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ABSTRACT 

Climate changes are inevitable, and the accelerating rate of climate change impacts on the water 

sector requires climate vulnerability reduction and climate change adaptation measures. Global 

and regional studies of the implications of climate change on water resources are viewed as 

critical steps toward anticipating and preparing for the future climate change. In the context of 

climate change, the assessment of detrimental effects on water resources for optimal allocation 

and risk management has become a challenge for the research community. The changing nature 

of the climate as a result of human-induced disturbances draws a considerable amount of 

attention to water resources and hydrology. Regional Climate Models (RCMs) are the most 

credible resources for assessing the induced impact in the future for efficient risk and resource 

management at the regional level. 

The present research work initially deals with climate variability and trend analysis during 

historic and future time periods. Later, the climate change impact on an irrigation tank is 

assessed with the help of hydrological modeling and high-resolution RCM data. The impact of 

climate change on the irrigation tank lake water level fluctuations and irrigation water demand 

in the command area are examined. Finally, adaptation strategies for water demand 

management are developed. 

In the initial part of the thesis, the historic and future projected changes in the three major 

climate variables (precipitation, maximum and minimum temperature) are investigated for the 

Telangana region, India. For this purpose, climate variability and trend patterns are estimated 

using observed climate data obtained from Indian Meteorological Department (IMD) and RCM 

data from the Coordinated Regional Downscaling Experiment (CORDEX) database. The data 

from 1951 to 2013, is used for analysing the historic climate variability and trends and for 

future analysis data from 2020 to 2050 under both RCP 4.5 and RCP 8.5 are used. Coefficient 

of variation (CV) is used for evaluating climate variability at daily, monthly and annual time 

scales, and the identification of trends in climate variables, both parametric (Linear Regression) 

and nonparametric methods (Mann-Kendall and Sen’s slope) are used. 

For observed IMD data, the results of both parametric and non-parametric tests revealed a 

substantial increasing trend in daily maximum and minimum temperatures. Whereas daily 

precipitation shows no discernible trend, indicating precipitation uncertainty. Maximum and 

minimum temperatures have risen significantly, influencing precipitation patterns. The RCP 
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4.5 ensemble data showed an increasing trend for precipitation and maximum temperature, but 

no significant trend in minimum temperature in North Telangana Zone (NTZ) and sections of 

Central Telangana Zone (CTZ), and a decreasing trend for South Telangana Zone (STZ). 

RCP8.5 ensemble results for future scenarios predicted less rain and higher daily maximum 

and minimum temperatures. CTZ is most vulnerable to climate change.   

In the second part of the thesis, the impact of climate change on Pakhal Lake, which is an 

important irrigation tank supplying water for more than 30,000 acres of agricultural land in 

Telangana state. Soil and Water Assessment Tool (SWAT), a physically distributed 

hydrological model is used for modeling of the catchment hydrological response, in order to 

study tank inflows variations. Since the selected study area is an ungauged catchment, the 

SWAT model was set up using IMD data for the time period from 1985 to 2005 for the Konduru 

catchment – a gauged watershed that is downstream of the study area. SWAT model calibration 

and validation were performed for the Konduru catchment area using the Sequential 

Uncertainty Fitting (SUFI-2) algorithm in SWAT-Calibration Uncertainty Program (CUP). 

Regionalization approach is used to transfer the fitted model parameters to the Pakhal 

watershed. 

For the analysis of future climate projections, two sets of climate data are used i.e. CORDEX 

and NEXGDDP under both RCP 4.5 and RCP 8.5 scenarios. The climate models are bias-

corrected using a nonparametric quantile mapping method. The bias-corrected RCM data is 

used as SWAT model input to evaluate the monthly and annual variations of the future 

streamflow and water balance components. Uncertainty in the climate models is reduced by 

developing the Reliability Ensemble Averaging (REA) method. The calibrated and validated 

SWAT model is used for the simulation of the hydrologic components of Phakal Watershed 

for Baseline (1986–2018), Future-1 (2020–2050), Future-2(2051–2080), and Future-3 (2081–

2099) periods. For simulating the future hydrologic conditions, four CORDEX-RCM outputs 

under RCP4.5 and RCP8.5 scenarios were used.  

The hydrologic components for Phakal Watershed were simulated using the SWAT model that 

has been validated and calibrated, during Baseline (1986–2018), Future-1 (2020–2050), using 

REA ensemble of 21 NEX-GDDP models. For the analysis of climate change, the simulated 

hydrologic conditions are compared with the observed data. The NEX-GDDP models are at a 

higher spatial resolution than the CORDEX models with a resolution of 0.25o. The CORDEX 



 
 

vii 

  

model results exhibited a significant change in hydroclimatic variables in Future-1 when 

compared to other future time periods. Hence, future-1 is considered for simulation using NEX-

GDDP data for comparison between the two data sets.  

The results from the climate change analysis reveal that surface runoff amounts are going to be 

impacted significantly by climate change. The future tank inflow simulation results also exhibit 

a significant decrease. Future-1(2020-2051) is the most vulnerable as it experiences the highest 

decrease in tank inflow. The results project a streamflow decrease of as high as 59 % in tank 

inflows from historic to future time periods. A significant decreasing trend is observed in the 

rainfall and lake inflows in the Phakal catchment. The outcomes of both future climate 

scenarios for NEXGDDP data are different.  A decrease in streamflow is observed in RCP 4.5 

which can be attributed to decreased precipitation and enhanced potential evapotranspiration 

(PET). Increased streamflow is predicted in RCP 8.5. Even though NEX-GDDP model data is 

at high resolution when compared to CORDEX, its correlation with observation data is less. 

The CORDEX model is found more reliable dataset for the climate change analysis of the study 

area. 

The effect of climate change on water availability in Pakhal Lake is assessed by predicting 

future water level changes. Support Vector Regression (SVR) coupled with SWAT outputs is 

employed for predicting lake water levels under present and future climate change scenarios. 

The radial basis kernel (RBF) function was used to implement the v-SVR approach. 

Precipitation data, SWAT output data of potential evapotranspiration (PET), inflows, and 

outflow volume, are used as independent variables in the ν-SVR model, while tank level is the 

dependent variable. The results of future tank water levels indicate a significant decrease in 

lake water levels from October-March. (Rabi Season).  

The irrigation water demand during historic and future periods is estimated using CROPWAT 

8.0. The results show a significant increase in irrigation demand under CRODEX RCP 4.5 

scenario. The irrigation tank performance indices are determined under the Standard Operating 

Policy (SOP) for future scenarios. The results indicate a decrease in reliability, while 

vulnerability and resilience are likely to increase because of climate change. Irrigation tank 

optimization is performed using Stochastic Dynamic Programming (SDP). Three adaptation 

strategies are considered for optimizing irrigation releases. The best fit strategy is chosen based 

on high reliability and resilience with low vulnerability values. The combination of 2 
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adaptation strategies i.e. mixed cropping and delayed plantation gives better performance for 

the Pakhal.  

The climate change impact results from the study can be used for devising suitable adaptation 

plans for managing water resources in the Pakhal Lake region. Adaptive policies proposed for 

water demand management are useful for the effective utilization of water resources in the 

Pakhal command area while ensuring crop yield. The methodology proposed in this research 

work can be used for other irrigation reservoirs for climate change studies. 

Keywords: Adaptation strategies, Climate Change Impacts, CROPWAT, Regionalization, 

SWAT Model, Support Vector Regression, Tank Irrigation. 
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Chapter 1 

Introduction 

1.1  General 

Father of the Indian Nation Mahatma Gandhi, has tried to explain the importance of natural 

resources and their sustainability through his famous quote “The earth, the air, the land, and 

the water are not an inheritance from our forefathers but on loan from our children. So we have 

to handover to them at least as it was handed over to us”. Among the available natural 

resources, water resources are crucial and should be used in an integrated manner so as to 

achieve the socio-economic balance of a country. The availability of freshwater on Earth is 

limited and is varied spatially and temporally. Global water scarcity assessments suggest that 

the scarcity increases considerably in the future, in comparison with the present day (Hanasaki 

et al. 2008, 2013). Population growth, extensive urbanization, changing patterns of agriculture, 

and climate-driven changes are estimated to cause an acute impact on the water resources of 

developing countries (Meter et al. 2016, Neelakantan et al. 2017). Furthermore, as a result of 

climate change, water availability is projected to become restricted in most of the regions of the 

world.   

Water scarcity is a serious issue in India, which affects a huge percentage of rural and urban 

population. It also extensively affects the ecosystem and agriculture. Water being a critical input 

to the agriculture sector, it is most affected among the other sectors due to the prevailing water 

crisis. India has only 4% of the fresh water resources of the world despite consisting almost 

18% of global population (CWC Annual Report 2018). The availability of these water resources 

is distributed unevenly in many regions of India (both spatial and temporal), creating mismatch 
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between water availability and water demand (Goyal and Surampalli 2018). Out of the available 

Indian water resources, 80% is used in agriculture. The ever-increasing population of India is 

posing a serious stress on food security, ultimately increasing the agricultural water demand. 

This is further worsened by the direct as well as indirect impacts of climate change.  

Climate change is a major challenge to water resources management, food security and socio-

economic welfare of the people in the 21st century. According to IPCC fifth assessment report 

(AR5), the period from 1983-2012 was probably the hottest period in the Northern Hemisphere 

in the past 1400 years. The global average surface temperature variation for the period 2006–

2100 relative to 1986–2005 is projected to be in the values between 0.3°C and 4.8°C under the 

four Representative Concentration Pathway (RCP) 2.6, 4.5, 6.0, and 8.5 scenarios (Fig 1.1). All 

changes are with respect to 1986–2005. Time series of projections and uncertainty band 

(shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). For each RCP scenario, the 

mean and corresponding uncertainty are represented as colored vertical bars on the right-hand 

side of each panel, averaged over the years 2081-2100. 

 

Figure 1.1 Global average surface temperature change from 2006 to 2100 as projected by multi-

model simulations.       (Source: IPCC 2014) 

The changes in climate has a significant impact on the natural systems, more specifically on the 

water resource systems. The precipitation pattern variability or melting of snow is modifying 

the hydrological systems consequently impacting the availability of water resources. Due to 

changes in water availability as well as temperature rise, climate change may have a detrimental 

impact on agriculture productivity across all agro-ecological zones. Rainfall variability and a 

decline in the number of wet days will have the most effects on rainfed agriculture. The changes 

in extreme weather and climate events are some of the adverse consequences of climate change 

which in turn pose a serious impact on water resources. Therefore, for efficient water resource 
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planning and management, it is crucial for decision- and policy-makers to understand the 

implications of climate change on water resources.  

1.2  Climate Change Impact Studies 

Climate change and its variability can change the hydrological cycle and hydrological regime 

of the region and these changes can cause considerable impacts on the water resources of the 

region (Dibike and Coulibaly 2005). The increasing rate of global climate change pose a 

significant impact on local hydrological regimes and water resource availability. To predict the 

adverse impacts of climate change, there is a necessity for observed climate change analysis 

and assessment of climate variability under various climate scenarios (both historic and future). 

The use of climate models can help us better understand and anticipate how the climate will 

behave on a seasonal, yearly, decadal, and centennial time scale. They assist to understand past 

climate and projecting climatic conditions into the future. Models, which provide future 

projections on both a global and regional scale, are numerical representations of the climate 

system based on the physical, chemical, and biological aspects of its components. 

General Circulation Models (GCMs), which are based on closed systems incorporating the 

entire Earth system, are used to model the large-scale aspects of the global circulation and other 

physical parameters. The sub-regions models, are created over a smaller region utilizing the 

boundary conditions produced by the GCMs, taking into consideration the local characteristics, 

in order to project the climate of a smaller sub-region. These sub-region models are Regional 

Climate Models (RCMs). GCMs are coarser in resolution which cannot be used for accurate 

analysis of study regional climate changes. This issue can be overcome by RCMs, which are at 

a finer resolution. To project climate into the future, the climate forcing is set to change 

according to a possible future scenario. IPCC has released different scenarios under the name 

of Representative Concentration Pathways (RCP), that provide several future scenarios and are 

useful tools for analysing how driving factors may affect future emission results and assessing 

the associated uncertainty. 

The effects of climate change on local water resources can be better understood by analyzing 

climate variability using downscaled GCMs or RCMs under various climate scenarios. Due to 

the close association between the water resources and the climate, regional hydrology may be 

impacted by the global climate change. As discussed earlier (in Section 1.1), an increase in the 

surface air temperature is the consequence of rise in the concentration of greenhouse gases. 

Increase in the temperature results in the modification of key components of the hydrological 

cycle like precipitation and evaporation (Simonovic 2017). Planning and management of water 
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resources will be impacted by changes in precipitation in a number of ways, including the 

design of hydrological structures, managing floods and droughts, and urban planning and 

development. Due to its reliance on the monsoon and water availability for production, India's 

agriculture economy is particularly susceptible to the projected climate changes. Therefore, it 

is crucial to evaluate the effects of climate change on the local hydrology. This will make it 

easier to plan adaption strategies for local agriculture and water resource management. 

1.3  Climate Change Impacts on Semi-Arid Regions 

Semi-arid regions cover 14.2% of the Earth’s land surface and support 10% global population 

(Huang et al. 2016). Population growth, extensive urbanization, and climate-driven changes 

cause an acute impact on the water resources and agricultural productivity of semi-arid regions 

(Meter et al. 2016, Dong et al. 2018). These regions experience extreme seasonal and inter-

annual precipitation variability resulting in frequent drought and flood conditions (Goff et al. 

2000, Mail et al. 2016). Semi-arid regions are most sensitive to climate variability as the 

economy of these regions predominantly relies on rain-fed agriculture. This implies even a 

minute variation in precipitation and temperature patterns would have a significant impact on 

the agricultural productivity of the semi-arid regions (Huang et al. 2016). 

The water resources are under considerable stress due to the uncertainty of precipitation and 

rising temperatures in semi-arid regions. The precipitation and temperature-related extremes 

result in an increased frequency of hydrological extremes such as droughts and floods. It is 

anticipated that extreme precipitation will significantly increase, especially in areas that are 

already experiencing wet spells, whereas dry weather conditions are predicted to increase in 

regions with dry spells in present climate conditions. These will put more strain on water 

resources, altering the hydrological cycle's elements like precipitation, evaporation, and runoff 

(Sharmila et al. 2015 These hazardous climate extremes are anticipated to have a damaging 

effect on semi-arid regions of developing countries, which are already struggling to manage 

their water resources (Ashok and Sasikala 2012).  

In India, the semi-arid regions cover an estimated area of 53% of the total geographical area, 

most of which are concentrated in Southern India (Anbumozhi et al. 2001). In these areas 

almost the entire rainfall is confined to the 30 to 60 days of the monsoon months (IMD 1987). 

The low irregular rainfalls along with the extreme temperatures make these regions vulnerable 

to water shortage. Furthermore, the rainfall in India is highly dependent on the North-East and 

South-West monsoon, which results in seasonal variability of rainfall causing high runoff in 

monsoon period leading to floods and severe water scarcity in non-monsoon periods. This 
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monsoon driven climate of India results in spatio-temporal mismatches between water 

availability and demand (Meter et al., 2016). Hence, there is an urgent need for effective water 

resource management projects in these rain-scarce semi-arid regions. 

1.4 Hydrological Modeling for Climate Change Impact Studies 

Hydrological modeling is utilized to understand the hydrological processes in order to provide 

accurate information for managing water resources in a sustained manner. Hydrological models 

are extensively used to assess the impact of a changing climate on the water cycle as well as to 

project future hydrological regimes (Teutschbein 2013, Kour et al. 2016). The models, when 

chosen appropriately, after performing calibration and validation, aid in the process of  decision 

making. These models provide a scientific base to develop climate-risk management plans. 

Assessment of the climate change impacts on a hydrological system involves two steps: 

assessment of climate change and the response of hydrologic systems to climate change (Jiang 

et al. 2007). For this purpose, hydrological model simulations driven by GCMs and RCMs are 

frequently used, especially to make future projections of the major hydrological component i.e. 

streamflow.  

For assessment of the effects of climate change, various types of hydrological models are 

utilized, including global, regional, and basin-scale, simplified conceptual, process-based, high 

resolution, semi-distributed, and lumped models (Kour et al. 2016, Krysanova et al. 2018). 

They can be applied to extend flow records in relation to longer records of rainfall, fill in gaps 

in broken records, and estimate river flows at ungauged sites. Some of the popular hydrological 

models are variable infiltration capacity model (VIC), TOPMODEL, hydrologiska bryans 

vattenbalansavdelning model (HBV), MIKESHE, and soil and water assessment tool (SWAT) 

model. The VIC model is a macro scale model, which is best suited for global scale studies that 

are applied for large river basins (Lundin et al. 2000, Treesa et al. 2017). MIKE SHE model 

limited to smaller catchments as it requires large data and physical parameters (Devia et al. 

2015). HBV model gives satisfactory results especially for estimation of snowmelt, and is based 

on the degree day method (Bhattarai et al. 2018). TOPMODEL can be used for catchment scale 

predictions in ungauged basins (Krysanova et al. 2018). SWAT model was initially developed 

for dealing with agricultural water management issues, but its applications have expanded to 

river basin management, ground water, reservoir sediment yield, climate and land use change 

studies (Gassman et al. 2007). The key benefit of the model is that it only needs a minimal 

amount of direct calibration to produce accurate hydrologic predictions (Devia et al. 2015). 

Although any of the models listed above can be used to analyze the impacts of climate change, 
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the SWAT model being a user-friendly open source model has gained a vast popularity in 

applying for climate change studies. 

1.5 Climate Change Adaptation  

The term "adaptation" refers to the modification of natural and human systems in response to 

the stressors and consequences of climate change. The effects of climate change on natural and 

human systems are alleviated by adaptation. Adaptation is important because it can reduce 

adverse impacts and enhance beneficial impacts, especially for human systems (McCarthy et 

al. 2001). Adaptation can be reactive or anticipatory (or proactive), depending on the timing, 

goal and motive (IPCC 1998). Reactive adaptation takes place after the impacts of climate 

change have occurred. Proactive adaptation is based on the expectation that climate will change 

rather than on its actual impacts. The negative impact of climate change can be managed by 

developing adaptation policies. Adaptation policies refers to the actions formulated to reduce 

vulnerability. Vulnerability refers to the ability to anticipate potential harm or damage. It 

includes factors such as absorb stress or effects or ability of a system to cope and to recover or 

“bounce back”. Adaptation measures are of many forms based on the response and anticipation 

to climate change for ex: planned and spontaneous adaptation strategies.  

The IPCC Fourth Assessment Report (IPCC AR4, 2007) defines adaptation practices as “actual 

adjustments, or changes in decision environments, which might ultimately enhance resilience 

or reduce vulnerability to observed or expected changes in climate”. Water resource managers 

throughout history have been developing adaptation strategies to the impacts of weather and 

climate using a variety of practices which include irrigation, drainage, and flood control 

measures. However, the long-term climate changes pose a new challenge to water management 

as they are inherently uncertain (IPCC, 2007). To address the issues of both the present and 

future climate change, adaptation measures in water resource management policies and 

practices are required. Adaptation strategies which can bridge the gap between the water 

availability and demand are crucial to achieve water resilience at a particular region. For 

improved management of water resources, supply-side and demand-side adaptation techniques 

should be taken into account (Cheng and Hu 2012). Some of the adaptation strategies include 

change in water policy, strengthening non-traditional water resources, integrating river basin 

water resources management, strengthening water infrastructure. Development of alternative 

water resources through rainwater harvesting, change in water use efficiency and water 

allocation policies can also be considered as adaptation options. Further, heuristic or robust 
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decision making frameworks can be developed which determine the adaptation solutions to 

climate change (Daron 2015). 

1.6 Tank Systems in Semi-Arid Region  

Rain water harvesting with local scale structures like “tanks” (relatively small reservoirs) is an 

essential component in managing water resources of semi-arid regions which have a limited 

precipitation. Over the centuries traditional tank systems have become a major source of 

irrigation which helped in the sustainable agricultural production in the semi-arid zones of 

Asian countries like India, Sri Lanka, Japan (Palanisami and Easter 1987, Unami et al. 2005, 

Arumugam et al. 2009) In India, these tanks are concentrated in the semi-arid region of Deccan 

plateau due to the terrain and soil conditions that are existent in the region (Narayanamoorthy 

2007). About 60% of tank irrigation in the country is accounted for by Andhra Pradesh, 

Telangana, Karnataka and Tamil Nadu (Palanisami 2006, Ramakrishna, 2007Due to the fact 

that tanks still contribute for one-third of India's irrigation needs, they constitute a significant 

traditional source of water for the nation. 

Tank irrigation method is one of the important water management strategies for coping up with 

the rainfall variability (Siderius et al. 2015). Most of the tanks are natural and with less cost for 

their construction facilitating individual farmers to maintain them on their own. These tanks are 

located in hydrologically favorable sites, some of them in chain links or cascades, capturing the 

rainfall and serving multiple users with irrigation having the major share (Shanmugham, 2007). 

These tanks allow for storage of excess water during floods which can be used during water 

shortage and aids in recharge of groundwater. Tank irrigation is important in semi-arid regions, 

as the small scale farmers rely almost entirely on the irrigation water. In the semi-arid and arid 

parts of South India, the tanks are essential not only for irrigation but also for maintaining the 

balance of the local eco-system. In addition to helping with irrigation, tanks supply water for a 

variety of uses, including livestock and human use, fish farming, ground-water recharge, flood 

control, and drinking water for rural and urban population (Siderius et al. 2015). 

Tank irrigation systems are extremely fragile structures with simple operations. They need 

continuous surveillance, maintenance support, and conservancy. There are variety of problems 

associated with these irrigation systems like silting, reduction in design discharge, 

encroachment of tank beds, damage of tank bunds, etc. The development of large-scale gravity 

irrigation systems, the rapid spread of tube wells, and a decline in community management 

practices resulted in further depletion of the tank systems. In order to address the drought 

conditions, an evaluation and prioritizing of the restoration of the existing small storage systems 
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in India's semi-arid and desert regions is required. The influence of climate change on tank 

systems must also be examined because most tanks are fed by rainfall, and climate extremes 

have a significant impact on the availability of water in tank systems. Conservation of tank 

systems in semi-arid regions with climate change perspective is necessary for resilient and 

sustainable water management. When maintained effectively, these tanks will support the 

development of the habitats surrounding to them. 

Situated in Semi-Arid Region of Deccan Plateau, Telangana state of India has predominantly 

hot and dry climate. Since the precipitation being limited to 50-60 days in a year, the people in 

most of the region rely on the medium and minor irrigation tank system to meet their water 

needs. Approximately 85 percent of cultivated area is rain fed and tank irrigation is the main 

source of agriculture. The region had a long history of efficient and economical water usage as 

well as management, which was started by the Kakatiya dynasty.  The economy of Kakathiya’s 

was highly dependent on agriculture, so they vigorously implemented a policy of small tank 

irrigation which proved to be the only method of judicious water usage for the Telangana 

region. Most of the tanks were constructed just below the thickly vegetated land to ensure the 

yield from the tank catchment is more. The selection of site for tank construction was made in 

such a way that the sediment deposit from streams to tanks is less. The Kakathiya’s constructed 

some of these reservoirs at huge capacity than required to mitigate any water shortage for one 

or two drought years.   

The irrigation tanks developed by Kakatiyas were constructed making use of the existing 

natural terrain. The location of the site is selected between two hillocks on either side with a 

minimum length of the bund. Small tanks are constructed in the chain where surplus from one 

tank fills in another tank. The capacity of the tank is fixed at 2 to 3 times the available yield at 

the location of the tank. This chain tank system ensures that both the water scarcity (drought) 

and water excess (flood) conditions are taken care. The sluices are located at different levels so 

as to flush out the accumulated silt naturally under the head of water column that resulted in a 

negligible reduction in capacity of the tank due to siltation.  The maintenance of these tanks 

was taken up by local village communities.  

Their methodology in design and construction of tanks, which had evolved over the centuries, 

was recognized and used by subsequent rulers. However, by the end of the mid-19th century, 

most of the tanks were in a state of neglect especially with regards to the upkeep of the retaining 

strength of their embankments. These tanks have undergone major repair and renovation work 

during the end of the 19th century to avoid frequent breaching. The record shows that more 
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than 5,000 tanks had been restored by 1900. Some of the tanks which were constructed 800 

years back are still existent.   

Due to a number of socioeconomic and institutional causes, including changes in the caste and 

class structures as well as changes in the pattern of land ownership, the use of tanks for irrigation 

significantly decreased following independence (Jayatilaka et al. 2003, Sakthivadivel et al. 

2004). As a result of the prioritization of canal systems and the overuse of ground water, the 

minor irrigation was reduced (Sivasubramaniyan, 2006). The tremendous priority placed on the 

development of private wells and pumps is the main factor contributing to the downfall of tank 

irrigation (Balasubramaniayan, 2003). Farmers switched to well irrigation as a result of the 

development of wells and the introduction of green revolution technology because it offers 

high-quality irrigation that increases agricultural productivity. Thus, the changes in cropping 

and land use patterns, poor maintenance reduced the inflows and resulted in the disintegration 

of the tanks. 

Poor administration, the absence of village institutions, and a lack of local involvement in tank 

operational procedures are the main contributors to the degradation of tank irrigation. Tank 

encroachment on the foreshore area, catchments area deforestation, poor operating conditions 

of the sluices, defective tank structures, weak farmers participation also lead to the detrioration 

of tank performance (Palanisami and Nanthakumaran 2000, Narayanamoorthy 2007, 

Prabakaran et al. 2018). The area that was irrigated under the tanks has decreased by almost 

40% over the last few decades. 

Telangana was formed by bifurcation of Andhra Pradesh, after continuous agitations of people 

in the region for about sixty years. The main reason for request of a separate state is an 

unbalanced share of natural resources between Andhra and Telangana regions. During the rule 

of the united Andhra Pradesh, much importance was not given to the traditional tank system of 

the region. Over the decades the negligence of repeated governments has led to the deterioration 

of the tank system in the Telangana region. Mission Kakatiya is a major program started by the 

State Government after the bifurcation of the united Andhra not only to revive the neglected 

water bodies but even to put them to optimum use. For the sake of improving tank irrigation in 

Telangana state, a project named Mission Kakatiya for distillation and restoration of tanks in a 

huge way (over all state) was started by the government of Telangana. The name mission 

Kakathiya adopted as a tribute to the Kakathiya rulers who constructed the tanks with utmost 

expertise and developed the tank irrigation system in this region during their rule.  
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The project aims at rejuvenating the 47,000 tanks and lakes spread over the state by the end of 

2020 by focusing on 9000 tanks per year in order to bring them back to the original standards. 

The key points of this tank rehabilitation program are redistributed, localized management of 

tank systems and strengthening community-based institutions to take the responsibility for the 

sustainable development and management of the tank systems. A tank information system is 

developed by the Government of Telangana, by identifying the total number of tanks spread 

across the state and assigning a Unique Identification (UID) for each of the tank.  

1.7 Research Motivation and Problem Formulation 

In many regions of the world the demand for fresh water has been increasing continuously due 

to urbanization and population growth.  Simultaneously, climate change is also contributing to 

the water stress, as it directly affects the hydrology of a region. Increase in water demand and 

climate change, have made it essential for decision-makers to come up with better water 

management strategies. In recent years, much of the research is focused on water resources 

management at river basin scale, developing climate change adaptation strategies for the river 

basin, which is not suitable for smaller regions with arid and semi-arid climate. Very few works 

have addressed sub-basin scale or region-specific adaptation and decision making under climate 

change scenarios. Furthermore, the impact of climate change on rainfed irrigation under tank 

systems has not been addressed properly.    

Major parts of the Deccan Plateau in the Peninsular India come under semi-arid region. Even 

though big rivers like Godavari and Krishna pass through this region, it is very expensive to 

use these waters for irrigation because of the topography. Therefore, most of the dynasties ruled 

these regions build the irrigation tank systems. However, over a time period, these tank systems 

got neglected and led to deterioration, siltation and encroachment of tank systems. Due to poor 

maintenance of tank systems, most of agriculture in these regions converted to rainfed or 

depending on ground water resources which is creating a lot of stress on the farmers. The 

present Government of Telangana state initiated the Tank Rejuvenation Program on the 

availability of catchment, tank de-siltation capacity, rainfall pattern and climate change impact 

etc.  

The erstwhile Warangal district, located in semi-arid region of Telangana, has predominantly 

hot and dry climate and is chosen for the study. The hydrology of semi-arid areas like erstwhile 

Warangal district is highly sensitive to climate variability. For example, relatively small rise in 

temperature and deficit in precipitation in the area could result in large decrease in runoff, 

increasing the severity of drought. Understanding the impact of climate change on the 
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vulnerable resources would be useful to develop better strategies for management and 

conservation of water resources in the region, enabling water management planners to decide 

future demand and availability of water.  

Since there is no perennial river flowing in the region and precipitation being limited to 50-60 

days in a year, the people in the region rely on the tank system to meet their water needs. The 

tank systems of this particular region, which was designed and constructed by Kakathiya rulers, 

contributes significantly to the water resources of the district. Hence, it is necessary to estimate 

the water availability in the tank systems for judicious use of water resources. In this context, 

it is appropriate to develop a decision support system for a selected tanks system, which 

supports as adaptation strategy for the climate change by addressing the following interrelated 

scientific questions - 

● How climate change really impacts the tank systems?  

● What are future trends in rainfall to understand the tank filling strategies? 

● What type of adaptation strategies need to be followed for sustainable tank irrigation 

under climate change conditions?  

● What type of decision support system needs the tanks systems as an adaptation strategy 

for their sustainability?  

Keeping the above questions in view, it was proposed to model the hydrological process of the 

selected study region to explore the changes in water availability with changing climate. The 

outcomes from this project are useful in developing the adaptation strategies for policy makers 

for the selected tank system. Further, the study assists to develop efficient water management 

and improved agricultural practices in semi-arid regions, in which tank systems are the primary 

source of irrigation. 

1.8 Aim and Objectives of the Study 

The main aim of this research study is to develop adaptation strategies for the management of 

water resources in an irrigation tank system of semi-arid region under changing climate. Based 

on the aim of the study, the following objectives are defined for research work: 

 Evaluation of observed and model climate trends for a semi-arid region to identify the 

past and future climate change in the region. 

 Hydrological modelling for assessment of the impact of changing climate on the 

Ungauged tank system of semi-arid region 
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 Evaluation of changes in the irrigation water demand with respect to future climate 

change scenarios for the selected tank system. 

 Development of adaptation strategies for the selected tank system under climate change 

scenarios. 

1.10 Outline of the Thesis  

This thesis report consists of seven chapters. Current chapter consists of an introduction 

presenting the background and motivation of the study. The main aim and objectives of the 

research work are also presented in this chapter. Literature relevant to hydrological modelling, 

various climate models and their uncertainty, impact assessment, hydrological modelling, 

prediction of surface water levels and DSS for adaptation is presented in chapter 2. Chapter 3 

consists of climate variability and trends in the selected semi-arid region using both observed 

and climate model data. Chapter 4 presents the hydrologic modeling SWAT of a selected semi-

arid tank system under climate change scenarios. In Chapter 5, the application of the machine 

learning technique, Support Vector Regression Model (SVR) for the prediction of future tank 

water availability is described. The development of climate change adaptation policies for tank 

water management is presented in Chapter 6. In the last chapter of the thesis the summary and 

conclusions of the research work are presented.
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Chapter 2 

Literature Review 

2.1 General  

Based on the framed objectives in the last chapter, the literature review is carried out on the 

aspects related to tank systems in semi-arid regions, regional climate models data usage, 

hydrological modeling in tank systems, climate change impact assessment on water resources, 

and adaptation to climate change impacts on water resources in the tank systems. A detailed 

description of the reviewed literature is given in the subsequent sections.  

2.2 Tank Systems of Semi-Arid Regions  

Minor irrigation tanks are essential to meet drinking and domestic water needs. These tanks are 

mainly found in the semi-arid Deccan plateau region of India. They are strategically placed in 

hydrologically desirable areas, some of them in consecutive chains or cascades, effectively 

capturing rainwater, and they serve a variety of purposes, with irrigation accounting for the 

biggest share of their uses (Shanmugham, 2007). Traditional tank systems have aided in the 

sustainable production of agricultural goods in semi-arid regions of India, Sri Lanka, and South 

East Asia (Nagarajan, 2013). The development of large-scale gravity irrigation systems, the 

rapid spread of tube well technology, and the decline in traditions of community management 

resulted in the depletion of the much-needed tank systems. In recent years, a variety of efforts 

have been made in India to rehabilitate these traditional water management systems.  

Ashok and Sasikala (2012) suggested that increasing temperature and variability in 

precipitation in semi-arid regions have reduced crop yields and increased vulnerability of the 

farmers. The study quantified the vulnerability of both farmers and irrigation tanks to rainfall 
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variability in a rain-fed area. Tank performance was determined through adjusted tank 

performance measure, and vulnerability was estimated through livelihood vulnerability index. 

The results indicated that tank performance and livelihood vulnerability were higher in rainfall 

less than normal area. The authors suggested that there is a need for effective policies for the 

transfer of climate adaptation technologies in agriculture. 

Nagarajan (2013) established a method for evaluating the degradation of tanks/ponds in a tank 

cascade system, and based on the hydrological and physical status of tanks, a tank rehabilitation 

index was derived. In order to address the drought conditions, it was determined that the small 

storage systems that are now present in semi-arid and dry regions require evaluation and 

prioritizing of restoration. Furthermore, the effectiveness of current irrigation techniques would 

be impacted by climate change. Higher irrigation needs would result from the expected 

increased variability in precipitation (longer drought periods). 

Siderius et al. (2015) stated that the tank irrigation, serves more than 20% of cropped area in 

southern states, is one of the most important strategies for dealing with rainfall variability. 

Water is harvested during the monsoon and used during the dry season in tank irrigation 

systems. It is a versatile system in which the amount of water stored in the tank by the end of 

the monsoon determines what and how much land area farmers cultivate. 

Several studies apart from the above mentioned ones have addressed the causes for the 

degradation of traditional tank irrigation systems like changes in management practices and the 

difficulties in reviving them are discussed (Pingle 2011, Arivoli and Ambujam 2016, 

Bebermeier et al. 2017, Reddy et al. 2018, Ramabrahmam et al. 2021). Future climate change 

will make conserving flood waters more important, making it more important to increase the 

storage capacity of irrigation tanks for boosting water availability for irrigation and water 

storage (Kumar 2017, Neelakantan et al. 2017, Reddy et al. 2018). 

2.3  Climate Models and Uncertainty Analysis 

Assessment of climate change impact on water resources requires an understanding of 

hydrologic and climate interactions. The climate change impact studies on hydrology are often 

done using hydrological models which require meteorological variables for current and future 

climate conditions at finer resolutions (Gosain et al., 2006; Mujumdar and Ghosh, 2008). The 

Global Climate Models (GCM’s) run at a coarser scale and they cannot be used directly for 

impact studies at the regional or basin level as they might cause uncertainty in future 

predictions. As the GCMs lack finer spatial resolution, dynamical and statistical downscaling 
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techniques are used for impact studies (Mujumdar and Ghosh, 2008; Tripathi et al., 2006). 

Among the statistical downscaling techniques, the Support Vector Machine (SVM) approach, 

Statistical Downscaling Model (SDSM), fuzzy clustering, and Relevance Vector Machine 

(RVM) approach have gained popularity in India (Tripati et al., 2006; Aanandi et al., 2008; 

Mujumdar and Ghosh, 2008; Mahmood and Babel, 2012, Meenu et al., 2012). Only a few 

studies have been carried out using dynamical downscaling techniques due to the high 

computational complexity (Devak and Dhanya, 2014). 

Suitable Regional Climate Models (RCMs) are also used instead of downscaling techniques and 

the climate variables are projected into the future. RCMs were originally developed to provide 

fine-scale climate data for impact studies, but in the recent past, they are used as general 

modeling tools for regional climate change impact studies. However, these RCMs correspond 

to some extent of uncertainty, especially when used for climate change impact studies at the 

local or regional scale (Christensen et al. 2008, Gudmundsson et al. 2012, Singh et al. 2019).  

Hence, the following paragraphs review the literature related to climate models (GCMs and 

RCMs) and the techniques used to account for the uncertainty involved while using them for 

climate change impact studies. 

Giorgi and Mearns (1991) contrasted the advantages, drawbacks, and applicability of the 

empirical and GCM nested limited area modelling techniques. They stated that while applying 

empirical techniques is simple, they are unable to capture mesoscale forcings, which are more 

susceptible to changes in climate. The GCM nested limited area models can simulate a variety 

of atmospheric and climatic phenomena, but they are computationally complex and expensive. 

They proposed rapid improvement in both the techniques for better representation of regional 

response in the context of climate change based on their strengths and weaknesses. 

Giorgi and Mearns (2003) suggested using Reliability Ensemble Averaging (REA) to represent 

the multi model ensemble mean in probabilistic climate projections. With reliability based on 

simulation likelihood, the method takes into account the disadvantage of assuming that all 

simulations are probabilistically equal. The authors further claim that REA functions as an easy-

to-use and adaptable tool for quantifying climate change and relating uncertainty, reliability, and 

change probability. 

Fowler et al. (2005) examined the extreme precipitation over the UK using the HadRM3H 

regional climate model. The RCM was able to simulate the extreme rainfall at various return 

periods and durations despite the differences in spatial resolution between the observed and 
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modelled data. Additionally, for shorter durations and in complex orographic regions, 

HadRM3H offers a better representation of the spatial variability of extreme precipitation. The 

authors hypothesized that RCM has the capacity to capture the variability in the extreme 

precipitation under enhanced greenhouse conditions, despite the model's tendency to 

overestimate the extreme in high altitude areas and underestimate it in rain shadow areas.  

Tebaldi and Knutti (2007) focused on the combination of multi model ensembles like selection 

of metrics and complexity of performance of the model in suggesting the reliable model for 

future projections. It also quantifies the inter model dependencies and the representations of the 

models with some basic uncertainties. When compared to studies at the global level, regional 

studies have more uncertainties developed. 

Kjellström et al. (2010) analysed the performance statistics of RCMs using both weighted and 

unweighted ensemble means. The results show that weighted means variables are more close 

to actual observations than ensemble variables. 

In order to assess the change in water availability of the Indian River systems over time and 

space, Gosain et al. (2011) used the Regional Climate Model (RCM) - PRECIS with daily 

weather data from the Indian Institute of Tropical Meteorology (IITM) and the IPCC AR4 

emission scenario.  

Shrestha et al. (2011) studied the impact of climate change on the hydrologic regime of the 

Lake Winnipeg watershed (LWW), Canada using three RCMs for the prediction of climate 

variables and the SWAT model for hydrologic simulation. They stressed the need for numerous 

RCMs since hydrologic regimes simulated with various RCM forcings are prone to substantial 

errors, making it difficult to estimate a broad range of potential climate change effects. 

Teutschbein and Seibert (2012) reviewed a variety of simple and complex bias correction 

techniques for RCMs and their selection in order to correct model deviations. When comparing 

the performance of bias-corrected data to uncorrected RCM data, bias-corrected data showed 

better streamflow performance. 

Hagemann et al. (2013) evaluated the hydrological response to climate change and 

comprehensively estimate the future state of the global water resources, numerous global 

climate (three) and hydrological (eight) models were incorporated. This multi-model ensemble 

assists us to examine how hydrology models, in contrast to climate models, contribute to the 

uncertainty in projected hydrological responses. Due to the systematic biases, GCM outputs are 
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unfit for the direct use in hydrological impact studies, so a statistical bias correction has been 

used. For some regions, the results exhibited a wide range of projected changes in water 

resources within the climate-hydrology modelling. 

Woldemeskel et al. (2014) stated that the GCM projections are uncertain subject to standard 

errors in the model structure, scenarios and initial conditions and the overall reliability of impact 

assessments becomes questionable. A novel framework has been proposed for evaluating the 

uncertainties in GCM projections and impact studies. The GCM biases were corrected through 

nested bias correction (NBC) method and the uncertainty was quantified using an uncertainty 

metric i.e. the square root error variance (SREV). Finally, the uncertainty arising due to the 

parameter estimation in impact assessment models is treated using simulation–extrapolation 

(SIMEX). 

Rajbhandari et al. (2015) examined the possible future changes in the climate over the Indus 

basin with the help of the outputs from the PRECIS model driven by data for three different 

lateral boundary conditions (LBC) from Quantifying Uncertainty in Model Predictions 

(QUMP) simulations using SRES A1B scenario. 

Pinto et al. (2016) analysed the extreme precipitation events of the present and future climate 

over southern Africa. Parametric and non-parametric approaches were used to identify and 

analyse these extreme events using the Coordinated Regional Climate Downscaling Experiment 

(CORDEX) models. The performance of the CORDEX simulations suggested that the models 

were able to capture the observed spatial patterns of the extreme precipitation. 

Das and Umamahesh (2017) assessed the spatio-temporal variation of water availability 

in Wainganga river basin under CORDEX simulated future projections. The uncertainties 

arising due to the use of multiple climate model projections were accounted for by using REA 

and the bias correction is done by quantile mapping method. 

Sowjanya et al. (2018) analysed the inter and intra annual streamflow variation of Wardha 

watershed using CORDEX future climate projections. Before being employed in the 

hydrological model, the climate model simulated temperature and precipitation underwent bias 

correction because they are prone to severe biases from system model flaws brought on by 

inaccurate conceptualization, spatial disaggregation, and discretization within the grid cells. 

Bokhari et al. (2018) projected the climatic changes in future for the Kabul River basin situated 

in mountain ranges of Pakistan and Afghanistan using the high resolution NEXGDDP data. An 
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ensemble model derived from multiple climate models of NEX-GDDP data replicated observed 

spatial distribution and magnitudes of temperature and precipitation that is impossible to 

capture with coarse resolution GCMs. 

The studies on RCMs confirm their efficiency in capturing the observed climate characteristics, 

however the significant biases remain and are found to be specific to individual models, regions 

and seasons (Dosio and Panitz 2016, Jain et al. 2019). The biases need to be addressed 

systematically using statistical bias correction methods (Christensen et al. 2008, Thrasher et al. 

2012, Teutschbein and Seibert 2013, Fang et al. 2015, Ringard et al. 2017, Sahany et al. 2019, 

Enayati et al. 2021). The multi-model average or weighted multi-model averages outperforms 

any individual simulation and that the RCMs’ uncertainty can be reduced significantly. 

CORDEX and NEXGDDP scenarios-based projections of future climate are suitable for impact 

and vulnerability assessment and developing adaptation measures(Abiodun et al. 2019, Jain et 

al. 2019, Musie et al. 2020, Rocha et al. 2020, Poonia et al. 2021).  

2.4  Trends in Past and Future Climate Variables 

Observational and historical hydro-climatic data are typically used for project planning and 

design related to water resources. In most of the water resources engineering, the stationarity, 

or time-invariant statistical properties of the time series under consideration, is assumed 

implicitly(Chen et al. 2007). A change in the global climate caused by an increase in greenhouse 

gases in the atmosphere would render such an assumption invalid. The spatio-temporal 

uncertainty of the rainfall distribution and temperature variation is one the fundamental impacts 

of climate change (Yadav et al. 2014). The analysis of these meteorological variables (rainfall 

and temperature) is an essential aspect in detecting the climate change (Gocic and Trajkovic 

2013). To reduce the risks and vulnerability associated with climate change, it is essential to 

identify trends in precipitation and temperature based on historical data. The trend analysis 

helps assists in projecting the future scenarios and  implementing the climate related 

policies(Feng et al. 2011, Gocic and Trajkovic 2013, Birara et al. 2015, Gajić-Cǎpka et al. 

2018, Praveenkumar and Jothiprakash 2018). In recent years, various studies have been carried 

out for identifying the future climate trends and changes across the world. The following 

paragraphs describe different studies that have been carried out on temperature (maximum, 

minimum or average) and precipitation trends. 

Yunling and Yiping (2005) examined the climate change trends and characteristics during 

1960–2000 using gauge stations located on the Lancang River (China) using monthly 
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temperature and precipitation data. The results exhibited an raise in temperature and reduction 

in precipitation.  

In the Hanjiang basin, Chen et al. (2007) looked at the temporal trends of temperature and 

precipitation as well as their regional distributions. Using a parametric t-test method called 

simple linear regression, the long-term linear trend was identified. The Mann-Kendall test, a 

non-parametric test for identifying trends and the distribution of the test statistic, was used to 

examine the non-linear trend as well as the turning point. 

El Nesr et al. (2010) used information from 29 meteorological stations to analyze the 

temperature variations during a 29-year period in the Kingdom of Saudi Arabia. The maximum, 

minimum, and average temperatures throughout the year were found to be warming, with the 

exception of the winter season, when negligible cooling trends were identified. 

Karaburun et al. (2011) used the Mann-Kendall test and Sen's approach to assess trends in 

Istanbul's annual, seasonal, and monthly mean, minimum, and maximum temperatures from 

1975 to 2006. 

Seven meteorological variables were examined by Gocic and Trajkovic from 1980 to 2010 for 

their seasonal and annual patterns in Serbia. Sen's and Mann-non-parametric Kendall's 

approaches were used to do the analysis. For the investigation, the meteorological data from 

twelve stations that had high-quality datasets with reliable data and sufficient record lengths 

were employed. 

Yadav et al. (2014)processed the daily rainfall data, minimum and maximum temperature data 

to find out the monthly variability of rainfall and temperature in thirteen districts of 

Uttarakhand. Mann-Kendall (MK) Test has been used together with the Sen’s Slope Estimator 

for the determination of trend and slope magnitude.  

Birara et al. (2015) evaluated the annual and seasonal variations in temperature and rainfall, 

and measured the trends across time and space for the ten stations in Ethiopia's Tana basin. 

Sen's slope estimator and the Mann-Kendall test were used to evaluate rainfall and temperature 

trends and variability. Inverse distance weighted analysis was used to determine the regional 

distribution of temperature and rainfall. According to the results, rainfall amounts declined at 

the majority of the stations. 

Paul et al. (2017) used parametric (linear regression and robust linear regression) and non-

parametric (Mann-Kendall and Sen's slope) methodologies to study the weekly, monthly, 
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seasonal, and annual rainfall trend analyses for the Rajahmundry city, located in the Godavari 

basin area. For assessing the amount of fresh water available to satisfy the water demand for 

domestic and agricultural purposes, it has been suggested that the analysis of rainfall variability 

at a specific area is essential. 

Praveenkumar and Jothiprakash (2018) used three precipation data sets, Tropical Rainfall 

Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), IMD gridded, and 

IMD gauge for analyzing the spatio-temporal variations of rainfall in the Indravathi river basin. 

The Mann-Kendall test is used to identify trends in rainfall series, while the Pettitt test and 

standard normal homogeneity (SNH) test are used to identify homogeneity. It is stated that 

TMPA and IMD gridded data provide an adequate representation of rainfall for studies of the 

climate and water resources at large catchment scales, particularly in areas with a dearth of data. 

Worku et al. (2018) conducted a spatiotemporal analysis of temperature and rainfall patterns, 

both seasonally and annually, and its implications. Application of the MK test, Sen's slope, and 

precipitation concentration index (PCI). Crop production and climate variables were analysed 

using Pearson correlation analysis. It was concluded that adequate adaptation techniques must 

be devised based on the historical trends of erratic rainfall and persistent temperature increase 

in order to ensure crop productivity. 

Gebrechorkos et al. (2019) analysed long-term patterns in East Africa, especially in Ethiopia, 

Kenya, and Tanzania, in terms of rainfall and maximum and lowest temperatures (T-max and 

T-min). The Climate Hazards Group's high resolution gridded rainfall (1981–2016) and 

temperature (1979–2010) data are taken from international sources. The MK test and slope in 

the time series are calculated using R's Trend package. The authors claim that this form of fine-

scaled analysis aids in the identification of priority regions for the creation of adaption 

strategies. 

Ademe et al. (2020) analysed the rainfall and temperature variability and trends in the Ethiopian 

highlands. The results of the meteorological analysis were compared to farmers' impressions, 

and it was concluded that they agreed with all of their assessments across all agroecosystems. 

According to the findings, farmers' decisions on management approaches are complicated by 

the unpredictable timing and distribution of rainfall. It was determined that in order to 

comprehend the climate issues faced by farmers in distinct agro ecological settings, a localized 

climate trend analysis is required.  
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The literature suggests that it is essential in climate change studies to initially analyse the 

existing trend in climatic variables by using the long-term data (Hladnik 2013, Yadav et al. 

2014, Rahmat et al. 2015, Jana et al. 2017, Dubey and Sharma 2018, Gajić-Cǎpka et al. 2018).  

2.5  Hydrologic Modeling and Climate Change Impact Studies 

Hydrologic models offer a framework for conceptualizing and exploring the dynamics between 

climate and water resources(Li et al. 2015). A systematically calibrated and validated 

hydrological model can offer helpful information for the management and planning of water 

resources. Hydrologic models typically operate at a river basin or a watershed scale. They play a 

widespread function in offering an expertise of more than a few problems dealing with water 

resources and hydrologic extremes at river basin and watershed scales. Through the simulation of 

hydrological processes, some models enable quantification of the effects of climate change on 

water resources (Montecelos-Zamora et al. 2018). For climate change impact studies, the 

selection of hydrological model plays a vital role as there are numerous models available. The 

relevant literature available on hydrological models and their applicability in water resources 

assessment under climate change is presented in the following paragraphs.  

Gosain et al. (2006) assessed the impact of climate change on the water resources of Indian 

River basins using SWAT model coupled with HadRM2 daily weather data. According to the 

findings, under Green House Gas (GHG) scenarios, the amount of available runoff in the river 

basin continues to decrease. 

Gassman et al. (2007) described several applications of the SWAT model and stated that it is a 

very adaptable and reliable tool that can be used to model hydrological process at different 

spatial scales. SWAT model is found efficient in replicating the hydrological response at annual 

and monthly basis.  

SWAT was used by Ficklin et al. (2009) to simulate the hydrology and effects of climate change 

in California's predominantly agricultural San Joaquin watershed. According to the findings, 

rising temperatures changed plant growth patterns over time and changed how much water was 

needed for irrigation and evapotranspiration. Because of the reduced demand for irrigation 

during the summer, this led to an increase in stream flow. Overall, the findings show that the 

hydrology of the San Joaquin watershed is extremely vulnerable to anticipated future climatic 

changes. 
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Setegn et al. (2010) made use of hydrologic simulations from the SWAT model and outputs 

from 15 Global Circulation Models (GCMs) to study the vulnerability of water resources to 

climate change in the Lake Tana Basin. The authors advocate doing a comprehensive study of 

the effects of climate and land use or land cover change on the hydrological processes and 

variability of water resources in river basins. 

George et al. (2011) developed a modelling framework using GCMs for climatic parameters, 

SWAT model for surface runoff simulation and MODFLOW for ground water simulation and 

water allocation-economic modelling to assess the water security and its economic value. The 

frame work has been applied to Musi Catchment, Andhra Pradesh, India to evaluate water 

security strategies under climate change. 

Vano et al. (2010) evaluated the sensitivity of water supply systems in the Puget Sound basin 

cities of Everett, Seattle, and Tacoma to historical and projected future streamflow changes and 

water demands. The streamflow for three future time periods is simulated using the distributed 

hydrology–soil– vegetation model (DHSVM), couple with the downscaled ensembles of 

climate simulations obtained from the IPCC 4th Assessment Report. Further, reservoir 

performance under various climate change scenarios is assessed with and without implementing 

adaptations.  

Yoshitani et al. (2011) developed an integrated regional-scale hydrological-atmospheric model 

(IRSHAM) for climate change study on Japan region. The study examined the efficiency of a 

fully coupled boundary layer model and aerially averaged land surface model when they are 

employed in an RCM.  

Lauri et al. (2012) evaluated the individual and combined effects of reservoir operation and 

climate change on the hydrology of the Mekong River (using different GCMs). Five better 

performing downscaled GCMs are chosen for the study. Further, the reservoir operation 

optimization algorithm was developed to simulate the reservoir operations of both existing and 

planned hydropower dams. 

Kizza et al. (2013) examined various regionalization techniques that could be used for 

modelling inflows to Lake Victoria. The transferability of model parameters between the basins 

is tested by WASMOD model by using three regionalization methods. Generalised Likelihood 

Uncertainty Estimation (GLUE) framework for uncertainty assessment is used for the model 

calibration. The model parameter transferability results were mixed. It was concluded that the 

regionalization uncertainty can be treated using ensemble regionalization approach. 
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Deshpande et al. (2014) used SWAT to investigate the effects of climate change on the various 

elements of the Krishna river basin's water balance The model is calibrated and validated using 

measured stream flow and meteorological data for the period 1970–1990 at a single gauge exit. 

Daily climatic simulations from the regional climate model PRECIS are used to create monthly 

water balance components like precipitation, surface runoff, water yield, evapotranspiration 

(ET), and potential evapotranspiration (PET). According to model predictions, the basin's 

annual discharge, surface runoff, and base flow will all increase by the middle of the next 

century. 

Using ArcSWAT, Uniyal et al. (2015) assessed how the Upper Baitarani River basin in Eastern 

India would be affected by climate change on the blue and green waters (components of the 

water balance). Sequential uncertainty fitting (SUFI-2) optimization technique was used to 

calibrate the ArcSWAT model in the SWAT calibration and uncertainty program (SWAT-

CUP). Based on the descriptions provided by IPCC, the SRES scenarios A1B, A2, and B2 used 

in this study. The research's conclusions demonstrated that the river basin is more sensitive to 

changes in rainfall than to changes in temperature. 

Emam et al. (2016) assessed the water resources and risk of natural disasters in an ungauged 

basin of Aluoi district in Central Vietnam using SWAT model. The river discharge at the basin 

outlet was predicted using a regionalization approach. Three time scales were used to calibrate 

the model: daily, monthly, and yearly, using the river discharge, actual evapotranspiration 

(ETa), and crop yield data. The study used ratio method of regionalization and recommended 

that regionalization strategies to transfer parameters from contributor to ungauged basins in 

order to forecast river discharge data. 

Luo et al. (2017) investigated the spatio-temporal patterns of the effects of climate change on 

water resources and extremes at ungauged locations. The SWAT and MIKE SHE models were 

both used in the study, and satellite-based rainfall data (TRMM) was used as the direct input 

and references of calibration or validation to set up the hydrological models. It was determined 

that combined results from the use of additional hydrological models were more effective for 

understanding the impacts of climate change on water resources. With regard to creating new 

water resource management policies and planning frameworks for locals, the use of remote 

sensing data combined with the climate change data provides a new technique to estimate the 

consequences of climate change in remote, unmeasured regions. 
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Sehgal et al. (2018) developed a near real-time hydrologic simulation framework by using the 

combination of SWAT model and National Center for Environmental Prediction coupled 

forecast system model version 2 (CFSv2) data to model the future projected daily hydrological 

balance components. The results indicated that the CFSv2 driven SWAT model provide a 

satisfactory performance at seasonal level as well as the near-real time predictions.  

The major challenge faced during the hydrological modeling of tank systems is limited data 

availability as most of the tank catchments are ungauged. The water balancing in cascading 

tanks was performed using ROSES (Jayatilaka et al. 2003) CWBM (Jayakody et al. 2004) and 

HYLUC-CASCADE (Bishop et al. 2006) these models required a lot of fields observed data. 

The daily runoff of was estimated using the GR4J hydrological model then forecasted the 

volume of lakes by daily water balancing and verified by a combination of remote sensing and 

field observations (Ogilvie et al. 2018). The difficulty of modeling ungauged catchments can 

be overcome by applying suitable regionalization methods(Gitau and Chaubey 2010, Rahim 

and Hassan 2014, Emam et al. 2016, Rizzi 2017, Yang et al. 2018). SWAT model is a popular 

physically distributed model which is applicable to simulate various hydrological parameters 

with the efficiency of preserving the basin characteristics through sensitive analysis and 

uncertainty modelling using SUFI-2 algorithm(Abbaspour et al. 2004, Stratton et al. 2009, 

Mishra and Lilhare 2016, Pandey et al. 2017, Rani and Sreekesh 2019).  

2.6 Prediction of Changes in Lake Water Levels  

The lake surface water level fluctuations are effected by the external input processes, human 

interventions and most importantly climate change (Minale 2019). Many hydrological 

processes are extremely sensitive to climate change and the fluctuations in the lake water can 

be directly attributed to the variation in climatic variables like temperature, precipitation, and 

evaporation (Lin et al. 2015, Davraz et al. 2019). Seasonal lake level forecasts with a reasonable 

degree of accuracy, can help with water resource planning and management, including dam 

operations and water allocations (Lin et al. 2015).  

Khan and Coulibaly (2006) implemented the support vector machine for the long-term 

prediction of lake water levels. The mean monthly water levels of Lake Erie from 1918 to 2001 

are used to predict 12 months ahead water levels. The results from SVM are compared with 

multilayer perceptron (MLP) neural network and with multiplicative seasonal autoregressive 

model (SAR) and concluded that SVM outperforms the other methods. Additionally, the SVM 

displays inherent advantages as a result of its application of quadratic programming during 



 
 

25 
 

model optimization and the structural risk minimization principle when formulating cost 

functions. Compared to conventional neural network models, these benefits produce a singular 

optimal and global solution. 

Çimen and Kisi (2009) modeled the lake level fluctuations using SVM and artificial neural 

networks (ANN). The monthly level data of Lake Van, the largest lake in Turkey, and Lake 

Egirdir are subjected to the SVM method, a new regression technique for water resources. The 

estimated lake levels and the corresponding observed values are found to be in good agreement. 

Statistics for comparison include the mean square errors, mean absolute relative errors, and 

determination coefficient. The comparison reveals that the SVM-based model outperforms the 

ANN in terms of statistical performance. 

Hipni et al. (2013)  compared different types of Support Vector Regression (SVR) models with 

Adaptive Neuro Fuzzy Inference System (ANFIS) and found that the n-SVR model 

outperformed the other SVM techniques in forecasting daily water levels in Klang reservoir, 

Malaysia. The study concluded that the SVR model was the best regression type for lake water 

predictions.  

Buyukyildiz et al. (2014) adopted five different artificial intelligence (AI) methods for 

predicting the water levels of Lake Beysehir. The estimation of the monthly change in water 

level was done using several neural network techniques and machine learning methods . To 

assess the effectiveness of the model, four metrics—root mean square error (RMSE), mean 

square error (MSE), mean absolute error (MAE), and coefficient of determination (R2) are 

utilized. According to the results, ε-SVR model proved most reliable to estimate monthly water 

level when compared to other models. 

Kisi et al. (2015) explored the applicability of novel method by coupling SVM with firefly 

algorithm (FA) for prediction of water levels of Urmia Lake. The FA was applied to estimate 

the optimal SVM parameters. The results form SVM-FA are compared with predictions results 

from genetic programming model (GP) and artificial neural networks model (ANN) and the 

results indicated a higher predictive capability for SVM-FA model.  

Bucak et al. (2017) quantified the combined effect of climate and land use change on the Lake 

Beysehir. A novel approach of coupling SWAT model outputs with the SVR model to forecast 

future water availability in Lake Beysehir is adapted in the study. Apart from evaluating the 

future water availability in the lake, the study also proposed lake outflow management options 
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by predicting maximum outflows allowed for maintaining the required lake water levels. The 

results indicated that climate change will cause the lake to dry up by the end of the century.  

Changes in lake level are primarily caused by changes in precipitation and evaporation over the 

lakes and their catchment basins(Khan and Coulibaly 2006, Yang et al. 2017, Mohammadi et 

al. 2020). In this regard, these changes serve as a sensitive indicator of historical and current 

climate changes within the lake catchment basin(Buyukyildiz et al. 2014, Bucak et al. 2017, 

Davraz et al. 2019). The changes in the lake water level are governed by the balance of input 

and output components related to hydrological processes. 

2.7 Crop Models for Estimation of Irrigation Requirement 

Crop simulation models are effective tools for the assessment of potential effects of 

climatological, biological and other manageral factors on crop growth and development. They 

have been used in many studies across the world in the prediction of crop yields, irrigation 

planning for crops, optimization of irrigation water use, and understanding the climate change 

impacts on various crops (Kadiyala et al. 2015). In recent past several studies have incorporated 

crop simulation models for the assessment of the changes in irrigation requirement under 

climate change.  

Lee and Huang (2014) studied the impact of climate change on the irrigation water requirement 

for rice in Northern Taiwan. Five downscaled GCM’s are bias corrected and used for projecting 

the climate variables for the period 2046-2065. Hamon method for estimating 

evapotranspiration and water balancing model is used for determining the crop water 

requirement and irrigation demandIt is obvious from a comparison of the current (2004–2011) 

and the future (2046–2065) that climate change will result in increased temperatures and 

rainfall, which will raise agricultural water needs and increase effective precipitation during 

future cropping seasons. 

Bouraima et al. (2015) quantified the crop reference and actual evapotranspiration (ETo and 

ETc) and the irrigation water requirements for rice crop in west Africa. CROPWAT model is 

used in the study for estimating the Crop Water Requirements (CWR) and suggested that the 

results aid in better irrigation practices, scheduling and efficient use of water in semi-arid 

regions, as the water supply through rainfall is limited.  

Kadiyala et al. (2015) developed and validated a tool for investigating the impact of climate 

change on groundnut production in Anantapur district. Using a GIS and crop model-based 



 
 

27 
 

interface, the CROPGRO-Peanut model from DSSAT was used to investigate the spatial effects 

of various genetic and agronomic management practices under both baseline and climate 

change scenarios. 

Vibhute et al. (2016) developed a crop water demand based canal delivery system by combining 

CROPWAT and GIS tools. The geospatial database of different soil, water and crop parameters 

in the command area were developed and analyzed using the GIS tool. Further, the geospatial 

data were used to work out the irrigation schedule of different crops using CROPWAT model.  

Tukimat et al. (2017) investigated how the demand for irrigation water would alter in a scenario 

of climate change in a heavily irrigated region of Malaysia. To model the changes in local 

precipitation and temperature, the statistical downscaling model (SDSM) is used to downscale 

the outputs from GCMs. After being calibrated and validated with historical data, the 

CROPWAT irrigation water demand assessment model is used to project possible changes in 

irrigation trend under SDSM projected climatic conditions. 

Masia et al. (2018) studied the vulnerability of irrigated agriculture to climate change by 

estimating the changes in irrigation requirement, evaporation from reservoirs, and water 

availability in six irrigated districts of Mediterranean area across Italy. Simulation of 

evapotranspiration of applied water (SIMETAW_R) model is used in the study in combination 

with GIS platform. Each irrigation district is anticipated to experience a future water shortage 

because it was forecasted that climate change will result in reservoirs that are less resilient and 

more vulnerable. 

Poonia et al. (2021) investigated the spatio-temporal impact of climate change on the crop water 

requirement (CWR) and crop irrigation requirement (CIR) for major crops in Sikkim. 

CORDEX climate data is used for future projections of climatic variables. Additionally, the 

possibility technique is used to analyse uncertainty in both GCM and scenarios. The findings 

showed that the most likely scenario for examining the impacts of changing climate on 

agricultural water demand is RCP 4.5.  

Under climate change, the demand for irrigation water will be altered by variations in 

meteorological variables, and irrigation water will always account for the majority of water use 

in India(Madhusudhan et al. 2021, Busschaert et al. 2022). The estimation of irrigation water 

demand under climate change will provide an insight for effective management of agricultural 

waters(McNider et al. 2015, Vibhute et al. 2016, Tukimat et al. 2017, Salman et al. 2020, 

Madhusudhan et al. 2021, Poonia et al. 2021).  
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2.8  Climate Change Adaptation for Water Resource Management 

Adaptation is the principle way for dealing with the effects of climate change.  It involves taking 

practical actions to mitigate climate-related hazards, safeguard communities, and increase the 

economy's resilience. Studies have been conducted to evaluate India's vulnerability to drought 

due to climate change. The existing preparedness and mitigation mechanisms have been studied 

for drought risk reduction and identified no-regret adaptation options (Prabhakar et al., 2008). 

Community-based preparedness and mitigation planning is the key as it would greatly enhance 

the capacities of communities by broadening their coping range. 

Raje and Mujumdar (2010) derived adaptive policies for the Hirakud reservoir performance for 

future scenarios over changing climate. For this study, the monsoon streamflow is downscaled 

using three GCMs for two future time periods and then analysed the performance of annual 

hydropower generation by four reliability indices with respect to reservoir functions i.e., 

irrigation, hydropower, and flood control. Further, resiliency, vulnerability and deficit ratio 

were taken into considerations with respect to hydropower for projected hydrologic scenarios. 

Performance of the reservoir was examined with standard operating policy using existing rule 

curves, which showed an increase in deficit ratio and vulnerability, and a decrease in reliability 

with respect to hydropower and irrigation. Hence, Stochastic Dynamic Programming (SDP) 

was used to develop adaptive policies for optimal monthly operation of reservoir. The results 

show that increase in hydropower reliability and generation for future scenarios can be 

maintained by sacrificing reliability in irrigation and flood control. Revision of the reservoir 

rules for flood control was suggested due to increasing probability of droughts in future climate 

change projections.  

Eum et al. (2010) calculated the optimal water releases for future periods under droughts using 

SDP combined with hedging rule. This model helps in mitigating the impact of drought in 

operating reservoir with good water supply probability. Emergency operating policy and 

Normal operating policy were developed based on the Aggregate drought index. Limitations of 

the proposed methodology of the releases can be reduced by introducing the hydrologic state 

variable in SSDP model, which can distinguish the probabilities of scenario conditioned on the 

selected hydrologic state variable. Applicability of the reliable streamflow drought index will 

also help in quantifying the optimal water releases. 
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Cheng et al., (2012) suggested that supply side and demand side adaptation strategies should 

be considered for water management. They concluded that demand management and water 

pollution control are key for climate change adaptation with respect to the water resources of 

China.  

Bhave et al. (2014) assessed the potential effects of climate change in the Kangsabati reservoir 

catchment using the Water Evaluation And Planning (WEAP) model. Evaluation of the ability 

of stakeholder prioritized adaptation options is made. Check dams and expanding the extent of 

forest cover are two adaptation alternatives that are given priority utilizing pair-wise 

comparison and scenario analysis. According to WEAP simulations, both adaptation 

approaches decrease stream flow when compared to a base scenario without adaptation. Over 

the 30 year period, efficiancy of check dams in reducing stream flow decreases by 40 %, while 

that of forest cover increases by 47 %.  

A framework for assessing vulnerability in arid and semi-arid regions that incorporates climate 

change as well as the concepts of hazard, exposure, sensitivity, and adaptability was proposed 

by Jun et al. (2016). For evaluating the risk and vulnerability to water resources, an indexing 

approach was used. As a means of lowering the risk of vulnerability to water resources, they 

suggested that the outcome would be beneficial to implement measures that increase 

adaptability and reduce exposure. 

Turner and Galelli (2016) developed and demonstrated the use of R package named ‘reservoir’, 

designed for rapid and easy routing of runoff data through storages. The uncertainties of the 

data are modelled using SDP in releasing the runoff without affecting the performance of the 

reservoir. It comprises tools for designing the capacity, release policy optimization and 

evaluation of performance, which enables the users in establishing reservoirs to meet the water 

needs of people and crops. 

Ehsani et al. (2017) proposed a neural network based reservoir operation to overcome the 

harmful observations of dam under climate change at regional scale. It is an automated model, 

which adapts to climate change and adjusts water storage levels based on the timing and 

magnitude of inflows. The authors also developed an index called Effective Degree of 

Regulation (EDR) by dams on water resources. Effective operating policies showed an increase 

in EDR, especially in dry months of year. The results of EDR indicate the need to increase the 

size and number of dams in addition to modifying their operations and thereby reducing the 

vulnerability of water resources systems to future uncertainties. 
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Ashofteh et al. (2017) developed adaptation strategies for irrigation water demand management 

under climate change. Climate variables in the Aidoghmoush Basin (East Azerbaijan, Iran) are 

predicted using the HadCM3 climate model and greenhouse gas emission scenario A2. The 

FAO's (Food and Agricultural Organization) evapotranspiration method was used to forecast 

irrigation water demand, and the IHACRES model was utilized to simulate reservoir inflows. 

Adeloye and Dau (2019) examined the ability of static and dynamic hedging operating policies 

to adapt to changing environmental conditions in order to increase the reliability and 

vulnerability of the irrigation water supply from Pong reservoir. By reducing the effects of 

water scarcity, the study illustrates the value of hedging as a climate change adaptation strategy. 

It also demonstrates how less complicated static hedging strategies can compete with more 

intricate dynamic strategies. 

The review on past research shows adaptive operating rules are suitable for the reservoir 

management under the future changing climate. However, most of the studies focused on 

developing adaptive strategies for the reservoir involving flood control, hydropower, urban 

water supply, ecological  conservation or comprehensive use.(Eum and Simonovic 2010, Raje 

and Mujumdar 2010, Ashofteh et al. 2013, 2017a, Turner and Galelli 2016, Zhang et al. 2017). 

Only few studies have addressed the development of adaptive strategies for irrigation tanks. 

This is of great concern as the tank water availability and irrigation water requirements are 

influenced by the changes in tank inflow as well as the changes of precipitation and temperature 

in the future climate(He et al. 2020, Gade et al. 2021, Busschaert et al. 2022, Incoom et al. 

2022).  

2.9  Critical Appraisal 

An overview of tank systems in semi-arid regions, climate models data and uncertainty analysis, 

climate change impact on water resources, hydrological modelling in impact analysis of tank 

systems, and adaptation strategies for managing the water resources of tank systems are 

discussed in this chapter.  Tank systems are of great importance in balancing the local hydrology 

of a region and the reviewed literature suggest that climate change impact analysis on these 

tank systems is crucial. This can be achieved by hydrological modelling of the tank catchment 

area and tank systems. Several studies have attempted to model the hydrological process of tank 

systems. Nevertheless, the hydrological modelling of these systems is a challenging task due to 

limited or non-availability of regional data.  
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It has been emphasized that analysing climate variability and trends under different climate 

scenarios is crucial for predicting the negative effects of climate change. Trends in the current 

and upcoming climate variables are frequently found and estimated in order to measure climate 

variability. Mann-Kendall and Sen’s slope tests are widely used non-parametric methods for 

detecting the trend and its magnitude respectively. Spatio-temporal changes in climatic 

variables at a fine scale can be achieved by analysing gridded data, and such analysis assists the 

policy makers to identify the priority areas for developing suitable water resources 

management.  Various sources of uncertainties are associated with the climate change impact 

studies and it is essential to quantify the uncertainty for proper management and risk 

assessment.  Keeping this in view, uncertainty arising due to RCMs need to be accounted by 

developing a multi-model ensemble approach. REA is the widely used and accepted method 

for multi-modeling ensemble approach.  

Hydrological modelling has become an integral part of the climate change impact assessment 

which incorporates the physical parameters of a region. Therefore, physically based 

hydrological models with high resolution meteorological variables can be used to simulate the 

streamflow. There are several hydrological models currently used by researchers out of which 

SWAT has become recognized on a global scale as a reliable multidisciplinary watershed 

modelling tool. Numerous studies have supported SWAT's capability to replicate hydrologic 

response on an annual or monthly basis at various spatial scales. Further, SWAT model is 

popularly used for streamflow analysis in ungauged basins/watersheds. Accurate estimation of 

stream flow for ungauged watersheds can be achieved by regionalization. Regionalization is the 

process of transferring the information from gauged to ungauged catchments that have similar 

geological and morphometric properties. Model parameter regionalization is performed by 

developing regionalized model parameters values for ungauged watersheds by extending or 

extrapolating the calibrated values from gauged watersheds located within the same region. 

Since, the calibration and validation process for SWAT model is quite simple, it can be 

effectively used for streamflow prediction in ungauged watersheds. 

Understanding the fluctuations in lake surface water levels is significant in climate impact 

analysis. SVR method is an efficient machine learning technique which can be combined with 

hydrological parameters for predicting lake water levels. Tank water levels for various climate 

change scenarios using SVR model can be predicted with SWAT model outputs. Climate 

change will have an impact on crop water demand because irrigation consumes the majority of 

available water. Estimating irrigation water demand based on climate change is critical for 
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efficient use of tank water resources. To meet changing water demand, decisions on tank 

operational policy and water management strategies must be made. CROPWAT is a widely 

accepted crop simulation model, which estimates the crop water demand and irrigation demand 

by taking climate variables as input. Many studies proved that application of Stochastic Dynamic 

Programming (SDP) for the reservoir operation system has proved to be a powerful tool for 

developing the operating policies as it considers uncertainty in the inflows.  

As the tanks systems forms the lifeline for the people living in semi-arid regions, the  main aim 

is to study the impact of climate change on an irrigation tank system located in a semi-arid 

region and suggest suitable adaptation strategies for effective water management. Initially, the 

observed and climate model simulated climate variability and trend is analysed for the entire 

Telangana state to identify the regions vulnerable to climate change. In the present study the 

uncertainty arising due to RCMs is accounted by developing a multi-model ensemble using 

REA approach.  SWAT model is used to simulate the hydrological processes in selected tank 

system. Model parameter regionalization concept is used to transfer the calibrated model 

parameters to SWAT model setup for tank system. Tank water levels for various climate change 

scenarios are predicted with SWAT model outputs using SVR method. SDP is used to develop 

adaptive policies based on the future irrigation demand obtained from CROPWAT model for 

the selected command area of tank system. 



 
 

33 
 

Chapter 3  

Climate Variability and Trends in Selected Semi-Arid 

Region 

3.1 General 

Semi-arid regions cover 14.2 % of the Earth’s land surface and support 10% global population 

(Huang et al. 2016).  Population growth, extensive urbanization, and climate-driven changes 

cause an acute impact on the water resources and agricultural productivity of semi-arid regions 

(Meter et al. 2016, Dong et al. 2018). These regions experience extreme seasonal and inter-

annual precipitation variability resulting in frequent drought and flood conditions (Goff et al. 

2000, Mail et al. 2016). Semi-arid regions are most sensitive to climate variability as the 

economy of these regions predominantly relies on rain-fed agriculture. This implies even a 

minute variation in precipitation and temperature patterns would have a significant impact on 

the agricultural productivity of the semi-arid regions (Huang et al. 2016).  The regions that are 

already wet under present climate conditions are going to experience an increase in extreme 

precipitation events in the future, whereas dry spells are going to increase particularly in regions 

having dry conditions in present-day climate and increase the stresses on water resources which 

are likely to modify the components of the hydrological cycle like rainfall, evaporation, run-off 

(Sharmila et al. 2015). 

In India, the semi-arid regions cover an estimated area of 53% of the total geographical area, 

most of which are concentrated in Southern India (Anbumozhi et al. 2001). In these areas, 

almost the entire rainfall is confined to the 30 to 60 days of the monsoon months. The low 

irregular rainfalls along with the extreme temperatures make these regions vulnerable to water 

shortage. The rainfall in the semi-arid areas of India is highly dependent on the North-East and 
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South-West monsoon, which results in seasonal variability of rainfall causing high runoff in 

monsoon periods leading to floods and severe water scarcity in non-monsoon periods. This 

monsoon-drivenn climate results in spatio-temporal mismatches between water availability and 

demand (Meter et al. 2016). Because of these climate variabilities and erratic rainfall 

conditions, the problem with water resources management is highly prevalent in semi-arid 

regions (Montenegro and Ragab 2012). The local governments of semi-arid regions are trying 

to implement water management policies that ensure enough supply of water for humans and 

animals and make irrigation viable. Hence, there is a prerequisite to analyzing the climate 

variability and trends of semi-arid regions for undertaking better water management policies.  

Predicting the adverse effects of climate change requires an understanding of climate variability 

under various climate scenarios. The measurement of climatic variability typically involves the 

identification and assessment of trends in the observed and projected climate variables. The 

climate variability is statistically evaluated using the coefficient of variation (CV %) at both 

temporal and spatial levels, while trend analysis can be carried out using both parametric and 

nonparametric tests (Akinbile et al. 2015). Parametric tests assume that the climate data follows 

a statistical distribution whereas non-parametric tests do not rely on distributions 

(Praveenkumar and Jothiprakash 2018). Several studies have used both the parametric and non-

parametric approaches to analyse the long-term variability and trends in climate variables (Chen 

et al. 2007, Mahmood and Jia 2017, Paul et al. 2017). Mann–Kendall trend test (Mann 1945, 

Sen 1968) is a highly accepted non-parametric test to detect significant trends in metrological 

time series data (Yadav et al. 2014, Birara et al. 2015, Jain et al. 2017). The method of Sen’s 

slope estimator has been used widely in identifying the slope of the trend line in a time series 

which represents the magnitude of the trend (Jhajharia et al. 2014, Jain et al. 2017, Yacoub and 

Tayfur 2018). 

In the present chapter, annual and monthly climate variability and trends are analysed. The goal 

of this study is to ascertain the variability and trends in the lowest and maximum temperatures 

(TMAX and TMIN), precipitation (PCP), and precipitation in Telangana, India, a semi-arid 

region. Grid-based rainfall and temperature data for the years 1951 to 2013 are acquired from 

the Indian Meteorological Department (IMD) in order to evaluate the observed climatic trends. 

Regional climate model (RCM) data from Coordinated Regional Climate Downscaling 

Experiment -South Asia (CORDEX-SA) under RCP 4.5 and 8.5 scenarios are utilized in the 

assessment of future (2020-2050) climate variability and trends for the region. The results of 

the investigation will improve our understanding of the risks under the changing climate. 
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3.2 Study Area 

Telangana, the 29th state of India was formed on June 2, 2014, by bifurcation from the northern 

part of Andhra Pradesh. Telangana is situated on the Deccan Plateau covering 1,12,077 square 

kilometres. Even though two major rivers – Godavari and Krishna drain the entire state, with 

about 79% of the Godavari River Basin and about 69% of the Krishna River Basin, most of the 

land is arid. Apart from the major rivers, other minor rivers flowing in Telangana are Bhima, 

Dindi, Kinnerasani, Manjeera, Manair, Penganga, Pranahita, and Peddavagu and Taliperu.  

Telangana is a semi-arid area with a typically hot and dry climate. This region receives 

predominant rainfall from the South-West monsoon and some part from North- East monsoons, 

but precipitation varies across the State. The annual rainfall is between 900 and 1500 mm in 

northern Telangana and 700 to 900 mm in southern Telangana, 80% of which is received from 

the southwest monsoons. Summer season starts in March, and peak temperatures are observed 

in May with average high temperatures in the 42 °C range. The winter season begins in mid-

November and lasts until February with slight humidity and average temperatures in the 22–

23 °C range. The state is susceptible to frequent drought and flood events. In recent years there 

has been an increase in climate variability and extreme weather events like thunderstorms, heat 

waves, unseasonal rains leading to frequent flooding. These events repeatedly affect water 

management and agricultural practices in the region, making the study and analysis of climatic 

change essential. For analysis purposes, the study area is divided into three zones – Northern 

Zone (NTZ), Southern Zone (STZ) and Central Zone (CTZ) which is shown in figure 3.1. 

 

Figure 3.1 Location map of study area with three zones. 
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3.3 Dataset 

Gridded climate data sets with 0.5o×0.5o resolution are obtained from the Indian Meteorological 

Department (IMD), Pune. Daily PCP, TMAX and TMIN data for 63 years i.e. 1951-2013 is 

considered for the grid points in the study area (Fig 3.2). The assessment of the future climate 

scenarios in Telangana, Coordinated Regional Climate Downscaling Experiment -South Asia 

(CORDEX-SA) data under RCP 4.5 and RCP 8.5 are considered. CORDEX is a World Climate 

Research Program (WCRP) to produce an improved set of regional climate change projections 

across the world. CORDEX considers an ensemble of different dynamical and statistical 

downscaling models that consider multiple forcing GCMs. Four RCMs are chosen from the 

CORDEX- SA Regional Climate Model (RCM) Experiments for the study with 0.44o×0.44o 

resolution, the details of which are given in table 1. The ensemble of all the four experiments 

in each scenario (i.e. RCP4.5 and RCP 8.5) is used in analysing the climate variability and 

trends for the future period. It is well known that using a single RCM simulation for climate 

change studies is not advisable, rather using multi-model ensemble data with a bias- correction 

method is effective in minimising the uncertainties in the assessment studies (Teutschbein and 

Seibert 2012, Dubey and Sharma 2018). In the present study, the linear scaling method 

proposed by (Lenderink et al. 2007)is used for bias correction of RCM data. 

Table 3.1: Description of RCMs used in the research work 

 

Source: http://cccr.tropmet.res.in/home/ftp_data.jsp 

http://cccr.tropmet.res.in/home/ftp_data.jsp
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Figure 3.2. IMD and RCM climate grid points in the study area. 

3.4 Methodology 

To evaluate the precipitation and temperature variability, the coefficient of variation (CV %) at 

each grid point is calculated for observed and model data. Trend analysis is done using both 

linear regression (parametric) and Mann-Kendall test (non- parametric). Linear regression 

approach is used to determine the trends in climate variables parametrically. Each grid point is 

subjected to the non-parametric Mann-Kendal and Sen's slope test to identify potential trends 

and their sizes. 

3.4.1 Climate Variability 

Climate variability is examined by calculating the coefficient of variation (CV) at spatial and 

temporal scales for both observed IMD data and future projections from RCM’s under RCP 4.5 

and 8.5. A greater value of CV is an indicator of higher variability and vice versa which is 

computed as:  

 𝐶𝑉 =
𝜎

𝜇
× 100 (3.1) 

 

Where, CV is the coefficient of variation; σ is the standard deviation and μ is the mean 

precipitation.  
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3.4.2 Mann-Kendall Test 

In the present study Mann–Kendall trend test (Mann 1945, Sen 1968) was applied to detect the 

existing trend in annual, monthly and daily trends in climate variables. The trend test is applied 

to both observed and RCM data for all the three climate variables (PCP, TMAX and TMIN). 

The Mann-Kendall test S statistic and sign are calculated as follows: 

 

 
𝑆 = ∑

𝑛−1

𝑖=1

∑

𝑛

𝑗=𝑖+1

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) 

 

(3.2) 

 
𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑗) = {+1, 𝑥𝑗 < 𝑥𝑖    0, 𝑥𝑗 = 𝑥𝑖 − 1,

𝑥𝑗 > 𝑥𝑖  
(3.3) 

Where n is the length of the time series, x is the data values at times i and j (j > i). The variance 

of S is as follows: 

 𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
 (3.4) 

For n larger than 10, the standard test statistic Z is computed as follows: 

 𝑍 =  {
𝑆 − 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 < 0         0        𝑖𝑓 𝑆 = 0 

𝑆 + 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 > 0  

(3.5) 

 

The presence of a statistically significant trend is evaluated using the Z value at the α level of 

significance. In the present study, 5% significance level i.e. α=0.05 is used for testing the null 

hypothesis, which is rejected if |Z| > 1.96. Z values that are positive represent increasing trends, 

whereas Z values that are negative suggest decreasing trends. 

3.4.3 Sen’s Slope Estimator 

If the temperature and precipitation time series showed a trend after the Mann-Kendall test at 

α=0.05, Sen’s Slope Estimator (Sen 1968) is calculated which gives the linear rate of change.   
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First, a set of linear slopes is calculated as follows: 

 𝑑𝑘 =
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
 𝑓𝑜𝑟 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛) (3.6) 

where n is the length of time series, dk is the slope at k=1, 2, . . ., n, x denotes the climate variable 

values at i and j times. Sen’s slope (bSen) is then calculated as the median from all the linear 

slopes obtained from Eq. (3.6) and it is referred to as “trend magnitude” (Kormann et al. 2015). 

A positive value of bSen indicates an increasing trend and a negative value indicates a decreasing 

trend in the time series. 

3.5 Analysis of Observed Climate Variables 

The spatial distribution plots for annual CV for IMD precipitation and temperature are shown 

in figure 3.3, which are plotted using the kriging interpolation technique. According to Asfaw 

et al. 2018, degree of variability of precipitation can be classified based on the annual CV value 

as less if CV < 20, moderate if 20 < CV < 30, and high for CV > 30. For IMD precipitation data 

the annual CV values in the region are observed between 22% –31.5%, suggesting that the 

precipitation variability is ranging from moderate to high. Highest precipitation variability can 

be observed in NTZ and STZ. The annual CV for maximum temperature ranges from 1.3% –

1.52 %, with the highest CV in STZ. Annual CV for minimum temperature ranges from 1.38% 

– 1.98, with the highest variability in NTZ. The spatial distribution plots for monthly CV of 

PCP, TMAX and TMIN for IMD data are shown in figure 3.4. For PCP, highest monthly CV 

values can be observed in NTZ indicating a significant rainfall uncertainty in that region. 

TMAX and TMIN show lesser monthly CV values ranging from 1% –22% indicating a lower 

monthly variability.  

 

Figure 3.3 Spatial distribution plots for annual CV of PCP, TMAX and TMIN for IMD data 

(1951-2013). 



 
 

40 
 

 

Figure 3.4. Spatial distribution plots for monthly CV of PCP, TMAX and TMIN for IMD data 

(1951-2013). 

The linear regression analysis results for climate data averaged over each zone are shown in 

figure. 3.5, from which the rate of change can be defined by the slope of the regression line. In 

this case, the rate of change in annual PCP is 0.825 mm/year, 0.808mm/year and 0.115 mm/year 

for NTZ, CTZ and STZ respectively. The results indicate an increasing trend in precipitation in 

all the three zones of the region. The linear regression results for both TMAX and TMIN show 

a significant increasing trend in all the three zones with the highest rate of change of 0.014 

oC/year for TMAX in STZ and highest rate of change of 0.004 oC/year for TMIN. 

The results of the Mann-Kendall trend test exhibit an increasing trend in daily maximum and 

minimum temperature for IMD at all grid points. Daily precipitation from IMD exhibits no 

significant trend (NT), increasing trend (IT) at some grid points and decreasing trends (DT) at 

the other. TMAX and TMIN show increasing trends throughout the state. The results of the 

Mann-Kendall trend test for daily PCP, TMAX and TMIN are shown in figure 3.6. Further 

Sen’s slope estimator results are plotted in figure 3.7, which show the spatial variation of slope 

(trend magnitude) for the three variables. From the Sen’s slope plots, it can be observed that 

the highest and the lowest slopes in PCP can be observed in CTZ. For TMAX, lower magnitude 

slopes are observed in NTZ and CTZ, while higher slope magnitudes are observed in STZ. In 

the case of TMIN, the highest slope value is observed in CTZ and lowest slope value is in STZ. 

 

 



 
 

41 
 

 

   

 

   

 

   

Figure 3.5 Linear Regression Analysis Results for IMD data (1951-2013) 
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Figure 3.6. Daily PCP, TMAX and TMIN Trend at IMD Grid Points 1951-2013) 

 

Figure 3.7. Sen’s slope for PCP, TMAX and TMIN for IMD data (1951-2013) 

3.6 Analysis of RCM Simulated Climate Variables 

The spatial distribution plots for annual and monthly CV for RCP 4.5 precipitation and 

temperature are shown in figures 3.8 and 3.9. The annual CV for PCP ranges between 14.2%–

19.4%, suggesting a moderate variability throughout the state. High PCP variability is observed 

in NTZ. The CV for TMAX ranges between 2.85% - 3.5% with highest TMAX variability in 

NTZ and CTZ. CV range of TMIN is 1% -1.95% with maximum variability in STZ. The results 

of CV for TMAX and TMIN suggest that the temperature variability is not significant. The 

monthly precipitation variability range is 81% - 98%, suggesting high monthly variability. The 

monthly variability range for TMAX and TMIN is 9.2% -14.4 %.  

RCP 8.5 annual and monthly CV results are plotted in figure 3.10 and 3.11. The annual CV for 

PCP ranges between 9% - 21.1%, suggesting a moderate variability. High PCP variability is 

observed in CTZ and low variability is observed in NTZ. The CV for TMAX ranges between 

1.73% and 2.01% with highest TMAX variability in CTZ. CV range of TMIN is 1.45% -2.25% 

with maximum variability in NTZ. The results of CV for TMAX and TMIN suggest that the 

temperature variability is not significant. The monthly precipitation is varying in the range of 

62% - 94%, indicating high monthly variability and whereas for TMAX and TMIN it is 10.2% 
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-16 %. RCP 4.5 and RCP 8.5 scenarios show a similar result for PCP variability whereas for 

TMAX and TMIN, RCP8.5 shows higher variability than RCP 4.5. Both RCP 4.5 and RCP 8.5 

ensemble simulation results for the future period show a lesser PCP variability, while TMAX 

and TMIN show higher variability when compared to IMD past observations. 

The linear regression analysis results for RCP 4.5 and RCP 8.5 future climate data averaged 

over each zone are shown in fig. 3.12. In the case of RCP4.5, the rate of change in annual PCP 

is 5.75mm/year, 6.31mm/year and 4.82mm/year for NTZ, CTZ and STZ respectively, 

suggesting a significant increase in future PCP in the region. The linear regression results for 

both TMAX also show an increasing trend in all the three zones with the highest rate of change 

of 0.096 oC/year for TMAX in STZ and there is a significant decreasing trend in TMIN. In case 

of RCP 8.5 the rate of change of annual PCP is observed to be negative with a magnitude of 

2.52 mm/year, 4.71 mm/year and 4.04 mm/year in NTZ, CTZ and STZ, which suggests a 

significant decreasing trend in PCP. While TMAX and TMIN rate of change is positive, 

indicating an increasing trend.  

The results of the Mann-Kendall trend test for daily PCP, TMAX and TMIN for RCP 4.5 and 

RCP8.5 are shown in figure 3.13 and 3.14. The results of the Mann-Kendall trend test for RCP 

4.5 exhibit an increasing trend for PCP and TMAX. While TMIN exhibits no significant trend 

in NTZ and parts of CTZ, a decreasing trend in STZ. The results of the Mann-Kendall trend 

test for RCP 8.5 exhibit an increasing trend for TMIN and TMAX. While PCP exhibits no 

significant trend at all grid points except one which is showing an increasing trend. Sen’s slope 

estimator results for RCP 4.5 and RCP 8.5 are plotted in figure 3.15 and 3.16, which show the 

spatial variation of slope (trend magnitude) for the three variables.  

 

Figure 3.8. Spatial distribution plots for annual CV of PCP, TMAX and TMIN for RCP 4.5 

(2020-2050). 
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Figure 3.9. Spatial distribution plots for monthly CV of PCP, TMAX and TMIN for RCP 4.5 

(2020-2050). 

 

Figure 3.10. Spatial distribution plots for annual CV of PCP, TMAX and TMIN for RCP 8.5 

(2020-2050). 

 

Figure 3.11. Spatial distribution plots for monthly CV of PCP, TMAX and TMIN for RCP 8.5 

(2020-2050). 



 
 

45 
 

 

   

 

   

 

   

 

Figure 3.12. Linear Regression Analysis Results for RCM data (2020-2050) 



 
 

46 
 

 

Figure 3.13. Daily PCP, TMAX and TMIN trend at RCP 4.5 grids for (2020-2050) 

 

Figure 3.14. Daily PCP, TMAX and TMIN trend at RCP 8.5 grids for (2020-2050) 

 

Figure 3.15. Sen’s slope for PCP, TMAX and TMIN for RCP 4.5 data (2020-2050) 

 

Figure 3.16. Sen’s slope for PCP, TMAX and TMIN for RCP 8.5 data (2020-2050) 
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3.7 Closure 

In this chapter, the observed (IMD) and simulated (RCM) climate variability and trend are 

analysed for historic and future periods, for Telangana, India which is a semi-arid region. 

Coefficient of variation (CV) is used to estimate the variability in climate variables. To 

comprehend the trend and its magnitude, parametric (linear regression) and non-parametric 

tests (Mann-Kendall and Sen's Slope) are performed at each grid point. For the observed IMD 

data, the results of both parametric and non-parametric tests suggest a substantial upward trend 

in the daily maximum and minimum temperature. While the daily precipitation has no 

discernible pattern, this indicates precipitation uncertainty. The maximum and minimum 

temperatures have increased significantly, which will have an impact on the precipitation 

patterns. The results of RCP 4.5 ensemble exhibited an increasing trend for PCP and TMAX, 

while TMIN showed no significant trend in NTZ and parts of CTZ, decreasing trend in STZ. 

Future scenario of RCP8.5 ensemble results scenarios projected a decrease in rainfall and an 

increase in daily maximum and minimum temperatures. The variability and trend examination 

of the climate parameters showed a considerable change in the climate that demands some 

specific measures for the management and planning of Telangana's water resources. 

Agricultural sustainability of the region is greatly impacted by the annual precipitation trend, 

which is declining, compared to the growing trend in TMAX and TMIN. This suggests that 

evaporation is increasing and that water resources are becoming less available. As chain tank 

systems are one of the major sources of irrigation in the Telangana region, itis important to 

study how the water resources of tank systems influence due to changing climate patterns of 

the region. Hence, the next chapter deals with the analysis of climate change impact on water 

resources of a selected semi-arid tank system – Phakal Lake, which is an important source of 

agricultural water situated in Telangana State. 
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Chapter 4 

Hydrologic Modeling of Tank System under Climate 

Change 

4.1 General 

Climate change and its variability can change the hydrological cycle and hydrological regime 

of the region and these changes can cause significant impacts on water resources of the region 

(Dibike and Coulibaly 2005). The increasing rate of the global climate changes pose a 

significant impact on local hydrological regimes and water resources, particularly in semi-arid 

regions. This signifies that the assessment of the climate change impacts is a prerequisite for 

managing any water-related issues in the semi-arid regions, since these regions are already 

facing major water and agriculture-related issues (Sivakumar et al. 2005). Therefore, there is a 

need for climate change analysis that can determine its impacts on various aspects of water 

resources availability in these regions. Further, there is an increasing demand for best use and 

sustainable management of water resources. 

Water resource management in semi-arid areas is significantly aided by irrigation tanks. These 

tanks play a vital role not only in the irrigation but also in the local ecosystem balance 

(Palanisami et al. 2010). Over the centuries, traditional tank systems have become a major 

source of irrigation which helped in the sustainable agricultural production in the semi-arid 

zones of Asian countries like India, Sri Lanka and Japan (Palanisami and Easter 1987, Unami 

et al. 2005, Arumugam et al. 2009). In India, these tanks are concentrated in the semi-arid 

region of Deccan plateau due to the terrain and soil conditions that are existent in the region 

(Narayanamoorthy 2007). About 60% of tank irrigation in the country is accounted by Andhra 



 
 

49 
 

Pradesh, Telangana, Karnataka and Tamil Nadu (Palanisami and Nanthakumaran 2000, Krishna 

Kumar et al. 2011). As one-third of the country's irrigation is still accounted for by tanks, they 

remain a significant traditional source of irrigation in India. So it is necessary to analyse the 

potential climate change impacts on hydrology and water resources availability of irrigation 

tanks in semi-arid regions. Impact assessment is usually carried by setting up a calibrated and 

validated hydrologic model for the watershed and estimating the future stream flow (inflow into 

the tank) for different climate change scenarios. 

This often requires measured historical stream flow data (gauge data), which most of the 

watersheds lack (Razavi et al. 2013). Accurate estimation of stream flow for ungauged 

watersheds can be achieved by regionalization (Gitau and Chaubey 2010, Razavi et al. 2013). 

Regionalization is the process of transferring the information from gauged to ungauged 

catchments that have similar geology, climate, topography, vegetation and soils. Model 

parameter regionalization is performed by developing regionalized model parameters values 

for ungauged watersheds by extending or extrapolating the calibrated values from gauged 

watersheds located within the same region (Gitau and Chaubey 2010). The regionalization of 

parameters can be done by various methods such as simple transfer of parameters based on 

physical similarity, spatial proximity method, ratio method, global averaging method, 

regression method or interpolation methods like krigging or inverse distance weighting (IDW) 

(Gitau and Chaubey 2010, Razavi et al. 2013, Kim et al. 2016). 

In this chapter, the effects of climate change on water resources have been evaluated for the 

Phakal watershed in the semi-arid zone of Krishna River Basin, Telangana, India. This 

watershed is essential for the study because it serves as the catchment for Phakal Tank, a 

significant medium irrigation project in Telangana's semi-arid region. The Soil and Water 

Assessment Tool (SWAT) model has been used to analyze the potential effects of climate 

change on the Phakal tank catchment. The NASA Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP) dataset and the Coordinated Regional Climate Downscaling 

Experiment (CORDEX) climate data repositories are used to generate the meteorological data 

for the present and future time periods. Due to the lack of a gauge station at Phakal Lake, the 

Konduru catchment, which is downstream of the present study area, was used to run the SWAT 

Model utilizing the necessary geospatial layers and weather data from the IMD (Indian 

Meteorological Department) between the years 1985 and 2005. Utilizing observed stream flow 

data from the Purushothamagudem gauging station located in the Konduru catchment, SWAT 

model calibration and validation is conducted for monthly simulated stream flow and a simple 



 
 

50 
 

regionalization technique is employed in order to transfer the model parameters to the Phakal 

watershed. The calibrated and validated SWAT model was used for Phakal tank catchment in 

order to estimate the inflows for future time periods and the climate change impact on the water 

resources availability is studied.  

4.2 Description of Study area 

Phakal lake is situated in the border region of Warangal and Mehabubabad Districts, Telangana, 

India. It is approximately 50 km east of Warangal city and it is well connected by a road passing 

through Narsampet which is 12 km away. Pakhal Lake is a Medium Irrigation Project 

constructed across Munneru vagu near Ashoknagar Village, Khanapur Mandal, Warangal 

District.  The original project as envisage in the year 1902 by the Nizam PWD by restoring the 

existing Project constructed long back by the Kakatiya Dynasty in the year 1213 AD. The total 

catchment area of the lake is 264 sq km. The annual rainfall is about 1000 mm. Almost three 

lakh acres of agricultural area is surviving under the lake.  Phakal lake watershed does not have 

any gauge stations for measuring inflows. Hence, Konduru Watershed which is downstream of 

the Phakal lake watershed is chosen for hydrological model application and parameters 

estimation. Konduru watershed has discharge measuring station at Purushothamagudem. The 

location map of the Phakal lake watershed and Knoduru watershed are shown in Figure 4.1. 

The landcover of the Phakal watershed predominantly consists of shrub land and agricultural 

land growing both Kharif and Rabi crops. The major crops grown in the area are cotton and 

paddy. Other minor growing crops include groundnut, maize and castor oil. The soil present in 

the watershed consists of sandy clayey loams with mixed red and black soils (Biswas et al. 

2015). 
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Figure 4.1. Study Area – Phakal Watershed (Ungauged) and Konduru Watershed (Gauged) 

4.3 Data Used 

4.3.1 Climate Data 

Daily weather data for precipitation and minimum and maximum temperature have been 

collected from Indian Meteorological Department (IMD), Pune, India, for a period of 33 years 

(1986–2018) and used in the SWAT model. Observed climate variable data with grid cell size 

of 0.25°×0.25° for precipitation and 0.5°×0.5° for temperature are available. Climate model 

data generated by the CORDEX under RCP4.5 and RCP8.5 scenarios are obtained from Indian 

Institute of Tropical Meteorology (IITM), Pune (http://cccr.tropmet.res. in) and were classified 

as a baseline (1986–2018), early century (2020–2050), mid-century (2051–2080) and end 

century (2081–2099) data in the present study. The climate models under CORDEX project 

which are selected for the study are listed in Table 3.1. In addition to CORDEX data, the 

National Aeronautics and Space Administration (NASA) Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP) dataset contains downscaled climate scenarios derived 

from the GCM simulations of the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

data are also used. The NEX-GDDP dataset based on two out of the four greenhouse gas 

emission scenarios known as Representative Concentration Pathways, i.e., RCP4.5 and 

RCP8.5. The spatial resolution of the dataset is 0.25° (~ 25 km × 25 km). NEX-GDDP data 

under baseline (1986–2018), early century (2020–2050) time periods is considered for the 

study. These datasets provide a set of global, high-resolution, bias- corrected and spatially 

disaggregated climate change projections that can be used to evaluate climate change impacts 

on finer scales. Table 4.1 describes the RCP4.5 and RCP8.5 scenarios and Table 4.2 shows the 

21 GCM models used that were downscaled to obtain NEX-GDDP. Observed stream flow in 

the Purusottamgudem gauge station is obtained from Central Water Commission (http://www. 

india-wris.nrsc.gov.in), Ministry of Water Resources, and Government of India (GOI). 

Table 4.1: Description of Representative Concentration Pathway RCP4.5 and RCP8.5. 

 

http://cccr.tropmet.res/
http://www/
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Table 4.2. List of the 21 Coupled Model Intercomparison Project 5 (CMIP5) general 

circulation models (GCMs) used in the study. 
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4.3.2 Geospatial Data 

The geospatial data necessary for the SWAT model were prepared for both Phakal and Konduru 

Watersheds. The spatial input data layers such as land use data, digital elevation model (DEM) 

and soil data are required to run the model along with gridded weather data. Shuttle Radar 

Topography Mission (SRTM) 30 m × 30 m DEM, which is available from the United States 

Geological Survey (USGS) (https://earthexplorer.usgs.gov), was used to delineate the 

boundaries of both the watersheds and analyse the drainage patterns in the catchment areas. The 

DEM for both Phakal and Konduru Watersheds are shown in Figure 4.2. Slope gradient of the 

terrain and stream network have been derived from DEM for both the watersheds (Figure 4.3). 

The land use map of the study area has been obtained from USGS and reclassified as per SWAT 

model Land Use/Land Cover (LULC) classes which is shown in Figure 4.4. It consists of LULC 

classes of Dryland Crop land and Pasture, Crop land/grass land mosaic, Irrigated crop Pasture, 

Savanna and Water. Various soil physio-chemical and textural properties like soil texture, 

available moisture content, bulk density, hydraulic conductivity and organic carbon content for 

different sub-layers for each type of soil are required as SWAT model input (Gosain et al. 

2006). The soil data is obtained from Food and Agricultural Organization (FAO). The 

watersheds consist of prominently Chromic Luvisols soils which are shown in Figure 4.5. 

Combined land use and soil data are incorporated for the definition of the hydrological response 

units (HRUs). The stream network is created with ArcGIS Spatial analyst tool using flow 

accumulation raster as an input which is prepared using DEM which are shown in Figure 4.6. 

Slope map is also prepared by using DEM as input by ArcGIS Spatial analyst tool in that surface 

tool. 

 

Figure 4.2. DEM of  the watersheds (a) Phakal (b) Konduru 
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Figure 4.3. Slope map of  the watersheds (a) Phakal (b) Konduru 

  

Figure 4.4 LULC map of  the watersheds (a) Phakal (b) Konduru  

 

Figure 4.5 Soil map of  the watersheds (a) Phakal (b) Konduru  
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Figure 4.6  Drainage map DEM of  the watersheds (a) Phakal (b) Konduru 

4.4 Methodology 

Methodology followed for the present study is shown in Figure 4.7. The climate data from 

CORDEX RCM have been extracted and bias-corrected using R programming language and 

input climate data files are prepared in SWAT input format. The bias correction of CORDEX 

RCM data is carried out using nonparametric quantile mapping method (Gudmundsson et al. 

2012). Concurrently, the SWAT model was run for the watershed using geospatial data along 

with gridded weather data as inputs. SWAT CUP (Sequential Uncertainty Fitting version.2 -

Sufi-2 algorithm) was used to calibrate and validate the model with the observed streamflow 

data (Abbaspour et al. 2004). To analyse the climate change impact on lake inflow, the 

simulations were performed in the calibrated and validated SWAT model using the bias-

corrected climate data. 

4.5 Non-parametric Quantile Mapping Method for Bias Correction  

RCM simulated precipitation and temperature should be handled with caution as they contain 

significant biases. They cannot be used directly for assessing climate change impact at local 

scale and need bias correction. Many bias correction approaches have been developed which 

are ranging simple scaling methods to complex distribution mapping techniques (Teutschbein 

and Seibert 2012). Many studies were conducted to compare the performance of existing bias 

correction methods and concluded that quantile mapping method is most efficient in removing 

the biases (Jakob Themeßl et al. 2011, Fang et al. 2014). Gudmundsson et al. (2012) compared 

three different types of quantile mapping techniques (distribution derived quantile mapping, 

parametric transformations and nonparametric transformations) and suggested nonparametric 

quantile mapping is ideal for bias correction. Therefore, in the present study, the authors applied 
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the quantile mapping for bias correction. Quantile mapping uses the distribution-based 

transformations to match the distribution of a modelled variable (Pm) with the distribution of an 

observed variable (Po). The distribution-based transfer function is defined in Equation 4.1: 

𝑃𝑜 = 𝐹𝑜
−1(𝐹𝑚(𝑃𝑚))        (4.1) 

where, F is a CDF and F−1 is the respective quantile function (inverse CDF). The subscripts o 

and m represent the parameters of the distribution, which correspond to the observed and 

modelled data respectively. A correction table of the two CDFs (simulated and observed data) 

is used to apply nonparametric quantile mapping, and a linear interpolation is applied between 

the two percentiles. 

 

Figure 4.7 Methodology followed for the climate change impact study on water resources of 

Phakal lake watershed. 
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4.6 Reliability Ensemble Averaging (REA) 

In the present study, the uncertainty due to the usage of multiple GCMs is treated using the 

Reliability Ensemble Averaging (REA) method. Giorgi and Mearns (2003) developed a 

probability-based Reliability Ensemble Averaging (REA) approach that provides the best 

estimate and reliable climate model data with a limited range of uncertainty. REA method is a 

quantitative method that assigns weights to GCMs based on their ability to represent observed 

data and convergence of the simulated changes across GCMs (Mujumdar and Ghosh 2008). 

Moreover, by reducing the impact of outlier and underperforming models, REA allows the 

uncertainty range in the simulated series to be reduced, making it possible to quantify the 

consistency of the simulated series by satisfying the model performance and convergence 

criteria. Unlike the simple ensemble averaging (SEA) method, which gives equal weight to all 

models, the REA method gives more weight to more reliable models (Xu et al. 2010). This 

method enables to minimize the higher uncertainty associated with the less reliable models 

during multi-model analysis. The REA approach developed by (Chandra et al. 2015) for climate 

variables (precipitation, minimum and maximum temperature) is used in this work. The 

methodology of REA approach is given in figure 4.8. 

Two of the reliability criteria employed in REA are model performance, or the model's ability 

to effectively represent the original series, and model convergence, or the convergence of the 

model simulation for a certain forcing scenario. Model performance is measured based on errors 

produced from the deviation of Cumulative Distribution Functions (CDFs) between GCM 

simulated and original series, whilst model convergence is examined with regard to weighted 

mean CDF formed from repeated GCM future simulations. The convergence criterion also 

evaluates how well one model's forecast of the future corresponds with that of another model 

(Chandra et al. 2015). Initial weights are determined in REA using the root mean square error 

(RMSE) (Eq. 4.2), which establishes the performance criterion, as a measure of the GCMs' 

capacity to reproduce historical observations. 

𝑅𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝑅𝐶𝑀𝑖)

1/2  𝑁
𝑖=1                               (4.2) 

𝑤𝑖𝑛𝑖 =
(1

𝑅𝑀𝑆𝐸𝑖
⁄ )

(∑ 1
𝑅𝑀𝑆𝐸𝑖

⁄𝑁
𝑖=1 )

                                           (4.3) 

The step by step procedure used to evaluate the climate model's reliability and obtain the 

reliability ensemble mean are as follows: 
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1. With respect to the observed series, 10 identical intervals (N) of CDF that cover the 

whole range of atmospheric variables are used to determine the RMSE for each GCM. 

The proportionality of the weights is based on the inverse values of the RMSE, and the 

total number of GCM weights (n) is equal to one. Better models get heavier weights 

assigned to them. 

2. To perform model convergence, the model performance criteria weights are utilized as 

initial weights for the respective GCMs. 

3. To determine the weighted mean CDF (Fwm),  the appropriate initial weights (wint) are 

multiplied with the CDF of a future simulated ith GCM (FGCMi). 

𝐹𝑤𝑚 = ∑ 𝑤𝑖𝑛𝑡(𝑖) × 𝐹𝐺𝐶𝑀𝑖𝑖                (4.4) 

4. The same process as in step 1 is repeated, but the RMSE for the weighted CDF and 

future GCM projection is computed, and the weights obtained will be applied to the 

relevant GCMs in the subsequent iteration, resulting in a new weighted CDF with 

changed weights. 

5. The model convergence requirement is fulfilled when the new weights and prior weights 

are the same by repeatedly performing steps 2-4. 

 

Figure 4.8 Flow Chart of Reliability Ensemble Averaging method 
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The aforementioned technique is repeated for all grid points falling in the study area and three 

meteorological parameters (precipitation, maximum temperature, and minimum temperature) 

due to the diversity of GCMs for the various grids and weather parameters. The final weights 

obtained for the GCMs are multiplied by the meteorological variable values at a particular grid, 

and the ‘mean’ of the resultant values after multiplication is regarded as the ensemble average 

of that particular climate parameter for that grid. As a result, rather than providing input for 

each GCM separately, after evaluating model uncertainty, an ensemble weighted mean of each 

meteorological parameter for the all the grids is provided as an input to the hydrologic model. 

4.7 SWAT model  

The SWAT is a physically based distributed hydrological model for analyzing the effects of 

environmental changes on hydrology (Neitsch et al. 2002). It is used to assess streamflow 

response to climate change. SWAT is an eco-hydrological model that can simulate regional-

scale watersheds for several decades with reasonable temporal (daily) and spatial resolution 

without requiring excessive computational power It is utilized to assess how a gauged or 

ungauged watershed will be affected by land management practices and climate change (Luo 

et al. 2017). Specific data on topography, meteorological parameters (such as precipitation and 

maximum/minimum temperature), soil textural and physicochemical qualities, and land use are 

required as input for the SWAT model. SWAT distributes a watershed in to several sub 

watersheds, which are then divided into hydrological response units, which are units of distinct 

soil/land use characteristics (HRUs). These HRUs are described as homogeneous spatial units 

with similar geomorphologic and hydrological characteristics (Flugel, 1995). When modelling 

hydrologic processes, the SWAT gives numerous alternatives that users may choose based on 

their data availability(Li et al. 2009).  The SWAT model's hydrological components are 

governed by the water balance equation as follows: 

𝑆𝑊𝑡𝑖 = 𝑆𝑊𝑜 + ∑ (𝑅𝑑𝑎𝑦𝑖 − 𝑄𝑠𝑢𝑟𝑓𝑖 − 𝐸𝑎𝑖 − 𝑤𝑠𝑒𝑒𝑝𝑖 − 𝑄𝑔𝑤𝑖)
𝑡
𝑖=1       (4.5) 

Where, SWti is soil water content at the end of the day (mm H2O), 

SWo is the amount of initial soil water content on day i (mm H2O), 

t is the time in days, Rdayi is the amount of precipitation on day i(mm H2O), 

Qsurf i is the amount of surface runoff on day i (mm H2O), 

Eai is the amount of evapotranspiration on day i (mm H2O), 
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Wseepi is the amount of water entering the vadose zone from the soil profile on day i (mm 

H2O) and 

Qgwi is the amount of return flow on day i(mm H2O). 

4.7.1 Model Setup 

The necessary geo-spatial layers and weather database inputs were prepared for running the 

SWAT model. SRTM 30m DEM was used for watershed delineation, sub-basin definition and 

topographic parameterization. Based on unique landuse and soil type, the sub basins have been 

further divided into HRU’s. The HRU’s are defined by considering 10 % threshold value of 

landuse, slope and soil area. SWAT model was set up by using observed weather data obtained 

from IMD from 1985-2005. Because there is no gauge station at Phakal Lake, the SWAT model 

is run for Konduru catchment, which is downstream of the research region. From the geospatial 

data of both Phakal and Konduru catchment areas it can be observed that they have a physical 

similarity. Hence, utilizing observed streamflow data from the Purushothamagudem gauging 

station located in Konduru watershed, the SWAT model calibration and validation is 

undertaken for monthly simulated streamflow.  In order to stabilize the model, the starting three 

years of simulation have been regarded as a spin-up period. 

4.7.2 Calibration, Validation and Uncertainty Analysis 

The model calibration and validation are evaluated using sensitivity analysis and uncertainty 

analysis. Because the SWAT model has a huge number of input parameters, calibration and 

validation of the model is a very sophisticated, difficult, and thorough procedure. SWAT-CUP 

(SWAT Calibration Uncertainty Procedures) is a dynamic SWAT edit software that handles all 

SWAT parameters such as multiple soil layers and management rotation operations, 

precipitation data, and so on, which is used for model calibration and validation. The model 

parameters in SWAT-CUP can be manually adjusted repeatedly between auto-calibration runs. 

When employing Sequential Uncertainty Fitting (SUFI-2), a semi-automated process related to 

SWAT-CUP, the set of parameters must be analysed for sensitivity before calibration to aid in 

finding and ranking factors that have a substantial influence on certain model outputs 

(Abbaspour et al. 2017). 

In SUFI-2 algorithm, all uncertainties (input, parameter, conceptual model, etc.) are accounted 

by parameter uncertainty(Abbaspour et al. 2004, 2009). The overall uncertainty is quantified 

by 95% PPU (95 percentage prediction uncertainty). In this study, the p-factor and the r-factor 

of the SUFI-2 algorithm were considered to assess the extent to which the calibrated model 



 
 

61 
 

accounted for the uncertainties. Nash Sutcliff Efficiency (NSE) and coefficient of determination 

(R2) are used for evaluation of performance of the model (goodness fit). The NSE and R2 values 

are computed using equations 4.6 and 4.7 respectively. The r-factor is calculated by dividing 

the width of the 95 PPU band by the standard deviation of the measured data, whereas the p-

factor is the proportion of data captured by the 95PPU. Ideally, p-factor should be close to 1 

and r-factor narrowing down to 0. Roth et al. 2016 suggested that the p-factor > 0.60 and r-

factor < 1.3 are acceptable. The R2 and NSE values range from -∞ to 1, and 0 to 1, respectively 

with an ideal value of 1. In general, for the performance of the model can be considered 

“satisfactory” if NSE > 0.5 and R2 > 0.6  for flow simulations (Moriasi et al. 2007,  2015). 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)𝑛
𝑖=1

                                               4.6 

𝑅2 =  [
∑ (𝑂𝑖−𝑂̅)(𝑃𝑖−𝑃̅)𝑛

𝑖=1

√∑ (𝑂𝑖−𝑂̅)2(𝑃𝑖−𝑃̅)2𝑛
𝑖=1

]                         4.7 

where, n is the total number of observations, Oi and Pi are the observed and simulated 

discharges at ith observation, respectively, 𝑂̅  is the mean of observed data over the simulation 

period. 

In the present study, SWAT-CUP with SUFI-2 algorithm was utilized for the model calibration, 

validation and uncertainty analysis (Abbaspour et al. 2004). SWAT model for Konduru 

watershed was calibrated and validated using monthly river discharge available at 

Purushothamagudem. The optimized parameters of the Konduru watershed are very important 

as they represent the entire watershed. The Purushothamagudem has the discharge data for 

complete period of 18 years i.e. 1988-2005 without any missing values. The model was 

simulated for 1985-2005, using the first 3 years as warm-up period which were excluded from 

the analysis to mitigate the effect of uncertainties occurring due to initial conditions. Hence, the 

discharge data is divided into calibration (1988–1998) and validation (1999–2005) periods. The 

built-in sensitivity analysis tool in SWAT-CUP is used for sensitivity analysis (Neitsch et al. 

2002). Subsequently, 9 most sensitive parameters are identified and other 6 parameters also 

being important for SWAT simulation in the Konduru watershed were also considered, which 

are listed in Table 4.3. 
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4.7.3 Regionalization of Parameters 
Proximity method is used to transfer the parameters from Konduru watershed to Phakal 

watershed (Gitau and Chaubey 2010, Razavi et al. 2013, Emam et al. 2016, Rizzi 2017). This 

method can be applied if the gauged watershed is similar to ungauged watershed. The 

comparison of catchment characteristics of Konduru and Phakal watersheds are given in Table 

4.4. The hypsometric curves for both the watersheds are shown in Fig 4.9. Based on the 

comparison, the watersheds are found similar. Hence, parameter transfer is carried out from 

Konduru watershed to Phakal watershed for SWAT model simulation.  

Table 4.3 Sensitive parameters and their best fitted values and range 
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Table 4.4: Comparison of Catchment characteristics of Konduru and Phakal 

Watersheds. 

Physical Characteristic Konduru Watershed Phakal Watershed 

Area(km2) 2177.4 264.5 

DEM mean (m) 263.3 285.6 

Hypsometric integral 0.275 0.231 

Average Slope (%) 4 5.6 

4.8 Results and Discussion 

4.8.1 Results of bias correction 

Nonparametric quantile mapping is used for bias correction. The results of bias correction for 

ACCESS model at grid point (18, 80) are shown in Figure 4.9 (a and b). The plot shows the 

comparison of quantile plots between uncorrected and corrected data. It can be observed that 

the nonparametric quantile mapping method for bias correction performs well as the data falls 

on the x = y line after bias correction (Figure 4.10(b)). The same procedure of bias correction 

is applied for all the climate models for both CORDEX and NEX-GDDP data.   

 

Figure 4.9. Hypsometric curve for the watersheds (a) Konduru and (b) Phakal  
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(a) Before Bias Correction                                  (b) After Bias Correction 

Figure 4.10.  Quantile plots showing the results before and after bias correction at (18, 80) 

grid point 

4.8.2 SWAT model calibration and validation results 

The model performance was evaluated by comparing the SWAT simulated monthly flows with 

observed monthly flows during calibration and validation. The calibration and validation plots 

are shown in Figures 4.11 (a) and (b), respectively. The efficiency of the model to simulate 

flows is evaluated using four performance indicators: NSE, R2, p-factor and r-factor. These 

performance indicators were observed to be 0.71, 0.66, 0.65, and 0.52, respectively, during the 

calibration period (Table 4.5). R2, NSE, p-factor, and r-factor were observed to be 0.68, 0.65, 

0.62, and 0.55 correspondingly during validation. These statistics suggest that the SWAT model 

performed satisfactorily during calibration and validation. 

Table 4.5: Model Performance Indicators during Calibration and Validation 

Index 
Calibration Validation 

R2 
0.71 0.68 

NSE 
0.66 0.65 

p-factor 
0.65 0.62 

r-factor 0.52 0.55 
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(a) 

 

(b) 

Figure. 4.11 Observed and simulated flows for (a) calibration period (b) for validation of 

Konduru Watershed 

4.8.3 Historic and Future CORDEX Climate Data Analysis 

The hydrologic components of the Phakal Watershed were simulated for the Baseline (1986-

2018), Future-1 (2020-2050), Future-2(2051-2080), and Future-3 (2081-2099) periods using 

SWAT model after calibration and validation. For simulating the future hydrologic conditions, 

four CORDEX-RCM outputs under RCP 4.5 and 8.5 scenarios are used. For the analysis of 

climate change, the simulated hydrologic conditions are compared with the observed data. The 

CORDEX-simulated temperature and precipitation are compared with IMD data for the 

baseline period. The average monthly values of maximum and minimum temperatures from 

IMD and the four CORDEX models, i.e. ACCESS, CCSM, CNRM, MPI-ESM, are shown in 

Figure 4.12. 
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Figure 4.12. Comparison of average monthly temperature for model and observed data during 

baseline period (1986–2018). 

 

Figure 4.13. Average monthly precipitation for climate model and observed data during 

baseline period (1986–2018). 

 

Figure 4.14. Comparison of annual precipitation of observed data and four climate models 

during historic period (1986–2018). 
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It is indicated that CCSM model predicts both maximum and minimum temperatures similar to 

observed data. ACCESS, CNRM and MPI-ESM overestimated the maximum temperature 

during January, February, March, April, November and December, while these models 

underestimated during May, June and July months. In case of minimum temperature estimation, 

all the RCM models are over predicted. The mean monthly precipitation with respect to 

CORDEX models and observed data are shown in Figure 4.13. It is observed that CCSM, 

CNRM and MPI-ESM models overestimated the precipitation from January to July and 

underestimated during the rest of the months. The ACCESS model simulated the precipitation 

similar to observed data. The CCSM model is the better predictor among the four models in 

simulating monthly maximum, minimum temperature and while MPI-ESM model shows good 

correlation with observed data in case of monthly precipitation than the other three models.  

The comparison of IMD annual average precipitation with 4 RCM models is shown in figure 

4.14.  The CCSM model simulates the precipitation similar to observed data. The MPI-ESM 

model is the better predictor among the four models in simulating annual mean precipitation 

than the other three models.  

Figure 4.15 shows the comparison of SWAT simulated streamflow (tank inflow) using IMD 

data and CORDEX climate model data. It can be observed that the CCSM model predicts 

streamflow similar to IMD during July and August months. No particular model is in good 

match with the observed data, either they under predicted or over predicted. The box-plots for 

annual streamflow simulated using IMD and climate model data are shown in Figure 4.16. The 

CCSM model data predicted the mean annual streamflow close to IMD data. 

 

Figure 4.15. Comparison of average monthly tank inflow for model and observed data during 

historic period (1986–2018). 
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Figure 4.16. Comparison annual streamflow of observed data and four climate models during 

baseline period (1986–2018). 

It can be observed that no particular model have good correlation with IMD data, so REA 

ensemble model is developed using all the four RCM’s in order to account of the model 

uncertainty. The REA results for each of the RCM for historic and future time periods are given 

in table 4.6.  The initial weights for the models are shown under historic column, which suggest 

that the precipitation from ACCESS model has good correlation (0.69) with IMD compared 

rest of the models. The min and max temperature estimates from the RCM’s don’t have good 

match with IMD with initial weights less than 0.38. Thus, there is a need for an ensemble model. 

The final weights for the future time periods are calculated using the CDF’s for each of the time 

period which are shown in table 4.5. The REA mean precipitation for historic time (1986-2018) 

period is calculated by applying the initial weights to the RCM model precipitation. The scatter 

plot for REA data and IMD daily precipitation is shown in figure 4.17. It can be observed that 

the REA model has a good match with observed data with correlation coefficient (R2) value of 

0.899. The average monthly precipitation from REA and IMD is shown in figure 4.18. The 

REA model monthly precipitation is similar to IMD data. The R2 value for REA temperature 

and observed temperature is 0.87 and 0.93 for maximum and minimum temperature 

respectively. REA model is able to capture the annual average precipitation also with R2 of 0.6 

and the correlation for monthly precipitation is 0.99. Figure 4.19 shows the comparison of 

annual average precipitation between REA and IMD.  

Table 4.6 REA weights for the three climate variables at grid point (18, 80) 

 Precipitation 

  RCP4.5 RCP8.5 

Model Historic Future-1 Future-2 Future-3 Future-1 Future-2 Future-3 

ACCESS 0.6917 0.2871 0.3169 0.1976 0.2356 0.2062 0.2668 

CCSM 0.3024 0.2065 0.2021 0.2377 0.2647 0.3496 0.3039 

CNRM 0.0029 0.2901 0.2525 0.2911 0.2679 0.1924 0.1622 

MPIESM 0.0029 0.2163 0.2285 0.2736 0.2319 0.2518 0.2672 
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 Maximum Temperature 

  RCP4.5 RCP8.5 

Model Historic Future-1 Future-2 Future-3 Future-1 Future-2 Future-3 

ACCESS 0.3641 0.2562 0.2541 0.2474 0.2476 0.2500 0.2521 

CCSM 0.0185 0.2278 0.2241 0.2293 0.2481 0.2506 0.2507 

CNRM 0.3632 0.2608 0.2642 0.2617 0.2514 0.2437 0.2487 

MPIESM 0.2542 0.2552 0.2576 0.2616 0.2529 0.2557 0.2485 

 Minimum Temperature 

  RCP4.5 RCP8.5 

Model Historic Future-1 Future-2 Future-3 Future-1 Future-2 Future-3 

ACCESS 0.3240 0.2499 0.2559 0.2520 0.2515 0.2537 0.2562 

CCSM 0.1830 0.2399 0.2362 0.2317 0.2474 0.2511 0.2522 

CNRM 0.2536 0.2547 0.2517 0.2598 0.2510 0.2524 0.2482 

MPIESM 0.2394 0.2555 0.2562 0.2564 0.2500 0.2428 0.2434 
 

 

Figure 4.17 Scatter plot between REA and IMD daily precipitation for (1986-2018) 

 

 

Figure 4.18. Average monthly precipitation for REA model and observed data during historic 

period (1986–2018). 
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Figure 4.19 Comparison of annual average precipitation between REA and IMD.  

 

Figure 4.20 Scatter plot between REA and IMD streamflow (inflow) for (1986-2018) 

 

 

Figure 4.21. Average monthly simulated tank inflow with REA model and IMD observed data 

during baseline period (1986–2018). 
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The scatter plot for REA and IMD monthly streamflow (tank inflow) is shown in figure 4.20. 

It can be observed that the REA model has a good match with observed data with correlation 

coefficient (R2-) value of 0.84. The average monthly precipitation from REA and IMD is shown 

in figure 4.21. The REA model monthly streamflow is similar to IMD data. The annual 

streamflow from REA model is also in good correlation with IMD with R2 value of 0.62.  

The changes in CORDEX simulated climate variables for future time periods with respect to 

observed climate data is shown in table 4.7. The percentage change in precipitation and 

temperature changes under RCP4.5 and RCP 8.5 are calculated for historic, future-1, future-2 

and future-3. Under RCP4.5 scenario, ACCESS and CCSM models over predicted the 

precipitation during historic period by 12.2% and 29.7% respectively, while the other two 

models under predict by 11.4% and 12.6%. During future-1 all the models indicate a decrease 

in precipitation under both RCP 4.5 and 8.5 scenarios. CCSM model shows an increase in 

precipitation during future-2 under RCP4.5 scenario, while rest of the model show a decrease 

in precipitation. During future -3, all the models exhibit a decrease in precipitation except 

ACCESS model. 

The changes in minimum and maximum temperatures are shown in table 4.7. During historic 

period, ACCESS and CNRM show similar maximum temperature values with IMD. CCSM 

model predicts minimum temperature similar to IMD. While, rest of the three models over 

predicted. It can be observed both maximum temperature and minimum temperature shown a 

significant increase during future time periods under RCP 4.5 and 8.5. During future-1, CCSM 

model indicates decrease in maximum temperature by 1.25oC under RCP 4.5, while it indicates 

an increase by 1.51oC. All the other models indicate an increase in maximum temperature. 

Similar pattern is followed in future-2 and during future-3 all the models show a raise in 

maximum temperature ranging from 0.13- 3.15oC.  The minimum temperature changes in future 

show significant raise relative to IMD, ranging from 0.04oC – 6.95oC. The relative changes 

from Table 4.7 imply that changes in temperature are more significant under RCP 8.5 than 

under RCP 4.5. 
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Table 4.7 Change in CORDEX-simulated climate variables relative to observed variable 

 Precipitation 

 

RCP 4.5 RCP8.5 

ACCESS CCSM CNRM MPI-ESM ACCESS CCSM CNRM MPI-ESM 

Historic 

(1986-2018) 12.2% 29.7% -11.4% -12.6%     
Futue-1 

(2020-2050) -19.3% -40.2% -21.1% -13.0% -16.8% -27.2% -23.5% -15.1% 

Future-2  

(2051-2080) -8.5% 4.1% -6.9% -10.6% -6.83% -22.9% -10.9% -15.7% 

Future-3 

(2081-2099) 19.4% -10.6% -4.0% 0.1% 1.6% -23.6% -10.4% -19.1% 

 Maximum Temperature 
 

RCP 4.5 RCP8.5 

ACCESS CCSM CNRM MPI-ESM ACCESS CCSM CNRM MPI-ESM 

Historic 

(1986-2018) 

-0.12 0.94 0.04 0.23     

Futue-1 

(2020-2050) 

1.19 -1.25 0.95 0.72 1.34 1.51 1.01 1.08 

Future-2  

(2051-2080) 

1.21 -0.47 0.71 1.13 2.14 1.85 1.49 2.29 

Future-3 

(2081-2099) 

0.93 0.13 0.81 0.99 3.03 2.52 2.54 3.15 

 Minimum Temperature 
 

RCP 4.5 RCP8.5 

ACCESS CCSM CNRM MPI-ESM ACCESS CCSM CNRM MPI-ESM 

Historic 

(1986-2018) 

1.45 -0.61 1.65 1.79 
    

Futue-1 

(2020-2050) 

4.14 0.61 4.38 4.50 4.33 4.67 4.50 4.71 

Future-2  

(2051-2080) 

4.56 -0.03 4.69 4.96 5.52 5.43 5.27 5.90 

Future-3 

(2081-2099) 

4.83 0.04 4.87 4.93 6.68 6.31 6.34 6.95 

Table 4.8: Percentage Change in simulated streamflow with CORDEX data relative to 

IMD data simulated to streamflow 

Change in Streamflow (%) 

 RCP4.5 RCP8.5 

ACCESS CCSM CNRM MPI-ESM ACCESS CCSM CNRM MPI-ESM 

Historic 

(1986-2018) 

22% -11% -22% -29% 
    

Futue-1 

(2020-2050) 

-40% -57% -43% -30% -37% -53% -48% -34% 

Future-2  

(2051-2070) 

-23% 8% -19% -23% -25% -49% -28% -40% 

Future-3 

(2071-2099) 

29% -17% -16% -5% -12% -50% -30% -45% 
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The future flow simulation results under RCP 4.5 and RCP 8.5, for early, mid and end centuries 

are shown in figure 4.22 (a), (b), (c) respectively. The streamflow exhibited a decreasing trend 

in future period when compared to baseline. In future-1, MPI-ESM model predicted peak 

streamflow of 9.5m3/s, while the other models predicted 8m3/s in RCP 4.5 scenario. The peak 

flows by the four models during future-2 are around 11m3/s, while in end century the peak flows 

are in the range of 9 –14 m3/s. During the three future time periods the mean monthly 

streamflow under RCP 8.5 is less than RCP 4.5. Under RCP 8.5 scenario, the peak flows are 

ranging from 8-10 m3/s during future time periods. The peak streamflow is observed in the 

month of August in RCP 4.5, while in RCP 8.5 the peaks flow is shifted to September.  

The average annual streamflow results are shown in Figure 4.23. The box plots indicate the 

maximum, minimum and median flows of the annual average streamflow during the three future 

time periods for both RCP4.5 and RCP8.5. It can be observed that during early century, expect 

CCSM all the models predicted the flows similar under RCP4.5 and RCP8.5 scenarios. During 

mid and end centuries, the models under RCP8.5 predicted low flows when compared to 

RCP4.5. It is observed that during early century the average streamflow predicted by all the 

models is decreased by 42% under RCP 4.5 and 43% under RCP8.5 scenario (Figure 4.24). The 

average decrease in streamflow during mid-century is observed to be 14.3% under RCP4.5 and 

35.6% under RCP 8.5 scenario. During end century the decrease in streamflow is 2.3% under 

RCP4.5 and 34.3% under RCP 8.5. Overall, it can be concluded from the aforementioned 

findings that fluctuations in precipitation values and changes in temperature are the main causes 

of changes in streamflow. The decrease in streamflow imply that the inflows in the tank are 

going to decrease in future. The highest decrease in streamflow is observed in future-1 

compared to future-2 and future 3(table 4.8).  
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(a) 

 

(b) 

 

(c) 

Figure 4.22 Future monthly streamflow under RCP4.5 and RCP8.5 using four CORDEX 

models. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.23. Future average annual streamflow under RCP4.5 and RCP8.5 using four CORDEX 

models. 
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(a)  

 

(b) 

Figure 4.24. Percentage change in CORDEX annual streamflow relative to IMD simulated 

streamflow. (a) RCP4.5. (b) RCP8.5. 

The changes in REA model future climate variables relative to observed are shown in table 4.9. 

It can be observed that highest change in precipitation is projected in future-1 compared to 

future-2 and future-3 under both RCP 4.5 and RCP 8.5. The precipitation under RCP 4.5 

scenario is decreased by 26%, 18% and 1% during future-1, future-2 and future -3 respectively. 

Under RCP 8.5 it is observed that the decrease in precipitation is 21%, 15% and 14% during 

future-1, future-2, and future-3. Similar pattern observed in case of streamflow with 59% under 

RCP 4.5 and 52% under RCP 8.5. The historic and future monthly flow simulation results using 

REA climate data is shown in figure 4.25.  

  

  

Figure 4.25. Monthly streamflow for historic and future under RCP4.5 and RCP8.5 using REA model. 
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Table 4. 9 Change in REA climate variables relative to IMD 

 Precipitation Streamflow 

Maximum 

Temperature 

Minimum 

Temperature 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Historic(1986-

2018) 7%  11%  0.51  0.05  
Future-1 

(2020-2050) -26% -21% -59% -52% 3.45 4.55 0.45 1.23 

Future-

2(2051-2080) -18% -15% -46% -47% 3.61 5.52 0.68 1.95 

Future-

3(2081-2099) -1% -14% -18% -44% 3.75 6.57 0.73 2.81 

 

4.8.4 Historic and Future NEX-GDDP Climate Data Analysis 

The calibrated and validated SWAT model was applied to simulate the hydrologic components 

of Phakal Watershed for Baseline (1986–2018), Future-1 (2020–2050), using REA ensemble 

of 21 NEX-GDDP models. For the analysis of climate change, the simulated hydrologic 

conditions are compared with the observed data. The NEX-GDDP models are at a higher spatial 

resolution than CORDEX models with a resolution of 0.25o. The CORDEX model results 

exhibited a significant change in hydroclimatic variables in Future-1 when compared to other 

future time periods. Hence, future-1 is considered for simulation using NEX-GDDP data for 

comparison between the two data sets.  

The precipitation and temperature from 21 NEX-GDDP models are compared with the IMD 

data to find the correlation. It was observed that the R2 values for the climate variables are less 

than 0.5 indicating that none of the models show good correlation with observed data. In order 

to account for the mode uncertainty, the data is bias corrected using quantile mapping approach 

and reliability ensemble averaging (REA) is done for obtaining an ensemble model. REA 

ensemble initial (historic) and final weights (future) for the climate models corresponding to 

each climate variable are tabulated in table 4.10. The table shows the weights corresponding to 

one grid point.  Similar procedure is applied for all the grids points in the study area. The 

obtained weights are applied to the climate data and REA mean is calculated for each climate 

variable and then used for SWAT model simulation.  

The scatter plot for REA and IMD monthly precipitation is shown in figure 4.26. It can be 

observed that the REA model has a good match with observed data with correlation coefficient 

(R2) value of 0.74. The average monthly precipitation from REA and IMD is showing in figure 

4.27. The R2 value for REA temperature and observed temperature is 0.94 and 0.96 for 

maximum and minimum temperature respectively. The scatter plot for REA and IMD monthly 

streamflow (tank inflow) is shown in figure 4.28. It can be observed that the REA model has a 



 
 

77 
 

good match with observed data with correlation coefficient (R2) value of 0.67. The average 

monthly precipitation from REA and IMD is showing in figure 4.29. The REA model monthly 

streamflow is similar to IMD data.  

Table 4.10 REA results for the three climate variables. 
 

Precipitation Maximum Temperature Minimum Temperature 

Model Historic RCP 

4.5 

RCP 

8.5 

Historic RCP 

4.5 

RCP 

8.5 

Historic RCP 

4.5 

RCP 

8.5 

ACCESS1-0 0.0848 0.0379 0.0091 0.0531 0.0470 0.0454 0.0356 0.0480 0.0480 

BCC-CSM1-1 0.0229 0.0527 0.0575 0.0437 0.0482 0.0475 0.0438 0.0469 0.0469 

BNU-ESM 0.0272 0.0560 0.0612 0.0492 0.0481 0.0483 0.0398 0.0484 0.0484 

CanESM2 0.0166 0.0640 0.0424 0.0392 0.0479 0.0472 0.0332 0.0472 0.0472 

CCSM4 0.0309 0.0355 0.0480 0.0542 0.0472 0.0475 0.0576 0.0483 0.0483 

CESM1-BGC 0.1612 0.0543 0.0255 0.0409 0.0466 0.0454 0.0427 0.0449 0.0449 

CNRM-CM5 0.0403 0.0390 0.0427 0.0508 0.0480 0.0486 0.0439 0.0483 0.0482 

CSIRO-Mk3-

6-0 

0.0322 0.0360 0.0353 0.0541 0.0484 0.0487 0.0799 0.0486 0.0485 

GFDL-CM3 0.0311 0.0424 0.0420 0.0445 0.0473 0.0483 0.0592 0.0468 0.0468 

GFDL-

ESM2G 

0.0362 0.0439 0.0555 0.0525 0.0494 0.0486 0.0420 0.0498 0.0498 

GFDL-

ESM2M 

0.1678 0.0361 0.0450 0.0413 0.0477 0.0483 0.0408 0.0479 0.0479 

INMCM4 0.0613 0.0467 0.0330 0.0518 0.0485 0.0479 0.0703 0.0490 0.0491 

IPSL-CM5A-

LR 

0.0281 0.0535 0.0613 0.0426 0.0478 0.0476 0.0498 0.0493 0.0493 

IPSL-CM5A-

MR 

0.0400 0.0392 0.0493 0.0462 0.0474 0.0484 0.0365 0.0482 0.0481 

MIROC5 0.0285 0.0441 0.0657 0.0473 0.0478 0.0485 0.0719 0.0475 0.0475 

MIROCESM 0.0222 0.0740 0.0786 0.0452 0.0473 0.0474 0.0363 0.0470 0.0471 

MIROCHEM 0.0285 0.0572 0.0720 0.0459 0.0473 0.0473 0.0297 0.0467 0.0467 

MPI-ESM-

LR 

0.0328 0.0454 0.0312 0.0502 0.0469 0.0473 0.0415 0.0464 0.0464 

MPI-ESM-

MR 

0.0220 0.0499 0.0412 0.0535 0.0472 0.0464 0.0348 0.0462 0.0462 

MRI-CGCM3 0.0637 0.0411 0.0456 0.0478 0.0471 0.0477 0.0612 0.0469 0.0469 

NorESM1-M 0.0219 0.0511 0.0578 0.0460 0.0468 0.0477 0.0497 0.0478 0.0478 
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Figure 4.26 Scatter plot between REA and IMD monthly precipitation for (1986-2018) 

 

Figure 4.27. Average monthly precipitation for REA model and observed data during historic 

period (1986–2018). 

 

Figure 4.28 Scatter plot between REA and IMD monthly tank inflow for (1986-2018) 
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Figure 4.27. Average monthly streamflow for REA model and observed data during historic 

period (1986–2018). 

 

Figure 4.28 Average monthly streamflow under RCP4.5 and RCP8.5 using REA model for 

2021-2050 

The changes in NEX-GDDP hydroclimatic variables with respect to observed data under 

historic and future time periods are shown in table 4.11. It can be observed that the precipitation 

is under predicted in historic period by 2%. While the streamflow is over prediction by 12% 

during historic period. During future time period (2020-2050), both precipitation and 

streamflow are decreased when compared to observation data under RCP 4.5 and an increase 

is observed under RCP 8.5. The minimum and maximum temperature changes are shown in oC. 

During historic period they are similar to observed data. In future period, the maximum 

temperature is increased by 1.21oC and minimum temperature is decreased by 1.19oC under 

RCP 4.5. Under RCP 8.5, the changes are 1.42oC and 0.26oC for minimum and maximum 

temperature respectively. The results show that the RCP 4.5 is vulnerable to climate change due 

to a decrease in precipitation and streamflow. In comparison, the RCP 8.5 scenario results show 

an increase in precipitation and streamflow. Temperature and evapotranspiration changes are 
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comparable in both RCP scenarios. Figure 4.28 show the average monthly variations in tank 

inflows, which suggest that the peak flows are shifted to the month of September during the 

future time period, while the observed peak flows are found during the month of August.  

Table 4. 11 Change in NEX-GDDP simulated climate variables relative to observed 

 

Precipitation Streamflow 

Maximum 

Temperature 

Minimum 

Temperature 

Historic -2% 12% -0.07 0.03 

Future 

RCP4.5 -10% -3% 1.21 1.19 

Future 

RCP8.5 3% 21% 1.42 0.26 

From the results of both CORDEX and NEX-GDDP data, it can be observed that there is a 

significant decrease in precipitation during future period and increase in temperature. The future 

tank inflow simulation results also exhibit a significant decrease. Out of the three future periods, 

Future-1(2020-2050) is the most vulnerable as it experiences highest decrease in tank inflow. 

This will affect the water availability in the Phakal lake during this period, which suggests that 

the tank water resources should be maintained effectively. 

4.9 Closure 

Tank irrigation is predominant in southern part of India and contribute significantly in meeting 

the agricultural water demand in semi-arid regions. With tank irrigation the water is used to 

irrigate an area immediately downstream of the tank (tank command area) unlike in reservoirs 

where water is carried to long distances. Although the tank irrigation proved effective, due to 

climate change the tank performance may be at stake. Hence, adaptive management of tank 

irrigation will augment the water resources of the region even in extreme climatic conditions. 

Present research is focused to study the impact of climate change on the medium irrigation 

system.  

The study revealed that SWAT model performs satisifactory for the simulation of flows to the 

tank systems of semi-arid regions of Telangana, India. Through regionalization, the model 

parameters are transferred to the Phakal lake catchment. The results of this study reveal, surface 

runoff amounts are going to be affected by the impact of climate change. The findings suggest 

that tank inflows could decline by as much as 59% between the historic and future time periods. 
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The rainfall and lake inflow indicate a significant decreasing trend in the Phakal Watershed. 

For better understanding of the water budget SWAT model simulation with the tank daily water 

level data using both RCP 4.5 and 8.5 scenarios, is advisable. In this research study, proximity 

method is used for regionalization of the parameters and the results are presented. The results 

from this research work are useful to plan the adaptation policies for different stakeholders of 

the tank system. The results are useful for making decisions related to tank rejuvenation in order 

to achieve tank sustainability under changing climate.
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Chapter 5 

Integration of SWAT and Support Vector Regression 

(SVR) Method for Predicting of Lake Water Levels 

5.1 General 

In the previous chapter, the SWAT model has been set up for Pakhal Lake in order to evaluate 

the climate change impact on the tank inflows. The projected results indicated a significant 

decrease in the streamflow future time period under both RCP 4.5 and RCP 8.5 scenarios. The 

rainfall and lake inflow indicate a significant decreasing trend in the Phakal Watershed. In 

addition to the future projection of rainfall and streamflow, it is also essential to determine the 

future water availability (i.e. water level fluctuations) from water resources planning 

perspective. Analysis of water level fluctuations in Pakhal Lake using the integrated results 

from a physical-based hydrological model and machine learning approach in view of changing 

climate scenarios is provided in this Chapter.  

Apart from studying the impact of climate change on the lake water balance components, 

estimating lake level fluctuations under future climate scenarios is important for developing 

sustainable water management policies (Bucak et al., 2017). The natural water exchange 

between the lake and its catchment affects the level of lake water, hence the water level 

fluctuations reflect regional climatic variations (Kisi et al., 2015). Recently, machine learning-

based Support Vector Machine (SVM) algorithms has been used effectively for predicting 

changes in water levels (Buyukyildiz, Tezel, & Yilmaz, 2014; Mohammadi et al., 2020). Khan 

and Coulibaly (2006) investigated the utility of SVM in predicting lake water levels in Lake 

Erie over the long term. They observed that SVM outperformed multi-layer perceptron (MLP). 
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Cimen and Kisi (2009) found that Support Vector Regression (SVR) outperformed Artificial 

Neural Networks (ANN) techniques in modeling the monthly lake levels. Hipni et al. (2013) 

found that the ν-SVR model outperformed the other SVM techniques in forecasting daily water 

levels in Klang reservoir, Malaysia, and concluded that the SVR model was the best regression 

type for lake water predictions (Hipni et al., 2013). Kisi et.al (2015) used the SVM technique 

coupled with the firefly algorithm for forecasting daily lake water levels in Lake Urima. Bucak 

et.al (2017) integrated SWAT model outputs with the SVR model to project the future water 

availability in Beyşehir Lake and concluded that climate change leads to the drying up of the 

lake by the end of the century. 

The previous studies mainly focused on the assessment of climate change on the water balance 

components like runoff, streamflow, and evapotranspiration in the lake catchments. Most of the 

studies on the applicability of SVM techniques for lake level predictions were carried out based 

on the past lake levels, without considering the water balance components that influence the 

water availability. Very few studies addressed the integration of catchment hydrology and lake 

water level changes. Pakhal lake is a major source of water for agriculture, poor and marginal 

farmers of this region largely depend on the lake for their agricultural water needs. It is essential 

to study the impact of climate change on this lake system for future planning and management 

of water resources to provide sustainable livelihood to the farmers. Hence, water availability 

and lake water fluctuations for present and future climate change scenarios for Phakal lake are 

studied in the present research work. 

5.2 Support Vector Regression (ν-SVR) 

Support Vector Machine (SVM) is a popular machine learning technique for solving 

classification and regression problems (Yang et al., 2017). Support Vector Regression (SVR) 

is characterized by the use of kernels, sparse solutions, and control of the margin and the number 

of support vectors. SVR is considered as a nonparametric technique because it relies on kernel 

functions. SVR has established itself as a reliable technique for estimating real-value functions. 

The main benefit of SVR is that it incorporates the principle of minimization of the structural 

risk (Hipni et al., 2013; Khan & Coulibaly, 2006). It also has excellent generalization 

capabilities and high prediction accuracy (Mohammadi et al., 2020). Recently, SVR has been 

used in a variety of water resources research areas, which include the prediction of water level 

changes. There are two types of SVM regression with a generalized formula which is given in 

Eq. (4.1) 
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y = f(x)  + Z (4.1) 

where, y is dependent variable, f(x) is a function independent variable(s) and Z is the additive 

noise. The first type of SVM regression is known as Epsilon (ξ). In this type, the error function 

is given by the following formula: 

1

2
𝑤𝑇𝑤 + 𝐶 ∑ ξ𝑖 + 𝐶 ∑ ξ𝑖

∗

𝑁

𝑖=1

𝑁

𝑖=1

 

(4.2) 

where, w is the vector of coefficients, C denotes the capacity constant, the distances of the 

training data sets’ points from the region where errors smaller ε than are ignored are designated 

as ξi and ξi *,  respectively. The index i labels the N training cases. The subject is then 

minimized to obtain the following: 

𝑤𝑇∅(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + ξ𝑖
∗ (4.3) 

𝑦𝑖 − 𝑤𝑇∅(𝑥𝑖) − 𝑏 ≤ 𝜀 + ξ𝑖 (4.4) 

ξ𝑖ξ𝑖
∗ ≥ 0, 𝑖 = 1, . . . . , 𝑁  

Where b is a constant, y ∈ ± 1 is the class labels and xi is the independent variable(s). The kernel 

function Ø assists in transforming the input (independent) data to the feature space. As the C 

value increase, higher errors are penalized. Thus, to avoid over fitting, C should be chosen with 

caution. The second type of regression is Nu (ν) regression. The error function for Nu(ν) 

regression is given by Eq.(7). 

1

2
𝑤𝑇𝑤 − 𝐶 (𝑣𝜀 +

1

𝑁
∑(ξ𝑖 + ξ𝑖

∗)

𝑁

𝑖=1

) 

(4.5) 

Similarly, the subject is minimized to obtain the following: 
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(𝑤𝑇∅(𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝜀 + ξ𝑖
∗ 

(4.6) 

𝑦𝑖 − (𝑤𝑇∅(𝑥𝑖) − 𝑏) ≤ 𝜀 + ξ𝑖 

ξ𝑖ξ𝑖
∗ ≥ 0, 𝑖 = 1, . . . . , 𝑁 

(4.7) 

In this study, Nu (ν) SVR with the radial basis function (RBF) kernel was used: 

𝐾(𝑋, 𝑋′) = exp (−γ||X − X′||2) (4.8) 

where, γ denotes the spread of the RBF kernel function (Bucak et al., 2017; Buyukyildiz et al., 

2014; Mohammadi et al., 2020). 

5.3. Linking SWAT with ν-SVR 

In, the present study area, the prediction future water levels by calculating of the water 

balancing components of the lake is difficult because observational data (precipitation and 

inflows) from Pakhal Lake is scarce and water abstraction is non-systematic. In order to address 

the challenge of predicting future lake water levels, the SWAT model outputs are linked with 

SVR (Bucak et al., 2017). Precipitation, monthly outflow volume, and potential 

evapotranspiration (PET) and inflows from SWAT outputs, are the considered inputs for the ν-

SVR model. The ν-SVR model was trained from 2003 to 2015, and data from 2016 to 2018 

were used for testing the model’s water level (validation). While applying the ν-SVR model, 

e1701 package from R (Version 3.6.2) programming software is used for obtaining the 

optimized values of error term (ε), configuration factor (C), and gamma parameter (γ). The 

performance of ν-SVR model is evaluated by using the root mean square error (RMSE), the 

mean absolute error (MAE) and the coefficient of determination (R2). In order to determine the 

lake's water level in response to the future climate change scenarios RCP 4.5 and 8.5, the 

calibrated and validated v-SVR model was run for the time period 2021–2050. 

5.4 Performance of the ν-SVR model 

The best fit between the projected and actual water level change was given by the parameter set 

of C = 34, v = 0.5, and γ = 0.91 with the RBF kernel (Figure 5.1). The value of R2 was 0.79, 

MAE was 0.018 m, and RMSE was 0.13 m during the training period. The scatter plot between 

the observed and SVR model generated tank water levels during the training period is shown 
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in Figure 5.2. In the validation period, the R2, MAE and RMSE values obtained are 0.72, 0.6 m 

and 0.25 m, respectively. The scores of the three metrics (R2, MAE and RMSE) during the 

training and validation periods suggest that the model performance is satisfactory in capturing 

the observed lake water level trends.  The time series plot of observed and SVR model monthly 

lake water level changes suggests that the model performance is good (Figure 5.3). 

 

Figure 5.1. Observed and modelled water level changes in the ν –SVR model during the 

training and validation periods. 

 

Figure 5.2. Scatter Plot between observed and SVR simulated tank water levels during the 

training period. 
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Figure 5.3. Observed and SVR model average monthly lake water level changes for the period 

2003-2018. 

5.5. Effect of climate change on water availability 

The calibrated and validated SVR model is used to make monthly tank water level predictions 

under RCP 4.5 and RCP 8.5 scenarios for the period 2021-2050. The changes in predicted 

monthly lake water level is shown in Figure. 5.4 and 5.5. The lake water level ranges during 

the observation period (2003-2018) are 0.05–9.3m. The future lake water level ranges under 

RCP 4.5 and RCP 8.5 are 0.0–9.2m, 0.35–9.8m, respectively. The average water level observed 

during the SVR modeling period (2003-2018) is 5.2m. Whereas, the average water level range 

during future scenarios was between 5.6m and 5.8m under both RCPs. The average lake water 

levels for the future scenarios are similar to the historic trends.  

Seasonal analysis is performed for assessing the water level changes during rabi and kharif 

seasons. Three crop growth seasons are considered for the analysis are rabi (July-October), 

kharif(October- April) and summer(May -June). The average changes in water levels during 

each season are shown in figure 5.6. The results under RCP 4.5 signify an increase water levels 

in rabi and kharif season, while a decrease in water levels in summer season. Under RCP 8.5, 

the water levels showed an increase in water levels in kharif while a significant decrease in 

levels can be seen in the rabi season. High increase in water levels can be observed in summer 

under RCP 8.5. These changes can be attributed to changes in the climate variables.  
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Figure 5.4. Changes in predicted monthly lake water level during 2021-2050 under CORDEX 

climate change scenarios 

 

 

Figure 5.5. Changes in predicted monthly lake water level during 2021-2050 under 

NEXGDDP climate changes scenarios. 
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Figure 4.6. Changes in water levels during each season compared to observed levels under RCP 

climate change scenarios. 

The linking of SWAT outputs with the SVR model proved effective in predicting the lake water 

levels as the performance metrics are satisfactory. The predicted lake water levels indicate a 

similar pattern under both the climate scenarios when compared to observed levels. From, the 

results it can be concluded that the lake level fluctuations are highly dependent on the 

evapotranspiration in the lake catchment. Further, investigation is needed in order to correlate 

the catchment water balance components and lake levels at the monthly and seasonal scale. The 

results of the monthly water levels in the both RCP 4.5 and 8.5, show almost zero values at 

some instances (Fig 4.5). Hence, the study on the extreme event analysis is needed in order to 

identify the events where the lake dries up completely.    

5.6. Closure 

In the present study, an integrated approach of linking SWAT model outputs with support 

vector regression (v-SVR) has been developed for the prediction of future lake water levels of 

a tank located in a semi-arid region. The climate datasets from REA ensemble of CORDEX and 

NEXGDDP are used as input in future water level prediction of Pakhal Lake. A decrease in 

streamflow is observed in both CORDEX RCP scenarios and NEXGDDP RCP 4.5 which can 

be attributed to decreased precipitation and enhanced potential evapotranspiration (PET). An 

increased streamflow is predicted in NEXGDDP RCP 8.5. Precipitation, outflow volume, PET 

and inflows from SWAT can be used as input variables in SVR to estimate lake water level 

when direct estimation of surface evaporation from the lake is not possible. This method can 

be an effective way for estimating water levels, since the changes in future lake area information 
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is unavailable. The predicted lake water levels indicate a similar pattern under both the climate 

scenarios when compared to observed levels. Seasonal analysis suggests a decrease in water 

availability in the rabi season under RCP 8.5 scenario. Significant extreme events are observed 

in the RCP 4.5 scenario. As majority of the lake waters are used for agricultural purpose, 

adaptation strategies are required for sustainable management of water resources. In view of 

the changing climate, this study assists in developing the essential water management strategies 

for Pakhal Lake. The seasonal analysis aids in developing policies for water augmentation from 

the lake linking project in order to sustain agriculture during periods of water scarcity. The 

methods proposed in this research study can be extended to other semi-arid lake systems with 

limited observable data.
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Chapter 6 

Adaptation Strategies for Water Management in the Tank 

System 

6.1 General 

Climate change can have a negative effect on agriculture productivity across agroecological 

regions both due to temperature rise and changes in water availability, hence reservoir operation 

for agricultural irrigation has to be modified (Zhang et al. 2017). Since most rural communities 

still rely heavily on agricultural production for their income, it will be crucial to adapt the 

agricultural sector to the negative consequences of climate change in order to guarantee food 

security (Vibhute et al. 2016). By improving rural populations' capacity to adapt to climate 

change and unpredictability, reducing possible damages, and assisting them in coping with 

negative effects(Yang et al. 2017). In addition to assisting farmers in managing agricultural 

water without having a detrimental impact on crop yields and profitability, adaptation can 

greatly lower risk of climatic change (Holzkämper 2017, He et al. 2020). 

In order to increase irrigation productivity and achieve effective water resource planning and 

management, precise information on crop water requirements, the type of soil, and climatic 

conditions are needed (Sunil et al. 2021). Traditionally irrigation releases from tanks are done 

based on constant or fixed demand. This is done without considering the crop water 

requirement. Climate change is going to affect crop water demand because the major part of 

the available water is used for irrigation (Masia et al. 2018, Le Page et al. 2021, Poonia et al. 

2021). For efficient use of tank water resources, it is essential to estimate the irrigation water 

demand based on climate change. In order to meet the changing water demand, decisions have 

to be made on the tank operational policy and water management strategies. In the previous
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chapter, the climate change impact on the tank water availability of Pakhal lake is assessed and 

it was found that there is a significant decrease in the water availability, especially under the 

RCP 4.5 CORDEX climate change scenario. In, this chapter, the Irrigation Water Requirement 

(IWR) is estimated using the CROPWAT model for the command are of the Pakhal lake.  The 

changes in the irrigation water demand with respect to future climate change scenarios are 

evaluated for the tank system. The ensemble climate model data of the RCP 4.5 scenario 

(CORDEX) is used to simulate the streamflow in the lake and for developing adaptation 

strategies. Climate change impact on irrigation systems and its performance criteria (reliability 

with respect to volume, resilience, and vulnerability) are evaluated using the r package 

“reservoir”. The performance criteria obtained are studied initially with the Standard Operating 

Policy (SOP). The performance indices projected with the SOP for future scenarios show a 

decrease in reliability and resilience, while the vulnerability is likely to increase because of 

climate change. Hence, Stochastic Dynamic Programming (SDP) is used to develop adaptive 

policies for the optimal monthly operation of the Pakhal Lake. Three demand-side adaptation 

strategies are applied and the tank performance indices are measured in order to obtain the best 

fit strategy.  

6.2 Estimation of IWR using CROPWAT 

Crop Water Requirement (CWR) vary greatly and it is influenced by crop type, soil properties, 

weather conditions, and so on. Crop evapotranspiration (ETc) is the measure of water lost by 

the crop, while crop water requirement (CWR) is the additional amounts of water required for 

crop growth. The total amount of water applied to the land surface in addition to the water 

supplied by rainfall and soil profile to meet the water needs of crops for optimum growth is 

referred to as Irrigation Water Requirement (IWR). In essence, it is the discrepancy between 

CWR and effective precipitation. The estimation of IWR in the Pakhal command area for 

present and future climate scenarios is carried out using the CROPWAT model. 

6.2.1 CROPWAT model 

CROPWAT is an Food and Agricultural Organization (FAO) model for crop simulation 

developed by Smith (1992) which incorporated climate, crop, and soil related data to estimate 

reference evapotranspiration (ETo), crop evapotranspiration (ETc), and IWR. The main 

advantage of the model is that it requires a smaller number of inputs compared to other crop 

simulation models. The Penman-Monteith equation recommended by the FAO was used to 

calculate the potential evapotranspiration. Numerous input data modules are needed by the 

model, including meteorological, crop, soil, and crop pattern data. Precipitation, minimum and 
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maximum temperatures, wind speed, relative humidity, sunshine hours are the climate related 

data, that are used as initial input for calculation of ETo. Using the location's latitude, longitude, 

altitude, maximum and minimum temperatures, CROPWAT can calculate ETo in the absence 

of relative humidity and daylight. In addition to climate data, the crop module also needs crop 

data, such as maximum rooting depth, crop description, crop factor, rooting depth, growing 

days, etc. Additionally, the soil module receives inputs for properties including initial soil 

moisture depletion, maximum penetration rate, maximum rooting depth, and soil moisture 

availability. The CWR is computed using Eq. 6.1. 

𝐸𝑇𝑐 =  𝐾𝑐 × 𝐸𝑇𝑜 (6.1) 

The crop coefficient, or Kc, is influenced by a number of parameters, including the soil, crop 

height, albedo, wind speed, and wind direction. Depending on the crop variety and growth 

stage, Kc has a different value. Effective rainfall (Peff), which is determined using the fixed 

percentage approach, is used to determine the Crop Irrigation Requirement (CIR). It is advisable 

to consider 50-80% of the total rainfall in India's conditions as effective for rice crops, and 70% 

for non-rice crops (Dastane 1974). Based on the geography of the study area, 70% of the total 

rainfall is considered effective precipitation in the current study. By deducting the expected 

effective rainfall from the estimated agricultural water requirement, the quantity of crop 

irrigation needed is determined (Eq. 6.2). The total IWRis calculated from Eq. 6.3, where the 

CIR is calculated for each crop ‘i’ and multiplied by corresponding irrigated area denoted by 𝐴𝑖. 

𝐶𝐼𝑅 = 𝐶𝑊𝑅 − 𝑃𝑒𝑓𝑓 (6.2) 

𝐼𝑊𝑅 =  ∑ 𝐶𝐼𝑅𝑖 × 𝐴𝑖

𝑛

𝑖

 
 

(6.3) 

6.2.2 Simulation of Irrigation Water Demand 

In the present study, monthly mean values of precipitation, and maximum and minimum 

temperature from IMD gridded data are used to estimate the reference crop evapotranspiration 

for the historic period (2003-2018).  The soil information for the Pakhal command area is 

obtained from the maps provided by Telangana State Remote Sensing Center (TRAC), India. 

Red soil is predominant in the study area.  The cropping pattern information is obtained from 

the I&CAD Department, Warangal Rural District. Rice is the major crop grown in both the 

kharif and rabi seasons. Minor crops include maize and cotton. Additional soil and crop 

characteristic data are adopted from the literature (Thirupathi and Shashikala 2017). For future 

simulations, climate data with CORDEX and NEXGDDP scenarios are considered for the years 



 
 

94 
 

2025 to2050. Two different future cropping patterns are chosen for the study. The workflow 

for the estimation of IWR in the Pakhal command area is shown in Figure 6.1. The following 

scenarios are used for the study: 

 Climate change RCP 4.5 and same cropping pattern (Mixed crop: Rice -75%, Maize-

13%, Cotton-12%) 

 Climate change RCP 8.5 and same cropping pattern (Mixed crop: Rice -75%, Maize-

13%, Cotton-12%) 

 Climate change RCP 4.5 and100% Rice in both seasons 

 Climate change RCP 8.5 and 100% Rice in both seasons 

For ease of analysis, the eight scenarios considered in the study are given codes, the details of 

which are given in table 6.1. 

 

Figure 6.1 Workflow flowchart for the estimation of Irrigation Water Requirement (IWR) 

Table 6.1 Details of the Scenarios used and their respective codes. 

CODE Scenario 

S1 CORDEX 4.5 (MIXED CROP) 

S2 CORDEX 8.5 (MIXED CROP) 

S3 CORDEX 4.5 (100% 100% RICE) 

S4 CORDEX 8.5 (100% 100% RICE) 

S5 NEXGDDP 4.5 (MIXED CROP) 

S6 NEXGDDP 8.5 (MIXED CROP) 

S7 NEXGDDP 4.5 (100% 100% RICE) 

S8 NEXGDDP 8.5 (100% 100% RICE) 
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The average monthly irrigation water demand and inflow in Pakhal irrigation tank during 2003-

2018 is shown in figure 6.2. It can be observed that the available tank water at the start of Kharif 

season is inadequate to meet the command area’s irrigation demand. The annual IWR in the 

Pakhal command area shows an increase in all the future scenarios considered for the study. 

The percentage changes in average annual IWR in future scenarios with respect to observed 

time period is shown in figure 6.3. The scenarios S1, S7and S8 are shown highest increase in 

IWR with 8.9%, 16.7%, and 16.8% respectively. The irrigation requirement has increased as a 

result of the decreasing trend in the predicted rainfall in the Kharif season for the future 

scenarios. The results imply that the effective rainfall in the command area significantly impacts 

the IWR of the Kharif season. The Rabi season's irrigation needs were determined by projected 

increases in temperature, evapotranspiration losses, and rainfall patterns, which led to slightly 

increased irrigation requirements for the NEXGDDP RCP 8.5 scenario compared to the 

NEXGDDP RCP 4.5 scenario. Further, the increase in IWR can be attributed the shift in peak 

monsoon precipitation from the month of August to September. The results demonstrate that 

even if future precipitation is expected to increase, agricultural water needs will not be met by 

the precipitation that falls just before monsoon season due to an increase in evaporation and 

transpiration losses. 

Figure 6.4 displays the monthly fluctuation in the overall irrigation water demands (MCM) as 

well as the tank water that is available to satisfy the water requirements under various scenarios. 

 

Figure. 6.2 Average monthly water demand and Inflow in Pakhal study area during 2003-2018 

 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Demand 8.5 8.86 6.55 0 0.12 24.3 0.93 1 2.21 3.04 20.9 6.64

Inflow 1.05 0.46 0.76 0.28 1.05 9.06 26.4 41.4 42.3 25.1 12.2 5.51
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Figure 6.3. The percentage change in average annual IWR with respect to observed during 

future scenarios. 

 

Figure 6.4. Average monthly demand and tank water available for the future period 2025-

2050. 
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Figure 6.5 Monthly deviations of total irrigation demand in future scenarios from the historic 

period in the Pakhal command area.  Note: S1, S2, S3… S8 are described in table 6.1 
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The monthly fluctuations in the total irrigation demands across the historical period for both 

RCP scenarios are shown in Figure 6.6. The warmer months of April and May will see the 

highest water demand in the future, according to CORDEX climate estimates. The increased 

irrigation needs projected for the peak summer season should be taken into consideration for 

the development of better irrigation techniques in the future. The Rabi months showed greater 

monthly fluctuations in irrigation demand, compared to the Kharif months, which showed less 

deviation. When the command area is assumed to be entirely irrigated with rice crop (100%) 

during the Kharif season (June–October), the future irrigation demand estimates for the 

CRODEX scenarios show a decrease. While, the NEXGDDP scenarios show a significant 

increase in future irrigation demands in Rabi season. The maximum deviation can be observed 

during the month of November, when mixed crop cultivation is considered. When 100% rice 

crop is irrigated, the irrigation demand is higher during month of June (pre-monsoon) and 

November (start of Rabi season). The future irrigation demand fluctuations can be met by 

optimizing the irrigation tank releases by considering the changes in the water demand. 

Stochastic Dynamic Programming (SDP) can be implemented for optimizing the irrigation tank 

releases by taking irrigation demand variability into account. 

6.3 Stochastic Dynamic Programming (SDP) 

Irrigation system operation for meeting the agricultural water demand require optimizing the 

use of water over time. In the present study, irrigation tank performance is measured for the 

standard operating and adaptive policy using SDP. Standard Operating Policy (SOP) attempts 

to meet the target at all times unless constrained by available water in the reservoir plus 

incoming flows. In SDP, a variation of dynamic programming algorithm, reservoir inflows are 

treated as random variables underlying probability distributions. This type of a stochastic 

description of inflow aids in calculating the anticipated benefits associated with the each release 

decision. Let Qt represents the inflow vector into the reservoir during any time period t. St 

represents the storage vector for period t, Rt is the release vector for period t, and et(St, St+1) is 

the evaporation loss in period t. The continuity equation used to make the decision is based on 

the reservoir-storage mass balance (Faber and Stedinger 2001) which is given as follows:  

𝑆𝑡+1= 𝑆𝑡+ 𝑄𝑡−𝑅𝑡−(𝑆𝑡,𝑆𝑡+1)                                        (6.4) 

The reservoir storage, represented by St, and frequently some variable that indicates the 

hydrologic status of the river basin can be used to explain the system's state at each stage t. A 

water release 𝑅𝑡 is selected for each stage and state that maximizes the sum of the current 
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benefit of that release Bt (𝑅𝑡) and the future benefit 𝒇𝒕+𝟏(𝑺𝒕+𝟏) , which depends on the storage 

generated as a result in the subsequent period 𝑺𝒕+𝟏 in the following period, with an assumption 

that the system operates optimally from that point forward. A backward recursive function is 

used in the model starting from a year sufficiently distant in future to arrive at a steady state 

operating policy on a monthly basis. Neglecting streamflow uncertainty and for known inflow 

values 𝑄𝑡, the functional equation is evaluated using Eq 6.5 (Faber and Stedinger 2001).  

 

 

(6.5) 

Where, T is the final time period in the model, (Bt) the benefit function for period t and α denotes 

the discount factor. The transition probabilities provide the information on inflow 

characteristics in order to decide on the release for a given time step. The SDP adopted in the 

present study uses the release policy decisions made to optimize the release decisions to 

minimize the sum of penalty costs given in Eq (6.6). Eq (6.7) is used to compute the reservoir 

storage capacity with minimum releases. The penalty cost (Ct), which is determined by the 

relationship between the volumes delivered and the demand, is as follows: 

Ct = [1-(Rt / D)]τ                   (6.6) 

Where, D = Demand or target release,   τ = penalty cost exponent (τ = 2 Academic purpose).  

Backward recursive equation (Faber and Stedinger 2001) is given by Eq. (6.7).  

 

 

(6.7) 

The release decision Rt is selected to minimize the current period cost 𝐶𝑡(𝑆𝑡, 𝑄𝑡, 𝑅𝑡) plus 

future cost expectation 𝑓𝑡+1(𝑆𝑡+1, 𝑄𝑡+1), which depends on the resultant state of the system 

at time step ‘t+1’.   

The performance indices for the proposed releases are calculated using the reliability, 

resilience and vulnerability functions (McMahon et al. 2006). Reliability (R) represents the 
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probability of no failure. It is classified into time based and volumetric reliabilities.  The 

expression for for reliability is as follows:  

R= 1-(
∑ 𝐷𝑖−𝐷′𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
1=1

)                                    (6.8) 

where 𝑫𝒊= Target demand during ith period; 𝑫’𝒊ˈ = Actual volume supplied during the ith 

period; N = Number of time intervals in the simulation. Resilience (𝝋) is the conditional 

probability of a recovery from the failure set in single time step which is expressed as follows:  

𝝋=
𝑓𝑠

𝑓𝑑
      (6.9) 

Where, 𝒇𝒔 = Number of individual continuous sequences of failure periods; 𝒇𝒅= Total duration 

of all the failures. Vulnerability (ή) is the measure of likely damage in a failure event, which 

corresponds to the probable failure magnitude. It is expressed as follows:  

ή= Σ(𝐦𝐚𝐱𝒔𝒋)𝒇𝒔𝒋=𝟏𝒇𝒔     (6.10) 

where, 𝑠𝑗= Volumetric deficit during jth continuous failure sequence; 𝒇𝒔 = Number of 

persistent failure occurrences. 

6.4 Development of Adaptation Strategies Using SDP 

The ensemble climate model data of RCP 4.5 scenario (CORDEX) is used to simulate the 

streamflow in the reservoir and for developing adaptation strategies. Climate change impact on 

irrigation systems and its performance criteria (reliability with respect to volume, resilience and 

vulnerability) are evaluated using the r package “reservoir”. The performance criteria obtained 

are studied initially with the SOP. The performance indices projected with the SOP for future 

scenario show decrease in reliability and resilience, while the vulnerability is likely to increase 

because of climate change. Hence, SDP is employed to optimize the tank releases. The 

irrigation demand outputs obtained from CROPWAT model are used target release vector in 

the SDP. The tank inflows obtained from SWAT model are given for inflow vector. The other 

inputs for SDP include tank surface area, initial capacity of the tank, and maximum depth of 

the tank. The following three demand-side adaptation strategies are applied: 

 Change in cropping pattern  to Mixed Cropping(MC), 

 Delaying the Planting date (DP), 

 Increasing the Irrigation Efficiency (IIE).  
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It is observed that the total irrigation demand is less when mixed cropping pattern considered 

when compared to the 100% rice cultivation scenario. Hence, mixed cropping pattern in both 

Rabi and Kharif seasons is selected as first adaptation strategy. From the rainfall analysis, it can 

be observed that there is a shift in monsoon period from the month of August to September, 

which in turn is causing irrigation water deficit at the start of both Kharif and Rabi seasons. So, 

in order to mitigate this effect, delayed plantation is suggested. For the study, the plantation is 

delayed by 7, 14, 28 days and the irrigation tank performance is measured respectively. A delay 

of 28 days in planting date gave better performance, hence it is chosen as second adaptation 

strategy. Increasing the irrigation efficiency by 10% i.e making the overall irrigation efficiency 

as 80% is considered as third adaptation strategy. In order to achieve this, the future irrigation 

demands are calculated in CROPWAT by changing the irrigation efficiency from 70% to 80%. 

The tank performance indices under SOP, SDP with and without adaptation are measured in 

order to obtain the best fit strategy. The summary performance indices for each of the strategy 

are depicted in figure 6.6. The optimum fit adaptation method is fixed based on the high 

reliability and resilience with low vulnerability values. The combination of 2 adaptation 

strategies i.e. mixed cropping and delayed plantation gives better reservoir performance, with 

0.95, 0.73 and 0.19 reliability, reliance and vulnerability values respectively (Table 6.2). Even 

though the combination of mixed cropping and increase in irrigation efficiency give highest 

reliability with 0.97, the resilience of the system is low with a value of 0.32. Hence combination 

of MC and delayed plantation is chosen to the best fit strategy as the optimal performance 

indices are achieved when using this combined adaptation.    

Table 6.2. Summary of Performance Indices 

Inflow Operation Policy Reliability Resilience Vulnerability 

Historic SOP 0.59 0.42 0.85 

Future (RCP 4.5) SOP 0.57 0.34 0.88 

Future (RCP 4.5) SDP(without any adaptation) 0.66 0.38 0.82 

Future (RCP 4.5) SDP (MC) 0.80 0.14 0.3 

Future (RCP 4.5) SDP (MC and IIE) 0.97 0.32 0.15 

Future (RCP 4.5) SDP (MC and DP) 0.95 0.73 0.19 
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Figure 6.6. Summary of the performance indices for the tank system with 

adaptation.  

 

6.4 Closure  

To address the issues of both the present and future climate change, it is vital to develop 

adaptation mechanisms for water resource management policies and practices. The adaptation 

strategies which can bridge the gap between the water availability and demand are crucial to 

achieve water resilience at a particular region. Therefore, in the present chapter, estimates of 

future irrigation needs are made for the Pakhal study area, under eight distinct altering climate 

and cropping scenarios. The future climatic parameters from CORDEX and NEXGDDP 

ensemble model is used as an input for the CROPWAT model. The results show a significant 

increase in irrigation demand under CORDEX RCP 4.5 scenario. Performance indices of the 

irrigation tank projected with the SOP for future scenarios show a decrease in reliability, while 

the vulnerability as well as resilience are likely to increase because of changing climate. 

Irrigation tank optimization is performed using SDP.  The findings from the research work can 

be used by the government and decision makers of the Pakhal tank to comprehend the effects 

of climate change and to modify tank management policy to deal with the concerns of 

fluctuations in tank water supply and future irrigation demand as well.
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Chapter 7 

Summary and Conclusions 

7.1 Summary 

The thesis work is focused on developing adaptation strategies for the management of water 

resources in an irrigation tank system in a semi-arid region under changing climate. Initially, 

the climate variability and trends are analyzed for the Telangana region in order to identify the 

areas that are most vulnerable to climate change. The present study uses gridded rainfall and 

temperature data of 63 years i.e. from 1951 to 2013 acquired from the IMD to evaluate the 

observed climatic trends. Using the regional climate model data retrieved from CORDEX under 

RCP 4.5 and RCP 8.5 for 31 years, the possible climate scenarios for Telangana are evaluated 

(2020–2050). The Coefficient of Variation (CV), which is stated in percentages, is used to 

calculate the variability of the climate. At each grid point, both parametric (Linear Regression) 

and nonparametric (Mann-Kendall and Sen's slope) approaches are used to identify potential 

trends in the climate variables. 

The spatial plots show that the average annual rainfall is going to reduce in the future suggesting 

that there is a need to conserve the water resources of the Telangana region. Results of 

parametric and non-parametric tests on observed IMD data demonstrate a significant upward 

trend in daily maximum and minimum temperatures. Whereas daily precipitation shows no 

discernible trend, indicating precipitation uncertainty. Maximum and minimum temperatures 

have risen significantly, influencing precipitation patterns. The RCP 4.5 ensemble data showed 

an increasing trend for PCP and TMAX, but no significant trend for TMIN in NTZ and sections 

of CTZ, and a decreasing trend for STZ. RCP 8.5 ensemble results for future scenarios predicted 

less rain and higher daily maximum and minimum temperatures. CTZ is most vulnerable to 

climate change.  
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The climate change impacts on the Pakhal tank irrigation catchment are assessed for historic 

and future periods. Pakhal Lake is located in the CTZ over the tributary of Krishna River and 

serves the agricultural water needs of the local farmers. SWAT model is used for the 

hydrological modeling of the catchment water balance components and to study tank inflows 

variations.  Because there is no of a gauge station at Phakal Lake, IMD data from the years 

1985 to 2005 for the Konduru watershed, which is located downstream of the area of study, 

were utilized to run the SWAT model. The SUFI-2 technique in SWAT-CUP was used to 

calibrate and validate the SWAT model for the Konduru catchment. From the geospatial data 

of both the Phakal and Konduru watersheds, it can be observed that they have a physical 

similarity. Hence, the fitted model parameters transfer is done from Konduru to the Pakhal 

watershed using the regionalization approach. For the gauged watershed, the results from 

SWAT model's calibration and validation are satisifactory. 

Two sets of data are used i.e. CORDEX and NEXGDDP under both RCP 4.5 and RCP 8.5 

scenarios for future climate projections. The climate models are bias-corrected using a 

nonparametric quantile mapping method. The bias-corrected RCM data is incorporated in the 

SWAT model developed for the study area to evaluate the monthly and annual variations of the 

streamflow and water balance components due to climate change. Uncertainty of the climate 

model data is reduced by developing the REA for two climate scenarios. The hydrologic 

components of the Phakal Watershed were simulated for the Baseline (1986–2018), Future-1 

(2020–2050), Future-2 (2051–2080), and Future-3 (2081–2099) periods using the SWAT 

model, after its calibration and validation. For simulating the future hydrologic conditions, four 

CORDEX-RCM outputs under RCP 4.5 and RCP 8.5 scenarios were used. It has been noted 

that the predictions from the various climate models differ from one another. In order to make 

accurate estimates for the future, it is advised to take into account a variety of climate models.  

The hydrologic components of the Phakal Watershed were simulated using the calibrated and 

validated SWAT model for Baseline (1986–2018), Future-1 (2020–2050), using REA ensemble 

of 21 NEX-GDDP models. For the analysis of climate change, the simulated hydrologic 

conditions are compared with the observed data. The NEX-GDDP models are at a higher spatial 

resolution than the CORDEX models with a resolution of 0.25o. The CORDEX model results 

exhibited a significant change in hydroclimatic variables in Future-1 when compared to other 

future time periods. Hence, future-1 is considered for simulation using NEX-GDDP data for 

comparison between the two data sets.  
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The results of the climate change analysis reveal that surface runoff amounts quantities will be 

significantly impacted by the changing climate. The future tank inflow simulation results also 

exhibit a significant decrease. Future-1(2020-2051) is the most vulnerable as it experiences the 

highest decrease in tank inflow. The findings suggest that tank inflows could decline by as much 

as 59% between the historic and future time periods. The rainfall and lake inflow indicate a 

significant decreasing trend in the Phakal Watershed. The outcomes of both future climate 

scenarios for NEX-GDDP data are different.  A decrease in streamflow is observed in RCP 4.5 

which can be attributed to decreased precipitation and enhanced potential evapotranspiration 

(PET). Increased streamflow is predicted in RCP 8.5. Even though NEX-GDDP model data is 

at high resolution when compared to CORDEX, its correlation with observation data is less. 

The CORDEX model is a more suitable dataset for the climate change analysis of the study 

area. 

The effect of climate change on water availability in Pakhal Lake is assessed by predicting 

future water level changes. SVR coupled with SWAT outputs is employed for predicting lake 

water levels under current and future climate change scenarios. The outputs of potential PET 

from SWAT (from the HRU consisting the lake) were used as a proxy for evaporation from the 

surface area of lake. The RBF kernel was used in the application of the v-SVR approach. PET 

and tank inflows from SWAT along with precipitation, outflow volume, were given as inputs 

for the ν-SVR model. The results indicate a significant decrease in lake water levels from 

October-March. (Rabi Season). This method can be an effective way of estimating water levels, 

since the changes in future lake area information are unavailable and also when the direct 

estimation of surface evaporation from the lake is not possible. The linking of SWAT outputs 

with the SVR model proved effective in predicting lake water levels because the performance 

metrics are satisfactory. 

The irrigation water demand during historic and future periods is estimated using CROPWAT 

8.0. The results demonstrate a 9% spike in irrigation demand under CORDEX RCP 4.5 scenario 

when mixed cropping is considered. The irrigation tank performance indices projected with the 

SOP for future scenarios show a decrease in reliability, while the vulnerability and resilience 

are likely to increase because of climate change. Irrigation tank optimization is performed using 

SDP. Three adaptation strategies are applied and reservoir optimization is performed. The best 

fit strategy is fixed based on the high reliability and resilience with low vulnerability values. 

The combination of two adaptation strategies i.e. mixed cropping and delayed plantation gives 

better reservoir performance. 
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7.2  Conclusions 

The significant findings from the present research work are stated below: 

 The results of both trend tests indicated a substantial increasing trend in daily maximum 

and minimum temperatures in Telangana. Whereas daily precipitation shows no 

discernible trend, indicating precipitation uncertainty.  

 Maximum and minimum temperatures have risen significantly, influencing 

precipitation patterns. 

 RCP8.5 ensemble results for future scenarios predicted less rain and higher daily 

maximum and minimum temperatures. CTZ is most vulnerable to climate change.   

 With NSE and R2 values of 0.66 and 0.71 during calibration and 0.65 and 0.68 during 

validation, the SWAT model's calibration and validation show promising results for the 

gauged watershed. 

 Among the four models under CORDEX data, the CCSM model is a better predictor of 

precipitation and streamflow. 

 The average streamflow predicted by all the models is decreased by 21% under the RCP 

4.5 and 41% under the RCP8.5 scenario. 

 According to analyses of yearly and monthly streamflow changes, the RCP 4.5 scenario 

results in lower streamflow values under conditions of decreasing precipitation and 

raised temperatures. 

 The REA model precipitation has a good correlation with the observed data with R2 

values of 0.89 for CORDEX and 0.74 for NEXGDDP. 

 During the future time period (2021-2050), the precipitation projection with CORDEX 

data is reduced by 26% and 21% under RCP 4.5 and RCP 8.5. 

 Under RCP 4.5 and RCP 8.5, respectively, the streamflow is reduced by 59% and 52%. 

 The precipitation projection with NEXGDDP data indicates an increase in precipitation 

by 10% and streamflow is increased by 20% under RCP 8.5. 
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 The peaks in precipitation and streamflow for observed data are found during the month 

of July, however in the future scenarios, these peak months are August and September. 

 Reduced values of surface runoff and base flow are produced by a rise in the 

temperature and a decline in precipitation, while an increase in evapotranspiration is 

produced. 

 In calibration and validation, the SVR model developed to forecast water levels 

produced results that were satisfactory with R2 values of 0.79 and 0.74, respectively. 

 The future irrigation demands obtained from CROPWAT showed an increase of 9% 

under the RCP 4.5 future scenario and a similar pattern during the rest of the scenarios. 

The peak irrigation demands are observed during July and November. 

 The combination of two adaptation strategies i.e. Mixed cropping and delayed 

plantation gives better reservoir performance with reliability of 0.95, resilience of 0.73, 

and vulnerability of 0.13.  

7. 3 Research Contributions 

The following are the important research contributions of the present study:  

 For the reduction of multi-model uncertainty, REA is developed for the selected 

study region. The REA data exhibit a stronger association with the data on the 

observed climate. 

 The SWAT model is set up for the Phakal tank irrigation system with is an 

ungauged catchment using a regionalization approach. 

 SVR model is linked with SWAT outputs for the prediction of lake water levels. 

 CROPWAT model is used for estimating the changes in future agricultural water 

demand.   

 Adaptation policies are developed for optimal reservoir operations with respect to 

changing water demand.   
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7.4 Limitations of the study 

The following are the constraints of this research work: 

  The selected study area has limited observational data. 

  In the study, only demand-side adaptation policies are proposed. 

  The study is based on a single-tank system. Considering cascade tank system may 

be more effective in the study area.  

7.5 Future Scope 

As was already mentioned, the current study is focused on the availability of water in a 

tank irrigation system as well as estimates for rainfall and surface water. However, there 

are still a significant number of issues in the hydrology domain due to climate change. 

Hence, the scope for further study related to this work is as follows: 

 Multiple ensemble scenarios, other than REA can be used for impact studies.  

 Regionalization methods other than the proximity method can be explored for 

streamflow prediction in ungauged basins.   

 Development of adaptation strategies in order to increase crop yield can be 

explored. 

 Development of supply-side adaptation strategies can be explored for sustainable 

agriculture in the command area. 
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Figure  A1. Mean Annual Precipitation for IMD, historic and future CORDEX scenarios 

 

Figure A2. Mean of the daily maximum temperatures for IMD, historic and future CORDEX 

scenarios 
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Figure A3. Mean of the daily minimum temperatures for IMD, historic and future CORDEX 

scenarios 

 

Figure A4. Location map of Pakhal Lake and its catchment and command area 
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Figure A5. Field Visit Photographs of Study Area 
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