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ABSTRACT 

The ecological and socio-economic development of a region are directly or indirectly 

related to the natural resources like water. Spatial and temporal changes on the water budget 

for a particular region are due to the combined response of changes in the land cover, 

meteorology, geological features, morphological characteristics like basin slope and 

topography, climate change and anthropogenic activities. Climate change is a global 

phenomenon having varying degree of regional effects. Assessment of the adverse 

consequences of climate and anthropogenic effects on drought for proper allocation and risk 

management is a challenging issue for the water managers. Further, modulating effect of 

climate has far-reaching influence on agriculture, environment, social factors and natural 

extreme calamities like flood and drought with an intensified severity. Droughts in India 

affect food production, gross domestic product (GDP), livelihood, and socio-economic 

condition of a large population associated with agriculture. Droughts are a complex natural 

hazard, and the intensity, frequency, and duration of droughts are increasing in India and 

around the world, resulting in immense industrial, agricultural, and economic losses each 

year.  Drought is generally defined as an abnormally prolonged dry period when the 

amount of rainfall is below the normal level (meteorological drought), soil moisture below 

the threshold level (agricultural drought) or there is deficit amount of water storage and 

runoff (hydrological drought). In the recent decades, long and severe droughts have 

triggered significant losses and lasting changes in vegetation conditions, owing to climate 

change, and the increasing demand for water resources. Future drought projections can be 

helpful for the development of efficient adaptation strategies by assessing the influence 

of climate change impacts on water resources Drought severity, intensity, onset and 

termination characteristics must be investigated in the river basin scale. 

The principal tools for the assessment of climate change projections of drought 

regimes are the Global Climate Models (GCMs) and Regional Climate Models (RCMs). 

There is an existence of gaps between the GCM realization and hydrological features in 

spatial and temporal scale and hence the GCMs are not able to efficiently simulate the hydro-

meteorological processes in a finer scale. Compared to the observed parameters, raw outputs 

from GCMs are commonly biased with systematic errors, and resolution of GCMs are too 

coarse to be used as inputs for drought management. GCM forecasts based on bias correction 

techniques need post processing before using the model outputs for drought prediction. It 
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has been well documented that the drought will be affected by the changes in the monsoonal 

system over India and accordingly the economy of the country will be influenced by the 

climate change. Hence, the spatial extent, occurrences, onset and withdrawal of drought 

events must be monitored based on the long-term climate projections by using suitable and 

reliable indices to provide water planners correct information to take appropriate disaster 

response measures. Globally, the water demand is increasing with the increase in 

population and their need with rapidly developing cities, industries and agriculture which 

lead to decrease in the availability of freshwater resources. Therefore, the hydrological 

alterations attributed to climate change must be investigated for accessing water availability 

and sustainable development especially the agricultural country like India.  

The study is focussed on Godavari River Basin (GRB) to understand the alteration 

in the drought phenomenon for future scenarios. In the initial part of the thesis, The 

Standardised Precipitation Evapotranspiration Index (SPEI) at 3-month time scale was 

calculated using Climate Research Unit 4.03 (CRU 4.03) precipitation, minimum and 

maximum temperatures data sets. The drought magnitude and characteristics are determined 

using SPEI, which considered both precipitation and temperature data as input variables. 

The Mann Kendall (MK) trend analysis was performed to identify the trend associated with 

drought characteristics. The basin was divided into six homogeneous regions using K-means 

clustering algorithm. Reliability Ensemble Averaging (REA) method was used for ensemble 

averaging of RCMs. The drought frequency analysis was carried out using trivariate copula 

for reference and future time period. Variations in the drought characteristics were observed 

in the future scenarios with respect to the reference period. Drought duration, severity, and 

peak for different climate divisions showed increasing trend in future time period especially 

in case of Representative Concentration Pathway (RCP8.5) scenarios. The return periods of 

future droughts based on weighted average RCMs climate models under the two scenarios 

showed the possibility of more frequent drought in the far future (2053-2099) than in the 

past (1971-2017). 

The second part of the thesis deals with the non-stationary drought index 

development and their risk assessment. It is well known that the stationarity is the basic 

assumption in the statistical interpretations of time series in hydrologic processes. 

Stationarity refers to the parameters of the climate that are invariant with time and space and 

free of trends. Stationary property is questionable in the context of global warming and 

anthropogenic changes in climate. The outcome of environmental changes exhibits non-
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stationary behaviour in climatic parameters and hence indicators have been developed for 

identifying drought status in non-stationary conditions which can help in better management 

of water resources.  Under variable climatic conditions, the conventional Standardized 

Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) are inadequate for 

predicting extreme drought characteristics. Non-stationary Standardized Precipitation Index 

(NSPI) and Non-stationary Reconnaissance Drought Index (NRDI) are, therefore, developed 

by fitting non-stationary distributions. The Generalized Additive Model in Location, Scale 

and Shape (GAMLSS) framework, with time varying location parameters considering the 

external covariates, was used to fit the non-stationary distributions. Multivariate ENSO 

Index (MEI), Southern Oscillation Index (SOI), Sea Surface Temperature (SST), and Indian 

Ocean Dipole (IOD) were considered as external covariates for the non-stationary drought 

assessment. The performances of stationary and non-stationary models are compared. The 

study also concentrated on the trivariate and the Pairwise Copula Construction (PCC) models 

to estimate the drought return periods. The comparison of two copula models revealed that 

the PCC model performed better than the trivariate Student’s t copula model. The recurrence 

intervals for drought events are different for trivariate copula model and PCC model. This 

study showed that non-stationary drought indices will be helpful in the better estimation of 

the drought characteristics under the changing climatic scenario. 

The single variable dependent drought cannot adequately define the onset and 

withdrawal characteristics of the droughts. A Multivariate Standardised Drought Index 

(MSDI) is developed in the present study based on precipitation and soil moisture using 

bivariate copula function. Reconnaissance Trivariate Drought Index (RTDI) is also 

developed combining precipitation, soil moisture and evapotranspiration. MSDI and RTDI 

represent meteorological and agricultural droughts by linking the climate status in an 

effective way. The best fitted copulas obtained for bivariate and trivariate analysis are Frank 

and Student’s t copulas respectively. The two drought indices were developed and tested to 

study the onset and withdrawal characteristics of drought and their trends. Cross Wavelet 

Analysis (CWA) was performed to identify the substantial effect of large-scale climate 

anomalies on the derived drought indices. The large-scale climate factors like Sea Surface 

Temperature (SST), Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI), 

Indian Ocean Dipole (IOD), and Indian Summer Monsoon Rainfall (ISMR) are considered 

in this study.  ENSO, IOD and ISMR showed significant influences on the drought 

variability. The 3-month MSDI is significantly influenced by ISMR while SST showed a 
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significant teleconnection with RTDI-3. The SST showed a strong influence on both 6-

month MSDI and 6-month RTDI. This study is robust and reliable for future drought 

assessment and will provide a great platform to develop warning criteria on onset and 

termination of droughts. 

Water availability and streamflow are very sensitive to the variation in the amount 

of rainfall and temperatures. Hence, the evaluation of climate change impact on streamflow 

and water balance pattern will be helpful in designing and managing the water resources 

system in an efficient way. This study focusses on the methodology to estimate the climate 

change impacts on water balance components in Wainganga and Indravati basins, sub-basins 

of GRB. A well-known and semi distributed model, Soil Water Assessment Tool (SWAT), 

has been implemented to model the streamflow for the reference and future periods using 

the ensemble Coupled Model Intercomparison Model Project Phage 6 (CMIP6) Global 

Climate Model (GCM) outputs considering four socio-economic shared pathways (SSP126, 

SSP245, SSP370 and SSP585). The bias corrected GCM outputs were ensemble based on 

Reliability Ensemble Average (REA) techniques. The ensemble model is given as an input 

to the SWAT model for generation of future water balance structure of these basins.  Global 

sensitivity analysis was performed using Uncertainty in Sequential Uncertainty 

Fitting (SUFI-2) algorithm to obtain the most critical parameters. The model performance 

measures like Nash-Sutcliffe Efficiency (NSE) and coefficient of determination (R2) were 

obtained for both calibration and validation were 0.83 and 0.85 and 0.73 and 0.76 

respectively. Projected mean annual precipitation and minimum and maximum temperatures 

show a significant increment in the future scenarios. Wainganga and Indravati basins are 

expected to have a large inter-annual variation in streamflow pattern. Particularly, the 

variation in the streamflows are expected to have a significant increment in the monsoon 

period at the outlet station. The outputs from the time-series model showed a higher variation 

in streamflow, evapotranspiration and soil moisture especially in the high emission scenarios 

(SSP585). The developed hydrological model is capable of obtaining the future changes in 

future water availability and demand in a basin scale by considering the GCM data. 

In context of climate change, studies on multivariate drought assessment and the 

climate change impact on a river basin scale are limited in India.  Drought monitoring is a 

challenging subject due to its dependence on different climatic variables. To overcome this, 

a copula based probabilistic multivariate drought index (MDI) has been developed which 

simultaneously represents the meteorological, hydrological, and agricultural drought 
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phenomenon. The four variate Archimedean copula was used in this study to integrate the 

precipitation, evapotranspiration, soil moisture and streamflow. Hydrologic variables like 

evapotranspiration, soil moisture and streamflow were simulated using the SWAT model. 

The future MDI is also analysed to identify the impact of climate change on drought 

phenomenon using CMIP6-GCMs under four SSPs. Drought characteristics like severity and 

duration are evaluated to identify the present and future drought events. The precipitation 

and minimum and maximum temperatures were identified to have increasing tendencies in 

the future scenarios. Most of the future scenarios showed lower drought duration and 

severity when compared to the reference period. The drought duration and severity are likely 

to decrease in the future time scales especially under the high emission scenarios. The 

present study used a novel approach to examine the drought from various perspectives and 

the study will be useful for drought mitigation and adaptation strategies over the basin. 

It is reported that that the impact of climate change will affect the drought pattern in 

India. Cropping pattern, cultivation period and crop productivities are vulnerable to drought 

onset and offset criteria. Therefore, it is inevitable to assess the crop-drought relationship in 

the perspective of climate change for sustainable development in agricultural practices. 

Aurangabad district, in Upper Godavari region, is considered as the study area. In this study, 

the temporal evolution of Standardised Yield Residual Series (SYRS) was investigated in 

the study region and then the impact of de-trended Standard Precipitation Evapotranspiration 

Index (SPEI) on different crops were studied. Crop simulation for three the handful of crops 

namely maize, cotton and wheat was carried out using calibrated AquaCrop model 

considering the datasets for the period of 1998-2014. The future crop yield is projected by 

considering the bias corrected CMIP6-GCM outputs under four SSP scenarios (SSP126, 

SSP245, SSP370 and SSP585). The outputs from the simulation indicated that there is high 

increase in crop yield especially in the SSP585 scenario. The increase in crop productivity 

could be attributed to the favourable thermal range, increased CO2 concentration and 

increase in water productivity of crops. De-trended SPEI has a moderate association with 

the SYRS at different crop productivity phases. The yield-response to drought also varied 

among crops: the greatest yield-drought correlation was for wheat and the least for maize 

during study period. Cotton is expected to be more sensitive to drought onset in future. The 

approach adopted in the study can help the stakeholders to better understand the impact of 

drought on the agricultural ecosystem, the key to minimize drought-related yield losses.
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Droughts are ecological and environmental calamities and have attracted attention 

of the agricultural scientists, environmentalists, hydrologist and meteorologists and other 

experts. Droughts may occur in any climatic zone, including locations with high and low 

precipitation. Deficiency in the amount of precipitation triggers the drought condition in 

the region over a prolonged period of time, such as a season or a year. High temperatures, 

wind velocity, low relative humidity, and rainfall characteristics, like the distribution of 

rainy days during the agricultural production cycle, rainfall intensity and duration, and 

initiation and termination, are factors which influence drought incidence. The demand for 

water has increased dramatically as a result of population expansion and the development 

of agricultural technology, energy, and industrial sectors, with water shortages happening 

virtually every year in many regions of the world. Water scarcity has been exacerbated by 

other issues such as climate change and contamination of water supplies. In recent years, 

floods and droughts had been experienced with higher peaks and severity levels. The period 

between extreme events seems to have become shorter in certain regions. Droughts 

influence both surface and groundwater resources, resulting in reduced water availability, 

deteriorated water quality, failure in crop, reduced range production, reduced power 

generation and altered ecosystems, among other things. Droughts have quantitative effect 

on water resources due to change in climate modulating the hydrologic regimes. Runoff 

transports sediment, organic matter, and nutrients to surface waters, but this pathway is 

disrupted during droughts. Droughts are extremely important when it comes to water 

resource planning and management.  

1.2 Drought Definitions  

 Drought onset begins with alteration in hydro-meteorological phenomenon such as 

lack of precipitation, soil moisture, and runoff and the increased evapotranspiration. 

Although there are no particular definitions of drought, but they can be well-defined with 

several perspectives, like conceptual or operational droughts (Wilhite and Glantz, 1985). 

Conceptually, droughts are classified as meteorological, hydrological, and agricultural 

droughts, respectively, depending on a lack of precipitation, a lack of water in reservoirs, 
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lakes, and river streams, and lack of soil moisture. (Mishra and Singh, 2010). Then 

meteorological drought further slides to the hydrological drought eventually leading to the 

agricultural drought (Hao and Singh, 2015). Another type of drought namely, socio-

economic drought is caused by a shortage of water mostly affecting the supply and demand 

of water for the people. Operational drought regimes can be defined as the identification 

of the onset, withdrawal, duration and severity of drought events. Operational definitions 

aim at providing precise drought-related information to support an effective early warning 

system. Drought definitions must be consistent in order to eliminate any ambiguity in 

establishing drought policy making choices (Mukherjee & Mishra, 2018).  Some of the 

commonly used definitions are:  

i. Drought is defined as "the proportion of years when crops fail due to a lack of 

moisture." United Nations Food and Agriculture Organization (FAO, 1983)  

ii. Drought is defined as "a sustained, prolonged deficiency in precipitation." (World 

Meteorological Organization, WMO, 1986).  

iii. Drought is a natural occurrence that occurs when precipitation is considerably 

below average recorded levels, resulting in serious hydrological imbalances that 

disrupt the   production systems (UN Convention to Combat Drought and 

Desertification, UN Secretariat General, 1994). 

iv. Drought is defined as a considerable deviation from an area's usual hydrologic 

conditions (Palmar, 1965). 

v. Drought is defined as deficiency in precipitation, while in often it may originates 

due to high temperature or evapotranspiration (Hao et al. 2018). 

1.3 Drought Indices 

Since there are no universal definitions of droughts, drought indices can be used as 

the best tools to analyse the occurrence of droughts (Hao and AghaKouchak, 2013). Thus, 

based on long-term climatic forecasts and reliable indicators, the spatial extent, 

occurrences, commencement, and withdrawal of drought events must be monitored to 

provide water resource planners with accurate information to plan and implement suitable 

disaster response measures. The relevant decision-making systems depend on widely 

established indicators to quantity the physical aspects of drought (intensity, duration, and 

severity). Drought indicators are developed to track the hydro-meteorological cycles and 

are used frequently in monitoring drought mechanism (Mukherjee et al. 2018). In a broader 
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sense, drought indicators are the comprehensive aggregation of parameters such as 

precipitation, soil moisture, streamflow, evapotranspiration, groundwater levels and 

reservoir levels. Drought indices, on the other hand, are single numeric values computed 

from a variety of hydro-climatic factors that impact drought, and hence have a major 

advantage over raw data when it comes to defining drought features. Different types of 

drought indices have been developed by concentrating on the stochastic nature of climate 

and human activities. For instance, Standardised Precipitation Index (SPI, Mckee et al. 

1993); Standardized Runoff Index (SRI, Shukla and Wood, 2008), Standardized 

Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al. 2010), and 

Reconnaissance Drought Index (RTDI, reference) are some of the indices developed in the 

past studies. 

1.4 Droughts as Natural Hazards 

Drought is a type of natural hazard that is aggravated by scarcity of water. A natural 

hazard is a naturally occurring phenomenon that will have a detrimental effect on 

livelihood of people or the environment. Drought is a particularly pernicious climatic 

disaster since it develops slowly and frequently affects the people. It can have enormous 

effects when the severity and duration upsurge over time, making it one of the expensive 

natural disasters. Drought involves a variety of eco-hydrological and socioeconomic 

consequences, including decreased water shortages, crop and livestock loss, higher food 

costs, migration, and indirect health effects. The physical processes of drought are very 

nonlinear and include certain feedback mechanism, and its influence spreads unevenly 

across numerous levels, making it difficult to quantify objectively.  

Droughts are complicated by the fact that they are dependent not only on the 

atmospheric processes, but also on the hydrological mechanisms that provide moisture to 

the atmosphere. Once dry hydrologic circumstances are established, the positive feedback 

of the drought process sets in, with moisture depletion from top soil layers increasing 

evapotranspiration (ET) rates and lowering atmospheric relative humidity. Lower relative 

humidity means there is lower possibility of rainfall, as it will be more difficult for a typical 

low pressure system to attain saturation levels over the region. Only the disturbances 

bringing adequate moisture from outside the arid zone will be able to bring enough 

precipitation to overcome the drought situation. Droughts are the most serious natural 

disaster considering the number of people impacted (Wilhite, 2000). It's difficult to 

anticipate drought onset or termination. The impacts of a drought develop gradually over 
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time and can persist over a prolonged time period. As a result, a drought is commonly 

described as a creeping event. Defining a drought is difficult and this leads to uncertainty 

in drought prediction. Unlike losses caused by other natural disasters, the consequences of 

droughts are non-structural and spread across wide geographic regions. A drought, unlike 

floods, hurricanes, earthquakes, and tornadoes, impacts water bodies and water resources 

structures, but it seldom causes structural damage. Finally, unlike other natural disasters, 

droughts can directly originate due to anthropogenic activities, with aggravating variables 

such as over-farming, excessive irrigation, urbanisation, deforestation, over-exploitation of 

available water, and erosion negatively reducing the land's ability to catch and store water. 

1.5 Drought Propagation under Climate Change  

 Climate change, according to the Intergovernmental Panel on Climate Change 

(IPCC), is defined as a change in the mean and/or variability of its parameters over time 

caused by natural and human activities. Recently, IPCC revealed a picture of aggravating 

occurrence of extreme weather events, explicitly intense hot extremes, marine heat waves, 

extreme precipitation, hydrological and agricultural drought (IPCC, 2021). Natural and 

anthropogenic climatic forcings cause internal fluctuations in many elements of the Earth's 

system. IPCC AR5 reported an unprecedented rise in global temperature of the atmosphere 

in the last few decades, which had substantial negative feedback on climatic parameters, 

ecological, chemical and hydrological cycle over the globe. As a consequence of variations 

in the climatological parameters, changes are anticipated in the water availability and 

related climate extremities like flood and drought of the river basins. Climate change-

induced warming has clearly accelerated the hydrological processes, first by raising the 

available energy for ET and, second, by raising temperatures and hence the water holding 

capacity of the atmosphere. As a result, severe climatic phenomena such as droughts 

become more intense, widespread, and protracted.  

The additional heat from global warming has expedited the drying process, which 

is anticipated to result in more severe, prolonged, and extensive droughts in the future 

compared to the current climate situation. Furthermore, increases in drought intensity in 

future climates are caused by mean state change in a warming world. Consequently, once 

the climate conditions are favourable for drought, further climate change worsens the 

problem by adding modest quantities of heat that can raise the temperatures and ET. 

Moreover, due to limited moisture availability over land, such climate conditions 

experience substantial increase in sensible heat fluxes during a limited supply of latent 
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energy fluxes, further raising the land surface temperature. Further, a stronger association 

between warmer and drier conditions has been found to enhance the chance of concurrent 

heat and drought occurrences. As a result, temperature, which directly controls the ET, 

should be seen as a significant contributor to drought episodes under global warming 

scenarios.  

Drought quantification cannot be completely understood just on the basis of natural 

climatic variability since anthropogenic impact has a substantial role in both generating 

and propagating drought occurrences. Drought, along with a rise in water demand for 

domestic, agricultural, and energy sectors in densely populated areas, might constitute a 

substantial concern for the future. A fair evaluation of drought must include such 

consequences as a resulting from increased anthropogenic influences. Other factors, like as 

precipitation, infiltration loss, and runoff, in addition to temperature, have a considerable 

role in the incidence of drought. Hence, drought indices should assimilate all these factors 

to quantify drought characteristics in the context of non-stationary climate. 

1.6 Climate Change, Drought and other Factors Affecting Crop 

Production 

Climate change has put excessive pressure on the hydrosphere due to which the 

water regime is expected to change creating an impact on global water supply and demand. 

Changes in water cycles have a significant impact on agriculture production considering 

traditional farming practises. Despite strong evidence of hydrological cycle amplification, 

its impact on agricultural output is difficult to predict because it is dependent on frequency 

and severity of drought events. IPCC observed that climate change is emerging as a major 

challenge faced by the human beings and the natural ecosystems. Drought phenomenon 

had an intensifying and prolonged effect during the 20th century, predominantly connected 

to deficit precipitation and increase in temperatures (IPCC, 2007). Due to the dual force of 

change in climate and anthropogenic interventions, drought characteristics will have 

prominent alterations in the future and can cause severe damage to crop production. 

According to Dai (2011), global drought had increased since the 1970s due to decreased 

precipitation in arid regions of South Asia, Africa, Eastern Australia and Southern Europe. 

He also observed that with respect to the changing climate, losses due to drought will 

increase all over the world. Moreover, uneven distributions of rainfall and dry months may 

affect the crop production. Drought footprints have certain relationship with the crop 

productivity, which are rarely been reported, hence deserve further investigation. Aridity 
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has a significant impact on agricultural productivity, resulting in lower grain production. 

Drought and its relationship to crop characteristics are complicated because the increasing 

occurrence of drought phenomena caused by climate variability affects production, 

financial, and market factors. 

Influence on precipitation on climate change is not the only factor affecting 

availability of water; increased ET due to longer growth periods and warmer temperatures 

could increase crop irrigation requirements. Water shortage is a key stumbling block for 

global agriculture and food security, resulting in rising food costs. Increased demand for 

fresh water for cases such as urbanisation, energy projects, and biofuel production, will 

further limit its availability for agricultural cultivation. Moreover, the per-capita growth in 

water for crop production due to amplified consumption protein and calories, as well as 

growing food demand due to population expansion, caused stress on already depleted water 

resources. Crop production has been restricted beyond its current level as a result of rising 

water demand and dwindling water supplies. As a result, efforts must be made to improve 

agricultural practices and adopt novel irrigation management systems in order to conserve 

water for increasing crop water productivity. Further, improving rain-fed farming through 

better precipitation, soil moisture, and soil fertility management has the potential for 

substantial increase in crop productivity. Improving agronomic water supplies through 

improved systems, minimising surface drainage, using drip irrigation, creating water 

storage facilities, using wastewater, and judicious use of groundwater would be beneficial 

to the long-term viability of irrigated agriculture. 

1.7 Justification for Taking up the Problem for the Study 

Climate change affects hydrological cycle, agricultural production and sea surface 

temperature (SST) patterns. The drought dynamics had an intensifying and prolonged 

effect during the 20th century, predominantly subjected to decrease in precipitation and 

increase in evapotranspiration due to global warming. Due to the dual force of change in 

climate and anthropogenic interventions, the drought characteristics are expected to have 

significant alterations in the future. The drought decision makers have to formulate 

appropriate policy framework to minimize the impacts of drought hazard on the overall 

development of the country. Against the foregoing background, this study seeks to 

contribute to impact of climate change on drought and multivariate assessment of drought 
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characteristics, enhancing resilience to climate change impact, drought preparedness and 

sustainable environmental management in vulnerable areas.  

Single valued drought indices are inadequate for a qualitative identification of the 

drought phenomenon as multiple climatic parameters are interconnected. The abnormal 

rising of temperature and evapotranspiration create flash drought indicating that 

precipitation alone cannot be a reliable entity in the study related to global warming 

phenomenon (Won et al. 2020). To deal with these limitations, multivariate drought indices 

are needed to be developed considering agricultural, meteorological and hydrological 

drought simultaneously. 

Agriculture is facing difficulties due to a number of causes, including greater 

competition for land, water, and labour from non-agricultural industries, as well as 

increased weather unpredictability. The latter, which is linked to global warming, will 

cause significant seasonal and yearly changes in food output. Even now, all agricultural 

commodities are susceptible to similar fluctuations. Droughts, floods, tropical cyclones, 

heavy precipitation events, hot extremes, and heat waves have all been known to create 

havoc on agricultural productivity and farmers' livelihoods. Over the past few decades, 

drought has become the paramount threat to agronomy in several parts of the globe 

(Potopová et al. 2015). Water scarcity due to droughts frequently affect the capability of 

plant canopies to absorb the radiation which, in turn, diminishes the crop productivity. 

However, the relationship between climate variability and crop yield is not consistent. It 

varies from region to region and from one crop type to another. Hence this study is an 

attempt to assess the crop-drought relationship, in the perspective of climate change, which 

will be helpful in validating the crop response to drought relationship. 

1.8 Scope and Objectives of the Study 

The main aim of the research is to examine the effect of climate change on drought 

on with a specific focus on the Godavari River Basin (GRB). The broad idea is to 

systematically investigate the effects of climate change on drought and crop. The goal is to 

extract a much more nuanced perspective on climate change perceptions, impacts, and 

related reactions in order to improve long-term formal or planned interventions at the local 

level to address climate change impacts and environmental degradation. Apart from this, 

studies on the crop-drought relationship considering the climate change would help 

understand the effect of drought on crop productivity for future scenarios. With this 

background, following major objectives have been identified for the research work: 
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i. Assessment of Standardised Precipitation and Evapotranspiration Index (SPEI) and 

its variations based on climate phenomenon considering the Regional Climate 

Models (RCMs).  

ii. Development of Non-stationary Standardized Precipitation Index (NSPI) and Non-

stationary Standardized Reconnaissance Drought Index (NRDI) based on large 

scale climate indices as covariates.  Analysis of the trivariate drought return period 

based on copula models and Pair-wise Copula Constructions (PCC). 

iii. Development of Multivariate Standardized Drought Index (MSDI) and 

Reconnaissance Trivariate Drought Index (RTDI) based on bivariate, trivariate 

copula analysis. 

iv. Multivariate Drought Index (MDI) development using four variate copula 

approach. Assessment of impact of climate change on MDI. 

v. Development of AquaCrop model and prediction of future crop yield. Analysis of 

the crop-drought relationship considering the effect of climate change to determine 

the effect of drought on crop characteristics.  

 The study incorporates different drought indices and analysing them for the GRB. 

Non-stationary drought assessment has also been carried out considering the large-scale 

climate indices as covariates. Further, the multivariate drought characterisation for GRB 

has been conducted to obtain the drought return period of a particular area.  The variability 

of climate and its impact on drought is also considered in the study. Apart from this, the 

study incorporated the crop-drought relationship considering the changing climate aspects. 

The research is an attempt to address following questions regarding the drought, climate 

and crop interrelation of GRB and the sub-basins of GRB.  

i. What are the drought characteristics and how they are varying spatially? Are there 

any effects of climate change on drought?  

ii. To what extent the drought return period is expected to change with respect to 

climate?  

iii. Are there any streamflow and other climate parameters affected by climate change?  

iv. Are there any relationships between crop and onset and offset of drought with 

changing climate?  

The study offers a state-of-the-art approach for  crop modelling and analysis for addressing 

the various questions. 
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1.9 Research Gaps Identified 

Based on the review of literature, the following gaps were identified: 

i. Limited studies have been carried out by considering soil moisture in multivariate 

drought assessment. 

ii. India is highly affected by large scale climate oscillations. Nonstationary aspect of 

drought have not been assessed considering these indices on a river basin scale. The 

PCC model has not been used for drought frequency analysis.  

iii. Individual drought indicators are generally insufficient for characterising complex 

drought conditions and impacts. Multivariate drought indices that combine multiple 

associated variables and indices for combined drought characterisations need to be 

developed. However, multiple drought-related variables and indices have not been 

explored in the study area. 

iv. Crop development and phenological characteristics are highly sensitive to drought 

events. Studies on crop production and its relation with drought with changing climate 

have not been explored. 

1.10 Significance of the Study 

This study considered the Godavari River Basin (GRB), the second largest river 

basin in India covering the states of Maharashtra, Madhya Pradesh, Telangana, Andhra 

Pradesh, Karnataka, Odisha and Chhattisgarh. This basin is highly vulnerable to drought. 

In the GRB, which is depleted of natural resources, changes in flow regime, flood and 

drought, as well as the underlying causes and impact on agriculture, have frequently drawn 

attention towards climate change responses at the river basin scale. Apart from a lack of 

knowledge, gaps, and misconceptions about climate change and its effects on regional 

agriculture have continued to undermine efforts in the region to achieve environmental 

sustainability, climate mitigation, and adaptation. 

Shah and Mishra (2020) reported that the real time drought assessment in India has 

been a challenging task due to the lack of near‐real‐time observations. There are major 

difficulties in detecting the onset and withdrawal of droughts. The information regarding 

the drought indices are not readily available to state governments. Indian river basins are 

highly vulnerable to extreme calamities like drought (Pathak and Dadamoni, 2020; Poonia 

et al. 2021; Kumar et al. 2021).  
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IPCC observed that climate change has emerged as one of the major challenges 

faced by the human beings and the natural ecosystems. It is reported that the drought 

phenomenon had an intensifying and prolonged effect during the 20th century, 

predominantly connected to deficit precipitation and increase in temperatures (IPCC, 

2007).The overall aim of the study  is to obtain a comprehensive evaluation of historical 

and future droughts in the GRB by incorporating the potential associations of drought 

characteristics. 

There are several ecologically and economically significant special ecosystems in 

this region, but the assessment of their impacts on agriculture had received relatively less 

attention. Agriculture in these areas is multifaceted, encompassing rice farming, 

horticultural crops, plantations, fisheries, and dairy. As a result, it is necessary to 

investigate the impact of climate change on crop productivity in this region. 

The drought and its relation to crop characteristics are complex as the growing 

occurrence of drought phenomenon resulting from climate variability affect the production, 

financial and market factors. Novelty point of view, the drought impacts on crop 

productivity considering the climate change has not been explored in Indian region. 

Therefore, the present study is an attempt to investigate the linkage between climate 

change, drought and crop yield. 

1.11 Organisation of the Thesis 

 After introducing the problem taken up for the study and discussing about the 

significance of the problem, the objectives of the study are introduced in Chapter 1. A 

detailed review of the literature related to various methods of drought assessment, impact 

of climate change on drought, rainfall-runoff modelling approaches, crop modelling and 

crop-drought relationship with varying climate are presented in Chapter 2. 

 Chapter 3 presents the methodology related to the assessment of drought, impact of 

climate change on drought, hydrological modelling, and multivariate drought assessment, 

crop modelling and assessment of crop drought relationship. Further, the description of the 

study area, data needed and available for the study area are also presented in this Chapter.  

 Chapter 4 contains the results of impacts of climate change on drought on a river 

basin scale, non-stationary assessment of drought and its comparison with stationary 

drought indices. Further, multivariate drought index development and impact of climate 

change on multi variate drought are explained. Impact of climate change on crop 

productivity and crop drought relationship status are also discussed in this Chapter.  
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 Chapter 5 presents the summary of the study, the conclusions arrived, 

recommendation from the study and suggestions for further research activities. This 

Chapter also reports the contribution from this study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General 

 Climate change affects hydrological cycle, agricultural production, sea levels and sea 

surface temperature patterns. The extent, frequency and occurrences of extreme calamities 

such as droughts and floods could be attributed to the global changes in climatic pattern 

(IPCC, 2013). Drought events have paramount concern in river basin scale across the globe. 

Over the last few decades, drought has evolved as the major threat to agriculture in several 

parts of the globe considering the climate change. Hence, it is necessary to evaluate the effect 

of climate change on drought condition and the agricultural productivity. Several drought 

indices have been developed to facilitate the water managers for evaluating the impact of 

drought on the agricultural productivity and to minimize the crop failure in different stages 

of crop growth. Literatures related to evolution of different drought indices considering the 

univariate drought indices to multivariate drought indices and their assessment were 

reviewed. Various models to evaluate the climatic change, the evolution and analysis of 

impact of climate change on drought and associated risk were also critically reviewed. Then 

works on projections of climate change scenarios on hydrology using outputs of climate 

models through different hydrological modelling are reviewed. Various types of crop models 

and their features and impact of climate change on crop phenology are studied. Finally, 

studies related to the crop-drought relationship and the impact of drought on crop failure in 

various stages of crop development are also reviewed and presented. This chapter reviews 

the various published literatures on drought, climate change impact on drought, hydrological 

model crop yield prediction, and crop-drought relationship to arrive at a proper methodology 

to be adopted for the study. 
2.2 Drought Types and Indices 

The drought phenomenon is linked to lack of precipitation, soil moisture, runoff, and 

increased evapotranspiration. Droughts can be defined from a variety of perspectives, such 

as conceptual or operational droughts, despite the fact that there are no specific definitions 

(Wilhite and Glantz, 1985). It is conceptually defined in terms of drought regimes, which 

include meteorological, agricultural, hydrological, and socio-economic drought occurrences. 

The duration, severity, peak, intensity, commencement, termination, area covered, and 
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frequency of drought occurrences can all be used to establish operational drought regimes 

(Mishra and Singh, 2010). Drought hazard is defined by the Food and Agriculture 

Organization (FAO, 1983) as "the proportion of years when crops fail due to a lack of 

moisture." Drought is defined by the World Meteorological Organization (WMO, 1986) as 

"a sustained, prolonged deficiency in precipitation." Changes in the monsoonal system over 

India have been widely documented as having an impact on drought, and accordingly the 

economy of the country will be influenced by the climate change (Mishra et al. 2020b; 

Kumar et al. 2021a). Based on long-term climate projections and reliable indices, the spatial 

extent, occurrences, onset, and withdrawal of drought episodes must be monitored to give 

water resources planners with accurate information for implementing appropriate disaster 

response measures.  

2.2.1 Meteorological drought 

The term "meteorological drought" refers to lack of precipitation over a long period 

of time. Some of the most regularly used meteorological drought indicators are Standardised 

1precipitation Index (SPI, McKee et al. 1993), Palmer Drought Severity Index (PDSI, 

Palmer, 1965), Reconnaissance Drought Index (RDI, Tsakiris et al. 2007), and Standardised 

Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al. 2010). SPI is frequently 

used to track meteorological drought with negative SPI values signifying drier-than-normal 

circumstances. Because the precipitation process dominates meteorological drought, this 

type of drought is frequently predicted using a medium to long-range climate forecast (Gupta 

and Jain, 2018). Since the water deficit may affect other components of the hydrological 

cycle, the prediction of meteorological drought is crucial in the prediction of other types of 

droughts. The meteorological drought generally triggers other types of droughts affecting 

the groundwater in the region (Mishra & Sing, 2010). Tirivarombo et al. (2018) have 

reconstructed SPI and SPEI and observed that both indices can pick up temporal variation 

of droughts.  They also suggested that evapotranspiration due to temperature change played 

a major role in drought assessment. Sharma et al. (2021) investigated the drought 

characteristics over the Nepal Himalaya using the SPI and they observed that the spring and 

autumn drought events were slightly greater than summer and winter droughts.  

2.2.2 Hydrological drought 

Hydrological drought is defined based on the deficit in the streamflow, surface 

runoff, and reservoir water demand and groundwater profile. Various hydrological drought 

indicators including Standardized Runoff Index (SRI, Shukla & Wood, 2008), Palmer 

https://www.sciencedirect.com/science/article/pii/S1474706517300542#!
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Hydrologic Drought Index (PHDI, Palmer, 1965), runoff or streamflow percentile and 

reservoir level (Hayes et al. 2011) been developed in the past. Despite the fact that drought 

is caused by a lack of precipitation, the evolution of physical forms of drought from 

meteorological to hydrological to agricultural drought is a complicated mechanism. 

Although the hydrological drought mechanism is linked to an antecedent shortfall in 

precipitation, other factors such as reduced water storage, snow accumulation, topography, 

morphology, and other catchment characteristics also have an impact on drought mechanism. 

Overall, both climate and catchment features influence the occurrence of hydrological 

droughts. 

2.2.3 Agricultural drought 

Agricultural drought refers to a situation when the available water is not able to meet 

the crop water requirement. This type of drought is generally defined based on the deficit of 

root zone soil moisture that can affect plant developmental stages and crop productivity. The 

agricultural drought is mainly caused due to the insufficient amount of precipitation or 

increased evapotranspiration resulting from increment in the thermal regime from the bare 

soil and plant. Various agricultural drought indicators have been developed globally such as 

the Crop Moisture Index (CMI) (Palmer, 1965), Soil Moisture Deficit Index (SMDI, 

Narasimhan & Srinivasan, 2005), and Standardized Soil Moisture Index (SSI, Hao & 

AghaKouchak, 2013) and Vegetation Condition Index (VCI; Liu & Kogan, 1996).   

2.2.4 Socio-economic drought 

The socio-economic drought is related to the supply and demand of water to serve 

the population that includes the features of the other drought conditions.  It highlights the 

strong association among drought and anthropogenic activities. The frequency of physical 

events, societal vulnerability to water shortages and water demand triggers the onset of 

drought (Wilhite, 2000). For the assessment of water scarcity, certain indicators like Social 

Water Stress Index (SWSI, Shafer & Dezman, 1982) have been constructed that can assess 

the water use, supply, and vulnerability.  

2.3 Multivariate Drought Indices 

Proper drought management requires the background knowledge of magnitude and 

occurrences of drought based on multiple variables. Different types of drought indices have 

been developed by concentrating on the stochastic nature of climate and the human activities. 

The traditional single variable drought indices reflect only a specific type of drought, viz., 
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meteorological, hydrological, or agricultural drought. Further, single valued drought indices 

are probably inadequate for identification of the drought phenomenon since the various 

climatic parameters are interconnected. The single valued drought indices neither indicate 

the different climatic variable deficit nor quantify the drought condition because they depend 

on multiple variables (Rajsekhar et al. 2015). For example, the only variable which is used 

for finding the SPI is the precipitation. However, the dependency only on precipitation, 

neglecting the ground related variables and evapotranspiration may narrow down the 

effectiveness drought monitoring. Since the abnormal rising of temperature and 

evapotranspiration create flash drought, it indicates that precipitation alone cannot be a 

reliable entity in the study related to global warming phenomenon (Won et al. 2020). 

Therefore, the traditional forms of drought monitoring need to be updated to consider all the 

possible climatic features to define the environmental conditions. To overcome the drought 

assessment of single-valued drought index, multiple drought indices were developed by 

various researchers. Indices like Standardized Precipitation Evapotranspiration Index (SPEI, 

Vicente-Serrano et al. 2010) and Reconnaissance Drought Index (RDI, Tsakiris et al. 2007) 

have gained popularity by combining multi scalar properties of climate variables.  Keyantash 

& Dracup (2004) considered all forms of droughts to develop the Aggregated Drought Index 

(ADI), which included all possible real-time input variables like precipitation, soil moisture, 

reservoir storage, streamflow, and evapotranspiration and snow. Rajsekhar et al. (2015) 

demonstrated a Kernel Entropy Component Analysis (KECA) to construct a Multivariate 

Drought Index (MDI). Multivariate Standardized Reliability and Resilience Index (MSRRI) 

that combined the information of Inflow-Demand Reliability Index (IDRI) and Water 

Storage Resilience Index (WSRI) was developed by Huang et al. (2016). Liu et al. (2020) 

evaluated the MSRRI for the Northwest China region. MSRRI was also used to evaluate the 

socio-economic drought in the Upper Yellow river basin (Guo et al. 2019).  

2.4 Non-stationary Aspects of Drought 

Traditional approaches used for the assessment of drought conditions assumed 

stationarity which were no longer valid under modulating effects of climate, human activities 

and the changing pattern of environment. Previous researches showed that regional 

hydrological variability and catastrophic occurrences such as droughts and floods are linked 

to global climate phenomena (Kahya & Dracup, 1993). Some researchers had established a 

correlation between global climate indicators and climatic conditions in India. Sea Surface 

Temperature (SST) oscillations and Indian Summer Monsoon Rainfall (ISMR) exhibited a 
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substantial association, according to Sahai et al. (2003). The spatial and seasonal changes of 

rainfall over the Ganges and Brahmaputra basins based on the ENSO events and Indian 

Ocean Dipole (IOD) modes were investigated by Pervez & Henebry, (2014). Tamaddun et 

al. (2019) discovered the impact of El Nino Southern Oscillation (ENSO) on north Indian 

precipitation, temperature, and potential evapotranspiration (PET) during the monsoon 

season. At a global scale, Hao et al. (2018) qualitatively assessed the association between 

the occurrence of compound dry and hot events and ENSO for the warm season. Zhang et 

al., (2020) identified that that the cold phases of the Pacific Decadal Oscillation (PDO) 

during the La Niña events (i.e., negative Multivariate ENSO Index) were the reason behind 

the intensified short-term concurrent hot and dry extreme (SCHDE) events in southern parts 

of South America and Australia. For accounting the climate forcings, Jha et al. (2021) 

assessed the association between ENSO, Atlantic Multidecadal Oscillation (AMO) and IOD 

on extreme precipitation events over 24 major river basins of India. Das et al. (2020a) 

qualitatively examined the tele-connection of eight large-scale climatic oscillations such 

SST, IOD, Southern Oscillation Index (SOI), Arctic Oscillation (AO), Multivariate ENSO 

Index (MEI), North Atlantic Oscillation (NAO), PDO, and Indian Summer Monsoon Index 

(ISMI) on monthly precipitation over six different homogeneous regions in India. Global 

variations in the large-scale climate oscillations also showed significant teleconnections with 

drought events (Wang & Kumar, 2015; Guo et al. 2019). Trenberth et al. (2014), in their 

study, observed that the major drought events in different parts of the world were influenced 

by ENSO events. The cross-correlations between ENSO events and Nonparametric 

Multivariate Standardized Drought Index (NMSDI) were investigated using the Cross 

Wavelet Analysis (CWA) analysis by Huang et al. (2016). In the Indian context, the positive 

ENSO showed substantial impact on the drought frequency over the country (Shah & 

Mishra, 2020). Kumar et al. (2021b) used CWA approach to identify the association between 

large scale climate oscillations with the drought characteristics focussing on groundwater 

over south Indian river basins. Gupta & Jain (2021) analysed the influence of ENSO events 

on dry/wet conditions over India considering indices such as SPI and SPEI. It can, hence, be 

summarised that covariates provide greater insight into the factors of climate that influence 

the distribution of climatic parameters over time. 

 It is well known that the stationarity is the basic assumption in the statistical 

interpretations of time series in hydrologic processes. Stationarity refers to the parameters 

of the climate that are invariant in time and space and free of trends (Wang et al. 2015). 
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Property of stationarity is questionable in the context of global warming and anthropogenic 

changes. The outcome of environmental changes exhibits non-stationary behaviour in 

climatic parameters. Hence indicators should be developed for identifying drought status in 

non-stationary conditions for better management of water. However, the large-scale climate 

indices based on ENSO events cannot be neglected in the computation of nonstationary 

drought indices (Bazrafshan & Hejabi, 2018) because the precipitation pattern and its hydro-

meteorology are influenced by the global scale climate indices. 

Standardized Non-stationary Precipitation Index (SnsPI) was developed by Russo et 

al. (2013) and further used by Wang et al. (2015). This index deals with the time varying 

mean, as an extension of the stationary SPI. Past studies used the Generalized Additive 

Model in Location, Scale and Shape (GAMLSS) model developed by Rigby & 

Stasinopoulos (2007) for the modelling of non-stationary events (Villarini et al. 2009; Lopez 

& Frances, 2013; Debele et al. 2017). Many studies have been carried out in the past for the 

non-stationary drought analysis (Osorio & Galiano, 2012; Wang et al. 2015) using GAMLSS 

model. 

Rashid & Beecham (2019) developed NSPI using GAMLSS framework in South 

Australia. They have incorporated climate indices like SOI, Niño3.4, PDO, Southern 

Annular Mode (SAM) and DMI as external covariates to capture the non-stationary property 

of drought. They specified that non-stationary model can capture the rainfall variability 

better than a stationary model. In addition, they have suggested that NSPI is better than a 

traditional stationary SPI (SSPI) for assessing the drought properties. 

Das et al. (2020b) constructed the Non-stationary Standardised Precipitation Index 

(NSPI) by considering large scale oscillations using the GAMLSS model in the Himalayan 

states of Sikkim and Uttarakhand. The nonstationary drought index exhibited fairly good 

result as compared to the stationary drought index. 

 A non-stationary Standardized Runoff Index (SRINS) was developed by Jehanzaib et 

al. (2020) using GAMLSS framework for the Han river basin of South Korea. At different 

time scales, they assessed the relative contributions of meteorological (precipitation, 

temperature) and human (water consumption for social development needs, and water 

consumption induced by check dams) factors to hydrological drought. They identified a shift 

in the streamflow series after the 1990s. Furthermore, the change point was detected in the 

streamflow series after 1990s. Additionally, they observed significant decrease in 
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streamflow and precipitation pattern. The potential evapotranspiration increased in a higher 

rate after the change point in the watershed. 

Zhang et al. (2021) developed a Non-stationary Meteorological and Hydrological 

Drought Index (NMHDI) by integrating the NSPI and NSRI at the Huaxian station in the 

Weihe river basin in China. They developed the NSPI and NSRI considering climate and 

anthropogenic factors, as covariates. The NMHDI was calculated after using the time-

varying copula model to characterise the temporal dependency structure of precipitation and 

runoff. Comparing the NMHDI and MHDI, the study revealed that the non-stationary model 

performed better than the stationary model in recreating precipitation and runoff changes. In 

the case of NMHDI, frequent extreme drought occurrences were detected. The improved 

performance of the NMHDI had an ability to respond to the continuously changing 

environment. 

Shao et al. (2022) used a GAMLSS-based non-stationary standardised runoff index 

(NSRI) in conjunction with meteorological and human-induced water consumption as 

covariates to estimate hydrological drought in the Wuding river basin, China. They 

compared how well SRI and NSRI performed in detecting drought events. The NSRI 

recognised more severe and extreme droughts, and it had a significant advantage in detecting 

hydrological drought by considering human influence.  

2.5 Climate Change Implications 

The varying global climate alters the hydrological cycle leading to the variability in 

frequency of extreme events, availability of water, irrigation water use, and quality of fresh 

water resources. Anthropogenic changes induce climate change causing increase in CO2 

concentration and other atmospheric heat-trapping gases, resulting in global warming 

conditions. Due to the increase in surface heating, there must be the strong anticipation of 

escalation in PET. This will possibly modulate and rise the actual evapotranspiration 

demands in plants, provided adequate root zone moisture is available. So, potential changes 

in moisture regimes and precipitation trigger warming situations as part of energy goes into 

increasing temperature over dry land. Changes in atmospheric circulation would certainly 

affect the extreme phenomenon like flood and drought (Mishra et al. 2020a). 

2.6 Downscaling Methods for Climate Projections 

General Circulation Models (GCMs) are the feasible and credible tools widely used 

to predict the changes in atmospheric variables under climate change scenarios (Anandhi et 
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al. 2008). GCMs are physically-based models, which represent atmospheric and oceanic 

dynamics (Angeles et al. 2007). The GCM projections are well simulated at a coarser 

resolution i.e. at continental and hemispherical scale; however, the regional impact analysis 

requires the variables at finer scale. GCMs have typically low spatial resolution of 

approximately 100-250 km and they are inadequate for regional impact studies especially 

for analysing the changes in extreme events (Fowler et al. 2007; Sharma et al. 2017). Hence, 

in order to analyze the impact of climate change, large scale climate variables should be 

linked to the hydrologic variables at a regional scale. Downscaling methods can be used to 

derive local to regional scale information from large-scale spatial and temporal scales. These 

could be dynamic or statistical. The dynamical downscaling generates finer resolution output 

based on atmospheric physics over a region using GCM as a boundary (Teutschbein et al. 

2012). Statistical downscaling methods establish an empirical relationship between the 

outputs of the GCMs with observed climate data (Fan et al. 2021).  

2.6.1 Dynamic downscaling  

Dynamic downscaling refers to the use of high-resolution regional simulations to 

dynamically extrapolate the effect of large-scale climate processes to regional or local scales. 

This uses a limited area high-resolution models such as Regional Climate Models (RCMs) 

which are driven by large scale and lateral boundary conditions from a GCM to produce 

higher resolution output (Tiwari et al. 2017; Torma et al. 2015). RCMs are frequently used 

to analyse the impact of climate change on hydrology on the watershed because of their 

higher resolution. The resolution of RCMs is around 12-50 km and it accounts for the sub-

GCM grid scale forcing (e.g. complex topographical features and land cover heterogeneities 

in a physically-based way). RCM outputs have been used by many researchers for the 

quantitative and qualitative assessment of future climatic extreme events including drought 

regimes (Wang et al. 2011; Huang et al. 2015). Due to higher spatial resolution output, 

RCMs provide a better description of topographic phenomena. Further, the finer dynamical 

processes in RCMs produce more realistic mesoscale circulation pattern. Some of these 

studies which used dynamical downscaling in hydrological researches are discussed in this 

Chapter.  

Giorgi & Mearns (1991) compared the empirical and GCM nested limited area 

modelling techniques and discussed the advantages, disadvantages, limitations, and 

variability of their use. They observed that, though such models are capable of encompassing 

the wide range of climate variability and atmospheric phenomenon, they are complex and 
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expensive. Leung et al. (2003) studied the capability of the RCM in the analysis of 

hydrologic variable like precipitation as well as inter annual variability such as mesoscale 

ENSO anomalies over Western United States. Poul et al. (2016) examined the effect of land 

use land cover (LULC) changes on the ISMR using weather research and forecasting (WRF) 

coupled with Community Land Model (CLM4.0). Gu et al. (2012) predicted the future 

climate change by using RegCM4, a regional climate model, for East and South Asia. The 

result indicated that the Yangtze river basin will witness changes in extreme precipitation 

and drought events and it potentially increased risks of both floods and droughts at the same 

time. Verma & Bhatla (2021) used RegCM4 to dynamically downscale the summer monsoon 

system over the South Asian Coordinated Regional Climate Downscaling Experiment (SA 

CORDEX) domain and observed that the model performed well in identifying the properties, 

spatial distributions, and trends associated with dry spell during ENSO phases. The RegCM4 

RCM was employed to dynamically downscale future climate variables driven by the GCM 

Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-

g3), under multiple SSP scenarios over the CORDEX East Asia Phase II domain. 

Considering both spatial pattern correlation and biases, the downscaled model improved 

simulating the precipitation over China than the FGOALS-g3 GCM (Zou & Zhou, 2021). 

Gao et al. (2022) used simulations of the WRF model with both Kain-Fritsch and Grell 

cumulus convective parameterisation approaches to perform ensemble dynamical 

downscaling of precipitation across China. They found that the model captured the 

precipitation signals better. 

2.6.2 Statistical downscaling  

Statistical downscaling, in contrast to the computationally demanding dynamical 

downscaling, provides a straightforward solution by establishing empirical relationships 

between GCM climate variable and local climate. These relationships can be established 

without involving the mass and energy exchange between the land and atmosphere. The 

relationships hold good for future changed climate scenarios as the selected predictors 

completely represent the changing climate signals. There are several statistical downscaling 

approaches which established statistical links between large-scale climate and the observed 

local-scale climate data. Broadly, the statistical downscaling approaches are categorised into 

three diverse groups: weather generators, transfer function and weather typing (Ghosh and 

Mujumdar, 2008). In the case of weather generator approach, local scale climate time series 

are reproduced by replicating the statistical properties of observed climate. Similarly, in the 
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weather typing approach, regional variables are organised according to distinct classes of 

atmospheric circulation, and climatic scenarios are then generated by utilising Monte Carlo 

simulation and resampling techniques to get a sequence of weather classes. The most popular 

downscaling method is the use of a transfer function, which is a regression-based 

downscaling method (Tripathi et al. 2006). A basic linear regression is commonly utilised to 

establish the link between one large-scale predictor and one local predictand. To obtain the 

predictor–predictand connection, Linear and nonlinear regression, Artificial Neural Network 

(ANN), canonical correlation, and other techniques have been utilised to obtain the predictor 

and predictand relationship. ANN-based downscaling approaches, in particular, have gained 

popularity due to their ability to capture nonlinear interactions between predictors and 

predictands (Ghosh and Mujumdar, 2008). 

Wilbey et al. (2002) developed a well-organized regression-based Statistical 

Downscaling Model (SDSM) to downscale daily scale meteorological data (precipitation 

and temperature). Ghosh & Mujumdar (2008) used machine learning techniques such as 

support vector machine (SVM) and relevance vector machine (RVM) to forecast monthly 

monsoon streamflow across the Mahanadi river basin in Odisha, India. Raje & Mujumdar 

(2011) compared several downscaling algorithms, including SVM, K-nearest neighbour 

(KNN), and conditional random field. Their findings indicated a rise in average daily 

precipitation for the majority of the stations. Lin et al. (2017) used the KNN algorithm to 

construct a new spatio-temporal downscaling approach for hourly rainfall. SDSM, in 

integration with two bias correction methods, was employed to project the climate variables 

such as daily maximum temperature, mean temperature and minimum temperature over the 

Loess Plateau, China (Fan et al. 2021). Tabri et al. (2021) compared four statistical 

downscaling methods namely bias correction (BC), change factor of mean (CFM), quantile 

perturbation (QP), and an event-based weather generator (WG) to assess the impact of 

climate change on drought in the future (2071-2100) compared to a baseline period (1971-

2000) for the Uccle region of Belgium. Ensemble CMIP6-GCMs were subjected to 

downscaling, with four future scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. 

The QP technique surpasses the others in recreating the amplitude and monthly pattern of 

the reported drought indicators. 

2.6.3 Bias correction in climate change analysis 

Inherent biases in RCMs due to systematic model errors are caused by imperfect 

conceptualisation, discretisation and spatial averaging within grid cells. Andréasson et al. 
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(2004) showed that these biases were not only for precipitation but also for temperature. The 

common biases were the occurrence of too many wet days with low-intensity rainfall or 

erroneous prediction of severe temperatures (Ines & Hansen, 2006). Other biases include 

general under/over-estimation of precipitation and improper seasonal fluctuations of 

precipitation. (Teutschbein et al. 2012). Several bias correction methods have been 

developed to downscale climate variables from climate models (Chen et al., 2011; Chen et 

al. 2019). These methods range from simple scaling approaches to sophisticated methods 

employing probability mapping or weather generators. They were originally designed to 

downscale GCM data, but can also be applied to adjust RCM-simulated temperature and 

precipitation. Regardless of the fact that RCM simulations are increasingly being used in 

hydrological climate-change impact assessments, their application is challenging due to the 

potential existence of biases. To deal with these biases, several studies have been 

undertaken, ranging from simple scaling to more intricate ones (Fang et al. 2015; Guo et al. 

2019; Tong et al. 2021). Bias correction techniques have been used widely for post 

processing the climate model output prior to application for impact studies (Wood et al. 

2004; Ashfaq et al. 2010; Piani et al. 2010; Ngai et al. 2017) 

 2.7 Comparison between Coupled Model Intercomparison 

Project Phase 5 (CMIP5) and Coupled Model 

Intercomparison Project Phase 6 (CMIP6) GCMs 

Researchers across the world began generating new scenarios to examine how 

climate would evolve during the latter parts of the 21st century. The Representative 

Concentration Pathways (RCPs) were developed to represent the many phases of greenhouse 

gas emissions and other radiative forcings that may affect the future. Four routes were 

developed that span a wide range of forcing (2.6, 4.5, 6.0, and 8.5 watt/m2), but they do not 

have any socio-economic “narratives”. To connect a wide range of research communities 

including climate change mitigation and adaptation activities, the 6th IPCC assessment 

report (AR6) developed the Shared Socio-economic Pathways (SSPs), based on five 

narratives that depict major socio-economic patterns that might affect society in the future. 

The four SSPs are SSP126 (2.6 W/m2 radiative forcing, low end of the range of future forcing 

pathways), SSP245 (medium end of the range of future pathways 4.5W/m2 (radiative 

forcing), SSP370 (representing the medium to high end of the range of future forcing 

pathways, 7.0 W/m2 radiative forcing) and SSP585 (high end of the range of future 

pathways, 8.5 W/m2 radiative forcing). The probable greenhouse gas concentration assuming 
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the population, economic, GDP, educational growth and LULC changes, and the climate 

mitigation efforts from the ScenarioMIP were considered in the SSPs.  SSPs were used in 

CMIP6 models allowing for enhanced future impact assessments with better 

parametrisation. These climate predictions considering new set of emission and land use 

scenarios were developed using Integrated Assessment Models (IAMs) based on both SSPs 

and RCPs (O’Neill et al., 2016).  

Various studies have been carried out considering the CMIP5 to examine extreme 

events (Ahmadalipour et al. 2017; Gaitán et al. 2020). However, CMIP6 has an improvised 

parameterisation that can efficiently model climate projections (Eyring et al. 2016). A study 

by Gusain et al. (2020) showed that CMIP6-GCMs are more efficient compared to CMIP5-

GCMs in simulating the Indian summer monsoon. Further, Chen et al. (2020) and Wang et 

al. (2020) reported that the ISMR is likely to increase in future climate scenarios based on 

CMIP6-GCMs. A recent study used CMIP6-GCMs to evaluate different drought events over 

India (Rajbanshi & Das, 2021). Further, CMIP6 models have also gained popularity world-

wide among many research communities to deal with climatic variations and for assessment 

of extreme events (Chen et al. 2020, Aadhar & Mishra, 2020, Zhai et al. 2020, Ukkola et al. 

2020, Hirabayashi et al. 2021).  Future analysis of long term and short-term drought events 

based on CMIP6-GCMs could effectively be used for improvement of sustainable 

management practices like drought resistant measures, water storage, land and groundwater 

management practices, dealing with agricultural production and livestock insurance etc. 

These can efficiently tackle the negative impacts of droughts in future.  

2.8 Multi-Model Ensemble (MME) 

 Ensemble approaches based on different climate models, data sets, or members of 

the same model can effectively model the uncertainty in hydro-meteorology estimation 

(Raftery et al., 2005). Typically, the ensemble average method is capable of synthesising 

single information from several members and outperforms all or most of the individual 

characteristics. Duan et al. (2021) reported that the ensemble average strategies can explore 

a variety of skilful forecasts and improve the predictive abilities from the viewpoint of either 

a point forecast or a density forecast. In particular, probabilistic ensemble approaches that 

could effectively synthesize outputs from different GCMs and RCMs and hydrological 

models were getting increased attention in various studies (Adhar & Mishra, 2020; Zhai et 

al. 2020; Mishra 2018). The key of probabilistic ensemble method such as Bayesian Model 

Averaging (BMA) was to quantify the weights according to each climate model and to 
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generate predictive distributions of variable of interest (Xu et al. 2018; Ma et al. 2018). 

Besides, multi-model-ensemble weights can also be assigned to climate models in terms of 

some weighting criteria such as the Reliability Ensemble Averaging (REA) that can quantify 

accuracy of the climate models for impact analysis on hydro-meteorology (Sengupta & 

Rajeevan, 2013; Choudhary et al. 2018; Tegegne et al. 2020). In probabilistic MME methods 

like the REA, convergence criteria in multi-model predictions of future changes are also 

regarded crucial for model selection. 

2.9 Copula Analysis 

 Copulas are widely used for capturing the association between two or more random 

variables (Salvadori & De Michele, 2004; Grimaldi & Serinaldi, 2006; Kumar et al. 2021b). 

A copula is highly useful for implementing efficient algorithms for more realistically 

simulating joint distributions. Copulas, in fact, can model the dependence structure using 

marginal distributions. These functions can derive joint distributions for more than one 

dependent random variable irrespective of their probability distributions (Ganguli & Reddy, 

2013).   

2.9.1 Types of copulas  

Various families of copulas exist: (i) Meta-elliptical families (Normal and Student’s 

t copula), (ii) Archimedean copula families (Gumbel, Frank, Clayton, and Ali-Mikhail Haq), 

(iii Extreme Value copula families (Gumbel, Tawn, Husler-Reiss and t-EV), and (iv) other 

families (Farlie-Gumbel-Morgenstern and Plackett). Among these families, meta-elliptical 

and Archimedean copulas are used in hydro-meteorological studies. Meta-elliptical copulas 

consider that     the elliptical distributions are very useful in different applications since they 

have several properties of the multivariate normal distribution. Originally Archimedean 

copulas appeared in the study of probabilistic metric spaces. Archimedean families have 

been popular choices for dependence models because of their simplicity and generation 

properties (Nelson 2006). 

2.9.2 Applications of copulas in hydrology  
 

  Copulas have wide application in hydro-meteorological studies. The results of 

frequency analysis may be over or under-estimated in the case of univariate analysis which 

provide limited evidence of the dependencies among extreme hydrological events. Copula 

functions have the capability to model the conventional multivariate distributions 

incorporating their nonlinear dependency measures of variables (Sklar, 1959). Salvadori et 
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al. (2011) considered flood peak, volume and initial water levels of the dam to estimate the 

multivariate flood quantiles using copula functions. Meta-elliptical copulas were applied to 

flood variables (as peaks, durations and volumes) for the analysis of the return period at 

Romaine river in Québec (Genest & Favre 2007). Bivariate distributions of monsoon rainfall 

in various meteorological subdivisions in India were estimated by Ghosh (2010). Reddy & 

Ganguli, (2012) applied Archimedean copulas like Clayton, Frank, Ali-Mikhail-Haq and 

Gumbel-Hougaard to model the bivariate flood frequency analysis of annual peak flow-

volume, and volume-duration pairs. Filipova et al. (2018) developed an approach for 

selecting different copulas for modelling the joint probability of flood peak and volume for 

27 catchments in Norway. 

2.9.3 Joint probability distribution and multivariate return period analysis 

of droughts based on copula theory 

 Droughts are complicated natural events, and therefore a single variable cannot 

provide a thorough assessment of droughts (Shiau et al. 2007). Instead of using typical 

univariate analysis to measure drought characterization, determining the joint distribution of 

drought variables was found to be a better way to describe drought features (Mishra & Singh, 

2010). Due to existence of mutual dependencies between random variables, a univariate 

probability distribution was insufficient to model the multivariate aspects of a drought event 

that can be defined by duration, severity, peak, and intensity. The computed return period 

for a hydro-meteorological system with two or more random variables was not equivalent to 

the actual return period of drought (Hawkes et al. 2002). Simply analysing the duration or 

intensity of a drought will result in an overestimation or underestimation of risk while 

performing drought frequency analysis (De Michele et al. 2005). As a result, analysing the 

complicated hydro-meteorological phenomenon requires a multivariate stochastic analysis 

(Grimaldi & Serinaldi, 2006). The multivariate analysis is based on: (i) fitting a suitable 

marginal distribution to hydro-meteorological parameters; (ii) estimation of related 

parameters; and (iii) assessment of multivariate return periods considering associated 

properties (Chebana & Ouarda, 2011). Nelson (2006) and Salvadori et al. (2007) provide 

more information on the theoretical background and use of copulas. 

The analyses of drought properties play a satisfactory role in monitoring the negative 

impacts on water resources and agriculture (Oguntunde et al. 2017). Drought characteristics 

like severity, duration and peak must have a dependence structure. Considering SPI, Shiau 

& Modarres (2009) reported that the complex drought phenomenon can be categorised by 
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three dependent properties, viz. severity, duration and frequency. Further, they implemented 

the copula functions to develop a probabilistic approach to obtain relationship between 

drought severity-duration and frequency (SDF) at 2 gauge stations in Iran. Analytically 

derived SDF curves represent a function of univariate distribution of severity and duration. 

Moreover, the study showed that if any modulation in precipitation exists in humid region, 

the drought severities might be higher in the region. 

 Song and Singh (2010) used meta-elliptical copulas such as Gumbel-Hougaard, Ali-

Mikhail-Haq, Frank, and Clayton copulas to develop trivariate return periods of drought 

considering duration, severity, and interval time, and the best-fit copula for trivariate drought 

analysis was chosen. Ma et al. (2013) estimated the drought return period by considering 

duration, severity, and peak based on Gaussian and Student’s t copulas in the Weihe river 

basin, China. 

Chen et al. (2013) used SPI time series to determine drought parameters such as 

duration, severity, interval time, and minimum SPI values. To develop four-dimensional 

joint distributions that reflect the dependence structure of drought events, suitable marginal 

distributions were fitted. The joint return period based on the drought properties were 

computed and investigated in the upper Han river basin, China using Archimedean and meta-

elliptical copulas.  

The spatio-temporal variability of meteorological drought conditions for the western 

Rajasthan, which is the most drought prone region in India considering 6-month SPI (SPI-

6) was investigated by Ganguli & Reddy (2013). From spatio-temporal analysis of SPI-6, 

they observed that frequency of droughts showed increasing tendency at the central part the 

region. Gumbel-Hougaard, Frank and Plackett copulas were used for modelling bivariate 

dependence between drought properties like intensity and areal extent. On the basis of upper 

tail dependence and goodness-of-fit tests, Gumbel-Hougaard copula was identified as the 

best fit model for representing the dependence status of drought properties. Further, 

conditional return periods were also estimated based on the best fit copula model. Drought 

intensity-area-frequency (I-A-F) curves which could be helpful in risk evaluation of droughts 

in the region were also developed. 

Saghafian & Mehdikhani (2014) investigated dependence structures between 

severity–peak, duration–severity and duration–peak considering different copula functions. 

The generated copula-based joint distributions were also used to calculate the trivariate 

return period. The suggested model was tested using data from a synoptic station in Qazvin, 
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and the findings were compared to empirical probabilities. The study revealed that that 

copulas are useful models in exploring the dependency among drought variables.  

Trivariate copula model was used by Xu et al. (2015) to calculate regional drought 

frequency, incorporating the duration of drought events, the area affected by drought, and 

the intensity of the drought in Southwest China. The best fit copula model was chosen using 

several methods depending on goodness of fit. From the results, they observed that the 

copula-based return period incorporates the combined effects of drought duration, affected 

area and severity, which are reliable drought statistical measurements and the 2009–2010 

drought was found to be the most severe drought in this region which had a return period of 

about 94 years. 

SPI was assessed for identifying drought duration and severity by Mortuza et al. 

(2019). In order to estimate the regional frequency analysis, copula models were used by 

obtaining appropriate marginal distributions for the drought properties. The study was 

carried out over Bangladesh. They classified the country into three homogeneous regions 

using fuzzy clustering algorithm. The future drought was also projected and properties of 

drought were used to obtain drought occurrence in the region. They found that the standard 

univariate frequency analysis under/overestimated the output of bivariate drought frequency 

analysis. Overall, they identified that more frequent and severe droughts occurred in the 

western side of the country. 

Poonia et al. (2020) implemented a bivariate copula-based approach for 

understanding the combined occurrence of drought duration and severity by considering SPI, 

SSI and SRI. Franck, Gumbel and Plackett were used for modelling dependence structure 

among copula model over India. Further, they have analysed the joint dependence of drought 

properties in order to derive exceedance probabilities and return periods. After investigation, 

they identified that the Western and Central India were vulnerable to drought conditions 

while the South Indian river basins showed more frequent but less severe events. 

Multivariate analysis of drought properties was widely accepted in hydro-

meteorological studies for better understanding of risk, return period and for detecting the 

warning criteria of extreme events (Mishra & Singh, 2009; Hao & Singh, 2015; Das et al. 

2020b, Gupta et al. 2020, Zhao et al. 2021).  

2.9.4 Vine copula/Pairwise Copula Construction (PCC) model 

Several past studies indicated that the vine copula model was more flexible in 

handling the higher dimension copulas by extending the bivariate copula to higher 
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dimensions. The basic idea of vine copulas is to construct high dimensional copulas based 

on a stage-wise mixing of bivariate copulas by decomposing the full density function into a 

product of low-dimensional density functions. The higher dimensional multivariate 

Student’s t copula was not adequate to model the complexity in the dependence structure of 

extreme event variables. Because of this limitation of higher dimensional copulas, an 

efficient way of copula construction method was introduced for a highly dependent structure 

to model the complex pattern called vine or pair-copula (Bedford & Cooke, 2001; Aas et al. 

2009). A trivariate discharge modelling considering flood duration, peak and severity was 

carried out by Song & Kang (2011) using pair-copula construction. A vine copula model 

was constructed to analyse the flood frequency using variables like peak discharge, duration 

and volume (Gräler et al. 2013). Daneshkhah et al. (2016) developed a multivariate pair 

copula model by using the flood properties in Beas river of the Himalayan region indicating 

that the Himalayan rivers are highly affected by the monsoon fluctuations and stored snow 

cover. Muthuvel & Amai (2021) developed quad-variate models encompassing SPI, SRI, 

SSI, and Standardized yield residual Series (SYRS) using the vine copulas. They have also 

reported that the vine-copula model performed better than the elliptical and symmetric 

Archimedean copula.   

2.9.5 Copula based multivariate drought indices 

Copula based multivariate approaches have proven to be a reliable way for assessing 

the drought phenomenon, and these approaches are gaining significant recognition in the 

field assessment of multivariate drought analysis. A Joint Drought Index (JDI) using copula 

for obtaining the joint probabilities while considering precipitation and streamflow in the 

State of Indiana, USA, was introduced by (Kao & Govindaraju, 2010). Hao & AghaKouchak 

(2013) used a 2-dimensional Frank copula based Multivariate Standardised Drought Index 

(MSDI) considering both meteorological as well as agricultural droughts in California and 

North Carolina. Ma et al. (2014) developed a Composite Drought Index (CDI) using monthly 

precipitation, temperature and soil moisture by merging PDSI and Standardised Palmer 

Drought Index (SPDI) through a potential moisture departure probabilistic approach. Shah 

& Mishra (2019) developed an Integrated Drought Index (IDI) by combining a number of 

drought indices using copula SPI (meteorological drought), SSI (agricultural drought), SRI 

and Standardized Groundwater Index (SGI, hydrological drought). Copula-based Joint 

Drought Index (CJDI) developed by Won et al. (2020) combines the properties of SPI and 

Evaporative Demand Drought Index (EDDI). 
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2.10 Hydrological Modelling and Impact Analysis 

 The global climate has changed significantly since pre-industrial times due to the 

major anthropogenic interventions, threatening the sustainability of natural resources at 

regional scale. Climate change has extensive influence on agriculture, environment, water 

availability, and ecosystems, social and economic factors. IPCC AR5 reported an 

unprecedented rise in global temperature of the atmosphere in few decades, which will 

substantially impact the climatic, ecological and chemical parameters and hydrological cycle 

over the globe. As a consequence of variations in the climatological parameters, changes are 

anticipated in the water availability and related climate extremities of the river basins. 

Therefore, the hydrological alterations attributed to climate change must be investigated for 

assessing water availability and for sustainable development especially for the agricultural 

country like India (Nilawar & Waikar, 2019). Hydrological response simulations based on 

climatic conditions are useful in understanding the hydrological phenomenon in a better way. 

This approach provides a bigger picture of the spatio-temporal changes of hydrological 

variables for creating the inter-linkages with the climate in the future. Hence, based on the 

water balance modelling approach, a qualitative assessment of changes in water resources 

can be carried out under influence of climate and human activities. Hydrological models 

have proven to be efficient tools to assess the adverse effect of climate change. These models 

can be externally provided by climatic parameters that can assess the probable changes in 

the streamflow of a specific river basin. The main factors affecting hydrological regimes are 

climate and land use/cover change. Given the wide range of options, correctly quantifying 

the effects of climate and land use/cover changes on streamflow within a specific watershed 

becomes critical. 

Generally, the conceptual hydrological models are categorized into three types - 

semi-distributed, lumped and deterministic - based on the ability of the model to 

conceptualize input variables with the catchment characteristics like LULC, soil type, slope, 

etc. Physically-based, spatially-distributed hydrological models are not only able to quantify 

the spatial variability of hydrological parameters, but also simplify the simulation of state 

variables and external fluxes. Variable Infiltration Capacity (VIC) model (Liang et al., 

1994), Genie Rurala 4 parameters Journalier (GR4J) (Perrin et al. 2003), Hydrologiska 

Byråns Vattenbalansavdelning (HBV) model (Begström and Forsman, 1973) and MIKE 11 

NAM (Danish Hydraulic Institute, 2017) were used in various studies for the assessment of 

impact of climate change on streamflow.  
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Li et al. (2013) examined the impact of climate change on streamflow pattern across 

the Yarlung Tsangpo river (YTR) basin in the south-eastern Tibetan Plateau rivers which 

strongly affect the hydro-meteorology of southern and eastern Asia. In the watershed scale, 

two hydrological models, viz. SIMHYD and GR4J, were used to analyse the monthly and 

annual streamflow. Further, the hydro-meteorology of the basin was analysed using outputs 

from 20 GCMs. The historical streamflow was efficiently simulated by two rainfall-runoff 

models for the eight catchments in the YTR basins based on the statistical measures and the 

visual observations. The results of the study predicted a rise in mean annual future 

precipitation and runoff across the region. According to the findings, the streamflow in the 

middle reaches of the YTR and its two tributaries in the basin showed increasing tendencies. 

A simple and efficient hydrologic modelling-based approach using calibrated and 

validated VIC model to isolate the impacts of climate change and LULC change on the 

streamflow of Upper Ganga basin in India was quantified by Chawla & Mujumdar (2015). 

This approach had three scenarios. Initially, the streamflow response to LULC changes were 

assessed under invariant climate. In the second scenario, the response of streamflow with 

change in climate was analysed by neglecting the variations in LULC. Finally, the integrated 

effect of climate and LULC changes were estimated over the streamflow of the basin in the 

third scenario. Based on the results obtained from the three scenarios, quantification of 

isolated impacts of land use and climate change on streamflow was addressed. The results 

of the case study revealed that the integrated effect showed more significant impact 

compared to their isolated impacts. Further, the sensitivity of streamflow was high in urban 

areas and moderate in cropland areas. It was observed, based on the isolated effects of land 

use and climate change, that climate has a more dominant impact on streamflow in the 

region.  

Das & Umamahesh, (2018) assessed the impact of climate change streamflows over 

Wainganga river basin using the VIC model. Uncertainties associated with bias corrected 

GCMs were treated using REA. Associate uncertainties in flood return levels considering 

the projected streamflows were modelled using Bayesian analysis through Metropolis-

Hastings algorithm. Furthermore, uncertainty increases with the climate change forcings 

moving from RCP4.5 to RCP8.5. The time variability of uncertainty was considered 

indicating that the uncertainty in the projected return levels are likely to increase in future 

scenarios. 
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Impact of climate change on streamflow regime of Mahanadi river basin was 

analysed by Bisht et al. (2020) considering projected and bias corrected climate scenarios of 

9 GCMs achieved from CMIP5 models. Prior to generating the streamflow regimes for 

future period, Integrated MIKE 11 NAM-HD, was implemented at Hirakud and Mundali 

gauging sites. Streamflow was analysed using projected ensemble mean of simulated 

streamflow from different GCMs. Under projected climate scenarios, the results revealed 

that the mean monthly streamflow showed increasing tendencies during the period 2070-

2099. Daily high flows also showed increasing tendency in magnitude and frequency at the 

end of 21st century while occurrences of low flows were observed to be decreasing 

significantly under future climate scenarios. 

The impact of climate change on the hydrology were analysed for the Jhelum 

catchment, western Himalayas using VIC model by Jasrotia et al. (2021). Comparison 

among future periods, showed increasing tendency of streamflow from 2020 to 2080, then 

slightly decreased towards the end of 2080-2100. Results showed that streamflow 

projections are highly influenced by precipitation projections in the catchment.  

 Tehrani et al. (2021) studied hydrological impacts of climate change over Nerang 

river catchment using MIKE 11 model. An integrated modelling framework was developed 

which combined a hydrologic model, a reservoir-based model, and a hydrodynamic model 

on a catchment scale. The multi-model ensemble was investigated considering 8 GCMs of 

the CMIP5 under RCP 4.5 and RCP 8.5. For the future period, GCM projections exhibited 

slight decrease in the median of monthly daily inflow in the upper part of the catchment. The 

results from hydrodynamic model also revealed that sea level rise is projected to have 

significant impact on water level variations at two river flooding alert sites. 

Recently, Tarek et al. (2021) investigated the impact of climate change on 

streamflow pattern by considering all combinations of precipitation and temperature. The 

streamflow was simulated and projected based on two lumped hydrological models (HMETS 

and GR4J) using 10 CMIP5-GCMs under RCP8.5 scenario for the 2071-2100. The 

uncertainty sources for GCMs were evaluated by variance decomposition method. 

Furthermore, the sources of uncertainties for precipitation were reduced by considering four 

best performing reference datasets but continued as the main source of uncertainty for 

streamflow. Results showed that over the reference period, all precipitation and temperature 

datasets provided good streamflow predictions. Selection of reference dataset for climate 

change impact studies was essential, since minor changes between datasets over a common 
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reference period can propagate to generate huge amounts of uncertainty in future 

streamflows. 

SWAT model is extensively utilized to address the impact due to climate change, on 

hydrological processes and extreme events in Indian river basins (Swain et al. 2020). SWAT, 

can therefore, be considered an appropriate model to visualise the connectivity of climate 

variation with the streamflow in Indian rivers basins. SWAT is a complex physically-based, 

continuous model and was designed to forecast the impact of watershed management 

practices on hydrology, sediment, water quality and agriculture production on the gauge and 

ungauged basins. The model simulates a watershed by dividing it into sub-basins which are 

further subdivided into Hydrologic Response Units (HRU). For each HRU in every sub-

basin, SWAT simulates the soil water balances, groundwater flow, lateral flow, channel 

routing, evapotranspiration, crop growth and nutrient uptake, pond and wetland balances, 

soil pesticide degradation and in-stream transformation nutrients and pesticides (Anand et 

al., 2018; Visakh et al. 2019; Qi et al. 2020; Samimi et al. 2020; Dash et al. 2020). 

Abbaspour et al. (2015) used SWAT model to simulate the hydrologic regime for 

sub-basin scale of Europe. This study contributed essential understanding into continental 

water resources quantity and water quality at a sub-basin scale with a monthly time interval. 

An improved version of SWAT model was used to predict the impacts on watershed 

hydrology and water quality for two watersheds in the Midwest USA (Raj et al., 2016). The 

study of Lin et al. (2015) showed a varying change in runoff among three time scale (i.e. 

daily, monthly and annual) and three catchments in the Jinjiang river basin under land use 

change scenarios using SWAT model.  

Zhang et al. (2016) integrated SWAT and SDSM to assess the streamflow regime in 

the Xin river basin, China. The impact of climate change was studied using downscaled 

GCMs (BCC-CSM1.1, CanESM2, and NorESM1-M) under 3 RCPs. The study revealed that 

SWAT model accurately depicted hydrological aspects on annual, daily, and monthly 

periods. It was shown that while temperature is expected to rise in the future, there would be 

greater uncertainty in precipitation estimates, with large differences amongst GCMs under 

different RCPs.  

Bhatta et al. (2019)  quantified the impact of climate change on water balance of 

Tamor river basin in the eastern Himalayas of Nepal. The response of SWAT was evaluated 

with changing the number of sub-basins, HRUs, and elevation bands.  Future climate was 

projected by considering three different time windows i.e. 2030s, 2060s, and 2080s, based 
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on an ensemble of 5 linearly bias corrected CMIP5-GCMs and 4 RCMs under both RCP4.5 

and RCP8.5 and then used as input SWAT for simulating the future streamflows in the 

watershed scale. It was observed that under RCP8.5 scenarios, future climate might reduce 

streamflow by more than 8.5 % during latter half of 21st century. 

Nilawar & Waikar (2019) attempted to quantify the climate change effect on 

hydrology and sediment concentration in the Purna river basin, India, considering SWAT 

model and 3 RCMs under RCP 4.5 and RCP 8.5. Both RCPs showed a significant increase 

in precipitation and temperature when compared to the baseline scenario. Under RCP 4.5 

and 8.5, average monthly streamflow is expected to increase by 24.47 to 115.94 m3/s, while 

average monthly sediment concentration is expected to increase by 32.58 to 162.96 mg/l. 

Significant increase in streamflow and sediment was observed from June to September at 

the basin outlet.  

An integrated framework was developed by Guo et al. (2019) considering the 

combined effect of land use/cover and climate variations in future time scale to assess how 

isolate and combined model would impact on streamflow regime in the Xinanjiang basin, 

East China. The inter-model uncertainties were evaluated using 5 bias-corrected and 

downscaled GCM forecasts under 3 different RCPs for the climate change conditions. Three 

land use/cover change scenarios based on Cellular Automata - Markov (CA-Markov) were 

predicted, representing a variety of trade-offs between ecological protection (EP) and urban 

development (UD). The projected land use/cover and GCM simulations were given as input 

to SWAT to analyse the combined and isolated impact of two attributes on the streamflow. 

It was observed from the study that the streamflow projected under land use/cover changes 

showed disagreement with the streamflow change solely under climate change. However, 

the land use/cover changes basically drove the streamflow pattern when compared to climate 

change which may reduce the impact triggered due to change in land use/cover. 

The changes in streamflow regime was projected by Mishra et al. (2020b) in the 

Godavari River basin (GRB). An integrated framework was developed considering three 

hydrological models, 4 GCMs, and 2 RCPs (2.6 and 8.5). The integrated framework 

highlighted differences in annual flow and high flow. High flow frequencies were anticipated 

in the future period with respect to baseline period. For the impact assessment, the 

comprehensive evaluation of hydrological models predicted increases in mean, high flows, 

as well as the frequency of high flows, at all four gauge sites in the GRB. The projected 

increases are higher under RCP 8.5 in the far future (2071–2100).  
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Veettil & Mishra (2020) studied linkages between key climate, catchment and 

morphological variables with the hydrological phenomenon within a complex system of 

water resources. A conceptual modelling framework was developed by integrating SWAT 

and statistical models for investigating the probable impact of catchment, climate and 

morphological variables on hydrological drought (SRI) in watersheds of Savannah river 

basin. SRI was developed for short term, medium term, and long-term events to examine the 

drought variables and their changes with climate. However, it was discovered that linear 

models based solely on climate characteristics may be incapable of predicting the duration 

of multiscale hydrological droughts. The integration of catchment and morphological 

variables to statistical models can significantly enhance the performance. Furthermore, 

among the morphological variables studied, stream order appears to have a substantial 

influence on the duration of short, medium, and long-term droughts in the research area. 

2.11 Drought in the Perspective of Climate Change  

Climate change affects agricultural production, hydrological cycle, sea levels and 

SST patterns. The extent, frequency and occurrences of droughts could be attributed to the 

global changes in climatic pattern (IPCC, 2013). Further, the modulating effect of climate 

has far-reaching influence on agriculture, environment, social factors and natural extreme 

calamity like drought with an intensified severity (Trenberth et al. 2013). Considering the 

effect of human activities and climatic parameters across the globe, a substantial increase in 

drought severity in future due to global warming is predicted by Ahmadalipour et al. (2017).  

The spatial and temporal increase in drought with a greater severity level were identified 

across India by Mishra and Singh (2010). On a global scale, the climatic alterations are being 

used extensively for the assessment of drought in the 21st century (Dai, 2012; Xu et al. 2015; 

Masud et al. 2019; Thilakarathne and Sridhar, 2017). The spatial and temporal increase in 

drought situation with greater severity level were identified all over India (Mishra and Singh, 

2010; Sharma and Goyal, 2020; Rehana and Naidu, 2021).  

Drought conditions were assessed and analysed by Adhar & Mishra (2018) using 5 

CMIP5 GCMs under the warming climate in India and identified increase in drought severity 

and occurrences in the recent decades over the region. It has been documented that the 

drought will be affected by the changes in the monsoonal system over India and 

consequently, the economy of the country will be influenced by climate change (Shah & 

Mishra, 2020a; Kumar et al. 2021a). Moreover, terrestrial ecosystems are highly vulnerable 
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to unexpected rapidly occurring droughts which are called as ‘flash droughts. These droughts 

trigger serious threat to crop productivity and vegetation in India (Poonia et al. 2022).  

Wang et al. (2011) investigated impacts of climate change on meteorological, 

hydrological and agricultural droughts. Initially, meteorological drought (SPI) was 

reconstructed based on daily climate inputs from RCMs driven by 3 GCMs. Further, at the 

catchment scale in Central Illinois, these anticipated climate inputs were fed into a hydro-

agronomic model. Based on the model output, agricultural drought (standardised soil water 

index, SSWI) and hydrological drought (SRI) were constructed at the catchment scale. The 

drought characteristics such as duration, intensity and frequency, and the drought 

propagation from meteorological to agricultural to hydrological systems were analysed for 

historical and future periods and then compared accordingly. SSWI showed extreme drought 

conditions and was more sensitive to climate variations compared to SPI or SRI. It was 

reported that for this region, the intensity, duration and frequency showed increasing patterns 

from meteorological to agricultural to hydrological drought situation. SSWI and SRI are 

likely to change significantly due to the nonlinear hydrological response to variation in 

temperature and precipitation.  

The study by Leng et al. (2015) investigated the climate change impact on 

meteorological, hydrological and agricultural droughts and their propagations, in the 

perspective of SPI, SSWI and SRI, respectively. Daily climate forecasts from 5 GCMs were 

given as input to the VIC model for investigating future hydrological changes in China under 

the RCP8.5. In comparison to the baseline period, it was found that future drought events 

will be more severe, longer, and frequent. Further, when compared to long-term droughts 

(duration > 4 months), the frequency of short-term meteorological and hydrological 

droughts (duration <   4 months) tend to increase, whereas the converse is anticipated for 

agricultural droughts. 

A probabilistic multi-model dual-index dual-scenario framework was implemented 

by Ahmadalipour et al. (2017) to evaluate drought properties while characterizing the 

uncertainty associated in projected drought in warming condition. Drought properties were 

assessed based on SPI and SPEI considering 21 readily available downscaled GCMs 

generated by NASA (NEX-GDDP) under RCP4.5 and RCP8.5 scenarios. The major drought 

attributes were used for characterization and then investigated through combined effects of 

precipitation and temperature variations. The study revealed significant aggravation of future 
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drought severity and extent in the western United States, trending towards more frequent 

and intense summer droughts in the contiguous United States. 

Gupta and Jain (2018) projected SPI, Standardized effective Precipitation Evapo-

Transpiration Index (SP*ETI) and SPEI and then droughts were analysed for 21st century 

using precipitation and temperature data obtained from RCMs under RCPs 4.5 and 8.5 over 

India. These indices were developed and used for drought characterization in the region. 

Drought homogeneous regions were derived based on the K-means clustering algorithm. 

The major highlights of the study are: (i) the projected rise in temperature directly accelerate 

the evapotranspiration which in turn affect the drought dynamics in future scenarios;  (ii) in 

the near future, the Northern part of India will be more prone to drought severity and 

frequency; (iii) however in the far future, most parts of the country, except a few south-

eastern states, are likely to face an escalation in drought severity and frequency; (iv) areal 

extent of droughts showed increasing tendencies in the historical period and is further likely 

to increase in the future scenarios in most regions in the country.  

Bisht et al. (2019) evaluated drought properties of SPEI for future climatic scenarios 

in different time windows across India. The future time was divided into three time windows. 

viz., near-future (2010-2039), mid-future (2040-2069), and far-future (2070-2099) and then 

compared with the reference period (1976-2005). Further, quantile mapping bias corrected 

MME of 9 CMIP5 GCMs were used to project future drought conditions for different 

homogeneous regions in India such as North East (NE), Hilly (HR), North West (NW), 

Central North East (CNE), West Central (WC), and Peninsular (PS). The study revealed that 

the projected drought severity, duration, occurrences, and the average length are expected to 

increase in the warming scenarios.  

Precipitation data from Global Precipitation Climatology Centre (GPCC) were used 

by Ahmed et al. (2019) to construct SPI for historical period. Further, 7 downscaled CMIP5- 

GCMs under four RCP scenarios, such as RCP2.6, RCP4.5, RCP6.0 and RCP8.5 were taken 

for precipitation projection in the future. The concept of SVM and quantile mapping were 

used for downscaling and bias correcting the GCMs. Furthermore, the historical and future 

droughts were characterised based on projected SPI for different crop growing periods. The 

drought Severity-Area-Frequency (SAF) curves were prepared for historical as well as future 

scenarios. During historical period, SAF curves showed that for equal values of drought 

severity, bigger areas were influenced by drought conditions with higher return periods. 

However, projected droughts for future revealed increasing areal extent for lower severity 
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and return period while the decrease in affected area for higher severity and return period 

droughts, were also observed. 

For highlighting the drought risk in the future, Gupta et al. (2020) examined the 

spatio-temporal analysis of drought frequency and hazard over India. In order to compute 

the future values of SPEI, the meteorological data from RCMs under RCP 8.5 were used. 

Further, an improved copula-based framework was applied to develop severity-duration-

frequency (SDF) curves for the region. The study area was divided into five different 

homogeneous regions based on fuzzy clustering algorithm. An improved fuzzy clustering-

based drought Modified Drought Hazard Index (MDHI) was also developed to assess the 

risk associated in different homogeneous region. From the results, it was observed that the 

drought frequency showed increasing pattern for all the regions except for Region 2, i.e., 

Western Ghats. It was found that drought severities linked with durations are expected to 

increase significantly with the progression of time. The SAF curves were also analysed and 

these curves revealed higher probability of a larger areal extent of drought in different 

regions of the country.  

Meteorological drought indices such as SPI and SPEI attributes were analysed by 

Gaitán et al. (2020) for historical as well as future scenarios for the Aragon region in Spain. 

Future drought episodes were generated based on 9 Earth System Models (ESMs) and 2 

RCPs corresponding CMIP5 model. Further, drought episodes were evaluated considering 

three main aspects: spatial extent, duration and magnitude. Major contributions of their study 

were: (i) the projected SPI hardly showed any changes in future compared to normal values; 

(ii) the projected SPEI showed clear increasing trend of drought episodes at the end of 21st 

century; (iii) drought indices for future scenarios reflected the most populated areas (the 

Ebro Valley and the SW of the region) are going to experience the longest and most intense 

drought periods.  

Kumar et al. (2020) examined the potential changes in drought properties of SPI-12 

to understand future drought risk in GRB, India. Four homogeneous drought regions were 

identified using a fuzzy c-means clustering approach. For the homogenous regions of basin, 

the 12-month SPI was estimated using precipitation data from IMD and GCM-MIROC-

ESM-CHEM. For different homogeneous regions, SDF and SAF were constructed using 

various copula functions. Moderate to severe drought episodes are expected to increase in 

future periods. For this region, the SDF curves were concave upwards which indicated that 
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the severities are expected to increase in the future periods, while steeper curves for SAF 

indicated high variability in topography and hydrological properties in the basin.  

Rajbanshi and Das (2021) investigated the spatio-temporal variations of 

meteorological (SPI) drought patterns for the future considering SSPs (viz., SSP1-2.6, SSP2-

4.5, SSP3-7.0, and SSP5-8.5) considering 10 CMIP6-GCM simulations in India. The 

observations from the study were: (i) observed period (1951-2014) indicated that the summer 

monsoon drought events were more evident and significantly affected the crop productivity; 

(ii) the most severe droughts occurred for the years when El Nino events (equatorial Eastern 

Pacific Ocean (EPO) sea surface temperature (SST)) were negatively correlated with the SPI 

events; (iii) Future projection (2071–2100) from the selected models indicated the more 

frequent droughts in the SSP1-2.6 and SSP2-4.5 in comparison to SSP3-7.0 and SSP5-8.5. 

2.12 Crop Modelling and Impact of Climate Change on Crop 

Yield  

A study by Kumar (2016) showed that global warming with its negative impacts was 

affecting the root zone soil moisture during critical crop growth stages. Cropping pattern, 

cultivation period and its productivities are vulnerable to climate change, due to partial or 

complete crop failure because of scanty or more amount of precipitation. Deb et al. (2015) 

reported that the agricultural sectors are highly prone to climate change due to the association 

amongst plant phenology and meteorological variables. Uneven distributions of rainfall and 

dry months may affect the crop production. Further, changes in plant phenology, respiration, 

transpiration and photosynthesis are likely to affect agricultural productivity as CO2 

concentrations and temperatures rise. This, in turn, could increase water stress and 

consequently, food security. India being an agrarian country is likely to be affected 

substantially due to the adverse consequences of climate change (Das et al. 2020c).  

Climate change footprints also have certain relationship with the crop productivity, 

which have rarely been reported, and hence deserve further investigation. The climate 

change influence on crop yield is expected to be more intense over future periods due to 

increase in intensity, magnitude and distribution of rainfall, decrease in soil moisture, 

relative humidity, higher temperatures, and consequently higher evapotranspiration. Crop 

model is an important tool for studying future clime change effect on crop production and 

its counter measures. Future climate change impact on crop yield and its countermeasures 

can be studied using crop models. Crop models have shown great potential in evaluating the 

impact of climate change on crop water consumption and irrigation requirements at both the 
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local and regional scales, and it provides new analytical abilities for water resource 

management planners to help them make better decisions. Crop modelling approach had 

been established and gained popularity among scientific research community (Holzworth et 

al. 2015). Crop growth models generally simulate the relationship between plant phenology 

and environmental situation to forecast the anticipated production of crop. These models can 

be implemented for prediction of crop yield with respect to climate change and 

understanding crop responses in field trials and circumstances. These can be helpful in crop 

management and agronomic decision making, as well as to study the potential impacts of 

climate change on food security. Many such models have been developed over the past 

decades and prominent examples are Decision Support System for Agro-technology 

Transfer (DSSAT), (Jones et al. 2003), Agricultural Production Systems sIMulator 

(APSIM), (Holzworth et al. 2018), WOrld FOod STudies (WOFOST), (van Diepen et al. 

1989); Cropping Systems Simulation Model (CROPSYST), (Stockle et al. 2003) and 

Simulation of Evapotranspiration of Applied Water (SIMETAW#), (Mancosu et al. 2016). 

Some hydrological models like SWAT, (Santhi et al. 2001) and Distributed model for 

Runoff, Evapotranspiration, and Antecedent soil Moisture simulation (DREAM), (Manfreda 

et al. 2005) were also used in various studies to improve the simulation for both at local and 

regional scale.  

Water is critical for agricultural productivity, and it has long been recognised as a 

major limiting factor in crop development. AquaCrop is a well-known crop simulation 

model developed by the Food and Agriculture Organization (FAO), (Hsiao et al., 2009; 

Steduto et al. 2009). Steduto et al. (2009) characterised the model as a “canopy-level and 

engineering kind of model, primarily concentrating on modelling the achievable crop 

biomass and harvestable yield in response to the water availability”. The goal of the model 

was to employ fewer parameters while yet preserving accuracy, simplicity, and resilience. 

In this model, the primary driver for yield production modelling is water. Moreover, the 

modelling technique must work with modifying the simulated yield by considering water 

limiting variability or conditions. This model has been widely used by researchers to model 

the biomass and yield all over the globe for different crops (Bird et al. 2016; Farahani et al. 

2009; Abedinpour et al. 2012; Nyathi et al. 2018). In the context of India, Dubey et al. 

(2017); Kumar et al. (2014) and Pawar et al. (2017) had used the AquaCrop model to 

simulate various crops under different climatic and management conditions.  
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 Bocchiola (2013) studied the effect of climate change on crop productivity of maize 

considering and response of water footprint to possible variations of weather variables as 

case study of the Po valley of Northern Italy. The maize production was simulated using 

validated CropSyst model for the period 2001-2010. Then, the water footprint (the absolute 

and specific (kg/yield) water evapotranspiration during growing season), was estimated 

under three different irrigation conditions, such as: (i) no irrigation, (ii) manual irrigation at 

fixed dates, and (iii) automatic irrigation on demand. It was observed from the study that 

under future scenarios, the temperature is expected to increase and amount of precipitation 

is expected to decrease. These create a decrease in crop productivity and increase in 

evaporative demand of crops which boils down to higher irrigation demand.  

Shrestha et al. (2017) used the crop growth model DSSAT (CERES-Rice) to 

calculate the possible impact of climate change on rice productivity for the Nam Oon 

Irrigation Project in Northeast Thailand. Field experiments were performed to collect crop 

phenology data, which were then used to set up and evaluate the model. Under RCP 4.5 and 

RCP 8.5, the water footprint and evaporative demand of crops during the growth phase were 

calculated using bias-corrected outputs of different RCMs. A significant increase in the 

water footprint was observed for KDML-105 and RD-6 rice varieties under various scenarios 

compared to the baseline period. The opposite condition was depicted by the ChaiNat-1 

variety which showed decrease in projected water under two scenarios. High increase in blue 

water footprint is expected in future period, as a consequence high increase in the irrigation 

water requirement due to high evaporative demand of plants.  

The variations of yield of major crops such as wheat, barley and maize in the Banas 

river basin, in the Rajasthan state of India were investigated in a perspective of climate 

change (Dubey & Shrama, 2018). Based on the AquaCrop model, the simulated yield 

showed a good agreement with the observed yield. Furthermore, based on climate forecasts 

from CORDEX-SA (CNRMCM5, CCSM4, and MPI-ESM-LR) under RCP4.5 and RCP8.5 

for the future period, the calibrated model was utilised to analyse the likely variance in 

agricultural output due to the influence of climate change and CO2 concentration. Crop 

yields are predicted to rise in the future as a result of climate change. 

Pranuthi & Tripathi (2018) investigated the crop productivity in the perspective of 

climate change based on bias-corrected PRECIS RCM data in the Haridwar district of 

Uttarakhand, India. Further, DSSAT CERES rice model was used to simulate the rice yield 

at Haridwar district. For undertaking this study, the future yield was projected by providing 
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PRECIS RCM weather data under different RCP CO2 emission scenarios. The study showed 

that the rice productivity of Haridwar is expected to decrease by 31.7 kgs/ha/year in the 

future scenario and could be attributed to increase in maximum temperature which will not 

be favourable for crop growth.  

Raoufi & Soufizadeh (2020) investigated the impact of anthropogenic and climate 

changes on the productivity of rice genotype behaviour for deep understanding of crop yield 

change in northern Iran. The future meteorological variables were given as input to the 

AquaCrop-Rice model to examine the sensitivity of genotypic in rice under varied CO2, 

precipitation (± 20%), and temperature (+ 1 °C, + 2 °C, + 3 °C, + 4 °C) under different RCPs 

(2.6, 45, and 8.5). Results from the study indicated that increased CO2 concertation and 

temperature were favourable for rice growth while the change in precipitation was no longer 

significant. However, under RCP8.5 scenarios and +1 °C temperature change lead to highest 

increase in aboveground biomass. Nevertheless, phenological behaviour and length of the 

vegetative phase were accelerated by increased temperature.  

Das et al. (2020c) simulated the yields for three different crops (rice, wheat and 

maize) using calibrated AquaCrop with an observed period of 17 years (1998–2015) over 

Sikkim, India. Further, the future crop yield for three crops were estimated using bias-

corrected climate scenarios from four GCMs under RCP4.5 and RCP8.5 scenarios. The 

model showed that the mean yield is expected to increase in the future period (2021-2099). 

The increase in mean yield can be attributed to a favourable temperature profile, an increase 

in CO2 concentration, the study area's high elevation, and the absence of major water stress 

during crop growth seasons. 

SIMETAW# model was implemented to evaluate the impact of climate change on 

crop productivity with two new versions ((SIMETAW_GIS platform) and (SIMETAW_R)) 

in semi-arid area of Southern Europe (Masia et al. 2021). These two versions were 

accomplished to estimate water consumption by crops and irrigation demand in regional and 

local scales. The methodological framework was used to calibrate and validate the model 

SIMETAW_R in ten experimental sites. SIMETAW_GIS model performance was evaluated 

in Mediterranean countries. Further, the meteorological inputs from GCMs under RCP4.5 

and RCP8.5 scenarios were given as inputs to model for estimating the on maize, wheat, and 

wine grape sensitivities and water requirements in under the influence of future climate 

conditions (2036–2065). From the results, it was found that for Mediterranean countries, 

water requirements for three crops are expected to increase under climate change scenarios.  
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Recently, Quan et al. (2022) implemented the calibrated SPACSYS and DSSAT-

CERES-Maize models to evaluate the application of six methods under future climate 

considering two-year field data. Three mulching measures, namely transparent film, black 

film, and no film conditions, as well as two fertilisation levels, namely high and low, were 

evaluated in the study. Both models were calibrated and validated, and the anthesis and 

maturity dates of maize, as well as the ultimate biomass, yield, and soil water content (SWC), 

were compared to measured values. In comparison to DSSAT, the SPACSYS model 

accurately predicted maize and SWC growth under nitrogen stress. 27 GCMs were used for 

assessing the impact of climate change on crop growth driven by DSSAT and SPACSYS 

models with different irrigation schemes (I1, I2, I3) and four irrigation ratios (T1, T2, T3, 

T4) under future decades (2040s and 2080s). It was highlighted that the I1T1 scenario 

considering transparent film mulching created the maximum maize production. The I3T4 

scenario retained constant production in the 2040s while it showed decreasing tendencies by 

20% in far future (2080s). Consequently, I3T4 scenario require the optimum management 

practices aimed to better maize production in this region. 

Shirazi et al. (2022) used AquaCrop to evaluate the influence of climate scenarios 

yield of winter wheat and summer maize productions considering downscaled climate data 

driven by SDSM and CanESM2 under RCP4.5 and RCP8.5. The study area taken up for 

investigation was in the Huang-Huai-Hai Plain (3H Plain). The results indicated that the 

potential yield of wheat and maize were estimated to increase in the future time scale 

compared to baseline period. Higher increase in wheat yield was detected in the Shandong 

and north-eastern parts of Henan. However, the water budget during the wheat growth period 

is expected to have deficit tendency in the northern part of 3H Plain while the maize growth 

period showed improvement in central and southern parts of the 3H Plain.  

2.13 Crop and Drought Relationship 

Climate extremes, such as droughts and hot events, may result in reduced crop 

productivity threatening regional and global food security. Uneven distributions of rainfall 

and dry months may affect the crop production. Further, drought footprints have certain 

relationship with the crop productivity, which have rarely been reported. Over the last few 

decades, drought has evolved as the paramount threat to agronomy in several parts of the 

globe (Leng and Hall, 2019; Potopová et al. 2015). Thus, investigations related to the hazard 

of droughts on the crop productivity have become a supreme concern for the governance of 

comprehensive mitigations and prevention strategies (Potop et al. 2012). Water scarcity due 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/irrigation-management
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to drought frequently affect the capability of plant canopies to absorb the radiation which 

has a detrimental effect on crop productivity. Further, the impact of drought on quantity of 

cultivation, significantly depend on the type of crops, developmental phases of crop, genetic 

characteristics of the specific crop and the properties of soil (Karim and Rahman, 2015). It 

has been reported that the association between climate variability and crop yield varies for 

different regions and various crop types. Muthuvel & Amai (2021) specified that crop yield 

variations owing to drought can be estimated using yield anomalies like the Standardized 

Crop Yield Index (SCI), yield data detrended by using first difference approach)/ 

Standardized Yield Residuals Series (SYRS, yield data detrended by fitting linear regression 

model). Detailed information on the impact of drought on the crop growth for different 

seasons can be efficiently captured by considering the SPEI (Potopová et al. 2015). Droughts 

can influence an agrarian country's economy and food security by diminishing crop 

production, in addition to creating an ecological imbalance. 

Researchers from different parts of the world have attempted to investigate the 

drought impacts on crop productivity but still more studies are needed to be conducted 

focussing the influence of drought on crop production worldwide. A copula-based model 

was implemented for the assessment of drought impression on terrestrial vegetation in China 

by obtaining the correlation between Normalized Difference Vegetation Index (NDVI) and 

the SPEI at varying timescales (Fang et al. 2019). The response of crop anomalies to SPEI, 

and Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) distinctly 

were analysed by Ribeiro et al. (2019). Feng & Hao, (2020) investigated the likelihood of 

occurrences of dry, hot, and compound dry-hot events triggering the decrease of maize yield. 

Additionally, they identified the occurrence of compound events becomes higher as the crop 

yield reduces. Feng et al. (2019) investigated the association between variability of maize 

production and compound dry-hot events based multivariate copula functions.  

Potop et al. (2012) explored the impact of two multi-scalar dry and wet spells of SPI 

and SPEI on different crops in the low land regions of the Czech Republic. The finding 

revealed that the SPEI from April to September and detrended SYRS series of root 

vegetables had reasonably significant negative relationship. However, more frequent dry 

episodes throughout the growing period of brassica vegetables and fruits had negative 

consequences. Even the longest dry spell (early spring droughts) had no effect on bulb 

vegetables during sowing period. 
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Potopová et al. (2015) investigated the impact of SPEI at different time scales on 

crop productivity for 11 agricultural crops with different growth cycles in the Czech 

Republic. The crops with different growth cycles taken up for the study were spring wheat, 

spring barley, winter rye, oilseed rape, winter wheat, winter barley, oats, maize, potatoes, 

sugar beet and grapevine. The study showed that variations in crop responses to various SPEI 

lags were derived via correlation studies between drought-crops. However, during crucial 

growth periods of the crops, the monthly detrended SPEI exhibited strong correlation with 

SYRS. Based on the study, drought risk defined in terms of the SPEI at 1-, 3-, and 6-month 

lags was becoming more of a concern during the early stages of root and tuber crops. 

Wang et al. (2017) proposed a quantitative approach for assessing the influence of 

multi-scale drought (SPEI) on wheat yields in the Huang Huai Hai (3H) Plain. Winter wheat 

was estimated at 28 locations on the 3H Plain using the calibrated Environmental Policy 

Integrated Climate (EPIC) crop growth model. The relationship between multi-scale SPEI 

and winter wheat series was further investigated using a crop growth process model. The 

study findings revealed that wheat yields calculated using calibrated EPIC was a reliable 

crop yield predictor in the region. Further, in the year 2000, a large water shortage was 

detected, and the degree of yield reduction did not always link to the change in water deficit. 

A study by Liu et al. (2018) analysed the drought events based on SPEI and inspected 

the drought and crop (winter wheat and summer maize) association in the North China Plain 

(NCP). It was reported that the annual changes in the detrended SPEI can explain a huge 

variation in winter wheat and summer maize yields in the region. Further, the link between 

yield series and SPEI series with different lags varied significantly; the most related time 

scale increased as the development stage of winter wheat progressed. The relationship 

between the winter wheat SYRS and detrended SPEI in three sub-periods were continuously 

strong and constant, while the relationship between the summer maize SYRS and detrended 

SPEI had considerably reduced at all time scales, apart from 1-month lag. 

Masud et al. (2020) investigated the crop-drought connectivity between 

(SPEI/MSDI) and three important cereal crops (spring wheat, barley, and canola) in a large 

agricultural command region in western Canada. In terms of agricultural impact assessment, 

both indices performed similarly; however, the MSDI performed better in the early growing 

season for wheat and barley, demonstrating strong crop production sensitivity to soil 

moisture deprivation. The study summarized that the association between detrended drought 
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indices and the yield series depend upon timescale, geographic location, and crop growing 

period. 

A recent study by Muthuvel & Amai (2021) developed three concurrent drought 

indices and their influence on agricultural yield series (SRYS), using a copula-based 

multivariate method in India. The drought properties were computed based on MSDI that 

includes the three isolated drought indices using the Gaussian copula. Some of the severe 

concurrent drought years such as 2002, 1987, 1972, and 1965 caused considerable yield 

losses in Kharif season crops of groundnut, millet, and rice. The study summarized that 

although the single valued droughts caused mild losses in yield, the concurrent droughts 

triggered high losses in yield which further seems to grow to exceptional losses.  

2.14 Gaps in the Literature and Summary 

An overview of different forms of drought, types of drought indicators, non-

stationary aspect of drought analysis, and multivariate aspect of drought analysis based on 

the changing climate, crop yield prediction and impact of drought on crop prediction is 

presented in this chapter. Based on discussions on drought analysis, it can be justified that 

the antecedent meteorological droughts may evolve into hydrological and/or agricultural 

droughts, coexisting as concurrent droughts. In a changing environment, where the hydro-

meteorological parameters such as precipitation, streamflow, soil moisture and groundwater 

may show non-stationary behaviour, traditional drought indicators based on the principle of 

stationary hypothesis often failed to identify and assess nonstationary drought events. 

All these indices consider only one specific physical form of drought: hydrological, 

meteorological, or agricultural. This might not be adequate to get a comprehensive idea of 

the drought condition since the drought is dependent on multiple variables. It can, hence, be 

concluded that the drought status indicated by one drought index might not be consistent 

with the findings obtained by using a different drought index. To overcome these limitations, 

a group of indices that considers multiple variables to represent drought were constructed 

and these hybrid drought indices provide a stronger correlation with actual physical impacts. 

Based on the literature study, copula-based Multivariate Drought indices considering the 

meteorological, agricultural and hydrological droughts were capable enough to replicate the 

actual drought mechanism. 

Literatures on the climate change and MME method suggest that various sources of 

biases are present in the climate models which need to be further corrected using suitable 

bias correction techniques. Various sources of uncertainties are associated with the climate 
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models and it is essential to reduce these uncertainties by considering a suitable weightage 

average technique.   

In the past few decades, due to continuous intervention with the environmental 

landscape in the form of land use practices (water diversions, deforestation, local agriculture 

practices, industrialization etc.) there is a need to quantitatively assess the future climatic 

scenario for initiating and effectively undertaking the adaptation strategies for safe and 

sustained agricultural growth. Based on the critical review of literature on impact of climate 

change on drought studies, it can be concluded that droughts are likely to become more 

common as global warming worsens during this century. Therefore, accurate studies of 

future projections at a local level are crucial. That is to say, both climate and man-made 

causes play a role in exacerbating droughts. When they do occur, the increased heat from 

global warming is projected to accelerate the rate of drying, causing drought to develop more 

quickly and with higher intensity. Further, it can be noted that a significant increase in 

potential evapotranspiration would cause a prolonged dryness in most of the regions during 

the twenty-first century. Hence, the spatial extent, occurrences, onset and withdrawal of 

drought events must be monitored based on the long-term climate projections using reliable 

indices to provide water resources planners with correct information to take appropriate 

disaster response measures. 

The multivariate aspect of the drought has been studied in various literatures but the 

climate change aspects to project multivariate drought indices have not been taken into 

consideration. 

 Based on the literature of hydrological modelling, it is observed that hydrological 

modelling has become an integral part of climate change assessment which incorporates the 

physical parameters of a region. Therefore, physically based hydrological models with high 

resolution meteorological variables can be used to simulate the streamflows. Further, SWAT 

model can simulate the water balance components in well manner. 

Crop growth models, such as AquaCrop, are useful in determining the influence of 

climate change on crop output based on forecasts from global circulation and regional 

climate models. Hence, this model could be used to generate future crop yield on the basis 

of changing climate. 

The impact of drought on agricultural production depends not only on the severity of 

the event itself, but also on the time of the event and the vulnerability of the natural systems 

that experience it. Similar extreme weather could have differing outcomes depending on the 
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crop development stages and the vulnerability of the exposed system. Thus, identifying the 

spatio-temporal variation of the drought impacts on agriculture and constructing a 

quantitative relationship between drought and agriculture losses could provide policy makers 

and stakeholders with scientific information regarding which agricultural areas are most 

vulnerable and sensitive to drought. 
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CHAPTER 3 

METHODOLOGY 

3.1 General 

This chapter presents the methodology adopted in this research. Various data 

required for the assessments of drought and its characteristics in Godavari River Basin 

(GRB) and its sub basins are presented. The SPEI is developed and drought characteristics 

are projected for the future scenarios using RCM models. GAMLSS model is implemented 

to obtain the non-stationary drought indices such as Non-stationary standardized 

Precipitation Index (NSPI) and Non-stationary Reconnaissance Drought Index (NRDI), 

considering the large-scale climate indices as external covariates. Multivariate drought 

indices such as MSDI, RTDI and MDI are developed as a part of the study. The MSDI 

considered the combined drought status of precipitation and soil moisture while RTDI 

considered the three variables such as precipitation, soil moisture and evapotranspiration. 

The teleconnection between large scale climate indices and drought indices (MSDI and 

RTDI) in GRB are also obtained using Cross Wavelet Analysis (CWA). SWAT model is 

developed and then calibrated and validated using SUFI2 algorithm based on the streamflow 

data. The other climate parameters like soil moisture, evapotranspiration and streamflow are 

generated for future scenarios considering the CMIP6-GCMs. Along with a copula-based 

four variate MDI considering the climate variables were assessed for future scenarios. 

AquaCrop model is used to evaluate the future changes in the crop yield under different 

climate scenarios. Finally, the crop and drought relationship is obtained using Kendall’s 𝜏 

correlation between Standardised Yield Residual Series (SYRS) and Standardized 

Precipitation and Evapotranspiration Index (SPEI).  

3.2 Study Area  

The area taken up for the study is the GRB lying in the central and southern part of 

India. The Godavari river, originating in the Nashik district of Maharashtra, flows for a 

length of 1,465 km toward east, draining many states of central and peninsular India, 

eventually emptying into the Bay of Bengal. Covering a drainage area of 312,812 km2, it is 

one of the major river basins of India. GRB is mainly dominated by the south-west monsoon 

rainfall which is generally erratic with wide temporal and spatial variation in rainfall. The 

average annual rainfall of the basin is about 1100 mm. South-west monsoon has a direct 
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influence on agriculture in the region, which is more vulnerable to extreme weather events. 

Hence, irrigation, amounting to approximately 95% of the water use, has high priority in this 

basin. The extreme events in this basin and various anthropogenic activities bring extra 

pressure on the water resources. So, a comprehensive drought assessment is needed to be 

carried out for identifying the drought variability with respect to the changing climate. GRB 

consists of eighth major sub-basins. Different sub-basins of GRB were taken up to meet the 

objective of the study. For the first two objectives, the whole GRB is considered. Third 

objective considered Wainganga and Indravati basins. Fourth objective considered the 

Aurangabad region as the study area which is part of Upper Godavari sub-basin. A map of 

the study area is given in Fig. 3.1. 

 

 

 

Fig.3.1 Map of the study area 
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3.3 Data Needed and Available for the Study 

This section comprises of different types of data needed for the study and their 

source. The data includes Climate Research Unit Time Series (CRU TS) data, Global Land 

Data Assimilation System (GLDAS) VIC soil moisture data, Indian Meteorological 

Department (IMD) data, RCMs, and CMIP6-GCMs, geospatial data like Digital Elevation 

Model (DEM), soil map, Land Use and Land Cover (LULC) map and crop details. The 

following sections explain these. 

3.3.1 Climate Research Unit Time Series (CRU TS) data 

This study used 0.5°×0.5° monthly gridded precipitation and evapotranspiration data 

sets acquired for a period of 39 years (1980-2018) from CRU TS 4.03 

(https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.03). CRU TS monthly climate 

anomaly 0.5o x 0.5o gridded dataset are derived based on the Angular Distance Weighting 

(ADW) method over all the land domain in the world except Antarctica. The 

evapotranspiration data for the same time period were downloaded and extracted to a 

particular location. CRU data was utilised for the temperature-based derivation of potential 

evapotranspiration (PET) (Harris et al. 2014). Gridded rainfall, evapotranspiration and 

temperature data have been extensively used in various hydro-climatological analyses in 

different parts of the world (Zarch et al. 2015; Krishnan et al. 2018). The climate data were 

extracted and regridded by using bilinear interpolation method to GRB scale. 

3.3.2 RCM data 

Daily precipitation, minimum and maximum temperature projections for the years 

from 2053 to 2099 were obtained from Centre for Climate Change Research (CCCR), Indian 

Institute of Tropical Meteorology (IITM), Pune, India (https://cccr.tropmet.res.in/home/ 

cordexsa_datasets.jsp) database. 5 RCMs under RCPs 4.5 and 8.5 with a spatial resolution 

of 0.44º were downloaded from the site given in Table 3.1. All the RCM datasets were 

regridded to CRU grids under the same spatial and temporal resolution for analysing the 

future dry and wet spells. The sources of various models used are presented in Table 3.1. 
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                           Table 3.1 RCM model sources 

Sl. No. Model Source 

1 ACCESS 1-0 Australian Bureau of Meteorology 

2 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory 

3 MPI-ESM-LR Max Planck Institute Earth System Model 

4 CCSM4 Community Climate System Model  

5 CNRM-CM5 Canadian Earth System Model  

 

3.3.3 Indian Meteorology Department (IMD) data 

Daily observations such as precipitation, minimum and maximum temperature from 

Indian Meteorological Department (IMD) were collected for the period from 1951to 2018. 

The precipitation data were developed based on 6955 rain gauge stations all over India with 

a resolution of 0.25 x 0.25 (Pai et al. 2014). Similarly, maximum and minimum temperature 

data were developed using 395 quality-controlled measuring stations and available at a 

resolution of 1o x 1o (Srivastava et al. 2009). Spatial uniformity was ensured by converting 

the temperature data to a resolution of 0.25 x 0.25 using the bilinear interpolation method.   

3.3.4 Large scale climate indices 

Large-scale climate indices have an effect on a non-stationarity aspects of drought 

phenomenon. The non-stationary drought indices were computed based on the association 

with four large-scale climate indices such as Indian Ocean Dipole (IOD), Southern 

Oscillation Index (SOI), Sea Surface Temperature (SST) and Multivariate ENSO Index 

(MEI) and are presented in Table 3.2.  

Table 3.2 Large-scale climate indices and their data site 

 

3.3.5 Soil moisture data 

Assessment of drought indices requires sufficiently long historic observations to 

obtain a reliable evaluation of drought phenomenon. The Global Land Data Assimilation 

System (GLDAS) VIC soil moisture data has been used in many studies and proved to be a 

reliable source to assess the soil moisture drought anomalies (Mishra et al. 2014). The soil 

Large-scale 

climate 

indices 

Links 

SOI http://www.bom.gov.au/climate/current/ soihtm1.shtml 

SST http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data 

MEI http://www.esrl.noaa.gov/psd/enso/mei.ext/ table.ext.html 

IOD http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi.monthly.txt 

http://www.bom.gov.au/climate/current/
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long
http://www.esrl.noaa.gov/psd/enso/mei.ext/
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moisture data for the period from 1980 to 2018 was downloaded from the GLDAS VIC data 

sets for further computation of SSI.  

3.3.6 Hydrological data 

 Daily observed streamflow data from the two gauging stations located at 

Pathagudem in the Indravati River Basin (IRB) and Ashti in the Wainganga River Basin 

(WRB) were obtained from Central Water Commission (CWC) for the period 1966 to 2018. 

3.3.7 Geospatial data 

DEM, LULC, soil and slope maps are the main geospatial datasets used as an input 

for the SWAT model.  The Shuttle Radar Topography Mission (SRTM) DEM has a 

resolution of 30 m at the equator. DEM has been used as an input in SWAT model for 

delineating watershed and for topographic parameterization for the watersheds of IRB and 

WRB. The Globeland30 LULC datasets were downloaded from the link 

(http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/browse_

en.html&head=browse&type=data). Madhusoodhanan et al. (2017) reported that the 

Globeland30 data set showed least bias and performed well for Indian subcontinent. The 

LULC data was reclassified as SWAT database to form the model simulation. Global soil 

map is downloaded from the link (https://swat.tamu.edu/data/india-dataset/). The slope map 

was generated from the DEM.  The DEM, LULC and soil maps for Wainganga and Indravati 

river basins are shown in Fig.3.2. 

 

Fig. 3.2 DEM, LULC and soil maps for Wainganga and Indravati river basins 

http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/browse_en.html&head=browse&type=data
http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/browse_en.html&head=browse&type=data
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3.3.8 CMIP6 model data 

Daily precipitation, and maximum and minimum temperature data from 5 CMIP6-

GCMs were bias corrected using Empirical Quantile Mapping (EQM) method for South Asia 

and Indian sub-continent on a river basin scale (Mishra et al. 2020a). For the GRB scale, the 

daily precipitation, maximum and minimum temperature data for historical (1951-2014) and 

future (2015-2100) periods for four SSPs (SSP126, SSP245, SSP370, and SSP585) were 

obtained from the website (https://zenodo.org/record/3874046#.YOQWg0kzZPa). The 

sources of CMIP6 model data are shown in Table 3.3.   

Table 3.3 CMIP6 GCM models and their sources 

Sl. 

No. 
Model Source 

1 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation 

and Australian Research Council Centre of Excellence for 

Climate System Science 
2 BCC-CSM2-MR Beijing Climate Centre Climate System Model 
3 CanESM5 Canadian Earth System Model  
4 INM-CM4-8 Russian Institute for Numerical Mathematics Climate 

Model  
5 MPI-ESM1-2-HR Max Planck Institute Earth System Model 

 

3.3.9 Crop characteristics, management and soil information 

Cotton, maize and wheat are the three widely planted crops, chosen to examine the 

influence of drought with respect to climate change on agricultural production. The data sets 

of annual yield datasets for the crops during base period (1997-2014) were obtained from 

https://data.gov.in/resources/district-wise-season-wise-crop-production-statistics-1997.  

The maize crop is a C4 photosynthetic plant and is one of the major cereals in the 

region. Maize is cultivated as a Kharif crop in the study area with the crop period from April-

September. It is cultivated when the mean temperature is greater than 15 °C. The maturation 

period of maize is around 80-110 days. Wheat and cotton are categorised as C3 plants and 

the growth could be related to the increase in atmospheric CO2. Wheat is cultivated as a Rabi 

crop with the sowing in the months of October to September. For cotton, the growing period 

is from May to December. Table 3.4 presents the crop characteristics and development stages 

of the C3 and C4 plants. 

           The cropping pattern over Aurangabad region consists of rain-fed, single cropping 

and double cropping. For the study, rain-fed irrigation method is considered. Farm 

https://zenodo.org/record/3874046#.YOQWg0kzZPa
https://data.gov.in/resources/district-wise-season-wise-crop-production-statistics-1997
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mechanization adopted was weeds management. Sprinkler irrigation is opted for the study 

area. Based on the FAO soil classification, the type of soil dominated in Aurangabad regions 

is clayey and clayey loam soils.  

3.4 Potential Evapotranspiration (PET) Estimation 

Various empirical methods and tools available to estimate the PET indirectly are 

Thornthwaite method (Thornthwaite, 1948), Hargreaves method (Hargreaves and Samani 

1985), Penman-Monteith method (Monteith 1965, Penman 1948), and Modified Penman-

Monteith method (Yang et al. 2019). However, a realistic PET can be estimated using 

Penman-Monteith’s equation (Aadhar and Mishra, 2020). This method considers the climate 

variables such as temperature, humidity, wind speed and solar radiation. However, 

precipitation, maximum and minimum temperatures variables are taken considered in the 

present study. Therefore, Hargreaves method is chosen to estimate the PET demand as it is 

recommended as the most reliable method after the Penman-Monteith’s equation 

(Subburayan, 2011) given in Eq. 3.1. The outputs from this method are comparable with the 

Penman-Monteith formula with lesser number of climate data (Subburayan et al. 2018).  

                             PET = 0.00938(Tmax − Tmin)
0.5(Tmean + 17.8)Ra                                   (3.1) 

where,Tmean, Tmax and Tmin are the monthly mean, maximum and minimum air temperature 

respectively in °C and Ra is represented as the extra-terrestrial radiation (MJ m−2 d−1). 

Table 3.4 Crop characteristics and developmental stages of crops in Aurangabad region 

Crop Maize Cotton Wheat 

Growing period April-September May-December October-February 

Root depth, m 0.3-1.2 0.3-0.8 0.3-1.5 

Crop coefficient 1.05 1.1 1.1 

Base temperature °C 8 12 15 

Upper temperature °C 30 35 35 

Sowing to emergence, days 6 13 13 

Sowing to maximum rooting 

depth, days 

107 97 90 

Sowing to flowering, days 66 97 99 

Flowering stage, days 13 53 25 

Sowing to start senescence, days 108 131 124 

Sowing to maturity (length of crop 

cycle), days 

132 230 165 

 

3.4.1 SPEI computation 

In the current global warming situation, the effect of temperature and 

evapotranspiration must be considered for assessing the meteorological drought. Therefore, 
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the widely used SPEI is computed, in the present study for future drought assessment, based 

on the resulting water balance (P-PET) from precipitation (P) and PET series.  SPEI is 

estimated to investigate the effects of climate change on drought in the context of global 

warming. This index is obtained by fitting the Log-normal probability distribution to the 

water balance i.e. the difference (xi) between time series of P and PET for the month (i) as 

given in Eq. 3.2. 

                                 xn
k = ∑ Pn−1 − (PET)n−1                                                               (3.2)

k−1
i=0   

 

 where Pn−1 is represents the monthly rainfall time series and   (PET)n−1  represents the 

monthly evapotranspiration time series. 

 

 The probability distribution function for the x series is given in Eq. 3.3. 

                                  f(x) = [1 + (
τ

x − γ
)δ]−1                                                                    (3.3)     

where x is considered as the difference between the precipitation and evapotranspiration, 𝜏, 

𝛿 and γ are scale, shape and location parameters, respectively.  The CDF values from fitted 

distribution are then standardized for obtaining SPEI as given by Eq. 3.4. 

                                     SPEI = W−
p0 + p1w+ p2w

2

1 + q1w+ q2w2 + q3w3
                           (3.4) 

where, 

                                      W = {
   √−2 ln(f(x))                    if 0 ≤ f(x) ≤ 0.5

√−2 ln(1 − f(x))              if 0.5 ≤ f(x) ≤ 1
                       (3.5)  

 

where, p0 = 2.515517, p1 = 0.802853, p2 = 0.010328  

            q1 = 1.432788, q2 = 0.189269, q3 = 0.001308. 

3.4.2 Drought characteristics 

Drought characteristics can be identified using the Run theory analysis. A run is 

defined as the values below a preferred truncation level by considering the positive and 

negative run (Yevjevich, 1967). In the present study, a value of -0.8 is considered as the 

threshold value below which all the values are taken as drought events. This study considered 

three drought characteristics namely drought duration (D), peak (P) and severity (S). The 

drought duration is the interval between the onset and offset of drought for a particular 

threshold level. The drought peak is computed as the absolute lowest index value reached 
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by the drought time series throughout the period of a run. A simple arithmetic sum of deficit 

volume for each month under a certain drought duration can be defined as the drought 

severity. 

 3.4.3 Detection of monotonic trend using Mann-Kendall (MK) trend test 

Positive and negative trends associated with the drought characteristics are 

investigated using the non-parametric MK trend test and Sen's slope estimator for both 

historical and future periods. The S-statistics are used in MK test as suggested by Mann 

(1945) and Kendall (1975). If there exists any positive difference between data points, then 

the S-statistics increase by 1 and vice versa while zero difference represents that S-statistic 

is constant. The S-statistic is given by Eq. 3.6. 

             𝑆 =    ∑ ∑ Sgn(n
m=k+1

n−1
k xj − xk)                                                       (3.6)                                                                                                

 xj and xk are data points in the time series linked with the Sgn is shown in Eq. 3.7. 

                              Sgn(xj − xk) = {

+1 if(xj − xk) > 0

0  if(xj − xk)  > 0

−1 if(xj − xk) > 0

                                         (3.7) 

Positive S-statistic values indicate an upward trend while negative values indicate a 

downward trend.  

The Z-statistic, as given in Eq. 3.8, is generally used to test the statistical significance 

of the detected trends in the data points. 

          Zstat =

{
 
 

 
 

S−1

√n(n−1)(2n+5)−∑ tm(tm−1)(2tm+5)r
m=1

18

  if S > 0

   0                                                                                          if S = 0
S+1

√n(n−1)(2n+5)−∑ tm(tm−1)(2tm+5)r
m=1

18

  if S < 0

             (3.8) 

 

where n is the total sample associated with the study, r is the number of tied groups in the 

data sets and tm is the number of data points in the mth tied groups. The results of the MK 

test give the hypothesis, H=1, which says that if there exists a statistically significant trend, 

the null hypothesis is rejected when |Z−stat| > 1.96. Throughout the study, the value of 1.96 

is taken as a threshold value obtained from the standard normal table at 95% confidence 

level. The MK statistic is the identification of the direction associated with the detected 

trends. The magnitude of the trend can be determined using Sen's slope estimator (Sen, 

1968).  
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3.4.4 Regionalization of drought characteristics 

The GRB is divided into sub-regions based on the homogeneous drought 

characteristics. Since drought is considered a regional phenomenon, the drought studies must 

be carried out in a regional perspective. K-means clustering algorithm developed by 

MacQueen (1967) is used to achieve the best combination of sub-regions with each cluster 

being represented by its centroid. The attributes selected for the present study are latitude, 

longitude and drought characteristics to segregate the homogeneous regions. The 

mathematical form of K-means clustering is given in Eq.3.9. 

                                                 Ck = ∑ ∑ ‖Pn − O𝑚‖2𝑉
i=1

U
j=1                                                         (3.9) 

‖Pn − O𝑚‖2 is the square of Euclidean distance between the nth data points and mth cluster 

centers, V is the total number of data points and U is the total number of clusters. K-means 

is an iterative clustering algorithm technique that aims to obtain the well segregated clusters 

given as below: 

i. Initially, the data points are divided randomly among K-clusters and then each data 

point is allocated to its nearest cluster centers.  

ii. Cluster centers are computed based on the averaging of the coordinates for specific 

clusters and each point is reassigned to the closest cluster centroid to obtain new 

clusters.  

iii. The steps are repeated till the best result is obtained as the final result shows 

sensitivity to initial cluster centers. 

iv. Two validation criteria, namely Silhouette Coefficient (SC) and Dunn Index (DI) are 

implemented to justify the total number of clusters as a consequence of K-means 

algorithm for obtaining the homogeneous climate regions (Roushangar and Alizadeh, 

2018). 

3.4.5 Linear scaling (LS) bias correction  

The RCMs have systematic biases of climate model simulations relative to 

observations and hence, RCM model outputs cannot be used directly in impact assessment 

studies. Linear scaling (LS) bias correction method is implemented to adjust the RCM mean 

values (Fang et al. 2014). The monthly correction of RCM data is on the basis of the 

differences between observed and RCM data.   

For precipitation correction is given by Eq. 3.10. 

                                                 Pcorr = PRCM ×
μ(Pobs)

μ(PRCM)
                                                          (3.10) 
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For temperature correction is given by Eq. 3.11. 

                                                   Tcorr = TRCM + μ(Tobs − TRCM)                                          (3.11) 

where, Pcorr and Tcorr are the corrected precipitation and temperature, PRCM and TRCM are the 

RCM precipitation and temperature data, Pobs and Tobs represent the observed precipitation 

and temperature data.  

3.4.6 Reliability Ensemble Averaging (REA) 

The weights assigned to the climate models can be derived using an iterative 

algorithm called as REA by considering the observational data sets. The uncertainty 

generated from multiple RCMs/GCMs are addressed by REA approach developed by Giogi 

& Mearns, (2002). The algorithm for the proposed approach is as follows.  

Step1: The CDF deviations of RCMs/GCMs from observational data sets are computed 

using Root Mean Square Error (RMSE) for entire GRB. The initial weights are computed 

using Eq. 3.12 

                                    Wk =
1
RMSEk
⁄

∑ 1
RMSEk
⁄n

k=1

                              k = 1,2, … . , n                       (3.12) 

where n = number of RCMs/GCMs and Wk is represented as initial weight of kth RCMs.  

Step 2:  The weighted mean CDF of RCMs/GCMs are computed using Eq. 3.13. 

                CDFm
RCM/GCM

= ∑ WkCDFk
RCM/GCMn

k=1        k = 1,2, … . , n                            (3.13) 

where, CDFm
RCM is represented as the RCM/GCM weighted mean, CDFk

RCM is the future CDF 

of kth RCM/GCM under a particular RCP scenario. 

Step3: Inverse RMSE is computed and new weights are assigned and this procedure is 

repeated till the converged weights gets generate. 

3.4.7 Multivariate copula analysis of drought properties 

Univariate analysis of drought characteristics is not capable of determining the 

drought frequencies as it assumes that drought variables are interdependent on each other. 

Therefore, the trivariate drought analysis is incorporated using copula functions for the 

assessment of the dependence structure among the drought characteristics. In this study, peak 

(P), duration (D) and severity (S) are considered as dependent random variables to obtain 

the multivariate dependence structure. The joint distribution function  F(y1……..yn)  is 

given in Eq. 3.14. 

              F(y1,…….., yn) = C(u1, …… . . un, θ)                                                     (3.14) 
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where C is the copula distribution function, associated with the copula 

parameter θ. F1, …… . , Fn are the marginal distribution of random variables (y1,…….., yn). 

The dependence between y1,…….., yn  is characterised entirely by the copula C that is 

invariant by monotonically increasing transformations of the margins. The copula function 

C is treated as a unique function only when the marginal distributions are continuous. The 

joint probability density function linked with the copula function C is given in Eq. 3.15. 

             f(y1,…….., yn) = f1(y1) × …… . .× fn(yn) × c[F1(y1),……… . , Fn(yn)]        (3.15) 

The probability density function f1(y1),… .. fn(yn) of the dependent variables are linked to 

the density function c as given in Eq. 3.16.  

                  c(u1, …… . , un) =
∂nC(u1, …… . . un)

(∂u1………… . ∂un)
⁄                         (3.16) 

where   u1 = F1(y1),……….., and un = Fn(yn) 

A trivariate distribution function, fitted to three dependent drought characteristics P, 

D and S with marginal CDFs  FP, FD and FS can be represented by a copula function that 

guarantees the existence of a unique function c such that all  P, D and S, ∈ R. The trivariate 

joint probability distribution resulting in the parameter associated with the specified copula 

function is presented by Eq. 3.17.  

                  f(P, D, S) = fP(P) × fD(D) × fS(S) × c[FP(P), FD(D), FS(S)]                 (3.17) 

Different types of copula families, namely Frank, Gaussian, Gumbel, Clayton, and 

Student’s t copula are used in many hydro-meteorological studies. The dependency status 

between the interrelated drought variables is represented by the respective copula parameter. 

In this study, the parameters of copula families are estimated using the maximum likelihood 

estimation (MLE) method based on its fitted marginal distribution. The best fitted copula is 

estimated based on the Goodness of Fit (GoF) measures, namely, Kolmogorov-Smirnov test 

(KS), Cramer-von Misses (CVM), and Chi-square (Chsq) tests as suggested by Genest et al. 

2007). AIC criteria and the maximum likelihood function are also used to justify the best 

fitted copula model.  

Various copulas are given in Eq. 3.18 to Eq. 3.22 

Clayton:Cθ(α, β) = (α−θ + β−θ −)
−θ
 for all θ (0,∞)                                                       (3.18) 

Frank:  Cθ(α, β) = −
1

θ
log (1 +

(exp(−θα)−1)(exp(−θβ)−1)

exp(−θ)−1
)  for θ ∈ R{0}                       (3.19)  

Gaussian:Cθ(α, β) = ∫ ∫
1

2π√1−θ2
e
2θuv−u2−v2

2(1−θ2) dudv                                          (3.20)
φ−1(β)

−∞

φ−1(α)

−∞
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Gumbel:Cθ(α, β) = exp {−[−(−logα)θ + (−logβ)θ]
1
θ⁄ } , for θ ϵ [1,∞)                     (3.21) 

Student-t: Cθ(α, β) = ∫ ∫
Γ(

ν+2

2
)

Γ(
ν

2
)νπ√1−θ2

{1 +
u2+v2−2θuv

ν(1−θ2)
} dudv                   (3.22)

Tγ
−1(β)

−∞

Tγ
−1(α)

−∞
 

3.3.8 Drought risks assessment 

The trivariate copula model is implemented to obtain the multivariate drought return 

periods for different climate divisions of GRB.  The return period of a particular event can 

be used for designing the hydrologic projects which gives a qualitative and quantitative 

measure of risk associated with extreme events. The joint return period analysis is carried 

out by using the two probability cases, primary return periods ‘‘TAND” and ‘‘TOR” for the 

drought variables.  The joint occurrence probabilities of drought severity (S), peak (P) and 

duration (D) that exceed a definite threshold level (i.e. S > s, P > p, D > d) related to the 

trivariate return for ‘TAND’ and ‘TOR’ are shown in Eq. (3.23) and (3.24) 

TAND =
 μ

P(S ≥ s, D ≥ d, P ≥ p)

=
 μ

1 − FS(s) − FD(d) − FP(p) + FS,D(s, d) + FD,P(d, p) + FP,S(p, s) − FS,D,P(s, d, p)
 

                              =  
μ

1−FS(s)−FD(d)−FP(p)+C(u1,u2)+C(u2,u3)+C(u3,u1)−C(u1,u2,u3)
            (3.23) 

             TOR =
 μ

P(S≥s,D≥d,P≥P)
 

                =
 μ

1−P(S≥s,D≥d,P≥P)
=

 μ

1−FS,D,P(s,d,p)
=

 μ

1−C(u1,u2,u3)
                             (3.24) 

 

where, FP(p), FD(d) and FS(s) are the marginal CDF of severity, drought, and peak 

respectively Here, μ = N/n  is expressed as the ratio of the total number of years (N) to the 

number of drought events (n) for the estimation of drought return period.  TAND denotes the 

joint return period of P ≥ p, D ≥ d and S ≥ s; and TOR denotes the joint return period of P≥p, 

D ≥ d or S ≥s. 

3.5 Development of Non-stationary Reconnaissance Drought 

Index (NRDI) and Non-stationary Standardized 

Precipitation Index (NSPI) 

The stationary RDI is calculated based on the assumption that the parameters related 

to initial values (𝛿0) are constant with time. Under non-stationarity condition, some 

parameters of the distribution function of 𝛿0 can get changed. The initial value, 𝛿0, is taken 
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as the ratio of precipitation series to evapotranspiration series in different time windows      

(3-, 6- and 12-month), which can be computed using the Eq. 3.25.  

                                         𝛿0(t) =
∑ Pj(t)
n
j=1

∑ PETj(t)
n
j=1

                                                                        (3.25) 

Further, for computation of NSPI and NRDI, correlation analysis between the 

precipitation and global scale climate indices as well as the computed 𝛿0 values (3-,6- and 

12- month) and the global scale climate indices of different lags (1-12) are performed using 

Kendall’s method (Kendall, 1955) with a significance level of 0.05. The significant 

covariates from potential large-scale climate indices are evaluated from the best lags based 

on the minimum p-value. Further, NSPI and NRDI can be developed using the filtered 

covariates using the GAMLSS model. 

3.5.1 GAMLSS model development 

GAMLSS model used in this study was developed by Rigby and Stasinopoulos 

(2005). This model has been widely accepted to obtain the non-stationary parameters related 

to its parametric distribution varying linearly and nonlinearly with respect to the significant 

covariates. In the present study, random variable 𝑦𝑖 (precipitation series / the ratio between 

aggregated precipitation and evapotranspiration series) was assumed to have a parametric 

cumulative distribution function. Related time varying parameters can be modelled as a 

function of selected covariates namely SST, SOI, MEI and IOD by using the GAMLSS 

model. Independent observations yj, with j = 1,…., n have distribution function f(yj,θi) where 

θi= θ1
i … . . θq

i  vector of q distribution parameters which denote the location, scale and 

shape. The parameters of distributions are related to the monotonic link functions denoted 

by gk (.), where k = 1, . . . ., q, which creates a relationship between covariates and random 

variables using a semi-parametric additive model and outlined in Eq. 3.26. 

                        gk(θk) = xkΨk + ∑ hjk(xjk)                                                    (3.26)
Jk
j=1   

Here, xk is a matrix that represents the explanatory variables of order n ×  jk (length of the 

covariate vectors); θk (θ1k,……, θjkk) are the vectors of parameters of length jk, and hjk(.) 

is an additive function that is flexible in modelling the dependence of parameters of the 

response variable with relation to the explanatory variables xjk . Flexibility in modelling the 

dependence parameters on the covariates can be achieved using the linear or smoothing form 

of variation. The selected covariates based on the Kendall’s 𝜏 lag correlation method for 

different time windows (3-, 6- and 12 - months) of precipitation as well as the series of initial 
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values (δ0) are varied linearly with respect to the parameters (here μt is chosen as a time 

varying parameter) of the distribution.  

For computing the NSPI for the drought status of a particular location, a two 

parametric Gamma distribution is fitted to the precipitation series with linearly varying 

location and constant scale parameter, ensuring a relationship between precipitation series 

and selected explanatory variables as shown in Eq. 3.29, using Eq.3.27 and 3.28. 

                                 yt~Gamma(μt, σ)                                                                              (3.27) 

              μt = ao + a1I1(t) + a2I2(t) + ⋯+ anIn(t)                                               (3.28) 

where ao, …… . . , an are estimated mean coefficients for the linear variability for a particular 

location after fitting non-stationary Gamma distribution and I1, …… , In represent the 

explanatory climate variables at time t. 

                                      f(𝑦𝑡, μt, σ) =  
1

(σ2μt)
1
σ2⁄

y
1
σ2−1e

−y
(σ2μt)
⁄

(1 σ2⁄ )
                                (3.29) 

The cumulative distribution functions of the aggregated rainfall series were 

computed by fitting the non-stationary model and then transformed into standard normal 

values using Eq. 3.30. 

                                         NSPI =  φ−1(f(𝑦𝑡, μt, σ))                                                         (3.30) 

where f(yt, μt, σ)   are the CDFs of the aggregated precipitation series 𝑦𝑡 , is the aggregated 

precipitation at any time t, and 𝜑−1 is the inverse CDF values.  

Further, a non-stationary Log-normal distribution with linearly varying location 

parameter (𝜇𝑡) with time considering the respective covariates and with the constant scale 

parameter (σ), is fitted to the 𝛿0 values as shown in Eq. 3.31. and Eq. 3.32.  

                                          yt~LogNormal (μt, σ)                                                            (3.31) 

                          μt = bo + b1I1(t) + b2I2(t) + ⋯+ bnIn(t)                                  (3.32) 

where bo, …… . . , bn are estimated mean coefficients for the linear variability for a particular 

location for the fitted non-stationary Log-normal distribution and I1, …… , In are the 

explanatory climate variables at time t. 

Then using the time variant location parameter and the invariant scale parameter, the 

NRDI is estimated using the Eq. 3.33. 

                                                   NRDI(t) =
yt − μt 

σ
                                                      (3.33) 

Here, 𝑦𝑡 = ln (𝛿0);  μt is the time varying arithmetic mean and  𝜎  is the standard deviation 

of the observational variable. 
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The parameters for Log-normal and Gamma distribution are estimated by Rigby and 

Stasinopoulos (RS) algorithm in the GAMLSS framework. The distribution function f (yj,θi) 

is selected based on the largest maximum-likelihood value. Generally, the quality of fitting 

is not justified by the maximum likelihood. Besides maximum likelihood, the selection of 

both the models (stationary and non-stationary) is evaluated in terms of lowest AIC values.  

In NSPI and NRDI, the dry periods are represented as negative values while the wet 

conditions are shown as positive values. The classification of NSPI and NRDI is similar to 

the standard SPI and RDI. The drought characteristics can be identified using the Run theory 

analysis. 

3.5.2 Multivariate dependence modelling using Pair-wise Copula 

Constructions (PCC) 

Brechmann and Schepsmeier (2013) observed that exchangeable Archimedean 

copulas including multivariate Student’s t copula and Normal copulas were not flexible 

enough to develop an accurate model dependent status among a larger number of variables. 

When the dimension of random variable increases, the construction of a copula becomes 

difficult. Regular vines are broadly categorised into two subsets i.e. D-vine and canonical 

vine (C-vine) (Kurowicka and Cooke, 2006, Aas et al. 2009). Vine is a flexible graphically 

represented tree-like structure that computes the pairwise construction of variables that are 

mutually dependent, called as PCC model. In the case of D-vine structure, the node has a 

link to more than two edges based on the number of random variables and basically, it forms 

a hierarchical trend structure from 1st to the nth node in the tree.  

The D-vine structure is used to model joint probability related to the drought 

characteristics P, D, and S with marginal densities FP, FD, FS respectively. Similarly, a 

multivariate density function can be decomposed using a C-vine structure. C-vine is a tree-

like structure where the main component is uniquely defined as the root node and the other 

variables are the branch nodes directly connected to the root with n-j edges. The D-vine 

structure can be converted to a C-vine structure by slightly modifying the structure. Here D-

vine structure is selected for the joint density decomposition as shown in Eq. 3.34. 

F(P, D,S) = fP(P) × fD(D) × fS(S)cPD{FP(P), FD(D)} × cDS{FD(D), FS(S)} ×

                      cPS|D{FPD(P|D), FSD(S|D)}                                                                                 (3.34) 

cPD{FP(P), FD(D)} represents the bivariate copula fitted between FP(P) and FD(D). 

cPS|D{FPD(P|D), FSD(S|D)} represents the bivariate copula fitted to the second tree variables 

FPD(P|D), FSD(S|D). 
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 Archimedean copulas like Gumbel, Clayton, Frank and the Meta-elliptical copulas 

namely Gaussian and Student’s t copulas are used for finding the dependency parameter 

among the non-stationary drought variables. The D-vine pair copula structure is constructed 

between the drought characteristics by identifying the advantages of pair copula over the 

multivariate copula that can capture the entire dependency among the variables. Further, 

drought return period of NSPI and NRDI were computed. 

3.5.3 Estimation methods for pair-copula models 

The steps used in this study for pair copula construction are outlined as follows: 

 Firstly, the dependency measurement between drought characteristics like peak - 

duration, duration - severity and severity - peak are estimated using Kendall’s τ and 

Spearman’s ρ. Then, an appropriate D-vine model is chosen in terms of the dependency of 

variables. Graphical tools like Kendall plot (K-plot) and Chi-plots are useful for the optimum 

choice of bivariate copula models that are defined by Genest et al. (2007). The GoF tests, 

namely, the Vuong and Clarke tests, are applied to find the suitable copula family for this 

study (Vuong, 1989; Clarke, 2007).  Commonly used AIC criteria to discriminate between 

models are also used in this study to find an optimum solution regarding the selection of 

copula family.  

After deciding the pairwise copula models, the parameter estimation is conducted 

using the MLE method which maximises log-likelihood function. The process of parameter 

estimation for the three-dimensional distribution function for a vine structure is given in Eq. 

3.35. 

L(P, D, S|θ) =  fP(P) × fD(D) × fS(S) × cPD{FP(P), FD(D); θPD} ×

cDS{FD(D), FS(S); θDS} ×

                            cPS|D{FPD(P|D), FSD(S|D); θPS|D}                                                                (3.35) 

        

where  θ = (θPD, θDS, θPS|D)  

l(P, D, S|θ) = log{ cPD(FP(P), FD(D); θPD)} +  log {cDS(FD(D), FS(S); θDS)} +

 log {cPS|D(FPD(P|D), FSD(S|D); θPS|D)} 

where FPD(P|D) = h(P, D, θPD) and FSD(S|D) = h(D, S, θDS) 

The parameters of the copula function can be estimated by choosing a particular tree 

structure. The first tree parameters can be estimated from the fitted copula between the 

pairwise variables in the first tree, then the second tree parameter and so on. The association 
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between the first tree and second tree can be achieved using conditional distribution function 

also namely h functions which are presented in Eq. 3.36 and Eq. 3.37.  

                  h(P/D|θPD)

=  
∂CP,D[(F(P), F(D)|θPD)]

∂F(D)
                                                                (3.36) 

                  h(D/S|θDS)

=  
∂CD,S[(F(𝐷), F(S)|θDS)]

∂F(D)
                                                                 (3.37) 

where, ∂CP,D  is the bivariate copula distribution function with parameter θPD specified for 

peak and duration whereas ∂CD,S is the bivariate copula distribution function with 

parameter θDS. The inverse of h function (h−1) gives an inverse conditional distribution 

function of variables.  

3.6 Computation of SPI, RDI and SSI  

SPI, RDI and SSI for 3 - and 6 - month time scales are computed for the GRB. SPI 

follows the two-parameter (scale and shape parameter) Gamma probability density function. 

Gamma (Γ) probability distribution used to describe precipitation variation is given in Eq. 

3.38. 

                                           G(xn) =  
1

βαΓ(α)
xn
α−1 exp

−xn
β⁄
 

                                               (3.38) 

  Gamma probability density function is applied to 3-month and 6-month moving 

average precipitation series in order to estimate SPI by involving a shape factor and a scale 

factor, denoted by α and β respectively. Wet periods are specified by positive SPI series, 

whereas a sequence of negative values denotes a dry period.  

 RDI was proposed by Tsakiris et al. (2007) with the concept that meteorological 

droughts show the water balance deficit between precipitation and output reference 

evapotranspiration. The initial value (ak) is a combined form using a monthly time-step and 

can be computed in terms of 3-month and 6-month time scales. RDI is calculated using the 

Eq. 3.39. 

                                           ak
(i) =

∑ Pij
k
j=1

∑ PETij
k
j=1

       I = 1 to ...n                                             (3.39) 

where Pij and PETij are the precipitation and PET respectively of the jth month of the ith year.  

It is assumed that the standardised RDI follows Lognormal distribution as given in Eq. 3.40. 
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                                                         RDIst(k)(i) =
yk
(i)

−yk̅̅̅̅

σyk
                                                (3.40) 

 

where yk is ln(ak), yk  ̅̅ ̅̅ is the arithmetic mean of y and σyk is its standard deviation. The 

calculation of RDIst for monthly time steps, which may contain zero-precipitation values, 

can be carried out by the lognormal approach.   

SSI can be computed by using empirical probability function instead of a parametric 

Gamma function. Farahmand et al. (2015) derived the marginal probability of soil moisture 

from the GLDAS data site using the empirical Gringorten plotting position as given in Eq. 

3.41.  

                                         P(Xn) = K =
r−0.44

n+0.12
                                                             (3.41) 

where ‘n’ is the total sample size and r is the rank of soil moisture data which have non-zero 

values and P( Xn) is the empirical probability. The outputs of Eq. (3.39) and Eq. (3.41) can 

be transformed into the Standardised Index (SI) using Eq. 3.42. 

                                                SI = ∅−1(K)                                                                                (3.42)        

                                                                                             

where ∅ is the standard normal distribution function and K is probability derived from Eq. 

3.41. The computed SPI, SSI and RDI indices were further compared with the multivariate 

drought indices computed in this study.   

3.6.1 Bivariate and trivariate drought indices 

The presence of a unique copula is assumed in the analysis of copula, but the most 

important aspect to be noticed here is the selection of a suitable copula function (Nelson, 

2006). The multivariate random vectors are demonstrated as X = (X1,…………., Xd) with 

margins of Fx being continuous and strictly increasing. F(X1,…………., Xd) is the joint 

probability distributions with margins as Fx1,….Fxd. Then there must be a presence of 

unique copula C for all X1,…………., Xd ∈ [-∞,∞] which links the multivariate distribution 

and d dimensional copulas as given in Eq. 3.43  

Cθ(α1, …… . , αd) = Pr(FX1
(X1) ≤ α1, ……… . . , FXd

(Xd) ≤ αd) 

            = Fx (FX1

−1(α1),……… , FXd

−1(αd))                          (3.43) 

It can be noticed that the values of X1,…………., Xd are the inverse functions of 

α1,…………. , αd 

So X1 = FX1

−1(α1), …………………… , Xd = FXd

−1(αd) 
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     F(X1, ……… , Xd) = C(F1(X1),…… . . , Fd(Xd))= Q                                                     (3.44) 

For Bivariate Case, 

                                                         F(X1, X2) = C(F1(X1), F2(X2)) = Q                            (3.45) 

For Trivariate Case,  

                                                    

                                         F(X1, X2, X3) = C(F1(X1), F2(X2), F3(X3)) = K                    (3.46) 

 

Gumbel, Clayton and Frank copulas are used to obtain the joint probability 

distribution of variables based on their dependency phenomenon. Maximum Pseudo 

Likelihood (MPL) estimation method is used for estimating the copula parameters that 

imitates the dependence structure among the correlated drought characteristics. The best 

fitted copula is then estimated based on the GoF measures. AIC and the maximum likelihood 

function are used to justify the best fitted copula model. These criteria can be applied for 

obtaining the best fitted copula by comparing the p-values obtained from all the GoF tests 

(Genest et al. 2009). 

3.6.1.1 Development of Multivariate Standardised Drought Index (MSDI) and 

Reconnaissance Trivariate Drought Index (RTDI)  

 

The MSDI can be computed using the joint probability Q as given in Eq. 3.47.  

                                                        MSDI = φ−1(Q)                                                                (3.47) 

For the computation of RTDI, the joint probability given in Eq. (3.47) can be used. The link 

between the joint probability of K and the RTDI can be derived using Eq. 3.48   

                                                         RTDI = φ−1(𝐾)                                                                (3.48) 

where φ−1 is the inverse standard normal distribution function. MSDI is formulated as the 

joint probability of precipitation and soil moisture while RTDI is the combined form of 

precipitation, soil moisture and evapotranspiration.  

3.6.2 Cross Wavelet Analysis (CWA) 

The combination of Cross Wavelet Transform (XWT) and the Cross Wavelet 

Spectrum (CWS) can be represented by CWA.  CWA breaks down the time series into time 

and frequency domain and detects the significant association with other variables. This 

method identifies the combined teleconnection and the variations in the time and frequency 

domain of the pair time-series.  Morlet wavelet is adopted as mother wavelet as it shows a 

good balance between time and frequency localization. Therefore, the CWA is implemented 

to examine the potential teleconnection between SOI/IOD/SST/MEI/ISMR events with both 
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MSDI and RTDI time series. The two-time series are taken as  αk and βk  and the XWT for 

these time series is shown in Eq. 3.49. 

.                           Wαβ = WαWβ∗                                                                               (3.49) 

where * denotes the complex conjugate and the Cross Wavelet Power (CWP) is denoted as 

|𝑊𝛼𝛽 |. The distribution associated with the CWP of αk  and βk  with the related power 

spectra Pn
αand Pn

β
  is given in Eq. 3.50. 

                       𝐷 (
|Wn

α(s) Wn
β(s) |

σασβ
< p) =  

Zv(p)√Pn
α Pn

β

v
                                          (3.50) 

where Zv(p) is denoted as 95% the confidence level linked with the probability p. For more 

details regarding the CWA, the study by Grinsted et al. (2004) can be referred. 

3.7 Hydrologic Model Set Up  

SWAT has been chosen for the present study to simulate the hydrological fluxes of 

IRB and WRB and for assessment of drought events based on MDI. SWAT is a process 

based, semi-distributed basin scale model developed by United States Department of 

Agriculture (Arnold et al. 2012). Two sub-basins of GRB are selected i.e. Indravati basin 

and Wainganga basin for the application of SWAT. DEM is the basic input data used to 

delineate the watershed into number of sub-basins and each sub-basin is joined by a stream 

network. Each of the sub-basin is then further sub-divided into hydrologic response units 

(HRUs), based on homogeneous land use, soil, management and topographical features. All 

hydrological processes are simulated based on HRUs. Overall, 300 target HRUs were 

generated over the 23 sub-basins located in IRB while 280 target HRUs were generated over 

the 31 sub-basins in the WRB. The surface runoff was simulated by Natural Resources 

Conservation Service-Curve Number (NRCS-CN), considering daily precipitation, LULC 

characteristics, hydrologic soil groups and antecedent soil moisture condition. PET was 

estimated using Hargreaves equation. QSWAT with QGIS interface is used in the present 

study. Model simulations are carried out, considering the first 5-years as warm-up period 

(1961-1965) to initialize the important model processes and variables on a daily time step. 

The model is simulated with the continuous observed monthly streamflow data available at 

the IRB (1966 to 2013) and WRB (1966 to 2017) outlet stations (i.e. Pathagudem and Ashti 

gauge station). For IRB, calibration and validation were carried out for the periods of 1966 

to 1997 and 1998 to 2013, respectively at Pathagudem station. Similarly, for WRB, the data 

of Ashti station was used for calibration (1966 - 2004) and validation (2005 - 2017). SWAT 
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calibration and validation were carried out using SWAT Calibration and Uncertainty 

Analysis Program (SWAT-CUP) using the Sequential Uncertainty Fitting-2 (SUFI-2) self-

automated algorithm. More details regarding SWAT-CUP calibration and validation is 

presented in the result section. 

3.7.1 Evaluation of Multivariate Drought Index (MDI) 

A reliable and robust copula based multivariate drought index is proposed in this 

study. The unique marginal distributions of associative climatic variables can be efficiently 

preserved within the joint distribution, which in turn, would be capable of assessing the 

deficit status.  

Step1: Marginal distribution and correlation  

To assess the assimilated behaviour of meteorological, agricultural and hydrological 

droughts, the correlation between precipitation and SWAT simulated variables (PET, soil 

moisture and runoff) have been taken into consideration. The degree of correlation was 

calculated by Kendall-τ correlation approach with an assumption of monotonic association 

between climate variables, using the time series of 6-month moving average of climate 

variables. From Table 3.5 and Table 3.6, it can be observed that significant correlations are 

exhibited between climate variables like precipitation-streamflow, precipitation-soil 

moisture and streamflow-soil moisture. The evapotranspiration showed insignificant 

positive correlation with other climatic variables.  Various types of distributions are fitted to 

the climatic variables for obtaining the marginal distributions.  

Table 3.5: Kendall-τ correlations between climate variables in the Indravati river basin 

Variables Precipitation Evapotranspiration Soil moisture  Streamflow 

Precipitation 1 0.008 0.93 0.54 

Evapotranspiration 0.008 1 0.08 0.03 

Soil moisture  0.93 0.08 1 0.38 

Streamflow 0.54 0.03 0.38 1 

 

Table 3.6: Kendall-τ correlations between climate variables in the Wainganga river basin 

Variables Precipitation Evapotranspiration Soil moisture  Streamflow 

Precipitation 1 0.02 0.9 0.4 

Evapotranspiration 0.02 1 0.04 0.07 

Soil moisture  0.9 0.04 1 0.41 

Streamflow 0.4 0.07 0.41 1 

 

 

 



70 
 

Step 2: Copula analysis 

This study considered precipitation (P), evapotranspiration (E), streamflow (Sf) and 

soil moisture (𝑆𝑚) for the development of MDI using four variate copula functions to 

examine the joint effects of associative parameters leading to probabilistic assessment of 

drought. By considering these as random variables, the dependency structure between multi-

scalar climatic variables were obtained.  FP, FE, F𝑆𝑓  and F𝑆𝑚  are the marginal distributions 

of P, E, 𝑆𝑓  and 𝑆𝑚  respectively. FPESf𝑆𝑚(P, E, Sf, 𝑆𝑚) denotes the cumulative distribution 

function (CDF) of the four-variate distribution with marginal CDFs 

as FP(P), FE(E), FSf(Sf) and FSm(Sm). The presence of the unique copula C for all real P, E, 

𝑆𝑚 and 𝑆𝑓 is as shown in Eq. 3.51. 

(P, E, Sm, Sf) = c (FP(P), FE(E), FSf(Sf), FSm(Sm)) fP(P)fE(E)fSf(Sf)fSm(Sm) =  q        (3.51) 

where C is the copula function; (FP(P), FE(E), FSf(Sf) and FSm(Sm)) are the marginal CDFs 

of P, E, 𝑆𝑓 and Sm respectively; fP(P), fE(E), fSf(Sf) and fSm(Sm) are the probability 

distribution functions (PDFs) of the random variables P, E, 𝑆𝑓 and Sm respectively. 

The MDI used to model the dependence between the climatic parameters can be obtained by 

Eq. 3.52, where φ is the standard normal distribution function. 

                                                                        MDI = φ−1(q)                                                 (3.52) 

Step 3: Optimal selection of copula 

The optimal copula functions must be selected in order to represent dependence 

structure between climatic variables well. Clayton copula fitted well compared to Gumbel 

and Frank copulas based on the GoF measures. Hence, the Clayton copula was used in this 

study to obtain the joint behaviour of climate variables. The optimal parameters of copula 

functions were obtained by MPL  parameter estimation criteria. The analytical expressions 

of n-dimensional symmetrical Clayton (CC) is written as shown in Eq. 3.53.  

                    Cc(P, E, Sf, Sm) = (P−θ + E−θ + Sf
−θ + Sm

−θ − 3)                              (3.53) 

Wet events of MDI were identified by positive values and the dry events were 

identified by negative values. MDI was computed at 6-month time scales by aggregating all 

hydrological entities using 6-month moving average values. In addition, the drought 

characteristics like duration and severity are quantified based on the extensively used Run 

theory analysis. 
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3.8 Impact of Climate Change on Crop Yield and the Crop-

Drought Relationship with Changing Climate 

The methodology includes meteorological, soil and crop data collection and 

calculation of PET. Further, AquaCrop model is developed and crop yield is simulated for 

maize, cotton and wheat. For future period the crop yield is predicted. The changes in the 

yield with respect to observed period was investigated in the study. Further, crop-drought 

relationship is obtained considering the correlation between Standardized Yield Residual 

Series (SYRS) and SPEI in different lags. The methodological frame work is presented in 

Fig 3.3. 

 

Fig 3.3. Methodological frame work for crop yield prediction and the crop-drought 

relationship 

 

3.8.1 AquaCrop model development 

AquaCrop generally simulates yield response to water (i.e. water productivity) 

considering robustness, simplicity and water condition regionally. The model was developed 
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based on the Doorenbos and Kassam (1979) hypothesis to obtain the yield response to water 

that led to the model evolution (Steduto et al. 2009). The main are features of the model are:  

(i)  Evapotranspiration (ET⁠a) consisting of two components, (a) soil evaporation (E ⁠s); (b) 

transpiration (T⁠r). 

(ii) The model uses Canopy Cover (CC) instead of Leaf Area Index (LAI), which is directly 

interrelated to loss of water.  

(iii) Crop yield is simulated as a function of the total biomass (B) and harvest index (HI)  

(iv) It reflects the normalised water productivity (WP*) as conservative parameter which 

would be appropriate for different environmental conditions (Foster et al. 2017) 

The model includes of two types of parameters: (i) parameters that do not change 

with time, location and management practices, referred as conservative parameters; and (ii) 

non-conservative parameters basically varying with time, location and management 

practices (Montoya et al. 2016). Besides this, AquaCrop structures its soil–crop–atmosphere 

continuum by including (i) the soil and its water balance components; (ii) the plant 

development, growth and productivity; and (iii) the atmosphere considering the temperature 

regime, rainfall pattern, evaporative demand, and CO2 concentration. The crop growth 

development based on the model is integrated with the soil water balance that provides an 

efficient platform to model different agricultural practices (Steduto et al. 2009). Water use 

can be estimated based on four stress parameters (K⁠s); stomatal closure, canopy expansion, 

aeration stress and early canopy senescence (Mabhaudhi et al. 2014). AquaCrop also 

computes E⁠s and T⁠r. The basic input components for model simulation are climate variables, 

crop parameters, management details, and soil properties to simulate the crop yield.  

The biomass is simulated based on the cumulative transpiration (𝑇𝑟) and normalised 

water productivity (WP*) during the crop development stage as given in Eq. 3.54.  

                                                         B = WP∗ × ∑Tr                                                                      (3.54)     

The harvestable yield (Y) is a function of Biomass (B) and Harvest Index (HI) Eq.3.55.  

 

                                                           Y = B × HI                                                                 (3.55) 
 

In this study, AquaCrop (version 5) is used to simulate the crop yield.  Input variables 

required for the model are explained below. The water productivity (WP, kg m− 3) is the 

relationship between crop yield and evapotranspiration and is defined as the kg of grain yield 

produced per m3 of water evapotranspired. 

 



73 
 

3.8.1.1 Climate Variables 

  ETo is evaluated considering precipitation, maximum and minimum temperatures by 

using Hargreaves method. The CO2 concentration during the base period recorded at Mauna 

Loa, Hawaii, while for future scenarios CO2 concentration can be generated directly from 

the AquaCrop model. 

3.8.1.2 Soil parameters  

Many soil characters like the number and thickness of soil profiles (m) and saturation 

hydraulic conductivity (Ksat) (mm/day), Curve Number, field capacity (percent volume), 

permanent wilting point (percent volume), bulk density (gm/cc), total accessible water 

(mm/m) are used for assessment root zone soil moisture in a particular region is used in the 

study.  

3.8.1.3 Crop management details 

The non-conservative parameters are purely depended upon crop phenology and can 

be influenced by field management practices, planting mode, soil profile etc. The 

identification and calibration of cultivar-specific parameters are essential for the effective 

model development. Some of the major critical parameters including canopy coefficients 

(growth and decline), maximum canopy cover (CCx), reference harvest index (HIo), 

maximum effective rooting depth, sowing to flowering period, sowing to maturity period, 

air temperature stress (cold and hot stress) and crop coefficient were identified during 

calibration process. The canopy growth coefficient (CGC) estimates the time required to 

attain maximum canopy, whereas the canopy decline coefficient (CDC) displays the rate of 

decline of green canopy in late season. Under non-stressed conditions, the HIo is defined as 

the ratio of mature dry yield mass to total dry above ground biomass. The minimum and 

maximum temperatures when the pollination process starts to fail are known as cold stress 

and heat stress, respectively. Due to non-availability of the irrigation scheduling data such 

as frequency of irrigation net application, depth of application; the irrigation management 

practices, rain-fed irrigation technique was adopted for wheat, cotton and maize cultivation. 

3.8.1.4 Simulation of AquaCrop model and parameter selection 

AquaCrop model was calibrated by adjusting the sensitive parameters to simulate the 

yield. The calibration and validation periods were different for different crops for the region, 

as presented in Table 3.9. The datasets were divided into calibration and validation period 

to optimise the model parameters without getting under/over fitted. Calibration is the process 
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of fine-tuning non-conservative model parameters in order to enhance the agreement 

between observed and simulated yields.  To assess the robustness of the model for different 

crops and to enhance the model, sensitivity analysis was performed by changing soil, crop 

and climatic inputs. It is based on the trial and error approach where one parameter was 

selected as a base parameter and the other influencing parameters were changed according 

to the base parameter. The same parameters are generally taken in the validation process to 

identify the agreement between observed and validation period yield. The procedure was 

repeated until a close match between observed and simulated obtained. For future prediction 

of yield, the parameters obtained from the calibration process are utilised throughout the 

future time series.  

3.8.1.5 Model evaluation criteria 

Various statistics are available for evaluating the model performance and to compare 

the simulated and observed yields from the model (Heng et al. 2009; Steduto et al. 2009). 

The model was evaluated using two statistical measures such as coefficient of determination 

(R2) and root mean square error (RMSE) and presented in Eq. 3.56. and Eq.3.57 respectively. 

                             R2
∑ysim(i) × yobs(k) − ∑ysim(k) × ∑yobs(k)

√∑ysim(k)
2

− (∑ysim(k)
2
) × √∑yobs(k)

2
− (∑yobs(k)

2
)   

             (3.56)   

                           RMSE = √
∑ (ysim(k)−yobs(k))

2n
I=1

n
×
100

Yobs̅̅ ̅̅ ̅̅
                                              (3.57)  

where 𝑦𝑠𝑖𝑚(𝑘) is denoted as simulated yield for kth period. 𝑦𝑜𝑏𝑠(𝑘) is denoted as observed 

yield for kth period and 𝑌𝑜𝑏𝑠 represented as the mean observed yield. The calibrated 

parameters and the efficiency of the model for the three crops for different regions are 

presented in the next chapter. 

3.8.2 Standardized Precipitation Evapotranspiration Index (SPEI)  

 Due to temperature rise globally, the climate change has become more vulnerable 

and plays a significant element in governing the drought occurrence. SPEI was initially 

computed for the historical period (1951-2014) and then the parameters of the log-normal 

distributions were transformed to future period (2025-2099) for different scenarios to 

compute SPEI.  
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3.8.3 Crop yield data detrending and standardisation 

At a regional level, the agro-databases consists of annual yields of maize, cotton and 

wheat in Aurangabad region of the Upper Godavari region. Considering different growing 

seasons, and cultivation periods, these plants are classified as kharif and Rabi crops. 

Compared to Rabi crops, a comparatively short period of drought impacts on the yield of 

kharif crops. The sowing to harvest period was May to December for cotton and April to 

September for maize. The shortest growing cycles were taken for wheat (October to 

February). 

The developments in agricultural practices such as increased amount of fertiliser 

applications, scientific cropping pattern and crop varieties, better tillage practices, better 

weed management, farming tools and seeding technologies, cause an increasing trend in the 

yield in the command area (Potopova et al. 2015). So, the obtained crop yield data cannot be 

directly used to establish a drought-yield relationship. Thus, the agricultural drought hazard 

should be presented by the residuals of the de-trended crop yield series (Potopova et al. 

2015). Generally, to remove the biases caused due to non-climatic factors, the crop series 

are de-trend by means of linear regression. Thus, the weather parameters only will be 

reflected by the residual variation in crop yield series and the residuals signify the yield 

under normal climatic conditions. The variabilities of yield among the three crops were 

quantified by considering mean and standard deviations for different series. The same log-

normal distribution is fitted to yield series. Then the yield residuals were standardised based 

on the Z-score transformation for each crop. 

The SYRS is the standardised series that considers the long-term mean and standard 

deviation as zero and one, respectively. According to the theory of normal distribution, the 

SYRS values > -0.50 or < 0.50 are satisfying the normal condition of the series. SYRS values 

corresponding to -0.51 to -0.99 imply low yield losses, -1.00 to -1.49 moderate, and > -1.50 

high yield losses. For computation of future SYRS, the log-normal distributions are 

transferred to obtain the SYRS considering the observed yield series for different crops.   

Furthermore, the drought can reduce yields significantly, especially in rain-fed 

agricultural systems. A correlation analysis was performed to assess the impact of 

meteorological droughts on agricultural production. i.e., calculating the Kendall’s 𝜏 

correlation coefficient between SPEI series at different lags and crop yield during the 

growing season of crops (SYRS). The correlation analysis of SPEI series at different lags 

for both future and historical crop yield periods were conducted in this study. It should be 
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noted that for the most part, the historical time period was chosen based on observed 

agricultural yield data, which ranges from 1997 to 2014.   

3.9 Summary 

This chapter presents quantitative and qualitative assessments of drought and its 

characteristics in Godavari River Basin (GRB) and its sub-basins. RCM models were used 

to obtain the future changes of drought considering SPEI. Then non-stationary drought 

indices (NSPI and NRDI) were developed and compared with stationary drought indices 

(SPI and RDI) Copula based multivariate drought indices were developed to analyse the 

integrated effect of different climate parameters on drought. The AquaCrop model was 

developed and then future changes of maize, cotton and wheat were obtained based on 

CMIP6-GCMs. Based on the performance of these models, if found to be satisfactory, they 

can be used for generating and simulating the crop yield. Crop-drought relationship was 

obtained by considering SPEI and SYRS with changing climate scenario.  
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 General 

 Methodology to meet the objectives of the study described in Chapter-3 is applied to 

the study area. The results pertaining to various objectives of the study are described in 

this chapter. As already discussed earlier, the first three objectives are applied to entire 

study area and for remaining two objectives part of study area is taken up. Results are 

presented in forms of graphs, box plots and tables followed by a thorough discussion. 

4.2 Spatio-temporal Variation and Future Risk Assessment 

Using SPEI 

CRU TS 4.03 TS precipitation, maximum and minimum temperature data were 

downloaded, and potential evapotranspiration was estimated using the Hargreaves 

method. SPEI for the GRB was used to conduct a comprehensive evaluation of historical 

and future droughts, incorporating potential associations of drought characteristics. 

Drought was assessed historically using SPEI, which considers multiple meteorological 

variables such as precipitation and evapotranspiration. The weighted average of the five 

RCMs, such as ACCESS 1-0, GFDL-ESM2G, MPI-ESM-LR, CCSM4 and CNRM-CM5 

under RCPs 4.5 and 8.5 was calculated using the REA method. The K-means clustering 

algorithm was used to identify drought homogeneous regions. The M-K test approach was 

used to obtain the trend associated with drought characteristics for both historical and 

future periods. Copula functions were also used to estimate multivariate drought return 

periods. Changes in drought characteristics in the future periods were assessed using 

RCMs under RCP4.5 and RCP8.5 scenarios to gain a better understanding of the impact 

of future climatic variability on drought characteristics.  

4.2.1 Performances of RCM models and uncertainty analysis 

For future drought analysis, five linearly bias corrected RCMs were considered. 

Although RCMs are widely used for the assessment of extreme events with respect to 

climate change, there are uncertainties associated with the RCM simulated variables. The 

sources of uncertainty in climate models are associated with (i) their spatial and temporal 

scale, (ii) anthropogenic activities and GHG emissions under different scenarios. 
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The individual model and ensemble mean quantile plots for precipitation, maximum 

and minimum temperature are presented with in Fig. 4.1.  Ensemble models were used to 

model the extreme and low precipitation events.  For RCP4.5, the precipitation obtained 

from the ensemble mean performed well when compared to RCM models. The ensemble 

model for RCP8.5 scenario showed satisfactory performance for the precipitation series 

while high uncertainties were exhibited RCP4.5 scenario. Comparison of simulated and 

observed precipitation showed that models like CNRM-CM5 showed poor performance 

for RCP4.5 while ACCESS 1-0 showed poor performance for RCP8.5. From Fig. 4.1, it 

can be seen that the ensemble maximum and minimum temperature showed better 

performance under both the scenarios. For maximum temperature, the models that 

performed poorly are CNRM-CM5 and CCSM4 under RCP4.5. ACCESS 1-0 and GFDL-

ESM-2G showed poor performance under RCP8.5 scenarios. The bias corrected RCMs 

were individually under/over estimating the climate parameters. Hence consideration of 

isolated models may increase the uncertainty in modelling the drought phenomenon. The 

REA approach provides a remedy to this problem by accounting for uncertainty caused 

by RCMs.  

4.2.2 Spatial variation of reference and future climate parameters  

Spatial maps are presented in this section for better understanding of variability 

experienced due to annual precipitation, dry days, and fluctuations in minimum and 

maximum temperature. The spatial distribution of mean annual precipitation is presented 

in Fig.4.2. The MPI-ESM-LR and ensemble model under RCP4.5 captured the extreme 

annual precipitation. Similarly, for RCP8.5, ACCESS1-0, MPI-ESM and ensemble model 

captured the extreme annual precipitation in the north-east part of the GRB. Further, for 

the mean annual precipitation, the ensemble model gave the uncertainty in each grid cell. 

The future time period, 2053 to 2099, showed a decrease in precipitation in western part 

of the GRB and an increase in the lower reaches of the basin. Significant variations in 

annual precipitation were more pronounced under RCP8.5. From Fig. 4.3, except CCSM4, 

the maximum temperature hot spots can be identified in the middle part of the basin for 

the various climate models. The average annual minimum temperature has a significant 

increasing trend in RCP8.5. The minimum temperature hot spots showed prominent 

increase in RCP8.5 (Fig. 4.4). The intensification in projected maximum and minimum 

temperature will cause increase in evapotranspiration. Nevertheless, increase in 

evapotranspiration, variation in precipitation and the increase in the dry spells for future 
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time period will further accelerate the drought phenomenon in the GRB due to global 

warming. 

 

      

                      (a)                                                                                            (b) 

    

                                          (c)                                                                                                 (d) 

  

                            (e)                                                                                              (f)  

Fig 4.1 Quantile-Quantile plots for comparison of precipitation for (a) RCP4.5; (b) RCP8.5; 

Comparison of maximum temperature for (c) RCP4.5; (d) RCP8.5; 

Comparison of minimum temperature for (e) RCP4.5; (f) RCP8.5. 
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Fig. 4.2 Spatial variation of annual mean precipitation for reference period 

(1971-2017) and future time period (2053-2099) 
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Fig. 4.3 Spatial variation of annual mean maximum temperature for reference 

period (1971-2017) future time period (2053-2099) 
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Fig. 4.4 Spatial variation of annual mean minimum temperature for reference period 

(1971-2017) and the future time period (2053-2099) 

 

4.2.3 Identification of homogeneous drought regions 

All the meteorological stations located in various climatological regions of GRB were 

used in this study. Some of these stations have been facing extremely vulnerable drought 

conditions in each season because of significant variability of rainfall among seasons. 

There were also variations in climatic variables based on their topographic existence. K-

means clustering was used to identify the homogeneous drought regions. The division of 

total study area into homogeneous climate divisions (clusters) was advantageous in 

reducing the unwanted noise resulting from the grid-wise frequency analysis (Masud et 

al. 2017). For each cluster, the nearest data point to the respective cluster head was chosen 

to represent the data point to obtain the results. The cluster validation indices based on K-

means techniques for the historical period are given in Table 4.1. From Table 4.1, the 
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number of clusters equal to 6 captured homogenous areas better in comparison to other 

cluster numbers as the values of Silhouette Coefficient (SC) and Dunn Index (DI) are 

higher compared to other cluster numbers. From Fig. 4.5, the number of grids in each 

climate division were as follows: a total of 21 grids in climate division I, 5 grids in climate 

division II, 4 grids in climate division III, 25 grids in climate division IV, 29 grids in 

climate division V, and 22 grids in climate division VI. The homogeneous regions using 

the drought features provide a clear foundation for further analyses of the drought events.   

Table 4.1 Validation of clustering models based on reference dataset 

 Number of clusters 

Validity index 3 4 5 6 7 8 9 10 

DI 2.85 3.08 4.52 8.1 0 0.15 3.11 0.29 

SC 0.377 0.454 0.33 0.511 -0.214 0.389 0.211 0.178 

                            

 

Fig. 4.5 Cluster Map of SPEI-3 drought characteristics 

4.2.4 Comparison between historical and future droughts 

Water resources are sensitive to droughts and the demand for water is mostly met by 

amount of precipitation. The prolonged droughts associated with increase in water 

demand under climate change will lead to further stress on water shortage.  Pathak and 

Dodamani, (2019) stated that the 3-month time scales have shorter duration and creates a 

greater number of drought events, On the other hand, the 12-month time scale indicates 
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less drought events with higher durations. This study considered SPEI-3 for estimating 

the meteorological drought events. The drought characteristics for each grid cell were 

extracted using the observed and future SPEI series based on Run theory approach for 

return period analysis. 

Drought events are directly related to high temperature and evapotranspiration. The 

study was carried out to determine how precipitation and evapotranspiration affect the 

future SPEI in the six climate divisions. The temporal changes of SPEI are presented in 

Fig. 4.6. Significant differences exist in signals between the SPEI time series generated 

using RCM outputs and the observed climatic data for all the six climate divisions. Higher 

peaks in signals were detected in RCP8.5 when compared with RCP4.5 and the reference 

period. The number of dry months were significant in case of RCP8.5 and RCP4.5. SPEI 

for RCP8.5 and RCP4.5 captured an early onset of drought. The projected SPEI signals 

exhibited more severe and persistence drought events. Due to increase in CO2 and 

greenhouse gas concentration in future, the temperature and precipitation exhibit high 

fluctuations which have great influence on the behaviour of drought indices. SPEI time 

series of projected periods and reference periods differ from each other for different 

climate divisions showing an intensification of dry spells for future periods 

In this section, projected changes of drought characteristics are evaluated based on 

the differences between the drought characteristics in future period and reference period. 

The projected characteristics are presented by means of density plots and box plots for 

different climate divisions and shown in Fig. 4.7 to Fig. 4.12. Significant changes in the 

density of drought characteristics were noticed between historical, RCP4.5 and RCP8.5 

for different climate divisions. For climate divisions I, III, V and VI, higher densities were 

observed during the reference period compared to the future scenarios, whereas the 

magnitude of projected drought duration for RCP8.5 displayed higher density for climate 

division IV. RCP4.5 showed higher densities in projected drought duration for climate 

division II. Prominent deviations were also observed in the historical and future peak 

densities (Fig 4.7) for different climate divisions. The higher peak densities are observed 

for RCP 8.5 in case of climate division I and IV (Fig 4. 8). It was observed from the figures 

that RCP4.5 series showed higher peak densities for climate division II. In the case of 

climate division III and V, the reference time series showed high densities in peak. The 

density plots for severities for all climate divisions revealed the change in the probability 

densities for historical and future scenarios (Fig. 4.9). Larger differences in the projected 
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drought severities were observed for all the time periods in the climate divisions. Higher 

densities in case of severities were observed for climate division I, III, V and VI during 

the reference period (1971-2017), whereas, RCP8.5 and RCP4.5 showed higher densities 

for climate division IV and climate division II respectively. Hengade et al. (2018) stated 

that spatial and temporal variation of rainfall were observed in GRB under climate change 

scenarios whereas the evapotranspiration of the basin showed a huge increment due to 

increasing temperature in most part of the basin. It was also observed that there were huge 

variations in the climatic phenomenon of GRB under RCP8.5 than in RCP4.5. So, the 

evapotranspiration can intensify the drought phenomenon when the temperature is more 

for this river basin. Deficit precipitation and more evapotranspiration in future can impact 

the future drought phenomenon. 

The variations in the drought characteristics were identified using box plots shown in 

Fig 4.10, Fig. 4.11 and Fig. 4.12 for six climate divisions. The historical and RCM-

simulated weightage averaged drought durations were shown in Fig 4.10. Relative 

variances were observed between historical and future duration for different climate 

divisions. The climate divisions II and III showed higher durations in case of reference 

period, whereas for RCP4.5, the climate divisions I, IV, V and VI showed higher drought 

durations. Significant variations were also identified in the drought severity and peak 

between historical and future periods for the different climate divisions. High peaks were 

noticed in case of future periods. RCP4.5 displayed high peaks in climate divisions I, IV 

and VI whereas the RCP8.5 exhibited higher peaks in the other climate divisions II, III 

and V. The climate division II showed severe drought in case of historical period.  RCMs 

tend to produce relatively more severe droughts when compared to historical drought. The 

drought severities showed high values in case of climate divisions VI for RCP4.5. 

Similarly, RCP 8.5 shows high values for climate divisions I, II, IV and V. Hence, it can 

be concluded that the changes in severities are more prominent in case of RCP4.5 and 

RCP8.5.  

Deficient rainfall caused extreme drought condition in the GRB (Masroor et al. 2020). 

During the summer season, temperatures increased which can accelerate the drought 

condition. From spatial observation from Fig. (4.2) to Fig. (4.4), RCMs under RCP 4.5 

and RCP 8.5 projected a change in drought pattern during 2053-2099 as there would be 

an increase in dry spells in GRB. The drought severity, peak and duration would increase 

in the future due to the effect of climate change for most of the climate divisions. So future 
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drought analysis will be helpful for water managers to understand the drought behaviour 

considering the variable climatic phenomenon. 

    

Fig 4.6 Comparison of SPEI time series for historical period (1971-2017) and future 

time period (2053-2099) under RCP4.5 and RCP 8.5 
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Fig. 4.7 Comparison of Probability Density of duration for historical period (1971-2017) 

and future time period (2053-2099) under RCP4.5 and RCP 8.5 for climate division, (a) I; 

(b) II; and (c) III; (d) IV; (e) V; (f) VI. 

 

Fig. 4.8 Comparison of Probability Density of peak for historical period (1971-2017) and 

future time period (2053-2099) under RCP4.5 and RCP 8.5 for climate division, (a) I; (b)  

II; and (c)  III; (d) IV; (e) V; (f) VI. 
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Fig.4.9 Comparison of Probability Density of severity for historical period (1971-2017) and 

future time period (2053-2099) under RCP4.5 and RCP 8.5 for climate division, (a) I; (b)  

II; and (c)  III; (d) IV; (e) V; (f) VI. 
 

 

Fig. 4.10 Comparison of drought duration using box plots for historical period (1971-2017) 

and future time period (2053-2099) under RCP4.5 and RCP 8.5 for climate division, (a) I; 

(b) II; and (c) III; (d) IV; (e) V; (f) VI 
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Fig. 4.11 Comparison of drought peak using box plots for historical period (1971-2017) and 

future time period (2053-2099) under RCP4.5 and RCP 8.5 for climate division, (a) I; (b) II; 

and (c) III; (d) IV; (e) V; (f) VI 

 

 
Fig.4.12 Comparison of drought severity using box plots for historical period (1971-2017) 

and future time period (2053-2099) under RCP4.5 and RCP 8.5 for climate division, (a) I; 

(b) II; and (c) III; (d) IV; (e) V; (f) VI 

 

4.2.5 Mann Kendall Test of drought characteristics 

   Mann Kendall (MK) test and Sen's slope estimator were used for trend analysis for the 

six climate divisions. For determining the upward or downward trend of drought 

characteristics, the parameters of the MK test such as Kendall’s 𝜏, S, and Z statistics were 

calculated at 95% confidence level. Tables 4.2, 4.3 and 4.4 show the trend of drought 



90 
 

duration, peak and severity for historical and future periods for various climate divisions. 

Increasing trends in duration were observed in the case of climate divisions I, II and VI for 

reference periods whereas the decreasing trends were observed in the case of climate 

divisions III, IV and V. However, decreasing trends detected for duration were not significant 

for the reference period. The results of the MK test for future periods under two scenarios 

showed significant positive trends for durations in four climate division (I, II and IV and VI) 

for RCP4.5 and four climate division (III, IV, V and VI) for RCP8.5. Further, negative trends 

were observed for future periods for climate division III and V for RCP4.5, and climate 

division I and II for RCP8.5. The MK test for peak revealed positive trends in climate division 

I, III, VI and VI while negative trends were detected in climate divisions II and V for the 

reference period. Significant increasing trends in peaks were observed throughout the future 

period in the case of climate divisions I, II, III, IV, and VI and climate divisions II, III, VI, 

V and VI under RCP4.5 and RCP8.5 respectively. Downward trends were noticed in the case 

of climate division V for RCP4.5 and climate division I for RCP8.5. For reference period, 

the climate divisions I, II, III, IV, and VI showed positive Z values for the severity, indicating 

increasing trends. Negative Z value of climate division V indicate decreasing trends. The 

climate divisions IV and VI showed significant positive trends whereas the negative trends 

are no longer significant for reference period. Positive Z values were observed for the climate 

divisions II, II, IV and V for RCP4.5. Similarly, positive Z values indicate increasing trend 

in II, III, IV, V and VI for RCP8.5. Decreasing trends in drought severities were also observed 

in climate divisions I and III for RCP4.5 and climate division I for RCP8.5.  

His RCP4.5RCP8.5 His RCP4.5RCP8.5 His RCP4.5RCP8.5 His RCP4.5RCP8.5 His RCP4.5RCP8.5 His RCP4.5RCP8.5

Ʈ 0.282 0.368 -0.15 0.218 0.403 -0.08 -0.047 -0.053 0.51 -0.083 0.31 0.584 -0.029 -0.042 0.29 0.12 0.13 0.24

Z 2.13 2.77 -1.75 1.98 2.84 -0.93 -0.56 -0.6 2.3 -0.99 2.29 3.043 -0.35 -0.48 2.25 1.45 1.56 1.98

Sen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Climate division I Climate division VIClimate division II Climate division III Climate division  IV Climate division V

  

Table 4.3 Mann-Kendall test statistics of drought peak for historical and future 

periods 

His RCP4.5 RCP8.5 His RCP4.5 RCP8.5 His RCP4.5 RCP8.5 His RCP4.5 RCP8.5 His RCP4.5 RCP8.5 His RCP4.5 RCP8.5

0.09 0.03 -0.10 -0.02 0.17 0.05 0.11 0.09 0.27 0.25 0.13 0.16 -0.03 -0.07 0.07 0.08 0.17 0.21

Z 1.00 0.30 -1.08 -0.15 1.98 1.51 1.25 2.21 2.97 2.73 1.44 2.72 -0.30 -0.71 2.76 0.82 2.10 2.92

Sen 0.05 0.01 -0.02 0.00 0.05 0.04 0.05 0.04 0.16 0.09 0.06 0.12 -0.01 -0.03 0.02 0.03 0.15 0.14

Climate division VIClimate division I Climate division II Climate division III Climate division  IV Climate division V

 

     

Table 4.2 Mann-Kendall test statistics of drought duration for historical and future 

periods 
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 Table 4.4 Mann-Kendall Test statistics of drought severity for historical and future 

periods 

His RCP4.5 RCP8.5 His RCP4.5 RCP8.5 His RCP4.5 RCP8.5 His RCP4.5 RCP8.5 His RCP4.5 RCP8.5 His RCP4.5 RCP8.5

Ʈ 0.11 -0.05 -0.15 0.02 0.23 0.11 0.07 -0.02 0.19 0.12 0.14 0.23 -0.02 -0.06 0.03 0.20 0.22 0.27

Z 1.19 -0.53 -1.56 0.20 2.50 1.18 0.76 -0.21 2.12 1.20 1.58 2.47 -0.18 -0.63 0.27 2.19 2.11 2.88

Sen 0.11 -0.05 -0.09 0.02 0.02 0.06 0.06 -0.03 0.20 0.08 0.11 0.22 -0.01 -0.09 0.02 0.19 0.17 0.29

Climate division VIClimate division I Climate division II Climate division III Climate division  IV Climate division V

4.2.6 Trivariate copula models 
Exponential and Gamma distributions have been used in many drought 

characterization studies to obtain the marginal distributions of drought properties (She et 

al. 2018). Gumbel, Gamma, Log-normal, Weibull and Exponential distributions were 

fitted to drought characteristics for evaluating the marginal distributions. Different 

statistical measures like AIC and log-likelihood functions were used for obtaining the best 

fitted distribution. The variations in drought characteristics could significantly affect the 

future drought phenomenon.  Hence, trivariate copula analyses were implemented for 

reference and future periods by combining the dependency of drought characteristics to 

obtain copula parameter. The copula models namely Clayton, Gumbel and Frank were 

selected for modelling the trivariate drought characteristics. The copula parameters were 

estimated using MPL estimation method. CVM and KS were used for testing the goodness 

of fit for comparing the performance of different copula models based on their dependency 

between drought characteristics. The maximum p-values of statistics CVM and KS for 

5000 sample runs, copula parameters and corresponding log likelihood function values 

and the best fitted copulas for a 3-month duration for six climate divisions are given in 

Tables 4.5, 4.6 and 4.7 for reference and future time periods. From the Tables, the drought 

characterization can be conducted using Frank Clayton, and Gumbel copulas that are 

verified at 5% significance level. Copula with the highest p-value was selected to find the 

dependence structure among drought characteristics. Overall, Frank and Gumbel copulas 

performed well when compared to other copulas. The best fitted parameters were used 

further to compute the joint return period 
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4.2.7 Drought risks assessment 

The trivariate return levels for different return periods using the ‘AND’ and ‘OR’ 

criteria are presented in Tables 4.8 and 4.9 respectively. It can be seen from the Tables, 

that large uncertainties were present in future return periods for different climate divisions 

and the uncertainties will increase with the variation in return periods. This uncertainties 

of trivariate return period are because of the future variations in projected climatic 

parameters based on the increment in GHG and CO2 under the two RCP scenarios. 

Comparable differences in the return periods between reference and future were also 

observed. It can be seen from the Tables that the joint return period of ‘AND’ case is more 

than the ‘OR’ case. The return period was less in climate division II compared to other 

climate divisions for reference period. It can, hence, be concluded that the climate division 

II showed more frequent drought events. Similarly, the drought events were more frequent 

Table 4.5 Maximum likelihood, AIC values and p-values for using trivariate copula analysis 

based on drought characteristics for historical period. 

 Climate 

division I 

Climate 

division II 

Climate 

division III 

Climate 

division IV 

Climate 

division V 

Climate 

division VI 

Copula selected Frank Gumbel Gumbel Frank Frank Gumbel 

parameters 7.875 2.271 2.533 8.635 9.297 3.116 

Maximum Likelihood 50.19 45.52 62.17 60.87 62.77 72.69 

AIC -98.3735 -89.05 -122.335 -119.745 -123.543 -143.379 

KS 0.778 0.79 0.685 0.913 0.672 0.83 

CVM 0.644 0.587 0.817 0.667 0.541 0.701 

 

Table 4.6 Maximum likelihood, AIC values and p-values for the GoF tests using trivariate copula 

analysis based on drought characteristics future period under RCP4.5  
Climate 

division I 

Climate 

division II 

Climate 

division III 

Climate 

division IV 

Climate 

division V 

Climate 

division VI 

Copula selected Clayton Frank Clayton Frank Frank Gumbel 

parameter 2.17 7.234 2.355 7.456 7.521 2.285 

Max likelihood 79.09 93.24 74.3 86.52 85.21 76.54 

AIC -156.18 -184.49 -146.59 -171.04 -168.43 -151.08 

KS 0.556 0.754 0.882 0.626 0.951 0.844 

CVM 0.47 0.689 0.625 0.511 0.733 0.787 

 

Table 4.7 Maximum likelihood, AIC values and p-values for the GoF using trivariate copula analysis 

based on drought characteristics future period under RCP8.5  
Climate 

division I 

Climate 

division II 

Climate 

division III 

Climate 

division IV 

Climate 

division V 

Climate 

division VI 

Copula selected Frank Frank Gumbel Frank Frank Frank 

parameters 8.144 6.836 2.519 8.703 8.253 9.882 

Max likelihood 101.4 84.67 104.5 113.5 87.03 93.04 

AIC -200.747 -167.341 -206.988 -224.979 -172.053 -184.083 

KS 0.549 0.812 0.766 0.833 0.597 0.662 

CVM 0.55 0.645 0.589 0.818 0.552 0.715 
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in climate divisions I, III, IV and V under RCP8.5 whereas climate division VI showed 

more frequent drought under RCP4.5 scenario for the period 2053-2099. The climate 

division VI will be more vulnerable with the increase in number of dry days and changing 

future climate condition. Overall, the return period analysis revealed that for a certain 

drought event, future drought return periods are expected to be lower than the reference 

period specifying the probable increase in drought occurrences than those detected in the 

past periods. Under the two RCP scenarios, the frequency of dry periods will increase 

during 2053-2099. This indicates that more severe and long-lasting droughts can be 

anticipated in the future in the GRB. Overall, the frequency, duration, severity, and peak 

of droughts will increase in the future. The trivariate copula analysis can be beneficial for 

a better management and planning of the water resources considering the extreme events.  

Table 4.8 TAND   for drought characteristics of SPEI computed based on trivariate copula 

models 
Reference 

Climate 

division I 

TAND 

Climate 

division II 

TAND 

Climate 

division III 

TAND 

Climate 

division IV 

TAND 

Climate 

division V 

TAND 

Climate 

division VI 

TAND 

Return 

Period 

(T) 

5 18.01 10.7 15.66 12.91 10.88 8.15 

10 41.33 17.63 37.14 23.54 27.41 14.21 

20 86.63 36.97 61.28 53.14 81.12 51.11 

50 454.32 184.13 334.72 310.57 213.54 198.53 

RCP4.5 
Climate 

division I 

TAND 

Climate 

division II 

TAND 

Climate 

division III 

TAND 

Climate 

division IV 

TAND 

Climate 

division V 

TAND 

Climate 

division VI 

TAND 

Return 

Period 

(T) 

5 9.98 11.35 10.8 9.78 6.61 5.6 

10 17.15 20.48 18.07 14.65 15.35 12.31 

20 45.46 37.31 32.33 29.38 28.91 21.84 

50 86.52 191.28 164.05 89.05 84.66 84.13 

RCP8.5 
Climate 

division I 

TAND 

Climate 

division II 

TAND 

Climate 

division III 

TAND 

Climate 

division IV 

TAND 

Climate 

division V 

TAND 

Climate 

division VI 

TAND 

Return 

Period 

(T) 

5 8.15 14.14 8.96 8.67 6.2 7.11 

10 15.19 31.03 13.46 12.51 14.26 17.82 

20 37.68 78.85 31.34 26.35 24.15 39.11 

50 79.69 302.37 125.57 72.13 77.31 96.42 
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4.2.8 Conclusion 

In this study, 3-month SPEI was derived by using the precipitation and the 

evapotranspiration data for the reference and future periods in the GRB. The bias adjusted 

RCMs individually showed large uncertainties in climate parameters. Hence, the REA 

method was implemented to reduce the uncertainties caused by individual RCMs. A 

comprehensive assessment of drought frequency was carried out using trivariate regional 

frequency analysis considering the inherent dependence between the drought 

characteristics. The main conclusions for objectives are as follows: 

 The temporal distribution of projected drought characteristics showed an increase in 

drought duration peak, and severity in future periods under the two RCPs in different 

climate divisions. The mean duration, severity, and peak for climate division V and VI 

showed increasing pattern having a longer duration, higher severity and peak than the other 

climate divisions. 

 Statistical homogeneity of the six climate divisions was tested by validation indices. 

SI and DI which identified most of the regions as homogenous.  

Based on the drought characteristics, the non-parametric MK test was applied to 

assess the variability and pattern of drought characteristics. Most of the climate divisions 

 

Table 4.9 TOR return periods for drought characteristics of SPEI computed based on 

trivariate copula models 
  Reference Climate 

division I 

TOR 

Climate 

division II  

TOR 

Climate 

division III  

TOR 

Climate 

division IV  

TOR 

Climate 

division V  

TOR 

Climate 

division VI  

TOR 

Return Period 

(T) 

5 3.99 3.04 4.79 4.03 4.79 3.14 

10 7.54 5.96 8.51 651 6.51 5.08 

20 15.87 12.08 16.89 20.33 13.89 15.99 

50 35.41 24.33 41.22 45.4 35.22 38.77 

RCP4.5 
Climate 

division I 

TOR 

Climate 

division II  

TOR 

Climate 

division III  

TOR 

Climate 

division IV  

TOR 

Climate 

division V  

TOR 

Climate 

division VI  

TOR 

Return Period 

(T) 

5 3.02 3.2 3.51 5.88 4.27 2.39 

10 6.56 6.77 6.86 9.47 9.33 5.04 

20 11.38 13.54 15.09 18.12 18.25 10.52 

50 25.6 29.91 33.83 39..66 34.12 23.78 

RCP8.5 Climate 

division I 

TOR 

Climate 

division II  

TOR 

Climate 

division III  

TOR 

Climate 

division IV  

TOR 

Climate 

division V  

TOR 

Climate 

division VI  

TOR 

Return Period 

(T) 

5 2.91 4.01 3.12 3.25 2.84 3.13 

10 6.16 7.87 5.1 8.49 6.14 5.82 

20 13.08 15.04 14.15 16.07 12.65 12.04 

50 28.17 31.44 26.83 43.91 29.16 25.47 
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showed significant changes in trend of drought characteristics for future time period for 

two RCPs. The increase in drought events can be directly linked to increasing trend in 

the area. 

 The trivariate copula analysis showed that Gumbel and Frank copula performed well 

for most of the climate divisions using CVM and KS tests. After analyzing the trivariate 

return period for TAND
 and TOR cases, climate division V showed longer and severe 

drought events in comparison with other divisions. Further, frequent drought events were 

observed in case of climate divisions II, V and VI.  

The return periods in future for different scenarios showed lower values of return 

periods than what are observed in the past for climate division VI in case of RCP 4.5, 

indicating more frequent drought events in the future periods. The risk of future droughts 

will become intensified with the changes of precipitation and evapotranspiration that are 

considered using SPEI-based drought index. It can be suggested that appropriate water 

resource planning and management activities should be implemented for climate divisions 

II, V and VI by considering the long-lasting behaviour and high severity characteristics of 

the drought events 

On regional scale, the derived conclusions will be helpful for a precise and systematic 

understanding for managing the drought phenomenon. The identification the drought-

prone areas will be useful for water managers for the planning and management of drought 

mitigation strategies. For a better management of drought, return period analysis is carried 

out for reference and future periods. 

4.3 Assessment of Non-stationary Reconnaissance Drought 

Index (NRDI) and Non-stationary Standardized 

Precipitation Index (NSPI)  

Daily precipitation datasets of resolution 0.25x0.25 were obtained for the period from 

1950 to 2017 from the IMD website to develop non-stationary drought indices. Then 

precipitation data were converted to monthly scale for the GRB over 68 years (1950-

2017). The NRDI requires both precipitation and evapotranspiration data to estimate the 

meteorological drought. Hence, the monthly 0.5x0.5 resolution evapotranspiration data 

were downloaded from the CRU 4.03TS data sites for the same period. The data were then 

extracted and regridded to the IMD grids. 3-, 6- and 12-month moving average were 

computed for cumulative precipitation and evapotranspiration. Further, aggregated global 

scale monthly climate indices were calculated aggregated based on 3-, 6- and 12- month 
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moving average. Then the lag value from 0 to 12 are computed for each of the four large 

scale climate indices. The non-stationary drought indices were developed and then 

compared to the stationary drought indices. The trivariate drought characterization were 

conducted based on copula analysis. Further, PCC model was also used for assessment of 

trivariate drought characteristics. 

4.3.1 Non-stationary SPI and RDI indices 

For demonstration of results, two sub-basins were selected i.e. Upper Godavari River 

Basin (UGRB) and Lower Godavari River Basin (LGRB). The basis for this study to 

incorporate large-scale climate indices that affect global climatology by variations of the 

phenomenon over the Pacific and Indian oceans (Rashid and Beecham, 2019). The large-

scale climate indices are considered as external covariates for evaluating the NSPI and 

NRDI. For the LGRB and URGB, the monthly aggregation of precipitation and 

evapotranspiration data were prepared. In addition, the moving average of climate indices 

were obtained and then organized into 13 different lag values from 0 to 12. MLE method 

is used for the evaluation of parameters of Gamma and Log-normal distributions. 

Comparison between the stationary and non-stationary models was carried out by 

estimating the two stationary based indices namely SSPI and SRDI by keeping the 

parameters invariant with time.  

Kendall correlation analysis was carried out at a significance level of 0.05 for the 

assessment of significant large-scale climate indices based on different lags for different 

time scales. Table 4.10 displays the dominant covariates for parameters of fitted 

distributions. It was observed that the 3-month cumulative precipitation and initial 

values(δ0) showed a significant correlation with SOI and IOD for the UGRB and SOI for 

the LGRB for different lags respectively. Similarly, SOI was identified as the most 

influential covariate for 6-month aggregated precipitation and δ0 series for the UGRB 

whereas SOI and SST showed a quantitative influence in the LGRB for different lag 

values. The MEI, SOI and SST are significantly associated with 12-month cumulative 

precipitation and δ0 for both the sub-basins.  

The stationary and non-stationary model performances were compared by minimizing 

the AIC. Table 4.11 represents the AIC values for non-stationary and stationary models. 

The AIC values obtained from non-stationary models were consistently lesser than those 

obtained from the stationary models. Hence, it can be concluded that the non-stationary 

models achieved better performance than the stationary models.  
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4.3.2 Spatio-temporal analysis of historical droughts 

 In the present study, comparison of stationary and nonstationary drought indices at 3-

month scale is carried out for GRB. Stationary and nonstationary drought indices were 

plotted for the months of January to May to observe the temporal drought propagation 

from January to May. The non-stationary indices showed the actual drought situation since 

the large-scale climate indices were considered to construct these indices. From Fig. 4.13, 

it can be observed that the NSPI and SSPI showed slightly different drought propagation. 

For March, April and May, the western part of the basin showed higher tendency of 

drought events. Further, NRDI was computed considering the evapotranspiration and 

large-scale climate indices and then, NRDI and RDI were compared. The temporal 

propagation of the drought from January to May showed that the drought was propagating 

from eastern part to western part of the basin based on both NSPI and NRDI. The western 

part the basin is rain shadow region and is considered to be drought-prone. NRDI and RDI 

showed intense drought spots when compared to NRDI (Fig. 4.14). Although there were 

evidences of drought conditions in the basin, severe drought conditions were identified by 

NRDI compared to other drought indices. Moreover, the area under drought was larger 

Table 4.10 Significant lag for different large-scale climate oscillations 

NRDI SOI MEI IOD SST NSPI SOI MEI IOD SST 

UGRB     UGRB     
3-month 2  0  3-month 2  5  
6-month 2    6-month 2    
12-month 0 0  0 12-month 0 0  0 

LGRB     LGRB     
3-month 4    3-month 4    
6-month 3   2 6-month 3 2   
12-month 3 4  3 12-month 3 3  5 

 

Table 4.11 Comparison between stationary and non-stationary models using AIC values 
Models NRDI SRDI NSPI SSPI 

 UGRB  UGRB  
3-month 5272 5272 7119.57 7119.145 

6-month 5615 5617 7591.586 7592.802 

12-month 3759 3828 6175.181 6231.682 

 LGRB    LGRB  
3-month 6923 6928 8935.202 8937.593 

6-month 7268 7278 9266.781 9266.588 

12-month 5061 5115 7343.492 7380.212 
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under NRDI compared to other indices. When PET is included, the NRDI captured more 

drought-affected areas compared to NSPI during the months of January to May.  

 Fig 4.15 showed the comparison between the severities of stationary and non-

stationary indices. More severe most droughts occurred in the western part of the basin. 

The NRDI identified severe-most drought events compared to other indices as NRDI 

considered PET. 

 

Fig 4.13 Temporal drought propagation of NSPI and SSPI - for 3-month time scale 

 

Fig 4.14. Temporal drought propagation of NRDI and SRDI – for 3-month time scale 
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Fig 4.15 Non-stationary and stationary drought severities 

4.3.4 Comparison of time series of historical drought  

The outputs in the form of rationales were the drought indices that were transformed 

from the cumulative probability of rainfall and initial values (δ0). Many differences of 

signals between the stationary and non-stationary time series were observed which were 

due to the inclusion of the external covariates. Large dissimilarities of signals were 

observed between NSPI and SSPI for 3-, 6- and 12-month aggregation levels for both the 

sub-basins as seen in Fig. 4.16 and Fig. 4.17. In these figures, the green line indicates the 

stationary drought while the red line indicates the non-stationary drought. These 

dissimilarities were apparent in case of SPI and RDI and were fairly different from the 

NSPI and NRDI. For comparing stationary and non-stationary models, box plots for 3-, 

6-and 12-month time windows were prepared and shown in Fig. 4.18 and Fig. 4.19 for 

UGRB and LGRB to identify the variations of the drought characteristics. In these figures, 

P1, D1 and S1 refer to non-stationary drought characteristics while P2, D2 and S2 refer to 

stationary characteristics. After comparing 3-month NSPI and SSPI, significant 

differences were identified in the drought characteristics in the LGRB (Fig. 4.18(b)) 

compared to the UGRB (Fig 4.18(a)). Larger differences were evident in the drought 

severity and peak between NSPI and SSPI for the LGRB for 3-month time scale. In the 

case of duration, the UGRB showed significant variations between NSPI and SSPI for 3-

month time scale whereas the LGRB showed less variations. Fig. 4.19 shows the 
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comparison between NRDI and SRDI for the spatial and temporal variability of drought 

characteristics for the 3-month time scale. The estimated severities of SRDI series were 

lower than the severity from NRDI series in the case of UGRB whereas the estimated 

peaks of SRDI series were higher than those estimated from the NRDI series ((Fig. 

4.19(a)). In case of 3-month time series, for the LGRB, peak and severity estimated from 

SRDI were higher than that of the NRDI (Fig 4.19(b)). The comparison between NRDI 

and SRDI showed some variations in drought duration. From Fig. 4.18(c), it can be 

observed that the UGRB displayed significant changes in peak, duration and severity of 

the 6-month NSPI and SSPI series.  For LGRB, there were significant variations of peak 

and severity whereas lesser variations of NSPI and SSPI were identified for the drought 

duration as can be seen from Fig. 4.18 (d). No significant variations of the drought 

characteristics were observed for NRDI and SRDI for both the sub-basins for the 6-month 

time scale as seen from Fig. 4.19(c) and Fig. 4.19(d). Comparison of the non-stationary 

and stationary approaches for the 12-month time scale for the drought events in both sub-

basins showed significant deviations in drought characteristics (Fig 4.19 (e) and Fig. 4.19 

(f)). It can, hence, be concluded that substantial variations of drought characteristics were 

evident in the case of 12-month time window compared to 3- and 6-month time window. 

 The differences observed in the drought characteristics between the stationary and 

non-stationary models have significant role in the implementation of sustainable water 

resources systems planning and management. In this study, non-stationary models have 

been considered for further analysis using trivariate and pairwise copula. 

4.3.5 Trivariate copula models 

 The Archimedean copulas (Gumbel, Frank and Clayton) and elliptical copulas 

(Gaussian and Student’s t) were used in this study to evaluate the dependence structure of 

drought characteristics. Different types of distributions namely Gumbel, Gamma, Log-

normal, Weibull and Exponential distributions were fitted to the drought characteristics. 

The best fitted distributions for various time scales were obtained based on AIC criteria 

and the log-likelihood values to find the marginal distributions (Table 4.14 to Table 4.19).  

The best fitted trivariate copula model among the copulas was decided by analysing 

the GoF measures - KS, CVM, Chsq considering 2000 sample runs including AIC, log-

likelihood values and their estimated parameters are presented in Table 4.12 and Table 

4.13. The results from Tables show that the Student’s t copula performed better than the 

other trivariate copula models. The parameter estimation of trivariate copula analysis was 

(a) (b) 
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conducted using the MLE method. Parameters of Student’s t copula show a single degree 

of freedom which is the driving force for the dependency of all other pair of variables. 

Because of this limitation, a unique method of copula construction named as vine copula 

was introduced. The conventional vine model was compared with the multivariate 

Student’s t copula. The pairwise copula construction method was used in this study to find 

the copula parameters which further can be used to evaluate the frequency of non-

stationary drought indices (NSPI and NRDI).  

  
Fig. 4.16. NSPI and SSPI drought signals during 1951-2017 for 3-, 6- and 12-month time 

scales: (a) 3-month time scale for UGRB; (b) 3-month time scale for LGRB; (c) 6-month 

time scale for UGRB; (d) 6-month time scale for LGRB; (e) 12-month time scale for 

UGRB;  (f) 12-month time scale for LGRB 

 

 

(a) 

(b) 

 

(c) 

(d) 

(e) 

(f) 
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Fig. 4.17. NRDI and SRDI drought signals during 1951-2017 for 3-, 6- and 12-month time 

scales: (a) 3-month time scale for UGRB; (b) 3-month time scale for LGRB; (c) 6-month 

time scale for UGRB; (d)6-month time scale for LGRB; (e) 12-month time scale for 

UGRB; (f)12-month time scale for LGRB 
    

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Fig.4.18 Comparison by box plots for drought variables peak (P), duration (D) and severity (S) for NSPI and 

SSPI for different time scales: (a) 3-month time scale for UGRB (b) 3-month time scale for LGRB; (c) 6-

month time scale for UGRB (d) 6-month time scale for LGRB; (e) 12-month time scale for UGRB (f) 12-

month time scale for LGRB. 

 

 

 

(a) (b) 

(c) (d) 

(e)  (f)  
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Fig. 4.19. Comparison by box plots for drought variables peak (P), duration (D) and severity (S) for NRDI 

and SRDI for different time scales (a) 3-month time scale for UGRB (b) 3-month time scale for LGRB; (c) 6-

month time scale for UGRB (d) 6-month time scale for LGRB; (e) 12-month time scale for UGRB (f) 12-

month time scale for LGRB 
 

(c) (d) 

(e)  (f)  
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Table 4.14. Fitted probability distribution functions, AIC and Log-likelihood for 

duration of NSPI series for different time scales and periods for UGRB and LGRB 

      UGRB 3-month 6-month 12-month 

Distribution AIC 
Log-

likelihood 
AIC 

Log-

likelihood 
AIC 

Log 

likelihood 

Gumbel 190 -93.39 236.68 -116.34 335.86 -165.93 

Gamma 188.41 -92.205 233.87 -114.93 318.24 -157.12 

Lognormal 192.62 -94.31 239.89 -117.94 302.9 -149.49 

Weibull 186.72 -91.36 229.31 -112.65 321.4 -158.7 

Exponential 251.51 -124.75 281.32 -139.66 320.45 -159.22 

LGRB 3-month 6-month 12-month 

Distribution AIC 
Log 

likelihood 
AIC 

Log 

likelihood 
AIC 

Log 

likelihood 

Gumbel 165.45 -80.72 231.5 -113.75 346.53 -171.26 

Gamma 155.52 -75.76 229.03 -112.51 334.18 -165.09 

Lognormal 163.8 -79.9 236.09 -116.04 328.35 -162.17 

Weibull 146.82 -71.41 223.5 -109.75 337.2 -166.6 

Exponential 276.14 -137.07 280.68 -139.34 341.62 -169.81 

 

Table 4.15. Fitted probability distribution functions, AIC and Log-likelihood for peak of 

NSPI series under different time scales and periods for UGRB and LGRB 

 

      UGRB 3-month 6-month 12-month 

Distribution AIC 
Log 

likelihood 
AIC 

Log 

likelihood 
AIC 

Log 

likelihood 

Gumbel 133.43 -64.71 43.52 -19.76 91.78 -43.89 

Gamma 131.34 -63.67 29.72 -12.86 94.35 -45.17 

Lognormal 132.74 -64.373 33.96 -14.98 91.03 -43.51 

Weibull 131.23 -63.61 38.02 -17.01 102.75 -49.37 

Exponential 217.61 -107.8 187.1 -92.55 177.5 -87.75 

LGRB 3-month 6-month 12-month 

Distribution AIC 
Log 

likelihood 
AIC 

Log 

likelihood 
AIC 

Log 

likelihood 

Gumbel 85.816 -40.9 78.65 -37.32 83.73 -39.86 

Gamma 90.623 -43.31 76.22 -36.11 83 -39.5 

Lognormal 87.62 -41.81 77.25 -36.62 82.9 -39.45 

Weibull 103.18 -49.59 78.58 -37.29 86.81 -41.4 

Exponential 205.82 -101.91 187.22 -92.61 183.53 -90.769 
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Table 4.16. Fitted probability distribution functions, AIC and Log-likelihood for severity 

of NSPI series under different time scales and periods for UGRB and LGRB 

Upper sub 

basin 3-month 6-month 12-month 

Distribution AIC 

Log 

likelihood AIC 

Log 

likelihood AIC 

Log 

likelihood 

Gumbel 273.74 -134.87 294.89 -145.44 394.94 -195.47 

Gamma 272.69 -134.34 293.06 -144.53 364.01 -180 

Lognormal 278.61 -137.3 300.88 -148.441 347.51 -171.75 

Weibull 272.05 -134.02 289.29 -142.64 363.43 -179.71 

Exponential -155.24 312.49 327.99 -162.99 362.05 -180.02 

Lower sub 

basin 3-month 6-month 12-month 

Distribution AIC 

Log 

likelihood AIC 

Log 

likelihood AIC 

Log 

likelihood 

Gumbel 241.33 -118.66 287.233 -141.61 393.384 -194.69 

Gamma 239 -117.5 285.64 -140.82 375.87 -185.93 

Lognormal 247.83 -121.91 291.72 -143.86 371.56 -183.78 

Weibull 235.19 -115.59 284.31 -140.15 377.42 -186.71 

Exponential 324.94 -161.47 -158.56 319.13 377.85 -187.92 

 

Table 4.17. Fitted probability distribution functions, AIC and Log-likelihood for 

duration of NRDI series under different time scales and periods for UGRB and LGRB 

 

 

 

 

 

Upper  

sub-basin 
3-month 6-month 12-month 

Distribution AIC 
Log 

likelihood 
AIC 

Log 

likelihood 
AIC 

Log 

likelihood 

Gumbel 221.22 -108.61 159.3 -77.65 203.23 -99.61 

Gamma 218.25 -107.12 157.32 -76.66 175.59 -85.79 

Lognormal 222.19 -109.09 159.86 -77.93 155.79 -75.89 

Weibull 216.22 -106.11 158.33 -77.16 173.39 -84.69 

Exponential 258.16 -128.08 223.4 -110.7 173.94 -85.97 

Lower 

sub-basin 
3-month 6-month 12-month 

Distribution AIC 
Log 

likelihood 
AIC 

Log 

likelihood 
AIC 

Log 

likelihood 

Gumbel 214.03 -105.01 138.47 -67.23 -110.57 225.14 

Gamma 210.27 -103.13 134.62 -65.31 -100.87 205.74 

Lognormal 210.79 -103.39 136.69 -66.34 -97.58 199.16 

Weibull 211.4 -103.7 138.42 -67.21 -100.86 205.72 

Exponential 244.32 -121.16 250.34 -124.17 -100.88 203.76 
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Table 4.18. Fitted probability distribution functions, AIC and Log-likelihood for peak of 

NRDI series under different time scales and periods for UGRB and LGRB 

Upper  

sub-basin 3-month 6-month 12-month 

Distribution AIC 

Log 

likelihood AIC 

Log 

likelihood AIC 

Log 

likelihood 

Gumbel 90.76 -43.38 172.49 -84.24 41.83 -18.91 

Gamma 76.42 -36.21 170.39 -83.19 48.96 -22.48 

Lognormal 85.63 -40.81 169.9 -82.953 43.25 -19.62 

Weibull 42.23 -19.116 172.24 -84.12 61.01 -28.5 

Exponential 199.13 -98.56 222.75 -110.37 96.24 -47.12 

Lower 

 sub-basin 3-month 6-month 12-month 

Distribution AIC 

Log 

likelihood AIC 

Log 

likelihood AIC 

Log 

likelihood 

Gumbel 128.87 -62.43 133.47 -64.73 48.51 -22.25 

Gamma 126.96 -61.48 138.08 -67.04 49.48 -22.74 

Lognormal 127.46 -61.73 132.83 -64.41 48.28 -22.14 

Weibull 127.424 -61.712 149.66 -72.83 53.37 -24.68 

Exponential 194.32 -96.16 208.92 -103.46 100.63 -49.31 

 

Table 4.19. Fitted probability distribution functions, AIC and Log-likelihood for severity 

of NRDI series under different time scales and periods for UGRB and LGRB 

Upper 

 sub-basin 3-month 6-month 12-month 

Distribution AIC 

Log 

likelihood AIC 

Log 

likelihood AIC 

Log 

likelihood 

Gumbel 292.67 -144.33 271.4 -133.7 247.01 -121.5 

Gamma 290.31 -143.15 268.58 -132.29 202.69 -99.34 

Lognormal 297.06 -146.53 269.22 -132.61 177.55 -86.77 

Weibull 287.88 -141.94 271.47 -133.73 196.23 -96.11 

Exponential 317.36 -157.68 296.99 -147.49 206.67 -102.33 

Lower 

 sub-basin 3-month 6-month 12-month 

Distribution AIC 

Log 

likelihood AIC 

Log 

likelihood AIC 

Log 

likelihood 

Gumbel 298.1 -147.05 248.33 -122.16 254.08 -125.04 

Gamma 288.77 -142.38 248.31 -122.15 226.92 -111.46 

Lognormal 285.84 -140.92 249.69 -122.84 218.84 -107.42 

Weibull 291.06 -143.53 251.55 -123.77 225.98 -110.99 

Exponential 301.67 -149.83 307.73 -152.86 225.78 -111.89 

 

    4.3.6 Drought characteristics modelling using pair-copula models 

 Suitable vine structure between C-vine and D-vine models and the copula families 

must be selected for the dependent pair variables viz., peak (P) - duration (D), duration 

(D) - severity (S) and severity (S) - peak (P). The dependency measures between pair 

variables of drought events are given in Table 4.20, which explains stronger dependence 

between D and S. The next stronger dependency was observed between S and P. It can, 
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hence, be concluded that S must be present between D and P for the D-vine structure.  D-

vine structure was selected for further analysis since it had more flexibility towards 

forming the pair copula rather than the C-vine structure because it creates a relationship 

of variables with a particular root variable that defines the key elements of the structure 

(Aas et al. 2009). Kendall’s plots and Chi-plots of the pair variables P - D, D - S and S - 

P are given in Fig. 4.20 to Fig. 4.31, which show positive dependencies between the pair 

variables. The dependency measures and the Kendall’s and Chi-plots of the pair variables 

indicate that D and S showed the strongest dependency than other pairs. The copula 

families for the pair variables were selected from various copulas based on Clarke and 

Vuong tests (Table 4.20). 

In the first phase of parameter estimation, the sequential parameters were estimated 

using the MLE method for pairs of drought variables D/S (θDS) and S/P (θSP). Then for 

the second phase of parameter estimation, the respective h functions (conditional 

distribution function) were computed between the pair variables D/S and S/P. The 

parameter,  θDP/S was then estimated for drought variables (D/S, S/P). The copula families 

selected for the pair variables and the parameters estimated in the second phase (θDP/S) 

considering the best fitted copula for the LGRB and UGRB for different time scales are 

given in Table 4.21. 

Table 4.20. Dependence measurements among drought characteristics P - D, D - S and S 

- P using Kendall’s 𝜏 and Spearman’s 𝜌  methods for NSPI and NRDI series under 

different time scales and periods for Upper and Lower Godavari River basins 

 

 

NSPI                   

UGRB 3-month 6-month 12-month 

 P-D D-S S-P P-D D-S S-P P-D D-S S-P 

Kendall 0.31 0.697 0.601 0.2679 0.861 0.374 0.562 0.859 0.701 

Spearman 0.403 0.83 0.782 0.353 0.954 0.5179 0.726 0.956 0.87 

LGRB                 

 P-D D-S S-P P-D D-S S-P P-D D-S S-P 

Kendall 0.21 0.619 0.59 0.317 0.815 0.5 0.415 0.874 0.532 

Spearman 0.265 0.737 0.76 0.412 0.923 0.664 0.569 0.96 0.737 

NRDI          
UGRB                   

 P-D D-S S-P P-D D-S S-P P-D D-S S-P 

Kendall 0.34 0.81 0.53 0.28 0.604 0.67 0.51 0.81 0.73 

Spearman 0.47 0.93 0.69 0.37 0.73 0.85 0.609 0.9 0.84 

LGRB                   

 P-D D-S S-P P-D D-S S-P P-D D-S S-P 

Kendall 0.38 0.77 0.61 0.31 0.65 0.644 0.43 0.78 0.7 

Spearman 0.5 0.89 0.79 0.4 0.79 0.83 0.52 0.84 0.81 
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Table 4.21. Pairwise Copula Construction (PCC) for NSPI and NRDI drought 

characteristics 

 In the second phase of parameter estimation, the appropriate copula was selected 

from the first phase of copula families fitted for estimation of the sequential parameter. 

For example, in the case of the generated drought characteristics from 3- month NRDI, 

Gaussian copula was selected for estimation of the second phase of the parameter. Finally, 

the PCC model, accounting for the drought variables was compared with the derived 

trivariate copula using the AIC criteria. It can be observed from Table 4.22 that the AIC 

of the trivariate model showed higher AIC value compared to PCC based model. It can, 

hence, be justified that the PCC model can flexibly model the drought characteristics by 

transforming the bivariate model to a higher dimensional model.  

Table 4.22. Comparison between Student’s t copula and PCC model 

 

 

 

 

 

 

NSPI  

UGRB Clarke Vuong AIC Selected Bivariate Copula 

Parameter 

(𝜃𝐷𝑃/𝑆) 

3-month 0.62 0.914 -180.48 Clayton Gaussian Clayton 0.469 

6-month 0.457 0.506 -197.83 Clayton Frank Gaussian 0.429 

12-month 0.0248 0.984 -286.033 Frank Gumbel Frank 6.16 

NSPI 

LGRB Clarke Vuong AIC Selected Bivariate Copula 

  Parameter 

(𝜃𝐷𝑃/𝑆) 

3-month 0.0026 0.0619 -169.575 Clayton Clayton Gumbel 0.244 

6-month 0.62 0.692 -205.71 Clayton Gaussian Frank 0.46 

12-month 0.024 0.0607 -273.98 Gaussian Gumbel Gaussian 0.623 

NRDI 

 UGRB Clarke Vuong AIC             Selected Bivariate Copula 

Parameter 

(𝜃𝐷𝑃/𝑆) 

3-month 0.703 0.6874 -199.82 Clayton Frank Gaussian 0.4855 

6-month 0.526 0.358 -168.57 Gaussian Gaussian Clayton 0.291 

12-month 0.511 0.556 -140.8 Gumbel Gumbel Gumbel 1.79 

NRDI  

LGRB Clarke Vuong AIC Selected Bivariate Copula 

Parameter 

(𝜃𝐷𝑃/𝑆)  

3-month 0.055 0.009 -224.66 Gaussian Frank Clayton 0.362 

6-month 1 0.459 -171.19 Clayton Clayton Gaussian 0.338 

12-month 1 0.418 -147.97 Gumbel Gumbel Gumbel 1.694 

UGRB Student’s t copula PCC 

3-month -168.3 -180.5 

6-month -184.2 -197.8 

12-month -269.6 -286 

LGRB Student’s t copula PCC 

3-month -167 -169.6 

6-month -205.2 -205.7 

12-month -267.1 -273.98 

UGRB Student’s t copula PCC 

3-month -187.05 -199.8 

6-month -154.646 -168.57 

12-month -133.197 -140.8 

LGRB Student’s t copula PCC 

3-month -184.635 -224.66 

6-month -165.9 -171.19 

12-month -129.371 -147.97 
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4.3.7 Return period analysis of drought variables 

 The frequency analysis of droughts can be related to the occurrence of extreme events 

and their probability distributions. Here, the values of peak (P), duration (D) and severity 

(S) that exceed their truncation level (S ≥ s, D ≥ d, P ≥ p)  were considered for analysing 

the multivariate drought frequency. The joint return period analysis was carried out by 

using the two probability cases i.e. (i) ‘‘AND” and (ii) ‘‘OR” return periods for the 

drought variable using the approach suggested by Salvadori and Michele (2004).  

  Table 4.23 to Table 4.26 show the joint return periods (‘‘AND” and ‘‘OR” 

cases) obtained from the trivariate copula and PCC models using the drought 

characteristics for NSPI and NRDI for 3-, 6- and 12- month time scale. Here  T(SDP)
AND TC 

and T(SDP)
AND  PCC  represent the joint return periods for trivariate Student’s t copula and PCC 

model respectively. Similarly, the joint return period of “OR” case can be denoted as 

TSDP
OR TC and T(SDP)

OR PCC for trivariate Student’s t copula and PCC models respectively. The 

‘‘OR” joint return periods were less compared to ‘‘AND” return periods in both trivariate 

Student’s t copula and PCC models. It can, hence, be concluded that the frequency of 

drought was more in the ''OR” case when compared to the "AND" case. 

 

Table 4.23. Comparison of ‘AND ‘return periods for drought characteristics of NRDI 

computed based on trivariate student’s t copula (TST) and pair-copula model (TPC) for 

Upper and Lower sub-basin 
 

 

 

 

 

 

 

 

 

 

UGRB 3-month TST TPC 6-month  TST TPC 
 12-

month TST TPC 

  5 5.31 6.36 5 5.58 5.76 5 6.93 7.96 

  10 13.14 14.89 10 12.45 14.61 10 15.85 18.02 

  20 27.04 32.02 20 22.82 29.88 20 42.01 54.99 

  50 68.74 77.54 50 57.55 66.25 50 76.55 91.27 

LGRB 3-month TST TPC 6-month TST TPC 
 12-

month TST TPC 

  5 5.86 6.41 5 5.26 6.11 5 6.83 8.41 

  10 17.04 18.48 10 12.99 14.57 10 16.17 19.34 

  20 32.08 38.5 20 25.42 31.84 20 36.74 48.11 

  50 73.78 89.04 50 52.74 56.17 50 86.21 113.46 
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Table 4.24. Comparison of ‘OR’ return periods for drought characteristics of NRDI 

computed based on trivariate student’s t copula (TST) and pair-copula model (TPC) for 

Upper and Lower sub-basin 

 

Table 4.25. Comparison of ‘AND’ return periods for drought characteristics of NSPI 

computed based on trivariate student’s t copula (TST) and pair-copula model (TPC) for 

Upper and Lower sub- basin 

UGRB 

3-

month 
TST TPC 6-month TST TPC 

12-

month 
TST TPC 

 5 5.91 6.04 5 5.6 6.92 5 5.13 5.43 

 10 13.87 14.31 10 11.96 13.16 10 11.29 15.23 

 20 32.58 29.2 20 26.99 28.25 20 21.84 29.23 

 50 73.8 78.96 50 69.08 71.28 50 62.71 69.9 

LGRB 

3-

month 
TST TPC 6-month TST TPC 

12-

month 
TST TPC 

 5 5.52 5.91 5 6.47 7.62 5 6.65 6.79 

 10 10.18 10.99 10 15.4 14.54 10 13.39 17.81 

 20 23.81 25.24 20 35.28 38.41 20 22.4 37.43 

  50 54.75 57.48 50 74.19 81.577 50 61.45 87.15 

 

 

Table 4.26. Comparison of ‘OR’ return periods for drought characteristics of NSPI 

computed based on trivariate student’s t copula (TST) and pair-copula model (TPC) for 

Upper and Lower sub-basin 

UGRB 
3-

month  
TST TPC 6-month TST TPC 

12-

month 
TST TPC 

  5 3.54 4.84 5 3.32 4.12 5 4.041 4.76 

  10 8.81 9.77 10 7.89 9.02 10 6.47 9.87 

  20 17.91 19.53 20 16.45 17.41 20 15.65 17.05 

  50 44.42 48.33 50 38.88 40.18 50 36.05 45.21 

LGRB 
3-

month 
TST TPC 6-month TST TPC 

12-

month 
TST TPC 

  5 4.16 4.85 5 3.99 4.99 5 3.07 4.71 

  10 7.88 8.97 10 7.75 9.57 10 7.58 8.05 

  20 16.84 14.02 20 14.87 16.88 20 13.52 17.99 

  50 34.77 41.21 50 29.68 32.04 50 30.04 38.85 

 

UGRB 3-month TST TPC 
 6-

month 
TST TPC 

12-

month  
TST TPC 

  5 3.37 4.06 5 3.21 3.97 5 4.17 5.74 

  10 7.95 8.04 10 6.99 7.48 10 8.74 9.31 

  20 15.25 16.87 20 13.43 14.78 20 16.01 17.55 

  50 35.28 41.09 50 29.08 36.01 50 38.29 44.88 

LGRB 3-month TST TPC 
  6-

month 
TST TPC 

12-

month   
TST TPC 

  5 3.54 3.95 5 3.21 3.55 5 4.14 4.68 

  10 7.822 8.06 10 6.98 7.77 10 9.71 10.04 

  20 13.99 14.96 20 12.09 13.57 20 17.21 19.71 

  50 41.81 45.67 50 34.18 40.77 50 41.99 48..98 
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Fig. 4.20 Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of 

NSPI for UGRB for 3-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 

 

Fig. 4.21 Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of 

NSPI for LGRB for 3-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 
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Fig. 4.22. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of 

NSPI for UGRB for 6-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 

 

Fig. 4.23. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of NSPI 

for LGRB for 6-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 
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Fig. 4.24. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of NSPI 

for UGRB for 12-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 

 

Fig. 4.25. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of NSPI 

for LGRB for 12-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 

 



116 
 

 

Fig. 4.26. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of NRDI 

for UGRB for 3-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 

 

Fig. 4.27. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of 

NRDI for LGRB for 3-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 
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Fig. 4.28. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D of 

NRDI for UGRB for 6-month time scale: Plots in 1st column represent the Chi-plots of pairwise 

characteristics and 2nd column represent the Kendall plots of the pairwise drought characteristics 

 

Fig. 4.29. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D 

of NRDI for LGRB for 6-month time scale: Plots in 1st column represent the Chi-plots of 

pairwise characteristics and 2nd column represent the Kendall plots of the pairwise drought 

characteristics 
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Fig. 4.30. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D 

of NRDI for UGRB for 12-month time scale: Plots in 1st column represent the Chi-plots of 

pairwise characteristics and 2nd column represent the Kendall plots of the pairwise drought 

characteristics 

 

Fig. 4.31. Chi and Kendall plots of the pairwise drought characteristics D-S, S- P and P-D 

of NRDI for LGRB for 12-month time scale: Plots in 1st column represent the Chi-plots of 

pairwise characteristics and 2nd column represent the Kendall plots of the pairwise drought 

characteristics 

 

 



119 
 

4.3.8 Conclusions 

The concept of non-stationarity was employed by aggregating the precipitation and 

initial value series with the large-scale climate indices with lag time of 0-12 months. It 

can be concluded that the non-stationary meteorological droughts considering the large-

scale climate indices are capable of capturing the drought events in comparison with 

stationary drought indices. Both precipitation and evapotranspiration based non-stationary 

drought indices can be applied to identify more complex aspect of drought occurrence. 

The probabilistic estimation of drought characteristics must be carried out to estimate the 

recurrence intervals of droughts. The standard multivariate copulas were not flexible 

enough to model the higher dimensional copula for assessment of extreme events. The 

drawbacks of multivariate copulas can be removed using D-vine copula models. PCC 

model was also used to find the drought return periods. The conclusions derived for 

objective 2 are:  

i. The non-stationary models performed better compared to the stationary models as 

the AIC values were lower in case of non-stationary models. UGRB, showed a 

significant influence at various lags for 3-, 6- and 12- month time scales. SOI, MEI 

and SST were the most influential large-scale covariates at different time scales.  

ii. The non-stationary and stationary models showed variations in their time signals. 

The box plots between drought variables revealed that the drought properties 

significantly varied under stationary and non-stationary conditions in the both the 

basins for 12-month time scale.  

iii. The "AND" and "OR’ joint return periods for PCC models were higher compared 

to those obtained from the trivariate Student’s t copula model for both the non-

stationary models. The drought frequencies for PCC model were higher as 

compared to the trivariate copula model.  

iv. After analysing the trivariate and PCC models, the return periods showed 

variations between “AND” and “OR” return periods for drought in different time 

scales. The variations of return periods between trivariate Student’s t copula and 

PCC model are significant in case of 12-month time scale for both the non-

stationary drought events. To summarize, the ‘AND’ and ‘OR’ return periods 

predicted by PCC model are more reliable compared to trivariate Student’s t 

copula model as PCC model performed better than the trivariate Student’s t copula. 
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 4.4 Multivariate Bivariate and Trivariate Drought Assessment 

 The CRU precipitation and evapotranspiration data were downloaded from the site. 

GLDAS VIC soil moisture data was obtained from the site and then soil moisture data 

was gridded to CRU grids to maintain spatial uniformity. The multivariate drought indices 

such as MSDI and RTDI were constructed. MSDI integrates the precipitation and soil 

moisture while RTDI defines the integration of precipitation, soil moisture and 

evapotranspiration. The SPI and SSI were taken for cross comparison with MSDI. 

Similarly, a comparison of RDI and SSI with RTDI was carried out to identify the 

variations in multivariate drought conditions. Similar to SPI, the MSDI and RTDI can also 

have negative values, which imply the dry period. Positive values imply the wet period 

and the zero values of the drought refer to normal climate conditions. 

4.4.1 Computation of SPI, RDI and SSI  

SPI, RDI and SSI were computed by using the method discussed previously. The 

values of these indices lying between 0 and -0.99, -1.00 and -1.49, -1.50 and -1.8, and 

greater than 

-1.8, define mild, moderate, severe, and extreme droughts. The negative drought index 

values were considered for estimation of dry events and the positive drought values were 

considered for wet periods. Run theory analysis was carried out in this study to 

characterize the drought events such as drought peak, duration and severity. 

4.4.2 Bivariate dependency measurement  

Dependencies between precipitation and evapotranspiration, precipitation and soil 

moisture and evapotranspiration- soil moisture were obtained using rank based 

dependency measurement techniques like Kendall’s τ and Spearman’s ρ rank correlation 

coefficients. Table 4.27 shows that best correlation was observed between precipitation 

and soil moisture whereas negative correlation was exhibited between both precipitation- 

evapotranspiration and evapotranspiration - soil moisture. However, it may be argued that 

the dependence pairs (precipitation -evapotranspiration and evapotranspiration- soil 

moisture) are not significantly positive and does not indicate that it was independent 

because other than normality condition, the zero correlation was similar to the dependency 

of parameters (Genest et al. 2007). Moreover, from a hydrological point of view, 

precipitation, evapotranspiration and soil moisture were dependent upon each other. 
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MSDI and RTDI were then developed based on the parameters obtained for the best fitted 

copula.   

Table 4.27 Dependency measurements of precipitation-soil moisture, evapotranspiration-

precipitation and evapotranspiration and soil moisture 

 

4.4.3 Copula based joint probability bivariate and trivariate analysis 

The bivariate model was derived using the joint probability distribution of the 

precipitation and soil moisture. The information on precipitation and soil moisture were 

combined using Frank, Gumbel and Clayton copulas. Trivariate analysis was carried out 

using the joint probability distribution of precipitation, soil moisture and 

evapotranspiration using Meta elliptical copulas (Student’s t copula and Normal copula) 

as the process of evapotranspiration cannot be neglected from climatological point of 

view.  The parameters of copulas were estimated using a rank-based Pseudo Likelihood 

Estimation (MPL). The GoF tests - Sks, Tcvm, Chsq (for 1000 sample runs) and AIC justified 

the best copula for both bivariate and trivariate formulation of drought indices. The 

estimated parameters for copulas and their respective values are given in Table 4.28 and 

Table 4.29. The dependence between precipitation and soil moisture can be modelled by 

Frank copula since the GoF measures showed higher values and AIC showed lower values 

(Table 4.28). This can further be used for the computation of MSDI based on the 

parameters obtained from Frank copula. Table 4.29 shows the trivariate analysis modelled 

by Student’s t copula. Though the p-value greater than 0.05 cannot be ignored in the 

copula formation, but in this case the best fitted copulas (Frank and Student’s t copula) 

were selected for further analysis of MSDI and RTDI. 

Table 4.28 P-values for the GoF tests - Sks, Tcvm and Chsq for deriving 3-month and 6-

month based on Gumbel, Frank and Clayton copulas using precipitation and soil 

moisture 

 

Variable Kendall’s τ Spearman’s ρ 

Precipitation and soil moisture 0.307 0.477 

Evapotranspiration and precipitation -0.123 -0.164 

Evapotranspiration and soil moisture -0.34 -0.517 

3-month Gumbel Frank Clayton 6-month Gumbel Frank Clayton 

Sks 0.7 0.81 0.4 Sks 0.66 0.74 0.41 

Chsq 0.1 0.21 0.3 Chsq 0.19 0.46 0.3 

Tcvm 0.5 0.9 0.2 Tcvm 0.36 0.27 0.29 

AIC -105.9 -117.9 -32.7 AIC -135.87 -143.1 -63.96 

θPML 1.4 3.2 0.4 θPML 1.5 3.69 0.58 
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Table 4.29 p-values for the GoF tests - Sks, Tcvm  and Chsq for deriving 3-month and 6-

month based on Student’s t copula and Normal copula using precipitation, soil moisture 

and  evapotranspiration 

 

4.4.4 Spatial variation of drought severities 

 For spatial distribution of drought severities in the region, the inverse distance 

weighting interpolation (IDW) method was implemented for interpolating the maximum 

drought severities at each station, subsequently, the distribution of the spatial map of the 

study area were obtained. Furthermore, the spatial distribution of drought severities of 

MSDI and RTDI were compared in Fig. 4.32. Based on Fig. 4.32, during 1971 to 2017, 

the maximum drought was high in central to western part of the region while, a lower 

drought severity was observed in the eastern part of the basin. The eastern part of the basin 

belongs to the low- drought incidence area. After comparing MSDI-3 and MSDI-6, it was 

observed that the areal extent of MSDI-6 was larger than MSDI-3 in the western part of 

the basin. Similarly, severities of RTDI-6 showed larger areal extent compared to 

severities of RTDI-3 throughout western part of the region. When comparing MSDI and 

RTDI, it was observed that drought severities of RTDI-6 showed severe-most events 

compared to other indices for different time scales. Furthermore, the western part of the 

basin was recognized as the region with the highest drought severities. 

 

Fig 4.32. Maximum drought severities of MSDI and RTDI 

3-month Student’s t Normal 6- month Student’s t Normal 

Sks 0.35 0.02 Sks 0.26 0.25 

Chsq 0.4 0.39 Chsq 0.41 0.4 

Tcvm 0.46 0.31 Tcvm 0.28 0.11 

AIC 

 
-272.8 -149.16 AIC -277.31 -189.52 

θPML 0.55 0.54 θPML 0.54 0.54 
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4.4.5 Comparison between SPI, SSI and MSDI 

SPI shows the behaviour of meteorological drought which has a faster onset and offset 

of drought behaviour. SSI is used for the agricultural drought which depends on the 

temperature, soil characteristics and soil groups dominant in the particular area. The 

combination of SPI, SSI and MSDI can be understood in a better way by dividing the 

whole time series into two parts, viz. (1981-1999, and 2000-2017). However, perfect 

correlations may not exist between SPI, SSI and MSDI, but they may follow the similar 

drought evolution pattern. Fig. 4.33(a) shows that some there are some signals which 

showed agreements and some which showed disagreements between SPI, SSI and MSDI. 

SSI-3 showed a moderate drought condition in April 1987 while MSDI showed an 

extreme drought condition for the same time period. October-1986 showed a severity in 

drought behaviour with respect to SPI-3, SSI-3 and MSDI-3. More fluctuations in drought 

signals occurred in the 3-month MSDI time series. It can be observed that the 3-month 

MSDI and SSI drought condition continued from September 1996 to May 1998 from the 

Fig. 4.33 (a). For the period from 2001 to 2010, the SPI-3 showed recovery from drought 

when compared to SSI-3 and MSDI-3. The negative values that indicated that the drought 

continued from the year 2011 to 2013, whereas wet events continued between September 

2013 and September 2014.  Severe drought conditions were observed again in the year 

June 2015-2016. It can be seen that the MSDI showed combined effect of SPI and SSI.  

 In the time window of 1981-1999, SSI-6 showed early recovery of drought when 

compared to SPI-6 while the MSDI-6 showed higher negative drought trend when 

compared to SSI and SPI. Severe drought was observed during May 1985 since both the 

precipitation and soil moisture had negative trend and as a result of this, the MSDI-6 

showed a severe drought condition (a combination of SPI and SSI). The SPI-6 showed 

moderate drought condition whereas MSDI-6 showed severe drought conditions during 

the period January 1992 to May 1992 and May 1997 to September 1997. SPI-6 showed 

that most of the drought signals were having positively trending values, while SSI-6 

showed most of the signals have negative drought conditions for the time period 2001-

2010. MSDI-6 showed peak drought conditions from May to September 2001 and January 

to May 2005.  The severity of drought can clearly be noticed during May 2012, April 2013 

to May 2013 and December 2015 for MSDI-6 whereas SPI-6 showed moderate drought 

conditions. It is evident that when the drought time scale increased from 3-month to 6-
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month, less difference in drought trend is observed between SPI and SSI, whereas the 

MSDI showed more fluctuating drought conditions.  

   

 
   

 
    

 
   

 
Fig. 4.33. Comparisons of SPI, SSI and MSDI for 3-month and 6-month time scale; 

(a)  3-month time scales during the time window 1981-1999; (b) 3-month time 

scales during the time window 2000-2017; (c)  6-month time scales during the time 

window 1981-1999; (d)6-month time scales during the time window 2000-2017 

 

4.4.6 Comparison of RDI, SSI and RTDI 

The RTDI is compared with RDI and SSI. RDI was chosen because it gave combined 

drought information of precipitation and evapotranspiration. Precipitation alone cannot be 

used for the detection of drought. The RDI-3 and SSI-3 are generally consistent but 

discontinuity was also observed between time signals. It can be observed from Fig 4.34 

(a), that the time signals showed that positive and negative drought signals were different. 

For example, May 1998 showed a positive trend in RDI-3 and a negative trend for SSI-3. 

Ultimately, a negative RTDI-3 emerged in this case. If the average rainfall is more and 
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evapotranspiration is less (RDI>0) and the soil moisture was dry (SSI<0) for that period 

of time, then the combination of the three variables (RTDI) can create a negative drought 

trend (RTDI <0).  For a 3-month time scale, the drought duration of RTDI signals was 

similar to SSI. The severity aspect of drought must not be neglected in this circumstance. 

During the years 1981 to1999, it can be observed that SSI showed more negative drought 

trends than RDI. So, RTDI showed a drought event whichever was lower between RDI 

and SSI. The peak drought was seen in May 1984, April 1985, and September 2016 for 

RTDI-3. However, the extremely dry months for RDI were May 1985, December 2000, 

January 2001 and May 2014 and for SSI, they were for the periods of June 1980, March 

1987, August to November 1997, January to May 1998. May 2006. 

 The initial drought was captured by RTDI-6 as shown in Fig. 4.34 (c). The drought 

peaks were more prominent in RTDI-6 as compared to RDI-6 and SSI-6. In January 1986, 

it was observed that negative signals of drought were captured for both RDI-6 and SSI-6. 

So, the RTDI-6 also followed these negative trends of the drought indices. For the year 

2016, negative drought effect of RTDI was identified due to the combined effects of the 

RDI and SSI. RTDI captured drought earlier than SSI and RDI. In most of the cases, the 

drought condition was captured well for RTDI and SSI whereas RDI was not efficient in 

capturing the dry events in the chosen 38 years of time frame. The drought duration and 

severity of the drought were different for RDI-6, SSI-6 and RTDI-6. The drought was 

more severe in the case of RTDI-6. 

4.4.7 Comparison between MSDI and RTDI 

MSDI and RTDI have been estimated using copula functions for 3, 6- month time 

scales during the period 1981–2017. Here the hypothesis contained a comparison between 

MSDI and RTDI for better understanding of droughts based on different climatic 

parameters. Similar evolution pattern between MSDI and RTDI was observed during the 

period 1981-1999 (Fig. 4.35(a)).  After analysing the data, it can be observed that there 

was an agreement and disagreement of drought signals between the MSDI and RTDI. 

Further, soil moisture anomaly status can influence the drought persistence and continuity 

between MSDI and RTDI. For example, an agreement between signals were visible in the 

time period of (1991-1992) and disagreements of time signals were visible in the time 

period of (1984-1985). Moreover, the onset and offset of drought events for MSDI and 

RTDI were different. So there is a probability that the drought characteristics must be 

different for these two indices. For example, RTDI-3 conveyed a severe drought condition 
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in September 1985, whereas MSDI-3 showed a mild drought phenomenon. September 

2004 and 2011 showed severe drought conditions for MSDI-3 and RTDI-3. So, the 

drought indices showed consistency with each other. It is evident that the 3-month drought 

signals displayed more variations when compared to 6-months drought signals.   For 

example, January 1986 showed severity drought pattern for MSDI-6 and RTDI-6. More 

consistency between signals were observed in the case of 6-month MSDI and RTDI as 

seen from Fig. 4.35(c) and Fig. 4.35(d). 

    

 
     

 
  

 
   

Fig. 4.34. Comparisons of RDI, SSI and RTDI for 3-month and 6-month time scale. (a) 

represents 3-month time scales during the time window 1981-1991; (b) represents 3-

month time scales during the time window 2000-2017; (c) represents 6-month time 

scales during the time window 1981-1991; (d) represents 6-month time scales during the 

time window 2000-2017. 
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Fig. 4.35 Comparisons of MSDI and RTDI for 3-month and 6-month time scale. (a) 

represents 3-month time scales during the time window 1981-1999; (b) represents 3-

month time scales during the time window 2000-2017; (c) represents 6-month time 

scales during the time window 1981-1999; (d) represents 6-month time scales during the 

time window 2000-2017. 

 

4.4.8 Teleconnection between MSDI and RTDI with large scale climate 

indices  

 The study focussed on the effect of ENSO events, IOD and ISMR on MSDI and RTDI 

(3 and 6-month) for the GRB. The teleconnection between the MSDI and RTDI climate 

indices with ENSO events, IOD and ISMR will be helpful for understanding the 

variability of meteorological and agricultural drought. Hence, Cross Wavelet Analysis 

(CWA) was implemented in this study for investigation of the association among drought 

indices and large-scale climate indices. The wavelet coherences between monthly MSDI 

and RTDI with climate indices (MEI/SST/SOI/IOD/ISMR) in the region are illustrated in 

Fig. 4.36 and Fig. 4.37 respectively for 3-month time scale for the time period of 1981-

2015. For 6-month time scale MSDI and RTDI are represented in Fig. 4.38 and Fig. 4.39 

respectively. The energy densities are represented by the colour bars. The arrows represent 

the phase relationship. The arrows pointing left show anti-phase relationship while the 
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right pointed arrows define in-phase relationship and the 95% confidence level against red 

noise is given as a thick contour. Fig 4.36 (a) displays correlation pattern with MEI signals 

during 1991-1998 and 2013-2011. It can be observed from Fig. 4.36 (b) that the SOI 

signals showed a strong coherence pattern with MSDI-3 during the periods 1988-1998 

and 2012-2015 in the basin. Fig. 4.36 (c) display correlation of SST with drought signals 

(MSDI-3) during 1991-2007 whereas IOD exhibited a significant correlation with MSDI-

3 during 1981-1985, 1988-1994 and 2011-2015 represented in Fig. 4.36(d). Fig. 4.36(e) 

show that ISMR has a strong correlation with MSDI-3. ISMR displayed a strongest 

teleconnection pattern with MSDI-3 among all the large-scale climate indices. 

 The RTDI-3 showed teleconnections with MEI and SOI as can be observed from Fig. 

4.37 (a) and Fig. 4.37 (b). In Fig. 4.37 (b), SOI showed a statically significant coherence 

with RTDI-3 during 1992-1997 and 2010-2015 at the 95% significance level. For RTDI-

3, the teleconnections with SST were observed in Fig 4.37(c). The most evident 

teleconnection with SST and RTDI-3 was observed during the period 2006-2015 and SST 

confirmed a strongest correlation pattern with RTDI-3, when compared to other climate 

indices.  IOD also demonstrated a strong teleconnection pattern with RTDI-3 during 1983-

1990 and 2013-2015 illustrated in Fig. 4.37 (d). As given in Fig. 4.37 (e), the ISMR signals 

showed a fairly good association with RTDI-3 series. The coherence patterns of MSDI-6 

and large-scale climate indices are given in Fig. 4.38(a) to Fig. 4.38(e). It can be seen that 

MEI exhibited a statistically significant teleconnection with MSDI-6 during 1988-2010 at 

95% significance level as seen in Fig. 4.38(a). From Fig. 4.38(c), the strongest correlation 

was identified between the MSDI-6 and SST signals. The SOI, IOD and ISMR showed 

fairly good correlation with MSDI-6 drought events in the region. Fig. 4.39(a) describes 

a good correlation of RTDI-6 with MEI during 1981-2001 and 2011-2015. RTDI-6 also 

exhibited a good teleconnection with SOI, SST, IOD and ISMR. From the Fig. 4.39(c) 

and Fig. 4.39(e), it can be confirmed that the RTDI-6 showed a significant and strong 

correlations with SST and ISMR. Hence it can be concluded based on the observations 

from CWA that SST and ISMR emerged as the most significant indices which can impact 

the meteorological and agricultural droughts in this region. These are reflected in the 

variations of MSDI and RTDI, which have been developed in the study. 

4.4.9 Conclusions 

The integration of agricultural and meteorological drought plays a vital role in the 

prediction and reliable monitoring of drought. In this study, copula based MSDI and RTDI 
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were developed for a clear representation of meteorological and agricultural features of 

drought in the hydrological process.  

From the study, it is observed that MSDI and RTDI are important for capturing a 

quantitative and qualitative drought which consists of both agricultural and 

meteorological drought occurrences to examine the evolution of drought phenomenon.  

These indices are applied to study the drought in the GRB. Further, copula analysis 

showed that the parameters of Frank copula can be used for obtaining the MSDI while 

Student’s t-copula can used for obtaining RTDI.  

The resultant MSDI and RTDI are based on the joint probability cumulative 

distribution function whose sensitivity towards capturing the persistence, onset, and 

termination of drought is more prominent than SPI, RDI and SSI. This can help in 

understanding the real-time spatial as well as temporal drought mechanism. It also can 

help in early detection of drought condition rather than SPI, RDI and SSI.  

The MSDI and RTDI exhibited comparable performance when compared to the 

corresponding SPI and RDI, and it is more sensitive to capturing the onset, persistence, 

and termination of droughts. 

CWA was performed in this study to identify the teleconnections between large scale 

climate indices and the drought events. CWA showed MSDI and RTDI (3- and 6-month) 

had been significantly influenced by ENSO, IOD and ISMR patterns. Among all the 

climate indices, ISMR showed a strong and effective association with MSDI-3 whereas 

SST showed strong teleconnection with RTDI-3. Additionally, SST had strong influence 

on MSDI-6, while RTDI-6 showed a strong association with SST and ISMR signals. So, 

it can be suggested that the ENSO events, IOD and ISMR play a major role in drought 

variability over the basin.  

MSDI and RTDI can capture the meteorological and agricultural drought variability 

detecting the onset and termination of droughts. These multivariate drought indices will 

be beneficial in deeper understanding of the drought mechanisms and further enhance the 

drought monitoring technology. Overall, the study showed the teleconnection of MSDI 

and RTDI with large scale climate indices can be potentially used for drought monitoring 

and assessment under the climate variability in India. 
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(a)                                                       (b) 

 
(c)                                                             (d) 

 
(e) 

Fig. 4.36. The wavelet coherences between MSDI and large-scale climate indices for 3-month 

time scale. (a)-(c) wavelet coherences between MSDI and MEI/SOI/SST; (d)-(e) wavelet 

coherences between MSDI and IOD/ISMR. 
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(a)                                                                    (b) 

 
(c)                                                                      (d) 

 
(e) 

Fig. 4.37. Wavelet coherences between RTDI and large-scale climate indices for 

3-month time scale; (a) -(c) wavelet coherences between RTDI and MEI/SOI/SST; (d)-

(e) wavelet coherences between RTDI and IOD/ISMR. 
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(a)                                                      (b) 

 
(c)                                                         (d) 

 
(e) 

Fig. 4.38. Wavelet coherences between MSDI and large-scale climate indices for 6-month 

time scale. (a) -(c) wavelet coherences between MSDI and MEI/SOI/SST; (d) - (e) wavelet 

coherences between MSDI and IOD/ISMR. 



133 
 

 
(a)                                                             (b) 

 
(c)                                                                (d) 

 
(e) 

Fig. 4.39. Wavelet coherences between RTDI and large-scale climate indices for 6-month 

time scale; (a) -(c) wavelet coherences between RTDI and MEI/SOI/SST; (d) - (e) represent the 

wavelet coherences between RTDI and IOD/ISMR. 

 

4.5 Impact of Climate Change on Multivariate Drought 

IMD precipitation, minimum and maximum temperature data of resolution 0.25x0.25 were 

downloaded from the site. SWAT model was calibrated and validated based on streamflow 

observations for WRB and IRB. The future water balance components were estimated based on 
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the ensemble bias corrected CMIP6-GCM. Then the water balance components like 

evapotranspiration, soil moisture and streamflow variables were obtained from the model for 

future and historical period. Further, MDI was constructed considering precipitation and SWAT 

simulated variables for both reference and future periods. Drought characteristics were then 

compared to detect the changes in different scenarios. 

4.5.1 Calibration and validation of SWAT 

 Sensitive analysis is essential for identifying the most sensitive key parameters, which can 

accurately calibrate the model. Redundant parameters during calibration process can be reduced 

by sensitivity analysis. Selected parameters were auto calibrated and validated using SUFI2 

optimization algorithm in the SWAT-CUP (Arnold, 2012). Parameter ranges were initialized and 

then the uncertainties were reduced by optimizing these ranges using SUFI2 algorithm that can be 

quantified through 95% prediction uncertainty (95PPU) bands. After calibration, parameters were 

updated in SWAT-CUP with new parameter values obtained from the best simulation. The 

parameters used for calibration and validation and fitted parameters are presented in Table 4.30 

and Table 4.31 for WRB and IRB respectively. Then, the model was validated using newly 

obtained parameters for the particular validation periods. Model performance criteria like 

coefficient of determination (R2), PBIAS (Percentage Bias), Nash-Sutcliffe Efficiency (NSE) 

(Nash and Sutcliff, 1970), R- and P-factor were employed to analyse the performance status of the 

model. The 95PPU band indicated that the simulated streamflows were well captured at 

Pathagudem and Ashti outlet points (Fig. 4.40). The NSE, R2, PBIAS, R and P-factor for 

calibration and validation for both the basins are presented in Table 4.32. The performance 

statistics of WRB and IRB watershed models indicated that observed streamflows were well 

simulated and the peaks and troughs were well captured by the simulated streamflows. The 

calibrated model was then simulated using gridded ensemble mean GCM data for the period 

between 1920 and 2100 by considering 5 years of warm-up period. Four future SSP scenarios have 

been considered in this study by dividing the time period into future1 (2025-2062) and future2 

(2063-2100). The drought condition during the baseline period (1976-2013) was then compared 

to the future projections. 

 

 

 

 

 



135 
 

Table 4.30 Calibrated parameters of Wainganga (Ashti) 

(*R denotes replaced parameter and V denotes relative parameter) 
Parameter* Fitted Value Min value Max value 

R__CN2.mgt 0.1 -0.2 0.2 

V__ALPHA_BF.gw 0.5 0 1 

V__GW_DELAY.gw 17.1 0 450 

V__GWQMN.gw 715.3 0 1000 

V__OV_N.hru 0.1 0 1 

V__EPCO.hru 0.5 0 1 

V__CH_K2.rte 15.1 0 100 

V__CH_N2.rte 0.1 0 0.3 

V__CH_K1.sub 3.8 0 300 

V__CH_N1.sub 12.6 0 30 

V__ESCO.hru 0.2 0 1 

V__REVAPMN.gw 329 0 500 

R__SOL_K(..).sol 0.1 -0.2 0.2 

R__SOL_AWC(..).sol -0.1 -0.2 0.2 

R__SOL_BD(..).sol 0 -0.2 0.2 

R__SOL_Z(..).sol 0.1 -0.2 0.2 

V__GW_REVAP.gw 0.1 0 0.2 

V__CANMX.hru 65 0 100 

V__RCHRG_DP.gw 0.7 0 1 

V__SURLAG.bsn 8 0.1 24 

Table 4.31 Calibrated parameters of streamflow of Indravati (Pathagudem) 

(*R denotes replaced parameter and V denotes relative parameter) 
Parameter Fitted value Min Max 

R__CN2.mgt 0.149 -0.2 0.2 

V__ALPHA_BF.gw 0.9975 0 1 

A__GW_DELAY.gw 151.875 0 450 

V__GW_REVAP.gw 0.08525 0.02 0.2 

A__GWQMN.gw 707.5 0 1000 

A__REVAPMN.gw 233.75 0 500 

V__ESCO.hru 0.0825 0 1 

R__SOL_AWC(..).sol 0.113 -0.2 0.2 

V__EPCO.hru 0.7175 0 1 

R__SOL_K(..).sol -0.2 -0.2 -0.2 

R__SOL_Z(..).sol 0.143 -0.2 0.2 

R__SOL_BD(..).sol 0.141 -0.2 0.2 

V__CH_N2.rte 0.20625 0 0.3 

V__CH_K2.rte 36.54087 0.05 200 

V__CANMX.hru 9.75 0 100 

R__CH_N1.sub 10.35 0 20 

R__CH_K1.sub 58.75 0 100 
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Table 4.32 Performance evaluation SWAT model calibration and validation of IRB and WRB 

Pathagudem P-factor R-factor PBIAS R2 NSE 

Calibration 0.54 0.56 -15 0.88 0.89 

Validation 0.68 0.70 -9 0.93 0.94 

Ashti      

Calibration 0.51 0.74 -17 0.86 0.82 

Validation 0.58 0.81 -13 0.94 0.93 

Fig. 4.40 (a) 95 PPU plot for Indravati basin; (b) 95 PPU plot for Wainganga basin 

4.5.2 Projected changes in annual mean precipitation, and maximum and 

minimum temperatures 
 

MDI will be highly influenced by the changes in precipitation, evapotranspiration, streamflow 

and soil moisture for the sub-basins. So, the variation in the climatic pattern need to be 

investigated. The spatial distributions of projected changes in ensemble averaged precipitation, 

maximum and minimum temperature under four SSPs are given in Fig. 4.41 (a) to 4.41 (f).  The 

spatial distributions of mean annual % changes in precipitation, minimum and maximum 

temperatures are presented in Fig. 4.42 (a) to Fig. 4.42 (f). For IRB and WRB, there will be an 

increased annual mean precipitation for future period with respect to the reference period. The 

spatial dispersion of WRB and IRB are similar to the reference climate under four scenarios. There 

will also be an increase in the areal extension of precipitation over WRB and IRB. The spatial 

pattern of mean annual precipitation over WRB under all SSPs revealed that the projected 

precipitation significantly will increase in the south-eastern part of WRB under all the SSP 

scenarios as can be seen in Fig. 4.41 (a). For the future 1 period, the projected annual mean 

precipitation over WRB is likely to increase by 4 to 18%, -10 to 14 %, 10 to 27% and 14 to 27% 

under SSP126, SSP245, SSP370 and SSP585 respectively. Similarly, for future 2 period, the mean 
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annual precipitation over WRB is likely to increase by 13 to 30%, 15 to 32%, 16 to 35 % and 21 

to 37% under SSP126, SSP245, SSP370 and SSP585, respectively presented in the Fig.4.42 (a). 

A major change is expected in projected annual mean precipitation over the northern part of WRB. 

For the rest of the WRB, a steady change for future1 and future 2 period under all the SSP scenarios 

is expected.  

Spatial plot of IRB shown in Fig. 4.41 (b) suggests that the annual mean precipitation will be 

high in the southern parts whereas in the north-eastern region, the annual mean precipitation will 

be low. The areal extent of precipitation will increase for all future scenarios. Simulation from 

future1 showed that mean annual precipitation will increase by 12 to 20%, -5 to 13%, 10 to 24% 

and 8 to 27 % under the four scenarios. The mean annual precipitation will have significant 

increments of 10 to 27%, 11 to 29%, 15 to 29% and 20 to 35% in future 2 under the four scenarios 

for IRB (Fig. 4.42 (b)). It can, hence, be concluded that the large increase in the projected mean 

annual precipitation over WRB and IRB is expected to occur under SSP585 scenario in future 2 

period. In future 2 also, an increase in the projected annual mean annual precipitation can be 

expected over both the basins.  

The projected changes in the annual mean maximum and minimum temperature over WRB 

and IRB showed spatial variability when compared to the reference period. The analysis of spatial 

plots for mean annual maximum and minimum temperature showed that the northern part of WRB 

showed lower temperature, while the southern parts of the basin showed higher annual maximum 

and minimum temperature under all scenarios (Fig 4.41 (c)). The western parts of the IRB will 

experience an increase in annual mean maximum temperature for the future scenarios while the 

mean annual minimum temperature will have an increasing pattern over south-eastern part of the 

basin (Fig 4.41(d)). During future1 scenario, the projected mean annual maximum temperature 

over WRB is expected to show significant variation ranging from -0.8 to 1.8 °C, 0 to 2 °C, -0.7 to 

2 °C and -0.04 to 2.1 °C and for future 2 scenario, the variations will be in ranges of -0.4 to 2°C, 

0.1 to 2.5°C, 1 to 4 °C and 2.8 to 4 °C under the four SSP scenarios respectively (Fig. 4.42 (c)). 

On the other hand, the mean annual minimum temperature showed increase of 0.3 to 2°C, -0.1 to 

2.5°C, -0.1 to 2.5 °C and 0.6 to 2.5 °C for future 1 and 0.5 to 2.5°C, 1 to 3°C, 2 to 4 °C and 2 to 4 

°C future 2 scenario under SSP respectively, relative to the present climate (Fig. 4.42 (e)).  

Similarly, it can be seen from Fig. 4.42 (d) that the projected annual mean maximum temperature 

for IRB had increments of -1 to 1.7 °C, -1 to 1.5°C, -0.2 to 1.8 °C and -0.5 to 2°C for future1 and 

-1 to 2 °C, -0.5 to 2.5 °C, 0.1 to 3 °C and 1.2 to 4 °C for future 2 respectively for the four SSPs. 

The mean annual minimum temperature is expected to increase by -0.2 to 2°C, -0.2 to 2.3°C, -0.3 
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to 2.4 °C and -.24 to 2.5 °C for future1 and -0.4 to 2.3°C, 0.31 to 3°C, 1.2 to 4 °C and -.1.7 to 5 

°C for future 2 respectively under the four scenarios as can be observed from Fig. 4.42 (f). The 

mean annual maximum and minimum temperature will have consistent changes in the future time 

scales in the IRB as the time progresses except under the SSP245 scenario. It is clear that under 

future climate scenarios, the largest increase of around 4°C in annual maximum temperature is 

projected to occur over southern parts of WRB and western part of the IRB.  Under the high-

emission SSP585 scenario, WRB and IRB exhibited a significant increase in annual mean 

maximum and minimum temperature. A clear picture of an increasing pattern in annual mean 

precipitation, maximum and minimum temperature are observed for SSP585 (high-emission 

scenario) throughout the 21st century.  

As mentioned earlier, the entire catchment area of the WRB is full of valleys and hills and it 

is a major sub-basin of Godavari. The IRB spreads from the Kalahandi district of Odisha up to the 

confluence of the rivers Indravati and Godavari. So, these sub-basins are vulnerable to climate 

change which can be attributed to the topographic and climate pattern over the WRB and IRB. 

Further, likely increase in the temperature will accelerate the climate variability. Although the 

mean temperature is expected to increase in the future scenarios, the precipitation also is expected 

to increase. Precipitation is the dominant parameter influencing the streamflow pattern for this 

region. The evapotranspiration and streamflow pattern over these basins will vary in future 

scenarios. Mishra et al. (2020a) observed that precipitation and temperature of GRB will be 

increasing in the future periods under different scenarios and the highest increase is attributed to 

the large emission scenario i.e. SSP585. Here, significant and robust changes in the precipitation, 

minimum and maximum temperature were observed for the two sub-basins in the SSP585 

scenario.  
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(a) 

 
(b) 
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(d) 
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(e) 

 
(f) 

 
Fig. 4.41: Mean annual climate parameter over both the basins for reference (1976-2013) and future 

periods under four SSPs; (a) Mean annual precipitation over WRB; (b) Mean annual precipitation over 

IRB (c) Mean annual maximum temperature over WRB; (d) Mean annual maximum temperature over 

IRB; (e) Mean annual minimum temperature over WRB; (f) mean annual minimum temperature over 

IRB 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 

 
(f) 

Fig. 4.42: Mean annual precipitation, maximum and minimum temperature changes over both the basins 

for reference (1976-2013) and future periods under four SSPs; (a) % Change in mean annual precipitation 

over WRB; (b) % Change in mean annual precipitation over IRB (c) %Change in mean annual maximum 

temperature over WRB; (d) Change in mean annual maximum temperature over IRB; (e) Change in mean 

annual minimum temperature over WRB; (f) Change in mean annual minimum temperature over IRB 
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4.5.3 Projected changes in evapotranspiration and streamflow 

Spatial changes of evapotranspiration and streamflow in future periods relative to reference 

period are presented in Fig.  4.43 (a) to Fig. 4.43 (d). The mean annual evapotranspiration showed 

a decreasing pattern while an increasing pattern is observed in the mean annual streamflow over 

future periods for both the basins. For instance, SSP126, SSP370 and SSP585 show decline in the 

evapotranspiration under the warming climate while the SSP245 scenario (future1) show an 

increase in the evapotranspiration. A decline in evapotranspiration is found in the south-eastern 

and north-western part of WRB. The streamflow showed a large increment in the south-west part 

of WRB.  With respect to the reference period, IRB showed a decline in the evapotranspiration 

while increase of streamflow is observed in the northern part of IRB. Higher variations in 

streamflow and evapotranspiration pattern were observed in future 2 when compared to future1 

scenario. Interestingly, by the end of the 21st century, for SSP585, significant changes are 

anticipated in the annual mean evapotranspiration and streamflow over both the basins. These 

differences in the projected evapotranspiration and streamflows can be attributed to variations 

associated with precipitation and temperatures in the catchment area. The results from this study 

would be helpful in suggesting different strategies required to manage the water resources in 

different watersheds with response to climate change. 

 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Fig. 4.43. Mean annual evapotranspiration and streamflow changes over both the basins for 

reference (1976-2013) and future periods under four SSPs; (a) % Change in evapotranspiration over the 

WRB; (b) % Change in evapotranspiration over the IRB; (c) % Change in streamflow over the WRB;   

(d) % Change in streamflow over the IRB 
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    4.5.4 Projected changes in drought severity and duration 

Drought characteristics play a major role in water resources management. Hence, a detailed 

investigation on these during reference and future periods under all SSPs were carried out to 

identify the relative variations in drought phenomenon. Drought severities were computed based 

on the sub-basins generated by the SWAT model. The maximum drought severity for reference 

and future periods over WRB and IRB are presented in Fig. 4.44(a) and Fig. 4.44(c).  Significant 

variations in maximum severities between the reference period and future period are observed in 

Fig. 4.44(a). The maximum drought severities are also found to have decreasing pattern under all 

future scenarios except in SSP245. The severe-most drought events under SSP245 scenario are 

observed for the future1 scenario. The maximum severity hotspots are found to increase in the 

south-western part of the WRB for SSP245.  Fig. 4.44(c) suggests an intensification in drought 

severity over the northern part of the basin under SSP245 scenario for IRB. Drought hotspots in 

the middle region of IRB are observed during the reference period and the northern part of IRB 

showed maximum severity hotspots in the future scenarios. It is to be noted that, the future 

scenarios have projected less drought events towards the end of the 21st century especially for 

SSP585.  

The relative changes in drought duration between future and reference periods were then 

compared and presented in Fig.  4.44(b) and Fig. 4.44(d). From the MDI analysis under various 

SSPs, the projected drought durations are seen to mainly decrease in the WRB for future scenarios 

(Fig. 4.44 (b)). From the low emission to high emission, the drought with shorter durations are 

visible in the IRB under SSP126, SSP370 and SSP585 (future1), while droughts with a longer 

duration are projected in under the SSP245 (Fig. 4.44(d)). The spatial dispersion of maximum 

drought characteristics across WRB and IRB are more in the reference period and SSP245 

scenario. Hence the reference period and SSP245 scenario are more vulnerable to drought, since 

relatively higher maximum duration and severities were observed than other future scenarios. 

SSP585 scenario showed lower maximum drought durations since the precipitation and 

streamflow are increasing and evapotranspiration showing decreasing tendency over the WRB and 

IRB. It can be concluded that, by the end of the century, the drought incidences are going to be 

decreasing based on the CMIP6 projections for all the scenarios. All the SSPs showed that there 

will be changes in the drought pattern and the spatial extension for all the scenarios. It is also 

observed that the number of drought events are expected to decrease in future 2 period. These 
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changes in the projected drought severity and durations are due to the associated variability in the 

climate under different scenarios.  

However, the pattern of drought characteristics varies for future with the reference period due 

to variation in the climatic variables in the future projection based on CMIP6 model simulation 

from SWAT. Hence the precipitation, streamflow, evapotranspiration and soil moisture play a 

crucial role in governing the local meteorological, hydrological and agricultural drought 

phenomenon. 

 
(a) 



148 
 

 
(b) 

 
(c) 



149 
 

 
(d) 

Fig. 4.44: Maximum drought severities and durations changes over both the basins for reference (1976-

2013) and future periods under four SSPs; (a) maximum drought severities over WRB; (b) maximum 

drought durations over WRB; (c) maximum drought severities over IRB; (d) % maximum drought 

durations over IRB 

4.5.5 Conclusion 

 A multivariate formulation of drought is essential for jointly representing all forms of drought 

events that can simultaneously affect a particular region. In this study, a new copula based 

probabilistic multivariate drought index has been developed for reference and future scenarios. 

All variables like precipitation, evapotranspiration, streamflow and soil moisture are involved for 

the multivariate drought assessment. The key findings based on this objective of the study are 

discussed.  

The observed variability of the SWAT streamflow anomalies was well captured in the 

Wainganga and Indravati basins. The model was calibrated and validated using SWAT-CUP 

SUFI2 algorithm. The performance of the model was evaluated based on NSE, R2 and PBIAS. 

The performance indicators showed that the model performed well for both calibration and 

validation period. 

An increase in spatial extent of annual precipitation is observed for future scenarios. The 

south-eastern part of WRB and southern part of IRB are expected to receive a large amount of 

annual precipitation. The annual maximum and minimum temperature show an increasing pattern 

under all the future scenarios.  
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The spatial analysis of changes in mean annual evapotranspiration and streamflow suggested 

decrease in evapotranspiration and high increase in streamflow for both the sub-basins under 

consideration. An intensification in precipitation, streamflow and a reduction in 

evapotranspiration indicate a reduction in droughts events in future periods.   

The drought severities and durations will be in decreasing tendency for future scenarios 

compared to the reference period. SSP585 indicates lesser drought severity for both the basins 

while SSP245 and reference period emerged as the most vulnerable to drought conditions. The 

large variations in the drought properties can be attributed to the variation in the climate variables. 

To summarize, MDI can be useful in an efficient way for drought monitoring under the 

reference and future climate. Moreover, MDI overcomes the required variability to identify 

simultaneous variability of climate parameters to access drought phenomenon as it integrates the 

response of several climatic parameters. 

4.6 Impact of Climate Change on Crop Yield and Crop-Drought Relationship 

with Varying Climate 

  
Data regarding precipitation, minimum and maximum temperature were downloaded from 

the IMD website. Evapotranspiration was calculated using ET calculator in AquaCrop model. 

AquaCrop model was then calibrated and validated based on the observed yield depending on the 

parameters for Aurangabad region. The future water crop yields were estimated for four SSPs 

(SSP126, SSP245, SSP370 and SSP585) based on the ensemble mean of bias corrected CMIP6-

GCMs namely ACCESS-CM2, BCC-CSM2-MR, CanESM5, INM-CM4-8 and MPI-ESM1-2-

HR. The crop yields were then obtained from the model for future period. SYRS were obtained 

from the yield series for future and reference periods. SPEI values at different lags were then 

correlated with the SYRS to obtain the crop-drought relationship for reference and future periods. 

4.6.1 AquaCrop model performance evaluation and estimated CO2 

 
In this study, the mean CO2 concentration of 364 ppm was used for the period 1997-2014 and 

for the future period, value of CO2 concentration is taken according to the scenarios. The average 

CO2 concentrations in SSP126, SSP245, SSP370 and SSP585 scenarios are 434 ppm, 500 ppm, 

528 ppm and 630 ppm respectively.  

The model was calibrated and validated using the observed crop yield series for the period of 

1998 to 2014. The cultivars specific parameters were used for simulating the yield by considering 

the meteorological parameters. The model was calibrated and validated for cotton, maize and 
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wheat for the Aurangabad region of UGRB. The parameters and the fitted values for calibration 

and validation periods are provided in Table 4.33. The relation between observed and simulated 

crops for calibration and validation periods are plotted for different crops are given in Fig. 4.45 

and Fig. 4.46 for the region. RMSE obtained between the observed and simulated yield values 

indicated that the model accuracy was quite good during calibration and validation processes. 

Moreover, in most of the cases, simulated yield captured observed yield well during the calibration 

and validation period. On the basis of model performance, the calibrated model was used to project 

the crop yield for future scenarios. 

Table 4.33 Parameters for calibration and validation periods in AquaCrop model 

Crop Parameters Units 

Time from sowing to maturity Days 

Maximum effective rooting depth M 

Reference Harvest Index % 

Length of the flowering stage Days 

Time from sowing to emergence Days 

Time from sowing to maximum rooting depth Days 

Time from sowing to start senescence Days 

Time from sowing to flowering Days 

Building up of the Harvest index Days 

Soil surface covered by an individual seedling cm2/plant 

Number of plants per hectare -- 

Canopy growth coefficient % /day 

Maximum canopy cover % 

Canopy decline coefficient %/day 

Shape factor for water stress limiting stomatal conductance -- 

Shape factor describing root zone expansion -- 

Soil Parameters   

Curve number and readily evaporable water --, mm 

Hydraulic conductivity, root zoon expansion rate, gravel mass mm/day, %, % 

Number of soil layers, their texture and thickness --, --, m 
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Fig 4.45 Observed and simulated yield for Aurangabad region for calibration and validation 

period 

 

 

Fig 4.46 Observed and simulated R2 values for Aurangabad region for calibration and 

validation period 
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4.6.2 Future projection of yield  

All crops monitored during 1997-2014 showed an increase in growth trend. The yield 

increased considerably during the period 1997-2014 due to improved technologies for crop 

production. For future yield prediction, four emission scenarios viz., SSP126, SSP245, SSP370 

and SSP585 were selected. The future yields of maize, cotton and wheat are predicted for 

Aurangabad region. Similar to the observed time period, for better representation of results, the 

future period was also sub divided into different divisions for a specified crop. The yield of maize, 

cotton and wheat increased significantly over the future scenarios with respect to the observed for 

the SSP585 scenario.  For comparison between the box plots for observed and future scenarios for 

different crops are presented in Fig. 4.47. From the Fig. 4.47, it can be observed that there is a 

significant increase in the maize, cotton and wheat yield for all the future scenarios especially in 

the high emission scenarios (SSP370 and SSP585) in the end of 21st century. It is also observed 

that there is significant variability in the yield variability with respect to the observed period.  

 

Fig. 4.47. Projected crop yield for maize, cotton and wheat under SSP126, SSP245,SSP370 

and SSP585 
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4.6.3 Crop yield response to the climate variability 

This research considered crop growth seasons for maize (April to September), cotton (May to 

December), and wheat (October to February). As previously mentioned, yield projections for 

various crops are based only on changes in climatic factors, and hence, it is important to establish 

a relationship between the climate variability of various crops and their yields. Non-climatic 

factors like fertilisation and cultivar impacts, irrigation techniques, and other technological 

developments were not considered in this study. The evolution of temperature fluctuations, as well 

as their anomalies, under observed and perspective scenarios will aid in determining their 

influence on climate change on crop productivity in the Aurangabad region. For different crops, 

the temporal differences in precipitation, minimum and maximum temperatures of future scenarios 

with regard to the reference period for different crops are shown in Figs. 4.48, Fig. 4.49, and Fig 

4.50. The projected average yield for maize (Fig. 4.47), is expected to increase in the future 

scenarios during 2025-2099. The threshold temperature (cold and heat stress) for maize should be 

between 27 °C and 33 °C (Bhatt et al. 2014). According to Fig. 4.48, the monthly average 

precipitation during crop growing season is predicted to rise considerably. In addition, the 

maximum and minimum temperatures is expected to increase in the future scenarios. Higher 

emission scenarios, such as SSP370 and SSP585, show significant variations in comparison to the 

reference period. The optimal temperature range has a beneficial impact on crop yield if other 

elements such as soil condition and available water content remain in favourable condition (Bhatt 

et al. 2014). The projected cold and heat stress during the growing period of wheat is expected to 

remain in optimal range. Therefore, wheat production is likely to increase during 2025-2099 (Fig 

4.47). Temperature influences the photosynthesis and respiration processes (Lobell and Gourdji, 

2012). Similarly, for cotton, the optimum thermal range is between 32° C (hot stress) to 23.5° C 

(cold stress) with optimum temperature of 28° C (Bhatt et al. 2014) and temperature ranges 

showed favourable condition for cotton production. Therefore, under the favourable climatic 

conditions, the projected average yield for cotton (Fig. 4.50), is expected to increase in the future 

scenarios during 2025-2099. The significant increase in maize yields under climate change 

scenarios are due to favorable temperature conditions related to cotton and wheat. Similarly, the 

CO2 concentration tends to increase in the future scenarios. Significant increase in the CO2 

concentration is expected in SSP370 and SSP585 scenarios for the growing period of crops. 

Generally, increased CO2 concentration will directly affect the crop yield for C4 plants through 

enhanced photosynthesis (Kumar, 2016). The average water productivity (WP) is also expected to 
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have an increasing effect in the future scenarios compared to reference period. WP directly affects 

the biomass production which is directly proportional to crop yield. The average WP varies with 

crop type (Table 4.34). The cold temperature stress has minimal effect on the crop yield. Hence it 

can be observed that the WP increases with progress of time possibly resulting in the increment in 

the crop productivity. To summarize, the appropriate range of cold and heat stress, higher CO2 

concentration and increased WP could be attributed for the increment in the mean crop yield over 

the region. 

Table 4.34 Average WP for different crops 

Crops WP(gm/m2) 

Maize 
 

Reference Period 6.6 

2025-39 7.9 

2040-54 8.8 

2055-69 10.1 

2070-84 9.5 

2085-99 10.2 

Cotton 
 

Reference Period 7.1 

2030-39 7.8 

2040-49 9.5 

2050-59 8.4 

2060-69 8.7 

2070-79 8.8 

2080-89 7.1 

2090-99 10.4 

Wheat 
 

Reference Period 6.8 

2035-50 7.8 

2051-66 7.9 

2067-82 8.1 

2083-98 8.8 
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Fig 4.48 Mean monthly precipitation, maximum and minimum temperature for reference and 

future scenarios for maize  

 

 
Fig 4.49 Mean monthly precipitation, maximum and minimum temperature for reference and 

future scenarios for wheat 
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Fig 4.50 Mean monthly precipitation, maximum and minimum temperature for reference and 

future scenarios for cotton 

4.6.4 Standardised yield residuals series (SYRS) evolution as a loss/gain      

indicator  

 The temporal evolution of the SYRS of maize, cotton and wheat for reference period is 

presented in Fig. 4.51. The agricultural yield could be categorized depending on the SYRS values 

as <- 1.5 indicating high loss and >1.5 indicating high gain. The reference period revealed that 

moderate to high losses for maize occurred in the years 2003, 2004, and 2011 for the region. 

SYRS for cotton revealed moderate to significant losses throughout the years 2003, 2004, 2005, 

2006 and 2009.  For wheat, moderate to high losses occurred in the years 2003, 2004 and 2013. 

The year 2013 showed mild losses in wheat for this region. Considering the SYRS condition, the 

largest crop failure occurred in the years 2004 for maize, 2003 for cotton, and 2003 for wheat 

within the reference period. Thus, 2003 scored first in terms of crop losses for winter wheat, 

maize, and cotton. Cotton had the most low-yielding years during the reference period, followed 
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by maize and then wheat. The evolution pattern of SYRS for future scenarios are presented in the 

Fig. 4.52, Fig. 4.53 and Fig. 4.54 for maize, cotton and wheat respectively. From the figures, it 

can be observed that the highest loss in crop production is expected to occur during the years of 

2050-59 and 2060-69 for maize, 2060-69 and 2080-89 for cotton and 2035-2050 and 2067-2082 

for wheat in terms of the intensity of the SYRS. For future scenarios, SSP245 showed greatest 

number of low yielding years. In terms of crops, the greatest number of low yielding years were 

observed in the case of wheat, followed by cotton and then maize. For future, the following 

features are expected for production in crop: (i) the highest yield variability recorded in the SYRS 

for wheat, then maize and the least for cottons; (ii) the prevalence of high-yielding years for all 

of the crops was detected; the relatively stable yield for cotton is expected to prevail.  

 

 

4.51 SYRS for maize.cotton and wheat for reference period 

 

Fig. 4.52 SYRS for maize for SSP126, SSP245, SSP370 and SSP585 
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Fig. 4.53 SYRS for cotton for SSP126, SSP245, SSP370 and SSP585 
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Fig.4.54 SYRS for wheat for SSP126, SSP245, SSP370 and SSP585 

4.6.5 Yield-responses to drought conditions 

 Kendall 𝜏 correlation coefficients between the monthly de-trended SPEI series at 1-12-month 

lags and SYRS of three crops were computed for the reference and future scenarios. Basically, 

correlations between SPEI and SRYS signify the year-to-year variations in crop yield and are 

related to the year-to-year variation of drought time series. This interpretation can assess the 
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impact of drought on crop patterns for various scenarios over a specified time scale and month. 

Drought, according to Sharma et al. (2016), can reduce crop productivity by preventing cell 

enlargement leading to reduced leaf size, reduced relative leaf water content, reduced tillering 

and plant height, and increased crop root length. Further, when compared to non-stress 

conditions, multi-stage drought led to a potential reduction in crop production and a reduction 

in yield qualities, as well as a worsening of physiological parameters such as chlorophyll 

content, relative water content, rate of transpiration and photosynthesis, and lipid peroxidation. 

However, during drought events, changes occur primarily among growth stages and genotypes 

(Kumar et al. 2020).  For reference period, differences in the responses of crops to different lags 

of the SPEI were observed in this study (Fig. 4.55). From Fig. 4.55, it can be seen that for maize, 

the months from April to June are highly sensitive to onset of drought events. Similarly, for 

cotton, the most sensitive period is during February to May. Wheat showed the greatest yield 

sensitivity for the period of January to May. The results for cumulative drought impact on yield 

series for different crops for future scenarios are given in Fig. 4.56, Fig. 4.57 and Fig. 4.58. 

      Based on SPEI values, drought is expected to significantly affect maize production in 

April-May and October- November in the SSP126 scenario at short-term drought. The next 

damaging effect of drought is expected in the SSP245 scenario. Conversely, SSP585 scenario is 

expected to have less profound positive correlation than other scenarios. Cotton showed 

sensitivity to drought condition, especially in the early growth stages in the SSP126 scenario. 

The greatest correlation was recorded for the SPEI at 5-6-month lags in July to October.  Wheat 

is highly sensitive to drought during the April-May in the SSP126 scenario. Zhang et al. (2018) 

studied that the growth stage of wheat is highly sensitive to drought conditions because of 

reduction in leaf area due to reduced root growth, reduction in leaf number per plant, size and 

longevity of leaves. Drought reduces chlorophyll content, membrane stability, relative water 

content, chlorophyll fluorescence and yield and yield components, NPK uptake, and increases 

catalase, peroxidase, and superoxide dismutase content (Sheoran et al. 2015), but the effect was 

more pronounced with late season drought stress than early season drought stress (Nawaz et al. 

2012). A positive correlation is expected between the SYRS of wheat and the de-trended SPEI 

at time scales from 2 to 4 months during March, April, and May (r = 0.1-0.7), which corresponds 

with the highest moisture demands. In the SSP585 scenario, crops showed less sensitive to 

drought condition, leading to low yield losses (SYRS ≤ −1.5). The greatest yield-drought 

correlation was for wheat, the least for maize for the observed period. For future scenarios, 
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cotton is expected to be more sensitive to drought onset. During the observed period, crops are 

more sensitive to drought condition rather than future periods. 

 

Fig. 4.55 SYRS and de-trended SPEI relationship for maize, cotton and wheat, 

 during reference period 
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Fig. 4.56 SYRS and de-trended SPEI relationship for maize under different scenarios 
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Fig. 4.57 SYRS and de-trended SPEI relationship for wheat under different scenarios 
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Fig. 4.58 SYRS and de-trended SPEI relationship for cotton under different scenarios 
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        4.6.5 Conclusion 

     As a part off the research, the present study investigated the impact of climate change 

on yield of maize, cotton and wheat in the semi-arid region of Upper Godavari River Basin 

(UGRB) using AquaCrop model. Ensemble mean of five climate GCMs taken from CMIP6 

model were given as input crop model to project future crop yield. Further, the crop-drought 

relationship status was obtained in varying climate scenarios. The key findings of the study 

are: 

i. The AquaCrop model performed well for both calibration and validation period for 

maize, cotton and wheat crops based on the performance measures. 

ii. Climate changes including increased temperatures, changes in seasonal precipitation 

amount and patterns, and elevated atmospheric CO2 concentration have important 

impacts on crop productivity and water use. Precipitation, maximum and minimum 

temperature is expected to increase under future scenarios. Basically, temperature and 

CO2 affect the crop production rather than precipitation. Moreover, the monthly 

average precipitation showed significant change as compared to the reference period. 

For four SSPs, future ensemble climatic models predict warmer climate change 

scenarios and increased atmospheric CO2. 

iii. The climate change impact analysis of four scenarios on crop yield, indicated 

significant increase in the maize, cotton and wheat crops for future scenarios. The most 

significant increase crop yield is expected in the maize followed by wheat and cotton 

in the SSP585 scenario. At the end of the 21st century, the crop yield is expected to 

increase significantly for SSP585 scenarios.  The average yield will increase, but this 

will occur in a non-linear manner. 

iv. The increase in the mean crop yield with respect to the reference period showed that 

the highest increase is expected during the far future (2081-2099) in most of the cases. 

v. De-trended SPEI has a relatively strong association with the SYRS at important crop 

productive stages in observed period.  

vi. The magnitudes of the correlations between various agricultural crops clearly showed 

that yield-drought correlation values tended to be higher for the SPEI at the 1- 4-month 

lags in the future scenarios. 
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vii. The yield-response to drought also varied among crops: the greatest yield-drought 

correlation was for wheat and the least for maize for observed period. In future 

scenarios, cotton is expected to be more sensitive to drought onset.  

viii. The results of the study are important in understanding the possible impact of climate 

change on crop yield and helpful in developing knowledge for stakeholders and 

planners to develop appropriate plans and strategies. Apart from assessing the potential 

impacts of climate change on crop productivity and assessing the impacts, modelling 

can helpful updating agricultural adaptation strategies for managing these risks and 

beginning to tease out which adaptations are more robust under future conditions. 
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CHAPTER5 

SUMMARY AND CONCLUSIONS 

5.1 Summary 

           Climate change affects hydrological cycle, sea levels and sea surface temperature 

patterns and agricultural production. The extent, frequency and occurrences of extreme events 

like droughts and floods could be attributed to the global changes on climatic pattern (IPCC, 

2013). It is reported that that the impact of climate change will affect the drought pattern over 

GRB. Hence, the impact of climate change on drought pattern must be studied in GRB scale. 

Further, onset and offset criteria of drought affect cropping pattern, cultivation period, and crop 

productivity. Uneven rainfall distributions and dry months may have an impact on crop 

production. However, drought footprints have a correlation with crop productivity. As a result, 

assessing the crop-drought relationship in the context of climate change is unavoidable for 

long-term development in agricultural practices. 

              SPEI for the 3-month time scale was calculated using precipitation and 

evapotranspiration data from the GRB for the reference and future periods. Individually, bias-

adjusted RCMs revealed significant uncertainties in climate parameters. As a result, the REA 

method was used to reduce the uncertainties caused by individual RCMs. Drought return, peak, 

severity, and durations were evaluated for two emission scenarios, RCP4.5 and RCP8.5. The 

trivariate regional frequency analysis was used to conduct a comprehensive assessment of 

drought frequency, considering the inherent dependence between the drought characteristics. 

             The non-stationarity drought indices such as NSPI and NRDI were developed by 

considering precipitation and initial value series with the large-scale climate indices as 

covariates. Both NSPI and NRDI could be applied to identify more complex aspect of drought 

occurrence. The probabilistic estimation of drought characteristics was carried out to estimate 

drought return periods. Drought return periods were also calculated using the D-vine PCC 

model and trivariate copula model. Then trivariate copula model and PCC model were 

compared.  

      The integration of agricultural and meteorological drought plays a vital role in the 

prediction and reliable monitoring of drought. The single variable dependent drought cannot 

adequately define the onset and withdrawal characteristics of drought. MSDI was developed 

based on precipitation and soil moisture considering bivariate copulas. Similarly, RTDI was 
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developed, which incorporated precipitation, soil moisture, and evapotranspiration. MSDI and 

RTDI effectively represent meteorological and agricultural droughts by considering the 

complex climate pattern.  

     Drought monitoring is a difficult subject due to its reliance on various climatic 

variables. To address this, a copula-based probabilistic MDI that represent the meteorological, 

hydrological, and agricultural droughts simultaneously has been developed. Four variate 

Clayton copula was the best fit copula model that used to combine precipitation, 

evapotranspiration, soil moisture and streamflow. Evapotranspiration, soil moisture and 

streamflow were estimated using the SWAT model. The future changes of precipitation, 

evapotranspiration, soil moisture and streamflow were estimated based on five ensemble bias 

corrected CMIP6-GCMs. The future MDI was also assessed to identify the impact of climate 

change on drought using CMIP6-GCMs under four SSPs. Drought characteristics like severity 

and duration were evaluated to identify the changes in future drought events. 

              The calibrated and validated AquaCrop model was used to evaluate the climate change 

impact on crop yields of maize, cotton and wheat over semi-arid region of UGRB. The future 

crop yield was projected by considering the bias-corrected ensemble CMIP6-GCM outputs 

under four SSP scenarios (SSP126, SSP245, SSP370 and SSP585) using AquaCrop model. 

Drought and its relationship to crop characteristics are complicated because the increasing 

occurrence of drought events caused due to climate variability affects productivity of crops. 

The temporal SYRS in the study area was investigated, and further, the impact of the de-

trended SPEI on maize, cotton and wheat crops were investigated. 

        5.2 Conclusions 

           Based on the study, the following conclusions were arrived 

i. The drought durations, peaks and severities are expected to increase in the future 

scenarios of for the basin based on the projections in RCMs. 

ii. The spatial variations in the non-stationary indices showed that the western part of the 

basin is highly susceptible to drought. From the month of January to May, the drought 

propagated from eastern part to the western part of the basin.   

iii. The non-stationary drought models performed better than the stationary drought model. 

iv. The PCC model is more reliable than trivariate student’s t copula model for obtaining 

the drought return period.  
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v. Based on Multivariate Standardised Drought Index (MSDI) and Reconnaissance 

Trivariate Drought Index (RTDI), the western part of the basin is highly vulnerable to 

drought.  

vi. The multivariate droughts are related to the large-scale climate indices. Hence it could 

be justified that the large-scale climate indices must be incorporated in the drought 

assessment studies. 

vii. SSP585 scenario indicated lesser drought severity while SSP245 indicated the most 

vulnerable drought conditions for Wainganga and Indravati river basins.  

viii. The climate change impact analysis on crop yield considering the ensemble model 

showed significant increase in the crop yields for all the major crops for future 

scenarios. The highest increase in crop yield is expected during the far future (2081-

2099) in most of the cases.  

ix. The yield-response to drought also varied among crops: the greatest yield-drought 

correlation was for wheat and the least for maize for observed period. For future 

scenarios, cotton is expected to be more sensitive to drought onset.  

    5.3 Contribution from the Study 

i. With the understanding of adverse effect of climate change on regional drought 

mechanism, the present study evaluated the potential climate change impact on drought 

on a river basin scale, encompassing different climate models. The study analyses the 

impact of climate change over river Godavari using bias corrected climate projections 

from Regional Climate Models (RCMs) considering different homogeneous region based 

on K-means clustering algorithm. The intermodal uncertainties were addressed using 

Reliability Ensemble Averaging (REA) method considering the performance and 

convergence criteria. Furthermore, the drought characterization and return period analysis 

have been carried out based on copula based multivariate techniques. 

ii. Non-stationary drought assessment plays a significant role in drought mitigation 

strategies. Understanding the large-scale climate indices and its teleconnection with 

climate pattern, the non-stationary drought assessment was carried out for Godavari basin. 

Drought characteristics were investigated and then compared based on stationary and non-

stationary models. A novel approach, Vine copula model was opted and compared with 

traditional form of trivariate copula modelling for drought return period analysis. 
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iii. Precipitation, minimum, maximum temperatures were projected based on bias corrected 

CMIP6-GCMs under four scenarios (SSP126, SSP245, SSP370and SSP585). REA 

method is implemented to obtain the model ensemble to tackle the uncertainty with in the 

model. Further, a semi-distributed calibrated hydrological model, SWAT is implemented 

to project the water balance components such streamflow, evapotranspiration, soil 

moisture spatially and temporally over two large river basins in Godavari, i.e. Wainganga 

and Indravati river basins. Further, qualitative association among meteorological, 

hydrological and agricultural drought is not adequately understood on a river basin scale 

in India.  Hence, the precipitation (P) and the simulated climate variables, like, 

evapotranspiration (ET), soil moisture (SM) and runoff (Q) from the SWAT have been 

used to obtain a new copula-based MDI. 

iv. Crop growth models like AquaCrop are useful in understanding the impact of climate 

change on crop production considering the various projections from GCMs and RCMs. 

In this study, climate change impact on crop yield of major crops of Aurangabad region, 

i.e., maize, cotton and wheat were studied. AquaCrop model is used to simulate the yield 

of all the three crops for a historical period (1997-2014) and then compared with observed 

yield data. The future yield is projected based on calibrated AquaCrop model. Further, a 

new approach has been developed to obtain crop-drought relationship status considering 

SPEI and yield series (SYRS) with changing climate condition. 

v. Agricultural management strategies and crop monitoring at various scales require a 

necessary supporting activity to quantify the complexity of crop-climate-soil interactions. 

This study is aimed to provide useful information to researchers and policymakers in order 

to better understand the effects of climate change on food security and to develop 

appropriate adaptation and mitigation options to achieve the desired goals. 

      5.4 Limitations of the Study 

i. LULC is assumed to be constant during SWAT simulations for periods of 2025-2100. 

This indicates that the climate is the only factor influencing the streamflow variability 

during future scenarios. The combined impact of LULC and climate could give a 

better knowledge about the hydrological processes in the basin. 

ii. Only major crops have been considered to arrive the yield rather than the actual crop 

pattern. Crop pattern study would enhance the idea of crop development in this area.  
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iii. More information from field data can improve regional projections considering crop 

models. 

5.5 Scope for further Studies 

   Based on the research, the scope for the further studies are identified as: 

i. The future projections of LULC will give insight into the future changes in the LULC 

pattern. 

ii. The future projections of non-stationary drought assessment with time as covariate 

can be considered. 

iii. The SWAT model can be calibrated and validated for evapotranspiration and soil 

moisture based on data availability of this area.  

iv. Drought hazard assessment of the basin can be carried out to identify the potential 

drought prone area. 

v. The drought and crop relations must be found for different drought indices obtained 

for further analysis 

vi. Socioeconomic and agricultural droughts must be studied in the entire basin in further 

studies.  
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