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ABSTRACT 

 

Phase, polarization and intensity are the most important features of an electromagnetic beam 

field, which helps us in understanding the field distribution across the beam, its interactions 

with other fields and also with matter. Recently, optical beams with complex or inhomogeneous 

phase and polarization topology are gaining much importance over beams with homogeneous 

phase and polarization states, leading to a new branch of optics known as singular optics. It 

deals with complex light beams that are either phase or polarization singular, which are referred 

to as scalar and vector vortex modes respectively. The advent of laser technology paved the 

path for generation of such complex light beams by modifying the cavity so as to generate 

modes of desired phase and polarization. Later, many methods are reported on the generation 

and study of the characteristics of such complex fields thereby hinting at possible applications. 

In early 90’s, it was reported that beams with helical phase structure are associated with orbital 

angular momentum of light which are in recent days finding applications in optical tweezing 

and advanced optical communication via orbital angular momentum mode multiplexing. 

Additionally, beams with inhomogeneous polarization states are found to be useful in 

microscopy, data encoding, lithography and laser machining.  

There are numerous active and passive methods proposed to generate phase and 

polarization structured beams in order to address the stability and controllability of such fields 

as well as aiming at various applications. Most of the methods use bulk optical setups, which 

include complex micro-structured devices to generate complex optical beams that increase the 

cost of experiments. One of the most convenient and cost-effective methods of generating such 

fields is optical fibers. Optical fiber is an inhomogeneous, dielectric, cylindrical optical 

waveguide whose eigen modes have spatially inhomogeneous polarization and are known as 

cylindrical vector beams or zeroth order vector modes. These modes includes radial, azimuthal 

and hybridly polarized vector modes.   

In this thesis, we are devoted to generate and characterize such complex vector fields 

using a few mode optical fiber by controlling the coupling conditions of fiber with input 

Gaussian beam. Our method fully relies on precise control over coupling conditions and the 

input state of polarization which has the potential to switch between various vector fields. We 

begin the thesis with a brief introduction to phase and polarization structured beams with their 

generation schemes and possible applications. Further, we analyze the wave propagation 

mechanism in optical fibers with the help of Maxwell’s equations to understand the origin of 
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polarization inhomogeneity of the modes. Various vector modes in optical fiber are generated 

and characterized using standard Stokes polarimetry. An attempt has been made to represent 

linearly polarized modes of optical fiber and their combinational vector modes onto standard 

and higher order Poincare sphere respectively. We have also generated polarization singular 

beams that are a combination of Gaussian and vortex modes of orthogonal polarizations within 

the fiber by selective excitation of modes. Complex polarization topologies such as lemon, star 

and monstar are generated and also the formation of dipoles is studied. The behavior of 

polarization singular beams under the action of half wave plate and cylindrical lens are studied.  
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CHAPTER 1 

Introduction 

1.1 Introduction  

Singular optics, the branch of optics that deals with light beams having complex phase 

and polarization topology, is fast developing owing to its promising features and 

fundamental nature of scientific interest [1]. Phase and polarization, in addition to 

intensity are the skeleton of an electromagnetic beam field, which helps one in 

understanding the properties of the field and also its interactions with itself and matter. 

The complex nature of light beams leads to singular regions (undetermined state) across 

the beams either in phase or polarization. Such beams are popularly known as vortex 

beams and are classified as scalar and vector vortices depending on whether the 

singularity is in phase or in polarization respectively [2,3]. Generally, scalar vortices or 

phase singularities can be observed in null intensity regions of higher order Laguerre-

Gaussian (LG) and Bessel-Gaussian (BG) beams with annular intensity profile. These 

beams are usually homogeneously polarized and are often referred to as optical vortex 

beams (OVBs), which have phase circulation of 0 to 2π around the center of the beam 

resulting from the helicity of wave front and are generally known as phase vortices. The 

vortex nature was first identified by Nye in electromagnetic waves, which is analogous 

to dislocations in crystals [4]. Later, Allen et al. reported that the phase singularity of 

these beams has a direct connection with their orbital angular momentum (OAM) which 

kickstarted the massive research in the respective areas for a better understanding of the 

nature of beams and their possible applications [5,6].  

On the other hand, vector vortices are beams with similar intensity profile as that 

of OVBs but with spatial inhomogeneous polarization and are known as cylindrical 

vector beams (CVBs) due to their cylindrically symmetric polarization distribution [7]. 

Radial and azimuthal vector beams are popularly known CVBs, which are the solutions 

to vector wave equation and have exceptional focusing properties when focused under 

high numerical aperture lens [8]. This unique sharp focusing feature enables the beams 

to be useful in laser machining, lithography, and also in the generation of optical needles 

[9,10]. Additionally, CVBs along with OVBs are also finding applications in high 

resolution imaging, optical communications, optical tweezers, and also in entanglement 
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[11-15]. With a wide spectrum of applications, these beams have drawn the interest of 

researchers for controlled generation and manipulation of complex light beams.  

The generation of these beams is mainly classified into two types, active and 

passive. In active methods, CVBs are directly generated from laser output by modifying 

the cavity of laser using intra-cavity optical elements such as axial birefringent material 

like calcite [16], conical axicon [17], Brewster angle reflector [18,19], and polarization 

sensitive cavity mirrors [20]. In passive methods, the fundamental Gaussian mode from 

the laser is modified using special optical devices outside the cavity to generate OVBs 

and CVBs. Computer generated holograms and astigmatic mode converters are simple 

and cost effective free-space methods of generating OVBs. In computer generated 

holograms, a fork like pattern is printed onto a transparent substrate, on passing through 

which a Gaussian beam gets diffracted and converts into a helically phased LG beam in 

first order diffraction pattern. Whereas, the astigmatic mode converters (a pair of 

cylindrical lenses) impart an additional phase to a Hermite Gaussian (HG) beam that pass 

through them, resulting in generation of an LG beam [21,22]. Nowadays, spiral phase 

plate (SPP) and liquid crystal on silicon based spatial light modulator (LCoS-SLM) are 

being used to generate OVBs. SPP is a micro structured optical element with an inscribed 

step that introduces azimuthal phase dependence to the incoming plane phased beam 

while SLM is a voltage controlled device onto which the phase of desired mode can be 

loaded using a computer, which when illuminated with laser, generates a mode of desired 

phase [23,24]. These methods are useful in generating OVBs only i.e., the scalar vortex 

beams with uniform polarization distribution.  

Interferometric technique is useful in generating CVBs by combining two modes 

of orthogonal polarization [25]. In recent days, micro-structured optical devices such as 

q-plates serves the needs of generating various vector modes including some novel vector 

fields [26,27]. Alternatively, the methods that involve optical fibers can directly generate 

CVBs by selective excitation of inherent waveguide modes [28,29]. The flexibility in 

generation of nearly degenerate guiding modes with a precise control over coupling 

conditions makes optical fibers one of the widely used method to generate and study the 

characteristics of CVBs. Moreover, optical fibers provide an opportunity to explore mode 

mixing phenomenon, which is quite common and interesting that helps in understanding 

the evolution of modes with scalar and vector singularities. Optical fiber is an 

inhomogeneous cylindrical dielectric waveguide in which the eigen modes are the 
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solutions of vector wave equation. These modes have inhomogeneous spatial polarization 

and are generally referred to as zeroth order vector modes which include radially 

polarized 𝑇𝑀01, azimuthally polarized 𝑇𝐸01and hybridly polarized 𝐻𝐸21
𝑜𝑑𝑑,𝑒𝑣𝑒𝑛

 [29]. All 

these modes can be excited in optical fiber by precise control over coupling conditions.  

1.1.1 Review on fiber based vortex beam generation 

Exploiting the selective mode excitation in optical fibers, many methods were proposed 

to generate radial, azimuthal and hybrid vector beams. Volpe and Petrov demonstrated a 

method to generate all possible vector modes by launching first order LG beam into the 

optical fiber and efficiently converted the arbitrary vector beams to pure CVBs using true 

polarization rotator [30]. Later, T. Grosjean et al. using a pi-phase discontinuity element 

designed a stable system to generate vector beams in few mode fiber (FMF) with 

remarkable purity of polarization state [31]. They have also demonstrated an all-fiber 

method to generate radial and other polarized beams using a combination of mono-mode 

and bi-mode optical fiber [32]. Wei Gao et al. used multimode liquid core optical fiber 

for the same and also verified the existence of phase vortices in the generated fields [33]. 

Recently, a group led by S. Ramachandran designed and fabricated a ring core optical 

fiber which supports the generation and propagation of donut shaped vector beams for 

long distances without much distortion, which can find applications in creating a new 

degrees of freedom for fiber optic communication [34]. The group also demonstrated the 

generation of modes that carry OAM by exciting the combination of hybrid modes in 

specially fabricated fiber [35] as well as a method for generating Bessel like beams in 

higher order linearly polarized modes of optical fiber [36]. A new variety of hybridly 

polarized beams that have different state of polarization (SOP) on the beam cross section 

have been recently reported to be generated from a spun fiber, which are named Hybrid-

Azimuthal-Radially Polarized modes, HARP in short [37]. The generation and switching 

between various vector modes has been demonstrated by N.K. Vishwanathan and his co-

workers using an optical fiber that supports two modes [38,39]. They have also 

demonstrated the generation of propagation invariant Bessel beams and dark hollow 

beams using a micro axicon etched on tip of a fiber [40,41]. Special fibers such as 

Polarization maintaining optical fibers and photonic crystal fibers are also being used to 

generate OAM beams, which find applications in sensing and imaging [42-44]. Recently, 

a micro sized SPP was fabricated onto the fiber tip by focused ion beam which can 
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efficiently generate the vortex beam [45]. Fused fiber couplers, which are based on mode 

selective coupling are becoming popular in recent years as the CVBs can be generated 

using them with good modal purity and stability [46,47]. 

In this thesis, we demonstrate fiber based method for controlled generation of 

various vector modes in addition to well-known zeroth order vector modes. The 

generation of these vector modes is shown to be the inherent combination of first order 

linearly polarized modes (𝐿𝑃11) with orthogonal polarizations. Stokes polarimetry is used 

as key characterization tool for the analysis of generated modes by obtaining their spatial 

polarization distribution and ellipse orientation maps [48]. We have also made a 

representation of these modes on higher order Poincare sphere which is analogous to that 

proposed by Milione [49] and justify their positions based on the position of 𝐿𝑃11 modes 

on standard Poincare sphere, that combine to generate respective vector modes. Finally, 

we have experimentally demonstrated controlled generation of C-point polarization 

singularities in fibers and studied the role of half wave plate and a cylindrical lens in 

switching C-points from lemon to star and vice-versa.  

1.2 Motivation 

In view of flexibility in operation and having CVBs as inherent waveguide modes, optical 

fibers are preferable over bulk optical setups that include devices with complex structural 

design. Moreover, the capability of these modes to provide additional degrees of freedom 

for optical communication in fiber networks made them most prominent and impelled the 

scientific community in the direction of controllable generation and manipulation of these 

beams in optical fibers. Recently, all-fiber methods, and fused fiber couplers for 

generating CVBs are becoming very popular as they can be directly deployed in optical 

communication networks [46,47,50]. Additionally, an optical fiber can exhibit a rich 

variety of polarization singularities as a result of inherent combination of modes with 

plane (Gaussian mode) and helical (vortex mode) wave fronts with orthogonal 

polarizations, which is useful in understanding fundamental aspects of polarization 

singular structures. There has been a limited research which has investigated the complex 

polarization topologies such as lemon, star and monstar in optical fiber by exploiting 

mode combinations and controlled excitations [51,52].  

Keeping all these facts in mind, we aimed at controlled generation of various vector 

modes by taking advantage of the inherent combination of a new set of 𝐿𝑃11 modes with 
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diagonal and anti-diagonal polarizations. We have also demonstrated the generation of 

isolated C-points, dipoles in optical fibers and studied the effect of half wave plate and 

cylindrical lens in conversion of C-points.  

1.3 Objectives 

Keeping in view the challenges of polarization and spatial mode instability, we framed 

the objectives of our research work as follows 

 To generate and study the modal behavior of various possible spatial modes of 

few mode optical fiber and investigate the phase singularities using two-beam 

interferometry. 

 To generate and characterize possible vector modes and to investigate a 

convenient way of switching between them by controlling input SOP and/or 

coupling conditions.  

 To generate complex beam fields such as isolated C-points and dipoles in few 

mode fibers and investigate their behavior with respect to input SOP and a 

convenient method of switching between them. 

1.4 Organization of thesis 

A schematic representation of organization of the thesis is shown in Fig. 1.1. Chapter 1 

and chapter 2 are not included in the figure as they cover the introduction and theory 

related to the chosen problem. The key results and studies carried out in each chapter are 

clearly portrayed in Fig. 1.1 for quick understanding of content of the thesis. The thesis 

has been organized in seven chapters as follows. 

CHAPTER 1 

This chapter covers the introduction to scalar and vector vortex modes and their 

generation methods including few mode optical fiber. A brief review of generating such 

beams in fibers is presented including literature survey, motivation and objectives of the 

current research followed by organization of the thesis.  

CHAPTER 2 

In this chapter, we present theoretical aspects of wave propagation in optical fiber by 

deriving vector wave equation using Maxwell’s equations and hence discuss the vector 

modes of optical fibers. We also discuss the formation of scalar modes by considering 
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weakly guiding approximation and hence establish a relation between scalar and vector 

modes. 

 

Fig.1.1. Schematic representation of organization of thesis. 

 CHAPTER 3  

This chapter includes the preliminary experimental results of excitation of various modes 

and their characterization using two beam interferometry. In this chapter, we focus on the 

phase singular aspects of fiber modal fields. Using two fibers of different V-numbers, we 

generated vector modes and first four linearly polarized modes by changing the coupling 
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of input Gaussian beam with optical fiber and the generated modes are examined for the 

presence of singularities by forming interferograms with a reference Gaussian beam. 

CHAPTER 4 

In this chapter, the generation of spiral vector beams is demonstrated in a step-index few 

mode optical fiber by controlling the input SOP and coupling conditions. The spiral 

vector beams with clockwise and counter clockwise spiral polarization are generated and 

switching between them is demonstrated. Formation of these beams in the fiber is shown 

to be a combination of orthogonal linearly polarized modes with diagonal and anti-

diagonal polarization vectors. The orthogonal 𝐿𝑃11 modes are generated for orthogonal 

input linear polarization and their resultant spiral vector beam is generated for an 

intermediate input SOP of the orthogonal states, controlled by a half wave plate. The 

generated beams are analyzed by obtaining spatial polarization and ellipse orientation 

maps using Stokes polarimetry. 

CHAPTER 5 

In this chapter, by extending the basis of diagonal and anti-diagonal linearly polarized 

modes, a class of four vector vortex modes are generated in a similar manner to that of 

spiral vector beams of the previous chapter. The generation of these vector modes is 

demonstrated experimentally with a supporting theory, which relies on inherent 

combination of orthogonal 𝐿𝑃11 modes. The possible combinations of 𝐿𝑃11 modes are 

governed by certain necessary criteria i.e., the combining modes must be orthogonal in 

polarization and in spatial profile. The necessity of representing vector vortex modes on 

Poincare sphere is discussed. All the linearly polarized modes are located onto a standard 

Poincare sphere. Whereas, the inhomogeneously polarized modes, resulted from the 

combination of orthogonal 𝐿𝑃11 modes, are accommodated on a pair of higher order 

Poincare sphere (HOPS). This pair of HOPS serves the need for representation of all 

possible vector vortex modes of few mode optical fiber. The location of these vector 

modes on HOPS is justified with the location of  𝐿𝑃11 modes on standard Poincare sphere 

that combine to generate respective vector modes. 

CHAPTER 6 

With a brief introduction to polarization singularities, this chapter discusses the 

experimental generation of C-points (star, lemon, and monstar) in a step-index few mode 
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optical fiber. Isolated C-points, and dipoles are generated by controlled launching of light 

into the fiber. The action of a half wave plate and cylindrical lens on conversion of C-

points is studied. 2π- symmetric topologies such as radial, circulation, and saddle are 

experimentally realized in the Stokes fields, derived from lemon and star topologies and 

also in the ellipse orientation fields of vector vortex modes. 

CHAPTER 7 

This chapter summarizes the experimental results presented in previous chapters and 

discusses the achievements as well as conclusions. We also present the scope of future 

research with the achievements of current research work.  
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CHAPTER 2 

Modes of Optical Fiber 

In this chapter, we discuss the fundamental aspects of modes of optical fiber beginning 

from the Maxwell’s equations for an optical waveguide. The basic electromagnetic vector 

wave equation that corresponds to light propagation in optical fiber is derived and 

general solutions are discussed. The structural conditions of the optical fiber that are 

responsible for the formation of vector modes of complex spatial polarization are 

discussed. The vector wave equation is reduced to scalar wave equation by introducing 

the weakly guiding approximation which is the practical case and accounts for an 

understanding of the modal behavior of optical fiber in terms of scalar modes. The 

linearly polarized modal solutions under this approximation are discussed and the 

relation between vector modes and scalar modes is established.  

2.1 Introduction 

Optical fiber is a cylindrical dielectric optical wave guide with a uniform refractive index 

core (𝑛𝑐𝑜) surrounded by a cladding of slightly lower uniform refractive index (𝑛𝑐𝑙) 

which is assumed to be unbounded [1-3]. Thus, the variation in the refractive index at the 

core-clad interface is a step or jump discontinuity. Optical fibers are translationally 

invariant optical waveguides where the refractive index does not change along the axis 

of propagation (𝑧) and only transverse profile of the refractive index (𝑛(𝑟) = 𝑛(𝑥, 𝑦)) 

describes the characteristic properties of the optical fiber. For an optical fiber, the 

arbitrary refractive index profile is defined as [1] 

𝑛(𝑟) = 𝑛𝑐𝑜[1 − 2∆𝑓(𝑟)]1/2     (1) 

Where 𝑟 is the radial coordinate, 𝑓(𝑟) describe the shape of the refractive index profile 

and ∆ is the profile height or the relative refractive index of core and cladding is defined 

as 

∆=
1

2
{1 −

𝑛𝑐𝑙
2

𝑛𝑐𝑜
2

} ≅
𝑛𝑐𝑜 − 𝑛𝑐𝑙

𝑛𝑐𝑜
 (2) 
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For step profile of refractive index, 𝑓(𝑟) = 0 in the core and 𝑓(𝑟) = 1 in the cladding. 

Hence, from eq. (1), the step profile of refractive index for an optical fiber with core 

radius 𝜌 is  

𝑛(𝑟) = 𝑛𝑐𝑜          𝑓𝑜𝑟            0 ≤ 𝑟 < 𝜌  

𝑛(𝑟) = 𝑛𝑐𝑙            𝑓𝑜𝑟           𝜌 < 𝑟 ≤ ∞  

 

Fig. 2.1 Step profile of refractive index with nco>ncl, and schematic diagram of optical fiber with 

Cartesian (x,y,z) and polar (r,ϕ,z) coordinates, ρ is the radius of core and nco, ncl are the refractive 

indices of core and cladding, the axis of fiber is along the z-axis. 

The schematic of step profile and an optical fiber is shown in Fig. 2.1. The guided 

modes of step-index optical fiber have exact analytical solutions for circularly symmetric 

and elliptical fibers which can be derived from source-free Maxwell’s equations [1].  

2.2 Vector wave equation 

The spatial dependence of the electric field 𝑬(𝑥, 𝑦, 𝑧) and the magnetic field 𝑯(𝑥, 𝑦, 𝑧) of 

an optical waveguide is determined by Maxwell’s equations. The field vectors are 

assumed to have an implicit time dependence 𝑒𝑥𝑝(−𝑖𝜔𝑡). The dielectric constant or 

relative permittivity is related to the refractive index 𝑛(𝑥, 𝑦, 𝑧) by 𝜀 𝜀𝑜⁄ = 𝑛2, where 𝜀 

and 𝜀𝑜  are the electric permittivities of the medium and free-space respectively. For 

dielectrics (non-magnetic materials) the magnetic permeability µ is close to free space 

(3) 
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permeability i.e., µ =µo. Under these conditions, the source-free Maxwell’s equations 

with current density J=0 and charge density ρ=0 are expressible in the form [4] 

∇ × 𝑬 = 𝑖 (
𝜇𝑜

𝜀𝑜
)

1
2⁄

𝑘𝑯     (4(a)) 

∇ × 𝑯 = −𝑖 (
𝜀𝑜

𝜇𝑜
)

1
2⁄

𝑘𝑛2𝑬    (4(b)) 

∇. (𝑛2𝑬) = 0      (4(c)) 

∇. 𝑯 = 0      (4(d)) 

Where the symbols in bold letters represents vector quantities, 𝑘 =
2𝜋

𝜆
 is the free-space 

wavenumber, and 𝜆 is the wavelength of light in free space. ∇ × and ∇. are the curl and 

divergence operators. The electric and magnetic fields of translationally invariant optical 

fiber are expressible as a superposition of fields with the separable form [5] 

𝑬(𝑥, 𝑦, 𝑧) = 𝒆(𝑥, 𝑦)exp (𝑖𝛽𝑧); 𝑯(𝑥, 𝑦, 𝑧) = 𝒉(𝑥, 𝑦)exp (𝑖𝛽𝑧)  (5) 

where 𝛽 is the propagation constant. The corresponding forms for the cylindrical polar 

coordinates are  

𝑬(𝑟, 𝜙, 𝑧) = 𝒆(𝑟, 𝜙)exp (𝑖𝛽𝑧); 𝑯(𝑟, 𝜙, 𝑧) = 𝒉(𝑟, 𝜙)exp (𝑖𝛽𝑧)  (6) 

Decomposing these fields into longitudinal and transverse components, parallel to and 

orthogonal to the waveguide axis, respectively and denoting by subscripts 𝑧 and 𝑡, we get 

𝑬 = (𝒆𝑡 + 𝑒𝑧𝒛̂)exp (𝑖𝛽𝑧);  𝑯 = (𝒉𝑡 + ℎ𝑧𝒛̂)exp (𝑖𝛽𝑧)   (7) 

Where 𝑧̂ is the unit vector parallel to the waveguide axis. On substituting the field 

representations of Equ. (7) into source-free Maxwell’s equations i.e., Equ. (4), and 

compare longitudinal and transverse components, we get 

𝒆𝑡 = − (
𝜇𝑜

𝜀𝑜
)

1/2 1

𝑘𝑛2
𝒛̂ × {𝛽𝒉𝑡 + 𝑖𝛁𝑡ℎ𝑧} 

𝒉𝑡 = (
𝜀𝑜

𝜇𝑜
)

1/2 1

𝑘
𝒛̂ × {𝛽𝒆𝑡 + 𝑖𝛁𝑡𝑒𝑧} 

𝑒𝑧 = 𝑖 (
𝜇𝑜

𝜀𝑜
)

1/2 1

𝑘𝑛2
𝒛̂. 𝛁𝑡 × 𝒉𝑡 

(8(a)) 

(8(b)) 

(8(c)) 
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ℎ𝑧 = −𝑖 (
𝜀𝑜

𝜇𝑜
)

1/2 1

𝑘
𝒛̂. 𝛁𝑡 × 𝒆𝑡 

If we eliminate 𝒆𝑡 or 𝒉𝑡 from eqs. 8(a) and 8(b), the transverse fields in terms of 

longitudinal fields can be expressed as [5] 

𝒆𝑡 =
𝑖

𝑘2𝑛2 − 𝛽2
{𝛽𝛁𝑡𝑒𝑧 − (

𝜇𝑜

𝜀𝑜
)

1/2

𝑘𝒛̂ × 𝛁𝑡ℎ𝑧} 

𝒉𝑡 =
𝑖

𝑘2𝑛2 − 𝛽2
{𝛽𝛁𝑡ℎ𝑧 + (

𝜀𝑜

𝜇𝑜
)

1/2

𝑘𝑛2𝒛̂ × 𝛁𝑡𝑒𝑧} 

From the above equation it is clear that by knowing longitudinal components, we can 

determine the transverse components that simplifies the complexity in solving the vector 

wave equation. Eliminating either the electric or magnetic fields from Maxwell’s 

equations (4(a)) and (4(b)), we obtain the homogeneous vector wave equation [1]. 

 

{𝛁2 + 𝑛2𝑘2}𝑬 = −𝛁(𝑬𝑡. 𝛁𝑡 ln 𝑛2)    (10(a)) 

{𝛁2 + 𝑛2𝑘2}𝑯 = (𝛁 × 𝐇) × 𝛁𝑡 ln 𝑛2    (10(b)) 

From Equ. (7), based on the fields with separable form, Equ. (10) becomes 

{𝛁𝑡
2 + 𝑛2𝑘2 − 𝛽2}(𝒆𝑡 + 𝑒𝑧𝒛̂) = −(𝛁𝑡 + 𝑖𝛽𝒛̂)𝒆𝑡. 𝛁𝑡 ln 𝑛2   (11(a)) 

{𝛁𝑡
2 + 𝑛2𝑘2 − 𝛽2}(𝒉𝑡 + ℎ𝑧𝒛̂) = {(𝛁𝑡 + 𝑖𝛽𝒛̂) × 𝒉𝑡} × 𝛁𝑡 ln 𝑛2  (11(b)) 

Further, if we consider Cartesian field components, the longitudinal and transverse 

components of above equation are given by 

{𝛁𝑡
2 + 𝑛2𝑘2 − 𝛽2}𝒆𝑡 = −𝛁𝑡(𝒆𝑡. 𝛁𝑡 ln 𝑛2)    (12(a)) 

{𝛁𝑡
2 + 𝑛2𝑘2 − 𝛽2}𝑒𝑧 = −𝑖𝛽𝒆𝑡. 𝛁𝑡 ln 𝑛2    (12(b)) 

{𝛁𝑡
2 + 𝑛2𝑘2 − 𝛽2}𝒉𝑡 = (𝛁𝑡 × 𝒉𝑡) × 𝛁𝑡 ln 𝑛2   (12(c)) 

{𝛁𝑡
2 + 𝑛2𝑘2 − 𝛽2}ℎ𝑧 = (𝛁𝑡ℎ𝑧 − 𝑖𝛽𝒉𝑡). 𝛁𝑡 ln 𝑛2   (12(d)) 

Where 𝒆𝑡 = 𝑒𝑥𝑥̂ + 𝑒𝑦𝑦̂ and 𝒉𝑡 = ℎ𝑥𝑥̂ + ℎ𝑦𝑦̂. 

(8(d)) 

(9(a)) 

(9(b)) 
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The vector wave equation is the reformulation of Maxwell’s equations for an 

arbitrary profile shape. These equations contain all the necessary information to 

determine the spatial dependence of the fields everywhere in the waveguide. The term 

involving 𝛁𝑡 ln 𝑛2 in Equ. (11) and Equ. (12) couple various field components. The 

polarization phenomena due to the structure of the waveguide are determined by these 

terms on account of which the modes acquire unique complex polarization behavior [1].  

Generally, for finding the solutions of step-profile waveguides, Equ. (11) is 

solved in regions of core and cladding, where 𝛁𝑡 ln 𝑛2 vanishes and then by using the 

boundary conditions of Maxwell’s equations, the field amplitudes can be determined in 

the core-clad interface region where 𝛁𝑡 ln 𝑛2 ≠ 0. As 𝛁𝑡 ln 𝑛2 = 0 in the homogeneous 

core and clad regions, the vector wave equation, Equ. (11) reduces to scalar wave 

equation of the form 

{𝛁𝑡
2 + 𝑛2𝑘2 − 𝛽2}Ψ = 0     (13) 

Where Ψ represents either 𝑒𝑧 or ℎ𝑧, as it is sufficient to solve the equation for longitudinal 

components from which the transverse components can be calculated using Equ. (9). The 

step profile can be regarded as a special case of graded profile where all the grading 

occurs at a single interface. Thus, the step profile has the greatest influence on the 

polarization behavior of the fields.  

To facilitate the description of the modal fields, dimensionless modal parameters U and 

W for the core and cladding can be introduced and are given by 

𝑈 = 𝜌(𝑘2𝑛𝑐𝑜
2 − 𝛽2)1/2 ;  𝑊 = 𝜌(𝛽2 − 𝑘2𝑛𝑐𝑙

2 )1/2  (14(a)) 

and these parameters are related to the normalized frequency V as 

𝑉2 = 𝑈2 + 𝑊2     (14(b)) 

For core and cladding regions of step-profile optical fiber, Equ. (13) can be written as [1] 

{
𝜕2

𝜕𝑅2
+

1

𝑅

𝜕

𝜕𝑅
+

1

𝑅2

𝜕2

𝜕𝜙2
+ 𝑈2} Ψ = 0         𝑓𝑜𝑟      0 ≤ 𝑅 < 1 

{
𝜕2

𝜕𝑅2
+

1

𝑅

𝜕

𝜕𝑅
+

1

𝑅2

𝜕2

𝜕𝜙2
− 𝑊2} Ψ = 0       𝑓𝑜𝑟       1 < 𝑅 < ∞ 

(15(a)) 

(15(b)) 
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Where 𝑅 = 𝑟/𝜌 is the normalized radius. The separable solutions for the above equation 

that are bounded everywhere are given by 

Ψ(𝑟, 𝜙) = Ψ(𝑟) {
cos (𝜐𝜙)
sin (𝜐𝜙)

}     (16) 

Ψ(𝑟) is the solution in terms of Bessel’s functions of first and second kind in core and 

cladding respectively. Thus, the solutions are 𝐽𝜐(𝑈𝑅)cos (𝜐𝜙) or 𝐽𝜐(𝑈𝑅)sin (𝜐𝜙) in the 

core and 𝐾𝜐(𝑊𝑅)cos (𝜐𝜙) or 𝐾𝜐(𝑊𝑅)sin (𝜐𝜙) in the cladding respectively. 

To construct the fields, we first choose the longitudinal components which are continuous 

across the interface 

𝑒𝑧 = 𝐴
𝐽𝜐(𝑈𝑅)

𝐽𝜐(𝑈)
𝑓𝜐(𝜙);   ℎ𝑧 = 𝐵

𝐽𝜐(𝑈𝑅)

𝐽𝜐(𝑈)
𝑔𝜐(𝜙)      𝑓𝑜𝑟     0 ≤ 𝑅 < 1 

𝑒𝑧 = 𝐴
𝐾𝜐(𝑊𝑅)

𝐾𝜐(𝑊)
𝑓𝜐(𝜙);    ℎ𝑧 = 𝐵

𝐾𝜐(𝑊𝑅)

𝐾𝜐(𝑊)
𝑔𝜐(𝜙)     𝑓𝑜𝑟    1 < 𝑅 < ∞ 

Where A and B are constants and 𝑓𝜐(𝜙) and 𝑔𝜐(𝜙) are either sin (𝜐𝜙) or cos (𝜐𝜙). The 

dependence can be derived from the transverse components because each transverse 

component can depend on either 𝑓𝜐(𝜙) or 𝑔𝜐(𝜙) but not both. The transverse components 

can be written from Equ. (9) as 

𝑒𝑟 =
𝑖

𝑘2𝑛2 − 𝛽2
{𝛽

𝜕𝑒𝑧

𝜕𝑟
+ (

𝜇𝑜

𝜀𝑜
)

1/2 𝑘

𝑟

𝜕ℎ𝑧

𝜕𝜙
} 

𝑒𝜙 =
𝑖

𝑘2𝑛2 − 𝛽2
{

𝛽

𝑟

𝜕𝑒𝑧

𝜕𝜙
− (

𝜇𝑜

𝜀𝑜
)

1/2

𝑘
𝜕ℎ𝑧

𝜕𝑟
} 

ℎ𝑟 =
𝑖

𝑘2𝑛2 − 𝛽2
{𝛽

𝜕ℎ𝑧

𝜕𝑟
− (

𝜀𝑜

𝜇𝑜
)

1/2 𝑘𝑛2

𝑟

𝜕𝑒𝑧

𝜕𝜙
} 

ℎ𝜙 =
𝑖

𝑘2𝑛2 − 𝛽2
{

𝛽

𝑟

𝜕ℎ𝑧

𝜕𝜙
+ (

𝜀𝑜

𝜇𝑜
)

1/2

𝑘𝑛2
𝜕𝑒𝑧

𝜕𝑟
} 

From the above equations it is clear that the derivative of 𝑓𝜐 or 𝑔𝜐appear in the term 
𝜕

𝜕𝜙
. 

If we define𝑓𝜐 = sin (𝜐𝜙), we should have𝑔𝜐 = cos (𝜐𝜙), so that 𝑒𝑟is a function of 

sin (𝜐𝜙) but not a combination of sin (𝜐𝜙) and cos (𝜐𝜙). Similarly, the other combination 

can be 𝑓𝜐 = cos(𝜐𝜙) and 𝑔𝜐 = −sin (𝜐𝜙). Hence, there are only two possible 

combinations given below. The first combination results in even modes, symmetric with 

(17(a)) 

(17(b)) 

(18) 
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respect to x-axis and the second combination results in odd modes, symmetric with 

respect to y-axis. 

𝑓𝜐(𝜙) = {
cos (𝜐𝜙)
sin (𝜐𝜙)

}  𝑎𝑛𝑑 𝑔𝜐(𝜙) = {
−sin (𝜐𝜙)
cos(𝜐𝜙)

}          
𝑒𝑣𝑒𝑛 𝑚𝑜𝑑𝑒𝑠
𝑜𝑑𝑑 𝑚𝑜𝑑𝑒𝑠

 

The eigen value equation can be obtained by imposing the boundary conditions that the 

tangential fields are continuous at interfaces. The eigen value equation for the step-index 

fiber is 

{
𝐽𝜐

′ (𝑈)

𝑈𝐽𝜐(𝑈)
+

𝐾𝜐
′(𝑊)

𝑊𝐾𝜐(𝑊)
} {

𝐽𝜐
′ (𝑈)

𝑈𝐽𝜐(𝑈)
+

𝑛𝑐𝑙
2

𝑛𝑐𝑜
2

𝐾𝜐
′(𝑊)

𝑊𝐾𝜐(𝑊)
} = (

𝜐𝛽

𝑘𝑛𝑐𝑜
)

2

(
𝑉

𝑈𝑊
)

4

 

This equation has discrete solutions giving the values of 𝑈 or equivalently the discrete 

values of 𝛽 as they are related. These solutions depend on 𝜐, the core-clad refractive 

indices and the V-parameter. 

2.3 Vector modes 

The modes which are the solutions of the eigen value equation (20) are strongly 

dependent on 𝜐. Here, we discuss two cases 𝜐 = 0 and 𝜐 ≠ 0 that leads to generation of 

various vector modes. 

2.3.1 Transverse electric (TE) and Transverse magnetic (TM) modes  

If we consider 𝜐 = 0, equation (19) have two sets of values i.e., 𝑓0(𝜙) = 1, 𝑔0(𝜙) = 0 

and 𝑓0(𝜙) = 0 and 𝑔0(𝜙) = 1. On substituting 𝑓0(𝜙) = 1, 𝑔0(𝜙) = 0 in Equ. (17) and 

Equ. (18), the components ℎ𝑧 = 0, ℎ𝑟 = 0 and  𝑒𝜙 = 0 which represent a transverse 

magnetic (TM) mode as the longitudinal component of magnetic field is absent in the 

propagation direction. Similarly, if we substitute 𝑓0(𝜙) = 0, 𝑔0(𝜙) = 1 in Equ. (17) and 

Equ. (18), the components 𝑒𝑧 = 0, 𝑒𝑟 = 0 and  ℎ𝜙 = 0 which represent a transverse 

electric (TE) mode as the longitudinal component of electric field is absent in the 

propagation direction [6]. For 𝜐 = 0, Equ. (20) reduces to two equations corresponding 

to 𝑇𝐸0𝑚 and 𝑇𝑀0𝑚 modes given by 

{
𝐽1(𝑈)

𝑈𝐽0(𝑈)
+

𝐾1(𝑊)

𝑊𝐾0(𝑊)
} = 0 

{𝑛𝑐𝑜
2

𝐽1(𝑈)

𝑈𝐽0(𝑈)
+ 𝑛𝑐𝑙

2
𝐾1(𝑊)

𝑊𝐾0(𝑊)
} = 0 

(20) 

(19) 

(21) 

(22) 
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The electric and magnetic fields of TE and TM modes propagate parallel to the interface 

in an optical waveguide respectively. Hence, only meridional rays, passing through the 

waveguide axis can preserve 𝑒𝑧 = 0 or ℎ𝑧 = 0 at every reflection. Thus, only meridional 

rays can make up TE and TM modes on circular waveguides.  

These TE and TM modes are ideal or rare case in optical waveguides as we 

consider 𝛁𝑡 ln 𝑛2 = 0 in vector wave equation. In general, the non-zero 𝛁𝑡 ln 𝑛2 term mix 

𝑒𝑧 and ℎ𝑧fields resulting in EH and HE hybrid modes for which neither 𝑒𝑧 = 0 nor ℎ𝑧 =

0 and both components are present simultaneously. Moreover, the modal fields can never 

be transverse electromagnetic (TEM) i.e., 𝑒𝑧 = ℎ𝑧 = 0.  

2.3.2 Hybrid (EH and HE) modes 

For 𝜐 ≠ 0, none of the field components are zero and the eigen value equation, Equ. (20) 

remains the same. The solutions are even and odd 𝐻𝐸𝜐𝑚 and 𝐸𝐻𝜐𝑚 modes [7]. Each 

mode is given two subscripts of which the first subscript 𝜐 is order and the second 

subscript 𝑚 denotes the 𝑚th root of the eigen value equation.  

In general, a ray follows the helical or skew trajectory on step or graded index 

profiles. If we follow the direction of the electric vector along a skew ray path, it is 

impossible to maintain either  𝑒𝑧 = 0 or ℎ𝑧 = 0 because the direction of propagation 

rotates along the ray trajectory. Consequently, a skew ray mixes TE and TM polarizations 

at each reflections, so that the corresponding fields couple both 𝑒𝑧 and ℎ𝑧 field 

components, consistent with the definition of hybrid modes. Hence, all EH and HE modes 

are composed of skew rays. The fundamental 𝐻𝐸11 mode has Gaussian distribution and 

two orthogonal polarizations which can be assumed as x- and y-polarized modes. 

 

Fig.2.2. Vector modes of a step-index optical fiber. (a) Azimuthally polarized 𝑇𝐸01 mode, (b) 

radially polarized 𝑇𝑀01 mode, (c) and (d) 𝐻𝐸21
𝑜,𝑒  modes with hybrid polarization  

Figure 2.2 shows the vector modes of step-index optical fiber with spatial inhomogeneous 

polarization distribution. These modes are also referred to as zeroth order vector modes 
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or CVBs due to their cylindrically symmetric spatial intensity and polarization 

distribution. It is difficult to identify the polarization distribution of vector modes from 

their spatial intensity pattern as they are all look alike with a donut shaped mode. To 

identify the spatial polarization, the vector mode has to pass through a rotating analyzer 

which results in rotating two lobe pattern, based on which the mode can be identified, as 

shown in Fig. 2.3.   

 

Fig. 2.3. Behavior of vector modes with respect to discrete analyzer orientation angles. 

Further, the polarization state of these modes is undefined at the center due to 

spatial inhomogeneity for which they are known as polarization vortex or vector vortex 

modes. These modes are analogous to LG modes of radial order zero and azimuthal order 

one i.e., 𝐿𝐺0
1, in spatial intensity but do not have a phase vortex. However, the linear 

combinations of these modes with π/2 phase difference i.e., 𝑇𝐸01 ± 𝑖𝑇𝑀01 and 𝐻𝐸21
𝑒𝑣𝑒𝑛 ±

𝑖𝐻𝐸21
𝑜𝑑𝑑 result in homogeneous circularly polarized modes with an embedded phase 

vortex [1]. 

2.4 Weakly guiding approximation 

In the previous section, we discussed that the term 𝛁𝑡 ln 𝑛2 is responsible for the 

polarization effects of modes in step-index optical fiber. If the refractive indices of core 

and cladding are nearly equal i.e., 𝑛𝑐𝑜 ≅ 𝑛𝑐𝑙 or the step height is so small (∆≪ 1), then 

the term 𝛁𝑡 ln 𝑛2 becomes negligible and vector wave equation reduces to scalar wave 

equation. This approximation with  ∆≪ 1 is called the weakly guiding approximation [8-
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11]. This approximation is useful in practical cases where the fiber is used for long 

distance communication. In contrast to the name ‘weak guiding’, this approximation 

allows strong guidance and total confinement of light within the core. The modes of 

weakly guiding optical waveguides were first reported for step-index fiber by Snyder 

[12], and the name ‘weak guidance’ was coined later by Gloge [13] and additional 

insights were reported there after [14]. 

The longitudinal components 𝑒𝑧 and ℎ𝑧 of weakly guiding waveguides are so 

small that they can be neglected. Hence, the modes are nearly transverse in nature with 

transverse components 𝒆𝑡 and 𝒉𝑡 related by 

𝒉𝑡 = 𝑛𝑐𝑜 (
𝜀𝑜

𝜇𝑜
)

1/2

𝒛̂ × 𝒆𝑡 

When ∆≪ 1, the polarization effect due to the waveguide structure are small and 

Cartesian components of 𝒆𝑡 are approximated by solutions of scalar wave equation. If we 

write 𝒆𝑡 = 𝑒𝑥𝑥̂ + 𝑒𝑦𝑦̂ and 𝒉𝑡 = ℎ𝑥𝑥̂ + ℎ𝑦𝑦̂, and let Ψ denote 𝑒𝑥 or 𝑒𝑦, then Ψ satisfies 

{∇𝑡
2 + 𝑘2𝑛2(𝑥, 𝑦) − 𝛽2}Ψ = 0 

𝛽 is the scalar propagation constant. The solutions of the above equation for both 

components of 𝒆𝑡 and 𝒉𝑡 are the same and are related to each other by Equ. (23). Hence, 

it is sufficient to solve for either 𝑒𝑥 or 𝑒𝑦 due to which the transverse fields are polarized 

in one direction and because of this reason, the modes are called linearly polarized (LP) 

modes. Although, the Cartesian components of 𝒆𝑡satisfy Equ. (24), we can determine 

their spatial dependence in cylindrical polar coordinate system also. The solutions for the 

above equation in the separable forms are Ψ = 𝐹𝑙(𝑟)cos (𝑙𝜙) and Ψ = 𝐹𝑙(𝑟)sin (𝑙𝜙), 

where 𝑙 = 0,1, …., and 𝐹𝑙(𝑟) satisfies the ordinary differential equation  

{
𝑑2

𝑑𝑟2
+

1

𝑟

𝑑

𝑑𝑟
+ 𝑘2𝑛2(𝑟) −

𝑙2

𝑟2
− 𝛽2} 𝐹𝑙(𝑟) = 0 

To make this equation dimensionless, we take the definition of 𝑛(𝑟) from Equ. (1) and 

set 𝑅 = 𝑟/𝜌 which leads to  

{
𝑑2

𝑑𝑅2
+

1

𝑅

𝑑

𝑑𝑅
−

𝑙2

𝑟2
+ 𝑈̃2 − 𝑉2𝑓(𝑅)} 𝐹𝑙(𝑅) = 0 

(23) 

(24) 

(25) 

(26) 
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The solutions of the above equation, 𝐹𝑙(𝑅) are the Bessel functions of first and second 

kind within the core and cladding respectively.  

𝐹𝑙 =
𝐽𝑙(𝑈̃𝑅)

𝐽𝑙(𝑈̃)
; 0 ≤ 𝑅 < 1     𝑎𝑛𝑑      𝐹𝑙 =

𝐾𝑙(𝑊̃𝑅)

𝐾𝑙(𝑊̃)
; 1 ≤ 𝑅 < ∞ 

Where 𝑈̃ and 𝑊̃ are scalar dimensionless quantities given by 𝑈̃ = 𝜌(𝑘2𝑛𝑐𝑜
2 − 𝛽2)

1/2
and 

𝑊̃ = 𝜌(𝛽2 − 𝑘2𝑛𝑐𝑙
2 )

1/2
and are connected to V parameter by 𝑉2 = 𝑈̃2 + 𝑊̃2. The 

complete solution for equation (24) is given by 

Ψ =
𝐽𝑙(𝑈̃𝑅)

𝐽𝑙(𝑈̃)
[
sin (𝑙𝜙)
cos (𝑙𝜙)

] ; 0 ≤ 𝑅 < 1  𝑎𝑛𝑑   Ψ =
𝐾𝑙(𝑊̃𝑅)

𝐾𝑙(𝑊̃)
[

sin (𝑙𝜙)
cos (𝑙𝜙)

] ; 1 ≤ 𝑅 < ∞ 

Continuity of 𝐹𝑙 and 𝑑𝐹𝑙/𝑑𝑅 at the interface of fiber leads to eigen value equation for 𝛽 

of each mode or equivalently 𝑈̃ and 𝑊̃. The eigen value equation is given by 

𝑈̃
𝐽𝑙+1(𝑈̃)

𝐽𝑙(𝑈̃)
= 𝑊̃

𝐾𝑙+1(𝑊̃)

𝐾𝑙(𝑊̃)
 

The eigen value equation is the same for both EH and HE modes in scalar approximation. 

For 𝑙 = 0, Equ. (28) is the same as that of eigen value equation for TE mode given in 

Equ. (21), which implies that the TE mode has the same propagation constants in both 

scalar and vector wave equations.  

2.4.1 Propagation constant and polarization correction 

Solving Equ. (28) yields the scalar propagation constant 𝛽. 

𝛽 =
𝑉

𝜌(2Δ)1/2
{1 − 2Δ

𝑈̃2

𝑉2
}

1/2

 

From Equ. (29), it is clear that all modes have the same propagation constant. To account 

for the polarization effects of modes, we need to add a polarization correction term to the 

scalar propagation constant. This can be done by introducing the polarization term 

𝛁𝑡 ln 𝑛2 through the perturbation method to the scalar wave equation. This is equivalent 

to assuming that the fiber has slightly deformed core which introduces birefringence 

effect to the modes. Hence, the sum of scalar propagation constant and the polarization 

correction term gives the exact or vector propagation constant i.e., 𝛽𝑖 = 𝛽 + 𝛿𝛽𝑖, where  

𝛽𝑖 is the vector propagation constant, 𝛽 is the scalar propagation constant and 𝛿𝛽𝑖 is the 

(27) 

(29) 

(30) 

(28) 
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polarization correction term to the ith mode. The polarization correction terms for 

fundamental (𝛿𝛽), odd and even 𝐻𝐸21 modes (𝛿𝛽1, 𝛿𝛽3), 𝑇𝑀01 (𝛿𝛽2) and 𝑇𝐸01 (𝛿𝛽4) are 

given by [1] 

𝛿𝛽 = −
(2Δ)3/2

2𝜌

𝑈̃2𝑊̃

𝑉3

𝐾0(𝑊̃)

𝐾1(𝑊̃)
 

𝛿𝛽1 = 𝛿𝛽3 = −
(2Δ)3/2

2𝜌

𝑈̃2𝑊̃

𝑉3

𝐾1(𝑊̃)

𝐾0(𝑊̃)
 

𝛿𝛽2 = −
(2Δ)3/2

2𝜌

𝑈̃2𝑊̃

𝑉3

𝐾1(𝑊̃)

𝐾2(𝑊̃)
 

𝛿𝛽4 = 0 

From the above equation, the polarization correction term for 𝑇𝐸01 mode is 

𝛿𝛽4 = 0, which implies that the  𝑇𝐸01 mode formed due to the combination of linearly 

polarized modes under weakly guiding approximation has the same propagation constant 

as that of the  𝑇𝐸01 mode, which is a direct solution of vector wave equation.  

2.5 Linearly polarized modes 

The modes of weakly guiding fiber are referred to as linearly polarized (𝐿𝑃𝑙𝑚) modes, 

where 𝑙 and 𝑚 denote azimuthal and radial dependence of the mode. For 𝑙 = 0, the Equ. 

(28) has only one solution that has no azimuthal variation i.e., Ψ = 𝐹0(𝑅). As there is no 

preferred axis of symmetry in circular fibers, the transverse electric field can be treated 

to be parallel to one of an arbitrary pair of orthogonal axes, which may be assumed as x- 

and y-axis [8]. Hence, there are two fundamental modes, one with transverse electric field 

parallel to x-axis (𝐿𝑃01(𝑥̂) 𝑜𝑟 𝐻𝐸11(𝑥̂)) and the other to y-axis (𝐿𝑃01(𝑦̂) 𝑜𝑟 𝐻𝐸11(𝑦̂)). This 

is applicable for all 𝐻𝐸1𝑚 modes. 𝐻𝐸1𝑚 modes are exceptional cases because their modal 

equation does not have any polarization information while all other modes retain some 

polarization information.  

For 𝑙 ≥ 1, Equ. (28) has two solutions and with azimuthal dependency i.e., Ψ =

𝐹𝑙(𝑅)sin (𝑙𝜙) and Ψ = 𝐹𝑙(𝑅)cos (𝑙𝜙). As discussed above, each solution can be further 

assumed to have x- and y-polarizations. The transverse electric field 𝒆𝑡 depends on the 

particular combinations of these solutions with orthogonal polarizations. Hence, there are 

four possible modes. These four modes have the same scalar propagation constant 𝛽 but 

(31) 
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their exact propagation constants are different. The four vector solutions constructed from 

solutions of scalar wave equation are given by 

𝑒𝑥𝑒 = 𝐹𝑙(𝑅) cos(𝑙𝜙) 𝑥̂;         𝑒𝑥𝑜 = 𝐹𝑙(𝑅) sin(𝑙𝜙) 𝑥̂ 

𝑒𝑦𝑒 = 𝐹𝑙(𝑅) cos(𝑙𝜙) 𝑦̂;        𝑒𝑦𝑜 = 𝐹𝑙(𝑅) sin(𝑙𝜙) 𝑦̂  

These four modes 𝑒𝑥𝑒, 𝑒𝑥𝑜, 𝑒𝑦𝑒, and 𝑒𝑦𝑜 are represented as 𝐿𝑃11(𝑥̂)
𝑎 , 𝐿𝑃11(𝑥̂)

𝑏 , 

𝐿𝑃11(𝑦̂)
𝑎 , and 𝐿𝑃11(𝑦̂)

𝑏  respectively under LP mode designation and the same notation is 

used throughout this thesis. Due to circular symmetry, a fiber is unchanged by rotation 

about its axis. Hence, if a mode is rotated arbitrarily then it must remain a mode with the 

same propagation constant, although not necessarily the same mode. The new mode can 

be represented as the linear combinations of all other four modes with the same 

propagation constants. But, these four modes have different exact propagation constants 

(𝛽) although they have the same scalar propagation constant (𝛽). Hence, none of these 

four modes are the modes of a fiber. The correct linear combination can be formed by 

combining those modes which have same properties under rotation by 90o and under 

reflections in x- and y-axes [8, 15].  

 

Fig. 2.4. Linearly polarized modes and the vector modes generated from their linear combination. 

Figure 2.4 shows four 𝐿𝑃11 modes and their possible linear combinations that 

generate vector modes. Following the symmetry operations, 𝑒𝑥𝑒 can be combined with 

𝑒𝑦𝑜 and 𝑒𝑥𝑜 can be combined with 𝑒𝑦𝑒 as they are same under rotation. By considering 

the symmetric and anti-symmetric combinations, the transverse fields of four modes can 

be constructed. These combinations are consistent with the symmetry properties of fiber. 

The transverse fields 𝒆𝑡2 and 𝒆𝑡4 remain unchanged under rotation by arbitrary angle and 

under reflection. However, 𝒆𝑡1 changes into a pattern which is a linear combination of 

(32) 
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𝒆𝑡1 + 𝒆𝑡3 under arbitrary rotation. But, these two modes have the same correction term 

(𝛿𝛽1 = 𝛿𝛽3) and hence the same exact propagation constant for which their combination 

is allowed under symmetry. The representation of vector modes in terms of 𝐿𝑃11 modes 

is given by 

𝑒𝐻𝐸21
𝑒 = 𝐹𝑙(𝑅){𝑐𝑜𝑠𝜙𝑥̂ − 𝑠𝑖𝑛𝜙𝑦̂} 

𝑒𝑇𝑀01
= 𝐹𝑙(𝑅){𝑐𝑜𝑠𝜙𝑥̂ + 𝑠𝑖𝑛𝜙𝑦̂} 

𝑒𝐻𝐸21
𝑜 = 𝐹𝑙(𝑅){𝑠𝑖𝑛𝜙𝑥̂ + 𝑐𝑜𝑠𝜙𝑦̂} 

𝑒𝑇𝐸01
= 𝐹𝑙(𝑅){𝑠𝑖𝑛𝜙𝑥̂ − 𝑐𝑜𝑠𝜙𝑦̂} 

We use these relations in chapter 4 and chapter 5 to construct a new set of vector vortex 

modes. A few mode optical fiber that can support upto two LP modes is used in the 

experiments so as to generate all vector vortex modes. The theory presented in this 

chapter helps in better understanding of further chapters.  
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CHAPTER 3 

Singularities in Fiber Modal Fields 

In this chapter, we experimentally demonstrate the excitation of various vector modes 

and linearly polarized modes using few mode optical fiber. Two fibers of different V-

numbers, 3.57 and 4.46 are chosen for this purpose. The modal excitation is achieved 

with on-axis and off-axis skew launching of linearly polarized Gaussian beam onto the 

core of optical fiber. The vector modes discussed in previous chapter are generated and 

their spatial polarization distribution is estimated with the help of a rotating analyzer. 

Higher order linearly polarized modes 𝐿𝑃02, 𝐿𝑃21 and some arbitrary modal fields are 

generated. Further, we investigate all the generated modal fields for the presence of 

singularities in their intensity null regions. A first order phase vortex is generated from 

a donut shaped mode and switching between oppositely charged vortices is demonstrated 

by changing input state of polarization. Singularities are also observed in 𝐿𝑃02, 𝐿𝑃21 

modes and also a few arbitrary modal fields and these are observed to increase with V 

number of the fiber.  

3.1 Introduction 

Singularities are points or lines where a physical quantity representing the system is 

undefined [1,2]. Generally these singularities are mainly classified into two types in 

optics i.e., scalar and vector, of which the former corresponds to the undetermined phase 

and the latter for undetermined polarization [2-4]. Nye and Berry were the first to 

discover the presence of dislocations in electromagnetic waves which are analogous to 

crystals [5,6]. Later, it was reported that optical fields contain phase singularities in null 

intensity regions, where the phase changes by a multiple of 2π around the singular point 

[7-9]. These singularities were first identified in the donut shaped higher order LG mode 

fields and then in speckle fields, where each speckle spot is shown to have one phase 

singular point [10]. The presence of phase singular region can be identified using simple 

interferometric technique, in which the interferograms of singular beams with a Gaussian 

beam show a signature of fork or spiral pattern as a result of the helicity of the wave front 

[7]. The order of phase singularity is measured with the number of forks that appear in 

the interferogram and is often referred as topological charge, which is positive for right 
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helical waves and negative for left helical waves [2,3]. The presence of singularities in 

fiber modal fields was first reported by Bazhenov [11]. Later, Lim et. al. studied the 

nature of singularities in fiber modal fields using few mode and multimode fibers [12]. 

The study of modal behavior in few mode fiber (FMF) is of great interest due to their 

applications in various fields such as long distance communications [13], fiber lasers 

[14], optical sensors [15-17], and singular optics [18,19]. Recently, nonlinear effects and 

ultra violet four wave mixing are reported to be observed in higher order 𝐿𝑃02 mode of 

FMF [20,21]. The FMFs are also found to be useful in quantum cryptography [22], and 

STED microscopy [23] by specially designing the fiber geometry, called vortex fibers, 

which can preserve vortex modes for longer distances.  

In this chapter, we discuss the scalar or phase singularities present in the higher 

order linearly polarized fiber modal fields. We use two optical fibers with different V-

numbers to excite various vector and scalar modes. The zeroth order vector modes such 

as radial, azimuthal and hybrid spatial polarization are excited by controlling coupling 

conditions. A first order phase singularity is generated from a donut shaped vortex mode 

and switching between the vortices of opposite helicity is demonstrated by changing the 

input SOP. The singularities present in higher order linearly polarized fiber modes such 

as 𝐿𝑃11, 𝐿𝑃02 and 𝐿𝑃21 are discussed along with some arbitrary modal fields. The 

presence of singularity in respective modes is verified by forming interferograms of the 

modes with a reference Gaussian mode.  

3.2 Experimental details 

A 5 mW He-Ne laser of wavelength 632.8 nm operating in TEM00 vertically polarized 

Gaussian mode is first made to pass through a step neutral density (ND) filter to control 

the intensity of light, which then passes through a half wave plate (HWP). Light emerging 

from the HWP is focused using a high numerical aperture (40X, 0.65 NA) and short focal 

length microscope objective lens (L1) which is mounted on a precise rotational stage that 

enables the light to launch at an angle with respect to fiber axis.  

To study the singularities in the linearly polarized modes of FMF, we first choose 

a fiber that supports only 2 LP modes, 𝐿𝑃01 and 𝐿𝑃11. The optical fiber chosen for the 

experiment has an approximate length of 23 cm, core radius of 1.8 𝜇m, 0.2 NA and V-

number of 3.57 when operated at a wavelength of 632.8 nm. This indicates the fiber can 

support 6 wave guide modes of which the fundamental 𝐿𝑃01 (𝐻𝐸11) mode is a two-fold 
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degenerate and first order 𝐿𝑃11 mode is a four-fold degenerate whose combinations result 

in four vector modes 𝑇𝐸01, 𝑇𝑀01 and 𝐻𝐸21
𝑜,𝑒   [24-26]. The focused spot from L1 is 

adjusted to fall on the tip of the cleaved end of optical fiber, mounted using a 3-axis micro 

translational stage, enabling an offset launching of light with respect to fiber axis. The 

output from the fiber is then collimated using L2 on to a charge coupled device (CCD) 

camera (Thorlabs DCU223C with 2x2 mm capture area and 4.65µm pixel size) to scan 

tip of the fiber and image the modal field, placed at a distance of 20 cm from the fiber 

tip. An analyzer is inserted between L2 and CCD to study the polarization content of 

output beams. An interferometer is constructed in parallel to the fiber, where a Gaussian 

beam from the Laser is guided directly in free space with the help of two beam splitters 

(BS1, BS2) and two mirrors (M1, M2) and made to interfere with the fiber output modal 

field to investigate the singularities present in them. The phase singularities in fiber modal 

fields can be identified with the presence of fork like structures in the interferograms. The 

schematic diagram of the experimental setup is shown in Fig. 3.1 and the photograph is 

shown in Fig. 3.2. 

 

Fig. 3.1. Schematic diagram of the experimental setup for generating LP modes. 

 

 

Fig. 3.2. Photograph of experimental setup for generating LP modes. 
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3.3 Results and discussion 

At first, the tip of the fiber is adjusted such that the focused spot from MO falls on the 

center of the core which excites the fundamental Gaussian mode 𝐿𝑃01 (𝐻𝐸11), shown in 

Fig. 3.3 (a1). As the 𝐿𝑃01 mode does not have intensity null regions within the modal 

field, the interferograms contain only concentric circular fringes but no singularities as 

shown in Fig. 3.3 (a2). Next, the tip of the fiber is adjusted for an offset illumination to 

excite 𝐿𝑃11 mode that has two lobes separated by a null intensity line where the presence 

of singularity is expected. The 𝐿𝑃11 mode generated at the fiber output is shown in Fig. 

3.3 (b1).  As the two adjacent lobes are π phase shifted, there appears a fringe jump along 

the null line of the 𝐿𝑃11 mode as shown in Fig. 3.3 (b2).  

 

Fig. 3.3. Modes at fiber output (a1) fundamental 𝐿𝑃01 mode, (b1) 𝐿𝑃11 mode, (a2) and (b2) are 

the interferograms of (a1) and (b1) respectively. 

3.3.1 Generation of Vector modes 

As discussed in Chapter 2, 𝐿𝑃11 modes are four-fold degenerate and their selective 

combinations will result in vector modes. These vector modes can be generated by 

precisely controlling the coupling conditions of fiber with respect to incident light. 

Various modes can be excited by launching tilted and/or offset Gaussian beam into the 

optical fiber [27-29]. By launching skew and offset rays into the fiber core, one can 

realize four possible vector modes i.e., 𝑇𝐸01, 𝑇𝑀01 and 𝐻𝐸21
𝑜,𝑒  at the fiber output [30,31]. 

The theoretical background of these modes is discussed in Sec. 2.3.2 of chapter 2.  
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Fig. 3.4. Cylindrical vector beams excited for different coupling conditions. 

Figure 3.4 shows the experimentally generated vector modes and their behavior 

when passed through an analyzer at discrete orientation angles 0o (   ), 45o (  ), 90o (↑), 

and 135o (   ) respectively. As all the vector modes look alike in their intensity distribution, 

an analyzer is essential to distinguish them. By observing the rotation of two lobe pattern 

with respect to rotation of analyzer, the field distribution across the mode can be 

estimated. Though these vector modes have null intensity at the core region, due to the 

polarization inhomogeneity across the mode, the phase cannot be defined. But, the donut 

modes with homogenous polarization and dark core region have a phase vortex at their 

center and are often referred to as scalar vortex modes or simply vortex modes. These 

modes are equivalent to LG modes of radial order zero and azimuthal order one (𝐿𝐺0
1). In 

fibers, these modes can be generated as linear combinations of vector modes i.e., 𝑇𝐸01 ±

𝑖𝑇𝑀01 or 𝐻𝐸21
𝑜 ± 𝑖𝐻𝐸21

𝑒  [26].  

3.3.2 Switching of first order phase vortices 

Figure 3.5(a) shows a near homogenously polarized donut shaped vortex mode generated 

at fiber output.  In fiber, the most commonly observed modes are the inhomogeneously 

polarized vector vortex modes for arbitrary coupling. To excite a homogeneously 

polarized vortex mode, precise control over the coupling conditions is needed so as to 

selectively excite a combination of TE01, TM01 modes or HE21
o, HE21

e modes with π/2 

phase difference. Hence, the generated mode appears to be slightly distorted as it is a 

homogeneously polarized vortex mode. This mode is interfered with reference Gaussian 
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beam to observe the presence of vortex or phase singularity on the beam axis, which 

results in a downward fork in non-coaxial interference and a left handed spiral in coaxial 

interference of vortex mode with reference Gaussian beam, as shown in Fig. 3.5 (b) and 

Fig. 3.5 (c) respectively. These fork and spiral like structures in the interferograms point 

to the significance of the dislocation in wave front. This indicates that the generated mode 

has left helical wave front with topological charge -1.  

  

Fig. 3.5. Switching of fork and spiral interferograms of vortex mode; (a) generated vortex mode, 

(b) a downward fork, (c) left handed spiral, (d) an upward fork and (e) right handed spiral. 

The charge of this vortex mode is observed to change under the action of change 

in input polarization. Keeping the coupling conditions unaltered, the input SOP is 

changed using a HWP at launching end. It is observed that for 90o change in input SOP, 

the downward fork flipped and became an upward fork as shown in Fig. 3.5 (d). Further, 

Fig. 3.5 (e) shows the right handed spiral, which is formed due to coaxial interference, 

indicating that the vortex mode has right helical wave front with topological charge +1. 

Hence, just by changing the input SOP between orthogonal states, one can switch 

between the vortex modes of opposite charge. 

3.3.3 Singularities in higher order modes 

Then, to observe the singularities in higher order LP modes, a fiber that supports more 

than 2 LP modes is required. In this case, we chose an optical fiber with a core radius of 

4.5 𝜇m, 0.1 NA and with V-number 4.46 when operated at 632.8 nm and of 
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approximately the same length as the previous case (23 cm) for exciting higher order LP 

modes by launching linearly polarized Gaussian beam. A linearly polarized 𝐿𝑃𝑙𝑚 mode 

has 2 degenerate modes for 𝑙=0 and 4 degenerate modes for 𝑙≥1. The fiber used for our 

experiment can support 4 𝐿𝑃𝑙𝑚  modes i.e., 𝐿𝑃01, 𝐿𝑃11, 𝐿𝑃02, and 𝐿𝑃21. Calculating the 

degenerate modes for each LP mode, the fiber can support 12 distinct vector modes 

[25,26]. These modes can be regarded as true wave guide modes as they are independent 

of each other and can be realized at fiber output by altering the coupling conditions and 

input SOP.  

At first, the laser beam is focused using L1 on to the center of core of cleaved 

fiber tip held on a 3-axis precision translation stage, for which the fundamental 𝐿𝑃01 

mode is excited. As 𝐿𝑃0𝑚 modes are circularly symmetric modes and can be excited by 

launching light along the fiber axis, a slight offset in the position of fiber core with respect 

to focused spot will excite 𝐿𝑃02  mode. The excited 𝐿𝑃02  mode, when observed under 

rotating analyzer, shows linearly polarized behavior i.e., the intensity becomes minimum 

when the axis of analyzer is perpendicular to the plane of polarization of the excited 

mode. We assume that most of the power in the excited mode is coupled to 𝐿𝑃02  mode 

and the amount of power coupled to 𝐿𝑃01 may be neglected. Furthermore, 𝐿𝑃01  mode 

doesn’t have singular behaviour. So the observed singularities in the modal field can be 

completely attributed to 𝐿𝑃02  mode alone. 

The 𝐿𝑃02 mode generated from fiber output is shown in Fig. 3.6 (a1), which 

resembles the intensity profile of an LG mode of radial order one and azimuthal order 

zero (𝐿𝐺1
0). The central bright spot and the outer ring of 𝐿𝑃02  mode are π phase shifted 

and are separated by a ring like null intensity region [32]. This change in phase leads to 

a phase distortion in the null intensity region where the phase is undetermined or singular 

at certain points and the nature of singularity can be identified from interferograms. The 

reference Gaussian beam is allowed to interfere with 𝐿𝑃02 mode from fiber output and 

the interferograms are captured using CCD camera. The interferogram contains fork like 

structures in the dark region of 𝐿𝑃02 mode, which symbolizes the presence of phase 

singularities in the modal field. As the inner and outer rings are π phase shifted, a fringe 

jump at the boundary can be observed in Fig. 3.6 (a2).  Careful observation reveals that 

the interferogram consists of a pair of upward and downward forks indicating phase 

singular regions with opposite sign. The two upward and downward forks are shown with 

‘*’ and ‘+’ respectively in Fig. 3.6 (a2). Considering the topological charge of individual 
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forks, +2 charge can be assigned for a pair of upward forks and -2 charge for a pair of 

downward forks. Hence the resultant topological charge of the 𝐿𝑃02 modal field is 

observed to be zero. 

 

Fig. 3.6. (a1) LP02 mode, (a2) Interferogram showing the upward (denoted with *) and downward 

(denoted with +) forks in the LP02 mode, (b1) LP21 mode, (b2) interferogram of LP21 mode (fringe 

jumps are shown with *). 

Further, to generate 𝐿𝑃21 mode we adjusted the coupling condition for offset and 

skew launching of light into the fiber that resulted in a four lobe intensity pattern as shown 

in Fig. 3.6 (b1). This mode has intensity nulls between adjacent lobes and also resembles 

the spatial profile of 𝐻𝐺11 mode where adjacent lobes are π phase shifted. The excited 

mode is interfered with reference Gaussian mode to observe the presence of singularities. 

As expected, the interferogram contains fringe jumps between adjacent lobes which 

confirms that adjacent lobes are π phase shifted as shown in Fig. 3.6 (b2). The intensity 

of the generated modes is lowered using an additional ND filter while recording the 

interferograms to obtain good contrast fringes. 

Apart from  𝐿𝑃𝑙𝑚 modes, which can be excited by precise control over coupling 

conditions, some arbitrary modes also get generated in the fiber which are linear 

combinations of certain vector modes. One such complex modal field is encountered 

while adjusting the coupling conditions to excite 𝐿𝑃21 mode, which is the linear 

combination of 2𝐻𝐸12 − 𝐸𝐻11 + 𝐻𝐸31 [32]. The intensity patterns of the mode with 

respect to rotating analyzer are captured using CCD camera and shown in Fig. 3.7. From 

Fig. 3.7, it can be observed that the modal patterns at 450 and 1350 resemble the intensity 

profile of tilted 𝐻𝐺02 mode and the pattern at 900 resembles 𝐻𝐺11 mode respectively. 
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Fig. 3.7. A mode excited by the linear combination of 2𝐻𝐸12 − 𝐸𝐻11 + 𝐻𝐸31; and their intensity 

patterns with respect to analyzer rotation. 

3.3.4 Singularities in arbitrary modal fields 

Further, some random modal fields are generated for arbitrary coupling conditions. 

Figure 3.8 (a1) shows a donut shaped mode, which is expected to be second order vortex 

mode. When this mode is interfered with the reference beam, the interferogram reveals 

that this mode is a combination of two vortex modes of opposite charge (+1 and -1) 

separated by a small distance. From this it is evident that higher order vortices are 

unstable and they decompose into single charged vortices under small perturbations. 

Hence, it is difficult to generate modal fields with second order phase vortex in fibers 

[12]. It can be clearly observed from Fig. 3.8 (a2) that two forks i.e., an upward fork and 

a downward fork are closely spaced at the center dark region of the modal field. Figure 

3.8 (b1) shows another arbitrary modal field that embeds two null intensity regions 

within. The interferogram of this mode is shown in Fig. 3.8 (b2) in which three fork 

patterns (2 upward and 1 downward) can be observed. These singularities are observed 

to be stable and sustain small perturbations. It can be observed from the experimental 

results that as V number increases, the number of modes supported by the fiber increases 

as well as the number of singularities present in the modal fields also increases. It is 

reported that the total charge of the singularities is not preserved in fibers where the modal 

fields are strongly dependent on the boundary [33]. This can be rectified by using fibers 

of large core diameters, where the generation of individual modes is difficult and the 

modal fields are often referred to as speckle fields. The number of singularities present 

in the modal field is very high for scattered fields or speckle fields of multimode fiber 

where each speckle point can consist of one singularity and the number of positive and 

negative charged phase singularities is equal and hence the total charge is preserved. 
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Fig. 3.8. (a1), (b1) arbitrary modal fields, (a2), (b2) their corresponding interferograms 

showing fork like structures.  

 

3.4 Conclusion 

In summary, we have presented the singular aspects of linear polarized modes of few 

mode optical fiber. The vector modes are experimentally generated by precisely 

controlling the coupling conditions. First order phase vortex is generated from donut 

shaped vortex mode and switching between positive and negative charged vortices is 

demonstrated by changing input SOP. The presence of singularities in higher order LP 

modes is examined and analyzed. Apart from LP modes, some arbitrary modal fields are 

generated and the presence of phase singularities is identified. The generation of phase 

singularities of second order in fiber is found to be difficult as they are highly unstable 

and decompose into single charged vortices for small ambient perturbations. It is also 

observed that the number of singularities present in the modal field is directly 

proportional to the V-number of the fiber and is maximum in case of multimode fibers of 

large core diameters. This investigation helps us to understand the fiber modal fields in 

terms of phase singularities present in them. As the phase of the modal fields is highly 

sensitive to external perturbations on the fiber, the results may find applications in 

interferometric sensors. 

 

References 

1. J.F. Nye, ‘Natural Focusing and Fine Structure of Light,’ IOP Publishing, London, 

(1999). 

2. I. I. Mokhun, Introduction to linear singular optics in ‘Optical correlation 

techniques and applications’, SPIE Press, Bellingham, USA, 1-132 (2007). 

3. Enrique J. Galvej, Singular optics and phase properties in ‘Structured Light and Its 

Applications’, Academic Press, Elsevier, 63-77 (2008). 



Chapter 3: Singularities in Fiber Modal Fields 

37 

 

4. Mark R. Dennis, Kevin O’Holleran, and Miles J. Padgett, “Singular optics: Optical 

vortices and polarization singularities,” Progress in Optics, 53, 293-363 (2009). 

5. M.V. Berry and M.R. Dennis, “Phase Singularities in Isotropic Random Waves,” 

Proc. R. Soc. Lond. A., 456, 2059-2079 (2000). 

6. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A., 

336, 165-190 (1974). 

7. M. Harris, C.A. Hill and J. M. Vaughan, “Optical helices and spiral interference 

fringes,” Opt. Commun., 106, 161-166 (1994). 

8. N. R. Heckenberg, R. McDuff, C. P. Smith, et.al., “Generation of optical phase 

singularities by computer-generated holograms,” Opt. Lett., 17, 221-223 (1992). 

9. J. Courtial and M.J. Padgett, “Performance of a cylindrical lens mode converter for 

producing Laguerre–Gaussian laser modes,” Opt. Commun., 159, 13–18 (1999). 

10. B. Ya. Zel’dovich, N. F. Pilipetskil and V. V. Shkunov, “Principles of Phase 

conjugation,” Nauka, Moscow (1986). 

11. V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw 

dislocations in their wave fronts,” JETP Lett., 52, 429-431 (1990).  

12. Dong Sung Lim, and El-Hang Lee, “Structural characteristics and properties of phase 

singularities in optical fibers,” J. Opt. Soc. Korea., 1, 81-89 (1997). 

13. Fatih Yaman, Neng Bai, Benyuan Zhu, et.al., “Long distance transmission in few-

mode fibers,” Opt. Express., 18, 13250-13257 (2010). 

14. M. Faucher, and Y. K. Lizé, “Mode field adaptation for high power fiber lasers,” 

2007 Conference on Lasers and Electro-Optics (CLEO), IEEE Proc., CF17, 1-2 

(2007). 

15. An Li, Yifei Wang, Qian Hu, et.al., “Few-mode fiber based optical sensors,” Opt. 

Express., 23, 1139-1150 (2015). 

16. Yuqiang Fan, George Wu, Wanting Wei, et.al., “Fiber-optic bend sensor using LP21 

mode operation,” Opt. Express., 20, 26127-26134 (2012). 

17. Yufeng Yuan, George Wu, Xian Li, et al., “Effect of twisting and bending on LP21 

mode propagation in optical fiber,” Opt. Express., 36, 4248-4250 (2011). 

18. A. V. Volyar and T. A. Fadeeva, “Optics of singularities of a low mode fiber: optical 

vortices,” Opt. Spectros., 85, 272–280 (1998) 

19. A. V. Volyar, V. Z. Zhilaitis, and T. A. Fadeeva, “Optical vortices in low-mode 

fibers: III. Dislocation reactions, phase transitions, and topological birefringence,” 

Opt. Spectrosc., 88, 397–405 (2000) 



Chapter 3: Singularities in Fiber Modal Fields 

38 

 

20. Y. Chen, Z. Chen, W. J. Wadsworth, et.al., “Nonlinear optics in the LP02 higher-

order mode of a fiber,” Opt. Express., 21, 17786-17799 (2013). 

21. Y. Chen, W. J. Wadsworth, and T. A. Birks, “Ultra violet four-wave mixing in the 

LP02 fiber mode,” Opt. Lett., 38, 3747-3750 (2013). 

22. Alicia Sit, Robert Fickler, Fatimah Alsaiari, et. al., “Quantum cryptography with 

structured photons through a vortex fiber,” Opt. Lett., 43, 4108-4111 (2018). 

23. Lu Yan, Poul Kristensen, and Siddharth Ramachandran, “Vortex fibers for STED 

microscopy,” APL Photonics., 4, 022903 (1-7) (2019). 

24. Allan W. Snyder and William R. Young, “Modes of optical waveguides,” J. Opt. 

Soc. Am., 68, 297-309, (1978). 

25. Ajoy Ghatak and K. Thyagarajan, “Introduction to fiber optics,” Cambridge 

University Press, (1997). 

26. Allan W. Snyder, and John D. Love, “Optical Waveguide Theory,” Chapman and 

Hall, (1983). 

27. M. Mostafavi, T. Itoh, and R. Mittra, “Excitation of an optical fiber by a Gaussian 

beam,” Appl. Opt., 14, 2190-2193 (1975) 

28. Masaaki Imai and Elmer H. Hara, “Excitation of the Fundamental and Low-Order 

Modes of Optical Fiber Waveguides with Gaussian Beams.2: Offset Beams,” Appl. 

Opt., 14, 169-173 (1975). 

29. Masaaki Imai and Elmer H. Hara, “Excitation of the Fundamental and Low-Order 

Modes of Optical Fiber Waveguides by Gaussian Beams.1: Tilted Beams,” Appl. 

Opt., 13, 1893-1899 (1974). 

30. V.V.G. Krishna Inavalli and Nirmal K. Viswanathan, “Switchable vector vortex 

beam generation using an optical fiber,” Opt. Commun., 283, 861–864 (2009). 

31. Nirmal K. Viswanathan and V. V. G. Inavalli, “Generation of optical vector beams 

using a two-mode fiber,” Opt. Lett. 34, 1189-1191 (2009). 

32. E. Snitzer and H. Osterberg, “Observed Dielectric Waveguide Modes in the Visible 

Spectrum,” J. Opt. Soc. Am., 51, 499-505. (1961). 

33. F. T. Arecchi, Pattern formation and space-time organization in nonlinear optics in 

“Nonlinear dynamics and spatial complexity in optical systems,” IOP Publishing, 

Bristol, 65-113 (1993). 



Generation and Characterization of Spiral Vector 

Beams 

4.1 Introduction 39 

4.2 Formation of Spiral Vector Beams from LP11 modes 40 

4.3 Experimental details 43 

4.4 Results and discussions 44 

 4.4.1 Counter-clockwise spiral vector beam 44 

 4.4.2 Clockwise spiral vector beam 47 

4.5 Conclusions 49 

 References 50 

 

 

 

 

 

 

 



39 

 

CHAPTER 4 

Generation and Characterization of Spiral Vector 

Beams 

A simple method for generating spiral vector beams using few mode optical fiber is 

demonstrated. These beams are generated due to a combination of orthogonal linearly 

polarized modes with diagonal and anti-diagonal polarization vector in the few mode 

optical fiber. The excitation of these modes is controlled by the incident state of 

polarization and coupling conditions at the fiber input end. Vector beams with spiral 

distribution (clockwise and counter clockwise) of polarization axis in transverse 

direction are generated and switching between them is demonstrated. The experimental 

results obtained emphasize strong dependency of polarization of generated spiral vector 

beams and other orthogonal modes on input state of polarization. Experimental results 

are found to be in good agreement with simulated results. 

4.1 Introduction 

Spiral vector beams (SVB) are optical vector fields wherein the linear polarization vector 

makes a constant azimuthal angle in radial direction across the beam and the electric field 

lines form a logarithmic spiral, first theoretically proposed by Gori [1]. Later, Borghi et 

al., predicted that these beams can be generated from coherent superposition of 

orthogonal HG modes and they studied the focusing and propagation characteristics of 

these beams in both paraxial and non-paraxial regime [2,3]. The focusing properties of 

these beams make them useful in fields such as optical trapping, lithography and high 

resolution microscopy [2,4]. Few characteristic quality parameters of spirally polarized 

fields in paraxial limit are theoretically investigated by Ramirez et al., and experimentally 

realized by generating such beams using polarization conversion devices [5,6]. 

Generation of these beams is also reported by using special optical devices such as stress 

birefringent wave plates and subwavelength gratings [7,8]. Apart from theoretical 

predictions and bulk optical experimental methods, SVBs were also generated in an 

optical fiber by chemically etching a micro-axicon on the tip of a fiber that converts the 

excited vortex beam into a spirally polarized beam [9]. All these methods involve special 

optical components with complex fabrication techniques which increases cost and 
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complexity of the experiment. Nevertheless, fiber based methods are preferable over bulk 

optics methods in many applications due to flexibility and ease of operation [10-12].    

Keeping this in view, in this chapter, we presented a simple approach for generating 

SVBs using few mode fiber (FMF).  It is well known that vector beams in optical fiber 

are linear combinations of orthogonally polarized 𝐿𝑃11 modes. By exploiting this mode 

mixing phenomenon, we propose that SVBs can be generated by the inherent 

combination of orthogonally polarized 𝐿𝑃11 modes with diagonal and anti-diagonal 

polarization vector using FMF. Here, we performed a proof-of-concept experiment to 

achieve the same. The excitation of these modes is controlled by the incident SOP and 

coupling conditions at the input fiber end. The spiral polarization nature of the generated 

SVBs is characterized by analyzing the Stokes field. The SVBs with polarization vector 

oriented in clockwise (CW) and counter clockwise (CCW) direction across the beam are 

generated and switching between them is demonstrated.  

4.2 Formation of Spiral Vector Beams from LP11 modes 

The field distribution of degenerate 𝐿𝑃11 mode group is given by [13] 

    𝐿𝑃11(𝑥̂)
𝑎 = 𝑥̂𝑓(𝑟)𝑐𝑜𝑠𝜑           𝐿𝑃11(𝑥̂)

𝑏 = 𝑥̂𝑓(𝑟)𝑠𝑖𝑛𝜑  

                             𝐿𝑃11(𝑦̂)
𝑎 = 𝑦̂𝑓(𝑟)𝑐𝑜𝑠𝜑           𝐿𝑃11(𝑦̂)

𝑏 = 𝑦̂𝑓(𝑟)𝑠𝑖𝑛𝜑           (1) 

In Equ. (1), 𝑥̂ and 𝑦̂ denote the polarization vector orientation along X and Y axes 

respectively and 𝑓(𝑟) represents the radial field distribution described by a Bessel 

function while sine and cosine terms represent the azimuthal field distribution of 𝐿𝑃11 

mode. Depending on the polarization vector orientation in the respective modes, 𝐿𝑃11(𝑥̂)
𝑎  

and 𝐿𝑃11(𝑦̂)
𝑏  are called even modes, 𝐿𝑃11(𝑥̂)

𝑏 and  𝐿𝑃11(𝑦̂)
𝑎  as odd modes. A suitable 

combination of orthogonal 𝐿𝑃11 modes form zeroth order vector modes or CVBs i.e., 

radial, azimuthal and hybrid polarized beams with cylindrical symmetry of polarization 

as shown in Fig. 4.1. 

The field distributions of radially polarized 𝑇𝑀01 and azimuthally polarized 𝑇𝐸01 modes 

are given by [13] 

      𝐸𝑇𝑀01
= 𝑓(𝑟)(𝑥̂𝑐𝑜𝑠𝜑 + 𝑦̂𝑠𝑖𝑛𝜑)     (2) 

𝐸𝑇𝐸01
= 𝑓(𝑟)(𝑥̂𝑠𝑖𝑛𝜑 − 𝑦̂𝑐𝑜𝑠𝜑)  (3) 
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From Equ. (2) and Equ. (3), it is clear that the combination of 𝑥̂ (𝑦̂)-polarized and 𝑦̂ (𝑥̂)-

polarized even (odd) modes generate radially (azimuthally) polarized vector beam 

[14,15]. However, other combination result in hybridly polarized 𝐻𝐸21
𝑜𝑑𝑑  and 𝐻𝐸21

𝑒𝑣𝑒𝑛 

modes which are not of much scientific interest individually, while their combination 

with ±π/2 phase difference can generate a circularly polarized optical vortex beam that 

has both spin and orbital angular momenta [16]. 

 

Fig. 4.1.Vectorial representation of orthogonal LP11 modes and their combinations; (a) radial 

vector beam (b) azimuthal vector beam. 

  From Fig. 4.1, it is clear that the radial and azimuthal CVB have orthogonal 

polarization and can be transformed into one another by rotating the local polarization 

vector. During such transformation, the SVBs can be generated at any specific orientation 

of polarization vector across the beam with varying degrees of spiral nature. Precisely, in 

our case, the polarization vector in SVBs makes a constant azimuthal angle of π/4 across 

the beam. However, the generation of SVBs in optical fiber was reported to be due to in-

phase and out-of-phase combination of 𝑇𝑀01 and 𝑇𝐸01 modes [17, 18]. Another simplest 

and efficient way to generate the SVBs is similar to that of CVBs i.e., by a combination 

of orthogonal 𝐿𝑃11 modes with diagonal and anti-diagonal polarization vector.  

The out-of-phase combination of 𝑇𝑀01 and 𝑇𝐸01 is given by 𝐸𝑇𝑀01
+ (𝑒𝑖(𝜋))𝐸𝑇𝐸01

 i.e.,  

𝐸(𝑇𝑀01−𝑇𝐸01) = 𝑓(𝑟)(𝑥̂𝑐𝑜𝑠𝜑 + 𝑦̂𝑠𝑖𝑛𝜑) − 𝑓(𝑟)(𝑥̂𝑠𝑖𝑛𝜑 − 𝑦̂𝑐𝑜𝑠𝜑)  (4) 

Which can be simplified to obtain the following 

𝐸(𝑇𝑀01−𝑇𝐸01) = 𝑓(𝑟){(𝑥̂ + 𝑦̂)𝑐𝑜𝑠𝜑 − (𝑥̂ − 𝑦̂)𝑠𝑖𝑛𝜑}     (5) 
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Equation (5) represents a combination of orthogonal 𝐿𝑃11 modes and this combination 

generates an SVB with polarization vector oriented in CCW sense.  

Further, the in-phase combination of 𝑇𝑀01 and 𝑇𝐸01is given by 𝐸𝑇𝑀01
+ (𝑒𝑖(0))𝐸𝑇𝐸01 i.e.  

𝐸(𝑇𝑀01+𝑇𝐸01) = 𝑓(𝑟)(𝑥̂𝑐𝑜𝑠𝜑 + 𝑦̂𝑠𝑖𝑛𝜑) + 𝑓(𝑟)(𝑥̂𝑠𝑖𝑛𝜑 − 𝑦̂𝑐𝑜𝑠𝜑)   (6) 

Which can be simplified to obtain the following 

𝐸(𝑇𝑀01+𝑇𝐸01) = 𝑓(𝑟){(𝑥̂ − 𝑦̂)𝑐𝑜𝑠𝜑 + (𝑥̂ + 𝑦̂)𝑠𝑖𝑛𝜑}   (7) 

Equation (7) also represents a similar field distribution as that of Equ. (5) but the 

generated SVB has CW oriented polarization vector. By denoting the resultant direction 

of polarization of  𝑥̂ + 𝑦̂ as 𝑢̂ and 𝑥̂ − 𝑦̂ as 𝑣, Equ. (5) and Equ. (7) can be rewritten as 

  𝐸1 = 𝑓(𝑟)(𝑢̂𝑐𝑜𝑠𝜑 − 𝑣𝑠𝑖𝑛𝜑)      (8) 

𝐸2 = 𝑓(𝑟)(𝑢̂𝑠𝑖𝑛𝜑 + 𝑣𝑐𝑜𝑠𝜑)     (9) 

Where 𝐸1  and  𝐸2 represent the resultant field distribution of CCW and CW-SVBs. 

Equations (8) and (9) represent a combination of a set of four 𝐿𝑃11 modes,𝐿𝑃11(𝑢,𝑣̂)
𝑎  

and𝐿𝑃11(𝑢,𝑣̂)
𝑏 , which can be excited in an optical fiber by manipulating input SOP and 

launching conditions. Therefore, it can be stated that SVBs can be generated from a 

combination of 𝐿𝑃11 modes with polarization vector oriented along 𝑢̂ and 𝑣 respectively, 

which meets the prediction made by Borghi et. al., for orthogonal Hermite-Gaussian 

modes [2]. The vectorial representation of Equ. (8) and Equ.(9) is shown in Fig. 4.2. 

 

Fig.4.2.Combination of orthogonal LP11 modes, formation of (a) CCW-SVB (b) CW-SVB 
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4.3 Experimental details  

The schematic diagram of the experimental setup used for the generation of SVBs is 

shown in Fig. 4.3. Vertically polarized fundamental Gaussian mode from a 5 mW He-Ne 

laser with 632.8 nm wavelength is made to pass through an ND filter and a HWP for 

controlling the optical power and the state of polarization respectively. A 45X microscope 

objective lens (L1), placed after HWP, focuses the laser beam on to the cleaved end of 

FMF. The microscope objective is situated on a micro-rotational stage for tilted launching 

of light into the fiber. The calculated V-number of FMF (980HP of Thorlabs; 0.2 NA, 

3.6/125 µm) is 3.57 which means the fiber supports only two modes i.e., 𝐿𝑃01 and 𝐿𝑃11  

at the chosen wavelength. Additionally, these two 𝐿𝑃 modes have a polarization 

degeneracy of 2 and 4 respectively, which result in a total of 6 modes i.e., 

𝐿𝑃01(𝑥,̂𝑦̂) and 𝐿𝑃11(𝑥,̂𝑦̂)
𝑎 , 𝐿𝑃11(𝑥,̂𝑦̂)

𝑏 . The selective combination of orthogonal 𝐿𝑃11 modes 

generates various vector modes as explained in previous section. The fiber is held straight 

with the help of fiber holders at both launching and output ends to avoid bends and twists. 

At the launching end, the fiber is held with a 3-axis micro translational stage for precise 

movement of the optical fiber along and transverse to its axis. Gentle stress (S) applied 

on the optical fiber at the middle over a length of 1 cm reduces the noise in modal output 

and also helps in controlling the excitation of modes [19]. Here, the applied stress is just 

sufficient enough to suppress the noise in modal output and has not been varied 

throughout the experiment. Varying applied stress alone may lead to the generation of 

vector modes [20], whereas in our work only the input SOP and coupling conditions play 

a key role in the excitation of modes. A 20X microscope objective lens (L2) decouples 

and collimates the light beam from the fiber output end. A combination of quarter wave 

plate (QWP) and analyzer (A) is kept in the path of the collimated beam between L2 and 

CCD for analyzing the SOP of the excited mode and to carry out Stokes polarimetry [21]. 

 

Fig. 4.3. Schematic representation of the experimental setup. ND, neutral density filter; HWP, 

half wave plate; L1 and L2, microscope objective lens; FMF, few-mode fiber; S, stress unit; QWP, 

quarter wave plate; A, analyzer; CCD, charge coupled device camera. 
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A brief description of Stokes polarimetry is presented here. The images of excited 

modes are captured and intensity is recorded using CCD camera at four discrete 

orientation angles of the analyzer i.e., horizontal (I0), diagonal (I45), vertical (I90) and anti-

diagonal (I135) with respect to X-axis. A QWP is then inserted before the analyzer at an 

angle of 90o and two more images are captured for diagonal (I(45, 90)) and anti-diagonal 

(I(135, 90)) orientation of the analyzer. These six images are processed further using 

MATLAB program [22] for polarization mapping of the beam. The four normalized 

Stokes parameters S0, S1, S2 and S3 are numerically calculated for regular intervals of 

pixels on the cross section of the excited mode along X and Y directions and polarization 

ellipses are plotted on the gray scale image of the corresponding mode captured without 

any filter. The Stokes parameters in terms of intensity of captured images are S0 = I0 +I90, 

S1 = I0 – I90, S2 = I45 – I135, S3 = I (45, 90) – I (135, 90). 

And the polarization ellipse parameters, ellipticity 𝜒 and ellipse orientation 𝜓  in terms 

of Stokes parameters are given by 

𝜒 =
1

2
𝑠𝑖𝑛−1 (

𝑆3

𝑆0
)     (10) 

𝜓 =
1

2
𝑡𝑎𝑛−1 (

𝑆2

𝑆1
)     (11) 

4.4 Results & Discussion 

The generation of modes in an optical fiber depends mainly on input SOP and the skew 

and offset launching of Gaussian beam onto the tip of fiber [23,24]. In this experiment, 

we consider an FMF of fixed length of around 30 cm and just by changing the coupling 

parameters and input SOP we generate the desired modes. The spatial polarization 

content of these modes is analyzed with Stokes analysis. 

4.4.1 Counter-clockwise spiral vector beam 

Vertically polarized Gaussian beam from the laser is focused using L1 while keeping 

HWP at 0o initially. The focused spot, incident on the center of core of the FMF, excites 

the fundamental Gaussian mode 𝐿𝑃01 as a result of on-axis launching. Now, the tip of 

FMF is slightly adjusted using micro translation stage for off-axis launching of input 

Gaussian beam.  At a fixed coupling condition, a two lobe  𝐿𝑃11 mode with a horizontal 

dark line is observed directly from the fiber output end without analyzer. Keeping the 
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coupling conditions unaltered, the HWP is slowly rotated up to 26o where a cylindrically 

symmetric donut mode is observed.  

  

Fig. 4.4. Normalized intensity profiles of the donut mode through its center along (a) X-axis (b) 

Y-axis  

Figures 4.4 (a) and 4.4 (b) show the normalized intensity profiles along X and Y 

axes of the generated mode through the center respectively. The zero intensity at the 

center of both plots indicates that the launched Gaussian beam is entirely coupled to the 

generated donut mode while the coupling to the fundamental Gaussian mode is minimal. 

In order to investigate the spatial polarization, intensities of the donut mode are recorded 

using CCD camera at 6 discrete orientations of analyzer and QWP. Further, the captured 

images are processed to obtain Stokes parameters and hence the polarization ellipse 

parameters. Subsequently, the transverse spatial polarization is mapped by plotting 

polarization ellipses across the generated mode.  

 

Fig. 4.5. Polarization mapping, first row are the simulation results for Equ. (8) and second row 

are the corresponding experimental results for HWP orientation angles (d) 26o (e) 6o and (f) 45o. 



Chapter 4: Generation and Characterization of Spiral Vector Beams 

46 

 

Figures 4.5 (a) – 4.5 (c) are the simulation results corresponding to Equ. (8) which 

illustrates the formation of CCW-SVB from a combination of orthogonal  𝐿𝑃11 modes. It 

is evident from Fig. 4.5 (d) that the mode has spiral polarization with counter clockwise 

oriented polarization vector.  The spatial polarization across this CCW-SVB is observed 

to be elliptical at certain regions rather than linear as predicted by theory. The beam has 

slight variation in ellipticity𝜒, while moving across in azimuthal direction. The possible 

reason for such variation is believed to be the inhomogeneity and linear birefringence of 

the optical fiber [25]. 

Now, without disturbing the coupling conditions, HWP is rotated back from 26o 

to 6o where a two lobe  𝐿𝑃11 mode with horizontal null intensity line is observed. This 

𝐿𝑃11 mode is expected to be one of the orthogonal modes that contributes to the 

generation of CCW-SVB. The spatial polarization of the generated 𝐿𝑃11 mode is mapped 

with Stokes polarimetry and is found to be linearly polarized in the direction of 𝑣 (making 

45o with –ve X-axis) as shown in Fig. 4.5 (e). Further, in order to generate the other 

orthogonal 𝐿𝑃11 mode, we launched orthogonal SOP into the optical fiber by rotating the 

HWP to 45o. As expected, a two lobe 𝐿𝑃11 mode is observed with spatial intensity as well 

as polarization which is orthogonal to that of previously excited 𝐿𝑃11 mode. This mode 

is observed to be linearly polarized in the direction of 𝑢̂ (making 45o with +ve X-axis) as 

shown in Fig. 4.5 (f). These two orthogonal 𝐿𝑃11 modes can be excited simultaneously 

by launching an intermediate SOP to that of the SOP launched to excite them 

individually, which results in the generation of CCW-SVB. 

  

Fig. 4.6.  Ellipse Orientation map of CCW-SVB (a) Simulation (b) Experimental. 
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Figures 4.6 (a) and 4.6 (b) show the ellipse orientation map corresponding to Fig. 

4.5 (a) and 4.5 (d) respectively. The color bar, towards right side of Fig. 4.6 (b), 

emphasizes the orientation of polarization ellipses from 0 to π twice across the beam at a 

fixed radial distance from the core, in azimuthal direction. In Fig. 4.6 (a), the line of 

separation of 0 and π ellipse orientations makes an angle π/4 with –ve X-axis in CCW 

direction and the angle of ellipse orientation is increasing in the same sense which implies 

the CCW nature of spiral polarization.  

As the CCW-SVB has local linear polarization, the Stokes parameter S3=0 and 

hence from Equ. (10) the ellipticity 𝝌 =0 ideally. The ellipticity of the experimentally 

generated CCW-SVB is calculated by averaging the 𝝌 value over 30x30 pixel matrix 

around the core of the beam which is found to be -0.25.  The –ve sign indicates left 

handedness of the polarization ellipses across the beam.  The slight deviation of the 

experimental value from theoretical value may be attributed to the linear birefringence of 

optical fiber [25]. 

4.4.2 Clockwise spiral vector beam 

The HWP is then set back to 26o where the CCW-SVB was observed and we then changed 

the coupling condition for the fiber by moving its tip along X-axis to a diametrically 

opposite position on the core with respect to incident light beam.  The HWP is then slowly 

rotated to excite another donut-shaped vortex mode which is observed at 30o. The 

normalized intensity profiles of this mode along X and Y axes respectively are shown in 

Fig. 4.7 (a) and 4.7 (b). Akin to the previously generated donut mode, this mode also have 

a dark core intimating the coupling to fundamental Gaussian mode is negligible.  

 

Fig. 4.7. Normalized intensity profiles of the donut mode through its center along (a) X-axis (b) 

Y-axis. 
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Fig. 4.8. Polarization mapping, first row are the simulation results for Equ. (9) and second row 

are the corresponding experimental results for HWP orientation angles (d) 30o (e) 0o and (f) 45o. 

Figures 4.8 (a) – 4.8 (c) are simulation results corresponding to the formation of 

CW-SVB from orthogonal 𝐿𝑃11 modes as mentioned in Equ. (9), while experimental 

results for the same are shown in Fig. 4.8 (d) – 4.8 (f). Slight variation in ellipticity is 

observed across the generated donut mode, yet maintaining uniformity in ellipse 

orientation in clockwise direction as shown in Fig. 4.8 (d). Similar to the previous case, 

Fig. 4.8 (e) and 4.8 (f) show the orthogonal 𝐿𝑃11 modes with linear polarization vector 

oriented in the direction of 𝑣  and 𝑢̂, generated by launching orthogonal SOP at fiber 

input end for 0o and 45o of HWP orientation angles respectively. It is observed from both 

cases that for orthogonal SOP launched at the fiber input end, the output polarization 

remains the same (𝑣 for 0o and  𝑢̂ for 45o) while the spatial patterns are orthogonal. 

    

Fig. 4.9. Ellipse Orientation map of CW-SVB (a) Simulation (b) Experimental. 
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Fig. 4.9 (a) and 4.9 (b) are the simulated and experimentally generated ellipse 

orientation maps of the CW-SVB corresponding to Fig. 4.8 (a) and 4.8 (d) respectively. 

In this case also polarization ellipses are oriented twice across the beam but the line of 

separation of 0 and π makes an angle of π/4 with +ve X-axis in CW direction and the 

angle of ellipse orientation increases in opposite sense as shown in Fig. 4.9 (a). The 

average value of 𝝌 for CW-SVB is calculated in a similar manner to the previous case 

and is found to be 0.359. Here, the +ve sign of 𝝌 indicates right handedness of the 

polarization ellipses across the beam. 

The phenomenon of degenerate 𝐿𝑃 mode mixing for the generation of CW & 

CCW-SVBs best suits 𝐿𝑃11 modes alone. As we move to higher order 𝐿𝑃𝑙𝑚 (𝑙 >1, 𝑚 >1) 

modes, the combination may result in an arbitrary mode due to the difference in topology 

of phase and polarization from 𝐿𝑃11  modes. Moreover, the polarization behavior of 𝐿𝑃 

modes in FMF that support more than 2 𝐿𝑃 modes (𝐿𝑃01 and 𝐿𝑃11) is highly unstable 

which increases the complexity in generation of higher order vector modes. 

It is worth noting that just by controlling coupling conditions and input SOP, we 

have generated the beams with opposite spiral nature. Though the local SOP of the 

experimentally generated beams is not as linear as predicted by theory, the same approach 

may be implemented using high quality optics and a custom designed optical fiber which 

may result in pure spiral vector vortex beams. The slight deviation in experimental results 

from theoretical predictions may be attributed to the quality of the optics, inhomogeneity 

and linear birefringence of optical fiber and the ambient conditions of the experimental 

setup. By precise control over all these conditions, modes of desired polarization can be 

generated. 

4.5 Conclusions 

A new approach for the generation of CW & CCW SVBs via combination of orthogonal 

 𝐿𝑃11 modes with diagonal and anti-diagonal polarization vector has been demonstrated. 

The generation of SVBs with polarization vector oriented in CW and CCW direction has 

been verified experimentally using a few mode optical fiber by controlling the coupling 

conditions and input SOP. The experimental results obtained are found to be in good 

agreement with theoretical predictions. The slight deviation in the ellipticity of the 

generated SVBs may be attributed to the fiber birefringence and quality of optics. The 
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obtained results are expected to find potential applications in particle trapping and 

manipulation. 

 

The work presented in this chapter is published in Applied Optics. 

C. Hari Krishna and Sourabh Roy, “Analyzing characteristics of spiral vector beams 

generated by mixing of orthogonal LP11 modes in few-mode optical fiber”, Appl. Opt., 

57, 3853-3858 (2018). 
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CHAPTER 5 

Generation of Vector Vortex Modes and Poincare 

Sphere Representation 

 

In this chapter, we have demonstrated the generation of inhomogeneously polarized 

vector vortex modes in a step-index few mode optical fiber. These vector modes are other 

than well-known zeroth order vector modes such as modes with radial, azimuthal and 

hybrid polarization distribution in transverse direction. Extending the basis of linearly 

polarized modes with diagonal and anti-diagonal polarization that are proposed and 

experimentally generated in the previous chapter, a set of four vector vortex modes are 

generated by controlling the coupling conditions and input state of polarization. Further, 

Poincare sphere representation for all possible first order linearly polarized modes and 

the vector vortex modes generated from their combinations of few mode optical fiber are 

presented. All homogeneously polarized fiber modes are accommodated on standard 

Poincare sphere and inhomogeneously polarized vector vortex modes are accommodated 

on a pair of higher order Poincare sphere. The location of vector vortex modes on higher 

order Poincare sphere is justified by the positions of orthogonal linearly polarized modes 

on standard Poincare sphere. 

5.1 Introduction  

In this chapter, we present the experimental generation of vector vortex modes (VVMs) 

in FMF and analyse their polarization content with Stokes polarimetry. These VVMs are 

then located on a pair of higher order Poincare sphere (HOPS) depending on their spatial 

polarization distribution and also according to the position of orthogonal 𝐿𝑃11 modes on 

standard Poincare sphere that combine to generate respective VVMs.  

 

5.1.1 Vector Vortex Modes 

VVMs are complex light beams with inhomogeneous spatial linear polarization vector. 

The orientation angle of the polarization vector across the beam in azimuthal direction at 

any fixed radial distance makes a full cycle of 2π (or 0 to π twice). As a result of this 

polarization inhomogeneity, there exist a polarization singular point at the center of the 
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mode where the state of polarization is undefined, known as V-type polarization 

singularity as it is present in a vector field. In next chapter, we discuss another type of 

polarization singularity i.e., C-point present in ellipse fields. Whereas, this chapter is 

dedicated to the experimental generation of VVMs and their Poincare sphere 

representation. 

CVBs such as radial and azimuthal vector beams exhibit a rich variety of 

applications in scientific and industrial fields due to which numerous ways have been 

proposed to generate them [1,2]. Recently, the generation of novel vector fields with 

hybrid and arbitrarily varying spin angular momentum are reported which are expected 

to find potential applications in polarization multiplexing and imaging [3-6]. The 

underlying fundamental scientific interest and the promising applications of such vector 

fields creates a path for exploring various generation schemes.  

In this chapter, we discuss the experimental generation of a class of four VVMs 

using FMF by exploiting the degenerate mode mixing phenomenon of first order 

orthogonal linearly polarized 𝐿𝑃11 modes with diagonal (𝑢̂) and anti-diagonal (𝑣) 

polarization vectors. These VVMs are briefly discussed by Milione et. al., in describing 

the HOPS [7,8]. The generation of radial and azimuthal vector modes has been paid much 

attention in fibers while these VVMs are relatively unexplored and no experimental 

demonstration is presented for their efficient generation till date, to the best of our 

knowledge. 

  

5.1.2 Poincare Sphere and Stokes parameters 

Poincare sphere, proposed by H. Poincare, is an imaginary sphere with Stokes parameters 

as coordinate axes (S1, S2, S3 with S0 being origin). Poincare sphere is the most convenient 

and efficient tool for representing homogeneously polarized states of light beams which 

are plane wave solutions of Maxwell’s equations. A standard Poincare sphere contains 

all possible states of polarization on its surface with circular polarizations at the poles, 

linear polarizations along the equator and elliptical polarization elsewhere as shown in 

Fig. 5.1. An arbitrary polarization state can be located on the surface of Poincare sphere 

using spatial spherical coordinates (2 𝜓, 2 𝜒) where 2 𝜓 and 2 𝜒 are the latitude and 

longitude of the point ‘p’ and are related to Stokes parameters as [9]   

 [
𝑆1

𝑆2

𝑆3

] = [

𝑐𝑜𝑠(2𝜒)𝑐𝑜𝑠(2𝜓)

𝑐𝑜𝑠(2𝜒)𝑠𝑖𝑛(2𝜓)

𝑠𝑖𝑛(2𝜒)
]     (1) 
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The latitude and longitude have their own physical significance in the sense that 

they represent ellipse orientation angle (𝜓) and ellipticity ( 𝜒) of the polarization ellipse 

respectively. The points (0,0), (π/2,0), (π,0) and (3π/2,0) along the equator of the Poincare 

sphere represent the horizontal (H), diagonal (D), vertical (V) and anti-diagonal (A) linear 

polarizations, while the points (0,π/2) and (0,-π/2) at the north and south poles represents 

right (R) and left (L) circular polarizations respectively. 

 

Fig. 5.1. Standard Poincare sphere, p: arbitrary point on the surface of sphere, (2ψ, 2χ): latitude 

and longitude of the point p. 

5.1.3 Necessity of higher order Poincare sphere 

As discussed above, based on the SOP of modes, their position is justified on the Poincare 

sphere. This method is valid only for modes with homogeneously polarized states which 

are fundamental plane wave solutions of Maxwell’s vector wave equation. The linear 

combinations of orthogonal 𝐿𝑃11 modes generate VVMs with inhomogeneously 

polarized states, which are higher-order solutions for Maxwell’s vector wave equation 

[7]. Moreover, these modes have spatially varying linear polarization vector that can span 

over the equator of standard Poincare sphere. Hence, it is difficult to represent these 

modes at a particular position on the standard Poincare sphere. As a consequence, another 

efficient geometric representation for such inhomogeneous vector fields is essential by 

extending the standard Poincare sphere to higher order Poincare sphere that can 
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accommodate various VVMs. Additionally, the geometrical representation of these 

inhomogeneously polarized VVMs is of fundamental scientific interest which is essential 

in understanding the geometric phase of light beams [8].  

Some representations were proposed in the literature that deal with light beams 

having definite orbital and spin angular momenta (OAM and SAM). Of them, the sphere 

of first order modes, proposed by M. J. Padgett, deals with the OAM of optical beams by 

accommodating HG modes on equator and LG modes at the poles, irrespective of their 

spatial polarization [10]. Recently, Milione et al. proposed a pair of HOPS that 

accommodates all kinds of inhomogeneously polarized modes that have both SAM and 

OAM simultaneously and they also discussed higher-order Pancharatnam-Berry phase 

associated with them [7,8]. A generalized Poincare sphere is proposed recently by 

exploiting an additional parameter (the radial distance of the surface from center of 

Poincare sphere) to represent the degree of polarization which elucidated the higher order 

mode representation by unifying all inhomogeneous states onto a single sphere [11]. All 

these representations of HOPS describe vector fields that could be generated in free-space 

using bulk optical setups. Though, some modes that are analogous to optical fiber modes 

have been discussed briefly by Milione et al., minimal attention has been focused towards 

their generation while most of the attention is given to other inhomogeneous states.  

 Keeping this in view, in this chapter, we have presented a Poincare sphere 

approach exclusively for modes of FMF. All possible 𝐿𝑃11 modes of few-mode fiber are 

located onto a standard Poincare sphere according to their spatial polarization 

distribution. The orthogonal combinations of 𝐿𝑃11 modes, which results in the generation 

of various possible VVMs, are mapped onto a pair of HOPS. As all 𝐿𝑃11 modes and 

VVMs have local linear polarization, the equator of Poincare sphere and HOPS is 

sufficient to accommodate them.  

 

5.2 Formation of vector vortex modes from LP11 modes 

In the previous chapter, we proposed a set of orthogonal 𝐿𝑃11 modes with diagonal and 

anti-diagonal polarization vectors. Here, extending the possible combinations of these 

𝐿𝑃11 modes, we generate a set of four VVMs. For a suitable and allowed combination of 

the 𝐿𝑃11 modes, some typical criteria are mentioned in the literature, such as field 

invariance of the modes under plane rotations, modes that follow rotational and reflection 

symmetries and solving the set of equations of 𝐿𝑃 modes [12-15]. Though these modes 
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are not exact solutions of the scalar wave equation, there is a possibility of generating 

such modes in optical fiber by controlling the incident SOP experimentally. These modes 

may be considered as the superposition of 𝐿𝑃11(𝑥̂,𝑦̂) modes with the same parity but 

orthogonal polarization i.e., 𝐿𝑃11(𝑢)
𝑎,𝑏 = 𝐿𝑃11(𝑥̂)

𝑎,𝑏 + 𝐿𝑃11(𝑦̂)
𝑎,𝑏

 and 𝐿𝑃11(𝑣̂)
𝑎,𝑏 = 𝐿𝑃11(𝑥̂)

𝑎,𝑏 −

𝐿𝑃11(𝑦̂)
𝑎,𝑏

, similar to 𝐶𝑃11 mode formalism in which 𝐿𝑃11(𝑥̂,𝑦̂) modes of orthogonal 

polarization and same parity combine with π/2 phase difference in order to form circularly 

polarized modes [16]. The four possible 𝐿𝑃11 modes with diagonal and anti-diagonal 

polarization vector are given by  

        𝐿𝑃11(𝑢)
𝑎 = 𝑢̂𝑓(𝑟)𝑐𝑜𝑠𝜑           𝐿𝑃11(𝑢)

𝑏 = 𝑢̂𝑓(𝑟)𝑠𝑖𝑛𝜑 

 𝐿𝑃11(𝑣̂)
𝑎 = 𝑣𝑓(𝑟)𝑐𝑜𝑠𝜑           𝐿𝑃11(𝑣̂)

𝑏 = 𝑣𝑓(𝑟)𝑠𝑖𝑛𝜑 (2) 

Where 𝑢̂ and 𝑣 are the diagonal and anti-diagonal polarization vectors. The study of these 

modes is helpful in understanding the generation of VVMs other than zeroth order vector 

modes. The possible linear combinations of Equ. (2) are as follows 

𝐸(𝑟, 𝜑) = 𝑓(𝑟) {

𝑣𝑐𝑜𝑠𝜑 + 𝑢̂𝑠𝑖𝑛𝜑
𝑣𝑐𝑜𝑠𝜑 − 𝑢̂𝑠𝑖𝑛𝜑
𝑢̂𝑐𝑜𝑠𝜑 − 𝑣𝑠𝑖𝑛𝜑
𝑢̂𝑐𝑜𝑠𝜑 + 𝑣𝑠𝑖𝑛𝜑

}     (3) 

Equation (3) represents higher order VVMs of FMF which include spiral and hybrid 

vector modes where 𝐸(𝑟, 𝜑) is the field distribution. The generalized equation that 

concerns all possible linear combination of 𝐿𝑃11 modes and the generation of VVMs is 

given by 

   𝐸(𝑟, 𝜑) = 𝑓(𝑟)(𝑝̂𝑐𝑜𝑠𝜑 ± 𝑞̂𝑠𝑖𝑛𝜑)    (4)        

Where 𝑝̂ and 𝑞̂ are orthogonally oriented polarization vectors. These VVMs may also be 

written as  linear combinations of zeroth order vector modes (𝑇𝐸01 ± 𝑇𝑀01 and 𝐻𝐸21
𝑜 ±

𝐻𝐸21
𝑒 ), but we have chosen 𝐿𝑃11 mode basis in our study as the difference of refractive 

indices of core and cladding of the FMF chosen for the experiment of the order 10-2 (nco

 ncl and Δn<<1) i.e., weakly guiding. Moreover, 𝐿𝑃11 modes are the simplest solutions 

for weakly guiding approximation and are the building blocks for the vector modes in 

step index fiber.  Hence  𝐿𝑃11 mode approach is still valid [13,14].  
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Fig. 5.2. Orthogonal LP11 mode mixing and formation of VVMs. 

Figure 5.2 illustrates the 𝐿𝑃11 modes and their possible linear combinations to 

form various VVMs. All the cosine modes (𝐿𝑃11
𝑎 ) are shown along the column whereas 

sine modes (𝐿𝑃11
𝑏 ) are shown along the row. The VVMs are present only along the 

diagonal of Fig. 5.2 as other combinations do not satisfy polarization orthogonality 

though they are orthogonal in their spatial mode pattern. The +ve and –ve signs in the 

modal Equ. (4) may be treated as in-phase (ei(0)=1) and out-of-phase (ei(π)= -1) 

combination of the respective 𝐿𝑃11 modes.  

 

5.3 Experimental details 

The experimental setup used for the generation of VVMs in a FMF is similar to that 

described in the previous chapter and shown in Fig. 5.3. A 5 mW He-Ne laser operating 

at 632.8 nm wavelength is used as source for the excitation of fiber modes. A step ND 

filter and a polarizer are placed in the path of a laser beam to control the intensity and 

allow a vertically polarized Gaussian beam respectively. In order to alter the SOP of the 

input Gaussian beam, a HWP is inserted after the polarizer. The Gaussian beam with 

well-defined SOP is then focused using a microscope objective (L1) and the focused spot 

is made incident on the tip of the cleaved end of around 30 cm long FMF. The output 

mode from the rear end of the FMF is collimated with another microscope objective (L2) 

and captured using a CCD camera.  A quarter wave plate (QWP) and an analyser (A) are 

inserted between L2 and the CCD to analyse the spatial polarization of the generated 

mode.  
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Fig. 5.3. Schematic diagram of the experimental setup. 

5.4 Results and Discussion 

Initially, a vertically polarized Gaussian beam is focused onto the tip of the cleaved end 

of FMF. The fiber is held straight to avoid bends and twists which may affect the 

generation of desired modes. The tip of the fiber is adjusted carefully using 3-axis micro 

positioner so that the input focused Gaussian beam from the laser is entirely coupled to 

fundamental Gaussian fiber mode 𝐿𝑃01.  

 

5.4.1 Generation of Vector vortex modes 

From our previous experimental results, we learnt that at an intermediate SOP of 

orthogonal states, a vector mode is getting excited. For proper input coupling conditions, 

we repeated the experiment and ascertained the same. Here, our aim is to generate a set 

of four VVMs in FMF by controlling input SOP and coupling conditions. First, the HWP 

is slowly rotated 22.5o in anti-clockwise direction which is intermediate SOP of the two 

orthogonal states. By slight adjustment of HWP to an angle of 26o, a donut shaped mode 

is observed. By observing the orientation of two lobe pattern after the rotating analyser, 

this mode is confirmed to have spiral polarization in anti-clockwise direction which is 

out-of-phase combination of 𝐿𝑃11(𝑢)
𝑎  𝑎𝑛𝑑  𝐿𝑃11(𝑣̂)

𝑏  𝑖. 𝑒. , 𝐿𝑃11(𝑢)
𝑎 − 𝐿𝑃11(𝑣̂)

𝑏  as shown in 

Fig. 5.4 (a5). Next, the HWP is slowly rotated 22.5o in clockwise direction where another 

donut shaped mode is observed with a slight adjustment of HWP to 24o. The rotating 

analyser test confirms the hybrid spatial polarization of the generated mode which is an 

in-phase combination of 𝐿𝑃11(𝑢)
𝑎  𝑎𝑛𝑑  𝐿𝑃11(𝑣̂)

𝑏  𝑖. 𝑒. , 𝐿𝑃11(𝑢)
𝑎 + 𝐿𝑃11(𝑣̂)

𝑏   as shown in Fig. 

5.4 (b5).  

The coupling conditions are then altered by moving the tip of the fiber along the 

core to a diametrically opposite position to that of previous launching conditions using 

3-axis micro positioner stage. Akin to previous case, the HWP is rotated in anti-clockwise 

and clockwise directions for which two vector vortex modes are excited for 30o and 26o 

orientation of HWP in respective cases. These modes are examined under rotating 
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analyser to know the spatial polarization. Observation of two lobe orientation patterns 

after the analyser reveals that these modes have clockwise spiral and hybrid polarizations 

which are in-phase (𝐿𝑃11(𝑣̂)
𝑎 +  𝐿𝑃11(𝑢)

𝑏 ) and out-of-phase (𝐿𝑃11(𝑣̂)
𝑎 − 𝐿𝑃11(𝑢)

𝑏 ) 

combinations of 𝐿𝑃11(𝑣̂)
𝑎  𝑎𝑛𝑑 𝐿𝑃11(𝑢)

𝑏  modes as shown in Fig. 5.4 (c5) and Fig. 5.4 (d5) 

respectively. 

 

Fig. 5.4. Orientation of two lobe patterns after crossing the analyser for orientation angles (a1) 

– (d1) 0o, (a2) – (d2) 45o, (a3) – (d3) 90o, (a4) – (d4) 135o, and (a5) – (d5) the polarization 

distribution in generated VVMs. 

Further, Stokes polarimetry is carried out for all VVMs to strictly identify the 

spatial polarization distribution across the modes. The polarization ellipses are plotted 

onto the generated mode as shown in Fig. 5.5. The first row of Fig. 5.5 corresponds to 

the simulated intensity patterns of VVMs with their spatial polarization mapped across 

the mode. The ellipse orientation map of the corresponding modes is shown in the inset 

of each mode which is mapped with a colour scale from 0 to π, each colour representing 

a specific orientation angle of polarization ellipse across the mode. The second row of 

Fig. 5.5 shows the experimentally generated VVMs in FMF. It is observed that the spatial 

polarization distribution of the experimentally generated modes closely matches the 

simulated results while a slight deviation appears in the ellipticity of the polarization 
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ellipses. Ideally, all VVMs have spatial linear polarization as a result of combination of 

two orthogonal 𝐿𝑃11 modes. But, in practice, the generated VVMs are observed to have 

elliptical polarization at certain regions across the mode. This deviation of experimental 

results from theoretical prediction may be attributed to the birefringence of the fiber used 

[17]. Though ellipticity of the modes varies at certain regions, the ellipse orientation 

across the generated modes exactly matches the simulated results as shown in the inset 

of second row in Fig. 5.5. The ellipse orientation maps of generated modes emphasizes 

that each VVM is unique in its spatial polarization content and is different from well-

known zeroth order vector modes. 

 

Fig. 5.5. Vector vortex modes and their corresponding ellipse orientation maps shown in inset; 

(a1) – (a4) simulated, (b1) – (b4) experimental results. 

 

Here, the modes in Fig. 5.5 (b1) & Fig. 5.5 (b2) are generated for anti-clockwise 

and clockwise orientations of HWP for an orientation angle of 26o and 24o respectively 

before changing the coupling conditions and the modes in Fig. 5.5 (b3) & Fig. 5.5 (b4) 

are generated for anti-clockwise and clockwise orientations of HWP for an orientation 

angle of 30o and 26o respectively after changing the coupling conditions. Hence, by just 

altering the coupling conditions and input SOP, all the VVMs can be generated. It is 

noteworthy that the VVMs generated before and after the changing of coupling 

conditions, for specific input SOP, are orthogonal in their spatial polarization distribution, 

which is clearly evident from the ellipse orientation maps shown in the inset of respective 

modes.  
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5.4.2  Poincare sphere representation  

As described in section 5.1.3, homogeneous polarization states can be accommodated on 

standard Poincare sphere and inhomogeneous states on HOPS. As the 𝐿𝑃11modes are 

linearly polarized, they can be accommodated on the equator of standard Poincare sphere. 

The standard Poincare sphere with 𝐿𝑃11 modes of all possible polarizations situated on 

the equator is shown in Fig. 5.6.  

 

Fig. 5.6. Linearly polarized LP11 modes situated on standard Poincare sphere. 

It is clear that conventional modes with orthogonal 𝑥̂ and 𝑦̂ polarizations occupy 

|𝐻〉and |𝑉〉 positions whereas tilted polarized 𝐿𝑃11 modes with orthogonal 𝑢̂ and 𝑣 

polarizations occupy |𝐷〉 and |𝐴〉 positions respectively. 

The linear combination of these orthogonal 𝐿𝑃11 modes leads to the generation of 

various VVMs such as radial, azimuthal, spiral and a set of hybrid vector modes as 

discussed in previous section. All generated VVMs are identical in spatial intensity but 

are unique in spatial polarization distribution as shown in second row (b1-b8) of Fig. 5.7. 

The third row (c1-c8) of Fig. 5.7 illustrates the spatial polarization maps of the 

corresponding VVMs in second row. It is observable from row 2 and row 3 of Fig. 5.7 

that the adjacent VVMs (b1 and b2, b3 and b4, b5 and b6, b7 and b8) are orthogonal in 

spatial polarization distribution and are expected to be situated at diametrically opposite 

location on the HOPS.  
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Fig. 5.7. Row 1: linearly polarized LP11 modes; Row 2: Various inhomogeneously polarized 

VVMs, Row 3: Spatial polarization maps of VVMs. 

To accommodate inhomogeneously polarized VVMs, a pair of HOPS is 

considered which is analogous to that proposed by Milione et al. It is to be noted that, in 

addition to VVMs, a HOPS may also accommodate a wide variety of inhomogeneously 

polarized vortex modes with spatially varying SAM i.e., modes with circular and 

elliptical spatial polarization. But, here our discussion is limited to 𝐿𝑃11 modes and 

VVMs generated from their combination in a few-mode fiber, both of which have local 

linear polarization. Hence, the equator of Poincare sphere and HOPS alone suffices the 

need for accommodating these modes. The VVMs generated from a combination of  

|𝐻〉 ± |𝑉〉 𝐿𝑃11 modes occupy |𝐻〉 and |𝑉〉 positions, whereas the VVMs from a 

combination of |𝐷〉 ± |𝐴〉 𝐿𝑃11 modes occupy |𝐷〉 and |𝐴〉 positions, respectively, on 

HOPS with new coordinate axes 𝑆1
′ , 𝑆2

′  and 𝑆3
′  as shown in Fig. 5.8. Further, the in-phase 

combinations of orthogonal  𝐿𝑃11modes i.e., 𝐿𝑃11
𝑎 + 𝐿𝑃11

𝑏   are located on +ve Stokes axis 

(radially polarized TM01 at |𝐻〉 and clockwise spiral at|𝐷〉) while out-of-phase 

combinations i.e., 𝐿𝑃11
𝑎 − 𝐿𝑃11

𝑏  on –ve Stokes axis (azimuthally polarized TE01 is at |𝑉〉 

and anti-clockwise spiral at |𝐴〉). This HOPS contains vector modes with regular spatial 

polarization distribution such as radial, azimuthal, clockwise and anti-clockwise spiral 

polarizations.  
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Fig. 5.8. Vector vortex modes of regular states of polarization distribution situated on the equator 

of higher order Poincare sphere. 

The other linear combinations of  𝐿𝑃11 modes results in the generation of vector 

modes with irregular or hybrid polarization. These modes cannot be accommodated on 

the same HOPS due to hybrid spatial polarization. Hence, another HOPS is needed to 

accommodate these new hybrid VVMs. The accommodation of these hybrid VVMs on 

the HOPS with a new set of Stokes axes 𝑆1
′′, 𝑆2

′′ and 𝑆3
′′  is akin to the previous case i.e., 

the VVMs generated from the orthogonal  𝐿𝑃11 modes on standard Poincare sphere are 

situated at either of the orthogonal positions on HOPS, shown in Fig. 5.9.  

 

Fig. 5.9. Vector vortex modes of hybrid states of polarization distribution situated on the equator 

of higher order Poincare sphere. 

  

These two HOPS, as a pair, serve the need for representation of all possible VVMs 

of a step-index few mode optical fiber. As all the VVMs have local linear polarization, 

the SAM of the mode is σ = 0. It can be observed that the linear translation along the 
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equator of HOPS helps to switch across the VVMs which can be achieved using a couple 

of wave plates.  

 

5.5 Conclusion 

In summary, we have presented an experimental demonstration on generating VVMs in 

a step index few mode optical fiber by exploiting scalar mode combination of orthogonal 

 𝐿𝑃11 modes with diagonal and anti-diagonal polarization vector. The VVMs are 

generated by controlling the coupling conditions of the fiber and input SOP. The 

clockwise and anti-clockwise orientations of HWP from its mean position, before and 

after changing the coupling conditions, generated all VVMs of orthogonal polarization 

distribution, which is evident from the ellipse orientation maps. The slight deviation in 

ellipticity of experimentally generated VVMs is attributed to fiber inhomogeneity, core 

ellipticity and fiber birefringence. The obtained results are found to be in good agreement 

with simulated results. Further, a Poincare sphere approach is presented for  𝐿𝑃11 modes 

as well as the VVMs generated from their linear combination. The location of regular and 

hybrid VVMs on the HOPS is justified by the position of orthogonal  𝐿𝑃11 modes on 

standard Poincare sphere, which combine to generate respective VVMs. This approach 

is efficient and much useful in the representation of vector modes of FMF. The VVMs 

with clockwise and anti-clockwise spiral spatial polarization which have sharper focusing 

properties next to radial and azimuthal vector modes are suitable for fields such as particle 

trapping, optical micro manipulation and lithography. The other VVMs with hybrid 

polarization may also have considerable contribution towards imaging, microscopy and 

polarization based data encryption by providing additional degree of freedom.  

A part of the work (Generation of VVMs) presented in this chapter is published in Optical 

and Quantum Electronics and other part (Poincare sphere representation) is published in 

Optical Engineering. 
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CHAPTER 6 

Polarization Singularities in Few Mode Optical Fiber 

In this chapter, we demonstrate a fiber based method to generate complex π-symmetric 

polarization singular topologies such as lemon, star and monstar. These singularities are 

formed as a result of a combination of orthogonally polarized Gaussian and Laguerre-

Gaussian modes excited simultaneously in the few mode optical fiber, controlled by input 

coupling conditions. Dipoles, the beam fields consisting of two opposite index C-points, 

are also generated and their topology is analysed with Stokes polarimetry. We have also 

studied the conversion schemes of lemon to star and vice-versa using a cylindrical lens 

and a half wave plate.  

6.1 Introduction 

Polarization singularities which are the vector analogues of phase (scalar) singularities in 

complex electromagnetic fields arise when one of the parameters defining the 

polarization of light becomes undefined [1,2]. These are mainly classified as C-points 

(circularly polarized) and L-lines (linearly polarized) in the polarization ellipse field 

where the orientation of major axis and the handedness of the polarization ellipse are 

undefined respectively [3]. C-point is surrounded by polarization ellipses of spatially 

varying ellipticity in a specific manner. Depending on the geometrical orientation of this 

ellipse field around C-point, the topologies are classified as lemon, star and monstar. All 

these topologies are π-symmetric i.e., the ellipses make a full cycle of π around the C-

point. The orientation angle of ellipses increases with the angular coordinate (anti-

clockwise direction) for lemon and monstar and the orientation angle increases opposite 

to the angular coordinate (clockwise direction) for stars as shown in first row of Fig. 6.1 

[4-7]. Depending on this orientation of polarization ellipses, the topological index 𝐼𝑐 =

1

2𝜋
∮ 𝑑𝜓 (𝜓 is the ellipse orientation angle) is +1/2 for lemon and monstar and -1/2 for 

star [8,9]. The circle with the dashed line in the first row of Fig. 6.1 is the L-line (line of 

linear polarizations) where the polarization changes handedness from left circular (green 

ellipses) to right circular (red ellipses) due to orthogonal field overlapping [3]. The size 

of this L-line varies with the amplitude of interfering modes. Additionally, a lemon 

topology has one radial line (where the major axes of ellipses are aligned with angular 
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coordinate) while star and monstar topologies have three radial lines originating from or 

terminating on the C-point which can be realized by drawing streamlines as shown in 

second row of Fig. 6.1. The radial lines are highlighted in red color and the C-point is 

enclosed in black circle.  

 

Fig. 6.1. π- Symmetric polarization singularities; (a1) lemon, (b1) monstar, (c1) star, (a2)-(c2) 

are the corresponding streamline plots. 

Stokes polarimetry has evolved as the key characterization tool to study the 

polarization singularities in free space [3] as well as in media [10-12] there by creating a 

new characterization technique called singular polarimetry [13], which is useful in 

understanding the propagation dynamics of singularities in anisotropic media. This 

technique, in recent days, is also being used to study the material properties and to 

evaluate the modal characteristics of few-mode optical fibers. The production and 

characterization of C-points is also useful in the study of higher order phase vortices as 

it is difficult to preserve them in isolated state [3,14,15]. Apart from characteristic studies, 

the beams with singularities are showing significant applications in various fields such 

as second harmonic generation [16,17], optical tweezers [18],  and multiplexing/ 

demultiplexing [19]. In view of these applications and also with an interest to explore 

yet-unknown aspects of polarization singular beams, numerous techniques were reported 

for their generation based on interferometry that include SLMs [20-22], SPPs [23], and 

q-plates [24,25]. Recently, polarization singularities are also reported to be generated in 

plasmonic fields [26], and nematic liquid crystal cells [27]. An alternative method to 

generate such complex vector fields is by using optical fibers. The inherent combination 
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of vortex and Gaussian modes within optical fiber can generate rich variety of 

polarization singularities [21,28-30].  

In this chapter, we demonstrated the generation of π-symmetric topologies such 

as lemon, star and monstar using a few mode optical fiber and studied the effect of relative 

phase difference of the interfering modes on formation of C-points. The effect of HWP 

and cylindrical lens (CL) in conversion of C-points is studied. We have also studied the 

formation of dipoles, two isolated C-points in the fiber modal fields as a result of 

combination of Gaussian and vortex modes in linear polarization basis and also as a 

combination of two vortex modes of displaced cores. The 2π-symmetric topologies such 

as radial, circulation, spiral, and saddle are realized in the Stokes field of lemon and star 

and also in the ellipse orientation field of vector vortex modes. 

6.2  Origin and types 

C-points are formed due to the interference of vortex mode of helical wave front (𝐿𝐺0
𝑙 , 𝑙 

being the topological charge) and a Gaussian mode of plane wave front having orthogonal 

polarizations [3].  

Left circularly polarized vortex mode can be represented as 

𝐸1 = (𝑥̂ + 𝑖𝑦̂)𝑟𝑒
−𝑟2

𝑤2⁄
𝑒𝑖𝜑     (1) 

Where 𝑥̂ and 𝑦̂ are the unit vectors, 𝑒𝑖𝜑 is the helical phase, 𝑟 is the radial coordinate and 

𝑤 is the beam diameter. Further, a right circularly polarized Gaussian mode can be 

represented as 

𝐸2 = (𝑥̂ − 𝑖𝑦̂)𝑒
−𝑟2

𝑤2⁄
     (2) 

The combination of these two uniformly polarized fields results in a right circular C-point 

and the modal field is given by  

𝐸 = (𝑥̂ + 𝑖𝑦̂)𝑟𝑒
−𝑟2

𝑤2⁄
𝑒𝑖𝜑𝑒𝑖𝛿 + (𝑥̂ − 𝑖𝑦̂)𝑒

−𝑟2

𝑤2⁄
   (3) 

where 𝛿 is the relative phase difference between interfering modes. Equation (3) 

represents a specific case of C-point formation. Additionally, one can take freedom to 

change the helicity of vortex mode and the polarization basis to realize a variety of 

singular modes. A more general case can be given by 
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𝐸 = 𝑟𝑒
−𝑟2

𝑤2⁄
𝑒±𝑖𝜑𝑒𝑖𝛿𝑒̂𝐿(𝑅) + 𝑒

−𝑟2

𝑤2⁄
𝑒̂𝑅(𝐿)   (4) 

Here, 𝑒̂𝐿 = 𝑥̂ + 𝑖𝑦̂ and 𝑒̂𝑅 = 𝑥̂ − 𝑖𝑦̂ represent left circular and right circular polarizations 

respectively. Variety of C-points that can be generated from the above equation are 

shown in Fig. 6.2. The relative phase difference is considered to be zero (𝛿 = 0) for 

simplicity. 

 

Fig. 6.2. C-points (a) right circular star, (b) right circular lemon, (c) left circular star, (d) left 

circular lemon. 

In the four letter code mentioned in the figure, first and third digits represent the 

helicity of vortex and Gaussian modes and the second and fourth letters indicate the 

polarization basis (L-left circular, R-right circular). In coming sections, we show the 

experimental generation of C-points and characterize them using Stokes polarimetry. 

Introducing anisotropy in the vortex mode in Equ. (4) results in the generation of 

a monstar. The combination of an anisotropic vortex mode and a Gaussian mode of 

orthogonal polarizations that form a monstar pattern is given by 

𝐸 = 𝑟𝑒
−𝑟2

𝑤2⁄
(𝑐𝑜𝑠𝜑 + 𝑒𝑖𝛼𝑠𝑖𝑛𝜑)𝑒𝑖𝛿𝑒̂𝐿(𝑅) + 𝑒

−𝑟2

𝑤2⁄
𝑒̂𝑅(𝐿)   (5) 

In Equ. (5), 𝛼 is the anisotropy parameter. If 𝛼 =
𝜋

2
𝑜𝑟 

3𝜋

2
, the vortex becomes isotropic 

and the resultant topology will be either star or lemon. The complex monstar topology 

can also be realized in three beam combinations in which two vortex modes of opposite 

helicity combine with a Gaussian mode of orthogonal polarization. 

The master equation that corresponds to a generalized C-point in polar coordinates 

(𝑟, 𝜑) is given by [21] 

𝐸 = (𝑐𝑜𝑠𝛽 𝑟𝑒𝑖𝜑 + 𝑠𝑖𝑛𝛽 𝑟𝑒−𝑖𝜑 𝑒𝑖𝛾)𝑒𝑖𝛿𝑒̂𝑅(𝐿) + 𝑒̂𝐿(𝑅)   (6) 
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Where 𝛽 and 𝛾 are the parameters that control amplitude and relative phase of the vortex 

modes. The first term in the brackets corresponds to a vortex mode of right helicity and 

the second term with left helicity with a relative phase difference 𝛾 between these two 

modes. The first term of Equ. (6) represents anisotropic vortex mode and the second term 

represents Gaussian mode of orthogonal polarizations which combine with a relative 

phase difference 𝛿 to form a monstar topology. Consider 𝛽 = 0 for a simple case. Then, 

the above equation becomes 

𝐸 = (𝑟𝑒𝑖𝜑)𝑒𝑖𝛿𝑒̂𝑅(𝐿) + 𝑒̂𝐿(𝑅)     (7) 

Equation (7) is the same as that of Equ. (4), which results in the generation of symmetric 

lemon and star topologies. 

6.3 Experimental details 

The schematic diagram of experimental setup used for the generation of polarization 

singular beams is shown in Fig. 6.3. A focused spot of 5 mW He-Ne laser of 632.8 nm 

wavelength is launched onto the cleaved tip of FMF. By adjusting the coupling conditions 

at the fiber input end, the output modes are recorded using CCD camera and 

simultaneously Stokes polarimetry is carried out to investigate the spatial polarization 

content of the generated mode. A HWP and CL are inserted in the path of singular modes 

to study their effect on C-points. 

 

Fig. 6.3. Schematic diagram of the experimental setup. 

6.4 Results and discussions  

6.4.1 Generation of lemon and star 

Lemon and star are orthogonal polarization singular beams that lie at north and south 

poles on the sphere of Poincare modes [4,5,31]. Generation of these modes in optical 

fiber needs precise control over the launching conditions. Unlike the vector vortex modes, 

these modes do not necessarily have a dark core as the contribution from the fundamental 

Gaussian mode is equally important in the formation of C-points. These modes mostly 
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appear with a near uniform intensity distribution across the mode as the central dark 

region of LG mode is occupied by orthogonally polarized Gaussian mode. From our 

experimental observations, we believe that the probability of generating an isolated C-

point is high for input linear polarization than elliptical polarization. For input elliptical 

polarizations, the modes observed are mostly dipoles except for right and left circular 

polarizations for which orthogonal C-points may be generated. Moreover, the effect of 

varying input linear/elliptical polarization on the topological behaviour of output mode 

also depends on the relative amplitudes of combining orthogonal modes and the position 

of singular region in the modal output. In our experiment we maintain the input SOP to 

be vertical in lab frame throughout the experiment.  The fiber tip is adjusted for offset 

and skew launching of light unless a donut mode with near uniform intensity is observed. 

Then, Stokes polarimetry is performed to characterize the mode. In similar manner, for 

four different coupling conditions, we observed following C-points.   

 

Fig. 6.4. Row 1: Simulation results (a1), (b1) Lemons with right circular C-point, (c1), (d1) Stars 

with left circular C-point, Row 2: (a2)-(d2) are the corresponding streamline plots, Row 3 and 

Row 4 are corresponding experimental results for Row 1 and Row 2. 

Figure 6.4 shows the numerically and experimentally generated lemon and star 

patterns for different coupling conditions. First and second rows are simulated results 

using Equ. (4). From the simulated patterns the relative phase (𝛿) between the interfering 
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modes is estimated. Figures 6.4 (a3) and (b3) are lemon topologies with right circular C-

points generated from a combination of right circular Gaussian mode and left circular, 

left helical LG mode with 0o and 170o relative phase difference between them 

respectively. Similarly, Fig. 6.4 (c3) and Fig. 6.4 (d3) are the star topologies with left 

circular C-points generated from the combinations of left circular Gaussian mode and 

right circular, left helical LG mode with -270o and -45o relative phase difference between 

them respectively. These four polarization singular modes are encountered for different 

input coupling conditions. Interestingly, for all singular patterns, the helicity of vortex 

mode is -1. From the singular pattern and its polarization content, one can predict the 

topological charge or helicity of the combining modes and also the relative phase 

difference between them. Figures 6.4 (a4) - (d4) are the corresponding streamline plots. 

The white solid line among the curved black lines indicates the radial line and the black 

circle at the center is the location of C-point.  

6.4.2 Generation of Monstars 

Monstar is a hybrid polarization singular topology that has the properties of both lemon 

and star [31]. The geometrical orientation of polarization ellipses around the C-point of 

a monstar resembles the topology of a lemon but it has three radial lines originating from 

the C-point that coincide with the characteristics of a star and hence the name ‘Mon-Star’. 

It has been recently reported that monstar is an anisotropic lemon which can be formed 

either by squeezing or rotating a lemon [32]. For example, let us consider the lemon 

pattern of Fig. 6.4 (a2) for which the radial line is along +ve X-axis. On squeezing this 

lemon along Y-axis towards origin, some of the curved lines around C-point come closer 

resulting in the formation of new radial lines and hence a monstar is generated.  

In general, an isolated monstar is rarely realized in experiments [23,33,34], however the 

probability is more in random speckle fields [35,36]. Here, we have made an attempt to 

realize the isolated monstar using an FMF by taking advantage of its inherent modal and 

polarization characteristics. As discussed in the previous section, the combination of 

plane and helical wave fronts of orthogonal circular polarization results in the formation 

of lemon and star patterns. But, the formation of monstar takes place when two LG modes 

of opposite helicity combine with a plane wave front Gaussian mode of orthogonal 

polarization i.e., an anisotropic vortex mode combines with a Gaussian mode as shown 

in Equ. (5). This can also be explained as the combination of orthogonal 𝐻𝐺01 and 𝐻𝐺10 
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modes (which are analogous to 𝐿𝑃11 modes of FMF) with Gaussian mode of orthogonal 

circular polarizations [21].  

 

Fig. 6.5. Monstar singular topologies generated for different coupling conditions; (a1)-(c1) 

ellipse fields, (a2)-(c2) corresponding streamline plots. 

Iconic monstar patterns with three radial lines encountered for different coupling 

conditions are shown in Fig. 6.5. Utmost care has been taken while exciting such complex 

mode combinations. Stokes polarimetry is carried out for the modes whose spatial 

intensity distribution looks like  𝐻𝐺01 or 𝐻𝐺10 mode with non-zero intensity between the 

adjacent lobes, which is nothing but the combination of an anisotropic vortex with 

Gaussian mode. Unlike lemon and star patterns, these patterns can hardly be identified 

with the spatial polarization map, but streamlines give effective visualization of such 

complex polarization topologies. It can be observed from Fig. 6.5 (a1) that the amplitude 

of one of the combining modes with right circular polarization is dominating. Similarly 

in Fig. 6.5 (c1) the amplitude of mode with left circular polarization is dominating while 

in Fig. 6.5 (b1), a right circular Gaussian mode is embedded in left circular anisotropic 

vortex mode. Hence, it can be stated that the relative amplitudes and relative phases of 

the combining modes are purely dependent on the input coupling conditions of FMF. The 

corresponding streamline plots are shown in Fig. 6.5 (a2) – (c2), where the black circles 

enclose the C-point and the red solid lines indicate the radial lines.  

6.4.3 Formation of dipoles 

The presence of two C-point polarization singularities of opposite topological index in 

the modal field is generally referred to as dipole i.e., star-lemon, star-monstar etc. In some 
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cases, two isolated C-points of the same index also can be found in the modal field such 

as star-star and lemon-lemon depending on the topology of phase and polarization of the 

interfering modes [29]. In the previous section, we explained that a combination of LG 

and Gaussian modes of orthogonal circular polarization forms a single isolated C-point 

(star or lemon), but the same modes in linear polarization basis (horizontal and vertical) 

results in the formation of dipoles as shown in Fig. 6.6 and the field distribution of dipoles 

is given by 

𝐸 = 𝑒̂𝐻(𝑉)𝑟𝑒
−𝑟2

𝑤2⁄
𝑒±𝑖𝜑𝑒𝑖𝛿 + 𝑒̂𝑉(𝐻)𝑒

−𝑟2

𝑤2⁄
   (8) 

In the 4 digit notation mentioned on each dipole pattern, the first and third digits represent 

the topology of phase (𝑙 = 0, ±1) and the second and fourth letters represents the 

polarization basis (H-horizontal, V-vertical, R-right circular and L-left circular). Fig. 6.6 

(a1) and (b1) are the star-monstar dipoles and Fig. 6.6 (c1) and (d1) shows the star-lemon 

dipole patterns. 

Dipoles and a pair of isolated C-points can also be formed when two orthogonally 

polarized LG modes with slightly displaced vortex cores interfere.  

𝐸 = 𝑒̂𝑅(𝐻)𝑟𝑒
−𝑟2

𝑤2⁄
𝑒±𝑖𝜑𝑒𝑖𝛿 + 𝑟1𝑒̂𝐿(𝑉)𝑒

−𝑟1
2

𝑤2⁄
𝑒±𝑖𝜑   (9) 

Equation (9) represents the combination of two vortex modes of orthogonal polarization 

with their cores slightly displaced (𝑟1 = 𝑟 + Δ𝑟). Figures 6.6 (a2) and (d2) are the dipoles 

consisting of a star-lemon pair while Fig. 6.6 (b2) and (c2) are two isolated C-points with 

lemon and star topologies respectively. In this case the location of C-points is observed 

to coincide with the displaced vortex cores. In addition to the circular basis of the 

displaced vortex cores, the linear basis also can generate asymmetric dipole (Fig. 6.6 (a3) 

and (d3)) and double dipole (Fig. 6.6 (b3) and (c3)) patterns.  
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Fig. 6.6. Dipole topologies; (a1)-(d1) combination of a vortex mode and Gaussian mode in linear 

basis; combination of two vortex modes with displaced cores in (a2)-(d2) circular basis, (a3)-

(d3) linear basis. 

 

Fig. 6.7. Experimentally generated dipole patterns; (a) two isolated stars, (b) two isolated lemons 

(c) star-lemon dipole (d) monstar-star dipole. 

Some of the experimentally generated dipoles and a pair of isolated C-points are 

shown in Fig. 6.7. During the excitation of dipoles, the output mode is observed to be a 

donut mode with near uniform intensity and in some cases with relatively large core area, 

which signifies two vortices separated by certain distance. By adjusting the coupling 

conditions of the fiber, we excited the combinations of two vortex modes of orthogonal 

circular polarization (Fig. 6.7 (a1) and (b1)) and the combinations of a vortex mode and 

a Gaussian mode of orthogonal linear polarization (Fig. 6.7 (c1) and (d1)). Figures 6.7 
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(a1) and (b1) show a pair of isolated C-points with star and lemon topologies facing each 

other and sharing a common radial line which are expected to be combinations of two 

vortex modes of opposite topological charge and orthogonal circular polarization with π 

relative phase difference. Figures 6.7 (c1) and (d1) show dipole patterns formed due to 

the combination of a vortex mode and a Gaussian mode of orthogonal linear polarizations 

as discussed above. Figures 6.7 (a2) - (d2) are the corresponding streamline plots. 

6.4.4 Action of HWP and Cylindrical lens on C-points 

The switching of C-point indices and transformation to their orthogonal states is of great 

scientific interest as these phenomena can be useful in polarization multiplexing and 

quantum computing [19,37]. Recent reports suggest that a HWP can be useful in 

switching the index of C-point singularity i.e., lemon to star and vice-versa [38] and a 

spiral phase plate (SPP) is capable of transforming a C-point to its orthogonal state [39]. 

Here, we investigate experimentally the effect of HWP and a CL in conversion of a C-

point.  

In the experimental setup, the generated C-points are allowed to pass through a 

HWP and CL that are inserted after the microscope objective lens L2 and Stokes 

polarimetry is carried out for the output mode in respective cases. Figure 6.8 shows the 

experimentally generated anisotropic lemon with right circular C-point and its 

transformations after passing through a CL and HWP. It can be observed from Fig. 6.8 

(b1) and (c1) that the lemon has been transformed to a star type singularity of opposite 

index under the action of both CL and HWP individually. The radial lines are highlighted 

using a white solid line to guide the eye while C-point is enclosed in white circle. One 

interesting fact is that a CL has transformed lemon to star changing the index from +1/2 

to -1/2, while leaving the SOP unaltered i.e., a lemon with right circular C-point 

converted to a star with right circular C-point as shown in Fig. 6.8 (b1). In contrast, a 

HWP converted both index and SOP i.e., a lemon with right circular C-point converted 

to a star with left circular C-point as shown in Fig. 6.8 (c1). Moreover, the radial lines of 

the star patterns converted using CL and HWP are orthogonal to each other. Figures 6.8 

(a2) - (c2) are the corresponding ellipse orientation maps of Fig. 6.8 (a1) - (c1). The arrow 

on the black circle enclosing the C-point indicates the direction of ellipse orientation 

angle increment, which is anti-clockwise for lemon and clockwise for star patterns. 
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Fig. 6.8. Experimental results for generation and conversion of C-point from (a1) lemon to star 

using (b1) CL, (c1) HWP; (a2)-(c2) are corresponding ellipse orientation maps. 

The same phenomenon is observed for a star pattern with right circular C-point 

as shown in Fig. 6.9. It is noteworthy to state that on conversion of C-point using a CL, 

only the index is changing but not SOP which means that the topological charge (𝑙) of 

the vortex mode is changing from -1 to +1 in Fig. 6.8 and from +1 to -1 in Fig. 6.9. On 

the other hand, HWP has no effect on the phase of vortex mode but swaps the handedness 

of polarization. This phenomenon is useful in conditional switching of either phase (using 

CL) or polarization (using HWP) or both simultaneously using CL and HWP to get 

orthogonal C-point.  

 

Fig. 6.9. Experimental results for generation and conversion of C-point from (a1) star to lemon 

using (b1) CL, (c1) HWP; (a2)-(c2) are corresponding ellipse orientation maps. 
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6.4.5 Stokes fields and Poincare vortices 

The stokes parameters for a vector field distribution  𝐸 = 𝐸𝑥𝑥̂ + 𝐸𝑦𝑦̂ can be defined as 

follows 

  𝑆0 = 𝐸𝑥𝐸𝑥
∗ + 𝐸𝑦𝐸𝑦

∗  

𝑆1 = 𝐸𝑥𝐸𝑥
∗ − 𝐸𝑦𝐸𝑦

∗           (10) 

𝑆2 = 𝐸𝑥𝐸𝑦
∗ + 𝐸𝑦𝐸𝑥

∗ 

𝑆3 = 𝑖(𝐸𝑥𝐸𝑦
∗ − 𝐸𝑦𝐸𝑥

∗) 

From these, complex Stokes fields (𝑆𝑖𝑗) and hence Stokes phases (Φ𝑖𝑗) can be derived as 

follows [40] 

𝑆12 = 𝑆1 + 𝑖𝑆2 , 𝑆23 = 𝑆2 + 𝑖𝑆3, and 𝑆31 = 𝑆3 + 𝑖𝑆1  (11) 

Φ12 = arg (𝑆1 + 𝑖𝑆2), Φ23 = arg (𝑆2 + 𝑖𝑆3), and Φ31 = arg (𝑆3 + 𝑖𝑆1)  (12) 

Equation (12) represents Stokes phases, which gives information about Stokes vortices 

or Poincare vortices. The study of Stokes fields and Stokes vortices (singular points of 

Stokes field) is essential in exploring and understanding the topological aspects which 

are useful in many scientific fields as these are the signatures of most fundamental aspects 

of electromagnetic fields. These topologies are universal and very common in nature such 

as in fingerprints [41], liquid crystal arrangements [27,42,43], cosmic radiation [44], 

magnetic skyrmions [45] and biology [46]. The optical fields with π-symmetric 

topologies such as lemon, star and monstar with index ±1/2 and 2π-symmetric topologies 

such as spiral, saddle, radial and circulation with index ±1 are recently reported in vector-

vortex beam fields and their poynting vector flow [47,48]. However, the studies related 

to these complex topologies are mostly theoretical and very few experimental evidence 

has been demonstrated using bulk optical setups that involve complex optical elements 

such as SPP and q-plates.  

In this section, we discuss the complex topologies that are present around Stokes 

vortices which are derived from well patterned π-symmetric lemon and star topologies 

generated using FMF. Figures 6.10 (a1) – (d1) show the streamline plots for ellipse 

orientation angle (𝜓 = Φ12/2) of a lemon topology along with Stokes vortices. Here, 

only 𝜓 is the π-symmetric vector field with half index whereas the vector field around all 

Stokes vortices is 2π-symmetric i.e., Φ12 has single vortex with radial topology while 

Φ23 and Φ31have a pair of vortices (dipoles) with integer index. Corresponding 
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experimental results are shown in Fig. 6.10 (a2) – (d2). Slight deviation from the 

simulated patterns is observed in the experimentally generated topologies of Φ23 and Φ31 

due to field asymmetry which may be caused due to slight variations in relative 

amplitudes and phase of interfering modes.  

The simulated topologies around Stokes vortices for a star pattern are shown in 

Fig. 6.11 (a1) – (d1) and the corresponding experimental results are shown in Fig. 6.11 

(a2) – (d2). Here, the topology of  Φ12 is a saddle, that of Φ23 and Φ31 are dipoles as in 

previous case but with different topology, all are being of integer index. The topology of 

Φ12 changes from radial to spiral and then to circulation for a relative phase difference 

of 0, π/4 and π/2 between the interfering modes for a lemon but remains the same (saddle) 

for a star with a mere rotation in respective cases. This shows the strong dependency of 

topology of 2π-symmetric vector fields on that of their π-symmetric counter parts. 

Moreover, Φ𝑖𝑗 gives the information about the relative phase difference between the 

components of 𝑆𝑘 (𝑖, 𝑗, 𝑘 = 1,2,3 in rotation) i.e., Φ12 gives the relative phase difference 

between components of 𝑆3 (right circular and left circular polarizations), Φ23 between 

the components of 𝑆1 (horizontal and vertical) and Φ31 between the components of 𝑆2 

(diagonal and anti-diagonal) [47].  

 

Fig. 6.10. (a1) – (d1) Simulated streamline plots for Stokes vortices of a lemon, (a2) – (d2) are 

the corresponding experimental results. 
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Fig. 6.11. (a1) – (d1) Simulated streamline plots for Stokes vortices of a star, (a2) – (d2) are the 

corresponding experimental results. 

6.4.6 2π-symmetric vector fields of vector vortex modes 

In the previous section, we discussed π and 2π-symmetric topologies in polarization 

ellipse orientation field and Stokes vortices (Φ12) respectively. In this section, we discuss 

the direct realization of 2π-symmetric vector fields such as radial, spiral, circulation and 

saddle in the polarization ellipse orientation field by exciting the vector vortex modes of 

FMF. To the best of our knowledge, the topological aspects of vector modes of FMF have 

not been reported previously even though there are numerous reports on the controlled 

generation and manipulation of such inhomogeneously polarized fields. Figure 6.12 

shows the simulated (row 1) and experimental (row 2) streamline plots for vector modes 

of FMF which are discussed in previous chapter and are excited by adjusting the coupling 

conditions. These vector modes, being 2π-symmetric in ellipse field, exhibit 4π-

symmetry in Φ12 with topological index two. The vector modes with radial, azimuthal 

and spiral polarizations correspond to radial, circulation and spiral topologies in ellipse 

orientation field and all other hybrid modes correspond to saddle topology. 
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Fig. 6.12. Row 1: Simulated streamline plots for (a1) radial, (b1) azimuthal, (c1), (d1) spiral and 

(e1), (f1) hybrid vector modes of FMF; Row 2: (a2) – (f2) are the corresponding experimental 

results. 

The optical fiber acts as a powerful tool to realize all complex polarization 

topologies by virtue of its inherent modal and polarization characteristics which 

otherwise is not possible without complex optical devices such as SPPs, SLMs and q-

plates. Moreover, its cost effectiveness is one of the reasons for its usage to realize such 

complex optical phenomena. The only drawback in using fiber for this kind of studies is 

that it is possible to realize optical vortices of only first order with well-defined 

polarization behaviour and also it is a tedious job to control the excitation of desired 

modes if the number of supported modes increases in the fiber.  

6.5 Conclusions 

In this chapter, we have discussed polarization singularities, their origin and types with 

an experimental demonstration on their generation and characterization using Stokes 

polarimetry. We studied the generation of π-symmetric isolated C-points such as lemon 

and star and discussed the action of HWP and a cylindrical lens on them. We have 

successfully demonstrated the experimental generation of isolated monstar topologies by 

selective excitation of mode combinations with precise control over coupling conditions. 

The effect of relative phase differences between the interfering modes in generation of 

polarization singular topologies is studied. 2π-symmetric topologies are realized in 

Stokes vortices and also in the polarization ellipse orientation field of vector vortex mode 

fields. 
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CHAPTER 7 

Conclusions 

7.1 Conclusions 

With the objective of controlled generation and characterization of vector modes in 

optical fiber, we started the work from an understanding of the fundamental aspects of 

wave propagation in an inhomogeneous dielectric optical waveguide with step-index 

profile. The electromagnetic vector wave equation that corresponds to light propagation 

in optical fiber is derived and general solutions are discussed in appendix. It is understood 

that the structural conditions of the optical fiber are responsible for the formation of 

vector modes of complex spatial polarization. Further, the vector wave equation is 

reduced to scalar wave equation by introducing the weakly guiding approximation. The 

linearly polarized modes are shown to be solutions under this approximation and the 

relation between vector modes and scalar modes is established.  

The vector modes with radial, azimuthal and hybrid spatial polarization are 

generated using a few-mode optical fiber by precise control over the coupling conditions 

and are characterized using a rotating analyzer. A first order phase vortex is generated 

and is characterized by forming interferograms with a reference Gaussian mode. The 

presence of fork like structure in the interferogram is the significance of phase singularity 

(helicity of wave front) of the vortex mode. It has been observed that the input state of 

polarization is capable of switching the helicity or charge of the singularity of the 

generated vortex mode. The mechanism of switching phase vortices is expected to find 

potential application in particle tweezers. Further, the studies on higher order LP modes 

for the presence of phase singularities are presented in chapter 2. Apart from LP modes, 

few arbitrary modal fields are generated and the presence of phase singularities is 

identified. The generation of phase singularities of second order in fiber is found to be 

difficult as they are highly unstable and decompose into single charged vortices for small 

ambient perturbations. It is also observed that the number of singularities present in the 

modal field is directly proportional to the V-number of the fiber. This investigation helps 

to understand the fiber modal fields in terms of phase singularities present in them. As 
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the phase of the modal fields is highly sensitive to external perturbations on the fiber, the 

results may find applications in interferometric sensors. 

A new approach for the generation of clockwise (CW) & counter-clockwise 

(CCW) spiral vector beams (SVBs) via combination of orthogonal  𝐿𝑃11 modes with 

diagonal and anti-diagonal polarization vector has been demonstrated in chapter 3. The 

SVBs with polarization vector oriented in CW and CCW direction are experimentally 

generated using a few-mode optical fiber by controlling the coupling conditions and input 

state of polarization (SOP). It is observed that the orthogonal  𝐿𝑃11 modes with diagonal 

and anti-diagonal polarization are excited for orthogonal linear input SOP, while the 

SVBs that are linear combinations of orthogonal  𝐿𝑃11 modes are excited for an 

intermediate SOP. This shows the strong dependency of polarization of generated mode 

on the input SOP. Stokes analysis of the experimentally generated modes was found to 

be in excellent agreement with theoretically predicted results.  

In chapter 4, we have presented an experimental demonstration on generating 

vector vortex modes (VVMs) in a few mode optical fiber by extending the basis of 

orthogonal  𝐿𝑃11 modes with diagonal and anti-diagonal polarization vector. The VVMs 

are generated by controlling the coupling conditions of the fiber and input SOP. The 

clockwise and anti-clockwise orientations of half wave plate (HWP) from its mean 

position, before and after changing the coupling conditions, generated all VVMs of 

orthogonal polarization. Further, a Poincare sphere approach is presented for  𝐿𝑃11 modes 

as well as VVMs generated from their linear combination. The location of regular and 

hybrid VVMs on the higher order Poincare sphere (HOPS) is justified by the positions of 

orthogonal  𝐿𝑃11 modes on standard PS, which combine to generate respective VVMs. 

This approach is efficient and much useful in the representation of vector modes of a few-

mode fiber.  

From the results obtained in chapter 3 and chapter 4, it can be stated that any slight 

deviation in the ellipticity of the experimentally generated SVBs and VVMs may be 

attributed to the fiber birefringence and quality of optics used in the experiment. The 

SVBs with clockwise and anti-clockwise spiral spatial polarization which have sharper 

focusing properties next to radial and azimuthal vector modes are suitable for fields such 

as particle trapping, optical micro manipulation and lithography. And the VVMs with 

hybrid spatial polarization may also have considerable contribution towards imaging, 
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microscopy and polarization based data encryption by providing additional degree of 

freedom. 

The vector modes discussed in the previous chapters are V-type polarization 

singularities, wherein the polarization vector is linearly polarized across the beam and the 

SOP is undefined at the center. In chapter 5, we have dealt with C-point polarization 

singularities that are more fundamental in nature. The origin and types of C-point 

singularities are discussed and π – Symmetric C-point topologies such as lemon, star and 

monstar are generated experimentally and analysed using Stokes polarimetry. The effect 

of HWP and cylindrical lens (CL) on the isolated C-points such as lemon and star is 

studied. It is observed that on conversion of C-point using a CL, only the index is 

changing but not SOP which means that the topological charge (𝑙) of the vortex mode is 

changing from -1 to +1. On the other hand, HWP has no effect on the phase of vortex 

mode but swaps the handedness of polarization. This phenomenon is useful in conditional 

switching of either phase (using CL) or polarization (using HWP) or both simultaneously 

using a combination of CL and HWP to get orthogonal C-point. Further, 2π-symmetric 

topologies are realized in Stokes vortices and also in the polarization ellipse orientation 

field of vector vortex mode fields. 

From all the above studies, we conclude that the optical fiber acts as a powerful 

tool to realize various VVMs and complex polarization topologies by virtue of its inherent 

mode mixing and polarization characteristics that arise from its structural model. Optical 

fiber makes it feasible to realize phase and polarization structured beams which is 

otherwise not possible without complex optical devices such as SPPs, SLMs and q-plates. 

Moreover, due to the cost effectiveness and flexibility in operation, optical fibers are 

being widely used in many applications. The main drawback in using fiber for this kind 

of studies is that the fibers are capable of generating vortices of first order only with well-

defined polarization behaviour, while higher order vortices are unstable. Subsequently, it 

is a tedious job to control the excitation of desired modes if the number of supported 

modes increases in the fiber. 

7.2   Scope of future work 

In this thesis, attention was given to the generation and characterization of various VVMs 

and also the study of complex polarization singularities. We have successfully generated 

VVMs other than well-known zeroth order vector modes in few-mode optical fiber by 
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precise control over coupling conditions and taking advantage of inherent mode mixing 

phenomenon. As stated above, the fibers can only support vortices of first order with 

considerable stability and purity, while further studies related to more complex 

polarization phenomena are highly difficult. Though one may use custom designed 

optical fibers that support higher order vortices, it increases the cost of fabrication and 

yet suffer from certain limitations imposed by fiber geometry. Hence, we believe that 

fibers are useful in such studies only at the fundamental level and suffer from lack of 

mode stability at higher levels. For this reason, SLMs, SPPs, and q-plates are reliable 

sources for generating desired modes with good mode stability, which is essential in 

highly sensitive studies such as geometric phase and entanglement.  

Based on current studies presented in this thesis, future work has scope in two 

possible ways. The first one is the study of fundamental phenomena such as geometrical 

phase of light beams, 3D polarization patterns, and spin-orbit interactions (SOI) and the 

second is application oriented i.e., optical tweezers, OAM multiplexing in fibers.  

 It is always interesting to revisit the fundamental properties of physics, especially in 

optics and unleash the hidden aspects which may or may not have significant 

application but can surely change our view of science that we know today and also 

pave the path for better understanding of many scientific phenomena. Of late, SOI in 

light is gaining significant interest among researchers due to its fundamental nature 

and helps us in understanding light propagation in weakly anisotropic media [1-9]. 

Further studies may be extended in the direction to understand and explore SOI in 

light beams.  

 Recent reports suggest that the propagation of polarization singular patterns form 

knots in 3D space, which are highly complicated topological structures. The study of 

these patterns helps us better understand the propagation characteristics of 

polarization singular beams. And also the observation of Mobius strips in polarization 

of light is significantly interesting and changes our regular views on the polarization 

of light [10-14].  

 The light beams with OAM are significantly useful in free-space communication and 

also in advanced fiber optic communication. Recent investigations on OAM beams 

for their multiplexing capabilities in optical fibers show a new way to tackle ever 

expanding demand for high bandwidth. As these beams offer endless degrees of 
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freedom, the OAM mode multiplexing is of great research interest and yielding 

fruitful results [15,16]. 

In view of the numerous opportunities available for using structured beams, we are 

mainly focused in exploring and understanding the fundamental properties of light for 

which this thesis helps as a first step towards an endless journey of research. 
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Appendix 

Stokes Polarimetry 

A.1 Polarization ellipse and Stokes polarization parameters [1-3] 

A pair of plane waves that are orthogonal to each other at z=0 plane are represented by 

𝐸𝑥(𝑡) = 𝐸0𝑥(𝑡) cos[𝜔𝑡 + 𝛿𝑥(𝑡)] = 𝐸𝑥exp⁡(𝑖𝜔𝑡)   (A.1) 

𝐸𝑦(𝑡) = 𝐸0𝑦(𝑡) cos[𝜔𝑡 + 𝛿𝑦(𝑡)] = 𝐸𝑦exp⁡(𝑖𝜔𝑡)   (A.2) 

Where 𝐸0𝑥(𝑡) and 𝐸0𝑦(𝑡) are the instantaneous real amplitudes, 𝜔 is the instantaneous 

angular frequency, 𝛿𝑥(𝑡) and 𝛿𝑦(𝑡) are the instantaneous phase factors and 𝐸𝑥 =

𝐸0𝑥exp⁡(𝑖𝛿𝑥) and 𝐸𝑦 = 𝐸0𝑦exp⁡(𝑖𝛿𝑦) are the complex amplitudes. The explicit removal 

of the term 𝜔𝑡 from eq. A.1 and A.2 yields the equation for polarization ellipse, which is 

valid at a given instant of time. 

𝐸𝑥
2(𝑡)

𝐸0𝑥
2 (𝑡)

+
𝐸𝑦
2(𝑡)

𝐸0𝑦
2 (𝑡)

−
2𝐸𝑥(𝑡)𝐸𝑦(𝑡)

𝐸0𝑥(𝑡)𝐸0𝑦(𝑡)
𝑐𝑜𝑠𝛿(𝑡) = 𝑠𝑖𝑛2𝛿(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A. 3) 

    

where 𝛿(𝑡) = 𝛿𝑥(𝑡) − 𝛿𝑦(𝑡)⁡is the relative phase difference. For monochromatic 

radiation the amplitudes⁡(𝐸0𝑥 and⁡𝐸0𝑦) and the phase (𝛿) are constants. Considering the 

time average of above equation, we get 

〈𝐸𝑥
2(𝑡)〉

𝐸0𝑥
2 +

〈𝐸𝑦
2(𝑡)〉

𝐸0𝑦
2 −

2〈𝐸𝑥(𝑡)𝐸𝑦(𝑡)〉

𝐸0𝑥𝐸0𝑦
𝑐𝑜𝑠𝛿 = 𝑠𝑖𝑛2𝛿⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A. 4) 

Where 〈𝐸𝑖(𝑡)𝐸𝑗(𝑡)〉 = lim
𝑇→∞

1

𝑇
∫ 𝐸𝑖(𝑡)𝐸𝑗(𝑡)
𝑇

0
𝑑𝑡; ⁡⁡⁡⁡⁡⁡⁡⁡𝑖, 𝑗 = 𝑥, 𝑦 

Multiplying eq. (A.4) by 4𝐸0𝑥
2 𝐸0𝑦

2 , we get 

4𝐸0𝑦
2 〈𝐸𝑥

2(𝑡)〉 + 4𝐸0𝑥
2 〈𝐸𝑦

2(𝑡)〉 − 8𝐸0𝑥𝐸0𝑦〈𝐸𝑥(𝑡)𝐸𝑦(𝑡)〉𝑐𝑜𝑠𝛿 = (2𝐸0𝑥𝐸0𝑦𝑠𝑖𝑛𝛿)
2
⁡⁡⁡⁡⁡⁡(A. 5) 

On substituting the time average values derived from eq. (A.1) and eq. (A.2), we arrive 

at 

2𝐸0𝑥
2 𝐸0𝑦

2 + 2𝐸0𝑥
2 𝐸0𝑦

2 − (2𝐸0𝑥𝐸0𝑦𝑐𝑜𝑠𝛿)
2
= (2𝐸0𝑥𝐸0𝑦𝑠𝑖𝑛𝛿)

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A. 6) 
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Adding and subtracting 𝐸0𝑥
4 + 𝐸0𝑦

4  on left hand side of above equation results in perfect 

squares. 

(𝐸0𝑥
2 + 𝐸0𝑦

2 )
2
− (𝐸0𝑥

2 − 𝐸0𝑦
2 )

2
− (2𝐸0𝑥𝐸0𝑦𝑐𝑜𝑠𝛿)

2
= (2𝐸0𝑥𝐸0𝑦𝑠𝑖𝑛𝛿)

2
⁡⁡⁡⁡⁡⁡⁡(A. 7) 

Now, we introduce these quantities in terms of Stokes parameters as 

𝑆0 = 𝐸0𝑥
2 + 𝐸0𝑦

2 = 𝐸𝑥
∗𝐸𝑥 + 𝐸𝑦

∗𝐸𝑦 

𝑆1 = 𝐸0𝑥
2 − 𝐸0𝑦

2 = 𝐸𝑥
∗𝐸𝑥 − 𝐸𝑦

∗𝐸𝑦 

𝑆2 = 2𝐸0𝑥𝐸0𝑦𝑐𝑜𝑠𝛿 = 𝐸𝑥𝐸𝑦
∗ + 𝐸𝑦𝐸𝑥

∗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A. 8) 

𝑆3 = 2𝐸0𝑥𝐸0𝑦𝑠𝑖𝑛𝛿 = 𝑖(𝐸𝑥𝐸𝑦
∗ − 𝐸𝑦𝐸𝑥

∗) 

𝑎𝑛𝑑⁡⁡𝑆0
2 = 𝑆1

2 + 𝑆2
2 + 𝑆3

2 

Now, the polarization ellipse parameters such as ellipse orientation angle (𝜓) and 

ellipticity (χ) can be expressed in terms Stokes parameters as follows 

𝜓 =
1

2
𝑡𝑎𝑛−1 (

2𝐸0𝑥𝐸0𝑦𝑐𝑜𝑠𝛿

𝐸0𝑥
2 − 𝐸0𝑦

2 ) =
1

2
𝑡𝑎𝑛−1 (

𝑆2
𝑆1
) 

χ =
1

2
𝑠𝑖𝑛−1 (

2𝐸0𝑥𝐸0𝑦𝑠𝑖𝑛𝛿

𝐸0𝑥
2 + 𝐸0𝑦

2 ) =
1

2
𝑠𝑖𝑛−1 (

𝑆3
𝑆0
) 

Fig. A.1. Polarization ellipse oriented at an angle 𝜓 with respect to positive x-axis with an 

ellipticity𝜒 = 𝑏/𝑎; a, b are the semi major and semi minor axes. 

A.2 Stokes parameters in terms of intensity of images (Experimental 

determination) 

The electric field that passed through a retarding element with retardation ϕ and a 

polarizer making an angle 𝜃 is given by 

(A.9) 
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𝐸 = 𝐸𝑥𝑒
𝑖𝜙𝑐𝑜𝑠𝜃 + 𝐸𝑦𝑒

−𝑖𝜙𝑠𝑖𝑛𝜃⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A. 10)  

The intensity of the light is then defined as 

𝐼 = 𝐸. 𝐸∗     (A. 11) 

Substituting eq. (A.10) in eq. (A.11) and rearranging the terms we get 

𝐼 = 𝐸𝑥𝐸𝑥
∗𝑐𝑜𝑠2𝜃 + 𝐸𝑦𝐸𝑦

∗𝑠𝑖𝑛2𝜃 + 𝐸𝑥
∗𝐸𝑦𝑒

−𝑖𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝐸𝑥𝐸𝑦
∗𝑒𝑖𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃⁡⁡⁡⁡⁡⁡(A. 12) 

From the definition of Stokes parameters from eq. (A.8) and using the trigonometric 

relations, the above equation can be reduced to 

𝐼(𝜃, 𝜙) =
1

2
[𝑆0 + 𝑆1𝑐𝑜𝑠2𝜃 + 𝑆2𝑐𝑜𝑠𝜙𝑠𝑖𝑛2𝜃 + 𝑆3𝑠𝑖𝑛𝜙𝑠𝑖𝑛2𝜃]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A. 13) 

Equation (A.13) is the Stokes’ intensity formula for measuring four Stokes parameters. 

The first three Stokes parameters (𝑆0, 𝑆1, 𝑆2) are measure using a single polarizer by 

rotating it to discrete angles 0o, 45o, 90o and 135o, which correspond to horizontal, 

diagonal, vertical and anti-diagonal polarizations respectively. The fourth Stokes 

parameter (𝑆3) is determined by placing a quarter wave plate at angle 90o before the 

polarizer and then the polarizer is rotated to 45o, and 135o for the measurement of right 

and left circular polarization content of the beam respectively. From eq. (A.13), the 

Stokes parameters in terms of measured intensities of the light beam for these discrete 

angles can be written as  

𝑆0 = 𝐼(0𝑜 , 0𝑜) + 𝐼(90𝑜 , 0𝑜) 

𝑆1 = 𝐼(0𝑜 , 0𝑜) − 𝐼(90𝑜 , 0𝑜) 

𝑆2 = 𝐼(45𝑜 , 0𝑜) − 𝐼(135𝑜 , 0𝑜) 

𝑆0 = 𝐼(45𝑜 , 90𝑜) − 𝐼(135𝑜 , 90𝑜) 

Thus, by measuring the intensities of images, Stokes parameters can be estimated. 
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