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ABSTRACT 

The treatment of polluted wastewater using biological processes has been widely adopted, from 

traditional domestic wastewater to industrial wastewaters for simultaneous removal of nutrients. 

The reduction of nutrients (carbon, nitrogen, and phosphorus) released to the surface water as per 

the regulatory bodies guidelines is mandatory in accordance with the municipal water directive 

(91/271/EC). There is a growing interest to improve the effluent quality (EQ) of sewage 

wastewater treatment operations. Controlling anaerobic, anoxic and aerobic environment allows 

the growth of microbial communities, which are accountable for removing of organic materials 

and nutrients. 

Wastewater treatment plants are highly complex, nonlinear and slow processes. Lack of proper 

instrumentation and stern environmental legislations along with demand for cost effective plants 

have made automation of wastewater treatment process an important priority. But the intricate 

nature of the process poses a barrier to the successful implementation of the control system. The 

challenge lies in the design of a control strategy to reduce operational costs (OC) and improve EQ 

simultaneously. This research addresses the development of different control strategies to address 

these challenges. Benchmark Simulation Model No. 1-P (BSM1-P) and Benchmark Simulation 

Model No. 2-P (BSM2) are considered as working platforms to assess the control strategies. The 

objective is to avoid the violations in the effluent ammonia, total nitrogen, and total phosphorus, 

simultaneously to minimize OC, and to improve EQ. The proposed control strategies are based on 

proportional integral (PI), Fuzzy logic controller (FLC), and model predictive control (MPC). 

BSM1-P (ASM3bioP is a bioprocess) platform is used to design PI, MPC and FLC for both lower 

and supervisory level. In the lower level two control loops are considered, such as, controlling the 

dissolved oxygen (DO) in tank 7 (SO,7), and nitrate concentrations in reactor 4 (SNO,4) by 

manipulating the oxygen mass transfer coefficient (KLa7), and the internal recycle flow rate (Qintr). 

For supervisory level, manipulate the DO controller's set-points based on the ammonia 

concentration in a particular tank. At a lower level, default PI and MPC controllers are used and 

at a higher level, MPC and fuzzy controllers are designed. A novel control strategy is implemented 

by the design of cascade control with a pair of PI feedback controllers and integrated with override 

control to inhibit the overflow of SNO (Nitrate) in the discharge. In the lower (PI) and supervisory 
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(Fuzzy/PI) level cases, SNO,4 orthophosphates (SPO,7) is controlled by regulating the internal recycle 

and SNO,7 and override control is placed based on the concentration of SNO,7. Additionally, last three 

aerobic tanks are controlled by using DO set points.  

BSM2-P (ASM2d is a bioprocess) platform is used to design PI, MPC and FLC for both lower and 

supervisory level. A lower-level control framework is implemented to DO in the sixth reactor by 

regulating the KLa of fifth, sixth, and seventh reactors in the biological treatment process. Here PI 

is used at the lower level, whereas FLC and MPC are used at the supervisory level. Based on the 

literature, three different biological wastewater treatment processes are considered such as A2O 

process (anaerobic, anoxic, and aerobic reactors with internal and external recycles), Reverse R-

A2O process (anoxic, anaerobic, and aerobic reactors with external recycle), and Inverted I-A2O 

process (anoxic, anaerobic, and aerobic with internal and external recycles) are modelled in the 

simulation platform. Additionally, DO is maintained in the respective aerobic reactors using a PI 

controller. Furthermore, metal and carbon addition is done at BSM1-P (ASM2d) platform. 

The effect of temperature on the phosphorous, nitrogen, and organic matter removal in an activated 

sludge system (ASS) is assessed. Benchmark Simulation Model No.1 (BSM1-P) with an ASS 

(ASM3bioP) is used and the temperature is chosen between 10°C to 35°C. The kinetic expressions 

for the maximum growth rate of heterotrophic biomass, autotrophic, and phosphate accumulating 

organisms and their decay rate are considered. Additionally, lower level FLC is designed to 

monitor the effluent quality index (EQI) and operational cost index (OCI) in Wastewater treatment 

plants. For the plant-wide model of the ASS, benchmark Simulation model (BSM2-P) with an ASS 

(ASM2d) is used and the temperature is selected between 10 to 35°C covering different seasons. 

A steady-state simulations are carried out to evaluate the effluent concentrations by changing 

kinetic and physio chemical parameters of ASS and anaerobic digestion model. 

Keywords: Activated sludge system, Benchmark simulation model, Effluent quality index, 

Feedback controllers, Kinetic and physio chemical parameters, Operational cost index. 
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Nomenclature 

AE                    Aeration energy rate (Kwh/d) 

ASM1              Activated sludge model No.1 

ASM2              Activated sludge model No.2 

ASM2d            Activated sludge model No.2d 

ASM3              Activated sludge model No.3 

BOD5               Biological oxygen demand 

COD                Chemical oxygen demand 

CE                    Consumed energy 

DO                   Dissolved oxygen 

EQI                  Effluent quality index 

IQI                   Influent quality index 

K                      Proportional gain 

KLa                  Oxygen transfer coefficient 

TN                   Total nitrogen 

NO                   Nitrate 

TP                   Total phosphorus 

PE                   Pumping energy consumption (kWh/d) 

HUk                         Pollutant load corresponding to the component 

Qo                   Influent flow rate (m3/d) 

Qintr                         Internal recycle flow rate (m3/d) 

Qr                             Return sludge flow rate (m3/d) 

Qw                           Waste sludge flow rate (m3/d) 

RGA               Relative gain array 

SA                             Fermentation products (g COD/m3) 

SF                             Readily biodegradable organic substrate 
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SHCO                      Alkalinity of the waste water (HCO3/m
3) 

SI                              Inert soluble organic material (g COD/m3) 

SNH                         Ammonium and ammonia nitrogen (g N/m3) 

SNO                         Nitrate and nitrite nitrogen (g N/m3) 

SN2                          Dinitrogen (g N/m3) 

SPO4                       Inorganic soluble phosphate (g P/m3) 

SS                            Readily biodegradable organic substrate (g COD/m3) 

to                              Start time 

tf                               End time 

TBOD                     Total BOD concentration 

TCOD                     Total COD concentration 

TNO                        Nitrate concentration 

TNtot                      Total N concentration 

TPtot                       Total phosphorous concentration 

TTKN                     Total organic N concentration 

TTSS                       Total suspended solids concentration 

WWTP          Waste water treatment plant 

XA                           Nitrifying organisms (g COD/m3) 

XH                           Heterotrophic organisms (g COD/m3) 

XI                            Inert particulate organic material (g COD/m3) 

XS                           Slowly biodegradable substrates (g COD/m3) 

XPAO                     Phosphate accumulating organisms (g COD/m3) 

XPHA               Cell internal storage product of PAO's (g COD/m3) 
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XSTO                     Cell inner storage product of heterotopy 

XTSS                      Suspended solids (g SS/m3) 

αj                             Cost factor for components j (j= EQI, AE, PE, and SP) 

βk                            Weighting factor for components K (Tk = TBOD, TCOD, TTKN, TNO3,TPtot, and TTSS) 
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Chapter 1     

Introduction   

1.1 Wastewater treatment 

Water is indispensable for all forms of survival. Modern humanity evolves swiftly, and the 

increased demand for water resources plays a key role in the civil activity and industrial 

fabrication. At the beginning of the twenty-first century, the world may face water quality crises 

because of poor water use practices and wastewater (WW) management strategies. It is immensely 

predominant to get the desired treatment of the water for healthy living. More than 80% of global 

water is released into the environment without adequate treatment. However, environmental 

protection has become increasingly important in recent decades, with strict effluent discharge 

limits for eutrophication substances like organic matter, priority substances, and other 

contaminants for wastewater treatment plants (WWTP). Wastewater treatment aims to protect 

public health as well as the environment. Controlling the wastewater treatment plant is generally 

difficult due to the multiple and numerous biological, chemical, and physical factors influencing 

wastewater treatment systems such as fluctuations, dynamics, disturbances, and uncertainties in 

the influent. 

The intensification of the demand for clean water with deficient water resources has eventually 

resulted in a growing interest in resource recovery during the treatment of wastewater according 

to Puyol et al. (2017). It is perceived that valuable resources, like clean water, energy and nutrients 

can be recovered from wastewater. This leads to the progression of WWTP into a water resource 

recovery facility (WRRF) (Alex et al. (1999)). Nowadays, this approach takes more attention 

towards the research community to do the optimized treatment techniques can include either 

redesigning the process structure or it can be enhanced with advanced process control strategies of 

Van Der Hoek et al. (2016).  

The rise in global population and urbanization has eventuated in an increase in water consumption 

and, as a result, wastewater production. It is necessary to maintain a balance between enabling 

technology advancements and the environment. There is a large number of publications towards 

the enhancement of wastewater treatment processes that are the result of comprehensive studies 

by the scientific community around the world (Blackall et al. (2002); Ledakowicz et al. (2001)). 

In recent times, the interest has shifted to the water-energy-food-health-nexus to better understand 

their interdependence and explore the requirements of one for the other. 
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1.1.1 Wastewater treatment process 

The method of removing pollutants from wastewater or sewage and converting it into an effluent 

that can be added to the water cycle is known as the wastewater treatment process. Once returned 

to the water cycle, the effluent has a low environmental effect or can be reused for several usages. 

Chemical or physical and biological WWTP’s are the two types of wastewater treatment plants. 

WWTP breaks down waste matter (organic matter) using biological bacteria. On the other hand, 

physical waste treatment plants handle WW by chemical reactions as well as physical processes. 

Physical wastewater treatment plants are often used to treat wastewater from industries, factories, 

and industrial companies, while biological treatment facilities are suitable for handling wastewater 

from municipal and businesses sectors.  

The treatment of wastewater entails the following steps starting from the wastewater collection, 

grit, screening, primary, secondary and tertiary treatment, disinfection, and sludge treatment. 

Mainly WW treatment process targets minimizing water pollution, preventing water infection 

diseases and adequate water treatment applies to irrigation purposes. In WW treatment process is 

classified into three categories like physical, chemical, and biological treatment methods. 

Predominantly and precisely, the physical method deals with the process of primary treatment like 

grit, screening, primary sedimentation, and filtration. Whereas, biological and chemical methods 

deal in biological treatment. The biological method is accountable for the removal of organic 

matter and contaminants through microbial activity. The chemical method deals with the removal 

of contaminants by the addition of chemical dosages.  

Fig 1.1 depicts the treatment process of wastewater. WWTP's are intricate because of chemical 

and biological interactions in between the process, peculiar nature of microbes, very slow process, 

and disorder of concentrations and dynamic rates of flow. Aside from that, it's a very energy-

intensive operation. All these characteristics cause the controlling of WWTP's task to make more 

complex and challenging. However, recent research suggests that apart from water treatment it 

acquired resources on its own. It is widely acknowledged that value-added products such as clean 

water, clean energy, and nutrients would be recovered from the WW.  
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Figure 1.1 Wastewater treatment process 

Mathematical models for WWTP 

International Association on Water Pollution Research and Control (IAWPRC) task group has 

propounded diverse mathematical models, for instance, ASM1, ASM2, ASM2d, and ASM3. The 
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conversion and transport processes. The contaminants present in wastewater die according to the 

corresponding kinetics, stoichiometry, and transport processes Henze et al. (2000). The benchmark 

simulation model (BSM1) has become a standard framework for the comparison of various control 

approaches from Copp (2002). Benchmark Simulation Model No. 1-P (BSM1-P) and Benchmark 

Simulation Model No. 2-P (BSM2-P), established by the IAWPRC, are used to evaluate and 

compare various control strategies in this study.  

BSM is a platform with a defined plant layout, bioprocess models (ASM), influent loads, sensors, 

and actuator as well as a set of evaluation criteria. BSM1-P framework deals with the biological 
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Gernaey and Jørgensen (2004); Henze et al. (1999). BSM2-P is extended to a whole plant-wide 

simulation of a WWTP, which includes primary sedimentation, anaerobic digester, thickener unit, 

dewatering unit, and other related sub-processes Solon et al. 2017; Flores-Alsina et al. (2016). In 

BSM2-P, the evaluation criteria are based on the last 365 days of plant operation. IWA developed 

ASM’s to evaluate WWTP. Optimization and control are balanced to meet stringent regulations of 

EQI with optimal cost. As for WWTP framework models, it can explore different aspects by 

analyzing them, for instance: 

✓ Effluent quality 

✓ Aeration control 

✓ Sludge withdraw 

✓ Maintaining mother liquor suspended solids (MLSS) in the reactor 

✓ Optimal internal and external recycle rates 

This ASM is developed purely based on the municipal WWTP but not the industrial fabricated 

WWTP model. ASM’s are robust and sustained with different influent loading and characteristics 

to simulate successfully in WWTP.   

1.1.2 Simulators for modelling and analysis of WWTP 

Dynamic simulations of WWTP,s could be used to investigate the effect of various environmental 

studies, the system sensitivity of different parameters, and the applicability of various operational 

design and control configurations. Numerous research groups across the world use the freely 

available simulation models for diverse applications and they are included as pre-configured 

simulator packages in some commercial WWTP or developing the specific models in a 

programming software tool, for example, Matlab/Simulink. Commercial simulation configurations 

typically include enhanced libraries (C, N, P, and metals) of pre-determined operations that can be 

used to represent the entire WWTP and allow for easy creation and integrations of process 

platforms and model parameters. AQUASIM, SIMBA, SciLab, STOAT, BioWin, WEST, EFOR, 

GPS-X, and JASS are some of the most widely used commercial simulators. Given the following 

facts, the combination of Matlab/Simulink is an ideal solution to WWTP’s: 

❖ Significant computing potential 

❖ Pre-determined toolbox and mathematical functioning 

❖ Easily defined extensions and integrations 

❖ Elucidate the dynamic study of WWTP into a set of mathematical equations. 
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1.1.3 Need for Process Control in WWTP 

Suitable control configurations are needed to maintain the quality of discharge, monitor the 

WWTP, and minimize expenditures. Further 

• Economy solutions are becoming highly crucial. As the loads on existing plants increase, 

the increased loads of the same volumes can be managed by control and optimization. 

• Inflexible standards on processed wastewater. 

• Penalties and taxes are linked to the quality of discharged water. 

• Knowledge of environmental concerns by the general public is growing and becoming 

more and more focused on sustainability and energy use concerns. 

• Integrated actuators and sensors have become expensive and maintenance of the sensors 

has become challenging in the wastewater environment. 

In practice, the most frequently used control configurations are meant for dissolved oxygen 

control, nitrate control, ammonia-based aeration control, control of orthophosphates, total 

suspended solids, etc. The operation of WWTP’s with lower operating costs and improved effluent 

quality has become essential in recent years. WWTP’s are intricate, processes with nonlinear 

behavior. The complex nature of the microbes and huge disturbances in compositions and influent 

flow rates are accountable for the operation of WWTP’s. Implementation of control strategies for 

the efficient operation of WWTP has become essential. Several control methodologies for WWTPs 

have been developed and tested from the perspective of control and process.  

Fig. 1.2 depicts the usage of enabling technologies in wastewater treatment with their outputs of 

tapping the energy and sustainable financing. Over the last few decades, there has been an increase 

in research interests in the field of process control in wastewater treatment. BSM’s and their 

advancements have served as important platforms for developing, testing, and comparing control 

technologies. The majority of WWTP control strategies that have been developed are based on 

BSM’s and their enhancements (Gernaey et al. (2014)). Moreover, process selection and design 

tools can assist decision-makers in selecting appropriate treatment advancements for a given 

objective (Lema et al. (2017)). Fig. 1.3 depicts the benefits of employing controllers in WWTP. 
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Figure 1.2 Enabling technologies in WWTP with their outputs 
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It is crucial to consider what incentives can encourage a system or individual to promote good 

performance for a control system to be successful. Rieger and Olsson (2012) provided important 

understandings about the employment of control systems. Process supervision can be tightened 

with automatic controllers, allowing operations to be closer to any constraints like effluent 

evaluation and cost. Moreover, the cost-benefit investigation is a useful tool for incorporating all 

parts of the control system. Process control plays an important role in wastewater treatment plants 

because they are operated at optimum conditions which lead to enhancing the plant's lifetime and 

decreases unit product cost (Agarwal et al. (2016)).  

1.1.4 Control structures and algorithms 

Controlling the operation of WWTPs has been done in a variety of ways as described in this 

section. Different types of control structures might be considered depending on the processes used 

in achieving the predefined goals. The control structure design is concerned with how the control 

system is set up, specifically which variables to control, which variables to regulate, and how these 

two sets of variables are combined to form control loops. In this research, some of the well-known 

control structures are applied for WWTP. Feed-back control (FB), Feed-forward control (FF), 

Cascade control, Supervisory control are designed and evaluated. Fig. 1.4 depicts the generalized 

framework of feedforward, feedback, and cascade control. 

A controller's job is to maintain the process value at the set point. The PID controller is the most 

extensively used control algorithm for achieving this in-process control (Aström and Hägglund 

1995). The PID controller deals with three sections P, PD, or PI. The proportional section reacts 

to current control errors, the integral section adds up earlier control errors, and the derivative 

section estimates the future control errors by utilizing the derivative of the control error.  
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                                           Figure 1.4 Generalized control framework 

The integral section is responsible for the integral action. Where the elimination of steady-state 

offset is achieved through integral action. The main drawback of PID is its linear nature, which 

may or may not apply to complex systems. The fractional-order PI D controller is a generalization 

of the integer-order PID controller, with the integration (λ) and differentiation orders (µ). The main 

attraction of fractional order controllers is due to the additional tuning parameters involved, and, 

which can be used to increase the overall robustness of the closed-loop system. Fig. 1.5 (C) depicts 

a simple fractional order PI controller design. Advanced control algorithms like MPC, Fuzzy, and 

ANN are widely used controllers in WWTP. Model predictive control (MPC) is a multivariable 

control technique that predicts future control actions in the input using process models. Process 

models, objective functions, and control rules are the essential aspects of MPC (Kouvaritakis and 

Cannon (2016)). Fig. 1.5 (A) depicts a simple MPC controller in WWTP. MPC has also been 

proved to be effective in various wastewater treatment applications using a linear process model 

(Steffens and Lant (1999); Charef et al. (2000); Sotomayor et al. (2002)). In all the processing 
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stages of wastewater treatment, FLC’s have been used. It was also found that in various operating 

conditions, the FLC’s have very good performance. Fig. 1.5(B) depicts a simple Fuzzy logic 

controller in WWTP. 
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Figure 1.5 Advanced control application in WWTP (A) MPC, (B) Fuzzy, (C) Fractional-order 

and (D) ANN 

The direct control methods can have several failures depending on the process sensitivity, but the 
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values in a computed way and is called defuzzification. Fuzzy logic control is used in WWTPs to 
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Kalker et al. (1999); Fiter et al. (2005); Boiocchi et al. (2017).  Artificial neural networking (ANN) 
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ANNs are generally trained using examples in order to address a specific problem. ANNs are 

capable of estimating WWTP performance based on the literature of Hamed et al. (2004); Ráduly 

et al. (2007); Güçlü et al. (2010); Huang et al. (2011); Liu et al. (2013). Fig. 1.5 (A), (B), (C), and 

(D) are depict the advanced control frameworks of (A) MPC, (B) Fuzzy, (C) Fractional-order, and 
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Sensors 

Hardware sensor measurements can be difficult to manage or expensive to purchase, and so a trend 

has emerged towards adopting software sensors (soft sensors (SF)) in which models are combined 

with basic measurements to determine a variable that is highly difficult to estimate directly. The 

SF can be utilized as a "shadowing" sensor to offer information on sensor defects that have been 

estimated (Lumley (2002)). It is similar to an ordinary sensor aimed to calibrate at regular periods 

to maintain its prediction potentiality. Controlling simultaneous removal of nutrients (C, N, and P) 

will necessitate the development of sensor models to measure concentrations in the influent, 

effluent, or within the bioreactors. The set of sensor models consists of signal saturation, drift, 

measuring periods, noise, continuous measurement, and time response (Rieger et al. (2003); Rosen 

et al. (2008)) 

1.2 Modelling of the wastewater treatment process 

Biological wastewater treatment process modeling is usually a multi-layered challenge. On a basic 

note, the main objective of the mathematical models in WWTP is to showcase the dynamic nature 

of the operation. Meanwhile, WWTPS’s are generally notable for their intricate model building 

and a huge number of kinetic, stoichiometric, and state parameters to correlate. Due to the need 

for a satisfactory model for the proper explanation of simultaneous phenomena, the International 

Association for Water Quality (IWAQ, formally known as IAWPRC) developed a task group 

intending to develop a mathematical model of the wastewater treatment plant that can realistically 

predict the efficiency of single sludge systems which excites the process operations of carbon 

oxidation, hydrolysis, nitrification, denitrification, and proliferation of poly accumulating 

organisms (PAO’s) based on Henze et al. (2000); Gujer et al. (2000); Gernaey et al. (2004); Riger 

et al. (2001). BSM1-P and BSM2-P as working scenarios are defined in this section. Both 

platforms of a simulation environment describe the plant layout, a simulation model, and test 

procedures, as well as performance evaluation criteria. 

1.2.1   Benchmark simulation models.1-P (BSM1-P)    

The WWTP framework is depicted in Fig. 1.6 which consists of seven bioreactors united in series, 

with an additional sedimentation tank. In the plant, the first two anaerobic reactors have a volume 

of 2000 m3, the second two anoxic reactors have a volume of 2000 m3, fully mixed. Additionally, 

the rest of the three aerobic reactors have a volume of 3999m3 fully mixed and aerated. The 
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sedimentation tank volume is 6000m3. Two recycle loops viz. (i) flow from the third aeration tank 

(Qintr) to the anoxic reactor is 34500 m3/d, and (ii) from the underflow (Qr) of the sedimentation 

tank to influent flow is 18446 m3/d. The WWTP is modeled for an average dry season flow (Qin) 

rate of 18446 m3/d. The sludge flow rate (Qw) is fixed at 385 m3/d and output effluent (Qe). For 

assessment purposes, only the last 7 days are used for analysis even though 14 days are available. 

The simulation is run for zero to fourteen days. In the first seven days, the system reaches a 

dynamic ‘pseudo’ steady-state and remains in that state. For a fair comparison of different control 

algorithms, in the remaining seven days, any control algorithm can be implemented and the 

corresponding performance can be evaluated. To evaluate the control algorithms, the dynamic 

simulation can be run as many times as desired. 

 

Figure 1.6 BSM1-P plant layout 

1.2.2 Activated sludge model (ASM) description and model parameters 

The activated sludge models are eminent mathematical models that are accountable for the 

biological and chemical reactions that take place in activated sludge systems (ASS). Literature-

based on the ASM is tabulated in Table 1.1. Table 1.1 shows the substrates removal, process 

equations, state variables, and total parameters of six ASM are reported. In those ASM, ASM3bioP 

is selected for the process operation. Activated sludge model No. 3 (ASM3) is one more 

mathematical model developed to check the performance of biological WWTP. It inherently 

consists of the rate of oxygen consumption, nitrification and denitrification, and sludge production 

that could help in treating sewage wastewater. ASM3 addresses some other limitations of ASM1, 

such as nitrifier's decay rate difference under both aerobic and anoxic conditions, and includes the 

cell internal storage compounds (Gujer et al. (2000)). Similarly, an extension of the ASM3 model 
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was primarily developed (i.e., ASM3bioP) to predict biological phosphorus removal by including 

modified processes from the ASM2d model but without considering the fermentation of readily 

biodegradable substrates by Rieger et al. (2001); Solon (2015). ASM3bioP model has the 

biological P removal process which is elaborated in Fig. 1.7. PAO’s are modeled in the cell internal 

system; all organic matter products are combined into one model structure (XPHA) and the growth 

of PAO is responsible for the XPHA as a substrate. Moreover, Oxygen and nitrate also influence the 

PAO’s growth. ASM3 based on Gujer et al. (2000) was introduced to discuss the limitations of 

ASM1 for an instant the contrast in between lysis rates of nitrification in the anoxic and oxic 

environment. Further, it deals with cell internal storage issues. Another major variation between 

ASM3 and ASM1 is the COD rate.  

 

 

 

 

 

 

 

Table 1.1 Selection of ASM for the operation 

Models Refs. Substrates Process State 

variables 

Total 

parameters 

ASM1 Henze et al. (2000) CN 8 13 26 

ASM2d Henze et al. (2000) CNP 21 19 74 

ASM3 Gujer et al. (2000) CN 12 13 46 

ASM3bioP Rieger et al. (2001) CNP 23 17 83 

ASM2d+TUD Meijer (2004) CNP 22 18 98 

UCTPHO Hu et al. (2007) CNP 35 16 66 
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Figure 1.7 Description of P removal as included in the ASM3bioP model 
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The biological model of the reactors is simulated by Activated Sludge Model 3 bio–Phosphorous 

(ASM3-bioP). Twenty-three biological processes were considered to describe the biological 

phenomena happening in each reactor. The vertical transfer between layers in the settler is 

simulated by the double exponential settling velocity model. ASM3 has 13 state variables and with 

the addition of four new state variables related to bioP, the total numbers of state variables become 

17. Further, ASM3 processes are enhanced with the ASM2d process which has bioP reactions 

without the precipitation reactions. ASM3 model contains hydrolysis, heterotrophic, and 

autotrophic with the addition of the above, P has less growth rate. Temperature dependencies of 

kinetic parameters, oxygen saturation concentration, and KLa (oxygen mass transfer coefficient) 

are also included in ASM3bioP at 15°C temperature. Table 1.2 shows the state variables with 

symbols and units by Solon (2015). A total of twenty-three biological processes were considered 

in ASM3-bioP are listed in the Appendix Table A1 and A2 Stoichiometric parameters matrix for 

the particulate components of ASM3 (Henze et al., 2000) and the EAWAG Bio-P module (Rieger 

et al. (2001)). Appendix Table A3 represents the kinetic rate expressions for ASM3 (Henze et al. 

(2000)) and Table A4 Kinetic rate expressions for the EAWAG Bio-P module (Rieger et al. 

(2001)). 

Twenty-three processes are incorporated in ASM3-bioP are described below: 

1) Hydrolysis 

2) Heterotrophic organisms XH 

3) Aerobic Storage of XSTO 

4) Anoxic Storage of XSTO 

5) Aerobic growth 

6) Anoxic growth 

7) Aerobic endogenous Respiration 

8) Anoxic endogenous Respiration 

9) Aerobic respiration of XSTO 

10) Anoxic resp. of XSTO 

11) Aerobic endogenous Respiration 

12) Anoxic endogenous Respiration 

13) Storage of XPHA 

14) Aerobic storage of XPP 
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15) Anoxic storage XPP 

16) Aerobic growth 

17) Anoxic Growth 

18) Aerobic endogenous Respiration 

19) Anoxic endogenous Respiration 

20) Aerobic lysis of XPP 

21) Anoxic lysis of XP 

22) Aerobic respiration of XPH 

23) Anoxic resp. of XPHA 

Table 1.2 State variables of ASM3bioP with average influent data 

 

 

Compound Symbol Units Average influent 

Dissolved oxygen SO g(COD)m-3 0 

Readily biodegradable organic substrate SS g(COD)m-3 90.34 

Inert soluble organic SI g(COD)m-3 30 

Ammonia+Nitrogen SNH g(N)m-3 39.40 

Nitrate and nitrite SNO g (N)m-3 0 

Dinitrogen SN g(N)m-3 0 

Primarily orthophosphates SPO4 g(P)m-3 8.86 

Alkalinity SHCO mol(HCO3)m-3 7 

Inert Particulate XI g(COD)m-3 51.20 

Slowly biodegradable substrates XS g(COD)m-3 202.34 

Heterotrophic Organisms XH g(COD)m-3 28.17 

Cell internal storage XSTO g(COD)m-3 0 

Phosphate accumulating organisms XPAO g(COD)m-3 0 

Polyphosphate XPP g(P)m-3 0 

Primarily polyhydroxy alkanoates XPHA g(P)m-3 0 

Nitrifying Organisms XA g(COD)m-3 0 

Suspended solids XTSS g(SS)m-3 215.51 
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The mass balance equations are given in below: 
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Where  23 QQQ a +=                      

From K = 4 to 7 

( )KKKKKK

K

K
K ZQVrZQ

Vdt

dZ
r −+== −− 11

1
                                                                             (1.4)      

Here Z is the concentration of the process, Where Qa is concentration in the internal recycle rate, 

Qr is concentration in external recycle and V is the volume of the reactors. Qr and Q0 is the flow 

rate of influent, and all these two flow rates add to give influent flow to reactor1, r1. Whereas, Qa 

is added to the Qo in the third reactor. Similar equations can be written for all remaining six 

reactors as well using equations (1.1-1.4). Moreover, for aerated reactors, the dissolved oxygen 

dynamics will be represented in equation (1.5). In this equation, an extra term related to the amount 

of concentration of oxygen being supplied to aerobic reactors is added. SO* notify the oxygen 

saturation coefficient, which is selected as 8 gO/m3. Here KLa is the oxygen mass transfer 

coefficient for the kth reactor. The Special case for 2O in the aerobic tanks are considered: 

( ) ( )( )KOKKOOKKLKKKOK

KO
SQSSVaKVrSQ

Vdt

dS
,,

*

1,1

, 1
−−++= −−                                          (1.5)  

The amount of oxygen transferred to the aeration tanks should be equal to the amount of oxygen 

required by the microorganisms in the activated sludge process to oxidize the organic material and 

to maintain residual DO operating levels. When oxygen limits the growth of microorganisms, 

filamentous microorganisms may predominate, and the settleability and quality of activated sludge 

may be poor. On the other hand, an excessively high DO, meaning also a high flow rate, leads to 

high energy consumption and may also deteriorate the sludge quality. In practice, the DO 

concentration in the aeration tank should be maintained at about 1.5 to 4 gO2/m
3 in the aerobic 
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aeration tanks, and 2 gO2/m
3 is a commonly used value. Furthermore, if the nitrate consumption 

in the last predenitrification zone is not exceeding a certain level, excessive air consumption is not 

required in the aeration zones.  

The most reasonable operating points for the nitrate concentration in the anoxic reactor need to be 

maintained in the interval 1−3 g N/m3 when an internal recirculation is present and 1 g N/m3 is the 

preferable value usually. Denitrification takes place in the anoxic reactors. It is carried out by 

ordinary heterotrophs and PAO biomass that convert the nitrate brought by the internal 

recirculation to anoxic reactor 3 (or 4) from aerobic reactor 7 into molecular nitrogen. In aerobic 

reactors, nitrification of ammonium to nitrate is performed by autotrophic organisms. On the other 

hand, the denitrification process (nitrate concentration in the anoxic reactor) is usually controlled 

by manipulating the internal recirculation flow rate from the last aerobic reactor. Table 1.3 

represents the stoichiometric parameter values. 

Table 1.3 stoichiometric parameter values 

Parameters Value 

Heterotrophic max specific growth rate 3 

Heterotrophic decay rate 0.3 

Half saturation coefficient for heterotrophs 10 

Oxygen half-saturation for heterotrophs 0.2 

Nitrate half-saturation coefficient for denitrifying heterotrophs 0.5 

Autotrophic max. specific growth rate 1 

Autotrophic decay rate 0.2 

Oxygen half-saturation coefficient for autotrophs 0.5 

Ammonia half-saturation coefficient for autotrophs 1 

Correction factor for anoxic growth of heterotrophs 0.8 

Ammonification rate 0.01 

Maximum specific hydrolysis rate 9 

Half saturation coefficient for hydrolysis  

of slowly biodegradable substrate 

1 

Correction factor for anoxic hydrolysis 0.33 

Rate constant XPHA storage 6 
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1.2.3 Secondary sedimentation tank 

The secondary sedimentation tank is modeled as a non-reactive unit with ten layers (i.e. nil 

biological interactions). The feed layer is the sixth layer (counting from the top to the bottom). The 

area (A) of the settler is 1,500 m2. Each layer (Zm) has a height of 0.4 m, for a total height of 4 m. 

As a result, the settler volume is 6,000 m3. equation 1.29 represents the solid flux because of 

gravity using a double exponential velocity by Takas et al. (1991). Fig .1.8 depicts the model of 

the secondary clarifier.  

𝐽𝑠 = 𝑣𝑠 (𝑋𝑠𝑐 ) 𝑋𝑠𝑐                                                                                                                                         (1.6) 

𝑣𝑠 (𝑋𝑠𝑐 ) =  𝑚𝑎𝑥 [ 0,𝑚𝑖𝑛{ 𝑣0
′ , 𝑣0(𝑒

−𝑟ℎ( 𝑋𝑠𝑐  −  𝑋𝑚𝑖𝑛 )  −  𝑒−𝑟ℎ( 𝑋𝑠𝑐  −  𝑋𝑚𝑖𝑛 )                                    (1.7)  

 𝑋𝑚𝑖𝑛 =  𝑓𝑛𝑠  𝑋𝑓                                                                                                                                        (1.8)                                

Where, XSC is total sludge concentration, v0
 is maximum Vesilind settling velocity, v0

’ is maximum 

settling velocity, rp is flocculent zone settling parameter, rh is hindered zone settling parameter, fns 

is a non-settleable fraction. 

The upward (vup) and downward (vdn) velocities are calculated as shown in equations 

 𝑣𝑑𝑛 = 
𝑄𝑢

𝐴
 =  

𝑄𝑟+𝑄𝑤 

𝐴
                                                                                                                                (1.9)  

 𝑣𝑢𝑝 = 
𝑄𝑒

𝐴
                                                                                                                                                 (1.10)                         

As per the notations above, the feed enters the settler at the 6th layer from the bottom and the sludge 

mass balance equation for the feed layer (m=6) are given in below: 

𝑑𝑋𝑠𝑐,𝑚
𝑑𝑡

=

𝑄𝑓𝑋𝑓
𝐴 + 𝐽𝑠𝑐,𝑚+1 − (𝑣𝑢𝑝 + 𝑣𝑑𝑛)𝑋𝑠𝑐,𝑚 −𝑚𝑖𝑛(𝐽𝑠,𝑚, 𝐽𝑠,𝑚−1)

𝑧𝑚
                                       (1.11) 

Sludge mass balances for layers’ m = 2 to 5: 

𝑑𝑋𝑠𝑐,𝑚
𝑑𝑡

=
𝑣𝑑𝑛(𝑋𝑠𝑐,𝑚+1 − 𝑋𝑠𝑐,𝑚) + 𝑚𝑖𝑛(𝐽𝑠,𝑚, 𝐽𝑠,𝑚+1) − 𝑚𝑖𝑛(𝐽𝑠,𝑚, 𝐽𝑠,𝑚−1)

𝑧𝑚
                              (1.12) 

The rate constant for XPP 1.5 

Rate constant lysis of XPP 0.2 

Rate constant for respiration of  XPAO 0.2 

Maximum growth rate XPAO 1 
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For layer m = 1: 

𝑑𝑋𝑠𝑐,1
𝑑𝑡

=
𝑣𝑑𝑛(𝑋𝑠𝑐,2 − 𝑋𝑠𝑐,1) + 𝑚𝑖𝑛(𝐽𝑠,2, 𝐽𝑠,1)

𝑧1
                                                                                  (1.13) 

 

 

 

 

 

 

 

                       

                                                   

 

 

For layers’ m = 7 to 9: 

𝑑𝑋𝑠𝑐,𝑚
𝑑𝑡

=
𝑣𝑢𝑝(𝑋𝑠𝑐,𝑚−1 − 𝑋𝑠𝑐,𝑚) + 𝐽𝑠𝑐,𝑚+1 − 𝐽𝑠𝑐,𝑚

𝑧𝑚
                                                                         (1.14) 

For m = 10 (top layer): 

𝑑𝑋𝑠𝑐,10
𝑑𝑡

=
𝑣𝑢𝑝(𝑋𝑠𝑐,9 − 𝑋𝑠𝑐,10) − 𝐽𝑠𝑐,10

𝑧10
                                                                                              (1.15) 

where,  𝐽𝑠𝑐,𝑗 = {
min(𝑣𝑠,10𝑋𝑠𝑐,10, 𝑣𝑠,9𝑋𝑠𝑐,9) 𝑖𝑓 𝑋𝑠𝑐,9 > 𝑋𝑡

𝑜𝑟
𝑣𝑠,10𝑋𝑠𝑐,10 𝑖𝑓 𝑋𝑠𝑐,9 ≤ 𝑋𝑡

} 

Where the threshold concentration 𝑋𝑡 is 3000 g.m-3.  

The concentrations of soluble components are calculated considering each layer as a completely 

mixed volume. 

For layer m = 6: 

Feed flow 

From ASS 

Clarification 

section 

Settling 

section 

Underflow 

                                                                             10 

                                                                             9 

                                                                             8 

                                                                             7 

                             Feed layer                             6 

                                                                             5 

                                                                             4 

                                                                             3 

                                                                             2 

                                                                             1 

Overflow 

Figure 1.8 Model for secondary clarifier 
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dZsc,m
dt

=

QfZf
A − (vup + vdn)Zsc,m

zm
                                                                                                    (1.16) 

For layer’s m = 1 to 5: 

dZsc,m
dt

=
vdn(Zsc,m+1 − Zsc,m)

zm
                                                                                                           (1.17) 

For layers’ m = 7 to 10: 

dZsc,m
dt

=
vup(Zsc,m−1 − Zsc,m)

zm
                                                                                                           (1.18) 

Where zm is the height of mth layer of the sedimentation tank. 

Influent Data: In the ASM3bioP model, the compositions and characteristics of the influent 

wastewater vary from that of ASM2d influent data. Readily biodegradable organic substrate (SS) 

is one of the ASM3bioP variables, whereas fermentable readily biodegradable organic substrate 

(SF) and SA (the fermentation products) are the combinations of SS in ASM2d. In the steady-state 

simulation, it is found out that the removal of P was very intricate without increasing the 

composition of SS. Furthermore, the SS load raised 30% with the impact of the fraction of nitrogen, 

ammonia, and biodegradable nitrogen. In addition to the above, orthophosphate is also improved 

to maintain the orthophosphate to ammonia ratio in the influent data based on Gernaey et al. 

(2004).  

The influent data of orthophosphates (SPO4), ammonia nitrogen (SNH), total suspended solids 

(XTSS), readily biodegradable organic substrate (SS), and flow rate (Qo) are shown in Fig. 1.9 for 

the dry season. In the influent data, ammonia load changes within a few hours while suspended 

solid concentrations lower at 13 and 14 days which shows the weekend effect and lower activity. 

Similarly, for the dynamic storm influent condition, two short storm events are identified. First, 

on the 9th day, where Qo and XTSS composition is increased, and then on the 11th day. The 

particulate and soluble pollutants are lower during this second storm occurrence. 
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(A) Readily biodegradable organic substrate 

 

(B) Ammonia Nitrogen 

 

(C) Primarily orthophosphates 
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(D) Suspended solids 

Figure 1.9 Influent scenario: SS, SNH, SPO4, and XTSS profiles 

1.2.4 Plant performance evaluation criterion 

The Effluent Quality index (EQI) defines the amount of effluent to surface waters averaged over 

the assessment time interval related to the weighting factors of discharge loads of composition 

which will impact more on receiving water body. Dynamic simulations are carried out by 

considering initially dry, rain, and storm season data files (14 days), and the performance is 

evaluated. Performance assessments were carried out to predict the economic basis with EQI for 

both the combined P and N removal in the benchmark simulation framework of WWTP (BSM1-

P). The performance assessment which was initially implemented for BSM1 for N removal is now 

extended for P removal by Copp (2002); Gernaey et al. (2014). Equations. (1.19) and (1.20) 

describe the effluent quality index (EQI). 

𝐸𝑄 =
1

1000(𝑡𝑓 − 𝑡0)
∫ 𝐾𝑈(𝑡)

𝑡𝑓

𝑡0

𝑄𝑒(𝑡)𝑑𝑡                                                                                             (1.19) 

𝐾𝑈(𝑡) = 𝐾𝑈𝑇𝑆𝑆(𝑡) + 𝐾𝑈𝐶𝑂𝐷(𝑡) + 𝐾𝑈𝐵𝑂𝐷(𝑡) + 𝐾𝑈𝑇𝐾𝑁(𝑡) + 𝐾𝑈𝑁𝑂3(𝑡) + 𝐾𝑈𝑃𝑡𝑜𝑡(𝑡)                   (1.20) 

The to and tf in the equation. (1.42) represents the starting and ending intervals of time for 

computing the EQI while the KUt  notify the average load of polluted concentrations in the influent 

and effluent data: Generally, it consists of TSS, BOD5, COD, TKN, NO3 (nitrate),  SNH (ammonia) 

and TP in equation (1.20). Thus the corresponding expression for KUt  is given in equation 1.21).  

KUt = μt Gt                                                                                                                                             (1.21) 
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Where µt (g
-1) are weighting factors ascribe every component of the pollution. Table 1.4 shows the 

weighting factors. Moreover, the composition of different elements (Gt) is estimated by using the 

following equations from (1.22)-(1.28). 

GSS = XTSS                                                                                                                                              (1.22) 
GCOD = SS + SI + XI + XS + XH + XPAO + XPHA + XA                                                         (1.23) 

GBOD = 0.25 (SS + (1 − fSi)XS + (1 − fXIH)XH + (1 − fXIP)(XPAO + XPHA)

+ (1 − fXIA)XA)                                                                                                           (1.24) 

 GTKN = SNH + iP,SSSS + iN,SISI + iN,XIXI + iN,XSXS + iN,BM(XH + XPAO + XA)                 (1.25) 

GNtot = GTKN + GNO3                                                                                                                            (1.26) 

GNO3 = SNO3                                                                                                                                             (1.27) 

𝐺𝑃𝑡𝑜𝑡 = 𝑆𝑃𝑂4 + iP,SISI + iP,XIXI + iP,XSXS + iP,BM(XH + XPAO + XA) + XPP                           (1.28) 

Table 1.4 Weighting factors for µt values 

 

The corresponding conversion factors in equations (1.24), (1.25) and (1.28) are considered as 

suggested by Henze et al. (2000), Gujer et al. (2000), Rieger et al. (2001), Solon (2015).
 

The assessment of the OCI Operational cost index (OCI) is necessary to calculate the cost for 

different control algorithms. The OCI is represented in equation. (1.29). 

OCI = 3CA +ME + 5SP + AE + PE +MA                                                                                      (1.29) 

All the energies like aeration (kWh/d), pumping (kWh/d), mixing (kwh/d) energy respectively are 

incorporated in the equations. (1.30), (1.31) and (1.32). Here aeration power is needed to aerate 

bioreactors, pumping is used to alter the flow rate from one end to another end and for internal, 

external flow patterns. SP is defined as the rate of deposition concerning sludge given in equation 

(1.32).  

The aeration energy (AE) is described as (Nopens et al., 2010; Hongyang et al., 2018): 

AE = 
SO
sat

1800 T
∫ ∑Vi

7

i=1

tf

to

KLai(t) dt                                                                                                     (1.30) 

Where KLai notify the coefficient of mass transfer for oxygen
 

𝑆𝑜
𝑠𝑎𝑡 notify the oxygen saturation  

Factors 𝛍𝐓𝐒𝐒 𝛍𝐂𝐎𝐃 𝛍𝐓𝐊𝐍 𝛍𝐍𝐎 𝛍𝑩𝑶𝑫𝟓 𝛍𝐏𝐭𝐨𝐭 

Values 2 1 30 10 2 100 
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The pumping energy (PE) is represented as: 

PE =  
1

T
∫ (0.008 Qexr(t) + 0.004 Qintr(t) + 0.05 Qw(t))
tf

to

dt                                                  (1.31) 

Where Qintr is the internal recycle (m3/d), Qexr is the external recycle (m3/d), Qw is the wastage flow 

(m3/d). 

SP is the sludge production that is calculated based on the solids accumulated in the reactors and 

in the settler and also considering the solids purged. The sludge production (SP) includes the TSS 

from wastage and the solids accumulated. In general, the unit for TSS is g SS/m3. Eq. (1.32) 

provides the sludge production (SP) cost as a function of TSS. TSSa and TSSs terms are already 

multiplied with the corresponding volumes and hence the units for TSSa and TSSs are kg SS. TSSa 

is the amount of solids in the bioreactors, and TSSs is the amount of solids in the sedimentation 

tank. TSSw is the amount of solids in the wastage and its unit is kg/m3. As the units for TSSw are 

represented in kg/m3, in eq. (1.32), it is multiplied with Qw which is the wastage flow having unit 

as m3/day.  

SP =
1

T
(TSSa(tf) − TSSa(to) + TSSs(tf) − TSSs(to) + ∫ TSSw

tf

to

∗ Qw dt)                          (1.32) 

The mixing is provided to avoid the biomass settling in the non-aerated reactors (anoxic and 

anaerobic reactors) and the mixing energy (ME) is represented as: 

ME =
1

T
∫ ME(t)
tf

to

dt                                                                                                                              (1.33) 

Where 

ME(t) = 24 ∑{
0.005 ∗ Vi      if KLai ≤ 20d

−1

0                     if KLai ≥ 20d
−1

7

i=1

 

Carbon addition (kg COD/d) is described as: 

𝐶𝐴 =
𝐶𝑂𝑁𝐶𝐴
𝑡𝑜 ∗ 1000

∫ 𝑄𝐶𝐴

𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡

𝑑𝑡                                                                                                               (1.34) 

Here, 𝑄𝐶𝐴 is the sum of carbon flow rate added and 𝐶𝑂𝑁𝐶𝐴 is the concentration of added carbon 

Metal addition (kg COD/d) is described as: 

𝑀𝐴 =
𝐶𝑂𝑁𝑀𝐴
𝑡𝑜 ∗ 1000

∫ 𝑄𝑀𝐴

𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡

𝑑𝑡                                                                                                             (1.35) 
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Here, 𝑄𝑀𝐴 is the sum of carbon flow rate added and 𝐶𝑂𝑁𝑀𝐴 is the concentration of added metal. 

Carbon addition (CA): External carbon source (methanol or acetic acid) is used as an alternative 

method for activated sludge system for removal of nutrients; the availability of readily degradable 

carbon substrate may limit the denitrification rate. A control approach is initiated and a 

metabolizable COD is directly added in the process where denitrification occurs temporarily. This 

method helps to increase the rate of denitrification on-demand, thereby minimizing the 

accumulation of nitrate and nitrite during times of peak loading. Carbon source is also added in 

the anaerobic tank to favor biological phosphorus removal and it will increase operational costs on 

high dosages are reported in Olsson et al. (2005); Guerrero et al. (2014). 

Metal addition (MA): Metal is added (ferric chloride) to wastewater in the form of insoluble metal 

phosphate and an insoluble metal hydroxide. For metal addition, the formed precipitates with 

metals govern the alkalinity and concentration of orthophosphates in wastewater. Because of the 

conflict between phosphate and hydroxide, reaching a very low concentration of P effluent requires 

an increase in the amount of metal addition. As the concentration of dissolved phosphorus 

(effluent) decreases, more hydroxides of the metal will form. To achieve low phosphorus effluent 

limits, an increased dosage of metal addition is needed. Ultimately, phosphorus will reach 

chemical equilibrium without any further reduction. Generally, a metal dosage is added to the 

aerobic reactor and it will increase operational cost on high dosages are reported in Gernaey et al. 

(2002); Guerrero et al. (2014 In addition, based on the legal requirements, the effluent quality 

needs to be maintained. 

1.3 Plant-wide modeling of wastewater treatment    

BSM2-P is a BSM1-P extension that was created to incorporate plant-wide operations in a WWTP 

based on the literature of Flores-Alsina et al. (2016); Flores-Alsina et al. (2020). The sludge 

treatment operation is also included. The BSM2 protocol is made up of a full model of a general 

WWTP, a control structure, a benchmarking process, and a set of evaluation criteria. Model-based 

influent load generation as elucidated in (Solon et al. 2017, Flores-Alsina et al, 2016; Gernaey et 

al. 2011)) is used to generate dynamic influent load data to execute the performance of plant-wide 

scenarios of the wastewater treatment plants. The daily average dynamic mass flow rates are 

provided in Table 1. More information about the handling of influent generation is illustrated in 

Solon (2017); Snip et al. (2016). Dynamic simulations are performed for 609 days with steady-

state simulation for 300 days. S: COD is the ratio of added sulfate ((Solon et al. (2017)). The last 
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one-year data is used for the performance assessment of the plant. State variables of ASM2d, units 

with notations, and average influent data are reported in Appendix Table D1. 

1.3.1 Model scenario 

The plant-wide model of BSM2-P is the resemblance of BSM2 plant but the modification is done 

in the activated sludge unit (ASU). In ASU extra two anaerobic reactors are added followed by 

anoxic and aerobic reactors (A2/O) to enhance phosphorus removal and to improve PAO's with a 

competitive dominance over other nitrogenous bacteria. The plant-wide model of BSM2-P consists 

of ASU, primary (PSU) and secondary (SSU) sedimentation unit, thickener (THK), anaerobic 

digestion (ADU) unit, storage (SU), and dewatering (DU) unit with internal and external recycles. 

Fig. 1.10 depicts the plant-wide model of BSM2-P and Table 1.5 represents each process unit of 

WWTP of BSM2-P with their working function and physical configurations.  The reaction rate 

expressions for all the state variables in the ASM2d model are described by Gernaey et al. (2014) 

and these expressions are considered in the present work. 

Table 1.5 Elucidation of plant-wide model processes units and physical configurations 

Process unit Working function References Configurations 

PSU Non-reactive (Otterpohl 1995) 900m3 

SSU 

Double-exponential 

velocity function 

reactive 

(Guerrero et al. (2013);  

Flores-Alsina et al. (2012) 
6000m3 

ASU ASM2d (Flores-Alsina et al. 2016) 4500m3 

ADU ADM1 (Batstone et al. 2002) 3400m3 

THK Reactive (Gernaey et al. 2014) Underflow 30.9 m3/d 

DU Reactive (Gernaey et al. 2014) 
9.6  m3/d sludge and 

168.9 m3/d reject water 

SU non-reactive (Gernaey et al. 2014) 160m3 
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Figure 1.10 Plant-wide model layout for BSM2-P 

1.3.2 Plant-wide evaluation criteria 

The subscript ‘ef’ indicates the effluent discharge. 𝜃𝑖 signify the weighting factors of different 

pollutants to convert into basic pollution units are tabulated in Table 3. 𝑖𝐶𝑂𝐷𝑖 denotes the COD 

compounds, 𝑖𝑁𝑖 denotes the nitrogen compounds, 𝑖𝑃𝑖 denotes the phosphorus compounds, T 

signifies the total assessment time interval (364 days) and  𝑄𝑒𝑓 denotes the discharge flow rate 

(m3/d). The corresponding conversion factors for fi are reported in (Solon (2017); Gernaey et al. 

2014)). All the concentrations are addressed in g/m3 units. 

𝐸𝑄𝐼 =
1

𝑇 ∙ 1000
∫ (𝜃𝑇𝑆𝑆𝑇𝑆𝑆𝑒𝑓(𝑡) + 𝜃𝐶𝑂𝐷𝐶𝑂𝐷𝑒𝑓(𝑡) + 𝜃𝑁𝐾𝐽𝑁𝐾𝐽𝑒𝑓(𝑡)
𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡

+ 𝜃𝑁𝑂𝑆𝑁𝑂𝑒𝑓(𝑡) + 𝜃𝐵𝑂𝐷5𝐵𝑂𝐷5𝑒𝑓(𝑡) + 𝜃𝑃𝑜𝑟𝑔𝑃𝑜𝑟𝑔𝑒𝑓(𝑡)

+ 𝜃𝑃𝑖𝑛𝑜𝑟𝑔𝑃𝑖𝑛𝑜𝑟𝑔𝑒𝑓(𝑡))  𝑄𝑒𝑓(𝑡) 𝑑𝑡  

    

(1.36) 

𝐶𝑂𝐷𝑒𝑓 = 𝑆𝐹𝑒𝑓 + 𝑆𝐴𝑒𝑓 + 𝑆𝐼𝑒𝑓 + 𝑋𝐼𝑒𝑓 + 𝑋𝑆𝑒𝑓 + 𝑋𝐵,𝐻𝑒𝑓 + 𝑋𝑃𝐴𝑂𝑒𝑓 + 𝑋𝑃𝐻𝐴𝑒𝑓 

+𝑋𝐵,𝐴𝑒𝑓 + 𝑖𝐶𝑂𝐷𝑆𝐹𝑒(𝐼𝐼)
𝑆𝐹𝑒(𝐼𝐼)𝑒𝑓 + 𝑖𝐶𝑂𝐷𝑆𝐼𝑆

𝑆𝐼𝑆𝑒𝑓 + 𝑖𝐶𝑂𝐷𝑋
𝑆𝑂
𝑋𝑆𝑒𝑓

𝑂 + 𝑋𝑆𝑅𝐵𝑒𝑓  

   

(1.37) 
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Operational cost is a weighted summation of costs associated with the production of sludge (SP) 

(kg ss/d), methane (PM) (kg.CH4/d), pumping (PE), aeration (AE), mixing (ME) and heating (HE) 

energies (KWh/d), internal and external recycles are provided (m3/d). All individual components 

are addressed in (Solon (2017); Gernaey et al. (2014)). Thus the OCI is estimated as below:  

      𝑂𝐶𝐼 = 𝐴𝐸 + 𝑃𝐸 + 𝑧𝑃𝑆 ∙ 𝑆𝑃 + 𝑀𝐸 − 𝑧𝑃𝑀 ∙ 𝑃𝑀 +max(0, 𝐻𝐸 − 7𝑃𝑀)                                     (1.44)  

 
𝑧𝑖 denotes the weighting factors of 𝑧𝑃𝑆 is 3 and 𝑧𝑃𝑀 is 6.  

Aeration, pumping, mixing energies are addressed in the equations (1.45), (1.46), and (1.47). Here 

aeration power is needed to aerate bioreactors, pumping is used to alter the flow rate from one end 

to another end and for internal, external flow patterns. 

The aeration energy (AE) is described as (kWh/d): 

 AE = 
SO
sat

1800∙T
∫ ∑ Vi

7
i=1

tf
to

∙ KLai(t) dt                                                                                                   (1.45) 

Where KLai signifies the oxygen mass transfer coefficient, Vi notifies the volume of the reactors 

and oxygen saturation coefficient. T is the length of evaluation time (364 days) 

The pumping energy (PE) is defined as (kWh/d):
 

 PE =  
1

T
∫ 0.004 ∙ 𝑄𝑖𝑛𝑡
tf
to

+ 0.008 ∙ 𝑄𝑟 + 0.050 ∙ 𝑄𝑤 + 0.075 ∙ 𝑄𝑃𝑈 + 0.060 𝑄𝑇𝑈 + 0.004 ∙

𝑄𝐷𝑂dt                                                                                                                                                        (1.46) 

Where Qintr is the internal recycle (m3/d), Qexr is the external recycle (m3/d), Qw is the waste flow 

(m3/d), QPU is the primary clarifier underflow, QTU is the thickener underflow and QDO is the 

dewatering overflow. 

𝑁𝐾𝐽𝑒𝑓 = 𝑆𝑁𝐻𝑒𝑓 + 𝑖𝑁𝑆𝐹
𝑆𝐹𝑒𝑓 + 𝑖𝑁𝑆𝐼

𝑆𝐼𝑒𝑓 + 𝑖𝑁𝑋𝐼
𝑋𝐼𝑒𝑓 + 𝑖𝑁𝑋𝑆

𝑋𝑆𝑒𝑓

+ 𝑖𝑁𝐵𝑀 (𝑋𝐵,𝐻𝑒𝑓 + 𝑋𝑃𝐴𝑂𝑒𝑓 + 𝑋𝐵,𝐴𝑒𝑓 + 𝑋𝑆𝑅𝐵𝑒𝑓) 
(1.38) 

𝑃𝑜𝑟𝑔𝑒𝑓 = 𝑋𝑃𝑃𝑒𝑓+𝑖𝑃𝑆𝐹
𝑆𝐹𝑒𝑓 + 𝑖𝑃𝑆𝐼

𝑆𝐼𝑒𝑓 + 𝑖𝑃𝑋𝐼
𝑋𝐼𝑒𝑓 + 𝑖𝑃𝑋𝑆

𝑋𝑆𝑒𝑓 + 

𝑖𝑃𝐵𝑀 (𝑋𝐵,𝐻𝑒𝑓 + 𝑋𝑃𝐴𝑂𝑒𝑓 + 𝑋𝐵,𝐴𝑒𝑓 + 𝑋𝑆𝑅𝐵𝑒𝑓) 
(1.39) 

𝐵𝑂𝐷5𝑒𝑓 = 0.25(
𝑆𝐹𝑒𝑓 + 𝑆𝐴𝑒𝑓 + (1 − 𝑓𝑆𝐼) 𝑋𝑆𝑒𝑓 + (1 − 𝑓𝑋𝐼𝐻)𝑋𝐵,𝐻𝑒𝑓

+(1 − 𝑓𝑋𝐼𝑃) (𝑋𝑃𝐴𝑂𝑒𝑓 + 𝑋𝑃𝐻𝐴𝑒𝑓) + (1 − 𝑓𝑋𝐼𝐴) (𝑋𝐵,𝐴𝑒𝑓 + 𝑋𝑆𝑅𝐵𝑒𝑓)
) (1.40) 

𝑃𝑖𝑛𝑜𝑟𝑔𝑒𝑓 = 𝑆𝑃𝑂4𝑒𝑓
 (1.41) 

𝑆𝑁𝑂𝑒𝑓 = 𝑆𝑁𝑂3 (1.42) 

𝑇𝑆𝑆𝑒𝑓 = 𝑋𝑇𝑆𝑆 (1.43) 
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The sludge production (SP) is expressed as (kg/d): 

SP =
1

T∙1000
∙ (XTSS(tf) − XTSS(to) + ∫ TSSX(𝑡)

tf
to

QX(t) dt)                                                       (1.47) 
 

 𝑋𝑇𝑆𝑆(𝑡) =  𝑋𝑇𝑆𝑆,𝐴𝑆𝑈(𝑡) + 𝑋𝑇𝑆𝑆,𝑆𝑆𝑈(𝑡) + 𝑋𝑇𝑆𝑆,𝑃𝑆𝑈(𝑡) + 𝑋𝑇𝑆𝑆,𝐴𝐷𝑈(𝑡) + 𝑋𝑇𝑆𝑆,𝑆𝑈(𝑡)             

With 𝑋𝑇𝑆𝑆,𝑋(𝑡) =  𝑇𝑆𝑆𝑋(𝑡) ∙ 𝑉𝑋 

Where QX (t) is the sludge flow and TSSX is the total amount of solids in the sludge flow stream 

(after dewatering in BSM2-P). XTSS is elucidated as the sum of TSS mass present in an individual 

process unit. The subscripts refer to the concern process units.  

The mixing energy (ME) is defined as (kWh/d): 

The mixing is highly necessary to avoid the biomass settling in the non-aerated and aerated reactors 

like all ASU tanks and anaerobic digester and the mixing energy (ME) is defined as (kWh/d): 

 ME = 𝑀𝐸𝐴𝑆𝑈 +𝑀𝐸𝐴𝐷𝑈                                                                                                                        (1.48) 
Where

 

 𝑀𝐸𝐴𝑆𝑈 =
24

𝑇
∫ ∑ [

𝑖𝑓 𝐾𝐿𝑎𝑖 < 20𝑑
−1 0.005 ∙ 𝑉𝑖

𝑖𝑓 𝐾𝐿𝑎𝑖 ≥ 20𝑑
−1 0

]𝑖=7
𝑖−1

𝑡𝑓
𝑡𝑜

∙ 𝑑𝑡 

 𝑀𝐸𝐴𝐷𝑈 = 24 ∙ 0.005 ∙ 𝑉𝐴𝐷𝑈 

 Where, Vi is the ith tank volume (m3) and 0.005 kW/m3 is the mixing power consumption factor 

in ASU. VADU is the volume of liquid in ADU and the mixing power consumption factor 0.005 

kW/m3. 

Methane production (kg CH4/d) is defined as:
 
 The average methane production per day value is 

defined by using the equation. (1.49).
 

 PM =
𝑃𝑎𝑡𝑚∙16

𝑇∙𝑅∙𝑇𝑂𝑇
∫

1

𝑃𝑡𝑔(𝑡)

𝑡𝑓
𝑡𝑜

∙ 𝑃𝑔,𝐶𝐻4(𝑡) ∙ 𝑄𝑔(𝑡) ∙ 𝑑𝑡                                                                                (1.49)  

Where, PgCH4 (bar) partial pressure of methane gas produced in the headspace, R denotes the 

universal gas law constant i.e 8.3145.10-2 bar m3 kmol-1 k-1, TOT represents the operating 

temperature of the digester (308.15 K), Ptg is the total gas pressure in the headspace, Patm is 

atmospheric pressure (1.013 bar) and Qg is the gas flow rate of produced gas. 

 Net heating energy is described as: 
 

 𝐻𝐸𝑛𝑒𝑡 = max(0, 𝐻𝐸 − 7 ∙ 𝑃𝑀)                                                                                                        (1.50) 

Where HE is the amount of energy required to get the anaerobic digester up to operating 

temperature, as shown in the equation below (1.51): 

 HE =
24

86400∙𝑇
∫ 𝑃𝐻2𝑂 ∙ 𝐶𝐻2𝑂 ∙ (𝑇𝑂𝑇 − 𝑇𝑎𝑑𝑢,𝑖(𝑡)) ∙ 𝑄𝑎𝑑
𝑡𝑓
𝑡𝑜

(𝑡). 𝑑𝑡                                                    (1.51) 
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  𝑇𝐴𝐷𝑈,𝑖 =
𝑇𝑃𝑆𝑈∙𝑄𝑃𝑆𝑈(𝑡)+𝑇𝑇𝐻𝐾(𝑡)∙𝑄𝑇𝐻𝐾(𝑡)

𝑄𝐴𝐷𝑈(𝑡)
                 Here, 𝑄𝐴𝐷𝑈(𝑡) = 𝑄𝑃𝑆𝑈(𝑡) + 𝑄𝑇𝐻𝐾(𝑡) 

Where, PH2O is the density of water (1000 kg/m3), CH2O is the specific heat capacity of water (4.186 

KJ kg-1 oC-1). Tad,i is the temperature of ADU influent, TOP is the optimal temperature of ADU. Qad 

is the flow rate to the ADU (m3/d). 

Table 1.6 Weighting factors for EQI. 

Weighting factors of EQI (𝜃𝑖) 

Weighting factors 𝜃𝑇𝑆𝑆 𝜃𝐶𝑂𝐷 𝜃𝑁𝐾𝐽 𝜃𝑁𝑂 𝜃𝐵𝑂𝐷5 𝜃𝑃𝑜𝑟𝑔 𝜃𝑃𝑖𝑛𝑜𝑟𝑔 

Value 2 1 30 10 2 100 100 

 

Following stringent regulations is a top priority for wastewater treatment plants. The legal 

constraints to be followed are the same as BSM1, i.e., TP is less than 2 gP/m3; TN is less than 18 

gN/m3; BOD5 is less than 10 g/m3; COD is less than100 gCOD/m3; TSS is less than 30 g/m3, and 

SNH is less than 4 gN/m3.
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Chapter 2            

                                              Literature Review 

 

Concerns about the impact of modern human life on the natural cycle have sparked several research 

areas that aim to address a portion of the issue in some way. Many efforts are being made these 

days to focus on cleaner and greener energy sources as well as production, transportation, and, of 

course, wastewater treatment. The use of various control techniques is aimed at improving the 

plant's efficiency. Numerous works in the literature propose various methods for regulating 

WWTPs. The majority of the work use BSM1 as a working scheme. Here, BSM1 is dealing with 

mainly organic matter and nitrogen. The present work use BSM1-P as a working scenario. Where 

it deals with organic matter, nitrogen, and phosphorous. In some case studies, the primary 

emphasis is on preventing effluent limit violations by direct controlling effluent variables. Other 

studies look at the trade-off between operating costs and effluent efficiency, but they don't address 

effluent violations. This is typically accomplished through a simple control strategy (control of 

dissolved oxygen in aerated reactors and nitrate-nitrogen concentration in the anoxic tanks or 

hierarchical control structures (Ammonia-based aeration control) that regulate dissolved oxygen 

set-points based on certain plant issues, solid retention time control (SRT control), metal and 

carbon dosages based on the requirements. BSM2-P has been used as another research platform in 

a plant-wide scenario. Some of them are interested in the design of control approaches in the 

WWTP. Especially, the proposed control strategies are aimed at dissolved oxygen rates in aeration, 

ammonia-based aeration control, regulating the wastage flow for the control of total suspended 

solids, and the addition of carbon and metal dosages. The BSM1-P and BSM2-P model, developed 

by the International Water Association (IWA) task group primarily for simulating a sewage 

treatment plant, has a wide range of literature. The scientific and research community now accepts 

this as a basic model for wastewater treatment plants.  

The standardization of the model is necessary from a control and operational perspective because 

various control procedures have been suggested in the literature, but their evaluation and 

correlation, either realistic or simulation basis, is difficult. This is due to the wide range of time 

constants inherent in the activated sludge process, as well as the variability of the influent load, 

the intricate nature of biological and biochemical phenomena.  
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Temperature is a foremost element that shows the impact on biomass activity which is important 

to maintain efficient biological activity. Additionally, physiochemical characteristics like 

dissolved oxygen, settling velocity change, mixed liquor concerning change in temperature, which 

ultimately help in modeling and prediction of activated sludge system. Typically, in the global 

context, the average room temperatures vary for local atmospheric and environmental conditions. 

The temperature rise is mostly because of the varying sudden change in seasonal weather around 

the world. This work focuses intending to signify the temperature effects on phosphorous, 

nitrogen, and organic matter removal in BSM1-P and BSM2-P platforms. In this chapter, the 

literature is reviewed on BSM1-P and BSM2-P model schemes and the effect of temperature on 

BWWTP. In the last decade, diverse research is done based on their optimal control and design, 

with their objective functions of A2/O that have been summarized in Table 2.1, with the majority 

of them seeking to determine the most profitable pollutants abatement approaches. Table 2.2 

summarizes the studies that explain the making of existing A2/O run more efficiently. Thus, it is 

important to understand that the original optimality of the simulated solution is highly dependent 

on the optimization problem conceptualization. The A2/O (anaerobic, anoxic, and oxic) process is 

a well-established platform to remove N and P simultaneously in municipal WWTP today i.e 

introduced by Oehmen et al (2010); Zhou et al. (2015); Zhang et al. (2016). Regarding P, the 

approach of EBPR implementation is sustainable to meet the stringent regulations in the discharge 

flow but few researchers have proposed a successful design in WWTP for enhancing P-removal. 

2.1 Literature based on BSM1-P control strategies 

Real-Time Expert System is implemented in a wastewater treatment pilot plant to remove nutrients 

and organic matter biologically. It showed the great performance to control the pilot plant of 

WWTP is introduced by Baeza et al. (1999). A distributed control system (Knowledge-Based 

Expert System (KBES) constructed with G2©) is proposed in A2/O configuration in the pilot plant 

is introduced by Baeza et al. 2002. Performance of the two-level control approach for the pre-

denitrification system with the aim of the principal controller to balance the SNO concentration in 

desired effluent concentrations is designed by Cho et al. (2002). Activated sludge model 2d 

(ASM2d) model in BSM1-P with two control loops (dissolved oxygen and nitrate) with PI 

controllers is tested with dry, rain, and storm data and is compared with open-loop and reported 

that a trade-off between operational cost and effluent quality exists is introduced by Gernaey et al. 

(2004). Biological phosphorus removal (BPR) was an intricate activity when contrast with N and 
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COD removal. It involves many processes with interactions among different biological reactions. 

Therefore, mathematical modeling and simulations will help to quantitatively assess this 

interactivity. Feed-forward (FF) control based on influent and nonlinear MPC with the addition of 

a penalty function on BSM1 and showed a low index of effluent efficiency and acceptable energy 

usage for aeration and pumping is designed by Shen et al. (2008). Shen et al. (2009); Cristea et al. 

(2008) are developed feedforward control for nitrogen removal in a pilot-scale A2O (anaerobic-

anoxic-oxic) process for municipal wastewater treatment and obtained improved nitrogen removal. 

Structured control of DO is important because it has more influence on aeration energy.  

A two-level control strategy is proposed then the systematic track of the DO path in the BSM1 

framework is shown by Brdys et al. (2009). Control options using the TSS controller with a high 

ratio of food to microbes in the reactor in the BSM2 framework reduced the risk and effect of 

bulking sludge are designed by Flores-Alsina et al. (2009). Feed-forward controllers have been 

applied in WWTP’s taking into account the effluent quality and performance improvement 

especially for improving biological N and carbon (C) removal based on the Baeza et al. 2002; 

Nopens et al. (2010). Ostace et al., (2011) applied model predictive control (MPC) by considering 

a reactive secondary settler model and achieved reduced operational cost index (OCI) with 

improved effluent quality index (EQI). Although EBPR is considered a prominent approach, the 

inter-activity between N and P is still facing a removal failure in complete-scale treatment plants 

because of nitrate interactions in phosphorus uptake. These failures are influenced by the COD/P 

ratio and the organic matter in the influent, which are the primary parameters to understand the 

process Guerrero et al. 2011. It is implemented based on the ASM2d model. Xu and Vilanova 

(2013) developed different control strategies based on BSM1-P and observed that ammonia 

nitrogen and chemical oxygen demand (COD) of the effluent are under the limit, whereas other 

effluent parameters violated the constraints.  

In BSM1-P, a novel control application with cascade and override control in combination with 

metal and carbon dosages are tested in the carbon-limited wastewater. It was found that the control 

application shows a better effluent with optimal cost by Guerrero et al. (2014). A fuzzy control 

framework is built to reduce the concentration of phosphorus in effluent water and found that fuzzy 

control shows better results in removing P compared with the PI control loop (Xu and Vilanova, 

2015 a, b). Valverde-Pérez et al. (2016) applied control strategies for enhanced biological 

https://doi.org/10.1002/wer.1296Flores-Alsina
https://doi.org/10.1016/j.watres.2007.01.029Valverde-P%C3%A9rez
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phosphorus removal with two control frameworks on a sequence batch reactor and continuous 

flow reactor. An activated sludge process with P removal (Enhanced biological phosphorus 

removal) is introduced to enhance EQI. Under some circumstances, N and P removal is not 

possible because of deficit COD in wastewater content. So, either an external carbon source is 

added or chemical addition for P precipitation is generally preferred as a technical solution for 

efficient removal of P from COD limited wastewater. These dosages are expensive and lead to an 

increase in plant operating costs reported in Garikiparthy et al. (2016). Sdeghassadi et al. (2018) 

developed nonlinear MPC based on BSM1 and showed improved tracking of set-points.   

BPR can be achieved by introducing PAO’s in the sludge to inlet flow which has VFA (volatile 

fatty acid) in a reactor that has nil dissolved oxygen and nitrate achieved (Bunce et al. (2018)). In 

recent studies, signifies the application of the cascade approach in the DO design by Santín et al. 

(2015); Crisan et al. (2018). As far as energy savings in a real-time wastewater plant is concerned, 

hierarchical control strategies are proposed to obtain the required amount of DO to oxidize 

ammonia to nitrate. Fault detection on the benchmark models are evaluated by Baklouti et al. 

(2018). Hongyang et al. (2018) developed MPC based on the BSM1-P model to maintain an 

adequate amount of nitrate concentration as well as dissolved oxygen. It was observed that the 

control performance improved by 95% in all three weather (dry, rain, storm) conditions with MPC 

controller, with a focus to reduce ammonia fluctuations, a strategy with MPC/FF controllers was 

implemented at the base level to control SNO and DO, and with the fuzzy controller at a higher 

level to manipulate the DO. Similarly, MPC at the supervisory level is also proposed to amplify 

the plant performance for reducing the cost and to improve the effluent quality by the design of 

Santín et al. (2016). 

 Artificial neural network (ANN) is designed to predict the set point of DO implemented by Santin 

et al. (2019). In the Activated sludge process, ammonia-based aeration control (ABAC) with a 

solid retention time (SRT) control approach is developed to balance the SRT, DO, and ammonia 

to maintain both treatment efficiency and energy economies in the plant according to Schraa et al. 

(2019). All these works are carried out by using BSM1 as the working platform. TN concentration 

attained regulation limits by using three control loops based on inorganic P, ammonia, and 

suspended solids concentration (Luca et al. (2019)). To predict the DO, artificial neural networks 

are used to satisfy delays from sensors and filters to get the desired set-point (Santin et al. (2019)). 
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The heuristic fuzzy controller is tested and found that all the pollutants meet stringent regulations 

with high-quality DO (Piotrowski et al. (2020)). Hierarchical control strategies on BSM1 are 

developed and found that there is an improvement in effluent quality and at low cost (Tejaswini et 

al. (2020)). The result is effluent ammonia nitrogen and total nitrogen are reduced with the little 

energy economy. A sensor‐mediated (coupled with residual ammonia controls and DO set-point) 

approach is implemented on a granular sludge reactor to remove nutrients in wastewater and 

showed that maintaining stable aerobic granular sludge will help to improve the performance is 

designed according to Bekele et al. (2020). 

On the other hand, the proliferation of poly accumulating organisms (PAO’s) is responsible for 

the P removal through anaerobic and aerobic phases in the activated sludge system (AS) by 

Rampho et al. (2005); Ersu et al. (2010). The A2O (anaerobic, anoxic, and oxic) process is a well-

established platform to remove N and P simultaneously in municipal WWTP today i.e introduced 

by Oehmen et al. (2010); Zhou et al. (2015); Zhang et al. (2016); Massara et al. (2018). Regarding 

P, the approach of EBPR implementation is sustainable to meet the stringent regulations in the 

discharge flow but few researchers have proposed a successful design in WWTP for enhancing P-

removal., Thus, with a reasonable amount of P and N removal, it is challenging to practice safe 

discharge and re-use of water by Machado et al. (2009); Ostace et al. (2013). Several investigations 

are proposed with slight adjustments of the process by replacing the positions of the anoxic and 

anaerobic move to give an improved phosphorus rate of 5-8% is reported by Zhang et al. (2000); 

Liu et al. (2008); Li et al. (2017). Different bio P models like MUCT, UCT, BDP-5 stage, A2/O, 

and JHB are tested to find the best P removal process by Guerrero et al. (2013). Anoxic, anaerobic 

followed by aerobic with no internal recycle, this type of process is referred to as a reversed A2O 

(R-A2O) process with cost and effluent indexes. Mostly, this process is adopted by China and 

Japan in their WWTPs are reported in Bo 2006; Kang et al. (2011).  

In some cases, the R-A2O process doesn’t show better results in the removal of nutrients when 

compared to A2/O for both P and N. Mathematical models are used for WWTP to investigate the 

intricate concentrations of processes (chemical, biochemical and biological) in the effluent is 

presented by Fang et al. (2011); Hu et al. (2016). ASM2d and ASM3bioP ASS are used to simulate 

the R-A2/O (Fang et al. (2016); Zhou et al. (2011)). Some investigations have shown better 

outcomes for R-A2/O compared with A2/O and other studies show contradictory results are 
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reported by Liu et al. (2008); Zhou et al. (2011). In the work of Chen et al., 2007, it is observed 

that microorganisms are responsible for the cycle function of aerobic and anaerobic processes that 

cause the efficient removal of N and P in the R-A2/O. In the R-A2O process, denitrification needs 

to satisfy the carbon source and another section of R-A2O enters into the anaerobic section directly 

to maintain the anaerobic environment. In this manner, the PAO’s can be improved to enhance P 

uptake and the P removal process is strengthened based on the results of Chen et al. (2007). This 

kind of process phenomenon is not well known yet. Thus a different pattern of studies are 

performed to test the EQI and OCI and to choose a better-optimized model. BNR processes are 

studied with the addition of carbon sources, which includes the accumulation of carbon sources 

within microbes are reported (Hu et al. (2016)). Carbon addition causes low nitrate concentration 

with high operational cost by Wang et al. (2017). In recent years, China is widely using R-A2/O 

as the biological process in WWTP based on the literature of Xie et al. (2018). Water quality and 

microbial communities are analyzed with the addition of carbon sources by Chen et al. (2020).  

2.2 Literature based on BSM2-P control strategies 

The plant-wide model takes the attention among researchers for a long time run and the whole 

plant is controlled by the usage of water and sludge lines in WWTP by considering all process 

interactions based on the literature of Jeppsson et al. (2007); Nopens et al. (2009); Gernaey et al. 

(2014). WWTP's are considered as an integrated process, where all the individual unit processes 

are updated based on the process interactions. consequently, in recent years’ wastewater 

engineering has boosted the advancements of enhanced modeling tools to address these issues. 

Studies on possibilities of control applications like sludge control approaches, biogas production 

in primary settler, the handling of the anaerobic digester, and phosphorus modeling with 

interactions of sulfur and iron cycles are incorporated in plant-wide models based on the literature 

of Barker and Dold (1996); Henze et al. (2000); Volcke et al. (2006); Grau et al. (2007); Ekama 

(2009); Ruano et al. (2011); Jeppsson et al. (2013); Flores-Alsina et al. (2014); Flores-Alsina et 

al., (2014).  

The Benchmark simulation model (BSM2-P) Flores-Alsina et al. (2012) is used this is the 

integrated version of BSM1-P which includes both water and sludge treatment process units. As 

for as, a well-known plant-wide model is BSM2. Based on this plant-wide model, different control 

applications are studied like PI, ANN, and sludge-based strategies, hierarchal control approaches 
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are reported in Santin et al. (2015); Barbu et al. (2018); Tejaswini et al. 2020). To explore the total 

plant-wide model, researchers are switched their interest towards BSM1-P to BSM2-P. PI-based 

SO,7, and cascade PI in the control of ammonia and total suspended solids strategies are used. It 

was found that OCI and EQI are maintained trade-offs and compared with open-loop better results 

are found Solon et al. (2017). Sludge management strategies like bio-solids beneficiation facility 

(BBF) are studied. This resultant will improve solubility, sludge dewaterability and handle high 

sludge loads with change in the microbial population is noticed by Flores-Alsina et al. (2021).  

2.3 Effect of temperature on the biological activity and treatment 

In accordance with the geographical area, the mean yearly temperature of wastewater varies. For 

example, in Latin America, the temperature usually ranges from 3 to 27oC. Whereas in Africa, 

Asia, and Middle East countries, the temperature goes from 28 to 45oC. The temperature of 

wastewater is a very crucial parameter as it plays a significant role in the happening reaction rates 

and metabolic rates of microbes in the wastewater1. Stringent effluent limits must be followed 

while treating wastewater from the municipal and industrial sectors irrespective of the ambient and 

operating temperature. WWTP is facing many complications based on the active biomass for 

nitrogen removal (N) in treating industrial and municipal influents. The nitrification rate limits the 

extent of nitrogen. The nitrification rate is known to be the rate constraint step for N removal. 

Additionally, phosphorous removal based on uptake of acetate in the anaerobic section is crucial 

in influencing the amount of PAO's and thus the amount of P removed. In the literature, the effect 

of temperature on the kinetic processes in a typical WWTP is not extensively studied, and hence 

in this paper, this is addressed. The lower temperature has less impact on hydrolysis and 

fermentation. Short-term temperature advancements influence stoichiometry and kinetic variables. 

While long-term temperature advancements impact biomass activity. 

Generally, the optimal temperatures for biological operations are in the range of 25 to 35oC. The 

nitrification process ends when the temperature touches 50oC and at 15oC methane yielding 

bacteria becomes inert. Moreover, at 5oC, autotrophic nitrifying microbes nearly cease functionally 

based on the investigation by Metcalf and Eddy (2003). The effluent quality has proved an 

optimistic assurance with a temperature range from 10 to 30oC are reported by Collins et al. (1973). 

On investigating the temperature effect on bio-P removal, it was found that the rate of aerobic 

phosphorus uptake becomes extreme in the range of 15 and 20oC are noticed by Baetens et al. 

(1999). Despite the solid retention time (SRT) and settling sludge compositions, with the rise in 
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temperature from 25oC, the nitrogen removal happens simultaneously along with denitrification 

and nitrification reactions based on Görgün et al. (2002). 

The flocculants in activated sludge after the settling process are investigated when the temperature 

varies from 3oC to 15oC by Ghanizadeh et al. (2001). Additionally, it is noticed that on temperature 

rise, the suspended solids from the effluent increase, and COD removal decreases. An investigation 

based on the temperature effects by considering the temperature from 9 to 30oC in a tannery 

wastewater treatment in an SBR to assess the nitrogen removal. Moreover, it is observed that above 

20oC the effluent quality meets the effluent regulations presented by Murat et al. (2004). A 

remarkable increment is observed in the removal of COD and SS by raising the temperature from 

15oC to 35oC in an up-flow micro aerobic sludge system. When temperature changes from 20oC 

to 8oC, the resultant removal rates of COD and SS are reduced based on De Kreuk et al. (2005); 

Meng et al. (2019). The up-flow anaerobic sludge blanket system is studied by changing the 

temperature from 6oC to 32oC to know the bio-kinetic rates for the treatment of sewage wastewater 

by Singh and Viraraghavan (2002). Temperature is a foremost element that shows the impact on 

biomass activity which is important to maintain efficient biological activity. Additionally, 

physicochemical characteristics like dissolved oxygen, settling velocity change, mixed liquor 

concerning change in temperature, which ultimately helps in modeling and prediction of activated 

sludge system is presented in Lippi et al. (2009). The rate of biological violations either becomes 

double or becomes half for every 10 to 15oC of temperature rise.  

According to Van’t Hoff's rule, the biological activity rate doubles with every 10oC rise in the 

temperature. The results of temperature impact on BNR in various studies are conflicting with 

each other. Many studies stated that phosphorous removal efficiencies exceed at higher 

temperatures (20-37oC) (Brdjanovic et al. (1997)). Poly accumulating organisms (PAO) govern 

microorganisms at low temperatures (10oC) despite the influence on carbon matter. Moreover, the 

temperature effect did not confer metabolic advantages to glycogen accumulating organisms above 

PAOs despite considering aerobic metabolism based on the literature of López-Vázquez et al. 

(2008). In a recent investigation, temperature effects are studied based on the activated sludge 

model (ASM1) on the BSM1 platform the kinetic parameters. It was noticed that, for temperatures 

less than 20oC and greater than 30°C, the effluent constraints deviated from the stringent limits 

reported by Tejaswini et al. (2019).  
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key process 

models and 

control parameters 

Process 

layout 

Biological & 

settler model 

Open/close 

loop 

Decision variable Algorithm/Method 

of computing 

Objective function Constrains Study/ 

dynamic profile 

References 

(Xie et al. 2011) A2/O Calibrated 

ASM2d, Not 

mentioned 

Open loop All are time-

independent and 

continuous 

Genetic Min. 

Contaminants 

effluent 

--- dynamic 

(Fang et al. 2011) A2/O ASM3bioP, 

Not 

mentioned 

Open loop All are time-

independent and 

continuous 

Genetic Min. 

Contaminants 

effluent 

--- dynamic 

(El-Shorbaghy et 

al. 2011) 

A2/O ASM3bioP, 

Point-settler 

with variable 

Open loop All are time-

independent and 

continuous 

GAMS simulator Min. investment, 

operation, and 

maintains cost 

Volume of 

reactor & 

effluent 

steady 

(Guerrero et al. 

2012) 

A2/O Modified 

ASM2d, 

Takacs 

Closed 

loop 

Time-varying Random generator Min. investment, 

operation, maintain 

cost, related to solid 

separation issues 

--- dynamic 

(Liu et al. 2012) Primary 

clarifier + 

A2/O 

ASM2d, 

Takacs 

Closed 

loop 

All are time-

independent and 

continuous 

Multi-object 

Genetic-NSGAII 

Min. 

Contaminants 

Effluent, process 

cost 

--- steady 

Table 2.1 Summary of key process models and control parameters 
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Table 2.2 Control strategies and performance indices of BSM1-P 

 

Control strategies 

and performance 

indices  

ASM Control 

goal 

Control 

Algorithm 

Control 

variables 

Manipulating 

variables 

Effluent 

quality (EQI) 

Operational 

cost (OCI) 

Remarks 

References 

(Gernaey et al. 

2002) 

A2/O 

(ASM2d) 

Effluent 

quality 

 

PI, metal, 

and carbon 

dosages 

Dissolved 

oxygen (DO) 

Oxygen Mass 

transfer 

coefficient (KLa) 

Improved EQI 

 

OCI is 

increased 

Better in P 

removal 

(Gernaey et al. 

2004) 

A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

PI DO and 

nitrate 

KLa and internal 

recycle( Qintr) 

Improved EQI 

 

OCI increases selection of 

oxygen 

set-point 

(Ostace et al. 

2013) 

A2/O Modified 

ASM2d 

Takacs 

Closed 

loop 

All are time-

independent and 

continuous 

Pattern search Min. process 

cost 

--- dynamic 

(Nguyen et al. 

2013) 

A2/O ASM2d 

Takacs model 

(Takacs et al. 

1991) 

Closed 

loop 

Time-varying Pattern search Min. process 

cost 

--- dynamic 
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(Ingildsen et al. 

2005) 

A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

PI Different 

DO, nitrate, 

ammonia, 

TSS and 

phosphate 

KLa , higher-level 

DO set point, Qw 

and Qintr 

Improved EQI OCI 

increases 

Improved P 

removal 

(Machado et al. 

2009) 

A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

RGA based 

PI control 

Ammonia, 

nitrate, TSS 

and 

phosphate 

higher level DO 

set point, Qw 

,Qintr and purge 

flow rate 

Improved EQI Reduced OCI EQI 

controlled 

based on 

cost setpoint 

(Shen et al. 2010) A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

PID Dissolved 

oxygen (DO) 

Oxygen Mass 

transfer 

coefficient (KLa) 

Improved EQI 

 

OCI 

reduction 

achieved 

Better in P 

removal 

(Guerrero et al. 

2011) 

A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

PI 

Cascade 

feed-

forward  

DO, 

ammonia 

Nitrate and 

TSS 

KLa , higher level 

DO set point, Qw 

and Qintr 

Improved EQI OCI increases Optimized 

through set-

point 

(Rieger et al. 

2012) 

A2/O 

(ASM3bioP) 

Effluent 

quality, 

Cost 

reduction 

On-Off and 

PID 

DO and 

ammonia 

(SNH) 

KLa and DO set-

point is 

determined by 

higher level 

Improved EQI 

 

OCI 

minimized 

Reduced 

energy 

consumption 
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(Liu et al. 2012) A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

Cascade 

MPC and PI 

DO, 

ammonia and 

nitrate 

KLa , higher-level 

DO set point and 

Qintr 

Improved EQI OCI increases Improved 

removal 

rates of N 

and P 

(Xu et al. 2013) A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

PI Different 

DO, TSS and 

nitrate 

KLa, Qw and Qintr Improved EQI 

 

OCI increases Trade-off 

between OC 

and EQI 

(Ostace et al. 

2013) 

A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

Pattern 

search 

COD-P 

control, 

Ammonia, 

nitrate, 

higher-level DO 

set point, Qw, 

KLa and Qintr 

Improved EQI Reduced OCI Optimized 

reference 

operation 

provided 

(Guerrero et al. 

2014) 

A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

PI and 

override 

control 

Nitrate, 

phosphate 

Qintr and set point 

of nitrate 

Improved EQI OCI 

increases 

P removal is 

enhanced 

(Xu et al. 2015) A2/O 

(ASM2d 

Effluent 

quality, 

Cost 

reduction 

Fuzzy and 

PI 

DO and 

nitrate 

KLa  and Qintr Improved EQI OCI increases Fuzzy 

control 

show 

improved 

EQI then PI 
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(Xu et al. 2015) A2/O 

(ASM2d 

Effluent 

quality, 

Cost 

reduction 

Fuzzy DO and 

nitrate 

KLa  and Qintr Improved EQI OCI increases Fuzzy 

control 

show better 

P removal 

(Hongyang et al. 

2018) 

A2/O 

(ASM2d) 

Effluent 

quality, 

Cost 

reduction 

PI and MPC DO and 

nitrate 

KLa  and Qintr Improved EQI OCI 

increases 

MPC show 

good 

tacking 

performance 
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Operation at normal temperatures minimizes land requirements, improves conversion processes, 

improves removal efficiencies, and makes the use of certain treatment processes possible. In 

WWTP methods, the temperature is regarded as the most demanding factor, especially for 

biological WWTP. Thus, the temperature of wastewater is identified as a significant parameter 

that influences biological treatment, marine life, and the water's suitability for useful purposes 

based on the literature of Shahzad et al. (2015); Brehar et al. (2019). Increasing the temperature of 

wastewater results in changes in the species of fish that live in the water body, the solubility of 

oxygen in water (a decline in the saturation concentrations), the oxygen adsorption mechanism, 

the rate of activity in bacteria, and the rate of gases transported to and from water by Von Sperling 

et al. (2005).  

Temperature fluctuations in WWTP’s have received relatively less attention towards a whole 

plant-wide model and control viewpoint. The complexity of biochemical reactions necessitated 

less exposure to temperature regulation in WWTP processes. In general, WWTPs are operated 

under ambient temperatures of the environment. Variations in climatic conditions will largely 

influence effluent quality (EQI), operational cost, and overall productivity. In current times 

temperature effect is studied by using an up-flow micro aerobic sludge system. The outcome 

results show that at 17°C, the removal efficiency of nitrogen is improved results are reported in 

Meng et al. (2019). Alsawi (2020) noticed that kinetic parameters largely influence the 

productivity of WWTP’s and temperature changes influence the process performance. Nitrogen 

and carbon removal efficacy is improved at the lower temperatures of 10-15oC for diary effluent 

in the fixed-bed reactor system presented in the paper of Hamdani et al. (2020). 

Based on the literature survey the following important research gaps are identified: 

❖ There is no literature on the design of basic and advanced control strategies like PI, MPC, 

Fuzzy, and ammonia-based aeration control (ABAC) in the BSM1-P (ASM3bioP process) 

platform.  

❖ The application of PI in plant-wide BSM2-P (ASM2d Process) has been reported but the 

implementation of advanced control strategies like MPC and Fuzzy is not studied. 

❖ The effect of temperature is not studied based on the seasonal variations in the global 

context on the simulation platform. 
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2.4 Motivation 

Today, adopting new optimized techniques is a top incentive for maintaining legislative 

regulations of the pre-existing WWTP. Therefore, the optimized treatment techniques can include 

either redesigning the process structure or it can be enhanced with advanced process control 

strategies. All these lead to the regulation of the pollutant concentration of nitrogen (N), carbon 

(C), and phosphorus (P) in the effluent with a low operating cost. Although many implementations 

and developments have been published in the literature, a large number of WWTPs are still 

operated without upgradation due to a lack of proper understanding of modeling, control, and 

optimization tools to monitor the issues in meeting stringent WWTP effluent quality. One of the 

driving factors behind the increased use of advanced control strategies in wastewater treatment is 

plant complexity and the high number of unit operations. Control and monitoring of the entire 

WWTP are extremely difficult because various unit operations are dependent on chemical, 

biochemical, mechanical, and biological phenomena. Furthermore, a WWTP is characterized by 

regular changes in environmental conditions such as feed flow rate, temperature, influent nutrient 

concentrations, and toxic material concentration peaks, all of which may cause serious problems 

in biological wastewater treatment. These variations can have a major impact on process 

efficiency, leading to process failures in some cases. 

To meet stringent regulations: Using advanced control strategies to achieve the effluent 

consistency specified in regulations is advantageous. Additionally, the effluent concentration can 

be kept more constant, and operation faults disturbing the treatment can be reduced. The 

management of the whole plant becomes more complex as the number of unit operations increases, 

becoming, for example, plant-wide treatment processes. By using modern control applications, the 

effluent quality can be effectively regulated, allowing even stringent environmental regulations to 

be met. 

Cost minimization: According to Olsson et al. (2005) good plant management and proper usage 

of controllers have been shown to increase the ability of a nutrient removal WWTP by 10-30%. 

As the efficiency of the processes improves, the area needed for new WWTP’s decreases, resulting 

in lower construction costs. Furthermore, substantial cost savings in nutrient removal plants could 

be realized by reducing the amount of energy required for aeration and the use of different 

chemicals. 
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Temperature effect on WWTP: Temperature plays an important role in many WWTPs. In 

WWTP methods, the temperature is regarded as the most demanding factor, especially for 

biological WWTP. Thus, the temperature of wastewater is identified as a significant parameter 

that influences biological treatment, marine life, and the water's suitability for useful purposes. 

Stringent effluent limits must be followed while treating wastewater from the municipal and 

industrial sectors irrespective of the ambient and operating temperature. WWTP is facing many 

complications based on the active biomass for nitrogen removal (N) in treating industrial and 

municipal influents. The nitrification rate limits the extent of nitrogen. The nitrification rate is 

known to be the rate constraint step for N removal. Additionally, phosphorous removal based on 

uptake of acetate in the anaerobic section is crucial in influencing the amount of PAO's and thus 

the amount of P removed. In the literature, the effect of temperature on the kinetic processes in a 

typical WWTP is not extensively studied, and hence in this thesis, this is addressed. The lower 

temperature has less impact on hydrolysis and fermentation. Short-term temperature advancements 

influence stoichiometry and kinetic variables. While long-term temperature advancements impact 

biomass activity. The wastewater treatment process has evolved into a production process in which 

effluent quality control is critical. Because poor treatment process operation can result in 

significant production losses and environmental issues, enhancing optimum operation and 

advanced control techniques has the potential to successfully operate the wastewater treatment 

facility. 

2.5 Objectives 

1. To develop lower-level control strategies for WWTP 

2. To develop supervisory level control strategies for WWTP 

3. To develop integrated supervisory and override control strategies for WWTP 

4. To develop control strategies based on plant-wide WWTP models 

5. To evaluate different biological WWTP configurations 

6. To study the effect of temperature on WWTP,s. 

2.6 Organization of the thesis 

The organization of the thesis is as follows: 

Chapter 2 presents a literature overview on various aspects of BWTP of control schemes and the 

effect of temperature and motivation and objectives  



49 
 

Chapter 3 elucidates the design and implementation of lower-level Control Strategies for BSM1-

P. 

Chapter 4 describes the design and implementation of higher-level Control Strategies for BSM1-

P. 

Chapter 5 elucidates the design and implementation of integrated supervisory and override Control 

Strategies for BSM1-P. 

Chapter 6 describes the design and implementation of Control Strategies for BSM2-P 

Chapter 7 Evaluation of three different A2/O processes and the applications 

Chapter 8 provides the effect of temperature in BWTP and plant-wide level 

Chapter 9 provides a summary and conclusions.
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Chapter 3 

 

 

 

 

 

 

 

Design of Lower-level Control Strategies on BSM1-P 
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Chapter 3 

Design of lower-level control strategies on BSM1-P 

3.1 Lower-level control approach on BSM1-P 

This chapter introduces lower-level control for the BSM1-P plant, which is based on the default 

strategy. It considers two loops: controlling dissolved oxygen concentration in tank 7 (SO,7) by 

manipulating the oxygen mass transfer coefficient (KLa7), and controlling nitrate concentration in 

reactor 4 (SNO,4) by manipulating the internal recycle flow rate (Qa). This is accomplished in the 

current work by employing various controllers such as proportional-integral (PI), Model predictive 

controller (MPC), and Fuzzy logic controller (FLC). Table 3.1 represents the control approaches 

for chapter 3. 

Table 3.1 Control approaches for this chapter 

Label L1 

(Default PI) 

L2 

(MPC) 

L3 

(Fuzzy) 

Characteristics SNO and DO 

controller 

SNO and DO 

controller 

SNO and DO 

controller 

Measured Variable SNO in tank4 and 

SO in tank7 

SNO in tank4 and 

SO in tank7 

SNO in tank4 and 

SO in tank7 

Set-point/Value 1 gN/m3 and 2 gO2/m
3 1 gN/m3 and 2 g 

O2/m3 

1 gN/m3 and 2 g 

O2/m3 

Manipulated Variable Internal recycle 

(Qintr)  and mass transfer 

coefficient (KLa7) 

Qintr and KLa7 Qintr and KLa7 

Control Classification PI MPC Fuzzy 

 

3.1.1 Design and implementation of proportional integral controller 

The PI controllers can be framed using a wide variety of techniques accessible in the literature. In 

the present report, Skogestad internal model control (SIMC) method is used to design the PI 

controllers by Grimholt and Skogestad (2018). The way of approach is depicted in the flow 

diagram in Fig.3.1. 
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The first-order plus time order delay (FOPTD) model as prescribed in equation (3.1) is identified 

for the design of the PI controllers for each loop. 

 𝐺(𝑠) =
𝐾𝑃𝑒

−𝑑

𝑇𝑆+1
                                                                                                                                            (3.1) 

Where,  𝐾𝑃 denotes the process gain, d denotes the delay and T signifies the time constant of the 

system. For more clarification, the identification method and designed controllers are elucidated 

distinctly in Fig.3.2. Procedure for identification of different models used in this work 

identification of FOPTD/State space (SS) model for lower level is elaborated briefly in Appendix 

A. The lower-level identification Matlab file is reported in the Appendix from Figure A1. 

PI controllers are designed for the two control loops independently based on the corresponding 

linear model. These models for both the loops are developed based on the system identification 

technique from the open-loop data. The operating point (steady-state values) for the DO loop is 2 

g/m3 of DO when KLa is 252 day−1. Similarly, the operating point for SNO loops is 1 g/m3 of nitrate 

when the internal recycle flow is 34,500 m3/day. The reason to consider this operating point is as 

follows. In practical operation, the DO levels in the aeration reactor need to be maintained around 

2 gO/m3. Furthermore, if the nitrate consumption in the last pre-denitrification zone is not 

exceeding a certain value, excessive air consumption is not required. Similarly, the nitrate 

concentration in the anoxic reactor needs to be maintained in the interval 1–3 gN/m3 when an 

internal recirculation is present and 1 g N/m3 is preferable. For identification, a random input signal 

of 10% variance, having a mean value of 252 day−1, is given in the KLa and observed its effect on 

DO. Similarly, for SNO, a random signal with a mean value of 34,500 m3/day and a variance of 

10% is given in Qintr. The corresponding input and output data for both loops is given in Fig. 3.3 

for the control loop structure (CLS-2) which is shown in Fig. 3.4.  

 

- 
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+ 

Σ 

P        K, e (t) 
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dt 
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Figure 3.1 PI feedback control loop 
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Figure 3.2 System identification method and controller design 

 

Yes 

Select control (SNO,4 and SPO,7) and manipulating variables (Qintr, 

and KLa7 respectively) 

Stimulate the inputs (Qintr and KLa7) and collect input/output data 

Pre-process the data (avoid trends and means) 

Divide the data for modelling and validation purposes 

Obtain FOPTD 

model models 

Check for model 

fit 

Check 

for 

model fit 

Design PI controllers using 

SIMC method based on the 

obtained FOPTD models 

Implement the designed controllers on the 

WWTP and assess the performance 

No 
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From this data, the prediction error minimization (PEM) method is used to identify the models. 

Based on the models, using the SIMC method by Grimholt and Skogestad (2018), PI controllers 

are designed for each loop. For CS-2, (control of SNO in reactor 4 and DO in reactor 7), the 

respective obtained FOPTD model parameters are: KP = 0.0000699, Ti = 0.012214 and Td = 

0.0016771, KP = 0.013907, Ti = 0.001414 and Td = 0.0063646. Based these models, PI controllers 

are designed using SIMC method and are obtained as Kc = 52889.40, Ti = 0.012214 (SNO loop) and 

Kc = 7.987, Ti = 0.00141 (DO loop). A similar design is followed for the design of PI controllers 

for all control strategies. Similarly, seven other control strategies (CS) are developed by choosing 

different combinations (CS1 – CS8) of reactors 5, 6, and 7 for DO with reactors 3 and 4 for SNO 

and are given in Table  3.2. Appendix Figure A2 represents the BSM1-P Matlab/Simulink diagram 

with default controllers. 

 

  

 

                                        (A) 

 

                                       (B) 

 

Figure 3.3 Input and output data for (a) DO and (b) SNO 
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Table 3.2 Different control approaches for varying DO and SNO 

Type Control of DO in Control of SNO in 

CS1 Reactor 7 Reactor 3 

CS2 Reactor 7 Reactor 4 

CS3 Reactors 5, 6 & 7 - 

CS4 Reactor 6 & 7 - 

CS5 Reactor 6 & 7 Reactor 3 

CS6 Reactor 6 & 7 Reactor 4 

CS7 - Reactor 4 

CS8 Reactors 5, 6 & 7 Reactor 3 

 

The corresponding simulation results for the PI controller for dry weather influent are given in 

Table 3.3. For comparison, the plant layout without any control scheme (open-loop) is also 

considered and the corresponding results are also given in Table 3.3. The effluent quality is 

determined in terms of BOD, COD, P, NH4, TN, and TSS. The variations of these parameters 

cause a variation in the effluent quality index. The general standard limits on these parameters are 

given in Table 3.3. Further, the percentage violation of P, TN, and NH over a total range of 

operating time is also tabulated. Besides the effluent quality index, the results of OCI are also 

tabulated which is evaluated based on AE, PE, ME, and SP used in the process. Of all the 

QW 

(Q

SNO,4 

Qr 

Qintr 

Anoxic Anaerobic 

Qe 

Aerobic 

Qin 

PI 

Settler 

KLa7 

PI 

SO,7 

Figure 3.4 CS2-Configuration (Default control strategy) 



56 
 

parameters reported COD, BOD and TSS were below the standard limit whereas other parameters 

are not. Of all the combinations (CS1 – CS8), the pollutant considerations for CS1 and CS2 are 

better than CS3-CS8. In the former case, the OCI of  CS2 is far better than CS1. The OCI and EQI 

are also plotted and are shown in Fig.3.5. Generally, the plant performance is evaluated based on 

the lower value of EQI and OCI. Fig.3.5. elucidate that the OCI value is better for CS2 and EQI 

value is better for CS1. Since the driving parameter for the present approach is EQI and hence CS2 

is considered better than other combinations. Simulated studies are also conducted for both open-

loop and PI controllers under the storm and rain influent climate seasons and observed that PI 

controller provides improved tracking performance when compared to open loop. It is observed 

that OCI and EQI are better under closed-loop conditions when compared with open loops.   

Table 3.3 Comparision of different control apporaches from CS1 to CS8 

Pollutants Limit Open loop CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 

SNH 4 6.0 5.5 6.04 4.7 5.4 4.9 5.5 4.5 4.0 

TSS 35 13.6 13.7 13.6 13.5 13.6 13.7 13.6 14.6 13.6 

TN 18 16.5 17.9 16.1 15.8 16.1 17.9 15.9 15.7 17.9 

TP 2 3.5 3.4 3.5 3.8 3.6 3.5 3.6 3.9 3.8 

COD 125 44.7 44.8 44.7 44.74 44.7 44.8 44.7 46.5 44.8 

BOD 10 1.7 1.8 1.7 1.7 1.7 1.8 1.7 1.8 1.7 

IQI 
 

72152 72152 72152 72152 72152 72152 72152 72152 72152 

EQI 
 

13411 13169 13239 13415 13267 13250 13255 13518 13384 

SP 
 

2973 3017 2973 2938 2963 3004 296 2983 2977 

Performance plant assessment 

AE 
 

4336.6 4269.3 4255.7 4603.8 4378 4427.9 4371.5 4384 4703.2 

PE 
 

304.8 238.6 352.5 304.8 304.8 231.5 316.8 320.2 227.3 

ME 
 

480 480 480 480 480 480 480 330 480 

OCI 
 

18753 18830 18681 18854 18748 18920 18741 18898 19060 

Percentage of effluent violations (%) 

TP 
 

65.7 90.7 67.7 71.8 68.8 65.6 69 91.9 70.3 

TN 
 

38.0 43.6 26.3 27.6 33.3 56.8 27.9 15.6 56.6 

SNH 
 

66.2 46.5 66.3 60.1 63.8 60.4 64.5 55.8 50.4 
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Figure 3.5 Comparisons of different control approaches based on EQI and OCI 

3.1.2 Design and implementation of the model predictive controller (MPC) 

To control the processes that contain multiple variables and to achieve the desired objectives with 

constraints, MPC can be used to do so which is an advanced control strategy. According to 

Maciejowski et al. (2002) by using a plant-wide model, a control problem is defined as the desired 

objective function in MPC. The tuning parameters here in this process are prediction (p) and 

control (m) horizons, where (p > m). The basic process framework for the MPC is given in Fig.3.6. 

For the implementation of MPC, an objective function is used that is represented in the equation. 

(3.2):  

𝑗 = ∑||Γℎ(ℎ(𝐺 + 𝑙/𝐺) − 𝑟(𝐺 + 𝑙))||
2

⏟                    +∑||ΓΔ𝑗(Δ𝑗(𝐺 + 𝑙 − 1))||
2

⏟              

𝑚

𝐼=1

𝑝

𝑖=1

                             (3.2) 

The first term indicates the objective of minimization of error between predicted outputs and 

setpoint and the second term indicates the objective to find optimal values ∆𝑗 such that error is 

minimized. Where h(G + l/G) is the variable of the controller at future instant G + l, predicted by 

the model at present instant G and  ΓΔj and Γh refers to input and output rate weights respectively. 

The plant’s non-linear model is linearized around an operating point and using the prediction error 
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method (PEM), a linear state-space model is obtained. Thus the prediction model is used in the 

MPC.  From equation (3.3) is given as a state-space model for MPC: 

( ) ( )

( ) ( )
       (4.3)                                                                                    

kKg)(kb

kOgSh(k)1kh









+=

+=+

kPh
 

Where h (k) denotes the state vector and S, O, P, K denotes the matrices of the state space. 

 

 

 

 

 

 

 

 

 

The data of the output variables (SO7, SNO4) are obtained by making changes to manipulated 

variables (KLa7, Qintr) with a maximum variation of 10% around its operating point (252 𝑑−1 for 

KLa7 and 34500 m3/d for the internal recycle flow rate). This data set is used to derive the 3rd order 

state-space model by the PEM method. BSM1-P with lower-level MPC Matlab/Simulink file is 

reported in Appendix Fig. A3.  

The obtained linear state-space model is  

A=[
0.3926 −0.05 2.38e − 5
0.1014 0.3318 0.2935
0.011339 0.5385 0.536

]  B= [
1.005e − 05 −0.0002057 −7.092e − 05
1.775e − 06 −0.003394 −3.07e − 17
−3.381e − 06 0.002697 5.606e − 17

] 

C = [
3.319 −0.552 −0.2939
0.4232 −2.5 1.602

]           D =[
0 0 0   
0 0 0   

0
0
] 

The selected values to tune the MPC tunning parameters are Nc = 2 and Np = 10, ∆t (Sampling 

time) = 0.0001 days. The weights selected for DO7 control are 𝛤𝐺= 1, 𝛤∆𝑗 = 0.01, and for SNO4 

DO7 Aerobic Anoxic 

KLa7 Qe 

Settler 

Waste sludge (QW) 

(Qw)(Qw)(QW) 

Internal recycle (Qintr) 

External recycle (Qr) 

Anaerobic 

Qin 

Lower level 

MPC 

SNO,4 

Figure 3.6 MPC implementation for the WWTP 
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control are 𝛤𝐺 = 1, 𝛤∆𝑗 = 0.0001. The developed MPC is implemented and simulation studies are 

carried out for dry influent. The corresponding closed-loop performances are shown in Fig.3.7. 

For comparison, closed-loop results obtained with PI controllers (CS2 configuration) are also 

shown in Fig.3.7. The corresponding manipulated variables responses are also given. Results 

depict that MPC provides better tracking performance. Both PI and MPC provide improved 

performance when compared to open-loop operation. 

 

  

 

(A) 

 

(B) 

Figure 3.7  Tracking of DO7 and SNO4 with PI and MPC controllers for dry influent 

3.1.3 Design and implementation of the fuzzy logic controller (FLC) 

In all the processing stages of wastewater treatment, FLC’s have been used. It was also found that 

in various operating conditions, the FLC’s have very good performance. The direct control 

methods can have several failures depending on the process sensitivity, but the implementation of 

FLC’s in wastewater treatment plays a key role in recent trends.  The operation of the wastewater 

treatment systems can be influenced by several unpredictable factors, due to the intricate nature of 

wastewater treatment systems, classical techniques showed considerable difficulties when 
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attempting to control them automatically. Therefore, a soft computing method like FLC is 

practiced to be a good concept for controlling these time-varying, non-linear and ill-defined 

systems. It is observed from the literature that fuzzy control or law (FLC) is used to solve the most 

advanced control and processing units in WWTP. This is accomplished by using fuzzy rules that 

are identical in the design of human inference. In FLC based on IF-THEN statement rules for 

control signals. In FLC, using fuzzy rules is required which are identical in the design of human 

inference. Mamdani technique is chosen for the FI function and the centroid technique is chosen 

for the defuzzification method. A short description of FI and centroid is elucidated below. AS 

reported for the fuzzy laws: (I) if x, y is A1 and A2 then L1 is z, (II) if x, y is A2 and A2 then L2 

is z and the indication of k1 is x, m1 is y, while k1 and m1 are rigid inputs. Fig.4.10 depicts the 

evaluation of the grey region. In the approach of fuzzy law, the group was exemplifying between 

a FE and an FS. A class of membership is proposed if equal to 1 signifies the elemental x related 

to FS and it is equal to 0 implies that x doesn’t relate to the FS. In Fig.3.8, it was observed that the 

k1 slightly own to A1 and A2, and the category membership is defined and independently. The 

MS of m1 to FS, B1, and B2 were notified and accordingly. This is the way of crisp inputs to fuzzy 

inputs conversion which is termed fuzzification. Further, the resultant outcomes of MF are reached 

by rule (I). It is estimated by the equation. (3.4). 

𝜃𝑖(𝑐) = 𝑚𝑖𝑛{𝜃(𝑚1 𝐴1),𝜃(𝑚1 𝐴1)}                                  (3.4) 

This MF elucidates the importance of selecting the FS (L1). The resultant outcomes for MF were 

achieved by rule (II) for the present situation (k1 is x is and m1 is y) is regarded to rules(I) and (II) 

accordingly. Therefore, the resultant decision was combined with the MF’s, as depicted in Fig.3.8. 

By evaluating the gray region with centroid, the fuzzy and the defuzzify output are necessary. The 

defuzzified output (C1) represented in Fig.3.8 is computed by equation. (3.5): 

𝐶1 =
∑ 𝑢𝑖∫ 𝜃(𝑖)𝑖

∑ ∫𝜃(𝑖)
𝑖

                                                                                                      (3.5) 

Here ui represents the center of the MF, the outcome of rule(I), and shoes the region under the 

membership operation. Where refers to the centroid technique to estimate C1. The second loop 

and third loop are similar to CS(I). For classic FLC, the control model is the way of the human 

knowledge base. FLC consists of three sections. In the primary section, MF’s are fuzzified with 

input values to get Fuzzification. After, by using predetermined rules, fuzzy inputs and outputs are 
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connected then the outputs are determined by using the inference mechanism. The third section is 

to initiate strict output values in a computed way and is called defuzzification. 

 

Figure 3.8 Mamdani fuzzy inference 

The membership functions of DO for output and input functions are depicted in Fig.3.9. The 

membership functions of input and output data of DO are depicted in Fig. 3.9 (A), (B), and (C). 

FLC with applications of BSM1-P with three mechanisms blocks is depicted in Fig.3.10. Here in 

the FLC, the input variables are considered as the feedback error ‘E’ and high-order error ‘ED’. 

Consequently, the output variables are considered as manipulating variables in the control 

configuration. Hence, for FLC for the design of the DO loop the input variable is selected as the 

mass transfer coefficient (KLa), and for the design of the SNO loop; the input variable is selected as 

the internal recycle (Qintr). On coupling, both these outputs and input, the membership function 

(MF) has to be selected. In this study, Mamdani fuzzy interface method is chosen and MF’s are 

selected as a triangular shape functioning. Based on the simulation data, the usage of a rules-based 

system is obtained before developing the FLC framework. In the last aeration tank, the ‘E’ input 

variable scale is maintained from -30 to 30 g/m3 and the ‘ED’ input variable scale is maintained 

from -25 to 25 g/m3. The output variable scale of KLa in the last reactor is 200 to 280 d-1. Further, 

in the second anoxic tank, the input variable scale of ‘E’ is maintained from -30 to 30 g/m3 and 

‘ED’ of the input variable scale is maintained from -25 to 25 g/m3.  
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Table 3.4 Selection of DO rules for FLC                         Table 3.5 Selection of nitrate (SNO) rules 

 

 

 

(A)  MF of error of tank 7 for DO 

 

(B) MF of differentiation of error of tank 7 for DO 

 NL NS Z PS PL 

NL PL PL PL PS Z 

NS PS PS PS Z NS 

Z PS PS Z NS NS 

PS PS Z NS NS NS 

PL NS NL NL NL NL 

 NL NI NS Z PS PI PL 

NL PL PL PL PL PI Z Z 

NI PL PL PL PL PI Z Z 

NS PI PI PI PI Z NS NS 

Z PI PI PS Z NS NI NI 

PS PS PS Z NI NI NI NI 

PI Z Z NI NL NL NL NL 

PL Z Z NI NL NL NL NL 
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(C)  MF of KLa7 in tnak7 

Figure 3.9 MF’s of input and output data of DO in tank7 by using KLa7 

 

 

Figure 3.10 Fuzzy logic control of BSM1-P platform 
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The scale of the output variable of Qintr is 20100 to 45000 d-1. A total of seven MF are chosen for 

each individual and NL, NI, NS, Z, PS, PI, and PL where N, Z, P, L, I, and S are negative, zero, 

positive, big, medium, and small. Similarly, MF’s of NO is also selected. The coupling of DO and 

SNO fuzzy logic consists of 74 rules are implemented by the usage of IF-THEN statement 

conditions. The Fuzzy rules of both DO and SNO are elucidated in Tables 3.4 and 3.5. BSM1-P 

with lower-level fuzzy logic controller (FLC) Matlab/Simulink file is reported in Appendix Fig. 

A4.  

3.2 Simulation results and comparison 

The comparative results using PI, MPC, and Fuzzy control strategies are discussed in this section. 

However, the major interest in this paper is focused to understand the effluent concentrations TP, 

TN, and SNH. The comparative results of these three effluent concentrations are plotted and are 

shown in Fig.3.11 to 3.13. Major intrigue is not shown to compare the results of COD, BOD5, and 

TSS using different control strategies as the results obtained are quite similar and are within the 

limits as given in Table 3.6. The applied control strategies improved plant performance. Fig.3.11 

to 3.13 show that amongst all the control strategies implemented, the results obtained using MPC 

are much favorable for both ammonia and nitrogen removal. MPC gives efficient removal of N 

and ammonia when compared to PI and FLC. Note that all comparisons are carried out based on 

the average concentrations of individual effluent components. Accordingly, effluent quality and 

global plant performance which includes energy estimations and overall cost are determined. FLC, 

when compared to open-loop, provides better performance. Whereas in MPC, both OCI and EQI 

are decreased compared to open-loop which means better control is achieved. The implementation 

of fuzzy logic controllers is more advantageous for the P removal. MPC provided good 

improvement in OCI but the improvement is not significant for EQI when compared with fuzzy 

control and PI control.  
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Figure 3.11 TP concentration with open-loop, PI, MPC, and fuzzy controllers 

 

Figure 3.12 TN concentration with open loop, PI, MPC, and fuzzy controllers 

 

Figure 3.13 SNH concentration with open loop, PI, MPC, and fuzzy controllers 
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Table 3.6 Average effluent concentrations of PI, MPC, and fuzzy 

Average effluent concentrations 

Components Open-loop PI Fuzzy MPC 

SNH 6.0845 6.0535 6.3318 5.6954 

TSS 13.681 13.6701 13.73 13.685 

TN 16.5053 16.0053 16.7901 15.764 

TP 3.588 3.5498 3.4921 3.6465 

COD 44.7533 44.7371 44.7845 44.7893 

BOD 1.782 1.7852 1.7975 1.789 

IQI 72152.229 72152.229 72152.229 72152.229 

EQI 13411.043 13239.202 13381.956 13243.485 

Performance plant assessment 

SP 2973.4521 2969.9099 2989.8759 2956.6811 

AE 4336.6933 4254.6108 4264.4945 4262.6957 

PE 304.818 331.4486 295.1637 329.3818 

ME 480 480 480 480 

OCI 18753.284 18681.109 18739.131 18619.642 

 

3.3 Summary 

Different control frameworks from CLS1 to CLS8 in the BSM1-P plant layout under the 

ASM3bioP framework are implemented. In comparison, it is observed that the effluent pollutant 

considerations for CLS1 and CLS2 are better than CLS3–CLS8. In the former case, the operational 

cost index of CLS2 is far better than CLS1. Further, the obtained EQI and OCI values using the PI 

controllers are also applied to rain and storm data are compared with that of open-loop data. 

Additionally, in this study, PI, fuzzy, and MPC controls are implemented and the performances 

are compared to monitor DO and SNO tracking. The simulation outcomes signify that three of them 

can attain good performance and of three control strategies. MPC provided better OCI and EQII 

results. For the removal of phosphorus, the application of a fuzzy controller showed better results 

than PI and MPC but with high OCI. PI, MPC, and fuzzy controllers are compared with the open-
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loop. The Percentage of improvement on EQI for PI - 1.8%, MPC - 1.3%, and Fuzzy - 0.3% and 

the Percentage of reduced OCI are PI - 0.3, MPC - 0.7%, and Fuzzy - 0.07. 
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Chapter 4 

                       Design of supervisory-level control strategies on BSM1-P 

4.1 Combination of both lower level and higher-level control strategies on BSM1-P 

The importance of hierarchical level control is discussed in this section. The controllers in the 

lower level control section were tasked with maintaining the dissolved oxygen set-point. The 

higher-level controller's job is to manipulate the DO controller's set-points based on the ammonia 

concentration in the tank. Various processes in ASM3bioP result in the biological treatment of SNH 

and SNO. Here, the default control (PI) strategy is considered a lower-level control. This consists 

of two PI controllers as given in Fig.3.4, in which DO7 is controlled by manipulating KLa7 in the 

seventh reactor. The desired set-point value for DO7 is 2 mg/l. The other control loop is responsible 

for maintaining SNO4 at 1 mgN/l by regulating Qinr. The main contribution of the present work is 

the development of a two-level hierarchical strategy with a supervisory layer as shown in Fig. 4.1. 

The task in the higher-level control is to determine DO7 values (setpoints for the lower level) by 

controlling SNH7 in the seventh reactor. These DO7 values are sent as set points to the lower DO7 

loop. Thus, the higher-level control loop helps to find the setpoints to the lower loop. As far as the 

lower-level controller is considered, SNO4 and DO7 are controlled by manipulating Qintr and KLa7. 

If SNH7 is more, higher DO is essential for better nitrification. Nitrification oxidizes ammonium to 

nitrate and denitrification reduces nitrate to nitrogen gas. In the aeration tank, if DO is too high, 

ammonia will decrease but nitrate will increase. On the other hand, if the DO is too low, ammonia 

will increase and the nitrate available for denitrification will decrease. Moreover, the level of 

aeration will impact energy usage.  

Thus, the DO setpoint must be properly selected. At a lower level, default two PI and MPC 

controllers are used and at a higher level, MPC and fuzzy controllers are designed. The default DO 

set-point of 2 can be modified according to the needs of the WWTP. It can be lower if the 

ammonium load is lower and higher if the ammonium load is higher. Moreover, it should be always 

maintained at the lowest value that is useful to maintain the concentration below the discharge 

limits, to have the lowest operational costs. Table 4.1 represents the control approach for chapter 

4. The identification of the state-space model for higher-level is reported in Appendix B. 
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Table 4.1 Designed control approaches 

Label L1 

(Default PI) 

L2 

(Lower 

level MPC) 

L3 

(Default 

PI+ Higher 

level MPC) 

L4 

(Lower level 

MPC+ 

Higher level 

MPC) 

L5 

(Default PI+ 

Higher level 

MPC) 

L6 

(Lower 

level MPC+ 

Higher level 

MPC) 

Characteristics SNO and DO 

controller 

SNO and DO 

controller 

SNO, DO, 

and SNH 

controller 

SNO, DO, 

and SNH 

controller 

SNO, DO, 

and SNH 

controller 

SNO, DO, 

and SNH 

controller 

Measured 

Variable 

SNO in tank4 

and 

SO in tank7 

SNO in 

tank4 and 

SO in tank7 

SNO in 

tank4 

DO and SNH 

in tank7 

SNO in tank4 

DO and SNH 

in tank7 

SNO in tank4 

DO and SNH 

in tank7 

SNO in tank4 

DO and SNH 

in tank7 

Set-

point/Value 

1 gN/m3 and 

2 g O2/m
3 

1 gN/m3 and 

2 g O2/m
3 

1 gN/m3, 

DO set-

point is 

determined 

by higher 

level 

1 gN/m3, 

DO set-

point is 

determined 

by higher 

level 

1 gN/m3, 

DO set-

point is 

determined 

by higher 

level 

1 gN/m3, 

DO set-

point is 

determined 

by higher 

level 

Manipulated 

Variable 

Internal 

recycle 

(Qintr)  and 

mass transfer 

coefficient 

(KLa7) 

Qintr and 

KLa7 

Qintr , KLa7 

and 

Set-point 

for DO 

controller 

 

Qintr , KLa7 

and 

Set-point for 

DO 

controller 

 

Qintr , KLa7 

and 

Set-point 

for DO 

controller 

 

Qintr , KLa7 

and 

Set-point 

for DO 

controller 

 

Control 

Classification 

PI MPC PI and MPC MPC and 

MPC 

PI and 

Fuzzy 

MPC and 

Fuzzy 
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4.1.1 Lower level PI and higher-level MPC control scheme  

Open-loop data is generated for both DO and SNO loops and accordingly control relevant models 

are developed. The corresponding control layout is shown in Fig.4.4. The mass transfer coefficient 

(KLa7) is a manipulating variable for the DO control. For a value of 252 d-1 the DO concentration 

in the seventh reactor is observed as 2 gO2/m
3. A random input signal is given in KLa by 

considering a variation of ±10% in the nominal value of 252 d-1 and the corresponding output data 

(DO) is collected in the seventh reactor. The internal recycle (Qintr) is a manipulating variable for 

SNO control. For a value of 34500 m3/d, the SNO concentration in the fourth reactor is observed as 

1 gN/m3. A similar kind of approach is also carried out to monitor the value of SNO by providing a 

random signal to Qintr with a variation of 10%. Matlab/Simulink file for Higher Level Identification 

is depicted in Appendix Fig. B1. Now the output data of SNO and DO is used to develop FOPTD 

models using the prediction error minimization method. From these models, by using the 

Skogested internal model control method (SIMC) by Grimholt and Skogestad (2018), each loop is 

designed with PI controllers. PI-MPC Control Configuration in BSM1-P in Fig.4.1. In order to 

develop the linear model for a higher level, SNH7 has been identified by varying DO7, with a 

variation of ±10% whose steady-state value is 3 gN/m3 in the seventh reactor. The corresponding 

ammonia data is collected whose steady-state value is 3.45 gN/m3 in the last reactor. Therefore, 

the data set is used to drive the third-order state-space model using the PEM technique. For MPC, 

in higher-level m=2 and p=10, ∆t is 0.0001 days are selected. The following weights have been 

used for DO7 by manipulating ammonia in reactor seven. 𝛤𝐺= 1, 𝛤∆𝑗= 0.01. A third-order state-

space model is achieved by manipulating DO to monitor ammonia with the prediction error 

method: 

A=[
0.8594 −0.2136 0.1737
−0.1037 0.7195 −0.0285
−0.05527 −0.2764 0.36416

]  B=[
−0.03123
−0.1148
−0.2162

] 

C=[2.249 −0.1324 0.1145] D=[0] 

Simulation studies are carried out with the corresponding controllers. Fig.4.2 (a) depicts the 

variable DO set-point assigned by a higher-level and its tracking by the lower-level controller for 

the data. Fig.4.2(b) depicts the set-point tracking with default PI (DO7 and SNO4) controllers. If 

ammonia is high, then it needs high DO for better nitrification. If ammonia is low, it requires less 

DO which results in less SNO.  The DO consumption in the seventh tank impacts the SNO level in 

the fourth tank as depicted in Fig.4.2 (b). In comparison, the performance of MPC-based control 
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is not superior to that of the default PI controller for set-point tracking of SNO. Similar results are 

obtained for all the remaining cases as well while tracking the set-point of SNO. PI-MPC 

configuration on BSM1-P of Matlab/Simulink file is depicted in Appendix Fig.B2. 
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Figure 4.1 PI-MPC control configuration in BSM1-P 



73 
 

 

(B) 

Figure 4.2 (A) DO tracking in the seventh reactor (B) Nitrate tracking in the fourth reactor 

4.1.2 Lower level MPC and higher level MPC control scheme 

Here, MPC was developed for a lower level as well as for a higher-level loop. For the lower level, 

system identification is carried out for obtaining the data of DO7 and SNO4 by manipulating KLa7 

and Qintr by considering a variation of 10% in the operating point which 252𝑑−1 for KLa7 and 

34500m3/d for the internal recycle flow rate with maintaining the steady-state of DO7 is 2 gO2/m
3 

in the last reactor and SNO4 is 1 gN/m3 in the fourth reactor. The corresponding control layout is 

shown in Fig.4.3. MPC-MPC Control Configuration in BSM1-P in Fig.4.3. In the higher level, 

SNH7 was observed by varying DO7. The corresponding ammonia data is recorded. The tuning 

parameters for MPC for the lower-level model are m=2 and p=10 and ∆t is 0.0001 days. For DO7 

control, 𝛤𝐺=1 and 𝛤∆𝑗= 0.01 are considered and for SNO control, 𝛤𝐺 = 1 and 𝛤∆𝑗= 0.0001 are used. 

The tuning parameters for MPC for the higher-level model are m=2 and p=10. ∆t is 0.0001 days. 

In the higher level, for DO7 loop 𝛤𝐺=1 and 𝛤∆𝑗=0.01 are selected. The identified state-space model 

is given below for both the lower-level and higher-level loops.  

MPC lower-level state-space model : 

A= [
0.3926 −0.05 2.38e − 5
0.1014 0.3318 0.2935
0.011339 0.5385 0.536

]  B=[
1.005e − 05 −0.0002057 −7.092e − 05
1.775e − 06 −0.003394 −3.07e − 17
−3.381e − 06 0.002697 5.606e − 17

] 

C= [
3.319 −0.552 −0.2939
0.4232 −2.5 1.602

]           D= [
0 0 0
0 0 0

     0
     0

] 
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MPC higher-level state-space model : 

A= [
0.9119 0.1414 0.01841
0.1625 0.7227 0.0923
0.05881 −0.1619 0.9543

]  B= [
−0.05254
0.08427
0.05361

] 

C= [1.728 −0.01105 0.0073]        D= [0] 

Fig.4.4 (a) depicts the computation of DO set-point by a higher-level controller and its tracking by 

the lower-level controller for dry seasonal conditions. It is also noticed that average values for all 

the effluent variables are almost under the limit except for ammonia and phosphorus as shown in 

Table 3. Fig.4.4 (b) depicts the set-point tracking of SNO in the fourth reactor and DO with default 

PI controllers. MPC-MPC configuration on BSM1-P of Matlab/Simulink file is depicted in 

Appendix Fig.B3. 
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Figure 4.3 MPC-MPC control configuration in BSM1-P 
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4.1.3 Lower level PI and higher level fuzzy control scheme 

Lower Level (default PI) is similar to control scheme 1. In the fuzzy logic controller at a 

hierarchical level, the DO set-point is manipulated in the seventh reactor to reduce the effluent 

violations in ammonia in reactor 7. The deciding rules for higher level fuzzy controller logic is reported 

in the Appendix B. The selected range studied for the membership functions (MF) of DO and 

ammonia in reactor 7 is 0-5 mgO2/l, and 0-20 mgN/l respectively. Gaussian-shaped-bell curve is 

selected as an MF for two variables and they are partitioned in three linguistic rules individually, 

“low, “medium” and “high”. For controlling the DO loop, the three rules are described below: 

 

(A) 

 

(B) 

Figure 4.4 (A) DO tracking in the seventh reactor (B) Nitrate tracking in the fourth reactor 
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❖ IF Ammonia level is “low” then DO set-point is “low” 

❖ IF Ammonia level is “medium” then DO set-point is “medium” 

❖ IF Ammonia level is “high” then DO set-point is “high” 

On a combination of these rules, a lower and higher-level control framework is made. The MF for 

output and input for the PI-Fuzzy depicts in Figs.4.5 (A) and 4.5 (B). In this case, for the lower 

level, a default PI approach is used and FLC configurations are designed at a higher level. For 

proper oxidation of ammonia to nitrate (nitrification) in the seventh reactor, sufficient care needs 

to be taken to maintain the dissolved oxygen concentration in such a way that it should not be 

decreased before achieving proper nitrification. BSM1-P with PI-Fuzzy Configuration of 

Matlab/Simulink file is depicted in Appendix Fig.B4. 

 

                                                                 (A) 

 

                                                                  (B) 

Figure 4.5 (A) MF of output for DO concentration (PI-Fuzzy) (B) MF of input for ammonia 

concentration (PI-Fuzzy). 
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Based on this requirement, membership functions of the two process variables are developed in 

fuzzy logic control. The oxygen concentrations in the range of 1–4 mgO2/l are considered normal 

and thus acquire a complete degree of belongingness to the fuzzy set as the medium. Above 4 

mgO2/l concentration, high values are considered in the fuzzy set which is a straight line at 1 as 

shown in Fig.4.5(A). The values of ammonia concentration in the range of 0-1 mgN/l are 

considered as low and in the range of 2-4 mgN/l are considered as the medium. Accordingly, the 

fuzzy sets are defined and shown in Fig.4.5 (A and B). This kind of approach clearly signifies the 

degree of belongingness of a variable to the fuzzy set. The principal goal of executing this strategy 

is to alter the DO set-point in tank7 based on ammonia concentration. While the HL control (fuzzy) 

 

(A) 

 

(B) 

Figure 4.6 (A) DO tracking in the seventh reactor (B) Nitrate tracking in the fourth reactor 
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is tested for the DO loop only. The set-point of the SNO loop remains constant by HL. But both DO 

and SNO loops are associated because of interaction effects between them. Fig.4.6(A), DO tracking 

in the seventh reactor (B) Nitrate tracking in the fourth reactor are depicted. MPC-MPC Control. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 PI-Fuzzy control configuration in BSM1-P 

4.1.4 Lower Level MPC and Higher Level Fuzzy Control Scheme 
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Figure 4.7 MPC-Fuzzy control configuration in BSM1-P 
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Lower level MPC is similar to control scheme 2 and hierarchical Fuzzy is similar to control scheme 

3. MPC-Fuzzy Control Configuration in BSM1-P is depicted in Fig.4.8. Fig.4.9 (A) depicts the 

DO7 set-point tracking response and Fig.4.9 (B) depicts the nitrate tracking for this configuration 

in comparison with default PI for dry weather. The results depict there is an improvement in 

tracking response even in the presence of disturbances. BSM1-P with MPC-Fuzzy Configuration 

of Matlab/Simulink file is depicted in Appendix Fig.B5. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 (A) DO tracking in the seventh reactor (B) Nitrate tracking in the fourth reactor 
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4.2 Simulation Results and Comparision 

The corresponding average concentrations of the effluent with all hierarchical control approaches 

and performance indices for dry influent are given in Table 4.2. It was observed that the value of 

EQI is improved by 5.7% on comparing the default strategy in the case of dry weather conditions. 

It can be observed that there is a trade-off between OCI and EQI for all the control strategies 

chosen. Whereas in the case of the dry season, a considerable change in the value of EQI is 

observed in comparison to the default strategy. A significant change is observed in the value of 

OCI in all the control strategies, a trade-off is maintained between EQI, OCI, and improvement as 

well. In the dry season, it is observed that the percentage of violation values of PI-MPC and MPC- 

MPC when compared with default PI are greater in the case of TP and is lesser in the case of TN 

and ammonia. MPC-MPC shows better effluent quality and slightly high operating costs. 

Similarly, it was observed that the percentage of violations for PI-Fuzzy and MPC-Fuzzy are 

higher in the case of SNH4 and TP when compared with default PI and is less in the case of TN, as 

shown in Fig.4.10. From Table 4.2, it was observed that the average effluent concentrations attain 

stringent regulations except for ammonia and phosphorus. MPC-MPC shows better-optimized 

ammonia removal, PI-MPC shows optimized phosphorus removal. It can be noticed that the OCI 

increases and EQI decrease for all the control strategies chosen from Fig.4.11. Sludge production 

is slightly high in PI-MPC and low in MPC-MPC. The effluent concentrations are compared for 

all control strategies and are depicted in Fig.4.12 (A), (B), and (C). Similarly, in the rainy season 

and stormy season, the percentage of violation values of all hierarchical control strategies is less 

than the default PI values in the case of SNH, TN, and TP.  

Controller implementation for dry weather condition 

On comparing with default PI, PI-MPC showed an improved EQI of 3.8% with a 1.3% increase in 

OCI, and with MPC-MPC EQI improved by 5.7% with an increase of 1.4% in OCI. On the other 

hand, PI-Fuzzy and MPC-Fuzzy showed an improvement of 1.9%, 5.2% in EQI with an increased 

OCI of 0.4% and 1.3% respectively. For Dry season data, the MPC-MPC controller showed the 

optimal results when compared with PI-Fuzzy, PI-MPC, and MPC-Fuzzy strategies. 

Controller implementation for rainy weather conditions 

On comparing with default PI, PI-MPC showed an improved EQI of 8% with 1.3% of increased 

OCI, and with MPC-MPC EQI improved by 6.1% with an increase of 4.3% in OCI. On the other 

hand, PI-Fuzzy and MPC-Fuzzy showed an improvement of 4.4%, 4.8% in EQI with an increased 
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OCI of 0.4% and 1%. For rainy season data, the PI-MPC controller showed the optimal results 

when compared with all other control approaches used in the present study. Appendix Table B1 is 

tabulated for the comparison of PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy schemes for the 

rain season. 

Controller implementation for storm weather condition 

On comparing with default PI, PI-MPC showed an improved EQI of 9.6%, increased OCI of 1.6%. 

MPC-MPC resulted in an improvement of 4.3% in EQI and 1.3% in OCI. On the other hand, the 

other two control strategies, PI-Fuzzy and MPC-Fuzzy showed an improvement of 5.9%, 9.8% in 

EQI, and 1.5%, 1.7% in OCI. For storm season data, the PI-Fuzzy controller showed optimal 

results when compared to other control approaches. Appendix Table B2 is tabulated for the 

comparison of PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy schemes for storm season. 

Table 4.2 Compared results of PI, PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy  

 

Average effluent 

concentration 

 

Default PI 

 

PI-MPC 

 

MPC-MPC 

 

PI-Fuzzy 

 

MPC-Fuzzy 

Components Limit ` 

SNH 4 6.05 5.31 5.04 5.48 5.38 

TSS 30 13.67 13.72 13.78 13.72 13.77 

TN 18 16.005 15.35 15.45 15.53 15.50 

TP 2 3.54 3.38 3.58 3.54 3.60 

COD 100 44.73 44.79 44.88 44.81 44.87 

BOD5 10 1.78 1.79 1.80 1.799 1.80 

Performance plant assessment 

IQI 72152 72152 72152 72152 72152 

EQI 13239 12741 12484 12978 12548 

SP 2969 2983 2953 2972 2956 

AE 4254 4431 4544 4355 4528 

PE 331 338 333 330 332 

ME 480 495 495 482 489 

OCI 18681 18945 18949 18769 18934 
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Figure 4.9 Comparison of Percentage of violations for all control strategies 

 

Figure 4.10  Comparison of EQI and OCI for all control strategies 
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(A) 

 

(B) 

 

(C) 

Figure 4.11 PI, PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy controllers for (A) Ammonia 

(B) TP (C) TN concentration in the effluent 
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4.3 Summary  

In chapter 3 used a BSM1-P simulation platform with ASM3bioP as a bioprocess and implemented 

PI, MPC, and Fuzzy based controllers. They found that operational cost is decreased with 

improved effluent quality. These control designs show improved effluent quality of 2%, 1.4% and 

0.4% with decreased operational cost of 0.3%, 0.7% and 0.07% respectively. All these control 

approaches are focused only on DO and SNO. In the present work, an additional ammonia controller 

is added to the DO loop. By using four different control combinations PI-MPC, MPC-MPC, PI-

Fuzzy, and MPC-Fuzzy, the performance is compared with default PI. In this study, dry, rain, and 

storm season conditions are used. MPC-MPC, PI-MPC, and PI-MPC showed improved EQI of 

5.7%, 8%, and 9.6% with an increase of 1.4%, 1.3%, and 1.6% in OCI.  

Ammonia removal is improved by 18% with the MPC-MPC control framework and provided 

better effluent quality. Aeration energy is high in all hierarchical control applications with respect 

to mixing energy when compared to PI. MPC in the higher level provides better tracking 

performance and is favorable for both TN and total ammonia removal. MPC shows efficient 

removal of ammonia and TN when compared to FLC and PI. Also, the tracking for SNO and DO7 

with PI controllers is slightly better. However, the percentage of violations for ammonia and total 

phosphorus is less when compared to default PI controllers. This study helps to select appropriate 

control strategies and provides guidelines for the operators in wastewater utilities and serves as a 

decision support tool. 
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Chapter 5 

Design of integrated supervisory and override control strategies on BSM1 

5.1 Supervisory layer with three DO loops with override control strategies on BSM1-P 

(SOPCA control scheme) 

There will be a limitation for the removal of biological phosphorus when the carbon source is more 

complex than volatile fatty acids (VFA) and when the nitrate enters the anaerobic phase. The 

nitrate detrimental effect was not to inhibit the phosphorous release process but to prevent the 

fermentation process for VFA production (Guerrero et al., 2011). Hence, the objective is to control 

P (P in tank7) below its effluent limit. For achieving this, a supervisory control layer is used which 

requires the measurement of P in the 7th reactor. As the total P limit is 2 gPm-3, a set point of SPO,7 

is selected, and based on the P measurement, the supervisory layer computes the nitrate set point 

to the intermediate override control layer as shown in Fig.5.1. The setpoint considered for SPO is 

1.68 gPm-3. The reason for selecting this value is based on the legal upper limit for effluent 

phosphorous which is 2 gPm-3. By maintaining the set point of effluent phosphorous below this 

value, it is expected that the effluent phosphorous will follow the upper limit without any 

violations. However, SPO is influenced by the amount of nitrate levels in the anoxic reactors. 

Hence, the nitrate set point is computed at the supervisory layer by keeping a pre-determined set 

point for SPO. If the computed nitrate setpoint is greater than 16 g N m-3, the nitrate set point to the 

lower level loop needs to be 1 gNm-3. On the other side, if the computed nitrate values are less 

than 16 gNm-3, the corresponding setpoint to the next control layer would be 0.1-1 gNm-3. In the 

anoxic section, when P increases, the setpoint of nitrate in the anoxic section would be decreased 

by optimizing the Qintr. The control approach is rooted in a cascade implementation with a pair of 

PI feedback controllers and integrated with override control to inhibit the overflow of SNO (Nitrate) 

in the discharge. For a clear understanding, the proposed control loops are: 

❖ Supervisory loop: In tank7, orthophosphates (SPO,7) is regulated by manipulating the set 

point of SNO. The P set point selected in tank 7 is based on SNO,7. 

❖ Intermediate (Override) loop: In tank7, if the nitrate concentration is above 16 gN/m3, 

change the set point to 1 gN/m3. If the nitrate concentration is less than 16 gN/m3, maintain 

the set point between 0.1 - 1 gN/m3. 

❖ Lower level loop: In tank4, control the SNO,4 by manipulating the Qintr. 
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The override control setpoint of SNO,7 as 16 g N m-3 in tank7 is selected based on the concentration 

of SPO,7 limit value. If nitrate concentration increases, the orthophosphates also increase. Here, in 

this case, 16 gNm-3 is an optimal setpoint for both nitrate and orthophosphate. The SOPCA 

approach is useful to remove P by adjusting the nitrate inlet into the anoxic tank. Due to this, the 

anaerobic fraction in the plant will increase. If the anoxic tank volume decrease results in an 

increase of TN in the effluent, this leads to denitrification of nitrate. The upper limit for TN is 18 

gNm-3. Thus, an override control loop is selected: here the cascade loop is disabled while the nitrate 

composition in the discharge is above 16 gNm-3. This value was considered for being a warning 

range less than 18 gNm-3, the legal discharge limit for TN. In this framework, the secondary loop 

is operative with a nitrate set point of 1 gNm-3. Additionally, the last three (tank 5, 6, and 7) aerobic 

KLa5 KLa6 Qe 

Supervisory 

control system 

 SNO,7 

 Override control 

 

 
Set point SNO,7 1mg N/l 

New Set point SNO,7  

0.1-1 mg N/l 

 

If SNO,7 >16 

 mg N/l 

If SNO,7 <16 

 mg N /l 

Set point 

SPO 

Lower level control loop 

 Qin 

Qw 
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PI 

Qintr 

Anaerobic tanks Anoxic tanks Aerobic tanks 

 + 

- 

SPO,7 

PI/Fuzzy 

 Control 

SNO,4 SO,7 SO,5 SO,6 

KLa7 

Internal recycle 

Figure 5.1 SOPCA control approach for P removal
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reactors are tested for different SO (2, 3, 1, 1.5, and 2.5) setpoints by manipulating the 

corresponding oxygen mass transfer coefficients (KLa5, KLa6, and KLa7). In the next sections, the 

supervisory layer is explained in detail. 

5.1.1 Supervisory layer: Use of fuzzy logic control scheme 

Many chemical and biological processes are controlled using fuzzy logic control (FLC). This is 

achieved by employing fuzzy rules that are identical to those used in human inference design. FLC 

is used on the WWTP in this study. FLC is based on IF-THEN statement rules for the computation 

of the control signals.  

In tank7, P is regulated by manipulating the set point of SNO,4 which is passed as set-point to tank4. 

Usually, the input variables considered are the feedback error (E) and the differentiation of 

feedback error as (ED). These two variables are selected as inputs for the FLC. Accordingly, output 

variables are considered as manipulating variables (W) which is SNO,7. To combine the output and 

input variables, the membership function (MF) should be selected. A triangular function is selected 

as shown in Fig.5.2 (A-C).  FLC consists of three sections as shown in Fig.5.3. In the primary 

section, MF’s are fuzzified with input values to get fuzzification as given in Table 5.1. By using 

the predetermined rules, fuzzy inputs and outputs are connected as shown in Table 5.1 and then 

the outputs are determined by using the inference mechanism. For the third section, defuzzification 

takes place to compute the output values. A total of 9 rules are followed and are given below. 

Mamdani technique is chosen for the fuzzy interface function and the centroid technique is chosen 

for the defuzzification.
 
BSM1-P with SOPCA (PI-Fuzzy) Configurations file of Matlab/Simulink 

is depicted in the Appendix of Fig.C1. 

                             Ru1: If (error is P) and (differror is R) then (nitrate is B) 

                             Ru2: If (error is P) and (differror is C) then (nitrate is B) 

                             Ru3: If (error is P) and (differror is S) then  (nitrate is E) 

                             Ru4: If (error is O) and (differror is R) then (nitrate is A) 

                             Ru5: If (error is O) and (differror is C) then (nitrate is A) 

                             Ru6: If (error is O) and (differror is S) then (nitrate is A) 

                             Ru7: If (error is Q) and (differror is R) then (nitrate is B) 

                             Ru8: If (error is Q) and (differror is C) then (nitrate is B) 

                             Ru9: If (error is Q) and (differror is S) then (nitrate is B) 
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Figure 5.2 Membership functions for fuzzy rules 

 

(A) Membership of E of tank 7 for SPO,7 

 

(B) Membership of ED of tank 7 for SPO,7 

 

(C) Membership of W of tank 7 for SNO,7 
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                 Table 5.1 Linguistic functions and MF’s for control inputs and outputs 

Linguistic Variable 

Linguistic value Range MF Characteristic ranges 

1 Lower Triangular shaped -36 -20 -4 

2 Medium Triangular shaped -16 -0.009778 16 

3 Higher Triangular shaped 3.99 15.88 31.87 

Linguistic Variable (differential error) 

Linguistic value Range MF Characteristic ranges 

1 Lower Triangular shaped -36 -20 -4 

2 Medium Triangular shaped -16 -0.009778 16 

3 Higher Triangular shaped 3.99 20 36.01 

Linguistic Variable 

1 Lower Triangular shaped -32.4 -18 -3.6 

2 Medium Triangular shaped -14.4 3.5e-15 14.4 

3 Higher Triangular shaped 3.6 18 32.4 
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Figure 5.3 Flow diagram of fuzzy controller 
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Table 5.2 DO Control set points for SOPCA (PI-Fuzzy) [I] to SOPCA (PI-Fuzzy) [VIII] 

 

Other than the SOPCA control approach, additional dissolved oxygen (SO) loops are added. Table 

5.2 shows the various SO setpoints by manipulating KLa in the last three reactors. In SOPCA (PI-

Fuzzy), eight different SO setpoint combinations of control strategies are implemented in the last 

three reactors. In this scheme, three PI control strategies are designed independently with model-

based data. PEM is used to develop models for both loops with the open-loop data. For this, ±10% 

variance change in the inputs of oxygen mass transfer coefficients (KLa7,  KLa6,  KLa5 ) are given 

randomly whose steady-state values are 91, 127, and 155 m3/d. The corresponding output data of 

SO  is collected whose steady-state value is 2 gO2/m
3 in all three reactors. Similarly, with fixed 

input change of ±10% variance is given in Qint whose steady-state value is 21900 m3/d. The 

corresponding output data of SNO,4 is collected whose steady-state value is 0.1848 gN/m3 in all 

fourth reactors with an additional override control loop. Fig.5.4 depicts the scheme of SOPCA (V). 

In the supervisory layer, fuzzy is chosen with the above fuzzy scheme of MF’s. The corresponding 

obtained input and output data are depicted in the Appendix data are depicted in Fig.C3. PEM is 

utilized to determine the model. By using the obtained models, a SIMC method is used to design 

controllers for both the loops. The parameters of the PI controller are: a) For SO7: Kp (Proportional 

control gain)=12.042 and Ti (Integral time) =0.010586,SO6: Kp=17.549 and Ti=0.0055903,SO5: 

Kp=6.92 and Ti=0.0014262 b) For SNO,4: Kp=28533.61 and Ti=0.031488.  

 

Control approaches SOPCA (PI-

Fuzzy) with additional DO 

controllers in aerobic reactors 

SO set points for the last three aerobic reactors 

SO5 SO6 SO7 

SOPCA(I) 1 1 2 

SOPCA (II) 1 1.5 2 

SOPCA (III) 1.5 1.5 2 

SOPCA (IV) 1 3 2 

SOPCA (V) 2 2 2 

SOPCA (VI) 2 3 2 

SOPCA (VII) 3 1.5 2.5 

SOPCA (VIII) 3 3 2 
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5.1.2 Simulation results and comparison 

The simulation outputs of SOPCA (PI-Fuzzy) with additional SO control approaches have been 

computed. The corresponding average effluent values are given in Table 5.3. In comparison, of 

the eight control strategies (I to VIII), it was found that TN and ammonia are under the limits. 

Plant performance with energy assessments like aeration, pumping, sludge production, and mixing 

energies are determined. It is noticed that the average composition of P is largely influenced by SO 

which is directly proportional to the formation of orthophosphates. P removal is contradictory with 

N and ammonia removal while all controls are applied with respect to nitrate. The results with 

three SO control loops showed better results than single SO control and SOPCA (PI-Fuzzy) without 

the SO control approach. From the perspective of effluent discharge of percentage of violations, 

TP plays a key role in EQI improvement. The optimized TP removal is best observed in SOPCA 

(I), whereas, TN and ammonia removal are good with SOPCA (VIII) as depicted in Fig.5.5. From 

Internal recycle 

Qin 

Qw External recycle 

Qe 

Anaerobic tanks Anoxic tanks Aerobic tanks 

- 

+ 

Set point 

1.68 mg PO4/l 

- 
  SPO,7 

Fuzzy 

P

Override 

Control 
SNO,7 

SNO,4 

+ 

SO,5 SO,6 SO,7 

Figure 5.4 Scheme of SOPCA (V) control approach for P removal 
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the analysis of different SOPCA control schemes with additional SO loops, optimal results in terms 

of EQI and OCI are observed for SOPCA (I) as shown in Fig.5.6. Comparison between the average 

effluent concentrations of removal rate efficiencies of SOPCA (I-VIII) and effluent limits is carried 

out and the results are reported in Table 5.3. It can be observed that the pollutant removal rates for 

SNH, TSS, TN, COD, and BOD5 for SOPCA(VIII) scheme showed improvement of 62.5%, 65.1%, 

2.4%, 59.2%, and 87.4%. On the other hand, an improved removal rate for TP is obtained when 

SOPCA (I) scheme is used in which an improvement of 28.5% is obtained. 

Comparison with default PI controllers of SOPCA (I) to SOPCA (VIII): The default control 

strategy uses PI controllers for both loops in which DO and nitrate are controlled by manipulating 

oxygen mass transfer coefficient and internal recycle rate in seventh and fourth reactors 

respectively in chapter 3 (Shiek et al., 2021). Among the eight control strategies (I to VIII) in 

which fuzzy logic controller is used in the supervisory layer, SOPCA (I) shows the lower 

operational cost with improved effluent quality. On comparing with the default PI, SOPCA (I) 

showed an improved EQI of 37.4% with an increase of 7.6% in OCI. Also, on comparing with the 

default PI, all the pollutant concentrations of removal rates are improved except nitrogen. For 

example, on comparing with default PI, the improved removal efficiency obtained is 57.2%, 

22.6%, 59.6%, 8.7%, and 27.5% for SNH, TSS, TP, COD, and BOD5 respectively. On comparing 

with operational performance assessment with default PI with eight control strategies SOPCA (I) 

to (VIII), an increment is observed for AE, ME, and SP. In the case of pumping energy, it is high 

in the default PI compared to other controllers. 

 

Figure 5.5 Percentage of violations of SNH, TP, and TN for SOPCA (I) and SOPCA (VIII) 
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Figure 5.6 Comparative analysis of OCI and EQI for SOPCA (I) and SOPCA (VIII) 

Table 5.3 Average concentration values of effluent discharge with different combinations of SO 

for aerobic reactors in SOPCA (PI-Fuzzy) scheme 

Average concentrations 

of effluent 

 

SOPCA control strategies (I-VIII) 

Components Limit SOPCA 

(I) 

SOPCA 

(II) 

SOPCA 

(III) 

SOPCA 

(VI) 

SOPCA 

(V) 

SOPCA 

(VI) 

SOPCA 

(VII) 

SOPCA 

(VIII) 

SNH 4 2.58 2.21 1.95 1.88 1.68 1.58 1.61 1.50 

TSS 30 10.57 10.54 10.51 10.51 10.48 10.48 10.47 10.45 

TN 18 18.79 18.40 18.11 18.01 17.74 17.62 17.65 17.56 

TP 2 1.43 1.6 1.76 1.77 1.90 1.98 2.00 2.05 

COD 100 40.83 40.84 40.84 40.84 40.84 40.85 40.85 40.84 

BOD5 10 1.2939 1.287 1.28 1.27 1.27 1.27 1.26 1.26 

 Performance plant assessment 

AE  4408.7 4533.1 4666.4 5077.1 4967.5 5332.7 5418.6 5762.9 

SP  3079 3054.2 3030.5 3028.3 3006.8 2995.1 2994.7 2983.9 

ME  1164 1164 1164 1164 1164 1164 1164 1164 

PE  210.2 216.2 221.9 222.1 228.6 233 233.4 233.5 
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5.2 Supervisory layer: Use of PI control scheme 

In this scheme, from section 5.1.1 the control approach is similar to PI controller application for 

lower control loop and the last three SO control strategies are designed independently based on the 

identified models with the additional override control loop. The control tracking the performance 

of SO for three aerobic reactors and also for SOPCA (PI-PI) with eight SO setpoint combinations 

of the last three aerobic reactors (IX to XVI) of control strategies are implemented and are given 

in Table 5.4.  The systematic approach for model identification and implementation of control is 

elaborated in the flow diagram from Fig.5.7. In this section the supervisory layer, the PI controller 

is chosen. Fig.5.8 depicts the control scheme of SOPCA (XIII) varying SO is 2 gO2/m
3 is 

maintained as the set points in the last three aerobic reactors. For SNO,7 loops, a random input signal 

with 10% is given in nitrates (setpoint of 0.1848) and the corresponding input and output data is 

noted. The corresponding output data of SPO,7 is collected whose steady-state value is 1.68 gP/m3 

in the last reactor. The corresponding obtained input and output data are depicted in the Appendix 

data are depicted in Fig.C3. Again, PEM is utilized to determine the model. By using these models, 

based on the SIMC method, the parameters of the PI controller are obtained as a) For SO,7: Kp= 

12.042 and Ti=0.010586, SO6: Kp=17.549 and Ti=0.0055903, SO5: Kp=6.92 and Ti=0.0014262 b) 

For SNO,4: Kp=28533.61 and Ti=0.031488. For SPO,4 controller: Kp=-0.1055 and Ti=0.07213.  

BSM1-P with SOPCA (PI-Fuzzy) configurations file of Matlab/Simulink is depicted in the 

Appendix of Fig.C2. DO control tracking performance in the three aerobic reactors are depicted 

in Appendix Fig.C4. 

 

Table 5.4 DO Control set points for SOPCA (PI-PI) [IX] to SOPCA (PI-PI) [XVI] 

Control approaches SOPCA (PI-PI) 

with additional DO controllers in 

aerobic reactors 

SO set points for the last three 

aerobic reactors 

SO5 SO6 SO7 

SOPCA (IX) 1 1 2 

SOPCA (X) 1 1.5 2 

SOPCA (XI) 1.5 1.5 2 

SOPCA (XII) 1 3 2 

SOPCA (XIII) 2 2 2 
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SOPCA (XIV) 2 3 2 

SOPCA (XV) 3 1.5 2.5 

SOPCA (XVI) 3 3 2 

Figure 5.7 Systematic approach for model identification and implementation of control 

Yes 

Select control (SNO,4, SO,5, SO,6, SO,7, SPO,7) and manipulating 

variables (Qintr, KLa5, KLa6, KLa7, and SNO,7 respectively) 

Stimulate the inputs (Qintr, KLa5, KLa6, KLa7, and SNO,7) and collect 

input/output data 

Pre-process the data (avoid trends and means) 

Divide the data for modelling and validation purposes 

Obtain FOPTD 

model models 

Check for model 

fit 

Check 

for 

model fit 

Design PI controllers using 

SIMC method based on the 

obtained FOPTD models 

Implement the designed controllers on the 

WWTP and assess the performance 

No 
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5.2.1 Simulation results and comparison 

The optimized results in terms of EQI and OCI are observed with SOPCA (IX) scheme as shown 

in Fig.5.10. The comparative analysis for the last seven days of SOPCA (I) and SOPCA (IX) 

results of TP and TN are depicted in Fig.5.11 (a, b) and it can be observed that SOPCA (IX) 

showed better results. Comparison between the average effluent concentrations of removal rate 

efficiencies of SOPCA (IX-XVI) control strategies and effluent limits is done and the results are 

reported in Table 5.5. Here, the removal rate for SNH when SOPCA (XIV) is used improved by 

60.5%. For TSS and BOD5, SOPCA (XV) scheme provided an improvement of 65.1% and 87.4%. 

On the other hand, the TP, TN, and COD are improved when SOPCA (IX) scheme is used and the 

improvement is obtained as 20.5%, 11%, and 59.2% respectively. The percentage of violations of 

SNH, TP, and TN for SOPCA (IX) and SOPCA (XVI) is depicted in Fig.6.9. In the operation 

Internal recycle 

Qin 

Waste sludge 

External recycle 

Qe 

Anaerobic tanks Anoxic tanks Aerobic tanks 

- 

+ 

Set point 

1.68 mg PO4/l 

- 
  SPO,7 

    PI 

PI 

Override 

Control 
SNO,7 

SNO,4 

+ 

SO,5 SO,6 SO,7 

Figure 5.8 Scheme of SOPCA (XIII) control approach for P removal 
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performance assessment data, an increase in SO set point lead to an increase in the AE rate. From 

Tables 5.3 and 5.5, it is observed that the AE intake is high in SOPCA (VIII) and SOPCA (XVI) 

and low in SOPCA (I) and SOPCA (IX). As far as ME is concerned, it remained constant 

throughout all SOPCA control strategies. For SP, the highest values are recorded in SOPCA (I) 

and SOPCA (IX), the lowest in SOPCA (VIII) and SOPCA (XIV). Further, among the other eight 

control strategies (IX to XVI) in which PI controller is used in the supervisory layer, SOPCA (IX) 

shows the lower operational cost with improved effluent quality as shown in Table 5.5.  

On comparing with the default PI:  SOPCA (I) showed an improved EQI of 39% with an 

increase of 6.2% in OCI. Also, on comparing with the default PI, all the pollutant concentrations 

of removal rates are improved except COD. The improved removal efficiency is obtained as 

54.4%, 22.5%, 0.61%, 55.1%, 8.7%, and 28% for SNH, TSS, TN, TP, and BOD5 respectively. On 

comparing the costs with the default PI, all the eight control strategies showed increased AE and 

ME. In the case of pumping energy, it is high with the default PI. The sludge production rates are 

improved with SOPCA (XIV to XVI). 

 

 

Figure 5.9 Percentage of violations of SNH, TP, and TN for SOPCA (IX) and SOPCA (XVI) 
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Figure 5.10 Comparative analysis of OCI and EQI for SOPCA (IX) and SOPCA (XVI) 

 

(A) Comparison of the effluent of TP concentrations 
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(B) Comparison of the effluent of TN concentrations 

Figure 5.11 Comparison of effluent discharge of TP and TN on SOPCA (I) and SOPCA (IX) 

control schemes 

Table 5.5 Average concentration values of effluent discharge with different combinations of SO 

for aerobic reactors in SOPCA (PI-PI) scheme 

Average 

concentrations of 

effluent 

 

SOPCA control strategies (IX-XVI) 

Pollutants Limit SOPCA 

(IX) 

SOPCA 

(X) 

SOPCA 

(XI) 

SOPCA 

(XII) 

SOPCA 

(XIII) 

SOPCA 

(XIV) 

SOPCA 

(XV) 

SOPCA 

(XVI) 

SNH 4 2.75 2.31 1.99 1.92 1.75 1.58 1.61 1.97 

TSS 30 10.54 10.51 10.49 10.48 10.48 10.46 10.45 10.45 

TN 18 16.04 16.07 16.24 16.25 16.79 16.64 16.51 17.26 

TP 2 1.59 1.74 1.89 1.87 1.95 2.02 2.06 2.14 

COD 100 40.84 40.84 40.85 40.84 40.85 40.85 40.85 40.86 

BOD5 10 1.289 1.28 1.27 1.27 1.27 1.26 1.26 1.26 

 Performance plant assessment 

AE  4341.4 4475.1 4620.5 5033.1 4936.7 5308.5 5389.2 5713 

SP  3015.8 2996.7 2978.5 2978.9 2975.4 2961.4 2955.4 2973 

ME  1164 1164 1164 1164 1164 1164 1164 1164 

PE  259.2 257.3 255.5 254.1 247.7 250.2 252 265.6 
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5.3 Summary 

In the earlier works on the seven reactor A2O (Anaerobic, anoxic and oxic) bioprocess system, 

different control approaches have been developed (Ostace et al., 2013). Chapter 3 used a 

bioprocess of ASM3bioP in the BSM1-P simulation framework and designed default PI, MPC, 

and Fuzzy controllers to control SO and SNO. The comparison is done at the limit value of 2 gP /m3 

for phosphorus. They observed that P in the effluent is increased by 42.8%, 44.4%, and 41.1% 

respectively for the three control schemes and they also observed that EQI is improved with 

slightly lower operational costs. Maheswari et al., (2020) used the same simulation platform and 

designed four case studies based on a nested control loop on three-stage biological treatment for 

ammonia changes. They observed that EQI is improved with higher operational costs. Their 

control approaches are compared for P and it is noticed that the P in the effluent is increased by 

48.5%, 48.4%, 46%, and 47.3%. From chapter 4 using the same ASM3bioP bioprocess with 

BSM1-P, an ammonia-based aeration control (ABAC) is designed with four different 

combinations of controllers like PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy. These control 

approaches are compared and observed that the P in the effluent was increased by 40.8, 44.1%, 

43.5%, and 44.4% respectively for the corresponding control schemes. In their study, the ammonia 

removal rate is improved by 18% in the case of MPC-MPC but P removal is not affected much. In 

all these studies, the goal is not to design control strategies to improve P removal instead ammonia 

removal. 

In this chapter, the main focus is on phosphorus removal, and hence Supervisory and Override P 

Control Approach (SOPCA) is designed with three additional SO control loops in the aeration 

tanks. The comparison is done at the limit value of 2 g P m-3 for phosphorus. Here, the Supervisory 

Layer of Fuzzy and PI control schemes show improved results with P in the effluent by 28.5% and 

20.5% only. Moreover, TN and ammonia are under the effluent regulatory limits. 
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Chapter 6 

Design of control strategies for plant-wide models with simultaneous removal 

of nitrogen and phosphorus 

This chapter introduces PI controllers for the BSM2-P plant, which is based on the default strategy. 

It considers two loops: controlling dissolved oxygen concentration in tank 7 (SO,7) by manipulating 

the oxygen mass transfer coefficient (KLa7), and controlling nitrate concentration in tank 4 (SNO,4) 

by manipulating the internal recycle flow rate (Qa). In another approach, a lower-level control 

framework is implemented to DO in the sixth reactor by regulating the KLa of fifth, sixth, and 

seventh reactors in the biological treatment process. Here PI is used at the lower level whereas 

Fuzzy and MPC are used at the supervisory level. The supervisory level is based on the ammonia-

based aeration control (ABAC) to later the DO setpoint corresponds to the ammonia concentration. 

Table 6.1 reports the functioning of control strategies on BSM2-P. Appendix Table D.1 represents 

the state variables of ASM2d, units with notations, and average influent data are provided. 

Appendix Fig.D1 depicts the open-loop Matlab/Simulink file for BSM2-P 

Table 6.1 Functioning of control strategies 

Attributes PI 

controller 

Lower 

level 

PI (Lower level) +MPC 

(Supervisory level) 

PI (Lower level) 

+Fuzzy (Supervisory 

level) 

Control 

variable 

SO,7 and 

SNO,4 

SO,6 SNH,6 SNH,6 

Set-point 2 gO2/m
3 

& 

1 gN/m3 

2 gO2/m
3 

 

DO set-point is 

determined by higher 

level 

DO set-point is 

determined by higher 

level 

Regulating 

variables 

KLa7 and 

internal 

recycle 

KLa in the 

last three 

reactors 

Set-point for DO 

controller 

Set-point for DO 

controller 

Control design PI PI PI and MPC PI and Fuzzy 
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6.1 Control strategies for plant wide-models  

6.1.1 PI control approach:  

The default control approach is associates with two control loops of PI: In ASU the last aerobic 

tank (tank7) SO,7 and the second reactor of anoxic (tank 4) SNO,4 is controlled. The regulated 

variables are oxygen mass transfer coefficient (KLa) and internal recycle (Qintr) respectively. The 

set-points are chosen according to the requirements of the WWTP.  In the practical process, the 

level of SO,7 in the oxic reactor required to be retained from the range of 1.5 to 4 gO2/m
3, and the 

practiced value is 2 gO2/m
3 in WWTP. Moreover, the most advisable working points for the nitrate 

level in the anoxic tank are required to be carried from the range of 1-3 gN/m3 and the practice 

value is 1 gN/m3 is recommended usually. The models are developed using the attained open-loop 

data for each SNO,4 and SO,7 control loops. By using their regulating variables to select the required 

setpoint. For the values of 88000 and 73, the concentrations of SNO and DO are reported as 2 

gO2/m
3, 1 gN/m3 respectively. In the seventh and fourth reactor, a random input signal with a 

±10% variation in the obtained values. The attained resulting output data for SNO and DO is 

collected. The SNO and DO output data are now used to build FOPTD models using the method of 

prediction error minimization. Each loop is modeled with PI controllers from these models using 

the Skogested internal model control method (SIMC), and the FOPTD model is described 

(Grimholt & Skogested (2018) in the below: A first-order plus time order delay (FOPTD) model 

as given in the equation. (3.1) is identified for the design of PI controllers for each loop. For control 

of SNO in bioreactor 4 (SNO,4) and DO in bioreactor 7 (SO,7), the respective obtained FOPTD model 

parameters are given in below: 

KP =0.000026144, Ti = 0.012515 and Td = 0.000875. 

KP =0.04538, Ti =0.010085 and Td =0.  

Based on these models, PI controllers are designed using the SIMC method and are obtained for 

SNO and DO loops are like Kc =35748.16, Ti= 0.01215, and DO loop is Kc =11.015, Ti = 0.010085. 

The corresponding simulation results are tabulated in Table 6.3. The resultant tracking 

performance of SO and SNO is depicted in Fig.6.1 (A) and (B). The PI control approach is depicted 

in Fig.6.2 (A).  Identification file for BSM2-P of Matlab/Simulink file is depicted in Fig.D2. 
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6.1.2 Lower level control approach 

In this approach, a close-loop control framework contains a PI controller. It is able to control SO 

in the sixth tank at a set-point of 2 mgO2/l by regulating the KLa6. Further, the oxygen mass transfer 

coefficient in tank 5 and tank 7 by a factor of 1 and 0.5 respectively are manipulated (Solon et al. 

2017). The lower level control approach is depicted in Fig.6.2 (B). BSM2-P with lower-level PI 

configuration Matlab/Simulink file is depicted in Appendix Fig.D3. 

 

 

(A) 

 

(B) 

Figure 6.1 Control tracking (A) Dissolved oxygen and (B) Nitrate 
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6.1.3 Ammonia-based aeration control (ABAC) approach 

This approach is based on cascade (MPC/Fuzzy) controllers for ammonia control (SNH,6) by 

manipulating the SO,6 set point in the aeration tank6. Here the SO,6 in the aeration tank6 is controlled 

by regulating the airflow rates of reactors 5, 6, and 7 like the same as lower-level control.  
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(B) 

 

 

 

 

 

 

(C) 

Figure 6.2 Control frameworks for BSM2-P (A) PI controllers (B) Lower level control (C) 

Supervisory level control framework with lower level 

6.1.4 PI-MPC  

The PI controller implemented for BSM2-P is used at the lower level in this control strategy, where 

MPC is implemented for the supervisory layer. SNH,6 in tank 6 and SO setpoint to be given to lower-

level is the controlled and manipulated variables for supervisory layer. For system identification 
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of the design model for the supervisory layer, the SO setpoint is varied by ±10% around the 

operating point, and the resulting SNH concentration is collected. The prediction error method is 

used to drive the 3rd order state-space model for this data set (Ljung (1999)). The identified state-

space model for the supervisory layer is expressed below. For supervisory layer MPC, the 

sampling time of control is 0.05 days (72 minutes), prediction and control horizons are 10, 2 

respectively, and rate of change of regulated variable 0.1 are used. 

MPC supervisory-level state-space model : 

A= [
0.7231 0.1351 −0.03826
−0.3957 −0.2845 0.01298
−0.0068 −0.0477 −0.1704

]  B= [
−0.09427
−0.75
−1.994

]                                                    

C= [1.306 0.074 −0.01624]  D= [0] 

 

Figure 6.3 Dissolved oxygen tracking in the sixth bioreactor (PI-MPC) 

Fig.6.3 depicts the computation of SO by a supervisory level and its tracking by the lower-layer 

controller for 245 to 252 days for users to make a better comparison purpose. The performance 

evaluation was done in the period of 245 to 609 days. Fig.6.3 depicts that a good supervisory 

setpoint tracking is achieved by using the PI-MPC controller design framework in the sixth 

bioreactor. The resultant average concentrations of nutrient removal, energy usages, and 

greenhouse gas emissions, and performance of plant with cost assessment are reported in Table 

6.3 and compared with the other three control frameworks. Identified models for controller designs 

are reported in the Appendix C. 
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6.1.5 PI-Fuzzy  

Fuzzy Controller manipulates the SO set-points at a supervisory layer to minimize ammonia peaks. 

The membership functions (MF) of SO,6 and SNH,6 are considered in the ranges of 0-4 mg O2/l and 

0.1-20 mg N/l, respectively. The MF’s for both input and output variables are in a Gaussian bell-

shaped curve, which is divided into three linguistic variables, “high,” “low,” and “medium,” as 

shown in Figures 6.4(A) and (B). Total three rules are framed according to the SO control loop 

(Tejaswini et al 2020). The corresponding linguistic variables for “high,” “low,” and “medium,” 

are tabulated in Table 6.2. Figure 6.4(C) depicts that a good supervisory setpoint tracking is 

achieved by using the PI-Fuzzy controller design framework in the sixth bioreactor. The simulated 

results are reported in Table 6.3. Fig.D4. depicts the BSM2-P with lower-level PI-Fuzzy 

Configuration for Matlab/Simulink file. 

If ammonia level is “low” then SO (dissolved oxygen) level is “low”  

If ammonia level is “high” then SO level is “high”  

If ammonia level is “medium” then SO level is “medium”  

 

(A) Membership function of output 
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(B) Membership function of input 

 

(C) corresponding tracking performance of dissolved oxygen 

Figure 6.4 Membership functions rules (A) Output (B) Input and (C) corresponding tracking 

performance 

Table 6.2 Linguistic functions and MF’s for control inputs and outputs 

Linguistic Variable (Output) 

Linguistic value Range MF Characteristic ranges 

1 Lower Gaussian bell-shaped shaped 0.175 5.4 0.11 
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2 Medium Gaussian bell-shaped shaped 1.06 5.87 1.36 

3 Higher Gaussian bell-shaped shaped 3.56 18 6 

Linguistic Variable (Input) 

Linguistic value Range MF Characteristic ranges 

1 Lower Gaussian bell-shaped shaped 1.89 9.18 0.034 

2 Medium Gaussian bell-shaped shaped 1.02 7.75 2.96 

3 Higher Gaussian bell-shaped shaped 8.26 42.2 12.36 

 

6.2 Comparison of four control design frameworks on BSM2-P  

The simulation outputs of four control designs (PI controllers, lower-level PI, supervisory-level 

PI/MPC, and Fuzzy) frameworks are computed. The corresponding average values of effluent 

concentrations are given in Table 6.3. Nitrification oxidizes ammonium to nitrate and 

denitrification reduces nitrate to nitrogen gas. Then a high DO improve nitrification, but an excess 

of nitrate perhaps is not fully denitrified in the anoxic reactors due to a lack of COD.  Moreover, 

phosphorous removal is largely influenced by dissolved oxygen which is directly proportional to 

the formation of orthophosphates. From Table 6.3, on comparing with lower-level the ammonia, 

TP, TSS, and TN removal concentrations are improved. For ammonia, TP, TSS, and TN the 

removal efficiency is improved by 36%, 33.6 1.02%, and 11.3% in PI-MPC, PI-Fuzzy, PI-MPC, 

and PI-Fuzzy controllers respectively. Figure 6.5(D) depicts the bar harps of all the average values 

of energy usages like aeration, pumping, mixing, heating, consumed energies (kwh/d), and sludge 

production rate (kg ss/d). From the bar graph, it was observed that aeration and consumed energies 

are high in the case of PI-MPC and low in the case of the PI-Fuzzy controller.  

The sludge production rate and heat energy are high in the PI-Fuzzy controller are reported. 

Compared to all controllers Fuzzy shows less aeration energy to get better nutrient removal with a 

slight increase in cost. On literature, it is showing that the Fuzzy control is favorable for the better 

removal of phosphorous. On comparing with lower-level PI, PI-Fuzzy showed an improved EQI 

of 21.1% with a 0.52% increase in OCI. On comparing with four control strategies there is a trade-

off between OCI and EQI. Overall, in comparison with lower-level PI control ammonia is 

improved at PI-MPC, and TP is improved at PI-Fuzzy. In both cases, PI-MPC and PI-Fuzzy 

showed improved EQI with an increase of OCI. On comes to greenhouse gases like methane, 

hydrogen, and carbon dioxides of average production rates are reported in Table 6.3. From the 
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observations of the table, it is noticed that PI-fuzzy shows high methane, Hydrogen, carbon 

dioxide, and gas flow production rates of 28.7%, 4.87%, 6.8%, and 3.2% on comparing with lower-

level PI. PI-fuzzy and PI-MPC show good outcomes for TP and ammonia in terms of percentage 

of violations. The percentage of violations is reported in Table 6.3. PI-Fuzzy showed good removal 

efficiency in the phosphorus. Moreover, PI-Fuzzy shows lower OCI with PI-MPC. The effluent 

concentrations of ammonia, TN, and TP are compared for all four control frameworks with their 

corresponding pollutant limit value are depicted in Fig.6.5(A)(B)(C), and (D). Nitrogen and 

phosphorous removed to the ratio of OCI is achieved high in the case of PI-Fuzzy. 

Table 6.3 Comparison of average concentration values of effluent for four control strategies 

Parameters PI controllers Lower level PI control PI-MPC PI-Fuzzy 

SNH 1.05 0.96 0.57 1.28 

TSS 15.39 15.54 15.38 16.23 

TN 9.07 9.81 9.86 8.7 

TP 4.54 4.05 4.4 2.69 

COD 42.17 42.04 42.17 41.95 

BOD5 2.43 2.42 2.45 2.50 

IQI 97875.71 97875.71 97875.71 97875.71 

EQI 14625.98 13715.37 14391 10824.9 

Average production rates 

Methane 1029 1024 1035 1438 

Hydrogen 0.00392 0.00393 0.0039 0.0041 

Carbon dioxide 1504 1527 1517 1640 

Gas flow 2630 2635 2646 2722 

OCI 10959.1 10949 11810 11007 

 Average percentage of violations 

TP 86.71 72.5 70.4 38.4 

SNH 2.71 3.12 0.21 1.28 

TSS 0.025 0.062 0.048 0.58 

BOD5 --- -- -- 0.0085 

Nremoved/OCI 0.08131 0.0800 0.0740 0.0815 
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Premoved/OCI 0.01044 0.0113 0.0098 0.0139 

 

 

(A) 

 

(B) 

 

(C) 
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(D) 

Figure 6.5 The effluent concentrations of (A) ammonia, (B) TN, (C) TP, and (D) bar graph for 

all the usages are compared for all four control frameworks with their corresponding pollutant 

limit values 

PI controllers are designed to control DO by regulating the oxygen mass transfer coefficient with 

an additional aeration-based ammonia controller and control TSS by regulating the external 

recycle. The control strategy showed significant improvement in both effluent quality and 

operating costs. The control designs show improved EQI of 31% with decreased OCI of 6.9% with 

an open loop. As far as pollutant concentration is concerned, TN and TP are improved by 17% and 

42.1% respectively Solon et al. (2017).  In the present work, an ammonia-based aeration controller 

at the supervisory level is designed. By using two different control combinations, PI-MPC and PI-

Fuzzy, the performance is compared with Solon et al. (2017). PI-Fuzzy showed improved EQI of 

13.5% with an increase of 13.6% OCI. Phosphorus and TN removal is improved by 29.7% and 

5.4% respectively with the PI-Fuzzy control framework and produced better EQI. PI-Fuzzy shows 

a high production rate of methane when compared to Solon et al. (2017).  

6.3 Summary 

A seven reactor configuration (anaerobic, anoxic, and aerobic) is used in a plant-wide level 

biological wastewater treatment process model (BSM2-P) to design advanced control strategies. A 

lower-level and supervisory-level (ABAC) design framework is made. Here PI is at a lower level 

whereas MPC and Fuzzy are used as a supervisory-level PI-Fuzzy showed improved effluent quality 

and better removal rates of phosphorus. Greenhouse gas emission production rates are high in the 

case of the PI-Fuzzy controller. In each control application case, there is a trade-off between EQI 

4
0

7
6

4
3

0
8

5
5

7 1
0

0
8

4
8

2
7 5

8
7

3

4
1

5
0

4
1

4
8

4
6

2 1
0

0
8

4
8

6
1 5
6

1
8

4
1

0
4 5

2
1

0

4
5

2 1
0

0
8

4
8

3
0

6
6

7
2

4
3

6
8

3
6

6
9

4
5

2 1
0

0
8

4
9

8
1

5
1

3
2

SP AE PE ME HE CE

PI controllers Lower level PI PI-MPC PI-Fuzzy



114 
 

and OCI. In comparison with PI (one loop), PI-Fuzzy showed an improved EQI of 21.1% with a 

0.52% increase in OCI. Of all the compared outcomes, PI-Fuzzy shows better EQI and increased 

OCI. PI-Fuzzy showed high production rates of greenhouse gas emissions and low consumption of 

aeration energy. The percentage of violations of total phosphorus showed less in the case of PI-

Fuzzy. 
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Chapter 7 

Analysis of different reactors combinations and configurations for biological 

WWTP 

7.1 Evaluation of three different A2/O processes 

In this chapter, three different biological wastewater treatment processes consisting of anaerobic, 

anoxic, and aerobic reactors are evaluated. A2O process (anaerobic, anoxic, and aerobic reactors 

with internal and external recycles), Reverse R-A2O process (anoxic, anaerobic, and aerobic 

reactors with external recycle), and Inverted I-A2O process (anoxic, anaerobic, and aerobic with 

internal and external recycles) are considered. Dissolved oxygen (DO) is maintained in the 

respective aerobic reactors using a PI controller. Furthermore, metal and carbon addition is done.  

7.1.1 Biochemistry in the WWTP and biological activity 

In the biological treatment section, different designs of A2/O processes are suggested to improve 

both N and P removal. To achieve this, different combinations of anoxic, anaerobic, and aerobic 

reactors are used as a part of biological treatment with suitable reactor volumes. The ASM2d by 

Gernaey et al. (2004) was chosen as one of the mathematical models to illustrate the removal 

process of both N and P. ASM2d model with the biological P removal process is elaborated in 

Fig.7.1. PAO’s (ploy accumulating organisms) are modeled in the cell internal system and further, 

all organic matter products are combined into one model structure (XPHA). The growth of PAO is 

responsible for the XPHA (polyhydroxy aldehydrates) as a substrate. Moreover, Oxygen and nitrate 

also influence the PAO’s growth. 

Anaerobic phase reactions: PAO’s utilize poly-P and glycogen stored in their cells as energy 

sources that allow for the absorption of VFA (volatile fatty acid). VFA’s are converted and retained 

to PHA on PAO cells. As the uptake of VFA, PAO’s drop orthophosphates into the mixed liquor. 

PAO’s do not develop in the anaerobic phase but their ability to consume food interims of VFA’s 

provides them with a competitive advantage on bacteria. 

Aerobic phase reactions: In the aerobic phase, PAO’s use PHA for metabolism and cell growth 

as a source of carbon and energy. PAO’s also restore their glycogen and ploy-P supplies in the 

aerobic phase. PAO’s can take in excess phosphate from the mixed liquor and the EBPR process 

to replenish their stored polyphosphate.   
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First, the influent flow and return sludge enter into the anoxic section. Here denitrification is 

responsible for denitrifying bacteria where NO is shifted into N2. After the anoxic section, the WW 

enters into the anaerobic section by a pre-denitrifying process where it largely impacts the 

anaerobic environment by the presence of nitrate. In the anaerobic section, the carbon matter in 

WW is shifted to PHA and other organic matters. The detailed mechanism of the biological P 

removal process included in the ASM2d model is depicted in Fig.7.1.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

     

SPO4 

Storage 
XPHA 

XPP 

SS 

Anoxic (nitrate) 

Aerobic (oxygen) 

SPO4 

XPP 

XPAO 
Growth 

XPHA 

Anaerobic 

PHA 

Poly-P 

Glycogen 

PO4
3

New 
cell 

Energy 

Energy 

Aerobic 

PHA 

Poly-P 

Glycogen 

PO4
3

Energy 

Energy 

Anaerobic 

Figure 7.1 Detailed mechanism of biological P removal process included in the ASM2d model 
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Thus the accumulations of PHA and PAO are used to enhance the phosphorus uptake. If the PAOs 

directly enters into the aerobic section from the anaerobic section, the biochemical efficiency is 

high in the aerobic section. The enhancement of phosphorus uptake happens in the anaerobic 

section. This anaerobic and aerobic platform improves the N and P removal capacity based on Bo 

(2006). 

7.1.2 Influent composition and process configurations 

Model creation and simulation are performed using MATLAB/SIMULINK (Mathwork, Inc). The 

ASM1 model which has been used for the carbon and nitrogen removal simulation has 13 

components and this model does not include the biological phosphorus process. In the ASM2d 

model, both N and P removal happens which consists of 19 components. The influent for the 

combined N and P removal simulation benchmark is based on available ASM2d influent 

composition is taken from Gernaey et al. (2002); Gernaey et al. (2004). The BSM1 platform 

consists of five bioreactors having a total volume of 5999 m3 and the volume of the settler is 6000 

m3 which is broadly used in N removal platforms to stimulate control strategies by Copp (2002). 

For the extension of the model to include P removal, the ASS is replaced from ASM1 to ASM2d 

for P and N dynamic simulations are done based on Henze et al. (2000). To improve PAOs, 

anaerobic reactors are added to the BSM1-P layout according to Gernaey et al. (2004).  Table 7.1 

presents the process units, physical attributions, and model selection. The sedimentation tank 

model is represented by the non-reactive double exponential settling velocity model by Takács et 

al (1991). The three anoxic, aerobic, and anaerobic sections, are fully mixed but only aeration 

tanks are fully aerated. Kinetic parameters, oxygen mass transfer, and oxygen saturation factors 

are also embedded in ASM2d at 15oC temperature is reported at Henze et al., (2000). Qo and Qe 

are the influent and effluent discharge labels in Fig.7.2. Different biological configurations (A) 

A2/O, (B) R-A2/O, and (C) I-A2/O are depicted in Fig.7.2. 

Table 7.1 Process units and models with physical parameters for different plant configuration 

Process Unit 

process 

Biological 

process 

Model Volume 

(m3) 

Internal 

recycle 

(m3/d) 

External 

recycle 

(m3/d) 

Waste 

sludge 

(m3/d) 

A2/O 

Fig.7.2(A) 

Biological 

reactors 

Anaerobic, 

anoxic, 

ASM2d 6749 300% 100% 400 
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Gernaey et 

al. (2004) 

and 

aerobic 

Secondary 

Settler 

Non-

reactive 

Takács 

model 

6000 ------- ------ ----- 

R-( A2/O) 

Fig.7.2(B) 

Xie et al. 

(2018). 

Biological 

reactors 

Anaerobic, 

anoxic, 

and 

aerobic 

ASM2d 6749 ------- 200% 400 

Secondary 

Settler 

Non-

reactive 

Takács      

model 

6000 ------- ------ ----- 

I-( A2/O) 

Fig.7.3(C) 

Xu et al. 

(2014) 

Biological 

reactors 

Anaerobic, 

anoxic, 

and 

aerobic 

ASM2d 6749 300% 100% 400 

Secondary 

Settler 

Non-

reactive 

Takács      

model 

6000 ------- ------ ----- 
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(B) R-A2O 

 
(C) I-A2O 

Figure 7.2 Different biological configurations (A) A2/O, (B) R-A2/O, and (C) I-A2/O 

7.1.3 Effluent quality evaluation 

For the ASM2d model, the plant individual pollutant concentrations are changed but the 

operational cost is similar to ASM3bioP. EQI is determined as a weighted average sum of effluent 

concentrations. For dynamic simulation, fourteen days’ data is available but the last seven days 

are considered as the plant performance assessment. ((Henze et al., 2000; Hongyang et al., 2018): 

EQI =
1

1000(tf − t0)
∫ KU(t)

tf

t0

Qe(t)dt                                                                                                 (7.1) 

KU(t) = KUTSS(t) + KUCOD(t) + KUBOD(t) + KUTKN(t) + KUNO3(t) + KUPtot(t)                          (7.2) 

The to and tf in the equation. (7.1) represents the starting and ending intervals of time for computing 

the EQII while the KUt notify the average load of polluted concentrations in the influent and 

effluent data. Generally, it consists of TSS (total suspended solids), BOD5 (biological oxygen 

demand), COD (chemical oxygen demand), TKN (total kjendal nitrogen), SNO (nitrate), SNH 

QO 

Anaerobic Anoxic Aerobic 

Return activated sludge, (200%) 

(300%) 

Qe 
Settler 

QO 

Anaerobic Anoxic Aerobic 

Internal recycle (300%) 

Return activated sludge, (100%) 

(300%) 

Qe 
Settler 
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(ammonia), and TP in the equation. (7.2). Thus the corresponding expression for KUt is given in 

the equation. (7.3). 
 

𝐾𝑈𝑡 = 𝛽𝑡 𝐺𝑡                                                                                                                                               (7.3) 

Where βt (g
-1) are weighting factors ascribe every component of the pollution. The weighting factor 

values are represented below. Moreover, the composition of different elements (Gt) is estimated 

by using the equations. (7.4) - (7.10).  

The values of weighting factors are assigned each effluent component, the factors are considered 

as follows: 𝛽𝑆𝑆 = 2, 𝛽𝐶𝑂𝐷 = 1, 𝛽𝑇𝐾𝑁 = 20, 𝛽𝑁𝑂 = 10, 𝛽𝐵𝑂𝐷5 = 2, 𝛽𝑇𝑃 = 100. Besides Gt, 

spontaneous concentrations of various nutrients are calculated corresponding to their 19 state 

variables:
 

GSS = XTSS                                                                                                                                                 (7.4) 
GCOD = SF + SA + SI + XI + XS + XH + XPAO + XPHA + XA                                                  (7.5) 

GBOD = 0.25 (SF + SA + (1 − fSi)XS + (1 − fXIH)XH + (1 − fXIP)(XPAO + XPHA) + (1 −

fXIA)XA)                                                                                                                                                        (7.6) 

 GTKN = SNH + iP,SFSF + iP,SASA + iN,SISI + iN,XIXI + iN,XSXS + iN,BM(XH + XPAO + XA) (7.7) 

 GNtot = GTKN + GNO3                                                                                                                              (7.8) 

 GNO3 = SNO3                                                                                                                                              (7.9) 

𝐺𝑃𝑡𝑜𝑡 = 𝑆𝑃𝑂4 + iP,SFSF + iP,SASA + iP,XIXI + iP,XSXS + iP,BM(XH + XPAO + XA) + XPP +

 (
1

4.87
)                                                                                                                                                        (7.10)  

7.2 Analysis of three processes R-A2/O, A2/O, and I- A2/O 

A comparative analysis on three combinations like A2/O, R-A2/O, and I-A2/O with average 

pollutant concentrations, EQI, OCI, and percentage of violations are tabulated in Table 7.2. On 

comparing two processes R-A2/O is having the optimized OCI with EQI. The average nutrient 

concentrations (TN, TP, SNH) are shown in Table 7.2. Which notify the best removal efficiency is 

found in R-A2O. The compared results of the last seven days are depicted in Fig.7.3 (A), (B), and 

(C). But in comparison, in R-A2O, TSS is high, which leads to a slightly high EQI when compared 

to that of A2/O. Note that the R-A2O process is dealing with only external recycle whereas the 

other two processes are having internal and external recycles which causes high OCI.  
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On comparing EQI and OCI, the R-A2O process shows a low OCI of 4.2% in comparison with 

A2O. On comparing the percentage of violations between A2/O and R-A2/O, TP and ammonia 

removal is improved by 32.2% and 14.2% respectively. On seeing Table 7.2, R-A2O shows a lower 

cost with better efficient quality in terms of nutrient removal of TP and ammonia. Based on this, 

R-A2O is chosen as a research platform for further applications in WWTP. 

Table 7.2 Average pollutant concentrations and operational costs of A2/O, R-A2/O, and I-A2/O 

Parameters A2/O R- A2/O I- A2/O 

SNH 6.354 4.73 6.22 

TSS 14.90 17.13 14.06 

TN 15.21 15.68 14.08 

TP 3.75 2.98 8.400 

COD 46.12 48.51 46.91 

BOD5 2.47 2.74 2.56 

IQI 56776.9 56776.9 56776.9 

EQI 5087.11 5220.01 7199.96 

Performance plant assessment 

SP 3636.79 3518.43 3251.51 

AE 2843.73 2843.73 2843.73 

PE 388.92 315.13 388.92 

ME 489.96 489.96 489.96 

OCI 20561.87 19695.14 20710.78 

Percentage of violations (%) 

TP 91.66 62.20 100 

TN 7.29 10.26 0.744 

SNH 68.15 58.48 68.00 
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(A) Ammonia concentration 

 

(B) Total nitrogen concentration 

 

(C) Total phosphorous concentration 

Figure 7.3 Ammonia, TN, and TP concentrations of A2/O, R-A2/O, and I-A2/O 



124 
 

7.2.1 Carbon source addition (CA) in R-A2/O 

If CA is carried out in the first anaerobic reactor, then improved results in terms of enhanced 

efficiency for the removal of nutrients are obtained. Carbon addition in the R-A2/O platform is 

depicted in Fig.7.4 (A). CA is usually carried out by adding carbon mass from 100 to 400 kgCOD/d 

is tabulated in the appendix Table E1. On the increase of carbon source, the OCI increases with 

the decrease of EQI as depicted in Fig.7.4 (B). Drastic changes in TSS and sludge production are 

observed with an increase in the carbon load. It is slightly impacting the rate of TN and ammonia. 

Different dosing methods for the addition of carbon sources through peristaltic pumps are studied 

in order to optimize the nutrient removal efficiencies with low carbon sources for urban domestic 

wastewater in the A2/O system. From the bar graphs of Fig.7.4 (C), it can be noted that TP is lower 

on increasing the carbon loading whereas other pollutants are contradictory with (TN, ammonia, 

TSS, and COD) slight increase. Appendix Table E1 represents the average effluent data with 

increased carbon addition in R-A2/O. 

 

(A) Addition of carbon source in R-A2/O 

 

(B) EQI and OCI changes with increased dosages of carbon loading 
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(C) Comparative analysis of pollutant removal with increased carbon dosages 

Figure 7.4 (A) CA in R-A2O process (B) Comparison of EQI and OCI (C) Comparison of 

pollutant removal 

7.2.2 Metal load addition (MA) in R-A2/O 

MA in the last aerobic reactor showed the optimized result in terms of better efficiency for the 

removal of nutrients. Metal addition in the R-A2/O platform is depicted in the appendix Fig. E2. 

Fig.7.5 (A) depicts the metal combination of both CA+MA in the R-A2/O platform. Metal loading 

is carried out by adding metal mass from 250 to 1000 kgCOD/d is tabulated in the appendix Table 

E3. On the increase of metal sources, the OCI increases, and EQI decreases. Drastic changes in 

TSS and sludge production are observed with an increase in metal load. It is slightly impacting the 

rate of TN and ammonia. Loading of both carbon (400) and metal (1000) source in the R-A2O 

shows the best removal efficiency of nutrients like ammonia, TN, and TP respectively.  

From the bar graph in Fig.7.5 (B), it can be analyzed that TP is less when there is an increase in 

metal loading. But the combination of MA+CA maintaining the corresponding masses as 1000 

and 400 kgCOD/d shows a slight increase in COD and TSS. On the other hand, other pollutants 

are decreased on comparing with MA dosages as shown in Fig.7.5 (B). A tradeoff between the 

EQI and OCI can be observed from these results. The effect on sludge production, OCI, and EQI 

is depicted in Fig.7.5 (C). 

3
.8

8

3
.1

2

2
.4

8

2
.0

3

1
.8

2

4
.7

3

4
.8

7

5
.0

1

5
.1

9

5
.4

1
5

.6
8

1
5

.5
8

1
5

.5
2

1
5

.5
3

1
5

.6
2

1
7

.1
3

1
7

.5
2

1
8

.2
8

1
9

.6

2
1

.5
9

4
8

.5
1

4
8

.6
9

4
9

.3

5
0

.5
2

5
2

.4
7

0

10

20

30

40

50

60

O L C A ( 0 . 2 5 ) C A ( 0 . 5 ) C A ( 0 . 7 5 ) C A ( 1 )

A
v

er
a

g
e 

v
a

lu
e 

o
f 

p
o

ll
u

ta
n

t 

re
m

o
v

a
l

TP  NH TN TSS COD



126 
 

 

(A) Addition of carbon and metal source in R-A2/O 

 

(B) Combined metal and carbon addition sources with corresponding pollutant removal 

 

(C)  Combined metal and carbon addition sources with corresponding OCI and EQI 

Figure 7.5 (A) MA and CA in R-A2O process (B) Comparison of EQI and OCI (C) Comparison 

of pollutant removal 
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7.2.3 Control of DO in the presence of metal and carbon additions 

With the feedback controllers for maintenance of DO and SNO, there is no significant effect on the 

effluent quality in the R–A2O process. Whereas, it is not possible to control SNO as no internal 

recycling is available to maintain the nitrification rate. The application of DO control schemes of 

the last three aerobic reactors with metal and carbon addition is depicted in Fig.7.6 (A). It is noticed 

that the average composition of P is largely influenced by DO which is directly proportional to the 

formation of orthophosphates which leads to the P. DO setpoint 2 gO2/m
3 is regulated by 

manipulating the set point of KLa5, KLa6, and KLa7 in the last three reactors. Identified models for 

controller design are reported in Appendix E. In this scheme, three PI control strategies are 

designed independently with model-based data. The system identification technique is used to 

develop linear models for both the loops with open-loop data. For this, 10% of random signals of 

variance with the value of KLa5, KLa6, and KLa7 of 325, 222, and 120 m3/d respectively are given in 

the DO. Additionally, metal and carbon source dosages are added to check how the EQI and OCI 

will impact the process and the corresponding layouts and tables are given in appendix E3.   

In the DO application, ammonia & TN removal efficiency is very good but it is contradictory 

towards phosphorous removal is tabulated in the appendix E3. Fig.7.6 (C) depicts that ammonia is 

very low while maintaining the setpoint 2 gO2/m
3 for DO in the last three reactors. If the DO 

setpoint is considered as 1,1 and 2 gO2/m
3 (DO(1,1,2)), then improved results are obtained when 

compared to DO(2,2,2) Control.  DO Control application with CA shows better removal of TN 

and ammonia. Moreover, MA is accountable for the better P removal as depicted in Fig.7.6(C). 

Fig.7.6(B) depicts the DO(2,2,2) control showing the higher aeration energy usage and increased 

EQI and OCI which is contradictory when compared to DO(1,1,2). In addition to both MA and 

CA and on maintaining the mass (1000 and 400 kgCOD/d) with DO(1,1,2) application, it shows 

high nutrient removal efficiency with high OCI. For the Appendix E from Figs. E1, E2, and E3 

represent the three DO control applications, three DO control applications with metal and carbon 

addition. Appendix Table E3 represent the average effluent data with three DO control strategies 

with additional carbon and metal addition in R-A2/O. 
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(A) Combined metal and carbon addition sources with three DO control loops 

 

(B) Three DO control loops and addition of carbon and metal dosages of OCI and EQI 

 

(C) Pollutant removal with three DO control loops and addition of carbon and metal dosages 

Figure 7.6 (A) Three DO control loops and addition of carbon and metal dosages layout (B) 

Comparison of EQI and OCI (C) Comparison of pollutant removal 
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7.3 Overall comparative analysis on MA, CA, and DO control application 

The overall comparisons of R-A2/O, CA, MA, and control applications are given in Table 7.3. 

From Table 7.3, it can be observed that the application of three DO control loops with the addition 

of CA and MA shows better EQI and slight variations in OC. DO(1,1,2)+MA and CA application 

leads to less operational cost.  

 Table 7.3 Overall comparative analysis with carbon, metal additions, and DO control loops 

Average 

concentration 

Open loop 

(R-A2/O) 

CA 

1(m3/d) 

MA 

1(m3/d) 

MA and CA 

1 (m3/d) 

DO1,1,2  + MA 

and CA 

SNH 4.73 5.40 4.82 2.30 1.64 

TSS 17.13 21.59 17.18 18.57 17.42 

TN 15.68 15.62 15.76 15.33 14.68 

TP 3.88 1.82 1.47 1.47 1.51 

COD 48.51 52.47 48.64 50.21 49.03 

BOD5 2.74 3.42 2.76 3.08 2.79 

Carbon added 0 400 0 400 400 

Metal added 0 0 1000 1000 1000 

IQI 56766.9 56766.9 56766.9 56766.9 56766.9 

EQI 5220.01 4459.64 4260.20 4289.83 4066.39 

Performance plant assessment 

SP 3518.43 3839.19 3490.33 3609.14 3548.74 

AE 2843.73 2843.73 2843.73 2843.73 2870.17 

PE 315.13 315.13 315.13 315.13 323.45 

ME 489.96 489.96 489.96 489.96 489.96 

OCI 19695.1 22096.03 21049.85 23051.29 22546.10 

Percentage of violations (%) 

TP 62.20 23.36 ---- 0.744 11.01 

TN 10.26 11.60 11.75 7.73 11.60 

SNH

 
58.48 61.54 58.69 61.30 ----- 
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(A) TP concentration 

 

(B) TN concentration 

 

(C) Ammonia concentration 

Figure 7.7 Overall comparative analyses on carbon, metal, and control loop applications with 

Ammonia, TN, and TP concentrations 
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Maintaining the DO setpoint range affects the economy in the aeration and pumping energy and 

the DO rate is also largely affecting the ammonia and it is almost negligible in the percentage of 

the violation. Different combinations of these applications with nutrient removal (TN, TP, and 

ammonia) are depicted in Fig.7.7 (A) (B) and (C). DO is responsible for high phosphorus violations 

but the addition of CA+MA causes the impact with efficient removal of TN and TP. On comparing 

the percentage of violations between R-A2/O (open loop) and R-A2/O with DO(1,1,2)+MA and 

CA, TP removal is improved by 82.3%. EQI is improved by 22.2% with an increased OCI of 

12.6%. 

7.3.1 Effect of temperature on the kinetic parameters 

In this temperature analysis, three temperatures (10, 15, and 20oC) are tested with respect to kinetic 

parameters. Hereby mainly targeting the autotrophic, heterotrophic, and ploy accumulating 

organisms, hydrolysis the growth and decay rates are changed based on their temperature. The 

kinetic parameters by varying temperature are mentioned in Henze et al. (2000); Gernaey et al. 

(2004). At 10oC the results showed high violations and average pollutant concentration of 

ammonia, TN, and TSS where the microbes are functionally inactive for this particular 

temperature.  

From Table 7.4, on comparing the two temperatures at 15 and 20oC at the same data profiles, both 

EQI and OCI are good at 20oC. As far as violations and average pollutant concentrations, nutrient 

removal efficiencies are better at 20oC on comparing with 15oC. The percentage of violations 

shows TP and TN removal efficiencies are contradictory in the range of 15 and 20oC. On the other 

hand, ammonia is negligible at temperature 20oC. 

Table 7.4 Changing of temperature with respect to kinetic parameters 

Parameters 10oC 15oC 20oC 

SNH 12.22 4.73 2.55 

TSS 20.16 17.13 16.02 

TN 21.22 15.68 9.91 

TP 3.16 3.88 2.39 

COD 51.54 48.51 46.44 

BOD5 3.40 2.74 2.03 
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7.4 Summary 

In this chapter, the comparative analysis on A2O, R-A2O, and I-A2O are tested and it is found that 

R-A2O shows the optimized results in OCI with slight high EQI. Hence, R-A2O is taken as a 

benchmark and tested with different applications like carbon loading, metal loading, and control 

approaches to know how it will impact the EQI and OCI. It is noticed that the increase of metal 

and carbon dosages leads to lower EQI and higher OCI with better removal of nutrients. On 

comparing effluent quality (EQI) and operational cost (OCI), the R-A2O process shows a low OC 

of 4.2% in comparison with A2O with improved TP removal of 32.2%. The combination of both 

metal and carbon loading simultaneously in the process shows better efficient nutrient removal. 

The combination of DO control with metal and carbon additions resulted in optimized results in 

terms of EQI and nutrient (TN, TP, and ammonia) removal. EQI is improved by 22.2% with an 

increased OCI of 12.6% in comparison with the open-loop. Furthermore, the temperature is tested 

with three different ranges like 10, 15, and 20oC with respect to changing kinetic parameters. These 

temperature analyses are tested with the same influent profile at 20oC representing the best nutrient 

removal efficiency with lower operational cost.  

 

 

 

IQI 56776.9 56776.9 56776.9 

EQI 6802.34 5220.01 4871.88 

Performance plant assessment 

SP 3773.38 3518.43 3112.94 

OCI 20696.09 19695.14 17769.59 

Percentage of violations (%) 

TP 60.74 62.20 40.47 

TN 96.27 10.26 25.59 

SNH 100 58.48 ---- 

TSS 1.78 ---- ---- 
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Chapter 8 

Effect of temperature in biological wastewater treatment plants  

The effect of temperature on the phosphorous, nitrogen, and organic matter removal in an activated 

sludge system (ASS) is assessed in this research. Benchmark Simulation Model No.1 (BSM1-P) 

with an ASS (ASM3bioP) is used and the temperature is chosen between 10°C to 35°C. The kinetic 

expressions for the maximum growth rate of heterotrophic biomass, autotrophic, and phosphate 

accumulating organisms and their decay rate are considered.  

8.1 Model-based analysis of the effect of temperature on activated sludge process (BSM1-P) 

The analysis of kinetic and stoichiometry parameters is considered to be a key role in optimizing 

the WWTP in terms of modeling, design, and enhancing the improvement of WWTP biologically. 

These parameters are highly dependent on the temperature and the sensitivity of biomass. In this 

study, the ASM3bioP model is executed in Matlab/Simulink environment by Solon (2015). The 

ASM3bioP model comprises 17 state variables that are related to the stoichiometric and kinetic 

variables to perform all twenty-three processes relating to anaerobic, anoxic, and aerobic decay of 

autotrophs and heterotrophs, growth of autotrophs and heterotrophs, hydrolysis, ammonification, 

and phosphorous uptake. The kinetic and stoichiometric parameters affected by temperature are 

evaluated at different temperatures and are given below equation (8.1) by Gernaey et al. (2014). 

𝜃𝑇 = 𝜃𝑇𝑟𝑒𝑓 . exp((𝑙𝑛 (
𝜃𝑇𝑟𝑒𝑓
𝑧
) /5) . (𝑇 − 𝑇𝑟𝑒𝑓))                                                                         (8.1)     

Where 𝜃𝑇 the parameter value of temperature at T is, 𝜃𝑇𝑟𝑒𝑓 is the measure of the parameter at a 

reference temperature 𝑇𝑟𝑒𝑓 and 𝑧 is the temperature co-efficient. A reference temperature of 20oC 

is considered by Rieger et al. (2002) and the variables are analyzed within the range of 10oC-35oC 

by changing the temperature values. The kinetic parameters selected to investigate the effect of 

temperature coefficients (TC) are given below:   

Maximum heterotrophic growth rate (𝜇𝑚𝐻) 

Maximum autotrophic growth rate (𝜇𝑚𝐴) 

Heterotrophic decay rate(𝑏𝐻) 

Autotrophic decay rate (𝑏𝐴) 

Maximum growth rate of X_PAO (𝑚𝑢𝑃𝐴𝑂) 

Endogenous respiration rate of X_PAO (𝑏𝑃𝐴𝑂) 
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8.1.1 Effect of Temperature co-efficient on effluent quality 

From the literature, it was observed that the kinetic parameters significantly affect the effluent 

quality. It is noted from equation (8.1) that the kinetic parameters strongly rely on the measure of 

temperature co-efficient '𝑧'. Thus, it is imperative to assess the impact of TC in detail. The range 

of '𝑧' chosen for kinetic parameters are: 

𝜇𝑚𝐻, 0.8 <𝑧< 8 

𝜇𝑚𝐴, 0.6<𝑧< 2 

𝑏𝐻, 0.05 <𝑧< 1 

𝑏𝐴, 0.14 <𝑧< 0.3 

𝑚𝑢𝑃𝐴𝑂, 0.7 <𝑧< 2 

𝑏𝑃𝐴𝑂, 0.08<𝑧< 0.6 

 

 

Figure 8.1 Effect of temperature and temperature co-efficient on (A) μmH and (B) μmA 

By varying ‘z’ in these ranges and temperature between 15 – 35oC, simulations are carried out to 

understand the effect of this change on the kinetic parameters like 𝜇𝑚𝐻, 
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𝜇𝑚𝐴, 𝑏𝐻, 𝑏𝐴, 𝑚𝑢𝑃𝐴𝑂, 𝑎𝑛𝑑 𝑏𝑃𝐴𝑂. The corresponding graphs of 𝜇𝑚𝐻 and 𝜇𝑚𝐴 are shown in Fig.8.1 

(A) and Fig.8.2 (B). It is observed that the kinetic parameters have shown the highest values 

between 15 –25°C and then observed decaying until 35°C and 10°C. The kinetic parameters are 

computed for the associating temperature co-efficient using equation (8.1) and the EQI is observed 

for individual values. Table 8.1 represents the effluent quality having both state and composite 

variables when the temperature coefficient is varied between 0.8–8 when the maximum 

heterotrophic growth rate is determined at 25oC. 

8.1.2 Simulation results 

The resultant variations in effluent quality and concentrations of 𝜇𝑚𝐻  𝑎𝑛𝑑 𝜇𝑚𝐴 at various 

temperatures are depicted in Figs. 8.1 (A) and 8.1 (B). Based on this other parameters are also 

found. For different temperatures, at 15oC, the EQI and TP are decreasing but at other higher 

temperature points (23 to 30oC) the EQI and TP are increasing by varying the TC from 0.8 – 8 and 

the corresponding graphs are depicted in Fig.8.2 (A) and (B).  

 

Figure 8.2 Effect of μmA at different temperatures on (A) EQI (B) and Total phosphorus 
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Figure 8.3 Effect of μmH at different temperatures on (A) EQI (B) Ammonia (C) Total nitrogen 

and (D) Total phosphorus 

Effect of  𝜇𝑚𝐴 at different temperatures by varying TC (0.6 to 2) and the corresponding nutrient 

removals are depicted in Fig.8.3(A), (B) (C) and (D). On seeing the graphs, at 15oC, the EQI, 

ammonia, and TN shows higher removal rate at the initial stages but as TC increases the 

corresponding removal rate is also improved. For other higher temperature measures (23 to 30oC) 

the removal rate is initially low but as there is a rise in TC the removal rate decreased. In TP, at 

15oC the removal rate is much less than other temperature measures (23 to 30oC). EQI is directly 

proportional to the nutrient removal rate. So, if the rate of nutrient (C, N, and P) removal rate 

increases, then the EQI is also enhanced. 

Further, corresponding decay rates (bH and bA) are also tabulated in Table 8.1. The effect of 

temperature coefficient for different compositions at various temperatures is depicted in Figs. 8.4 

and 8.5.  Effect of  𝑏𝐻 at different temperatures by varying TC (0.05 to 1) and the corresponding 

nutrient removals are depicted in Fig.8.4(A), (B) (C) and (D). On seeing the graphs, at 15oC, the 

EQI, ammonia, and TN show a higher removal rate at the initial stages but as TC increases the 
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corresponding nutrient removal is improved. For other higher temperature measures (23 and 25oC) 

the removal capacity is initially low but as there is a rise in TC the nutrient removal is enhanced. 

On the other hand, at 28 and 30oC show lower nutrient removal rate is noticed on comparing with 

other temperatures.  

Table 8.1 Effect of 𝑧 on EQI when 𝜇𝑚𝐻 is evaluated at 25°C 

Tem co-

eff 0.8 1 1.5 2 3 4 5 6 7 

 

8 

Variables State variables  

SO 1.99 1.99 1.98 1.9799 1.989 1.9894 1.977 1.9747 1.9592 1.94 

SS 0.13 0.13 0.135 0.1345 0.1339 0.1334 0.133 0.133 0.1328 0.131 

SI 30 30 30 30 30 30 30 30 30 30 

SNH 0.36 0.36 0.372 0.3765 0.36931 0.3711 0.3781 0.3728 0.3756 0.378 

SNO 9.71 9.7 9.68 9.6896 9.6859 9.7084 9.7383 9.737 9.75 9.78 

SN2 35.76 35.76 35.81 35.81 35.82 35.79 35.768 35.79 35.8004 35.82 

SPO4 5.006 5.05 5.2 5.285 5.41 5.49 5.5577 5.6133 5.6557 5.68 

Salk 3.57 3.57 3.57 3.5697 3.56 3.56 3.5619 3.56 3.55 3.37 

XI 6.48 6.45 6.42 6.5103 6.45 6.544 6.541 6.48 6.499 6.52 

XS 0.087 0.08 0.08643 0.0863 0.08616 0.08737 0.087 0.087123 0.08721 0.08727 

XH 3.12 3.141 3.2 3.228 3.25 3.3347 3.3529 3.344 3.35 3.36 

XSTO 0.0033 0.00433 0.00708 0.01032 0.01816 0.02812 0.0391 0.050988 0.06426 0.06722 

XPAO 2.9 2.85 2.8 2.77 2.728 2.7043 2.67 2.6735 2.6696 2.692 

XPP 0.35 0.35 0.346 0.342 0.3369 0.33384 0.3292 0.3296 0.32878 0.3299 

XPHA 0.1 0.0999 0.0958 0.0934 0.09037 0.08428 0.0873 0.0863 0.08535 0.0851 

XA 0.39 0.394 0.39 0.3916 0.3934 0.3946 0.3946 0.396 0.39514 0.3945 

XTSS 12.2 12.24 12.23 12.26 12.27 12.136 12.136 12.158 12.1464 12.131 

Composite variables  

TKN 1.32 1.31 1.32 1.326 1.31 1.32 1.33 1.323 1.33 1.33 

TN 11.03 11.02 11 11.016 11.002 11.033 11.06 11.0614 11.08 11.085 

TP 5.52 5.56 5.7 5.78 5.9067 5.98 6.0426 6.098 6.13 6.16 

COD 43.23 43.16 43.14 43.21 43.14 43.29 43.26 43.2 43.2 43.2 
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BOD5 1.36 1.35 1.35 1.35 1.34 1.36 1.35 1.3552 1.35 1.35 

EQI 15969.0 15961.1 15826.5 15728.8 15753.7 15792.8 15800.9 15725.2 15747.6 15849.2 

 

 

Figure 8.4 Effect of bH at temperatures on (A) Total phosphorus, (B) EQI (C) COD, and (D) 

Dissolved oxygen 

Effect of 𝑏𝐴 at different temperatures by varying TC (0.14 to 0.3) and the corresponding nutrient 

removals are depicted in Fig.8.5 (A), (B) (C) and (D). On seeing the graphs of TP and ammonia, 

at 15oC TN and ammonia increasing linearly with respect to TC. But remaining temperature 

measures TN and ammonia is achieved better removal rate and independent on TC. By observing 

the graphs Fig.8.5 (A), and (C) reported that at 30oC, TN and ammonia achieved a better removal 

rate. Moreover, TP and EQI are enhanced in the case of lower temperatures and worsened at higher 

temperatures. Maximum decay and growth rate of X_PAO of resultant variations of effluent 

quality and concentrations at various temperatures are depicted in Figs.8.6 and 8.7 Effect of 𝑚𝑢𝑃𝐴𝑂  

at different temperatures by varying TC (0.7 to 2) and the corresponding nutrient removals are 

depicted in Fig.8.6 (A), (B), and (C). From Fig.8.6 (A) and (B). It was noticed that at 15oC the EQI 

and TP are initially showing improved removal rate, as TC increases the removal rate decreases. 
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Furthermore, at higher temperatures, the removal rate shows a parabolic path with respect to TC. 

On the other hand, TN is enhanced in the case of higher temperatures and worsened at lower 

temperatures. 

 

Figure 8.5 Effect of bA at temperatures on (A) Total Nitrogen, (B) Total phosphorus (C) 

Ammonia, and (D) EQI 

Effect of 𝑏𝑃𝐴𝑂 at different temperatures by varying TC (0.08 to 6) and the corresponding nutrient 

removals are depicted in Fig. 8.7(A), (B), (C) and (D). It was noticed that at 15oC the EQI and TP 

are initially showing improved removal rate, as TC increases the removal rate decreases. At higher 

temperatures, it is observed that the EQI and TP are initially showing a lower removal rate. As TC 

increases the TP and effluent quality is improved. In the DO, the consumption is decreased as TC 

increases at lower temperature measures, and in higher cases, the consumption DO is increased on 

increasing TC. On the other hand, TN is enhanced in the case of higher temperatures and worsened 

at lower temperatures.  



141 
 

 

Figure 8.6 Effect of muPAO at different temperatures (A) EQI, (B) Total phosphorus, and (C) TN 

 

Figure 8.7 Effect of bPAO at different temperatures (A) Total Nitrogen, (B) Total phosphorus and 

(C) Dissolved oxygen, and (D) EQI 
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8.1.3 Detail comparison of each individual pollutant concentrations  

The impact of  𝜇𝑚𝐻 on the quality of the effluent with varying temperature co-efficient is depicted 

in Fig.8.2. 𝜇𝑚𝐻 is highly dependent on how the wastewater is treated and hence a huge range of 

results are noticed in the publications. Moreover, they are related to the structure of the reactor 

where the growth of biomass is happening. Additionally, it is noticed that the TP increases with 

the rise of temperature co-efficient and eventually leads to a rise in EQI. 

The effect of 𝜇𝑚𝐴 on the quality of effluent with different temperature coefficients is depicted in 

Fig.8.3. It impacts mainly SNH, TN, TP, and EQI. Here the Kinetic parameter 𝜇𝑚𝐴 play a key role 

to regulate the SRT at which the nitrifying bacterium is terminated. Generally, nitrification is 

carried out as a single-stage process, and it is relevant to the usage of 𝜇𝑚𝐴 related to the removal 

of nitrogen-ammonia in the design. The effect of 𝜇𝑚𝐴 in the effluent quality and concentrations of 

resultant variations of various temperatures are depicted in Appendix Table F2. The effect 𝑏𝐻 on 

the quality of effluent with different temperature coefficients is depicted in Fig. 8.4. As the 

temperature increases, the corresponding state and composite variables also increases. The 𝑏𝐻 

effects almost all state and composite variables namely COD, TP, SO, and EQI. It is crucial to 

investigate 𝑏𝐻 owing to its enormous impact on the estimated cell area for a particular SRT.  

The effect of 𝑏𝐻 in the effluent quality and concentrations of resultant variations of various 

temperatures are depicted in Appendix Table F1. Fig.8.5 depicts the effect of 𝑏𝐴 in the quality of 

effluent with different temperature coefficients. The 𝑏𝐴 rate effects mostly in TN, TP, SNH, and 

EQI. Biomass activity is terminated because of a critical effect on the ASP in a stable process. 

Aerobic and anoxic endogenous respiration causes biomass loss and requirements of energy not 

used for growth. The effect of 𝑏𝐴 in the effluent quality and concentrations of resultant variations 

of various temperatures are depicted in Appendix Table F3. 

The effect of 𝑚𝑢𝑃𝐴𝑂 in the effluent quality and concentrations of resultant variations of various 

temperatures are depicted in Appendix Table F4. The 𝑚𝑢𝑃𝐴𝑂 rate effects mostly TN, TP, and EQI. 

In the anaerobic section, PAO's incorporate fermentation products into storage products inside the 

cells with the discharge of P from stored Poly-P. In the aerobic section, energy is formed by the 

oxidation of storage products, and hence Poly-P storage inside the cell increases. The biomass 

activity rises owing to the growth of PHB composition as it falls with a rise in poly-p. All this 

leads to the decay of orthophosphate with a decrease in temperature and hence it influences on 

lower production of Poly-P.  
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The effect of 𝑏𝑃𝐴𝑂in the effluent quality and concentrations of resultant variations of various 

temperatures are depicted in the Appendix table figure F5. The 𝑏𝑃𝐴𝑂 rate effect mostly in TN, TP, 

DO, and EQI. Aerobic and anoxic lysis of internal poly-phosphates takes care of the fact that cell 

internal poly-phosphates decay together with the biomass. Hence, the determination of decay rates 

inhabits a key role in the microbial process. Overall, the following observations are made. 

8.1.4 Summary 

✓ On considering 10oC and 35oC as the lower and upper-temperature ranges, at both the 

temperatures, it is observed that the simulation is stopped when stoichiometric parameters 

are reached beyond their limit. 

✓ 𝑏𝑃𝐴𝑂 is estimated with multiple temperature changes within the range of 10°C - 30°C, and 

finally, it is observed that the appropriate temperature ranges to get the simulation results 

is 15oC – 28oC. 

✓ Generally, in phosphorous removal, it is noticed that at very low temperatures (5 to 10oC), 

a higher sludge age is needed because of a decrease in the rate of the kinetic process.  

✓ At (>10oC), the anaerobic metabolism of GAO's, the anaerobic glycogen hydrolysis is 

completed and hence limiting the substrate uptake rate leading to the growth of the GAO's. 

With weather differences or geological areal differences, when the temperature (>25°C) is 

observed, the PAO's are at a lower level than GAO's production.   

8.2 Effect of temperature using BSM1-P model with the fuzzy control application 

The objective of this chapter is to report the effect of temperature (from 10oC to 35oC) on six 

kinetic parameters (growth and decay rates) by using the modified Arrhenius relation for the 

temperature dependency with the addition of a fuzzy controller (FLC) to monitor the effluent 

quality (EQI) and operational cost (OCI) in Wastewater treatment plants. A Benchmark simulation 

model (BSM1-P) is used to design the FLC, in order to check the plant performance and effluent 

quality that is affected by changing temperature. Two control loops like dissolved oxygen and 

nitrate are used by manipulating oxygen mass transfer coefficient and internal recycle in seventh 

and fourth reactors 

8.2.1 Effect of temperature on activated sludge system 

The analysis of kinetic and stoichiometry parameters is considered to be a key role in optimizing 

the WWTP in terms of modeling, design, and enhancing the improvement of WWTP biologically. 
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These parameters are highly dependent on the temperature and the age of biomass. A study state 

simulation is done on ASM3bioP as bioprocess and COD state fractions are used as an influent 

composition for analysis. ASM3bioP model has 17 state variables, which are related to 

heterotrophic and autotrophic decay and growth rates, hydrolysis, and bioP removal processes. 

Temperature dependencies have different biological kinetics and this is compensated for by 

interpolating the kinetic parameters to various temperatures. BSM1-P framework is used to 

analyze to base the change of temperatures concerning kinetic parameters. The kinetic and 

stoichiometric parameters affected by temperature are evaluated at different temperatures and the 

model used for the analysis is given in the below equation (8.2) (Copp JB, 2002; Gernaey et al., 

2014). The kinetic parameters selected to investigate the effect of temperature coefficients are 

given below. The temperature changes concerning kinetic parameters are analyzed using equation 

(8.2). The six estimated kinetic parameters with the change of temperatures are presented in Table 

8.2. 

αT = αT15 . exp((ln (
αT15
αT10

)/5) . (T − 15))                                                                                               (8.2)     

Where αT the considered parameter temperature (T) value and αT15, αT10is the defined benchmark 

parameter values at 10 and 15oC (Henze et al. (2000); Gujer et al. (2000); Gernaey et al. (2004); Riger 

et al. (2001), Solon (2015)).  

Maximum heterotrophic growth rate (μmH) 

Maximum autotrophic growth rate (μmA) 

Heterotrophic decay rate(bH) 

Autotrophic decay rate (bA) 

Maximum growth rate of X_PAO(muPAO) 

Endogenous respiration rate of X_PAO(bPAO) 

Table 8.2 Kinetic parameters with respect to temperature changes 

Temperature Kinetic parameters in the change of temperature from the equation. 8.2 

Range (oC) μmH bH μmA bA muPAO bPAO 

10 1.33457 0.133457 0.900144 0.450482 2.971301 1.803199 

15 2.00093 0.200093 0.810584 0.298365 1.722885 0.600233 

20 3 0.3 1 0.2 1 0.2 
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23 3.82520 0.382521 1.065027 0.157326 0.726149 0.103474 

25 4.49790 0.449791 1.110711 0.134064 0.580422 0.066641 

30 6.74372 0.674372 1.233678 0.088794 0.336553 0.022183 

35 10.1108 1.011088 1.370259 0.059164 0.19593 0.007451 

 

8.2.2 Design and implementation of fuzzy logic controller 

In practical usage, the most frequently used control configurations using the specified control 

handles are: 

DO control in aeration tank: In practice, DO is maintained in the range of 1.5-2 g/m3set point 

by the operator. DO of 2 g/m3 is required to provide maximum growth rate and if 1.5 g/m3 is 

maintained the non-desirable reactions for the microbial growth terminate. KLa is accountable for 

the usage of DO concentration (Amand et al., 2013). If it is more than the 2 g/m3 in aeration it will 

lead to more cost but there is no drastic change of effluent quality and is similar to the results of 2 

g/m3. 

SNO control in the anoxic tank: Qintr is responsible for the SNO concentration in closed-loop usage. 

In general, BSM1 uses a 1 gN/m3 for the set point. For other sources like carbon dosages (Qc) are 

also regulate SNO concentration. Generally, in practice, open-loop control of SNO is evaluated by 

choosing the suitable values of Qintr and Qc. 

The control applications of WWTP are concentrated on the governing of AS process variables 

although the correlations of internal and external recycle rates, the effect of influent variations 

must be studied to obtain the optimized process operations from a global point of view. Here, in 

this paper, the controls that handle the ASP processes are the air diffusion rate in the aeration tank 

and the internal recycle rate as manipulated variables. The oxygen mass transfer coefficient (KLa) 

is accountable for the air flow rate; it depends on the dynamics of diffusion phenomena. For classic 

FLC, the control model is the way of the human knowledge base. FLC consists of three sections. 

In the primary section, MF’s are fuzzified with input values to get Fuzzification. After, by using 

predetermined rules, fuzzy inputs and outputs are connected then the outputs are determined by 

using the inference mechanism. The third section is to initiate strict output values in a computed 

way and is called defuzzification. The membership functions of DO for output and input functions 

are depicted in Fig. 8.8.  
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FLC with applications of BSM1-P with three mechanisms blocks is depicted in Fig. 8.9. Here in 

the FLC, the input variables are considered as the feedback error ‘E’ and high-order error ‘ED’. 

Consequently, the output variables are considered as manipulating variables in the control 

configuration. Hence, FLC for the design of the DO loop the input variable is selected as the mass 

transfer coefficient (KLa), and for the design of the SNO loop; the input variable is selected as the 

internal recycle (Qintr). On coupling, both these outputs and input, the membership function (MF) 

has to be selected. In this study, Mamdani fuzzy interface method is chosen and MF’s are selected 

as a triangular shape functioning. Based on the simulation data, the usage of a rules-based system 

is obtained before developing the FLC framework.  

In the last aeration tank, the ‘E’ input variable scale is maintained from -30 to 30 g/m3 and the 

‘ED’ input variable scale is maintained from -25 to 25 g/m3. The output variable scale of KLa in 

the last reactor is 200 to 280 d-1. Further, in the second anoxic tank, the input variable scale of ‘E’ 

is maintained from -30 to 30 g/m3 and ‘ED’ of the input variable scale is maintained from -25 to 

25 g/m3. The scale of the output variable of Qintr is 20100 to 45000 1/d. A total of seven MF are 

chosen for each individual and NL, NI, NS, Z, PS, PI, and PL where N, Z, P, L, I, and S are 

negative, zero, positive, big, medium, and small. Similarly, MF’s of SNO is also selected. The 

coupling of DO and SNO fuzzy logic consists of 74 rules are implemented by the usage of IF-THEN 

statement conditions. The Fuzzy rules of both DO and SNO are elucidated in Tables 8.3 and 8.4. 

The membership functions of input and output data of DO are depicted in Fig. 8.8 (A), (B), and 

(C).  

 

 

Table 8.3 Selection of DO rules for FLC Table 8.4 Selection of  nitrate (SNO) rules  

 NL NI NS Z PS PI PL 

NL PL PL PL PL PI Z Z 

NI PL PL PL PL PI Z Z 

NS PI PI PI PI Z NS NS 

Z PI PI PS Z NS NI NI 

PS PS PS Z NI NI NI NI 

PI Z Z NI NL NL NL NL 

PL Z Z NI NL NL NL NL 

 

 NL NS Z PS PL 

NL PL PL PL PS Z 

NS PS PS PS Z NS 

Z PS PS Z NS NS 

PS PS Z NS NS NS 

PL NS NL NL NL NL 
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(A)  MF of error of tank 7 for DO 

 

(B) MF of differentiation of error of tank 7 for DO 

 

(C) MF of KLa7 in tank7 

Figure 8.8 MF’s of input and output data of DO in tank7 by using KLa7 
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Figure 8.9 Fuzzy logic control of BSM1-P platform 

8.2.3 Simulation results  

Simulations are performed by varying the temperature from 15 to 35oC and the results are 

analyzed. In this temperature range, at 10 and 35oC, the effluent quality and nutrient removal 

efficiency are not good. This is due to the inert nature of microbial growth. Microbes that are 

responsible for the nitrification rate (nitrifiers) and Phosphorus uptake rate (PAO’s) are nearly 

cease functioning. Improved removal of ammonia, phosphorus, and nitrogen efficiency is achieved 

at higher temperatures (20-30oC). Based on the kinetic parameters, a higher P-release rate with 

higher temperatures is reported. Furthermore, at higher temperatures, the kinetic parameters of 

growth (Autotrophic, PAO, and heterotrophic) and the consumption of substrate rates are also 

increased. Overall, it has an impact on effluent discharge. The simulation outcomes of 15 to 30oC 

are tabulated in Table 8.5. From Table 8.5, it can be observed that BOD5 and TSS range is 
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increased on increasing temperature which is inversely proportional to TP, TN, ammonia, and 

COD. In the global index context, sludge production increases on increasing temperature which 

leads to high operational costs. OCI increases on increasing temperature with lower effluent 

quality with the application of FLC. A bar chart is plotted to describe the effluent quality and cost 

when the temperature changes from 15oC to 30oC and is depicted in Fig. 8.10. The effluent 

violations data for TN, ammonia, and TP from the last seven days are given in Fig.8.11 (A), (B), 

and (C). It can be observed that as the temperature increases, the effluent quality decreases with 

increased operational cost.  

From Table 8.5, it was noticed that as temperature increases from 15oC to 30oC the consumption 

of aeration energy is slightly increased with respect to increased temperature. Additionally, here 

in this case of the control study, the sludge production is increased on increasing temperature. 

Overall the effect of both these sludge production and aeration energy will impact largely in the 

OCI. Moreover, a significant improvement in EQI with an increase in OCI is noticed. On 

comparing the EQI at 15oC with other temperature ranges, evaluations in terms of improved 

percentage of EQI are reported. At the temperatures of 20, 23, 25, 30oC, improved EQI’s are 

reported as 16, 58, 68, and 72%. On the increasing temperature, there is a drastic improvement in 

EQI, but there is no improved response of EQI ongoing above 30oC. Further, EQI worsens when 

compared to 15oC. On comparing with OCI of 15oC with temperature changes, evaluations in 

terms of percentage of OC are reported. At the temperatures of 20, 23, 25, 30oC the OCI’s of 5.1, 

10.8, 13.5, and 16.8% are reported. As temperature rises the OCI also increases. Further, as EQI 

improved there is an increase in OCI, and find there is a tradeoff between OCI and EQI.  

From Table 8.5, it was observed that on increasing temperature from 15 to 30oC there is a slight 

change of COD and BOD5. There is no drastic impact on these pollutants on changing temperature 

concerning kinetic parameters. On the other hand, other pollutants are drastically impacted. On 

seeing the TP, SNH, and TN at 15 and 30oC, the percentage of improvements are noticed as 83.4, 

87.5, and 40%. The temperature ranges from 20 to 25oC are increased with deceased nutrient 

concentrations. Additionally, the percentage of nutrient (TP, SNH, and TN) violations show large 

variations at 15oC but in the case of 30oC there is no violation found to cross the discharge limit 

value. Whereas TP is observed above the limit value (100%) at 15oC, but at 30oC the TP violation 

is significant with a nil percentage of the violation. Not only TP but also ammonia and TN are also 

reported nil percentage of the violation. Thus, it will impact the significant improvement in EQI. 
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Figure 8.10 Bar graph on different temperatures with corresponding sludge production, aeration 

energy, operational cost, and effluent quality 

 

(A) Ammonia in the effluent 

 

(B) TN in the effluent 
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(C) TP in the effluent 

Figure 8.11 Comparison of SNH, TN, and TP for different temperatures with FLC 

Table 8.5 Average effluent concentrations and operational cost index 

Pollutants Temperature changes with additional fuzzy controller 

Parameter 15oC 20oC 23oC 25oC 30oC 

BOD5 1.64 1.6 1.66 1.68 1.9 

TP 7.45 5.21 2.12 1.54 1.232 

SNH 7.29 4.12 2.78 1.508 0.912 

XTSS 12.92 13.17 13.97 13.92 14.32 

TN 18.14 14.44 12.41 11.55 10.88 

COD 44.71 44.39 44.21 44.13 44.08 

Operational cost assessment 

SP 2531.84 2715.49 2951.23 3067.05 3240.41 

AE 4262.09 4265.45 4267.57 4275.74 4289.79 

PE 295.44 295.99 296.09 295.03 295.66 

ME 480 480 480 480 480 

EQI 20142.52 16781.05 8377.55 6255.26 5600.21 

OCI 16529.35 17423.7 18538.02 19129.11 19873.7 

Percentage of violations (%) 

TP 100 82.44 18.30 1.286 --- 
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TN 57.29 9.22 2.52 ---- --- 

SNH 77.04 39.43 12.64 5.506 ---- 

 

8.2.4 Summary 

Microbial behavior on the removal of phosphorous and nitrogen in an enhanced biological 

phosphorous removal process is studied at different temperatures. In this work, six kinetic 

parameters have been selected that deal with decay and growth rates of heterotrophic, autotrophic, 

and poly accumulating organisms by changing the temperature using the modified Arrhenius 

formula. While changing the kinetic parameters on the basis of temperature, additionally coupled 

SNO and DO control loops are designed using fuzzy logic. For 10°C–35°C the microbes are inert 

as there is no response on the EQI and effluent violations. It can be observed that as the temperature 

increases, the EQI increases with increased OCI. On the other hand, the average pollutant 

concentrations like BOD5 and XTSS are slightly increased with increasing temperature, and 

mixing energy turned out to be a constant in all the cases because no changes happen in the mixing 

energy. At the temperatures of 20°C, 23°C, 25°C, and 30°C, the EQI is improved by 16%, 58%, 

68%, and 72%, respectively. On the increasing temperature, there is a drastic improvement in EQI 

(low EQI value), but if the temperature is further improved (more than 30°C), then there is no 

improvement on the EQI. Further, EQI worsens when compared to the conditions at 15°C. 

Similarly, OCI is evaluated at different temperatures and is evaluated in terms of percentages. 

When the WWTP is operated at the temperatures of 20°C, 23°C, 25°C, 30°C, the corresponding 

OC improvement is obtained as 5.1%, 10.8%, 13.5%, and 16.8%, respectively. From 15°C to 30°C, 

there is a tradeoff between EQI and OC. On the comparison of temperature changes with additional 

FLC, it is observed that a better EQI is observed but with high OC at 30°C. Other pollutants like 

BOD5, TSS, and COD are not affected severely by the temperature. 

8.3 Effect of temperature in plant-level (BSM2-P) wastewater treatment process 

In this chapter, the effect of temperature on phosphorous, nitrogen, organic matter removal, overall 

effluent quality, methane, and hydrogen production in an activated sludge system (ASS) is 

assessed in this research. For the plant-wide model of the ASS, the benchmark Simulation model 

(BSM2-P) with an ASS (ASM2d) is used and the temperature is selected between 10 to 35°C 

covering different seasons. A steady-state simulation is achieved to evaluate the effluent 
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compositions by changing kinetic parameters. A total of twelve kinetic expressions for the 

maximum growth rate of heterotrophic biomass, autotrophic, phosphate accumulating organisms 

and their decay rates, oxygen saturation, hydrolysis, fermentation, and oxygen saturation 

coefficient, oxygen mass transfer coefficients are also considered. Further, the anaerobic digestion 

model (ADM1) is also used with changing Physico-chemical parameters which are functions of 

temperature. The corresponding physicochemical parameters are analyzed in the range of 25 to 

55°C. A total of seven Physico-chemical kinetic expressions for the acid-base equilibrium gases 

are considered which includes Henry’s law coefficient for carbon dioxide, methane, hydrogen, and 

partial pressure of water. 

8.3.1 Effect of temperature on oxygen mass transfer coefficient, and oxygen saturation 

coefficient changes 

Temperature is known to affect the wastewater treatment process, primarily by affecting chemical 

and biological reaction rates. Temperature changes are thought to be the cause of biological 

activity. As a result, some model parameters are considered to be temperature-dependent to 

account for this. More subtle effects, such as microbes’ culture changes may lead to a higher risk 

of bulking during certain seasonal conditions. This shows more attention towards the research 

community. The effects of temperature are measured using the Arrhenius relationship at Gernaey 

et al. (2014). The following equation can be used to change temperature-sensitive parameters in 

the default case. Based on the above equation (8.2, 8.3, and 8.4) the nine kinetic parameters 

(hydrolysis, decay, growth rates of autotrophic, heterotrophic, and ploy accumulation organisms), 

KLa and  SO
satu are computed based on the temperature changes by Gernaey et al. (2014). 

Temperature influences aeration efficiency and consequently energy utilization through KLa 

and SO
satu. The oxygen solubility relies on temperature-dependent, increasing as the temperature 

drops. The  SO
satu is valid in the range of 273.15 K to 348.15 K.  

SO
satu(T) =

8

10.50237016
∗ 6791.5 ∗ K(Tk)                                                                                (8.3) 

K(TK) = 56.12e
−66.7354+

87.4755

T∗
+24.4526∗ln (T∗)

 and T∗ = Tk 100⁄ . The term 8/10.50237016 is 

denoted as  SO
satu value at 15oC is exactly 8 g/m3. Further, the temperature affects the KLa. The 

following is the widely accepted relationship between the KLa and temperature, as presented by 

ASCE (1993): Here KLan in day-1 and T in degree centigrade. 
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KLa(T) = 1.024
(T−15) ∗ KLa15                                                                                                       (8.4) 

The kinetic parameters chosen to examine the effect of temperatures are given below in Table 8.2. 

The twelve estimated kinetic parameters, KLa and SO
satu with change in temperatures are presented 

in Table 8.2. 

Table 8.6 Kinetic parameters, KLa and  SO
satu as temperature changes 

Kinetic parameters 10oC 15oC 17oC 20oC 23oC 25oC 28oC 

Hydrolysis rate 2 2.46 2.67 3 3.42 3.72 4.21 

Maximum growth rate 

heterotrophic 

3 4.23 4.85 6 7.32 8.40 10.33 

Maximum rate of 

fermentation 

1.5 2.11 2.41 3 3.64 4.17 5.12 

Decay rate 

Heterotrophic 

0.20 0.28 0.32 0.40 0.47 0.54 0.67 

Storage rate constant 

for XPHA 

2 2.46 2.67 3 3.42 3.72 4.21 

Storage rate constant 

for XPP 

1 1.23 1.33 1.5 1.71 1.86 2.10 

Maximum growth rate 

of PAO 

0.67 0.82 0.88 1 1.13 1.22 1.38 

Lysis rate of XPAO 0.10 0.14 0.16 0.20 0.24 0.27 0.33 

Lysis rate of XPP 0.10 0.14 0.16 0.20 0.24 0.27 0.33 

Lysis rate of XPHA 0.10 0.14 0.16 0.20 0.24 0.27 0.33 

Maximum growth rate 

autotrophic 

0.35 0.61 0.76 1.0 1.48 1.85 2.58 

Decay rate autotrophic 0.05 0.09 0.11 0.15 0.23 0.29 0.41 

 𝐒𝐎
𝐬𝐚𝐭𝐮 8.9 8 7.6 7.2 6.8 6.6 6.34 

KLa 

(KLa5 in the reactor 5) 

(KLa6 in the reactor 6) 

(KLa7 in the reactor 7) 

KLa5-106 

KLa6-106 

KLa7-53 

KLa5-60 

KLa6-120 

KLa7-120 

KLa5-63 

KLa6-126 

KLa7-126 

KLa5-67 

KLa6-135 

KLa7-135 

KLa5-72 

KLa6-145 

KLa7-145 

KLa5-76 

KLa6-152 

KLa7-152 

KLa5-81 

KLa6-163 

KLa7-163 
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8.3.2 Simulation results  

Simulations are performed by varying the temperature from 10 to 28oC and the results are 

determined based on the seasonal conditions. In this paper, two performance platforms are used to 

test the temperature effect on the plant-wide benchmark model of BSM2-P. The results are based 

on the temperature effect on twelve kinetic parameters and KLa and SO
satu which are obtained from 

equations (8.2, 8.3, and 8.4), and the values are reported in Table 8.7. It can be noticed that both 

platforms show similar removal rates but the attained average removal rates are different. At 

temperatures <5 and >30oC, the effluent quality, and nutrient removal efficiency are not good. 

Temperature fluctuations during the year may have a significant impact on the composition of 

microbial communities. Each species has a minimum, optimum, and maximum temperature range 

that supports growth, similar to pH. This is due to the inert nature of microbial growth. Microbes 

that are responsible for the nitrification rate (nitrifiers) and Phosphorus uptake rate (PAO’s) are 

nearly cease functioning.  

On overall comparison, the pollutants like COD, SNH, TN, and BOD5 average removal rates are 

decreased on increasing temperature but at 28oC onwards, these pollutants start decreasing the 

removal rate. Whereas for TSS, an improved removal rate is observed on increasing temperature. 

TP shows an increasing trend in decreasing the temperature. In the BSM2-P platform, the 

improved removal efficiency of SNH, TN, TP, COD, and BOD5 is attained at 17oC, 20oC, 10oC, 

20oC, and 28oC. The attained improved average removal rate efficiency is reported on comparing 

with 15oC for SNH, TN, TP, COD, and BOD5 are 22.2%, 9.7%, 28%,1.7%, and 86.4%. The overall 

EQI and OCI are depicted in Fig. 8.12. As temperature increases, the EQI is also increasing. At 

28oC the OCI is improved by 8.29% but the EQI is increased by 33.9% on comparing with 15oC. 

As the temperature increases from 10 to 15oC in AS system, the average production rates of 

methane, hydrogen, CO2, and average gas flow rates decrease. At 10 and 28oC the average 

production rates are compared at 15oC. The reported production efficiency rates for methane are 

improved by 16.82% at 10oC and worsened by 19.85% at 28oC. The reported production efficiency 

rates for hydrogen are improved by 33.3% and worsened by 30% at 28oC. The reported production 

efficiency rates for CO2 and gas flow rates are improved by 20%, and 16% at 10oC and worsened 

by 45.6% and 28.6% at 28oC.  
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Figure 8.12 OCI and EQI of BSM2-P 

Table 8.7 Average effluent concentrations for BSM2-P as temperature changes due to change in 

kinetic parameters 

Performance assessment of BSM2-P platform 

Average effluent pollutants 10oC 15oC 17oC 20oC 23oC 25oC 28oC 

SNH 0.88 0.09 0.07 0.089 0.09 0.11 0.18 

TSS 35.7 15.3 14.2 12.7 12.03 11.7 11.4 

TN 10.3 6.2 5.7 5.6 6.3 6.6 6.8 

TP 3.2 4.5 5.7 7.6 8.6 9.09 9.6 

COD 60.1 41.3 40.8 40.6 40.7 40.8 41.16 

BOD5 5.3 1.7 1.44 0.9 0.60 0.43 0.23 

Sludge production 4528.7 3867.9 3647.3 3320.1 3154.6 3087.92 3066.9 

Aeration energy 3961.3 4000 3987.4 4052.4 4108.3 4182.9 4314.5 

Pumping energy 452.3 452.3 452.3 452.3 452.4 452.4 452.4 

Mixing energy 1388.3 1058.2 1405.3 954.47 1039.3 1213.1 1059.1 

Heating energy 1667.3 1583.2 1531.4 1457.3 1419.6 1403.6 1388.7 

Methane production 1000.1 856 806.1 745.4 715.3 700.4 686.6 

Hydrogen production 0.004 0.003 0.0029 0.0025 0.0023 0.0022 0.0021 

CO2 production 1542 1232.4 1087.5 879.5 771.9 724.4 670.5 

Average gas flow rate  2603.9 2176.5 2005.4 1778.5 1663 1609.5 1553.8 
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8.3.3 Effect of temperature based on anaerobic digestion model 

Physico-chemical parameter values for the anaerobic digestion model (ADM1) by Batstone al. 

(2002) subjected to temperature change is studied based on the equation (8.5) given below by 

Gernaey et al. (2014): 

βT = g ∗ exp(((h 100)/R⁄ ) ∗ (1 Tb⁄ − 1 Ta⁄ ))                                                                                 (8.5) 

Here, βT is the temperature (Ta) value at parameter, h and g are the temperature coefficients and R 

is the gas constant and Tb is the base temperature of the ADM1. A total of eight Physico-chemical 

parameters are used and studied the temperature effect and the resultant values are given in Table 

8.8. The seven Physico-chemical parameters are KH,co2, KH,ch4 and KH,h2  (Henry’s law coefficient 

for carbon dioxide, methane, and hydrogen, k.mol.m-3.bar-1), Pgas, h2o (partial pressure of water, 

bar), Ka,co2  and Ka,IN (acid-base equilibrium gases for acid, kmol.m-3). ADM1 was created 

primarily to model sludge digestion in WWTPs where the normal process temperatures are 25°C 

or 55°C, which are thought to be suitable for thermo- and mesophilic digestion, respectively. 

Where optimal temperature for biogas production is at 55°C.  

Table 8.8 Physico-chemical parameters as temperature changes 

Parameters Temperature ranges from 25-55oC in the ADM1 

Temperature 25oC 30oC 35oC 40oC 45oC 50oC 55oC 

Kw 1.0*10-14 1.54*10-14 2.08*10-14 2.94*10-14 4.12*10-14 5.72*10-14 7.85*10-14 

Ka,co2 4.46*10-7 4.70*10-7 4.94*10-7 5.17*10-7 5.42*10-7 5.67*10-7 5.92*10-7 

Ka,IN 5.62*1010 7.94*10-10 1.11*10-9 1.53*10-9 2.10*10-9 2.84*10-9 3.82*10-9 

Pgas,h2o 0.0313 0.0419 0.0557 0.0732 0.0955 0.1235 0.1585 

KH,co2 0.0350 0.0308 0.0271 0.0241 0.0214 0.0191 0.0171 

KH,ch4 0.0014 0.0013 0.00116 0.0011 9.75*10-4 8.97*10-4 8.28*10-4 

KH,h2 7.80*10-4 7.58*10-4 7.38*10-4 7.19*10-4 7.01*10-4 6.84*10-4 6.68*10-4 

 

8.3.4 Simulation results  

In this study, it was noticed that AS temperature increases from 10 to 28oC with changing phsyico-

chemical parameters in ADM1 by using the temperature range (25 to 55oC) from the equation. 

(8.5), and the corresponding average methane, CO2 and, hydrogen production values are reported 

in Table 8.9. On comparing with 10 to 28oC of AS temperature, 10oC shows the better production 

rates of methane, hydrogen, and CO2 from other temperatures. Whereas when ADM1 temperature 
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increases from 25 to 55oC, the average production rates are increasing. This is happening for all 

temperature changes for constant temperature of AS from 10 to 28oC. In this case, like temperature 

increases (10 to 28oC) the methane, hydrogen, and CO2 production rates are decreasing. Moreover, 

rating trends are different from each other on constant AS temperature. The average production 

rates with improved efficiencies of methane, hydrogen, and CO2 at 55oC on compared with an 

optimal temperature of 35oC of ADM1 are -0.89%, 57.6%, and 8.8% respectively with the constant 

AS temperature of 10oC and these are tabulated in Table 9.4. The average production rates with 

improved efficiencies of methane, hydrogen, and CO2 at 55oC on compared with an optimal 

temperature of 35oC of ADM1 are -0.01%, 54.1%, and 7.8% respectively with the constant AS 

temperature of 28oC, and these are tabulated in Table 8.9.  

Table 8.9 Average effluent concentrations for BSM2-P with the change of physio-chemical 

kinetic parameters 

Parameter with 

average 

productions, kg 

d-1 

CT*, 

°C 

Temperature, °C (ADM1) 

25 30 35 40 45 50 55 

Methane 

10 

1001.4 1001.9 1002.22 1002.10 1001.49 999.70 992.62 

Hydrogen 0.0032 0.0038 0.0042 0.0047 0.0054 0.0068 0.0099 

CO2 1507.03 1551.48 1591.19 1626.51 1661.00 1697.44 1743.95 

Methane 

15 

849.63 849.57 849.43 849.21 848.85 847.68 843.59 

Hydrogen 0.0029 0.0032 0.0034 0.0038 0.0045 0.0057 0.008 

CO2 1178.49 1231.49 1248.21 1276.84 1305.56 1335.95 1376.04 

Methane 

17 

797.24 797.29 797.24 796.89 796.38 795.29 791.18 

Hydrogen 0.0026 0.0028 0.0031 0.0035 0.0041 0.0052 0.0082 

CO2 1030.42 1062.40 1090.43 1115.01 1139.03 1164.95 1200.91 

Methane 

20 

733.60 733.66 733.66 733.38 732.93 731.77 726.99 

Hydrogen 0.0022 0.0024 0.0027 0.0030 0.0035 0.0046 0.0074 

CO2 818.92 843.27 864.26 882.47 900.39 920.55 952.72 

Methane 
23 

698.22 702.93 703.01 702.83 702.47 701.35 695.95 

Hydrogen 0.0021 0.0022 0.0025 0.0028 0.0033 0.0043 0.0070 
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*Constant temperature in ASM2d model 

8.3.5 Summary 

The improved removal efficiency of SNH, TN, TP, COD, and BOD5 is obtained at 17, 20, 10, 20, 

and 28oC temperatures respectively. The average percentage of removal is obtained as 22.2%, 

9.7%, 28%, 1.7%, and 86.4% respectively for SNH, TN, TP, COD, and BOD5 which is higher when 

compared to the removal rate at 15oC. At higher temperatures (55°C) the ADM1 showed improved 

production efficiency rates for carbon dioxide and hydrogen but at the lower level (25°C) it showed 

lower production efficiency rates. The average production rates of methane, hydrogen, and CO2 at 

55oC are different by -0.01%, 54.1%, and 7.8% respectively when compared at the temperature of 

28oC. 

 

 

 

 

 

 

 

 

 

CO2 722.4 734.94 753.04 768.79 784.51 802.86 833.99 

Methane 

25 

687.92 688.13 688.28 688.16 687.87 686.82 681.32 

Hydrogen 0.0020 0.0022 0.0024 0.0027 0.0032 0.0042 0.0068 

CO2 668.33 688.37 705.57 720.59 735.67 753.50 784.29 

Methane 

28 

672.17 676.24 679.21 681.22 683.11 684.21 679.32 

Hydrogen 0.0019 0.0020 0.0022 0.0024 0.0028 0.0035 0.0048 

CO2 644.2 648.37 665.57 688.59 695.67 705.50 721.29 
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Chapter 9 

Summary and conclusions 

9.1 Summary 

In this thesis, an activated sludge system (ASM3bioP and ASM2d) is used in seven reactor 

configurations (anaerobic/anoxic/oxic) on BSM1-P and BSM2-P to design different control 

strategies. Lower-level control (controlling DO and SNO) is designed by using advanced control 

strategies like PI, MPC, and Fuzzy. Supervisory-level control (ammonia-based aeration control) is 

added to Lower-level control by using the controllers like Fuzzy and MPC. By using four different 

control combinations PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy are implemented. In 

another control, the framework is designed with a pair of PI feedback controllers (Supervisory 

layer, lower layer), override control with an additional three DO controllers. The performances of 

three biological treatment processes in a WWTP (A2/O, R-A2/O, and I-A2/O) are studied to find 

the optimized configuration in terms of cost. Furthermore, a model-based analysis is studied to 

evaluate the effluent compositions with varying kinetic parameters accessed from varying 

temperature coefficients in the temperatures range from 10°C to 35°C for both secondary treatment 

and plant-wide level. 

9.1.1 Design of lower-level control strategies on BSM1-P 

A total of 8 control approaches are designed and implemented in the advanced simulation 

framework for assessment of the performance. The performance of the WWTP (effluent quality 

index and global plant performance) and the operational costs are also evaluated to compare the 

control approaches. Additionally, this chapter reports a comparison among proportional-integral 

(PI) control, fuzzy logic control, and model-based predictive control (MPC) to control dissolved 

oxygen (DO7) and nitrate (SNO,4) by manipulating oxygen mass transfer coefficient (KLa7) and 

internal recycle (Qintr) respectively.  

9.1.2 Design of supervisory-level control strategies on BSM1-P 

The supervisory control framework is used to alter the dissolved oxygen in the seventh reactor 

(DO7) to control ammonia. Lower level PI, MPC, and Fuzzy are used to control the nitrate levels 

in the fourth reactor (SNO4) by manipulating internal recycle (Qintr) and DO7 in the seventh tank by 

manipulating mass transfer coefficient (KLa7). MPC and Fuzzy are designed in the supervisory 

layer to alter the DO7 set-point based on the ammonia composition in the seventh reactor (SNH7). 
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Model predictive control (MPC) and Fuzzy controllers are designed in a two-level hierarchical 

supervisory control framework. 

9.1.3 Design of integrated supervisory and override control strategies on BSM1-P 

The idea is to generate more organic matter with a reduction of nitrate concentration in the anoxic 

section so that more biological phosphorus removal happens. For this, the Supervisory and 

Override Control Approach (SOPCA) is designed based on the benchmark simulation model 

(BSM1-P) and is evaluated by considering dynamic influent. In the supervisory layer, 

proportional-integral (PI) and fuzzy controllers are designed. Additionally, three dissolved oxygen 

(DO) PI control loops in the last three aerobic reactors are designed. PI controller is designed for 

control of nitrate levels in the anoxic reactors and is integrated with override control and 

supervisory layer. 

9.1.4 Development of control strategies based on plant-wide WWTP models 

Control strategies based on proportional-integral (PI), model predictive control (MPC), and Fuzzy 

logic are developed and implemented on a plant-wide wastewater treatment plant. Four 

combinations of control frameworks are developed in order to reduce the operational cost and 

improve the effluent quality. As a working platform, a Benchmark simulation model (BSM2-P) is 

used. A default control framework with PI controllers is used to control nitrate and dissolved 

oxygen (DO) by manipulating the internal recycle and oxygen mass transfer coefficient (KLa). 

Hierarchical control topology is proposed in which a lower-level control framework with PI 

controllers is implemented to DO in the sixth reactor by regulating the KLa of the fifth, sixth, and 

seventh reactors, and Fuzzy and MPC are used at the supervisory level. This supervisory level 

considers the ammonia in the last aerobic reactor as a feedback signal to alter the DO set-points. 

9.1.5 Analysis of different reactors combinations and configurations for biological WWTP 

Three different schemes of wastewater treatment consisting of anaerobic, anoxic, and aerobic 

reactors are evaluated. A2O process (anaerobic, anoxic, and aerobic reactors with internal and 

external recycles), Reverse R-A2O process (anoxic, anaerobic, and aerobic reactors with external 

recycle), and Inverted I-A2O process (anoxic, anaerobic, and aerobic with internal and external 

recycles) are considered. Dissolved oxygen (DO) is maintained in the respective aerobic reactors 

using a PI controller. Metal addition is carried out in the last aerobic reactor and carbon addition 

is carried out in the first anaerobic reactor in each process. Further, evaluation is carried out at 
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different temperatures (10, 15, and 20oC) by changing the kinetic parameters in the model, and the 

effect of the operating temperature on EQI, OCI, and nutrient removal are also studied. 

9.1.6 Effect of temperature on WWTPs 

9.1.6.1 Model-based analysis of the effect of temperature on ASP (BSM1-P) 

The effect of temperature on the phosphorous, nitrogen, and organic matter removal in an activated 

sludge system (ASS) is assessed in this research. Benchmark Simulation Model No.1 (BSM1-P) 

with an ASS (ASM3bioP) is used and the temperature is chosen between 10°C to 35°C. The kinetic 

expressions for the maximum growth rate of heterotrophic biomass, autotrophic, and phosphate 

accumulating organisms and their decay rate are considered. Total ammonia, nitrogen, and 

phosphorous in the effluent are analyzed. 

9.1.6.2 Effect of temperature using BSM1-P model with fuzzy control application 

The objective of this chapter is to report the effect of temperature (from 10oC to 35oC) on six 

kinetic parameters (growth and decay rates) by using the modified Arrhenius relation for the 

temperature dependency with the addition of a fuzzy controller (FLC) to monitor the effluent 

quality index (EQI) and operational cost index (OCI) in Wastewater treatment plants. A 

Benchmark simulation model (BSM1-P) is used to design the FLC, in order to check the plant 

performance and effluent quality that is affected by changing temperature. Two control loops like 

dissolved oxygen and nitrate are used by manipulating oxygen mass transfer coefficient and 

internal recycle in seventh and fourth reactors. 

9.1.6.3 Effect of temperature in plant-level (BSM2-P) wastewater treatment process 

The effect of temperature on phosphorous, nitrogen, organic matter removal, overall effluent 

quality, methane, and hydrogen production in an activated sludge system (ASS) is assessed in this 

research. For the plant-wide model of the ASS, the benchmark Simulation model (BSM2-P) with 

an ASS (ASM2d) is used and the temperature is selected between 10 to 35°C covering different 

seasons. A steady-state simulation is carried out to evaluate the effluent compositions by changing 

kinetic parameters. A total of fourteen kinetic expressions for the maximum growth rate of 

heterotrophic biomass, autotrophic, phosphate accumulating organisms and their decay rates, 

oxygen saturation, hydrolysis, fermentation, and oxygen mass transfer coefficients are also 

considered. Further, the anaerobic digestion model (ADM1) is also used with changing Physico-
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chemical parameters which are functions of temperature. The corresponding physico-chemical 

parameters are analyzed in the range of 25 to 55°C. A total of seven physico-chemical kinetic 

expressions for the acid-base equilibrium gases are considered which includes Henry’s law 

coefficient for carbon dioxide, methane, hydrogen, and partial pressure of water. 

9.2 Conclusions 

9.2.1 Design of lower-level control strategies on BSM1-P 

Different control frameworks from CLS1 to CLS8 in the BSM1-P plant layout under the 

ASM3bioP framework are implemented. In comparison, it is observed that the effluent pollutant 

considerations for CLS1 and CLS2 are better than CLS3–CLS8. In the former case, the operational 

cost index of CLS2 is far better than CLS1. MPC provides good tracking performance on 

comparing with PI. MPC shows slightly better than the PI approach and fuzzy shows better 

removal of phosphorus when compared with PI and MPC. MPC is much favorable for both 

ammonia and nitrogen removal. MPC gives efficient removal of TN and ammonia when compared 

with PI and FLC. 

9.2.2 Design of supervisory-level control strategies on BSM1-P 

Four control combinations (PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy) are evaluated and 

tested for dry weather, rainy weather, and storm weather conditions. The corresponding 

performance indexes are compared with the default strategy. EQI is minimized when compared 

with the existing default PI control approach and in some cases, a tradeoff is observed between 

OCI and EQI. For all the compared control strategies, MPC-MPC shows better effluent quality 

and high operating costs. It was noticed that on comparing all control applications, it was found 

that average effluent concentrations like BOD, COD, TN, and TSS attained stringent regulations 

except ammonia and phosphorus. Better optimized result for ammonia removal is observed in 

MPC-MPC whereas better-optimized result for phosphorus removal is noticed in PI-MPC. As for 

effluent violations are concerned, it was observed that for rain and storm conditions, improved 

quality is achieved in ammonia and phosphorus. 

9.2.3 Design of integrated supervisory and override control strategies on BSM1-P 

We propose SOPCA (PI-Fuzzy) and SOPCA (PI-PI) to balance SPO4 in tank7 and SNO,4 in tank4. 

Further, SO control loops for the last three aerobic reactors are added by varying set points (each 
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consisting of eight combinations). SOPCA (PI-Fuzzy) [I-VIII] and SOPCA (PI-PI) [IX-XVI]. 

With the proposed control approaches, the effluent phosphorus was decreased notably. All the 

average compositions of TP, ammonia, and TN in the effluent were under regulatory limits. 

Further, SOPCA (I) and SOPCA (IX) control schemes showed better EQI and OCI. If the operator 

requires to achieve efficient TN removal, SOPCA (VIII) and SOPCA (IX) are recommended. On 

comparing with default PI, all sixteen control strategies showed improved effluent quality and 

higher operational cost. The simulation outcomes showed that the control applications enhanced 

the performance of WWTP and the application of SOPCA controllers was more advantageous for 

the phosphorus removal rate.  

9.2.4 Development of control strategies based on plant-wide WWTP models 

MPC and Fuzzy are designed at the supervisory level, and PI is designed for lower-level control 

for BSM2-P in ASM2d as an activated sludge model. Total four control frameworks are 

implemented to evaluate and test the plant performance, concentrations as well as effluent quality. 

The resultant performance indices are compared with the PI strategy. In each control application 

case, there is a trade-off between EQI and OCI. In comparison with PI (one loop). Of all the 

compared outcomes, PI-Fuzzy shows better EQI and increased OCI. On comparing all the four 

control strategies, it was reported that average effluent pollutant concentrations like BOD5, COD, 

TN, ammonia, and TSS attained the regulatory limits except for phosphorus. Optimized ammonia 

removal is noticed in PI-MPC whereas better optimized phosphorous removal is noticed in PI-

Fuzzy. PI-Fuzzy showed high production rates of greenhouse gas emissions and low consumption 

of aeration energy. The percentage of violations of total phosphorus showed less in the case of PI-

Fuzzy. 

9.2.5 Analysis of different reactors combinations and configurations for biological WWTP 

Comparative analysis on A2O, R-A2O, and I-A2O are tested and it is found that R-A2O shows the 

optimized results in OCI with slight high EQI. Hence, R-A2O is taken as a benchmark and tested 

with different applications like carbon loading, metal loading, and control approaches to know 

how it will impact the EQI and OCI. It is noticed that the increase of metal and carbon dosages 

leads to lower EQI and higher OCI with better removal of nutrients. The combination of both metal 

and carbon loading simultaneously in the process shows better efficient nutrient removal, DO is 

directly proportional to the formation of orthophosphates. If DO is high, then the phosphorous 
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level is also high and it is contradictory with lower DO. Later, the combination of metal and carbon 

loading with DO control application is also tested which shows the tradeoff between EQI and OCI. 

9.2.6 Effect of temperature on WWTPs 

9.2.6.1 Model-based analysis of the effect of temperature on ASP (BSM1-P) 

A considerable violation in EQ is observed with the variation in kinetic parameters when the 

temperature is <15°C and >30°C. For Phosphorous removal, at 5 to 10oC, a higher sludge age is 

needed because of a decrease in the reaction rate.  

• On considering 10oC and 35oC as the lower and upper-temperature ranges, at both the 

temperatures, it is observed that the simulation is stopped when stoichiometric parameters 

are reached beyond their limit. 

• 𝑏𝑃𝐴𝑂 is estimated with multiple temperature changes within the range of 10°C - 30°C, and 

finally, it is observed that the appropriate temperature ranges to get the simulation results 

is 15oC – 28oC. 

• Generally, in phosphorous removal, it is noticed that at very low temperatures (5 to 10oC), 

a higher sludge age is needed because of a decrease in the rate of the kinetic process.  

9.2.6.2 Effect of temperature using BSM1-P model with fuzzy control application 

On changing kinetic parameters based on temperature ranges, additionally, coupled SNO and DO 

control loops are designed using fuzzy logic. For 10oC and 35oC, the microbes are inert as there is 

no response on the EQI and effluent violations; it is always above the limit value range. From 15 

to 30oC there is a tradeoff between EQI and OCI. It is observed that if the temperature increases 

the EQI decreases, but OCI increases. On comparing results with 15oC a good improvement is 

found at 30oC as the effluent quality is improved 72% with an increasing 17% of operational cost. 

Moreover, on changing temperature pollutant concentrations like TP, ammonia, and TN are 

heavily impacted. At 30oC the improved pollutant concentrations are 83.4, 87.5, and 40% on 

comparing with 15oC. Other pollutants like BOD5, TSS, and COD are not affected largely by 

changing temperature. 

9.2.6.3 Effect of temperature in plant-level (BSM2-P) wastewater treatment process 

WWTP’s are largely influenced by operating temperature. Based on the Arrhenius-based 

temperature equation, in this paper, fourteen kinetic parameters with KLa and are tested with 

different temperature ranges in a plant-wide biological WWTP. Besides that, ADM1 is also studied 
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by considering seven physico-chemical kinetic parameters to check the production rates of 

methane, carbon dioxide, and hydrogen in the range of 25-55oC. Based on the observed results, 

the temperature has a huge influence on process operations. As a result, it is crucial to understand 

the performance of WWTP’s at various temperatures. This leads to a better understanding of 

optimal pollutant removal efficiency. The findings of this study distinguish the effects of 

temperature variations on biological processes over the plant-wide scenario. 

9.3 Suggestion for future work 

Based on the research carried out in this thesis, one can extend the ideas to solve different other 

advanced control applications related to BSM1-P and BSM2-P. The suggestions for future work 

include the following: 

❖ Design of fractional order, artificial neural network, non-linear MPC control strategies for 

both BSM1-P and BSM2-P simulation platforms can be studied. 

❖ In most of the existing studies, ideal sensors are considered. However, in practice, the 

sensors performance deteriorate. Hence, design of advanced control strategies with non-

ideal sensors can be carried out and performance can be checked.  

❖ By incorporating the life cycle analysis, suitable decision support tools for flexible and 

optimal operation of activated sludge process can be studied. 

❖ Water-food-energy nexus can be explored from the perspective of biological WWTP using 

activated sludge process. 

❖ One can carry experimentally implement some of these developed strategies on a lab scale 

WWTP. 
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APPENDIX A 

Table A1 Stoichiometric parameters matrix for the soluble components of ASM3 (Henze et al. (2000))  

 Model 

components 

(i) 

1 2 3 4 5 6 7 8 

j Process SO 

(gO2 m-3) 

SS 

(gCOD/m3

) 

SI 

(gCOD/m3

) 

SNH 

(gN m-3) 

SNO 

(gN m-3) 

SN2 

(gN m-3) 

SPO4 

(gP m-3) 

SHCO 

(mol m-

3) 

1 Hydrolysis  1-fSI  iN,XS+iN,S

S (fSI-1)-

iN,SI.fSI 

  iP,XS-iP,SS V1,HCO 

Heterotrophic organisms XH 

2 Aer. Storage 

of XSTO 

𝑌𝑆𝑇𝑂,𝑂2
−1  -1  iN,SS   iP,SS V2,HCO 

3 Anox. 

Storage of 

XSTO 

 -1  iN,SS -(1-

YSTO,NO)/2.86 

(1-YSTO,NO)/2.86 iP,SS V3,HCO 

4 Aerobic 

growth 

1-1 𝑌𝐻,𝑂2⁄    -iN,BM   -iP,BM V4,HCO 

5 Anoxic 

growth 

   -iN,BM -(1-𝑌𝐻,𝑁𝑂
−1 )/2.86 (1-𝑌𝐻,𝑁𝑂

−1 )/2.86 -iP,BM V5,HCO 

6 Aer. endog. 

Respiration 

-(1-fXI)   iN,BM-

fXIiN,XI 

  iP,BM-

fXIiP,XI 

V6,HCO 

7 Anox. endog. 

respiration 

   iN,BM-

fXIiN,XI 

-(1-fXI)/2.86 (1-fXI)/2.86 iP,BM-

fXIiP,XI 

V7,HCO 

8 Aer. 

respiration of 

XSTO 

-1        
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9 Anox. resp. 

of XSTO 

    -1/2.86 1/2.86  V9,HCO 

 Autotrophic 

organisms 

XA 

        

10 Growth 1-4.57/YA   -1/YA-

iN,BM 

1/YA  -iP,BM V10,HCO 

11 Aer. endog. 

Respiration 

-(1-fXI)   iN,BM-

fXIiN,XI 

  iP,BM-

fXIiP,XI 

V11,HCO 

12 Anox. endog. 

respiration 

   iN,BM-

fXIiN,XI 

-(1-fXI)/2.86 (1-fXI)/2.86 iP,BM-

fXIiP,XI 

V12,HCO 

Phosphorus accumulating organisms XPAO 

P1 Storage of 

XPHA 

 -1  iN,SS   YPO4+iP,S

S 

VP1,HCO 

P2 Aerobic 

storage of 

XPP 

-YPHA      -1 VP2,HCO 

P3 Anox. 

storage XPP 

    -YPHA/2.86 YPHA/2.86 -1 VP3,HCO 

P4 Aerobic 

growth 

1

− (1 𝑌𝑃𝐴𝑂,𝑂2⁄ ) 

  -iN,BM   -iP,BM VP4,HCO 

P5 Anox. 

growth 

   -iN,BM (1-

(1/YPAO,NO))/2.8

6 

-(1-

(1/YPAO,NO))/2.8

6 

-iP,BM VP5,HCO 

P6 Aer. endog. 

Respiration 

-(1-fXI)   iN,BM-

fXIiN,XI 

  iP,BM-

fXIiP,XI 

VP6,HCO 

P7 Anox. endog. 

Respiration 

   iN,BM-

fXIiN,XI 

  iP,BM-

fXIiP,XI 

VP7,HCO 
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* In this model, it is assumed that ThOD is identical to the measured COD. Definition: 1 g SO=-1 g ThOD, 1 g SNH=0 g ThOD, 1 g 

SNO=-64/14 g ThOD and 1 g SN2=-24/14 g ThOD. 

V: stoich. coeff., j: process, i: components, Vj,HCO and Vj,TSS from charge and mass conservation (Gujer and Larsen, 1995) 

 

 

 

 

P8 Aerobic lysis 

of XPP 

      1 VP8,HCO 

P9 Anox. lysis 

of XPP 

      1 VP9,HCO 

P 

10 

Aer. 

respiration of 

XPHA 

-1        

P 

11 

Anox. resp. 

of XPHA 

    -1/2.86 1/2.86  VP11,HC

O 

Composition matrix Conservatives 

1 ThODa g Th 

OD 

-1 1 1  -64/14 -24/14   

2 Nitrogen g N  iN,SS iN,SI 1 1 1   

3 Phosphorus g 

P 

 iP,SS iP,SI    1  

4 Ionic charge 

Mole+ 

   1/4 -1/4  -1.5/31 -1 

 Observables         

5 SS g SS         
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Table A2 Stoichiometric parameters matrix for the particulate components of ASM3 (Henze et al. (2000)) and the EAWAG Bio-P 

module (Rieger et al. (2001)) 

 Model 

components 

(i) 

9 10 11 12 13 14 15 16 17 

j Process XI 

(gCOD/m3) 

XS 

(gCOD/m3) 

XH 

(gCOD/m3) 

XSTO 

(gCOD/m3) 

XPAO 

(gCOD/m3) 

XPP 

((gCOD/m3) 

XPHA 

(gCOD/m3) 

XA 

(gCOD/m3) 

XTSS 

(gTSS/m3) 

1 Hydrolysis  -1       V1,TSS 

Heterotrophic organisms XH 

2 Aer. 

Storage of 

XSTO 

   YSTO,O2     V2,TSS 

3 Anox. 

Storage of 

XSTO 

   YSTO,NO     V3,TSS 

4 Aerobic 

growth 

  1 -1/YH,O2     V4,TSS 

5 Anoxic 

growth 

  1 -1/YH,NO     V5,TSS 

6 Aer. endog. 

Respiration 

fXI  -1      V6,TSS 

7 Anox. 

endog. 

respiration 

fXI  -1      V7,TSS 

8 Aer. 

respiration 

of XSTO 

   -1     V8,TSS 



188 
 

9 Anox. resp. 

of XSTO 

   -1     V9,TSS 

 Autotrophic 

organisms 

XA 

         

10 Growth        1 V10,TSS 

11 Aer. endog. 

Respiration 

fXI       -1 V11,TSS 

12 Anox. 

endog. 

respiration 

fXI       -1 V12,TSS 

Phosphorus accumulating organisms XPAO 

P1 Storage of 

XPHA 

     -YPO4 1  VP1,TSS 

P2 Aerobic 

storage of 

XPP 

     1 -YPHA  VP2,TSS 

P3 Anox. 

storage XPP 

     1 -YPHA  VP3,TSS 

P4 Aerobic 

growth 

    1  -1/YPAO,O2  VP4,TSS 

P5 Anox. 

growth 

    1  -1/YPAO,NO  VP5,TSS 

P6 Aer. endog. 

Respiration 

fXI    -1    VP6,TSS 

P7 Anox. 

endog. 

Respiration 

fXI    -1    VP7,TSS 
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Table A3 Kinetic rate expressions for ASM3 (Henze et al. (2000)) 

 

No. Process Process rate equation 

Hydrolysis 

P1 Hydrolysis 
𝑘ℎ

𝑋𝑆 𝑋𝐻⁄

𝐾𝑋 + 𝑋𝑆 𝑋𝐻⁄
𝑋𝐻 

P8 Aerobic 

lysis of XPP 

        VP8,TSS 

P9 Anox. lysis 

of XPP 

        VP9,TSS 

P10 Aer. 

respiration 

of XPHA 

      -1  VP10,TSS 

P11 Anox. resp. 

of XPHA 

      -1  VP11,TSS 

Composition matrix Conservatives 

1 ThODa g 

Th OD 

1 1 1 1 1 1 1 1  

2 Nitrogen g 

N 

iN,XI iN,XS iN,BM  iN,BM   iN,BM  

3 Phosphorus 

g P 

iP,XI iP,XS iP,BM  iP,BM 1  iP,BM  

4 Ionic 

charge 

Mole+ 

     -1/31    

 Observables          

5 SS g SS iTSS,XI iTSS,XS iTSS,BM iTSS,STO iTSS,BM 3.23 iTSS,STO iTSS,BM -1 
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Heterotrophic organisms 

P2 Aerobic storage of 

COD 
𝑘𝑆𝑇𝑂

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑆
𝐾𝑆𝑆,𝐻 + 𝑆𝑆

𝑋𝐻 

P3 Anoxic storage of COD 
𝑘𝑆𝑇𝑂𝜂𝑁𝑂,𝐻

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑆𝑆
𝐾𝑆𝑆,𝐻 + 𝑆𝑆

𝑋𝐻 

P4 Aerobic growth 
𝜇𝐻

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝐻 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝐻 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝐻 + 𝑆𝐻𝐶𝑂

𝑋𝑆𝑇𝑂 𝑋𝐻⁄

𝐾𝑆𝑇𝑂 + 𝑋𝑆𝑇𝑂 𝑋𝐻⁄
𝑋𝐻 

P5 Anoxic growth(deni) 
𝜇𝐻𝜂𝑁𝑂,𝐻

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝐻 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝐻 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝐻 + 𝑆𝐻𝐶𝑂

𝑋𝑆𝑇𝑂 𝑋𝐻⁄

𝐾𝑆𝑇𝑂 + 𝑋𝑆𝑇𝑂 𝑋𝐻⁄
𝑋𝐻 

P6 Aerobic endog. Resp 
𝑏𝐻

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑋𝐻 

P7 Anoxic endog. Resp 
𝑏𝐻𝜂𝑁𝑂,𝑒𝑛𝑑,𝐻

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑋𝐻 

P8 Aerobic resp. of XSTO 
𝑏𝐻

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑋𝑆𝑇𝑂 

P9 Anoxic resp. of XSTO 
𝑏𝐻𝜂𝑁𝑂,𝑒𝑛𝑑,𝐻

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑋𝑆𝑇𝑂 

Autotrophic organisms 

P10 Nitrification 
𝜇𝐴

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝐻 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝐻 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝐻 + 𝑆𝐻𝐶𝑂

𝑋𝐴 

P11 Aerobic endog. resp. 
𝑏𝐴

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

𝑋𝐴 

P12 Anoxic endog. resp. 
𝑏𝐴𝜂𝑁𝑂,𝐴

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝐻 + 𝑆𝑁𝑂

𝑋𝐴 
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Table A4 Kinetic rate expressions for the EAWAG Bio-P module (Rieger et al. (2001)) 

No. Process Process rate equations 

Phosphorus accumulating organisms 

P13 Storage of XPHA 
𝑞𝑃𝐻𝐴

𝑆𝑆
𝐾𝑆𝑆,𝑃𝐴𝑂 + 𝑆𝑆

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝑃 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝑃,𝑃𝐴𝑂 + 𝑋𝑃𝑃 𝑋𝑃𝐴𝑂⁄
𝑋𝑃𝐴𝑂 

P14 Aer. storage of XPP 
𝑞𝑃𝑃

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝑃𝑃 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝐻𝐴 + 𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑚𝑎𝑥,𝑃𝐴𝑂 − (𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄ )

𝐾𝑖𝑃𝑃,𝑃𝐴𝑂 + 𝐾𝑚𝑎𝑥,𝑃𝐴𝑂−(𝑋𝑃𝑃 𝑋𝑃𝐴𝑂)⁄
𝑋𝑃𝐴𝑂 

P15 Anox. storage of XPP 
𝑞𝑃𝑃𝜂𝑁𝑂,𝑃𝐴𝑂

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂 + 𝑆𝑁𝑂

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝑃𝑃 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝐻𝐴 + 𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑚𝑎𝑥,𝑃𝐴𝑂 − (𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄ )

𝐾𝑖𝑃𝑃,𝑃𝐴𝑂 +𝐾𝑚𝑎𝑥,𝑃𝐴𝑂−(𝑋𝑃𝑃 𝑋𝑃𝐴𝑂)⁄
𝑋𝑃𝐴𝑂 

P16 Aer. growth of XPAO 
𝜇𝑃𝐴𝑂

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝑃𝐴𝑂 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝑃𝑃 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝐻𝐴 + 𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄
𝑋𝑃𝐴𝑂 

P17 Anox. growth of XPAO 
𝜇𝑃𝐴𝑂𝜂𝑁𝑂,𝑃𝐴𝑂

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂 + 𝑆𝑁𝑂

𝑆𝑁𝐻
𝐾𝑁𝐻,𝑃𝐴𝑂 + 𝑆𝑁𝐻

𝑆𝑃𝑂4
𝐾𝑃𝑂4,𝑃𝑃 + 𝑆𝑃𝑂4

𝑆𝐻𝐶𝑂
𝐾𝐻𝐶𝑂,𝑃𝐴𝑂 + 𝑆𝐻𝐶𝑂

𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄

𝐾𝑃𝐻𝐴 + 𝑋𝑃𝐻𝐴 𝑋𝑃𝐴𝑂⁄
𝑋𝑃𝐴𝑂 

P18 Aerobic endog. respiration 
𝑏𝑃𝐴𝑂

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑋𝑃𝐴𝑂 

P19 Anoxic endog. respiration 
𝑏𝑃𝐴𝑂𝜂𝑁𝑂,𝑒𝑛𝑑,𝑃𝐴𝑂

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂 + 𝑆𝑁𝑂

𝑋𝑃𝐴𝑂 

P20 Aerobic lysis of XPP 
𝑏𝑃𝑃

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑋𝑃𝑃 

P21 Anoxic lysis of XPP 
𝑏𝑃𝐴𝑂𝜂𝑁𝑂,𝑙𝑦𝑠𝑖𝑠,𝑃𝑃

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂

𝑋𝑃𝑃 

P22 Aerobic resp. of XPHA 
𝑏𝑃𝐻𝐴

𝑆𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑋𝑃𝐻𝐴 

P23 Anoxic resp. of XPHA 
𝑏𝑃𝐻𝐴𝜂𝑁𝑂,𝑟𝑒𝑠𝑝,𝑃𝐻𝐴

𝐾𝑂,𝑃𝐴𝑂
𝐾𝑂,𝑃𝐴𝑂 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂,𝑃𝐴𝑂

𝑋𝑃𝐻𝐴 
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Procedure for Identification of Different Models used in this work Identification of FOPTD/State 

Space (SS) Model for Lower Level 

System Identification process is used to identify the plant models to be used for control of BSM1-

P/BSM2-P in FOPTD/SS form. 

Step 1. Decide the control loops and corresponding manipulated and controlled variables. 

Step 2. Run the Plant simulation model to reach steady state. It may be achieved after 100- 150 days 

for BSM1 and approximately after 200 days for BSM2. (Steady state should be the point around 

which identification is desired to be performed). 

Important Tip: Make sure that steady state achieved for the controlled variable should be 

approximately the value near the set-points wished to be maintained in closed loop. Thus, a set of 

manipulated variables needed to maintain the controlled variables at their set-points with define an 

operating point. Here, for PI configuration the operating point used is SO,7=2 mg (O2)/l, SNO,4=1 mg 

N/l, KLa7=252 1/d and Qintr=34500 m3/d. 

Step 3. Now run the identification file which varies all the manipulated variables (here, KLa7 and 

Qintr) ±10% around their operating point simultaneously and record this input. If there is a need, 

include the disturbance variable as an additional input (here Qintr) and give only the +5% to +10% of 

step change to it. 

Step 4. Collect the data for variations respective controlled variables (here SO,7 and SNO,4) due to 

input supplied. 

Step 5. Create a “iddata” object with recorded controlled and manipulated variables including 

disturbance variable and use a proper sampling time (here, 1/96). 

Step 6. Go to System Identification tool box and import the data object created in previous step. 

Step 7. Use only the portion with consistent oscillations in output around operating point. (Use select 

range option provided in toolbox). 

Step 8. Preprocess the data if needed (i.e. remove means and trends). 

Step 9. Create the estimation and validation parts of data (generally 2/3 part is used for estimation 

and 1/3 part for validation) and import estimation data in “working data” and rest in “validation data” 

in toolbox. 

Step 10. For estimating FOPTD model, chose the option of “Process Model” form estimation options 

and provide any of the initial details (like gain) if available and estimate the model. For estimating 

State space model, chose the option of “State Space Models” 

from estimation option and specify the order and type of model (continuous or discrete) to be 

estimated. There are several methods available for estimation like Subspace N4SID algorithm or 

prediction error method but the later one is generally used. There is an option available to choose the 
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input which have immediate effect on output (i.e. values in D matrix). Usually, matrix D=0. Chose 

all the desired options and estimate the model. 

Step 11. Check the fit to estimation data and validation data, if it is within acceptable limits (generally 

above 70%) then model is fit to use otherwise repeat steps 2 -10 again. 

 

 

Figure A1. Lower Level Identification File 

 

 

Figure A2. BSM1 Simulink Diagram with Default Controllers 
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Figure A3. BSM1 with Lower Level MPC 

Deciding Membership Function Ranges and Rules for Lower Level Fuzzy Controller 

Step 1. Generally, MFs and rules for fuzzy controller are decided using expert knowledge of the operator 

(the fact that fuzzy controller is known as expert system is reflected here) or by using past data. Here as 

we have simulation file available for the plant, we can generate the steady data from which the rules can 

be deduced. 

Step 2. Run the code given for generating the data. 

Step 3. Table below shows the data used for deducing rules. 

Step 4. The trend followed by data is captured in the graphs below. And the respective regions are used in 

fuzzification are marked in the graph. These are used in the division of variable in fuzzy sets and can also 

be used to determine the overlapping between them. 
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Figure A4. BSM1 with Lower Level Fuzzy logic controller (FLC) 
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APPENDIX B 

 

Identification of State Space Model for Higher Level 

Step 1. Fix the lower level controller to be used along with higher level control. Decide the control 

loops and corresponding manipulated and controlled variables for higher level. 

Step 2. Run the Plant simulation model to reach steady state. It may be achieved after 100- 150 days 

for BSM1 and approximately after 200 days for BSM2. (steady state should be the point around 

which identification is desired to be performed). 

Important Tip: For higher level control, the value of ammonia concentration and DO concentration 

in tank 5. Make sure that the steady state reached for ammonia concentration should be the value of 

set-point of ammonia you plan to achieve. The DO value needed to achieve the desired set-point of 

ammonia and the steady state value of ammonia concentration itself make a set of operating point. 

For example, if SNH,7 ref =3.45 for PI-MPC configuration then the steady state value of DO set-point 

needed is SO,7 ref=3.00. 

Step 3. Now run the identification file (close lower level loop and open higher level loop) which 

varies all the manipulated variable (here SO,7 ref) ±10% around their operating point simultaneously 

and record this input. 

Step 4. Collect the data for variations in respective controlled variable (here SNH,7) due to input 

supplied. 

Step 5. Create a “iddata” object with recorded controlled and manipulated variable and use a proper 

sampling time (here, 1/96). 

Step 6. Go to System Identification tool box and import the data object created in previous step. 

Step 7. Use only the portion with consistent oscillations in output around operating point. (Use select 

range option provided in toolbox). 

Step 8. Preprocess the data if needed (i.e. remove means and trends). 

Step 9. Create the estimation and validation parts of data (generally 2/3 part is used for estimation 

and 1/3 part for validation) and import estimation data in “working data” and rest in “validation data” 

in toolbox. 

Step 10. For estimating State space model, chose the option of “State Space Models” from estimation 

option and specify the order and type of model (continuous or discrete) to be estimated. There are 

several methods available for estimation like Subspace or prediction error method but the later one 

is generally used. There is an option available to choose the input which have immediate effect on 

output (i.e. values in D matrix). Usually, matrix D=0. Chose all the desired options and estimate the 
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model. 

Step 11. Check the fit to estimation data and validation data, if it is within acceptable limits (generally 

above 70%) then model is fit to use otherwise repeat steps 2 -10 again. 

 

Figure B1. An Example of Higher Level Identification File 

 

Designing of MPC Controller 

Step 1. Determine the state space model of the plant to be controlled with MPC controller. And 

save the model in workspace. 

Step 2. Import the model in MPC designer app and give the nominal values for controlled and 

manipulated variables. 

Step 3. After the model is imported, a default controller is created in controller section. Tune 

the controller parameters and export the designed controller to workspace. 

Note: The response of the controller to test signals (step, ramp, etc) in controlled as well as 

manipulated variables, assuming that the model of the plant describes the exact dynamics as real 

plant can be checked simulating a scenario in designer app. 
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Figure B2. BSM1-P with PI-MPC Configuration 

 

 

Figure B3. BSM1-P with MPC-MPC Configuration 

Deciding Rules for Higher Level Fuzzy Controller 

As the procedure is described for deducing the membership functions and rules for lower level fuzzy 

controller, similar approach is followed for higher level fuzzy controller also. Here, data is collected 

for ammonia concentration in tank 7 and respective DO set-point needed to be maintained by lower 

level control in tank 7 and a graph is generated between both variables. this graph then can be used 
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for diving the variables into fuzzy sets. 

 

Figure B4. BSM1-P with PI-Fuzzy Configuration 

 

 

Figure B5. BSM1-P with MPC-Fuzzy Configuration 

 

Table B1 Comparison PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy schemes for rain season 

Average effluent Default PI PI-MPC MPC-MPC PI-Fuzzy MPC-Fuzzy 

Components Limit ` 
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NH 4 4.45 3.95 3.77 3.78 3.622 

TSS 30 16.41 16.71 17.54 16.68 16.80 

TN 18 10.93 10.05 10.10 10.46 10.10 

TP 2 5.32 4.87 5.48 5.16 5.35 

COD 100 41.08 41.16 40.58 41.19 41.11 

BOD5 10 2.21 2.23 2.34 2.22 2.24 

Percentage of violations (%) 

NH 58.63 38.09 27.77 43.30 38.98 

TP 73.06 68.60 82.14 82.14 74.70 

Plant performance 

IQI 71981 71981 71981 71981 71981 

EQI 19829 18320 18601 18949 18863 

OCI 17255 17486 18044 17174 17440 

 

Table B2 Comparison of PI-MPC, MPC-MPC, PI-Fuzzy, and MPC-Fuzzy schemes for storm season 

Average effluent 

concentration 

Default PI PI-MPC MPC-MPC PI-Fuzzy MPC-Fuzzy 

Components Limit ` 

NH 4 4.30 3.95 3.63 3.72 3.85 

TSS 30 15.57 15.78 15.54 15.75 15.78 

TN 18 11.35 10.42 10.62 10.52 10.52 

TP 2 4.53 3.96 4.37 4.30 3.39 

COD 100 43.68 43.66 43.58 43.66 43.64 

BOD5 10 2.05 2.09 2.05 2.08 2.08 

Percentage of violations (%) 

NH 54.61 37.94 37.35 42.26 40.77 

TP 66.22 62.94 65.05 65.77 67.11 

TSS 1.19 1.33 1.19 1.90 1.33 

Plant performance 

IQI 71006 71006 71006 71006 71006 

EQI 15592 14086 14920 14721 14063 

OCI 18490 18806 18746 18789 18824 
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APPENDIX C 

 

 

 

Figure C1. BSM1-P with SOPCA (PI-Fuzzy) Configurations 

 

 

 

Figure C2. BSM1-P with SOPCA (PI-PI) Configurations 
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(a) Input and output data for SO5 loop 

  
 

(b) Input and output data SO6 loop 

  
 

(c) Input and output data for SO7 loop 
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(d) Input and output data SNO,4 loop 

  
 

(e) Input and output data for SPO,7 loop 

Figure C3. Input and Output data for system identification 

 

 

Figure C4. DO control tracking performance in the aerobic reactors 
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Identified Models for Controller Design 

The design of PI controllers is based on the identified first order plus time order delay (FOPTD) models in 

all control loops. FOPTD model is represented as: 

𝐺(𝑆) =  
𝐾𝑃

1+𝑇𝑖∗𝑆
∗ 𝑒𝑥𝑝−𝑇𝑑∗𝑆                                                                                                                                      

Controls of SO5, SO6, SO7 in last three reactors, SNO,4 in fourth reactor and SPO4,7 in last reactor, all the 

respective obtained FOPTD model parameters are given below: 

Model for SO5 loop: KP = 0.04152, Ti = 0.010586 and Td = 0 

Model for SO6 loop: KP = 0.028491, Ti = 0.0055903 and Td = 0 

Model for SO7 loop: KP = 0.023392, Ti = 0.0014262 and Td = 0.0073752 

Model for SNO,4 loop: KP = 0.0000334, Ti = 0.031488 and Td = 0.0015521 

Model for SPO4,7 loop: KP = -7.0063, Ti = 0.07213 and Td = 0.0254 

Based on these models, PI controllers are designed using SIMC method and the obtained controller 

parameters are: 

SO5 loop: Kc = 12.042 and Ti = 0.010586  

SO6 loop: Kc = 17.549 and Ti = 0.0055903  

SO7 loop: Kc = 6.9256 and Ti = 0.0014262 

SNO,4 loop: Kc = 28533.61 and Ti = 0.031488  

SPO4,7 loop: Kc = -0.1055 and Ti = 0.07213 
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APPENDIX D 

 

Table D.1 State variables of ASM2d, units with notations, and average influent data 

Notation Parameters Units Average 

influent data 

SO Dissolved oxygen gO2/ m
3 0 

SF Fermentable substrate g/m3 69.9 

SA Acetate g/m3 57.4 

SI Soluble inerts kg/m3 26.5 

SNH4 Ammonium g/m3 25.1 

SN2 Dinitrogen g/m3 0 

SNOX Nitrate plus nitrite g/m3 0 

SPO4 Phosphate g/m3 5.6 

SI Saturation index kg COD /m3 84 

Xi Inert particulate organics g COD /m3 94.09 

XS Sulfate reducing bacteria kg COD /m3 369.9 

XH Heterotrophic biomass g COD /m3 51.5 

XPAO Poly accumulating organisms g COD /m3 0 

XPP Polyphosphates (g /m3 ) (kmol /m3) 0 

XPHA Polyhydroxy alkanoates (g COD /m3) (kg 

COD /m3) 

0 

XA Autotrophic biomass g COD /m3 0 

XTSS Total suspended solids g SS/m3 374.6 

SK Potassium (g m/m3) (kmol 

/m3) 

20 

SMg Magnesium (g m/m3) (kmol 

m/m3) 

30 

Qin Flow m3/d 20648 

Temp Temperature oC 15 

SNa Sodium (g /m3) (kmol /m3) 175 

SCl Chloride (g /m3) (kmol /m3) 300 

SCa Calcium (g /m3) (kmol /m3) 60 

SSO4 Sulfate (g /m3) (kmol /m3) 0 

SFe2 Iron (II) (g /m3) (kmol /m3) 0 

SFe3 Iron (III) (g /m3) (kmol /m3) 0 

SAl Alkalinity kmol/m3 0 

SIS Inorganic total sulfides kg COD /m3 0 
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XHFOL Hydrous ferric oxide with low number of 

active sites 

(g /m3) (kmol /m3) 0 

XHFOH Hydrous ferric oxide with high number of 

active sites 

(g /m3) (kmol /m3) 0 

XHFOLP XHFO_L with bounded adsorption sites g/m3 0 

XHFOHP XHFO_H with bounded adsorption sites g/m3 0 

XS0 Elemental sulfur (g/m3)  (kg/m3) 0 

XSRB Sulfate-reducing bacteria kg/m3 0 

XISS Inorganic suspended soilds g SS/m3 33.5 

 

 

 

Figure D1. Open-loop for BSM2-P 
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Figure D.2 Identification file for BSM2-P 

 

 

 

Figure D.3 BSM2-P with lower-level PI Configuration 
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Figure D.4 BSM2-P with lower-level PI-Fuzzy Configuration 

 

 

Figure D.5 Identification file for BSM2-P for supervisory controller 

 

 

 

 

 

 



209 
 

APPENDIX E 

 

 

Figure E.1 Three DO control application in R-A2/O process 

 

 

Figure E.2 Three DO control application with metal addition in R-A2/O process 

 

Return activated sludge, 200% Waste sludge 

Settler 

Effluent 

Aerobic Anaerobic Anoxic 

Influent 

PI PI PI 

Metal 

addition 

Return activated sludge, 200% Waste sludge 

Settler 

Effluent 

Aerobic Anaerobic Anoxic 

Influent 

PI PI PI 
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Figure E.3 Three DO control application with carbon addition in R-A2/O process 

 

Identified Models for Controller Design:  

A first order plus time order delay (FOPTD) model as given is identified for design of PI 

controllers for each loop.  

𝐺(𝑆) =  
𝐾𝑃

1+𝑇𝑖∗𝑆
∗ 𝑒𝑥𝑝−𝑇𝑑∗𝑆                                                                                                                                         

Control of last three aerobic reactors of 5, 6 and 7 are maintaining 2gCOD/m3 in DO, the respective 

obtained FOPTD model parameters are: 

KP = 0.012152, Ti = 0.001247 and Td = 0.0070523 (DO5). 

KP = 0.00726, Ti = 0.001280 and Td = 0.00726 (DO6). 

KP = 0.02938, Ti = 0.00142 and Td = 0.007250(DO7). 

Based these models, PI controllers are designed using SIMC method and are obtained as Kc = 

82.64, Ti= 0.001247 (DO5), Kc = 8.841, Ti= 0.001280 (DO6) and Kc = 5.61, Ti= 0.00142 (DO7). 

 

 

 

Return activated sludge, 200% Waste sludge 

Settler 

Effluent 

Aerobic Anaerobic Anoxic 

Influent 

PI PI PI Carbon 

addition 
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Table E1 Average effluent data with increased carbon addition in R-A2/O 

 

 

 

 

 

Average 

concentration 

Open loop 

(R-A2/O)  

CA anaerobic 

0.25(m3/d) 

CA anaerobic 

0.5(m3/d) 

 CA 

anaerobic 

0.75(m3/d) 

CA 

anaerobic 

1(m3/d) 

 SNH 4.73 4.87 5.01 5.19 5.40 

TSS 17.13 17.52 18.28 19.60 21.59 

TN 15.68 15.58 15.52 15.53 15.62 

TP 3.88 3.12 2.48 2.03 1.82 

COD 48.51 48.69 49.30 50.52 52.47 

BOD5 2.74 2.79 2.90 3.10 3.42 

Carbon add 0 100 200 300 400 

IQI 56766.9 56766.9 56766.9 56766.9 56766.9 

EQI 5220.01 4926.16 4685.67 4520.79 4459.64 

Plant performance assessment 

SP 3518.43 3610.51 3696.01 3773.71 3839.19 

OCI 19695.1 20419.87 21078.98 21648.50 22096.03 

             Percentage of violations (%) 

TP 62.20 54.31 50 30.20 23.36 

TN 10.26 9.37 9.52 10.26 11.60 

SNH 58.48 59.07 60.11 60.56 61.54 

TSS --- --- --- 0.59 8.48 
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Table E2 Average effluent data with increased metal addition in R-A2/O 

 

 

 

 

 

Average 

concentration 

 (R-

A2/O)  

MA 

0.25(m3/d) 

MA  

0.5(m3/d) 

MA  

0.75(m3/d) 

MA  

1(m3/d) 

MA and CA  

0.25 (m3/d) 

MA and 

CA  

1 (m3/d) 

 SNH 4.73 4.73 4.76 4.799 4.82 4.88 2.30 

TSS 17.13 17.28 17.28 17.23 17.18 17.64 18.57 

TN 15.68 15.66 15.69 15.73 15.76 15.56 15.33 

TP 3.88 2.06 1.69 1.55 1.47 1.89 1.47 

COD 48.51 48.487 48.54 48.59 48.64 48.78 50.21 

BOD5 2.74 2.73 2.74 2.75 2.76 2.80 3.08 

Carbon add 0 0 0 0 0 100 400 

Metal add 0 250 500 750 1000 250 1000 

IQI 56766.9 56766.9 56766.9 56766.9 56766.9 56766.9 56766.9 

EQI 5220.01 4496.82 4349.26 4290.6 4260.20 4433.96 4289.83 

                                                   Plant performance assessment   

SP 3518.43 3549.70 3528.75 3508.69 3490.33 3609.14 3675.67 

OCI 19695.1 20212.30 20483.12 20762.21 21049.85 20777.02 22051.29 

                                                          Percentage of violations (%)   

TP 62.20 44.19 7.44 0.29 ---- 38.39 0.744 

TN 10.26 10.26 10.71 11.30 11.75 9.97 7.73 

SNH 58.48 58.33 58.63 58.63 58.69 59.07 61.30 
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Table E.3 Average effluent data with the control of three DO applications with metal and carbon 

addition in R-A2/O 

 

 

 

 

 

 

Average 

concentration 

 (RA2/O)  DO2,2,2  
 

DO1,1,2   
 

  DO1,1,2  + 

CA (1m3/d) 

DO1,1,2  + 

MA (1m3/d) 

DO1,1,2  + 

MA and CA 

 SNH 4.73 1.04 1.48 1.51 1.51 1.64 

TSS 17.13 15.81 15.91 17.14 16.57 17.42 

TN 15.68 15.79 15.26 14.62 15.23 14.68 

TP 3.88 4.35 4.15 3.55 1.96 1.51 

COD 48.51 49.07 49.13 49.60 48.60 49.03 

BOD5 2.74 2.70 2.73 2.80 2.65 2.79 

Carbon add 0 0 0 ---- 400 400 

Metal add 0 0 0 1000 ---- 1000 

IQI 56766 56766 56766 56766 56766 56766 

EQI 5220.01 8071.3 8010.96 6702.2 4979.23 4066.39 

                                                 Plant performance assessment  

SP 3518.43 3034.7 3068.12 3472.42 3283.08 3548.74 

AE 2843.73 3659.7 2851.35 2905.64 2850.11 2870.17 

OCI 19695.1 18211 17660.75 20725.44 20084.80 22546.10 

                          Percentage of violations (%)  

TP 62.20 91.25 88.45 68.5 26.33 11.01 

TN 10.26 14.13 12.20 10.71 12.20 11.60 

SNH 58.48 4.46 9.67 10.56 10.11 ----- 
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APPENDIX F 

Table F.1 Effect of 𝑧 on EQI when 𝑏𝐻 𝑖𝑠 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑎𝑡i25°C 

 

Table F.2 Effect of 𝑧 on EQI when 𝜇𝑚𝐴 is determined ati25°C 

Tem co-eff 0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 

Variables State variables 

SO 2.6 2.43 2.29 2.12 1.99 1.718 1.522 1.4 1.42 1.544 

TemCo-eff 0.05 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 

Variables State variables 

SO 1.8364 1.7089 1.6568 1.73 1.99 2.2346 2.44 2.63 2.93 3.1167 

SS 0.563 0.389 0.32 0.178 0.1339 0.1125 0.0994 0.092 0.082 0.077 

SI 30 30 30 30 30 30 30 30 30 30 

Snh 0.4196 0.4299 0.43769 0.412 0.3723 0.333 0.3047 0.274 0.243 0.22 

SNO 10.3 9.9376 9.79 9.615 9.69 9.7621 9.812 9.83 9.89 9.92 

SN2 35.38 36.055 36.32 36.38 35.79 35.25 34.77 34.37 33.66 33.21 

SPO4 2.48 3.3758 3.766 4.91 5.4 5.67 5.82 5.92 6.03 6.08 

Salk 3.5722 3.5832 3.58 3.58 3.56 3.55 3.55 3.55 3.54 3.544 

XI 6.88 6.88 6.88 6.79 6.47 6.31 6.109 5.98 5.72 5.55 

XS 0.225 0.12911 0.1121 0.0926 0.0866 0.0841 0.08143 0.0808 0.0793 0.077 

XH 0.3222 0.69 0.988 2.34 3.28 3.941 4.45 4.83 5.72 5.66 

XSTO 0.006532 0.010187 0.0122 0.017067 0.0183 0.0188 0.0188 0.019 0.0191 0.0189 

XPAO 4.365 4.0301 3.76 3.1141 2.7131 2.534 2.366 2.3 2.17 2.099 

XPP 0.5126 0.48281 0.4533 0.3809 0.335 0.3152 0.29 0.28 0.27 0.2671 

XPHA 0.1562 0.14259 0.133 0.1067 0.0907 0.08199 0.075 0.072 0.066 0.063 

XA 0.3987 0.41243 0.4155 0.416 0.3939 0.3814 0.366 0.36319 0.34 0.337 

XTSS 11.984 11.93 11.95 11.98 12.216 12.34 12.56 12.592 12.7 12.88 

Composite variables 

TKN 1.307 1.3123 1.31 1.33 1.321 1.3108 1.2968 1.2842 1.27 1.26 

TN 11.61 11.24 11.11 10.95 11.01 11.072 11.109 11.12 11.17 11.18 

TP 3.136 4 4.36 5.44 5.892 6.15 6.2797 6.37 6.48 6.517 

COD 42.19 42.68 42.61 43.04 43.18 43.47 43.54 43.73 43.91 43.88 

BOD5 1.24 1.185 1.16 1.26 1.3514 1.442 1.49 1.55 1.64 1.67 

EQI 16369.02 15827.25 15599.99 15465.89 15795.62 16126.5 17214.95 17027.61 17626.15 17939.09 
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SS 0.132 0.13 0.13 0.132 0.13 0.134 0.13 0.13 0.13 0.13 

SI 30 30 30 30 30 30 30 30 30 30 

Snh 0.0946 0.13 0.19 0.273 0.37 0.69 1.26 2.45 4.59 7.69 

SNO 8.55 8.9 9.2 9.47 9.71 9.98 10.08 9.92 9.43 8.66 

SN2 36.99 36.6 36.36 36.09 35.75 35.27 34.62 33.63 31.96 29.6 

SPO4 4.44 4.8 5.04 5.252 5.39 5.61 5.69 5.69 5.522 5.25 

Salk 3.64 3.617 3.59 3.57 3.5 3.56 3.59 3.69 3.88 4.16 

XI 6.31 6.35 6.35 6.388 6.469 6.58 6.49 6.6 6.6021 6.55 

XS 0.085708 0.085 0.085 0.0859 0.08741 0.0875 0.0875 0.0877 0.088138 0.0872 

XH 3.199 3.21 3.22 3.26 3.3 3.33 3.3081 3.26 3.24 3.13 

XSTO 0.0184 0.0182 0.0182 0.0182 0.0185 0.0185 0.01843 0.01828 0.01835 0.0179 

XPAO 2.92 2.88 2.79 2.7471 2.7261 2.6813 2.65 2.7101 2.74 2.806 

XPP 0.38 0.37 0.35 0.343 0.33 0.32 0.32 0.32 0.32 0.33 

XPHA 0.125 0.111 0.1 0.0952 0.0911 0.0849 0.082 0.082 0.086 0.0916 

XA 0.4 0.4 0.39 0.3946 0.394 0.39 0.384 0.375 0.36 0.33 

XTSS 12.33 12.31 12.32 12.29 12.13 12.11 12.12 12.11 12.08 12.19 

Composite variables 

TKN 1.0481 1.09 1.141 1.22 1.3284 1.64 2.211 3.4035 5.54 8.639 

TN 9.6 10 10.34 10.69 11.04 11.63 12.29 13.32 14.98 17.3 

TP 4.99 5.33 5.55 5.74 5.89 6.09 6.16 6.17 6.007 5.74 

COD 43.18 43.19 43.09 43.1 43.2 43.3 43.14 43.26 43.26 43.15 

BOD5 1.38 1.37 1.35 1.35 1.35 1.35 1.34 1.34 1.34 1.33 

EQI 16183.67 16096.3 15874.06 15788.65 15816.35 15714.5 15630.6 15655.5 15715.5 15828.6 

 

Table F.3 Effect of 𝑧 on EQI when 𝑏𝐴 𝑖𝑠 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑎𝑡i25°C 

Tem co eff 0.14 0.16 0.18 0.19 0.2 0.22 0.24 0.26 0.28 0.3 

variables State variables 

SO 1.643 1.74 1.89 1.94 1.98 2.067 2.111 2.186 2.22 2.27 

SS 0.1350 0.1348 0.1344 0.1345 0.131 0.133 0.133 0.132 0.132 0.132 

SI 30 30 30 30 30 30 30 30 30 30 

Snh 0.7919 0.594 0.457 0.407 0.38 0.320 0.30 0.250 0.23 0.2110 

SNO 9.99 9.87 9.807 9.75 9.68 9.60 9.52 9.439 9.37 9.32 

SN2 32.23 33.98 35.64 35.719 35.99 35.88 35.95 36.09 36.15 36.19 

SPO4 5.66 5.55 5.48 5.44 5.40 5.32 5.27 5.19 5.14 5.080 

Salk 3.57 3.568 3.564 3.561 3.568 3.571 3.57 3.58 3.85 3.58 
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Table F.4 Effect of 𝑧 on EQI when 𝑚𝑢𝑃𝐴𝑂 is determined ati25°C 

XI 6.48 6.49 6.518 6.50 6.48 6.44 6.42 6.40 6.43 6.451 

XS 0.0868 0.0869 0.08700 0.086711 0.0869 0.0867 0.08674 0.0866 0.0863 0.08615 

XH 3.27 3.274 3.288 3.26 3.282 3.28 3.29 3.3001 3.25 3.27 

XSTO 0.0182 0.01830 0.01836 0.01828 0.01831 0.01838 0.01840 0.01843 0.01838 0.01834 

XPAO 2.69 2.70 2.714 2.72 2.728 2.73 2.75 2.76 2.77 2.77 

XPP 0.327 0.30 0.333 0.335 0.3365 0.338 0.340 0.346 0.348 0.349 

XPHA 0.0841 0.0864 0.08854 0.08955 0.09021 0.0927 0.0955 0.0969 0.0978 0.0995 

XA 0.3124 0.334 0.369 0.3817 0.4011 0.415 0.434 0.454 0.465 0.480 

XTSS 12.196 12.19 12.18 12.217 12.218 12.211 12.21 12.21 12.24 12.27 

Composite variables 

TKN 1.734 1.543 1.405 1.355 1.31 1.217 1.19 1.20 1.18 1.168 

TN 11.72 11.545 11.21 11.10 11.01 10.71 10.68 10.64 10.55 10.49 

TP 6.14 6.04 5.97 5.93 5.88 5.7 5.88 5.69 5.62 5.58 

COD 43.07 43.14 43.19 43.18 43.12 43.21 43.22 43.23 43.27 43.29 

BOD5 1.32 1.33 1.34 1.34 1.34 1.36 1.37 1.37 1.37 1.37 

EQI 15108.9 14597.5 14521.0 14492.8 14367.6 14207.3 14115.6 13917.4 13726.5 13681.6 

Tem co-

eff 0.7 0.9 1 

 

1.2 1 1.4 1.6 1.8 2 2.2 

variables  State variables 

SO 2.0965 2.042 2.0132 1.99 1.99 1.964 1.12 1.91 1.92 1.91 

SS 0.12 0.13 0.13 0.13 0.1343 0.133 0.133 0.13 0.133 0.132 

SI 30 30 30 30 30 30 30 30 30 30 

Snh 0.35 0.36 0.36 0.36 0.37 0.374 0.38 0.379 0.37 0.37 

SNO 9.4 9.56 9.63 9.65 9.712 9.77 9.85 9.88 9.95 9.982 

SN2 35.9 35.86 35.83 35.79 35.76 35.76 35.74 35.76 35.73 35.78 

SPO4 8.9 7.2 6.12 5.98 5.399 4.64 4.22 4.12 4.15 4.34 

Salk 3.53 3.54 3.55 3.55 3.566 3.57 3.57 3.57 3.56 3.562 

XI 6.7 6.58 6.58 6.57 6.53 6.42 6.39 3.344 6.4 6.411 

XS 0.0893 0.0877 0.0879 0.0876 0.0873 0.864 0.08596 0.08494 0.0855 0.0856 

XH 3.9 3.43 3.3714 3.32 3.299 3.23 3.23 3.23 3.269 3.3 

XSTO 0.0254 0.0201 0.0191 0.0188 0.01849 0.0178 0.01765 0.0175 0.01787 0.01809 

XPAO 2.45 2.705 2.74 2.726 2.728 2.7 2.633 2.53 2.43 2.3422 

XPP 0.0971 0.2 0.285 0.303 0.336 0.399 0.436 0.43 0.43 0.4263 
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Table F.5 Effect of 𝑧 on EQI at 𝑏𝑃𝐴𝑂 is determined ati25°C 

Tem co-eff 0.085 0.09 0.095 0.1 

 

0.15 0.2 0.3 0.4 0.5 0.6 

variables  State variables 

SO 1.646 1.649 1.65 1.66 1.67 1.97 2.23 2.39 2.51 2.6 

SS 0.12 0.133 0.133 0.134 0.134 0.133 0.132 0.13 0.13 0.12 

SI 30 30 30 30 30 30 30 30 30 30 

Snh 0.36 0.414 0.412 0.4178 0.39 0.377 0.33 0.3 0.29 0.28 

SNO 9.27 9.37 9.38 9.54 9.60 9.69 9.82 9.87 9.93 9.96 

SN2 36.84 36.91 36.6 36.72 36.02 35.82 35.18 34.82 34.5 34.29 

SPO4 7.24 7.85 8.02 7.56 6.45 5.41 4.32 3.71 3.3 3.05 

Salk 3.52 3.53 3.55 3.548 3.55 3.56 3.57 3.58 3.58 3.58 

XI 7.01 6.98 6.89 6.79 6.64 6.43 6.24 6.15 5.99 5.91 

XS 0.0933 0.0908 0.0842 0.0893 0.084 0.08649 0.0852 0.0842 0.08362 0.083 

XH 4.49 3.92 3.7484 3.67 3.34 3.3003 3.1176 3.0484 2.975 2.95 

XSTO 0.0313 0.0246 0.02612 0.022 0.021 0.01832 0.01688 0.01612 0.015616 0.01539 

XPAO 0.737 1.33 1.55 1.749 1.94 2.7165 3.208 3.5 3.69 3.76 

XPP 0.1107 0.19067 0.1949 0.239 0.28 0.33 0.374 0.3949 0.40662 0.4073 

XPHA 0.176 0.1342 0.1205 0.1149 0.104 0.0904 0.0836 0.0805 0.0782 0.076 

XA 0.462 0.44 0.4102 0.426 0.401 0.3929 0.3744 0.3702 0.362 0.35 

XTSS 11.7 11.74 11.78 11.83 11.88 12.23 12.41 12.543 12.63 12.71 

 Composite variables 

TKN 1.288 1.33 1.33 1.33 1.32 1.32 1.3002 1.28 1.27 1.26 

TN 10.56 10.707 10.75 10.79 10.89 11.01 11.122 11.16 11.2 11.23 

TP 8.88 8.45 8.33 7.985 6.45 5.9 4.85 4.27 3.87 3.61 

XPHA 0.0364 0.057 0.0745 0.0845 0.09111 0.128 0.198 0.266 0.387 0.519 

XA 0.415 0.402 0.4 0.398 0.394 0.3917 0.388 0.38 0.387 0.39 

XTSS 11.84 12.079 12.07 12.11 12.14 12.25 12.3 12.4 12.33 12.32 

 Composite variables 

TKN 1.33 1.327 1.327 1.329 1.33 1.3171 1.317 1.3079 1.3047 1.2984 

TN 10.74 10.89 10.96 11.01 11.04 11.081 11.17 11.19 11.25 11.28 

TP 9.15 7.365 6.56 6.11 5.89 5.19 4.81 4.71 4.74 4.91 

COD 43.73 43.41 43.39 43.27 43.27 43.1 43.07 42.98 43.1 43.19 

BOD5 1.41 1.37 1.37 1.36 1.35 1.34 1.34 1.33 1.35 1.36 

EQI 20236.02 17507.07 15594.40 14920 14385.7 13132.79 12457.96 12283.37 12345.26 12665.66 
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COD 43.39 43.14 43.01 42.98 43.05 43.15 43.24 43.36 43.31 43.28 

BOD5 1.22 1.22 1.22 1.2 1.22 1.35 1.41 1.45 1.47 1.48 

EQI 19473.58 19845.17 19945.6 18052.4 16124.4 14400.37 12526.6 11485.91 10774.74 10312.28 
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