -0.59/-0.76/-0.59/-0.64 1.79/1.53/1.66/1.80
VG8 | -1.24/-1.27/-1.10/-1.57 1.14/1.35/1.35/1.02 -1.69/-1.75/-1.69/-2.14 1.14/1.35/1.35/1.02 0.03/0.01/0.03/0.04 0.01/-0.22/0.01/0.01 -1.02/-1.02/-1.02/-1.14 2.54/2.45/2.54/2.03 -1.02/-1.02/-1.02/-1.14 2.10/1.87/1.90/2.08
VG9 | -1.05/-0.92/-0.98/-1.28 1.27/1.35/1.49/1.15 -1.81/-1.72/-1.93/-2.20 1.27/1.35/1.49/1.15 -0.07/0.18/-0.07/-0.08 | -0.97/-1.17/-1.00/-1.05 | -1.40/-1.42/-1.33/-1.67 2.08/1.97/2.08/2.12 -1.40/-1.42/-1.33/-1.67 0.78/0.68/1.41/1.02
VG10 | -1.33/-0.94/-1.62/-1.64 1.34/1.63/1.34/1.35 0.22/-0.20/0.22/0.22 1.34/1.63/1.34/1.35 0.79/0.44/0.79/0.78 0.75/0.65/0.75/0.90 -1.44/-1.53/-1.97/-1.55 0.36/0.21/0.46/0.32 -1.44/-1.53/-1.97/-1.55 | -0.10/-0.17/-0.10/-0.10
VG11 | -1.07/-1.18/-1.13/-1.49 1.62/1.44/1.62/1.40 -0.07/-0.30/-0.07/-0.07 1.62/1.44/1.62/1.40 0.62/0.54/0.62/0.58 0.99/0.95/0.99/1.08 -1.18/-1.23/-1.18/-1.29 1.41/1.34/1.19/1.06 -1.18/-1.23/-1.18/-1.29 1.56/1.29/1.70/1.66
VG12 | -1.22/-1.25/-1.19/-1.71 1.56/1.46/1.56/1.36 -0.01/-0.30/-0.01/-0.01 1.56/1.46/1.56/1.36 0.64/0.58/0.64/0.59 0.57/0.26/0.57/0.59 -1.32/-1.32/-1.11/-1.47 1.81/1.66/1.81/1.61 -1.32/-1.32/-1.11/-1.47 1.92/1.67/2.55/1.99
VG13 | -1.15/-1.32/-1.88/-1.66 1.52/1.46/1.52/1.36 -0.05/-0.37/-0.05/-0.05 1.52/1.46/1.52/1.36 0.99/0.75/0.99/0.96 -0.06/-0.46/-0.06/-0.07 | -1.93/-1.99/-1.93/-2.15 1.46/1.23/1.46/1.12 -1.93/-1.99/-1.93/-2.15 1.09/0.91/1.09/1.07
VG14 | -1.48/-1.15/-1.23/-1.81 1.53/1.85/1.53/1.63 0.84/0.39/1.10/0.75 1.53/1.85/1.53/1.63 0.90/0.58/1.26/0.83 -0.53/-0.69/-0.53/-0.56 | -0.39/-0.35/-0.39/-0.42 | -1.52/-1.36/-1.52/-1.48 | -0.39/-0.35/-0.39/-0.42 | -0.93/-0.77/-0.93/-0.94
VG15 | -1.29/-1.27/-2.94/-1.79 1.51/1.37/1.51/1.41 0.40/0.03/0.67/0.42 1.51/1.37/1.51/1.41 0.62/0.61/0.67/0.58 0.51/0.27/0.51/0.52 0.31/0.38/0.31/0.32 -0.43/-0.12/-0.43/-0.37 0.31/0.38/0.31/0.32 0.87/0.78/0.96/0.99
VG16 | -1.24/-1.34/-2.89/-1.71 1.71/1.51/1.71/1.48 0.05/-0.01/0.05/0.05 1.71/1.51/1.71/1.48 0.53/0.41/0.48/0.43 0.65/0.43/0.65/0.68 -0.43/-0.21/-0.43/-0.47 0.73/0.43/1.03/0.70 -0.43/-0.21/-0.43/-0.47 1.54/1.18/1.25/2.04
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Table A3. Z statics of long-term annual rainfall extremes

Grid CDD CWD PRCPTOT R10MM R20MM R40MM R95PTOT RX1DAY RX5DAY

Id MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4
NG1 0.49/0.22/0.62/0.40 1.73/1.48/1.54/1.56 0.14/-0.09/0.13/0.11 0.14/-0.09/0.13/0.11 -0.49/-0.68/-0.32/-0.38 1.00/0.79/0.92/0.91 0.16/0.12/0.20/0.14 1.00/0.79/0.92/0.91 0.51/0.56/1.35/0.45
NG2 0.87/0.65/1.36/0.82 1.08/0.48/0.92/0.87 0.11/0.04/0.11/0.11 0.11/0.04/0.11/0.11 0.67/0.82/0.59/0.71 -0.16/-0.11/-0.13/-0.15 0.50/0.53/0.59/0.47 -0.16/-0.11/-0.13/-0.15 0.85/0.91/1.04/0.86
NG3 1.27/1.00/1.27/1.20 -1.64/-1.31/-1.30/-1.25 -2.54/-2.97/-3.17/-2.10 -2.54/-2.97/-3.17/-2.10 -1.98/-2.28/-2.42/-1.70 -1.01/-1.00/-0.90/-0.79 -1.40/-1.58/-1.77/-1.30 -1.01/-1.00/-0.90/-0.79 -1.25/-1.27/-1.25/-1.20
NG4 -0.36/-0.56/-0.51/-0.34 3.44/3.60/4.14/3.11 2.35/2.31/1.62/2.43 2.35/2.31/1.62/2.43 2.47/2.35/2.61/2.32 -0.66/-0.80/-0.55/-0.78 -1.12/-1.01/-1.44/-1.09 -0.66/-0.80/-0.55/-0.78 -0.67/-0.33/-0.86/-0.57
NG5 -0.02/-0.25/-0.02/-0.02 0.73/0.38/0.56/0.63 -0.39/-0.51/-0.31/-0.42 -0.39/-0.51/-0.31/-0.42 -0.43/-0.55/-0.66/-0.47 -0.14/-0.41/-0.14/-0.15 -0.42/-0.52/-0.50/-0.42 -0.14/-0.41/-0.14/-0.15 0.33/0.20/0.28/0.32
NG6 1.66/1.39/1.66/1.61 0.96/0.45/0.64/0.70 -0.70/-0.91/-0.80/-0.71 -0.70/-0.91/-0.80/-0.71 -0.03/-0.19/-0.03/-0.02 -0.27/-0.32/-0.29/-0.23 -0.25/-0.44/-0.25/-0.23 -0.27/-0.32/-0.29/-0.23 -0.82/-0.85/-0.79/-0.80
NG7 0.78/0.45/0.78/0.75 -1.08/-0.85/-1.26/-0.95 2.55/2.35/2.55/2.91 2.55/2.35/2.55/2.91 2.74/2.58/2.74/2.73 2.16/2.14/2.16/2.17 1.90/1.89/1.90/1.88 2.16/2.14/2.16/12.17 0.27/0.63/0.31/0.30
NG8 0.49/0.30/0.44/0.42 2.23/1.91/1.44/1.58 -0.23/-0.41/-0.22/-0.22 -0.23/-0.41/-0.22/-0.22 0.46/0.26/0.41/0.50 0.01/-0.06/0.02/0.01 -0.17/-0.17/-0.17/-0.14 0.01/-0.06/0.02/0.01 0.30/0.17/0.30/0.29
NG9 1.99/1.74/1.99/1.73 -0.30/-0.43/-0.24/-0.23 1.02/0.86/1.14/1.07 1.02/0.86/1.14/1.07 1.83/1.66/2.04/1.83 2.65/2.37/2.97/2.18 3.04/2.85/4.84/2.54 2.65/2.37/2.97/2.18 1.24/1.15/1.24/1.15
NG10 1.19/0.94/1.02/1.02 1.75/1.49/1.66/1.42 1.45/1.32/1.34/1.20 1.45/1.32/1.34/1.20 1.72/1.67/1.63/1.59 2.71/2.83/3.94/2.17 2.71/2.56/3.05/1.92 2.71/2.83/3.94/12.17 2.24/2.00/2.24/1.82
NG11 0.67/0.33/0.57/0.58 2.22/1.78/1.42/1.70 1.39/1.20/1.48/1.40 1.39/1.20/1.48/1.40 1.25/1.02/1.35/1.30 1.52/1.15/1.81/1.27 2.14/2.12/2.85/1.84 1.52/1.15/1.81/1.27 1.14/1.18/1.31/1.05
NG12 3.53/3.19/3.53/3.00 -3.33/-3.40/-2.44/-2.70 -0.51/-0.76/-0.51/-0.50 -0.51/-0.76/-0.51/-0.50 0.70/0.51/0.74/0.70 2.25/2.18/2.25/2.18 2.00/1.89/2.00/1.81 2.25/2.18/2.25/2.18 0.88/0.62/1.09/0.81
VG1 -0.84/-1.15/-0.77/-0.81 0.67/0.75/0.61/0.62 2.10/2.22/2.10/2.31 2.10/2.22/2.10/2.31 2.46/2.49/2.55/2.89 0.44/0.34/0.44/0.48 0.39/0.42/0.39/0.38 0.44/0.34/0.44/0.48 0.35/0.47/0.67/0.32
VG2 -0.89/-1.14/-1.06/-0.88 2.05/2.17/1.70/1.77 3.15/3.17/3.15/3.52 3.15/3.17/3.15/3.52 2.34/2.30/2.85/2.59 1.12/1.08/1.12/1.11 0.28/0.54/0.32/0.27 1.12/1.08/1.12/1.11 -0.19/0.05/-0.31/-0.18
VG3 0.60/0.40/0.71/0.58 0.53/0.78/0.52/0.54 1.99/2.18/2.68/2.32 1.99/2.18/2.68/2.32 2.15/2.28/2.81/2.63 1.29/1.72/1.36/1.40 1.21/1.38/1.16/1.19 1.29/1.72/1.36/1.40 0.59/0.84/0.64/0.54
VG4 0.11/-0.12/0.12/0.10 2.25/2.14/2.65/2.28 4.18/4.12/4.94/3.86 4.18/4.12/4.94/3.86 3.45/3.38/3.80/2.96 1.75/1.52/1.44/1.62 1.95/2.02/2.34/1.81 1.75/1.52/1.44/1.65 0.66/0.87/0.76/0.65
VG5 0.76/0.66/1.11/0.67 2.89/2.98/2.89/2.53 3.78/3.80/3.58/3.91 3.78/3.80/3.58/3.91 3.52/3.57/3.33/3.59 1.20/1.42/1.46/1.28 0.40/0.56/0.55/0.39 1.20/1.42/1.46/1.28 0.23/0.50/0.35/0.21
VG6 1.47/1.27/1.47/1.39 1.07/1.34/1.07/1.15 1.02/1.23/1.48/1.27 1.02/1.23/1.48/1.27 1.50/1.29/2.14/1.81 0.48/0.84/0.60/0.59 0.69/1.12/0.70/0.75 0.48/0.84/0.60/0.59 0.60/0.80/0.60/0.58
VG7 1.40/1.24/1.40/1.31 1.84/1.80/1.84/1.74 2.13/2.20/2.17/2.08 2.13/2.20/2.17/2.08 1.46/1.58/1.91/1.24 1.40/1.58/1.87/1.42 1.17/1.36/1.14/1.14 1.40/1.58/1.87/1.42 0.58/0.76/0.75/0.53
VG8 0.87/0.75/11.02/0.80 0.42/0.46/0.42/0.43 2.09/2.16/2.35/2.13 2.09/2.16/2.35/2.13 2.30/2.21/2.30/2.51 0.43/0.55/0.39/0.41 0.46/0.69/0.41/0.46 0.43/0.55/0.39/0.41 0.57/0.81/0.65/0.55
VG9 -0.50/-0.76/-0.50/-0.48 3.05/3.03/2.76/3.33 1.20/1.36/2.33/1.53 1.20/1.36/2.33/1.53 0.85/0.86/1.08/1.03 0.40/0.50/0.51/0.48 -0.39/-0.16/-0.33/-0.42 0.40/0.50/0.51/0.48 -0.36/-0.16/-0.42/-0.38
VG10 1.97/1.71/1.97/1.83 -0.87/-1.11/-0.84/-0.75 -1.62/-1.80/-1.99/-1.58 -1.62/-1.80/-1.99/-1.58 -1.04/-1.10/-0.90/-1.06 0.81/0.83/0.97/0.70 1.13/1.17/1.13/0.93 0.81/0.83/0.97/0.70 1.86/1.76/2.88/1.79
VG11 1.34/1.04/1.34/1.28 3.45/3.13/5.08/3.61 -0.54/-0.48/-0.55/-0.51 -0.54/-0.48/-0.55/-0.51 -1.66/-1.55/-1.91/-1.65 -1.76/-1.23/-1.87/-1.51 -1.33/-1.01/-1.41/-1.20 -1.76/-1.23/-1.87/-1.51 0.58/0.59/0.59/0.57
VG12 1.03/0.81/1.03/0.97 0.52/0.33/0.53/0.54 -0.39/-0.33/-0.38/-0.37 -0.39/-0.33/-0.38/-0.37 -0.03/0.04/-0.03/-0.02 0.60/0.66/0.50/0.54 0.50/0.68/0.50/0.44 0.60/0.66/0.50/0.54 1.03/1.00/1.01/1.03
VG13 1.79/1.54/1.79/1.84 1.25/1.24/1.25/1.36 -0.96/-1.00/-0.96/-0.90 -0.96/-1.00/-0.96/-0.90 -0.39/-0.42/-0.39/-0.38 0.81/0.80/0.96/0.71 0.93/0.84/1.00/0.85 0.81/0.80/0.96/0.71 1.28/1.17/1.28/1.30
VG14 1.64/1.41/1.64/1.57 0.24/-0.05/0.24/0.26 -1.51/-1.66/-1.72/-1.46 -1.51/-1.66/-1.72/-1.46 -1.50/-1.44/-1.64/-1.41 -0.57/-0.35/-0.57/-0.51 -0.04/-0.11/-0.04/-0.04 -0.57/-0.35/-0.57/-0.51 0.88/0.89/1.10/0.82
VG15 1.26/1.04/1.86/1.23 0.56/0.20/0.56/0.60 -0.66/-0.78/-1.08/-0.68 -0.66/-0.78/-1.08/-0.68 -0.79/-0.60/-0.66/-0.73 0.19/0.31/0.20/0.18 0.30/0.45/0.30/0.27 0.19/0.31/0.20/0.18 1.78/1.70/1.78/1.90
VG16 0.78/0.53/0.85/0.86 2.20/2.00/2.83/2.21 -0.65/-0.73/-0.59/-0.63 -0.65/-0.73/-0.59/-0.63 -0.75/-0.75/-0.59/-0.68 -0.64/-0.35/-0.55/-0.52 -0.88/-0.81/-1.01/-0.79 -0.64/-0.35/-0.55/-0.52 0.47/0.51/0.67/0.47
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Table A4. Z statistics of annual rainfall extremes of pre-1950

Grid CDD CWD PRCPTOT R10 R20 R40 R95 1Day Sday

Id MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4
NG1 0.52/-0.04/0.74/0.41 2.25/1.96/2.25/2.1 1.14/0.94/1.14/1.41 0.41/0.45/0.41/0.45 1.35/1.06/1.87/1.52 0.14/0.38/0.22/0.19 -0.14/0.27/-0.22/-0.19 -0.8/-0.32/-0.8/-0.97 0.77/1.22/1.21/1
NG2 | -0.08/-0.42/-0.08/-0.09 3.69/3.42/3.69/3.95 1.09/1.11/1.27/1.31 1.62/1.44/1.4/1.95 -0.29/-0.04/-0.45/-0.37 | -1.70/-1.59/-1.70/-1.67 -1.71/-1.78/-1.5/-1.82 -1.66/-0.85/-2.42/-1.94 0.58/1.16/0.65/0.67
NG3 0.24/-0.2/0.24/0.24 -0.09/-0.06/-0.09/-0.09 0.35/0.09/0.35/0.39 0.68/0.25/0.59/0.67 0.28/0.09/0.28/0.3 0.93/0.40/0.93/0.82 0.23/0.01/0.23/0.23 -0.23/0.11/-0.74/-0.25 0.83/0.87/0.83/0.97
NG4 | -0.28/-0.75/-0.35/-0.29 0/0.29/0/0 -0.17/-0.03/-0.15/-0.19 0.44/0.21/0.55/0.48 0/-0.08/0/0 0.05/0.16/0.05/0.06 -0.59/-0.44/-0.53/-0.62 | -0.03/0.32/-0.02/-0.03 0.44/0.73/0.36/0.48
NG5 -0.38/-0.7/-0.53/-0.36 0.76/0.66/0.76/0.91 0.97/0.63/0.8/1.19 0.86/0.7/0.86/0.89 0.44/0.09/0.48/0.52 0.19/-0.22/0.19/0.22 -0.17/-0.13/-0.23/-0.18 -1.16/-1.2/-1.13/-1.1 0.44/0.15/0.43/0.43
NG6 0.33/-0.03/0.33/0.32 1.03/0.65/1.03/1.1 0.49/0.27/0.49/0.57 0.76/0.41/0.76/0.84 0.37/0.19/0.37/0.37 0.53/0.14/0.53/0.49 0.33/0.01/0.33/0.31 -0.72/-0.46/-3.51/-0.77 0.22/0.44/0.22/0.24
NG7 0.18/-0.25/0.18/0.17 1.06/1.14/1.55/1.01 0.18/0.09/0.18/0.21 0.65/0.3/0.65/0.77 0.9/0.7/0.96/1.04 0.42/0.41/0.53/0.40 0.15/0.18/0.18/0.14 -0.81/-0.32/-0.86/-1.02 0.55/1.13/0.59/0.62
NG8 0.28/-0.04/0.35/0.23 1.47/1.23/1.72/1.24 0.99/0.68/0.87/1.25 1.79/1.53/2.34/1.88 0.4/0.2/0.36/0.47 -0.39/-0.35/-0.39/-0.40 | -0.69/-0.78/-0.69/-0.73 | -1.21/-1.11/-1.56/-1.19 | -0.01/-0.16/-0.01/-0.01
NG9 0.53/0.11/0.53/0.47 0.93/0.63/0.82/0.89 0.91/0.54/0.81/1.13 1.89/1.54/1.89/2.16 0.76/0.49/0.76/0.92 -0.36/-0.53/-0.36/-0.37 | -0.67/-0.68/-0.65/-0.66 -1.3/-1.09/-1.67/-1.32 -0.16/-0.22/-0.21/-0.15
NG10 0.66/0.22/0.93/0.55 -0.4/-0.76/-0.58/-0.39 1.14/0.58/1.01/1.45 1.63/1.32/1.63/1.76 0.62/0.73/0.62/0.78 -0.26/-0.10/-0.26/-0.27 | -0.36/-0.42/-0.36/-0.37 | -1.46/-1.18/-1.46/-1.55 | -0.13/-0.25/-0.13/-0.12
NG11 0.53/0.11/0.53/0.47 0.94/0.63/0.83/0.9 0.96/0.63/0.96/1.2 1.31/1.13/1.31/1.49 0.78/0.49/0.78/0.89 -0.64/-0.61/-0.64/-0.65 | -0.49/-0.58/-0.49/-0.49 | -1.38/-1.13/-1.81/-1.36 | -0.28/-0.35/-0.36/-0.25
NG12 0.33/-0.06/0.33/0.36 0.73/0.36/0.73/0.76 0.64/0.13/0.64/0.52 0.95/0.77/0.95/1.01 0.27/-0.16/0.27/0.24 -0.29/-0.53/-0.34/-0.28 -0.49/-0.7/-0.49/-0.46 -0.72/-0.89/-1.31/-0.73 | -0.31/-0.63/-0.31/-0.31
VG1 | -0.38/-0.82/-0.38/-0.37 -2.35/-1.92/-2.35/-2.5 -0.02/-0.04/-0.02/-0.02 | -0.23/-0.18/-0.33/-0.27 1.27/1.37/1.36/1.53 -0.14/-0.32/-0.14/-0.16 -0.35/-0.42/-0.35/-0.3 -1.15/-0.65/-1.43/-1.37 0.32/0.68/0.32/0.32
VG2 0.2/-0.13/0.27/0.22 -2.39/-2.03/-2.39/-2.43 0.27/0.3/0.27/0.28 -0.86/-0.85/-1.3/-0.99 1.33/1.44/1.44/1.54 0.26/0.30/0.24/0.23 -0.03/-0.01/-0.03/-0.03 0.03/0.47/0.03/0.03 0.83/1.18/0.83/0.84
VG3 1.27/0.82/1.73/1.37 -1.44/-1.34/-1.65/-1.54 0.22/0.28/0.22/0.23 0.01/-0.03/0.01/0.01 1.41/1.65/1.5/1.68 0.01/0.20/0.01/0.01 0.19/0.51/0.19/0.16 0.74/0.84/0.74/0.82 0.59/0.94/0.59/0.59
VG4 0/-0.32/0/0 1.02/1.28/1.19/1.21 0.79/0.56/0.79/0.88 1.04/0.66/1.11/1.15 1.51/1.65/1.62/1.73 -0.60/-0.71/-0.60/-0.54 | -0.62/-0.46/-0.71/-0.56 0.03/0.47/0.03/0.04 1.19/1.44/1.52/1.32
VG5 1.26/0.84/1.79/1.39 -0.73/-0.44/-0.73/-0.7 -0.18/-0.06/-0.2/-0.2 0.36/0.23/0.39/0.45 0.73/1.2/1.03/0.89 0.31/0.26/0.31/0.30 -0.11/0.16/-0.11/-0.1 -0.08/0.03/-0.08/-0.1 0.13/0.49/0.13/0.13
VG6 2.09/1.56/2.97/2.38 -0.46/-0.25/-0.62/-0.5 -0.33/-0.23/-0.36/-0.38 0.09/0/0.09/0.09 0.34/0.08/0.54/0.36 -0.60/-0.27/-0.60/-0.64 | -0.69/-0.39/-0.69/-0.74 -0.61/-0.2/-0.61/-0.6 -0.55/-0.3/-0.55/-0.52
VG7 0.48/0.09/0.51/0.54 1.37/1.44/1.37/1.5 0.75/0.8/0.75/0.72 1.82/1.66/1.82/1.86 -0.08/0/-0.07/-0.08 -0.36/-0.08/-0.36/-0.39 -0.8/-0.42/-0.8/-0.83 -1.46/-1.39/-1.46/-1.72 | -0.64/-0.37/-0.64/-0.61
VG8 0.91/0.32/1.17/1.15 0.52/0.52/0.52/0.55 0.03/0.01/0.03/0.04 0.5/0.2/0.58/0.49 0.13/0.38/0.13/0.15 -0.53/-0.02/-0.53/-0.57 -0.17/0.01/-0.17/-0.19 -0.28/0.11/-0.28/-0.35 | -0.34/-0.03/-0.34/-0.34
VG9 1.87/1.34/2/2.2 1.01/0.95/1.01/0.93 -0.07/0.16/-0.07/-0.08 0.55/0.37/0.55/0.64 -0.59/-0.75/-0.59/-0.72 | -0.32/-0.09/-0.48/-0.42 | -1.07/-0.68/-1.15/-1.16 | -0.16/0.44/-0.13/-0.18 0.1/0.41/0.1/0.1
VG10 0.57/0.2/0.61/0.65 0.31/0.03/0.35/0.31 0.76/0.39/0.76/0.75 0.35/0.03/0.35/0.3 1.03/0.92/1.03/1.08 -0.25/-0.46/-0.20/-0.23 0.32/0.08/0.3/0.31 0.69/0.56/1.09/0.72 0.01/-0.11/0.01/0.01
VGI11 0.49/0.01/0.67/0.54 1.23/0.7/1.17/1.5 0.64/0.61/0.64/0.6 1.34/1.08/1.48/1.45 0.38/0.51/0.38/0.37 -0.18/-0.22/-0.22/-0.16 0.18/0.13/0.24/0.17 1.39/1.47/1.83/1.76 0.62/0.68/0.62/0.61
VG12 0.87/0.32/0.94/0.97 1.33/0.82/1.33/1.61 0.64/0.61/0.64/0.59 1.02/0.65/1.02/1.1 0.47/0.5/0.52/0.46 -0.34/-0.17/-0.37/-0.30 0.07/-0.03/0.09/0.06 1.4/1.35/1.83/1.76 0.65/0.63/0.54/0.64
VG13 0.56/0.41/0.6/0.67 1.7/1.53/1.7/2.09 1/0.78/1/0.98 1.17/0.85/1.17/1.25 0.76/0.73/0.76/0.81 -0.15/-0.07/-0.15/-0.13 0.12/-0.11/0.12/0.1 1.3/1.28/1.3/1.48 1.25/1.09/1.25/1.16
VG14 | -0.11/-0.52/-0.12/-0.13 0.03/-0.34/0.46/0.05 0.9/0.66/1.28/0.83 0.15/0.01/0.26/0.15 1.51/1.58/1.51/1.45 1.07/1.07/0.96/1.16 0.99/0.89/0.88/1.04 0.84/0.68/1.34/0.86 0.45/0.37/0.45/0.47
VG15 0.1/-0.18/0.11/0.11 -0.36/-1.11/-0.36/-0.41 0.64/0.58/0.64/0.6 1.32/1.04/1.32/1.43 0.02/0.13/0.01/0.02 0.51/0.47/0.55/0.47 0.62/0.54/0.57/0.58 1.59/1.73/1.59/1.84 0.66/0.66/0.72/0.67
VG16 0.1/-0.25/0.11/0.12 -0.12/-0.23/-0.12/-0.14 0.56/0.34/0.52/0.46 0.91/0.99/0.91/0.85 0.35/0.17/0.31/0.3 0.41/0.34/0.25/0.33 0.17/0.15/0.17/0.15 0.83/0.85/0.83/0.91 0.52/0.58/0.46/0.5
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Table A5. Z statistics of annual rainfall extremes of post-1950

Grid CDD CWD PRCPTOT R10 R20 R40 R95 1Day Sday
Id MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4
NG1 | -1.07/-0.83/-1.09/-0.93 -1.73/-1.8/-1.58/-1.69 -0.35/0.15/-0.28/-0.25 | -1.72/-1.57/-1.13/-1.19 | -0.19/0.34/-0.09/-0.12 1.54/2.00/1.28/1.27 0.71/1.11/0.59/0.54 0.36/0.53/0.38/0.31 0.53/0.74/0.78/0.41
NG2 -0.02/0.34/-0.02/-0.02 | -2.16/-2.25/-2.16/-1.94 | -0.48/-0.16/-0.56/-0.43 | -0.51/-0.54/-0.51/-0.47 0.54/0.73/0.54/0.53 1.46/1.50/1.46/1.38 1.07/1.33/1.07/1.02 0.35/0.21/0.35/0.3 -0.3/-0.23/-0.36/-0.29
NG3 0.28/0.61/0.23/0.25 -2.83/-2.97/-3.48/-2.01 | -3.24/-3.39/-2.87/-2.48 | -2.65/-2.63/-2.19/-1.97 -2.06/-2.59/-2.41/-1.6 -2.24/-2.05/-1.81/-1.73 | -1.75/-1.88/-1.75/-1.61 | -2.01/-2.33/-3.28/-1.91 | -2.32/-2.64/-2.54/-2.22
NG4 | -1.44/-1.11/-1.16/-1.36 2.24/2/2.24/2.01 1.39/1.46/1.39/1.36 2.08/2.24/2.23/2.02 1.42/1.94/1.57/1.2 -0.29/-0.42/-0.25/-0.34 | -1.12/-1.07/-1.12/-1.07 -1.08/-1.1/-1.53/-0.79 -0.84/-1.19/-0.92/-0.6
NG5 | -1.01/-0.68/-1.01/-0.87 | -2.09/-2.22/-2.32/-1.68 | -0.61/-0.29/-0.61/-0.63 | -0.22/0.08/-0.26/-0.26 -0.1/0.08/-0.08/-0.11 0.30/0.17/0.35/0.29 -0.33/-0.52/-0.38/-0.3 -1.66/-1.54/-2.14/-1.64 | -0.79/-0.95/-0.66/-0.78
NG6 0.01/0.27/0.01/0.01 -4.15/-4.35/-4.43/-3.84 | -2.24/-2.25/-2.24/-2.27 | -1.35/-1.43/-1.37/-1.52 -0.02/0/-0.02/-0.02 0.10/-0.12/0.11/0.08 0.09/-0.1/0.15/0.08 -0.28/-0.64/-0.27/-0.28 -1.9/-2.26/-2.34/-1.89
NG7 | -0.82/-0.56/-0.82/-0.85 0.59/0.35/0.59/0.5 0.92/0.27/0.92/1.09 1.76/1.44/1.8/1.66 -0.85/-1.16/-0.85/-0.85 | -0.88/-1.39/-0.88/-0.97 -0.87/-1.2/-0.87/-0.97 -1.45/-1.96/-1.46/-1.49 | -0.53/-0.76/-0.45/-0.61
NG8 | -0.42/-0.12/-0.42/-0.37 -3.23/-3.5/-3.23/-2.78 -1.59/-1.28/-1.45/-1.46 -1.2/-0.93/-1.19/-1.28 0.5/0.5/0.42/0.52 0.10/-0.06/0.13/0.07 0.08/0.24/0.1/0.06 -0.58/-0.74/-0.58/-0.61 | -0.71/-1.03/-0.71/-0.71
NG9 | -0.49/-0.28/-0.49/-0.44 | -2.59/-2.92/-1.67/-2.11 | -1.14/-1.28/-1.24/-1.18 | -2.19/-2.19/-1.88/-2.38 0.34/0.12/0.34/0.3 0.41/-0.01/0.51/0.31 0.73/0.61/0.73/0.6 0.24/-0.01/0.24/0.2 -1.14/-1.53/-1.14/-1.13
NG10 | -0.22/0.12/-0.22/-0.19 -1.85/-2.19/-1.83/-1.6 -0.7/-0.41/-0.7/-0.52 -2.04/-1.81/-2.04/-1.78 0.54/0.41/0.43/0.43 1.84/2.02/2.35/1.39 1.7/1.58/3.02/1.15 1.23/1.19/1.23/0.95 0.86/0.83/1.1/0.68
NG11 | -1.14/-0.91/-1.14/-1.01 -3.6/-3.69/-3.6/-3.46 -0.67/-0.77/-0.67/-0.63 | -2.47/-2.28/-2.47/-2.45 0.96/0.68/1.06/0.93 1.05/0.61/1.04/0.84 1.92/1.85/1.96/1.57 0.3/0.09/0.3/0.26 -0.34/-0.65/-0.34/-0.33
NG12 2.1/2.34/2.1/1.65 -4.26/-4.28/-3.78/-3.63 | -0.76/-0.68/-0.76/-0.79 -3.01/-2.91/-3.01/-2.8 0.24/0.23/0.29/0.25 2.87/2.50/4.39/2.96 2.94/2.77/4.1/12.87 2.11/1.73/2.11/1.97 1.24/0.98/1.51/1.14
VGl | -1.35/-1.11/-1.12/-1.33 1.54/1.36/1.42/1.4 1.3/1.22/1.3/1.43 0.56/0.86/0.49/0.68 0.93/1/0.76/1.09 -0.11/-0.29/-0.11/-0.12 0.52/0.24/0.52/0.52 0.79/0.45/1.12/0.75 0.01/-0.31/0.01/0
VG2 | -0.78/-0.37/-1.02/-0.72 1.61/1.76/1.61/1.45 1.27/1/1.27/1.48 0.74/0.61/0.74/0.92 0.93/0.69/0.93/1.01 0.97/0.74/0.97/1.04 0.59/0.23/0.51/0.61 0.35/0.01/0.35/0.35 -0.14/-0.5/-0.19/-0.13
VG3 0.31/0.62/0.31/0.29 0.58/0.65/0.69/0.58 0.98/0.93/0.98/1.19 1.16/1.35/1.96/1.62 0.73/1.04/0.73/0.91 0.50/0.60/0.50/0.60 0.95/0.69/0.95/1.01 1.31/1.07/1.24/1.07 0.02/-0.26/0.02/0.01
VG4 | -0.71/-0.43/-0.71/-0.72 0.01/-0.03/0.01/0 1.32/1.24/1.49/1.15 1.25/1.21/1.38/1.05 0.66/0.57/0.64/0.51 0.16/-0.26/0.17/0.17 0.89/0.57/0.98/0.87 0.07/-0.31/0.09/0.07 0.17/-0.17/0.17/0.17
VG5 0.2/0.74/0.17/0.16 0.55/0.3/0.55/0.48 1.75/1.43/1.56/1.8 1.37/1.19/1.37/1.44 2.09/1.89/1.77/1.98 1.17/0.79/1.09/1.39 0.79/0.44/0.79/0.82 0.51/0.18/0.5/0.44 0.74/0.45/0.74/0.68
VG6 0.29/0.71/0.29/0.26 1.07/1.27/1.07/1.1 0.67/0.61/1.02/0.89 0.96/1.43/1.56/1.34 0.43/0.89/0.43/0.54 0.13/0.18/0.24/0.17 0.92/0.71/0.92/1.01 0.95/0.73/0.91/0.81 -0.13/-0.3/-0.13/-0.13
VG7 -0.19/0.22/-0.19/-0.16 0.09/-0.3/0.11/0.08 1.77/1.48/1.6/1.76 0.84/0.8/0.92/0.85 1.67/1.6/1.39/1.3 1.24/0.82/1.36/1.25 1.62/1.27/1.76/1.56 1.23/0.65/1.23/1.07 0.93/0.76/1.34/0.84
VG8 -0.64/-0.22/-0.45/-0.5 1.03/0.96/1.03/1.05 2.08/1.82/2.71/2.06 2.4/2.15/3.32/2.55 2.08/1.88/2.08/2.27 1.10/0.75/1.20/1.03 1.14/0.83/1.36/1.09 0.82/0.63/0.71/0.74 0.57/0.34/0.57/0.56
VG9 -0.35/0/-0.35/-0.32 1.03/1.08/1.03/1.21 0.78/0.63/1.41/1.02 1.81/1.99/1.81/2.47 0.58/0.58/0.58/0.71 0.91/0.93/0.91/1.07 0.25/0.01/0.25/0.28 0.12/-0.13/0.12/0.1 -1/-1.21/-1/-1.09
VG10 | -0.65/-0.39/-0.65/-0.57 -3.6/-3.87/-4.26/-3.02 -0.15/-0.26/-0.15/-0.15 -2.25/-2.12/-1.85/-2.3 0.39/0.1/0.42/0.42 1.66/1.73/1.66/1.49 2.63/2.46/3.37/2.17 2.97/2.67/12.97/2.6 1.24/0.95/1.57/1.11
VGI11 | -0.02/0.26/-0.02/-0.01 1.07/0.87/1.07/1.06 1.58/1.22/1.73/1.69 1.43/1.26/1.43/1.7 0.62/0.44/0.69/0.67 0.81/0.43/1.08/0.77 1.4/1.13/1.79/1.32 1.17/0.91/1.17/1.24 1.42/1/1.42/1.52
VG12 -0.2/0.18/-0.17/-0.17 -0.82/-0.89/-0.75/-0.74 1.91/1.61/2.54/1.99 1.57/1.59/1.58/1.76 1.64/1.46/1.8/1.6 2.05/2.07/2.05/1.97 1.6/1.5/1.6/1.43 0.96/0.95/1.1/0.88 0.46/0.1/0.54/0.48
VG13 0.21/0.53/0.33/0.21 0.01/-0.06/0.01/0.01 1.02/0.87/1.02/1 1.28/1.33/1.47/1.37 0.73/0.68/0.92/0.69 1.42/1.46/1.42/1.33 1.46/1.34/1.46/1.39 0.46/0.64/0.58/0.4 0.54/0.21/0.63/0.58
VG14 0.77/1.1/0.77/0.69 -2.25/-2.14/-2.25/-2.36 | -0.93/-0.77/-0.93/-0.93 | -2.51/-2.51/-2.84/-2.48 | -0.68/-0.58/-0.68/-0.68 0.41/0.65/0.41/0.33 0.89/1.23/0.89/0.71 1.85/2.06/1.85/1.69 0.89/0.97/0.89/0.78
VG15 0.12/0.47/0.13/0.12 -0.82/-0.92/-0.91/-0.86 0.92/0.77/1.16/1.04 1.18/1.34/1.18/1.45 0.57/0.56/0.53/0.52 0.99/0.90/1.11/0.92 1/1/1/0.9 0.77/0.9/0.77/0.84 1.11/0.9/1.15/1.29
VG16 0.4/0.53/0.36/0.43 -1.26/-1.49/-1.26/-1.3 1.6/1.2/3.18/2.12 1.97/2.33/3.32/2.56 1.05/0.83/1.03/1.06 1.33/1.26/1.40/1.34 1.23/1.01/1.28/1.31 1.12/1.26/1.17/1.19 0.5/0.26/0.53/0.56

160




Table A6. Z statistics of rainfall extremes for monsoon season

Grid Id CDD CWD PRCPTOT R10 R20 R40 R95 1Day 5Day
NG1 -0.18/-0.46/-0.18/-0.18 1.50/1.06/1.29/1.36 1.09/0.51/0.89/0.71 -0.53/-0.64/-0.39/-0.36 0.22/0.07/0.20/0.16 0.22/0.07/0.20/0.16 1.16/0.45/0.85/0.83 0.66/0.29/0.52/0.46 0.38/0.41/0.28/0.25
NG2 0.13/-0.23/0.13/0.14 0.93/0.28/0.81/0.76 0.18/-0.12/0.18/0.14 1.29/1.14/1.29/1.18 1.23/0.99/1.45/1.17 1.23/0.99/1.45/1.17 0.40/0.18/0.36/0.30 0.15/-0.01/0.11/0.11 0.43/0.45/0.46/0.34
NG3 3.00/2.94/2.57/2.69 -1.98/-1.63/-1.61/-1.56 | -2.63/-3.36/-2.50/-2.02 -2.59/-3.22/-2.01/-2.00 -2.22/-2.42/-2.69/-1.89 | -2.22/-2.42/-2.69/-1.89 | -1.92/-2.17/-1.92/-1.71 | -1.95/-2.39/-2.44/-1.71 | -2.17/-2.50/-2.71/-1.93
NG4 -1.58/-1.91/-2.65/-1.36 2.98/3.24/2.98/2.69 2.21/2.15/2.23/1.88 3.86/3.63/4.53/3.77 1.94/1.73/1.66/1.81 1.94/1.73/1.66/1.81 -1.84/-1.63/-2.90/-1.56 | -1.63/-1.56/-2.16/-1.37 | -0.60/-0.62/-0.80/-0.55
NG5 -0.12/-0.24/-0.12/-0.12 0.95/0.45/0.85/0.78 2.92/2.70/4.11/2.93 0.38/0.22/0.45/0.41 0.46/0.19/0.46/0.51 2.78/2.57/3.20/3.13 -0.40/-0.64/-0.41/-0.42 | -0.39/-0.48/-0.37/-0.38 0.72/0.78/0.66/0.70
NG6 1.31/1.18/1.60/1.15 1.19/0.78/0.82/0.88 -0.22/-0.45/-0.19/-0.23 -0.47/-0.76/-0.54/-0.48 0.17/-0.14/0.17/0.15 0.46/0.19/0.46/0.51 0.20/0.17/0.19/0.17 0.41/0.14/0.72/0.39 0.19/-0.08/0.18/0.19
NG7 -0.26/-0.41/-0.31/-0.24 | -1.47/-1.15/-1.35/-1.42 | -0.23/-0.59/-0.23/-0.22 2.62/2.41/2.91/2.57 3.12/2.89/2.97/2.77 0.17/-0.14/0.17/0.15 1.86/1.72/2.20/1.66 0.33/0.13/0.30/0.30 -0.47/-0.78/-0.62/-0.44
NG8 0.00/-0.08//0.00 2.35/2.05/1.47/1.62 2.98/2.73/2.98/2.93 1.37/1.20/1.84/1.37 1.28/0.99/1.19/1.32 3.12/2.89/2.97/12.77 -0.33/-0.26/-0.33/-0.26 0.12/0.07/0.12/0.12 1.02/0.93/1.57/1.00
NG9 0.72/0.52/0.84/0.65 -0.06/-0.37/-0.03/-0.04 4.42/4.23/5.16/4.56 -0.12/-0.44/-0.12/-0.12 2.24/1.94/2.25/2.14 3.29/3.06/3.66/3.56 3.14/2.96/3.49/2.58 2.90/2.64/1.96/2.33 0.58/0.79/0.47/0.63
NG10 0.97/0.83/0.97/0.89 1.68/1.27/1.88/1.36 3.45/3.26/3.45/3.56 1.27/1.00/1.27/1.21 2.83/2.51/3.16/2.37 3.11/3.09/3.83/3.53 3.05/2.79/3.05/1.93 3.39/3.22/2.76/2.74 0.58/0.94/0.49/0.55
NG11 -0.80/-0.93/-0.77/-0.85 2.63/2.24/1.96/1.98 0.57/0.44/0.54/0.51 0.38/0.03/0.38/0.35 1.94/1.71/1.94/1.97 1.28/0.99/1.19/1.32 2.30/2.38/1.73/1.86 2.53/2.49/1.84/2.20 0.97/0.83/0.97/0.92
NG12 2.95/2.82/2.95/2.78 -3.36/-3.48/-2.45/-2.76 1.74/1.45/2.08/1.69 -1.79/-2.05/-1.80/-1.59 0.36/0.04/0.36/0.35 2.24/1.94/2.25/2.14 1.63/1.42/1.39/1.41 1.71/1.47/1.71/1.55 2.25/1.97/2.18/2.08
VG1 -1.76/-2.18/-2.24/-1.75 0.08/0.29/0.07/0.07 4.78/4.66/5.14/4.11 3.09/2.87/2.91/3.76 2.78/2.57/3.20/3.13 3.96/3.90/5.15/3.48 1.03/0.85/1.03/0.92 -0.07/-0.24/-0.07/-0.07 2.10/2.06/2.74/12.15
VG2 -2.45/-2.90/-2.72/-2.64 1.67/1.65/1.42/1.43 5.14/5.21/4.04/4.51 4.70/4.56/5.71/5.34 3.29/3.06/3.66/3.56 4.73/4.66/5.44/4.14 1.87/1.83/1.97/1.84 -0.11/-0.18/-0.09/-0.11 1.71/1.92/1.75/1.79
VG3 -0.65/-0.95/-1.15/-0.66 0.56/0.76/0.50/0.58 2.14/2.14/2.21/2.18 4.4414.39/4.76/4.69 3.11/3.09/3.83/3.53 2.40/2.19/2.40/2.55 2.02/2.06/1.83/1.95 0.65/0.82/0.47/0.65 0.34/0.65/0.28/0.33
VG4 -1.40/-1.74/-1.42/-1.41 2.25/2.20/2.63/2.18 2.61/2.18/2.61/1.95 4.78/4.73/5.16/4.03 3.96/3.90/5.15/3.48 2.83/2.51/3.16/2.37 3.15/3.22/2.95/2.86 1.49/1.34/1.63/1.47 3.47/3.06/3.47/2.82
VG5 -1.50/-1.94/-1.74/-1.74 2.85/2.84/2.85/2.52 1.92/1.75/2.04/1.72 5.99/5.79/4.52/6.01 4.73/4.66/5.44/4.14 1.94/1.71/1.94/1.97 2.00/2.18/2.24/1.92 0.80/0.89/0.79/0.73 2.45/2.29/2.36/2.42
VG6 0.64/0.40/0.78/0.60 0.63/0.84/0.67/0.71 2.94/2.88/3.36/2.60 2.52/2.34/2.74/2.30 2.40/2.19/2.40/2.55 1.69/1.75/1.58/1.36 0.43/0.65/0.45/0.43 1.13/1.40/1.16/1.13 1.75/1.90/2.16/1.73
VG7 -0.38/-0.62/-0.32/-0.40 1.68/1.62/1.56/1.54 2.85/2.97/2.50/2.45 1.91/1.74/2.14/1.90 1.69/1.75/1.58/1.36 3.08/3.03/3.08/2.99 2.27/2.36/3.24/2.20 1.95/2.01/2.26/1.74 1.51/1.76/1.64/1.55
VG8 0.43/0.19/0.59/0.41 0.12/0.19/0.13/0.12 2.34/2.30/2.33/2.43 4.05/3.94/3.97/3.74 3.08/3.03/3.08/2.99 1.22/1.11/1.30/1.22 1.99/2.09/2.16/1.72 1.44/1.63/1.67/1.27 0.59/0.75/0.62/0.62
VG9 -0.10/-0.14/-0.11/-0.09 2.70/2.61/2.77/2.93 -0.57/-0.80/-0.55/-0.54 2.49/2.26/2.45/2.62 1.22/1.11/1.30/1.22 0.36/0.04/0.36/0.35 0.42/0.69/0.41/0.40 0.62/0.91/0.62/0.61 1.17/0.86/1.43/1.05
VG10 2.59/2.55/3.59/2.90 -0.97/-1.26/-0.85/-0.87 | -1.27/-1.63/-1.21/-1.17 -3.92/-4.25/-3.42/-3.74 -1.02/-1.23/-1.15/-1.04 | -1.02/-1.23/-1.15/-1.04 1.69/1.57/1.93/1.37 2.37/2.29/2.37/2.12 1.98/1.98/1.91/1.85
VG111 -2.36/-1.98/-1.91/-2.20 3.90/3.66/4.43/4.17 0.42/0.40/0.46/0.36 0.21/0.11/0.36/0.20 -0.63/-0.58/-0.72/-0.60 | -0.63/-0.58/-0.72/-0.60 | -0.17/0.01/-0.16/-0.15 | -0.13/-0.19/-0.13/-0.13 1.55/1.57/1.93/1.69
VG12 0.42/0.41/0.40/0.39 0.43/0.29/0.43/0.44 -0.66/-0.81/-0.68/-0.60 -2.11/-2.20/-2.33/-2.02 -0.11/0.08/-0.11/-0.10 -0.11/0.08/-0.11/-0.10 1.07/1.26/1.03/0.94 0.57/0.60/1.07/0.58 1.41/1.47/3.57/1.56
VG13 1.09/1.00/0.86/0.84 1.55/1.46/1.80/1.67 -1.02/-1.12/-1.00/-0.86 -0.95/-1.18/-1.04/-0.95 -0.33/-0.42/-0.33/-0.30 | -0.33/-0.42/-0.33/-0.30 0.34/0.34/0.38/0.31 -0.16/-0.39/-0.18/-0.15 0.87/0.90/0.98/0.91
VG114 2.35/2.38/1.94/2.34 0.20/-0.15/0.20/0.22 -1.17/-1.41/-1.17/-1.10 -1.92/-2.22/-1.93/-1.71 -1.42/-1.54/-1.42/-1.28 | -1.42/-1.54/-1.42/-1.28 0.13/0.13/0.13/0.11 1.35/1.27/1.35/1.24 0.87/0.94/0.87/0.79
VG15 -0.08/-0.01/-0.09/-0.08 1.00/0.75/1.10/1.07 0.37/0.31/0.41/0.35 0.37/0.23/0.71/0.38 -0.22/-0.27/-0.41/-0.21 | -0.22/-0.27/-0.41/-0.21 0.73/0.69/0.74/0.66 0.21/0.28/0.20/0.23 1.75/1.74/2.53/1.85
VG16 -1.37/-1.17/-1.21/-1.31 2.53/2.29/3.29/2.43 0.16/0.07/0.18/0.15 0.81/0.69/0.64/0.86 -0.31/-0.27/-0.31/-0.30 | -0.31/-0.27/-0.31/-0.30 | -1.21/-1.01/-1.11/-1.10 | -1.36/-1.33/-2.56/-1.46 0.63/0.69/0.97/0.67
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Table A7. Z statistics of rainfall extremes for monsoon season of pre-1950

Grid CDD CWD PRCPTOT R10 R20 R40 R95 1Day Sday

Id MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4
NG1 0.01/-0.28/0.01/0.01 1.99/1.72/1.83/1.85 -0.03/-0.66/-0.03/-0.04 | -0.34/-0.59/-0.44/-0.35 0.15/-0.27/0.15/0.16 0.15/-0.27/0.15/0.16 -0.84/-1.15/-0.84/-0.94 | -0.22/-0.78/-0.22/-0.25 | -0.08/-0.51/-0.06/-0.09
NG2 | -0.04/-0.62/-0.05/-0.05 3.46/3.09/3.46/3.25 -0.77/-1.27/-1.03/-0.91 0.59/0.23/0.94/0.69 -0.90/-1.70/-0.85/-1.10 | -0.90/-1.70/-0.85/-1.10 | -3.77/-4.32/-2.90/-3.60 | -3.59/-3.97/-5.07/-3.65 | -1.16/-1.35/-1.11/-1.17
NG3 0.73/0.43/0.73/0.67 -0.65/-0.55/-0.65/-0.55 | -0.24/-0.68/-0.24/-0.26 | -0.37/-0.74/-0.37/-0.39 0.00/-0.34/0.00/0.00 0.00/-0.34/0.00/0.00 -1.11/-1.42/-3.07/-1.13 | -0.82/-1.25/-1.96/-0.89 | -0.13/-0.46/-0.18/-0.13
NG4 | -0.35/-0.70/-0.35/-0.28 -0.82/-0.79//-0.87 -0.64/-1.09/-0.64/-0.71 0.03/-0.37/0.02/0.03 -0.68/-1.32/-0.68/-0.75 | -0.68/-1.32/-0.68/-0.75 | -0.62/-0.67/-0.62/-0.58 | -1.21/-1.35/-1.21/-1.15 | -0.91/-0.91/-0.91/-1.01
NG5 0.05/-0.34/0.06/0.05 0.81/0.76/0.92/0.90 -0.03/-0.37/-0.03/-0.04 1.10/0.84/1.10/1.19 -0.19/-0.54/-0.19/-0.22 | -0.19/-0.54/-0.19/-0.22 | -1.85/-2.71/-1.45/-1.24 | -1.63/-2.13/-2.36/-1.92 | -0.53/-0.78/-0.53/-0.59
NG6 0.73/0.36/0.73/0.82 1.33/0.94/1.33/1.43 -0.17/-0.47/-0.17/-0.19 0.13/-0.15/0.13/0.15 0.34/-0.03/0.34/0.32 0.34/-0.03/0.34/0.32 -1.06/-0.91/-3.04/-1.02 | -1.12/-1.41/-2.01/-1.28 | -0.84/-1.22/-1.13/-0.88
NG7 | -0.57/-1.07/-0.80/-0.67 1.07/1.11/1.07/1.08 -0.29/-0.66/-0.29/-0.34 0.15/-0.23/0.20/0.19 0.48/0.08/0.48/0.52 0.48/0.08/0.48/0.52 -1.57/-1.19/-1.57/-1.54 | -1.70/-2.01/-1.60/-1.54 | -1.14/-1.15/-1.55/-1.16
NG8 | -0.33/-0.60/-0.33/-0.40 1.53/1.28/1.75/1.20 0.01/-0.27/0.01/0.01 1.14/0.68/1.49/1.20 -0.13/-0.35/-0.13/-0.15 | -0.13/-0.35/-0.13/-0.15 | -1.03/-1.74/-1.03/-1.19 | -1.86/-2.39/-1.86/-2.06 | -1.26/-1.73/-1.26/-1.47
NG9 | -0.70/-0.63/-0.70/-0.66 0.69/0.43/0.69/0.58 0.12/-0.18/0.17/0.15 0.88/0.72/0.88/1.00 -0.03/-0.28/-0.03/-0.03 | -0.03/-0.28/-0.03/-0.03 | -1.70/-2.73/-1.70/-1.85 | -1.96/-2.46/-1.96/-2.10 | -1.29/-1.56/-1.29/-1.41
NG10 0.31/0.31/0.31/0.26 -0.61/-1.03/-0.61/-0.60 | -0.57/-0.61/-0.57/-0.69 0.95/0.61/0.95/1.01 0.34/-0.02/0.34/0.38 0.34/-0.02/0.34/0.38 -2.11/-3.24/-2.11/-2.32 | -2.21/-2.51/-2.21/-2.31 | -1.30/-1.63/-1.30/-1.48
NG11 | -0.67/-0.60/-0.67/-0.64 0.65/0.38/0.65/0.55 0.03/-0.25/0.05/0.04 0.88/0.62/0.88/0.99 0.31/0.24/0.31/0.36 0.31/0.24/0.31/0.36 -1.27/-2.00/-1.27/-1.47 | -1.82/-2.22/-1.82/-1.94 | -1.33/-1.65/-1.33/-1.49
NG12 | -0.81/-0.73/-0.81/-0.78 0.64/0.27/0.64/0.66 0.33/-0.39/0.37/0.25 0.76/0.42/0.76/0.66 0.20/-0.45/0.19/0.17 0.20/-0.45/0.19/0.17 -0.64/-0.76/-0.95/-0.60 | -0.79/-1.20/-1.13/-0.77 | -0.72/-1.13/-0.72/-0.69
VGl | -0.21/-0.65/-0.21/-0.24 | -2.40/-1.98/-2.10/-2.91 | -0.38/-0.84/-0.43/-0.50 | -0.48/-0.91/-0.58/-0.65 0.56/0.38/1.04/0.69 0.56/0.38/1.04/0.69 -1.77/-1.50/-1.69/-1.62 | -2.07/-2.28/-2.36/-1.90 | -1.27/-1.18/-1.27/-1.38
VG2 | -0.27/-0.79/-0.27/-0.31 | -2.39/-2.18/-2.39/-2.81 | -0.28/-0.47/-0.31/-0.36 | -0.96/-1.01/-1.14/-1.26 0.05/-0.31/0.05/0.06 0.05/-0.31/0.05/0.06 -1.25/-1.23/-1.19/-1.19 | -1.79/-2.06/-1.97/-1.68 | -0.98/-0.87/-0.98/-1.10
VG3 | -0.62/-0.92/-0.62/-0.74 | -1.62/-1.42/-1.62/-1.74 | -0.54/-0.75/-0.60/-0.62 | -1.05/-1.32/-1.23/-1.09 | -0.21/-0.17/-0.29/-0.24 | -0.21/-0.17/-0.29/-0.24 | -1.78/-1.98/-1.48/-1.88 | -1.74/-1.37/-2.01/-1.92 | -1.28/-0.80/-1.28/-1.49
VG4 | -1.11/-1.93/-0.94/-1.24 1.17/1.42/1.17/1.38 -0.03/-0.46/-0.03/-0.04 0.37/0.07/0.58/0.41 0.41/0.28/0.41/0.46 0.41/0.28/0.41/0.46 -1.22/-1.51/-1.47/-1.31 | -1.81/-1.96/-1.69/-1.77 | -0.95/-0.96/-0.95/-0.98
VG5 | -0.14/-0.44/-0.19/-0.18 | -0.89/-0.72/-0.89/-0.90 | -0.74/-1.09/-0.79/-0.90 | -0.42/-0.94/-0.57/-0.51 | -0.60/-0.91/-0.60/-0.69 | -0.60/-0.91/-0.60/-0.69 | -2.78/-1.85/-2.31/-2.43 | -2.07/-1.75/-2.58/-2.22 | -1.41/-1.22/-1.41/-1.72
VG6 1.84/1.71/1.84/2.17 -0.75/-0.55/-0.75/-0.85 | -1.92/-1.87/-1.92/-2.10 | -1.29/-1.82/-1.29/-1.18 | -1.10/-1.35/-1.61/-1.10 | -1.10/-1.35/-1.61/-1.10 | -1.19/-0.40/-1.19/-1.14 | -1.25/-0.80/-1.12/-1.31 | -1.66/-1.72/-1.66/-1.89
VG7 0.01/-0.47/0.01/0.01 1.34/1.45/1.34/1.51 0.30/-0.08/0.30/0.34 1.28/0.96/1.40/1.43 -0.63/-0.67/-0.66/-0.65 | -0.63/-0.67/-0.66/-0.65 | -2.18/-2.78/-2.18/-2.29 | -1.93/-1.92/-1.90/-1.93 | -1.08/-0.75/-1.08/-1.25
VG8 0.82/0.30/0.82/0.81 0.05/0.22/0.05/0.05 -1.66/-1.75/-1.66/-2.09 | -0.50/-1.00/-0.50/-0.53 | -0.95/-1.13/-0.95/-1.04 | -0.95/-1.13/-0.95/-1.04 | -2.47/-0.97/-2.08/-2.29 | -1.36/-1.06/-1.88/-1.46 | -1.79/-1.51/-1.79/-2.10
VG9 1.26/0.84/1.26/1.43 0.10/0.20/0.10/0.12 -1.79/-1.80/-1.93/-2.17 | -0.70/-1.11/-0.70/-0.88 | -1.93/-2.19/-2.03/-2.14 | -1.93/-2.19/-2.03/-2.14 | -1.50/-0.61/-1.41/-1.42 | -1.42/-0.97/-1.55/-1.43 | -1.47/-1.32/-1.47/-1.65
VG10 0.77/0.56/1.18/0.74 0.26/-0.15/0.28/0.26 0.22/-0.15/0.22/0.22 0.00/-0.48/0.00/0.00 0.83/0.58/0.83/0.88 0.83/0.58/0.83/0.88 0.22/0.27/0.22/0.22 -0.16/-0.34/-0.17/-0.16 | -0.68/-0.65/-0.85/-0.71
VGI11 0.39/0.34/0.54/0.33 0.76/0.72/0.71/0.92 -0.10/-0.35/-0.11/-0.11 | -0.03/-0.47/-0.03/-0.04 0.03/0.22/0.03/0.03 0.03/0.22/0.03/0.03 0.03/-0.12/0.03/0.03 0.00/0.41/0.00/0.00 -0.67/-0.28/-0.67/-0.79
VG12 0.23/0.30/0.69/0.20 1.27/0.87/1.27/1.53 0.01/-0.30/0.01/0.01 0.18/-0.09/0.27/0.19 0.38/0.32/0.38/0.37 0.38/0.32/0.38/0.37 0.23/0.17/0.23/0.27 0.03/0.30/0.03/0.03 -0.65/-0.25/-0.85/-0.77
VG13 0.44/0.72/0.44/0.35 1.07/0.87/1.07/1.27 -0.03/-0.32/-0.03/-0.03 0.03/-0.50/0.03/0.03 0.44/0.03/0.44/0.43 0.44/0.03/0.44/0.43 -0.19/-0.41/-0.21/-0.20 0.20/-0.03/0.22/0.22 -0.88/-0.61/-0.88/-0.94
VG14 0.61/0.57/0.61/0.54 0.02/-0.54/0.02/0.02 0.85/0.37/1.13/0.76 -0.34/-0.72/-0.50/-0.30 1.36/1.06/1.43/1.26 1.36/1.06/1.43/1.26 0.90/1.15/0.90/0.90 0.61/0.37/0.61/0.60 0.02/-0.01/0.02/0.02
VG15 0.65/0.68/0.82/0.63 -0.18/-0.56/-0.18/-0.21 0.38/0.03/0.62/0.40 0.74/0.37/0.75/0.75 -0.29/-0.49/-0.29/-0.31 | -0.29/-0.49/-0.29/-0.31 0.31/0.30/0.33/0.32 0.47/0.80/0.51/0.54 -0.58/-0.28/-0.65/-0.65
VG16 1.11/1.13/1.11/1.25 0.00/-0.12/0.00/0.00 0.00/-0.06/0.00/0.00 0.28/0.31/0.28/0.27 0.05/-0.11/0.05/0.05 0.05/-0.11/0.05/0.05 -0.18/-0.24/-0.18/-0.20 0.08/0.32/0.15/0.09 -0.53/0.15/-0.82/-0.62
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Table A8. Z statistics of rainfall extremes for monsoon season of post-1950

Grid CDD CWD PRCPTOT R10 R20 R40 R95 1Day Sday

Id MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4 | MK1/MK2/MK3/MK4
NG1 0.30/0.56/0.30/0.29 -1.76/-1.80/-1.59/-1.76 0.12/0.11/0.07/0.07 -1.61/-1.57/-0.97/-0.96 0.53/0.78/0.28/0.34 0.53/0.78/0.28/0.34 0.17/0.29/0.14/0.10 1.03/1.01/0.80/0.64 1.73/1.98/1.36/1.10
NG2 0.40/0.30/0.53/0.40 -2.13/-2.21/-2.13/-1.96 | -0.84/-1.00/-0.84/-0.60 | -0.79/-0.71/-0.79/-0.66 0.44/0.41/0.44/0.38 0.44/0.41/0.44/0.38 -0.12/0.26/-0.15/-0.07 -0.18/0.03/-0.16/-0.13 | -0.68/-0.33/-1.30/-0.50
NG3 2.57/2.94/2.57/2.32 -2.92/-2.81/-2.92/-2.34 | -3.35/-3.91/-3.39/-2.16 | -2.59/-2.74/-1.79/-1.64 | -2.22/-2.28/-2.22/-1.77 | -2.22/-2.28/-2.22/-1.77 | -2.57/-1.75/-1.80/-1.93 | -3.17/-3.33/-3.17/-2.79 | -3.09/-3.24/-3.27/-2.72
NG4 | -1.22/-1.05/-2.85/-1.09 1.21/0.79/1.00/1.00 1.11/1.57/1.11/0.80 1.92/2.28/1.92/1.75 0.60/0.84/0.49/0.47 0.60/0.84/0.49/0.47 -2.11/-0.35/-1.96/-1.61 | -1.76/-1.27/-1.86/-1.42 | -1.07/-0.87/-1.14/-0.86
NG5 0.20/0.48/0.20/0.19 -2.23/-2.29/-2.73/-1.82 | -1.20/-1.26/-0.87/-1.10 | -1.02/-0.88/-1.28/-1.13 | -0.34/-0.33/-0.34/-0.36 | -0.33/-0.33/-0.33/-0.36 | -1.29/-0.61/-1.19/-0.97 | -0.84/-0.93/-1.01/-0.72 | -0.68/-0.77/-0.68/-0.57
NG6 0.23/0.49/0.22/0.17 -3.73/-3.92/-3.98/-3.41 | -2.69/-2.55/-2.69/-2.28 | -2.57/-2.52/-2.57/-2.74 | -0.31/-0.37/-0.31/-0.28 | -0.31/-0.37/-0.31/-0.28 | -0.08/-0.33/-0.08/-0.07 | -0.06/-0.39/-0.06/-0.05 | -1.95/-2.18/-1.95/-1.80
NG7 | -2.79/-2.46/-2.79/-2.40 0.56/0.27/0.56/0.54 0.20/-0.01/0.25/0.19 1.77/1.63/1.77/1.46 -0.64/-0.71/-0.58/-0.54 | -0.64/-0.71/-0.58/-0.54 | -1.49/-2.46/-1.94/-1.54 | -0.96/-1.29/-0.94/-0.97 | -0.92/-1.32/-0.99/-0.95
NG8 0.04/0.00/0.06/0.04 -3.22/-3.50/-3.22/-2.82 | -1.64/-1.56/-1.36/-1.31 | -1.17/-0.99/-1.40/-1.21 0.15/0.09/0.15/0.15 0.15/0.09/0.15/0.15 -0.05/0.02/-0.05/-0.03 | -0.24/-0.43/-0.24/-0.23 | -0.87/-0.86/-0.87/-0.80
NG9 | -0.03/-0.30/-0.04/-0.02 | -2.30/-2.68/-1.29/-1.69 | -1.81/-2.06/-1.81/-1.71 | -2.67/-2.46/-2.67/-2.76 | -0.70/-0.84/-0.70/-0.62 | -0.70/-0.84/-0.70/-0.62 0.42/0.27/0.45/0.35 0.40/0.28/0.44/0.33 -1.17/-1.50/-1.23/-1.13
NG10 0.42/0.37/0.42/0.41 -1.85/-2.05/-1.83/-1.61 | -0.33/-0.51/-0.34/-0.23 | -1.64/-1.40/-1.64/-1.54 0.72/0.25/0.73/0.54 0.72/0.25/0.73/0.54 2.05/0.77/1.65/1.11 2.01/1.72/2.01/1.62 0.81/0.68/0.81/0.63
NG11 0.05/0.09/0.05/0.06 -3.24/-3.26/-4.04/-3.15 | -1.12/-1.29/-1.14/-0.88 | -2.35/-2.19/-2.35/-2.18 | -0.37/-0.61/-0.40/-0.35 | -0.37/-0.61/-0.40/-0.35 1.44/1.17/1.44/1.28 1.01/0.93/0.82/0.85 -0.06/-0.41/-0.06/-0.06
NG12 3.23/3.16/4.42/3.28 -4.25/-4.32/-3.75/-3.70 | -0.23/-0.36/-0.23/-0.23 | -2.95/-2.76/-2.95/-2.90 0.35/0.14/0.42/0.37 0.35/0.14/0.42/0.37 2.59/1.67/2.59/2.19 2.50/2.15/2.50/2.31 1.42/1.20/1.42/1.29
VG1 | -0.64/-0.16/-1.35/-0.50 0.78/0.99/1.05/0.65 0.87/0.86/0.94/0.75 1.75/1.63/1.75/1.96 0.70/0.86/0.61/0.74 0.70/0.86/0.61/0.74 -0.83/-0.43/-0.83/-0.67 0.72/0.52/0.72/0.68 0.54/0.50/0.54/0.50
VG2 | -2.52/-2.17/-2.52/-2.47 1.46/1.69/1.46/1.31 1.38/1.01/1.49/1.35 1.43/1.36/1.43/1.64 0.87/0.83/0.87/0.88 0.87/0.83/0.87/0.88 0.09/-0.44/0.09/0.10 0.90/0.56/0.90/0.93 0.11/-0.04/0.11/0.12
VG3 0.12/0.52/0.10/0.10 0.07/0.05/0.06/0.08 1.70/1.50/1.70/1.70 2.80/2.62/2.80/3.30 1.62/1.98/1.62/1.85 1.62/1.98/1.62/1.84 1.01/0.91/1.18/0.95 1.24/1.10/1.24/1.21 0.80/0.96/0.76/0.69
VG4 | -1.41/-1.15/-1.46/-1.30 | -0.20/-0.09/-0.23/-0.18 1.22/1.08/1.15/0.93 0.81/0.65/0.77/0.63 0.56/0.17/0.72/0.45 0.56/0.17/0.72/0.45 0.42/0.33/0.42/0.40 0.58/0.21/0.58/0.61 0.41/0.08/0.45/0.43
VG5 | -1.37/-1.13/-1.37/-1.37 0.33/0.04/0.30/0.29 2.14/1.80/2.39/1.70 2.19/1.97/1.60/2.21 2.24/2.09/1.97/1.83 2.24/2.09/1.97/1.83 1.60/1.01/1.60/1.42 1.87/1.84/2.05/1.72 1.73/1.45/1.93/1.74
VG6 0.53/0.68/0.60/0.47 0.35/0.51/0.35/0.40 1.87/1.84/2.50/1.98 2.51/2.47/2.67/2.57 1.94/2.18/1.94/2.19 1.94/2.18/1.94/2.19 -0.20/-0.80/-0.20/-0.22 0.61/0.38/0.61/0.62 0.52/0.50/0.52/0.48
VG7 | -0.35/-0.03/-0.35/-0.39 | -0.37/-0.75/-0.37/-0.32 1.51/1.19/1.69/1.20 0.18/0.02/0.18/0.17 1.63/1.57/1.47/1.13 1.63/1.57/1.47/1.13 1.58/1.17/1.58/1.35 2.32/2.09/2.32/2.17 1.63/1.34/1.79/1.57
VG8 -0.37/0.01/-0.43/-0.34 0.51/0.47/0.67/0.55 2.51/2.49/2.51/2.01 2.53/2.32/2.53/2.28 2.11/2.08/2.31/1.99 2.11/2.08/2.31/1.99 1.71/1.29/1.71/1.55 1.57/1.46/1.57/1.37 2.04/1.74/2.08/2.12
VG9 0.74/0.90/0.70/0.59 0.09/0.21/0.09/0.09 2.05/1.95/2.05/2.08 2.54/2.70/2.44/2.51 1.57/1.58/1.57/1.65 1.57/1.57/1.57/1.65 -0.23/-0.70/-0.23/-0.28 0.51/0.55/0.51/0.51 0.41/0.27/0.41/0.43
VG10 1.74/1.66/1.74/2.08 -3.27/-3.45/-3.74/-2.97 0.30/0.17/0.39/0.27 -2.38/-2.29/-2.38/-2.36 0.15/-0.21/0.16/0.15 0.15/-0.21/0.16/0.15 3.13/3.23/3.13/2.55 3.29/2.98/3.29/2.95 2.00/1.71/2.00/1.84
VG11 | -1.14/-1.05/-1.63/-1.14 1.38/1.25/1.47/1.42 1.46/1.34/1.23/1.10 0.05/-0.24/0.06/0.04 1.15/0.79/1.46/1.12 1.15/0.78/1.45/1.12 1.68/1.15/1.68/1.58 1.39/1.21/1.39/1.39 2.10/1.68/2.10/2.19
VG12 | -0.72/-0.42/-0.72/-0.66 | -0.78/-0.79/-0.78/-0.69 1.78/1.76/1.78/1.59 0.16/0.15/0.15/0.15 1.60/1.46/1.60/1.46 1.60/1.46/1.60/1.46 0.92/0.93/1.65/0.86 1.49/1.60/2.29/1.45 1.51/1.29/1.97/1.60
VG13 0.17/0.31/0.23/0.13 -0.44/-0.51/-0.49/-0.46 1.38/1.26/1.38/1.06 0.83/0.63/0.83/0.76 0.85/0.62/0.85/0.77 0.85/0.62/0.85/0.77 1.18/0.85/1.18/1.16 0.97/1.23/0.97/0.83 1.45/1.46/1.45/1.50
VG14 2.02/1.95/1.62/2.12 -2.16/-2.02/-1.93/-2.28 | -1.53/-1.38/-1.53/-1.49 | -2.64/-2.82/-2.64/-2.56 | -0.94/-0.81/-0.94/-0.85 | -0.94/-0.81/-0.94/-0.85 1.81/1.50/1.81/1.53 1.45/1.65/1.45/1.29 0.52/0.54/0.52/0.44
VG15 | -0.28/-0.14/-0.28/-0.28 | -1.01/-1.06/-1.12/-1.05 | -0.45/-0.18/-0.45/-0.38 | -0.39/-0.30/-0.39/-0.40 | -0.26/-0.09/-0.32/-0.23 | -0.26/-0.09/-0.32/-0.22 | -0.36/-0.08/-0.36/-0.33 | -0.66/-0.57/-0.66/-0.68 | -0.07/-0.23/-0.07/-0.07
VG16 | -1.19/-0.79/-1.19/-1.04 | -1.25/-1.39/-1.03/-1.20 0.69/0.40/0.99/0.67 1.16/1.03/1.16/1.33 0.52/0.27/0.67/0.49 0.52/0.27/0.67/0.49 -0.63/-0.64/-0.63/-0.67 | -0.89/-0.76/-0.84/-0.89 | -0.39/-0.55/-0.57/-0.37
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Table A9. Z statics of monthly rainfall trend analysis from January to December

Grid Jan Feb March April May June July Aug Sep Oct Nov Dec

Id MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4
NG1 -0.43/-0.49/-0.45/-0.43 -1.58/-0.98/-1.23/-1.49 0.94/1.32/0.90/0.98 -0.32/-0.37/-0.32/-0.37 -0.08/0.25/-0.11/-0.09 1.01/0.95/1.42/0.94 2.67/2.90/3.10/2.44 0.85/0.56/0.97/0.70 -0.04/-0.11/-0.04/-0.03 -0.65/-0.71/-0.65/-0.67 -0.72/-0.77/-3.88/-0.65 0.01/-0.64/0.01/0.01
NG2 -0.16/-0.03/-0.19/-0.16 -1.77/-1.17/-1.74/-1.66 0.82/1.23/1.09/0.90 -0.02/0.04/-0.02/-0.03 0.26/0.50/0.36/0.28 1.04/0.74/1.00/0.94 1.83/2.25/3.25/1.78 -0.13/-0.35/-0.21/-0.12 -0.89/-1.05/-0.74/-0.77 -0.34/-0.30/-0.32/-0.35 0.02/0.12/0.03/0.02 -0.04/-0.08/-0.03/-0.04
NG3 -0.55/-0.41/-0.71/-0.56 -1.76/-0.63/-1.56/-1.57 0.76/1.07/0.80/0.80 -1.21/-1.27/-1.27/-1.32 0.28/0.30/0.28/0.31 -1.24/-1.49/-1.45/-1.13 -0.99/-1.02/-0.99/-1.17 -2.62/-2.97/-2.43/-2.51 -2.01/-2.06/-2.01/-1.72 -0.51/-0.51/-0.48/-0.50 0.11/0.41/0.14/0.10 0.53/0.66/0.52/0.55
NG4 0.04/0.26/0.06/0.04 -0.59/-0.43/-0.69/-0.58 1.43/1.95/1.52/1.44 1.95/1.68/1.67/2.04 1.71/1.96/1.54/1.86 2.18/1.93/2.43/2.24 2.48/2.76/3.07/2.46 1.18/0.86/1.43/1.15 -0.40/-0.45/-0.42/-0.40 0.39/0.35/0.41/0.41 0.75/1.23/0.76/0.72 1.02/0.93/1.02/1.06
NG5 -0.39/-0.35/-0.56/-0.40 -1.30/-0.88/-1.60/-1.22 1.01/1.46/1.03/1.07 -0.81/-0.67/-1.74/-0.86 -1.04/-0.58/-1.30/-1.17 0.65/0.39/0.56/0.64 1.44/1.55/1.44/1.23 -1.03/-1.35/-0.90/-1.12 0.27/0.11/0.29/0.25 -0.26/-0.22/-0.25/-0.25 -0.51/-0.28/-0.66/-0.51 0.53/0.24/0.53/0.57
NG6 -0.72/-1.04/-0.80/-0.74 -1.49/-0.96/-1.36/-1.34 0.63/1.05/0.59/0.67 -0.71/-0.68/-0.81/-0.77 0.16/0.33/0.16/0.18 0.33/0.11/0.40/0.30 1.88/2.09/1.88/1.60 -1.14/-1.43/-1.14/-1.10 -1.25/-1.50/-1.22/-1.12 0.03/0.05/0.03/0.04 -0.38/-0.14/-0.51/-0.35 -0.08/-0.28/-0.08/-0.09
NG7 -0.76/-0.26/-0.78/-0.74 -0.52/-0.32/-0.67/-0.46 1.36/1.74/1.36/1.44 1.23/1.23/1.51/1.33 1.30/1.68/1.42/1.51 1.94/1.80/2.17/1.83 3.02/3.44/2.63/2.91 1.30/1.02/3.17/1.39 -0.11/-0.20/-0.12/-0.10 0.50/0.46/0.61/0.53 -0.70/-0.05/-0.70/-0.63 -0.54/-0.46/-0.44/-0.56
NG8 -0.49/-0.24/-0.53/-0.52 -1.50/-0.93/-1.54/-1.39 1.44/1.60/1.70/1.49 -0.34/-0.27/-0.66/-0.38 -2.09/-1.92/-2.84/-2.24 0.53/0.42/0.46/0.48 2.41/2.59/2.07/2.29 0.02/-0.19/0.02/0.02 -0.39/-0.43/-0.48/-0.34 -0.68/-0.59/-0.62/-0.66 -1.01/-0.80/-1.47/-1.02 0.27/-0.03/0.24/0.29
NG9 -0.74/-0.70/-0.98/-0.76 -1.63/-1.24/-1.70/-1.49 1.27/1.38/1.28/1.29 0.48/0.48/0.58/0.52 0.30/0.56/0.35/0.33 0.90/0.69/0.90/0.85 3.86/3.79/4.31/3.65 0.53/0.29/0.56/0.51 -1.91/-2.07/-2.02/-1.70 -0.94/-0.86/-0.94/-0.94 -0.73/-0.39/-1.02/-0.72 -0.44/-0.74/-0.63/-0.48
NG10 -0.13/0.08/-0.15/-0.13 -1.80/-1.38/-2.73/-1.64 0.94/0.99/0.97/0.85 0.00/0.13/0.00/0.00 -2.44/-2.31/-4.04/-2.44 0.76/0.51/0.65/0.71 4.05/4.48/4.41/3.99 1.48/1.20/1.23/1.02 -0.41/-0.53/-0.46/-0.37 -1.54/-1.37/-1.42/-1.41 -1.27/-1.06/-1.66/-1.28 -0.10/-0.54/-0.10/-0.11
NG11 -0.15/0.11/-0.23/-0.16 -1.08/-0.78/-1.08/-0.98 1.82/1.96/2.42/1.80 0.50/0.61/0.72/0.56 -0.16/0.03/-0.29/-0.16 1.00/0.95/1.00/0.93 3.55/3.54/3.55/3.33 1.25/0.99/1.34/1.11 -1.53/-1.69/-1.53/-1.43 -0.96/-0.89/-0.96/-0.94 -0.67/-0.29/-0.91/-0.66 0.07/-0.06/0.07/0.07
NG12 -0.67/-0.09/-0.67/-0.65 -2.72/-2.04/-3.50/-2.23 0.29/0.31/0.38/0.25 0.31/0.68/0.31/0.29 0.79/0.97/0.99/0.79 -1.08/-1.34/-1.08/-1.15 0.15/0.14/0.15/-0.11 -1.52/-1.61/-1.52/-1.26 -0.15/-0.25/-0.18/-0.16 -0.41/-0.29/-0.45/-0.39 -1.51/-0.71/-1.98/-1.44 -1.65/-2.63/-1.65/-1.77
VG1 -0.30/0.44/-0.35/-0.28 -0.14/0.10/-0.26/-0.14 0.42/0.22/0.42/0.38 1.16/0.92/1.18/1.22 1.45/1.91/1.82/1.69 1.77/1.62/1.77/1.70 2.11/2.55/1.81/2.24 1.80/1.62/2.05/1.89 0.13/0.13/0.18/0.13 0.54/0.48/0.56/0.54 0.55/0.94/0.55/0.51 0.29/0.10/0.23/0.30
VG2 0.26/0.47/0.26/0.24 0.03/0.14/0.03/0.03 1.23/0.87/1.08/1.21 1.54/1.35/1.58/1.64 2.04/2.4412.04/2.36 2.35/2.21/2.35/2.18 3.91/4.69/3.42/3.72 3.08/2.90/2.77/3.23 1.08/1.17/1.35/1.11 0.50/0.46/0.52/0.51 0.20/0.81/0.20/0.18 -0.40/-0.54/-0.44/-0.42
VG3 0.39/0.46/0.39/0.38 -0.99/-0.55/-0.99/-0.90 0.86/0.45/0.90/0.85 0.55/0.40/0.44/0.59 1.35/1.83/2.17/1.49 1.64/1.50/1.64/1.62 2.63/3.10/2.63/2.75 1.92/1.62/1.60/1.60 0.72/0.96/0.97/0.77 0.63/0.53/0.65/0.64 0.41/0.69/0.41/0.38 0.19/0.15/0.18/0.20
VG4 0.05/0.30/0.04/0.04 -0.44/-0.33/-0.41/-0.37 2.48/2.53/2.18/2.29 2.52/2.48/2.91/2.62 3.06/3.18/3.15/3.28 3.33/3.10/3.16/3.02 4.58/4.32/3.86/4.47 2.20/1.94/2.54/2.17 -0.12/-0.16/-0.11/-0.12 0.34/0.37/0.35/0.34 -0.50/0.01/-0.50/-0.46 | -0.50/-0.66/-0.42/-0.52
VG5 0.15/0.50/0.15/0.15 -0.36/0.01/-0.39/-0.31 2.38/2.46/1.86/2.16 2.45/2.09/1.99/2.77 2.82/2.89/2.82/2.91 3.11/3.13/3.11/2.84 4.33/4.29/6.58/4.19 3.25/3.05/3.25/2.93 0.71/0.84/0.78/0.77 0.47/0.40/0.49/0.48 -0.36/0.02/-0.36/-0.34 -1.09/-1.49/-1.81/-1.15
VG6 0.49/0.46/0.49/0.48 -1.43/-0.58/-1.43/-1.23 0.50/0.67/0.50/0.52 -0.14/-0.77/-0.11/-0.15 0.70/1.08/0.89/0.76 0.89/0.79/1.11/0.97 1.51/1.59/1.51/1.37 1.67/1.37/1.79/1.51 -0.25/-0.06/-0.25/-0.27 0.45/0.37/0.58/0.48 0.13/0.43/0.13/0.13 -0.61/-1.02/-0.58/-0.65
VG7 -0.29/-0.52/-0.23/-0.31 -0.96/-0.90/-0.82/-0.98 1.98/1.94/1.93/1.79 1.26/1.31/1.16/1.28 2.58/2.72/2.64/2.58 1.80/1.66/2.28/1.77 2.78/2.62/3.22/2.88 1.58/1.33/1.58/1.58 -0.88/-0.90/-0.97/-0.96 -0.07/-0.18/-0.07/-0.07 -0.91/-0.41/-0.91/-0.82 -1.11/-1.57/-1.11/-1.18
VG8 -0.30/-0.57/-0.27/-0.31 -1.02/-0.63/-0.86/-0.94 2.53/2.70/2.46/2.31 1.26/0.99/1.07/1.33 2.07/2.21/1.56/2.05 1.48/1.38/1.55/1.57 2.38/2.22/2.55/2.26 1.79/1.58/1.92/1.69 -0.23/0.12/-0.25/-0.25 0.06/-0.04/0.06/0.06 -1.00/-0.73/-1.00/-0.97 -0.99/-1.97/-0.99/-1.06
VG9 0.43/0.57/0.44/0.39 -0.96/-0.31/-0.81/-0.79 1.61/1.58/1.61/1.60 0.71/0.36/0.66/0.82 1.57/1.90/2.27/1.70 1.65/1.46/2.00/1.80 1.96/1.74/2.11/1.86 1.59/1.38/1.72/1.65 -0.64/-0.43/-0.84/-0.72 0.26/0.06/0.27/0.28 -0.19/0.05/-0.19/-0.19 -0.65/-1.20/-0.63/-0.70
VG10 -0.41/-0.42/-0.42/-0.44 -1.33/-0.71/-1.33/-1.26 0.86/0.76/1.37/0.74 0.07/0.30/0.07/0.06 0.60/0.64/0.73/0.58 -1.49/-1.74/-1.49/-1.56 0.01/0.01/0.01/-0.07 -0.97/-1.25/-0.93/-0.85 -1.16/-1.30/-1.16/-1.22 -0.50/-0.46/-0.52/-0.51 -0.76/-0.47/-1.00/-0.74 -1.14/-1.73/-1.14/-1.23
VG11l | -0.28/-0.53/-0.27/-0.29 | -0.98/-0.87/-0.81/-1.07 1.61/1.53/1.80/1.43 0.42/0.49/0.37/0.41 1.51/1.63/1.64/1.50 -0.12/-0.40/-0.13/-0.12 0.90/0.84/1.01/0.92 0.25/0.10/0.25/0.25 -1.02/-1.04/-1.41/-1.03 | -0.19/-0.22/-0.20/-0.20 | -1.11/-0.76/-1.11/-1.06 | -1.09/-1.78/-0.93/-1.17
VG12 -0.07/0.87/-0.07/-0.07 -0.98/-1.05/-0.81/-1.06 1.53/1.28/1.81/1.37 0.16/0.21/0.14/0.15 1.87/1.95/1.66/1.86 -0.48/-0.76/-0.48/-0.53 -0.25/-0.24/-0.27/-0.19 -0.69/-0.86/-0.75/-0.69 -0.69/-0.70/-1.06/-0.73 0.23/0.15/0.23/0.24 -1.24/-0.92/-1.24/-1.22 -1.12/-1.90/-1.00/-1.21
VG13 -0.30/0.44/-0.32/-0.28 -1.41/-2.00/-1.23/-1.62 0.47/0.27/0.54/0.43 -1.07/-1.07/-0.99/-1.07 0.74/0.83/0.86/0.77 -0.61/-0.78/-0.61/-0.60 -0.49/-0.44/-0.53/-0.41 -0.29/-0.45/-0.31/-0.29 -0.76/-0.78/-1.04/-0.75 0.16/0.23/0.17/0.18 -0.97/-0.82/-1.18/-0.96 -0.87/-1.63/-0.75/-0.94
VG14 -0.49/-0.60/-0.47/-0.51 -1.88/-1.50/-2.33/-1.63 -0.38/-0.33/-0.36/-0.32 -0.05/0.35/-0.06/-0.05 0.46/0.64/0.46/0.46 -1.93/-2.21/-1.93/-2.05 -0.21/-0.22/-0.19/-0.16 -0.65/-0.82/-0.65/-0.66 -0.84/-0.88/-1.05/-0.90 -0.27/-0.15/-0.27/-0.29 -1.40/-0.97/-1.72/-1.37 -1.48/-2.18/-1.21/-1.55
VG15 -0.27/-0.54/-0.25/-0.29 -0.94/-0.94/-0.94/-1.06 1.04/0.89/1.17/0.94 0.31/0.53/0.26/0.30 1.23/1.34/1.07/1.22 -0.43/-0.80/-0.43/-0.46 -0.15/-0.14/-0.17/-0.08 0.31/0.17/0.31/0.31 -0.44/-0.51/-0.39/-0.46 0.16/0.14/0.16/0.17 -1.24/-1.08/-1.24/-1.27 -0.99/-1.64/-0.82/-1.05
VG16 -0.23/-0.42/-0.20/-0.23 -0.82/-1.13/-0.82/-0.94 1.16/1.02/1.34/1.10 -0.05/0.29/-0.04/-0.04 0.96/1.05/1.23/0.94 -0.52/-0.70/-0.58/-0.54 -0.04/-0.04/-0.05/0.20 -0.06/-0.19/-0.06/-0.05 -0.51/-0.65/-0.64/-0.52 0.04/0.07/0.04/0.04 -1.08/-0.80/-1.08/-1.06 -0.99/-1.81/-0.90/-1.05
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Table A10. Trends in Rainfall Extremes of July Month

Grid Id CDD CWD PRCPTOT R10 R20 R40 R95 1Day 5Day
NG1 -2.85/-2.64/-3.55/-2.81 0.74/0.40/0.71/0.69 2.74/2.46/2.76/2.98 1.59/1.56/1.82/1.66 0.94/0.83/1.01/0.99 1.83/2.26/1.75/1.85 1.22/1.50/1.36/1.31 0.79/0.59/1.06/0.85 1.40/1.19/1.60/1.40
NG2 -2.05/-1.64/-1.83/-2.01 0.89/0.93/0.89/0.97 1.99/1.97/3.39/2.44 2.67/2.56/2.68/3.24 1.81/1.97/1.86/2.07 -0.17/-0.64/-0.17/-0.19 0.54/0.43/0.69/0.65 0.80/0.66/0.80/0.93 1.52/1.36/1.52/1.79
NG3 0.96/0.55/1.02/0.82 -1.65/-1.18/-1.52/-1.52 -0.66/-0.84/-0.66/-0.70 -0.31/-0.50/-0.31/-0.32 -0.91/-1.02/-0.91/-0.94 -0.21/-0.52/-0.21/-0.23 -0.60/-0.89/-0.79/-0.72 -0.71/-0.69/-0.90/-0.87 -1.05/-0.87/-1.05/-1.19
NG4 -1.90/-1.38/-1.90/-1.72 1.80/1.56/1.90/1.71 2.44/2.41/2.96/2.71 3.25/3.10/5.55/3.20 2.03/2.30/2.03/2.13 -0.73/-0.92/-0.68/-0.75 -0.67/-0.74/-0.70/-0.74 0.20/0.18/0.23/0.23 1.12/1.12/1.28/1.25
NG5 -1.47/-1.54/-1.84/-1.52 0.07/-0.25/0.06/0.06 1.45/1.25/1.45/1.55 1.22/1.12/1.27/1.24 0.81/0.66/0.71/0.93 1.37/1.11/1.53/1.37 0.58/0.28/0.53/0.57 0.98/1.11/0.91/1.01 0.94/0.91/1.15/0.96
NG6 -0.84/-1.19/-0.70/-0.88 0.35/0.33/0.31/0.33 2.16/1.77/2.16/2.46 2.11/1.82/1.85/2.35 2.28/1.85/2.28/2.16 0.89/1.01/0.77/1.00 1.12/0.89/1.12/1.23 1.19/1.10/1.33/1.29 1.16/0.97/1.16/1.32
NG7 -0.81/-0.70/-0.88/-0.81 | -0.74/-0.44/-0.90/-0.67 3.10/3.00/2.46/3.55 3.43/3.44/3.09/3.81 3.03/3.02/2.82/2.90 1.87/2.32/1.28/1.92 1.64/1.88/1.44/1.72 1.91/1.71/1.91/2.10 2.32/2.24/2.32/2.54
NG8 -1.17/-1.39/-1.00/-1.39 2.01/1.95/1.74/2.02 2.36/2.30/2.02/2.55 2.37/2.21/2.39/2.62 1.92/1.88/1.92/2.01 1.23/0.96/1.44/1.19 1.65/1.37/1.91/1.57 1.80/1.67/2.49/2.07 2.4412.2912.44/2.72
NG9 -1.08/-1.16/-1.01/-1.23 0.15/0.02/0.17/0.13 3.94/3.76/4.40/3.89 1.89/1.70/1.53/2.09 3.60/3.51/3.60/3.52 3.15/2.59/2.20/2.65 3.39/3.38/3.20/2.70 4.02/3.99/4.96/3.64 3.83/3.75/4.49/3.60
NG10 -2.43/-2.52/-2.43/-2.61 0.61/0.45/0.61/0.62 4.07/4.07/4.43/4.53 2.26/2.16/1.95/2.48 4.14/3.86/3.23/4.10 3.25/2.43/2.63/2.94 3.41/3.68/4.26/3.35 3.69/3.90/3.83/4.03 4.18/4.11/4.69/4.60
NG11 -1.48/-1.69/-1.09/-1.50 1.42/1.10/1.40/1.22 3.63/3.43/3.63/3.64 2.14/1.94/1.80/2.22 2.93/2.63/2.55/3.07 2.31/1.65/1.96/2.17 2.65/2.12/2.37/2.35 2.50/2.57/2.91/2.46 2.99/2.94/3.11/3.11
NG12 0.92/1.09/0.92/0.85 -3.37/-3.25/-3.37/-2.83 0.27/0.00/0.29/0.26 -0.73/-0.82/-0.67/-0.67 0.12/-0.11/0.12/0.11 1.32/1.16/1.12/1.30 1.97/1.40/1.97/1.82 1.66/1.67/1.66/1.76 1.01/0.87/1.25/1.00
VG1 -1.35/-1.27/-1.21/-1.21 | -0.51/-0.17/-0.86/-0.42 2.23/2.29/1.90/2.68 1.97/2.12/1.93/2.25 2.52/2.92/2.52/2.59 1.25/1.20/1.25/1.25 0.95/0.68/1.05/1.06 1.00/0.87/1.41/1.14 1.74/1.91/2.26/2.09
VG2 -1.97/-1.93/-2.02/-2.05 1.56/1.61/1.43/1.46 3.89/3.78/3.41/4.60 3.64/3.77/3.15/4.10 3.15/3.10/3.15/3.35 2.28/2.94/2.28/2.79 2.02/2.22/2.02/2.28 1.55/1.49/1.64/1.70 2.78/2.82/3.16/3.24
VG3 -1.62/-1.59/-1.50/-1.67 0.82/1.26/0.84/0.88 2.58/2.74/2.58/3.01 2.76/2.76/3.11/3.12 2.93/2.84/2.72/3.43 1.42/1.86/2.90/1.69 1.52/1.83/1.43/1.66 1.16/1.01/1.21/1.24 2.20/2.29/2.20/2.41
VG4 -2.90/-2.78/-3.74/-3.04 2.13/2.33/1.83/2.06 4.69/4.54/3.39/4.41 4.12/4.28/2.98/3.69 3.76/3.70/3.26/3.75 3.50/2.03/1.93/3.06 3.23/2.10/2.06/2.98 3.00/2.97/4.68/3.15 3.43/3.38/6.18/3.62
VG5 -2.48/-2.28/-2.19/-2.50 2.01/2.10/2.41/1.76 4.34/4.21/6.57/4.30 4.12/4.04/5.30/4.16 4.25/4.07/4.25/4.38 1.37/0.82/1.68/1.33 1.38/0.94/1.61/1.30 1.81/1.63/2.55/1.82 3.29/3.28/5.31/3.43
VG6 -0.94/-0.72/-0.94/-0.92 -0.17/0.11/-0.17/-0.18 1.52/1.39/1.52/1.60 1.26/0.99/1.26/1.13 2.64/2.40/2.64/2.80 1.17/1.31/1.49/1.23 1.09/1.10/1.12/1.12 1.13/0.76/1.41/1.20 1.55/1.44/1.42/1.53
VG7 -1.03/-1.19/-1.03/-1.07 1.00/0.97/1.06/0.91 2.85/2.89/3.30/2.68 2.32/2.35/2.50/2.40 2.06/1.73/2.04/2.02 1.87/1.39/1.37/1.84 1.66/1.50/1.42/1.57 1.26/1.49/1.35/1.23 2.53/2.62/2.58/2.45
VG8 -0.21/-0.17/-0.18/-0.20 1.05/1.17/1.25/1.13 2.39/2.21/2.39/2.23 2.22/2.11/2.16/2.09 2.28/2.65/1.95/2.40 2.77/1.76/2.66/2.47 2.32/1.72/2.32/2.14 1.70/1.64/1.93/1.70 2.33/2.36/3.35/2.28
VG9 -1.02/-1.16/-1.22/-1.08 2.37/2.42/2.36/2.69 1.94/1.82/2.08/1.74 1.90/1.79/2.42/1.78 2.20/1.77/1.78/1.87 0.89/0.58/0.86/0.82 0.52/0.43/0.55/0.51 0.11/0.15/0.11/0.10 1.67/1.69/2.07/1.53
VG10 1.22/1.01/1.42/1.18 -1.42/-1.52/-1.23/-1.36 0.08/0.06/0.11/0.10 -1.41/-1.64/-1.32/-1.51 0.15/0.13/0.16/0.17 0.65/0.61/0.56/0.71 0.58/0.58/0.46/0.56 0.60/0.69/0.54/0.60 0.55/0.73/0.52/0.57
VGI11 -1.41/-1.14/-1.41/-1.31 2.72/2.52/2.93/2.74 0.95/0.94/1.06/0.90 1.07/0.87/1.45/0.99 0.64/0.85/0.73/0.75 -0.46/0.03/-0.59/-0.43 -0.76/-0.41/-0.70/-0.69 -1.04/-0.91/-1.12/-1.02 0.76/0.90//0.78
VG12 -0.23/-0.51/-0.21/-0.25 0.27/0.05/0.43/0.29 -0.23/-0.15/-0.25/-0.22 -0.67/-0.73/-0.84/-0.64 0.66/0.81/0.63/0.68 0.72/0.91/0.81/0.65 0.64/0.75/0.59/0.59 -0.38/-0.29/-0.35/-0.38 0.62/0.91/0.54/0.68
VG13 1.06/0.66/1.17/1.04 0.41/0.12/0.39/0.40 -0.37/-0.35/-0.50/-0.34 0.21/0.23/1.51/0.20 -0.82/-0.57/-0.82/-0.80 0.44/0.51/0.54/0.42 0.20/0.39/0.22/0.19 -0.23/-0.35/-0.22/-0.22 -0.01/0.10/-0.01/-0.01
VG14 -0.06/-0.21/-0.07/-0.06 0.05/-0.15/0.05/0.05 -0.12/-0.16/-0.12/-0.13 -0.67/-0.62/-0.70/-0.65 -0.24/-0.41/-0.24/-0.24 -0.09/-0.19/-0.09/-0.09 0.66/0.57/0.66/0.67 0.20/0.31/0.18/0.20 0.36/0.51/0.36/0.39
VG15 0.66/0.59/0.62/0.70 0.56/0.35/0.41/0.47 -0.12/-0.06/-0.18/-0.11 0.59/0.61/0.61/0.55 0.25/0.33/0.38/0.23 -0.22/-0.16/-0.25/-0.22 -0.22/0.36/-0.21/-0.22 -0.98/-0.92/-0.73/-0.96 0.21/0.37/0.25/0.22
VG16 -0.52/-0.52/-0.52/-0.51 2.7412.47/2.74/12.36 0.03/0.25/0.04/0.03 0.49/0.59/0.51/0.47 0.53/0.54/0.64/0.50 -1.27/-0.75/-1.18/-1.22 -1.27/-0.77/-2.30/-1.25 -1.94/-1.79/-3.90/-1.97 -0.37/-0.18/-0.37/-0.39
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Figure Al. Spatial plots of trends in rainfall during winter pre-monsoon and monsoon seasons of post-1950
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Figure A2. Spatial plots of trends post-monsoon and annual rainfall of post-1950.
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Figure A3. Spatial plot of trends in annual rainfall extremes (CDD, CWD, and PRCPTOT) of post-1950
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Figure A4. Spatial plot of trends annual rainfall extremes (R10MM, R20MM, and R40MM) of post-1950
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Figure A5. Spatial plot of trends in annual rainfall extremes (RX1DAY, RX5DAY, and R95PTOT) of post-1950
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Figure AG. Spatial plot of trends rainfall extremes (CDD, CWD, and PRCPTOT) during winter season
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Figure A7. Spatial plot of trends rainfall extremes (R10MM, R20MM and R4A0MM) during winter season
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Figure A8. Spatial plot of trends rainfall extremes (RX1DAY, RX5DAY, and R95PTOT) during winter season
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Figure A9. Spatial plot of trends rainfall extremes (CDD, CWD, and PRCPTOT) during monsoon season of
post-1950
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Figure A10. Spatial plot of trends rainfall extremes (R10MM, R20MM and R40MM) during monsoon season of
post-1950
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Figure Al1. Spatial plot of trends rainfall extremes (RX1DAY, RX5DAY, and R95PTOT) during monsoon
season of post-1950
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Figure Al12. Spatial Plot of Trend in Rainfall in January, February, and March Months
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Figure A13. Spatial Plot of Trend in Rainfall in April, May, June Months
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Figure Al4. Spatial Plot of Trend in Rainfall in July, August, September Months
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Figure A15. Spatial Plot of Trend in Rainfall in October, November, and December
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Figure A16. Spatial Plot of Trend Rainfall Extremes (CDD, CWD, and PRCPTOT) in July Month
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Figure Al7. Spatial Plot of Trend Rainfall Extremes (R1I0MM, R20MM, and R40MM) in July Month
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Figure A18. Spatial Plot of Trend Rainfall Extremes (RO5PTOT, RX1DAY, and RX5DAY) in July Mont
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Appendix-B
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Figure B1. Time evolution of area averaged mixing ratios (g/kg) for cyclone Daye
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Figure B2. Time evolution of area averaged mixing ratios (g/kg) for cyclone Gaja
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Figure B3. Time evolution of area averaged mixing ratios (g/kg) for cyclone Kyant
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Figure B4. Time evolution of area averaged mixing ratios (g/kg) for cyclone Nilofar
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Figure B5. Time evolution of area averaged mixing ratios (g/kg) for cyclone Ockhi
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Figure B6. Time evolution of area averaged mixing ratios (g/kg) for cyclone Phethai
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Figure B7. Time evolution of area averaged mixing ratios (g/kg) for cyclone Titli
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Appendix-C

# load external library to read grib data

library(rgdal)

library(gdata)

library(lubridate)

library(RCurl)

library(stringr)

library(SWATplusR)

library(sf)

library(ggplot2)

library(tidyr)

library(dplyr)

#Downloading GFS Forecasts for the next five days

h <- format(Sys.Date(),"%Y %m%d")

f <- as.numeric(h)

setwd("H:\\GFS_Data")

path <- "H:\\GFS_Data"

files <- list.files()

for (iin 1: length(files))
file.remove(files[i])

url =
"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p
grb2.0p25.f024"

k <- as.vector(url)

str_sub(k,61,68) <- pasteO(h)

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f024")
download.file(k, destfile,method="curl")

url =
"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p
grb2.0p25.f048"

k <- as.vector(url)
str_sub(k,61,68) <- paste0(h)

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f048™)
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download.file(k, destfile,method="curl")

url =
"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p
grb2.0p25.f072"

k <- as.vector(url)

str_sub(k,61,68) <- paste0(h)

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f072")
download.file(k, destfile,method="curl")

url =
"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p
grb2.0p25.f096"

k <- as.vector(url)

str_sub(k,61,68) <- paste0(h)

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f096")
download.file(k, destfile,method="curl")

url =
"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p
grb2.0p25.f120"

k <- as.vector(url)
str_sub(k,61,68) <- paste0(h)
destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f120")

download.file(k, destfile,method="curl")

# now load the data (assuming the data is in the current working directory)
#datainl <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f024")
#datain2 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f048")
#datain3 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f072")
#datain4 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f096")
#datain5 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f120")
#Code testing for TITLI cyclone data

datainl <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f024.grib2")
datain2 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f048.grib2")
datain3 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f072.grib2")
datain4 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f096.grib2™)
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datain5 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f120.grib2")

bfact = read.csv("H:\\GFS_Data\\input_files\\bias_factors.csv", header = T) #bfact is bias
factors csv file

nlatlong = read.csv("H:\\GFS_Data\\input_files\\latlong_nagavali.csv", header = F)
#Nagavali Basin Lat long file

vlatlong = read.csv("H:\\GFS_Data\\input_files\\latlong_vamsadhara.csv", header = F)
#Vamsadhara Basin Lat long file

# extract the data we want to plot and cell centres, e.g. surface air temp

# bands from
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20220105/00/atmos/gfs.t00
z.pgrb2.0p25.f025.idx

# Band586: Maximum Precipitation
# Band587: Minimum Precipitation
# Band597: Cumulative Precipitation

#Reading Precipitation, Maximum Temperature and Minimum Temperature Data from
GFS grib files

dayl precip <- matrix(datain1$band597, 1440, 721)
day2_precip <- matrix(datain2$band597, 1440, 721)
day3_precip <- matrix(datain2$band597, 1440, 721)
day4_precip <- matrix(datain4$band597, 1440, 721)
day5_precip <- matrix(datain5$band597, 1440, 721)
dayl maxt <- matrix(datain1$band586, 1440, 721)
day2_maxt <- matrix(datain2$band586, 1440, 721)
day3_maxt <- matrix(datain2$band586, 1440, 721)
day4_maxt <- matrix(datain4$band586, 1440, 721)
day5 maxt <- matrix(datain5$band586, 1440, 721)
dayl mint <- matrix(datain1$band587, 1440, 721)
day2_mint <- matrix(datain2$band587, 1440, 721)
day3_mint <- matrix(datain2$band587, 1440, 721)
day4_mint <- matrix(datain4$band587, 1440, 721)
day5 mint <- matrix(datain5$band587, 1440, 721)
X <-seq(0.125, by = 0.25, length.out = 1440)

y <-seq(90 - 0.125, by = -0.25, length.out = 721)
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# now put it onto a different grid going -180 to 180 and -90 to 90 # and not the default 0
to 360 and 90 to -90

X <- x[c(721:1440,1:720)]

X <- ifelse( x > 180, x - 360, x)

y <-rev(y)

dayl precip = dayl precip[c(721:1440,1:720),721:1]
day2_precip = day2_precip[c(721:1440,1:720),721:1]
day3 precip = day3_precip[c(721:1440,1:720),721:1]
day4_precip = day4_precip[c(721:1440,1:720),721:1]
day5_precip = day5_precip[c(721:1440,1:720),721:1]
dayl_maxt = dayl_maxt[c(721:1440,1:720),721:1]
day2_maxt = day2_maxt[c(721:1440,1:720),721:1]
day3_maxt = day3 maxt[c(721:1440,1:720),721:1]
day4 maxt = day4 maxt[c(721:1440,1:720),721:1]
day5_maxt = day5_maxt[c(721:1440,1:720),721:1]
dayl_mint = dayl_mint[c(721:1440,1:720),721:1]
day2_mint = day2_mint[c(721:1440,1:720),721:1]
day3_mint = day3_mint[c(721:1440,1:720),721:1]
day4 _mint = day4 _mint[c(721:1440,1:720),721:1]
day5_mint = day5 mint[c(721:1440,1:720),721:1]

#Extracting the Precipitation Maximum Temperature and Minimum Temperature data
over the Nagavali and Vamsadhara Basins

nv_precipdayl = dayl precip[1051:1060,433:442]
nv_precipday2 = day2_ precip[1051:1060,433:442]
nv_precipday3 = day3 precip[1051:1060,433:442]
nv_precipday4 = day4 precip[1051:1060,433:442]
nv_precipday5 = day5 precip[1051:1060,433:442]
nv_maxtdayl = dayl maxt[1051:1060,433:442]
nv_maxtday2 = day2_maxt[1051:1060,433:442]
nv_maxtday3 = day3_maxt[1051:1060,433:442]
nv_maxtday4 = day4 maxt[1051:1060,433:442]
nv_maxtday5 = day5 maxt[1051:1060,433:442]
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nv_mintdayl = dayl mint[1051:1060,433:442]
nv_mintday2 = day2_mint[1051:1060,433:442]
nv_mintday3 = day3_mint[1051:1060,433:442]
nv_mintday4 = day4 mint[1051:1060,433:442]
nv_mintday5 = day5_mint[1051:1060,433:442]
precipdayl = unmatrix(nv_precipdayl,byrow=T)
precipday2 = unmatrix(nv_precipday2,byrow=T)
precipday3 = unmatrix(nv_precipday3,byrow=T)
precipday4 = unmatrix(nv_precipday4,byrow=T)
precipday5 = unmatrix(nv_precipday5,byrow=T)
precipdayl = t(precipdayl)

precipday?2 = t(precipday?2)

precipday3 = t(precipday3)

precipday4 = t(precipday4)

precipday5 = t(precipday5)

precipitation = rbind(precipdayl,precipday2, precipday3, precipday4, precipdayb)
maxtdayl = unmatrix(nv_maxtdayl,byrow=T)
maxtday?2 = unmatrix(nv_maxtday2,byrow=T)
maxtday3 = unmatrix(nv_maxtday3,byrow=T)
maxtday4 = unmatrix(nv_maxtday4,byrow=T)
maxtday5 = unmatrix(nv_maxtday5,byrow=T)
maxtdayl = t(maxtdayl)

maxtday2 = t(maxtday?2)

maxtday3 = t(maxtday3)

maxtday4 = t(maxtday4)

maxtday5 = t(maxtday5)

MaxT = rbind(maxtdayl,maxtday2, maxtday3, maxtday4, maxtday5)
mintdayl = unmatrix(nv_mintdayl,byrow=T)
mintday2 = unmatrix(nv_mintday2,byrow=T)
mintday3 = unmatrix(nv_mintday3,byrow=T)
mintday4 = unmatrix(nv_mintday4,byrow=T)

mintday5 = unmatrix(nv_mintday5,byrow=T)
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mintdayl = t(mintdayl)

mintday2 = t(mintday2)

mintday3 = t(mintday3)

mintday4 = t(mintday4)

mintday5 = t(mintday5)

MinT = rbind(mintdayl,mintday2, mintday3, mintday4, mintday5)
#Applying Bias Correction to Precipitation data
Bc_precip = precipitation * bfact[,1]
#Extracting rainfall and temperature data over the Nagavali basin
ngl = rowMeans(Bc_precip[,c(52,53,62,63)])
ng2 = rowMeans(Bc_precip[,c(13,14,23,24)])
ng3 = rowMeans(Bc_precip[,c(23,24,33,34)])
ng4 = rowMeans(Bc_precip[,c(33,34,43,44)])
ng5 = rowMeans(Bc_precip[,c(43,44,53,54)])
ng6 = rowMeans(Bc_precip[,c(24,25,34,35)])
ng7 = rowMeans(Bc_precip[,c(34,35,44,45)])
ng8 = rowMeans(Bc_precip[,c(44,45,54,55)])
ng9 = rowMeans(Bc_precip[,c(25,26,35,36)])
ngl0 = rowMeans(Bc_precip[,c(35,36,45,46)])
ngll = rowMeans(Bc_precip[,c(26,27,36,37)])
ngl2 = rowMeans(Bc_precip[,c(36,37,46,47)])
ngl3 = rowMeans(Bc_precip[,c(27,28,37,38)])
#Maximum Temperature

ngmax1 = rowMeans(MaxT][,c(52,53,62,63)])
ngmax2 = rowMeans(MaxT[,c(13,14,23,24)])
ngmax3 = rowMeans(MaxT[,c(23,24,33,34)])
ngmax4 = rowMeans(MaxT[,c(33,34,43,44)])
ngmax5 = rowMeans(MaxT][,c(43,44,53,54)])
ngmax6 = rowMeans(MaxT][,c(24,25,34,35)])
ngmax7 = rowMeans(MaxT][,c(34,35,44,45)])
ngmax8 = rowMeans(MaxT[,c(44,45,54,55)])

ngmax9 = rowMeans(MaxT][,c(25,26,35,36)])
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ngmax10 = rowMeans(MaxT[,c(35,36,45,46)])

ngmax11 = rowMeans(MaxT[,c(26,27,36,37)])

ngmax12 = rowMeans(MaxT[,c(36,37,46,47)])

ngmax13 = rowMeans(MaxT[,c(27,28,37,38)])

##Minimum Temperature

ngminl = rowMeans(MinT[,c(52,53,62,63)])

ngmin2 = rowMeans(MinT[,c(13,14,23,24)])

ngmin3 = rowMeans(MinT[,c(23,24,33,34)])

ngmin4 = rowMeans(MinT[,c(33,34,43,44)])

ngmin5 = rowMeans(MinT[,c(43,44,53,54)])

ngmin6 = rowMeans(MinT][,c(24,25,34,35)])

ngmin7 = rowMeans(MinT[,c(34,35,44,45)])

ngmin8 = rowMeans(MinT[,c(44,45,54,55)])

ngmin9 = rowMeans(MinT[,c(25,26,35,36)])

ngminl0 = rowMeans(MinT[,c(35,36,45,46)])

ngminll = rowMeans(MinT[,c(26,27,36,37)])

ngminl2 = rowMeans(MinT[,c(36,37,46,47)])

ngminl3 = rowMeans(MinT[,c(27,28,37,38)])

#Comibing all the grids into single file

ngrain = chind(ngl,ng2,ng3,ng4,ng5,ng6,ng7,ng8,ng9,ng10,ngl1,ngl2,ngl3)

ngmaxt = chind(ngmax1,ngmax2,ngmax3,ngmax4,ngmax5,ngmax6,ngmax7,ngmaxas,
ngmax9,ngmax10,ngmax11,ngmax12,ngmax13)

ngmint = cbind(ngminl,ngmin2,ngmin3,ngmin4,ngmin5,ngmin6,ngmin7,ngmin8,
ngmin9,ngmin10,ngminll,ngminl2,ngminl3)

ngrain = round(ngrain, digits = 0)

ngmaxt = round(ngmaxt, digits = 0)

ngmint = round(ngmint, digits = 0)

colnames(ngrain) = NULL

colnames(ngmaxt) = NULL

colnames(ngmint) = NULL

nrainfall = rbind(nlatlong,ngrain)

nmaxt = rbind(nlatlong,ngmaxt)
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nmint = rbind(nlatlong,ngmint)

ntemp =
cbind(nmaxt$V1,nmint$V1,nmaxt$V2,nmint$V2,nmaxt$V3,nmint$V3,nmaxt$V4,nmint$V4,
nmaxt$V5,nmint$V5,nmaxt$Ve,nmint$Ve,nmaxt$V7,nmint$V7,nmaxt$V8,nmint$Vs,
nmaxt$V9,nmint$V9,nmaxt$V10,nmint$V10,nmaxt$V11,nmint$V11,nmaxt$V12,nmint$V1
2,nmaxt$V13,nmint$V13,nmaxt$V14,nmint$V14,nmaxt$V15,nmint$V15,nmaxt$V16,nmint
$V16)

vgl = rowMeans(Bc_precip[,c(53,54,63,64)])
vg2 = rowMeans(Bc_precip[,c(54,55,64,65)])
vg3 = rowMeans(Bc_precip[,c(64,65,74,75)])
vg4 = rowMeans(Bc_precip|[,c(45,46,55,56)])
vg5 = rowMeans(Bc_precip|,c(55,56,65,66)])
vg6 = rowMeans(Bc_precipl[,c(65,66,75,76)])
vg7 = rowMeans(Bc_precipl[,c(46,47,56,57)])
vg8 = rowMeans(Bc_precipl[,c(56,57,66,67)])
vg9 = rowMeans(Bc_precipl[,c(66,67,76,77)])
vg10 = rowMeans(Bc_precip[,c(37,38,47,48)])
vgll = rowMeans(Bc_precip[,c(47,48,57,58)])
vgl2 = rowMeans(Bc_precip[,c(57,58,67,68)])
vgl3 = rowMeans(Bc_precip[,c(67,68,77,78)])
vgl4 = rowMeans(Bc_precip[,c(38,39,48,49)])
vg15 = rowMeans(Bc_precip[,c(48,49,58,59)])
vgl6 = rowMeans(Bc_precip[,c(58,59,68,69)])
#Maximum Temperature

vgmax1 = rowMeans(MaxT][,c(53,54,63,64)])
vgmax2 = rowMeans(MaxT][,c(54,55,64,65)])
vgmax3 = rowMeans(MaxT][,c(64,65,74,75)])
vgmax4 = rowMeans(MaxT][,c(45,46,55,56)])
vgmax5 = rowMeans(MaxT][,c(55,56,65,66)])
vgmax6 = rowMeans(MaxT][,c(65,66,75,76)])
vgmax7 = rowMeans(MaxT][,c(46,47,56,57)])
vgmax8 = rowMeans(MaxT][,c(56,57,66,67)])
vgmax9 = rowMeans(MaxT][,c(66,67,76,77)])

vgmax10 = rowMeans(MaxT/[,c(37,38,47,48)])
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vgmax11 = rowMeans(MaxT[,c(47,48,57,58)])
vgmax12 = rowMeans(MaxT[,c(57,58,67,68)])
vgmax13 = rowMeans(MaxT[,c(67,68,77,78)])
vgmax14 = rowMeans(MaxT[,c(38,39,48,49)])
vgmax15 = rowMeans(MaxT[,c(48,49,58,59)])
vgmax16 = rowMeans(MaxT[,c(58,59,68,69)])
#Minimum Temperature
vgminl = rowMeans(MinT[,c(53,54,63,64)])
vgmin2 = rowMeans(MinT[,c(54,55,64,65)])
vgmin3 = rowMeans(MinT[,c(64,65,74,75)])
vgmin4 = rowMeans(MinT[,c(45,46,55,56)])
vgmin5 = rowMeans(MinT[,c(55,56,65,66)])
vgmin6 = rowMeans(MinT[,c(65,66,75,76)])
vgmin7 = rowMeans(MinT[,c(46,47,56,57)])
vgmin8 = rowMeans(MinT[,c(56,57,66,67)])
vgmin9 = rowMeans(MinT[,c(66,67,76,77)])
vgminl10 = rowMeans(MinT[,c(37,38,47,48)])
vgminll = rowMeans(MinT[,c(47,48,57,58)])
vgminl2 = rowMeans(MinT[,c(57,58,67,68)])
vgminl3 = rowMeans(MinT[,c(67,68,77,78)])
vgminl4 = rowMeans(MinT[,c(38,39,48,49)])
vgminl5 = rowMeans(MinT][,c(48,49,58,59)])
vgminl6 = rowMeans(MinT[,c(58,59,68,69)])
vgrain = cbind(vgl,vg2,vg3,vg4,vg5,vg6,vg7,vg8,vg9,vgl0,vgll,
vgl2,vgl3,vgl4,vgl5,vgle)

vgmaxt = cbind(vgmaxZ1,vgmax2,vgmax3,vgmax4,vgmax5,vgmax6,vgmax?,
vgmax8,vgmax9,vgmax10,vgmax11,vgmax12,vgmax13,vgmax14,vgmax15,vgmax16)

vgmint = chind(vgminl,vgmin2,vgmin3,vgmin4,vgmin5,vgmin6,vgmin7,
vgmin8,vgmin9,vgminl10,vgminll,vgminl2,vgminl3,vgminl4,vgminl5,vgminl6)

vgrain = round(vgrain,digits = 0)

vgmaxt = round(vgmaxt,digits = 0)

vgmint = round(vgmint,digits = 0)
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colnames(vgrain) = NULL
colnames(vgmaxt) = NULL
colnames(vgmint) = NULL
vrainfall = rbind(vlatlong,vgrain)
vmaxt = rbind(vlatlong,vgmaxt)
vmint = rbind(vlatlong,vgmint)

vtemp =
cbind(vmaxt$V1,vmint$V1,vmaxt$V2,vmint$V2,vmaxt$V3,vmint$V3,vmaxt$V4,vmint$\V4,
vmaxt$V5,vmint$V5,vmaxt$Vve,vmint$Ve,vmaxt$V7,vmint$V7 vmaxt$Vv8s,vmint$Vs,
vmaxt$V9,vmint$V9,vmaxt$Vv10,vmint$V10,vmaxt$V11l,vmint$V1l,vmaxt$Vv12,vmint$V1
2,vmaxt$Vv13,vmint$V13,vmaxt$V14,vmint$V 14, vmaxt$V15,vmint$V15,vmaxt$V16,vmint
$V16)

#Converting Precipitation data into SWAT (.pcp)for Nagavali basin
nagavalirain<-nrainfall[-(1:2),]
testnrain = rbind(nagavalirain,nagavalirain)
nagavalirain = testnrain
for (i in 1:nrow(nagavalirain)) {
print(i)
kdays<-nagavalirain[i,]

kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]<-
paste0('0',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)])

kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]<-
paste0('00',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)])

kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)]<-
paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)],".0")

kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)]<-
paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)],".0")

kdays[which(as.numeric(kdays)==0)]<-'000.0'

nagavalirain[i,]<-kdays
¥
Itt<-sprintf("%1.1f",nrainfall[1,])
loo<-sprintf("%1.1f",nrainfall[2,])
dttt<-(as.numeric('001"):(as.numeric('001")+nrow(nagavalirain)-1))
jdays<-dttt
jdays[which(nchar(jdays)==2)]<-paste0('0',jdays[which(nchar(jdays)==2)])
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jdays[which(nchar(jdays)==1)]<-paste0('00',jdays[which(nchar(jdays)==1)])
ri<-c('Station ',paste0('X",(l00),"Y"Itt,","))

lt<-c('Lati ' pasteO((Itt)," "))

lo<-c('Long 'paste0((loo), "))

el<-c('Elev ‘',pasteO(" ‘',rep(0,ncol(nrainfall))))

dtl<-paste0(2021,jdays)

rs<-cbind(dtl,nagavalirain)

rs<-rbind(rl,lIt,lo,el,rs)

#write.table(rs,'pcpl.pcp’,row.names = F,col.names = F,quote = F,sep = "")

write.table(rs,'F:\SPARC\Inundation_Maps\SWAT_RES\\Nagavali_Res\\Scenarios\\N_RS
WAT\TxtInOut\\pcpl.pcp',row.names = F,col.names = F,quote = F,sep ="")

#Converting Temperature data into SWAT (.tmp)for Nagavali basin
nagavalitemp<-ntemp[-(1:2),]
testntemp = rbind(nagavalitemp,nagavalitemp)
nagavalitemp = testntemp
for (i in 1:nrow(nagavalitemp)) {
print(i)
kdays<-nagavalitemp([i,]

kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]<-
paste0('0',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)])

kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]<-
paste0('00', kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)])

kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)]<-
paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)],".0")

kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)]<-
paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)],".0")

kdays[which(as.numeric(kdays)==0)]<-'000.0'

nagavalitempl[i,]<-kdays
b
dttt<-(as.numeric('001"):(as.numeric('001")+nrow(nagavalitemp)-1))
jdays<-dttt
jdays[which(nchar(jdays)==2)]<-paste0('0',jdays[which(nchar(jdays)==2)])
jdays[which(nchar(jdays)==1)]<-paste0('00',jdays[which(nchar(jdays)==1)])

Itt<-sprintf("%?21.1f",ntemp[1,])
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loo<-sprintf("%1.1f",ntemp[2,])
ctll<-c()

ctl2<-c()

ctls-1

while (ctl<=length(ltt)) {
ctll<-c(ctl1,ctl)
ctl2<-c(ctl2,ct1+1)
ctl<-ctl+2

¥

loo[ctl2]<-"

Itt[ctl2]<-"

ell<-paste0(' ',rep(0,ncol(ntemp)))
ell[ctl2]<-"
stn<-paste0('X",(l00),"Y" Itt,",")
stn[ctl2]<-"

ri<-c('Station ',stn)

lt<-c('Lati " paste0((Itt),' "))
lo<-c('Long ', paste0((loo)," "))
el<-c('Elev "ell)

dtl<-paste0('2021',jdays)

rs<-cbind(dtl,nagavalitemp)

rs<-rbind(rl,It,lo,el,rs)

#write.table(rs, Tmpl.Tmp',row.names = F,col.names = F,quote = F,sep = ")

write.table(rs,'F:\\SPARC\Inundation_Maps\SWAT_RES\\Nagavali_Res\\Scenarios\N_RS
WATW\TxtInOut\Tmp1.Tmp',row.names = F,col.names = F,quote = F,sep ="")

#Converting Precipitation data into SWAT (.pcp) for Vamsadhara basin
vamsdhararain<-vrainfall[-(1:2),]
testvrain = rbind(vamsdhararain,vamsdhararain)
vamsdhararain = testvrain
for (i in 1:nrow(vamsdhararain)) {
print(i)
kdays<-vamsdhararain[i,]
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kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]<-
paste0('0',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)])

kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]<-
paste0('00', kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)])

kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)]<-
paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)],'.0")

kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)]<-
paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)],".0")

kdays[which(as.numeric(kdays)==0)]<-'000.0'

vamsdhararain[i,]<-kdays

¥

Itt<-sprintf("%21.1f",vrainfall[1,])

loo<-sprintf("%21.1f" vrainfall[2,])
dttt<-(as.numeric('001"):(as.numeric('001")+nrow(vamsdhararain)-1))
jdays<-dttt
jdays[which(nchar(jdays)==2)]<-paste0('0',jdays[which(nchar(jdays)==2)])
jdays[which(nchar(jdays)==1)]<-paste0('00',jdays[which(nchar(jdays)==1)])
ri<-c('Station ',paste0(‘'X",(loo),"Y" Itt,","))

lt<-c('Lati ' pasteO((Itt)," ")

lo<-c('Long ',paste0((loo),' "))

el<-c('Elev ‘',paste0(" ‘,rep(0,ncol(vrainfall))))

dtl<-paste0(2021,jdays)

rs<-chind(dtl,vamsdhararain)

rs<-rbind(rl,lt,lo,el,rs)

write.table(rs,'"F:\SPARC\Inundation_Maps\SWAT_RES\WAMSADHARA_RES\Scenario
s\W_RSWAT\TxtInOut\\pcpl.pcp',row.names = F,col.names = F,quote = F,sep = ")

#Converting Temperature data into SWAT (.tmp) for Vamsadhara basin
vamsdharatemp<-vtemp[-(1:2),]
testvtemp = rbind(vamsdharatemp,vamsdharatemp)
vamsdharatemp = testvtemp
for (i in 1:nrow(vamsdharatemp)) {
print(i)
kdays<-vamsdharatemp]i,]
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kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]<-
paste0('0',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)])

kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]<-
paste0('00', kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)])

kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)]<-
pasteO(kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)],".0")

kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)]<-
pasteO(kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)],.0")

kdays[which(as.numeric(kdays)==0)]<-'000.0'
vamsdharatempli,]<-kdays

¥
dttt<-(as.numeric('001"):(as.numeric('001")+nrow(vamsdharatemp)-1))
jdays<-dttt
jdays[which(nchar(jdays)==2)]<-paste0('0',jdays[which(nchar(jdays)==2)])
jdays[which(nchar(jdays)==1)]<-paste0('00',jdays[which(nchar(jdays)==1)])
Itt<-sprintf("%21.1f",vtemp[1,])

loo<-sprintf("%1.1f",vtemp[2,])

ctll<-c()

ctl2<-c()

ctl<-1

while (ctl<=length(ltt)) {

ctll<-c(ctll,ctl)

ctl2<-c(ctl2,ctl+1)

ctl<-ctl+2

b

loo[ctl2]<-'

Itt[ctl2]<-'

ell<-paste0(' ',rep(0,ncol(vtemp)))

ell[ctl2]<-'

stn<-paste0('X",(l00),"Y",Itt,",)

stn[ctl2]<-"

ri<-c('Station ',stn)

lt<-c('Lati " paste0((Itt),' "))
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lo<-c('Long " paste0((loo),' "))
el<-c('Elev “ell)
dtl<-paste0('2021',jdays)
rs<-cbind(dtl,vamsdharatemp)
rs<-rbind(rl,It,lo,el,rs)

write.table(rs,"F:\\SPARC\\Inundation_Maps\SWAT_RES\WAMSADHARA_RES\Scenari
os\\WV_RSWAT\TxtInOut\Tmpl.Tmp",row.names = F,col.names = F,quote = F,sep = ")

#Running SWAT Model

g_sim_nag <- run_swat2012(project_path =
'F:\WSPARCWInundation_Maps\SWAT _RES\\Nagavali_Res\\Scenarios\N_RSWATW\TxtInO
ut',

output = define_output(file = "rch",
variable = "FLOW_OUT",
unit = 1:34),
start_date = "2021-01-01",
end_date = "2021-01-10")
print(g_sim_nag)

nag_dis =
rbind(g_sim_nag$FLOW_OUT_7,q_sim_nag$FLOW_OUT_27,(q_sim_nag$FLOW_OUT_2
+q_sim_nag$FLOW_OUT _12))

nag_dis = t(nag_dis)
nag_dis = nag_dis[-(1:5),]

g_sim_vam <- run_swat2012(project_path =
'F:\WSPARCWInundation_Maps\SWAT_RES\WAMSADHARA _RES\Scenarios\\V_RSWA
T\TxtInOut',

output = define_output(file = "rch",
variable = "FLOW_OUT",
unit = 1:30),
start_date = "2021-01-01",
end_date = "2021-01-10")
print(g_sim_vam)

vam_dis =
rbind(g_sim_vam$FLOW_OUT _4,(q_sim_vam$FLOW_OUT _16+q_sim_vam$FLOW_OUT
_17)

vam_dis = t(vam_dis)
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vam_dis = vam_dis[-(1:5),]
#Updating SWAT simulated discharge into HEC-RAS model for Nagavali Basin
dt<-Sys.Date()
mtl<-c(JAN','FEB',MAR'APR'/MAY",'JUN';'JUL',AUG','SEP','OCT''NOV','DEC’)
yr<-substr(dt,1,4)
mt<-substr(dt,6,7)
dy<-substr(dt,9,10)
dt2<-paste0(dy,mtl[as.numeric(mt)],yr)
if (as.numeric(yr)%%4==0){
mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31)
}else{
mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31)
¥
stdate<-dt2
dy2<-as.numeric(dy)+5
if (dy2>=mtl2[as.numeric(mt)]){
dy2<-mtl2[as.numeric(mt)]-dy2
mtk<-as.numeric(mt)+1
if (mtk>=12){
mtk<-as.numeric(mtk)-12
yrk<-as.numeric(yr)+1
mt<-mtk
yr<-yrk
¥
¥
if (nchar(dy2)<2){
dy2<-paste0(0,dy2)
¥
enddate<-paste0(dy2,mtl[as.numeric(mt)],yr)

a<-readLines("F:\\SPARC\Inundation_Maps\\Nagavali_2d_1d -
Copy\\Nagavali_2d_1d.u01")

xt13<-pasteO('Fixed Start Date/Time=",stdate,',00:00")
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xt25<-paste0('Fixed Start Date/Time=",stdate,',00:00")
xt37<-pasteO('Fixed Start Date/Time=",stdate,',00:00")
a[13]<-xt13
a[25]<-xt25
a[37]<-xt37
bl<-nag_dis
bl<-t(bl)
for (iin 1:3) {

pt<-a[(12*(i-1))+7]

bb<-bl[i,]

kz<-c()

for (j in 1:length(bb)) {

if (nchar(as.numeric(bb[j]))!'=8){
gp<-abs(nchar(as.numeric(bblj]))-8)

gpp<-paste0(rep('',gp).collapse = ")
kz<-c(kz,paste0(gpp,as.numeric(bblj])))

Yelse{
kz<-c(kz,paste0(as.numeric(bb[j])))
}
}

stt<-pasteO(kz,collapse = ")

a[(12*(i-1))+7]<-stt
¥
writeLines(a,"F:\\SPARC\Inundation_Maps\\Nagavali_2d_1d - Copy\\Nagavali_2d_1d.u01")
#Updating the Simulation Time for Nagavali Basin
dt<-Sys.Date()
mtl<-c(JAN','FEB''MAR',APR'MAY",'JUN'"JUL',AUG','SEP''OCT','NOV','DEC")
yr<-substr(dt,1,4)
mt<-substr(dt,6,7)
dy<-substr(dt,9,10)
dt2<-paste0(dy,mtl[as.numeric(mt)],yr)

if (as.numeric(yr)%%4==0){
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mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31)
Yelse{
mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31)
¥
stdate<-dt2
dy2<-as.numeric(dy)+3
It (dy2>=mtl2[as.numeric(mt)]){
dy2<-dy2-mtl2[as.numeric(mt)]
mtk<-as.numeric(mt)+1
if (mtk>=12){
mtk<-as.numeric(mtk)-12;
yr<-as.numeric(yr)+1
¥
mt<-mtk
yr<-yr
}
if (nchar(dy2)<2){
dy2<-paste0(0,dy2)
¥
enddate<-paste0(dy2,mtl[as.numeric(mt)],yr)

a<-readLines("F:\\SPARC\Inundation_Maps\\Nagavali_2d_1d -

Copy\\Nagavali_2d_1d.p01")

xt<-pasteO('Simulation Date=",stdate,',00:00,',enddate,',00:00")

a[4]<-xt

writeLines(a,"F:\SPARC\Inundation_Maps\\Nagavali_2d_1d - Copy\\Nagavali_2d_1d.p01")
#Updating SWAT Simulated discharge into HEC-RAS model for Vamsadhara Basin

dt<-Sys.Date()

mtl<-c(JAN','FEB',MAR'APR'/MAY"'JUN',JUL',AUG','SEP'OCT''NOV','DEC’)

yr<-substr(dt,1,4)

mt<-substr(dt,6,7)

dy<-substr(dt,9,10)
dt2<-paste0(dy,mtl[as.numeric(mt)],yr)
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if (as.numeric(yr)%%4==0){
mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31)

}else{
mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31)

¥
stdate<-dt2
dy2<-as.numeric(dy)+5
if (dy2>=mtl2[as.numeric(mt)]){
dy2<-mtl2[as.numeric(mt)]-dy?2
mtk<-as.numeric(mt)+1
if (mtk>=12){
mtk<-as.numeric(mtk)-12
yrk<-as.numeric(yr)+1
mt<-mtk
yr<-yrk
}
¥
if (nchar(dy2)<2){
dy2<-paste0(0,dy2)
}
enddate<-paste0(dy2,mtl[as.numeric(mt)],yr)
a<-readLines("F:\SPARC\Inundation_Maps\\V_2d_1d - Copy\\v_1d_2d.u01")
xt13<-pasteO('Fixed Start Date/Time=",stdate,',00:00")
xt25<-pasteO('Fixed Start Date/Time=",stdate,',00:00")
a[13]<-xt13
a[25]<-xt25
bl<-vam_dis
bl<-t(bl)
for (iin 1:2) {
pt<-a[(12*(i-1))+7]
bb<-bl[i,]

kz<-c()
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for (j in 1:length(bb)) {
if (nchar(as.numeric(bb[j]))!'=8){
gp<-abs(nchar(as.numeric(bblj]))-8)

gpp<-paste0(rep('',gp).collapse = ")
kz<-c(kz,paste0(gpp,as.numeric(bb(j])))

}else{
kz<-c(kz,pasteO(as.numeric(bb[j])))
¥
¥

stt<-pasteO(kz,collapse = "")
a[(12*(i-1))+7]<-stt
¥
writeLines(a,"F:\\SPARC\Inundation_Maps\\V_2d_1d - Copy\\v_1d_2d.u01")
#Updating Simulation Time for Vamsadhara Basin
dt<-Sys.Date()
mtl<-c(JAN','FEB',MAR''APR'MAY",'JUN',JUL'AUG','SEP''OCT''NOV','DEC")
yr<-substr(dt,1,4)
mt<-substr(dt,6,7)
dy<-substr(dt,9,10)
dt2<-paste0(dy,mtl[as.numeric(mt)],yr)
if (as.numeric(yr)%%4==0){
mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31)
}else{
mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31)
¥
stdate<-dt2
dy2<-as.numeric(dy)+3
if (dy2>=mtl2[as.numeric(mt)]){
dy2<-dy2-mtl2[as.numeric(mt)]
mtk<-as.numeric(mt)+1
if (mtk>=12){

mtk<-as.numeric(mtk)-12;
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yr<-as.numeric(yr)+1

¥

mt<-mtk

yr<-yr
¥
If (nchar(dy2)<2){

dy2<-paste0(0,dy2)
¥
enddate<-paste0(dy2,mtl[as.numeric(mt)],yr)
a<-readLines("F:\\SPARC\Inundation_Maps\\V_2d_1d - Copy\\v_1d_2d.p01")
xt<-pasteO('Simulation Date=",stdate,',00:00,',enddate,',00:00")
a[4]<-xt
writeLines(a,"F:\\SPARC\Inundation_Maps\\V_2d_1d - Copy\\v_1d_2d.p01")
#Running HEC-RAS Model
import win32com.client
from osgeo import gdal
RC = win32com.client.Dispatch("RAS610.HECRASController™)
RC.ShowRAS()
#Nagavali HEC-RAS File

RC.Project_Open(r"F:\SPARC\Inundation_Maps\Nagavali_2d_1d -
Copy\Nagavali_2d_1d.prj™)

Simulation=RC.Compute_CurrentPlan(None,None, True)
RC.Project_Save()
RC.QuitRAS()

src = gdal.Open(r"F:\SPARC\Inundation_Maps\Nagavali_2d_1d - Copy\N_1d_2d\Depth
(Max).Nagavali_SRTM_DEM.tif")

srcl = r"F:\SPARC\Inundation_Maps\data_dir\Inundation_Maps\Nagavali_FIM.tif"
ds = gdal.Translate(src1,src)

ds = None

#Vamsadhara HEC-RAS File

RC.ShowRAS()

RC.Project_Open(r"F:\SPARC\Inundation_Maps\V_2d_1d - Copy\v_1d_2d.prj")
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Simulation=RC.Compute_CurrentPlan(None,None, True)
RC.Project_Save()
RC.QuitRAS()

src = gdal.Open(r"F:\SPARC\Inundation_Maps\VV_2d_1d - Copy\2d1d\Depth
(Max).Vamsadhara_ SRTM_DEM.tif")

srcl = r"F:\SPARC\Inundation_Maps\data_dir\Inundation_Maps\VVamsadhara_FIM.tif"
ds = gdal.Translate(src1,src)

ds = None
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Appendix-D

HTML Script

<IDOCTYPE html>
<htmlI>
<head>
<meta charset="utf-8" />
<title>Real-time Flood Forecastig</title>
<meta
name="viewport"
content="initial-scale=1.0, user-scalable=no, width=device-width"

/>

#Connecting CSS and JavaScript files to HTML Script

<link rel="stylesheet" href="https://openlayers.org/en/v6.12.0/css/ol.css" />
<link rel="stylesheet" href="./dist/ol-style.css" />
<link rel="stylesheet" href="style.css" />

</head>

<body>
<div id="header">

<div id="row1">

<div id="column1">
<a href="https://www.nitw.ac.in/" target="_blank">
<img src="./img/NITW.png" alt="NITW" style="width: 100%;">
<[a>
</div>
<div id="column1">
<a href="https://sparc.iitkgp.ac.in/" target="_blank">
<img src="./img/SPARC1.png" alt="SPARC" style="width: 100%;">
<[a>
</div>
<div id="column2">
<h2><b>Real-time Flood Forecasting Over the
Nagavali and Vamsadhara Basins</b></h2>
</div>
<div class="column1">
<a href="https://vt.edu/" target="_blank">
<img src="./img/VT1.png" alt="VT" style="width: 100%;">
<[a>
</div>
<div class="column">
<a href="nttps://www.tamu.edu/" target="_blank">
<img src="img/TAMU.png" alt="TAMU" style="width: 100%;">
<[a>
</div>

</div>
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</div>
<div id="map">
<div id="Legend">
<h4>Depth (m)</h4>
<img
src="http://localhost:8080/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0
&FORMAT=image/png&WIDTH=20&HEIGHT=20&LAYER=SPARC:Nagavali_FIM"
alt=""">
</div>
</div>
<script src="https://openlayers.org/en/v6.12.0/build/ol.js"></script>
<script src="./dist/ol-main.js"></script>
<script src="main.js"></script>
<hr>
<p><u><b>Project Details</b></u></p>
<p>The work has been carried out as a part of on-going SPARC projecrt titled <b>Real-
time Flood Forecastig using SWAT model</b> over
the <a href="https://en.wikipedia.org/wiki/Nagavali_River">Nagavali</a> and <a
href="https://en.wikipedia.org/wiki/Vamsadhara_River">
Vamsadhara</a> Basins funded by MoE. The work has been carried out at
National Institute of Technology Waranagal (NITW) in collaboration with Virginia Tech
(VT), Blacksburg, VA, USA and Texas A&M University (TAMU), College Station, TX,
USA. The project is carried out with fund by Ministry of Education (MoE) (erstwhile MHRD),
<i><b> Gol under Scheme for Promotion of Academic and Research Collaboration
(SPARC) </b></i>
with projetc number P270.</p>
<hr>
<div id="footer">
<div id="frow">
<div id="fcol1">
<p><u><b>Scholars Involved in the Project</b></u></p>
<p>1. Mr. G Venkata Rao, Research Scholar, Civil Engineering Dept., NITW</p>
<p>2. Mr. N Nageswara Reddy, Research Scholar, Civil Engineering Dept., NITW</p>
</div>
<div id="fcol2">
<p><u><b>Faculty Involaved in the Project</b></u></p>
<p>1. <a href="https://www.nitw.ac.in/faculty/id/16214/">Dr. K Venkata Reddy</a>,
Associate Professor, Civil Engineering Dept., NITW (Indian PI) </p>
<p>2. <a href="https://ssl.tamu.edu/people/r-srinivasan/">Dr. Raghavan
Srinivasan</a>, Director of the Texas A&M AgriLife Blackland Research & Extension Center,
TAMU, College Station, TX, USA (Foreign PI)</p>
<p>3. <a href="https://www.bse.vt.edu/people/faculty/venkat-sridhar.html">Dr.
Venkataramana Sridhar</a>, Associate Professor, Department of Biological Syatems
Engineering, VT, Blacksburg, VA, USA (Foreign Co-PIl)</p>
<p>4. <a href="https://www.nitw.ac.in/faculty/id/16195/">Dr. N V Umamahesh</a>,
Professor, Civil Engineering Dept., NITW (Indian Co-Pl)</p>
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<p>5. <a href="https://www.nitw.ac.in/faculty/id/16205/">Dr.

Professor, Civil Engineering Dept., NITW (Indian Co-Pl)</p>
</div>
</div>
</body>
</html>

JavaScript
#Importing OpenLayers to JavaScript
(function () {
var fullScreenControl = new ol.control.FullScreen();
var zoomSliderControl = new ol.control.ZoomSlider();
var scaleLineControl = new ol.control.ScaleLine();
var updateLegend = function (resolution) {
var graphicUrl = wmsSource.getLegendUrl(resolution);
var img = document.getElementByld('legend");
img.src = graphicUrl;
I3
var mousePositionControl = new ol.control.MousePosition();
var map = new ol.Map({
target: 'map’,
keyboardEventTarget: document,
controls: ol.control.defaults().extend([
fullScreenControl,
//mousePositionControl,
scaleLineControl,
zoomSliderControl
D,
layers: [
new ol.layer.Group({
title: 'Base maps',
layers: [
new ol.layer.Group({
title: 'Bing Maps',
type: 'base’,
combine: true,
visible: true,
layers: [
new ol.layer.Tile({
source: new ol.source.BingMaps({

Deva

Pratap</a>,

key: "AvcmFjEs4wUeEgcoyiNcimmFiKaHQAG-

YWGPH5cEV4Sru8tQwjyOutXchQ_QLyX-",
imagerySet: "Aerial WithLabels",
b
b,
]
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1,

new ol.layer.Tile({
title: 'OSM,
type: 'base’,
visible: false,
source: new ol.source.OSM()
by
]
b,
#Importing layers from GeoServer to JavaScript
new ol.layer.Group({
title: 'Base Layers',
fold: ‘open’,
layers: [
new ol.layer.Group({
title: 'Nagavali',
fold: ‘open’,
layers: [
new ol.layer.Tile({
title: 'Nagavali Boundary',
visible: false,
source: new ol.source.TileWMS({
url: 'http://localhost:8080/geoserver/SPARC/wms',
params: {'LAYERS': 'SPARC:Nagavali-Boundary-line', TILED': true},
serverType: 'geoserver’,
transition: 0,

)
b,

new ol.layer.Tile({

title: 'Nagavali River Network’,

visible: false,

source: new ol.source. TileWMS({
url: 'http://localhost:8080/geoserver/SPARC/wms',
params: {'LAYERS'": 'SPARC:Nagavali_streams', TILED': true},
serverType: 'geoserver’,
transition: 0

1)
1,

new ol.layer.Image({

title: 'Inundation Area’,

visible: true,

source: new ol.source.lImageWMS({
url: "http://localhost:8080/geoserver/SPARC/wms',
params: {'LAYERS'": 'SPARC:Nagavali_FIM'},
serverType: 'geoserver’,
transition: 0,
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transparent:true,
format: 'image/png’,
ratio: 1
1)
by
]
b

new ol.layer.Group({
title: "Vamsadhara',
fold: ‘open’,
layers: [
new ol.layer.Tile({
title: "'Vamsadhara Boundary',
visible: false,
source: new ol.source.TileWMS({
url: 'http://localhost:8080/geoserver/SPARC/wms',
params: {'LAYERS": 'SPARC:Vamsadhara-Boundary-line', TILED': true},
serverType: 'geoserver’,
transition: 0

)
b,

new ol.layer.Tile({

title: 'Vamsadhara River Network',

visible: false,

source: new ol.source.TileWMS({
url: 'http://localhost:8080/geoserver/SPARC/wms',
params: {'LAYERS': 'SPARC:Vamsadhara_Streams', TILED': true},
serverType: 'geoserver’,
transition: 0

1)
3,

new ol.layer.Image({
title: 'Inundation Area’,
visible: true,
source: new ol.source.ImageWMS({
url: 'http://localhost:8080/geoserver/SPARC/wms',
params: {'LAYERS'". 'SPARC:Vamsadhara FIM'},
serverType: 'geoserver’,
transition: 0,
/ltransparent:true,
/[format: 'image/png’,
ratio: 1
1)
by
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]
)
1

view: new ol.View({
center: ol.proj.transform([84, 18.5], 'EPSG:4326', 'EPSG:3857"),
zoom: 10,

by,
H

var layerSwitcher = new ol.control.LayerSwitcher({

tipLabel: 'Légende’, // Optional label for button

groupSelectStyle: ‘children’ // Can be ‘children’ [default], ‘group’ or 'none’
b
map.addControl(layerSwitcher);
var resolution = map.getView().getResolution();
updateLegend(resolution);
map.addLayer(updateLegend);

HO;

CSS Script

html,

body {
height: 100vh;
padding: 0;
margin: 0;

font-family: sans-serif;
font-size: small;
¥
#header {
padding: 10px;
background-color: beige;
}
#map {
width: 98.7vw;
height: 80vh;
}
#footer {
background-color: bisque;
}
/* Limit the width of the layer-switcher */
Jayer-switcher {
max-width: 300px;
}
h3 {
text-align: center;
color: goldenrod;
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¥

h2{
text-align: center;
margin: 0%;
padding: Opx;

b

hr {
margin: Opx;
padding: 2px;

}

p{
text-align: justify;
padding-left: 1%;
padding-right: 1%;
padding-top: 0%;
padding-bottom: 0%;

}

#footer {
text-align: justify;

¥

#Legend {
z-index: 10;
padding: 8px 8px;
border: 6px solid grey;
position: absolute;
bottom: 100px;
height: 28%;
overflow: scroll;
width: 6%;
right: 0%;
background-color: #ffffff;
font-weight: bold;

}

#columnl {
float: left;
width: 15%;
padding: Opx;
height: 30px;

}

#column2 {
float: left;
width: 40%;
padding: 10px;
height: 30px;
text-align: center;
color: royalblue;
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¥
#rowl{

content: "";
display: flex;
clear: both;
¥
#fcoll {
float: left;
width: 40%;
padding: Opx;
background-color: lightblue;
}
#fcol2 {
float: left;
width: 60%;
padding: Opx;

background-color: lightblue;

}
#frow {

content: "";
display: flex;
clear: both;

}
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