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ABSTRACT

The ecological and socio-economic development of a region are directly or indirectly
related to the natural resources like water. Spatial and temporal changes on the water budget
for a particular region are due to the combined response of changes in the land cover,
meteorology, geological features, morphological characteristics like basin slope and
topography, climate change and anthropogenic activities. Climate change is a global
phenomenon having varying degree of regional effects. Assessment of the adverse
consequences of climate and anthropogenic effects on drought for proper allocation and risk
management is a challenging issue for the water managers. Further, modulating effect of
climate has far-reaching influence on agriculture, environment, social factors and natural
extreme calamities like flood and drought with an intensified severity. Droughts in India
affect food production, gross domestic product (GDP), livelihood, and socio-economic
condition of a large population associated with agriculture. Droughts are a complex natural
hazard, and the intensity, frequency, and duration of droughts are increasing in India and
around the world, resulting in immense industrial, agricultural, and economic losses each
year. Drought is generally defined as an abnormally prolonged dry period when the
amount of rainfall is below the normal level (meteorological drought), soil moisture below
the threshold level (agricultural drought) or there is deficit amount of water storage and
runoff (hydrological drought). In the recent decades, long and severe droughts have
triggered significant losses and lasting changes in vegetation conditions, owing to climate
change, and the increasing demand for water resources. Future drought projections can be
helpful for the development of efficient adaptation strategies by assessing the influence
of climate change impacts on water resources Drought severity, intensity, onset and
termination characteristics must be investigated in the river basin scale.

The principal tools for the assessment of climate change projections of drought
regimes are the Global Climate Models (GCMs) and Regional Climate Models (RCMs).
There is an existence of gaps between the GCM realization and hydrological features in
spatial and temporal scale and hence the GCMs are not able to efficiently simulate the hydro-
meteorological processes in a finer scale. Compared to the observed parameters, raw outputs
from GCMs are commonly biased with systematic errors, and resolution of GCMs are too
coarse to be used as inputs for drought management. GCM forecasts based on bias correction

techniques need post processing before using the model outputs for drought prediction. It
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has been well documented that the drought will be affected by the changes in the monsoonal
system over India and accordingly the economy of the country will be influenced by the
climate change. Hence, the spatial extent, occurrences, onset and withdrawal of drought
events must be monitored based on the long-term climate projections by using suitable and
reliable indices to provide water planners correct information to take appropriate disaster
response measures. Globally, the water demand is increasing with the increase in
population and their need with rapidly developing cities, industries and agriculture which
lead to decrease in the availability of freshwater resources. Therefore, the hydrological
alterations attributed to climate change must be investigated for accessing water availability
and sustainable development especially the agricultural country like India.

The study is focussed on Godavari River Basin (GRB) to understand the alteration
in the drought phenomenon for future scenarios. In the initial part of the thesis, The
Standardised Precipitation Evapotranspiration Index (SPEI) at 3-month time scale was
calculated using Climate Research Unit 4.03 (CRU 4.03) precipitation, minimum and
maximum temperatures data sets. The drought magnitude and characteristics are determined
using SPEI, which considered both precipitation and temperature data as input variables.
The Mann Kendall (MK) trend analysis was performed to identify the trend associated with
drought characteristics. The basin was divided into six homogeneous regions using K-means
clustering algorithm. Reliability Ensemble Averaging (REA) method was used for ensemble
averaging of RCMs. The drought frequency analysis was carried out using trivariate copula
for reference and future time period. Variations in the drought characteristics were observed
in the future scenarios with respect to the reference period. Drought duration, severity, and
peak for different climate divisions showed increasing trend in future time period especially
in case of Representative Concentration Pathway (RCP8.5) scenarios. The return periods of
future droughts based on weighted average RCMs climate models under the two scenarios
showed the possibility of more frequent drought in the far future (2053-2099) than in the
past (1971-2017).

The second part of the thesis deals with the non-stationary drought index
development and their risk assessment. It is well known that the stationarity is the basic
assumption in the statistical interpretations of time series in hydrologic processes.
Stationarity refers to the parameters of the climate that are invariant with time and space and
free of trends. Stationary property is questionable in the context of global warming and

anthropogenic changes in climate. The outcome of environmental changes exhibits non-
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stationary behaviour in climatic parameters and hence indicators have been developed for
identifying drought status in non-stationary conditions which can help in better management
of water resources. Under variable climatic conditions, the conventional Standardized
Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) are inadequate for
predicting extreme drought characteristics. Non-stationary Standardized Precipitation Index
(NSPI) and Non-stationary Reconnaissance Drought Index (NRDI) are, therefore, developed
by fitting non-stationary distributions. The Generalized Additive Model in Location, Scale
and Shape (GAMLSS) framework, with time varying location parameters considering the
external covariates, was used to fit the non-stationary distributions. Multivariate ENSO
Index (MEI), Southern Oscillation Index (SOI), Sea Surface Temperature (SST), and Indian
Ocean Dipole (I0D) were considered as external covariates for the non-stationary drought
assessment. The performances of stationary and non-stationary models are compared. The
study also concentrated on the trivariate and the Pairwise Copula Construction (PCC) models
to estimate the drought return periods. The comparison of two copula models revealed that
the PCC model performed better than the trivariate Student’s t copula model. The recurrence
intervals for drought events are different for trivariate copula model and PCC model. This
study showed that non-stationary drought indices will be helpful in the better estimation of
the drought characteristics under the changing climatic scenario.

The single variable dependent drought cannot adequately define the onset and
withdrawal characteristics of the droughts. A Multivariate Standardised Drought Index
(MSDI) is developed in the present study based on precipitation and soil moisture using
bivariate copula function. Reconnaissance Trivariate Drought Index (RTDI) is also
developed combining precipitation, soil moisture and evapotranspiration. MSDI and RTDI
represent meteorological and agricultural droughts by linking the climate status in an
effective way. The best fitted copulas obtained for bivariate and trivariate analysis are Frank
and Student’s t copulas respectively. The two drought indices were developed and tested to
study the onset and withdrawal characteristics of drought and their trends. Cross Wavelet
Analysis (CWA) was performed to identify the substantial effect of large-scale climate
anomalies on the derived drought indices. The large-scale climate factors like Sea Surface
Temperature (SST), Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI),
Indian Ocean Dipole (10D), and Indian Summer Monsoon Rainfall (ISMR) are considered
in this study. ENSO, 10D and ISMR showed significant influences on the drought
variability. The 3-month MSDI is significantly influenced by ISMR while SST showed a
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significant teleconnection with RTDI-3. The SST showed a strong influence on both 6-
month MSDI and 6-month RTDI. This study is robust and reliable for future drought
assessment and will provide a great platform to develop warning criteria on onset and
termination of droughts.

Water availability and streamflow are very sensitive to the variation in the amount
of rainfall and temperatures. Hence, the evaluation of climate change impact on streamflow
and water balance pattern will be helpful in designing and managing the water resources
system in an efficient way. This study focusses on the methodology to estimate the climate
change impacts on water balance components in Wainganga and Indravati basins, sub-basins
of GRB. A well-known and semi distributed model, Soil Water Assessment Tool (SWAT),
has been implemented to model the streamflow for the reference and future periods using
the ensemble Coupled Model Intercomparison Model Project Phage 6 (CMIP6) Global
Climate Model (GCM) outputs considering four socio-economic shared pathways (SSP126,
SSP245, SSP370 and SSP585). The bias corrected GCM outputs were ensemble based on
Reliability Ensemble Average (REA) techniques. The ensemble model is given as an input
to the SWAT model for generation of future water balance structure of these basins. Global
sensitivity analysis was performed using Uncertainty in Sequential Uncertainty
Fitting (SUFI-2) algorithm to obtain the most critical parameters. The model performance
measures like Nash-Sutcliffe Efficiency (NSE) and coefficient of determination (R?) were
obtained for both calibration and validation were 0.83 and 0.85 and 0.73 and 0.76
respectively. Projected mean annual precipitation and minimum and maximum temperatures
show a significant increment in the future scenarios. Wainganga and Indravati basins are
expected to have a large inter-annual variation in streamflow pattern. Particularly, the
variation in the streamflows are expected to have a significant increment in the monsoon
period at the outlet station. The outputs from the time-series model showed a higher variation
in streamflow, evapotranspiration and soil moisture especially in the high emission scenarios
(SSP585). The developed hydrological model is capable of obtaining the future changes in
future water availability and demand in a basin scale by considering the GCM data.

In context of climate change, studies on multivariate drought assessment and the
climate change impact on a river basin scale are limited in India. Drought monitoring is a
challenging subject due to its dependence on different climatic variables. To overcome this,
a copula based probabilistic multivariate drought index (MDI) has been developed which

simultaneously represents the meteorological, hydrological, and agricultural drought
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phenomenon. The four variate Archimedean copula was used in this study to integrate the
precipitation, evapotranspiration, soil moisture and streamflow. Hydrologic variables like
evapotranspiration, soil moisture and streamflow were simulated using the SWAT model.
The future MDI is also analysed to identify the impact of climate change on drought
phenomenon using CMIP6-GCMs under four SSPs. Drought characteristics like severity and
duration are evaluated to identify the present and future drought events. The precipitation
and minimum and maximum temperatures were identified to have increasing tendencies in
the future scenarios. Most of the future scenarios showed lower drought duration and
severity when compared to the reference period. The drought duration and severity are likely
to decrease in the future time scales especially under the high emission scenarios. The
present study used a novel approach to examine the drought from various perspectives and
the study will be useful for drought mitigation and adaptation strategies over the basin.

It is reported that that the impact of climate change will affect the drought pattern in
India. Cropping pattern, cultivation period and crop productivities are vulnerable to drought
onset and offset criteria. Therefore, it is inevitable to assess the crop-drought relationship in
the perspective of climate change for sustainable development in agricultural practices.
Aurangabad district, in Upper Godavari region, is considered as the study area. In this study,
the temporal evolution of Standardised Yield Residual Series (SYRS) was investigated in
the study region and then the impact of de-trended Standard Precipitation Evapotranspiration
Index (SPEI) on different crops were studied. Crop simulation for three the handful of crops
namely maize, cotton and wheat was carried out using calibrated AquaCrop model
considering the datasets for the period of 1998-2014. The future crop yield is projected by
considering the bias corrected CMIP6-GCM outputs under four SSP scenarios (SSP126,
SSP245, SSP370 and SSP585). The outputs from the simulation indicated that there is high
increase in crop yield especially in the SSP585 scenario. The increase in crop productivity
could be attributed to the favourable thermal range, increased CO. concentration and
increase in water productivity of crops. De-trended SPEI has a moderate association with
the SYRS at different crop productivity phases. The yield-response to drought also varied
among crops: the greatest yield-drought correlation was for wheat and the least for maize
during study period. Cotton is expected to be more sensitive to drought onset in future. The
approach adopted in the study can help the stakeholders to better understand the impact of

drought on the agricultural ecosystem, the key to minimize drought-related yield losses.
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CHAPTER 1
INTRODUCTION

1.1 General

Droughts are ecological and environmental calamities and have attracted attention
of the agricultural scientists, environmentalists, hydrologist and meteorologists and other
experts. Droughts may occur in any climatic zone, including locations with high and low
precipitation. Deficiency in the amount of precipitation triggers the drought condition in
the region over a prolonged period of time, such as a season or a year. High temperatures,
wind velocity, low relative humidity, and rainfall characteristics, like the distribution of
rainy days during the agricultural production cycle, rainfall intensity and duration, and
initiation and termination, are factors which influence drought incidence. The demand for
water has increased dramatically as a result of population expansion and the development
of agricultural technology, energy, and industrial sectors, with water shortages happening
virtually every year in many regions of the world. Water scarcity has been exacerbated by
other issues such as climate change and contamination of water supplies. In recent years,
floods and droughts had been experienced with higher peaks and severity levels. The period
between extreme events seems to have become shorter in certain regions. Droughts
influence both surface and groundwater resources, resulting in reduced water availability,
deteriorated water quality, failure in crop, reduced range production, reduced power
generation and altered ecosystems, among other things. Droughts have quantitative effect
on water resources due to change in climate modulating the hydrologic regimes. Runoff
transports sediment, organic matter, and nutrients to surface waters, but this pathway is
disrupted during droughts. Droughts are extremely important when it comes to water

resource planning and management.
1.2 Drought Definitions

Drought onset begins with alteration in hydro-meteorological phenomenon such as
lack of precipitation, soil moisture, and runoff and the increased evapotranspiration.
Although there are no particular definitions of drought, but they can be well-defined with
several perspectives, like conceptual or operational droughts (Wilhite and Glantz, 1985).
Conceptually, droughts are classified as meteorological, hydrological, and agricultural

droughts, respectively, depending on a lack of precipitation, a lack of water in reservoirs,



lakes, and river streams, and lack of soil moisture. (Mishra and Singh, 2010). Then
meteorological drought further slides to the hydrological drought eventually leading to the
agricultural drought (Hao and Singh, 2015). Another type of drought namely, socio-
economic drought is caused by a shortage of water mostly affecting the supply and demand
of water for the people. Operational drought regimes can be defined as the identification
of the onset, withdrawal, duration and severity of drought events. Operational definitions
aim at providing precise drought-related information to support an effective early warning
system. Drought definitions must be consistent in order to eliminate any ambiguity in
establishing drought policy making choices (Mukherjee & Mishra, 2018). Some of the

commonly used definitions are:

i.  Drought is defined as "the proportion of years when crops fail due to a lack of
moisture.” United Nations Food and Agriculture Organization (FAO, 1983)

ii.  Drought is defined as "a sustained, prolonged deficiency in precipitation.” (World
Meteorological Organization, WMO, 1986).

iii.  Drought is a natural occurrence that occurs when precipitation is considerably
below average recorded levels, resulting in serious hydrological imbalances that
disrupt the production systems (UN Convention to Combat Drought and
Desertification, UN Secretariat General, 1994).

iv.  Drought is defined as a considerable deviation from an area's usual hydrologic
conditions (Palmar, 1965).

v.  Drought is defined as deficiency in precipitation, while in often it may originates

due to high temperature or evapotranspiration (Hao et al. 2018).
1.3 Drought Indices

Since there are no universal definitions of droughts, drought indices can be used as
the best tools to analyse the occurrence of droughts (Hao and AghaKouchak, 2013). Thus,
based on long-term climatic forecasts and reliable indicators, the spatial extent,
occurrences, commencement, and withdrawal of drought events must be monitored to
provide water resource planners with accurate information to plan and implement suitable
disaster response measures. The relevant decision-making systems depend on widely
established indicators to quantity the physical aspects of drought (intensity, duration, and
severity). Drought indicators are developed to track the hydro-meteorological cycles and
are used frequently in monitoring drought mechanism (Mukherjee et al. 2018). In a broader



sense, drought indicators are the comprehensive aggregation of parameters such as
precipitation, soil moisture, streamflow, evapotranspiration, groundwater levels and
reservoir levels. Drought indices, on the other hand, are single numeric values computed
from a variety of hydro-climatic factors that impact drought, and hence have a major
advantage over raw data when it comes to defining drought features. Different types of
drought indices have been developed by concentrating on the stochastic nature of climate
and human activities. For instance, Standardised Precipitation Index (SPI, Mckee et al.
1993); Standardized Runoff Index (SRI, Shukla and Wood, 2008), Standardized
Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al. 2010), and
Reconnaissance Drought Index (RTDI, reference) are some of the indices developed in the

past studies.
1.4 Droughts as Natural Hazards

Drought is a type of natural hazard that is aggravated by scarcity of water. A natural
hazard is a naturally occurring phenomenon that will have a detrimental effect on
livelihood of people or the environment. Drought is a particularly pernicious climatic
disaster since it develops slowly and frequently affects the people. It can have enormous
effects when the severity and duration upsurge over time, making it one of the expensive
natural disasters. Drought involves a variety of eco-hydrological and socioeconomic
consequences, including decreased water shortages, crop and livestock loss, higher food
costs, migration, and indirect health effects. The physical processes of drought are very
nonlinear and include certain feedback mechanism, and its influence spreads unevenly
across numerous levels, making it difficult to quantify objectively.

Droughts are complicated by the fact that they are dependent not only on the
atmospheric processes, but also on the hydrological mechanisms that provide moisture to
the atmosphere. Once dry hydrologic circumstances are established, the positive feedback
of the drought process sets in, with moisture depletion from top soil layers increasing
evapotranspiration (ET) rates and lowering atmospheric relative humidity. Lower relative
humidity means there is lower possibility of rainfall, as it will be more difficult for a typical
low pressure system to attain saturation levels over the region. Only the disturbances
bringing adequate moisture from outside the arid zone will be able to bring enough
precipitation to overcome the drought situation. Droughts are the most serious natural
disaster considering the number of people impacted (Wilhite, 2000). It's difficult to

anticipate drought onset or termination. The impacts of a drought develop gradually over
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time and can persist over a prolonged time period. As a result, a drought is commonly
described as a creeping event. Defining a drought is difficult and this leads to uncertainty
in drought prediction. Unlike losses caused by other natural disasters, the consequences of
droughts are non-structural and spread across wide geographic regions. A drought, unlike
floods, hurricanes, earthquakes, and tornadoes, impacts water bodies and water resources
structures, but it seldom causes structural damage. Finally, unlike other natural disasters,
droughts can directly originate due to anthropogenic activities, with aggravating variables
such as over-farming, excessive irrigation, urbanisation, deforestation, over-exploitation of

available water, and erosion negatively reducing the land's ability to catch and store water.
1.5 Drought Propagation under Climate Change

Climate change, according to the Intergovernmental Panel on Climate Change
(IPCC), is defined as a change in the mean and/or variability of its parameters over time
caused by natural and human activities. Recently, IPCC revealed a picture of aggravating
occurrence of extreme weather events, explicitly intense hot extremes, marine heat waves,
extreme precipitation, hydrological and agricultural drought (IPCC, 2021). Natural and
anthropogenic climatic forcings cause internal fluctuations in many elements of the Earth's
system. IPCC AR5 reported an unprecedented rise in global temperature of the atmosphere
in the last few decades, which had substantial negative feedback on climatic parameters,
ecological, chemical and hydrological cycle over the globe. As a consequence of variations
in the climatological parameters, changes are anticipated in the water availability and
related climate extremities like flood and drought of the river basins. Climate change-
induced warming has clearly accelerated the hydrological processes, first by raising the
available energy for ET and, second, by raising temperatures and hence the water holding
capacity of the atmosphere. As a result, severe climatic phenomena such as droughts
become more intense, widespread, and protracted.

The additional heat from global warming has expedited the drying process, which
is anticipated to result in more severe, prolonged, and extensive droughts in the future
compared to the current climate situation. Furthermore, increases in drought intensity in
future climates are caused by mean state change in a warming world. Consequently, once
the climate conditions are favourable for drought, further climate change worsens the
problem by adding modest quantities of heat that can raise the temperatures and ET.
Moreover, due to limited moisture availability over land, such climate conditions

experience substantial increase in sensible heat fluxes during a limited supply of latent
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energy fluxes, further raising the land surface temperature. Further, a stronger association
between warmer and drier conditions has been found to enhance the chance of concurrent
heat and drought occurrences. As a result, temperature, which directly controls the ET,
should be seen as a significant contributor to drought episodes under global warming
scenarios.

Drought quantification cannot be completely understood just on the basis of natural
climatic variability since anthropogenic impact has a substantial role in both generating
and propagating drought occurrences. Drought, along with a rise in water demand for
domestic, agricultural, and energy sectors in densely populated areas, might constitute a
substantial concern for the future. A fair evaluation of drought must include such
consequences as a resulting from increased anthropogenic influences. Other factors, like as
precipitation, infiltration loss, and runoff, in addition to temperature, have a considerable
role in the incidence of drought. Hence, drought indices should assimilate all these factors
to quantify drought characteristics in the context of non-stationary climate.

1.6 Climate Change, Drought and other Factors Affecting Crop
Production

Climate change has put excessive pressure on the hydrosphere due to which the
water regime is expected to change creating an impact on global water supply and demand.
Changes in water cycles have a significant impact on agriculture production considering
traditional farming practises. Despite strong evidence of hydrological cycle amplification,
its impact on agricultural output is difficult to predict because it is dependent on frequency
and severity of drought events. IPCC observed that climate change is emerging as a major
challenge faced by the human beings and the natural ecosystems. Drought phenomenon
had an intensifying and prolonged effect during the 20" century, predominantly connected
to deficit precipitation and increase in temperatures (IPCC, 2007). Due to the dual force of
change in climate and anthropogenic interventions, drought characteristics will have
prominent alterations in the future and can cause severe damage to crop production.
According to Dai (2011), global drought had increased since the 1970s due to decreased
precipitation in arid regions of South Asia, Africa, Eastern Australia and Southern Europe.
He also observed that with respect to the changing climate, losses due to drought will
increase all over the world. Moreover, uneven distributions of rainfall and dry months may
affect the crop production. Drought footprints have certain relationship with the crop

productivity, which are rarely been reported, hence deserve further investigation. Aridity



has a significant impact on agricultural productivity, resulting in lower grain production.
Drought and its relationship to crop characteristics are complicated because the increasing
occurrence of drought phenomena caused by climate variability affects production,

financial, and market factors.

Influence on precipitation on climate change is not the only factor affecting
availability of water; increased ET due to longer growth periods and warmer temperatures
could increase crop irrigation requirements. Water shortage is a key stumbling block for
global agriculture and food security, resulting in rising food costs. Increased demand for
fresh water for cases such as urbanisation, energy projects, and biofuel production, will
further limit its availability for agricultural cultivation. Moreover, the per-capita growth in
water for crop production due to amplified consumption protein and calories, as well as
growing food demand due to population expansion, caused stress on already depleted water
resources. Crop production has been restricted beyond its current level as a result of rising
water demand and dwindling water supplies. As a result, efforts must be made to improve
agricultural practices and adopt novel irrigation management systems in order to conserve
water for increasing crop water productivity. Further, improving rain-fed farming through
better precipitation, soil moisture, and soil fertility management has the potential for
substantial increase in crop productivity. Improving agronomic water supplies through
improved systems, minimising surface drainage, using drip irrigation, creating water
storage facilities, using wastewater, and judicious use of groundwater would be beneficial

to the long-term viability of irrigated agriculture.
1.7 Justification for Taking up the Problem for the Study

Climate change affects hydrological cycle, agricultural production and sea surface
temperature (SST) patterns. The drought dynamics had an intensifying and prolonged
effect during the 20" century, predominantly subjected to decrease in precipitation and
increase in evapotranspiration due to global warming. Due to the dual force of change in
climate and anthropogenic interventions, the drought characteristics are expected to have
significant alterations in the future. The drought decision makers have to formulate
appropriate policy framework to minimize the impacts of drought hazard on the overall
development of the country. Against the foregoing background, this study seeks to

contribute to impact of climate change on drought and multivariate assessment of drought



characteristics, enhancing resilience to climate change impact, drought preparedness and
sustainable environmental management in vulnerable areas.

Single valued drought indices are inadequate for a qualitative identification of the
drought phenomenon as multiple climatic parameters are interconnected. The abnormal
rising of temperature and evapotranspiration create flash drought indicating that
precipitation alone cannot be a reliable entity in the study related to global warming
phenomenon (Won et al. 2020). To deal with these limitations, multivariate drought indices
are needed to be developed considering agricultural, meteorological and hydrological
drought simultaneously.

Agriculture is facing difficulties due to a number of causes, including greater
competition for land, water, and labour from non-agricultural industries, as well as
increased weather unpredictability. The latter, which is linked to global warming, will
cause significant seasonal and yearly changes in food output. Even now, all agricultural
commodities are susceptible to similar fluctuations. Droughts, floods, tropical cyclones,
heavy precipitation events, hot extremes, and heat waves have all been known to create
havoc on agricultural productivity and farmers' livelihoods. Over the past few decades,
drought has become the paramount threat to agronomy in several parts of the globe
(Potopova et al. 2015). Water scarcity due to droughts frequently affect the capability of
plant canopies to absorb the radiation which, in turn, diminishes the crop productivity.
However, the relationship between climate variability and crop yield is not consistent. It
varies from region to region and from one crop type to another. Hence this study is an
attempt to assess the crop-drought relationship, in the perspective of climate change, which
will be helpful in validating the crop response to drought relationship.

1.8 Scope and Objectives of the Study

The main aim of the research is to examine the effect of climate change on drought
on with a specific focus on the Godavari River Basin (GRB). The broad idea is to
systematically investigate the effects of climate change on drought and crop. The goal is to
extract a much more nuanced perspective on climate change perceptions, impacts, and
related reactions in order to improve long-term formal or planned interventions at the local
level to address climate change impacts and environmental degradation. Apart from this,
studies on the crop-drought relationship considering the climate change would help
understand the effect of drought on crop productivity for future scenarios. With this

background, following major objectives have been identified for the research work:
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Assessment of Standardised Precipitation and Evapotranspiration Index (SPEI) and
its variations based on climate phenomenon considering the Regional Climate
Models (RCMs).

. Development of Non-stationary Standardized Precipitation Index (NSPI) and Non-

stationary Standardized Reconnaissance Drought Index (NRDI) based on large
scale climate indices as covariates. Analysis of the trivariate drought return period
based on copula models and Pair-wise Copula Constructions (PCC).

Development of Multivariate Standardized Drought Index (MSDI) and
Reconnaissance Trivariate Drought Index (RTDI) based on bivariate, trivariate
copula analysis.

Multivariate Drought Index (MDI) development using four variate copula
approach. Assessment of impact of climate change on MDI.

Development of AquaCrop model and prediction of future crop yield. Analysis of
the crop-drought relationship considering the effect of climate change to determine

the effect of drought on crop characteristics.

The study incorporates different drought indices and analysing them for the GRB.

Non-stationary drought assessment has also been carried out considering the large-scale

climate indices as covariates. Further, the multivariate drought characterisation for GRB

has been conducted to obtain the drought return period of a particular area. The variability

of climate and its impact on drought is also considered in the study. Apart from this, the

study incorporated the crop-drought relationship considering the changing climate aspects.

The research is an attempt to address following questions regarding the drought, climate

and crop interrelation of GRB and the sub-basins of GRB.

What are the drought characteristics and how they are varying spatially? Are there

any effects of climate change on drought?

ii. To what extent the drought return period is expected to change with respect to

climate?

iii. Are there any streamflow and other climate parameters affected by climate change?

Are there any relationships between crop and onset and offset of drought with

changing climate?

The study offers a state-of-the-art approach for crop modelling and analysis for addressing

the various questions.



1.9 Research Gaps ldentified

Based on the review of literature, the following gaps were identified:

i. Limited studies have been carried out by considering soil moisture in multivariate
drought assessment.

ii. India is highly affected by large scale climate oscillations. Nonstationary aspect of
drought have not been assessed considering these indices on a river basin scale. The
PCC model has not been used for drought frequency analysis.

iii. Individual drought indicators are generally insufficient for characterising complex
drought conditions and impacts. Multivariate drought indices that combine multiple
associated variables and indices for combined drought characterisations need to be
developed. However, multiple drought-related variables and indices have not been
explored in the study area.

iv. Crop development and phenological characteristics are highly sensitive to drought
events. Studies on crop production and its relation with drought with changing climate

have not been explored.

1.10 Significance of the Study

This study considered the Godavari River Basin (GRB), the second largest river
basin in India covering the states of Maharashtra, Madhya Pradesh, Telangana, Andhra
Pradesh, Karnataka, Odisha and Chhattisgarh. This basin is highly vulnerable to drought.
In the GRB, which is depleted of natural resources, changes in flow regime, flood and
drought, as well as the underlying causes and impact on agriculture, have frequently drawn
attention towards climate change responses at the river basin scale. Apart from a lack of
knowledge, gaps, and misconceptions about climate change and its effects on regional
agriculture have continued to undermine efforts in the region to achieve environmental
sustainability, climate mitigation, and adaptation.

Shah and Mishra (2020) reported that the real time drought assessment in India has
been a challenging task due to the lack of near-real-time observations. There are major
difficulties in detecting the onset and withdrawal of droughts. The information regarding
the drought indices are not readily available to state governments. Indian river basins are
highly vulnerable to extreme calamities like drought (Pathak and Dadamoni, 2020; Poonia
et al. 2021; Kumar et al. 2021).



IPCC observed that climate change has emerged as one of the major challenges
faced by the human beings and the natural ecosystems. It is reported that the drought
phenomenon had an intensifying and prolonged effect during the 20" century,
predominantly connected to deficit precipitation and increase in temperatures (IPCC,
2007).The overall aim of the study is to obtain a comprehensive evaluation of historical
and future droughts in the GRB by incorporating the potential associations of drought
characteristics.

There are several ecologically and economically significant special ecosystems in
this region, but the assessment of their impacts on agriculture had received relatively less
attention. Agriculture in these areas is multifaceted, encompassing rice farming,
horticultural crops, plantations, fisheries, and dairy. As a result, it is necessary to
investigate the impact of climate change on crop productivity in this region.

The drought and its relation to crop characteristics are complex as the growing
occurrence of drought phenomenon resulting from climate variability affect the production,
financial and market factors. Novelty point of view, the drought impacts on crop
productivity considering the climate change has not been explored in Indian region.
Therefore, the present study is an attempt to investigate the linkage between climate
change, drought and crop yield.

1.11 Organisation of the Thesis

After introducing the problem taken up for the study and discussing about the
significance of the problem, the objectives of the study are introduced in Chapter 1. A
detailed review of the literature related to various methods of drought assessment, impact
of climate change on drought, rainfall-runoff modelling approaches, crop modelling and
crop-drought relationship with varying climate are presented in Chapter 2.

Chapter 3 presents the methodology related to the assessment of drought, impact of
climate change on drought, hydrological modelling, and multivariate drought assessment,
crop modelling and assessment of crop drought relationship. Further, the description of the
study area, data needed and available for the study area are also presented in this Chapter.

Chapter 4 contains the results of impacts of climate change on drought on a river
basin scale, non-stationary assessment of drought and its comparison with stationary
drought indices. Further, multivariate drought index development and impact of climate
change on multi variate drought are explained. Impact of climate change on crop

productivity and crop drought relationship status are also discussed in this Chapter.
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Chapter 5 presents the summary of the study, the conclusions arrived,
recommendation from the study and suggestions for further research activities. This

Chapter also reports the contribution from this study.
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CHAPTER 2

LITERATURE REVIEW
2.1 General

Climate change affects hydrological cycle, agricultural production, sea levels and sea
surface temperature patterns. The extent, frequency and occurrences of extreme calamities
such as droughts and floods could be attributed to the global changes in climatic pattern
(IPCC, 2013). Drought events have paramount concern in river basin scale across the globe.
Over the last few decades, drought has evolved as the major threat to agriculture in several
parts of the globe considering the climate change. Hence, it is necessary to evaluate the effect
of climate change on drought condition and the agricultural productivity. Several drought
indices have been developed to facilitate the water managers for evaluating the impact of
drought on the agricultural productivity and to minimize the crop failure in different stages
of crop growth. Literatures related to evolution of different drought indices considering the
univariate drought indices to multivariate drought indices and their assessment were
reviewed. Various models to evaluate the climatic change, the evolution and analysis of
impact of climate change on drought and associated risk were also critically reviewed. Then
works on projections of climate change scenarios on hydrology using outputs of climate
models through different hydrological modelling are reviewed. Various types of crop models
and their features and impact of climate change on crop phenology are studied. Finally,
studies related to the crop-drought relationship and the impact of drought on crop failure in
various stages of crop development are also reviewed and presented. This chapter reviews
the various published literatures on drought, climate change impact on drought, hydrological
model crop yield prediction, and crop-drought relationship to arrive at a proper methodology

to be adopted for the study.
2.2 Drought Types and Indices

The drought phenomenon is linked to lack of precipitation, soil moisture, runoff, and
increased evapotranspiration. Droughts can be defined from a variety of perspectives, such
as conceptual or operational droughts, despite the fact that there are no specific definitions
(Wilhite and Glantz, 1985). It is conceptually defined in terms of drought regimes, which
include meteorological, agricultural, hydrological, and socio-economic drought occurrences.

The duration, severity, peak, intensity, commencement, termination, area covered, and
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frequency of drought occurrences can all be used to establish operational drought regimes
(Mishra and Singh, 2010). Drought hazard is defined by the Food and Agriculture
Organization (FAO, 1983) as "the proportion of years when crops fail due to a lack of
moisture.” Drought is defined by the World Meteorological Organization (WMO, 1986) as
"a sustained, prolonged deficiency in precipitation.” Changes in the monsoonal system over
India have been widely documented as having an impact on drought, and accordingly the
economy of the country will be influenced by the climate change (Mishra et al. 2020b;
Kumar et al. 2021a). Based on long-term climate projections and reliable indices, the spatial
extent, occurrences, onset, and withdrawal of drought episodes must be monitored to give
water resources planners with accurate information for implementing appropriate disaster
response measures.
2.2.1 Meteorological drought

The term "meteorological drought™ refers to lack of precipitation over a long period
of time. Some of the most regularly used meteorological drought indicators are Standardised
1precipitation Index (SPI, McKee et al. 1993), Palmer Drought Severity Index (PDSI,
Palmer, 1965), Reconnaissance Drought Index (RDI, Tsakiris et al. 2007), and Standardised
Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al. 2010). SPI is frequently
used to track meteorological drought with negative SPI values signifying drier-than-normal
circumstances. Because the precipitation process dominates meteorological drought, this
type of drought is frequently predicted using a medium to long-range climate forecast (Gupta
and Jain, 2018). Since the water deficit may affect other components of the hydrological
cycle, the prediction of meteorological drought is crucial in the prediction of other types of
droughts. The meteorological drought generally triggers other types of droughts affecting
the groundwater in the region (Mishra & Sing, 2010). Tirivarombo et al. (2018) have
reconstructed SP1 and SPEI and observed that both indices can pick up temporal variation
of droughts. They also suggested that evapotranspiration due to temperature change played
a major role in drought assessment. Sharma et al. (2021) investigated the drought
characteristics over the Nepal Himalaya using the SPI and they observed that the spring and

autumn drought events were slightly greater than summer and winter droughts.
2.2.2 Hydrological drought

Hydrological drought is defined based on the deficit in the streamflow, surface
runoff, and reservoir water demand and groundwater profile. Various hydrological drought
indicators including Standardized Runoff Index (SRI, Shukla & Wood, 2008), Palmer
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Hydrologic Drought Index (PHDI, Palmer, 1965), runoff or streamflow percentile and
reservoir level (Hayes et al. 2011) been developed in the past. Despite the fact that drought
is caused by a lack of precipitation, the evolution of physical forms of drought from
meteorological to hydrological to agricultural drought is a complicated mechanism.
Although the hydrological drought mechanism is linked to an antecedent shortfall in
precipitation, other factors such as reduced water storage, snow accumulation, topography,
morphology, and other catchment characteristics also have an impact on drought mechanism.
Overall, both climate and catchment features influence the occurrence of hydrological
droughts.
2.2.3 Agricultural drought

Agricultural drought refers to a situation when the available water is not able to meet
the crop water requirement. This type of drought is generally defined based on the deficit of
root zone soil moisture that can affect plant developmental stages and crop productivity. The
agricultural drought is mainly caused due to the insufficient amount of precipitation or
increased evapotranspiration resulting from increment in the thermal regime from the bare
soil and plant. Various agricultural drought indicators have been developed globally such as
the Crop Moisture Index (CMI) (Palmer, 1965), Soil Moisture Deficit Index (SMDI,
Narasimhan & Srinivasan, 2005), and Standardized Soil Moisture Index (SSI, Hao &
AghaKouchak, 2013) and Vegetation Condition Index (VCI; Liu & Kogan, 1996).
2.2.4 Socio-economic drought

The socio-economic drought is related to the supply and demand of water to serve
the population that includes the features of the other drought conditions. It highlights the
strong association among drought and anthropogenic activities. The frequency of physical
events, societal vulnerability to water shortages and water demand triggers the onset of
drought (Wilhite, 2000). For the assessment of water scarcity, certain indicators like Social
Water Stress Index (SWSI, Shafer & Dezman, 1982) have been constructed that can assess
the water use, supply, and vulnerability.
2.3 Multivariate Drought Indices

Proper drought management requires the background knowledge of magnitude and
occurrences of drought based on multiple variables. Different types of drought indices have

been developed by concentrating on the stochastic nature of climate and the human activities.

The traditional single variable drought indices reflect only a specific type of drought, viz.,
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meteorological, hydrological, or agricultural drought. Further, single valued drought indices
are probably inadequate for identification of the drought phenomenon since the various
climatic parameters are interconnected. The single valued drought indices neither indicate
the different climatic variable deficit nor quantify the drought condition because they depend
on multiple variables (Rajsekhar et al. 2015). For example, the only variable which is used
for finding the SPI is the precipitation. However, the dependency only on precipitation,
neglecting the ground related variables and evapotranspiration may narrow down the
effectiveness drought monitoring. Since the abnormal rising of temperature and
evapotranspiration create flash drought, it indicates that precipitation alone cannot be a
reliable entity in the study related to global warming phenomenon (Won et al. 2020).
Therefore, the traditional forms of drought monitoring need to be updated to consider all the
possible climatic features to define the environmental conditions. To overcome the drought
assessment of single-valued drought index, multiple drought indices were developed by
various researchers. Indices like Standardized Precipitation Evapotranspiration Index (SPEI,
Vicente-Serrano et al. 2010) and Reconnaissance Drought Index (RDI, Tsakiris et al. 2007)
have gained popularity by combining multi scalar properties of climate variables. Keyantash
& Dracup (2004) considered all forms of droughts to develop the Aggregated Drought Index
(ADI), which included all possible real-time input variables like precipitation, soil moisture,
reservoir storage, streamflow, and evapotranspiration and snow. Rajsekhar et al. (2015)
demonstrated a Kernel Entropy Component Analysis (KECA) to construct a Multivariate
Drought Index (MDI). Multivariate Standardized Reliability and Resilience Index (MSRRI)
that combined the information of Inflow-Demand Reliability Index (IDRI) and Water
Storage Resilience Index (WSRI) was developed by Huang et al. (2016). Liu et al. (2020)
evaluated the MSRRI for the Northwest China region. MSRRI was also used to evaluate the

socio-economic drought in the Upper Yellow river basin (Guo et al. 2019).
2.4 Non-stationary Aspects of Drought

Traditional approaches used for the assessment of drought conditions assumed
stationarity which were no longer valid under modulating effects of climate, human activities
and the changing pattern of environment. Previous researches showed that regional
hydrological variability and catastrophic occurrences such as droughts and floods are linked
to global climate phenomena (Kahya & Dracup, 1993). Some researchers had established a
correlation between global climate indicators and climatic conditions in India. Sea Surface

Temperature (SST) oscillations and Indian Summer Monsoon Rainfall (ISMR) exhibited a
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substantial association, according to Sahai et al. (2003). The spatial and seasonal changes of
rainfall over the Ganges and Brahmaputra basins based on the ENSO events and Indian
Ocean Dipole (IOD) modes were investigated by Pervez & Henebry, (2014). Tamaddun et
al. (2019) discovered the impact of El Nino Southern Oscillation (ENSO) on north Indian
precipitation, temperature, and potential evapotranspiration (PET) during the monsoon
season. At a global scale, Hao et al. (2018) qualitatively assessed the association between
the occurrence of compound dry and hot events and ENSO for the warm season. Zhang et
al., (2020) identified that that the cold phases of the Pacific Decadal Oscillation (PDO)
during the La Nifa events (i.e., negative Multivariate ENSO Index) were the reason behind
the intensified short-term concurrent hot and dry extreme (SCHDE) events in southern parts
of South America and Australia. For accounting the climate forcings, Jha et al. (2021)
assessed the association between ENSO, Atlantic Multidecadal Oscillation (AMO) and 10D
on extreme precipitation events over 24 major river basins of India. Das et al. (2020a)
qualitatively examined the tele-connection of eight large-scale climatic oscillations such
SST, 10D, Southern Oscillation Index (SOI), Arctic Oscillation (AO), Multivariate ENSO
Index (MEI), North Atlantic Oscillation (NAO), PDO, and Indian Summer Monsoon Index
(ISMI) on monthly precipitation over six different homogeneous regions in India. Global
variations in the large-scale climate oscillations also showed significant teleconnections with
drought events (Wang & Kumar, 2015; Guo et al. 2019). Trenberth et al. (2014), in their
study, observed that the major drought events in different parts of the world were influenced
by ENSO events. The cross-correlations between ENSO events and Nonparametric
Multivariate Standardized Drought Index (NMSDI) were investigated using the Cross
Wavelet Analysis (CWA) analysis by Huang et al. (2016). In the Indian context, the positive
ENSO showed substantial impact on the drought frequency over the country (Shah &
Mishra, 2020). Kumar et al. (2021b) used CWA approach to identify the association between
large scale climate oscillations with the drought characteristics focussing on groundwater
over south Indian river basins. Gupta & Jain (2021) analysed the influence of ENSO events
on dry/wet conditions over India considering indices such as SPI and SPEI. It can, hence, be
summarised that covariates provide greater insight into the factors of climate that influence
the distribution of climatic parameters over time.

It is well known that the stationarity is the basic assumption in the statistical
interpretations of time series in hydrologic processes. Stationarity refers to the parameters

of the climate that are invariant in time and space and free of trends (Wang et al. 2015).
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Property of stationarity is questionable in the context of global warming and anthropogenic
changes. The outcome of environmental changes exhibits non-stationary behaviour in
climatic parameters. Hence indicators should be developed for identifying drought status in
non-stationary conditions for better management of water. However, the large-scale climate
indices based on ENSO events cannot be neglected in the computation of nonstationary
drought indices (Bazrafshan & Hejabi, 2018) because the precipitation pattern and its hydro-
meteorology are influenced by the global scale climate indices.

Standardized Non-stationary Precipitation Index (SnsPI) was developed by Russo et
al. (2013) and further used by Wang et al. (2015). This index deals with the time varying
mean, as an extension of the stationary SPI. Past studies used the Generalized Additive
Model in Location, Scale and Shape (GAMLSS) model developed by Righy &
Stasinopoulos (2007) for the modelling of non-stationary events (Villarini et al. 2009; Lopez
& Frances, 2013; Debele et al. 2017). Many studies have been carried out in the past for the
non-stationary drought analysis (Osorio & Galiano, 2012; Wang et al. 2015) using GAMLSS
model.

Rashid & Beecham (2019) developed NSPI using GAMLSS framework in South
Australia. They have incorporated climate indices like SOI, Nifio3.4, PDO, Southern
Annular Mode (SAM) and DMI as external covariates to capture the non-stationary property
of drought. They specified that non-stationary model can capture the rainfall variability
better than a stationary model. In addition, they have suggested that NSPI is better than a
traditional stationary SP1 (SSPI) for assessing the drought properties.

Das et al. (2020b) constructed the Non-stationary Standardised Precipitation Index
(NSPI) by considering large scale oscillations using the GAMLSS model in the Himalayan
states of Sikkim and Uttarakhand. The nonstationary drought index exhibited fairly good
result as compared to the stationary drought index.

A non-stationary Standardized Runoff Index (SRIns) was developed by Jehanzaib et
al. (2020) using GAMLSS framework for the Han river basin of South Korea. At different
time scales, they assessed the relative contributions of meteorological (precipitation,
temperature) and human (water consumption for social development needs, and water
consumption induced by check dams) factors to hydrological drought. They identified a shift
in the streamflow series after the 1990s. Furthermore, the change point was detected in the

streamflow series after 1990s. Additionally, they observed significant decrease in
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streamflow and precipitation pattern. The potential evapotranspiration increased in a higher
rate after the change point in the watershed.

Zhang et al. (2021) developed a Non-stationary Meteorological and Hydrological
Drought Index (NMHDI) by integrating the NSPI and NSRI at the Huaxian station in the
Weihe river basin in China. They developed the NSPI and NSRI considering climate and
anthropogenic factors, as covariates. The NMHDI was calculated after using the time-
varying copula model to characterise the temporal dependency structure of precipitation and
runoff. Comparing the NMHDI and MHDI, the study revealed that the non-stationary model
performed better than the stationary model in recreating precipitation and runoff changes. In
the case of NMHDI, frequent extreme drought occurrences were detected. The improved
performance of the NMHDI had an ability to respond to the continuously changing
environment.

Shao et al. (2022) used a GAMLSS-based non-stationary standardised runoff index
(NSRI) in conjunction with meteorological and human-induced water consumption as
covariates to estimate hydrological drought in the Wuding river basin, China. They
compared how well SRI and NSRI performed in detecting drought events. The NSRI
recognised more severe and extreme droughts, and it had a significant advantage in detecting
hydrological drought by considering human influence.

2.5 Climate Change Implications

The varying global climate alters the hydrological cycle leading to the variability in
frequency of extreme events, availability of water, irrigation water use, and quality of fresh
water resources. Anthropogenic changes induce climate change causing increase in COz
concentration and other atmospheric heat-trapping gases, resulting in global warming
conditions. Due to the increase in surface heating, there must be the strong anticipation of
escalation in PET. This will possibly modulate and rise the actual evapotranspiration
demands in plants, provided adequate root zone moisture is available. So, potential changes
in moisture regimes and precipitation trigger warming situations as part of energy goes into
increasing temperature over dry land. Changes in atmospheric circulation would certainly

affect the extreme phenomenon like flood and drought (Mishra et al. 2020a).
2.6 Downscaling Methods for Climate Projections

General Circulation Models (GCMs) are the feasible and credible tools widely used

to predict the changes in atmospheric variables under climate change scenarios (Anandhi et
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al. 2008). GCMs are physically-based models, which represent atmospheric and oceanic
dynamics (Angeles et al. 2007). The GCM projections are well simulated at a coarser
resolution i.e. at continental and hemispherical scale; however, the regional impact analysis
requires the variables at finer scale. GCMs have typically low spatial resolution of
approximately 100-250 km and they are inadequate for regional impact studies especially
for analysing the changes in extreme events (Fowler et al. 2007; Sharma et al. 2017). Hence,
in order to analyze the impact of climate change, large scale climate variables should be
linked to the hydrologic variables at a regional scale. Downscaling methods can be used to
derive local to regional scale information from large-scale spatial and temporal scales. These
could be dynamic or statistical. The dynamical downscaling generates finer resolution output
based on atmospheric physics over a region using GCM as a boundary (Teutschbein et al.
2012). Statistical downscaling methods establish an empirical relationship between the
outputs of the GCMs with observed climate data (Fan et al. 2021).

2.6.1 Dynamic downscaling

Dynamic downscaling refers to the use of high-resolution regional simulations to
dynamically extrapolate the effect of large-scale climate processes to regional or local scales.
This uses a limited area high-resolution models such as Regional Climate Models (RCMs)
which are driven by large scale and lateral boundary conditions from a GCM to produce
higher resolution output (Tiwari et al. 2017; Torma et al. 2015). RCMs are frequently used
to analyse the impact of climate change on hydrology on the watershed because of their
higher resolution. The resolution of RCMs is around 12-50 km and it accounts for the sub-
GCM grid scale forcing (e.g. complex topographical features and land cover heterogeneities
in a physically-based way). RCM outputs have been used by many researchers for the
quantitative and qualitative assessment of future climatic extreme events including drought
regimes (Wang et al. 2011; Huang et al. 2015). Due to higher spatial resolution output,
RCMs provide a better description of topographic phenomena. Further, the finer dynamical
processes in RCMs produce more realistic mesoscale circulation pattern. Some of these
studies which used dynamical downscaling in hydrological researches are discussed in this
Chapter.

Giorgi & Mearns (1991) compared the empirical and GCM nested limited area
modelling techniques and discussed the advantages, disadvantages, limitations, and
variability of their use. They observed that, though such models are capable of encompassing
the wide range of climate variability and atmospheric phenomenon, they are complex and
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expensive. Leung et al. (2003) studied the capability of the RCM in the analysis of
hydrologic variable like precipitation as well as inter annual variability such as mesoscale
ENSO anomalies over Western United States. Poul et al. (2016) examined the effect of land
use land cover (LULC) changes on the ISMR using weather research and forecasting (WRF)
coupled with Community Land Model (CLMA4.0). Gu et al. (2012) predicted the future
climate change by using RegCM4, a regional climate model, for East and South Asia. The
result indicated that the Yangtze river basin will witness changes in extreme precipitation
and drought events and it potentially increased risks of both floods and droughts at the same
time. Verma & Bhatla (2021) used RegCM4 to dynamically downscale the summer monsoon
system over the South Asian Coordinated Regional Climate Downscaling Experiment (SA
CORDEX) domain and observed that the model performed well in identifying the properties,
spatial distributions, and trends associated with dry spell during ENSO phases. The RegCM4
RCM was employed to dynamically downscale future climate variables driven by the GCM
Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-
g3), under multiple SSP scenarios over the CORDEX East Asia Phase Il domain.
Considering both spatial pattern correlation and biases, the downscaled model improved
simulating the precipitation over China than the FGOALS-g3 GCM (Zou & Zhou, 2021).
Gao et al. (2022) used simulations of the WRF model with both Kain-Fritsch and Grell
cumulus convective parameterisation approaches to perform ensemble dynamical
downscaling of precipitation across China. They found that the model captured the
precipitation signals better.
2.6.2 Statistical downscaling

Statistical downscaling, in contrast to the computationally demanding dynamical
downscaling, provides a straightforward solution by establishing empirical relationships
between GCM climate variable and local climate. These relationships can be established
without involving the mass and energy exchange between the land and atmosphere. The
relationships hold good for future changed climate scenarios as the selected predictors
completely represent the changing climate signals. There are several statistical downscaling
approaches which established statistical links between large-scale climate and the observed
local-scale climate data. Broadly, the statistical downscaling approaches are categorised into
three diverse groups: weather generators, transfer function and weather typing (Ghosh and
Mujumdar, 2008). In the case of weather generator approach, local scale climate time series
are reproduced by replicating the statistical properties of observed climate. Similarly, in the
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weather typing approach, regional variables are organised according to distinct classes of
atmospheric circulation, and climatic scenarios are then generated by utilising Monte Carlo
simulation and resampling techniques to get a sequence of weather classes. The most popular
downscaling method is the use of a transfer function, which is a regression-based
downscaling method (Tripathi et al. 2006). A basic linear regression is commonly utilised to
establish the link between one large-scale predictor and one local predictand. To obtain the
predictor—predictand connection, Linear and nonlinear regression, Artificial Neural Network
(ANN), canonical correlation, and other techniques have been utilised to obtain the predictor
and predictand relationship. ANN-based downscaling approaches, in particular, have gained
popularity due to their ability to capture nonlinear interactions between predictors and
predictands (Ghosh and Mujumdar, 2008).

Wilbey et al. (2002) developed a well-organized regression-based Statistical
Downscaling Model (SDSM) to downscale daily scale meteorological data (precipitation
and temperature). Ghosh & Mujumdar (2008) used machine learning techniques such as
support vector machine (SVM) and relevance vector machine (RVM) to forecast monthly
monsoon streamflow across the Mahanadi river basin in Odisha, India. Raje & Mujumdar
(2011) compared several downscaling algorithms, including SVM, K-nearest neighbour
(KNN), and conditional random field. Their findings indicated a rise in average daily
precipitation for the majority of the stations. Lin et al. (2017) used the KNN algorithm to
construct a new spatio-temporal downscaling approach for hourly rainfall. SDSM, in
integration with two bias correction methods, was employed to project the climate variables
such as daily maximum temperature, mean temperature and minimum temperature over the
Loess Plateau, China (Fan et al. 2021). Tabri et al. (2021) compared four statistical
downscaling methods namely bias correction (BC), change factor of mean (CFM), quantile
perturbation (QP), and an event-based weather generator (WG) to assess the impact of
climate change on drought in the future (2071-2100) compared to a baseline period (1971-
2000) for the Uccle region of Belgium. Ensemble CMIP6-GCMs were subjected to
downscaling, with four future scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.
The QP technique surpasses the others in recreating the amplitude and monthly pattern of

the reported drought indicators.
2.6.3 Bias correction in climate change analysis

Inherent biases in RCMs due to systematic model errors are caused by imperfect
conceptualisation, discretisation and spatial averaging within grid cells. Andréasson et al.
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(2004) showed that these biases were not only for precipitation but also for temperature. The
common biases were the occurrence of too many wet days with low-intensity rainfall or
erroneous prediction of severe temperatures (Ines & Hansen, 2006). Other biases include
general under/over-estimation of precipitation and improper seasonal fluctuations of
precipitation. (Teutschbein et al. 2012). Several bias correction methods have been
developed to downscale climate variables from climate models (Chen et al., 2011; Chen et
al. 2019). These methods range from simple scaling approaches to sophisticated methods
employing probability mapping or weather generators. They were originally designed to
downscale GCM data, but can also be applied to adjust RCM-simulated temperature and
precipitation. Regardless of the fact that RCM simulations are increasingly being used in
hydrological climate-change impact assessments, their application is challenging due to the
potential existence of biases. To deal with these biases, several studies have been
undertaken, ranging from simple scaling to more intricate ones (Fang et al. 2015; Guo et al.
2019; Tong et al. 2021). Bias correction techniques have been used widely for post
processing the climate model output prior to application for impact studies (Wood et al.
2004; Ashfag et al. 2010; Piani et al. 2010; Ngai et al. 2017)

2.7 Comparison between Coupled Model Intercomparison

Project Phase 5 (CMIP5) and Coupled Model
Intercomparison Project Phase 6 (CMIP6) GCMs

Researchers across the world began generating new scenarios to examine how
climate would evolve during the latter parts of the 21% century. The Representative
Concentration Pathways (RCPs) were developed to represent the many phases of greenhouse
gas emissions and other radiative forcings that may affect the future. Four routes were
developed that span a wide range of forcing (2.6, 4.5, 6.0, and 8.5 watt/m?), but they do not
have any socio-economic “narratives”. To connect a wide range of research communities
including climate change mitigation and adaptation activities, the 6th IPCC assessment
report (AR6) developed the Shared Socio-economic Pathways (SSPs), based on five
narratives that depict major socio-economic patterns that might affect society in the future.
The four SSPs are SSP126 (2.6 W/m? radiative forcing, low end of the range of future forcing
pathways), SSP245 (medium end of the range of future pathways 4.5W/m? (radiative
forcing), SSP370 (representing the medium to high end of the range of future forcing
pathways, 7.0 W/m? radiative forcing) and SSP585 (high end of the range of future
pathways, 8.5 W/m?radiative forcing). The probable greenhouse gas concentration assuming
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the population, economic, GDP, educational growth and LULC changes, and the climate
mitigation efforts from the ScenarioMIP were considered in the SSPs. SSPs were used in
CMIP6 models allowing for enhanced future impact assessments with better
parametrisation. These climate predictions considering new set of emission and land use
scenarios were developed using Integrated Assessment Models (IAMs) based on both SSPs
and RCPs (O’Neill et al., 2016).

Various studies have been carried out considering the CMIP5 to examine extreme
events (Ahmadalipour et al. 2017; Gaitan et al. 2020). However, CMIP6 has an improvised
parameterisation that can efficiently model climate projections (Eyring et al. 2016). A study
by Gusain et al. (2020) showed that CMIP6-GCMs are more efficient compared to CMIP5-
GCMs in simulating the Indian summer monsoon. Further, Chen et al. (2020) and Wang et
al. (2020) reported that the ISMR is likely to increase in future climate scenarios based on
CMIP6-GCMs. A recent study used CMIP6-GCMs to evaluate different drought events over
India (Rajbanshi & Das, 2021). Further, CMIP6 models have also gained popularity world-
wide among many research communities to deal with climatic variations and for assessment
of extreme events (Chen et al. 2020, Aadhar & Mishra, 2020, Zhai et al. 2020, Ukkola et al.
2020, Hirabayashi et al. 2021). Future analysis of long term and short-term drought events
based on CMIP6-GCMs could effectively be used for improvement of sustainable
management practices like drought resistant measures, water storage, land and groundwater
management practices, dealing with agricultural production and livestock insurance etc.

These can efficiently tackle the negative impacts of droughts in future.
2.8 Multi-Model Ensemble (MME)

Ensemble approaches based on different climate models, data sets, or members of
the same model can effectively model the uncertainty in hydro-meteorology estimation
(Raftery et al., 2005). Typically, the ensemble average method is capable of synthesising
single information from several members and outperforms all or most of the individual
characteristics. Duan et al. (2021) reported that the ensemble average strategies can explore
a variety of skilful forecasts and improve the predictive abilities from the viewpoint of either
a point forecast or a density forecast. In particular, probabilistic ensemble approaches that
could effectively synthesize outputs from different GCMs and RCMs and hydrological
models were getting increased attention in various studies (Adhar & Mishra, 2020; Zhai et
al. 2020; Mishra 2018). The key of probabilistic ensemble method such as Bayesian Model

Averaging (BMA) was to quantify the weights according to each climate model and to
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generate predictive distributions of variable of interest (Xu et al. 2018; Ma et al. 2018).
Besides, multi-model-ensemble weights can also be assigned to climate models in terms of
some weighting criteria such as the Reliability Ensemble Averaging (REA) that can quantify
accuracy of the climate models for impact analysis on hydro-meteorology (Sengupta &
Rajeevan, 2013; Choudhary et al. 2018; Tegegne et al. 2020). In probabilistic MME methods
like the REA, convergence criteria in multi-model predictions of future changes are also

regarded crucial for model selection.
2.9 Copula Analysis

Copulas are widely used for capturing the association between two or more random
variables (Salvadori & De Michele, 2004; Grimaldi & Serinaldi, 2006; Kumar et al. 2021b).
A copula is highly useful for implementing efficient algorithms for more realistically
simulating joint distributions. Copulas, in fact, can model the dependence structure using
marginal distributions. These functions can derive joint distributions for more than one
dependent random variable irrespective of their probability distributions (Ganguli & Reddy,
2013).

2.9.1 Types of copulas

Various families of copulas exist: (i) Meta-elliptical families (Normal and Student’s
t copula), (i) Archimedean copula families (Gumbel, Frank, Clayton, and Ali-Mikhail Haq),
(iii Extreme Value copula families (Gumbel, Tawn, Husler-Reiss and t-EV), and (iv) other
families (Farlie-Gumbel-Morgenstern and Plackett). Among these families, meta-elliptical
and Archimedean copulas are used in hydro-meteorological studies. Meta-elliptical copulas
consider that the elliptical distributions are very useful in different applications since they
have several properties of the multivariate normal distribution. Originally Archimedean
copulas appeared in the study of probabilistic metric spaces. Archimedean families have
been popular choices for dependence models because of their simplicity and generation
properties (Nelson 2006).

2.9.2 Applications of copulas in hydrology

Copulas have wide application in hydro-meteorological studies. The results of
frequency analysis may be over or under-estimated in the case of univariate analysis which
provide limited evidence of the dependencies among extreme hydrological events. Copula
functions have the capability to model the conventional multivariate distributions

incorporating their nonlinear dependency measures of variables (Sklar, 1959). Salvadori et
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al. (2011) considered flood peak, volume and initial water levels of the dam to estimate the
multivariate flood quantiles using copula functions. Meta-elliptical copulas were applied to
flood variables (as peaks, durations and volumes) for the analysis of the return period at
Romaine river in Québec (Genest & Favre 2007). Bivariate distributions of monsoon rainfall
in various meteorological subdivisions in India were estimated by Ghosh (2010). Reddy &
Ganguli, (2012) applied Archimedean copulas like Clayton, Frank, Ali-Mikhail-Haq and
Gumbel-Hougaard to model the bivariate flood frequency analysis of annual peak flow-
volume, and volume-duration pairs. Filipova et al. (2018) developed an approach for
selecting different copulas for modelling the joint probability of flood peak and volume for
27 catchments in Norway.

2.9.3 Joint probability distribution and multivariate return period analysis
of droughts based on copula theory

Droughts are complicated natural events, and therefore a single variable cannot
provide a thorough assessment of droughts (Shiau et al. 2007). Instead of using typical
univariate analysis to measure drought characterization, determining the joint distribution of
drought variables was found to be a better way to describe drought features (Mishra & Singh,
2010). Due to existence of mutual dependencies between random variables, a univariate
probability distribution was insufficient to model the multivariate aspects of a drought event
that can be defined by duration, severity, peak, and intensity. The computed return period
for a hydro-meteorological system with two or more random variables was not equivalent to
the actual return period of drought (Hawkes et al. 2002). Simply analysing the duration or
intensity of a drought will result in an overestimation or underestimation of risk while
performing drought frequency analysis (De Michele et al. 2005). As a result, analysing the
complicated hydro-meteorological phenomenon requires a multivariate stochastic analysis
(Grimaldi & Serinaldi, 2006). The multivariate analysis is based on: (i) fitting a suitable
marginal distribution to hydro-meteorological parameters; (ii) estimation of related
parameters; and (iii) assessment of multivariate return periods considering associated
properties (Chebana & Ouarda, 2011). Nelson (2006) and Salvadori et al. (2007) provide
more information on the theoretical background and use of copulas.

The analyses of drought properties play a satisfactory role in monitoring the negative
impacts on water resources and agriculture (Oguntunde et al. 2017). Drought characteristics
like severity, duration and peak must have a dependence structure. Considering SPI, Shiau

& Modarres (2009) reported that the complex drought phenomenon can be categorised by

25



three dependent properties, viz. severity, duration and frequency. Further, they implemented
the copula functions to develop a probabilistic approach to obtain relationship between
drought severity-duration and frequency (SDF) at 2 gauge stations in Iran. Analytically
derived SDF curves represent a function of univariate distribution of severity and duration.
Moreover, the study showed that if any modulation in precipitation exists in humid region,
the drought severities might be higher in the region.

Song and Singh (2010) used meta-elliptical copulas such as Gumbel-Hougaard, Ali-
Mikhail-Hag, Frank, and Clayton copulas to develop trivariate return periods of drought
considering duration, severity, and interval time, and the best-fit copula for trivariate drought
analysis was chosen. Ma et al. (2013) estimated the drought return period by considering
duration, severity, and peak based on Gaussian and Student’s t copulas in the Weihe river
basin, China.

Chen et al. (2013) used SPI time series to determine drought parameters such as
duration, severity, interval time, and minimum SPI values. To develop four-dimensional
joint distributions that reflect the dependence structure of drought events, suitable marginal
distributions were fitted. The joint return period based on the drought properties were
computed and investigated in the upper Han river basin, China using Archimedean and meta-
elliptical copulas.

The spatio-temporal variability of meteorological drought conditions for the western
Rajasthan, which is the most drought prone region in India considering 6-month SPI (SPI-
6) was investigated by Ganguli & Reddy (2013). From spatio-temporal analysis of SPI-6,
they observed that frequency of droughts showed increasing tendency at the central part the
region. Gumbel-Hougaard, Frank and Plackett copulas were used for modelling bivariate
dependence between drought properties like intensity and areal extent. On the basis of upper
tail dependence and goodness-of-fit tests, Gumbel-Hougaard copula was identified as the
best fit model for representing the dependence status of drought properties. Further,
conditional return periods were also estimated based on the best fit copula model. Drought
intensity-area-frequency (I-A-F) curves which could be helpful in risk evaluation of droughts
in the region were also developed.

Saghafian & Mehdikhani (2014) investigated dependence structures between
severity—peak, duration—severity and duration—peak considering different copula functions.
The generated copula-based joint distributions were also used to calculate the trivariate

return period. The suggested model was tested using data from a synoptic station in Qazvin,
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and the findings were compared to empirical probabilities. The study revealed that that
copulas are useful models in exploring the dependency among drought variables.

Trivariate copula model was used by Xu et al. (2015) to calculate regional drought
frequency, incorporating the duration of drought events, the area affected by drought, and
the intensity of the drought in Southwest China. The best fit copula model was chosen using
several methods depending on goodness of fit. From the results, they observed that the
copula-based return period incorporates the combined effects of drought duration, affected
area and severity, which are reliable drought statistical measurements and the 2009-2010
drought was found to be the most severe drought in this region which had a return period of
about 94 years.

SPI was assessed for identifying drought duration and severity by Mortuza et al.
(2019). In order to estimate the regional frequency analysis, copula models were used by
obtaining appropriate marginal distributions for the drought properties. The study was
carried out over Bangladesh. They classified the country into three homogeneous regions
using fuzzy clustering algorithm. The future drought was also projected and properties of
drought were used to obtain drought occurrence in the region. They found that the standard
univariate frequency analysis under/overestimated the output of bivariate drought frequency
analysis. Overall, they identified that more frequent and severe droughts occurred in the
western side of the country.

Poonia et al. (2020) implemented a bivariate copula-based approach for
understanding the combined occurrence of drought duration and severity by considering SPI,
SSI and SRI. Franck, Gumbel and Plackett were used for modelling dependence structure
among copula model over India. Further, they have analysed the joint dependence of drought
properties in order to derive exceedance probabilities and return periods. After investigation,
they identified that the Western and Central India were vulnerable to drought conditions
while the South Indian river basins showed more frequent but less severe events.

Multivariate analysis of drought properties was widely accepted in hydro-
meteorological studies for better understanding of risk, return period and for detecting the
warning criteria of extreme events (Mishra & Singh, 2009; Hao & Singh, 2015; Das et al.
2020b, Gupta et al. 2020, Zhao et al. 2021).

2.9.4 Vine copula/Pairwise Copula Construction (PCC) model

Several past studies indicated that the vine copula model was more flexible in
handling the higher dimension copulas by extending the bivariate copula to higher
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dimensions. The basic idea of vine copulas is to construct high dimensional copulas based
on a stage-wise mixing of bivariate copulas by decomposing the full density function into a
product of low-dimensional density functions. The higher dimensional multivariate
Student’s t copula was not adequate to model the complexity in the dependence structure of
extreme event variables. Because of this limitation of higher dimensional copulas, an
efficient way of copula construction method was introduced for a highly dependent structure
to model the complex pattern called vine or pair-copula (Bedford & Cooke, 2001; Aas et al.
2009). A trivariate discharge modelling considering flood duration, peak and severity was
carried out by Song & Kang (2011) using pair-copula construction. A vine copula model
was constructed to analyse the flood frequency using variables like peak discharge, duration
and volume (Grdler et al. 2013). Daneshkhah et al. (2016) developed a multivariate pair
copula model by using the flood properties in Beas river of the Himalayan region indicating
that the Himalayan rivers are highly affected by the monsoon fluctuations and stored snow
cover. Muthuvel & Amai (2021) developed quad-variate models encompassing SPI, SRI,
SSI, and Standardized yield residual Series (SYRS) using the vine copulas. They have also
reported that the vine-copula model performed better than the elliptical and symmetric
Archimedean copula.
2.9.5 Copula based multivariate drought indices

Copula based multivariate approaches have proven to be a reliable way for assessing
the drought phenomenon, and these approaches are gaining significant recognition in the
field assessment of multivariate drought analysis. A Joint Drought Index (JDI) using copula
for obtaining the joint probabilities while considering precipitation and streamflow in the
State of Indiana, USA, was introduced by (Kao & Govindaraju, 2010). Hao & AghaKouchak
(2013) used a 2-dimensional Frank copula based Multivariate Standardised Drought Index
(MSDI) considering both meteorological as well as agricultural droughts in California and
North Carolina. Ma et al. (2014) developed a Composite Drought Index (CDI) using monthly
precipitation, temperature and soil moisture by merging PDSI and Standardised Palmer
Drought Index (SPDI) through a potential moisture departure probabilistic approach. Shah
& Mishra (2019) developed an Integrated Drought Index (IDI) by combining a number of
drought indices using copula SPI (meteorological drought), SSI (agricultural drought), SRI
and Standardized Groundwater Index (SGI, hydrological drought). Copula-based Joint
Drought Index (CJDI) developed by Won et al. (2020) combines the properties of SPI and
Evaporative Demand Drought Index (EDDI).
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2.10 Hydrological Modelling and Impact Analysis

The global climate has changed significantly since pre-industrial times due to the
major anthropogenic interventions, threatening the sustainability of natural resources at
regional scale. Climate change has extensive influence on agriculture, environment, water
availability, and ecosystems, social and economic factors. IPCC AR5 reported an
unprecedented rise in global temperature of the atmosphere in few decades, which will
substantially impact the climatic, ecological and chemical parameters and hydrological cycle
over the globe. As a consequence of variations in the climatological parameters, changes are
anticipated in the water availability and related climate extremities of the river basins.
Therefore, the hydrological alterations attributed to climate change must be investigated for
assessing water availability and for sustainable development especially for the agricultural
country like India (Nilawar & Waikar, 2019). Hydrological response simulations based on
climatic conditions are useful in understanding the hydrological phenomenon in a better way.
This approach provides a bigger picture of the spatio-temporal changes of hydrological
variables for creating the inter-linkages with the climate in the future. Hence, based on the
water balance modelling approach, a qualitative assessment of changes in water resources
can be carried out under influence of climate and human activities. Hydrological models
have proven to be efficient tools to assess the adverse effect of climate change. These models
can be externally provided by climatic parameters that can assess the probable changes in
the streamflow of a specific river basin. The main factors affecting hydrological regimes are
climate and land use/cover change. Given the wide range of options, correctly quantifying
the effects of climate and land use/cover changes on streamflow within a specific watershed
becomes critical.

Generally, the conceptual hydrological models are categorized into three types -
semi-distributed, lumped and deterministic - based on the ability of the model to
conceptualize input variables with the catchment characteristics like LULC, soil type, slope,
etc. Physically-based, spatially-distributed hydrological models are not only able to quantify
the spatial variability of hydrological parameters, but also simplify the simulation of state
variables and external fluxes. Variable Infiltration Capacity (VIC) model (Liang et al.,
1994), Genie Rurala 4 parameters Journalier (GR4J) (Perrin et al. 2003), Hydrologiska
Byrans Vattenbalansavdelning (HBV) model (Begstrom and Forsman, 1973) and MIKE 11
NAM (Danish Hydraulic Institute, 2017) were used in various studies for the assessment of

impact of climate change on streamflow.
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Li et al. (2013) examined the impact of climate change on streamflow pattern across
the Yarlung Tsangpo river (YTR) basin in the south-eastern Tibetan Plateau rivers which
strongly affect the hydro-meteorology of southern and eastern Asia. In the watershed scale,
two hydrological models, viz. SIMHYD and GR4J, were used to analyse the monthly and
annual streamflow. Further, the hydro-meteorology of the basin was analysed using outputs
from 20 GCMs. The historical streamflow was efficiently simulated by two rainfall-runoff
models for the eight catchments in the YTR basins based on the statistical measures and the
visual observations. The results of the study predicted a rise in mean annual future
precipitation and runoff across the region. According to the findings, the streamflow in the
middle reaches of the YTR and its two tributaries in the basin showed increasing tendencies.

A simple and efficient hydrologic modelling-based approach using calibrated and
validated VIC model to isolate the impacts of climate change and LULC change on the
streamflow of Upper Ganga basin in India was quantified by Chawla & Mujumdar (2015).
This approach had three scenarios. Initially, the streamflow response to LULC changes were
assessed under invariant climate. In the second scenario, the response of streamflow with
change in climate was analysed by neglecting the variations in LULC. Finally, the integrated
effect of climate and LULC changes were estimated over the streamflow of the basin in the
third scenario. Based on the results obtained from the three scenarios, quantification of
isolated impacts of land use and climate change on streamflow was addressed. The results
of the case study revealed that the integrated effect showed more significant impact
compared to their isolated impacts. Further, the sensitivity of streamflow was high in urban
areas and moderate in cropland areas. It was observed, based on the isolated effects of land
use and climate change, that climate has a more dominant impact on streamflow in the
region.

Das & Umamahesh, (2018) assessed the impact of climate change streamflows over
Wainganga river basin using the VIC model. Uncertainties associated with bias corrected
GCMs were treated using REA. Associate uncertainties in flood return levels considering
the projected streamflows were modelled using Bayesian analysis through Metropolis-
Hastings algorithm. Furthermore, uncertainty increases with the climate change forcings
moving from RCP4.5 to RCP8.5. The time variability of uncertainty was considered
indicating that the uncertainty in the projected return levels are likely to increase in future

scenarios.
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Impact of climate change on streamflow regime of Mahanadi river basin was
analysed by Bisht et al. (2020) considering projected and bias corrected climate scenarios of
9 GCMs achieved from CMIP5 models. Prior to generating the streamflow regimes for
future period, Integrated MIKE 11 NAM-HD, was implemented at Hirakud and Mundali
gauging sites. Streamflow was analysed using projected ensemble mean of simulated
streamflow from different GCMs. Under projected climate scenarios, the results revealed
that the mean monthly streamflow showed increasing tendencies during the period 2070-
2099. Daily high flows also showed increasing tendency in magnitude and frequency at the
end of 21% century while occurrences of low flows were observed to be decreasing
significantly under future climate scenarios.

The impact of climate change on the hydrology were analysed for the Jhelum
catchment, western Himalayas using VIC model by Jasrotia et al. (2021). Comparison
among future periods, showed increasing tendency of streamflow from 2020 to 2080, then
slightly decreased towards the end of 2080-2100. Results showed that streamflow
projections are highly influenced by precipitation projections in the catchment.

Tehrani et al. (2021) studied hydrological impacts of climate change over Nerang
river catchment using MIKE 11 model. An integrated modelling framework was developed
which combined a hydrologic model, a reservoir-based model, and a hydrodynamic model
on a catchment scale. The multi-model ensemble was investigated considering 8 GCMs of
the CMIP5 under RCP 4.5 and RCP 8.5. For the future period, GCM projections exhibited
slight decrease in the median of monthly daily inflow in the upper part of the catchment. The
results from hydrodynamic model also revealed that sea level rise is projected to have
significant impact on water level variations at two river flooding alert sites.

Recently, Tarek et al. (2021) investigated the impact of climate change on
streamflow pattern by considering all combinations of precipitation and temperature. The
streamflow was simulated and projected based on two lumped hydrological models (HMETS
and GR4J) using 10 CMIP5-GCMs under RCP8.5 scenario for the 2071-2100. The
uncertainty sources for GCMs were evaluated by variance decomposition method.
Furthermore, the sources of uncertainties for precipitation were reduced by considering four
best performing reference datasets but continued as the main source of uncertainty for
streamflow. Results showed that over the reference period, all precipitation and temperature
datasets provided good streamflow predictions. Selection of reference dataset for climate

change impact studies was essential, since minor changes between datasets over a common
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reference period can propagate to generate huge amounts of uncertainty in future
streamflows.

SWAT model is extensively utilized to address the impact due to climate change, on
hydrological processes and extreme events in Indian river basins (Swain et al. 2020). SWAT,
can therefore, be considered an appropriate model to visualise the connectivity of climate
variation with the streamflow in Indian rivers basins. SWAT is a complex physically-based,
continuous model and was designed to forecast the impact of watershed management
practices on hydrology, sediment, water quality and agriculture production on the gauge and
ungauged basins. The model simulates a watershed by dividing it into sub-basins which are
further subdivided into Hydrologic Response Units (HRU). For each HRU in every sub-
basin, SWAT simulates the soil water balances, groundwater flow, lateral flow, channel
routing, evapotranspiration, crop growth and nutrient uptake, pond and wetland balances,
soil pesticide degradation and in-stream transformation nutrients and pesticides (Anand et
al., 2018; Visakh et al. 2019; Qi et al. 2020; Samimi et al. 2020; Dash et al. 2020).

Abbaspour et al. (2015) used SWAT model to simulate the hydrologic regime for
sub-basin scale of Europe. This study contributed essential understanding into continental
water resources quantity and water quality at a sub-basin scale with a monthly time interval.
An improved version of SWAT model was used to predict the impacts on watershed
hydrology and water quality for two watersheds in the Midwest USA (Raj et al., 2016). The
study of Lin et al. (2015) showed a varying change in runoff among three time scale (i.e.
daily, monthly and annual) and three catchments in the Jinjiang river basin under land use
change scenarios using SWAT model.

Zhang et al. (2016) integrated SWAT and SDSM to assess the streamflow regime in
the Xin river basin, China. The impact of climate change was studied using downscaled
GCMs (BCC-CSML1.1, CanESM2, and NorESM1-M) under 3 RCPs. The study revealed that
SWAT model accurately depicted hydrological aspects on annual, daily, and monthly
periods. It was shown that while temperature is expected to rise in the future, there would be
greater uncertainty in precipitation estimates, with large differences amongst GCMs under
different RCPs.

Bhatta et al. (2019) quantified the impact of climate change on water balance of
Tamor river basin in the eastern Himalayas of Nepal. The response of SWAT was evaluated
with changing the number of sub-basins, HRUs, and elevation bands. Future climate was

projected by considering three different time windows i.e. 2030s, 2060s, and 2080s, based
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on an ensemble of 5 linearly bias corrected CMIP5-GCMs and 4 RCMs under both RCP4.5
and RCP8.5 and then used as input SWAT for simulating the future streamflows in the
watershed scale. It was observed that under RCP8.5 scenarios, future climate might reduce
streamflow by more than 8.5 % during latter half of 21% century.

Nilawar & Waikar (2019) attempted to quantify the climate change effect on
hydrology and sediment concentration in the Purna river basin, India, considering SWAT
model and 3 RCMs under RCP 4.5 and RCP 8.5. Both RCPs showed a significant increase
in precipitation and temperature when compared to the baseline scenario. Under RCP 4.5
and 8.5, average monthly streamflow is expected to increase by 24.47 to 115.94 m*®, while
average monthly sediment concentration is expected to increase by 32.58 to 162.96 mg/I.
Significant increase in streamflow and sediment was observed from June to September at
the basin outlet.

An integrated framework was developed by Guo et al. (2019) considering the
combined effect of land use/cover and climate variations in future time scale to assess how
isolate and combined model would impact on streamflow regime in the Xinanjiang basin,
East China. The inter-model uncertainties were evaluated using 5 bias-corrected and
downscaled GCM forecasts under 3 different RCPs for the climate change conditions. Three
land use/cover change scenarios based on Cellular Automata - Markov (CA-Markov) were
predicted, representing a variety of trade-offs between ecological protection (EP) and urban
development (UD). The projected land use/cover and GCM simulations were given as input
to SWAT to analyse the combined and isolated impact of two attributes on the streamflow.
It was observed from the study that the streamflow projected under land use/cover changes
showed disagreement with the streamflow change solely under climate change. However,
the land use/cover changes basically drove the streamflow pattern when compared to climate
change which may reduce the impact triggered due to change in land use/cover.

The changes in streamflow regime was projected by Mishra et al. (2020b) in the
Godavari River basin (GRB). An integrated framework was developed considering three
hydrological models, 4 GCMs, and 2 RCPs (2.6 and 8.5). The integrated framework
highlighted differences in annual flow and high flow. High flow frequencies were anticipated
in the future period with respect to baseline period. For the impact assessment, the
comprehensive evaluation of hydrological models predicted increases in mean, high flows,
as well as the frequency of high flows, at all four gauge sites in the GRB. The projected
increases are higher under RCP 8.5 in the far future (2071-2100).
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Veettil & Mishra (2020) studied linkages between key climate, catchment and
morphological variables with the hydrological phenomenon within a complex system of
water resources. A conceptual modelling framework was developed by integrating SWAT
and statistical models for investigating the probable impact of catchment, climate and
morphological variables on hydrological drought (SRI) in watersheds of Savannah river
basin. SR1 was developed for short term, medium term, and long-term events to examine the
drought variables and their changes with climate. However, it was discovered that linear
models based solely on climate characteristics may be incapable of predicting the duration
of multiscale hydrological droughts. The integration of catchment and morphological
variables to statistical models can significantly enhance the performance. Furthermore,
among the morphological variables studied, stream order appears to have a substantial

influence on the duration of short, medium, and long-term droughts in the research area.
2.11 Drought in the Perspective of Climate Change

Climate change affects agricultural production, hydrological cycle, sea levels and
SST patterns. The extent, frequency and occurrences of droughts could be attributed to the
global changes in climatic pattern (IPCC, 2013). Further, the modulating effect of climate
has far-reaching influence on agriculture, environment, social factors and natural extreme
calamity like drought with an intensified severity (Trenberth et al. 2013). Considering the
effect of human activities and climatic parameters across the globe, a substantial increase in
drought severity in future due to global warming is predicted by Ahmadalipour et al. (2017).
The spatial and temporal increase in drought with a greater severity level were identified
across India by Mishra and Singh (2010). On a global scale, the climatic alterations are being
used extensively for the assessment of drought in the 21% century (Dai, 2012; Xu et al. 2015;
Masud et al. 2019; Thilakarathne and Sridhar, 2017). The spatial and temporal increase in
drought situation with greater severity level were identified all over India (Mishra and Singh,
2010; Sharma and Goyal, 2020; Rehana and Naidu, 2021).

Drought conditions were assessed and analysed by Adhar & Mishra (2018) using 5
CMIP5 GCMs under the warming climate in India and identified increase in drought severity
and occurrences in the recent decades over the region. It has been documented that the
drought will be affected by the changes in the monsoonal system over India and
consequently, the economy of the country will be influenced by climate change (Shah &
Mishra, 2020a; Kumar et al. 2021a). Moreover, terrestrial ecosystems are highly vulnerable
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to unexpected rapidly occurring droughts which are called as ‘flash droughts. These droughts
trigger serious threat to crop productivity and vegetation in India (Poonia et al. 2022).

Wang et al. (2011) investigated impacts of climate change on meteorological,
hydrological and agricultural droughts. Initially, meteorological drought (SPI) was
reconstructed based on daily climate inputs from RCMs driven by 3 GCMs. Further, at the
catchment scale in Central Illinois, these anticipated climate inputs were fed into a hydro-
agronomic model. Based on the model output, agricultural drought (standardised soil water
index, SSWI) and hydrological drought (SRI) were constructed at the catchment scale. The
drought characteristics such as duration, intensity and frequency, and the drought
propagation from meteorological to agricultural to hydrological systems were analysed for
historical and future periods and then compared accordingly. SSWI showed extreme drought
conditions and was more sensitive to climate variations compared to SPI or SRI. It was
reported that for this region, the intensity, duration and frequency showed increasing patterns
from meteorological to agricultural to hydrological drought situation. SSWI and SRI are
likely to change significantly due to the nonlinear hydrological response to variation in
temperature and precipitation.

The study by Leng et al. (2015) investigated the climate change impact on
meteorological, hydrological and agricultural droughts and their propagations, in the
perspective of SPI, SSWI and SR, respectively. Daily climate forecasts from 5 GCMs were
given as input to the VIC model for investigating future hydrological changes in China under
the RCP8.5. In comparison to the baseline period, it was found that future drought events
will be more severe, longer, and frequent. Further, when compared to long-term droughts
(duration > 4 months), the frequency of short-term meteorological and hydrological
droughts (duration < 4 months) tend to increase, whereas the converse is anticipated for
agricultural droughts.

A probabilistic multi-model dual-index dual-scenario framework was implemented
by Ahmadalipour et al. (2017) to evaluate drought properties while characterizing the
uncertainty associated in projected drought in warming condition. Drought properties were
assessed based on SPI and SPEI considering 21 readily available downscaled GCMs
generated by NASA (NEX-GDDP) under RCP4.5 and RCP8.5 scenarios. The major drought
attributes were used for characterization and then investigated through combined effects of

precipitation and temperature variations. The study revealed significant aggravation of future
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drought severity and extent in the western United States, trending towards more frequent
and intense summer droughts in the contiguous United States.

Gupta and Jain (2018) projected SPI, Standardized effective Precipitation Evapo-
Transpiration Index (SP*ETI) and SPEI and then droughts were analysed for 21% century
using precipitation and temperature data obtained from RCMs under RCPs 4.5 and 8.5 over
India. These indices were developed and used for drought characterization in the region.
Drought homogeneous regions were derived based on the K-means clustering algorithm.
The major highlights of the study are: (i) the projected rise in temperature directly accelerate
the evapotranspiration which in turn affect the drought dynamics in future scenarios; (ii) in
the near future, the Northern part of India will be more prone to drought severity and
frequency; (iii) however in the far future, most parts of the country, except a few south-
eastern states, are likely to face an escalation in drought severity and frequency; (iv) areal
extent of droughts showed increasing tendencies in the historical period and is further likely
to increase in the future scenarios in most regions in the country.

Bisht et al. (2019) evaluated drought properties of SPEI for future climatic scenarios
in different time windows across India. The future time was divided into three time windows.
viz., near-future (2010-2039), mid-future (2040-2069), and far-future (2070-2099) and then
compared with the reference period (1976-2005). Further, quantile mapping bias corrected
MME of 9 CMIP5 GCMs were used to project future drought conditions for different
homogeneous regions in India such as North East (NE), Hilly (HR), North West (NW),
Central North East (CNE), West Central (WC), and Peninsular (PS). The study revealed that
the projected drought severity, duration, occurrences, and the average length are expected to
increase in the warming scenarios.

Precipitation data from Global Precipitation Climatology Centre (GPCC) were used
by Ahmed et al. (2019) to construct SP1 for historical period. Further, 7 downscaled CMIP5-
GCMs under four RCP scenarios, such as RCP2.6, RCP4.5, RCP6.0 and RCP8.5 were taken
for precipitation projection in the future. The concept of SVM and quantile mapping were
used for downscaling and bias correcting the GCMs. Furthermore, the historical and future
droughts were characterised based on projected SPI for different crop growing periods. The
drought Severity-Area-Frequency (SAF) curves were prepared for historical as well as future
scenarios. During historical period, SAF curves showed that for equal values of drought
severity, bigger areas were influenced by drought conditions with higher return periods.

However, projected droughts for future revealed increasing areal extent for lower severity
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and return period while the decrease in affected area for higher severity and return period
droughts, were also observed.

For highlighting the drought risk in the future, Gupta et al. (2020) examined the
spatio-temporal analysis of drought frequency and hazard over India. In order to compute
the future values of SPEI, the meteorological data from RCMs under RCP 8.5 were used.
Further, an improved copula-based framework was applied to develop severity-duration-
frequency (SDF) curves for the region. The study area was divided into five different
homogeneous regions based on fuzzy clustering algorithm. An improved fuzzy clustering-
based drought Modified Drought Hazard Index (MDHI) was also developed to assess the
risk associated in different homogeneous region. From the results, it was observed that the
drought frequency showed increasing pattern for all the regions except for Region 2, i.e.,
Western Ghats. It was found that drought severities linked with durations are expected to
increase significantly with the progression of time. The SAF curves were also analysed and
these curves revealed higher probability of a larger areal extent of drought in different
regions of the country.

Meteorological drought indices such as SPI and SPEI attributes were analysed by
Gaitan et al. (2020) for historical as well as future scenarios for the Aragon region in Spain.
Future drought episodes were generated based on 9 Earth System Models (ESMs) and 2
RCPs corresponding CMIP5 model. Further, drought episodes were evaluated considering
three main aspects: spatial extent, duration and magnitude. Major contributions of their study
were: (i) the projected SPI hardly showed any changes in future compared to normal values;
(i) the projected SPEI showed clear increasing trend of drought episodes at the end of 21%
century; (iii) drought indices for future scenarios reflected the most populated areas (the
Ebro Valley and the SW of the region) are going to experience the longest and most intense
drought periods.

Kumar et al. (2020) examined the potential changes in drought properties of SP1-12
to understand future drought risk in GRB, India. Four homogeneous drought regions were
identified using a fuzzy c-means clustering approach. For the homogenous regions of basin,
the 12-month SPI was estimated using precipitation data from IMD and GCM-MIROC-
ESM-CHEM. For different homogeneous regions, SDF and SAF were constructed using
various copula functions. Moderate to severe drought episodes are expected to increase in

future periods. For this region, the SDF curves were concave upwards which indicated that
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the severities are expected to increase in the future periods, while steeper curves for SAF
indicated high variability in topography and hydrological properties in the basin.

Rajbanshi and Das (2021) investigated the spatio-temporal variations of
meteorological (SPI) drought patterns for the future considering SSPs (viz., SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5) considering 10 CMIP6-GCM simulations in India. The
observations from the study were: (i) observed period (1951-2014) indicated that the summer
monsoon drought events were more evident and significantly affected the crop productivity;
(ii) the most severe droughts occurred for the years when EIl Nino events (equatorial Eastern
Pacific Ocean (EPO) sea surface temperature (SST)) were negatively correlated with the SPI
events; (iii) Future projection (2071-2100) from the selected models indicated the more
frequent droughts in the SSP1-2.6 and SSP2-4.5 in comparison to SSP3-7.0 and SSP5-8.5.

2.12 Crop Modelling and Impact of Climate Change on Crop
Yield

A study by Kumar (2016) showed that global warming with its negative impacts was
affecting the root zone soil moisture during critical crop growth stages. Cropping pattern,
cultivation period and its productivities are vulnerable to climate change, due to partial or
complete crop failure because of scanty or more amount of precipitation. Deb et al. (2015)
reported that the agricultural sectors are highly prone to climate change due to the association
amongst plant phenology and meteorological variables. Uneven distributions of rainfall and
dry months may affect the crop production. Further, changes in plant phenology, respiration,
transpiration and photosynthesis are likely to affect agricultural productivity as CO:
concentrations and temperatures rise. This, in turn, could increase water stress and
consequently, food security. India being an agrarian country is likely to be affected
substantially due to the adverse consequences of climate change (Das et al. 2020c).

Climate change footprints also have certain relationship with the crop productivity,
which have rarely been reported, and hence deserve further investigation. The climate
change influence on crop yield is expected to be more intense over future periods due to
increase in intensity, magnitude and distribution of rainfall, decrease in soil moisture,
relative humidity, higher temperatures, and consequently higher evapotranspiration. Crop
model is an important tool for studying future clime change effect on crop production and
its counter measures. Future climate change impact on crop yield and its countermeasures
can be studied using crop models. Crop models have shown great potential in evaluating the

impact of climate change on crop water consumption and irrigation requirements at both the
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local and regional scales, and it provides new analytical abilities for water resource
management planners to help them make better decisions. Crop modelling approach had
been established and gained popularity among scientific research community (Holzworth et
al. 2015). Crop growth models generally simulate the relationship between plant phenology
and environmental situation to forecast the anticipated production of crop. These models can
be implemented for prediction of crop yield with respect to climate change and
understanding crop responses in field trials and circumstances. These can be helpful in crop
management and agronomic decision making, as well as to study the potential impacts of
climate change on food security. Many such models have been developed over the past
decades and prominent examples are Decision Support System for Agro-technology
Transfer (DSSAT), (Jones et al. 2003), Agricultural Production Systems slMulator
(APSIM), (Holzworth et al. 2018), WOrld FOod STudies (WOFOST), (van Diepen et al.
1989); Cropping Systems Simulation Model (CROPSYST), (Stockle et al. 2003) and
Simulation of Evapotranspiration of Applied Water (SIMETAW#), (Mancosu et al. 2016).
Some hydrological models like SWAT, (Santhi et al. 2001) and Distributed model for
Runoff, Evapotranspiration, and Antecedent soil Moisture simulation (DREAM), (Manfreda
et al. 2005) were also used in various studies to improve the simulation for both at local and
regional scale.

Water is critical for agricultural productivity, and it has long been recognised as a
major limiting factor in crop development. AquaCrop is a well-known crop simulation
model developed by the Food and Agriculture Organization (FAO), (Hsiao et al., 2009;
Steduto et al. 2009). Steduto et al. (2009) characterised the model as a “canopy-level and
engineering kind of model, primarily concentrating on modelling the achievable crop
biomass and harvestable yield in response to the water availability”. The goal of the model
was to employ fewer parameters while yet preserving accuracy, simplicity, and resilience.
In this model, the primary driver for yield production modelling is water. Moreover, the
modelling technique must work with modifying the simulated yield by considering water
limiting variability or conditions. This model has been widely used by researchers to model
the biomass and yield all over the globe for different crops (Bird et al. 2016; Farahani et al.
2009; Abedinpour et al. 2012; Nyathi et al. 2018). In the context of India, Dubey et al.
(2017); Kumar et al. (2014) and Pawar et al. (2017) had used the AquaCrop model to

simulate various crops under different climatic and management conditions.

39



Bocchiola (2013) studied the effect of climate change on crop productivity of maize
considering and response of water footprint to possible variations of weather variables as
case study of the Po valley of Northern Italy. The maize production was simulated using
validated CropSyst model for the period 2001-2010. Then, the water footprint (the absolute
and specific (kg/yield) water evapotranspiration during growing season), was estimated
under three different irrigation conditions, such as: (i) no irrigation, (ii) manual irrigation at
fixed dates, and (iii) automatic irrigation on demand. It was observed from the study that
under future scenarios, the temperature is expected to increase and amount of precipitation
is expected to decrease. These create a decrease in crop productivity and increase in
evaporative demand of crops which boils down to higher irrigation demand.

Shrestha et al. (2017) used the crop growth model DSSAT (CERES-Rice) to
calculate the possible impact of climate change on rice productivity for the Nam Oon
Irrigation Project in Northeast Thailand. Field experiments were performed to collect crop
phenology data, which were then used to set up and evaluate the model. Under RCP 4.5 and
RCP 8.5, the water footprint and evaporative demand of crops during the growth phase were
calculated using bias-corrected outputs of different RCMs. A significant increase in the
water footprint was observed for KDML-105 and RD-6 rice varieties under various scenarios
compared to the baseline period. The opposite condition was depicted by the ChaiNat-1
variety which showed decrease in projected water under two scenarios. High increase in blue
water footprint is expected in future period, as a consequence high increase in the irrigation
water requirement due to high evaporative demand of plants.

The variations of yield of major crops such as wheat, barley and maize in the Banas
river basin, in the Rajasthan state of India were investigated in a perspective of climate
change (Dubey & Shrama, 2018). Based on the AquaCrop model, the simulated yield
showed a good agreement with the observed yield. Furthermore, based on climate forecasts
from CORDEX-SA (CNRMCM5, CCSM4, and MPI-ESM-LR) under RCP4.5 and RCP8.5
for the future period, the calibrated model was utilised to analyse the likely variance in
agricultural output due to the influence of climate change and CO concentration. Crop
yields are predicted to rise in the future as a result of climate change.

Pranuthi & Tripathi (2018) investigated the crop productivity in the perspective of
climate change based on bias-corrected PRECIS RCM data in the Haridwar district of
Uttarakhand, India. Further, DSSAT CERES rice model was used to simulate the rice yield

at Haridwar district. For undertaking this study, the future yield was projected by providing
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PRECIS RCM weather data under different RCP CO2 emission scenarios. The study showed
that the rice productivity of Haridwar is expected to decrease by 31.7 kgs/ha/year in the
future scenario and could be attributed to increase in maximum temperature which will not
be favourable for crop growth.

Raoufi & Soufizadeh (2020) investigated the impact of anthropogenic and climate
changes on the productivity of rice genotype behaviour for deep understanding of crop yield
change in northern Iran. The future meteorological variables were given as input to the
AgquaCrop-Rice model to examine the sensitivity of genotypic in rice under varied COo,
precipitation (£ 20%), and temperature (+ 1 °C, + 2 °C, + 3 °C, + 4 °C) under different RCPs
(2.6, 45, and 8.5). Results from the study indicated that increased CO. concertation and
temperature were favourable for rice growth while the change in precipitation was no longer
significant. However, under RCP8.5 scenarios and +1 °C temperature change lead to highest
increase in aboveground biomass. Nevertheless, phenological behaviour and length of the
vegetative phase were accelerated by increased temperature.

Das et al. (2020c) simulated the yields for three different crops (rice, wheat and
maize) using calibrated AquaCrop with an observed period of 17 years (1998-2015) over
Sikkim, India. Further, the future crop yield for three crops were estimated using bias-
corrected climate scenarios from four GCMs under RCP4.5 and RCP8.5 scenarios. The
model showed that the mean yield is expected to increase in the future period (2021-2099).
The increase in mean yield can be attributed to a favourable temperature profile, an increase
in CO2 concentration, the study area's high elevation, and the absence of major water stress
during crop growth seasons.

SIMETAW# model was implemented to evaluate the impact of climate change on
crop productivity with two new versions ((SIMETAW_GIS platform) and (SIMETAW_R))
in semi-arid area of Southern Europe (Masia et al. 2021). These two versions were
accomplished to estimate water consumption by crops and irrigation demand in regional and
local scales. The methodological framework was used to calibrate and validate the model
SIMETAW _R in ten experimental sites. SIMETAW _GIS model performance was evaluated
in Mediterranean countries. Further, the meteorological inputs from GCMs under RCP4.5
and RCP8.5 scenarios were given as inputs to model for estimating the on maize, wheat, and
wine grape sensitivities and water requirements in under the influence of future climate
conditions (2036-2065). From the results, it was found that for Mediterranean countries,

water requirements for three crops are expected to increase under climate change scenarios.
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Recently, Quan et al. (2022) implemented the calibrated SPACSYS and DSSAT-
CERES-Maize models to evaluate the application of six methods under future climate
considering two-year field data. Three mulching measures, namely transparent film, black
film, and no film conditions, as well as two fertilisation levels, namely high and low, were
evaluated in the study. Both models were calibrated and validated, and the anthesis and
maturity dates of maize, as well as the ultimate biomass, yield, and soil water content (SWC),
were compared to measured values. In comparison to DSSAT, the SPACSYS model
accurately predicted maize and SWC growth under nitrogen stress. 27 GCMs were used for
assessing the impact of climate change on crop growth driven by DSSAT and SPACSYS
models with different irrigation schemes (11, 12, 13) and four irrigation ratios (T1, T2, T3,
T4) under future decades (2040s and 2080s). It was highlighted that the I1T1 scenario
considering transparent film mulching created the maximum maize production. The 13T4
scenario retained constant production in the 2040s while it showed decreasing tendencies by
20% in far future (2080s). Consequently, 13T4 scenario require the optimum management
practices aimed to better maize production in this region.

Shirazi et al. (2022) used AquaCrop to evaluate the influence of climate scenarios
yield of winter wheat and summer maize productions considering downscaled climate data
driven by SDSM and CanESM2 under RCP4.5 and RCP8.5. The study area taken up for
investigation was in the Huang-Huai-Hai Plain (3H Plain). The results indicated that the
potential yield of wheat and maize were estimated to increase in the future time scale
compared to baseline period. Higher increase in wheat yield was detected in the Shandong
and north-eastern parts of Henan. However, the water budget during the wheat growth period
is expected to have deficit tendency in the northern part of 3H Plain while the maize growth

period showed improvement in central and southern parts of the 3H Plain.
2.13 Crop and Drought Relationship

Climate extremes, such as droughts and hot events, may result in reduced crop
productivity threatening regional and global food security. Uneven distributions of rainfall
and dry months may affect the crop production. Further, drought footprints have certain
relationship with the crop productivity, which have rarely been reported. Over the last few
decades, drought has evolved as the paramount threat to agronomy in several parts of the
globe (Leng and Hall, 2019; Potopova et al. 2015). Thus, investigations related to the hazard
of droughts on the crop productivity have become a supreme concern for the governance of

comprehensive mitigations and prevention strategies (Potop et al. 2012). Water scarcity due
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to drought frequently affect the capability of plant canopies to absorb the radiation which
has a detrimental effect on crop productivity. Further, the impact of drought on quantity of
cultivation, significantly depend on the type of crops, developmental phases of crop, genetic
characteristics of the specific crop and the properties of soil (Karim and Rahman, 2015). It
has been reported that the association between climate variability and crop yield varies for
different regions and various crop types. Muthuvel & Amai (2021) specified that crop yield
variations owing to drought can be estimated using yield anomalies like the Standardized
Crop Yield Index (SCI), yield data detrended by using first difference approach)/
Standardized Yield Residuals Series (SYRS, yield data detrended by fitting linear regression
model). Detailed information on the impact of drought on the crop growth for different
seasons can be efficiently captured by considering the SPEI (Potopova et al. 2015). Droughts
can influence an agrarian country's economy and food security by diminishing crop
production, in addition to creating an ecological imbalance.

Researchers from different parts of the world have attempted to investigate the
drought impacts on crop productivity but still more studies are needed to be conducted
focussing the influence of drought on crop production worldwide. A copula-based model
was implemented for the assessment of drought impression on terrestrial vegetation in China
by obtaining the correlation between Normalized Difference Vegetation Index (NDVI) and
the SPEI at varying timescales (Fang et al. 2019). The response of crop anomalies to SPEI,
and Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) distinctly
were analysed by Ribeiro et al. (2019). Feng & Hao, (2020) investigated the likelihood of
occurrences of dry, hot, and compound dry-hot events triggering the decrease of maize yield.
Additionally, they identified the occurrence of compound events becomes higher as the crop
yield reduces. Feng et al. (2019) investigated the association between variability of maize
production and compound dry-hot events based multivariate copula functions.

Potop et al. (2012) explored the impact of two multi-scalar dry and wet spells of SPI
and SPEI on different crops in the low land regions of the Czech Republic. The finding
revealed that the SPEI from April to September and detrended SYRS series of root
vegetables had reasonably significant negative relationship. However, more frequent dry
episodes throughout the growing period of brassica vegetables and fruits had negative
consequences. Even the longest dry spell (early spring droughts) had no effect on bulb

vegetables during sowing period.
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Potopova et al. (2015) investigated the impact of SPEI at different time scales on
crop productivity for 11 agricultural crops with different growth cycles in the Czech
Republic. The crops with different growth cycles taken up for the study were spring wheat,
spring barley, winter rye, oilseed rape, winter wheat, winter barley, oats, maize, potatoes,
sugar beet and grapevine. The study showed that variations in crop responses to various SPEI
lags were derived via correlation studies between drought-crops. However, during crucial
growth periods of the crops, the monthly detrended SPEI exhibited strong correlation with
SYRS. Based on the study, drought risk defined in terms of the SPEI at 1-, 3-, and 6-month
lags was becoming more of a concern during the early stages of root and tuber crops.

Wang et al. (2017) proposed a quantitative approach for assessing the influence of
multi-scale drought (SPEI) on wheat yields in the Huang Huai Hai (3H) Plain. Winter wheat
was estimated at 28 locations on the 3H Plain using the calibrated Environmental Policy
Integrated Climate (EPIC) crop growth model. The relationship between multi-scale SPEI
and winter wheat series was further investigated using a crop growth process model. The
study findings revealed that wheat yields calculated using calibrated EPIC was a reliable
crop yield predictor in the region. Further, in the year 2000, a large water shortage was
detected, and the degree of yield reduction did not always link to the change in water deficit.

A study by Liu et al. (2018) analysed the drought events based on SPEI and inspected
the drought and crop (winter wheat and summer maize) association in the North China Plain
(NCP). It was reported that the annual changes in the detrended SPEI can explain a huge
variation in winter wheat and summer maize yields in the region. Further, the link between
yield series and SPEI series with different lags varied significantly; the most related time
scale increased as the development stage of winter wheat progressed. The relationship
between the winter wheat SYRS and detrended SPEI in three sub-periods were continuously
strong and constant, while the relationship between the summer maize SYRS and detrended
SPEI had considerably reduced at all time scales, apart from 1-month lag.

Masud et al. (2020) investigated the crop-drought connectivity between
(SPEI/MSDI) and three important cereal crops (spring wheat, barley, and canola) in a large
agricultural command region in western Canada. In terms of agricultural impact assessment,
both indices performed similarly; however, the MSDI performed better in the early growing
season for wheat and barley, demonstrating strong crop production sensitivity to soil

moisture deprivation. The study summarized that the association between detrended drought
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indices and the yield series depend upon timescale, geographic location, and crop growing
period.

A recent study by Muthuvel & Amai (2021) developed three concurrent drought
indices and their influence on agricultural yield series (SRYS), using a copula-based
multivariate method in India. The drought properties were computed based on MSDI that
includes the three isolated drought indices using the Gaussian copula. Some of the severe
concurrent drought years such as 2002, 1987, 1972, and 1965 caused considerable yield
losses in Kharif season crops of groundnut, millet, and rice. The study summarized that
although the single valued droughts caused mild losses in yield, the concurrent droughts
triggered high losses in yield which further seems to grow to exceptional losses.

2.14 Gaps in the Literature and Summary

An overview of different forms of drought, types of drought indicators, non-
stationary aspect of drought analysis, and multivariate aspect of drought analysis based on
the changing climate, crop yield prediction and impact of drought on crop prediction is
presented in this chapter. Based on discussions on drought analysis, it can be justified that
the antecedent meteorological droughts may evolve into hydrological and/or agricultural
droughts, coexisting as concurrent droughts. In a changing environment, where the hydro-
meteorological parameters such as precipitation, streamflow, soil moisture and groundwater
may show non-stationary behaviour, traditional drought indicators based on the principle of
stationary hypothesis often failed to identify and assess nonstationary drought events.

All these indices consider only one specific physical form of drought: hydrological,
meteorological, or agricultural. This might not be adequate to get a comprehensive idea of
the drought condition since the drought is dependent on multiple variables. It can, hence, be
concluded that the drought status indicated by one drought index might not be consistent
with the findings obtained by using a different drought index. To overcome these limitations,
a group of indices that considers multiple variables to represent drought were constructed
and these hybrid drought indices provide a stronger correlation with actual physical impacts.
Based on the literature study, copula-based Multivariate Drought indices considering the
meteorological, agricultural and hydrological droughts were capable enough to replicate the
actual drought mechanism.

Literatures on the climate change and MME method suggest that various sources of
biases are present in the climate models which need to be further corrected using suitable

bias correction techniques. Various sources of uncertainties are associated with the climate
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models and it is essential to reduce these uncertainties by considering a suitable weightage
average technique.

In the past few decades, due to continuous intervention with the environmental
landscape in the form of land use practices (water diversions, deforestation, local agriculture
practices, industrialization etc.) there is a need to quantitatively assess the future climatic
scenario for initiating and effectively undertaking the adaptation strategies for safe and
sustained agricultural growth. Based on the critical review of literature on impact of climate
change on drought studies, it can be concluded that droughts are likely to become more
common as global warming worsens during this century. Therefore, accurate studies of
future projections at a local level are crucial. That is to say, both climate and man-made
causes play a role in exacerbating droughts. When they do occur, the increased heat from
global warming is projected to accelerate the rate of drying, causing drought to develop more
quickly and with higher intensity. Further, it can be noted that a significant increase in
potential evapotranspiration would cause a prolonged dryness in most of the regions during
the twenty-first century. Hence, the spatial extent, occurrences, onset and withdrawal of
drought events must be monitored based on the long-term climate projections using reliable
indices to provide water resources planners with correct information to take appropriate
disaster response measures.

The multivariate aspect of the drought has been studied in various literatures but the
climate change aspects to project multivariate drought indices have not been taken into
consideration.

Based on the literature of hydrological modelling, it is observed that hydrological
modelling has become an integral part of climate change assessment which incorporates the
physical parameters of a region. Therefore, physically based hydrological models with high
resolution meteorological variables can be used to simulate the streamflows. Further, SWAT
model can simulate the water balance components in well manner.

Crop growth models, such as AquaCrop, are useful in determining the influence of
climate change on crop output based on forecasts from global circulation and regional
climate models. Hence, this model could be used to generate future crop yield on the basis
of changing climate.

The impact of drought on agricultural production depends not only on the severity of
the event itself, but also on the time of the event and the vulnerability of the natural systems

that experience it. Similar extreme weather could have differing outcomes depending on the
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crop development stages and the vulnerability of the exposed system. Thus, identifying the
spatio-temporal variation of the drought impacts on agriculture and constructing a
quantitative relationship between drought and agriculture losses could provide policy makers
and stakeholders with scientific information regarding which agricultural areas are most

vulnerable and sensitive to drought.
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CHAPTER 3

METHODOLOGY
3.1 General

This chapter presents the methodology adopted in this research. Various data
required for the assessments of drought and its characteristics in Godavari River Basin
(GRB) and its sub basins are presented. The SPEI is developed and drought characteristics
are projected for the future scenarios using RCM models. GAMLSS model is implemented
to obtain the non-stationary drought indices such as Non-stationary standardized
Precipitation Index (NSPI) and Non-stationary Reconnaissance Drought Index (NRDI),
considering the large-scale climate indices as external covariates. Multivariate drought
indices such as MSDI, RTDI and MDI are developed as a part of the study. The MSDI
considered the combined drought status of precipitation and soil moisture while RTDI
considered the three variables such as precipitation, soil moisture and evapotranspiration.
The teleconnection between large scale climate indices and drought indices (MSDI and
RTDI) in GRB are also obtained using Cross Wavelet Analysis (CWA). SWAT model is
developed and then calibrated and validated using SUFI2 algorithm based on the streamflow
data. The other climate parameters like soil moisture, evapotranspiration and streamflow are
generated for future scenarios considering the CMIP6-GCMs. Along with a copula-based
four variate MDI considering the climate variables were assessed for future scenarios.
AguaCrop model is used to evaluate the future changes in the crop yield under different
climate scenarios. Finally, the crop and drought relationship is obtained using Kendall’s
correlation between Standardised Yield Residual Series (SYRS) and Standardized

Precipitation and Evapotranspiration Index (SPEI).
3.2 Study Area
The area taken up for the study is the GRB lying in the central and southern part of

India. The Godavari river, originating in the Nashik district of Maharashtra, flows for a
length of 1,465 km toward east, draining many states of central and peninsular India,
eventually emptying into the Bay of Bengal. Covering a drainage area of 312,812 km?, it is
one of the major river basins of India. GRB is mainly dominated by the south-west monsoon
rainfall which is generally erratic with wide temporal and spatial variation in rainfall. The

average annual rainfall of the basin is about 1100 mm. South-west monsoon has a direct
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influence on agriculture in the region, which is more vulnerable to extreme weather events.
Hence, irrigation, amounting to approximately 95% of the water use, has high priority in this
basin. The extreme events in this basin and various anthropogenic activities bring extra
pressure on the water resources. So, a comprehensive drought assessment is needed to be
carried out for identifying the drought variability with respect to the changing climate. GRB
consists of eighth major sub-basins. Different sub-basins of GRB were taken up to meet the
objective of the study. For the first two objectives, the whole GRB is considered. Third
objective considered Wainganga and Indravati basins. Fourth objective considered the
Aurangabad region as the study area which is part of Upper Godavari sub-basin. A map of
the study area is given in Fig. 3.1.
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Fig.3.1 Map of the study area
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3.3 Data Needed and Available for the Study

This section comprises of different types of data needed for the study and their
source. The data includes Climate Research Unit Time Series (CRU TS) data, Global Land
Data Assimilation System (GLDAS) VIC soil moisture data, Indian Meteorological
Department (IMD) data, RCMs, and CMIP6-GCMs, geospatial data like Digital Elevation
Model (DEM), soil map, Land Use and Land Cover (LULC) map and crop details. The
following sections explain these.

3.3.1 Climate Research Unit Time Series (CRU TS) data

This study used 0.5°x0.5° monthly gridded precipitation and evapotranspiration data
sets acquired for a period of 39 years (1980-2018) from CRU TS 4.03
(https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.03). CRU TS monthly climate
anomaly 0.5° x 0.5° gridded dataset are derived based on the Angular Distance Weighting
(ADW) method over all the land domain in the world except Antarctica. The
evapotranspiration data for the same time period were downloaded and extracted to a
particular location. CRU data was utilised for the temperature-based derivation of potential
evapotranspiration (PET) (Harris et al. 2014). Gridded rainfall, evapotranspiration and
temperature data have been extensively used in various hydro-climatological analyses in
different parts of the world (Zarch et al. 2015; Krishnan et al. 2018). The climate data were
extracted and regridded by using bilinear interpolation method to GRB scale.

3.3.2 RCM data

Daily precipitation, minimum and maximum temperature projections for the years
from 2053 to 2099 were obtained from Centre for Climate Change Research (CCCR), Indian
Institute of Tropical Meteorology (I1TM), Pune, India (https://cccr.tropmet.res.in/fnome/
cordexsa_datasets.jsp) database. 5 RCMs under RCPs 4.5 and 8.5 with a spatial resolution
of 0.44° were downloaded from the site given in Table 3.1. All the RCM datasets were
regridded to CRU grids under the same spatial and temporal resolution for analysing the

future dry and wet spells. The sources of various models used are presented in Table 3.1.
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Table 3.1 RCM model sources

SI. No. Model Source
1 ACCESS 1-0 | Australian Bureau of Meteorology
2 GFDL-ESM2G | Geophysical Fluid Dynamics Laboratory
3 MPI-ESM-LR | Max Planck Institute Earth System Model
4 CCSM4 Community Climate System Model
5 CNRM-CM5 | Canadian Earth System Model

3.3.3 Indian Meteorology Department (IMD) data

Daily observations such as precipitation, minimum and maximum temperature from
Indian Meteorological Department (IMD) were collected for the period from 1951to 2018.
The precipitation data were developed based on 6955 rain gauge stations all over India with
a resolution of 0.25 x 0.25 (Pai et al. 2014). Similarly, maximum and minimum temperature
data were developed using 395 quality-controlled measuring stations and available at a
resolution of 1° x 1° (Srivastava et al. 2009). Spatial uniformity was ensured by converting
the temperature data to a resolution of 0.25 x 0.25 using the bilinear interpolation method.
3.3.4 Large scale climate indices

Large-scale climate indices have an effect on a non-stationarity aspects of drought
phenomenon. The non-stationary drought indices were computed based on the association
with four large-scale climate indices such as Indian Ocean Dipole (IOD), Southern
Oscillation Index (SOI), Sea Surface Temperature (SST) and Multivariate ENSO Index
(MEI) and are presented in Table 3.2.

Table 3.2 Large-scale climate indices and their data site

Large-scale Links
climate
indices
SOl http://www.bom.gov.au/climate/current/ soihtm1.shtml
SST http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data
MEI http://www.esrl.noaa.gov/psd/enso/mei.ext/ table.ext.html
10D http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi.monthly.txt

3.3.5 Soil moisture data

Assessment of drought indices requires sufficiently long historic observations to
obtain a reliable evaluation of drought phenomenon. The Global Land Data Assimilation
System (GLDAS) VIC soil moisture data has been used in many studies and proved to be a
reliable source to assess the soil moisture drought anomalies (Mishra et al. 2014). The soil
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moisture data for the period from 1980 to 2018 was downloaded from the GLDAS VIC data
sets for further computation of SSI.

3.3.6 Hydrological data

Daily observed streamflow data from the two gauging stations located at
Pathagudem in the Indravati River Basin (IRB) and Ashti in the Wainganga River Basin
(WRB) were obtained from Central Water Commission (CWC) for the period 1966 to 2018.
3.3.7 Geospatial data

DEM, LULC, soil and slope maps are the main geospatial datasets used as an input
for the SWAT model. The Shuttle Radar Topography Mission (SRTM) DEM has a
resolution of 30 m at the equator. DEM has been used as an input in SWAT model for
delineating watershed and for topographic parameterization for the watersheds of IRB and
WRB. The Globeland30 LULC datasets were downloaded from the Ilink
(http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/browse_
en.html&head=browse&type=data). Madhusoodhanan et al. (2017) reported that the
Globeland30 data set showed least bias and performed well for Indian subcontinent. The
LULC data was reclassified as SWAT database to form the model simulation. Global soil
map is downloaded from the link (https://swat.tamu.edu/data/india-dataset/). The slope map
was generated from the DEM. The DEM, LULC and soil maps for Wainganga and Indravati

river basins are shown in Fig.3.2.
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Fig. 3.2 DEM, LULC and soil maps for Wainganga and Indravati river basins
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3.3.8 CMIP6 model data

Daily precipitation, and maximum and minimum temperature data from 5 CMIP6-
GCMs were bias corrected using Empirical Quantile Mapping (EQM) method for South Asia
and Indian sub-continent on a river basin scale (Mishra et al. 2020a). For the GRB scale, the
daily precipitation, maximum and minimum temperature data for historical (1951-2014) and
future (2015-2100) periods for four SSPs (SSP126, SSP245, SSP370, and SSP585) were
obtained from the website (https://zenodo.org/record/3874046#.YOQWg0kzZPa). The
sources of CMIP6 model data are shown in Table 3.3.

Table 3.3 CMIP6 GCM models and their sources

Sl Model Source
No.

1 ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organisation
and Australian Research Council Centre of Excellence for
Climate System Science

2 | BCC-CSM2-MR | Beijing Climate Centre Climate System Model

3 CanESM5 Canadian Earth System Model
4 INM-CM4-8 Russian Institute for Numerical Mathematics Climate
Model

5 | MPI-ESM1-2-HR | Max Planck Institute Earth System Model

3.3.9 Crop characteristics, management and soil information

Cotton, maize and wheat are the three widely planted crops, chosen to examine the
influence of drought with respect to climate change on agricultural production. The data sets
of annual yield datasets for the crops during base period (1997-2014) were obtained from

https://data.gov.in/resources/district-wise-season-wise-crop-production-statistics-1997.

The maize crop is a C4 photosynthetic plant and is one of the major cereals in the
region. Maize is cultivated as a Kharif crop in the study area with the crop period from April-
September. It is cultivated when the mean temperature is greater than 15 °C. The maturation
period of maize is around 80-110 days. Wheat and cotton are categorised as C3 plants and
the growth could be related to the increase in atmospheric CO2. Wheat is cultivated as a Rabi
crop with the sowing in the months of October to September. For cotton, the growing period
is from May to December. Table 3.4 presents the crop characteristics and development stages
of the C3 and C4 plants.

The cropping pattern over Aurangabad region consists of rain-fed, single cropping

and double cropping. For the study, rain-fed irrigation method is considered. Farm
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mechanization adopted was weeds management. Sprinkler irrigation is opted for the study
area. Based on the FAO soil classification, the type of soil dominated in Aurangabad regions
is clayey and clayey loam soils.
3.4 Potential Evapotranspiration (PET) Estimation

Various empirical methods and tools available to estimate the PET indirectly are
Thornthwaite method (Thornthwaite, 1948), Hargreaves method (Hargreaves and Samani
1985), Penman-Monteith method (Monteith 1965, Penman 1948), and Modified Penman-
Monteith method (Yang et al. 2019). However, a realistic PET can be estimated using
Penman-Monteith’s equation (Aadhar and Mishra, 2020). This method considers the climate
variables such as temperature, humidity, wind speed and solar radiation. However,
precipitation, maximum and minimum temperatures variables are taken considered in the
present study. Therefore, Hargreaves method is chosen to estimate the PET demand as it is
recommended as the most reliable method after the Penman-Monteith’s equation
(Subburayan, 2011) given in Eq. 3.1. The outputs from this method are comparable with the
Penman-Monteith formula with lesser number of climate data (Subburayan et al. 2018).

PET = 0.00938(Tyax — Tmin)®> (Tmean + 17.8)R, (3.1)

where, Thean, Tmax @nd T are the monthly mean, maximum and minimum air temperature
respectively in °C and R, is represented as the extra-terrestrial radiation (MJ m2d™?).

Table 3.4 Crop characteristics and developmental stages of crops in Aurangabad region

Crop Maize Cotton Wheat
Growing period April-September | May-December | October-February
Root depth, m 0.3-1.2 0.3-0.8 0.3-1.5
Crop coefficient 1.05 1.1 1.1
Base temperature °C 8 12 15
Upper temperature °C 30 35 35
Sowing to emergence, days 6 13 13
Sowing to maximum rooting 107 97 90
depth, days

Sowing to flowering, days 66 97 99
Flowering stage, days 13 53 25
Sowing to start senescence, days 108 131 124
Sowing to maturity (length of crop 132 230 165
cycle), days

3.4.1 SPEI computation
In the current global warming situation, the effect of temperature and

evapotranspiration must be considered for assessing the meteorological drought. Therefore,
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the widely used SPEI is computed, in the present study for future drought assessment, based
on the resulting water balance (P-PET) from precipitation (P) and PET series. SPEI is
estimated to investigate the effects of climate change on drought in the context of global
warming. This index is obtained by fitting the Log-normal probability distribution to the
water balance i.e. the difference (x;) between time series of P and PET for the month (i) as
given in Eq. 3.2.

xK =YKk P, — (PET)h 4 (3.2)

where P,_; is represents the monthly rainfall time series and (PET),_, represents the

monthly evapotranspiration time series.

The probability distribution function for the x series is given in Eq. 3.3.
) = [1+ (—)°] " (33)
X—Y '

where X is considered as the difference between the precipitation and evapotranspiration, t,
6 and y are scale, shape and location parameters, respectively. The CDF values from fitted
distribution are then standardized for obtaining SPEI as given by Eq. 3.4.

+ pw + p,w?
SPE] = W — — b0 T PiW T Pa (3.4)
1 + q1W + qzw2 + q3W3

where,

(3.5)

{ —21n(f(x)) if0 < f(x) <05
W =
J=21In(1 - f(x)) if0.5<f(x) <1

where, po = 2.515517, p1 = 0.802853, p. = 0.010328

qr = 1.432788, g2 = 0.189269, g3 = 0.001308.
3.4.2 Drought characteristics

Drought characteristics can be identified using the Run theory analysis. A run is
defined as the values below a preferred truncation level by considering the positive and
negative run (Yevjevich, 1967). In the present study, a value of -0.8 is considered as the
threshold value below which all the values are taken as drought events. This study considered
three drought characteristics namely drought duration (D), peak (P) and severity (S). The
drought duration is the interval between the onset and offset of drought for a particular

threshold level. The drought peak is computed as the absolute lowest index value reached

55



by the drought time series throughout the period of a run. A simple arithmetic sum of deficit
volume for each month under a certain drought duration can be defined as the drought
severity.
3.4.3 Detection of monotonic trend using Mann-Kendall (MK) trend test
Positive and negative trends associated with the drought characteristics are
investigated using the non-parametric MK trend test and Sen's slope estimator for both
historical and future periods. The S-statistics are used in MK test as suggested by Mann
(1945) and Kendall (1975). If there exists any positive difference between data points, then
the S-statistics increase by 1 and vice versa while zero difference represents that S-statistic
is constant. The S-statistic is given by Eq. 3.6.
S= Xk =k 580(% — Xi) (3.6)
x; and xy are data points in the time series linked with the Sgn is shown in Eq. 3.7.
+1if(x; —xx) >0
Sgn(x; — x) =14 0 if(x; — x) >0 (3.7)
—1if(x; —xx) >0
Positive S-statistic values indicate an upward trend while negative values indicate a
downward trend.
The Z-statistic, as given in Eq. 3.8, is generally used to test the statistical significance

of the detected trends in the data points.

S—1 .
ifS>0
( Jn(n—1)(2n+s)—z§n=1tm(tm—1)(ztm+s)
18

Lstat = 0 ifS=0 (3.8)
S+ ifS < 0

\/n(n—l)(zn+s)—z'"m=1 tm (tm—1)(2tm+5)
18

where n is the total sample associated with the study, r is the number of tied groups in the
data sets and tm is the number of data points in the m" tied groups. The results of the MK
test give the hypothesis, H=1, which says that if there exists a statistically significant trend,
the null hypothesis is rejected when |Z—stat| > 1.96. Throughout the study, the value of 1.96
is taken as a threshold value obtained from the standard normal table at 95% confidence
level. The MK statistic is the identification of the direction associated with the detected
trends. The magnitude of the trend can be determined using Sen's slope estimator (Sen,
1968).
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3.4.4 Regionalization of drought characteristics

The GRB is divided into sub-regions based on the homogeneous drought
characteristics. Since drought is considered a regional phenomenon, the drought studies must
be carried out in a regional perspective. K-means clustering algorithm developed by
MacQueen (1967) is used to achieve the best combination of sub-regions with each cluster
being represented by its centroid. The attributes selected for the present study are latitude,
longitude and drought characteristics to segregate the homogeneous regions. The
mathematical form of K-means clustering is given in Eq.3.9.

Ci = XjL1 D11 lIPy — OpI? (3.9)
IP, — 0,,1|? is the square of Euclidean distance between the n'" data points and m'" cluster
centers, V is the total number of data points and U is the total number of clusters. K-means
is an iterative clustering algorithm technique that aims to obtain the well segregated clusters
given as below:
i. Initially, the data points are divided randomly among K-clusters and then each data
point is allocated to its nearest cluster centers.
ii.  Cluster centers are computed based on the averaging of the coordinates for specific
clusters and each point is reassigned to the closest cluster centroid to obtain new
clusters.
iii.  The steps are repeated till the best result is obtained as the final result shows
sensitivity to initial cluster centers.
iv.  Two validation criteria, namely Silhouette Coefficient (SC) and Dunn Index (DI) are
implemented to justify the total number of clusters as a consequence of K-means
algorithm for obtaining the homogeneous climate regions (Roushangar and Alizadeh,
2018).
3.4.5 Linear scaling (LS) bias correction

The RCMs have systematic biases of climate model simulations relative to
observations and hence, RCM model outputs cannot be used directly in impact assessment
studies. Linear scaling (LS) bias correction method is implemented to adjust the RCM mean
values (Fang et al. 2014). The monthly correction of RCM data is on the basis of the
differences between observed and RCM data.
For precipitation correction is given by Eq. 3.10.

U-(Pobs)

W(Prem) (3.10)

Peorr = Prem X
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For temperature correction is given by Eq. 3.11.
Teorr = Trem + B(Tobs — Trem) (3.11)

where, Pcorr and Teorr are the corrected precipitation and temperature, Prcm and Trewm are the

RCM precipitation and temperature data, Pobs and Tobs represent the observed precipitation

and temperature data.

3.4.6 Reliability Ensemble Averaging (REA)

The weights assigned to the climate models can be derived using an iterative
algorithm called as REA by considering the observational data sets. The uncertainty
generated from multiple RCMs/GCMs are addressed by REA approach developed by Giogi
& Mearns, (2002). The algorithm for the proposed approach is as follows.

Stepl: The CDF deviations of RCMs/GCMs from observational data sets are computed
using Root Mean Square Error (RMSE) for entire GRB. The initial weights are computed
using Eq. 3.12

!/rmsE,

Wk =on i k= 1,2,....,1’1 (312)
Yk=1"/RMSE)
where n = number of RCMs/GCMs and Wk is represented as initial weight of k" RCMs.

Step 2: The weighted mean CDF of RCMs/GCMs are computed using Eqg. 3.13.

CDF MM = 3n_ W cDFR™ M k=1.2,...,n (3.13)
where, CDFRM s represented as the RCM/GCM weighted mean, CDFRM is the future CDF
of k™ RCM/GCM under a particular RCP scenario.

Step3: Inverse RMSE is computed and new weights are assigned and this procedure is
repeated till the converged weights gets generate.
3.4.7 Multivariate copula analysis of drought properties

Univariate analysis of drought characteristics is not capable of determining the
drought frequencies as it assumes that drought variables are interdependent on each other.
Therefore, the trivariate drought analysis is incorporated using copula functions for the
assessment of the dependence structure among the drought characteristics. In this study, peak
(P), duration (D) and severity (S) are considered as dependent random variables to obtain
the multivariate dependence structure. The joint distribution function F(yj ... ..... Vn) IS
given in Eq. 3.14.

F(yq oo ,¥n) = C(uy, eovee.uuy, 0) (3.14)
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where C is the copula distribution function, associated with the copula
parameter 0. Fy, ... ..., F,, are the marginal distribution of random variables (y; ... ..... ,Vn)-
The dependence betweenyy ... ... ,Yn IS characterised entirely by the copula C that is
invariant by monotonically increasing transformations of the margins. The copula function
C is treated as a unique function only when the marginal distributions are continuous. The
joint probability density function linked with the copula function C is given in Eq. 3.15.
f(yq oo o Vo) = f1(y1) X e ee e X 1 (yn) X €[F1(¥1), eoe wee oo, Fn(yn)] (3.15)

The probability density function f; (y,), ..... f,(y,) of the dependent variables are linked to

the density function c as given in Eq. 3.16.

7Ll oo u“)/(aul cer vee ee e OU) (3.16)

where u; = F1(y1),evennnn.n ,and u, = F,(y,)

C(Uq, e ween, Up) =

A trivariate distribution function, fitted to three dependent drought characteristics P,
D and S with marginal CDFs Fp, Fp and Fg can be represented by a copula function that
guarantees the existence of a unique function ¢ such thatall P,D and S € R. The trivariate
joint probability distribution resulting in the parameter associated with the specified copula
function is presented by Eq. 3.17.

f(P,D,S) = fp(P) X fp(D) X f5(S) x c[Fp(P), Fp (D), Fs(S)] (3.17)

Different types of copula families, namely Frank, Gaussian, Gumbel, Clayton, and
Student’s t copula are used in many hydro-meteorological studies. The dependency status
between the interrelated drought variables is represented by the respective copula parameter.
In this study, the parameters of copula families are estimated using the maximum likelihood
estimation (MLE) method based on its fitted marginal distribution. The best fitted copula is
estimated based on the Goodness of Fit (GoF) measures, namely, Kolmogorov-Smirnov test
(KS), Cramer-von Misses (CVM), and Chi-square (Chsq) tests as suggested by Genest et al.
2007). AIC criteria and the maximum likelihood function are also used to justify the best
fitted copula model.
Various copulas are given in Eq. 3.18 to Eq. 3.22

Clayton:Ce(0, B) = (= + B0 =) " for all 6 (0, ) (3.18)
. 1 (exp(-0@)—1)(exp(~0B)-1)

Frank: Cg(a, B) = —5log(1 R ) for® € R{0} (3.19)
. 0 1@ 1B 1 %

Gaussian:Co (o, ) = [©_ [ ——=e dudv (3.20)
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Gumbel:Cq(a, B) = exp{—[—(—loga)® + (—logB)e]l/B},for Bell, o) (3.21)

—1(a0) -1(B) (&2
Student-t: Co(a, B) = f_T;’) f_T(Z) &)

I‘G)\mm
3.3.8 Drought risks assessment

u?+v2-20uv
{1+

e } dudv (3.22)

The trivariate copula model is implemented to obtain the multivariate drought return
periods for different climate divisions of GRB. The return period of a particular event can
be used for designing the hydrologic projects which gives a qualitative and quantitative
measure of risk associated with extreme events. The joint return period analysis is carried
out by using the two probability cases, primary return periods ‘“TANP” and ““TOR” for the
drought variables. The joint occurrence probabilities of drought severity (S), peak (P) and
duration (D) that exceed a definite threshold level (i.e. S >s, P > p, D > d) related to the

trivariate return for ‘TANP” and ‘TR’ are shown in Eq. (3.23) and (3.24)

TAND _ H
P(S=s,D>d,P >p)
_ W
1 —Fs(s) — Fp(d) — Fp(p) + Fsp(s,d) + Fpp(d,p) + Fps(p,s) — Fspp(s,d, p)

= - (3.23)

1-Fg(s)—Fp(d)—Fp(p)+C(us,uz)+C(uz,uz)+C(uz,u;)—C(ug,uz,uz)
TOR — |2
P(Szs,D>d,P>P)

n _ n n

= = = 3.24
1-P(Szs,D=d,P=P) 1-Fgp p(s,d,p) 1-C(uq,uz,uz) ( )

where, Fp(p), Fo(d) and Fs(s) are the marginal CDF of severity, drought, and peak
respectively Here, u = N/n is expressed as the ratio of the total number of years (N) to the
number of drought events (n) for the estimation of drought return period. TANP denotes the
joint return period of P >p, D >d and S > s; and TR denotes the joint return period of P>p,
D>dorS >s.

3.5 Development of Non-stationary Reconnaissance Drought

Index (NRDI) and Non-stationary  Standardized
Precipitation Index (NSPI)

The stationary RDI is calculated based on the assumption that the parameters related
to initial values (&o) are constant with time. Under non-stationarity condition, some

parameters of the distribution function of §o can get changed. The initial value, 8o, is taken
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as the ratio of precipitation series to evapotranspiration series in different time windows
(3-, 6- and 12-month), which can be computed using the Eq. 3.25.

2= B

S (D) = m (3.25)

Further, for computation of NSPI and NRDI, correlation analysis between the
precipitation and global scale climate indices as well as the computed 8o values (3-,6- and
12- month) and the global scale climate indices of different lags (1-12) are performed using
Kendall’s method (Kendall, 1955) with a significance level of 0.05. The significant
covariates from potential large-scale climate indices are evaluated from the best lags based
on the minimum p-value. Further, NSPI and NRDI can be developed using the filtered
covariates using the GAMLSS model.

3.5.1 GAMLSS model development

GAMLSS model used in this study was developed by Rigby and Stasinopoulos
(2005). This model has been widely accepted to obtain the non-stationary parameters related
to its parametric distribution varying linearly and nonlinearly with respect to the significant
covariates. In the present study, random variable y; (precipitation series / the ratio between
aggregated precipitation and evapotranspiration series) was assumed to have a parametric
cumulative distribution function. Related time varying parameters can be modelled as a
function of selected covariates namely SST, SOI, MEI and 10D by using the GAMLSS
model. Independent observations yj, with j = 1,...., n have distribution function f(y;,6;) where
0;= 6} .....9}1 vector of q distribution parameters which denote the location, scale and
shape. The parameters of distributions are related to the monotonic link functions denoted

by gk (.), where k =1, ... ., g, which creates a relationship between covariates and random
variables using a semi-parametric additive model and outlined in Eq. 3.26.

grk(01) = x Wi + Z]h;l hir (i) (3.26)
Here, x is a matrix that represents the explanatory variables of order n x jy (length of the
covariate vectors); 6y (0:1x....... , ejkk) are the vectors of parameters of length jy, and h;y(.)
is an additive function that is flexible in modelling the dependence of parameters of the
response variable with relation to the explanatory variables x;, . Flexibility in modelling the

dependence parameters on the covariates can be achieved using the linear or smoothing form
of variation. The selected covariates based on the Kendall’s 7 lag correlation method for

different time windows (3-, 6- and 12 - months) of precipitation as well as the series of initial
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values (8,) are varied linearly with respect to the parameters (here u, is chosen as a time
varying parameter) of the distribution.

For computing the NSPI for the drought status of a particular location, a two
parametric Gamma distribution is fitted to the precipitation series with linearly varying
location and constant scale parameter, ensuring a relationship between precipitation series

and selected explanatory variables as shown in Eq. 3.29, using Eq.3.27 and 3.28.

ye~Gamma(y, o) (3.27)

e = ap + a1 () + a,l,(t) + -+ apl,(t) (3.28)
where a,, ... ....., a, are estimated mean coefficients for the linear variability for a particular
location after fitting non-stationary Gamma distribution and I, ... ... , I, represent the

explanatory climate variables at time t.
1. -y
1 yg_le /(Gzllt)
1
(01 /o (1/ o2)

The cumulative distribution functions of the aggregated rainfall series were

f(ye, ue, 0) = (3.29)

computed by fitting the non-stationary model and then transformed into standard normal
values using Eq. 3.30.

NSPI = @ (f(y, 1, 0)) (3.30)
where f(y, u, o) are the CDFs of the aggregated precipitation series y; , is the aggregated
precipitation at any time t, and ¢ ™1 is the inverse CDF values.

Further, a non-stationary Log-normal distribution with linearly varying location
parameter (u.) with time considering the respective covariates and with the constant scale

parameter (o), is fitted to the §o values as shown in Eg. 3.31. and Eq. 3.32.

yi~LogNormal (y, o) (3.31)

U = by + byI;(t) + byl (1) + -+ + byl (t) (3.32)
where by, ... ....., by, are estimated mean coefficients for the linear variability for a particular
location for the fitted non-stationary Log-normal distribution and I, ... ... I, are the

explanatory climate variables at time t.
Then using the time variant location parameter and the invariant scale parameter, the

NRDI is estimated using the Eqg. 3.33.
Ve — He

NRDI(t) = (3.33)

Here, y; = In(8,); W IS the time varying arithmetic mean and o is the standard deviation

of the observational variable.
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The parameters for Log-normal and Gamma distribution are estimated by Rigby and
Stasinopoulos (RS) algorithm in the GAMLSS framework. The distribution function f (y;,6;)

is selected based on the largest maximum-likelihood value. Generally, the quality of fitting
is not justified by the maximum likelihood. Besides maximum likelihood, the selection of
both the models (stationary and non-stationary) is evaluated in terms of lowest AIC values.

In NSPI and NRDI, the dry periods are represented as negative values while the wet
conditions are shown as positive values. The classification of NSPI and NRDI is similar to
the standard SP1 and RDI. The drought characteristics can be identified using the Run theory
analysis.

3.5.2 Multivariate dependence modelling using Pair-wise Copula
Constructions (PCC)

Brechmann and Schepsmeier (2013) observed that exchangeable Archimedean
copulas including multivariate Student’s t copula and Normal copulas were not flexible
enough to develop an accurate model dependent status among a larger number of variables.
When the dimension of random variable increases, the construction of a copula becomes
difficult. Regular vines are broadly categorised into two subsets i.e. D-vine and canonical
vine (C-vine) (Kurowicka and Cooke, 2006, Aas et al. 2009). Vine is a flexible graphically
represented tree-like structure that computes the pairwise construction of variables that are
mutually dependent, called as PCC model. In the case of D-vine structure, the node has a
link to more than two edges based on the number of random variables and basically, it forms
a hierarchical trend structure from 1% to the n'" node in the tree.

The D-vine structure is used to model joint probability related to the drought
characteristics P,D,and S with marginal densities Fp, Fp, Fs respectively. Similarly, a
multivariate density function can be decomposed using a C-vine structure. C-vine is a tree-
like structure where the main component is uniquely defined as the root node and the other
variables are the branch nodes directly connected to the root with n-j edges. The D-vine
structure can be converted to a C-vine structure by slightly modifying the structure. Here D-
vine structure is selected for the joint density decomposition as shown in Eq. 3.34.
F(P,D,S) = fp(P) X fp(D) X f5(S)cpp{Fp(P), Fp(D)} X cps{Fp (D), Fs(S)} X

cps;p{Fpp(PID), Fsp(S|D)} (3.34)

cpp{Fp(P), Fp(D)} represents the bivariate copula fitted between Fp(P) and Fp (D).

cps;piFpp (PID), Fsp(S|D)} represents the bivariate copula fitted to the second tree variables
Fpp(P|D), Fsp(S|D).
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Archimedean copulas like Gumbel, Clayton, Frank and the Meta-elliptical copulas
namely Gaussian and Student’s t copulas are used for finding the dependency parameter
among the non-stationary drought variables. The D-vine pair copula structure is constructed
between the drought characteristics by identifying the advantages of pair copula over the
multivariate copula that can capture the entire dependency among the variables. Further,
drought return period of NSPI1 and NRDI were computed.

3.5.3 Estimation methods for pair-copula models
The steps used in this study for pair copula construction are outlined as follows:

Firstly, the dependency measurement between drought characteristics like peak -
duration, duration - severity and severity - peak are estimated using Kendall’s t and
Spearman’s p. Then, an appropriate D-vine model is chosen in terms of the dependency of
variables. Graphical tools like Kendall plot (K-plot) and Chi-plots are useful for the optimum
choice of bivariate copula models that are defined by Genest et al. (2007). The GoF tests,
namely, the Vuong and Clarke tests, are applied to find the suitable copula family for this
study (Vuong, 1989; Clarke, 2007). Commonly used AIC criteria to discriminate between
models are also used in this study to find an optimum solution regarding the selection of
copula family.

After deciding the pairwise copula models, the parameter estimation is conducted
using the MLE method which maximises log-likelihood function. The process of parameter
estimation for the three-dimensional distribution function for a vine structure is given in Eq.
3.35.

L(P,D,S[8) = fp(P) X fp(D) X f5(S) X cpp{Fp(P), Fp(D); Bpp} X
cps{Fp (D), Fs(S); Ops} X
cpsip{Fpp(P|D), Fsp(SID); Opsip} (3.35)

where 6 = (6pp, Ops, Ops|p)
1(P, D, S10) = log{ cpp(Fp(P), Fp(D); 8pp)} + log{cps(Fp(D), Fs(S); Ops)} +
log{cps;p(Fpp(P|D), Fsp(S|D); Bpsip)}
where Fpp (P|D) = h(P, D, 8pp) and Fsp(S|D) = h(D, S, 6ps)

The parameters of the copula function can be estimated by choosing a particular tree
structure. The first tree parameters can be estimated from the fitted copula between the

pairwise variables in the first tree, then the second tree parameter and so on. The association
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between the first tree and second tree can be achieved using conditional distribution function
also namely h functions which are presented in Eq. 3.36 and Eq. 3.37.

h(P/D|6pp)

_ 0Cpp[(F(P),F(D)|0pp)]

_ il (3.36)
h(D/S|0ps)

_ 9Cpgs[(F(D),F(S)[6ps)]

_ o) (3.37)

where, dCp , is the bivariate copula distribution function with parameter 8pp, specified for
peak and duration whereas dCps is the bivariate copula distribution function with
parameter 8ps. The inverse of h function (h™) gives an inverse conditional distribution

function of variables.

3.6 Computation of SPI, RDI and SSI

SPI, RDI and SSI for 3 - and 6 - month time scales are computed for the GRB. SPI
follows the two-parameter (scale and shape parameter) Gamma probability density function.

Gamma (I') probability distribution used to describe precipitation variation is given in Eq.
3.38.

1 - ~*n
Gln) = G exp /P (3:38)

Gamma probability density function is applied to 3-month and 6-month moving
average precipitation series in order to estimate SPI1 by involving a shape factor and a scale
factor, denoted by a and B respectively. Wet periods are specified by positive SPI series,
whereas a sequence of negative values denotes a dry period.

RDI was proposed by Tsakiris et al. (2007) with the concept that meteorological
droughts show the water balance deficit between precipitation and output reference
evapotranspiration. The initial value (ax) is a combined form using a monthly time-step and
can be computed in terms of 3-month and 6-month time scales. RDI is calculated using the
Eqg. 3.39.

K
Yj=1 Pjj

ak(i) = "
2= PETjj

I=1to...n (3.39)

where Pjj and PET;j are the precipitation and PET respectively of the j*" month of the i year.

It is assumed that the standardised RDI follows Lognormal distribution as given in Eq. 3.40.
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RDLL, (1)) = L% (3.40)

i
Oy

where yi is In(ax), ¥y is the arithmetic mean of y and oy, is its standard deviation. The

calculation of RDIs for monthly time steps, which may contain zero-precipitation values,
can be carried out by the lognormal approach.

SSI can be computed by using empirical probability function instead of a parametric
Gamma function. Farahmand et al. (2015) derived the marginal probability of soil moisture
from the GLDAS data site using the empirical Gringorten plotting position as given in Eq.
3.41.

r—0.44
n+0.12

P(X,) =K= (3.41)
where ‘n’ is the total sample size and r is the rank of soil moisture data which have non-zero
values and P( X,,) is the empirical probability. The outputs of Eq. (3.39) and Eq. (3.41) can
be transformed into the Standardised Index (SI) using Eq. 3.42.

SI = ¢~1(K) (3.42)

where @ is the standard normal distribution function and K is probability derived from Eq.
3.41. The computed SPI, SSI and RDI indices were further compared with the multivariate
drought indices computed in this study.
3.6.1 Bivariate and trivariate drought indices

The presence of a unique copula is assumed in the analysis of copula, but the most
important aspect to be noticed here is the selection of a suitable copula function (Nelson,
2006). The multivariate random vectors are demonstrated as X = (Xq,............. ,Xq) with
margins of Fx being continuous and strictly increasing. F(X4,............. ,Xq) is the joint
probability distributions with margins as Fxi,....Fxq. Then there must be a presence of
unique copula C for all X, ............. , X4 € [-90,00] which links the multivariate distribution

and d dimensional copulas as given in Eq. 3.43

Co(0y, v vnvny g) = Pr(Fx, (X1) <@g, vevcee e, Fx, (Xa) < @g)
= F, (Fg}(al), ......... ,Fg;(ad)) (3.43)
It can be noticed that the values of Xj,............. ,Xq are the inverse functions of
(o S , 04
S0 Xy = Fx (), coe vee vee s, Xg = Fx [ (@)
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F(Xq, e o o ,Xg) = C(F1 (X)), e v, FgX))=Q (3.44)
For Bivariate Case,
F(X1'X2) = C(F1(X1)' Fz(Xz)) =Q (3-45)
For Trivariate Case,

F(X1,X2, X3) = C(F1(Xy), F(X,), F3(X3)) =K (3.46)

Gumbel, Clayton and Frank copulas are used to obtain the joint probability
distribution of variables based on their dependency phenomenon. Maximum Pseudo
Likelihood (MPL) estimation method is used for estimating the copula parameters that
imitates the dependence structure among the correlated drought characteristics. The best
fitted copula is then estimated based on the GoF measures. AIC and the maximum likelihood
function are used to justify the best fitted copula model. These criteria can be applied for
obtaining the best fitted copula by comparing the p-values obtained from all the GoF tests
(Genest et al. 2009).
3.6.1.1 Development of Multivariate Standardised Drought Index (MSDI) and

Reconnaissance Trivariate Drought Index (RTDI)

The MSDI can be computed using the joint probability Q as given in Eq. 3.47.

MSDI = ¢~1(Q) (3.47)
For the computation of RTDI, the joint probability given in Eq. (3.47) can be used. The link
between the joint probability of K and the RTDI can be derived using Eq. 3.48

RTDI = ¢~ 1(K) (3.48)
where @1 is the inverse standard normal distribution function. MSDI is formulated as the
joint probability of precipitation and soil moisture while RTDI is the combined form of
precipitation, soil moisture and evapotranspiration.
3.6.2 Cross Wavelet Analysis (CWA)

The combination of Cross Wavelet Transform (XWT) and the Cross Wavelet
Spectrum (CWS) can be represented by CWA. CWA breaks down the time series into time
and frequency domain and detects the significant association with other variables. This
method identifies the combined teleconnection and the variations in the time and frequency
domain of the pair time-series. Morlet wavelet is adopted as mother wavelet as it shows a
good balance between time and frequency localization. Therefore, the CWA is implemented
to examine the potential teleconnection between SOI/IOD/SST/MEI/ISMR events with both

67



MSDI and RTDI time series. The two-time series are taken as oy and 8, and the XWT for
these time series is shown in Eq. 3.49.

web = waowhr (3.49)
where * denotes the complex conjugate and the Cross Wavelet Power (CWP) is denoted as

|[WaB|. The distribution associated with the CWP of oy and B, with the related power

spectra P%and Pf is given in Eq. 3.50.

(3.50)

<|w%(s) Wi | > Zy(p),[PS Ph
0q0p v
where Z,(p) is denoted as 95% the confidence level linked with the probability p. For more

details regarding the CWA, the study by Grinsted et al. (2004) can be referred.
3.7 Hydrologic Model Set Up

SWAT has been chosen for the present study to simulate the hydrological fluxes of
IRB and WRB and for assessment of drought events based on MDI. SWAT is a process
based, semi-distributed basin scale model developed by United States Department of
Agriculture (Arnold et al. 2012). Two sub-basins of GRB are selected i.e. Indravati basin
and Wainganga basin for the application of SWAT. DEM is the basic input data used to
delineate the watershed into number of sub-basins and each sub-basin is joined by a stream
network. Each of the sub-basin is then further sub-divided into hydrologic response units
(HRUSs), based on homogeneous land use, soil, management and topographical features. All
hydrological processes are simulated based on HRUs. Overall, 300 target HRUs were
generated over the 23 sub-basins located in IRB while 280 target HRUs were generated over
the 31 sub-basins in the WRB. The surface runoff was simulated by Natural Resources
Conservation Service-Curve Number (NRCS-CN), considering daily precipitation, LULC
characteristics, hydrologic soil groups and antecedent soil moisture condition. PET was
estimated using Hargreaves equation. QSWAT with QGIS interface is used in the present
study. Model simulations are carried out, considering the first 5-years as warm-up period
(1961-1965) to initialize the important model processes and variables on a daily time step.
The model is simulated with the continuous observed monthly streamflow data available at
the IRB (1966 to 2013) and WRB (1966 to 2017) outlet stations (i.e. Pathagudem and Ashti
gauge station). For IRB, calibration and validation were carried out for the periods of 1966
to 1997 and 1998 to 2013, respectively at Pathagudem station. Similarly, for WRB, the data
of Ashti station was used for calibration (1966 - 2004) and validation (2005 - 2017). SWAT
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calibration and validation were carried out using SWAT Calibration and Uncertainty
Analysis Program (SWAT-CUP) using the Sequential Uncertainty Fitting-2 (SUFI-2) self-
automated algorithm. More details regarding SWAT-CUP calibration and validation is
presented in the result section.

3.7.1 Evaluation of Multivariate Drought Index (MDI)

A reliable and robust copula based multivariate drought index is proposed in this
study. The unique marginal distributions of associative climatic variables can be efficiently
preserved within the joint distribution, which in turn, would be capable of assessing the
deficit status.

Stepl: Marginal distribution and correlation

To assess the assimilated behaviour of meteorological, agricultural and hydrological
droughts, the correlation between precipitation and SWAT simulated variables (PET, soil
moisture and runoff) have been taken into consideration. The degree of correlation was
calculated by Kendall-t correlation approach with an assumption of monotonic association
between climate variables, using the time series of 6-month moving average of climate
variables. From Table 3.5 and Table 3.6, it can be observed that significant correlations are
exhibited between climate variables like precipitation-streamflow, precipitation-soil
moisture and streamflow-soil moisture. The evapotranspiration showed insignificant
positive correlation with other climatic variables. Various types of distributions are fitted to
the climatic variables for obtaining the marginal distributions.

Table 3.5: Kendall-t correlations between climate variables in the Indravati river basin

Variables Precipitation Evapotranspiration Soil moisture Streamflow
Precipitation 1 0.008 0.93 0.54
Evapotranspiration 0.008 1 0.08 0.03
Soil moisture 0.93 0.08 1 0.38
Streamflow 0.54 0.03 0.38 1

Table 3.6: Kendall-t correlations between climate variables in the Wainganga river basin

Variables Precipitation Evapotranspiration Soil moisture Streamflow
Precipitation 1 0.02 0.9 0.4
Evapotranspiration 0.02 1 0.04 0.07
Soil moisture 0.9 0.04 1 0.41
Streamflow 0.4 0.07 0.41 1
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Step 2: Copula analysis

This study considered precipitation (P), evapotranspiration (E), streamflow (Ss) and
soil moisture (S,,) for the development of MDI using four variate copula functions to
examine the joint effects of associative parameters leading to probabilistic assessment of
drought. By considering these as random variables, the dependency structure between multi-

scalar climatic variables were obtained. Fp, Fe, Fs, and Fs, are the marginal distributions
of P, E, ¢ and S, respectively. Fpgss, (P, E, S, Sp,) denotes the cumulative distribution
function (CDF) of the four-variate distribution with  marginal CDFs
as Fp(P), Fg(E), Fs.(S¢) and Fs_ (Sp,). The presence of the unique copula C for all real P, E,
Sy and S¢ is as shown in Eq. 3.51.

(P, E,Stn, Sp) = ¢ (Fp(P), Fg(E), Fs,(S0), Fs,, (Sm) ) fp (P (E)fs, (S)fs, (Sm) = @ (3.51)
where C is the copula function; (FP(P),FE(E), Fs.(S¢) and Fsm(Sm)) are the marginal CDFs
of P,E,SrandS,, respectively; fp(P),fz(E),fs.(S¢) andfs (Sy,)are the probability
distribution functions (PDFs) of the random variables P, E, Sy and Sm respectively.

The MDI used to model the dependence between the climatic parameters can be obtained by
Eq. 3.52, where ¢ is the standard normal distribution function.
MDI = ¢~ 1(q) (3.52)
Step 3: Optimal selection of copula
The optimal copula functions must be selected in order to represent dependence
structure between climatic variables well. Clayton copula fitted well compared to Gumbel
and Frank copulas based on the GoF measures. Hence, the Clayton copula was used in this
study to obtain the joint behaviour of climate variables. The optimal parameters of copula
functions were obtained by MPL parameter estimation criteria. The analytical expressions
of n-dimensional symmetrical Clayton (Cc) is written as shown in Eg. 3.53.
Ce(PE,SeSm) = (PO +E O +57%+5,7°-3) (3.53)
Wet events of MDI were identified by positive values and the dry events were
identified by negative values. MDI was computed at 6-month time scales by aggregating all
hydrological entities using 6-month moving average values. In addition, the drought
characteristics like duration and severity are quantified based on the extensively used Run

theory analysis.
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3.8 Impact of Climate Change on Crop Yield and the Crop-
Drought Relationship with Changing Climate

The methodology includes meteorological, soil and crop data collection and
calculation of PET. Further, AquaCrop model is developed and crop yield is simulated for
maize, cotton and wheat. For future period the crop yield is predicted. The changes in the
yield with respect to observed period was investigated in the study. Further, crop-drought
relationship is obtained considering the correlation between Standardized Yield Residual
Series (SYRS) and SPEI in different lags. The methodological frame work is presented in
Fig 3.3.

Bias corrected CMIP6 GCM model
Meteorological data (IMD precipitation, minimum and scenarios
maximum temperature) S$5P126,55P245,55P370,SSP585
Soil data
Crop data
l Reliability Ensemble Averaging (REA)
Evapotranspiration computaion using ET
calculator
Meteorological data ( precipitation, Future climate data Il
minimum and maximum
AquaCrop modelling temperature)
l SPEI for base and future period “—<ijectiou of future climate
Calibrated and validated - 4
AquaCrop

Future crop production

l

Standardised Yeild Residual
Series (SYRS)

Correlation between SPEI and SYRS

Fig 3.3. Methodological frame work for crop yield prediction and the crop-drought
relationship

3.8.1 AquaCrop model development

AquaCrop generally simulates yield response to water (i.e. water productivity)

considering robustness, simplicity and water condition regionally. The model was developed
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based on the Doorenbos and Kassam (1979) hypothesis to obtain the yield response to water
that led to the model evolution (Steduto et al. 2009). The main are features of the model are:
(i) Evapotranspiration (ETa) consisting of two components, (a) soil evaporation (Es); (b)
transpiration (Ty).
(if) The model uses Canopy Cover (CC) instead of Leaf Area Index (LAI), which is directly
interrelated to loss of water.
(iii) Crop yield is simulated as a function of the total biomass (B) and harvest index (HI)
(iv) It reflects the normalised water productivity (WP*) as conservative parameter which
would be appropriate for different environmental conditions (Foster et al. 2017)

The model includes of two types of parameters: (i) parameters that do not change
with time, location and management practices, referred as conservative parameters; and (ii)
non-conservative parameters basically varying with time, location and management
practices (Montoya et al. 2016). Besides this, AquaCrop structures its soil-crop-atmosphere
continuum by including (i) the soil and its water balance components; (ii) the plant
development, growth and productivity; and (iii) the atmosphere considering the temperature
regime, rainfall pattern, evaporative demand, and CO. concentration. The crop growth
development based on the model is integrated with the soil water balance that provides an
efficient platform to model different agricultural practices (Steduto et al. 2009). Water use
can be estimated based on four stress parameters (Ks); stomatal closure, canopy expansion,
aeration stress and early canopy senescence (Mabhaudhi et al. 2014). AquaCrop also
computes Es and T;. The basic input components for model simulation are climate variables,
crop parameters, management details, and soil properties to simulate the crop yield.

The biomass is simulated based on the cumulative transpiration (7,.) and normalised
water productivity (WP™) during the crop development stage as given in Eq. 3.54.

B=WP*xYT, (3.54)

The harvestable yield () is a function of Biomass (B) and Harvest Index (HI) Eq.3.55.

Y =B x HI (3.55)

In this study, AquaCrop (version 5) is used to simulate the crop yield. Input variables
required for the model are explained below. The water productivity (WP, kg m~3) is the
relationship between crop yield and evapotranspiration and is defined as the kg of grain yield

produced per m?® of water evapotranspired.

72



3.8.1.1 Climate Variables

ET, is evaluated considering precipitation, maximum and minimum temperatures by
using Hargreaves method. The CO concentration during the base period recorded at Mauna
Loa, Hawaii, while for future scenarios CO2 concentration can be generated directly from
the AquaCrop model.
3.8.1.2 Soil parameters

Many soil characters like the number and thickness of soil profiles (m) and saturation
hydraulic conductivity (Ksat) (mm/day), Curve Number, field capacity (percent volume),
permanent wilting point (percent volume), bulk density (gm/cc), total accessible water
(mm/m) are used for assessment root zone soil moisture in a particular region is used in the
study.
3.8.1.3 Crop management details

The non-conservative parameters are purely depended upon crop phenology and can
be influenced by field management practices, planting mode, soil profile etc. The
identification and calibration of cultivar-specific parameters are essential for the effective
model development. Some of the major critical parameters including canopy coefficients
(growth and decline), maximum canopy cover (CCy), reference harvest index (Hlo),
maximum effective rooting depth, sowing to flowering period, sowing to maturity period,
air temperature stress (cold and hot stress) and crop coefficient were identified during
calibration process. The canopy growth coefficient (CGC) estimates the time required to
attain maximum canopy, whereas the canopy decline coefficient (CDC) displays the rate of
decline of green canopy in late season. Under non-stressed conditions, the Hl, is defined as
the ratio of mature dry yield mass to total dry above ground biomass. The minimum and
maximum temperatures when the pollination process starts to fail are known as cold stress
and heat stress, respectively. Due to non-availability of the irrigation scheduling data such
as frequency of irrigation net application, depth of application; the irrigation management

practices, rain-fed irrigation technique was adopted for wheat, cotton and maize cultivation.
3.8.1.4 Simulation of AquaCrop model and parameter selection

AqguaCrop model was calibrated by adjusting the sensitive parameters to simulate the
yield. The calibration and validation periods were different for different crops for the region,
as presented in Table 3.9. The datasets were divided into calibration and validation period

to optimise the model parameters without getting under/over fitted. Calibration is the process
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of fine-tuning non-conservative model parameters in order to enhance the agreement
between observed and simulated yields. To assess the robustness of the model for different
crops and to enhance the model, sensitivity analysis was performed by changing soil, crop
and climatic inputs. It is based on the trial and error approach where one parameter was
selected as a base parameter and the other influencing parameters were changed according
to the base parameter. The same parameters are generally taken in the validation process to
identify the agreement between observed and validation period yield. The procedure was
repeated until a close match between observed and simulated obtained. For future prediction
of yield, the parameters obtained from the calibration process are utilised throughout the

future time series.
3.8.1.5 Model evaluation criteria

Various statistics are available for evaluating the model performance and to compare
the simulated and observed yields from the model (Heng et al. 2009; Steduto et al. 2009).
The model was evaluated using two statistical measures such as coefficient of determination

(R?) and root mean square error (RMSE) and presented in Eq. 3.56. and Eq.3.57 respectively.

2 Ysim@) X Yobs(k) — 2 Ysim(k) X 2 Yobs(k)

R2 (3.56)
\/Z yiim(k) - (Z YSim(k)z) X \/Z y(z)bs(k) - (Z YObs(k)z)
L i - 2 100
RMSE = 21—1(YS1m(k) YObs(k)) % (3.57)
n Yobs

Where ygimx) is denoted as simulated yield for k™" period. Yobs(k) 1S denoted as observed
yield for k™ period and Y,,, represented as the mean observed yield. The calibrated
parameters and the efficiency of the model for the three crops for different regions are
presented in the next chapter.

3.8.2 Standardized Precipitation Evapotranspiration Index (SPEI)

Due to temperature rise globally, the climate change has become more vulnerable
and plays a significant element in governing the drought occurrence. SPEI was initially
computed for the historical period (1951-2014) and then the parameters of the log-normal
distributions were transformed to future period (2025-2099) for different scenarios to

compute SPELI.
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3.8.3 Crop yield data detrending and standardisation

At a regional level, the agro-databases consists of annual yields of maize, cotton and
wheat in Aurangabad region of the Upper Godavari region. Considering different growing
seasons, and cultivation periods, these plants are classified as kharif and Rabi crops.
Compared to Rabi crops, a comparatively short period of drought impacts on the yield of
kharif crops. The sowing to harvest period was May to December for cotton and April to
September for maize. The shortest growing cycles were taken for wheat (October to
February).

The developments in agricultural practices such as increased amount of fertiliser
applications, scientific cropping pattern and crop varieties, better tillage practices, better
weed management, farming tools and seeding technologies, cause an increasing trend in the
yield in the command area (Potopova et al. 2015). So, the obtained crop yield data cannot be
directly used to establish a drought-yield relationship. Thus, the agricultural drought hazard
should be presented by the residuals of the de-trended crop yield series (Potopova et al.
2015). Generally, to remove the biases caused due to non-climatic factors, the crop series
are de-trend by means of linear regression. Thus, the weather parameters only will be
reflected by the residual variation in crop yield series and the residuals signify the yield
under normal climatic conditions. The variabilities of yield among the three crops were
quantified by considering mean and standard deviations for different series. The same log-
normal distribution is fitted to yield series. Then the yield residuals were standardised based
on the Z-score transformation for each crop.

The SYRS is the standardised series that considers the long-term mean and standard
deviation as zero and one, respectively. According to the theory of normal distribution, the
SYRS values >-0.50 or < 0.50 are satisfying the normal condition of the series. SYRS values
corresponding to -0.51 to -0.99 imply low yield losses, -1.00 to -1.49 moderate, and > -1.50
high vyield losses. For computation of future SYRS, the log-normal distributions are
transferred to obtain the SYRS considering the observed yield series for different crops.

Furthermore, the drought can reduce vyields significantly, especially in rain-fed
agricultural systems. A correlation analysis was performed to assess the impact of
meteorological droughts on agricultural production. i.e., calculating the Kendall’s T
correlation coefficient between SPEI series at different lags and crop yield during the
growing season of crops (SYRS). The correlation analysis of SPEI series at different lags

for both future and historical crop yield periods were conducted in this study. It should be
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noted that for the most part, the historical time period was chosen based on observed
agricultural yield data, which ranges from 1997 to 2014.

3.9 Summary

This chapter presents quantitative and qualitative assessments of drought and its
characteristics in Godavari River Basin (GRB) and its sub-basins. RCM models were used
to obtain the future changes of drought considering SPEI. Then non-stationary drought
indices (NSPI and NRDI) were developed and compared with stationary drought indices
(SPI and RDI) Copula based multivariate drought indices were developed to analyse the
integrated effect of different climate parameters on drought. The AquaCrop model was
developed and then future changes of maize, cotton and wheat were obtained based on
CMIP6-GCMs. Based on the performance of these models, if found to be satisfactory, they
can be used for generating and simulating the crop yield. Crop-drought relationship was
obtained by considering SPEI and SYRS with changing climate scenario.
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CHAPTER 4

RESULTS AND DISCUSSIONS
4.1 General

Methodology to meet the objectives of the study described in Chapter-3 is applied to
the study area. The results pertaining to various objectives of the study are described in
this chapter. As already discussed earlier, the first three objectives are applied to entire
study area and for remaining two objectives part of study area is taken up. Results are

presented in forms of graphs, box plots and tables followed by a thorough discussion.

4.2 Spatio-temporal Variation and Future Risk Assessment
Using SPEI

CRU TS 4.03 TS precipitation, maximum and minimum temperature data were
downloaded, and potential evapotranspiration was estimated using the Hargreaves
method. SPEI for the GRB was used to conduct a comprehensive evaluation of historical
and future droughts, incorporating potential associations of drought characteristics.
Drought was assessed historically using SPEI, which considers multiple meteorological
variables such as precipitation and evapotranspiration. The weighted average of the five
RCMs, such as ACCESS 1-0, GFDL-ESM2G, MPI-ESM-LR, CCSM4 and CNRM-CM5
under RCPs 4.5 and 8.5 was calculated using the REA method. The K-means clustering
algorithm was used to identify drought homogeneous regions. The M-K test approach was
used to obtain the trend associated with drought characteristics for both historical and
future periods. Copula functions were also used to estimate multivariate drought return
periods. Changes in drought characteristics in the future periods were assessed using
RCMs under RCP4.5 and RCP8.5 scenarios to gain a better understanding of the impact
of future climatic variability on drought characteristics.

4.2.1 Performances of RCM models and uncertainty analysis

For future drought analysis, five linearly bias corrected RCMs were considered.
Although RCMs are widely used for the assessment of extreme events with respect to
climate change, there are uncertainties associated with the RCM simulated variables. The
sources of uncertainty in climate models are associated with (i) their spatial and temporal
scale, (ii) anthropogenic activities and GHG emissions under different scenarios.
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The individual model and ensemble mean quantile plots for precipitation, maximum
and minimum temperature are presented with in Fig. 4.1. Ensemble models were used to
model the extreme and low precipitation events. For RCP4.5, the precipitation obtained
from the ensemble mean performed well when compared to RCM models. The ensemble
model for RCP8.5 scenario showed satisfactory performance for the precipitation series
while high uncertainties were exhibited RCP4.5 scenario. Comparison of simulated and
observed precipitation showed that models like CNRM-CM5 showed poor performance
for RCP4.5 while ACCESS 1-0 showed poor performance for RCP8.5. From Fig. 4.1, it
can be seen that the ensemble maximum and minimum temperature showed better
performance under both the scenarios. For maximum temperature, the models that
performed poorly are CNRM-CM5 and CCSM4 under RCP4.5. ACCESS 1-0 and GFDL-
ESM-2G showed poor performance under RCP8.5 scenarios. The bias corrected RCMs
were individually under/over estimating the climate parameters. Hence consideration of
isolated models may increase the uncertainty in modelling the drought phenomenon. The
REA approach provides a remedy to this problem by accounting for uncertainty caused
by RCMs.

4.2.2 Spatial variation of reference and future climate parameters

Spatial maps are presented in this section for better understanding of variability
experienced due to annual precipitation, dry days, and fluctuations in minimum and
maximum temperature. The spatial distribution of mean annual precipitation is presented
in Fig.4.2. The MPI-ESM-LR and ensemble model under RCP4.5 captured the extreme
annual precipitation. Similarly, for RCP8.5, ACCESS1-0, MPI-ESM and ensemble model
captured the extreme annual precipitation in the north-east part of the GRB. Further, for
the mean annual precipitation, the ensemble model gave the uncertainty in each grid cell.
The future time period, 2053 to 2099, showed a decrease in precipitation in western part
of the GRB and an increase in the lower reaches of the basin. Significant variations in
annual precipitation were more pronounced under RCP8.5. From Fig. 4.3, except CCSM4,
the maximum temperature hot spots can be identified in the middle part of the basin for
the various climate models. The average annual minimum temperature has a significant
increasing trend in RCP8.5. The minimum temperature hot spots showed prominent
increase in RCP8.5 (Fig. 4.4). The intensification in projected maximum and minimum
temperature will cause increase in evapotranspiration. Nevertheless, increase in

evapotranspiration, variation in precipitation and the increase in the dry spells for future
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time period will further accelerate the drought phenomenon in the GRB due to global

warming.
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Comparison of maximum temperature for (¢c) RCP4.5; (d) RCP8.5;
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Fig. 4.2 Spatial variation of annual mean precipitation for reference period
(1971-2017) and future time period (2053-2099)
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4.2.3 ldentification of homogeneous drought regions

All the meteorological stations located in various climatological regions of GRB were
used in this study. Some of these stations have been facing extremely vulnerable drought
conditions in each season because of significant variability of rainfall among seasons.
There were also variations in climatic variables based on their topographic existence. K-
means clustering was used to identify the homogeneous drought regions. The division of
total study area into homogeneous climate divisions (clusters) was advantageous in
reducing the unwanted noise resulting from the grid-wise frequency analysis (Masud et
al. 2017). For each cluster, the nearest data point to the respective cluster head was chosen
to represent the data point to obtain the results. The cluster validation indices based on K-
means techniques for the historical period are given in Table 4.1. From Table 4.1, the

82



number of clusters equal to 6 captured homogenous areas better in comparison to other
cluster numbers as the values of Silhouette Coefficient (SC) and Dunn Index (DI) are
higher compared to other cluster numbers. From Fig. 4.5, the number of grids in each
climate division were as follows: a total of 21 grids in climate division I, 5 grids in climate
division Il, 4 grids in climate division Ill, 25 grids in climate division 1V, 29 grids in
climate division V, and 22 grids in climate division V1. The homogeneous regions using
the drought features provide a clear foundation for further analyses of the drought events.

Table 4.1 Validation of clustering models based on reference dataset

Number of clusters
Validity index 3 4 5 6 7 8 9 10
Dl 2.85 3.08 | 452 8.1 0 0.15 3.11 0.29
SC 0.377 | 0.454 | 0.33 | 0.511 | -0.214 | 0.389 | 0.211 | 0.178

CLUSTER MAP OF
SPEI3 DROUGHT CHARACTERISTICS

Legend
cluster

cluster1
- cluster2
- — —— Kilometers | | cluster3
0 60120 240 360 480 | clusters
| clusters
_ clustert

Fig. 4.5 Cluster Map of SPEI-3 drought characteristics
4.2.4 Comparison between historical and future droughts

Water resources are sensitive to droughts and the demand for water is mostly met by
amount of precipitation. The prolonged droughts associated with increase in water
demand under climate change will lead to further stress on water shortage. Pathak and
Dodamani, (2019) stated that the 3-month time scales have shorter duration and creates a

greater number of drought events, On the other hand, the 12-month time scale indicates
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less drought events with higher durations. This study considered SPEI-3 for estimating
the meteorological drought events. The drought characteristics for each grid cell were
extracted using the observed and future SPEI series based on Run theory approach for
return period analysis.

Drought events are directly related to high temperature and evapotranspiration. The
study was carried out to determine how precipitation and evapotranspiration affect the
future SPEI in the six climate divisions. The temporal changes of SPEI are presented in
Fig. 4.6. Significant differences exist in signals between the SPEI time series generated
using RCM outputs and the observed climatic data for all the six climate divisions. Higher
peaks in signals were detected in RCP8.5 when compared with RCP4.5 and the reference
period. The number of dry months were significant in case of RCP8.5 and RCP4.5. SPEI
for RCP8.5 and RCP4.5 captured an early onset of drought. The projected SPEI signals
exhibited more severe and persistence drought events. Due to increase in CO2 and
greenhouse gas concentration in future, the temperature and precipitation exhibit high
fluctuations which have great influence on the behaviour of drought indices. SPEI time
series of projected periods and reference periods differ from each other for different
climate divisions showing an intensification of dry spells for future periods

In this section, projected changes of drought characteristics are evaluated based on
the differences between the drought characteristics in future period and reference period.
The projected characteristics are presented by means of density plots and box plots for
different climate divisions and shown in Fig. 4.7 to Fig. 4.12. Significant changes in the
density of drought characteristics were noticed between historical, RCP4.5 and RCP8.5
for different climate divisions. For climate divisions I, I11, VV and VI, higher densities were
observed during the reference period compared to the future scenarios, whereas the
magnitude of projected drought duration for RCP8.5 displayed higher density for climate
division IV. RCP4.5 showed higher densities in projected drought duration for climate
division 1l. Prominent deviations were also observed in the historical and future peak
densities (Fig 4.7) for different climate divisions. The higher peak densities are observed
for RCP 8.5 in case of climate division I and IV (Fig 4. 8). It was observed from the figures
that RCP4.5 series showed higher peak densities for climate division Il. In the case of
climate division Il and V, the reference time series showed high densities in peak. The
density plots for severities for all climate divisions revealed the change in the probability

densities for historical and future scenarios (Fig. 4.9). Larger differences in the projected
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drought severities were observed for all the time periods in the climate divisions. Higher
densities in case of severities were observed for climate division 1, 111, V and VI during
the reference period (1971-2017), whereas, RCP8.5 and RCP4.5 showed higher densities
for climate division 1V and climate division Il respectively. Hengade et al. (2018) stated
that spatial and temporal variation of rainfall were observed in GRB under climate change
scenarios whereas the evapotranspiration of the basin showed a huge increment due to
increasing temperature in most part of the basin. It was also observed that there were huge
variations in the climatic phenomenon of GRB under RCP8.5 than in RCP4.5. So, the
evapotranspiration can intensify the drought phenomenon when the temperature is more
for this river basin. Deficit precipitation and more evapotranspiration in future can impact
the future drought phenomenon.

The variations in the drought characteristics were identified using box plots shown in
Fig 4.10, Fig. 4.11 and Fig. 4.12 for six climate divisions. The historical and RCM-
simulated weightage averaged drought durations were shown in Fig 4.10. Relative
variances were observed between historical and future duration for different climate
divisions. The climate divisions Il and 111 showed higher durations in case of reference
period, whereas for RCP4.5, the climate divisions I, IV, V and VI showed higher drought
durations. Significant variations were also identified in the drought severity and peak
between historical and future periods for the different climate divisions. High peaks were
noticed in case of future periods. RCP4.5 displayed high peaks in climate divisions I, IV
and VI whereas the RCP8.5 exhibited higher peaks in the other climate divisions I, 11l
and V. The climate division Il showed severe drought in case of historical period. RCMs
tend to produce relatively more severe droughts when compared to historical drought. The
drought severities showed high values in case of climate divisions VI for RCP4.5.
Similarly, RCP 8.5 shows high values for climate divisions I, Il, IV and V. Hence, it can
be concluded that the changes in severities are more prominent in case of RCP4.5 and
RCP8.5.

Deficient rainfall caused extreme drought condition in the GRB (Masroor et al. 2020).
During the summer season, temperatures increased which can accelerate the drought
condition. From spatial observation from Fig. (4.2) to Fig. (4.4), RCMs under RCP 4.5
and RCP 8.5 projected a change in drought pattern during 2053-2099 as there would be
an increase in dry spells in GRB. The drought severity, peak and duration would increase

in the future due to the effect of climate change for most of the climate divisions. So future
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drought analysis will be helpful for water managers to understand the drought behaviour
considering the variable climatic phenomenon.
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Fig.4.12 Comparison of drought severity using box plots for historical period (1971-2017)
and future time period (2053-2099) under RCP4.5 and RCP 8.5 for climate division, () I;
(b) 11; and (c) 111; (d) IV; (e) V; (f) VI

4.2.5 Mann Kendall Test of drought characteristics

Mann Kendall (MK) test and Sen's slope estimator were used for trend analysis for the
six climate divisions. For determining the upward or downward trend of drought
characteristics, the parameters of the MK test such as Kendall’s 7, S, and Z statistics were
calculated at 95% confidence level. Tables 4.2, 4.3 and 4.4 show the trend of drought
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duration, peak and severity for historical and future periods for various climate divisions.
Increasing trends in duration were observed in the case of climate divisions I, Il and VI for
reference periods whereas the decreasing trends were observed in the case of climate
divisions 11, IV and V. However, decreasing trends detected for duration were not significant
for the reference period. The results of the MK test for future periods under two scenarios
showed significant positive trends for durations in four climate division (I, 11 and IV and V1)
for RCP4.5 and four climate division (I11, IV, V and V1) for RCP8.5. Further, negative trends
were observed for future periods for climate division Il and V for RCP4.5, and climate
division I and 11 for RCP8.5. The MK test for peak revealed positive trends in climate division
I, 111, VI and VI while negative trends were detected in climate divisions Il and V for the
reference period. Significant increasing trends in peaks were observed throughout the future
period in the case of climate divisions I, 11, I1I, IV, and VI and climate divisions Il, 111, VI,
V and VI under RCP4.5 and RCP8.5 respectively. Downward trends were noticed in the case
of climate division V for RCP4.5 and climate division | for RCP8.5. For reference period,
the climate divisions I, 11, 111, 1V, and VI showed positive Z values for the severity, indicating
increasing trends. Negative Z value of climate division V indicate decreasing trends. The
climate divisions IV and VI showed significant positive trends whereas the negative trends
are no longer significant for reference period. Positive Z values were observed for the climate
divisions 11, 11, IV and V for RCP4.5. Similarly, positive Z values indicate increasing trend
in 11, 111, 1V, V and VI for RCP8.5. Decreasing trends in drought severities were also observed

in climate divisions | and 111 for RCP4.5 and climate division | for RCP8.5.

Table 4.2 Mann-Kendall test statistics of drought duration for historical and future
periods

Climate division | Climate division Il Climate division 111 Climate division 1V Climate division V/ Climate division VI I

His |RCP4.5RCP8.5 His |RCP4.5RCP8.5 His |RCP4.5RCP8.5 His |RCP4.5RCP8.5 His [RCP4.5RCP8.5 His |RCP4.5RCP8.5

T 0.282 | 0.368 | -0.15 | 0.218 | 0.403 [ -0.08 | -0.047 ] -0.053 | 0.51 |-0.083| 0.31 | 0.584 | -0.029 | -0.042| 0.29 0.12 0.13 0.24

Y4 2.13 277 | -1.75 | 1.98 284 | -0.93 | -0.56 | -0.6 2.3 -0.99 | 229 [ 3.043 | -0.35 | -0.48 | 2.25 1.45 1.56 1.98

Sen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.3 Mann-Kendall test statistics of drought peak for historical and future
periods

Climate division | Climate division Il Climate division 11l Climate division IV Climate division V Climate division VI

His [RCP45[RCP85| His [RCP45[RCP85| His [RCP45[RCP85[ His [RCP45|RCP85| His |RCP45[RCP85| His |RCP45[RCP85

T 0.09 003 | -0.10 | -0.02 | 0.17 0.05 0.11 0.09 0.27 0.25 0.13 016 | -0.03 | -0.07 | 0.07 0.08 0.17 0.21

Z 1.00 030 | -1.08 | -0.15 | 1.98 151 1.25 221 2.97 2.73 144 272 | 030 | -0.71 | 276 0.82 2.10 2.92

Sen 0.05 001 | -0.02 | 0.00 0.05 0.04 0.05 0.04 0.16 0.09 0.06 012 | -0.01 | -0.03 | 0.02 0.03 0.15 0.14
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Table 4.4 Mann-Kendall Test statistics of drought severity for historical and future
periods

Climate division | Climate division Il Climate division Il Climate division IV Climate division V Climate division VI

His [RCP4.5|RCP8.5| His |RCP45[RCP8.5| His |RCP45[RCP85| His |RCP45|RCP85[ His [RCP4.5|RCP8.5| His [RCPA4.5|RCP8.5

T 0.11 -0.05 | -0.15 0.02 0.23 0.11 0.07 -0.02 0.19 0.12 0.14 0.23 -0.02 | -0.06 | 0.03 0.20 0.22 0.27

Z 1.19 -0.53 | -1.56 0.20 2.50 118 0.76 -0.21 2.12 1.20 1.58 247 -0.18 | -063 | 027 2.19 211 2.88

Sen 0.11 -0.05 | -0.09 0.02 0.02 0.06 0.06 -0.03 0.20 0.08 0.11 0.22 -0.01 | -0.09 0.02 0.19 0.17 0.29

4.2.6 Trivariate copula models
Exponential and Gamma distributions have been wused in many drought

characterization studies to obtain the marginal distributions of drought properties (She et
al. 2018). Gumbel, Gamma, Log-normal, Weibull and Exponential distributions were
fitted to drought characteristics for evaluating the marginal distributions. Different
statistical measures like AIC and log-likelihood functions were used for obtaining the best
fitted distribution. The variations in drought characteristics could significantly affect the
future drought phenomenon. Hence, trivariate copula analyses were implemented for
reference and future periods by combining the dependency of drought characteristics to
obtain copula parameter. The copula models namely Clayton, Gumbel and Frank were
selected for modelling the trivariate drought characteristics. The copula parameters were
estimated using MPL estimation method. CVM and KS were used for testing the goodness
of fit for comparing the performance of different copula models based on their dependency
between drought characteristics. The maximum p-values of statistics CVM and KS for
5000 sample runs, copula parameters and corresponding log likelihood function values
and the best fitted copulas for a 3-month duration for six climate divisions are given in
Tables 4.5, 4.6 and 4.7 for reference and future time periods. From the Tables, the drought
characterization can be conducted using Frank Clayton, and Gumbel copulas that are
verified at 5% significance level. Copula with the highest p-value was selected to find the
dependence structure among drought characteristics. Overall, Frank and Gumbel copulas
performed well when compared to other copulas. The best fitted parameters were used

further to compute the joint return period
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Table 4.5 Maximum likelihood, AIC values and p-values for using trivariate copula analysis
based on drought characteristics for historical period.

Climate Climate Climate Climate Climate Climate
division I | division Il | division Il | division IV | divisionV | division VI
Copula selected Frank Gumbel Gumbel Frank Frank Gumbel
parameters 7.875 2.271 2.533 8.635 9.297 3.116
Maximum Likelihood 50.19 45.52 62.17 60.87 62.77 72.69
AIC -98.3735 -89.05 -122.335 -119.745 -123.543 -143.379
KS 0.778 0.79 0.685 0.913 0.672 0.83
CVM 0.644 0.587 0.817 0.667 0.541 0.701

Table 4.6 Maximum likelihood, AIC values and p-values for the GoF tests using trivariate copula
analysis based on drought characteristics future period under RCP4.5

Climate Climate Climate Climate Climate Climate
division I | division Il division Il | division IV | divisionV | division VI

Copula selected Clayton Frank Clayton Frank Frank Gumbel
parameter 2.17 7.234 2.355 7.456 7.521 2.285
Max likelihood 79.09 93.24 74.3 86.52 85.21 76.54
AIC -156.18 -184.49 -146.59 -171.04 -168.43 -151.08
KS 0.556 0.754 0.882 0.626 0.951 0.844
CVM 0.47 0.689 0.625 0.511 0.733 0.787

Table 4.7 Maximum likelihood, AIC values and p-values for the GoF using trivariate copula analysis
based on drought characteristics future period under RCP8.5

Climate Climate Climate Climate Climate Climate
division I'| division Il | division Il | division IV division V division VI
Copula selected Frank Frank Gumbel Frank Frank Frank
parameters 8.144 6.836 2.519 8.703 8.253 9.882
Max likelihood 101.4 84.67 104.5 113.5 87.03 93.04
AIC -200.747 | -167.341 -206.988 -224.979 -172.053 -184.083
KS 0.549 0.812 0.766 0.833 0.597 0.662
CVM 0.55 0.645 0.589 0.818 0.552 0.715

4.2.7 Drought risks assessment

The trivariate return levels for different return periods using the ‘AND” and ‘OR’

criteria are presented in Tables 4.8 and 4.9 respectively. It can be seen from the Tables,

that large uncertainties were present in future return periods for different climate divisions

and the uncertainties will increase with the variation in return periods. This uncertainties

of trivariate return period are because of the future variations in projected climatic

parameters based on the increment in GHG and CO2 under the two RCP scenarios.

Comparable differences in the return periods between reference and future were also

observed. It can be seen from the Tables that the joint return period of ‘AND’ case is more

than the ‘OR’ case. The return period was less in climate division Il compared to other

climate divisions for reference period. It can, hence, be concluded that the climate division

I1 showed more frequent drought events. Similarly, the drought events were more frequent
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in climate divisions I, 111, IV and V under RCP8.5 whereas climate division VI showed
more frequent drought under RCP4.5 scenario for the period 2053-2099. The climate
division VI will be more vulnerable with the increase in number of dry days and changing
future climate condition. Overall, the return period analysis revealed that for a certain
drought event, future drought return periods are expected to be lower than the reference
period specifying the probable increase in drought occurrences than those detected in the
past periods. Under the two RCP scenarios, the frequency of dry periods will increase
during 2053-2099. This indicates that more severe and long-lasting droughts can be
anticipated in the future in the GRB. Overall, the frequency, duration, severity, and peak
of droughts will increase in the future. The trivariate copula analysis can be beneficial for
a better management and planning of the water resources considering the extreme events.

Table 4.8 TANP for drought characteristics of SPEI computed based on trivariate copula

models
Rg:trjpnce Climate Climate Climate Climate Climate Climate
. division | division 11 division 111 division IV division V division VI
Period TAND TAND TAND TAND TAND TAND
M
5 18.01 10.7 15.66 12.91 10.88 8.15
10 41.33 17.63 37.14 23.54 27.41 14.21
20 86.63 36.97 61.28 53.14 81.12 51.11
50 454.32 184.13 334.72 310.57 213.54 198.53
iii::r? Climate Climate Climate Climate Climate Climate
. division | division 11 division 11 division IV division V division VI
Period TAND TAND TAND TAND TAND TAND
M
5 9.98 11.35 10.8 9.78 6.61 5.6
10 17.15 20.48 18.07 14.65 15.35 12.31
20 45.46 37.31 32.33 29.38 28.91 21.84
50 86.52 191.28 164.05 89.05 84.66 84.13
IIQQCéFuSrr? Climate Climate Climate Climate Climate Climate
. division | division 11 division 111 division IV division V division VI
Period TAND TAND TAND TAND TAND TAND
M
5 8.15 14.14 8.96 8.67 6.2 7.11
10 15.19 31.03 13.46 12.51 14.26 17.82
20 37.68 78.85 31.34 26.35 24.15 39.11
50 79.69 302.37 125.57 72.13 77.31 96.42
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Table 4.9 TOR return periods for drought characteristics of SPEI computed based on
trivariate copula models

Reference Climate Climate Climate Climate Climate Climate
Return Period division | division Il | division Il | division IV | divisionV | division VI
(T) TOR TOR TOR TOR TOR TOR
5 3.99 3.04 4,79 4.03 4,79 3.14
10 7.54 5.96 8.51 651 6.51 5.08
20 15.87 12.08 16.89 20.33 13.89 15.99
50 35.41 24.33 41.22 45.4 35.22 38.77
RCP4.5 . . . . . .
Return Period C_:I!njate _C:I_lmate _C_Ilr_‘nate _C_Ilmate _C:I_lr_nate _C!lmate
division | division Il | division Il | division IV | divisionV | division VI
(T) TOR TOR TOR TOR TOR TOR
5 3.02 3.2 351 5.88 4.27 2.39
10 6.56 6.77 6.86 9.47 9.33 5.04
20 11.38 13.54 15.09 18.12 18.25 10.52
50 25.6 29.91 33.83 39..66 34.12 23.78
RCP8.5 Climate Climate Climate Climate Climate Climate
Return Period division | division 1l division 1l | division IV | divisionV | division VI
(T) TOR TOR TOR TOR TOR TOR
5 291 4,01 3.12 3.25 2.84 3.13
10 6.16 7.87 5.1 8.49 6.14 5.82
20 13.08 15.04 14.15 16.07 12.65 12.04
50 28.17 31.44 26.83 43.91 29.16 25.47

4.2.8 Conclusion

In this study, 3-month SPEI was derived by using the precipitation and the
evapotranspiration data for the reference and future periods in the GRB. The bias adjusted
RCMs individually showed large uncertainties in climate parameters. Hence, the REA
method was implemented to reduce the uncertainties caused by individual RCMs. A
comprehensive assessment of drought frequency was carried out using trivariate regional
frequency analysis considering the inherent dependence between the drought
characteristics. The main conclusions for objectives are as follows:

The temporal distribution of projected drought characteristics showed an increase in
drought duration peak, and severity in future periods under the two RCPs in different
climate divisions. The mean duration, severity, and peak for climate division V and VI
showed increasing pattern having a longer duration, higher severity and peak than the other
climate divisions.

Statistical homogeneity of the six climate divisions was tested by validation indices.

Sl and DI which identified most of the regions as homogenous.
Based on the drought characteristics, the non-parametric MK test was applied to

assess the variability and pattern of drought characteristics. Most of the climate divisions
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showed significant changes in trend of drought characteristics for future time period for
two RCPs. The increase in drought events can be directly linked to increasing trend in
the area.

The trivariate copula analysis showed that Gumbel and Frank copula performed well
for most of the climate divisions using CVM and KS tests. After analyzing the trivariate
return period for TANP and TOR cases, climate division V showed longer and severe
drought events in comparison with other divisions. Further, frequent drought events were
observed in case of climate divisions II, V and VI.

The return periods in future for different scenarios showed lower values of return
periods than what are observed in the past for climate division VI in case of RCP 4.5,
indicating more frequent drought events in the future periods. The risk of future droughts
will become intensified with the changes of precipitation and evapotranspiration that are
considered using SPEI-based drought index. It can be suggested that appropriate water
resource planning and management activities should be implemented for climate divisions
I1, V and VI by considering the long-lasting behaviour and high severity characteristics of
the drought events

On regional scale, the derived conclusions will be helpful for a precise and systematic
understanding for managing the drought phenomenon. The identification the drought-
prone areas will be useful for water managers for the planning and management of drought
mitigation strategies. For a better management of drought, return period analysis is carried
out for reference and future periods.

4.3 Assessment of Non-stationary Reconnaissance Drought

Index (NRDI) and Non-stationary  Standardized
Precipitation Index (NSPI)

Daily precipitation datasets of resolution 0.25x0.25 were obtained for the period from
1950 to 2017 from the IMD website to develop non-stationary drought indices. Then
precipitation data were converted to monthly scale for the GRB over 68 years (1950-
2017). The NRDI requires both precipitation and evapotranspiration data to estimate the
meteorological drought. Hence, the monthly 0.5x0.5 resolution evapotranspiration data
were downloaded from the CRU 4.03TS data sites for the same period. The data were then
extracted and regridded to the IMD grids. 3-, 6- and 12-month moving average were
computed for cumulative precipitation and evapotranspiration. Further, aggregated global

scale monthly climate indices were calculated aggregated based on 3-, 6- and 12- month
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moving average. Then the lag value from 0 to 12 are computed for each of the four large
scale climate indices. The non-stationary drought indices were developed and then
compared to the stationary drought indices. The trivariate drought characterization were
conducted based on copula analysis. Further, PCC model was also used for assessment of
trivariate drought characteristics.

4.3.1 Non-stationary SPI and RDI indices

For demonstration of results, two sub-basins were selected i.e. Upper Godavari River
Basin (UGRB) and Lower Godavari River Basin (LGRB). The basis for this study to
incorporate large-scale climate indices that affect global climatology by variations of the
phenomenon over the Pacific and Indian oceans (Rashid and Beecham, 2019). The large-
scale climate indices are considered as external covariates for evaluating the NSPI and
NRDI. For the LGRB and URGB, the monthly aggregation of precipitation and
evapotranspiration data were prepared. In addition, the moving average of climate indices
were obtained and then organized into 13 different lag values from 0 to 12. MLE method
is used for the evaluation of parameters of Gamma and Log-normal distributions.
Comparison between the stationary and non-stationary models was carried out by
estimating the two stationary based indices namely SSPI and SRDI by keeping the
parameters invariant with time.

Kendall correlation analysis was carried out at a significance level of 0.05 for the
assessment of significant large-scale climate indices based on different lags for different
time scales. Table 4.10 displays the dominant covariates for parameters of fitted
distributions. It was observed that the 3-month cumulative precipitation and initial
values(§,) showed a significant correlation with SOI and 10D for the UGRB and SOI for
the LGRB for different lags respectively. Similarly, SOI was identified as the most
influential covariate for 6-month aggregated precipitation and &, series for the UGRB
whereas SOI and SST showed a quantitative influence in the LGRB for different lag
values. The MEI, SOI and SST are significantly associated with 12-month cumulative
precipitation and &, for both the sub-basins.

The stationary and non-stationary model performances were compared by minimizing
the AIC. Table 4.11 represents the AIC values for non-stationary and stationary models.
The AIC values obtained from non-stationary models were consistently lesser than those
obtained from the stationary models. Hence, it can be concluded that the non-stationary
models achieved better performance than the stationary models.
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Table 4.10 Significant lag for different large-scale climate oscillations

NRDI SOl | MEI | IOD | SST NSPI SOl | MEI | 10D | SST
UGRB UGRB

3-month 2 0 3-month 2 5

6-month 2 6-month 2

12-month 0 0 0 12-month 0 0 0
LGRB LGRB

3-month 4 3-month 4

6-month 3 2 6-month 3 2

12-month 3 4 3 12-month 3 3 5

Table 4.11 Comparison between stationary and non-stationary models using AIC values

Models NRDI SRDI NSPI SSPI

UGRB UGRB

3-month 5272 5272 7119.57 7119.145

6-month 5615 5617 7591.586 7592.802

12-month 3759 3828 6175.181 6231.682
LGRB LGRB

3-month 6923 6928 8935.202 8937.593

6-month 7268 7278 9266.781 9266.588

12-month 5061 5115 7343.492 7380.212

4.3.2 Spatio-temporal analysis of historical droughts

In the present study, comparison of stationary and nonstationary drought indices at 3-
month scale is carried out for GRB. Stationary and nonstationary drought indices were
plotted for the months of January to May to observe the temporal drought propagation
from January to May. The non-stationary indices showed the actual drought situation since
the large-scale climate indices were considered to construct these indices. From Fig. 4.13,
it can be observed that the NSPI and SSPI showed slightly different drought propagation.
For March, April and May, the western part of the basin showed higher tendency of
drought events. Further, NRDI was computed considering the evapotranspiration and
large-scale climate indices and then, NRDI and RDI were compared. The temporal
propagation of the drought from January to May showed that the drought was propagating
from eastern part to western part of the basin based on both NSPI and NRDI. The western
part the basin is rain shadow region and is considered to be drought-prone. NRDI and RDI
showed intense drought spots when compared to NRDI (Fig. 4.14). Although there were
evidences of drought conditions in the basin, severe drought conditions were identified by

NRDI compared to other drought indices. Moreover, the area under drought was larger
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NSPI

under NRDI compared to other indices. When PET is included, the NRDI captured more
drought-affected areas compared to NSPI during the months of January to May.

Fig 4.15 showed the comparison between the severities of stationary and non-
stationary indices. More severe most droughts occurred in the western part of the basin.
The NRDI identified severe-most drought events compared to other indices as NRDI
considered PET.

Jan Feb Mar Apr May

<

Jan Feb Mar Apr May
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Fig 4.13 Temporal drought propagation of NSP1 and SSPI - for 3-month time scale
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Fig 4.14. Temporal drought propagation of NRDI and SRDI — for 3-month time scale

98



NSPI SSPI

R } {/\ RN S \/\,\
i ¥ "‘\\ E N
RANGEN "? IS
\\ i \__\ .
- e ‘M.I,_ f/ o e (\s
g G
|8-9.5 8-9
9.5-105 9-10
[ 105-125 10512
NRDI SRDI
. "‘—\H/ 1
i,\:\ V\\\h ' o -
\\x__m — M// N \?
ey A —
\.E_! e p‘,\f/
8 -105 s -10
10.5 -12.5 10125
‘ | 125- 15 12.5-14.5

Fig 4.15 Non-stationary and stationary drought severities

4.3.4 Comparison of time series of historical drought

The outputs in the form of rationales were the drought indices that were transformed
from the cumulative probability of rainfall and initial values (§,). Many differences of
signals between the stationary and non-stationary time series were observed which were
due to the inclusion of the external covariates. Large dissimilarities of signals were
observed between NSPI and SSPI for 3-, 6- and 12-month aggregation levels for both the
sub-basins as seen in Fig. 4.16 and Fig. 4.17. In these figures, the green line indicates the
stationary drought while the red line indicates the non-stationary drought. These
dissimilarities were apparent in case of SPI and RDI and were fairly different from the
NSPI and NRDI. For comparing stationary and non-stationary models, box plots for 3-,
6-and 12-month time windows were prepared and shown in Fig. 4.18 and Fig. 4.19 for
UGRB and LGRB to identify the variations of the drought characteristics. In these figures,
P1, D1 and S1 refer to non-stationary drought characteristics while P2, D2 and S2 refer to
stationary characteristics. After comparing 3-month NSPI and SSPI, significant
differences were identified in the drought characteristics in the LGRB (Fig. 4.18(b))
compared to the UGRB (Fig 4.18(a)). Larger differences were evident in the drought
severity and peak between NSPI and SSPI for the LGRB for 3-month time scale. In the
case of duration, the UGRB showed significant variations between NSPI and SSPI for 3-
month time scale whereas the LGRB showed less variations. Fig. 4.19 shows the
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comparison between NRDI and SRDI for the spatial and temporal variability of drought
characteristics for the 3-month time scale. The estimated severities of SRDI series were
lower than the severity from NRDI series in the case of UGRB whereas the estimated
peaks of SRDI series were higher than those estimated from the NRDI series ((Fig.
4.19(a)). In case of 3-month time series, for the LGRB, peak and severity estimated from
SRDI were higher than that of the NRDI (Fig 4.19(b)). The comparison between NRDI
and SRDI showed some variations in drought duration. From Fig. 4.18(c), it can be
observed that the UGRB displayed significant changes in peak, duration and severity of
the 6-month NSPI and SSPI series. For LGRB, there were significant variations of peak
and severity whereas lesser variations of NSPI and SSPI were identified for the drought
duration as can be seen from Fig. 4.18 (d). No significant variations of the drought
characteristics were observed for NRDI and SRDI for both the sub-basins for the 6-month
time scale as seen from Fig. 4.19(c) and Fig. 4.19(d). Comparison of the non-stationary
and stationary approaches for the 12-month time scale for the drought events in both sub-
basins showed significant deviations in drought characteristics (Fig 4.19 (e) and Fig. 4.19
(F)). It can, hence, be concluded that substantial variations of drought characteristics were
evident in the case of 12-month time window compared to 3- and 6-month time window.

The differences observed in the drought characteristics between the stationary and
non-stationary models have significant role in the implementation of sustainable water
resources systems planning and management. In this study, non-stationary models have
been considered for further analysis using trivariate and pairwise copula.

4.3.5 Trivariate copula models

The Archimedean copulas (Gumbel, Frank and Clayton) and elliptical copulas
(Gaussian and Student’s t) were used in this study to evaluate the dependence structure of
drought characteristics. Different types of distributions namely Gumbel, Gamma, Log-
normal, Weibull and Exponential distributions were fitted to the drought characteristics.
The best fitted distributions for various time scales were obtained based on AIC criteria
and the log-likelihood values to find the marginal distributions (Table 4.14 to Table 4.19).

The best fitted trivariate copula model among the copulas was decided by analysing
the GoF measures - KS, CVM, Chsq considering 2000 sample runs including AIC, log-
likelihood values and their estimated parameters are presented in Table 4.12 and Table
4.13. The results from Tables show that the Student’s t copula performed better than the

other trivariate copula models. The parameter estimation of trivariate copula analysis was
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conducted using the MLE method. Parameters of Student’s t copula show a single degree
of freedom which is the driving force for the dependency of all other pair of variables.
Because of this limitation, a unique method of copula construction named as vine copula
was introduced. The conventional vine model was compared with the multivariate
Student’s t copula. The pairwise copula construction method was used in this study to find
the copula parameters which further can be used to evaluate the frequency of non-

stationary drought indices (NSPI and NRDI).
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Fig. 4.16. NSPI and SSPI drought signals during 1951-2017 for 3-, 6- and 12-month time
scales: (a) 3-month time scale for UGRB; (b) 3-month time scale for LGRB; (c) 6-month
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Fig.4.18 Comparison by box plots for drought variables peak (P), duration (D) and severity (S) for NSPI and
SSPI for different time scales: (a) 3-month time scale for UGRB (b) 3-month time scale for LGRB; (c) 6-
month time scale for UGRB (d) 6-month time scale for LGRB; (e) 12-month time scale for UGRB (f) 12-

month time scale for LGRB.
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Fig. 4.19. Comparison by box plots for drought variables peak (P), duration (D) and severity (S) for NRDI
and SRDI for different time scales (a) 3-month time scale for UGRB (b) 3-month time scale for LGRB; (c) 6-
month time scale for UGRB (d) 6-month time scale for LGRB; (e) 12-month time scale for UGRB (f) 12-
month time scale for LGRB
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Table 4.14. Fitted probability distribution functions, AIC and Log-likelihood for
duration of NSPI series for different time scales and periods for UGRB and LGRB

UGRB 3-month 6-month 12-month
S Log- Log- Log
Distribution | AIC | i ctihood | AIC | likelihood AlC likelihood
Gumbel 100 | -93.39 | 236.68| -116.34 335.86 -165.93
Gamma | 188.41| -92.205 | 233.87| -114.93 318.24 15712
Lognormal | 192.62 | 9431 | 239.89| -117.94 302.9 1149.49
Weibull | 186.72| -91.36 | 22931| -112.65 3214 158.7
Exponential | 251.51| -124.75 | 281.32 | -139.66 32045 1159.22
LGRB 3-month 6-month 12-month
C Log Log Log
Distribution | AIC | 1y elihood | A€ | likelihood AICT ikelihood
Gumbel | 165.45| -80.72 | 2315 | -113.75 346.53 171.26
Gamma | 15552| -75.76 | 229.03| -112.51 334.18 1165.09
Lognormal | 163.8 | -79.9 | 236.09| -116.04 328.35 16217
Weibull | 146.82| 7141 | 2235 | -109.75 3372 -166.6
Exponential | 276.14| -137.07 | 280.68| -139.34 341.62 7169.81

Table 4.15. Fitted probability distribution functions, AIC and Log-likelihood for peak of

NSPI series under different time scales and periods for UGRB and LGRB

UGRB 3-month 6-month 12-month
Distribution | AIC |ikeL|i%%od AlC Iikeliiohgood AlC IikeLIic;]good
Gumbel | 13343 | -6471 | 4352 | -19.76 | 91.78 | -43.89
Gamma | 13134 | -6367 | 29.72 | -12.86 | 9435 | -45.17
Lognormal | 132.74| -64373 | 3396 | -14.98 | 91.03 | -4351
Weibull | 131.23 | 6361 | 3802 | -17.01 | 102.75| -49.37

Exponential | 217.61 | -107.8 | 187.1 | -9255 | 1775 | -87.75
LGRB 3-month 6-month 12-month
. Lo Lo L
Distribution | AIC | i | AIC | i g | AIC | ikelinood
Gumbel | 85.816 |  -40.9 7865 | -3732 | 8373 | -39.86
Gamma | 90.623| -4331 | 7622 | -36.11 83 395
Lognormal | 87.62 | 4181 | 77.25 | -36.62 82.9 -39.45
Weibull | 103.18| -49.59 | 7858 | -3729 | 86.81 414
Exponential | 20582 | -101.91 | 187.22| -9261 | 18353| -90.769
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Table 4.16. Fitted probability distribution functions, AIC and Log-likelihood for severity
of NSPI series under different time scales and periods for UGRB and LGRB

Upper sub
basin 3-month 6-month 12-month
Log Log Log
Distribution AIC likelihood AIC likelihood AlC likelihood
Gumbel 273.74 -134.87 294.89 -145.44 394.94 -195.47
Gamma 272.69 -134.34 293.06 -144.53 364.01 -180
Lognormal | 278.61 -137.3 300.88 -148.441 347.51 -171.75
Weibull 272.05 -134.02 289.29 -142.64 363.43 -179.71
Exponential | -155.24 312.49 327.99 -162.99 362.05 -180.02
Lower sub
basin 3-month 6-month 12-month
Log Log Log
Distribution AIC likelihood AIC likelihood AlC likelihood
Gumbel 241.33 -118.66 287.233 -141.61 393.384 -194.69
Gamma 239 -117.5 285.64 -140.82 375.87 -185.93
Lognormal | 247.83 -121.91 291.72 -143.86 371.56 -183.78
Weibull 235.19 -115.59 284.31 -140.15 377.42 -186.71
Exponential | 324.94 -161.47 -158.56 319.13 377.85 -187.92

Table 4.17. Fitted probability distribution functions, AIC and Log-likelihood for
duration of NRDI series under different time scales and periods for UGRB and LGRB

Upper_ 3-month 6-month 12-month
sub-basin

T Log Log Log
Distribution | AIC 1 4 elihood AlIC ikelinood | AIC likelihood
Gumbel | 22122 | -108.61 159.3 77,65 203.23 299.61
Gamma | 21825 | -107.12 157.32 76.66 175.59 85.79
Lognormal | 22219 | -109.09 159.86 77.93 155.79 75.89
Weibull | 21622 | -106.11 158.33 7716 173.39 84.69
Exponential | 258.16 | -128.08 223.4 1107 173.94 85.97
Lower_ 3-month 6-month 12-month
sub-basin

o Log Log Log
Distribution | AIC | 4 elihood Al ikelihood | AIC likelihood
Gumbel | 214.03 | -105.01 138.47 6723 | -11057 22514
Gamma | 21027 | -103.13 134.62 6531 | -100.87 205.74
Lognormal | 210.79 | -103.39 136.69 66,34 297,58 199.16
Weibull | 2114 | -1037 138.42 6721 | -100.86 205.72
Exponential | 24432 | -121.16 25034 | -12417 | -100.88 203.76
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Table 4.18. Fitted probability distribution functions, AIC and Log-likelihood for peak of
NRDI series under different time scales and periods for UGRB and LGRB

Upper
sub-basin 3-month 6-month 12-month
Log Log Log
Distribution AIC likelihood AIC likelihood AIC likelihood
Gumbel 90.76 -43.38 172.49 -84.24 41.83 -18.91
Gamma 76.42 -36.21 170.39 -83.19 48.96 -22.48
Lognormal 85.63 -40.81 169.9 -82.953 43.25 -19.62
Weibull 42.23 -19.116 172.24 -84.12 61.01 -28.5
Exponential 199.13 -98.56 222.75 -110.37 96.24 -47.12
Lower
sub-basin 3-month 6-month 12-month
Log Log Log
Distribution AIC likelihood AIC likelihood AIC likelihood
Gumbel 128.87 -62.43 133.47 -64.73 48.51 -22.25
Gamma 126.96 -61.48 138.08 -67.04 49.48 -22.74
Lognormal 127.46 -61.73 132.83 -64.41 48.28 -22.14
Weibull 127.424 -61.712 149.66 -72.83 53.37 -24.68
Exponential 194.32 -96.16 208.92 -103.46 100.63 -49.31

Table 4.19. Fitted probability distribution functions, AIC and Log-likelihood for severity
of NRDI series under different time scales and periods for UGRB and LGRB

Upper
sub-basin 3-month 6-month 12-month
Log Log Log
Distribution AIC likelihood AIC likelihood AIC likelihood
Gumbel 292.67 -144.33 271.4 -133.7 247.01 -121.5
Gamma 290.31 -143.15 268.58 -132.29 202.69 -99.34
Lognormal 297.06 -146.53 269.22 -132.61 177.55 -86.77
Weibull 287.88 -141.94 271.47 -133.73 196.23 -96.11
Exponential 317.36 -157.68 296.99 -147.49 206.67 -102.33
Lower
sub-basin 3-month 6-month 12-month
Log Log Log
Distribution AIC likelihood AIC likelihood AIC likelihood
Gumbel 298.1 -147.05 248.33 -122.16 254.08 -125.04
Gamma 288.77 -142.38 248.31 -122.15 226.92 -111.46
Lognormal 285.84 -140.92 249.69 -122.84 218.84 -107.42
Weibull 291.06 -143.53 251.55 -123.77 225.98 -110.99
Exponential 301.67 -149.83 307.73 -152.86 225.78 -111.89

4.3.6 Drought characteristics modelling using pair-copula models
Suitable vine structure between C-vine and D-vine models and the copula families
must be selected for the dependent pair variables viz., peak (P) - duration (D), duration
(D) - severity (S) and severity (S) - peak (P). The dependency measures between pair
variables of drought events are given in Table 4.20, which explains stronger dependence

between D and S. The next stronger dependency was observed between S and P. It can,
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hence, be concluded that S must be present between D and P for the D-vine structure. D-
vine structure was selected for further analysis since it had more flexibility towards
forming the pair copula rather than the C-vine structure because it creates a relationship
of variables with a particular root variable that defines the key elements of the structure
(Aas et al. 2009). Kendall’s plots and Chi-plots of the pair variablesP - D, D -Sand S -
P are given in Fig. 4.20 to Fig. 4.31, which show positive dependencies between the pair
variables. The dependency measures and the Kendall’s and Chi-plots of the pair variables
indicate that D and S showed the strongest dependency than other pairs. The copula
families for the pair variables were selected from various copulas based on Clarke and
Vuong tests (Table 4.20).

In the first phase of parameter estimation, the sequential parameters were estimated
using the MLE method for pairs of drought variables D/S (6ps) and S/P (8sp). Then for
the second phase of parameter estimation, the respective h functions (conditional
distribution function) were computed between the pair variables D/S and S/P. The
parameter, Opp,s was then estimated for drought variables (D/S, S/P). The copula families

selected for the pair variables and the parameters estimated in the second phase (6pp/s)

considering the best fitted copula for the LGRB and UGRB for different time scales are
given in Table 4.21.

Table 4.20. Dependence measurements among drought characteristics P - D, D - Sand S
- P using Kendall’s 7 and Spearman’s p methods for NSPI and NRDI series under
different time scales and periods for Upper and Lower Godavari River basins

NSPI
UGRB 3-month 6-month 12-month
P-D D-S S-P P-D D-S S-P P-D D-S S-P
Kendall 0.31 0.697 0.601 | 0.2679 0.861 0.374 | 0562 0.859 0.701
Spearman | 0.403 0.83 0.782 0.353 0.954 05179 | 0.726  0.956 0.87
LGRB

PD DS S-P PD DS S-P PD DS S-P
Kendall | 021 0619 059 | 0317 0815 05 | 0415 0874 0.532
Spearman | 0.265 0737 076 | 0412 0923 0664 | 0569 096  0.737
NRDI
UGRB

PD DS S-P PD DS S-P PD DS S-P
Kendall | 034 081 053 | 028 0604 067 | 051 081 073
Spearman | 047 093 069 | 037 073 085 | 0609 0.9 0.84
LGRB

PD DS S-P PD DS S-P PD DS S-P
Kendall | 038 077 061 | 031 065 0644 | 043  0.78 0.7
Spearman | 05 089 079 0.4 079 083 | 052 084 081
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Table 4.21. Pairwise Copula Construction (PCC) for NSPI and NRDI drought
characteristics

NSPI Parameter
UGRB Clarke \Vuong AlIC Selected Bivariate Copula (Oppys)
3-month 0.62 0.914 -180.48 Clayton Gaussian Clayton 0.469
6-month 0.457 0.506 -197.83 Clayton Frank Gaussian 0.429
12-month 0.0248 0.984 -286.033 Frank Gumbel Frank 6.16
NSPI Parameter
LGRB Clarke \Vuong AlIC Selected Bivariate Copula (Oppys)
3-month 0.0026 0.0619 | -169.575 Clayton Clayton Gumbel 0.244
6-month 0.62 0.692 -205.71 Clayton Gaussian Frank 0.46
12-month 0.024 0.0607 -273.98 Gaussian Gumbel Gaussian 0.623
NRDI Parameter
UGRB Clarke | Vuong AlC Selected Bivariate Copula (Oppys)
3-month 0.703 0.6874 | -199.82 Clayton Frank Gaussian 0.4855
6-month 0.526 0.358 -168.57 Gaussian Gaussian Clayton 0.291
12-month 0.511 0.556 -140.8 Gumbel Gumbel Gumbel 1.79
NRDI Parameter
LGRB Clarke \Vuong AlIC Selected Bivariate Copula (Opp/s)
3-month 0.055 0.009 -224.66 Gaussian Frank Clayton 0.362
6-month 1 0.459 -171.19 Clayton Clayton Gaussian 0.338
12-month 1 0.418 -147.97 Gumbel Gumbel Gumbel 1.694

In the second phase of parameter estimation, the appropriate copula was selected
from the first phase of copula families fitted for estimation of the sequential parameter.
For example, in the case of the generated drought characteristics from 3- month NRDI,
Gaussian copula was selected for estimation of the second phase of the parameter. Finally,
the PCC model, accounting for the drought variables was compared with the derived
trivariate copula using the AIC criteria. It can be observed from Table 4.22 that the AIC
of the trivariate model showed higher AIC value compared to PCC based model. It can,
hence, be justified that the PCC model can flexibly model the drought characteristics by
transforming the bivariate model to a higher dimensional model.

Table 4.22. Comparison between Student’s t copula and PCC model

UGRB Student’s t copula PCC
3-month -168.3 -180.5
6-month -184.2 -197.8
12-month -269.6 -286
LGRB Student’s t copula PCC
3-month -167 -169.6
6-month -205.2 -205.7
12-month -267.1 -273.98
UGRB Student’s t copula PCC
3-month -187.05 -199.8
6-month -154.646 -168.57
12-month -133.197 -140.8
LGRB Student’s t copula PCC
3-month -184.635 -224.66
6-month -165.9 -171.19
12-month -129.371 -147.97
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4.3.7 Return period analysis of drought variables
The frequency analysis of droughts can be related to the occurrence of extreme events
and their probability distributions. Here, the values of peak (P), duration (D) and severity
(S) that exceed their truncation level (S > s,D > d, P > p) were considered for analysing
the multivariate drought frequency. The joint return period analysis was carried out by
using the two probability cases i.e. (i) ““AND” and (ii) ““OR” return periods for the
drought variable using the approach suggested by Salvadori and Michele (2004).
Table 4.23 to Table 4.26 show the joint return periods (‘‘AND” and ‘‘OR”
cases) obtained from the trivariate copula and PCC models using the drought

characteristics for NSPI and NRDI for 3-, 6- and 12- month time scale. Here T{pp TC

and T(",}IEI,E) PCC represent the joint return periods for trivariate Student’s t copula and PCC

model respectively. Similarly, the joint return period of “OR” case can be denoted as

TSR TC and T(QSRDP)PCC for trivariate Student’s t copula and PCC models respectively. The

““OR” joint return periods were less compared to ‘‘AND” return periods in both trivariate
Student’s t copula and PCC models. It can, hence, be concluded that the frequency of

drought was more in the "OR” case when compared to the "AND" case.

Table 4.23. Comparison of ‘AND ‘return periods for drought characteristics of NRDI
computed based on trivariate student’s t copula (Tst) and pair-copula model (Trc) for
Upper and Lower sub-basin

12-
UGRB 3-month Tst Trc | 6-month Tst Tec | month Tst Trc
5 5.31 6.36 5 5.58 5.76 5 6.93 7.96
10 13.14 14.89 10 12.45 14.61 10 15.85 18.02
20 27.04 32.02 20 22.82 29.88 20 42.01 54.99
50 68.74 7754 50 57.55 66.25 50 76.55 91.27
12-
LGRB 3-month Tst Tpc | 6-month Tst Trc month Tst Trc
5 5.86 6.41 5 5.26 6.11 5 6.83 8.41
10 17.04 18.48 10 12.99 14.57 10 16.17 19.34
20 32.08 38.5 20 25.42 31.84 20 36.74 48.11
50 73.78 89.04 50 52.74 56.17 50 86.21 113.46
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Table 4.24. Comparison of ‘OR’ return periods for drought characteristics of NRDI
computed based on trivariate student’s t copula (Tst) and pair-copula model (Trc) for
Upper and Lower sub-basin

UGRB 3-month Tst | Tec m06r;th Tst | Tec mcﬁh Tst | Tec
5 337 | 4.06 5 321 | 3.97 5 4.17 5.74
10 795 | 8.04 10 699 | 7.48 10 8.74 9.31
20 1525 | 1687 | 20 1343 | 14.78 20 1601 | 1755
50 3528 | 4109 | 50 2908 | 36.01 50 3829 | 44.88

LGRB 3-month Tst | Tec moi-th Tst | Tec mgﬁ{h Tst | Tec
5 354 | 3.95 5 321 | 355 5 414 | 468
10 7.822 | 8.06 10 698 | 7.77 10 971 | 1004
20 13.99 14.96 20 12.09 13.57 20 17.21 19.71
50 4181 | 4567 | 50 3418 | 40.77 50 4199 | 48.98

Table 4.25. Comparison of ‘AND’ return periods for drought characteristics of NSPI
computed based on trivariate student’s t copula (Tst) and pair-copula model (Trc) for
Upper and Lower sub- basin

UGRB mgnth Tst | Tec | 6-month | Tsr Tec mtznth Tst Tec
5 591 | 604 5 56 6.02 5 513 5.43
10 | 1387 | 1431 10 1196 | 1316 10 1129 | 1523
20 | 3258 | 292 20 2699 | 2825 20 2184 | 2923
50 | 738 | 78.96 50 69.08 | 7128 50 62.71 69.0
LGRB mgnth Tst | Tec | 6-month | Tsr Tec mtznth Tst Tec
5 552 | 501 5 6.47 7.62 5 6.65 6.79
10 | 1018 | 10.99 10 154 1454 10 1339 | 1781
20 | 2381 | 2524 20 3528 | 3841 20 24 37.43
50 | 5475 | 57.48 50 7419 | 81577 50 6145 | 8715

Table 4.26. Comparison of ‘OR’ return periods for drought characteristics of NSPI
computed based on trivariate student’s t copula (Tst) and pair-copula model (Trc) for
Upper and Lower sub-basin

UGRB mosr;th Tst | Tpc | 6-month | Tst Trc mtzn_th Tst Trc
5 354 | 484 5 3.32 4.12 5 4.041 476
10 | 881 | 977 10 7.89 9.02 10 6.47 9.87
20 | 1791 | 1953 20 16.45 17.41 20 15.65 17.05
50 | 4442 | 4833 50 38.88 40.18 50 36.05 4521
LGRB m03r-1th Tst | Tec | 6-month |  Tsr Tec mizn_th Tst Trc
5 416 | 485 5 3.99 4.99 5 3.07 471
10 | 788 | 897 10 7.75 9.57 10 7.58 8.05
20 | 1684 | 14.02 20 14.87 16.88 20 1352 17.99
50 | 3477 | 4121 50 29.68 32.04 50 30.04 38.85
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Fig. 4.20 Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of
NSPI for UGRB for 3-month time scale: Plots in 1 column represent the Chi-plots of pairwise
characteristics and 2" column represent the Kendall plots of the pairwise drought characteristics
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Fig. 4.21 Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of
NSPI for LGRB for 3-month time scale: Plots in 1% column represent the Chi-plots of pairwise
characteristics and 2" column represent the Kendall plots of the pairwise drought characteristics
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NSPI for UGRB for 6-month time scale: Plots in 1% column represent the Chi-plots of pairwise
characteristics and 2" column represent the Kendall plots of the pairwise drought characteristics
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for LGRB for 6-month time scale: Plots in 1% column represent the Chi-plots of pairwise
characteristics and 2™ column represent the Kendall plots of the pairwise drought characteristics
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Fig. 4.25. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of NSPI
for LGRB for 12-month time scale: Plots in 1% column represent the Chi-plots of pairwise
characteristics and 2™ column represent the Kendall plots of the pairwise drought characteristics
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Fig. 4.26. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of NRDI
for UGRB for 3-month time scale: Plots in 1% column represent the Chi-plots of pairwise
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Fig. 4.27. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of
NRDI for LGRB for 3-month time scale: Plots in 1% column represent the Chi-plots of pairwise
characteristics and 2" column represent the Kendall plots of the pairwise drought characteristics
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Fig. 4.28. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of
NRDI for UGRB for 6-month time scale: Plots in 1% column represent the Chi-plots of pairwise
characteristics and 2™ column represent the Kendall plots of the pairwise drought characteristics
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Fig. 4.29. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D
of NRDI for LGRB for 6-month time scale: Plots in 1% column represent the Chi-plots of
pairwise characteristics and 2™ column represent the Kendall plots of the pairwise drought
characteristics
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Fig. 4.30. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D
of NRDI for UGRB for 12-month time scale: Plots in 1% column represent the Chi-plots of
pairwise characteristics and 2" column represent the Kendall plots of the pairwise drought
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Fig. 4.31. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D
of NRDI for LGRB for 12-month time scale: Plots in 1% column represent the Chi-plots of
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characteristics

118



4.3.8 Conclusions

The concept of non-stationarity was employed by aggregating the precipitation and
initial value series with the large-scale climate indices with lag time of 0-12 months. It
can be concluded that the non-stationary meteorological droughts considering the large-
scale climate indices are capable of capturing the drought events in comparison with
stationary drought indices. Both precipitation and evapotranspiration based non-stationary
drought indices can be applied to identify more complex aspect of drought occurrence.
The probabilistic estimation of drought characteristics must be carried out to estimate the
recurrence intervals of droughts. The standard multivariate copulas were not flexible
enough to model the higher dimensional copula for assessment of extreme events. The
drawbacks of multivariate copulas can be removed using D-vine copula models. PCC
model was also used to find the drought return periods. The conclusions derived for
objective 2 are:

i. The non-stationary models performed better compared to the stationary models as
the AIC values were lower in case of non-stationary models. UGRB, showed a
significant influence at various lags for 3-, 6- and 12- month time scales. SOI, MEI
and SST were the most influential large-scale covariates at different time scales.

ii. The non-stationary and stationary models showed variations in their time signals.
The box plots between drought variables revealed that the drought properties
significantly varied under stationary and non-stationary conditions in the both the
basins for 12-month time scale.

iii. The "AND" and "OR’ joint return periods for PCC models were higher compared
to those obtained from the trivariate Student’s t copula model for both the non-
stationary models. The drought frequencies for PCC model were higher as
compared to the trivariate copula model.

iv. After analysing the trivariate and PCC models, the return periods showed
variations between “AND” and “OR” return periods for drought in different time
scales. The variations of return periods between trivariate Student’s t copula and
PCC model are significant in case of 12-month time scale for both the non-
stationary drought events. To summarize, the ‘AND’ and ‘OR’ return periods
predicted by PCC model are more reliable compared to trivariate Student’s t

copula model as PCC model performed better than the trivariate Student’s t copula.
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4.4 Multivariate Bivariate and Trivariate Drought Assessment

The CRU precipitation and evapotranspiration data were downloaded from the site.
GLDAS VIC soil moisture data was obtained from the site and then soil moisture data
was gridded to CRU grids to maintain spatial uniformity. The multivariate drought indices
such as MSDI and RTDI were constructed. MSDI integrates the precipitation and soil
moisture while RTDI defines the integration of precipitation, soil moisture and
evapotranspiration. The SPI and SSI were taken for cross comparison with MSDI.
Similarly, a comparison of RDI and SSI with RTDI was carried out to identify the
variations in multivariate drought conditions. Similar to SPI, the MSDI and RTDI can also
have negative values, which imply the dry period. Positive values imply the wet period
and the zero values of the drought refer to normal climate conditions.

4.4.1 Computation of SPI, RDI and SSlI

SPI, RDI and SSI were computed by using the method discussed previously. The
values of these indices lying between 0 and -0.99, -1.00 and -1.49, -1.50 and -1.8, and
greater than
-1.8, define mild, moderate, severe, and extreme droughts. The negative drought index
values were considered for estimation of dry events and the positive drought values were
considered for wet periods. Run theory analysis was carried out in this study to
characterize the drought events such as drought peak, duration and severity.

4.4.2 Bivariate dependency measurement

Dependencies between precipitation and evapotranspiration, precipitation and soil
moisture and evapotranspiration- soil moisture were obtained using rank based
dependency measurement techniques like Kendall’s T and Spearman’s p rank correlation
coefficients. Table 4.27 shows that best correlation was observed between precipitation
and soil moisture whereas negative correlation was exhibited between both precipitation-
evapotranspiration and evapotranspiration - soil moisture. However, it may be argued that
the dependence pairs (precipitation -evapotranspiration and evapotranspiration- soil
moisture) are not significantly positive and does not indicate that it was independent
because other than normality condition, the zero correlation was similar to the dependency
of parameters (Genest et al. 2007). Moreover, from a hydrological point of view,

precipitation, evapotranspiration and soil moisture were dependent upon each other.
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MSDI and RTDI were then developed based on the parameters obtained for the best fitted
copula.

Table 4.27 Dependency measurements of precipitation-soil moisture, evapotranspiration-
precipitation and evapotranspiration and soil moisture

Variable Kendall’s t Spearman’s p
Precipitation and soil moisture 0.307 0.477
Evapotranspiration and precipitation -0.123 -0.164
Evapotranspiration and soil moisture -0.34 -0.517

4.4.3 Copula based joint probability bivariate and trivariate analysis

The bivariate model was derived using the joint probability distribution of the
precipitation and soil moisture. The information on precipitation and soil moisture were
combined using Frank, Gumbel and Clayton copulas. Trivariate analysis was carried out
using the joint probability distribution of precipitation, soil moisture and
evapotranspiration using Meta elliptical copulas (Student’s t copula and Normal copula)
as the process of evapotranspiration cannot be neglected from climatological point of
view. The parameters of copulas were estimated using a rank-based Pseudo Likelihood
Estimation (MPL). The GoF tests - Sks, Tevm, Chsg (for 1000 sample runs) and AIC justified
the best copula for both bivariate and trivariate formulation of drought indices. The
estimated parameters for copulas and their respective values are given in Table 4.28 and
Table 4.29. The dependence between precipitation and soil moisture can be modelled by
Frank copula since the GoF measures showed higher values and AIC showed lower values
(Table 4.28). This can further be used for the computation of MSDI based on the
parameters obtained from Frank copula. Table 4.29 shows the trivariate analysis modelled
by Student’s t copula. Though the p-value greater than 0.05 cannot be ignored in the
copula formation, but in this case the best fitted copulas (Frank and Student’s t copula)
were selected for further analysis of MSDI and RTDI.

Table 4.28 P-values for the GoF tests - Sks, Tcym and Chsq for deriving 3-month and 6-
month based on Gumbel, Frank and Clayton copulas using precipitation and soil

moisture
3-month |  Gumbel Frank Clayton | 6-month | Gumbel Frank Clayton
Sks 0.7 0.81 0.4 Sks 0.66 0.74 0.41
Chsg 0.1 0.21 0.3 Chgg 0.19 0.46 0.3
Tevm 0.5 0.9 0.2 Tevm 0.36 0.27 0.29
AIC -105.9 -117.9 -32.7 AIC -135.87 -143.1 -63.96
pPML 1.4 3.2 0.4 pPML 15 3.69 0.58
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Table 4.29 p-values for the GoF tests - Sks, Tevm and Chgq for deriving 3-month and 6-
month based on Student’s t copula and Normal copula using precipitation, soil moisture

and evapotranspiration

3-month Student’s t Normal 6- month Student’s t Normal
Sks 0.35 0.02 Sks 0.26 0.25
Chgg 0.4 0.39 Chgg 0.41 0.4
Teovm 0.46 0.31 Tevm 0.28 0.11

AIC -272.8 -149.16 AlIC -277.31 -189.52
gPML 0.55 0.54 gPML 0.54 0.54

4.4.4 Spatial variation of drought severities

For spatial distribution of drought severities in the region, the inverse distance
weighting interpolation (IDW) method was implemented for interpolating the maximum
drought severities at each station, subsequently, the distribution of the spatial map of the
study area were obtained. Furthermore, the spatial distribution of drought severities of
MSDI and RTDI were compared in Fig. 4.32. Based on Fig. 4.32, during 1971 to 2017,
the maximum drought was high in central to western part of the region while, a lower
drought severity was observed in the eastern part of the basin. The eastern part of the basin
belongs to the low- drought incidence area. After comparing MSDI-3 and MSDI-6, it was
observed that the areal extent of MSDI-6 was larger than MSDI-3 in the western part of
the basin. Similarly, severities of RTDI-6 showed larger areal extent compared to
severities of RTDI-3 throughout western part of the region. When comparing MSDI and
RTDI, it was observed that drought severities of RTDI-6 showed severe-most events
compared to other indices for different time scales. Furthermore, the western part of the

basin was recognized as the region with the highest drought severities.

MSDI-3

MSDI-6

High : 19 High : 32

Low:5 Low:10

RTDI-6

High : 39

High :23
Low:6 “Low:13

Fig 4.32. Maximum drought severities of MSDI and RTDI
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4.4.5 Comparison between SPI, SSI and MSDI

SPI shows the behaviour of meteorological drought which has a faster onset and offset
of drought behaviour. SSI is used for the agricultural drought which depends on the
temperature, soil characteristics and soil groups dominant in the particular area. The
combination of SPI, SSI and MSDI can be understood in a better way by dividing the
whole time series into two parts, viz. (1981-1999, and 2000-2017). However, perfect
correlations may not exist between SPI, SSI and MSDI, but they may follow the similar
drought evolution pattern. Fig. 4.33(a) shows that some there are some signals which
showed agreements and some which showed disagreements between SPI, SSI and MSDI.
SSI-3 showed a moderate drought condition in April 1987 while MSDI showed an
extreme drought condition for the same time period. October-1986 showed a severity in
drought behaviour with respect to SPI-3, SSI-3 and MSDI-3. More fluctuations in drought
signals occurred in the 3-month MSDI time series. It can be observed that the 3-month
MSDI and SSI drought condition continued from September 1996 to May 1998 from the
Fig. 4.33 (a). For the period from 2001 to 2010, the SPI-3 showed recovery from drought
when compared to SSI-3 and MSDI-3. The negative values that indicated that the drought
continued from the year 2011 to 2013, whereas wet events continued between September
2013 and September 2014. Severe drought conditions were observed again in the year
June 2015-2016. It can be seen that the MSDI showed combined effect of SPI1 and SSI.

In the time window of 1981-1999, SSI-6 showed early recovery of drought when
compared to SPI-6 while the MSDI-6 showed higher negative drought trend when
compared to SSI and SPI. Severe drought was observed during May 1985 since both the
precipitation and soil moisture had negative trend and as a result of this, the MSDI-6
showed a severe drought condition (a combination of SPI and SSI). The SPI-6 showed
moderate drought condition whereas MSDI-6 showed severe drought conditions during
the period January 1992 to May 1992 and May 1997 to September 1997. SPI-6 showed
that most of the drought signals were having positively trending values, while SSI-6
showed most of the signals have negative drought conditions for the time period 2001-
2010. MSDI-6 showed peak drought conditions from May to September 2001 and January
to May 2005. The severity of drought can clearly be noticed during May 2012, April 2013
to May 2013 and December 2015 for MSDI-6 whereas SP1-6 showed moderate drought
conditions. It is evident that when the drought time scale increased from 3-month to 6-
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month, less difference in drought trend is observed between SPI and SSI, whereas the

MSDI showed more fluctuating drought conditions.
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Fig. 4.33. Comparisons of SPI, SSI and MSDI for 3-month and 6-month time scale;
(@) 3-month time scales during the time window 1981-1999; (b) 3-month time
scales during the time window 2000-2017; (c) 6-month time scales during the time
window 1981-1999; (d)6-month time scales during the time window 2000-2017

4.4.6 Comparison of RDI, SSI and RTDI

The RTDI is compared with RDI and SSI. RDI was chosen because it gave combined
drought information of precipitation and evapotranspiration. Precipitation alone cannot be
used for the detection of drought. The RDI-3 and SSI-3 are generally consistent but
discontinuity was also observed between time signals. It can be observed from Fig 4.34
(a), that the time signals showed that positive and negative drought signals were different.
For example, May 1998 showed a positive trend in RDI-3 and a negative trend for SSI-3.

Ultimately, a negative RTDI-3 emerged in this case. If the average rainfall is more and
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evapotranspiration is less (RDI>0) and the soil moisture was dry (SSI1<0) for that period
of time, then the combination of the three variables (RTDI) can create a negative drought
trend (RTDI <0). For a 3-month time scale, the drought duration of RTDI signals was
similar to SSI. The severity aspect of drought must not be neglected in this circumstance.
During the years 1981 t01999, it can be observed that SSI showed more negative drought
trends than RDI. So, RTDI showed a drought event whichever was lower between RDI
and SSI. The peak drought was seen in May 1984, April 1985, and September 2016 for
RTDI-3. However, the extremely dry months for RDI were May 1985, December 2000,
January 2001 and May 2014 and for SSI, they were for the periods of June 1980, March
1987, August to November 1997, January to May 1998. May 2006.

The initial drought was captured by RTDI-6 as shown in Fig. 4.34 (c). The drought
peaks were more prominent in RTDI-6 as compared to RDI-6 and SSI-6. In January 1986,
it was observed that negative signals of drought were captured for both RDI-6 and SSI-6.
So, the RTDI-6 also followed these negative trends of the drought indices. For the year
2016, negative drought effect of RTDI was identified due to the combined effects of the
RDI and SSI. RTDI captured drought earlier than SSI and RDI. In most of the cases, the
drought condition was captured well for RTDI and SSI whereas RDI was not efficient in
capturing the dry events in the chosen 38 years of time frame. The drought duration and
severity of the drought were different for RDI-6, SSI-6 and RTDI-6. The drought was

more severe in the case of RTDI-6.
4.4.7 Comparison between MSDI and RTDI

MSDI and RTDI have been estimated using copula functions for 3, 6- month time
scales during the period 1981-2017. Here the hypothesis contained a comparison between
MSDI and RTDI for better understanding of droughts based on different climatic
parameters. Similar evolution pattern between MSDI and RTDI was observed during the
period 1981-1999 (Fig. 4.35(a)). After analysing the data, it can be observed that there
was an agreement and disagreement of drought signals between the MSDI and RTDI.
Further, soil moisture anomaly status can influence the drought persistence and continuity
between MSDI and RTDI. For example, an agreement between signals were visible in the
time period of (1991-1992) and disagreements of time signals were visible in the time
period of (1984-1985). Moreover, the onset and offset of drought events for MSDI and
RTDI were different. So there is a probability that the drought characteristics must be

different for these two indices. For example, RTDI-3 conveyed a severe drought condition
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in September 1985, whereas MSDI-3 showed a mild drought phenomenon. September
2004 and 2011 showed severe drought conditions for MSDI-3 and RTDI-3. So, the
drought indices showed consistency with each other. It is evident that the 3-month drought
signals displayed more variations when compared to 6-months drought signals.  For
example, January 1986 showed severity drought pattern for MSDI-6 and RTDI-6. More
consistency between signals were observed in the case of 6-month MSDI and RTDI as
seen from Fig. 4.35(c) and Fig. 4.35(d).
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Fig. 4.34. Comparisons of RDI, SSI and RTDI for 3-month and 6-month time scale. (a)
represents 3-month time scales during the time window 1981-1991; (b) represents 3-
month time scales during the time window 2000-2017; (c) represents 6-month time
scales during the time window 1981-1991; (d) represents 6-month time scales during the
time window 2000-2017.

126



Drought Indices

Drought Indices

Drought Indices

(a) ——MSDI —— RTDI

;
g
!
=

Jan-81
May-81
Sep-81
Jan-82
May-82
Sep-82
Jan-83
May-83
Sep-83
Jan-84
May-84
Sep-84
Jan-85
May-85
Sep-85
Jan-86
86

6

7

.

-

8

38

(b) ——MSDI ——RTDI

Fig. 4.35 Comparisons of MSDI and RTDI for 3-month and 6-month time scale. (a)
represents 3-month time scales during the time window 1981-1999; (b) represents 3-
month time scales during the time window 2000-2017; (c) represents 6-month time
scales during the time window 1981-1999; (d) represents 6-month time scales during the
time window 2000-2017.

4.4.8 Teleconnection between MSDI and RTDI with large scale climate
indices

The study focussed on the effect of ENSO events, IOD and ISMR on MSDI and RTDI
(3 and 6-month) for the GRB. The teleconnection between the MSDI and RTDI climate
indices with ENSO events, 10D and ISMR will be helpful for understanding the
variability of meteorological and agricultural drought. Hence, Cross Wavelet Analysis
(CWA) was implemented in this study for investigation of the association among drought
indices and large-scale climate indices. The wavelet coherences between monthly MSDI
and RTDI with climate indices (MEI/SST/SOI/IOD/ISMR) in the region are illustrated in
Fig. 4.36 and Fig. 4.37 respectively for 3-month time scale for the time period of 1981-
2015. For 6-month time scale MSDI and RTDI are represented in Fig. 4.38 and Fig. 4.39
respectively. The energy densities are represented by the colour bars. The arrows represent
the phase relationship. The arrows pointing left show anti-phase relationship while the
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right pointed arrows define in-phase relationship and the 95% confidence level against red
noise is given as a thick contour. Fig 4.36 (a) displays correlation pattern with MEI signals
during 1991-1998 and 2013-2011. It can be observed from Fig. 4.36 (b) that the SOI
signals showed a strong coherence pattern with MSDI-3 during the periods 1988-1998
and 2012-2015 in the basin. Fig. 4.36 (c) display correlation of SST with drought signals
(MSDI-3) during 1991-2007 whereas 10D exhibited a significant correlation with MSDI-
3 during 1981-1985, 1988-1994 and 2011-2015 represented in Fig. 4.36(d). Fig. 4.36(e)
show that ISMR has a strong correlation with MSDI-3. ISMR displayed a strongest
teleconnection pattern with MSDI-3 among all the large-scale climate indices.

The RTDI-3 showed teleconnections with MEI and SOI as can be observed from Fig.
4.37 (a) and Fig. 4.37 (b). In Fig. 4.37 (b), SOI showed a statically significant coherence
with RTDI-3 during 1992-1997 and 2010-2015 at the 95% significance level. For RTDI-
3, the teleconnections with SST were observed in Fig 4.37(c). The most evident
teleconnection with SST and RTDI-3 was observed during the period 2006-2015 and SST
confirmed a strongest correlation pattern with RTDI-3, when compared to other climate
indices. 10D also demonstrated a strong teleconnection pattern with RTDI-3 during 1983-
1990 and 2013-2015 illustrated in Fig. 4.37 (d). As given in Fig. 4.37 (e), the ISMR signals
showed a fairly good association with RTDI-3 series. The coherence patterns of MSDI-6
and large-scale climate indices are given in Fig. 4.38(a) to Fig. 4.38(e). It can be seen that
MEI exhibited a statistically significant teleconnection with MSDI-6 during 1988-2010 at
95% significance level as seen in Fig. 4.38(a). From Fig. 4.38(c), the strongest correlation
was identified between the MSDI-6 and SST signals. The SOI, 10D and ISMR showed
fairly good correlation with MSDI-6 drought events in the region. Fig. 4.39(a) describes
a good correlation of RTDI-6 with MEI during 1981-2001 and 2011-2015. RTDI-6 also
exhibited a good teleconnection with SOI, SST, IOD and ISMR. From the Fig. 4.39(c)
and Fig. 4.39(e), it can be confirmed that the RTDI-6 showed a significant and strong
correlations with SST and ISMR. Hence it can be concluded based on the observations
from CWA that SST and ISMR emerged as the most significant indices which can impact
the meteorological and agricultural droughts in this region. These are reflected in the

variations of MSDI and RTDI, which have been developed in the study.
4.4.9 Conclusions

The integration of agricultural and meteorological drought plays a vital role in the
prediction and reliable monitoring of drought. In this study, copula based MSDI and RTDI
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were developed for a clear representation of meteorological and agricultural features of
drought in the hydrological process.

From the study, it is observed that MSDI and RTDI are important for capturing a
quantitative and qualitative drought which consists of both agricultural and
meteorological drought occurrences to examine the evolution of drought phenomenon.

These indices are applied to study the drought in the GRB. Further, copula analysis
showed that the parameters of Frank copula can be used for obtaining the MSDI while
Student’s t-copula can used for obtaining RTDI.

The resultant MSDI and RTDI are based on the joint probability cumulative
distribution function whose sensitivity towards capturing the persistence, onset, and
termination of drought is more prominent than SPI, RDI and SSI. This can help in
understanding the real-time spatial as well as temporal drought mechanism. It also can
help in early detection of drought condition rather than SPI, RDI and SSI.

The MSDI and RTDI exhibited comparable performance when compared to the
corresponding SPI and RDI, and it is more sensitive to capturing the onset, persistence,
and termination of droughts.

CWA was performed in this study to identify the teleconnections between large scale
climate indices and the drought events. CWA showed MSDI and RTDI (3- and 6-month)
had been significantly influenced by ENSO, 10D and ISMR patterns. Among all the
climate indices, ISMR showed a strong and effective association with MSDI-3 whereas
SST showed strong teleconnection with RTDI-3. Additionally, SST had strong influence
on MSDI-6, while RTDI-6 showed a strong association with SST and ISMR signals. So,
it can be suggested that the ENSO events, 10D and ISMR play a major role in drought
variability over the basin.

MSDI and RTDI can capture the meteorological and agricultural drought variability
detecting the onset and termination of droughts. These multivariate drought indices will
be beneficial in deeper understanding of the drought mechanisms and further enhance the
drought monitoring technology. Overall, the study showed the teleconnection of MSDI
and RTDI with large scale climate indices can be potentially used for drought monitoring

and assessment under the climate variability in India.
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Fig. 4.36. The wavelet coherences between MSDI and large-scale climate indices for 3-month
time scale. (a)-(c) wavelet coherences between MSDI and MEI/SOI/SST; (d)-(e) wavelet
coherences between MSDI and IOD/ISMR.
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4.5 Impact of Climate Change on Multivariate Drought

IMD precipitation, minimum and maximum temperature data of resolution 0.25x0.25 were
downloaded from the site. SWAT model was calibrated and validated based on streamflow

observations for WRB and IRB. The future water balance components were estimated based on
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the ensemble bias corrected CMIP6-GCM. Then the water balance components like
evapotranspiration, soil moisture and streamflow variables were obtained from the model for
future and historical period. Further, MDI was constructed considering precipitation and SWAT
simulated variables for both reference and future periods. Drought characteristics were then

compared to detect the changes in different scenarios.
4.5.1 Calibration and validation of SWAT

Sensitive analysis is essential for identifying the most sensitive key parameters, which can
accurately calibrate the model. Redundant parameters during calibration process can be reduced
by sensitivity analysis. Selected parameters were auto calibrated and validated using SUFI2
optimization algorithm in the SWAT-CUP (Arnold, 2012). Parameter ranges were initialized and
then the uncertainties were reduced by optimizing these ranges using SUFI2 algorithm that can be
quantified through 95% prediction uncertainty (95PPU) bands. After calibration, parameters were
updated in SWAT-CUP with new parameter values obtained from the best simulation. The
parameters used for calibration and validation and fitted parameters are presented in Table 4.30
and Table 4.31 for WRB and IRB respectively. Then, the model was validated using newly
obtained parameters for the particular validation periods. Model performance criteria like
coefficient of determination (R?), PBIAS (Percentage Bias), Nash-Sutcliffe Efficiency (NSE)
(Nash and Sutcliff, 1970), R- and P-factor were employed to analyse the performance status of the
model. The 95PPU band indicated that the simulated streamflows were well captured at
Pathagudem and Ashti outlet points (Fig. 4.40). The NSE, R? PBIAS, R and P-factor for
calibration and validation for both the basins are presented in Table 4.32. The performance
statistics of WRB and IRB watershed models indicated that observed streamflows were well
simulated and the peaks and troughs were well captured by the simulated streamflows. The
calibrated model was then simulated using gridded ensemble mean GCM data for the period
between 1920 and 2100 by considering 5 years of warm-up period. Four future SSP scenarios have
been considered in this study by dividing the time period into futurel (2025-2062) and future2
(2063-2100). The drought condition during the baseline period (1976-2013) was then compared
to the future projections.
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Table 4.30 Calibrated parameters of Wainganga (Ashti)
('R denotes replaced parameter and V denotes relative parameter)

Parameter” Fitted Value Min value Max value
R__ CN2.mgt 0.1 -0.2 0.2
V__ALPHA BF.gw 0.5 0 1
V__GW _DELAY.gw 17.1 0 450
V__ GWQMN.gw 715.3 0 1000
V__ OV _N.hru 0.1 0 1
V__EPCO.hru 0.5 0 1
V__CH K2.rte 15.1 0 100
V__ CH_N2.rte 0.1 0 0.3
V_CH Kl.sub 3.8 0 300
V_CH Nl.sub 12.6 0 30
V__ESCO.hru 0.2 0 1
V__ REVAPMN.gw 329 0 500
R__SOL_K(..).sol 0.1 -0.2 0.2
R__SOL_AWC(..).sol -0.1 -0.2 0.2
R__SOL_BD(..).sol 0 -0.2 0.2
R__SOL_Z(..).sol 0.1 -0.2 0.2
V__ GW_REVAP.gw 0.1 0 0.2
V__ CANMX.hru 65 0 100
V__ RCHRG_DP.gw 0.7 0 1
V__ SURLAG.bsn 8 0.1 24

Table 4.31 Calibrated parameters of streamflow of Indravati (Pathagudem)
('R denotes replaced parameter and V denotes relative parameter)

Parameter Fitted value Min Max
R__ CN2.mgt 0.149 -0.2 0.2
V__ ALPHA BF.gw 0.9975 0 1
A__GW DELAY.gw 151.875 0 450
V__GW_REVAP.gw 0.08525 0.02 0.2
A GWQMN.gw 707.5 0 1000
A REVAPMN.gw 233.75 0 500
V__ESCO.hru 0.0825 0 1
R__SOL_AWC(..).sol 0.113 -0.2 0.2
V__EPCO.hru 0.7175 0 1
R_ SOL _K(..).sol -0.2 -0.2 -0.2
R__SOL_Z(..).sol 0.143 -0.2 0.2
R__SOL _BD(..).sol 0.141 -0.2 0.2
V_ CH N2.rte 0.20625 0 0.3
V_ CH K2.rte 36.54087 0.05 200
V__ CANMX.hru 9.75 0 100
R__CH N1l.sub 10.35 0 20
R__ CH_Kl.sub 58.75 0 100
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Table 4.32 Performance evaluation SWAT model calibration and validation of IRB and WRB

Pathagudem P-factor R-factor PBIAS R? NSE
Calibration 0.54 0.56 -15 0.88 0.89
Validation 0.68 0.70 -9 0.93 0.94

Ashti
Calibration 0.51 0.74 -17 0.86 0.82
Validation 0.58 0.81 -13 0.94 0.93
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Fig. 4.40 (a) 95 PPU plot for Indravati basin; (b) 95 PPU plot for Wainganga basin

4.5.2 Projected changes in annual mean precipitation, and maximum and
minimum temperatures

MDI will be highly influenced by the changes in precipitation, evapotranspiration, streamflow
and soil moisture for the sub-basins. So, the variation in the climatic pattern need to be
investigated. The spatial distributions of projected changes in ensemble averaged precipitation,
maximum and minimum temperature under four SSPs are given in Fig. 4.41 (a) to 4.41 (f). The
spatial distributions of mean annual % changes in precipitation, minimum and maximum
temperatures are presented in Fig. 4.42 (a) to Fig. 4.42 (f). For IRB and WRB, there will be an
increased annual mean precipitation for future period with respect to the reference period. The
spatial dispersion of WRB and IRB are similar to the reference climate under four scenarios. There
will also be an increase in the areal extension of precipitation over WRB and IRB. The spatial
pattern of mean annual precipitation over WRB under all SSPs revealed that the projected
precipitation significantly will increase in the south-eastern part of WRB under all the SSP
scenarios as can be seen in Fig. 4.41 (a). For the future 1 period, the projected annual mean
precipitation over WRB is likely to increase by 4 to 18%, -10 to 14 %, 10 to 27% and 14 to 27%
under SSP126, SSP245, SSP370 and SSP585 respectively. Similarly, for future 2 period, the mean
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annual precipitation over WRB is likely to increase by 13 to 30%, 15 to 32%, 16 to 35 % and 21
to 37% under SSP126, SSP245, SSP370 and SSP585, respectively presented in the Fig.4.42 (a).
A major change is expected in projected annual mean precipitation over the northern part of WRB.
For the rest of the WRB, a steady change for futurel and future 2 period under all the SSP scenarios
IS expected.

Spatial plot of IRB shown in Fig. 4.41 (b) suggests that the annual mean precipitation will be
high in the southern parts whereas in the north-eastern region, the annual mean precipitation will
be low. The areal extent of precipitation will increase for all future scenarios. Simulation from
futurel showed that mean annual precipitation will increase by 12 to 20%, -5 to 13%, 10 to 24%
and 8 to 27 % under the four scenarios. The mean annual precipitation will have significant
increments of 10 to 27%, 11 to 29%, 15 to 29% and 20 to 35% in future 2 under the four scenarios
for IRB (Fig. 4.42 (b)). It can, hence, be concluded that the large increase in the projected mean
annual precipitation over WRB and IRB is expected to occur under SSP585 scenario in future 2
period. In future 2 also, an increase in the projected annual mean annual precipitation can be
expected over both the basins.

The projected changes in the annual mean maximum and minimum temperature over WRB
and IRB showed spatial variability when compared to the reference period. The analysis of spatial
plots for mean annual maximum and minimum temperature showed that the northern part of WRB
showed lower temperature, while the southern parts of the basin showed higher annual maximum
and minimum temperature under all scenarios (Fig 4.41 (c)). The western parts of the IRB will
experience an increase in annual mean maximum temperature for the future scenarios while the
mean annual minimum temperature will have an increasing pattern over south-eastern part of the
basin (Fig 4.41(d)). During futurel scenario, the projected mean annual maximum temperature
over WRB is expected to show significant variation ranging from -0.8 to 1.8 °C, 0to 2 °C, -0.7 to
2 °C and -0.04 to 2.1 °C and for future 2 scenario, the variations will be in ranges of -0.4 to 2°C,
0.1t0 2.5°C,1to 4 °C and 2.8 to 4 °C under the four SSP scenarios respectively (Fig. 4.42 (c)).
On the other hand, the mean annual minimum temperature showed increase of 0.3 to 2°C, -0.1 to
2.5°C,-0.1to 2.5°Cand 0.6 to 2.5 °C for future 1 and 0.5t0 2.5°C, 1t0 3°C, 2to4 °Cand 2 to 4
°C future 2 scenario under SSP respectively, relative to the present climate (Fig. 4.42 (e)).
Similarly, it can be seen from Fig. 4.42 (d) that the projected annual mean maximum temperature
for IRB had increments of -1 to 1.7 °C, -1 to 1.5°C, -0.2 to 1.8 °C and -0.5 to 2°C for futurel and
-1t02°C,-0.5t025°C,0.1to 3°Cand 1.2 to 4 °C for future 2 respectively for the four SSPs.

The mean annual minimum temperature is expected to increase by -0.2 to 2°C, -0.2 to 2.3°C, -0.3
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to 2.4 °C and -.24 to 2.5 °C for futurel and -0.4 to 2.3°C, 0.31t0 3°C, 1.2to 4 °C and -.1.7t0 5
°C for future 2 respectively under the four scenarios as can be observed from Fig. 4.42 (f). The
mean annual maximum and minimum temperature will have consistent changes in the future time
scales in the IRB as the time progresses except under the SSP245 scenario. It is clear that under
future climate scenarios, the largest increase of around 4°C in annual maximum temperature is
projected to occur over southern parts of WRB and western part of the IRB. Under the high-
emission SSP585 scenario, WRB and IRB exhibited a significant increase in annual mean
maximum and minimum temperature. A clear picture of an increasing pattern in annual mean
precipitation, maximum and minimum temperature are observed for SSP585 (high-emission
scenario) throughout the 21% century.

As mentioned earlier, the entire catchment area of the WRB is full of valleys and hills and it
is a major sub-basin of Godavari. The IRB spreads from the Kalahandi district of Odisha up to the
confluence of the rivers Indravati and Godavari. So, these sub-basins are vulnerable to climate
change which can be attributed to the topographic and climate pattern over the WRB and IRB.
Further, likely increase in the temperature will accelerate the climate variability. Although the
mean temperature is expected to increase in the future scenarios, the precipitation also is expected
to increase. Precipitation is the dominant parameter influencing the streamflow pattern for this
region. The evapotranspiration and streamflow pattern over these basins will vary in future
scenarios. Mishra et al. (2020a) observed that precipitation and temperature of GRB will be
increasing in the future periods under different scenarios and the highest increase is attributed to
the large emission scenario i.e. SSP585. Here, significant and robust changes in the precipitation,
minimum and maximum temperature were observed for the two sub-basins in the SSP585

scenario.
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Fig. 4.41: Mean annual climate parameter over both the basins for reference (1976-2013) and future
periods under four SSPs; (a) Mean annual precipitation over WRB; (b) Mean annual precipitation over
IRB (¢) Mean annual maximum temperature over WRB; (d) Mean annual maximum temperature over
IRB; (e) Mean annual minimum temperature over WRB; (f) mean annual minimum temperature over

IRB
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Fig. 4.42: Mean annual precipitation, maximum and minimum temperature changes over both the basins
for reference (1976-2013) and future periods under four SSPs; (a) % Change in mean annual precipitation
over WRB; (b) % Change in mean annual precipitation over IRB (c) %Change in mean annual maximum
temperature over WRB; (d) Change in mean annual maximum temperature over IRB; (e) Change in mean

annual minimum temperature over WRB; (f) Change in mean annual minimum temperature over IRB
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4.5.3 Projected changes in evapotranspiration and streamflow

Spatial changes of evapotranspiration and streamflow in future periods relative to reference
period are presented in Fig. 4.43 (a) to Fig. 4.43 (d). The mean annual evapotranspiration showed
a decreasing pattern while an increasing pattern is observed in the mean annual streamflow over
future periods for both the basins. For instance, SSP126, SSP370 and SSP585 show decline in the
evapotranspiration under the warming climate while the SSP245 scenario (futurel) show an
increase in the evapotranspiration. A decline in evapotranspiration is found in the south-eastern
and north-western part of WRB. The streamflow showed a large increment in the south-west part
of WRB. With respect to the reference period, IRB showed a decline in the evapotranspiration
while increase of streamflow is observed in the northern part of IRB. Higher variations in
streamflow and evapotranspiration pattern were observed in future 2 when compared to futurel
scenario. Interestingly, by the end of the 21% century, for SSP585, significant changes are
anticipated in the annual mean evapotranspiration and streamflow over both the basins. These
differences in the projected evapotranspiration and streamflows can be attributed to variations
associated with precipitation and temperatures in the catchment area. The results from this study
would be helpful in suggesting different strategies required to manage the water resources in
different watersheds with response to climate change.
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Fig. 4.43. Mean annual evapotranspiration and streamflow changes over both the basins for
reference (1976-2013) and future periods under four SSPs; (a) % Change in evapotranspiration over the
WRB; (b) % Change in evapotranspiration over the IRB; (c) % Change in streamflow over the WRB;
(d) % Change in streamflow over the IRB
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4.5.4 Projected changes in drought severity and duration

Drought characteristics play a major role in water resources management. Hence, a detailed
investigation on these during reference and future periods under all SSPs were carried out to
identify the relative variations in drought phenomenon. Drought severities were computed based
on the sub-basins generated by the SWAT model. The maximum drought severity for reference
and future periods over WRB and IRB are presented in Fig. 4.44(a) and Fig. 4.44(c). Significant
variations in maximum severities between the reference period and future period are observed in
Fig. 4.44(a). The maximum drought severities are also found to have decreasing pattern under all
future scenarios except in SSP245. The severe-most drought events under SSP245 scenario are
observed for the futurel scenario. The maximum severity hotspots are found to increase in the
south-western part of the WRB for SSP245. Fig. 4.44(c) suggests an intensification in drought
severity over the northern part of the basin under SSP245 scenario for IRB. Drought hotspots in
the middle region of IRB are observed during the reference period and the northern part of IRB
showed maximum severity hotspots in the future scenarios. It is to be noted that, the future
scenarios have projected less drought events towards the end of the 21% century especially for
SSP585.

The relative changes in drought duration between future and reference periods were then
compared and presented in Fig. 4.44(b) and Fig. 4.44(d). From the MDI analysis under various
SSPs, the projected drought durations are seen to mainly decrease in the WRB for future scenarios
(Fig. 4.44 (b)). From the low emission to high emission, the drought with shorter durations are
visible in the IRB under SSP126, SSP370 and SSP585 (futurel), while droughts with a longer
duration are projected in under the SSP245 (Fig. 4.44(d)). The spatial dispersion of maximum
drought characteristics across WRB and IRB are more in the reference period and SSP245
scenario. Hence the reference period and SSP245 scenario are more vulnerable to drought, since
relatively higher maximum duration and severities were observed than other future scenarios.
SSP585 scenario showed lower maximum drought durations since the precipitation and
streamflow are increasing and evapotranspiration showing decreasing tendency over the WRB and
IRB. It can be concluded that, by the end of the century, the drought incidences are going to be
decreasing based on the CMIP6 projections for all the scenarios. All the SSPs showed that there
will be changes in the drought pattern and the spatial extension for all the scenarios. It is also

observed that the number of drought events are expected to decrease in future 2 period. These
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changes in the projected drought severity and durations are due to the associated variability in the
climate under different scenarios.

However, the pattern of drought characteristics varies for future with the reference period due
to variation in the climatic variables in the future projection based on CMIP6 model simulation
from SWAT. Hence the precipitation, streamflow, evapotranspiration and soil moisture play a

crucial role in governing the local meteorological, hydrological and agricultural drought

phenomenon.
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Fig. 4.44: Maximum drought severities and durations changes over both the basins for reference (1976-
2013) and future periods under four SSPs; (a) maximum drought severities over WRB; (b) maximum
drought durations over WRB; (c) maximum drought severities over IRB; (d) % maximum drought
durations over IRB

4.5.5 Conclusion

A multivariate formulation of drought is essential for jointly representing all forms of drought
events that can simultaneously affect a particular region. In this study, a new copula based
probabilistic multivariate drought index has been developed for reference and future scenarios.
All variables like precipitation, evapotranspiration, streamflow and soil moisture are involved for
the multivariate drought assessment. The key findings based on this objective of the study are
discussed.

The observed variability of the SWAT streamflow anomalies was well captured in the
Wainganga and Indravati basins. The model was calibrated and validated using SWAT-CUP
SUFI2 algorithm. The performance of the model was evaluated based on NSE, R? and PBIAS.
The performance indicators showed that the model performed well for both calibration and
validation period.

An increase in spatial extent of annual precipitation is observed for future scenarios. The
south-eastern part of WRB and southern part of IRB are expected to receive a large amount of
annual precipitation. The annual maximum and minimum temperature show an increasing pattern

under all the future scenarios.
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The spatial analysis of changes in mean annual evapotranspiration and streamflow suggested
decrease in evapotranspiration and high increase in streamflow for both the sub-basins under
consideration. An intensification in precipitation, streamflow and a reduction in
evapotranspiration indicate a reduction in droughts events in future periods.

The drought severities and durations will be in decreasing tendency for future scenarios
compared to the reference period. SSP585 indicates lesser drought severity for both the basins
while SSP245 and reference period emerged as the most vulnerable to drought conditions. The
large variations in the drought properties can be attributed to the variation in the climate variables.

To summarize, MDI can be useful in an efficient way for drought monitoring under the
reference and future climate. Moreover, MDI overcomes the required variability to identify
simultaneous variability of climate parameters to access drought phenomenon as it integrates the

response of several climatic parameters.

4.6 Impact of Climate Change on Crop Yield and Crop-Drought Relationship
with Varying Climate

Data regarding precipitation, minimum and maximum temperature were downloaded from
the IMD website. Evapotranspiration was calculated using ET calculator in AquaCrop model.
AquaCrop model was then calibrated and validated based on the observed yield depending on the
parameters for Aurangabad region. The future water crop yields were estimated for four SSPs
(SSP126, SSP245, SSP370 and SSP585) based on the ensemble mean of bias corrected CMIP6-
GCMs namely ACCESS-CM2, BCC-CSM2-MR, CanESM5, INM-CM4-8 and MPI-ESM1-2-
HR. The crop yields were then obtained from the model for future period. SYRS were obtained
from the yield series for future and reference periods. SPEI values at different lags were then

correlated with the SYRS to obtain the crop-drought relationship for reference and future periods.

4.6.1 AquaCrop model performance evaluation and estimated CO-

In this study, the mean COz concentration of 364 ppm was used for the period 1997-2014 and
for the future period, value of CO, concentration is taken according to the scenarios. The average
COz concentrations in SSP126, SSP245, SSP370 and SSP585 scenarios are 434 ppm, 500 ppm,
528 ppm and 630 ppm respectively.

The model was calibrated and validated using the observed crop yield series for the period of
1998 to 2014. The cultivars specific parameters were used for simulating the yield by considering

the meteorological parameters. The model was calibrated and validated for cotton, maize and
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wheat for the Aurangabad region of UGRB. The parameters and the fitted values for calibration
and validation periods are provided in Table 4.33. The relation between observed and simulated
crops for calibration and validation periods are plotted for different crops are given in Fig. 4.45
and Fig. 4.46 for the region. RMSE obtained between the observed and simulated yield values
indicated that the model accuracy was quite good during calibration and validation processes.
Moreover, in most of the cases, simulated yield captured observed yield well during the calibration
and validation period. On the basis of model performance, the calibrated model was used to project
the crop yield for future scenarios.

Table 4.33 Parameters for calibration and validation periods in AquaCrop model

Crop Parameters Units
Time from sowing to maturity Days
Maximum effective rooting depth M
Reference Harvest Index %
Length of the flowering stage Days
Time from sowing to emergence Days
Time from sowing to maximum rooting depth Days
Time from sowing to start senescence Days
Time from sowing to flowering Days
Building up of the Harvest index Days
Soil surface covered by an individual seedling cm?/plant
Number of plants per hectare --
Canopy growth coefficient % /day
Maximum canopy cover %
Canopy decline coefficient %/day
Shape factor for water stress limiting stomatal conductance --
Shape factor describing root zone expansion --

Soil Parameters
Curve number and readily evaporable water --, mm
Hydraulic conductivity, root zoon expansion rate, gravel mass mm/day, %, %
Number of soil layers, their texture and thickness -, ==, m
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4.6.2 Future projection of yield

All crops monitored during 1997-2014 showed an increase in growth trend. The vyield
increased considerably during the period 1997-2014 due to improved technologies for crop
production. For future yield prediction, four emission scenarios viz., SSP126, SSP245, SSP370
and SSP585 were selected. The future yields of maize, cotton and wheat are predicted for
Aurangabad region. Similar to the observed time period, for better representation of results, the
future period was also sub divided into different divisions for a specified crop. The yield of maize,
cotton and wheat increased significantly over the future scenarios with respect to the observed for
the SSP585 scenario. For comparison between the box plots for observed and future scenarios for
different crops are presented in Fig. 4.47. From the Fig. 4.47, it can be observed that there is a
significant increase in the maize, cotton and wheat yield for all the future scenarios especially in
the high emission scenarios (SSP370 and SSP585) in the end of 21% century. It is also observed

that there is significant variability in the yield variability with respect to the observed period.
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Fig. 4.47. Projected crop yield for maize, cotton and wheat under SSP126, SSP245,SSP370
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4.6.3 Crop yield response to the climate variability

This research considered crop growth seasons for maize (April to September), cotton (May to
December), and wheat (October to February). As previously mentioned, yield projections for
various crops are based only on changes in climatic factors, and hence, it is important to establish
a relationship between the climate variability of various crops and their yields. Non-climatic
factors like fertilisation and cultivar impacts, irrigation techniques, and other technological
developments were not considered in this study. The evolution of temperature fluctuations, as well
as their anomalies, under observed and perspective scenarios will aid in determining their
influence on climate change on crop productivity in the Aurangabad region. For different crops,
the temporal differences in precipitation, minimum and maximum temperatures of future scenarios
with regard to the reference period for different crops are shown in Figs. 4.48, Fig. 4.49, and Fig
4.50. The projected average yield for maize (Fig. 4.47), is expected to increase in the future
scenarios during 2025-2099. The threshold temperature (cold and heat stress) for maize should be
between 27 °C and 33 °C (Bhatt et al. 2014). According to Fig. 4.48, the monthly average
precipitation during crop growing season is predicted to rise considerably. In addition, the
maximum and minimum temperatures is expected to increase in the future scenarios. Higher
emission scenarios, such as SSP370 and SSP585, show significant variations in comparison to the
reference period. The optimal temperature range has a beneficial impact on crop vyield if other
elements such as soil condition and available water content remain in favourable condition (Bhatt
et al. 2014). The projected cold and heat stress during the growing period of wheat is expected to
remain in optimal range. Therefore, wheat production is likely to increase during 2025-2099 (Fig
4.47). Temperature influences the photosynthesis and respiration processes (Lobell and Gourdiji,
2012). Similarly, for cotton, the optimum thermal range is between 32° C (hot stress) to 23.5° C
(cold stress) with optimum temperature of 28° C (Bhatt et al. 2014) and temperature ranges
showed favourable condition for cotton production. Therefore, under the favourable climatic
conditions, the projected average yield for cotton (Fig. 4.50), is expected to increase in the future
scenarios during 2025-2099. The significant increase in maize yields under climate change
scenarios are due to favorable temperature conditions related to cotton and wheat. Similarly, the
CO2 concentration tends to increase in the future scenarios. Significant increase in the CO>
concentration is expected in SSP370 and SSP585 scenarios for the growing period of crops.
Generally, increased CO concentration will directly affect the crop yield for C4 plants through

enhanced photosynthesis (Kumar, 2016). The average water productivity (WP) is also expected to
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have an increasing effect in the future scenarios compared to reference period. WP directly affects
the biomass production which is directly proportional to crop yield. The average WP varies with
crop type (Table 4.34). The cold temperature stress has minimal effect on the crop yield. Hence it
can be observed that the WP increases with progress of time possibly resulting in the increment in
the crop productivity. To summarize, the appropriate range of cold and heat stress, higher CO>
concentration and increased WP could be attributed for the increment in the mean crop yield over
the region.
Table 4.34 Average WP for different crops

Crops WP(gm/m?)
Maize
Reference Period 6.6
2025-39 7.9
2040-54 8.8
2055-69 10.1
2070-84 9.5
2085-99 10.2
Cotton
Reference Period 7.1
2030-39 7.8
2040-49 9.5
2050-59 8.4
2060-69 8.7
2070-79 8.8
2080-89 7.1
2090-99 104
Wheat
Reference Period 6.8
2035-50 7.8
2051-66 7.9
2067-82 8.1
2083-98 8.8
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future scenarios for cotton

4.6.4 Standardised yield residuals series (SYRS) evolution as a loss/gain
indicator

The temporal evolution of the SYRS of maize, cotton and wheat for reference period is
presented in Fig. 4.51. The agricultural yield could be categorized depending on the SYRS values
as <- 1.5 indicating high loss and >1.5 indicating high gain. The reference period revealed that
moderate to high losses for maize occurred in the years 2003, 2004, and 2011 for the region.
SYRS for cotton revealed moderate to significant losses throughout the years 2003, 2004, 2005,
2006 and 2009. For wheat, moderate to high losses occurred in the years 2003, 2004 and 2013.
The year 2013 showed mild losses in wheat for this region. Considering the SYRS condition, the
largest crop failure occurred in the years 2004 for maize, 2003 for cotton, and 2003 for wheat
within the reference period. Thus, 2003 scored first in terms of crop losses for winter wheat,

maize, and cotton. Cotton had the most low-yielding years during the reference period, followed
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by maize and then wheat. The evolution pattern of SYRS for future scenarios are presented in the
Fig. 4.52, Fig. 4.53 and Fig. 4.54 for maize, cotton and wheat respectively. From the figures, it
can be observed that the highest loss in crop production is expected to occur during the years of
2050-59 and 2060-69 for maize, 2060-69 and 2080-89 for cotton and 2035-2050 and 2067-2082
for wheat in terms of the intensity of the SYRS. For future scenarios, SSP245 showed greatest
number of low yielding years. In terms of crops, the greatest number of low yielding years were
observed in the case of wheat, followed by cotton and then maize. For future, the following
features are expected for production in crop: (i) the highest yield variability recorded in the SYRS
for wheat, then maize and the least for cottons; (ii) the prevalence of high-yielding years for all
of the crops was detected; the relatively stable yield for cotton is expected to prevail.
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Fig.4.54 SYRS for wheat for SSP126, SSP245, SSP370 and SSP585
4.6.5 Yield-responses to drought conditions
Kendall t correlation coefficients between the monthly de-trended SPEI series at 1-12-month
lags and SYRS of three crops were computed for the reference and future scenarios. Basically,
correlations between SPEI and SRYS signify the year-to-year variations in crop yield and are

related to the year-to-year variation of drought time series. This interpretation can assess the
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impact of drought on crop patterns for various scenarios over a specified time scale and month.
Drought, according to Sharma et al. (2016), can reduce crop productivity by preventing cell
enlargement leading to reduced leaf size, reduced relative leaf water content, reduced tillering
and plant height, and increased crop root length. Further, when compared to non-stress
conditions, multi-stage drought led to a potential reduction in crop production and a reduction
in yield qualities, as well as a worsening of physiological parameters such as chlorophyll
content, relative water content, rate of transpiration and photosynthesis, and lipid peroxidation.
However, during drought events, changes occur primarily among growth stages and genotypes
(Kumar et al. 2020). For reference period, differences in the responses of crops to different lags
of the SPEI were observed in this study (Fig. 4.55). From Fig. 4.55, it can be seen that for maize,
the months from April to June are highly sensitive to onset of drought events. Similarly, for
cotton, the most sensitive period is during February to May. Wheat showed the greatest yield
sensitivity for the period of January to May. The results for cumulative drought impact on yield
series for different crops for future scenarios are given in Fig. 4.56, Fig. 4.57 and Fig. 4.58.
Based on SPEI values, drought is expected to significantly affect maize production in
April-May and October- November in the SSP126 scenario at short-term drought. The next
damaging effect of drought is expected in the SSP245 scenario. Conversely, SSP585 scenario is
expected to have less profound positive correlation than other scenarios. Cotton showed
sensitivity to drought condition, especially in the early growth stages in the SSP126 scenario.
The greatest correlation was recorded for the SPEI at 5-6-month lags in July to October. Wheat
is highly sensitive to drought during the April-May in the SSP126 scenario. Zhang et al. (2018)
studied that the growth stage of wheat is highly sensitive to drought conditions because of
reduction in leaf area due to reduced root growth, reduction in leaf number per plant, size and
longevity of leaves. Drought reduces chlorophyll content, membrane stability, relative water
content, chlorophyll fluorescence and yield and yield components, NPK uptake, and increases
catalase, peroxidase, and superoxide dismutase content (Sheoran et al. 2015), but the effect was
more pronounced with late season drought stress than early season drought stress (Nawaz et al.
2012). A positive correlation is expected between the SYRS of wheat and the de-trended SPEI
at time scales from 2 to 4 months during March, April, and May (r = 0.1-0.7), which corresponds
with the highest moisture demands. In the SSP585 scenario, crops showed less sensitive to
drought condition, leading to low yield losses (SYRS < —1.5). The greatest yield-drought

correlation was for wheat, the least for maize for the observed period. For future scenarios,
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cotton is expected to be more sensitive to drought onset. During the observed period, crops are
more sensitive to drought condition rather than future periods.

Maize
SPEI in different time scales
1-month  2-month  3-month 4.month 5month 6-month 7-month  8-month 9-month  10month  11-menth 12-menth
Dec 0 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0
Nov 0.2 0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 -0.2 -0.2 -0.2
Oct 0.3 0.4 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.3 03 04
Sept 0.0 -0.01 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Aug 0.27 -0.2 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JI]l)_' 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Jun 0.1 0.1 0.1 0.00 0.00 -0.20 -0.20 -0.20 0.00 0.00 0.00 0.00
May 0.2 0.27 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Apr 04 0505 o000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mar 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Feb 0.2 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Jan 010 0.0 0.0 000 000 0.00 000 02EE 01 000 0.00
Cotton
SPEI in different time scales
1-month ~ 2.month  3-month 4-month 5month  6-month  7-month  8-month 9-month 10-month  11-month 12-month
Dec 0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.4
Not 0.30 0.0 0.0 0.3 0.0 0.1 0406 0.4 0.1 0.1 0.3
Oct |00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.5
Sept 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 -0.2 -0.1 0.0
Tuly 0.00 0.0 0.0 [GENGE 0.0 0.0 0.0 0.1 0.2 02 o3
Jun 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mav 0.45 0.4 0.0 0.1 0.0 -0.2 -0.3 0.0 0.0 0.0 -0.1 -0.1
Apr 040/ 06 0.0 0.2 ool 06 0.3 0.0 0.0 0.0 0.1 0.0
Mar 0.50 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feb 0.21 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jap 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
‘Wheat
SPEl in different time scales
1month  2.month  3-month 4.month 5.month  6-month  7-month  8-month 9-month 10-month  11-month 12-month
Dec 0.1 0.2 -0.1 -0.1 -0.2 -0.3 -0.1 0.0 0.5 0.3 0.2 -0.2
Nov 0.2 0.0 0.4 0.3 -0.1 -0.2 -0.1 0.4 0.4 0.2 0.1 0.3
Oct 01 0.4 ﬂ- 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.4
Sept -0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3
Allg -0.2 -0.1 0.2 0.4 0.0 0.0 0.0 0.0 -0.1 -0.2 -0.1 0.0
Jul_v -0.3 -0.2 0.1 0.3 0.0 0.0 0.0 0.0 -0.2 0.5 0.2 0.2
Jun -0.1 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 -0.3 0.0 -0.3 -0.2
Mﬂ,‘.‘ 0.2 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AI“' 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mar | 06 04 0.2 0.0 -0.1 0.3 0.3 03 0.0 0.0 0.0 0.0
Feb 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jan 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 4.55 SYRS and de-trended SPEI relationship for maize, cotton and wheat,
during reference period
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SSP126
SPEIL in different time scales

1month  2month  3.month 4-month 5-month  6-month  7-month  8-month 9-month 10-month  11-month 12-month
Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nov 0.1 o.o[NGEGE 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oct 0.0 0 0.4 04 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sept 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
July 0.1 -0.1 0.2 03 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0
o.0[S%E -0.1 0.2 0.0 0.0 0.0 0.0 0.0
0 0.3 0.2 0.3 0.0 0.0 0.0 0.0 0.0
SSP245
SPEI in different time scales
1month  2Zmonth  3month  4month 5month 6month 7.month  &month 9-month  10month  11-month 12-month
Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 03
Nov 0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.2
Oct 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Sept 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

July 0.0 0.0 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jun 0.0 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
May 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Apr 0.2 0.3 0.2 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Mar 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Feb 0.0 0.0 -0.1 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jan -0.2 -0.3 -0.2 0.3 0 0.0 0.0 0.0 0.0 0.0 0.0 0
SSP370
SPEI in different time scales
1-month ~ 2Z-month  3-month 4-month 5month  6.month  7-month  8-month 9-month  10.month  11-month 12Z-month
Dec 06 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
Nov 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Oct 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sept 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
July 0.0 0.0 0.0 0.0 0.0 03 03 0.0 0.0 0.0 0.0 0.0
Jun 0.0 0.0 0.0 0.0 0.0 -0.2 -0.2 0.0 0.0 0.0 0.0 0.0
May eE 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Apr 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feb 0.0 -0.1 [SGE 0.2 0.0 0.0 0.0 0.0 0.0 0.0 03l 08
Jan 0.0 -0.2 -0.2 ] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SSPS85
SPEI in different time scales
1-month  2.month  3.month  4month  5month 6-month  7-month  8-month 9-month  10.month  11-month 12-month
Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
Nov 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Oct 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sept 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tuly 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o[5GE
Jun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
May 0.0 0.0 0.0 0.0 [NGE 0.4 0.0 0.0 0.0 0.0 0.0 0.0
Apr 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Mar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feb 0.0 0.0 0.0 0.0 -0.1 G 0.3 0.0 0.0 0.0 0.1 0.1
Jan 0.0 0.0 0.0 0.0 -0.2 -0.2 0.2 0.0 0.0 0.0 0.2 0.2

Fig. 4.56 SYRS and de-trended SPEI relationship for maize under different scenarios
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SSP126
SPEI for different time scale

1-month  2-month  3-month 4-month 5-month  6-month  7-month  8-month 9-month 10-month  11-month 12-month
Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nov 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Oct 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0
Sept 0.1 0.4 0.0-0.4- 0.0 0.0 0.0 0.2 0.2 0.0 0.0
Aug 0.5 0.0 0.0 0.0 0.0 0.0 oo %0s 03 0.0 0.0
July 0.1 0.0 0.0 05 0.5 0.0 0.0 0.3 0.0 0.0 0.0 0.0
Jun -0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.3 0.0 0.0 0.0 0.0
May -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
Apr 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
Mar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feb 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0
Jan 0.0 0.0 0.0 020 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SSP245
SPEI for different time scale
1month  2.month  3-month 4-month 5-month  6-month  7-month  8-month 9-month 10-month  11-month 12-month
Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nov 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0
Sept 0.0 0.0 05 o.o [NGE 0.0 0.0 0.0 0.2 0.2 0.0 -0.2
Aug 0.0 0.0 0.4 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 506
July 0.1 0.0 0.4 0.3 0.4 0.0 0.0 0.0 -0.3 -0.3 0.0 0.0
Jun 0.3 0.0 0.2 0.1 0.1 0.0 0.0 0.0 0.3 0.2 0.0 0.0
May -0.2 0.0 0.0 -0.1 -0.4 0.0 0.0 0.0 0.3 0.3 0.0 0.0
Apr 0.2 0.0 A -0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.3 0.3 0.0 0.0
Feb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.1 0.0 0.0
Jan 0.0 0.0 -0.2 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SSP370
LPET far difforant timo crala
1month  2.month  3-month 4-month 5-month  6-month  7-month  8-month 9-month 10-month  11-month 12-month
Dec 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nov 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sept GG 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.1
Aug 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
July 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jun 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
May -0.2 0.0 -0.1 -0.2 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Apr -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mar 0.0 0.1 0.0 0.0 0.0 0.0 0.0 oo GE 03 0.0
Feb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 -0.3
Jan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SSPS585
SPEI for different time scale
1-month  2-month  3-month 4-month 5month  6.month  7-month  8-month 9-month 10-month  11-month 12-month
Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
Nov 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.3
Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sept [NGE 0.2 0.4 0.0 0.0 0.0 0.0 0.0 -0.1 03 0.0 0.0
Aug 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0
July -0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jun 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
May [ 06 05 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Apr 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.1 0.0
Feb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 03  -04 0.0
Jan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 4.57 SYRS and de-trended SPEI relationship for wheat under different scenarios
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SSP16
SPEI for different time scales

1-month  2-month 3-month 4-month 5.month  6-month  7-month 8-month 9-meonth 10-month  11-month 12-month
Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nov 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Oct 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Sept 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
July 0.1 0.1 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jun 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
May - [NGE 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Apr 0.5 0.4 0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.4
Mar 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.5
Feb 0.0 0.0 0.0 0.0 [EGE -0.1 0.2 0.0 0.0 0.0 0.0 0.0
Jan 0.2 0 0.0 0.0 0.3 0.2 0.3 0.0 0.0 0.0 0.0 0.0
SSP245
SPEI for different time scales
1-month  2-month 3-month 4-month 5.month  6.month  7-month 8-month 9-month 10-month  11-month 12-month
Dec 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
Nov [ o3 03 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 02 00
Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sept 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
July 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
May o.0 NG 0.3 0.5 0.0 0.0 0.0 0.0 0.6 0.2 0.0 0.0
Apr 0.0 0.6 0.5 0.4 0.0 0.0 0.0 0.0 0.4 0.2 0.0 0.0
Mar 0.0 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 01
Jan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
SSP370
SPEI for different time scales
1-month  2-month 3-month 4-month 5month  6month  7-month 8-month 9-month 10-month  11-month 12-month
Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
Nov 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sept 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aug 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.0 0.0
July 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jun 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 oo SGE 02
May -0.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0
Apr 0.4 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mar 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SSP585
SPEI for different time scales
1-month  2-month 3-month 4-menth 5month  6-month  7-month  8-month 9-month 10-month  11-month 12-menth
Dec 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
Nov 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sept 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 [5E
Aug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
July 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Jun ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
May 0.3 - 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0
Apr 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mar 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.0[NGE 0.2 0.0 0.0
Jan 0.0 0.0 0.2 -0.3 0.0 0.0 0.0 0.0 0.4 0.2 0.0 0.0

Fig. 4.58 SYRS and de-trended SPEI relationship for cotton under different scenarios
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4.6.5 Conclusion

As a part off the research, the present study investigated the impact of climate change

on yield of maize, cotton and wheat in the semi-arid region of Upper Godavari River Basin

(UGRB) using AquaCrop model. Ensemble mean of five climate GCMs taken from CMIP6

model were given as input crop model to project future crop yield. Further, the crop-drought

relationship status was obtained in varying climate scenarios. The key findings of the study

are:

Vi.

The AquaCrop model performed well for both calibration and validation period for

maize, cotton and wheat crops based on the performance measures.

. Climate changes including increased temperatures, changes in seasonal precipitation

amount and patterns, and elevated atmospheric CO2 concentration have important
impacts on crop productivity and water use. Precipitation, maximum and minimum
temperature is expected to increase under future scenarios. Basically, temperature and
CO. affect the crop production rather than precipitation. Moreover, the monthly
average precipitation showed significant change as compared to the reference period.
For four SSPs, future ensemble climatic models predict warmer climate change
scenarios and increased atmospheric CO..

The climate change impact analysis of four scenarios on crop yield, indicated
significant increase in the maize, cotton and wheat crops for future scenarios. The most
significant increase crop yield is expected in the maize followed by wheat and cotton
in the SSP585 scenario. At the end of the 21% century, the crop yield is expected to
increase significantly for SSP585 scenarios. The average yield will increase, but this

will occur in a non-linear manner.

. The increase in the mean crop yield with respect to the reference period showed that

the highest increase is expected during the far future (2081-2099) in most of the cases.
De-trended SPEI has a relatively strong association with the SYRS at important crop
productive stages in observed period.

The magnitudes of the correlations between various agricultural crops clearly showed
that yield-drought correlation values tended to be higher for the SPEI at the 1- 4-month

lags in the future scenarios.
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vii. The yield-response to drought also varied among crops: the greatest yield-drought
correlation was for wheat and the least for maize for observed period. In future
scenarios, cotton is expected to be more sensitive to drought onset.

viii. The results of the study are important in understanding the possible impact of climate
change on crop yield and helpful in developing knowledge for stakeholders and
planners to develop appropriate plans and strategies. Apart from assessing the potential
impacts of climate change on crop productivity and assessing the impacts, modelling
can helpful updating agricultural adaptation strategies for managing these risks and

beginning to tease out which adaptations are more robust under future conditions.
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CHAPTERS
SUMMARY AND CONCLUSIONS

5.1 Summary

Climate change affects hydrological cycle, sea levels and sea surface temperature
patterns and agricultural production. The extent, frequency and occurrences of extreme events
like droughts and floods could be attributed to the global changes on climatic pattern (IPCC,
2013). It is reported that that the impact of climate change will affect the drought pattern over
GRB. Hence, the impact of climate change on drought pattern must be studied in GRB scale.
Further, onset and offset criteria of drought affect cropping pattern, cultivation period, and crop
productivity. Uneven rainfall distributions and dry months may have an impact on crop
production. However, drought footprints have a correlation with crop productivity. As a result,
assessing the crop-drought relationship in the context of climate change is unavoidable for
long-term development in agricultural practices.

SPEI for the 3-month time scale was calculated using precipitation and
evapotranspiration data from the GRB for the reference and future periods. Individually, bias-
adjusted RCMs revealed significant uncertainties in climate parameters. As a result, the REA
method was used to reduce the uncertainties caused by individual RCMs. Drought return, peak,
severity, and durations were evaluated for two emission scenarios, RCP4.5 and RCP8.5. The
trivariate regional frequency analysis was used to conduct a comprehensive assessment of
drought frequency, considering the inherent dependence between the drought characteristics.

The non-stationarity drought indices such as NSPI and NRDI were developed by
considering precipitation and initial value series with the large-scale climate indices as
covariates. Both NSP1 and NRDI could be applied to identify more complex aspect of drought
occurrence. The probabilistic estimation of drought characteristics was carried out to estimate
drought return periods. Drought return periods were also calculated using the D-vine PCC
model and trivariate copula model. Then trivariate copula model and PCC model were
compared.

The integration of agricultural and meteorological drought plays a vital role in the
prediction and reliable monitoring of drought. The single variable dependent drought cannot
adequately define the onset and withdrawal characteristics of drought. MSDI was developed

based on precipitation and soil moisture considering bivariate copulas. Similarly, RTDI was
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developed, which incorporated precipitation, soil moisture, and evapotranspiration. MSDI and
RTDI effectively represent meteorological and agricultural droughts by considering the
complex climate pattern.

Drought monitoring is a difficult subject due to its reliance on various climatic
variables. To address this, a copula-based probabilistic MDI that represent the meteorological,
hydrological, and agricultural droughts simultaneously has been developed. Four variate
Clayton copula was the best fit copula model that used to combine precipitation,
evapotranspiration, soil moisture and streamflow. Evapotranspiration, soil moisture and
streamflow were estimated using the SWAT model. The future changes of precipitation,
evapotranspiration, soil moisture and streamflow were estimated based on five ensemble bias
corrected CMIP6-GCMs. The future MDI was also assessed to identify the impact of climate
change on drought using CMIP6-GCMs under four SSPs. Drought characteristics like severity
and duration were evaluated to identify the changes in future drought events.

The calibrated and validated AquaCrop model was used to evaluate the climate change
impact on crop yields of maize, cotton and wheat over semi-arid region of UGRB. The future
crop yield was projected by considering the bias-corrected ensemble CMIP6-GCM outputs
under four SSP scenarios (SSP126, SSP245, SSP370 and SSP585) using AquaCrop model.
Drought and its relationship to crop characteristics are complicated because the increasing
occurrence of drought events caused due to climate variability affects productivity of crops.
The temporal SYRS in the study area was investigated, and further, the impact of the de-

trended SPEI on maize, cotton and wheat crops were investigated.
5.2 Conclusions

Based on the study, the following conclusions were arrived
I.  The drought durations, peaks and severities are expected to increase in the future
scenarios of for the basin based on the projections in RCMs.

ii.  The spatial variations in the non-stationary indices showed that the western part of the
basin is highly susceptible to drought. From the month of January to May, the drought
propagated from eastern part to the western part of the basin.

iii.  The non-stationary drought models performed better than the stationary drought model.

iv.  The PCC model is more reliable than trivariate student’s t copula model for obtaining

the drought return period.
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viii.

Vi.

Vili.

Based on Multivariate Standardised Drought Index (MSDI) and Reconnaissance
Trivariate Drought Index (RTDI), the western part of the basin is highly vulnerable to
drought.

The multivariate droughts are related to the large-scale climate indices. Hence it could
be justified that the large-scale climate indices must be incorporated in the drought
assessment studies.

SSP585 scenario indicated lesser drought severity while SSP245 indicated the most
vulnerable drought conditions for Wainganga and Indravati river basins.

The climate change impact analysis on crop yield considering the ensemble model
showed significant increase in the crop yields for all the major crops for future
scenarios. The highest increase in crop yield is expected during the far future (2081-
2099) in most of the cases.

The yield-response to drought also varied among crops: the greatest yield-drought
correlation was for wheat and the least for maize for observed period. For future

scenarios, cotton is expected to be more sensitive to drought onset.

5.3 Contribution from the Study

With the understanding of adverse effect of climate change on regional drought
mechanism, the present study evaluated the potential climate change impact on drought
on a river basin scale, encompassing different climate models. The study analyses the
impact of climate change over river Godavari using bias corrected climate projections
from Regional Climate Models (RCMs) considering different homogeneous region based
on K-means clustering algorithm. The intermodal uncertainties were addressed using
Reliability Ensemble Averaging (REA) method considering the performance and
convergence criteria. Furthermore, the drought characterization and return period analysis
have been carried out based on copula based multivariate techniques.

Non-stationary drought assessment plays a significant role in drought mitigation
strategies. Understanding the large-scale climate indices and its teleconnection with
climate pattern, the non-stationary drought assessment was carried out for Godavari basin.
Drought characteristics were investigated and then compared based on stationary and non-
stationary models. A novel approach, Vine copula model was opted and compared with

traditional form of trivariate copula modelling for drought return period analysis.
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Precipitation, minimum, maximum temperatures were projected based on bias corrected
CMIP6-GCMs under four scenarios (SSP126, SSP245, SSP370and SSP585). REA
method is implemented to obtain the model ensemble to tackle the uncertainty with in the
model. Further, a semi-distributed calibrated hydrological model, SWAT is implemented
to project the water balance components such streamflow, evapotranspiration, soil
moisture spatially and temporally over two large river basins in Godavari, i.e. Wainganga
and Indravati river basins. Further, qualitative association among meteorological,
hydrological and agricultural drought is not adequately understood on a river basin scale
in India. Hence, the precipitation (P) and the simulated climate variables, like,
evapotranspiration (ET), soil moisture (SM) and runoff (Q) from the SWAT have been
used to obtain a new copula-based MDI.

Crop growth models like AquaCrop are useful in understanding the impact of climate
change on crop production considering the various projections from GCMs and RCMs.
In this study, climate change impact on crop yield of major crops of Aurangabad region,
i.e., maize, cotton and wheat were studied. AquaCrop model is used to simulate the yield
of all the three crops for a historical period (1997-2014) and then compared with observed
yield data. The future yield is projected based on calibrated AquaCrop model. Further, a
new approach has been developed to obtain crop-drought relationship status considering
SPEI and yield series (SYRS) with changing climate condition.

Agricultural management strategies and crop monitoring at various scales require a
necessary supporting activity to quantify the complexity of crop-climate-soil interactions.
This study is aimed to provide useful information to researchers and policymakers in order
to better understand the effects of climate change on food security and to develop

appropriate adaptation and mitigation options to achieve the desired goals.

5.4 Limitations of the Study

i. LULC isassumed to be constant during SWAT simulations for periods of 2025-2100.
This indicates that the climate is the only factor influencing the streamflow variability
during future scenarios. The combined impact of LULC and climate could give a
better knowledge about the hydrological processes in the basin.

ii. Only major crops have been considered to arrive the yield rather than the actual crop

pattern. Crop pattern study would enhance the idea of crop development in this area.
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More information from field data can improve regional projections considering crop
models.

5.5 Scope for further Studies

Based on the research, the scope for the further studies are identified as:

Vi.

The future projections of LULC will give insight into the future changes in the LULC

pattern.

Ii. The future projections of non-stationary drought assessment with time as covariate

can be considered.
The SWAT model can be calibrated and validated for evapotranspiration and soil

moisture based on data availability of this area.

iv. Drought hazard assessment of the basin can be carried out to identify the potential

drought prone area.
The drought and crop relations must be found for different drought indices obtained
for further analysis
Socioeconomic and agricultural droughts must be studied in the entire basin in further

studies.
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