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Abstract 

The intensity and frequency of rainfall extremes have increased all over the world as a result of 

climate change. The increase in intensity and frequency of rainfall extremes has significant 

impact on human life and infrastructure, particularly by contributing to floods. Floods are the 

most common natural disasters in India that have significant impact on human life and 

infrastructure. Due to lack of proper flood forecasting and warning system, authorities are 

frequently struggling to evacuate the people from the flood prone areas. If the information about 

floods and flood inundation extent is made available to the public with sufficient lead time, they 

can be better prepared to deal with floods. Therefore, it is necessary to understand the rainfall 

characteristics over the study basins and to develop an integrated hydrologic and hydraulic 

model based on rainfall forecasts from the Numerical Weather Prediction (NWP) models to 

forecast floods with sufficient lead time. In the present research work, Nagavali and 

Vamsadhara basin are considered as study area. These two medium sized east flowing basins 

in Peninsular India are prone to frequent flooding due to heavy rainfall in the monsoon season 

and tropical cyclones formed by low pressure depressions in the Bay of Bengal (BoB) during 

pre- and post-monsoon seasons. Based on the proposed objectives of the research work, detailed 

methodology for the research is developed. With the developed methodology, work has been 

carried out in five modules.   

In the first module, trends in rainfall and rainfall extremes over Nagavali and Vamsadhara river 

basins are studied at three time steps (long-term (1901-2018), pre-1950, and post-1950) with 

four different Mann-Kendall (MK) tests using daily gridded India Meteorological Department 

(IMD) rainfall data of 118 years (1901–2018). The spatial patterns of the trends are evaluated 

with the kriging interpolation method. Magnitude in rainfall and rainfall extremes (Consecutive 

Dry Days (CDD), Consecutive Wet Days (CWD), annual total precipitation in wet days 

(PRCPTOT), annual count of days when rainfall is greater than 10 mm (R10MM), greater than 

20 mm (R20MM), greater than 40 mm (R40MM), 95th percentile of rainfall on wet days 

(R95PTOT), monthly maximum 1-day rainfall (RX1DAY), and monthly maximum 

consecutive 5-day precipitation (RX5DAY)) are analyzed using the Sen’s slope method. Except 

in the monsoon season, a decreasing trend is observed in all the rainfall extremes in post-1950 

compared to pre-1950 period. Whereas, in the monsoon an increasing trend is observed for the 

extremes in post-1950 period. Overall period (i.e. 1901–2018) an increasing trend is observed 

for rainfall and rainfall extremes in pre-monsoon (March–May), monsoon (June–September) 
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seasons and a decreasing trend in winter season (December–February) for both basins. No 

obvious trends are evident in the post-monsoon season (October–November). At the annual 

scale, rainfall and rainfall extremes exhibited an increasing trend. Overall, Nagavali basin 

experienced more extreme rainfall events indicating the higher vulnerability of floods while the 

middle and lower portions of Vamsadhara basin shown increase in rainfall extremes. A vast 

majority of the people in both the basins are dependent on agriculture for their livelihoods, and 

the increasing trends in rainfall and rainfall extremes in the lower and middle portions of both 

basins are causing frequent floods. Therefore, this study deserves careful extension, especially 

in the lower and middle portions of both basins, to evaluate extreme hydrologic-hydraulic flow 

regimes. 

In the second module, Advanced Research Weather Research and Forecasting (WRF) model is 

used to conduct, a total of 56 numerical experiments and to find a suitable microphysical 

scheme for the prediction of track and intensity of the Tropical Cyclones (TCs) over North 

Indian Ocean (NIO). The performance of seven microphysical schemes (Ferrier, Lin, Morrison, 

Thompson, WSM3, WSM5, and WSM6) are evaluated using error metrics, namely Mean 

Absolute Error (MAE), Mean Square Error (MSE), Skill Score (SS), Direct Positional Error 

(DPE) and average track error with respect to observations provided by IMD. From the 

sensitivity experiments, it is found that the WSM3 scheme can be used as a suitable 

microphysical scheme for the prediction of TCs over NIO. Along with the track and intensity, 

rainfall of TCs is well predicted by WRF model. Although WRF model is able to predict rainfall 

for TCs, the WRF model is sensitive to initial and boundary conditions, grid resolution, 

representation of physical parameterization schemes, and geographical location. Hence, to 

overcome the limitations of WRF model, rainfall forecasts from the National Center for 

Environmental Prediction - Global Forecast System (NCEP-GFS) model are used to forecast 

floods in the lower and middle portions of both basins. 

In the third module, performance skill of the National Center for Environmental Prediction - 

Global Forecast System (NCEP-GFS) model is evaluated for day-1 to day-5 forecast with a 

threshold of 1 mm/day in Nagavali and Vamsadhara river basins. From the results, the model 

predicted the rainfall with a correlation coefficient of greater than 0.3 and probability of 

detection greater than 0.6 for day-1 and day-3 forecasts. The bias in rainfall prediction shifted 

from overestimation to underestimation by 30% as forecast lead time increased. The total mean 

error is decomposed into hit, false, and missed bias. The main sources of total mean error are 

hit bias and false bias. However, missed bias influenced total mean error as lead time increased. 
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Bias correction is applied for the rainfall events with a rainfall intensity greater than 12 mm/day. 

Root Mean Square Error (RMSE) improved by more than 18% for day-1 forecast in both 

Nagavali and Vamsadhara basins, and the improvement ranged between 3% to 9% for other 

days. In Nagavali basin, relative bias (BIAS) and Mean Error (ME) improved and ranged from 

44% to 65% for day-1 to day-5 forecast, whereas in Vamsadhara basin, it ranged from 65% to 

93%. This module helped to develop the bias correction factors for GFS forecast rainfall of 

Nagavali and Vamsadhara basins. Bias corrected GFS forecast rainfall is given as input to the 

integrated hydrology and hydraulic model developed in fourth module.  

In fourth module of the research work, an integrated hydrologic and hydraulic modeling 

framework is developed with Soil and Water Assessment Tool (SWAT) model and the Two 

Dimensional (2D) Hydrological Engineering Centre – River Analysis System (HEC-RAS) 

model. Bias corrected NCEP-GFS rainfall forecasts with a 48-hour lead time are given as input 

to the integrated model and simulated the streamflow, flood area extent, and depth for the 

historical flood events (i.e., 1991 - 2018) with peak discharges of 1200 m3/s in Nagavali basin 

and 1360 m3/s in Vamsadhara basin. The integrated model predicted flood inundation depths 

are in good agreement with observed inundation depths provided by the Central Water 

Commission (CWC). The inundation maps generated by the integrated modeling system with 

a 48-hour lead time for cyclone Titli demonstrated an accuracy of more than 75%. The results 

from this module can be exported into Web-GIS based platform for the visualization and 

dissemination of flood inundation maps to the public.  

In the fifth module of the work, a Web-GIS based user interface system has been developed by 

using various programming languages (HTML, CSS, and JavaScript) and software (Visual 

Studio Code and GeoServer) for the visualization and dissemination of flood inundation maps. 

The Web-GIS based user interface system displays the flood inundation information as spatial 

maps and depths in the legend. Finally, integrated model presented in this research work is 

automated using R and Python programming languages. Methodology developed in this 

research work can be extended for other river basins. The insights gained from this research are 

useful for the public and government agencies for dissemination of early warning during the 

flood events, resource mobilization to protect communities, and sustainable water resources 

planning and management. 

Keywords: Automation, Flood Inundation Area, Flood Forecasts, HEC-RAS, Integrated Model, 

Rainfall Extremes, SWAT, WRF, and Web-GIS.  
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 Introduction 

1.1 Background 

Over the years, climate on the Earth has changed significantly in both space and time. The 

spatio-temporal variability of climate and climate drivers have caused changes in the frequency, 

magnitude, duration, spatial extent, and timing of weather and climate extremes such as floods, 

droughts, and tropical cyclones, which have significant impact on human life and infrastructure 

(Han and Coulibaly 2017). The extreme events caused by climate change over the past two 

decades have resulted in a direct loss of ₹ 265.5 trillion in terms of purchasing power parity and 

a human loss of more than 4.9 million across the globe (Mohanty 2020). Rainfall is one of the 

most important climate variable that vary both in space and time, and its response in modifying 

the basin scale hydrological processes are critical for water resources management. The uneven 

distribution of rainfall intensities leads to increased incidents of extreme events and their 

intensities often lead to floods or droughts (Roy and Balling 2004). 

Floods are one of the most common natural hazards, causing significant damage to human lives, 

and infrastructure in both developing and developed countries in the world (Chowdhuri et al. 

2020; Han and Coulibaly 2017; Sravani 2018). Flood is defined as “High-water stages in which 

water over flows its natural or artificial banks onto normally dry land, such as river inundating 

its floodplain” (Natarajan and Radhakrishnan 2020). The recently published World Disaster 

Report by International Federation of Red Cross and Red Crescent Societies “IFRC” reported 

that floods (41%) constituted the largest percentage of all known disasters between 2008 and 

2017 all over the world and affected as many as 730 million people, which is over a third of the 

estimated 2 billion people affected by natural hazards (IFRC 2020). 

Past experiences indicate that floods and their impact can be mitigated but cannot be eliminated 

completely. The measures of flood risk mitigation can be divided into three major categories: 

(i) structural measures (ii) non-structural measures and (iii) a combination of structural and non-

structural measures. Structural flood protection measures such as dams, levees, embankments, 

and flood wall, emphasize modifying a flood characteristic to reduce peak evaluations and 

spatial extent (Sudheer et al. 2019). However, these measures will not completely eliminate the 

hydraulic risk due to the impossibility of building larger structures to handle extremely low 

probability events (Perumal et al. 2011). As a result, experts have advocated a shift away from 
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structural flood protection measures to non-structural flood protection measures that reduce 

flood exposure (Jain et al. 2018). Flood forecasting is an important non-structural measure for 

preventing flood damage and reducing flood-related deaths and it is only beneficial if accurate 

forecasts are made with sufficient lead time (Nanditha and Mishra 2021). In recent years, 

technological advancements have enhanced the accuracy of real-time flood forecasting and 

warning systems. The use of rainfall observations from satellites, weather radars, and 

Numerical Weather Prediction (NWP) models significantly improved the capability of flood 

forecasting and warning systems in detecting extreme rainfall events that may cause flooding 

and the warnings are issued several days ahead when compared to flood forecasting systems 

based on the observed rainfall and streamflow (Kumar et al. 2020).  

1.2 Extreme Climate Scenarios in India 

India, with its unique geophysical conditions, climatic conditions, and topography, frequency, 

magnitude, duration, spatial extent, pattern and timing of weather and climate extremes are 

changing and ranked among the top ten most vulnerable countries in the globe in terms of 

climate change (Eckstein et al. 2021). Over the past five decades, the annual mean temperature 

has risen by approximately 0.7° C, including an increase of 0.63°C for the warmest day and 

0.4°C for the coldest night. The Sea Surface Temperature (SST) has risen by 1° C. Since 1951, 

summer monsoon rainfall has declined by 6% with an increase in frequent dry and wet spells 

(Krishnan et al. 2020). As a result of these changing phenomena, cyclones are occurring more 

frequently throughout the country, droughts are affecting more than half of the country, and 

floods of unprecedented magnitude are causing catastrophic damage to people and socio-

economic aspects of the country (Krishnan et al. 2020). Figure 1.1 shows the various disaster 

prone areas in India. The major disasters in the country include droughts, floods, tropical 

cyclones, earthquakes, and hot and cold waves. 

Over the past few decades, several researchers have reported an increase in extreme rainfall 

events across India on a national and regional scale (Bisht et al. 2018a,b; Deshpande et al. 2016; 

Dubey and Sharma 2018; Goswami et al. 2006; Jain et al. 2017; Guhathakurta et al. 2011; 

Krishnamurthy et al. 2009). In addition to that, the frequency and intensity of Tropical Cyclones 

(TCs) are also increasing over the years (Mohanty et al. 2012). The increasing trend in rainfall 

extremes and the frequency of TCs lead to severe flooding across the country.  
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Figure 1.1 Natural hazard map of India (Source: MOI, 2022) 
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Among all the natural disasters, flooding is becoming more common in India as extreme 

weather events become very common, accounting for half of the natural disasters (Patankar 

2020). Figure 1.2 shows the flood prone areas in the country (NDMA, 2022). Based on the 

flood patterns in India, the country has four distinct regions: the Brahmaputra river region, the 

North-West river region, the Ganges river region, and the Central India and Deccan region. 

Brahmaputra river region is located in the North-Eastern Parts of India. Continuous rainfall in 

this region has resulted in frequent floods. The frequent earthquakes and landslides in this area 

have disrupted the natural regime of river flow. As a result, regions that are expected to be 

flood-proof may not be so secure. North-West river region is located in the North-Western 

states of India. Compared to other regions of India, this region is relatively less prone to floods. 

The Ganges river basin covers most of North India and a few states in Western India. This 

region is prone to severe floods due to heavy rainfall, river erosion, and massive sediment 

deposits. The Central India and Deccan river basins cover all states of southern India. The 

region is characterized by coastal states, which are prone to maritime flooding during cyclonic 

disturbances. In this region, most rivers have adequate water carrying capacity within the 

natural banks, except in the lower reaches and the delta area. In those areas, the overall slope 

of the bed is very low, which aggravates flooding problems, since the water cannot easily drain 

into the sea due to opposing tidal intrusion (Mohanty et al. 2020). 

According to flood statistics from the Government of India, the flood-affected area in India has 

increased from 25 million hectares (Mha) in 1952 to 49.815 Mha in 2011 (Bhanduri 2019). 

Between 1953 and 2011, floods claimed 1,653 lives per year on average and caused ₹ 2709 

billion in economic losses, includes housing, public property, and crop damage, according to 

government records (Joshi 2020). Flood damage is caused by a number of factors, including 

rapid population growth, rapid urbanization, increased development and other activities in flood 

plains, and global warming (Leon et al. 2014; Bhatt et al. 2017). 
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Figure 1.2 Flood prone area in India according to NDMA (Source: NDMA, 2022) 
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1.3 Rainfall forecasts from Numerical Weather Prediction (NWP) Models 

Rainfall is the most important natural weather element required for an effective operational 

flood forecasting system in a catchment (Bisht et al. 2018a,b; Damrath et al. 2000; Deng et al. 

2018; Ning et al. 2017; Prakash et al. 2018; Sun et al. 2017). Rainfall forecasts are currently 

provided using conventional methods such as satellite observations, weather radars, and NWP 

models. Among the observations, satellites and weather radars provide qualitative forecasts, 

while NWP models provide quantitative forecasts (Sridevi et al. 2020). Hence, quantitative 

rainfall forecasts from NWP models that represents land-atmospheric interactions continue to 

be the primary source of rainfall data for input into any hydrological model for flood 

forecasting, water management and disaster assessments among other applications (Sridhar et 

al. 2013; Shahrban et al. 2016; Sujatha and Sridhar 2017; Sridhar and Valayamkunnath 2018). 

The NWP modeling is a method of forecasting future atmospheric conditions by solving a set 

of mathematical equations that describe the physical phenomenon of the atmosphere. Typical 

examples of these equations are equations of heat exchange, continuity equations, balance 

equations of water vapour, equations of motion, parameterizations for solar radiation, and laws 

of energy conservation, etc. Since 1946, NWP models are being used to forecast rainfall, 

temperature, and many other meteorological variables from the oceans to the top of the 

atmosphere (Shrestha et al. 2012). These models are available at both global and regional scales 

across the world. The global models are defined for the whole world, while the regional model 

is defined for a particular section of the atmosphere. Advanced Research Weather Research and 

Forecasting (WRF), Global Forecasting System (GFS), European Center for Medium-Range 

Weather Forecasts (ECMWF) are some examples of NWP models.  

 Advanced Research Weather Research and Forecasting (WRF) Model 

The WRF modeling system has been in development for the past eighteen years. The current 

edition is Version 4, available since June 2018. The modeling software is in the public domain 

and freely available for community use. The Mesoscale and Microscale Meteorology Division 

of National Center for Atmospheric Research (NCAR) is currently maintaining and supporting 

a subset of the overall WRF code that includes the WRF Preprocessing System (WPS), WRF 

Software Framework (WSF), Advanced Research WRF (WRF) dynamic solver, WRF Data 

Assimilation (WRF-DA) system, and hybrid data assimilation capabilities.  
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WRF is designed to be a flexible, state-of-the-art atmospheric simulation system that is portable 

and efficient on available parallel computing platforms. WRF is suitable for use in a broad 

range of applications across scales ranging from meters to thousands of kilometers, including 

idealized simulations (e.g. les, convection, baroclinic waves), data assimilation research, 

parameterization research, forecast research, coupled-model applications, fire research, 

hurricane research, real-time NWP, regional climate research, and teaching, etc.. A detailed 

description about the model can be found at Wang et al. 2018. 

 Global Forecasting System 

The Global Forecast System (GFS) of the National Center for Environmental Prediction 

(NCEP) is a medium range hydrostatic NWP model run by the U.S. National Weather Service 

(NWS). The GFS provides deterministic and probabilistic guidance on weather data for the next 

16 days in GRIB2 format. The  National Oceanic and Atmospheric Administration (NOAA) 

Grid point Statistical Interpolation (GSI) 3-D variational ensemble Kalman filter-variational 

hybrid system is used by the GFS modelling system for data assimilation (Mccorkle et al. 2018). 

The GFS files are available at a horizontal resolution of 0.25°×0.25° and can be downloaded 

from NCAR research data archive. The forecast is updated four times per day (00, 06, 12, and 

18 UTC). One of the GFS model output variables is accumulated precipitation, where the 

precipitation forecasts are accumulations starting from the model runtime. 

The GFS model went through a major upgrade, and its version 15 forecasts have been available 

since 12 June 2019. In version 15, the Finite-Volume Cubed-Sphere (FV3) dynamical core 

replaced the Global Spectral Model (GSM) as the core model. In the GSM model, the horizontal 

resolutions were T1543 (12.5 km), from 0 to 240 h (0–10 d), and T574 (∼ 34 km), from 240 to 

384 h (10–16 d). However, in the FV3 model, the horizontal resolution of the model is about 

13 km for days 0–16. The model runs are re-gridded to produce precipitation forecasts at 0.25° 

resolution (NCEP, 2015).  

1.4 Evaluation of NWP Model Forecasts 

All the NWP models are based on the principle of hydrostatic equilibrium (Šaur 2017). With 

advancements in computational power, most of the NWP models are able to provide rainfall 

forecasts with a lead time of 1 – 15 days (Kumar et al. 2020). Accurate rainfall forecasts from 

NWP models will help in reducing the uncertainty in streamflow forecasts. However, the 
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rainfall forecasts from NWP models are subject to three types of error (i) Location, (ii) Timing, 

and (iii) Magnitude, which may limit their usefulness for streamflow forecasting, since 

hydrological models are sensitive to errors in rainfall forecasts (Sridevi et al. 2020). Therefore, 

the skill of NWP model rainfall forecasts needs to be verified before using them for any 

hydrometeorological applications. 

Verification of a forecast involves comparing the forecast value with an observation of what 

actually occurred or with some reasonable estimate of the actual value. It can be qualitative or 

quantitative. In either case, it should provide information about the nature of the forecast error. 

Verification of forecast is important to monitor and improve the forecast quality, and to compare 

the quality of different forecast systems.  

To verify the NWP model forecasts, several methods are available (i) eyeball method (ii) 

dichotomous method (iii) multi-category method (iv) continuous verification method and (v) 

probabilistic forecast method. The eyeball method is the oldest and most reliable method for 

verifying data. Data is presented as time series plots and spatial maps, and the degree of 

agreement between the observed and forecast data is evaluated using the human eye. However, 

this method is not quantitative and is prone to human errors. The dichotomous method returns 

‘Yes’ if the model predicts rainfall and ‘No’ if there is no rain. In this method contingency table 

is used to verify the forecast which includes a large variety of contingency statistics including 

Probability of Detection (POD), False Alarm Ration (FAR), Critical Success Index (CSI), and 

True Skill Score (TSS), etc. Multi-category methods also start with a contingency table that 

shows the frequency of forecast and observed values in different bins. The advantage of this 

method is that it allows quick identification of forecast error. However, it is difficult to condense 

the results into a single value. Continuous verification method measures the difference between 

the forecast value and the observed value using several statistical indices such as Correlation 

Coefficient (CC), Mean Error (ME), Root Mean Square Error (RMSE), Bias (BIAS) etc. This 

method needs a set of values to verify the forecast (Broorks et al. 2017).  

1.5 Hydrologic and Hydraulic Models for the Simulation of Floods 

A hydrological model represents the natural hydrological cycle in a simplified form and is 

mainly used for understanding, forecasting and managing water resources. The best hydrologic 

model is the one which is less complex and uses minimum amount of data to produce results 

that are similar to the observed values. The hydrologic model converts the rainfall into run-off 
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by considering various hydrological processes including rainfall, evapotranspiration, and 

surface and sub-surface water flow. The input data required for hydrologic model includes 

rainfall, temperature, relative humidity, solar radiation, wind speed, Land Use and Land Cover 

(LULC), Digital Elevation Model (DEM) data, and soil data (Godara and Bruland 2019).  

Over the past few decades, several hydrological models have been developed such as 

Hydrologiska Byråns Vattenbalansavdelning (HBV), MIKE SHE, Statkraft Hydrologic 

Forecasting Toolbox (SHyFT), Hydrologic Engineering Center-Hydrologic Modelling System 

(HEC-HMS), TOPMODEL, Soil and Water Assessment Tool (SWAT), etc. for effective 

management of water resources. Among all the models SWAT is a physically based semi-

distributed watershed-scale hydrological model developed by the United States Department of 

Agriculture (USDA) Agricultural Research Service (ARS). The model is designed to predict 

the impact of land management practices on hydrology, sediment and contaminant transport in 

large and complex catchments at the Hydrological Response Unit (HRU) level. For the SWAT 

model to produce accurate hydrologic predictions, only a small amount of direct calibration is 

required. 

Hydraulic models compute open channel flow based on St. Venant equations. Most commonly 

used hydraulic models are one dimensional or two dimensional or a combination of both (1D-

2D). The hydraulic model converts the run-off into flood inundation levels. The input data 

required for hydraulic model includes runoff, LULC, soil characteristics, upstream and 

downstream boundary conditions. Most commonly used hydraulic models include Hydrologic 

Engineering Center-River Analysis System (HEC-RAS), MIKE 1D and 2D, BreZO, 

LISSFLOOD-FP, FLO-2D, etc. Among these models, HEC-RAS is one of the most 

comprehensive and efficient event-based model for preparing flood inundation maps. It can 

perform 1D, 2D, and combined 1D and 2D modelling. In 2D modelling, HEC-RAS can solve 

shallow water or diffusive wave equations, allowing the model to run more quickly and have 

increased stability. The algorithms used in HEC-RAS 2D unsteady flow modelling are capable 

of handling sudden release of water, supercritical, subcritical, and mixed flow regimes without 

enabling any additional options. 
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1.6 Flood Forecasting and Warning System 

Flood forecasting and early warning is one of the most effective flood risk management 

strategies to minimize the negative impact of floods (ESCAP 2017). A typical flood forecasting 

and warning system is composed of three major elements: (i) flood detection (ii) flood 

forecasting and warning and (iii) flood response. The schematic representation of flood 

forecasting and warning system is shown in Figure 1.3.  

Flood detection involves the continuous monitoring of hydrometeorological data from the 

catchment of interest. Flood forecasting involves the use of hydrologic and hydraulic models. 

Hydrological models are used to convert rainfall into runoff through a set of mathematical 

equations, while hydraulic models convert runoff into flood extent. Flood warnings are issued 

at this stage to the people and public agencies to plan rescue operations (Jain et al. 2018).  

 

1.7 Web-GIS for Dissemination for Flood Inundation Information  

A User-Interface System (UIS) is an integrated set of software and hardware components that 

are used for collection, organization, storage, processing and communication of information 

among the users. Geographical Information System (GIS) is an information system that can 

acquire, store, and process spatial data. Combining GIS with web technologies enables users to 

process spatial data, perform spatial analysis and display generated results in the form 

interactive maps or graphs through the web browser (Mishra et al. 2020). Web-GIS is a 

distributed open source technology that provides a graphical user interface for accessing spatial 

data, performing spatial analysis, and visualizing web-services through a web browser. There 

are several technology levels to publish map data on the web, ranging from sites that simply 

Flood Detection  Flood Forecasting & Warning Flood Response 

Hydrometeorological 

Data Monitoring 

 Gauge Stations 

 Satellites 

 Weather Radars 
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 Hydrological Modelling 
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 Flood Inundation Mapping 
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 Flood Warning  
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the people and local 
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Figure 1.3 Schematic diagram of flood forecasting and warning system (Source: Jain et al. 2018) 
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public static web maps to more sophisticated sites which support dynamic and interactively 

customizable maps. Web-GIS technologies are useful to publish flood inundation data and 

disseminate information to the public. 

 Web-GIS Architecture  

The architecture of the Web-GIS is similar to the typical client/server three-tier architecture and 

is shown in Figure 1.4. Three tier architecture is one in which an interface is stored on the client 

side, the application on the server side, and a database on database server. The client side 

typically consists of a web browser while the server side consists of a web server, map server, 

web GIS software and a database. The web server communicates between the client and the 

map server. The map server provides the web server with the map content generated from the 

database. A web interface is required to take inputs from user interactions and display the 

requested data.  

 

 

Figure 1.4 A typical Web-GIS Architecture (Source: Olaya 2018). 
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 Web-GIS systems for flood data dissemination 

The goal of flood risk communication is to provide flood related information to wide range of 

users, ranging from the general public at local level to administrative bodies at governance 

level. In recent years, Web-GIS based platform has been recognized as a powerful tool for data 

distribution, as it is cheap, reliable, interactive, and can easily reach people in a short period of 

time. Researchers have developed Web-GIS platforms for dissemination of flood inundation 

information in different parts of the world, including Iowa Flood Information System (IFIS) 

(Demir et al. 2018), Flood disaster Cyber-infrastructure platform (CyberFlood) (Wan et al. 

2014), Spatial Decision Support System (SDSS) (Horita et al. 2015), geospatial Decision 

Support Tool (DST) (Knight et al. 2015), Intelligent Hydro-Informatics Integration Platform 

(IHIP) (Chang et al. 2018) , Web-based Flood Risk Information System (WebFRIS) (Mohanty 

and Karmakar 2021), and many others to provide real-time information about floods. 

National Remote Sensing Center (NRSC) in India is the nodal agency for distributing natural 

disasters related information. NRSC developed a web application called Disaster Management 

Support Services under Bhuvan to provide forecasts and issue early warning about the natural 

disasters such as floods, droughts, forest fires, earthquakes, landslides, and cyclones across the 

country.  

1.8 Research Motivation  

The intensity and frequency of rainfall extremes have changed as a result of climate change, 

which has a significant impact on human life and infrastructure, particularly by contributing to 

floods. Floods are the most common natural disasters in India that have significant impact on 

human lives and infrastructure. In recent years, India has been hit by some of the most unusual 

extreme precipitation events, resulting in flooding and significant loss of life. On 26th July 2005, 

Mumbai received 994 mm of rainfall in 24 hours, leading to flash floods and landslides that 

claimed 419 lives and damaged 16000 cattle. During the floods, more than 100000 residential 

and commercial establishments as well as 30000 vehicles were damaged (Gupta 2007). In 2007, 

Bihar state received unprecedented rainfall of more than 300 to 400% than in normal days in 

the second half of July. The same was repeated in August and simultaneously heavy rainfall in 

the upper catchments led to severe floods in the state and claimed 519 lives and more than 20 

million people got affected causing an economic damage of ₹ 150 billion (FMISC 2007). Heavy 

rainfall in October 2009 in the Krishna river basin resulted in severe floods in Kurnool city that 
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claimed more than 40 lives and caused significant damage to infrastructure (Ramachandraiah 

2011). During 16-18 June 2013, Uttarakhand experienced an extreme rainfall event with a 

rainfall intensity of more than 200 mm/day, resulting in large floods that killed over 6000 people 

and caused economic losses of more than ₹ 285 billion (Nandargi et al. 2016). In December 

2015, Chennai and its suburbs experienced extremely heavy rainfall (490 mm/day), inundating 

the coastal districts of Chennai, Kancheepuram, and Tiruvallur, affecting over 4 million people 

causing economic damages of approximately ₹ 225 billion (Narasimhan et al. 2016). A multi-

day extreme precipitation event (200 mm/day) in Kerala in August 2018 caused massive 

flooding, killing 483 people and causing an economic loss of more than ₹ 3975 billion (Mishra 

et al. 2018). Because of a tropical depression that formed over the Bay of Bengal (BoB) in 

October 2020, Musi River received 192 mm of rainfall in 24 hours, caused flooding in 

Hyderabad, killing more than 30 people and caused an economic loss of ₹ 6717 million 

(Somasekhar 2020). If information on floods and flood inundation extents is available to the 

public with sufficient lead time, people and government agencies will be able to deal with floods 

in a more effective way. 

1.9 Need for the flood forecasting model and information dissemination to 

the public 

The Central Water Commission (CWC) is the nodal agency in India for providing deterministic 

flood forecasts based on observed precipitation and streamflow across major rivers and their 

tributaries. Currently, CWC provides flood warnings at 324 stations, including 128 reservoir 

inflow forecasts and 196 water level forecasts (CWC 2020). During extreme weather events, 

local agencies use CWC water level forecasts to plan rescue operations (Harsha 2020). 

However, water level estimates at a point are inconsistent and sparse over large areas, resulting 

in uncertainty in estimating flood inundation area and flood depth, making rescue operations 

difficult for local agencies. This is especially true following the recent floods in Assam, Tripura, 

Karnataka, Tamil Nadu, and Kerala (CWC-FRMD 2020). Local administrations can make 

better decisions and be better prepared if they have flood forecasts with inundation areas rather 

than deterministic flood forecasts. Countries such as the United States, the European Union and 

Japan have already shifted their focus to flood forecasting and inundation areas (Harsha 2020). 

In India, public and government officials have limited information about the flood inundation 

extent and depth. As a result, there is a need for development of integrated hydrologic and 

hydraulic models with enough lead time to provide flood forecasts as well as flood inundation 
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extent and depth. The results from the integrated hydrologic and hydraulic model can be 

exported into Web-GIS compatible formats using GIS software for visualization and analysis 

in the web-based platform (Santillan et al. 2020).  

Nagavali and Vamsadhara are two east flowing medium sized river basins that are prone to 

flooding due to heavy rainfall in the monsoon season and TCs formed by low pressure 

depressions in the BOB during the pre- and post-monsoon seasons. In both basins, an increase 

in annual average rainfall of 100 mm has been observed over the previous two decades. The 

uplands of these basins are hilly, resulting in frequent flooding of low-lying areas due to 

extreme rainfall events. Over the last few decades, the frequency of prolonged floods has 

increased, causing severe damage to crops, life, and property in both basins' delta regions. 

According to the Andhra Pradesh State Disaster Management Authority (APSDMA), the 

Nagavali basin experienced more than 12 flood events, while the Vamsadhara basin 

experienced nine flood events. Authorities frequently struggle to evacuate villagers during 

floods due to a lack of a weather and flood forecasting system in the area. Hence, in the present 

research work it is proposed to develop an integrated hydrologic and hydraulic model and to 

apply it on Nagavali and Vamsadhara river basins to forecast floods and inundation area extent.  

1.10 Aim and Objectives of the Study 

The aim of the present research work is to develop an integrated hydrologic and hydraulic model 

that forecasts streamflow and generates flood inundation extent based on rainfall forecasts 

which will be published in Web-GIS based user interface system for the public use. Based on 

the aim of the research work, the objectives are framed as follows: 

 Identification of trends in rainfall characteristics over the study area. 

 Assessment of microphysical schemes on the track, intensity and rainfall prediction 

of tropical cyclones using Numerical Weather Prediction Models. 

 Evaluation of rainfall forecasts available in the public domain from standard 

modelling mechanism.   

 Development of an integrated modelling framework to forecast floods with well-

established hydrologic and hydraulic models.  

 Development of Web-GIS based framework for flood forecast data visualization and 

dissemination. 
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1.11 Organization of the Thesis 

This thesis has seven chapters which include introduction, literature review, methodology, 

study area and database preparation, model set-up, results and discussions, and summary and 

conclusions. The research motivation, problem statement, and research objectives are presented 

in the introduction chapter. Literature review on rainfall extremes, floods due to extreme rainfall 

events, prediction of track and intensity of tropical cyclones by NWP model, evaluation of GFS 

rainfall forecasts, importance of integrated hydrologic and hydraulic models and flood 

forecasting, and development of Web-GIS have been presented in second chapter. The research 

methodology is presented in third chapter. The details about study area, data used, database 

preparation, and various model set-ups such as WRF, SWAT, and HEC-RAS for predicting 

tropical cyclones, simulating streamflow, and generation of flood inundation maps, respectively 

are presented in fourth chapter. Results and discussions are given in fifth and sixth chapters, 

while summary, conclusions, and limitations of the present research are explained in the 

concluding chapter.  
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 Literature Review 

2.1 General 

Rainfall extremes in the Indian sub-continent are expected to be more often because of global 

warming. The increase in extreme events causes flooding in India, which has significant impact 

on human life and infrastructure. CWC is the nodal agency in India that provides deterministic 

flood forecasts across major rivers and their tributaries. However, the water level estimates at a 

point are not consistent or dense enough over large areas, and often lead to uncertainty in 

estimating the flood inundation area and flood depth, making rescue operations difficult for 

local agencies. Hence, there is a clear need for the modeling framework that can provide data 

about the present and future state of occurring floods. In this chapter, literature pertaining to 

rainfall and rainfall extremes, prediction of TCs using WRF model, and performance evaluation 

of rainfall forecasts from NWP models is presented. The literature required to develop an 

integrated hydrologic and hydraulic model to forecast floods and development of Web-GIS 

based data distribution system for the real-time distribution of flood inundation areas has been 

discussed in the following sections. 

2.2 Trends in Rainfall and Rainfall Extremes over India 

The spatio-temporal variations in rainfall in India may lead to natural disasters like floods and 

droughts which have adverse impact on human life and socioeconomic aspects of the country. 

Hence, there is a need to understand the characteristics of rainfall and rainfall extremes in a 

river basin to enhance water resources management strategies. Rainfall and extreme rainfall 

events have been extensively studied in India at regional and national scales using gridded 

rainfall data provided by India Meteorological Department (IMD) and these have drawn 

different conclusions (Bisht et al. 2018b,a; Roy and Balling 2004; Goswami et al. 2006; 

Guhathakurta and Rajeevan 2008; Deshpande et al. 2016; Rajeevan et al. 2008; Ghosh et al. 

2012; Guhathakurta et al. 2011, 2015, 2017). Some studies reported no clear trend in rainfall 

over a period of longer than a century at monthly, seasonal, and annual scales over India (Ghosh 

et al. 2012; Rajeevan et al. 2008). However, Kumar et al. (2010), reported an increase in the 

magnitudes of winter, pre, and post monsoon rainfall and decrease in annual and monsoon 

rainfall at the national scale.  
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Roy and Balling (2004) studied the annual trends in seven extreme rainfall measurements, 

including total rainfall, 1, 5, and 30-day cumulative rainfall, and total rainfall at the 90th, 95th, 

and 97.5th percentiles, at 129 gauge stations distributed across India. They found that, out of 

903 time series data sets, 61 showed decreasing trend, and 114 showed increasing trend. The 

increasing trend in rain extremes has been widely distributed across the country, from the 

northwest Himalayas to the Deccan Plateau in the south, whereas a decreasing trend has been 

mostly found in the eastern parts of the Gangetic Plain and parts of Uttaranchal. Goswami et al. 

(2006) found an increasing trend in the frequency and magnitude of extreme rainfall events 

accompanied by a decreasing trend in the frequency of moderate rainfall events and no trend 

was found in seasonal mean rainfall over Central India. The increasing trends in extreme rainfall 

events at annual and decadal over central India may be attributable to variations in SST over 

the tropical Indian Ocean (Rajeevan et al. 2008). Guhathakurta and Rajeevan (2008) 

investigated rainfall patterns across 36 meteorological subdivisions in India. They reported that, 

the contributions from June, July, and September rainfall were decreasing for a few sub-

divisions while August rainfall contributions were increasing to the annual rainfall. This is an 

indication that the frequency and magnitude of heavy rainfall events are increasing in the 

August month across the country. Dash et al. (2009) studied the characteristics of rainfall events 

in India. Based on the intensity of rainfall events, a decreasing trend was observed in low and 

moderate rainfall events in the hilly region and west central India, but increasing trends in heavy 

rain events in North-East India. On the basis of the duration of rainfall events, the rainfall event 

was classified as short, long, wet, dry, and prolonged dry spell. In terms of trends, a decreasing 

trend in the long spell events and an increasing trend in other categories was observed. The 

decreasing trend in the long spell events was observed in the west central region of India and 

increasing trends in other categories were observed in the hilly region, west central region and 

peninsular India.  

Guhathakurta et al. (2011) studied the impact of climate change on extreme rainfall events. 

They reported that the trends in heavy rainfall events were increasing in peninsular, east and 

north east India while decreasing in Central and North India. Ghosh et al. (2012) found that the 

trends in extreme rainfall events within the country were not uniform. Vittal et al. (2013) also 

found similar results. At a national level, rainfall extremes reported an upward trend whereas 

at a regional scale, rainfall extremes were exhibited a non-uniform trend. The authors also noted 

a significant difference in rainfall characteristics (intensity, frequency, and duration) before and 

after 1950. Guhathakurta et al. (2015) analyzed trends in monsoon rainfall in India as a whole 
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and four homogeneous regions. The trends in rainfall exhibited multi-decadal variability of 

rainfall in the country as well as in the regions. However, the phases of multi-decadal variability 

were different between the country and regions. The change point for all India southwest 

monsoon was observed in 1965, while the change points for Central, Northwest, Peninsular, 

and Northeast India were 1926, 1942, 1946, and 1961, respectively. During the southwest 

monsoon in India, moderate rainfall events (5 mm/day to 100 mm/day) decreased significantly, 

whereas rainfall events with intensity greater than 100 mm/day were unaffected. Deshpande et 

al. (2016) examined the temporal changes in rainfall and temperature extremes over major river 

basins in India. The extreme weather events were defined using thresholds of 10 cm for rainfall 

and 40°C and 10°C for maximum and minimum temperatures. They found that the number of 

dry days (zero rainfall) increased across the river basins except at some portions in the Krishna 

and Peninsular river basins. The rivers in the central part of India show an increasing trend for 

heavy rainfall events. An increase in the monthly maximum temperature has also been observed 

in Krishna, Peninsular, and West coast river basins, whereas no such trend was found with 

regarded to minimum temperature.  

Dubey and Sharma (2018) used 19 climate extreme indices based on rainfall and temperature 

data from regional climate models to analyze the historical and future climate predictions for 

Banas river basin in Rajasthan. They observed a significant trend in the number of warm days 

and nights, and a significantly decreasing trend in the number of cold days and nights. The total 

annual precipitation and the number of days with precipitation intensity greater than 10 mm/day 

and 20 mm/day in the basin have shown a decreasing trend, while consecutive dry days 

demonstrate an increasing trend for the historical and future periods. Bisht et al. (2018a, b) 

analyzed trends in rainfall and rainfall extremes at seasonal and annual scales of over 85 river 

basins in India from 1901 to 2015. They found that rainfall and rainfall extremes showed an 

increasing trend for most of the river basins. The Authors found that trends in rainfall and 

rainfall extremes showed significant difference during pre and post urbanization. Based on the 

aforementioned literature, it is clear that the patterns and variability rainfall characteristics have 

been widely investigated at national and regional scales and have drawn different conclusions. 

Some authors suggested that it is important to carry out trend analysis for rainfall characteristics 

for a basin at regional level rather than at national level for making better decisions, while others 

have not been so enthusiastic with the idea. 
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2.3 Evaluation of NWP Model Forecasts 

Increasing rainfall and extreme rainfall events are causing frequent floods in the Indian 

subcontinent and coastal regions in particular are at high risk for tropical cyclones which form 

over the BoB. Using NWP models will improve the forecast capability of rainfall and tropical 

cyclones. WRF is the most commonly used NWP model for predicting the track and intensity 

of tropical cyclones. In addition to the WRF model, several NWP models are also used for 

forecasting rainfall. However, the NWP model rain forecasts are subject to three types of errors: 

location, timing, and magnitude, which may limit their applicability for hydrometeorological 

applications. Therefore, the skill of NWP model forecasts needs to be evaluated before using 

them for any hydrometeorological application.  

 Prediction of Tropical Cyclones over Indian Region using WRF Model 

The WRF model has excellent ability to forecast extreme weather events on a high-resolution 

grid for the research and operational purposes (Moya-Álvarez et al. 2019). However, the ability 

of the WRF model to predict weather events depends on the initial and boundary conditions, 

representation of physical parameterization schemes, grid resolution, and geographical location 

(Di et al. 2015). Accurate representation of cloud processes in NWP models is crucial for the 

prediction of weather events, particularly for the track and intensity prediction of TCs. 

Representation of cloud processes plays an important role for the production and distribution 

of heat, mass, and momentum in the atmosphere in both horizontal and vertical directions based 

on precipitation, winds, and turbulence. The representation of physical parameterization 

schemes in NWP model is important, when the cloud processes and their effects are unresolved 

by the model (Deshpande et al. 2012; Sandeep et al. 2018). In the past two decades, based on 

several assumptions, researchers have developed a number of physical parameterization 

schemes for the prediction of weather events. Among all the physical parameterization schemes, 

Cloud Microphysics (CMP), Cumulus Parameterization Scheme (CPS), Planetary Boundary 

Layer (PBL), radiation (longwave and shortwave), and land-surface schemes are being used for 

weather predictions (Jandaghian et al. 2018). The cloud process in the model can be implicitly 

treated by CPS and explicitly treated by CMP schemes. CPS reduces convective instability in 

a model through the redistribution of temperature and moisture in a grid column (Wang and 

Seaman 1997). CMP schemes represent cloud and precipitation processes (e.g. condensation, 

nucleation, coalescence, phase changes, etc.) according to atmospheric conditions in terms of 
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temperature, wind, and moisture. Both CPS and CMP schemes control the spatio-temporal 

variations of rainfall and yield different profiles of moistening and heating in the atmosphere. 

Without double counting the thermo-dynamical impact, both types of schemes represent the 

convective activity (Deshpande et al. 2012; Sandeep et al. 2018). 

Numerous studies have been conducted to assess the impact of physical parameterization 

schemes on the prediction of track and intensity of TCs using WRF model. Among all schemes 

in the WRF model, convective processes play an important role in the development of TCs and 

boundary layer dynamics in intensification (Chandrasekar and Balaji 2012; Deshpande et al. 

2012; Pattanayak et al. 2012; Raju et al. 2011). Microphysical schemes have significant impact 

on the track prediction of TCs (Raju et al. 2011).  Pattanaik and Rama Rao, (2009) found that 

the movement of Nargis cyclone was captured well with a landfall error of 30 to 40 kilometers 

(km) by WRF Single Moment 3-Class (WSM3) CMP scheme along with Grell-Deveyani (GD) 

CPS, Yonsei University (YSU) PBL schemes. (Raju et al., 2011, 2012) conducted 11 sensitivity 

experiments with different combinations of CPS, CMP, and PBL schemes to find a suitable 

combination of physical schemes for the track and intensity prediction of Nargis cyclone. They 

reported that Nargis cyclone was simulated well by Ferrier CMP scheme in combination with 

Kain-Fritsch (KF) CPS, and YSU PBL schemes. The best set suitable schemes were further 

used to predict multiple cyclones over the BoB. The experiments revealed that the best suitable 

schemes predicted the track, intensity, and timing of landfall reasonably well with a mean track 

error of 98 km at the time of landfall.  Pattanayak et al. (2012) found that the track and intensity 

of TC Nargis was simulated well by Ferrier CMP scheme along with YSU PBL, Simplified 

Arakawa Schubert (SAS) CPS schemes. With the same CPS and PBL schemes, Kessler CMP 

scheme provided better results for TC Vardah (Sandeep et al. 2018). Kanase and Salvekar 

(2015) showed that WSM6 scheme in combination with Bettes-Miller-Janjic (BMJ) CPS and 

YSU PBL schemes simulated better results for TC Laila. Based on the sensitivity experiments 

conducted by Srinivas et al. (2013) and Lakshmi and Annapurnaiah (2016), the Lin scheme 

improved the results for TCs Sidr, Nisha, Tane, Jal, Nargis, and Hudhud along with a 

combination of Kain-Fritsch (KF) CPS and YSU PBL schemes. With the same combination of 

CMP and PBL schemes, Choudhury and Das (2017) (Choudhury and Das 2017) suggested the 

Goddard scheme and Ferrier scheme by Raju et al. (2011) and Reddy et al. (2014) for the 

prediction of TCs. Osuri et al. (2012) and Mahala et al. (2015) reported that TCs over NIO were 

simulated well by WRF Single Moment-3 (WSM3) scheme with the same CPS and PBL 

schemes. 
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Based on the previous studies, it may be difficult to identify a suitable microphysical scheme 

for the prediction of TCs over NIO region. Therefore, it is necessary to conduct numerical 

experiments to revalidate the suggested microphysical schemes for the prediction of TCs over 

NIO region. 

 Verification of GFS Model Forecasts  

Several studies examined the skill of rainfall forecast by various NWP models: these models 

include Limited area Analysis and Forecast System (LAFS) (Bhowmik et al. 2007), the Global 

Spectral Model (GSM) running at National Center for Medium Range weather Forecasting 

(NCMRWF) (Mandal et al. 2007), the NCEP-GFS (Dube et al. 2014; Durai and Bhowmik 2014; 

Durai et al. 2010; Mukhopadhyay et al. 2019; Prakash et al. 2016b; Sharma et al. 2015; Sridevi 

et al. 2020, 2018; Ganai et al. 2021), the Regional Meso-Scale Weather Simulation Model 

(Singh et al. 2014), and the UK Met Office Unified Model (Dube et al. 2014; Durai et al. 2015; 

Satyanarayana and Kar 2016; Sharma et al. 2017; Ashrit et al. 2020) over the Indian region. 

 Durai et al. (2010) evaluated the skill of GFS five-day rainfall forecasts during the monsoon 

season of the year 2008 against the observed rainfall based on gauge measurements and Kalpana 

– 1 satellite using various accuracy and skill measures. They found that around the 25 mm/day 

forecast threshold, expect for day-1 forecast, the bias for rainfall prediction moved from 

overestimation to underestimation. When there were rainfall thresholds of more than 10 

mm/day, the model's accuracy plummeted dramatically. Despite its bias in rainfall prediction, 

the model was far better at predicting the presence of rain than the magnitude and location of 

peak values. Dube et al. (2014) verified rainfall forecasts from GFS/T574 and NCMRWF 

Unified Model (NCUM) for heavy rainfall observed over Uttarakhand region of India on June 

17 -18, 2013 using Contiguous Rain Area (CRA) method. They reported that the NCUM model 

captured the circulation features more realistically than GFS model prediction. However, the 

NCUM model’s skill in forecasting rainfall was reasonable up to 3 days and forecast skill 

decreased as lead time increased (Satyanarayana and Kar 2016).  

Durai and Bhowmik (2014) verified the prediction skill of GFS T574 and GFS T1534 models 

over the Indian region for the 2011 summer monsoon season. They reported that both the 

models were capable of predicting rainfall, specific humidity, and lower tropospheric wind 

circulation. However, the magnitude of error for these parameters increased as the forecast lead 

time increased. Sharma et al. (2015) evaluated the medium range rainfall forecasts of 
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NCMRWF’s Global Forecast System (NGFS) over Indian regions during monsoon seasons 

from 2010 to 2013 using feature based Contiguous Rain Area (CRA) method. The error in 

rainfall forecast was decomposed into rainfall pattern, location, and volume. They reported that 

the pattern error contributed more to rainfall forecast error than rainfall volume. Durai et al. 

(2015) verified quantitative precipitation forecasts from four operational Ensemble Prediction 

System (EPS) of ECMRWF, UKMO, NCEP, and Japan Meteorological Agency (JMA) over 

India in the short to medium range time scales. They found that EPS could reproduce seasonal 

mean rainfall over climatologically heavy rainfall regions. The forecast skill of NCEP and 

UKMO appeared to be similar to the ensemble mean forecast of EPS. Prakash et al. (2016) 

evaluated the skill of GFS T574 and GFS T1534 models over South Asia during peak monsoon 

months. They reported that GFS T1534 performed marginally better than GFS T574. Similar 

findings were reported for India by Sridevi et al. (2020, 2018). Mukhopadhyay et al., (2019) 

verified the skill of GFS T1534 model over Indian subcontinent during monsoon seasons in 

2016 and 2017 using averaged gauge observations from IMD and rainfall from TRMM satellite 

data. The model accurately predicted moderate rainfall events. It overestimated rainfall events 

with light intensity and underestimated rainfall with heavy intensity. The spatio-temporal 

variations in rainfall were reasonably well captured. The authors suggested further development 

in the model with adequate input in initial conditions and data to enhance the model's skill in 

forecasting heavy rainfall events. Similar findings were reported by Ganai et al., (2021). Ashrit 

et al., (2020) evaluated the capabilities of different numerical models from the NCMRWF in 

forecasting extreme rainfall event across Kerala during August 2018. They reported that the 

model forecasts were accurate for short-term lead times (up to 3 days) mainly in terms of timing 

and to some extent in terms of rainfall intensity. 

Based on previous studies, it is clear that the skill of rainfall forecasts from NWP models has 

been verified across India, and that the models are capable of capturing rainfall over various 

climatological regions. Though the models are able to capture rainfall, the accuracy in 

predicting location and magnitude varies considerably which causes systematic bias in 

forecasting rainfall. Hence, post-processing of rainfall forecasts to reduce bias may be required 

for operational purposes. The most commonly used post-processing methods are Neural 

Network (NN) method, Logistic Regression (LR), Bayesian Model Average (BMA), Model 

Output Statistic (MOS) method, Running Mean (RM), etc. (Durai and Bhradwaj 2014; Fan and 

Van 2011; Yang et al. 2020; Zarei et al. 2021). Although every bias correction method has its 

advantages and disadvantages, there is no perfect method for bias correction. For instant, MOS 
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requires long training periods from a static model, while NN and BMA require extensive 

computational resources. Furthermore, NWP model centers make frequent changes to 

numerical procedures, physical parameterizations and model resolutions (Durai and Bhradwaj 

2014). To overcome the ever changing NWP model base, Ebert (2001) introduced the concept 

of Frequency Matching Method (FMM). The method can apply dynamic bias correction and 

requires fewer computational resources. Since 2004, FMM has been implemented to bias 

correct GFS provided rainfall forecasts at NCEP in the United States (Zhu and Toth 2004). 

Many studies have demonstrated that, FMM is good enough to bias correct rainfall forecasts 

over the region of interest (Wang et al. 2020; Zhu and Luo 2015; Yang et al. 2020; Guo et al. 

2021). Wang et al. (2020) suggested that applying bias correction to rainfall forecasts at basin 

level may improve forecast accuracy. Hence, for any hydrometeorological applications, the 

NWP model forecasts at the basin level need to be verified rather than at country level to use in 

modeling applications. 

2.4 Flood Forecasting and Warning System 

Flood forecasting and early warning is one of the most effective flood risk management 

strategies to minimize the negative impacts of floods (ESCAP 2017). The CWC is the nodal 

agency in India that provides deterministic flood forecasts based on observed precipitation and 

streamflow across the major rivers and their tributaries (CWC 2020). During extreme weather 

events, local agencies use CWC water level forecasts to plan rescue operations (Harsha 2020). 

However, water level estimates at a point were inconsistent and sparse over large areas, 

resulting in uncertainty in estimating flood inundation area and flood depth, making rescue 

operations difficult for local agencies. As a result, there is a need for integrated hydrologic and 

hydraulic models to be developed with enough lead time to provide flood forecasts as well as 

inundation extent and depth. 

 Integrated Hydrologic and Hydraulic Models 

Integrating hydrologic and hydraulic models can be a powerful method of modeling extreme 

hydrometeorological events using current computing resources (Leon et al., 2014; Sridhar et 

al., 2019). Biancamaria et al., (2009) coupled an ISBA hydrologic model with a LISFLOOD-

FP hydrodynamic model to simulate runoff in an ungauged Ob River basin in the Arctic region. 

The best modeling results were obtained with a river depth of 10 m and a Manning coefficient 

of 0.015. Bonnifait et al., (2009) coupled n-TOPMODEL hydrologic model with a CARIMA 
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one dimensional hydraulic model to reconstruct a flood event in the Gard region of France in 

2002 for post-event surveys. They suggested that the coupled model was useful for critical 

analysis and extrapolation of discharge rating curves. Schumann et al., (2013) integrated the 

VIC model with LISFLOOD-FP for flood inundation forecasting over the Lower Zambezi 

River in Africa. The model simulated inundation extent showed an agreement of 86% when 

compared with the observed flood map. Grimaldi et al., (2013) proposed a hydrologic and 

hydraulic model for a small and ungauged watershed using WFIUH hydrologic model and 

FLO-2D hydraulic model. For peak flow estimation, the model was tested using an event-based 

approach, a semi-continuous approach, and a fully-continuous approach. They found that the 

fully continuous approach accurately predicted peak flows when compared to observed flows. 

Nam et al., (2014) integrated the super-tank hydrologic model with the one-dimensional HEC-

RAS model to study Vu Gia-Thu Bon River in central Vietnam. The model predicted flood 

inundation depth and extent which agreed well with field observations. Nguyen et al., (2016, 

2015) developed HiResFlood-UCI, an integrated hydrologic and hydraulic model for flash 

flood modeling at decameter resolution by combining the NWS’s hydrologic model (HL-

RDHM) with the hydraulic model (BreZo). The model was able to produce spatially distributed, 

high resolution flow information while maintaining hydrograph quality. Mai and De Smedt, 

(2017) linked the WetSpa and HEC-RAS models for flood prediction in Vietnam. Hydrographs 

were accurately predicted, with Nash-Sutcliffe efficiencies greater than 0.8. In particular, the 

time of concentration and flow volumes of peak flows, were predicted accurately. They 

suggested that the model was suitable for predicting inundation and assessing flood risks. 

Duvvuri, (2019) integrated SWAT model with HEC-RAS model to generate flood inundation 

maps in the flood prone areas of Cauvery river basin in India. The model was able to produce 

spatially distributed high-resolution flood inundation areas. Loi et al., (2019) developed an 

integrated hydrologic and hydraulic model based on SWAT and HEC-RAS to provide flood 

forecasting and warnings in the Vu Gia – Thu Bon river basin, Quang Nam province, Vietnam. 

The results showed that the model was able to predict the magnitude and timing of peak floods. 

Sholichin and Qadri, (2020) integrated SWAT model with HEC-RAS to identify inundation 

areas in the Bila river basin in Indonesia. The authors reported that the integrated model was 

able to predict flood inundation areas. The flood inundation maps can be exported into Web-

GIS based platforms for visualization and dissemination of flood related information in real-

time. 
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2.5 Flood Area Visualization and Public Dissemination Systems 

Visualization and public dissemination system based on Web-GIS provides a graphical user 

interface for accessing spatial data, performing spatial analysis, and visualizing web-services 

through a web browser. Auynirundronkool et al. (2012) developed a method for automatic real-

time flood detection involving a data retrieval service, a flood Sensor Observation Service 

(SOS) and a web-based flood detection service in a sensor web environment. The methodology 

developed was tested in central Thailand. The results indicated that the proposed approach 

could be useful for automatic instant flooding detection. Wan et al. (2014) developed a global 

CyberFlood with cloud computing service integration and crowdsourcing data collection. The 

model allows the public to update information on new flood events through smartphones or the 

internet. It provides location-based flood alerts to the public and local agencies for planning 

rescue operations. Horita et al. (2015) developed SDSS for flood risk management based on 

Wireless Sensor Networks (WSN) and Volunteer Geographic Information (VGI) for the town 

of Sao Carlos in Brazil. SDSS was able to provide valuable information by combining WSN 

and VGI data for emergency agencies for rescue operations during floods.  

Knight et al. (2015) developed a DST that helps operational users take better decisions during 

extreme weather events. Flood information from LISSFLOOD-FP and SWAB models was 

incorporated into DST tool. The user interface enables users to adjust the input parameters 

according to the current situation to get flood information. Lagmay et al. (2017) developed a 

Web-GIS interface based on mashups of freely available source code that provides real-time 

information about natural disasters such as floods, tropical cyclones, earthquakes, tsunamis, and 

volcanic eruptions. This tool is heavily used by the Philippine government to plan prevention 

and mitigation measures when extreme events occur. Chang et al. (2018) developed an IHIP 

that used machine learning, visualization, and system design techniques to create a user-friendly 

web interface for improving online forecast capabilities and flood risk management in the 

Tiwan City. The IHIP framework consists of five layers including data access, data integration, 

servicer, functional subsystem, and user applications, and one database for flood prediction. 

The IHIP provides information about rainfall and floods in real-time which helps the 

communities in making better decisions during the floods. Mohanty and Karmakar (2021) 

developed a WebFRIS for Jagatsinghpur district in India using various open source tools and 

packages. The WebFRIS provides crucial information to town planners, water professionals, 

local bodies, flood experts, and also public on flood risk management. In the above literature, 
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it has been observed that open source based Web-GIS frameworks are widely used for 

disseminating flood inundation areas. 

2.6 Critical Appraisal of Literature Review 

Changing climate has altered the frequency, magnitude, duration, spatial extent, and timing of 

weather and climate extremes such as tropical cyclones, floods, and droughts. Rainfall is one 

of the most important climate variables that varies both in space and time. Rainfall and rainfall 

extremes in the Indian sub-continent are expected to be impacted by warming climate in future 

(Ali et al. 2019). Recent studies by Bisht et al., 2018, Dubey and Sharma, 2018, Jain et al., 

2017, reported a significant increasing trend in rainfall extremes across India at national and 

regional levels. However, the trends are not uniform across the country with regard to floods 

and droughts (Ghosh et al. 2012).  Floods are the most common natural disasters in India 

causing significant damage to human lives and infrastructure. For instance, recent floods in 

Hyderabad in 2020, Kerala in 2018, and Chennai in 2015 caused huge damage to humans and 

property. Early information about floods will help the public and government officials to take 

necessary action during extreme flood events. Flood forecasting and early warning system is an 

effective tool to minimize the negative impact of floods (Harsha 2020). With advancements in 

computational resources, an integrated hydrologic and hydraulic model can be a powerful 

method in modeling such extreme hydrometeorological events (Sravani 2018). Members of the 

general public and government officials will make better decisions during extreme events, if 

information is available in real-time through Web-GIS based interface systems. Detailed 

methodology is presented in the subsequent chapters based on the objectives proposed in 

chapter-1 and the literature review of the proposed objectives.  
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 Methodology 

3.1 General 

Based on the objectives presented in the chapter – 1 and literature review in chapter - 2, the 

overall research methodology is prepared which is shown in Figure 3.1. The overall 

methodology is divided into five major components that include analysis of trends and patterns 

in rainfall characteristics over the study area, forecasting rainfall using WRF model, bias 

correction of NCEP-GFS (hereafter GFS) based rainfall forecasts, development of an integrated 

hydrologic and hydraulic modeling system for forecasting floods, and development of an Web-

GIS based graphical user interface for visualization and dissemination of flood inundation 

information. 

Trends in rainfall and rainfall extremes (Consecutive Dry Days (CDD), Consecutive Wet Days 

(CWD), annual total precipitation in wet days (PRCPTOT), annual count of days when rainfall 

is greater than 10 mm (R10MM), greater than 20 mm (R20MM), greater than 40 mm (R40MM), 

95th percentile of rainfall on wet days (R95PTOT), monthly maximum 1-day rainfall 

(RX1DAY), and monthly maximum consecutive 5-day precipitation (RX5DAY)) are examined 

using four different Mann-Kendall (MK) tests to study the trends and patterns in rainfall 

characteristics and to identify critical areas that are prone to floods in the selected study area. 

To forecast floods, rainfall forecasts from NWP models such as WRF and GFS have been used. 

The mechanism used by WRF model for weather forecasting is shown in Figure 3.2. A simple 

multiplication bias correction scheme is used to apply bias corrections to GFS rainfall forecasts. 

The Bias corrected NWP model forecasts are given as input to the calibrated and validated 

SWAT model to forecast streamflow with lead-time. The forecasted streamflow are given as 

upstream boundary condition in HEC-RAS model to determine the flood inundation extent. 

An integrated hydrologic and hydraulic modeling system is developed based on SWAT and 2D 

HEC-RAS models to simulate floods using rainfall forecasts from NWP models. Geospatial 

data such as Digital Elevation Model (DEM), LULC, and soil maps are required to set-up 

SWAT model. The daily meteorological like rainfall, maximum, and minimum temperature are 

used to simulate the streamflow. Uncertainty in Sequential Uncertainty Fitting – 2 (SUFI-2) 

algorithm in the SWAT-CUP is used for calibration, validation, and sensitivity analysis. The 

observed streamflow at various gauge stations is used to calibrate and validate the SWAT model 
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on daily basis. Once the SWAT model calibration and validation is completed, the SWAT 

model will simulate the streamflow for the selected extreme events. The simulated streamflow 

will be given as upstream boundary condition for the generation of flood inundation extent. The 

flood inundation maps are further exported into GeoServer to publish the layers in Web-GIS 

platform. Two river basins (Nagavali and Vamsadhara) which are prone to frequent floods due 

to heavy rainfall in the monsoon season and tropical cyclones in the pre- and post-monsoon 

season are chosen as study areas for this research. 

 

 

Figure 3.1 Overall methodology of the research work 
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Figure 3.2 Mechanism used by WRF model to forecast weather parameters 

3.2 Calculation of Rainfall Extremes 

The rainfall extremes play an important role in understanding their hydrological impacts in a 

river basin. Based on the daily values of temperature and precipitation, the joint 

CCI/WCRP/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) 

defined a total of 27 indices out of which 11 are for precipitation extremes and 16 for 

temperature extremes to gain insight into the changes in extremes (Yang et al. 2016). Among 

the 11 precipitation indices, 9 are selected to investigate the characteristics of rainfall extremes 

over Nagavali and Vamsadhara basins. The rainfall extremes are calculated at various temporal 

scales (i.e., monthly, seasonal, and annual) using RClimDex package in R developed and 

maintained by Xuebin Zhang and Yang Fang at Climate Research Division (CRD) or ETCCDI 

(Bronaugh 2019). It is the most commonly used package for calculating rainfall extremes. The 

package also conducts simple quality control on input data before calculating the rainfall 

extremes. The detailed description of rainfall extremes are presented in Table 3.1.  
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Table 3.1 Selected list of rainfall extremes in the present study and their definitions (Source: http://etccdi.pacificclimate.org/list_27_indices.shtml) 

Extremes Units Definitions 

CDD Day Maximum length of dry spell, Maximum number of consecutive days with RR < 1 mm. Count the largest number of consecutive 

days where RRij < 1 mm 

CWD Day Maximum length of wet spell, Maximum number of consecutive days with rainfall ≥ 1 mm. Count the largest number of consecutive 

days where RRij ≥ 1 mm 

PRCPTOT mm Total amount of rainfall in wet days. if i represents the number of days in j, then 

PRCPTOT =  ∑RRij

I

j=1

 

R10MM Day Number of days when RR ≥ 10mm. Count the number of days where RRij ≥ 10mm. 

R20MM Day Number of days when RR ≥ 20mm. Count the number of days where RRij ≥ 20mm. 

RNNMM Day Number of days when RR ≥ nnmm. Count the number of days where RRij ≥ nnmm. (Where nn = User defined threshold) 

R95PTOT mm Total rainfall when RR > 95p. Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1 mm) in period I and let RRwn 

be the 95th percentile of RR on wet days. If W represents the number of wet days in the period, then 

R95pj = ∑ RRwj

W

w=1

 where RRwj  >  RRwn95 

RX1DAY Day Maximum 1-day rainfall. The maximum 1-day values for period j are RX1DAYj = max(RRij) 

RX5DAY Day Maximum 5-day rainfall. Let RRkj be the rainfall amount for the 5-day interval ending k period j. The maximum 5-day values for 

period j are  RX5DAYj = max(RRkj) 

Note: *RRij is the daily rainfall amount on the day i in period j. For RNNMM, a threshold of 40 mm is chosen, and the extreme is R40MM

http://etccdi.pacificclimate.org/list_27_indices.shtml


 

31 

The data format for calculating rainfall extremes is presented in Table 3.2. For calculating 

CDD, the software counts the number of consecutive days with rainfall less than 1mm. For 

instance, CDD for the data provided in Table 3.2 is 4 days. 

Table 3.2 Data format for computing rainfall extremes 

Year Jday IMD Gridded Data 

1901 1 0 

1901 2 0 

1901 3 0.7 

1901 4 0 

1901 5 3 

1901 6 1.5 

1901 7 2 

1901 8 0 

3.3 Trends in Rainfall and Rainfall Extremes 

The most common method used for detecting trends in time series data is the original Mann-

Kendall (MK) test. The MK test has proven to be useful in determining significant trends in 

hydrologic data at different probability levels (Yadav et al. 2014; Bisht et al. 2018a), which 

assumes spatial and temporal independence in hydrological time series data (Adarsh and 

Janga Reddy 2015; Deshpande et al. 2016; Dubey and Sharma 2018; Guhathakurta et al. 

2015). It is well documented that the presence of either positive or negative autocorrelation 

influences the significance of trend (Kumar et al. 2009). The original MK test assumes no 

serial correlation in the hydrological time series data. However, most often, hydrological 

time series data are autocorrelated and lead to a disproportionate false rejection of null 

hypothesis (Hamed 2008; Hamed and Rao 1998; Yue et al. 2003). Similarly, the presence of 

long-term persistence can lead to underestimation of serial correlation and overestimation of 

significance of trends (Su et al. 2018). To overcome these effects, trend analysis is performed 

in this research using four kinds of MK tests i.e., the original Mann-Kendall test (MK1), 

Mann-Kendall test with trend-free pre-whitening (MK2), modified Mann-Kendall test 

(MK3), and Mann-Kendall test with long-term persistence (MK4). The detailed description 

of the four MK tests is provided in the following sections.  
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 Mann-Kendall Test (MK1) 

The original Mann-Kendall (MK) (Kumar et al. 2009) test is widely used for detecting trends 

in a hydrological time series dataset. If 𝑥1, 𝑥2, 𝑥3, ……… , 𝑥𝑛 is the time series of length 𝑛, 

then the MK1 test statistics S is given by:  

𝑆 =  ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 (3.1) 

Where, 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) =   {

1     𝑖𝑓 (𝑥𝑗 − 𝑥𝑖)  > 0 

0      𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1   𝑖𝑓 (𝑥𝑗 − 𝑥𝑖)  < 0

 (3.2) 

Null hypothesis(H0): There is no trend in a hydrological time series dataset. Alternate 

hypothesis(H1): There exists an increasing or decreasing trend in a hydrological time series 

dataset. As S is normally distributed, the mean E(S) and variance of statistic 𝑆 in eq. (3.1) is 

given below: 

𝐸(𝑆) = 0 (3.3) 

𝑉(𝑆) =  
𝑛 (𝑛 − 1)(2𝑛 + 𝑆)

18
 (3.4) 

The MK standardized test statistics Z is given by: 

𝑍 = 

{
 
 

 
 

𝑆 − 1

(𝑉(𝑆))1/2
       𝑆 > 0

0                     𝑆 = 0
𝑆 + 1

(𝑉(𝑆))1/2
       𝑆 < 0

 
(3.5) 

The negative values of S indicate decreasing trend and vice versa. The test statistic 𝑍 gives 

Significance Levels (SL) for rejecting null hypothesis. Confidence Level (CL) for rejecting 

the null hypothesis is given by:  

𝐶𝐿 = 1 − 𝑆𝐿 (3.6) 

The magnitude of trend is determined by Theil-Sen approach (TSA) (Kumar et al. 2009). The 

mathematical expression for TSA slope is given in eq. (3.7): 

𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛 [
𝑥𝑗− 𝑥𝑖

𝑗−𝑖
] for all i < j (3.7) 



 

33 
 

If the condition −𝑍𝑘(1−𝛼
2
) ≤ 𝑍𝑘 ≤ 𝑍𝑘(1+𝛼

2
) is satisfied then H0 is accepted at a significance 

level of 𝛼, otherwise, H1 is accepted. 

 Mann-Kendall Test with trend-free pre-whitening (MK2) 

Yue et al., (2003) showed that there will be an increase (decrease) in S value when 

autocorrelation is positive (negative) which is underestimated (overestimated) by the original 

variance V(S). Thus, when trend analysis is conducted for the present data using MK1, it will 

show positive or negative trends when actually there is no trend. So, trend free pre-whitening 

treatment is adopted where lag-1 serial correlation components are removed from the series 

prior to applying MK test for trend detection. The following steps are used to determine trend 

analysis using MK-2 test. Calculate lag-1 (k = 1) autocorrelation coefficient (𝑟1) using eq. 

(3.8): 

𝑟𝑘 =

1
𝑛 − 𝑘

∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖+𝑘 − 𝑥̅)
𝑛−𝑘
𝑖=1

1
𝑛
∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1

 
(3.8) 

If the condition 
−1−1.645√𝑛−2)

𝑛−2
≤ 𝑟1 ≤

−1+1.645√𝑛−2)

𝑛−2
 is satisfied, then the series is assumed to 

be independent at 10% significance level and there is no need of pre-whitening. Otherwise, 

pre-whitening is required for the series before applying MK1 test. 

Eq. (3.9) is used to remove the trend in time series data to get detrended time series. The 

value of 𝛽 is obtained from eq. (3.7): 

𝑥𝑖
′ = 𝑥𝑖 − (𝛽 × 𝑖) (3.9) 

Eq. (3.8) is used to calculate lag-1 autocorrelations for detrended time series given by eq. 

(3.9). To remove the lag-one autoregressive component from the detrended series to get a 

residual series will be the following expression: 

𝑦𝑖
′ = 𝑥𝑖

′ − 𝑟1 × 𝑥𝑖−1
′  (3.10) 

Yet again, (𝛽 × 𝑖) value is added to the residual series as follows: 

𝑦𝑖 = 𝑦𝑖
′ + (𝛽 × 𝑖) (3.11) 

MK1 test is applied to the blended series 𝑌𝑖 to determine the significance of the trend.  
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 Modified Mann-Kendall test 3 (MK3) 

Sometimes, removing lag-one autocorrelation is not enough for many hydrological time 

series datasets. Hamed and Rao, (1998) proposed a modified Mann Kendall test where the 

effect of all significant autocorrelation coefficients are removed from a data set. The 

modified variance of S is used i.e., V(S)∗ instead of V(S) which is given as follows: 

𝑉(𝑆)∗ = 𝑉(𝑆)
𝑛

𝑛∗
 (3.12) 

Where 𝑛∗is effective sample size. Hamed and Rao (1998) proposed an equation for the 

calculation of 
𝑛

𝑛∗
 which is given below: 

𝑛

𝑛∗
= 1 +

2

𝑛(𝑛 − 1)(𝑛 − 2)
 ∑(𝑛 − 1)(𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)𝑟𝑖

𝑛

𝑖=1

 (3.13) 

Where 𝑛 is actual number of observations, 𝑟𝑖 is lag-i significant autocorrelation coefficient 

of rank i of time series. After calculating V(S)∗, substitute it in place of V(S) in eq. (3.4) 

when calculating Z from eq. (3.5). 

 Mann-Kendall test with long-term persistence (MK4) 

In addition to the lag-one autocorrelation i.e. short-term persistence, the presence of Long-

Term Persistence (LTP) or the Hurst Phenomenon (Hp) (Hurst, 1951) can considerably 

influence the significance of trends in hydrological time series dataset. To overcome LTP, 

Mann Kendall test with LTP is taken into consideration (Hamed 2008). The following steps 

are used to determine trend analysis using MK4 test. The procedure for calculating Hp is 

given as follows: A new time series 𝑥𝑖
′ is calculated from eq. (3.9). Using the ranks (Ri) of 

the detrended time series 𝑥𝑖
′, Z variate is calculated as follows: 

𝑍𝑖 = ∅
−1 (

𝑅𝑖
𝑛 + 1

) (3.14) 

Where 𝑛 is observation size, ∅−1 is inverse of standard normal distribution function with zero 

mean and standard deviation is 1. For a given 𝐻, the elements of Hurst matrix are determined 

as follows: 

𝐶𝑛(𝐻𝑝) = [𝜌|𝑗−1|] for 𝑖 = 1: 𝑛, 𝑗 = 1: 𝑛 (3.15) 

Where 𝜌𝑙 represents lag-l autocorrelation coefficient which is given below: 

𝜌𝑙 =
1

2
[|𝑙 + 1|2𝐻𝑝 − 2|𝑙|2𝐻𝑝 + |𝑙 − 1|2𝐻𝑝]  for 𝑙 > 1 (3.16) 
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To calculate the exact value of 𝐻𝑝, the maximizing likelihood function is used as given below 

𝑙𝑜𝑔𝐿(𝐻𝑝) = −
1

2
log|𝐶𝑛(𝐻𝑝)| −

𝑍𝑇[𝐶𝑛(𝐻𝑝)]
−1
𝑍

2𝛾0
 (3.17) 

Where transpose of Z (𝑍𝑇) is obtained from MK-1 test, 𝐶𝑛(𝐻𝑝) is the Hurst matrix,  𝛾0 

represents the variance. Eq. (3.17) is solved for different values of H ranging from 0.5 to 0.98 

with 0.01 step interval and the 𝐻𝑝 value which produces maximum 𝐿(𝐻𝑝) detected, as the 

answer.  

The mean and Standard Deviation of 𝐻𝑝 in terms of n (Hamed 2008) are as follows: 

𝜇𝐻𝑝 = 0.5 − 2.87𝑛
−0.9067 (3.18) 

𝜎𝐻𝑝 = 0.77654𝑛−0.5 − 0.0062 (3.19) 

Then, calculate 𝑍𝑐 𝑎𝑠 
𝐻𝑝−𝜇𝐻𝑝

𝜎𝐻𝑝
 for a significance of trend at 10% significance level. For 

significant H, calculate the modified variance for S, recommended by Kumar et al (2009) 

𝑉(𝑆)𝐻
′
=∑∑

2

𝜋
𝑠𝑖𝑛−1 (

𝜌|𝑗 − 𝑙| − 𝜌|𝑖 − 𝑙| − 𝜌|𝑗 − 𝑘| + 𝜌|𝑖 − 𝑘|

√(2 − 2𝜌|𝑖 − 𝑗|)(2 − 2𝜌|𝑘 − 𝑙|)
)

𝑘<𝑙𝑖<𝑗

 (3.20) 

Where 𝜌𝑙 is calculated from eq. (3.16). As the modified variance (𝑉(𝑆)𝐻
′
) is a biased 

estimator, correction is needed for bias as follows: 

𝑉(𝑆) = 𝑉(𝑆)𝐻𝑝
′
× 𝑏 (3.21) 

 𝑏 = 𝑎0 + 𝑎1𝐻𝑝 + 𝑎2𝐻𝑝
2 + 𝑎3𝐻𝑝

3 + 𝑎4𝐻𝑝
4 (3.22) 

Where, 𝑎0, 𝑎1, 𝑎2, 𝑎3, and 𝑎4 are coefficients which depends on the number of observations 

given by Kumar et al (2009). The modified variance 𝑉(𝑆)𝐻𝑝
′
 obtained from eq. (3.20) is 

substituted in place of V(S) eq. (3.4) in MK1 test. The Mann Kendall Z statistics are tested 

for significance levels with the threshold values. 

 Pettit’s Test 

Pettit’s test is commonly used for a significant change point in time series data. It tests H0: 

The T variables follow one or more distributions that have the same location parameter (no 

change), against the alternative hypothesis: a change point exists. The non-parametric 

statistic is defined as: 
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𝐾𝑇 = 𝑚𝑎𝑥|𝑈𝑡,𝑇| (3.23) 

Where,                              𝑈𝑡,𝑇 = ∑ ∑ 𝑠𝑔𝑛 (𝑋𝑖 − 𝑋𝑗)
𝑇
𝑗=𝑡+1

𝑡
𝑖=1  (3.24) 

The change point in the time series is located at 𝐾𝑇, provided that the statistic is significant. 

The significance probability of 𝐾𝑇 is approximated for 𝑝 ≤ 0.05 with the following equation: 

𝑝 = 2 exp(
−6 𝐾𝑇

2

𝑇3 + 𝑇2
) (3.25) 

 Software Packages Used for Trend Analysis 

Two open source packages in R Version (3.5.3) namely “modifiedmk” (Patakamuri and 

O’Brien 2019) and “HKprocess” (Tyralis 2016) are used to perform MK tests. The 

“modifiedmk” is used to perform MK1, MK2, and MK3 tests and Sen’s slope test. Another 

package “HKprocess” is used to perform MK4 test. To get the spatial patterns of trends from 

point observations, kriging interpolation is applied using geospatial software. 

3.4 Rainfall Forecasts from Numerical Weather Prediction (NWP) Models 

The NWP modeling is a method of forecasting the future atmospheric conditions by solving 

a set of mathematical equations that describe the physical phenomenon of the atmosphere. 

The meteorological variable in the atmosphere change over time, so if the initial conditions 

are known, the governing equations in NWP models can be solved and new values of 

meteorological variables can be obtained. The simplest form of NWP model is given as 

follows:  

∆𝐴

∆𝑡
= 𝐹(𝐴) (3.26) 

Where, ∆𝐴 gives the change in forecast variable at a particular location in space, ∆𝑡 represents 

the change in time, and 𝐹(𝐴) represents the factors that are responsible for changes in the 

values of A. The mathematical expression for finding the forecast value of the meteorological 

variable is given in the following equation: 

𝐴𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 = 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐹(𝐴) (3.27) 

Eq. (3.27) means that, the forecast value of any meteorological variable can be estimated by 

finding their initial values and then adding all the factors that are responsible for changes in 

the meteorological variable over a period of time. With advancements in computational 

power, most of the NWP models are able to provide rainfall forecasts with a lead time of 1 
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to 15 days. Accurate rainfall forecasts from NWP models will help in reducing the 

uncertainty in streamflow forecasts. However, the rainfall forecasts from NWP models are 

subjected to three types of errors (i) Location, (ii) Magnitude, and (iii) Timing, which may 

limit the usefulness for streamflow forecasting. Therefore, the skill of NWP model forecasts 

needs be evaluated before using them for any hydrometeorological applications. 

 Evaluation of WRF Model Forecasts 

Statistical analysis is the most common method to find the uncertainty in model forecasts 

with respect to observations. The Direct Positional Error (DPE) has been calculated by using 

Haversine formula which gives the geographical distance between two points on a sphere. 

The mathematical expression for Haversine for any two points on a sphere is as follows: 

𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (
𝑑

𝑟
) = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (∅2 − ∅1) + cos(∅1) cos(∅2) ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(𝜆2 − 𝜆1) (3.28) 

Where, haversine is the haversine function which is given as follows: 

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (𝜃) =  𝑠𝑖𝑛2 (
𝜃

2
) (3.29) 

Where, 𝑑 is the distance between the two points, 𝑟 is the radius of the earth (6378 km), ∅1 

and ∅2 are the latitudes of point2 1 and 2, 𝜆1 and 𝜆2 are longitudes of points 1 and 2. The 

value of 𝑑 in eq. (3.28) can be obtained by using the following equation: 

𝑑 = 2𝑟𝑎𝑟𝑐𝑠𝑖𝑛 (√ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (∅2 − ∅1) + 𝑐𝑜𝑠(∅1) 𝑐𝑜𝑠(∅2) ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(𝜆2 − 𝜆1)) (3.30) 

Mean Sea Level Pressure (MSLP) and Maximum Sustained Wind (MSW) are measured at 

each time step and evaluated against IMD observations. The Mean Absolute Error (MAE), 

Mean Square Error (MSE) have been calculated with respect to IMD observations. MAE is 

an average prediction error that is used to measure the forecast accuracy. MSE is a measure 

to determine the quality of a forecast with a positive value. If the value of MAE and MSE 

are close to zero, the quality of the forecast is better. The Skill Score (SS) of DPE, MSLP 

and MSW have been calculated with respect to reference forecast. The mathematical 

expressions for the MAE and MSE, SS for MAE, MSE and DPE are as follows: 

Mean Absolute Error (MAE) =  
1

n
∑ |Ps − Po|

n

i=1
 (3.31) 
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Mean Square Error (MSE) =  
1

n
∑ (Ps − Po)

2
n

i=1
 (3.32) 

Skill Score (𝑆𝑆𝑖) = 1 − 
MSESimulation
MSEReference

 (3.33) 

Skill Score (𝑆𝑆𝐷𝑃𝐸) = 1 − 
DPESimulation
DPEReference

 (3.34) 

 

In the above equations, Ps is simulated value of parameter, Po is observed value of parameter, 

and 𝑛 is number of observations. SS is the relative accuracy score of a forecast over a 

reference forecast. The reference forecast has been chosen based on the numerical 

experiments conducted by Srinivas et al. (2013). By conducting 65 numerical experiments, 

Srinivas et al. (2013) suggested that Lin scheme provided better results for track and intensity 

prediction of 21 TCs over BoB. Hence, sensitivity experiments using Lin scheme considered 

are as a reference forecast and the skill score for all the other microphysical schemes are 

calculated. Positive values of SS indicate that the model is more skilled and vice-versa. 

 Evaluation of GFS Rainfall Forecasts 

The verification of GFS model rainfall forecasts are carried out against IMD gridded rainfall 

data at the same resolution (0.25° × 0.25°). Model performance is evaluated using several 

accuracy and skill measures (Broorks et al. 2017) for day-1 to day-5 forecasts of 24-h 

accumulated rainfall over Nagavali and Vamsadhara basins. 

3.4.2.1 Statistical Metrics 

Statistical metrics such as CC, RMSE, ME, and BIAS are used to quantify the difference 

between GFS rainfall forecasts and observed data. CC refers to the degree of linear agreement 

between the forecasted and reference datasets. The absolute average error is measured using 

RMSE, which gives more weight to larger errors. ME refers to the averaged magnitude 

differences between the forecasted and reference datasets. Bias measures the average error 

trend in forecasted rainfall relative to observed rainfall. The mathematical equation for CC, 

RMSE, ME, and RBIAS are given as follows (Prakash et al. 2016a): 

𝐶𝐶 =  
∑ (𝑂𝑖− 𝑂̅)(𝑆𝑖− 𝑆̅)
𝑛
𝑖=1

√∑ (𝑂𝑖− 𝑂̅)
2𝑛

𝑖=1  √∑ (𝑆− 𝑆̅)2𝑛
𝑖=1

  (3.35) 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑆𝑖 −  𝑂𝑖)2

𝑛

𝑖=1
 (3.36) 

𝐵𝐼𝐴𝑆 =  
∑ (𝑆𝑖− 𝑂𝑖)
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 × 100 (3.37) 

𝑀𝐸 =  
1

𝑛
∑ (𝑆𝑖 −  𝑂𝑖)

𝑛

𝑖=1
 (3.38) 

Where, O is the observed rainfall data, S is the GFS forecasted rainfall data, 𝑂̅ is the mean 

of observed rainfall, 𝑆̅ is the mean of the forecasted rainfall, and n is the total number of 

observations. 

3.4.2.2 Contingency Statistics 

Due to the high spatial and temporal variability of rainfall, the standard method proposed by 

World Meteorological Organization (MWO) is insufficient for the verification of rainfall 

forecasts provided by NWP models (WMO 1977). For measuring the skill of the NWP model 

for rainfall forecasts, contingency statistics based on frequency of occurrence are more 

appropriate (Durai et al. 2010). Contingency statistics are used to evaluate the GFS model’s 

skill to distinguish between dichotomous estimation. The dichotomous estimation will return 

‘Yes’ if the model predicts rainfall and ‘No’ if there is no rain. A threshold value is always 

used to distinguish between rain and no-rain events. Therefore, a threshold of 1 mm/day is 

considered. The contingency statistics used in the present study are POD, FAR, CSI, and 

TSS. POD measures the fraction of observed rain events that are correctly forecasted by the 

model. FAR indicates the fraction of forecasted rain events that are observed to be no-rain 

events. CSI measures the fraction of rainfall events that are correctly diagnosed by the model. 

TSS measures the ability of the model to distinguish between the occurrence and non-

occurrence of an event. The mathematical equations for POD, FAR, CSI, and TSS are given 

as follows (Sharma et al. 2021). 

𝑃𝑂𝐷 =  
𝐻

𝐻 +𝑀
 (3.39) 

𝐹𝐴𝑅 =  
𝐹

𝐻 + 𝐹
 (3.40) 

𝐶𝑆𝐼 =  
𝐻

𝐻 +𝑀 + 𝐹
 (3.41) 

𝑇𝑆𝑆 =  
(𝐻 × 𝐶𝑁) − (𝑀 × 𝐹)

(𝐻 +𝑀) × (𝐹 + 𝐶𝑁)
 (3.42) 
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Where, 𝐻 is the number of observed rain events that are correctly forecasted, 𝐹 is the number 

of rainfall events forecasted but not detected, 𝑀 is the number of observed rainfall events 

that are not forecasted, 𝐶𝑁 is the number of no rainfall events in both observed and forecasted 

data. The detailed information about𝐻, 𝐹, 𝑀 and 𝐶𝑁 are presented in Table 1. The rainfall 

threshold for calculating these statistics is set at 1mm/day. The day is considered to be dry if 

rainfall is less than 1 mm/day. A wet day is one in which the rainfall exceeds 1 mm/day. 

Table 3.3 The contingency classification used to verify the forecasts by calculating POD, 

FAR, CSI, and TSS with a threshold of 1 mm/day 

Forecast 
Observed 

Rain No Rain 

Rain Hit (𝐻) False (𝐹) 

No Rain Miss (𝑀) Correct Negative (𝐶𝑁) 

3.4.2.3 Error Decomposition 

Error decomposition analysis is used to evaluate the error components in precipitation 

estimates (Tian et al. 2009). The method divides mean error into three independent 

components: hit bias (HB), missed bias (MB), and false bias (FB). When the mean error is 

calculated across the entire dataset, it does not provide detailed information about the source 

of the error. When the mean error is decomposed, the three possible error sources can be 

distinguished. When rain events are correctly forecasted by GFS model, but rainfall intensity 

is incorrectly estimated, 𝐻𝐵 occurs. 𝑀𝐵 denotes the error caused by rain events that are 

incorrectly forecasted as no-rain events. The error caused by no-rain events that are 

incorrectly forecasted as rain events is referred to as 𝐹𝐵.  The value of 𝐻𝐵 can be either 

positive or negative, while 𝑀𝐵 is always negative and 𝐹𝐵 is always positive. The 

mathematical expressions for 𝐻𝐵, 𝑀𝐵, and 𝐹𝐵 are given as follows (Deng et al. 2018): 

𝐻𝐵 =
1

𝑛
∑ (𝑆ℎ −  𝑂ℎ)

𝐻

ℎ=1
 (3.43) 

𝑀𝐵 = − 
1

𝑛
∑ 𝑂𝑚

𝑀

𝑚=1
 (3.44) 

𝐹𝐵 =  
1

𝑛
∑ 𝑆𝑓

𝐹

𝑓=1
 (3.45) 
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Total Bias (TB) or ME can be expressed as follows: 
 

𝑇𝐵 𝑜𝑟 𝑀𝐸 = 𝐻𝐵 +𝑀𝐵 + 𝐹𝐵 (3.46) 

Where, 𝑛 is the total number of observations, 𝐻 is the total number of hit precipitation events. 

𝑀 is the total number of missed precipitation events, and 𝐹 is the total number of false events.  

The sum of 𝐻𝐵, 𝑀𝐵, and 𝐹𝐵 is always equal to mean error. As 𝑀𝐵 and 𝐹𝐵 always have 

opposite signs, they may cancel each other out, resulting in a smaller mean error than 

individual components. Therefore, breaking down the mean error into independent 

components may aid us in better understanding the error nature of forecasted rainfall and the 

uncertainties of retrieval processes. 

3.4.2.4 Bias Correction 

Accurate rainfall estimates have the potential to reduce uncertainty in hydrological 

simulations. GFS rainfall forecast bias is corrected using a simple multiplication bias 

correction scheme. The Bias Factor (BF) is calculated as the ratio of gridded rainfall to GFS 

rainfall forecasts. To obtain bias corrected rainfall estimates, GFS rainfall forecasts are 

multiplied by 𝐵𝐹.  The mathematical expression for calculating 𝐵𝐹 is given in eq. (3.47) 

(Lekula et al. 2018): 

𝐵𝐹 = 
∑ 𝑂𝑖
𝑛
𝑖=1

∑ 𝑆𝑖
𝑛
𝑖=1

 (3.47) 

Where, 𝑖 is the grid location and 𝑛 is the total number of grids analyzed. Following bias 

correction, SS of BIAS, RMSE, and ME are calculated with respect to the reference value to 

find if there is any improvement in the model forecast. The mathematical expressions are 

given below for calculating SS for BIAS, RMSE, and ME: 

𝑆𝑆𝐵𝐼𝐴𝑆 = 1 −
𝐵𝐼𝐴𝑆𝑎𝑓𝑡𝑒𝑟 𝑏𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝐵𝐼𝐴𝑆𝑏𝑒𝑓𝑜𝑟𝑒 𝑏𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
 (3.48) 

𝑆𝑆𝑅𝑀𝑆𝐸 = 1 −
𝑅𝑀𝑆𝐸𝑎𝑓𝑡𝑒𝑟 𝑏𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑅𝑀𝑆𝐸𝑏𝑒𝑓𝑜𝑟𝑒 𝑏𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
 (3.49) 

𝑆𝑆𝑀𝐸 = 1 −
𝑀𝐸𝑎𝑓𝑡𝑒𝑟 𝑏𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑀𝐸𝑏𝑒𝑓𝑜𝑟𝑒 𝑏𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
  

(3.50) 
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3.5 Soil and Water Assessment Tool (SWAT) 

Soil and Water Assessment Tool (SWAT) model works on a daily time step continuous 

simulating model for a long period. The model is a computationally efficient, physical based 

model and capable of simulating high-level spatial details by dividing the watershed into 

smaller sub-watersheds (Arnold et al. 2012). The HRU’s are the percentages of sub-

watershed area comprising homogeneous land use, management, and soil characteristics. 

SWAT model allows users to estimate the anticipated scenarios of a watershed by using 

different climate data and LULC patterns as inputs. In addition, it is capable of assessing the 

variability in stream flow by considering the future projected climate variables. SWAT model 

requires daily meteorological data i.e., either from a measured data set or generated by a 

weather generator model. The water balance equation, which governs the hydrological 

components of SWAT model, is as follows: 

𝑆𝑊𝑡𝑖 = 𝑆𝑊𝑂 + ∑(𝑅𝑑𝑎𝑦𝑖 − 𝑄𝑠𝑢𝑟𝑓𝑖 − 𝐸𝑎𝑖 −𝑊𝑠𝑒𝑒𝑝𝑖 − 𝑄𝑔𝑤𝑖

𝑡

𝑖=1

) (3.51) 

Where, 𝑆𝑊𝑡𝑖 is soil water content at the end of the day (mm),  𝑆𝑊𝑂 is the amount of initial 

soil water content on day i (mm), t is the time in days, 𝑅𝑑𝑎𝑦𝑖 is the amount of precipitation 

on day i (mm), 𝑄𝑠𝑢𝑟𝑓𝑖 is the amount of surface runoff on day i (mm),  𝐸𝑎𝑖 is the amount of 

evapotranspiration on day i (mm),  𝑊𝑠𝑒𝑒𝑝𝑖 is the amount of water entering the vadose zone 

from the soil profile on day i (mm) and 𝑄𝑔𝑤𝑖 is the amount of return flow on day i (mm). 

3.6 Hydrological Engineering Centre - River Analysis System (HEC-RAS) 

HEC-RAS is an integrated software designed to perform one-dimensional (1D), two-

dimensional (2D), and combined one-dimensional and two-dimensional (1D/2D) hydraulic 

calculations for a full network of natural or constructed channels, overbank or floodplain 

areas, levee protected areas; etc. HEC-RAS model performs 1D and 2D computations using 

St. Venenat equations of conservation of mass and conservation of momentum. 1D model 

solves St. Venenat equations along one dimension, while 2D model solves St. Venenat 

equations in two dimensions. 1D modeling can be difficult in some rivers due to certain 

topographic and hydraulic features. These features include undefined boundaries between 

channels and overbanks, high-gradient flows in off-channel storage areas, unclear flow 

directions, flow direction that changes significantly, and river bends. The use of 2D modeling 
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will overcome the drawbacks of 1D modelling. HCE-RAS 2D modelling comprising several 

components including terrain data, LULC, 2D computational mesh, and unsteady flow data. 

2D model performs the calculations based on Shallow Water Equations (SWE) or Diffusive 

Wave Equations (DWE). SWEs are also called as Navier-Stokes equations and are derived 

from conservation of mass as well as momentum equations. The mathematical expression for 

the SWE is as follows: 

𝜕𝑢

𝜕𝑡
+ (𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑣

𝜕𝑥
) =  −𝑔

𝜕𝐻

𝜕𝑥
+ 𝑣𝑡 (

𝜕2𝑢

𝜕𝑥2
+ 
𝜕2𝑣

𝜕𝑥2
) − 𝑐𝑓𝑢 + 𝑓𝑣  (3.52) 

Where, 
𝜕𝑢

𝜕𝑡
 is local acceleration with time, 𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑣

𝜕𝑥
  is advective acceleration, 𝑔

𝜕𝐻

𝜕𝑥
  is 

hydrostatic Pressure, 𝑣𝑡 (
𝜕2𝑢

𝜕𝑥2
+ 

𝜕2𝑣

𝜕𝑥2
) is viscosity, 𝑐𝑓𝑢 is bed friction, and 𝑓𝑣 is Coriolis 

Effect. 2D DWE is the default option in HEC-RAS because it allows the computations to run 

faster and with greater stability. For DWE, the bottom fiction is equal to the pressure gradient. 

The water surface slope is balanced by the friction slope. This means the local and advective 

acceleration, viscosity and Coriolis Effect are not considered. The mathematical expression 

for DWE is as follows:  

𝑔
𝜕𝐻

𝜕𝑥
+  𝑐𝑓𝑢 = 0 (3.53) 

3.7 Flood Frequency Analysis 

Flood Frequency Analysis (FFA) is a technique used by hydrologists to predict flow values 

corresponding to specific return periods. FFA uses annual peak flow data to calculate 

statistical information such as mean, standard deviation and skewness for creating frequency 

distribution graphs. Several statistical distributions are available for FFA such as Normal, 

Log-Normal, Pearson, Log-Pearson, Gumbel, Exponential, and Weibull. Once the best 

distribution is selected, flood frequency curves are plotted. The flood frequency curves are 

then used to estimate the design flow values corresponding to specific return periods. In the 

present research, four 2-parameter distributions, namely, Log-Pearson Type-III, Log-

Normal, Weibull, and Gumbel are used to calculate the return periods. The mathematical 

expressions for the distributions are as follows; 
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Log-Pearson 

Type – III 
𝑓𝛾(𝑦|𝜇, 𝜎) =  

1

(𝜎2𝜇)1 𝜎2⁄

𝑦1 𝜎2−1⁄  𝑒−𝑦 (𝜎2 𝜇)⁄

𝛤 (1 𝜎2⁄ )
 (3.54) 

Log-Normal 𝑓𝛾(𝑦|𝜇, 𝜎) =  
1

√2𝜋𝜎2

1

𝑦
𝑒𝑥𝑝 {−

[log(𝑦) − 𝜇]2

2𝜎2
} (3.55) 

Weibull 𝑓𝛾(𝑦|𝜇, 𝜎) =  
𝜎𝑦𝜎−1

𝜇𝜎
𝑒𝑥𝑝 [−(

𝑦

𝜇
)
𝜎

] (3.56) 

Gumbel 𝑓𝛾(𝑦|𝜇, 𝜎) =  
1

𝜎
𝑒𝑥𝑝 [(

𝑦 − 𝜇

𝜎
) − 𝑒𝑥𝑝 (

𝑦 − 𝜇

𝜎
)] (3.57) 

Where, 𝑦 is flood discharge values, 𝜇 is the mean, and 𝜎 is the standard deviation. 

3.8 Development of Web-GIS based User Interface 

The development of Web-GIS based user interface systems for flood visualization includes 

the use of various design and programming languages, as well as the use of mapping libraries, 

frameworks, GIS software, and web servers. In the current research, programming languages 

includes HyperText Markup Language (HTML), Cascading Style Sheet (CSS), and 

JavaScript (JS) are used. For mapping libraries and web servers, OpenLayers and GeoServer 

are used. 

HTML is standard markup language that web browsers use to interpret and compose texts, 

images, and other material into visual and audible web pages and web applications. Default 

characteristics of every item of HTML markup are fed into the browser and these 

characteristics can be altered or enhanced by the use of CSS. Inclusion of CSS defines the 

look and layout of content. HTML can embed programs written in a scripting language such 

as JS which affect the behavior and content of web pages. Web browsers receive HTML 

documents from a webserver or from local storage and render them into multimedia web 

pages. The example scripts of HTML, CSS, and JavaScript used in the present research are 

shown in Figures 3.3, 3.4, and 3.5 respectively. 

OpenLayers is a widely used open source JS mapping library for displaying map data in web 

browsers. It provides an API for building rich web-based geographic applications similar to 

Google and Bing maps. OpenLayers makes it easy to put a dynamic map on any web page. 

It can display map tiles, vector data, and markers loaded from various sources such as OSM, 
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MapBox, GeoServer, MapServer etc. The example script of OpenLayers is shown in Figure 

3.6. 

 

Figure 3.3 HTML script for Web-GIS based user interface system development 

 

Figure 3.4 CSS script for designing the appearance of Web-GIS based user interface system 
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Figure 3.5 JavaScript to add the content to Web-GIS based user interface system 

 

 

Figure 3.6 OpenLayers script to import data to Web-GIS based user interface system 
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GeoServer is an open-source server written in Java that allows users to share, process and 

edit geospatial data. Designed for interoperability, it publishes data from any major spatial 

data source using open standards. GeoServer has evolved to become an easy method of 

connecting existing information to virtual globes such as Google Earth as well as to web-

based maps such as OpenLayers, Google Maps and Bing Maps. GeoServer functions as the 

reference implementation of the Open Geospatial Consortium Web Feature Service standard, 

and also implements the Web Map Service, Web Coverage Service and Web Processing 

Service specifications. GeoServer reads a variety of data formats, including PostGIS, Oracle 

Spatial, ArcSDE, MySQL, Shapefiles, and GeoTIFF etc. Through standard protocols it 

produces KML, GML, Shapefile, GeoRSS, PDF, GeoJSON, JPEG, GIF, SVG, PNG and 

more. In addition, one can edit data via the WFS transactional profile (WFS-T). GeoServer 

includes an integrated OpenLayers client for previewing data layers. In the present research 

work, GeoServer is used to publish flood inundation maps on a web interface.  GeoServer 

interface with various layers used in the present research work is shown in Figure 3.7. 

 

Figure 3.7 GeoServer interface with various layers used in the present research work 

3.9 Procedure for Automation of the Research Work 

The overall methodology includes downloading GFS forecasts, extraction of rainfall 

forecasts over the study area, bias correction of GFS rainfall forecasts, feeding rainfall data 

into SWAT model to obtain discharge hydrograph, assimilating simulated discharge 

hydrograph as upstream boundary condition in 2D HEC-RAS model to get flood inundation 

extent and depth, and finally uploading flood inundation maps into Web-GIS based user 

interface system automated using R and Python languages. The flowchart for the automation 

of research work is shown in Figure 3.8.  
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Figure 3.8 Methodology for the automation of the proposed research work 

3.10 Closure 

This chapter describes the overall methodology for developing an integrated hydrologic and 

hydraulic model based on SWAT and HEC-RAS for preparing flood inundation maps for the 

study river basins. The flowchart for the prediction of weather parameters using WRF model 

is given. The procedure for calculating rainfall extremes from daily time series data, trend 

analysis in rainfall and rainfall extremes, evaluation of NWP model forecasts, description of 

SWAT and HEC-RAS models to simulate floods and flood inundation extent, and flood 

frequency analysis for the calculation return periods, has been explained. Programming 

languages, mapping libraries, and web servers required to develop Web-GIS based user 

interface system have been explained. The flowchart for the automation of overall 

methodology is given.   

Download GFS Data 

Pre-Processing of GFS 
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Bias Correction of Rainfall 
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Calibrated SWAT Model 
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Publishing the data in Web-

GIS Interface 

Converting Rainfall data into SWAT 

format  
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 Study Area and Database Preparation 

4.1 Study Area 

The selection of the study area is important for evaluating the efficient performance of the 

proposed methodology. The Nagavali and Vamsadhara river basins are selected in the present 

study. Location map of the study area is shown in Figure 4.1. These two river basins plays 

an important role in meeting irrigation and water supply demands in south Odisha and north 

Andhra Pradesh. The Nagavali and Vamsadhara rivers are two independent, adjacent and 

interstate eastern flowing rivers located between latitudes of 18° 10̍ to 19° 45̍ N and 

longitudes of 82° 54̍ to 84° 20̍ E. Both the rivers originate at Thuamul Rampur block of 

Kalahandi district of south Odisha, flow through nine districts and drain into the Bay of 

Bengal (BoB) at Bontala Koduru and Kalingapatnam in northeast Andhra Pradesh, 

respectively. The total length of Nagavali river from headwaters to its mouth in the Bay of 

Bengal is approximately 256 km, with a catchment area of 9510 square kilometers (sq.km), 

and Vamsadhara river is about 254 km, with a catchment area of 10830 sq.km. Annual 

rainfall ranges between 1200 and 1400 mm in both basins, with average minimum and 

maximum temperatures of 8 °C and 43 °C, respectively.  

 

Figure 4.1 Geographical Location of the Nagavali and Vamsadhara River Basins, India 
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The Nagavali basin has elevations ranging from 0 to 1634 m, while the Vamsadhara basin 

has elevations ranging from 0 to 1505 m. The people in the catchment area rely primarily on 

agriculture. Paddy, cotton, red gram, sugarcane, groundnut, and sesame are among the crops 

grown in the basins during both Kharif and Rabi seasons. The field visit photos which shows 

the LULC, dam site, water depth measuring device are shown in Figure 4.2. 

4.2 Data Used 

The input data used in the present study includes hydrometeorological data and geospatial 

data. Details about the data which includes spatial resolution, organization name, and web 

source are given Table 4.1. The majority of the spatial, rainfall and temperature data used in 

the present research are freely available to the public. The observed streamflow and water 

levels are obtained from the Mahanadi & Eastern Rivers Organization (M&ERO), 

Bhubaneswar, India. The detailed explanation of the data used in the present research is 

described in the following sections. 

 

 

 

Figure 4.2 Field observation photos of Nagavali and Vamsadhara basins 
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Table 4.1 Details of the datasets used in the present research study 

Dataset 
Spatial 

Resolution 

Organization 

Name 
Web Source 

Rainfall 0.25° × 0.25° 

IMD 

https://www.imdpune.gov.in/Clim

_Pred_LRF_New/Grided_Data_D

ownload.html Temperature 1° × 1° 

Stream Gauge 

Data 
------ CWC, India 

Mahanadi & Eastern Rivers 

Organization (M&ERO), 

Bhubaneswar. 

FNL Data 1° × 1° NCEP - FNL 
https://rda.ucar.edu/datasets/ds083

.2/ 

GFS Rainfall and 

Temperature 

Forecasts 

0.25° × 0.25° NCEP – GFS 
https://rda.ucar.edu/datasets/ds084

.1/ 

SRTM DEM 30 m × 30 m SRTM https://earthexplorer.usgs.gov/ 

Land Use Land 

Cover (LULC) 
1:250k NRSC 

https://bhuvan-

app1.nrsc.gov.in/thematic/themati

c/index.php 

Soil Data 1 km × 1 km ISRIC 
https://www.isric.org/explore/soil-

geographic-databases 

 

 HydroMeteorological Data 

Hydrometeorological data include rainfall, temperature, and streamflow. IMD provides daily 

rainfall (0.25° x 0.25°) records for a period of 120 years (i.e., 1901-2020) and temperature 

(1° x 1°) records for a period of 70 years (i.e., 1951-2020) in the gridded format. The average 

annual rainfall over Nagavali and Vamsadhara basins are 1230 mm and 1260 mm, 

respectively for 120 years. In both basins, the maximum temperature ranged between 20 °C 

to 43 °C and the minimum temperature ranged between 8 °C to 30 °C for 70 years. There are 

no missing records in the daily rainfall and temperature records. Rainfall data has been 

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://rda.ucar.edu/datasets/ds083.2/
https://rda.ucar.edu/datasets/ds083.2/
https://rda.ucar.edu/datasets/ds084.1/
https://rda.ucar.edu/datasets/ds084.1/
https://earthexplorer.usgs.gov/
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://www.isric.org/explore/soil-geographic-databases
https://www.isric.org/explore/soil-geographic-databases
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verified with the rain gauge data provided by M&ERO and a good correlation of 0.79 is found 

between them. The details of the gauge data are given in Table 4.2. 

The gauge data over a period of more than 25 years for both basins is obtained from M&ERO. 

Observed streamflow and water level data are provided by gauge stations at Srikakulam in 

the Nagavali basin and Gunupur, Kashinagar in the Vamsadhara basin. SWAT model is 

calibrated and validated using observed streamflow at Srikakulam and Kashinagar in the 

Nagavali and Vamsadhara basins, respectively. Water levels at Srikakulam are used to 

calibrate the HEC-RAS model in the Nagavali basin, while water levels at Kashinagar are 

used to calibrate in the Vamsadhara basin. 

 

Table 4.2 Details of the gauge data in Nagavali and Vamsadhara basins 

Name of the 

Station 
Latitude Longitude River Name 

Data 

Availability 

Data 

Type 

Gunupur 19° 05' 00" N 83° 48' 20"E Vamsadhara 
01.05.1978 -

31.05.2019 
GDSQ 

Kasinagar 18° 50' 54" N 83° 52' 23"E Vamsadhara 
01.07.1980 -

31.05.2019 
GDSQ 

Gudari 19° 23' 00" N 83° 47' 32"E Vamsadhara 
01.05.1978 -  

31.05.2019 
G 

Kutragada 19° 36' 40" N 83° 33' 52"E Vamsadhara 
01.07.1987 -

31.05.2019 
G 

Mahendragarh 19° 13' 24" N 84° 15' 45"E Vamsadhara 
01.07.1987 -

31.05.2019 
G 

Mohana 19° 26' 41"N 84° 15' 41"E Vamsadhara 
01.07.1987 -

31.05.2019 
G 

Gottabarrage 18° 42' 00"N 83° 58' 00"E Vamsadhara 
01.07.1987 -

31.05.2019 
G 

Srikakulam 18°18' 48"N 85°53' 03"E Nagavali 
01.03.1988 -

31.05.2019 
GDSQ 
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 Geospatial Data 

The geospatial data used in this study include DEM, LULC, and a soil map. The Shuttle 

Radar Topography Mission (SRTM) 30 m DEM is obtained from the US Geological Survey 

(USGS) earth explorer. The maximum elevations of the Nagavali and Vamsadhara basins are 

1634 m and 1505 m, respectively. LULC data for both basins is obtained from Bhuvan, 

National Remote Sensing Center, at a scale of 1:250 km (Bhuvan-NRSC). There are 10 land 

cover patterns identified in both basins, such as built-up land, current fallow, deciduous 

forest, scrub forest, agricultural land, evergreen forest, plantation, shifting cultivation, 

wasteland, and waterbodies. The spatial plots of DEM and LULC maps of both basins are 

shown in Figure 4.2. The percentage of LULC in each basin is given in Table 4.3. Soil 

classification map is obtained from the International Soil Reference and Information Centre 

(ISRIC) soil data site. The soil map of the study area is shown in Figure 4.3. Loam, sandy 

loam, sandy clayey loam, and clayey loam soils are the important soil types found in both 

basins.  

 

 

Figure 4.3 DEM and LULC of Nagavali and Vamsadhara basins 
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Table 4.3 Percentage area of each LULC in Nagavali and Vamsadhara Baisns 

LULC Nagavali Basin (%) Vamsadhara Basin (%) 

Built-up Land 1.14 1.03 

Current Fallow 12.21 6.34 

Deciduous Forest 29.34 51.45 

Scrub forest 1.53 0.68 

Agricultural land  26.19 16.38 

Evergreen Forest 3.06 2.81 

Plantation  2.94 0.75 

Shifting Cultivation 1.62 1.2 

Wasteland 19.05 17.79 

Waterbodies 2.91 1.57 

 

 

Figure 4.4 Soil Map of Nagavali and Vamsadhara Basin 
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 GFS Forecast Data 

In the present analysis, daily rainfall forecast data from GFS model are extracted for an area 

bounded between 18° - 20° N and 82.75° - 84.50° E at 0.25° × 0.25° grid resolution for a 

period of 2041 days i.e., from June 1, 2015 to December 31, 2020. A total of 28 grids falling 

over Nagavali and Vamsadhara basins. Out of these, 12 grids are over Nagavali basin and the 

remaining over Vamsadhara basin. Typical rainfall patterns for a day over Nagavali and 

Vamsadhara basins are shown in Figure 4.5. 

 

Figure 4.5 Rainfall map of various products on 11 - October - 2018 over study basins 

 Final Analysis Data 

The NCEP Final (FNL) data has a horizontal resolution of 1° × 1° and available at six hour 

intervals. The FNL data is produced by Global Data Assimilation System (GDAS) through 

assimilating the observations from Global Telecommunications System (GTS). The 

meteorological variables in FNL data include, but are not limited to, cloud top pressure, 

surface winds, perceptible water, humidity, air temperature, and so on. 
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4.3 Details about the Tropical Cyclone 

Regional Specialized Meteorological Centre (RMSC) issues national bulletins to public on 

cyclone formation from the stage of depression (D) onwards. During the stages of depression 

or deep depression, RMSC issues bulletins based on 00, 03, 06, 12, and 18 UTC observations. 

When the system intensifies into a cyclonic storm over the NIO, these bulletins are issued at 

3-hour intervals based on previous observations. These bulletins contain present status of the 

system, expected damage and action suggested. These bulletins are completely made for 

national users and disseminated through various modes of communication (i.e. All India 

Radio, National TV, Telephone, SMS, print electronic media).  

A set of 8 TCs formed over NIO during 2014 to 2018 are considered in the present study in 

order to assess the impact of microphysical schemes on their track and intensity predictions. 

Among the TCs, two had formed over AS and the remaining were in BoB. The details about 

the cyclones are given in Table 4.3. The best tracks provided by the study cyclones are shown 

in Figure 4.6 and the brief summery is given below. 

 

Table 4.4 Details about the tropical cyclones 

S.No Period Cyclone Name Landfall Category 

1 7 – 17 Oct 2014 Hudhud Visakhapatnam Very Severe Cyclonic Storm 

2 25 – 31 Oct 2014 Nilofar No Landfall Very Severe Cyclonic Storm 

3 21 – 28 Oct 2016 Kyant No Landfall Cyclonic Storm 

4 29 Nov – 05 Dec 2017 Ockhi 
South Gujarat 

Coast 
Very Severe Cyclonic Storm 

5 19 – 22 Sept 2018 Daye Gopalpur Cyclonic Storm 

6 8 – 13 Oct 2018 Titli Palasa Very Severe Cyclonic Storm 

7 10 – 19 Nov 2018 Gaja Puducherry Very Severe Cyclonic Storm 

8 13 – 18 Dec 2018 Phethai Yanam Severe Cyclonic Storm 
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Figure 4.6 Best tracks of the TCs provided by RMSC. 

Hudhud 

In the morning of 6th Oct 2014, cyclone Hudhud formed as a low-pressure area (LPA) over 

BoB. It gradually intensified into Very Severe Cyclonic Storm (VSCS) in the afternoon of 

10th Oct 2014. It made landfall near Visakhapatnam with northwestward movement on the 

morning of 12th Oct 2014 as VSCS and moved in the same direction. It then gradually 

weakened into a Well-Marked Low-Pressure Area (WMLA) on the evening of 14th Oct 2014 

over eastern Utter Pradesh.  

Nilofar 

A VSCS Nilofar formed as an LPA over the southeast Arabian Sea (AS) on the morning of 

21st Oct 2014. The cyclone initially moved northwestward on the day of formation and then 

recurved to northeastwards. It exhibited rapid intensification as well as rapid weakening and 

weakened into a WMLA near the North Gujarat coast on the morning of 31st Oct 2014.  

Kyant 

Cyclone Kyant formed as a depression (D) over east central BoB on 21st Oct 2016. The track 

followed by this system is rare in nature as it experienced two re-curvatures during its life 
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period. The rate of intensification was very slow and steady, taking about 4 days to become 

a cyclonic storm (CS) from the stage of D and the rate of weakening was rapid as it reduced 

to a WMLA from the CS stage within 30 hours on the morning of 28th Oct 2016. 

Ockhi 

Cyclone Ockhi formed as an LPA over Andaman Sea on 22nd Nov 2017. There was a rapid 

intensification during its genesis, as it intensified into CS within 6 hours from the stage of 

deep depression (DD). While moving west-northwestwards, Ockhi further intensified into 

Severe Cyclonic Storm (SCS) over Lakshadweep area early in the morning of 01st Dec 2017 

and VSCS over southeast AS on the afternoon of the same day. It then moved northwestwards 

and attained the maximum intensity on afternoon of 2nd Dec 2017. It moved north-

northwestwards and then northeastwards, crossed the south coast of Gujarat between Surat 

and Dahanu as a WMLA early in the morning of 06th Dec 2017. 

Daye 

Daye is the first cyclonic storm formed over NIO in the month of September after 2005. It 

formed as a D over east central parts of BoB on the afternoon of 19th Sept 2018. Moving 

nearly west-northwestwards, it intensified into DD on the morning of 20th Sept 2018 and 

into CS on the same day/night. It made landfall close to Gopalpur as a CS during 1900-2000 

UTC of 20th Sept 2018. It continued to move west-northwestwards, and weakened into an 

LPA over south Haryana on the morning of 24th Sept 2018. 

Titli 

Titli cyclone formed as an LPA over the southeast BoB on the morning of 7th Oct 2018. 

Moving nearly west-northwestwards, it intensified into DD on the morning of 8th Oct 2018 

and further into a CS around noon of 9th Oct 2018. It then moved northwestwards and on the 

early morning of 10th Oct 2018, it intensified into SCS. It then moved north-northwestwards 

and further intensified into VSCS around noon of 10th Oct 2018 and crossed the northern 

Andhra Pradesh and south Odisha coasts near Palasa during 2300 to 0000 UTC as a VSCS. 

Moving further west-northwestwards, it weakened into an SCS around the noon of 11th Oct 

2018 and CS in the same evening. Under the influence of southwesterly winds, the system 

recurved northeastwards from 11th evening and gradually weakened into an LPA over 

Gangetic West Bengal and adjoining Bangladesh on the morning of 13th Oct 2018.  
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Gaja 

VSCS Gaja originated from an LPA which formed over the Gulf of Thailand and adjoining 

Malay Peninsula on the morning of 8th Nov 2018. Under favorable conditions it concentrated 

into a D over southeast BoB n the morning of 10th Nov. Moving west-northwestwards, it 

intensified into DD in the same evening and further intensified into CS early in the morning 

of 11th Nov 2018. It then moved nearly westwards till early hours of 12th Nov 2018. 

Thereafter, it recurved south-southwestwards and followed an anticlockwise looping track 

till 13th Nov 2018. It then moved west-southwestwards and intensified into an SCS 

southwest BoB on the morning of 15th Nov 2018 and into VSCS on the same night. Moving 

further west-southwestwards it crossed Tamil Nadu and Puducherry coast between 

Nagapattinam and Vedaranniyam during 1900 to 2100 UTC of 16th Nov 2018. Thereafter, it 

moved nearly westwards, and weakened rapidly into an SCS, CS, and DD over interior Tamil 

Nadu on 16th Nov 2018. It then moved west-southwestwards and weakened into a D on the 

same evening over central Kerala. Moving nearly westwards, it emerged into southeast AS 

in the same mid night. Moving nearly westwards, it intensified into a DD over southeast AS 

in the early morning of 17th Nov 2018. Thereafter, it moved nearly west-northwestwards and 

crossed Lakshadweep Islands on 17th Nov 2018 afternoon as DD. It continued to move west-

northwestwards and weakened into a D over the same region around the noon of 19th Nov 

2018, WMLA in the same mid night and LPA on 21st Nov 2018. 

Phethai 

An SCS Phethai formed as an LPA over Equatorial Indian Ocean and adjoining central parts 

of south BoB on the evening of 9th December 2018. It laid as a WMLA over the same area 

on the morning of 11th December 2018. It continued to be WMLA till the morning of 13th 

and under favorable conditions it concentrated into a D over southeast BOB. Moving north-

northwestwards, it intensified into DD over the same area on the same day at midnight. 

Continuing to move in the same direction, it intensified into a CS on the evening of 15th and 

into SCS on the afternoon of 16th. It maintained its intensity of SCS till the early morning of 

17th and weakened into CS in the same morning. Continuing to move north-northwestwards 

and then northwards, it crossed Andhra Pradesh (close to south of Yanam and 40 km south 

to Kakinada) coast during the 17th afternoon as a CS. After landfall, the cyclone moved 

north-northeastwards and weakened rapidly into a DD near Kakinada coast in the same 

evening. Continuing to move in the same direction, it again crossed Andhra Pradesh coast 

near Tuni and weakened into a D over coastal Andhra Pradesh during the same day midnight. 
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It further weakened into WMLA over northwest and adjoining west central BoB and coastal 

Odisha in the early morning of 18th and into LPA northwest BoB and adjoining Odisha in 

the same morning. 

4.4 Software’s and Programming Languages used 

Various GIS software's, modelling software, and programming languages are used in this 

research. These include ArcGIS, QGIS, WRF, SWAT, HEC-RAS, R-program, Python, 

HTML, CSS, JavaScript, OpenLayers, and GeoServer. ArcGIS and QGIS software are used 

for analyzing vector data and generating spatial maps from interpolation techniques. The 

WRF model is used for predicting the track, intensity, and rainfall of tropical cyclones in the 

BoB. SWAT model is used for streamflow simulation in QGIS environment. HEC-RAS 

model is used for the generation of flood inundation extent and inundation depth. 

Programming language R is used for the preparation of hydrometeorological data in SWAT 

and HEC-RAS format and for the SWAT simulations using SWATPlusR package. 

Programming language Python is used to automate HEC-RAS model by connecting it to 

HECRASController module. Other programming languages such as HTML, CSS, 

JavaScript, OpenLayers, and GeoServer are used develop a Web-GIS based interface for the 

timely dissemination of flood related information.  

4.5 Initialization, Calibration, and Validation of Models 

Based on the methodology framework proposed, different models are used in the study. Each 

of those model set-ups is explained in the following sections. 

 WRF Model 

WRF (version 4.0) model is used to forecast rainfall during extreme weather events like TCs 

along with its track and intensity. The initial and boundary conditions for the prediction of 

TCs are considered from the 1° × 1° resolutions of NCEP-FNL model forecasts with 6-hour 

interval. The model is designed with two-way nested domains with 27 km horizontal 

resolution for the outer domain and 9 km horizontal resolution for the inner domain. The 

WRF domain configuration is presented in Figure 4.7. The terrain data of 10m resolution 

from the USGS has been used for both domains. The model utilized a total of seven 

microphysical schemes, namely, Lin, Thompson, Ferrier, Morrison, WSM3, WSM5, and 
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WSM6 for both domains. The KF CPS is used for the outer domain. YSU PBL scheme, Rapid 

Radiative Transfer Model (RRTM) for long-wave radiation, and Dudhia scheme for short-

wave radiation have been used for both the inner and outer domains.  

 

Figure 4.7 WRF Model Domain Configuration 

The various microphysics schemes deal with the mixing ratios of the prognostic variables 

with different approaches under different assumptions. The mixing ratios of the prognostic 

variables in all the microphysical schemes considered in the study are presented in Table 4.5. 

Lin scheme includes all the prognostic variables. It is a most sophisticated scheme of WRF 

model and suitable for research studies (Lin et al. 1983). The new Eta Ferrier scheme has an 

ability to predict the changes in water vapor and estimates the precipitation ice density along 

with mixing ratios (Rogers et al. 2001). Thompson scheme used in the present study is a 

double-moment scheme which includes the prediction of ice concentration (Thompson et al. 

2004). The scheme assumes that the snow size distribution depends on both water and ice 

content and temperature (Castro et al. 2019). Morrison’s scheme is also a double-moment 

scheme which predicts the mixing ratios and concentrations of all prognostic variables. The 

scheme uses Kohler’s theory to calculate the homogeneity and heterogeneity in the nucleation 

process and quasi-stationary saturation adjustment algorithm for droplet concentration 
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(Morrison et al. 2009). WSM3 is a simple ice scheme, which predicts only the liquid 

hydrometers (i.e., Qv, Qc, and Qr). The expressions considered by WSM3 to predict liquid 

hydrometers are assumed to be above freezing point. Further, the scheme considers Qc as Qi 

and Qr as Qs when the temperature is less than or equal to freezing point. The WSM5 scheme 

predicts the mixing ratios of all prognostic variables except graupel (Hong et al. 2004). The 

WSM6 scheme is similar to that of WSM3, but includes a more complex process for 

predicting the mixing ratios of all the prognostic variables (Hong and Lim 2006). Compared 

to the double-moment schemes, single-moment schemes have the capability to simulate the 

TCs with smaller eye, stronger tangential wind, high positive temperature and closer latent 

heating area to cyclone center, and smaller radius of maximum wind (Li et al. 2020). 

For sensitivity experiments, a total of 8 TCs are selected to study the sensitivity of 

microphysical schemes for the prediction of track and intensity of TCs over the NIO region 

that occurred from 2014 to 2018. The model initiation time and simulation period for the TCs 

are presented in Table 4.6. The detailed description about WRF model configuration is 

presented in Table 4.7. The simulated results of the TCs are validated against the best track 

given by IMD. 

 

Table 4.5 The mixing ratios of the prognostic variables in the Microphysical Schemes 

Microphysical 

Schemes 
Mixed Phase Variable Processes 

Ferrier Water Vapor (Qv), Cloud Water (Qc), Rain (Qr), Ice (Qi) 

Lin Water Vapor, Cloud Water, Rain, Ice, Snow (Qs), and Graupel (Qg) 

Morrison Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel 

Thompson Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel 

WSM3 Water Vapor, Cloud Water/Ice and rain/snow 

WSM5 Water Vapor, Cloud Water, Rain, Ice, and Snow 

WSM6 Water Vapor, Cloud Water, Rain, Ice, Snow, and Graupel 
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Table 4.6 Model initiation dates and simulation time considered for the study 

Tropical 

Cyclone 
Initial Date: Time End Date: Time 

Simulation 

Period (h) 

Intensity Stages of 

TCs for Model 

Initialization 

Hudhud 09-10-2014: 00  13-10-2014: 00  96 
Severe Cyclonic 

Storm (SCS) 

Nilofar 27-10 -2014: 00  31-10-2014: 00  96 
Severe Cyclonic 

Storm (SCS) 

Kyant 23-10-2016: 00  27-10-2016: 00  96 Depression (D) 

Ockhi 01-12-2017: 00  05-12-2017: 00  96 
Severe Cyclonic 

Storm (SCS) 

Daye 20-09-2018: 00  22-09-2018: 00  48 Depression (D) 

Titli 09-10-2018: 00  13-10-2018: 00  96 
Deep Depression 

(DD) 

Gaja 12-11-2018: 00  16-11-2018: 00 96 
Cyclonic Storm 

(CS) 

Phethai 14-12-2018: 00  18-12-2018: 00  96 
Deep Depression 

(DD) 

 

Table 4.7 Details of WRF Model Configuration 

Model WRF 4.0 

Domain Center 10° N and 80° E 

Number of Domains  2 (d01 = 27 km, d02 = 9 km) 

Initial and Boundary Conditions GFS ANL data (0.5° × 0.5°) 

Cumulus Physics Kain – Fritsch (Kain 2004) 

Short-wave Radiation Dudhia (Dudhia 1989) 

Long-wave Radiation RRTM (Mlawer et al. 1997) 

Planetary Boundary Layer Yonsei University (Hong et al. 2006) 

Microphysics Ferrier, Lin, Morrison, Thompson, WRF Single 

Moment 3 – Class (WSM3), WRF Single Moment 5 

– Class (WSM5), WRF Single Moment 6 – Class 

(WSM6). 
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 SWAT Model-Set-up 

Initially, to set-up the SWAT model, DEM, LULC and soil data are projected into common 

projection as WGS 1984 UTM 44N. The Nagavali river basin is delineated into 34 sub-basins 

and 2153 hydrological response units (HRUs) and the Vamsadhara river basin is delineated 

into 30 sub-basins and 2183 HRUs based on the homogeneity of soil, land use, slope and 100 

hectares (Ha) of threshold area (Figure 4.8). The Natural Resources Conservation Service 

(NRCS) method is used to simulate daily runoff by SWAT model. Observed daily streamflow 

is used to calibrate and validate the simulated streamflow. The SWAT model performance is 

evaluated using the coefficient of determination (R2), Nash Sutcliff Efficiency (NSE), and 

percent bias (PBIAS). The values of R2 ranged between 0 and 1. The values of NSE ranged 

between -∞ to 1 and they provide a measure of how well the simulated output matches the 

observed data along a 1:1 line. The optimal value for PBIAS is 0, a positive value represents 

model underestimation, while a negative value represents model overestimation. The model 

performance is considered satisfactory if the NSE is greater than 0.6 and PBIAS is within +/- 

25% (Moriasi et al. 2007).  

 

Figure 4.8 SWAT simulated sub-basins and observed gauge locations in Nagavali and 

Vamsadhara basins 
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The mathematical expressions for R2 and PBIAS are given in equations 3.30 and 3.32. The 

expression for NSE is given below: 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖

𝑜𝑏𝑠−𝑂𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑂𝑖
𝑜𝑏𝑠−𝑂𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )
2𝑛

𝑖=1

  (4.1) 

Where, 𝑂𝑖
𝑜𝑏𝑠 is the ith observed data, 𝑂𝑖

𝑠𝑖𝑚 is the ith simulated data, 𝑂𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  is the mean of 

observed data and n is the number of observations. 

 SWAT Model Calibration, Validation, and Sensitivity Analysis 

SUFI-2 algorithm in the SWAT-CUP is used for calibration, validation, and sensitivity 

analysis. The observed streamflow at Srikakulam and Kashinagar stations is used to calibrate 

and validate the SWAT model on daily basis over Nagavali and Vamsadhara basins, 

respectively. The model is run for a total of 29 years, from 1986 to 2014. Of the 29 years, the 

first 5 years (1986-1990) are considered as warm-up period, the next 15 years (1991-2005) 

are considered for calibration, and the last 9 years (2006-2014) are considered for validation. 

The calibrated parameters and their fitted values for Nagavali and Vamsadhara basins are 

shown in Table 4.8. During the calibration and validation periods, the NSE values for daily 

streamflow at Srikakulam gauge station in Nagavali basin are 0.59 and 0.57, respectively, 

and 0.64 and 0.59 at Kashinagar gauge station in Vamsadhara basin. The PBIAS values 

during the calibration period is 0.8% in Nagavali basin and 6.5% in Vamsadhara basin. The 

PBIAS values during the validation period is 7% and 11% over Nagavali and Vamsadhara 

basins, respectively. From the PBIAS values, it is observed that the SWAT model 

underestimated the streamflow during the calibration and validation period in both basins. 

 

Table 4.8 Statistics for the calibration and validation of daily streamflow over Nagavali and 

Vamsadhara basins 

River Basin 
Gauging 

Station 

Calibration Validation 

Period R2 NSE PBIAS Period R2 NSE PBIAS 

Nagavali Srikakulam 1991-005 0.59 0.59 0.8 2006-014 0.58 0.57 7 

Vamsadhara Kashinagar 1991-005 0.66 0.64 6.5 2006-014 0.60 0.59 11 
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A total of 17 parameters are considered during the calibration. Sensitivity analysis is 

conducted to identify the most sensitive parameters using P-value. Among the parameters, 

manning’s n value for the main channel (CH_N2), curve number (CN2), groundwater revap 

coefficient (GW_REVAP), effective hydraulic conductivity in main channel alluvium 

(CH_K2), deep aquifer percolation fraction (RCHRG_DP), effective hydraulic conductivity 

in tributary channel alluvium (CH_K1), threshold depth of water in the shallow aquifer 

required for return flow to occur (GWQMN), and manning's "n" value for the tributary 

channels (CH_N1) are the most sensitive parameters for streamflow simulations in the 

Nagavali basin. In Vamsadhara basin, CN2, CH_K1, CH_N1, CH_N2, and GW_Delay are 

the most sensitive parameters for streamflow simulations. The calibrated parameters and their 

fitted values for Nagavali and Vamsadhara basins are shown in Table 4.9. 

 

Table 4.9 Calibrated parameters and fitted values of the sensitive parameters over Nagavali 

and Vamsadhara basins 

S.No Parameter_Name 
Minimum 

value 
Maximum 

value 

Fitted Value 

Nagavali Basin Vamsadhara 

Basin 

1 R_CN2.mgt -0.1 0.1 -0.04 -0.088 

2 V__ALPHA_BF.gw 0.3 1 0.99 0.479 

3 A__GW_DELAY.gw -30 90 45.60 -23.2 

4 A__GWQMN.gw -1000 1000 -873.33 713.33 

5 V__GW_REVAP.gw 0.02 0.2 0.05 0.093 

6 A__REVAPMN.gw -750 750 -77.50 -375.50 

7 V__ALPHA_BF_D.gw 0 1 0.64 0.723 

8 A__RCHRG_DP.gw -0.05 0.05 0.04 0.035 

9 R__SOL_AWC.sol -0.05 0.05 -0.01 -0.029 

10 V__ESCO.hru 0.3 0.6 0.41 0.439 

11 V__LAT_TTIME.hru 0 120 94.00 12.4 

12 V__SLSOIL.hru 0 120 14.80 27.6 

13 V__CANMX.hru 0 20 1.27 2.20 

14 V__CH_N2.rte 0.01 0.15 0.07 0.055 

15 V__CH_K2.rte 0 100 69.67 53.00 

16 V__CH_K1.sub 0 100 43.00 84.33 

17 V__CH_N1.sub 0.01 15 0.10 0.143 
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 HEC-RAS Model Set-up 

Flood inundation extent and depth are predicted for Nagavali and Vamsadhara basins using 

two dimensional 2D HEC-RAS model developed by the U.S. Army Corps of Engineers, with 

unsteady flow and the diffusive wave equations (Brunner, 2016). The user can perform one-

dimensional (1D), 2D, as well as coupled 1D and 2D hydraulic calculations with the model. 

Using 2D unsteady modeling, the river and its floodplain can be discretized into a group of 

individual cells, which are also known as computational cells. The computational cells store 

information about the elevation as well as roughness values at that specific location. The 

model calculates the Water Surface Elevation (WSE) at the center of the cell at each time 

step using a finite volume approach. 

The terrain for 2D HEC-RAS model in both Nagavali and Vamsadhara basins is developed 

using SRTM DEM with a resolution of 30 m. The 2D flow area is marked by a polygon, 

which specifies the extent of the area in which 2D flow calculation can be performed in lateral 

and longitudinal directions, assuming velocity in z-direction is negligible. Based on the 2D 

flow area, a 2D computational mesh is defined with cell spacing of 100 m × 100 m, yielding 

95735 and 77322 computational cells in Nagavali and Vamsadhara basins, respectively. 

During the generation of 2D computational mesh, the cell size is selected based on the 

computational time step and model stability. A time step of one minute is chosen for both 

basins to accurately predict the hydrograph and fulfill the courant condition. The courant 

number is a dimensionless value representing the time step taken by a water particle to travel 

from one cell to another in a computational mesh. SWAT simulated discharge is applied to 

the upstream boundary conditions at three different locations in Nagavali basin and two 

different locations in Vamsadhara basin, with a calculated energy slope of 0.001816 and 

0.001327, respectively. The downstream boundary condition in both basins is set to normal 

depth. The roughness values are assigned to 2D computational mesh in both basins using 

NRSC LULC map. Banklines are established at every 10 km interval in both basins to extract 

depth information. Figure 4.9 illustrates a schematic representation of 2D HEC-RAS model 

setup for Nagavali and Vamsadhara basins. 
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Figure 4.9 2D HEC-RAS model setup for Nagavali and Vamsadhara basins. 

 Validation of HEC-RAS Model 

Two approaches are used to validate the flood inundation maps generated by the HEC-RAS 

model. In the first approach, the simulated depths for historical events are compared with 

observed water levels at the Srikakulam and Kashinagar gauge stations in Nagavali and 

Vamsadhara basins, respectively. In the second approach, the inundation maps generated by 

HEC-RAS model for Titli cyclone over Vamsadhara basin using SWAT simulated discharge 

from IMD rainfall and GFS forecasts are validated against the flood inundation map provided 

by Bhuvan-NRSC. Based on overlapping areas between the inundation map generated by the 

model and the inundation map provided by NRSC, the performance of HEC-RAS model is 

assessed (Tamiru and Dinka 2021). The intersection tool is used to get the percentage of 

overlapping area between NRSC flood inundation maps and the HEC-RAS model. 

 Integration of SWAT and HEC-RAS Model 

The calibrated and validated SWAT model is used to generate the discharge hydrograph, 

which is then linked with 2D HEC-RAS model to generate flood inundation extent and depth. 

The SWAT model simulates discharge when it receives input parameters such as rainfall and 
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temperature. The HEC-RAS model subsequently assimilated the simulated discharge as 

upstream boundary conditions in both basins to generate flood inundation extent and depth. 

 Setting-up the GeoServer 

To display the flood inundation extent on the web interface, the spatial data must be fed into 

GeoServer and OpenLayers. To achieve this, a workspace needs to be created in the 

GeoServer and services such as Web Map Service (WMS) and Web Feature Service (WFS) 

should be enabled. Once the workspace has been created, a new data store needs to be created, 

which will become the data source. The vector data store is created with Shapefile, and the 

raster data store with GeoTIFF. Once the vector and raster data stores have been created, all 

the layers need to be published with proper coordinate system and styles. The publishing 

process can be automated using GeoServer's REST API. Once the layers are published and 

available, OpenLayers can access them to display on the web interface. To access the layers 

from GeoServer, a WMS or WFS request has to be generated which will need to be sent to 

the GeoServer requesting data. The code used by OpenLayers to access the layers with WMS 

request is presented in Figure 4.10. 

The Uniform Resource Locator (URL) given in Figure 4.10 contains information about the 

name of the workspace in which the layers are stored. This code generates and sends a WMS 

request to the GeoServer whenever a particular layer is to be accessed and retrieves the data 

in the form of tiles. OpenLayers then displays these tiles on the web interface. Using layer 

switcher, these tiles can be turned on or off. Code has been written to access all the required 

layers as they are updated in the database and GeoServer. 

 

 

Figure 4.10 Code used by OpenLayers to publish layers from GeoServer 
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 Automation of SWAT and HEC-RAS Models 

SWAT and HEC-RAS models are automated using R and Python programming languages to 

forecast floods and flood inundation extent at regular intervals on a daily time scale. To run 

the SWAT model in a programming environment, SWATPlusR package needs to be 

installed. After installing SWATPlusR package, SWAT executable has to be copied into the 

folder where the SWAT project is stored. SWATPlusR package offers support for SWAT 

2012 version and SWAT+ version. If the SWAT project is created using SWAT 2012, 

"run_swat2012" command has to be selected to run SWAT model in R environment. The 

script for running SWAT model in R environment is given in Figure 4.11.  

The HECRASController module in python is required to run HEC-RAS model in a 

programming environment. It will be installed during HEC-RAS model installation and does 

not require any further installation. The script for running HEC-RAS model is python 

environment when is given in Figure 4.12. 

 

 

Figure 4.11 Script for running SWAT model in R environment 

 

 

Figure 4.12 Script for running HEC-RAS model is python environment 
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4.6 Closure 

Two medium sized east flowing river systems, namely, Nagavali and Vamsadhara basins are 

chosen as study areas in the present research work. Geospatial database in the required format 

for the hydrologic and hydraulic models is prepared using ArcGIS software. The 

hydrometeorological data in the required format for hydrologic and hydraulic models are 

prepared using R and python programming language. Initialization, calibration, and 

validation of various models (WRF, SWAT, and HEC-RAS) have been explained. 

Explanation about the GeoServer to publish flood inundation maps via web-interface with 

OpenLayers and automation of SWAT and HEC-RAS models in programming environment 

is given in this chapter. 
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 Results and Discussions (Part-I) 

5.1 General 

For the selected study area, trends and patterns in rainfall characteristics are analyzed using 

various trend analysis methods explained in chapter 3. Based on the trends and patterns in 

rainfall characteristics over the study area, the predictions of track and intensity of tropical 

cyclones are analyzed using WRF model. A detailed explanation about the trends and patterns 

in rainfall characteristics, and track and intensity prediction of tropical cyclones using WRF 

model are given in the following sections. 

5.2 Trends in Rainfall and Rainfall Extremes 

Monthly, seasonal, and annual trends in rainfall and rainfall extremes are analyzed using four 

different MK tests (i.e., MK1/MK2/MK3/MK4) for 28 grids covering Nagavali and 

Vamsadhara basins (Figure 4.1) at a confidence level of 90% or higher. If any grid is showing 

either positive or negative trends in at least 3 tests, then it is considered as threshold value 

and the trends of those grids are analyzed. The total number of grids showing significant 

trends (positive/negative) at a 90% confidence level are presented in Table 5.1. The spatial 

patterns of trends in rainfall and rainfall extremes are mapped using kriging interpolation 

method.  Detailed analysis of the annual and seasonal results are presented in the following 

sections and the monthly results are presented in Appendix-A. 

 Trends in Seasonal and Annual Rainfall  

The Z statistics of the trends in seasonal and annual rainfall are evaluated and presented in 

Table A1 (Appendix-A). As illustrated, 4 out of 12 grids in Nagavali basin and 3 out of 16 

grids in Vamsadhara basin showed negative trends in winter. In the pre-monsoon and 

monsoon seasons, positive trends are observed in both the basins. The anecdotal evidence for 

positive trends in pre-monsoon can be tied to the landfall of cyclones in this region that are 

formed in BoB (Uddin et al. 2019). It is observed that the grids that are showing significant 

trends (positive/negative) in the pre-monsoon and monsoon seasons have also shown some 

similar trends at the annual scale. In the post-monsoon season, however a negative trend is 

observed in Nagavali basin and no significant trend is observed in Vamsadhara basin. The 

spatial patterns of trends in seasonal and annual rainfall using four MK tests are presented in 

Figure 5.1.
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Table 5.1 Total number of IMD grids showing significant trends (≥ 90% confidence level) for rainfall and rainfall extremes in both Nagavali and 

Vamsadhara Basin 

 
Rainfall CDD CWD PRCPTOT R10MM R20MM R40MM R95PTOT RX1DAY RX5DAY 

N+/N- V+/V- N+/N- V+/V- N+/N- V+/V- N+/N- V+/V- N+/N- V+/V- N+/N- V+/V- N+/N- V+/V- N+/N- V+/V- N+/N- V+/V- N+/N- V+/V- 

Long-Term 

Annual 2/1 7/0 2/0 2/0 2/1 6/0 2/1 7/0 2/1 7/0 4/1 6/1 4/0 0/0 5/0 1/0 4/0 0/0 1/0 2/0 

Winter 0/4 0/3 0/3 0/1 0/4 0/3 0/2 0/1 0/8 0/1 0/1 0/0 0/0 0/2 0/0 0/2 0/6 0/1 0/2 0/6 

Pre-

Monsoon 
2/0 9/0 0/4 0/7 0/1 2/0 5/0 6/0 3/0 5/0 2/0 4/0 1/0 7/0 2/0 3/0 3/0 8/0 0/0 9/0 

Monsoon 5/1 9/1 2/0 2/4 2/1 5/0 6/1 8/0 2/2 9/2 5/1 8/0 6/1 6/0 4/1 6/0 3/1 2/0 1/1 7/0 

Post-

Monsoon 
0/1 0/0 3/0 1/0 0/0 1/0 0/0 0/1 0/1 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Pre-1950 

Annual 0/0 0/0 0/0 0/0 0/0 0/2 0/0 0/0 2/0 1/0 0/0 0/0 0/1 0/0 0/1 0/0 0/1 0/0 0/0 0/0 

Winter 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0 1/0 1/1 1/0 1/1 0/0 0/4 0/0 1/0 0/0 0/1 

Pre-

Monsoon 
2/0 0/0 0//0 0/0 9/0 2/0 3/0 0/0 4/0 4/0 2/0 3/0 0/0 0/0 0/0 0/0 2/0 3/0 5/0 0/0 

Monsoon 0/0 0/3 0/0 0/0 2/0 0/2 0/0 0/3 0/0 0/0 0/0 0/1 0/0 0/1 0/0 0/1 0/7 0/5 0/0 0/2 

Post-

Monsoon 
2/0 0/0 0/0 0/0 10/0 0/1 0/0 0/0 4/0 4/0 2/0 3/0 2/0 2/0 0/0 0/0 2/0 3/0 5/0 0/0 

Post-1950 

Annual 0/2 2/0 1/0 0/0 1/10 0/2 0/2 2/0 1/5 3/2 0/1 1/0 2/1 1/0 2/1 1/0 1/2 2/0 0/2 0/0 

Winter 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Pre-

Monsoon 
0/4 0/1 0/0 0/0 0/6 0/6 0/4 0/1 0/4 0/6 0/1 0/4 5/0 12/0 0/0 1/0 0/0 0/0 0/0 0/0 

Monsoon 0/3 6/0 2/1 2/1 0/10 0/2 0/3 6/0 1/5 6/1 0/1 3/0 0/1 3/0 1/2 1/0 2/2 3/0 0/2 4/0 

Post-

Monsoon 
0/3 0/1 0/0 0/0 0/7 0/5 0/4 0/1 0/4 0/5 0/1 0/0 0/1 0/0 0/0 1/0 3/0 0/0 0/0 0/1 

Total 13/19 33/9 10/8 7/13 26/40 16/23 16/17 29/7 19/31 39/17 16/8 29/7 21/5 32/4 17/5 14/7 20/19 22/6 12/7 22/10 

Note: N indicates Nagavali Basin, V indicates Vamsadhara Basin, + sign indicates number of grids showing increasing trend, - sign indicates 

number of grids showing decreasing trend.
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Figure 5.1Trends in seasonal and annual rainfall 
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From these figures, it is evident that the grids with decreasing trends in winter are present in 

both basins except at the lower portion of Vamsadhara basin. However, no significant trend is 

found in the northern parts of Vamsadhara basin. The grids with increasing trends in the pre-

monsoon are present in the lower portion of Nagavali basin and at all locations in Vamsadhara 

basin. Due to barotropic and baroclinic instabilities caused by tropical depressions formed in 

BoB and their interactions with mean monsoonal flow (Krishnamurthy et al. 2009), the grids 

showing increasing trends in monsoon and annual rainfall are present in the lower and middle 

portions of both the basins. Whereas, in the post-monsoon season decreasing trends are present 

in the middle of Nagavali basin. 

The Z statistics of trends in the seasonal and annual rainfall for pre-1950 are evaluated and 

presented in Table A2 (Appendix-A). In Nagavali basin, an increasing trend is observed at 

grids NG6 and NG11 in the pre-monsoon season and no obvious trends are found for rest of 

the seasons and in annual scale. In Vamsadhara basin, a decreasing trend is observed in the 

monsoon season and no significant trend is observed in other seasons and in annual scale. From 

the spatial patterns it is observed that, the grids show an increasing trend in the pre-monsoon 

season at the middle and upper portions of the Nagavali basin. In Vamsadhara basin, the grids 

with decreasing trend are present in the middle portion of the basin. The Z statistics of trends 

in seasonal and annual rainfall for post-1950 period are evaluated and presented in Table A2 

(Appendix-A). In winter season, no significant trends are observed in both the basins. Except 

winter season, a decreasing trend is observed in Nagavali basins in all other seasons and in 

annual scale. In Vamsadhara basin, a decreasing trend is observed at grid VG13 in both the 

pre- and post-monsoon seasons. Whereas, an increasing trend is observed in the monsoon 

season and in annual scale.  

The spatial patterns trends in seasonal and annual rainfall for the period of post-1950 are 

presented in Figure A1 and A2 (Appendix-A). From these figures, it is evident that the grids 

showing decreasing trend in the pre-monsoon are present in the lower and middle portions of 

the Nagavali basin and at the upper portion of the Vamsadhara basin. Whereas, in the post-

monsoon, the grids with decreasing trend are presented in all portions of the Nagavali basin 

and upper portion of the Vamsadhara basin. In the monsoon season, the grids showing 

decreasing trends in Nagavali basin are present at lower and middle portions of the basin 

whereas, in Vamsadhara the grids with increasing trend are present all over the basin. The grids 

showing decreasing trends at annual scales in Nagavali basin are present at middle and lower 

portions of the basins and the grids with increasing trend in Vamsadhara basin are present in 
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the middle portion of the basin. The girds which showed significant trends in post-1950 in both 

the basins showed similar trends in the overall period (i.e., 1901-2018) trend analysis. 

 Trends in Rainfall Extremes 

The Z statistics of annual rainfall extremes at three time periods (i.e., long-term, pre-1950, and 

post-1950) have been computed. However, only the Z statistics of long-term annual rainfall 

extremes are presented in Table A3 (Appendix-A). In pre-1950, no obvious trends are observed 

for all the extremes in both basins. Whereas, post-1950, an increasing trend for CDD and 

decreasing trend for all other rainfall extremes is observed in Nagavali basin. However, an 

increasing trend is observed for the extremes CWD, R10MM, R40MM, R95PTOT, and 

RX1DAY at very few grid points (i.e., ≤ 2). The results of R95PTOT for these basins are in 

good agreement with results by Bisht at al., (2018a). In Vamsadhara basin, no significant trend 

observed for extremes CDD and RX5DAY. An increasing trend is observed for extremes 

PRCPTOT, R20MM, R40MM, R95PTOT, and RX1DAY. However, CWD has shown 

decreasing trend and both the trends are observed for R10MM. In the long-term, an increasing 

trend is observed for all rainfall extremes in Nagavali basin. However, a decreasing trend is 

observed at grid NG12 for CWD and at grid NG3 for PRCPTOT, R10MM, and R20MM in 

Nagavali basin. In Vamsadhara basin, no significant trend is observed for R40MM and 

RX1DAY. Whereas, an increasing trend is observed for other rainfall extremes. The trends in 

R95PTOT and RX5DAY are found to be in good agreement with Bisht et a., (2018a).  

The spatial patterns of the trends in long-term annual rainfall extremes are presented in Figures 

5.2 and 5.3. Increasing trends in CDD at a rate of 2 days per decade are present in the upper 

portion of both basins and as expected the same grids showed a decreasing trend for CWD. 

Interestingly, the rate of decrease in CWD is also found to be the same. For extremes, 

PRCPTOT, R10MM, and R20MM a decreasing trend is observed in the lower portion of 

Nagavali basin and the upper portion of Vamsadhara basin. For CWD, the grids showing 

increasing trends are observed in both the basins except at the upper portion of the Nagavali 

basin. The grids showing increasing trends for PRCPTOT, R10MM, and R20MM are observed 

in the lower and middle portions of both the basins. For extremes, R95PTOT, RX1DAY, and 

RX5DAY increasing trends are seen in the middle and upper portions of Nagavali basin. In 

Vamsadhara basin, the grids showing increasing trends for R95PTOT are observed in the lower 

portion of the basin and for RX5DAY at the middle and upper portions of the basin because of 

cyclonic storms as they produce rainfall for more than 5 days (Dash et al. 2009). 
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Figure 5.2 Annual trends in rainfall extremes for CDD, CWD, PRCPTOT, R10MM, R20MM, 

and R40MM  
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Figure 5.3 Annual trends in rainfall extremes for R95PTOT, RX1DAY, and RX5DAY 

 

The Z statistics of rainfall extremes in monsoon are presented in Table A4 (Appendix-A). In 

winter season, no trend is evident for R40MM and R95PTOT in Nagavali basin and R20MM 

in Vamsadhara basin. Except CDD, a decreasing trend is observed for all rainfall extremes in 

winter season. In both pre-monsoon and monsoon seasons, a positive trend is observed for all 

rainfall extremes except CDD and R10MM in Vamsadhara basin and CWD in Nagavali basin 

at one grind in the monsoon season. In Vamsadhara basin, a clear negative trend is observed 

for CDD in the pre-monsoon season. In the monsoon season a negative trend is observed over 

three grids and a positive trend for two grids in the basin.  For CWD in Nagavali basin, a 

negative trend is observed at NG8 in pre-monsoon season and at NG12 in monsoon. A positive 

trend is observed at NG4 and NG11 in monsoon season. At grid NG3, a negative trend is 

observed for all rainfall extremes except for CDD and CWD. For R10MM in Vamsadhara 

basin, a clear positive trend is observed during pre-monsoon season. In the monsoon season a 

positive trend is observed at nine grids and a negative trend at three grids. No significant trend 

is observed for rainfall extremes in post-monsoon season except for CDD where it showed a 

positive trend for a few grids in both basins. The spatial patterns of rainfall extremes in all 

seasons are computed. However, only the spatial patterns of rainfall extremes for the monsoon 



 

79 
 

season are presented in Figures 5.4 and 5.5 and the spatial patterns of winter season are 

presented in Figures A6 to A8 (Appendix-A). Increasing trends for CDD in winter season are 

seen in all parts of Nagavali basin. For the extremes, CWD, R10MM, and RX1DAY decreasing 

trends are present in most of Nagavali basin. For R95PTOT and RX5DAY, decreasing trend is 

present in the middle and upper portions of Nagavali basin and in the middle for R20MM. In 

Vamsadhara basin, decreasing trends for CWD, R10MM, and PRCPTOT are present in the 

middle portion of the basin. For extremes, R95PTOT and RX1DAY decreasing trends are seen 

in the upper portion of the basin and for R40MM and RX5DAY decreasing trends are seen in 

the middle and upper portions of the basin. 

 

 
 

Figure 5.4 Monsoon trends in rainfall extremes for CDD, CWD, and PRCPTOT 
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Figure 5.5 Monsoon trends in rainfall extremes R10MM, R20MM, R40MM R95PTOT, 

RX1DAY, and RX5DAY. 
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In pre-monsoon season, the decreasing trend for CDD is seen in both the basins except at the 

lower portion of Vamsadhara basin. In Nagavali basin, the grids with decreasing trends for 

CWD and increasing trends for PRCPTOT are observed in the lower and middle portions. The 

increasing trends for R20MM, R95PTOT, and RX1DAY are seen in the middle and upper 

portions of Nagavali basin. For R40MM, increasing trend is seen in the upper portion of the 

basin. In Vamsadhara basin, increasing trend is seen in the entire basin except for CDD and 

CWD. For CWD, an increasing trend is seen in the upper portion of the basin.   

In monsoon season, increasing trends with all rainfall extremes for all portions of the Nagavali 

basin are evident except at grid point NG12 in the upper portion of the basin for CWD. 

Interestingly, grid NG3 in the lower portion of Nagavali basin has shown a decreasing trend 

for all rainfall extremes except CDD. In Vamsadhara basin, the increasing trend for all the 

rainfall extremes are seen in the lower and middle portions of the basin except for CDD, CWD, 

and RX5DAY. CDD has shown a decreasing trend at a few grids in all portions of the basin 

and an increasing trend at a few grids in the upper portion of the basin. For CWD and 

RX5DAY, the grids shown increasing trends are present in the entire basin. In the upper portion 

of Vamsadhara basin, a decreasing trend for R10MM is seen. In post-monsoon season, an 

increasing trend for CDD is seen in the middle and upper portions of Nagavali basin and in the 

middle portion of Vamsadhara basin. In post-monsoon season, no significant trend is observed 

in rainfall extremes except for CDD where it showed increasing trend in all parts of Nagavali 

basin and upper portion of Vamsadhara basin. 

In winter, no significant trend is evident in pre- and post-1950 period for all the rainfall 

extremes in both basins. In the pre-1950 period, an increasing trend is observed for most of the 

extremes in both Nagavali and Vamsadhara basins in pre- and post-monsoon seasons. In post-

1950 period, a decreasing trend is observed in pre- and post-monsoon seasons. In monsoon 

season, in post-1950 period, a decreasing trend is observed in all extremes in Nagavali basin 

compared to pre-1950 period. In Vamsadhara basin an increasing trend is observed in all 

extremes in post-1950 period and decreasing trend in pre-1950 period. The spatial patterns of 

rainfall extremes for the post-1950 period are presented in Figures A9 to A11 (Appendix-A). 
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5.3 Magnitude of the Trends 

The magnitudes of rainfall and rainfall extremes are calculated using the Sen’s slope method. 

It is observed that the annual rainfall in Nagavali basin increased at the rate of 2 mm/decade 

and in Vamsadhara basin it increased at the rate of 8.5 mm/decade in the last 118 years. The 

maximum rate of increase in seasonal rainfall is observed in the monsoon season. Rainfall in 

the monsoon season also increased at the rate of 4 mm/decade in Nagavali basin and 9 

mm/decade in Vamsadhara basin.  

5.4 Drivers of Rainfall Variability  

Both Nagavali and Vamsadhara basins have shown significant trends in rainfall and rainfall 

extremes in the past 118 years at various temporal scales. The trend analysis has been carried 

out using high resolution daily gridded data. According to Tank et al. (2006), changes in data 

observation practices and irregular spatial distribution of rainfall stations, inhomogeneities are 

introduced in the time series data which could impact the computation of extreme indices. Due 

to this, there might be uncertainties in trend analysis carried out using gridded products. In the 

present study, regions with higher density of rainfall stations has shown significant trends in 

both Nagavali and Vamsadhara basins. It is also known that BoB is one of the hot spots for the 

genesis of tropical cyclones which propagates either westwards or northwards, playing a major 

role in rainfall extremes (Krishnamurthy et al. 2009). Both Nagavali and Vamsadhara basins 

are coastal basins with coastal plains adjoining BoB and receive high rainfall in pre- and post-

monsoon seasons due to cyclonic storms. Hence, the results exhibited significant increasing 

trend in the pre-monsoon season. Another possible reason for increasing trends in rainfall and 

rainfall extremes in both basins is because of changes in LULC. In the last three decades, the 

forest cover in Nagavali basin has decreased rapidly because of urbanization (Rao et al. 2019). 

The increasing trend in Nagavali basin may be attributed to the effect of urbanization, as Bisht 

et al. (2018a) suggested that the basin showed a decreasing trend in pre-urbanization era (1901-

1970), an increasing trend in post-urbanization era (1971-2015) and an increasing trend over 

the long term for both annual and monsoon rainfall. In Vamsadhara basin no significant 

changes in land use and land cover are found. Hence, the results from trend analysis results in 

Vamsadhara basin for rainfall and rainfall extremes at various temporal scales are in good 

agreement with data from existing literature. 
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With regard to spatial patterns in rainfall and rainfall extremes, Vamsadhara basin showed 

significant increasing trends in lower and middle portion of the basin when compared with 

Nagavali basin. These increasing trends may be attributed to local convective processes as well 

as extreme topography of the region, as the Eastern Ghats are densely located in the middle 

and upper portions of Vamsadhara basin. 

5.5 Simulation of Tropical Cyclones over BoB for the Prediction of Track 

and Intensity 

From the trend analysis, it is observed that the rainfall extremes are increasing in the lower and 

middle portions of Nagavali and Vamsadhara basins. The increasing trends in rainfall extremes 

in the lower and middle portions of both basins may be attributed to TCs that are formed in 

BoB. Hence, in this research work, WRF model is used to capture rainfall and movement of 

previous tropical cyclones over Nagavali and Vamsadhara basins. From the literature 

mentioned in section 2.3.1, it is observed that numerous studies have been conducted for the 

prediction of TCs using WRF model. However, it is difficult to identify a suitable 

microphysical scheme (CMP) for the prediction of TCs. Therefore, numerical experiments are 

conducted using WRF model to find a suitable microphysical scheme for the prediction of TCs. 

In the present research work, a total of seven CMP schemes, Lin, Ferrier, Morrison, Thompson, 

WRF Single Moment 3-Class (WSM3), WSM5, and WSM6 are studied. The sensitivity of the 

seven CMP schemes is analyzed by studying eight TCs (Daye, Kyant, Gaja, Hudhud, Nilofar, 

Ockhi, Phethai, and Titli) over NIO that occurred between 2014 and 2018 to determine the 

optimum combination physical parameterization schemes for the prediction of TC. Except 

Daye cyclone, the simulation period for the selected TCs is 96 h.  However, for Daye cyclone 

the simulation period is 48 h as the lifespan of the cyclone itself is only 48 h. The model errors 

for MSW, MSLP, and track position are calculated with respect to the observed values. 

 Track and Intensity of Errors 

The predicted tracks of the selected cyclones for all the combinations of CMP schemes and the 

best track provided by IMD are shown in Figures 5.6 and 5.7. The direct positional errors (DPE) 

for the selected TCs are shown in Figure 5.8 and 5.9. From the results, it is observed that, the 

intensity stages (Depression, Deep Depression, Cyclonic Storm, Severe Cyclonic Storm, and 

Very Severe Cyclonic Storm) of TCs during the model initialization have a significant impact 
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on track prediction. The cyclones initiated at deep depression or higher stages showed an 

increasing trend in average track error from the model initiation to the end of the simulation. 

Whereas, the cyclones initiated at the depression stage showed a decreasing trend in average 

track error till the 48 h of model simulation and then gradually increased to the end of the 

simulation. Except for cyclones Daye and Kyant, the predicted track is close to the observed 

track during the initial stages of the model simulation with an average error of 64 km for all 

the schemes. The results are in good agreement with previous studies (Osuri et al. 2012; Kanase 

and Salvekar 2015). Subsequently, as the time of simulation increased the predicted track also 

started moving away from the best track. At the end of the simulation period, the average track 

error is found to be 247 km. For cyclone Kyant, an average track error of 88 km is found during 

the initial stages which gradually reduced to 67 km up to the 48 h of the model simulation and 

then gradually increased to 347 km at the end. Similarly, for cyclone Daye, the average track 

error is gradually reduced from 162 km to 78 km from the model initiation to the end of the 

simulation. 

The model performance is evaluated by calculating MAE, MSE, and average track errors at 

every 24h interval (i.e., 24h, 48h, 72h, and 96h). The 24 hourly average track error for TCs are 

presented in Figure 5.10 and 5.11. The WSM3 scheme simulated cyclones Nilofar, Kyant, 

Ockhi, Daye, and Phethai with an average track error ranging from 83 to 190 km, 45 to 195 

km, 42 to 75 km, 102 to 47 km, and 113 to 115 km, respectively at 24h to end of the simulation 

time. Hudhud cyclone is well simulated by all CMP schemes with a maximum average track 

error of 63 km at 24 h simulation time. From then, the average track error gradually increased 

to 555 km at the end of the simulation with a least error of 219 km by WSM6 scheme. Cyclone 

Gaja is well simulated by Ferrier with least average track errors of 110, 264, 231, and 139 km 

at 24, 48, 72, and 96h of the model simulation time. In case of Titli the average track has been 

considered for the overall simulation period because, Morrison scheme provided the least 

average track error of 64 km and 39 km during the initial stages of model simulation while 

WSM6 scheme produced the least error of 111 km and 37 km at the end of the simulation. 

Hence, WSM6 scheme is considered to provide superior results for Titli cyclone. The single 

moment or double moment schemes did not show any significant variations in TCs track 

prediction. The deviations in the predicted tracks may be attributed to the variations in the 

intensification process during the model simulation. The schemes which showed rapid 

intensification process during the model simulation showed minimum deviation from the 

observed track and vice-versa (Park et al. 2020). 
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Figure 5.6 Observed and predicted tracks of TCs Daye, Kyant, Gaja, and Hudhud 
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Figure 5.7 Observed and predicted tracks of TCs Phethai, Titli, Nilofar, and Ockhi 
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Figure 5.8 Direct Positional Errors for TCs a) Daye, b) Kyant, c) Gaja, and d) Hudhud 
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Figure 5.9 Direct Positional Errors for TCs a) Nilofar, b) Ockhi, c) Phetahi, and d) Titli 
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Figure 5.10 Average track error at every 24 – hour interval  for TCs a) Daye, b) Kyant, c) Gaja, 

and d) Hudhud 
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Figure 5.11 Average track error at every 24 – hour interval  for TCs a) Nilofar, b) Ockhi, c) 

Phetahi, and d) Titli 

 



 

91 
 

The MAE and MSE of MSW for all CMP are calculated and the results of TC Hudhud are 

shown in Figure 5.12. In the case of Nilofar, Kyant, Daye, and Phethai cyclones WSM3 

indicates the lowest MAE and MSE. The lowest MAE for the TCs ranged from 4.73 to 17.08 

m/s, 6.84 to 4.63 m/s, 8.60 to 1.45 m/s, and 7.16 to 3.66 m/s for MSW at 24h to the end of the 

simulation. The lowest MSE for the TCs ranged from 10.14 to 11.31 m2/s2, 2.89 to 4.97 m2/s2, 

6.56 to 0.88 m2/s2, and 2.29 to 6.29 m2/s2. The lowest MAE and MSE for Gaja cyclone is 

obtained from the Ferrier scheme and ranged from 4.19 to 9.94 m/s and 5.77 to 13.46 m2/s2 

respectively. For Hudhud, Titli and Ockhi cyclones, WSM6 and Lin scheme provided the 

lowest MAE ranging from 2.44 to 9.49 m/s, 5.08 to 3.91 m/s and 4.85 to 3.85 m/s respectively 

and MSE ranged from 1.60 to 1.48 m2/s2, 5.39 to 8.63 m2/s2 and 6.44 to 12.45 m2/s2, 

respectively. The schemes which predicted MSW well also predicted MSLP for the respective 

TCs.  

The intensity of TC is influenced by the auto conversion process between the hydrometers and 

the amount of latent heat released during the conversion process  (Kanase et al. 2014). To assess 

the impact of various microphysical schemes on the intensity of TCs, the vertical profile of the 

area averaged mixing ratios is calculated at every 3-hour interval.  An average value of the 

prognostic variables over all the time steps has been taken for the analysis. The averaged values 

of the prognostic variables for cyclone Hudhud are presented in Figure 5.13 and for other 

cyclones presented in Figures B1 to B7 (Appendix-B). From the results, it is observed that 

WSM3 scheme predicted only liquid hydrometers for all the cyclones. It indicates that WSM3 

scheme assumed that the temperature of the clouds is above freezing point. Compared to other 

microphysical schemes, WSM3 scheme produced significant amounts of cloud water and rain 

in the lower troposphere for cyclones Nilofar, Kyant, Daye, and Phethai. For cyclones Kyant, 

Daye, and Phethai, all the microphysical schemes showed significant decrease in frozen 

hydrometers in middle troposphere. This results in slowing down the vertical acceleration of 

intense updrafts in the eye wall of the storm, which might be the reason for inhibiting storm 

intensification (Maw and Min 2017). For the cyclone Nilofar, the frozen hydrometers predicted 

by all microphysical schemes in middle troposphere are in negligible quantity and the liquid 

hydrometers predicted by Lin, WSM5 and WSM6 in the lower troposphere are also in 

negligible quantity. Compared to Ferrier, Morrison, and Thompson schemes which produced 

cloud water and rain in the lower troposphere WSM3 scheme produced more amount. The 

presence of cloud water and rain in the lower troposphere helps in its intensification. Therefore, 

the WSM3 scheme produced more intensity for the cyclones Nilofar, Daye, Kyant, and Phethai. 
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Figure 5.12 MAE and MSE of MSLP and MSW of cyclone Hudhud 
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X-axis represents 

mixing ratio values (g/kg) 

 

 

 

Figure 5.13 Time evolution of area averaged mixing ratios (g/kg) of cyclone Hudhud 
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The WSM6 scheme has produced a significantly large amount of cloud water and rain in lower 

troposphere compared to WSM3 for cyclone Hudhud, Ockhi, and Titli. The presence of cloud 

water and rain in the lower troposphere which helps in the release of latent heat and cyclone 

intensification, WSM6 scheme provided high intensity for cyclones Hudhud, Ockhi and Titli. 

Other microphysical schemes showed significant decrease in the frozen hydrometers in the 

middle troposphere which prevents the intensification of cyclones. In the case of Gaja cyclone, 

Ferrier, Lin, Thompson, and WSM6 schemes have produced cloud water in the lower 

troposphere and all the schemes have produced negligible quantities of all the other prognostic 

variables. Compared to other schemes, due to the presence of a large amount of cloud water in 

the lower troposphere, Ferrier scheme has predicted Gaja cyclone with more intensity. 

 Skill Score 

SS is calculated to obtain information about the improvement in the model forecast over 

reference forecast. It is easy to identify any improvement in the model performance as SS 

provides a single value. In the present study, sensitivity experiments with Lin scheme are 

considered as a reference forecast and the skill score for all other microphysical schemes is 

calculated. The skill scores for the DPE, MSW and MSLP at the end of the simulation are 

provided in Table 5.2 to 5.4. 

The WSM3 scheme showed an improvement of 18%, 17%, 19% and 41% in DPE for cyclones 

Nilofar, Kyant, Daye, and Phethai respectively. The WSM6 scheme showed an improvement 

of 17%, 35% and 58% in DPE for the cyclones Hudhud, Ockhi, and Titli. For Gaja cyclone, 

Ferrier scheme showed an improvement of 35% over the reference forecast. Similar results are 

obtained for MSW and MLSP. 

 

Table 5.2 Skill score for Direct Positional Error 

Cyclone/CMP Ferrier Morrison Thompson WSM3 WSM5 

Hudhud -0.52 -0.07 0.07 -0.16 0.04 

Nilofar 0.13 0.08 0.08 0.18 0.17 

Kyant -0.44 -0.31 0.06 0.17 0.08 

Ockhi -0.54 -0.12 0.07 -0.04 -0.04 

Daye -0.09 -0.16 0.04 0.19 0.08 

Titli 0.49 0.28 0.37 0.21 0.01 

Gaja 0.35 0.20 0.21 0.26 0.19 

Phethai -0.11 -0.17 0.10 0.41 0.03 
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Table 5.3 Skill score for Maximum Sustained Wind 

Cyclone/CMP Ferrier Morrison Thompson WSM3 WSM5 WSM6 

Hudhud 0.33 0.18 0.10 -1.33 0.00 0.43 

Nilofar 0.22 0.01 0.23 0.47 0.21 0.11 

Kyant 0.15 0.26 0.66 0.70 0.61 0.53 

Ockhi -0.24 -0.56 -0.38 -0.90 -0.33 0.01 

Daye 0.01 -0.08 -0.02 0.17 -0.10 -0.07 

Titli 0.13 0.15 0.05 0.09 -0.17 0.26 

Gaja 0.62 0.61 0.33 -0.16 0.18 0.14 

Phethai 0.27 0.12 0.20 0.47 0.33 0.26 

 

Table 5.4 Skill score for Mean Sea Level Pressure 

Cyclone/CMP Ferrier Morrison Thompson WSM3 WSM5 WSM6 

Hudhud 0.45 -0.30 0.50 -0.16 0.51 0.74 

Nilofar 0.41 0.05 0.30 0.70 0.44 0.25 

Kyant 0.24 0.37 0.38 0.68 0.62 0.07 

Ockhi -0.85 -0.25 -0.94 -1.68 -0.92 0.15 

Daye -0.02 0.21 0.18 0.29 0.11 0.10 

Titli 0.11 0.22 0.03 0.35 -0.15 0.35 

Gaja 0.47 0.41 0.43 -0.23 0.03 0.33 

Phethai 0.23 0.10 0.31 0.40 0.28 0.20 

5.6 Rainfall Prediction by WRF Model 

Rainfall intensity and distribution of TCs are influenced mainly by the interaction of storm 

with the Earth’s surface as well as humidity, and intensity of TC. In recent years, most of these 

parameters have been incorporated into WRF model for predicting the track, intensity, and 

rainfall of TCs. In this study, rainfall produced by Titli cyclone is predicted using WRF model 

with seven CMP schemes. The time series plot of rainfall predicted by WRF model along with 

IMD observed rainfall for cyclone Titli is shown in Figure 5.14. From the results, it is observed 

that the pattern of rainfall predicted by WRF model is in good agreement with observed data, 

but rainfall is overestimated byWRF model. WSM6 scheme predicted a maximum rainfall of 

220 mm for TC Titli that predicted the track and intensity as well. 
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Figure 5.14 Rainfall predicted by WRF model for TC Titli 

5.7 Closure 

In this chapter, the spatio-temporal variations of trends in rainfall characteristics over Nagavali 

and Vamsadhara basins are analyzed to identify areas that are vulnerable to floods. Using WRF 

model, the performance of various microphysical schemes on the track and intensity prediction 

of tropical cyclones over NIO are assessed.   
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 Results and Discussions (Part-II)  

6.1 General 

For the selected study area, based on the trends and patterns in rainfall characteristics and 

prediction of TCs using WRF model, the skill of GFS based rainfall forecasts have been 

evaluated and bias correction applied. After evaluating the skill of GFS based rainfall forecasts, 

an integrated hydrologic and hydraulic model based on SWAT and HEC-RAS is developed 

which simulates floods using GFS rainfall forecasts with a lead time of 48 hours. A Web-GIS 

based user interface system is developed for the visualization and timely dissemination of flood 

related information. Finally, the overall methodology is automated using R and Python 

programming languages. A detailed explanation about the evaluation of GFS rainfall forecasts, 

development of integrated hydrologic and hydraulic model, development of Web-GIS based 

user interface system, and the automation of the overall methodology is given in the following 

sections.  

6.2 Evaluation of GFS based Rainfall Forecasts 

From the section 5.6, it is clear that WRF model is able to predict rainfall for an extreme event. 

Although WRF model is able to predict rainfall for an extreme event, the model is sensitive to 

initial and boundary conditions, grid resolution, representation of physical parameterization 

schemes, and geographical location. For the prediction of rainfall in real-time, the initial and 

boundary conditions of the model need to be updated at regular intervals. A small error in initial 

conditions during the initialization of the model causes a large error in the forecast with an 

increase in simulation time. To avoid these kind of problems, rainfall predicted by WRF model 

for TC Titli is compared with GFS based rainfall forecasts. The time series plot of the WRF 

predicted rainfall, GFS based rainfall forecast, and observed data for TC Titli is shown in 

Figure 6.1. From the results, it observed that rainfall predicted by WRF model and GFS based 

rainfall forecast are in good agreement with the observed rainfall provided by IMD.  
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Figure 6.1 Rainfall predicted by WRF model along with GFS based rainfall forecast and 

observed data for Titli cyclone 

Although GFS model is able to forecast rainfall, it is suffering from three types of errors (i) 

location, (ii) magnitude, and (iii) timing. This may limit the usefulness of GFS rainfall forecasts 

to simulate the streamflow. Hence, the skill of GFS based rainfall forecasts needs be verified 

before using them for any hydrometeorological applications. 

 Spatial Characteristics of Statistical Indices 

The box plots of statistical indices (CC, BIAS, RMSE, and ME) of GFS rainfall forecasts from 

day-1 to day-5 against IMD rainfall over the Nagavali and Vamsadhara basins are presented in 

Figures 6.2 and 6.3, respectively. From the box plots of CC, it is observed that day-1 forecasts 

have shown the highest correlation in both basins and gradually decreased with an increase in 

lead time. The decrease in CC with the increase in lead time may be attributed to the variations 

in the SST and rainfall relationship. As the lead time increases, the relationship between SST 

and rainfall shifts from positive to negative because of the periodic forcing imposed by the 

northward propagating monsoon intra seasonal oscillations (Sahai et al. 2013). Durai and Das, 

(2019) suggested that rainfall forecasts from NWP models with a CC greater than 0.3 are 

considered good. In both basins, the magnitude of CC for day-2 and day-3 forecasts is within 

the acceptable range. From the magnitude of CC, it is observed that, GFS model is able to 

capture rainfall forecasts in both basins with a lead time of 3 days. The BIAS values indicated 

that, on average, the GFS model overestimated the rainfall in both the basins. The average 

overestimation for day-1 forecast is more than 38% in Nagavali basin and 40% percent in 
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Vamsadhara basin. In both basins, the overestimation of rainfall is gradually reduced from day-

1 to day-3 and then increased on day-4 and day-5. Similar results are obtained for ME in both 

basins. The random component of the forecast error is measured using RMSE. It showed an 

average value of approximately 12 mm/day in Nagavali basin and 14 mm/day in Vamsadhara 

basin and no significant changes are found with increase in lead time. 

 

 

 

Figure 6.2 CC, BIAS, RMSE, and ME for Nagavali basin 
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Figure 6.3 CC, BIAS, RMSE, and ME for Vamsadhara basin 

The spatial distribution of statistical indices (CC, BIAS, RMSE, and ME) of GFS rainfall 

forecasts from day-1 to day-5 are presented in Figure 6.4. The magnitude of day-1 CC ranged 

between 0.3 to 0.5 in both Nagavali and Vamsadhara basins, with maximum values in middle 

and upper portions. Rainfall forecasts from NWP models with a CC greater than 0.3 are 

considered good (Durai and Das 2019). In both basins, the magnitude of CC decreased with a 

decrease in forecast lead time. The magnitude of CC decreased to less than 0.3 for day-2 to 

day-5 forecasts in all parts of Nagavali basin. The magnitude of CC for day-2 and day-3 

forecasts is within the acceptable range (greater than 0.3) in all parts of Vamsadhara basin. In 

contrast, the magnitude of CC is less than 0.3 in all parts of the basin for day-4 and day-5 

forecasts. The CC values showed that the trend in rainfall forecasts is in good agreement with 

observed data in both basins from day-1 to day-3.  



 

101 
 

 

Figure 6.4 CC, BIAS, RMSE, and ME for GFS five-day rainfall forecasts 

From the spatial patterns of BIAS (Figure 6.4), the model overestimated the rainfall in day-1 

forecast in most parts of both Nagavali and Vamsadhara basins. The overestimation for day-1 

forecast is ranged between 20% to 80%. Rainfall forecasts shifted from overestimation to 

underestimation as forecast length increased. In Vamsadhara basin, shift from overestimation 

to underestimation occurred in almost all parts of the basin. In Nagavali basin, however, the 

shift occurred mainly in the lower portion of the basin. The magnitude of RMSE ranged from 

9 to 27 mm/day for day-1 to day-5 forecasts. The RMSE displayed similar spatial patterns from 

day-1 to day-5. In almost all parts of Vamsadhara basin, RMSE values greater than 12 mm/d 

are observed. The spatial distribution of RMSE values from day-1 to day-5 did not differ 

significantly in Nagavali basin.  However, a decrease in the magnitude of RMSE values is 

observed throughout the basin. For day-1 to day-5 forecasts, the magnitude of ME ranged 

between -2 to 12 mm/day. The spatial patterns of ME shows that the highest values (greater 

than 4 mm/day) of ME are found along the boundary of Nagavali basin (adjacent to 
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Vamsadhara basin). Lower ME values (-2 to 4 mm/day) are found in all parts of both basins 

except along Nagavali basin boundary. The magnitude of ME changed from positive to 

negative as the forecast lead time increased, but no significant difference is observed in spatial 

plots of ME from day-1 to day-5. From the results of BIAS and ME, it is observed that GFS 

model overestimated rainfall forecasts on day-1. GFS model underestimated the rainfall from 

day-2 forecast onwards due to the forecast lead time. The findings are consistent with those of  

Durai and Das (2019). 

 Analysis of Contingency Statistics 

The contingency statistics (POD, FAR, CSI, and TSS) of GFS rainfall forecasts from day-1 to 

day-5 are calculated for yes/no rainfall condition at a threshold of 1 mm/day for both basins 

(Figures 6.5 and 6.6).  

 

 

Figure 6.5 POD, FAR, CSI, and TSS for Nagavali basin for GFS five-day rainfall forecasts 
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Figure 6.6 POD, FAR, CSI, and TSS for Vamsadhara basin for GFS five-day rainfall forecasts 

From Figures 6.5 and 6.6, it is observed that the POD values of GFS forecasts are good and the 

highest value of 0.783 is found in Nagavali basin and 0.759 in Vamsadhara basin. A slight 

decrease in POD values is observed with an increase in lead time. Although there is a decrease 

in POD values with an increase in lead time, the GFS model is able to capture at least 68% of 

the rainfall events over the Nagavali basin and 70% of rainfall events in Vamsadhara basin. 

The FAR values indicate that, from day-1 to day-5 forecasts, the GFS model is unable to 

capture approximately 50% of rainfall events over Nagavali basin and 48% of rainfall events 

over Vamsadhara basin. The fraction of rainfall events correctly detected by the model is 

measured by CSI. CSI has highest value of 0.423 and 0.435 on day-1 forecast in Nagavali and 

Vamsadhara basins, respectively. The values of CSI indicated that the GFS model is able to 

forecast nearly 40% of rainfall events. TSS assessed the model's ability to distinguish between 

the occurrence and non-occurrence of events. From the values of TSS, the ability of GFS model 

to distinguish between the occurrence and non-occurrence of events is more than 40%. 
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The spatial distribution of contingency statistics (POD, FAR, CSI, and TSS) is presented in 

Figure 6.7. The results show that POD is greater than 0.6 for a threshold of 1 mm/day in all 

parts of Nagavali and Vamsadhara basins for day-1 and day-2 forecast. With the forecast lead 

time, POD is decreasing in lower Nagavali basin and upper middle and upper portion of 

Vamsadhara basin. Despite the forecast lead time, the minimum POD values in Nagavali and 

Vamsadhara basins are 0.55 and 0.5, respectively. POD values indicated that the GFS model 

is able to detect more than 50% of rainfall events with a five-day lead time. Higher FAR values 

of FAR are evident in all parts of Nagavali basin, except for the upper middle portion. Higher 

FAR values are found in the lower middle and lower portions of Vamsadhara basin. Lower 

FAR values are found in the upper middle and upper portion of the basin. With an increase in 

forecast lead time, FAR increased in almost all parts of the basin. CSI score over most parts of 

the basin is in between 0.4 and 0.5 for day-1 to day-5 forecast. The results shown by CSI are 

consistent with Durai and Das (2019). 

 

 

Figure 6.7 POD, FAR, CSI, and TSS for GFS five-day rainfall forecast 
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TSS score is more than 0.4 in all parts of both basins for day-1. The value of TSS decreased as 

forecast lead time increased. The lower portion of Nagavali basin and upper most middle 

portion of Vamsadhara basin had the greatest reduction in TSS value. Even with increased lead 

time, the GFS model distinguished more than 30% of rainfall events on day-5 forecast. 

Error Decomposition 

The total bias of GFS day-1 to day-5 forecast are decomposed into three independent 

components such as HB, MB, and FB. Box plots are an easy method to express the 

characteristics of a data set, such as symmetry, outliers, and variance. The box plots for HB, 

MB, FB and TB are shown in Figure 6.8. These biases are calculated for both Nagavali and 

Vamsadhara basins using total daily dataset. From the results, HB and FB are more dominant 

than MB in GFS rainfall forecasts. The magnitude of HB gradually decreased from day-1 to 

day-3 forecast and a small increase is observed on day-4 and day-5 forecast. The results 

obtained by MB and FB are comparable to those obtained by HB.  

 

 

Figure 6.8 Decomposed error components of GFS rainfall forecasts 
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To further investigate the influence of HB, FB, and MB on total bias, the spatial distribution of 

the decomposed error components is presented in Figure 6.9. From the spatial patterns, it is 

evident that the spatial distribution of ME is mainly influenced by HB and FB. All of the error 

decomposed components displayed similar spatial patterns, with a change in magnitude. For 

day 1 to day 5, the magnitude of HB ranged from -1.6 to 2.8 mm/day, MB ranged from 0.06 to 

-2 mm/day, and FB ranged from 0.6 to 5.3 mm/day. The higher values of HB (greater than 2 

mm/day) are located in the lower middle portion of Vamsadhara basin and the middle portion 

of Nagavali basin along the boundary adjacent to Vamsadhara for day-1 forecast. The 

magnitude of HB changed from positive to negative as forecast lead time increased, following 

the same spatial patterns as day-1 forecast. The change in HB from positive to negative 

suggested that the GFS model forecasts overestimated the rainfall on day-1 and gradually 

underestimated as lead time increased.  

 

 

Figure 6.9 Decomposed error components for GFS rainfall forecasts 
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Higher MB values are found in the upper middle portion of Vamsadhara basin along Nagavali 

boundary and in the lower portion of Nagavali basin. With increasing lead time, the magnitude 

of MB gradually increased. The increase in magnitude of MB indicates that the number of 

missing events in GFS model forecast increased as lead time increased. The spatial distribution 

of FB is comparable to that of HB. The magnitude range of FB gradually decreased from 0.8 

to 5.3 mm/day to 0.6 to 4.2 mm/day as forecast lead time increased. The decrease in magnitude 

of FB with forecast lead time indicated a reduction in false events. From the results, HB is 

always contributing to ME. Compared to MB, FB is the major influencing component of ME 

at the beginning of the GFS forecast; on the other hand, MB influenced ME with forecast lead 

time. 

 Intensity Distribution Plots 

The intensity distribution of rainfall amount provided unique insights into error dependence on 

rain rate as well as the potential impact of errors on hydrological applications. This is due to 

the fact that most hydrological processes, such as surface runoff, are highly sensitive to both 

intensity distribution and total rainfall amounts. The intensity distribution is calculated as the 

ratio of the total amount of rainfall in each bin to the total amount of rainfall observed over the 

entire study period. Figure 6.10 depicts the intensity distribution plots of total, hit, missed, and 

false rainfall. From the intensity distribution of total rainfall, the GFS model forecasts 

underestimated the rainfall with rain rate less than 12 mm/day and greater than 64 mm/day. 

The model, on the other hand, overestimated the rainfall, with rain rates ranging from 12 

mm/day to 64 mm/day. The intensity distribution of hit events followed a similar pattern to the 

intensity distribution of total rainfall, indicating that hit bias is a significant contributor to total 

bias. Missed rainfall forecasts ranged from 1 mm/day to 32 mm/day for day-1 to day-5 forecast. 

The number of missing rainfall events in the forecast gradually increased as the forecast lead 

time increased. The model forecasted false rainfall is greater than the missed rainfall, with rain 

rates ranging from 2 mm/day to 64 mm/day. The number of false rainfall events in the forecast 

gradually decreased as lead time increased. 
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Figure 6.10 Intensity distribution plots of GFS rainfall forecast over Nagavali and Vamsadhara 

basins: a) Total Rainfall, b) Hit Rainfall, c) Missed Rainfall, and d) False Rainfall. 

 Bias Correction of Rainfall 

The GFS rainfall forecasts are corrected for bias using the simple multiplication scheme 

mentioned in chapter III. Bias factors are calculated and verified by dividing the entire dataset 

into two parts: dataset-1 (from June 2015 to December 2018) and dataset-2 (from January 2019 

to December 2020). The bias factors are calculated with dataset1 and validated with dataset2. 

The intensity distribution plots (Fig. 6(a) and 6(b)) show that the GFS model overestimated the 

rainfall events with intensities greater than 12mm/day, resulting in false alarms. The categorical 

rainfall thresholds chosen for calculating the bias factors are 8mm, 12mm, 16mm, and 20mm. 

The dataset-1 is divided into two groups for each threshold. For instance, to calculate the bias 

factor at a threshold of 8mm, dataset-1 is divided into two groups as rainfall less than or equal 

to 8 mm/day and greater than 8 mm/day. The bias factors for rainfall forecasts from day-1 to 

day-5 for both Nagavali and Vamsadhara basins at different thresholds are presented in Table 

6.1. To avoid underestimation of rainfall, the bias factors are applied to dataset-2 for rainfall 

events with intensity greater than the threshold value. 
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Table 6.1 Calculated bias factors for the GFS five-day (i.e., day-1 to day-5) rainfall forecasts 

using IMD gridded observed data from June 2015 to December 2018 over  Nagavali 

and Vamsadhara basins 

Forecast 

day 
RI ≤ 8  RI > 8  RI ≤ 12  RI > 12  RI ≤ 16  RI > 16  RI ≤ 20  RI > 20  

GFS1 1.059 0.612 0.888 0.648 0.727 0.655 1.059 0.612 

GFS2 0.987 0.717 0.888 0.787 0.762 0.801 0.987 0.717 

GFS3 0.936 0.831 0.891 0.891 0.779 1.004 0.936 0.831 

GFS4 0.681 0.933 0.854 0.877 0.698 1.203 0.681 0.933 

GFS5 0.940 0.765 0.853 0.833 0.754 0.899 0.940 0.765 

Note: RI indicates rainfall intensity in mm/day. 

 

After recalculating the statistical indices for bias corrected GFS rainfall forecasts, skill scores 

are calculated to see if there is any improvement in forecast after bias correction. The skill 

scores for statistical indices at different threshold values are presented in Table 6.2. The 

magnitude of CC over both Nagavali and Vamsadhara basins improved slightly at all threshold 

values after bias correction as per Table 6.2. Based on the skill score values of BIAS, RMSE, 

and ME in both basins, a significant improvement is observed after bias correction at all 

threshold values. Over the Nagavali basin, the improvement in BIAS and ME ranged between 

38 to 64%, 44 to 65%, 22 to 53%, and 3 to 53% at thresholds of 8, 12, 16, and 20 mm/day, 

respectively with a maximum improvement on day-1 forecast. The RMSE improved by a 

maximum of 23%, 23%, 21% and 17% for day-1 forecast at thresholds of 8, 12, 16, and 20 

mm/day, respectively. From day-2 to day-5, the improvement in RMSE ranged from 4 to 8%, 

5 to 9%, 3 to 7%, and 0 to 5% at thresholds of 8, 12, 16, and 20 mm/day, respectively. Over 

Vamsadhara basin, the improvement in BIAS and ME ranged from 14 to 57%, 65 to 93%, 31 

to 68%, and 4 to 42% at thresholds of 8, 12, 16, and 20 mm/day, respectively. The improvement 

in RMSE ranged from 2 to 18%, 3 to 18%, 2 to 16%, and 0 to 14% at the respective threshold 

values. From the skill score values, it is observed that the bias correction for rainfall with 

intensity greater than 12 mm/day in both basins showed maximum improvement when 

compared with other thresholds. 
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Table 6.2 Percentage improvement in statistical indices of GFS rainfall forecast for the study 

basins over a two-year period (i.e., from January 2019 to December 2020) 

Forecast 

Day 

Nagavali Basin Vamsadhara Basin 

BIAS RMSE ME BIAS RMSE ME 

8/12/16/20 8/12/16/20 8/12/16/20 8/12/16/20 8/12/16/20 8/12/16/20 

Day-1 64/65/57/53 23/23/21/17 64/65/57/53 57/7758/42 18/18/16/14 57/77/58/42 

Day-2 59/62/38/22 8/9/7/5 59/62/38/22 24/93/58/34 5/5/4/3 24/93/58/34 

Day-3 38/44/22/3 4/5/1/0 38/44/22/3 16/76/68/5 2/3/2/0 16/76/68/5 

Day-4 43/49/23/3 5/5/3/0 43/49/23/3 14/65/31/4 3/3/2/0 14/65/31/4 

Day-5 52/53/29/11 7/7/5/2 52/53/29/11 15/85/46/18 3/3/2/1 15/85/46/18 

Note: 8/12/16/20 indicates the threshold values considered for the calculation of bias factors 

and 64/65/57/53 indicates the improvement in the model forecast after the bias 

correction at respective threshold values. 

 

To further investigate the influence of bias correction of GFS rainfall forecasts over both 

basins, the spatial distribution of statistical indices before and after the bias correction are 

presented in Figure 6.11 and 6.12. From the spatial patterns of spatial indices, it is evident that 

the magnitude of CC improved from day-1 to day-5 in all parts of both basins after bias 

correction. For day-1 and day-2 forecasts, the maximum improvement in CC is observed in the 

lower parts of both basins. Whereas, from day-3 to day-5 an improvement in CC is observed 

in all parts of both basins. From the spatial patterns of BIAS, it is observed that the 

overestimation of rainfall decreased significantly from day-1 to day-5 in all parts of both basins. 

For day-1 forecasts, before bias correction, the overestimation ranged from 55 % to 90% in the 

middle and upper portions of Nagavali basin and in the middle portion of Vamsadhara basin. 

After bias correction, the overestimation in the middle and upper portions of Nagavali basin 

and in the middle portion of Vamsadhara basin decreased to 21 – 38%. Similarly, from day-2 

to day-5 the overestimation of rainfall decreased significantly in all parts of both basins. The 

spatial patterns of ME followed similar patterns of BIAS in both Nagavali and Vamsadhara 

basins. Spatial patterns of RMSE showed that its magnitude decreased significantly from day-

1 to day-5 in all parts of both basins after bias corrections. The spatial patterns of ME followed 

a pattern similar to BIAS in both basins. 
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Figure 6.11 CC, BIAS, RMSE, and ME for the dataset-2 before the bias corrections 

1  

Figure 6.12 CC, BIAS, RMSE, and ME for the dataset-2 after bias correction 
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6.3 Forecasting of Floods using Integrated Model 

From the analysis of trends and patterns in rainfall characteristics, it is observed that the lower 

and middle portions of Nagavali and Vamsadhara basins are vulnerable to frequent floods due 

to heavy rainfall in the monsoon season and TCs that are formed over BoB during the pre- and 

post-monsoon seasons. Due to lack of flood forecasting and warning system, authorities 

frequently struggle to evacuate villagers during floods. Hence, there is a need for an integrated 

modelling framework to forecast floods and flood inundation extent. In the present study, an 

integrated hydrologic and hydraulic model is developed based on SWAT and 2D HEC-RAS 

models for simulation of floods using GFS based rainfall forecasts. 

The SWAT model is used in this study to estimate streamflow in both Nagavali and 

Vamsadhara basins. The estimated streamflow is calibrated and validated using SUFI-2 

algorithm in SWAT-CUP. SWAT model evaluation includes a sensitivity analysis to identify 

the parameters for streamflow simulations. The simulated streamflow from SWAT model is 

given as input to HEC-RAS model to predict flood inundation extent and flood depth. The 

following sections provide a detailed explanation of the results. 

 Flood Frequency Analysis  

The National Disaster Management Authority (NDMA) recommended a discharge threshold 

of 1500 m3/s for modeling flood events in Nagavali and Vamsadhara basins in its hazard 

assessment report for Andhra Pradesh and Odisha states (RMSI 2015). A study by Hajaj et al. 

(2019) found that the Nagavali basin has been flooded more than nine times since 1990. It 

suggests that flood events with discharges of less than 1500 m3/s caused floods in the basin. As 

a result, in the present analysis, a flood frequency analysis has been performed instead of 

considering NDMA's recommended threshold for modelling of floods. Flood frequency 

analysis uses annual maximum discharge collected at gauge stations to provide information on 

both the magnitude and frequency of floods. In the present study, stationary and nonstationary 

flood frequency analysis is conducted to estimate flood peaks for different return periods of 2, 

5, 10, 25, 50, and 100 years in Nagavali and Vamsadhara basins. In both stationary and 

nonstationary analyses, four distributions, namely, Log-Pearson Type-III, Log-Normal, 

Weibull, and Gumbel are used to estimate the peak discharges (Yang et al. 2019). The 

parameters of the distributions are estimated by maximum likelihood estimation method. Two 

open source R programming based packages, namely, “extremes” (Gilleland 2020; Gilleland 
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and Katz 2016) and “gamlss” (Rigby et al. 2005) are used to perform stationary and 

nonstationary analysis. Under the stationary assumption, best fit distribution is selected based 

on Akaike Information Criterion (AIC) value.  

Compared to other distributions, Log-Pearson Type-III provided the minimum AIC of 459 in 

Nagavali basin and 741 in Vamsadhara basin. Under the nonstationary assumption, six 

different cases are set for each distribution, where the scale and location parameters vary with 

time (Table 6.3). Log-Pearson Type-III distribution performed best for the nonstationary 

analysis. The residuals for Log-Pearson Type-III distribution are presented in Table 6.4 and 

6.5 for Nagavali and Vamsadhara basins, respectively.  

 

Table 6.3 Location and Scale parameters with time t in nonstationary analysis 

Models Location Scale 

M1 𝜇 =  𝜇0 + 𝜇1 ∗ 𝑡 𝜎 = Constant 

M2 𝜇 =  𝜇0 + 𝜇1 ∗ 𝑡 𝜎 =  𝜎0 + 𝜎1 ∗ 𝑡 

M3 𝜇 =  𝜇0 + 𝜇1 ∗ 𝑡 + 𝜇2 ∗ 𝑡
2 𝜎 = Constant 

M4 𝜇 =  𝜇0 + 𝜇1 ∗ 𝑡 + 𝜇2 ∗ 𝑡
2 𝜎 =  𝜎0 + 𝜎1 ∗ 𝑡 

M5 𝜇 =  𝜇0 + 𝜇1 ∗ 𝑡 + 𝜇2 ∗ 𝑡
2 + 𝜇3 ∗ 𝑡

3 𝜎 =  𝜎0 + 𝜎1 ∗ 𝑡 

M6 𝜇 =  𝜇0 + 𝜇1 ∗ 𝑡 + 𝜇2 ∗ 𝑡
2 + 𝜇3 ∗ 𝑡

3 𝜎 =  𝜎0 + 𝜎1 ∗ 𝑡 + 𝜎2 ∗ 𝑡
2 

 

 

Table 6.4 Residuals of Log-Pearson Type-III distribution over Nagavali basin 

Model AIC Mean Variance 
Coefficient of 

Skewness 

Coefficient of 

Kurtosis 

M1 459.357 0 1.03 0.975 0.897 

M2 457.801 0 1.03 0.815 0.625 

M3 453.050 0 1.03 0.739 0.912 

M4 453.050 0 1.03 0.739 0.912 

M5 459.357 0 1.03 0.975 0.897 

M6 456.668 0 1.03 0.604 0.274 
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All the six models have the same mean and variance in the both basins. The M3 and M4 models 

have the smallest AIC values, while M3 has the smallest Kurtosis value in the Vamsadhara 

basin compared to M4. Therefore, M3 model has been selected for the calculation of peak 

discharges under nonstationary conditions. The estimated peak discharges for basins under 

stationary and nonstationary analysis are shown in Table 6.6. From the statistics, it is found 

that peak discharges estimated by the non-stationary method at various return periods are less 

than the peak discharges estimated by stationary method. The difference in peak discharge 

estimates from stationary and non-stationary techniques is relatively small during short return 

periods and increased with the length of return period. The smaller difference between peak 

discharges calculated by stationary and non-stationary methods may be attributed to the fact 

that only time is considered as a covariate in calculating return periods. This may be because 

only time is considered as covariate in the calculation of design floods. Flood events with 

discharges greater than or equal to 2-year return period discharge calculated using the 

nonstationary method are considered for flood simulation in this study. 
 

Table 6.5 Residuals of Log-Pearson Type-III distribution over Vamsadhara basin 

Model AIC Mean Variance 
Coefficient 

of Skewness 

Coefficient 

of Kurtosis 

M1 741.090 0 1.02 0.081 -0.886 

M2 742.419 0 1.02 0.171 -1.148 

M3 741.005 0 1.02 0.080 -0.765 

M4 741.005 0 1.02 0.080 -1.148 

M5 741.090 0 1.02 0.082 -0.886 

M6 742.646 0 1.02 0.270 -1.272 
 

Table 6.6 Estimated peak discharges of the study basins with different return periods using 

Log-Pearson Type-III distribution 

Return Period 

(T years) 

Peak Discharge (m3/s) 

Nagavali River Vamsadhara River 

Stationary 

Analysis 

Nonstationary 

Analysis 

Stationary 

Analysis 

Nonstationary 

Analysis 

2 1223 1200 1365 1360 

5 1948 1877 2634 2596 

10 2650 2490 3841 3774 

25 3750 3443 5960 5837 

50 4770 4252 8110 7916 

100 5989 5195 10900 10605 
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 SWAT Simulated Streamflow 

SWAT model underestimated the streamflow during the calibration and validation period in 

both basins. The observed versus simulated streamflow during the calibration and validation 

period at Srikakulam and Kashinagar stations in Nagavali and Vamsadhara basins, respectively 

are presented in Figure 6.13 and 6.14. During the calibration and validation period, the time 

series plot of simulated streamflow reflected rainfall patterns over Nagavali and Vamsadhara 

basins and matched with observed streamflow. In Nagavali and Vamsadhara basins, the 

monsoon season produced the most streamflow (i.e., from June to September). In Nagavali 

basin, SWAT model overestimated the streamflow flow from 2004 to 2009. The overestimation 

of streamflow in Nagavali basin may be attributed to uncertainty in gridded products caused 

by inhomogeneity in observation practices and irregular distribution of observation stations.  

Streamflow in both basins has been increasing since 1991. The annual average streamflow has 

increased at a rate of 14 m3/s in Nagavali basin and 16 m3/s in Vamsadhara basin. According 

to the observed flow data, the average annual flow in Nagavali basin is 83.52 m3/s and in 

Vamsadhara basin it is 88.72 m3/s. The highest peak flow of 5624.74 m3/s is recorded in 

Nagavali basin on August 04, 2006, while 7321.54 m3/s is recorded in Vamsadhara basin on 

October 07, 2007. The peak flow recorded in Vamsadhara basin on October 07, 2007, could 

have been caused by measurement error or spurious data, as there is no scientific evidence of 

heavy rainfall or a cyclone passing over the basin at that time. The Vamsadhara basin received 

secondary peak of 4250 m3/s on September 07, 2014. According to SWAT simulated 

streamflow, the average annual flow in Nagavali basin is 79.71 m3/s and 72.50 m3/s in 

Vamsadhara basin. The highest peak flow evidenced in the simulated streamflow is 6753 m3/s 

on August 04, 2006 in Nagavali basin and 3884 m3/s on September 07, 2014 in Vamsadhara 

basin. The SWAT simulated peak flows that are in good agreement with observed flow. The 

maximum annual discharge in Nagavali basin is 2070 Billion Cubic Meters (BCM) in 2010, 

while the maximum annual discharge in Vamsadhara basin is 2295 BCM in 2006.  Minimal 

annual discharges of 212 and 252 BCM in 2002 are observed in Nagavali and Vamsadhara 

basins. 
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Figure 6.13 Observed and simulated streamflow in Nagavali basin 

 

 

Figure 6.14 Observed and simulated streamflow in Vamsadhara basin 

 Flood Inundation Maps of the Historical Flood Events 

The Nagavali and Vamsadhara basins are frequently flooded as a result of heavy rainfall during 

the monsoon season and tropical cyclones during the pre- and post-monsoon seasons. Based 

on a 2-year return period peak discharge (1200 m3/s in Nagavali basin and 1360 m3/s in the 

Vamsadhara basin), Nagavali basin is flooded 16 times, while Vamsadhara basin is flooded 9 

times between 1991 and 2014. In Nagavali basin, 11 flood events occurred during the monsoon 

season, four during the post-monsoon season, and the rest during the pre-monsoon season. In 

Vamsadhara basin, six events occurred during the monsoon season and the rest during the post-

monsoon season. The flood inundation maps for historical events from 1991 to 2014 are 

generated using HEC-RAS model with discharge hydrographs as inputs from SWAT model. 
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Flood inundation maps for historical events in Nagavali basin are shown in Figures 6.15 and 

6.16. Figure 6.17 shows flood inundation maps of Vamsadhara basin. 

Based on historical flood events, the flood inundation area in the Nagavali basin varied from 

182 to 229 sq.km, with a minimum inundation area in 1992 and a maximum inundation area in 

2006. The flood inundation area predicted by integrated hydrologic and hydraulic model over 

Nagavali basin for different flood events are in good agreement with Iqbal and Yarrakula, 

(2020). Over 115 villages across 10 mandals namely, Vangara, Veeragattam, Regidi, 

Palakonda, Burja, Santhakaviti, Ponduru, Amudalavalasa, Etcherla and Srikakulam rural in 

Srikakulam district, Andhra Pradesh are affected due to floods in Nagavali Basin. In 

Vamsadhara basin, the flood inundation area is varied from 245 to 309 sq.km, with a minimum 

inundation area in 1995 and a maximum inundation area in 2003. In the years 1994 and 2013, 

Vamsadhara basin received streamflow over 1000 m3/s for more than three consecutive days, 

resulting in an increase in the inundation area despite a lower peak discharge when compared 

to previous flood events. More than 139 villages across 11 mandals namely, Bhamini, Kotturu, 

Hiramandal, Jalumuru, L N Peta, Sarubujjili, Narasannapeta, Polaki, Amudalavalasa, 

Srikakulam rural and Gara have been affected in Vamsadhara basin by floods. Average area of 

220 sq. km and at least 1 lakh people in115 villages in Nagavali basin, and an area of 272 sq.km 

and 1.25 lakh people in 135 villages in Vamsadhara basin are vulnerable to floods. 

Geographical locations of the villages in both basins that are prone to floods are shown in 

Figure 6.18. 

 Validation of Flood Inundation Depth 

The flood inundation depth predicted by 2D HEC-RAS model is compared with observed data 

from gauge stations in Nagavali and Vamsadhara basins at Srikakulam and Kashinagar, 

respectively. Graphical representation of observed vs simulated flood depths is shown in Figure 

6.19. The inundation depths provided by 2D HEC-RAS model in both basins are clearly in 

good agreement with observed depths. Flood inundation depths predicted by the model ranged 

from 2.70 to 4.51 m and 2.28 to 3.77 m for Nagavali and Vamsadhara basins, respectively. In 

contrast, the observed inundation depths in the respective basins varied from 2.55 to 6.05 m 

and 2.16 to 3.65 m, respectively.  
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Figure 6.15 Flood inundation maps generated by HEC-RAS model using SWAT simulated discharge as upstream boundary from 1991 – 2006 

over the Nagavali basin 
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Figure 6.16 Flood inundation maps generated by HEC-RAS model using SWAT simulated discharge as upstream boundary from 2008 - 2014 

over Nagavali basin 
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Figure 6.17 Flood inundation maps generated by HEC-RAS model using SWAT simulated discharge as upstream boundary from 

1991 - 2014 over Vamsadhara basin 
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Figure 6.18 Habitats vulnerable to floods in Nagavali and Vamsadhara basins 
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Figure 6.19 Observed versus simulated flood inundation depths a) Srikakulam gauge station in 

Nagavali basin and b) Kashinagar gauge station in Vamsadhara basin 
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Except for two floods in Nagavali basin in August 2006 and October 2014, the 2D HEC-RAS 

model overestimated inundation depths in both basins. Except for those two flood events, the 

difference in observed and simulated depths in Nagavali basin ranged from 0.04 to 0.20 m, and 

in Vamsadhara basin it ranged from 0.04 to 0.29 m. The flood inundation depth is 

underestimated by 1.58 m and 0.32 m in Nagavali basin for the flood events in August 2006 

and October 2014. 

 Flood Inundation Modeling of Tropical Cyclone Titli 

Tropical Cyclone Titli is a powerful cyclonic storm that hit Vamsadhara basin in October 2018. 

According to state government records, the basin received 426 mm and 352 mm of rainfall on 

11th October at the Booravilli and Kanchili_ARG gauge stations, respectively and 153 mm at 

Sarubujji and Levidi gauge stations on 12th October 2018, resulting in an increase in water 

levels and floods in the basin on 13th October 2018. Flooding from cyclone Titli affected nearly 

25,000 families in over 200 villages in Vamsadhara basin. A total of 1, 39,844 hectares of 

agricultural crops as well as 14,378 hectares of horticultural crops were damaged, with a 

combined loss of ₹ 3600 crores (TNIE 2018; GOI-UNDP 2018). 

The SWAT model, which had been calibrated and validated, is used to estimate streamflow for 

Titli cyclone, which hit Vamsadhara basin from October 8th to October 12th, 2018.  The basin 

experienced heavy rainfall on 11th and 12th October. According to IMD gridded data, the basin 

received 148 mm of rainfall on October 11th and 133 mm on October 12th. On October 11th, the 

GFS model forecasted rainfall of 186 mm, 131 mm, 107 mm, 70 mm, and 50 mm from day-1 

to day-5. The WRF model predicted a rainfall of 215 mm on 11th October 2018 for TC Titli. 

The streamflow for Titli cyclone is simulated using observed rainfall, WRF predicted rainfall, 

and bias corrected GFS rainfall forecasts. Peak discharges simulated by the SWAT model are 

4332 m3/s for observed rainfall, 2924 m3/s for WRF predicted rainfall, and 2281, 2661, 1536, 

1090, and 700 m3/s for GFS 1-day to 5-day forecasts, respectively. SWAT simulated 

streamflow revealed that GFS 1-day and 2-day streamflow’s are in good agreement with the 

observed streamflow. The streamflow simulated by the SWAT model using 3-day to 5-day 

GFS forecasts are less than half of the observed streamflow. The underestimation of streamflow 

using 3-day to 5-day forecasts are mainly due to variations in rainfall intensity. For further 

analysis, GFS 1-day and 2-day forecasts are considered. The hydrograph for the observed and 
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simulated discharge based on IMD rainfall, WRF predicted rainfall, and GFS day-1 and day-2 

forecasts are shown in Figure 6.20.  

 

Figure 6.20 Hydrograph for observed and simulated discharge based on IMD rainfall, WRF 

predicted rainfall, and GFS day-1 and day-2 forecasts of Titli cyclone in 

Vamsadhara basin 

The simulated discharges from SWAT model are used as an upstream boundary condition in 

the 2D HEC-RAS model to generate inundation maps during Titli Cyclone (Figure 6.21). The 

inundation area for Titli cyclone has varied from 290.674 to 311.601 sq.km for streamflow 

hydrographs from various sources (IMD, WRF, GFS, and observed gauge data). The flood 

inundation maps generated by 2D HEC-RAS model are validated with Bhuvan-NRSC flood 

inundation map and are evaluated based on overlapping area. Intersection tool is used to 

calculate the area that overlapped between the observed and simulated inundation maps 

(Tamiru and Dinka 2021). From the calculated overlapping areas, it is observed that 2D HEC-

RAS model is able to predict at least 75% of the inundation area when compared to Bhuvan-

NRSC data. From the simulated flood inundation maps, it is observed that more than 150 
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villages are affected, and an area of 177 sq.km of crops (agriculture and horticulture) are 

damaged in Vamsadhara basin. The areas of crops affected by  the cyclone are in good 

agreement with observed statistics (Sphere-India 2018).  

The inundation depth from 2D HEC-RAS model is further compared with the observed depth. 

When SWAT model simulated discharge using IMD rainfall is given as the upstream boundary 

condition, 2D HEC-RAS model overestimated the inundation depth by 0.12 m. For other 

simulations, using observed gauge data and SWAT simulated discharge with WRF predicted 

rainfall and GFS day-1 and d-2ay rainfall forecasts, the 2D HEC-RAS model underestimated 

inundation depth by 0.38, 0.41, 0.46, and 0.53 m, respectively. The overestimation and 

underestimation of flood inundation depths for the tropical cyclone Titli may be attributed to 

variations in peak discharges. The results showed that the developed integrated hydrologic and 

hydraulic model is able to predict runoff, flood inundation extent and inundation depth with a 

lead time of 48 hours. 
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Figure 6.21 Flood inundation maps for the tropical cyclone Titli from various sources 

 

6.4 Web-GIS based User Interface System for Flood Visualization and 

Dissemination 

A Web-GIS based user interface system for flood visualization and dissemination is developed 

using HTML, CSS, and JavaScript. The pictorial representation of the interface is shown in 

Figure 6.22. The base maps for satellite view and terrain view are taken from Bing maps 

OpenStreetMap (OSM), respectively. Using GeoServer, a database is prepared to store the 

information about flood inundation extent, stream network, and boundary in the form of raster 

and vector layers for both Nagavali and Vamsadhara basins. All the layers from the GeoServer 

are imported into the user interface system. By default, the interface loads with the flood 

inundation maps for both basins along with satellite image in the background. The legend is 

provided in the interface, which gives information about flood inundation depth. Layer 
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switcher is added in the interface for users to enable or disable layers. Complete script for the 

development of Web-GIS based user interface system is given in Appendix-C. 

6.5 Automation of Integrated Model 

In order to provide information about the floods and flood inundation extent in real-time, the 

overall methodology presented in this research is automated by using both R and python 

programming languages. A script is written in R-program to download and pre-process the 

GFS forecasts. The pre-processing of GFS forecasts involves extracting rainfall and 

temperature data for both Nagavali and Vamsadhara basins and applying for bias correction to 

rainfall with intensity greater than 12 mm/day. After bias correction, rainfall and temperature 

data are converted into SWAT format. SWATplusR package in R program is used to run the 

calibrated and validated SWAT model for both basins in order to generate discharge 

hydrographs. The generated discharge hydrograph at various locations in Nagavali and 

Vamsadhara basins are then used as upstream boundary conditions in the respective basins in 

2D HEC-RAS model using R script. HECRASController module in python program is used to 

run 2D HEC-RAS model to forecast floods and flood inundation extent. Flood inundation maps 

are further updated into GeoServer data and then exported into Web-GIS base user interface 

system for visualization and dissemination. Public and government agencies can access the 

data through web browser in real-time to issue early warnings and plan rescue operations. The 

script for the automation of the model is given in Appendix-D. 

 

Figure 6.22 Web-GIS based platform for flood visualization and dissemination system 
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6.6 Closure 

In this chapter, the skill of GFS model in forecasting rainfall over the study area is analyzed 

and a bias in GFS rainfall forecast is identified. An integrated hydrological and hydraulic model 

based on SWAT and 2D HEC-RAS is developed to forecast flood and flood inundation extent 

based on bias corrected GFS rainfall with a lead-time of 48 hours. A Web-GIS based user 

interface system is developed for visualization and dissemination of flood related information 

and the whole procedure is automated using R and python programming languages.  
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 Summary and Conclusions 

7.1 Summary 

The purpose of the present research work is to develop an integrated hydrologic and hydraulic 

model that forecasts streamflow and generates flood inundation extent based on rainfall 

forecasts which will be published in Web-GIS based user interface system for the public use. 

To achieve this, the spatial and temporal variations of trend in rainfall and rainfall extremes 

over the Nagavali and Vamsadhara basins are examined using the long-term rainfall time series 

at three time periods (i.e., long-term (1901-2018), pre-1950, and post-1950) which provides 

extensive information about variations in rainfall patterns over the basins. From the trend 

analysis, it is observed that rainfall extremes are increasing in the lower and middle portions 

of the Nagavali and Vamsadhara basins. The increasing trends in rainfall extremes in the lower 

and middle portions of both basins may be attributed to TCs that are formed in BoB. Hence, 

WRF model is used to assess the impact of microphysical schemes prediction of previous 

tropical cyclones over the Nagavali and Vamsadhara basins. WRF model performance is 

assessed using direct positional error, mean absolute error, mean square error, and skill score 

calculated based on the observations provided by IMD to find a suitable microphysical scheme 

for the prediction of tropical cyclones. 

Further, the skill of GFS model to forecast rainfall is examined using statistical metrics (CC, 

RMSE, ME, and BIAS), as well as contingency statistics (POD, FAR, CSI, and TSS) and it is 

found that the model performed well in forecasting rainfall over study basins. A simple bias 

correction is applied to GFS rainfall forecasts to improve rainfall accuracy. After that, an 

integrated hydrologic and hydraulic model based on SWAT and 2D HEC-RAS model is 

developed which is capable of providing flood forecasts using bias corrected GFS rainfall with 

a lead time of 48 hours. To visualize and disseminate flood related information in real-time, 

Web-GIS based user interface system has been developed. Finally, the overall methodology is 

automated using R and python programming languages.  
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7.2 Conclusions 

The following are the important conclusions from the present research work: 

 In the long-term trend analysis, an increasing trend in rainfall and rainfall extremes is 

observed in pre-monsoon and monsoon seasons.  

 The increasing trends in rainfall and rainfall extremes are located in the lower and 

middle portions of both basins resulting in flood in this region, causing significant 

damage to human lives, agriculture, and infrastructure. 

 WSM3 scheme can be used as a suitable microphysical scheme for the prediction of 

track and intensity of tropical cyclones over NIO.  

 The rainfall forecasts from NCEP GFS model are in good agreement with observed 

data for day-1 to day-3 forecasts.  

 Bias correction needs to be applied to GFS rainfall forecasts with an intensity greater 

than 12 mm/day before utilizing them for hydrometeorological applications. 

 The integrated model based on SWAT and HEC-RAS is able to predict at least 75% of 

the flood inundation area.  

 The integrated model is able to provide flood forecasts with a lead time of 48 h, which 

is crucial for government agencies in issuing early warnings to the public during flood 

events and evacuating people from vulnerable areas.  

 Web-GIS based user interface system enables users to access information about flood 

inundation extent and depth in real-time to take necessary action during the floods. 

7.3 Research Contributions 

The following are the important research contributions of the present research work: 

 Detailed basin level trends in rainfall and rainfall extremes are found out for the study 

basins. 

 Suitable microphysical scheme for the prediction of tropical cyclones over the study 

area is found out. 

 Bias in GFS rainfall forecasts over Nagavali and Vamsadhara basins are evaluated. 

 An integrated model based on SWAT and HEC-RAS is developed to forecast 

streamflow and flood inundation extent with lead time.  
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 Web-GIS based user interface is developed for visualization and dissemination of flood 

inundation and depth maps  

 A robust and simple approach is developed for automating the process from data 

download to flood forecasting using an integrated model based on SWAT and HEC-

RAS, and to publish layers through a Web-GIS based user interface system. 

7.4 Limitations 

The limitations of the present research work are as follows:  

 Very high resolution spatial and temporal rainfall data is not used in the present study. 

 Due to requirement of high computational resources, WRF model is not used further to 

forecast rainfall. 

 Flood forecasts are only available on daily timescale. 

 The archival information about past flood events are not available to the users in the 

current version of Web-GIS based user interface system. 

7.5 Scope for Further Research 

The scope of the further research related to this work is as follows: 

 Localized rainfall forecasts from the WRF model can be used to forecast floods. 

 Dynamic changes in LULC and soil moisture information can be incorporated in the 

integrated model. 

 The integrated model can be updated to sub-daily time scale for the simulation of 

floods. 

  Web-GIS based user-interface system can be improved further to make it more user 

friendly and more rich in information. 
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Appendix-A 

The main aim of this research is to target water resource management and agricultural usage. 

The of monthly analysis are presented in Appendix-A.  

Trends in Monthly Rainfall  

The Z statistics for the monthly rainfall for 28 grids, 12 of which are over Nagavali and 16 over 

Vamsadhara is studied using four different Mann-Kendall (MK) tests and are presented in 

Appendix-A Table A9.   

In the Nagavali basin, no long-term trend is observed in January, October, and November. A 

negative trend is observed at less than 3 out of 12 grids in February, May, August, September, 

and December. A positive trend is observed over a very few grids (i.e., ≤ 2) during March, 

April, May, and June. However, a positive trend is observed for 9 grids in July.  

In the Vamsadhara basin, no long-term trend is observed between September and February. A 

negative trend is observed at VG14 in June. However, a positive trend is observed from March 

to August. Over the Vamsadhara basin, out of 16 grids, a positive trend is observed over 4 grids 

in March, 2 in April, 8 in both May and July, 6 in June and 3 in August, respectively. This 

implies the temporal and spatial variability of rainfall trends even in a relatively small 

watersheds in this region. 

The spatial patterns of trends in the monthly rainfall using four MK tests are presented in 

Appendix-A Figures A12 – A15. From the figures, it is observed that most of the grids in the 

lower and upper portion of the Nagavali basin shown decreasing trends except in May and 

September. In the Vamsadhara basin, the grids showing the decreasing trends are seen in the 

upper portion of the basin. The grids showing the increasing trends are present in the lower and 

middle portions of both the basins. 

Trends in Monthly Rainfall Extremes  

The trends in monthly rainfall extremes are evaluated and presented in this section. The Z 

statistics of the rainfall extremes in July are provided in Appendix-A Table A10 as it is the 

peak month of monsoon season. The spatial patterns of the rainfall extremes for July are 

presented in Appendix-A Figures A16 – A18. The detailed analysis of rainfall extremes in each 

month are presented in the following sections.  
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Consecutive Dry Days 

No significant trend is observed for CDD in January, April and December in the Nagavali 

basin. In the Vamsadhara basin no significant trend is observed between October and February. 

Negative trend is observed in March, May, July, and August in both the basins except at one 

or two grids in the Nagavali basin. A positive trend is observed in February, June and 

September.   

From the spatial patterns, it is observed that the grids showing the trends (positive/negative) 

are present in the lower portions of both the basins except for March and September. In March, 

the grids showed a decreasing trend for both the basins. In September, positive trend is present 

in all portions of the Nagavali basin. The grids showing a decreasing trend in the Vamsadhara 

basin are present in the lower and middle portions of the basin and a positive trend in the upper 

portion.   

Consecutive Wet Days  

A very few grids in both the basins have shown significant trends for CWD. No significant 

trend is observed between October and January. In both the basins, a negative trend is observed 

for a few grids in February and June. A positive trend is observed in both the basins except at 

grid NG12 in the Nagavali basin from March to August. In September, a negative trend in the 

Nagavali basin and a positive trend in the Vamsadhara basin are observed.   

In the Nagavali basin, the grids showing positive trends are present in the lower and middle 

portions except at grid NG12 in July and August, whereas a decreasing trend is seen in the 

upper portion of the basin. In the Vamsadhara basin, the grids showing decreasing trends are 

present in the middle and upper portions of the basin except at VG2 in April, where it showed 

an increasing trend in the lower portion of the basin.   

Actual Total Wet Day Precipitation (PRCPTOT)  

A clear positive trend is observed for PRCPTOT from March to August except at NG8 and 

NG10 in April, VG14 in June and NG3 in August where a negative trend is observed in both 

the basins. A negative trend is observed in February and September. No significant trend is 

observed between October and January.   

The grids with decreasing trends are present in the middle and upper portions of the Nagavali 

basin except at NG3 in August and September where it showed decreasing trend in the lower 
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portion of the basin. In March, an increasing trend is present in the upper portion of the basin 

whereas from April to June it is in the lower portion of the basin. In July, an increasing trend 

is present in all parts of the Nagavali basin. In the Vamsadhara basin, the grids with decreasing 

trends are present in the upper portion of the basin and increasing trends are present in the 

lower and middle portions of the basin.   

Heavy Rainfall Days (R10MM)  

A negative trend is observed in February, September, and November and positive trend from 

May to July in both the basins. No significant trend is observed in March and April over the 

Nagavali basin whereas a positive trend is observed in the Vamsadhara basin. In August, a 

negative trend in the Nagavali basin and a positive trend in the Vamsadhara basin is observed 

except at grid VG10. No significant trend is observed in January and from October to 

December.  

The grids with decreasing trends are present in the upper portions of both the basins except at 

grid NG2 in February, grid NG3 in August and September where they showed decreasing 

trends in the lower portion of the Nagavali basin. The grids with increasing trends are present 

in both the basins except over the upper portion of the Vamsadhara basin.   

Very Heavy Rainfall Days (R20MM)  

A positive trend is observed for R20MM in both the basins in March and from May to August 

and a negative trend in February and September. In April and November, a negative trend is 

observed only in the Vamsadhara basin and no significant trend is observed in the Nagavali 

basin. No significant trend is observed during January and December.  

In the Nagavali basin, the grids with decreasing trends in August are present in the lower 

portion of the basin and in the middle portion of the basin in November. Whereas, the grids 

showing a decreasing trend in February and increasing trends in June and July are present in 

the entire basin. The grids with increasing trend are seen in March and May in the upper portion 

of the basin and in August in the middle portion of the basin. In the Vamsadhara basin, the 

grids with decreasing trend are present in the middle and upper portions of the basin and 

increasing trend are seen in the lower sections of the basin.  
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Number of Days with Rainfall greater than 40 mm (R40MM)  

No significant trend is observed for the grids having rainfall greater than 40 mm in January, 

February, and from September to December. A positive trend is observed in all the months 

except in April at grids VG11 and VG13 in the Vamsadhara basin. The grids showing 

increasing trend are present in the upper portion of the Nagavali basin. In the Vamsadhara 

basin, the grids showing decreasing trend are present in the upper portion of the basin and the 

opposite in the lower portion. Whereas, an increasing trend is present in May over the upper 

portion.   

Very Wet Days (R95PTOT)  

A positive trend is observed for very wet days in March, June, and July in both the basins. No 

significant trend is observed in January and from August to December. A negative trend is 

observed in February in both the basins. In April, a positive trend is observed in the Nagavali 

basin and a negative trend in the Vamsadhara basin. Whereas in May, a positive trend is 

observed in the Vamsadhara basin and a negative trend in the Nagavali basin.  

The grids showing both increasing or decreasing trends are present in the middle and upper 

portions of the Nagavali basin. In the Vamsadhara basin, the grids showing a decreasing trend 

are present in the upper portion and increasing trend in the lower portion of the basin. Whereas 

in May, the grids showing increasing trend are present in the middle and upper portions of the 

basin.   

Monthly Maximum One-Day and Five-Day Precipitation (RX1DAY and RX5DAY)  

A positive trend is observed from April to July in both the basins. In the Nagavali basin, a 

negative trend is observed in August, November, and December. No significant trend is 

observed in January, February, September, and October for both RX1DAY and RX5DAY. In 

the Vamsadhara basin, no significant trend is observed in January, February, and from August 

to December except at VG14 grid in November where it showed a negative trend for RX1DAY.   

The grids showing increasing trend are present in the middle and upper portions of the Nagavali 

basin and at the lower and middle portions of the Vamsadhara basin. The grids showing 

decreasing trends are present in the upper portion of both the basins except at one grid in the 

lower portion of the Nagavali basin.
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Table A1. Z statics of seasonal and annual rainfall trend analysis (Note: Bold number indicates significant trends confidence level at 90% or above (Z ≥ 1.65); NG represents 

Gird point over Nagavali Bain, VG represent Grid point over Vamsadhara Basin.) 

Grid 

Id 

DJF MAM JJAS ON Annual 

MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 

NG1 -1.67/-1.50/-2.30/-1.63 0.23/0.56/0.25/0.26 1.19/0.60/0.76/0.99 -0.80/-0.73/-0.80/-0.76 0.33/-0.03/0.47/0.25 

NG2 -1.82/-1.84/-2.04/-2.01 0.92/1.25/0.91/1.03 0.31/0.04/0.24/0.31 -0.25/0.03/-0.23/-0.25 0.30/0.19/0.58/0.27 

NG3 -1.41/-1.47/-2.00/-1.53 -0.17/0.00/-0.18/-0.18 -2.77/-3.49/-2.12/-2.60 -0.36/-0.16/-0.36/-0.35 -2.67/-3.16/-3.52/-2.18 

NG4 -0.49/-0.59/-0.86/-0.57 2.18/2.37/1.96/2.29 2.42/2.32/1.99/3.24 0.25/0.48/0.23/0.26 2.54/2.51/2.40/2.54 

NG5 -1.45/-1.43/-1.64/-1.48 -0.23/0.00/-0.23/-0.27 -0.10/-0.37/-0.10/-0.09 -0.38/-0.27/-0.41/-0.39 -0.25/-0.40/-0.22/-0.27 

NG6 -1.37/-1.43/-2.06/-1.47 0.23/0.51/0.22/0.27 -0.21/-0.60/-0.19/-0.21 -0.41/-0.22/-0.41/-0.41 -0.72/-0.96/-0.77/-0.72 

NG7 -0.95/-0.97/-1.04/-1.03 2.54/2.53/2.54/2.96 3.05/2.84/2.96/3.05 0.02/0.22/0.02/0.02 2.60/2.43/2.60/2.93 

NG8 -1.52/-1.37/-1.71/-1.70 -0.58/-0.42/-0.68/-0.66 0.69/0.53/0.61/0.58 -1.10/-0.92/-1.19/-1.10 -0.08/-0.14/-0.08/-0.08 

NG9 -1.82/-1.72/-1.82/-2.04 1.26/1.29/1.26/1.40 1.78/1.51/1.70/2.11 -1.05/-0.85/-1.13/-1.06 1.17/0.99/1.38/1.19 

NG10 -1.82/-1.75/-2.04/-2.07 -0.74/-0.55/-0.74/-0.76 2.64/2.21/1.95/2.64 -1.88/-1.66/-2.04/-1.77 1.60/1.44/1.76/1.29 

NG11 -1.01/-0.85/-1.01/-1.16 1.50/1.60/1.71/1.60 2.00/1.75/1.76/2.13 -1.23/-0.99/-1.33/-1.23 1.52/1.31/1.83/1.48 

NG12 -2.68/-2.49/-3.11/-2.68 0.74/1.01/0.64/0.70 -0.69/-0.94/-0.65/-0.67 -0.82/-0.58/-0.82/-0.80 -0.66/-0.91/-0.66/-0.65 

VG1 -0.77/-0.76/-1.09/-0.86 1.91/2.00/1.91/2.21 3.08/2.88/3.05/4.37 0.48/0.65/0.49/0.47 2.22/2.27/2.22/2.41 

VG2 -0.84/-0.94/-1.09/-0.93 2.96/2.86/2.96/3.47 4.47/4.29/4.56/4.99 0.10/0.29/0.12/0.10 3.25/3.22/3.25/3.62 

VG3 -1.48/-1.49/-1.85/-1.67 2.02/2.03/2.02/2.33 3.44/3.31/3.54/3.44 0.37/0.57/0.38/0.37 2.04/2.29/2.78/2.37 

VG4 -0.76/-0.85/-0.76/-0.79 4.05/3.96/5.62/4.23 4.81/4.78/4.10/5.72 -0.27/0.01/-0.27/-0.25 4.22/4.15/5.03/3.87 

VG5 -1.10/-1.16/-1.10/-1.23 3.87/3.86/4.36/3.87 5.14/5.26/4.48/4.77 -0.32/-0.12/-0.35/-0.32 3.89/3.91/3.68/4.00 

VG6 -1.57/-1.79/-1.64/-1.79 0.77/0.82/0.68/0.92 2.13/2.08/2.18/2.20 0.30/0.48/0.27/0.32 0.96/1.20/1.39/1.19 

VG7 -1.55/-1.84/-1.57/-1.88 2.98/3.05/3.58/2.84 2.98/2.95/2.67/3.42 -0.85/-0.70/-0.91/-0.80 2.25/2.27/2.05/2.21 

VG8 -1.39/-1.61/-1.36/-1.61 2.77/3.00/2.23/2.60 2.84/2.96/2.46/2.49 -0.65/-0.52/-0.60/-0.65 2.13/2.24/2.39/2.17 

VG9 -1.43/-1.65/-3.19/-1.60 2.04/2.11/2.25/2.42 2.42/2.42/2.50/2.40 -0.08/0.04/-0.08/-0.09 1.40/1.48/2.25/1.77 

VG10 -1.61/-1.47/-1.63/-1.89 0.79/0.96/0.95/0.73 -1.36/-1.66/-1.25/-1.53 -1.06/-0.94/-1.13/-1.05 -1.60/-1.83/-1.97/-1.57 

VG11 -1.32/-1.38/-1.34/-1.61 1.66/1.84/1.87/1.57 0.48/0.40/0.42/0.53 -1.04/-0.98/-1.04/-0.99 -0.46/-0.41/-0.42/-0.44 

VG12 -1.11/-1.18/-1.11/-1.36 1.89/1.98/1.38/1.74 -0.71/-0.79/-0.65/-0.73 -0.56/-0.52/-0.45/-0.55 -0.34/-0.30/-0.33/-0.32 

VG13 -1.46/-1.77/-2.09/-1.86 0.34/0.20/0.40/0.35 -1.07/-1.17/-0.89/-1.04 -0.41/-0.37/-0.41/-0.40 -0.92/-0.94/-0.96/-0.87 

VG14 -2.03/-1.86/-2.03/-2.26 0.11/0.15/0.12/0.10 -1.22/-1.46/-1.15/-1.22 -0.88/-0.70/-0.88/-0.90 -1.47/-1.67/-1.68/-1.43 

VG15 -1.11/-1.16/-1.12/-1.32 1.01/1.12/1.38/0.96 0.39/0.30/0.36/0.43 -0.70/-0.60/-0.78/-0.69 -0.67/-0.78/-1.07/-0.69 

VG16 -1.23/-1.38/-1.24/-1.48 0.84/0.96/0.98/0.80 0.22/0.19/0.20/0.27 -0.39/-0.40/-0.44/-0.38 -0.65/-0.66/-0.59/-0.64 
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Table A2. Z statics of seasonal and annual rainfall of pre- and post-1950 

Grid 

Id 

Pre-1950 Post-1950 

DJF MAM JJAS ON Annual DJF MAM JJAS ON Annual 

MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 

NG1 0.38/0.49/0.46/0.38 1.39/1.70/1.67/1.42 -0.02/-0.65/-0.02/-0.02 1.39/1.70/1.67/1.42 1.19/1.06/1.19/1.47 0.37/0.15/0.40/0.36 -1.66/-1.62/-1.66/-1.63 0.05/0.07/0.03/0.03 -1.66/-1.62/-1.66/-1.63 -0.36/0.17/-0.27/-0.25 

NG2 -0.06/0.35/-0.09/-0.07 1.47/1.94/1.78/1.40 -0.82/-1.44/-1.10/-0.97 1.47/1.94/1.78/1.40 0.97/1.09/0.97/1.17 -0.36/-0.81/-0.36/-0.37 -1.33/-1.46/-1.33/-1.45 -0.91/-1.03/-0.91/-0.65 -1.33/-1.46/-1.33/-1.45 -0.42/-0.11/-0.49/-0.37 

NG3 -0.16/-0.15/-0.15/-0.18 1.52/1.90/1.52/1.51 -0.30/-0.70/-0.30/-0.33 1.52/1.90/1.52/1.51 0.33/0.09/0.33/0.36 -0.62/-1.10/-0.62/-0.65 -1.80/-2.04/-2.50/-1.87 -3.40/-3.96/-3.26/-2.18 -1.80/-2.04/-2.50/-1.87 -3.28/-3.52/-2.90/-2.50 

NG4 0.38/0.68/0.39/0.45 1.25/1.68/1.25/1.21 -0.73/-1.06/-0.73/-0.80 1.25/1.68/1.25/1.21 -0.18/-0.06/-0.16/-0.21 0.34/0.18/0.34/0.39 -0.89/-0.89/-0.89/-0.98 1.08/1.55/1.08/0.77 -0.89/-0.89/-0.89/-0.98 1.45/1.47/1.45/1.42 

NG5 -0.60/0.01/-0.50/-0.71 1.51/1.75/1.51/1.48 -0.03/-0.47/-0.03/-0.04 1.51/1.75/1.51/1.48 0.95/0.58/0.79/1.16 0.78/0.57/0.78/0.70 -0.61/-0.65/-0.61/-0.69 -1.20/-1.30/-0.87/-1.10 -0.61/-0.65/-0.61/-0.69 -0.64/-0.39/-0.64/-0.66 

NG6 -0.36/-0.25/-0.53/-0.41 1.67/2.03/1.67/1.69 -0.13/-0.42/-0.13/-0.16 1.67/2.03/1.67/1.69 0.50/0.25/0.50/0.59 0.13/-0.31/0.13/0.13 -1.57/-1.68/-1.57/-1.71 -2.68/-2.58/-2.68/-2.26 -1.57/-1.68/-1.57/-1.71 -2.24/-2.24/-2.24/-2.27 

NG7 0.01/0.03/0.01/0.01 1.27/1.58/1.27/1.21 -0.33/-0.65/-0.33/-0.39 1.27/1.58/1.27/1.21 0.14/0.04/0.14/0.16 1.16/1.10/1.16/1.27 -0.12/-0.35/-0.12/-0.13 0.11/-0.10/0.14/0.10 -0.12/-0.35/-0.12/-0.13 0.85/0.24/0.85/1.01 

NG8 -0.65/-0.01/-0.68/-0.78 1.49/1.73/1.49/1.45 0.00/-0.30/0.00/0.00 1.49/1.73/1.49/1.45 0.92/0.66/0.81/1.16 0.51/0.25/0.51/0.54 -1.48/-1.49/-1.48/-1.65 -1.65/-1.58/-1.37/-1.32 -1.48/-1.49/-1.48/-1.65 -1.59/-1.29/-1.46/-1.47 

NG9 -0.54/-0.13/-0.56/-0.65 1.29/1.59/1.29/1.26 0.12/-0.16/0.17/0.15 1.29/1.59/1.29/1.26 0.80/0.56/0.72/0.99 0.45/0.20/0.45/0.49 -1.01/-1.18/-1.01/-1.11 -1.76/-2.00/-1.76/-1.66 -1.01/-1.18/-1.01/-1.11 -1.17/-1.28/-1.28/-1.21 

NG10 -0.62/-0.15/-0.64/-0.75 1.54/1.89/1.54/1.50 -0.57/-0.66/-0.57/-0.69 1.54/1.89/1.54/1.50 1.12/0.58/1.00/1.43 0.30/0.12/0.30/0.34 -1.93/-1.91/-1.93/-1.99 -0.34/-0.48/-0.35/-0.23 -1.93/-1.91/-1.93/-1.99 -0.69/-0.38/-0.69/-0.50 

NG11 -0.63/-0.20/-0.65/-0.75 1.67/1.80/1.67/1.89 0.05/-0.20/0.07/0.06 1.19/1.54/1.19/1.16 0.89/0.58/0.89/1.11 0.97/0.79/0.97/1.11 -2.31/-2.10/-3.17/-2.30 -1.08/-1.25/-1.09/-0.85 -1.11/-1.25/-1.11/-1.22 -0.68/-0.74/-0.68/-0.64 

NG12 -1.31/-0.97/-1.04/-1.42 1.04/1.37/1.04/0.94 0.33/-0.37/0.38/0.26 1.67/1.80/1.67/1.89 0.65/0.15/0.65/0.54 -1.39/-1.80/-1.39/-1.39 -0.45/-0.78/-0.45/-0.48 -0.23/-0.38/-0.23/-0.23 -2.31/-2.10/-3.17/-2.30 -0.86/-0.75/-0.86/-0.90 

VG1 0.22/0.34/0.60/0.25 1.19/1.65/1.19/1.07 -0.39/-0.85/-0.37/-0.51 1.04/1.37/1.04/0.94 0.02/-0.04/0.02/0.02 0.56/0.52/0.56/0.63 -0.54/-0.81/-0.54/-0.55 0.93/0.84/1.14/0.81 -0.45/-0.78/-0.45/-0.48 1.35/1.18/1.35/1.48 

VG2 0.12/0.13/0.15/0.13 1.20/1.66/1.20/1.08 -0.33/-0.47/-0.36/-0.42 1.19/1.65/1.19/1.07 0.23/0.32/0.23/0.25 0.32/0.31/0.33/0.36 -0.87/-0.80/-0.87/-0.96 1.34/1.00/1.45/1.30 -0.54/-0.81/-0.54/-0.55 1.30/0.99/1.30/1.51 

VG3 -0.59/-0.22/-0.79/-0.68 1.40/1.80/1.40/1.29 -0.59/-0.82/-0.65/-0.68 1.20/1.66/1.20/1.08 0.17/0.28/0.17/0.18 -0.57/-0.76/-0.57/-0.65 -0.47/-0.74/-0.66/-0.47 1.70/1.48/1.70/1.71 -0.87/-0.80/-0.87/-0.96 1.01/0.96/1.01/1.23 

VG4 0.07/0.09/0.07/0.07 1.04/1.41/1.21/0.94 -0.02/-0.32/-0.02/-0.02 1.40/1.80/1.40/1.29 0.79/0.63/0.79/0.88 0.84/0.54/0.84/0.85 -0.58/-0.75/-0.55/-0.64 1.29/1.12/1.20/0.98 -0.47/-0.74/-0.66/-0.47 1.29/1.26/1.45/1.13 

VG5 -0.49/-0.32/-0.87/-0.58 1.09/1.46/1.31/1.00 -0.75/-1.13/-0.81/-0.92 1.04/1.41/1.21/0.94 -0.24/-0.08/-0.26/-0.27 -0.01/-0.19/-0.01/-0.01 -0.96/-0.93/-0.96/-1.14 2.17/1.81/2.42/1.72 -0.58/-0.75/-0.55/-0.64 1.77/1.46/1.59/1.83 

VG6 -1.46/-1.20/-1.83/-1.79 1.19/1.54/1.19/1.16 -1.96/-1.92/-1.96/-2.15 1.09/1.46/1.31/1.00 -0.43/-0.15/-0.46/-0.49 -1.10/-1.31/-1.32/-1.20 -1.11/-1.25/-1.11/-1.22 1.78/1.74/2.36/1.88 -0.96/-0.93/-0.96/-1.14 0.57/0.52/1.06/0.75 

VG7 -0.85/-1.03/-1.66/-1.15 1.27/1.27/1.48/1.06 0.27/-0.09/0.27/0.30 1.27/1.27/1.48/1.06 0.74/0.75/0.74/0.70 0.75/0.49/0.75/0.85 -0.59/-0.76/-0.59/-0.64 1.52/1.16/1.70/1.20 -0.59/-0.76/-0.59/-0.64 1.79/1.53/1.66/1.80 

VG8 -1.24/-1.27/-1.10/-1.57 1.14/1.35/1.35/1.02 -1.69/-1.75/-1.69/-2.14 1.14/1.35/1.35/1.02 0.03/0.01/0.03/0.04 0.01/-0.22/0.01/0.01 -1.02/-1.02/-1.02/-1.14 2.54/2.45/2.54/2.03 -1.02/-1.02/-1.02/-1.14 2.10/1.87/1.90/2.08 

VG9 -1.05/-0.92/-0.98/-1.28 1.27/1.35/1.49/1.15 -1.81/-1.72/-1.93/-2.20 1.27/1.35/1.49/1.15 -0.07/0.18/-0.07/-0.08 -0.97/-1.17/-1.00/-1.05 -1.40/-1.42/-1.33/-1.67 2.08/1.97/2.08/2.12 -1.40/-1.42/-1.33/-1.67 0.78/0.68/1.41/1.02 

VG10 -1.33/-0.94/-1.62/-1.64 1.34/1.63/1.34/1.35 0.22/-0.20/0.22/0.22 1.34/1.63/1.34/1.35 0.79/0.44/0.79/0.78 0.75/0.65/0.75/0.90 -1.44/-1.53/-1.97/-1.55 0.36/0.21/0.46/0.32 -1.44/-1.53/-1.97/-1.55 -0.10/-0.17/-0.10/-0.10 

VG11 -1.07/-1.18/-1.13/-1.49 1.62/1.44/1.62/1.40 -0.07/-0.30/-0.07/-0.07 1.62/1.44/1.62/1.40 0.62/0.54/0.62/0.58 0.99/0.95/0.99/1.08 -1.18/-1.23/-1.18/-1.29 1.41/1.34/1.19/1.06 -1.18/-1.23/-1.18/-1.29 1.56/1.29/1.70/1.66 

VG12 -1.22/-1.25/-1.19/-1.71 1.56/1.46/1.56/1.36 -0.01/-0.30/-0.01/-0.01 1.56/1.46/1.56/1.36 0.64/0.58/0.64/0.59 0.57/0.26/0.57/0.59 -1.32/-1.32/-1.11/-1.47 1.81/1.66/1.81/1.61 -1.32/-1.32/-1.11/-1.47 1.92/1.67/2.55/1.99 

VG13 -1.15/-1.32/-1.88/-1.66 1.52/1.46/1.52/1.36 -0.05/-0.37/-0.05/-0.05 1.52/1.46/1.52/1.36 0.99/0.75/0.99/0.96 -0.06/-0.46/-0.06/-0.07 -1.93/-1.99/-1.93/-2.15 1.46/1.23/1.46/1.12 -1.93/-1.99/-1.93/-2.15 1.09/0.91/1.09/1.07 

VG14 -1.48/-1.15/-1.23/-1.81 1.53/1.85/1.53/1.63 0.84/0.39/1.10/0.75 1.53/1.85/1.53/1.63 0.90/0.58/1.26/0.83 -0.53/-0.69/-0.53/-0.56 -0.39/-0.35/-0.39/-0.42 -1.52/-1.36/-1.52/-1.48 -0.39/-0.35/-0.39/-0.42 -0.93/-0.77/-0.93/-0.94 

VG15 -1.29/-1.27/-2.94/-1.79 1.51/1.37/1.51/1.41 0.40/0.03/0.67/0.42 1.51/1.37/1.51/1.41 0.62/0.61/0.67/0.58 0.51/0.27/0.51/0.52 0.31/0.38/0.31/0.32 -0.43/-0.12/-0.43/-0.37 0.31/0.38/0.31/0.32 0.87/0.78/0.96/0.99 

VG16 -1.24/-1.34/-2.89/-1.71 1.71/1.51/1.71/1.48 0.05/-0.01/0.05/0.05 1.71/1.51/1.71/1.48 0.53/0.41/0.48/0.43 0.65/0.43/0.65/0.68 -0.43/-0.21/-0.43/-0.47 0.73/0.43/1.03/0.70 -0.43/-0.21/-0.43/-0.47 1.54/1.18/1.25/2.04 
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Table A3. Z statics of long-term annual rainfall extremes  

Grid 

Id 

CDD CWD PRCPTOT R10MM R20MM R40MM R95PTOT RX1DAY RX5DAY 

MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 

NG1 0.49/0.22/0.62/0.40 1.73/1.48/1.54/1.56 0.14/-0.09/0.13/0.11 0.14/-0.09/0.13/0.11 -0.49/-0.68/-0.32/-0.38 1.00/0.79/0.92/0.91 0.16/0.12/0.20/0.14 1.00/0.79/0.92/0.91 0.51/0.56/1.35/0.45 

NG2 0.87/0.65/1.36/0.82 1.08/0.48/0.92/0.87 0.11/0.04/0.11/0.11 0.11/0.04/0.11/0.11 0.67/0.82/0.59/0.71 -0.16/-0.11/-0.13/-0.15 0.50/0.53/0.59/0.47 -0.16/-0.11/-0.13/-0.15 0.85/0.91/1.04/0.86 

NG3 1.27/1.00/1.27/1.20 -1.64/-1.31/-1.30/-1.25 -2.54/-2.97/-3.17/-2.10 -2.54/-2.97/-3.17/-2.10 -1.98/-2.28/-2.42/-1.70 -1.01/-1.00/-0.90/-0.79 -1.40/-1.58/-1.77/-1.30 -1.01/-1.00/-0.90/-0.79 -1.25/-1.27/-1.25/-1.20 

NG4 -0.36/-0.56/-0.51/-0.34 3.44/3.60/4.14/3.11 2.35/2.31/1.62/2.43 2.35/2.31/1.62/2.43 2.47/2.35/2.61/2.32 -0.66/-0.80/-0.55/-0.78 -1.12/-1.01/-1.44/-1.09 -0.66/-0.80/-0.55/-0.78 -0.67/-0.33/-0.86/-0.57 

NG5 -0.02/-0.25/-0.02/-0.02 0.73/0.38/0.56/0.63 -0.39/-0.51/-0.31/-0.42 -0.39/-0.51/-0.31/-0.42 -0.43/-0.55/-0.66/-0.47 -0.14/-0.41/-0.14/-0.15 -0.42/-0.52/-0.50/-0.42 -0.14/-0.41/-0.14/-0.15 0.33/0.20/0.28/0.32 

NG6 1.66/1.39/1.66/1.61 0.96/0.45/0.64/0.70 -0.70/-0.91/-0.80/-0.71 -0.70/-0.91/-0.80/-0.71 -0.03/-0.19/-0.03/-0.02 -0.27/-0.32/-0.29/-0.23 -0.25/-0.44/-0.25/-0.23 -0.27/-0.32/-0.29/-0.23 -0.82/-0.85/-0.79/-0.80 

NG7 0.78/0.45/0.78/0.75 -1.08/-0.85/-1.26/-0.95 2.55/2.35/2.55/2.91 2.55/2.35/2.55/2.91 2.74/2.58/2.74/2.73 2.16/2.14/2.16/2.17 1.90/1.89/1.90/1.88 2.16/2.14/2.16/2.17 0.27/0.63/0.31/0.30 

NG8 0.49/0.30/0.44/0.42 2.23/1.91/1.44/1.58 -0.23/-0.41/-0.22/-0.22 -0.23/-0.41/-0.22/-0.22 0.46/0.26/0.41/0.50 0.01/-0.06/0.02/0.01 -0.17/-0.17/-0.17/-0.14 0.01/-0.06/0.02/0.01 0.30/0.17/0.30/0.29 

NG9 1.99/1.74/1.99/1.73 -0.30/-0.43/-0.24/-0.23 1.02/0.86/1.14/1.07 1.02/0.86/1.14/1.07 1.83/1.66/2.04/1.83 2.65/2.37/2.97/2.18 3.04/2.85/4.84/2.54 2.65/2.37/2.97/2.18 1.24/1.15/1.24/1.15 

NG10 1.19/0.94/1.02/1.02 1.75/1.49/1.66/1.42 1.45/1.32/1.34/1.20 1.45/1.32/1.34/1.20 1.72/1.67/1.63/1.59 2.71/2.83/3.94/2.17 2.71/2.56/3.05/1.92 2.71/2.83/3.94/2.17 2.24/2.00/2.24/1.82 

NG11 0.67/0.33/0.57/0.58 2.22/1.78/1.42/1.70 1.39/1.20/1.48/1.40 1.39/1.20/1.48/1.40 1.25/1.02/1.35/1.30 1.52/1.15/1.81/1.27 2.14/2.12/2.85/1.84 1.52/1.15/1.81/1.27 1.14/1.18/1.31/1.05 

NG12 3.53/3.19/3.53/3.00 -3.33/-3.40/-2.44/-2.70 -0.51/-0.76/-0.51/-0.50 -0.51/-0.76/-0.51/-0.50 0.70/0.51/0.74/0.70 2.25/2.18/2.25/2.18 2.00/1.89/2.00/1.81 2.25/2.18/2.25/2.18 0.88/0.62/1.09/0.81 

VG1 -0.84/-1.15/-0.77/-0.81 0.67/0.75/0.61/0.62 2.10/2.22/2.10/2.31 2.10/2.22/2.10/2.31 2.46/2.49/2.55/2.89 0.44/0.34/0.44/0.48 0.39/0.42/0.39/0.38 0.44/0.34/0.44/0.48 0.35/0.47/0.67/0.32 

VG2 -0.89/-1.14/-1.06/-0.88 2.05/2.17/1.70/1.77 3.15/3.17/3.15/3.52 3.15/3.17/3.15/3.52 2.34/2.30/2.85/2.59 1.12/1.08/1.12/1.11 0.28/0.54/0.32/0.27 1.12/1.08/1.12/1.11 -0.19/0.05/-0.31/-0.18 

VG3 0.60/0.40/0.71/0.58 0.53/0.78/0.52/0.54 1.99/2.18/2.68/2.32 1.99/2.18/2.68/2.32 2.15/2.28/2.81/2.63 1.29/1.72/1.36/1.40 1.21/1.38/1.16/1.19 1.29/1.72/1.36/1.40 0.59/0.84/0.64/0.54 

VG4 0.11/-0.12/0.12/0.10 2.25/2.14/2.65/2.28 4.18/4.12/4.94/3.86 4.18/4.12/4.94/3.86 3.45/3.38/3.80/2.96 1.75/1.52/1.44/1.62 1.95/2.02/2.34/1.81 1.75/1.52/1.44/1.65 0.66/0.87/0.76/0.65 

VG5 0.76/0.66/1.11/0.67 2.89/2.98/2.89/2.53 3.78/3.80/3.58/3.91 3.78/3.80/3.58/3.91 3.52/3.57/3.33/3.59 1.20/1.42/1.46/1.28 0.40/0.56/0.55/0.39 1.20/1.42/1.46/1.28 0.23/0.50/0.35/0.21 

VG6 1.47/1.27/1.47/1.39 1.07/1.34/1.07/1.15 1.02/1.23/1.48/1.27 1.02/1.23/1.48/1.27 1.50/1.29/2.14/1.81 0.48/0.84/0.60/0.59 0.69/1.12/0.70/0.75 0.48/0.84/0.60/0.59 0.60/0.80/0.60/0.58 

VG7 1.40/1.24/1.40/1.31 1.84/1.80/1.84/1.74 2.13/2.20/2.17/2.08 2.13/2.20/2.17/2.08 1.46/1.58/1.91/1.24 1.40/1.58/1.87/1.42 1.17/1.36/1.14/1.14 1.40/1.58/1.87/1.42 0.58/0.76/0.75/0.53 

VG8 0.87/0.75/11.02/0.80 0.42/0.46/0.42/0.43 2.09/2.16/2.35/2.13 2.09/2.16/2.35/2.13 2.30/2.21/2.30/2.51 0.43/0.55/0.39/0.41 0.46/0.69/0.41/0.46 0.43/0.55/0.39/0.41 0.57/0.81/0.65/0.55 

VG9 -0.50/-0.76/-0.50/-0.48 3.05/3.03/2.76/3.33 1.20/1.36/2.33/1.53 1.20/1.36/2.33/1.53 0.85/0.86/1.08/1.03 0.40/0.50/0.51/0.48 -0.39/-0.16/-0.33/-0.42 0.40/0.50/0.51/0.48 -0.36/-0.16/-0.42/-0.38 

VG10 1.97/1.71/1.97/1.83 -0.87/-1.11/-0.84/-0.75 -1.62/-1.80/-1.99/-1.58 -1.62/-1.80/-1.99/-1.58 -1.04/-1.10/-0.90/-1.06 0.81/0.83/0.97/0.70 1.13/1.17/1.13/0.93 0.81/0.83/0.97/0.70 1.86/1.76/2.88/1.79 

VG11 1.34/1.04/1.34/1.28 3.45/3.13/5.08/3.61 -0.54/-0.48/-0.55/-0.51 -0.54/-0.48/-0.55/-0.51 -1.66/-1.55/-1.91/-1.65 -1.76/-1.23/-1.87/-1.51 -1.33/-1.01/-1.41/-1.20 -1.76/-1.23/-1.87/-1.51 0.58/0.59/0.59/0.57 

VG12 1.03/0.81/1.03/0.97 0.52/0.33/0.53/0.54 -0.39/-0.33/-0.38/-0.37 -0.39/-0.33/-0.38/-0.37 -0.03/0.04/-0.03/-0.02 0.60/0.66/0.50/0.54 0.50/0.68/0.50/0.44 0.60/0.66/0.50/0.54 1.03/1.00/1.01/1.03 

VG13 1.79/1.54/1.79/1.84 1.25/1.24/1.25/1.36 -0.96/-1.00/-0.96/-0.90 -0.96/-1.00/-0.96/-0.90 -0.39/-0.42/-0.39/-0.38 0.81/0.80/0.96/0.71 0.93/0.84/1.00/0.85 0.81/0.80/0.96/0.71 1.28/1.17/1.28/1.30 

VG14 1.64/1.41/1.64/1.57 0.24/-0.05/0.24/0.26 -1.51/-1.66/-1.72/-1.46 -1.51/-1.66/-1.72/-1.46 -1.50/-1.44/-1.64/-1.41 -0.57/-0.35/-0.57/-0.51 -0.04/-0.11/-0.04/-0.04 -0.57/-0.35/-0.57/-0.51 0.88/0.89/1.10/0.82 

VG15 1.26/1.04/1.86/1.23 0.56/0.20/0.56/0.60 -0.66/-0.78/-1.08/-0.68 -0.66/-0.78/-1.08/-0.68 -0.79/-0.60/-0.66/-0.73 0.19/0.31/0.20/0.18 0.30/0.45/0.30/0.27 0.19/0.31/0.20/0.18 1.78/1.70/1.78/1.90 

VG16 0.78/0.53/0.85/0.86 2.20/2.00/2.83/2.21 -0.65/-0.73/-0.59/-0.63 -0.65/-0.73/-0.59/-0.63 -0.75/-0.75/-0.59/-0.68 -0.64/-0.35/-0.55/-0.52 -0.88/-0.81/-1.01/-0.79 -0.64/-0.35/-0.55/-0.52 0.47/0.51/0.67/0.47 
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Table A4. Z statistics of annual rainfall extremes of pre-1950 

Grid 

Id 

CDD CWD PRCPTOT R10 R20 R40 R95 1Day 5day 

MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 

NG1 0.52/-0.04/0.74/0.41 2.25/1.96/2.25/2.1 1.14/0.94/1.14/1.41 0.41/0.45/0.41/0.45 1.35/1.06/1.87/1.52 0.14/0.38/0.22/0.19 -0.14/0.27/-0.22/-0.19 -0.8/-0.32/-0.8/-0.97 0.77/1.22/1.21/1 

NG2 -0.08/-0.42/-0.08/-0.09 3.69/3.42/3.69/3.95 1.09/1.11/1.27/1.31 1.62/1.44/1.4/1.95 -0.29/-0.04/-0.45/-0.37 -1.70/-1.59/-1.70/-1.67 -1.71/-1.78/-1.5/-1.82 -1.66/-0.85/-2.42/-1.94 0.58/1.16/0.65/0.67 

NG3 0.24/-0.2/0.24/0.24 -0.09/-0.06/-0.09/-0.09 0.35/0.09/0.35/0.39 0.68/0.25/0.59/0.67 0.28/0.09/0.28/0.3 0.93/0.40/0.93/0.82 0.23/0.01/0.23/0.23 -0.23/0.11/-0.74/-0.25 0.83/0.87/0.83/0.97 

NG4 -0.28/-0.75/-0.35/-0.29 0/0.29/0/0 -0.17/-0.03/-0.15/-0.19 0.44/0.21/0.55/0.48 0/-0.08/0/0 0.05/0.16/0.05/0.06 -0.59/-0.44/-0.53/-0.62 -0.03/0.32/-0.02/-0.03 0.44/0.73/0.36/0.48 

NG5 -0.38/-0.7/-0.53/-0.36 0.76/0.66/0.76/0.91 0.97/0.63/0.8/1.19 0.86/0.7/0.86/0.89 0.44/0.09/0.48/0.52 0.19/-0.22/0.19/0.22 -0.17/-0.13/-0.23/-0.18 -1.16/-1.2/-1.13/-1.1 0.44/0.15/0.43/0.43 

NG6 0.33/-0.03/0.33/0.32 1.03/0.65/1.03/1.1 0.49/0.27/0.49/0.57 0.76/0.41/0.76/0.84 0.37/0.19/0.37/0.37 0.53/0.14/0.53/0.49 0.33/0.01/0.33/0.31 -0.72/-0.46/-3.51/-0.77 0.22/0.44/0.22/0.24 

NG7 0.18/-0.25/0.18/0.17 1.06/1.14/1.55/1.01 0.18/0.09/0.18/0.21 0.65/0.3/0.65/0.77 0.9/0.7/0.96/1.04 0.42/0.41/0.53/0.40 0.15/0.18/0.18/0.14 -0.81/-0.32/-0.86/-1.02 0.55/1.13/0.59/0.62 

NG8 0.28/-0.04/0.35/0.23 1.47/1.23/1.72/1.24 0.99/0.68/0.87/1.25 1.79/1.53/2.34/1.88 0.4/0.2/0.36/0.47 -0.39/-0.35/-0.39/-0.40 -0.69/-0.78/-0.69/-0.73 -1.21/-1.11/-1.56/-1.19 -0.01/-0.16/-0.01/-0.01 

NG9 0.53/0.11/0.53/0.47 0.93/0.63/0.82/0.89 0.91/0.54/0.81/1.13 1.89/1.54/1.89/2.16 0.76/0.49/0.76/0.92 -0.36/-0.53/-0.36/-0.37 -0.67/-0.68/-0.65/-0.66 -1.3/-1.09/-1.67/-1.32 -0.16/-0.22/-0.21/-0.15 

NG10 0.66/0.22/0.93/0.55 -0.4/-0.76/-0.58/-0.39 1.14/0.58/1.01/1.45 1.63/1.32/1.63/1.76 0.62/0.73/0.62/0.78 -0.26/-0.10/-0.26/-0.27 -0.36/-0.42/-0.36/-0.37 -1.46/-1.18/-1.46/-1.55 -0.13/-0.25/-0.13/-0.12 

NG11 0.53/0.11/0.53/0.47 0.94/0.63/0.83/0.9 0.96/0.63/0.96/1.2 1.31/1.13/1.31/1.49 0.78/0.49/0.78/0.89 -0.64/-0.61/-0.64/-0.65 -0.49/-0.58/-0.49/-0.49 -1.38/-1.13/-1.81/-1.36 -0.28/-0.35/-0.36/-0.25 

NG12 0.33/-0.06/0.33/0.36 0.73/0.36/0.73/0.76 0.64/0.13/0.64/0.52 0.95/0.77/0.95/1.01 0.27/-0.16/0.27/0.24 -0.29/-0.53/-0.34/-0.28 -0.49/-0.7/-0.49/-0.46 -0.72/-0.89/-1.31/-0.73 -0.31/-0.63/-0.31/-0.31 

VG1 -0.38/-0.82/-0.38/-0.37 -2.35/-1.92/-2.35/-2.5 -0.02/-0.04/-0.02/-0.02 -0.23/-0.18/-0.33/-0.27 1.27/1.37/1.36/1.53 -0.14/-0.32/-0.14/-0.16 -0.35/-0.42/-0.35/-0.3 -1.15/-0.65/-1.43/-1.37 0.32/0.68/0.32/0.32 

VG2 0.2/-0.13/0.27/0.22 -2.39/-2.03/-2.39/-2.43 0.27/0.3/0.27/0.28 -0.86/-0.85/-1.3/-0.99 1.33/1.44/1.44/1.54 0.26/0.30/0.24/0.23 -0.03/-0.01/-0.03/-0.03 0.03/0.47/0.03/0.03 0.83/1.18/0.83/0.84 

VG3 1.27/0.82/1.73/1.37 -1.44/-1.34/-1.65/-1.54 0.22/0.28/0.22/0.23 0.01/-0.03/0.01/0.01 1.41/1.65/1.5/1.68 0.01/0.20/0.01/0.01 0.19/0.51/0.19/0.16 0.74/0.84/0.74/0.82 0.59/0.94/0.59/0.59 

VG4 0/-0.32/0/0 1.02/1.28/1.19/1.21 0.79/0.56/0.79/0.88 1.04/0.66/1.11/1.15 1.51/1.65/1.62/1.73 -0.60/-0.71/-0.60/-0.54 -0.62/-0.46/-0.71/-0.56 0.03/0.47/0.03/0.04 1.19/1.44/1.52/1.32 

VG5 1.26/0.84/1.79/1.39 -0.73/-0.44/-0.73/-0.7 -0.18/-0.06/-0.2/-0.2 0.36/0.23/0.39/0.45 0.73/1.2/1.03/0.89 0.31/0.26/0.31/0.30 -0.11/0.16/-0.11/-0.1 -0.08/0.03/-0.08/-0.1 0.13/0.49/0.13/0.13 

VG6 2.09/1.56/2.97/2.38 -0.46/-0.25/-0.62/-0.5 -0.33/-0.23/-0.36/-0.38 0.09/0/0.09/0.09 0.34/0.08/0.54/0.36 -0.60/-0.27/-0.60/-0.64 -0.69/-0.39/-0.69/-0.74 -0.61/-0.2/-0.61/-0.6 -0.55/-0.3/-0.55/-0.52 

VG7 0.48/0.09/0.51/0.54 1.37/1.44/1.37/1.5 0.75/0.8/0.75/0.72 1.82/1.66/1.82/1.86 -0.08/0/-0.07/-0.08 -0.36/-0.08/-0.36/-0.39 -0.8/-0.42/-0.8/-0.83 -1.46/-1.39/-1.46/-1.72 -0.64/-0.37/-0.64/-0.61 

VG8 0.91/0.32/1.17/1.15 0.52/0.52/0.52/0.55 0.03/0.01/0.03/0.04 0.5/0.2/0.58/0.49 0.13/0.38/0.13/0.15 -0.53/-0.02/-0.53/-0.57 -0.17/0.01/-0.17/-0.19 -0.28/0.11/-0.28/-0.35 -0.34/-0.03/-0.34/-0.34 

VG9 1.87/1.34/2/2.2 1.01/0.95/1.01/0.93 -0.07/0.16/-0.07/-0.08 0.55/0.37/0.55/0.64 -0.59/-0.75/-0.59/-0.72 -0.32/-0.09/-0.48/-0.42 -1.07/-0.68/-1.15/-1.16 -0.16/0.44/-0.13/-0.18 0.1/0.41/0.1/0.1 

VG10 0.57/0.2/0.61/0.65 0.31/0.03/0.35/0.31 0.76/0.39/0.76/0.75 0.35/0.03/0.35/0.3 1.03/0.92/1.03/1.08 -0.25/-0.46/-0.20/-0.23 0.32/0.08/0.3/0.31 0.69/0.56/1.09/0.72 0.01/-0.11/0.01/0.01 

VG11 0.49/0.01/0.67/0.54 1.23/0.7/1.17/1.5 0.64/0.61/0.64/0.6 1.34/1.08/1.48/1.45 0.38/0.51/0.38/0.37 -0.18/-0.22/-0.22/-0.16 0.18/0.13/0.24/0.17 1.39/1.47/1.83/1.76 0.62/0.68/0.62/0.61 

VG12 0.87/0.32/0.94/0.97 1.33/0.82/1.33/1.61 0.64/0.61/0.64/0.59 1.02/0.65/1.02/1.1 0.47/0.5/0.52/0.46 -0.34/-0.17/-0.37/-0.30 0.07/-0.03/0.09/0.06 1.4/1.35/1.83/1.76 0.65/0.63/0.54/0.64 

VG13 0.56/0.41/0.6/0.67 1.7/1.53/1.7/2.09 1/0.78/1/0.98 1.17/0.85/1.17/1.25 0.76/0.73/0.76/0.81 -0.15/-0.07/-0.15/-0.13 0.12/-0.11/0.12/0.1 1.3/1.28/1.3/1.48 1.25/1.09/1.25/1.16 

VG14 -0.11/-0.52/-0.12/-0.13 0.03/-0.34/0.46/0.05 0.9/0.66/1.28/0.83 0.15/0.01/0.26/0.15 1.51/1.58/1.51/1.45 1.07/1.07/0.96/1.16 0.99/0.89/0.88/1.04 0.84/0.68/1.34/0.86 0.45/0.37/0.45/0.47 

VG15 0.1/-0.18/0.11/0.11 -0.36/-1.11/-0.36/-0.41 0.64/0.58/0.64/0.6 1.32/1.04/1.32/1.43 0.02/0.13/0.01/0.02 0.51/0.47/0.55/0.47 0.62/0.54/0.57/0.58 1.59/1.73/1.59/1.84 0.66/0.66/0.72/0.67 

VG16 0.1/-0.25/0.11/0.12 -0.12/-0.23/-0.12/-0.14 0.56/0.34/0.52/0.46 0.91/0.99/0.91/0.85 0.35/0.17/0.31/0.3 0.41/0.34/0.25/0.33 0.17/0.15/0.17/0.15 0.83/0.85/0.83/0.91 0.52/0.58/0.46/0.5 

 

 



 

160 
 

Table A5. Z statistics of annual rainfall extremes of post-1950 

Grid 

Id 

CDD CWD PRCPTOT R10 R20 R40 R95 1Day 5day 

MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 

NG1 -1.07/-0.83/-1.09/-0.93 -1.73/-1.8/-1.58/-1.69 -0.35/0.15/-0.28/-0.25 -1.72/-1.57/-1.13/-1.19 -0.19/0.34/-0.09/-0.12 1.54/2.00/1.28/1.27 0.71/1.11/0.59/0.54 0.36/0.53/0.38/0.31 0.53/0.74/0.78/0.41 

NG2 -0.02/0.34/-0.02/-0.02 -2.16/-2.25/-2.16/-1.94 -0.48/-0.16/-0.56/-0.43 -0.51/-0.54/-0.51/-0.47 0.54/0.73/0.54/0.53 1.46/1.50/1.46/1.38 1.07/1.33/1.07/1.02 0.35/0.21/0.35/0.3 -0.3/-0.23/-0.36/-0.29 

NG3 0.28/0.61/0.23/0.25 -2.83/-2.97/-3.48/-2.01 -3.24/-3.39/-2.87/-2.48 -2.65/-2.63/-2.19/-1.97 -2.06/-2.59/-2.41/-1.6 -2.24/-2.05/-1.81/-1.73 -1.75/-1.88/-1.75/-1.61 -2.01/-2.33/-3.28/-1.91 -2.32/-2.64/-2.54/-2.22 

NG4 -1.44/-1.11/-1.16/-1.36 2.24/2/2.24/2.01 1.39/1.46/1.39/1.36 2.08/2.24/2.23/2.02 1.42/1.94/1.57/1.2 -0.29/-0.42/-0.25/-0.34 -1.12/-1.07/-1.12/-1.07 -1.08/-1.1/-1.53/-0.79 -0.84/-1.19/-0.92/-0.6 

NG5 -1.01/-0.68/-1.01/-0.87 -2.09/-2.22/-2.32/-1.68 -0.61/-0.29/-0.61/-0.63 -0.22/0.08/-0.26/-0.26 -0.1/0.08/-0.08/-0.11 0.30/0.17/0.35/0.29 -0.33/-0.52/-0.38/-0.3 -1.66/-1.54/-2.14/-1.64 -0.79/-0.95/-0.66/-0.78 

NG6 0.01/0.27/0.01/0.01 -4.15/-4.35/-4.43/-3.84 -2.24/-2.25/-2.24/-2.27 -1.35/-1.43/-1.37/-1.52 -0.02/0/-0.02/-0.02 0.10/-0.12/0.11/0.08 0.09/-0.1/0.15/0.08 -0.28/-0.64/-0.27/-0.28 -1.9/-2.26/-2.34/-1.89 

NG7 -0.82/-0.56/-0.82/-0.85 0.59/0.35/0.59/0.5 0.92/0.27/0.92/1.09 1.76/1.44/1.8/1.66 -0.85/-1.16/-0.85/-0.85 -0.88/-1.39/-0.88/-0.97 -0.87/-1.2/-0.87/-0.97 -1.45/-1.96/-1.46/-1.49 -0.53/-0.76/-0.45/-0.61 

NG8 -0.42/-0.12/-0.42/-0.37 -3.23/-3.5/-3.23/-2.78 -1.59/-1.28/-1.45/-1.46 -1.2/-0.93/-1.19/-1.28 0.5/0.5/0.42/0.52 0.10/-0.06/0.13/0.07 0.08/0.24/0.1/0.06 -0.58/-0.74/-0.58/-0.61 -0.71/-1.03/-0.71/-0.71 

NG9 -0.49/-0.28/-0.49/-0.44 -2.59/-2.92/-1.67/-2.11 -1.14/-1.28/-1.24/-1.18 -2.19/-2.19/-1.88/-2.38 0.34/0.12/0.34/0.3 0.41/-0.01/0.51/0.31 0.73/0.61/0.73/0.6 0.24/-0.01/0.24/0.2 -1.14/-1.53/-1.14/-1.13 

NG10 -0.22/0.12/-0.22/-0.19 -1.85/-2.19/-1.83/-1.6 -0.7/-0.41/-0.7/-0.52 -2.04/-1.81/-2.04/-1.78 0.54/0.41/0.43/0.43 1.84/2.02/2.35/1.39 1.7/1.58/3.02/1.15 1.23/1.19/1.23/0.95 0.86/0.83/1.1/0.68 

NG11 -1.14/-0.91/-1.14/-1.01 -3.6/-3.69/-3.6/-3.46 -0.67/-0.77/-0.67/-0.63 -2.47/-2.28/-2.47/-2.45 0.96/0.68/1.06/0.93 1.05/0.61/1.04/0.84 1.92/1.85/1.96/1.57 0.3/0.09/0.3/0.26 -0.34/-0.65/-0.34/-0.33 

NG12 2.1/2.34/2.1/1.65 -4.26/-4.28/-3.78/-3.63 -0.76/-0.68/-0.76/-0.79 -3.01/-2.91/-3.01/-2.8 0.24/0.23/0.29/0.25 2.87/2.50/4.39/2.96 2.94/2.77/4.1/2.87 2.11/1.73/2.11/1.97 1.24/0.98/1.51/1.14 

VG1 -1.35/-1.11/-1.12/-1.33 1.54/1.36/1.42/1.4 1.3/1.22/1.3/1.43 0.56/0.86/0.49/0.68 0.93/1/0.76/1.09 -0.11/-0.29/-0.11/-0.12 0.52/0.24/0.52/0.52 0.79/0.45/1.12/0.75 0.01/-0.31/0.01/0 

VG2 -0.78/-0.37/-1.02/-0.72 1.61/1.76/1.61/1.45 1.27/1/1.27/1.48 0.74/0.61/0.74/0.92 0.93/0.69/0.93/1.01 0.97/0.74/0.97/1.04 0.59/0.23/0.51/0.61 0.35/0.01/0.35/0.35 -0.14/-0.5/-0.19/-0.13 

VG3 0.31/0.62/0.31/0.29 0.58/0.65/0.69/0.58 0.98/0.93/0.98/1.19 1.16/1.35/1.96/1.62 0.73/1.04/0.73/0.91 0.50/0.60/0.50/0.60 0.95/0.69/0.95/1.01 1.31/1.07/1.24/1.07 0.02/-0.26/0.02/0.01 

VG4 -0.71/-0.43/-0.71/-0.72 0.01/-0.03/0.01/0 1.32/1.24/1.49/1.15 1.25/1.21/1.38/1.05 0.66/0.57/0.64/0.51 0.16/-0.26/0.17/0.17 0.89/0.57/0.98/0.87 0.07/-0.31/0.09/0.07 0.17/-0.17/0.17/0.17 

VG5 0.2/0.74/0.17/0.16 0.55/0.3/0.55/0.48 1.75/1.43/1.56/1.8 1.37/1.19/1.37/1.44 2.09/1.89/1.77/1.98 1.17/0.79/1.09/1.39 0.79/0.44/0.79/0.82 0.51/0.18/0.5/0.44 0.74/0.45/0.74/0.68 

VG6 0.29/0.71/0.29/0.26 1.07/1.27/1.07/1.1 0.67/0.61/1.02/0.89 0.96/1.43/1.56/1.34 0.43/0.89/0.43/0.54 0.13/0.18/0.24/0.17 0.92/0.71/0.92/1.01 0.95/0.73/0.91/0.81 -0.13/-0.3/-0.13/-0.13 

VG7 -0.19/0.22/-0.19/-0.16 0.09/-0.3/0.11/0.08 1.77/1.48/1.6/1.76 0.84/0.8/0.92/0.85 1.67/1.6/1.39/1.3 1.24/0.82/1.36/1.25 1.62/1.27/1.76/1.56 1.23/0.65/1.23/1.07 0.93/0.76/1.34/0.84 

VG8 -0.64/-0.22/-0.45/-0.5 1.03/0.96/1.03/1.05 2.08/1.82/2.71/2.06 2.4/2.15/3.32/2.55 2.08/1.88/2.08/2.27 1.10/0.75/1.20/1.03 1.14/0.83/1.36/1.09 0.82/0.63/0.71/0.74 0.57/0.34/0.57/0.56 

VG9 -0.35/0/-0.35/-0.32 1.03/1.08/1.03/1.21 0.78/0.63/1.41/1.02 1.81/1.99/1.81/2.47 0.58/0.58/0.58/0.71 0.91/0.93/0.91/1.07 0.25/0.01/0.25/0.28 0.12/-0.13/0.12/0.1 -1/-1.21/-1/-1.09 

VG10 -0.65/-0.39/-0.65/-0.57 -3.6/-3.87/-4.26/-3.02 -0.15/-0.26/-0.15/-0.15 -2.25/-2.12/-1.85/-2.3 0.39/0.1/0.42/0.42 1.66/1.73/1.66/1.49 2.63/2.46/3.37/2.17 2.97/2.67/2.97/2.6 1.24/0.95/1.57/1.11 

VG11 -0.02/0.26/-0.02/-0.01 1.07/0.87/1.07/1.06 1.58/1.22/1.73/1.69 1.43/1.26/1.43/1.7 0.62/0.44/0.69/0.67 0.81/0.43/1.08/0.77 1.4/1.13/1.79/1.32 1.17/0.91/1.17/1.24 1.42/1/1.42/1.52 

VG12 -0.2/0.18/-0.17/-0.17 -0.82/-0.89/-0.75/-0.74 1.91/1.61/2.54/1.99 1.57/1.59/1.58/1.76 1.64/1.46/1.8/1.6 2.05/2.07/2.05/1.97 1.6/1.5/1.6/1.43 0.96/0.95/1.1/0.88 0.46/0.1/0.54/0.48 

VG13 0.21/0.53/0.33/0.21 0.01/-0.06/0.01/0.01 1.02/0.87/1.02/1 1.28/1.33/1.47/1.37 0.73/0.68/0.92/0.69 1.42/1.46/1.42/1.33 1.46/1.34/1.46/1.39 0.46/0.64/0.58/0.4 0.54/0.21/0.63/0.58 

VG14 0.77/1.1/0.77/0.69 -2.25/-2.14/-2.25/-2.36 -0.93/-0.77/-0.93/-0.93 -2.51/-2.51/-2.84/-2.48 -0.68/-0.58/-0.68/-0.68 0.41/0.65/0.41/0.33 0.89/1.23/0.89/0.71 1.85/2.06/1.85/1.69 0.89/0.97/0.89/0.78 

VG15 0.12/0.47/0.13/0.12 -0.82/-0.92/-0.91/-0.86 0.92/0.77/1.16/1.04 1.18/1.34/1.18/1.45 0.57/0.56/0.53/0.52 0.99/0.90/1.11/0.92 1/1/1/0.9 0.77/0.9/0.77/0.84 1.11/0.9/1.15/1.29 

VG16 0.4/0.53/0.36/0.43 -1.26/-1.49/-1.26/-1.3 1.6/1.2/3.18/2.12 1.97/2.33/3.32/2.56 1.05/0.83/1.03/1.06 1.33/1.26/1.40/1.34 1.23/1.01/1.28/1.31 1.12/1.26/1.17/1.19 0.5/0.26/0.53/0.56 
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Table A6. Z statistics of rainfall extremes for monsoon season 

Grid Id CDD CWD PRCPTOT R10 R20 R40 R95 1Day 5Day 

NG1 -0.18/-0.46/-0.18/-0.18 1.50/1.06/1.29/1.36 1.09/0.51/0.89/0.71 -0.53/-0.64/-0.39/-0.36 0.22/0.07/0.20/0.16 0.22/0.07/0.20/0.16 1.16/0.45/0.85/0.83 0.66/0.29/0.52/0.46 0.38/0.41/0.28/0.25 

NG2 0.13/-0.23/0.13/0.14 0.93/0.28/0.81/0.76 0.18/-0.12/0.18/0.14 1.29/1.14/1.29/1.18 1.23/0.99/1.45/1.17 1.23/0.99/1.45/1.17 0.40/0.18/0.36/0.30 0.15/-0.01/0.11/0.11 0.43/0.45/0.46/0.34 

NG3 3.00/2.94/2.57/2.69 -1.98/-1.63/-1.61/-1.56 -2.63/-3.36/-2.50/-2.02 -2.59/-3.22/-2.01/-2.00 -2.22/-2.42/-2.69/-1.89 -2.22/-2.42/-2.69/-1.89 -1.92/-2.17/-1.92/-1.71 -1.95/-2.39/-2.44/-1.71 -2.17/-2.50/-2.71/-1.93 

NG4 -1.58/-1.91/-2.65/-1.36 2.98/3.24/2.98/2.69 2.21/2.15/2.23/1.88 3.86/3.63/4.53/3.77 1.94/1.73/1.66/1.81 1.94/1.73/1.66/1.81 -1.84/-1.63/-2.90/-1.56 -1.63/-1.56/-2.16/-1.37 -0.60/-0.62/-0.80/-0.55 

NG5 -0.12/-0.24/-0.12/-0.12 0.95/0.45/0.85/0.78 2.92/2.70/4.11/2.93 0.38/0.22/0.45/0.41 0.46/0.19/0.46/0.51 2.78/2.57/3.20/3.13 -0.40/-0.64/-0.41/-0.42 -0.39/-0.48/-0.37/-0.38 0.72/0.78/0.66/0.70 

NG6 1.31/1.18/1.60/1.15 1.19/0.78/0.82/0.88 -0.22/-0.45/-0.19/-0.23 -0.47/-0.76/-0.54/-0.48 0.17/-0.14/0.17/0.15 0.46/0.19/0.46/0.51 0.20/0.17/0.19/0.17 0.41/0.14/0.72/0.39 0.19/-0.08/0.18/0.19 

NG7 -0.26/-0.41/-0.31/-0.24 -1.47/-1.15/-1.35/-1.42 -0.23/-0.59/-0.23/-0.22 2.62/2.41/2.91/2.57 3.12/2.89/2.97/2.77 0.17/-0.14/0.17/0.15 1.86/1.72/2.20/1.66 0.33/0.13/0.30/0.30 -0.47/-0.78/-0.62/-0.44 

NG8 0.00/-0.08//0.00 2.35/2.05/1.47/1.62 2.98/2.73/2.98/2.93 1.37/1.20/1.84/1.37 1.28/0.99/1.19/1.32 3.12/2.89/2.97/2.77 -0.33/-0.26/-0.33/-0.26 0.12/0.07/0.12/0.12 1.02/0.93/1.57/1.00 

NG9 0.72/0.52/0.84/0.65 -0.06/-0.37/-0.03/-0.04 4.42/4.23/5.16/4.56 -0.12/-0.44/-0.12/-0.12 2.24/1.94/2.25/2.14 3.29/3.06/3.66/3.56 3.14/2.96/3.49/2.58 2.90/2.64/1.96/2.33 0.58/0.79/0.47/0.63 

NG10 0.97/0.83/0.97/0.89 1.68/1.27/1.88/1.36 3.45/3.26/3.45/3.56 1.27/1.00/1.27/1.21 2.83/2.51/3.16/2.37 3.11/3.09/3.83/3.53 3.05/2.79/3.05/1.93 3.39/3.22/2.76/2.74 0.58/0.94/0.49/0.55 

NG11 -0.80/-0.93/-0.77/-0.85 2.63/2.24/1.96/1.98 0.57/0.44/0.54/0.51 0.38/0.03/0.38/0.35 1.94/1.71/1.94/1.97 1.28/0.99/1.19/1.32 2.30/2.38/1.73/1.86 2.53/2.49/1.84/2.20 0.97/0.83/0.97/0.92 

NG12 2.95/2.82/2.95/2.78 -3.36/-3.48/-2.45/-2.76 1.74/1.45/2.08/1.69 -1.79/-2.05/-1.80/-1.59 0.36/0.04/0.36/0.35 2.24/1.94/2.25/2.14 1.63/1.42/1.39/1.41 1.71/1.47/1.71/1.55 2.25/1.97/2.18/2.08 

VG1 -1.76/-2.18/-2.24/-1.75 0.08/0.29/0.07/0.07 4.78/4.66/5.14/4.11 3.09/2.87/2.91/3.76 2.78/2.57/3.20/3.13 3.96/3.90/5.15/3.48 1.03/0.85/1.03/0.92 -0.07/-0.24/-0.07/-0.07 2.10/2.06/2.74/2.15 

VG2 -2.45/-2.90/-2.72/-2.64 1.67/1.65/1.42/1.43 5.14/5.21/4.04/4.51 4.70/4.56/5.71/5.34 3.29/3.06/3.66/3.56 4.73/4.66/5.44/4.14 1.87/1.83/1.97/1.84 -0.11/-0.18/-0.09/-0.11 1.71/1.92/1.75/1.79 

VG3 -0.65/-0.95/-1.15/-0.66 0.56/0.76/0.50/0.58 2.14/2.14/2.21/2.18 4.44/4.39/4.76/4.69 3.11/3.09/3.83/3.53 2.40/2.19/2.40/2.55 2.02/2.06/1.83/1.95 0.65/0.82/0.47/0.65 0.34/0.65/0.28/0.33 

VG4 -1.40/-1.74/-1.42/-1.41 2.25/2.20/2.63/2.18 2.61/2.18/2.61/1.95 4.78/4.73/5.16/4.03 3.96/3.90/5.15/3.48 2.83/2.51/3.16/2.37 3.15/3.22/2.95/2.86 1.49/1.34/1.63/1.47 3.47/3.06/3.47/2.82 

VG5 -1.50/-1.94/-1.74/-1.74 2.85/2.84/2.85/2.52 1.92/1.75/2.04/1.72 5.99/5.79/4.52/6.01 4.73/4.66/5.44/4.14 1.94/1.71/1.94/1.97 2.00/2.18/2.24/1.92 0.80/0.89/0.79/0.73 2.45/2.29/2.36/2.42 

VG6 0.64/0.40/0.78/0.60 0.63/0.84/0.67/0.71 2.94/2.88/3.36/2.60 2.52/2.34/2.74/2.30 2.40/2.19/2.40/2.55 1.69/1.75/1.58/1.36 0.43/0.65/0.45/0.43 1.13/1.40/1.16/1.13 1.75/1.90/2.16/1.73 

VG7 -0.38/-0.62/-0.32/-0.40 1.68/1.62/1.56/1.54 2.85/2.97/2.50/2.45 1.91/1.74/2.14/1.90 1.69/1.75/1.58/1.36 3.08/3.03/3.08/2.99 2.27/2.36/3.24/2.20 1.95/2.01/2.26/1.74 1.51/1.76/1.64/1.55 

VG8 0.43/0.19/0.59/0.41 0.12/0.19/0.13/0.12 2.34/2.30/2.33/2.43 4.05/3.94/3.97/3.74 3.08/3.03/3.08/2.99 1.22/1.11/1.30/1.22 1.99/2.09/2.16/1.72 1.44/1.63/1.67/1.27 0.59/0.75/0.62/0.62 

VG9 -0.10/-0.14/-0.11/-0.09 2.70/2.61/2.77/2.93 -0.57/-0.80/-0.55/-0.54 2.49/2.26/2.45/2.62 1.22/1.11/1.30/1.22 0.36/0.04/0.36/0.35 0.42/0.69/0.41/0.40 0.62/0.91/0.62/0.61 1.17/0.86/1.43/1.05 

VG10 2.59/2.55/3.59/2.90 -0.97/-1.26/-0.85/-0.87 -1.27/-1.63/-1.21/-1.17 -3.92/-4.25/-3.42/-3.74 -1.02/-1.23/-1.15/-1.04 -1.02/-1.23/-1.15/-1.04 1.69/1.57/1.93/1.37 2.37/2.29/2.37/2.12 1.98/1.98/1.91/1.85 

VG11 -2.36/-1.98/-1.91/-2.20 3.90/3.66/4.43/4.17 0.42/0.40/0.46/0.36 0.21/0.11/0.36/0.20 -0.63/-0.58/-0.72/-0.60 -0.63/-0.58/-0.72/-0.60 -0.17/0.01/-0.16/-0.15 -0.13/-0.19/-0.13/-0.13 1.55/1.57/1.93/1.69 

VG12 0.42/0.41/0.40/0.39 0.43/0.29/0.43/0.44 -0.66/-0.81/-0.68/-0.60 -2.11/-2.20/-2.33/-2.02 -0.11/0.08/-0.11/-0.10 -0.11/0.08/-0.11/-0.10 1.07/1.26/1.03/0.94 0.57/0.60/1.07/0.58 1.41/1.47/3.57/1.56 

VG13 1.09/1.00/0.86/0.84 1.55/1.46/1.80/1.67 -1.02/-1.12/-1.00/-0.86 -0.95/-1.18/-1.04/-0.95 -0.33/-0.42/-0.33/-0.30 -0.33/-0.42/-0.33/-0.30 0.34/0.34/0.38/0.31 -0.16/-0.39/-0.18/-0.15 0.87/0.90/0.98/0.91 

VG14 2.35/2.38/1.94/2.34 0.20/-0.15/0.20/0.22 -1.17/-1.41/-1.17/-1.10 -1.92/-2.22/-1.93/-1.71 -1.42/-1.54/-1.42/-1.28 -1.42/-1.54/-1.42/-1.28 0.13/0.13/0.13/0.11 1.35/1.27/1.35/1.24 0.87/0.94/0.87/0.79 

VG15 -0.08/-0.01/-0.09/-0.08 1.00/0.75/1.10/1.07 0.37/0.31/0.41/0.35 0.37/0.23/0.71/0.38 -0.22/-0.27/-0.41/-0.21 -0.22/-0.27/-0.41/-0.21 0.73/0.69/0.74/0.66 0.21/0.28/0.20/0.23 1.75/1.74/2.53/1.85 

VG16 -1.37/-1.17/-1.21/-1.31 2.53/2.29/3.29/2.43 0.16/0.07/0.18/0.15 0.81/0.69/0.64/0.86 -0.31/-0.27/-0.31/-0.30 -0.31/-0.27/-0.31/-0.30 -1.21/-1.01/-1.11/-1.10 -1.36/-1.33/-2.56/-1.46 0.63/0.69/0.97/0.67 
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Table A7. Z statistics of rainfall extremes for monsoon season of pre-1950 

Grid 

Id 

CDD CWD PRCPTOT R10 R20 R40 R95 1Day 5day 

MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 

NG1 0.01/-0.28/0.01/0.01 1.99/1.72/1.83/1.85 -0.03/-0.66/-0.03/-0.04 -0.34/-0.59/-0.44/-0.35 0.15/-0.27/0.15/0.16 0.15/-0.27/0.15/0.16 -0.84/-1.15/-0.84/-0.94 -0.22/-0.78/-0.22/-0.25 -0.08/-0.51/-0.06/-0.09 

NG2 -0.04/-0.62/-0.05/-0.05 3.46/3.09/3.46/3.25 -0.77/-1.27/-1.03/-0.91 0.59/0.23/0.94/0.69 -0.90/-1.70/-0.85/-1.10 -0.90/-1.70/-0.85/-1.10 -3.77/-4.32/-2.90/-3.60 -3.59/-3.97/-5.07/-3.65 -1.16/-1.35/-1.11/-1.17 

NG3 0.73/0.43/0.73/0.67 -0.65/-0.55/-0.65/-0.55 -0.24/-0.68/-0.24/-0.26 -0.37/-0.74/-0.37/-0.39 0.00/-0.34/0.00/0.00 0.00/-0.34/0.00/0.00 -1.11/-1.42/-3.07/-1.13 -0.82/-1.25/-1.96/-0.89 -0.13/-0.46/-0.18/-0.13 

NG4 -0.35/-0.70/-0.35/-0.28 -0.82/-0.79//-0.87 -0.64/-1.09/-0.64/-0.71 0.03/-0.37/0.02/0.03 -0.68/-1.32/-0.68/-0.75 -0.68/-1.32/-0.68/-0.75 -0.62/-0.67/-0.62/-0.58 -1.21/-1.35/-1.21/-1.15 -0.91/-0.91/-0.91/-1.01 

NG5 0.05/-0.34/0.06/0.05 0.81/0.76/0.92/0.90 -0.03/-0.37/-0.03/-0.04 1.10/0.84/1.10/1.19 -0.19/-0.54/-0.19/-0.22 -0.19/-0.54/-0.19/-0.22 -1.85/-2.71/-1.45/-1.24 -1.63/-2.13/-2.36/-1.92 -0.53/-0.78/-0.53/-0.59 

NG6 0.73/0.36/0.73/0.82 1.33/0.94/1.33/1.43 -0.17/-0.47/-0.17/-0.19 0.13/-0.15/0.13/0.15 0.34/-0.03/0.34/0.32 0.34/-0.03/0.34/0.32 -1.06/-0.91/-3.04/-1.02 -1.12/-1.41/-2.01/-1.28 -0.84/-1.22/-1.13/-0.88 

NG7 -0.57/-1.07/-0.80/-0.67 1.07/1.11/1.07/1.08 -0.29/-0.66/-0.29/-0.34 0.15/-0.23/0.20/0.19 0.48/0.08/0.48/0.52 0.48/0.08/0.48/0.52 -1.57/-1.19/-1.57/-1.54 -1.70/-2.01/-1.60/-1.54 -1.14/-1.15/-1.55/-1.16 

NG8 -0.33/-0.60/-0.33/-0.40 1.53/1.28/1.75/1.20 0.01/-0.27/0.01/0.01 1.14/0.68/1.49/1.20 -0.13/-0.35/-0.13/-0.15 -0.13/-0.35/-0.13/-0.15 -1.03/-1.74/-1.03/-1.19 -1.86/-2.39/-1.86/-2.06 -1.26/-1.73/-1.26/-1.47 

NG9 -0.70/-0.63/-0.70/-0.66 0.69/0.43/0.69/0.58 0.12/-0.18/0.17/0.15 0.88/0.72/0.88/1.00 -0.03/-0.28/-0.03/-0.03 -0.03/-0.28/-0.03/-0.03 -1.70/-2.73/-1.70/-1.85 -1.96/-2.46/-1.96/-2.10 -1.29/-1.56/-1.29/-1.41 

NG10 0.31/0.31/0.31/0.26 -0.61/-1.03/-0.61/-0.60 -0.57/-0.61/-0.57/-0.69 0.95/0.61/0.95/1.01 0.34/-0.02/0.34/0.38 0.34/-0.02/0.34/0.38 -2.11/-3.24/-2.11/-2.32 -2.21/-2.51/-2.21/-2.31 -1.30/-1.63/-1.30/-1.48 

NG11 -0.67/-0.60/-0.67/-0.64 0.65/0.38/0.65/0.55 0.03/-0.25/0.05/0.04 0.88/0.62/0.88/0.99 0.31/0.24/0.31/0.36 0.31/0.24/0.31/0.36 -1.27/-2.00/-1.27/-1.47 -1.82/-2.22/-1.82/-1.94 -1.33/-1.65/-1.33/-1.49 

NG12 -0.81/-0.73/-0.81/-0.78 0.64/0.27/0.64/0.66 0.33/-0.39/0.37/0.25 0.76/0.42/0.76/0.66 0.20/-0.45/0.19/0.17 0.20/-0.45/0.19/0.17 -0.64/-0.76/-0.95/-0.60 -0.79/-1.20/-1.13/-0.77 -0.72/-1.13/-0.72/-0.69 

VG1 -0.21/-0.65/-0.21/-0.24 -2.40/-1.98/-2.10/-2.91 -0.38/-0.84/-0.43/-0.50 -0.48/-0.91/-0.58/-0.65 0.56/0.38/1.04/0.69 0.56/0.38/1.04/0.69 -1.77/-1.50/-1.69/-1.62 -2.07/-2.28/-2.36/-1.90 -1.27/-1.18/-1.27/-1.38 

VG2 -0.27/-0.79/-0.27/-0.31 -2.39/-2.18/-2.39/-2.81 -0.28/-0.47/-0.31/-0.36 -0.96/-1.01/-1.14/-1.26 0.05/-0.31/0.05/0.06 0.05/-0.31/0.05/0.06 -1.25/-1.23/-1.19/-1.19 -1.79/-2.06/-1.97/-1.68 -0.98/-0.87/-0.98/-1.10 

VG3 -0.62/-0.92/-0.62/-0.74 -1.62/-1.42/-1.62/-1.74 -0.54/-0.75/-0.60/-0.62 -1.05/-1.32/-1.23/-1.09 -0.21/-0.17/-0.29/-0.24 -0.21/-0.17/-0.29/-0.24 -1.78/-1.98/-1.48/-1.88 -1.74/-1.37/-2.01/-1.92 -1.28/-0.80/-1.28/-1.49 

VG4 -1.11/-1.93/-0.94/-1.24 1.17/1.42/1.17/1.38 -0.03/-0.46/-0.03/-0.04 0.37/0.07/0.58/0.41 0.41/0.28/0.41/0.46 0.41/0.28/0.41/0.46 -1.22/-1.51/-1.47/-1.31 -1.81/-1.96/-1.69/-1.77 -0.95/-0.96/-0.95/-0.98 

VG5 -0.14/-0.44/-0.19/-0.18 -0.89/-0.72/-0.89/-0.90 -0.74/-1.09/-0.79/-0.90 -0.42/-0.94/-0.57/-0.51 -0.60/-0.91/-0.60/-0.69 -0.60/-0.91/-0.60/-0.69 -2.78/-1.85/-2.31/-2.43 -2.07/-1.75/-2.58/-2.22 -1.41/-1.22/-1.41/-1.72 

VG6 1.84/1.71/1.84/2.17 -0.75/-0.55/-0.75/-0.85 -1.92/-1.87/-1.92/-2.10 -1.29/-1.82/-1.29/-1.18 -1.10/-1.35/-1.61/-1.10 -1.10/-1.35/-1.61/-1.10 -1.19/-0.40/-1.19/-1.14 -1.25/-0.80/-1.12/-1.31 -1.66/-1.72/-1.66/-1.89 

VG7 0.01/-0.47/0.01/0.01 1.34/1.45/1.34/1.51 0.30/-0.08/0.30/0.34 1.28/0.96/1.40/1.43 -0.63/-0.67/-0.66/-0.65 -0.63/-0.67/-0.66/-0.65 -2.18/-2.78/-2.18/-2.29 -1.93/-1.92/-1.90/-1.93 -1.08/-0.75/-1.08/-1.25 

VG8 0.82/0.30/0.82/0.81 0.05/0.22/0.05/0.05 -1.66/-1.75/-1.66/-2.09 -0.50/-1.00/-0.50/-0.53 -0.95/-1.13/-0.95/-1.04 -0.95/-1.13/-0.95/-1.04 -2.47/-0.97/-2.08/-2.29 -1.36/-1.06/-1.88/-1.46 -1.79/-1.51/-1.79/-2.10 

VG9 1.26/0.84/1.26/1.43 0.10/0.20/0.10/0.12 -1.79/-1.80/-1.93/-2.17 -0.70/-1.11/-0.70/-0.88 -1.93/-2.19/-2.03/-2.14 -1.93/-2.19/-2.03/-2.14 -1.50/-0.61/-1.41/-1.42 -1.42/-0.97/-1.55/-1.43 -1.47/-1.32/-1.47/-1.65 

VG10 0.77/0.56/1.18/0.74 0.26/-0.15/0.28/0.26 0.22/-0.15/0.22/0.22 0.00/-0.48/0.00/0.00 0.83/0.58/0.83/0.88 0.83/0.58/0.83/0.88 0.22/0.27/0.22/0.22 -0.16/-0.34/-0.17/-0.16 -0.68/-0.65/-0.85/-0.71 

VG11 0.39/0.34/0.54/0.33 0.76/0.72/0.71/0.92 -0.10/-0.35/-0.11/-0.11 -0.03/-0.47/-0.03/-0.04 0.03/0.22/0.03/0.03 0.03/0.22/0.03/0.03 0.03/-0.12/0.03/0.03 0.00/0.41/0.00/0.00 -0.67/-0.28/-0.67/-0.79 

VG12 0.23/0.30/0.69/0.20 1.27/0.87/1.27/1.53 0.01/-0.30/0.01/0.01 0.18/-0.09/0.27/0.19 0.38/0.32/0.38/0.37 0.38/0.32/0.38/0.37 0.23/0.17/0.23/0.27 0.03/0.30/0.03/0.03 -0.65/-0.25/-0.85/-0.77 

VG13 0.44/0.72/0.44/0.35 1.07/0.87/1.07/1.27 -0.03/-0.32/-0.03/-0.03 0.03/-0.50/0.03/0.03 0.44/0.03/0.44/0.43 0.44/0.03/0.44/0.43 -0.19/-0.41/-0.21/-0.20 0.20/-0.03/0.22/0.22 -0.88/-0.61/-0.88/-0.94 

VG14 0.61/0.57/0.61/0.54 0.02/-0.54/0.02/0.02 0.85/0.37/1.13/0.76 -0.34/-0.72/-0.50/-0.30 1.36/1.06/1.43/1.26 1.36/1.06/1.43/1.26 0.90/1.15/0.90/0.90 0.61/0.37/0.61/0.60 0.02/-0.01/0.02/0.02 

VG15 0.65/0.68/0.82/0.63 -0.18/-0.56/-0.18/-0.21 0.38/0.03/0.62/0.40 0.74/0.37/0.75/0.75 -0.29/-0.49/-0.29/-0.31 -0.29/-0.49/-0.29/-0.31 0.31/0.30/0.33/0.32 0.47/0.80/0.51/0.54 -0.58/-0.28/-0.65/-0.65 

VG16 1.11/1.13/1.11/1.25 0.00/-0.12/0.00/0.00 0.00/-0.06/0.00/0.00 0.28/0.31/0.28/0.27 0.05/-0.11/0.05/0.05 0.05/-0.11/0.05/0.05 -0.18/-0.24/-0.18/-0.20 0.08/0.32/0.15/0.09 -0.53/0.15/-0.82/-0.62 
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Table A8. Z statistics of rainfall extremes for monsoon season of post-1950 

Grid 

Id 

CDD CWD PRCPTOT R10 R20 R40 R95 1Day 5day 

MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 

NG1 0.30/0.56/0.30/0.29 -1.76/-1.80/-1.59/-1.76 0.12/0.11/0.07/0.07 -1.61/-1.57/-0.97/-0.96 0.53/0.78/0.28/0.34 0.53/0.78/0.28/0.34 0.17/0.29/0.14/0.10 1.03/1.01/0.80/0.64 1.73/1.98/1.36/1.10 

NG2 0.40/0.30/0.53/0.40 -2.13/-2.21/-2.13/-1.96 -0.84/-1.00/-0.84/-0.60 -0.79/-0.71/-0.79/-0.66 0.44/0.41/0.44/0.38 0.44/0.41/0.44/0.38 -0.12/0.26/-0.15/-0.07 -0.18/0.03/-0.16/-0.13 -0.68/-0.33/-1.30/-0.50 

NG3 2.57/2.94/2.57/2.32 -2.92/-2.81/-2.92/-2.34 -3.35/-3.91/-3.39/-2.16 -2.59/-2.74/-1.79/-1.64 -2.22/-2.28/-2.22/-1.77 -2.22/-2.28/-2.22/-1.77 -2.57/-1.75/-1.80/-1.93 -3.17/-3.33/-3.17/-2.79 -3.09/-3.24/-3.27/-2.72 

NG4 -1.22/-1.05/-2.85/-1.09 1.21/0.79/1.00/1.00 1.11/1.57/1.11/0.80 1.92/2.28/1.92/1.75 0.60/0.84/0.49/0.47 0.60/0.84/0.49/0.47 -2.11/-0.35/-1.96/-1.61 -1.76/-1.27/-1.86/-1.42 -1.07/-0.87/-1.14/-0.86 

NG5 0.20/0.48/0.20/0.19 -2.23/-2.29/-2.73/-1.82 -1.20/-1.26/-0.87/-1.10 -1.02/-0.88/-1.28/-1.13 -0.34/-0.33/-0.34/-0.36 -0.33/-0.33/-0.33/-0.36 -1.29/-0.61/-1.19/-0.97 -0.84/-0.93/-1.01/-0.72 -0.68/-0.77/-0.68/-0.57 

NG6 0.23/0.49/0.22/0.17 -3.73/-3.92/-3.98/-3.41 -2.69/-2.55/-2.69/-2.28 -2.57/-2.52/-2.57/-2.74 -0.31/-0.37/-0.31/-0.28 -0.31/-0.37/-0.31/-0.28 -0.08/-0.33/-0.08/-0.07 -0.06/-0.39/-0.06/-0.05 -1.95/-2.18/-1.95/-1.80 

NG7 -2.79/-2.46/-2.79/-2.40 0.56/0.27/0.56/0.54 0.20/-0.01/0.25/0.19 1.77/1.63/1.77/1.46 -0.64/-0.71/-0.58/-0.54 -0.64/-0.71/-0.58/-0.54 -1.49/-2.46/-1.94/-1.54 -0.96/-1.29/-0.94/-0.97 -0.92/-1.32/-0.99/-0.95 

NG8 0.04/0.00/0.06/0.04 -3.22/-3.50/-3.22/-2.82 -1.64/-1.56/-1.36/-1.31 -1.17/-0.99/-1.40/-1.21 0.15/0.09/0.15/0.15 0.15/0.09/0.15/0.15 -0.05/0.02/-0.05/-0.03 -0.24/-0.43/-0.24/-0.23 -0.87/-0.86/-0.87/-0.80 

NG9 -0.03/-0.30/-0.04/-0.02 -2.30/-2.68/-1.29/-1.69 -1.81/-2.06/-1.81/-1.71 -2.67/-2.46/-2.67/-2.76 -0.70/-0.84/-0.70/-0.62 -0.70/-0.84/-0.70/-0.62 0.42/0.27/0.45/0.35 0.40/0.28/0.44/0.33 -1.17/-1.50/-1.23/-1.13 

NG10 0.42/0.37/0.42/0.41 -1.85/-2.05/-1.83/-1.61 -0.33/-0.51/-0.34/-0.23 -1.64/-1.40/-1.64/-1.54 0.72/0.25/0.73/0.54 0.72/0.25/0.73/0.54 2.05/0.77/1.65/1.11 2.01/1.72/2.01/1.62 0.81/0.68/0.81/0.63 

NG11 0.05/0.09/0.05/0.06 -3.24/-3.26/-4.04/-3.15 -1.12/-1.29/-1.14/-0.88 -2.35/-2.19/-2.35/-2.18 -0.37/-0.61/-0.40/-0.35 -0.37/-0.61/-0.40/-0.35 1.44/1.17/1.44/1.28 1.01/0.93/0.82/0.85 -0.06/-0.41/-0.06/-0.06 

NG12 3.23/3.16/4.42/3.28 -4.25/-4.32/-3.75/-3.70 -0.23/-0.36/-0.23/-0.23 -2.95/-2.76/-2.95/-2.90 0.35/0.14/0.42/0.37 0.35/0.14/0.42/0.37 2.59/1.67/2.59/2.19 2.50/2.15/2.50/2.31 1.42/1.20/1.42/1.29 

VG1 -0.64/-0.16/-1.35/-0.50 0.78/0.99/1.05/0.65 0.87/0.86/0.94/0.75 1.75/1.63/1.75/1.96 0.70/0.86/0.61/0.74 0.70/0.86/0.61/0.74 -0.83/-0.43/-0.83/-0.67 0.72/0.52/0.72/0.68 0.54/0.50/0.54/0.50 

VG2 -2.52/-2.17/-2.52/-2.47 1.46/1.69/1.46/1.31 1.38/1.01/1.49/1.35 1.43/1.36/1.43/1.64 0.87/0.83/0.87/0.88 0.87/0.83/0.87/0.88 0.09/-0.44/0.09/0.10 0.90/0.56/0.90/0.93 0.11/-0.04/0.11/0.12 

VG3 0.12/0.52/0.10/0.10 0.07/0.05/0.06/0.08 1.70/1.50/1.70/1.70 2.80/2.62/2.80/3.30 1.62/1.98/1.62/1.85 1.62/1.98/1.62/1.84 1.01/0.91/1.18/0.95 1.24/1.10/1.24/1.21 0.80/0.96/0.76/0.69 

VG4 -1.41/-1.15/-1.46/-1.30 -0.20/-0.09/-0.23/-0.18 1.22/1.08/1.15/0.93 0.81/0.65/0.77/0.63 0.56/0.17/0.72/0.45 0.56/0.17/0.72/0.45 0.42/0.33/0.42/0.40 0.58/0.21/0.58/0.61 0.41/0.08/0.45/0.43 

VG5 -1.37/-1.13/-1.37/-1.37 0.33/0.04/0.30/0.29 2.14/1.80/2.39/1.70 2.19/1.97/1.60/2.21 2.24/2.09/1.97/1.83 2.24/2.09/1.97/1.83 1.60/1.01/1.60/1.42 1.87/1.84/2.05/1.72 1.73/1.45/1.93/1.74 

VG6 0.53/0.68/0.60/0.47 0.35/0.51/0.35/0.40 1.87/1.84/2.50/1.98 2.51/2.47/2.67/2.57 1.94/2.18/1.94/2.19 1.94/2.18/1.94/2.19 -0.20/-0.80/-0.20/-0.22 0.61/0.38/0.61/0.62 0.52/0.50/0.52/0.48 

VG7 -0.35/-0.03/-0.35/-0.39 -0.37/-0.75/-0.37/-0.32 1.51/1.19/1.69/1.20 0.18/0.02/0.18/0.17 1.63/1.57/1.47/1.13 1.63/1.57/1.47/1.13 1.58/1.17/1.58/1.35 2.32/2.09/2.32/2.17 1.63/1.34/1.79/1.57 

VG8 -0.37/0.01/-0.43/-0.34 0.51/0.47/0.67/0.55 2.51/2.49/2.51/2.01 2.53/2.32/2.53/2.28 2.11/2.08/2.31/1.99 2.11/2.08/2.31/1.99 1.71/1.29/1.71/1.55 1.57/1.46/1.57/1.37 2.04/1.74/2.08/2.12 

VG9 0.74/0.90/0.70/0.59 0.09/0.21/0.09/0.09 2.05/1.95/2.05/2.08 2.54/2.70/2.44/2.51 1.57/1.58/1.57/1.65 1.57/1.57/1.57/1.65 -0.23/-0.70/-0.23/-0.28 0.51/0.55/0.51/0.51 0.41/0.27/0.41/0.43 

VG10 1.74/1.66/1.74/2.08 -3.27/-3.45/-3.74/-2.97 0.30/0.17/0.39/0.27 -2.38/-2.29/-2.38/-2.36 0.15/-0.21/0.16/0.15 0.15/-0.21/0.16/0.15 3.13/3.23/3.13/2.55 3.29/2.98/3.29/2.95 2.00/1.71/2.00/1.84 

VG11 -1.14/-1.05/-1.63/-1.14 1.38/1.25/1.47/1.42 1.46/1.34/1.23/1.10 0.05/-0.24/0.06/0.04 1.15/0.79/1.46/1.12 1.15/0.78/1.45/1.12 1.68/1.15/1.68/1.58 1.39/1.21/1.39/1.39 2.10/1.68/2.10/2.19 

VG12 -0.72/-0.42/-0.72/-0.66 -0.78/-0.79/-0.78/-0.69 1.78/1.76/1.78/1.59 0.16/0.15/0.15/0.15 1.60/1.46/1.60/1.46 1.60/1.46/1.60/1.46 0.92/0.93/1.65/0.86 1.49/1.60/2.29/1.45 1.51/1.29/1.97/1.60 

VG13 0.17/0.31/0.23/0.13 -0.44/-0.51/-0.49/-0.46 1.38/1.26/1.38/1.06 0.83/0.63/0.83/0.76 0.85/0.62/0.85/0.77 0.85/0.62/0.85/0.77 1.18/0.85/1.18/1.16 0.97/1.23/0.97/0.83 1.45/1.46/1.45/1.50 

VG14 2.02/1.95/1.62/2.12 -2.16/-2.02/-1.93/-2.28 -1.53/-1.38/-1.53/-1.49 -2.64/-2.82/-2.64/-2.56 -0.94/-0.81/-0.94/-0.85 -0.94/-0.81/-0.94/-0.85 1.81/1.50/1.81/1.53 1.45/1.65/1.45/1.29 0.52/0.54/0.52/0.44 

VG15 -0.28/-0.14/-0.28/-0.28 -1.01/-1.06/-1.12/-1.05 -0.45/-0.18/-0.45/-0.38 -0.39/-0.30/-0.39/-0.40 -0.26/-0.09/-0.32/-0.23 -0.26/-0.09/-0.32/-0.22 -0.36/-0.08/-0.36/-0.33 -0.66/-0.57/-0.66/-0.68 -0.07/-0.23/-0.07/-0.07 

VG16 -1.19/-0.79/-1.19/-1.04 -1.25/-1.39/-1.03/-1.20 0.69/0.40/0.99/0.67 1.16/1.03/1.16/1.33 0.52/0.27/0.67/0.49 0.52/0.27/0.67/0.49 -0.63/-0.64/-0.63/-0.67 -0.89/-0.76/-0.84/-0.89 -0.39/-0.55/-0.57/-0.37 
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Table A9. Z statics of monthly rainfall trend analysis from January to December 

Grid 

Id 

Jan Feb March April May June July Aug Sep Oct Nov Dec 

MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 MK1/MK2/MK3/MK4 

NG1 -0.43/-0.49/-0.45/-0.43 -1.58/-0.98/-1.23/-1.49 0.94/1.32/0.90/0.98 -0.32/-0.37/-0.32/-0.37 -0.08/0.25/-0.11/-0.09 1.01/0.95/1.42/0.94 2.67/2.90/3.10/2.44 0.85/0.56/0.97/0.70 -0.04/-0.11/-0.04/-0.03 -0.65/-0.71/-0.65/-0.67 -0.72/-0.77/-3.88/-0.65 0.01/-0.64/0.01/0.01 

NG2 -0.16/-0.03/-0.19/-0.16 -1.77/-1.17/-1.74/-1.66 0.82/1.23/1.09/0.90 -0.02/0.04/-0.02/-0.03 0.26/0.50/0.36/0.28 1.04/0.74/1.00/0.94 1.83/2.25/3.25/1.78 -0.13/-0.35/-0.21/-0.12 -0.89/-1.05/-0.74/-0.77 -0.34/-0.30/-0.32/-0.35 0.02/0.12/0.03/0.02 -0.04/-0.08/-0.03/-0.04 

NG3 -0.55/-0.41/-0.71/-0.56 -1.76/-0.63/-1.56/-1.57 0.76/1.07/0.80/0.80 -1.21/-1.27/-1.27/-1.32 0.28/0.30/0.28/0.31 -1.24/-1.49/-1.45/-1.13 -0.99/-1.02/-0.99/-1.17 -2.62/-2.97/-2.43/-2.51 -2.01/-2.06/-2.01/-1.72 -0.51/-0.51/-0.48/-0.50 0.11/0.41/0.14/0.10 0.53/0.66/0.52/0.55 

NG4 0.04/0.26/0.06/0.04 -0.59/-0.43/-0.69/-0.58 1.43/1.95/1.52/1.44 1.95/1.68/1.67/2.04 1.71/1.96/1.54/1.86 2.18/1.93/2.43/2.24 2.48/2.76/3.07/2.46 1.18/0.86/1.43/1.15 -0.40/-0.45/-0.42/-0.40 0.39/0.35/0.41/0.41 0.75/1.23/0.76/0.72 1.02/0.93/1.02/1.06 

NG5 -0.39/-0.35/-0.56/-0.40 -1.30/-0.88/-1.60/-1.22 1.01/1.46/1.03/1.07 -0.81/-0.67/-1.74/-0.86 -1.04/-0.58/-1.30/-1.17 0.65/0.39/0.56/0.64 1.44/1.55/1.44/1.23 -1.03/-1.35/-0.90/-1.12 0.27/0.11/0.29/0.25 -0.26/-0.22/-0.25/-0.25 -0.51/-0.28/-0.66/-0.51 0.53/0.24/0.53/0.57 

NG6 -0.72/-1.04/-0.80/-0.74 -1.49/-0.96/-1.36/-1.34 0.63/1.05/0.59/0.67 -0.71/-0.68/-0.81/-0.77 0.16/0.33/0.16/0.18 0.33/0.11/0.40/0.30 1.88/2.09/1.88/1.60 -1.14/-1.43/-1.14/-1.10 -1.25/-1.50/-1.22/-1.12 0.03/0.05/0.03/0.04 -0.38/-0.14/-0.51/-0.35 -0.08/-0.28/-0.08/-0.09 

NG7 -0.76/-0.26/-0.78/-0.74 -0.52/-0.32/-0.67/-0.46 1.36/1.74/1.36/1.44 1.23/1.23/1.51/1.33 1.30/1.68/1.42/1.51 1.94/1.80/2.17/1.83 3.02/3.44/2.63/2.91 1.30/1.02/3.17/1.39 -0.11/-0.20/-0.12/-0.10 0.50/0.46/0.61/0.53 -0.70/-0.05/-0.70/-0.63 -0.54/-0.46/-0.44/-0.56 

NG8 -0.49/-0.24/-0.53/-0.52 -1.50/-0.93/-1.54/-1.39 1.44/1.60/1.70/1.49 -0.34/-0.27/-0.66/-0.38 -2.09/-1.92/-2.84/-2.24 0.53/0.42/0.46/0.48 2.41/2.59/2.07/2.29 0.02/-0.19/0.02/0.02 -0.39/-0.43/-0.48/-0.34 -0.68/-0.59/-0.62/-0.66 -1.01/-0.80/-1.47/-1.02 0.27/-0.03/0.24/0.29 

NG9 -0.74/-0.70/-0.98/-0.76 -1.63/-1.24/-1.70/-1.49 1.27/1.38/1.28/1.29 0.48/0.48/0.58/0.52 0.30/0.56/0.35/0.33 0.90/0.69/0.90/0.85 3.86/3.79/4.31/3.65 0.53/0.29/0.56/0.51 -1.91/-2.07/-2.02/-1.70 -0.94/-0.86/-0.94/-0.94 -0.73/-0.39/-1.02/-0.72 -0.44/-0.74/-0.63/-0.48 

NG10 -0.13/0.08/-0.15/-0.13 -1.80/-1.38/-2.73/-1.64 0.94/0.99/0.97/0.85 0.00/0.13/0.00/0.00 -2.44/-2.31/-4.04/-2.44 0.76/0.51/0.65/0.71 4.05/4.48/4.41/3.99 1.48/1.20/1.23/1.02 -0.41/-0.53/-0.46/-0.37 -1.54/-1.37/-1.42/-1.41 -1.27/-1.06/-1.66/-1.28 -0.10/-0.54/-0.10/-0.11 

NG11 -0.15/0.11/-0.23/-0.16 -1.08/-0.78/-1.08/-0.98 1.82/1.96/2.42/1.80 0.50/0.61/0.72/0.56 -0.16/0.03/-0.29/-0.16 1.00/0.95/1.00/0.93 3.55/3.54/3.55/3.33 1.25/0.99/1.34/1.11 -1.53/-1.69/-1.53/-1.43 -0.96/-0.89/-0.96/-0.94 -0.67/-0.29/-0.91/-0.66 0.07/-0.06/0.07/0.07 

NG12 -0.67/-0.09/-0.67/-0.65 -2.72/-2.04/-3.50/-2.23 0.29/0.31/0.38/0.25 0.31/0.68/0.31/0.29 0.79/0.97/0.99/0.79 -1.08/-1.34/-1.08/-1.15 0.15/0.14/0.15/-0.11 -1.52/-1.61/-1.52/-1.26 -0.15/-0.25/-0.18/-0.16 -0.41/-0.29/-0.45/-0.39 -1.51/-0.71/-1.98/-1.44 -1.65/-2.63/-1.65/-1.77 

VG1 -0.30/0.44/-0.35/-0.28 -0.14/0.10/-0.26/-0.14 0.42/0.22/0.42/0.38 1.16/0.92/1.18/1.22 1.45/1.91/1.82/1.69 1.77/1.62/1.77/1.70 2.11/2.55/1.81/2.24 1.80/1.62/2.05/1.89 0.13/0.13/0.18/0.13 0.54/0.48/0.56/0.54 0.55/0.94/0.55/0.51 0.29/0.10/0.23/0.30 

VG2 0.26/0.47/0.26/0.24 0.03/0.14/0.03/0.03 1.23/0.87/1.08/1.21 1.54/1.35/1.58/1.64 2.04/2.44/2.04/2.36 2.35/2.21/2.35/2.18 3.91/4.69/3.42/3.72 3.08/2.90/2.77/3.23 1.08/1.17/1.35/1.11 0.50/0.46/0.52/0.51 0.20/0.81/0.20/0.18 -0.40/-0.54/-0.44/-0.42 

VG3 0.39/0.46/0.39/0.38 -0.99/-0.55/-0.99/-0.90 0.86/0.45/0.90/0.85 0.55/0.40/0.44/0.59 1.35/1.83/2.17/1.49 1.64/1.50/1.64/1.62 2.63/3.10/2.63/2.75 1.92/1.62/1.60/1.60 0.72/0.96/0.97/0.77 0.63/0.53/0.65/0.64 0.41/0.69/0.41/0.38 0.19/0.15/0.18/0.20 

VG4 0.05/0.30/0.04/0.04 -0.44/-0.33/-0.41/-0.37 2.48/2.53/2.18/2.29 2.52/2.48/2.91/2.62 3.06/3.18/3.15/3.28 3.33/3.10/3.16/3.02 4.58/4.32/3.86/4.47 2.20/1.94/2.54/2.17 -0.12/-0.16/-0.11/-0.12 0.34/0.37/0.35/0.34 -0.50/0.01/-0.50/-0.46 -0.50/-0.66/-0.42/-0.52 

VG5 0.15/0.50/0.15/0.15 -0.36/0.01/-0.39/-0.31 2.38/2.46/1.86/2.16 2.45/2.09/1.99/2.77 2.82/2.89/2.82/2.91 3.11/3.13/3.11/2.84 4.33/4.29/6.58/4.19 3.25/3.05/3.25/2.93 0.71/0.84/0.78/0.77 0.47/0.40/0.49/0.48 -0.36/0.02/-0.36/-0.34 -1.09/-1.49/-1.81/-1.15 

VG6 0.49/0.46/0.49/0.48 -1.43/-0.58/-1.43/-1.23 0.50/0.67/0.50/0.52 -0.14/-0.77/-0.11/-0.15 0.70/1.08/0.89/0.76 0.89/0.79/1.11/0.97 1.51/1.59/1.51/1.37 1.67/1.37/1.79/1.51 -0.25/-0.06/-0.25/-0.27 0.45/0.37/0.58/0.48 0.13/0.43/0.13/0.13 -0.61/-1.02/-0.58/-0.65 

VG7 -0.29/-0.52/-0.23/-0.31 -0.96/-0.90/-0.82/-0.98 1.98/1.94/1.93/1.79 1.26/1.31/1.16/1.28 2.58/2.72/2.64/2.58 1.80/1.66/2.28/1.77 2.78/2.62/3.22/2.88 1.58/1.33/1.58/1.58 -0.88/-0.90/-0.97/-0.96 -0.07/-0.18/-0.07/-0.07 -0.91/-0.41/-0.91/-0.82 -1.11/-1.57/-1.11/-1.18 

VG8 -0.30/-0.57/-0.27/-0.31 -1.02/-0.63/-0.86/-0.94 2.53/2.70/2.46/2.31 1.26/0.99/1.07/1.33 2.07/2.21/1.56/2.05 1.48/1.38/1.55/1.57 2.38/2.22/2.55/2.26 1.79/1.58/1.92/1.69 -0.23/0.12/-0.25/-0.25 0.06/-0.04/0.06/0.06 -1.00/-0.73/-1.00/-0.97 -0.99/-1.97/-0.99/-1.06 

VG9 0.43/0.57/0.44/0.39 -0.96/-0.31/-0.81/-0.79 1.61/1.58/1.61/1.60 0.71/0.36/0.66/0.82 1.57/1.90/2.27/1.70 1.65/1.46/2.00/1.80 1.96/1.74/2.11/1.86 1.59/1.38/1.72/1.65 -0.64/-0.43/-0.84/-0.72 0.26/0.06/0.27/0.28 -0.19/0.05/-0.19/-0.19 -0.65/-1.20/-0.63/-0.70 

VG10 -0.41/-0.42/-0.42/-0.44 -1.33/-0.71/-1.33/-1.26 0.86/0.76/1.37/0.74 0.07/0.30/0.07/0.06 0.60/0.64/0.73/0.58 -1.49/-1.74/-1.49/-1.56 0.01/0.01/0.01/-0.07 -0.97/-1.25/-0.93/-0.85 -1.16/-1.30/-1.16/-1.22 -0.50/-0.46/-0.52/-0.51 -0.76/-0.47/-1.00/-0.74 -1.14/-1.73/-1.14/-1.23 

VG11 -0.28/-0.53/-0.27/-0.29 -0.98/-0.87/-0.81/-1.07 1.61/1.53/1.80/1.43 0.42/0.49/0.37/0.41 1.51/1.63/1.64/1.50 -0.12/-0.40/-0.13/-0.12 0.90/0.84/1.01/0.92 0.25/0.10/0.25/0.25 -1.02/-1.04/-1.41/-1.03 -0.19/-0.22/-0.20/-0.20 -1.11/-0.76/-1.11/-1.06 -1.09/-1.78/-0.93/-1.17 

VG12 -0.07/0.87/-0.07/-0.07 -0.98/-1.05/-0.81/-1.06 1.53/1.28/1.81/1.37 0.16/0.21/0.14/0.15 1.87/1.95/1.66/1.86 -0.48/-0.76/-0.48/-0.53 -0.25/-0.24/-0.27/-0.19 -0.69/-0.86/-0.75/-0.69 -0.69/-0.70/-1.06/-0.73 0.23/0.15/0.23/0.24 -1.24/-0.92/-1.24/-1.22 -1.12/-1.90/-1.00/-1.21 

VG13 -0.30/0.44/-0.32/-0.28 -1.41/-2.00/-1.23/-1.62 0.47/0.27/0.54/0.43 -1.07/-1.07/-0.99/-1.07 0.74/0.83/0.86/0.77 -0.61/-0.78/-0.61/-0.60 -0.49/-0.44/-0.53/-0.41 -0.29/-0.45/-0.31/-0.29 -0.76/-0.78/-1.04/-0.75 0.16/0.23/0.17/0.18 -0.97/-0.82/-1.18/-0.96 -0.87/-1.63/-0.75/-0.94 

VG14 -0.49/-0.60/-0.47/-0.51 -1.88/-1.50/-2.33/-1.63 -0.38/-0.33/-0.36/-0.32 -0.05/0.35/-0.06/-0.05 0.46/0.64/0.46/0.46 -1.93/-2.21/-1.93/-2.05 -0.21/-0.22/-0.19/-0.16 -0.65/-0.82/-0.65/-0.66 -0.84/-0.88/-1.05/-0.90 -0.27/-0.15/-0.27/-0.29 -1.40/-0.97/-1.72/-1.37 -1.48/-2.18/-1.21/-1.55 

VG15 -0.27/-0.54/-0.25/-0.29 -0.94/-0.94/-0.94/-1.06 1.04/0.89/1.17/0.94 0.31/0.53/0.26/0.30 1.23/1.34/1.07/1.22 -0.43/-0.80/-0.43/-0.46 -0.15/-0.14/-0.17/-0.08 0.31/0.17/0.31/0.31 -0.44/-0.51/-0.39/-0.46 0.16/0.14/0.16/0.17 -1.24/-1.08/-1.24/-1.27 -0.99/-1.64/-0.82/-1.05 

VG16 -0.23/-0.42/-0.20/-0.23 -0.82/-1.13/-0.82/-0.94 1.16/1.02/1.34/1.10 -0.05/0.29/-0.04/-0.04 0.96/1.05/1.23/0.94 -0.52/-0.70/-0.58/-0.54 -0.04/-0.04/-0.05/0.20 -0.06/-0.19/-0.06/-0.05 -0.51/-0.65/-0.64/-0.52 0.04/0.07/0.04/0.04 -1.08/-0.80/-1.08/-1.06 -0.99/-1.81/-0.90/-1.05 
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Table A10. Trends in Rainfall Extremes of July Month 

Grid Id CDD CWD PRCPTOT R10 R20 R40 R95 1Day 5Day 

NG1 -2.85/-2.64/-3.55/-2.81 0.74/0.40/0.71/0.69 2.74/2.46/2.76/2.98 1.59/1.56/1.82/1.66 0.94/0.83/1.01/0.99 1.83/2.26/1.75/1.85 1.22/1.50/1.36/1.31 0.79/0.59/1.06/0.85 1.40/1.19/1.60/1.40 

NG2 -2.05/-1.64/-1.83/-2.01 0.89/0.93/0.89/0.97 1.99/1.97/3.39/2.44 2.67/2.56/2.68/3.24 1.81/1.97/1.86/2.07 -0.17/-0.64/-0.17/-0.19 0.54/0.43/0.69/0.65 0.80/0.66/0.80/0.93 1.52/1.36/1.52/1.79 

NG3 0.96/0.55/1.02/0.82 -1.65/-1.18/-1.52/-1.52 -0.66/-0.84/-0.66/-0.70 -0.31/-0.50/-0.31/-0.32 -0.91/-1.02/-0.91/-0.94 -0.21/-0.52/-0.21/-0.23 -0.60/-0.89/-0.79/-0.72 -0.71/-0.69/-0.90/-0.87 -1.05/-0.87/-1.05/-1.19 

NG4 -1.90/-1.38/-1.90/-1.72 1.80/1.56/1.90/1.71 2.44/2.41/2.96/2.71 3.25/3.10/5.55/3.20 2.03/2.30/2.03/2.13 -0.73/-0.92/-0.68/-0.75 -0.67/-0.74/-0.70/-0.74 0.20/0.18/0.23/0.23 1.12/1.12/1.28/1.25 

NG5 -1.47/-1.54/-1.84/-1.52 0.07/-0.25/0.06/0.06 1.45/1.25/1.45/1.55 1.22/1.12/1.27/1.24 0.81/0.66/0.71/0.93 1.37/1.11/1.53/1.37 0.58/0.28/0.53/0.57 0.98/1.11/0.91/1.01 0.94/0.91/1.15/0.96 

NG6 -0.84/-1.19/-0.70/-0.88 0.35/0.33/0.31/0.33 2.16/1.77/2.16/2.46 2.11/1.82/1.85/2.35 2.28/1.85/2.28/2.16 0.89/1.01/0.77/1.00 1.12/0.89/1.12/1.23 1.19/1.10/1.33/1.29 1.16/0.97/1.16/1.32 

NG7 -0.81/-0.70/-0.88/-0.81 -0.74/-0.44/-0.90/-0.67 3.10/3.00/2.46/3.55 3.43/3.44/3.09/3.81 3.03/3.02/2.82/2.90 1.87/2.32/1.28/1.92 1.64/1.88/1.44/1.72 1.91/1.71/1.91/2.10 2.32/2.24/2.32/2.54 

NG8 -1.17/-1.39/-1.00/-1.39 2.01/1.95/1.74/2.02 2.36/2.30/2.02/2.55 2.37/2.21/2.39/2.62 1.92/1.88/1.92/2.01 1.23/0.96/1.44/1.19 1.65/1.37/1.91/1.57 1.80/1.67/2.49/2.07 2.44/2.29/2.44/2.72 

NG9 -1.08/-1.16/-1.01/-1.23 0.15/0.02/0.17/0.13 3.94/3.76/4.40/3.89 1.89/1.70/1.53/2.09 3.60/3.51/3.60/3.52 3.15/2.59/2.20/2.65 3.39/3.38/3.20/2.70 4.02/3.99/4.96/3.64 3.83/3.75/4.49/3.60 

NG10 -2.43/-2.52/-2.43/-2.61 0.61/0.45/0.61/0.62 4.07/4.07/4.43/4.53 2.26/2.16/1.95/2.48 4.14/3.86/3.23/4.10 3.25/2.43/2.63/2.94 3.41/3.68/4.26/3.35 3.69/3.90/3.83/4.03 4.18/4.11/4.69/4.60 

NG11 -1.48/-1.69/-1.09/-1.50 1.42/1.10/1.40/1.22 3.63/3.43/3.63/3.64 2.14/1.94/1.80/2.22 2.93/2.63/2.55/3.07 2.31/1.65/1.96/2.17 2.65/2.12/2.37/2.35 2.50/2.57/2.91/2.46 2.99/2.94/3.11/3.11 

NG12 0.92/1.09/0.92/0.85 -3.37/-3.25/-3.37/-2.83 0.27/0.00/0.29/0.26 -0.73/-0.82/-0.67/-0.67 0.12/-0.11/0.12/0.11 1.32/1.16/1.12/1.30 1.97/1.40/1.97/1.82 1.66/1.67/1.66/1.76 1.01/0.87/1.25/1.00 

VG1 -1.35/-1.27/-1.21/-1.21 -0.51/-0.17/-0.86/-0.42 2.23/2.29/1.90/2.68 1.97/2.12/1.93/2.25 2.52/2.92/2.52/2.59 1.25/1.20/1.25/1.25 0.95/0.68/1.05/1.06 1.00/0.87/1.41/1.14 1.74/1.91/2.26/2.09 

VG2 -1.97/-1.93/-2.02/-2.05 1.56/1.61/1.43/1.46 3.89/3.78/3.41/4.60 3.64/3.77/3.15/4.10 3.15/3.10/3.15/3.35 2.28/2.94/2.28/2.79 2.02/2.22/2.02/2.28 1.55/1.49/1.64/1.70 2.78/2.82/3.16/3.24 

VG3 -1.62/-1.59/-1.50/-1.67 0.82/1.26/0.84/0.88 2.58/2.74/2.58/3.01 2.76/2.76/3.11/3.12 2.93/2.84/2.72/3.43 1.42/1.86/2.90/1.69 1.52/1.83/1.43/1.66 1.16/1.01/1.21/1.24 2.20/2.29/2.20/2.41 

VG4 -2.90/-2.78/-3.74/-3.04 2.13/2.33/1.83/2.06 4.69/4.54/3.39/4.41 4.12/4.28/2.98/3.69 3.76/3.70/3.26/3.75 3.50/2.03/1.93/3.06 3.23/2.10/2.06/2.98 3.00/2.97/4.68/3.15 3.43/3.38/6.18/3.62 

VG5 -2.48/-2.28/-2.19/-2.50 2.01/2.10/2.41/1.76 4.34/4.21/6.57/4.30 4.12/4.04/5.30/4.16 4.25/4.07/4.25/4.38 1.37/0.82/1.68/1.33 1.38/0.94/1.61/1.30 1.81/1.63/2.55/1.82 3.29/3.28/5.31/3.43 

VG6 -0.94/-0.72/-0.94/-0.92 -0.17/0.11/-0.17/-0.18 1.52/1.39/1.52/1.60 1.26/0.99/1.26/1.13 2.64/2.40/2.64/2.80 1.17/1.31/1.49/1.23 1.09/1.10/1.12/1.12 1.13/0.76/1.41/1.20 1.55/1.44/1.42/1.53 

VG7 -1.03/-1.19/-1.03/-1.07 1.00/0.97/1.06/0.91 2.85/2.89/3.30/2.68 2.32/2.35/2.50/2.40 2.06/1.73/2.04/2.02 1.87/1.39/1.37/1.84 1.66/1.50/1.42/1.57 1.26/1.49/1.35/1.23 2.53/2.62/2.58/2.45 

VG8 -0.21/-0.17/-0.18/-0.20 1.05/1.17/1.25/1.13 2.39/2.21/2.39/2.23 2.22/2.11/2.16/2.09 2.28/2.65/1.95/2.40 2.77/1.76/2.66/2.47 2.32/1.72/2.32/2.14 1.70/1.64/1.93/1.70 2.33/2.36/3.35/2.28 

VG9 -1.02/-1.16/-1.22/-1.08 2.37/2.42/2.36/2.69 1.94/1.82/2.08/1.74 1.90/1.79/2.42/1.78 2.20/1.77/1.78/1.87 0.89/0.58/0.86/0.82 0.52/0.43/0.55/0.51 0.11/0.15/0.11/0.10 1.67/1.69/2.07/1.53 

VG10 1.22/1.01/1.42/1.18 -1.42/-1.52/-1.23/-1.36 0.08/0.06/0.11/0.10 -1.41/-1.64/-1.32/-1.51 0.15/0.13/0.16/0.17 0.65/0.61/0.56/0.71 0.58/0.58/0.46/0.56 0.60/0.69/0.54/0.60 0.55/0.73/0.52/0.57 

VG11 -1.41/-1.14/-1.41/-1.31 2.72/2.52/2.93/2.74 0.95/0.94/1.06/0.90 1.07/0.87/1.45/0.99 0.64/0.85/0.73/0.75 -0.46/0.03/-0.59/-0.43 -0.76/-0.41/-0.70/-0.69 -1.04/-0.91/-1.12/-1.02 0.76/0.90//0.78 

VG12 -0.23/-0.51/-0.21/-0.25 0.27/0.05/0.43/0.29 -0.23/-0.15/-0.25/-0.22 -0.67/-0.73/-0.84/-0.64 0.66/0.81/0.63/0.68 0.72/0.91/0.81/0.65 0.64/0.75/0.59/0.59 -0.38/-0.29/-0.35/-0.38 0.62/0.91/0.54/0.68 

VG13 1.06/0.66/1.17/1.04 0.41/0.12/0.39/0.40 -0.37/-0.35/-0.50/-0.34 0.21/0.23/1.51/0.20 -0.82/-0.57/-0.82/-0.80 0.44/0.51/0.54/0.42 0.20/0.39/0.22/0.19 -0.23/-0.35/-0.22/-0.22 -0.01/0.10/-0.01/-0.01 

VG14 -0.06/-0.21/-0.07/-0.06 0.05/-0.15/0.05/0.05 -0.12/-0.16/-0.12/-0.13 -0.67/-0.62/-0.70/-0.65 -0.24/-0.41/-0.24/-0.24 -0.09/-0.19/-0.09/-0.09 0.66/0.57/0.66/0.67 0.20/0.31/0.18/0.20 0.36/0.51/0.36/0.39 

VG15 0.66/0.59/0.62/0.70 0.56/0.35/0.41/0.47 -0.12/-0.06/-0.18/-0.11 0.59/0.61/0.61/0.55 0.25/0.33/0.38/0.23 -0.22/-0.16/-0.25/-0.22 -0.22/0.36/-0.21/-0.22 -0.98/-0.92/-0.73/-0.96 0.21/0.37/0.25/0.22 

VG16 -0.52/-0.52/-0.52/-0.51 2.74/2.47/2.74/2.36 0.03/0.25/0.04/0.03 0.49/0.59/0.51/0.47 0.53/0.54/0.64/0.50 -1.27/-0.75/-1.18/-1.22 -1.27/-0.77/-2.30/-1.25 -1.94/-1.79/-3.90/-1.97 -0.37/-0.18/-0.37/-0.39 
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Figure A1. Spatial plots of trends in rainfall during winter pre-monsoon and monsoon seasons of post-1950 

 

Figure A2. Spatial plots of trends post-monsoon and annual rainfall of post-1950.   
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Figure A3. Spatial plot of trends in annual rainfall extremes (CDD, CWD, and PRCPTOT) of post-1950 

 

Figure A4. Spatial plot of trends annual rainfall extremes (R10MM, R20MM, and R40MM) of post-1950 
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Figure A5. Spatial plot of trends in annual rainfall extremes (RX1DAY, RX5DAY, and R95PTOT) of post-1950 

 

Figure A6. Spatial plot of trends rainfall extremes (CDD, CWD, and PRCPTOT) during winter season 
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Figure A7. Spatial plot of trends rainfall extremes (R10MM, R20MM and R40MM) during winter season 

 

Figure A8. Spatial plot of trends rainfall extremes (RX1DAY, RX5DAY, and R95PTOT) during winter season 
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Figure A9. Spatial plot of trends rainfall extremes (CDD, CWD, and PRCPTOT) during monsoon season of 

post-1950 

 

Figure A10. Spatial plot of trends rainfall extremes (R10MM, R20MM and R40MM) during monsoon season of 

post-1950 
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Figure A11. Spatial plot of trends rainfall extremes (RX1DAY, RX5DAY, and R95PTOT) during monsoon 

season of post-1950 

3  

Figure A12. Spatial Plot of Trend in Rainfall in January, February, and March Months 
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Figure A13. Spatial Plot of Trend in Rainfall in April, May, June Months 

 

Figure A14. Spatial Plot of Trend in Rainfall in July, August, September Months 
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Figure A15. Spatial Plot of Trend in Rainfall in October, November, and December 

 

Figure A16. Spatial Plot of Trend Rainfall Extremes (CDD, CWD, and PRCPTOT) in July Month 
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Figure A17. Spatial Plot of Trend Rainfall Extremes (R10MM, R20MM, and R40MM) in July Month 

 

Figure A18. Spatial Plot of Trend Rainfall Extremes (R95PTOT, RX1DAY, and RX5DAY) in July Mont
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Appendix-B 

 

Figure B1. Time evolution of area averaged mixing ratios (g/kg) for cyclone Daye 
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Figure B2. Time evolution of area averaged mixing ratios (g/kg) for cyclone Gaja 
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Figure B3. Time evolution of area averaged mixing ratios (g/kg) for cyclone Kyant 
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Figure B4. Time evolution of area averaged mixing ratios (g/kg) for cyclone Nilofar 
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Figure B5. Time evolution of area averaged mixing ratios (g/kg) for cyclone Ockhi 
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Figure B6. Time evolution of area averaged mixing ratios (g/kg) for cyclone Phethai 
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Figure B7. Time evolution of area averaged mixing ratios (g/kg) for cyclone Titli 
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Appendix-C 

# load external library to read grib data 

library(rgdal) 

library(gdata) 

library(lubridate) 

library(RCurl) 

library(stringr) 

library(SWATplusR) 

library(sf) 

library(ggplot2) 

library(tidyr) 

library(dplyr) 

#Downloading GFS Forecasts for the next five days 

h <- format(Sys.Date(),"%Y%m%d") 

f <- as.numeric(h) 

setwd("H:\\GFS_Data") 

path <- "H:\\GFS_Data" 

files <- list.files() 

for ( i in 1: length(files)) 

  file.remove(files[i]) 

url = 

"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p

grb2.0p25.f024" 

k <- as.vector(url) 

str_sub(k,61,68) <- paste0(h) 

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f024") 

download.file(k, destfile,method="curl") 

url = 

"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p

grb2.0p25.f048" 

k <- as.vector(url) 

str_sub(k,61,68) <- paste0(h) 

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f048") 
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download.file(k, destfile,method="curl") 

url = 

"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p

grb2.0p25.f072" 

k <- as.vector(url) 

str_sub(k,61,68) <- paste0(h) 

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f072") 

download.file(k, destfile,method="curl") 

url = 

"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p

grb2.0p25.f096" 

k <- as.vector(url) 

str_sub(k,61,68) <- paste0(h) 

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f096") 

download.file(k, destfile,method="curl") 

url = 

"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20210607/00/atmos/gfs.t00z.p

grb2.0p25.f120" 

k <- as.vector(url) 

str_sub(k,61,68) <- paste0(h) 

destfile = file.path(path, "gfs.t00z.pgrb2.0p25.f120") 

download.file(k, destfile,method="curl") 

 

# now load the data (assuming the data is in the current working directory) 

#datain1 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f024") 

#datain2 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f048") 

#datain3 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f072") 

#datain4 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f096") 

#datain5 <- readGDAL("H:\\GFS_Data\\gfs.t00z.pgrb2.0p25.f120") 

#Code testing for TITLI cyclone data 

datain1 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f024.grib2") 

datain2 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f048.grib2") 

datain3 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f072.grib2") 

datain4 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f096.grib2") 
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datain5 <- readGDAL("H:\\GFS_Data\\gfs.0p25.2021092700.f120.grib2") 

bfact = read.csv("H:\\GFS_Data\\input_files\\bias_factors.csv", header = T) #bfact is bias 

factors csv file 

nlatlong = read.csv("H:\\GFS_Data\\input_files\\latlong_nagavali.csv", header = F) 

#Nagavali Basin Lat long file 

vlatlong = read.csv("H:\\GFS_Data\\input_files\\latlong_vamsadhara.csv", header = F) 

#Vamsadhara Basin Lat long file 

# extract the data we want to plot and cell centres, e.g. surface air temp 

# bands from 

https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20220105/00/atmos/gfs.t00

z.pgrb2.0p25.f025.idx 

# Band586: Maximum Precipitation 

# Band587: Minimum Precipitation 

# Band597: Cumulative Precipitation 

#Reading Precipitation, Maximum Temperature and Minimum Temperature Data from 

GFS grib files 

day1_precip <- matrix(datain1$band597, 1440, 721) 

day2_precip <- matrix(datain2$band597, 1440, 721) 

day3_precip <- matrix(datain2$band597, 1440, 721) 

day4_precip <- matrix(datain4$band597, 1440, 721) 

day5_precip <- matrix(datain5$band597, 1440, 721) 

day1_maxt <- matrix(datain1$band586, 1440, 721) 

day2_maxt <- matrix(datain2$band586, 1440, 721) 

day3_maxt <- matrix(datain2$band586, 1440, 721) 

day4_maxt <- matrix(datain4$band586, 1440, 721) 

day5_maxt <- matrix(datain5$band586, 1440, 721) 

day1_mint <- matrix(datain1$band587, 1440, 721) 

day2_mint <- matrix(datain2$band587, 1440, 721) 

day3_mint <- matrix(datain2$band587, 1440, 721) 

day4_mint <- matrix(datain4$band587, 1440, 721) 

day5_mint <- matrix(datain5$band587, 1440, 721) 

x <- seq(0.125, by = 0.25, length.out = 1440) 

y <- seq(90 - 0.125, by = -0.25, length.out = 721) 
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# now put it onto a different grid going -180 to 180 and -90 to 90 # and not the default 0 

to 360 and 90 to -90 

x <- x[c(721:1440,1:720)] 

x <- ifelse( x > 180, x - 360, x) 

y <- rev(y) 

day1_precip = day1_precip[c(721:1440,1:720),721:1] 

day2_precip = day2_precip[c(721:1440,1:720),721:1] 

day3_precip = day3_precip[c(721:1440,1:720),721:1] 

day4_precip = day4_precip[c(721:1440,1:720),721:1] 

day5_precip = day5_precip[c(721:1440,1:720),721:1] 

day1_maxt = day1_maxt[c(721:1440,1:720),721:1] 

day2_maxt = day2_maxt[c(721:1440,1:720),721:1] 

day3_maxt = day3_maxt[c(721:1440,1:720),721:1] 

day4_maxt = day4_maxt[c(721:1440,1:720),721:1] 

day5_maxt = day5_maxt[c(721:1440,1:720),721:1] 

day1_mint = day1_mint[c(721:1440,1:720),721:1] 

day2_mint = day2_mint[c(721:1440,1:720),721:1] 

day3_mint = day3_mint[c(721:1440,1:720),721:1] 

day4_mint = day4_mint[c(721:1440,1:720),721:1] 

day5_mint = day5_mint[c(721:1440,1:720),721:1] 

#Extracting the Precipitation Maximum Temperature and Minimum Temperature data 

over the Nagavali and Vamsadhara Basins 

nv_precipday1 = day1_precip[1051:1060,433:442] 

nv_precipday2 = day2_precip[1051:1060,433:442] 

nv_precipday3 = day3_precip[1051:1060,433:442] 

nv_precipday4 = day4_precip[1051:1060,433:442] 

nv_precipday5 = day5_precip[1051:1060,433:442] 

nv_maxtday1 = day1_maxt[1051:1060,433:442] 

nv_maxtday2 = day2_maxt[1051:1060,433:442] 

nv_maxtday3 = day3_maxt[1051:1060,433:442] 

nv_maxtday4 = day4_maxt[1051:1060,433:442] 

nv_maxtday5 = day5_maxt[1051:1060,433:442] 
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nv_mintday1 = day1_mint[1051:1060,433:442] 

nv_mintday2 = day2_mint[1051:1060,433:442] 

nv_mintday3 = day3_mint[1051:1060,433:442] 

nv_mintday4 = day4_mint[1051:1060,433:442] 

nv_mintday5 = day5_mint[1051:1060,433:442] 

precipday1 = unmatrix(nv_precipday1,byrow=T) 

precipday2 = unmatrix(nv_precipday2,byrow=T) 

precipday3 = unmatrix(nv_precipday3,byrow=T) 

precipday4 = unmatrix(nv_precipday4,byrow=T) 

precipday5 = unmatrix(nv_precipday5,byrow=T) 

precipday1 = t(precipday1) 

precipday2 = t(precipday2) 

precipday3 = t(precipday3) 

precipday4 = t(precipday4) 

precipday5 = t(precipday5) 

precipitation = rbind(precipday1,precipday2, precipday3, precipday4, precipday5) 

maxtday1 = unmatrix(nv_maxtday1,byrow=T) 

maxtday2 = unmatrix(nv_maxtday2,byrow=T) 

maxtday3 = unmatrix(nv_maxtday3,byrow=T) 

maxtday4 = unmatrix(nv_maxtday4,byrow=T) 

maxtday5 = unmatrix(nv_maxtday5,byrow=T) 

maxtday1 = t(maxtday1) 

maxtday2 = t(maxtday2) 

maxtday3 = t(maxtday3) 

maxtday4 = t(maxtday4) 

maxtday5 = t(maxtday5) 

MaxT = rbind(maxtday1,maxtday2, maxtday3, maxtday4, maxtday5) 

mintday1 = unmatrix(nv_mintday1,byrow=T) 

mintday2 = unmatrix(nv_mintday2,byrow=T) 

mintday3 = unmatrix(nv_mintday3,byrow=T) 

mintday4 = unmatrix(nv_mintday4,byrow=T) 

mintday5 = unmatrix(nv_mintday5,byrow=T) 
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mintday1 = t(mintday1) 

mintday2 = t(mintday2) 

mintday3 = t(mintday3) 

mintday4 = t(mintday4) 

mintday5 = t(mintday5) 

MinT = rbind(mintday1,mintday2, mintday3, mintday4, mintday5) 

#Applying Bias Correction to Precipitation data 

Bc_precip = precipitation * bfact[,1]  

#Extracting rainfall and temperature data over the Nagavali basin 

ng1 = rowMeans(Bc_precip[,c(52,53,62,63)]) 

ng2 = rowMeans(Bc_precip[,c(13,14,23,24)]) 

ng3 = rowMeans(Bc_precip[,c(23,24,33,34)]) 

ng4 = rowMeans(Bc_precip[,c(33,34,43,44)]) 

ng5 = rowMeans(Bc_precip[,c(43,44,53,54)]) 

ng6 = rowMeans(Bc_precip[,c(24,25,34,35)]) 

ng7 = rowMeans(Bc_precip[,c(34,35,44,45)]) 

ng8 = rowMeans(Bc_precip[,c(44,45,54,55)]) 

ng9 = rowMeans(Bc_precip[,c(25,26,35,36)]) 

ng10 = rowMeans(Bc_precip[,c(35,36,45,46)]) 

ng11 = rowMeans(Bc_precip[,c(26,27,36,37)]) 

ng12 = rowMeans(Bc_precip[,c(36,37,46,47)]) 

ng13 = rowMeans(Bc_precip[,c(27,28,37,38)]) 

#Maximum Temperature 

ngmax1 = rowMeans(MaxT[,c(52,53,62,63)]) 

ngmax2 = rowMeans(MaxT[,c(13,14,23,24)]) 

ngmax3 = rowMeans(MaxT[,c(23,24,33,34)]) 

ngmax4 = rowMeans(MaxT[,c(33,34,43,44)]) 

ngmax5 = rowMeans(MaxT[,c(43,44,53,54)]) 

ngmax6 = rowMeans(MaxT[,c(24,25,34,35)]) 

ngmax7 = rowMeans(MaxT[,c(34,35,44,45)]) 

ngmax8 = rowMeans(MaxT[,c(44,45,54,55)]) 

ngmax9 = rowMeans(MaxT[,c(25,26,35,36)]) 
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ngmax10 = rowMeans(MaxT[,c(35,36,45,46)]) 

ngmax11 = rowMeans(MaxT[,c(26,27,36,37)]) 

ngmax12 = rowMeans(MaxT[,c(36,37,46,47)]) 

ngmax13 = rowMeans(MaxT[,c(27,28,37,38)]) 

##Minimum Temperature 

ngmin1 = rowMeans(MinT[,c(52,53,62,63)]) 

ngmin2 = rowMeans(MinT[,c(13,14,23,24)]) 

ngmin3 = rowMeans(MinT[,c(23,24,33,34)]) 

ngmin4 = rowMeans(MinT[,c(33,34,43,44)]) 

ngmin5 = rowMeans(MinT[,c(43,44,53,54)]) 

ngmin6 = rowMeans(MinT[,c(24,25,34,35)]) 

ngmin7 = rowMeans(MinT[,c(34,35,44,45)]) 

ngmin8 = rowMeans(MinT[,c(44,45,54,55)]) 

ngmin9 = rowMeans(MinT[,c(25,26,35,36)]) 

ngmin10 = rowMeans(MinT[,c(35,36,45,46)]) 

ngmin11 = rowMeans(MinT[,c(26,27,36,37)]) 

ngmin12 = rowMeans(MinT[,c(36,37,46,47)]) 

ngmin13 = rowMeans(MinT[,c(27,28,37,38)]) 

#Comibing all the grids into single file 

ngrain = cbind(ng1,ng2,ng3,ng4,ng5,ng6,ng7,ng8,ng9,ng10,ng11,ng12,ng13) 

ngmaxt = cbind(ngmax1,ngmax2,ngmax3,ngmax4,ngmax5,ngmax6,ngmax7,ngmax8, 

               ngmax9,ngmax10,ngmax11,ngmax12,ngmax13) 

ngmint = cbind(ngmin1,ngmin2,ngmin3,ngmin4,ngmin5,ngmin6,ngmin7,ngmin8, 

               ngmin9,ngmin10,ngmin11,ngmin12,ngmin13) 

ngrain = round(ngrain, digits = 0) 

ngmaxt = round(ngmaxt, digits = 0) 

ngmint = round(ngmint, digits = 0) 

colnames(ngrain) = NULL 

colnames(ngmaxt) = NULL 

colnames(ngmint) = NULL 

nrainfall = rbind(nlatlong,ngrain) 

nmaxt = rbind(nlatlong,ngmaxt) 
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nmint = rbind(nlatlong,ngmint) 

ntemp = 

cbind(nmaxt$V1,nmint$V1,nmaxt$V2,nmint$V2,nmaxt$V3,nmint$V3,nmaxt$V4,nmint$V4,    

nmaxt$V5,nmint$V5,nmaxt$V6,nmint$V6,nmaxt$V7,nmint$V7,nmaxt$V8,nmint$V8, 

nmaxt$V9,nmint$V9,nmaxt$V10,nmint$V10,nmaxt$V11,nmint$V11,nmaxt$V12,nmint$V1

2,nmaxt$V13,nmint$V13,nmaxt$V14,nmint$V14,nmaxt$V15,nmint$V15,nmaxt$V16,nmint

$V16) 

vg1 = rowMeans(Bc_precip[,c(53,54,63,64)]) 

vg2 = rowMeans(Bc_precip[,c(54,55,64,65)]) 

vg3 = rowMeans(Bc_precip[,c(64,65,74,75)]) 

vg4 = rowMeans(Bc_precip[,c(45,46,55,56)]) 

vg5 = rowMeans(Bc_precip[,c(55,56,65,66)]) 

vg6 = rowMeans(Bc_precip[,c(65,66,75,76)]) 

vg7 = rowMeans(Bc_precip[,c(46,47,56,57)]) 

vg8 = rowMeans(Bc_precip[,c(56,57,66,67)]) 

vg9 = rowMeans(Bc_precip[,c(66,67,76,77)]) 

vg10 = rowMeans(Bc_precip[,c(37,38,47,48)]) 

vg11 = rowMeans(Bc_precip[,c(47,48,57,58)]) 

vg12 = rowMeans(Bc_precip[,c(57,58,67,68)]) 

vg13 = rowMeans(Bc_precip[,c(67,68,77,78)]) 

vg14 = rowMeans(Bc_precip[,c(38,39,48,49)]) 

vg15 = rowMeans(Bc_precip[,c(48,49,58,59)]) 

vg16 = rowMeans(Bc_precip[,c(58,59,68,69)]) 

#Maximum Temperature 

vgmax1 = rowMeans(MaxT[,c(53,54,63,64)]) 

vgmax2 = rowMeans(MaxT[,c(54,55,64,65)]) 

vgmax3 = rowMeans(MaxT[,c(64,65,74,75)]) 

vgmax4 = rowMeans(MaxT[,c(45,46,55,56)]) 

vgmax5 = rowMeans(MaxT[,c(55,56,65,66)]) 

vgmax6 = rowMeans(MaxT[,c(65,66,75,76)]) 

vgmax7 = rowMeans(MaxT[,c(46,47,56,57)]) 

vgmax8 = rowMeans(MaxT[,c(56,57,66,67)]) 

vgmax9 = rowMeans(MaxT[,c(66,67,76,77)]) 

vgmax10 = rowMeans(MaxT[,c(37,38,47,48)]) 
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vgmax11 = rowMeans(MaxT[,c(47,48,57,58)]) 

vgmax12 = rowMeans(MaxT[,c(57,58,67,68)]) 

vgmax13 = rowMeans(MaxT[,c(67,68,77,78)]) 

vgmax14 = rowMeans(MaxT[,c(38,39,48,49)]) 

vgmax15 = rowMeans(MaxT[,c(48,49,58,59)]) 

vgmax16 = rowMeans(MaxT[,c(58,59,68,69)]) 

#Minimum Temperature 

vgmin1 = rowMeans(MinT[,c(53,54,63,64)]) 

vgmin2 = rowMeans(MinT[,c(54,55,64,65)]) 

vgmin3 = rowMeans(MinT[,c(64,65,74,75)]) 

vgmin4 = rowMeans(MinT[,c(45,46,55,56)]) 

vgmin5 = rowMeans(MinT[,c(55,56,65,66)]) 

vgmin6 = rowMeans(MinT[,c(65,66,75,76)]) 

vgmin7 = rowMeans(MinT[,c(46,47,56,57)]) 

vgmin8 = rowMeans(MinT[,c(56,57,66,67)]) 

vgmin9 = rowMeans(MinT[,c(66,67,76,77)]) 

vgmin10 = rowMeans(MinT[,c(37,38,47,48)]) 

vgmin11 = rowMeans(MinT[,c(47,48,57,58)]) 

vgmin12 = rowMeans(MinT[,c(57,58,67,68)]) 

vgmin13 = rowMeans(MinT[,c(67,68,77,78)]) 

vgmin14 = rowMeans(MinT[,c(38,39,48,49)]) 

vgmin15 = rowMeans(MinT[,c(48,49,58,59)]) 

vgmin16 = rowMeans(MinT[,c(58,59,68,69)]) 

vgrain = cbind(vg1,vg2,vg3,vg4,vg5,vg6,vg7,vg8,vg9,vg10,vg11, 

               vg12,vg13,vg14,vg15,vg16) 

vgmaxt = cbind(vgmax1,vgmax2,vgmax3,vgmax4,vgmax5,vgmax6,vgmax7, 

vgmax8,vgmax9,vgmax10,vgmax11,vgmax12,vgmax13,vgmax14,vgmax15,vgmax16) 

vgmint = cbind(vgmin1,vgmin2,vgmin3,vgmin4,vgmin5,vgmin6,vgmin7, 

               vgmin8,vgmin9,vgmin10,vgmin11,vgmin12,vgmin13,vgmin14,vgmin15,vgmin16) 

vgrain = round(vgrain,digits = 0) 

vgmaxt = round(vgmaxt,digits = 0) 

vgmint = round(vgmint,digits = 0) 
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colnames(vgrain) = NULL 

colnames(vgmaxt) = NULL 

colnames(vgmint) = NULL 

vrainfall = rbind(vlatlong,vgrain) 

vmaxt = rbind(vlatlong,vgmaxt) 

vmint = rbind(vlatlong,vgmint) 

vtemp = 

cbind(vmaxt$V1,vmint$V1,vmaxt$V2,vmint$V2,vmaxt$V3,vmint$V3,vmaxt$V4,vmint$V4,       

vmaxt$V5,vmint$V5,vmaxt$V6,vmint$V6,vmaxt$V7,vmint$V7,vmaxt$V8,vmint$V8, 

vmaxt$V9,vmint$V9,vmaxt$V10,vmint$V10,vmaxt$V11,vmint$V11,vmaxt$V12,vmint$V1

2,vmaxt$V13,vmint$V13,vmaxt$V14,vmint$V14,vmaxt$V15,vmint$V15,vmaxt$V16,vmint

$V16) 

#Converting Precipitation data into SWAT (.pcp)for Nagavali basin 

nagavalirain<-nrainfall[-(1:2),] 

testnrain = rbind(nagavalirain,nagavalirain) 

nagavalirain = testnrain 

for (i in 1:nrow(nagavalirain)) { 

  print(i) 

  kdays<-nagavalirain[i,] 

  kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]<-

paste0('0',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]) 

  kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]<-

paste0('00',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]) 

  kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)]<-

paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)],'.0') 

  kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)]<-

paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)],'.0') 

  kdays[which(as.numeric(kdays)==0)]<-'000.0' 

  nagavalirain[i,]<-kdays 

} 

ltt<-sprintf("%1.1f",nrainfall[1,])  

loo<-sprintf("%1.1f",nrainfall[2,])  

dttt<-(as.numeric('001'):(as.numeric('001')+nrow(nagavalirain)-1)) 

jdays<-dttt 

jdays[which(nchar(jdays)==2)]<-paste0('0',jdays[which(nchar(jdays)==2)]) 
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jdays[which(nchar(jdays)==1)]<-paste0('00',jdays[which(nchar(jdays)==1)]) 

r1<-c('Station  ',paste0('X',(loo),'Y',ltt,',')) 

lt<-c('Lati    ',paste0((ltt),' ')) 

lo<-c('Long    ',paste0((loo),' ')) 

el<-c('Elev   ',paste0('    ',rep(0,ncol(nrainfall)))) 

dtl<-paste0(2021,jdays) 

rs<-cbind(dtl,nagavalirain) 

rs<-rbind(r1,lt,lo,el,rs) 

#write.table(rs,'pcp1.pcp',row.names = F,col.names = F,quote = F,sep = "") 

write.table(rs,'F:\\SPARC\\Inundation_Maps\\SWAT_RES\\Nagavali_Res\\Scenarios\\N_RS

WAT\\TxtInOut\\pcp1.pcp',row.names = F,col.names = F,quote = F,sep = "") 

#Converting Temperature data into SWAT (.tmp)for Nagavali basin 

nagavalitemp<-ntemp[-(1:2),] 

testntemp = rbind(nagavalitemp,nagavalitemp) 

nagavalitemp = testntemp 

for (i in 1:nrow(nagavalitemp)) { 

  print(i) 

  kdays<-nagavalitemp[i,] 

  kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]<-

paste0('0',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]) 

  kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]<-

paste0('00',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]) 

  kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)]<-

paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)],'.0') 

  kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)]<-

paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)],'.0') 

  kdays[which(as.numeric(kdays)==0)]<-'000.0' 

  nagavalitemp[i,]<-kdays 

} 

dttt<-(as.numeric('001'):(as.numeric('001')+nrow(nagavalitemp)-1)) 

jdays<-dttt 

jdays[which(nchar(jdays)==2)]<-paste0('0',jdays[which(nchar(jdays)==2)]) 

jdays[which(nchar(jdays)==1)]<-paste0('00',jdays[which(nchar(jdays)==1)]) 

ltt<-sprintf("%1.1f",ntemp[1,])  
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loo<-sprintf("%1.1f",ntemp[2,]) 

ctl1<-c() 

ctl2<-c() 

ct1<-1 

while (ct1<=length(ltt)) { 

  ctl1<-c(ctl1,ct1) 

  ctl2<-c(ctl2,ct1+1) 

  ct1<-ct1+2 

} 

loo[ctl2]<-'    ' 

ltt[ctl2]<-'    ' 

ell<-paste0('    ',rep(0,ncol(ntemp))) 

ell[ctl2]<-'     ' 

stn<-paste0('X',(loo),'Y',ltt,',') 

stn[ctl2]<-'' 

r1<-c('Station  ',stn) 

lt<-c('Lati         ',paste0((ltt),' ')) 

lo<-c('Long         ',paste0((loo),' ')) 

el<-c('Elev        ',ell) 

dtl<-paste0('2021',jdays) 

rs<-cbind(dtl,nagavalitemp) 

rs<-rbind(r1,lt,lo,el,rs) 

#write.table(rs,'Tmp1.Tmp',row.names = F,col.names = F,quote = F,sep = "") 

write.table(rs,'F:\\SPARC\\Inundation_Maps\\SWAT_RES\\Nagavali_Res\\Scenarios\\N_RS

WAT\\TxtInOut\\Tmp1.Tmp',row.names = F,col.names = F,quote = F,sep = "") 

#Converting Precipitation data into SWAT (.pcp) for Vamsadhara basin 

vamsdhararain<-vrainfall[-(1:2),] 

testvrain = rbind(vamsdhararain,vamsdhararain) 

vamsdhararain = testvrain 

for (i in 1:nrow(vamsdhararain)) { 

  print(i) 

  kdays<-vamsdhararain[i,] 
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  kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]<-

paste0('0',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]) 

  kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]<-

paste0('00',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]) 

  kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)]<-

paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)],'.0') 

  kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)]<-

paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)],'.0') 

  kdays[which(as.numeric(kdays)==0)]<-'000.0' 

  vamsdhararain[i,]<-kdays 

} 

ltt<-sprintf("%1.1f",vrainfall[1,])  

loo<-sprintf("%1.1f",vrainfall[2,])  

dttt<-(as.numeric('001'):(as.numeric('001')+nrow(vamsdhararain)-1)) 

jdays<-dttt 

jdays[which(nchar(jdays)==2)]<-paste0('0',jdays[which(nchar(jdays)==2)]) 

jdays[which(nchar(jdays)==1)]<-paste0('00',jdays[which(nchar(jdays)==1)]) 

r1<-c('Station  ',paste0('X',(loo),'Y',ltt,',')) 

lt<-c('Lati    ',paste0((ltt),' ')) 

lo<-c('Long    ',paste0((loo),' ')) 

el<-c('Elev   ',paste0('    ',rep(0,ncol(vrainfall)))) 

dtl<-paste0(2021,jdays) 

rs<-cbind(dtl,vamsdhararain) 

rs<-rbind(r1,lt,lo,el,rs) 

write.table(rs,'F:\\SPARC\\Inundation_Maps\\SWAT_RES\\VAMSADHARA_RES\\Scenario

s\\V_RSWAT\\TxtInOut\\pcp1.pcp',row.names = F,col.names = F,quote = F,sep = "") 

#Converting Temperature data into SWAT (.tmp) for Vamsadhara basin 

vamsdharatemp<-vtemp[-(1:2),] 

testvtemp = rbind(vamsdharatemp,vamsdharatemp) 

vamsdharatemp = testvtemp 

for (i in 1:nrow(vamsdharatemp)) { 

  print(i) 

  kdays<-vamsdharatemp[i,] 
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  kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]<-

paste0('0',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==2)]) 

  kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]<-

paste0('00',kdays[which(nchar(as.numeric(round(as.numeric(kdays))))==1)]) 

  kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)]<-

paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==1)],'.0') 

  kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)]<-

paste0(kdays[which(nchar(as.numeric((as.numeric(kdays))))==2)],'.0') 

  kdays[which(as.numeric(kdays)==0)]<-'000.0' 

  vamsdharatemp[i,]<-kdays 

} 

dttt<-(as.numeric('001'):(as.numeric('001')+nrow(vamsdharatemp)-1)) 

jdays<-dttt 

jdays[which(nchar(jdays)==2)]<-paste0('0',jdays[which(nchar(jdays)==2)]) 

jdays[which(nchar(jdays)==1)]<-paste0('00',jdays[which(nchar(jdays)==1)]) 

ltt<-sprintf("%1.1f",vtemp[1,])  

loo<-sprintf("%1.1f",vtemp[2,]) 

ctl1<-c() 

ctl2<-c() 

ct1<-1 

while (ct1<=length(ltt)) { 

  ctl1<-c(ctl1,ct1) 

  ctl2<-c(ctl2,ct1+1) 

  ct1<-ct1+2 

} 

loo[ctl2]<-'    ' 

ltt[ctl2]<-'    ' 

ell<-paste0('    ',rep(0,ncol(vtemp))) 

ell[ctl2]<-'     ' 

stn<-paste0('X',(loo),'Y',ltt,',') 

stn[ctl2]<-'' 

r1<-c('Station  ',stn) 

lt<-c('Lati         ',paste0((ltt),' ')) 
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lo<-c('Long         ',paste0((loo),' ')) 

el<-c('Elev        ',ell) 

dtl<-paste0('2021',jdays) 

rs<-cbind(dtl,vamsdharatemp) 

rs<-rbind(r1,lt,lo,el,rs) 

write.table(rs,"F:\\SPARC\\Inundation_Maps\\SWAT_RES\\VAMSADHARA_RES\\Scenari

os\\V_RSWAT\\TxtInOut\\Tmp1.Tmp",row.names = F,col.names = F,quote = F,sep = "") 

#Running SWAT Model 

q_sim_nag <- run_swat2012(project_path = 

'F:\\SPARC\\Inundation_Maps\\SWAT_RES\\Nagavali_Res\\Scenarios\\N_RSWAT\\TxtInO

ut', 

                           output = define_output(file = "rch", 

                                                  variable = "FLOW_OUT", 

                                                  unit = 1:34), 

                           start_date = "2021-01-01", 

                           end_date = "2021-01-10") 

print(q_sim_nag) 

nag_dis = 

rbind(q_sim_nag$FLOW_OUT_7,q_sim_nag$FLOW_OUT_27,(q_sim_nag$FLOW_OUT_2

+q_sim_nag$FLOW_OUT_12)) 

nag_dis = t(nag_dis) 

nag_dis = nag_dis[-(1:5),] 

q_sim_vam <- run_swat2012(project_path = 

'F:\\SPARC\\Inundation_Maps\\SWAT_RES\\VAMSADHARA_RES\\Scenarios\\V_RSWA

T\\TxtInOut', 

                           output = define_output(file = "rch", 

                                                  variable = "FLOW_OUT", 

                                                  unit = 1:30), 

                           start_date = "2021-01-01", 

                           end_date = "2021-01-10") 

print(q_sim_vam) 

vam_dis = 

rbind(q_sim_vam$FLOW_OUT_4,(q_sim_vam$FLOW_OUT_16+q_sim_vam$FLOW_OUT

_17)) 

vam_dis = t(vam_dis) 
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vam_dis = vam_dis[-(1:5),] 

#Updating SWAT simulated discharge into HEC-RAS model for Nagavali Basin 

dt<-Sys.Date() 

mtl<-c('JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','SEP','OCT','NOV','DEC') 

yr<-substr(dt,1,4) 

mt<-substr(dt,6,7) 

dy<-substr(dt,9,10) 

dt2<-paste0(dy,mtl[as.numeric(mt)],yr) 

if (as.numeric(yr)%%4==0){ 

  mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31) 

}else{ 

  mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31) 

} 

stdate<-dt2 

dy2<-as.numeric(dy)+5 

if (dy2>=mtl2[as.numeric(mt)]){ 

  dy2<-mtl2[as.numeric(mt)]-dy2 

  mtk<-as.numeric(mt)+1 

  if (mtk>=12){ 

    mtk<-as.numeric(mtk)-12 

    yrk<-as.numeric(yr)+1 

    mt<-mtk 

    yr<-yrk 

  } 

} 

if (nchar(dy2)<2){ 

  dy2<-paste0(0,dy2) 

} 

enddate<-paste0(dy2,mtl[as.numeric(mt)],yr) 

a<-readLines("F:\\SPARC\\Inundation_Maps\\Nagavali_2d_1d - 

Copy\\Nagavali_2d_1d.u01") 

xt13<-paste0('Fixed Start Date/Time=',stdate,',00:00') 
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xt25<-paste0('Fixed Start Date/Time=',stdate,',00:00') 

xt37<-paste0('Fixed Start Date/Time=',stdate,',00:00') 

a[13]<-xt13 

a[25]<-xt25 

a[37]<-xt37 

bl<-nag_dis 

bl<-t(bl) 

for (i in 1:3) { 

  pt<-a[(12*(i-1))+7] 

  bb<-bl[i,] 

  kz<-c() 

  for (j in 1:length(bb)) { 

    if (nchar(as.numeric(bb[j]))!=8){ 

      gp<-abs(nchar(as.numeric(bb[j]))-8) 

      gpp<-paste0(rep(' ',gp),collapse = "") 

      kz<-c(kz,paste0(gpp,as.numeric(bb[j]))) 

    }else{ 

      kz<-c(kz,paste0(as.numeric(bb[j]))) 

    } 

  } 

  stt<-paste0(kz,collapse = "") 

  a[(12*(i-1))+7]<-stt 

} 

writeLines(a,"F:\\SPARC\\Inundation_Maps\\Nagavali_2d_1d - Copy\\Nagavali_2d_1d.u01") 

#Updating the Simulation Time for Nagavali Basin 

dt<-Sys.Date() 

mtl<-c('JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','SEP','OCT','NOV','DEC') 

yr<-substr(dt,1,4) 

mt<-substr(dt,6,7) 

dy<-substr(dt,9,10) 

dt2<-paste0(dy,mtl[as.numeric(mt)],yr) 

if (as.numeric(yr)%%4==0){ 
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  mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31) 

}else{ 

  mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31) 

} 

stdate<-dt2 

dy2<-as.numeric(dy)+3 

if (dy2>=mtl2[as.numeric(mt)]){ 

  dy2<-dy2-mtl2[as.numeric(mt)] 

  mtk<-as.numeric(mt)+1 

  if (mtk>=12){ 

    mtk<-as.numeric(mtk)-12; 

    yr<-as.numeric(yr)+1 

  } 

  mt<-mtk 

  yr<-yr 

} 

if (nchar(dy2)<2){ 

  dy2<-paste0(0,dy2) 

} 

enddate<-paste0(dy2,mtl[as.numeric(mt)],yr) 

a<-readLines("F:\\SPARC\\Inundation_Maps\\Nagavali_2d_1d - 

Copy\\Nagavali_2d_1d.p01") 

xt<-paste0('Simulation Date=',stdate,',00:00,',enddate,',00:00') 

a[4]<-xt 

writeLines(a,"F:\\SPARC\\Inundation_Maps\\Nagavali_2d_1d - Copy\\Nagavali_2d_1d.p01") 

#Updating SWAT Simulated discharge into HEC-RAS model for Vamsadhara Basin 

dt<-Sys.Date() 

mtl<-c('JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','SEP','OCT','NOV','DEC') 

yr<-substr(dt,1,4) 

mt<-substr(dt,6,7) 

dy<-substr(dt,9,10) 

dt2<-paste0(dy,mtl[as.numeric(mt)],yr) 
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if (as.numeric(yr)%%4==0){ 

  mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31) 

}else{ 

  mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31) 

} 

stdate<-dt2 

dy2<-as.numeric(dy)+5 

if (dy2>=mtl2[as.numeric(mt)]){ 

  dy2<-mtl2[as.numeric(mt)]-dy2 

  mtk<-as.numeric(mt)+1 

  if (mtk>=12){ 

    mtk<-as.numeric(mtk)-12 

    yrk<-as.numeric(yr)+1 

    mt<-mtk 

    yr<-yrk 

  } 

} 

if (nchar(dy2)<2){ 

  dy2<-paste0(0,dy2) 

} 

enddate<-paste0(dy2,mtl[as.numeric(mt)],yr) 

a<-readLines("F:\\SPARC\\Inundation_Maps\\V_2d_1d - Copy\\v_1d_2d.u01") 

xt13<-paste0('Fixed Start Date/Time=',stdate,',00:00') 

xt25<-paste0('Fixed Start Date/Time=',stdate,',00:00') 

a[13]<-xt13 

a[25]<-xt25 

bl<-vam_dis 

bl<-t(bl) 

for (i in 1:2) { 

  pt<-a[(12*(i-1))+7] 

  bb<-bl[i,] 

  kz<-c() 
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  for (j in 1:length(bb)) { 

    if (nchar(as.numeric(bb[j]))!=8){ 

      gp<-abs(nchar(as.numeric(bb[j]))-8) 

      gpp<-paste0(rep(' ',gp),collapse = "") 

      kz<-c(kz,paste0(gpp,as.numeric(bb[j]))) 

    }else{ 

      kz<-c(kz,paste0(as.numeric(bb[j]))) 

    } 

  } 

  stt<-paste0(kz,collapse = "") 

  a[(12*(i-1))+7]<-stt 

} 

writeLines(a,"F:\\SPARC\\Inundation_Maps\\V_2d_1d - Copy\\v_1d_2d.u01") 

#Updating Simulation Time for Vamsadhara Basin 

dt<-Sys.Date() 

mtl<-c('JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','SEP','OCT','NOV','DEC') 

yr<-substr(dt,1,4) 

mt<-substr(dt,6,7) 

dy<-substr(dt,9,10) 

dt2<-paste0(dy,mtl[as.numeric(mt)],yr) 

if (as.numeric(yr)%%4==0){ 

  mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31) 

}else{ 

  mtl2<-c(31,29,31,30,31,30,31,31,30,31,30,31) 

} 

stdate<-dt2 

dy2<-as.numeric(dy)+3 

if (dy2>=mtl2[as.numeric(mt)]){ 

  dy2<-dy2-mtl2[as.numeric(mt)] 

  mtk<-as.numeric(mt)+1 

  if (mtk>=12){ 

    mtk<-as.numeric(mtk)-12; 
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    yr<-as.numeric(yr)+1 

  } 

  mt<-mtk 

  yr<-yr 

} 

if (nchar(dy2)<2){ 

  dy2<-paste0(0,dy2) 

} 

enddate<-paste0(dy2,mtl[as.numeric(mt)],yr) 

a<-readLines("F:\\SPARC\\Inundation_Maps\\V_2d_1d - Copy\\v_1d_2d.p01") 

xt<-paste0('Simulation Date=',stdate,',00:00,',enddate,',00:00') 

a[4]<-xt 

writeLines(a,"F:\\SPARC\\Inundation_Maps\\V_2d_1d - Copy\\v_1d_2d.p01") 

#Running HEC-RAS Model  

import win32com.client 

from osgeo import gdal 

RC = win32com.client.Dispatch("RAS610.HECRASController") 

RC.ShowRAS() 

#Nagavali HEC-RAS File 

RC.Project_Open(r"F:\SPARC\Inundation_Maps\Nagavali_2d_1d - 

Copy\Nagavali_2d_1d.prj") 

Simulation=RC.Compute_CurrentPlan(None,None,True) 

RC.Project_Save() 

RC.QuitRAS() 

src = gdal.Open(r"F:\SPARC\Inundation_Maps\Nagavali_2d_1d - Copy\N_1d_2d\Depth 

(Max).Nagavali_SRTM_DEM.tif") 

src1 = r"F:\SPARC\Inundation_Maps\data_dir\Inundation_Maps\Nagavali_FIM.tif" 

ds = gdal.Translate(src1,src) 

ds = None 

#Vamsadhara HEC-RAS File 

RC.ShowRAS() 

RC.Project_Open(r"F:\SPARC\Inundation_Maps\V_2d_1d - Copy\v_1d_2d.prj") 
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Simulation=RC.Compute_CurrentPlan(None,None,True) 

RC.Project_Save() 

RC.QuitRAS() 

src = gdal.Open(r"F:\SPARC\Inundation_Maps\V_2d_1d - Copy\2d1d\Depth 

(Max).Vamsadhara_SRTM_DEM.tif") 

src1 = r"F:\SPARC\Inundation_Maps\data_dir\Inundation_Maps\Vamsadhara_FIM.tif" 

ds = gdal.Translate(src1,src) 

ds = None 
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Appendix-D 

HTML Script 

<!DOCTYPE html> 

<html> 

  <head> 

    <meta charset="utf-8" /> 

    <title>Real-time Flood Forecastig</title> 

    <meta 

      name="viewport" 

      content="initial-scale=1.0, user-scalable=no, width=device-width" 

    /> 

#Connecting CSS and JavaScript files to HTML Script 

    <link rel="stylesheet" href="https://openlayers.org/en/v6.12.0/css/ol.css" /> 

    <link rel="stylesheet" href="./dist/ol-style.css" /> 

    <link rel="stylesheet" href="style.css" /> 

  </head> 

  <body> 

    <div id="header"> 

      <div id="row1"> 

        <div id="column1"> 

          <a href="https://www.nitw.ac.in/" target="_blank"> 

            <img src="./img/NITW.png" alt="NITW" style="width: 100%;"> 

        </a> 

        </div> 

        <div id="column1"> 

          <a href="https://sparc.iitkgp.ac.in/" target="_blank"> 

              <img src="./img/SPARC1.png" alt="SPARC" style="width: 100%;"> 

          </a> 

        </div> 

        <div id="column2"> 

          <h2><b>Real-time Flood Forecasting Over the  

            Nagavali and Vamsadhara Basins</b></h2> 

        </div> 

        <div class="column1"> 

          <a href="https://vt.edu/" target="_blank"> 

              <img src="./img/VT1.png" alt="VT" style="width: 100%;"> 

          </a> 

        </div> 

        <div class="column"> 

          <a href="https://www.tamu.edu/" target="_blank"> 

              <img src="img/TAMU.png" alt="TAMU" style="width: 100%;"> 

          </a> 

        </div> 

      </div> 
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    </div> 

    <div id="map"> 

      <div id="Legend"> 

        <h4>Depth (m)</h4> 

        <img 

src="http://localhost:8080/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0

&FORMAT=image/png&WIDTH=20&HEIGHT=20&LAYER=SPARC:Nagavali_FIM" 

alt=""> 

      </div> 

    </div> 

    <script src="https://openlayers.org/en/v6.12.0/build/ol.js"></script> 

    <script src="./dist/ol-main.js"></script> 

    <script src="main.js"></script> 

    <hr> 

      <p><u><b>Project Details</b></u></p> 

      <p>The work has been carried out as a part of on-going SPARC projecrt titled <b>Real-

time Flood Forecastig using SWAT model</b> over 

      the <a href="https://en.wikipedia.org/wiki/Nagavali_River">Nagavali</a> and <a 

href="https://en.wikipedia.org/wiki/Vamsadhara_River"> 

      Vamsadhara</a> Basins funded by MoE. The work has been carried out at 

      National Institute of Technology Waranagal (NITW) in collaboration with Virginia Tech  

      (VT), Blacksburg, VA, USA and Texas A&M University (TAMU), College Station, TX, 

USA. The project is carried out with fund by Ministry of Education (MoE) (erstwhile MHRD), 

      <i><b> GoI under Scheme for Promotion of Academic and Research Collaboration 

(SPARC) </b></i> 

      with projetc number P270.</p> 

    <hr>   

    <div id="footer"> 

      <div id="frow"> 

        <div id="fcol1"> 

          <p><u><b>Scholars Involved in the Project</b></u></p> 

          <p>1. Mr. G Venkata Rao, Research Scholar, Civil Engineering Dept., NITW</p> 

          <p>2. Mr. N Nageswara Reddy, Research Scholar, Civil Engineering Dept., NITW</p> 

        </div> 

        <div id="fcol2"> 

          <p><u><b>Faculty Involaved in the Project</b></u></p> 

          <p>1. <a href="https://www.nitw.ac.in/faculty/id/16214/">Dr. K Venkata Reddy</a>, 

Associate Professor, Civil Engineering Dept., NITW (Indian PI) </p> 

          <p>2. <a href="https://ssl.tamu.edu/people/r-srinivasan/">Dr. Raghavan 

Srinivasan</a>, Director of the Texas A&M AgriLife Blackland Research & Extension Center, 

TAMU, College Station, TX, USA (Foreign PI)</p> 

          <p>3. <a href="https://www.bse.vt.edu/people/faculty/venkat-sridhar.html">Dr. 

Venkataramana Sridhar</a>, Associate Professor, Department of Biological Syatems 

Engineering, VT, Blacksburg, VA, USA (Foreign Co-PI)</p> 

          <p>4. <a href="https://www.nitw.ac.in/faculty/id/16195/">Dr. N V Umamahesh</a>, 

Professor, Civil Engineering Dept., NITW (Indian Co-PI)</p> 
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          <p>5. <a href="https://www.nitw.ac.in/faculty/id/16205/">Dr. Deva Pratap</a>, 

Professor, Civil Engineering Dept., NITW (Indian Co-PI)</p> 

        </div> 

        </div> 

  </body> 

</html> 

 

JavaScript 

#Importing OpenLayers to JavaScript 

(function () { 

  var fullScreenControl = new ol.control.FullScreen(); 

  var zoomSliderControl = new ol.control.ZoomSlider(); 

  var scaleLineControl = new ol.control.ScaleLine(); 

  var updateLegend = function (resolution) { 

    var graphicUrl = wmsSource.getLegendUrl(resolution); 

    var img = document.getElementById('legend'); 

    img.src = graphicUrl; 

  }; 

  var mousePositionControl = new ol.control.MousePosition(); 

  var map = new ol.Map({ 

    target: 'map', 

    keyboardEventTarget: document, 

    controls: ol.control.defaults().extend([ 

      fullScreenControl, 

      //mousePositionControl, 

      scaleLineControl, 

      zoomSliderControl 

    ]), 

    layers: [ 

      new ol.layer.Group({ 

        title: 'Base maps', 

        layers: [ 

          new ol.layer.Group({ 

            title: 'Bing Maps', 

            type: 'base', 

            combine: true, 

            visible: true, 

            layers: [ 

              new ol.layer.Tile({ 

                source: new ol.source.BingMaps({ 

                  key: "AvcmFjEs4wUeEgcoyiNcImmFiKaHQA6-

yWGPH5cEV4Sru8tQwjyOutXchQ_QLyX-", 

                  imagerySet: "AerialWithLabels", 

                }) 

              }), 

            ] 
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          }), 

          new ol.layer.Tile({ 

            title: 'OSM', 

            type: 'base', 

            visible: false, 

            source: new ol.source.OSM() 

          }) 

        ] 

      }), 

#Importing layers from GeoServer to JavaScript 

      new ol.layer.Group({ 

        title: 'Base Layers', 

        fold: 'open', 

        layers: [ 

          new ol.layer.Group({ 

            title: 'Nagavali', 

            fold: 'open', 

            layers: [ 

              new ol.layer.Tile({ 

                title: 'Nagavali Boundary', 

                visible: false, 

                source: new ol.source.TileWMS({ 

                  url: 'http://localhost:8080/geoserver/SPARC/wms', 

                  params: {'LAYERS': 'SPARC:Nagavali-Boundary-line', 'TILED': true}, 

                  serverType: 'geoserver', 

                  transition: 0, 

                }) 

              }), 

              new ol.layer.Tile({ 

                title: 'Nagavali River Network', 

                visible: false, 

                source: new ol.source.TileWMS({ 

                  url: 'http://localhost:8080/geoserver/SPARC/wms', 

                  params: {'LAYERS': 'SPARC:Nagavali_streams', 'TILED': true}, 

                  serverType: 'geoserver', 

                  transition: 0 

                }) 

              }), 

              new ol.layer.Image({ 

                title: 'Inundation Area', 

                visible: true, 

                source: new ol.source.ImageWMS({ 

                  url: 'http://localhost:8080/geoserver/SPARC/wms', 

                  params: {'LAYERS': 'SPARC:Nagavali_FIM'}, 

                  serverType: 'geoserver', 

                  transition: 0, 
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                  transparent:true, 

                  format: 'image/png', 

                  ratio: 1 

                }) 

              }) 

            ] 

          }), 

          new ol.layer.Group({ 

            title: 'Vamsadhara', 

            fold: 'open', 

            layers: [ 

              new ol.layer.Tile({ 

                title: 'Vamsadhara Boundary', 

                visible: false, 

                source: new ol.source.TileWMS({ 

                  url: 'http://localhost:8080/geoserver/SPARC/wms', 

                  params: {'LAYERS': 'SPARC:Vamsadhara-Boundary-line', 'TILED': true}, 

                  serverType: 'geoserver', 

                  transition: 0 

                }) 

              }), 

              new ol.layer.Tile({ 

                title: 'Vamsadhara River Network', 

                visible: false, 

                source: new ol.source.TileWMS({ 

                  url: 'http://localhost:8080/geoserver/SPARC/wms', 

                  params: {'LAYERS': 'SPARC:Vamsadhara_Streams', 'TILED': true}, 

                  serverType: 'geoserver', 

                  transition: 0 

                }) 

              }), 

              new ol.layer.Image({ 

                title: 'Inundation Area', 

                visible: true, 

                source: new ol.source.ImageWMS({ 

                  url: 'http://localhost:8080/geoserver/SPARC/wms', 

                  params: {'LAYERS': 'SPARC:Vamsadhara_FIM'}, 

                  serverType: 'geoserver', 

                  transition: 0, 

                  //transparent:true, 

                  //format: 'image/png', 

                  ratio: 1 

                }) 

              }) 

            ] 

          }) 
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        ] 

      }) 

    ], 

    view: new ol.View({ 

      center: ol.proj.transform([84, 18.5], 'EPSG:4326', 'EPSG:3857'), 

      zoom: 10, 

    }) 

  }); 

  var layerSwitcher = new ol.control.LayerSwitcher({ 

    tipLabel: 'Légende', // Optional label for button 

    groupSelectStyle: 'children' // Can be 'children' [default], 'group' or 'none' 

  }); 

  map.addControl(layerSwitcher); 

  var resolution = map.getView().getResolution(); 

  updateLegend(resolution); 

  map.addLayer(updateLegend); 

})(); 

 

CSS Script 

 

html, 

body { 

  height: 100vh; 

  padding: 0; 

  margin: 0; 

  font-family: sans-serif; 

  font-size: small; 

} 

#header { 

  padding: 10px; 

  background-color: beige; 

} 

#map { 

  width: 98.7vw; 

  height: 80vh; 

} 

#footer { 

  background-color: bisque; 

} 

/* Limit the width of the layer-switcher */ 

.layer-switcher { 

  max-width: 300px; 

} 

h3 { 

  text-align: center; 

  color: goldenrod; 
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} 

h2{ 

  text-align: center; 

  margin: 0%; 

  padding: 0px; 

} 

hr { 

  margin: 0px; 

  padding: 2px; 

} 

p { 

  text-align: justify; 

  padding-left: 1%; 

  padding-right: 1%; 

  padding-top: 0%; 

  padding-bottom: 0%; 

} 

#footer { 

  text-align: justify; 

} 

#Legend { 

  z-index: 10; 

  padding: 8px 8px; 

  border: 6px solid grey; 

  position: absolute; 

  bottom: 100px; 

  height: 28%; 

  overflow: scroll; 

  width: 6%; 

  right: 0%; 

  background-color: #ffffff; 

  font-weight: bold; 

} 

#column1 { 

  float: left; 

  width: 15%; 

  padding: 0px; 

  height: 30px; 

} 

#column2 { 

  float: left; 

  width: 40%; 

  padding: 10px; 

  height: 30px; 

  text-align: center; 

  color: royalblue; 
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} 

#row1{ 

  content: ""; 

  display: flex; 

  clear: both; 

} 

#fcol1 { 

  float: left; 

  width: 40%; 

  padding: 0px; 

 background-color: lightblue; 

} 

#fcol2 { 

  float: left; 

  width: 60%; 

  padding: 0px; 

  background-color: lightblue; 

} 

#frow { 

  content: ""; 

  display: flex; 

  clear: both; 

} 

 


