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ABSTRACT

In the last few years, the field of wireless communication has seen a tremendous
development in various technologies. The extensive use of internet applications resulting in
increased demand for higher data rate. Eventually, the higher data transmission rates are making
the problem of inter-symbol interfernce (ISI) more severe. Thus, to mitigate the effect of inter-
symbol interference (ISI1) in multipath wireless channels, designing a channel equalizer is
becoming more demanding. Furthermore, the transmitted signal also subjected to noise and non-
linear distortion from the channel and signal processing devices. Therefore, designing of
efficient non-linear channel equalizers is a need of time. In the literature, several non-linear
channel equalizers are have been developed. However, it still requires further investigation to
improve equalization performance in terms of bit error rate (BER) by improving the efficiency
of the training algorithms used for channel equalizers. Therefore, this thesis investigates the
various metaheuristic algorithms and machine learning based approaches for non-linear channel

equalization.

In this thesis, a new training scheme using cuckoo search algorithm (CSA) has been
proposed to train the neural network based channel equalizers. The performance of the proposed
scheme also has been analysed over different non-linear wireless communication channels. The
robustness of a scheme is shown by considering a burst error scenario. An efficient JAYA
algorithm with Levy flight has been proposed for non-linear channel equalization and the
performance of the proposed algorithm is examined under wireless communication channels
with different eigenvalue (EVR) ratio and non-linerarities. Furthermore, a modified grasshopper
optimization algorithm has been porposed and non-linear channel equalization in wirelss
environments have been carried out using a proposed modified grasshopper optimization
algorithm. Finally, a neural network based approach is proposed for joint channel estimation
and data detection in universal filtered multi-carrier (UFMC) system and the efficiency of the

proposed approach have been confirmed over wireless channel.
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Chapter 1

Introduction

1.1 Background

In the last decade, widespread use of internet has resulted in a massive rise in the data
rate of a wireless communication system. Eventually, to mitigate the effect of inter-symbol
interference (ISI) in multipath wireless channels, designing a channel equalizer is becoming
more demanding. Generally, in wireless communication, the information is broadcasted via
band-limited channels [1]. Thus, if the transmitted signals have higher bandwidth than the
channel coherence bandwidth, it results in amplitude and phase distortion of the signals, which
causes ISI [2-4]. Moreover, multi-path effects in the wireless environment and the band-limited
nature of channels are the key factors which lead to ISI [5]. The noise introduced by the system
during transmission of data and the non-linear distortion arising from the use of amplifiers also
needs to be alleviated [6,7]. Hence, an equalizer is needed at the receiver to combat the
distortion owing to ISI, noise and nonlinearity [2—4].

1.2 Motivation

In recent years, the problem of channel equalization has been solved by many
researchers. Initially, communication researchers employed adaptive filter based linear
equalizers for channel equalization in wireless environment. However, linear equalizers does
not provides better BER performance for non-linear wireless channels [1] [8-10]. The neural
network (NN) based equalizers provides superior performance owing to their non-linear
structure [1] [8-10]. In general, gradient-decent algorithms are utilized to train neural network
(NN) for non-linear channel equalization in wireless environment [1,11,12]. However, the use
of gradient based algorithms such as back-propagation (BP) for training the NN based non-linear
equalizer results in the performance degradation because of certain key factors like BP has a

problem of stagnation in local minima [13-15], learning rate parameter and initial coefficients



affect the convergence, and slower convergence rate of BP [16]. These limitations motivated
the researchers to employ nature-inspired metaheuristic algorithms to train NN based channel
equalizers [17-19]. The capability to deal with the problems which are nonlinear, non-
differentiable and complex is present in metaheuristic algorithms whereas gradient-descent
based approaches need differentiable and continuous fitness function [15]. Owing to the
stochastic nature of population based metaheuristic algorithms, they are capable of escaping
from local optima [16] and provides faster convergence [20]. However, it still requires further
investigation to improve equalization performance in terms of bit error rate (BER) by improving
the efficiency of the training algorithms used for channel equalizers. This motivated us to
propose new training schemes for neural network based non-linear channel equalizers using

population based metaheuristic algorithms.
1.3 Research Objectives

The key research objectives of the research work carried out in this thesis are as follows:

++ To propose a new training scheme for Neural Network based Non-linear Channel Equalizers

using Cuckoo Search Algorithm

% To develop an efficient JAYA Algorithm with Levy flight for Non-linear Channel

Equalization

% To develop a Modified Grasshopper Optimization Algorithm for Non-linear Channel

Equalization

% To develop a Neural Network based approach for joint channel estimation and data detection

in multi-carrier system.

1.4 Contributions of the Thesis
The key contributions of this have been briefly explained as follows:

1.4.1 A New Training Scheme for Neural Network based Non-linear Channel
Equalizers using Cuckoo Search Algorithm

This contribution deals with development of a new training scheme using Cuckoo Search
Algorithm (CSA) to train the neural network based non-linear channel equalizer. To overcome

2
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the limitations of existing algorithms, this work proposes a training scheme using Cuckoo
Search Algorithm (CSA) for neural network based channel equalizers. The proposed training
scheme has a better ability to escape from local minima, higher exploitation and exploration
capabilities. To choose the optimum values of the parameters, the sensitivity analysis of the
proposed approach is performed with its key parameters. Furthermore, three non-linear channels
have been simulated to demonstrate the equalization performance of the CSA based training
scheme and the results have been compared with recent and well-established algorithms. The
simulations confirm that the proposed training scheme performs substantially better than
existing metaheuristic algorithms in terms of BER and MSE performance. To show the
robustness of the proposed method, the burst error scenario has been considered and results
proved that the method is more successful in handling such scenarios when compared to other
methods. The performance of the proposed scheme has been validated for a wide range of signal-
to-noise ratio through simulation studies and it is observed that the scheme outperforms the other
algorithms in poor SNR conditions as well. Also, to examine the statistical significance of the
results provided by the proposed scheme, the Wilcoxon test is performed and the test reveals
that the obtained results are statistically significant

1.4.2 An Efficient JAYA Algorithm with Levy flight for Non-linear Channel

Equalization

This contribution involves the development of an efficient JAYA algorithm with Levy
flight for Non-linear Channel Equalization. JAYA is an effective and simple population based
metaheuristic algorithm. Despite being an efficient and simple algorithm, JAYA gets trapped
into local optima owing to its weak exploration competence and inadequate solution diversity.
To mitigate these issues, in this contribution Lévy flight (LF) concept and greedy selection
scheme has been incorporated into the basic JAYA. The LF concept enhances the population
diversity and thus avoids the state of stagnation. The greedy selection scheme is employed to
improve the exploitation ability without loss of population diversity. Furthermore, the
exploitation and exploration capabilities of the algorithm have been balanced by proposing an
adaptive Leévy index using a linear control parameter strategy. The sensitivity analysis of
proposed method called JAY A algorithm with Lévy flight (JAYALF) with its key parameters is
carried out to select the optimal values for these parameters. In order to validate the local optima
avoidance ability, exploitation and convergence rate of the proposed JAYALF algorithm, it is

tested on unimodal and multimodal benchmark functions and to verify the effectiveness of the



JAYALF for non-linear channel equalization problem, three non-linear wireless communication
channels have been considered for simulations. In addition, the non-parametric pairwise
Wilcoxon rank-sum test has been employed to test the statistical validity of the results obtained
from JAYALF. The results of experiments and statistical test demonstrate that the proposed
algorithm significantly outperforms existing algorithms in terms of convergence rate and
accuracy. Furthermore, simulations show that proposed JAYALF algorithm provides faster

convergence without being trapped into local optima and has a better exploration ability.

1.4.3 Non-linear Channel Equalization using a Modified Grasshopper

Optimization Algorithm

In this contribution, a modified grasshopper optimization algorithm (MGOA) is
proposed for equalization of non-linear wireless channels. The proposed algorithm overcomes
the limitations of grasshopper optimization algorithm and existing metaheuristic algorithms.
The superiority of the proposed MGOA based equalizer is illustrated over other equalizers
optimized by the other metaheuristic algorithms. The simulation results on four non-linear
communication channels demonstrate the efficiency of the proposed MGOA algorithm in terms
of MSE and BER performance. In order to test the statistical validity of the results obtained from
MGOA, a non-parametric pairwise Wilcoxon rank-sum test has been employed and the test

reveals that the obtained results are statistically significant.

1.4.4 Joint Channel Estimation and Data Detection for Multi-carrier System:

A Neural Network based approach

In conventional multicarrier system to recover the transmitted symbols, channel
estimation and data detection are carried out as a two different processes. However, the approach
involves the use of pilots for detection of transmitted data. Furthermore, in the pilot based
channel estimation approach it requires to explicitly model the channel using the available
channel observations which may not be accurate always. To overcome these drawbacks, this
work proposes a joint channel estimation and data detection approach for universal filtered
multi-carrier Systems using neural network. The proposed approach provides better BER

performance when compared to conventional channel estimation approaches.



1.5 Thesis Organization

This thesis has been organized into seven key chapters and the chapters are summarized

in following section as

Chapter 1: This chapter provides the introduction to the channel equalization in a wireless

communication system, motivation, and contributions of the thesis.

Chapter 2: In this chapter basic system model of non-linear channel equalization is provided
along with necessary mathematical equations. Furthermore, introduction about machine
learning is given by explaining the basic concepts related to the neural networks. This chapter
also gives overview of metaheuristic algorithms. A comprehensive review of the literature

available in the area of channel equalization is also have been discussed.

Chapter 3: In this chapter a training scheme using cuckoo search algorithm is proposed to train
the neural network based non-linear channel equalizers. The performance of the proposed
scheme also has been analysed in the burst error scenario.

Chapter 4: This chapter proposes an efficient JAY A algorithm with Levy for non-linear channel
equalization. The peformance of the algorithm is examined in terms of MSE and BER

performance.

Chapter 5: A modified grasshopper optimization algorithm is proposed in this chapter and the
perfromance of the proposed algorithm has been evaluated in terms of BER and MSE

performance

Chapter 6: This chapter proposes an neural network based approach for joint channel estimation
and data detection of multicarrier system.

Chapter 7:Chapter 7 provides the conclusion of the research work and future scope to take this

research to the higher level.



Chapter 2
Preliminaries and Literature Survey

2.1 Introduction

In this chapter basic system model of non-linear channel equalization is provided along
with necessary mathematical equations. Furthermore, introduction of machine learning is given
by explaining the basic concepts related to the neural networks. This chapter also presents the
overview of metaheuristic algorithms. Finally, a comprehensive review of the literature

available in the area of channel equalization is also have been discussed.
2.2 Non-linear Channel Equalization

A discrete-time model of non-linear channel equalization in the wireless communication
system is demonstrated in Fig. 2.1. The transmitted symbols are considered as independent and
equiprobable for all s(n) and are taken as the random binary symbols in the form of {+1,-1}.
The wireless channel block in this figure consists of the transmission medium along with the
transmitter-side filter. Generally, the FIR model is utilized to characterize the linear channel and

its output (t(n)) is expressed as follows [11][1]:
tn) = 3 h(k)s(n-k) 2.1)

where h(k) denotes the wireless channel tap coefficients and N, is the number of coefficients

in the channel impulse response.

Furthermore, the NL block in Fig. 2.1 adds nonlinear distortion to wireless channel output and

its output b(n) is given as follows:
b(n) =w(s(n),s(n-1),s(n-2),.....s(n- N, +2); h(0), h(2), h(2).....n (N -1)) (2.2)

where ¥ represents the non-linearity generated using the ‘NL’ section
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Fig. 2. 1. Block diagram of non-linear channel equalization

An additive white Gaussian noise ¢(n) degrades the channel output after adding non-

linearity i.e. P(N) Finally, the signal received at a receiver front end is "(" and can be written

as
r(n) =w(s(n),s(n-1),s(n-2),......s(n- N, +2); h(0), h@®), h(2).....n(N,—1)) +q(n) 2.3)
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Fig. 2. 2. Multipath wireless channel with non-linear distortion and AWGN



The structural representation of multipath wireless channel along with non-linearity and
AWGN is shown in Fig.2.2 .The equalizer recovers the sequence s(n) or its delayed form i.e.
s(n-7), where 7 is the delay related to wireless channel during transmission. The equalizer
mitigates for noise, ISI, and nonlinear distortion to retrieve the s(n). Furthermore, the desired

signal d(n) is generated from the input signal s(n) by taking a delay of = symbolsi.e. s(n-7)
The error e(n) is calculated by comparing equalizer output y(n) with the desired signal d(n)

as follows:
e(n) =d(n) - y(n) 2.4)

The slicer provides the estimate of the transmitted symbol and is written as follows:

. e if y(n)<0
S(n_r)_{l it y(n)>0 (25)

2.3 Machine Learning

The machine learning involves unsupervised learning, supervised learning, and
reinforcement learning. However, in this thesis emphasis is given on supervised machine
learning using the artificial neural network. The artificial neural network research has been
started with the introduction of brain inspired computational model by McCulloch and Pitts
[15,21]. In the last few decades, neural network have received significant attention from the
researchers of various fields as they are capable of solving non-linear and complex engineering
problems. The neural networks have been successfully applied to various engineering fields
such as speech processing [22], signal processing [23], image processing [24] etc. The basic

theory related to neural network in this section is taken from [15,25-28].
2.3.1 Single Neuron

The most basic form of neural network is a single layer perceptron which comprises of
an input layer and output layer [15,27,29]. The basic neuron involves inputs, weights, activation

function and single output.

The basic neuron has a number of inputs ui, (i=1,2...n) and each input is associated with

weights w; (i=1,2...n). The weighted sum of inputs including bias is given as follows [25-27]:
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Z=>wu, +b (2.6)
i=1

Where u is input, n represents the total number of inputs, w denotes the weight and b
represents the bias

The final output of neuron Y can be written as follows:
Y =f(2) (2.7)

Where f denotes some non-linear activation function. The activation functions helps to
limit the output of neuron in particular range. There are various activations fucntions are

available such as sigmoid, hyperbolic tangent etc.
2.3.2 Neural Network Architectures

To solve the practical non-linear problems the neural network needs multiple layers of
neurons rather than single neuron. Generally, the ANNSs invovles input layer, output layer and
hidden layer [25,26]. Furthermore, based on the connection of the neurons, neural networks
architectures are catogorized as recurrent neural networks and feed-forward neural networks

[25,27]. However, this study focuses on the feed-forward neural networks.
2.3.3 Training of Artificial Network Networks

In neural networks, the training process involves adjusting the weights of network to
minimize the cost function. Traditionally, the training of the neural network is carried out using

gradient- decent based algorithms [12].
2.3.4 Functional Link Artificial Neural Network (FLANN)

FLANN is a NN developed by Pao with no hidden layers, which has attracted the
scientific community owing to its lower computational complexity and simplicity [30,31]. In
FLANN, the input pattern is enhanced with the help of linearly independent non-linear functions
which reduces the computational burden [1,32]. To make the signals linearly separable in the
higher space, the input signals are converted into a higher-dimensional space [1,7,11,30,33,34].
Chebyshev, Legendre or trigonometric polynomials are used in this network to carry out the

non-linear expansion of the input signal [1,7,11,30,34-36] .
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Researchers utilized FLANN with different polynomials and proven that it outperforms
other existing NNs for channel equalization [1,7,11,34]. Furthermore, adaptively combined FIR
and FLANN and Chebyshev polynomials cascaded with FLANN have been employed for the
equalization [32,35,37]. Recently, FLANN has been applied for function approximation [38],
non-linear system identification[39-41], to solve differential equations [42] and for noise
control [43].

In order to improve the representation of the input signal in higher-dimensional space,
the expansion section in Fig. 2.3 expands the dimensions of the signal using trigonometric
functions. The detailed description of FLANN can be found in [1,11,30,31,34,37].

Let R(n)=[r, r,]" =[r(n) r(n—1)]" be a input pattern. The Expansion section consists of

trigonometric functions to expand this pattern as follows:
Re(n) =[1r, sin(ar)) cos(atr,) r,sin(xfr,) cos(;zrz)]T

Re(n)z[l r(n) sin(zr(n)) cos(zr(n)) r(n-1) sin(zr(n-1)) cos(;zr(n-l))]T
(2.8)

Hence, the expanded pattern can be stated as,
R&(n)=@(R), (2.9)
Let B={¢ cL(A)} iel,l ={12..}isasetof basis functions and a set B has the three main
. 1/2
properties as follows: i) ¢ =1 ii) sup{iﬂi} <o and iii) B, ={g € B}, is a linearly
i=1
independent set [1].

The FLANN equalizer’s coefficient vector is expressed as follows:

W (n) = [w, (n) w, (n) w,(n)....w, (N)] (2.10)

The linear sum of expanded input is written as follows:

10



u(n) =W" (nN)R*(n) (2.11)

The FLANN output y(n) is produced by passing the linear sum u(n) through a

nonlinear activation function and is given by,
vin) = p(u(n))
y(n) = tanh(u(n)) (2.12)

The error signal e(n) is computed by taking the difference between the output of FLANN

y(n) and the desired signal d(n) and is written as follows:

e(n)=d(n)-y(n) (2.13)
r(n) FLANN
71
vl s
Z_l § Tanh(.) —r—»
> 5
Y B
z™ S
o
X
n
v
Z_].
| -
F(n—M +1) w (n) y(n)
— e(n) Y
Training -
Algorithm <§@
d(n)

Fig. 2. 3. Block Diagram of FLANN [1,11,33]
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2.4 Metaheuristic Algorithms

The technique which employs heuristics inspired by nature for integrating exploration
and exploitation strategies is known as metaheuristic [15,44]. Exploration and exploitation are
the key elements of any metaheuritic algorithms. Exploitation or intensification refers to using
the knowledge of current good solution for directing the search in a local region [45]. On the
other hand, exploration or diversification refers to exploring the solution space globally by
generating the diverse solutions [45]. In the recent past, metaheuristic algorithms have gained
enormous popularity among the research community of various engineering disciplines owing
to their efficiency in finding the optimal solution. As a result of which metaheuristic algorithms
have been successfully applied for various wireless communication and signal processing
applications [46-48].

Primarily, metaheuristic algorithms can be classified into three main categories as
follows [15]:

1)Single solution based metaheuristic algorithms
2) Population based or multi-solution based metaheuristic algorithms
3) Hybrid Algorithms

The single solution based algorithms consist of only one agent or solution whereas
population based or multi-solution based metaheuristic algorithms consist of the number of
solutions or agents [15]. The hybrid algorithms consist of combination of different metaheuristic
algorithms or combination of conventional and metaheuristic algorithms to achieve the global
optimality [15]. Simualted annealing is an example of single solution metaheuristic algorithm
[49,50]. On the other hand, the algorithms such as genetic algorithm [51,52], particle swarm
optimization (PSO) [53] and bacterial foraging optimization [54] are the examples of population
based metaheuristic algorithms. In the recent past, several hybrid metaheuristic algorithms such
as hybrid PSO and back-propagation algorithm [55] and hybrid genetic algorithm and PSO [56]
have been proposed in the literature. This study focuses on the population based metaheuristic

algorihms and brief description of the algorithms used in this study is given below.
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2.4.1 Cuckoo Search Algorithm (CSA)

Cuckoo search algorithm (CSA) is one among the recent population based
metaheuristic algorithms, which is proposed by Yang and Deb [57] . CSA has been inspired
from the concept of brood parasitism of particular species of cuckoo [57][58][59]. Along with
brood parasitism, this algorithm also involves Lévy flight movements observed in certain
birds[57][58][60][59] . Lévy flight based jumps help CSA to avoid being trapped into local
minima and to find the potential regions of solution space. The superior performance of CSA in
terms of local optima avoidance capability has been shown by a number of studies when
compared to other leading metaheuristics such as PSO, genetic algorithm, artificial bee colony
algorithm and DE algorithm [61] [57]. CSA has been effectively used by the research
community in various research fields due to its enhanced exploration and exploitation
capabilities [58]. In the last few years, CSA has been widely used for multilevel thresholding in
the image [62] , image enhancement [63], design of fractional order differentiator and FOPID
controller [64][65] , spectrum allocation in a vehicular network [46], non-convex economic
dispatch problem [66] and optimization of traffic signal controller [67]. Recently, CSA has been
employed for system identification using the Hammerstein model and for feedback system
identification [68][40] and superior performance of CSA has been reported over state-of-the-
art methods.

2.4.2 JAYA algorithm

JAYA is one of the recent population-based metaheuristic algorithm, proposed by R. Venkata
Rao in 2016 [69]. Besides being an effective and simple algorithm, JAYA does not need
algorithm specific control parameters. The basic idea behind this algorithm is that the solution
obtained for a problem should escape from the worst solution and should approach to the best
one [70]. Since its introduction, owing to simplicity and ability to find global optimum solution
JAY A has been successfully used by researchers in many engineering problems. In recent few
years, JAYA and its improved versions [71-80] have been used to solve various engineering
problems. Furthermore, JAY A has been used for power quality improvement [81], optimization
of heat sink [82], tracking of maximum power point (MPP) of PV array [83], reliability—
redundancy allocation problems [84], optimization of heat exchangers [85], mechanical design
optimization [86], optimization of machining performance [87], parameter identification of

photovoltaic model [88] and design optimization of heat exchangers [89].
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2.4.3 Grasshopper Optimization Algorithm

Grasshopper Optimization Algorithm is one among the latest metaheuristic algorithms,
developed by Saremi et al. in 2017 [90]. The GOA is an efficient swarm intelligence based
algorithm motivated from the team hunting behavior of grasshoppers . Since its introduction,
many complicated benchmark functions and engineering problems has been solved by GOA
effectively [90,91]. GOA and its enhanced versions have been extensively used for electrical
characterization of fuel cells [92], training of artificial neural network [91], feature selection
[93-95], economic dispatch problem [96], data clustering [97], tuning of PID controller [98]
and target tracking [99]. To enhance the performance of basic GOA, some improvement
techniques have been introduced in [100-102], where the authors demonstrated the competitive
performance of GOA compared to other metaheuristic algorithms. Recently, Mirjalili et al.
[103] have developed a basic multi-objective GOA and Tharwat et al. proposed an improved
version of multi-objective GOA [104].

2.5 Literature Survey

In order to alleviate the effect of ISI, R. W. Lucky introduced the first equalizer structure
in the year 1965 which contains a tapped delay line and adaptive combiner [105]. Usually, the
methods like recursive least square [106] and least mean square (LMS) [3][107] are used to tune
the parameters of the adaptive combiner in a linear equalizer. However, most of the practical
wireless channels are severely non-linear due to the presence of non-linearity in data converters
[8][9][10]. Moreover, in satellite communication, amplifier saturation in satellite also
contributes to non-linearity [108]. However, for severely non-linear and dispersive channels the
performance of LMS based linear equalizers is poor [1,8-10]. Thus, to retrieve the information
corrupted due to transmission through the non-linear wireless communication channels, the non-

linear equalizers play an important role.
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In recent years, the NN based channel equalizers emerged as promising alternatives to
tackle the non-linearity in the wireless channels as they offer a lower bit error rate (BER) when
compared to linear equalizers [8-10,109,110]. These attributes attracted the communication
researchers to use several NNs for channel equalization in the wireless environment [8—
10,109,111]. A multilayer perceptron (MLP) has shown superior performance than the linear
equalizers [9][10]. Furthermore, networks like polynomial perceptron network [110] , radial
basis function [109][112] and functional link artificial neural network (FLANN) with various
polynomials [1,7,11,33,34,113] have been applied for equalization which are computationally
efficient than MLP. In recent years, several nonlinear channel equalizers have been developed
using FLANN which offer improved performance and complexity equivalent to the FLANN
[32,35,37].

In general, the back-propagation (BP) algorithm is utilized to train NN for non-linear channel
equalization [1,7,11,12,33,34]. However, the use of BP for training the NN based non-linear
equalizer results in the performance degradation because of certain key factors like BP has a
problem of stagnation in local minima [13-15], learning rate parameter and initial coefficients
affect the convergence, and slower convergence rate of BP [16,114]. These limitations
motivated the researchers to employ nature-inspired metaheuristic algorithms to train NN based
channel equalizers [17-19,115]. The capability to deal with the problems which are nonlinear,
non-differentiable and complex is present in metaheuristic algorithms whereas gradient-descent
based approaches need differentiable and continuous fitness function [15] . Owing to the
stochastic nature of population based metaheuristic algorithms, they are capable of escaping
from local optima [16] and provides faster convergence [20]. Therefore, to evade the limitations
of gradient-descent based approaches various signal processing and wireless communication

problems were solved using population based metaheuristic algorithms [46-48,116,117].
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By motivating from their advantages, several populaton based metaheuristic
algorithms have been employed by communication researchers for equalization of wireless
channels. In [118], researchers have developed a genetic algorithm (GA) based scheme for blind
channel identification and it has been shown that the proposed scheme outperforms the existing
methods. The joint channel and data estimation is implemented by chen and Wu in [119] with
the micro genetic algorithm. The estimation of transmitted data is carried out by using the
Viterbi algorithm after identifying the unknown channel with micro GA [119] and the proposed
scheme has demonstrated better performance than the existing schemes. The hybrid genetic
algorithm based approach has been used for non-linear channel blind equalization and it is
illustrated that the proposed approach provide superior bit error rate perfroms than other existing
variants of GA [120].

In last few years, population based metaheuristic algorithms also have been employed
to design an adaptive filter based linear equalizers. In [121], authors have designed an adaptive
equalizer based on particle swarm optimization (PSO) algorithm and demonstrated its
superiority over least mean square (LMS) based equalizer in terms of MSE and BER
performance. Furthermore, a modified version of PSO algorithm has been proposed in [108] for
equalization of linear and non-linear wireless communication channels. It is shown that the
proposed algorithm provide better performance when compared LMS and other versions PSO
in terms of BER and MSE. In [122] , equalization of linear and non-linear communication
channels has been carried out using hybrid PSO (HPSO) algorithm and superior performance of
HPSO has been exhibited in terms of BER and convergence speed over LMS and other variants
of PSO. An artificial immune system based equalizer has been employed in [123] for
equalization of wireless channels and notable performance of proposed equalizer is
demonstrated against GA and LMS based equalizer. Recently krill herd algorithm [124] and
artificial bee colony algorithm [125] and bacterial foraging optimization [126][127] have been

employed for channel equalization.
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In order to overcome the shortcomings of gradient-decent based algorithms a number of
population based metahheuristic algorithms have been employed for training the neural network
based non-linear channel equalizers. In [18] , authors have used particle swarm optimization
algorithm for optimizing architecture of neural networks, network parameters and transfer
functions at various nodes and superior performance of the proposed equalizer is shown when
compared to existing equalizer structures. Furthermore, a wavelet NN based equalizer trained
using a symbiotic organism search algorithm has been introduced in [19] for robust non-linear
channel equalization. The results confirmed that the proposed channel equalizer provides better
performance than existing linear and non-linear equalizers. Furthermore, robustness of the
equalizer is demonstrated by considering the burst error scenario in the occurring in the wireless
environment. Lately, directed search optimization [17], Differential evolution (DE) algorithm
[128], particle swarm optimization algorithm [36] and Shuffled frog leaping algorithm [115]
have been employed for training a NN based channel equalizer. These studies reveal the superior

performance of metaheuristic algorithms over gradient-descent based algorithms.

2.6 Conclusion

Literature survey shows that non-linear channel equalization is a well-researched area in
wireless communication system. However, it still requires further investigation to improve
equalization performance in terms of bit error rate (BER) by improving the efficiency of the

training algorithms used for channel equalizers.
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Chapter 3

A New Training Scheme for Neural Network based Non-
linear Channel Equalizers using Cuckoo Search Algorithm

3.1 Introduction

Channel equalization has seen never ending drift of research in past few years.
However, widespread use of the internet has resulted in a massive rise in the data rate of a
wireless communication system. Eventually, to mitigate the effect of inter-symbol interference
(IS1) in multipath wireless channels, designing a channel equalizer is becoming more
demanding. For severe non-linear distortion, the neural network (NN) based non-linear channel
equalizers provide superior performance than the adaptive filter based linear equalizers. To
overcome the limitations of existing algorithms, this chapter proposes a training scheme using
Cuckoo Search Algorithm (CSA) for functional link artificial NN (FLANN) based channel
equalizers. The proposed training scheme has a better ability to escape from local minima,
higher exploitation and exploration capabilities. To choose the optimum values of the
parameters, the sensitivity analysis of the CSA based approach is performed with its key
parameters. Furthermore, three non-linear channels have been simulated to demonstrate the
equalization performance of the CSA based training scheme and the results have been compared
with recent and well-established algorithms. The simulations confirm that the proposed training
scheme performs substantially better than existing metaheuristic algorithms in terms of BER
and MSE performance. To show the robustness of the CSA based method, the burst error
scenario has been considered and results proved that the method is more successful in handling
such scenarios when compared to other methods. The performance of the proposed scheme has
been validated for a wide range of signal-to-noise ratio through simulation studies and it is
observed that the scheme outperforms the other algorithms in poor SNR conditions as well.
Also, to examine the statistical significance of the results provided by the proposed scheme, the
Wilcoxon test is performed and the test reveals that the obtained results are statistically

significant.
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3.2 Cuckoo Search Algorithm (CSA)

Cuckoo search algorithm (CSA) is one among the recent population based
metaheuristic algorithms, which is proposed by Yang and Deb [57] . CSA has been inspired
from the concept of brood parasitism of particular species of cuckoo [57][58][59]. Along with
brood parasitism, this algorithm also involves Lévy flight movements observed in certain
birds[57][58][60][59] . Lévy flight based jumps help CSA to avoid being trapped into local
minima and to find the potential regions of solution space. The superior performance of CSA in
terms of local optima avoidance capability has been shown by a number of studies when
compared to other leading metaheuristics such as PSO, genetic algorithm, artificial bee colony
algorithm and DE algorithm [61] [57]. CSA has been effectively used by the research
community in various research fields due to its enhanced exploration and exploitation
capabilities [58]. In the last few years, CSA has been widely used for multilevel thresholding in
the image [62] , image enhancement [63], design of fractional order differentiator and FOPID
controller [64][65] , spectrum allocation in a vehicular network [46], non-convex economic
dispatch problem [66] and optimization of traffic signal controller [67]. Recently, CSA has been
employed for system identification using the Hammerstein model and for feedback system
identification [68][40] and superior performance of CSA has been reported over state-of-the-

art methods.

The enhanced performance of the CSA in these studies in terms of local optima
avoidance, higher exploration and exploitation capabilities and local optima stagnation problem
of the existing algorithms motivated us to use CSA as a new training scheme for non-linear
channel equalization. Thus, this chapter proposes a training scheme for Functional link artificial
neural network based non-linear channel equalizer using a cuckoo search algorithm. The
performance of the CSA based approach has been compared with other well-established
population based metaheuristic algorithms like PSO [129][130] and DE [131] and some latest
methods such as sine cosine algorithm (SCA) [132], grey wolf optimizer (GWO) [133],
dragonfly algorithm (DA) [134] and whale optimization algorithm (WOA) [135] .

In the cuckoo search algorithm, a random walk is offered by Lévy flight and the steps of
the random walk follow a Lévy distribution. The steps drawn from Lévy flight has infinite mean

and variance [57].
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Lévy~u=t"", 0<p<2 3.1)

where s is an index of Leévy distribution

Following key rules have been used to explain the basic concept of the Cuckoo search

algorithm in a simple manner [57][136]

The total nests available are fixed.

At each point of time, every cuckoo bird lays only one egg and consequently, it drops

the egg in a nest of another host bird in a random manner.

The subsequent generations will have the quality eggs from the best nests carried forward

from the earlier generation.

In CSA the parameter p, indicates the probability with which the host will discover the

egg of cuckoo . If the cuckoo’s egg is noticed by a host bird then it can leave the present

nest and construct another nest or damage the cuckoo’s egg.

The key steps of the Cuckoo Search Algorithm (CSA) can be explained as follows:

Initialize N host nests X; (i=1,2...N) randomly in the lower and upper limits of the solution

space. For every i" nest, its j" (j=1,2....D) dimension i.e. X, ; isinitialized in the range

[Xmin; Xmax ;] @S given below:

X . =X

i,] min, j

+random(0,1) * (x X (3.2

max,j min,j)

-and x denotes a lower and upper limit of j" dimension and random(0,1)

min, j

where X

max, j

indicates a random number between zero and one which follows the uniform distribution,

Evaluate the fitness F, of every nest and find the best nesti.e. X, .

To generate the new nests, perform the Lévy flight for all nests by using the best nest

obtained in step (2) as follows [57]:

X" = X% L g @Lévy(B), O0<f<2 (3.3)

20


SellathuraiMathini
Sticky Note
Full stop missing and also a reference is appropriate for the Levy distribution. 

SellathuraiMathini
Highlight
FUll stop


SellathuraiMathini
Highlight
Give the equation or procedure for the F estimate


where g is an index of Lévy distribution, « represents the step size («>0) and the
operator © denotes the entry wise multiplication.
4. Perform the fitness function calculation F™" for each new nest obtained from Lévy flight

in Step 3 and carry out the comparison between the resultant values of fitness function and

the fitness of the old nests F* .

5. If the problem is of minimization and F"™" < F.°® then accept the new nest by replacing

X 2 with X" else keep the previous nest i.e. X .

6. Use random flight to replace the fraction p, of worst nests found in the step (5) and evaluate

the fitness of newly generated nests.

7. Retain the better nests among the worst nests and new nests generated with random flight
by performing the fitness comparison.

8. Update the best nest X, by ranking all the nests as per their fitness.

Report the optimal solution X, if the termination condition is reached else repeat the steps

3-8.

3.3 Cuckoo Search Algorithm based training scheme for FLANN

non-linear channel equalizer

This section describes the proposed approach based on the Cuckoo Search
Algorithm (CSA) for training the Functional link artificial neural network non-linear channel
equalizer. The flowchart of the cuckoo search algorithm based approach for channel equalization
is depicted in Fig. 3.2 and the equalizer structure is illustrated in Fig. 3.1. The fitness function
considered to evaluate the quality of individual nest is mean squared error (MSE). The main aim
in non-linear channel equalization is minimizing the value of the fitness function (MSE) over
the course of iterations. Moreover, the following interpretations are helpful to understand how
the Cuckoo search algorithm based training scheme is capable of enhancing the performance of

Functional link artificial neural network based non-linear channel equalizer,

e CSA makes use of Levy flight (LF) based search for exploration of search space instead
of standard random walks [58][59]. CSA performs the more efficient exploration of

solution space when compared to other algorithms with Gaussian process owing to
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infinite variance and mean of Levy flight and discovers the promising areas of the
solution space [58][59].

e Higher exploration capability of the CSA assists to escape from local minima stagnation

and avoids the convergence of the algorithm to the local optimal solution.

e CSA maintains the proper balance between global and local search capabilities during
the entire search process with the help of discovery probability (p,) [58][59]. Hence,

the fine balance assists CSA to explore the solution space globally with more efficacy
and subsequently, it increases the probability to obtain the global optimal solution [58]
[59].

e The average fitness of all the nests (MSE) improves over the course of iterations and
consequently, it enriches the initial random nests and guarantees the convergence of the

CSA based training scheme to the optimal solution.
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Fig. 3. 1 Block diagram of FLANN Equalizer using Cuckoo Search Algorithm based training scheme



The steps used in the cuckoo search algorithm based scheme to train the FLANN non-linear

equalizer are explained as follows:

1. Calculate the wireless channel output: The transmitted sequence s(n)contains random
symbols which take values either -1 or +1. To calculate the corrupted channel output r(n) as
provided in Eq. (2.3), the sequence s(n) is transmitted through a linear dispersive channel and

degraded by noise g(n) along with non-linear distortion from nonlinearity w(.).

2. Compute input and expanded vector of the equalizer: The input vector R(n) to FLANN
equalizer is obtained by passing the received corrupted symbols r(n) through the tap delay

structure and R(n) is further expanded with trigonometric polynomials to get R°(n) as per Eq.

(2.8).

3. Initialize the population of N Nests: Keeping each dimension of a nest in the lower bound

(X ) @and upper bound ( X, ) of the solution space, the population of N nests is initialized as

follows:
X Xa X Xip
X, | X X2 v %o (3.4)
Xy Xna Xng2 XN,D

In Eq. (3.4), Xi denotes i" nest and X; ; represents the j"™ dimension of i™ nest

4. Compute actual output of FLANN and MSE: The FLANN output y(n) is evaluated as per
Eq. (2.12), which is used to compute the error by comparing it with the desired signal d(n) . The

calculated error is used to evaluate the fitness of nests as follows:

MSE :éi e2(n) (3.5)

n=1

In Eq. (3.5), e(n) denotes the error for the n symbol and S represents the block size or number

of symbols transmitted.
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5. Generate new nests using Lévy flight: After fitness evaluation, find the best nest i.e. X,
having minimum MSE and use the best nest ( X, ) to generate new nests with Lévy flight as
per Eqg. (3.3).

6. Calculate the fitness of new nests: Calculate the fitness F™" of every new nest generated
by Lévy flight and perform the comparison between the fitness of the old nests Fi‘"d and new
nests F™. If F""is better than the old fitness F,°* ( for the channel equalization if F,""<

F°' ) then accept a new nest by replacing X *“with X ™" else keep the previous nest i.e.

X.OId

7. Perform random flight on worst nests: To replace a fraction P, of worst nests found in
step (6) perform the random flight and evaluate the fitness of a newly generated nest. Rank all

the nests according to fitness and update the X . .

8. Termination condition: Report the optimal solution X, if the termination condition is

reached else repeat the steps 4-7.
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Initialize the number of nests (N), maximum number of iterations ( it_max),
lower and upper limit of decision variables (X Xnax) @nd number of
decision variables

Randomly Generate N nests within the upper and lower limit of the decision
variables as per Eq. (13)

Calculate the value of fitness function (MSE) for all the nests using Eq. (16)
and identify the best nest (Lowest MSE)
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»
Iteration=Iteration+1

)

To generate the new nests X" perform the Lévy flight on all the nests using
Eq. (14)
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y
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!
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)
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Report the optimal nest X

best

Fig. 3. 2. Flowchart of the Cuckoo Search Algorithm (CSA) for Non-linear Channel equalization
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3.4 Simulation studies

The simulation experiments have been conducted on a personal computer with 8 GB of
RAM and an Intel i5-4590S 3 GHz CPU. The cuckoo search algorithm based training scheme
and other compared algorithms have been implemented in a MATLAB R2013a environment.

3.4.1 Channel Models considered for simulations

In this section, simulations have been performed to examine the channel equalization
performance of the CSA based training scheme and other compared methods. The FLANN
based channel equalizer is trained by CSA [57] , PSO [129][130], GWO [133], DE [131], SCA
[132] , WOA [135] and DA [134] algorithm. Three wireless communication channels
considered for simulations in this study are taken from [11] [1] [37][17] [108][19][137][138]

and the corresponding channel transfer functions are given as follows:

H,(z) =0.26+0.93z™ +0.262° : Channel 1
H,(z) =0.304+0.903z" +0.304z> :Channel 2
H,(z)=0.341+0.8762" +0.341z2 : Channel 3 (3.6)

In Eq. (3.6), the wireless channels i.e. Channel 1, 2, 3 have the eigen value ratio (EVR)
of 11.12, 21.71 and 46.82 respectively [1]. Therefore, Channel 3 has a highest EVR and is a
highly dispersive channel. The nonlinearities taken for simulations in this study are as follows
[11[371[19][137]:

b(n) =t(n) ' NL=0
b(n) = tanh(t(n)) NL=1
b(n) =t(n) +0.2t*(n)-0.1t*(n)  NL=2
b(n) =t(n) +0.2t*(n) -0.1t*(n) +0.5cos(zt(n)) ‘NL=3 (37
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where t(n) refers to the wireless channel output and b(n) denotes the channel output after

introducing the non-linear distortion.

Among the above mentioned nonlinearities, a nonlinearity NL=1 characterizes the non-
linear distortion arising as a result of the amplifier saturation. A linear channel model with no
non-linear distortion is denoted by NL=0. Furthermore, NL =2 and NL =3 are two arbitrary
nonlinearities out of which NL=3 represents a case of the severe non-linear distortion
[1][37]1[32][19][137]. The description of parameters used in simulations is given in Table 3.1.

Table 3. 1 Description of parameters

Symbol Purpose of the symbol

N Population Size (Number of nests)

M No. of taps of the equalizer

S Block Size

P, Discovery probability

S Index of Lévy Distribution

Nh Length of the channel impulse response
it_max Maximum number of iterations

3.4.2 Sensitivity analysis of the Cuckoo Search Algorithm (CSA) based

equalizer training scheme

In population-based metaheuristic algorithms, the tuning of control parameters
significantly affects the performance of the algorithm [108]. Therefore, sensitivity analysis of
CSA is conducted with respect to five parameters such as a number of host nest (N), data block

size (S), discovery/switching probability (P,) , index of Lévy distribution () and the number

of taps (M). Thus, Figs. 3.3 to 3.7 illustrate the results of the sensitivity analysis for Channel 1
(Eq. 3.6) with NL=1 (Eq. (3.7)).
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A) Number of nests (or Population size N)

Generally, fast convergence and global search capability can be achieved with an
increase in the number of nests. It can be seen from Fig. 3.3 that with an increase in the number
of nests (N), MSE decreases significantly. However, it is also observed from this figure that
N=20 number of nests is enough to escape from the local optima, which can be confirmed from

MSE results of CSA in Table 3.2. It can be noticed that increase in the value of N further does
not result in any significant MSE reduction.
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Table 3. 2 Effect of variation of N on MSE

Number of nests (N) MSE
Min Max Median Mean SD
5 3.2598e-04 6.4256e-04 4.1365e-04 4.2493e-04 9.4951e-05
10 2.7415e-04 3.5316e-04 3.0151e-04 3.0458e-04 2.2527e-05
15 2.6121e-04 2.8761e-04 2.6859e-04 2.7164e-04 9.0161e-06
20 2.6038e-04 2.7147e-04 2.6272e-04 2.6368e-04 3.1024e-06
25 2.6110e-04 2.6521e-04 2.6271e-04 2.6268e-04 1.1318e-06
30 2.6037e-04 2.6583e-04 2.6261e-04 2.6259%e-04 1.6224e-06

B) Block Size (S)

Usually, the increase in block size (S) results in the reduction of MSE owing to increased
error estimates for every nest. Increasing the value of S from 50 to 200 leads to better MSE
performance which can be seen from Table 3.3 and Fig. 3.4. However, by selecting a block size
more than S=200 for the channel H,(z) with non-linearity NL=1 (Egs. (3.6-3.7)) hardly
improves the MSE performance. Thus, the data block size is considered as 200 for simulations
in this study.
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C) Discovery/switching probability (p,)

The Discovery or switching probability P, controls the global and local search

capabilities of CSA[58][59]. As seen from Fig. 3.5, the probability P, of 0.1 gives the minimum

MSE for non-linear channel equalization. The best values obtained for minimum, maximum,
average and standard deviation of MSE are 2.5979e-04, 2.6261e-04, 2.6078e-04 and 1.0147e-
06 respectively, which are obtained at the probability of 0.1 as shown in Table 3.4. Furthermore,

Fig. 3.5 and the statistical comparison of MSE in Table 3.4 shows that for this problem, P, of

0.1 only leads to an optimal solution.
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Table 3. 3 Effect of the block size (S) on MSE

Block Size (S) MSE

Min Max Median Mean SD
50 2.3761e-03  2.4055e-03  2.3864e-03  2.3882e-03  9.1651e-06
100 2.9044e-04  2.9929e-04 2.9441e-04 2.9469e-04 3.1306e-06
200 2.6084e-04 2.6467e-04 2.6245e-04 2.6249e-04 1.1007e-06
300 2.6001e-04 2.6879%e-04 2.6202e-04 2.6245e-04 2.5224 e-06
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Table 3. 4 Effect of variation of discovery probability P, on MSE

Discovery probability ( P, MSE i
Median

) Min Max Mean SD

0.01 2.6014e-04 2.6444e-04 2.6245e-04 2.6250e-04 1.5306e-06
0.05 2.5977e-04 2.7693e-04 2.6027e-04 2.6240e-04 5.2541e-06
0.1 2.5979%-04 2.6261e-04 2.6030e-04 2.6078e-04 1.0147e-06
0.2 2.6648e-04 2.9633e-04 2.7827e-04 2.7845e-04 8.4185e-06
0.3 2.8115e-04 3.3685e-04 3.1027e-04 3.0881e-04 1.6003e-05
0.4 2.9591e-04 3.6952e-04 3.3550e-04 3.3875e-04 2.6693e-05
0.5 3.0656e-04 3.8943e-04 3.5254e-04 3.5098e-04 2.6189e-05
0.6 2.9033e-04 4.2596e-04 3.8872e-04 3.7509e-04 4.1974e-05
0.7 2.9005e-04 4.3419e-04 3.4957e-04 3.5378e-04 4.4003e-05
0.8 3.0805e-04 4.3134e-04 3.5289%-04 3.6161e-04 3.7363e-05
0.9 3.5520e-04 4.9081e-04 4.1559e-04 4.1376e-04 4.0016e-05
1 3.3815e-04 9.2405e-04 6.3173e-04 6.3438e-04 1.9652e-04

D) Index of Lévy distribution (3)

The value of the Lévy index () is varied from 0.25 to 2 with a step of 0.25. The effect
of variation of values of £ is illustrated in Fig. 3.6 and Table 3.5. The best values obtained for

minimum, maximum, average and standard deviation of MSE are 2.5988e-04, 2.6217e-04,
2.6073e-04 and 6.4060e-07 respectively, which are obtained at a value of g equal to 0.75 as

reported in Table 3.5. Therefore, the value of $ is fixed at 0.75 for simulations in this paper.

Table 3. 5 Effect of variation of index of Lévy distribution (/) on MSE

Index of Lévy distribution (8) _MSE
Min Max Median Mean SD

0.25 2.6068e-04 2.6668e-04 2.6310e-04 2.6339e-04  2.0829e-06
0.5 2.6040e-04  2.6502e-04 2.6088e-04  2.6146e-04  1.5204e-06
0.75 2.5088e-04 2.6217e-04 2.6067e-04 2.6073e-04  6.4060e-07
1 2.5995e-04  2.6322e-04 2.6085e-04 2.6136e-04 1.1719e-06
1.25 2.5997e-04  2.6604e-04 2.6241e-04 2.6274e-04  2.3268e-06
15 2.5993e-04  3.0873e-04 2.6250e-04 2.6878e-04  1.4929e-05
1.75 2.6050e-04  2.7183e-04 2.6248e-04 2.6339e-04  3.2805e-06
2 2.6191e-04  2.7503e-04 2.6626e-04  2.6681e-04  4.3568e-06
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E) Number of taps (M)

The results in Fig. 3.7 indicate the effect of variation of a number of taps (M) on MSE
performance. Usually, an increased number of equalizer taps leads to a reduction in the MSE. It
is observed from this figure that four tap equalizer provides the optimum performance. But, Fig.
3.7 and Table 3.6 shows that the value of M more than four does not result in any significant

reduction of MSE. Therefore, the number of taps considered for simulations in this paper is four.
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Table 3. 6 Effect of variation of M on MSE

Number of taps MSE

(M) Min Max Median Mean SD
2 0.0013 0.0013 0.0013 0.0013 4.7550e-16
4 2.6302e-04 2.6711e-04 2.6397e-04 2.6440e-04 1.5502e-06
6 2.7553e-04 3.6014e-04 3.3021e-04 3.2323e-04 2.8749e-05
8 3.2291e-04 4.5946e-04 3.9436e-04 3.9375e-04 4.8087e-05
10 3.8320e-04 8.3285e-04 5.8837e-04 6.0405e-04 1.3135e-04
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3.4.3 Performance Analysis of the CSA based Training Scheme for Non-

linear Channel Equalization

Each transmitted symbol is a real-valued and takes values in the form of {-1,+1}
following the uniform distribution. The noise added to the wireless communication channel
output after the introduction of non-linear distortion is AWGN of signal-to-noise ratio (SNR)
10 dB, 20 dB and 30 dB. The block size of 200 symbols is taken as the input in the training
process of FLANN. The input symbols are delayed by two units to generate the desired signal
which is utilized in error computation during the training phase and for BER calculation during
the testing phase. The expansion block of FLANN takes four inputs from the tapped delay

segment and generates thirteen terms along with bias by expanding every input into 3.

The CSA based training method has been used to train FLANN equalizer for 500
iterations over thirty independent runs. The min, max, standard deviation (SD) and mean values
of MSE are reported in results. Mean refers to MSE averaged over thirty runs and thus the
capability of effectively escaping from the local minima and converging to an optimal solution
is represented by the lesser mean. Furthermore, the standard deviation is also considered to find
the results dispersion. Min and max denote the minimum and maximum value of MSE in thirty
runs. The results distribution achieved by the algorithms over thirty runs is demonstrated with

box plots.

The channel equalization capability of the cuckoo search algorithm based training
scheme for FLANN has been compared with PSO [129][130], GWO [133], DE [131] , SCA
[132], WOA [135] and DA [134] algorithm. Exhaustive simulation experiments are performed
to choose the key parameters of all the compared algorithms for a fair comparison among the
CSA based equalizer training scheme and other algorithms. The parameters which provided the
optimum results for all experiments are chosen for the compared algorithms. Table 3.7 presents
the parameters taken for all the metaheuristic algorithms for comparative study. In Table 3.7,

the rand represents a random number between 0 and 1.
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Table 3. 7 Parameters used in the simulation

Algorithm Parameter Value
CSA Population size (N) 20
Discovery probability (p,) 0.1
Index of Lévy distribution (£) 0.75
PSO Population size (N) 20
C1 2
C2 2
Inertia weight (w) 0.9
GWO Population size (N) 20
r rand
r rand
Convergence constant a [2 0]
DE Population size (N) 20
Mutation Factor (F) 0.4
Crossover rate (CR) 0.9
SCA Population size (N) 20
1, Iy rand
r 2*pi*rand
rs 2*rand
a 2
WOA Population size (N) 20
DA Population size (N) 20

3.4.3.1 MSE performance

The training of FLANN is performed for 500 iterations to examine the convergence

performance of the cuckoo search algorithm based training scheme and other algorithms and the

MSE is averaged over thirty runs. The MSE convergence for three non-linear channels is

presented in this section for a signal-to-noise ratio of 10 dB, 20 dB and 30 dB.

Case A: Channel 1

In this case, Channel 1 (as illustrated in Eq. 3.6) which corresponds to EVR of 11.12 has

been taken into consideration for evaluation of MSE performance of CSA based training strategy

with two different nonlinearities for signal-to-noise ratio conditions of 10-30 dB.
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The convergence performance comparison of the cuckoo search algorithm based training

scheme with the other algorithms for channel 1 with nonlinearities NL=2 and NL=3 at SNR of
10 dB is illustrated in Fig. 3.8 (a) and (b) respectively. It can be seen from this figure that even
the signal-to-noise conditions are poor CSA attains the least MSE amongst all the algorithms.
Thus, the MSE performance of CSA is superior in comparison with PSO, GWO, DE, SCA,
WOA and DA algorithm. When the nonlinearity increased from NL=2 to NL=3, the MSE
performance showed degradation for all the methods whereas the CSA was found to behave

persistently despite severe non-linearity and poor SNR scenario.
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Furthermore, from Figs. 3.8, 3.9 and 3.10 it is observed that the CSA based training

technique provides the better performance among all the algorithms for a wide range of signal-

to-noise ratio (10-30dB) conditions.
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Fig. 3. 10. Convergence curves for Channel 1 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB

The MSE results for signal-to-noise ratio (SNR) of 30 dB in Table 3.8 also confirm the

superiority of the cuckoo search algorithm based training scheme. Furthermore, the lowest

values of the standard deviation and mean of MSE from this table proves the enhanced

equalization competence of CSA in terms of local minima avoidance capability.

MSE Box plots at SNR of 30 dB for Channel 1 by considering nonlinearities NL=2 and

NL=3 are shown in Fig. 3.11 (a) and (b) respectively. Generally, Box plots are used to illustrate

and analyze the distribution of results [139]. Fig. 3.11 shows that the interquartile range and

median of the MSE results provided by CSA are least among all the algorithms. Thus, these box

plots validate the superiority of the proposed training scheme.
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Table 3. 8 MSE results for Channel 1 with nonlinearities NL=2 and NL=3 at SNR=30 dB

Non- Algorithm MSE

Linearity Min Max Median Mean SD

NL=2 CSA 1.7990e-04 1.9051e-04 1.8185e-04 1.8223e-04 2.4112e-06
PSO 2.0952e-04 5.2596e-04 3.7860e-04 3.6555e-04 8.0511e-05
GWO 2.1916e-04 7.1988e-04 3.8761e-04 3.8507e-04 1.2840e-04
DE 2.0045e-04 0.0032 3.6078e-04 6.8391e-04 6.8681e-04
SCA 6.0591e-04 0.0051 0.0011 0.0013 8.5292e-04
WOA 4.2355e-04 0.0525 0.0020 0.0042 0.0094
DA 3.0776e-04 0.0037 6.8683e-04 8.4127e-04 6.6028e-04

NL=3 CSA 0.0055 0.0055 0.0055 0.0055 1.3121e-06
PSO 0.0059 0.0072 0.0065 0.0065 2.6051e-04
GWO 0.0060 0.0070 0.0064 0.0064 2.2487e-04
DE 0.0056 0.0137 0.0072 0.0077 0.0018
SCA 0.0063 0.0151 0.0082 0.0087 0.0018
WOA 0.0064 0.0379 0.0102 0.0149 0.0092
DA 0.0063 0.0491 0.0078 0.0100 0.0078

Case B: Channel 2

Channel 2 corresponding to EVR of 21.71 is considered to demonstrate the equalization
capability of CSA based training scheme. Upon comparison with channel 1, this channel is more
dispersive. Similar to the case of channel 1, for this channel also MSE performance is evaluated
with two different nonlinearities i.e. NL=2 and NL=3 for a wide range of SNR.
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Figs. 3.12-3.14 shows convergence curves for channel 2 with nonlinearities NL=2 and
NL=3 at SNR of 10, 20 and 30 dB respectively. It is observed from convergence curves that
CSA has the best performance in terms of escaping from local minima and offers better
exploration capability among the compared algorithms. Despite the worsening of the MSE
performance with increased EVR from Channel 1 to Channel 2 (Figs 3.8 and 3.12), CSA has

exhibited superior performance in comparison to other algorithms.

The improved efficacy of CSA for training the FLANN is clear from the MSE results at
SNR of 30 dB in Table 3.9. The values of standard deviation and mean of MSE obtained from
CSA in this table confirms the superiority of CSA over all the compared algorithms. The inter-
quartile range and median of CSA from the MSE boxplots in Fig. 3.15 indicates the better
equalization competence of CSA in comparison with all the other compared algorithms for non-

linear channels.
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Fig. 3. 14. Convergence curves for Channel 2 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB
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Fig. 3. 15. MSE Box plots of all algorithms for Channel 2 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30
dB

Table 3. 9 MSE results for Channel 2 with nonlinearities NL=2 and NL=3 at SNR=30 dB

Non- Algorithms MSE

linearity Min Max Median Mean SD

NL=2 CSA 7.1579e-04  7.3380e-04 7.1759e-04 7.1884e-04 3.6926e-06
PSO 8.8650e-04  0.0018 0.0011 0.0012 2.1379-04
GWO 8.2525e-04  0.0018 0.0013 0.0012 2.4067e-04
DE 8.8582e-04  0.0214 0.0014 0.0025 0.0037
SCA 0.0017 0.0058 0.0026 0.0031 0.0012
WOA 0.0014 0.0512 0.0040 0.0098 0.0137
DA 7.7078e-04  0.0067 0.0018 0.0021 0.0012

NL=3 CSA 0.0119 0.0119 0.0119 0.0119 6.2444e-06
PSO 0.0126 0.0180 0.0151 0.0152 0.0013
GWO 0.0123 0.0172 0.0149 0.0151 0.0013
DE 0.0131 0.0562 0.0190 0.0210 0.0093
SCA 0.0159 0.0515 0.0235 0.0251 0.0080
WOA 0.0201 0.1840 0.0650 0.0754 0.0501
DA 0.0123 0.0581 0.0214 0.0241 0.0115

Case C: Channel 3

In an attempt to further validate the equalization performance of CSA, a highly
dispersive channel i.e. Channel 3 (as depicted in Eq. (3.6)) corresponding to EVR of 46.82 is

considered in this case.
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Fig. 3. 17. Convergence curves for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=20 dB
The convergence behavior for Channel 3 for different SNR conditions ranging from 10-
30dB by considering both the nonlinearities i.e. NL=2 and NL=3 is shown in Figs. 3.16-3.18.
These figures indicate that CSA has a better exploration capability and avoids the stagnation
problem more efficiently. Thus, despite poor signal-to-ratio conditions (SNR=10 dB), CSA
provided the lowest MSE. Moreover, even though MSE increases with an increase in EVR from
11.12 to 46.82 (Figs. 3.8, 3.12 and 3.16) for all the algorithms, CSA is performing better than

other algorithms.
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Fig. 3. 18. Convergence curves for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB

Table 3. 10 MSE results for Channel 3 with nonlinearities NL=2 and NL=3 at SNR=30 dB

Non- Algorithms MSE

Linearity Min Max Median Mean SD

NL=2 CSA 0.0028 0.0029 0.0028 0.0028 6.0392e-06
PSO 0.0034 0.0058 0.0038 0.0040 5.2184e-04
GWO 0.0034 0.0049 0.0043 0.0041 3.9298e-04
DE 0.0035 0.0113 0.0046 0.0054 0.0020
SCA 0.0043 0.0152 0.0078 0.0088 0.0030
WOA 0.0044 0.0699 0.0109 0.0149 0.0136
DA 0.0032 0.0311 0.0072 0.0091 0.0062

NL=3 CSA 0.0348 0.0349 0.0348 0.0348 1.3186e-05
PSO 0.0371 0.0559 0.0447 0.0451 0.0049
GWO 0.0398 0.1228 0.0489 0.0508 0.0144
DE 0.0446 0.0821 0.0562 0.0564 0.0092
SCA 0.0484 0.1075 0.0673 0.0701 0.0144
WOA 0.0942 0.2776 0.1810 0.1752 0.0595
DA 0.0407 0.1720 0.0628 0.0745 0.0324

The statistical comparison of MSE for Channel 3 with both nonlinearities at SNR=30 dB

is reported in Table 3.10. This table indicates the superior MSE performance of the CSA in

comparison with other methods. The Box plot diagram of all the algorithms for Channel 3 with

both nonlinearities at SNR of 30 dB is indicated in Fig. 3.19 and median and inter-quartile range

in these boxplots confirms the superiority of the proposed method over other methods.
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Fig. 3. 19. MSE Box plots for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB

3.4.3.2 Statistical Analysis

In population based metaheuristic algorithms, comparing the performance with
the standard deviation and mean values is not adequate [140] and to analyze the statistical
significance of the results obtained from the metaheuristic algorithm, performing the statistical
test is essential [141]. Thus, to demonstrate the considerable gain in the performance of the
algorithm in comparison with state-of-the-art algorithms it is obligatory to conduct the statistical
test [132][16]. Hence, a nonparametric statistical test, Wilcoxon rank-sum test [142] , is
performed to validate whether CSA based training scheme’s results differ significantly from
other algorithms. The Wilcoxon test is carried out by choosing the best algorithm and then
comparing it with the other algorithms. Furthermore not applicable (NA) is noted down for the

best performing algorithm.

Table 3. 11 p-values obtained from Wilcoxon test for all 3 channels corresponding to MSE results of SNR=30

dB
Algorithms Channel 1 Channel 2 Channel 3
NL=2 NL=3 NL=2 NL=3 NL=2 NL=3

CSA NA NA NA NA NA NA

PSO 1.49180e-06  3.019859e-11 3.019859e-11 3.019859e-11  3.019859e-11  3.019859e-11
GWO 3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11
DE 3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11
SCA 3.019859e-11 3.019859e-11  3.019859e-11  3.019859e-11 3.019859e-11  3.019859e-11
WOA 3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11  3.019859e-11
DA 3.019859%-11 3.019859%-11 3.019859e-11 3.019859e-11 3.019859e-11  3.019859e-11
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Table 3.11 presents the p-values computed by performing the statistical test. This table
proves the superiority of CSA based training scheme over other algorithms for all the channels
with both nonlinearities. The reported values of p in Table 3.11 are lesser than 0.05 which proves
that the solutions provided by the CSA have statistical significance in comparison with other

methods
3.4.3.3 Bit Error Rate (BER) performance

In this section, to analyze the bit error rate performance of the CSA based training
scheme 3 different non-linear wireless communication channel models have been taken into
consideration. To achieve this, AWGN with a wide range of signal-to-noise ratio is introduced
to the output of a channel. During the channel equalization process, if the equalizer output and

transmitted symbol are unequal, the error is increased by 1.
Case A: Channel 1

To analyze the bit error rate performance of the proposed scheme, this case considers a
Channel 1 which corresponds to EVR of 11.12 with two different nonlinearities

Iogm(BER)
IoglO(BER)

-4'59 1'0 1’1 1’2 1’3 1’4 1'5 1r6 17 - 10 11 12 13 14 15 16 17 18 19
SNR (dB) SNR (dB)
(@) (b)
Fig. 3. 20. BER performance for the Channel 1 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB
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Fig. 3.20 shows the BER curves of the CSA and other algorithms based training schemes
for Channel 1 considering both the nonlinearities (NL=2 and NL=3) at SNR of 30 dB. An SNR
enhancement of nearly 1 dB is attained by CSA over PSO and GWO at BER of 7.7667e-05 for
NL=2 and above 2 dB for the remaining algorithms. Moreover, CSA has provided a similar BER
improvement for the non-linearity NL=3. Fig. 3.20 (a) and (b) indicate that with an increase in
nonlinearity from NL=2 to NL=3, BER of all the algorithms increased but still CSA provides
lesser BER than others even in severely non-linear scenario (i.e. NL=3).

Case B: Channel 2

This case takes into consideration the Channel 2 corresponding to EVR of 21.71, to illustrate

the BER performance of the CSA based training scheme.

The BER curves for Channel 2 having two different nonlinearities at SNR of 30 dB is
shown in Fig. 3.21. This figure shows that for non-linearity NL=2, CSA has obtained around
0.75 dB gain in SNR over PSO and above 2 dB over the other compared algorithms at a bit error
rate of 2.0633e-04. Moreover, it is observed from Fig. 3.21 (a) and (b) that CSA is outperforming
the other six algorithms even more significantly for NL=3 than NL=2. This is the impact of
superior exploration and exploitation capability of the CSA based training scheme, resulting in

increased accuracy for channel equalization.
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Fig. 3. 21. BER performance for the Channel 2 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB
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Case C: Channel 3

In this section, Channel 3 which is having the highest EVR is considered for validation of the

BER performance of a CSA based training approach at SNR of 30 dB.

The BER performance of a highly dispersive channel (channel 3) is demonstrated in Fig.
3.22. Figs. 3.20-3.22 illustrates that despite the worsening of BER performance with increased
EVR (from channel 1 (11.12) to channel 3 (46.82)), CSA has provided superior performance
than other algorithms. Furthermore, Fig. 3.22 shows that although BER increased with non-
linearity (NL=2 to NL=3), CSA has significantly outperformed the other algorithms and
provided more pronounced results particularly for the severely non-linear scenario (NL=3). As
can be seen from Fig. 3.22(b), CSA has attained almost 6 dB gain in SNR over PSO and above
6 dB over other algorithms at a bit error rate of 0.0017.

IoglO(BER)
log, ,(BER)

_45 r r r r r r r r r r - r r r r r r
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Fig. 3. 22. BER curves for the Channel 3 with nonlinearities (a) NL=2 and (b) NL=3 at SNR=30 dB
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3.4.3.4 Performance analysis in burst-error scenario

To verify the robustness of the proposed training method, its performance is evaluated
in a burst error scenario occurring in the wireless environment. The use of a channel equalizer
to deal with burst error scenarios is emphasized in the latest Patent [143]. Generally, the burst
error occurs when there is an occurrence of consistent zeros or ones for a particular time interval
[19]. The imperfect nature of the physical channels is responsible for the occurrence of burst

error and it deteriorates the equalizer performance [19].

Ioglo(BER)
{ s
log, ,(BER)

_45 r r r r r r -
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SNR (dB) SNR (dB)

() (b)

Fig. 3. 23. BER performance in burst error scenario for Channel 3 with nonlinearities (a) NL=2 and (b) NL=3

In order to evaluate the performance of a proposed training technique to handle burst

error conditions, the training of FLANN based non-linear equalizer is performed for 500

iterations. The training is performed by considering the channel with the highest distortion

(channel 3) with two different nonlinearities (i.e. NL=2 and NL=3) and testing is done after the

completion of training. During the equalizer testing process, the BER obtained for channel 3

considering both nonlinearities (i.e. NL=2 and NL=3) is demonstrated in Fig. 3.23 (a) and (b)

respectively. It can be noticed from this figure that, burst error conditions result in substantial

performance degradation for all the algorithms and interestingly, CSA is able to tackle the

difficulties encountered by other algorithms. However, for the burst error scenario the BER

performance of CSA, PSO, GWO, DE, SCA, WOA and DA algorithm has been deteriorated

(Fig. 3.23(a) and (b)) in comparison with BER without burst errors (Fig. 3.23 (a) and (b)) and
BER performance of the CSA is still superior.
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3.5 Conclusion

In this chapter, a scheme has been proposed for training the Functional link artificial
neural network based non-linear channel equalizer by using Cuckoo Search Algorithm (CSA).
The local minima avoidance capabilities and exploration competence of the proposed approach
helped to discover the promising areas of the solution space. Furthermore, the exploitation
ability assisted to completely exploit the promising region for finding the optimal solution. The
balance between the exploration and fine-tuning ability of the scheme facilitated to achieve
better accuracy in the non-linear channel equalization. Three non-linear channels were taken for
simulations to validate the superiority of the CSA based training scheme and the results have
been compared with recent algorithms like GWO, SCA, WOA, DA and well-established
algorithms like PSO, DE. Furthermore, sensitivity analysis of the proposed approach was
performed to optimize vital parameters for the CSA and the optimized values of these
parameters were used to perform the simulation study. The simulations proved that CSA based
training method offers improved performance in terms of MSE and BER when compared to
existing algorithms. The improvement is more significant particularly in severely non-linear and
highly dispersive channels. The robustness of the cuckoo search algorithm (CSA) based training
scheme has been shown by considering the BER performance in a burst error scenario and it is
observed that the scheme significantly outperforms the compared algorithms by effectively
handling the burst errors. The performance of the proposed scheme has been validated for a
wide range of signal-to-noise ratio (SNR 10 to 30 dB) values through simulation studies and it
is observed that the scheme outperforms the other algorithms in poor SNR conditions as well.
Moreover, the Wilcoxon rank-sum test proved that the proposed approach provided statistically

significant results in comparison with competing approaches.
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Chapter 4

An efficient JAY A Algorithm with Levy Flight

4.1 Introduction

This chapter involves the development of an efficient JAY A algorithm with Levy flight
for non-linear channel equalization. JAYA is an effecient and simple population based
metaheuristic algorithm. Hence, its application to channel equalization problem is worth
investigating. Despite being an efficient and simple algorithm, JAYA gets trapped into local
optima owing to its inadequate solution diversity and its weak exploration competence. To
alleviate these issues, in this paper the concept of Lévy flight (LF) and greedy selection scheme
has been incorporated into the basic JAYA algorithm. The LF concept enhances the population
diversity and thus avoids the state of stagnation. The greedy selection scheme is employed to
improve the exploitation ability without loss of population diversity. Furthermore, the
exploitation and exploration capabilities of the algorithm have been balanced by proposing an
adaptive Lévy index using a linear control parameter strategy. In order to validate the local
optima avoidance ability, exploitation and convergence rate of the proposed JAYALF
algorithm, it is tested on unimodal and multimodal benchmark functions and to verify the
effectiveness of the JAYALF for non-linear channel equalization problem, three wireless
communication channels with two different nonlinearities have been considered for simulation.
In addition, the non-parametric pairwise Wilcoxon rank-sum test has been employed to test the
statistical validity of the results obtained from JAYALF. The results of experiments and
statistical test demonstrate that the proposed algorithm significantly outperforms JAYA,
variants of JAYA, and other metaheuristic algorithms in terms of convergence rate, solution
quality, and robustness. Furthermore, simulations show that proposed JAYALF algorithm
provides faster convergence without being trapped into local optima and has a better exploration
ability.
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4.2 JAYA Algorithm

JAYA is one of the recent population-based metaheuristic algorithm, proposed by R.
Venkata Rao in 2016 [69]. Most of the existing population based metaheuristic algorithms need
algorithm-specific control parameters. Whereas, being an effective and simple algorithm, JAYA
algorithm needs only number of iterations and population size as parameters. The basic idea
behind this algorithm is that the solution obtained for a problem should escape from the worst
solution and should approach to the best one [70]. Since its introduction, owing to simplicity
and ability to find global optimum solution JAYA has been successfully used by researchers in
many engineering problems. In recent few years, JAYA and its improved versions [71] [73]
[72][74] [75] [76] [77][78][79] [80] have been used to solve various engineering problems.
Furthermore, JAYA has been used for power quality improvement [81], optimization of heat
sink [82], tracking of maximum power point (MPP) of PV array [83], reliability—redundancy
allocation problems [84], optimization of heat exchangers [85], mechanical design optimization
[86], optimization of machining performance [87], parameter identification of photovoltaic

model [88] and design optimization of heat exchangers [89].
Various steps involved in JAYA algorithm are narrated as follows:
1) Initialize the population size (N), number of decision variables (D), upper and lower bounds

of decision variables (x, . ;X ,) ad a maximum number of iterations it (i.e.it=1,2,...,

It ) @s a termination criterion.

2) Randomly initialize the population of N solutions X.(i=1,2...N) within the boundary of a

‘s . - th _ o
search space. Each Jth dimension of I solutioni.e. X;;isinitialized between X, ; and X

min, j

as follow:

X . =X_ +rand(0,1)*(X X

i = Mmin,j max,j min,j) (41)

where rand(0,1) denotes a random number in the range 0 and 1 with uniform distribution and

Xoexjand X .. represents the upper and lower bound of jth dimension.
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3) Calculate the fitness function F, for every individual solution as per given problem and

identify the best and worst solution i.e. X, and X, respectively.

4) Considering the random numbers I, and I, between 0 and 1 with uniform distribution, the

values for decision variables are updated as follows [69]:

XFj‘W = Xj,i + r1(Xj,best _‘Xj,i‘)_ rz (Xj,worst _‘Xj,i‘) (42)

. . - th ) . .
where X ; denotes the Jth variable for i' solution, X, denotes a Jth variable of best

solution, X, . denotes the jth variable of worst solution and X 5" denotes the modified

version of X ;.

5) Evaluate the fitness F.™" of each newly generated solution, compare it with the old fitness

F. of the previous solution.

6) For a maximization problem, if F™ >F and for a minimization problem, if F™ <F then
replace X, with a newly generated solution i.e. X" otherwise keep the previous solution i.e.

X, and update the corresponding value of fitness function.

7) The updated values of fitness function are used to identify the best and worst solutions. The

corresponding solutions are taken as the best and worst solution for the next iteration.

8) Repeat steps 4-7 until a termination criterion is reached and report the optimum solution X
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4.3 Levy flight

Lévy flight (LF) is a random walk in which the lengh of steps is determined by the Lévy
distribution [144][145]. The name Levy flight is derived from the name of French
mathematician, Paul Lévy. Lévy flight represents several phenomenon like earthquake analysis,
fluid dynamics, cooling behavior, noise etc. [146]. Food searching path of several animals also
depicted by LF [147] [148]. In the past few years, researchers utilized LF in Delay and
Disruption Tolerant Network [146], human mobility fields [149] and Internet Traffic Models
[150]. Lévy flight was utilized to improve the efficiency of the Bees algorithm [151], cuckoo
search (CS) algorithm [57], particle swarm optimization algorithm [152], Firefly
Algorithm[153], and grey wolf optimization algorithm[154]. These findings demonstrate that

LF can significantly improve the performance of metaheuristic algorithms.

Lévy probability distribution is drawn in terms of a power-law formula L(S) ~ ‘3‘_1_ﬂ,

where 0< <2 is an Lévy distribution index [144]. A basic form of Lévy distribution can be

described as [145] [155].

y y 1 .

——exp| - if O<pu<s<ow

L(s,7, 1) =1V 27 {Z(S_ﬂ)}(s—y)% (4.3)
0 if s<0

where (¢ denotes a shift parameter and ) > 0 is a scale parameter

Leévy distribution should be described in terms of Fourier transform and can be expressed
as [145],

F(k) =exp[-a/k|'], 0<p<2, (4.4)

where « is skewness parameter or scale factor and g is Lévy index.
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4.4  JAYA Algorithm with Levy Flight (JAYALF)

Despite being an efficient and simple algorithm, JAYA algorithm has some
shortcomings. The basic idea behind this algorithm is that the solution obtained for a problem
should escape from the worst solution and should approach to the best one [70]. Since with this
approach all the solutions are attracted towards the best solution, the convergence speed of the
algorithm is accelerated but it may results in loss of solution diversity. This issue may cause

premature convergence of an algorithm to a local optimum solution.

To overcome these problems an efficient JAY A algorithm with Lévy flight (JAYALF)
is presented in this chapter. Three key modifications have been proposed into basic JAYA to
yield JAYALF algorithm. First, the concept of Lévy flight is incorporated to maintain the
solution diversity and thus improve the global search capabilty. Second, the greedy selection
scheme from Differential evolution (DE) algorithm [131] is employed to improve the
exploitation capability without loss of diversity of the population. Third, an adaptive Lévy index
is introduced to balance the exploration and exploitation capabilities of the algorithm throughout

the search process.

When trapped into local optima, Lévy flight assists the JAYA algorithm to jump out of
it towards a better solution. Thus, the LF can support JAYA in maintaining population diversity
and enhancing diversification capability. The greedy selection strategy from the DE algorithm
[131] is employed to improve the exploitation capability without loss of diversity of the

population. The index of Lévy distribution g is made adaptive by increasing it over the course

of iterations, which helps JAYA in maintaining the balance between exploration and

exploitation tendencies throughout the search process.

Due to the incorporation of the Lévy flight (LF) concept into JAY A algorithm, solutions
take long jumps which is very effective at the time of stagnation at local optima and helps in
finding the promising region of the search space to obtain global optima. Thus the LF enhances
the diversity of the solutions and facilitates JAYA to perform exploration of the entire fitness
function landscape. Thus, in the proposed algorithm, the global search is enhanced through Lévy

flight to eliminate the problem of stagnation at local optima.

New candidate solutions are generated using Lévy flight as follows [145]:
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Xnevvl = Xnew+a®|_évy(ﬂ) (47)

where @ is the step size and is taken as a random number for each dimension of the
solution [152]

X% = X ™ + random(size(D)) ® Lévy() (4.8)

The scheme of creating step size s samples is described in [145,155]. The scheme is stated as
follows [152]:

5:rmﬂom@he@»)@Lﬁw«ﬂ)~001—%7(X“W—XWQL
v (4.9)
uand v follows a normal distribution, i.e.u ~ N(0,67) v~N(0,57),
o, and o, are taken as follows:
Yo
1+ ﬂ)sin(ﬂzﬂ)
o, =1 (4.10)

o, = ) v
e

where I is the standard Gamma function

The greedy selection scheme from Differential Evolution (DE) algorithm [131] is used

retain elite solution at each index. This scheme is described as follows:

X newl |f f(X newl ) < f(X new )

) (4.12)
X new otherwise

X(it+1)={
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Thus, if the new solution obtained through LF i.e. X ™ has a lower or equal value of

the objective function (considering minimization problem), it replaces the corresponding

previous solution X™" (Eq. (4.2)) else the previous solution is retained in the population.

Therefore, the greedy selection scheme results in solutions with better or equal fitness but never
results in inferior solutions. New solution X™" will be considered although objective function

value is same for the previous solution and new solution X™". This feature allows solutions to
move over flat fitness landscapes with iterations [156]. The greedy selection scheme from the
DE algorithm preserves the best solution obtained so far at each index and provides better

exploitation ability without loss of diversity of the population.

In order to balance and use the exploration and exploitation capabilities of the JAYALF
algorithm more effectively, a linear control parameter strategy is introduced, i.e. the index of

Lévy distribution £ is linearly increased over the course of iterations. Small values of /3
results in long jumps, and large values of /& causes short jumps. Generally, small values of 3

are expected to cause jumps to unexplored regions of search space facilitating exploration and

avoid getting stuck in local optima [152]. On the other hand, large values of /3 cause the search

for new solutions in the obtained promising region facilitating exploitation. Hence, the value of

/3 is linearly increased over the course of iteration as follows:

IB(It) = {(ﬁfinal - ﬁinitial ) *":L:| + ﬂinitial (412)

max

where it and It denotes the maximum number of iterations and the current iteration

number respectively. S and By represents the final and initial values of the parameter /3 .

In this manner, small values of £ at initial stage facilitate the global search and large
values of /3 at a later stage accelerate local search in promising regions of search space

enhancing the convergence towards the global optimum solution.
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Thus, in this chapter, the authors have proposed a modified JAY A algorithm with Lévy
flight (JAYALF) in order to eliminate the problem of getting trapped into local optima and to
promote the exploration competence of basic JAYA algorithm. In JAYALF algorithm, after
updating the solutions using JAYA as per Eq. (4.2) the better solution among old and new
solutions are accepted. Furthermore, the solutions are upadted using Lévy flight as per Eq. (4.7).
Greedy selection scheme from DE is used to select the best solutions at each index which helps
in improving exploitation capability without loss of diversity. Moreover, to balance the
exploration and exploitation capabilities of the JAYALF algorithm the index of Lévy
distribution is made adaptive as per Eq. (4.12). The flowchart of JAYALF algorithm is shown
in Fig. 4.1.

Various steps involved in JAYALF algorithm are narrated as follows:

1) Initialize the population size (N), number of decision variablesD(j=1,2...D), upper and

lower bounds of decision variables ( X, ;, X, ;) and maximum number of iterations it

(ile.it=1,2,..., it ) as a termination criterion.

2) Randomly initialize the population of N solutions X; (i=1,2...N) within the boundary of a

search space. Each " dimension of i solution i.e. X ;iis initialized between X, .and

max, j

Xmm,j as per Eqg. (4.1).

3) Calculate the fitness function F; for every individual solution as per given problem and

identify the best and worst solution i.e. X, and X, respectively.

4) Considering the random numbers I} and I, between 0 and 1 with uniform distribution, the

values for decision variables are updated using Eq. (4.2) for each solution.

5) Evaluate the fitness F"™" for each newly generated solution, compare it with the fitness F;

of the previous solution.
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6) For a maximization problem, if ™" >F, and for a minimization problem, if F™"<F, then
replace X, with a newly generated solution i.e. X;™ otherwise keep the previous solution i.e.

X, and update the corresponding value of fitness function.

7) Rank all the solutions based on the fitness and perform Lévy flight on the best 50% of
solutions as per Eq. (4.7).

8) Evaluate the fitness £ of new solutions generated via Lévy flight (x ).

9) Use a greedy selection scheme to select the best solutions among old solutions (x ") and
solutions generated via Levy flight (x ™) as per Eq. (4.11) and update the the new fitness

values.

10) Update the value of the index of Lévy distribution g using Eq. (4.12).

11) The updated values of fitness function are used to identify the best and worst solutions. The

corresponding solutions are considered as the best and worst solution for the next iteration.

12) Repeat steps 4-11 until the termination criterion is reached else report the optimum solution
X

best -

4.5 Channel equalization as a JAYALF based optimization

problem

The non-linear channel equalization problem has been solved by using a JAYALF
algorithm. The FLANN equalizer structure trained using proposed JAYALF algorithm is shown
in Fig. 2.

The steps used for training of FLANN are described as follows:

1. Calculation of channel output: The channel input s(k) is a random sequence of binary

signal taking values in the form {-1, +1}. The input signal after passing through a

communication channel of transfer function H(z) gets distorted by non-linearity v (.) and

further corrupted by additive white Gaussian noise (k) to give output r(k) as per Eq. (2.3).
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2. Computation of FLANN structure input: The received signal r(k) is passed through tap
delay section to give input vector R(k) to FLANN structure.

3. Expansion of input Vector: The functional expansion of the input vector R(k) is carried out

using trigonometric functions which results in R*(k) as given in Eqg. (2.8).

4. Solution initialization: The N number of candidate solutions are initialized with uniform

distribution within the upper and lower limit of search space i.e. X, and X, as follows:

Xl Xl,l XZ,l XDl
XZ — X1,2 X2,2 XD2

' 4.13
XN XlN X2,N XD N ( )

where X, ; is the j" dimension of i* solution.

5. Equalizer output and fitness calculation: The actual output of the equalizer y(k) is
computed as per Eq. (2.12) for every k™ input sample. The error e(k) is calculated
as per Eq. (2.13) by taking the difference between actual output y(k) and the desired output
d(k). The fitness function used is mean squared error (MSE) and is given by

MSE =é 3 e?(K) (4.14)

k=1
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Initialize population size (N), maximum iteration ( it_max), Number of decision
variables, Range of decision variables (X iy s Xmax)

Generate N solutions X;(i =1,2,..N) randomly within the range of decision
variables using Eg. (12)

Evaluate the fitness F, of each solution using Eq. (25). Identify the best
solution X, . and worst solution X

best worst

»l

Iteration=Iteration+1

}

Modify the solutions based on best and worst solution using Eq. (13)

!

Evaluate the fitness of new solutions i.e. F,""

F."™ isbetterthan F, ?

Yes No

Accept and replace the old solution

with X Keep the old solution i.e. X;

Rank all the solutions based on fitness and perform Lévy flight on the best 50%
solutions using Eq. (18)

Evaluate the fitness Fi“e"“of new solutions ( Xi"e"“) generated via Lévy
flight (LF)

Use the greedy selection scheme in Eq. (22) to select best solutions among the
previous solutions X ™" and newly generated solutions via LF Xiner

|

Update the index of Lévy distribution (/) using Eq. (23)

v

Update the best solution X, and worst solution X

worst

Iteration=it_max?

Yes

Report the optimum solution

Fig. 4. 1. Flowchart of the proposed JAYALF algorithm
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where S denotes the total number of transmitted samples or data block size, e(k) is the error

for k™ transmitted sample.

In the channel equalization problem, the goal is to minimize the fitness function value i.e. MSE.

Identify the best solution i.e. X, and the worst solution X .

6. Solution updating: Update all the solutions according to Eq. (4.2) based on the best solution
(Xieq) and worst solution ( X, ) obtained in step 5 and accept the updated solutions if it is

better than the old solution otherwise keep the old solution.

7. Ranking the solutions: Rank all the solutions based on fitness, identify the best solution and
select the best 50% of solutions for Lévy flight.

8. Perform Lévy flight: Use the obtained X,.; to perform Lévy flight using Eq. (4.7).

9. Evaluate the fitness and use the greedy selection scheme: Evaluate the fitness Fe+ for
each newly generated solution and compare it with the previous solution fitness . Use the

greedy selection scheme from DE to choose among newly generated solutions via Lévy flight

x ™ and solutions x " obtained in step 6. Update the value of g using Eq. (4.12).

10. Termination criteria: Repeat the steps 5-9 until a termination criterion is reached and report

the optimum solution.
4.6 Simulation studies

All the experiments are carried out in a MATLAB R2013a platform on a 64 bit
Windows 8.1 PC with an Intel i5-4590S 3 GHz processor and 8 GB RAM.

4.6.1 Channel characteristics for simulation

To examine the performance of the equalizer based on JAY ALF and other competing algorithms
extensive simulation experiments have been conducted for the channel equalization. The non-
linear equalizer using functional link artificial neural network is optimized by JAYALF, JAYA
[69], moth flame optimization (MFO) [157], ant lion optimizer (ALO) [158], and SCA

algorithm. Three benchmark channels with two different nonlinearities have been considered in
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this study. The channel transfer function considered in this study is taken from
[108][2][19][1][11][159][37] [137] and is given by

H,(z) =0.209+0.995z ' +0.209z 2 : Channel 1
H,(z) =0.260+0.930z " +0.260z 2 : Channel 2
H,(z) =0.341+0.876z * +0.341z° - Channel 3 (4.15)

The channels Channel 1, channel 2 and channel 3 corresponds to EVR values of 6.08,
11.12 and 46.82 respectively [1]. Following two different types of nonlinearity have been

considered for simulation.

b(k) =t(k) - NL=0
b(k) =t(k) +0.2t2(k) - 0.1*(K) NL=1
b(k) = tanh(t(k)) - NL=2 (4.16)

In Eq. (4.16) above t(k) is the output of a wireless channel as shown in Fig. 2.1. NL=0

represents a linear channel without any non-linearity. NL=2 represents a nonlinearity which may
occur due to saturation of amplifiers used at the transmitter and NL =1 is the arbitrary
nonlinearity. Among the two nonlinearities, NL=2 is a case of severe non-linearity [19] [1]
[137].

4.6.2 Sensitivity analysis of proposed JAYALF algorithm

As it is evident from the literature that the efficiency of an algorithm to a great extent depends
on the precise tuning of its controlling parameters [108]. Therefore, sensitivity analysis of

JAYALF is performed with respect to three key parameters namely population size ( N ), data

block size (S ) and a number of taps of the equalizer (M)

The outcomes of the sensitivity analysis are demonstrated in Figs. 5 to 7 for the channel
2 (Eq. (4.15)) with NL=1(refer to Eq. (4.16)).
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A) Population size (N)

It is evident from Fig. 4.2 that the population size of N=30 is adequate in obtaining a
global optimum solution which is also reasserted through quantitative assessment of the
efficiency of JAYALF in terms of MSE in Table 4.1. It is also observed that any further increase

in population size will hardly improve the performance.

Table 4. 1 Statistical comparison of MSE (over 30 independent runs) for variation of N

Population Size  MSE
(N) Best Worst Mean Std. Dev.
5 6.4453e-04 0.1408 0.0072 0.0253
10 4.4062e-04 0.0015 8.2144e-04 2.8815e-04
15 4.0037e-04 0.0013 7.1544e-04 2.5808e-04
20 4.3322¢e-04 0.0013 6.6490e-04 1.7762e-04
25 4.3883e-04 0.0012 6.0668e-04 1.5034e-04
30 3.9093e-04 0.0012 5.6593e-04 2.0378e-04
35 3.3119e-04 0.0011 5.6341e-04 1.6183e-04
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Fig. 4. 2. Effect of Population size (N)
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B) Block Size (s)

It is evident from Fig. 4.3 and Table 2.2 that increase in the value of s from 50 to 200

results in a reduction of MSE. But, there is no significant improvement in MSE for values of s
greater than 200. The requirement of data block size may vary from one problem to another.

Table 4. 2 Statistical comparison of MSE (over 30 independent runs) for variation of data block size (5)
Block Size(s) MSE
Best Worst Mean Std. Dev.
50 0.0048 0.0064 0.0052 3.0619e-04
100 3.0272e-04 9.5224e-04 5.6552¢-04 2.1876e-04
200 3.8879¢-04 9.1577e-04 5.2992e-04 1.3169e-04
500 3.8103e-04 9.0356e-04 5.2236 e-04 1.2907e-04
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Fig. 4. 3. Effect of Block Size (S)
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C) Number of taps of equalizer or order of equalizer (M)

Finally, Fig. 4.4 demonstrates the effect of a number of taps of an equalizer (M) on
MSE in which the number of taps (M) is varied from 2 to 10 with a step increment of 2, from

this it became apparent that equalizer with four taps gives the best performance. Fig. 4.4 and
Table 3.3 shows that increasing value of M more than 4 doesn’t results in any MSE

improvement.

Table 4. 3 Statistical comparison of MSE (over 30 independent runs) for variation of number of taps of the
equalizer (M)

MSE
No. of taps (M)

Best Worst Mean Std. Dev.
2 0.0010 0.0010 0.0010 2.6991e-06
4 3.7933e-04 7.6902e-04 5.0515e-04 9.6004e-05
6 4.8715e-04 0.0021 0.0011 4,1962e-04
8 0.0010 0.0030 0.0018 5.2294e-04
10 0.0019 0.0057 0.0035 0.0011

MSE (dB)
o
[6)]
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Fig. 4. 4. Effect of Number of taps of the equalizer (M)
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4.6.3 Performance of JAYALF on benchmark functions

Before applying the proposed JAYALF algorithm for the non-linear channel
equalization problem, we have tested its performance with unimodal and multimodal benchmark
functions listed in Table 4.4. Detailed information about these benchmark functions is provided
in [132][160]. The results in Table 4.4 are taken considering the population size as 30 over 500
iterations for all algorithms.

Recent literature [141] [140] suggest the use of statistical tests for confirming the
statistical validity of results obtained from metaheuristic algorithms. For a particular problem
to prove that a proposed new algorithm offers a substantial enhancement over other existing
algorithms a statistical test is necessary [16]. To verify whether the results of JAYALF differ
from JAYA, Jaya algorithm with time-varying acceleration coefficients (Jaya-TVAC), LJaya-
TVAC [84], MFO, ALO and SCA [132] in a statistically substantial way, a Wilcoxon’s rank-
sum test [142], was conducted. The obtained values of p from Wilcoxon’s test are reported in
Table 4.5.

Table 4 demonstrates that the proposed JAYALF provides superior perfromance for 12
out of the 17 different benchmark functions. These results show that JAYALF has high
exploration and local optima avoidance capability when compared to other algorithms. The p-
values in Table 5 are very much less than 0.05 which confirms the statistical significance of
results obtained by JAYALF.
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Table 4. 4 Minimization results of 17 benchmark functions (over 30 independent runs)

Function D Algorithm Best Worst Mean Std. Dev.
Sphere 20 JAYALF 1.9195e-04 0.0016 4.8338e-04  2.8421e-04
JAYA 0.0095 0.0415 0.0210 0.0091
Jaya-TVAC  0.0027 0.0396 0.0162 0.0078
LJaya-TVAC 7.6137e-30  5.4403e-22  4.3746e-23  1.3833e-22
MFO 3.0528e-04  0.0668 0.0039 0.0120
ALO 2.5623e-06  6.0643e-05 2.1889%e-05 1.6521e-05
SCA 2.9342e-06  1.9206 0.0753 0.3497
Schwefel 2.21 20 JAYALF 1.1658 2.4560 1.7295 0.3943
JAYA 1.9788 9.2245 4.4490 1.5886
Jaya-TVAC  2.0973 8.1774 4.0385 1.2923
LJaya-TVAC 0.1648 6.4234 1.7426 1.4746
MFO 15.4269 68.1830 44,9348 12.8716
ALO 1.8430 16.8084 8.0079 3.9917
SCA 0.3442 16.8323 5.0126 4.9542
Step 20 JAYALF 0.1512 0.3926 0.2472 0.0611
JAYA 1.2912 3.4253 2.4270 0.5027
Jaya-TVAC  0.9453 2.9982 1.8338 0.4111
LJaya-TVAC 1.5758e-06 5.3491e-04 9.6220e-05  1.2559e-04
MFO 7.0991e-05 2.0001e+04 2.3301e+03 5.0351e03
ALO 1.4203e-06  8.5339%e-05 2.8450e-05 2.4857e-05
SCA 1.9370 3.5614 2.4670 0.3788
Schwefel 2.26 20 JAYALF 1.5989e+03 2.8202e+03 2.2759e+03 313.3233
JAYA 2.3037e+03 4.9587e+03  3.9545e+03 689.9680
Jaya-TVAC  1.9844e+03 5.0378e+03 4.1229e+03 698.3834
Llaya-TVAC 1.2649e+03 3.7078e+03 2.2868e+03 611.2557
MFO 950.5412 3.6125e+03 2.5772e+03 654.1796
ALO 2.5464e+03 4.7679e+03 4.6111e+03 397.3435
SCA 4.6166e+03 5.8537e+03 5.3296e+03 297.2677
Rastrigin 20 JAYALF 26.6811 45.8806 37.9985 5.4067
JAYA 92.5149 160.6344 134.1872 16.9918
Jaya-TVAC  109.1304 173.8001 138.2198 15.3030
LJaya-TVAC 5.8495 21.0024 13.5422 3.8439
MFO 41.7883 161.1823 79.3619 25.8234
ALO 23.8790 107.4550 55.2201 19.7609
SCA 3.3390e-04  76.8442 10.6840 16.6174
Ackley 20 JAYALF 0.0110 9.2785 0.3277 1.6906
JAYA 0.0512 2.7791 0.2350 0.4876
Jaya-TVAC  0.0562 19.9615 0.8696 3.6175
Llaya-TVAC 2.2204e-14  3.6549 1.6167 1.0755
MFO 0.0045 19.9652 8.0294 8.9895
ALO 0.0016 4.1672 1.8553 0.9445
SCA 8.8175e-04  20.2355 9.5645 9.8779
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Table 4.4 (Continued)

Function D Algorithm Best Worst Mean Std. Dev.
Griewank 20 JAYALF 0.0900 0.2040 0.1418 0.0337
JAYA 0.0866 0.7753 0.5880 0.1442
Jaya-TVAC  0.0950 0.8875 0.5782 0.1887
LJaya-TVAC 0 0.1743 0.0374 0.0400
MFO 9.7656e-04  0.0863 0.0361 0.0238
ALO 5.7407e-04  0.0642 0.0236 0.0173
SCA 6.6440e-04  0.9482 0.3221 0.2557
Penalized 20 JAYALF 0.0311 0.6360 0.1635 0.1260
JAYA 0.9980 7.3751 3.8141 1.7262
Jaya-TVAC  0.8936 9.6537 3.0623 2.3015
LJaya-TVAC 1.9119e-07 1.8825 0.1691 0.3940
MFO 9.0416e-05 117.5161 4.8557 21.32
ALO 3.2157 25.1145 9.1656 4.6060
SCA 0.2457 3.5319 0.8265 0.8210
Penalized 2 20 JAYALF 1.4334e-05 0.0024 2.9155e-04  5.1886e-04
JAYA 0.0012 0.1079 0.0185 0.0210
Jaya-TVAC  8.7231e-04  0.0450 0.0151 0.0129
LJaya-TVAC 1.3498e-32  1.5975 0.0576 0.2910
MFO 6.1736e-04  4.0732 0.4018 0.8578
ALO 4.9551e-06 1.4474 0.0660 0.2622
SCA 1.2220 12.1864 2.4759 2.4050
Foxholes 2 JAYALF 0.9980 0.9980 0.9980 2.7714e-10
JAYA 0.9980 1.0654 1.0014 0.0123
Jaya-TVAC  0.9980 1.0298 1.0010 0.0085
LJaya-TVAC 0.9980 0.9980 0.9980 0
MFO 0.9980 5.9288 1.7566 1.4128
ALO 0.9980 5.9288 2.2190 1.5039
SCA 0.9980 10.7632 1.9866 1.9065
Kowalik 4  JAYALF 3.1412e-04  4.3948e-04 3.5087e-04  3.2623e-05
JAYA 3.1089%-04  0.0017 5.2702e-04  3.2828e-04
Jaya-TVAC  3.2824e-04  0.0013 4.9511e-04  2.3584e-04
LJaya-TVAC 3.0749e-04 0.0017 3.633%-04  2.4823e-04
MFO 6.1996e-04  0.0022 0.0011 4.7605e-04
ALO 6.0523e-04  0.0209 0.0036 0.0068
SCA 4.3499%-04  0.0016 9.4275e-04  3.7518e-04
Goldstein-Price 2 JAYALF 3.00000000 3.00000000 3.00000000 1.3730e-15
JAYA 3.00001464 3.00912874 3.00125439 0.0018
Jaya-TVAC  3.00000000 3.0045 3.0009 0.0011
LJaya-TVAC 3.00000000 3.0000 3.00000000 1.4496e-15
MFO 3.00000000 3.00000000 3.00000000 2.5283e-15
ALO 3.00000000 3.00000000 3.00000000 9.5311e-13
SCA 3.00000041 3.00061407 3.00011534 1.7069e-04
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Table 4.4 (Continued)

Function D Algorithm Best Worst Mean Std. Dev.
Hartman 3 3 JAYALF -3.86278214 -3.86278214 -3.86278214 2.7101e-15
JAYA -3.86278214 -3.86278214 -3.86278214 2.7101e-15
Jaya-TVAC  -3.86278214 -3.86278214 -3.86278214 2.6962e-15
LJaya-TVAC -3.86278214 -3.86278214 -3.86278214 2.7101e-15
MFO -3.86278214 -3.86278214 -3.86278214 2.7101e-15
ALO -3.86278214 -3.86278214 -3.86278214 4.0630e-12
SCA -3.8614247  -3.84870459 -3.85381491 0.0025788
Hartman 6 6 JAYALF -3.3220 -3.2031 -3.2903 0.0535
JAYA -3.3220 -3.1724 -3.2521 0.0597
Jaya-TVAC  -3.3220 -3.2031 -3.2576 0.0595
LJaya-TVAC -3.3220 -3.2031 -3.2862 0.0553
MFO -3.3220 -3.0839 -3.2129 0.0742
ALO -3.3220 -3.1982 -3.2858 0.0562
SCA -3.1254 -2.6629 -3.0027 0.1131
Shekel 5 4 JAYALF -10.1532 -2.6829 -8.3036 2.7157
JAYA -10.1532 -2.5205 -6.2536 2.7478
Jaya-TVAC  -10.1532 -2.5458 -5.9859 2.7912
LJaya-TVAC -10.1532 -2.6305 -6.2316 3.3876
MFO -10.1532 -2.6305 -5.5554 3.2208
ALO -10.1532 -2.6305 -6.2066 2.9944
SCA -6.7683 -0.4982 -2.8016 2.0058
Shekel 7 4  JAYALF -10.4029 -2.7659 -9.7631 1.6818
JAYA -10.4029 -2.6816 -7.9960 3.1225
Jaya-TVAC  -10.4029 -1.8376 -7.9798 2.7812
LJaya-TVAC -10.4029 -2.7659 -8.7791 3.0012
MFO -10.4029 -2.7519 -6.1335 3.3775
ALO -10.4029 -2.7519 -6.3767 3.0046
SCA -5.9049 -0.5239 -2.8195 1.7343
Shekel 10 4  JAYALF -10.5364 -10.1999 -10.5252 0.0614
JAYA -10.5364 -2.3826 -7.7707 2.9968
Jaya-TVAC  -10.5364 -2.4110 -8.1621 3.1516
LJaya-TVAC -10.5364 -2.4217 -8.8293 3.1590
MFO -10.5364 -1.8595 -6.8863 3.7778
ALO -10.5364 -1.6766 -7.0519 3.6367
SCA -9.8907 -0.9403 -3.5906 1.9186
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Table 4.5 p values obtained for Wilcoxon rank-sum test corresponding to the results of Table 4.4

_ Algorithms
Funetion JAYALF  JAYA JT%’ZC #i?/{ac MFO ALO SCA
Sphere 3.0199e-11 3.0199-11 3.0199e-11 N/A 3.0199e-11  3.0199e-11 3.0199e-11
Schwefel 2.21  N/A 1.0776e-10 6.5949e-11  0.0500 2.9729e-11 1.0776e-10 0.0033
Step 3.0199e-11 3.0199-11 3.0199e-11 0.0339 4.0772e-11  N/A 3.0199e-11
Schwefel 2.6 N/A 1.4643e-10 8.1014e-10 0.8073 0.0023 5.8561e-11  3.0199-11
Rastrigin 2.4386e-09 3.0199-11 3.0199e-11  0.0040 9.8951e-11  9.7555¢-10 N/A
Ackley 55727e-10 NJ/A 0.7618 2.1213e-04  0.0012 6.5277¢-08  0.1761
Griewank 3.0199e-11 3.0199-11 3.0199e-11 0.3112 0.0364 N/A 4.42056-06
Penalized N/A 3.0161e-11  3.0161e-11  0.0011 0.0850 3.016le-11  1.2857e-11
Penalized2  NI/A 5.4941e-11  6.0658e-11  0.0079 4.0772e-11  2.5974e-11  3.0199e-11
Foxholes N/A 3.0199e-11 1.2118e-11 N/A 0.0243 0.0469 3.0180e-11
Kowalik N/A 6.7320e-05 1.7171e-06 8.9487e-08 2.9766e-11 2.9803e-11  3.2949e-11
Sr?égstei”' N/A 3.0199e-11 3.0199-11 7.8180e-12 2.7167e-11 3.0180e-11  3.0199e-11
Hartman 3 N/A N/A N/A N/A N/A 1.2118e-12  1.2118e-12
Hartman 6 N/A 0.0495 0.1095 0.6755 4.7936e-04  0.0085 2.0008e-11
Shekel 5 N/A 0.0015 0.0015 0.0492 0.0438 0.0053 4.17436-09
Shekel 7 N/A 0.9583 0.0531 0.0017 0.0948 0.0080 1.7667e-10
Shekel 10 N/A 0.0137 0.9350 0.0012 0.8291 0.0423 3.0161e-11

4.6.4 Application of JAYALF algorithm to Non-linear Channel Equalization

The transmitted digital message is with a 2-PAM signal. Each symbol is obtained from
a uniform distribution taking values either +1 or -1. During the training of equalizer, the block
size (S ) of 200 samples is used as input. A zero mean white Gaussian noise of signal-to-noise
ratio (SNR) 20 dB is added to the output of the channel. The tap delay section of FLANN having
four taps providing 4 inputs to trigonometric expansion block. The trigonometric expansion

block expands each term into three using r(k), sin(z r(k)), cos(z r(k)) and one bias term

thereby producing 13 terms.

The FLANN structure has been trained with JAYALF and other compared algorithms
for 500 iterations. In every simulation experiment, the fitness function MSE, defined in Eqg.
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(4.14) is averaged over 30 independent runs. Wilcoxon’s rank-sum test [142], is carried out at a

5% significance level. The population size taken as 30 for all the metaheuristic algorithms.

4.6.4.1 MSE performance

To study the convergence performance of JAYALF and competing algorithms, the
equalizer is trained with 500 iterations for each algorithm. The learning performance of the
algorithms for 3 different channels with two different nonlinearities is demonstrated in this

section.

Case I: Non-linearity 1(NL=1)
In this case, nonlinearity considered is NL=1 as given in Eq. (4.16), which is one of the

arbitrary non-linearity encountered in a communication system.

Table 4. 6 Statistical comparison of MSE (over 30 independent runs) for channel 1 with NL=1

Algorithm MSE(Training) p values
Best Worst Mean Std. Dev.

JAYALF 8.6017e-05 2.3488e-04  1.1830e-04 3.2726e-05 N/A
JAYA 1.0337e-04 4.1708e-04  2.0000e-04 6.7348e-05  1.1567e-07
MFO 9.0751e-05 8.7533e-04  2.2774e-04 1.9961e-04  8.6634e-05
ALO 1.1465e-04 4.5701e-04  2.3603e-04 1.0637e-04  2.0062e-08
SCA 1.5564e-04  0.0014 6.1906e-04 3.1958e-04  6.6955e-11
BP 7.8487e-04  0.0011 9.2236e-04 1.0043e-04  3.0199e-11

Fig. 4.5 depicts the learning performance of all the algorithms for channel 1 with non-
linearity NL=1. As evident from Fig. 4.5 JAYALF provides better convergence and lesser MSE
when compared to other algorithms. Moreover, the MSE results in Table 4.6 shows the
efficiency of the FLANN equalizer optimized by JAYALF. The p-values in Table 4.6 proves
the statistical validity of results obtained from JAYALF. Furthermore, the box plots in Fig. 4.6

shows the superiority of the JAY ALF over other competing algorithms.
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Fig. 4. 6. MSE box plot over 30 independent runs of six algorithms for channel 1 with NL=1

A similar performance is attained by JAYALF for channel 2, which has a higher eigenvalue

ratio (EVR) of 11.12 as shown in Fig. 4.7. As evident from Figs. 4.5 and 4.7, with an increase

in EVR, the performance of all the algorithms degrades but still the performance of JAYALF is

consistent and superior when compared to other competing algorithms. Standard deviation and

p-values in Table 4.7 demonstrates the reliability of results obtained by JAY ALF algorithm over
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other algorithms. The MSE boxplots in Fig. 4.8 also illustrates the superior performance of

JAYALF algorithm over other competing algorithms.

Table 4. 7 Statistical comparison of MSE (over 30 independent runs) for channel 2 with NL=1

Algorithm MSE(Training) p values
Best Worst Mean Std. Dev.
JAYALF 3.8637e-04 9.0434e-04 5.5901e-04 1.2783e-04 N/A
JAYA 5.2643e-04 1.4000e-03 8.5418e-04 2.4880e-04 5.5999e-07
MFO 3.9947e-04 0.0027 9.7029e-04 5.8516e-04 4,9818e-04
ALO 5.6857e-04 0.0014 9.3462e-04 2.6556e-04 3.0797e-08
SCA 6.0819e-04 3.6000e-03 1.4000e-03 6.8234e-04 1.9568e-10
BP 0.0019 0.0023 0.0021 9.7390e-05 3.0199¢e-11
5 L L U L L L T C
JAYALF
X JAYA ||
MFO
5. ---------- ALO i
- SCA
BP
J
" i
n
s
_35 r r r r r r r r
0 50 100 150 200 250 300 350 400 450 500

Fig. 4. 7. Learning curves of six algorithms for channel 2 with NL=1

Number of iterations

71



x 10°

JL».

35 . .

3~. -
.

25 .
JL».

§ 2 + % i

1 '
15} .
I = £
1~. -
T
os- B L L+ I .

JAYALF JAYA MFO ALO SCA BP

Algorithms

Fig. 4. 8. MSE box plot over 30 independent runs of six algorithms for channel 2 with NL=1

Finally, Fig. 4.9 illustrates the learning curves for Channel 3 which has EVR of 46.82.
Channel 3 is a highly dispersive channel when compared to channel 1 and channel 2. As noticed
from learning curves in Figs. 4.5, 4.8 and 4.9, an increase in EVR degrades the MSE
performance of the algorithms but still JAYALF is performing consistently. The average MSE,
standard deviation and p values in Table 4.8 and Box plot in Fig. 4.10 depicts the the superiority
of JAYALF.

Table 4. 8 Statistical comparison of MSE (over 30 independent runs) for channel 3 with NL=1

Algorithm MSE(Training) p values
Best Worst Mean Std. Dev.
JAYALF 0.0061 0.0081 0.0069 5.7143e-04  N/A
JAYA 0.0069 0.0151 0.0100 0.0021 3.8202e-10
MFO 0.0058 0.0262 0.0105 0.0051 0.0022
ALO 0.0070 0.0151 0.0109 0.0023 1.6123e-10
SCA 0.0087 0.0209 0.0122 0.0028 3.0199e-11
BP 0.0133 0.0149 0.0143 3.7566e-04  3.0199e-11
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In this case, nonlinearity considered is NL=2 as given in Eq. (4.16), it represents a
nonlinearity which occurs due to saturation of amplifiers used at the transmitter in a

communication system. This non-linearity is more severe than non-linearity 1.
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The MSE performance for channel 1 with severe non-linearity i.e. NL=2 (Eq. (4.16)) is
shown in Fig. 4.11. An improved equalization performance of JAYALF is evident from MSE
results Table 4.9 and boxplot in Fig. 4.12. The p values are much less than 0.05 for all algorithm
which represents the statistical significance of results obtained by JAYALF. The convergence
curves in Fig. 4.11 shows the better ability of JAYALF to avoid the stagnation at local minima
problem with a higher convergence rate. It is observed from the MSE performance of channel 1
in Figs. 4.5 and 4.11, with an increase in non-linearity the MSE performance of all algorithms
get deteriorated, but equalization performance of JAYALF is still consistent and superior when

compared to other competing algorithms.
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Fig. 4. 11. Learning curves of six algorithms for channel 1 with NL=2

Table 4. 9 Statistical comparison of MSE (over 30 independent runs) for channel 1 with NL=2

Algorithm MSE(Training) p values
Best Worst Mean Std. Dev.

JAYALF 1.6660e-04  3.1953e-04  2.2288e-04 3.3745e-05 N/A
JAYA 2.6791e-04  5.4432e-04  3.5272e-04 7.3159e-05  2.3715e-10
MFO 1.6551e-04  9.3975e-04  3.9282e-04 2.3473e-04  7.2901e-04
ALO 2.2870e-04  8.2266e-04  4.4503e-04 1.9008e-04  1.4036e-09
SCA 3.4614e-04  0.0017 6.5410e-04 2.9980e-04  3.0199e-11
BP 9.1135e-04 0.0012 0.0010 7.1126e-05  3.0199e-11
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A similar enhancement in performance is achieved for the channel 2 which is having
more EVR than channel 1 and is demonstrated in Fig. 4.13. The convergence curves in Fig. 4.13
illustrates the higher convergence rate of the proposed algorithm when compared to other
algorithms. The results for mean MSE, a standard deviation of MSE and p-values in Table 4.10
indicate that JAYALF is significantly better at avoiding local minima than other competing
algorithms. The MSE box plot in Fig. 4.14 represents the distribution of results obtained by all
six algorithms over 30 runs with the superiority of the proposed algorithm.

Table 4. 10 Statistical comparison of MSE (over 30 independent runs) for channel 2 with NL=2

Algorithm MSE(Training) p values
Best Worst Mean Std. Dev.

JAYALF 5.2251e-04  7.0165e-04  6.2625e-04 4.2394e-05 N/A
JAYA 7.2172e-04  0.0016 0.0010 2.1419e-04  2.9155e-11
MFO 5.1465e-04  0.0031 0.0012 6.1850e-04  3.2708e-08
ALO 5.4195e-04  0.0019 0.0011 3.6498e-04  2.1403e-08
SCA 7.0691e-04  0.0039 0.0016 7.5407e-04  2.9155e-11
BP 0.0023 0.0026 0.0024 9.9695e-05  2.9000e-10
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Finally, MSE performance for channel 3 with NL=2 which is a highly dispersive channel
is depicted in Fig. 4.15. As observed from Figs. 4.11, 4.13 and 4.15, an increase in EVR from
channel 1 to channel 3 results in a degradation in performance of all algorithms but still JAYALF
is outperforming over other five algorithms. The enhanced efficiency of JAYALF in equalizing
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the channel is evident from the statistical comparison of MSE and p values as presented in Table
4.11 and MSE boxplot as shown in Fig. 4.16.

Table 4. 11 statistical comparison of MSE (over 30 independent runs) for channel 3 with NL=2

Algorithm MSE(Training) p values
Best Worst Mean Std. Dev.

JAYALF 0.0061 0.0083 0.0071 5.8771e-04  N/A
JAYA 0.0074 0.0118 0.0089 0.0011 1.8567e-09
MFO 0.0060 0.0181 0.0095 0.0024 1.4918e-06
ALO 0.0075 0.0117 0.0094 0.0014 4.6006e-10
SCA 0.0078 0.0222 0.0124 0.0037 4.5043e-11
BP 0.0145 0.0155 0.0151 2.4846e-04  3.0199e-11

4.6.4.2 BER performance

In order to explore the consistency in the performance of the proposed JAYALF
algorithm, BER performance is evaluated for the three channels with two different
nonlinearities. To calculate bit error rate (BER), 100,000 input samples are transmitted and noise
of different SNR is added to channel output.
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Fig. 4. 15. Learning curves of six algorithms for channel 3 with NL=2
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Case I: Non-linearity 1 (NL=1)
In this case for analyzing BER performance, the non-linearity considered is NL=1 (Eq.

(4.16)) which is one of the arbitrary non-linearity encountered in a communication system.
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The BER performance for channel 1 with non-linearity 1 is shown in Fig. 4.17 which
depicts the superiority of JAYALF over the other five algorithms. A similar improvement in
BER performance is attained by the proposed algorithm for Channel 2 with NL=1 which is
demonstrated in Fig. 4.18. As depicted in this figure, a gain of approximately 1 dB is achieved
by JAYALF at a BER of 1.4767e-04 over JAYA algorithm and more than 1 dB over other
competing algorithms.

Finally, BER performance for channel 3 which is a highly dispersive channel is shown
in Fig. 4.19. It observed from Fig. 4.19 that the proposed algorithm outperforms the other
competing algorithms in terms of BER performance. The gain of approximately 1.5 dB is made
by JAYALF over JAYA and more than 2 dB over the other algorithms. As can be seen from
Figs. 4.17, 4.18, and 4.19 the superiority of JAYALF in term of BER performance is more

significant for highly dispersive channel i.e. Channel 3.

Case Il: Non-linearity 2(NL=2)

In this case, nonlinearity considered is NL=2 as given in Eq. (4.16), it represents a nonlinearity
which occurs due to saturation of amplifiers used at the transmitter in a communication

system. This non-linearity is more severe than non-linearity 1.

The BER performance for channel 1 with non-linearity 2 is shown in Fig. 4.20. The superior
performance of JAYALF is evident from this figure. As seen from Figs. 4.17 and 4.20, with an
increase in non-linearity the BER performance of all the algorithms degrades, but the superiority
of JAYALF increases.

Similar enhancement in performance is attained for channel 2 and channel 3 which are
more dispersive than channel 1. As it can be noticed from Figs. 4.20-4.22, with an increase in
EVR from 6.08 to 46.82, the BER performance for all the algorithms gets deteriorated but the
superiority of JAYALF is still consistent and more significant in case of highly dispersive

channel i.e. channel 3.
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4.7 Conclusion

In this chapter, an efficient JAYA algorithm with Lévy Flight (JAYALF) is proposed
for the non-linear channel equalization problem. To alleviate the problem of loss of population
diversity and stagnation at local optima, the concept of Lévy Flight has been incorporated into
the basic JAYA algorithm. A greedy selection scheme has been employed to improve
exploitation capability without loss of diversity. To balance the exploration and exploitation
capabilities of JAYALF the adaptive Lévy index is proposed, which facilitates global search at
the initial stage and local search at the latter stage. The exploration and local optima avoidance
capabilities of the algorithm improved due to the incorporation of Lévy flight technique into
basic JAYA algorithm. The Lévy flight based search enhanced the diversity of solutions and
decreased the likelihood of converging on local optima, which in turn aided JAYALF to find
promising regions of the search space. Moreover, the greedy selection scheme helped in fully
exploiting the promising areas to find the global optimal solution. Thus, the proposed
modifications support JAYALF in enhancing the exploration and exploitation capabilities

throughout the search process.
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The performance of the proposed algorithm was evaluated on unimodal and multimodal
functions and results confirmed that JAY ALF has better capability to escape from local optima
with a higher convergence rate when compared to JAYA, variants of JAYA and other
metahheuristic algorithms. To evaluate the performance of the proposed JAYALF algorithm for
non-linear channel equalization problem, three wireless communication channels with two
different nonlinearities were considered for simulation. The simulation studies showed that
JAYALF based FLANN equalizer provides superior performance than other equalizers
compared algorithms in terms of convergence speed, steady-state MSE, and BER.
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Chapter 5

Modified Grasshopper Optimization Algorithm

5.1 Introduction

This chapter proposes a modified grasshopper optimization algorithm for equalization
of non-linear wireless communication channels. Even though GOA is an efficient algorithm, it
has drawbacks such as being trapped in local optima due to loss of swarm diversity and
weakness of exploration capability. Another concern with GOA is that there is no provision to
retain the elite grasshopper found so far at each index which weakens the exploitation capability
and convergence rate of GOA. These limitations of GOA are alleviated in this work by
incorporating the Lévy flight concept and greedy selection operator from Differential Evolution
algorithm. Moreover, a threshold parameter is introduced to detect the inefficient search region.
Lévy Flight is integrated with the basic GOA to improve the diversity of grasshopper swarm
and the greedy selection operator is used to preserve the best grasshopper found so far at each
index of swarm. The superiority of the proposed modified grasshopper optimization algorithm
(MGOA) is illustrated over the existing metaheuristic algorithms. The key parameters of MGOA
are selected by performing the sensitivity analysis. The simulation results on four non-linear
channels demonstrate the efficiency of the proposed MGOA algorithm in terms of BER and
MSE. The statistical validity of the results provided by MGOA is confirmed through Wilcoxon

rank-sum test.

5.2 Grasshopper Optimization Algorithm (GOA)

Grasshopper Optimization Algorithm (GOA) is one among the latest population based
metaheuristic algorithm, developed by Saremi et al. in 2017 [90]. The GOA is an efficient swarm
intelligence based algorithm motivated from the team hunting behavior of grasshoppers. GOA
mimics the behavior of grasshoppers by emitting the repulsion and attraction forces between
them [92]. Generally, larval and adulthood are the two key phases of grasshopper life cycle
[101]. It has been shown that GOA is capable of outperforming several leading metaheuristic
algorithms [90].
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Since its introduction, many complicated benchmark functions and engineering
problems has been solved by GOA effectively [90,91]. GOA and its enhanced versions have
been extensively used for electrical characterization of fuel cells [92], training of artificial neural
network [91], feature selection [93-95], economic dispatch problem [96], data clustering [97],
tuning of PID controller [98] and target tracking [99]. To enhance the performance of basic
GOA, some improvement techniques have been introduced in [100-102], where the authors
demonstrated the competitive performance of GOA over other metaheuristic algorithms.
Recently, basic multi-objective GOA has been developed by Mirjalili et al. [103] and Tharwat

et al. proposed an improved version of multi-objective GOA [104].

The three components which affect the grasshopper flying path are social interaction (S;

), wind advection (Ai ) and gravity (Gi ) and are mathematically modeled as follows [161][90]:
X, =S, +G, + A (5.1)

Where s, denotes the social interaction component
A is the wind advection.
G, represents the gravity force on the grasshopper and

X, is the i"" grasshopper position,

Mathematically, the social interaction component s, is given by [90]

N

Si= X S(dij) di (5.2)

i=Lj#i

Where d; = ‘xj - xi‘ represents the distance among two grasshoppers i and j

The function s denotes the social forces which is given by [90],

s(r)= fet™" —e ™" (5.3)

Where | is the attractive length scale and f is the intensity of attraction.

The gravity component G is described as [90]

G, =-ge (5.4)
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Where ég denotes a unity vector towards the center of the earth

g refers to the gravitational constant
The wind advection component A is written as follows [90]:
A =uew (5.5)
Where e, indicates the unit vector in the wind direction
u denotes a constant drift

The updated form of Eq. (5.1) after Substituting the values of S, G and A can be rewritten as
follows [90]:

Xi= 5 s(-x]) - 08 vue, 56)

j:]-«] ij

Where N denotes a total grasshoppers and s(r) is given by Eq. (5.3).

For the convergence of algorithm to an optimum solution a modified version of Eq. (5.6) is

given by [90]:

Xig =C[_ % CM s,(‘xd —xid ‘) % ;Xi jJer (5.7)
i1,

Where the decreasing coefficient c is used to reduce the repulsion region, comfort region
and attraction region. T, refers to d" dimension of target grasshopper. The parameter c in Eq.

(5.7) is reduced with iterations to balance the exploitation and exploration capabilities as follows
[90]:

Crax — Crni
C=Cppy —| {Q} (5.8)

Where | is a current iteration number,

c,.. and c . denotes the maximum and minimum value of c respectively,

L represents total iterations.
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The steps of GOA algorithm are summarized as follows:
1. Initialize the parametersc ., c, .. . total iterationsit _ number of decision variables K (d =

1, 2... K). Furthermore, generate a swarm of N grasshoppers X, (i =1,2...N) randomly in

the upper and lower boundary (X .4 » Xming) OF the search space.

2. Perform a fitness (F, ) calculation for every grasshopper and find the Target grasshopper
Xbest

3. Update the value of c using Eq. (5.8).

4. Normalize the distances among the grasshoppers within the range [1, 4] and use Eq. (5.7) to
update the positions of all grasshoppers.

5. Check whether the updated solutions are within the range of decision variables, if not restrict
them in the range [X, » X;in]-

6. Calculate the new fitness e~ of every grasshoppers and update the target grasshopper as
per new fitness.

7. If the total iterations are reached then report the target grasshopper X, and stop else

continue repeating the steps 3-6.

5.3 Lévy Flight

Lévy flight (LF) is a random walk in which the length of steps is determined by the Lévy
distribution [144][145]. Lévy flight represents various phenomenon in the nature [146] and the
food searching path of several animals also depicted by LF [147] [148]. In the recent years, a
number of engineering problems have been solved using LF [146], [149] [150]. Furthermore,
LF has been integrated with Bees algorithm [151], cuckoo search (CS) algorithm [57], particle
swarm optimization algorithm [152] [162], Firefly Algorithm[153], and grey wolf optimization
algorithm[154] to improve the solution diversity.

Leévy probability distribution is drawn in terms of a power-law formula as follows [144]:
-1-p
L(s) ~|9] (5.9)
where g is a Lévy distribution index and its value lies in the range of 0 to 2.

A Lévy distribution can be described as follows[145] [155]:
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y y 1 .
—exp| - if O<pu<s<ow
L(s,y,p) =\ 27 {Z(S_ﬂ)}(s—y)% (5.10)

0 if s<0

where ¢ denotes a shift parameter and ) > 0 is a scale parameter

Lévy distribution described in terms of Fourier transform as follows [145] ,
Fk)=expl-alk'], 0<p<2, (5.11)
where « is skewness parameter or scale factor and g is Lévy index.

5.4 Modified Grasshopper Optimization Algorithm (MGOA)

Generally, for any population based metaheuristic algorithm to achieve an
optimum performance a proper balance between exploitation and exploration of the search space
is necessary. Although GOA is an efficient metaheuristic algorithm, it has some drawbacks. In
the conventional GOA algorithm, the previous position of grasshopper, the positions remaining
grasshoppers in the population and target grasshopper position determines the new position of
any grasshopper [90]. However, grasshoppers get clustered around local optima after a certain
number of iterations and it leads to loss of swarm diversity and the ability of algorithm to explore
the solution space is deteriorated. It may cause algorithm to converge prematurely to a local
solution. Another concern with GOA is that there is no provision to retain the best-so-far
solution at each grasshopper index. This issue slow down the convergence of GOA and degrades
the exploitation capability.

To overcome these shortcomings this chapter proposes a modified grasshopper
optimization algorithm (MGOA\) by incorporating three modifications into GOA algorithm. The
Leévy flight is integrated with basic GOA to preserve the diversity of grasshopper swarm.
Second, the threshold parameter is introduced to identify the inefficient search spaces and to
redistribute the grasshoppers using LF. Lastly, the greedy selection operator from DE algorithm
is employed to retain the better performing grasshoppers obtained so far at each index which

provides rapid convergence to the global optimum.
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In the proposed MGOA algorithm, a threshold parameter introduced to determine
whether the current region of search space is efficient, which in turn helps in detecting stagnation
at local optima condition. Therefore, a threshold value is determined and if target grasshopper
fitness does not improve at the end of each iteration or if the improvement in fitness function is
less than some predefined number, this threshold value is increased by 1. If the calculated
threshold value reaches a predetermined value, the Lévy flight is used to redistribute the entire
swarm of grasshoppers in the search space. When the threshold parameter reaches its
predetermined value, this indicates that the current solution space is inefficient with a local
optimum solution, which in turn shows the stagnation at local optima condition. Thus, the LF
assists GOA in preserving the swarm diversity and enhancing global search ability to avoid

entrapment in local optima.

The Lévy flight is used to generate new grasshoppers as follows [163] :
X™ =X +a® Lévy(f) (5.12)
Where ¢ denotes the step size and considered as a random number for every dimension
X™ =X +random(size(K)) @ Lévy(3) (5.13)

The Ref. [163,164] [152]contains the scheme to create step size s, which is given by,

s = random(size(K)) ® Lévy(f) ~ O.OlL(X — Xiest) (5.14)
Ve

Where K denotes the number of dimensions, u and v follows a normal distribution, i.e.
ul N(0,67), viI N(0,57), Where o, and o, are taken as follows:

b
i+ ﬂ)sin(”ﬁj ’
2 o, =1 (5.15)

O-U = ' v
17

Where [ denotes a Gamma function

To perform LF the value of s is added to the previous solution i.e. X which results in

X™ as per Eq. (5.13). The fitness values of all updated grasshoppers are evaluated and the

target is identified.
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In basic GOA, there is no provision to retain the elite grasshopper found so far at each
population index. To alleviate this issue, a greedy selection operator from Differential evolution
algorithm [131] is used in the modified grasshopper optimization. The operator can be defined

as follows:

X" i (X" ) < f(X)

(5.16)
X otherwise

X(it+1):{

As per this operator, the newly generated grasshopper position at grasshopper index i i.e.

X."™ will be accepted only if its fitness F™ is better than or equal to the fitness of old/previous

grasshopper at same index (F;) else X, will be preserved in the swarm. Thus, this concept results

in retaining the best grasshopper found so far at each index and improves the exploitation

capability and convergence of the algorithm.

In the proposed MGOA algorithm, a predetermined threshold values is initialized and
count is initialized to zero. The swarm of grasshoppers is generated and the fitness evaluation
for each grasshopper is performed. The fitness of initially generated grasshoppers is used to
determine the target grasshopper. After this the count values is checked for target and if the
count reaches the predetermined value of threshold parameter, positions of grasshoppers are
updated using LF else per Eq. (18) is used to update the grasshoppers positions. After updating
the positions of grasshoppers, the fitness evaluation is performed for all the grasshoppers in
swarm. The greedy selection scheme from DE is used to retain better grasshopper among
previous grasshopper X and the newly generated grasshopper X ™" and as per updated fitness
values, the target is identified. If the target grasshopper fitness is improved the count is set to
zero else if target fitness is not improved or improvement is less than some predefined number,
the count is incremented by 1. These steps are repeated till termination criterion is satisfied. The

flowchart of MGOA algorithm is shown in Fig. 5.1.
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Initialize population size (N), Maximum iteration (it_max), Number of decision
variables, Range of decision variables (Xin» Xmax) :C and Levi index g

min ‘Cmax

A
Set Count=0 and initialize Threshold value

v

Initialize N solutions X; (i =1,2...N) randomly within the range of decision
variable using Eq. (20)

v

Evaluate the fitness F. (MSE) of each grasshopper and identify the Target
grasshopper X, (best solution)

Ll

A

Iteration=Iteration+1

To generate X ™ perform Lévy
flight on all solutions using
Eq. (25) and set Count=0

Count < Threshold

Yes

Update ¢ according to Eq. (19)

v

Normalize the distances between the grasshoppers in [1,4]

v

Update the solutions using Eq. (18 ) to get X ™"

[P
Evaluate the fitness F."*" (MSE) of new solutionsi.e. X ™"

v

Use greedy selection operator in Eq. (29) to select best solutions among
previous solutions X; and newly generated solutions i.e. X"

v

Update the best solution X ., (Target grasshopper) and its fitness F

Target Fitness ( Fbest ) improved?

Yes

Count = Count+1

Set Count=0

[P
<

No

Iteration=it_max?

Report the optimum solution (X, )

Fig. 5. 1. Flowchart of MGOA algorithm
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5.5 Non-linear channel equalization using modified grasshopper

optimization algorithm

In this section, the step by steps procedure to train FLANN based non-linear channel

equalizer using the proposed modified grasshopper optimization algorithm is provided.
The steps are explained below:
Step 1: Compute the corrupted output of multi-path wireless channel r(n) as per Eg. (2.3)

Step 2: Expand the input vector of FLANN R(n) as per Eq. (2.8) to get its enhanced version
R*(n)

Step 3: Initialize N grasshoppers within upper and lower boundary of search space (i.e. within

Xin and X, ). Furthermore, set count equal to zero and initialize threshold value.

Step 4: Determine the FLANN non-linear equalizer outputy(n) as per Eq. (2.12) and use this

output for error calculation as per Eq (2.13). Furthermore, compute the fitness function (MSE)

for grasshoppers as given below:

MSE (X)=% X eX(n) (5.17)

1
S n=1
Step 5: If the count has reached the threshold value then perform LF on all grasshoppers using

Eq. (5.13) to get X else update the grasshoppers using Eq. (5.7) to obtain X" .

Step 6: Evaluate the fitness of all newly generated grasshoppers F.""and choose the better

grasshopper at each population index using greedy selection operator of DE.
Step 6: Update the target grasshopper and its fitness.

Step 7: If there is no improvement in (in fitness of target grasshopper) MSE value or
improvement in MSE is less some predefined value then increment the count by 1 else set count

equal to zero.
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Step 8: If the total iterations are reached then report the target grasshopper X ... and stop else

best

continue repeating the steps 4-7.

5.6 Simulation Experiments
The simulations have been performed on PC with 8 GB RAM in a MATLAB R2013a.

5.6.1 Channels considered for simultions

The performance of a modified grasshopper optimization algorithms has been evaluated
over four wireless communication channels. The corresponding channels are taken from the
Refs. [11,19,37,122,137,165-167] and can be written as :

H,(2) =0.209+0.9952 " +0.209z>  :Channel 1
H,(2) =0.260+0.930z"+0.260z*  :Channel 2
H,(z) =0.304+0.903z27+0.304z>  :Channel 3
H,(z) =0.341+0.876z* +0.341z>  :Channel 4 (5.18)

Furthermore, the following nonlinearities have been considered to introduce the non-linear
distortion to the channel output and are taken from the references [19,37,137,165,167].

b(n) =t(n) - NL=0
b(n) = t(n)+0.2 t*(n)-0.1t*(n)  NL=1
b(n) =t(n)+0.2t*(n) - 0.1t*(n) +0.5cos(xzt(n)) . NL=2 (5.19)

5.6.2 Sensitivity Analysis of the MGOA algorithm

In this section, simulation experiments are performed to analyze the sensitivity of
MGOA to its key parameters. The non-linear channel with channel 2 and nonlinearity NL=1 is
taken for simulation. The simulations are conducted to choose optimal values for number of

grasshoppers (N), index of Levy distribution (£), data block size (S) and number of taps of

equalizer (M) and the corresponding results are provided in Tables 5.1 to 5.4 and Figs. 5.2 to
5.5.

The effect of number of grasshopper on MSE is analysed by varying N from 5 to 35 and
Fig. 5.2 and Table 5.1 shows that N=25 is sufficient to achieve optimum results. Moreover, Fig

5.3 and Table 5.2 illustrates that there is not significant reduction in MSE for values of the block
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size more than 200. It is clear from Fig 5.4 and Table 5.3 that the minimum MSE is obtained
when number of taps are 4. Finally the index of Levy distribution is varied from 0.25 to 2 and
Fig 5.5 and Table 5.4 depicts that gequal to 0.5 provides the least MSE.

Table 5. 1 Effect of number of grasshoppers (N ) on MSE

Population Size  MSE
(N) Best Worst Median Mean Std. Dev.
5 0.0020 0.6169 0.0577 0.1546 0.1731
10 5.5532e-04 0.1310 0.0018 0.0098 0.0261
15 4.3734e-04 0.0018 7.8300e-04 8.4163e-04 3.2790e-04
20 3.9065e-04 0.0012 4,6128e-04 5.0282e-04 1.4760e-04
25 3.6636e-04 7.1749e-04 4.2504e-04 4.4895e-04 8.8639e-05
30 3.5731e-04 5.6167e-04 4,3886e-04 4.4066e-04 5.1189e-05
35 3.6030e-04 5.0784e-04 4,3951e-04s 4.3621e-04 4,3033e-05
-5 T T T T T -22 T T T T T T T T
[
'\
SUIAY 4 2R
151 “\\ 4 26f “.‘
g g |\
W 20 % {8
%)) AN 0 1
= S = ‘l‘
25+ \‘\\ B 30+ ‘\‘
N
30+ \.\ 32+ \\\
~~~~~ O - \\=
35 r r r r r 34 r r L r r r r r
5 10 15 20 25 30 50 100 150 200 250 300 350 400 450 500
Population size (N) Block size (S)

Fig. 5. 2. Effect of number of grasshoppers (N) on MSE

Table 5. 2 Effect for variation block size (S)

Fig. 5. 3. Effect for variation of data block size (S)

Block Size
MSE
(S)
Best Worst Median Mean Std. Dev.
50 0.0051 0.0065 0.0055 0.0055 3.3926e-04
100 5.9412e-04 0.0011 7.2123e-04  7.4893e-04 1.3049e-04
200 3.6806e-04 7.1083e-04 4.4784e-04 4.5785e-04 7.7255e-05
500 3.6626e-04 6.1446e-04 4.3333e-04  4.5026e-04 6.6393e-05
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Table 5. 3 Effect of variation of M

No. of taps MSE

(M) Best Worst Median Mean Std. Dev.

2 0.0010 0.0011 0.0010 0.0010 1.0435e-05
4 3.6806e-04  7.1083e-04  4.4784e-04  4.5785e-04  7.7255e-05
6 3.7767e-04  8.1960e-04  5.0993e-04  5.3623e-04  1.0880e-04
8 3.9989e-04  0.0016 7.7578e-04  8.5611e-04  3.2463e-04
10 4.0619e-04  0.0015 6.9439%-04  7.5745e-04  2.5878e-04
Table 5. 4 Effect of variation of Lévy index (/)

Lévy index MSE

(B) Best Worst Median Mean Std. Dev.
0.25 3.6401e-04  5.8347e-04  4.4080e-04  4.5634e-04  6.4029e-05
0.5 3.5522e-04  7.5049e-04  4.2501e-04  4.4102e-04  8.4777e-05
0.75 3.7274e-04  9.1180e-04  5.3361e-04  5.4136e-04  1.3805e-04
1 4.2071e-04  8.8191e-04  5.4122e-04  5.8007e-04  1.3233e-04
1.25 4.1063e-04  0.0013 5.8038e-04  6.0923e-04  1.6423e-04
15 4.0266e-04  0.0010 5.7165e-04  6.0607e-04  1.5145e-04
1.75 4.1016e-04  0.0016 6.3696e-04  7.0080e-04  2.3311e-04
2 4.0771e-04  9.5361e-04  6.0821e-04  6.3288e-04  1.5455e-04
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5.6.3 Performance Analysis of MGOA algorithm for channel Equalization

The performance of the proposed modified grasshopper optimization algorithm has been
compared with GOA, sine cosine algorithm (SCA) and rat swarm optimizer (RSO) [168]
algorithm for equalization of non-linear wireless communication channels. The training process
of FLANN based non-linear equalizer has been performed for 500 iterations with block size of
200. Furthermore, to analyse the performance of modified grasshopper optimization algorithm
for equalization of non-linear channels, the signal considered for transmission takes values
either +1 or -1 with uniform distribution. The signal to noise ratio considered for AWGN
introduced to wireless channel output is 20 dB. Table 5.5 provides the parameters taken for
simulations.

5.6.3.1 MSE performance

In this section, the learning performance of the algorithms has been demonstrated over

4 non-linear wireless communication channels and results have been averaged over 30 runs.

Table 5.5 Simulation Parameters

Algorithm Parameter Value
MGOA Population size (N ) 25
Index of Lévy distribution 0.5
GOA Population size (N ) 25
MFO Population size (N ) 25
Random number (t) [-1,1]
b 1
SCA Population size (N ) 25
r rand
r 2*pi*rand
rs 2*rand
ra rand
a 2

Non-linearity 1 (NL=1)

To analyse the MSE performance, this case considers a non-liner distortion from the
non-linearity NL=1 (Eqg. (33)) and the corresponding MSE curves are shown in Fig. 5.6. As
evident from this figure, MGOA provides the lesser MSE and faster convergence over GOA,

SCA and RSO algorithm. Moreover, MSE results in Table 5.6 shows the equalization capability
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of MGO based equalizer. Box plot diagrams [139] are used to show the distribution of data and
the MSE box plots in Fig 5.7. confirms the superiority of MGOA from least values of the

median and interquartile range achieved by it.

Table 5. 6 MSE results with non-linearity NL=1 for all four communication channels

Channel Algorithms MSE
Best Worst Mean SD
Channell  MGOA 8.0652e-05 1.4920e-04 1.0236e-04 1.5904e-05
GOA 8.4487e-05 7.0463e-04 2.0843e-04 1.1986e-04
SCA 2.1634e-04  0.0027 6.6597e-04  5.1216e-04
RSO 2.5196e-04  0.0124 0.0036 0.0037
Channel2  MGOA 3.5522e-04  7.5049e-04  4.4102e-04  8.4777e-05
GOA 5.0671e-04  0.0016 8.0838e-04 2.4882e-04
SCA 7.8778e-04  0.0031 1.4250e-03 6.0215e-04
RSO 8.6449-04  0.0217 0.0059 0.0059
Channel3  MGOA 0.0014 0.0021 0.0016 1.4391e-04
GOA 0.0016 0.0050 0.0025 8.4880e-04
SCA 0.0025 0.0099 0.0045 0.0019
RSO 0.0026 0.0407 0.0163 0.0119
Channel4  MGOA 0.0058 0.0082 0.0063 6.5229e-04
GOA 0.0059 0.0128 0.0086 0.0016
SCA 0.0079 0.0213 0.0141 0.0034
RSO 0.0094 0.1620 0.0422 0.0323

Non-linearity 2 (NL=2)

This case takes into consideration a severe non-linear scenario with non-linearity NL=2
. The MSE convergence curves of all the algorithms with non-linearity NL=2 for four different
non-linear channels is demonstrated in Fig. 5.8. This figure shows that MGOA escapes from
local optima offering a higher convergence speed. As a result of which MGOA is able to achieve
the lowest MSE among all the algorithms. Furthermore, MSE results in Table 5.7 validates the
efficiency of the MGOA based equalizer. Figs. 5.6 and 5.8 illustrate that an increase in non-

linearity (from NL=1 to NL=2) does not have any significant effect on the superiority of the
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proposed MGO when compared to others. Moreover, the MSE box plots in Fig. 5.9 further
validates the superiority of MGOA.

Table 5. 7 MSE results with non-linearity NL=2 for all four communication channels

Channel Algorithm MSE
Best Worst Mean SD
Channel 1 MGOA 0.0011 0.0024 0.0013 2.6125e-04
GOA 0.0011 0.0054 0.0023 0.0012
SCA 0.0021 0.0058 0.0039 9.9434e-04
RSO 0.0048 0.0394 0.0116 0.0076
Channel 2 MGOA 0.0032 0.0052 0.0039 5.1607e-04
GOA 0.0035 0.0132 0.0068 0.0025
SCA 0.0065 0.0169 0.0092 0.0025
RSO 0.0086 0.1002 0.0215 0.0200
Channel 3 MGOA 0.0124 0.0191 0.0143 0.0021
GOA 0.0127 0.0334 0.0206 0.0055
SCA 0.0177 0.0449 0.0283 0.0063
RSO 0.0270 0.1422 0.0571 0.0296
Channel 4 MGOA 0.0413 0.0549 0.0449 0.0029
GOA 0.0413 0.0820 0.0552 0.0099
SCA 0.0546 0.1294 0.0732 0.0158
RSO 0.0873 0.2280 0.1367 0.0332

Statistical Analysis:

In this section, a Wilcoxon’s rank-sum test [169] is conducted at 5% significance level
and corresponding p values are noted in Table 5.8. As can be noticed from results, p-values
obtained for competing algorithms are very much less than 0.05 which indicates the statistical
significance of the results obtained by MGOA based equalizer.
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Table 5. 8 Results of Wilcoxon rank-sum test for MSE results of Table 5.6 and Table 5.7

Channel Nonlinearity Algorithms
MGOA GOA SCA RSO
Channel 1 NL=1 N/A 1.6980e-08 3.0199%-11 3.0199%-11
NL=2 N/A 5.0912e-06 3.3384e-11 3.0199¢-11
Channel 2 NL=1 N/A 2.6099e-10 3.0199e-11 3.0199¢-11
NL=2 N/A 1.1023e-08 3.0199%-11 3.0199%-11
Channel 3 NL=1 N/A 1.6947e-09 3.0199%-11  3.0199%-11
NL=2 N/A 3.0103e-07 4.5043e-11 3.0199e-11
Channel 4 NL=1 N/A 7.7725e-09 3.3384e-11 3.0199e-11
NL=2 N/A 8.8411e-07 3.3384e-11 3.0199%-11
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5.6.3.2 BER performance

The BER performance of the proposed modified grasshopper optimization algorithm has

been evaluated in this section over 4 non-linear channels.
Non-linearity 1 (NL=1)

The effect of non-linearity NL=1 on the BER performance of MGO and other algorithms
is examined and plotted in Fig. 5.10. Approximately 1.25 dB improvement in SNR is achieved
by MGOA over GOA algorithm for channel 1 at BER of 1.117e-04 and more than 2 dB for the
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remaining algorithms. Moreover, MGOA provides similar BER performance for Channel 2,
Channel 3 and Channel 4.

Non-linearity 2 (NL=2)

Fig. 5.11 shows the effect of non-linear distortion from the non-linearity NL=2 on the
BER performance of all algorithms. As can be seen from Fig. 5.11(a) a gain of about 1.3 dB is
made by the MGOA when compared to the GOA and more than 2 dB in comparison with other
algorithms at a BER of 1.89e-04. Furthermore, Figs. 5.10 and 5.11 demonstrate that despite

increase in non-linearity from NL=1 to NL=2 MGOA is perfroming consistently.
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5.7 Conclusion
In this chapter, a Modified Grasshopper Optimization Algorithm (MGOA) is proposed

for equalization of non-linear wirless communication channels. The superiority of the proposed
MGOA based equalizer is illustrated over other metaheuristic algorithms such as GOA, SCA
and RSO . The simulation results on four non-linear channels demonstrate the efficiency of the
proposed MGOA algorithm in terms of BER and MSE. Furthermore, the statistical validity of

the results provided by MGOA is confirmed through Wilcoxon rank-sum test.
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Chapter 6

A neural network based approach for joint channel
estimation and equalization of Universal Filtered Multi-
Carrier (UFMC) System

6.1 Introduction

In this chapter, we have proposed a joint channel estimation and data detection for
Universal Filtered Multi-carrier (UFMC) system using deep feed-forward neural network. In
conventional universal filtered multicarrier system to recover the transmitted symbols, channel
estimation and data detection are carried out as a two different processes. However, the
conventional approaches involves the use of pilots for every frame. Furthermore, in the pilot
based channel estimation approach it requires to explicitly model the channel using the available
channel observations which may not be accurate always. To overcome these drawbacks, this
work proposes a joint channel estimation and data detection approach for UFMC using deep
neural network. The proposed approach provides better BER performance when compared to

existing methods.

6.2 Related Work:

Universal Filtered Multi-carrier (UFMC) system has been proposed in the year 2013
[170]. The benefits of Filter bank Multicarrier (FBMC) and orthogonal frequency division
multiplexing (OFDM) are integrated in UFMC [171]. The Ref. [172] contains comprehensive
comparison of UFMC, OFDM and FBMC . The pilot aided channel estimation for UFMC is
carried out in [171] using the conventional channel estimation methods used for channel
estimation in OFDM system. Furthermore, channel estimation under AWGN and Rayleigh
fading channel have been carried out in [173] for different QAM modulated signals. Moreover,
the channel estimation for power domain NOMA-UFMC have been performed in [174].
However, conventional channel estimation techniques involves estimation of channel
coefficients to recover the transmitted data. Therefore, the recent use of deep neural network

in wireless communication system by various researchers [175-179] motivated us to use neural
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network based approach for joint channel estimation and data detection in UFMC system.

6.3 Universal Filtered Multi-carrier (UFMC) System

Fig. 6.1 shows the system model for universal filtered multicarrier system. The
description of UFMC system in this section is taken from [180][172] [181]. In UFMC system,
B sub bands are used to divide the total available wireless channel bandwidth. If there are total
N subcarriers then each sub-band consist of N/B subcarriers. The data symbols which need to be
transmitted are first mapped to 4 QAM signal and then converted from serial to parallel form to
perform the IFFT operation. The output of IFFT block is given to FIR filter ¢i (i=1,2,3...... B).

The filtered output o; of i sub-band is given as follows [180]:

0,(n) =¢; *X;

=Lilci(m)*xi(n—m) n=012..,N+L-1 (6.1)
m=0
The filtered output of all B sub-bands is summed up as follows [180]:
B
r(n=>0(n (6.2)
i=1

Finally, the UFMC signal is transmitted through a wireless channel of impulse response h and

the received signal y is given by [180],

y(n) = r(n) () + () 63
OB [Zc “ j*h(n) +q(n) (64

Where h(n) denotes the channel impulse response and g(n) is noise

At the receiver, zero padding is done on the received UFMC signal to perform the 2N-point

FFT operation. The signal after performing 2N-point FFT operation is given by [180],

N+L-2 )
Y (k) =% > y(mye 2 g=0,1, ... 2N-1 (6.5)
m=0

If single tap channel is considered the Eq. (6.5) can be written as [180]:
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Y(n)= H(n)i )Zi(n)Ci(n)+Q(n) (6.6)

Where H(n) is 2N point FFT of h(n)

Q(n) is 2N point FFT of additive white Gaussian noise g(n)
)Zi (n) is the 2N point FFT of x;

After 2N-point FFT operation channel estimation is performed using the pilots and the

estimated channel coefficients are used to detect the data.

Data symbols QAM N-point Filter _
for sub-band 1 Mapper |~ SP ™ e PRSI (length L) Noise
Data symbols QAM N-point Filter l
for sub-band 2 Mapper || SW©P ™ yppr [ P0S (lengthL) | Channel %@7
Data symbols QAM N-point Filter /
for sub-band B Mapper | | SOP P ppr R PRSP (length L)
T
e |
ot l— .
Frequency Pilot —| [
. ] —] =] -
Recovered QAM Domain Extraction IN-Point EET . st
- «{PtoS |« per- 4 Channel | -Poin
Symbols Demapper . an annel
Esubclgrru_ar Estimation | & l—|
qualization
] - - Zer_o
- Padding

Fig. 6. 1 UFMC System [180][172]

6.4 Neural Networks

Neural networks are the supervised machine learning models and have demonstrated
interesting results in many engineering applications [22][23] [24]. The detailed description of
neural networks can be found in the Refs. [182][25][27]. The basic structure of deep neural

network used in this study is shown in Fig. 6.2.
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6.5 Neural Network based approach for joint channel estimation

and data detection in UFMC system

In multicarrier system to recover the transmitted symbols, channel estimation and data
detection are carried out as a two different processes. In traditional channel estimation
approaches such as least square (LS) and Minimum mean square error (MMSE) estimation, the
transmitted symbols are recovered by using the estimates of the channel coefficients. However,
the process of channel estimation need the transmission of pilots along with the data. In this
study, the joint channel estimation and data detection are carried out jointly using the deep neural
network. The deep neural network is trained offline with channel observations as training data
and after completion of training the trained model is utilized directly to detect the transmitted
symbols. Fig. 6.2 shows the proposed approach for joint channel estimation and data detection
in UFMC system.

During the training process of deep neural network, we have used Mean square error

(MSE) as the cost function and which is given as follows:

MSE =%i(x M- x(mf (6.8)

=1

Where X (n) denotes the estimate of the transmitted symbol recovered by the neural network

and X (n) is the actual transmitted symbol.

After completion of training the neural network model is deployed for data detection. It
is noted that once the training process of DNN gets completed it does not need the training

symbols.
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Fig. 6. 2 Neural Network based approach for joint channel estimation and signal detection in
UFMC system

6.6 Simulation Results

In order demonstrate the performance of the proposed approach for UFMC, an extensive
simulation experiments have been performed. The channel model considered for simulations in
this study is Rayleigh fading channel. The transmitted symbols are with 4 QAM modulation
scheme. The data obtained from the channel observations have been used to train the deep neural
network. The BER performance of the proposed approach have been compared with

conventional channel estimation approaches i.e. LS and MMSE.

The fig. 6.3 shows that BER performance varies with SNR used during training. As can

be seen from the results the SNR of 8 dB during training provides the better BER performance.
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The performance of proposed approach is superior when compared to LS and MMSE
based approach which can be confirmed from the Fig, 6.4 and Fig. 6.5. Furthermore, when the
number of taps of channel increases the BER degrades for all the approaches which can be
confirmed from Fig. 6.5. For this channel also proposed approach is providing the significantly

better performance.

1.2 T T T T T T T T T

10 SNR 8 dB ||
SNR 4 dB
-1.3

10 - A

-1.4

107+ B

BER
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10'1.7 L |
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Fig 6.3 BER performance when DNN is trained at different SNR

0
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Fig. 6.4 BER performance for Rayleigh fading channel with 5 tap:
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6.7 Conclusion

In this chapter a neural network based approach have been proposed for joint channel
estimation and data detection in UFMC system. The simulations confirmed that the proposed
approach performs better than the existing methods. In future it is worth to investigate the
performance of advanced versions of deep neural networks such as convolutional neural
network for data detection in UFMC.
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Chapter 7

Conclusions and Future Scope

7.1 Conclusions

The chapter wise conclusion of this thesis is summurised as follows:

In Chapter 1, introduction to the channel equalization in a wireless communication

system, motivation, and contributions of the thesis have been explained.

In Chapter 2, basic system model of non-linear channel equalization is provided along
with necessary mathematical equations. Furthermore, introduction about machine learning is
given by explaining the basic concepts related to the neural networks. Finally, overview of
metaheuristic algorithms and comprehensive review of the literature available in the area of

channel equalization is also have been discussed.

In Chapter 3, a scheme has been proposed for training the Functional link artificial
neural network based non-linear channel equalizer by using Cuckoo Search Algorithm (CSA)..
Three non-linear channels were taken for simulations to validate the superiority of the CSA
based training scheme and the results have been compared with recent and well-established
algorithms. The simulations proved that CSA based training method offers improved
performance in terms of MSE and BER when compared to existing algorithms. The robustness
of the cuckoo search algorithm (CSA) based training scheme has been shown by considering
the BER performance in a burst error scenario and it is observed that the scheme significantly
outperforms the compared algorithms by effectively handling the burst errors. The performance
of the proposed scheme has been validated for a wide range of signal-to-noise ratio (SNR 10 to
30 dB) values through simulation studies and it is observed that the scheme outperforms the
other algorithms in poor SNR conditions as well. Moreover, the Wilcoxon rank-sum test proved
that the proposed approach provided statistically significant results in comparison with

competing approaches.
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An efficient JAYA algorithm with Levy flight (JAYALF) is proposed in Chapter 4. To
evaluate the performance of the JAYALF algorithm for non-linear channel equalization, three
non-linear channels were taken for simulations. The simulation studies showed that JAYALF
based equalizer provides superior performance than other equalizers in terms of convergence
speed, steady-state MSE and BER. Finally, statistical test confirmed that the proposed algorithm

provided statistically significant results in comparison with competing approaches.

In Chapter 5, a Modified Grasshopper Optimization Algorithm (MGOA) is proposed
for equalization of wirless communication channels. The superiority of the proposed MGOA
based equalizer is illustrated over other metaheuristic algorithms. The simulation results on four
non-linear channels demonstrate the efficiency of the proposed MGOA algorithm in terms of
BER and MSE. Furthermore, the statistical validity of the results obtained from MGOA is
confirmed through Wilcoxon rank-sum test.

In Chapter 6 a neural network based approach have been proposed for joint channel
estimation and data detection in UFMC system. The simulations confirmed that the proposed

approach performs better than the existing methods.

7.2 Future Scope

The research work carried out in this thesis can be extended in the future in different
ways. The proposed metahheuristic algorithms and machine learning based approaches can
used for data detection in MIMO applications. The data colletced from the real wireless
communication channels can be used to train the channel equalizers to have a optimal
perfromance in the real time environment. Moreover, the proposed metahheuristic algorithms
and machine learning based approaches can be tested in the real-time environment using
available hardware platform. The proposed approaches can be applied to other problems in

wireless communication.
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