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ABSTRACT

Phase, polarization and intensity are the most important features of an electromagnetic beam
field, which helps us in understanding the field distribution across the beam, its interactions
with other fields and also with matter. Recently, optical beams with complex or inhomogeneous
phase and polarization topology are gaining much importance over beams with homogeneous
phase and polarization states, leading to a new branch of optics known as singular optics. It
deals with complex light beams that are either phase or polarization singular, which are referred
to as scalar and vector vortex modes respectively. The advent of laser technology paved the
path for generation of such complex light beams by modifying the cavity so as to generate
modes of desired phase and polarization. Later, many methods are reported on the generation
and study of the characteristics of such complex fields thereby hinting at possible applications.
In early 90’s, it was reported that beams with helical phase structure are associated with orbital
angular momentum of light which are in recent days finding applications in optical tweezing
and advanced optical communication via orbital angular momentum mode multiplexing.
Additionally, beams with inhomogeneous polarization states are found to be useful in

microscopy, data encoding, lithography and laser machining.

There are numerous active and passive methods proposed to generate phase and
polarization structured beams in order to address the stability and controllability of such fields
as well as aiming at various applications. Most of the methods use bulk optical setups, which
include complex micro-structured devices to generate complex optical beams that increase the
cost of experiments. One of the most convenient and cost-effective methods of generating such
fields is optical fibers. Optical fiber is an inhomogeneous, dielectric, cylindrical optical
waveguide whose eigen modes have spatially inhomogeneous polarization and are known as
cylindrical vector beams or zeroth order vector modes. These modes includes radial, azimuthal

and hybridly polarized vector modes.

In this thesis, we are devoted to generate and characterize such complex vector fields
using a few mode optical fiber by controlling the coupling conditions of fiber with input
Gaussian beam. Our method fully relies on precise control over coupling conditions and the
input state of polarization which has the potential to switch between various vector fields. We
begin the thesis with a brief introduction to phase and polarization structured beams with their
generation schemes and possible applications. Further, we analyze the wave propagation

mechanism in optical fibers with the help of Maxwell’s equations to understand the origin of

Vi



polarization inhomogeneity of the modes. Various vector modes in optical fiber are generated
and characterized using standard Stokes polarimetry. An attempt has been made to represent
linearly polarized modes of optical fiber and their combinational vector modes onto standard
and higher order Poincare sphere respectively. We have also generated polarization singular
beams that are a combination of Gaussian and vortex modes of orthogonal polarizations within
the fiber by selective excitation of modes. Complex polarization topologies such as lemon, star
and monstar are generated and also the formation of dipoles is studied. The behavior of

polarization singular beams under the action of half wave plate and cylindrical lens are studied.
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CHAPTER 1

Introduction

1.1 Introduction

Singular optics, the branch of optics that deals with light beams having complex phase
and polarization topology, is fast developing owing to its promising features and
fundamental nature of scientific interest [1]. Phase and polarization, in addition to
intensity are the skeleton of an electromagnetic beam field, which helps one in
understanding the properties of the field and also its interactions with itself and matter.
The complex nature of light beams leads to singular regions (undetermined state) across
the beams either in phase or polarization. Such beams are popularly known as vortex
beams and are classified as scalar and vector vortices depending on whether the
singularity is in phase or in polarization respectively [2,3]. Generally, scalar vortices or
phase singularities can be observed in null intensity regions of higher order Laguerre-
Gaussian (LG) and Bessel-Gaussian (BG) beams with annular intensity profile. These
beams are usually homogeneously polarized and are often referred to as optical vortex
beams (OVBs), which have phase circulation of 0 to 27 around the center of the beam
resulting from the helicity of wave front and are generally known as phase vortices. The
vortex nature was first identified by Nye in electromagnetic waves, which is analogous
to dislocations in crystals [4]. Later, Allen et al. reported that the phase singularity of
these beams has a direct connection with their orbital angular momentum (OAM) which
kickstarted the massive research in the respective areas for a better understanding of the

nature of beams and their possible applications [5,6].

On the other hand, vector vortices are beams with similar intensity profile as that
of OVBs but with spatial inhomogeneous polarization and are known as cylindrical
vector beams (CVBs) due to their cylindrically symmetric polarization distribution [7].
Radial and azimuthal vector beams are popularly known CVBs, which are the solutions
to vector wave equation and have exceptional focusing properties when focused under
high numerical aperture lens [8]. This unique sharp focusing feature enables the beams
to be useful in laser machining, lithography, and also in the generation of optical needles
[9,10]. Additionally, CVBs along with OVBs are also finding applications in high

resolution imaging, optical communications, optical tweezers, and also in entanglement
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[11-15]. With a wide spectrum of applications, these beams have drawn the interest of

researchers for controlled generation and manipulation of complex light beams.

The generation of these beams is mainly classified into two types, active and
passive. In active methods, CVBs are directly generated from laser output by modifying
the cavity of laser using intra-cavity optical elements such as axial birefringent material
like calcite [16], conical axicon [17], Brewster angle reflector [18,19], and polarization
sensitive cavity mirrors [20]. In passive methods, the fundamental Gaussian mode from
the laser is modified using special optical devices outside the cavity to generate OVBs
and CVBs. Computer generated holograms and astigmatic mode converters are simple
and cost effective free-space methods of generating OVBs. In computer generated
holograms, a fork like pattern is printed onto a transparent substrate, on passing through
which a Gaussian beam gets diffracted and converts into a helically phased LG beam in
first order diffraction pattern. Whereas, the astigmatic mode converters (a pair of
cylindrical lenses) impart an additional phase to a Hermite Gaussian (HG) beam that pass
through them, resulting in generation of an LG beam [21,22]. Nowadays, spiral phase
plate (SPP) and liquid crystal on silicon based spatial light modulator (LC0S-SLM) are
being used to generate OVBs. SPP is a micro structured optical element with an inscribed
step that introduces azimuthal phase dependence to the incoming plane phased beam
while SLM is a voltage controlled device onto which the phase of desired mode can be
loaded using a computer, which when illuminated with laser, generates a mode of desired
phase [23,24]. These methods are useful in generating OVBs only i.e., the scalar vortex

beams with uniform polarization distribution.

Interferometric technique is useful in generating CVBs by combining two modes
of orthogonal polarization [25]. In recent days, micro-structured optical devices such as
g-plates serves the needs of generating various vector modes including some novel vector
fields [26,27]. Alternatively, the methods that involve optical fibers can directly generate
CVBs by selective excitation of inherent waveguide modes [28,29]. The flexibility in
generation of nearly degenerate guiding modes with a precise control over coupling
conditions makes optical fibers one of the widely used method to generate and study the
characteristics of CVBs. Moreover, optical fibers provide an opportunity to explore mode
mixing phenomenon, which is quite common and interesting that helps in understanding
the evolution of modes with scalar and vector singularities. Optical fiber is an

inhomogeneous cylindrical dielectric waveguide in which the eigen modes are the

2
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solutions of vector wave equation. These modes have inhomogeneous spatial polarization

and are generally referred to as zeroth order vector modes which include radially
polarized TM,,, azimuthally polarized TE,,and hybridly polarized HEZ2%¢¢™ [29]. All

these modes can be excited in optical fiber by precise control over coupling conditions.
1.1.1 Review on fiber based vortex beam generation

Exploiting the selective mode excitation in optical fibers, many methods were proposed
to generate radial, azimuthal and hybrid vector beams. VVolpe and Petrov demonstrated a
method to generate all possible vector modes by launching first order LG beam into the
optical fiber and efficiently converted the arbitrary vector beams to pure CVBs using true
polarization rotator [30]. Later, T. Grosjean et al. using a pi-phase discontinuity element
designed a stable system to generate vector beams in few mode fiber (FMF) with
remarkable purity of polarization state [31]. They have also demonstrated an all-fiber
method to generate radial and other polarized beams using a combination of mono-mode
and bi-mode optical fiber [32]. Wei Gao et al. used multimode liquid core optical fiber
for the same and also verified the existence of phase vortices in the generated fields [33].
Recently, a group led by S. Ramachandran designed and fabricated a ring core optical
fiber which supports the generation and propagation of donut shaped vector beams for
long distances without much distortion, which can find applications in creating a new
degrees of freedom for fiber optic communication [34]. The group also demonstrated the
generation of modes that carry OAM by exciting the combination of hybrid modes in
specially fabricated fiber [35] as well as a method for generating Bessel like beams in
higher order linearly polarized modes of optical fiber [36]. A new variety of hybridly
polarized beams that have different state of polarization (SOP) on the beam cross section
have been recently reported to be generated from a spun fiber, which are named Hybrid-
Azimuthal-Radially Polarized modes, HARP in short [37]. The generation and switching
between various vector modes has been demonstrated by N.K. Vishwanathan and his co-
workers using an optical fiber that supports two modes [38,39]. They have also
demonstrated the generation of propagation invariant Bessel beams and dark hollow
beams using a micro axicon etched on tip of a fiber [40,41]. Special fibers such as
Polarization maintaining optical fibers and photonic crystal fibers are also being used to
generate OAM beams, which find applications in sensing and imaging [42-44]. Recently,

a micro sized SPP was fabricated onto the fiber tip by focused ion beam which can
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efficiently generate the vortex beam [45]. Fused fiber couplers, which are based on mode
selective coupling are becoming popular in recent years as the CVBs can be generated

using them with good modal purity and stability [46,47].

In this thesis, we demonstrate fiber based method for controlled generation of
various vector modes in addition to well-known zeroth order vector modes. The
generation of these vector modes is shown to be the inherent combination of first order
linearly polarized modes (LP;,) with orthogonal polarizations. Stokes polarimetry is used
as key characterization tool for the analysis of generated modes by obtaining their spatial
polarization distribution and ellipse orientation maps [48]. We have also made a
representation of these modes on higher order Poincare sphere which is analogous to that
proposed by Milione [49] and justify their positions based on the position of LP,; modes
on standard Poincare sphere, that combine to generate respective vector modes. Finally,
we have experimentally demonstrated controlled generation of C-point polarization
singularities in fibers and studied the role of half wave plate and a cylindrical lens in

switching C-points from lemon to star and vice-versa.
1.2 Motivation

In view of flexibility in operation and having CVBs as inherent waveguide modes, optical
fibers are preferable over bulk optical setups that include devices with complex structural
design. Moreover, the capability of these modes to provide additional degrees of freedom
for optical communication in fiber networks made them most prominent and impelled the
scientific community in the direction of controllable generation and manipulation of these
beams in optical fibers. Recently, all-fiber methods, and fused fiber couplers for
generating CVBs are becoming very popular as they can be directly deployed in optical
communication networks [46,47,50]. Additionally, an optical fiber can exhibit a rich
variety of polarization singularities as a result of inherent combination of modes with
plane (Gaussian mode) and helical (vortex mode) wave fronts with orthogonal
polarizations, which is useful in understanding fundamental aspects of polarization
singular structures. There has been a limited research which has investigated the complex
polarization topologies such as lemon, star and monstar in optical fiber by exploiting

mode combinations and controlled excitations [51,52].

Keeping all these facts in mind, we aimed at controlled generation of various vector

modes by taking advantage of the inherent combination of a new set of LP,; modes with

4
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diagonal and anti-diagonal polarizations. We have also demonstrated the generation of
isolated C-points, dipoles in optical fibers and studied the effect of half wave plate and

cylindrical lens in conversion of C-points.

1.3 Objectives

Keeping in view the challenges of polarization and spatial mode instability, we framed

the objectives of our research work as follows

» To generate and study the modal behavior of various possible spatial modes of
few mode optical fiber and investigate the phase singularities using two-beam
interferometry.

» To generate and characterize possible vector modes and to investigate a
convenient way of switching between them by controlling input SOP and/or
coupling conditions.

» To generate complex beam fields such as isolated C-points and dipoles in few
mode fibers and investigate their behavior with respect to input SOP and a

convenient method of switching between them.
1.4 Organization of thesis

A schematic representation of organization of the thesis is shown in Fig. 1.1. Chapter 1
and chapter 2 are not included in the figure as they cover the introduction and theory
related to the chosen problem. The key results and studies carried out in each chapter are
clearly portrayed in Fig. 1.1 for quick understanding of content of the thesis. The thesis
has been organized in seven chapters as follows.

CHAPTER 1

This chapter covers the introduction to scalar and vector vortex modes and their
generation methods including few mode optical fiber. A brief review of generating such
beams in fibers is presented including literature survey, motivation and objectives of the

current research followed by organization of the thesis.
CHAPTER 2

In this chapter, we present theoretical aspects of wave propagation in optical fiber by
deriving vector wave equation using Maxwell’s equations and hence discuss the vector

modes of optical fibers. We also discuss the formation of scalar modes by considering

5
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weakly guiding approximation and hence establish a relation between scalar and vector

modes.

Chapter Key results Studies

» Generation of CVBs

» Switching between phase vortices

» Singularities in higher order LP
modes.

CHAPTER 3 —<

\. Singularities in LPy, & LP,, modes

( —
= > Generation of clockwise & counter
; clockwise spiral vector beams
CHAPTER 4 _< » Switching between spiral vector
beams.

Clockwise & Counter clockwise
. Spiral Vector Beams
r

» Generation of vector modes
» Poincare sphere representation.

CHAPTER 5 <

Poincare Sphere representation of
vector modes
\.
f
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CHAPTER 3
This chapter includes the preliminary experimental results of excitation of various modes
and their characterization using two beam interferometry. In this chapter, we focus on the

phase singular aspects of fiber modal fields. Using two fibers of different VV-numbers, we

generated vector modes and first four linearly polarized modes by changing the coupling
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of input Gaussian beam with optical fiber and the generated modes are examined for the

presence of singularities by forming interferograms with a reference Gaussian beam.
CHAPTER 4

In this chapter, the generation of spiral vector beams is demonstrated in a step-index few
mode optical fiber by controlling the input SOP and coupling conditions. The spiral
vector beams with clockwise and counter clockwise spiral polarization are generated and
switching between them is demonstrated. Formation of these beams in the fiber is shown
to be a combination of orthogonal linearly polarized modes with diagonal and anti-
diagonal polarization vectors. The orthogonal LP;; modes are generated for orthogonal
input linear polarization and their resultant spiral vector beam is generated for an
intermediate input SOP of the orthogonal states, controlled by a half wave plate. The
generated beams are analyzed by obtaining spatial polarization and ellipse orientation

maps using Stokes polarimetry.
CHAPTER 5

In this chapter, by extending the basis of diagonal and anti-diagonal linearly polarized
modes, a class of four vector vortex modes are generated in a similar manner to that of
spiral vector beams of the previous chapter. The generation of these vector modes is
demonstrated experimentally with a supporting theory, which relies on inherent
combination of orthogonal LP,; modes. The possible combinations of LP;; modes are
governed by certain necessary criteria i.e., the combining modes must be orthogonal in
polarization and in spatial profile. The necessity of representing vector vortex modes on
Poincare sphere is discussed. All the linearly polarized modes are located onto a standard
Poincare sphere. Whereas, the inhomogeneously polarized modes, resulted from the
combination of orthogonal LP;; modes, are accommodated on a pair of higher order
Poincare sphere (HOPS). This pair of HOPS serves the need for representation of all
possible vector vortex modes of few mode optical fiber. The location of these vector
modes on HOPS is justified with the location of LP;; modes on standard Poincare sphere

that combine to generate respective vector modes.
CHAPTER 6

With a brief introduction to polarization singularities, this chapter discusses the

experimental generation of C-points (star, lemon, and monstar) in a step-index few mode
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optical fiber. Isolated C-points, and dipoles are generated by controlled launching of light

into the fiber. The action of a half wave plate and cylindrical lens on conversion of C-

points is studied. 2z- symmetric topologies such as radial, circulation, and saddle are

experimentally realized in the Stokes fields, derived from lemon and star topologies and

also in the ellipse orientation fields of vector vortex modes.

CHAPTER 7

This chapter summarizes the experimental results presented in previous chapters and

discusses the achievements as well as conclusions. We also present the scope of future

research with the achievements of current research work.
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CHAPTER 2
Modes of Optical Fiber

In this chapter, we discuss the fundamental aspects of modes of optical fiber beginning
from the Maxwell’s equations for an optical waveguide. The basic electromagnetic vector
wave equation that corresponds to light propagation in optical fiber is derived and
general solutions are discussed. The structural conditions of the optical fiber that are
responsible for the formation of vector modes of complex spatial polarization are
discussed. The vector wave equation is reduced to scalar wave equation by introducing
the weakly guiding approximation which is the practical case and accounts for an
understanding of the modal behavior of optical fiber in terms of scalar modes. The
linearly polarized modal solutions under this approximation are discussed and the

relation between vector modes and scalar modes is established.

2.1 Introduction

Optical fiber is a cylindrical dielectric optical wave guide with a uniform refractive index
core (n.,) surrounded by a cladding of slightly lower uniform refractive index (n.;)
which is assumed to be unbounded [1-3]. Thus, the variation in the refractive index at the
core-clad interface is a step or jump discontinuity. Optical fibers are translationally
invariant optical waveguides where the refractive index does not change along the axis
of propagation (z) and only transverse profile of the refractive index (n(r) = n(x, y))
describes the characteristic properties of the optical fiber. For an optical fiber, the
arbitrary refractive index profile is defined as [1]

n(r) = ngll — 2Af ()] 1)

Where r is the radial coordinate, f(r) describe the shape of the refractive index profile
and A is the profile height or the relative refractive index of core and cladding is defined

as

2 _
1{1_"_51}5M @
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For step profile of refractive index, f(r) = 0 in the core and f(r) = 1 in the cladding.
Hence, from eq. (1), the step profile of refractive index for an optical fiber with core

radius p is

n(r) = ne, for 0<r<p 3)

n(r) =ngy for p <r<om

N

0——r

Fig. 2.1 Step profile of refractive index with nco>n¢, and schematic diagram of optical fiber with
Cartesian (x,y,z) and polar (r,¢,z) coordinates, p is the radius of core and neo, Nc are the refractive

indices of core and cladding, the axis of fiber is along the z-axis.

The schematic of step profile and an optical fiber is shown in Fig. 2.1. The guided
modes of step-index optical fiber have exact analytical solutions for circularly symmetric

and elliptical fibers which can be derived from source-free Maxwell’s equations [1].
2.2 Vector wave equation

The spatial dependence of the electric field E(x, y, z) and the magnetic field H(x, y, z) of
an optical waveguide is determined by Maxwell’s equations. The field vectors are
assumed to have an implicit time dependence exp(—iwt). The dielectric constant or

relative permittivity is related to the refractive index n(x,y, z) by 5/50 = n?, where ¢

and ¢, are the electric permittivities of the medium and free-space respectively. For

dielectrics (non-magnetic materials) the magnetic permeability p is close to free space

13
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permeability i.e., i =po. Under these conditions, the source-free Maxwell’s equations

with current density J=0 and charge density p=0 are expressible in the form [4]

VXE =i (‘;—:)1/ * kH (4(a))
VxH = —i (u—)l/ ? kn?E (4(b))
V.(n%E) = 0 (4()
V.H=0 (4(d))

Where the symbols in bold letters represents vector quantities, k = 27" is the free-space

wavenumber, and A4 is the wavelength of light in free space. V x and V. are the curl and
divergence operators. The electric and magnetic fields of translationally invariant optical
fiber are expressible as a superposition of fields with the separable form [5]

E(x,y,z) = e(x,y)exp(iBz); H(x,y,z) = h(x, y)exp(ifz) (%)

where S is the propagation constant. The corresponding forms for the cylindrical polar

coordinates are

E(r,¢,2) = e(r, ¢p)exp(iBz); H(r,$,2) = h(r, ¢)exp(ifz) (6)

Decomposing these fields into longitudinal and transverse components, parallel to and

orthogonal to the waveguide axis, respectively and denoting by subscripts z and t, we get
E = (e; + e,2)exp(ifz), H = (h; + h,2)exp(ifz) @)

Where Z is the unit vector parallel to the waveguide axis. On substituting the field
representations of Equ. (7) into source-free Maxwell’s equations i.e., Equ. (4), and

compare longitudinal and transverse components, we get

Uo\Y2 1 . 3
et=—(g) 2 X {Bh, + 1V,h,} (8(@))
1/21
h, = (i) =2 X (Be, + iTye,} (8(b))
Ho
(B\Y? 1
e, = L(g) 2.V, xR, (8(c)
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1/21
h, = —i (u) 2.V, X e, 8(d)

If we eliminate e, or h, from egs. 8(a) and 8(b), the transverse fields in terms of

longitudinal fields can be expressed as [5]

: 1/2
- kznzl . { Ve, — (’;_:) k2 X Vthz} (9(a))

hy = — V,h +<£°>1/2k2A><V
t — kznz _,82 B t'tz ‘uO n-z tez (g(b))

From the above equation it is clear that by knowing longitudinal components, we can
determine the transverse components that simplifies the complexity in solving the vector
wave equation. Eliminating either the electric or magnetic fields from Maxwell’s

equations (4(a)) and (4(b)), we obtain the homogeneous vector wave equation [1].

{V? + n?k?}E = —V(E,.V,Inn?) (10(a))
{V? + n%k?}H = (V X H) X V. Inn? (10(b))
From Equ. (7), based on the fields with separable form, Equ. (10) becomes
(V.2 + n?k? — B?}(e; + e,2) = —(V, + if2)e;,.V, Inn? (11(a))
{V.? + n?k? — B?}(h; + h,2) = {(V; + iB2) X h;} x V;Inn? (11(b))

Further, if we consider Cartesian field components, the longitudinal and transverse

components of above equation are given by

{V.? + n?k? — B?}e, = —V.(e..V; Inn?) (12(a))
(V.2 + n?k? — B%}e, = —ife;.V;Inn? (12(b))
{V.? + n?k? — B?}h; = (V; X hy) X V; Inn? (12(c))
{V.? + n?k? — B?}h, = (V;h, — iBh,).V, Inn? (12(d))

Where e; = e, X + e,y and h, = h,X + h,J.
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The vector wave equation is the reformulation of Maxwell’s equations for an
arbitrary profile shape. These equations contain all the necessary information to
determine the spatial dependence of the fields everywhere in the waveguide. The term
involving V,Inn? in Equ. (11) and Equ. (12) couple various field components. The
polarization phenomena due to the structure of the waveguide are determined by these

terms on account of which the modes acquire unique complex polarization behavior [1].

Generally, for finding the solutions of step-profile waveguides, Equ. (11) is
solved in regions of core and cladding, where V, Inn? vanishes and then by using the
boundary conditions of Maxwell’s equations, the field amplitudes can be determined in
the core-clad interface region where V, Inn? # 0. As V, Inn? = 0 in the homogeneous
core and clad regions, the vector wave equation, Equ. (11) reduces to scalar wave

equation of the form
(V.2 +n?k? - B2J¥ = 0 (13)

Where W represents either e, or h,, as it is sufficient to solve the equation for longitudinal
components from which the transverse components can be calculated using Equ. (9). The
step profile can be regarded as a special case of graded profile where all the grading
occurs at a single interface. Thus, the step profile has the greatest influence on the

polarization behavior of the fields.

To facilitate the description of the modal fields, dimensionless modal parameters U and

W for the core and cladding can be introduced and are given by
U=plk?nZ, —pHY?;, W =p(B*—k*nZ)'/? (14(a))
and these parameters are related to the normalized frequency V as
V2=U%?4+Ww? (14(b))
For core and cladding regions of step-profile optical fiber, Equ. (13) can be written as [1]

2 19 1 92
—_ - 2 = < 15(a
{aR2+RaR+R26¢2+U}W 0 for 0<R<1 (15(a))

2 10 1 9°
— i _wely o 15(b
{aRZ Ror TR 942 W}‘P 0 for 1<R<o  (15(b)
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Where R = r/p is the normalized radius. The separable solutions for the above equation
that are bounded everywhere are given by

cos(vqb)}

Lp(r’ ¢) = qJ(r) {sin(vqb)

(16)

Y(r) is the solution in terms of Bessel’s functions of first and second kind in core and
cladding respectively. Thus, the solutions are J,,(UR)cos(v¢) or J,(UR)sin(vg) in the
core and K, (WR)cos(vg) or K,(WR)sin(vg) in the cladding respectively.

To construct the fields, we first choose the longitudinal components which are continuous

across the interface

2L UR) Jy»(UR)
. — 17
K,(WR) U(WR)

e = Ay @) he =B o gu(#) for 1<R <o (17(0)

Where A and B are constants and f,,(¢) and g, (¢) are either sin(v¢) or cos(v¢). The
dependence can be derived from the transverse components because each transverse
component can depend on either £, (¢) or g, (¢) but not both. The transverse components

can be written from Equ. (9) as

er =

i gle de, (y0>1/2 k oh,
kznz — g2 | or & r ¢

. i B de, (@)UZkahz
¢ " k2 —pg2\rap \e, ar

- i oh, (eo)l/z kn? de,
T_kznz—ﬁzﬁar m r 0¢

- i ﬁahz_l_(eo)l/zk , de,
¢ = k2nz — g2 |7 9¢ " ar

(18)

From the above equations it is clear that the derivative of f,, or g, appear in the term %.

If we definef,, = sin(v¢), we should haveg, = cos(v¢), so that e,is a function of
sin(v¢) but not a combination of sin(v¢) and cos(v¢). Similarly, the other combination
can be f, =cos(vg)and g, = —sin(v¢p). Hence, there are only two possible

combinations given below. The first combination results in even modes, symmetric with
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respect to x-axis and the second combination results in odd modes, symmetric with

respect to y-axis.

_ (cos(v) _ (—sin(v) even modes
fo(@®) = {sin(v¢>)} and g,(¢) = { cos(vg) } odd modes (19)

The eigen value equation can be obtained by imposing the boundary conditions that the
tangential fields are continuous at interfaces. The eigen value equation for the step-index

fiber is

{J{,(U) L kW) }{/;(U) L na _Kiw) } _ ( vB )2< 4 )4 20)
u,U) WK,W)) (U, (U) n WK,(W) kne,/ \UW

This equation has discrete solutions giving the values of U or equivalently the discrete
values of S as they are related. These solutions depend on v, the core-clad refractive

indices and the V-parameter.
2.3 Vector modes

The modes which are the solutions of the eigen value equation (20) are strongly
dependent on v. Here, we discuss two cases v = 0 and v # 0 that leads to generation of

various vector modes.
2.3.1 Transverse electric (TE) and Transverse magnetic (TM) modes

If we consider v = 0, equation (19) have two sets of values i.e., fo(¢) =1, go(¢p) =0
and fy(¢) = 0 and go(¢) = 1. On substituting f,(¢) = 1, go(¢p) = 0 in Equ. (17) and
Equ. (18), the components h, = 0, h, =0 and es = 0 which represent a transverse
magnetic (TM) mode as the longitudinal component of magnetic field is absent in the
propagation direction. Similarly, if we substitute f,(¢) = 0, go(¢) = 1 in Equ. (17) and
Equ. (18), the componentse, = 0, e, = 0 and hg = 0 which represent a transverse
electric (TE) mode as the longitudinal component of electric field is absent in the
propagation direction [6]. For v = 0, Equ. (20) reduces to two equations corresponding

to TEy,, and T M,,, modes given by

L) | KW)

{U]O(U) * WKO(W)} =0 (21)

AU |, K .
o T,y + o) = )
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The electric and magnetic fields of TE and TM modes propagate parallel to the interface
in an optical waveguide respectively. Hence, only meridional rays, passing through the
waveguide axis can preserve e, = 0 or h, = 0 at every reflection. Thus, only meridional

rays can make up TE and TM modes on circular waveguides.

These TE and TM modes are ideal or rare case in optical waveguides as we
consider V, Inn? = 0 in vector wave equation. In general, the non-zero V, In n? term mix
e, and h,fields resulting in EH and HE hybrid modes for which neither e, = 0 nor h, =
0 and both components are present simultaneously. Moreover, the modal fields can never

be transverse electromagnetic (TEM) i.e., e, = h, = 0.
2.3.2 Hybrid (EH and HE) modes

For v # 0, none of the field components are zero and the eigen value equation, Equ. (20)
remains the same. The solutions are even and odd HE,,, and EH,,, modes [7]. Each
mode is given two subscripts of which the first subscript v is order and the second

subscript m denotes the mth root of the eigen value equation.

In general, a ray follows the helical or skew trajectory on step or graded index
profiles. If we follow the direction of the electric vector along a skew ray path, it is
impossible to maintain either e, = 0 or h, = 0 because the direction of propagation
rotates along the ray trajectory. Consequently, a skew ray mixes TE and TM polarizations
at each reflections, so that the corresponding fields couple both e, and h, field
components, consistent with the definition of hybrid modes. Hence, all EH and HE modes
are composed of skew rays. The fundamental HE;; mode has Gaussian distribution and

two orthogonal polarizations which can be assumed as x- and y-polarized modes.

TE01 TM01 Eeven Odd
(a) (©) (d)

S | B

o

Fig.2.2. Vector modes of a step-index optical fiber. (a) Azimuthally polarized TE,, mode, (b)

radially polarized TM,, mode, (c) and (d) HE;;* modes with hybrid polarization

Figure 2.2 shows the vector modes of step-index optical fiber with spatial inhomogeneous

polarization distribution. These modes are also referred to as zeroth order vector modes
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or CVBs due to their cylindrically symmetric spatial intensity and polarization
distribution. It is difficult to identify the polarization distribution of vector modes from
their spatial intensity pattern as they are all look alike with a donut shaped mode. To
identify the spatial polarization, the vector mode has to pass through a rotating analyzer
which results in rotating two lobe pattern, based on which the mode can be identified, as

shown in Fig. 2.3.

Analyzer
angle
Vector mode

EE
HLH -

Fig. 2.3. Behavior of vector modes with respect to discrete analyzer orientation angles.

Further, the polarization state of these modes is undefined at the center due to
spatial inhomogeneity for which they are known as polarization vortex or vector vortex
modes. These modes are analogous to LG modes of radial order zero and azimuthal order
one i.e., LG}, in spatial intensity but do not have a phase vortex. However, the linear
combinations of these modes with 71/2 phase difference i.e., TEy; + iTM,, and HESY*" +
iHES%? result in homogeneous circularly polarized modes with an embedded phase

vortex [1].
2.4 Weakly guiding approximation

In the previous section, we discussed that the term V,Inn? is responsible for the
polarization effects of modes in step-index optical fiber. If the refractive indices of core
and cladding are nearly equal i.e., n., = n,; or the step height is so small (A« 1), then
the term V, Inn? becomes negligible and vector wave equation reduces to scalar wave

equation. This approximation with A<« 1 is called the weakly guiding approximation [8-

20



Chapter 2: Modes of Optical Fiber

11]. This approximation is useful in practical cases where the fiber is used for long
distance communication. In contrast to the name ‘weak guiding’, this approximation
allows strong guidance and total confinement of light within the core. The modes of
weakly guiding optical waveguides were first reported for step-index fiber by Snyder
[12], and the name ‘weak guidance’ was coined later by Gloge [13] and additional

insights were reported there after [14].

The longitudinal components e, and h, of weakly guiding waveguides are so
small that they can be neglected. Hence, the modes are nearly transverse in nature with

transverse components e; and h; related by

& 1/2 R
h: =ne, (/i_) zZXe; (23)

o

When A« 1, the polarization effect due to the waveguide structure are small and
Cartesian components of e, are approximated by solutions of scalar wave equation. If we

write e, = e, % + e,y and h, = h,X + h, 9, and let ¥ denote e, or e,, then ¥ satisfies
{V% + k?n?(x,y) — EZ}W =0 (24)

f is the scalar propagation constant. The solutions of the above equation for both
components of e, and h, are the same and are related to each other by Equ. (23). Hence,
it is sufficient to solve for either e, or e, due to which the transverse fields are polarized
in one direction and because of this reason, the modes are called linearly polarized (LP)
modes. Although, the Cartesian components of e,satisfy Equ. (24), we can determine
their spatial dependence in cylindrical polar coordinate system also. The solutions for the
above equation in the separable forms are ¥ = F;(r)cos(l¢) and ¥ = F;(r)sin(l¢p),
where [ = 0,1, ...., and F;(r) satisfies the ordinary differential equation
d2 1d 2
{—+——+k2n2(r)——2—ﬁz}Fl(r) =0 (25)
rar r

To make this equation dimensionless, we take the definition of n(r) from Equ. (1) and
set R = r/p which leads to

{ a2 1d I?

W+Ed—R—r—2+U2—sz(R)}Fz(R)=0 (26)
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The solutions of the above equation, F;(R) are the Bessel functions of first and second

kind within the core and cladding respectively.

SR G eRr<1 and FlzKl(WR)'1SR<oo (27)
Ji(U)

l K, (W)’

Where U and W are scalar dimensionless quantities given by U = p(k?n%, — Ez)l/zand

W =p(B? - kznﬁl)l/zand are connected to V parameter by VZ = U? + W2, The

complete solution for equation (24) is given by

K,(WR) sin(l¢)

w - Ji(UR) [sin(lcp)
K, (W) Lcos(lp)

cos(lp)

= — ];OSR<1and Y =
Ji(U)

;1< R<oo (28)
|

Continuity of F; and dF,/dR at the interface of fiber leads to eigen value equation for 5

of each mode or equivalently U and W. The eigen value equation is given by

U]l+1([7) — W Kl+1(W)

— — (29)
Ji(U) K, (W)

The eigen value equation is the same for both EH and HE modes in scalar approximation.
For [ = 0, Equ. (28) is the same as that of eigen value equation for TE mode given in
Equ. (21), which implies that the TE mode has the same propagation constants in both

scalar and vector wave equations.
2.4.1 Propagation constant and polarization correction

Solving Equ. (28) yields the scalar propagation constant /3.

~oy1/2
B = 1-2A —} (30)

p(ZA)l/Z{ V2

From Equ. (29), it is clear that all modes have the same propagation constant. To account
for the polarization effects of modes, we need to add a polarization correction term to the
scalar propagation constant. This can be done by introducing the polarization term
V, In n? through the perturbation method to the scalar wave equation. This is equivalent
to assuming that the fiber has slightly deformed core which introduces birefringence
effect to the modes. Hence, the sum of scalar propagation constant and the polarization
correction term gives the exact or vector propagation constant i.e., 8; = § + 68;, where

f3; is the vector propagation constant, 5 is the scalar propagation constant and §; is the
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polarization correction term to the i mode. The polarization correction terms for
fundamental (53), odd and even HE,; modes (6, 683), TMy, (65,) and TEy, (6B,) are
given by [1]

B (20)3/2 U?W Ko(W)

0=, V3 K (W)
_ (D)} UPW K,(W) 31
6B1 =06B3 =— 20 VP Ko(W) (31)
3/2 772147 7
58, = (20)3/2 U*W K (W)

2p V3 K,(W)
5ﬁ4, = 0

From the above equation, the polarization correction term for TE,; mode is
6B, = 0, which implies that the TE,; mode formed due to the combination of linearly
polarized modes under weakly guiding approximation has the same propagation constant

as that of the TE,; mode, which is a direct solution of vector wave equation.
2.5 Linearly polarized modes

The modes of weakly guiding fiber are referred to as linearly polarized (LP;,,) modes,
where [ and m denote azimuthal and radial dependence of the mode. For [ = 0, the Equ.
(28) has only one solution that has no azimuthal variation i.e., ¥ = F,(R). As there is no
preferred axis of symmetry in circular fibers, the transverse electric field can be treated
to be parallel to one of an arbitrary pair of orthogonal axes, which may be assumed as x-
and y-axis [8]. Hence, there are two fundamental modes, one with transverse electric field
parallel to x-axis (LPyy(z) or HE11(z)) and the other to y-axis (LPyqg5) or HEq1(3))- This
is applicable for all HE;,,, modes. HE,,, modes are exceptional cases because their modal
equation does not have any polarization information while all other modes retain some
polarization information.

For [ > 1, Equ. (28) has two solutions and with azimuthal dependency i.e., ¥ =
F;(R)sin(l¢) and ¥ = F;(R)cos(l¢). As discussed above, each solution can be further
assumed to have x- and y-polarizations. The transverse electric field e, depends on the
particular combinations of these solutions with orthogonal polarizations. Hence, there are

four possible modes. These four modes have the same scalar propagation constant S but
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their exact propagation constants are different. The four vector solutions constructed from

solutions of scalar wave equation are given by
exe = Fi(R) cos(lp) %; exo = Fi(R) sin(l$) X

eye = Fi(R)cos(Ip) 9; ey, = Fi(R) sin(lgp) y

(32)

These four modes e, ex,, €ye, and ey, are represented as L 11(x), LPlbl(,?),
LPf; (), and LPllOA,) respectively under LP mode designation and the same notation is

used throughout this thesis. Due to circular symmetry, a fiber is unchanged by rotation
about its axis. Hence, if a mode is rotated arbitrarily then it must remain a mode with the
same propagation constant, although not necessarily the same mode. The new mode can
be represented as the linear combinations of all other four modes with the same
propagation constants. But, these four modes have different exact propagation constants
(B) although they have the same scalar propagation constant (3). Hence, none of these
four modes are the modes of a fiber. The correct linear combination can be formed by
combining those modes which have same properties under rotation by 90° and under

reflections in x- and y-axes [8, 15].

exe(LPf1 (%)) exo (LP}y(2)) eye (LPy(5)) eyo (LP{y(5))

sef s goegs |

€t1 = €xe=Cyo €ty = Exe t €yp €xo T Eye €4 = €xo —

@%@

HESY" TMo Egfe TEo

Fig. 2.4. Linearly polarized modes and the vector modes generated from their linear combination.

Figure 2.4 shows four LP,;; modes and their possible linear combinations that
generate vector modes. Following the symmetry operations, e, can be combined with
ey, and ey, can be combined with e, as they are same under rotation. By considering
the symmetric and anti-symmetric combinations, the transverse fields of four modes can
be constructed. These combinations are consistent with the symmetry properties of fiber.
The transverse fields e;, and e, remain unchanged under rotation by arbitrary angle and

under reflection. However, e;; changes into a pattern which is a linear combination of
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e:1 + ey under arbitrary rotation. But, these two modes have the same correction term

(651 = 8p3) and hence the same exact propagation constant for which their combination

is allowed under symmetry. The representation of vector modes in terms of LP;; modes

is given by

€HES, = Fi(R){cospx — singpy}
ermy,, = Fi(R){cos¢x + singy} (33)
enps, = FI(R){singx + cospP}

erg,, = Fi(R){sinpX — cospP}

We use these relations in chapter 4 and chapter 5 to construct a new set of vector vortex

modes. A few mode optical fiber that can support upto two LP modes is used in the

experiments so as to generate all vector vortex modes. The theory presented in this

chapter helps in better understanding of further chapters.
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CHAPTER 3

Singularities in Fiber Modal Fields

In this chapter, we experimentally demonstrate the excitation of various vector modes
and linearly polarized modes using few mode optical fiber. Two fibers of different V-
numbers, 3.57 and 4.46 are chosen for this purpose. The modal excitation is achieved
with on-axis and off-axis skew launching of linearly polarized Gaussian beam onto the
core of optical fiber. The vector modes discussed in previous chapter are generated and
their spatial polarization distribution is estimated with the help of a rotating analyzer.
Higher order linearly polarized modes LP,,, LP,; and some arbitrary modal fields are
generated. Further, we investigate all the generated modal fields for the presence of
singularities in their intensity null regions. A first order phase vortex is generated from
a donut shaped mode and switching between oppositely charged vortices is demonstrated
by changing input state of polarization. Singularities are also observed in LP,,, LP,;
modes and also a few arbitrary modal fields and these are observed to increase with V
number of the fiber.

3.1 Introduction

Singularities are points or lines where a physical quantity representing the system is
undefined [1,2]. Generally these singularities are mainly classified into two types in
optics i.e., scalar and vector, of which the former corresponds to the undetermined phase
and the latter for undetermined polarization [2-4]. Nye and Berry were the first to
discover the presence of dislocations in electromagnetic waves which are analogous to
crystals [5,6]. Later, it was reported that optical fields contain phase singularities in null
intensity regions, where the phase changes by a multiple of 2 around the singular point
[7-9]. These singularities were first identified in the donut shaped higher order LG mode
fields and then in speckle fields, where each speckle spot is shown to have one phase
singular point [10]. The presence of phase singular region can be identified using simple
interferometric technique, in which the interferograms of singular beams with a Gaussian
beam show a signature of fork or spiral pattern as a result of the helicity of the wave front
[7]. The order of phase singularity is measured with the number of forks that appear in

the interferogram and is often referred as topological charge, which is positive for right
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helical waves and negative for left helical waves [2,3]. The presence of singularities in
fiber modal fields was first reported by Bazhenov [11]. Later, Lim et. al. studied the
nature of singularities in fiber modal fields using few mode and multimode fibers [12].
The study of modal behavior in few mode fiber (FMF) is of great interest due to their
applications in various fields such as long distance communications [13], fiber lasers
[14], optical sensors [15-17], and singular optics [18,19]. Recently, nonlinear effects and
ultra violet four wave mixing are reported to be observed in higher order LP,, mode of
FMF [20,21]. The FMFs are also found to be useful in quantum cryptography [22], and
STED microscopy [23] by specially designing the fiber geometry, called vortex fibers,
which can preserve vortex modes for longer distances.

In this chapter, we discuss the scalar or phase singularities present in the higher
order linearly polarized fiber modal fields. We use two optical fibers with different V-
numbers to excite various vector and scalar modes. The zeroth order vector modes such
as radial, azimuthal and hybrid spatial polarization are excited by controlling coupling
conditions. A first order phase singularity is generated from a donut shaped vortex mode
and switching between the vortices of opposite helicity is demonstrated by changing the
input SOP. The singularities present in higher order linearly polarized fiber modes such
as LP;;, LP,, and LP,, are discussed along with some arbitrary modal fields. The
presence of singularity in respective modes is verified by forming interferograms of the

modes with a reference Gaussian mode.
3.2 Experimental details

A 5 mW He-Ne laser of wavelength 632.8 nm operating in TEMoo Vvertically polarized
Gaussian mode is first made to pass through a step neutral density (ND) filter to control
the intensity of light, which then passes through a half wave plate (HWP). Light emerging
from the HWP is focused using a high numerical aperture (40X, 0.65 NA) and short focal
length microscope objective lens (L1) which is mounted on a precise rotational stage that

enables the light to launch at an angle with respect to fiber axis.

To study the singularities in the linearly polarized modes of FMF, we first choose
a fiber that supports only 2 LP modes, LP,; and LP,;. The optical fiber chosen for the
experiment has an approximate length of 23 cm, core radius of 1.8 um, 0.2 NA and V-
number of 3.57 when operated at a wavelength of 632.8 nm. This indicates the fiber can

support 6 wave guide modes of which the fundamental LP,; (HE;;) mode is a two-fold
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degenerate and first order LP;,; mode is a four-fold degenerate whose combinations result
in four vector modes TEq,, TMy, and HE;;® [24-26]. The focused spot from L1 is
adjusted to fall on the tip of the cleaved end of optical fiber, mounted using a 3-axis micro
translational stage, enabling an offset launching of light with respect to fiber axis. The
output from the fiber is then collimated using L2 on to a charge coupled device (CCD)
camera (Thorlabs DCU223C with 2x2 mm capture area and 4.65um pixel size) to scan
tip of the fiber and image the modal field, placed at a distance of 20 cm from the fiber
tip. An analyzer is inserted between L2 and CCD to study the polarization content of
output beams. An interferometer is constructed in parallel to the fiber, where a Gaussian
beam from the Laser is guided directly in free space with the help of two beam splitters
(BS1, BS2) and two mirrors (M1, M2) and made to interfere with the fiber output modal
field to investigate the singularities present in them. The phase singularities in fiber modal
fields can be identified with the presence of fork like structures in the interferograms. The
schematic diagram of the experimental setup is shown in Fig. 3.1 and the photograph is

shown in Fig. 3.2.

M2 o, M1
/ P \
~ ’
A HWP ND
FMF
[PETEETEETA
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Fig. 3.2. Photograph of experimental setup for generating LP modes.
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3.3 Results and discussion

At first, the tip of the fiber is adjusted such that the focused spot from MO falls on the
center of the core which excites the fundamental Gaussian mode LPy; (HE;;), shown in
Fig. 3.3 (al). As the LP,; mode does not have intensity null regions within the modal
field, the interferograms contain only concentric circular fringes but no singularities as
shown in Fig. 3.3 (a2). Next, the tip of the fiber is adjusted for an offset illumination to
excite LP;; mode that has two lobes separated by a null intensity line where the presence
of singularity is expected. The LP,; mode generated at the fiber output is shown in Fig.
3.3 (b1). As the two adjacent lobes are 7 phase shifted, there appears a fringe jump along
the null line of the LP;; mode as shown in Fig. 3.3 (b2).

Fig. 3.3. Modes at fiber output (al) fundamental LPy; mode, (b1) LP;; mode, (a2) and (b2) are

the interferograms of (al) and (b1) respectively.
3.3.1 Generation of Vector modes

As discussed in Chapter 2, LP;; modes are four-fold degenerate and their selective
combinations will result in vector modes. These vector modes can be generated by
precisely controlling the coupling conditions of fiber with respect to incident light.
Various modes can be excited by launching tilted and/or offset Gaussian beam into the
optical fiber [27-29]. By launching skew and offset rays into the fiber core, one can
realize four possible vector modes i.e., TEq,, TMy, and HE,; at the fiber output [30,31].

The theoretical background of these modes is discussed in Sec. 2.3.2 of chapter 2.
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Fig. 3.4. Cylindrical vector beams excited for different coupling conditions.
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Figure 3.4 shows the experimentally generated vector modes and their behavior
when passed through an analyzer at discrete orientation angles 0° (=), 45° (#), 90° (1),
and 135° () respectively. As all the vector modes look alike in their intensity distribution,
an analyzer is essential to distinguish them. By observing the rotation of two lobe pattern
with respect to rotation of analyzer, the field distribution across the mode can be
estimated. Though these vector modes have null intensity at the core region, due to the
polarization inhomogeneity across the mode, the phase cannot be defined. But, the donut
modes with homogenous polarization and dark core region have a phase vortex at their
center and are often referred to as scalar vortex modes or simply vortex modes. These
modes are equivalent to LG modes of radial order zero and azimuthal order one (LGg). In
fibers, these modes can be generated as linear combinations of vector modes i.e., TE,; +
iTMy, or HES, + iHES, [26].

3.3.2 Switching of first order phase vortices

Figure 3.5(a) shows a near homogenously polarized donut shaped vortex mode generated
at fiber output. In fiber, the most commonly observed modes are the inhomogeneously
polarized vector vortex modes for arbitrary coupling. To excite a homogeneously
polarized vortex mode, precise control over the coupling conditions is needed so as to
selectively excite a combination of TEo1, TMo1 modes or HE21°, HE21®* modes with 7/2
phase difference. Hence, the generated mode appears to be slightly distorted as it is a

homogeneously polarized vortex mode. This mode is interfered with reference Gaussian
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beam to observe the presence of vortex or phase singularity on the beam axis, which
results in a downward fork in non-coaxial interference and a left handed spiral in coaxial
interference of vortex mode with reference Gaussian beam, as shown in Fig. 3.5 (b) and
Fig. 3.5 (c) respectively. These fork and spiral like structures in the interferograms point
to the significance of the dislocation in wave front. This indicates that the generated mode

has left helical wave front with topological charge -1.

Fig. 3.5. Switching of fork and spiral interferograms of vortex mode; (a) generated vortex mode,

(b) a downward fork, (c) left handed spiral, (d) an upward fork and (e) right handed spiral.

The charge of this vortex mode is observed to change under the action of change
in input polarization. Keeping the coupling conditions unaltered, the input SOP is
changed using a HWP at launching end. It is observed that for 90° change in input SOP,
the downward fork flipped and became an upward fork as shown in Fig. 3.5 (d). Further,
Fig. 3.5 (e) shows the right handed spiral, which is formed due to coaxial interference,
indicating that the vortex mode has right helical wave front with topological charge +1.
Hence, just by changing the input SOP between orthogonal states, one can switch

between the vortex modes of opposite charge.
3.3.3 Singularities in higher order modes

Then, to observe the singularities in higher order LP modes, a fiber that supports more
than 2 LP modes is required. In this case, we chose an optical fiber with a core radius of
45 um, 0.1 NA and with V-number 4.46 when operated at 632.8 nm and of
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approximately the same length as the previous case (23 cm) for exciting higher order LP
modes by launching linearly polarized Gaussian beam. A linearly polarized LP;,, mode
has 2 degenerate modes for [=0 and 4 degenerate modes for [>1. The fiber used for our
experiment can support 4 LP;,,, modes i.e., LPy;, LP;4, LP,,, and LP,;. Calculating the
degenerate modes for each LP mode, the fiber can support 12 distinct vector modes
[25,26]. These modes can be regarded as true wave guide modes as they are independent
of each other and can be realized at fiber output by altering the coupling conditions and
input SOP.

At first, the laser beam is focused using L1 on to the center of core of cleaved
fiber tip held on a 3-axis precision translation stage, for which the fundamental LPy;
mode is excited. As LP,,, modes are circularly symmetric modes and can be excited by
launching light along the fiber axis, a slight offset in the position of fiber core with respect
to focused spot will excite LP,, mode. The excited LP,, mode, when observed under
rotating analyzer, shows linearly polarized behavior i.e., the intensity becomes minimum
when the axis of analyzer is perpendicular to the plane of polarization of the excited
mode. We assume that most of the power in the excited mode is coupled to LP,, mode
and the amount of power coupled to LP,; may be neglected. Furthermore, LP,; mode
doesn’t have singular behaviour. So the observed singularities in the modal field can be
completely attributed to LPy, mode alone.

The LPy, mode generated from fiber output is shown in Fig. 3.6 (al), which
resembles the intensity profile of an LG mode of radial order one and azimuthal order
zero (LGY). The central bright spot and the outer ring of LP,, mode are m phase shifted
and are separated by a ring like null intensity region [32]. This change in phase leads to
a phase distortion in the null intensity region where the phase is undetermined or singular
at certain points and the nature of singularity can be identified from interferograms. The
reference Gaussian beam is allowed to interfere with LP,, mode from fiber output and
the interferograms are captured using CCD camera. The interferogram contains fork like
structures in the dark region of LP,, mode, which symbolizes the presence of phase
singularities in the modal field. As the inner and outer rings are © phase shifted, a fringe
jump at the boundary can be observed in Fig. 3.6 (a2). Careful observation reveals that
the interferogram consists of a pair of upward and downward forks indicating phase
singular regions with opposite sign. The two upward and downward forks are shown with

“*”and ‘+’ respectively in Fig. 3.6 (a2). Considering the topological charge of individual
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forks, +2 charge can be assigned for a pair of upward forks and -2 charge for a pair of
downward forks. Hence the resultant topological charge of the LP,, modal field is

observed to be zero.

Fig. 3.6. (al) LPo, mode, (a2) Interferogram showing the upward (denoted with *) and downward
(denoted with +) forks in the LPo, mode, (b1) LP21 mode, (b2) interferogram of LP21 mode (fringe

jumps are shown with *).

Further, to generate LP,; mode we adjusted the coupling condition for offset and
skew launching of light into the fiber that resulted in a four lobe intensity pattern as shown
in Fig. 3.6 (b1). This mode has intensity nulls between adjacent lobes and also resembles
the spatial profile of HG,; mode where adjacent lobes are © phase shifted. The excited
mode is interfered with reference Gaussian mode to observe the presence of singularities.
As expected, the interferogram contains fringe jumps between adjacent lobes which
confirms that adjacent lobes are  phase shifted as shown in Fig. 3.6 (b2). The intensity
of the generated modes is lowered using an additional ND filter while recording the

interferograms to obtain good contrast fringes.

Apart from LP;,,, modes, which can be excited by precise control over coupling
conditions, some arbitrary modes also get generated in the fiber which are linear
combinations of certain vector modes. One such complex modal field is encountered
while adjusting the coupling conditions to excite LP,; mode, which is the linear
combination of 2HE;, — EH;; + HE3; [32]. The intensity patterns of the mode with
respect to rotating analyzer are captured using CCD camera and shown in Fig. 3.7. From
Fig. 3.7, it can be observed that the modal patterns at 45° and 135° resemble the intensity

profile of tilted HG,, mode and the pattern at 90° resembles HG,; mode respectively.
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Fig. 3.7. A mode excited by the linear combination of 2HE;, — EH,, + HE3; and their intensity

patterns with respect to analyzer rotation.
3.3.4 Singularities in arbitrary modal fields

Further, some random modal fields are generated for arbitrary coupling conditions.
Figure 3.8 (al) shows a donut shaped mode, which is expected to be second order vortex
mode. When this mode is interfered with the reference beam, the interferogram reveals
that this mode is a combination of two vortex modes of opposite charge (+1 and -1)
separated by a small distance. From this it is evident that higher order vortices are
unstable and they decompose into single charged vortices under small perturbations.
Hence, it is difficult to generate modal fields with second order phase vortex in fibers
[12]. It can be clearly observed from Fig. 3.8 (a2) that two forks i.e., an upward fork and
a downward fork are closely spaced at the center dark region of the modal field. Figure
3.8 (b1) shows another arbitrary modal field that embeds two null intensity regions
within. The interferogram of this mode is shown in Fig. 3.8 (b2) in which three fork
patterns (2 upward and 1 downward) can be observed. These singularities are observed
to be stable and sustain small perturbations. It can be observed from the experimental
results that as VV number increases, the number of modes supported by the fiber increases
as well as the number of singularities present in the modal fields also increases. It is
reported that the total charge of the singularities is not preserved in fibers where the modal
fields are strongly dependent on the boundary [33]. This can be rectified by using fibers
of large core diameters, where the generation of individual modes is difficult and the
modal fields are often referred to as speckle fields. The number of singularities present
in the modal field is very high for scattered fields or speckle fields of multimode fiber
where each speckle point can consist of one singularity and the number of positive and

negative charged phase singularities is equal and hence the total charge is preserved.
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Fig. 3.8. (al), (b1) arbitrary modal fields, (a2), (b2) their corresponding interferograms

showing fork like structures.

3.4 Conclusion

In summary, we have presented the singular aspects of linear polarized modes of few
mode optical fiber. The vector modes are experimentally generated by precisely
controlling the coupling conditions. First order phase vortex is generated from donut
shaped vortex mode and switching between positive and negative charged vortices is
demonstrated by changing input SOP. The presence of singularities in higher order LP
modes is examined and analyzed. Apart from LP modes, some arbitrary modal fields are
generated and the presence of phase singularities is identified. The generation of phase
singularities of second order in fiber is found to be difficult as they are highly unstable
and decompose into single charged vortices for small ambient perturbations. It is also
observed that the number of singularities present in the modal field is directly
proportional to the V-number of the fiber and is maximum in case of multimode fibers of
large core diameters. This investigation helps us to understand the fiber modal fields in
terms of phase singularities present in them. As the phase of the modal fields is highly
sensitive to external perturbations on the fiber, the results may find applications in

interferometric sensors.
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CHAPTER 4

Generation and Characterization of Spiral VVector

Beams

A simple method for generating spiral vector beams using few mode optical fiber is
demonstrated. These beams are generated due to a combination of orthogonal linearly
polarized modes with diagonal and anti-diagonal polarization vector in the few mode
optical fiber. The excitation of these modes is controlled by the incident state of
polarization and coupling conditions at the fiber input end. Vector beams with spiral
distribution (clockwise and counter clockwise) of polarization axis in transverse
direction are generated and switching between them is demonstrated. The experimental
results obtained emphasize strong dependency of polarization of generated spiral vector
beams and other orthogonal modes on input state of polarization. Experimental results

are found to be in good agreement with simulated results.
4.1 Introduction

Spiral vector beams (SVB) are optical vector fields wherein the linear polarization vector
makes a constant azimuthal angle in radial direction across the beam and the electric field
lines form a logarithmic spiral, first theoretically proposed by Gori [1]. Later, Borghi et
al., predicted that these beams can be generated from coherent superposition of
orthogonal HG modes and they studied the focusing and propagation characteristics of
these beams in both paraxial and non-paraxial regime [2,3]. The focusing properties of
these beams make them useful in fields such as optical trapping, lithography and high
resolution microscopy [2,4]. Few characteristic quality parameters of spirally polarized
fields in paraxial limit are theoretically investigated by Ramirez et al., and experimentally
realized by generating such beams using polarization conversion devices [5,6].
Generation of these beams is also reported by using special optical devices such as stress
birefringent wave plates and subwavelength gratings [7,8]. Apart from theoretical
predictions and bulk optical experimental methods, SVBs were also generated in an
optical fiber by chemically etching a micro-axicon on the tip of a fiber that converts the
excited vortex beam into a spirally polarized beam [9]. All these methods involve special

optical components with complex fabrication techniques which increases cost and
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complexity of the experiment. Nevertheless, fiber based methods are preferable over bulk

optics methods in many applications due to flexibility and ease of operation [10-12].

Keeping this in view, in this chapter, we presented a simple approach for generating
SVBs using few mode fiber (FMF). It is well known that vector beams in optical fiber
are linear combinations of orthogonally polarized LP;; modes. By exploiting this mode
mixing phenomenon, we propose that SVBs can be generated by the inherent
combination of orthogonally polarized LP;; modes with diagonal and anti-diagonal
polarization vector using FMF. Here, we performed a proof-of-concept experiment to
achieve the same. The excitation of these modes is controlled by the incident SOP and
coupling conditions at the input fiber end. The spiral polarization nature of the generated
SVBs is characterized by analyzing the Stokes field. The SVBs with polarization vector
oriented in clockwise (CW) and counter clockwise (CCW) direction across the beam are
generated and switching between them is demonstrated.

4.2 Formation of Spiral Vector Beams from LP11 modes
The field distribution of degenerate LP;; mode group is given by [13]
LPf(z) = 2f (r)cose LPlbl(f) = Xf (r)sing
LP{i(5) = 9f (r)cosg LPy) gy = £ (r)sing 1)

In Equ. (1), X and y denote the polarization vector orientation along X and Y axes
respectively and f(r) represents the radial field distribution described by a Bessel
function while sine and cosine terms represent the azimuthal field distribution of LP;,
mode. Depending on the polarization vector orientation in the respective modes, LP{‘l(@
and LPlbl(JA,) are called even modes, LPlbl(,?)and LPf, 5, as odd modes. A suitable

combination of orthogonal LP;; modes form zeroth order vector modes or CVBs i.e.,
radial, azimuthal and hybrid polarized beams with cylindrical symmetry of polarization

as shown in Fig. 4.1.

The field distributions of radially polarized TM,, and azimuthally polarized TE,; modes

are given by [13]
Ermy, = f(r)(Xcos + ysing) )

Ergy, = f(r)(Xsing — ycose) ©)
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From Equ. (2) and Equ. (3), it is clear that the combination of X (¥)-polarized and y (X)-
polarized even (odd) modes generate radially (azimuthally) polarized vector beam
[14,15]. However, other combination result in hybridly polarized HE28® and HESYe™
modes which are not of much scientific interest individually, while their combination
with £n/2 phase difference can generate a circularly polarized optical vortex beam that

has both spin and orbital angular momenta [16].

f)cospx f@)singy
f@)sinpXx f@)cospy TEo,

Fig. 4.1.Vectorial representation of orthogonal LP11 modes and their combinations; (a) radial

vector beam (b) azimuthal vector beam.

From Fig. 4.1, it is clear that the radial and azimuthal CVB have orthogonal
polarization and can be transformed into one another by rotating the local polarization
vector. During such transformation, the SVBs can be generated at any specific orientation
of polarization vector across the beam with varying degrees of spiral nature. Precisely, in
our case, the polarization vector in SVBs makes a constant azimuthal angle of n/4 across
the beam. However, the generation of SVBs in optical fiber was reported to be due to in-
phase and out-of-phase combination of TM,; and TE,; modes [17, 18]. Another simplest
and efficient way to generate the SVBs is similar to that of CVBs i.e., by a combination

of orthogonal LP;; modes with diagonal and anti-diagonal polarization vector.

The out-of-phase combination of TMy, and TE,, is given by Ery,, + (e™)Erg,  ie.,
E(rmgs-1E0y) = [ () (Rcosg + Ising) — f (r) (&sing — Jcosp) (4)

Which can be simplified to obtain the following

Ermy,-1Ey) = fH{(E + P)cosp — (X — P)sing} (%)
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Equation (5) represents a combination of orthogonal LP;; modes and this combination

generates an SVB with polarization vector oriented in CCW sense.

Further, the in-phase combination of TM,, and TEy, is given by Ery,, + (ei(o))ETE01 i.e.
E(rugy +7507) = [ () (R0s@ + Ising) + f (r) (&sing — cosp) (6)

Which can be simplified to obtain the following
E(rMyy+TEy) = fOH{(E& —F)cosp + (£ + P)sing} (7)

Equation (7) also represents a similar field distribution as that of Equ. (5) but the
generated SVB has CW oriented polarization vector. By denoting the resultant direction

of polarization of X + y as @t and X — y as ¥, Equ. (5) and Equ. (7) can be rewritten as
E, = f(r)(licosp — Using) (8)
E, = f(r)(lising + Dcose) 9)

Where E; and E, represent the resultant field distribution of CCW and CW-SVBs.

Equations (8) and (9) represent a combination of a set of four LP,;; modes,L 1“1(@,7)

andLP?, . ., which can be excited in an optical fiber by manipulating input SOP and
11(4,9)

launching conditions. Therefore, it can be stated that SVBs can be generated from a
combination of LP,; modes with polarization vector oriented along i and ¥ respectively,
which meets the prediction made by Borghi et. al., for orthogonal Hermite-Gaussian
modes [2]. The vectorial representation of Equ. (8) and Equ.(9) is shown in Fig. 4.2.

f)coseii f(r)singpd CCW-SVB

f()sinetl fr)cospv CW-SVB

Fig.4.2.Combination of orthogonal LP1; modes, formation of (a) CCW-SVB (b) CW-SVB
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4.3 Experimental details

The schematic diagram of the experimental setup used for the generation of SVBs is
shown in Fig. 4.3. Vertically polarized fundamental Gaussian mode from a 5 mW He-Ne
laser with 632.8 nm wavelength is made to pass through an ND filter and a HWP for
controlling the optical power and the state of polarization respectively. A 45X microscope
objective lens (L1), placed after HWP, focuses the laser beam on to the cleaved end of
FMF. The microscope objective is situated on a micro-rotational stage for tilted launching
of light into the fiber. The calculated V-number of FMF (980HP of Thorlabs; 0.2 NA,
3.6/125 pm) is 3.57 which means the fiber supports only two modes i.e., LPy; and LP;
at the chosen wavelength. Additionally, these two LP modes have a polarization

degeneracy of 2 and 4 respectively, which result in a total of 6 modes i.e.,
LPy;z5) and Lpfl(zy);LPfum)- The selective combination of orthogonal LP;; modes

generates various vector modes as explained in previous section. The fiber is held straight
with the help of fiber holders at both launching and output ends to avoid bends and twists.
At the launching end, the fiber is held with a 3-axis micro translational stage for precise
movement of the optical fiber along and transverse to its axis. Gentle stress (S) applied
on the optical fiber at the middle over a length of 1 cm reduces the noise in modal output
and also helps in controlling the excitation of modes [19]. Here, the applied stress is just
sufficient enough to suppress the noise in modal output and has not been varied
throughout the experiment. Varying applied stress alone may lead to the generation of
vector modes [20], whereas in our work only the input SOP and coupling conditions play
a key role in the excitation of modes. A 20X microscope objective lens (L2) decouples
and collimates the light beam from the fiber output end. A combination of quarter wave
plate (QWP) and analyzer (A) is kept in the path of the collimated beam between L2 and
CCD for analyzing the SOP of the excited mode and to carry out Stokes polarimetry [21].

Fig. 4.3. Schematic representation of the experimental setup. ND, neutral density filter; HWP,
half wave plate; L1 and L2, microscope objective lens; FMF, few-mode fiber; S, stress unit; QWP,

guarter wave plate; A, analyzer; CCD, charge coupled device camera.
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A brief description of Stokes polarimetry is presented here. The images of excited
modes are captured and intensity is recorded using CCD camera at four discrete
orientation angles of the analyzer i.e., horizontal (lo), diagonal (l4s), vertical (l9o) and anti-
diagonal (l135) with respect to X-axis. A QWP is then inserted before the analyzer at an
angle of 90° and two more images are captured for diagonal (I@s, 90)) and anti-diagonal
(I35, 90)) orientation of the analyzer. These six images are processed further using
MATLAB program [22] for polarization mapping of the beam. The four normalized
Stokes parameters So, S1, S2 and Sz are numerically calculated for regular intervals of
pixels on the cross section of the excited mode along X and Y directions and polarization
ellipses are plotted on the gray scale image of the corresponding mode captured without
any filter. The Stokes parameters in terms of intensity of captured images are So = lo +loo,

S1=lo—loo, S2 = las — l13s, S3 = | (45, 90) — | (135, 90).

And the polarization ellipse parameters, ellipticity y and ellipse orientation iy in terms

of Stokes parameters are given by

X = %sin_1 (;—Z) (10)
Y = %tan‘1 (i—j) (11)

4.4 Results & Discussion

The generation of modes in an optical fiber depends mainly on input SOP and the skew
and offset launching of Gaussian beam onto the tip of fiber [23,24]. In this experiment,
we consider an FMF of fixed length of around 30 cm and just by changing the coupling
parameters and input SOP we generate the desired modes. The spatial polarization

content of these modes is analyzed with Stokes analysis.
4.4.1 Counter-clockwise spiral vector beam

Vertically polarized Gaussian beam from the laser is focused using L1 while keeping
HWP at 0° initially. The focused spot, incident on the center of core of the FMF, excites
the fundamental Gaussian mode LP,, as a result of on-axis launching. Now, the tip of
FMF is slightly adjusted using micro translation stage for off-axis launching of input
Gaussian beam. At a fixed coupling condition, a two lobe LP;; mode with a horizontal

dark line is observed directly from the fiber output end without analyzer. Keeping the
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coupling conditions unaltered, the HWP is slowly rotated up to 26° where a cylindrically

symmetric donut mode is observed.
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Fig. 4.4. Normalized intensity profiles of the donut mode through its center along (a) X-axis (b)

Y-axis

Figures 4.4 (a) and 4.4 (b) show the normalized intensity profiles along X and Y
axes of the generated mode through the center respectively. The zero intensity at the
center of both plots indicates that the launched Gaussian beam is entirely coupled to the
generated donut mode while the coupling to the fundamental Gaussian mode is minimal.
In order to investigate the spatial polarization, intensities of the donut mode are recorded
using CCD camera at 6 discrete orientations of analyzer and QWP. Further, the captured
images are processed to obtain Stokes parameters and hence the polarization ellipse
parameters. Subsequently, the transverse spatial polarization is mapped by plotting

polarization ellipses across the generated mode.

Simulation

+
o
O

£
—
O
Q.
>

8]

Fig. 4.5. Polarization mapping, first row are the simulation results for Equ. (8) and second row

are the corresponding experimental results for HWP orientation angles (d) 26° (e) 6° and (f) 45°.
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Figures 4.5 (a) — 4.5 (c) are the simulation results corresponding to Equ. (8) which
illustrates the formation of CCW-SVB from a combination of orthogonal LP;; modes. It
is evident from Fig. 4.5 (d) that the mode has spiral polarization with counter clockwise
oriented polarization vector. The spatial polarization across this CCW-SVB is observed
to be elliptical at certain regions rather than linear as predicted by theory. The beam has
slight variation in ellipticityy, while moving across in azimuthal direction. The possible
reason for such variation is believed to be the inhomogeneity and linear birefringence of
the optical fiber [25].

Now, without disturbing the coupling conditions, HWP is rotated back from 26°
to 6° where a two lobe LP;; mode with horizontal null intensity line is observed. This
LP;; mode is expected to be one of the orthogonal modes that contributes to the
generation of CCW-SVB. The spatial polarization of the generated LP;; mode is mapped
with Stokes polarimetry and is found to be linearly polarized in the direction of ¥ (making
45° with —ve X-axis) as shown in Fig. 4.5 (e). Further, in order to generate the other
orthogonal LP;; mode, we launched orthogonal SOP into the optical fiber by rotating the
HWP to 45°. As expected, a two lobe LP,; mode is observed with spatial intensity as well
as polarization which is orthogonal to that of previously excited LP;; mode. This mode
is observed to be linearly polarized in the direction of @1 (making 45° with +ve X-axis) as
shown in Fig. 4.5 (f). These two orthogonal LP;; modes can be excited simultaneously
by launching an intermediate SOP to that of the SOP launched to excite them
individually, which results in the generation of CCW-SVB.

Simulation Experiment

P

S =

Fig. 4.6. Ellipse Orientation map of CCW-SVB (a) Simulation (b) Experimental.
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Figures 4.6 (a) and 4.6 (b) show the ellipse orientation map corresponding to Fig.
4.5 (a) and 4.5 (d) respectively. The color bar, towards right side of Fig. 4.6 (b),
emphasizes the orientation of polarization ellipses from 0 to 7 twice across the beam at a
fixed radial distance from the core, in azimuthal direction. In Fig. 4.6 (a), the line of
separation of 0 and = ellipse orientations makes an angle n/4 with —ve X-axis in CCW
direction and the angle of ellipse orientation is increasing in the same sense which implies

the CCW nature of spiral polarization.

As the CCW-SVB has local linear polarization, the Stokes parameter S3=0 and
hence from Equ. (10) the ellipticity xy =0 ideally. The ellipticity of the experimentally
generated CCW-SVB is calculated by averaging the y value over 30x30 pixel matrix
around the core of the beam which is found to be -0.25. The —ve sign indicates left
handedness of the polarization ellipses across the beam. The slight deviation of the
experimental value from theoretical value may be attributed to the linear birefringence of
optical fiber [25].

4.4.2 Clockwise spiral vector beam

The HWP is then set back to 26° where the CCW-SVB was observed and we then changed
the coupling condition for the fiber by moving its tip along X-axis to a diametrically
opposite position on the core with respect to incident light beam. The HWP is then slowly
rotated to excite another donut-shaped vortex mode which is observed at 30°. The
normalized intensity profiles of this mode along X and Y axes respectively are shown in
Fig. 4.7 (a) and 4.7 (b). Akin to the previously generated donut mode, this mode also have

a dark core intimating the coupling to fundamental Gaussian mode is negligible.
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Fig. 4.7. Normalized intensity profiles of the donut mode through its center along (a) X-axis (b)

Y-axis.
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Simulation

Experiment

Fig. 4.8. Polarization mapping, first row are the simulation results for Equ. (9) and second row

are the corresponding experimental results for HWP orientation angles (d) 30° (e) 0° and (f) 45°.

Figures 4.8 (a) — 4.8 (c) are simulation results corresponding to the formation of
CW-SVB from orthogonal LP;; modes as mentioned in Equ. (9), while experimental
results for the same are shown in Fig. 4.8 (d) — 4.8 (f). Slight variation in ellipticity is
observed across the generated donut mode, yet maintaining uniformity in ellipse
orientation in clockwise direction as shown in Fig. 4.8 (d). Similar to the previous case,
Fig. 4.8 (e) and 4.8 (f) show the orthogonal LP;; modes with linear polarization vector
oriented in the direction of ¥ and @, generated by launching orthogonal SOP at fiber
input end for 0° and 45° of HWP orientation angles respectively. It is observed from both
cases that for orthogonal SOP launched at the fiber input end, the output polarization

remains the same (¥ for 0° and # for 45°) while the spatial patterns are orthogonal.

Simulation Experiment

(b)

(a)

Fig. 4.9. Ellipse Orientation map of CW-SVB (a) Simulation (b) Experimental.
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Fig. 4.9 (a) and 4.9 (b) are the simulated and experimentally generated ellipse
orientation maps of the CW-SVB corresponding to Fig. 4.8 (a) and 4.8 (d) respectively.
In this case also polarization ellipses are oriented twice across the beam but the line of
separation of 0 and m© makes an angle of /4 with +ve X-axis in CW direction and the
angle of ellipse orientation increases in opposite sense as shown in Fig. 4.9 (a). The
average value of y for CW-SVB is calculated in a similar manner to the previous case
and is found to be 0.359. Here, the +ve sign of y indicates right handedness of the

polarization ellipses across the beam.

The phenomenon of degenerate LP mode mixing for the generation of CW &
CCW-SVB:s best suits LP,; modes alone. As we move to higher order LP;,, (I >1, m >1)
modes, the combination may result in an arbitrary mode due to the difference in topology
of phase and polarization from LP;; modes. Moreover, the polarization behavior of LP
modes in FMF that support more than 2 LP modes (LPy, and LP,,) is highly unstable

which increases the complexity in generation of higher order vector modes.

It is worth noting that just by controlling coupling conditions and input SOP, we
have generated the beams with opposite spiral nature. Though the local SOP of the
experimentally generated beams is not as linear as predicted by theory, the same approach
may be implemented using high quality optics and a custom designed optical fiber which
may result in pure spiral vector vortex beams. The slight deviation in experimental results
from theoretical predictions may be attributed to the quality of the optics, inhomogeneity
and linear birefringence of optical fiber and the ambient conditions of the experimental
setup. By precise control over all these conditions, modes of desired polarization can be

generated.

4.5 Conclusions

A new approach for the generation of CW & CCW SVBs via combination of orthogonal
LP;; modes with diagonal and anti-diagonal polarization vector has been demonstrated.
The generation of SVBs with polarization vector oriented in CW and CCW direction has
been verified experimentally using a few mode optical fiber by controlling the coupling
conditions and input SOP. The experimental results obtained are found to be in good
agreement with theoretical predictions. The slight deviation in the ellipticity of the

generated SVBs may be attributed to the fiber birefringence and quality of optics. The
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obtained results are expected to find potential applications in particle trapping and

manipulation.

The work presented in this chapter is published in Applied Optics.

C. Hari Krishna and Sourabh Roy, “Analyzing characteristics of spiral vector beams
generated by mixing of orthogonal LP11 modes in few-mode optical fiber”, Appl. Opt.,
57, 3853-3858 (2018).
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CHAPTER 5

Generation of Vector Vortex Modes and Poincare

Sphere Representation

In this chapter, we have demonstrated the generation of inhomogeneously polarized
vector vortex modes in a step-index few mode optical fiber. These vector modes are other
than well-known zeroth order vector modes such as modes with radial, azimuthal and
hybrid polarization distribution in transverse direction. Extending the basis of linearly
polarized modes with diagonal and anti-diagonal polarization that are proposed and
experimentally generated in the previous chapter, a set of four vector vortex modes are
generated by controlling the coupling conditions and input state of polarization. Further,
Poincare sphere representation for all possible first order linearly polarized modes and
the vector vortex modes generated from their combinations of few mode optical fiber are
presented. All homogeneously polarized fiber modes are accommodated on standard
Poincare sphere and inhomogeneously polarized vector vortex modes are accommodated
on a pair of higher order Poincare sphere. The location of vector vortex modes on higher
order Poincare sphere is justified by the positions of orthogonal linearly polarized modes

on standard Poincare sphere.

5.1 Introduction

In this chapter, we present the experimental generation of vector vortex modes (VVMs)
in FMF and analyse their polarization content with Stokes polarimetry. These VVMs are
then located on a pair of higher order Poincare sphere (HOPS) depending on their spatial
polarization distribution and also according to the position of orthogonal LP;; modes on

standard Poincare sphere that combine to generate respective VVMs.

5.1.1 Vector Vortex Modes

VVMs are complex light beams with inhomogeneous spatial linear polarization vector.
The orientation angle of the polarization vector across the beam in azimuthal direction at
any fixed radial distance makes a full cycle of 2n (or 0 to m twice). As a result of this

polarization inhomogeneity, there exist a polarization singular point at the center of the
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mode where the state of polarization is undefined, known as V-type polarization
singularity as it is present in a vector field. In next chapter, we discuss another type of
polarization singularity i.e., C-point present in ellipse fields. Whereas, this chapter is
dedicated to the experimental generation of VVMs and their Poincare sphere
representation.

CVBs such as radial and azimuthal vector beams exhibit a rich variety of
applications in scientific and industrial fields due to which numerous ways have been
proposed to generate them [1,2]. Recently, the generation of novel vector fields with
hybrid and arbitrarily varying spin angular momentum are reported which are expected
to find potential applications in polarization multiplexing and imaging [3-6]. The
underlying fundamental scientific interest and the promising applications of such vector
fields creates a path for exploring various generation schemes.

In this chapter, we discuss the experimental generation of a class of four VVMs
using FMF by exploiting the degenerate mode mixing phenomenon of first order
orthogonal linearly polarized LP,; modes with diagonal (@) and anti-diagonal (¥)
polarization vectors. These VVMs are briefly discussed by Milione et. al., in describing
the HOPS [7,8]. The generation of radial and azimuthal vector modes has been paid much
attention in fibers while these VVVMs are relatively unexplored and no experimental
demonstration is presented for their efficient generation till date, to the best of our

knowledge.

5.1.2 Poincare Sphere and Stokes parameters

Poincare sphere, proposed by H. Poincare, is an imaginary sphere with Stokes parameters
as coordinate axes (S1, Sz, Sswith Sg being origin). Poincare sphere is the most convenient
and efficient tool for representing homogeneously polarized states of light beams which
are plane wave solutions of Maxwell’s equations. A standard Poincare sphere contains
all possible states of polarization on its surface with circular polarizations at the poles,
linear polarizations along the equator and elliptical polarization elsewhere as shown in
Fig. 5.1. An arbitrary polarization state can be located on the surface of Poincare sphere
using spatial spherical coordinates (2, 2 y) where 2 and 2 y are the latitude and

longitude of the point ‘p’ and are related to Stokes parameters as [9]

Sy| = | cos(2y)sin(2y) 1)
S3 sin(2y)
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The latitude and longitude have their own physical significance in the sense that
they represent ellipse orientation angle (y) and ellipticity ( x) of the polarization ellipse
respectively. The points (0,0), (n/2,0), (n,0) and (37/2,0) along the equator of the Poincare
sphere represent the horizontal (H), diagonal (D), vertical (V) and anti-diagonal (A) linear
polarizations, while the points (0,7/2) and (0,-1/2) at the north and south poles represents

right (R) and left (L) circular polarizations respectively.

(0,7/2) S,

P S
le,0) > 5
(x/2,0 €0
®
S o)

) (0,-72)

Fig. 5.1. Standard Poincare sphere, p: arbitrary point on the surface of sphere, (2, 2y): latitude
and longitude of the point p.

5.1.3 Necessity of higher order Poincare sphere

As discussed above, based on the SOP of modes, their position is justified on the Poincare
sphere. This method is valid only for modes with homogeneously polarized states which
are fundamental plane wave solutions of Maxwell’s vector wave equation. The linear
combinations of orthogonal LP,;; modes generate VVMs with inhomogeneously
polarized states, which are higher-order solutions for Maxwell’s vector wave equation
[7]. Moreover, these modes have spatially varying linear polarization vector that can span
over the equator of standard Poincare sphere. Hence, it is difficult to represent these
modes at a particular position on the standard Poincare sphere. As a consequence, another
efficient geometric representation for such inhomogeneous vector fields is essential by

extending the standard Poincare sphere to higher order Poincare sphere that can
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accommodate various VVMs. Additionally, the geometrical representation of these
inhomogeneously polarized VVMs is of fundamental scientific interest which is essential
in understanding the geometric phase of light beams [8].

Some representations were proposed in the literature that deal with light beams
having definite orbital and spin angular momenta (OAM and SAM). Of them, the sphere
of first order modes, proposed by M. J. Padgett, deals with the OAM of optical beams by
accommodating HG modes on equator and LG modes at the poles, irrespective of their
spatial polarization [10]. Recently, Milione et al. proposed a pair of HOPS that
accommodates all kinds of inhomogeneously polarized modes that have both SAM and
OAM simultaneously and they also discussed higher-order Pancharatnam-Berry phase
associated with them [7,8]. A generalized Poincare sphere is proposed recently by
exploiting an additional parameter (the radial distance of the surface from center of
Poincare sphere) to represent the degree of polarization which elucidated the higher order
mode representation by unifying all inhomogeneous states onto a single sphere [11]. All
these representations of HOPS describe vector fields that could be generated in free-space
using bulk optical setups. Though, some modes that are analogous to optical fiber modes
have been discussed briefly by Milione et al., minimal attention has been focused towards
their generation while most of the attention is given to other inhomogeneous states.

Keeping this in view, in this chapter, we have presented a Poincare sphere
approach exclusively for modes of FMF. All possible LP;; modes of few-mode fiber are
located onto a standard Poincare sphere according to their spatial polarization
distribution. The orthogonal combinations of LP;; modes, which results in the generation
of various possible VVVMs, are mapped onto a pair of HOPS. As all LP;; modes and
VVMs have local linear polarization, the equator of Poincare sphere and HOPS is

sufficient to accommodate them.

5.2 Formation of vector vortex modes from LP11 modes

In the previous chapter, we proposed a set of orthogonal LP;; modes with diagonal and
anti-diagonal polarization vectors. Here, extending the possible combinations of these
LP;; modes, we generate a set of four VVVMs. For a suitable and allowed combination of
the LP;; modes, some typical criteria are mentioned in the literature, such as field
invariance of the modes under plane rotations, modes that follow rotational and reflection

symmetries and solving the set of equations of LP modes [12-15]. Though these modes

55



Chapter 5: Generation of Vector Vortex Modes and Poincare Sphere Representation

are not exact solutions of the scalar wave equation, there is a possibility of generating
such modes in optical fiber by controlling the incident SOP experimentally. These modes

may be considered as the superposition of LP;q g5y modes with the same parity but

orthogonal polarization .., LP(y = LP{i(e) + LP{ (5 and LPJ(, = LPC —

LPfl'l(’y), similar to CP;; mode formalism in which LP;q¢5) modes of orthogonal
polarization and same parity combine with 7/2 phase difference in order to form circularly
polarized modes [16]. The four possible LP;; modes with diagonal and anti-diagonal

polarization vector are given by
LPf(ay = 0f (r)cosg LPlbl(ﬁ) = Uuf(r)sing
LPfyp) = Df(r)cosp  LP{y5) = Df (N)sing 2

Where i1 and ¥ are the diagonal and anti-diagonal polarization vectors. The study of these
modes is helpful in understanding the generation of VVVVMs other than zeroth order vector
modes. The possible linear combinations of Equ. (2) are as follows
Dcose + tising
vcosp — tsing
ficosp — Using
ficosg + Using

E(r,p) =f(r) ®3)

Equation (3) represents higher order VVMs of FMF which include spiral and hybrid
vector modes where E(r,¢) is the field distribution. The generalized equation that
concerns all possible linear combination of LP;; modes and the generation of VVMs is

given by

E(r,@) = f(r)(Bcosg + gsing) (4)

Where p and g are orthogonally oriented polarization vectors. These VVMs may also be
written as linear combinations of zeroth order vector modes (TEy, = TMy, and HES; +
HE3,), but we have chosen LP;; mode basis in our study as the difference of refractive
indices of core and cladding of the FMF chosen for the experiment of the order 102 (nco
=ng and 4n<<1) i.e., weakly guiding. Moreover, LP;; modes are the simplest solutions
for weakly guiding approximation and are the building blocks for the vector modes in
step index fiber. Hence LP;; mode approach is still valid [13,14].
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Fig. 5.2. Orthogonal LP11 mode mixing and formation of VVMs.

Figure 5.2 illustrates the LP;; modes and their possible linear combinations to
form various VVMs. All the cosine modes (LPy;) are shown along the column whereas
sine modes (LPL) are shown along the row. The VVMs are present only along the
diagonal of Fig. 5.2 as other combinations do not satisfy polarization orthogonality
though they are orthogonal in their spatial mode pattern. The +ve and —ve signs in the
modal Equ. (4) may be treated as in-phase (¢/©=1) and out-of-phase (ei™= -1)

combination of the respective LP;; modes.

5.3 Experimental details

The experimental setup used for the generation of VVMs in a FMF is similar to that
described in the previous chapter and shown in Fig. 5.3. A5 mW He-Ne laser operating
at 632.8 nm wavelength is used as source for the excitation of fiber modes. A step ND
filter and a polarizer are placed in the path of a laser beam to control the intensity and
allow a vertically polarized Gaussian beam respectively. In order to alter the SOP of the
input Gaussian beam, a HWP is inserted after the polarizer. The Gaussian beam with
well-defined SOP is then focused using a microscope objective (L1) and the focused spot
is made incident on the tip of the cleaved end of around 30 cm long FMF. The output
mode from the rear end of the FMF is collimated with another microscope objective (L2)
and captured using a CCD camera. A quarter wave plate (QWP) and an analyser (A) are
inserted between L2 and the CCD to analyse the spatial polarization of the generated

mode.
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Fig. 5.3. Schematic diagram of the experimental setup.

5.4 Results and Discussion

Initially, a vertically polarized Gaussian beam is focused onto the tip of the cleaved end
of FMF. The fiber is held straight to avoid bends and twists which may affect the
generation of desired modes. The tip of the fiber is adjusted carefully using 3-axis micro
positioner so that the input focused Gaussian beam from the laser is entirely coupled to

fundamental Gaussian fiber mode LP,;.

5.4.1 Generation of Vector vortex modes

From our previous experimental results, we learnt that at an intermediate SOP of
orthogonal states, a vector mode is getting excited. For proper input coupling conditions,
we repeated the experiment and ascertained the same. Here, our aim is to generate a set
of four VVMs in FMF by controlling input SOP and coupling conditions. First, the HWP
is slowly rotated 22.5° in anti-clockwise direction which is intermediate SOP of the two
orthogonal states. By slight adjustment of HWP to an angle of 26°, a donut shaped mode
is observed. By observing the orientation of two lobe pattern after the rotating analyser,
this mode is confirmed to have spiral polarization in anti-clockwise direction which is
out-of-phase combination of LP, 4 and LP}; 4 i.e.,LP gy — LP) 5 as shown in
Fig. 5.4 (a5). Next, the HWP is slowly rotated 22.5° in clockwise direction where another
donut shaped mode is observed with a slight adjustment of HWP to 24°. The rotating
analyser test confirms the hybrid spatial polarization of the generated mode which is an
in-phase combination of LP{} 4y and LP}y 4 i.e.,LP{, 4 + LP}) 5 as shown in Fig.
5.4 (b5).

The coupling conditions are then altered by moving the tip of the fiber along the
core to a diametrically opposite position to that of previous launching conditions using
3-axis micro positioner stage. Akin to previous case, the HWP is rotated in anti-clockwise
and clockwise directions for which two vector vortex modes are excited for 30° and 26°

orientation of HWP in respective cases. These modes are examined under rotating
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analyser to know the spatial polarization. Observation of two lobe orientation patterns

after the analyser reveals that these modes have clockwise spiral and hybrid polarizations
which are in-phase (LP{ ) + LP{;z) and out-of-phase (LP{, ) — LP{; )
combinations of LPlal(f,) and LPfl(ﬁ) modes as shown in Fig. 5.4 (c5) and Fig. 5.4 (d5)

respectively.

Fig. 5.4. Orientation of two lobe patterns after crossing the analyser for orientation angles (al)
— (d1) 0° (a2) — (d2) 45° (a3) — (d3) 90°, (a4) — (d4) 135° and (a5) — (d5) the polarization
distribution in generated VVMs.

Further, Stokes polarimetry is carried out for all VVMs to strictly identify the
spatial polarization distribution across the modes. The polarization ellipses are plotted
onto the generated mode as shown in Fig. 5.5. The first row of Fig. 5.5 corresponds to
the simulated intensity patterns of VVVMs with their spatial polarization mapped across
the mode. The ellipse orientation map of the corresponding modes is shown in the inset
of each mode which is mapped with a colour scale from 0 to w, each colour representing
a specific orientation angle of polarization ellipse across the mode. The second row of
Fig. 5.5 shows the experimentally generated VVVMs in FMF. It is observed that the spatial
polarization distribution of the experimentally generated modes closely matches the
simulated results while a slight deviation appears in the ellipticity of the polarization
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ellipses. Ideally, all VIVVMs have spatial linear polarization as a result of combination of
two orthogonal LP;; modes. But, in practice, the generated VVVMs are observed to have
elliptical polarization at certain regions across the mode. This deviation of experimental
results from theoretical prediction may be attributed to the birefringence of the fiber used
[17]. Though ellipticity of the modes varies at certain regions, the ellipse orientation
across the generated modes exactly matches the simulated results as shown in the inset
of second row in Fig. 5.5. The ellipse orientation maps of generated modes emphasizes
that each VVM is unique in its spatial polarization content and is different from well-

known zeroth order vector modes.

Fig. 5.5. Vector vortex modes and their corresponding ellipse orientation maps shown in inset;

(al) — (a4) simulated, (b1) — (b4) experimental results.

Here, the modes in Fig. 5.5 (b1) & Fig. 5.5 (b2) are generated for anti-clockwise
and clockwise orientations of HWP for an orientation angle of 26° and 24° respectively
before changing the coupling conditions and the modes in Fig. 5.5 (b3) & Fig. 5.5 (b4)
are generated for anti-clockwise and clockwise orientations of HWP for an orientation
angle of 30° and 26° respectively after changing the coupling conditions. Hence, by just
altering the coupling conditions and input SOP, all the VVMs can be generated. It is
noteworthy that the VVMs generated before and after the changing of coupling
conditions, for specific input SOP, are orthogonal in their spatial polarization distribution,
which is clearly evident from the ellipse orientation maps shown in the inset of respective

modes.

60



Chapter 5: Generation of Vector Vortex Modes and Poincare Sphere Representation

5.4.2 Poincare sphere representation

As described in section 5.1.3, homogeneous polarization states can be accommodated on
standard Poincare sphere and inhomogeneous states on HOPS. As the LP;;modes are
linearly polarized, they can be accommodated on the equator of standard Poincare sphere.
The standard Poincare sphere with LP;; modes of all possible polarizations situated on

the equator is shown in Fig. 5.6.

Fig. 5.6. Linearly polarized LP11 modes situated on standard Poincare sphere.

It is clear that conventional modes with orthogonal X and y polarizations occupy
|H)and |V) positions whereas tilted polarized LP;; modes with orthogonal @i and ¥

polarizations occupy |D) and |A) positions respectively.

The linear combination of these orthogonal LP;; modes leads to the generation of
various VVMs such as radial, azimuthal, spiral and a set of hybrid vector modes as
discussed in previous section. All generated VVVMs are identical in spatial intensity but
are unique in spatial polarization distribution as shown in second row (b1-b8) of Fig. 5.7.
The third row (c1-c8) of Fig. 5.7 illustrates the spatial polarization maps of the
corresponding VVMs in second row. It is observable from row 2 and row 3 of Fig. 5.7
that the adjacent VVMs (b1 and b2, b3 and b4, b5 and b6, b7 and b8) are orthogonal in
spatial polarization distribution and are expected to be situated at diametrically opposite

location on the HOPS.
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Fig. 5.7. Row 1: linearly polarized LP1; modes; Row 2: Various inhomogeneously polarized

VVMs, Row 3: Spatial polarization maps of VVMs.

To accommodate inhomogeneously polarized VVMs, a pair of HOPS is
considered which is analogous to that proposed by Milione et al. It is to be noted that, in
addition to VVMs, a HOPS may also accommodate a wide variety of inhomogeneously
polarized vortex modes with spatially varying SAM i.e., modes with circular and
elliptical spatial polarization. But, here our discussion is limited to LP;; modes and
VVMs generated from their combination in a few-mode fiber, both of which have local
linear polarization. Hence, the equator of Poincare sphere and HOPS alone suffices the
need for accommodating these modes. The VVMs generated from a combination of
|H) £ |V) LP,; modes occupy |H)and |V)positions, whereas the VVMs from a
combination of |D) + |A) LP,; modes occupy |D)and |A) positions, respectively, on
HOPS with new coordinate axes Sy, S; and S3 as shown in Fig. 5.8. Further, the in-phase
combinations of orthogonal LP,;modesi.e., LP% + LPE, are located on +ve Stokes axis
(radially polarized TMo: at |H) and clockwise spiral at|D)) while out-of-phase
combinations i.e., LP% — LPE, on —ve Stokes axis (azimuthally polarized TEo; is at |V)
and anti-clockwise spiral at |A)). This HOPS contains vector modes with regular spatial
polarization distribution such as radial, azimuthal, clockwise and anti-clockwise spiral

polarizations.
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Fig. 5.8. Vector vortex modes of regular states of polarization distribution situated on the equator

of higher order Poincare sphere.

The other linear combinations of LP;; modes results in the generation of vector
modes with irregular or hybrid polarization. These modes cannot be accommodated on
the same HOPS due to hybrid spatial polarization. Hence, another HOPS is needed to
accommodate these new hybrid VVVMs. The accommodation of these hybrid VVMs on
the HOPS with a new set of Stokes axes S;’, S;" and S5’ is akin to the previous case i.e.,
the VVVMs generated from the orthogonal LP;; modes on standard Poincare sphere are

situated at either of the orthogonal positions on HOPS, shown in Fig. 5.9.
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Fig. 5.9. Vector vortex modes of hybrid states of polarization distribution situated on the equator

of higher order Poincare sphere.

These two HOPS, as a pair, serve the need for representation of all possible VVMs
of a step-index few mode optical fiber. As all the VVVMs have local linear polarization,

the SAM of the mode is ¢ = 0. It can be observed that the linear translation along the
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equator of HOPS helps to switch across the VVVMs which can be achieved using a couple

of wave plates.

5.5 Conclusion

In summary, we have presented an experimental demonstration on generating VVMs in
a step index few mode optical fiber by exploiting scalar mode combination of orthogonal
LP;; modes with diagonal and anti-diagonal polarization vector. The VVMs are
generated by controlling the coupling conditions of the fiber and input SOP. The
clockwise and anti-clockwise orientations of HWP from its mean position, before and
after changing the coupling conditions, generated all VVVMs of orthogonal polarization
distribution, which is evident from the ellipse orientation maps. The slight deviation in
ellipticity of experimentally generated VVVMs is attributed to fiber inhomogeneity, core
ellipticity and fiber birefringence. The obtained results are found to be in good agreement
with simulated results. Further, a Poincare sphere approach is presented for LP;; modes
as well as the VVVMs generated from their linear combination. The location of regular and
hybrid VVMs on the HOPS is justified by the position of orthogonal LP;; modes on
standard Poincare sphere, which combine to generate respective VVVMs. This approach
is efficient and much useful in the representation of vector modes of FMF. The VVMs
with clockwise and anti-clockwise spiral spatial polarization which have sharper focusing
properties next to radial and azimuthal vector modes are suitable for fields such as particle
trapping, optical micro manipulation and lithography. The other VVMs with hybrid
polarization may also have considerable contribution towards imaging, microscopy and

polarization based data encryption by providing additional degree of freedom.

A part of the work (Generation of VVVMs) presented in this chapter is published in Optical

and Quantum Electronics and other part (Poincare sphere representation) is published in

Optical Engineering.
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CHAPTER 6

Polarization Singularities in Few Mode Optical Fiber

In this chapter, we demonstrate a fiber based method to generate complex m-symmetric
polarization singular topologies such as lemon, star and monstar. These singularities are
formed as a result of a combination of orthogonally polarized Gaussian and Laguerre-
Gaussian modes excited simultaneously in the few mode optical fiber, controlled by input
coupling conditions. Dipoles, the beam fields consisting of two opposite index C-points,
are also generated and their topology is analysed with Stokes polarimetry. We have also
studied the conversion schemes of lemon to star and vice-versa using a cylindrical lens

and a half wave plate.
6.1 Introduction

Polarization singularities which are the vector analogues of phase (scalar) singularities in
complex electromagnetic fields arise when one of the parameters defining the
polarization of light becomes undefined [1,2]. These are mainly classified as C-points
(circularly polarized) and L-lines (linearly polarized) in the polarization ellipse field
where the orientation of major axis and the handedness of the polarization ellipse are
undefined respectively [3]. C-point is surrounded by polarization ellipses of spatially
varying ellipticity in a specific manner. Depending on the geometrical orientation of this
ellipse field around C-point, the topologies are classified as lemon, star and monstar. All
these topologies are m-symmetric i.e., the ellipses make a full cycle of © around the C-
point. The orientation angle of ellipses increases with the angular coordinate (anti-
clockwise direction) for lemon and monstar and the orientation angle increases opposite
to the angular coordinate (clockwise direction) for stars as shown in first row of Fig. 6.1

[4-7]. Depending on this orientation of polarization ellipses, the topological index I, =
igﬁ dy (Y is the ellipse orientation angle) is +1/2 for lemon and monstar and -1/2 for

star [8,9]. The circle with the dashed line in the first row of Fig. 6.1 is the L-line (line of
linear polarizations) where the polarization changes handedness from left circular (green
ellipses) to right circular (red ellipses) due to orthogonal field overlapping [3]. The size
of this L-line varies with the amplitude of interfering modes. Additionally, a lemon

topology has one radial line (where the major axes of ellipses are aligned with angular

66



Chapter 6: Polarization Singularities in Few-mode Optical Fiber

coordinate) while star and monstar topologies have three radial lines originating from or
terminating on the C-point which can be realized by drawing streamlines as shown in
second row of Fig. 6.1. The radial lines are highlighted in red color and the C-point is

enclosed in black circle.
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Fig. 6.1. =- Symmetric polarization singularities; (al) lemon, (bl) monstar, (c1) star, (a2)-(c2)

are the corresponding streamline plots.

Stokes polarimetry has evolved as the key characterization tool to study the
polarization singularities in free space [3] as well as in media [10-12] there by creating a
new characterization technique called singular polarimetry [13], which is useful in
understanding the propagation dynamics of singularities in anisotropic media. This
technique, in recent days, is also being used to study the material properties and to
evaluate the modal characteristics of few-mode optical fibers. The production and
characterization of C-points is also useful in the study of higher order phase vortices as
it is difficult to preserve them in isolated state [3,14,15]. Apart from characteristic studies,
the beams with singularities are showing significant applications in various fields such
as second harmonic generation [16,17], optical tweezers [18], and multiplexing/
demultiplexing [19]. In view of these applications and also with an interest to explore
yet-unknown aspects of polarization singular beams, numerous techniques were reported
for their generation based on interferometry that include SLMs [20-22], SPPs [23], and
g-plates [24,25]. Recently, polarization singularities are also reported to be generated in
plasmonic fields [26], and nematic liquid crystal cells [27]. An alternative method to

generate such complex vector fields is by using optical fibers. The inherent combination
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of vortex and Gaussian modes within optical fiber can generate rich variety of

polarization singularities [21,28-30].

In this chapter, we demonstrated the generation of m-symmetric topologies such
as lemon, star and monstar using a few mode optical fiber and studied the effect of relative
phase difference of the interfering modes on formation of C-points. The effect of HWP
and cylindrical lens (CL) in conversion of C-points is studied. We have also studied the
formation of dipoles, two isolated C-points in the fiber modal fields as a result of
combination of Gaussian and vortex modes in linear polarization basis and also as a
combination of two vortex modes of displaced cores. The 2z-symmetric topologies such
as radial, circulation, spiral, and saddle are realized in the Stokes field of lemon and star

and also in the ellipse orientation field of vector vortex modes.
6.2 Origin and types

C-points are formed due to the interference of vortex mode of helical wave front (LG}, 1
being the topological charge) and a Gaussian mode of plane wave front having orthogonal
polarizations [3].

Left circularly polarized vortex mode can be represented as

_r2 .

E =@+ iP)re  /wrele (1)
Where £ and J are the unit vectors, e? is the helical phase, r is the radial coordinate and
w is the beam diameter. Further, a right circularly polarized Gaussian mode can be

represented as

E,=(Z—iP)e  'w )
The combination of these two uniformly polarized fields results in a right circular C-point
and the modal field is given by

—r2 . . —r2
E=@+iP)re  'wiei®eld 4 (2 —ip)e  /w? (3)
where § is the relative phase difference between interfering modes. Equation (3)
represents a specific case of C-point formation. Additionally, one can take freedom to
change the helicity of vortex mode and the polarization basis to realize a variety of

singular modes. A more general case can be given by
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—r2 . _Tz/ )
E=re 'w2et®el%f p+e 'wiégy, 4)
Here, é, = X + iy and é; = X — iy represent left circular and right circular polarizations
respectively. Variety of C-points that can be generated from the above equation are
shown in Fig. 6.2. The relative phase difference is considered to be zero (6 = 0) for

simplicity.
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Fig. 6.2. C-points (a) right circular star, (b) right circular lemon, (c) left circular star, (d) left

circular lemon.

In the four letter code mentioned in the figure, first and third digits represent the
helicity of vortex and Gaussian modes and the second and fourth letters indicate the
polarization basis (L-left circular, R-right circular). In coming sections, we show the

experimental generation of C-points and characterize them using Stokes polarimetry.

Introducing anisotropy in the vortex mode in Equ. (4) results in the generation of
a monstar. The combination of an anisotropic vortex mode and a Gaussian mode of

orthogonal polarizations that form a monstar pattern is given by

2 72

E=re ’'w2(cosp+ ei“Sin¢)ei8éL(R) te /WzéR(L) ()

In Equ. (5), a is the anisotropy parameter. If a = %or 37” the vortex becomes isotropic

and the resultant topology will be either star or lemon. The complex monstar topology
can also be realized in three beam combinations in which two vortex modes of opposite

helicity combine with a Gaussian mode of orthogonal polarization.

The master equation that corresponds to a generalized C-point in polar coordinates

(r, @) is given by [21]

E = (cospre'® + sinfre™® e )e®ép ) + 1) (6)
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Where £ and y are the parameters that control amplitude and relative phase of the vortex
modes. The first term in the brackets corresponds to a vortex mode of right helicity and
the second term with left helicity with a relative phase difference y between these two
modes. The first term of Equ. (6) represents anisotropic vortex mode and the second term
represents Gaussian mode of orthogonal polarizations which combine with a relative
phase difference 6 to form a monstar topology. Consider § = 0 for a simple case. Then,

the above equation becomes
E = (T'ei‘p)eiaéR(L) + éL(R) (7)

Equation (7) is the same as that of Equ. (4), which results in the generation of symmetric

lemon and star topologies.

6.3 Experimental details

The schematic diagram of experimental setup used for the generation of polarization
singular beams is shown in Fig. 6.3. A focused spot of 5 mW He-Ne laser of 632.8 nm
wavelength is launched onto the cleaved tip of FMF. By adjusting the coupling conditions
at the fiber input end, the output modes are recorded using CCD camera and
simultaneously Stokes polarimetry is carried out to investigate the spatial polarization
content of the generated mode. A HWP and CL are inserted in the path of singular modes

to study their effect on C-points.

ND P HWP/CL QWP A
L1 ﬁ ME L2 H
z
He-Ne LASER By - _M
Yy U

Fig. 6.3. Schematic diagram of the experimental setup.

6.4 Results and discussions

6.4.1 Generation of lemon and star

Lemon and star are orthogonal polarization singular beams that lie at north and south
poles on the sphere of Poincare modes [4,5,31]. Generation of these modes in optical
fiber needs precise control over the launching conditions. Unlike the vector vortex modes,
these modes do not necessarily have a dark core as the contribution from the fundamental

Gaussian mode is equally important in the formation of C-points. These modes mostly
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appear with a near uniform intensity distribution across the mode as the central dark
region of LG mode is occupied by orthogonally polarized Gaussian mode. From our
experimental observations, we believe that the probability of generating an isolated C-
point is high for input linear polarization than elliptical polarization. For input elliptical
polarizations, the modes observed are mostly dipoles except for right and left circular
polarizations for which orthogonal C-points may be generated. Moreover, the effect of
varying input linear/elliptical polarization on the topological behaviour of output mode
also depends on the relative amplitudes of combining orthogonal modes and the position
of singular region in the modal output. In our experiment we maintain the input SOP to
be vertical in lab frame throughout the experiment. The fiber tip is adjusted for offset
and skew launching of light unless a donut mode with near uniform intensity is observed.
Then, Stokes polarimetry is performed to characterize the mode. In similar manner, for

four different coupling conditions, we observed following C-points.
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Fig. 6.4. Row 1: Simulation results (al), (b1) Lemons with right circular C-point, (cl), (d1) Stars
with left circular C-point, Row 2: (a2)-(d2) are the corresponding streamline plots, Row 3 and

Row 4 are corresponding experimental results for Row 1 and Row 2.

Figure 6.4 shows the numerically and experimentally generated lemon and star
patterns for different coupling conditions. First and second rows are simulated results

using Equ. (4). From the simulated patterns the relative phase (&) between the interfering

71



Chapter 6: Polarization Singularities in Few-mode Optical Fiber

modes is estimated. Figures 6.4 (a3) and (b3) are lemon topologies with right circular C-
points generated from a combination of right circular Gaussian mode and left circular,
left helical LG mode with 0° and 170° relative phase difference between them
respectively. Similarly, Fig. 6.4 (c3) and Fig. 6.4 (d3) are the star topologies with left
circular C-points generated from the combinations of left circular Gaussian mode and
right circular, left helical LG mode with -270° and -45° relative phase difference between
them respectively. These four polarization singular modes are encountered for different
input coupling conditions. Interestingly, for all singular patterns, the helicity of vortex
mode is -1. From the singular pattern and its polarization content, one can predict the
topological charge or helicity of the combining modes and also the relative phase
difference between them. Figures 6.4 (a4) - (d4) are the corresponding streamline plots.
The white solid line among the curved black lines indicates the radial line and the black

circle at the center is the location of C-point.
6.4.2 Generation of Monstars

Monstar is a hybrid polarization singular topology that has the properties of both lemon
and star [31]. The geometrical orientation of polarization ellipses around the C-point of
a monstar resembles the topology of a lemon but it has three radial lines originating from
the C-point that coincide with the characteristics of a star and hence the name ‘Mon-Star’.
It has been recently reported that monstar is an anisotropic lemon which can be formed
either by squeezing or rotating a lemon [32]. For example, let us consider the lemon
pattern of Fig. 6.4 (a2) for which the radial line is along +ve X-axis. On squeezing this
lemon along Y-axis towards origin, some of the curved lines around C-point come closer

resulting in the formation of new radial lines and hence a monstar is generated.

In general, an isolated monstar is rarely realized in experiments [23,33,34], however the
probability is more in random speckle fields [35,36]. Here, we have made an attempt to
realize the isolated monstar using an FMF by taking advantage of its inherent modal and
polarization characteristics. As discussed in the previous section, the combination of
plane and helical wave fronts of orthogonal circular polarization results in the formation
of lemon and star patterns. But, the formation of monstar takes place when two LG modes
of opposite helicity combine with a plane wave front Gaussian mode of orthogonal
polarization i.e., an anisotropic vortex mode combines with a Gaussian mode as shown

in Equ. (5). This can also be explained as the combination of orthogonal HG,; and HG,,
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modes (which are analogous to LP;; modes of FMF) with Gaussian mode of orthogonal

circular polarizations [21].

Ellipse field

Streamline plot

Fig. 6.5. Monstar singular topologies generated for different coupling conditions; (al)-(cl)

ellipse fields, (a2)-(c2) corresponding streamline plots.

Iconic monstar patterns with three radial lines encountered for different coupling
conditions are shown in Fig. 6.5. Utmost care has been taken while exciting such complex
mode combinations. Stokes polarimetry is carried out for the modes whose spatial
intensity distribution looks like HG,; or HG,, mode with non-zero intensity between the
adjacent lobes, which is nothing but the combination of an anisotropic vortex with
Gaussian mode. Unlike lemon and star patterns, these patterns can hardly be identified
with the spatial polarization map, but streamlines give effective visualization of such
complex polarization topologies. It can be observed from Fig. 6.5 (al) that the amplitude
of one of the combining modes with right circular polarization is dominating. Similarly
in Fig. 6.5 (c1) the amplitude of mode with left circular polarization is dominating while
in Fig. 6.5 (b1), a right circular Gaussian mode is embedded in left circular anisotropic
vortex mode. Hence, it can be stated that the relative amplitudes and relative phases of
the combining modes are purely dependent on the input coupling conditions of FMF. The
corresponding streamline plots are shown in Fig. 6.5 (a2) — (c2), where the black circles

enclose the C-point and the red solid lines indicate the radial lines.
6.4.3 Formation of dipoles

The presence of two C-point polarization singularities of opposite topological index in

the modal field is generally referred to as dipole i.e., star-lemon, star-monstar etc. In some
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cases, two isolated C-points of the same index also can be found in the modal field such
as star-star and lemon-lemon depending on the topology of phase and polarization of the
interfering modes [29]. In the previous section, we explained that a combination of LG
and Gaussian modes of orthogonal circular polarization forms a single isolated C-point
(star or lemon), but the same modes in linear polarization basis (horizontal and vertical)
results in the formation of dipoles as shown in Fig. 6.6 and the field distribution of dipoles
IS given by

) —r2

E =éyuyre 'w2etWel® 4+ 6, e /w2 (8)
In the 4 digit notation mentioned on each dipole pattern, the first and third digits represent
the topology of phase (I = 0, £1) and the second and fourth letters represents the
polarization basis (H-horizontal, VV-vertical, R-right circular and L-left circular). Fig. 6.6
(al) and (bl) are the star-monstar dipoles and Fig. 6.6 (c1) and (d1) shows the star-lemon

dipole patterns.

Dipoles and a pair of isolated C-points can also be formed when two orthogonally

polarized LG modes with slightly displaced vortex cores interfere.

E= éR(H)re_rz w2eti@eid 4 rléL(V)e_le/wzeii‘p 9)
Equation (9) represents the combination of two vortex modes of orthogonal polarization
with their cores slightly displaced (r; = r + Ar). Figures 6.6 (a2) and (d2) are the dipoles
consisting of a star-lemon pair while Fig. 6.6 (b2) and (c2) are two isolated C-points with
lemon and star topologies respectively. In this case the location of C-points is observed
to coincide with the displaced vortex cores. In addition to the circular basis of the
displaced vortex cores, the linear basis also can generate asymmetric dipole (Fig. 6.6 (a3)
and (d3)) and double dipole (Fig. 6.6 (b3) and (c3)) patterns.
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Fig. 6.6. Dipole topologies; (al)-(d1) combination of a vortex mode and Gaussian mode in linear
basis; combination of two vortex modes with displaced cores in (a2)-(d2) circular basis, (a3)-

(d3) linear basis.
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Fig. 6.7. Experimentally generated dipole patterns; (a) two isolated stars, (b) two isolated lemons
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(c) star-lemon dipole (d) monstar-star dipole.

shown in Fig. 6.7. During the excitation of dipoles, the output mode is observed to be a
donut mode with near uniform intensity and in some cases with relatively large core area,
which signifies two vortices separated by certain distance. By adjusting the coupling
conditions of the fiber, we excited the combinations of two vortex modes of orthogonal
circular polarization (Fig. 6.7 (al) and (b1)) and the combinations of a vortex mode and

a Gaussian mode of orthogonal linear polarization (Fig. 6.7 (c1) and (d1)). Figures 6.7
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(al) and (b1) show a pair of isolated C-points with star and lemon topologies facing each
other and sharing a common radial line which are expected to be combinations of two
vortex modes of opposite topological charge and orthogonal circular polarization with ©
relative phase difference. Figures 6.7 (c1) and (d1) show dipole patterns formed due to
the combination of a vortex mode and a Gaussian mode of orthogonal linear polarizations

as discussed above. Figures 6.7 (a2) - (d2) are the corresponding streamline plots.
6.4.4 Action of HWP and Cylindrical lens on C-points

The switching of C-point indices and transformation to their orthogonal states is of great
scientific interest as these phenomena can be useful in polarization multiplexing and
qguantum computing [19,37]. Recent reports suggest that a HWP can be useful in
switching the index of C-point singularity i.e., lemon to star and vice-versa [38] and a
spiral phase plate (SPP) is capable of transforming a C-point to its orthogonal state [39].
Here, we investigate experimentally the effect of HWP and a CL in conversion of a C-

point.

In the experimental setup, the generated C-points are allowed to pass through a
HWP and CL that are inserted after the microscope objective lens L2 and Stokes
polarimetry is carried out for the output mode in respective cases. Figure 6.8 shows the
experimentally generated anisotropic lemon with right circular C-point and its
transformations after passing through a CL and HWP. It can be observed from Fig. 6.8
(b1) and (c1) that the lemon has been transformed to a star type singularity of opposite
index under the action of both CL and HWP individually. The radial lines are highlighted
using a white solid line to guide the eye while C-point is enclosed in white circle. One
interesting fact is that a CL has transformed lemon to star changing the index from +1/2
to -1/2, while leaving the SOP unaltered i.e.,, a lemon with right circular C-point
converted to a star with right circular C-point as shown in Fig. 6.8 (b1). In contrast, a
HWP converted both index and SOP i.e., a lemon with right circular C-point converted
to a star with left circular C-point as shown in Fig. 6.8 (c1). Moreover, the radial lines of
the star patterns converted using CL and HWP are orthogonal to each other. Figures 6.8
(a2) - (c2) are the corresponding ellipse orientation maps of Fig. 6.8 (al) - (c1). The arrow
on the black circle enclosing the C-point indicates the direction of ellipse orientation

angle increment, which is anti-clockwise for lemon and clockwise for star patterns.
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Fiber output mode After CL After HWP

Ellipse field

Ellipse orientation map

Fig. 6.8. Experimental results for generation and conversion of C-point from (al) lemon to star

using (b1) CL, (c1) HWP; (a2)-(c2) are corresponding ellipse orientation maps.

The same phenomenon is observed for a star pattern with right circular C-point
as shown in Fig. 6.9. It is noteworthy to state that on conversion of C-point using a CL,
only the index is changing but not SOP which means that the topological charge (I) of
the vortex mode is changing from -1 to +1 in Fig. 6.8 and from +1 to -1 in Fig. 6.9. On
the other hand, HWP has no effect on the phase of vortex mode but swaps the handedness
of polarization. This phenomenon is useful in conditional switching of either phase (using
CL) or polarization (using HWP) or both simultaneously using CL and HWP to get

orthogonal C-point.

Fiber output mode After CL After HWP

Ellipse field

Ellipse orientation map

Fig. 6.9. Experimental results for generation and conversion of C-point from (al) star to lemon

using (b1) CL, (c1) HWP; (a2)-(c2) are corresponding ellipse orientation maps.
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6.4.5 Stokes fields and Poincare vortices
The stokes parameters for a vector field distribution E = E, X + E, 9 can be defined as
follows
So = ExE; + E,E;
S, = EyE; — E,E; (10
S, = ExE; + E,E;
S3 = i(ExE;, — EyEy)
From these, complex Stokes fields (S;;) and hence Stokes phases (®;;) can be derived as

follows [40]
512 = Sl + lSZ ' 523 = SZ + iS3, and 531 = S3 + lSl (11)

dy, = arg(S; +1iS,), P53 = arg(S, + iS3), and &3, = arg(S; +iS;) (12)

Equation (12) represents Stokes phases, which gives information about Stokes vortices
or Poincare vortices. The study of Stokes fields and Stokes vortices (singular points of
Stokes field) is essential in exploring and understanding the topological aspects which
are useful in many scientific fields as these are the signatures of most fundamental aspects
of electromagnetic fields. These topologies are universal and very common in nature such
as in fingerprints [41], liquid crystal arrangements [27,42,43], cosmic radiation [44],
magnetic skyrmions [45] and biology [46]. The optical fields with 7m-Symmetric
topologies such as lemon, star and monstar with index +1/2 and 2z-symmetric topologies
such as spiral, saddle, radial and circulation with index +1 are recently reported in vector-
vortex beam fields and their poynting vector flow [47,48]. However, the studies related
to these complex topologies are mostly theoretical and very few experimental evidence
has been demonstrated using bulk optical setups that involve complex optical elements
such as SPP and g-plates.

In this section, we discuss the complex topologies that are present around Stokes
vortices which are derived from well patterned n-symmetric lemon and star topologies
generated using FMF. Figures 6.10 (al) — (d1) show the streamline plots for ellipse
orientation angle (¥ = ®,,/2) of a lemon topology along with Stokes vortices. Here,
only v is the m-symmetric vector field with half index whereas the vector field around all
Stokes vortices is 2n-Symmetric i.e., @, has single vortex with radial topology while

d,; and d;,have a pair of vortices (dipoles) with integer index. Corresponding
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experimental results are shown in Fig. 6.10 (a2) — (d2). Slight deviation from the
simulated patterns is observed in the experimentally generated topologies of ®,; and @5,
due to field asymmetry which may be caused due to slight variations in relative

amplitudes and phase of interfering modes.

The simulated topologies around Stokes vortices for a star pattern are shown in
Fig. 6.11 (al) — (d1) and the corresponding experimental results are shown in Fig. 6.11
(a2) — (d2). Here, the topology of &,, is a saddle, that of ®,; and &, are dipoles as in
previous case but with different topology, all are being of integer index. The topology of
®,, changes from radial to spiral and then to circulation for a relative phase difference
of 0, /4 and 7/2 between the interfering modes for a lemon but remains the same (saddle)
for a star with a mere rotation in respective cases. This shows the strong dependency of
topology of 2m-symmetric vector fields on that of their m-Symmetric counter parts.
Moreover, ®;; gives the information about the relative phase difference between the
components of S (i, j, k = 1,2,3 in rotation) i.e., ®;, gives the relative phase difference
between components of S5 (right circular and left circular polarizations), ®,; between
the components of S; (horizontal and vertical) and @5, between the components of S,
(diagonal and anti-diagonal) [47].

Y=>,,/2

Simulation

Experiment

Fig. 6.10. (al) — (d1) Simulated streamline plots for Stokes vortices of a lemon, (a2) — (d2) are
the corresponding experimental results.
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Fig. 6.11. (al) — (d1) Simulated streamline plots for Stokes vortices of a star, (a2) — (d2) are the
corresponding experimental results.

6.4.6 2m-symmetric vector fields of vector vortex modes

In the previous section, we discussed © and 2zn-symmetric topologies in polarization
ellipse orientation field and Stokes vortices (®,,) respectively. In this section, we discuss
the direct realization of 2z-symmetric vector fields such as radial, spiral, circulation and
saddle in the polarization ellipse orientation field by exciting the vector vortex modes of
FMF. To the best of our knowledge, the topological aspects of vector modes of FMF have
not been reported previously even though there are numerous reports on the controlled
generation and manipulation of such inhomogeneously polarized fields. Figure 6.12
shows the simulated (row 1) and experimental (row 2) streamline plots for vector modes
of FMF which are discussed in previous chapter and are excited by adjusting the coupling
conditions. These vector modes, being 2zn-symmetric in ellipse field, exhibit 4z-
symmetry in ®,, with topological index two. The vector modes with radial, azimuthal
and spiral polarizations correspond to radial, circulation and spiral topologies in ellipse

orientation field and all other hybrid modes correspond to saddle topology.
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Radial Clirculation Spiral Saddle

Simulation

Experiment

Fig. 6.12. Row 1: Simulated streamline plots for (al) radial, (b1) azimuthal, (c1), (d1) spiral and
(el), (f1) hybrid vector modes of FMF; Row 2: (a2) — (f2) are the corresponding experimental
results.

The optical fiber acts as a powerful tool to realize all complex polarization
topologies by virtue of its inherent modal and polarization characteristics which
otherwise is not possible without complex optical devices such as SPPs, SLMs and g-
plates. Moreover, its cost effectiveness is one of the reasons for its usage to realize such
complex optical phenomena. The only drawback in using fiber for this kind of studies is
that it is possible to realize optical vortices of only first order with well-defined
polarization behaviour and also it is a tedious job to control the excitation of desired

modes if the number of supported modes increases in the fiber.
6.5 Conclusions

In this chapter, we have discussed polarization singularities, their origin and types with
an experimental demonstration on their generation and characterization using Stokes
polarimetry. We studied the generation of z-symmetric isolated C-points such as lemon
and star and discussed the action of HWP and a cylindrical lens on them. We have
successfully demonstrated the experimental generation of isolated monstar topologies by
selective excitation of mode combinations with precise control over coupling conditions.
The effect of relative phase differences between the interfering modes in generation of
polarization singular topologies is studied. 2z-symmetric topologies are realized in
Stokes vortices and also in the polarization ellipse orientation field of vector vortex mode
fields.
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CHAPTER 7

Conclusions

7.1 Conclusions

With the objective of controlled generation and characterization of vector modes in
optical fiber, we started the work from an understanding of the fundamental aspects of
wave propagation in an inhomogeneous dielectric optical waveguide with step-index
profile. The electromagnetic vector wave equation that corresponds to light propagation
in optical fiber is derived and general solutions are discussed in appendix. It is understood
that the structural conditions of the optical fiber are responsible for the formation of
vector modes of complex spatial polarization. Further, the vector wave equation is
reduced to scalar wave equation by introducing the weakly guiding approximation. The
linearly polarized modes are shown to be solutions under this approximation and the
relation between vector modes and scalar modes is established.

The vector modes with radial, azimuthal and hybrid spatial polarization are
generated using a few-mode optical fiber by precise control over the coupling conditions
and are characterized using a rotating analyzer. A first order phase vortex is generated
and is characterized by forming interferograms with a reference Gaussian mode. The
presence of fork like structure in the interferogram is the significance of phase singularity
(helicity of wave front) of the vortex mode. It has been observed that the input state of
polarization is capable of switching the helicity or charge of the singularity of the
generated vortex mode. The mechanism of switching phase vortices is expected to find
potential application in particle tweezers. Further, the studies on higher order LP modes
for the presence of phase singularities are presented in chapter 2. Apart from LP modes,
few arbitrary modal fields are generated and the presence of phase singularities is
identified. The generation of phase singularities of second order in fiber is found to be
difficult as they are highly unstable and decompose into single charged vortices for small
ambient perturbations. It is also observed that the number of singularities present in the
modal field is directly proportional to the V-number of the fiber. This investigation helps

to understand the fiber modal fields in terms of phase singularities present in them. As
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the phase of the modal fields is highly sensitive to external perturbations on the fiber, the
results may find applications in interferometric sensors.

A new approach for the generation of clockwise (CW) & counter-clockwise
(CCW) spiral vector beams (SVBs) via combination of orthogonal LP,;; modes with
diagonal and anti-diagonal polarization vector has been demonstrated in chapter 3. The
SVBs with polarization vector oriented in CW and CCW direction are experimentally
generated using a few-mode optical fiber by controlling the coupling conditions and input
state of polarization (SOP). It is observed that the orthogonal LP,; modes with diagonal
and anti-diagonal polarization are excited for orthogonal linear input SOP, while the
SVBs that are linear combinations of orthogonal LP;; modes are excited for an
intermediate SOP. This shows the strong dependency of polarization of generated mode
on the input SOP. Stokes analysis of the experimentally generated modes was found to
be in excellent agreement with theoretically predicted results.

In chapter 4, we have presented an experimental demonstration on generating
vector vortex modes (VVMSs) in a few mode optical fiber by extending the basis of
orthogonal LP;; modes with diagonal and anti-diagonal polarization vector. The VVMs
are generated by controlling the coupling conditions of the fiber and input SOP. The
clockwise and anti-clockwise orientations of half wave plate (HWP) from its mean
position, before and after changing the coupling conditions, generated all VVMs of
orthogonal polarization. Further, a Poincare sphere approach is presented for LP;; modes
as well as VVVMs generated from their linear combination. The location of regular and
hybrid VVMs on the higher order Poincare sphere (HOPS) is justified by the positions of
orthogonal LP;; modes on standard PS, which combine to generate respective VVMs.
This approach is efficient and much useful in the representation of vector modes of a few-

mode fiber.

From the results obtained in chapter 3 and chapter 4, it can be stated that any slight
deviation in the ellipticity of the experimentally generated SVBs and VVMs may be
attributed to the fiber birefringence and quality of optics used in the experiment. The
SVBs with clockwise and anti-clockwise spiral spatial polarization which have sharper
focusing properties next to radial and azimuthal vector modes are suitable for fields such
as particle trapping, optical micro manipulation and lithography. And the VVMs with
hybrid spatial polarization may also have considerable contribution towards imaging,
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microscopy and polarization based data encryption by providing additional degree of
freedom.

The vector modes discussed in the previous chapters are V-type polarization
singularities, wherein the polarization vector is linearly polarized across the beam and the
SOP is undefined at the center. In chapter 5, we have dealt with C-point polarization
singularities that are more fundamental in nature. The origin and types of C-point
singularities are discussed and = — Symmetric C-point topologies such as lemon, star and
monstar are generated experimentally and analysed using Stokes polarimetry. The effect
of HWP and cylindrical lens (CL) on the isolated C-points such as lemon and star is
studied. It is observed that on conversion of C-point using a CL, only the index is
changing but not SOP which means that the topological charge (1) of the vortex mode is
changing from -1 to +1. On the other hand, HWP has no effect on the phase of vortex
mode but swaps the handedness of polarization. This phenomenon is useful in conditional
switching of either phase (using CL) or polarization (using HWP) or both simultaneously
using a combination of CL and HWP to get orthogonal C-point. Further, 2z-symmetric
topologies are realized in Stokes vortices and also in the polarization ellipse orientation
field of vector vortex mode fields.

From all the above studies, we conclude that the optical fiber acts as a powerful
tool to realize various VVVMs and complex polarization topologies by virtue of its inherent
mode mixing and polarization characteristics that arise from its structural model. Optical
fiber makes it feasible to realize phase and polarization structured beams which is
otherwise not possible without complex optical devices such as SPPs, SLMs and g-plates.
Moreover, due to the cost effectiveness and flexibility in operation, optical fibers are
being widely used in many applications. The main drawback in using fiber for this kind
of studies is that the fibers are capable of generating vortices of first order only with well-
defined polarization behaviour, while higher order vortices are unstable. Subsequently, it
is a tedious job to control the excitation of desired modes if the number of supported

modes increases in the fiber.
7.2 Scope of future work

In this thesis, attention was given to the generation and characterization of various VVMs
and also the study of complex polarization singularities. We have successfully generated

VVMs other than well-known zeroth order vector modes in few-mode optical fiber by
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precise control over coupling conditions and taking advantage of inherent mode mixing
phenomenon. As stated above, the fibers can only support vortices of first order with
considerable stability and purity, while further studies related to more complex
polarization phenomena are highly difficult. Though one may use custom designed
optical fibers that support higher order vortices, it increases the cost of fabrication and
yet suffer from certain limitations imposed by fiber geometry. Hence, we believe that
fibers are useful in such studies only at the fundamental level and suffer from lack of
mode stability at higher levels. For this reason, SLMs, SPPs, and g-plates are reliable
sources for generating desired modes with good mode stability, which is essential in

highly sensitive studies such as geometric phase and entanglement.

Based on current studies presented in this thesis, future work has scope in two
possible ways. The first one is the study of fundamental phenomena such as geometrical
phase of light beams, 3D polarization patterns, and spin-orbit interactions (SOI) and the

second is application oriented i.e., optical tweezers, OAM multiplexing in fibers.

> Itis always interesting to revisit the fundamental properties of physics, especially in
optics and unleash the hidden aspects which may or may not have significant
application but can surely change our view of science that we know today and also
pave the path for better understanding of many scientific phenomena. Of late, SOI in
light is gaining significant interest among researchers due to its fundamental nature
and helps us in understanding light propagation in weakly anisotropic media [1-9].
Further studies may be extended in the direction to understand and explore SOI in
light beams.

> Recent reports suggest that the propagation of polarization singular patterns form
knots in 3D space, which are highly complicated topological structures. The study of
these patterns helps us better understand the propagation characteristics of
polarization singular beams. And also the observation of Mobius strips in polarization
of light is significantly interesting and changes our regular views on the polarization
of light [10-14].

» The light beams with OAM are significantly useful in free-space communication and
also in advanced fiber optic communication. Recent investigations on OAM beams
for their multiplexing capabilities in optical fibers show a new way to tackle ever

expanding demand for high bandwidth. As these beams offer endless degrees of
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freedom, the OAM mode multiplexing is of great research interest and yielding
fruitful results [15,16].

In view of the numerous opportunities available for using structured beams, we are
mainly focused in exploring and understanding the fundamental properties of light for

which this thesis helps as a first step towards an endless journey of research.
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Appendix

Stokes Polarimetry

A.1 Polarization ellipse and Stokes polarization parameters [1-3]

A pair of plane waves that are orthogonal to each other at z=0 plane are represented by

E,(t) = Ey,(t) cos[wt + 6,(t)] = Exexp(iwt) (A1)
E,(t) = Egy (t) cos[wt + 8, (t)] = Eyexp(iwt) (A.2)

Where E,,(t) and E,, (t) are the instantaneous real amplitudes, w is the instantaneous
angular frequency, 6,(t) and &, (t) are the instantaneous phase factors and E, =
Eo.exp(idy) and E,, = Ey,exp(id,) are the complex amplitudes. The explicit removal

of the term wt from eq. A.1 and A.2 yields the equation for polarization ellipse, which is

valid at a given instant of time.

E2(0) | E}(®)  2E(DE, (D)
E(0) ' E3,(t) Eox(0)Eoy(®)

cos§(t) = sin?8(t) (A.3)

where §(t) = 8,(t) — &, (t) is the relative phase difference. For monochromatic
radiation the amplitudes (E,, and E,,) and the phase (&) are constants. Considering the

time average of above equation, we get

(E2()  (E; () 2(E (DE, (1))
ng " Egy - EOxEOy €0

s& = sin?§ (A.4)
Where (E:(DE;(©)) = lim © [ E(OE(D dt; i =x
Multiplying eq. (A.4) by 4EG,Eg,, We get

4EE (EZ(t)) + 4EZ(EZ(t)) — 8EoxEgy(Ex () Ey (t))coss = (ZEOxEOysin(S)Z (A.5)

On substituting the time average values derived from eq. (A.1) and eq. (A.2), we arrive
at

2EZEZ, + 2ELEZ, — (2EgxEqyc0s8)” = (2EoxEoysind)’ (A.6)

92



Adding and subtracting Eg, + E{}y on left hand side of above equation results in perfect

squares.
(B2, + E3,))" — (B2 — E2,)" — (2EqoxEoyc0s8)” = (2EoxEqysind)”  (A.7)
Now, we introduce these quantities in terms of Stokes parameters as
So = Egy + E§, = ExEx + EJE,
S, = E¢, — E§, = E;E, — E,E,
Sy = 2EoxEqycosé = ExEy + E, Ex (A.8)
S3 = 2EoxEgysind = i(E Ey — E, Ey)
and S3 = S? + 52 + S2

Now, the polarization ellipse parameters such as ellipse orientation angle () and

ellipticity () can be expressed in terms Stokes parameters as follows

1 2EyxEqycos6 1 S
Y ==tan™?! (%) =—tan™! (—2>
2 EZ —EZ, ) 2 )

(A.9)

1, (2EoxEoysiné 1., (53)
= —=Sln — | = =Sin -
X=3 EZ +EZ, ) 2 So

Fig. A.1. Polarization ellipse oriented at an angle 1 with respect to positive x-axis with an

ellipticityy = b/a; a, b are the semi major and semi minor axes.

A.2 Stokes parameters in terms of intensity of images (Experimental

determination)

The electric field that passed through a retarding element with retardation ¢ and a

polarizer making an angle 6 is given by
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E = E e'®cost + Eye™"sind (A.10)
The intensity of the light is then defined as
I=E.E* (A.11)
Substituting eq. (A.10) in eq. (A.11) and rearranging the terms we get
I = ExE;cos®0 + EyE;sin®6 + EE e™"®sinfcos6 + E Eye'®sinfcosd  (A.12)

From the definition of Stokes parameters from eq. (A.8) and using the trigonometric

relations, the above equation can be reduced to
1
1(6,¢9) = 5 [So + S1c0526 + Sycospsin2 + S;singsin26] (A.13)

Equation (A.13) is the Stokes’ intensity formula for measuring four Stokes parameters.
The first three Stokes parameters (S,, S;,S,) are measure using a single polarizer by
rotating it to discrete angles 0°, 45° 90° and 135° which correspond to horizontal,
diagonal, vertical and anti-diagonal polarizations respectively. The fourth Stokes
parameter (S3) is determined by placing a quarter wave plate at angle 90° before the
polarizer and then the polarizer is rotated to 45° and 135° for the measurement of right
and left circular polarization content of the beam respectively. From eq. (A.13), the
Stokes parameters in terms of measured intensities of the light beam for these discrete

angles can be written as
So = 1(0°,0°) 4+ 1(90°,0°)
S, = 1(0°,0°) — 1(90°,0°) (A14)
S, = 1(45°,0°) — I(135°,0°)
So = I(45°,90°) — I(135°,90°)
Thus, by measuring the intensities of images, Stokes parameters can be estimated.
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