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ABSTRACT 

The study of fluid flow and heat transfer is very important in micro reactor channels, 

filtration units and in membrane reactor ducts. It is important in Nuclear waste 

management and to determine residence time distributions in the process of drying of 

solids in fluidized beds and in cooling devices. In chemical engineering, there are 

major applications on laminar flow in channels. The effect of suction/injection over 

the walls in the flow field is encountered in filtration units, micro reactor channels, 

membrane reactor ducts and in fuel cell manifolds. 

The objective of the present studies is to investigate the two dimensional flow and the 

heat transfer due to laminar flow convection in a rectangular channel with suction on 

neighboring and opposite walls when (i) the fluid is a viscous fluid, (ii) the fluid is 

Couple stress fluid and (iii) a circular cylinder is inserted in the channel. Geometry 

considered in this thesis is a rectangular geometry.  

Analytical or numerical solutions have been obtained for flow field in the above 

geometry under the cases: (i) Fluid is Newtonian and viscous, (ii) Fluid is couple 

stress fluid, (iii) Flow is along the axial direction of the channel, (iv) Flow is due to 

suction/injection in the plane perpendicular to the channel and (v) A cylinder is 

inserted in the flow. 

The values of the parameters characterizing the different problems are taken as 

follows. Reynolds number Re=0.5, 1, 5, 10, 20 and 30. Suction parameter: V0= 0.2, 

0.5, 0.8, 2, 5, 10, 50, 100 and 200. Peclet number: Pe = 0.001, 0.005, 0.01 and 0.02. 
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Prandtl number Pr=0.71, 1 and 10. Brinkman number:  Br = 0.4 and 0.8. Hartmann 

number M=1, 3, 5 and 7. Couple stress parameter S=1, 10, 20, 30 and 50. 

The thesis consists of Five parts and nine chapters. Part - I and Chapter one is 

introductory in nature. Part – II is devoted to viscous fluid flows in a rectangular 

channel with adjacent wall suction and contains Three chapters ( Chapters two to 

four ). Part – III is devoted to Couple stress fluid flows in a rectangular channel 

with/without suction and contains Two chapters ( Chapters five and six ). Part – 

IV is devoted to Stokes flows past a circular cylinder in a square cavity with 

adjacent and opposite wall suction and contains Two chapters ( Chapters seven 

and eight ). Part–V and Chapter nine gives concluding remarks of the thesis and 

possible directions in which further work can be carried out. 

In all these chapters, the expressions for the stream function, temperature, entropy 

generation number, Bejan number, heat function and pressure for viscous fluids 

and velocity field and temperature for Stokes flow past cylinder and for Couple-

stress fluids are obtained. The Volumetric flow rate and Skin friction is derived 

analytically and the effect of physical parameters like Reynolds number, Magnetic 

parameter and Couple stress parameter on the Volumetric flow rate and Skin friction 

are studied graphically. The effect of Reynolds number and suction parameter on 

stream lines, isothermal lines, entropy generation number, Bejan number, heat 

lines and pressure are studied. 
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NOMENCLATURE 
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T1, T2  Constant wall Temperatures 

T0  Reference Temperature (=0.5(T1+T2)) 

U, u  Dimensional  and Non–Dimensional velocities in X–Direction 

U0  Suction velocity for couple stress fluids 

V, v  Dimensional  and Non–Dimensional velocities in Y–Direction 

V  Volumetric flow rate, m
3
/s 
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V1  Injection Velocity at the wall 

V2  Suction Velocity at the wall 
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W0  Average entrance velocity 

X, Y,Z  Dimensional coordinates 

x, y, z  Non–Dimensional coordinates 
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μ  Coefficient of viscosity 
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ζ  Vorticity Function 

σ  Electrical conductivity 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

The history of fluid flow is very old and began its existence in the form of laws of 

buoyance by Archimedes (200BC). Later, one of the early studies is  the work of 

Leonardo Da Vinci's which gave rapid advancement to the study of fluid mechanics 

about 500 years ago, but earlier than this time; prehistoric relics of irrigation canals 

have shown that the study of fluid behaviour were much more available by the time of 

ancient Egyptian (Nakayama and Boucher, 1999). In 18
th

 century Johann and Jacob 

Bernoulli brothers began more modern understanding of fluids motion and elasticity 

and developed Bernoulli's equation. Since then, many researchers have done numerous 

work on fluid mechanics. Fluid Mechanics can be described as the study of the flow 

behaviour of the fluid under external body forces or pressure or body motions. It 

involves application of the fundamental laws encountered in Physics. The laws are 

Newton's laws of linear momentum principle, conservation of mass, first law of 

thermo-dynamics. Studying the behaviour of fluids is an essential part in the analysis 

of fluid flow models, it is needed in order to understand various problems ranging 

from the study of blood flow in the capillaries to the flow of crude oil across Niger-

Delta of Nigeria. Fluid mechanics principles are required to explain why airplanes are 

made with smooth surfaces for the most efficient flight, while in the other way golf 

balls are made with rough surfaces to improve their efficiency. 

Fluids consist of liquid or gas (or vapour) phases of the physical forms in which matter 

exists. The distinguishing feature between a fluid and the solid state of matteris seen 

by comparing fluid and solid behaviour. Under the application of a shear stress, solids 

deform, but its deformation does not increase with time (Fox, McDonald and 

Pritchard, 2004) whereas a fluid deforms continuously (Rajput, 2004). Fluid can be 

defined as a substance that flows with negligible resistance to a change of shape. This 

implies that a fluid isa material that continuously deforms under the application of 

shear stress of even for a small magnitude. A shear stress (force acting per unit area) is 

a tangential force acting on a surface of the material. 
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1.2 Heat Transfer 

The laws that are governing heat transmission are very important to the engineers in 

the construction, design, testing and operation of heat exchangers. Whenever there 

exists a temperature difference in a medium or between media, heat transfer occurs. 

Heat transfer occurs in three modes: conduction, convection and radiation. 

In conduction, heat is transferred from one particle to the other particle through the 

material without the actual motion of the particles. If a steel rod is heated at one end, 

the molecules near the hot end vibrate (but do not move) with higher amplitude 

(kinetic energy) and transfer the heat energy to the adjacent molecules and so on. 

However, mean positions of the molecules in equilibrium does not change. Heat 

transfer by conduction is most common in the case of solids. The property of 

transmission of heat has been used in Davy’s safety lamp. Materials such as brick 

walls, granite etc. having less conductivity are utilised in the construction of a cold 

storage, furnace of a boiler etc. The space between the two walls of a thermos flask is 

evacuated because vacuum is a poor conductor of heat. The air enclosed in the 

woollen fabric helps in protecting us from cold, because air is a poor conductor of 

heat. 

In convection heat is transferred from one point to the other by the actual movement of 

the fluid particles carrying heat. This convection process is most common in the case 

of gases and liquids. Convection is the main cause for formation of land and sea 

breezes and trade winds. It plays a vital role in gas filled electric lamps, ventilation, 

and heating of buildings by hot water circulation. 

In Radiation heat is transferred from one point to the other directly without the 

presence of the carrying medium. From the sun, we heat radiations directly through 

vacuum without the help of any medium. The properties of heat radiation are similar 

to light radiations and also form a part of the spectrum in electromagnetic waves. 

Heat radiation and mass transfer play a vital role in production industries in  the design 

of nuclear power plants, fins, steel rolling, combustion and furnace design, materials 

processing, food processing and cryogenic engineering, gas turbines and various 

propulsion device for aircraft, energy utilization, temperature measurements, remote 

sensing for astronomy and spaceexploration, in a number of applications related to 
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health, agricultural and military. If the surrounding fluid temperature is very high, 

radiation effects play a prominent role and this phenomena does occur in space 

technology. In such situations, an account of the combined effect of thermal radiation 

and mass diffusion is to be taken. 

Various modes of electromagnetic radiation occur through various mechanisms. For 

example, in nuclear reactions gamma rays are produced, by the bombardment of 

metals with high-energy electrons X-rays are produced, microwaves by special types 

of electron tubes such as klystrons and magnetrons, and radio-waves are produced by 

the excitation of some crystals or by the flow of alternating current through electric 

conductors. 

The short-wave length rays like gamma rays and X-rays are of importance to nuclear 

engineers. The long-wave length rays like radio-waves and microwaves are of 

importance to electrical engineers. The type of electromagnetic radiation that is 

pertinent to heat transfer is the thermal radiation emitted as a result of energy 

transitions of molecules, atoms and electrons of a substance. The power or intensity of 

these activities is realised through the measure of temperature at the microscopic level, 

and the rate of thermal radiation emission increases with increasing temperature. 

Thermal radiation is continuously emitted and absorbed by all matter at critical 

temperatures. This means that every substance around us such as walls, furniture and 

our friends continuously emits and absorbs radiation. Thermal radiation is contained in 

the electromagnetic spectrum that extends from about 0.1 to 100μm, since the 

radiation emitted by surfaces due to their temperature falls in this range of wave 

lengths. Hence, thermal radiation contains the entire visible and infrared (IR) 

radiationas well as a portion of the ultraviolet (UV) radiation. 

The heat transfer by convective mode occurs in two basic processes: natural 

convection and forced convection. In natural convection heat transport in the fluid 

flow is not due to any external source but only due to differences in the density of 

fluid by temperature gradient. The fluid receives heat from the surrounding heat 

source and becomes light in density and rises up. The fluid which is cooler is of high 

density then flows down to replace it. This cooler fluid is then heated and the process 

continues, forming convection current; In this way the energy in the form of heat is 

transferred from the bottom of the convection cell to top. In natural convection, the 
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driving force is the buoyancy which arises due to the differences in fluid density. 

Because of this, the presence of a proper acceleration arises from resistance to gravity, 

or an equivalent force (arising from acceleration or centrifugal force), is essential for 

natural convection. Forced convection occurs when the fluid is forced to flow over the 

surface by external agency such as fans and pumps. It is created artificially by induced 

convection current. 

Internal and external flow can also classify convection. Internal flow occurs when the 

fluid is enclosed by a solid boundary such as a flow through a pipe. An external flow 

occurs when the fluid extends indefinitely without encountering a solid surface. Both 

these convections, either natural or forced, can be internal or external as they are 

independent of each other. 

To determine the load on air-conditioning plants and refrigerating equipment, the 

knowledge of the quantity of heat transfer due to natural convection is absolutely 

necessary.  In the design of the insulation thickness of transmitting wires and 

insulation thickness of stream carrying pipes and furnaces, the free convection plays 

an equally important role. 

1.3 Viscosity 

Viscosity can be considered as a measure of the resistance of a fluid that flows due to  

shear stress or tensile stress. Viscosity is literally "thickness" or "internal friction" of 

the fluid. Hence, water is referred to as "thin", with a lower viscosity, while honey is 

considered as "thick", with high viscosity. Putting it in simple way, the lesser the  

viscosity of the fluid is, the higher its ease to flow (Symon R. Keith, 1971). Viscosity 

explains the internal resistance of a fluid to flow and may thus be considered as a 

measure of fluid friction. For illustration, felsic magma having high-viscosity creates a 

steep and tall stratovolcano, because it takes very long time to cool due to its high 

viscosity, where as mafic lava due to its low-viscosity forms a shallow-sloped and 

wide shield volcano. All natural (or real) fluids (excepting super fluids) are having 

some resistance to the external stress and therefore are treated as viscous, but a fluid 

that offers no resistance to shear stress is considered as an ideal fluid or inviscid fluid. 
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1.4 Couple Stress Fluid 

In continuum mechanics, fluid particles may have size-effect within the flow and this 

is neglected. In Newtonian flows negligence of rotational interaction among particles 

results to symmetrical nature of force-stress tensor. However, in the very important 

cases like fluid containing suspended particles, this is not true (i.e., stress tensor is not 

symmetric). Hence, the theory that explains couple stresses is required. The spin field 

due to micro-rotation of freely suspended particles sets up an anti-symmetric stress, 

which is called couple-stress, and thus this leads to the foundation of couple-stress 

fluid theory. 

The theory of fluids with Couple stresses was introduced by Stokes (1966), it has 

special features like the existence of couple stresses, body couples and non-symmetric 

stress tensor. The important feature of couple stress is the introduction of size-

dependent effect. According to Sunil et al. (2002), couple stresses appear in fluids with 

very large molecules. Examples of such fluids include various types of lubricants with 

small amount of polymer additives, blood, electro-rheological fluids, synthetic fluids, 

etc. 

Several authors have discussed various aspects of couple stress fluid under different 

flow configurations. For example Srivastava (1985) investigated the flow of couple-

stress fluid through stenotic blood vessels. Zakaria (2002) investigated hydro-magnetic 

oscillating flow of a couple stress fluid in the porous medium. Rudraiah and 

Chandrashekara (2010) presented couple stress effects on the growth rate of Rayleigh-

Taylor instability in a small thickness region of couple stress fluid at the interface. 

Devakar and Iyengar (2010) considered the run up flow of a couple stress fluid in 

between two parallel plates, while Srinivasacharya and Kaladhar (2012) presented the 

analytical solution of free and forced convection flow of a couple stress fluid in  

between annular circular cylinders taking into the effects of ion-slip and Hall currents. 

Furthermore, Rani et al. (2011) took up numerical investigation of couple stress fluid 

flow in between two vertical cylinders of infinite length. Double diffusive mixed 

convection in couple stress fluids with variable fluid properties was analysed by 

Dinesh et al. (2015). 
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The analysis of couple stress fluid flows is important to study in many industrial  

processes like the extraction of polymer fluids, solidification of liquid crystals,  

suspensions fluids in polymers (Lin and Hung, 2007), polymer-thickened oils and 

physiological fluid mechanics (Shehawey and Mekhemer, 1994). Application of 

couple stress fluids are equally found in synovial joints (shoulder, hip, knee and ankle) 

(Walicki and Walicka, 1999), tribology of thrust bearings (Naduvinamani and Patil, 

2009) and the lubrication of engine rod bearings (Lahmar and Bou-Sad, 2008), 

geophysics, chemical engineering and astrophysics. Walicki and Walicka (1999) and 

Kumar et al. (2015) modelled synovial fluids as couple stress fluids in human joints 

because of the long chain of lauronic acid molecules found as additives in synovial 

fluid. 

1.5 Magneto-hydrodynamics 

The study of fluid flows which are electrically conducting is termed as magneto-

hydrodynamics (MHD). Magneto means magnetic field, hydro means fluids and 

dynamics mean forces and the laws of motion. Magneto-hydrodynamics (MHD) is the 

mathematical model for the low frequency interaction that exists between electrically 

conducting fluids and electro-magnetic fields (Schnack, 2009). In other words, 

magneto-hydrodynamics can be described as the study of the interaction between 

magnetic fields and moving, conducting fluids (Dawson, 2001). Other terms used to 

describe MHD include magneto fluid dynamics or hydro-magnetics. Examples are 

liquid metals (such as mercury, gallium, molten magnesium, molten antimony, liquid 

sodium etc.), plasmas (ionized gases or electrically conducting gases) such as the solar 

atmosphere and salt water or electrolyte. 

The fundamental concept behind MHD is that the relative movement of a conducting 

fluid and a magnetic field causes an electromotive force to develop, this will induce 

electrical currents with density of order ( )u B  , where  is the electrical 

conductivity, B is the magnetic field and u is the velocity field. The currents will give 

rise to another induced magnetic field which is added to the original magnetic field 

and the fluid appears to flow along with magnetic field lines. The combined magnetic 

field (i.e., both the imposed and induced) then interacts with the induced current 

density, J, giving rise to a Lorentz force (per unit volume), J B . This acts on the 

conductor and it is directed so as to impede the relative movement of the magnetic 
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field and the fluid. In the description above, it is observed that fluid can “drag” 

magnetic field lines while magnetic fields can pull on the conducting fluids, this 

partial “freezing together” of medium and the magnetic field is referred to as MHD. 

The interest to explore MHD came as a result of three technological innovations. 

(i) Fast-breeder reactors which use liquid sodium as a coolant and this needs to be 

pumped, 

(ii) Controlled thermonuclear fusion requires that the hot plasma be confined away 

from material surfaces by magnetic forces and 

(iii) MHD power generation, in which ionized gas is propelled through magnetic 

field, was thought to offer improved power station efficiencies. 

1.6 Literature Survey 

The study of fluid flow and heat transfer is very important in micro reactor channels, 

filtration units and in membrane reactor ducts. It is important in Nuclear waste 

management and to determine residence time distributions in the process of drying of 

solids in fluidized beds and in cooling devices. In chemical engineering, there are 

major applications on laminar flow in channels. The effect of suction/injection over 

the walls in the flow field is encountered in filtration units, micro reactor channels, 

membrane reactor ducts and in fuel cell manifolds. The viscous fluid flow in parallel 

plate channels generated due to suction/injection at the walls was first studied by 

Berman (1953). Experimental results of paper preparation were analyzed 

Mathematically by Taylor (1956). Pan and Acrivoas (1967) and Shankar (1993) 

presented analytical solutions for the Stokes flow in a two-dimensional cavity of 

rectangular section. Shankar (1993, 1997, 1998) presented analytical solutions for 

stream function for Stokes flow in a cavity and analysed eddy structures. He obtained 

solution for Circular cylindrical cavity flow due to motion of end walls at the top and 

bottom. Shankar and Deshpande (2000) presented a extensive review of flows in a 

cavity and discussed in detail about corner eddies, longitudinal vertices, Poincare 

sections and turbulence. Many researchers (Hwang and Cheng (1993), Song and 

Sundmacher (2010), Cheng and Hwang (1994), Chabani et al. (2017), Ahmed 

Bahlaoui et al. (2014)) have attempted the viscous flow in a rectangular tube with 

suction at the opposite walls. Natural and mixed convection flows in a cavity were 
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investigated Numerically using FDM second order schemes by Sivasankaran et al. 

(2010) and Sheremet et al. (2015). 

The couple stress fluid theory developed by Stokes (1966) has distinct features, such 

as the presence of couple stresses, body couples and non-symmetric stress tensor. The 

couple stress fluids are capable of explaining the behaviour of various types of 

lubricants, blood, suspension fluids, liquid crystals etc. The theory of couple stresses 

defines the rotational field in terms of the velocity field itself. In couple stress fluid 

theory, the only unknown vector field of velocity is governed by a single vector 

differential equation analogues to the classical Navier Stokes equation, but with an 

increased order. 

Magnetic flow in a rectangular channel is a classical problem that has significant 

applications in magneto hydrodynamic power generators and pumps etc. Nowadays, 

magnetic field has earned great value due to wide spread applications in industry and 

bioengineering, such as electrostatic precipitation, power generators, petroleum 

industry, aerodynamic heating, the purification of molten metals from non-metallic 

materials, polymer technology and fluid droplet sprays. Hartmann (1937) was the first 

person to obtain a solution for this type of flows to compare with his experimental 

results on mercury. Hartmann and Lazarus (1937) studied the impact of a transverse 

uniform magnetic field on the flow of a viscous incompressible electrically conducting 

fluid between two infinite parallel stagnant and insulating plates. 

Stokes flow generated within rectangular shaped cavities is a feature encountered in 

several manufacturing processes. Examples include coating systems (Higgins, 1982 

and Aidun et al.,1991), polymer melts (Canedo and Denson, 1989) and ceramic tape 

casting (Hellebrand, 1996). The motion of a fluid past a cylindrical obstruction with its 

longitudinal axis aligned normal to the approaching flow has practical importance and 

is of fundamental interest. Bluff body cross–flow configurations arise in several 

industrial applications and environmental settings, including: the passages in 

equipments used for heat and mass transfer processes; the cooling of electronic 

components and equipment; flow-metering devices; moving ground vehicles; the 

obstructed spaces between co–rotating disks in magnetic disk storage devices; tall 

buildings and structures such as cooling towers, chimneys, offshore oil rigs and 

electrical pylons. The hydrodynamic forces and flow characteristics of laminar fluid 
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flow past a stationary isolated cylinder have been analysed by many researchers like 

Williamson, (1989); Henderson, (1995, 1997); Norberg (2003); Baranyi and Lewis 

(2006). 

In the past for many years, heat transfer by convection was studied by examining 

temperature field and first law of thermodynamics. Nowadays emphasis on design of a 

model is developed as a science. Hence a deeper study of the subject is necessary. The 

study of flow lines, temperature and heat flow lines together with second law of 

thermodynamics are important, since by this one can know the regions of available 

energy or useful energy and regions of dissipation of energy. 

1.7 Scope and Objectives 

The objective of the present thesis is to study the two dimensional flow of fluids and 

the heat transfer due to convection occurring in a rectangular channel when suction 

and injection is applied on a) neighboring walls and b) opposite walls in the cases 

when 

i) the fluid is a viscous fluid 

ii) the fluid is Couple stress fluid 

iii) a circular cylinder is inserted in the channel. 

Geometry considered in this thesis is a rectangular geometry.  

1.7.1 Description of the Geometry and Governing equations 

The two-dimensional governing equations for steady, incompressible and laminar 

flows of viscous fluids 

Continuity equation:  . 0 Q       

Momentum equation:  
2d

P
dt

    
Q

Q    

Energy equation:  
2

p

dT
c k T

dt
         
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The two-dimensional governing equations for steady, incompressible and laminar 

flows of couple stress fluids with body force due to applied magnetic and electrical 

fields are 

Continuity equation:  . 0 Q       

Momentum equation:  2 4. P          Q Q Q Q J H   

Energy equation:  
2

0p

dT
c U k T

dX
     

where Q, P, J, H and T are usual symbols for velocity, pressure, electric current, 

magnetic intensity and temperature. The Cartesian coordinate system with origin at the 

bottom left corner and X and Y axes along the walls is taken. The tube is of length a 

and height b. Injection with velocity V1 at the wall Y=b and suction with velocity V2 at 

the wall X=a are imposed. The flow is developed because of the suction and injection. 

Velocity of fluid satisfies impermeability condition and no slip condition on walls 

X=0, Y=0 and suction and no slip condition at the permeable walls X=a and Y=b. The 

temperature field satisfies constant heat flux at the permeable walls X=a and Y=b and 

constant temperature is maintained on the impermeable walls X=0, Y=0. Due to no slip 

condition on the all walls the tangential velocities are zero. 

Analytical or numerical solutions have been obtained for flow and temperature fields 

in the above geometry under the following cases: 

1. Fluid is Newtonian viscous. 

2. Fluid is couple stress fluid. 

3. Flow is along the axial direction of the channel 

4. Flow is due to suction/injection in the plane perpendicular to the channel. 

5. A cylinder is inserted in the flow. 

The values of the parameters characterizing the different problems are taken as 

follows. Reynolds number Re=0.5, 1, 5, 10, 20 and 30. Suction parameter: V0= 0.2, 

0.5, 0.8, 2, 5, 10, 50, 100 and 200. Peclet number: Pe = 0.001, 0.005, 0.01 and 0.02. 

Prandtl number Pr=0.71, 1 and 10. Brinkman number:  Br = 0.4 and 0.8. Hartmann 

number M=1, 3, 5 and 7. Couple stress parameter S=1, 10, 20, 30 and 50. 
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1.8 Applications 

The study of fluid flow and heat transfer is very important in Nuclear waste 

management and to determine residence time distributions in the process of drying of 

solids in fluidized beds and in cooling devices. In chemical engineering, there are 

major applications on laminar flow in channels. The effect of suction/injection over 

the walls in the flow field is encountered in  

 filtration units 

 micro reactor channels 

 membrane reactor ducts  

 fuel cell manifolds.  

The viscous fluid flow in parallel plate channels generated due to suction/injection at 

the walls was first studied by Berman (1953). 

1.9 The boundary conditions on Velocity and Temperature 

1.9.1 No-slip condition: 

The No-slip boundary condition implies that the fluid particles in contact with a 

surface will have the same velocity as the velocity of the surface. Often the boundary 

walls are not moving and hence  the fluid velocity is zero. In drag flows, the boundary  

wall velocity is finite and hence the fluid velocity is equal to the wall velocity. 

1.9.2 Uniform wall heat flux/ Uniform wall temperature conditions: 

The most usual temperature boundary conditions consist one of the following 

assumptions: 

The heat flux is uniform on the wall. In this case, the boundary condition is written as 

wall

T
Q

n

 
 

   

The solid wall is at uniform temperature: wT T . 

1.9.3 Hyper-stick condition: 

For couple-stress fluids, Along tangential direction t  on the wall: 
1

. 0
2

t Q . 
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1.10 Planning of the Thesis 

The thesis is divided into FIVE parts. 

PART–I 

This part consists of only one chapter. 

Chapter 1 

Introduction and literature study for the present research study are given. Brief survey 

on fluid flow and heat transfer in ducts with suction is given. Numerical schemes used 

in thesis are  described. 

PART–II 

This part consists of three chapters. 

Chapter 2 

Heat flow in a rectangular plate 

Steady-state temperature distribution in a rectangular plane sheet with non-

homogeneous boundary conditions is solved using Fourier series. The results are 

compared with the numerical results. For different values of geometric ratio, the 

isothermal curves are obtained. 

Form this chapter, we observed that finding analytical solution is not easy for this type 

of problems. So, we considered numerical method for obtaining solution to this kind 

of problems in subsequent chapters in this part.  

Chapter 3 

Stokes Flow and Heat Transfer by Heat Function and Entropy Generation in a 

Rectangular Channel with Suction. 

A viscous fluid flow is generated in a rectangular channel of uniform cross section by 

applying suction/ injection at the adjacent side walls. The other opposite side walls are 

maintained at constant temperatures and the walls with suction are maintained at 

constant heat flux. The flow is assumed as Stokes flow and non-linear convective 

terms are neglected. The stream lines due to the flow and isothermal lines and heat 
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function contours are drawn. The regions of high friction are found by plotting entropy 

generation number and Bejan number. The regions of low and high pressures are also 

drawn. The 13 point formula is used to solve the biharmonic equation (convective 

term is neglected) for stream function and 5 point formula is used to solve for all other 

harmonic equations. For derivative boundary conditions, central difference  formula 

with fictitious nodes is used. It is observed that corner points are regions of high 

energy dissipation points. Least dissipation of energy is near to the wall where non-

dimensional temperature is 1. 

Chapter 4 

Entropy Analysis for Heat Transfer in a Rectangular Channel with Suction 

Chapter 4 deals with the heat transfer in a rectangular channel with suction applied at 

the adjacent two side walls. A two dimensional laminar viscous fluid flow is generated 

due to the application of suction/injection. The other opposite two sides are kept at 

constant temperatures and the walls with suction are maintained at constant heat flux. 

The stream lines thus obtained due to the flow and isothermal lines and heat function 

are analyzed. The regions of high and low frictions are found by drawing contours of 

entropy generation number and Bejan number. Expressions for the heat transfer 

coefficient, Nusselt number is also derived. The 4
th

 order Partial Differential equation 

for stream function is numerically solved by FDM using 13 point formula and 5 point 

formula is used to solve for all other harmonic equations for temperature, heat function 

and pressure. For derivative boundary conditions, central difference formula with 

fictitious nodes is used. In the analysis, we note that corner points are regions of high 

energy dissipation. Least dissipation of energy is near to the wall where non–

dimensional temperature is 1. This chapter analyses the heat transfer in the rectangular 

channel through heat function and Entropy generation number. 

PART–III 

This part consists of two chapters 

Chapter 5  

Steady Flow of Couple Stress Fluid through a Rectangular Channel Under 

Transverse Magnetic Field 
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Chapter 5 deals with the steady and an incompressible conducting couple stress fluid 

flow in the presence of transverse magnetic field through a rectangular channel with 

uniform cross–section. The induced magnetic field is neglected. We consider the case 

that there is no externally applied electric field. Under these conditions, we get 4
th

 

order PDE for velocity w along the axis of the rectangular tube. The usual no slip and 

hyper stick boundary conditions are used to obtain the solution for w. We obtained the 

velocity w in terms of Fourier series. Skin friction on the walls and volumetric flow 

rate are obtained in terms of physical parameters like couple stress parameter and 

Hartmann number. The effects of these parameters on skin friction and volumetric 

flow rate are studied through graphs. 

Chapter 6 

Steady Flow of Couple Stress Fluid through a Rectangular Channel Under 

Transverse Magnetic Field with Suction on opposite walls 

Chapter 6 deals with the steady and an incompressible conducting couple stress fluid 

flow with suction/ injection at the opposite walls in the presence of transverse 

magnetic field through a rectangular channel with uniform cross–section. The induced 

magnetic and electric fields are neglected to obtain velocity w along the axis of the 

rectangular tube. The usual no slip and hyper stick boundary conditions are used to 

obtain the solution for w. We obtained the velocity w and temperature θ in terms of 

Fourier series. The volumetric flow rate and skin friction are obtained and the effects 

of physical parameters like magnetic parameter, Reynolds number and couple stress 

parameter on this are studied through graphs. 

PART–IV 

This consists of two chapters. 

Chapter 7 

Stokes Flow and Heat Transfer Past a Circular Cylinder in a Square Cavity with 

Suction/Injection on Adjacent Walls. 

A laminar viscous fluid flow is generated past a circular cylinder placed in a square 

cavity of uniform cross section by applying suction/ injection at the adjacent side 

walls. The other opposite side walls and the boundary of the cylinder are maintained at 
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constant temperatures and the walls with suction are maintained at constant heat flux. 

The stream lines due to the flow and isothermal lines are drawn. The flow is assumed 

to be Stokesian. The biharmonic equation for stream function is solved by writing into 

two coupled equations and 5 point formula is used to solve the equations. For 

derivative boundary conditions of stream function, central difference formula with 

fictitious nodes and for derivative boundary conditions of temperature 3 point 

backward difference formula are used.  

Chapter 8 

Stokes Flow and Heat Transfer Past a Circular Cylinder in a Square Cavity with 

Suction/Injection on Opposite Walls. 

A laminar viscous fluid flow is generated past a circular cylinder placed in a square 

cavity of uniform cross section by applying suction/ injection at the opposite side 

walls is considered. The other opposite side walls and the boundary of the cylinder are 

maintained at constant temperatures and the walls with suction are maintained at 

constant heat flux. The stream lines due to the flow and isothermal lines are drawn. 

The flow is assumed to be Stokesian. The biharmonic equation for stream function is 

solved by writing into two coupled equations and 5 point formula is used to solve the 

equations. For derivative boundary conditions of stream function, central difference 

formula with fictitious nodes and for derivative boundary conditions of temperature 3 

point backward difference formula are used.  

PART - V 

This consists of a single chapter. 

Chapter 9 

Finally, chapter ten concentrates on the overall conclusions drawn with references to 

the problems discussed in the thesis. We also indicate the direction for possible future 

work. 
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Chapter 2 

Heat Flow in a Rectangular Plate 

2.1 Introduction  

Steady state temperature distribution in a rectangular plane sheet with 

non-homogeneous boundary conditions is solved by using Fourier series. The results 

are compared with the numerical results. For different values of geometric ratio, the 

isothermal curves are obtained. 

The problem of steady state temperature distribution is classical and very old, since the 

time of Laplace (1787, 1832). Crank (1975) in his treatise on Mathematics of diffusion 

theory has discussed some typical problems with homogeneous boundary conditions. 

The related problems involving Laplacian equation in flow through channels of uniform 

cross-section were discussed by Langolois and Deville (2014). Recently analysis of heat 

flow in microchannels by theoretical and experimental studies is increasing due to their 

wide applications (Van Male et al. (2004), Shokouhmand et al. (2007), Khan et al. 

(2008), Mirmanto et al. (2012)). Lee et al. (2005) presented the experimental study of 

heat flow in rectangular microchannels. Schmith and kandlikar (2005) have discussed 

the pressure drop in a microchannel. The problem of solving steady state temperature 

when non-homogeneous derivative boundary conditions are given, though classical, is 

not attempted by many analytically. Here our aim is to solve this problem. The results of 

our problem are matched with the results of steady state diffusion problem of Crank 

(1975, Pages 65–66) when in the problem q2 = 0, T2 = 0. 
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2.2 Mathematical Formulation 

Consider the case of conduction of heat in a rectangular plate with the two adjacent sides 

maintained at constant temperatures and with other two adjacent sides maintained at 

constant heat flux. The plate is insulated on the top and bottom surfaces so that heat will 

not escape. To find the temperature profiles in the plate, the Cartesian coordinate system 

is selected with origin at the left bottom corner of the plate with X and Y axes along the 

sides of the plate. The plate has sides of length a and b along X and Y directions. The 

temperature profiles in the plate follow heat conduction equation in steady state as given 

by 

2 0T                 (2.1) 

subjected to the boundary conditions: 

T=T1 on X=0; T=T2 on Y=0; 1

T
k Q

X


 

  
on X=a and 2

T
k Q

Y


 


 on Y=b  (2.2) 

where T is the temperature in the plate at a point (x, y), k is the coefficient of thermal 

conductivity and Q1, Q2 are heat fluxes imposed on the sides. The first two conditions in 

(2.2) are for constant temperatures and the last two conditions of (2.2) are for constant 

heat flux. We introduce the following non-dimensional scheme with capital on LHS as 

physical quantities and small letters on RHS as the corresponding non-dimensional 

quantities: 

X=ax; Y=ay; 1
1

q k T
Q

a


 ; 2

2

q k T
Q

a


  and T =T. +T1 where T=T2–T1 (2.3)  

Now we have the non-dimensional equation as 

2 0                 (2.4) 

subject to  

 = 0 on x=0;  = 1 on y =0;            (2.5a) 
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1q
x




  
on x=1 and 

2q
y




  

on y=y0, where y0=b/a       (2.5b) 

Though it appears simple, it is difficult to solve (2.4) with conditions (2.5a) and (2.5b), 

since it involves infinite system of equations. Again this method is useful in solving 

fluid flow and heat transfer with convection problems. 

The solution of the problem can be obtained by two methods as given below. The 

physical representation of the problem is given in Fig. 2.1. 

 

Fig. 2.1: Temperature distribution in a rectangular plate. 

2.3 Solution of the Problem 

2.3.1 Method 1 

We assume the solution in two parts such that the first part satisfies homogeneous 

conditions on x=0 and x=1 and the second part satisfies homogeneous conditions on y=0 

and y=y0. The arbitrary constants in the general solution are adjusted such that the 

boundary conditions satisfied for the solution. Hence the solution is taken in the form as 

follows. 

     
1

sin cosh sinhn n
n

n x A n y B n y   




   

0 0 0

                                   sin sinh coshn n

n y n y n y
C D

y y y

        
       

       
   (2.6) 
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From the condition (2.5a), we get Dn=0  

and 
1

sin( ) 1n

n

A n x




  

Expanding f(x) =1 on RHS in half range sine series over 0≤ x≤1, we get 

4
  if   (2 1) and  0 if   2n nA n m A n m
n

      

Again from the condition (2.5b), we have 

01

1

0 0

cos( )[ cosh( ) sinh( )] sin cosh
n

n
n n

C n y n x
n n x A n y B n y q

y y yx

 
  








     
      

     




This implies that  

  1

1 0 0 0

-1 [ cosh( ) sinh( )] cosh sin  
n n

n n

n

C n n y
n A n y B n y q

y y y

 
  





     
      

     
  (2.7) 

Expanding q1, cosh(ny) and sinh(ny) in half range sine series over 0≤y≤y0 , we get  

1

1 0

sinn

n

n y
q A

y





 
  

 


 

which gives that 1 nn AA q 
 
if n is odd and 0nA 

 
if n is even. 

 
   0

,2 2 2
1 10 0 0

(1 1 cosh2
cos sin sin

m

n m

m m

m n y m y m y
h n y c

y n m y y

  




 

 

     
    

    
   

 
   

1

0

,2 2 2
1 10 0 0

1 sinh2
sin sin sin

m

n m

m m

m n y m y m y
h n y s

y n m y y

  





 

 

    
    

    
   

Substituting these above expressions in (2.7) and taking the coefficients of sin(ny/y0) 

we get, 

 1 , ,

10 0

cosh 1 ( )
m

n n m m n m m n

m

n n
C q A m A c B s

y y

 






 
    

 
      (2.8) 

Similarly the condition (2.5b) gives us, 
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 0 0 2

1 0 0

sin [ sinh( ) cosh( )] 1 sinh
n n

n n

n

C n x
n n x A n y B n y q

y y y

 
   





    
      

    
  

Expanding q2, sinh(nx/y0) in half range sine series, and collecting the coefficients of 

sin(nx) on both sides we get, 

     0 0 2 ,

1 0

[ sinh cosh ] 1 1
m m

n n n m n

m

C
n A n y B n y q A m s

y
   





       (2.9) 

where ,

10

sinh 1 sin( )n m

m

n x
s m x

y








 
 

 
 . 

Equations (2.8) and (2.9) can be simplified by introducing the following notation 

   * * *

0 0

0 0

sinh ,  cosh ,  coshn n n n n n

n n
A n y A B B n y C C

y y

 
 

 
    

 
 

and 
   

, , ,* * *

, , ,

0 0 0

1
,  , 1

sinh cosh( ) cosh /

m n m n m n

m n m n m n

c s s
c s s

m y m y m y  
    

Now equations (2.8) and (2.9) become 

 * * * * *

1 , ,

1

1 ( )
m

n n m m n m m n

m

C q A m A c B s




            (2.10) 

and    * * * *

2 ,

1

1 1
m

n n n m m n

m

q A n A B C s




            (2.11) 

Substituting (2.10) in the equation (2.11), we get   

   * * * * * * *

, 1 , , 2

1 1

1 1 { 1 ( )} ( )
m k

m n m k k m k k m n n n

m k

s q A k A c B s q A n A B 
 

 

         

Rewriting this we get, 

  * * *

, ,

1 1

{ 1 1 } n
k m

k m m n k n

k m

k s s B B 
 



 

   

   * * * * *

2 1 , , ,

1 11

                  1 1 1 1
m k m

n n m n m k m m n k

k mm

q A n A q s A k c s A 
 









         (2.12) 

The first term on LHS within inner summation can be written as  
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   
 

  

2
0* * 0

, , , 0 2 2 2 2 2 2
1 1 0 0

1 tanh
4

1 1 tanh   

k n

k m

k n k m m n

m m

m

ykny
bb k s s k y if k n

k y m m n y



 




 


 

 
  

 
   

 
   

This equation (2.12) can be solved for 
*

nB  and then substituting 
*

nB  in (2.10) we get 

*

nC . Now all the constants An, Bn and Cn are known. Hence, the temperature can be 

computed from (2.6). By choosing q1=2, q2=4, the temperature profiles are obtained as 

shown in Fig. 2.2. We can observe that as n increases the solution converges more near 

to an exact solution. When we take only 5 terms (with each term containing 3 constants 

An, Bn and Cn) in the series, we can find many discrepancies in the corners. As n 

increases, we get a good approximate solution near to n=20. But again, if n is more than 

20, so many fluctuations will develop due to multiplication of very large and very small 

numbers. 

 

Fig. 2.2: Method 1 with 5, 10 and 20 terms. 

2.3.2  Method 2 

In this method, the solution is taken in two parts as =1+2. The part 1 satisfies 

Laplacian and boundary conditions on y. The conditions on x will be homogeneous. The 

part 2 satisfies the Laplacian and boundary conditions on x. The conditions on y will be 
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homogeneous. Hence,  satisfies all the boundary conditions. We assume =1+2 is 

the solution for 

2 0                 (2.13) 

with the conditions 

1 2 00 on 0;  1 on 0;  on 1 and on   x y q x q y y
x y

 
 

 
       

   

are split as: 

1 2

1 2
1

1 2

1
2 0

0 on 0                                     0 on 0

0 on 1                                   on 1

1 on 0                                     0 on 0

 on    

x x

x q x
x x

y y

q y y
y

 

 

 



   

 
   

 

   


 



2
0                            0 on y y

y


 



     (2.14) 

The solution for 1, which satisfies homogeneous conditions on x of (2.14) is taken as 

     
1

1

2 1 2 1 2 1
sin cosh sinh

2 2 2
n n

n

n x n y n y
A B

  






   
  

 
     (2.15)  

the constants An and Bn are found from the conditions on y of (2.14) for θ1 as below: 

 
1

1

2 1
1 on 0        sin 1  for 0 1

2
n

n

n x
y A x









           (2.16) 

since sin((2n+1)x/2) functions are orthogonal, from (2.16) we get 

 1

0

2 1 4
2 sin

2 (2 1)
n

n x
A dx

n






 


  

        (2.17)

 

 

again 2 0
1  on q y y

y


 


which reduces to the following: 

     0

2

1

02 1 2 1 2 1(2 1)
sin sinh cosh

2 2 2 2
m n

m

y ym x m mm
q A B

  



   
  

 
  (2.18) 

multiplying by sin((2n+1)x/2) on both sides of (2.18) and then integrating with respect 

to x from 0 to 1, by orthogonal property of sin((2n+1)x/2) functions, we get Bn as  

   2
02 02 1 2 1

sech tanh
2 2 2

n
n n

yn n yq A
B A

  
        (2.19) 
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Now the solution for 2, which satisfies homogeneous conditions on y of (2.14), is taken 

as 

     

0

2

1 0 0

2 1 2 1 2 1
sin sinh cosh

2 2 2
n n

n y y y

n y n x n x
C D

  






   
  

 
    (2.20) 

from the conditions on x of (2.14), i.e., 2 0 on 0x   we get Dn= 0   (2.21) 

again we have 2
1  o 1n q x

x


 


, we get 

   

0

1

1 0 0

2 1 2 1(2 1)
sin cosh

2 2 2
n

n y y

yn
q

y

n n
C

 



 
       (2.22)  

Cn’s are obtained from the orthogonal property of sin((2n+1)y/2y0), as  

 
1

0

2

0
2 1

sech
2 2

n
n

y nA

y

q
C


            (2.23) 

Substituting (2.17), (2.19) in (2.15) and (2.21), (2.23) in (2.20) we get 1 and 2. Now 

combining the two solutions 1 and 2 we get the complete solution. It is computed 

numerically and presented below with n=20 number of terms in the solution. The 

solution is more close to the exact solution than the solution obtained in Method 1. This 

problem is solved by five point iterative formula by numerical method. The solution 

obtained at 3500 iterations is presented in Fig. 2.3. 

      

Fig. 2.3: Isothermal lines between Method 2 with 20 terms and by Numerical method at 

3500 iterations. 
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2.4 Results and Discussion 

The analytical solution is very fast converging with 20 terms and accurate enough 

whereas the numerical solution take hundreds of iterations even with Gauss-seidal 

iterations and is not as accurate as analytical solution. The effect of heat flux at the edges 

is shown below. When the ratio q=q1 /q2 is very high as 200 (Fig. 2.4 (a)), the isothermal 

lines are vertical. When q = 0.1 (Fig. 2.4 (b)), the isothermal lines are inclined with 

much variations near to down left corner and when q= 0.001 (Fig. 2.5), the isothermal 

lines are nearly parallel to the walls. In all the cases, there exists a small region of no 

heat flow zone at which the pattern changes its nature in direction of thermal flow. 

           
(a)                                                 (b) 

Fig. 2.4: Isothermal lines for (a) q= 200 and (b) q=0.1. 

          

Fig. 2.5: Isothermal lines for q= 0.001.       Fig. 2.6: Temperature at y=y0. 

In Fig. 2.6, temperature distribution at the top side of the plate is given. We notice that, 

as q2, the heat flux increases, the temperature also increases. 
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2.5 Conclusions 

Form this chapter, we observed that finding analytical solution is not easy for this type 

of problems. So, we considered numerical method for obtaining solution to this kind of 

problems in subsequent chapters of the thesis. 
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Chapter 3 

Fluid Flow and Heat Transfer by Heat Function and 

Entropy Generation in a Rectangular Channel with 

Suction 

A viscous fluid flow is generated in a rectangular channel of uniform cross section by 

applying suction/ injection at the adjacent side walls. The other opposite side walls are 

maintained at constant temperatures and the walls with suction are maintained at 

constant heat flux. The flow is assumed as Stokes flow and non-linear convective 

terms are neglected. The stream lines due to the flow and isothermal lines and heat 

function contours are drawn. The regions of high friction are found by plotting entropy 

generation number and Bejan number. The regions of low and high pressures are also 

drawn. The 13 point formula is used to solve the biharmonic equation (convective 

term is neglected) for stream function and 5 point formula is used to solve for all other 

harmonic equations. For derivative boundary conditions, central difference  formula 

with fictitious nodes  is used. It is observed that corner points are regions of high 

energy dissipation points. Least dissipation of energy is near to the wall where non-

dimensional temperature is 1. 

3.1 Introduction 

The flow due to suction at the adjacent walls of rectangular channel was studied by 

Varapaev and Yagodkin (1969) wherein the problem was solved by a semi numerical 

technique to obtain flow pattern only. Heat transfer in rectangular ducts is studied 

experimentally by Alfarawi et al. (2017). Karimi et al. (2014) investigated the flow of 

an incompressible Newtonian fluid through a rectangular channel. Fluid flow and heat 

transfer in a rectangular channel have been studied by Mahdi et al. (2010), Wang et al. 

(2012), Chen et al. (2014), Ambethkar and Kushawaha (2017) and Sahar et al. (2017). 

Warrier et al. (2002) studied heat transfer and pressure drop in narrow rectangular 

channels. Attia (2005) studied the effect of suction and injection of a dusty conducting 

fluid in rectangular channel. 
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The classical problem of viscous fluid flow in a rectangular cavity generated by 

uniform motion of the lid has been source of many researchers for getting a numerical 

solution. It is also treated as a benchmark problem for testing numerical scheme of a 

method. Kawaguti (1961) obtained numerical solution for different aspect ratios of the 

channel. Moffatt (1964) obtained a similarity solution to get flow near the corners of 

the channel. Weiss & Florsheim (1965) have obtained a solution by variational 

method. Since these methods are not accurate enough, the problem was therefore 

treated numerically by means of the relaxation procedure by Burggraf (1966). The 

analytical solutions of the problem have been obtained by Joseph and Sturges (1978) 

by using biorthogonal functions and found a solution which is fast converging and 

accurate. Kundu et al. (2011) are established the analytical techniques to determine the 

velocity distribution for laminar fluid flow through rectangular channels. Chorin 

(1968) developed a numerical scheme for unsteady motion of viscous fluid. Kaushik 

(2019) studied 2D incompressible flow in a rectangular domain using Chorin’s 

projection method numerically at high Reynolds number. 

In the past for many years, heat transfer by convection was studied by examining 

temperature field and first law of thermodynamics. Nowadays emphasis on design of a 

model is developed as a science. Hence a deeper study of the subject is necessary. The 

study of flow lines, temperature and heat flow lines together with second law of 

thermodynamics are important, since by this one can know the regions of available 

energy or useful energy and regions of dissipation of energy.  

But for the study of flow due to suction on adjacent walls is paid very less attention. 

Hence in this chapter our aim is to study the heat transfer in a rectangular channel with 

suction on adjacent walls. The entropy analysis is also taken to see the region of 

available energy. Bejan number plot is drawn to see the regions where friction is 

dominating. 

3.2 Mathematical Formulation 

The two dimensional laminar viscous flow through a rectangular channel of uniform 

cross section due to suction/injection at the neighboring walls is considered. The 

physical representation of the problem is given in Fig. 3.1. The Cartesian coordinate 

system with origin at the bottom left corner and X and Y axes along the walls is taken. 



30 
 

The channel is of length a along X direction and height b along Y direction. Injection 

with velocity V1 at the wall Y=b and suction with velocity V2 at the wall X=a are 

imposed. The flow is developed because of the suction. 

 
Fig. 3.1. Stokes flow configuration in a rectangular channel with adjacent wall suction. 

Governing Equations 

The equations of motion for the flow are given below:  

. 0 Q          (3.1) 

2d
P

dt
    

Q
Q         (3.2) 

2
p

dT
c k T

dt
           (3.3) 

where Q is the velocity of fluid particle, P is pressure, T is the temperature,  is fluid 

density,  is the coefficient of viscosity, k is the thermal conductivity of the fluid and 

cp heat capacity at constant pressure. 

The flow is two dimensional and hence Q= (U, V). 

Boundary conditions for the problem  

Velocity of fluid satisfies impermeability condition and no slip condition on walls 

X=0, Y=0 and suction and no slip condition at the permeable walls X=a and Y=b. The 

temperature field satisfies constant heat flux at the permeable walls X=a and Y=b and 

constant temperature is maintained on the impermeable walls X=0, Y=0. Due to no slip 

condition on the walls X=0 and Y=0, the tangential velocities are zero. 
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i.e., on X=0, V=0 0
X


 


 and on Y=0, U=0 0

Y


 


. 

Due to impermeability condition on the walls X=0 and Y=0, the normal velocities are 

also zero. 

i.e., on X=0, U=0 0
Y


 


and on Y=0, V=0 0

X


 


. 

Due to no slip condition on the walls X=a and Y=b, the tangential velocities are zero. 

i.e., on X=a, V=0 0
X


 


and on Y=b, U=0 0

Y


 


. 

On permeable walls, the suction velocity on X=a is V2 and the injection velocity on 

Y=b is V1. 

i.e., on X=a, U=V2 2V
Y


 


and on Y=b, V=–V1 1V

X


 


. 

The walls X=0 and Y=0 are maintained at constant temperatures. i.e., T=T1 on X=0 and 

T=T2 on Y=0. 

On the walls X=a and Y=b constant heat fluxes are imparted. 

 i.e., 1 2 on   and   on 
T T

Q X a Q Y b
X Y

 
   

 
. 

Non-dimensionalization 

We introduce the following non–dimensional scheme and non–dimensional 

parameters V0=suction parameter, y0=geometric parameter, Pe=Peclet number, 

Re=Reynolds number. 

2
1 1 1 1 2 1,  ,  ,  ,  ,  ( )X ax Y ay U V u V V v P V p T T T T           (3.4) 

11 2
0 0

1

Re ,   Re*Pr,   ,   
pc V aV a Vb

Pe y V
k a V




        (3.5) 

For the flow the Reynolds number is so small that the convective terms in equation 

(3.2) are neglected. The flow is steady and hence independent of time t. 

3.3 Solution of the problem 

3.3.1 Stream function 

We introduce stream function   as below such that equation (3.1) is satisfied. 
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   and   u v
y x

  
  
 

       (3.6) 

Taking curl to equation (3.2) and substituting (3.6), we get the equation for the non-

dimensional stream function   as 

4 0           (3.7) 

with boundary conditions: 

0  on  0  and    on  1x x
x


  


 

00  on  0  and    on  1x V x
y y

  
   

 
 

00  on  0  and  1  on  y y y
x x

  
   

   

00  on  0  and    on  y y y
y


  


 

These conditions, by integrating, are converted in to the conditions on   as follows: 

0

0

0

0 on 0 and 1

0 on 0 and 0

 on 

 on 1

0 on 0 and 

x x
x

x y

x y y

V y x

y y y
y












  



  

 





 


  












       (3.8) 

We solve the equation (3.7) with conditions (3.8) by Finite Difference Method. The 

cavity is covered with a mesh of step size h with (M–1) intervals on X direction and 

(N–1) intervals on Y direction. For each grid point (i, j) within the cavity, the 

biharmonic equation is approximated by 4
th

 order 13 point scheme as given in Titus 

Petrila and Damian Trif (2005) and Pozrikidis (1998). Then equation (3.7) can be 

written as: 

4
, , 1, 1, , 1 , 14

1, 1 1, 1 1, 1 1, 1 , 2 , 2 2, 2,

1
[20 8( )

              +2( ) ( )] 0  

                                                       for  = 2

i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

h

i

     

       

   

           

     

       

, 3,... , 1 &  = 2, 3,... , 1M j N 

          

(3.9) 

For the boundary conditions containing derivatives, we used central difference 

scheme. The nodes numbering is as follows: 
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Along X direction Along Y direction 

x1 node on the boundary x = 0. y1 node on the boundary  y = 0. 

x2 , x3, … , xM-1 inside the computational 

domain 

y2 , y3, … , yN-1 inside the computational 

domain xM  node on the boundary x=1 yN  node on the boundary y=y0 

Thus at x=0, we have, (0, ) 0  and  0y
x





 


.  

i.e., 
2, 0,

1, 2, 0,0  and  0  or    for =1,2,...,
2

j j

j j j j N
h

 
  


     (3.10) 

at x=1, we will have, 0(1, )   and  0y V y
x





 


. 

i.e.,
1, 1,

, 0 1, 1,( 1)   and  0  or    
2

                                                                                   for =1,2,...,

M j M j

M j M j M jV j h
h

j N

 
  

 

 


   

 
(3.11) 

Similarly at y=0 we have,  

,1 ,2 ,00  and    for =2,3,..., 1i i i i M          (3.12) 

Finally at y=y0 we have, 

, , 1 , 1( 1)   and    for =2,3,..., 1i N i N i Ni h i M          (3.13) 

Equation (3.9) involves (M–2)(N–2) internal points +(2M+2N–4) boundary points 

+(2M+2N) external or fictitious points and hence in total MN +2M +2N–8 number of 

unknowns. Now equation (3.9) gives (M–2)(N–2) number of equations, (3.10) gives 

2N equations, (3.11) gives 2N equations, (3.12) gives 2(M–2) equations and (3.13) 

gives 2(M–2) equations and hence in total MN+2M+2N–8 equations. Thus the scheme 

in (3.9) can be solved uniquely by introducing fictitious nodes externally through 

central difference formula for the derivative conditions on the boundary. 

Now by eliminating known boundary values, the equation (3.9) can be written in the 

form: 

for i=2,  A12 + A23 +4 = a2 

for i=3,  A22 + A33 +A24  +5 = a3 

for 3<i<M–2,  Ii-2  + A2i-1 +A3i +A2i+1 + i+2 = ai  (3.14) 

for i=M–2,  IM–4 + A2M–3 +A1M–2+A2M–1  = aM–2 

for i=M–1,  IM–3 + A2M–2 +A1M–1  = aM–1 
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where 1

22  8     1     0   ............      0

8    21   8   1   0   ........     0

..........................................

..........................................

0   ........   1   8   21   8    

A



 



    1

0   ........  0      1   8     21  8

0   .............     0     1     8   22

 
 
 
 
 
 
 
 

  
  

, 2

8    2    0  ......     0

  2  8   2  ......     0

...........................

...........................

0  .......   2   8     2

0  .......   0      2  8

A

 
 


 
 

  
 
 
 

 

,  
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These equations in (3.14) are solved by Gauss-Seidel iteration method.  All i, i>2 are 

set to zero and equation for i=2 is solved for 2, then equation for i=3 is solved for 3. 

So on to find all i. For the next iteration, all these are taken as known and the 

procedure is repeated until, the difference between two iterations for  is less than  

(=10
–4  

). 

3.3.2 Temperature 

The energy equation, given by (3.3), by using (3.4), (3.5) can be reduced to the non-

dimensional form as: 
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2 Pe u v
x y

 


  
   

  
       (3.15) 

with boundary conditions: 

1

2 0

   on    1;   0       on    0

1        on   0;      on   

q x x
x

y q y y
y







 
     




   
 

     (3.16) 

The equation (3.15) by second order finite differences can be written as 

   

   

, 1 , 1 1, 1, 1, , 1 ,

1, 1, , 1 , 1 , 1 1, 0    

                                                      

1 1 4
4 4

          1 1
4 4

 

i j i j i j i j i j i j i j

i j i j i j i j i j i j

Pe Pe

Pe Pe

     

    

     

     

   
        

   

   
        
 


 

   for 2,3,  ,  and 2,3,  ,i M j N   

(3.17) 

The boundary conditions in (3.16) are now expressed as:  

1,at 0,  =0  which implies that 0  for 2,3,...,jx j N   

   

(3.18)

,1at 0,  =1  which implies that 1  for 2,3,...,iy i M   

    

(3.19) 

1 1, 1, 1at 1,  =  which implies that +2  for 2,3,...,M j M jx q hq j N
x


  


  

  
(3.20) 

0 2 , 1 , 1 2at ,  =  which implies that +2  for 2,3,...,i N i Ny y q hq i M
y


  


  


(3.21) 

Equation (3.17) involves (M–2)(N–2) internal points +2(M+N–2)–1 boundary points 

+(M+N–2) external points and a total of MN+M+N–3 unknowns. Now equation (3.17) 

yields (M–1)(N–1) equations, (3.18) yields N–1 equations, (3.19) yields M–1 

equations, (3.20) yields N–1 equations and (3.21) yields M–1 equations and hence a 

total of MN+M+N–3 equations. Hence the equations in (3.17) can be solved uniquely. 

Equation (3.17) does not contain the corner points (1, 1), (1, N+1), (M, 1) & (M, N+1). 

The equation (3.17) can be put in matrix form as below: 

for i=2:  B222 +B323 = b2 

for 2<i<M – 2:  B1ii–1 +B2i i +B3ii+1 = bi    (3.22) 

for i=M:  2IM–1 +B2MM  = bM 
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The equations in (3.22) for temperature are solved by Gauss-Seidel iteration method as 

in (3.14) for stream function. 

3.3.3 Entropy Generation and Bejan Number 

The dimensional local entropy generation ,genS (Woods (1975) and by Mikhail et al. 

(2016)) is expressed as 

2 2 2 2 2

2
00

2 2gen

k T T U V U V
S

X Y T X Y Y XT

                 
                 

                    

 (3.23) 

where reference temperature T0 is taken as  T0= 0.5(T1+T2). 
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Equation (3.23) consists two terms: the first is the local entropy generation due to heat 

transfer by conduction , gen htS and the second is the dimensional local entropy 

generation due to fluid friction , gen frS .  

The corresponding non-dimensional entropy generation number sN  is defined as 

2 2
0

2
2 1( )

s gen

T a
N S

k T T



 

2 2 22 2

      = 2 2
u v u v

Br
x y x y y x

                 
               
                   

 

=s h fN N N          (3.24) 

where
2

1 0

2
2 1

  is Brinkman Number.
2 ( )

V T
Br

k T T





 

sN can be evaluated by writing the derivatives of u, v and   in centred first order 

finite differences at inside and boundary nodes x=1, y=y0 and on x=0, y=0 we use 3–

point backward difference formula.

 Further, the Bejan number Be is a parameter that shows the importance of heat transfer 

in the domain and is defines as 

h

h f

N
Be

N N



        (3.25) 

3.3.4 Heat lines 

Net energy flow in X and Y directions are given by (Bejan (2013)): 

*

0( )p

H T
C U T T k

Y X


 
  

 
       (3.26) 

*

0( )p

H T
C V T T k

X Y


 
   
 

      (3.27) 

Physically, H
*
=constant represents a curve across which, the net flow of energy 

(thermal diffusion and enthalpy flow) is zero. H
*
 is called heat-function. Oztop et al. 

(2012) obtained heat lines for inclined channel for a nano-fluid flow. Kimura and 

Bejan (1983) worked an example problem for heat function in a natural convection in 

an enclosure heated from the side. Introducing the non–dimensional quantities, 
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*1
2 1 and   where  

T T
H Hk T T T T

T



     


 

The equation (3.26) and (3.27) reduces to  

( 0.5)
H

uPe
y x




 
  

 
 and ( 0.5)

H
vPe

x y




 
   

 
  (3.28) 

The above equations in (3.28) can be combined to give 

 2
,0.5 i j

u v
H Pe u v Th

y x y x

 


       
          

       
   (3.29) 

so that the equations in (3.28) will serve as the boundary conditions for H. On x=0 and 

on x= 1, v=0 hence on x=0, Hx= y =0 and on x=1, Hx=y. 

Similarly other conditions are derived 

on 0,  0
H

x
x y

 
  

 
on 1,  

H
x

x y

 
 

       (3.30)

on 0,  0
H

y
y x

 
   

 
0on ,  

H
y y

y x

 
  

 
 

For discretization, we use 5 point formula and equation (3.29) can be written as  

1, , 1 , , 1 1, ,4   

                                     for 2,3,..., 1 and 2,3,..., 1

i j i j i j i j i j i jH H H H H Th

i M j N

       

   
  (3.31) 

on the boundary x=0, 0
H

x




  
which by using 3–point formula, reduces to 

1, 2, 3,3 4 0  for 1,2,....,j j jH H H j N          (3.32) 

Similarly on y=0, we have 0
H

y




  

which gives to 

,1 ,2 ,33 4 0  for 2,3,...., 1i i iH H H i M          (3.33) 

on y=y0, 
H

y x

 
 

   

which by using 3–point formula for H and central difference 

formula for  gives to 

, , 1 , 2 1, 1,3 4   for 2,3,...., 1i N i N i N i N i NH H H i M          
 

 (3.34)  

Similarly x=1, 
H

x y

 


   

yields to: 

, 1, 2, , 1 , 13 4   for 1,2,....,M j M j M j M j M jH H H j N         
 

 (3.35)   

solving the system of MN equations in MN unknowns (3.31)–(3.35) using Gauss–

Seidel iteration method for 500 iterations we get the values of H. 
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3.3.5 Pressure 

The equations for pressure are      

2 2 2 2

2 2 2 2
   and   

P U U P V V

X YX Y X Y
 
        

      
       

   (3.36) 

using the non–dimensional quantities, these equations are reduced to 

2 21 1
   and   

Re Re

p p
u v

x y

 
   

        

(3.37) 

Taking curl to (3.37),  we have  

2 0p           (3.38) 

subjected to the boundary conditions: 

21
on 0  and  1,  

Re

p
x x u

x


   

       (3.39)
 

2
0

1
on 0  and  ,  

Re

p
y y y v

y


   


 

Discretizing (3.38) by central differences, we get  

1, , 1 , , 1 1,4 0 

                                 for 2,3,..., 1 and 2,3,..., 1

i j i j i j i j i jp p p p p

i M j N

       

   
  (3.40) 

on the boundary x=0, we use central differences to get RHS as: 

2
0, 1 0, 1 1, 1 1, 1 2, 1 2, 1 1,31,

1
2 2

2
j j j j j j j

j
u U

h
          

              

By using 3–point formula for LHS, we have finally 

1, 2, 3, 1,3 4 2   for 1,2,....,j j j jp p p hU j N         (3.41) 

We use similarly central differences on RHS at x=1 and get: 

2
1, 1 1, 1 , 1 , 1 1, 1 1, 1 ,3,

1
2 2

2
M j M j M j M j M j M j M j

M j
u U

h
              

              

and hence the equation at x=1 is given by  

, 1, 2, ,3 4 2   for 1,2,....,M j M j M j M jp p p hU j N         (3.42) 

on y=0, we use central differences to get RHS as: 

2
1,0 1,0 1,1 1,1 1,2 1,2 ,13,1

1
2 2

2
i i i i i i i

i
v U

h
          

               

By using 3–point formula for LHS, we have finally 

,1 ,2 ,3 ,13 4 2   for 2,3,...., 1i i i ip p p hU i M          (3.43) 
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we use similarly central differences on RHS at y=y0 and get: 

2
1, 1 1, 1 1, 1, 1, 1 1, 1 ,3,

1
2 2

2
i N i N i N i N i N i N i N

i N
v U

h
              

             
 

and hence the equation at y=y0 is given by 

, , 1 , 2 ,3 4 2   for 2,3,...., 1i N i N i N i Np p p hU i M          (3.44) 

Solving system of MN equations in MN unknowns in (3.40)–(3.44) by using Gauss–

Seidel iteration for 500 iterations we get the values of p. 

3.4 Results and Discussion 

Our problem is similar in situation that in a big room, walls on two sides are at 

constant temperature and other two side walls are suction and injection of cool breeze 

by air coolers and then wind circulation is studied. Or it is similar to, in an industry 

materials are dried in wind by hot air blown in through side walls and we want study 

the percentage of wetness in the wind. For the fluid in the chamber, bi-harmonic 

equation for stream function is solved (for which suction rate or Reynolds number is 

moderately small). Using the stream function, temperature distribution in the chamber 

is solved. Using temperature field, the regions of available energy and regions of high 

friction are found by entropy generation number and Began number. Then the heat 

flow lines are drawn. Pressure field within the chamber is also found. 

3.4.1 Streamlines  

The stream lines generated due to injection at the top wall and suction at the right side 

wall are shown. The effect of Reynolds number will not present on these lines, since 

convective terms are neglected. At four different suction parameter values, the stream 

lines are shown in Fig. 3.2 to Fig. 3.5. We can observe that as the value of the suction 

parameter V0 increases, stream function values on right side wall increases, since 

0V y   on x=1. The left bottom corner remains as stagnant region for all values of V0.  
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Fig. 3.2       Fig. 3.3 

 
Fig. 3.4     Fig. 3.5 

3.4.2 Temperature field  

The Fig. 3.6 to Fig. 3.9 display the nature of temperature contours. As the values of 

Reynolds number Re is increasing in Fig. 3.6, Fig. 3.7 and suction parameter 

increasing in Fig. 3.8, Fig. 3.9, we observe that more temperature lines enter into the 

flow i.e., density of heat transfer increases. That means as convective forces increase 

(as Re increases) the temperature within the chamber is taken away by convective flow 

and hence more and more temperature isotherms enter into the chamber. As Re 

increases, the temperature contours take bending near to the left down corner. But near 

to the bottom wall, isotherms remain almost unchanged for variations of Re. 
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Fig. 3.6     Fig. 3.7 

 
Fig. 3.8     Fig. 3.9 

3.4.3 Entropy generation Number Ns 

From the Fig. 3.10–Fig. 3.13 we observe that maximum entropy occurs at the four 

corners. But the top left corner is not encircled properly by the constant entropy lines. 

Below the top left, the maximum entropy occurs. We may expect that minimum 

entropy may be present at bottom left corner, since temperature is zero and no flow by 

suction is imposed. But by graphs we observe a maximum entropy there at the bottom 

left corner also. But instead minimum entropy lays at a point near to the bottom left 

corner. As Re or Br increases, more and more entropy lines enter into the chamber 

without violating positions of maximum and minimum entropy points. By increasing 

Br, increases entropy with a light shift in the region. But much increase in the values 

of entropy lines is not observed. But increase in Re, increases values of entropy very 

much at the corners and within the chamber. As Re increases, the irreversible region 

(region of high values of entropy) increases at right bottom and occupies half of the 

channel. 



43 
 

 
Fig. 3.10     Fig. 3.11 

 
Fig. 3.12     Fig. 3.13 

3.4.4 Bejan Number Be 

Bejan number shows the regions where heat transfer by conduction is more. It is to 

note that 0<Be< 1. If Be is near to zero indicate region of high friction and Be near to 1 

indicates region of high conduction and less friction. The regions where Be is near to 1 

are regions of available energy i.e., reversible heat transfer regions. In Fig.  3.14–Fig. 

3.17, the contours of Bejan number are shown. We observe that as Br, the Brinkman 

number,  increases, the region of friction spreads more and more. As Re, the Reynolds 

number increases, more and more Bejan contour lines increase. i.e., the heat transfer 

becomes faster or more dense. In any case at the corner points  we observe Be is near 

to zero (0.1 or less) as in the case of Entropy generation number indicate the effect of 

friction and more generation of heat. Comparing both Entropy generation number Ns 

and Bejan number Be, we can observe that near bottom left corner both Ns and Be are 

having small values. Which means though convection dominates, available energy is 

plenty at the bottom left corner. 
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Fig. 3.14     Fig. 3.15 

 
Fig. 3.16     Fig. 3.17 

3.4.5 Heat Lines 

The energy equation in (3.15) can be split into two fist order equations by introducing 

Heat function H as in (3.28). Heat lines are shown within the chamber in the Fig. 

3.18–Fig. 3.21. Heat lines are having positive values at the left top corner and negative 

values at the right bottom corner. These heat lines are changing their sign from right 

wall to the left wall. Negative values of heat lines indicate that the region in which 

they are present is the region where temperature is below the reference temprerature. 

As Reynolds number increases, these heat lines increases very much in value and 

attain maximum value when they reach the bottom right corner. If convection is 

neglected, isothermal lines and heat lines will be orthogonal to each other. Again we 

observe that for V0 = 2, the 0–0 heat line which is vertical for Re=0.5 now becomes 

horizantal at Re=10 and moves up. Again we observe that as suction parameter V0 

increases, heat lines also increase for fixed Re value. The 0–0 heat line moves up as V0 

the suction parameter increases. 
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Fig. 3.18     Fig. 3. 19 

 
Fig. 3.20     Fig. 3.21 

3.4.6 Pressure Contours 

The linear momentum equation in (3.2) can be split into two components along X and 

Y directions  as in (3.36). Pressure is obtained from the numerical scheme as in (3.39) 

and contours are drawn  within the chamber in the Fig. 3.22–Fig. 3.25. It is observed 

that as Reynolds number increases, values of pressure contours decrease very much. 

This is due to the fact that pressure gradient is inversely proportional to Reynolds 

number in (3.36). It is to be noted that though Reynolds number does not effect the 

stream lines, pressure is effected very much. Again as suction parameter V0 increase, 

pressure also increases. The pressure is maximum at the top right corner. 
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Fig. 3.22     Fig. 3.23 

 
Fig. 3.24     Fig. 3.25 

 

3.5 Conclusions 

From the figures drawn, we analyzed and observe that 

 As V0 increases, the stream function values are increases. 

 As Reynolds number and suction parameter increases, due to convection more 

and more temperature lines enter into the flow region. 

 Either by entropy generation number or by Bejan number contours, we observe 

that dissipation energy is very high at the corners. 

 Energy dissipation is minimum near to the left bottom corner or where non-

dimensional temperature is 1. (since Ns is minimum) 

 Available energy or exergy is more in the centre of the channel. (since Be is 

near to 1) 
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 Heat lines  have highest value at the top right corner. Heat lines show the 

actual path of the energy absorbed by the walls. Hence the lines are perpendicular to 

the walls. 

 As Reynolds number increases, values of pressure contours decrease very 

much. This is due to the fact that pressure gradient is inversely proportional to 

Reynolds number. 
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Chapter 4 

Entropy Analysis for Heat Transfer in a Rectangular 

Channel with Suction 

In this chapter we considered the nonlinear convective term which we have neglected 

in chapter 3. The stream lines thus obtained due to the flow and isothermal lines and 

heat function are analyzed. The regions of high and low frictions are found by drawing 

contours of entropy generation number and Bejan number. Expressions for the heat 

transfer coefficient, Nusselt number are also derived. The 4
th

 order Partial Differential 

equation for stream function is numerically solved by FDM using 13 point formula 

and 5 point formula is used to solve for all other harmonic equations for temperature, 

heat function and pressure. This chapter analyses the heat transfer in the rectangular 

channel through heat function and Entropy generation number. 

4.1 Introduction 

For many years in the past, convection with heat transfer was studied by first law of 

thermo-dynamics to find temperature field. Heat transfer and fluid flow results for 

combined free and forced laminar convection with an upward flow in rectangular 

channel was studied by Ou et al. (1976). In recent times emphasis on design of a 

model is developed as a science. Therefore deeper study of the subject is essential. 

The study of heat flow, temperature and flow collectively with second law of thermo-

dynamics is essential, due to the fact that one can understand the regions of dissipation 

of energy and regions of available energy. Heat transfer problems in boundary layer 

flow past a plate, the pipe flow, flow in the entrance region of a rectangular duct using 

entropy generation minimization was studied by Bejan (1979). Fakher Oueslati and 

Brahim Ben–Beya (2017) have studied the entropy analysis within a parallelepiped 

cavity. Rathish Kumar et al. (2013) have studied the heat transfer due to 

suction/injection with sinusoidal varying temperature in a cavity. Flow due to Lid 

driven and natural convection in a square cavity using lattice Boltzmann method was 

studied by Djamel et al. (2010). Wang et al. (2010) have analyzed the contributions of 

velocity and velocity gradient to the convective transport of heat flux in a square 

cavity. 



49 
 

But the study of flow generated due to suction on neighboring walls is paid very less 

consideration. Hence in this chapter our objective is to examine the two dimensional 

flow and the heat transfer due to laminar flow convection in a rectangular tube with 

suction on neighboring walls. 

4.2 Mathematical Formulation 

The two dimensional laminar viscous flow through a rectangular channel of uniform 

cross section due to suction/injection at the neighboring walls is considered. The 

physical representation of the problem is given Fig. 4.1. The Cartesian coordinate 

system with origin at the bottom left corner and X and Y axes along the walls is taken. 

The channel is of length a along X direction and height b along Y direction. Injection 

with velocity V1 at the wall Y=b and suction with velocity V2 at the wall X=a are 

imposed. The flow is developed because of the suction. 

 
Fig. 4.1: Convective flow configuration in a rectangular channel with adjacent wall 

suction 

Governing Equations 

The equations of motion for the flow are given below:  

. 0 Q          (4.1) 

2d
P

dt
    

Q
Q         (4.2) 

2
p

dT
c k T

dt
           (4.3) 
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where Q is the velocity of fluid particle, P is pressure, T is the temperature,  is fluid 

density,  is the coefficient of viscosity, k is the thermal conductivity of the fluid and 

cp heat capacity at constant pressure. 

The flow is two dimensional and hence Q= (U, V). 

Boundary conditions for the problem  

Velocity of fluid satisfies impermeability condition and no slip condition on walls 

X=0, Y=0 and suction and no slip condition at the permeable walls X=a and Y=b. The 

temperature field satisfies constant heat flux at the permeable walls X=a and Y=b and 

constant temperature is maintained on the impermeable walls X=0, Y=0.  

Due to no slip condition on the walls X=0 and Y=0, the tangential velocities are zero. 

i.e., on X=0, V=0 0
X


 


 and on Y=0, U=0 0

Y


 


. 

Due to impermeability condition on the walls X=0 and Y=0, the normal velocities are 

also zero. 

i.e., on X=0, U=0 0
Y


 


and on Y=0, V=0 0

X


 


. 

Due to no slip condition on the walls X=a and Y=b, the tangential velocities are zero. 

i.e., on X=a, V=0 0
X


 


and on Y=b, U=0 0

Y


 


. 

On permeable walls, the suction velocity on X=a is V2 and the injection velocity on 

Y=b is V1. 

i.e., on X=a, U=V2 2V
Y


 


and on Y=b, V=–V1 1V

X


 


. 

The walls X=0 and Y=0 are maintained at constant temperatures. i.e., T=T1 on X=0 and 

T=T2 on Y=0. 

On the walls X=a and Y=b constant heat fluxes are imparted. 

 i.e., 1 2 on   and   on 
T T

Q X a Q Y b
X Y

 
   

 
. 

Non-dimensionalization 

We introduce the following non–dimensional scheme and non–dimensional 

parameters V0=suction parameter, y0=geometric parameter, Pe=Peclet number, 

Re=Reynolds number. 
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2
1 1 1 1 2 1,  ,  ,  ,  ,  ( )X ax Y ay U V u V V v P V p T T T T           (4.4) 

11 2
0 0

1

Re ,   Re*Pr,   ,   
pc V aV a Vb

Pe y V
k a V




        (4.5) 

The flow is steady and hence independent of time t. 

4.3 Solution of the problem 

4.3.1 Stream function 

We introduce stream function   as below such that equation (4.1) is satisfied. 

   and   u v
y x

  
  
 

       (4.6) 

Taking curl to equation (4.2) and substituting (4.6), we get the equation for the non-

dimensional stream function   as 

4 2 2Re ( ) ( ) 0
x y y x

 
  

    
      

    
    (4.7) 

with boundary conditions: 

0  on  0  and    on  1x x
x


  


 

00  on  0  and    on  1x V x
y y

  
   

 
 

00  on  0  and  1  on  y y y
x x

  
   

   

00  on  0  and    on  y y y
y


  


 

These conditions, by integrating, are converted in to the conditions on   as follows: 

0 0

0

0 on 0 and 1

0 on 0 and 0

 on ;    on 1

0 on 0 and 

x x
x

x y

x y y V y x

y y y
y





 




  



  

  










  








      (4.8) 

We solve the equation (4.7) with conditions (4.8) by Finite Difference Method. The 

cavity is covered with a mesh of step size h with (M–1) intervals on X direction and 

(N–1) intervals on Y direction. For each grid point (i, j) within the cavity, the 4
th

 order 
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term is approximated by 13 point scheme as given in Titus Petrila and Damian Trif 

(2005) and Pozrikidis (1998). Then equation (4.7) can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, 1, 1, , 1 , 1 1, 1 1, 1 1, 1 1, 1

( ) ( ) ( ) ( ) ( 1) ( 1) ( ) ( )
, 2 , 2 2, 2, 1, 1, 1, 1 1, 1

20 8( )+2( )

Re
( ) [( )(

4

n n n n n n n n n
i j i j i j i j i j i j i j i j i j

n n n n n n n n
i j i j i j i j i j i j i j i j

        

       

           

 
         

      

        ( ) ( )
1, 1 1, 1

( ) ( ) ( ) ( ) ( 1) ( 1) ( ) ( ) ( ) ( )
, 1 , 1 , 2 , 2 , 1 , 1 2, 2, 1, 1,

( ) ( ) ( ) ( )
1, 1 1, 1 1, 1 1, 1

4 4 ) ( )( 4 4

)] 0         for 

n n
i j i j

n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j

n n n n
i j i j i j i j i

 

         

   

   

 
         

       



        

      = 2, 3,... , 1 &  = 2, 3,... , 1M j N 

          (4.9) 

For the boundary conditions containing derivatives, we used central difference 

scheme. The nodes numbering is as follows: 

Along X direction Along Y direction 

x1 node on the boundary x = 0. y1 node on the boundary  y = 0. 

x2 , x3, … , xM-1 inside the computational 

domain 

y2 , y3, … , yN-1 inside the computational 

domain xM  node on the boundary x=1 yN  node on the boundary y=y0 

Thus at x=0, we have, (0, ) 0  and  0y
x





 


.  

i.e., 
2, 0,

1, 2, 0,0  and  0  or    for =1,2,...,
2

j j

j j j j N
h

 
  


     (4.10) 

at x=1, we will have, 0(1, )   and  0y V y
x





 


. 

i.e.,
1, 1,

, 0 1, 1,( 1)   and  0  or    
2

                                                                                   for =1,2,...,

M j M j

M j M j M jV j h
h

j N

 
  

 

 


   

 
(4.11) 

Similarly at y=0 we have,  

,1 ,2 ,00  and    for =2,3,..., 1i i i i M          (4.12) 

Finally at y=y0 we have, 

, , 1 , 1( 1)   and    for =2,3,..., 1i N i N i Ni h i M          (4.13) 

Equation (4.9) involves (M–2)(N–2) internal points +(2M+2N–4) boundary points 

+(2M+2N) external or fictitious points and hence in total MN +2M +2N–8 number of 

unknowns. Now equation (4.9) gives (M–2)(N–2) number of equations, (4.10) gives 

2N equations, (4.11) gives 2N equations, (4.12) gives 2(M–2) equations and (4.13) 

gives 2(M–2) equations and hence in total MN+2M+2N–8 equations. Thus the scheme 

in (4.9) can be solved uniquely by introducing fictitious nodes externally through 

central difference formula for the derivative conditions on the boundary. 
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Now by eliminating known boundary values, the equation (4.9) can be written in the 

form: 

for i=2,  A12 + A23 + A34=a2 

for i=3,  A42 + A53 +A24 + A35=a3 

for 3 <i<M – 2, A6i-2 +A4i-1 +A5i +A2i+1 + A3i+2=ai  (4.14)   

for i=M – 2,  A6M–4 + A4M–3 +A5M–2+A2M–1 =aM–2 

for i=M – 1,  A6M–3 + A4M–2 +A7M–1=aM–1 

where

,2 ,2 ,2 ,2

,3 ,3 ,3 ,3

1

Re Re
22 ( )   8 Re.       1                 0                  0    .....................    0  .............   0

4 4

Re Re
8 Re.             21      8 Re.            1

4 4

i i i i

i i i i

f g f f

f g f f

A

    

     



,4 ,4 ,4 ,4 ,4

           0   ......................    0  .............   0

Re Re Re
1             8 Re.          21    8 Re.        1      0   ........  0  ..............   0

4 4 4

   .................

i i i i if f g f f      

........................................................................................................................

   .............................................................................

, 2 , 2 , 2 , 2

............................................................

Re Re
0   .............   0   ................     0      1      8 Re.        21         8 Re.

4 4

0   .............   0

i N i N i N i Nf f g f        

, 1 , 1 , 1 , 1

,

Re Re
   ................     0          0             1       8 Re.      22 ( ) 

4 4

                                                        

i N i N i N i Nf f f g   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
  

                                                                                           for 2, 2i M 

 

,2 ,2 ,2

,3 ,3 ,3 ,3 ,3

2

Re
8 Re.          2 ( )            0                                    0  ..........................  0 

4

Re Re
2 ( )  8 Re.        2 ( )                    0  ......

4 4

i i i

i i i i i

g f g

f g g f g

A

   

     



....................  0

   ........................................................................................................

   ...................................................................

, 2 , 2 , 2 , 2 , 2

.....................................

Re Re
0  .................   0           2 ( )   8 Re.       2 ( )

4 4

0  .................   0                    0                     2

i N i N i N i N i Nf g g f g         

, 1 , 1 , 1

, 

Re
( )        8 Re.

4

                                                                                                                       for 2,3,

i N i N i Nf g g

i

  

 
 
 
 
 
 
 
 
 
 
 
 
    
  

 ...., 2M 

 

,2

,3

3

Re
1      0    ...........................   0

4

Re
    0      1     0  ...................    0

4

   ..........................................................

   ................................

i

i

g

g

A







, 2

, 1

,  for 2,3,..., 3
..........................

Re
   0   ....................   0    1       0

4

Re
   0   ....................   0      0    1

4

i N

i N

i M

g

g





 
 
 
 
 
 
   
 
 
 
 
 
 
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,2 ,2 ,2
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Re
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These equations in (4.14) are solved by Gauss–Seidel iteration method. All i, i>2 are 

set to zero and equation for i=2 is solved for 2, then equation for i=3 is solved for 3. 

So on to find all i. For the next iteration, all these are taken as known and the 

procedure is repeated until, the difference between two iterations for  is less than  

(=10
–4

). 

4.3.2 Temperature 

The energy equation, given by (4.3), by using (4.4), (4.5) can be reduced to the non–

dimensional form as: 

2 Pe u v
x y

 


  
   

  
       (4.15) 

with boundary conditions: 

1

2 0

   on    1;   0       on    0

1        on   0;      on   

q x x
x

y q y y
y







 
     




   
 

     (4.16) 

The equation (4.15) by second order finite differences can be written as 

   

   

, 1 , 1 1, 1, 1, , 1 ,

1, 1, , 1 , 1 , 1 1, 0    

                                                      

1 1 4
4 4

          1 1
4 4

 

i j i j i j i j i j i j i j

i j i j i j i j i j i j

Pe Pe

Pe Pe

     

    

     

     

   
        

   

   
        
 


 

   for 2,3,  ,  and 2,3,  ,i M j N   

(4.17) 

The boundary conditions in (4.16) are now expressed as:  

1,at 0,  =0  which implies that 0  for 2,3,...,jx j N   

   

(4.18)

,1at 0,  =1  which implies that 1  for 2,3,...,iy i M   

    

(4.19) 

1 1, 1, 1at 1,  =  which implies that +2  for 2,3,...,M j M jx q hq j N
x


  


  

  
(4.20) 

0 2 , 1 , 1 2at ,  =  which implies that +2  for 2,3,...,i N i Ny y q hq i M
y


  


  


(4.21) 

Equation (4.17) involves (M–2)(N–2) internal points +2(M+N–2)–1 boundary points 

+(M+N–2) external points and a total of MN+M+N–3 unknowns. Now equation (4.17) 

yields (M–1)(N–1) equations, (4.18) yields N–1 equations, (4.19) yields M–1 

equations, (4.20) yields N–1 equations and (4.21) yields M–1 equations and hence a 

total of MN+M+N–3 equations. Hence the equations in (4.17) can be solved uniquely.  
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Equation (4.17) does not contain the corner points (1, 1), (1, N+1), (M, 1) & (M, N+1). 

The equation (4.17) can be put in matrix form as below: 

for i=2:  B222 +B323=b2 

for 2 <i<M – 2: B1ii–1 +B2i i +B3ii+1=bi     (22) 

for i=M:  2IM–1 +B2MM=bM 

where
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The equations in (4.22) for temperature are solved by Gauss-Seidel iteration method as 

in (4.14) for stream function. 

4.3.3 Nusselt Number 

Heat transfer coefficient at the walls is given by Fourier’s law k T  h . In non–

dimensional form this represents Nusselt number 

0
0,1 0,

 and 
x y y

Nu
x y

 

 

 
     

. 
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The Nusselt number Nu is the ratio of convective to conductive heat transfer across the 

walls. This is studied only at the walls of the channel. 

Nusselt number at the wall x = 0 is  

1, 2, 3,

1,

3 4
 for 1,2,...,

2

j j j

j

Nu j N
x h

      
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Nusselt number at the wall x = 1 is  

, 1, 2,

,

3 4
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M j

Nu j N
x h
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Nusselt number at the wall y = 0 is  

,1 ,2 ,3

,1

3 4
 for 1,2,...,

2

i i i

i

Nu i M
y h

      
    
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Nusselt number at the wall y = y0 is  

, , 1 , 2

,

3 4
 for 1,2,...,

2

i N i N i N

i N

Nu i M
y h

       
    
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Average Nusselt number at the wall x=0 is 
0

00

1
 

y

Nu dy
y

  evaluated by Trapezoidal rule. 

Average Nusselt number at the wall x=1 is 
0

00

1
 

y

Nu dy
y

  evaluated by Trapezoidal rule. 

Average Nusselt number at the wall y=0 is 
1

0

 Nu dx  evaluated using Trapezoidal rule. 

Average Nusselt number at the wall y=y0 is 
1

0

 Nu dx  evaluated using Trapezoidal rule. 

4.3.4 Entropy Generation and Bejan Number 

The dimensional local entropy generation genS , (Woods (1975) and by Mikhail et al. 

(2016)) is expressed as 

2 2 2 2 2

2
00

2 2gen

k T T U V U V
S

X Y T X Y Y XT

                 
                 

                    

 (4.23) 

where reference temperature T0 is taken as  T0= 0.5(T1+T2). 
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Equation (4.23) consists two terms: the first is the local entropy generation due to heat 

transfer by conduction , gen htS and the second is the dimensional local entropy 

generation due to fluid friction , gen frS .  

The corresponding non-dimensional entropy generation number sN  is defined as 

2 2
0

2
2 1( )

s gen

T a
N S

k T T



 

2 2 22 2

      = 2 2
u v u v

Br
x y x y y x

                 
               
                   

 

=s h fN N N          (4.24) 

where
2

1 0

2
2 1

  is Brinkman Number.
2 ( )

V T
Br

k T T





 

sN can be evaluated by writing the derivatives of u, v and   in centred first order 

finite differences at inside and boundary nodes x=1, y=y0 and on x=0, y=0 we use 3–

point backward difference formula.

 Further, the Bejan number Be is a parameter that shows the importance of heat transfer 

in the domain and is defines as 

h

h f

N
Be

N N



        (4.25) 

4.3.5 Heat lines 

Net energy flow in X and Y directions are given by (Bejan (2013)): 

*

0( )p

H T
C U T T k

Y X


 
  

 
       (4.26) 

*

0( )p

H T
C V T T k

X Y


 
   
 

      (4.27) 

Physically, H
*
=constant represents a curve across which, the net flow of energy 

(thermal diffusion and enthalpy flow) is zero. H
*
 is called heat-function. Oztop et al. 

(2012) obtained heat lines for inclined channel for a nano-fluid flow. Kimura and 

Bejan (1983) worked an example problem for heat function in a natural convection in 

an enclosure heated from the side. Introducing the non–dimensional quantities, 
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*1
2 1 and   where  

T T
H Hk T T T T

T



     


 

The equation (4.26) and (4.27) reduces to 

( 0.5)
H

uPe
y x




 
  

 
, ( 0.5)

H
vPe

x y




 
   

 
   (4.28) 

The above equations in (4.28) can be combined to give 

 2
,0.5 i j

u v
H Pe u v Th

y x y x

 


       
          

       
   (4.29) 

so that the equations in (4.28) will serve as the boundary conditions for H. On x=0 and 

on x=1, v=0 hence on x=0, Hx=y=0 and on x=1, Hx=y.  

Similarly other conditions are derived 

on 0,  0
H

x
x y

 
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 
on 1,  

H
x

x y

 
 

       (4.30)

on 0,  0
H

y
y x

 
   

 
0on ,  

H
y y

y x

 
  

 
 

For discretization, we use 5 point formula and equation (4.29) can be written as  

1, , 1 , , 1 1, ,4   

                                     for 2,3,..., 1 and 2,3,..., 1

i j i j i j i j i j i jH H H H H Th

i M j N

       

   
  (4.31) 

on the boundary x=0, 0
H

x




  
which by using 3–point formula, reduces to 

1, 2, 3,3 4 0  for 1,2,....,j j jH H H j N          (4.32) 

Similarly on y=0, we have 0
H

y




  

which gives to 

,1 ,2 ,33 4 0  for 2,3,...., 1i i iH H H i M          (4.33) 

on y=y0, 
H

y x

 
 

 
which by using 3–point formula for H and central difference 

formula for  gives to 

, , 1 , 2 1, 1,3 4   for 2,3,...., 1i N i N i N i N i NH H H i M          
 

 (4.34)  

Similarly x=1, 
H

x y

 


   

yields to: 

, 1, 2, , 1 , 13 4   for 1,2,....,M j M j M j M j M jH H H j N         
 

 (4.35)   

solving the system of MN equations in MN unknowns (4.31)–(4.35) using Gauss–

Seidel iteration method for 500 iterations we get the values of H. 
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4.3.6 Pressure 

The equations for pressure, by using the non–dimensional quantities, are reduced to 

21

Re

u u p
u v u

x y x

  
    

          

(4.36) 

and 21

Re

v v p
u v v

x y y

  
    

  
      (4.37) 

Using continuity condition, from (4.36) and (4.37), we get

 
2 ( , )

2 2
( , )

u v u v u v
p

x y y x x y

     
    

     
     (4.38) 

subjected to the boundary conditions: 

21
on 0  and  1,  

Re

p
x x u

x


   

       (4.39)
 

2
0

1
on 0  and  ,  

Re

p
y y y v

y


   


 

 (Roache (1972) gave different methods to solve for pressure.) Discretizing (4.38) by 

central differences, we get  

  

 

1, , 1 , , 1 1, 1, , 1, , 1 , , 12

2

1, 1 1, 1 1, 1 1, 12

2
4 2 2

1
      for 2,3,... –1 and 2,3,... –1

8

i j i j i j i j i j i j i j i j i j i j i j

i j i j i j i j

p p p p p
h

i M j N
h

     

   

       

       

        

     

          (4.40) 

on the boundary x=0, we use central differences to get RHS as: 

2
0, 1 0, 1 1, 1 1, 1 2, 1 2, 1 1,31,

1
2 2

2
j j j j j j j

j
u U

h
          

              

By using 3–point formula for LHS, we have finally 

1, 2, 3, 1,3 4 2   for 1,2,....,j j j jp p p hU j N         (4.41) 

We use similarly central differences on RHS at x=1 and get: 

2
1, 1 1, 1 , 1 , 1 1, 1 1, 1 ,3,

1
2 2

2
M j M j M j M j M j M j M j

M j
u U

h
              

              

and hence the equation at x=1 is given by  

, 1, 2, ,3 4 2   for 1,2,....,M j M j M j M jp p p hU j N         (4.42) 

on y=0, we use central differences to get RHS as: 

2
1,0 1,0 1,1 1,1 1,2 1,2 ,13,1

1
2 2

2
i i i i i i i

i
v U

h
          

               
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By using 3–point formula for LHS, we have finally 

,1 ,2 ,3 ,13 4 2   for 2,3,...., 1i i i ip p p hU i M          (4.43) 

we use similarly central differences on RHS at y=y0 and get: 

2
1, 1 1, 1 1, 1, 1, 1 1, 1 ,3,

1
2 2

2
i N i N i N i N i N i N i N

i N
v U

h
              

             
 

and hence the equation at y=y0 is given by 

, , 1 , 2 ,3 4 2   for 2,3,...., 1i N i N i N i Np p p hU i M          (4.44) 

Solving system of MN equations in MN unknowns in (4.40)–(4.44) by using Gauss–

Seidel iteration for 500 iterations we get the values of p. 

4.4 Results and Discussion 

For the fluid flow in the chamber, bi-harmonic equation for stream function is solved. 

Using the stream function, temperature distribution is obtained. Using temperature 

field, the regions of available energy and regions of high friction are found by entropy 

generation number and Began number. Then the heat flow lines are drawn and 

Pressure field is also found. 

4.4.1 Streamlines 

The stream lines generated due to injection at the top wall and suction at the right wall 

are shown in Fig. 4.2 to Fig. 4.4. The figures are drawn at two geometric parameter 

values y0=0.75 and 10. We can observe that as the value of the suction parameter V0 

increases, stream function values on right wall increases, because 0V y 
 
on x=1. 

Again for small values of V0, stream lines reenter the side x=1 at the top corner. As the 

geometric parameter y0 increases, we get narrow parallel wall geometry. In this case of 

nearly parallel plate geometry, we observe that near to top right corner high flow and 

little circulation for small values of V0 and for high values of Re.  
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Fig. 4.2: Stream Lines for different values of V0 at Re = 0.5 and y0 = 0.75. 

 
Fig. 4.3: Stream Lines for different values of V0 at Re = 10 and y0 = 0.75. 

 
Fig. 4.4: Stream Lines for y0 = 10 at different values of Re and V0. 

4.4.2 Temperature field 

The Fig. 4.5 and Fig. 4.6 display the nature of temperature contours. As the values of 

Reynolds number Re is increasing, more temperature lines enter into the flow i.e., 
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density of heat transfer increases and in this case when V0 is small temperature lines 

re–enter near to the top corner. As Re increases, the temperature contours take 

bending near to the left down corner. 

 
Fig. 4.5: Isothermal lines for different values of Reynolds numbers at y0=0.75 & V0 = 0.2. 

 
Fig. 4.6: Isothermal lines for different values of Reynolds numbers at y0=0.75 & V0 = 0.8. 

4.4.3 Mesh Sensitivity Analysis (Davis Test)  

In Table. 4.1 to Table. 4.3, the value of the stream function at the mid-point  𝜓𝑚𝑖𝑑  and 

maximum value of the stream function  𝜓𝑚𝑎𝑥  and its location (and similarly for 

temperature) for different mesh sizes are shown. We find that as h is decreasing the 

values are converging with error less than 1 percent if V0<1. Hence suction parameter 

V0 is important factor which effects the numerical solution. Here we get convergent 

solution for V0<1. In the case of Davis (1983), Davis and Jones (1983), Mallinson and 

Davis (1977), Nusselt number is nearly in the range of Rayleigh number. In the 

present case since we did not consider natural convection the Nusselt number is also 

very small (<10). 
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Table. 4.1: The original Solution for Re=0.5 and V0=0.8 

Mesh Size h  𝜓𝑚𝑖𝑑   
 𝜓𝑚𝑎𝑥   
(x, y) 

|𝜃𝑚𝑖𝑑  | 
|𝜃𝑚𝑎𝑥  | 
(x, y) 

0.05 0.2306 
0.95 

(0.95, 0.75) 
1.69075 

4.0029 

(1, 0.75) 

0.025 0.2306 
0.9750 

(0.975, 0.75) 
1.6858 

3.9709 

(1, 0.75) 

0.0125 0.2306 
0.9875 

(0.9875, 0.75) 
1.6838 

3.95 

(1, 0.75) 

Table. 4.2: The original Solution for Re=5 and V0=0.8 

Mesh Size h  𝜓𝑚𝑖𝑑   
 𝜓𝑚𝑎𝑥   
(x, y) 

|𝜃𝑚𝑖𝑑  | 
|𝜃𝑚𝑎𝑥  | 
(x, y) 

0.05 0.24215 
0.95 

(0.95, 0.75) 
1.8298 

3.8177 

(0.75, 0.75) 

0.025 0.2420 
0.9750 

(0.975, 0.75) 
1.8227 

3.8224 

(0.775, 0.75) 

0.0125 0.2420 
0.9875 

(0.9875, 0.75) 
1.8210 

3.8245 

(0.7625, 0.75) 

Table 4.3. The original Solution for Re=10 and V0=0.8 

Mesh Size h  𝜓𝑚𝑖𝑑   
 𝜓𝑚𝑎𝑥   
(x, y) 

|𝜃𝑚𝑖𝑑  | 
|𝜃𝑚𝑎𝑥  | 
(x, y) 

0.05 0.2511 
0.95 

(0.95, 0.75) 
2.62785 

5.4931 

(0.75, 0.75) 

0.025 0.2508 
0.9750 

(0.975, 0.75) 
2.6048 

5.5260 

(0.75, 0.75) 

0.0125 0.2507 
0.9875 

(0.9875, 0.75) 
2.5968 

5.5321 

(0.75, 0.75) 

4.4.4 Nusselt Number Nu 

Average Nusselt number at the walls for different suction parameters and for fixed Re 

= 0.5 is calculated and shown in Table. 4.4. 

Table. 4.4 

Average Nusselt 

Number for Re = 0.5  
At x=0 At x=1 At y=0 At y=y0 

V0 = 0.2 –8.342662 1.996419 0.484387 3.967440 

V0 = 0.8 –8.438753 1.983457 0.324371 3.964564 

V0 = 2 –8.696321 1.952621 – 1.122284 3.956074 

From Table. 4.4, we can say that the wall x = 0 is absorbing the heat and the wall y = 

y0 is releasing the heat. In all cases,  Nusselt number decreases as V0 is increases. 
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From Fig. 4.7 we observe that the Nusselt number is almost same for all V0 at any 

wall, but it is decreasing at the wall y=0 for all V0. The Nusselt number is increasing at 

the beginning values of y and x at the walls x=1 and y=y0 respectively and constant for 

the remaining values of y and x for all V0. This is due to the boundary conditions 

1 2 and .q q
x y

  
 

 
 

 
Fig. 4.7: Nusselt number for different values of suction parameter at Re = 0.5. 

4.4.5 Entropy generation Number Ns 

From the Fig. 4.8 and Fig. 4.9 we observe that maximum entropy occurs at the four 

corners. Again by graphs we observe a minimum entropy near to the bottom left 

corner. As V0 increases, more and more entropy lines enter into the chamber without 

violating positions of maximum and minimum entropy points. By increasing V0, 

entropy increases with a light shift in the region. But increase in Re, increases values 

of entropy very much at the corners and within the chamber. As Re increases, the 

irreversible region (region of high values of entropy) increases at right bottom. In a 

small region at the top right corner entropy is maximum. 
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Fig. 4.8: Entropy generation number at different values of V0 at Re = 0.5, Pr = 1, Br = 0.4 and y0=0.75. 

Fig. 4.9: Entropy generation number at different values of V0 at Re = 10, Pr = 1, Br = 0.4 and y0=0.75. 

4.4.6 Bejan Number Be 

Bejan number shows the regions where heat transfer by conduction is more. It is to 

note that 0<Be< 1. If Be is near to zero, it indicates region of high friction and Be near 

to 1 indicates region of high conduction and less friction. The regions where Be is near 

to 1 are regions of available energy (exergy) i.e., reversible heat transfer regions. In 

Fig. 4.10 and Fig. 4.11, the contours of Bejan number are shown. We observe that as 

V0, the suction parameter, increases, the region of friction spreads more and more. As 

Re, the Reynolds number increases, more and more Bejan contour lines increase. In 

any case at the corner points, Be is near to zero (0.1 or less) as in the case of Entropy 

generation number indicate the effect of friction and more generation of heat. 

Comparing both Entropy generation number Ns and Bejan number Be, we conclude 

that near bottom left corner both Ns and Be are having high values (near to 0.9). Which 

means though convection dominates, available energy is plenty at the bottom left 

corner. 
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Fig. 4.10: Bejan number at different values of V0 at Re = 0.5, Pr = 1, Br = 0.4 and y0=0.75. 

 
Fig. 4.11: Bejan number at different values of V0 at Re = 10, Pr = 1, Br = 0.4 and y0=0.75. 

4.4.7 Heat Lines 

The energy equation in (4.15) can be split into two first order equations by introducing 

Heat function H as in (4.28). Heat lines are shown within the chamber in the Fig. 4.12 

and Fig. 4.13. Heat lines are having positive values at the left top corner and negative 

values at the right bottom corner. Negative values of heat lines indicates the region 

where temperature is below the reference temperature. As Prandtl number increases, 

these heat lines increases very much in value and attain maximum value when they 

reach the top right corner. If convection is neglected, isothermal lines and heat lines 

will be orthogonal to each other. The 0–0 heat line moves up as V0 the suction 

parameter increases. As Pr increases (i.e for thick fluids), heat lines re-enter at bottom 

surface. This is the true path of energy flow. 
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Fig. 4.12: Heat lines at Re = 5, V0= 0.2, y0= 0.75 and different values of Prandtl number Pr. 

Fig. 4.13: Heat lines at Re = 5, V0= 0.8, y0= 0.75 and different values of Prandtl number Pr. 

4.4.8 Pressure Contours 

Pressure is obtained from the numerical scheme as in (4.40) and contours are drawn 

within the chamber in the Fig. 4.14–Fig. 4.16. It is observed that values of pressure 

contours increase very much as V0 increases and decrease very much as Re increases. 

This is due to the fact that pressure gradient is inversely proportional to Reynolds 

number (as in eq. (4.36) & (4.37)). The pressure is numerically maximum at the top 

right corner in all cases. We observe, pressure changes its sign at the right bottom 

region. Hence in this region flow reversal takes place. 
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Fig. 4.14: Pressure contours at V0 = 0.2, y0=0.75 and for different values of Reynolds number Re. 

  
Fig. 4.15: Pressure contours at V0 = 0.8, y0=0.75 and for different values of Reynolds number Re. 

   

Fig. 4.16: Pressure contours at V0 = 2, y0=0.75 and for different values of Reynolds number Re. 

 

 

 

 



71 
 

4.5 Conclusions 

From figures drawn, we analyze and observe that 

 For large y0 values, i.e., for slit like geometry, if suction number V0 is small for 

high Reynolds numbers, the flow circulation is generated near top right corner. 

 As Reynolds number increases, due to convection more and more temperature 

lines enter into the flow region. 

 The contour θ=1 divides the temperature field into two regions (<1 and >1). 

As Re increases, the temperature contour for θ=1 shifts to left edge. 

 Average Nusselt number decreases as suction parameter V0 increases. i.e., high 

suction/  injection enhances the heat transfer. 

 Either by entropy generation number or by Bejan number contours, we observe 

that dissipation energy is very high at the corners. 

 Energy dissipation is minimum near to the left bottom corner where non-

dimensional temperature is 1. (since Ns is minimum). 

 Available energy or exergy is more in the center of the channel and at bottom 

left corner (since Be is near to 1). 

 Heat lines have highest value at the top right corner. 

 Pressure increases within the chamber as Reynolds number decreases. 
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Part – III 

COUPLE STRESS FLUID FLOWS 
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Chapter 5 

Steady Flow of Couple Stress Fluid through a 

Rectangular Channel Under Transverse Magnetic 

Field 

In this chapter, the steady flow of  an incompressible conducting couple stress fluid in 

the presence of transverse magnetic field through a rectangular channel with uniform 

cross–section, is considered. The induced magnetic field is neglected. We consider the 

case that there is no externally applied electric field.  Under these conditions, we get 

4
th

 order PDE for velocity w along the axis of the rectangular tube. The usual no slip 

and hyper stick boundary conditions are used to obtain the solution for w. We obtained 

the velocity w in terms of Fourier series. Skin friction on the walls and volumetric 

flow rate are obtained in terms of physical parameters like couple stress parameter and 

Hartmann number. The effects of these parameters on skin friction and volumetric 

flow rate are studied through graphs. 

5.1 Introduction 

The steady flow of a conducting fluid through a straight channel under a uniform 

transverse magnetic field presents one of the elementary problems in magneto 

hydrodynamics. Tani (1962) has given an approximate method of solution for the 

steady laminar incompressible flow of an electrically conducting fluid through a 

straight avenue of arbitrary cross section with conducting or non-conducting walls in 

the presence of a uniform transverse magnetic field based on a minimum principle. 

Ahmed and Attia (1998) further studied the viscous and joule dissipation effects under 

an external uniform magnetic field in an eccentric annulus of an electrically 

conducting incompressible fluid. Abel et al. (2004) studied the momentum, mass and 

heat transfer past a stretching sheet using the Walters-B visco-elastic model in the 

presence of a transverse magnetic field. Ahmed and Attia (2000), Attia (2005), Aboul 

Hasan and Attia (2002), Srnivasacharya and Shiferaw (2008) studied the MHD flow 

and heat transfer of a viscous, dusty and micro polar fluids through a rectangular duct. 
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In the above studies of non-Newtonian fluids like couple stress fluids with MHD 

effect, have not been considered. Stokes (1966) introduced the theory of couple 

stresses and gave the simplest generalization of the classical viscous fluid theory that 

maintains the couple stresses and body couples. Couple stress fluids are not much 

complicated than micro-polar fluids (Bhargava et al. 2007). As the microstructure was 

not available at the kinematic level, hence kinematics of such fluids were explained 

using the velocity field. Stokes flow problems were studied by Devakar and Iyengar 

(2008) under the isothermal conditions for an incompressible couple stress fluid. The 

magnetic field effects in 3D flow subject to convective boundary condition were 

investigated by Hayat et al. (2015) for couple stress nano-fluid over a nonlinear 

stretched surface. Srinivasacharya and Kaladhar (2012) studied the mixed convection 

flow of couple stress fluid with Soret and Dufour effects in a non-Darcy porous 

medium. The effects of inclined magnetic field on couple stress material in a porous 

medium was recently inspected by Ramesh (2016) in peristaltic flow. 

As far as the author knows, though the magneto hydrodynamic flow of couple stress 

fluid has many applications, the flow of couple stress fluids has not been treated 

analytically through a rectangular channel. Hence, in this chapter, we have studied the 

MHD flow of a couple stress fluid  through a rectangular channel. We have used 

Cartesian co-ordinate system for formulating the mathematical equations and obtained 

the exact solution for velocity. Skin friction on the walls and volumetric flow rate are 

obtained in terms of physical parameters like couple stress parameter and Hartmann 

number. We have studied the effects of these parameters on volumetric flow rate, skin 

friction and illuminated the results through graphs. 

5.2 Mathematical Formulation 

An incompressible and couple stress fluid flow through a channel is considered with 

uniform rectangular cross section with side lengths a and b. Using a Cartesian co-

ordinate system (X,Y,Z) with center of rectangular cross section as origin and the axis 

of the tube as Z axis along which the flow is assumed. H0, a constant magnetic field in 

the perpendicular direction to the flow is applied. Along the rectangular tube a 

constant pressure gradient causes generation of the flow in it. Since magnetic 

parameter (Hartmann number M) is very small, the induced magnetic and electrical 

fields are neglected. The physical representation of the problem is given in Fig. 5.1. 
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Fig. 5.1: Flow configuration in a rectangular channel without suction. 

Governing Equations 

The coupled equations for steady, incompressible and couple stress fluid flow with 

transverse magnetic field are given by 

0. 0 Q             (5.1) 

2 4
0 0 0 0. P          Q Q Q Q J H       (5.2) 

where Q  is the velocity, P is the pressure, ρ is the density, μ is the viscosity 

coefficient, η is the couple stress viscosity parameter. 

We take by the geometry of the problem given in Fig. 5.1 and nature of the flow 

0 0,  ,  Wk H j H Wi
c c

 
     Q H J Q H  where W=W(X, Y). 

Hence 
2
0 0 and . 0.H Wk

c


    J H Q Q  

Now equation (5.2) reduces to 

2 4 2
0 0 0 0P H

c


      Q Q Q          (5.3) 

Non-dimensionalization 

We introduce the following non–dimensional scheme: 

2
0 0,  ,  ,   and X ax Y ay W W w Z az P W p          (5.4) 

where W0 an average entrance velocity. Substituting (5.4) in equation (5.3) we obtain 
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4 2 2
0w S w SM w L               (5.5) 

The equation (5.5) is solved with no slip boundary conditions: 

0 00 on 1 and  where =  
b

w x y y y
a

           (5.6) 

and hyper stick boundary conditions: 

1 1 1
0

2 2 2

w w
i j

y x

 
   

 
Q

 

0i.e., 0 on 1 and 0 on 
w w

x y y
x y

 
     

   

      (5.7)

 

where couple stress parameter 
2

,
a

S



  magnetic parameter 

2 2
0 ,

H a
M

c




   

Reynolds Number 0Re
W a


  and 0 . Re. . constant.

dp
L S L S

dz
    

Equation (5.5) can be written as: 

2 2 2 2
1 2 0( )( )w L        

where 2 2 2 2 2
1 2 1 2,     S SM      . 

5.3 Solution of the Problem 

5.3.1  Velocity 

Let us choose  

2
1 1

( )cos ( )cosn n n n
n n

L
w f y r x g x t y

M

 

 

           (5.8) 

where 
0

(2 1)
,  

2

n
n n

rn
r t

y


  . Substituting (5.8) in (5.5) we get, 

   

     

4 2 ( ) 4 2 ( )

1 1

2 2 2

1 1 1

2 cos 2 cos

          cos cos cos cos 0

ii iv ii iv
n n n n n n n n n n n n

n n

ii ii
n n n n n n n n n n n n

n n n

r f r f f r x t g t g g t y

S r f f r x t g g t y SM f r x g t y

 

 

  

  

    

 
         

 

 

  

 

( ) 2 4 2 2(2 ) ( ) 0iv ii
n n n n n nf r S f r Sr SM f            (5.9) 

and ( ) 2 4 2 2(2 ) ( ) 0iv ii
n n n n n ng t S g t St SM g           (5.10) 

Equations (5.9) and (5.10) can be written as 

  2 2 2 2 0n n nD u D v f  
 
and   2 2 2 2

1 1 0n n nD D g        (5.11) 
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where 
d

D
dy

  and 1

d
D

dx
  

2 2 2 2 2 2 2 2 4 2 2 4 2 2 2 2 2
1 2 1 2 1 22 2 ,   ( )n n n n n n n n n nu v S r r u v r Sr SM r r                  

2 2 2 2 2 2 2 2 4 2 2 4 2 2 2 2 2
1 2 1 2 1 22 2 ,   ( )n n n n n n n n n nS t t t St SM t t                        

2 2 2 2 2 2
1 2,     n n n nu r v r     

 
and 2 2 2 2 2 2

1 2,     n n n nt t        

Solving (5.11) we get  

0 0

cosh cosh
( )

cosh cosh

n n
n n n

n n

vu y y
f y A B

u y v y
 

 

and 
cosh cosh

( )
cosh cosh

n n
n n n

n n

x x
g x C D

 

 
   

2
1 10 0

cosh cosh cosh cosh
cos cos

cosh cosh cosh cosh

n n n n
n n n n n n

n nn n n n

v x xL u y y
w A B r x C D t y

u y v yM

 

 

 

 

   
         

   
 

             (5.12) 

By no slip condition on 1,   0x w   gives 

 
2

1

cosn n n
n

L
C D t y

M





           (5.13) 

Similarly by no slip condition on 0 ,  0y y w  
 
gives 

 
2

1

cosn n n
n

L
A B r x

M





           (5.14) 

By hyper-stick condition, on 0 ,   0
w

y y
y


  

  

which gives 

 0 0
1 1

cosh cosh
tanh tanh cos ( 1) 0

cosh cosh

nn n
n n n n n n n nn n

n n n n

x x
A u y B v v y r x C D tu

 

 

 

 

 
     

 
 

             (5.15) 

Similarly by hyper-stick condition on 1,   0
w

x
x


  

  
which gives 

 
1 10 0

cosh cosh
( 1) tanh tanh cos 0

cosh cosh

nn n
n n n n n n n nn n

n nn n

u y v y
A B r C D t y

u y v y
   

 

 

 
      

 

             (5.16)  

Using the orthogonality property, we have
0

mn

0

1
cos  cos   

o

y

n m
y

t y t y dy
y




  

From (5.14) we obtain, 
1

2

2
( 1)n

n n

n

L
A B

M r

    

1

2

2
          ( 1)n

n n

n

L
B A

M r

            (5.17) 



 

78 

 

From (5.13) we obtain, 
1

2

2
( 1)n

n n

n

L
C D

M r

    

1

2

2
          ( 1)n

n n

n

L
D C

M r

            (5.18) 

From (5.15) we obtain,  

 
1 1

1

0 0 2 2 2 2
1

2 ( 1) 2 ( 1)
tanh tanh 1

n n
m n n

n n n n m m mn n
m m n m n

r r
A u y B v v y t C Du

r r 

  



  
    

   
  (5.19) 

From (5.16) we obtain,  

 
1 1

1

2 2 2 2
10

2 ( 1) 2 ( 1)1
tanh tanh 1

n n
m n n

n n n n m m mn n
m m n m n

t t
C D r A B

y u t v t
   

  



  
    

   
  (5.20) 

Substituting (5.17) and (5.18) in (5.19) and (5.20) we get 

 
2 2 1 1

0
0 0 2 2 2 2 2 2 2 2

1 1
0 0

2 ( )( 1) 4 ( 1) 2 ( 1) tanh
tanh tanh

( )( ) ( )

m n n n

m m nm n n n
n n n mn n

m m
m n m n m n n

r r Lr Lv v y
A u y v v y Cu

y r r y M r M r

 

  

  
 

 

 
      

              

             (5.21) 

and 

 
2 2 1 1

2 2 2 2 2 2 2 2 2 2
1 1

0 0

2 ( )( 1) 4 ( 1) 2 ( 1) tanh
tanh tanh

( )( ) ( )

m n n n

m m nm n n n
n n n mn n

m m
m n m n m n n

r r u v Lr L
C A

y u t v t y M v t M r

 
   

  
 

 

 
      

              

             (5.22) 

Equations (5.21) and (5.22) are in the form 

1

1 1n n m nm n
m

a A C e b




           (5.23) 

1

1 1n n m nm n
m

c C A f d




           (5.24) 

where 0 01 tanh tanhn n nn na u y v v yu  , 1 tanh tanhn n nn nc      , 

2 2

2 2 2 2
0

2 ( )( 1)

( )( )

m n
m mm n
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m n m n

r r
e

y r r

 

 

 


 
, 

2 2

2 2 2 2 2
0

2 ( )( 1)
  

( )( )

m n
m mm n
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m n m n

r r u v
f

y u t v t

 


 
,   

1 1
0

2 2 2 2
1 0

4 ( 1) 2 ( 1) tanh
1

( )

n n
nn n

n
m m n n

Lr Lv v y
b

y M r M r

 



  
   

 

,  

1 1

2 2 2 2 2
1 0

4 ( 1) 2 ( 1) tanh
1

( )

n n
nn n

n
m m n n

Lr L
d

y M v t M r

  



  
   

 

 

Eliminating Cn from equations (5.23) and (5.24) we get 

1
nm n

m m

a A b




            (5.25) 
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where 
1

1

1  if  
1

  

         if  
1

kn
n nk

k k

nm

km
nk

k k

f
a e n m

c
a

f
e n m

c










 


 
 


  and 
1

1
1

1

m
n n nm

m m

d
b b e

c





    

The equation (5.25) is an infinite system of equations in An. We truncate the 

system to n=10 and solve for An. Then from (5.23) Cn, from (5.17) Bn, and from (5.18) 

Dn can be found. Hence all the coefficients in (5.12) for the velocity w are now known. 

5.3.2 Volumetric Flow Rate 

Volumetric flow rate V (non-dimensional) is given by 

 

0

0

1

1

1

0 0 0
0 02

1

 

14 tanh tanh tanh tanh
   4

y

y

n

n n n n
n n n n

n n n n n n

V w dydx

Ly u y v y
A B y C y D

r u vM

 

 

 






  

  
       

 

             (5.26) 

5.3.3 Skin Friction 

Skin friction is the force acting on the surface per unit area. It is obtained from 

constitutive equation of couple stress fluid. 

* 1
2  

2
p div    T I E I M  

where  
1

4 4  with .
2

T
m W W W       M I Q  

For our problem, 

  1,1 1,2 2,1
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Y X


   
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 
 
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These equations give non-dimensional stress 
*

0

a

W


T
T  
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2 2
13 23i.e.,  and 

e e
T w w T w w

x S y S

    
        
    

. 

Hence the skin friction on faces 13 0 231 is  and on faces  is .f fx C T y y C T       

On 1x   ,   

 
12 2

1 2

1
2 2

1 2

cosh cosh
1

cosh cosh

            tanh tanh cos

nn n
n n n

n nf
n

n n n n n n n

u y v y
r A Be u vC

S
C D t y

 

     







  
    

    
      

  (5.27) 

This skin friction is function of y locally. Hence we find average skin friction 

0

00

1
 

2

y

f
y

C dy
y 

  . 

5.4 Results and Discussion 

For particular value of physical parameters S and M, the values of 1 and 2 are 

calculated using the quadratic equation 


2
 – S + SM

2
 =0. 

Then un, vn, n and n are found. Now velocity w is computed using (5.12). The effects 

of physical parameters S and M on velocity, Volumetric flow rate and skin friction are 

found. We can observe that for a fixed S value, to get real values of , S 4M
2
. 

5.4.1  Velocity w 

In Fig. 5.2, velocity contours at different values of M for a fixed value of S=50 are 

shown. 

 
Fig. 5.2: For S = 50, Velocity w(x, y) at M=1.732, M= 2.236, M= 2.645. 

We notice that as M increases, fluid is having high velocity near the walls and more 

and more fluid is drifted towards walls of the channel and the centre of the channel 

being maintained flat. In the figure, black region shows low values and bright region 
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indicates high values of w. To show this clearly w is plotted in Fig. 5.3 at fixed values 

of cross-sections for y=0.25, y=0.5, y=0.75 and y=0.9. 

 

Fig. 5.3: At S=50 and M=1.732, M=2.236, M=2.645, w(x, y) at cross-sections  

y=0.25, y=0.5, y=0.75 and y=0.9. 

5.4.2 Volumetric Flow rate 

In Fig. 5.4, volumetric flow rate V is shown at different values of magnetic parameter 

M. It is observed that as M increases, volumetric flow rate decreases drastically. But 

when M is fixed, as S increases, volumetric flow rate is almost constant. 

 

Fig. 5.4: Volumetric flow rate vs Couple stress parameter at different values of 

magnetic parameter M.  

5.4.3 Skin Friction 

At S=50, e=0.5, and for different values of M
2
 the average skin friction is found  and 

tabulated in Table. 5.1. 

Table. 5.1: Average skin friction values for different values of M
2
 at S = 50, e = 0.5. 

M
2 

3 5 7 

Average cf 171.483 104.032 75.0971 

From this we observe that as Hartmann number M increases, skin friction decreases. 
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5.5 Conclusions 

From figures drawn, we analyze and observe that 

 By applying Magnetic field, for couple stress fluids the volumetric flow rate and 

skin friction on the walls are controlled i.e., decrease. 

 For a fixed value of M, the effect of Couple stress parameter on volumetric flow 

rate is almost nil.  

 Skin friction is decreases as couple stress parameter increases. 
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Chapter 6 

Steady Flow of Couple Stress Fluid through a 

Rectangular Channel Under Transverse Magnetic 

Field with Suction 

In this chapter, we have considered the steady flow of an incompressible conducting 

couple stress fluid through a rectangular channel with suction/ injection at the 

opposite side walls in the presence of transverse magnetic field. We obtained the 

velocity w and temperature θ in terms of Fourier series. The volumetric flow rate 

and skin friction are obtained and the effects of physical parameters like magnetic 

parameter, Reynolds number and couple stress parameter on this are studied 

through graphs. 

6.1 Introduction 

The steady flow of micro-polar fluid with suction and injection under transverse 

magnetic field through a rectangular channel and a circular pipe was studied by 

Ramana Murthy et al. (2011, 2009). Song and Sundmacher (2010), Sai and Nageswar 

Rao (2000) studied the viscous flow in a rectangular duct with suction and injection 

imposed on opposite walls. But as far as the author knows the magneto hydrodynamic 

flow of couple stress fluid through a rectangular channel with suction has not been 

treated analytically. 

Hence, in this chapter, our objective is to study the flow of the magneto hydrodynamic 

couple stress fluid through a rectangular channel with suction/ injection. The exact 

solutions for velocity and temperature are obtained. Skin friction on the walls and 

volumetric flow rate are obtained in terms of physical parameters like couple stress 

parameter and magnetic parameter. 

6.2 Mathematical Formulation 

An incompressible and couple stress fluid flow through a channel is considered with 

uniform rectangular cross section with side lengths a and b. Using a Cartesian co-
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ordinate system (X, Y, Z) with center of rectangular cross section as origin and the axis 

of the tube as Z axis along which the flow is assumed. H0, a constant magnetic field in 

the perpendicular direction to the flow is applied. Along the rectangular tube a 

constant pressure gradient causes generation of the flow in it. U0 is the suction velocity 

in the direction of X axis. Due to small values of Hartmann number, the induced 

magnetic and electrical fields are negligible. The physical representation of the 

problem is given in Fig. 6.1. 

 
Fig. 6.1: Flow configuration in a rectangular channel with opposite wall suction. 

Governing Equations 

The coupled equations for steady, incompressible and couple stress fluid flow with 

transverse magnetic field are given by 

0. 0 Q             (6.1) 

2 4
0 0 0 0. P          Q Q Q Q J H       (6.2) 

2
0 0p

dT
c U k T

dX
             (6.3) 

where Q  is the velocity, P is the pressure, ρ is the density, μ is the viscosity 

coefficient, η is the couple stress viscosity parameter, T is the temperature, k is the 

thermal conductivity of the fluid and cp heat capacity at constant pressure. 

We take by the geometry of the problem given in Fig. 6.1 and nature of the flow 

 0 0 0 0,  ,  U i Wk H j H U k Wi
c c

 
      Q H J Q H , where W=W(X, Y). 
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Hence  2
0 0 0 0 and . .

W
H U i Wk U k

c X

 
     


J H Q Q   

Now equation (6.2) reduces to 

2 4 2
0 0 0 0 0

W
U P H

X c


  


      


Q Q Q       (6.4) 

Non-dimensionalization 

We introduce the following non–dimensional scheme: 

2
0 1 0,  ,  ,  ,  .  and .X ax Y ay Z az W W w T T T P W p           (6.5) 

Using (6.5) in equation (6.4) we obtain 

4 2 2
0.Re. .

w
w S w SM w S L

x


      


       (6.6) 

The equation (6.6) is solved with no slip boundary conditions: 

0 00 on 1 and  where 
b

w x y y y
a

            (6.7) 

and hyper stick boundary conditions along tangential direction on the wall where 

suction imposed is given by 

1 1
. . 0

2 2

w w
j i j j

y x

  
    

  
Q  

i.e., 0 on 1
w

x
x


  


          (6.8) 

where couple stress parameter 
2

,
a

S



  magnetic parameter 

2 2
0 ,

H a
M

c




   

Reynolds Number 0Re
W a


  and 0 . Re. . constant.

dp
L S L S

dz
    

Using (6.5) in equation (6.3), the energy equation reduces to 

2d
Pe

dx


             (6.9) 

where 
0

,
pc U a

Pe
k


  is Peclet number. 

The boundary conditions for  are: 

1 20 on 0,  1 on 1,   on 0,   on 1y y q x q x
x x

 
 

 
       

 
  (6.10) 
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6.3 Solution of the Problem 

6.3.1 Velocity 

Let us choose w in the form: 

1

( )cosn n
n

w w x t y




             (6.11) 

where 
0

(2 1)

2
n

n
t

y


 . 

Substituting (6.11) in (6.6) and using Fourier series for RHS of (6.6) we get 

     2 4 2 2 0

0

2
2 .Re. 1

niv ii i
n n n n n n n

n

L
w t S w S w t St SM w

y t
           (6.12) 

The equation (6.12) is an ordinary differential equation with constant coefficients and 

hence the solution can be taken as 

31 2 4
1 2 3 4 1

xx x x
n n n n nw a e a e a e a e L

  
            (6.13) 

where 
 

 
0

1 4 2 2
0

2 1
n

n n n

L
L

y t t St SM




 
 and 1 2 3 4, , ,     are the roots of the auxiliary 

equation    4 2 2 4 2 22 .Re. 0.n n nt S S t St SM          

We have 0 on 1.w x    Applying this condition on equation (6.11), we get 

31 2 4
1 2 3 4 1n n n na e a e a e a e L

  
            (6.14) 

and 31 2 4
1 2 3 4 1n n n na e a e a e a e L

    
           (6.15) 

also we have 0 on 1
w

x
x


  


. Applying this condition on equation (6.11), we get 

31 2 4
1 1 2 2 3 3 4 4 0n n n na e a e a e a e

               (6.16) 

and 31 2 4
1 1 2 2 3 3 4 4 0n n n na e a e a e a e

       
        (6.17) 

The equations (6.14) to (6.17) are solved for 1 2 3 4,  ,  , n n n na a a a  and hence the solution 

for w can be found. 

6.3.2  Temperature 

Let 0 y              (6.18) 

using (6.18), the equation (6.9) reduces to 

20
0

d
Pe

dx


             (6.19) 
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subject to the boundary conditions: 

0 0
0 0 1 20 on 0,  0 on 1,   on 0 and  on 1y y q x q x

x x

 
 

 
       

 
 (6.20) 

Let us choose  

0
1

( )n
n

f x sinn y 




            (6.21) 

substituting (6.21) in (6.19) and using Fourier series, we get 

2 0ii i
n n n nf Pe f r f             (6.22) 

where nr n  

The equation (6.22) is an ordinary differential equation with constant coefficients and 

hence the solution can be taken as  

1 2
1 2

x x
n n nf b e b e

 
            (6.23) 

where 1 2,   are the roots of the auxiliary equation 

2 2. 0nPe r      

we have 0 0
1 2 on 0 and  on 1q x q x

x x

  
   

 
. 

Applying these conditions and using Fourier series on equation (6.21), we get 

1 1 2 2(0)i
n n nf b b             (6.24) 

and 1 2
1 1 2 2(1)i

n n nf b e b e
            (6.25) 

where 14
(0)

(2 1)

i
n

q
f

n 



 and 24

(1)
(2 1)

i
n

q
f

n 



. 

The equations (6.24) and (6.25) can be solved for 1 2,  n nb b  and hence the solution for 

0  can be found. 

Finally θ can be obtained from equation (6.18). 

6.3.3  Volumetric Flow rate 

Volumetric flow rate V (non-dimensional) is given by 

 

0

0

1

1

1

1 2 3 4
1 2 3 4 1

1 1 2 3 4

 

4 1
   sinh sinh sinh sinh

y

y

n

n n n n

n n

V w dydx

a a a a
L

t
   

   

 






  

  
      

 

 (6.26) 
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6.3.4 Skin friction 

Skin friction is the force acting on the surface per unit area. It is obtained from 

constitutive equation of couple stress fluid. 

* 1
2  

2
p div    T I E I M  

where  
1

4 4  with .
2

T
m W W W       M I Q  

For our problem, 

  1,1 1,2 2,1

2,1 1,2 2,2

4      4 4      0

4 4              4          0

            0                             0                

m W W W

W W m W

m

   

 

    
 

   
 
 

M  

Hence 
2 2

 2
W W

div i j
Y X


   
  

   
M  

and 

2

2

2 2

   0           0         

 2    0           0         .

           0

W

X

W
div

Y

W W

X Y



 
 

 
 
   

 
  
 

  

I M  

These equations give non-dimensional stress 
*

0

a

W


T
T  

2 2
13 23i.e.,  and 

e e
T w w T w w

x S y S

    
        
    

. 

Hence the skin friction on faces 13 0 231 is  and on faces  is .f fx C T y y C T       

On 1x   ,  

   

   

1 2

3 4

3 2 3 2
1 1 1 2 2 2

3 2 3 21
3 3 3 4 4 4

cos
            

x x
n n n n

f n
x xn

n n n n

t a e t a ee
C t y

S t a e t a e

 

 

   

   





   
   
    
 

 (6.27) 

This skin friction is function of y locally. Hence we find average skin friction 

0

00

1
 

2

y

f
y

C dy
y 

  . 
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6.4 Results and Discussion 

6.4.1  Velocity w 

Effect of Magnetic parameter 

In Fig. 6.2, velocity contours at different values of M for a fixed value of S=50 and 

Re=0.5 are shown. We notice that fluid is having high velocity near the walls and as M 

increases the values of velocity decreases numerically. As M increases, the absolute 

maximum velocity decreases. The region of absolutely maximum velocity increases 

and appears flat. This is known as Hartmann effect. In the figure, red region shows 

low values (absolutely high values). 

 
    (a)        (b) 

 
    (c)        (d) 

Fig. 6.2: For S = 50 and Re=0.5, Velocity w(x, y) at (a) M=1, (b) M=3, (c) M=5 and  

(d) M=7. 
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Effect of Reynolds number  

In Fig. 6.3, velocity contours at different values of Re for a fixed value of S=50 and 

M=5 are shown. We notice that as Re increases, the region of minimum velocity of the 

fluid is drifted towards the wall in the direction of suction. In the figure, red region 

shows low values of w. 

 
    (a)        (b) 

 
    (c)        (d) 

Fig. 6.3: For S = 50 and M=5, Velocity w(x, y) at (a) Re=1, (b) Re=10, (c) Re=20 and 

(d) Re=30. 

 

Effect of Couple-stress parameter 

In Fig. 6.4, velocity contours at different values of S for a fixed value of Re=0.5 and 

M=5 are shown. We notice that as S increases, the region of minimum velocity 
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increases (For example, in Fig. 6.4 (a) wmin= –0.18, in (b) wmin= –0.035, in (c) wmin= –

0.0175 and in (d) wmin= –0.012, the region having these values is increasing). For a 

particular value of S, the region of minimum velocity spreads to a maximum area and 

for higher values of S, this region decreases.  

 
    (a)        (b) 

 
    (c)        (d) 

Fig. 6.4: For Re=0.5 and M=5, Velocity w(x, y) at (a) S=1, (b) S=10, (c) S=20 and     

(d)  S=30. 

6.4.2  Temperature θ 

In Fig. 6.5, temperature contours at different values of Re are shown. We notice that 

for high values of Re, the contours of temperature are symmetrically distributed about 

a horizontal line. For low values of Re, some temperature contours are positive and 
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some are negative. For Re1, temperature profiles are positive and negative for Re 

>20. 

 
    (a)        (b) 

 
    (c)        (d) 

Fig. 6.5: Temperature θ(x, y) at (a) Re=1, (b) Re=10, (c) Re=20 and (d) Re=30. 

6.4.3  Volumetric Flow Rate 

Volumetric flow rate V is computed from equation (6.26) and is shown in Fig. 6.6 vs 

Couple stress parameter S at different values of Reynolds number Re and magnetic 

parameter M. It is observed that as Re or S or M increases, Volumetric flow rate 

decreases. After a critical value of S, volumetric flow rate becomes constant. This may 

be due to the fact that as suction increases, more fluid is taken out as suction. Velocity 

decreases as M or S increases, and hence volumetric flow rate decreases. 
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(a) at different values of Reynolds  (b) at different values of Magnetic  

number Re       parameter M 

Fig. 6.6: Volumetric flow rate vs Couple stress parameter. 

6.4.4  Skin Friction 

In Fig. 6.7 and Fig. 6.8, the skin friction at 1x    for different values of Couple stress 

parameter S at fixed e=0.5, M=3 and M=5 are shown respectively. We observe that at 

x=1, skin friction Cf is positive and negative at x= –1. This is a natural observation 

since opposite walls will have opposite shear stresses. As S increases, Cf also 

decreases. This may be due to the fact that couple stresses in the fluid contribute to 

shear stresses to decrease. 

 
  (a)  x=1       (b)  x= –1 

Fig. 6.7: Skin friction at M=3 for different values of Couple stress parameter S. 
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  (a)  x=1       (b)  x= –1 

Fig. 6.8: Skin friction at M=5 for different values of Couple stress parameter S. 

At S=50, e=0.5 and for different values of M the average skin friction using equation 

(6.27) at x=1 is tabulated in Table. 6.1 and at x= –1 is tabulated in Table. 2. 

Table. 1: Average skin friction values at x=1 for different values of M at S=50, e=0.5. 

M 3 5 7 

Average Cf 0.0517621 0.0307316 0.0257768 

Table. 2: Average skin friction values at x=–1 for different values of M at S=50, e=0.5. 

M 3 5 7 

Average Cf –0.036376 –0.0348286 –00255526 

From this, we observe that as magnetic parameter M increases, skin friction decreases 

at x=1 and increases at x= –1. 

6.5 Conclusions 

From figures drawn, we analyze and observe that for couple stress fluids 

 By applying magnetic field, the volumetric flow rate and skin friction on the 

walls are controlled i.e., decrease. 

 After a critical value of Couple stress parameter, the volumetric flow rate is 

almost constant. 

 For high suction, the temperature is distributed symmetrically about a horizontal 

line. 

 As couple stress parameter increases, the area occupied by minimum value of 

the velocity increases. 

 As magnetic parameter increases, the velocity at the center of the channel 

becomes horizontal (This is Hartman effect). 
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Part – IV 

STOKES FLOW PAST A CYLINDER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

96 
 

Chapter 7 

Stokes Flow and Heat Transfer Past a Circular 

Cylinder in a Square Cavity with Suction/Injection on 

Side Walls 

A laminar viscous fluid flow past a circular cylinder placed in a square cavity of 

uniform cross section, generated by applying suction/ injection at the adjacent side 

walls, is studied. The other opposite side walls and the boundary of the cylinder are 

maintained at constant temperatures and the walls with suction are maintained at 

constant heat flux. The stream lines due to the flow and isothermal lines are drawn. 

The flow is assumed to be Stokesian and hence neglecting nonlinear convective terms, 

the equation for stream function satisfies biharmonic equation. This biharmonic 

equation for stream function is put in the vorticity form by writing it into two coupled 

equations and 5 point formula is used to solve the equations. For derivative boundary 

conditions of stream function, central difference formula with fictitious nodes and for 

derivative boundary conditions of temperature 3 point backward difference formula 

are used.  

7.1 Introduction 

The flow field effected by suction/injection across the walls is encountered in fuel cell 

manifolds, micro reactor channels, filtration units, and in membrane reactor ducts. 

Guoping et al. (1995) studied the viscous fluid flow and heat transfer due to a square 

obstacle placed asymmetrically between the parallel sliding walls. Moukalled et al. 

(1996) and Cesini et al. (1999) have performed numerical and experimental analysis 

on natural convection heat transfer from a horizontal cylinder enclosed in a rectangular 

cavity. Breuer et al. (2000) investigated the confined flow around a cylinder with 

square cross-section seated inside a channel. Salvatici et al. (2003) studied large-eddy 

simulations of the flow around a circular cylinder. Projahn et al. (1981) carried out 

numerical analysis to investigate the local and overall heat transfer between concentric 

and eccentric horizontal cylinder. Kim et al. (2008) analysed numerically the natural 

convection induced by a temperature difference due to a hot circular cylinder placed in 

a cold outer square enclosure. Akhilesh et al. (2009) made a numerical study of the 
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unsteady free stream flow of power law fluids past a long square cylinder. Salam et al. 

(2010) examined 2D steady natural convection numerically for a uniform heat source 

applied on the inner circular cylinder placed in a square enclosure filled with air. 

Berrone et al. (2011) investigated the flow past rectangular cylinders. Minguez et al. 

(2011) have conducted experimental/numerical study of turbulent flow past a square 

cylinder. Sandip et al. (2012) studied entropy generation number due to a mixed 

convection of water based nano-fluid past a square cylinder in vertically upward flow. 

Weiwei et al. (2013) applied an efficient immersed boundary method for thermal flow 

problems with heat flux boundary conditions. Lin et al. (2014) numerically 

investigated laminar flow past a circular cylinder with multiple small-diameter control 

rods. Prasenjit et al. (2015) investigated flow around an extended triangular solid 

(thorn) attached to a square cylinder numerically. Ali et al. (2017) studied the 

convection of heat from two rotating hot cylinders in a cold square cavity. Yang et al. 

(2017) made a numerical investigation of natural convection in a Cu–water nano-fluid 

filled eccentric annulus with constant heat flux wall. Kim et al. (2018) studied the 

effect of corner modifications on fluid flow and heat transfer characteristics across a 

square cylinder. 

In the classical problems, most of the researchers analysed the flow past a circular 

cylinder only. But the study of flow past a circular cylinder in a cavity due to suction 

on walls is paid very less attention. Hence in the present chapter our aim is to study the 

flow past a circular cylinder in a square cavity with suction on adjacent walls. 

7.2 Mathematical Formulation 

The flow of viscous fluid past a cylinder in a square cavity of uniform cross section 

due to applied suction/injection at the side walls is considered. The physical 

representation of the problem is given Fig. 7.1. The Cartesian coordinate system with 

origin at the bottom left corner and X and Y axes along the bottom and left walls is 

taken. The cavity is of length a0 along X direction, height b0  along Y direction and a 

cylinder with radius r0 is kept in the middle of the cavity. Injection with velocity V1 at 

the top wall Y=b0 and suction with velocity V2 at the right wall X=a0 are imposed. The 

flow is generated within the cavity due to the injection and suction applied at adjacent 

walls.  
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Fig. 7.1: Flow configuration in a square cavity with adjacent wall suction. 

Governing Equations 

The equations of motion for the flow are given below:  

. 0 Q          (7.1) 

2d
P

dt
    

Q
Q         (7.2) 

2
p

dT
c k T

dt
           (7.3) 

where Q is the velocity of fluid particle, P is pressure, T is the temperature,  is fluid 

density,  is the coefficient of viscosity, k is the thermal conductivity of the fluid and 

cp heat capacity at constant pressure. 

The flow is two dimensional and hence Q= (U, V). 

Boundary conditions for the problem  

Velocity of fluid particles satisfies no slip condition on the walls with no suction or 

injection and no slip condition and impermeability condition on the cylinder. Again 

permeability conditions, suction on the right wall and injection on the top wall, are 

imposed. The temperature field satisfies constant temperature on the impermeable 

walls X=0, Y=0 and on the cylinder. Condition of constant heat flux at the permeable 

walls X=a0 and Y=b0 is taken. 

Due to no slip condition on the walls X=0 and Y=0, the tangential velocities are zero. 
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i.e., on X=0, V=0 0
X


 


 and on Y=0, U=0 0

Y


 


. 

Due to impermeability condition on the walls X=0 and Y=0, the normal velocities are 

also zero. 

i.e., on X=0, U=0 0
Y


 


and on Y=0, V=0 0

X


 


. 

Due to no slip condition on the walls X=a0 and Y=b0, the tangential velocities are zero. 

i.e., on X=a0, V=0 0
X


 

  
and on Y=b0, U=0 0

Y


 


. 

On permeable walls, the suction velocity on X=a0 is V2 and the injection velocity on 

Y=b0 is V1. 

i.e., on X=a0, U=V2 2V
Y


 

  
and on Y=b0, V=–V1 1V

X


 


. 

The walls X=0 and Y=0 are maintained at constant temperatures. i.e., T=T1 on X=0 and 

T=T2 on Y=0. 

On the walls X=a0 and Y=b0 constant heat fluxes are imparted. 

 i.e., 1 0 2 0 on   and   on 
T T

Q X a Q Y b
X Y

 
   

 
. 

Non-dimensionalization 

We introduce the following non-dimensional scheme and non-dimensional parameters 

like Pe= Peclet number, y0=geometric parameter, V0=suction parameter as below. 

2
0 0 1 1 1 1 2 1,  ,  ,  ,  ,  ( )X a x Y a y U V u V V v P V p T T T T           (7.4) 

1 0 0 2
0 0

0 1

,   ,   
pC V a b V

Pe y V
k a V


         (7.5) 

For the flow the Reynolds number is so small that the convective terms in equation 

(7.2) are neglected. The flow is steady and hence independent of time t. 

7.3 Solution of the problem 

7.3.1 Stream function 

We introduce stream function   as below such that equation (7.1) is satisfied. 

   and   u v
y x

  
  
 

       (7.6) 
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Taking curl to equation (7.2) and substituting (7.6), we get the equation for the non-

dimensional stream function   as 

4 0           (7.7) 

with boundary conditions: 

0  on  0  and   on  1  and =0 on x x
x





   


 

00  on  0  and    on  1x V x
y y

  
   

 
 

00  on  0  and  1  on  y y y
x x

  
   

   

00  on  0  and    on  y y y
y


  


 

These conditions, by integrating, are converted in to the conditions on   as follows: 

0

0

0

0 on 0 and 1

0 on 0 and 0

 on 

 on 1

0 on 0 and 

0 on the cylinder 

x x
x

x y

x y y

V y x

y y y
y














  







 

 




 





  











 

       (7.8) 

We solve the equation (7.7) with conditions (7.8) by Finite Difference Method. The 

cavity is covered with a mesh of step size h with (M–1) intervals on X direction and  

(N–1) intervals on Y direction. For each grid point (i, j) within the cavity, the bi-

harmonic equation (7.7) can be split into two coupled equations as given in Biringen 

and Chow (2011) as below: 

2             (7.9) 

and 
2 0          (7.10) 

For the boundary conditions containing derivatives, we used central difference 

scheme. The nodes numbering is as follows: 

Along X direction Along Y direction 

x1 node on the boundary x = 0. y1 node on the boundary  y = 0. 

x2 , x3, … , xM-1 inside the computational 

domain 

y2 , y3, … , yN-1 inside the computational 

domain xM  node on the boundary x=1 yN  node on the boundary y=y0 
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Thus at x=0 (i.e., i=1) we have, (0, ) 0y  . 

These conditions are taken as 1, 0  for =1,2,...,j j N     (7.11) 

at x=1 ( i.e., i=M) we have, 0(1, )y V y  . 

These conditions are taken as , 0 ( 1)   for =1,2,...,M j V j h j N     (7.12) 

Similarly at y = 0 we have, ( ,0) 0x  .  

These conditions are taken as ,1 0  for =2,3,..., 1i i M      (7.13) 

Finally at y =y0 we have, 0( , )x y x  . 

These conditions are taken as , ( 1)   for =2,3,..., 1i N i h i M      (7.14) 

Now, we derive expressions for boundary values of  in terms of  , which are 

required for solving (7.10). We now assume for vorticity on x=0 (i.e., at (1, j)):  

2 2

1, 1 2, 1 2 2, 3 2, 1 4 3, 52 2
1,1,

j j j j j

jj
xx y

  
         

    
          

    
(7.15) 

Substituting from the Taylor’s series expansions,  

 
2 2 2 2

3
2, 1 1, 2 2

1, 1, 1, 1,
2 2

j j

j j j j

h h
h h O h

x y x y

   
 

        
          

          

 
2 2

3
2, 1, 2

1, 1,
2

j j

j j

h
h O h

x x

 
 

   
     

    

 
2 2

3
3, 1, 2

1, 1,

(2 )
2

2
j j

j j

h
h O h

x x

 
 

   
     

    
 

and retaining only terms up to O(h
2
), equation (7.15) becomes 

2 2

1 2 3 4 1, 1 2 3 4 5 3 12 2
1, 1,1,

2 2 2 2

1 2 3 4 1 32 2

1,

( ) ( 2 ) ( )

                                ( 4 ) ( )
2 2

j

j jj

j

h h
x yx y

h h

x y

   
           

 
     

       
                           

      
                   1, j



The constants α’s are determined by equating the coefficients of like terms on the both 

sides of this equation. Substitution of these values in (7.15) gives 

1, 2, 1 2, 2, 1 3,2

1 8 2
  for 2,3,....

3 3
j j j j j j N

h
     

 
      

 
  (7.16) 

where 
1,

0
jx

 
 

 
 from the boundary condition (7.8). 

Similarly, the expressions for vorticity at the remaining boundaries as: 
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On x = 1, 

, 1, 1 1, 1, 1 2,2

1 8 2
  for 2,3,....

3 3
M j M j M j M j M j j N

h
         

 
      

 
 (7.17) 

on y = 0, ,1 1,2 ,2 1,2 ,32

1 8 2
  for 2,3,....

3 3
i i i i i i M

h
     

 
      

 
 (7.18) 

on y = y0,  

, 1, 1 , 1 1, 1 , 22

1 8 2
  for 2,3,....

3 3
i N i N i N i N i N i M

h
         

 
      

 
 (7.19) 

in which the derivative boundary conditions in (7.8) have been employed. 

Along with these boundary conditions, we have  on the cylinder is given by Thom 

(1933). 

( )G S
S

D

 



         (7.20) 

where G is the point on the normal which cuts either vertical or horizontal grid line in 

the flow region, S is the point on the cylinder and D is the distance between the points 

G and S. 

The equation (7.10) numerically will be solved using Liebmann’s iterative formula: 

 , 1, 1, , 1 , 1

1

4
i j i j i j i j i j                (7.21) 

boundary points on the cylinder are defined as the intersections of the horizontal-

vertical grid lines and the body surface. These points do not usually coincide with the 

grid points. Thus the formula (7.21) cannot be used at some grid points in the 

immediate neighbourhood of the cylinder. 

Equation (7.21) is the Laplace equation (7.10) replaced by a finite difference 

approximation  on the assumption that the point (i, j) is equally spaced from its other 

four neighbouring grid points. The difference equation (7.21) is generalized for an 

arbitrary situation as shown in Fig. 7.2,  where  the point (i, j) is at different distances 

a, b, c and d from four neighbouring points. 
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Fig. 7.2: Evaluation of ,i j . 

We let the vorticity function evaluated at these neighbouring points be denoted by 

,  ,  ,  and a b c d     respectively, and then approximate the left hand side of (7.10) at  

(i,  j) by the linear function: 

2 2

0 ,2 2

,

i j a a b b c c d d

i j
x y

 
         

  
      

  
   (7.22) 

where α’s are coefficient to be determined. Expanding the four vorticity functions in 

Taylor’s series about (i,  j),  

 
2 2

3
1, , 2

, ,
2

i j a i j

i j i j

a
a O a

x x

 
  

   
      

    
 

 
2 2

3
, 1 , 2

, ,
2

i j d i j

i j i j

d
d O d

y y

 
  

   
      

    
 

and so forth. Substitution of these equations in (7.22) after rearrangement and 

neglecting the cubic and higher order terms, we get 

2 2

0 ,2 2
, ,,

2 2
2 2 2 2

2 2

, ,

( ) ( ) ( )

1 1
                                ( ) ( )

2 2

a b c d i j b a d c
i j i ji j

a b c d

i j i j

b a d c
x yx y

a b c d
x y

   
         

 
   

       
                      

    
             

Equating corresponding coefficients on both the sides results in five simultaneous 

algebraic equations whose solution is  

0

1 1 2 2 2 2
2 ,  ,  ,  ,  

( ) ( ) ( ) ( )
a b c d

ab cd a a b b a b c c d d c d
    

 
       

    
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vanishing of the right hand side of (7.22) gives the desired difference approximation of 

the Laplace equation: 

,

1 1
/

( ) ( ) ( ) ( )

a b c d
i j

a a b b a b c c d d c d ab cd

   


   
      

      
  (7.23) 

for i=2,3, …, M–1 and j=2,3, …, N–1. 

It can easily be shown that (7.23) is equivalent to (7.21) when a=b=c=d=h. 

In the similar manner we solve equation (7.9) numerically using 

,

,

1 1
/

( ) ( ) ( ) ( ) 2

i ja b c d
i j

a a b b a b c c d d c d ab cd

   


   
        

      
 (7.24) 

for i=2,3, …, M–1 and j=2,3, …, N–1. 

The vorticity boundary conditions derived (7.16)–(7.20) help us to solve (7.10) if    

is known at some interior points. But, the evaluation of   from (7.9) depends on the 

distribution of vorticity within the bounded domain. Thus,   and   are inter-linked, 

and an iterative scheme will be build up to find the solution. 

For initial guess, an equilibrium state is assumed first so that  =0 everywhere in the 

flow region. Based on this initial guess, the boundary values for  are found from 

(7.16)–(7.20) which shows that vorticity is initially generated at the boundary. This 

concentrated vorticity at the boundary starts to diffuse into the cavity, resulting in a 

temporary vorticity distribution which is the solution of (7.10) that satisfies the present 

boundary conditions. This computed vorticity distribution causes a modification to the 

assumed   after solving (7.9) subject to the restriction that we have in (7.8) on the 

boundary. In this way we have completed the first iteration. To start the next iteration, 

based on the modified stream function, the boundary values of vorticity are 

recomputed. To obtain a new solution for   and , the same procedure is repeated. At 

every grid point, the difference between the newly computed   and the previous 

value is recorded as the local error during each iteration and the sum of absolute errors 

at all grid points is called ERZETA. Similarly we find ERPSI, the corresponding sum 

of absolute errors of  . Iteration is terminated when both ERPSI and ERZETA are 

smaller than a small positive value EPSLON (=10
–4 

). Since the desired accuracy is 

reached, at this stage the solution is then considered to be satisfactory. 
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7.3.2 Temperature 

The energy equation, given in (7.3), by using (7.4), (7.5) can be reduced to the non-

dimensional form as below: 

2 Pe u v
x y

 


  
   

  
       (7.25) 

Temperature is subjected to the boundary conditions that i) the sides x=0, y=0 and on 

cylinder are maintained at constant temperatures and ii) the other sides are supplied 

with constant heat or constant heat flux. The conditions are given explicitly as 

0

1 2 0

0 on 0,  1 on 0,   on cylinder

 on 1,   on 

x y

q x q y y
x y

   

 

     


  
      

    (7.26) 

Let 
, 1 , 1 1, 1,

, 2 , 1

,,

  and  
2 2

i j i j i j i j

i j i j

i ji j

u f v f
y h x h

           
           

   
 

Proceeding as in the stream function and vorticity function equation (7.25) can be 

generalizes as: 

2 2 1

,

1

(2 ) (2 ) (2 )

( ) ( ) ( )1

1 1 (2 )
2                                                 

( )

a b

j

c

d

i

af Pe bf Pe cf Pe

a a b b a b c c d

df Pe

ab cd d c d

  




   
    

 
   

       

 (7.27) 

      for i=2,3, …, M and j=2,3, …, N 

The boundary conditions in (7.26) are now expressed as:  

1,at 0,  =0  which implies that 0  for 2,3,...,jx j N      

,1at 0,  =1  which implies that 1  for 2,3,...,iy i M      

at x=1, 1q
x





, 1, 2, 1

1
   4 2

3
M j M j M j hq   

     
 
for j=2,3,…,N (7.28) 

at y=y0, 2q
y





 , , 1 , 2 2

1
  4 2

3
i N i N i N hq          for i=2,3, … ,M  

and on the cylinder , 0 0.5i j    where 0 is the reference temperature.   

As in stream function and vorticity function in the equation (7.27) subjected to the 

boundary conditions (7.28) will be solved for the temperature in the cavity. 
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7.4 Results and Discussion 

We have obtained the values of stream function and temperature for step length 

h=0.01. The accuracy near to 4 decimal places is obtained by taking 1000 iterations. 

Here the important steps involved in the computation are to calculate 1). a, b, c, d 

values adjacent to the cylinder and 2). D the distance between G and S in equation 

(7.20). Here S is a point on the cylinder and G is a point on the grid line obtained by 

intersection of normal with the grid. These are explained in the appendix. 

7.4.1 Streamlines 

The stream lines generated due to injection at the top wall and suction at the right wall 

are shown in Fig. 7.3 to Fig. 7.5. The figures are drawn for different suction parameter 

values V0. We observe from Fig. 7.3 when the cylinder is middle of the cavity that as 

suction parameter V0 increases, the region of high stream values increases at the right 

end of the cylinder and the stream lines with low values (example  = 0.001) which 

are separated and near to the left wall are merging in the circulation region of the 

cylinder. Again as V0 increases, a second circulation region is formed at the top left 

corner. For small values of V0, the stream lines are nearly parallel to the left wall. 

Form Fig. 7.4, when the cylinder is bottom left corner, for small suction V0=5, stream 

lines have small values and high values within small region near the left side of the 

cylinder. The presence of cylinder effects entire region dominating suction. As suction 

parameter increases, effect of suction spreads near to the cylinder and the values of 

stream lines away from the cylinder also increase. It is important to note that even 

though cylinder is small placed at left bottom corner effects the entire flow dominating 

the suction. 

Form Fig. 7.5 when the cylinder is at the top right corner, for small values of suction, a 

circulation region below the cylinder spreads half of the cavity. But when suction 

increases, the circulation almost disappears and suction dominates the flow by 

increasing the values of stream lines.  

It is important to note that when the cylinder is at the top right corner, circulation 

below the cylinder spreads in the cavity and this disappears when suction increases. 
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Though the circulation behind the cylinder is there in all cases of position of the 

cylinder in the cavity, it is best observed when it is in the top corner. 

When there is no cylinder, the steam line pattern is shown in Fig. 7.13. For high 

suction when the small cylinder is on the top corner, the flow is similar to the flow 

without cylinder. 

 

 

Fig. 7.3: Streamlines for different values of V0. 
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Fig. 7.4: Streamlines for different values of V0(=5,50,100) when cylinder is at lower 

left corner of the cavity. 

 

Fig. 7.5: Streamlines for different values of V0(=5, 50, 100) when cylinder is at top 

right corner of the cavity. 

 

7.4.2 Vorticity Contours 

The vorticity contours generated due to injection at the top wall and suction at the 

right wall are shown in Fig. 7.6 to Fig. 7.8. The figures are drawn for different suction 

parameter values V0. We observe that as V0 increases, when the cylinder is middle of 

the cavity, the circulation of vortex lines on the right side of cylinder increases and 

opens to the right top corner. The values of vorticity are very high at the right wall and 

in the circulation region of vorticity. Outside of the circulation region, vorticity takes 

negative values except at top left region. 

From Fig. 7.7, when a small cylinder is placed at the bottom left corner, for small 

values of suction, circulation region above the cylinder spreads to the top corner. High  

values of vorticity are found on the left wall which is opposite to the above case (when 

the cylinder is in the middle). 
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From Fig. 7.8, when a small cylinder is placed at the top right corner, for small suction 

parameter circulation region below the cylinder is in small region and this region 

spreads in the entire cavity when suction increases. Here we find high negative values 

of vorticity at the top and bottom walls. 

 

Fig. 7.6: Vorticity contours for different values of V0. 

 

Fig. 7.7: Vorticity contours for different values of V0(=5, 50, 100) when cylinder is at 

lower left corner of the cavity. 
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Fig. 7.8: Vorticity contours for different values of V0(=5, 50, 100) when cylinder is at 

top right corner of the cavity. 

7.4.3 Temperature field 

The Fig. 7.9 to Fig. 7.12 display the nature of temperature contours. Fig. 7.9 shows the 

isothermal lines for different values of V0 at Pe=0.02. We observe that the line =1 

divides the entire region into two parts: the region in which  is less than 1 and the 

region in which  is more than 1. As V0 increases, the region with <1 increases and 

spreads to the left wall. As Peclet number Pe increases, the temperature in the region 

>1 also increases. 

Fig. 7.10 shows the isothermal lines for different values of V0 at Pe=0.02 when a small 

cylinder is placed at the lower left corner. The region <1 is left to the cylinder in a 

small area for all suction values. Near the right side of the cylinder we find very high 

temperature. 

Fig. 7.11 shows the isothermal lines for different values of Pe at V0=10. We observe 

that Peclet number does not show much effect on the isothermal lines.  

Fig. 7.12 shows the isothermal lines for different values of V0 at Pe=0.02 when the 

cylinder is placed on the top right corner. We observe that <1 is spreading half of the 

cavity. All circulations in the temperature are in the region >1 and spreads only that 

region when suction value increases. 

From Fig. 7.14 and Fig. 7.12, we observe that temperature lines are similar for the 

region <1. In this case when cylinder becomes smaller and smaller both profiles will 

be same. 
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Fig. 7.9: Isothermal lines for different values of V0 at Pe=0.02. 

 

Fig. 7.10: Isothermal lines for different values of V0(=5, 50, 100) at Pe=0.02 when 

cylinder is at lower left corner of the cavity. 
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Fig. 7.11: Isothermal lines for different values of Pe at V0=5.  

 

Fig. 7.12: Isothermal lines for different values of V0(=5, 50, 100) at Pe=0.02 when 

cylinder is at top right  corner of the cavity. 
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Fig. 7.13: Streamlines for V0=50 when 

cylinder is absent in the cavity. 

 
Fig. 7.14: Isothermal lines for Pe=0.05 

and V0=50 when cylinder is absent in the 

cavity.

7.5 Conclusions 

From the above observations we conclude that  

 As suction parameter V0 increases, stream line pattern will not change much 

when the cylinder is in the middle of the cavity. But when it is at the top right corner 

suction effect is very much high.  

 Entire temperature zone is divided into two regions <1 and >1. 

 As suction parameter V0 increases region <1 spreads to suction wall when the 

cylinder is at the top right corner. 
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Chapter 8 

Stokes Flow and Heat Transfer Past a Circular 

Cylinder in a Square Cavity with Suction/Injection on 

Opposite Side Walls 

8.1 Introduction 

In this chapter, flow past a cylinder in a cavity with  suction/ injection at the opposite 

side walls is considered. The flow in a lid driven cavity was examined by many 

researchers using analytical and Numerical methods (Shankar (1993), Joseph and 

Sturges (1978), Ambethkar and Durgesh Kushawaha (2017), Kawaguti (1961)). The 

flow due to suction/injection applied at the walls was analysed by Varapaev and 

Yagodkin (1969). But the flow past a cylinder in a cavity was paid very less attention 

may be due to complexity of the problem. Hence, here we considered the flow past a 

cylinder in a cavity due to suction and injection on opposite walls. 

8.2 Mathematical Formulation 

The flow of viscous fluid past a cylinder in a square cavity of uniform cross section 

due to applied suction/injection at the opposite side walls is considered. The physical 

representation of the problem is given Fig. 8.1. The Cartesian coordinate system with 

origin at the bottom left corner and X and Y axes along the bottom and left walls is 

taken. The cavity is of length a0 along X direction, height b0 along Y direction and a 

cylinder with radius r0 is kept in the middle of the cavity. Injection with velocity V1 at 

the left wall X=0 and suction with velocity V2 at the right wall X=a0 are imposed. The 

flow is generated within the cavity due to the injection and suction applied at opposite 

side walls.  
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Fig. 8.1: Flow configuration in a square cavity with opposite wall suction. 

Governing Equations 

The equations of motion for the flow are given below:  

. 0 Q          (8.1) 

2d
P

dt
    

Q
Q         (8.2) 

2
p

dT
c k T

dt
           (8.3) 

where Q is the velocity of fluid particle, P is pressure, T is the temperature,  is fluid 

density,  is the coefficient of viscosity, k is the thermal conductivity of the fluid and 

cp heat capacity at constant pressure. 

The flow is two dimensional and hence Q= (U, V). 

Boundary conditions for the problem  

Velocity of fluid particles satisfies no slip condition on the walls with no suction or 

injection and no slip condition and impermeability condition on the cylinder. Again 

permeability conditions i.e., suction on the right wall and injection on the left wall are 

imposed. The temperature field is subjected to constant temperature on the 

impermeable walls Y=0, Y=b0 and on the cylinder and condition of constant heat flux 

at the permeable walls X=0 and X=a0. 

Due to no slip condition on the walls Y=0 and Y=b0, the tangential velocities are zero. 
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i.e., on Y=0, U=0 0
Y


 


 and on Y=b0, U=0 0

Y


 


. 

Due to impermeability condition on the walls Y=0 and Y=b0, the normal velocities are 

also zero. 

i.e., on Y=0, V=0 0
X


 

  
and on Y=b0, V=0 0

X


 


. 

Due to no slip condition on the walls X=0 and X=a0, the tangential velocities are zero. 

i.e., on X=0, V=0 0
X


 

  
and on X=a0, V=0 0

X


 


. 

On permeable walls, the suction velocity on X=a0 is V2 and the injection velocity on 

X=0 is V1. 

i.e., on X=a0, U=V2 2V
Y


 

  
and on X=0, U=V1 1V

Y


 


. 

The walls Y=0 and Y=b0 are maintained at constant temperatures. i.e., T=T1 on Y=b0 

and T=T2 on Y=0. 

On the walls X=0 and X=a0 constant heat fluxes are imparted. 

 i.e., 1 0 2 on   and   on 0
T T

Q X a Q X
X X

 
   

 
. 

Non-dimensionalization 

We introduce the following non-dimensional scheme and non-dimensional parameters 

like Pe= Peclet number, y0=geometric parameter, V0=suction parameter as below. 

2
0 0 1 1 1 1 2 1,  ,  ,  ,  ,  ( )X a x Y a y U V u V V v P V p T T T T           (8.4) 

1 0 0 2
0 0

0 1

,   ,   
pC V a b V

Pe y V
k a V


         (8.5) 

For the flow the Reynolds number is so small that the convective terms in equation 

(7.2) are neglected. The flow is steady and hence independent of time t. 

8.3 Solution of the problem 

8.3.1 Stream function 

We introduce stream function   as below such that equation (8.1) is satisfied. 

   and   u v
y x

  
  
 

       (8.6) 
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Taking curl to equation (8.2) and substituting (8.6), we get the equation for the non-

dimensional stream function   as 

4 0           (8.7) 

with boundary conditions: 

0 on 0 and on 1 and =0 on x x
x





   


 

01  on  0  and    on  1x V x
y y

  
   

 
 

00 on 0 and on y y y
x


  

  

00 on 0 and on y y y
y


  


 

These conditions, by integrating, are converted in to the conditions on   as follows: 

0

0

0

0 on 0 and 1

0 on 0 and 

 on 0

 on 1

0 on 0 and 

0 on the cylinder 

x x
x

y y y

y x

V y x

y y y
y














  







 

 




 





  











 

       (8.8) 

We solve the equation (8.7) with conditions (8.8) by Finite Difference Method. The 

cavity is covered with a mesh of step size h with (M–1) intervals on X direction and  

(N–1) intervals on Y direction. For each grid point (i, j) within the cavity, the 

biharmonic equation (7.7) can be split into two coupled equations as given in Biringen 

and Chow (2011) as below: 

2             (8.9) 

and 
2 0          (8.10) 

For the boundary conditions containing derivatives, we used central difference 

scheme. The nodes numbering is as follows: 

Along X direction Along Y direction 

x1 node on the boundary x = 0. y1 node on the boundary  y = 0. 

x2 , x3, … , xM-1 inside the computational 

domain 

y2 , y3, … , yN-1 inside the computational 

domain xM  node on the boundary x=1 yN  node on the boundary y=y0 
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Thus at x = 0 (i.e., i=1) we have, (0, )y y  . 

These conditions are taken as 1, ( 1)   for =1,2,...,j j h j N      (8.11) 

at x = 1 ( i.e., i=M) we have, 0(1, )y V y  . 

These conditions are taken as , 0 ( 1)   for =1,2,...,M j V j h j N     (8.12) 

Similarly at y = 0 we have, ( ,0) 0x  .  

These conditions are taken as ,1 0  for =2,3,..., 1i i M      (8.13) 

Finally at y =y0 we have, 0( , ) 0x y  . 

These conditions are taken as , 0  for =2,3,..., 1i N i M      (8.14) 

Now, we derive expressions for boundary values of   in terms of  , which are 

required for solving (8.10). We now assume for vorticity on x=0 (i.e., at (1, j)):  

2 2

1, 1 2, 1 2 2, 3 2, 1 4 3, 52 2
1,1,

j j j j j

jj
xx y

  
         

    
          

    
(8.15) 

Substituting from the Taylor’s series expansions,  

 
2 2 2 2

3
2, 1 1, 2 2

1, 1, 1, 1,
2 2

j j

j j j j

h h
h h O h

x y x y

   
 

        
          

          
 

 
2 2

3
2, 1, 2

1, 1,
2

j j

j j

h
h O h

x x

 
 

   
     

    
 

 
2 2

3
3, 1, 2

1, 1,

(2 )
2

2
j j

j j

h
h O h

x x

 
 

   
     

    
 

and retaining only terms up to O(h
2
), equation (15) becomes 

2 2

1 2 3 4 1, 1 2 3 4 5 3 12 2
1, 1,1,

2 2 2 2

1 2 3 4 1 32 2

1,

( ) ( 2 ) ( )

                                ( 4 ) ( )
2 2

j

j jj

j

h h
x yx y

h h

x y

   
           

 
     

       
                           

      
                   1, j



The constants α’s are determined by equating the coefficients of like terms on the both 

sides of this equation. Substitution of these values in (8.15) gives 

1, 2, 1 2, 2, 1 3,2

1 8 2
  for 2,3,....

3 3
j j j j j j N

h
     

 
      

 
  (8.16) 

where 
1,

0
jx

 
 

 
 from the boundary condition (8.8). 
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Similarly, the expressions for vorticity at the remaining boundaries as: 

on x = 1, 

, 1, 1 1, 1, 1 2,2

1 8 2
  for 2,3,....

3 3
M j M j M j M j M j j N

h
         

 
      

 
 (8.17) 

on y = 0, ,1 1,2 ,2 1,2 ,32

1 8 2
  for 2,3,....

3 3
i i i i i i M

h
     

 
      

 
 (8.18) 

on y = y0,  

, 1, 1 , 1 1, 1 , 22

1 8 2
  for 2,3,....

3 3
i N i N i N i N i N i M

h
         

 
      

 
 (8.19) 

in which the derivative boundary conditions in (8.8) have been employed. 

Along with these boundary conditions, we have  on the cylinder is given by Thom 

(1933). 

( )G S
S

D

 



         (8.20) 

where G is the point on the normal which cuts either vertical or horizontal grid line in 

the flow region, S is the point on the cylinder and D is the distance between the points 

G and S. 

The equation (8.10) numerically will be solved using Liebmann’s iterative formula: 

 , 1, 1, , 1 , 1

1

4
i j i j i j i j i j                (8.21) 

boundary points on the cylinder are defined as the intersections of the horizontal-

vertical grid lines and the body surface. These points do not usually coincide with the 

grid points. Thus the formula (8.21) cannot be used at some grid points in the 

immediate neighbourhood of the cylinder.  

Equation (8.21) is the Laplace equation (8.10) replaced by a finite difference 

approximation  on the assumption that the point (i, j) is equally spaced from its other 

four neighbouring grid points. The difference equation (8.21) is generalized for an 

arbitrary situation as shown in Fig. 8.2,  where  the point (i, j) is at different distances 

a, b, c and d from four neighbouring points 
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Fig. 8.2: Evaluation of ,i j . 

We let the vorticity function evaluated at these neighbouring points be denoted by 

,  ,  ,  and a b c d     respectively, and then approximate the left hand side of (8.10) at 

(i, j) by the linear function: 

2 2

0 ,2 2

,

i j a a b b c c d d

i j
x y

 
         

  
      

  
   (8.22) 

where α’s are coefficient to be determined. Expanding the four vorticity functions in 

Taylor’s series about (i, j),  

 
2 2

3
1, , 2

, ,
2

i j a i j

i j i j

a
a O a

x x

 
  

   
      

    
 

 
2 2

3
, 1 , 2

, ,
2

i j d i j

i j i j

d
d O d

y y

 
  

   
      

    
 

and so forth. Substitution of these equations in (8.22) after rearrangement and 

neglecting the cubic and higher order terms, we get 

2 2

0 ,2 2
, ,,

2 2
2 2 2 2

2 2

, ,

( ) ( ) ( )

1 1
                                ( ) ( )

2 2

a b c d i j b a d c

i j i ji j

a b c d

i j i j

b a d c
x yx y

a b c d
x y

   
         

 
   

       
             

       

    
      

    

Equating corresponding coefficients on both the sides results in five simultaneous 

algebraic equations whose solution is  

0

1 1 2 2 2 2
2 ,  ,  ,  ,  

( ) ( ) ( ) ( )
a b c d

ab cd a a b b a b c c d d c d
    

 
       

    
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vanishing of the right hand side of (8.22) gives the desired difference approximation of 

the Laplace equation: 

,

1 1
/

( ) ( ) ( ) ( )

a b c d
i j

a a b b a b c c d d c d ab cd

   


   
      

      
  (8.23) 

for i=2,3, …, M–1 and j=2,3, …, N–1. 

It can easily be shown that (8.23) is equivalent to (8.21) when a=b=c=d=h. 

In the similar manner we solve equation (8.9) numerically using 

,

,

1 1
/

( ) ( ) ( ) ( ) 2

i ja b c d
i j

a a b b a b c c d d c d ab cd

   


   
        

      
 (8.24) 

for i=2,3, …, M–1 and j=2,3, …, N–1. 

The vorticity boundary conditions derived (8.16)–(8.20) help us to solve (8.10) if    

is known at some interior points. But, the evaluation of   from (8.9) depends on the 

distribution of vorticity within the bounded domain. Thus,   and   are inter-linked, 

and an iterative scheme will be build up to find the solution.  

For initial guess, stationary state is first assumed so that   = 0 everywhere in the fluid 

region. Based on this initial assumption, the boundary values for  are computed from 

(8.16)–(8.20) which shows that vorticity is initially generated at the boundary. This 

concentrated vorticity at the boundary starts to diffuse into the cavity, resulting in a 

temporary vorticity distribution which is the solution of (8.10) that satisfies the present 

boundary conditions. This computed vorticity distribution causes a modification to the 

assumed   after solving (8.9) subject to the restriction that we have in (8.8) on the 

boundary. In this way we have completed the first iteration. To start the next iteration, 

based on the modified stream function, the boundary values of vorticity are 

recomputed. To obtain a new solution for   and , the same procedure is repeated. At 

every grid point, the difference between the newly computed  and the previous value 

is recorded as the local error during each iteration and the sum of absolute errors at all 

grid points is called ERZETA. Similarly we find ERPSI, the corresponding sum of 

absolute errors of  . Iteration is terminated when both ERPSI and ERZETA are 

smaller than a small positive value EPSLON (=10
–4 

). Since the desired accuracy is 

reached, at this stage the solution is then considered to be satisfactory. 
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8.3.2 Temperature 

The energy equation, given in (8.3), by using (8.4), (8.5) can be reduced to the non-

dimensional form as below: 

2 Pe u v
x y

 


  
   

  
       (8.25) 

Temperature is subjected to the boundary conditions that i) the sides y=0, y=y0 and on 

cylinder are maintained at constant temperatures and ii) the other sides are supplied 

with constant heat or constant heat flux. The conditions are given explicitly as 

0 0

1 2

0 on ,  1 on 0,   on cylinder

 on 1,   on 0

y y y

q x q x
x x

   

 

     

 

    
  

   (8.26) 

Let 
, 1 , 1 1, 1,

, 2 , 1

,,

  and  
2 2

i j i j i j i j

i j i j

i ji j

u f v f
y h x h

           
           

   
 

Proceeding as in the stream function and vorticity function equation (8.25) can be 

generalizes as: 

2 2 1

,

1

(2 ) (2 ) (2 )

( ) ( ) ( )1

1 1 (2 )
2                                                 

( )

a b

j

c

d

i

af Pe bf Pe cf Pe

a a b b a b c c d

df Pe

ab cd d c d

  




   
    

 
   

       

 (8.27) 

      for i=2,3, …, M and j=2,3, …, N 

The boundary conditions in (8.26) are now expressed as:  

at x=0, 2q
x




   
1, 2, 3, 2

1
  4 2

3
j j j hq         for j=1,2, … ,N 

at y=0, 1   which implies that ,1 1i   for i=2,3,...,M–1  

at y=y0, 0   which implies that , 0i N   for i=2,3,...,M–1   (8.28) 

at x=1, 1q
x




  
 , 1, 2, 1

1
  4 2

3
M j M j M j hq   

     
 
for j=1,2,…,N 

and on the cylinder , 0 0.5i j    where 0 is the reference temperature.   

As in stream function and vorticity function in the equation (8.27) subjected to the 

boundary conditions (8.28) will be solved for the temperature in the cavity. 
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8.4 Results and Discussion 

We have obtained the values of stream function and temperature for step length 

h=0.01. The accuracy near to 4 decimal places is obtained by taking 1000 iterations. 

Here the important steps involved in computation are to calculate 1). a, b, c, d values 

adjacent to the cylinder and 2). D the distance between G and S in equation (8.20). 

Here S is a point on the cylinder and G is a point on the grid line obtained by 

intersection of normal with the grid. These are explained in the appendix. 

8.4.1 Streamlines 

The stream lines generated due to injection at the left wall and suction at the right wall 

are shown in Fig. 8.3 to Fig. 8.5. The figures are drawn for different values of suction 

parameter V0. We observe from Fig. 8.3 that when the cylinder is middle of the cavity, 

as suction parameter V0 increases, the region of high stream values (>1) forming 

loops increases at the right end of the cylinder and the stream lines with low values 

(<1) are separated. Again as V0 increases, a second circulation region is formed at 

the top left corner. For small values of V0, the stream lines with high values (>1) are 

nearly parallel to the right wall. 

From Fig. 8.4, when a small cylinder is at the bottom left corner, for small suction 

V0=5, stream lines having small values <1 are parallel to the top wall and having high 

values>1 are forming loops behind the cylinder and as V0 increases, these loop lines 

open to the top side and bifurcate from the region of looping. The presence of cylinder 

effects entire region dominating suction. As suction parameter increases, effect of 

suction spreads near to the cylinder and the values of stream lines away from the 

cylinder also increase. 

It is important to note that even though cylinder is small placed at left corner effects 

the entire flow dominating the suction. 

Form Fig. 8.5 when a small cylinder is at the top right corner, we find that for any 

value of suction parameter, circulation loops are not found. It may be because there is 

no space behind the cylinder to form wakes. For small values of suction, the stream 

lines take small values and the flow is in four distinct regions. But when suction 

increases, all distinct regions merge to a single region. But for any value of V0, we can 
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find flow regions with <1 and >1. As V0 increases the region with >1 occupies 

the most of the space. 

It is important to note that when the cylinder is at the top right corner, no circulation 

wakes are found. The circulation wakes behind the cylinder are best observed when it 

is in the bottom left corner. 

When there is no cylinder, the steam line pattern is shown in Fig. 8.13. For high 

suction when the small cylinder is on the top corner, the flow is similar to the flow 

without cylinder. 

 

 

Fig. 8.3: Streamlines for different values of V0. 
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Fig. 8.4: Streamlines for different values of V0(=5,50,100)  when cylinder is at lower 

left corner of the cavity. 

 
Fig. 5: Streamlines for different values of V0(=5, 50, 100)when cylinder is at top right 

corner of the cavity. 
 

8.4.2 Vorticity Contours 

The vorticity contours generated due to injection at the left wall and suction at the 

right wall for different suction parameters V0 are shown in Fig. 8.6 to Fig. 8.8. We 

observe that as V0 increases, when the cylinder is middle of the cavity, the circulation 

of vortex lines on the right side of cylinder increases and opens to the right top corner. 

The values of vorticity are very high at the right wall and in the circulation region of 

vorticity. Outside of the circulation region, vorticity takes negative values except at 

top left region. 

From Fig. 8.7, when a small cylinder is placed at the bottom left corner, for small 

values of suction, circulation region above the cylinder spreads to the top corner. As 

V0 increases, High positive values of vorticity are found on the entire left wall which is 

opposite to the above case (when the cylinder is in the middle). As V0 increases, 

circulation region confines to a small region near to the cylinder.  
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From Fig. 8.8, when a small cylinder is placed at the top right corner, for small suction 

parameter circulation region below the cylinder is small in area and this region spreads 

in the entire cavity when suction increases. Here we find high negative values of 

vorticity outside the circulation region  at the top and bottom walls. 

Fig. 8.6: Vorticity contours for different values of V0. 

Fig. 8.7: Vorticity contours for different values of V0(=5, 50, 100) when cylinder is at 

lower left corner of the cavity. 
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Fig. 8: Vorticity contours for different values of V0(=5, 50, 100) when cylinder is at 

top right corner of the cavity. 

8.4.3 Temperature field 

The Fig. 8.9 to Fig. 8.12 display the nature of temperature contours. Fig. 8.9 shows the 

isothermal lines for different values of V0 at Pe=0.02. We observe that the line =1 

divides the entire region into two parts: the region in which  is less than 1 and the 

region in which  is more than 1. As V0 increases, the region with <1 increases and 

spreads to the top wall. The region with >1 forms a circular loops. As V0 increases, 

the temperature in the region >1 also increases slightly.  

Fig. 8.10 shows the isothermal lines for different values of V0 at Pe=0.02 when a small 

cylinder is placed at the lower left corner. The region <1 is at the top of the cylinder 

in a small area for all suction values. Near the right side of the cylinder we find very 

high temperature. 

Fig. 8.11 shows the isothermal lines for different values of Pe at V0=10. We observe 

that Peclet number does not show much effect on the isothermal lines.  

Fig. 8.12 shows the isothermal lines for different values of V0 at Pe=0.02 when the 

cylinder is placed on the top right corner. We observe that as V0  increasing, the region 

<1 is decreasing. This is opposite to Fig. 8.10 where the area for <1 increases. 

From Fig. 8.14 and Fig. 8.10, we observe that temperature lines are similar when 

cylinder becomes smaller and smaller. We observe that because of cylinder placed in 

the cavity the temperature increases drastically in all cases in comparison with without 

cylinder. 
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Fig. 8.9: Isothermal lines for different values of V0 at Pe=0.02. 

Fig. 8.10: Isothermal lines for different values of V0(=5, 50, 100) at Pe=0.02 when 

cylinder is at lower left corner of the cavity. 
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Fig. 8.11: Isothermal lines for different values of Pe at V0=5.  

Fig. 8.12: Isothermal lines for different values of V0(=5, 50, 100) at Pe=0.02 when 

cylinder is at top right  corner of the cavity. 
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Fig. 8.13: Streamlines for V0=50 when 

cylinder is absent in the cavity. 

 
Fig. 8.14: Isothermal lines for Pe=0.05 

and V0=50 when cylinder is absent in the 

cavity. 

8.5 Conclusions 

From the above observations we conclude that  

 As suction parameter V0 increases, stream line pattern will not change much 

when the cylinder is in the middle of the cavity. But when it is at the top right corner 

suction effect is very much high.  

 Entire temperature zone is divided into two regions <1 and >1. 

 As suction parameter V0 increases region <1 increases when cylinder is in left 

bottom corner and decreases when the cylinder is at top right corner.  

 The temperature increases drastically when a cylinder is kept in cavity. i.e., to 

make quick heat transfer, we have to introduce some objects in the flow region of the 

cavity.  
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Chapter 9 

Summary and  Conclusions 

In this  thesis, the flow of viscous fluids and couple stress fluids in a rectangular cavity 

is considered. The flow in a cavity is studied by many researchers by analytical 

methods and Numerical methods. In Analytical methods only streamlines are 

examined. In Numerical methods both flow and heat transfer are studied.  

In the problems of present thesis, mainly the flow is generated due to the application 

of suction and injection at the walls of the cavity. We considered two cases i) 

suction/injection is applied on adjacent walls and  ii) suction/ injection is applied on 

opposite walls. In both cases, heat transfer within the cavity is studied by considering 

entropy generation number and Bejan number. 

Case: Suction/injection is applied on adjacent walls for viscous fluid flow. 

For the flow of viscous fluids, the case of suction applied on opposite walls was 

studied by many researchers. Hence we considered this case. Here we considered the 

flow to be Stokesian and non-stokesian. When the flow is Stokesian, convective terms 

are neglected on the assumption that Reynolds number is very small. In this case 

stream lines are independent of Reynolds number and stream function satisfies 

Biharmonic equation.  

We observe that when V0 suction parameter is less than 1, stream lines reenter at the 

top right corner and when V0>1, they re-enter at top left corner. The maximum value 

of stream lines in the cavity is the value of V0y  if V0>1 and 1 if V0<1. 

Isothermal lines are divided into two regions >1 and <1. As suction parameter 

increases,  values within the cavity also increases. By considering the Bejan number, 

it is observed that minimum fluid friction and maximum exergy is available at the 

bottom left corner. Flow of heat lines increases when Reynolds number increase. 
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When the flow is non-stokesian: 

The above observations for stokesian flow for stream lines and isothermal lines 

are still valid. But now, for V0<1 and Re is high, we can find a secondary flow at the 

top for a slit flow. 

Case: Couple stress fluid flow along the channel axis. 

In this case we observe that skin friction and volumetric flow rate decreases if 

magnetic parameter increases. But couple stress parameter has no effect on volumetric 

flow rate. The velocity profile takes more and more flat shape in the middle of the 

channel if magnetic parameter increases. This is in fact Hartmann effect. 

When equal suction and injection is applied, the axial velocity is studied. As Re 

increases, the minimum value of contours of flow will be drifted towards left end 

where suction is imposed. But when couple stress parameter increases, the region of 

minimum contour value increases. After a critical value of Couple stress parameter, 

the volumetric flow rate is almost constant. Skin friction decreases numerically when 

magnetic parameter increases.  

Case: A circular cylinder is introduced in the flow. 

The vortex lines with value more than 1 form loops. The vortex lines outside this 

region have negative values. The position of the cylinder effects the stream line pattern 

very much. When the cylinder is near the bottom left corner, wakes behind the 

cylinder are predominant. When the cylinder is at top corner, wakes behind the 

cylinder are at minimum appearance. The temperature increases within the cavity 

when a cylinder is inserted in the cavity. 

Future scope of the problems 

In all the problems of couple-stress fluid flows and flow past cylinder in a cavity, the 

study of fluid friction by entropy analysis is interesting to examine. The couple-stress 

fluid flow in the cavity when suction/injection is imposed (both cases on opposite 

walls and adjacent walls) is also a challenging problem. The second law analysis can 

also be studied for couple stress fluid flow regions. 
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Appendix 

Let the grid along x and y directions cut the circle at Q1 and Q2 respectively. The 

normals on the circle at Q1 and Q2 cut the grid at G1 and G2 along y and x directions. 

Refer the figure 15. 

Let S be the circle. The interval [0, 1] along x direction is divided into M–1 intervals. 

The interval [0, y0] along y direction is divided into N–1 intervals. The grid points 

along x, y directions are indicated by i and j. we take M and such that 

01

1 1

y
h

M N
 

 
 or 0

1

1

N
y

M





.  i=j=1 and i=M, j=N are on the walls of the cavity. 

Any point P has coordinates (x
*
, y

*
) and has the corresponding grid numbers (x, y) 

such that x
*
=(x–1)h, y

*
=(y–1)h. [we define grid number as (distance x)/(grid length h)]. 

We take centre of the circle C at the grid numbers
1 1

,  
2 2

M N  
 
 

. The corresponding 

coordinates for 
1 1

,  
2 2

M N
C h h

  
  
 

. Let r be the radius of the circle and r = r0h.    

( r0 = number of intervals or grid numbers contained in cylinder) 

The equation of the circle S: 

2 2

* * 21 1

2 2

M N
x h y h r

    
      

   
 

   
2 2 2

1 1 0 x M y N r      where 1 1

1 1
,  

2 2

M N
M N

 
  . 

Let the distance 

1

1

1

1

,  if  is left to 

,  if  is right to 

,  if  is below 

,  if  is above 

a h G P

b h G P
PG

c h G P

d h G P





 




 and 

 
 

 
 

*
0

1

0

*
0

2

0

  coordinates, ( 1)

,              grid number

( 1) ,    coordinates

,              grid number

x j h
Q

x j

i h y
Q

i y

 
 



  
 



 

Let P1(i, j+1), P2(i, j–1), P3(i+1, j) and P4(i–1, j) be the grid points adjacent to P=(i,j) 

in the cavity. Grid numbers for the adjacent points of P are PP4=a, PP3=b, PP2=c and 

PP1=d 
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Calculating ζ on the cylinder when grid point (i, j)  is adjacent to cylinder: 

3
rd

Quarter of the circle: If 3 0CP r , then 2 2

0 1 0 1( )x M r j N     

1 0( ) grid numbersPQ b x i     and hence   1
1

2 2

0 1

( )

( )

b N j
c

r j N




 
 

1

1 11 , 1 1 ,
2 2

1

(1 )  by interpolating and 
G

G i j i j Qc c
h b c


       


 

If 1 0CP r , then 2 2

0 1 0 1( )y N r i M    . 

2 0( ) grid numbersPQ d y j     and hence   1
1

2 2

0 1

( )

( )

d M i
a

r i M




 
 

2

2 21 1, 1 ,
2 2

1

(1 )  by interpolation  and 
G

G i j i j Qa a
h d a


      


 

Similar derivations are used when a grid point P is adjacent to the circle in 2
nd

, 1
st
 and 

4
th

 quarters of the circle.
 

Calculating ζ on the cylinder when grid point (i, j) is on the cylinder ( 0CP r ): 

Let 1

1

i M

j N






 

Where P=S is the grid point on the cylinder: If 1  , normal at S cuts grid parallel 

to x–axis and If 1  , normal at S cuts grid parallel to y–axis. 

2

2

1 ,   if  <1

1
1 ,   if  1

h

D GS
h

 




 


  
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

 and G S G
S

D D

  



  , since 0S   on the cylinder. 

If P=S is on the 3
rd

 Quarter of the circle: 

1, 1 , 1
2

if 1,   (1 )   and  
1

G
G i j i j S

h


     


      

  
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1, 1 1,

2

1 1
if 1,   (1 )   and  

1
1

G
G i j i j S

h


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 



      



 

Similar calculations follow for 2
nd

 , 1
st
 and 4

th
 quarters of the circle.

 

 

Point  P adjacent to and on cylinder. Point G where normal on cylinder cuts the grid. 
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