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ABSTRACT 

The understanding of hydrodynamics and thermal transport in enclosures filled with 

fluid saturated porous media is of great importance due to its extensive applications. Some of 

the applications such as heat exchangers, nuclear fuel rod bundle, food processing, solar 

thermal systems etc. involve intricate geometries which are isotropic and anisotropic in 

nature. For the efficient design of these systems a thorough understanding of thermal transport 

is required. Visualization of thermal transport in terms of heatlines was observed to provide a 

better insight.  

In the present study, initially a numerical code has been developed for the 

visualization of isotherms and heatlines in two-dimensional domains viz. square, trapezoidal, 

skewed, S-curve and H-curve. The developed code is used to read the mesh of various shapes 

from commercial meshing software (GAMBIT). Here, the data pertaining to mesh has been 

given as input to the numerical code developed for the visualization of thermal transport in 

these domains. The integral form of the governing equations are discretized using collocated 

grid based Finite Volume Method (FVM). The resulting governing equations are solved using 

the Gauss-Seidel iterative method. The present numerical scheme is rigorously validated for 

temperature distribution with commercial CFD code ANSYS – Fluent. Later, it is extended to 

the Bejan’s heatline visualization for the considered geometries provided with and without 

discrete heat sources. The developed generalized code is validated with earlier numerical 

works pertaining to heatline visualization. Numerical results are presented in terms of 

temperature distribution and heatlines for analyzing the thermal transport in 2D solid 

geometries. 

Further, the study is extended to investigate the hydrodynamics for a lid-driven flow 

saturated with non-Darcy anisotropic porous media. The applications include float glass 

production, food processing, soil liquefaction etc. The Reynolds numbers (Re) considered for 

the study are 10, 100 and 1000. The effect of Darcy number (10-5 ≤ Da ≤ 10-2) and porosity           

(ε = 0.3 and 0.6) have been varied to analyze the permeability ratio (K* = 0.1, 1 and 10), 

Forchheimer constants ratio (F*=1, 10 and 100) and principal axes inclination (θ = 0o, 45o and 

90o) on flow behavior. A SIMPLE algorithm based finite volume method has been employed 

to solve the governing equations. The quadrilateral cells in a collocated grid arrangement have 
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been considered. Initially, the consistency check for the numerical scheme has been carried 

out by setting porosity equal to unity and Darcy number to a very high value. This is the 

limiting case for porous media, where the porous media tends to behave as a single-phase 

fluid. Further, the validation of pertinent problem is carried with available literature. The flow 

physics has been interpreted by plotting the results in terms of streamlines and maximum 

stream function values. The study could reveal that with the increase in Reynolds number the 

influence of non-linear drag forces become significant. Also, it is observed that the 

anisotropic parameters of the non-Darcy porous media profoundly modulate the flow. 

Finally, thermal hydraulics for anisotropic porous media is analyzed to study the 

influence of anisotropic parameters by varying Rayleigh number (Ra = 103 - 106), Darcy 

number (Da = 10-6 - 10-2), porosity (ε = 0.3, 0.6) and Prandtl number (Pr = 0.1,1 and 10). The 

anisotropic parameters investigated are permeability ratio: K* (0.1, 1 and 10), principal axes 

inclination: θ (0o – 90o), Forchheimer constant ratio: F* (1, 10 and 100) and thermal 

conductivity ratio: k* (0.1, 1 and 10). The results are presented in terms of streamlines, 

isotherms, heatlines and average Nusselt number. The heatlines are plotted to visualize the 

path of thermal transport. The anisotropic behavior of the porous matrix is observed to 

significantly influence the thermal hydraulics. Heatlines along with isotherms are observed to 

help in great detail for the understanding of thermal hydraulics in these geometries.  

KEYWORDS: Non- orthogonal; Collocated grid; Isotherms; Heatlines, Visualization; Finite 

Volume Method; Various geometries; Thermal transport; Discrete heat source; Anisotropy; 

natural convection; Porous Media; Generalized Non-Darcy Formulation. 
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 CHAPTER 1  

INTRODUCTION 

 

1.1 BACKGROUND 

The understanding of hydrodynamics and thermal transport in various equipments viz. 

heat exchangers, nuclear fuel rod bundle, food processing, solar thermal systems etc. is very 

much necessary for their efficient design. These equipment involve intricate geometries which 

need approaches like porous media and heatline visualization for the insight of flow physics. 

Some of the applications for porous media is provided in Fig. 1.1. These applications involve 

intricate geometries which are isotropic and anisotropic in nature for which the heat transport 

analysis is very complex. For the efficient design of these equipment a thorough analysis of heat 

transport characteristics is needed.  

Complex structure of the medium involved in the above mentioned applications makes it 

difficult to perform experimental investigations. Analytical solutions are available only for the 

simplified situations and obtaining the accurate analytical solution for the actual problem is a 

herculean task. The availability of higher computational facilities in the recent days makes it 

viable to adapt numerical techniques to obtain the solutions for complex phenomenon. 

The formulation for porous media can be carried out either by microscopic or 

macroscopic approach. In microscopic approach the properties are taken at pore level and in the 

case of macroscopic approach a control volume as shown in Fig. 1.2 is considered. In the present 

thesis macroscopic approach has been considered for porous media formulation. Throughout the 

study it is considered that the solid matrix of the porous matrix does not undergo deformation and 

is saturated with fluid. Table 1.1 shows some of the examples for porous media. 
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Fig. 1.1. Applications of porous media 

Heat exchangers  
(https://www.hvac.com/blog/heat-exchangers-

need-know/) 

 

Branched heat sink 
(https://www.gdrectifiers.co.uk/product

s/aluminium_heatsinks) 
 

 

Porous filters 
(http://nytribunal24.com/2019/10/22/metal-

porous-filters-market-growth-rate-2019-entegris-

usa-mott-usa-gkn-uk-purolator-usa/) 

 

 

 

Mother board  
(https://www.computerhope.com/jargon/m

/mothboar.htm) 

 

 

Food grains 
(http://www.indspices.com/food_grains

.php) 

 

 

Fuel rod bundle 
(http://mccabism.blogspot.com/2014/08/cfd-

lessons-from-nuclear-reactors.html) 
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Fig. 1.2. Control volume for porous media 

Porosity (ε) 

The porosity of a porous medium is defined as the ratio of void volume to total volume, in 

other words it is the fraction of total volume that is occupied by voids. 

void volume
ε =

total volume
                                       (1.1) 

Permeability (K)  

Permeability can be defined as hydraulic conductivity of the porous media. It gives a 

measure of the ease with which the fluid flows through the porous matrix.  

Depending on the nature of the porous media and flow conditions, formulations such as 

Darcy model, Forchheimer extended Darcy model, Brinkmen extended Darcy model and 

modified Navier-stokes model were employed. Though non – Darcian effects are not significant 

for tightly packed porous media it becomes very much necessary to consider for the porous media 

with high porosity (loosely packed). It becomes necessary to study a generalized model which 

can predict the thermal hydraulics for wide range of porous media.  
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Table 1.1 Some of the porous materials 

Material 
Porosity,

ε 

Permeability, K 

(cm2) 
Picture Reference 

Soil 
0.37 – 

0.50  

2×10-7 – 

1.8×10-6 

 

https://www.toppr.com/g

uides/science/soil/types-

of-soil-and-suitable-

crops/  

Tube 

bundle 

 

 

0.214 – 

0.9 

 

 

1.64×10-6 – 

2.06×10-2 

 

https://www.researchgat

e.net/figure/Schematic-

of-a-staggered-tube-

bundle-with-a-porous-

material-

insert_fig2_239401750 

Metal foam 
0.88 – 

0.93 
10-5 – 10-3 

 

https://porter36.en.made-

in-

china.com/product/hsuE

FNoAEcWp/China-

High-Porosity-Battery-

Nickel-Foam-Sheet.html 

Heat sink 
≈ 0.6 – 

0.8 
---- 

 

https://www.telerex-

europe.com/en-gb/heat-

sinks 
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1.1.1 Darcy Law 

The Darcy’s model (1856) was the only available model for about fifty years. The 

Darcy’s experimental set up is shown in Fig. 1.3. Darcy model sufficiently describes the 

momentum and thermal energy transport in fluid saturated porous media with lower porosities 

which include the flow in rocks, soil, sand and other media. The well known form of equation 

can be given as 

𝑣 = −
𝐾

𝜇𝑓
. 𝛻𝑃                                                                                          (1.2) 

In Eqn. (1.2) 𝑣 = ε𝑣𝑓 (volume average velocity component), K: permeability, 𝜇𝑓: viscosity of the 

fluid and 𝛻𝑃: pressure gradient for isotropic porous media.  

 

Fig. 1.3. Darcy’s apparatus 

(Reproduced from http://echo2.epfl.ch/VICAIRE/mod_3/chapt_5/main.htm) 

As the number of porous media applications increase, Darcy relation may not give 

adequate results for all types of porous media flows. In particular this is true when the velocity of 
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the fluid increases in the porous medium with higher porosities. For example, Darcy formulation 

becomes invalid for porous materials like rod bundle and metal form as shown in Table 1.1 due 

to its higher porosities and permeabilities.   

1.1.2 Forchheimer Model 

Forchheimer (1901) proposed the role of nonlinear terms taking into account the drag on 

the fluid due to solid matrix, which could be neglected for lower fluid velocities. Ward (1964) 

proposed the dependence of Forchheimer term on the square root of the permeability, which is 

still being widely used. It is assumed that the limit of validity for Darcy’s law should be 

considered on the basis of a Reynolds number (Re) given in terms of particle size of the porous 

medium, and in particular, as this number is greater than one, Darcy’s law is no longer adequate.  

𝛻𝑃 = −
𝜇𝑓

𝐾
𝑣 −

𝐹

√𝐾
𝜌𝑓𝑣|𝑣|                                                                             (1.3) 

In Eqn. (1.3) K: permeability, 𝑣: volume average velocity component, 𝜇𝑓: viscosity of the fluid, 

𝛻𝑃: pressure gradient for porous media and F: Forchheimer constant. Ward (1964) assumed F to 

be an universal constant, with an approximate value of 0.55 because of its validity for wide range 

of porous media, but later F was found to be varying with the nature of porous media. 

1.1.3 Brinkman Model 

Brinkman (1947) furnished a modification for Darcy’s equation which is generally given 

as Brinkman’s equation. In this equation a viscous term in the momentum conservation equation 

has been introduced besides the Darcy term, similar to the diffusion term in the classical Navier 

Stokes equations. 

𝛻𝑃 = −
𝜇𝑓

𝐾
𝑣 + 𝜇𝛻2𝑣                                                                                         (1.4) 

In Eqn. (1.4) 𝜇 is an effective viscosity, 𝑣: volume average velocity component, K: permeability, 

𝜇𝑓: viscosity of the fluid, 𝛻𝑃: pressure gradient for isotropic porous media. 
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Some of the researchers have made use of both Forchheimer’s and Brinkman’s terms 

along with Darcy formulation to account no slip wall effect at the walls and inertial forces for 

flow with pore diameter based Reynolds number more than one. 

𝛻𝑃 = −
𝜇𝑓

𝐾
𝑣 + 𝜇𝛻2𝑣 −

𝐹

√𝐾
𝜌𝑓𝑣|𝑣|                                                                   (1.5) 

In Eqn. (1.5) 𝜇: effective viscosity, 𝑣: volume average velocity component, K: permeability, F: 

Forchheimer constant, 𝜌𝑓: fluid density, 𝜇𝑓: viscosity of the fluid and 𝛻𝑃: pressure gradient for 

isotropic porous media. 

1.1.4 Modified Navier Stokes Equation Model 

Wooding (1957) seems to have been the first to introduce convective term in the 

macroscopic momentum equation for fluid flow through porous media. One particularly 

interesting approach is the usage of equations in the form of modified Navier Stokes equations. 

Some of the researchers used linear drag term while some others used both linear and non-linear 

drag terms for the solid resistance. The modified Navier Stokes equation which incorporates both 

linear and nonlinear drag is named ‘generalized non-Darcy model’. The validity of generalized 

non-Darcy formulation for a variety of physical problems made this formulation to be most 

reliable when compared to other modified formulations.  

𝜌𝑓

𝜀
[
𝜕𝑣

𝜕𝑡
+ (

𝑣

𝜀
) . 𝛻𝑣] = −𝛻𝑃 +

𝜇𝑓

𝜀
𝛻2𝑣 −

𝜇𝑓

𝐾
𝑣 −

𝐹

√𝐾
𝜌𝑓𝑣|𝑣|                                          (1.6) 

In Eqn. (1.6) 𝑣: volume average velocity component, K: permeability, 𝜇𝑓: viscosity of the fluid, 

𝛻𝑃: pressure gradient, F: Forchheimer constant for isotropic porous media. 

1.1.5 Heatline Visualization 

Kimura and Bejan (1983) introduced the concept of heatlines. The concept was observed 

to play a very important role in the visualization and analysis of convective heat transport. 

Heatlines and heat function are analogous to the streamline and stream function. This 

visualization and analyzing tool has become the very useful and necessary due to its application 

in various field, viz. geothermal reservoirs, solidification of casting, solar energy collectors, 

sterilization, food separation processes, molten metal applications, molten salt applications etc. 
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When encountering problem of the fluid flow streamlines are well established as the most 

adequate and very useful tool to visualize and analyze the flow behavior. Analogous to 

streamlines there are heat flux lines for pure conduction problem which are normal to the 

isotherms. When dealing with the convection heat transfer the isotherm and heat flux line are not 

necessarily normal to each other. In convection problem it is important to study the flow of 

energy and flow of fluid. For any such a field, Kimura and Bejan (1983) defined the heat function 

as given in Eqn. (1.7) such that the net flow of energy is zero across each heatline. For solid 

domains where 𝑢 = 𝑣 = 0 the heatlines become identical to the heat flux lines which is used to 

visualize conduction heat phenomena. 

𝜕

𝜕𝑥
[ 𝜌𝑓𝑢𝑐𝑝(𝑇 − 𝑇0) − (𝑘

𝜕𝑇

𝜕𝑥
)] +

𝜕

𝜕𝑦
[ 𝜌𝑓𝑣𝑐𝑝(𝑇 − 𝑇0) − (𝑘

𝜕𝑇

𝜕𝑦
)]=0                                           (1. 7) 

In Eqn. (1.7) 𝑢, 𝑣: volume average velocity component in x and y directions, 𝜌𝑓: fluid density 

(kg.m-3), 𝑐𝑝: specific heat (J.kg-1.K-1), k: thermal conductivity (W.m-1.K-1), T0: reference 

temperature (K), T: temperature (K). 

In this thesis initially an in-house code has been developed to read the mesh data of 

different geometries from commercial meshing software. Later, the data pertaining to mesh has 

been given as input to the developed code for the visualization of heat transport. Further, it is 

extended to the Bejan’s heatline visualization for the considered geometries. After extensive 

validation, the study is extended to a problem of discrete heat sources and analyzed in terms of 

isotherms and heatline profiles for various solid geometries. The study is also extended to a 

problem of hydrodynamics for non-Darcy shear driven flows with anisotropic porous media. 

Later, thermal hydraulics of steady-state buoyancy induced flows for a square cavity impregnated 

with anisotropic porous media is investigated. As the concept of heatline visualization can help in 

great detail for the understanding of thermal transport in various structures, the energy transport 

in a cavity filled with anisotropic non-Darcy porous media is analyzed with the concept of 

heatline visualization. 

1.2. ORGANIZATION OF THE THESIS 

The present thesis is organized into 8 chapters including the introduction. The review of 

literature pertaining to all the research problems considered in the present work is presented in 
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chapter 2. It also includes the objectives and scope of the work. Chapter 3 provides mathematical 

formulation and method of solution. Validation for each problem considered is provided for 

chapters 4 to 7. Chapter 4 is based on the problem of heat transport for various solid geometries 

through heatline visualization. Chapter 5 illustrates hot spots through isotherms and heatline 

profiles for various solid geometries with discrete heat source(s). Chapter 6 is based on 

hydrodynamics for non-Darcy shear driven flows with anisotropic porous media. Chapter 7 

provides thermal hydraulics using heatline visualization approach for non-Darcy anisotropic 

porous media. The conclusions from the present study and suggestions for future work are 

outlined in chapter 8. 

1.3. CLOSURE 

In this chapter, a brief background and motivation for the research work considered in the 

present study has been provided. The salient features of the respective chapters of the thesis are 

also briefly highlighted. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1. INTRODUCTION 

The understanding of thermal transport in complex solid geometries with discrete heat 

sources and porous media is of major importance. Some of the important applications include 

geothermal systems (Vafai and Tien (1981)), nuclear reactor safety (Ettefagh et al. (1991)), 

ground water flow modeling (Lage (1993)), solar power collectors (Saeid and Pop (2005)), food 

processing (Krishna et al. (2008b)), compact heat exchangers (Swamy et al. (2013) and Sheremet 

et al. (2015)), heating and cooling of buildings (Chandran et al. (2019)) etc. Due to the 

arrangement of the solid structure these systems can be anisotropic in nature. Hence, it is 

necessary to investigate the effect of anisotropic parameters of the porous medium on the fluid 

flow and heat transport behavior. In addition to these the concept of heatline approach which is 

introduced by Kimura and Bejan (1983) can be used to analyze the performance of thermal 

systems by visualizing the magnitude and direction of heat flow. In this section, the review of 

literature is initiated with thermal transport in various shapes followed by shear driven flows in 

porous media and buoyancy induced flows in isotropic and anisotropic porous media. In each of 

the above sections the thermal transport has been analyzed by using the concept of heat line 

visualization. For convenience and a structured representation, the literature is classified as 

follows. 

2.2. THERMAL TRANSPORT IN VARIOUS GEOMETRIES  

Various thermal equipment like solar energy systems, nuclear reactors, cooling of 

electronic devices, etc., involve intricate geometries for which the analysis is very complex. For 

the efficient design of these equipment a thorough analysis of heat transport characteristics is 

needed. In this section literature pertaining to relevant numerical formulation for non – 

orthogonal geometries is discussed. Harlow and Welch (1965) proposed the staggered grid 

formulation which involves storing of scalar quantities at cell centers and velocity components at 

cell faces. Thompson et al. (1982) made use of non-orthogonal curvilinear grid and developed 

new computational techniques to analyze fluid flow and heat transfer characteristics. The 
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complex domain is mapped to a simple computational domain and the governing equations are 

written in terms of generalized curvilinear coordinates.  

Maliska and Raithy (1984) and Shyy et al. (1985) made use of staggered grid in which the 

velocity components are stored at the faces of control volume. Later, Shyy (1994) mentioned that 

for staggered grid to avoid inconsistencies in interpolation for the cell - face velocities, covariant 

components of velocity were employed. A collocated grid reduces the geometric and algebraic 

complexity of the solution for non – orthogonal cells by allowing the velocity components and all 

scalar quantities to store at the same grid nodes. Because of its simplicity in programming, the 

non – staggered (collocated) grid has gained popularity and Perić et al. (1988) reported that the 

collocated grid gave more accurate results than the staggered arrangement. Similar observation 

was also made by Miller and Schmidt (1988); Melaaen (1992a); Melaaen (1992b); Choi et al. 

(1994a); Choi et al. (1994b).  

Roychowdhury et al. (1999) employed non orthogonal collocated grid to solve 

incompressible N – S equations. Finite volume method is employed to discretize the governing 

equations. The convective formulation was carried out using QUICK scheme. The proposed 

scheme was validated with bench mark solutions. Krishna et al. (2008b) studied lid driven flow in 

a skewed porous cavity. Governing equations were solved by using FVM. Semi-staggered grid 

arrangement was employed and coordinate transformation was carried out to transform into a 

square domain. 

Based on the above mentioned works, it can be noted that various numerical 

methodologies were developed to analyse the flow and heat transport in various domains. 

Generation of grid for various domains is a tedious task. In order to overcome the difficulty in 

grid generation, in the present work a generalized code is developed to read the mesh that is 

generated using a meshing software GAMBIT. A collocated grid based FVM for the analysis of 

thermal transport in complex domains. 

2.3. LID DRIVEN POROUS CAVITY FLOWS 

The study of lid/shear driven flow in a porous cavity is not only of academic interest; 

several other applications comprise float glass production (Pilkington (1969)), analysis of 
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groundwater flows (Osinov (2003); Krishna et al. (2008b)), packed-bed catalytic reactors (Oztop 

(2006)), geophysics, chemical engineering and binary alloy solidification (Haddad (2017); Nield 

and Bejan (2013)) etc.  

Generally, earthquakes are associated with soil liquefaction and ground failures. 

Liquefaction can be referred to the decrease in strength of the saturated cohesion less soil due to 

the increase in pore water pressure due the application of shear stress. Lid driven flows for fluid 

can also be treated as a limiting case of porous media with porosity equal to unity and 

permeability value approaching infinity. The literature on lid driven flow in single phase fluid is 

very vast. Therefore, the benchmark study for orthogonal geometry is presented. 

The lid driven cavity flows with single phase fluid is a commonly used test case for new 

computational scheme because of the complexity of the flow field. Researchers used a variety of 

formulations, numerical schemes and grids to tackle the problem. The pioneering work of Ghia et 

al. (1982) can be considered as a yard stick to test the validity of new numerical approaches for 

orthogonal square cavity. 

Osinov (2003) investigated the distortion of soil under non-uniform cyclic loading with 

shear conditions. This problem can be correlated to shear/lid driven flows in a porous cavity. 

Bourchtein et al. (2002) developed a FDM based semi-implicit scheme and implemented to lid-

driven porous granular flows. The numerical scheme was examined and suggestions were made 

for applying boundary conditions. Guo and Zhao (2002) considered lattice Boltzmann approach 

to investigate the hydrodynamics for non-Darcy porous media. The results were compared with 

analytical and FDM. The investigation was based on generalized non-Darcy formulation. The 

study could reveal that non-linear forces play a vital role on flow behavior. Krishna et al. (2008b) 

investigated the flow behavior for the lid-driven cavity impregnated with isotropic porous media. 

The Reynolds number was varied and the influence of Darcy number (Da), aspect ratio (AR) and 

porosity (ε) on flow was studied. It was observed that the non-linear drag forces play a significant 

role for loosely packed porous media. 

Al-Amiri (2000) investigated the heat transport for a porous cavity with a moving top lid. 

By varying the parameters of the porous media the thermal hydraulics was examined. It was 
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observed that the heat transport got improved due to the presence of porous media. Jue (2002) 

examined the thermal hydraulics for a cavity which is impregnated with porous media. A 

torsional oscillatory lid was considered and the behavior of convective flow was studied. The 

oscillatory frequency was observed to seriously influence the heat flux variation, especially at the 

resonant frequency. Vishnuvardhanarao and Das (2008) examined the mixed convection in a 

porous cavity where the left and right walls were considered to move upwards with the same 

velocity. In their study, a Darcy number of 10-4 was taken. 

Oztop (2006) performed numerical analysis for energy transport in a porous cavity with 

its partially heated moving lid. Several locations for finite heat source were considered to 

understand the optimum heat transport for the domain. Based on the study the optimum location 

was observed to be at the middle portion of the left wall. In the above studies, Ergun correlation 

(1952) was considered to account the inertial and viscous terms. Basak et al. (2010) investigated 

the thermal hydraulics for a lid driven porous cavity which is provided with a heated bottom wall, 

linearly heated side walls and cold right wall. At Re=100 for higher Darcy and Prandtl numbers 

the inertial effect was observed to be dominant. Kumari and Nath (2011) studied thermal 

transport for a heat generating non-Darcy porous medium with moving top lid. Richardson 

number was observed to significantly influence the energy transport.  

Khanafer and Vafai (2002) studied thermal and species transport in a lid driven porous 

cavity. A fluid saturated non-Darcy porous medium was considered for the study. It was observed 

that buoyancy ratio, Lewis number, and Richardson number significantly influence the double-

diffusive phenomenon. Nayak et al. (2014) investigated thermal and species transport in a porous 

cavity with moving top and bottom lids. Mohan and Satheesh (2016) considered magneto 

hydrodynamic effect and investigated the behavior of thermal and species transport for a porous 

cavity with the movement of two lids. It was observed that for higher Hartmann number the 

magnetic field on was significantly influenced. Nithyadevi and Rajarathinam (2017) investigated 

the influence of magnetic field on double diffusive mixed convection in a porous cavity saturated 

with copper-water nanofluid.  In their study, the flow was assisted by the movement of two lids. 

Nithyadev et al. (2017) performed transient analysis of thermal and species transport for a lid 

driven porous cavity saturated with water at its maximum density condition. An increase in 

thermal and species transport was observed with the increase in Darcy number and decreased 
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trend was noted with the increase in buoyancy ratio and density inversion parameter. Rahman et 

al. (2018) studied heat and mass transport in the porous cavity with two side lids moving upward 

with horizontal insulated walls. The study was performed with two fluids viz. water and water – 

copper nanofluid. The thermal and mass transport in the cavity was noted to improve with the 

usage of water – copper nanofluid. Before analyzing the behavior of shear driven flows for 

anisotropic porous media the earlier studies related to lid driven flows in porous media and 

hydrodynamics in anisotropic porous cavities need to be addressed.  

It can be noted from the above discussion that the studies pertaining to shear driven 

porous cavity flows were limited to either isotropic porous media in Darcy/non-Darcy regime or 

anisotropic porous media in Darcy (tightly packed) regime. Also, the earlier studies could reveal 

that the anisotropy of the porous matrix could significantly influence transport phenomena 

(Krishna et al. (2008a); Krishna et al. (2009b); Hu et al. (2017)). From the literature it is also 

observe that the influence of anisotropic parameters of the porous matrix with the variation of lid 

velocity (Reynolds number), permeability (Darcy number) and porosity on hydrodynamics is yet 

to be investigated. The objectives and scope of the work carried out on lid driven anisotropic 

porous cavity flows are presented later, at the end of the chapter. 

2.4. NATURAL CONVECTION IN ISOTROPIC DARCY POROUS MEDIA 

Due to highly compact nature of naturally available porous media, the Darcy flow model 

has been extensively used for the analysis of porous media flows. Because of wide range of 

applications in diversified fields, the literature on natural convection in porous media is very vast. 

Therefore, the studies related to enclosures filled with Darcy porous medium are highlighted 

here. When a fluid flows through a porous medium, a resistance is offered by the medium to the 

flow. This resistance to flow depends on the viscosity of the fluid, porosity of the medium and 

pore size. This combined effect may be described through a property called permeability of the 

medium.  

Chan et al. (1970) reported numerical results based on finite difference technique for a 

rectangular porous cavity. They reported that the heat transfer rate was a function of the three 

dimensionless parameters: (i) Darcy number (Da), (ii) Rayleigh number (Ra) and (iii) aspect ratio 
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(A). Holst and Aziz (1972a) numerically studied natural convection in a confined porous media. 

Three dimensional transient simulation was carried out using finite difference technique. It was 

reported that the three-dimensional motion results in a significantly higher heat transfer across the 

porous medium than for two-dimensional motion, at a given Rayleigh number. Holst and Aziz 

(1972b) also studied natural convection in a two dimensional rectangular enclosure 

experimentally and analyzed the problem with a numerical model, which could handle 

temperature dependent properties.  

By applying the modified Oseen’s linearization technique, Weber (1975) developed an 

analytical solution for the boundary layer regime in a tall vertical porous layer. The obtained 

solution for average Nusselt number along the hot wall of the cavity was over predicted at higher 

Rayleigh number. Walker and Homsy (1978) proposed an approximate analytical solution based 

on the technique of matched asymptotic expansion for natural convective heat transfer in a 

porous cavity saturated with fluid. Bejan and Tien (1978) studied the natural convection in a 

horizontal porous cavity subjected to end to end temperature difference, with and without 

permeable end walls. They concluded that the end wall permeability significantly increases the 

heat transfer. Bejan (1979) reconsidered the same problem and obtained good agreement with 

experimental results. An alternative theory was proposed by Simpkins and Blythe (1980) for the 

boundary layer regime for vertical rectangular cavity based on integral boundary layer solution. 

Blythe and Simpkins (1981) extended their solution to the more general case where the fluid 

viscosity is sensitive to changes in temperature. Havstad and Burns (1982) used a finite 

difference method (FDM), to analyze the free convection in a porous annulus, whose inner and 

outer walls were maintained at constant but different temperatures. Philip (1982a) developed 

exact solution for various shapes of the porous cavity for free convection at low Rayleigh 

number. In another work, the exact solution for axi-symmetric small Rayleigh number convection 

has also been established (Philip (1982b)).  

Haajizadeh and Tien (1983) studied natural convection in a rectangular porous cavity with 

a permeable end wall experimentally and theoretically. The assumptions of constant pressure and 

temperature conditions at the permeable wall were found to predict the experimental data 

satisfactorily. Prasad and Kulacki (1984a) analyzed the natural convective heat transfer in a 

rectangular enclosure. One vertical wall was maintained at a constant temperature while the other 
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was subjected to a constant heat flux. It was observed that any increase in the applied heat flux 

increase the convective effects, but the temperatures were not observed to increase 

proportionately. The average Nusselt number was higher than that for the case with two 

isothermal walls. Correlation for Nusselt number in terms of Rayleigh number and aspect ratio 

was presented. Prasad and Kulacki (1984b) studied the effect of aspect ratio on heat transfer and 

flow field in a rectangular cavity bounded by isothermal vertical walls at different temperatures. 

They observed that for a cavity with fixed height, the heat transfer rate increases as the aspect 

ratio is increased, except when the flow exhibits boundary layer on the vertical walls. The authors 

clearly delineated the conduction, asymptotic and boundary layer flow regimes in natural 

convection inside enclosures.  

Hickox and Gartling (1985) considered a case in which the side walls are maintained at 

constant temperatures, top and bottom walls are treated as adiabatic. The inner wall is maintained 

at a higher temperature and outer wall is maintained at a lower temperature. Using finite element 

approach, they carried out heat transport analysis for lower Rayleigh numbers (<100) and tall 

annulus (A>2). They also developed an analytical method applicable to those scenarios using the 

approach used by Burns et al. (1977). Prasad and Kulacki (1985) and Prasad et al. (1985) 

conducted a series of experiments in an annular cavity, with isothermal vertical walls for various 

solid-fluid combinations, such as glass-water, glass-heptane, glass-glycol and steel-water. They 

have brought out the necessity for non-Darcy models based on their comprehensive experiments 

and numerical work. They concluded that porous media with smaller Lref /dp deviate more from 

the Darcian flow regime. Since agreement between the theory and Darcy model is not satisfactory 

with static thermal conductivity, they proposed a new method of calculating the effective thermal 

conductivity. Prasad et al. (1986) experimentally studied a similar geometry with constant heat 

flux on the inner wall, with two sets of radius ratios and aspect ratios and with several solid-fluid 

combinations. It was observed that with the increase in ratio of thermal conductivities of solid 

and fluid, Nusselt number decreased at a given Rayleigh number. Prasad (1986) carried out an 

exhaustive numerical study of natural convection in annular geometry with constant heat flux on 

inner wall and isothermal cooling on outer wall. Correlations for average Nusselt number were 

reported in terms of Rayleigh number and aspect ratio. 
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Pop and Na (1994); Pop and Na (1995) solved numerically the boundary layer equations for 

natural convection along an isothermal wavy cone embedded in a fluid saturated porous media 

using Keller-box method. The wavy nature of the cone was observed to decrease the heat transfer 

rate when compared to that of a smooth truncated cone. Baytas and Pop (1999) carried out 

simulations for natural convection in oblique porous enclosures. The heat transfer rate was 

observed to decrease with the increase in skewness. Tsybulin et al. (2006) carried out steady state 

analysis with temperature perturbations on the boundary. A selection map was introduced to 

analyze the selection of steady state from a continuous family of equilibrium which exits under 

zero boundary condition. Varol et al. (2006) investigated natural convection numerically for a 

right angle triangular enclosure filled with fluid saturated porous media. They observed that the 

heat transfer rate increases with the decrease in aspect ratio and increase in Rayleigh number. 

Shalini and Kumar (2007) investigated the influence of variable heat flux on natural convection 

along a corrugated wall in porous media. The wavy nature of surface temperature plots were 

observed to decrease with the increase in Grashof number. Saeid (2007) studied conjugate natural 

convection numerically for a porous enclosure with finite wall. The influence of Rayleigh 

number, thermal conductivity ratio and ratio of wall thickness to height on flow behavior was 

carried out. Ouarhlent and Soudani (2019) consider cubic shaped enclosure filled with 

homogeneous isotropic porous media. For the considered enclosure left and right wall maintained 

at hot and cold respectively, and top and bottom boundaries are adiabatic.  It was conclude that, 

as Rayleigh number increases with the increase in Nusselt number. Das et al. (2019) studied free 

convection in a square and triangular cavities with discreate heat sources. It was observed that, 

the average Nusselt number is higher for triangular cavity when compared to that of square 

cavity. 

The above mentioned literature have used either Darcy’s equation for analysis or 

conducted model experiments in porous media. If the flow with higher velocities is considered, it 

is observed that based on the pore size, the matrix drag non-linearities will be exhibited by the 

system. If the porous media is bounded by impermeable walls as in the case of insulating 

materials, there will be a need to satisfy no slip boundary conditions. Since Darcy’s equation is 

one order less than the Navier-Stokes equation, it will not satisfy no slip condition at the walls. 

The inadequate accuracy of Darcy’s law at higher porosities and permeabilities drew the attention 
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of researchers towards suitable non-Darcy models. The following section reviews the available 

non-Darcy models which are extensions or modified form of the Darcy model. 

2.5. NATURAL CONVECTION IN ISOTROPIC NON DARCY POROUS 

MEDIA 

Depending on the nature of the porous media and flow conditions, formulations such as 

Darcy model, Forchheimer extended Darcy model, Brinkman extended Darcy model and 

modified Navier-stokes model were employed. Though non – Darcian effects are not significant 

for tightly packed porous media it becomes very much necessary to consider for the porous media 

which is loosely packed. Also, it is necessary to contemplate a generalized model which can 

predict the thermal hydraulics for wide range of porous media. In this section, the non-Darcy 

models for natural convection in porous media are reviewed. 

2.5.1. Forchheimer Extended Darcy Model 

In order to account for the non-linear kinetic energy loss, Forchheimer (1901) proposed 

an extension to the Darcy’s law. Later, researchers used this extension to model flow through 

porous media and found a considerable contribution of the non-linear drag term at higher 

Reynolds numbers or Rayleigh numbers and higher permeabilities. 

Plumb and Huenefeld (1981) employed Ergun’s correlation (1952) for the study of natural 

convection from a heated surface in a saturated porous medium. The effects of non-Darcian flow 

and non uniform permeability have been studied by Tien and Hong (1985). They used Ergun’s 

correlation to account for the solid matrix drag. Poulikakos and Bejan (1985) studied analytically 

as well as numerically, the departure from Darcy flow in natural convection in a vertical porous 

layer heated from side. A cavity with an aspect ratio of two was considered. They found that the 

average Nusselt number is proportional to Ra1/4. Prasad and Tuntomo (1987) studied the inertial 

effects in natural convection in a vertical cavity. Nakayama et al. (1990) solved free convection 

over a non-isothermal body of arbitrary shape in a porous medium using Forchheimer extension 

to Darcy model. They used similarity transformation to solve the equations. Saeid and Pop (2005) 

investigated natural convection in a square cavity numerically with Darcy-Forchheimer model. 
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The results were presented to show the effect of inertial parameter on the average Nusselt number 

and the fluid flow. It was found that for constant Rayleigh number with the increase in inertial 

parameter the average Nusselt number reduces. 

Vafai (1984) analyzed the effects of variable porosity and inertial effects on convective 

flow and heat transfer in porous media. In this study, a method of matched asymptotic expansions 

was used to show the qualitative aspects of variable porosity in producing the channeling effect. 

The numerical data was found to be in excellent agreement with the experimental data. 

Georgiadis and Catton (1985) studied free convective boundary layer flows in vertical fluid 

saturated porous slots of high aspects ratio. Hong et al. (1987) examined analytically the effects 

of non Darcian and non uniform permeability conditions on natural convection for a vertical plate 

in porous media. In their study, Ergun’s correlations have been employed for linear and nonlinear 

drag forces. It was observed that inertial effect decreases the heat transfer while the dispersion 

effect increases it. Beckermann et al. (1987) carried out experimental and numerical investigation 

of natural convection in a rectangular enclosure that is partially filled with porous media. A good 

agreement was observed between the flow visualization and numerical results. 

Mbaye et al. (1993) developed analytical solution and also carried out numerical analysis 

on natural convection in an inclined porous layer confined by a wall with finite thickness. Hung 

and Chen (1997) studied free convection in a thermally stratified porous media along a vertical 

plate with variable heat flux. The non similar transformed equations are solved with Keller’s box 

method. The non-Darcian and thermal dispersion effects were found to have significant influence 

on heat transfer. Later,  Hung et al. (1999) carried out a similar study with non-isothermal vertical 

surface. In these studies the non linear drag was considered from Ergun’s correlations. 

2.5.2. Brinkman Extended Darcy Model 

The Brinkman extended Darcy model (1947) is another extension to the traditional form 

of Darcy’s model. Flow for many practical applications of porous media involves impermeable 

solid boundaries which confine flow geometry. In such cases, wall effect is to be accounted. The 

Brinkman extended Darcy model was proposed to account the viscous effects, considering the 

effective viscosity of the porous medium. In addition to Darcy’s term, viscous term was 
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employed by Chan et al. (1970) for flow equation. They gave the criteria for the onset of 

convection in a cavity heated from below as Ra*=4Π2. 

Neale and Nader (1974) examined the importance of Brinkman extended Darcy model. 

They concluded that for the flow outside the boundary layer region, the Brinkman’s equation 

reduces to Darcy’s law. Nield (1983) in his study concluded that the Brinkman’s term is useful in 

the treatment of flow past a very sparse collection of obstacles. 

Lundgren (1972) investigated slow flow through stationary random beds and suspensions 

of spheres using Brinkman’s equation. He suggested an effective viscosity of μ/(1-2.5ε) for 

suspensions. Durlofsky and Brady (1987) have shown that the Brinkman equation actually 

describes the flow in porous media with porosity smaller than 0.8. 

Tong and Subramanian (1985) carried out boundary layer analysis for natural convection 

in vertical enclosures with Brinkman extended Darcy model. They used modified-Queen 

technique to solve the problem and obtained the limit for Darcy model in terms of Rayleigh 

number (Ra), Darcy number (Da) and the aspect ratio (AR). It was found that the Darcy model is 

applicable for Ra*Da/AR < 10-4. The authors also confirmed the accuracy of earlier results of 

Weber (1975). 

Vasseur and Robillard (1987) studied buoyancy induced flows in a porous cavity 

subjected to uniform heat fluxes along the vertical boundaries. The boundary layer equations 

were solved using Oseen linearization method. It was found that the boundary effects have a non-

negligible influence on fluid flow and heat transfer. Vasseur et al. (1989) investigated natural 

convection in shallow cavities with uniform heat flux by employing Brinkman model. The study 

considers horizontal boundaries of rigid-rigid, rigid-free and free-free type. Heating is through 

the bottom or the sidewall. The overall heat transfer rate was noted to reduce drastically with the 

increase in permeability. It was also observed that the reduction was larger at higher Darcy and 

Rayleigh numbers. Moreover, as Darcy number tends to zero, the flow field is similar to that 

given by the Darcy analysis, except in the thin region next to the boundary where the viscous 

effects are confined. 
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Vasseur et al. (1990) investigated buoyancy induced flows in an inclined porous slot 

using Brinkman extended Darcy model. They observed that as the value of Da increased, the 

magnitude of the peak velocity reduced and the position of the peak velocity got shifted away 

from the wall. At higher Da, viscous effects become dominant and hence buoyancy-induced 

convection within the cavity is reduced. 

Elsharkawy and Guedouar (2001) studied hydrodynamic lubrication of finite porous 

journal bearing. The Brinkman extended Darcy and Stokes equations were utilized to model the 

flow in porous region and clear fluid region. The model was found to have good agreement with 

experimental results. 

Both the Brinkman and Forchheimer models for flow through porous media have found 

acceptance in the literature at different flow limits. Some of the researchers have made use of 

both Forchheimer’s and Brinkman’s terms along with Darcy formulation due to the following 

reasons. To account i) no slip wall effect, Brinkman’s extension was used and ii) inertial forces 

for flow with Reynolds number based on mean pore diameter of the order more than one. 

2.5.3. Modified Navier-Stokes Equation Model 

The modified Navier Stokes equation model has been proposed in order to provide a 

comprehensive theoretical formulation which reduces to each of the earlier models in the 

appropriate limit depending on the flow rates and permeability of the porous media. Vafai and 

Tien (1981) developed a generalized model using volume averaging technique. The flow 

equations contain the fluid inertial terms and the non linear drag terms along with usual Darcy 

and viscous terms. Nithiarasu et al. (1997) also derived generalized variable porosity model by 

employing Ergun’s correlation for Forchheimer constant. In the above literature the macroscopic 

generalized equations for incompressible flow were obtained based on volume averaging. 

Vafai and Tien (1981) investigated the influence of solid boundary and the nonlinear drag 

forces on thermal hydraulics of porous media. They concluded that the boundary has more 

influence on heat transfer at high Prandtl numbers and large pressure difference. They also 

observed that the inertial effect increased with the increase in permeability and the reduction in 

fluid viscosity. Hong et al. (1985) investigative natural convective heat transfer from vertical 
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plate embedded in a high porosity medium under non-Darcian effects. Inline to Vafai and Tien 

(1981), they also observed that the boundary and inertial effects have a noteworthy influence on 

the velocity profile and surface heat transfer rate.  

Prasad et al. (1985) carried out experiments with an annulus saturated with porous media. 

The experimental results were found to be in good agreement with numerical simulations. Lauriat 

and Prasad (1987) employed the Navier Stokes equations with linear solid matrix drag, for 

handling the flow equations to analyze natural convection heat transfer and flow in porous media. 

Lauriat and Prasad (1989) examined numerically the non-Darcian effects on natural convection in 

a vertical porous enclosure. They made a comparative study of Darcy-Brinkman-Forchheimer 

solutions for a differentially heated vertical cavity. This work considers fluid Rayleigh number 

and Darcy number as two separate parameters. It was concluded that a) an asymptotic convection 

regime exits where the heat transfer rate is independent of the permeability of the porous matrix. 

b) The presence of Forchheimer term leads to the reduction of heat transfer. c) Validity of Darcy 

model increases with the reduction in both Darcy and Forchheimer term. 

Ettefagh et al. (1991) analyzed the importance and relevance of non – Darcian effects 

associated with natural convection in open ended cavities filled with fluid saturated porous 

media. It was observed that for higher modified Rayleigh number (Ram) the deviation from 

Darcian formulation appears at Da > 10 -4. Lage (1992)used the generalized model to study the 

convective effects on bernard convection in porous media. This numerical study shows that 

convective term has a negligible effect on the overall heat transfer for most cases. It was observed 

that the inertial terms can be neglected for lower permeability media while the general equation 

was intended to bridge the entire domain between low and high permeability.  

By scale analysis, Lage (1993) obtained a correlation valid for the entire spectrum 

covered by the generalized equation. Misra and Sarkar (1995) applied generalized non Darcy 

model to investigate different models due to Darcy, Brinkman, Forchheimer and combined 

Darcy-Brinkman-Forchheimer. Hsiao (1995) applied studied transient natural convection from a 

corrugated plate embedded in a porous medium by generalized model.  
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Vafai and Kim (1995) provided detailed explanation and the validity of each term in 

generalized non-Darcy model. Sai et al. (1993) employed finite element method to numerically 

investigate Darcy and non-Darcy regimes for buoyancy flows in vertical porous annulus. 

Nithiarasu et al. (1997) provided derivation for generalized non Darcy variable porosity model 

from fundamental principles. In this model the Forchheimer constant was considered from the 

experiments carried by Ergun (1952) for flow through packed beds. For fixed porosity and 

modified Rayleigh number comparison was carried out in Darcy and non-Darcy regimes for a 

differentially heated porous cavity and porous cavity with single phase fluid at the center. A 

significant difference for average Nusselt number is observed between Darcy and non-Darcy 

regimes. The influence of porosity on natural convective flow and heat transfer has been 

investigated by Nithiarasu et al. (1998) using a generalized porous medium model. Later, 

Nithiarasu et al. (1999) carried out parametric study for buoyancy driven flow in fluid saturated 

porous media for different Darcy/ Rayleigh and Biot numbers and aspect ratios. The fluid flow 

and heat transfer aspects were carried out by explaining the behavior of vortex with the variation 

of pertinent parameters. 

Merrikh and Mohamad (2002) investigated numerically the natural convection in a 

rectangular enclosure filled with two layers of porous media. Constant heat flux was supplied on 

the left wall, and the right wall was maintained at a lower temperature. It was found that the 

boundary effects have significant importance at higher modified Rayleigh numbers. 

Pakdee and Rattanadecho (2006) investigated unsteady natural convection for porous 

cavity with a convection condition at the top surface. FDM has been adopted to solve the 

governing equations. The influence of Ra and Da has been studied on flow and heat transfer 

aspects. Basak et al. (2006) investigated the buoyancy driven flow in a square cavity under 

various boundary conditions. Sathiyamoorthy et al. (2007) studied natural convective flow in a 

square cavity filled with porous media for linearly heated side walls. Later, Basak et al. (2008) 

simulated natural convective flow in a porous isosceles triangular enclosure with various thermal 

boundary conditions. In the above studies penalty finite element method with bi-quadratic 

rectangular elements were used to solve the governing equations. Krishna et al. (2008) analyzed 

the influence of Rayleigh number, Prandtl number, Darcy number and porosity on heat transport 

for isotropic porous media. The formulation was based on the generalized non-Darcy model. 
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ACFD technique was implemented to generate a correlation for the average Nusselt number. The 

non-Darcian effects are insignificant in low porosity media which is not the case for high porosity 

media. Furthermore, for low porosity media the entry region is very small, and the convective 

term in the governing equations can be neglected. This may not be the case for high porosity 

media. The boundary and inertial effects on the transport of momentum and thermal energy for 

natural convection flow play significant roles in the prediction of overall heat transfer.  

2.6. NATURAL CONVECTION IN ANISOTROPIC POROUS MEDIA 

It can be noted that most of the real life problems such as extraction of metal alloys from 

ores, nuclear fuel rod bundle, heat exchanger tubes, geothermal processes etc. are anisotropic in 

nature.  Hence, it is necessary to study the effect of anisotropic properties of the porous medium 

on the fluid flow and heat transport behavior.  

Neale (1977) considered clusters of parallel cylindrical fibers of circular/elliptical cross 

section and obtained relations for the permeability and diffusivity ratios. The anisotropic 

permeability and conductivity ratio range between 0.5 and 2 for circular cylindrical fibers. These 

ratios depend on the relative magnitude of the minor and major axes also for elliptical fibers. 

Burns et al. (1977) examined analytically the natural convective heat transfer in a vertical 

slot filled with a porous medium. The results illustrate that the Nusselt number was dependent on 

Rayleigh number, aspect ratio and anisotropic permeabilities. Hickox and Gartling (1985)  

mentioned that the anisotropic permeabilities could reduce the heat transfer rate by 2 to 3% for 

the Darcy-Rayleigh number of 100.  

Ni and Beckermann (1991) analyzed the effect of permeability ratio and thermal 

conductivity ratio on fluid flow and heat transfer behavior in a square enclosure filled with 

anisotropic porous medium. The anisotropy of the porous medium was found to influence the 

heat and fluid flow significantly. 

Chang and Hsiao (1993) studied the effects of anisotropy on natural convection in a 

vertical cylindrical enclosure filled with anisotropic porous medium, using primitive variable 

method. Numerical results showed that the heat transfer rate increased with the increase in 
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permeability ratio and decrease in thermal conductivity ratio. It was also observed that the 

average Nusselt number on the side wall increased with the reduction in aspect ratio. Slimi and 

Nasrallah (1998) carried out two dimensional transient numerical simulations of fluid flow and 

heat transfer in a vertical cylindrical enclosure. The cylinder is filled with saturated porous 

medium and a uniform lateral heat flux was supplied. This work provided the validity of Darcy 

flow model and thermal boundary layer approximations. 

Degan et al. (1995) carried out numerical study on free convection in a rectangular porous 

cavity filled with anisotropic porous medium. The porous medium was assumed to be 

hydrodynamically as well as thermally anisotropic. The principal axes of the thermal conductivity 

were taken to be coinciding with coordinate axes. On the other hand, directions of the 

permeability were varied with respect to gravity vector. Later, Degan and Vasseur (1997) 

extended the above formulation for Brinkman extended Darcy model to study buoyancy effects. 

By employing the above formulation for anisotropy in permeability, Vasseur and Degan (1998) 

studied natural convective heat transfer from a vertical plate embedded in a fluid saturated Darcy 

porous medium. They concluded that higher heat transfer rate can be obtained if the permeability 

is higher in the vertical direction. Also, the results indicate that heat transfer is minimum if the 

thermal conductivity ratio is higher. 

Srivastava et al. (2011) investigated the thermal hydraulics for electrically conducting 

porous media. A non-thermal equilibrium model was considered for their study. The porous 

media was taken to be in Darcy regime with anisotropy in terms of permeability. The influence of 

Rayleigh number and wave number on thermal transport was discussed. Gaikwad and Dhanraj 

(2013) considered anisotropic porous media saturated with Maxwell fluid. The double diffusive 

convective studies were performed by employing modified Darcy-Maxwell model. The influence 

of mechanical and thermal anisotropy parameters on convection was studied. Swamy et al. (2013) 

investigated thermal hydraulics for an anisotropic porous layer saturated with viscoelastic fluid. 

By providing periodic harmonic vibrations the gravity term was varied. A densely packed porous 

media with anisotropy in the vertical direction for both thermal and mechanical properties were 

considered. 
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Chang and Lin (1994) numerically studied the effect of wall conduction on buoyancy 

driven flow and heat transfer in a suare cavity filled with anisotropic porous medium. SIMPLE 

algorithm was used to obtain the solution of governing equations. They observed a critical value 

of anisotropic thermal diffusivity ratio at which the Nusselt number was minimum. The critical 

value was observed to be depending upon anisotropic permeability ratio. Moreover, it was 

observed that wall conductance could lead to significant changes in heat transfer rate. 

Keyhani and Polehn (1995) reported an improved finite difference scheme for modeling 

anisotropic conduction and they showed that it approached the accuracy of the Galerkin weak 

statement finite element formulation. Chevalier et al. (1999) carried out numerical and 

experimental investigation for free convection in an inclined porous layer by considering 

temperature gradient along the vertical direction.  

Nithiarasu et al. (2000) extended the formulation of anisotropic permeability and thermal 

conductivity to generalized non-Darcy model. Ergun’s correlations have been employed to 

account non linear drag forces. In this study the influence of anisotropic properties on heat 

transfer with the variation of Ra and Da has been clearly brought out. 

Lee and Yang (1997) and Yang and Lee (1999) treated bank of cylinders as an anisotropic 

porous medium and provided correlations for permeability, Forchheimer coefficient and effective 

thermal conductivity. They mentioned that the permeability approached a value of zero at the 

particular porosity of 0.2146 which means that fluid flow across the cylinders became impossible. 

Knupp and Lage (1995) mentioned that inertial coefficient and permeability are independent 

parameters and is possible to think of cases in which a porous medium presents different amounts 

of anisotropy for permeability and inertia (Forchheimer) coefficients. Mamou et al. (1998) 

investigated the natural convection phenomenon in a cavity filled with anisotropic porous 

medium. It was reported that permeability ratio and principal axes orientation have more 

influence on the system stability.  

Nakayama et al. (2002); Nakayama et al. (2004) investigated thermal hydraulics through a 

collection of square rods placed in an infinite two-dimensional space. The degree of anisotropy 

was varied by changing the transverse center to center distance with the longitudinal center to 
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center distance being fixed. It was found that the principal axes of the permeability tensor differ 

significantly to that of Forchheimer tensor. 

Krishna et al. (2008a) analyzed natural convection in an anisotropic porous medium 

confined in a square cavity with volumetric heat generation. It was observed that the thermal 

hydraulics of fluid was largely influenced by anisotropic properties of the porous matrix. Similar 

conclusions  were also given by Krishna et al. (2009a) who analyzed the problem of natural 

convection in a square cavity packed with anisotropic porous medium using generalized non- 

Darcy approach.  In their study heat source was located at the bottom wall.  

Krishna et al. (2010) considered partially heated rod bundle was orthotropic porous media 

and modeled using non-Darcy formulation. It was observed that when the porosity increases from 

0.3 to 0.9 the temperature gradients were reduced, due to decrease of convective strength.  

Chandra and Satyamurty (2011) analyzed thermal transport in anisotropic porous media 

using extended non-Darcy Brinkman model. Their study revealed that the hydrodynamics and 

thermal anisotropy are governed by Da, Ra, K∗, and k∗. It was found that the increase in 

permeability ratio (K∗) caused an increase in average Nusselt number (𝑁𝑢̅̅ ̅̅ ) and reduction in 𝑁𝑢̅̅ ̅̅  

with increase in thermal conductivity ratio (k∗).  

Aly and Ahmed (2014) investigated natural and mixed convection for an anisotropic 

porous media by using ISPH method in non-Darcy region. It was observed that, the results were 

mainly affected with the variation in Rayleigh number, porosity, Darcy number, permeability 

ratio and inclination angle of principal axes. It was concluded that velocity magnitude increased 

with the increase of the Rayleigh number and higher rate of fluid flow was obtained at an 

inclination angle of 45°. It was also observed that directions of heat and fluid flow depend upon 

permeability ratio. Mohamad et al. (2015) studied thermal hydraulics for flow through porous 

conduits. It was mentioned that the understanding of limitation for Darcy’s law is necessary for 

the proper insight of thermal transport in porous media. The above studies have highlighted that 

the generalized non-Darcy formulation can be employed to predict transport phenomena from 

tightly to loosely packed porous media. 
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Mishra et al. (2016) numerically studied the effect of different parameters on the heat 

transfer rate in a three-dimensional rectangular box filled with porous medium by using non-

Darcy formulation. It is observed that, effect of Darcy number was significant at higher Rayleigh 

number and higher aspect ratio. 

Ahmed and Rashad (2016) investigated the problem of natural convection in a square 

cavity filled with micro fluids using anisotropic porous media formulations. It was mentioned 

that, with the increase in volume fraction of nanoparticles (Al2O3/water) the heat transfer rate 

increased and with the increase in permeability ratio the vortex strength decreased.  

Hu et al. (2017) developed MRT LB model to simulate flow in anisotropic porous media. 

They considered natural convection problem in a square cavity filled with anisotropic porous 

medium with/without heat generation. It was observed that thermally anisotropic porous medium 

layer enhanced heat transfer rate when compared to isotropic porous layer.  

Srivastava and Singh (2018) analyzed the thermal and species transport in an anisotropic 

porous medium with internal heat source saturated with viscoelastic fluid.  It was mentioned that, 

the thermo physical properties have more influence on the heat and fluid flow characteristics. In 

non-Darcy region, heat transfer rate was more when compared to Darcy region. Based on the 

above details it can be understood that the thermal hydraulics in anisotropic porous media is 

complex and thorough insight is necessary for efficient design of thermal equipment. Chandran et 

al. (2018) investigated free convection in a porous trapezoidal cavity filled with anisotropy 

permeable material. Numerical analysis were performed to analyze the influence of various 

parameters such as aspect ratio, angle of inclination, buoyancy ratio and internal heating. Results 

were analyzed by using steamlines and isotherms contours.  Kozelkov et al. (2018) proposed an 

implicit algorithm for modified Navier-Stokes equations to simulate the flow in anisotropic 

porous media. The comparison was made with various benchmark problems and observed to 

predict accurately. Safi and Benissaad (2018) studied natural convection in a anisotropic porous 

medium. Governing equations are solved using FVM. Darcy- Brinkman – Forchhemier model 

was considered for the formulation of problem geometry and it is validated with Boussinesq 

approximation. It was observed that, the rate of heat transfer depends upon permeability ratio. 
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When permeability ratio increases rate of heat transfer increases. It is also observed that, increase 

in Rayleigh number with the increase in Nusselt number.   

2.7. HEATLINE VISUALIZATION OF THERMAL TRANSPORT IN 

POROUS MEDIA 

The heatline approach can be used to analyze the performance of thermal systems by 

visualizing the direction and intensity of heat flow. Visualization of heat flow using heatlines was 

introduced by Kimura and Bejan (1983). Costa (2000) presented the heat functions for the 

laminar natural convection near a vertical wall with isothermal and constant heat flux conditions. 

The boundary layer problem was solved using the similarity method. 

Deng and Tang (2002) studied the numerical visualization of convective heat transfer by 

streamlines and heatlines. It was mentioned that the visualization of transport phenomena by 

means of streamlines and heatlines was observed to provide a more practical and efficient means 

than the customary ways.  

Natarajan et al. (2007) studied two-dimensional heat function within a trapezoidal cavity 

which is differentially heated in the vertical direction. Finite element method was used to obtain 

isotherms, streamlines and heatlines. They observed that when Ra (Rayleigh number) =103, the 

heat transfer was uniform from hot wall to the cold wall. But for Ra =106, the lower left and 

upper right portion of the cavity were observed with higher heat transfer rates. 

Dalal and Das (2008) studied two-dimensional cavity with a wavy right vertical wall. 

Governing equations were solved by using the finite - volume method. Results were presented by 

means of streamlines, heatlines, isotherms, local and average Nusselt number distribution for a 

selected range of Rayleigh number (100–106). Basak and Roy (2008) demonstrated natural 

convection in a square enclosure with insulated top wall, hot bottom wall and cold side walls. It 

was found that heatline concept is very much needed for optimal thermal management and also 

helps in the understanding of the energy distribution for the food processing application to store 

food for a long time.  
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Banerjee et al. (2008) carried out steady state simulation for natural convection with a bi-

heater configuration for the analysis of passive electronic cooling. Deng (2008)  studied laminar 

natural convection due to discrete heat source-sink pairs in a two dimensional cavity. They 

analyzed the influence of arrangement of sources and sinks on fluid flow and heat transport 

characteristics. 

Basak et al. (2009) studied heatline concept for a trapezoidal enclosure by varying 

Rayleigh number in the range of 103 -105, Prandtl number (0.026 ≤ Pr ≤ 1000) and at various 

tilted angles (Φ = 450,300 and 00). It was observed that the heatlines were perpendicular to the 

isotherms during conduction dominant region. Basak et al. (2009) performed thermal hydraulic 

studies for an inverted triangular cavity by considering heatline concept. The study was carried 

out with wide range of Rayleigh number (102 to 105) and Prandtl number (0.015, 0.026, 0.7 and 

1000). It was found that heatlines are perfectly normal to the isotherm during conduction 

dominant heat transfer. However, with the increase of Rayleigh number (Ra) to 104 due to the 

initiation of convection, the flow patterns get distorted. 

Waheed (2009) made use of heat function formulation to investigate the heat transport in 

a square porous cavity by employing finite-difference method. It was concluded that, heatlines 

and heat function enhance the understanding of distribution of heat.  

Hooman et al. (2009) numerically investigated the influence of temperature dependent 

viscosity on natural convection for saturated porous media. Arrhenius model was employed to 

incorporate the temperature dependent viscosity. It was mention that of heatlines and energy flux 

vectors can provide a detailed analysis of thermal transport. In line to Bejan’s heatlines, Hooman 

(2010) introduced energy flux vectors for the visualization of convection. It was mention that the 

technique of energy flux vector does not to solve other equations in additional to momentum and 

energy. This approach was noted to reduce the computation time and resource for the 

visualization of energy flow.  

Kaluri and Basak (2010) studied distributed thermal management policy for energy-

efficient method of materials processing applications by natural convection. Analysis was carried 

out by visualizing the heat flow by heatlines. It was found that the heatline approach is useful in 

visualizing the complex heat flow patterns in the cavity with multiple distributed heat sources. 
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Kaluri et al. (2010) considered a square cavity with distributed heat sources and analyzed the 

thermal mixing. Based on heatlines it was observed that distributed heating was more efficient 

when compared to that of a conventional bottom heating.  

Mobedi et al. (2010) employed heat function equation for the visualization of convection 

and diffusion in a square cavity. Basak et al. (2011) studied natural convection in trapezoidal 

enclosures by varying boundary conditions. Results were presented in terms of isotherms, 

streamlines, heatlines, local and average Nusselt numbers for enclosures.                               

Basak et al. (2013) considered conjugate natural convection problem to analyze the magnitude 

and direction of heat flow inside a square cavity using heatline concept. They varied wall 

thickness from 0.2 to 0.8 and conductivity ratio (k* = 0.1, 1 and 10). It was found that, as k* 

increases, intensity of fluid circulation increased irrespective of wall thickness.  

Singh et al. (2015) estimated the performance of thermal systems using heatline concept. 

This concept was used to visualize the flow of heat inside inclined two-dimensional cavities filled 

with porous media. Brinkman– Forchheimer extended Darcy model was used to solve the 

momentum equations. At Da = 10-5 the stream function magnitudes were small; hence heat lines 

were normal to isotherms. At higher Darcy number (Da=10-2) stream function and heat function 

magnitudes were stronger which lead to improved mixing.   

Biswal and Basak (2015) studied heat line patterns of various shapes with Dirichlet heat 

function boundary conditions at various Rayleigh numbers (103 and 105) and Prandtl numbers   

(Pr = 0.015 and 7.2). It was concluded that the heatline visualization approach with various heat 

function boundary conditions can be helpful for the better insight of the energy transport in 

thermal systems. 

 Triveni et al. (2015) considered a triangular cavity filled with water and the bottom wall 

was partially heated. They analysed the natural convective flow by varying Rayleigh number  

(105 ≤ Ra ≤ 107). Results were presented in terms of streamlines, isotherms and average Nusselt 

numbers for various positions of the heater within the enclosure. It was observed that the increase 

of heat transfer rate depended on increment of Rayleigh number. 
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Das and Basak (2016) investigated discrete solar heating involving natural convection for 

different types of domains such as square, triangular and inverted triangular geometries. 

Isotherms, heatlines, streamlines, local and average Nusselt number for different positions of the 

heater within enclosure were provided. Lima and Ganzarolli (2016) made use of heatlines to 

analyze the conjugate heat transfer in an enclosure having internal conducting solid body. It was 

observed that as the ratio of thermal conductivities of fluid and solid(k*) increases from 0.01 

to100 the heat transfer at the solid domains was noted to decrease. 

Alsabery et al. (2016) documented natural convection phenomenon in a square enclosure 

which is filled with nanofluid with sinusoidal heating at the horizontal walls. It was found that the 

enhancement of heat transfer rate depended on the increment of solid wall thickness. Alam et al. 

(2016) investigated the thermal transport in a prismatic cavity which is filled with air. It was 

observed that the heatlines are normal to the isotherms in conduction dominant regime. Further it 

was mentioned that heatlines along with isotherms give better understanding of energy 

distribution.  

Ahmed (2016) investigated energy transport for thermally anisotropic non-Darcy porous 

media. The bottom and top lids were made to move in the opposite direction. In this study, the 

thermal transport was visualized by Bejan’s heatline. Ajmera and Mathur (2016) performed 

experimental and numerical investigation of mixed convection in a rectangular enclosure 

provided with ventilation ports. The parameters considered for the study were 1.25 ≤ AR ≤ 2.5, 

3224 ≤ Re ≤ 6579, 8.5×106 ≤ Gr ≤ 1.03×108 and Richardson number in the range of 0.21–9.58. It 

was observed that there is a rise in Nusselt number with increase in Reynolds number and aspect 

ratio. It was also noted that enhancement of heat transfer depended on the height of ventilation 

ports. A thorough knowledge on heat transport phenomenon in complex domain is vital in 

designing efficient equipment. 

Biswal et al. (2016) visualized the heat and fluid flow distribution of natural convection 

within titled porous square cavities. The governing equations were extracted using Darcy–

Brinkman–Forchheimer model and solved by using finite element method.  It was observed that, 

at higher Darcy number isotherms are distorted compared to lower Darcy number irrespective of 

modified Prandtl number (Prm).  
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Roy et al. (2016) analyzed distribution of heat and fluid flow inside square cavity filled with fluid 

saturated porous medium using Bejan’s heatline concept. Results were presented in terms of 

streamlines, isotherms and heatlines. They suggested vertically moving wall to achieve higher 

heat transfer rate. Anandalakshmi et al. (2019) studied buoyancy induced flows for two-

dimensional rhombic shape cavities filled with porous media. It was noted that for higher Darcy 

number (Da=10-3), the magnitude of temperature is maximum at the core region due to which 

maximum thermal mixing was observed. Tao et al. (2019) gave a critical review by comparing 

heatline and field synergy principle. It was mentioned that both the tools are independent and 

help for better insight of thermal transport. 

Based on the literature review it can be noted that the concept of heatline visualization can 

help in great detail for the understanding of thermal transport in complex structures. But the 

studies pertaining to heatlines for natural convection filled with non – Darcy anisotropic porous 

media is yet to appear in literature. Therefore, the present work is aimed to analyze the thermal 

hydraulics in a square cavity filled with anisotropic non-Darcy porous medium with the concept 

of heatline visualization.  

 

2.8. RESEARCH GAPS IDENTIFIED FROM LITERATURE REVIEW 

➢ Analysis of thermal transport using the concept of heatline visualization in complex 

domains is scarce.  

➢ Soil liquefaction refers to the decrease in the strength of the cohesionless soil when 

subjected to shear conditions. The studies pertaining to hydrodynamics for loosely packed 

anisotropic porous media with shear driven conditions is yet to be carried out. 

➢ The understanding of thermal hydraulics with orientation of solid matrix is necessary for 

the efficient design of thermal equipment. Visualization of thermal transport via heatlines 

for non-Darcy anisotropic media is yet to appear in literature. 
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2.9. OBJECTIVES OF THE PRESENT RESEARCH WORK 

➢ To investigate  

✓ Heat transport for various solid geometries through heatline visualization. 

✓ Hot spots through isotherms and heatline profiles for various solid geometries with 

discrete heat source(s). 

✓ Hydrodynamics for non-Darcy shear driven flows with anisotropic porous media. 

✓ Thermal hydraulics using heatline visualization approach for non-Darcy anisotropic 

porous media.  
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CHAPTER 3 

MATHEMATICAL FORMULATION AND 

METHOD OF SOLUTION 

3.1 INTRODUCTION 

In this chapter, a generalized treatment of the governing equations and the solution 

methodology broadly applicable to all the four problems taken up in the thesis is presented. 

3.2 GOVERNING EQUATIONS 

In the present study, the governing equations are varied accordingly with respect to 

pertinent problem. Governing equations and detailed description of pertinent problem are 

provided in the respective chapters. A generalized form of the governing equations                

Eqns. (3.1 – 3.5) pertains to fluid flow and heat transfer for non – Darcy anisotropic porous 

media involve continuity equation, the two momentum equations, the energy equation and heat 

function equation. In the present study equations are solved using pseudo transient approach. The 

governing equations in terms of primitive variables for the transient flow can be written as 

follows. 

Continuity equation: 

∂u

∂x
+

∂v

∂y
= 0 

 (3.1) 

x - Momentum equation:  

1

ε

∂u

∂t
+

u

ε2

∂u

∂x
+

v

ε2

∂u

∂y

= −
1

ρf

∂Pf

∂x
+

μf

ρfε
(
∂2u

∂x2
+

∂2u

∂y2
)

−
μf

ρfK1
[u (cos2θ + K∗sin2θ) + v((1 − K∗) sinθ cosθ)]

−
F1

√K1

[u(cos2θ +
√K∗

F∗
sin2θ) + v((1 −

√K∗

F∗
) sinθ cosθ)]√u2 + v2 

(3.2) 
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y - Momentum equation: 

1

ε

∂v

∂t
+

u

ε2

∂v

∂x
+

v

ε2

∂v

∂y

= −
1

ρf

∂Pf

∂y
+

μf

ρfε
(
∂2v

∂x2
+

∂2v

∂y2
)

−
μf

ρfK1
[u((1 − K∗) sinθ cosθ)

+ v(K∗cos2θ + sin2θ)]–
F1

√K1

[u((1 −
√K∗

F∗
) sinθ cosθ)

+ v(
√K∗

F∗
cos2θ + sin2θ)]√u2 + v2 + g β (T − Tref) 

(3.3) 

Energy equation: 

CPf
(
∂(σT)

∂t
+ U

∂T

∂x
+ V

∂T

∂y
) =

1

ρf
(kx

∂2𝑇

∂x2
+ ky

∂2𝑇

∂y2
) 

(3.4) 

Heat function equation: 

∂2H

∂x2
+

∂2H

∂y2
=

∂(uT)

∂y
−

∂(vT)

∂x
+ k∗

∂2T

∂x∂y
−

∂2T

∂x ∂y
 

    (3.5) 

Where, u = εuf; v = εvf 

 

 

3.3 SOLUTION PROCEDURE 

The integral form of the above governing Eqns. (3.6 - 3.10) are discretized using finite-

volume method. Collocated grid formulation is used for the discretization of governing equations 

which denotes the definition of velocity, pressure, temperature and heat function values at the 

same set of grid points. The collocated grid arrangement is shown in Fig. 3.1. 

Continuity equation 

∬V⃗⃗ 

CS

• dA⃗⃗⃗⃗  ⃗ = 0 

      (3.6) 

 



37 

 

 

Fig.  3.1. Collocated grid arrangement 

 

x- momentum equation 

1

ε
∭

∂u

∂t
d∀ +

1

ε2
∬uV⃗⃗ 

CS

• dA⃗⃗⃗⃗  ⃗ = −
1

ρf
C∀̐

∭
∂Pf

∂x
d∀

C̐∀

+
μ

f

ρfε
∬(∇⃗⃗ u)

CS

• dA⃗⃗⃗⃗  ⃗

−
μf

ρfK1
∭A d∀

C̐∀

 –
F1

√K1

∭B d∀

C̐∀

 

(3.7) 

A = u (cos2θ + K∗sin2θ) + v((1 − K∗) sinθ cosθ) 

B = [u(cos2θ +
√K∗

F∗
sin2θ) + v((1 −

√K∗

F∗
) sinθ cosθ)]√u2 + v2 
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y- momentum equation 

1

ε
∭

∂v

∂t
d∀ +

1

ε2
∬vV⃗⃗ 

CS

• dA⃗⃗⃗⃗  ⃗ = −
1

ρf
C∀̐

∭
∂Pf

∂y
d∀

C̐∀

+
μf

ρfε
∬(∇⃗⃗ v)

CS

• dA⃗⃗⃗⃗  ⃗

−
μf

ρfK1
∭C d∀

C̐∀

 –
F1

√K1

∭D d∀

C̐∀

+ ∭g β (T − Tref)d∀

C̐∀

 

   (3.8) 

C = [u((1 − K∗) sinθ cosθ) + v(K∗cos2θ + sin2θ)] 

D = [u((1 −
√K∗

F∗
) sinθ cosθ) + v(

√K∗

F∗
cos2θ + sin2θ)]√u2 + v2 

Energy equation: 

CPf
∭

𝜕(σT)

𝜕𝑡
𝑑∀ + ∬𝑇𝑉⃗ 

𝐶𝑆

• 𝑑𝐴⃗⃗⃗⃗  ⃗ =

𝐶 ∀

1

ρf
∬(𝛻𝑘⃗⃗⃗⃗  ⃗𝑇)

𝐶𝑆

• 𝑑𝐴⃗⃗⃗⃗  ⃗ 

(3.9) 

Heat function equation: 

∬(∇⃗⃗ H)

CS

• dA⃗⃗⃗⃗  ⃗ = ∬HV⃗⃗ 

CS

• dA⃗⃗⃗⃗  ⃗ 

(3.10) 

Discretization of Eqns. (3.6 – 3.10) proceed as 

∬V⃗⃗ 

CS

• dA⃗⃗⃗⃗  ⃗ =  (ue − uw)n+1∆y + (vn − vs)
n+1∆x 

(3.11) 

1

ε
∭

∂u

∂t
d∀

C∀̐

=
1

ε
(
uP

n+1 − uP
n

∆t
)∀cell 

(3.12) 

1

ε2
∬𝑢𝑉⃗ 

𝐶𝑆

• 𝑑𝐴⃗⃗⃗⃗  ⃗ =  
1

ε2
[(𝑢𝑒

𝑎𝑢𝑒 − 𝑢𝑤
𝑎 𝑢𝑤)𝑛∆𝑦 + (𝑢𝑛

𝑎𝑣𝑛 − 𝑢𝑠
𝑎𝑣𝑠)

𝑛∆𝑥] 

(3.13) 
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1

ρf
∭

∂Pf

∂x
d∀

C∀̐

=
1

ρf
(
Pe

n+1 − Pw
n

∆x
)∀cell 

(3.14) 

1

ρf
∭

∂Pf

∂y
d∀

C∀̐

=
1

ρf
(
Pn

n+1 − Ps
n

∆y
)∀cell 

(3.15) 

μf

ρfε
∬(∇⃗⃗ u)

CS

• dA⃗⃗⃗⃗  ⃗ =
μf

ρfε
[
uE

n − 2uP
n + uW

n

∆x
∆y +

uN
n − 2uP

n + uS
n

∆y
∆x] 

(3.16) 

∭g β (T − Tref)d∀

C̐∀

= g β (T − Tref)∀cell 

(3.17) 

μf

ρfK1
∭A d∀

C̐∀

=
μf

ρfK1

(A)∀cell 

(3.18) 

F1

√K1

∭B d∀

C̐∀

=
F1

√K1

(B)∀cell 

(3.19) 

CPf
∭

∂(σT)

∂t
d∀= CPf

C̐∀

σ(
TP

n+1 − TP
n

∆t
)∀cell 

(3.20) 

∬TV⃗⃗ 

CS

• dA⃗⃗⃗⃗  ⃗ = (Te
aue − Tw

auw)n∆y + (Tn
avn − Ts

avs)
n∆x 

(3.21) 

1

ρf
∬(∇k⃗⃗⃗⃗ T)

CS

• dA⃗⃗⃗⃗  ⃗ =
1

ρf
[kx

TE
n − 2TP

n + TW
n

∆x
∆y + ky

TN
n − 2TP

n + TS
n

∆y
∆x] 

(3.22) 

∬(∇⃗⃗ H)

CS

• dA⃗⃗⃗⃗  ⃗ =
HE

n − 2HP
n + HW

n

∆x
∆y +

HN
n − 2HP

n + HS
n

∆y
∆x 

(3.23) 
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Here, ∀𝑐𝑒𝑙𝑙 represents cell volume dx • dy, (n + 1) and n indicates to the next and current time 

level of 𝑢𝑒, 𝑢𝑤 etc., which indicates the face-centered values of the advecting velocities. 𝑢𝑒
𝑎, 𝑢𝑤

𝑎  

etc. refers the face-centered values of the advected velocities. This difference comes up due to the 

fact that momentum components themselves can be transported by the velocity field. The 

advecting velocity components are determined using a central-difference scheme for a uniform 

mesh, 

ue
n =

uE
n − uP

n

2
 

Advected momentum velocity terms can be represented by 𝑢𝑒
𝑎, 𝑢𝑤

𝑎  etc.  and these terms can be 

solved by using the first order upwind scheme (FOU) or second order upwind scheme (SOU) or 

QUICK for appropriate upstream biasing. 

After discretization, the momentum equations can be written as 

uP
n+1 = uP

n + ADVXn + PRXn+1 + DIFFXn − STXn (3.24) 

vP
n+1 = vP

n + ADVYn + PRYn+1 + DIFFYn − STYn + GRn (3.25) 

Here, ADV represents advection term, PR indicates pressure term, DIFF denotes diffusion term, 

ST refers source term and GR denotes gravity term. 

Cell centered velocities can be calculated by dropping pressure terms in Eqns. (3.24-3.25) 

uP̃ = uP
n + ADVXn + DIFFXn − STXn (3.26) 

vP̃ = vP
n + ADVYn + DIFFYn − STYn + GRn (3.27) 

Once the velocities are calculated by using Eqns. (3.26 - 3.27), velocities in (𝑛 + 1)𝑡 level are 

updated pressure terms at 𝑛𝑡 level. 

𝑢𝑃
∗ = 𝑢𝑃̃ −

∆𝑡

ρ
f

(
𝑃𝐸

𝑛 − 𝑃𝑊
𝑛

∆𝑥
) 

(3.28) 

𝑣𝑃
∗ = 𝑣𝑃̃ −

∆𝑡

ρ
f

(
𝑃𝑁

𝑛 − 𝑃𝑆
𝑛

∆𝑥
) 

(3.29) 
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3.4. Overall Steps in the Solution Algorithm 

1. Assume guess pressure field P , at the start of each time step. 

2. Solve guess velocities u  and v , using the guess pressure P  in the momentum equations. 

3. From guess velocity field v , find the continuity residue v  at every pressure node. 

4. Solve the Poisson pressure correction equations ( )2 f
P v

t


 = 


. 

5. Update Pn+1 = P +P′ 

                   un+1 = u +u′ 

    vn+1 = v +v′ 

Where  ' , '
  

= − = −
f f

t P t P
u v

x y

 

   
 

6. After updating of u and v the correct pressure P is treated as P  and the same steps are 

continued until a converged solution is obtained.  

Gauss-Seidel point by point iteration method is used for the solution of all governing 

equations. The iteration process is continued till the convergence criterion is satisfied. The 

convergence is defined by the following equation 

  

n n-1
i,j i,j

i,j 8

n
i,j

i,j

10

 



−

−






    (3.30) 

where   in Eqn. (3.30) stands for u,v, T and  H variables 

The validation of present numerical procedure is carried out by comparing extensively 

with wide range of numerical data. The validation for numerical procedure and formulation may 

be observed in respective chapters (4-7). 
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3.5 CLOSURE 

The details provided in the present chapter pertaining to governing equations and 

numerical methodology can be treated as generalized formulation. In the subsequent chapters 

based on the problem description the governing equations are boiled down into the required form 

and the parametric investigation has been performed.   
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CHAPTER 4 

VISUALIZATION OF THERMAL TRANSPORT IN 2-D  

SOLID GEOMETRIES  

4.1 INTRODUCTION 

Applications such as heat exchangers, nuclear fuel assemblies, electronic components, 

biomedical engineering, etc. involve intricate geometries for which the thermal transport analysis 

is very complex. For the efficient design of these equipment a thorough analysis of heat transport 

characteristics is needed. Compared to the experimental method, numerical simulation can 

provide an insight of thermal hydraulics in various shapes. Kimura and Bejan (1983) introduced 

the concept of heat function and heatlines to visualize the thermal transport. 

In the earlier chapter (chapter 3) the details pertaining to governing equations in 

generalized form and numerical formulation for thermal hydraulics in anisotropic porous media is 

given. In the present chapter the thermal transport for various solid domains is analyzed in terms 

of isotherms and heatlines. Initially, the numerical formulation pertaining to thermal transport 

based on diffusion in various shapes is discussed followed by heatline visualization in these 

domains. Subsequently, the study is extended for various domains with discrete heat sources. 

Further, hydrodynamics for shear driven flows in anisotropic porous cavity flows is discussed.  

Additionally, thermal hydraulics for anisotropic porous media is analyzed in terms of stream 

lines, isotherms and heatlines. 

Thompson et al. (1982) made use of non-orthogonal curvilinear grid and developed new 

computational techniques to analyze fluid flow and heat transfer characteristics. The various 

domains is mapped to a simple computational domain and the governing equations are written in 

terms of generalized curvilinear coordinates. Because of its simplicity in programming, the non – 

staggered (collocated) grid has gained popularity and Perić et al. (1988) reported that the 

collocated grid gave more accurate results than the staggered arrangement. 

It may be noted that, numerical methodologies were developed to analyse the flow and 

heat transport in various shapes. Generation of grid for various shapes is a tedious task. In order 
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to overcome the difficulty in grid generation, in the present work a generalized code is developed 

to read the mesh that is generated using a meshing software GAMBIT. A collocated grid based 

finite volume solver is developed for the analysis of thermal transport in various domains. It may 

be noted that based on previous studies visualization of heatlines can play a prominent role for 

the better insight of thermal transport. Therefore, the present study numerical results are 

presented in terms of temperature distribution and heatlines in 2D domains with the discretely 

heated bottom wall. 

4.2 THERMAL TRANSPORT IN TWO DIMENSIONAL DOMAINS 

4.2.1 Physical Domain and Mathematical Formulation 

Two dimensional computational solid domains with boundary conditions are shown in 

Fig. 4.1. The generalized governing equations Eqns. (3.1 - 3.5) based on the present condition 

reduce to the diffusion equation.  

The governing equation for heat transport in various domains in the integral form can be given as 

∫
∂

∂x
(k

∂T

∂x
)

∆V
dxdy + ∫

∂

∂y
(k

∂T

∂y
)

∆V
dxdy = 0                      (4.1) 

Diffusive flux through the east face can be expressed as 

JDe = ∑ (k
∂T

∂x
)

e
Aex + ∑ (k

∂T

∂y
)

e

Aey 

JDe = (
keAex

1

Ve
) [{Aex

1 (TE − TP) + Aex
2 (Tne − Tse)}]

+ (
keAey

1

Ve
) [{Aey

1 (TE − TP) + Aey
2 (Tne − Tse)}] 

       

(4.2) 
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Fig. 4.1. Computational solid domains with the boundary conditions 
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Diffusive flux through the east face expressed as a function of the projected areas and the values 

of temperature (T) at neighbouring nodes are shown in Fig 4.2. 

 

Fig. 4.2. Area Vector for face ‘e’ 

𝐴𝑒𝑥
1  and 𝐴𝑒𝑥

2  represents the orthogonal  and non-orthogonal area in 𝑥 direction for the east face of 

the control volume. 

The areas and volume associated with face ‘e’ are given by 

𝐴𝑒𝑥
1  = projection of area 𝐴𝑒

1 along X-axis  = (𝑌𝑛𝑒 − 𝑌𝑠𝑒) 

𝐴𝑒𝑦
1  = projection of area 𝐴𝑒

1 along Y-axis  = −(𝑋𝑛𝑒 − 𝑋𝑠𝑒) 

𝐴𝑒𝑥
2  = projection of area 𝐴𝑒

2 along X-axis  = −(𝑌𝐸 − 𝑌𝑃) 

𝐴𝑒𝑦
2  = projection of area 𝐴𝑒

2 along Y-axis  = (𝑋𝐸 − 𝑋𝑃) 

𝑉𝑒 = volume of the control volume associated with e 

 = (𝑋𝐸 − 𝑋𝑃)(𝑌𝑛𝑒 − 𝑌𝑠𝑒) − (𝑋𝑛𝑒 − 𝑋𝑠𝑒)(𝑌𝐸 − 𝑌𝑃) 

Simplification of above Eqn. (4.2),  

JDe = d1
e(TE − TP) + d2

e(Tne − Tse)                                                                                          (4.3) 
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Where 

de
1 =

ke

Ve
[(Aex

1 Aex
1 ) + (Aey

1 Aey
1 )];          de

2 =
ke

Ve
[(Aex

1 Aex
2 ) + (Aey

1 Aey
2 )] 

Similarly, JDw, JDn and JDs can be obtained.  

The net diffusive flux contribution for all sides of the cell can be brought into the form  

JD = − [{(k
∂T

∂x
)

e
Aex + (k

∂T

∂y
)

e
Aey} − {(k

∂T

∂x
)

w
Awx + (k

∂T

∂y
)

w
Awy} + {(k

∂T

∂x
)

n
Anx +

(k
∂T

∂y
)

n
Any} − {(k

∂T

∂x
)

s
Asx + (k

∂T

∂y
)

s
Asy}]                                                                             (4.4) 

JD = −{de
1TE + dw

1 TW + dn
1 TN + ds

1TS − (de
1 + dw

1 + dn
1 + ds

1)TP + [bno]}                  (4.5)  

Where 

bno = (de
2 + dw

2 )Tne − (dn
2 + dw

2 )Tnw − (de
2 + ds

2)Tse − (dw
2 + ds

2)Tsw 

The term bno arises as a result of non-orthogonality of the mesh which vanishes when the grid 

becomes orthogonal. The corner values are approximated in terms of four surrounding nodal 

values as shown in Fig. 4.3. 

 

Fig. 4.3. Typical control volume 
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Tne =
1

4
(TN + TE + TP + TNE)            (4.6) 

Similarly,Tnw,Tse and Tsw can be obtained. 

4.2.2. Method of Solution 

The grid is generated in GAMBIT and is exported as neutral file. GAMBIT neutral files 

contain the information of mesh data, boundary conditions or solution data in ASCII file format. 

To read the mesh data from the GAMBIT neutral file, a code has been developed. This code acts 

as the bridge between the present in-house finite volume numerical code and meshing software. 

This reduces the burden of grid generation for various shapes. 

The steps followed in the present numerical methodology is given as follows 

• Modeling, meshing, selection of boundary conditions and fluid/solid domain using 

GAMBIT 

• Exporting of mesh data in the neutral file format 

• Reading of mesh data in ASCII format 

• Allocation of suitable boundary conditions for boundary nodes 

• Solving the integral form of governing equation (Eqn. (4.1)) using collocated grid based 

finite volume approach. 

• Solving of the algebraic equations using the Gauss-Seidel iterative method 

• Check for the convergence criteria 

• Plotting of the obtained results using post processing software (TEC PLOT) 

 

4.2.3. Grid Generation and Reading 

As the objective of the present study is to check the robustness and validity of the adopted 

numerical methodology, non-uniform grids with different aspect ratios are taken. Grid 

independent studies have been performed and made sure the results are independent of 

computational grid. The grid has been generated for the considered various domains and is shown 

in Fig. 4.4. Fig. 4.4 (a) provides a non-uniform grid for a square domain whereas Figs. 4.4 (b) – 

(e) provides the employed grid for non – orthogonal geometries. It may be noted that in this 

approach instead of writing code for mesh generation, a code has been developed to link the data 
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from GAMBIT to the developed Finite Volume code. The limitation of the considered approach 

is that the mesh should be of quadrilateral type only.  

 

Fig. 4.4. Grid employed for various domains with non uniform grid (a) 60×80, (b) 50×70,        

(c) 50×60, (d) 60×80 and (e) 60×80. 
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4.2.4. Results and Discussion 

The results thus obtained by solving the heat transport-diffusion equation with Dirichlet 

condition are shown in Fig. 4.5. To check the validity of the present numerical methodology, the 

considered various geometries are also solved using commercial CFD code ANSYS Fluent.     

Fig. 4.5 provides the isotherms which give a qualitative comparison of results. The left side of 

Fig. 4.5 gives the isotherms obtained from the present study and right side from ANSYS Fluent. 

In order to further check the validity of the present code(s), the quantitative comparison of the 

results has been carried out with ANSYS Fluent by plotting mid plane temperature profile and is 

shown in Fig.4.6. Fig. 4.5 (a) shows the temperature contours for a square domain. Due to the 

maximum temperature at the bottom wall and minimum temperature at the left wall the 

temperature gradients are observed to be more near the bottom and left walls when compared to 

the rest of the domain. Fig. 4.5 (b) shows the temperature contours for a trapezoidal cross section. 

The thermal transport in the skewed domain is simulated and is provided in Fig. 4.5(c). Further to  
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Present Study                                                                           Commercial CFD code 

 

Fig 4.5. Comparison of isotherms with commercial CFD code (ANSYS Fluent) 

 

analyze the thermal transport in domains with curvature, isotherms have been plotted for these 

geometries and provided in Figs. 4.5 (d) - (e). From Figs. 4.5 and 4.6 it may be noted that the 

results obtained from the present numerical methodology exactly matched with the results 

obtained from a commercial CFD package ANSYS Fluent. 
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Fig. 4.6. Comparison of mid plane temperature profile with commercial CFD code (ANSYS 

Fluent) 
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4.3. VISUALIZATION OF ENERGY TRANSPORT IN 2-D SOLID 

GEOMETRIES 

4.3.1. Physical Domain and Mathematical Formulation 

Various computational solid domains with their boundary conditions are shown in Fig. 

4.7(a)–(e). The considered computational solid domains are of height H and width L. The side 

walls are maintained at constant temperature 200K (Tc) and the bottom is maintained at constant 

temperature 300K (Th). The top boundary of the geometries is thermally insulated. 

 

Fig. 4.7. Schematic diagram of the computational solid domains with the boundary 

condition 

The diffusion and heatline equations to analyze the energy transport for the above 2D 

domains Figs. 4.7 (a)-(e) can be given as follows. 

Diffusion equation: 

∫
∂

∂x
(k

∂T

∂x
)

∆V
dxdy + ∫

∂

∂y
(k

∂T

∂y
)

∆V
dxdy = 0                     (4.7) 
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Heat function equation:  

∫
∂

∂x
(

∂H

∂x
)

∆V
dxdy + ∫

∂

∂y
(

∂H

∂y
)

∆V
dxdy = 0           (4.8) 

The following details given in Eqns. (4.9 – 4.14) can be taken to attain Eqn. (4.8). 

The steady energy conservation equation without source term (Costa (2006)) can be given as 

∂

∂x
[ ρfucp(T − T0) − (k

∂T

∂x
)] +

∂

∂y
[ ρfvcp(T − T0) − (k

∂T

∂y
)]=0                                              (4.9) 

The net flow of energy in x-direction: 

∂H

∂y
= ρfCPu(T − T0) − k

∂T

∂x
 

                                                              (4.10) 

The net flow of energy in y-direction: 

−
∂H

∂x
= ρfCPv(T − T0) − k

∂T

∂y
 

                                                              (4.11) 

As there is no flow (u = v =0) the Eqns. (4.10 and 4.11) reduce to Eqns. (4.12 and 4.13). 

Therefore, the heat lines become identical to the heat flux lines which is used to visualize the 

study of heat conduction phenomena.  

The net flow of energy in x-direction: 

∂H

∂x
= −k

∂T

∂y
 

                                                              (4.12) 

The net flow of energy in y-direction: 

−
∂H

∂y
= −k

∂T

∂x
 

                                                              (4.13) 

Differentiating Eqn. (4.12) with respective to x and Eqn. (4.13) with y and by adding the 

equations, Eqn. (4.14) can be obtained 

∂2H

∂x2
+

∂2H

∂y2
= 0 

                                                              (4.14) 
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The Eqns. (4.7- 4.8) can be converted to non- dimensional form by using the following non-

dimensional parameters. 

θ =
T−Tc

Th−Tc
; Π =

H

(Th−Tc)k
; x∗ =

x

L
; y∗ =

y

H
; 

The non- Dimensional form of governing equations thus obtained for diffusion and heat function 

can be given as  

∂2θ

∂x∗2
+

∂2θ

∂y∗2
= 0 

      (4.15) 

∂2Π

∂x∗2
+

∂2Π

∂y∗2
= 0 

      (4.16) 

For sake of convenience ‘*’ is not given in the following integral form of equations. 

∫
∂

∂x
(

∂θ

∂x
)

∆V
dxdy + ∫

∂

∂y
(

∂θ

∂y
)

∆V
dxdy = 0                               (4.17) 

∫
∂

∂x
(

∂Π

∂x
)

∆V
dxdy + ∫

∂

∂y
(

∂Π

∂y
)

∆V
dxdy = 0                               (4.18) 

The boundary conditions for Eqn. (4.17) can be referred from Fig. 4.7 and for Eqn. (4.18) (i.e. for 

heat function) can be given as  

A reference value of Π(0, H) = 0   is assumed as the top left corner 

Adiabatic top wall:y = H; 0 < x ≤ L; 

Π(x, H) = Π(0, H) − ∫ −
∂θ

∂y
|

y=H
dx

L

0
= 0          (4.19) 

Cold left wall:x = 0; H > y ≥ 0; 

Π(0, y) = Π(x, H) − ∫ −
∂θ

∂x
|

x=0
dy

H

0
          (4.20) 

Cold right wall: x = L; H > y ≥ 0;  

Π(L, y) = Π(x, H) − ∫ −
∂θ

∂x
|

x=L
dy

H

0
          (4.21) 

Bottom hot wall: y = 0; 0 < 𝑥 ≤ L 

Π(x, 0) = Π(0, y) + ∫ −
∂θ

∂y
|

y=0
dx

L

0
          (4.22) 
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Where x and y are the distances measured along with the horizontal and vertical directions, 

respectively; θ: dimensionless temperature; Π: dimensionless heat function. 

4.3.2. Validation of Code and Computation 

To check the robustness of the present numerical methodology, the comparison of the 

results has been carried out with ANSYS Fluent by plotting isotherms and mid plane temperature 

profile and is shown in Fig.4.8. (a) - (b). Also, the heatline from the present study are compared 

with the benchmark solution of Basak and Roy (2008) and is shown in Fig. 4.9.   

 
(a) 

 

(c) 

Fig. 4.8. Comparison of isotherms for (a) present study (left), ANSYS fluent (right) and     

(b) mid plane temperature profile with commercial CFD code 
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 Present Study                                                        Basak and Roy (2008) 

 

Fig. 4.9. Comparison of heatlines for the present study and Basak and Roy (2008) in 

conduction dominant region for Ra=103  

4.3.3. Results and Discussion 

In present work instead of writing code for mesh generation, the grid has been generated 

by using meshing software GAMBIT. The constraint of the developed code is limited to a 

quadrilateral grid. Grid independent studies have been performed and made sure the results are 

independent of computational grid. Grid employed for considered various domains is shown in 

Fig. 4.4 (a-e). The isotherms and heatlines thus obtained by solving the energy transport equation 

for the various shapes are shown in Fig. 4.10. The left side of Fig. 4.10 shows the isotherms and 

the right side shows the heatlines. Based on the isotherm shown in Fig. 4.10 it may be noted that 

at the bottom surface where hot and cold wall intersect computational singularities are observed. 

The heatlines showed in Fig. 4.10 (right) clearly indicate the heat flow from the bottom wall to 

the vertical cold wall. Also, it may be noted that there is no flow of heat from the bottom hot wall 

to top adiabatic wall.  It is to be noted that the dense heatlines indicate higher heat-transfer rates 

whereas, the courser heatlines indicate lower heat transfer rate. 
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Isotherms                                                                          Heatlines 

Fig. 4.10. Isotherms (left) and heatlines (right) for different domains 

4.4. VISUALIZATION OF ENERGY TRANSPORT IN VARIOUS SHAPES 

WITH DIFFERENTIALLY HEATED WALLS 

4.4.1. Problem Definition and Mathematical Formulation 

The computational solid domains with boundary conditions considered in the present 

study are shown in Fig. 4.11. It consists of two-dimensional computational solid domains of 

dimensions L×H. The left side wall is maintained at constant temperature 300K (Tc) and serves as 

a heat sink, and the bottom centre wall (L/2) is maintained at constant temperature 400K (Th) and 

serve as a heat source. Other boundaries of the geometries are thermally insulated. 
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Fig. 4.11. Computational solid domains with the boundary conditions 
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The non-Dimensional form of governing equations for diffusion and heat function are given in 

Eqns. (4.17-4.18). The boundary conditions for diffusion equation can be referred from Fig. 4.11. 

The boundary conditions for heat function ‘Π’ at various junction points are as follows. 

A reference point, 𝛱(0, 𝐻) = 0 is taken at the top left corner  

Adiabatic top wall:𝑦 = 𝐻; 0 < 𝑥 ≤ 𝐿; 

Π(x, H) = Π(0, H) − ∫ −
∂θ

∂y
|

y=H
dx

L

0
= 0          (4.23) 

Cold left wall:𝑥 = 0; 𝐻 > 𝑦 ≥ 0; 

Π(0, y) = Π(x, H) − ∫ −
∂θ

∂x
|

x=0
dy

H

0
                                    (4.24) 

Adiabatic right wall: 𝑥 = 𝐿; 𝐻 > 𝑦 ≥ 0;  

𝛱(𝐿, 𝑦) = 𝛱(𝑥, 𝐻) − ∫ −
𝜕θ

𝜕𝑥
|

𝑥=𝐿
𝑑𝑦

𝐻

0
                                            (4.25) 

Adiabatic bottom wall: 𝑦 = 0; 0 < 𝑥𝑎 ≤ 𝐿 4;⁄  

𝛱(𝑥𝑎, 0) = 𝛱(0, 𝑦) + ∫ −
𝜕θ

𝜕𝑦
|

𝑦=0
𝑑𝑥

𝐿 4⁄

0
                                (4.26) 

Bottom middle portion hot: 𝑦 = 0; 𝐿 4⁄ < 𝑥𝑏 < 3𝐿 4⁄ ; 

𝛱(𝑥𝑏 , 0) = 𝛱(𝑥𝑎, 0) + ∫ −
𝜕θ

𝜕𝑦
|

𝑦=0
𝑑𝑥

3𝐿 4⁄

𝐿 4⁄
                                           (4.27) 

Adiabatic bottom wall: 𝑦 = 0; 3𝐿 4⁄ < 𝑥𝑐 ≤ 𝐿 

𝛱(𝑥𝑐, 0) = 𝛱(𝑥𝑏 , 0) + ∫ −
𝜕θ

𝜕𝑦
|

𝑦=0
𝑑𝑥

𝐿

3𝐿 4⁄
                                           (4.28) 

4.4.2. Validation 

Before performing the validation and parametric investigation grid independent studies 

have been performed and made sure the results are independent of computational grid.  Grid 

employed for considered various domains in Fig. 4.11 is (a) non-uniform grid (60×80),  
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(a) 

 

 

(b) 

Fig.4.12. Comparison of isotherms for (a) present study (left), ANSYS fluent (right) and    

(b)  mid plane temperature profile with a commercial CFD code. 

 

(b) non-uniform grid (40×70), (c) non-uniform grid (50×60), (d) uniform grid (80×80) and        

(e) uniform grid (80×80). To test the validity of the present numerical methodology the results 

pertaining to temperature distribution with discrete heat source for non-orthogonal geometries has 

been compared with commercial code ANSYS Fluent and is shown in Fig. 4.12. From             

Fig. 4.12 (a) gives isotherms from the present study and commercial CFD code ANSYS Fluent 

and (b) provides a quantitative comparison with ANSYS fluent by plotting mid plane temperature 
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profile. Based on the above two comparisons it may be noted that the results of present numerical 

methodology is in good agreement with the results of commercial package ANSYS Fluent.     

Fig. 4.13 illustrates isotherms and heatlines contours for the computational domain Fig. 4.11(e). 

Basak and Roy (2008) reported that in conduction dominant regime the isotherms and heatlines 

are normal to each other. Based on the details provided in Figs. (4.12- 4.13) it is evident that the 

results obtained from the present numerical methodology agrees with the literature. 

 

Fig. 4.13. Isotherms (         ) and heatlines (- - -) showing normal to each other 

4.4.3. Results and Discussion 

The left side of Fig. 4.14 shows the isotherms and the right side shows the heatlines for 

the domains shown in Fig 4.11. Based on the magnitude of isotherms it can be noted that the 

temperature is maximum at the bottom wall and is distributed towards the left cold wall. Better 

insight can be noted from the heatlines plotted towards the right side of Fig. 4.14. It may be 

observed that irrespective of the domain the heatlines are oriented from the bottom hot wall 

towards the left wall which clearly specifies the direction of heat flow. Based on the magnitude of 

heatlines it can be noted that the thermal transport is more towards the bottom portion and 

gradually reduced when moved towards the upper and right portions of the cavity due to its 

adiabatic nature. 

 



64 

 

 



65 

 

 

Isotherms                                                                   Heatlines 

Fig. 4.14 Isotherms (left) and heatlines (right) for different domains 

 

4.5. CONCLUSIONS 

The in-house numerical code has been developed to import grid data from the meshing 

software GAMBIT. A collocated grid based in-house solver is developed for the visualization of 

thermal transport. The governing equations are discretized using finite volume approach on a 

Cartesian coordinate system. Results are presented in terms of isotherms, midplane temperature 

profile and heatlines for the considered geometries. The results thus obtained are rigorously 

compared with commercial CFD code ANSYS Fluent and heatlines validated with benchmark 

data. The study deals with diffusion based heat transport where the heatlines are observed to be 



66 

 

normal to the isotherms. Contours for isotherms are plotted to visualize the temperature 

distribution and heatlines are plotted to assess the energy distribution for the geometries. 

Based on the heatlines, it can be concluded that the heatline approach can help for the 

efficient design of energy systems. The present numerical methodology can be extended for the 

analysis of thermal hydraulics in various domains. 

4.6 CLOSURE 

In this chapter, the results are presented in terms of isotherms and heatlines for various 

shapes to analyze the thermal transport. The present numerical methodology can be extended for 

the analysis of thermal hydraulics in porous media. The next chapter will deal with the 

investigation of thermal transport for two-dimensional solid domains with multiple discrete heat 

sources at the bottom wall. 
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CHAPTER 5 

HEATLINE VISUALIZATION OF THERMAL TRANSPORT IN 

VARIOUS SOLID DOMAINS WITH DISCRETE HEAT 

SOURCES AT THE BOTTOM WALL 

 

5.1. INTRODUCTION 

In this study five different domains viz. square, trapezoidal, skewed, S-curve and H-curve 

with discrete heat sources have been considered and the thermal conductivity has been varied 

from 0.25 to 10 W/mK. The applications include disposal of nuclear wastes, electronic circuits, 

geothermal areas, food processing industries and cooling of electronic components (Alam et al. 

(2016); Bondarenko et al. (2019); Krishna et al. (2009); Saravanan et al. (2018); Triveni and 

Panua (2017)). A thorough understanding of thermal transport in various shapes with a discrete 

heat source is essential in the design of the above equipment. The concept of Bejan’s heatline 

visualization has been considered for the analysis of thermal transport. The heatlines along with 

isotherms are expected to provide better insight for the understanding of thermal transport in 

considered various shapes. 

From the earlier works, it can be inferred that several numerical and analytical approaches 

were adopted for the understanding of heat transport in various shapes. But the analysis of 

thermal transport with discrete heat sources for various domains in terms of heatlines is scarce. 

Therefore, the present study aims to analyze in terms of isotherms and heatlines for better insight 

of thermal transport in these domains. 

5.2. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION 

The computational domains and boundary conditions considered in the present study are 

shown in Figs. 5.1. (a)– (e). It consists of two-dimensional geometries of dimensions L×L1. The 

side walls are maintained at constant temperature 300K (Tc) and serve as a heat sink, two discrete 

heat sources are located at the bottom wall (L/4) and are maintained at constant heat flux 100 
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W/m2(q1
and 200 W/m2 (q2 (׀׀

 which serve as heat sources (Rout et al. (2012)). Other boundaries (׀׀

of the geometries are thermally insulated. 

 

Fig. 5.1. Computational domains and boundary conditions  

The governing equations for heat conduction and heat function in the integral form are given in 

Eqns. (4.7) and (4.8). 

The boundary conditions for diffusion equation can be referred to Fig. 5.1 and for heatlines can 

be given as follows 

A reference point, 𝐻(0, 𝐿1) = 0 is taken at the top left corner  

Adiabatic top wall:𝑦 = 𝐿1; 0 < 𝑥 ≤ 𝐿; 

𝐻(𝑥, 𝐿1) = 𝐻(0, 𝐿1) − ∫ −𝑘
𝜕𝑇

𝜕𝑦
|

𝑦=𝐿1

𝑑𝑥
𝐿1

0
= 0           (5.1) 
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Cold left wall: 𝑥 = 0; 𝐿1 > 𝑦 ≥ 0; 

𝐻(0, 𝑦) = 𝐻(𝑥, 𝐿1) − ∫ − 𝑘
𝜕𝑇

𝜕𝑥
|

𝑥=0
𝑑𝑦

𝐿1

0
            (5.2) 

Cold right wall: 𝑥 = 𝐿;  𝐿1 > 𝑦 ≥ 0;  

𝐻(𝐿, 𝑦) = 𝐻(𝑥, 𝐿1) − ∫ − 𝑘
𝜕𝑇

𝜕𝑥
|

𝑥=𝐿
𝑑𝑦

𝐿1

0
                       (5.3) 

Adiabatic bottom wall: 𝑦 = 0; 0 < 𝑥𝑎 ≤ 𝐿 8;⁄  

𝐻(𝑥𝑎, 0) = 𝐻(0, 𝑦) + ∫ −𝑘
𝜕𝑇

𝜕𝑦
|

𝑦=0
𝑑𝑥

𝐿 8⁄

0
            (5.4) 

Bottom wall with heater (q1”): 𝑦 = 0; 𝐿 8⁄ < 𝑥𝑏 < 3𝐿 8⁄ ; 

𝐻(𝑥𝑏 , 0) = 𝐻(𝑥𝑎, 0) + ∫ 𝑞1
"  𝑑𝑥

3𝐿 8⁄

𝐿 8⁄
            (5.5) 

Adiabatic bottom wall: 𝑦 = 0;  3𝐿 8⁄ < 𝑥𝑐 ≤ 5𝐿 8⁄ ; 

𝐻(𝑥𝑐, 0) = 𝐻(𝑥𝑏 , 0) + ∫ − 𝑘
𝜕𝑇

𝜕𝑦
|

𝑦=0
𝑑𝑥

5𝐿 8⁄

3𝐿 8⁄
           (5.6) 

Bottom wall with heater (q2”): 𝑦 = 0;  5𝐿 8⁄ < 𝑥𝑑 ≤ 7𝐿 8⁄ ; 

𝐻(𝑥𝑑, 0) = 𝐻(𝑥𝑐 , 0) + ∫ 𝑞2
"   𝑑𝑥

7𝐿 8⁄

5𝐿 8⁄
            (5.7) 

Adiabatic bottom wall: 𝑦 = 0; 7𝐿 8⁄ < 𝑥𝑒 ≤ 𝐿 

𝐻(𝑥𝑒 , 0) = 𝐻(𝑥𝑑 , 0) + ∫ − 𝑘
𝜕𝑇

𝜕𝑦
|

𝑦=0
𝑑𝑥

𝐿

7𝐿 8⁄
           (5.8) 

5.3. SOLUTION METHODOLOGY 

The integral form of governing Eqns. (4.7 and 4.8) are discretized for non – orthogonal 

domains by using the finite volume method. Numerical work has been performed for the various 

domains using arbitrary quadrilateral mesh. Collocated grid arrangement is chosen which makes 

the terms in all the governing equations identical leading to simplified programming, minimized 

program storage and computational time.  In this study, the computational domain and its grid are 

generated in GAMBIT, and the data is exported in neutral file format. The code in C++ is 

implemented to read mesh data from GAMBIT and linked to the in-house finite volume method 

code for the thermal transport visualization. The set of governing equations Eqns. (4.7 and 4.8) 

obtained are solved using Gauss-Seidel iterative solver, and a convergence criterion of 10-8 is 

imposed to terminate the iterations. 
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Fig. 5.2. Flow chart for numerical methodology 

 

The steps considered in the present numerical methodology is provided as a flow chart and is 

shown in Fig. 5.2 and can be summarised as follows: 

• Modeling, meshing, selection of boundary conditions and fluid/solid domain using GAMBIT. 

• Exporting of mesh data in the neutral file format. 

• Reading the mesh data from GAMBIT by in-house developed C++ code. 

• Assigning  temperature and heat function conditions at boundary nodes 

• Initialization of temperature and heat function values for internal nodes. 

• Solving the integral form of governing equations Eqns. (4.7 and 4.8) based on collocated 

grid-based finite volume method. 

• The solution of algebraic equations is obtained by using the Gauss-Seidel iterative solver. 



71 

 

• Check for the convergence criterion (10-8). 

• Obtained results are exported to post-processing software in which contours have been 

plotted.   

 

5.4. GRID INDEPENDENCE AND VALIDATION 

Generation of the grid is an important part of the numerical analysis. A numerical code in 

C++ has been implemented to read a mesh from GAMBIT and linked to the in-house finite  

 

(a) 

 

(b) 

Fig. 5.3. a) Comparison of isotherms for ANSYS-Fluent (left), present study (right) and    

b) mid plane temperature profile with commercial CFD code 



72 

 

volume method code for the visualization of thermal transport. Grid independence has been 

carried out by considering the midplane temperature of the cavity. It is observed that the 

maximum percentage variation for temperature values between grid sizes 80×80 and 120×120 is  

less than 1%. Therefore, a grid size of 80 × 80 has been considered for the present study. The 

computational domain consists of 80 × 80 cells with 20 grid points each, on two discrete heat 

sources. The thermal conductivity (k) of the computational solid domains is varied between    

0.25 W/m K and 10 W/m K. The left-hand side of Fig.5.3(a) gives isotherms from commercial 

CFD code ANSYS Fluent and the right-hand side gives isotherms from the present study         

Fig. 5.3(b) provides the quantitative comparison with ANSYS Fluent package by comparing the 

temperature profile at the midplane. 

 

Based on Fig. 5.3 it can be observed that the present numerical methodology is in good 

agreement with the commercial code ANSYS Fluent. Fig. 5.4 shows the contours for isotherms 

and heatlines for the computational domain Fig.5.1 (d). Basak et al. (2008) reported that in 

conduction dominant regime, the isotherms and heatlines are normal to each other which can be 

observed from Fig. 5.4. Based on Figs. 5.3 and 5.4 it can be concluded that the present numerical 

methodology is validated and is in agreement with the literature. 

 

Fig. 5.4. Comparison of isotherms (         ) and heatlines (- - -) 
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5.5. RESULTS AND DISCUSSION 

The isotherms (left), and heatlines (right) are presented in Fig. 5.5 (a)–(e) subjected to two 

distinct heat sources at the bottom wall in the presence of cold side walls and insulated at the 

remaining boundaries. The thermal conductivity considered for the solid domains shown in       

Fig. 5.6 is 0.25 W/m K. Based on the isotherms it may be noted that the magnitude of the 

isotherms is high at the right bottom portion of the geometries due to higher heat flux                

i.e. 200 W/m2 (q2
 .and observed to decrease as they move towards the cold side walls i.e 300 K (׀׀

Also, from the isotherms shown in Fig. 5.5 (left) it may also be observed that they are slightly 

compressed towards the right bottom corner when compared to the left bottom portion of the 

cavity. This phenomenon can be explained due to the position of heat flux (200 W/m2) with a 

higher magnitude, which is allocated towards the right bottom portion of the cavity. This         

200 W/m2 magnitude heat flux leads to the formation of a hot spot with an isotherm with the 

highest value when compared to rest of the cavity. The heat from the discrete heat sources has to 

be dissipated towards the cold walls which are maintained at 300 K. As the temperature gradient  
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                         Isotherms                                                                    Heatlines  

Fig. 5.5. Isotherms (left) and heatlines (right) for different various domains (a) Square 

(b) Trapezoidal (c) Skewed (d) S curve (e) H curve at k= 0.25 W/m K 

is more between the right portion of the heat source and cold wall, the isotherms can be observed 

to be compressed towards the right bottom of the domain. The maximum hot spot temperature for 

the considered geometries with thermal conductivity 0.25 W/mK is noted at the heat source q2
 ׀׀

(200 W/m2) placed at the bottom right portion of the cavity. The maximum temperatures 
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observed are 443 K (square), 437 K (trapezoidal), 439 K (skewed), 436 K (S-curve) and 439 K 

(H-curve) geometries. This behavior clearly indicates the dependence of geometry configuration 

on thermal transport. 

The heatlines are plotted by assuming the reference point, H=0 at the top left of the 

adiabatic surface for the geometries shown in Fig. 5.1. Based on the heatlines shown in Fig. 5.5 

(right) the heatlines move from discrete heat sources to the cold walls. As the heatlines provide 

the direction of heat flow, the behavior of heatlines shown in Fig. 5.5. (a-e) indicate the heat 

transport from discrete heat sources to cold walls. Also, as heat cannot dissipate through the 

adiabatic walls due to which the heatlines may be noted to be parallel to the adiabatic surfaces. In 

the present study, the sign convention is based on the direction of heat flow ‘H’ from the hot to 

cold walls. The positive sign of ‘H’ denotes clockwise heat flow and the anti clockwise heat flow 

is represented by a negative sign of ‘H’. It can be noted that the magnitude of heatlines at right 

wall signifies higher heat transfer rates when compared to rest of the domain. Also, the 

magnitude of heat function decreases from bottom heat flux portion to the central vertical axis 

signifying less heat transfer at that zone. 

 

Fig. 5.6 (a-c) illustrates isotherms and heatlines for ‘S’ curve geometry with the variation 

of thermal conductivity (k = 0.5, 1 and 10 W/mK) at a constant heat flux condition of 100 W/m2 

(q1
and 200 W/m2 (q2 (׀׀

 Fig. 5.5 (d) represents ‘S’ curve geometry with thermal conductivity  .(׀׀

of 0.25 W/mK. It can be noted that the magnitude of isotherms decreases with the increase in 

thermal conductivity. This can be inferred due to the increase in heat transfer due to the increase 

in thermal conductivity. The increase in heat transfer rate tends to decrease in the magnitude of 

isotherms.  Inline to the decrease in the magnitude of temperature, the magnitudes of the heatlines 

are also observed to decrease due to the decrease in a temperature gradient. Fig. 5.7 (a–e) shows 

the local temperature distribution along the axial direction at mid-plane drawn with the variation 

of thermal conductivity (k = 0.25, 0.5, 0.75, 1, 5 and 10 W/m K). Fig.5.7 (a) and (c) shows the 

magnitude of midplane temperature higher when compared to rest of domain due to variation in 

size of the cavity at a thermal conductivity of k = 0.25 W/m K. When the size of the domain 

increases for a material whose thermal conductivity is low the heat can not propagate and leads to 

higher magnitude for temperature. Also, with the thermal conductivity of k =5 and 10 W/m K, 
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the magnitude of constant temperature lines are almost the same for the considered geometries.  

For a thermal conductivity of 0.25 W/mK, the effective heat transport through the domain is less 

when compared to higher values of thermal conductivity. With the increase in thermal 

conductivity, the heat transfer rate is observed to increase.  

 

Fig. 5.6. Isotherms (left) and heatlines (right) for S curve geometry with the variation of 

thermal conductivity (k) (a) 0.5 W/m K (b) 1 W/m K and (c) 10 W/m K 
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Fig. 5.7. Variation of local temperature distribution vs axial direction along the board 

with different domains (a) Square, (b) Trapezoidal, (c) Skewed, (d) S curve, (e) H curve 
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The increase in heat transfer rate leads to a decrease in the magnitude of the midplane 

temperature. Based on Fig.5.7 it can be noted that with the increase in thermal conductivity from 

0.25 to 10 W/m K, the maximum temperature along the vertical midplane for the considered 

domains decreased by 22.65% (square), 20.90% (trapezoidal), 23.71% (skewed), 20.77% (S-

curve) and 21.35% (H-curve) geometries. 

5.6. CONCLUSIONS 

A numerical code in C++ has been implemented to read the mesh from GAMBIT and 

linked to the in-house finite volume method code for the visualization of thermal transport. 

Results are presented in terms of isotherms and heatlines for the considered geometries. The 

results thus obtained are compared with ANSYS Fluent. Contours for isotherms are plotted to 

visualize the temperature distribution and heatlines are plotted to assess the energy transport. The 

study could reveal that for a domain with lower thermal conductivity the magnitude of 

temperature increases with the increase in size. The geometry configuration is noted to influence 

the thermal transport. Based on results it can be observed that the visualization of heatlines 

provides a better insight of energy transport in domains with discrete heat sources. The study can 

provide insight for the thermal management of electronic components on various shaped circuit 

boards. 

5.7. CLOSURE 

The thermal transport for two-dimensional solid various shapes with two discrete heat 

sources at the bottom wall is discussed. The study could reveal that for a domain with lower 

thermal conductivity, the magnitude of temperature increases with the increase in size. The 

geometry configuration is noted to influence the thermal transport. The next chapter investigates 

the hydrodynamics for a lid-driven flow saturated with non-Darcy anisotropic porous media.  
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CHAPTER 6 

NUMERICAL INVESTIGATION OF HYDRODYNAMICS FOR A 

LID DRIVEN NON-DARCY ANISOTROPIC POROUS 

CAVITY 

 

6.1. INTRODUCTION 

The study of lid-driven flow in a porous cavity is not only of academic interest; several 

other applications include food processing and float glass production (Pilkington (1969)), 

analysis of ground water flows ((Osinov (2003); Krishna et al. (2008b)), packed-bed catalytic 

reactors (Oztop (2006)), geophysics, chemical engineering and binary alloy solidification             

(Haddad (2017); Nield and Bejan (2013)) etc. Generally, earthquakes are associated with soil 

liquefaction and ground failures. Liquefaction can be referred to the decrease in strength of the 

saturated cohesion less soil due to the increase in pore water pressure when subjected to shearing 

stresses. The study pertaining to shear driven flow for porous media can be of great help in the 

understanding of liquefaction. Vafai and Tien (1981) and Vafai and Kim (1995) employed a local 

volume averaging technique for porous media and presented a generalized non-Darcy (Brinkman-

Forchheimer extended Darcy) formulation. The importance of inertial effects and solid boundary 

were mentioned to be predominant for highly permeable porous media, high Prandtl number 

fluids and with large pressure gradients. 

Based on the literature review it is observed that the studies pertaining to shear driven 

porous cavity flows were limited to either isotropic porous media in Darcy/non-Darcy regime or 

anisotropic porous media in Darcy (tightly packed) regime. Also, the earlier studies could reveal 

that the anisotropy of the porous matrix could significantly influence transport phenomena 

(Krishna et al. (2008a); Krishna et al. (2009a); Hu et al. (2017)). To the best of the author's 

knowledge, the influence of anisotropic parameters of the porous matrix with the variation of lid 

velocity (Reynolds number), permeability (Darcy number) and porosity on hydrodynamics is yet 

to be investigated. Therefore, the present study aims to address the above parameters to 
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understand the flow behaviour for a lid-driven cavity which is impregnated with non-Darcy 

anisotropic porous media. 

6.2. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION 

A 2-D orthogonal cavity impregnated with anisotropic porous media with top lid moving 

at uniform velocity ‘U’ is considered and is shown in Fig. 6.1. The solid matrix of the porous 

media is assumed to be homogeneous, saturated with fluid and does not undergo deformation. 

The effect of anisotropy for the porous media has been considered by varying the principal axes 

inclination with respect to the gravity vector. The anisotropic properties of the porous medium 

have been varied in the non-Darcy regime. The influence of pertinent parameters viz. Darcy 

number (10-5 ≤ Da ≤10-2), porosity (0.3 and 0.6), permeability ratio (K*=0.1, 1 and 10), 

Forchheimer constants ratio (F*=1, 10 and 100) and principal axes inclination (θ=0o, 45o and 90o) 

have been considered to understand the hydrodynamics of the porous media. It may be noted that 

the formulation has been considered based on the pseudo-transient approach and the governing 

equations (Eqns. 6.1-6.11) pertaining to the present study are given as follows. 

 

Fig. 6.1. Computational domain  
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Mass balance:         

∂u

∂x
+

∂v

∂y
= 0 

(6.1) 

X- Momentum equation:  

ρ
f

ε
[
∂u

∂t
+

u

ε

∂u

∂x
+

v

ε

∂u

∂y
] =  −

∂P

∂x
+

μ
f

ε
(
∂2u

∂x2
+

∂2u

∂y2
) −

μ
f
u

K̿
− C̿ρ

f
u√u2 + v2 

(6.2) 

Y-Momentum equation: 

ρ
f

ε
[
∂v

∂t
+

u

ε

∂v

∂x
+

v

ε

∂v

∂y
] =  −

∂P

∂y
+

μ
f

ε
(
∂2v

∂x2
+

∂2v

∂y2
) −

μ
f
v

K̿
− C̿ρ

f
v√u2 + v2 

(6.3) 

Where   

K̿ = [
K1cos2θ + K2sin

2θ (K1 − K2)sinθ cosθ

(K1 − K2)sinθ cosθ K1sin
2θ + K2cos2θ

] 
(6.4) 

K∗ =
K1

K2
 

(6.5) 

C̿ = [
C1cos2θ + C2sin

2θ (C1 − C2)sinθ cosθ

(C1 − C2)sinθ cosθ C1sin
2θ+C2cos2θ

] 
(6.6) 

C1 =
F1

√K1

C2 =
F2

√K2

 
(6.7) 

                        F∗ =
F1

F2
 

(6.8) 

                       C∗ =
C1

C2
= 

F∗

√K∗
 

(6.9) 

By applying inverse to permeability tensor and by substituting K*=K1/K2, (Eqn. 6.4) can be 

reduced to 

K−1̿̿ ̿̿ ̿ =
1

K1
[

K∗sin2θ + cos2θ (1 − K∗)sinθ cosθ

(1 − K∗)sinθ cosθ K∗cos2θ + sin2θ
] 

(6.10) 

Similarly, by substituting (Eqns. 6.7 –6.9) in (Eqn. 6.6), (Eqn. 6.11) can be obtained 

C̿ =
F1

√K1

[
 
 
 
 cos2θ +

√K∗

F∗
sin2θ (1 −

√K∗

F∗
) sinθ cosθ

(1 −
√K∗

F∗
) sinθ cosθ

√K∗

F∗
cos2θ + sin2θ

]
 
 
 
 

 

(6.11) 
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The following non-dimensional parameters can be applied to convert Eqns. (6.1-6.3) to non-

dimensional form 

x∗ =
x

L
; y∗ =

y

L
; u∗ =

u

U
; v∗ =

v

U
;  Da =

K1

L2
; P∗ =

P

ρ
f
U2

; Re =  
ρUL

μ
f

; t∗ =
tU

L
 

(6.12) 

The non-dimensional form of governing equations thus obtained after substituting (Eqn. 6.12) is 

as follows. For the sake of convenience, the superscript ‘*’ has been removed   

  

∂u

∂x
+

∂v

∂y
= 0 

(6.13) 

  

[
1

ε

∂u

∂t
+

u

ε2

∂u

∂x
+

v

ε2

∂u

∂y
]

=
∂P

∂x
+

1

ε Re
(
∂2u

∂x2
+

∂2u

∂y2
)

−
1

Re Da
[u (cos2θ + K∗sin2θ)

+ v((1 − K∗) sinθ cosθ)]

−
F1

√Da
[u (cos2θ +

√K∗

F∗
sin2θ)

+ v((1 −
√K∗

F∗
) sinθ cosθ)]√u2 + v2 

(6.14) 

 



83 

 

[
1

ε

∂v

∂t
+

u

ε2

∂v

∂x
+

v

ε2

∂v

∂y
]

= −
∂P

∂y
+

1

ε Re
(
∂2v

∂x2
+

∂2v

∂y2
)

−
1

Re Da
[u((1 − K∗) sinθ cosθ)

+ v(K∗cos2θ + sin2θ)]–
F1

√Da
[u((1 −

√K∗

F∗
) sinθ cosθ)

+ v(
√K∗

F∗
cos2θ + sin2θ)]√u2 + v2 

(6.15) 

In the above Eqns. (6.14-6.15), F1≈0.55 ((Ward (1964); Krishna et al. (2008b))  

Stream function is defined by          

u =
∂ψ

∂y
;  v = −

∂ψ

∂x
   

(6.16) 

6.3. SOLUTION METHODOLOGY 

The discretization of the Eqns. (6.13–6.15) has been carried out by the finite volume method. 

Quadrilateral cells in collocated grid arrangement have been employed. Velocity nodes (for u and 

v velocity components) and pressure nodes as shown in Fig. 3.1 are placed at the centre of the 

cells. A non-uniform grid which is based on the cosine function as shown in Fig. 6.2 has been 

applied. The pressure-velocity coupling has been performed by implementing the SIMPLE 

algorithm. The convective terms are estimated by the first-order upwind scheme and the diffusive 

terms by the central difference. The cell face velocities are obtained by linear interpolation. The 

obtained algebraic system is solved by using the Gauss-Seidel iterative procedure. As given in 

Eqn. (6.17) once the values for velocities (u and v) attain less than 10-8 the iterative process gets 

terminated. 

∑ |𝛷𝑖,𝑗
𝑛 − 𝛷𝑖,𝑗

𝑛−1|𝑖,𝑗

∑ |𝛷𝑖,𝑗
𝑛 |𝑖,𝑗

< 10−8 
(6.17) 

Where 𝛷 refers to u and v variables  
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Fig. 6.2. Non-uniform grid (Cosine grid) 

6.4. GRID INDEPENDENCE AND VALIDATION 

The grid-independent study is very much necessary to ensure the correctness of the 

employed numerical methodology. Cosine grid as shown in Fig. 6.2 has been employed in the 

present study. The validation of the present numerical procedure is carried out by comparing with 

Ghia et al. (1982) , Guo and Zhao (2002)  and Krishna et al. (2008b). It is observed that the 

variation between the grid sizes of 61×61 and 81×81 is observed to be less than 1%. Therefore, a 

grid size of 61×61 has been employed for further investigation. Porosity can be defined as the 

ratio of void volume to total volume. If the porosity is tending to one (ε→1), the void volume 

tends to total volume. Also, permeability can be given as hydraulic conductivity of the porous 

media i.e. as the magnitude of permeability tends to a very high value the porous medium 

behaves as a fluid. The non-dimensional form of permeability Eqn. (6.12) can be given as Darcy 

number. So, the case where the Darcy number tends to a very high value (107) and porosity equal 

to 1, the porous media should behave as a fluid. To check the robustness of the present 

methodology, the porous media formulation has been tested by initially taking Darcy number as 

107 and porosity as 0.999. The obtained results are compared with Ghia et al. (1982) and are 

shown in Fig. 6.3 (a). 
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Fig. 6.3. Comparison of the present study (mid plane u and v velocities) with literature 

(Ghia et al. (1982); Guo and Zhao (2002); Krishna et al. (2008b)) 
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Also, when K*=1, θ=00 and F*=1 the porous media should be isotropic in nature. 

Therefore, the present anisotropic formulation can be boiled down to isotropic porous media by 

substituting the above parameters. The results thus obtained for isotropic porous media is shown 

in Fig. 6.3 (b-c). Based on Fig. 6.3 it can be noted that the present numerical formulation is in 

good agreement with the literature (Ghia et al. (1982); Guo and Zhao (2002); Krishna et al. 

(2008b)). 

6.5. RESULTS AND DISCUSSION 

The objective of the present study is to address the effect of anisotropic properties viz. 

permeability ratio (K*= 0.1, 1 and 10), principal axes inclination (θ= 0o – 90o) and Forchheimer 

constants ratio (F* = 1, 10 and 100) on the hydrodynamics for an anisotropic porous cavity with 

moving top lid. The Reynolds number considered are 10, 100 and 1000 and the parameters of the 

porous matrix such as Darcy number (10-5 ≤ Da ≤10-2) and porosity (ε = 0.3 and 0.6) have been 

varied. 

The influence of pertinent parameters has been analyzed by studying the behavior of 

streamlines and maximum stream function value (ψmax). The measurement of the volume flow 

rate can be given in terms of ψmax. Therefore, the value of ψmax is also considered. In the 

subsequent sections initially, the effect of Re, Da, and ε are discussed and later the influence of 

anisotropic properties (K*, F* and θ) on the flow behavior has been addressed. 

6.5.1. Effect of Reynolds number (Re):  

Fig. 6.4 and Table 6.1 provides the streamlines and ψmax with the variation of Re. 

Irrespective of Da, ε and K*, the ψmax can be noted to decrease with the increase in Reynolds 

number. With the Darcy numbers (Da) 10-2 and 10-3 the porous media can be classified under a 

non-Darcy regime where the influence of non-linear drag is significant (Krishna et al. (2008b)). 

Therefore, the behavior of the decrease in ψmax with the increase in Reynolds number can be 

inferred due to the influence of non-linear drag forces. Also, as the Reynolds number increases 

due to the increase in inertia for the fluid the vortex can be noted to move from top lid towards 

the downward portion of the cavity. 
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Fig. 6.4. Streamlines for θ=00, F*=1 (a) Re =100 (b) Re =1000 with Darcy number          

(solid line ε=0.3, dotted line ε=0.6) 
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Table 6.1. Variation of maximum stream function value with Re, Da, ε and K* for F* =1,     

θ = 0o 

Darcy 

Number 

(Da) 

K* 

The maximum Stream function value (ψmax) 

 Re =100  Re =1000 

ε = 0.3 ε = 0.6 ε = 0.3 ε = 0.6 

10-2 

0.1 0.0755 0.0566 0.0578 0.0367 

1 0.0679 0.0514 0.0486 0.0302 

10 0.0514 0.0407 0.0343 0.0234 

10-3 

0.1 0.0403 0.0284 0.0326 0.0167 

1 0.0351 0.0263 0.0257 0.0145 

10 0.0275 0.0216 0.0184 0.0126 

 

6.5.2. Effect of Darcy number (Da) 

As provided in Eqn. (6.12), Darcy number (Da) can be defined as K1/L
2 (permeability to 

reference length square) and is the non-dimensional form of permeability. From Fig. 6.4 and 

Table 6.1, the ψmax can be observed to increase with the increase of Darcy number. It may be  

 

Fig. 6.5. Variation of ψmax with Da and F* for Re = 100, K* = 0.1 and θ = 45° 
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noted that higher Darcy number represents higher hydraulic conductivity. At higher Darcy 

number (Da = 10-2) vortex strength is higher when compared to that of 10-3. A decreased trend for 

the ψmax with the decrease in Darcy number can be noted and can be seen in Fig. 6.5. This 

decreased trend is due to the decrease in hydraulic conductivity of the porous matrix. Hence, the 

vortex strength becomes weaker and flow velocity becomes less.  

6.5.3. Effect of Porosity (ε):  

The solid lines shown in Fig. 6.4 for streamlines represents ε=0.3 and dotted lines for ε=0.6. 

Variation can be observed between these two porosities for Da = 10-2 and 10-3. Also, from    

Table 6.1, a decrease in ψmax can be noted with the increase in porosity from 0.3 to 0.6. For a 

given Darcy number (permeability) the hydraulic conductivity remains fixed even with the 

variation of porosity. An increase in pore size with the increase in porosity leads to the decrease 

in pore velocity due to which the stream function value can be observed to decrease. The 

influence of porosity on Darcy number is shown in Fig. 6.5. It may be noted that with the 

decrease in Darcy number the effect of porosity decreases and nullifies at Da=10-5. 

6.5.4. Effect of Permeability Ratio (K*):  

The influence of permeability ratio (K*) with the variation of Reynolds number (Re=100 

and 1000), Darcy number (Da = 10-2 and 10-3) and porosity (ε = 0.3 and 0.6) on the flow behavior 

is shown in Fig. 6.4. Fig 6.4 (a) shows the streamlines for Re = 100 and Fig. 6.4 (b) for Re=1000. 

Also, the variation of the ψmax with K* for the above parameters are given in Table 6.1. Based on 

Eqns. (6.5 and 6.12) it can be noticed that the permeability ratio (K*) is defined as K1/K2 and 

Darcy number (Da) is given as K1/L
2. As Darcy number is given with regard to K1 which is 

assumed to be constant and the permeability K2 is varied in terms of K*. With θ = 0o the porous 

matrix becomes orthotropic in nature. When K* increases the permeability in the vertical 

direction (K2) can be observed to decrease. Hence, the increase in permeability ratio causes 

vortex strength to become weaker and causes the vortex to move towards the upper portion of the 

cavity.  

 

 



90 

 

Table 6.2. Variation of ψmax with Re, F*, ε, θ and K* for Da = 10-2 

K* 
Forchheimer 

ratio (F*) 

Angle of inclination 

(θ) 

The maximum Stream function value 

Re =10 Re =1000 

ε = 0.3 ε = 0.6 ε = 0.3 ε = 0.6 

 

 

 

0.1 

1 

0 0.0833 0.0731 0.0578 0.0367 

45 0.0838 0.0747 0.0555 0.0357 

90 0.0856 0.0776 0.0572 0.0398 

10 

0 0.0836 0.0734 0.0631 0.0418 

45 0.0842 0.0753 0.0587 0.0387 

90 0.0862 0.0785 0.0624 0.0461 

100 

0 0.0836 0.0734 0.0635 0.0424 

45 0.0842 0.0753 0.0592 0.0389 

90 0.0863 0.0786 0.0630 0.0469 

1 

1 

0 0.0772 0.0650 0.0486 0.0302 

45 0.0772 0.0650 0.0486 0.0302 

90 0.0772 0.0650 0.0486 0.0302 

10 

0 0.0776 0.0664 0.0598 0.0387 

45 0.0781 0.0671 0.0568 0.0371 

90 0.0786 0.0678 0.0593 0.0430 

100 

0 0.0777 0.0665 0.0614 0.0405 

45 0.0782 0.0672 0.0579 0.0381 

90 0.0787 0.0679 0.0611 0.0451 

10 

1 

0 0.0579 0.0480 0.0343 0.0234 

45 0.0511 0.0397 0.0352 0.0201 

90 0.0447 0.0340 0.0326 0.0167 

10 

0 0.0582 0.0482 0.0455 0.0295 

45 0.0518 0.0403 0.0463 0.0300 

90 0.0455 0.0347 0.0461 0.0307 

100 

0 0.0582 0.0483 0.0478 0.0311 

45 0.0518 0.0404 0.0479 0.0319 

90 0.0455 0.0348 0.0485 0.0341 
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At K* = 10, a secondary vortex can be noted at the bottom of the cavity for Re=100 with 

the decrease of Darcy number (i.e. from 10-2 to 10-3) which is not so for Re=1000. At Re=100 the 

inertia of the fluid could not overcome the resistance offered by the porous matrix. But with the 

increase of Reynolds number the fluid could overcome the resistance and move towards the 

bottom portions of the cavity. The combination of lower Darcy number and higher permeability 

ratio (Da = 10-3, K* = 10) make the vortex strength poor and lead to the formation of a secondary 

vortex. From Fig 6.4 (b) it can be noticed that for Re = 1000 and Da = 10-2 with the increase in 

K* the primary vortex from the centre of the cavity moves towards the upper right corner. As the 

vortex starts moving towards the right, the secondary vortex which is found at the bottom right 

corner for K*=0.1 starts diminishing with the increase in K* and disappears at K* = 10. With the 

increase in K* the influence of porosity can be noticed to reduce which can be empathized due to 

the decline in the magnitude of permeability in the vertical direction.  

Fig. 6.6 shows the variation of ψmax with K* and Da for Re = 100, θ = 450 and F* = 1. It 

may be noted that with the decrease in Da and with the increase in K*, the permeability decreases 

in the direction of K2 i.e. resistance offered by the porous matrix increases. Due to the decrease of 

permeability, the influence of porosity and the value of maximum stream function can be noticed 

to decrease. 

 

Fig. 6.6. Influence of permeability ratio (K*) on the ψmax with Da for Re = 100, θ = 450 and 

F*=1 
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6.5.5. Effect of Forchheimer constants ratio (F*) 

Fig. 6.7 shows the streamlines for Re=1000, Da= 10-2 and K*=0.1 with the variation of  

F* (1, 10, 100), θ (0o, 45o, 90o) and ε (0.3, 0.6). Also, Table 6.2 provides the variation of ψmax 

with Re, F*, ε, θ and K* for Da=10-2. Based on Eqn. (6.8), F*=F1/F2 and F1≈0.55 ((Ward (1964); 

Krishna et al. (2008b)) i.e. the value for F1 is fixed and with an increase in F* the non-linear drag 

in F2 direction decreases. As can be seen from Fig. 6.7, no significant variation in the trend for 

streamlines is observed with the variation of Forchheimer constants ratio (F*). Based on the 

maximum stream function values provided in Table 6.2, the effect of F* is more pronounced at 

Re=1000 when compared to that of Re=10. Also, for a given value of K*, the influence of F* can 

be noted to be more for ε = 0.3 when compared to that of 0.6. As F* represents the ratio of 

Forchheimer constants and its significance comes into picture when inertial forces are dominant. 

The increase in Reynolds number and a decrease in porosity for a Darcy number leads to an 

increase in velocity due to which non-linear drag forces become predominant in the non-Darcy 

regime. 

 

Fig. 6.7. Streamlines for Re=1000, Da=10-2 and K*=0.1(solid line ε=0.3, dotted line ε=0.6) 
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6.5.6. Effect of Principal Axes Inclination (θ) 

The streamlines with the variation of θ(0o, 45o, 90o), ε(0.3, 0.6), F*(1, 10, 100) for 

K*=0.1, Da=10-2 and Re=1000 is shown in Fig. 6.7. Also, Table 6.2 provides the maximum 

stream function values with the variation of K*(0.1, 1, 10), θ (0o, 45o, 90o), ε (0.3, 0.6), F*(1, 10, 

100) and Re (10, 1000) for Da=10-2. Based on Eqns. (6.5 and 6.12), for K*<1 the permeability in 

the direction of K2 will be greater than K1 and reverse when K*>1. It can be noticed that as ‘θ’ 

increases, the K1 moves towards the direction of K2 (Fig. 6.1). For K*= 0.1 as K2>K1 the 

permeability starts decreasing with the increase of ‘θ’ in the vertical direction and simultaneously 

increase in the horizontal direction. From the streamlines shown in Fig. 6.7, the vortex can be 

noted to move towards the right portion of the lid. The reason for this behavior can be inferred to 

the above explanation of permeability variation in horizontal and vertical directions. In the 

subsequent sections, the effect of ‘θ’ on the hydrodynamics with the change of Reynolds number 

is given. 

Re=10 

Based on Table 6.2 it is interesting to note that with the variation of ‘θ’ for Re=10 when 

K*=0.1 an increasing, and with K*=10 decreasing trends are followed for ψmax. The reason for 

this behavior can be given due to the variation of permeability in horizontal and vertical 

directions with ‘θ’. For K*=0.1 as K2=K1/K* the magnitude of permeability in K2 direction is 10 

times more to that of K1. When θ=0o the permeability in the vertical direction will be more to that 

of horizontal. But with the increase of ‘θ’, the permeability in the horizontal direction starts to 

increase. This increase in permeability leads to the decrease in obstruction for the circulation of 

the fluid which results in an increase of ψmax. When K*= 10, the magnitude of K2 is 10 times less 

to that of K1. With the increase of ‘θ’ as the permeability decreases in the direction of K2 the 

maximum stream function value can be noted to decrease.  

Re=100 

Fig. 6.8 provides the effect of principal axes inclination (θ) on ψmax with the variation of 

K* and ε for Re=100, Da=10-3, and F*=1. The maximum stream function value for different 

values of K* (0.1, 1, 10) with the increase of ‘θ’ follow a similar trend as observed for Re=10. 

The increase of permeability for K*=0.1 and decrease of permeability for K*=10 in K2 direction 

as discussed for Re=10 can be referred to this behavior. As K*=1 refers to the isotropic porous 
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media, no variation in ψmax is observed. Considerable variation with a similar trend can be noted 

in ψmax with porosity. The decrease in ψmax with the increase in porosity can be inferred to the 

decrease in pore velocity.   

 

Fig. 6.8. Effect of principal axes inclination (θ) on ψmax with K* for Re =100, Da=10-3 and 

F*= 1 

Re=1000 

As can be noticed from Table 6.2, the behavior of the maximum stream function value for 

Re=1000 is not in-line with Re=10 and 100. For K*=0.1, as ‘θ’ is increased from 0o – 90o at first 

a decreasing and then increasing trend can be noted, whereas for K*=10 an increasing and the 

decreasing trend is followed. It can be noted that Da=10-2 comes under a non-Darcy regime 

where the influence of non-linear drag forces are significant. This reason can be given for the 

decrease in the ψmax from Re=10 to 1000. From Fig. 6.1, it can be seen that for K*=0.1 with θ=0o 

the magnitude of permeability is high in the vertical direction, and in the horizontal direction 

when θ=90o. At θ=45o the porous matrix attains a higher magnitude for permeability inclined at 

an angle of 45o to that of vertical and horizontal directions. Due to this behavior of the matrix 

structure, the fluid will be constrained to move at an angle which results in the reduction of 

vortex strength by which ψmax reduces. At K*=10, a decrease in permeability (K2) can be noted. 

When θ=0o the obstruction for flow can be noticed to be more in the vertical direction, and in the 
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horizontal direction with θ=90o. But for θ=45o as this restriction gets reduced in horizontal and 

vertical directions the ψmax can be observed to be high. 

6.6. CONCLUSIONS 

In the present study, lid-driven flow in orthogonal cavity impregnated with anisotropic 

porous media is investigated numerically by using generalized non-Darcy formulation. The 

collocated grid based finite volume approach has been adopted to solve the governing equations. 

The parameters such as Reynolds number (10, 100, 1000), Darcy number (10-5≤ Da≤10-2), 

porosity (ε = 0.3 and 0.6), permeability ratio (K*=0.1, 1 and 10), Forchheimer constants ratio 

(F*=1, 10 and 100) and principal axes inclination (θ=0o, 45o and 90o) have been addressed and the 

following conclusions can be given. 

• At higher Darcy numbers a decrease of maximum stream function value is noticed with the 

increase of Reynolds number due to the influence of non-linear drag forces. 

• For a given Darcy number (permeability) the decrease in porosity leads to an increase in 

maximum stream function value due to the increase in pore velocity. 

• The effect of porosity and Forchheimer constants ratio is observed to be insignificant at a 

Darcy number of 10-5. 

• The vortex is observed to move towards the upper portion (i.e. towards the lid) as the 

permeability decreases in the vertical direction. 

• The influence of the permeability ratio (K*) and principal axes inclination (θ) are observed to 

play a significant role on hydrodynamics at higher Darcy number (loosely packed porous 

media). But observed to decrease with the reduction of Darcy number. 

 

6.7. CLOSURE 

In this study, lid-driven flow in orthogonal cavity impregnated with anisotropic porous 

media is investigated by using generalized non-Darcy formulation. The influence of the 

permeability ratio (K*) and principal axes inclination (θ) are observed to play a significant role 

on hydrodynamics at higher Darcy number (loosely packed porous media). But observed to 

decrease with the reduction of Darcy number. The next chapter deals with the numerical analysis 

of steady-state natural convection inside a square cavity filled with anisotropic porous media. 
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CHAPTER 7 

HEATLINE VISUALIZATION OF BUOYANCY INDUCED 

FLOWS FOR NON-DARCY ANISOTROPIC POROUS MEDIA 

 

7.1. INTRODUCTION 

Fluid flow and heat transfer studies related to free convection in a saturated porous media 

are being carried out due to its important applications which include geothermal systems (Vafai 

and Tien (1981)), nuclear reactor safety (Ettefagh et al. (1991)), ground water flow modeling 

(Lage (1993)), solar power collectors (Saeid and Pop (2005)), food processing (Krishna et al. 

(2008b)), compact heat exchangers (Swamy et al. (2013) and Sheremet et al. (2015)). It can be 

noted that most of the real life problems such as extraction of metal alloys from ores, nuclear fuel 

rod bundle, heat exchanger tubes, geothermal processes etc. are anisotropic in nature.  Hence, it is 

necessary to study the effect of anisotropic properties of the porous medium on the fluid flow and 

heat transport behavior. Mamou et al. (1998)  investigated the problem of natural convection in a 

cavity filled with anisotropic porous medium. It was reported that permeability ratio and principal 

axes orientation have more influence on the system stability. 

The heatline approach can be used to analyze the performance of thermal systems by 

visualizing the direction and intensity of heat flow. Visualization of heat flow using heat lines 

was introduced by Kimura and Bejan (1983). Waheed (2009) numerically studied the natural 

convection in a square cavity filled with saturated porous medium using heat function 

formulation solved by finite-difference method. It was concluded that, heatlines and heat function 

enhance the understanding of distribution of heat in the design of equipment. 

Based on the literature review it can be noted that the concept of heatline visualization can 

help in great detail for the understanding of thermal transport in various structures. But the 

studies pertaining to heatlines for natural convection filled with non – Darcy anisotropic porous 

media is yet to appear in literature. Therefore, the present work is aimed to analyze the thermal 
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hydraulics in a square cavity filled with anisotropic non-Darcy porous medium with the concept 

of heatline visualization. 

7.2.  MODEL DESCRIPTION 

Fig. 7.1 shows the schematic diagram of a two-dimensional square enclosure filled with 

anisotropic fluid-saturated porous medium. It is assumed that the solid matrix is homogeneous. 

No slip condition is applied at the walls. The fluid confined within the porous medium is treated 

as Newtonian and incompressible. Boussinesq approximation is employed to account for the 

density variation with respect to temperature. The flow is considered as laminar. Also, a second 

order velocity term is incorporated in the momentum equations to model the inertia effect. This is 

more important to analyze convective boundary layer flow over the surface of a body embedded 

in a high porosity media in non-Darcy regime. The influence of anisotropic parameters           

(K*, θ, F*, k*) are studied by varying Ra, Da, ε and Pr.    

 

Fig. 7.1. Problem geometry with the boundary condition 



98 

 

7.3. GOVERNING EQUATIONS 

The governing equations for buoyancy induced flows for non-Darcy anisotropic porous 

media are given in Eqns. (7.1 – 7.4) and for heat function are given in Eqns. (7.11 – 7.12). To 

simplify the analysis, the following assumptions are made 

• Properties of the fluid and the porous medium are assumed to be constant 

• The cavity walls are impermeable 

• Boussinesq approximation is considered to be valid 
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Where   
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K1cos2θ + K2sin
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By applying inverse to permeability tensor and by substituting K*=K1/K2, Eqn. 5 can be reduced 

to 

K−1̿̿ ̿̿ ̿ =
1

K1
[

K∗sin2θ + cos2θ (1 − K∗)sinθ cosθ

(1 − K∗)sinθ cosθ K∗cos2θ + sin2θ
] 

(7.9) 
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Heat function equation in x and y directions are given by  
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Where ‘H’ is the dimensional heat function.  

The following non-dimensional variables are used to non-dimensionalize the governing equations 
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Thus, Eqns. (7.1) – (7.4) can be written in non-dimensional form as below. For the sake of 

convenience ‘*’ is not provided. 
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            (7.17) 

F1≈0.55 ((Ward (1964); Krishna et al. (2008b)) is considered in Eqns. (7.15) - (7.16).    

Boundary conditions with respect to the geometry shown in Fig. 7.1 are as follows 

At the left (hot) wall 

u = 0, v = 0, θ = 1, x = 0,   0 <  y <  1     (7.18) 

At the right (cold) wall 

u = 0, v = 0, θ = 0, x = 1,   0 < y <  1                          (7.19) 

At the bottom and top walls 

u = 0;  v = 0; 
∂θ

∂y
= 0;  y = 0;  y = 1;   0 <  x <  1 

   (7.20) 

The flow behavior is analyzed by using the stream function (ψ), the definition of which is given 

such that 

u =
∂ψ

∂y
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  (7.21) 

The heat transfer coefficient in terms of the local Nusselt number at left wall (Nul) is defined by 

𝑁𝑢𝑙 = (
𝜕θ

𝜕𝑥
)
𝑥=0

 
(7.22) 
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The average Nusselt numbers at the left wall is given by 

𝑁𝑢̅̅ ̅̅
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          (7.23) 

The dimension less heat function (Π) value is obtained from conductive heat fluxes (−
∂θ

∂y
,−

∂θ

∂x
) as 

well as convective heat fluxes (uθ, vθ).  
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Where ‘Π’ is the non-dimensional heat function for the fluid 

Assuming that ‘Π’ is a continuous function to its second order derivatives yield a single equation 

for heat function 
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The boundary conditions of non-dimensional heat function are as follows.  

A reference value of heat function (Π) is assumed as 0 at x=0, y= 0, hence Π (0,0) = 0. 
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7.4. SOLUTION METHODOLOGY 

 

Fig. 7.2. Non-uniform grid (Cosine grid). 

 

The numerical simulations are performed using the finite volume formulation of Eqns. 

(7.14 - 7.17 and 7.26) with the boundary conditions as given in Eqns. (7.18 - 7.20 and 7.27-7.30). 

In the present study, the grid is generated by dividing the computational domain into quadrilateral 

cells. Collocated grid arrangement has been employed where the velocities, pressure, temperature 

and heat function (u, v, p, 𝑇 and H) are located at the cell centers as shown in Fig. 3.1. To obtain 

the values of primitive variables at cell faces, linear interpolation using the values at cell centers 

is applied which gives second order accuracy. Cosine grid has been considered as shown in     

Fig. 7.2. The convective terms of Eqns. (7.15–7.17) are discretized using a first order upwind 

scheme and the diffusion terms with the central difference scheme. The pressure and velocity 

terms of Eqns. (7.15 – 7.16) are coupled using the SIMPLE algorithm. In order to attain accurate 

solution, the mass conservation needs to be assured for which convergence criteria need to be 

given. Based on this criteria the iterative process gets terminated. In the present numerical 

methodology convergence criterion is given by Eqn. (7.31) and is set to 10-8. 

∑ |𝛷𝑖,𝑗
𝑛 − 𝛷𝑖,𝑗

𝑛−1|𝑖,𝑗

∑ |𝛷𝑖,𝑗
𝑛 |𝑖,𝑗

< 10−8 
(7.31) 

Where 𝛷 refers to u, v, θ and Π variables  
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It may be noted that for the employed porous media formulation a convergence criterion 

of 10-8 is observed to satisfy the mass conservation. With a further decrease in convergence 

criteria, no difference in end solution is noted but significantly increased the computational time. 

To attain solution for all depended variables in Eqns. ((7.15-7.17) and (7.26)) an under relaxation 

factor is taken as 0.4. 

7.5. GRID INDEPENDENCE STUDY AND VALIDATION 

Grid independence study is important to determine the grid size that should be used. In 

the present study non-uniform (cosine) grid has been considered as shown in Fig. 7.2. The grid 

independence study is carried out for the case: Ra = 107, Da = 10-6, ε = 0.4, θ = 0°, K* = 1,        

k* = 1, F*=1 and Pr = 1. It is observed that the percentage deviation between 41 × 41 and 61 × 61 

is less than 1%. Therefore, a grid size of 41× 41 is considered for the simulations. 

 

7.5.1. Validation 

The correctness of the developed numerical algorithm is tested with the classical problem 

of differentially heated porous cavity. For the code validation, a square porous cavity with 

differential isothermal vertical walls and adiabatic horizontal walls is considered. Based on    

Eqn. (7.13) it can be noted that Darcy number is given by permeability to reference length square. 

As permeability refers to hydraulic conductivity, with the increase of permeability (Darcy 

number) to very large value the restriction of the solid matrix should be reduced to zero. Also, as 

the porosity is defined as the ratio of void volume to the total volume and with ε →1, the void 

volume should tend to total volume. By referring to the details of Darcy number tending to a very 

large value and porosity tending to one, the porous media should behave as a fluid. To check the 

validity of present formulation the average Nusselt number is calculated for different Rayleigh 

numbers (Ra = 103, 104,105 and 106) and by taking remaining parameters as K* = 1, k* =1,        

F* =1, θ = 0o, Pr = 0.71, Da =106, ε =0.9999. The numerical results are compared with the 

available published works of Davis and Jones (1983) and Krishna et al. (2008) and is shown in 

Table 7.1. To check the robustness for a wide range of isotropic and anisotropic parameters the 

obtained results are compared with (Nithiarasu et al. (1997), Ni and Beckermann (1991), and 

Krishna et al. (2008b)) and are given in Table 7.2. Further to check the robustness and validity of 

the present numerical methodology and code for anisotropic porous media the comparison is  
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Table 7.1: Comparison of present work with literature for fluid (K* = 1, k* =1, F* =1,         

θ = 0o, Pr = 0.71, Da =106, ε =0.999) 

S.No Ra 

Average Nusselt number 

Davis and Jones 

(1983) 

Krishna et al. 

(2008b) 
Present 

1 103 1.116 1.128 1.143 

2 104 2.234 2.244 2.252 

3 105 4.51 4.526 4.515 

4 106 8.798 8.846 8.779 

 

Table 7.2: Comparison of present work with literature for porous media with F* =1 and    

Pr = 1 

S.No Ra Da ε K* k* θ° 

Average Nusselt number 

Nithiarasu 

et al. (1997) 

Krishna et 

al. (2008b) 
Present 

1 108 10-6 0.9 1 1 0 3.00 3.07 3.129 

2 107 10-6 0.4 1 1 0 1.079 1.086 1.077 

3 106 10-4 0.6 1 1 0 2.725 2.706 2.646 

4 105 10-4 0.4 1 1 0 1.067 1.072 1.064 

5 5x105 10-2 0.9 1 1 0 6.70 6.61 6.109 

6 104 10-2 0.6 1 1 0 1.53 1.498 1.460 

7 103 10-2 0.4 1 1 0 1.01 1.01 1.008 

8 5 х105 10-3 0.6 10-3 1 90 4.560 4.489 4.688 

9 5 х107 10-5 0.6 102 1 45 1.174 1.122 1.149 

10 5 х105 10-3 0.6 102 1 45 1.170 1.121 1.126 

11 5 х105 10-3 0.6 10-2 1 0 4.729 5.064 5.364 

       

Ni and 

Beckermann 

(1991) 

Krishna et 

al. (2008b) 
Present 

12 108 10-6 0.9 1 0.1 0 3.721 3.645 3.715 

13 108 10-6 0.9 1 1 0 3.102 3.070 3.139 

14 108 10-6 0.9 1 10 0 1.842 1.871 1.918 

15 109 10-6 0.9 1 0.1 0 14.297 13.849 14.210 
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Fig. 7.3. Comparison of the Streamline (left), isotherm (center), heatline (right) of the 

present work (bottom row) by taking Da =106, ε =0.999, K* = 1, k* =1, F* =1, θ = 0o and    

Pr = 0.71 with Biswal and Basak (2015) (top row) at (a) Ra = 104 and (b) Ra = 106 for fluid. 
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made with Biswal and Basak (2015). Fig. 7.3 shows the comparison in terms for streamlines, 

isotherms and heatlines with the classical problem of differentially heated cavity with fluid for Ra 

= 104 and Ra =106. Based on the results shown in Tables (7.1 and 7.2) and Fig. 7.3 it can be noted 

that the present methodology is good agreement with the literature and can be extended further 

for parameters investigation. 

7.6. RESULTS AND DISCUSSION 

This section illustrates the influence of various non-dimensional parameters such as 

permeability ratio (K*= 0.1, 1 and 10), inclination of principal axes (θ= 0°, 45° and 90°), ratio of 

Forchheimer constants (F* = 1, 10 and 100), Prandtl number (Pr = 0.1,1 and 10) and thermal 

conductivity ratio (k* = 0.1, 1 and 10) on the heat and fluid flow behavior. The Rayleigh number 

(Ra) is varied from103 to 106, Darcy number is varied from 10-5 to 10-2 and porosities of 0.3 and 

0.6 have been considered. The results are described in terms of streamlines, isotherms, heatlines 

and average Nusselt number. In the subsequent sections, initially, the effect of Ra, Da and ε are 

discussed and later the influence of anisotropic properties (K*, F*, k* and θ) on thermal transport 

has been addressed. 

 

7.6.1. Effect of Rayleigh number (Ra) 

 

Fig.7.4 provides the streamlines, isotherms and heatlines for Rayleigh numbers 103 and 106. It 

was observed that for Ra ≥107, the flow instability is observed due to which the code got 

diverged. Hence, the study is restricted to Ra ≤ 106. Other parameters are kept constant and are 

equal to Da = 10-3, θ = 0o, K* = 1, k* = 1, F* = 1, Pr = 1, ε = 0.3 (solid line) and ε = 0.6 (dotted 

line). At Ra = 103, viscous force prevail over buoyancy force and hence circulation of the fluid is 

not observed to be effective. With the increase in Rayleigh number (Ra = 106), the intensity of 

the circulation inside the enclosure increased. Because of this, higher vortex strength is attained 

for higher Rayleigh number (Ra = 106), while the vortex strength is less for lower Ra (Ra=103). 

The increase in vortex strength lead to proper mixing of the fluid which enhanced the heat 

transfer and hence increase in average Nusselt number is observed as shown in Table 7.3. At 

Ra=103, the circulation is very weak and hence it can be regarded as conduction dominant 
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phenomenon. Hence, the isotherms are parallel to each other just like in the case of pure 

conduction. On the other hand, for Ra = 106, because of the circulation of fluid, the isotherms 

tend to move from left bottom corner to top right corner of the enclosure. 

 

 

Fig. 7. 4. Streamline (left), isotherm (center), heatline (right),(a) Ra = 103 and (b) Ra = 106 

when Da = 10-3, θ = 0o,K* = 1, k* = 1,F* = 1, Pr = 1, ε = 0.3 (solid line) and  

ε = 0.6 (dotted line). 

The magnitude of heat function increased with the increase in Rayleigh number as can be 

seen from heatline contours. This indicates the enhancement in heat transfer with the increase in 

Rayleigh number. The heatline show the path of heat flow from hot to cold region. As can be 

observed from the heatline contours, at lower Rayleigh number as there is no strong circulation, 

heatlines are perpendicular to isotherms. At Ra=106, the closed loop heatlines at the center of the 

cavity represents the thermal mixing at the center of the cavity.  
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Table 7.3. Variation of Average Nusselt number (Nuavg) with Ra, Da, ε, K*, Pr and k* for  

F* =1, θ = 0o 

Figure Ra Da Pr  K* k* 
Average Nusselt number(Nuavg) 

ε = 0.3 ε = 0.6 

7.4 
103 

10-3 1 1 1 
1.003 1.003 

106 4.878 5.541 

7.5 105 
10-2 

1 1 1 
2.759 3.322 

10-6 1.014 1.014 

7.6 104 10-2 

0.1 

1 

 

1 

 

1.162 1.226 

1 1.291 1.460 

10 1.320 1.529 

7.7 105 10-4 

 

1 

 

0.1 

1 

1.168 1.185 

1 1.062 1.066 

10 1.004 1.004 

7.10 105 10-3 1 

 

1 

 

0.1 2.265 2.478 

1 1.956 2.121 

10 1.344 1.407 

 

7.6.2. Effect of Darcy number (Da) 

Darcy number is the non-dimensional form of permeability. The increase in Da, enhance 

the vortex strength and heat transfer rate. The effect of Darcy number on the flow behavior, 

isotherms and heat flow is depicted in Fig. 7.5. Two Darcy numbers 10-2 and 10-6 are considered 

and other parameters are kept constant at Ra = 105, θ = 0o, K* = 1, k* = 1, F* = 1 and Pr = 1. The 

variation of average Nusselt number with Darcy number is given in Table 7.3.  

It is observed that the fluid circulations are strongly dependent on Darcy number (Da). At 

higher Da =10-2, the ability of the fluid to flow through solid matrix increases because of the 

higher permeability. This is depicted in Fig. 7.5 (a) in which the denser streamlines can be 

observed. The maximum value of stream function |𝜓|𝑚𝑎𝑥 is observed as 5.0. The features of the 
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heat flow behavior are explained with the help of heatlines. From Fig. 7.5(a) it can be observed 

that the heatlines are denser at the left wall which represents the higher heat transfer  

 

Fig. 7.5. Streamline (left), isotherm (center) and heatline (right) (a) Da = 10-2; (b) Da = 10-6 

when Ra = 105, θ = 0o,K* = 1, k* = 1,F* = 1, Pr = 1, ε = 0.3 (solid line) and  

ε = 0.6 (dotted line) 

rate. End to end heatlines are formed at the top portion of the cavity, whereas closed loop 

heatlines can be observed at the center of the cavity. These closed loop heatlines represent 

effective thermal mixing. 

From the Fig. 7.5 (b) it can be observed that the magnitude of stream function values for    

Da=10-6 are relatively small when compared to the stream function values for Da=10-2. For 

Da=10-6, the maximum value of stream function |𝜓|𝑚𝑎𝑥 is found to be 0.007. This denotes that 

the circulation of fluid is considerably weaker at low Darcy numbers and hence rate of heat 

transfer is observed to be less. Heat flow template inside the cavity is explained by heatlines. 

Because of the conduction dominant phenomenon at low Darcy number, the heatlines are 

observed to be orthogonal to the isotherms Fig. 7.5(b). Uniform heat function gradients are 

observed due to uniform temperature gradients. 
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7.6.3. Effect of Porosity (ε) 

The porosity for most of the materials used for engineering applications varies from 0.2 (tightly 

packed sand) to 0.93 (loosely packed metal foam). However, in the present study the influence of 

porosity on thermal-hydraulics has been investigated by varying Rayleigh number, Darcy 

number, permeability ratio, Forchheimer constants ratio, inclination of principal axes, and 

thermal conductivities ratio. The applications with porosities of 0.3 and 0.6 include sand (0.37-

0.5), rod bundle (0.214-0.9), heat sink (≈0.6), etc. due to which the porosities of 0.3 and 0.6 have 

been considered. The details pertaining to variation of average Nusselt number with porosity is 

given in Table 7.3.  Porosity is defined as ratio of void volume to total volume. With the increase 

in porosity, flow area increases which leads to higher convective strength of fluid. Hence, the 

heat transfer rate got increased with the increase in porosity. However, it is observed that for the 

flows which are conduction dominant i.e. lower Rayleigh number and lower Darcy number, the 

effect of porosity becomes less predominant. Same can be observed from Fig. 7.4 (a) and Fig.7.5 

(b) in which effect of porosity is depicted. At Ra=103, an average Nusselt number of 1.003 is 

obtained for porosities 0.3 and 0.6. On the other hand, an increase in Nusselt number of 13.58% 

is observed by changing the porosity from 0.3 to 0.6 at Ra=106. Similar kind of results are 

obtained for variation in Darcy number also. Hence, it can be concluded that the effect of 

porosity is not significant for conduction dominant flows. 

7.6.4. Effect of Prandtl number (Pr) 

Prandtl number is defined as the ratio of momentum diffusivity to thermal diffusivity of 

the fluid. The effect of Prandtl number is studied by varying ‘Pr’ from 0.1 to 10. The Prandtl 

number for air is 0.6 and for water it is about 7. As most of the thermal equipment deals with the 

above fluids the Prandtl number of 0.1 (near to 0.6) and 10 (near to 7) has been considered. The 

influence of ‘Pr’ on flow behavior and Nuavg is shown in Fig. 7.6 and given in Table 7.3. Increase 

in the ‘Pr’ increases the flow circulation and hence the convective strength increased. Enhanced 

convective strength lead to enhanced thermal mixing and hence increase in the Nusselt number is 

observed. From Fig. 7.6 it can be observed that the maximum stream function value increased 

with the increase in Pr. Maximum heat function value increased from 0.97 to 1.4 which indicates  
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Fig. 7.6. Streamline (left), isotherm (center), heatline (right) (a) Pr = 0.1 (b) Pr = 1 and       

(c) Pr = 10 for Ra = 104, Da = 10-2 , θ = 0o,K* = 1, k* = 1,F* = 1, ε = 0.3 (solid line) and               

ε = 0.6 (dotted line). 

the increase in heat transfer rate with the increase in ‘Pr’. Same can be observed from the 

heatlines plot. At higher Pr, the maximum heat function value is 1.4, whereas at Pr = 0.1 

maximum heat function value is observed to be 0.97. Heatlines are observed to be compressed at 

top and left walls of the cavity at Pr=10 when compared to heatlines at Pr=0.1. 

 

7.6.5. Effect of Permeability Ratio (K*) 

The influence of permeability ratio (K*) on thermal hydraulics is shown in Fig.7.7 and the 

variation of average Nusselt number with K* is given in Table 7.3. Permeability ratio is defined  
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Fig. 7.7. Streamline (left), isotherm (center), heatline (right) (a) K* = 0.1 (b) K* = 1 and      

(c) K* = 10 for Ra = 105, Da = 10-4 , θ = 0o,Pr = 1, k* = 1,F* = 1, ε = 0.3 (solid line) and               

ε = 0.6 (dotted line). 

as the ratio of permeabilities in principal axes directions (K1/K2). Here, positive-x and positive-y 

axes are taken as principal axes i.e. inclination of principal axes is zero. It may be noted that K* = 

K1/K2 and Da = K1/L
2. For a given Darcy number, K1 remains fixed and with the variation of K*, 

the magnitude in the direction of K2 changes.  For K* = 0.1, the permeability in vertical direction 

(K2) is 10 times more than horizontal direction (K1). Hence, for lower permeability ratio, the 

resistance to the flow in vertical direction is less when compared to the resistance in horizontal 

direction due to which Nuavg is more. It can be observed that the streamlines are closely spaced 

near left and right walls for lower permeability ratio (K*=0.1). With the increase in permeability 

ratio the resistance to flow in vertical direction increases with no change in resistance in 

horizontal direction. This leads the flow to be dominant in horizontal direction and hence the 

streamlines are closely spaced at top and bottom walls which can be observed in Fig. 7.7 (c) and 

makes the phenomenon to be conduction dominant. For higher permeability ratio, heat lines and 
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isotherms are nearly perpendicular which confirmed the flow as conduction dominant. As 

discussed in the previous section (7.6.3), effect of porosity is negligible for conduction dominant 

flow for K*=10.  

With the increase in permeability ratio closed loop heatlines tend to vanish which 

represents the reduction in thermal mixing. This means that at higher permeability ratio i.e. at 

K*=10, convective heat transfer gets nullified and hence heatlines become perpendicular to 

isotherms. At lower permeability ratio the heatlines are observed to be denser which shows the 

higher heat transfer rate. On the other hand, for higher permeability ratio, the heatlines are widely 

spaced which means that the heat transfer rate is less. 

 

7.6.6. Effect of Forchheimer constants ratio (F*) 

 

Fig. 7.8 describes the effect of Darcy number (Da) on the average Nusselt number with 

different Forchheimer constants ratio (F*). The highest permeability (Da = 10-2) and lowest non-

linear drag (F* = 10 and 100) cause minimum obstruction for the flow field and result in higher 

average Nusselt number. Therefore, maximum vortex strength occurred for Da = 10-2 and 

F*=100. As Da decreased from 10-2 to 10-5 the obstruction for the flow field increased. The effect 

of porosity and non-linear drag of solid matrix is nullified, which can be observed from Fig. 7.8. 

 

Fig. 7.8. Effect of Darcy number (Da) on the average Nusselt number (Nuavg) with the 

variation of Forchhemier constants ratio (F*) for Ra = 106, θ = 45o, K* = 1, Pr=1,                

F* = 1, k*=1. 
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Darcy number can be given as the non-dimensional form of permeability. The 

permeability can be inferred to the hydraulic conductivity of the medium. With the decrease of 

Darcy number, the obstruction for the flow increases. For Da ≤10-5 the porous media can be 

classified in non-Darcy regime where the thermal transport is conduction dominant. As the 

circulation of fluid is observed to be weaker at low Darcy numbers (Da = 10-5 and 10-6) the heat 

transfer is noted to be by conduction. Because of the conduction dominant phenomenon at Da = 

10-5 and 10-6 the average Nusselt number is observed to be minimum.  

 

7.6.7. Effect of principal axes inclination (θ) 

 

Fig. 7. 9. Effect of inclination of principal axes (𝜃) on the average Nusselt number (Nuavg) 

with the variation of permeability ratio (K*) for Ra = 106, Da = 10-2, Pr = 1, k* = 0.1,         

F* = 1, ε = 0.3. 

The orientation of principal axis influences the permeability in horizontal and vertical 

directions. The variation of average Nusselt number with change in ‘θ’ for different K* values is 

given in Fig. 7.9. For the same permeability ratio, permeabilities in horizontal and vertical 

directions vary for different inclinations of principal axes. If permeability ratio is less than 1 as 

K* = K1/K2 with the increase in inclination, permeability in vertical direction decreases          
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(Fig. 7.1). This leads to conduction dominant flow and hence decrease in average Nusselt number 

is observed. If K*>1, with the increase in inclination of principal axes, permeability in vertical 

direction increases. Therefore, the convective strength and hence heat transfer rate increases. 

Because of this an increase in average Nusselt number is observed for K*=10. If K*=1 as K1 = 

K2 irrespective of the inclination of principal axes, Nusselt number remains same which can be 

observed in Fig. 7.9. 

7.6.8. Effect of thermal conductivity ratio (k*) 

 

 

Fig. 7.10. Streamline (left), isotherm (center), heatline (right) (a) k* = 0.1, (b) k* = 1 and   

(c) k* = 10 for Ra = 105, Da = 10-3, θ = 0o, Pr = 1, K* = 1, F* = 1, ε = 0.3 (solid line) and               

ε = 0.6 (dotted line). 
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Thermal conductivity ratio is defined as the ratio of thermal conductivities in y and x 

directions (ky/kx). For k* = 0.1, the thermal conductivity in horizontal direction is 10 times more 

than that of thermal conductivity in vertical direction. The higher thermal conductivity in 

horizontal direction contributes to effective thermal transport. This leads to faster rise in 

temperature of the fluid and because of density variation, the fluid tends to move upwards. This 

ensures effective circulation of the fluid. Fig. 7.10 and Table 7.3 provides the variation of flow 

behavior and Nuavg with ‘k*’. 

 It can be noted that due to effective circulation the streamlines shown in Fig. 7.10 (a) 

can be observed to be much closer representing larger magnitude for velocity near the walls due 

to which the Nuavg is more for k* = 0.1.  With the increase in k*, thermal conductivity in vertical 

direction increases. Hence, the thermal transport becomes effective in vertical direction. For k* = 

10 the velocity magnitude near the vertical walls is observed to be less when compared to that of 

k* = 0.1 due to which lower Nuavg is observed. Based on heatline contours shown in Fig. 7.10 the 

maximum magnitude for heat function for k* = 0.1 can be noted to be 2.00 and with k* = 10 is 

1.2. As the heat function value provides the magnitude of heat flow the thermal transport with k* 

= 0.1 can be considered to be more when compared with k* = 1 and 10.  

 

7.7. CONCLUSIONS 

An in-house code is developed to analyze the thermal transport for a square cavity filled 

with anisotropic porous medium. The solution methodology is based on SIMPLE algorithm and 

finite volume approach is employed. Parametric analysis is carried out by varying different 

anisotropic parameters and the following conclusions are drawn. 

• Increase in Rayleigh number lead to enhanced vortex strength which resulted in higher 

average Nusselt number. The closed loop heatlines are observed at higher Ra which 

represents the enhanced heat transfer. 

• Heat transfer rate is increased by increasing the Darcy number. Denser heatlines are 

observed at left and top walls which resulted in enhanced thermal transport.  

• Increase in permeability ratio resulted in flow to be dominant in horizontal direction 

which is the case of poor mixing of fluid. Hence, average Nusselt number decreased. 

Closed loop heatlines have diminished with the increase in permeability ratio. 
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• Increase in Prandtl number leads to enhanced heat transfer rate. Same conclusion can be 

drawn from the contours of heatlines which are compressed at higher Pr. 

• Increase in thermal conductivity ratio caused reduction in average Nusselt number 

• Inclination of principal axes also has influence on the heat transfer rate depending upon 

permeability ratio. 

• The effect of porosity is observed to be negligible for scenarios which are conduction 

dominant. 

7.8 CLOSURE 

In this chapter the numerical analysis of steady-state natural convection inside a square 

cavity filled with anisotropic porous media using generalized non-Darcy model is presented. The 

results are presented in terms of streamlines, isotherms, heatlines and average Nusselt number. 

The heatlines are plotted to visualize the path of the thermal transport. The anisotropic behavior 

of the porous matrix is observed to significantly influence the thermal hydraulics. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

8.1. INTRODUCTION 

In this study, a numerical code has been developed for the visualization of thermal 

transport in various solid domains and anisotropic porous media. Pertaining to modeling of flow 

through anisotropic porous media generalized non – Darcy formulation has been employed. A 

finite volume method based in – house code is developed to analyze the flow and heat transport 

characteristics. The previous chapters have been devoted to the description of research problems 

and the work carried out, to fulfill the objectives set for the present study.  

Discussions of results obtained for each problem were presented in the respective 

chapters. However, for the sake of completeness, the overall conclusions that resulted from the 

study are presented next. The scope of future work is also identified at the end of the chapter. 

 

8.2. OVERALL CONCLUSIONS FROM THE PRESENT STUDY 

➢ Non – orthogonal solid domains with and without discrete heat sources: 

• A numerical code in C++ has been developed to read the mesh from GAMBIT and 

linked to the in – house finite volume method code for the visualization of thermal 

transport. 

• The study pertaining to thermal transport in various shapes could reveal that for a 

domain with lower thermal conductivity the magnitude of temperature increases with 

the increase in size.  

• Visualization of heatlines provide a better insight of energy transport in various solid 

domains with discrete heat sources. 

➢ Anisotropic porous media: 

• An in house numerical code for anisotropic porous media based on generalized non – 

Darcy formulation has been satisfactorily validated for wide range of porous media 

i.e. Darcy and non – Darcy regimes.  
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• At higher Darcy numbers a decrease of maximum stream function value is noticed 

with the increase of Reynolds number due to the influence of non-linear drag forces. 

• For a given Darcy number (permeability) in non – Darcy regime, the decrease in 

porosity leads to the increase in maximum stream function value due to the increase in 

pore velocity. 

• The influence of the permeability ratio (K*) and principal axes inclination (θ) are 

observed to play a significant role on thermal hydraulics at higher Darcy number 

(loosely packed porous media). But observed to decrease with the reduction of Darcy 

number.  

• Increase in Rayleigh number leads to enhanced vortex strength which resulted in 

higher average Nusselt number. 

• Heat transfer rate is increased by increasing the Darcy number as denser heatlines are 

observed at left and top walls which resulted in enhanced thermal transport.  

• The average Nusselt number is observed to increase with the increase in Prandtl 

number due to the enhancement of convective strength. 

• Analysis of heat transport for anisotropic porous media in terms of isotherms, 

streamlines and heatlines provide a better insight.   

 

8.3. SUGGESTION FOR FUTURE WORK 

• The study can be extended to natural convective heat transfer problems for non-

orthogonal geometries with anisotropic non-Darcy porous media through heatline 

visualization. 

• It would be interesting to analyze the thermal transport via heatline visualization for 

buoyancy induced flows with heat generating anisotropic porous media. 

• Heatline visualization for anisotropic porous media using a non – thermal equilibrium 

approach can be studied. 

• The analysis of thermal-hydraulics with nanofluids in anisotropic porous media will 

be a potential topic to study. 
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