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ABSTRACT

The study of fluid flow and heat transfer is very important in micro reactor channels,
filtration units and in membrane reactor ducts. It is important in Nuclear waste
management and to determine residence time distributions in the process of drying of
solids in fluidized beds and in cooling devices. In chemical engineering, there are
major applications on laminar flow in channels. The effect of suction/injection over
the walls in the flow field is encountered in filtration units, micro reactor channels,

membrane reactor ducts and in fuel cell manifolds.

The objective of the present studies is to investigate the two dimensional flow and the
heat transfer due to laminar flow convection in a rectangular channel with suction on
neighboring and opposite walls when (i) the fluid is a viscous fluid, (ii) the fluid is
Couple stress fluid and (iii) a circular cylinder is inserted in the channel. Geometry

considered in this thesis is a rectangular geometry.

Analytical or numerical solutions have been obtained for flow field in the above
geometry under the cases: (i) Fluid is Newtonian and viscous, (ii) Fluid is couple
stress fluid, (iii) Flow is along the axial direction of the channel, (iv) Flow is due to
suction/injection in the plane perpendicular to the channel and (v) A cylinder is

inserted in the flow.

The values of the parameters characterizing the different problems are taken as
follows. Reynolds number Re=0.5, 1, 5, 10, 20 and 30. Suction parameter: Vo= 0.2,

0.5, 0.8, 2, 5, 10, 50, 100 and 200. Peclet number: Pe = 0.001, 0.005, 0.01 and 0.02.

vii



Prandtl number Pr=0.71, 1 and 10. Brinkman number: Br = 0.4 and 0.8. Hartmann

number M=1, 3, 5 and 7. Couple stress parameter S=1, 10, 20, 30 and 50.

The thesis consists of Five parts and nine chapters. Part - | and Chapter one is
introductory in nature. Part — Il is devoted to viscous fluid flows in a rectangular
channel with adjacent wall suction and contains Three chapters ( Chapters two to
four ). Part — 111 is devoted to Couple stress fluid flows in a rectangular channel
with/without suction and contains Two chapters ( Chapters five and six ). Part —
IV is devoted to Stokes flows past a circular cylinder in a square cavity with
adjacent and opposite wall suction and contains Two chapters ( Chapters seven
and eight ). Part-V and Chapter nine gives concluding remarks of the thesis and

possible directions in which further work can be carried out.

In all these chapters, the expressions for the stream function, temperature, entropy
generation number, Bejan number, heat function and pressure for viscous fluids
and velocity field and temperature for Stokes flow past cylinder and for Couple-
stress fluids are obtained. The Volumetric flow rate and Skin friction is derived
analytically and the effect of physical parameters like Reynolds number, Magnetic
parameter and Couple stress parameter on the VVolumetric flow rate and Skin friction
are studied graphically. The effect of Reynolds number and suction parameter on
stream lines, isothermal lines, entropy generation number, Bejan number, heat

lines and pressure are studied.
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NOMENCLATURE

a,b,cd

Be

Br

Ci

length of the rectangular cross section along X—Direction
length of the rectangular cross section along Y—Direction

Distances in the stencil from (i, j) to the neighbouring points

Bejan Number __MNe
Nj + Ny

2
Brinkman Number(z LTOZJ
2k(T, -Ty)

Skin friction

Specific heat, J/g °C

Cross viscosity parameter or coupling number
Differential operator with respect to y
Differential operator with respect to x

Ratio of Couple Stress Viscosities Parameter
Magnetic intensity vector

Dimensional Heat function
Non-Dimensional Heat function

Magnitude of constant magnetic field

Length of the interval

Identity Matrix (Tensor)

Electric current density vector

Thermal conductivity, W/(m. K)

Couple stress tensor



Nu
Ns
Nh

Nt

Pe

Pr

Q1, Q2
q1, 02

Re

2,2
Magnetic parameter [Z oHqa J
Cu

Nusselt number

Non-Dimensional Entropy generation number

Non-Dimensional Entropy generation number due to heat transfer
Non-Dimensional Entropy generation number due to fluid friction
Dimensional Pressure

Non-Dimensional Pressure, kg m™s?

C pVla}

Peclet Number[:

c
Prandtl Number(: pTﬂ)

Dimensional Velocity (U, V, W)
Geometric ratio
Dimensional heat flux on the walls

Non-Dimensional heat flux on the walls

Reynolds number (: %j
U

2
Couple stress parameter [: ﬂj

n
Dimensional Entropy Generation Number
Dimensional Entropy Generation Number due to heat transfer

Dimensional Entropy Generation Number due to fluid friction

Dimensional and Non-Dimensional Stress Tensor

Dimensional Temperature



T1, T2 Constant wall Temperatures

To Reference Temperature (=0.5(T1+T>))
U, u Dimensional and Non—Dimensional velocities in X—Direction
Uo Suction velocity for couple stress fluids
V,v Dimensional and Non—Dimensional velocities in Y-Direction
\Y Volumetric flow rate, m*/s
Vo Suction Parameter(: \i]
1
Vi Injection Velocity at the wall
V, Suction Velocity at the wall
W, w Dimensional and Non—Dimensional velocities in Z-Direction
Wo Average entrance velocity
X, YZ Dimensional coordinates
XY,z Non-Dimensional coordinates
Yo Geometric Parameter(: gj
Greek Symbols
Vo,V Dimensional and Non-Dimensional Gradient Operator
Vi, Vv? Dimensional and Non—-Dimensional Laplace Operator
AT T,-Ty
e Maximum Limit of the error in calculation of
Y, w Dimensional and Non—dimensional Stream Functions
% Non—dimensional Temperature
Yo, Fluid Density

Xi



Coefficient of viscosity

Couple stress viscosities
Vorticity Function

Electrical conductivity
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Chapter 1
INTRODUCTION

1.1 Introduction

The history of fluid flow is very old and began its existence in the form of laws of
buoyance by Archimedes (200BC). Later, one of the early studies is the work of
Leonardo Da Vinci's which gave rapid advancement to the study of fluid mechanics
about 500 years ago, but earlier than this time; prehistoric relics of irrigation canals
have shown that the study of fluid behaviour were much more available by the time of
ancient Egyptian (Nakayama and Boucher, 1999). In 18" century Johann and Jacob
Bernoulli brothers began more modern understanding of fluids motion and elasticity
and developed Bernoulli's equation. Since then, many researchers have done numerous
work on fluid mechanics. Fluid Mechanics can be described as the study of the flow
behaviour of the fluid under external body forces or pressure or body motions. It
involves application of the fundamental laws encountered in Physics. The laws are
Newton's laws of linear momentum principle, conservation of mass, first law of
thermo-dynamics. Studying the behaviour of fluids is an essential part in the analysis
of fluid flow models, it is needed in order to understand various problems ranging
from the study of blood flow in the capillaries to the flow of crude oil across Niger-
Delta of Nigeria. Fluid mechanics principles are required to explain why airplanes are
made with smooth surfaces for the most efficient flight, while in the other way golf
balls are made with rough surfaces to improve their efficiency.

Fluids consist of liquid or gas (or vapour) phases of the physical forms in which matter
exists. The distinguishing feature between a fluid and the solid state of matteris seen
by comparing fluid and solid behaviour. Under the application of a shear stress, solids
deform, but its deformation does not increase with time (Fox, McDonald and
Pritchard, 2004) whereas a fluid deforms continuously (Rajput, 2004). Fluid can be
defined as a substance that flows with negligible resistance to a change of shape. This
implies that a fluid isa material that continuously deforms under the application of
shear stress of even for a small magnitude. A shear stress (force acting per unit area) is

a tangential force acting on a surface of the material.



1.2 Heat Transfer

The laws that are governing heat transmission are very important to the engineers in
the construction, design, testing and operation of heat exchangers. Whenever there
exists a temperature difference in a medium or between media, heat transfer occurs.

Heat transfer occurs in three modes: conduction, convection and radiation.

In conduction, heat is transferred from one particle to the other particle through the
material without the actual motion of the particles. If a steel rod is heated at one end,
the molecules near the hot end vibrate (but do not move) with higher amplitude
(kinetic energy) and transfer the heat energy to the adjacent molecules and so on.
However, mean positions of the molecules in equilibrium does not change. Heat
transfer by conduction is most common in the case of solids. The property of
transmission of heat has been used in Davy’s safety lamp. Materials such as brick
walls, granite etc. having less conductivity are utilised in the construction of a cold
storage, furnace of a boiler etc. The space between the two walls of a thermos flask is
evacuated because vacuum is a poor conductor of heat. The air enclosed in the
woollen fabric helps in protecting us from cold, because air is a poor conductor of
heat.

In convection heat is transferred from one point to the other by the actual movement of
the fluid particles carrying heat. This convection process is most common in the case
of gases and liquids. Convection is the main cause for formation of land and sea
breezes and trade winds. It plays a vital role in gas filled electric lamps, ventilation,

and heating of buildings by hot water circulation.

In Radiation heat is transferred from one point to the other directly without the
presence of the carrying medium. From the sun, we heat radiations directly through
vacuum without the help of any medium. The properties of heat radiation are similar

to light radiations and also form a part of the spectrum in electromagnetic waves.

Heat radiation and mass transfer play a vital role in production industries in the design
of nuclear power plants, fins, steel rolling, combustion and furnace design, materials
processing, food processing and cryogenic engineering, gas turbines and various
propulsion device for aircraft, energy utilization, temperature measurements, remote

sensing for astronomy and spaceexploration, in a number of applications related to
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health, agricultural and military. If the surrounding fluid temperature is very high,
radiation effects play a prominent role and this phenomena does occur in space
technology. In such situations, an account of the combined effect of thermal radiation

and mass diffusion is to be taken.

Various modes of electromagnetic radiation occur through various mechanisms. For
example, in nuclear reactions gamma rays are produced, by the bombardment of
metals with high-energy electrons X-rays are produced, microwaves by special types
of electron tubes such as klystrons and magnetrons, and radio-waves are produced by
the excitation of some crystals or by the flow of alternating current through electric

conductors.

The short-wave length rays like gamma rays and X-rays are of importance to nuclear
engineers. The long-wave length rays like radio-waves and microwaves are of
importance to electrical engineers. The type of electromagnetic radiation that is
pertinent to heat transfer is the thermal radiation emitted as a result of energy
transitions of molecules, atoms and electrons of a substance. The power or intensity of
these activities is realised through the measure of temperature at the microscopic level,
and the rate of thermal radiation emission increases with increasing temperature.
Thermal radiation is continuously emitted and absorbed by all matter at critical
temperatures. This means that every substance around us such as walls, furniture and
our friends continuously emits and absorbs radiation. Thermal radiation is contained in
the electromagnetic spectrum that extends from about 0.1 to 100um, since the
radiation emitted by surfaces due to their temperature falls in this range of wave
lengths. Hence, thermal radiation contains the entire visible and infrared (IR)

radiationas well as a portion of the ultraviolet (UV) radiation.

The heat transfer by convective mode occurs in two basic processes: natural
convection and forced convection. In natural convection heat transport in the fluid
flow is not due to any external source but only due to differences in the density of
fluid by temperature gradient. The fluid receives heat from the surrounding heat
source and becomes light in density and rises up. The fluid which is cooler is of high
density then flows down to replace it. This cooler fluid is then heated and the process
continues, forming convection current; In this way the energy in the form of heat is

transferred from the bottom of the convection cell to top. In natural convection, the



driving force is the buoyancy which arises due to the differences in fluid density.
Because of this, the presence of a proper acceleration arises from resistance to gravity,
or an equivalent force (arising from acceleration or centrifugal force), is essential for
natural convection. Forced convection occurs when the fluid is forced to flow over the
surface by external agency such as fans and pumps. It is created artificially by induced

convection current.

Internal and external flow can also classify convection. Internal flow occurs when the
fluid is enclosed by a solid boundary such as a flow through a pipe. An external flow
occurs when the fluid extends indefinitely without encountering a solid surface. Both
these convections, either natural or forced, can be internal or external as they are

independent of each other.

To determine the load on air-conditioning plants and refrigerating equipment, the
knowledge of the quantity of heat transfer due to natural convection is absolutely
necessary. In the design of the insulation thickness of transmitting wires and
insulation thickness of stream carrying pipes and furnaces, the free convection plays

an equally important role.
1.3 Viscosity

Viscosity can be considered as a measure of the resistance of a fluid that flows due to
shear stress or tensile stress. Viscosity is literally "thickness" or "internal friction™ of
the fluid. Hence, water is referred to as "thin", with a lower viscosity, while honey is
considered as "thick", with high viscosity. Putting it in simple way, the lesser the
viscosity of the fluid is, the higher its ease to flow (Symon R. Keith, 1971). Viscosity
explains the internal resistance of a fluid to flow and may thus be considered as a
measure of fluid friction. For illustration, felsic magma having high-viscosity creates a
steep and tall stratovolcano, because it takes very long time to cool due to its high
viscosity, where as mafic lava due to its low-viscosity forms a shallow-sloped and
wide shield volcano. All natural (or real) fluids (excepting super fluids) are having
some resistance to the external stress and therefore are treated as viscous, but a fluid

that offers no resistance to shear stress is considered as an ideal fluid or inviscid fluid.



1.4 Couple Stress Fluid

In continuum mechanics, fluid particles may have size-effect within the flow and this
is neglected. In Newtonian flows negligence of rotational interaction among particles
results to symmetrical nature of force-stress tensor. However, in the very important
cases like fluid containing suspended particles, this is not true (i.e., stress tensor is not
symmetric). Hence, the theory that explains couple stresses is required. The spin field
due to micro-rotation of freely suspended particles sets up an anti-symmetric stress,
which is called couple-stress, and thus this leads to the foundation of couple-stress

fluid theory.

The theory of fluids with Couple stresses was introduced by Stokes (1966), it has
special features like the existence of couple stresses, body couples and non-symmetric
stress tensor. The important feature of couple stress is the introduction of size-
dependent effect. According to Sunil et al. (2002), couple stresses appear in fluids with
very large molecules. Examples of such fluids include various types of lubricants with
small amount of polymer additives, blood, electro-rheological fluids, synthetic fluids,

etc.

Several authors have discussed various aspects of couple stress fluid under different
flow configurations. For example Srivastava (1985) investigated the flow of couple-
stress fluid through stenotic blood vessels. Zakaria (2002) investigated hydro-magnetic
oscillating flow of a couple stress fluid in the porous medium. Rudraiah and
Chandrashekara (2010) presented couple stress effects on the growth rate of Rayleigh-
Taylor instability in a small thickness region of couple stress fluid at the interface.
Devakar and lyengar (2010) considered the run up flow of a couple stress fluid in
between two parallel plates, while Srinivasacharya and Kaladhar (2012) presented the
analytical solution of free and forced convection flow of a couple stress fluid in
between annular circular cylinders taking into the effects of ion-slip and Hall currents.
Furthermore, Rani et al. (2011) took up numerical investigation of couple stress fluid
flow in between two vertical cylinders of infinite length. Double diffusive mixed
convection in couple stress fluids with variable fluid properties was analysed by
Dinesh et al. (2015).



The analysis of couple stress fluid flows is important to study in many industrial
processes like the extraction of polymer fluids, solidification of liquid crystals,
suspensions fluids in polymers (Lin and Hung, 2007), polymer-thickened oils and
physiological fluid mechanics (Shehawey and Mekhemer, 1994). Application of
couple stress fluids are equally found in synovial joints (shoulder, hip, knee and ankle)
(Walicki and Walicka, 1999), tribology of thrust bearings (Naduvinamani and Patil,
2009) and the lubrication of engine rod bearings (Lahmar and Bou-Sad, 2008),
geophysics, chemical engineering and astrophysics. Walicki and Walicka (1999) and
Kumar et al. (2015) modelled synovial fluids as couple stress fluids in human joints
because of the long chain of lauronic acid molecules found as additives in synovial
fluid.

1.5 Magneto-hydrodynamics

The study of fluid flows which are electrically conducting is termed as magneto-
hydrodynamics (MHD). Magneto means magnetic field, hydro means fluids and
dynamics mean forces and the laws of motion. Magneto-hydrodynamics (MHD) is the
mathematical model for the low frequency interaction that exists between electrically
conducting fluids and electro-magnetic fields (Schnack, 2009). In other words,
magneto-hydrodynamics can be described as the study of the interaction between
magnetic fields and moving, conducting fluids (Dawson, 2001). Other terms used to
describe MHD include magneto fluid dynamics or hydro-magnetics. Examples are
liquid metals (such as mercury, gallium, molten magnesium, molten antimony, liquid
sodium etc.), plasmas (ionized gases or electrically conducting gases) such as the solar

atmosphere and salt water or electrolyte.

The fundamental concept behind MHD is that the relative movement of a conducting
fluid and a magnetic field causes an electromotive force to develop, this will induce
electrical currents with density of order o(uxB) , where o is the electrical
conductivity, B is the magnetic field and u is the velocity field. The currents will give
rise to another induced magnetic field which is added to the original magnetic field
and the fluid appears to flow along with magnetic field lines. The combined magnetic
field (i.e., both the imposed and induced) then interacts with the induced current
density, J, giving rise to a Lorentz force (per unit volume), JxB . This acts on the

conductor and it is directed so as to impede the relative movement of the magnetic

7



field and the fluid. In the description above, it is observed that fluid can “drag”
magnetic field lines while magnetic fields can pull on the conducting fluids, this
partial “freezing together” of medium and the magnetic field is referred to as MHD.

The interest to explore MHD came as a result of three technological innovations.

Q) Fast-breeder reactors which use liquid sodium as a coolant and this needs to be
pumped,

(i)  Controlled thermonuclear fusion requires that the hot plasma be confined away
from material surfaces by magnetic forces and

(iii)  MHD power generation, in which ionized gas is propelled through magnetic

field, was thought to offer improved power station efficiencies.
1.6 Literature Survey

The study of fluid flow and heat transfer is very important in micro reactor channels,
filtration units and in membrane reactor ducts. It is important in Nuclear waste
management and to determine residence time distributions in the process of drying of
solids in fluidized beds and in cooling devices. In chemical engineering, there are
major applications on laminar flow in channels. The effect of suction/injection over
the walls in the flow field is encountered in filtration units, micro reactor channels,
membrane reactor ducts and in fuel cell manifolds. The viscous fluid flow in parallel
plate channels generated due to suction/injection at the walls was first studied by
Berman (1953). Experimental results of paper preparation were analyzed
Mathematically by Taylor (1956). Pan and Acrivoas (1967) and Shankar (1993)
presented analytical solutions for the Stokes flow in a two-dimensional cavity of
rectangular section. Shankar (1993, 1997, 1998) presented analytical solutions for
stream function for Stokes flow in a cavity and analysed eddy structures. He obtained
solution for Circular cylindrical cavity flow due to motion of end walls at the top and
bottom. Shankar and Deshpande (2000) presented a extensive review of flows in a
cavity and discussed in detail about corner eddies, longitudinal vertices, Poincare
sections and turbulence. Many researchers (Hwang and Cheng (1993), Song and
Sundmacher (2010), Cheng and Hwang (1994), Chabani et al. (2017), Ahmed
Bahlaoui et al. (2014)) have attempted the viscous flow in a rectangular tube with

suction at the opposite walls. Natural and mixed convection flows in a cavity were



investigated Numerically using FDM second order schemes by Sivasankaran et al.
(2010) and Sheremet et al. (2015).

The couple stress fluid theory developed by Stokes (1966) has distinct features, such
as the presence of couple stresses, body couples and non-symmetric stress tensor. The
couple stress fluids are capable of explaining the behaviour of various types of
lubricants, blood, suspension fluids, liquid crystals etc. The theory of couple stresses
defines the rotational field in terms of the velocity field itself. In couple stress fluid
theory, the only unknown vector field of velocity is governed by a single vector
differential equation analogues to the classical Navier Stokes equation, but with an

increased order.

Magnetic flow in a rectangular channel is a classical problem that has significant
applications in magneto hydrodynamic power generators and pumps etc. Nowadays,
magnetic field has earned great value due to wide spread applications in industry and
bioengineering, such as electrostatic precipitation, power generators, petroleum
industry, aerodynamic heating, the purification of molten metals from non-metallic
materials, polymer technology and fluid droplet sprays. Hartmann (1937) was the first
person to obtain a solution for this type of flows to compare with his experimental
results on mercury. Hartmann and Lazarus (1937) studied the impact of a transverse
uniform magnetic field on the flow of a viscous incompressible electrically conducting

fluid between two infinite parallel stagnant and insulating plates.

Stokes flow generated within rectangular shaped cavities is a feature encountered in
several manufacturing processes. Examples include coating systems (Higgins, 1982
and Aidun et al.,1991), polymer melts (Canedo and Denson, 1989) and ceramic tape
casting (Hellebrand, 1996). The motion of a fluid past a cylindrical obstruction with its
longitudinal axis aligned normal to the approaching flow has practical importance and
is of fundamental interest. Bluff body cross—flow configurations arise in several
industrial applications and environmental settings, including: the passages in
equipments used for heat and mass transfer processes; the cooling of electronic
components and equipment; flow-metering devices; moving ground vehicles; the
obstructed spaces between co-rotating disks in magnetic disk storage devices; tall
buildings and structures such as cooling towers, chimneys, offshore oil rigs and

electrical pylons. The hydrodynamic forces and flow characteristics of laminar fluid



flow past a stationary isolated cylinder have been analysed by many researchers like
Williamson, (1989); Henderson, (1995, 1997); Norberg (2003); Baranyi and Lewis
(2006).

In the past for many years, heat transfer by convection was studied by examining
temperature field and first law of thermodynamics. Nowadays emphasis on design of a
model is developed as a science. Hence a deeper study of the subject is necessary. The
study of flow lines, temperature and heat flow lines together with second law of
thermodynamics are important, since by this one can know the regions of available

energy or useful energy and regions of dissipation of energy.
1.7 Scope and Objectives

The objective of the present thesis is to study the two dimensional flow of fluids and
the heat transfer due to convection occurring in a rectangular channel when suction
and injection is applied on a) neighboring walls and b) opposite walls in the cases

when
)] the fluid is a viscous fluid
i) the fluid is Couple stress fluid
iii) a circular cylinder is inserted in the channel.

Geometry considered in this thesis is a rectangular geometry.
1.7.1 Description of the Geometry and Governing equations

The two-dimensional governing equations for steady, incompressible and laminar

flows of viscous fluids

Continuity equation: vQ=0

- dQ _ 2
Momentum equation: pE =-VP+ u4V-Q
Energy equation: e, (;—-lt- =kV°T
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The two-dimensional governing equations for steady, incompressible and laminar

flows of couple stress fluids with body force due to applied magnetic and electrical

fields are
Continuity equation: vQ=0
Momentum equation: PQVQ=-VP+ uV?Q-nV*Q+JIxH
. dT 2
Energy equation: cU,—=kVT
gy €q PCY0 ™~

where Q, P, J, H and T are usual symbols for velocity, pressure, electric current,
magnetic intensity and temperature. The Cartesian coordinate system with origin at the
bottom left corner and X and Y axes along the walls is taken. The tube is of length a
and height b. Injection with velocity V; at the wall Y=b and suction with velocity V; at
the wall X=a are imposed. The flow is developed because of the suction and injection.
Velocity of fluid satisfies impermeability condition and no slip condition on walls
X=0, Y=0 and suction and no slip condition at the permeable walls X=a and Y=b. The
temperature field satisfies constant heat flux at the permeable walls X=a and Y=b and
constant temperature is maintained on the impermeable walls X=0, Y=0. Due to no slip
condition on the all walls the tangential velocities are zero.

Analytical or numerical solutions have been obtained for flow and temperature fields

in the above geometry under the following cases:
1. Fluid is Newtonian viscous.
2. Fluid is couple stress fluid.
3. Flow is along the axial direction of the channel
4. Flow is due to suction/injection in the plane perpendicular to the channel.
5. Acylinder is inserted in the flow.

The values of the parameters characterizing the different problems are taken as
follows. Reynolds number Re=0.5, 1, 5, 10, 20 and 30. Suction parameter: Vo= 0.2,
0.5, 0.8, 2, 5, 10, 50, 100 and 200. Peclet number: Pe = 0.001, 0.005, 0.01 and 0.02.
Prandtl number Pr=0.71, 1 and 10. Brinkman number: Br = 0.4 and 0.8. Hartmann
number M=1, 3, 5 and 7. Couple stress parameter S=1, 10, 20, 30 and 50.
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1.8 Applications

The study of fluid flow and heat transfer is very important in Nuclear waste
management and to determine residence time distributions in the process of drying of
solids in fluidized beds and in cooling devices. In chemical engineering, there are
major applications on laminar flow in channels. The effect of suction/injection over

the walls in the flow field is encountered in

filtration units
micro reactor channels

membrane reactor ducts

YV V V V

fuel cell manifolds.

The viscous fluid flow in parallel plate channels generated due to suction/injection at

the walls was first studied by Berman (1953).

1.9 The boundary conditions on Velocity and Temperature

1.9.1 No-slip condition:

The No-slip boundary condition implies that the fluid particles in contact with a
surface will have the same velocity as the velocity of the surface. Often the boundary
walls are not moving and hence the fluid velocity is zero. In drag flows, the boundary
wall velocity is finite and hence the fluid velocity is equal to the wall velocity.

1.9.2 Uniform wall heat flux/ Uniform wall temperature conditions:

The most usual temperature boundary conditions consist one of the following
assumptions:

The heat flux is uniform on the wall. In this case, the boundary condition is written as

oT
(%jwall - Q

The solid wall is at uniform temperature: T =T,,.

1.9.3 Hyper-stick condition:

: TR 1 _
For couple-stress fluids, Along tangential direction t on the wall: EVXQ't =0.
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1.10 Planning of the Thesis
The thesis is divided into FIVE parts.

PART-I

This part consists of only one chapter.

Chapter 1

Introduction and literature study for the present research study are given. Brief survey
on fluid flow and heat transfer in ducts with suction is given. Numerical schemes used

in thesis are described.

PART-II

This part consists of three chapters.
Chapter 2
Heat flow in a rectangular plate

Steady-state temperature distribution in a rectangular plane sheet with non-
homogeneous boundary conditions is solved using Fourier series. The results are
compared with the numerical results. For different values of geometric ratio, the

isothermal curves are obtained.

Form this chapter, we observed that finding analytical solution is not easy for this type
of problems. So, we considered numerical method for obtaining solution to this kind
of problems in subsequent chapters in this part.

Chapter 3

Stokes Flow and Heat Transfer by Heat Function and Entropy Generation in a

Rectangular Channel with Suction.

A viscous fluid flow is generated in a rectangular channel of uniform cross section by
applying suction/ injection at the adjacent side walls. The other opposite side walls are
maintained at constant temperatures and the walls with suction are maintained at
constant heat flux. The flow is assumed as Stokes flow and non-linear convective

terms are neglected. The stream lines due to the flow and isothermal lines and heat
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function contours are drawn. The regions of high friction are found by plotting entropy
generation number and Bejan number. The regions of low and high pressures are also
drawn. The 13 point formula is used to solve the biharmonic equation (convective
term is neglected) for stream function and 5 point formula is used to solve for all other
harmonic equations. For derivative boundary conditions, central difference formula
with fictitious nodes is used. It is observed that corner points are regions of high
energy dissipation points. Least dissipation of energy is near to the wall where non-

dimensional temperature is 1.
Chapter 4
Entropy Analysis for Heat Transfer in a Rectangular Channel with Suction

Chapter 4 deals with the heat transfer in a rectangular channel with suction applied at
the adjacent two side walls. A two dimensional laminar viscous fluid flow is generated
due to the application of suction/injection. The other opposite two sides are kept at
constant temperatures and the walls with suction are maintained at constant heat flux.
The stream lines thus obtained due to the flow and isothermal lines and heat function
are analyzed. The regions of high and low frictions are found by drawing contours of
entropy generation number and Bejan number. Expressions for the heat transfer
coefficient, Nusselt number is also derived. The 4™ order Partial Differential equation
for stream function is numerically solved by FDM using 13 point formula and 5 point
formula is used to solve for all other harmonic equations for temperature, heat function
and pressure. For derivative boundary conditions, central difference formula with
fictitious nodes is used. In the analysis, we note that corner points are regions of high
energy dissipation. Least dissipation of energy is near to the wall where non-
dimensional temperature is 1. This chapter analyses the heat transfer in the rectangular

channel through heat function and Entropy generation number.

PART-II1I

This part consists of two chapters
Chapter 5

Steady Flow of Couple Stress Fluid through a Rectangular Channel Under

Transverse Magnetic Field
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Chapter 5 deals with the steady and an incompressible conducting couple stress fluid
flow in the presence of transverse magnetic field through a rectangular channel with
uniform cross—section. The induced magnetic field is neglected. We consider the case
that there is no externally applied electric field. Under these conditions, we get 4™
order PDE for velocity w along the axis of the rectangular tube. The usual no slip and
hyper stick boundary conditions are used to obtain the solution for w. We obtained the
velocity w in terms of Fourier series. Skin friction on the walls and volumetric flow
rate are obtained in terms of physical parameters like couple stress parameter and
Hartmann number. The effects of these parameters on skin friction and volumetric

flow rate are studied through graphs.
Chapter 6

Steady Flow of Couple Stress Fluid through a Rectangular Channel Under
Transverse Magnetic Field with Suction on opposite walls

Chapter 6 deals with the steady and an incompressible conducting couple stress fluid
flow with suction/ injection at the opposite walls in the presence of transverse
magnetic field through a rectangular channel with uniform cross—section. The induced
magnetic and electric fields are neglected to obtain velocity w along the axis of the
rectangular tube. The usual no slip and hyper stick boundary conditions are used to
obtain the solution for w. We obtained the velocity w and temperature 6 in terms of
Fourier series. The volumetric flow rate and skin friction are obtained and the effects
of physical parameters like magnetic parameter, Reynolds number and couple stress
parameter on this are studied through graphs.

PART-IV
This consists of two chapters.
Chapter 7

Stokes Flow and Heat Transfer Past a Circular Cylinder in a Square Cavity with

Suction/Injection on Adjacent Walls.

A laminar viscous fluid flow is generated past a circular cylinder placed in a square
cavity of uniform cross section by applying suction/ injection at the adjacent side

walls. The other opposite side walls and the boundary of the cylinder are maintained at

15



constant temperatures and the walls with suction are maintained at constant heat flux.
The stream lines due to the flow and isothermal lines are drawn. The flow is assumed
to be Stokesian. The biharmonic equation for stream function is solved by writing into
two coupled equations and 5 point formula is used to solve the equations. For
derivative boundary conditions of stream function, central difference formula with
fictitious nodes and for derivative boundary conditions of temperature 3 point

backward difference formula are used.
Chapter 8

Stokes Flow and Heat Transfer Past a Circular Cylinder in a Square Cavity with

Suction/Injection on Opposite Walls.

A laminar viscous fluid flow is generated past a circular cylinder placed in a square
cavity of uniform cross section by applying suction/ injection at the opposite side
walls is considered. The other opposite side walls and the boundary of the cylinder are
maintained at constant temperatures and the walls with suction are maintained at
constant heat flux. The stream lines due to the flow and isothermal lines are drawn.
The flow is assumed to be Stokesian. The biharmonic equation for stream function is
solved by writing into two coupled equations and 5 point formula is used to solve the
equations. For derivative boundary conditions of stream function, central difference
formula with fictitious nodes and for derivative boundary conditions of temperature 3

point backward difference formula are used.
PART -V
This consists of a single chapter.

Chapter 9

Finally, chapter ten concentrates on the overall conclusions drawn with references to
the problems discussed in the thesis. We also indicate the direction for possible future

work.

16



Part - |1

VISCOUS FLUID FLOWS
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Chapter 2

Heat Flow in a Rectangular Plate

2.1 Introduction

Steady state temperature distribution in a rectangular plane sheet with
non-homogeneous boundary conditions is solved by using Fourier series. The results
are compared with the numerical results. For different values of geometric ratio, the

isothermal curves are obtained.

The problem of steady state temperature distribution is classical and very old, since the
time of Laplace (1787, 1832). Crank (1975) in his treatise on Mathematics of diffusion
theory has discussed some typical problems with homogeneous boundary conditions.
The related problems involving Laplacian equation in flow through channels of uniform
cross-section were discussed by Langolois and Deville (2014). Recently analysis of heat
flow in microchannels by theoretical and experimental studies is increasing due to their
wide applications (Van Male et al. (2004), Shokouhmand et al. (2007), Khan et al.
(2008), Mirmanto et al. (2012)). Lee et al. (2005) presented the experimental study of
heat flow in rectangular microchannels. Schmith and kandlikar (2005) have discussed
the pressure drop in a microchannel. The problem of solving steady state temperature
when non-homogeneous derivative boundary conditions are given, though classical, is
not attempted by many analytically. Here our aim is to solve this problem. The results of
our problem are matched with the results of steady state diffusion problem of Crank

(1975, Pages 65-66) when in the problem g, =0, T,=0.
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2.2 Mathematical Formulation

Consider the case of conduction of heat in a rectangular plate with the two adjacent sides
maintained at constant temperatures and with other two adjacent sides maintained at
constant heat flux. The plate is insulated on the top and bottom surfaces so that heat will
not escape. To find the temperature profiles in the plate, the Cartesian coordinate system
is selected with origin at the left bottom corner of the plate with X and Y axes along the
sides of the plate. The plate has sides of length a and b along X and Y directions. The
temperature profiles in the plate follow heat conduction equation in steady state as given
by

VT =0 (2.1)
subjected to the boundary conditions:

a

T=Tyon X=0; T=T, on Y=0; k X —Q, on X=a and kg—-Yr =-Q, onY=b (2.2)

where T is the temperature in the plate at a point (X, y), k is the coefficient of thermal
conductivity and Q1, Q> are heat fluxes imposed on the sides. The first two conditions in
(2.2) are for constant temperatures and the last two conditions of (2.2) are for constant
heat flux. We introduce the following non-dimensional scheme with capital on LHS as
physical quantities and small letters on RHS as the corresponding non-dimensional
quantities:

Q,KAT _ L,KAT

a

X=ax; Y=ay; Q, = Q, and T =AT.0+T;, where AT=T,-T;  (2.3)

Now we have the non-dimensional equation as

V=0 (2.4)
subject to
6=00onx=0; #=1ony =0; (2.5a)
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20 _ g, onx=1and % =(, Ony=yp, Where y,=b/a (2.5b)

OX
Though it appears simple, it is difficult to solve (2.4) with conditions (2.5a) and (2.5b),

since it involves infinite system of equations. Again this method is useful in solving
fluid flow and heat transfer with convection problems.
The solution of the problem can be obtained by two methods as given below. The

physical representation of the problem is given in Fig. 2.1.

r
Y=>50
oT
F—=-0,
oY i
i 0T _ i
X=0T=1 \aX——Ql X=a
T=T,
o ¥=0 X

Fig. 2.1: Temperature distribution in a rectangular plate.

2.3 Solution of the Problem

2.3.1 Method 1

We assume the solution in two parts such that the first part satisfies homogeneous
conditions on x=0 and x=1 and the second part satisfies homogeneous conditions on y=0
and y=y,. The arbitrary constants in the general solution are adjusted such that the

boundary conditions satisfied for the solution. Hence the solution is taken in the form as

follows.

0= i sin(nzx)[ A, cosh(nzy)+ B, sinh(nzy) ]|

n=1
+sin(m} C, sinh[mj+ D, cosh [mj (2.6)
Yo Yo Yo
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From the condition (2.5a), we get D,=0
and > A sin(nrx) =1
n=1
Expanding f(x) =1 on RHS in half range sine series over 0< x<1, we get
4 . .
A= —ifn=(2m+l)andA = 0ifn = 2m
nz

Again from the condition (2.5b), we have

& = Znﬂ {cos(nﬁx)[A1 cosh(nzy)+ B, sinh(nzy)]+— " sm( Oy]cosh ( n;zx ]} =0,

This implies that

in {( 1)"[A, cosh(nzy) +B, S|nh(n7zy)]+—cosh( y Jsm[n”yj}z q @7

n=1 0 0

Expanding qi, cosh(nzy) and sinh(nzy) in half range sine series over 0<y<yp , we get

A | NTY
= A]sm(
ZAn,

J which gives that A, =qg,A, ifnisoddand A =0 ifniseven.

cosh(ney) = im(l (- )cosh(nﬁyo) [mEYJ ZCnmS'n( 7 J

7T 2 yon +m? Yo =)

m

sinh(nzy)= i — 5|nh(n7zy0) [mny] anmsm( y }
0

yon +m? Yo

Substituting these above expressions in (2.7) and taking the coefficients of sin(nzy/yo)

we get,
n—”cosh( y”jcn =g,A — > (-1)" Mz(ACpp +BSpn) (2.8)
yO 0 m=1

Similarly the condition (2.5b) gives us,
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% _ i Nz {sin nzx[A, sinh(ny,) + B, cosh(nry,)]+(~1)" G sinn ( nzxj} o,

n=1 0 yO

Expanding gz, sinh(nzx/yo) in half range sine series, and collecting the coefficients of

sin(nzx) on both sides we get,

nz[A, sinh(nzy, )+ B, cosh(nzy, )] =q,A, —imn(—l)m C—mslmyn (2.9)

m=1 0

where sinh [ n;zx] =>sl, , sin(mzXx).
Yo ma
Equations (2.8) and (2.9) can be simplified by introducing the following notation

" =sinh(nx ., B =B cosh(nzy,), C.=C N7 cosh| M2
A1 ( yO)A\1 n n ( yO) n n y y
0 0

Covn . S . sl

-—’Smnz—’S]'mn:—
sinh(mzy,) ™" cosh(mzy,) ™ cosh(mz/y,)

m,n m,n

and ¢, =

Now equations (2.8) and (2.9) become

Cr=0A ~ 3 (-1) ma(Ac,, +Bish,) (210)
and q2A1—n7r(Af+B:)=i( -1)"C; 5L, (2.11)

Substituting (2.10) in the equation (2.11), we get

o0

> (-1)" st {wA, - Z ) kz(AC; , +Brs; )} =0,A —nz(A +B;)

m=1
Rewriting this we get,

Z{Z k+m k m m, n}B n7Z-Bn =

k=1 m=1

—Q,A +n7A’ +qlz “1)"sT A, - ZZ 1)“"kc; L A (2.12)

m=1 k=1 m=1

The first term on LHS within inner summation can be written as
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o0

- Ak (-1) " ta nh( j
bb, , = > (<1)" ks, sL = Aknyy tanh (kzy,) Y — Yo it kzn

2,,2

et m n (K2yg +m?)(m? +n?y; )

This equation (2.12) can be solved for B and then substituting B, in (2.10) we get

C,. Now all the constants A,, B, and C, are known. Hence, the temperature can be

computed from (2.6). By choosing q:=2, q,=4, the temperature profiles are obtained as
shown in Fig. 2.2. We can observe that as n increases the solution converges more near
to an exact solution. When we take only 5 terms (with each term containing 3 constants
An, B, and C,) in the series, we can find many discrepancies in the corners. As n
increases, we get a good approximate solution near to n=20. But again, if n is more than
20, so many fluctuations will develop due to multiplication of very large and very small

numbers.

0.€

0.5

N

0.4

0.2

0.2

0.1

o
o 0.2 0.4 0.€ 0.8 1 o 0.2 0.4 0.€ 0.8 1 a 0.2 0.4 0.€ 0.8 1

Fig. 2.2: Method 1 with 5, 10 and 20 terms.

2.3.2 Method 2
In this method, the solution is taken in two parts as 6=6,+6. The part 6 satisfies
Laplacian and boundary conditions on y. The conditions on x will be homogeneous. The

part & satisfies the Laplacian and boundary conditions on x. The conditions on y will be
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homogeneous. Hence, & satisfies all the boundary conditions. We assume 6=6,+6 is

the solution for

Vi =0 (2.13)

with the conditions

f=00nx=0; #=1ony=0; %qu onx=1and %:q2 ony=y, aresplitas:

6, =00onx=0 6,=0onx=0

%:Oonx:l %:qlonx:l

ox ox (2.14)
6,=1ony=0 6,=00ony=0

o6, 00,

ay—qzony Yo E=00ny=yo

The solution for &, which satisfies homogeneous conditions on x of (2.14) is taken as

ism 2n+1 ”X[Ah coshWJrB sinh%j (2.15)

n

the constants A, and B, are found from the conditions on y of (2.14) for 6, as below:

2n+1)zx
ﬁzl for0<x<1 (2.16)

6=lony=0 = > Asin
n=1
since sin((2n+1) zx/2) functions are orthogonal, from (2.16) we get

1

A = 2_[sm 2n+1)7rx - 4

C(2n+))rx

(2.17)

again % =(, ony =y, which reduces to the following:

i 2m+1 2m+1 2m+1

, = Z (2m+1)z sin (2m-+1)x A, sinhﬂ+ B, coshﬂ (2.18)
2 2 2

multiplying by sin((2n+1) zx/2) on both sides of (2.18) and then integrating with respect

to x from 0 to 1, by orthogonal property of sin((2n+1) zx/2) functions, we get B, as

(2n+1) 7y,

— A, tanh (2.19)

B = q,A: S ch (2n+1)7ry0
2 2
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Now the solution for &, which satisfies homogeneous conditions on y of (2.14), is taken

as
2 2n +1 2n+1) rx 2n+1)rx
, = sin ﬂy[ ) smh¢+ D, cosh QJ (2.20)
n-1 2y, 2Y, 2y,
from the conditions on x of (2.14), i.e., 8, =0 on x =0we get D,= 0 (2.21)

again we have % =0, onx=1, we get

o - icn 2n+)x sin (2n +1)7zy cosh (2n +1)7r

(2.22)
2y, 2y, 2y,
Cn’s are obtained from the orthogonal property of sin((2n+1) zy/2yy), as
2 2n+1
C. = YoBA socn (2n+y)z (2.23)
2 2y,

Substituting (2.17), (2.19) in (2.15) and (2.21), (2.23) in (2.20) we get & and &. Now
combining the two solutions &, and & we get the complete solution. It is computed
numerically and presented below with n=20 number of terms in the solution. The
solution is more close to the exact solution than the solution obtained in Method 1. This
problem is solved by five point iterative formula by numerical method. The solution

obtained at 3500 iterations is presented in Fig. 2.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

o o.z2 o.2 0.& 0.8 1

Fig. 2.3: Isothermal lines between Method 2 with 20 terms and by Numerical method at
3500 iterations.
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2.4 Results and Discussion

The analytical solution is very fast converging with 20 terms and accurate enough
whereas the numerical solution take hundreds of iterations even with Gauss-seidal
iterations and is not as accurate as analytical solution. The effect of heat flux at the edges
is shown below. When the ratio q=q1/q; is very high as 200 (Fig. 2.4 (a)), the isothermal
lines are vertical. When g = 0.1 (Fig. 2.4 (b)), the isothermal lines are inclined with
much variations near to down left corner and when g= 0.001 (Fig. 2.5), the isothermal
lines are nearly parallel to the walls. In all the cases, there exists a small region of no

heat flow zone at which the pattern changes its nature in direction of thermal flow.

(@) (b)
Fig. 2.4: Isothermal lines for (a) g= 200 and (b) g=0.1.

e a:=32

a:=1¢

gr=F

qr=2

Fig. 2.5: Isothermal lines for g= 0.001. Fig. 2.6: Temperature at y=yj.

In Fig. 2.6, temperature distribution at the top side of the plate is given. We notice that,

as gy, the heat flux increases, the temperature also increases.
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2.5 Conclusions

Form this chapter, we observed that finding analytical solution is not easy for this type
of problems. So, we considered numerical method for obtaining solution to this kind of

problems in subsequent chapters of the thesis.
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Chapter 3
Fluid Flow and Heat Transfer by Heat Function and
Entropy Generation in a Rectangular Channel with

Suction

A viscous fluid flow is generated in a rectangular channel of uniform cross section by
applying suction/ injection at the adjacent side walls. The other opposite side walls are
maintained at constant temperatures and the walls with suction are maintained at
constant heat flux. The flow is assumed as Stokes flow and non-linear convective
terms are neglected. The stream lines due to the flow and isothermal lines and heat
function contours are drawn. The regions of high friction are found by plotting entropy
generation number and Bejan number. The regions of low and high pressures are also
drawn. The 13 point formula is used to solve the biharmonic equation (convective
term is neglected) for stream function and 5 point formula is used to solve for all other
harmonic equations. For derivative boundary conditions, central difference formula
with fictitious nodes is used. It is observed that corner points are regions of high
energy dissipation points. Least dissipation of energy is near to the wall where non-

dimensional temperature is 1.
3.1 Introduction

The flow due to suction at the adjacent walls of rectangular channel was studied by
Varapaev and Yagodkin (1969) wherein the problem was solved by a semi numerical
technique to obtain flow pattern only. Heat transfer in rectangular ducts is studied
experimentally by Alfarawi et al. (2017). Karimi et al. (2014) investigated the flow of
an incompressible Newtonian fluid through a rectangular channel. Fluid flow and heat
transfer in a rectangular channel have been studied by Mahdi et al. (2010), Wang et al.
(2012), Chen et al. (2014), Ambethkar and Kushawaha (2017) and Sahar et al. (2017).
Warrier et al. (2002) studied heat transfer and pressure drop in narrow rectangular
channels. Attia (2005) studied the effect of suction and injection of a dusty conducting

fluid in rectangular channel.
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The classical problem of viscous fluid flow in a rectangular cavity generated by
uniform motion of the lid has been source of many researchers for getting a numerical
solution. It is also treated as a benchmark problem for testing numerical scheme of a
method. Kawaguti (1961) obtained numerical solution for different aspect ratios of the
channel. Moffatt (1964) obtained a similarity solution to get flow near the corners of
the channel. Weiss & Florsheim (1965) have obtained a solution by variational
method. Since these methods are not accurate enough, the problem was therefore
treated numerically by means of the relaxation procedure by Burggraf (1966). The
analytical solutions of the problem have been obtained by Joseph and Sturges (1978)
by using biorthogonal functions and found a solution which is fast converging and
accurate. Kundu et al. (2011) are established the analytical techniques to determine the
velocity distribution for laminar fluid flow through rectangular channels. Chorin
(1968) developed a numerical scheme for unsteady motion of viscous fluid. Kaushik
(2019) studied 2D incompressible flow in a rectangular domain using Chorin’s

projection method numerically at high Reynolds number.

In the past for many years, heat transfer by convection was studied by examining
temperature field and first law of thermodynamics. Nowadays emphasis on design of a
model is developed as a science. Hence a deeper study of the subject is necessary. The
study of flow lines, temperature and heat flow lines together with second law of
thermodynamics are important, since by this one can know the regions of available

energy or useful energy and regions of dissipation of energy.

But for the study of flow due to suction on adjacent walls is paid very less attention.
Hence in this chapter our aim is to study the heat transfer in a rectangular channel with
suction on adjacent walls. The entropy analysis is also taken to see the region of
available energy. Bejan number plot is drawn to see the regions where friction is

dominating.

3.2 Mathematical Formulation

The two dimensional laminar viscous flow through a rectangular channel of uniform
cross section due to suction/injection at the neighboring walls is considered. The
physical representation of the problem is given in Fig. 3.1. The Cartesian coordinate

system with origin at the bottom left corner and X and Y axes along the walls is taken.
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The channel is of length a along X direction and height b along Y direction. Injection
with velocity V; at the wall Y=b and suction with velocity V, at the wall X=a are

imposed. The flow is developed because of the suction.

}7
or e ||
0l
A
—_—
—_—
—_—t
—
U=0,V=0,T=T V=0, U=V, ?—T:QI
aX

U=0,V=0 T=T,
. _ 5 Y

Fig. 3.1. Stokes flow configuration in a rectangular channel with adjacent wall suction.

Governing Equations

The equations of motion for the flow are given below:

VQ=0 3.1)
d

pd—?z—VP+ 1V2Q (3.2)

pC, C(Ij—-[ =kV°T (3.3)

where Q is the velocity of fluid particle, P is pressure, T is the temperature, p is fluid
density, u is the coefficient of viscosity, k is the thermal conductivity of the fluid and
Cp heat capacity at constant pressure.

The flow is two dimensional and hence Q= (U, V).
Boundary conditions for the problem

Velocity of fluid satisfies impermeability condition and no slip condition on walls
X=0, Y=0 and suction and no slip condition at the permeable walls X=a and Y=Db. The
temperature field satisfies constant heat flux at the permeable walls X=a and Y=b and
constant temperature is maintained on the impermeable walls X=0, Y=0. Due to no slip

condition on the walls X=0 and Y=0, the tangential velocities are zero.
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ie., onXOVO:>a— OandonYOUO:>aV/ 0.
oX oY

Due to impermeability condition on the walls X=0 and Y=0, the normal velocities are

also zero.
i.e., onXOU0:>a— OandonY0V0:>aV/ 0.
oY oX
Due to no slip condition on the walls X=a and Y=Db, the tangential velocities are zero.
i.e., onXaVO:>a— 0andoanUO:>aV/ 0.
oX oY

On permeable walls, the suction velocity on X=a is V, and the injection velocity on
Y=b is V1.

i.e.,, on X=a, U=V, = ov =V,and on Y=b, V=-V;= — v =V,.
oY oX

The walls X=0 and Y=0 are maintained at constant temperatures. i.e., T=T; on X=0 and
T=T, on Y=0.
On the walls X=a and Y=b constant heat fluxes are imparted.

. oT oT
e, —=Q onX=a and —=Q, onY =b.
X Q v Q,

Non-dimensionalization

We introduce the following non—dimensional scheme and non-dimensional
parameters Vo=suction parameter, Yyo=geometric parameter, Pe=Peclet number,

Re=Reynolds number.

X=ax, Y=ay, U=V, V=Vyv, P=pVp, T-T,=6(T,-T,) (3.4)
c.V,a
Re= P po_ P98 powpy y Py V2 (3.5)
7, k a \A

For the flow the Reynolds number is so small that the convective terms in equation
(3.2) are neglected. The flow is steady and hence independent of time t.

3.3 Solution of the problem

3.3.1 Stream function

We introduce stream function y as below such that equation (3.1) is satisfied.
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u=Y and v=_¥ (3.6)
OX

Taking curl to equation (3.2) and substituting (3.6), we get the equation for the non-
dimensional stream function y as

with boundary conditions:

a—"”:O on x=0 and on x=1

5_!//:0 on x=0 and a—'//zv0 on x=1
oy oy

oy oy

L =0ony=0and ——=—=1ony=
o~ y x Y=Yo

0
EWZO ony=0and ony=y,
These conditions, by integrating, are converted in to the conditions on  as follows:

a—"[/=00nx=0andx:1
OX

w=0onx=0andy=0
w=xony=y, (3.8)
v =Vyyonx=1

oy
—=0o0ony=0andy=
oy y Y="Yo

We solve the equation (3.7) with conditions (3.8) by Finite Difference Method. The

cavity is covered with a mesh of step size h with (M-1) intervals on X direction and
(N-1) intervals on Y direction. For each grid point (i, j) within the cavity, the
biharmonic equation is approximated by 4™ order 13 point scheme as given in Titus
Petrila and Damian Trif (2005) and Pozrikidis (1998). Then equation (3.7) can be

written as;

1
v4'//i,j :h_4[20V/i,j —8(V/i+1,j TViajtVijn 'H//i,j—l)

+2(‘//i+1,j+1+Wi—1,j+1+‘//i+1,j—1+‘//i—1,j-1)+(‘ﬂi,j+2 TVij2TVij +‘//i—2,j)]=0
fori=2,3,. M-1&j=2,3,.. N-1
(3.9)

For the boundary conditions containing derivatives, we used central difference

scheme. The nodes numbering is as follows:
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Along X direction Along Y direction
X1 node on the boundary x = 0. y1 node on the boundary y = 0.
X2 , X3, ... , Xm-1 Inside the computational |y, , ys, ... , Yn-1 INside the computational
Xm hode on the boundary x=1 yn hode on the boundary y=yy
Thus at x=0, we have, (0,y)=0 and %—V/ =0.
X
ie., w;=0 and %:0 or ¥, =V forj=1,2,...,N (3.10)

at x=1, we will have, w(1,y) =V,y and %—‘”zo.
X

o Vs =Vo(i=Dn and P S0 o vy gy
for j=1,2,...,N

Similarly at y=0 we have,

wi; =0 and y;,=y;, fori=23,..M -1 (3.12)

Finally at y=y, we have,

win =(=-Dh and y;\, =w;y, fori=23,..M -1 (3.13)

Equation (3.9) involves (M-2)(N-2) internal points +(2M+2N-4) boundary points
+(2M+2N) external or fictitious points and hence in total MN +2M +2N-8 number of
unknowns. Now equation (3.9) gives (M-2)(N-2) number of equations, (3.10) gives
2N equations, (3.11) gives 2N equations, (3.12) gives 2(M-2) equations and (3.13)
gives 2(M-2) equations and hence in total MN+2M+2N-8 equations. Thus the scheme
in (3.9) can be solved uniquely by introducing fictitious nodes externally through
central difference formula for the derivative conditions on the boundary.

Now by eliminating known boundary values, the equation (3.9) can be written in the

form:

fori=2, Aty + Aoy vy = ap )

for i=3, Ay + Asys tAun +ys = as

for 3<i<M-2, lyio + Aovia +Asyi *Aolina + Wiz =i (3.14)
for i=M-2, lyima + Aoz tALpmotAo vt = a2

for i=M-1, lyims + Aowiv2 +A1m1 = ama )
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22 -8 1 0 .o, 0] )
-8 2 0 ... 0
-8 21 -8 10 ... 0
2 -8 2 .. 0
where A =| oo | |
0 . 1 -8 21 -8 1| | rrrrrTTTM
0 . 2 -8 2
0 o, 0 1 -8 21 -8
0 . 0 2 -8
0 0 1 -8 22 - -
21 -8 1 0 e, 0 i, ] ) )
-8 20 -8 1 0 ... 0 0
Vis
Ay =] e s wi=|  |,a=h] . [for2<i<M -3,
(0 1-8 20 -8 1 ' 1—i
0 . 0 1 -8 20 -8 Vin-z | 4(i-1)|
o — 0 1 -8 21  LVina]
) . }
—2a
ay_,=h . ,
—a(N-3)—(M -3)
—a(N—-2)-2(M -4)+8(M -3)-2(M -2)
) I )
8a
ay=h

—(M —2)—2a(N —4)+8a(N —3)—2a(N - 2)
|—2(M —3)+8(M —2)—2a(N —3) +8a(N —2) —2a(N —1) |

These equations in (3.14) are solved by Gauss-Seidel iteration method. All 4, i>2 are
set to zero and equation for i=2 is solved for y», then equation for i=3 is solved for s,
So on to find all y;. For the next iteration, all these are taken as known and the
procedure is repeated until, the difference between two iterations for w is less than ¢
(=10*).

3.3.2 Temperature
The energy equation, given by (3.3), by using (3.4), (3.5) can be reduced to the non-

dimensional form as:
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V20 = Pe(u%Jrv%] (3.15)

OX oy
with boundary conditions:

%:ql on x=1 =0 on x=0

o (3.16)

060
0=1 on y=0; E:% on y=y
The equation (3.15) by second order finite differences can be written as

Pe Pe
{:HT(WLH _‘//i,jl)} 6’i71,j + {1_7(‘//”1,1' Vi )j|0i,j1 - 40i,j

Pe Pe

J{lﬂ“j(l//m,j ~Viaj )} Gt {1—7(%,141 _Wi,j—l)} 6.1;=0 (3.17)
fori=2,3, ....Mandj=2,3, ...,N

The boundary conditions in (3.16) are now expressed as:

atx=0, 6=0 which implies that 6, ; =0 forj=2,3,...,N (3.18)

aty=0, =1 which implies that &, =1 fori=2,3,...M (3.19)

atx=1, %:ql which implies that 6, ,; ; =6y ;+2hq, for j=2,3,...,N (3.20)

+1, ]

aty =y, %:qz which implies that & \ ; =6, _;+2hq, fori=2,3,...,M (3.21)

Equation (3.17) involves (M-2)(N-2) internal points +2(M+N-2)-1 boundary points
+(M+N-2) external points and a total of MN+M+N-3 unknowns. Now equation (3.17)
yields (M-1)(N-1) equations, (3.18) vyields N-1 equations, (3.19) vyields M-1
equations, (3.20) yields N-1 equations and (3.21) yields M-1 equations and hence a

total of MN+M+N-3 equations. Hence the equations in (3.17) can be solved uniquely.
Equation (3.17) does not contain the corner points (1, 1), (1, N+1), (M, 1) & (M, N+1).

The equation (3.17) can be put in matrix form as below:

fori=2: By & +B3yh = b,
for 2<i<M - 2: B1i@_1 +Bji @& +B3iG+1 = by (322)
for i=M: 2161 +BomOGu = bm
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1+u, 0 0O ..... 0 00
0 1+u;; 0 .. 0 00
where By =| oo ,
0 e 0 1+uy, O
10 0 0 1]
(4 14V, 0 0 ]
1-vi; =4 14V 0 O
By = i :
0 0 . 1-vyy -4 1+vy,
10 0 0 2 -4 |
1-u, 0 0 ..... 0 00 (6, ]
0 1-u; 0 ... 0 00 0.4
Bai = oo, , 6, = ,
0 i 0 1-un, O
10 0 0 1] | On |
1-vi, | 1+2h0y (1-uy ) |
0 2hg; (1-uy 3)
b= . for2<i<M -1, b, =—-| ... ,
0 2hoy(1-Upy n-1)
| 2h(@+Viy) | 2h(g,+0y)

Pe Pe
where uj; :T(‘//i,jﬂ_l//i,j—l)v Vij :T('//Hl,j ~Viaj):

The equations in (3.22) for temperature are solved by Gauss-Seidel iteration method as

in (3.14) for stream function.

3.3.3 Entropy Generation and Bejan Number

The dimensional local entropy generation S, (Woods (1975) and by Mikhail et al.

(2016)) is expressed as

2 2 2 2 2
S_genzi2 (G_Tj +(6—Tj + 2 Z(G—Uj +2(8_Vj +(8_U+6_Vj (3.23)
Ty [\LOX oY T oX oY oy oX

where reference temperature Ty is taken as To= 0.5(T1+T>).
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Equation (3.23) consists two terms: the first is the local entropy generation due to heat

transfer by conduction S_gen,ht and the second is the dimensional local entropy
generation due to fluid friction S_g

en, fr -

The corresponding non-dimensional entropy generation number N, is defined as

N, =5, Tod
s — “gen m

_ (%jZ AN z(a_ujlz ), (o, Y
OX oy OX oy oy OX
N =N, + N (3.24)

,UV12T0
2k(T, - T,)?

N, can be evaluated by writing the derivatives of u, v and @ in centred first order

where Br = is Brinkman Number.

finite differences at inside and boundary nodes x=1, y=yo and on x=0, y=0 we use 3—
point backward difference formula.
Further, the Bejan number Be is a parameter that shows the importance of heat transfer

in the domain and is defines as

Be = ﬁ (3.25)
3.3.4 Heat lines

Net energy flow in X and Y directions are given by (Bejan (2013)):
U s (3.26)
—%i; = pCV (T —TO)—kZ—-\I(- (3.27)

Physically, H =constant represents a curve across which, the net flow of energy
(thermal diffusion and enthalpy flow) is zero. H” is called heat-function. Oztop et al.
(2012) obtained heat lines for inclined channel for a nano-fluid flow. Kimura and
Bejan (1983) worked an example problem for heat function in a natural convection in

an enclosure heated from the side. Introducing the non—dimensional quantities,
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T-T,

0= and H™ = HKAT where AT =T,-T,
AT

The equation (3.26) and (3.27) reduces to

M pe0-05-22 ad M _pew-05)+2L (3.28)

oy OX OX oy

The above equations in (3.28) can be combined to give

V?H =Pe1(6-0.5) u_, u%—v% =Th; ; (3.29)
oy OX oy  oX '

so that the equations in (3.28) will serve as the boundary conditions for H. On x=0 and
on x=1, v=0 hence on x=0, Hy= & =0 and on x=1, H,=4,.

Similarly other conditions are derived

oH 00 oH 00
onx=0, —=—=0o0onx=1 —=—
x o x o (3.30)
oH 00 oH 00
ony =0, _:—_:Oony:yol Z -7
oy OX oy OX

For discretization, we use 5 point formula and equation (3.29) can be written as
Hi—l,j + Hl,j—l_4HI,j + Hl,j+1+ Hi+1,j :Th

| v (331)
fori=2,3,.,M-1landj=2,3,..,N-1
oH . . .
on the boundary x=0, v 0 which by using 3—point formula, reduces to
X
—3H,;+4H,;-H; ;=0 forj=12,..,N (3.32)
L oH . .
Similarly on y=0, we have — =0 which gives to
—3H;,;+4H,,-H; ;=0 fori=2,3,..,.M -1 (3.33)
_ . oH 00 . . : . .
on y=yj, - x which by using 3-point formula for H and central difference
X
formula for 4 gives to
—3H; y +4H; 1 —Hino =6y 6y fOri=23,..,M-1 (3.34)
Similarly x=1, @:% yields to:
ox oy
—3Hy j+4Hy 1~ Hu2 =0 js1— 0w ja forj=12,...,N (3.35)

solving the system of MN equations in MN unknowns (3.31)—(3.35) using Gauss—

Seidel iteration method for 500 iterations we get the values of H.
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3.3.5 Pressure

The equations for pressure are

oP U oU oP 0N oV
— =y —+—| ad —=pu| —+— 3.36
oX ’{axz avz] oY ”(axz ov? (339
using the non—dimensional quantities, these equations are reduced to
P_Lgy and Po Ly (3.37)
ox Re oy Re
Taking curl to (3.37), we have
VZp=0 (3.38)
subjected to the boundary conditions:
onx=0 and x=1, @zivzu

ox Re (3.39)
ony=0 and y =y,, ®_1g

oy Re

Discretizing (3.38) by central differences, we get
Pigj+ Pijoa 4P+ pi,-j+1+ Piiy,j =0 _ (3.40)

fori=23,..,M-1landj=23,...,N-1
on the boundary x=0, we use central differences to get RHS as:

1

[VZU]“ = F[Wo,ju “Vo a1~ W1t 2Vt Vo l//z,j—l] =Uy;
By using 3—point formula for LHS, we have finally
=3Py +4p,;—Ps;=2hU;; forj=12,..,N (3.41)

We use similarly central differences on RHS at x=1 and get:

1
2
[V U]M J. :F[WM—l,jﬂ_V/M—l,j—l_ZV/M,j+1+ZV/M,j—l+V/M+1,j+l_WM+l,j—l:|:UM,j

and hence the equation at x=1 is given by
—3Pw,j t4Pmaj— Puaj=2hUy ; forj=12,..,N (3.42)
on y=0, we use central differences to get RHS as:
1
[VZV]M = F[_V/iﬂ,o HWiaot 2Wing— 2Wia1 Vi t l//i—l,2:| =Uis
By using 3—point formula for LHS, we have finally

—-3p;; +4pi,— Pi3=2hU;; fori=23,. ., M-1 (3.43)
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we use similarly central differences on RHS at y=y, and get:

1
[VleqN = F[_V/iH,N—l HWianat 2Wian —2Wian ~Viana T l//i—l,N+1] =Uin

and hence the equation at y=yy is given by
=3P N +4Pina— Pinog =2hU; fori=23,..,M -1 (3.44)

Solving system of MN equations in MN unknowns in (3.40)—(3.44) by using Gauss—
Seidel iteration for 500 iterations we get the values of p.

3.4 Results and Discussion

Our problem is similar in situation that in a big room, walls on two sides are at
constant temperature and other two side walls are suction and injection of cool breeze
by air coolers and then wind circulation is studied. Or it is similar to, in an industry
materials are dried in wind by hot air blown in through side walls and we want study
the percentage of wetness in the wind. For the fluid in the chamber, bi-harmonic
equation for stream function is solved (for which suction rate or Reynolds number is
moderately small). Using the stream function, temperature distribution in the chamber
is solved. Using temperature field, the regions of available energy and regions of high
friction are found by entropy generation number and Began number. Then the heat

flow lines are drawn. Pressure field within the chamber is also found.
3.4.1 Streamlines

The stream lines generated due to injection at the top wall and suction at the right side
wall are shown. The effect of Reynolds number will not present on these lines, since
convective terms are neglected. At four different suction parameter values, the stream
lines are shown in Fig. 3.2 to Fig. 3.5. We can observe that as the value of the suction
parameter Vo increases, stream function values on right side wall increases, since

w =V,y on x=1. The left bottom corner remains as stagnant region for all values of V.
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Stream Lines for V0=0.2 and y0=0.75 Stream Lines for V0=0.8 and y0=0.75
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3.4.2 Temperature field

The Fig. 3.6 to Fig. 3.9 display the nature of temperature contours. As the values of
Reynolds number Re is increasing in Fig. 3.6, Fig. 3.7 and suction parameter
increasing in Fig. 3.8, Fig. 3.9, we observe that more temperature lines enter into the
flow i.e., density of heat transfer increases. That means as convective forces increase
(as Re increases) the temperature within the chamber is taken away by convective flow
and hence more and more temperature isotherms enter into the chamber. As Re
increases, the temperature contours take bending near to the left down corner. But near

to the bottom wall, isotherms remain almost unchanged for variations of Re.
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3.4.3 Entropy generation Number Ns

From the Fig. 3.10-Fig. 3.13 we observe that maximum entropy occurs at the four
corners. But the top left corner is not encircled properly by the constant entropy lines.
Below the top left, the maximum entropy occurs. We may expect that minimum
entropy may be present at bottom left corner, since temperature is zero and no flow by
suction is imposed. But by graphs we observe a maximum entropy there at the bottom
left corner also. But instead minimum entropy lays at a point near to the bottom left
corner. As Re or Br increases, more and more entropy lines enter into the chamber
without violating positions of maximum and minimum entropy points. By increasing
Br, increases entropy with a light shift in the region. But much increase in the values
of entropy lines is not observed. But increase in Re, increases values of entropy very
much at the corners and within the chamber. As Re increases, the irreversible region
(region of high values of entropy) increases at right bottom and occupies half of the

channel.
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Fig. 3.10 Fig. 3.11

Entropy Generation for Re=5, Pr=0.71, Br=0.4, V0=0.2 and y0=0.75 Entropy Generation for Re=5, Pr=0.71, Br=0.8, V0=0.2 and y0=0.75

Fig. 3.12

3.4.4 Bejan Number Be

Bejan number shows the regions where heat transfer by conduction is more. It is to
note that 0<Be< 1. If Be is near to zero indicate region of high friction and Be near to 1
indicates region of high conduction and less friction. The regions where Be is near to 1
are regions of available energy i.e., reversible heat transfer regions. In Fig. 3.14-Fig.
3.17, the contours of Bejan number are shown. We observe that as Br, the Brinkman
number, increases, the region of friction spreads more and more. As Re, the Reynolds
number increases, more and more Bejan contour lines increase. i.e., the heat transfer
becomes faster or more dense. In any case at the corner points we observe Be is near
to zero (0.1 or less) as in the case of Entropy generation number indicate the effect of
friction and more generation of heat. Comparing both Entropy generation number Ns
and Bejan number Be, we can observe that near bottom left corner both Ns and Be are
having small values. Which means though convection dominates, available energy is

plenty at the bottom left corner.
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3.4.5 Heat Lines

The energy equation in (3.15) can be split into two fist order equations by introducing
Heat function H as in (3.28). Heat lines are shown within the chamber in the Fig.
3.18-Fig. 3.21. Heat lines are having positive values at the left top corner and negative
values at the right bottom corner. These heat lines are changing their sign from right
wall to the left wall. Negative values of heat lines indicate that the region in which
they are present is the region where temperature is below the reference temprerature.
As Reynolds number increases, these heat lines increases very much in value and
attain maximum value when they reach the bottom right corner. If convection is
neglected, isothermal lines and heat lines will be orthogonal to each other. Again we
observe that for Vo = 2, the 0-0 heat line which is vertical for Re=0.5 now becomes
horizantal at Re=10 and moves up. Again we observe that as suction parameter Vy
increases, heat lines also increase for fixed Re value. The 0-0 heat line moves up as Vo

the suction parameter increases.
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Heat Lines for Re=0.5, Pr=0.71, V0=2 and y0=0.75 Heat Lines for Re=10, Pr=0.71, V0=2 and y0=0.75
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3.4.6 Pressure Contours

The linear momentum equation in (3.2) can be split into two components along X and
Y directions as in (3.36). Pressure is obtained from the numerical scheme as in (3.39)
and contours are drawn within the chamber in the Fig. 3.22-Fig. 3.25. It is observed
that as Reynolds number increases, values of pressure contours decrease very much.
This is due to the fact that pressure gradient is inversely proportional to Reynolds
number in (3.36). It is to be noted that though Reynolds number does not effect the
stream lines, pressure is effected very much. Again as suction parameter Vy increase,

pressure also increases. The pressure is maximum at the top right corner.

45



Pressure Contours for Re=0.5, V0=2 and y0=0.75 Pressure Contours for Re=10, V0=2 and y0=0.75
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Pressure Contours for Re=5, V0=0.2 and y0=0.75 Pressure Contours for Re=5, V0=2 and y0=0.75
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3.5 Conclusions

From the figures drawn, we analyzed and observe that

> As Vq increases, the stream function values are increases.

> As Reynolds number and suction parameter increases, due to convection more
and more temperature lines enter into the flow region.

> Either by entropy generation number or by Bejan number contours, we observe
that dissipation energy is very high at the corners.

> Energy dissipation is minimum near to the left bottom corner or where non-
dimensional temperature is 1. (since Ns is minimum)

> Available energy or exergy is more in the centre of the channel. (since Be is

near to 1)
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> Heat lines have highest value at the top right corner. Heat lines show the
actual path of the energy absorbed by the walls. Hence the lines are perpendicular to
the walls.

> As Reynolds number increases, values of pressure contours decrease very
much. This is due to the fact that pressure gradient is inversely proportional to

Reynolds number.
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Chapter 4
Entropy Analysis for Heat Transfer in a Rectangular

Channel with Suction

In this chapter we considered the nonlinear convective term which we have neglected
in chapter 3. The stream lines thus obtained due to the flow and isothermal lines and
heat function are analyzed. The regions of high and low frictions are found by drawing
contours of entropy generation number and Bejan number. Expressions for the heat
transfer coefficient, Nusselt number are also derived. The 4™ order Partial Differential
equation for stream function is numerically solved by FDM using 13 point formula
and 5 point formula is used to solve for all other harmonic equations for temperature,
heat function and pressure. This chapter analyses the heat transfer in the rectangular

channel through heat function and Entropy generation number.

4.1 Introduction

For many years in the past, convection with heat transfer was studied by first law of
thermo-dynamics to find temperature field. Heat transfer and fluid flow results for
combined free and forced laminar convection with an upward flow in rectangular
channel was studied by Ou et al. (1976). In recent times emphasis on design of a
model is developed as a science. Therefore deeper study of the subject is essential.
The study of heat flow, temperature and flow collectively with second law of thermo-
dynamics is essential, due to the fact that one can understand the regions of dissipation
of energy and regions of available energy. Heat transfer problems in boundary layer
flow past a plate, the pipe flow, flow in the entrance region of a rectangular duct using
entropy generation minimization was studied by Bejan (1979). Fakher Oueslati and
Brahim Ben—Beya (2017) have studied the entropy analysis within a parallelepiped
cavity. Rathish Kumar et al. (2013) have studied the heat transfer due to
suction/injection with sinusoidal varying temperature in a cavity. Flow due to Lid
driven and natural convection in a square cavity using lattice Boltzmann method was
studied by Djamel et al. (2010). Wang et al. (2010) have analyzed the contributions of
velocity and velocity gradient to the convective transport of heat flux in a square
cavity.
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But the study of flow generated due to suction on neighboring walls is paid very less
consideration. Hence in this chapter our objective is to examine the two dimensional
flow and the heat transfer due to laminar flow convection in a rectangular tube with

suction on neighboring walls.

4.2 Mathematical Formulation

The two dimensional laminar viscous flow through a rectangular channel of uniform
cross section due to suction/injection at the neighboring walls is considered. The
physical representation of the problem is given Fig. 4.1. The Cartesian coordinate
system with origin at the bottom left corner and X and Y axes along the walls is taken.
The channel is of length a along X direction and height b along Y direction. Injection
with velocity V; at the wall Y=b and suction with velocity V, at the wall X=a are
imposed. The flow is developed because of the suction.

Y
or

U=0,V=-V, —=0,
or =’

%_
e—
«—t
&_—
PEI S

U=0,V=0,T=T, V=0,U=V, —=0,

U=0.V=0.T-T,
' = X

Fig. 4.1: Convective flow configuration in a rectangular channel with adjacent wall
suction

Governing Equations

The equations of motion for the flow are given below:

VQ=0 (4.1)
d

pd—? _ VP + uV%Q 4.2)

e, ?j—-[ =kV2T (4.3)
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where Q is the velocity of fluid particle, P is pressure, T is the temperature, p is fluid
density, u is the coefficient of viscosity, k is the thermal conductivity of the fluid and
Cp heat capacity at constant pressure.

The flow is two dimensional and hence Q= (U, V).
Boundary conditions for the problem

Velocity of fluid satisfies impermeability condition and no slip condition on walls
X=0, Y=0 and suction and no slip condition at the permeable walls X=a and Y=b. The
temperature field satisfies constant heat flux at the permeable walls X=a and Y=b and
constant temperature is maintained on the impermeable walls X=0, Y=0.

Due to no slip condition on the walls X=0 and Y=0, the tangential velocities are zero.
e, onXOVO:a— OandonY0U0:>8"// 0.
oX oY

Due to impermeability condition on the walls X=0 and Y=0, the normal velocities are

also zero.
i.e., onXOU0:>a— OandonY0V0:>aV/ 0.
oY oX
Due to no slip condition on the walls X=a and Y=Db, the tangential velocities are zero.
ie., onXaVO:>a— 0andoanU0:a"// 0.
oX oY

On permeable walls, the suction velocity on X=a is V, and the injection velocity on
Y=bis V1.

i.e.,, on X=a, U=V, = ov =V,and on Y=b, V=-V;= — v =V].
oY oX

The walls X=0 and Y=0 are maintained at constant temperatures. i.e., T=T; on X=0 and
T=T, on Y=0.
On the walls X=a and Y=b constant heat fluxes are imparted.

. oT oT
e, —=Q onX=a and —=Q, onY =b.
. Q 2y Q,

Non-dimensionalization

We introduce the following non—dimensional scheme and non-dimensional
parameters Vp=suction parameter, Yyo=geometric parameter, Pe=Peclet number,

Re=Reynolds number.
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X =ax, Y=ay, U=V, V=Vy, P=pV’p, T-T,=60(T,-T,) (4.4)

c V,a

u a Vi

The flow is steady and hence independent of time t.

4.3 Solution of the problem

4.3.1 Stream function

We introduce stream function y as below such that equation (4.1) is satisfied.

u:a—w and v=—8—l’// (4.6)
oy OX

Taking curl to equation (4.2) and substituting (4.6), we get the equation for the non-

dimensional stream function y as

Vi +Re @—";%(Vzw) - %’”% (VZV/)J =0 (4.7)

with boundary conditions:

8_1//:0 on x=0 and on x=1
OX

a—W:O on x=0 and a—W:Vo on x=1
oy oy

oy oy
—=0ony=0and —~=1o0ny=
x y x Y="Yo

oy
—=0o0ny=0and ony=Yy,
oy
These conditions, by integrating, are converted in to the conditions on  as follows:

a—"”=Oonx:0andx:1
OX

w=0onx=0andy=0

w=xony=y, w=Vyyonx=1 (4.8)

oy
—— =0ony=0andy=
oy y Y=Y

We solve the equation (4.7) with conditions (4.8) by Finite Difference Method. The
cavity is covered with a mesh of step size h with (M-1) intervals on X direction and
(N-1) intervals on Y direction. For each grid point (i, j) within the cavity, the 4™ order
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term is approximated by 13 point scheme as given in Titus Petrila and Damian Trif
(2005) and Pozrikidis (1998). Then equation (4.7) can be written as:

20y i(,r}) -8y i(fl), it '//i(—nl), it '//i(,r})+1 ty i(,r})—l)"'z(%(fl), 1Ty i(—nl), Ty i(+nl), Tty i(—nl), j—1)

Re -1 -1
+(yw .(r})+2 Ty |(r])—2 + Wi(f%, it l//i(ig,j )+ 1 [(Wi(fl, j) 4 i(—nl, j) )[4 i(fl), Y i(+nl), jaaty i(—nl), 1 Wi(—nl), j-1

=) 1
4y |(r])+1 +4y |(r])—1 Tty |(r})+2 4 i(,r})—z) - (l//i(,r} +1) 4 |(r] —1) N(Z i(f%, i~V i(—n%, i~ 4'//i(f1), j tay i(—nl), j

+l//i(f1),j+1_l//i(—nl),j+l+l//i(f1),j—l_l//i(i]l),j—l)] =0 fori=2,3.. M-1&j=23,....N-1
(4.9)
For the boundary conditions containing derivatives, we used central difference

scheme. The nodes numbering is as follows:

Along X direction Along Y direction

X1 hode on the boundary x = 0. y1 node on the boundary y = 0.

X2, X3, ... , Xm-1 inside the computational | y2, Vs, ..., Yn-1 inside the computational
Xm hode on the boundary x=1 yn node on the boundary y=yy

Thus at x=0, we have, y(0,y)=0 and aa—l//:o.
X

Vai

e, vy =0 and “EESL -0 or yy =y forj=12...N (4.10)

at x=1, we will have, (1, y) =V,y and aa—l//:O.
X

“VMa,j

o Vs =Vo(i=Dn and PSS S0 oy svy
forj=1,2,..,.N

Similarly at y=0 we have,

wi; =0 and y;,=y;, fori=2,3,..M -1 (4.12)

Finally at y=y, we have,

win =(@{-Dh and w;\,=w;ny fori=23,..M -1 (4.13)

Equation (4.9) involves (M-2)(N-2) internal points +(2M+2N—4) boundary points
+(2M+2N) external or fictitious points and hence in total MN +2M +2N-8 number of
unknowns. Now equation (4.9) gives (M-2)(N-2) number of equations, (4.10) gives
2N equations, (4.11) gives 2N equations, (4.12) gives 2(M-2) equations and (4.13)
gives 2(M-2) equations and hence in total MN+2M+2N-8 equations. Thus the scheme
in (4.9) can be solved uniquely by introducing fictitious nodes externally through

central difference formula for the derivative conditions on the boundary.
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Now by eliminating known boundary values, the equation (4.9) can be written in the

form:
fori=2, Aq W + Ao w3 t As yu=ap 3
for i=3, Asyr + Asys A + Asys=as
for 3 <i<M -2, Asio YA i1 FAs Y YA Vi1 + Asieo=a; > (414)
for i=M — 2, As W4 + Asys TAsyv2+A Y1 =aw-2
for i=M -1, As i3 + Asyv2 tA7v1=am-1 )
where
22_%(fi,2_9i,2) —8—Re.fi’2 1+% fi,2 0 [0 I [0 I 0
-8+Re.fi 21+%gi,3 -8-Re.fi3 1+%fiy3 0 i 0 v 0
1—%]14 -8+ Re.fiy4 ZI“"%giA —8—Re.fi’4 1+%fi,4 [0 [0 I 0
AUZ| e ,
0 s (0 I 0 1_%fi,N72 —8+Re.fi'N72 21+%gi,N72 —8—Re.fin72
R R
0 oo 0 oo 0o o0 1—7‘913,“,_1 ~8+Re.fi 1 22+Te(fi,N_1+gi,N_l)
) fori=2,M -2 _
_ me i
-8+Re.g;, 2+T(fi’2 -0i2) 0 0 0
Re Re
Z—T(fi’3+gi13) -8+Re.g;3 2+T(fi13—gi13) 0 i, 0
By | '
Re Re
0 ................. O Z_T(fI,N—2+g|,N—2) —8+Re.g|’N_2 2+T(fI,N—2_g|,N—2)
Re
0 i 0 0 Z—T(fi’N_l+gi’N_l) -8+Re.g; y4
fori=2,3,...M -2
Re i
1_Tgi’2 0 i, 0
Re
0 1—7 Oiz 0 e, 0
pg | T foric2.3..M-3
Re
0 oo 0 1-""gnz O
Re
0 oo 0 0 1-= Gins
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i Re
-8-Re.g;, 2+T(fi,2+gi,2) 0 0 i 0
Re Re
Z_T(fi,3_gi,3) -8-Re.g;; 2+T(fi’3+gi’3) O e 0
By |
Re Re
0 i, 0 Z—T(finfz—ginfz) -8-Re.gj N> 2+T(fi13+gi',\,72)
Re
0 i, 0 0 Z—T(fi’Nfl—ginfl) -8-Re.ging
fori=3,4,...M -1
ﬂ_%fiz —8—Re.fi’2 l+%fi’2 0 [0 [0 0
Re
—8+Re.fi’3 20 —8—Re.fiys 1+Tfi'3 O s [0 T 0
1—%'&4 —8+Re.fi’4 20 —8—Re.fi’4 l+%fi’4 0 s (0 I 0
B = | e e e
Re
0 oo 0 s 0 1-—“fino -8+Refiy, 20 ~8—Re.fi n_»
Re Re
[0 T 0 e, 0 0 l_Tfi,N—l —8+Re.fi’N_1 21+Tfi'N_l
i fori=3,4,....,M—2_
Re i
1+Tgi’2 O e 0
Re
0 1+TgI3 [ 0
P =| Cfori=45.. M1
0 e, 0 1+Eg,N_2 0
4
[0 B 0 0 1+%9LN_1
22—¥(fiyz+giv2) 8-Re.f;, 1+%fi,2 0 0 e 0 0
-8+Re.f,, 21—%gi'3 -8-Re.f;; 1+%fi'3 0 0 i 0
[ 0
A =
............................. — fin- 5 G -8-Re.f y_,
0 v 0 i 0 -8+Re.f; y 4 22+%(fi,N,l—gi'N,1)

fori=M -1
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_'/’i,2 1
Vis
Vi = ,fori=2,3,..,M -1
Vin-2
|ViN-1 |
_ 0 :
0
ai = h R y
e .
—(1+T fi,N—Zj(l_l)
Re . . Re .
—[ZJFT(fi,N—l + gi,N—l)j(l —2)+(8+Re.fi y4) _1)_[2+T(fi,N—l - gi,N—l)j'J
fori=23,..,M -3
Re
7(1779M—2,2JV0
Re
—(1_79M-2,3J2V0
ay_,=h
Re Re
_(1_TgM—2,N—2jVO(N -3) —(:HT foz,Nfzj(M -3)
Re Re
_[1_TgM—2,N—1JVO(N _2)_(2+T(fM—2,N—1+ gM—Z,N—l)j(M -4)+(@+Re.fy Ny )M =3)-...
Re
(2+T(fM—2,N—1_gM—Z,N—l)](M -2)
Re
_(_8+Re'gM—1,2)VO_(2+T(fM—1,2_gM—1,2)]2V0
Re Re
_[Z_T(fM—1,3+gM—l,S)jVO_(_S"' Re'gM—l,S)ZVO_(2+T(fM—L3_gM—L3)j3VO
Re
ay_=h _[Z_T(fM—l,N—2+gM—l,N—Z)](N —4)Vo—(-8+Regy 1 n-o)(N -3V, —...
Re Re
[2+T(fM—1,N—2 - gM—l,N—Z)j(N -2V, —[14'7 fM—l,N—zj(M -2)
Re
_[z_T(fM—l‘N—l + gM—l,N—l)](N =3V —(-8+Re.gy_yn1)(N-2)V—..
R R
(2+Te(fM—1,N—1_gM—l,N—l)](N -Vy _(2+Te(fM—1,N—1+ gM—l,N—l)j(M =3 +...
I @+Re.fy_1nat)(M -2)
n-1 n-1
where  fi | =y — Vi
n-1 n-1
and 9i,j =Vi,js1 Vi ja
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These equations in (4.14) are solved by Gauss—Seidel iteration method. All 4, i>2 are
set to zero and equation for i=2 is solved for y», then equation for i=3 is solved for ys.
So on to find all y;. For the next iteration, all these are taken as known and the
procedure is repeated until, the difference between two iterations for w is less than ¢
(=107%.

4.3.2 Temperature

The energy equation, given by (4.3), by using (4.4), (4.5) can be reduced to the non—

dimensional form as:

v2g =pe|ull syl (4.15)
ox oy

with boundary conditions:

Z—H:ql on x=1 =0 on x=0
X (4.16)

oo
=1 on y=0; E=q2 on y=Y
The equation (4.15) by second order finite differences can be written as

Pe Pe
|:1+T(l//i,j+1 _l//i,j—l):|9i—1,j ‘{1—7(%4,1' Vi )}9”_1 —49”-

Pe Pe

J{lJrT(‘//m,j —Viaj )}‘9“41 +|:1_T(l//i,j+l _l//i,jl)}enl,j =0 (4.17)
fori=2,3 ...Mandj=23 ...,N

The boundary conditions in (4.16) are now expressed as:

atx=0, =0 which implies that 6, ; =0 forj=2,3,..,N (4.18)

aty =0, 6=1 which impliesthat 8, =1 fori=2,3,..,M (4.19)

atx=1, Z—Q:ql which implies that 6y, ; =6y j+2hq, forj=2,3,...,N (4.20)
" ,

+1,j
aty =y, %:qz which implies that &, \ ; =6, \_;+2hq, fori=2,3,..,M (4.21)

Equation (4.17) involves (M-2)(N-2) internal points +2(M+N-2)-1 boundary points
+(M+N-2) external points and a total of MN+M+N-3 unknowns. Now equation (4.17)
yields (M-1)(N-1) equations, (4.18) vyields N-1 equations, (4.19) yields M-1
equations, (4.20) yields N-1 equations and (4.21) yields M-1 equations and hence a
total of MN+M+N-3 equations. Hence the equations in (4.17) can be solved uniquely.
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Equation (4.17) does not contain the corner points (1, 1), (1, N+1), (M, 1) & (M, N+1).

The equation (4.17) can be put in matrix form as below:

for i=2: B226h +B3205=h;
for 2 <i<M - 2: B1i61 +B2i 6 +B3i6+1=D; (22)
for i=M: 2161 +BomGu=bwm
14U, 0 0 ... 0 00
0 1+l 0 .. 0 00
WHErE Bjj =| oo ,
0 i 0 1+uy, O
[ J— 0 0 1]
4 14V, 0 e 0 0]
1-vi; =4 1+4Vig oo 0 O
=T ,
0 0 e 1-viyy -4 1+vy,
0 0 o 0 2 -4 |
1-U, 0 0 .. 0 00 0, ]
0 1-Uz 0 ... 000 0,
=T O =] |,
0 oo 0 1-uy, O
[ J— 0 0 1] [6n)
C1-v, | [1+2hgy(L-uy o) |
0 2hg; (1-uy 3)
b= . for2<i<M-1,by, =-| ...
0 2ho, (1- Uy n1)
| 2h(T+viy) i 2h(q, +d,)

Pe Pe
where uj =T(l//i,j+1_§”i,j71), Vij :T(lr//Hl,j ~Viaj)

The equations in (4.22) for temperature are solved by Gauss-Seidel iteration method as

in (4.14) for stream function.

4.3.3 Nusselt Number
Heat transfer coefficient at the walls is given by Fourier’s law h=-kVT . In non—

dimensional form this represents Nusselt number Nu———} and ——} :
y=0.Yo
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The Nusselt number Nu is the ratio of convective to conductive heat transfer across the
walls. This is studied only at the walls of the channel.

Nusselt number at the wall x =0 is

36, +46, —6, .
NU=(—%j _ 1] 2,] 3,] forj=1,2,...,N
Lj

OX 2h

Nusselt number at the wall x =1 is
M,j

M=2] forj=12,..,N
2h

Nusselt number at the wall y = 0 is

36, +40,-0
Nu=|-29] —=0a*t02=0s (i 15 M
il 2h

Nusselt number at the wall y =y is

30 +46,\ ,—0
Nu:(_%j = N z"r’]H N2 fori=1,2,...,M
iN

y
Average Nusselt number at the wall x=0 is 1 jo Nu dy evaluated by Trapezoidal rule.
Yo 0

Y
Average Nusselt number at the wall x=1 is 3 f Nu dy evaluated by Trapezoidal rule.
Yo o

1
Average Nusselt number at the wall y=0is [ Nu dx evaluated using Trapezoidal rule.
0

1
Average Nusselt number at the wall y=y, is [ Nu dx evaluated using Trapezoidal rule.
0

4.3.4 Entropy Generation and Bejan Number

The dimensional local entropy generation S, (Woods (1975) and by Mikhail et al.

(2016)) is expressed as

2 2 2 2 2
§gen=L2 (ﬂj +(@j + 2 2(%j +2(ﬁj +(%+ﬂJ (4.23)
To |\LOX oY Ty oX oY oY oX

where reference temperature Ty is taken as To= 0.5(T1+T>).
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Equation (4.23) consists two terms: the first is the local entropy generation due to heat

transfer by conduction S_gen,ht and the second is the dimensional local entropy
generation due to fluid friction S_g

en, fr -

The corresponding non-dimensional entropy generation number N, is defined as

N, =5, Tod
s — “gen m

_ (%jZ AN z(a_ujlz ), (o, Y
OX oy OX oy oy OX
NS:Nh+Nf (4.24)

,UV12T0
2k(T, - T,)?

N, can be evaluated by writing the derivatives of u, v and & in centred first order

where Br = is Brinkman Number.

finite differences at inside and boundary nodes x=1, y=yo and on x=0, y=0 we use 3—
point backward difference formula.
Further, the Bejan number Be is a parameter that shows the importance of heat transfer

in the domain and is defines as

Be = ﬁ (4.25)
4.3.5 Heat lines

Net energy flow in X and Y directions are given by (Bejan (2013)):

%*:pcpu (T —TO)—kg—; (4.26)
—aai); =pC V(T —TO)—kZ—-\I(- (4.27)

Physically, H =constant represents a curve across which, the net flow of energy
(thermal diffusion and enthalpy flow) is zero. H” is called heat-function. Oztop et al.
(2012) obtained heat lines for inclined channel for a nano-fluid flow. Kimura and
Bejan (1983) worked an example problem for heat function in a natural convection in

an enclosure heated from the side. Introducing the non—dimensional quantities,
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T-T,

0= I and H™ = HKAT where AT =T,-T,

The equation (4.26) and (4.27) reduces to

M _pee-05)-22. M __pep—05)+2¢ (4.28)
oy OX OX oy

The above equations in (4.28) can be combined to give

V?H = Pe{(@—O.S)(a—u—@J+(u%—v%j} =Th;; (4.29)

so that the equations in (4.28) will serve as the boundary conditions for H. On x=0 and
on x=1, v=0 hence on x=0, Hy=4=0 and on x=1, H,=4,.

Similarly other conditions are derived

oH 00 oH 00
onx=0, —=—=0onx=1, —=—
x x o (4.30)
oH a0 H 06
ony=0, M- _gony-y, M.
oy OX oy OX

For discretization, we use 5 point formula and equation (4.29) can be written as

: e (4.31)
fori=2,3,..,M-1landj=2,3,..,N-1
oH . . .
on the boundary x=0, x =0 which by using 3—point formula, reduces to
X
- oH .
Similarly on y=0, we have E =0 which gives to
_oH o0 . . . . .
on y=yo, —=—8—wh|ch by using 3—point formula for H and central difference
X
formula for 4 gives to
—3H;  +4H; y o —Hi N2 =04y — G,y fOri=23,.,M-1 (4.34)
Similarly x=1, oH _20 yields to:
ox oy

solving the system of MN equations in MN unknowns (4.31)—(4.35) using Gauss—

Seidel iteration method for 500 iterations we get the values of H.
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4.3.6 Pressure

The equations for pressure, by using the non—dimensional quantities, are reduced to
ou ~ou_ op N 1

U—+Vv —
ox oy oXx Re
TRARYLLA Y

vV (4.36)

and — e (4.37)
ox oy oy Re
Using continuity condition, from (4.36) and (4.37), we get
v2pog| MN_UNV|_,0uv) (4.38)
ox ¢y 0y ox (X, y)
subjected to the boundary conditions:
onx=0 and x=1, P_1Lgy
ox Re (4.39)
op_ 1 »
ony=0 and y=y,, —=—V*Vv
y Y="Yo & Re

(Roache (1972) gave different methods to solve for pressure.) Discretizing (4.38) by
central differences, we get

2
Pigj+ Pijaa—4Pij+ Pt Pistj ZF(V/HL] —2y; VWi )(‘//i,j+1_2'//i,j 'H//i,j—l)

1 2 . .
_W(V/iﬂ,jﬂ Vit Viajat '//i_l,j—l) fori=2,3,.M—-landj=2,3,.N-1I
(4.40)
on the boundary x=0, we use central differences to get RHS as:
1

[Vzul,j - W[W‘liﬂ Vo Wt W T V/Z,j—l] =Uy
By using 3—point formula for LHS, we have finally
=3Py +4p,;—Ps;=2hU;; forj=12,..,N (4.41)

We use similarly central differences on RHS at x=1 and get:

1
2
[V U]M J. :F[WM—l,jﬂ_V/M—l,j—l_ZV/M,j+1+ZV/M,j—l+V/M+1,j+l_WM+l,j—l:|:UM,j

and hence the equation at x=1 is given by
—3Pw,j t4Pmaj— Puaj=2hUy ; forj=12,..,N (4.42)

on y=0, we use central differences to get RHS as:

1
[VZV]M = F[_V/iﬂ,o HWiaot 2Wing— 2Wia1 Vi t l//i—l,2:| =Uis
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By using 3—point formula for LHS, we have finally
3P +4p;, — B3 =2hU;, fori=23,.. ,M-1 (4.43)

we use similarly central differences on RHS at y=y, and get:
1
[VleqN = F[_V/iH,N—l HWiana T 2WiaN Wi ~Vianat l//i—l,N+1] =Uin

and hence the equation at y=yy is given by
=3P N +4Pi N~ Pinop =2hU; fori=23,.,M -1 (4.44)

Solving system of MN equations in MN unknowns in (4.40)—(4.44) by using Gauss—
Seidel iteration for 500 iterations we get the values of p.

4.4 Results and Discussion

For the fluid flow in the chamber, bi-harmonic equation for stream function is solved.
Using the stream function, temperature distribution is obtained. Using temperature
field, the regions of available energy and regions of high friction are found by entropy
generation number and Began number. Then the heat flow lines are drawn and

Pressure field is also found.

4.4.1 Streamlines

The stream lines generated due to injection at the top wall and suction at the right wall
are shown in Fig. 4.2 to Fig. 4.4. The figures are drawn at two geometric parameter
values y,=0.75 and 10. We can observe that as the value of the suction parameter V,
increases, stream function values on right wall increases, because y =V,y on x=1.
Again for small values of V, stream lines reenter the side x=1 at the top corner. As the
geometric parameter y, increases, we get narrow parallel wall geometry. In this case of
nearly parallel plate geometry, we observe that near to top right corner high flow and
little circulation for small values of Vo and for high values of Re.
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Stream Lines for Re=0.5, V0=0.2 and y0=0.75 ng
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Fig. 4.2: Stream f.ines for different values of V, at Re = 0.5 and y, = 0.75.
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Fig. 4.3: Stream Lines for different values of V, at Re = 10 and y, = 0.75.
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Fig. 4.4: Stream Lines for y, = 10 at different values of Re and Vp.
4.4.2 Temperature field

The Fig. 4.5 and Fig. 4.6 display the nature of temperature contours. As the values of

Reynolds number Re is increasing, more temperature lines enter into the flow i.e.,
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density of heat transfer increases and in this case when V; is small temperature lines
re—enter near to the top corner. As Re increases, the temperature contours take

bending near to the left down corner.
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Fig. 4.5: Isothermal lines for different values of Reynolds numbers at yo=0.75 & V, = 0.2.
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4.4.3 Mesh Sensitivity Analysis (Davis Test)

In Table. 4.1 to Table. 4.3, the value of the stream function at the mid-point |y,,,;; |and
maximum value of the stream function [y,,,, |and its location (and similarly for
temperature) for different mesh sizes are shown. We find that as h is decreasing the
values are converging with error less than 1 percent if Vo<1. Hence suction parameter
Vo is important factor which effects the numerical solution. Here we get convergent
solution for Vp<1. In the case of Davis (1983), Davis and Jones (1983), Mallinson and
Davis (1977), Nusselt number is nearly in the range of Rayleigh number. In the
present case since we did not consider natural convection the Nusselt number is also

very small (<10).
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Table. 4.1: The original Solution for Re=0.5 and V,=0.8

Mesh Sizeh | [t |1é(m§/93| 16,14 | |%r(r:a§/c) |
0.05 0.2306 (0_9%’9375) 1.69075 (‘1‘;00932)
0.025 02306 | (ool | L6858 e
0.0125 0.2306 (0_9%?58’7375) 1.6838 (1%?%)
Table. 4.2: The original Solution for Re=5 and V,=0.8
Mesh Sizeh | || |1(/;(m§93| 16,14 | |%Za§) |
0.05 0.24215 (0.9%,9375) 1.8298 (0.3;'315_775)
0025 02420 (0.8%?3?%(.)75) 18227 (0.73%?3?%%75)
0.0125 0.2420 (0.9%35?,7375) 18210 (0.736,5.352,4(?.75)

Table 4.3. The original Solution for Re=10 and V;=0.8

Mesh Sizeh | [thq] '1&77‘;3' 1B | '%fgaglf)'
0.05 0.2511 (0_9%’9375) 262785 (0.57';‘,93_175)
0.025 0.2508 (08%2%5) 26048 (0_57';28%5)
0.0125 0.2507 (0.9%7937375) 25068 (0_57';35175)
4.4.4 Nusselt Number Nu

Average Nusselt number at the walls for different suction parameters and for fixed Re

= 0.5 is calculated and shown in Table. 4.4.

Table. 4.4
Average Nusselt _ _ _ _
Number for Re = 0.5 Atx=0 Atx=1 Aty=0 AtY=Yo
Vo=0.2 —-8.342662 1.996419 0.484387 3.967440
Vo=0.8 -8.438753 1.983457 0.324371 3.964564
Vo=2 -8.696321 1.952621 —1.122284 3.956074

From Table. 4.4, we can say that the wall x = 0 is absorbing the heat and the wall y =

Yo is releasing the heat. In all cases, Nusselt number decreases as Vy is increases.
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From Fig. 4.7 we observe that the Nusselt number is almost same for all V, at any
wall, but it is decreasing at the wall y=0 for all V. The Nusselt number is increasing at
the beginning values of y and x at the walls x=1 and y=y, respectively and constant for

the remaining values of y and x for all V. This is due to the boundary conditions
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Fig. 4.7: Nusselt number for different values of suction parameter at Re = 0.5.
4.45 Entropy generation Number Ns

From the Fig. 4.8 and Fig. 4.9 we observe that maximum entropy occurs at the four
corners. Again by graphs we observe a minimum entropy near to the bottom left
corner. As Vy increases, more and more entropy lines enter into the chamber without
violating positions of maximum and minimum entropy points. By increasing Vo,
entropy increases with a light shift in the region. But increase in Re, increases values
of entropy very much at the corners and within the chamber. As Re increases, the
irreversible region (region of high values of entropy) increases at right bottom. In a

small region at the top right corner entropy is maximum.
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Entropy Generation for Re=0.5, Pr=1, Br=0.4, V0=0.2 and y0=0.75
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Fig. 4.8: Entropy generation number at different values of Vo at Re = 0.5, Pr = 1, Br = 0.4 and y,=0.75.
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Fig. 4.9: Entropy generation number at different values of V, at Re = 10, Pr =1, Br = 0.4 and y,=0.75.

4.4.6 Bejan Number Be

Bejan number shows the regions where heat transfer by conduction is more. It is to
note that 0<Be< 1. If Be is near to zero, it indicates region of high friction and Be near
to 1 indicates region of high conduction and less friction. The regions where Be is near
to 1 are regions of available energy (exergy) i.e., reversible heat transfer regions. In
Fig. 4.10 and Fig. 4.11, the contours of Bejan number are shown. We observe that as
Vo, the suction parameter, increases, the region of friction spreads more and more. As
Re, the Reynolds number increases, more and more Bejan contour lines increase. In
any case at the corner points, Be is near to zero (0.1 or less) as in the case of Entropy
generation number indicate the effect of friction and more generation of heat.
Comparing both Entropy generation number Ns and Bejan number Be, we conclude
that near bottom left corner both Ns and Be are having high values (near to 0.9). Which
means though convection dominates, available energy is plenty at the bottom left

corner.
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Bejan Number for Re=0.5, Pr=1, Br=0.4, V0=0.2 and y0=0.75 Bejan Number for Re=0.5, Pr=1, Br=0.4, V0=0.8 and y0=0.75
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Fig. 4.10: Bejan numbeFat different values of Voat Re = 0.5, Pr=1, BI):Z 0.4 and y=0.75.
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Fig. 4.11: Bejan numbe)r( at different values of V, at Re = 10, Pr = 1, Br = 0.4 and y,=0.75.
4.4.7 Heat Lines

The energy equation in (4.15) can be split into two first order equations by introducing
Heat function H as in (4.28). Heat lines are shown within the chamber in the Fig. 4.12
and Fig. 4.13. Heat lines are having positive values at the left top corner and negative
values at the right bottom corner. Negative values of heat lines indicates the region
where temperature is below the reference temperature. As Prandtl number increases,
these heat lines increases very much in value and attain maximum value when they
reach the top right corner. If convection is neglected, isothermal lines and heat lines
will be orthogonal to each other. The 0-0 heat line moves up as Vo the suction
parameter increases. As Pr increases (i.e for thick fluids), heat lines re-enter at bottom

surface. This is the true path of energy flow.
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Heat L|nes for Re-5 Pr-1 VO-O 2 and y0=0. 75 Heat Lines for Re=5, Pr=10, V0=0.2 and y0=0.75
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Fig. 4.12: Heat lines at Re = 5, Vo= 0.2, yo= 0.75 and different values of Prandtl number Pr.
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Fig. 4.13: Heat lines at Re = 5, Vo= 0.8, yo= 0.75 and different values of Prandtl number Pr.
4.4.8 Pressure Contours

Pressure is obtained from the numerical scheme as in (4.40) and contours are drawn
within the chamber in the Fig. 4.14-Fig. 4.16. It is observed that values of pressure
contours increase very much as Vg increases and decrease very much as Re increases.
This is due to the fact that pressure gradient is inversely proportional to Reynolds
number (as in eq. (4.36) & (4.37)). The pressure is numerically maximum at the top
right corner in all cases. We observe, pressure changes its sign at the right bottom

region. Hence in this region flow reversal takes place.
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4.5 Conclusions

From figures drawn, we analyze and observe that

> For large yo values, i.e., for slit like geometry, if suction number Vy is small for
high Reynolds numbers, the flow circulation is generated near top right corner.

> As Reynolds number increases, due to convection more and more temperature
lines enter into the flow region.

> The contour =1 divides the temperature field into two regions (6<1 and 6>1).
As Re increases, the temperature contour for =1 shifts to left edge.

> Average Nusselt number decreases as suction parameter Vg increases. i.e., high
suction/ injection enhances the heat transfer.

> Either by entropy generation number or by Bejan number contours, we observe
that dissipation energy is very high at the corners.

> Energy dissipation is minimum near to the left bottom corner where non-
dimensional temperature is 1. (since Ns is minimum).

> Available energy or exergy is more in the center of the channel and at bottom
left corner (since Be is near to 1).

> Heat lines have highest value at the top right corner.

> Pressure increases within the chamber as Reynolds number decreases.
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Part — 111

COUPLE STRESS FLUID FLOWS
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Chapter 5

Steady Flow of Couple Stress Fluid through a
Rectangular Channel Under Transverse Magnetic
Field

In this chapter, the steady flow of an incompressible conducting couple stress fluid in
the presence of transverse magnetic field through a rectangular channel with uniform
cross—section, is considered. The induced magnetic field is neglected. We consider the
case that there is no externally applied electric field. Under these conditions, we get
4™ order PDE for velocity w along the axis of the rectangular tube. The usual no slip
and hyper stick boundary conditions are used to obtain the solution for w. We obtained
the velocity w in terms of Fourier series. Skin friction on the walls and volumetric
flow rate are obtained in terms of physical parameters like couple stress parameter and
Hartmann number. The effects of these parameters on skin friction and volumetric

flow rate are studied through graphs.
5.1 Introduction

The steady flow of a conducting fluid through a straight channel under a uniform
transverse magnetic field presents one of the elementary problems in magneto
hydrodynamics. Tani (1962) has given an approximate method of solution for the
steady laminar incompressible flow of an electrically conducting fluid through a
straight avenue of arbitrary cross section with conducting or non-conducting walls in
the presence of a uniform transverse magnetic field based on a minimum principle.
Ahmed and Attia (1998) further studied the viscous and joule dissipation effects under
an external uniform magnetic field in an eccentric annulus of an electrically
conducting incompressible fluid. Abel et al. (2004) studied the momentum, mass and
heat transfer past a stretching sheet using the Walters-B visco-elastic model in the
presence of a transverse magnetic field. Ahmed and Attia (2000), Attia (2005), Aboul
Hasan and Attia (2002), Srnivasacharya and Shiferaw (2008) studied the MHD flow
and heat transfer of a viscous, dusty and micro polar fluids through a rectangular duct.
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In the above studies of non-Newtonian fluids like couple stress fluids with MHD
effect, have not been considered. Stokes (1966) introduced the theory of couple
stresses and gave the simplest generalization of the classical viscous fluid theory that
maintains the couple stresses and body couples. Couple stress fluids are not much
complicated than micro-polar fluids (Bhargava et al. 2007). As the microstructure was
not available at the kinematic level, hence kinematics of such fluids were explained
using the velocity field. Stokes flow problems were studied by Devakar and lyengar
(2008) under the isothermal conditions for an incompressible couple stress fluid. The
magnetic field effects in 3D flow subject to convective boundary condition were
investigated by Hayat et al. (2015) for couple stress nano-fluid over a nonlinear
stretched surface. Srinivasacharya and Kaladhar (2012) studied the mixed convection
flow of couple stress fluid with Soret and Dufour effects in a non-Darcy porous
medium. The effects of inclined magnetic field on couple stress material in a porous
medium was recently inspected by Ramesh (2016) in peristaltic flow.

As far as the author knows, though the magneto hydrodynamic flow of couple stress
fluid has many applications, the flow of couple stress fluids has not been treated
analytically through a rectangular channel. Hence, in this chapter, we have studied the
MHD flow of a couple stress fluid through a rectangular channel. We have used
Cartesian co-ordinate system for formulating the mathematical equations and obtained
the exact solution for velocity. Skin friction on the walls and volumetric flow rate are
obtained in terms of physical parameters like couple stress parameter and Hartmann
number. We have studied the effects of these parameters on volumetric flow rate, skin

friction and illuminated the results through graphs.

5.2 Mathematical Formulation

An incompressible and couple stress fluid flow through a channel is considered with
uniform rectangular cross section with side lengths a and b. Using a Cartesian co-
ordinate system (X,Y,Z) with center of rectangular cross section as origin and the axis
of the tube as Z axis along which the flow is assumed. Hyp, a constant magnetic field in
the perpendicular direction to the flow is applied. Along the rectangular tube a
constant pressure gradient causes generation of the flow in it. Since magnetic
parameter (Hartmann number M) is very small, the induced magnetic and electrical

fields are neglected. The physical representation of the problem is given in Fig. 5.1.
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Fig. 5.1: Flow configuration in a rectangular channel without suction.
Governing Equations

The coupled equations for steady, incompressible and couple stress fluid flow with

transverse magnetic field are given by

V,Q=0 (5.1)

PQV,Q=-V,P+uViQ-1VyQ+JIxH (5.2)
where Q is the velocity, P is the pressure, p is the density, x is the viscosity

coefficient, # is the couple stress viscosity parameter.
We take by the geometry of the problem given in Fig. 5.1 and nature of the flow

Q=Wk, H=H,J, J =%Q>< H :-% HWT where W=W(X, Y).

Hence JxH =—Z H2WK and Q.V,Q =0.
c
Now equation (5.2) reduces to

(el
VoP =uVSQ—nVSQ—; H5Q (5.3)

Non-dimensionalization

We introduce the following non—dimensional scheme:
X =ax, Y =ay, W =W,w, Z=az and P = pW; p (5.4)
where Wy an average entrance velocity. Substituting (5.4) in equation (5.3) we obtain
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Viw-SV2w+ SM 2w = —L, (5.5)

The equation (5.5) is solved with no slip boundary conditions:

w=0onx=tlandy=1ty, whereyO:E (5.6)
a
and hyper stick boundary conditions:
_v «Q = 1@ _lows g
20y 20X
ie., @:Oonx:iland 8_w:0 ony=x=y, (5.7)
OX oy
2 2,2
where couple stress parameter S =ﬂ, magnetic parameter M = oH,a :
Cu
Reynolds Number Re = Ao and Ly =S.L= Re.S.% = constant.
7 z
Equation (5.5) can be written as:
(V2= 22)(V? - B)w=—L,
where A2+ A2 =S, 1212 =SM?,
5.3 Solution of the Problem
5.3.1 Velocity
Let us choose
w=-— I\/|I_2+Z f.(y)cosr, x+2g (x)cost,y (5.8)
n=1
r . .
where r, = (anl)” t :y—”.Substltutlng (5.8) in (5.5) we get,
0
i (rrf1 fo—2r2fll 4 fn(i"))cos X+ i (tr‘,lgn —2t2g + g,ﬁ"’))costny
n=1 n=1
—S{i (—rn2 fo + fnii )cos X+ io‘, (—tﬁgn +g;1i )costny}SM 2 io: (f, cosryx+ g, cost,y)=0
n=1 n=1 n=1
= f™M @22 +8)fl +(r! +Sr2 +SM?)f, =0 (5.9)
and g —(2t2 +S)gh +(t? + St2 + SM?)g, =0 (5.10)
Equations (5.9) and (5.10) can be written as
(D®-u?)(D®-vi)f, =0 and (D7 —a; )(D7 - B2 ) g, =0 (5.11)
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where D=i and D =i
dy dx

U VR =S4 2r2 = AP+ AT+ 217, uAVE =1t +Sr2 4+ SM2 =1t + (A7 + A + A2A2
Ll PE=S 2R =2+ A2+ 2t 2P =t +St2+ SM2 =tt 4+ (A2 + ADN2 + 22
cW=AR A+ Vi=Ag 4+l and of = AP+, pE=A7 4+t

Solving (5.11) we get

coshu,y +B, coshv,y and g. () =C, cosh a, x +D, cosh S, X
coshu, Y, coshv, Y, coshe, cosh £,

W —L+ 5[ A, coshu,y B, coshv,y cosrx+ 3| ¢, cosh o, X +D, cosh B, X cost, y
M2 coshup, Yo cosh vy, Yg cosha, cosh £,

fn(y) = Ah

n=1 n=1
(5.12)
By no slip condition on x =+1, w=0gives
L ©
— =Y (C,+D,)cost,y (5.13)
M n=1
Similarly by no slip conditionon y=+y,, w=0 gives
L 0
—— =2 (A, +B,)cosrx (5.14)
M n=1
By hyper-stick condition, on y ==y, 5 =0 which gives
g(Ahu tanhu, Y, + B,v, tanhv, y, )cosr, x + i C coshanx+D cosh Sy t.(-1)" =0
= " o ! " aal " coshe, " coshp, )"
(5.15)

Similarly by hyper-stick condition on X = £1, %N =0 which gives

w( coshu,y B coshv,y

r(-=)"+3 (C.a tanha, + DA tanh B.)cost y =0
coshu, Y, ”coshvnyOJ“() El( n@n o, +D,f, B, )cost,y

n=1
(5.16)
1 Yo
Using the orthogonality property, we havey— [ cost,y cost,y dy =,
0 _yo
: 2L n+l
From (5.14) we obtain, A, +B, =——(-1)
M*“r,
2L +1
= By =17, D™ - A, (5.17)

n
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: 2L
From (5.13) we obtain, C, + D, = —— (-1)"*
rn
2L il
= D, = e (-)™t-C, (5.18)
From (5.15) we obtain,
0 1 2r _1 n+1 2r _1 n+1
AU, tanhu, Yo + By, tanhv,yo = X (<1)™ " by, (Cm ”2( )2 +Dp, ”2( )2 (5.19)
m=1 on + 1 P+ 1
From (5.16) we obtain,
12 2t, ()™ 2t ()™
C,a, tanh e, + D, 3, tanh 3, v ; (—1)erl [ (Am ”2( )2 +B, ”2( )2 J (5.20)
0 m=1 Uy, +1, vy, + 1

Substituting (5.17) and (5.18) in (5.19) and (5.20) we get

A, (u, tanhu,y, —v, tanhv, y, )+ >C,

m=1

2r b (om = B)(ED)™" ) o 4ALr (=)™ ) 2Ly, (-D)"tanhv,y,
Yo(am +1)(Bn +17) YoM*(By +17) M,
(5.21)

and

2 \y2\(_1\m+n » _\n+l _\n+l
Cn(antanhan—ﬂntanhﬂn)+2An[zrmr“(um v2)(=1) ] Z( 4Lr (1) J_ZLﬁn( )™ tanh B,

2V AR +8) )l YeME(v + ) Mr,
(5.22)
Equations (5.21) and (5.22) are in the form
al A +3 C,e, =bl, (5.23)
m=1
1 C,+3 A f. =dl, (5.24)
m=1
where al, =u, tanhu,y, -v, tanhv,y,, cl, =, tanh, — 3, tanh 5,
_ 2n 6 (o = Ba) ()™ _ 205 (U — V) (=)™
T Yolam Bt T o un (v )
= ( 4Lr (-)"* 2Lv_ (=)™ tanhv
b]-n:z 2n( 2) 5 _ n( ) > nyO’
m=1{ YoM (85 +1.) M “r,
= ( 4Lr (-)™ 2LB, ()" tanh B,
dl, = 2012002 12y | 2
m=1\ YoM “(v;, +1t7) M “r,
Eliminating C,, from equations (5.23) and (5.24) we get
Sa A =b (5.25)
m=1 m
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=c1k ) 2 dl

where a,, =¢ [ and b, =bl, — > e . cl_m
—Z €y =1 if n#m m= m

1

The equation (5.25) is an infinite system of equations in A,. We truncate the
system to n=10 and solve for A,. Then from (5.23) C,, from (5.17) B,, and from (5.18)
D, can be found. Hence all the coefficients in (5.12) for the velocity w are now known.

5.3.2 Volumetric Flow Rate

Volumetric flow rate V (non-dimensional) is given by

1 Yo
V=] [ wdydx

-1-vo
1 n+1
_ 4LyO Ao 43 (-1) A tanhu,Yo 5 tanhv,y, iC. tanha, y.D. tanh ﬂn}
M? =L I, u, v, n |
(5.26)

5.3.3 Skin Friction

Skin friction is the force acting on the surface per unit area. It is obtained from

constitutive equation of couple stress fluid.
=—Ip+2,uE+%I><div M

where M =ml +477VW+417’(VW)T with W :%VXQ.

m+4(n+n" )Wy, AW, +4n'W,, 0

For our problem, M =| 4nW, , +4nW, , m+4W, , 0
0 0 m
2 2
Hence div M =27’ VW i_—av W i
Y oX
- .
0 0 _OV'W
oX
2
and IxdivM=2n"| 0 0 _VW
oY
VAW VAW 0
| X oY |

*x

. . . . Ta
These equations give non-dimensional stress T=——
0
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i.e.,T13:i w—<v?w | and ngzi w—Sv2w |
OX S oy S

Hence the skin friction on faces x=x1is C; =T,; and on facesy =1y, isC; =T,;.
On x=+1,

i r [Aﬁf coshu,y N Bn/bz cosh Vny:|(_1)n+1

e
C,i=— coshu, coshv,
Sna

(5.27)
—[Cnﬂfan tanh a,, + D, A5 3, tanh ﬂn]costny
This skin friction is function of y locally. Hence we find average skin friction

L Tc, d
= — f y.
2y0—y0

5.4 Results and Discussion

For particular value of physical parameters S and M, the values of A; and A, are
calculated using the quadratic equation

A? — Sk + SM? =0.

Then up, Vi, o, and £, are found. Now velocity w is computed using (5.12). The effects
of physical parameters S and M on velocity, Volumetric flow rate and skin friction are

found. We can observe that for a fixed S value, to get real values of A, S> 4M?,
5.4.1 Velocity w

In Fig. 5.2, velocity contours at different values of M for a fixed value of S=50 are

shown.

wi{x, y)contours at M-2.236

] "

-0.75-0.5 -0.25 0 0.25 0.5 0.75 i

-0.75-0.5-0.25 0O 0.25 0.5 0.75

-0.75-0.5-0.25 0 0.25 0.5 0.75

Fig. 5.2: For S =50, Velocity w(x, y) at M=1.732, M= 2.236, M= 2.645.
We notice that as M increases, fluid is having high velocity near the walls and more
and more fluid is drifted towards walls of the channel and the centre of the channel

being maintained flat. In the figure, black region shows low values and bright region
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indicates high values of w. To show this clearly w is plotted in Fig. 5.3 at fixed values
of cross-sections for y=0.25, y=0.5, y=0.75 and y=0.9.

W M=1.732 W M=2.236 W M=2.645

1

Fig. 5.3: At S=50 and M=1.732, M=2.236, M=2.645, w(X, y) at cross-sections
y=0.25, y=0.5, y=0.75 and y=0.9.

5.4.2 Volumetric Flow rate

In Fig. 5.4, volumetric flow rate V is shown at different values of magnetic parameter
M. It is observed that as M increases, volumetric flow rate decreases drastically. But

when M is fixed, as S increases, volumetric flow rate is almost constant.

Vv
M=1.732
50
40
30 M=2.236
i M=2.645
36 38 40 4z 44 46 48 50 s

Fig. 5.4: Volumetric flow rate vs Couple stress parameter at different values of

magnetic parameter M.

5.4.3 Skin Friction

At S=50, e=0.5, and for different values of M? the average skin friction is found and
tabulated in Table. 5.1.
Table. 5.1: Average skin friction values for different values of M at S = 50, e = 0.5.
M? 3 5 7
Average ¢¢ | 171.483 | 104.032 | 75.0971

From this we observe that as Hartmann number M increases, skin friction decreases.
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5.5 Conclusions

From figures drawn, we analyze and observe that

» By applying Magnetic field, for couple stress fluids the volumetric flow rate and
skin friction on the walls are controlled i.e., decrease.

»  For a fixed value of M, the effect of Couple stress parameter on volumetric flow
rate is almost nil.

»  Skin friction is decreases as couple stress parameter increases.

82



Chapter 6

Steady Flow of Couple Stress Fluid through a
Rectangular Channel Under Transverse Magnetic
Field with Suction

In this chapter, we have considered the steady flow of an incompressible conducting
couple stress fluid through a rectangular channel with suction/ injection at the
opposite side walls in the presence of transverse magnetic field. We obtained the
velocity w and temperature 6 in terms of Fourier series. The volumetric flow rate
and skin friction are obtained and the effects of physical parameters like magnetic
parameter, Reynolds number and couple stress parameter on this are studied

through graphs.
6.1 Introduction

The steady flow of micro-polar fluid with suction and injection under transverse
magnetic field through a rectangular channel and a circular pipe was studied by
Ramana Murthy et al. (2011, 2009). Song and Sundmacher (2010), Sai and Nageswar
Rao (2000) studied the viscous flow in a rectangular duct with suction and injection
imposed on opposite walls. But as far as the author knows the magneto hydrodynamic
flow of couple stress fluid through a rectangular channel with suction has not been

treated analytically.

Hence, in this chapter, our objective is to study the flow of the magneto hydrodynamic
couple stress fluid through a rectangular channel with suction/ injection. The exact
solutions for velocity and temperature are obtained. Skin friction on the walls and
volumetric flow rate are obtained in terms of physical parameters like couple stress

parameter and magnetic parameter.
6.2 Mathematical Formulation

An incompressible and couple stress fluid flow through a channel is considered with

uniform rectangular cross section with side lengths a and b. Using a Cartesian co-
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ordinate system (X, Y, Z) with center of rectangular cross section as origin and the axis
of the tube as Z axis along which the flow is assumed. Hyp, a constant magnetic field in
the perpendicular direction to the flow is applied. Along the rectangular tube a
constant pressure gradient causes generation of the flow in it. U is the suction velocity
in the direction of X axis. Due to small values of Hartmann number, the induced
magnetic and electrical fields are negligible. The physical representation of the

problem is given in Fig. 6.1.

¥
Hﬁ
oW
W =0. =0
oY
Up Uy
> — 1
————> _—t
s —
— —_—]— 5
~ oW
AW W =0, =0
W =0 =0 axX
oX o
> X
/ .
- %
1 F\]:r_r
w=0 2 _o
oY

Fig. 6.1: Flow configuration in a rectangular channel with opposite wall suction.

Governing Equations

The coupled equations for steady, incompressible and couple stress fluid flow with

transverse magnetic field are given by

V,Q=0 (6.1)

PQVQ=-VP+4uVeQ-7ViQ+JIxH (6.2)
dT ?

pCpUO & = kVOT (63)

where Q is the velocity, P is the pressure, p is the density, u is the viscosity
coefficient, # is the couple stress viscosity parameter, T is the temperature, k is the
thermal conductivity of the fluid and c, heat capacity at constant pressure.

We take by the geometry of the problem given in Fig. 6.1 and nature of the flow
Q=Upi +Wk, H=H,], J=2QxH =2 H,(Ugk ~WT), where W=W(X, Y).
C c
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Hence JxH=——Hs (U, i +Wk ) and QV,Q=U,—K.
—Hg (Uol +WK') and QVoQ =U, —

Now equation (6.2) reduces to

oW o
ona—x=—VoP+ﬂV3Q—f7V3Q—€ H¢Q (6.4)

Non-dimensionalization

We introduce the following non—dimensional scheme:

X =ax,Y=ay, Z=az, W =Wyw, T =T, +AT.6 and P = pW;p. (6.5)
Using (6.5) in equation (6.4) we obtain
4 2 2 oW
V'w-SV°w+ SM W+S.Re.6—=—L0. (6.6)
X

The equation (6.6) is solved with no slip boundary conditions:
w=0onx=xlandy==z=y, whereyozg (6.7)

and hyper stick boundary conditions along tangential direction on the wall where
suction imposed is given by

1 ~ 1{ow—- ow-=) -~
“vxQj=2| X7 Mjlj=o0
5 Vx Q] 2(8y| axjjJ

ie., @:0 onx=+1 (6.8)
OX

2 2,2
. Hia

where couple stress parameter S :ﬂ, magnetic parameter M = AR ,
n Cu

Reynolds Number Re = P2 and L, =S.L= Re.S.g—p = constant.
y z

Using (6.5) in equation (6.3), the energy equation reduces to

pe 39 _v2g (6.9)
dx

pcUoa

where Pe = , 1S Peclet number.

The boundary conditions for Gare:

00 oo
6=0ony=0, d=1ony=1 —=q,onx=0, —=qg, onx=1 6.10
y y o O o a, (6.10)
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6.3 Solution of the Problem
6.3.1 Velocity

Let us choose w in the form:

W= § W, (x)cost,y (6.11)
n=1
where t _@n-hz
2y,
Substituting (6.11) in (6.6) and using Fourier series for RHS of (6.6) we get
w —<2t§ + S)wﬁ]i +S.Re.w} +(tr‘,1 +St? + SM? )Wn = 2—'?(—1)n (6.12)
yO n

The equation (6.12) is an ordinary differential equation with constant coefficients and

hence the solution can be taken as
W, = 8,8 +a,,672" + a5, +a,, " + (6.13)

2L, (-1)'

where L, =
Yota (7 +Sta +SM?)

and oy,a,,a5,a, are the roots of the auxiliary

equation o* —(2t3 +S)a” +S.Re.cr +(ty +St7 + SM?) = 0.
We have w=0 on x =+1. Applying this condition on equation (6.11), we get
3™ +a,,e”? +a85,6™ +a,,™ =—-Ly (6.14)

and a6 +a,e 2 +age P +a,e " =-L (6.15)

also we have Z—W =0 on x=+1. Applying this condition on equation (6.11), we get

X
3y, €™ + 8y, "% + 85,04™ + 3, =0 (6.16)
and a e +a,, 0,8 2 + a5 08 + 3,6 =0 (6.17)

The equations (6.14) to (6.17) are solved for &, a,,, as,, @,, and hence the solution

for w can be found.

6.3.2 Temperature

Let 0=6,+Yy (6.18)
using (6.18), the equation (6.9) reduces to
dé, 2
e—=V4 6.19
™ o (6.19)

86



subject to the boundary conditions:
6,=00ny=0, §,=00ny=1, %qu onx=0and %:qz onx=1 (6.20)
OX OX
Let us choose
g, =3 f (x)sinnzy (6.21)
n=1
substituting (6.21) in (6.19) and using Fourier series, we get
fl _Pefl—r?f =0 (6.22)
where r, =nz

The equation (6.22) is an ordinary differential equation with constant coefficients and

hence the solution can be taken as
f, =b,e”* +D,, e’ (6.23)
where g, S, are the roots of the auxiliary equation
B?—Pef-r2=0
we have %qu onx=0and %zqz onx=1.
OX OX
Applying these conditions and using Fourier series on equation (6.21), we get

f1(0)=by, B +b,. 53, (6.24)
and f!(1)=h,Be”+b, p,e” (6.25)

i 4q i 4q
where f'(0)=——2— and f'()=——2—.
"0 @2n-)rx @ @2n-1)x

The equations (6.24) and (6.25) can be solved for b,,, b,, and hence the solution for
6, can be found.

Finally @ can be obtained from equation (6.18).

6.3.3 Volumetric Flow rate

Volumetric flow rate V (non-dimensional) is given by

1 Y
V=[ [ wdydx
-1-y,

(6.26)

= 4(-1)""[a a a a
= Zl {ﬂsinhaﬁﬁsinhaz+ﬁsinhag+ﬂsinha4+L1}
n=

t, oy o, o o,
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6.3.4 Skin friction

Skin friction is the force acting on the surface per unit area. It is obtained from

constitutive equation of couple stress fluid.

T*:—Ip+2,uE+%I><divM

where M =ml +47VW +4,'(VW)" with W :%VXQ.

m+4(n+n7" )Wy,  4gW,,+4nW,;, 0
For our problem, M =| 4nW,, +4n'W, , m+4W,, 0
0 0 m

2 2
Hence div M = Zn’{av W i_—av W T}

oY oX
_ -
0 _avVAW
oX
2
and IxdivM=27"| 0 _OVW
oY
VW avVAW 0
X oY |

*

. : . : Ta
These equations give non-dimensional stress T=——

0
ie, Ty =£(W—EV2W] and T =E(W—EV2WJ.
xS vyl S

Hence the skin friction on faces x=%1is C; =T,; and on facesy ==xy, is C; =T,;.

On x =41,
e » (0(13 _tﬁal) ainealx + (a{g _tgaz ) aZne“ZX

c =--%5% cost.y (6.27)
S n=1 +<0{§’ —tﬁag)agneasx +(0[2 —t§a4)a4nea4x

This skin friction is function of y locally. Hence we find average skin friction

L Te, d
=5 ¢ ay
2y0*Yo
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6.4 Results and Discussion
6.4.1 Velocity w

Effect of Magnetic parameter

In Fig. 6.2, velocity contours at different values of M for a fixed value of S=50 and
Re=0.5 are shown. We notice that fluid is having high velocity near the walls and as M
increases the values of velocity decreases numerically. As M increases, the absolute
maximum velocity decreases. The region of absolutely maximum velocity increases
and appears flat. This is known as Hartmann effect. In the figure, red region shows

low values (absolutely high values).

Velocity Contoursw at § = 50, Re = 0.5and M =1 VelocityContoursw at § = 50, Re = 0.5and M =3

Ea) (b)

VelocityContoursw at § = 50, Re = 0.5and M =5 Velocity Contoursw at § = 50, Re = 0.5and M =7

© (A
Fig. 6.2: For S = 50 and Re=0.5, Velocity w(x, y) at (a) M=1, (b) M=3, (c) M=5 and
(d) M=7.
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Effect of Reynolds number

In Fig. 6.3, velocity contours at different values of Re for a fixed value of S=50 and
M=5 are shown. We notice that as Re increases, the region of minimum velocity of the
fluid is drifted towards the wall in the direction of suction. In the figure, red region

shows low values of w.

VelocityContoursw at § =50, Re = land M =5 Velocity Contours w at § = 50, Re = 10and M =5

0.5+

=0.5F

—6.5 Oj(l 0j5 —6,5 Oj(l Oj5
(@) (b)

Velocity Contoursw at § = 50, Re =20and M =5 Velocity Contoursw at § = 50, Re = 30and M = 5

050

= 0.0-

=051

—(I).S OTU 0?5 —(I].S OiO 0‘.5
(c) (d)
Fig. 6.3: For S =50 and M=5, Velocity w(x, y) at (a) Re=1, (b) Re=10, (c) Re=20 and
(d) Re=30.

Effect of Couple-stress parameter

In Fig. 6.4, velocity contours at different values of S for a fixed value of Re=0.5 and
M=5 are shown. We notice that as S increases, the region of minimum velocity
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increases (For example, in Fig. 6.4 (a) Wmin=—0.18, in (b) Wyin=—0.035, in (C) Wmin=—
0.0175 and in (d) wpin= —0.012, the region having these values is increasing). For a
particular value of S, the region of minimum velocity spreads to a maximum area and

for higher values of S, this region decreases.

VelocityContoursw at § = 1, Re = 0.5and M = 5 VelocityContoursw at § = 10, Re = 05and M =5
05"
= 00r

=05+

(@) (b)

VelocityContoursw at § =20, Re =0.5and M =5 Velocity Contoursw at § = 30, Re = 0.5and M = 5

©) @
Fig. 6.4: For Re=0.5 and M=5, Velocity w(x, y) at (a) S=1, (b) S=10, (c) S=20 and
(d) S=30.

6.4.2 Temperature 6

In Fig. 6.5, temperature contours at different values of Re are shown. We notice that
for high values of Re, the contours of temperature are symmetrically distributed about
a horizontal line. For low values of Re, some temperature contours are positive and
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some are negative. For Re <1, temperature profiles are positive and negative for Re
>20.

Temperature Contours 6 at Re = 1

Temperature Contours # at Re = 10

@ (b)

Temperature Contours # at Re = 20

Temperature Contours # at Re = 30

© )
Fig. 6.5: Temperature 9(x, y) at (a) Re=1, (b) Re=10, (c) Re=20 and (d) Re=30.

6.4.3 Volumetric Flow Rate

Volumetric flow rate V is computed from equation (6.26) and is shown in Fig. 6.6 vs
Couple stress parameter S at different values of Reynolds number Re and magnetic
parameter M. It is observed that as Re or S or M increases, Volumetric flow rate
decreases. After a critical value of S, volumetric flow rate becomes constant. This may
be due to the fact that as suction increases, more fluid is taken out as suction. Velocity

decreases as M or S increases, and hence volumetric flow rate decreases.
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Fig. 6.6: Volumetric flow rate vs Couple stress parameter.
6.4.4 SKin Friction

In Fig. 6.7 and Fig. 6.8, the skin friction at x =1 for different values of Couple stress
parameter S at fixed e=0.5, M=3 and M=5 are shown respectively. We observe that at
x=1, skin friction C; is positive and negative at x= —1. This is a natural observation
since opposite walls will have opposite shear stresses. As S increases, Ct also
decreases. This may be due to the fact that couple stresses in the fluid contribute to

shear stresses to decrease.

Vv Vv

(a) x= (b) x= -1

Fig. 6.7: Skin friction at M=3 for different values of Couple stress parameter S.
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@ x21 (b) x=-1

Fig. 6.8: Skin friction at M=5 for different values of Couple stress parameter S.

At S=50, e=0.5 and for different values of M the average skin friction using equation
(6.27) at x=1 is tabulated in Table. 6.1 and at x=—1 is tabulated in Table. 2.

Table. 1: Average skin friction values at x=1 for different values of M at S=50, e=0.5.

M 3 5 7
Average Ct 0.0517621 0.0307316 0.0257768
Table. 2: Average skin friction values at x=—1 for different values of M at S=50, e=0.5.
M 3 5 7
Average Cs —0.036376 —0.0348286 —00255526

From this, we observe that as magnetic parameter M increases, skin friction decreases

at x=1 and increases at x= —1.

6.5 Conclusions

From figures drawn, we analyze and observe that for couple stress fluids

» By applying magnetic field, the volumetric flow rate and skin friction on the
walls are controlled i.e., decrease.

»  After a critical value of Couple stress parameter, the volumetric flow rate is
almost constant.

»  For high suction, the temperature is distributed symmetrically about a horizontal
line.

»  As couple stress parameter increases, the area occupied by minimum value of
the velocity increases.

»  As magnetic parameter increases, the velocity at the center of the channel

becomes horizontal (This is Hartman effect).
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Part-1V
STOKES FLOW PAST A CYLINDER

95



Chapter 7
Stokes Flow and Heat Transfer Past a Circular
Cylinder in a Square Cavity with Suction/Injection on
Side Walls

A laminar viscous fluid flow past a circular cylinder placed in a square cavity of
uniform cross section, generated by applying suction/ injection at the adjacent side
walls, is studied. The other opposite side walls and the boundary of the cylinder are
maintained at constant temperatures and the walls with suction are maintained at
constant heat flux. The stream lines due to the flow and isothermal lines are drawn.
The flow is assumed to be Stokesian and hence neglecting nonlinear convective terms,
the equation for stream function satisfies biharmonic equation. This biharmonic
equation for stream function is put in the vorticity form by writing it into two coupled
equations and 5 point formula is used to solve the equations. For derivative boundary
conditions of stream function, central difference formula with fictitious nodes and for
derivative boundary conditions of temperature 3 point backward difference formula

are used.
7.1 Introduction

The flow field effected by suction/injection across the walls is encountered in fuel cell
manifolds, micro reactor channels, filtration units, and in membrane reactor ducts.
Guoping et al. (1995) studied the viscous fluid flow and heat transfer due to a square
obstacle placed asymmetrically between the parallel sliding walls. Moukalled et al.
(1996) and Cesini et al. (1999) have performed numerical and experimental analysis
on natural convection heat transfer from a horizontal cylinder enclosed in a rectangular
cavity. Breuer et al. (2000) investigated the confined flow around a cylinder with
square cross-section seated inside a channel. Salvatici et al. (2003) studied large-eddy
simulations of the flow around a circular cylinder. Projahn et al. (1981) carried out
numerical analysis to investigate the local and overall heat transfer between concentric
and eccentric horizontal cylinder. Kim et al. (2008) analysed numerically the natural
convection induced by a temperature difference due to a hot circular cylinder placed in
a cold outer square enclosure. Akhilesh et al. (2009) made a numerical study of the
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unsteady free stream flow of power law fluids past a long square cylinder. Salam et al.
(2010) examined 2D steady natural convection numerically for a uniform heat source
applied on the inner circular cylinder placed in a square enclosure filled with air.
Berrone et al. (2011) investigated the flow past rectangular cylinders. Minguez et al.
(2011) have conducted experimental/numerical study of turbulent flow past a square
cylinder. Sandip et al. (2012) studied entropy generation number due to a mixed
convection of water based nano-fluid past a square cylinder in vertically upward flow.
Weiwei et al. (2013) applied an efficient immersed boundary method for thermal flow
problems with heat flux boundary conditions. Lin et al. (2014) numerically
investigated laminar flow past a circular cylinder with multiple small-diameter control
rods. Prasenjit et al. (2015) investigated flow around an extended triangular solid
(thorn) attached to a square cylinder numerically. Ali et al. (2017) studied the
convection of heat from two rotating hot cylinders in a cold square cavity. Yang et al.
(2017) made a numerical investigation of natural convection in a Cu—water nano-fluid
filled eccentric annulus with constant heat flux wall. Kim et al. (2018) studied the
effect of corner modifications on fluid flow and heat transfer characteristics across a

square cylinder.

In the classical problems, most of the researchers analysed the flow past a circular
cylinder only. But the study of flow past a circular cylinder in a cavity due to suction
on walls is paid very less attention. Hence in the present chapter our aim is to study the

flow past a circular cylinder in a square cavity with suction on adjacent walls.

7.2 Mathematical Formulation

The flow of viscous fluid past a cylinder in a square cavity of uniform cross section
due to applied suction/injection at the side walls is considered. The physical
representation of the problem is given Fig. 7.1. The Cartesian coordinate system with
origin at the bottom left corner and X and Y axes along the bottom and left walls is
taken. The cavity is of length ao along X direction, height by along Y direction and a
cylinder with radius ro is kept in the middle of the cavity. Injection with velocity V; at
the top wall Y=by and suction with velocity V, at the right wall X=ay are imposed. The
flow is generated within the cavity due to the injection and suction applied at adjacent

walls.
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“ > X

Fig. 7.1: Flow configuration in a square cavity with adjacent wall suction.
Governing Equations

The equations of motion for the flow are given below:

VQ=0 (7.1)
d

pd—?z—VP+ V20 (7.2)

e, C(Ij—-[ =kV2T (7.3)

where Q is the velocity of fluid particle, P is pressure, T is the temperature, p is fluid
density, u is the coefficient of viscosity, k is the thermal conductivity of the fluid and
Cp heat capacity at constant pressure.

The flow is two dimensional and hence Q= (U, V).
Boundary conditions for the problem

Velocity of fluid particles satisfies no slip condition on the walls with no suction or
injection and no slip condition and impermeability condition on the cylinder. Again
permeability conditions, suction on the right wall and injection on the top wall, are
imposed. The temperature field satisfies constant temperature on the impermeable
walls X=0, Y=0 and on the cylinder. Condition of constant heat flux at the permeable
walls X=ag and Y=Dby is taken.

Due to no slip condition on the walls X=0 and Y=0, the tangential velocities are zero.
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ie., onXOVO:>8— 0andonY0U0:>aV/ 0.
oX oY

Due to impermeability condition on the walls X=0 and Y=0, the normal velocities are

also zero.
ie., onXOU0:>a— OandonY0V0:>aV/ 0.
oY oX
Due to no slip condition on the walls X=a, and Y=by, the tangential velocities are zero.
i.e., on X=ag, V= O:>a— 0 and on Y=b,, U= 0:>a'// 0.
oX oY

On permeable walls, the suction velocity on X=a is V, and the injection velocity on
Y:bo is Vi.

i.e., on X=ag, U=V, = v =V, and on Y=bgy, V=-V; = — oy =V,.
oY oX

The walls X=0 and Y=0 are maintained at constant temperatures. i.e., T=T; on X=0 and
T=T, on Y=0.

On the walls X=a, and Y=Db, constant heat fluxes are imparted.

. oT or
e, —=Q, onX = and —=Q, onY =h,.
X Q ay oy Q, o

Non-dimensionalization

We introduce the following non-dimensional scheme and non-dimensional parameters

like Pe= Peclet number, yo=geometric parameter, Vo=suction parameter as below.

X =agX, Y=a,y, U=Vu, V=Vy,P =pv12p, T-T,=6(T,-T) (7.4)
C V.
Pe:p T(laﬂ, yozb_o’ VO:\Q (75)
2N Vi

For the flow the Reynolds number is so small that the convective terms in equation

(7.2) are neglected. The flow is steady and hence independent of time t.

7.3 Solution of the problem

7.3.1 Stream function

We introduce stream function y as below such that equation (7.1) is satisfied.

u:a—w and v:—a—l// (7.6)
oy OX
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Taking curl to equation (7.2) and substituting (7.6), we get the equation for the non-
dimensional stream function y as

with boundary conditions:

%—W:O on x=0 and on x=1 and w=0onT
X

a_‘/’:o on x=0 and a—l/lzvo on x=1
oy

oy oy

—— =0ony=0and —==1ony=
x y ox Y=Yo

0
EW:O ony=0and ony=y,
These conditions, by integrating, are converted in to the conditions on  as follows:

a—l//:OOnx:Oandx:l
OX

w=0onx=0andy=0
y=Xo0ny=y
w=Vyyonx=1

oy
—~— =0ony=0andy=
oy y Y=Y

(7.8)

w =0 on the cylinder T'
We solve the equation (7.7) with conditions (7.8) by Finite Difference Method. The
cavity is covered with a mesh of step size h with (M-1) intervals on X direction and
(N-1) intervals on Y direction. For each grid point (i, j) within the cavity, the bi-
harmonic equation (7.7) can be split into two coupled equations as given in Biringen

and Chow (2011) as below:

Vi =—¢ (7.9)

and  V?¢ =0 (7.10)

For the boundary conditions containing derivatives, we used central difference

scheme. The nodes numbering is as follows:

Along X direction Along Y direction

X1 node on the boundary x = 0. y1 node on the boundary y = 0.

X2 , X3, ... , Xm-1 Inside the computational | y,, Vs, ..., Yn-1 inside the computational
Xm nhode on the boundary x=1 yn nhode on the boundary y=yq
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Thus at x=0 (i.e., i=1) we have, (0,y)=0.

These conditions are taken as y; ; =0 forj=1,2,...,N (7.11)
atx=1 (i.e., i=M) we have, w(1,y)=V,y.

These conditions are taken as v, ; =Vy(j—-1)h forj=1,2,...,N (7.12)
Similarly at y = 0 we have, w(x,0)=0.

These conditions are taken as y;, =0 fori=2,3,..,.M -1 (7.13)
Finally at y =yo we have, w (X, Yy,) = X.

These conditions are taken as y; = (i—-1)h fori=23,...M -1 (7.14)
Now, we derive expressions for boundary values of ¢ in terms of w , which are

required for solving (7.10). We now assume for vorticity on x=0 (i.e., at (1, j)):

%y %y oy
51,] :_L_éxz +_8y2 y =W, 1t W, O, At s & 5 (7.15)

Substituting from the Taylor’s series expansions,

2 2 2 2
vy () =% B[2E) 28] sofw)
OX 1 oy L] 2 | ox L 2\ oy L
oy h? ( 8%y 3
=y +h|— | +—|—>| +0O{h
Vai = (axj. ZLGXZ N (")

2 ( A2
Vs =¥1j +2h(a—wj ) (8_1//} +O(h3)
Lj 1]

ox 2 | ox?

and retaining only terms up to O(h?), equation (7.15) becomes

_[62_v/+62_w

0 8
PPV lj (g +a,+ay +a4)l//1,j+[(a1+a2+a3+2a4)h+a5](a_"x’l.+(a3_al)h(gy/lj

']

h? |( &%y h? [ 0%y
+| (g + +a3+4a4)—}[—2 Ha+ag)—| —5
I: 2 | ox L 2\ oy L

The constants o’s are determined by equating the coefficients of like terms on the both

sides of this equation. Substitution of these values in (7.15) gives

1 8 2 .
oy .
where o =0 from the boundary condition (7.8).
L]

Similarly, the expressions for vorticity at the remaining boundaries as:
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Onx=1,

1 8 2 :
éVM,j :F(—(//M_Lj_l‘l‘él//M_l’j _V/M—l,j+l_§l//|v|_2’jj fOrJ:2,3,....N (717)
1 8 2 .
ony=0, ¢ Y ~Vi12 +§in2 ~Viao _5'//“3 fori=23,..M (7.18)
ony =Yyo,

1 8 2 .
gin :F(_V/i—l,N—l +§‘//i,N—1 ~ViaNa _gl//i,N—Z) fori=2,3,...M (7.19)

in which the derivative boundary conditions in (7.8) have been employed.

Along with these boundary conditions, we have & on the cylinder is given by Thom

(1933).

Cs =@ (7.20)

where G is the point on the normal which cuts either vertical or horizontal grid line in
the flow region, S is the point on the cylinder and D is the distance between the points
GandS.

The equation (7.10) numerically will be solved using Liebmann’s iterative formula:

.y :%(gi—l,j +Cij +§i,j—1+§i,j+1) (7.21)

boundary points on the cylinder are defined as the intersections of the horizontal-
vertical grid lines and the body surface. These points do not usually coincide with the
grid points. Thus the formula (7.21) cannot be used at some grid points in the
immediate neighbourhood of the cylinder.

Equation (7.21) is the Laplace equation (7.10) replaced by a finite difference
approximation on the assumption that the point (i, j) is equally spaced from its other
four neighbouring grid points. The difference equation (7.21) is generalized for an
arbitrary situation as shown in Fig. 7.2, where the point (i, j) is at different distances

a, b, cand d from four neighbouring points.
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Sc

Fig. 7.2: Evaluation of ¢; ;.
We let the vorticity function evaluated at these neighbouring points be denoted by
Car Cpr v and & respectively, and then approximate the left hand side of (7.10) at
(i, ) by the linear function:

£a2_4+52_g

aXZ ayZ j = aogi,j +aa§a +abé/b +ac§c +ay é/d (722)
ivj

where a’s are coefficient to be determined. Expanding the four vorticity functions in

Taylor’s series about (i, ),

2 ( A2
$it =§a:§”_a(%) -+a_[a (j —O(a3)
i i

ox 2 | ox?
L a{j dz(azaj 3
=G =C+d] = +—| =] +0(d
5,11 S CJV,PL [a, i’j+2 3?'2 i,j+ ( )

and so forth. Substitution of these equations in (7.22) after rearrangement and

neglecting the cubic and higher order terms, we get

2 2
[6_§+6_§J =(ap+ag +ap tag +ag)d; +(bab—aaa)(a—gj +(dey —Cac)[a—gj
i X Jij oy i

x? oyt )
R I SO i B PSRN I (ci's
2+ 8 lax) 27" 02 )
i,j ij
Equating corresponding coefficients on both the sides results in five simultaneous
algebraic equations whose solution is

(1 1] 2 2 2 2
Oy ==2| —+— |, a, = , Q= , Q= , Oy =
ab cd a(a+hb) b(a+Db) c(c+d) d(c+d)
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vanishing of the right hand side of (7.22) gives the desired difference approximation of
the Laplace equation:

gi | = é/a + é/b + Cc + é’d /(i_i_ij (7.23)
' a(a+b) b(a+b) c(c+d) d(c+d)| (ab cd
fori=2,3,...,M-1land =23, ..., N-1.
It can easily be shown that (7.23) is equivalent to (7.21) when a=b=c=d=h.

In the similar manner we solve equation (7.9) numerically using

v, = Va i Vb n Ve i Yy +é’i,j /(i_'_ij (7.24)
1 la(a+b) b(a+b) c(c+d) d(c+d) 2 ab «cd

fori=2,3,...,M-1land =23, ..., N-1.

The vorticity boundary conditions derived (7.16)—(7.20) help us to solve (7.10) if
is known at some interior points. But, the evaluation of y from (7.9) depends on the
distribution of vorticity within the bounded domain. Thus, v and ¢ are inter-linked,

and an iterative scheme will be build up to find the solution.

For initial guess, an equilibrium state is assumed first so that 7 =0 everywhere in the
flow region. Based on this initial guess, the boundary values for ¢ are found from
(7.16)—(7.20) which shows that vorticity is initially generated at the boundary. This
concentrated vorticity at the boundary starts to diffuse into the cavity, resulting in a
temporary vorticity distribution which is the solution of (7.10) that satisfies the present
boundary conditions. This computed vorticity distribution causes a modification to the
assumed y after solving (7.9) subject to the restriction that we have in (7.8) on the
boundary. In this way we have completed the first iteration. To start the next iteration,
based on the modified stream function, the boundary values of vorticity are

recomputed. To obtain a new solution for  and ¢, the same procedure is repeated. At
every grid point, the difference between the newly computed ¢ and the previous
value is recorded as the local error during each iteration and the sum of absolute errors
at all grid points is called ERZETA. Similarly we find ERPSI, the corresponding sum
of absolute errors of . Iteration is terminated when both ERPSI and ERZETA are
smaller than a small positive value EPSLON (=10*). Since the desired accuracy is

reached, at this stage the solution is then considered to be satisfactory.
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7.3.2 Temperature

The energy equation, given in (7.3), by using (7.4), (7.5) can be reduced to the non-

dimensional form as below:

V20 = Pe(u%Jrv%j
oy

~ (7.25)

Temperature is subjected to the boundary conditions that i) the sides x=0, y=0 and on
cylinder are maintained at constant temperatures and ii) the other sides are supplied

with constant heat or constant heat flux. The conditions are given explicitly as

6=00onx=0, §=1ony=0, &=6, on cylinder

%—q onx=1 %—q ony=y, (7.20)

OX 1 ) 6’y 2 0

Letuij=(a—wj Vi Vi g g Vijz_(a_!q _ Vi Vi g
' ’ 2h ' X Ji 2h

Proceeding as in the stream function and vorticity function equation (7.25) can be

generalizes as:

(2+af,Pe)b, N (2-Dbf,Pe)g, N (2—cf,Pe)b,

0 - 1 a(a+hb) b(a+b) c(c+d) 297
W 2( 1 1 ] (2+df,Pe), (7.27)
e +—=0
ab cd d(c+d)

fori=2,3,...,Mand j=2,3, ...,N
The boundary conditions in (7.26) are now expressed as:
atx=0, =0 which implies that 6, ; =0 forj=2,3,...,N )
aty=0, =1 which implies that &, =1 fori=2,3,...M

06 1
atx=1, —= =>0yi==
P MiT3
o0 1 .
at y=yo, Y =0, =06, :5[46%’N_1—9i’N_2 ~2hq, | fori=2.3,... .M

(404 1 —Ou o —2hq, | forj=2,3,...N > (7.28)

J

and on the cylinder 6, ; =6, =0.5 where 6 is the reference temperature.

As in stream function and vorticity function in the equation (7.27) subjected to the
boundary conditions (7.28) will be solved for the temperature in the cavity.

105



7.4 Results and Discussion

We have obtained the values of stream function and temperature for step length
h=0.01. The accuracy near to 4 decimal places is obtained by taking 1000 iterations.
Here the important steps involved in the computation are to calculate 1). a, b, ¢, d
values adjacent to the cylinder and 2). D the distance between G and S in equation
(7.20). Here S is a point on the cylinder and G is a point on the grid line obtained by
intersection of normal with the grid. These are explained in the appendix.

7.4.1 Streamlines

The stream lines generated due to injection at the top wall and suction at the right wall
are shown in Fig. 7.3 to Fig. 7.5. The figures are drawn for different suction parameter
values Vy. We observe from Fig. 7.3 when the cylinder is middle of the cavity that as
suction parameter V, increases, the region of high stream values increases at the right

end of the cylinder and the stream lines with low values (example y = 0.001) which

are separated and near to the left wall are merging in the circulation region of the
cylinder. Again as Vy increases, a second circulation region is formed at the top left

corner. For small values of Vy, the stream lines are nearly parallel to the left wall.

Form Fig. 7.4, when the cylinder is bottom left corner, for small suction V=5, stream
lines have small values and high values within small region near the left side of the
cylinder. The presence of cylinder effects entire region dominating suction. As suction
parameter increases, effect of suction spreads near to the cylinder and the values of
stream lines away from the cylinder also increase. It is important to note that even
though cylinder is small placed at left bottom corner effects the entire flow dominating

the suction.

Form Fig. 7.5 when the cylinder is at the top right corner, for small values of suction, a
circulation region below the cylinder spreads half of the cavity. But when suction
increases, the circulation almost disappears and suction dominates the flow by

increasing the values of stream lines.

It is important to note that when the cylinder is at the top right corner, circulation

below the cylinder spreads in the cavity and this disappears when suction increases.
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Though the circulation behind the cylinder is there in all cases of position of the
cylinder in the cavity, it is best observed when it is in the top corner.

When there is no cylinder, the steam line pattern is shown in Fig. 7.13. For high
suction when the small cylinder is on the top corner, the flow is similar to the flow

without cylinder.

Stream Lines for V0=5 Stream Lines for V0=50
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Fig. 7.3: Streamlines for different values of Vo.
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strealm Lines fOI'I V0=5 ; Stream Lines for V0=50

Fig. 7.4: Streamlines for different values of V((=5,50,100) when cylinder is at lower
left corner of the cavity.
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Fig. 7.5: Streamlines for different values of Vy(=5, 50, 100) when cylinder is at top
right corner of the cavity.

7.4.2 Vorticity Contours

The vorticity contours generated due to injection at the top wall and suction at the
right wall are shown in Fig. 7.6 to Fig. 7.8. The figures are drawn for different suction
parameter values Vo. We observe that as Vy increases, when the cylinder is middle of
the cavity, the circulation of vortex lines on the right side of cylinder increases and
opens to the right top corner. The values of vorticity are very high at the right wall and
in the circulation region of vorticity. Outside of the circulation region, vorticity takes

negative values except at top left region.

From Fig. 7.7, when a small cylinder is placed at the bottom left corner, for small
values of suction, circulation region above the cylinder spreads to the top corner. High
values of vorticity are found on the left wall which is opposite to the above case (when
the cylinder is in the middle).
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From Fig. 7.8, when a small cylinder is placed at the top right corner, for small suction
parameter circulation region below the cylinder is in small region and this region

spreads in the entire cavity when suction increases. Here we find high negative values

of vorticity at the top and bottom walls.

Vorticity for V0=50

Fig. 7.6: Vorticity contours for different values of Vo.
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Fig. 7.7: Vorticity contours for different values of Vy(=5, 50, 100) when cylinder is at
lower left corner of the cavity.
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Fig. 7.8: Vorticity contours for different values of Vy(=5, 50, 100) when cylinder is at
top right corner of the cavity.

7.4.3 Temperature field

The Fig. 7.9 to Fig. 7.12 display the nature of temperature contours. Fig. 7.9 shows the
isothermal lines for different values of V, at Pe=0.02. We observe that the line 6=1
divides the entire region into two parts: the region in which @ is less than 1 and the
region in which @ is more than 1. As Vj increases, the region with 6<1 increases and
spreads to the left wall. As Peclet number Pe increases, the temperature in the region

@>1 also increases.

Fig. 7.10 shows the isothermal lines for different values of V, at Pe=0.02 when a small
cylinder is placed at the lower left corner. The region ¢€<1 is left to the cylinder in a
small area for all suction values. Near the right side of the cylinder we find very high

temperature.

Fig. 7.11 shows the isothermal lines for different values of Pe at V,=10. We observe

that Peclet number does not show much effect on the isothermal lines.

Fig. 7.12 shows the isothermal lines for different values of V, at Pe=0.02 when the
cylinder is placed on the top right corner. We observe that <1 is spreading half of the
cavity. All circulations in the temperature are in the region ¢>1 and spreads only that

region when suction value increases.

From Fig. 7.14 and Fig. 7.12, we observe that temperature lines are similar for the
region &<1. In this case when cylinder becomes smaller and smaller both profiles will

be same.
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Isothermal Lines for Pe=0.02, V0=5
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Fig. 7.9: Isothermal lines for different values of V, at Pe=0.02.
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Fig. 7.10: Isothermal lines for different values of Vy(=5, 50, 100) at Pe=0.02 when
cylinder is at lower left corner of the cavity.
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Isothermal Lines for Pe=0.001, V0=10 Isothermal Lines for Pe=0.005, V0=10
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Fig. 7.12: Isothermal lines for different values of Vy(=5, 50, 100) at Pe=0.02 when
cylinder is at top right corner of the cavity.
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Stream Lines for V0=50
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Fig. 7.13: Streamlines for V=50 when Fig. 7.14: Isothermal lines for Pe=0.05
cylinder is absent in the cavity. and V(=50 when cylinder is absent in the
cavity.
7.5 Conclusions
From the above observations we conclude that
> As suction parameter V, increases, stream line pattern will not change much

when the cylinder is in the middle of the cavity. But when it is at the top right corner

suction effect is very much high.
> Entire temperature zone is divided into two regions &<1 and &>1.
> As suction parameter Vy increases region <1 spreads to suction wall when the

cylinder is at the top right corner.
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Chapter 8

Stokes Flow and Heat Transfer Past a Circular
Cylinder in a Square Cavity with Suction/Injection on
Opposite Side Walls

8.1 Introduction

In this chapter, flow past a cylinder in a cavity with suction/ injection at the opposite
side walls is considered. The flow in a lid driven cavity was examined by many
researchers using analytical and Numerical methods (Shankar (1993), Joseph and
Sturges (1978), Ambethkar and Durgesh Kushawaha (2017), Kawaguti (1961)). The
flow due to suction/injection applied at the walls was analysed by Varapaev and
Yagodkin (1969). But the flow past a cylinder in a cavity was paid very less attention
may be due to complexity of the problem. Hence, here we considered the flow past a
cylinder in a cavity due to suction and injection on opposite walls.

8.2 Mathematical Formulation

The flow of viscous fluid past a cylinder in a square cavity of uniform cross section
due to applied suction/injection at the opposite side walls is considered. The physical
representation of the problem is given Fig. 8.1. The Cartesian coordinate system with
origin at the bottom left corner and X and Y axes along the bottom and left walls is
taken. The cavity is of length ag along X direction, height by along Y direction and a
cylinder with radius ry is kept in the middle of the cavity. Injection with velocity V; at
the left wall X=0 and suction with velocity V, at the right wall X=a, are imposed. The
flow is generated within the cavity due to the injection and suction applied at opposite
side walls.
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> X
Fig. 8.1: Flow configuration in a square cavity with opposite wall suction.

Governing Equations

The equations of motion for the flow are given below:

vV.Q=0 (8.1)
d

pd—?z—vm V20 8.2)

e, ‘Z—I =kV°T (8.3)

where Q is the velocity of fluid particle, P is pressure, T is the temperature, p is fluid

density, u is the coefficient of viscosity, k is the thermal conductivity of the fluid and

Cp heat capacity at constant pressure.

The flow is two dimensional and hence Q= (U, V).

Boundary conditions for the problem

Velocity of fluid particles satisfies no slip condition on the walls with no suction or

injection and no slip condition and impermeability condition on the cylinder. Again

permeability conditions i.e., suction on the right wall and injection on the left wall are

imposed. The temperature field is subjected to constant temperature on the

impermeable walls Y=0, Y=Db, and on the cylinder and condition of constant heat flux

at the permeable walls X=0 and X=ay.

Due to no slip condition on the walls Y=0 and Y=Db,, the tangential velocities are zero.
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ie., onYOU0:>a— 0 and on Y=Dby, U= 0:>al// 0.
oY oY

Due to impermeability condition on the walls Y=0 and Y=bg, the normal velocities are

also zero.
oy oy
ie., onYOVO:>— 0 and on Y=by, V=0 = —=0.
oX oX
Due to no slip condition on the walls X=0 and X=ay, the tangential velocities are zero.
ie., onXOVO:>a— 0 and on X=ay, V= O:>al// 0.
oX oX

On permeable walls, the suction velocity on X=a is V, and the injection velocity on
X=0is Vi.

i.e., on X=ap, U= V2:>a—l//_v2 and on X=0, U= V1:>al// =V,.
oY oY

The walls Y=0 and Y=b, are maintained at constant temperatures. i.e., T=T1 on Y=Dby
and T=T, on Y=0.

On the walls X=0 and X=a, constant heat fluxes are imparted.

. oT or
e, —=Q onX=a, and —=Q, on X =0.
X Q ay X Q,

Non-dimensionalization

We introduce the following non-dimensional scheme and non-dimensional parameters

like Pe= Peclet number, yo=geometric parameter, Vo=suction parameter as below.

X =a,X Y=ayy, U=Vju, V=V, P=pV’p, T-T,=6(T,-T,) (8.4)
C.V,
pe = 01?0 r:(laﬂ, o= v, =2 (8.5)
2 Vi

For the flow the Reynolds number is so small that the convective terms in equation

(7.2) are neglected. The flow is steady and hence independent of time t.

8.3 Solution of the problem

8.3.1 Stream function

We introduce stream function y as below such that equation (8.1) is satisfied.

u:a—w and v:—a—l// (8.6)
oy OX
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Taking curl to equation (8.2) and substituting (8.6), we get the equation for the non-

dimensional stream function y as

with boundary conditions:

%—l//=00nx=0andonx=1and w=0onT
X

a—l//:l on x=0 and 8_:,//:\/0 on x=1
oy

8—W=Oony=0andony:y

x 0

0
EW:O ony=0andony=y,
These conditions, by integrating, are converted in to the conditions on  as follows:

6—"’/:Oonx:Oandx:l
OX

w=0ony=0andy=y,
w=yonx=0

8.8
v =Vyyonx=1 (8.8)

oy
—~ =0ony=0andy=
oy y Y=Y

w =0 on the cylinder T’
We solve the equation (8.7) with conditions (8.8) by Finite Difference Method. The
cavity is covered with a mesh of step size h with (M-1) intervals on X direction and
(N-1) intervals on Y direction. For each grid point (i, j) within the cavity, the
biharmonic equation (7.7) can be split into two coupled equations as given in Biringen

and Chow (2011) as below:
Viy =~ (8.9)
and V% =0 (8.10)

For the boundary conditions containing derivatives, we used central difference

scheme. The nodes numbering is as follows:

Along X direction Along Y direction

X1 hode on the boundary x = 0. y1 node on the boundary y = 0.

X2, X3, ... , Xm-1 inside the computational | y2, Vs, ..., Yn-1 Inside the computational
Xm Nhode on the boundary x=1 yn nhode on the boundary y=yg
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Thus at x =0 (i.e., i=1) we have,(0,y) =Y.

These conditions are taken as v, ; = (j—1h forj=12,..N (8.11)
atx=1(i.e., i=M)we have, w(Ly)=V,Yy.

These conditions are taken as yy, ; =V, (j-1)h forj=1,2,..,N (8.12)
Similarly at y = 0 we have, y(x,0)=0.

These conditions are taken as y;; =0 fori=2,3,...M -1 (8.13)
Finally at y =y, we have, w(X,Y,)=0.

These conditions are taken as y; y =0 fori=2,3,.,.M -1 (8.14)

Now, we derive expressions for boundary values of ¢ in terms of v, which are

required for solving (8.10). We now assume for vorticity on x=0 (i.e., at (1, j)):

oy Oy oy
g1 :_[ Py + oy N =0, it QYW T, Tt Y3t Ay x N (8.15)

Substituting from the Taylor’s series expansions,

2 2 2 2
Wo,ju = l//lj+h(a j +h[a—‘”] +h—[a—l/§J AL (a ] +o(h3)
OX %y )p; 2\ ox L oy?
oy h? ( &%y 3
+h + +0O(h
V2 =] (6xj 2(ax N (")

oy (2h)*
l//3'j:%'j+2h(§lj 5 (ax } O(h3)

and retaining only terms up to O(h?), equation (15) becomes

821// oy
OX 2 ayZ

j =(y+a,+ay +a4)(//1j +[(al+a2 + a3 +2a4)h+a5](—aay/]
' X
1j

+(a3— al)h(%yj

Lj

h? |[ &%y h? [ &%y
(g +a,+ag+4a,)— }[ 2] +(yq+a3)— ( 2]
|: X )y 2Ly

The constants o’s are determined by equating the coefficients of like terms on the both

Lj

sides of this equation. Substitution of these values in (8.15) gives

1 8 2 :
61, ] :F(—V/z,j—ﬁfg‘ﬂz,j _l//z,j+l_§l//3,jj forj=23,..N (8.16)

where (%—Wj =0 from the boundary condition (8.8).
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Similarly, the expressions for vorticity at the remaining boundaries as:

onx=1,
1 8 2 .
Smj :F(_WMl,jl+§l//Ml,j _‘//Ml,j+1_§‘//|v|2,jj forj=23..N (8.17)
1 8 2 :
ony=0, ;iJ:F —z//i_1’2+§z//i,2—1//”1,2—5:/4,3 fori=23..M (8.18)
ony =Yyo,

“h? 3 3

in which the derivative boundary conditions in (8.8) have been employed.

1 8 2 )
gin (_l//il,N1+_l//i,N1_l//i+1,N1__l//i,NZj fori=23,..M (8.19)

Along with these boundary conditions, we have ¢ on the cylinder is given by Thom

(1933).

o= ('//G[_)Ws) (8.20)

where G is the point on the normal which cuts either vertical or horizontal grid line in
the flow region, S is the point on the cylinder and D is the distance between the points
GandS.

The equation (8.10) numerically will be solved using Liebmann’s iterative formula:

Gij :%(:il,j +Gij +§i,j—1+§i,j+1) (8.21)

boundary points on the cylinder are defined as the intersections of the horizontal-
vertical grid lines and the body surface. These points do not usually coincide with the
grid points. Thus the formula (8.21) cannot be used at some grid points in the

immediate neighbourhood of the cylinder.

Equation (8.21) is the Laplace equation (8.10) replaced by a finite difference
approximation on the assumption that the point (i, j) is equally spaced from its other
four neighbouring grid points. The difference equation (8.21) is generalized for an
arbitrary situation as shown in Fig. 8.2, where the point (i, j) is at different distances
a, b, c and d from four neighbouring points
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We let the vorticity function evaluated at these neighbouring points be denoted by
¢a Chy Ce, and &y respectively, and then approximate the left hand side of (8.10) at

(i, J) by the linear function:

Fc 0%¢

J =G j T UaGa + Al + UG + 4Gy (8.22)
% oy?

where a’s are coefficient to be determined. Expanding the four vorticity functions in

2 2
2%5) o)
1]

ol d?( o%¢ 3
Cijn=Cs=Ciy+ [ ]+—{——J+Od
j+ d — 5i,j ay g 2 ayz . ( )

and so forth. Substitution of these equations in (8.22) after rearrangement and

Taylor’s series about (i, j),

é’i—l,j :é/a é/IJ (zi/j

neglecting the cubic and higher order terms, we get

(824 ang :((lo+aa+ab+ac+ad)§ij+(bab_aaa)(6_§j +(d“d‘0“c)(a_§j
. ' OX i ay i

x% oyt )
2 [ °¢ 0*¢
+= (aa +b ab)(@x ]IJ+2(Ca +d ad)[ay Jlj

Equating corresponding coefficients on both the sides results in five simultaneous
algebraic equations whose solution is

(1 1} 2 2 2 2
a‘o__2 Oy = » Op = » O = » O =
ab cd a(a+b) b(a+Db) c(c+d) d(c+d)
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vanishing of the right hand side of (8.22) gives the desired difference approximation of
the Laplace equation:

éli i = é,a + gb + é,c + Cd /(i_i_ij (823)
' a(a+b) b(a+b) c(c+d) d(c+d)| \ab cd
fori=2,3,...,M-1land j=23, ..., N-1.
It can easily be shown that (8.23) is equivalent to (8.21) when a=b=c=d=h.

In the similar manner we solve equation (8.9) numerically using

viiz| Vo Vo Ve | W , G ,(i+ij (8.24)
4 la(a+b) b(a+b) c(c+d) d(c+d) 2 ab cd

fori=2,3,...,M-1land =23, ..., N-1.

The vorticity boundary conditions derived (8.16)—(8.20) help us to solve (8.10) if
is known at some interior points. But, the evaluation of y from (8.9) depends on the
distribution of vorticity within the bounded domain. Thus, v and ¢ are inter-linked,

and an iterative scheme will be build up to find the solution.

For initial guess, stationary state is first assumed so that v = 0 everywhere in the fluid
region. Based on this initial assumption, the boundary values for ¢ are computed from
(8.16)—(8.20) which shows that vorticity is initially generated at the boundary. This
concentrated vorticity at the boundary starts to diffuse into the cavity, resulting in a
temporary vorticity distribution which is the solution of (8.10) that satisfies the present
boundary conditions. This computed vorticity distribution causes a modification to the
assumed y after solving (8.9) subject to the restriction that we have in (8.8) on the
boundary. In this way we have completed the first iteration. To start the next iteration,
based on the modified stream function, the boundary values of vorticity are

recomputed. To obtain a new solution for y and ¢, the same procedure is repeated. At

every grid point, the difference between the newly computed ¢ and the previous value
is recorded as the local error during each iteration and the sum of absolute errors at all
grid points is called ERZETA. Similarly we find ERPSI, the corresponding sum of
absolute errors of y . lteration is terminated when both ERPSI and ERZETA are
smaller than a small positive value EPSLON (=10*). Since the desired accuracy is

reached, at this stage the solution is then considered to be satisfactory.
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8.3.2 Temperature

The energy equation, given in (8.3), by using (8.4), (8.5) can be reduced to the non-

dimensional form as below:

V20 = Pe(u%Jrv%j
oy

~ (8.25)

Temperature is subjected to the boundary conditions that i) the sides y=0, y=y,and on
cylinder are maintained at constant temperatures and ii) the other sides are supplied
with constant heat or constant heat flux. The conditions are given explicitly as

6=0o0ony=y, &d=1ony=0, =46, on cylinder

a0 _ onx=1 a0 _ onx=0 (8.26)
6X_ql - 6X_q2 B

Let uijz(é_l//J =‘//i,j+1_‘//i,j—1=f2 and Vijz_(ﬁ_wJ :_‘//i+1,j_‘//i—1,j:_fl
' g 2h ' x ), 2h

Proceeding as in the stream function and vorticity function equation (8.25) can be

generalizes as:

(2+af,Pe)b, N (2—-Dbf,Pe)g, N (2—cf,Pe)b,

0 - 1 a(a+b) b(a+Db) c(c+d) 8.7
”"2(1 1} (2 +df,Pe)6, (8.27)
—+— +—
ab cd d(c+d)

fori=2,3,...,Mand j=2,3,...,N

The boundary conditions in (8.26) are now expressed as:

_~ 00 1 . N\

at y=0, 6 =1 which implies that 6, =1 for i=2,3,..,M-1

at y=yo, € =0 which implies that 6 , =0 for i=2,3,..,.M-1 (8.28)
00 1 .
AL =G =6y, =§[40M_Lj ~ O 5, —2ha | for j=12,...N)

and on the cylinder &, ; =6, =0.5 where 6, is the reference temperature.

As in stream function and vorticity function in the equation (8.27) subjected to the

boundary conditions (8.28) will be solved for the temperature in the cavity.
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8.4 Results and Discussion

We have obtained the values of stream function and temperature for step length
h=0.01. The accuracy near to 4 decimal places is obtained by taking 1000 iterations.
Here the important steps involved in computation are to calculate 1). a, b, c, d values
adjacent to the cylinder and 2). D the distance between G and S in equation (8.20).
Here S is a point on the cylinder and G is a point on the grid line obtained by
intersection of normal with the grid. These are explained in the appendix.

8.4.1 Streamlines

The stream lines generated due to injection at the left wall and suction at the right wall
are shown in Fig. 8.3 to Fig. 8.5. The figures are drawn for different values of suction
parameter V. We observe from Fig. 8.3 that when the cylinder is middle of the cavity,
as suction parameter Vq increases, the region of high stream values (y>1) forming
loops increases at the right end of the cylinder and the stream lines with low values
(w<1) are separated. Again as Vy increases, a second circulation region is formed at
the top left corner. For small values of Vy, the stream lines with high values (y>1) are

nearly parallel to the right wall.

From Fig. 8.4, when a small cylinder is at the bottom left corner, for small suction
V=5, stream lines having small values <1 are parallel to the top wall and having high
values>1 are forming loops behind the cylinder and as V, increases, these loop lines
open to the top side and bifurcate from the region of looping. The presence of cylinder
effects entire region dominating suction. As suction parameter increases, effect of
suction spreads near to the cylinder and the values of stream lines away from the

cylinder also increase.

It is important to note that even though cylinder is small placed at left corner effects

the entire flow dominating the suction.

Form Fig. 8.5 when a small cylinder is at the top right corner, we find that for any
value of suction parameter, circulation loops are not found. It may be because there is
no space behind the cylinder to form wakes. For small values of suction, the stream
lines take small values and the flow is in four distinct regions. But when suction

increases, all distinct regions merge to a single region. But for any value of V,, we can
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find flow regions with w<1 and y>1. As V, increases the region with y>1 occupies

the most of the space.

It is important to note that when the cylinder is at the top right corner, no circulation
wakes are found. The circulation wakes behind the cylinder are best observed when it

is in the bottom left corner.

When there is no cylinder, the steam line pattern is shown in Fig. 8.13. For high
suction when the small cylinder is on the top corner, the flow is similar to the flow

without cylinder.

Stream Lines for V0=5 Stream Lines for V0=50
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Fig. 8.3: Streamlines for different values of Vo.
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Stream Lines for V0=5
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Fig. 8.4: Strearﬁlines for different values of Vy(=5,50,100) when cylindexr is at lower
left corner of the cavity.
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Fig. 5: Streamlines for different values of V;(:S, 50, 100)when cylinderxis at top right
corner of the cavity.

8.4.2 Vorticity Contours

The vorticity contours generated due to injection at the left wall and suction at the
right wall for different suction parameters Vy are shown in Fig. 8.6 to Fig. 8.8. We
observe that as V, increases, when the cylinder is middle of the cavity, the circulation
of vortex lines on the right side of cylinder increases and opens to the right top corner.
The values of vorticity are very high at the right wall and in the circulation region of
vorticity. Outside of the circulation region, vorticity takes negative values except at

top left region.

From Fig. 8.7, when a small cylinder is placed at the bottom left corner, for small
values of suction, circulation region above the cylinder spreads to the top corner. As
Vy increases, High positive values of vorticity are found on the entire left wall which is
opposite to the above case (when the cylinder is in the middle). As Vq increases,

circulation region confines to a small region near to the cylinder.
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From Fig. 8.8, when a small cylinder is placed at the top right corner, for small suction
parameter circulation region below the cylinder is small in area and this region spreads
in the entire cavity when suction increases. Here we find high negative values of

vorticity outside the circulation region at the top and bottom walls.

Vortlcny for V0=5 Vomcny for V0—50

Fig. 8.6: Vorticity contours for different values of Vo.
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Fig. 8.7: Vorticixty contours for different valtxjes of Vo(=5, 50, 100) when xcylinder is at
lower left corner of the cavity.
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Fig. 8: Vorticity contours for different values of Vy(=5, 50, 100) when cylinder is at
top right corner of the cavity.

8.4.3 Temperature field

The Fig. 8.9 to Fig. 8.12 display the nature of temperature contours. Fig. 8.9 shows the
isothermal lines for different values of V, at Pe=0.02. We observe that the line =1
divides the entire region into two parts: the region in which @ is less than 1 and the
region in which @ is more than 1. As Vj increases, the region with 6<1 increases and
spreads to the top wall. The region with 6>1 forms a circular loops. As V, increases,

the temperature in the region @>1 also increases slightly.

Fig. 8.10 shows the isothermal lines for different values of V, at Pe=0.02 when a small
cylinder is placed at the lower left corner. The region <1 is at the top of the cylinder
in a small area for all suction values. Near the right side of the cylinder we find very
high temperature.

Fig. 8.11 shows the isothermal lines for different values of Pe at V,=10. We observe

that Peclet number does not show much effect on the isothermal lines.

Fig. 8.12 shows the isothermal lines for different values of V, at Pe=0.02 when the
cylinder is placed on the top right corner. We observe that as Vy increasing, the region

6<1 is decreasing. This is opposite to Fig. 8.10 where the area for 6<1 increases.

From Fig. 8.14 and Fig. 8.10, we observe that temperature lines are similar when
cylinder becomes smaller and smaller. We observe that because of cylinder placed in
the cavity the temperature increases drastically in all cases in comparison with without

cylinder.

127



0.9
0.8
0.7

0.6

04
0.3
0.2

0.1

09
0.8
07
06
>05
0.4
03
0.2

0.1

Isothermal Lines for Pe=0.02, V0=5

Isothermal Lines for Pe=0.02, V0=50

1 T
1 08f £ ]
0.5 ' : 0.5 .
10 038 e
0 1
07 07 20
0.7
10
5 \ 10
02 04 0.6 02 0.4 0.6

X

Isothermal Lines for Pe=0.02, V0=100

0.1

0.7

0.7

10

1 o8t
07
06
>05
0.4
0.3
0.2

0.1

e

X
Isothermal Lines for Pe=0.02, V0=200

0.2 0.4 0.6

0
0e 1 0

0.2 0.4 0.6 0.8 1

Fig. 8.9: Isothermal lines for different values of V, at Pe=0.02.
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cylinder is absent in the cavity. and V=50 when cylinder is absent in the

cavity.

8.5 Conclusions

From the above observations we conclude that

> As suction parameter V, increases, stream line pattern will not change much
when the cylinder is in the middle of the cavity. But when it is at the top right corner
suction effect is very much high.

> Entire temperature zone is divided into two regions &<1 and &>1.

> As suction parameter Vy increases region 6<1 increases when cylinder is in left
bottom corner and decreases when the cylinder is at top right corner.

> The temperature increases drastically when a cylinder is kept in cavity. i.e., to
make quick heat transfer, we have to introduce some objects in the flow region of the

cavity.

130



Part -V

CONCLUSIONS

131



Chapter 9

Summary and Conclusions

In this thesis, the flow of viscous fluids and couple stress fluids in a rectangular cavity
is considered. The flow in a cavity is studied by many researchers by analytical
methods and Numerical methods. In Analytical methods only streamlines are
examined. In Numerical methods both flow and heat transfer are studied.

In the problems of present thesis, mainly the flow is generated due to the application
of suction and injection at the walls of the cavity. We considered two cases i)
suction/injection is applied on adjacent walls and ii) suction/ injection is applied on
opposite walls. In both cases, heat transfer within the cavity is studied by considering

entropy generation number and Bejan number.

Case: Suction/injection is applied on adjacent walls for viscous fluid flow.

For the flow of viscous fluids, the case of suction applied on opposite walls was
studied by many researchers. Hence we considered this case. Here we considered the
flow to be Stokesian and non-stokesian. When the flow is Stokesian, convective terms
are neglected on the assumption that Reynolds number is very small. In this case
stream lines are independent of Reynolds number and stream function satisfies

Biharmonic equation.

We observe that when V; suction parameter is less than 1, stream lines reenter at the
top right corner and when Vo>1, they re-enter at top left corner. The maximum value

of stream lines in the cavity is the value of Vgy if Vo>1 and 1 if Vo<1.

Isothermal lines are divided into two regions @>1 and 6<1. As suction parameter
increases, @ values within the cavity also increases. By considering the Bejan number,
it is observed that minimum fluid friction and maximum exergy is available at the

bottom left corner. Flow of heat lines increases when Reynolds number increase.
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When the flow is non-stokesian:

The above observations for stokesian flow for stream lines and isothermal lines
are still valid. But now, for Vo<1 and Re is high, we can find a secondary flow at the

top for a slit flow.

Case: Couple stress fluid flow along the channel axis.

In this case we observe that skin friction and volumetric flow rate decreases if
magnetic parameter increases. But couple stress parameter has no effect on volumetric
flow rate. The velocity profile takes more and more flat shape in the middle of the

channel if magnetic parameter increases. This is in fact Hartmann effect.

When equal suction and injection is applied, the axial velocity is studied. As Re
increases, the minimum value of contours of flow will be drifted towards left end
where suction is imposed. But when couple stress parameter increases, the region of
minimum contour value increases. After a critical value of Couple stress parameter,
the volumetric flow rate is almost constant. Skin friction decreases numerically when

magnetic parameter increases.
Case: A circular cylinder is introduced in the flow.

The vortex lines with value more than 1 form loops. The vortex lines outside this
region have negative values. The position of the cylinder effects the stream line pattern
very much. When the cylinder is near the bottom left corner, wakes behind the
cylinder are predominant. When the cylinder is at top corner, wakes behind the
cylinder are at minimum appearance. The temperature increases within the cavity

when a cylinder is inserted in the cavity.
Future scope of the problems

In all the problems of couple-stress fluid flows and flow past cylinder in a cavity, the
study of fluid friction by entropy analysis is interesting to examine. The couple-stress
fluid flow in the cavity when suction/injection is imposed (both cases on opposite
walls and adjacent walls) is also a challenging problem. The second law analysis can

also be studied for couple stress fluid flow regions.
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Appendix

Let the grid along x and y directions cut the circle at Q; and Q respectively. The
normals on the circle at Q; and Q- cut the grid at G; and G, along y and x directions.
Refer the figure 15.

Let S be the circle. The interval [0, 1] along x direction is divided into M—1 intervals.
The interval [0, yo] along y direction is divided into N-1 intervals. The grid points

along x, y directions are indicated by i and j. we take M and such that

U N or y, :M. i=j=1 and i=M, j=N are on the walls of the cavity.
M-1 N-1 M-1

Any point P has coordinates (x’, y') and has the corresponding grid numbers (x, y)
such that X =(x—1)h, y =(y-1)h. [we define grid number as (distance x)/(grid length h)].

. : M+1 N+1 .
We take centre of the circle C at the grid numbers( 2+ , 2+ j The corresponding

coordinates for C :(MT_l h, NT_lh) Let r be the radius of the circle and r = rgh.

( ro = number of intervals or grid numbers contained in cylinder)

2 2
The equation of the circle S: (x* _MT_lhj J{y* —NT_lhj =r’

M +1 N +1

= (x=M,)" +(y=N,)" =r? where M, = N, =

ah, if G is leftto P
b.h, if G isrightto P
c,h, if G is below P
d;h, if G is above P

X 1) — grid number

{(XS (] —1)h) — coordinates
Let the distance PG = (

Ql =
and
(i-Dh, y,) — coordinates
Q, = {E O)

i, Yo) — grid number

Let P1(i, j+1), Po(i, J-1), P3(i+1, j) and P4(i—1, j) be the grid points adjacent to P=(i,j)
in the cavity. Grid numbers for the adjacent points of P are PP,=a, PP3=b, PP,=c and
PP]_:d
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Calculating { on the cylinder when grid point (i, j) is adjacent to cylinder:

3"Quarter of the circle: If CP, <r,, then x, =M, —/r? —=(j—N,)?

b(N, — j)

PQ, =b =(x, —i)=grid numbers and hence ¢, = —— >
ro _(J - Nl)

: : Ve,
S We =CWi 1+ (1-C)y; ; by interpolating and ¢, = ——=—
° o : ot +c?

If CP, <1, then y, =N, —/r> —(i—-M,)*.

PQ, =d =(y, — j) =grid numbers and hence & :\/ g(Ml_l) =
KL —(0-M)
Ve,

W, =awiq; +(1—a)y, ; by interpolation and ¢, =———
Similar derivations are used when a grid point P is adjacent to the circle in 2™, 1% and
4™ quarters of the circle.

Calculating { on the cylinder when grid point (i, j) is on the cylinder (CP =r,):

i—M,

J—N;

Let5=‘

Where P=S is the grid point on the cylinder: If 6 <1, normal at S cuts grid parallel

to x—axis and If & >1, normal at S cuts grid parallel to y—axis.

hvl+62, if o<1

D=GS = T and ¢, =2¢—¥s - ¥s since y =0 on the cylinder.
L+ 7 if 6>1 D D

If P=S is on the 3" Quarter of the circle:

if 6<1, wq :5%71,,'71"'(1_5)‘/4,1'71 and ¢ = Fe

hy1+ 82
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Vo

h 1+i

52

. 1 1
ifo>1 yg = sV +(1_E)l//i—1.j and ¢ =

Similar calculations follow for 2™ | 1% and 4" quarters of the circle.

2
¥

i
i

i
£328a2E31an

Point P adjacent to and on cylinder. Point G where normal on cylinder cuts the grid.
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