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ABSTRACT 

In the last few years, the field of wireless communication has seen a tremendous 

development in various technologies. The extensive use of internet applications resulting in 

increased demand for higher data rate. Eventually, the higher data transmission rates are making 

the problem of inter-symbol interfernce (ISI) more severe.  Thus, to mitigate the effect of inter-

symbol interference (ISI) in multipath wireless channels, designing a channel equalizer is 

becoming more demanding. Furthermore, the transmitted signal also subjected to noise and non-

linear distortion from the channel and signal processing devices. Therefore, designing of 

efficient non-linear channel equalizers  is a need of time. In the literature, several non-linear 

channel equalizers are have been developed. However, it still requires further investigation to 

improve equalization performance in terms of bit error rate (BER) by improving the efficiency 

of the training algorithms used for channel equalizers. Therefore, this thesis investigates the 

various metaheuristic algorithms and  machine learning based approaches for non-linear channel 

equalization. 

In this thesis, a new training scheme using cuckoo search algorithm (CSA) has been 

proposed to train the neural network based channel equalizers. The performance of the proposed 

scheme also has been analysed over different non-linear wireless communication channels. The 

robustness of a scheme is shown by considering a burst error scenario. An efficient JAYA 

algorithm with Levy flight has been proposed for non-linear channel equalization and the 

performance of the proposed algorithm is examined under  wireless communication channels 

with different eigenvalue (EVR) ratio and non-linerarities. Furthermore, a modified grasshopper 

optimization algorithm has been porposed and non-linear channel equalization in wirelss 

environments have been carried out using a proposed modified grasshopper optimization 

algorithm. Finally, a neural network based approach is proposed for joint channel estimation 

and data detection in universal filtered multi-carrier (UFMC) system and the efficiency of the 

proposed approach have been confirmed over wireless channel. 
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Introduction 

1.1 Background 

 In the last decade, widespread use of internet has resulted in a massive rise in the data 

rate of a wireless communication system. Eventually, to mitigate the effect of inter-symbol 

interference (ISI) in multipath wireless channels, designing a channel equalizer is becoming 

more demanding. Generally, in wireless communication, the information is broadcasted via 

band-limited channels [1]. Thus, if the transmitted signals have higher bandwidth than the 

channel coherence bandwidth, it results in amplitude and phase distortion of the signals, which 

causes ISI [2–4]. Moreover, multi-path effects in the wireless environment and the band-limited 

nature of channels are the key factors which lead to ISI  [5]. The noise introduced by the system 

during transmission of data and the non-linear distortion arising from the use of amplifiers also 

needs to be alleviated [6,7]. Hence,  an equalizer is needed at the receiver to combat the 

distortion owing to ISI, noise and nonlinearity [2–4]. 

1.2 Motivation 

In recent years, the problem of channel equalization has been solved by many 

researchers. Initially, communication researchers employed adaptive filter based linear 

equalizers for channel equalization in wireless environment. However, linear equalizers does 

not provides better BER performance for non-linear wireless channels [1] [8–10]. The neural 

network (NN) based equalizers provides superior performance owing to their non-linear 

structure [1] [8–10]. In general, gradient-decent algorithms are utilized to train neural network 

(NN) for non-linear channel equalization in wireless environment [1,11,12]. However, the use 

of gradient based algorithms such as back-propagation (BP) for training the NN based non-linear 

equalizer results in the performance degradation because of certain key factors like BP has a 

problem of stagnation in local minima [13–15], learning rate parameter and initial coefficients 
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affect the convergence, and slower convergence rate of BP [16]. These limitations motivated 

the researchers to employ nature-inspired metaheuristic algorithms to train NN based channel 

equalizers [17–19]. The capability to deal with the problems which are nonlinear, non-

differentiable and complex is present in metaheuristic algorithms whereas gradient-descent 

based approaches need differentiable and continuous fitness function [15]. Owing to the 

stochastic nature of population based metaheuristic algorithms, they are capable of escaping 

from local optima [16] and provides faster convergence [20]. However, it still requires further 

investigation to improve equalization performance in terms of bit error rate (BER) by improving 

the efficiency of the training algorithms used for channel equalizers. This motivated us to 

propose new training schemes for neural network based non-linear channel equalizers using 

population based metaheuristic algorithms.  

1.3 Research Objectives 

  The key research objectives of the research work carried out in this thesis are as follows: 

 To propose a new training scheme for Neural Network based Non-linear Channel Equalizers 

using Cuckoo Search Algorithm 

 To develop an efficient JAYA Algorithm with Levy flight for Non-linear  Channel 

Equalization 

 To develop a Modified Grasshopper Optimization Algorithm for Non-linear Channel 

Equalization   

 To develop a Neural Network based approach for joint channel estimation and data detection 

in multi-carrier system. 

 

1.4 Contributions of the Thesis 

 The key contributions of this have been briefly explained as follows: 

 A New Training Scheme for Neural Network based Non-linear Channel 

Equalizers using Cuckoo Search Algorithm 

 This contribution deals with development of a new training scheme using Cuckoo Search 

Algorithm (CSA) to train the neural network based non-linear channel equalizer. To overcome 

SellathuraiMathini
Highlight



3 

 

the limitations of existing algorithms, this work proposes a training scheme using Cuckoo 

Search Algorithm (CSA) for neural network based channel equalizers. The proposed training 

scheme has a better ability to escape from local minima, higher exploitation and exploration 

capabilities. To choose the optimum values of the parameters, the sensitivity analysis of the 

proposed approach is performed with its key parameters. Furthermore, three non-linear channels 

have been simulated to demonstrate the equalization performance of the CSA based training 

scheme and the results have been compared with recent and well-established algorithms. The 

simulations confirm that the proposed training scheme performs substantially better than 

existing metaheuristic algorithms in terms of BER and MSE performance. To show the 

robustness of the proposed method, the burst error scenario has been considered and results 

proved that the method is more successful in handling such scenarios when compared to other 

methods. The performance of the proposed scheme has been validated for a wide range of signal-

to-noise ratio through simulation studies and it is observed that the scheme outperforms the other 

algorithms in poor SNR conditions as well. Also, to examine the statistical significance of the 

results provided by the proposed scheme, the Wilcoxon test is performed and the test reveals 

that the obtained results are statistically significant 

 An Efficient JAYA Algorithm with Levy flight for Non-linear Channel 

Equalization 

This contribution involves the development of an efficient JAYA algorithm with Levy 

flight for Non-linear Channel Equalization. JAYA is an effective and simple population based 

metaheuristic algorithm. Despite being an efficient and simple algorithm, JAYA gets trapped 

into local optima owing to its weak exploration competence and inadequate solution diversity. 

To mitigate these issues, in this contribution Lévy flight (LF) concept and greedy selection 

scheme has been incorporated into the basic JAYA. The LF concept enhances the population 

diversity and thus avoids the state of stagnation. The greedy selection scheme is employed to 

improve the exploitation ability without loss of population diversity. Furthermore, the 

exploitation and exploration capabilities of the algorithm have been balanced by proposing an 

adaptive Lévy index using a linear control parameter strategy. The sensitivity analysis of 

proposed method called JAYA algorithm with Lévy flight (JAYALF) with its key parameters is 

carried out to select the optimal values for these parameters. In order to validate the local optima 

avoidance ability, exploitation and convergence rate of the proposed JAYALF algorithm, it is 

tested on unimodal and multimodal benchmark functions and to verify the effectiveness of the 
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JAYALF for non-linear channel equalization problem, three non-linear wireless communication 

channels have been considered for simulations. In addition, the non-parametric pairwise 

Wilcoxon rank-sum test has been employed to test the statistical validity of the results obtained 

from JAYALF. The results of experiments and statistical test demonstrate that the proposed 

algorithm significantly outperforms existing algorithms in terms of convergence rate and 

accuracy. Furthermore, simulations show that proposed JAYALF algorithm provides faster 

convergence without being trapped into local optima and has a better exploration ability. 

 Non-linear Channel Equalization using a Modified Grasshopper 

Optimization Algorithm    

In this contribution, a modified grasshopper optimization algorithm (MGOA) is 

proposed for equalization of non-linear wireless channels. The proposed algorithm overcomes 

the limitations of grasshopper optimization algorithm and existing metaheuristic algorithms. 

The superiority of the proposed MGOA based equalizer is illustrated over other equalizers 

optimized by the other metaheuristic algorithms. The simulation results on four non-linear 

communication channels demonstrate the efficiency of the proposed MGOA algorithm in terms 

of MSE and BER performance. In order to test the statistical validity of the results obtained from 

MGOA, a non-parametric pairwise Wilcoxon rank-sum test has been employed and the test 

reveals that the obtained results are statistically significant. 

 Joint Channel Estimation and Data Detection for Multi-carrier System: 

A Neural Network based approach 

In conventional multicarrier system to recover the transmitted symbols, channel 

estimation and data detection are carried out as a two different processes. However, the approach 

involves the use of pilots for detection of transmitted data. Furthermore, in the pilot based 

channel estimation approach it requires to explicitly model the channel using the available 

channel observations which may not be accurate always. To overcome these drawbacks, this 

work proposes a joint channel estimation and data detection approach for universal filtered 

multi-carrier Systems using neural network. The proposed approach provides better BER 

performance when compared to conventional channel estimation approaches. 
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1.5 Thesis Organization 

This thesis has been organized into seven key chapters and the chapters are summarized 

in following section as 

Chapter 1: This chapter provides the introduction to the channel equalization in a wireless 

communication system, motivation, and contributions of the thesis. 

Chapter 2:  In this chapter basic system model of non-linear channel equalization is provided 

along with necessary mathematical equations. Furthermore, introduction about machine 

learning is given by explaining the basic concepts related to the neural networks. This chapter 

also gives overview of metaheuristic algorithms. A comprehensive review of the literature 

available in the area of channel equalization is also have been discussed.  

Chapter 3: In this chapter a  training scheme using cuckoo search algorithm is proposed to train 

the neural network based non-linear channel equalizers. The performance of the proposed 

scheme also has been analysed in the burst error scenario. 

Chapter 4: This chapter proposes an efficient JAYA algorithm with Levy for non-linear channel 

equalization. The peformance of the algorithm is examined in terms of MSE and BER 

performance. 

Chapter 5: A modified grasshopper optimization algorithm is proposed in this chapter and the 

perfromance of the proposed algorithm has been evaluated in terms of BER and MSE 

performance 

Chapter 6: This chapter proposes an neural network based approach for joint channel estimation 

and data detection of multicarrier system. 

Chapter 7:Chapter 7 provides the conclusion of the research work and future scope to take this 

research to the higher level.  
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Preliminaries and Literature Survey 

2.1 Introduction 

In this chapter basic system model of non-linear channel equalization is provided along 

with necessary mathematical equations. Furthermore, introduction of machine learning is given 

by explaining the basic concepts related to the neural networks. This chapter also presents the  

overview of metaheuristic algorithms. Finally, a comprehensive review of the literature 

available in the area of channel equalization is also have been discussed. 

2.2 Non-linear Channel Equalization 

A discrete-time model of non-linear channel equalization in the wireless communication 

system is demonstrated in Fig. 2.1. The transmitted symbols are considered as independent and 

equiprobable for all s(n) and are taken as the random binary symbols in the form of {+1,-1}. 

The wireless channel block in this figure consists of the transmission medium along with the 

transmitter-side filter. Generally, the FIR model is utilized to characterize the linear channel and 

its output (t(n)) is expressed as follows [11][1]: 

   
1

0

( ) ( ) ( - )
hN

k

t n h k s n k




                                                        (2.1) 

where ( )h k  denotes the wireless channel tap coefficients and 
hN is the number of coefficients 

in the channel impulse response. 

Furthermore, the NL block in Fig. 2.1 adds nonlinear distortion to wireless channel output and 

its output b(n) is given as follows: 

( ) ( ( ), ( -1), ( -2),...... ( - 1); (0), (1), (2)..... ( -1))h hb n s n s n s n s n h h h hN N 
            

(2.2) 

where   represents the non-linearity generated using the ‘NL’ section 
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 Fig. 2. 1. Block diagram of non-linear channel equalization 

 

              An additive white Gaussian noise q(n) degrades the channel output after adding non-

linearity i.e. ( )b n Finally, the signal received at a receiver front end is ( )r n  and can be written 

as  
  

( ) ( ( ), ( -1), ( -2),...... ( - 1); (0), (1), (2)..... ( 1)) ( )h hr n s n s n s n s n h h h h q nN N   
          

(2.3) 

NL

Multipath 

Wireless 

Channel
AWGN

Transmitted 

Symbol

          

                                 Fig. 2. 2. Multipath wireless channel with non-linear distortion and AWGN 
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The structural representation of multipath wireless channel along with non-linearity and 

AWGN is shown in Fig.2.2 .The equalizer recovers the sequence s(n) or its delayed form i.e. 

( - )s n  , where  is the delay related to wireless channel during transmission. The equalizer 

mitigates for noise, ISI, and nonlinear distortion to retrieve the s(n). Furthermore, the desired 

signal ( )d n  is generated from the input signal ( )s n  by taking a delay of   symbols i.e. ( - )s n 

. The error ( )e n  is calculated by comparing equalizer output ( )y n  with the desired signal ( )d n

as follows: 

        ( ) ( ) ( )e n d n y n                                                           (2.4) 

The slicer provides the estimate of the transmitted symbol and is written as follows:
                      










0)(               1

0)(          1
  )-(ˆ

nyif

nyif
ns                                             (2.5) 

2.3 Machine Learning 

The machine learning involves unsupervised learning, supervised learning,  and 

reinforcement learning. However, in this thesis emphasis is given on supervised machine 

learning using the artificial neural network. The artificial neural network research has been 

started with the introduction of brain inspired computational model by McCulloch and Pitts 

[15,21]. In the last few decades, neural network have received significant attention from the 

researchers of various fields as they are capable of solving non-linear and complex engineering 

problems. The neural networks have been successfully applied to various engineering fields 

such as speech processing [22], signal processing [23], image processing  [24] etc. The basic 

theory related to neural network in this section is taken from [15,25–28]. 

 Single Neuron 

The most basic form of neural network is a single layer perceptron which comprises of 

an input layer and output layer [15,27,29]. The basic neuron involves inputs, weights, activation 

function and single output. 

The basic neuron has a number of inputs ui , (i=1,2…n) and each input is associated with 

weights wi (i=1,2…n). The weighted sum of inputs including bias is given as follows [25–27]: 

https://en.wikipedia.org/wiki/Reinforcement_learning
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buwZ i

n

i

i  
1

                                                       (2.6) 

Where u is input, n represents the total number of inputs, w denotes the weight and b 

represents the bias 

The final output of neuron Y can be written as follows: 

)(ZfY                                                              (2.7) 

Where f denotes some non-linear activation function. The activation functions helps to 

limit the output of neuron in particular range. There are various activations fucntions are 

available such as sigmoid, hyperbolic tangent etc. 

 Neural Network Architectures 

To solve the practical non-linear problems the neural network needs multiple layers of 

neurons rather than single neuron. Generally, the ANNs invovles input layer, output layer and 

hidden layer [25,26]. Furthermore, based on the connection of the neurons, neural networks 

architectures are catogorized as recurrent neural networks and feed-forward neural networks  

[25,27]. However, this study focuses on the feed-forward neural networks. 

 Training of Artificial Network Networks 

In neural networks, the training process involves adjusting the weights of network to 

minimize the cost function. Traditionally, the training of the neural network is carried out using 

gradient- decent based algorithms [12]. 

 Functional Link Artificial Neural Network (FLANN)  

FLANN is a NN developed by Pao with no hidden layers, which has attracted the 

scientific community owing to its lower computational complexity and simplicity [30,31]. In 

FLANN, the input pattern is enhanced with the help of linearly independent non-linear functions 

which reduces the computational burden [1,32]. To make the signals linearly separable in the 

higher space, the input signals are converted into a higher-dimensional space [1,7,11,30,33,34]. 

Chebyshev, Legendre or trigonometric polynomials are used in this network to carry out the 

non-linear expansion of the input signal [1,7,11,30,34–36] . 
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Highlight



10 

 

Researchers utilized FLANN with different polynomials and proven that it outperforms 

other existing NNs for channel equalization [1,7,11,34]. Furthermore, adaptively combined FIR 

and FLANN and Chebyshev polynomials cascaded with FLANN have been employed for the 

equalization [32,35,37]. Recently, FLANN has been applied for function approximation [38], 

non-linear system identification[39–41], to solve differential equations  [42] and for noise 

control [43].  

In order to improve the representation of the input signal in higher-dimensional space, 

the expansion section in Fig. 2.3 expands the dimensions of the signal using trigonometric 

functions. The detailed description of FLANN can be found in [1,11,30,31,34,37].   

Let 1 2( ) [ ] [ ( ) ( 1)]T TR n r r r n r n    be a input pattern. The Expansion section consists of 

trigonometric functions to expand this pattern as follows: 

TrrrrrrneR )]cos( )sin( )cos( )sin(  1[)( 222111   

TnrnrnrnrnrnrneR ))]1-(cos(   ))1-(sin()1-(   ))(cos(   ))(sin(   )(   1[)(          

(2.8)
           

 

Hence, the expanded pattern can be stated as,    

)()( RneR  ,                                                                                      (2.9) 

where T

K
RRRRRR )]()......(),(),(),([)(

4321
  is a vector of basis functions  

Let  i   ( )B L A i I   ,  1,2....I  is a set of basis functions and a set B has the three main 

properties as follows: i) 11   ii) 










2/1

1

2

i∑sup
j

i
Aj    and iii)     K

iK BB
1i ∈


   is a linearly 

independent set [1]. 
 

The FLANN equalizer’s coefficient vector is expressed as follows: 

 TK nwnwnwnwnW )().....()()()( 321                                               (2.10) 

The linear sum of expanded input is written as follows:  
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                                   )()()( nRnWnu eT                                                           (2.11) 

where T

K
RRRRRRneR )]()......(),(),(),([)()(

4321
  is the vector of basis function 

The FLANN output ( )y n  is produced by passing the linear sum ( )u n  through a 

nonlinear activation function and is given by, 

( ) ( ( ))y n u n  

                                                  ( ) tanh( ( ))y n u n                                                  (2.12)     

The error signal ( )e n is computed by taking the difference between the output of FLANN 

( )y n  and the desired signal ( )d n  and is written as follows: 

 

             ( ) ( ) - ( )e n d n y n                                                     (2.13) 
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Fig. 2. 3. Block Diagram of FLANN [1,11,33] 
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2.4 Metaheuristic Algorithms 

             The technique which employs heuristics inspired by nature for integrating exploration 

and exploitation strategies is known as metaheuristic [15,44]. Exploration and exploitation are 

the key elements of any metaheuritic algorithms. Exploitation or intensification refers to using 

the knowledge of current good solution for directing the search in a local region [45]. On the 

other hand, exploration or diversification refers to exploring the solution space globally by 

generating the diverse solutions [45]. In the recent past, metaheuristic algorithms have gained 

enormous popularity among the research community of various engineering disciplines owing 

to their efficiency in finding the optimal solution. As a result of which metaheuristic algorithms 

have been successfully applied for various wireless communication and signal processing 

applications [46–48].  

Primarily, metaheuristic algorithms can be classified into three main categories as 

follows [15]: 

1)Single solution based metaheuristic algorithms 

2) Population based or multi-solution based metaheuristic algorithms 

3) Hybrid  Algorithms 

The single solution based algorithms consist of only one agent or solution whereas 

population based or multi-solution based metaheuristic algorithms consist of the number of 

solutions or agents [15]. The hybrid algorithms consist of combination of different metaheuristic 

algorithms or combination of conventional and metaheuristic algorithms to achieve the global 

optimality [15].  Simualted annealing is an example of single solution metaheuristic algorithm 

[49,50]. On the other hand, the algorithms such as genetic algorithm [51,52], particle swarm 

optimization (PSO) [53] and  bacterial foraging optimization [54] are the examples of population 

based metaheuristic algorithms. In the recent past, several hybrid metaheuristic algorithms such 

as hybrid PSO and back-propagation algorithm [55] and hybrid genetic algorithm and PSO [56] 

have been proposed in the literature. This study focuses on the population based metaheuristic 

algorihms and brief description of the algorithms used in this study is given below. 
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 Cuckoo Search Algorithm (CSA) 

  Cuckoo search algorithm (CSA) is one among the recent population based  

metaheuristic algorithms, which is proposed by  Yang and  Deb [57] . CSA has been inspired 

from the concept of brood parasitism of particular species of cuckoo [57][58][59]. Along with 

brood parasitism, this algorithm also involves Lévy flight movements observed in certain 

birds[57][58][60][59] . Lévy flight based jumps help CSA to avoid being trapped into local 

minima and to find the potential regions of solution space. The superior performance of CSA in 

terms of local optima avoidance capability has been shown by a number of studies when 

compared to other leading metaheuristics such as PSO, genetic algorithm, artificial bee colony 

algorithm and DE algorithm [61] [57]. CSA has been effectively used by the research 

community in various research fields due to its enhanced exploration and exploitation 

capabilities [58]. In the last few years, CSA has been widely used for multilevel thresholding in 

the image [62] , image enhancement [63], design of fractional order differentiator and FOPID 

controller [64][65] , spectrum allocation in a vehicular network [46], non-convex economic 

dispatch problem [66] and optimization of traffic signal controller [67]. Recently, CSA has been 

employed for system identification using the Hammerstein model and for feedback system 

identification [68][40]  and superior performance of CSA has been reported over state-of-the-

art methods.   

 JAYA algorithm 

JAYA is one of the recent population-based metaheuristic algorithm, proposed by R. Venkata 

Rao in 2016 [69]. Besides being an effective and simple algorithm, JAYA does not need 

algorithm specific control parameters. The basic idea behind this algorithm is that the solution 

obtained for a problem should escape from the worst solution and should approach to the best 

one [70]. Since its introduction, owing to simplicity and ability to find global optimum solution 

JAYA has been successfully used by researchers in many engineering problems. In recent few 

years, JAYA and its improved versions [71–80] have been used to solve various engineering 

problems. Furthermore, JAYA has been used for power quality improvement [81], optimization 

of heat sink [82], tracking of maximum power point (MPP) of PV array [83], reliability–

redundancy allocation problems [84], optimization of heat exchangers [85],  mechanical design 

optimization [86], optimization of machining performance [87], parameter identification of 

photovoltaic model [88] and design optimization of heat exchangers [89]. 
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 Grasshopper Optimization Algorithm 

Grasshopper Optimization Algorithm is one among the latest metaheuristic algorithms, 

developed by Saremi et al. in 2017 [90]. The GOA is an efficient swarm intelligence based 

algorithm motivated from the team hunting behavior of grasshoppers . Since its introduction, 

many complicated benchmark functions  and engineering problems  has been solved by GOA 

effectively  [90,91]. GOA and its enhanced versions have been extensively used for electrical 

characterization of fuel cells [92], training of artificial neural network [91], feature selection 

[93–95], economic dispatch problem [96], data clustering [97], tuning of PID controller [98] 

and target tracking [99]. To enhance the performance of basic GOA, some improvement 

techniques have been introduced in [100–102], where the authors demonstrated the competitive 

performance of GOA compared to other metaheuristic algorithms. Recently,  Mirjalili et al. 

[103] have developed a basic multi-objective GOA and Tharwat et al. proposed an improved 

version of multi-objective GOA [104]. 

2.5 Literature Survey                                                              

In order to alleviate the effect of ISI, R. W. Lucky introduced the first equalizer structure 

in the year 1965 which contains a tapped delay line and adaptive combiner [105]. Usually, the 

methods like recursive least square [106] and least mean square (LMS) [3][107] are used to tune 

the parameters of the adaptive combiner in a linear equalizer. However, most of the practical 

wireless channels are severely non-linear due to the presence of non-linearity in data converters 

[8][9][10]. Moreover, in satellite communication, amplifier saturation in satellite also 

contributes to non-linearity [108].  However, for severely non-linear and dispersive channels the 

performance of LMS based linear equalizers is poor [1,8–10]. Thus, to retrieve the information 

corrupted due to transmission through the non-linear wireless communication channels, the non-

linear equalizers play an important role.  
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In recent years, the NN  based channel equalizers emerged as promising alternatives to 

tackle the non-linearity in the wireless channels as they offer a lower bit error rate (BER) when 

compared to linear equalizers [8–10,109,110]. These attributes attracted the communication 

researchers to use several NNs for channel equalization in the wireless environment [8–

10,109,111]. A multilayer perceptron (MLP) has shown superior performance than the linear 

equalizers [9][10]. Furthermore, networks like polynomial perceptron network [110] , radial 

basis function [109][112] and functional link artificial neural network (FLANN) with various 

polynomials [1,7,11,33,34,113] have been applied for equalization which are computationally 

efficient than MLP. In recent years, several nonlinear channel equalizers have been developed 

using FLANN which offer improved performance and complexity equivalent to the FLANN 

[32,35,37]. 

 In general, the back-propagation (BP) algorithm is utilized to train NN for non-linear channel 

equalization [1,7,11,12,33,34]. However, the use of BP for training the NN based non-linear 

equalizer results in the performance degradation because of certain key factors like   BP has a 

problem of stagnation in local minima [13–15],  learning rate parameter and initial coefficients 

affect the convergence, and  slower convergence rate of BP [16,114]. These limitations 

motivated the researchers to employ nature-inspired metaheuristic algorithms to train NN based 

channel equalizers [17–19,115]. The capability to deal with the problems which are nonlinear, 

non-differentiable and complex is present in metaheuristic algorithms whereas gradient-descent 

based approaches need differentiable and continuous fitness function [15] . Owing to the 

stochastic nature of population based metaheuristic algorithms, they are capable of escaping 

from local optima [16]  and provides faster convergence [20]. Therefore, to evade the limitations 

of gradient-descent based approaches various signal processing and wireless communication 

problems were solved using population based metaheuristic algorithms [46–48,116,117]. 
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  By motivating from their advantages, several populaton based  metaheuristic 

algorithms have been employed by communication researchers for  equalization of wireless 

channels. In [118], researchers have developed a genetic algorithm (GA) based scheme for blind 

channel identification and it has been shown that the proposed scheme outperforms the existing 

methods. The joint channel and data estimation is implemented  by chen and Wu in [119] with 

the micro genetic algorithm. The estimation of transmitted data is carried out by using the 

Viterbi algorithm after identifying the unknown channel  with micro GA [119] and the proposed 

scheme has demonstrated better performance than the existing schemes. The  hybrid genetic 

algorithm based approach has been used for non-linear channel blind equalization and  it is 

illustrated that the proposed approach provide superior bit error rate perfroms than other existing 

variants of GA [120].  

In last few years, population based metaheuristic algorithms also have been employed 

to design an adaptive filter based linear equalizers. In [121], authors have designed an adaptive 

equalizer based on particle swarm optimization (PSO) algorithm and demonstrated its 

superiority over least mean square (LMS) based equalizer in terms of MSE and BER 

performance. Furthermore, a modified version of PSO algorithm has been proposed in [108] for 

equalization of linear and non-linear wireless communication channels. It is shown that the 

proposed algorithm provide better performance when compared LMS and other versions PSO 

in terms of BER and MSE. In [122] , equalization of linear and non-linear communication  

channels has been carried out using hybrid PSO (HPSO) algorithm and superior performance of 

HPSO has been exhibited in terms of BER and convergence speed over LMS and other variants 

of PSO. An artificial immune system based equalizer has been employed in [123]  for 

equalization of wireless channels and notable performance of proposed equalizer is 

demonstrated against GA and LMS based equalizer. Recently krill herd algorithm [124] and 

artificial bee colony algorithm [125]  and bacterial foraging optimization [126][127] have been 

employed for channel equalization. 
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In order to overcome the shortcomings of gradient-decent based algorithms a number of 

population based metahheuristic algorithms have been employed for training the neural network 

based non-linear channel equalizers. In [18] , authors have used particle swarm optimization 

algorithm for optimizing architecture of neural networks, network parameters and transfer 

functions at various nodes and superior performance of the proposed equalizer is shown when 

compared to existing equalizer structures. Furthermore, a wavelet NN based equalizer trained 

using a symbiotic organism search algorithm has been introduced in [19]  for robust non-linear 

channel equalization. The results confirmed that the proposed channel equalizer provides better 

performance than existing linear and non-linear equalizers. Furthermore, robustness of the 

equalizer is demonstrated by considering the burst error scenario in the occurring in the wireless 

environment. Lately, directed search optimization [17], Differential evolution (DE) algorithm 

[128], particle swarm optimization algorithm [36]  and Shuffled frog leaping algorithm [115] 

have been employed for training a NN based channel equalizer. These studies reveal the superior 

performance of metaheuristic algorithms over gradient-descent based algorithms. 

2.6 Conclusion 

Literature survey shows that non-linear channel equalization is a well-researched area in 

wireless communication system. However, it still requires further investigation to improve 

equalization performance in terms of bit error rate (BER) by improving the efficiency of the 

training algorithms used for channel equalizers.  
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A New Training Scheme for Neural Network based Non-

linear Channel Equalizers using Cuckoo Search Algorithm  

 

3.1 Introduction 

           Channel equalization has seen never ending drift of research in past few years. 

However, widespread use of the internet has resulted in a massive rise in the data rate of a 

wireless communication system. Eventually, to mitigate the effect of inter-symbol interference 

(ISI) in multipath wireless channels, designing a channel equalizer is becoming more 

demanding.  For severe non-linear distortion, the neural network (NN) based non-linear channel 

equalizers provide superior performance than the adaptive filter based linear equalizers.  To 

overcome the limitations of existing algorithms, this chapter proposes a training scheme using 

Cuckoo Search Algorithm (CSA) for functional link artificial NN (FLANN) based channel 

equalizers. The proposed training scheme has a better ability to escape from local minima, 

higher exploitation and exploration capabilities. To choose the optimum values of the 

parameters, the sensitivity analysis of the  CSA based approach is performed with its key 

parameters. Furthermore, three non-linear channels have been simulated to demonstrate the 

equalization performance of the CSA based training scheme and the results have been compared 

with recent and well-established algorithms. The simulations confirm that the proposed training 

scheme performs substantially better than existing metaheuristic algorithms in terms of BER 

and MSE performance. To show the robustness of the CSA based method, the burst error 

scenario has been considered and results proved that the method is more successful in handling 

such scenarios when compared to other methods. The performance of the proposed scheme has 

been validated for a wide range of signal-to-noise ratio through simulation studies and it is 

observed that the scheme outperforms the other algorithms in poor SNR conditions as well. 

Also, to examine the statistical significance of the results provided by the proposed scheme, the 

Wilcoxon test is performed and the test reveals that the obtained results are statistically 

significant. 
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3.2 Cuckoo Search Algorithm (CSA)  

           Cuckoo search algorithm (CSA) is one among the recent population based  

metaheuristic algorithms, which is proposed by  Yang and  Deb [57] . CSA has been inspired 

from the concept of brood parasitism of particular species of cuckoo [57][58][59]. Along with 

brood parasitism, this algorithm also involves Lévy flight movements observed in certain 

birds[57][58][60][59] . Lévy flight based jumps help CSA to avoid being trapped into local 

minima and to find the potential regions of solution space. The superior performance of CSA in 

terms of local optima avoidance capability has been shown by a number of studies when 

compared to other leading metaheuristics such as PSO, genetic algorithm, artificial bee colony 

algorithm and DE algorithm [61] [57]. CSA has been effectively used by the research 

community in various research fields due to its enhanced exploration and exploitation 

capabilities [58]. In the last few years, CSA has been widely used for multilevel thresholding in 

the image [62] , image enhancement [63], design of fractional order differentiator and FOPID 

controller [64][65] , spectrum allocation in a vehicular network [46], non-convex economic 

dispatch problem [66] and optimization of traffic signal controller [67]. Recently, CSA has been 

employed for system identification using the Hammerstein model and for feedback system 

identification [68][40]  and superior performance of CSA has been reported over state-of-the-

art methods.   

The enhanced performance of the CSA in these studies in terms of local optima 

avoidance, higher exploration and exploitation capabilities and local optima stagnation problem 

of the existing algorithms motivated us to use CSA as a new training scheme for non-linear 

channel equalization. Thus, this chapter proposes a training scheme for Functional link artificial 

neural network based non-linear channel equalizer using a cuckoo search algorithm. The 

performance of the CSA based approach has been compared with other well-established 

population based metaheuristic algorithms like PSO [129][130] and DE [131] and some latest 

methods such as sine cosine algorithm (SCA) [132], grey wolf optimizer (GWO) [133], 

dragonfly algorithm (DA) [134] and whale optimization algorithm (WOA) [135] .  

In the cuckoo search algorithm, a random walk is offered by Lévy flight and the steps of 

the random walk follow a Lévy distribution. The steps drawn from Lévy flight has infinite mean 

and variance [57]. 
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


1

~Lévy , 0 2                                                          (3.1) 

where   is an index of Lévy distribution  

Following key rules have been used to explain the basic concept of the Cuckoo search 

algorithm in a simple manner [57][136] 

 

i. The total nests available are fixed. 

ii. At each point of time, every cuckoo bird lays only one egg and consequently, it drops 

the egg in a nest of another host bird in a random manner. 

iii. The subsequent generations will have the quality eggs from the best nests carried forward 

from the earlier generation.  

iv. In CSA the parameter ap indicates the probability with which the host will discover the 

egg of cuckoo . If the cuckoo’s egg is noticed by a host bird then it can leave the present 

nest and construct another nest or damage the cuckoo’s egg. 

 The key steps of the Cuckoo Search Algorithm (CSA) can be explained as follows: 

1. Initialize N host nests ( 1,2... )iX  i N  randomly in the lower and upper limits of the solution 

space. For every thi  nest, its 
thj (j=1,2….D) dimension i.e. ,i jx  is initialized in the range      

[ min, jx   max, jx ] as given below: 

   , min, max, min,(0,1) ( )i j j j jx x random x x                                             (3.2) 

 

where min, jx and max, jx  denotes a lower and upper limit of 
thj dimension and (0,1)random  

indicates a random number between zero and one which follows the uniform distribution,    

2. Evaluate the fitness iF  of every nest and find the best nest i.e. bestX . 

3. To generate the new nests, perform the Lévy flight for all nests  by using the best nest 

obtained in step (2) as follows [57]: 

( )new old

i iX X Lévy    ,      0 2                                       (3.3)    
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 where   is an index of Lévy distribution,   represents the   step size ( 0  ) and the 

operator  denotes the entry wise multiplication.  

4. Perform the fitness function calculation new

iF  for each new nest obtained from Lévy flight 

in Step 3 and carry out the comparison between the resultant values of fitness function and 

the fitness of the old nests old

iF . 

5. If the problem is of minimization and new

iF < old

iF then accept the new nest by replacing 

old

iX with  new

iX else keep the previous nest  i.e. old

iX . 

6. Use random flight to replace the fraction ap  of worst nests found in the step (5) and evaluate 

the fitness of newly generated nests. 

7. Retain the better nests among the worst nests and new nests generated with random flight 

by performing the fitness comparison. 

8. Update the best nest bestX by ranking all the nests as per their fitness. 

Report the optimal solution bestX  if the termination condition is reached else repeat the steps 

3-8. 

3.3 Cuckoo Search Algorithm based training scheme for FLANN 

non-linear channel equalizer 

          This section describes the proposed approach based on the Cuckoo Search 

Algorithm (CSA) for training the Functional link artificial neural network non-linear channel 

equalizer. The flowchart of the cuckoo search algorithm based approach for channel equalization 

is depicted in Fig. 3.2 and the equalizer structure is illustrated in Fig. 3.1. The fitness function 

considered to evaluate the quality of individual nest is mean squared error (MSE). The main aim 

in non-linear channel equalization is minimizing the value of the fitness function (MSE) over 

the course of iterations. Moreover, the following interpretations are helpful to understand how 

the Cuckoo search algorithm based training scheme is capable of enhancing the performance of 

Functional link artificial neural network based non-linear channel equalizer, 

 CSA makes use of Levy flight (LF) based search for exploration of search space instead 

of standard random walks [58][59]. CSA performs the more efficient exploration of 

solution space when compared to other algorithms with Gaussian process owing to 
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infinite variance and mean of Levy flight and discovers the promising areas of the 

solution space [58][59]. 

 Higher exploration capability of the CSA assists to escape from local minima stagnation 

and avoids the convergence of the algorithm to the local optimal solution.  

 CSA maintains the proper balance between global and local search capabilities during 

the entire search process with the help of discovery probability ( )ap [58][59]. Hence, 

the fine balance assists CSA to explore the solution space globally with more efficacy 

and subsequently, it increases the probability to obtain the global optimal solution [58] 

[59]. 

 The average fitness of all the nests (MSE) improves over the course of iterations and 

consequently, it enriches the initial random nests and guarantees the convergence of the 

CSA based training scheme to the optimal solution. 
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Fig. 3. 1 Block diagram of FLANN Equalizer using Cuckoo Search Algorithm based training scheme 
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The steps used in the cuckoo search algorithm based scheme to train the FLANN non-linear 

equalizer are explained as follows:  

1. Calculate the wireless channel output: The transmitted sequence ( )s n contains random 

symbols which take values either -1 or +1. To calculate the corrupted channel output  ( )r n
 
as 

provided in Eq. (2.3), the sequence ( )s n is transmitted through a linear dispersive channel and 

degraded by noise
 

( )q n  along with non-linear distortion from nonlinearity (.) . 

 

2. Compute input and expanded vector of the equalizer: The input vector ( )R n  to FLANN 

equalizer is obtained by passing the received corrupted symbols ( )r n  through the tap delay 

structure and R(n) is further expanded with trigonometric polynomials to get )(nRe
 as per Eq. 

(2.8). 

 

3. Initialize the population of N Nests:  Keeping each dimension of a nest in the lower bound 

( minx ) and upper bound ( maxx ) of the solution space, the population of N nests is initialized as 

follows: 

 

                                        (3.4) 

 

 

In Eq. (3.4), Xi denotes 
thi  nest and jix ,  represents the  

thj  dimension of 
thi  nest 

4. Compute actual output of FLANN and MSE:  The FLANN output ( )y n  is evaluated as per 

Eq. (2.12), which is used to compute the error by comparing it with the desired signal ( )d n . The 

calculated error is used to evaluate the fitness of nests as follows: 

∑
1

2 )(
1

S

n

ne
S

MSE


                                                    (3.5) 

In Eq. (3.5), ( )e n denotes the error for the nth symbol and S represents the block size or number 

of symbols transmitted. 
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5. Generate new nests using Lévy flight: After fitness evaluation, find the best nest i.e. bestX  

having minimum MSE and use the best nest ( bestX ) to generate new nests with Lévy flight as 

per Eq. (3.3). 

6. Calculate the fitness of new nests: Calculate the fitness 
new

iF  of every new nest generated 

by Lévy flight and perform the comparison between the fitness of the old nests 
old

iF and new 

nests 
new

iF . If 
new

iF is better than the old fitness 
old

iF ( for the channel equalization if 
new

iF <

old

iF  ) then accept a new nest by replacing 
old

iX with  
new

iX , else keep the previous nest i.e. 

old

iX .  

7. Perform random flight on worst nests: To replace a fraction ap of worst nests found in 

step (6) perform the random flight and evaluate the fitness of a newly generated nest. Rank all 

the nests according to fitness and update the bestX . 

8. Termination condition: Report the optimal solution bestX  if the termination condition is 

reached else repeat the steps 4-7. 
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Initialize the number of nests (N), maximum number of iterations ( it_max), 

lower and upper limit of decision variables                      and  number of 

decision variables

To generate the new nests          , perform the Lévy flight on all the nests using    

Eq. (14)

Start

   is better than            ?

Replace the previous nest               

with       

Iteration=it_max?

Report the optimal nest 

Calculate the value of  fitness function (MSE) for all the nests using Eq. (16) 

and identify the best nest (Lowest MSE) 

Randomly Generate N nests within the upper and lower limit of the decision 

variables as per Eq. (13) 

Iteration=Iteration+1

Calculate the value of  fitness function            (MSE) for all the new nests 

obtained after Lévy flight

Abandon the fraction        of worst nests and generate  new nests by random 

flight within the boundary of solution space 

Evaluate and compare the fitness function value (MSE) of  new nests with 

worst nests and retain the best nests (Lowest MSE)

            Update the best nest          by ranking all nests as per their fitness

Keep the previous nest 

i.e.

Yes No

new

iF old

iF

new

iX
old

iX

ap

 
bestX

No

Yes

 
bestX

min, max( )x x

new

iX

new

iF

old

iX

 

Fig. 3. 2. Flowchart of the Cuckoo Search Algorithm (CSA) for Non-linear Channel equalization  
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3.4 Simulation studies 

The simulation experiments have been conducted on a personal computer with 8 GB of 

RAM and an Intel i5-4590S 3 GHz CPU. The cuckoo search algorithm based training scheme 

and other compared algorithms have been implemented in a MATLAB R2013a environment. 

 Channel Models considered for simulations   

In this section, simulations have been performed to examine the channel equalization 

performance of the CSA based training scheme and other compared methods. The FLANN 

based channel equalizer is trained by CSA [57] , PSO [129][130], GWO [133] , DE [131] , SCA 

[132] , WOA [135] and DA [134] algorithm. Three wireless communication channels 

considered for simulations in this study are taken from [11] [1] [37][17] [108][19][137][138] 

and the corresponding channel transfer functions are given as follows:  

 

    
-1 -2

1( ) 0.26 0.93 0.26          : Channel 1H z z z  
                  

                                           
-1 -2

2 ( ) 0.304 0.903 0.304 : Channel 2H z z z       

                
-1 -2

3( ) 0.341 0.876 0.341  : Channel 3H z z z                                  (3.6) 

 

In Eq. (3.6), the wireless channels i.e. Channel 1, 2, 3 have the eigen value ratio (EVR) 

of 11.12, 21.71 and 46.82 respectively [1]. Therefore, Channel 3 has a highest EVR and is a 

highly dispersive channel. The nonlinearities taken for simulations in this study are as follows  

[1][37][19][137]: 

 

                    ( ) ( )b n t n                                                                        : NL=0
 

  ( ) tanh( ( ))b n t n                                                              : NL=1
 

 )(1.0-)(2.0)()( 32 ntntntnb 
                                     : NL=2

 

         ))(cos(5.0)(1.0-)(2.0)()( 32 ntntntntnb 
           : NL=3         (3.7)
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where t(n) refers to the wireless channel output and b(n) denotes the channel output after 

introducing the non-linear distortion. 

Among the above mentioned nonlinearities, a nonlinearity NL=1 characterizes the non-

linear distortion arising as a result of the amplifier saturation. A linear channel model with no 

non-linear distortion is denoted by NL=0. Furthermore, NL =2 and NL =3 are two arbitrary 

nonlinearities out of which NL=3 represents a case of the severe non-linear distortion 

[1][37][32][19][137]. The description of parameters used in simulations is given in Table 3.1. 

Table 3. 1 Description of parameters 

Symbol Purpose of the symbol 

N 

 
Population Size (Number of nests)    

M No. of taps of the equalizer    

S Block Size 

 

   

ap                          

Equation 3 

Discovery probability 

 

 

 

 

 

 

   

  

Equation 4 

Index of Lévy Distribution 

 

 

 

 

 

 

 

 

 

 
  

Nh Length of the channel impulse response 

 

 

 

   

it_max Maximum number of iterations    

 

 Sensitivity analysis of the Cuckoo Search Algorithm (CSA) based 

equalizer training scheme  

          In population-based metaheuristic algorithms, the tuning of control parameters 

significantly affects the performance of the algorithm [108]. Therefore, sensitivity analysis of 

CSA is conducted with respect to five parameters such as a number of host nest (N), data block 

size ( )S , discovery/switching probability ( )ap , index of Lévy distribution ( )  and the number 

of taps (M). Thus, Figs. 3.3 to 3.7 illustrate the results of the sensitivity analysis for Channel 1 

(Eq. 3.6) with NL=1 (Eq. (3.7)). 
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A) Number of nests (or Population size N) 

          Generally, fast convergence and global search capability can be achieved with an 

increase in the number of nests. It can be seen from Fig. 3.3 that with an increase in the number 

of nests (N), MSE decreases significantly. However, it is also observed from this figure that 

N=20 number of nests is enough to escape from the local optima, which can be confirmed from 

MSE results of CSA in Table 3.2. It can be noticed that  increase in the value of N further does 

not result in any significant  MSE reduction. 

 

Fig. 3. 3. Effect of Population size (N)                                        Fig. 3. 4. Effect of Block Size (S) 

 

Table 3. 2  Effect of variation of N on MSE 

Number of nests (N)  MSE     

 Min Max Median Mean SD 

5 3.2598e-04 6.4256e-04 4.1365e-04 4.2493e-04 9.4951e-05 

10 2.7415e-04 3.5316e-04 3.0151e-04 3.0458e-04 2.2527e-05 

15 2.6121e-04 2.8761e-04 2.6859e-04 2.7164e-04 9.0161e-06 

20 2.6038e-04 2.7147e-04 2.6272e-04 2.6368e-04 3.1024e-06 

25 2.6110e-04 2.6521e-04 2.6271e-04 2.6268e-04 1.1318e-06 

30 2.6037e-04 2.6583e-04 2.6261e-04 2.6259e-04 1.6224e-06 

 

B) Block Size ( )S  

Usually, the increase in block size (S) results in the reduction of MSE owing to increased 

error estimates for every nest. Increasing the value of S from 50 to 200 leads to better MSE 

performance which can be seen from Table 3.3 and Fig. 3.4. However, by selecting a block size 

more than S=200 for the channel 
1( )H z  with non-linearity NL=1 (Eqs. (3.6-3.7)) hardly 

improves the MSE performance. Thus, the data block size is considered as 200 for simulations 

in this study.   
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C) Discovery/switching probability ( )ap   

       The Discovery or switching probability ap controls the global and local search 

capabilities of CSA[58][59]. As seen from Fig. 3.5, the probability ap of 0.1 gives the minimum 

MSE for non-linear channel equalization. The best values obtained for minimum, maximum, 

average and standard deviation of MSE are 2.5979e-04, 2.6261e-04, 2.6078e-04 and 1.0147e-

06 respectively, which are obtained at the probability of 0.1 as shown in Table 3.4. Furthermore, 

Fig. 3.5 and the statistical comparison of MSE in Table 3.4 shows that for this problem, ap of 

0.1 only leads to an optimal solution. 

 

           Fig. 3. 5 Effect of Discovery Probability 
ap          Fig. 3. 6. Effect of the index of Lévy distribution ( )  

 

 

Table 3. 3 Effect of the block size (S) on MSE 

Block Size ( )S  MSE 

 Min Max                 Median Mean SD 

50 2.3761e-03 2.4055e-03 2.3864e-03 2.3882e-03 9.1651e-06 

100 2.9044e-04 2.9929e-04 2.9441e-04 2.9469e-04 3.1306e-06 

200 2.6084e-04 2.6467e-04 2.6245e-04 2.6249e-04 1.1007e-06 

300 2.6001e-04 2.6879e-04 2.6202e-04 2.6245e-04 2.5224 e-06 
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Table 3. 4  Effect of variation of discovery probability ap on MSE 

Discovery probability ( ap

) 

 

MSE     

Min Max 
Median 

Mean SD 

0.01 2.6014e-04 2.6444e-04 2.6245e-04 2.6250e-04 1.5306e-06 

0.05 2.5977e-04 2.7693e-04 2.6027e-04 2.6240e-04 5.2541e-06 

0.1 2.5979e-04 2.6261e-04 2.6030e-04 2.6078e-04 1.0147e-06 

0.2 2.6648e-04 2.9633e-04 2.7827e-04 2.7845e-04 8.4185e-06 

0.3 2.8115e-04 3.3685e-04 3.1027e-04 3.0881e-04 1.6003e-05 

0.4 2.9591e-04 3.6952e-04 3.3550e-04 3.3875e-04 2.6693e-05 

0.5 3.0656e-04 3.8943e-04 3.5254e-04 3.5098e-04 2.6189e-05 

0.6 2.9033e-04 4.2596e-04 3.8872e-04 3.7509e-04 4.1974e-05 

0.7 2.9005e-04 4.3419e-04 3.4957e-04 3.5378e-04 4.4003e-05 

0.8 3.0805e-04 4.3134e-04 3.5289e-04 3.6161e-04 3.7363e-05 

0.9 3.5520e-04 4.9081e-04 4.1559e-04 4.1376e-04 4.0016e-05 

1 3.3815e-04 9.2405e-04 6.3173e-04 6.3438e-04 1.9652e-04 

 

D) Index of Lévy distribution ( )  

The value of the Lévy index ( )  is varied from 0.25 to 2 with a step of 0.25. The effect 

of variation of values of   is illustrated in Fig. 3.6 and Table 3.5. The best values obtained for 

minimum, maximum, average and standard deviation of MSE are 2.5988e-04, 2.6217e-04, 

2.6073e-04 and 6.4060e-07 respectively, which are obtained at a value of   equal to 0.75 as 

reported in Table 3.5. Therefore, the value of   is fixed at 0.75 for simulations in this paper. 

Table 3. 5 Effect of variation of index of Lévy distribution ( ) on MSE 

Index of Lévy distribution ( )  MSE     

Min  Max Median Mean   SD 

0.25 2.6068e-04 2.6668e-04 2.6310e-04 2.6339e-04 2.0829e-06 

0.5 2.6040e-04 2.6502e-04 2.6088e-04 2.6146e-04 1.5204e-06 

0.75 2.5988e-04 2.6217e-04 2.6067e-04 2.6073e-04 6.4060e-07 

1 2.5995e-04 2.6322e-04 2.6085e-04 2.6136e-04 1.1719e-06 

1.25 2.5997e-04 2.6604e-04 2.6241e-04 2.6274e-04 2.3268e-06 

1.5 2.5993e-04 3.0873e-04 2.6250e-04 2.6878e-04 1.4929e-05 

1.75 2.6050e-04 2.7183e-04 2.6248e-04 2.6339e-04 3.2805e-06 

2 2.6191e-04 2.7503e-04 2.6626e-04 2.6681e-04 4.3568e-06 
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E) Number of taps (M) 

The results in Fig. 3.7 indicate the effect of variation of a number of taps (M) on MSE 

performance. Usually, an increased number of equalizer taps leads to a reduction in the MSE. It 

is observed from this figure that four tap equalizer provides the optimum performance. But, Fig. 

3.7 and Table 3.6 shows that the value of M more than four does not result in any significant 

reduction of MSE. Therefore, the number of taps considered for simulations in this paper is four. 

 

Fig. 3. 7. Effect of Number of taps on MSE )(M  

Table 3. 6 Effect of variation of  M on MSE 

Number of taps 

(M) 

MSE     

Min Max Median Mean   SD 

2 0.0013 0.0013 0.0013 0.0013 4.7550e-16 

4 2.6302e-04 2.6711e-04 2.6397e-04 2.6440e-04 1.5502e-06 

6 2.7553e-04 3.6014e-04 3.3021e-04 3.2323e-04 2.8749e-05 

8 3.2291e-04 4.5946e-04 3.9436e-04 3.9375e-04 4.8087e-05 

10 3.8320e-04 8.3285e-04 5.8837e-04 6.0405e-04 1.3135e-04 
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 Performance Analysis of the CSA based Training Scheme for Non- 

linear Channel Equalization  

          Each transmitted symbol is a real-valued and takes values in the form of {-1,+1} 

following the uniform distribution. The noise added to the wireless communication channel 

output after the introduction of non-linear distortion is AWGN of signal-to-noise ratio (SNR) 

10 dB, 20 dB and 30 dB. The block size of 200 symbols is taken as the input in the training 

process of FLANN. The input symbols are delayed by two units to generate the desired signal 

which is utilized in error computation during the training phase and for BER calculation during 

the testing phase. The expansion block of FLANN takes four inputs from the tapped delay 

segment and generates thirteen terms along with bias by expanding every input into 3. 

          The CSA based training method has been used to train FLANN equalizer for 500 

iterations over thirty independent runs. The min, max, standard deviation (SD) and mean values 

of MSE are reported in results. Mean refers to MSE averaged over thirty runs and thus the 

capability of effectively escaping from the local minima and converging to an optimal solution 

is represented by the lesser mean. Furthermore, the standard deviation is also considered to find 

the results dispersion. Min and max denote the minimum and maximum value of MSE in thirty 

runs. The results distribution achieved by the algorithms over thirty runs is demonstrated with 

box plots. 

           The channel equalization capability of the cuckoo search algorithm based training 

scheme for FLANN has been compared with PSO [129][130], GWO [133], DE [131] , SCA 

[132], WOA [135] and DA [134]  algorithm. Exhaustive simulation experiments are performed 

to choose the key parameters of all the compared algorithms for a fair comparison among the 

CSA based equalizer training scheme and other algorithms. The parameters which provided the 

optimum results for all experiments are chosen for the compared algorithms. Table 3.7 presents 

the parameters taken for all the metaheuristic algorithms for comparative study. In Table 3.7, 

the rand represents a random number between 0 and 1. 
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Table 3. 7 Parameters used in the simulation 

Algorithm Parameter Value 

CSA Population size (N)  20 

 Discovery probability ( )ap  0.1 

 Index of Lévy distribution ( )  0.75 

PSO Population size (N) 20 

 C1 2 

 C2 2 

 Inertia weight (w) 0.9 

GWO Population size (N) 20 

 r1 rand 

 r2 rand 

 Convergence constant a [2 0] 

DE Population size (N) 20 

 Mutation Factor (F) 0.4 

 Crossover rate (CR) 0.9 

SCA Population size (N) 20 

 r1, r4 rand 

 r2 2*pi*rand 

 r3 2*rand 

 a 2 

WOA Population size (N) 20 

DA Population size (N) 20 

 

3.4.3.1 MSE performance  

The training of FLANN is performed for 500 iterations to examine the convergence 

performance of the cuckoo search algorithm based training scheme and other algorithms and the 

MSE is averaged over thirty runs. The MSE convergence for three non-linear channels is 

presented in this section for a signal-to-noise ratio of 10 dB, 20 dB and 30 dB. 

Case A: Channel 1 

In this case, Channel 1 (as illustrated in Eq. 3.6) which corresponds to EVR of 11.12 has 

been taken into consideration for evaluation of MSE performance of CSA based training strategy 

with two different nonlinearities for signal-to-noise ratio conditions of 10-30 dB. 

 

 



34 

 

 
(a)                                                                          (b) 

        Fig. 3. 8. Convergence curves for Channel 1 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=10 dB 

 

   
               (a)                                                                                               (b)  

Fig. 3. 9.  Convergence curves for Channel 1 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=20 dB 

The convergence performance comparison of the cuckoo search algorithm based training 

scheme with the other algorithms for channel 1 with nonlinearities NL=2 and NL=3 at SNR of 

10 dB is illustrated in Fig. 3.8 (a) and (b) respectively. It can be seen from this figure that even 

the signal-to-noise conditions are poor CSA attains the least MSE amongst all the algorithms. 

Thus, the MSE performance of CSA is superior in comparison with PSO, GWO, DE, SCA, 

WOA and DA algorithm. When the nonlinearity increased from NL=2 to NL=3, the MSE 

performance showed degradation for all the methods whereas the CSA was found to behave 

persistently despite severe non-linearity and poor SNR scenario.  
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Furthermore, from Figs. 3.8, 3.9 and 3.10 it is observed that the CSA based training 

technique provides the better performance among all the algorithms for a wide range of signal-

to-noise ratio (10-30dB) conditions. 

 

 
(a)                                                                                 (b) 

 

Fig. 3. 10. Convergence curves for Channel 1 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB 

 

 

The MSE results for signal-to-noise ratio (SNR) of 30 dB in Table 3.8 also confirm the 

superiority of the cuckoo search algorithm based training scheme. Furthermore, the lowest 

values of the standard deviation and mean of MSE from this table proves the enhanced 

equalization competence of CSA in terms of local minima avoidance capability. 

MSE Box plots at SNR of 30 dB for Channel 1 by considering nonlinearities NL=2 and 

NL=3 are shown in Fig. 3.11 (a) and (b) respectively. Generally, Box plots are used to illustrate 

and analyze the distribution of results [139]. Fig. 3.11 shows that the interquartile range and 

median of the MSE results provided by CSA are least among all the algorithms. Thus, these box 

plots validate the superiority of the proposed training scheme. 
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(a)                                                                                      (b) 

Fig. 3. 11. MSE Box plots of all algorithms for Channel 1 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 

dB 

Table 3. 8 MSE results for Channel 1 with nonlinearities NL=2 and NL=3 at SNR=30 dB 

Non-

Linearity 
Algorithm 

MSE  

Min Max Median Mean SD 

NL=2 CSA 1.7990e-04 1.9051e-04 1.8185e-04 1.8223e-04 2.4112e-06 

 PSO 2.0952e-04 5.2596e-04 3.7860e-04 3.6555e-04 8.0511e-05 

 GWO 2.1916e-04 7.1988e-04 3.8761e-04 3.8507e-04 1.2840e-04 

 DE 2.0045e-04 0.0032 3.6078e-04 6.8391e-04 6.8681e-04 

 SCA 6.0591e-04 0.0051 0.0011 0.0013 8.5292e-04 

 WOA 4.2355e-04 0.0525 0.0020 0.0042 0.0094 

 DA 3.0776e-04 0.0037 6.8683e-04 8.4127e-04 6.6028e-04 

NL=3 CSA 0.0055 0.0055 0.0055 0.0055 1.3121e-06 

 PSO 0.0059 0.0072 0.0065 0.0065 2.6051e-04 

 GWO 0.0060 0.0070 0.0064 0.0064 2.2487e-04 

 DE 0.0056 0.0137 0.0072 0.0077 0.0018 

 SCA 0.0063 0.0151 0.0082 0.0087 0.0018 

 WOA 0.0064 0.0379 0.0102 0.0149 0.0092 

 DA 0.0063 0.0491 0.0078 0.0100 0.0078 

 

Case B: Channel 2  

Channel 2 corresponding to EVR of 21.71 is considered to demonstrate the equalization 

capability of CSA based training scheme. Upon comparison with channel 1, this channel is more 

dispersive. Similar to the case of channel 1, for this channel also MSE performance is evaluated 

with two different nonlinearities i.e. NL=2 and NL=3 for a wide range of SNR. 
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(a)                                                                        (b) 

 

Fig. 3. 12. Convergence curves for Channel 2 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=10 dB 

 

 

(a)                                                                                    (b) 

               Fig. 3. 13.  Convergence curves for Channel 2 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=20 

dB 
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Figs. 3.12-3.14 shows convergence curves for channel 2 with nonlinearities NL=2 and 

NL=3 at SNR of 10, 20 and 30 dB respectively. It is observed from convergence curves that 

CSA has the best performance in terms of escaping from local minima and offers better 

exploration capability among the compared algorithms. Despite the worsening of the MSE 

performance with increased EVR from Channel 1 to Channel 2 (Figs 3.8 and 3.12), CSA has 

exhibited superior performance in comparison to other algorithms. 

The improved efficacy of CSA for training the FLANN is clear from the MSE results at 

SNR of 30 dB in Table 3.9. The values of standard deviation and mean of MSE obtained from 

CSA in this table confirms the superiority of CSA over all the compared algorithms. The inter-

quartile range and median of CSA from the MSE boxplots in Fig. 3.15 indicates the better 

equalization competence of CSA in comparison with all the other compared algorithms for non-

linear channels.         

 

 
(a)                                                                                (b) 

Fig. 3. 14. Convergence curves for Channel 2 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB 
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(a)                                                                                      (b) 

Fig. 3. 15.  MSE Box plots of all algorithms for Channel 2 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 

dB 

 

Table 3. 9 MSE results for Channel 2 with nonlinearities NL=2 and NL=3 at SNR=30 dB 

Case C: Channel 3 

In an attempt to further validate the equalization performance of CSA, a highly 

dispersive channel i.e. Channel 3 (as depicted in Eq. (3.6)) corresponding to EVR of 46.82 is 

considered in this case.  

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

CSA PSO GWO DE SCA WOA DA
Algorithms

M
S

E

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

CSA PSO GWO DE SCA WOA DA
Algorithms

M
S

E

Non-

linearity 
Algorithms 

MSE  

Min Max Median Mean SD 

NL=2 CSA 7.1579e-04 7.3380e-04 7.1759e-04 7.1884e-04 3.6926e-06 

 PSO 8.8650e-04 0.0018 0.0011 0.0012 2.1379e-04 

 GWO 8.2525e-04 0.0018 0.0013 0.0012 2.4067e-04 

 DE 8.8582e-04 0.0214 0.0014 0.0025 0.0037 

 SCA 0.0017 0.0058 0.0026 0.0031 0.0012 

 WOA 0.0014 0.0512 0.0040 0.0098 0.0137 

 DA 7.7078e-04 0.0067 0.0018 0.0021 0.0012 

NL=3 CSA 0.0119 0.0119 0.0119 0.0119 6.2444e-06 

 PSO 0.0126 0.0180 0.0151 0.0152 0.0013 

 GWO 0.0123 0.0172 0.0149 0.0151 0.0013 

 DE 0.0131 0.0562 0.0190 0.0210 0.0093 

 SCA 0.0159 0.0515 0.0235 0.0251 0.0080 

 WOA 0.0201 0.1840 0.0650 0.0754 0.0501 

 DA 0.0123 0.0581 0.0214 0.0241 0.0115 
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(a)                                                                                    (b) 

Fig. 3. 16. Convergence curves for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=10 dB 

 

 

(a)                                                                      (b) 

Fig. 3. 17. Convergence curves for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=20 dB 

The convergence behavior for Channel 3 for different SNR conditions ranging from 10-

30dB by considering both the nonlinearities i.e. NL=2 and NL=3 is shown in Figs. 3.16-3.18. 

These figures indicate that CSA has a better exploration capability and avoids the stagnation 

problem more efficiently. Thus, despite poor signal-to-ratio conditions (SNR=10 dB), CSA 

provided the lowest MSE. Moreover, even though MSE increases with an increase in EVR from 

11.12 to 46.82 (Figs. 3.8, 3.12 and 3.16) for all the algorithms, CSA is performing better than 

other algorithms.  
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(a)                                                                                  (b) 

 

Fig. 3. 18. Convergence curves for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB 

 

Table 3. 10 MSE results for Channel 3 with nonlinearities NL=2 and NL=3 at SNR=30 dB 

Non-

Linearity 
Algorithms 

MSE  

Min Max Median Mean SD 

NL=2 CSA 0.0028 0.0029 0.0028 0.0028 6.0392e-06 

 PSO 0.0034 0.0058 0.0038 0.0040 5.2184e-04 

 GWO 0.0034 0.0049 0.0043 0.0041 3.9298e-04 

 DE 0.0035 0.0113 0.0046 0.0054 0.0020 

 SCA 0.0043 0.0152 0.0078 0.0088 0.0030 

 WOA 0.0044 0.0699 0.0109 0.0149 0.0136 

 DA 0.0032 0.0311 0.0072 0.0091 0.0062 

NL=3 CSA 0.0348 0.0349 0.0348 0.0348 1.3186e-05 

 PSO 0.0371 0.0559 0.0447 0.0451 0.0049 

 GWO 0.0398 0.1228 0.0489 0.0508 0.0144 

 DE 0.0446 0.0821 0.0562 0.0564 0.0092 

 SCA 0.0484 0.1075 0.0673 0.0701 0.0144 

 WOA 0.0942 0.2776 0.1810 0.1752 0.0595 

 DA 0.0407 0.1720 0.0628 0.0745 0.0324 

 

The statistical comparison of MSE for Channel 3 with both nonlinearities at SNR=30 dB 

is reported in Table 3.10. This table indicates the superior MSE performance of the CSA in 

comparison with other methods. The Box plot diagram of all the algorithms for Channel 3 with 

both nonlinearities at SNR of 30 dB is indicated in Fig. 3.19 and median and inter-quartile range 

in these boxplots confirms the superiority of the proposed method over other methods. 
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(a)                                                                                     (b) 

Fig. 3. 19. MSE Box plots for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB 

 

3.4.3.2 Statistical Analysis 

          In population based metaheuristic algorithms, comparing the performance with 

the standard deviation and mean values is not adequate [140] and to analyze the statistical 

significance of the results obtained from the metaheuristic algorithm, performing the statistical 

test is essential [141]. Thus, to demonstrate the considerable gain in the performance of the 

algorithm in comparison with state-of-the-art algorithms it is obligatory to conduct the statistical 

test [132][16]. Hence, a nonparametric statistical test, Wilcoxon rank-sum test [142] , is 

performed to validate whether CSA based training scheme’s results differ significantly from 

other algorithms. The Wilcoxon test is carried out by choosing the best algorithm and then 

comparing it with the other algorithms. Furthermore not applicable (NA) is noted down for the 

best performing algorithm. 

Table 3. 11  p-values obtained from Wilcoxon test for all 3 channels corresponding to MSE results of SNR=30 

dB 
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Algorithms Channel 1 Channel 2 Channel 3 

 NL=2 NL=3 NL=2 NL=3 NL=2 NL=3 

CSA NA NA NA NA NA NA 

PSO 1.49180e-06 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 

GWO 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 

DE 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 

SCA 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 

WOA 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 

DA 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 3.019859e-11 
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Table 3.11 presents the p-values computed by performing the statistical test. This table 

proves the superiority of CSA based training scheme over other algorithms for all the channels 

with both nonlinearities. The reported values of p in Table 3.11 are lesser than 0.05 which proves 

that the solutions provided by the CSA have statistical significance in comparison with other 

methods 

3.4.3.3 Bit Error Rate (BER) performance   

           In this section, to analyze the bit error rate performance of the CSA based training 

scheme 3 different non-linear wireless communication channel models have been taken into 

consideration. To achieve this, AWGN with a wide range of signal-to-noise ratio is introduced 

to the output of a channel. During the channel equalization process, if the equalizer output and 

transmitted symbol are unequal, the error is increased by 1. 

Case A: Channel 1 

To analyze the bit error rate performance of the proposed scheme, this case considers a 

Channel 1 which corresponds to EVR of 11.12 with two different nonlinearities 

 
(a)                                                                                      (b) 

 

Fig. 3. 20. BER performance for the Channel 1 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB 
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Fig. 3.20 shows the BER  curves of the CSA and other algorithms based training schemes 

for Channel 1 considering  both the nonlinearities  (NL=2 and NL=3) at SNR of 30 dB. An SNR 

enhancement of nearly 1 dB is attained by CSA over PSO and GWO at BER of 7.7667e-05 for 

NL=2 and above 2 dB for the remaining algorithms. Moreover, CSA has provided a similar BER 

improvement for the non-linearity NL=3. Fig. 3.20 (a) and (b) indicate that with an increase in 

nonlinearity from NL=2 to NL=3, BER of all the algorithms increased but still CSA provides 

lesser BER than others even in severely non-linear scenario (i.e. NL=3). 

Case B: Channel 2 

This case takes into consideration the Channel 2 corresponding to EVR of 21.71, to illustrate 

the BER performance of the CSA based training scheme.  

The BER curves for Channel 2 having two different nonlinearities at SNR of 30 dB is 

shown in Fig. 3.21. This figure shows that for non-linearity NL=2, CSA has obtained around 

0.75 dB gain in SNR over PSO and above 2 dB over the other compared algorithms at a bit error 

rate of 2.0633e-04. Moreover, it is observed from Fig. 3.21 (a) and (b) that CSA is outperforming 

the other six algorithms even more significantly for NL=3 than NL=2. This is the impact of 

superior exploration and exploitation capability of the CSA based training scheme, resulting in 

increased accuracy for channel equalization. 

 

 
(a)                                                                                     (b) 

Fig. 3. 21.  BER performance for the Channel 2 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB 
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Case C: Channel 3 

In this section, Channel 3 which is having the highest EVR is considered for validation of the 

BER performance of a CSA based training approach at SNR of 30 dB. 

The BER performance of a highly dispersive channel (channel 3) is demonstrated in Fig. 

3.22. Figs. 3.20-3.22 illustrates that despite the worsening of BER performance with increased 

EVR (from channel 1 (11.12) to channel 3 (46.82)), CSA has provided superior performance 

than other algorithms. Furthermore, Fig. 3.22 shows that although BER increased with non-

linearity (NL=2 to NL=3), CSA has significantly outperformed the other algorithms and 

provided more pronounced results particularly for the severely non-linear scenario (NL=3). As 

can be seen from Fig. 3.22(b), CSA has attained almost 6 dB gain in SNR over PSO and above 

6 dB over other algorithms at a bit error rate of 0.0017. 

 

(a)                                                                                (b) 

Fig. 3. 22. BER curves for the Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB 
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3.4.3.4 Performance analysis in burst-error scenario  

To verify the robustness of the proposed training method, its performance is evaluated 

in a burst error scenario occurring in the wireless environment. The use of a channel equalizer 

to deal with burst error scenarios is emphasized in the latest Patent [143]. Generally, the burst 

error occurs when there is an occurrence of consistent zeros or ones for a particular time interval 

[19]. The imperfect nature of the physical channels is responsible for the occurrence of burst 

error and it deteriorates the equalizer performance [19].  

 
(a)                                                                                  (b) 

       Fig. 3. 23. BER performance in burst error scenario for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3  

In order to evaluate the performance of a proposed training technique to handle burst 

error conditions, the training of FLANN based non-linear equalizer is performed for 500 

iterations. The training is performed by considering the channel with the highest distortion 

(channel 3) with two different nonlinearities (i.e. NL=2 and NL=3) and testing is done after the 

completion of training. During the equalizer testing process, the BER obtained for channel 3 

considering both nonlinearities (i.e. NL=2 and NL=3) is demonstrated in Fig. 3.23 (a) and (b) 

respectively. It can be noticed from this figure that, burst error conditions result in substantial 

performance degradation for all the algorithms and interestingly, CSA is able to tackle the 

difficulties encountered by other algorithms. However,  for the  burst error scenario the BER 

performance of CSA, PSO, GWO, DE, SCA, WOA and DA algorithm has been deteriorated 

(Fig. 3.23(a) and (b)) in comparison with BER without burst errors (Fig. 3.23 (a) and (b)) and  

BER performance of the CSA is still  superior. 

 

 

10 12 14 16 18 20 22
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

SNR (dB)

lo
g

1
0
(B

E
R

)

 

 

CSA

PSO

GWO

DE

SCA

WOA

DA

10 12 14 16 18 20 22 24 26 28 30
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

SNR (dB)

lo
g

1
0
(B

E
R

)

 

 

CSA

PSO

GWO

DE

SCA

WOA

DA



47 

 

 

3.5 Conclusion 

In this chapter, a scheme has been proposed for training the Functional link artificial 

neural network based non-linear channel equalizer by using Cuckoo Search Algorithm (CSA). 

The local minima avoidance capabilities and exploration competence of the proposed approach 

helped to discover the promising areas of the solution space. Furthermore, the exploitation 

ability assisted to completely exploit the promising region for finding the optimal solution. The 

balance between the exploration and fine-tuning ability of the scheme facilitated to achieve 

better accuracy in the non-linear channel equalization. Three non-linear channels were taken for 

simulations to validate the superiority of the CSA based training scheme and the results have 

been compared with recent algorithms like GWO, SCA, WOA, DA and well-established 

algorithms like PSO, DE. Furthermore, sensitivity analysis of the proposed approach was 

performed to optimize vital parameters for the CSA and the optimized values of these 

parameters were used to perform the simulation study. The simulations proved that CSA based 

training method offers improved performance in terms of MSE and BER when compared to 

existing algorithms. The improvement is more significant particularly in severely non-linear and 

highly dispersive channels. The robustness of the cuckoo search algorithm (CSA) based training 

scheme has been shown by considering the BER performance in a burst error scenario and it is 

observed that the scheme significantly outperforms the compared algorithms by effectively 

handling the burst errors. The performance of the proposed scheme has been validated for a 

wide range of signal-to-noise ratio (SNR 10 to 30 dB) values through simulation studies and it 

is observed that the scheme outperforms the other algorithms in poor SNR conditions as well. 

Moreover, the Wilcoxon rank-sum test proved that the proposed approach provided statistically 

significant results in comparison with competing approaches. 
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 An efficient JAYA Algorithm with Levy Flight 

4.1 Introduction 

This chapter involves the development of an efficient JAYA algorithm with Levy flight 

for non-linear channel equalization. JAYA is an effecient and simple population based 

metaheuristic algorithm. Hence, its application to channel equalization problem is worth 

investigating. Despite being an efficient and simple algorithm, JAYA gets trapped into local 

optima owing to its inadequate solution diversity and its weak exploration competence. To 

alleviate these issues, in this paper the concept of Lévy flight (LF) and greedy selection scheme 

has been incorporated into the basic JAYA algorithm. The LF concept enhances the population 

diversity and thus avoids the state of stagnation. The greedy selection scheme is employed to 

improve the exploitation ability without loss of population diversity. Furthermore, the 

exploitation and exploration capabilities of the algorithm have been balanced by proposing an 

adaptive Lévy index using a linear control parameter strategy. In order to validate the local 

optima avoidance ability, exploitation and convergence rate of the proposed JAYALF 

algorithm, it is tested on unimodal and multimodal benchmark functions and to verify the 

effectiveness of the JAYALF for non-linear channel equalization problem, three wireless 

communication channels with two different nonlinearities have been considered for simulation. 

In addition, the non-parametric pairwise Wilcoxon rank-sum test has been employed to test the 

statistical validity of the results obtained from JAYALF. The results of experiments and 

statistical test demonstrate that the proposed algorithm significantly outperforms JAYA, 

variants of JAYA, and other metaheuristic algorithms in terms of convergence rate, solution 

quality, and robustness. Furthermore, simulations show that proposed JAYALF algorithm 

provides faster convergence without being trapped into local optima and has a better exploration 

ability. 
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4.2 JAYA Algorithm 

JAYA is one of the recent population-based metaheuristic algorithm, proposed by R. 

Venkata Rao in 2016 [69]. Most of the existing population based metaheuristic algorithms need 

algorithm-specific control parameters. Whereas, being an effective and simple algorithm, JAYA 

algorithm needs only number of iterations and population size as parameters. The basic idea 

behind this algorithm is that the solution obtained for a problem should escape from the worst 

solution and should approach to the best one [70]. Since its introduction, owing to simplicity 

and ability to find global optimum solution JAYA has been successfully used by researchers in 

many engineering problems. In recent few years, JAYA and its improved versions [71] [73] 

[72][74] [75] [76] [77][78][79] [80] have been used to solve various engineering problems. 

Furthermore, JAYA has been used for power quality improvement [81], optimization of heat 

sink [82], tracking of maximum power point (MPP) of PV array [83], reliability–redundancy 

allocation problems [84], optimization of heat exchangers [85],  mechanical design optimization 

[86], optimization of machining performance [87], parameter identification of photovoltaic 

model [88] and design optimization of heat exchangers [89]. 

Various steps involved in JAYA algorithm are narrated as follows: 

1) Initialize the population size (N), number of decision variables (D), upper and lower bounds 

of decision variables (
max, jX ,

min, jX ) and a maximum number of iterations maxit  (i.e. it = 1, 2,…, 

maxit ) as a termination criterion. 

2) Randomly initialize the population of N  solutions ( 1,2... )iX i N  within the boundary of a 

search space. Each 
thj  dimension of 

thi solution i.e. ,j iX is initialized between max, jX  and min, jX  

as follow:   

, min, max, min,(0,1) ( )j i j j jX X rand X X                                           (4.1) 

where (0,1)rand  denotes a random number in the range 0 and 1 with uniform distribution and 

max, jX and min, jX    represents the upper and lower bound of 
thj  dimension. 
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3) Calculate the fitness function iF  for every individual solution as per given problem and 

identify the best and worst solution i.e. bestX  and worstX  respectively.  

4) Considering the random numbers 1r   and 2r  between 0 and 1 with uniform distribution, the 

values for decision variables are updated as follows [69]: 

, , 1 , , 2 , ,( ) ( )new

j i j i j best j i j worst j i

I II

X X r X X r X X                                           (4.2) 

where ,j iX  denotes the  
thj  variable for 

thi  solution, ,j bestX  denotes a  
thj variable of best 

solution, worstjX ,  denotes the 
thj  variable of worst solution and ,

new

j iX  denotes the modified 

version of ijX , .  

5) Evaluate the fitness 
new

iF  of each newly generated solution, compare it with the old fitness 

iF  of the previous solution. 

6) For a maximization problem, if 
new

i iF F  and for a minimization problem, if 
new

i iF F  then 

replace iX  with a newly generated solution i.e. 
new

iX  otherwise keep the previous solution i.e. 

iX  and update the corresponding value of fitness function. 

7) The updated values of fitness function are used to identify the best and worst solutions. The 

corresponding solutions are taken as the best and worst solution for the next iteration.  

8) Repeat steps 4-7 until a termination criterion is reached and report the optimum solution bestX

. 
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4.3 Lévy flight 

Lévy flight (LF) is a random walk in which the lengh of steps is determined by the Lévy 

distribution [144][145]. The name Lévy flight is derived from the name of French 

mathematician, Paul Lévy.  Lévy flight represents several phenomenon like earthquake analysis, 

fluid dynamics, cooling behavior, noise etc. [146]. Food searching path of several animals also 

depicted by LF [147] [148]. In the past few years, researchers utilized LF in Delay and 

Disruption Tolerant Network [146], human mobility fields  [149] and Internet Traffic Models 

[150]. Lévy flight was utilized to improve the efficiency of the  Bees algorithm [151], cuckoo 

search (CS) algorithm [57], particle swarm optimization algorithm [152], Firefly 

Algorithm[153],  and grey wolf optimization algorithm[154]. These findings demonstrate that 

LF can significantly improve the performance of metaheuristic algorithms.  

Lévy probability distribution is drawn in terms of a power-law formula 
1

( ) ~L s S
 

, 

where 2 0  is an Lévy distribution index [144].  A basic form of Lévy distribution can be 

described as [145] [155]. 
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0                                                        s 0
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 
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   

  
      

   




                         (4.3)   

where   denotes a shift parameter and  > 0 is a scale parameter  

Lévy distribution should be described in terms of Fourier transform and can be expressed 

as [145] , 

( ) exp[ ],    0 2,F k k


                                                            (4.4) 

where   is skewness parameter or scale factor and   is Lévy index.           
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4.4 JAYA Algorithm with Levy Flight (JAYALF) 

Despite being an efficient and simple algorithm, JAYA algorithm has some 

shortcomings. The basic idea behind this algorithm is that the solution obtained for a problem 

should escape from the worst solution and should approach to the best one [70]. Since with this 

approach all the solutions are attracted towards the best solution, the convergence speed of the 

algorithm is accelerated but it may results in loss of solution diversity. This issue may cause 

premature convergence of an algorithm to a local optimum solution.  

To overcome these problems an efficient JAYA algorithm with Lévy flight (JAYALF) 

is presented in this chapter. Three key modifications have been proposed into basic JAYA to 

yield JAYALF algorithm. First, the concept of Lévy flight is incorporated to maintain the 

solution diversity and thus improve the global search capabilty. Second, the greedy selection 

scheme from Differential evolution (DE) algorithm [131]  is employed to improve the 

exploitation capability without loss of diversity of the population. Third, an adaptive Lévy index 

is introduced to balance the exploration and exploitation capabilities of the algorithm throughout 

the search process. 

When trapped into local optima, Lévy flight assists the JAYA algorithm to jump out of 

it towards a better solution. Thus, the LF can support JAYA in maintaining population diversity 

and enhancing diversification capability. The greedy selection strategy from the DE algorithm 

[131] is employed to improve the exploitation capability without loss of diversity of the 

population. The index of Lévy distribution   is made adaptive by increasing it over the course 

of iterations, which helps JAYA in maintaining the balance between exploration and 

exploitation tendencies throughout the search process. 

Due to the incorporation of the Lévy flight (LF) concept into JAYA algorithm, solutions 

take long jumps which is very effective at the time of stagnation at local optima and helps in 

finding the promising region of the search space to obtain global optima. Thus the LF enhances 

the diversity of the solutions and facilitates JAYA to perform exploration of the entire fitness 

function landscape. Thus, in the proposed algorithm, the global search is enhanced through Lévy 

flight to eliminate the problem of stagnation at local optima. 

New candidate solutions are generated using  Lévy flight as follows [145]: 
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1 ( )new newX X Lévy   
                                                      (4.7) 

where   is the step size and is taken as a random number for each dimension of the 

solution [152]  

 
1 ( ( )) ( )new newX X random size D Lévy   

                                   (4.8) 

 The scheme of creating step size s samples is described in [145,155]. The scheme is stated as 

follows [152]: 

1
( ( )) ( ) ~ 0.01 ( ) ,new

best

u
s random size D Lévy X X

v 

  

                  (4.9) 

u and v follows a normal distribution, i.e.
2 2~ (0, )    v~N(0, ) ,u vu N    

u  and v are taken as follows: 
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where   is the standard Gamma function 

The greedy selection scheme from Differential Evolution (DE) algorithm [131] is used 

retain elite solution at each index. This scheme is described as follows: 

  
1 1

( 1)
new new new

new

  X  if  f(X ) f(X ) 
X it

X                otherwise

 
  


                                          (4.11) 
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Thus, if the new solution obtained through LF i.e. 1newX  has a lower or equal value of 

the objective function (considering minimization problem), it replaces the corresponding 

previous solution newX  (Eq. (4.2)) else the previous solution is retained in the population. 

Therefore, the greedy selection scheme results in solutions with better or equal fitness but never 

results in inferior solutions. New solution newX  will be considered although objective function 

value is same for the previous solution and new solution newX . This feature allows solutions to 

move over flat fitness landscapes with iterations [156]. The greedy selection scheme from the 

DE algorithm preserves the best solution obtained so far at each index and provides better 

exploitation ability without loss of diversity of the population.  

In order to balance and use the exploration and exploitation capabilities of the JAYALF 

algorithm more effectively, a linear control parameter strategy is introduced, i.e. the index of 

Lévy distribution   is linearly increased over the course of iterations. Small values of   

results in long jumps, and large values of   causes short jumps. Generally, small values of   

are expected to cause jumps to unexplored regions of search space facilitating exploration and 

avoid getting stuck in local optima [152]. On the other hand, large values of   cause the search 

for new solutions in the obtained promising region facilitating exploitation. Hence, the value of 

  is linearly increased over the course of iteration as follows:   

max

( ) ( )*final initial initial

it
it

it
   

 
   

 
                                             (4.12) 

where maxit  and it  denotes the maximum number of iterations and the current iteration 

number respectively. final  and initial represents the final and initial values of the parameter  .  

In this manner, small values of   at initial stage facilitate the global search and large 

values of   at a later stage accelerate local search in promising regions of search space 

enhancing the convergence towards the global optimum solution. 
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Thus, in this chapter, the authors have proposed a modified JAYA algorithm with Lévy 

flight (JAYALF) in order to eliminate the problem of getting trapped into local optima and to 

promote the exploration competence of basic JAYA algorithm. In JAYALF algorithm, after 

updating the solutions using JAYA as per Eq. (4.2) the better solution among old and new 

solutions are accepted. Furthermore, the solutions are upadted using  Lévy flight as per Eq. (4.7). 

Greedy selection scheme from DE is used to select the best solutions at each index which helps 

in improving exploitation capability without loss of diversity. Moreover, to balance the 

exploration and exploitation capabilities of the JAYALF algorithm the index of Lévy 

distribution is made adaptive as per Eq. (4.12). The flowchart of JAYALF algorithm is shown 

in Fig. 4.1. 

Various steps involved in JAYALF algorithm are narrated as follows: 

1) Initialize the population size (N), number of decision variables ( 1,2... )D j D , upper and 

lower bounds of decision variables ( max, jX , min, jX ) and maximum number of iterations maxit  

(i.e. it = 1, 2,…, maxit ) as a termination criterion. 

2) Randomly initialize the population of N solutions ( 1,2... )iX  i N  within the boundary of a 

search space. Each 
thj  dimension of 

thi  solution i.e. ,j iX is initialized between max, jX and   

min, jX as per Eq. (4.1).                        

3) Calculate the fitness function iF  for every individual solution as per given problem and 

identify the best and worst solution i.e. bestX  and worstX  respectively.  

4) Considering the random numbers 1r  and 2r  between 0 and 1 with uniform distribution, the 

values for decision variables are updated using Eq. (4.2) for each solution.  

5) Evaluate the fitness 
new

iF for each newly generated solution, compare it with the fitness iF  

of the previous solution. 
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6) For a maximization problem, if 
new

iF > iF  and for a minimization problem, if 
new

iF < iF  then 

replace iX  with a newly generated solution i.e. 
new

iX  otherwise keep the previous solution i.e. 

iX  and update the corresponding value of fitness function. 

7) Rank all the solutions based on the fitness and perform Lévy flight on the best 50% of 

solutions as per Eq. (4.7). 

8) Evaluate the fitness 1new

iF  of new solutions generated via Lévy flight 1( )new

iX . 

9) Use a greedy selection scheme to select the best solutions among old solutions ( )new

iX  and 

solutions generated via Lévy flight 1( )new

iX  as per Eq. (4.11) and update the the new fitness 

values.  

10) Update the value of the index of Lévy distribution   using Eq. (4.12). 

11) The updated values of fitness function are used to identify the best and worst solutions. The 

corresponding solutions are considered as the best and worst solution for the next iteration.  

12) Repeat steps 4-11 until the termination criterion is reached else report the optimum solution

bestX . 

4.5 Channel equalization as a JAYALF based optimization 

problem 

The non-linear channel equalization problem has been solved by using a JAYALF 

algorithm. The FLANN equalizer structure trained using proposed JAYALF algorithm is shown 

in Fig.  2. 

The steps used for training of FLANN are described as follows: 

1. Calculation of channel output: The channel input ( )s k  is a random sequence of binary 

signal taking values in the form {-1, +1}. The input signal after passing through a 

communication channel of transfer function ( )H z  gets distorted by non-linearity (.)  and 

further corrupted by additive white Gaussian noise  
 

( )q k
 
to give output  ( )r k

 
as per Eq. (2.3). 
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2. Computation of FLANN structure input: The received signal ( )r k
 
is passed through tap 

delay section to give input vector ( )R k  to FLANN structure.  

3. Expansion of input Vector: The functional expansion of the input vector ( )R k  is carried out 

using trigonometric functions which results in ( )eR k  as given in Eq. (2.8). 

4. Solution initialization: The N number of candidate solutions are initialized with uniform 

distribution within the upper and lower limit of search space i.e. maxX and minX  as follows:  

 

                                        

(4.13) 

where ,j iX  is the  
thj  dimension of thi  solution. 

5. Equalizer output and fitness calculation: The actual output of the equalizer ( )y k  is 

computed as per Eq. (2.12) for every kth  input sample.  The error ( )e k  is calculated                           

as per Eq. (2.13) by taking the difference between actual output ( )y k  and the desired output 

d(k). The fitness function used is mean squared error (MSE) and is given by 

2
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1
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Initialize population size (N), maximum iteration ( it_max), Number of decision 

variables, Range of decision variables

Modify the solutions based on best and worst solution using Eq. (13)

Start

   is better than          ?

Accept and replace the old solution 

with 

Iteration=it_max?

Report the optimum solution

Evaluate the  fitness      of each solution using Eq. (25).  Identify the best 

solution           and worst solution 

Generate N solutions                             randomly within the range of decision 

variables using   Eq. (12) 

Iteration=Iteration+1

Evaluate the fitness of new solutions i.e.            

Rank all the solutions based on fitness and perform Lévy flight on the best 50% 

solutions using Eq. (18)

Evaluate the fitness           of new solutions (          ) generated via Lévy

 flight (LF) 

Use the greedy selection scheme in Eq. (22) to select best solutions among the 

previous solutions           and newly generated solutions  via LF 

Keep the old solution i.e.

Yes No

new

iF iF

new

iX iX

No

Yes

min max( , )X X

 
bestX worstX

Update the index of Lévy distribution           using Eq. (23)( )

iF

Update the best solution             and worst solution

1new

iX
1new

iF

bestX worstX

new

iX
1new

iX

new

iF

( 1,2,.. )iX i N

 

Fig. 4. 1. Flowchart of the proposed JAYALF algorithm 
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where  S denotes the total number of transmitted samples or data block size, ( )e k  is the error 

for thk  transmitted sample. 

In the channel equalization problem, the goal is to minimize the fitness function value i.e. MSE. 

Identify the best solution i.e. bestX  and the worst solution worstX . 

6. Solution updating: Update all the solutions according to Eq. (4.2) based on the best solution 

( )bestX  and worst solution ( worstX ) obtained in step 5 and accept the updated solutions if it is 

better than the old solution otherwise keep the old solution. 

7. Ranking the solutions: Rank all the solutions based on fitness, identify the best solution and 

select the best 50% of solutions for Lévy flight. 

8. Perform Lévy flight: Use the obtained bestX  to perform Lévy flight using Eq. (4.7).  

9. Evaluate the fitness and use the greedy selection scheme: Evaluate the fitness 1new

iF  for 

each newly generated solution and compare it with the previous solution fitness new

iF . Use the 

greedy selection scheme from DE to choose among newly generated solutions via Lévy flight  

1new

iX  and solutions new

iX  obtained in step 6. Update the value of   using Eq. (4.12). 

10. Termination criteria: Repeat the steps 5-9 until a termination criterion is reached and report 

the optimum solution. 

4.6 Simulation studies 

  All the experiments are carried out in a MATLAB R2013a platform on a 64 bit 

Windows 8.1 PC with an Intel i5-4590S 3 GHz processor and 8 GB RAM.  

 Channel characteristics for simulation 

To examine the performance of the equalizer based on JAYALF and other competing algorithms 

extensive simulation experiments have been conducted for the channel equalization. The non-

linear equalizer using functional link artificial neural network is optimized by JAYALF, JAYA 

[69], moth flame optimization (MFO) [157], ant lion optimizer (ALO) [158], and SCA 

algorithm. Three benchmark channels with two different nonlinearities have been considered in 
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this study. The channel transfer function considered in this study is taken from 

[108][2][19][1][11][159][37] [137]  and is given by  

                      1 2

1( ) 0.209 0.995 0.209H z z z                      : Channel 1

 

                      1 2

2 ( ) 0.260 0.930 0.260H z z z                     : Channel 2 

         1 2

3( ) 0.341 0.876 0.341H z z z                    : Channel 3            (4.15) 

The channels Channel 1, channel 2 and channel 3 corresponds to EVR values of 6.08, 

11.12 and 46.82 respectively [1]. Following two different types of nonlinearity have been 

considered for simulation.  

         ( ) ( )b k t k                                                                      : NL=0         

           
2 3( ) ( ) 0.2 ( ) 0.1 ( )b k t k t k t k  

                                      : NL=1 

           ( ) tanh( ( ))b k t k                                                              : NL=2                 (4.16) 

 In Eq. (4.16) above ( )t k  is the output of a wireless channel as shown in Fig. 2.1. NL=0 

represents a linear channel without any non-linearity. NL=2 represents a nonlinearity which may 

occur due to saturation of amplifiers used at the transmitter and NL =1 is the arbitrary 

nonlinearity. Among the two nonlinearities, NL=2 is a case of severe non-linearity [19] [1] 

[137]. 

 Sensitivity analysis of proposed JAYALF algorithm 

As it is evident from the literature that the efficiency of an algorithm to a great extent depends 

on the precise tuning of its controlling parameters [108]. Therefore, sensitivity analysis of 

JAYALF is performed with respect to three key parameters namely population size ( N ), data 

block size ( S ) and a number of taps of the equalizer )(M . 

The outcomes of the sensitivity analysis are demonstrated in Figs. 5 to 7 for the channel 

2 (Eq. (4.15)) with NL=1(refer to Eq. (4.16)). 
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A) Population size ( N )  

 It is evident from Fig. 4.2 that the population size of N=30 is adequate in obtaining a 

global optimum solution which is also reasserted through quantitative assessment of the 

efficiency of JAYALF in terms of MSE in Table 4.1. It is also observed that any further increase 

in population size will hardly improve the performance. 

Table 4. 1 Statistical comparison of MSE (over 30 independent runs) for variation of N  

 

 

 

Fig. 4. 2. Effect of Population size (N) 
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( N ) 

MSE    

Best Worst Mean Std. Dev. 

5 6.4453e-04 0.1408 0.0072 0.0253 

10 4.4062e-04 0.0015 8.2144e-04 2.8815e-04 

15 4.0037e-04 0.0013 7.1544e-04 2.5808e-04 

20 4.3322e-04 0.0013 6.6490e-04 1.7762e-04 

25 4.3883e-04 0.0012 6.0668e-04 1.5034e-04 

30 3.9093e-04 0.0012 5.6593e-04 2.0378e-04 

35 3.3119e-04 0.0011 5.6341e-04 1.6183e-04 
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B)  Block Size ( S ) 

It is evident from Fig. 4.3 and Table 2.2 that increase in the value of S from 50 to 200 

results in a reduction of MSE. But, there is no significant improvement in MSE for values of S

greater than 200. The requirement of data block size may vary from one problem to another. 

Table 4. 2  Statistical comparison of MSE (over 30 independent runs) for variation of data block size )(S  

Block Size( S ) MSE    

 Best Worst Mean Std. Dev. 

50 0.0048 0.0064 0.0052 3.0619e-04 

100 3.0272e-04 9.5224e-04 5.6552e-04 2.1876e-04 

200 3.8879e-04 9.1577e-04 5.2992e-04 1.3169e-04 

500 3.8103e-04 9.0356e-04 5.2236 e-04 1.2907e-04 

 

 

Fig. 4. 3. Effect of Block Size (S) 
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C) Number of taps of equalizer or order of equalizer ( )M  

Finally, Fig. 4.4 demonstrates the effect of a number of taps of an equalizer ( )M  on 

MSE in which the number of taps ( )M  is varied from 2 to 10 with a step increment of 2, from 

this it became apparent that equalizer with four taps gives the best performance. Fig. 4.4 and 

Table 3.3 shows that increasing value of M more than 4 doesn’t results in any MSE 

improvement. 

Table 4. 3 Statistical comparison of MSE (over 30 independent runs) for variation of number of taps of the 

equalizer )(M  

 

 

 

Fig. 4. 4. Effect of Number of taps of the equalizer (M) 

2 4 6 8 10
-33

-32

-31

-30

-29

-28

-27

-26

-25

-24

M
S

E
 (

d
B

)

Number of taps of equalizer (M)

No. of taps )(M  
MSE    

Best Worst Mean  Std. Dev. 

2 0.0010 0.0010 0.0010 2.6991e-06 

4 3.7933e-04 7.6902e-04 5.0515e-04 9.6004e-05 

6 4.8715e-04 0.0021 0.0011 4.1962e-04 

8 0.0010 0.0030 0.0018 5.2294e-04 

10 0.0019 0.0057 0.0035 0.0011 
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 Performance of JAYALF on benchmark functions 

Before applying the proposed JAYALF algorithm for the non-linear channel 

equalization problem, we have tested its performance with unimodal and multimodal benchmark 

functions listed in Table 4.4. Detailed information about these benchmark functions is provided 

in [132][160]. The results in Table 4.4 are taken considering the population size as 30 over 500 

iterations for all algorithms. 

Recent literature [141] [140] suggest the use of  statistical tests for confirming the 

statistical validity of results  obtained from  metaheuristic algorithms. For a particular problem 

to prove that a proposed new algorithm offers a substantial enhancement over other existing 

algorithms a statistical test is necessary [16]. To verify whether the results of JAYALF differ 

from JAYA, Jaya algorithm with time-varying acceleration coefficients (Jaya-TVAC), LJaya-

TVAC [84], MFO, ALO and SCA [132] in a statistically substantial way, a Wilcoxon’s rank-

sum test [142], was conducted. The obtained values of p from Wilcoxon’s test are reported in 

Table 4.5.  

Table 4 demonstrates that the proposed JAYALF provides superior perfromance for 12 

out of the 17 different benchmark functions. These results show that JAYALF has high 

exploration and local optima avoidance capability when compared to other algorithms. The p-

values in Table 5 are very much less than 0.05 which confirms the statistical significance of 

results obtained by JAYALF. 
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 Table 4. 4  Minimization results of 17 benchmark functions  (over 30 independent runs) 

Function D Algorithm Best Worst Mean Std. Dev. 

Sphere 20 JAYALF 1.9195e-04 0.0016 4.8338e-04 2.8421e-04 

  JAYA 0.0095 0.0415 0.0210 0.0091 

  Jaya-TVAC 0.0027 0.0396 0.0162 0.0078 

  LJaya-TVAC 7.6137e-30 5.4403e-22 4.3746e-23 1.3833e-22 

  MFO 3.0528e-04 0.0668 0.0039 0.0120 

  ALO 2.5623e-06 6.0643e-05 2.1889e-05 1.6521e-05 

  SCA  2.9342e-06 1.9206 0.0753 0.3497 

Schwefel 2.21 20 JAYALF 1.1658 2.4560 1.7295 0.3943 

  JAYA 1.9788 9.2245 4.4490 1.5886 

  Jaya-TVAC 2.0973 8.1774 4.0385 1.2923 

  LJaya-TVAC 0.1648 6.4234 1.7426 1.4746 

  MFO 15.4269 68.1830 44.9348 12.8716 

  ALO 1.8430 16.8084 8.0079 3.9917 

  SCA  0.3442 16.8323 5.0126 4.9542 

Step 20 JAYALF 0.1512 0.3926 0.2472 0.0611 

  JAYA 1.2912 3.4253 2.4270 0.5027 

  Jaya-TVAC 0.9453 2.9982 1.8338 0.4111 

  LJaya-TVAC 1.5758e-06 5.3491e-04 9.6220e-05 1.2559e-04 

  MFO 7.0991e-05 2.0001e+04 2.3301e+03 5.0351e03 

  ALO 1.4203e-06 8.5339e-05 2.8450e-05 2.4857e-05 

  SCA  1.9370 3.5614 2.4670 0.3788 

Schwefel 2.26 20 JAYALF 1.5989e+03 2.8202e+03 2.2759e+03 313.3233 

  JAYA 2.3037e+03 4.9587e+03 3.9545e+03 689.9680 

  Jaya-TVAC 1.9844e+03 5.0378e+03 4.1229e+03 698.3834 

  LJaya-TVAC 1.2649e+03 3.7078e+03 2.2868e+03 611.2557 

  MFO 950.5412 3.6125e+03 2.5772e+03 654.1796 

  ALO 2.5464e+03 4.7679e+03 4.6111e+03 397.3435 

  SCA  4.6166e+03 5.8537e+03 5.3296e+03 297.2677 

Rastrigin 20 JAYALF 26.6811 45.8806 37.9985 5.4067 

  JAYA 92.5149 160.6344 134.1872 16.9918 

  Jaya-TVAC 109.1304 173.8001 138.2198 15.3030 

  LJaya-TVAC 5.8495 21.0024 13.5422 3.8439 

  MFO 41.7883 161.1823 79.3619 25.8234 

  ALO 23.8790 107.4550 55.2201 19.7609 

  SCA  3.3390e-04  76.8442 10.6840 16.6174 

Ackley 20 JAYALF 0.0110 9.2785 0.3277 1.6906 

  JAYA 0.0512 2.7791 0.2350 0.4876 

  Jaya-TVAC 0.0562 19.9615 0.8696 3.6175 

  LJaya-TVAC 2.2204e-14 3.6549 1.6167 1.0755 

  MFO 0.0045 19.9652 8.0294 8.9895 

  ALO 0.0016 4.1672 1.8553 0.9445 

  SCA  8.8175e-04 20.2355 9.5645 9.8779 
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Table 4.4 (Continued)     

Function D Algorithm Best Worst Mean Std. Dev. 

Griewank 20 JAYALF 0.0900 0.2040 0.1418 0.0337 

  JAYA 0.0866 0.7753 0.5880 0.1442 

  Jaya-TVAC 0.0950 0.8875 0.5782 0.1887 

  LJaya-TVAC 0 0.1743 0.0374 0.0400 

  MFO 9.7656e-04 0.0863 0.0361 0.0238 

  ALO 5.7407e-04 0.0642 0.0236 0.0173 

  SCA  6.6440e-04 0.9482 0.3221 0.2557 

Penalized 20 JAYALF 0.0311 0.6360 0.1635 0.1260 

  JAYA 0.9980 7.3751 3.8141 1.7262 

  Jaya-TVAC 0.8936 9.6537 3.0623 2.3015 

  LJaya-TVAC 1.9119e-07 1.8825 0.1691 0.3940 

  MFO 9.0416e-05 117.5161 4.8557 21.32 

  ALO 3.2157 25.1145 9.1656 4.6060 

  SCA  0.2457 3.5319 0.8265 0.8210 

Penalized 2 20 JAYALF 1.4334e-05 0.0024 2.9155e-04 5.1886e-04 

  JAYA 0.0012 0.1079 0.0185 0.0210 

  Jaya-TVAC 8.7231e-04 0.0450 0.0151 0.0129 

  LJaya-TVAC 1.3498e-32 1.5975 0.0576 0.2910 

  MFO 6.1736e-04 4.0732 0.4018 0.8578 

  ALO 4.9551e-06 1.4474 0.0660 0.2622 

  SCA  1.2220 12.1864 2.4759 2.4050 

Foxholes 2 JAYALF 0.9980 0.9980 0.9980 2.7714e-10 

  JAYA 0.9980 1.0654 1.0014 0.0123 

  Jaya-TVAC 0.9980 1.0298 1.0010 0.0085 

  LJaya-TVAC 0.9980 0.9980 0.9980 0 

  MFO 0.9980 5.9288 1.7566 1.4128 

  ALO 0.9980 5.9288 2.2190 1.5039 

  SCA  0.9980 10.7632 1.9866 1.9065 

Kowalik 4 JAYALF 3.1412e-04 4.3948e-04 3.5087e-04 3.2623e-05 

  JAYA 3.1089e-04 0.0017 5.2702e-04 3.2828e-04 

  Jaya-TVAC 3.2824e-04 0.0013 4.9511e-04 2.3584e-04 

  LJaya-TVAC 3.0749e-04 0.0017 3.6339e-04 2.4823e-04 

  MFO 6.1996e-04 0.0022 0.0011 4.7605e-04 

  ALO 6.0523e-04 0.0209 0.0036 0.0068 

  SCA  4.3499e-04 0.0016 9.4275e-04 3.7518e-04 
Goldstein-Price 2 JAYALF 3.00000000 3.00000000 3.00000000 1.3730e-15 

  JAYA 3.00001464 3.00912874 3.00125439 0.0018 

  Jaya-TVAC 3.00000000 3.0045 3.0009 0.0011 

  LJaya-TVAC 3.00000000 3.0000 3.00000000 1.4496e-15 

  MFO 3.00000000 3.00000000 3.00000000 2.5283e-15 

  ALO 3.00000000 3.00000000 3.00000000 9.5311e-13 

  SCA  3.00000041 3.00061407 3.00011534 1.7069e-04 
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Table 4.4 (Continued)     

Function D Algorithm Best Worst Mean Std. Dev. 

Hartman 3 3 JAYALF -3.86278214 -3.86278214 -3.86278214 2.7101e-15 

  JAYA -3.86278214 -3.86278214 -3.86278214 2.7101e-15 
  Jaya-TVAC -3.86278214 -3.86278214 -3.86278214 2.6962e-15 

  LJaya-TVAC -3.86278214 -3.86278214 -3.86278214 2.7101e-15 
  MFO -3.86278214 -3.86278214 -3.86278214 2.7101e-15 
  ALO -3.86278214 -3.86278214 -3.86278214 4.0630e-12 

  SCA  -3.8614247 -3.84870459 -3.85381491 0.0025788 

Hartman 6 6 JAYALF -3.3220 -3.2031 -3.2903 0.0535 

  JAYA -3.3220 -3.1724 -3.2521 0.0597 

  Jaya-TVAC -3.3220 -3.2031 -3.2576 0.0595 

  LJaya-TVAC -3.3220 -3.2031 -3.2862 0.0553 

  MFO -3.3220 -3.0839 -3.2129 0.0742 

  ALO -3.3220 -3.1982 -3.2858 0.0562 

  SCA  -3.1254 -2.6629 -3.0027 0.1131 

Shekel 5 4 JAYALF -10.1532 -2.6829 -8.3036 2.7157 

  JAYA -10.1532 -2.5205 -6.2536 2.7478 

  Jaya-TVAC -10.1532 -2.5458 -5.9859 2.7912 

  LJaya-TVAC -10.1532 -2.6305 -6.2316 3.3876 

  MFO -10.1532 -2.6305 -5.5554 3.2208 

  ALO -10.1532 -2.6305 -6.2066 2.9944 

  SCA  -6.7683 -0.4982 -2.8016 2.0058 

Shekel 7 4 JAYALF -10.4029 -2.7659 -9.7631 1.6818 

  JAYA -10.4029 -2.6816 -7.9960 3.1225 

  Jaya-TVAC -10.4029 -1.8376 -7.9798 2.7812 

  LJaya-TVAC -10.4029 -2.7659 -8.7791 3.0012 

  MFO -10.4029 -2.7519 -6.1335 3.3775 

  ALO -10.4029 -2.7519 -6.3767 3.0046 

  SCA  -5.9049 -0.5239 -2.8195 1.7343 

Shekel 10 4 JAYALF -10.5364 -10.1999 -10.5252 0.0614 

  JAYA -10.5364 -2.3826 -7.7707 2.9968 

  Jaya-TVAC -10.5364 -2.4110 -8.1621 3.1516 

  LJaya-TVAC -10.5364 -2.4217 -8.8293 3.1590 

  MFO -10.5364 -1.8595 -6.8863 3.7778 

  ALO -10.5364 -1.6766 -7.0519 3.6367 

  SCA  -9.8907 -0.9403 -3.5906 1.9186 
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Table 4. 5  p values obtained for Wilcoxon rank-sum test corresponding to the results of Table 4.4 

 

 Application of JAYALF algorithm to Non-linear Channel Equalization  

The transmitted digital message is with a 2-PAM signal. Each symbol is obtained from 

a uniform distribution taking values either +1 or -1. During the training of equalizer, the block 

size )(S of 200 samples is used as input. A zero mean white Gaussian noise of signal-to-noise 

ratio (SNR) 20 dB is added to the output of the channel. The tap delay section of FLANN having 

four taps providing 4 inputs to trigonometric expansion block. The trigonometric expansion 

block expands each term into three using ( )r k , sin( ( ))r k , cos( ( ))r k  and one bias term 

thereby producing 13 terms. 

The FLANN structure has been trained with JAYALF and other compared algorithms 

for 500 iterations. In every simulation experiment, the fitness function MSE, defined in Eq. 

Function 

   Algorithms   

JAYALF JAYA 
Jaya-

TVAC 

LJaya-

TVAC 
MFO ALO SCA 

Sphere 3.0199e-11 3.0199e-11 3.0199e-11 N/A 3.0199e-11 3.0199e-11 3.0199e-11 

Schwefel 2.21 N/A 1.0776e-10 6.5949e-11 0.0500 2.9729e-11 1.0776e-10 0.0033 

Step 3.0199e-11 3.0199e-11 3.0199e-11 0.0339 4.0772e-11 N/A 3.0199e-11 

Schwefel 2.26  N/A 1.4643e-10 8.1014e-10 0.8073 0.0023 5.8561e-11 3.0199e-11 

Rastrigin 2.4386e-09 3.0199e-11 3.0199e-11 0.0040 9.8951e-11 9.7555e-10 N/A 

Ackley 5.5727e-10 N/A 0.7618 2.1213e-04 0.0012 6.5277e-08 0.1761 

Griewank 3.0199e-11 3.0199e-11 3.0199e-11 0.3112 0.0364 N/A 4.4205e-06 

Penalized N/A 3.0161e-11 3.0161e-11 0.0011 0.0850 3.0161e-11 1.2857e-11 

Penalized 2 N/A 5.4941e-11 6.0658e-11 0.0079 4.0772e-11 2.5974e-11 3.0199e-11 

Foxholes N/A 3.0199e-11 1.2118e-11 N/A 0.0243 0.0469 3.0180e-11 

Kowalik N/A 6.7320e-05 1.7171e-06 8.9487e-08 2.9766e-11 2.9803e-11   3.2949e-11 

Goldstein-

price 
N/A 3.0199e-11 3.0199e-11 7.8180e-12 2.7167e-11 3.0180e-11 3.0199e-11 

Hartman 3 N/A N/A N/A N/A N/A 1.2118e-12 1.2118e-12 

Hartman 6 N/A 0.0495 0.1095 0.6755 4.7936e-04 0.0085 2.0008e-11 

Shekel 5 N/A 0.0015 0.0015 0.0492 0.0438 0.0053 4.1743e-09 

Shekel 7 N/A 0.9583 0.0531 0.0017 0.0948 0.0080 1.7667e-10 

Shekel 10 N/A 0.0137 0.9350 0.0012 0.8291 0.0423 3.0161e-11 
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(4.14) is averaged over 30 independent runs. Wilcoxon’s rank-sum test [142], is carried out at a 

5% significance level. The population size taken as 30 for all the metaheuristic algorithms.  

4.6.4.1 MSE performance 

To study the convergence performance of JAYALF and competing algorithms, the 

equalizer is trained with 500 iterations for each algorithm. The learning performance of the 

algorithms for 3 different channels with two different nonlinearities is demonstrated in this 

section. 

Case I: Non-linearity 1(NL=1)  

In this case, nonlinearity considered is NL=1 as given in Eq. (4.16), which is one of the 

arbitrary non-linearity encountered in a communication system.  

Table 4. 6 Statistical comparison of MSE (over 30 independent runs) for channel 1 with NL=1 

 

Fig. 4.5 depicts the learning performance of all the algorithms for channel 1 with non-

linearity NL=1. As evident from Fig. 4.5 JAYALF provides better convergence and lesser MSE 

when compared to other algorithms. Moreover, the MSE results in Table 4.6 shows the 

efficiency of the FLANN equalizer optimized by JAYALF. The p-values in Table 4.6 proves 

the statistical validity of results obtained from JAYALF. Furthermore, the box plots in Fig. 4.6 

shows the superiority of the JAYALF over other competing algorithms.  

Algorithm   MSE(Training)  p values 

 Best Worst Mean Std. Dev.  

JAYALF 8.6017e-05 2.3488e-04 1.1830e-04 3.2726e-05 N/A 

JAYA 1.0337e-04 4.1708e-04 2.0000e-04 6.7348e-05 1.1567e-07 

MFO 9.0751e-05 8.7533e-04 2.2774e-04 1.9961e-04 8.6634e-05 

ALO 1.1465e-04 4.5701e-04 2.3603e-04 1.0637e-04 2.0062e-08 

SCA 1.5564e-04 0.0014 6.1906e-04 3.1958e-04 6.6955e-11 

BP 7.8487e-04 0.0011 9.2236e-04 1.0043e-04 3.0199e-11 
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Fig. 4. 5. Learning curves of six algorithms for channel 1 with NL=1 

 

Fig. 4. 6.  MSE box plot over 30 independent runs of six algorithms for channel 1 with NL=1 

 

A similar performance is attained by JAYALF for channel 2, which has a higher eigenvalue 

ratio (EVR) of 11.12 as shown in Fig. 4.7. As evident from Figs. 4.5 and 4.7, with an increase 

in EVR, the performance of all the algorithms degrades but still the performance of JAYALF is 

consistent and superior when compared to other competing algorithms. Standard deviation and 

p-values in Table 4.7 demonstrates the reliability of results obtained by JAYALF algorithm over 
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other algorithms. The MSE boxplots in Fig. 4.8 also illustrates the superior performance of 

JAYALF algorithm over other competing algorithms. 

Table 4. 7 Statistical comparison of MSE (over 30 independent runs) for channel 2 with NL=1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 7.  Learning curves of six algorithms for channel 2 with NL=1 

Algorithm   MSE(Training)  p values 

 Best Worst Mean Std. Dev.  

JAYALF 3.8637e-04 9.0434e-04 5.5901e-04 1.2783e-04 N/A 

JAYA 5.2643e-04 1.4000e-03 8.5418e-04 2.4880e-04 5.5999e-07 

MFO 3.9947e-04 0.0027 9.7029e-04 5.8516e-04 4.9818e-04 

ALO 5.6857e-04 0.0014 9.3462e-04 2.6556e-04 3.0797e-08 

SCA 6.0819e-04 3.6000e-03 1.4000e-03 6.8234e-04 1.9568e-10 

BP 0.0019 0.0023 0.0021 9.7390e-05 3.0199e-11 
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Fig. 4. 8. MSE box plot over 30 independent runs of six algorithms for channel 2 with NL=1 

 

Finally, Fig. 4.9 illustrates the learning curves for Channel 3 which has EVR of 46.82. 

Channel 3 is a highly dispersive channel when compared to channel 1 and channel 2. As noticed 

from learning curves in Figs. 4.5, 4.8  and 4.9, an increase in EVR degrades the MSE 

performance of the algorithms but still JAYALF is performing consistently. The average MSE, 

standard deviation and p values in Table 4.8 and Box plot in Fig. 4.10 depicts the the superiority 

of JAYALF. 

Table 4. 8 Statistical comparison of MSE (over 30 independent runs) for channel 3 with NL=1 

Algorithm   MSE(Training)  p values 

 Best Worst Mean Std. Dev.  

JAYALF 0.0061 0.0081 0.0069 5.7143e-04 N/A 

JAYA 0.0069 0.0151 0.0100 0.0021 3.8202e-10 

MFO 0.0058 0.0262 0.0105 0.0051 0.0022 

ALO 0.0070 0.0151 0.0109 0.0023 1.6123e-10 

SCA 0.0087 0.0209 0.0122 0.0028 3.0199e-11 

BP 0.0133 0.0149 0.0143 3.7566e-04 3.0199e-11 
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 Fig. 4. 9. Learning curves of six algorithms for channel 3 with NL=1 

Case II: Non-linearity 2 

In this case, nonlinearity considered is NL=2 as given in Eq. (4.16), it represents a 

nonlinearity which occurs due to saturation of amplifiers used at the transmitter in a 

communication system. This non-linearity is more severe than non-linearity 1. 

 

Fig. 4. 10 MSE box plot over 30 independent runs of six algorithms for channel 3 with NL=1 
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The MSE performance for channel 1 with severe non-linearity i.e. NL=2 (Eq. (4.16)) is 

shown in Fig. 4.11. An improved equalization performance of JAYALF is evident from MSE 

results Table 4.9 and boxplot in Fig. 4.12. The p values are much less than 0.05 for all algorithm 

which represents the statistical significance of results obtained by JAYALF. The convergence 

curves in Fig. 4.11 shows the better ability of JAYALF to avoid the stagnation at local minima 

problem with a higher convergence rate. It is observed from the MSE performance of channel 1 

in Figs. 4.5 and 4.11, with an increase in non-linearity the MSE performance of all algorithms 

get deteriorated, but equalization performance of JAYALF is still consistent and superior when 

compared to other competing algorithms. 

 

Fig. 4. 11. Learning curves of six algorithms for channel 1 with NL=2 

Table 4. 9 Statistical comparison of MSE (over 30 independent runs) for channel 1 with NL=2 

Algorithm   MSE(Training)  p values 

 Best Worst Mean Std. Dev.  

JAYALF 1.6660e-04 3.1953e-04 2.2288e-04 3.3745e-05 N/A 

JAYA 2.6791e-04 5.4432e-04 3.5272e-04 7.3159e-05 2.3715e-10 

MFO 1.6551e-04 9.3975e-04 3.9282e-04 2.3473e-04 7.2901e-04 

ALO 2.2870e-04 8.2266e-04 4.4503e-04 1.9008e-04 1.4036e-09 

SCA 3.4614e-04 0.0017 6.5410e-04 2.9980e-04 3.0199e-11 

BP 9.1135e-04 0.0012 0.0010 7.1126e-05 3.0199e-11 
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Fig. 4. 12.  MSE boxplot over 30 independent runs of six algorithms for channel 1 with NL=2 

 

A similar enhancement in performance is achieved for the channel 2 which is having 

more EVR than channel 1 and is demonstrated in Fig. 4.13. The convergence curves in Fig. 4.13 

illustrates the higher convergence rate of the proposed algorithm when compared to other 

algorithms. The results for mean MSE, a standard deviation of MSE and p-values in Table 4.10 

indicate that JAYALF is significantly better at avoiding local minima than other competing 

algorithms. The MSE box plot in Fig. 4.14 represents the distribution of results obtained by all 

six algorithms over 30 runs with the superiority of the proposed algorithm. 

Table 4. 10 Statistical comparison of MSE (over 30 independent runs) for channel 2 with NL=2 

Algorithm   MSE(Training)  p values 

 Best Worst Mean Std. Dev.  

JAYALF 5.2251e-04 7.0165e-04 6.2625e-04 4.2394e-05 N/A 

JAYA 7.2172e-04 0.0016 0.0010 2.1419e-04 2.9155e-11 

MFO 5.1465e-04 0.0031 0.0012 6.1850e-04 3.2708e-08 

ALO 5.4195e-04 0.0019 0.0011 3.6498e-04 2.1403e-08 

SCA 7.0691e-04 0.0039 0.0016 7.5407e-04 2.9155e-11 

BP 0.0023 0.0026 0.0024  9.9695e-05 2.9000e-10 
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Fig. 4. 13. Learning curves of six algorithms for channel 2 with NL=2 

 

Fig. 4. 14. MSE box plot over 30 independent runs of six algorithms for channel 2 with NL=2 

 

Finally, MSE performance for channel 3 with NL=2 which is a highly dispersive channel 

is depicted in Fig. 4.15. As observed from Figs. 4.11, 4.13 and 4.15, an increase in EVR from 

channel 1 to channel 3 results in a degradation in performance of all algorithms but still JAYALF 

is outperforming over other five algorithms. The enhanced efficiency of JAYALF in equalizing 
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the channel is evident from the statistical comparison of MSE and p values as presented in Table 

4.11 and MSE boxplot as shown in Fig. 4.16.  

Table 4. 11 Statistical comparison of MSE (over 30 independent runs) for channel 3 with NL=2 

Algorithm   MSE(Training)  p values 

 Best Worst Mean Std. Dev.  

JAYALF 0.0061 0.0083 0.0071 5.8771e-04 N/A 

JAYA 0.0074 0.0118 0.0089 0.0011 1.8567e-09 

MFO 0.0060 0.0181 0.0095 0.0024 1.4918e-06 

ALO 0.0075 0.0117 0.0094 0.0014 4.6006e-10 

SCA 0.0078 0.0222 0.0124 0.0037 4.5043e-11 

BP 0.0145 0.0155 0.0151 2.4846e-04 3.0199e-11 

 

4.6.4.2 BER performance 

In order to explore the consistency in the performance of the proposed JAYALF 

algorithm, BER performance is evaluated for the three channels with two different 

nonlinearities. To calculate bit error rate (BER), 100,000 input samples are transmitted and noise 

of different SNR is added to channel output.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 15. Learning curves of six algorithms for channel 3 with NL=2 
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Case I: Non-linearity 1 (NL=1) 

In this case for analyzing BER performance, the non-linearity considered is NL=1 (Eq. 

(4.16)) which is one of the arbitrary non-linearity encountered in a communication system. 

 

Fig. 4. 16. MSE box plot over 30 independent runs of six algorithms for channel 3 with NL=2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 17. BER performance for Channel 1 with NL=1 
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Fig. 4. 18. BER performance for Channel 2 with NL=1 

 

 

Fig. 4. 19.  BER performance for Channel 3 with NL=1 
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The BER performance for channel 1 with non-linearity 1 is shown in Fig. 4.17 which 

depicts the superiority of JAYALF over the other five algorithms. A similar improvement in 

BER performance is attained by the proposed algorithm for Channel 2 with NL=1 which is 

demonstrated in Fig. 4.18. As depicted in this figure, a gain of approximately 1 dB is achieved 

by JAYALF at a BER of 1.4767e-04 over JAYA algorithm and more than 1 dB over other 

competing algorithms.  

Finally, BER performance for channel 3 which is a highly dispersive channel is shown 

in Fig. 4.19. It observed from Fig. 4.19 that the proposed algorithm outperforms the other 

competing algorithms in terms of BER performance. The gain of approximately 1.5 dB is made 

by JAYALF over JAYA and more than 2 dB over the other algorithms. As can be seen from 

Figs. 4.17, 4.18, and 4.19 the superiority of JAYALF in term of BER performance is more 

significant for highly dispersive channel i.e. Channel 3. 

Case II: Non-linearity 2(NL=2) 

In this case, nonlinearity considered is NL=2 as given in Eq. (4.16), it represents a nonlinearity 

which occurs due to saturation of amplifiers used at the transmitter in a communication 

system. This non-linearity is more severe than non-linearity 1. 

 The BER performance for channel 1 with non-linearity 2 is shown in Fig. 4.20. The superior 

performance of JAYALF is evident from this figure. As seen from Figs. 4.17 and 4.20, with an 

increase in non-linearity the BER performance of all the algorithms degrades, but the superiority 

of JAYALF increases.  

Similar enhancement in performance is attained for channel 2 and channel 3 which are 

more dispersive than channel 1. As it can be noticed from Figs. 4.20-4.22, with an increase in 

EVR from 6.08 to 46.82, the BER performance for all the algorithms gets deteriorated but the 

superiority of JAYALF is still consistent and more significant in case of highly dispersive 

channel i.e. channel 3. 
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Fig. 4. 20.  BER performance for Channel 1 with NL=2 

 

 

Fig. 4. 21. BER performance for Channel 2 with NL=2 
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Fig. 4. 22.  BER performance for Channel 3 with NL=2 

4.7 Conclusion 

In this chapter, an efficient JAYA algorithm with Lévy Flight (JAYALF) is proposed 

for the non-linear channel equalization problem. To alleviate the problem of loss of population 

diversity and stagnation at local optima, the concept of Lévy Flight has been incorporated into 

the basic JAYA algorithm. A greedy selection scheme has been employed to improve 

exploitation capability without loss of diversity. To balance the exploration and exploitation 

capabilities of JAYALF the adaptive Lévy index is proposed, which facilitates global search at 
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basic JAYA algorithm. The Lévy flight based search enhanced the diversity of solutions and 

decreased the likelihood of converging on local optima, which in turn aided JAYALF to find 
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exploiting the promising areas to find the global optimal solution. Thus, the proposed 

modifications support JAYALF in enhancing the exploration and exploitation capabilities 

throughout the search process. 
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The performance of the proposed algorithm was evaluated on unimodal and multimodal 

functions and results confirmed  that JAYALF has better capability to escape from local optima 

with a higher convergence rate when compared to JAYA, variants of JAYA and other 

metahheuristic algorithms. To evaluate the performance of the proposed JAYALF algorithm for 

non-linear channel equalization problem, three wireless communication channels with two 

different nonlinearities were considered for simulation. The simulation studies showed that 

JAYALF based FLANN equalizer provides superior performance than other equalizers 

compared algorithms in terms of convergence speed, steady-state MSE,  and BER.  
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Modified Grasshopper Optimization Algorithm 

5.1 Introduction 

This chapter proposes a modified grasshopper optimization algorithm for equalization 

of non-linear wireless communication channels.  Even though GOA is an efficient algorithm, it 

has drawbacks such as being trapped in local optima due to loss of swarm diversity and 

weakness of exploration capability. Another concern with GOA is that there is no provision to 

retain the elite grasshopper found so far at each index which weakens the exploitation capability 

and convergence rate of GOA. These limitations of GOA are alleviated in this work by 

incorporating the Lévy flight concept and greedy selection operator from Differential Evolution  

algorithm. Moreover, a threshold parameter is introduced to detect the inefficient search region. 

Lévy Flight is integrated with the basic GOA to improve the diversity of grasshopper swarm 

and the greedy selection operator is used to preserve the best grasshopper found so far at each 

index of swarm. The superiority of the proposed modified grasshopper optimization algorithm 

(MGOA) is illustrated over the existing metaheuristic algorithms. The key parameters of MGOA 

are selected by performing the sensitivity analysis. The simulation results on four non-linear 

channels demonstrate the efficiency of the proposed MGOA algorithm in terms of BER and 

MSE. The statistical validity of the results provided by  MGOA is confirmed through Wilcoxon 

rank-sum test. 

5.2 Grasshopper Optimization Algorithm (GOA) 

Grasshopper Optimization Algorithm (GOA) is one among the latest population based 

metaheuristic algorithm, developed by Saremi et al. in 2017 [90]. The GOA is an efficient swarm 

intelligence based algorithm motivated from the team hunting behavior of grasshoppers. GOA 

mimics the behavior of grasshoppers by emitting the repulsion and attraction forces between 

them [92]. Generally, larval and adulthood are the two key phases of grasshopper life cycle 

[101]. It has been shown that GOA is capable of outperforming several leading metaheuristic 

algorithms [90]. 
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Since its introduction, many complicated benchmark functions  and engineering 

problems  has been solved by GOA effectively  [90,91]. GOA and its enhanced versions have 

been extensively used for electrical characterization of fuel cells [92], training of artificial neural 

network [91], feature selection [93–95], economic dispatch problem [96], data clustering [97], 

tuning of PID controller [98] and target tracking [99]. To enhance the performance of basic 

GOA, some improvement techniques have been introduced in [100–102], where the authors 

demonstrated the competitive performance of GOA over other metaheuristic algorithms. 

Recently,  basic multi-objective GOA has been developed by Mirjalili et al. [103]   and Tharwat 

et al. proposed an improved version of multi-objective GOA [104]. 

The three components which affect the grasshopper flying path are social interaction (Si 

), wind advection (Ai ) and gravity (Gi ) and are mathematically modeled as follows [161][90]: 

i i i iX S G A                                                         (5.1) 

Where 
iS  denotes the social interaction component  

iA  is the wind advection.  

iG  represents the gravity force on the grasshopper and 

iX  is the ith grasshopper position,  

Mathematically, the social interaction component 
iS  is given by [90] 

 
1,

( )
N

iji ij
j j i

S s d  d
 

                                                     (5.2) 

 

Where 
ij j id x x   represents the distance among two grasshoppers i and j  

 The function s denotes the social forces which is given by [90], 

( / )( ) r l rs r fe e                                                       (5.3) 

Where l is the attractive length scale and f  is the intensity of attraction.  

The gravity component G  is described as [90] 

 giG ge                                                                    (5.4) 
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Where ge  denotes a unity vector towards the center of the earth 

 g refers to the gravitational constant  

The wind advection component A is written as follows [90]:   

                                wiA ue                                                                         (5.5) 

Where   we  indicates the unit vector in the wind direction  

    u denotes a constant drift   

The updated form of Eq. (5.1) after Substituting the values of S, G and A  can be rewritten as 

follows [90]: 

 
1,

N
j i

gi j i w
j j i

ij

x x
X s x x ge ue

d 


                                      (5.6) 

Where N denotes a total grasshoppers and s(r) is given by Eq. (5.3). 

For the convergence of algorithm to an optimum solution  a modified version of Eq. (5.6) is 

given by [90]: 

,
1,

( )
2 j i

N
j id dd d

i d d
j j i

x xub lb
X c c  s x x T

d 

 
   

 
                               (5.7) 

Where the decreasing coefficient c is used to reduce the repulsion region, comfort region 

and attraction region. dT  refers to dth dimension of target grasshopper. The parameter c in Eq. 

(5.7) is reduced with iterations to balance the exploitation and exploration capabilities as follows 

[90]: 

 max min
max

c c
c c l

L

 
   

 
                                                           (5.8) 

Where l is a current iteration number, 

 
maxc  and 

 minc  denotes the maximum and minimum value of c respectively,   

 L represents total iterations.  
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The steps of GOA algorithm are summarized as follows: 

1. Initialize the parameters
   ,min max c c , total iterations

maxit , number of decision variables K (d = 

1, 2… K). Furthermore, generate a swarm of N grasshoppers ( 1,2... )iX  i N   randomly in 

the upper and lower boundary max, min,( , )d dx   x of the search space. 

2. Perform a fitness (
iF  ) calculation for every grasshopper and find the Target grasshopper 

bestX  

3. Update the value of c using Eq. (5.8). 

4. Normalize the distances among the grasshoppers within the range [1, 4] and use Eq. (5.7) to 

update the positions of all grasshoppers. 

5. Check whether the updated solutions are within the range of decision variables, if not restrict 

them in the range [ ]max minx  , x . 

6. Calculate the new fitness new

iF  of every grasshoppers and update the target grasshopper as 

per new fitness. 

7. If the total iterations are reached then report the target grasshopper 
bestX and stop else 

continue repeating the steps 3-6. 

5.3 Lévy Flight 

Lévy flight (LF) is a random walk in which the length of steps is determined by the Lévy 

distribution [144][145].  Lévy flight represents various phenomenon in the nature [146] and the 

food searching path of several animals also depicted by LF [147] [148]. In the recent years, a 

number of engineering problems have been solved using LF [146], [149] [150]. Furthermore, 

LF has been integrated with  Bees algorithm [151], cuckoo search (CS) algorithm [57], particle 

swarm optimization algorithm [152] [162], Firefly Algorithm[153],  and grey wolf optimization 

algorithm[154] to improve the solution diversity. 

Lévy probability distribution is drawn in terms of a power-law formula as follows [144]: 

1
( ) ~L s S

 

                                                              (5.9) 

where   is a Lévy distribution index and its value lies in the range of 0 to 2.  

 A  Lévy distribution can be described as follows[145] [155]: 
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3
2

1
exp        0

2 2( )( , , ) ( )

0                                                        s 0

if s
sL s s

if

 


   

  
      

   




                   (5.10)   

where   denotes a shift parameter and  > 0 is a scale parameter  

Lévy distribution described in terms of Fourier transform as follows [145] , 

( ) exp[ ],    0 2,F k k


                                                            (5.11) 

where   is skewness parameter or scale factor and   is Lévy index.  

5.4 Modified Grasshopper Optimization Algorithm (MGOA) 

            Generally, for any population based metaheuristic algorithm to achieve an 

optimum performance a proper balance between exploitation and exploration of the search space 

is necessary. Although GOA is an efficient metaheuristic algorithm, it has some drawbacks. In 

the conventional GOA algorithm, the previous position of grasshopper, the positions remaining 

grasshoppers in the population and target grasshopper position determines the new position of 

any grasshopper [90]. However, grasshoppers get clustered around local optima after a certain 

number of iterations and it leads to loss of swarm diversity and the ability of algorithm to explore 

the solution space is deteriorated. It may cause algorithm to converge prematurely to a local 

solution. Another concern with GOA is that there is no provision to retain the best-so-far 

solution at each grasshopper index. This issue slow down the convergence of GOA and degrades 

the exploitation capability. 

To overcome these shortcomings this chapter proposes a modified grasshopper 

optimization algorithm (MGOA) by incorporating three modifications into GOA algorithm. The 

Lévy flight is integrated with basic GOA to preserve the diversity of grasshopper swarm. 

Second, the threshold parameter is introduced to identify the inefficient search spaces and to 

redistribute the grasshoppers using LF. Lastly, the greedy selection operator from DE algorithm 

is employed to retain the better performing grasshoppers obtained so far at each index which 

provides rapid convergence to the global optimum.  
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In the proposed MGOA algorithm, a threshold parameter introduced to determine 

whether the current region of search space is efficient, which in turn helps in detecting stagnation 

at local optima condition. Therefore, a threshold value is determined and if target grasshopper 

fitness does not improve at the end of each iteration or if the improvement in fitness function is 

less than some predefined number, this threshold value is increased by 1. If the calculated 

threshold value reaches a predetermined value, the Lévy flight is used to redistribute the entire 

swarm of grasshoppers in the search space. When the threshold parameter reaches its 

predetermined value, this indicates that the current solution space is inefficient with a local 

optimum solution, which in turn shows the stagnation at local optima condition. Thus, the LF 

assists GOA in preserving the swarm diversity and enhancing global search ability to avoid 

entrapment in local optima.  

The Lévy flight is used to generate new grasshoppers as follows [163] : 

( )newX X Lévy                                                   (5.12) 

Where   denotes the step size and considered as a random number for every dimension 

( ( )) ( )newX X random size K Lévy                                     (5.13) 

The Ref. [163,164] [152]contains the scheme to create step size s , which is given by, 

1
( ( )) ( ) ~ 0.01 ( )best

u
s random size K Lévy X X

v 

                         (5.14) 

Where K denotes the number of dimensions, u and v follows a normal distribution, i.e.
2 2(0, ), (0, )u vu N  v N  , Where

u  and 
v are taken as follows:   

1

( 1)/2

(1 )sin
2

, 1
1

2
2

u v   






 

 


  

  
  

    
   
      

                                (5.15) 

Where   denotes a Gamma function 

           To perform LF the value of s is added to the previous solution i.e. X  which results in 

newX  as per Eq. (5.13). The fitness values of all updated grasshoppers are evaluated and the 

target is identified. 
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 In basic GOA, there is no provision to retain the elite grasshopper found so far at each 

population index. To alleviate this issue, a greedy selection operator from Differential evolution 

algorithm [131] is used in the modified grasshopper optimization. The operator can be defined 

as follows: 

( 1)
new new  X  if  f(X ) f(X) 

X it
X               otherwise

 
  



                                          (5.16) 

 

As per this operator, the newly generated grasshopper position at grasshopper index i i.e. 

new

iX  will be accepted only if its fitness 
new

iF  is better than or equal to the fitness of old/previous 

grasshopper at same index ( iF ) else iX will be preserved in the swarm. Thus, this concept results 

in retaining the best grasshopper found so far at each index and improves the exploitation 

capability and convergence of the algorithm. 

In the proposed MGOA algorithm, a predetermined threshold values is initialized and 

count is initialized to zero. The swarm of grasshoppers is generated and the fitness evaluation 

for each grasshopper is performed. The fitness of initially generated grasshoppers is used to 

determine the target grasshopper. After this the count values is checked for target and if the 

count reaches the predetermined value of threshold parameter, positions of grasshoppers are 

updated using LF else per Eq. (18) is used to update the grasshoppers positions. After updating 

the positions of grasshoppers, the fitness evaluation is performed for all the grasshoppers in 

swarm. The greedy selection scheme from DE is used to retain better grasshopper among 

previous grasshopper X  and the newly generated grasshopper newX  and as per updated fitness 

values, the target is identified. If the target grasshopper fitness is improved the count is set to 

zero else if target fitness is not improved or improvement is less than some predefined number, 

the count is incremented by 1. These steps are repeated till termination criterion is satisfied. The 

flowchart of MGOA algorithm is shown in Fig. 5.1.  
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Fig. 5. 1. Flowchart of MGOA algorithm 
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5.5 Non-linear channel equalization using modified grasshopper 

optimization algorithm 

 

In this section, the step by steps procedure to train FLANN based non-linear channel 

equalizer using the proposed modified grasshopper optimization algorithm is provided.  

The steps are explained below: 

Step 1: Compute the corrupted output of multi-path wireless channel r(n) as per Eq. (2.3) 

Step 2: Expand the input vector of FLANN ( )R n  as per Eq. (2.8) to get its enhanced version 

( )eR n  

Step 3: Initialize N grasshoppers within upper and lower boundary of search space (i.e. within 

minx   and maxx ). Furthermore, set count equal to zero and initialize threshold value. 

Step 4: Determine the FLANN non-linear equalizer output ( )y n  as per Eq. (2.12) and use this 

output for error calculation as per Eq (2.13). Furthermore, compute the fitness function (MSE) 

for grasshoppers as given below: 

   2

1

1
( )

S

n

MSE X e n
S 

                                                  (5.17) 

Step 5: If the count has reached the threshold value then perform LF on all grasshoppers using 

Eq. (5.13) to get 
new

iX  else update the grasshoppers using Eq. (5.7) to obtain
new

iX . 

Step 6: Evaluate the fitness of all newly generated grasshoppers 
new

iF and choose the better 

grasshopper at each population index using greedy selection operator of DE. 

Step 6: Update the target grasshopper and its fitness. 

Step 7: If there is no improvement in (in fitness of target grasshopper) MSE value or 

improvement in MSE is less some predefined value then increment the count by 1 else set count 

equal to zero. 
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Step 8: If the total iterations are reached then report the target grasshopper 
bestX and stop else 

continue repeating the steps 4-7. 

5.6 Simulation Experiments 

The simulations have been performed on PC with 8 GB RAM in a MATLAB R2013a. 

 Channels considered for simultions 

The performance of a modified grasshopper optimization algorithms has been evaluated 

over four wireless communication channels. The corresponding channels are taken from the 

Refs. [11,19,37,122,137,165–167]   and can be written as : 

                                    
1 2

1(z) 0.209 0.995 0.209 : Channel 1H z z         
 

     
1 2

2 (z) 0.260 0.930 0.260 : Channel 2H z z          

                                     
1 2

3(z) 0.304 0.903 0.304 : Channel 3H z z             

 
1 2

4 (z) 0.341 0.876 0.341 : Channel 4H z z                               (5.18) 

 

Furthermore, the following nonlinearities have been considered to introduce the non-linear 

distortion to the channel output and are taken from the references [19,37,137,165,167]. 

 

 

                               ( ) ( )b n t n                                                                      : NL=0 

          
2 3( ) ( ) 0.2 ( ) 0.1 ( )b n  t n  t n  t n  

                                  : NL=1 

                     
2 3( ) ( ) 0.2 ( ) 0.1 ( ) 0.5cos( ( ))b n t n t n t n t n   

           : NL=2            (5.19) 

 

 Sensitivity Analysis of the MGOA algorithm 

In this section, simulation experiments are performed to analyze the sensitivity of 

MGOA to its key parameters. The non-linear channel with channel 2 and nonlinearity NL=1 is 

taken for simulation. The simulations are conducted to choose optimal values for number of 

grasshoppers (N), index of Levy distribution ( ) , data block size ( )S  and number of taps of 

equalizer (M) and the corresponding results are provided in Tables 5.1 to 5.4 and Figs. 5.2 to 

5.5. 

The effect of number of grasshopper on MSE is analysed by varying N from 5 to 35 and 

Fig. 5.2 and Table 5.1 shows that N=25 is sufficient to achieve optimum results. Moreover, Fig 

5.3 and Table 5.2 illustrates that there is not significant reduction in MSE for values of the block 
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size more than 200. It is clear from Fig 5.4 and Table 5.3 that the minimum MSE is obtained 

when number of taps are 4. Finally the index of Levy distribution is varied from 0.25 to 2 and 

Fig 5.5 and Table 5.4 depicts that  equal to 0.5 provides the least MSE. 

Table 5. 1 Effect of number of grasshoppers ( N ) on MSE 

 

 

Fig. 5. 2. Effect of number of grasshoppers ( )N on MSE      Fig. 5. 3. Effect for variation of data block size ( )S  

 

Table 5. 2  Effect for variation block size ( )S  

Block Size

( )S  
MSE     

 Best Worst Median Mean Std. Dev. 

50 0.0051 0.0065 0.0055 0.0055 3.3926e-04 

100 5.9412e-04 0.0011 7.2123e-04 7.4893e-04 1.3049e-04 

200 3.6806e-04 7.1083e-04 4.4784e-04 4.5785e-04 7.7255e-05 

500 3.6626e-04 6.1446e-04 4.3333e-04 4.5026e-04 6.6393e-05 
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-24

-22

M
S

E
 (

d
B

)

Block size (S)

Population Size 

( )N  

MSE 

Best Worst Median Mean Std. Dev. 

5 0.0020 0.6169 0.0577 0.1546 0.1731 

10 5.5532e-04 0.1310 0.0018 0.0098 0.0261 

15 4.3734e-04 0.0018 7.8300e-04 8.4163e-04 3.2790e-04 

20 3.9065e-04 0.0012 4.6128e-04 5.0282e-04 1.4760e-04 

25 3.6636e-04 7.1749e-04 4.2504e-04 4.4895e-04 8.8639e-05 

30 3.5731e-04 5.6167e-04 4.3886e-04 4.4066e-04 5.1189e-05 

35 3.6030e-04 5.0784e-04 4.3951e-04s 4.3621e-04 4.3033e-05 
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Fig. 5. 4. Effect of M on MSE                                Fig. 5. 5. Effect of variation of Lévy  index ( )  

 

Table 5. 3 Effect of variation of M  

 

 Table 5. 4  Effect of variation of Lévy  index ( )  

2 4 6 8 10
-33.5

-33

-32.5

-32

-31.5

-31

-30.5

-30

M
S

E
 (

d
B

)

Number of taps of equalizer (M)

0.25 0.5 0.75 1 1.25 1.5 1.75 2
-34

-33.5

-33

-32.5

-32

-31.5

M
S

E
 (

d
B

)

Index of Lévy distribution ( )

No. of taps 

( )M  

MSE     

Best Worst Median Mean  Std. Dev. 

2 0.0010 0.0011 0.0010 0.0010 1.0435e-05 

4 3.6806e-04 7.1083e-04 4.4784e-04 4.5785e-04 7.7255e-05 

6 3.7767e-04 8.1960e-04 5.0993e-04 5.3623e-04 1.0880e-04 

8 3.9989e-04 0.0016 7.7578e-04 8.5611e-04 3.2463e-04 

10 4.0619e-04 0.0015 6.9439e-04 7.5745e-04 2.5878e-04 

 Lévy index

( )  

MSE     

Best Worst Median Mean  Std. Dev. 

0.25 3.6401e-04 5.8347e-04 4.4080e-04 4.5634e-04 6.4029e-05 

0.5 3.5522e-04 7.5049e-04 4.2501e-04 4.4102e-04 8.4777e-05 

0.75 3.7274e-04 9.1180e-04 5.3361e-04 5.4136e-04 1.3805e-04 

1 4.2071e-04 8.8191e-04 5.4122e-04 5.8007e-04 1.3233e-04 

1.25 4.1063e-04 0.0013 5.8038e-04 6.0923e-04 1.6423e-04 

1.5 4.0266e-04 0.0010 5.7165e-04 6.0607e-04 1.5145e-04 

1.75 4.1016e-04 0.0016 6.3696e-04 7.0080e-04 2.3311e-04 

2 4.0771e-04 9.5361e-04 6.0821e-04 6.3288e-04 1.5455e-04 
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 Performance Analysis of MGOA algorithm for channel Equalization 

The performance of the proposed modified grasshopper optimization algorithm has been 

compared with GOA, sine cosine algorithm (SCA) and rat swarm optimizer (RSO) [168] 

algorithm for equalization of non-linear wireless communication channels. The training process 

of FLANN based non-linear equalizer has been performed for 500 iterations with block size of 

200. Furthermore, to analyse the performance of modified grasshopper optimization algorithm 

for equalization of non-linear channels, the signal considered for transmission takes values 

either +1 or -1 with uniform distribution. The signal to noise ratio considered for AWGN 

introduced to wireless channel output is 20 dB. Table 5.5 provides the parameters taken for 

simulations. 

5.6.3.1 MSE performance 

In this section, the learning performance of the algorithms has been demonstrated over 

4 non-linear wireless communication channels and results have been averaged over 30 runs. 

Table 5. 5       Simulation Parameters 

Algorithm Parameter Value 

MGOA Population size ( N ) 25 

 Index of Lévy distribution ( )   0.5 

GOA Population size ( N ) 25 

MFO Population size ( N ) 25 

 Random number (t) [-1,1] 

 b 1 

SCA Population size ( N ) 25 

 r1 rand 

 r2 2*pi*rand 

 r3 2*rand 

 r4 rand 

 a 2 

 

 Non-linearity 1 (NL=1) 

To analyse the MSE performance, this case considers a non-liner distortion from the 

non-linearity NL=1 (Eq. (33)) and the corresponding MSE curves are shown in Fig. 5.6. As 

evident from this figure, MGOA provides the lesser MSE and faster convergence over GOA, 

SCA and RSO algorithm. Moreover, MSE results in Table 5.6 shows the equalization capability 
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of MGO based equalizer. Box plot diagrams [139] are used to show the distribution of data and 

the MSE box plots in Fig 5.7.  confirms the superiority of MGOA from least values of the 

median and interquartile range achieved by it. 

Table 5. 6 MSE results with non-linearity NL=1 for all four communication channels 

 

Non-linearity 2 (NL=2) 

This case takes into consideration a severe non-linear scenario with non-linearity NL=2 

. The MSE convergence curves of all the algorithms with non-linearity NL=2 for four different 

non-linear channels is demonstrated in Fig. 5.8. This figure shows that MGOA escapes from 

local optima offering a higher convergence speed. As a result of which MGOA is able to achieve 

the lowest MSE among all the algorithms. Furthermore, MSE results in Table 5.7 validates the 

efficiency of the MGOA based equalizer. Figs. 5.6 and 5.8 illustrate that an increase in non-

linearity (from NL=1 to NL=2) does not have any significant effect on the superiority of the 

Channel Algorithms  MSE  

  Best Worst Mean SD 

Channel 1 MGOA 8.0652e-05 1.4920e-04 1.0236e-04 1.5904e-05 

 GOA 8.4487e-05 7.0463e-04 2.0843e-04 1.1986e-04 

 SCA 2.1634e-04 0.0027 6.6597e-04 5.1216e-04 

 RSO 2.5196e-04 0.0124 0.0036 0.0037 

Channel 2 MGOA 3.5522e-04 7.5049e-04 4.4102e-04 8.4777e-05 

 GOA 5.0671e-04 0.0016 8.0838e-04 2.4882e-04 

 SCA 7.8778e-04 0.0031 1.4250e-03 6.0215e-04 

 RSO 8.6449e-04 0.0217 0.0059 0.0059 

Channel 3 MGOA 0.0014 0.0021 0.0016 1.4391e-04 

 GOA 0.0016 0.0050 0.0025 8.4880e-04 

 SCA 0.0025 0.0099 0.0045 0.0019 

 RSO 0.0026 0.0407 0.0163 0.0119 

Channel 4 MGOA 0.0058 0.0082 0.0063 6.5229e-04 

 GOA 0.0059 0.0128 0.0086 0.0016 

 SCA 0.0079 0.0213 0.0141 0.0034 

 RSO 0.0094 0.1620 0.0422 0.0323 
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proposed MGO when compared to others. Moreover, the MSE box plots in Fig. 5.9 further 

validates the superiority of MGOA. 

 

Table 5. 7 MSE results with non-linearity NL=2 for all four communication channels 

 

 

Statistical Analysis: 

 In this section, a Wilcoxon’s rank-sum test [169] is conducted at 5% significance level 

and corresponding p values are noted in Table 5.8. As can be noticed from results, p-values 

obtained for competing algorithms are very much less than 0.05 which indicates the statistical 

significance of the results obtained by MGOA based equalizer. 

 

 

 

Channel Algorithm  MSE 

  Best Worst Mean SD 

Channel 1 MGOA 0.0011 0.0024 0.0013 2.6125e-04 

 GOA 0.0011 0.0054 0.0023 0.0012 

 SCA 0.0021 0.0058 0.0039 9.9434e-04 

 RSO 0.0048 0.0394 0.0116 0.0076 

Channel 2 MGOA 0.0032 0.0052 0.0039 5.1607e-04 

 GOA 0.0035 0.0132 0.0068 0.0025 

 SCA 0.0065 0.0169 0.0092 0.0025 

 RSO 0.0086 0.1002 0.0215 0.0200 

Channel 3 MGOA   0.0124 0.0191 0.0143 0.0021 

 GOA 0.0127 0.0334 0.0206 0.0055 

 SCA 0.0177 0.0449 0.0283 0.0063 

 RSO 0.0270 0.1422 0.0571 0.0296 

Channel 4 MGOA 0.0413 0.0549 0.0449 0.0029 

 GOA 0.0413 0.0820 0.0552 0.0099 

 SCA 0.0546 0.1294 0.0732 0.0158 

 RSO 0.0873 0.2280 0.1367 0.0332 
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Table 5. 8 Results of Wilcoxon rank-sum test for MSE results of Table 5.6 and Table 5.7   

 

    
(a)                                                          (b) 

  
(c)                                                            (d) 

Fig. 5. 6. Learning curves with non-linearity NL=1 for (a) Channel 1 (b) Channel 2 (c) Channel 3 and (d) Channel 
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(a)                                                          (b) 

  

(c)                                                    (d) 

Fig. 5. 7. MSE Box plots with non-linearity NL=1 for  (a) Channel 1 (b) Channel 2 (c) Channel 3  (d) Channel 4 
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(a)                                                  (b) 

  

(c)                                           (d) 

Fig. 5. 8. Learning curves with non-linearity NL=2 for (a) Channel 1 (b) Channel 2 (c) Channel 3 and (d) Channel 
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(a)                                                             (b) 

  

(c)                                                                  (d) 

Fig. 5. 9. MSE Box plots with non-linearity NL=2 for  (a) channel 1 (b) channel 2 (c) channel 3  and (d) channel 

4  

 

5.6.3.2 BER performance 

The BER performance of the proposed modified grasshopper optimization algorithm has 

been evaluated in this section over 4 non-linear channels. 
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remaining algorithms. Moreover, MGOA provides similar BER performance for Channel 2, 

Channel 3 and Channel 4.  

Non-linearity 2 (NL=2) 

Fig. 5.11 shows the effect of non-linear distortion from the non-linearity NL=2 on the 

BER performance of all  algorithms. As can be seen from Fig. 5.11(a)  a gain of about 1.3 dB is 

made by the MGOA when compared to the GOA and more than 2 dB in comparison with other 

algorithms at a BER of 1.89e-04. Furthermore, Figs. 5.10 and 5.11 demonstrate that despite 

increase in non-linearity from NL=1 to NL=2 MGOA is perfroming consistently. 

  

(a)                                                                               (b) 

 
  (c)                                                      (d) 

Fig. 5. 10. BER performance with non-linearity NL=1 for  (a) channel 1 (b) channel 2 (c) channel 3  (d) channel 4 
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(a)                                                                 (b) 

 
(c)                   (d) 

Fig. 5. 11. BER performance with non-linearity NL=2 for  (a) channel 1 (b) channel 2 (c) channel 3  (d) channel 4 

 

5.7 Conclusion 

In this chapter, a Modified Grasshopper Optimization Algorithm (MGOA) is proposed 

for equalization of non-linear wirless communication channels. The superiority of the proposed 

MGOA based equalizer is illustrated over  other metaheuristic algorithms such as GOA, SCA 

and RSO . The simulation results on four non-linear channels demonstrate the efficiency of the 

proposed MGOA algorithm in terms of BER and MSE. Furthermore, the statistical validity of 

the results provided by MGOA is confirmed through Wilcoxon rank-sum test. 
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A neural network based approach for joint channel 

estimation and equalization of Universal Filtered Multi-

Carrier (UFMC) System 

6.1 Introduction 

In this chapter, we have proposed a joint channel estimation and data detection for 

Universal Filtered Multi-carrier (UFMC) system using deep feed-forward neural network. In 

conventional universal filtered multicarrier system to recover the transmitted symbols, channel 

estimation and data detection are carried out as a two different processes. However, the 

conventional approaches involves the use of pilots for every frame. Furthermore, in the pilot 

based channel estimation approach it requires to explicitly model the channel using the available 

channel observations which may not be accurate always. To overcome these drawbacks, this 

work proposes a joint channel estimation and data detection approach for UFMC using deep 

neural network. The proposed approach provides better BER performance when compared to 

existing methods. 

6.2 Related Work: 

Universal Filtered Multi-carrier (UFMC) system has been proposed in the year 2013 

[170]. The benefits  of  Filter bank Multicarrier (FBMC) and orthogonal frequency division 

multiplexing (OFDM) are integrated in UFMC [171]. The Ref. [172] contains comprehensive 

comparison of UFMC, OFDM and FBMC . The pilot aided channel estimation for UFMC is 

carried out in [171] using the conventional channel estimation methods used for channel 

estimation in OFDM system. Furthermore, channel estimation under AWGN and Rayleigh 

fading channel have been carried out in [173] for different QAM  modulated signals. Moreover, 

the channel estimation for power domain NOMA-UFMC have been performed in [174]. 

However, conventional channel estimation techniques involves estimation of channel 

coefficients to recover the transmitted data. Therefore, the recent use of deep neural network 

in wireless communication system by various researchers [175–179] motivated us to use neural 
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network based approach for joint channel estimation and data detection in UFMC system. 

6.3 Universal Filtered Multi-carrier (UFMC) System 

Fig. 6.1 shows the system model for universal filtered multicarrier system.  The 

description of UFMC system in this section is taken from  [180][172] [181]. In UFMC system, 

B sub bands are used to divide the total available wireless channel bandwidth.  If there are total 

N subcarriers then each sub-band consist of N/B subcarriers. The data symbols which need to be 

transmitted are first mapped to 4 QAM signal and then converted from serial to parallel form to 

perform the IFFT operation. The output of IFFT block is given to FIR filter ci  (i=1,2,3……B). 

The filtered output oi of ith sub-band is given as follows [180]: 
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The filtered output of all B sub-bands is summed up as follows [180]: 

      )()(
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                                                                    (6.2) 

Finally, the UFMC signal is transmitted through a wireless channel of impulse response h and 

the received signal y is given by [180], 

)()()()( nqnhnrny                                                     (6.3) 
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Where h(n) denotes the channel impulse response and q(n) is noise 

At the receiver, zero padding is done on the received UFMC signal to perform the 2N-point 

FFT operation. The signal after performing 2N-point FFT operation is given by [180],   

Nmnj
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 ,   k=0,1,….2N-1                       (6.5) 

If single tap channel is considered the Eq. (6.5) can be written as [180]: 
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                                             (6.6) 

Where H(n) is 2N point FFT of h(n)  

            Q(n) is 2N point FFT of additive white Gaussian noise q(n) 

          )(
~

nX i  is the 2N point FFT of  xi 

After 2N-point FFT operation channel estimation is performed using the pilots and the 

estimated channel coefficients are used to detect the data. 
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Fig. 6. 1 UFMC System [180][172] 

6.4 Neural Networks  

Neural networks are the supervised machine learning models and have demonstrated 

interesting results in many engineering applications [22][23] [24]. The detailed description of 

neural networks can be found in the Refs. [182][25][27]. The basic structure of deep neural 

network used in this study is shown in Fig. 6.2. 
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6.5 Neural Network based approach for joint channel estimation 

and data detection in UFMC system 

In multicarrier system to recover the transmitted symbols, channel estimation and data 

detection are carried out as a two different processes. In traditional channel estimation 

approaches such as least square (LS) and Minimum mean square error (MMSE) estimation, the 

transmitted symbols are recovered by using the estimates of the channel coefficients. However, 

the process of channel estimation need the transmission of pilots along with the data. In this 

study, the joint channel estimation and data detection are carried out jointly using the deep neural 

network. The deep neural network is trained offline with channel observations as training data 

and after completion of training the trained model is utilized directly to detect the transmitted 

symbols. Fig. 6.2 shows the proposed approach for joint channel estimation  and data detection 

in UFMC system. 

During the training process of deep neural network, we have used Mean square error 

(MSE) as the cost function and which is given as follows: 

 



N

j

nXnX
N

MSE
1

2

)()(ˆ1
                                                  (6.8) 

Where )(ˆ nX denotes the estimate of the transmitted symbol recovered by the neural network 

and )(nX  is the actual transmitted symbol. 

After completion of training the neural network model is deployed for data detection. It 

is noted that once the training process of DNN gets completed it does not need the training 

symbols. 
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Fig. 6. 2 Neural Network based approach for joint channel estimation and signal detection in 

UFMC system 

6.6 Simulation Results 

In order demonstrate the performance of the proposed approach for UFMC, an extensive 

simulation experiments have been performed. The channel model considered for simulations in 

this study is Rayleigh fading channel. The transmitted symbols are with 4 QAM modulation 

scheme. The data obtained from the channel observations have been used to train the deep neural 

network. The BER performance of the proposed approach have been compared with 

conventional channel estimation approaches i.e. LS and MMSE. 

The fig. 6.3 shows that BER performance varies with SNR used during training. As can 

be seen from the results the SNR of 8 dB during training provides the better BER performance. 
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The performance of proposed approach is superior when compared to LS and MMSE 

based approach which can be confirmed from the Fig, 6.4 and Fig. 6.5. Furthermore, when the 

number of taps of channel increases the BER degrades for all the approaches which can be 

confirmed from Fig. 6.5. For this channel also proposed approach is providing the significantly 

better performance.  

 

 

  Fig 6.3 BER performance when DNN is trained at different SNR 

 

 

  Fig. 6.4 BER performance for Rayleigh fading channel with 5 taps 
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6.7 Conclusion 

In this chapter a neural network based approach have been proposed for joint channel 

estimation and data detection in UFMC system. The simulations confirmed that the proposed 

approach performs better than the existing methods. In future it is worth to investigate the 

performance of advanced versions of deep neural networks such as convolutional neural 

network for data detection in UFMC. 
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Conclusions and Future Scope 

7.1 Conclusions 

The chapter wise conclusion of this thesis is summurised as follows: 

In Chapter 1, introduction to the channel equalization in a wireless communication 

system, motivation, and contributions of the thesis have been explained. 

In Chapter 2, basic system model of non-linear channel equalization is provided along 

with necessary mathematical equations. Furthermore, introduction about machine learning is 

given by explaining the basic concepts related to the neural networks. Finally, overview of 

metaheuristic algorithms and  comprehensive review of the literature available in the area of 

channel equalization is also have been discussed. 

In Chapter 3, a scheme has been proposed for training the Functional link artificial 

neural network based non-linear channel equalizer by using Cuckoo Search Algorithm (CSA).. 

Three non-linear channels were taken for simulations to validate the superiority of the CSA 

based training scheme and the results have been compared with recent and well-established 

algorithms. The simulations proved that CSA based training method offers improved 

performance in terms of MSE and BER when compared to existing algorithms. The robustness 

of the cuckoo search algorithm (CSA) based training scheme has been shown by considering 

the BER performance in a burst error scenario and it is observed that the scheme significantly 

outperforms the compared algorithms by effectively handling the burst errors. The performance 

of the proposed scheme has been validated for a wide range of signal-to-noise ratio (SNR 10 to 

30 dB) values through simulation studies and it is observed that the scheme outperforms the 

other algorithms in poor SNR conditions as well. Moreover, the Wilcoxon rank-sum test proved 

that the proposed approach provided statistically significant results in comparison with 

competing approaches. 

 

 

SellathuraiMathini
Highlight

SellathuraiMathini
Highlight
The chapter can be much more deeper than just a summary of what happened. What were the lessons learned - what were the significant achievements?



113 

 

An efficient JAYA algorithm with Levy flight (JAYALF) is proposed in Chapter 4. To 

evaluate the performance of the JAYALF algorithm for non-linear channel equalization, three 

non-linear channels were taken for simulations. The simulation studies showed that JAYALF 

based equalizer provides superior performance than other equalizers in terms of convergence 

speed, steady-state MSE and BER. Finally, statistical test confirmed that the proposed algorithm 

provided statistically significant results in comparison with competing approaches. 

In Chapter 5, a Modified Grasshopper Optimization Algorithm (MGOA) is proposed 

for equalization of wirless communication channels. The superiority of the proposed  MGOA 

based equalizer is illustrated over  other metaheuristic algorithms. The simulation results on four 

non-linear channels demonstrate the efficiency of the proposed MGOA algorithm in terms of 

BER and MSE. Furthermore, the statistical validity of the results obtained from MGOA is 

confirmed through Wilcoxon rank-sum test. 

In Chapter 6 a neural network based approach have been proposed for joint channel 

estimation and data detection in UFMC system. The simulations confirmed that the proposed 

approach performs better than the existing methods. 

7.2 Future Scope 

The research work carried out in this thesis can be extended in the future in different 

ways. The proposed  metahheuristic algorithms and  machine learning based approaches can 

used for data detection in MIMO applications. The data colletced from the real wireless 

communication channels can be used to train the channel equalizers to have a optimal 

perfromance in the real time environment. Moreover, the proposed metahheuristic algorithms 

and  machine learning based approaches can be tested in the real-time environment using 

available hardware platform. The proposed approaches can be applied to other problems in 

wireless communication. 
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