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ABSTRACT

The prediction of heat or mass transfer characteristics about natural/mixed convection of
non-Newtonian fluids (particularly micropolar fluid or power-law fluids) has received con-
siderable attention because of its important applications in engineering. Micropolar fluids
are defined as fluids consisting of randomly oriented molecules whose fluid elements undergo
translational as well as rotational motions. Further, the micropolar theory is used to char-
acterize the fluid flow pattern of animal blood, polymeric additives, liquid crystals, colloidal
suspensions, lubricants, etc. On the other hand, fluids like molten plastics, glues, pulp,
slurries, and others are described by the Ostwald-de Waele power-law fluid model. The
heat transfer problems in micropolar fluid and power-law fluids subject to the convective
boundary condition are more extensive and it occurs in realistic situations. It is relevant
here to analyze the effect of of nonlinear convection (also known as, nonlinear Boussinesq
approximation) on the convective flow of non-Newtonian fluids in a porous medium. In all
mathematical models of a micropolar fluid and power-law fluids, the physical systems become
slightly more complicated leading to the complex interactions of the flow, heat, and mass
transfer mechanism. An attempt has been made to analyze the nonlinear convective flow
of micropolar fluid and power-law fluids over a convectively heated inclined plate saturated

porous medium in the presence or absence of cross-diffusion and double dispersion effects.

The thesis consists of FOUR parts and EIGHT chapters. Part-I consists of a single
chapter (Chapter-1), which provides an introduction to the concepts in a micropolar fluid,
power-law fluids, convective boundary condition, porous medium and also gives a review
of the pertinent literature. Part II consists of three Chapters (i.e., Chapters 2-4) and the
significance of nonlinear convective flow over an inclined plate in a micropolar fluid satu-
rated non-Darcy porous medium under the convective boundary condition is considered in
Chapter-2 whereas chapter-3 is an extension of chapter-2 in which cross-diffusion effects are
considered. Chapters-4 examines the double dispersion and Biot number effects on the non-
linear convective flow of a micropolar fluid over an inclined plate embedded in a non-Darcy
porous medium. Part III deals with the non-similarity solution of power-law fluid flows over
an inclined flat plate embedded in a non-Darcy porous medium subject to the convective
boundary condition in the presence or absence of cross-diffusion and double dispersion effects.
This part consists of three Chapters (i,e., Chapters 5-7), in which the nonlinear Boussinesq
approximation is also taken into consideration to address the heat and mass transfer phe-
nomena of power-law fluids. The final Part-IV consists of only one chapter (Chapter - 8)

which gives a summary, overall conclusions and scope for future work.

vi
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NOMENCLATURE

Coefficient of Forchheimer term
Biot number

Buoyancy ratio
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Skin friction coefficient
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Dufour number

Dispersion solutal diffusivity
Effective solutal diffusivity
Solutal dispersion parameter
Thermal dispersion parameter
Dimensionless stream function

Non-Darcy parameter (Forch-

heimer number)
Dimensionless microrotation

Gravitational acceleration

Gr

Gr*

kq

vil

Thermal Grashof number
Modified Grashof number

Convective heat transfer coeffi-
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Dispersion thermal conductivity

Effective thermal conductivity of
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Molecular thermal conductivity
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Global Reynold’s number
Mixed convection parameter
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Soret number

Temperature

Convective wall temperature
Mean fluid temperature
Ambient temperature

Free stream velocity

Darcy velocity components in the
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Molecular thermal diffusivity
Effective thermal diffusivity

Nonlinear density-temperature
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pansion coefficients
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pansion coefficients

Dimensionless micro-inertia den-

sity

Similarity variable

Tw

viil

Spin-gradient viscosity
Porosity

Vortex viscosity

Thermal dispersion coefficient

Dimensionless spin-gradient vis-

cosity

Component of microrotation
Angle of inclination
Dimensionless temperature
Dimensionless concentration

Consistency index of power-law
fluid

Dynamic viscosity

Solutal dispersion coefficient
Kinematic viscosity

Density of the fluid

Stream function

Wall shear stress

Stream-wise coordinate

Superscripts

Wall condition

Ambient condition
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Differentiation with respect to 7
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INTRODUCTION



Chapter 1

Preliminaries and Review

1.1 Introduction

The science of fluid dynamics encompasses the motion of gases and liquids, the forces that
are responsible for this motion and the interaction of the fluid with solids. This field stands
central to much of science and engineering and touches almost every aspect of our daily life.
Fluid dynamics, one way or other, impact defense, transportation, manufacturing, environ-
ment, medicine, energy, etc. From predicting the aerodynamic behavior of moving vehicles
to the movement of biological fluids in the human body, the weather predictions, cooling
of electronic components, the performance of microfluidic devices, all demand a detailed
understanding of the subject of fluid dynamics and substantial research, thereof. Due to
the complexity of the subject and breadth of its applications, fluid dynamics is proven to be
a highly exciting and challenging subject of modern sciences. The quest for deeper under-
standing of the subject has not only inspired the development of the subject itself but has
also suggested the progress in the supporting areas, such as applied mathematics, numerical
computing and experimental techniques. The fundamental axioms of fluid dynamics are the
conservation laws namely conservation of mass, Newton’s second law of motion (known as
conservation of linear momentum) and first law of thermodynamics (known as conservation

of energy) which states that energy and mass can neither be created nor destroyed. A large



number of problems in fluid dynamics have claimed the attention of mathematicians, physi-
cists, and engineers for many years. As a result, an enormous body of established results

has accumulated steadily but remains scattered in the literature.

Convective heat transfer, or simply, convection is the study of heat transport processes
affected by the flow of fluids and has gained significant importance in recent times. The
convective mode of heat transfer is generally divided into two basic processes. If the motion
of the fluid arises from an external agent, then the process is termed as forced convection. If,
on the other hand, no such externally induced flow is provided and the flow arises from the
effect of a density difference resulting from temperature variations in a body force field such
as the gravitational field, then the process is termed natural or free convection. When both
free and forced convection effects are significant and neither of the two can be neglected, the
process is called mixed convection. The phenomenon of free and mixed convection occurs in
many technical and industrial problems such as cooling of electronic equipment, materials
processing, and drilling operations. Apart from these applications, the free convection has
also been used to explain the connection between skin disease and respiratory disease such
as eczema and asthma respectively whereas the mixed convection has an important role in
controlling the temperature of a medium. Both free and mixed convection processes may be
divided into external flows over immersed bodies (such as flat plates, cones, cylinders and
wires, spheres or other bodies), free boundary flows (such as plumes, jets and wakes), and

internal flow in ducts (such as pipes, channels and enclosures).

The involvement and applications of mass transfer process go to a greater length in
multiple fields of science, engineering, and technology. The transport of a component in a
mixture from a region of high concentration to a region of low concentration is called mass
transfer. It is used by different scientific disciplines for different processes and mechanisms.
Coupled heat and mass transfer flows constitute a major area of research in modern fluid
dynamics. Such flows arise in electronic cooling, drying processes, manufacture of electric
cable insulations, curing of plastics, solar energy system, and purification processes. There
are two modes of mass transfer: mass transfer by diffusion and convective mass transfer.

The transport of mass by random molecular motion in laminar flowing fluids is known as



a mass transfer by diffusion, which occurs due to the concentration gradient, temperature
gradient, and hydrostatic pressure difference. The rate of molecular diffusion of mass can be
accelerated by the bulk motion of the fluid. Mass can be transported between the boundary
of a surface and a moving fluid or between two moving fluids which are relatively inhomoge-
neous. This mechanism of mass transfer is called convective mass transfer and is analogous
to heat transfer by convection (free or forced). For more details on the convective heat and

mass transfer, one can refer the text book by Bejan [19].

1.2 Porous Medium

A porous medium may be defined as a solid matrix containing holes either connected or
non-connected, dispersed within the medium in a regular or random manner provided such
holes occur frequently in the medium. If these pores are saturated with fluid, then the solid
matrix with the fluid is called a fluid-saturated porous medium. This type of analysis in
porous media plays an essential role in many fields of science and engineering, for instance,
petroleum engineering, groundwater hydrology, agricultural engineering, and soil mechanics.
But, the flow of the fluid in a porous medium is possible only when some of the pores are

interconnected.

To study the motion of fluids through porous media, one must have sufficient under-
standing of the governing equations for the fluid flow through a porous medium. Owing to
the intricate structure of the porous medium, several models have been proposed to explain
its mathematical and physical aspects. Among these, the Darcy model and a series of its
modifications have attained much acceptance. Further, the boundary layer assumptions have
been successfully applied to these models and much work over the last few decades has been

done on them for a wide variety of geometries.

Darcy Model

The governing equation of fluid motion in a vertical porous column was first given by Darcy

[34] in 1856. It represents a balance of viscous force and pressure gradient. In mathematical

4



form, it is written as

7= —%(Vp—pg*) (1.1)

where 7 is the space-averaged velocity (also, known as Darcian velocity), K, is the (intrinsic)

*

permeability of the medium, p is the fluid pressure, p is the density, ¢g* is the acceleration
due to gravity and p is the coefficient of viscosity. For one-dimensional flow and low porosity
system, the above law appears to provide good agreement with experimental results. As this
model does not take inertial effects into consideration, it is valid only for seepage flows, i.e.,

for flows with low Reynolds number [O(Re) < 1].

Darcy-Brinkman Model

It is assumed that the flow through an anisotropic porous medium with high permeability
must reduce to the viscous flow in a limit. In view of this, Brinkman felt the need to account
for the viscous force exerted by a flowing fluid on a dense swarm of spherical particles
embedded in a porous mass and added the term ' V2V to balance the pressure gradient.
Here 1/ is the effective viscosity given by p/ = p[l — 2.5(1 — €)], in which ¢ is porosity. The
validity of the Brinkman model is restricted to the high porosity medium (as confirmed by

the experiments) and its governing equation is given by
q M
~[Vp—pg') = =0 — 1'V*q (1.2)
p

Darcy-Forchheimer Model

In 1901, Forchheimer conducted experiments and proposed that inertial effects can be ac-
counted for by the addition of the square of velocity in the momentum equation. The

modification to Darcy’s equation is

1+”CF’|7|] 7=—fff[vp—pg*1 (1.3)



where ¢ is the dimensionless form drag coefficient and it varies with the nature of the porous
medium. The coefficients of Darcy and Forchheimer terms contain both fluid properties and the
microstructure of the porous medium. Several other models are found in the literature related to
porous media, and the validity and limitations of these models are well discussed in the textbook

by Nield and Bejan [75].

A Newtonian fluid is the fluid which exhibits a viscosity that remains constant regardless of any
external stress that is placed upon it, such as mixing or a sudden application of force. One example
is water, since it flows the same way, in spite of whether it is left alone or agitated vigorously.
Another way to describe these fluids is that they have a linear relationship between viscosity and
shear stress. Regardless of the shear stress applied to these fluids, the coefficient of viscosity will not
change. Further, Newtonian fluids are those that obey Newtons law relating shear stress and shear
rate with a simple material property (the viscosity) dependent on basic thermodynamic variables
such as temperature, concentration, and pressure, but independent of flow parameters such as shear
rate and time. This can be contrasted with the non-Newtonian fluids, which can become thicker

or thinner when stress is applied.

1.3 Non-Newtonian Fluids

A great deal of involvement has been brought forth to illustrate the nonlinear relationship between
the rate of strain and stress in non-Newtonian fluid models. But there is no single fluid flow model
which undoubtedly exhibits all the properties of real fluids. Therefore, during the last century,
several fluid models are proposed to characterize the real fluid behavior. Among these, the microp-
olar fluid and power-law fluids gained much importance. Micropolar fluid introduced by Eringen
[40] has distinct features such as micro inertial effect, the presence of couple stresses, body couples
and non-symmetric stress tensor. Whereas, Ostwald-de Waele power-law fluid model is proposed
by Ostwald [76] and de Waele [35] and it is one which characterizes the flow pattern of polymer
melt, glass, cosmetic products, grease, and much more, and it has substantial applications in many

engineering industries such as manufacturing processes, oil reservoir and chemical engineering, etc.



1.3.1 Micropolar Fluid

Micropolar fluid is the subclass of micro-fluids and deal with a class of fluids which exhibit some
microscopic effects arising from the local structure and micromotion of the fluid elements. Com-
pared to the classical Newtonian fluids, the flow motion of micropolar fluid is distinguished by
two supplementary variables, (i.e.,) the spin vector, responsible for the micro-rotations, and the
micro-inertia tensor that describes the distribution of atoms and molecules inside the fluid ele-
ments in addition to the velocity vector. Physically, micropolar fluid is the fluid which comprises
of rigid randomly oriented (spherical) particles where the deformation of the particles is ignored.
Some common examples of micropolar fluid are sediments in rivers, human blood, liquid crystal,
drug suspension in pharmacology, plasma, colloidal fluids, etc. These fluids may have immense
applications in diverse areas such as engineering sciences, lubrication theory, short waves for heat
conducting fluids, etc. A deep monograph to the micropolar fluid theory and its applications has

been reported by Ariman et al. [8, 9], Lukaszewicz [60] and Eremeyev et al. [39].

The governing equations of micropolar fluid are represented in terms of the velocity and the
microrotation vectors associated with each particle present in the fluid medium. The microrotation
vector explores the rotation in an average sense of the rigid particles centered in a small volume
element about the centroid of the element. The governing equations of the an incompressible

micropolar fluid [40], are given by

%+p(v-§) =0 (1.4)
p L= )T~ Vp KV x7) — (4 WV X (VX D)+ (A4 20 0) V(YT (15)
pi % = pl=2kV + K(V x ) =7V X (V X D) + (a1 + 1 +9)V(V - 7) (1.6)

where q is the velocity vector, 7 is the microrotation vector, j is the micro-gyration parameter or
micro-inertia density of the fluid, f is the body force per unit mass, ! is the body couple per unit
mass, K is the vortex viscosity, 7 is the spin-gradient viscosity and ¢ is the time variable. Also, the
material constants { u, x, a; } and {1, 51, 7} denote the viscosity and gyro-viscosity coefficients

respectively and satisfy the following inequalities:

K2>0,2u+Kk2>0, 3o+ 61 +7>0, 3N +2u+r2>0, [y[/>0, v>|3].



The force stress tensor 7;; and the couple stress tensor m;; are respectively given by

Tij = (—p + M V@) (Sij + (Q/L + /i) €ij + K €ijm (Qm — I/m) (1.7)

and

mi; = Q1 (Vﬁ) (51']‘ + 51 Vij+7 Vji (1.8)

where v; and 2(); are the components of microrotation and the vorticity vector respectively, d;;
is the Kronecker delta, e;; is the component of the rate of strain, ;5, is the alternative symbol
and comma in suffix represents covariant differentiation. The boundary conditions are treated for
microrotation such that there is no relative spin on the boundary, this condition is the generalization
of classical no-slip condition to require that the fluid particles nearest to a solid boundary stick to

it and neither translating nor rotating.

In the special case where the fluid has constant physical properties, no external body force exists
and for the steady-state flow, the conservation equations can be extremely simplified. Apart from
the previous case, when k = a1 = ; = 7 = 0 and with vanishing [ , the gyration vector disappears
and angular momentum equation (1.6) vanishes identically and the equation (1.5) reduces to the
classical Navier-Stokes equations. We also noticed that in the case of zero vortex viscosity (k = 0)
only, the velocity vector § and the microrotation vector 7 are decoupled and the global motion is

unchanged by the microrotation.

1.3.2 Power-law Fluids

A power-law fluid is a type of generalized non-Newtonian fluids for which the shear stress 7, can

be expressed as
n—1
ou

dy

ou
Jy

*

Toy = H (1.9)

Here, p* is called the consistency coefficient and n is the power-law index. The dimension of u*
depends on the value of n which is non-dimensional. When n = 1, the equation represents a
Newtonian fluid with a dynamic coefficient of viscosity p*. Therefore, the deviation of n from
unity indicates the degree of deviation from Newtonian behavior. One may interpret the physical
behavior of the fluid by appealing to an effective viscosity. For n > 1, the fluid is dilatant (e.g.,

suspensions of sand) or shear-thickening fluids in which apparent viscosity at high shear rates. For



n < 1, the fluid is pseudo-plastic (e.g., polymer solutions) or shear-thinning fluids that have a lower
apparent viscosity at higher shear rates. Shenoy [91, 92] presented many interesting studies on
convective heat transport in non-Newtonian power-law fluids saturated porous media in connection

with geothermal and oil reservoir engineering applications.

1.4 Convective Boundary Condition

In the analysis of convective heat transfer problems, a novel mechanism for the heating process
(known as Convective Boundary Condition) has drawn the involvement of many researchers (for
more details, see Aziz [13]). Because the convective flow of fluids with either wall temperature or
heat flux condition cannot explain the supply of heat with a finite heat capacity to the convecting
fluid through a bounding surface. Further, the heat transfer with a convective boundary condition
is more general and realistic especially with respect to various engineering and industrial processes
including material drying, laser pulse heating and transpiration cooling. Also, it occurs when a solid
substrate is in contact with a fluid at a different temperature and involves relative motion between
the fluid and the substrate. The magnitude of heat exchange is described in terms of Newton’s law
of cooling, for which the relevant constitutive property of the system is the convective heat transfer
coefficient. The convective boundary condition for heat transfer involves equating Fourier’s law of
conduction at the solid surface with Newton’s law of cooling in the fluid, as given below

—kfafy = hf(Tf — T) (1.10)

where hy is the convective heat transfer coefficient and k; is the thermal conductivity of the fluid.

1.5 Solution Procedure

The r number of dimensionless coupled nonlinear partial differential equations and their associated
boundary conditions are numerically solved using a novel Successive Linearization Method (SLM)
[64, 11, 56] together with the local similarity and non-similarity procedures [95, 65]. A brief details

of this procedure given in the following steps:



1. First, by following local similarity and non-similarity approaches,

e Reduce the r number of dimensionless coupled nonlinear partial differential equations
into a system of nonlinear ordinary differential equations by introducing the auxiliary

variables to the partial derivatives of the unknown functions.

e With these approaches, one can obtain 2r number of coupled nonlinear ordinary differ-
ential equations that need to be solved simultaneously in conjunction with the set of

respective boundary conditions.

2. Next, these resulting 2r number of set of nonlinear ordinary differential equations is linearized

using the successive linearization. For this,

e Consider the unknown functions as a combination of i*" stage unknown function and

sum of the known functions from initial to (i — 1) stage, as given below

i—1
Q) = Qi(n) + > Qum(n), i =1,2,3...
m=0

where Q is the notation for one of the unknown functions.

e Choose the initial guesses Qp(7) in such a way that these satisfy the set of boundary

conditions.

e Linearize the resulting 2r coupled nonlinear ordinary differential equations successively
by substituting the above assumed unknown functions and neglecting the nonlinear

terms containing Q;(n) (¢ > 1) and its derivatives to obtain set of linearized equations.

3. Later, use the Chebyshev spectral collocation method [21] to solve the system of 2r linearized

equations which are obtained in the previous step. In this method, we use the following steps:

1
e The transformation % = %, —1 <7 <1, is used to transform the domain [0, S].

e Discretized the transformed domain [—1, 1] using the Gauss-Lobatto collocation points.

e Approximate the unknown functions and its derivatives in terms of Chebyshev polyno-

mials Ty, (7) = cos[w cos™!7] at the collocation points.

e Substitute these expressions in the system of linearized differential equations to obtain

the matrix system.
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4. Finally, solve the resultant matrix system iteratively by starting with the initial approxima-

tions Qp(n).

1.6 Literature Review

The study of free and mixed convection due to a heated or cooled vertical surface provides one
of the basic scenarios for heat and mass transfer theory and thus, is of considerable theoretical
and practical interest. Free convection of heat and mass transfer occurs simultaneously in the
fields of design of chemical processing equipment, formation and dispersion of fog, distributions
of temperature, moisture over agricultural fields and groves of fruit trees. It also occurs in the
context of damage to crops due to freezing and pollution of the environment. The phenomenon
of mixed convection occurs in many technical and industrial problems such as electronic devices
cooled by fans, nuclear reactors cooled during an emergency shutdown, a heat exchanger placed in

a low-velocity environment, solar collectors, and so on.

Convective flow along a vertical surface embedded in a porous medium is one of the fundamental
and classical problems in the heat and mass transfer theory. It has attracted a great deal of interest
from many investigators owing to the broad applications such as geothermal systems, energy-
storage units, heat insulation, heat exchangers, drying technology, catalytic reactors, nuclear waste
repositories, etc. The literature relevant to the convective flows over different surface geometries in
Darcy and non-Darcy porous media has been reported by Ingham and Pop [47], Nield and Bejan
[75] and Vafai [105] (also see the citations therein).

Heat transfer analysis with convective thermal boundary condition is an essential and useful
consideration in the gas turbines, nuclear plants and heat exchangers related industries due to its
realistic nature. Also, it occurs when a solid substrate is in contact with the fluid at a different
temperature and involves relative motion between the fluid and the substrate. In many practical
applications involving cooling or heating of the surface, the presence of convective heat exchange
between the surface and the surrounding fluid cannot be neglected, and this is a very crucial aspect
in thermal materials processing industries. In this mechanism, heat is supplied to the convecting
fluid through a bounding surface with a finite heat capacity, which provides a convective heat

transfer coefficient. To address some of these applications, Makinde and Aziz [62] considered the
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convective thermal boundary condition for the analysis of magnetohydrodynamics cold fluid flow
along a vertical surface, whereas Hayat et al. [43] analyzed the effect of thermal radiation on the
stagnation point flow over a moving surface subject to the convective boundary condition. Influence
of magnetic field under the convective thermal condition has been analyzed by Murthy et al. [68]
for a thermally stratified nanofluid flow over a vertical surface in a non-Darcy porous medium.
Sivasankaran et al. [94] examined the effects of chemical reaction, heat generation/absorption and
radiation on the magnetohydrodynamic flow near a stagnation point in the presence of convective

boundary condition and slip effects.

Several investigators have shown much attention to non-Newtonian fluids in view of their ap-
plications in various aspects of industrial processing, the design of equipment, chemical and allied
processes such as cosmetics, synthetic polymers, biological fluids, synthetic lubricants etc. These
fluids reveal complex rheological nature which is not accomplished by Newtonian fluids. Among
the non-Newtonian fluids, the micropolar fluid is the one which takes care of the rotation of fluid
particles by means of independent kinematic vector known as the microrotation vector. The sub-
ject of free and mixed convective boundary layer flow of a micropolar fluid has been keyed out by
several investigators due to its immense applications in many engineering problems such as solar
energy collecting devices, air conditioning of a room, material processing, passive cooling of nuclear
reactors etc. The boundary layer flow over a semi-infinite flat plate is considered for a deep un-
derstanding of the micropolar fluid theory and its application to low concentration suspension flow
by Ahmadi [3]. Jena and Mathur [48] analyzed the mixed convection over an isothermal vertical
plate in a micropolar fluid and this work extended by the Wang [107] with the addition of wall
conduction. Hayat et al. [41] presented the laminar mixed convective flow of micropolar fluid along
a stretching sheet, whereas the influences of thermal stratification and uniform heat flux on the
natural convective flow of micrpolar fluid along a vertical plate have been discussed by Chang and
Lee [24]. Srinivasacharya and RamReddy [98] analyzed the effect of double stratification on mixed
convective flow of an incompressible micropolar fluid along a vertical plate and pointed out some
useful results. In recent times, the influences of Joule heating and thermal radiation on MHD
micropolar fluid have been discussed by Ramzan et al. [84] by taking the partial slip and convective

boundary conditions into account.

On the other hand, non-Newtonian power-law fluids are so widespread in industrial processes

and in the environment that it would be no exaggeration to affirm that Newtonian shear flows
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are the exceptions rather than the rule. Combined free and forced convective flows of power-law
fluid-saturated porous medium has been studied by Nakayama and Shenoy [72]. Non-Darcy mixed
convective flow of power-law fluids over an isothermal vertical plate with suction/injection effects
has been examined by Ibrahim et al. [46]. Kumari and Nath [58] studied power-law fluid flow
along a horizontal impermeable surface with variable surface temperature. Free convection from a
cone/flat plate in a non-Darcy porous medium saturated by the power-law fluid, has been analyzed
by Kairi and Murthy [52]. Further, Srinivasacharya and Reddy [100] discussed the importance of
chemical reaction and radiation on the power-law fluid flow along a vertical plate embedded in a

porous medium with the variable temperature and concentration wall conditions.

The analysis of convective flows over various geometries in non-Newtonian fluids in a porous
medium, has been provided because of its emerging applications in discrete aspects of engineering,
science and industry like solar energy collecting devices, air conditioning of a room, material pro-
cessing, cooling of molten metals and so on. Fluid flow, heat and mass transfer along an inclined
surface embedded in a porous medium with different boundary conditions is one of the thrust areas
of research in engineering. However, free/mixed convection along an inclined surface has received
less attention than the cases of vertical and horizontal plates. This concept has a wide range of
applications in the ash or scrubber waste treatment, chemical processing, electrical systems, brine
clarification, iron removal, food and dairy processing, coal and other mineral separation. Due to
this importance, Cheng [32] discussed the combined free and forced convective boundary-layer flow
along inclined surfaces embedded in porous media, whereas free convection from an arbitrary in-
clined isothermal plate embedded in a porous medium has been presented by Pop and Na [80].
Chamkha et al. [23] analyzed the influences of the external magnetic field and internal heat gen-
eration or absorption effects on the convective flow along an inclined plate. Numerical simulations
are performed by Rahman et al. [81] to investigate the effects of the non-uniform heat source (or
sink) and the fluid electric conductivity on the convective flow of micropolar fluid flow along an
inclined flat plate. Further, Murthy et al. [70] discussed the double-diffusive convective flow of a

nanofluid past an inclined plate in a non-Darcy porous medium.

The Soret effect (thermal diffusion), the existence of a diffusion flux in view of a temperature
gradient, becomes very noteworthy when the thermal gradient is very large. The energy flux
caused by a concentration gradient is termed as the Dufour effect (diffusion-thermo). Generally,

these effects are considered as a second-order phenomenon and may become significant in areas
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such as petrology, hydrology, geosciences, etc. Eckert and Drake [37] recognized many instances
when the importance of these effects cannot be neglected. Significance of cross-diffusion effects is
examined by Dursunkaya and Worek [36] for the transient and steady natural convection over a
vertical surface, whereas Alam and Rahman [5] studied the same effects with variable suction on
mixed convective flow past the vertical porous plate. Beg et al. [16] obtained a numerical solution to
investigate the influence of Soret and Dufour effects on the mixed convective flow of micropolar fluid
in a Darcy-Forchheimer porous medium. Tai and Char [103] employed the differential quadrature
method to examine the thermal radiation and cross-diffusion effects on the free convective flow of a
power-law fluid in a porous medium. Very recently, Reddy and Krishna [87] discussed micropolar
fluid flow towards a linearly stretching sheet in the presence of Soret and Dufour effects along with

the thermal radiation.

The double dispersion effects are more important in the flow region of a porous medium under
the condition that the inertial effects are not negligible (refer Nield and Bejan [75] and citations
therein). The double dispersion plays an important role in a steady fluid flow due to the combined
action of convection and molecular diffusion, and this concept helps to explain the differences often
observed between transport parameters measured along and across the principal directions of the
fluid flow over the considered geometries. The development of double dispersion has been mainly
related to miscible displacement and solute spreading in porous media. These kinds of effects
have notable importance in many engineering areas such as ceramic processing, oil reservoir, heat
storage beds, etc. In irregular geometries, especially in the packed beds, the transportation of fluid
through tortuous paths will lead to double dispersion effects at the pore level of porous media.
With this consideration, many authors to point out few, Murthy [67], Kairi and Murthy [51], have
exhibited the significance of double dispersion on the characteristics of the fluid flow through a

porous medium.

From the literature, it seems that the Boussinesq approximation is applicable for some flows in
which the temperature and concentration gradients vary a little. Therefore, the density variation
is less and the buoyancy drives the motion. In this approximation, the density is considered as
constant everywhere except in the buoyancy force term. When the temperature and concentra-
tion differences between ambient fluid and inclined surface are appreciably large, the mathematical
model developed by using a linear density relation becomes more inaccurate. For instant, some of

the thermal systems, e.g., areas of reactor safety, combustion, solar collectors, layered porous media
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of high thermal conductivity architecture (metallic foams and sponges), are operated at moderate
and very high temperatures. In such special cases, the temperature-concentration-dependent re-
lation becomes nonlinear. Also, the heat produced by the viscous dissipation and inertia, or the
presence of different densities are other reasons for the nonlinear density-temperature-concentration
relationship. This nonlinear variation in temperature-concentration-dependent density relation (to
be specific, nonlinear Boussinesq approximation or nonlinear convection) gives a strong influence to
the fluid flow characteristics (for more details, one can see the works of Barrow and Sitharamarao
[15], Vajravelu and Sastri [106]). Partha [79] examined the effects of cross-diffusion and double
dispersion with the nonlinear convection to the viscous fluid flow, whereas this work has been ex-
tended by Kameswaran et al. [54] in which thermophoretic effect is discussed in the absence of
cross-diffusion effects. Nonlinear convection over an impulsive stretching sheet has been examined

numerically by Motsa et al. [66] (and also see the citations therein).

This limited literature shows that the analysis of micropolar fluid or power-law fluids flow
over an inclined plate in a porous medium under different conditions has not received significant
attention so far. Also, it seems that the similarity solution does not exist for this kind of complex
fluid flow problems by using either Lie scaling group or other transformations. Hence, one has to
use appropriate non-dimensional transformations to find an approximate solution of the governing

partial differential equations.

Owing to the important applications of the micropolar fluid or power-law fluids saturated porous
medium, the convective flow over an inclined plate has been analyzed in this thesis. In addition,
the nonlinear Boussinesq approximation and convective boundary condition are incorporated into

the analysis. The problems that we studied are outlined in the next section.

1.7 Aim and Scope

The objective of the present thesis is to study the influence of nonlinear Boussinesq approximation,
double dispersion, Soret and Dufour effects on the free and mixed convective flows along an inclined
plate in a micropolar fluid or power-law fluids saturated non-Darcy porous medium in the presence
of convective boundary condition. This study focuses on the attributes of various effects such as

nonlinear convection parameters, Soret and Dufour numbers, Darcy and non-Darcy (Forchheimer)
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numbers, Biot number, thermal and solutal dispersion parameters. The problems considered in
this thesis deal with a semi-infinite inclined flat plate for the two cases: (i) free convection, (ii)

mixed convection.

1.8 Outline of the Thesis

This thesis is arranged in four parts with a total of eight chapters.

Part I consists of single Chapter (i.e., Chapter-1). It is introductory in nature and gives moti-
vation to the investigations carried out in the thesis. A survey of pertinent literature is presented
here to show the significance of the problems considered. The equations which govern the flow,
heat and mass transfers of a micropolar and power-law fluids along with the details of numerical
procedure (viz., local similarity and non-similarity technique, and successive linearisation method)

are given in this chapter.

Part II presents the boundary layer analysis to study the effects of cross-diffusion, thermal and
solutal dispersion on the nonlinear convective flow of a micropolar fluid along an inclined plate
embedded in a non-Darcy porous medium with convective boundary condition. This part consists

of three Chapters (i.e., Chapters 2-4). The details of these chapters are given below.

In Chapter-2, a mathematical model is presented to investigate the nonlinear variation in
temperature-concentration-dependent density relation on the free and mixed convective flows of
a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of
convective boundary condition. The effects of the angle of inclination, Biot number, nonlinear con-
vection, non-Darcy and micropolar parameters on the fluid flow, heat and mass transfer rates are
exhibited graphically. Further, the skin friction and wall couple stress are presented quantitatively

for the above-said parameters.

The combined effects of diffusion-thermal and thermal-diffusion on the free and mixed convec-
tive flows along an inclined plate in a non-Darcy porous medium saturated by a micropolar fluid
subject to the convective boundary condition, are examined in Chapter-3. The effects of physical
parameters on the velocity, microrotation, temperature, concentration, skin friction, wall couple

stress, heat and mass transfer rates along an inclined plate are given and the salient features are
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discussed.

In Chapter-4, the significance of Biot number and double dispersion effects on the natural and
mixed convective flows of an incompressible micropolar fluid saturated non-Darcy porous medium in
the presence of nonlinear Boussinesq approximation, is analyzed. The effects of various parameters
on the velocity, microrotation, temperature, concentration, skin friction, wall couple stress, heat

and mass transfer rates are presented through graphs.

Part III deals with the non-similarity solution of an Ostwald-de Waele power-law fluid flow over
an inclined flat plate in a non-Darcy porous medium subject to the convective boundary condition
in the presence or absence of cross-diffusion and double dispersion effects. This part consists of
three Chapters (i,e., Chapters 5-7), in which the nonlinear Boussinesq approximation (known as
the nonlinear convection) is also taken into consideration to address the heat and mass transfer

phenomena of power-law fluids. The details of these chapters are given below:

Chapter-5 discusses the significance of nonlinear Boussinesq approximation on the free and
mixed convective flows of Ostwald-de Waele power-law fluids along an inclined plate in a non-
Darcy porous medium in the presence of convective thermal boundary condition. This numerical
study explores the impact of pertinent parameters on the fluid flow characteristics through graphs

and the salient features are discussed in detail.

The non-similarity solution for the nonlinear convective flow of non-Newtonian power-law fluids
along an inclined plate in a non-Darcy porous medium, is obtained in Chapter-6. In addition, the
convective thermal boundary condition, diffusion-thermal and thermal-diffusion effects are taken
into account. The effects of the angle of inclination, Soret number, Dufour number, Biot number
and nonlinear convection parameters on the velocity, temperature and concentration profiles are
presented graphically for all three kinds of fluids (pseudo-plastic, Newtonian and dilatant fluids).
Moreover, the non-dimensional Nusselt and Sherwood numbers against stream-wise coordinate for

various values of the pertinent parameters are also analyzed through graphs.

In Chapter-7, an attempt has been made to study the effects of thermal and solutal dispersion
on free and mixed convective flows of Ostwald-de Waele power-law fluids over an inclined plate
embedded in a non-Darcy porous medium subject to the convective boundary condition, are dis-
cussed. Additionally, the nonlinear Boussinesq approximation is incorporated in the momentum

equation. The effects of various parameters, namely thermal dispersion, solutal dispersion, Biot
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number, nonlinear convective parameters and power-law index on physical quantities of the flow

are explored in detail and some interesting results have been obtained.

In all the above chapters (i.e., Chapter-2 to Chapter-7), the nonlinear governing partial differ-
ential equations and their associated boundary conditions are initially cast into dimensionless forms
by using suitable non-similarity transformations. First, the resultant system of nonlinear partial
differential equations is transformed into system of nonlinear ordinary differential equations using
local similarity and non-similarity approaches. Next, the obtained system of nonlinear ordinary
differential equations are converted into an iterative sequence of linearized ordinary differential
equations by using successive linearization procedure. Finally, the Chebyshev collocation method
is used to solve the resultant iterative sequence of linearized ordinary differential equations. In
order to check the accuracy and validity of these problems, the obtained results are compared
against previously published work wherever possible on special cases and are found to be in good

agreement.

Lastly, Part IV consists of a single Chapter (i.e., Chapter-8). The main conclusions of the
earlier chapters are recorded and the directions in which further investigations may be carried out,

are indicated in this chapter.

List of references is given at the end of the thesis. The references are arranged in alphabetical
order and according to this order, citations appear in the text. In the individual Chapters, in
some of the Chapters, details which are already presented in the earlier Chapters are avoided. As
a review of the existing literature is presented in the introductory Chapter itself, in each of the
Chapters only a brief introduction to the concerned problem is given. Also, the physical meaning

of the various parameters is given in the Chapters repeatedly for the easy readability of readers.

All problems undertaken in the present thesis are published/accepted for publication in the

reputed journals. The details are presented below:

List of papers published

1. “Quadratic Convective Flow of a Micropolar Fluid along an Inclined Plate in a Non-Darcy
Porous Medium with Convective Boundary Condition”, Nonlinear Engineering—Modeling and

Application, Vol.6(2) (2017), pp. 139-152.

18



10.
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Chapter 2

Effect of Biot Number in a
Non-Darcy Porous Medium Saturated

with a Micropolar Fluid !

2.1 Introduction

One of the best established theories of fluids with microstructure is the theory of micropolar fluids.
The micropolar fluids may be treated as non-Newtonian fluids consisting of dumbbell molecules
or rigid cylindrical elements. The analysis of free and/or mixed convection in a micropolar fluid
saturated porous medium has received a considerable interest from theoretical and practical point
of view. Several authors, to mention few, Rawat et al. [85], Shafie [88] and Srinivasacharya and
RamReddy [97], examined the heat and mass transfer characteristics of micropolar fluid in a non-

Darcy porous medium.

Convective boundary condition plays a vital role in the mechanism of supplying heat to the
convecting fluid through a bounding surface with a finite heat capacity. It is because of its uni-
versal and realistic nature particularly in diverse technologies and industrial operations such as

transpiration cooling process, textile drying, laser pulse heating etc. In view of these applications,

!Case(a): Published in “Frontiers in Heat and Mass Transfer” 9(35) (2017) 1-10, Case(b): Published
in “Nonlinear Engineering - Modeling and Application” 6(2) (2017) 139-152.
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Yacob and Ishak [108] investigated the stagnation point flow towards a stretching/shrinking sheet
immersed in a micropolar fluid with the convective boundary condition. In recent times, the influ-
ence of homogeneous-heterogeneous reactions on convective heat flow of a micropolar fluid along a
vertical plate in a porous medium under the convective boundary condition, has been discussed by

Ramreddy et al. [83] (also refer the references given therein).

The concept of nonlinear convection in the study of boundary layer fluid flow problems is of great
importance in a variety of disciplines such as astrophysics, geophysics, geothermal and engineering
applications. Mallikarjuna et al. [14] analyzed the effect of thermophoresis on the viscous fluid
flow past a rotating cone in the presence of nonlinear convection. Recently, the effect of nonlinear
thermal convection on the boundary layer flow of a micropolar fluid over a vertical plate subject

to the convective boundary condition, has been investigated by RamReddy and Pradeepa [82].

From the literature survey, it seems that the problem of nonlinear convection along an inclined
plate in a micropolar fluid with the convective boundary condition has not been investigated so
far. Hence, the aim of the present chapter is to analyze the effect of nonlinear convective flow of a
micropolar fluid along an inclined plate in a non-Dacy porous medium with the convective boundary
condition. But, this type of mathematical modeling becomes slightly more complicated leading to
the complex interactions in flow, heat and mass transfer mechanisms. The governing system of
nonlinear partial differential equations is transformed to a set of nonlinear ordinary differential
equations by local similarity and non-similarity procedures and then the successive linearization
method is used to solve the resulting boundary value problem. Also, the influences of important
parameters on the physical quantities of the flow, heat and mass transfer rates are analyzed under

different flow situations.

2.2 Mathematical Formulation

Consider the steady, laminar and two-dimensional flow of an incompressible micropolar fluid along
a semi-infinite inclined flat plate in a non-Darcy porous medium. Choose the coordinate system
such that the x-axis is along the plate and y-axis is normal to the plate. The semi-infinite plate
is inclined about vertical direction with an acute angle Q as depicted in Fig.(2.1). In the figure,

M.B.L is used to represent the momentum boundary layer, while T.B.L and C.B.L are used to
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Figure 2.1: Physical model and coordinate system.

represent the thermal and concentration boundary layers respectively. The velocity of the outer
flow is assumed to be uy, whereas the free stream temperature and concentration are taken as Ty,
and Cy respectively. The plate is either heated or cooled from a flow field of temperature Ty to
the left by convection with Tt > T relating to a heated surface (assisting flow) and Ty < T
relating to a cooled surface (opposing flow) respectively. On the wall, the solutal concentration
is taken to be C, which is a constant quantity. The porous medium is taken to be uniform
with a constant permeability and porosity, and is saturated by a micropolar fluid which is in the
local thermodynamic equilibrium with the solid matrix. Further, the temperature difference and
concentration difference between the surface of the plate and the ambient fluid are assumed to be
significantly larger. Hence, the linear Boussinesq approximation becomes inaccurate in the present

analysis.

Under the consideration of usual boundary layer assumptions together with the nonlinear
Boussinesq approximation, the governing equations for the micropolar fluid flow in an isotropic

and homogeneous non-Darcy (Darcy-Forchheimer model) porous medium can be represented as

ou Ov
2 + a@ =0 (2.1)
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where v and v are the Darcy velocity components in = and y directions respectively, w is the
component of micro-rotation whose direction of rotation lies in the xy-plane, T is the temperature, C
is the concentration, ¢g* is the acceleration due to gravity, p is the density, u is the dynamic coefficient
of viscosity, b is the empirical constant, K, is the permeability, x is the vortex viscosity, j is the
micro-inertia density, 7y is the spin-gradient viscosity, € is the porosity, € is the angle of inclination,
« is the thermal diffusivity and D is the solutal diffusivity of the medium. Further, 5y and (3, are
used to represent the first and second order thermal expansion coefficients respectively. Further
more, B2 and ({3 are used to represent the first and second order solutal expansion coefficients

respectively.

The corresponding boundary conditions are

or
u=0,v=0 w=0, k:fa =hy(Ty=T), C=Cy at y=0

(2.6)
U= U, w=0, T=T, C=Cyx as y—

where the subscripts w and co indicate conditions at the wall and at the outer edge of the boundary
layer respectively. Generally, w = 0 represents the case of concentrated particle flows in which the
micro-elements close to the wall are not able to rotate. Further, the assumption v = (,LL + g) Jis
incorporated to allow the field equations to predict the correct behavior in the limiting case when
the micro-structure effects become negligible and the total spin w reduces to the angular velocity
[3]. Furthermore, hy is the convective heat transfer coefficient and &y is the thermal conductivity

of the fluid. The same symbols are used throughout the thesis unless otherwise specified.

Now, we introduce the stream function v such that it satisfies the continuity equation (2.1)
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automatically, and it is defined as
O i

= = — 2.
u 9y v e (2.7)

In this chapter, two types (cases) of problems are considered: (a) free/natural convection and

(b) mixed convection.

2.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow which is caused by only buoyancy forces and
without any external agent. Hence, the velocity of the external flow becomes zero (i.e.,us = 0).

Initially, we introduce the following dimensionless variables

oz v g 1 ,LLGT‘i £ _luGr% fi
T-Tx C—-Cx

9 Bo(Ty — To) L?
2
ber, L is the characteristics length, f is the dimensionless stream function, g is the dimensionless

where £ is the stream-wise coordinate, Gr = is the global thermal Grashof num-

microrotation, 6 is the dimensionless temperature and ¢ is the dimensionless concentration.

Substituting the stream function (2.7) and the transformations (2.8) into Eqgs.(2.1)-(2.5), the

governing equations reduce to the following form:

1 1 " 3 1" 1 N o Fs oo fé /
(12) £+ gt = gl + (1o )~ Gt = =5t

FAA I=N Da DaGr2 (2.9)
F0(1 + a10) + Bo(l + ase)] cosQ = 5( OF w0l
g2 ¢ ¢
w, 3., 1, N 1 1.\ _ €&(.,09 Of,
Ag ‘|‘45f9_45f9_<1—]\7>~7€2 (29+€f>—6< (9§_<9§g> (2.10)
Lo 3 py = /@_ﬁ/
! Tl _5( € a§9> (2.11)
Iy, 3 ;o ,8¢_8i,
57 T3l §<fa§ o ) (2.12)

In the above equations, the primes represent partial derivative with respect to n alone. Fur-
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ther, N = < n > is the coupling number (0 < N < 1) (Ref., Cowin [33]), Da
A+ K

b Cy—C
Darcy number, F's = — is the Forchheimer number, B = M is the buoyancy ratio,
L Bo(Ty — Tec)
T, — T, Cy —C
a1 = Bl(fﬁoo) is the nonlinear density-temperature parameter (NDT), ag = M
0

K
= L—g is the

; Jpv
L
J =

v v
- is the micro-inertia density, Pr = — is the Prandtl number and Sc = — is the Schmidt
jGr2 o

number.

B2
is the nonlinear density-concentration parameter (NDC), A = l is the spin-gradient viscosity,

The boundary conditions (2.6) become

Pe0) =0, 560 = —56(50) L a(€.0) = 0.8 (€0) = ~Bie! (1 0(c.0).
.-

(2.13)
¢(£a0) =1, f/(g,OO) = 07 g(f,OO) = 07 ‘9(5700) = O’ (]5(5, OO) = 0,

h¢L
where Bi = —1 -
kf Gri

is the Biot number and physically, it is the ratio of internal thermal resistance

of the plate to the boundary layer thermal resistance of the hot fluid at the bottom of the surface.

The wall shear stress and wall couple stress are given by

Tw = [(,u + /{)@ + mw] and my, =y [aw} , (2.14)
8y y=0 ay y=0
and the heat and mass transfer rates from the plate are given by
oT oC
quw = —k [] and ¢, = —D {} . 2.15
oy, o), (2.15)
. . . .. 2Ty Moy
The non-dimensional skin friction Cy = —, wall couple stress M,, = ——, local Nusselt num-
U puLx
ber Nu, = m and the local Sherwood number Sh, = %, are given by
1 2 -3 1 A
thGT.Z = <> fo”(§7 0)7 MwGri = <) g/(fa 0)7
1-N ¢J (2.16)
Nug Gri = —£1 6/(€,0), Shy Gro = —£1 ¢/(€, 0),

where u, is the characteristic velocity.
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Numerical Solution

The governing Egs.(2.9)-(2.12) along with the boundary conditions (2.13) are solved numerically
using successive linearization method (SLM) together with the local similarity and non-similarity

approaches. The details are given below:

Local similarity and non-similarity approaches:

It is used to convert the set of nonlinear partial differential equations (2.9)-(2.12) along with the
boundary conditions (2.13) into a set of nonlinear ordinary differential equations along with the

associated boundary conditions (for more details, one can refer [95, 65]).

Before proceeding to the local non-similarity procedure, it is useful to examine the boundary-

layer equations (2.9)-(2.13) from the perspective of local similarity concept.

Local similarity model

To derive the equations for local similarity model, one can assume that the terms on the right side

of Egs.(2.9)-(2.13) are sufficiently small so that they may be neglected. This can be true for a

particular case of £ << 1. Under this assumption, the local similarity equations are given by

1 1 m 3 1 [ N I 1 /
+[0(1 4+ a10) + Bo(1l + agp)] cosQ =0

N|=

1 3 N 1 /1
Mo f e - <1—N> Je <5f"+29> =0 (2.18)
1 /! % !/
50"+ S f0 =0 (2.19)
1 " § ’
Lo 20 =0 (2.20)

28



The associated boundary conditions (2.13) become

F1(6,0) = f(£,0) = g(£,0) =0, ¢ (£,0) + Bi&i [1 —6(¢,0)] =0,
¢(€70) = 1a f/(gv OO) = 9(67 OO) = 9(& OO) = ¢(€7 OO) =0.

(2.21)

The parameter ¢ contained in the governing equations and boundary conditions can be regarded
as assigned constant at any stream-wise location along the plate. As a result, the governing equa-
tions transformed by the local similarity method can be treated as a system of ordinary differential
equations with partial non-similar effects retained in the linear momentum equation, angular mo-
mentum equation and the boundary conditions. Here, the solutions are different for different values
of the stream-wise coordinate £. This can be seen by assigning different values to £ along the plate

and plotting the respective boundary layer distributions.

On the other hand, the non-similar terms on the right hand side of Egs.(2.9)-(2.13) are vanished
in the local-similarity procedure. The local similarity postulation requires £ to be close to zero.
Otherwise, the whole term in the bracket on the right hand side of Egs.(2.9)-(2.13) must be minimal
to justify the exclusion of non-similar terms. The validity of the latter assumption, however, is

subject to uncertainty and this is a weakness of the local-similarity procedure.

Local non-similarity model

In order to overcome the limitations imposed by local-similarity procedure, the local non-similar

of

equations will now be derived. For this, consider the auxiliary variables U, V, H and K as 8—5 =U,
dyg 00 ) . . . :
675 =V, 875 = H and a—g = K to recover the omitted expressions in the previous model. In-
troducing these functions into Eqs.(2.9)-(2.13), we get the first set of auxiliary equations as given
below
1 1 3 1 N Fs 1 1
) et gt ()9 e e 0.22)
+[0(1 + a10) + Bo(1 4+ a)] cos Q = E% (fU - f'0)
st -l (o) 7€ (e 1) =S v -gn) e
Ly §f¢9’ =¢(fH-0'U) (2.24)
Pr 4
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Loy 3,0 I pe
§¢ +1f¢ _§(fK ¢U> (2.25)

along with the boundary conditions

£(6,0) + SEU(E,0) = F'(6,0) = o(6,0) =0, ¢'(€,0) = ~Big [9(6,0) ~ 1],
¢(§70) =1, f/(gv OO) = g(ga OO) = 9(5700) = (b({?OO) =0.

(2.26)

Differentiating the above Eqgs.(2.22)- (2.25) along with the boundary condition (2.26) with respect
to & and neglecting the terms involving the derivative functions U, V, H and K with respect to &,
we obtain the second set of auxiliary equations which are given as

-1 1
1/ 1 N £z £2 Fs
- <1> U+ —Uf” + 62fU” + ( > V' — f- N

1-N 2 Da Grl DaGr 3 Da (2.27)
+[H(1 + 2010) + BK (1 + 2056)] cos Q — 2 [ €+ ] FU = % (U’2 U )
1/ N - 1 N 1
)\V” + lUg/ _ = jle 29 + 7](‘// _ o j{% 2V + 7U”
4e 2\1—-N € 1—-N e (2.28)
B, 1., 5 '
V' - U V=2 (VU'-Vv'U)
iH” + ZU@’ + §fH’ —f'H=¢(HU' - H'U) (2.29)
Pr 4 4
i 1" Z / § A E P (A P
K'+-U¢ +=fK' — f'K =¢ (KU — K'U) (2.30)
Sc 4 4
along with the boundary conditions
1 .
U'(€.0) = U(&,0) = V(£,0) = 0; H' (¢,0) — Big 1 H (€,0) + 7 Bi€ 7 [1 — 6(¢,0)] =
(2.31)

K(&,0) = U'(§,00) = V(£ 00) = H(§, 00) = K(§,00) =

The two-equation model involves eight coupled equations [i.e., (2.22)-(2.25) and (2.27)-(2.30)] that
need to be solved simultaneously in conjunction with the two sets of boundary conditions [(2.26)
and (2.31)]. Therefore, the local non-similarity procedure preserves the non-similar terms in original
governing equations and boundary conditions because we are dropping the non-similar terms from
its auxiliary equations only. Since the original governing equations remain intact, the local non-

similarity solution is expected to be more accurate than the local-similarity solution.
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Successive linearization method:

In this section, the resulting system of ordinary differential equations (2.22) to (2.25) and (2.27)
to (2.30) along with the boundary conditions (2.26) and (2.31) is solved using the Successive
Linearization Method (SLM) (for more details, one can refer the works of Makukula et al. [64],
Awad et al. [11] and Khidir et al. [56]). This method utilizes the successive linearization initially
and then the Chebyshev spectral collocation scheme (see., Canuto et al. [21]) to solve the system

of nonlinear ordinary differential equations.

In this method, a notation Q(7) is used to represents one of the unknown functions f(n), g(n),

0(n), ¢(n), U(n), V(n), H(n) and K(n) and it is assumed as given below

1—1
m=0

where Q;(n) is the unknown function, and Q,,(n) (m > 1) are successive approximations which are
obtained by recursively solving the linear part of the system that results from substituting (2.32)

into the Eqs.(2.22) to (2.25) and (2.27) to (2.30) along with boundary conditions (2.26) and (2.31).

The main assumption of successive linearization is that Q; become increasingly smaller when ¢
becomes large, that is
lim Q; =0 (2.33)
1— 00
The initial guesses Qq(n) are chosen in such a way that these guesses satisfy the boundary condi-
tions (2.26) and (2.31). Thus, starting from the initial guesses, the subsequent solutions Q;(n) are
obtained by successively solving the linearized form of the equations which are obtained by sub-
stituting equation (2.32) in Egs.(2.22) to (2.25) and (2.27) to (2.30) and neglecting the nonlinear
terms containing Q;(n) (¢ > 1) and its derivatives. Therefore, the resultant linearized equations
(which are obtained by expressing in terms of unknown functions f, g, 6, ¢, U, V, H and K) which
has to be solved, are as following

pri—1fi" + poi1fi + P31 fi + Pai-1fi + Psi-19; + Do i—16i + Pri16 (2.34)

+08,i—1U; + Po,i—1U; = F1,i—1
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Qi1 f! + @i fi + @i-1fi + Gai—19] + Gs5i-19; + G6.i—19i + Gr.i—1U;

(2.35)
+qg,i-1Vi =T2; 1
S1,i-1f] + S2i—1fi + 83i-10] + Sa,i—10; + S5,-1U; + S6;—1H; = F3,1 (2.36)
tricifl+to i1 fi +t3io10] +taio16; + 51U + tei1 K = Ta1 (2.37)
ari—1fi + agi-1f] + asi—1fi + aai—10; + asi—1¢; + a6 i—1U]" + ari—1U; (2.38)
tas,i—1U] + a9 i—1U; + a@10-1V; + a11i—1H; + a12;-1K; = T5,-1
b1 f! +boi1fl +bsi1fi +bai19, + bsi19i +bei1U!' + b7 1U] (2.30)
+58,i—1Ui + 697i—1‘/i// + 510,2’—1‘/{ + 511,i—1Vi =T6i-1
Cri—1fi + Coic1fi+ 310 + Ca;1U] + C5,-1U; + Coi—1 H, + ¢7,i-1H]
(2.40)
+Cgi—1H; =T74 1
dii1fl +doi1fi +dsi1d) +da; Ul +dsi U +dg; 1K + dri 1K} (2.41)
tdsi1K; = Fs1
together with the reduced boundary conditions
1
fi(0) = £1(0) = fi(00) = 0, gi(0) = gi(00) = 0, 6;(0) — Bi£46;(0) = 0, 0i(c0) =0,
$i(0) = ¢i(0c0) = 0, Ui(0) = U;(0) = Uj(00) = 0, V;(0) = Vi(o0) = 0, (2.42)

HI(0) — Bigh Hi(0) — [ Bi& ¥ 0:(0) = 0, Hiloo) = 0, Ki(0) = Kifoo) = 0,

Here the coefficient parameters Pe;i—1, ei—1, Se,i—1s te,i—1, Geji—1,, bei=1, Cen—1, dei—1 and Tei_1
depend on the initial guesses Qy(n) and on their derivatives. Once each solution for Q; has been
obtained by iteratively solving Eqs.(2.34) - (2.41) for each 4, the approximate solutions for Q(n)

are obtained as

Q) = > Qu(n), (2.43)

where M is the order of successive linearization approximations. Since the coeflicient parameters
and the right-hand side of Eqs.(2.34)-(2.41) for i = 1,2,3... are known (from previous iterations),
the system of Eqgs.(2.34)-(2.41) along with the boundary conditions (2.42) can be solved easily using

any suitable numerical method.

32



But, the resultant linearized Eqs.(2.34)-(2.41) are solved by an established procedure, namely
Chebyshev spectral collocation method (Canuto et al. [21]). This method is based on the Chebyshev
polynomials which are defined on the interval [—1, 1]. So, the physical region [0, 00) is transformed
into the region [—1, 1] using the domain truncation technique in which the problem is solved on the

interval [0, S] instead of [0, 00). This leads to the mapping

1
%:T; : 1<r<1 (2.44)

where S is the scaling parameter which is used to invoke the boundary condition at co.

The unknown functions Q; are approximated, as will be discussed below, by the Chebyshev
interpolating polynomials in such a way that they are collocated at the Gauss-Lobatto collocation

points defined as

T :cosm, m=0,1,...,.N (2.45)

where N is the number of collocation points.

The unknown functions Q; are approximated at the Gauss-Lobatto collocation points as

N I N
Qi(m) =) Qi(7) Th(m) WQ@‘(T) => DLQi(r), m=0,1,..,. N (2.46)
k=0 k=0

where T}, is the k' Chebyshev polynomial given by Ty(7) = cos[k cos™'7], D is the Chebyshev

spectral derivative matrix such that D = (2/5)D and Z is the order of differentiation.

After substituting (2.44)-(2.46) into the linearized form of equations (2.34)-(2.41), the required

solution is given by
Y, =B 'R, (2.47)
In Eq.(2.47), B,_;isa square matrix of order (8 + 8) and S?i, R,_; are column matrices of order

(8N + 1), which are defined by

Bi—l = |:]§kj:| s for k,j = 1,2, 8, Y~'z == Fz @Z (:)z CI)Z [DZ Vz Hz Kz ,

R. — [z, . 7o - 7o - 7. - 7 - 7. - 7 - 7o - T
i—1 = [Zl,z—l Z2i—1 231 Z4,i—1 2551 26,i—1 Z74i—1 ZS,’L—].} .
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Validation with Shooting Method

The shooting method is employed to validate the present SLM computations. Therefore, the system
of ordinary differential equations (2.17)- (2.20) along with the boundary conditions (2.21) has also

been solved with the shooting method. The major steps of this method are as follows:

e Convert the boundary value problem into the initial value problem;
e Reduce the initial value problem into a system of first order differential equations;
e Identify the missing initial values using the Newton-Raphson method;

e Solve the first order system of resultant ordinary differential equations using the Runge-Kutta

method of fourth-order;

e Update the obtained information until all the free stream boundary conditions are satisfied

asymptotically.

Algebraic details of the shooting method are omitted here for the sake of brevity and there are

many references (to mention few, Ref. [67, 52]) in which these details have been documented.

It is noticed that the present problem reduces to free convection heat transfer over an isothermal
vertical plate in a viscous fluid in the absence of coupling number, buoyancy ratio and nonlinear
convection parameters with e =1, Da — 0o, A=10, { =1, Bi — 0o and {2 = 0. In order to assess
the accuracy and validity of the present investigation, the results of the local similarity equations
(2.17)-(2.20) have been compared with the results reported in the Tab.(4.2) of Bejan [19], as ex-
hibited in Tab. (2.1). Also, the comparison between the SLM computations and shooting method
results has been made for certain values of the physical parameters as shown in the Tab.(2.2). It

shows an excellent agreement with the existing results.

The numerical computations are carried out by following the fixed values of parameters: A = 5.0,
B =10, Pr=0.7, Sc =0.22, Gr = 10, ¢ = 0.5 and Da = 0.1. The value of dimensionless
micro-inertia density J = 5.0 is chosen to satisfy the thermodynamic restrictions on the material
parameters given by Eringen [40]. These values are continued same throughout the evaluation,

unless otherwise mentioned.
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Table 2.1: Comparison of —0'(&, 0) for the natural convection along a vertical flat plate in
a viscous fluid when N =0, B=0, a3 =0, a3 =0, e =1, Da w00, A=0,& — 0,
Bi— o0, 2 =0 and Pr=1.

Bejan [19] | Present
0.401 0.40103

Table 2.2: Comparison of f"(&,0),—¢'(£, 0), —€'(&, 0), —¢'(&, 0) using the SLM and Shoot-
ing method for different values of N with B = 0.5, ¢ = 0.3, a1 = 0, as = 0, Da — 00,
A=5.0,J=50,Bi—o00,Q2=0,Pr=0.7,&—0 and Sc = 0.22.

SLM Shooting Method

N f// _g/ —9 _¢/ f// _g/ —9 _¢/
0.1 | 0.44697 0.028502 0.25942 0.13309 | 0.44697 0.028502 0.25942 0.13309
0.3 ] 0.38280 0.114050 0.25303 0.13114 | 0.38280 0.114050 0.25303 0.13114
0.6 | 0.26376 0.295950 0.23859 0.12661 | 0.26376 0.295950 0.23859 0.12661
0.9 | 0.09660 0.491030 0.20265 0.11428 | 0.09660 0.491030 0.20265 0.11428

Results and Discussions

Figures 2.2(a)-2.8(d) displays the influence of various parameters on the fluid flow velocity, micro-
rotation, temperature and concentration profiles. The effects of non-Darcy parameter, micropolar
parameter, Biot number, angle of inclination and nonlinear density-temperature (NDT') and non-
linear density-concentration (NDC) parameters on the skin friction, gradient of microrotation (wall
couple stress), heat and mass transfer rates of the micropolar fluid have been discussed and por-

trayed through the Figs.2.6(a) -2.8(d).

The effect of nonlinear density-temperature (NDT) parameter a;; on the velocity, microrotation,
temperature and the concentration profiles, is displayed in Figs.2.2(a)-2.2(d). As NDT parameter
« increases, the variation of fluid velocity is changed from increasing to decreasing far away from
the surface of the wall (i.e., nearer to the free stream condition), as shown in Fig.2.2(a). Physically,
a1 > 0 implies that Ty > T; hence, the surface of the wall will induce some amount of heat to the
fluid flow region. Similarly, there is a possibility for heat transfer of fluid flow to the wall in the
case of ay < 0. It is clearly noticed from Fig.2.2(b) that the effect of the NDT parameter o on the

microrotation is notable in every part of the boundary layer, but more significant away from the
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plate and also the rise in a; changes the sign of microrotation. The magnitudes of the temperature
and concentration are more in the absence of a7 in comparison with the presence of o, as plotted

in Figs.2.2(c) - 2.2(d).

Figures 2.3(a) to 2.3(d) depict the influences of the nonlinear density-concentration (NDC)
parameter «o for a fixed value of a7 on the velocity, microrotation, temperature and concentration.
Usually, the motion of the fluid flow increases sequentially away from the plate so that it reaches
maximum position within the boundary layer and then drops to fulfill the free stream value, as
portrayed in Fig.2.3(a). However, the rise in NDC parameter as changes the sign of microrotation
within the boundary layer from negative to positive and also the trend of microrotation is modified
from increasing to decreasing nearer to the free stream value n = 5, as shown in Fig.2.3(b). The
temperature and concentration boundary layer thicknesses decrease with the increase of as and the
same result is displayed in Figs.2.3(c) and 2.3(d). In the case of thermal and solutal distributions,
present results match with the findings of the work by Partha [79]. This is due to the enhancement of
thermal and solutal gradients by nonlinear terms in the momentum equation. By the experience of
these two (i.e., NDT and NDC) parameters, one can conclude that the influence of NDC parameter

«o is more prominent compared with that of NDT parameter a;.

The profiles of fluid flow for different values of conductive-convective parameter Bi have been
displayed in Figs.2.4(a) - 2.4(d). It is noteworthy from Fig.2.4(a) that, as the Biot number in-
creases, the velocity of flow field attains peak position in the neighborhood of the plate due to
the reduction in the thermal resistance of inclined plate. It is clear from the Fig.2.4(b) that, the
microrotation changes from increasing to decreasing values within the boundary layer as the Biot
number increases. Figure 2.4(c) displays the impact of Biot number on the temperature distribu-
tion and show results for isothermal and non-isothermal boundary conditions. This condition is
changing into wall condition when the Biot number tends to infinity as depicted in Fig.2.4(c). As Bi
increases from thermally thin case (Bi < 0.1) to thermally thick case (Bi > 0.1), the temperature
distribution increases on the surface of the plate. The effect of Biot number on the concentration
profile is displayed by Fig.2.4(d) and it reveals that the concentration profile decreases within the

boundary layer with the increase of Biot number.

The influence of inclination angle () on the tangential velocity profile is displayed in Fig.2.5(a).
An increase in the angle of inclination leads to decrease the velocity distribution within the boundary

layer region. From Fig.2.5(b), one can notice that the microrotation increases near the plate and
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it shows a reverse trend far away from the plate, when the position of a plate is changed from
vertical to horizontal. Similar to the results of Chamkha et al. [23] and Chen [27], the thicknesses of
temperature and concentration boundary layers enhance with the increase of inclination angle. The
displacement of the plate from vertical position to horizontal induces a reduction in the buoyancy
force and the same result is portrayed in Figs.2.5(c) and 2.5(d). Also, one can observe that the
maximum buoyancy force for the same temperature and concentration differences occurs for Q = 0°

(vertical plate) and this is shown in the Figs.2.5(a) - 2.5(d).

The effects of nonlinear density-temperature (NDT) and nonlinear density-concentration (NDC)
parameters «q and asg respectively, on the skin friction, wall couple stress, heat and mass transfer
rates the stream-wise coordinate &, are shown in Figs.2.6(a) - 2.6(d). As expected, both the heat
and mass transfer rates increase with «y when other parameters are fixed. The effect of cy on the
heat and mass transfer rates shows the same behavior like that of «1. But, along the stream-wise
coordinate £, the nature of mass transfer rate is reverse to the heat transfer rate. The skin friction

and wall couple stresses are enhanced by «; and o parameters, as depicted in Figs.2.6(c)-2.6(d).

The effects of Forchheimer number (F's) and coupling number (V) on the skin friction, wall
couple stress, heat and mass transfer rates are presented in Figs.2.7(a) - 2.7(d). The results point
out that the heat and mass transfer rates decrease for an increase in F's. A rise in the coupling
number falls down the heat and mass transfer rates. Since, the microrotation tends to zero as
N — 0 ie., kK = 0, the Eq.(2.2) is uncoupled with Eq.(2.3) and they reduce to viscous fluid flow
equations. Therefore, an increase in the coupling number tends to decrease the skin friction and
the opposite change is noticed in the wall couple stress. Moreover, the surface drag and the wall
couple stress of a micropolar fluid reduce with the enhancement of Forchheimer number and this

is displayed in Figs.2.7(c) - 2.7(d).

Figures 2.8(a) - 2.8(d) demonstrate the influences of Biot number (Bi) and inclination angle
(©2) on the skin friction, wall couple stress, heat and mass transfer rates. It is found that the heat
and mass transfer rates diminish when the inclined plate is displaced from vertical to horizontal,
and it is easily perceived from the fact that there is a reduction in the buoyancy force by a function
of Q with the enhancement in inclination angle. With the increase of Biot number, there is a
considerable enhancement in the heat and mass transfer rates. A modification in the Biot number
ceases the rate of heat conduction inside the inclined plate drastically as compared to thermal

convection away from its surface and these results are confined to the work of Anwar Beg et al.
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[18]. One can notice that the effect of inclination angle is more on mass transfer rate as compared
with that of the heat transfer rate. Furthermore, it is observed that an enhancement in the Biot
number leads to increase the skin friction and couple stress, whereas with the increase of inclination
angle, these show the opposite trend. Nominal influence on the wall couple stress and considerable
increment in the skin friction are experienced for high enough values of Biot number as depicted

in Figs.2.8(c) - 2.8(d).
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Figure 2.2: Effect of ay on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along n with the fived values of € = 0.1, ap = 0.5, @ = 30°, N = 0.5, Bi = 0.5
and F's = 0.5.
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Figure 2.3: Effect of ay on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along n with the fived values of € = 0.1, a; =1, 2 = 30°, N = 0.5, Bi = 0.5

and F's = 0.5.
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Figure 2.7: Effects of F's and N on the (a) heat transfer rate, (b) mass transfer rate, (c) skin
friction and (d) wall couple stress along & with the fized values of ay = 1, ap = 1, Q = 30°

and Bi = 0.5.
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2.2.2 Case(b): Mixed Convection

The flow is assumed to be a mixed convective flow, which arises from both buoyancy forces and an

external flow with the velocity us. We introduce the following dimensionless variables

_ @y (Re\'? ~ (Re\'? w(&,n)
§

§ £ Lus
(2.49)
L 12 T—Ts C — Cw
8(&n) = _— - (Re) , 0(&m) = T, — T o(&n) = Co 0w

where Re =

is the global Reynold’s number and u is free stream velocity.

Substituting the stream function (2.7) and the transformations (2.49) into Eqgs.(2.2)-(2.5), we

get the following linear momentum, angular momentum, energy and concentration equations

: <_1N> " 2%_2]0 "+ (ﬂ) g+ Ri€[0(1+ a16) + Bio(1 + aze)] cos 2

el N (2.50)
1 , Fs f ,Of nOf ‘
tpaget 0=+ pot -1 =5 (15 - 151 )
" N L. o 3 ,0g _ g
Ag oo (f g+1d)- (1_N>J£<29+Ef)—€( % ¢! ) (2.51)
1 " 1 ’ v vy
50"+ 5 f0 _§< 5 ) (2.52)
Loy 1., _ @790 . g
50+ 50 —€< > (2.53)
The boundary conditions (2.6) become
F(6.0) =0, f(£,0)=~2¢ ( é ) L 9(£,0)=0, 6/ (£,0) = —Big'/2[1 - 0 (£,0)],
(2.54)
$(€0) =1, f'(€00) =1, g(§,00) =0, (§,00) =0, $(&, 00) =
In the above equations, J = 7 };e is the micro-inertia density, Bi = kfh]gel/Q is the Biot number
and Ri = il is the mixed convection parameter.

Re?

The physical quantities of present interest (such as shear stress, wall couple stress heat and
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mass transfer rates), are defined as

2 ou v Ow
Cr = +f<a+f<cw} 7Mw:[:|
f pugo |:(,LL )82/ /=0 pugoL 8y y=0
(2.55)
N [W] Shy—— " {30}

The non-dimensional skin friction Cy, wall couple stress M,,, local Nusselt number Nu, and
the Sherwood number Sh,, are given by

Crre'? = (22 €7 16,00, Muke= (2= (.0

f 1-N y Uy w f j yU)y

NugRe /2 = —2 0/(€,0), ShyRe™"/? = —¢2 ¢/(¢,0)

(2.56)

Results and Discussion

The reduced nonlinear partial differential equations (2.50) - (2.53) along with the boundary condi-
tions (2.54) are solved numerically using SLM together with the local similarity and non-similarity
procedures, as explained in the case (a) of this chapter. In order to assess the accuracy of the
present solutions, we have validated our results by comparing the surface shear stress f”(&, 0) and
the surface heat transfer rate 6'(§, 0) for isothermal case (Bi — 00), non-isothermal case (Bi = 0.2),
Newtonian fluid (N = 0), and micropolar fluid (N = 0.14) with the results of Chang [25]. These
comparisons are shown in Figs.2.9(a)-2.9(b) and results are found to be in good agreement with the
results of Chang [25]. Also, a comparison between the present results and results of Lloyd and Spar-
row [59] for various values of the mixed convection parameter Ri and the stream-wise coordinate
&, are given in Tab. (2.3). The comparison shows that the present results are in good agreement
with the similarity solutions reported by Lloyd and Sparrow [59]. In addition, a comparison is
made with the results of shooting method for specific values of the other physical parameters, as
appeared in the Tab. (2.4). The results are in excellent agreement pointing to the accuracy of

solutions obtained by SLM.

In the present study, the numerical computations are carried out by following the fixed values
of parameters: B =1, Re = 200, Da = 0.1, ¢ = 0.5, Pr = 0.71, S¢ = 0.22 and Ri = 2. The value of
dimensionless micro-inertia density J = 1.0 is chosen to satisfy the thermodynamic restrictions on

the material parameters given by Eringen [40]. These values are used throughout the computations,
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Figure 2.9: Comparison of (a) f"(&, 0) and (b) 0'(€, 0) for Bi — oo, Bi =2, N =0 and
N = 0.14 along & with that of Chang [25].

unless otherwise indicated.

The dimensionless velocity, microrotation, temperature and concentration profiles have been
computed for different values of the pertinent parameters and presented graphically in Figs.2.10(a)-
2.14(d). The effects of nonlinear density-temperature (NDT) parameter (aq), nonlinear density-
concentration (NDC) parameter (az), non-Darcy parameter (F's), micropolar parameter (N), mixed

convection parameter (Ri), Biot number (Bi) and inclination angle (£2) have been discussed.

The effect of nonlinear density-temperature parameter (a;) on the velocity, microrotation, tem-
perature and the concentration profiles are shown in Figs.2.10(a)-2.10(d). These results indicate
that the velocity distribution increases with the increase of o and the value B = 1 implies that
the thermal and solutal buoyancy forces are of the same order of magnitude. Physically, «; > 0
implies that Ty > Tu; hence, there will be a supply of heat to the flow region from the wall.
Similarly oy < 0 implies that Ty < T, and in such case there will be a heat transfer from the
fluid to the wall. Also, the changes in velocity with positive values of «y is more prominent in the

presence of mixed convection parameter. Further, the temperature and concentration boundary
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Table 2.3: Comparison of —0'(£, 0) for N =0, B=0, Q2 =0, ag = 0 and ay = 0 with
Da— 00, A=0,e=1 and Bt — oo.

Variation of —¢'(¢, 0) with Ri

Variation of —¢'(¢, 0) with £

E—=0 Pr=0.72 Pr=10 Pr =100 Ri =7.928 Pr=10
Ri [59]  Present | [59]  Present | [59]  Present 3 [59]  Present
0.0 |0.2956 0.2956 | 0.7281 0.7281 | 1.5718 1.5720 0.00125 | 0.7313 0.7315
0.01 | 0.2979 0.2979 | 0.7312 0.7313 | 1.5754 1.5750 0.00500 0.7404  0.7398
0.04 | 0.3043 0.3044 | 0.7403 0.7404 | 1.5855 1.5850 0.01250 0.7574  0.7569
0.1 |0.3156 0.3158 | 0.7572 0.7574 | 1.6058 1.6050 0.05000 0.8259  0.8255
0.4 |0.3559 0.3561 | 0.8254 0.8259 | 1.6905 1.6910 0.12500 0.9212 0.9218
1.0 |0.4053 0.4058 | 0.9207 0.9212 | 1.8265 1.8260 0.25000 | 1.0290 1.0288

Table 2.4: Comparison of f",—¢',

—0', —¢' using the Shooting method and SLM for various

values of N with o = 1.2, ¢ = 1.0, B = 0.5, Da — o0, ap = 1.5, Bi — 00, £ — 0 and

Q= 30°.
SLM Shooting Method
N f// _g/ —0 _¢/ f// _g/ —9 _¢/
0.1 | 1.63733 0.00222 0.46467 0.26000 | 1.63733 0.00222  0.46467  0.2600
0.3 | 1.38112 0.00851 0.44225 0.25119 | 1.38112 0.00851 0.44225 0.25119
0.6 | 0.94169 0.02846 0.39436 0.23097 | 0.94169 0.02846  0.39436 0.23097
0.9 | 0.34256 0.09345 0.29884 0.18580 | 0.34256 0.09345  0.29884 0.18580

layer thicknesses decrease with the increase of a;.

Figures 2.11(a) to 2.11(d) depict the influence of nonlinear density-concentration parameter

(ag) for a fixed value of ; on the velocity, microrotation, temperature and concentration profiles.

The initial velocity is zero at the surface of the plate and increases gradually away from the plate

and reaches the free stream velocity to satisfy the outer boundary condition as plotted in Fig.

2.11(a). However, the rise in NDC parameter changes the sign of microrotation from negative to

positive within the boundary layer as shown in Fig.2.11(b).

In the absence, as well as, in the

presence of nonlinear density-concentration parameter as, the magnitudes of the temperature and

concentration decrease with the increase of ap which is presented in Figs.2.11(c¢)-2.11(d). Further,

the impact of ao on the temperature and concentration distributions is more effective, as compared

with that of «;.
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Figures 2.12(a)-2.12(d) display the velocity, microrotation, temperature and concentration dis-
tributions of the fluid flow for different values of the Biot number Bi. It is noteworthy from
Figs.2.12(a) and 2.12(b) that, as the Biot number increases, the velocity profile increases and
the microrotation changes its behaviour from decreasing to increasing values within the bound-
ary layer. Fig.2.12(c) demonstrates that the effect of Biot number on the temperature profile and
mainly shows two results. The convective boundary condition is changing into wall condition, when
the Biot number tends to infinity and it is proven by Fig.2.12(c). As Bi increases from thermally
thin case (Bi < 0.1) to thermally thick case (Bi > 0.1) the temperature distribution increases at
the plate. The effect of Biot number on the concentration profile is displayed in Fig.2.12(d) and it
reveals that the concentration reduces when the Biot number changes its value from least to large

value.

Figures 2.13(a) to 2.13(d) illustrate the variation of the velocity, microrotation, temperature
and concentration for different values of the angle of inclination (0° < © < 90°). Moreover,
the equations for the limiting cases of the vertical and horizontal plates are recovered from the
transformed equations by setting Q = 0° and Q = 90° respectively. The influence of inclination
angle on the velocity profile is displayed in Fig.2.13(a). Due to the reduction in the thermal
and solutal buoyancy in Eq.(2.50) with respect to changes in the inclination angle 2, the velocity
distribution reduces within the momentum boundary layer, as shown in Fig.2.13(a). In other words,
an increase in the inclination angle leads to reduce the velocity distribution within the momentum
boundary layer region. Also, one can observe from Fig.2.13(a) that the maximum buoyancy force for
the temperature and concentration difference occurs for = 0° (vertical plate). When the position
of the flat plate is changed from vertical to horizontal, it is observed that the microrotation increases
near the plate and far away from the plate it shows a reverse trend as portrayed in Fig.2.13(b). It
is noticed from Fig.2.13(c) and Fig.2.13(d) that the temperature and concentration enhance with
an increase in the inclination angle. In particular, when the surface is vertical, a small change
in temperature and concentration distributions is observed, whereas there is large change for the

horizontal surface.

Changes in fluid flow profiles are depicted in Figs.2.14(a) to 2.14(d) for different values of the
mixed convection parameter Ri in both aiding (Ri > 0) and opposing (Ri < 0) flows. It reveals that
as the value of Ri increases, the dimensionless velocity rises. Compared with the limiting case of

Ri = 0.0 (i.e., pure forced convection), an increase in the value of Ri gives rise to a higher velocity.
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Since a greater value of Ri indicates a greater buoyancy effects in mixed convective flow leads to an
acceleration of the fluid flow. From Fig.2.14(b), we see that the microrotation completely negative
within the boundary layer in both aiding (Ri > 0) and opposing (Ri < 0) flows. Also, it is clear that
the microrotation increases with an increase in the mixed convection parameter Ri. Fig. 2.14(c)
displays the dimensionless temperature for selected values of Ri in both aiding and opposing flows.
The results indicate that the dimensionless temperature decreases with an increasing value of Ri.
In the limiting case of Ri = 0 (i.e., pure forced convection), an increase in the value of Ri gives
rise to a reduced temperature. The reason for this is that a greater value of Ri indicates a greater
buoyancy effects, which increases the convection cooling effect and hence reduces the temperature.
The effect of mixed convection parameter Ri on the dimensionless concentration is depicted in Fig.
2.14(d) in both aiding and opposing flows. It is clear that the concentration of the fluid decreases

with the increase of mixed convection parameter Ri.

Figures 2.15(a)-2.15(d) are depicted for the effects of nonlinear density-temperature (NDT)
and nonlinear density-concentration (NDC) parameters on the non-dimensional skin friction, wall
couple stress, local heat and mass transfer rates against the stream wise coordinate £. It is observed
that both heat and mass transfer rates increase with a7, when other parameters are fixed. The
effect of ao on Nusselt and Sherwood numbers shows the same behavior as that of «y. Also, the
influence of these two parameters are very prominent on the skin friction and wall couple stress of

micropolar fluid and these are magnified by a; and as.

The effects of non-Darcy parameter (Forchheimer number; F's) and micropolar martial param-
eter N on the non-dimensional physical quantities of the flow are portrayed in Figs.2.16(a)-2.16(d).
The results indicate that as F's increases, the skin friction, wall couple stress, local heat and mass
transfer rates also increase for a fixed value of micropolar parameter. Hence, the inertial effect in
micropolar fluid saturated non-Darcy porous medium increases the physical quantities of the fluid
flow. Also, it can be observed from these figures that, for a fixed value of F's, the heat and mass
transfer coeflicients fall down with the rise of micropolar parameter. Therefore the presence of
microscopic effects arising from the local structure and micro-motion of the fluid elements reduce

the heat and mass transfer coefficients.

The effects of Biot number Bi and inclination angle 2 on the skin friction, wall couple stress,
local heat and mass transfer rates are depicted in Figs.2.17(a)-2.17(d). The influence of inclination

angle on the heat and mass transfer rates are noted along the stream-wise coordinate £, as shown

o1



in Figs.2.17(a)-2.17(b). The results reveal that the local Nusselt number and Sherwood number
reduce gradually when the plate is displaced from its vertical to horizontal position. Also, a nominal
effect on the wall couple stress and considerable increment in the skin friction are noticed for high

enough values of the Biot number Bi, as depicted in Figs.2.17(c)- 2.17(d).

Finally, the influence of mixed convection parameter on the physical quantities of the flow are
displayed by Figs.2.18(a)-2.18(d). It is found that the skin friction, wall couple stress, local heat
and mass transfer rates increase when the flow direction is changed from opposing to aiding, and
the effect of mixed convection parameter is more on skin friction and wall couple stress as compared

with that of the heat and mass transfer rates.
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Figure 2.10: Effect of oy on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along n with the fized values of € = 0.5, ay = 0.5, 2 = 30°, N = 0.3, Bi = 0.6,
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Figure 2.16: Effects of F's and N on the (a) heat transfer rate, (b) mass transfer rate, (c)
skin friction and (d) wall couple stress along & with the fized values of o = 1, ay = 1,
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2.3 Conclusions

In this chapter, a problem of nonlinear convective flow of a micropolar fluid along an inclined plate in
a non-Darcy porous medium under the convective boundary condition has been investigated in two
cases: (a) natural convection and (b) mixed convection. The solution of system of non-dimensional
partial differential equations along with the associated boundary conditions, is obtained by using
the successive linearisation method together with the local similarity and non-similarity approaches.

From this analysis, the following conclusions can be drawn for both the cases (a) and (b).

An increase in the nonlinear density-temperature (NDT) parameter tends to increase the skin
friction, heat and mass transfer rates, but decrease the temperature and concentration of micropolar
fluid in both free and mixed convection cases. The velocity distribution is more near the plate and
far away from the plate, it shows reverse trend with an increase of NDT parameter in case (a), but
in case (b) the velocity increases. Further, the effect of the NDT parameter on the microrotation is
notable in every part of the boundary layer, but more significant away from the plate and also the
rise in NDT parameter changes the sign of microrotation in both cases (a) and (b). The influence
of NDC parameter is same as NDT parameter, but it gives more significant influence as compared
with NDT parameter. An increase in the Biot number leads to increase the velocity near the
plate and away from the plate it decreases in case (a). But in case (b), velocity is magnified by
Biot number. The temperature, skin friction and heat transfer rates enhance with Biot number
whereas the concentration reduces in both cases (a) and (b). In case (a) and case (b), an increase
in the inclination angle leads to decrease the velocity, whereas it increases the temperature and
concentration distributions within the boundary layer region. Further, the micropolar parameter
diminishes the wall couple stress, heat and mass transfer rates, whereas it expands skin friction of

micropolar fluid.
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Chapter 3

Effect of Cross-Diffusion in a
Micropolar Fluid Saturated

Non-Darcy Porous Medium with

Convective Boundary Condition !

3.1 Introduction

Exceptional studies are established in the analysis of heat and mass transport phenomena of free
and mixed convective flow of a micropolar fluid over different geometries in porous media. Various
disciplines in geophysical and engineering industries are enforced to study the microscopic nature
of fluid elements such as the cooling systems, petroleum reservoirs, agricultural fields, fiber insula-
tion, ceramic processes, grain storage devices, coal combustions, etc. A comprehensive report on
convective flow of a micropolar fluid in a Darcy, as well as, in a non-Darcy porous medium can be

found in the textbook by Nield and Bejan [75] and also see the citations therein.

In many circumstances, the temperature and concentration are directly coupled under the

!Case(a): Published in “International Journal of Pure and Applied Mathematics” 113 (8) (2017)
46-53, Case(b): Published in “Computational Thermal Sciences: An International Journal” 11(3)
(2019) 205218
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condition that the cross-diffusion (namely, Soret and Dufour) effects are not negligible and these
effects are more significant in areas such as geosciences, petrology, and hydrology etc. In view of
these applications, Awad and Sibanda [10] analyzed the effect of cross-diffusion on micropolar fluid
flow through horizontal channel. Hayat et al. [42] provided a semi-analytical solution to examine
cross-diffusion effects on stagnation-point flow along a stretching sheet in a micropolar fluid. Several
authors to mention few, Beg et al. [17] and Pal et al. [77] extended this concept to various fields of

fluid dynamics.

Due to the realistic nature of convective boundary condition, the analysis of heat transfer with
the convective boundary condition has prominent applications in industrial and engineering fields
such as nuclear plants, gas turbines, heat exchangers, etc. In the presence of convective boundary
condition, heat is supplied to the convecting fluid through a bounding surface with a finite heat
capacity, which provides a convective heat transfer coefficient. Makinde et al. [63] addressed the
impacts of cross-diffusion effects on hydromagnetic flow of a cold fluid over a vertical plate in the
presence of convective boundary condition, whereas Swapna et al. [102] developed a theoretical
model to analyze the collective impact of convective boundary condition and variable viscosity on

the radiative magneto-micropolar fluid flow.

Based on the above-mentioned applications and analysis, the authors are motivated to study
the influence of nonlinear convection on micropolar fluid flow along an inclined plate by including
convective boundary condition and cross-diffusion effects for the first time. Using local similarity
and non-similarity techniques, the governing nonlinear partial differential equations are converted
into a sequence of nonlinear ordinary differential equations and then the resultant equations are
solved by successive linearization method. The fluid flow characteristics are shown and analyzed
through graphical representation. The results are compared with relevant results in the existing

literature and found to be in good agreement.

3.2 Mathematical Formulation
Consider the steady, laminar and two-dimensional flow of an incompressible micropolar fluid over

a semi-infinite inclined flat plate embedded in a non-Darcy porous medium. The plate is inclined

at angle €) to the vertical direction. The z-axis is along the vertical plate and y-axis normal to the
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plate. This chapter is an extension of chapter-2 by considering the Soret and Dufour effects. Under
the assumptions made in chapter-2 and using the Darcy-Forcheimer model and Dupuit-Forchheimer

relationship [75], the governing equations describing the micropolar fluid are:

ou Ov
o %—0 (3.1)
P00 L Pu Ow v b e
EQ(uax—Fvay)—g(u—kﬁ)a2+n8y+Kp(uoo u)—&—Kp(uOO u?) 52)
+pg* [50 (T —Two) + B1(T — Too)2 + B2 (C — Cu) + B3(C — 000)2} cosf)
b (P B9\ | P (1o
5<u8z+1}8y>_78y2 " 2w+58y (3-3)

or o _ 82T+DKT82C
Yor Ty T “a2 T C.C, 0y

(3.4)

W2€ 00 _ D62C N DKy O*T
Ox oy  Oy? T, Oy

(3.5)

where C; is the concentration susceptibility, C), is the specific heat capacity, K7 is the thermal

diffusion ratio and T, is the mean fluid temperature.

The corresponding boundary conditions are

u=0,v=0, w=0, =hy(Ty-T), C=Cy at y=0

ket
"oy (3.6)

U=Us, w=0, T=T, C=Cx as y— o0

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

3.2.1 Case(a): Natural Convection

In the case of natural convection, the fluid flow is due to buoyancy forces only and hence, the

velocity of the outer flow becomes zero (i.e., us = 0). We introduce the following non-dimensional
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variables

Gr\ /4 Grl/4 ¢3/4
¢=2 J() e =P pe )

(3.7)
Gr3/4 51/4 T T c-C
wl€om) = B g6, 06 = s olem) = 5

Substituting the stream function (2.7) and the transformations (3.7) into Eqgs.(3.1) - (3.5), we

obtain the following linear momentum, angular momentum, energy and concentration equations

1 1 7 3 " Lo N / 1 1 & 72
(12) "4 gl = g+ (1o ) - g€ = o

e\1-N 1-N Da Gr2 (3.8)
_ & (0 _ uOf '
[0+ a10) + Bo(1 + azd)]cos = 5 | f o€ f o€
w3 ., 1y N 1 L., _§ /@_g/
Ag +4€f9—4€f9—<1_N)‘7§ <29+€f)—6(fa€ 859) (3.9)
1 1/ 3 / /I /80 8f /
EG —I—ng + Du¢ _£<f6§_6§9> (3.10)
Loy 3, "o_ /@_ﬁ /
¢+ S+ S0 —£<f o€ (%cb) (3.11)

DKr(Ty — T N
17 ) is the Soret number and Du = DE7(Cw — Cx)

is the Duf -
TmI/(Cw - Coo) CngV(Tf _ Too) 1S the Dulour num

where Sr =

ber.

The associated boundary conditions (3.6) become

Pem =0, 60 = —3¢(50) al60) = 0.0 (€0) = =it} (1= 0(c.0)]. -
n= .

¢(§70) =1, f,(é.voo) =0, g(&? OO) =0, 9(‘5700) =0, ¢(§7OO) =0.

The non-dimensional shear stress Cf, wall couple stress M,,, local Nusselt number Nu, and

the Sherwood number Sh,, are given by

L 9 _3 1 A
CfGT‘Z — (1_]\]) gff”(gy 0), ]\411)677'5 = <w> g,(ga 0)7

Nug Gri = —¢1 0/(€,0), ShyGr 1 = —£1 ¢/(€, 0).

(3.13)
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Results and Discussion

In this chapter also, the highly coupled nonlinear partial differential equations (3.8)- (3.11) together
with boundary conditions (3.12) are converted into a set of eight coupled nonlinear ordinary differ-
ential equations using local similarity and non-similarity approaches. After that, a novel successive
linearization method is applied to solve the reduced system of nonlinear ordinary differential equa-
tions for those eight unknowns, as explained in the case (a) of previous chapter. In the absence of
cross-diffusion effects, the problem considered in this case reduces to the case (a) of the previous
chapter. Validation of the present problem in this case, can be done on comparison as it was done
in the case (a) of chapter-2. Further, the numerical computations are carried out by following the
fixed values of parameters: J = 5.0, A =5.0, B=1.0, Pr=0.7, Sc = 0.22, Gr = 10, € = 0.4,

Da = 0.1 and £ = 0.5, and these values are unaltered in this study, unless otherwise specified.

Figures 3.1(a)-3.1(d) are plotted for different values of NDT and NDC parameters on the non-
dimensional velocity (f’), microrotation (g), temperature () and concentration (¢) with N = 0.6,
Fs=0.5,Q=45% Bi=0.6, Du= 0.3 and Sr = 1.0. The nonlinear convection parameters (a; and
ag) measure the nonlinearity in the density-temperature and density-concentration relationships.
The influences of a; and «ag on the velocity profile are depicted in Fig.3.1(a). With the increase in
both a; and as, the velocity increases, but far away from the plate, it shows the opposite trend. It
is observed from Fig.3.1(b) that the microrotation shows reverse rotation near the two boundaries
with the increase in both a; and as. Figs.3.1(c) and 3.1(d) exhibit the variation in temperature
and concentration with respect to c; and as and it is clear from these figures that the thermal and

solutal boundary layer thicknesses reduce with an increase in both the NDT and NDC parameters.

Figures 3.2(a) -3.2(d) depict the variations of non-dimensional velocity (f’), microrotation (g),
temperature (6) and concentration (¢) across the boundary layers for various values of Biot number
and non-Darcy parameter with N = 0.5, Q = 30°, Du = 0.3, Sr = 0.5, oy = 1 and ap = 1.
Fig.3.2(a) displays the fluid velocity profiles for different values of Biot number and non-Darcy
parameter. Initially, the fluid velocity is zero at the surface of the plate and then it rises gradually
away from the plate. Finally, the fluid velocity satisfies the free stream boundary conditions. It is
interesting to reveal that the fluid velocity enhances with an enhancement in the Biot number (Bi7)
and reduces with the non-Darcy parameter (F's). From Fig.3.2(b), it is clear that the microrotation

profile shows reverse rotation near the two boundaries. Fig.3.2(c) depicts that the temperature of
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the fluid is maximum at the wall and it diminishes exponentially to zero far away from the plate.
Comparatively, the internal thermal resistance of the plate is more for a large value of Biot number
than the boundary layer thermal resistance. From Fig.3.2(d), it is noticed that the concentration

increases with an increase in both non-Darcy parameter and Biot number.

Variations in the dimensionless velocity, microrotation, temperature, and concentration profiles
with respect to the Dufour and Soret numbers, are exhibited in Figs.3.3(a) to 3.3(d) for the fixed
values: N = 0.5, Q = 30", Bi = 0.3, Fs = 0.5, a; = 1 and ap = 1. From Fig.3.3(a), it is
clear that the velocity of the micropolar fluid increases with the increase of Soret and Dufour
numbers. Fig.3.3(b) reveals that the microrotation has nominal affect based on the influences of
Soret and Dufour numbers. Figs.3.3(c) and 3.3(d) indicates the influences of Soret and Dufour
numbers on the temperature and concentration profiles. It is noted from these figures that, as the
Dufour number increases, the temperature of fluid increases whereas the concentration decreases.
But, the influence of Soret number is opposite to that of Dufour number on the same temperature
and concentration profiles. It is involved directly in the concentration equation and increases the

concentration, whereas it decreases the temperature of micropolar fluid.

Impacts of the coupling number and inclination angle on the dimensionless velocity, micro-
rotation, temperature and concentration profiles are shown for Du = 0.4, Sr = 1.0, Bi = 0.3,
Fs =05, a3 =1 and as = 1 by Figs.3.4(a)-3.4(d). It is observed from Fig.3.4(a) that the ve-
locity of micropolar fluid flow diminishes with the increase of N and it is not as much as that in
a viscous fluid. Influence of coupling number on the microrotation of micropolar fluid is depicted
by Fig.3.4(b) and it reveals that the microrotation changes sign from negative to positive within
the boundary layer. Additionally, with respect to coupling number, microrotation increases close
to the plate and it diminishes far away from the plate, whereas inclination angle gives opposite
change. Further, the microrotation tends to zero as N — 0, so the linear momentum equation
is uncoupled with angular momentum equation and hence the resultant equations reduce to the
viscous fluid flow equations. The impacts of inclination angle on the temperature and concentration
profiles are portrayed in Figs.3.4(c) and 3.4(d) separately. An increase in the angle of inclination
increases the fluid temperature and concentration. This is because of reduction in the thermal and
concentration buoyancy caused by an enhancement in 2. Also, one can notice that the temperature
and concentration of the micropolar fluid increases with the enhancement of coupling number as

shown in Figs.3.4(c) and 3.4(d).
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Figures 3.5(a) to 3.5(d) are prepared to exhibit the influences of o; and ay on the skin fric-
tion (C fGri), wall couple stress (MwGr%), heat transfer rate (Nuy, G?“_Tl) and mass transfer rate
(Shy Gr_Tl) against the stream-wise coordinate £ with N = 0.6, F's = 0.5, Bi = 0.6, Du = 0.3,
Sr = 1.0. It is observed that from these figures that, the above said four physical quantities increase
with an increase in oy for a fixed value of ay. The effect of as is showing the same behavior on

CyGri, M,Grz, Nu, Gri and Sh, Gr7 | as that of a;.

The influences of Biot number and non-Darcy parameter on the skin friction (C’fGri), wall
couple stress (MwGr%), heat transfer rate (Nuy Gr%l) and mass transfer rate (Shy Gr%) are
displayed through Figs.3.6(a) to 3.6(d). Here the magnitudes of these four quantities (CfGri,
MwGr%, Nuy, Gr and Sh Gr%l) decrease by the Forchheimer number. Also for fixed N = 0.5,
Q= 30° Du=0.3, Sr = 0.5, a; = 1 and ap = 1, the skin-friction as well as heat transfer rate

increase, whereas the mass transfer rate decreases with the increase of Biot number Bi.

Effects of Soret and Dufour numbers on the physical quantities of a micropolar fluid are discussed
through Figs.3.7(a) to 3.7(d) for N = 0.5, Q = 30°, Bi = 0.3, Fs = 0.5, a1 = 1 and ag = 1.
Increment of Dufour number leads to decrease in both the surface drag coefficient and microrotation
gradients, whereas the Soret number shows opposite influences on these two quantities compared to
that of the Dufour number and this can be noticed from Figs.3.7(a) and 3.7(b). An increase in the
Dufour number decreases the temperature of the fluid and thus, increases the Nusselt number as
plotted in Fig.3.7(c). In the similar manner, the Soret number enhances the Sherwood number, as
projected in Fig.3.7(d). Thus, the cross-diffusion coefficients Sr and Du have an opposite influence

on the Nusselt and Sherwood numbers, as portrayed in Figs.3.7(c) -3.7(d).

The influences of coupling number and inclination angle on the skin friction, wall couple stress,
heat and mass transfer rates are depicted through Figs.3.8(a) to 3.8(d) for Du = 0.4, Sr = 1.0,
Bi =03, Fs = 0.5, a; = 1 and as = 1. An increase in the coupling number leads to enhance
both the skin friction and wall couple stress, whereas these two quantities decrease with the angle
of inclination as plotted in Figs.3.8(a) and 3.8(b). Further, the heat and mass transfer rates of
micropolar fluid are decelerated with both inclination angle and coupling number, as depicted in

Fig.3.8(c) and 3.8(d) respectively.
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Figure 3.1: Effects of ay and ay on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along n with the fized values of £ = 0.5, N = 0.6, F's = 0.5, Q = 45°,
Bi=10.6, Du= 0.3 and Sr =1.0.

70



035+ ?b\ - K
~ = ]
030 f § - Wi
N o)
0.25 ) . M ]
0.20 '. i
" ——Bi=0.1,Fs=00]] | |
-o- Bi=04,Fs=03|{ | 4 ——Bi=0.1, Fs=0.0
0.10 -0- Bi=1.2, Fs=0.3 | ; -a- Bi=04, Fs=0.3
‘| --a-- Bi=0.6, Fs=1.5 - -0- Bi=1.2, Fs=0.3
005 oo, [ BiE0G Fs=40 | Y01l - Bi=06, Fs=15
S - 5 --#-- Bj=0.6, Fs=4.0
0.00 : [© ! s ! . I . [
0 5 10 15 20 25 0 5 10 15 20
(a) (b)
08 T T T T T T T T T 10 L L
‘ ~
0.7 -Q E T /E
! Y 08k ¥ , |
X\ n ' n
05 _iq%}-‘\l\ 1 6l B .
\ 4
04 Q\‘%\‘\ . i ij‘«:‘
SERRY — R0 P00 T oL )
g, - Bi=04,Fs=03/{ |\ -0~ Bi=04, Fs=03 |
N -o- Bi=12,Fs03|1 O T
‘ o B0, Fs=15| [ e Bi=06 Fs=1.5
01 -4 Bi=0.6. Fs=4.0 | i ‘:\f‘.% --%-- Bi=0.6, Fs=4.0 | |
0.0 . . 00 P B | {127 VORI
0 3 6 9 12 15 0 5 10 15 20 25 30
(c) (d)
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3.2.2 Case(b): Mixed Convection

Assume that the flow to be a mixed convective flow, which arises from an external flow with the

velocity ue, and buoyancy forces. We introduce the following dimensionless variables

1/2 1/2
¢=2.n=(%) (f) L lEm) = (;) Luse (1)

wl€m) = <}ze>1/2 (%52) gt o€ = = oten) = =5

(3.14)

Substituting the stream function (2.7) and the transformations (3.14) into Eqgs.(3.1)-(3.5), we

obtain the following linear momentum, angular momentum, energy and concentration equations

1 1 " 1 " N / ,
(o) gt (05) 9 page €01+ posi= 1
£/ of of (3.15)
+ Ri&[0(1 + a16) + Bo(1 + aa¢p)| cos Q2 = = ( - — ”)
0
A+ o (fg—fg) <1N >j§<29+ f”) i( 82—% ) (3.16)
Loy 1.y "__ @ B g
pi 4 50+ Dt =< (150 - Fo) (3.17)
Loy, 1., "_ 09 . ﬂ /
§¢ +§f¢+5r0 —§< 96 B¢ > (3.18)
Boundary conditions (3.6) in terms of f, g, 8, ¢ become
af / / .1
Fe0 = —2¢(GL) . £160)=0, 56,0 =0, #6,0) = ~Bigh 1 0(&.0)
(3.19)

¢(§,0) =1, f'(§,00) =1, g(§,00) =0, 0(§,00) =0, ¢(&,00) =0.

The non-dimensional shear stress Cf, wall couple stress M,,, local Nusselt number Nu, and
the Sherwood number Sh,, are given by
CrRe'’? = ( > €7 f(€,0), MyRe= (*) q'(£,0),
1- §J
NugRe V2 = —¢2 0/(€,0), ShyRe Y2 = —¢2 ¢/(£,0)

(3.20)
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Results and Discussion

The highly coupled nonlinear partial differential equations (3.15)-(3.18) together with the boundary
conditions (3.19) are solved numerically using the successive linearization method along with local
similarity and non-similarity approaches, as explained in the previous chapter. In the absence of
cross-diffusion effects, this case reduces to the case (b) problem of the chapter-2. Validation of this
case of the present problem can be done on comparison, as it was done in the case (b) of chapter-2.
Further, the numerical computations are carried out by following the fixed values of parameters:
Ri=2 7=001X=05 B=10, Pr=0.71, Sc =0.22, Re =200, ¢ = 0.5, Da = 0.1 and

& = 0.5. These values are continued same throughout this study, unless otherwise specified.

The effects of nonlinear convection parameters (a; and ag), Biot number (Bi), non-Darcy
parameter (F's), coupling number (N), angle of inclination (£2), Soret and Dufour numbers (Sr
and Du) on the fluid flow profiles and other physical quantities of the present interest are shown

graphically and displayed in Figs.3.9(a)-3.16(d).

The effects of NDT and NDC parameters (a; and ag) on the velocity, microrotation, temper-
ature and concentration profiles are shown in Figs.3.9(a)-3.9(d). The results demonstrate that the
velocity distribution increases with the increase of NDT parameter and also for NDC parameter.
The initial velocity is zero at the surface of the plate and then it increases gradually away from
the plate. Finally, the velocity becomes unity to satisfy the boundary conditions as portrayed in
Fig.3.9(a). However, rise in NDT and NDC parameters change the sign of microrotation from neg-
ative to positive inside the boundary layer as displayed in Fig.3.9(b). In the absence, as well as, in
the presence of NDT and NDC parameters, the magnitudes of the temperature and concentration
decrease with the increase of both a; and ag as plotted in Figs.3.9(c)-3.9(d). By the experience
of these two nonlinear variations (a; and ag), one can conclude that the influence of ag is more

prominent on the fluid flow profiles as compared with that of a;.

The influences of the non-Darcy parameter (F's) and coupling number (V) on the dimensionless
velocity, microrotation, temperature and concentration are plotted in Figs.3.10(a)-3.10(d) with the
fixed values of other parameters. It is found from Fig.3.10(a) that, the velocity decreases for the
higher values of both N and F's. Since N — 0 corresponds to the viscous fluid, the velocity in
the case of a micropolar fluid is less compared to that of viscous fluid case. From Fig.3.10(b), it

is observed that the microrotation profiles have nominal variation at the wall and increase just
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away from the wall with increasing values of N. Because, an increase in the value of N implies
a higher vortex viscosity of fluid which promotes the microrotation of the micropolar fluid. But,
the non-Darcy parameter gives opposite influence to the velocity when compared to the influence
of coupling number. The temperature and concentration of the fluid enhance with the increase of

both non-Darcy parameter and coupling number as portrayed in Figs.3.10(c) and 3.10(d).

Figures 3.11(a)-3.11(d), plotted for N = 0.3, Du = 0.5, St = 2.5, oy = 1.0, g = 1.0 and F's =
0.2, refer the variation of angle of inclination and Biot number on the non-dimensional velocity (f'),
microrotation (g), temperature () and concentration (¢) across the boundary layers. It is noticed
from Fig.3.11(a) that, an increase in Bi leads to enhance the fluid velocity within the momentum
boundary layer. In Fig.3.11(b), microrotation shows reverse rotation near to the boundaries with
the increase of Bi. But, the influence of angle of inclination is reversed to the influence of Biot
number on the velocity and microrotation profiles. As Biot number increases, the convective heating
rises and non-isothermal surface becomes the isothermal surface as displayed Fig.3.11(c). That is,
6(0) = 1 as Bi — oo and this condition is known as isothermal condition at the wall. Usually,
for higher values of the Biot number, the internal thermal resistance of the plate is high and
the boundary layer thermal resistance is low. In this case, the fluid temperature is maximum at
the surface of plate and decreases exponentially to zero far away from the plate. Further, the
temperature increases with the increase of angle of inclination as depicted in Fig.3.11(c). Figure
3.11(d) shows the effects of Biot number and angle of inclination on concentration. It reveals that

concentration increases with respect to both Biot number and inclination angle.

Changes in the non-dimensional velocity, microrotation, temperature, and concentration are
displayed through Figs. 3.12(a)-3.12(d) for different values of cross-Diffusion parameters (Du and
Sr) along n with € = 0.5, N = 0.3, 2 = 30", a1 = 1.0, as = 1.0, Bi = 0.5 and F's = 0.2. With an
increase of Dufour number, there is a considerable enhancement in the velocity profile whereas the
nominal effect is noticed for microrotation. Also, the influence of Soret number is the same on these
two (velocity and microrotation) profiles as shown in Figs. 3.12(a)-3.12(b). Figs. 3.12(c)-3.12(d)
depict the effects of Soret and Dufour numbers on the temperature and concentration along the
free stream coordinate 1. The temperature increases with the Dufour number Du but, it decreases
with the Soret number Sr. On the other hand, concentration increases with the Soret number Sr,

but it decreases with the Dufour number Du.
Figures 3.13(a)-3.13(d) show the surface drag (CyRe!/?), gradient of microrotation (M, Re),
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heat and mass transfer rates (N uyRe Y2 and ShyRe™ Y/ 2) for various values a; and az. One
can observe from Figs.3.13(a)-3.13(d) that, an increase in «; leads to decrease the Nusselt num-
ber, whereas it increase the Sherwood number, wall couple stress and skin friction. Also, from
Figs.3.13(a)-3.13(d), it is noticed that influence of ap is same on these physical quantities but more

effective compared to ;.

Influences of Biot number and non-Darcy parameter on the local heat transfer rate, local mass
transfer rate, skin friction and wall couple stress are plotted through Figs.3.14(a) and 3.14(d). An
increase in the Biot number enhances the Nusselt number and skin friction in both Darcy porous
medium (i.e., for F's = 0) and non-Darcy porous medium (i.e., for F's # 0) along the stream wise
coordinate £. Further, the effect of Biot number in non-Darcy porous medium is more significant
compared to the results in the Darcy porous medium as displayed in Figs.3.14(a) and 3.14(c). The
reverse effect is observed from Figs.3.14(b) and 3.14(d) on the mass transfer rate and wall couple

stress.

Variations of local heat transfer rate, local mass transfer rate, skin friction and wall couple
stress for different values of N and € are plotted through Figs.3.15(a) and 3.15(d). The case of
mixed convection has a significant impact with the angle of inclination €2 for the physical geometry.
Here, the results are discussed for a special case of the micropolar fluid parameter with N = 0
and N # 0. From Figs.3.15(a) and 3.15(b), it is observed that both heat and mass transfer rates
decrease when the position of inclined plate is changed from the vertical to horizontal, and this
will be same in a viscous fluid and micropolar fluid. A rise in inclination angle diminishes the
buoyancy force and hence it reduces the wall couple stress and skin friction coefficients, whereas
these coefficients increase with the increase of coupling number and the same result is shown in

Figs.3.15(c)-3.15(d).

The impacts of Soret and Dufour numbers on the skin friction, wall couple stress, heat and
mass transfer rates are displayed in 3.16(a)-3.16(d). Higher values of Dufour number (Du) lead
to reduce the heat transfer rate and enhance the mass transfer rate, whereas these show reverse
trend with the increase of Soret number (S7). Thus, the cross-diffusion coefficients (Sr and Du)
have opposite influence on Nusselt and Sherwood numbers as portrayed in Figs.3.16(a)-3.16(b).
However, Figs.3.16(c)-3.16(d) indicate a notable effect on the wall couple stress and skin friction
with high enough values of Dufour number, while the influence of Soret number is nominal on the

same physical quantities.
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Figure 3.11: Effects of Bi and 2 on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along n with the fized values of £ = 0.5, N = 0.3, Du = 0.5, Sr = 2.5,
a; = 1.0, as = 1.0 and F's =0.2.

84



0.0020
=
Y
= ™ 0.0015 F
n
0.0010
——Du=0( |
—0—Du=0.8
——Du=1.6 0.0005 |
——Du=2.4| 1
-2 -Sr=0.0
-0 -5r=09)| |
-<¢+-Sr=19 0.0000
-+ -5r=25] ]
00 1 | 1 | 1 | 1 | 1 | 1
0 1 2 3 4 5 6 0

Figure 3.12: Effects of Du and Sr on the (a) velocity, (b) microrotation, (c) temperature
and (d) concentration along n with the fived values of € = 0.5, N = 0.3, Q = 30°, oy = 1.0,
as =1.0, Bi=0.5 and F's =0.2.

85



0.28

T T T T T T T .- T T T T T PP TEEE SRR
o CEEH amt pee 1
N < W\ .
026 - [7, PP A g 4
LY Eut)
5" 0196 F | x ]
02415 5
J g g
g . & A’O“‘O"-O-
022+ 0192 F, eg T S
e O" _ -0
i D R SEE
o - P
0 1 ol o 4 ——0.=0.0, a,=0.04
——0.,=0.0, 0,.=0.0] Lo, .
0.18 1 2 -0 -0(1=2.5, 0(2:2.2'
| -o-0,=25, 0,222 0184 b 1
b -0-0,=55, 0,222
0.16 -0-0,=5.5, 0,=2.2 1
o -<t- 0,230, 0,=1.8
030 0ol 0.180 | 1 70l
-=<¢-0,=3.0, a,=1.
0.14 1 2y - 0,=3.0, 0,240
0 =30, 07400 gl
012 ! | 1 | 1 ' | ! | ! |
02 04 06 08 10 02 04 06 08 10
(a) (b)
W 7——— 71— —— T
0,200, 0,200 S %
a,=0.0, 0,=0. ¥ .
8| .’ i
-0-0.=25,0,22.2 K4 P 3 08k |0
F P /3/ (14
-0 - = = g [
Lo =55, 0,222 ;3’//1’:" ol |2
F<t-0,=3.0,0.=1.8 w2 A .
(11—.,(12—. L /O//)j,/"
6 .’ //D’ g 1 06 -
_--ﬂr-a1=3.0, a,=4.0 X /g: L% i
' | 05+
1 ol
s | ol
A 3L
(14 i
0 0.2+
: 1 01k £
| L z
08 10 02

Figure 3.13: Effects of a1 and ay on the (a) heat transfer rate, (b) mass transfer rate, (c) skin
friction and (d) wall couple stress along the stream-wise coordinate & with the fized values of
N =03, 0, =10, ay =1.0, Q=30°, Du=0.5, Sr =25, Bi = 0.5 and Fs = 0.2.

86



035 F T i I ! I T I T, T T T T T T T T
P STEE e BT §
3 P A 3
< o F AL i !
030 |7, g e g
= B P Etee 0B\ | ——Fs=00,Bi=0.1 T
025} |2 il I - o -Fs=05, Bi=04) -
e 1 oul § - o -Fs=05, Bi=0.8 |
T 7 T ' - ¢ - Fs=0.9, Bi=1.0
00+ ," D/,u/ 1 i £ % - Fs=1.5,Bi=1.0
z// ,,[y,/ ] 022— ’D,—D-"-D'-_D-_-D“-D‘--D-——_[
015 D,z’D’ 4 },’D
- ——Fs=0.0, Bi=0.1
et -0 -Fs=05,8i=04 1 O I
010 7 -0 P8BS 4 T T e
”<}'FS=09,B|=10——2 0.18 _.:..§::::§~~, |
_ . ‘ LR B R
--% - Fs=1.5,Bi=1.0 el
0.05 |- _ . e T
e
| . ! . ! . ! . 0.16 ! . ! . ! . AT
02 04 06 08 10 02 04 06 08 10
(a) (b)
! ! ! ! K 10 ! ! ! !
K R /%
A gc1> A A, 0
v ﬁ."g'/O’, 08t [, /;:ﬁ' i
10 | 0 L <I’” Jog Pug S /-
‘Tff P /)]// / ,if{’
Ly E /
¢ ar e Ve
e o/,/D/ 06 L ‘ ]
8 "’,Q'//D// i ' V4
R A
. ,<T‘/ :D’ 5
w0
6 VA, 1 o} 4 B
s _ 4 —+—Fs=0.0, Bi=0.1
it ——Fs=00,B=01) || y - - -Fs=05, Bi=0 4
Lo ~ 0 oFs=05,B=04 Y - 0 -Fs=05, Bi=0.
[+ 4 -0 -Fs=05,B=08 1 gpt Y -t Fs=09,B=10 -
/ -<¢- Fs=09,Bi=1.0 | 4 -4+ Fs=15, Bi=1.0
- % - Fs=1.5,Bi=1.0
9 ! . ! . ! . ! . 7 . ! . ! . ! .
02 04 06 08 10 02 04 06 08 10
(c) (d)
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Figure 3.15: Effects of N and Q2 on the (a) heat transfer rate, (b) mass transfer rate, (c) skin
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Figure 3.16: Effects of Du and Sr on the (a) heat transfer rate, (b) mass transfer rate,
(c) skin friction and (d) wall couple stress along the stream-wise coordinate & with the fixed
values of 2 =30°, N = 0.3, Bi = 0.6, F's = 0.2, ay = 1.0 and oy = 1.0.

89



3.3 Conclusions

The natural and mixed convective flows over an inclined plate embedded in a porous medium
saturated by a micropolar fluid with Soret an Dufour effects, are analyzed in this chapter. From

this computational analysis, the following conclusions are drawn for both case (a) and case (b):

As in the previous chapter, the behavior of nonlinear convection parameters is found to be
similar on various profiles. An increase in the Biot number decreases the mass transfer rate and
microrotation, whereas it increases the heat transfer rate, skin friction coefficient, velocity, temper-
ature and concentrations in both case (a) and case (b). The Soret number reduces the temperature
and local Nusselt number, whereas it increases the concentration, skin friction and velocity in case
(a). However, the local Nusselt number and concentration show an opposite trend in case (b). In
case (a) and case (b), the velocity, temperature and heat transfer rates increase, whereas the con-
centration and mass transfer rates decrease with the influence of Dufour number. An increase in F's
decreases the surface drag, local Nusselt number and local Sherwood number, but it increases the
temperature and concentration in case (a). These profiles and physical quantities show a reverse

trend in case (b).
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Chapter 4

Double Dispersion Effects on
Nonlinear Convective Flow along an
Inclined Plate in a Micropolar Fluid

Saturated Non-Darcy Porous Medium
1

4.1 Introduction

The theory of micropolar fluid saturated porous medium is very rich in literature with various
aspects of the problem having been investigated. To name a few, Helmy et al. [44] and Kim [57]
investigated the flow of a micropolar fluid over a flat plate in a Darcy porous medium whereas
Abo et al. [1], Srinivasacharya and RamReddy [96], and Rawat et al. [86] analysed the flow of a

micropolar fluid saturated non-Darcy porous medium under different circumferences.

From the literature it seems that the thermal and solutal dispersions play an important role

!Case(a): Published in “Heat Transfer - Asian Research” 48 (2019) 414-434, Case(b): Published in
“Engineering Science and Technology, an International Journal” 21(5) (2018) 984-995.
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in a non-Darcy porous medium due to the presence of inertial effects (see Nield and Bejan [75]).
Hence, the effects of thermal and solutal dispersion on the convective heat and mass transfer flows
of non-Newtonian fluids through porous media, are considered by several researchers. To name a
few, Murti et al. [71] analyzed the effects of chemical reaction and double dispersion on a radiative-
convective flow of non-Newtonian fluid in a non-Darcy porous medium. A note on the double
dispersion effects in a non-Darcy porous medium saturated by a nanofluid has been given by Awad
et al. [12]. Benazir and Sivaraj [20] conducted numerical study to examine the double dispersion

effects over a cone in a chemically reacting Casson fluid saturated non-Darcy porous medium.

The convective boundary condition has been attracted great interest for the analysis of heat
transfer in fluid flow problems and it is usually simulated via Biot number. Aman et al. [7] inves-
tigated the magneto-hydrodynamic flow of a micropolar fluid along a convectively heating vertical
plate. Recently, Shehzad et al. [90] considered the convective thermal boundary condition in the

analysis of heat transfer in a micropolar fluid flow along the stretching surface.

The effects of double dispersion and Biot number on the convective flow of a micropolar fluid
over an inclined plate embedded in a non-Darcy porous medium, are discussed in this chapter.
According to the author’s knowledge, the present study has not been addressed in the literature.
As in the previous chapters, here also the governing equations and their associated boundary
conditions are solved numerically using the successive linearization method together with the local
similarity and non-similarity approaches. The results are compared with the relevant results in the
existing literature and are found to be in good agreement. Also, the influences of various physical
parameters on the micropolar fluid flow with heat and mass transfer characteristics are examined

and displayed through graphs.

4.2 Mathematical Formulation

A steady, laminar, two-dimensional and convective flow of an incompressible micropolar fluid over
an inclined plate in a non-Darcy porous medium, is considered. As projected in Fig.(2.1), the plate
is inclined about the vertical direction with an angle Q2. This chapter is an extension of chapter-2
by considering the double dispersion (thermal and solutal dispersions) effects. By employing the

nonlinear Boussinesq approximation and with the assumptions made in chapter-2, the governing
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equations for micropolar fluid saturated non-Darcy porous medium are given by

ou o,
or Oy

£ 0, o) 1 Ou | Ow  p LYW,
52<u8x+vay>_e(#+/{)8y2+/€8y Kp(uoo u)+Kp(u°° w)
09" |Bo (T = Toe) + B1(T = Toe)* + B (C = Cu) + B5(C = Cc)? | c0s2

pi (00, B 0% (0 10
5 Ox oy ) g oy? €Oy

along with the boundary conditions

T
u=0, v=0, w=0, _kf?)y:hf(Tf_T)v C=Cy, at y=0

U=Us, w=0, T=T, C=Cyx as y — o0

(4.1)

(4.2)

(4.6)

where « is the molecular thermal diffusivity, D is the molecular solutal diffusivity, x is the thermal

dispersion coefficient, d is the pore diameter and ( is the solutal dispersion coefficient. Further, the

effective thermal and solutal diffusivities are defined as, . = a + xdu and D, = D + { du (Ref.

Telles and Trevisan [104], Murthy [67]) respectively.

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

4.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow which is caused by only buoyancy forces and

without any external agent. Hence, the velocity of the external flow becomes zero (i.e.,us = 0).
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Now, we introduce the following non-dimensional variables

B _y(Gr 1/4 B uGr1/4 53/4
g_L’n_L<§> Y(E, )_f

puGrd/4 gl/4 T — T C —Cx
w(é,mn) = T g(&m), 0(§m) = T — T s 0(&,n) = Co 0w

f(&m)
(4.7)

Substituting the stream function (2.7) and the transformations (4.7) in Eqs.(4.1) - (4.5), we get

the following non-dimensional equations

1 1 /// " 2 N / 5%
6(1—N>f 4€2ff 262f +<1 N)g _7” DaG i (4.8)
+[0(1+a19)+B¢(1+a2¢)]00sQ:52( of )
" L, 3 / N % 1// _§ 79_7
Ag —48f9+45f9—<1_N>jf <€f +29>—5( ¢ > (4.9)
Loy INE A% § r_ /%_C{Lf/
ﬁa + D¢z (f'9) +4f0 _5( o a§9> (4.10)
Loy Lopr § r_ %_ﬁ
S8+ DEE () + 519 —£<f 5 8€¢> (4.11)

along with the non-dimensional form boundary conditions

Fie0 =0, 160+ 5¢((5f) | =0.060) =00/ (60) = —pict 10601,
(4.12)

¢(§70) =1, f (57 OO) =0, g(g,OO) =0, 9(6? OO) =0, ¢(§7OO) =0

XdGr% CdGr%

is the thermal dispersion parameter and D, = is the solutal dispersion

where Dy =

parameter.

The physical quantities of present interest (such as shear stress, wall couple stress, heat and

mass transfer rates), are defined as

2 ou v [ow
Cr= +H+Iiw] ,Mw:[]
f puz |:(,U, )8y y=0 puzL (93/ y=0 (4 13)
Nu z [k 371} oo T [D 50] '



where k. is the effective thermal conductivity of the medium which is the sum of the molecular
thermal conductivity k; and the dispersion thermal conductivity k4. Further, D is the effective
solutal diffusivity of the medium which is the sum of the molecular diffusivity D and the disper-
sion solutal diffusivity Dgy. Here, the dispersion thermal conductivity and the dispersion solutal
diffusivity are defined as kg = px Cpdu and Dy = (du (Telles and Trevisan [104], Murthy [67])

respectively.

The non-dimensional skin friction Cy, wall couple stress M,,, local Nusselt number Nu, and

the Sherwood number Sh,, are given by

1 2 =3 .y 1 A ’
CfGrZ = <1—]\7> fo (fv 0)7 MwGT2 = (5 j) g (57 0)7
x 3 1 / Shy 3 Lo /
CJJ\:«?M = —¢i [1+Ds Préz f (5,0)] 0(&,0), Gam=—¢ {1 +De Se gz (& 0)] (& 0)

(4.14)

Results and Discussion

The reduced governing Eqs.(4.8)-(4.11) along with the boundary conditions (4.12) are solved nu-
merically using successive linearization method together with local similarity and non-similarity
approaches as explained in the case (a) of chapter-2. In the absence of double dispersion effects,
this case reduces to the case (a) problem of the chapter-2. Validation of the present problem, in
this case, can be done on comparison as it was done in the case (a) of chapter-2. Further, the
numerical computations are carried out by following the fixed values of parameters: J = 0.01,
A=05, B=10,Pr=0.71, Sc=0.22, Ri =2, =0.5, Da = 0.1 and £ = 0.5. These values are
continued same throughout this study, unless otherwise specified. The changes in fluid flow profiles
1’ g, 0 and ¢ are projected in Figs.(4.1)-(4.3) for different values of a1, ag, F's, Dy, D., Bi, B, N
and 2.

Variations of fluid flow profiles (such as f’, g, # and ¢) for ay(1.5, 3.5), as (0.5, 2.5) and F's(0.0,
0.5) with D, = 0.3, B = 1.0, D, = 0.5, Bi = 0.3, N = 0.6, £ = 0.5 and Q = 60, are displayed
in Figs.4.1(a)-4.1(d). As NDT parameter (1) increases, the direction of fluid velocity is changed
from increasing to decreasing nearer to the free stream value as shown in Fig.4.1(a). Physically,
a1 > 0 implies that Ty > T; hence, the surface of the wall will induce some amount of heat to the

fluid flow region. It is observed from Fig.4.1(b) that the impact of o; on the angular momentum
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is notable in every part of the boundary layer, but more significant away from the plate. Also,
Figs.4.1(a) and 4.1(b) depict the influence of NDC parameter (a2) on the boundary layer profiles
of velocity and angular momentum. Usually, the velocity of the fluid flow increases sequentially far
from the plate, so that it reaches a maximum position within the boundary layer and after that it
drops to fulfill the free stream value as displayed in Fig.4.1(a). Moreover, Figs.4.1(a) and 4.1(b)
indicate that a rise in a; or ag changes the sign of angular momentum within the boundary layer
from negative to positive and also, the trend of angular momentum is changed from increasing to
decreasing away from the plate. Thus, the momentum and angular momentum boundary layer
thicknesses are increased nearer to the surface of the inclined plate for both a; and ag. The
boundary layer thicknesses of temperature and concentration diminish with the rise of a; or as,
which is clearly observed from Figs.4.1(c) and 4.1(d). The nonlinear differences between the wall
and ambient medium temperature and concentration improve with the large values of o and as.
Because of this, a tremendous addition in f’ and g, and a little change in 6 and ¢ are noticed.
However, the variations in velocity and angular velocity of the micropolar fluid are more in the
Darcy flow when compared with the non-Darcy flow results as displayed in Figs.4.1(a)-4.1(b).
Further, Figs.4.1(c)-4.1(d) indicate a reverse trend to temperature and concentration with respect
to F's influence. That is, the temperature and concentration of micropolar fluid increase with F's
and the variations in these two profiles are very less in the absence of F's in comparison with its
presence. Further, by the experience of these two NDT and NDC parameters, one can conclude
that the impact of nonlinear convection parameters on heat and mass transfer seems to be more in

the Darcy porous medium when compared to those in the non-Darcy porous medium.

Figures 4.2(a) to 4.2(d) are prepared to exhibit the significances of double dispersion parameters
Ds (0.2, 0.8), D, (0.1, 0.9) and the Biot number Bi (0.5, 6) on f’, g, 6§ and ¢ for the fixed values
of a1 =3, a0 =3, Fs=0.5, B=1.0, N =0.6, ¢ = 0.5 and Q = 60°. From Figs.4.2(a)-4.2(b), it
is noteworthy that for individual enhancement of double dispersion parameters, both the velocity
and angular velocity of the micropolar fluid are increased and these changes are found to be more
in the case of thermal dispersion when compared to that of the solutal dispersion. It is because
the supplementation of thermal dispersion in the energy equation will favor to the conduction
over convection. Figure 4.2(a) reveals that the velocity of the flow field attains peak position
(i.e., maximum state) in the neighborhood of the plate with the increase of conductive-convection

parameter Bi and this may be due to the reduction in thermal resistance of the inclined plate.
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Additionally, one can observe that, as the Biot number increases, the microrotation changes the

direction (from increasing to decreasing) within the boundary layer as plotted in Fig.4.2(b).

Figure 4.2(c) signifies the impact of Biot number on the temperature distribution and also,
it shows some special cases for non-isothermal and wall conditions. The convective boundary
condition is reduced to wall condition when Bi — oo (Ref., Aziz [13]) and it is again proven in
Fig.4.2(c). Usually, for a large value of Biot number, the internal thermal resistance of the plate
is high and the boundary layer thermal resistance is low. Further, when Bi = 0 (i.e., without
Biot number) the left side of the plate with hot fluid is totally insulated and the internal thermal
resistance of the plate is extremely high, then there is no convective heat transfer to the cold fluid
on the right side of the plate takes place. As Bi increase from Bi < 0.1 (thermally thin case)
to Bi > 0.1 (thermally thick case), the temperature distribution accelerates on the surface of the
plate. On the other hand, there is a considerable decrement in the temperature profile for Dg and
it is nominal for D.. Fig.4.2(d) reveals that the concentration profile diminishes with the increasing
value of Bi. Concerning dispersion parameters, the changes in concentration profiles are observed
to be reverse when compared to those changes in temperature profiles. Moreover, the results of
thermal and solutal dispersion coefficients are unproductive on the boundary layer profiles for a

large value of Biot number.

The influences of inclination of angle Q (20°,70%) and coupling number N (0.1,0.6) on f/, g, @
and ¢ are portrayed through Figs.4.3(a)-4.3(d) in both aiding (B = 0.5) and opposing (B = —0.5)
buoyancy cases. Changes in © (form 0° to 90%) lead to decrease the thermal and solutal buoyancy
in momentum equation (4.2), and it ceases the velocity distribution inside the boundary layer
region as displayed in Fig.4.3(a). Also, it can be observed from Fig.4.3(a) that the maximum
buoyancy occurs for the vertical plate and the velocity profile magnifies with coupling number.
An increase in N leads to enhance the angular momentum, whereas this gradient has a opposite
influence with . Notwithstanding, the direction of the angular momentum is changed within the
boundary layer for these two parameters N and 2 as shown in Fig.4.3(b) and similar results can
be found in the work of Rahaman et al. [81]. It is observed from Figs.4.3(c) and 4.3(d) that the
temperature and concentration increase with the enhancement of both coupling number and angle
of inclination. Moreover, the changes in velocity, angular momentum and concentration profiles are
high in opposing buoyancy for both ) and N as compared with the aiding buoyancy changes, but

temperature profile has different change with respect to both N and €.
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The significance of the nonlinear convective parameters a4 (1.5,3.5) and «2(0.5,2.5) on the local
Nusselt number, local Sherwood number, skin friction and wall couple stress against the stream-
wise coordinate &, are discussed in the fourth set of Figs.4.4(a)-4.4(d) with Ds = 0.5, D, = 0.3,
Bi =03, B=10, N =06, ¢ =0.5and Q = 60°. This analysis is undertaken for both Darcy
(i.e., for F's = 0.0) and non-Darcy (i.e., for F's = 0.5) cases. The rises in o; and ag enhance all
the pertinent characteristics of the flow field for the fixed values of other parameters. However,
the impact of oy and «y is less in the non-Darcy porous medium as compared to the Darcy porous
medium results. This is due to the nonlinear enhancement of thermal and solutal density differences.
But, along the stream-wise coordinate &, the nature of heat transfer rate is contrary to the mass

transfer rate, skin friction and wall couple stress.

Figures 4.5(a)-4.5(d) indicate the impact of the double dispersion parameters Dy (0.2,0.8),
D, (0.1,0.9) and Biot number Bi (0.5,6.0) on the physical quantities of the flow for the fixed
values: oy =3, g = 3, Fs = 0.5, B=1.0, N = 0.6, £ = 0.5 and Q = 60°. When the inertial
effects are prevalent, the thermal and solutal dispersion effects becomes more important. These
effects are significant in forced and mixed convective flows as well as in natural convective flows.
The results point out that the mass transfer rate, skin friction and wall couple stress increase
significantly with the rise in both Biot number and solutal dispersion parameter, whereas these
quantities shows reverse trend with thermal dispersion parameter. On the other hand, the local
Nusselt number decreases with the Biot number, whereas it increases for both thermal and solutal

dispersion parameters.

Influences of coupling number N (0.1,0.6) and inclination angle € (20°, 70%) on the heat transfer
rate, mass transfer rate, skin friction and wall couple stress are shown by Figs.4.6(a)-4.6(d) in the
case of aiding (B = 0.5) and opposing (B = —0.5) buoyancy forces with Dy = 0.5, D, = 0.3,
Bi=03, a1 =3, a0 =3, Fs = 0.5 and £ = 0.5. As (Q increases, there is a decrement in g*cos{)
component in the direction of displacement of the plate, and this decreases the buoyancy force in
that direction. Hence, the reduction in the thermal and solutal buoyancy will lead to diminish
heat and mass transfer rates. Also, when the coupling number increases heat and mass transfer
rates decrease. One can notice that, a rise in the coupling number causes an expansion in the wall
couple stress and skin friction, whereas these physical quantities shows an opposite trend with 2.
The Nusselt number and Sherwood number have opposite variations in both aiding and opposing

buoyancy cases, but the skin friction and wall couple stress are increased in these two cases.

98



0.20

0.16

0.12

f'(&.n)

0.08 -
—D—a1=1.5, a2=1.0 ok —D—a1=1.5, a2=1.0 i
—0—0,735,0,71.0 ] ; —0—0,735,0,71.0
0.04 } —0,=20,0.05 ‘ ——0,220,0.505
——0,220,0225| | O g lne: Fs=0.0 ——0,720,0,725 ||
v Dot line: Fs=0.5
0.00 > N R B N R
2 4 6 8 10 12 14 0 2 4 6 10 12 14
(a) (b)
T T T T T T T 10 T T 7 1 T 1
Solid line: Fs=0.0 Solid line: Fs=0.0
0.8 Dot line: Fs=0.5 T Dot line: Fs=0.5 ~
c
08| W .
& >
06 n T N
06 F 7
04 .
\D\ 04k i
——0=1.5,0,=10 | ——0,=1.5,0=10
\ —0—0,735,0.,710 —0—a,=35,0=10| |
02 \ ——a=20,05051 o2} —— 0,220, 0,505 | 1
—tﬁ—al=2.0, (12:2.5 ] +a1=2.0, (x2=2.5 ]
00 | | | 00 | | | I
0 2 4 6 8 0 2 4 6 10 12 14
(c) (d)
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momentum, (c) temperature and (d) concentration with fixed values of B = 1.0, N = 0.6,
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4.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convective flow, which arises from an external flow with the velocity

Uso and buoyancy forces. We introduce the following dimensionless variables

oz oy Re 1/2 B 5 1/2

T—Tw C—-Cx
T = T7¢>(§77) Co O

(4.15)
. 1/2
w(,m) = (}Z ) = o(c.1). O(E.n) =

Substituting the stream function (2.7) and the transformations (4.15) into Eqs.(4.1) - (4.5), the

resultant dimensionless flow equations can be presented as

1 1 " N I 1 /
(2w 7 (125) 7+ gl Dot U= )+ €= 1) .
+Ri&[0(1 4 1) + Bo(1 + aagp)] cos Q = % ( OF ”8f> ,
7 N I / / 5 09 Of
)\9—<1_ )«7§<2 + f> 8(fg‘i'fg) ( 65_8£> (4.17)
1 " NAY 1 o 80 af
5.0 +Ds(f9)+2f0—§< % o ) (4.18)
1 1 A 1 / /ad) 3f /
@Qﬁ +Dc(f¢)+2f¢§< 875_375 ) (4.19)
Boundary conditions (4.6) in terms of f, g, @ and ¢ can be written as
8f / / Ll
peo ==2¢(5H) L 6.0 =0, gl6.0) =0, 6.0) = ~Bigt 1 - 0(E,0)
n=0 (4.20)
$(&,0) =1, f'(&00) =1, g(§,00) =0, 0(§,00) =0, $(§,00) =0
In the above non-dimensional equations, thermal dispersion parameter is taken as Dy = deoo and
the solutal dispersion parameter is taken as D, Cd;Loo

The physical quantities of present interest (such as shear stress, wall couple stress, heat and
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mass transfer rates), are defined as

2 ou ¥ Ow
Cy= +m+nw] , My, = []
oT aC (4.21)
x x
Nuy=———— |ke— , Shy =———++—— | Dc.—
k(T — Too) [ 8y:|y—0 D(Cy — Cx) [ Ay ] y=0

The non-dimensional skin friction Cy, wall couple stress M,,, local Nusselt number Nu, and

the Sherwood number Sh,, are given by

Crrel = (1 25) 67 160 Muke= () a0
- 1 1-N ” 1 4 (4.22)
T =62 [1+Ds Prf(§0)]0(0), —1=-¢ [1L+DScf(s,0)] ¢ 0)
Re2 Re>2

Results and Discussion

As in the previous case, the nonlinear partial differential equations (4.16) - (4.19) subject to the
boundary conditions (4.20) are solved numerically using the successive linearization method to-
gether with local similarity and non-similarity approaches. In the absence of double dispersion
effects, this case reduces to the case (b) problem of chapter-2. Validation of the present problem

in this case can be done on comparison, as it was done in the case (b) of chapter-2.

We have computed the solutions for the dimensionless velocity (f’), microrotation (g), temper-
ature (6), concentration (¢), drag coefficient (CfRel/ %), gradient of microrotation (—M, Re), heat
and mass transfer rates (Nu, Re~'/? and Shy, Re~'/?), as shown graphically in Figs.4.7(a)-4.12(d).
The effects of nonlinear convection parameters («j, ag), double dispersion parameters (Dg, D.),
Biot number (Bi) and angle of inclination (£2) have been discussed. To study the effects of a1, as,
Dy, D., Bi and (2, the computations were carried out by taking Da = 0.1, 7 = 0.01, Pr = 0.71,
N =0.3, Re =200, =0.5, A =0.5, S¢c =0.22, F's = 0.5 and B = 1.0. These values are continued

same throughout this study, unless otherwise specified.

Influences of nonlinear convection parameters on the fluid flow profiles are displayed through the
first set of figures for both aiding and opposing flow cases with N = 0.3, Bi = 0.5, D; = 0.5, D, =
0.3, = 30" and ¢ = 0.5. Figs.4.7(a)-4.7(b) represents the profiles of velocity and microrotation for

nonlinear convection parameters and it is observed that the velocity enhances while microrotation
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reduces for the larger values of both o and as in aiding flow case. In opposing flow case, the trend
of these parameters is reverse to the aiding flow results. Impacts of a1 and a9 on the temperature
and concentration of micropolar fluid are depicted in Figs.4.7(c) and 4.7(d). It is found that both
temperature and concentration and their associated thicknesses of boundary layer fall down for the
rise of a1 and as in the case of aiding flow, whereas these boundary layer profiles increase in the

case opposing flow.

The behaviors of velocity, microrotation, temperature, and concentration of micropolar fluid
with respect to the Biot number and angle of inclination are depicted in Figs 4.8(a)-4.8(d) with
the fixed values: N = 0.3, a1 =1, ag = 1, Dy = 0.5, D, = 0.3 and { = 0.5. From Fig.4.8(a),
it is noted that velocity enhances with the increase of Biot number in the case of aiding flow,
whereas it diminishes in the case of opposing flow. A reduction in microrotation is observed for
larger values of Biot number as shown in Fig.4.8(b). It is also important to note that velocity is
more for vertical plate compared to the horizontal plate in aiding flow case, and in the case of
opposing flow this variation is opposite. In both aiding and opposing flow cases, the temperature
and concentration are magnified by the Biot number and degraded with the angle of inclination as

depicted in Figs.4.8(c) and 4.8(d).

Figures 4.9(a)-4.9(b) are prepared to discuss the effect of thermal dispersion on temperature
profile and solutal dispersion on concentration profile with N = 0.3, Bi = 0.5, a1 = 1, ag = 1,
Q = 30° and ¢ = 0.5 for both aiding and opposing flow cases respectively. When the inertial
effects are prevalent, the thermal and solutal dispersion effects become more significant. Further,
these effects are important in forced and mixed convective flows as well as in natural convective
flows. Figure 4.9(a) shows the effect of thermal dispersion parameter on the temperature profile for
both aiding and opposing flow cases. It is observed that temperature decreases with the increase
of thermal dispersion parameter in both aiding and opposing flow cases. The concentration of
micropolar fluid increases by the solutal dispersion parameter as shown in Fig.4.9(b) in both the

cases of aiding and opposing flows.

The influences of NDT (ay) and NDC («3) parameters on the surface drag (CfRel/ 2), gradient
of microrotation (—M,Re), heat transfer rate (Nu, Re~'/?) and mass transfer rate (Shy, Re™/?),
are displayed in Figs.4.10(a)-4.10(d) with the fixed values: Bi = 0.5, Q = 30°, Dy = 0.5, D, = 0.3,
N = 0.3, Ri = —0.5 (for opposing flow) and Ri = 2.0 (for aiding flow). It is always very essential

to estimate the magnitudes of heat and mass transfer rates, since the quality of the final product
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depends on the heat and mass transfer rates from the surface. In this context, it is worth to mention
that the non-dimensional heat transfer rate (Nu, Re~/?) and mass transfer rate (Shy Re™/?)
increase with the enhancement of Ri as shown in Fig.4.10(a) and Fig.4.10(b). Hence the mixed
convection parameter has an important role in controlling the temperature and concentration. The
effect of mixed convection parameter Ri on the skin friction coefficient (CfRel/ 2) and the wall
couple stress (—M, Re) is portrayed in Fig.4.10(c) and Fig.4.10(d) respectively. It is observed
that the skin friction coefficient (C’fRel/ %) increases as Ri increases. It is because, an increase
in the buoyancy in mixed convective flow leads to accelerate the fluid flow, which increases the
skin friction coefficient. Also, it is found that the wall couple stress decreases with the increase
of mixed convection parameter Ri. This observation is consistent with the velocity, microrotation,

temperature and concentration distributions.

Figure 4.10(a) reveals that the local Nusselt number (Nu, Re~'/?) decrease as a; increases in
the opposing flow case, whereas the reverse trend is observed in the case of aiding flow. Physically,
a1 > 0 implies that Ty > T; hence, there will be a supply of heat to the flow region from the
wall. Similarly oy < 0 implies that T < T\, and in such case, there will be a transfer of heat from
the fluid to the wall. Also, Fig.4.10(a) reveals the influence of s on the heat transfer rate and the
impact of a9, which is same but more significant as compared with «;. The effects of nonlinear
convection parameters on the mass transfer rate (Shy Re™'/?), wall couple stress (—M,Re), and
skin friction (C fRel/ 2) are identical with the heat transfer rate (Nu, Re™'/?) results as shown in
Figs.4.10(b)-4.10(d). However, along the stream-wise coordinate £, the Nusselt number and wall
couple stress increase, whereas the opposite trend can be observed in Sherwood number and skin
friction. By the experience of these two NDT and NDC parameters, one can that the influence
of NDC parameter is more prominent compared with that of NDT parameter in both aiding and
opposing flows. This is due to the presence of Biot number which controls the influence of NDT

parameter.

Variations in heat transfer rate (Nu, Re™'/?), mass transfer rate (Sh, Re~'/?), skin friction
(CfRel/Q) and wall couple stress (—M,, Re) for different values of the Biot number Bi(0, 0.05,0.5,1.0)
and inclination of angle Q(45°,75°), are displayed in Figs.4.11(a)-4.11(d) with a; = 5, as = 6,
Ds = 0.5, D, = 0.3, Ri = —0.5 (for opposing flow) and Ri = 2.0 (for aiding flow). Fig.4.11(a)
indicates the effect of Bi on the heat transfer rate (Nu, Re~'/2?) and it is magnified with the en-

hancement of Bi7 in both the cases of aiding and opposing flows at the surface of an inclined plate.
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A small reduction can be noticed for mass transfer rate (Sh, Re~'/?) with the increment of Bi in

opposing flow case, whereas reverse change can be found for aiding case as depicted in Fig.4.11(b).

The convective boundary condition is the generalization of isothermal boundary condition and
it effectively furnishes a mechanism for comparing the conduction resistance within a solid body to
the convection resistance external to that body (offered by the surrounding fluid) for heat transfer.
The wall condition, #(0) = 1 is a limiting result of the convective boundary condition when hy¢
tends to infinity (stated by Aziz [13]), and it is proven by temperature profile. Usually, for high
Biot number, the internal thermal resistance of the plate is high and the boundary layer thermal
resistance is low. Further, when Bi = 0 (i.e., without Biot number) the left side of the plate with
hot fluid is totally insulated, then the internal thermal resistance of the plate is extremely high
and no convective heat transfer to the cold fluid on the right side of the plate takes place, which is
clearly observed from the Fig.4.11(a). These results are similar to the work of Beg et al. [18] in the
case of assisting flow. Finally, it is observed that the skin friction and wall couple stress increase

with the enhancement of Bi as shown in Fig.4.11(c) and Fig.4.11(d) respectively.

The mixed convective flow has a significant impact with the inclination angle, and so the heat
transfer rate (Nuy Re~ Y/ %), in aiding flow, decreases with the increase of angle of inclination and
in the case of opposing flow it has opposite trend as shown in Fig.4.11(a). Also, from Fig.4.11(b),
a similar effect is pointed out to the Sherwood number (Sh, Re™ Y 2) with reference to the angle
of inclination. Clearly, Figs.4.11(a) and 4.11(b) reveal that, an increase in angle of inclination
decreases the buoyancy force and it retards the flow. Also, a reduction in the heat and mass
transfer rates is noticed. The maximum values of the dimensionless heat and mass transfer rates
are observed when the plate is in vertical position; in which, the buoyancy force is at its maximum.
Therefore, the heat and mass transfer rates are at a lower level for Q # 0. From Figs.4.11(c) and
4.11(d), it is observed that an increase in the angle of inclination lower the buoyancy force and
hence increases both the skin friction (C'fRel/ %) and wall couple stress (—M,,Re) in opposing flow
case, whereas it has a reverse trend in aiding flow case. The inclination of horizontal plate to the
vertical plate reduces the drag force which favors the flow through the medium. Further, the results

of Bi contradict the results of 2 on these coefficients.

The variations in the thermal and solutal dispersion parameters (Ds = 2,6 and Ds = 1,5) on
Nug Re /2, Shy, Re™1/2, C’fRel/2 and — M, Re are displayed in Figs.4.12(a)-4.12(d) for Ri(—0.5,2.0)
and a; = 5, ap = 6, Bi = 0.5 and = 30°. It is observed that the heat transfer rate (Nu, Refl/Q)
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increases with Dg whereas it decreases for D, in both opposing and aiding flow cases. Introducing
the thermal dispersion in the energy equation, in general, it favors conduction over convection.
In other words, supplementing dispersion effects to the energy equation give more dominance to
thermal conduction. Further, a nominal influence is noticed for the solutal dispersion parameter on
mass transfer rate for both the cases of Ri, as depicted in Fig.4.12(a). The variations of Sherwood
number (Sh, Re™'/?) as a function of ¢ are shown in Fig.4.12(b) for D, and D, with the fixed
values of other parameters. It is observed from Fig.4.12(b) that the mass transfer rate decreases
in aiding flow case, whereas a reverse phenomenon is observed for opposing flow case with the
increase of Ds. A rise in mass transfer rate is noticed in both aiding and opposing flow cases
with the increase of solutal dispersion parameter D, as plotted in Fig.4.12(b). Also, a nominal
influence of thermal dispersion on the mass transfer rate is observed in both aiding and opposing
flow cases. Figs.4.12(c)-4.12(d) reveal the impact of dispersion coefficients on skin friction and wall
couple stress along stream-wise coordinate. These graphs demonstrate that the thermal dispersion
parameter Dy gives a opposite influence to the drag coefficient and wall couple stress for different
values of the mixed convection parameter (i.e., Ri = —0.5 and Ri = 2.0). An increase in the solutal
dispersion parameter D. increases the skin friction and wall couple stress for opposing flow and

decrease in aiding flow, as portrayed in Figs.4.12(c)-4.12(d).
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rotation, (c) temperature and (d) concentration with the fized values of B = 1.0, N = 0.3,
Bi=05, D, =05, D, =03, Q=30 and £ = 0.5,
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Figure 4.8: Effects of Q and Bi for different values of Ri on the (a) velocity, (b) microrota-
tion, (c) temperature and (d) concentration with the fized values of N = 0.3, oy =1, ag = 1,

D, =05, D, =0.3 and £ = 0.5.
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and & = 0.5.
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4.3 Conclusions

The effect of double dispersion on the nonlinear convective flow of a micropolar fluid along an
inclined plate embedded in a non-Darcy porous medium, is analyzed in this chapter. The resulting
equations are solved numerically by employing the successive linearization method together with the
local similarity and non-similarity approaches. The main findings of this chapter are summarized

as follows:

The major conclusion is that the influence of NDC parameter ao is more prominent on all
the physical quantities of the present model compared with that of NDT parameter o in both
free and mixed convective flows. This may be due to the presence of Biot number as it controls
the influence of NDT parameter. Additionally, the effects of NDT and NDC parameters on the
heat and mass transfer are observed to be more in the Darcy porous medium when compared
to those in the non-Darcy porous medium. In case (b), Sherwood number and drag coefficients
are diminished with the enhancement of nonlinear convection parameters along the stream-wise
coordinate, while the opposite pattern can be seen in the case of heat transfer rate and micro-
rotation gradient. A variation of Biot number leads to enhance all pertinent characteristics except
the Nusselt number and concentration profile. On the other side, the results of double dispersion
parameters are unproductive for a large value of the Biot number. However, the thicknesses of
linear momentum, angular momentum, and solutal boundary layers are enhanced by enhancement
in the buoyancy ratio, whereas the thickness of the thermal boundary layer diminishes for both
aiding and opposing buoyancy cases. Further, the dispersion coefficients have the strong influence
on the respective convective heat and mass transfers. This effect is more prominent in the case of
nonlinear Boussinesq approximation when compared to linear Boussinesq approximation for both

case (a) and case (b).
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Chapter 5

Nonlinear Convective Flow of a
Power-law Fluid past an Inclined

Plate with Convective Boundary

Condition !

5.1 Introduction

The study of thermal and solutal transport phenomena of a Ostwald-de Waele power-law fluid
flow in porous media has gained extensive attention on account of its wide pertinence in energy
and geophysical industries. For example, we can mention thermal insulation, filtration processes,
geophysical flows, petroleum resource, polymer processing, and so forth. Amin [38] discussed the
influence of viscous dissipation and magnetic effects on a power-law fluid flow past horizontal and
vertical flat plates embedded in a porous medium. Cheng [31] investigated free convective flow of
a stratified power-law fluid over a vertical wavy surface in a porous medium. Impact of convective
boundary condition in the heat transfer analysis of a power-law fluid flow along a stretching sheet,

is examined by Shahzad and Ramzan [89]. Chamkha et al. [22] investigated the laminar flow of a

!Case(a): Published in “Nonlinear Engineering” 8(1) (2019) 94-106, Case(b): Published in “Inter-
national Journal of Applied and Computational Mathematics” 4(51) (2018) 1-18.
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power-law fluid in a non-Darcy porous medium filled with nanoparticles. Recently, Ahmed et al. [4]
applied uniform magnetic field and considered the convective boundary condition in the analysis

of a radiative power-law fluid flow over a stretching sheet.

Nowadays, most of the researchers are interested to analyze the convection from an inclined
surface in both the numerical and experimental works. It is because the convective heat and mass
transfers over an inclined surface are frequently encountered in natural and engineering devices
such as solar water heaters, electrical systems, iron removal, brine clarification, etc. It has been
shown that the inclination of the horizontal plate to the vertical direction reduces the drag force
which favors the flow through the medium. Due to this importance, Alam et al. [6] analyzed the
influences of thermal radiation and thermophoresis over a permeable inclined plate in a viscous
fluid, whereas the flow over an inclined plate has been considered by Sui et al. [101] to study the

mixed convective heat transfer of a power-law fluid.

Based on the previous studies, it is relevant to discuss the free and mixed convective flows of a
power-law fluid along an inclined plate embedded in a non-Darcy porous medium with Biot number
effect. In addition, the nonlinear Boussinesq approximation is considered in the formulation of fluid
flow equations. As in the previous chapter, here also, the successive linearization method together
with the local similarity and non-similarity approaches are employed to solve the system of reduced
non-linear partial differential equations. The effects of pertinent parameters on the physical quan-
tities are studied and the results are displayed through graphs. This kind of investigation is useful

in the mechanism of combustion, solar collectors which are performed at high-level temperatures.

5.2 Mathematical Formulation

A two-dimensional, steady and laminar convective flow of a power-law fluid along an inclined plate
embedded in a non-Darcy porous medium, is considered in this chapter. The semi-infinite plate
is inclined about vertical direction with an acute angle {2 as shown in Fig.2.1. The plate is either
heated or cooled from left by convection from a fluid of temperature Ty with Ty > T, corresponding
to a heated surface and Ty < T corresponding to a cooled surface, respectively. It is assumed
that the fluid and the porous medium may have constant physical properties except for the density

variation in the buoyancy term. The fluid flow is moderate and the permeability of the medium
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is low, so that the Darcy-Forchheimer model is employed to simulate the resistance of the porous
medium. It is further assumed that the concentration at the wall is C,, and the concentration of

the ambient fluid is taken as C.

It has been observed that the behavior of non-Newtonian fluids in the porous matrix is quite
different from that of Newtonian fluids in porous media. Shenoy [92] has been reviewed the studies
of non-Newtonian fluids flow in porous media, with attention concentrated on power-law fluids. The
governing equations for the flow along with heat and mass transfer of a power-law fluid saturated

non-Darcy porous medium (Shenoy [92], Murthy and Singh [69] and Chen [28]), are given by

Oou Ov
2427 5.1
ox + oy )
b\/K K
"+ ﬂlﬂ =__P <8p + pg”* cos Q) (5.2)
v % ox
by/K.
o+ ﬂqﬂ _ _& <8p> (53)
v p \ 0y
or 9T o*r  0°T
il e Z - 4 2= 4
uf)x vay a<8x2+8y2) (5.4)
oC oC 0’C  o*°C

As the fundametal study, several researchers analyzed the solutions of Egs.(5.1)-(5.5) by considering
the following linear Boussinesq approximation, in which density is expressed as a linear function of

the temperature and concentration. i.e.,

P = Poo [1 - /BO (T - Too) - /82 (C - Coo)] (56)

But, the presence of temperature variation, radiation, inertia or presence of different densities and
heat released by viscous dissipation, induce significant changes in density variations, and hence the
density, temperature and concentration relationship become nonlinear. Due to this, the results of
fluid flow problem with linear Boussinesq approximation are inaccurate. To explain this situation,
Partha [79] investigated the nonlinear convection in a non-Darcy porous medium using the following

nonlinear relationship called temperature-concentration-dependent density relation (also known as
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nonlinear Boussinesq approximation)
p = poc |1 = o (T = Toe) = B1(T = Toc)? = B2 (C = Cx) = B5(C = Cc)? (5.7)

along with the associated boundary conditions

oT
v =0, —kfafy:hf(Tf—T), C=C, at y=0

(5.8)
U=Uso, 1 =T, C=Csx as y— o0

where u and v are the Darcy velocity components in x and y directions respectively, p is the density,
p is the pressure, K, is the permeability, k; is the thermal conductivity, C' is the concentration, D
is the solutal diffusivity, v is the kinematic viscosity, hy is the convective heat transfer coefficient,
« is the thermal diffusivity, b is the empirical constant, €2 is the angle of inclination, ¢g* is the
acceleration due to gravity and T is the temperature. Here 8y and (1 are the first and second order
thermal expansion coefficients respectively, whereas B2 and 3 are the first and second order solutal
expansion coefficients respectively. Further, the suffix w and oo indicate the conditions at the wall

and at the outer edge of the boundary layer respectively.

Experimental and numerical studies on the convective heat transfer in porous media show
that thermal boundary layers exist adjacent to the heated or cooled bodies. When the thermal
boundary layer is thin (i.e., x > y ~ 07, dp is the boundary layer thickness), boundary layer
approximations analogous to classical boundary layer theory can be applied (Nield and Bejan [75]).
Near the boundary, the normal component of seepage velocity is small compared with its other
component and the derivatives of any quantity in the normal direction are large compared with
the derivatives of the quantity in the direction of the wall. Now, making use of the boundary
layer assumptions, nonlinear Boussinesq approximations and eliminating pressure gradient from

the momentum equation, the governing equations (5.2)-(5.5) reduce to

out  by/K,ou?  K,g* or oC
O ¢ DO I 15y s (r- ) S+ o+ 20(C - G G feostt (59)

oT oT 0°T
V— = 0——=

2
oc | oC _  PC
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In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

5.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow caused by only buoyancy forces and without

any external agent. Hence the velocity of an external flow becomes zero (i.e., us = 0).

We introduce the following non-dimensional variables (Huang et al. [45], Kairi and Murthy

[50]):

X 1 -1 1 1
§=7, =1 Ra2€7, ¥(&n) = ag? Ra? f(§,)
(5.12)
T(&n) =Too + (Ty — Teo) 0(&m), C(€:n) = Coo + (Cww — Co0) G(&;m)
K,g*Bo(Ty — Too) 1™
where ¢ is the stream-wise coordinate, Ra = L |PecBipg 5o(Ty o) is the global Rayleigh

o w*
number, L is the characteristics length, f is the dimensionless stream function, 6 is the dimensionless

temperature and ¢ is the dimensionless concentration.

Substituting the stream function (2.7) and the transformations (5.12) into Eqs.(5.9) - (5.11),

we obtain the following momentum, energy and concentration equations

n (f) 26 fF = (14200 0)0 + B(1+ 203 ¢)¢'] cosQ (5.13)
" 1 ’r_ /@ o ﬁ /
0 +2f0—£< 3 a§0> (5.14)
Loy 1,y _ /% - 87f /
PR L —5( 5 afqﬁ) (5.15)
Dimensionless form of boundary conditions (5.8) become
af / L1
fleo =-2¢(5) 060 =Bt 100 0(6.0) = 1,
n=0 (5.16)

F1(€,00) =0, 0(€,00) =0, ¢(£,00) = 0.

poo2I(p2 [g*/BO (Tf - Too)]2_n
M*Q

1/n
where Gr* =b [ ] is the modified Grashof number, Sc = % is the

123



Cy—C Ty — T

Schmidt number, B = M is the Buoyancy ratio, a; = M is the nonlinear

Bo(Ty — Too) Bo

Cy—C,
density-temperature (NDT) parameter, ag = ﬁ?’(wﬁoo) is the nonlinear density-concentration
2
a . e : v, , hy L
parameter, Le = — is the diffusivity ratio, Pr = — is the Prandtl number and Bi = ————

(NDC) ter, L the diff ty ratio, P the Prandtl b dB

D o kg Ral/?

is the Biot number.

— oT
The non-dimensional Nusselt number Nu, = __r | and the Sherwood number
(Tf _Too) oy y=0
Sh, = (C%CBC) {20} are given by
w 00 y=0
Nug Ra? = —£20/(€,0), Shy Ra? = —£2 ¢/(€, 0). (5.17)

Results and Discussion

Similar to the previous chapters, the highly coupled nonlinear partial differential equations (5.13)-
(5.15) together with the boundary conditions (5.16) are converted into a set of six coupled ordinary
differential equations using local similarity and non-similarity approaches. After that, a novel
successive linearization method is applied to solve the set of reduced ordinary differential equations
for those six unknowns as explained in the chapter-2 for case(a) problem. In order to assess the
validity and accuracy of the present numerical results, the results have been compared with those
of previous works (Singh and Tiwari [93], and Cheng [30]) in the absence of nonlinear convection
parameters. It is found that they are in good agreement, as shown in Tables (5.1) and (5.2).
Therefore, the developed code can be used with great confidence to study the problem considered

in this case.

The numerical computations are carried out by following the fixed values of parameters: Le = 1,
Gr* = 0.5, B= 0.5 and £ = 0.5. These values are continued same throughout this study, unless
otherwise specified. The physical significance of the pertinent parameters such as &, a1, as, €
and Bi is determined through Figs.5.1(a) to 5.5(c) for different flow profiles. Also, the physical
quantities of the present interest such as Nusselt and Sherwood numbers are plotted in Figs.5.6(a)

to 5.7(b) for different values of n.

Variations in the non-dimensional velocity (f’), temperature (6) and concentration (¢) across
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Table 5.1: Comparison of —f'(0, 0) and —6'(0, 0) for various values of Gr*when B = 0,
a;=0,a=0,n=1, Bi — o0 and 2 = 0.

—17(0, 0) —6'(0, 0)
Gr* | Singh & Tewari [93] Present | Singh & Tewari [93] Present
0.4 0.766 0.7656 0.400 0.4001
1 0.618 0.6180 0.366 0.3656
4 0.390 0.3904 0.298 0.2978
6 0.333 0.3333 0.277 0.2767
10 0.270 0.2701 0.251 0.2506

Table 5.2: Comparison of —€'(0, 0) and —¢'(0, 0) for different values of B and Le when

Gr'=0,a01=0,a,=0,n=1, Bi— o0 and 2 = 0.
_9,(0’ 0) _¢,<0’ 0)
B | Le Cheng [30] Present Cheng [30] Present
41 1 0.9923 0.9923 0.9923 0.9923
41 4 0.7976 0.7976 2.0550 2.0549
4| 10 0.6811 0.6810 3.2899 3.2898
4 | 100 0.5209 0.5208 10.521 10.521
1] 4 0.5585 0.5585 1.3575 1.3575
2] 4 0.6494 0.6495 1.6243 1.6244
3| 4 0.7278 0.7278 1.8525 1.8524

the boundary layers are plotted in Figs.5.1(a) to 5.1(c) for different values of £ along the free
stream coordinate 7. In a non-similar problem, the flow quantities change along the stream-wise
direction (in the present problem along x-axis). Therefore, it is needed to have a z-dependent
non-dimensional parameter (£) which acts as a non-dimensional xz-axis. This parameter determines
the stream-wise position where the flow quantities are calculated. When & — 0, the flow governing
equations are independent of stream-wise location and hence, it shows that the existence of similar-
ity representation for the present problem. With an increase in the stream-wise coordinate &, the
velocity component increases, whereas the temperature and concentrations decrease. Further, the
wall temperature always tends to 1 as £ — oo. Hence, the changes in these profiles clearly prove
that the present problem is non-similar. It means that the solutions are not unique for different

values of &.

Figures 5.2(a) to 5.2(c) depict the variations of momentum, thermal and solutal boundary layer
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profiles in the presence and absence of «; for various values of n. As expected from Fig.5.2(a),
an increase in the power-law index n (from n < 1 to n > 1) leads to enhance the velocity, due
to the effect of shear-thinning in power-law fluids. In addition, the non-Newtonian fluid with a
higher power-law index has a lesser thermal and concentration boundary-layer thickness, as shown
in Figs.5.2(b) and 5.2(c). Fig.5.2(a) reveals that the velocity increases with the increase of aq,
whereas it shows reverse trend away from the plate. Physically, a1 > 0 implies that T > Ti;
hence, there will be a supply of heat to the flow region from the wall and it accelerates the flow
at the wall. An increase in «a; leads to reduce the temperature and concentration boundary layer
profiles in all three types of power-law fluids and the same results are displayed in Figs.5.2(b) and
5.2(c). Moreover the strength of a; gradually decreases when power-law index is turned from n < 1

ton > 1.

The effects of nonlinear density-concentration parameter on the dimensionless velocity, tem-
perature and concentration profiles, are shown in Figs.5.3(a) to 5.3(c). The influence of nonlinear
density-concentration parameter ao (here, oy is fixed) on the velocity reported similar behavior
to that of ;. Thus, the hydrodynamic boundary layer thickness increases near to the surface for
different values of ap. The effects of nonlinear density-concentration parameter on the temperature
and concentration of the power-law fluid flow, are plotted in Figs.5.3(b) and 5.3(c) respectively.
It is noticed from these figures that the temperature and concentration profiles decrease with the
increase of ay. However, the boundary layer thicknesses of the temperature and concentration are
more in the absence of a; and oo in comparison with its presence. This is due to the enhancement

of thermal and solutal gradients by nonlinear terms in the momentum equation.

The significance of Biot number (Bi) on the boundary layer profiles is portrayed in Figs.5.4(a)
to 5.4(c) for different values of n. Figure 5.4(a) displays the variation of the velocity profile with or
without Biot number. It is interesting to note that without Biot number (i.e. Bi = 0) the velocity is
low. As the Biot number increases, the velocity in the neighborhood of the inclined plate increases
significantly. Figs.5.4(b) and 5.4(c) represent the effects of Biot number on the temperature and
concentration profiles of the flow. It is evident that, as Biot number enhances from Bi < 1
(thermally thin case) to Bi > 1 (thermally thick case), the temperature of the flow increases whereas
the concentration decreases. The convective boundary condition is the generalization of isothermal
boundary condition and it effectively furnishes a mechanism for comparing the conduction resistance

within a solid body to the convection resistance external to that body (offered by the surrounding
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fluid) for heat transfer. The isothermal boundary condition is a limiting case of the convective
boundary condition when hs tends to infinity and it is proven by Fig.5.4(b). Usually, for high
Biot number, the internal thermal resistance of the plate is high and the boundary layer thermal
resistance is low. Further, when Bi = 0 (i.e., without Biot number) the left side of the plate with
hot fluid is totally insulated, the internal thermal resistance of the plate is extremely high and no
convective heat transfer to the cold fluid on the right side of the plate takes place. In this case,
the fluid temperature is maximum at the surface of plate and decreases exponentially to zero far
away from the plate, which is clearly observed from the Fig.5.4(b). However, the temperature
distribution is less in dilatant fluid and Newtonian fluid as compared to the pseudo-plastic fluid. A

similar observation was made by Khan and Gorla [55].

The influence of inclination angle (2) ranging from 0° to 90°, on the boundary layer profiles
are displayed in Figs.5.5(a) to 5.5(c). The physical reason for the depletion in velocity profile with
respect to inclination angle is that the thermal and concentration buoyancy pg*cos €2 (as considered
in Eq.(5.9)) falls down when the angle © changes from 0° to 90°, as displayed in Fig.5.5(a). It
is observed from Figs.5.5(b) and 5.5(c) that the dimensionless temperature and concentrations
enhance with an increase in the inclination angle. Moreover, one can observe that the maximum
buoyancy force for the same temperature and concentration differences occur for Q = 09 (vertical
plate) and there is no buoyancy force for the case Q = 90° (horizontal plate). In this case, the
results of thermal and solutal distributions are identically equal to the works of Chamkha et al.

[23] and Chen [27].

Here, the fluid flow profiles (namely, velocity, temperature and concentration) are drawn for
the three distinct values of the power-law index. From the above said discussions, it is observed
that the rise in power-law index increases the velocity of a power-law fluid and also increase the
horizontal boundary layer thickness. That is, the thicknesses is much smaller for shear thinning
(pseudo plastic) fluids than that of shear thickening (dilatant) fluids. In the case of a shear thinning
fluid (n < 1), the shear rates near the walls are higher than those for a Newtonian fluid. Further,
an increase in the powerlaw index decreases both temperature and concentrations of the fluid and

it lead to thinning of both thermal and solutal boundary layer thickness.

The heat and mass transfer rates are analyzed against the stream-wise coordinate £ for a; and
ag through Figs.5.6(a) and 5.6(b) together with the power-law index n. Both the Nusselt and

Sherwood numbers increase with respect to the power-law index in the presence and/or absence of
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nonlinear convection parameters. Along the stream-wise coordinate £, both heat and mass transfer

rates are increased and the influence of as is prominent as compared to ;.

Effects of Biot number and inclination angle on the physical quantities of the fluid flow are
displayed in Figs.5.7(a) to 5.7(b) for different values of n. It is worth to mention that, as the Biot
number increases from Bi < 1 (thermally thin case) to Bi > 1 (thermally thick case), evidently,
both heat and mass rates increase as shown in Figs.5.7(a) and 5.7(b). Further, the dimensionless
heat transfer rate and mass transfer rate decrease with an increase in inclination angle Q2. Therefore,
an increase in the buoyancy leads to decrease the temperature and concentration which will enhance
the heat and mass transfer rates. Thus, the heat and mass transfer rates are more for the case of

vertical surface (2 = 0°) as compared to the horizontal surface (£ = 90°).
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5.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convective flow which arises from an external force with the velocity

Uso and buoyancy forces. We introduce the dimensionless variables as follows

§=T. m=2Per g7, (g m) =ag? Pe: f(gn)

-y
L (5.18)
T(ﬁ,ﬁ) =Tw + (Tf - Too) 9(5, n)a 0(5,77) =Cx + (Cw - Coo) ¢(£a 77)

U
where Pe =

is the global Peclet’s number.

Substituting the stream function (2.7) and the transformations (5.18) into Egs.(5.1) - (5.11),

the resultant dimensionless momentum, energy and concentration equations can be presented as

n () 2Fs £ = (R)™ [(1+ 201 0)0" + B(1+ 2z ¢)¢'] cos Q (5.19)
w1y _ /a‘g _ g /
0 +2f0—§( % 8§0> (5.20)
Ly, 1., _ /@ _ g /
fe¢ + §f¢ =¢ (f ¢ 8§¢) (5.21)
The associate boundary conditions (5.8) in terms of f, 6, and ¢ can be written as
af / L1
rleo=-2¢(5) 060 =-Bict 10 0] o(6.0) =1,
=0 (5.22)

f(€00) =1, 6(¢,00) =0, ¢(£,00) = 0.

. Ra .
is the pore diameter-dependent Peclet number, R: = e is the

e
b\/Kp> (aPed
v

u
In usual definitions, Pegy =

2—n
) is the non-Darcy parameter (Forch-

mixed convection parameter, F's = ( 1

heimer number) and Bi = —IZ__ is the Biot number.
ky Pel/?
. . - aT
The non-dimensional Nusselt number Nu, = —— [] and the Sherwood number
—x oC

Shy=——-—|— are given b

“ (Cw—Ox) |:ay:|y0 & Y

Nug Pe? = —£260/(€,0), ShyPe? =—£2¢/(€,0). (5.23)

135



Results and Discussion

As explained in the previous chapter (i,e. chapter 2), here also, the the successive linearization
method together with the local similarity and non-similarity procedure is employed to solve the
non-homogeneous and nonlinear coupled partial differential equations (5.19)-(5.21) along with the
boundary conditions (5.22). The validation of the present results is cross verified with previously
established results (Chaoyang et al. [26], Murthy [67]) in the absence of nonlinear convection pa-
rameters, as shown in Tab.(5.3) and Tab.(5.4). From these two tables, we have noticed that the
error between present and previously published numerical results is negligible, so that the numerical

practice which we made by SLM is an appropriate scheme for the present analysis.

The numerical computations are carried out by following the fixed values: B = 0.5, F's = 1.2,
Pr=1, Le=1, Ri =2 and £ = 0.5. These values are unaltered throughout this study, unless oth-
erwise specified. The impacts of the pertinent parameters such as nonlinear convection parameters
(a1, ag), angle of inclination (€2) and Biot number (Bi) are determined through Figs.5.8(a)-5.12(c)
for the fluid flow. Also, the physical quantities of the flow, namely local Nusselt and Sherwood
numbers (i.e, Nuyg Pe? and Sh, Pe_Tl) are depicted in Figs.5.13(a)-5.14(b).

The occurrence of non-similar solutions in the present analysis is shown in the Figs.5.8(a)-5.8(c).
On boosting the value of stream-wise coordinate £(0.1,0.5,1.0), the momentum boundary layer
thickness increases, whereas the thermal and solutal boundary layer thickness decrease. Further,
the wall temperature always tends to 1 as £ — oo and also, the changes in these profiles clearly
prove that the present results are non-similar. It means that the solutions are not unique for

different values of €.

The figures displayed in Figs.5.9(a)-5.9(c) exhibit the dependence of NDT parameter o (0, 2, 6)
and power-law index n (0.5,1.0,1.5) on the boundary layer profiles. It reveals that the variation
of the power-law index is considerable and it enhances the momentum boundary layer thickness,
whereas it diminishes the thermal and solutal boundary layer thickness. With respect to the
variation of «aq, the dimensionless velocity increases more at the surface of the inclined plate and
it reaches unity for 7,4, value. The same result is shown in Fig.5.9(a). From Fig.5.9(b)-5.9(c),
one can notice that the rise of ay leads to reduce the temperature and solutal boundary layer
thicknesses. Also, the temperature and concentration gradients are more in the absence of a; as

compared to its presence. Responses of boundary layer profiles for NDC parameter (ag = 0,3,7)
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are portrayed for the three different values of the power-law index in Figs.5.10(a)-5.10(c). The
results of this set of figures repeat the same kind of behavior like a1 in all three profiles, but the
influence of ay is more on these three boundary layer profiles and also in all three kinds of fluids

(pseudo-plastic, Newtonian and dilatant fluid) compared to the influence of «;.

Figures 5.11(a)-5.11(c) show the impacts of the Biot number (Bi = 0.05,1.0,20) on the non-
dimensional velocity, temperature, and concentration for the pseudo-plastic, Newtonian, and dila-
tant fluids. A rise in Biot number changes the magnitude of the velocity in the increasing direction,
as depicted in Fig.5.11(a). The utility of convective boundary condition is possible in two ways;
first, as an isothermal condition and another one as a non-isothermal condition. It is because of
the isothermal condition is a limiting result of the convective boundary condition when hy tends
to infinity (stated by Aziz [13]) and this is proven again by Fig.5.11(b). It means that there is
a drastic change in temperature distribution at the surface of the plate when the Biot number
approaches to a large value. The effect of Biot number on the concentration profile is displayed in
Fig.5.11(c) and it reveals that the concentration profile decreases when the Biot number increases
from zero to a large value. For a fixed value of Biot number, the enhancement of the power-law
index leads to increase the velocity distribution, whereas it decreases the temperature and concen-
tration distributions within the boundary layers. As Biot number enhances from Bi < 1 to Bi > 1,
the temperature increases whereas the concentration decreases as shown in Figs.5.11(b) and 5.11(c)

respectively.

An inclined plate is displaced from vertical to horizontal position with reference to the angle of
inclination (Q = 0°,40°,80°) and the resulting variations in boundary layer profiles are portrayed
in Figs.5.12(a)-5.12(c). The physical reason for the depletion of velocity profile with respect to
the angle of inclination is that the thermal and concentration buoyancy fall down when the angle
of inclination changed from Q = 0° to 90" as shown in Fig.5.12(a). Moreover, from Fig.5.12(a),
one can observe that the maximum buoyancy force occurs for the temperature and concentration
differences along the vertical plate only. It is observed from Figs.5.12(b) and 5.12(c) that the

concentration and temperature enhance with the rising values of inclination angle.

The variations in the physical quantities (specifically, Nu, Pe? and S hy Pe_Tl) of the present
analysis are portrayed through the graphs Figs.5.13(a)-5.14(b) for the fixed values: a3 = 0,6,
as = 0,5, Bi = 0.05,1.0, and Q = 0°,60°. The magnitude of the heat transfer rate (Nuy Pe%l)

slightly increases when «; is increased from zero to a nonzero value and the same kind of changes
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occurred for ag, but the influence of «y is more when compared to oy effect as plotted in Fig.5.13(a)
for all n. On the other side, for a fixed value of these two parameters, the heat transfer rate is more
for dilatant fluid compared to Newtonian and pseudo-plastic fluids. Fig.5.13(b) drawn for Sherwood
number (Shy Pe%l) also shows same results as Nu, Pe = . Figs.5.14(a)-5.14(b) demonstrate that
the Nuy, Pe? and S hy Pe% show the opposite trend when the plate is displaced from vertical to
horizontal position with reference to the angle €2. But, in the case of Bi, variations in these two
quantities are same and increased. However, for a fixed value of either Bi or €2, both Nu, Pes

and Sh, Pe? fall down when the power-law index moves from n <1 to n > 1.
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Figure 5.8: Effect of & for different values of n on the (a) velocity, (b) temperature and (c)
concentration with the fized values of a1 =1, ap = 1, Bi = 0.2 and Q = 30°.
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Figure 5.13: Effects of ay and oy for different values of n on the (a) heat transfer rate and
(b) mass transfer rate against & with the fived values of Bi = 0.5 and = 30°.
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Figure 5.14: Effects of Bi and S for different values of n on the (a) heat transfer rate and
(b) mass transfer rate against & with the fized values of oy = 1 and as = 1.
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5.3 Conclusions

In the present chapter, the nonlinear Boussinesq approximation is considered in the analysis of heat
and mass transfer phenomena of a Ostwald-de Waele power-law fluid flow over a convectively heated
inclined plate in a non-Darcy porous medium. The impact of pertinent parameters on the velocity,
temperature, concentration together with the heat and mass transfer rates have been analyzed.

From this study, the conclusions drawn in both cases (a) and (b) can be summarized as follows:

The influences of a1 and a9 are prominent on all the physical characteristics of the present,
compared therewith its absence, and these two effects are more influenced for pseudo-plastic fluids
in both case (a) and case (b). In both case (a) and case (b), the variation of the Biot number leads
to enhance all the pertinent characteristics and it effectively furnishes a mechanism for comparing
the conduction resistance within a solid body to the convection resistance external to that body
(offered by the surrounding fluid) for heat transfer. Further, it is found that the velocity and mass
transfer rate diminish, whereas the thermal and solutal boundary layer thicknesses enhance with
the increase of angle of inclination. On the other hand, heat transfer rate increases with the angle

of inclination in case (a), but it decreases in case (b).
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Chapter 6

Effects of Biot Number and
Cross-Diffusion on Nonlinear

Convective Flow of a Power-law Fluid

in a Non-Darcy Porous Medium !

6.1 Introduction

The effect of cross-diffusion plays a vital role in the analysis related to heat and mass transfer of
moving fluid and has unavoidable importance. In view of the above, the analysis of convective flow
along a horizontal /vertical plate in a power-law fluid saturated non-Darcy porous medium with
cross-diffusion effects, has been contemplated by many researchers. In most of the previous studies,
these effects are considered as a second-order phenomenon and furthermore called Soret-Dufour
effects. The importance of Soret and Dufour effects on mixed convective flow a power-law fluid
along an isothermal vertical plate embedded in a porous medium with suction/injection effects,
is discussed by Mahdy [61]. The importance of convective transport along a vertical plate in a

stratified power-law fluid saturated non-Darcy porous medium in the presence of Soret and Dufour

!Case(a): Published in “Journal of Nanofluids” 7(4) (2018) 766-775, Case(b): Published in “Ad-
vanced Science, Engineering and Medicine” 10 (2018) 1-8.
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effects, is examined by Srinivasacharya et al. [99].

From the literature survey, it is observed that the study of free and mixed convective flows of
a power-law fluid over an inclined plate with cross-diffusion effects has not been investigated so
far. Therefore, a problem of nonlinear convective flow of a power-law fluid along inclined plate
embedded in a non-Darcy porous medium under the influence of cross-diffusion and convective
boundary condition, is considered in this chapter. Further, the reduced system of non-dimensional
partial differential equations is solved numerically by employing successive linearization method
along with the local similarity and non-similarity approaches. The effects of Soret number, Dufour
number, Biot number, nonlinear convection parameters and angle of inclination on the velocity,
temperature, and concentration profiles are presented graphically for all three kinds fluids (pseudo-
plastic, Newtonian and dilatant fluids). Moreover, the non-dimensional Nusselt and Sherwood
numbers against the stream-wise coordinate for various values of the pertinent parameters are also

analyzed through graphs.

6.2 Mathematical Formulation

An incompressible power-law fluid flow over an inclined plate in a non-Darcy porous medium,
is considered in this chapter. Further, the flow is assumed to be laminar and in steady state.
Choose the two-dimensional coordinate system such that the z-axis is taken along the plate and
y-axis is measured normal to it. The geometry of the problem is shown in Fig.(2.1). If the direct
coupling between the temperature and concentration gradients exists in the problem and when
these gradients are very large, then the problem becomes more significant from practical point
of view. Hence, an extension of chapter-5 is considered in the present chapter by including the

cross-diffusion effects.

By invoking the assumptions made in chapter-5 along with the nonlinear Boussinesq approx-

imation, the governing equations that describe the physical situation of present problem, can be

written as
ou  Ov
5. T3, = 1
Ox + Ay 0 (6.1)
ou" by Ky Ou®  Kpg* T oC
oy e 260(T = Too)] - 263(C — Coo)] = ¢ cOSQ 2
ay +— By » {[504— B ( )] By + [B2 + 283(C — Cx)] 9 }cos (6.2)
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or — or 8T DKpd*C

tull = _ 6.3
Yoz Ty T a2 T T C, 0y (6:3)

oC oC 0’C DKrd?T
— — =D 6.4
u@x +v 2y 9y? + T, 0 (6.4)

The corresponding boundary conditions are
oT
v =0, —kjfaf—hf(Tf—T), C=Cy, at y=0

Yy (6.5)

u=0, T=Ty, C=Cyx as y— o0

where C; is the concentration susceptibility, C), is the specific heat capacity, K7 is the thermal

diffusion ratio and T,, is the mean fluid temperature.

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

6.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow, caused by only buoyancy forces and without
any external agent. Hence, the velocity of the external flow becomes zero (i.e., us = 0). Next, we

introduce the following non-dimensional transformations

§=T. m=1LRar&7, (&) = ag? Ras f(En)
(6.6)

T(fﬂl) =Tw + (Tf - Too) 9(57 77)7 0(5777) = Coo + (Cw - Coo) ¢(§7 77)

L [ pooKpg*Bo(Ty — To) 1H"
where Ra = — Poo kg™ BT ) is the global Rayleigh number.
e

,u,*

Substituting the stream function (2.7) and the transformations (6.6) into Eqs.(6.1) - (6.4), we

obtain the following momentum, energy and concentration equations as

n (f) 26 = [(142010)8 + B(1 + 2 a20)¢] cos Q2 (6.7)
1" 1. /" /@_37]"/

0" + 30 + Duo _g< 5 age) (6.8)
Loy 1. "o_ /8¢_%/

70"+ 5o+ Sro _§<f8£ 5 ) (6.9)
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Boundary conditions (6.5) in terms of f, § and ¢ can be written as

0 o1
feo =-2¢(5) L 60 =-Bict 1 -0 0] 0(6.0) =1,
n=0 (6.10)
f’(f,oo) =0, 9(& OO) =0, ¢(§7OO) = 0.
D Kp(Ty — Too w T Yoo .
In usual definitions, Sr = Tml/?éwf — C'oo)) is the Soret number, Du = gféji(ch _ioo)) is the
heL
Dufour number and Biot number is taken as Bi = —J— .
ks Ral/?
The non-dimensional Nusselt number Nu, = __r [6] and the Sherwood number
- oC
Shy = ——F+— {} are given by
(Cw—Cx) | O =0
Nuy Ra? = —£20/(€,0), Shy Raz = —€2 ¢/ (€, 0). (6.11)

Results and Discussion

With the help of explanations given in previous chapters, the system of Eqs.(6.7)-(6.9) subject
to the boundary conditions (6.10) have been solved numerically using the successive linearization
method along with the local similarity and local non-similarity procedures. In the absence of cross-
diffusion effects, this case reduces to the case (a) problem of the chapter-5. Validation of the present
problem in this case, can be done on comparison as it was done in the case (a) of chapter-5. Further,
the numerical computations are carried out by following the fixed values of parameters: Gr* = 0.5,
B=1,Le=1and¢ = 0.2. These values remain unchanged throughout this study, unless otherwise
specified. The impacts of pertinent parameters, such as the nonlinear convection parameters (o,
o), cross-diffusion parameters (Du, Sr), angle of inclination (€2) and the Biot number (Bi), are
determined through Figs.6.1(a)-6.3(c) within the boundary layer profiles. Additionally, the physical
quantities of the flow, namely Nusselt and Sherwood numbers (i.e, Nu, Ra? and S h Ra%l) are

anticipated in Figs.6.4(a)-6.6(b).

Variations of fluid flow profiles (such as f’, # and ¢) for a1(0, 6), a2 (0, 5) and n (0.5, 1.0,
1.5) with Du = 0.5, Sr = 1.0, Bi = 0.5, £ = 0.5 and Q = 30°, are depicted in the first set of
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Figs.6.1(a)-6.1(c). The dimensionless velocity increase more at the surface of the inclined plate and
it reaches free stream value for 7,4, value with the increase of a;y, the similar result can be noticed
in Fig.6.1(a). Additionally, Fig.6.1(a) portrays the behaviour of velocity profile for e to the three
distinct values of the power-law index. The results of velocity for ag repeat the same kind of
behavior as like «1 in all three fluids. The thermal and solutal boundary layer thicknesses diminish
with the rise of a; or g, and the same results are displayed in Figs.6.1(b) and 6.1(c). The difference
between wall and ambient medium increases for larger values of a; and as. Due to this, higher
velocity (see., Fig.6.1(a)), smaller temperature (see., Fig.6.1(b)) and smaller concentrations (see.,
in Fig.6.1(c)) are obtained. Further, the influence of ay is more prominent on these three boundary
layer profiles and in all three kinds of fluids (among pseudo-plastic, Newtonian and dilatant fluids)

compared to «q influence.

The second set of Figs.6.2(a)-6.2(c) exhibits the significance of cross-diffusion parameters Du
(0, 0.5) and Sr (0, 1.5) on the non-dimensional velocity (f’), temperature () and concentration (¢)
in all three kinds of fluids (among pseudo-plastic, Newtonian and dilatant fluids) for a; = 4, e = 4,
Bi = 0.5, ¢ = 0.5 and Q = 30°. From Fig.6.2(a), it is observed that, for an individual improve-
ment of cross-diffusion parameters (i.e when Du varies St is fixed and if Sr varies Du should be
fixed), thickness of the momentum boundary layer increases. Diffusion-thermo (Du) and thermal-
diffusion (Sr) effects on the temperature and concentration can be seen in Figs.6.2(b)-6.2(c). The
Dufour number characterizes the concentration difference ratio compared to the temperature, and
the Soret number is the opposite. Hence, an increasing Dufour number stands for a larger concen-
tration difference and leads to increase temperature, while the similar kind of change is observed

in concentration with respect to Soret number as shown in Figs.6.2(b)-6.2(c).

The influences of 2(0°,60°) and Bi(0.05,0.5) on the boundary layer profiles (such as, f’, # and
¢) are plotted through the third set of Figs.6.3(a)-6.3(c) for the fixed values: Du = 0.3, Sr = 1.0,
a1 =4, ag =4 and £ = 0.5 in three instances of n = 0.5,1.0, 1.5. The velocity distribution reduces
for the increase of 0 within the boundary layer as shown in Fig.6.3(a). Additionally, the most
extreme buoyancy force occurs at the vertical plate. Also, it is observed from Figs.6.2(b) that the
velocity of the flow field attains a maximum state in the neighborhood of the plate with the rise
of Bi and this may be due to the reduction in the thermal resistance of the inclined plate. From
Figs.6.3(b) and 6.3(c), one can notice that the temperature and concentration enhance with the

increase of 2. Fig.6.3(b) implies the impact of Bi on the temperature distribution and shows two
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results mainly. First, the convective boundary condition becomes to isothermal condition when
Bi — oo (i.e for a larger value of Bi), as shown Fig.6.3(a). Secondly, the temperature distribution
is accelerates on the surface of the plate when Bi increases from the thermally thin case (Bi < 0.1)
to the thermally thick case (Bi > 0.1). Further, Fig.6.3(c) reveals that the influence of Biot number

is nominal on the concentration profile.

The above mentioned figures also uncover the effect of power-law index n on f’, # and ¢
in the presence or absence of pertinent parameters a1, as, Du, Sr, Bi and €, individually. From
Figs.6.1(a), 6.2(a), and 6.3(a), it is observed that the dimensionless velocity decreases at the surface
of the plate, whereas it increases in the outer part of the boundary layer for the rise of n, i.e. the
fluid becomes more shear thickening (dilatant) at the plate and more shear thinning (pseudo-plastic)
away from the inclined plate. It is fascinating to note that the velocity profiles crossed each other
near the wall as depicted in the Figs.6.1(a), 6.2(a) and 6.3(a). The impact of the power-law index n
on the temperature (portrayed by the Figs. 6.1(b), 6.2(b) and 6.3(b)) and concentration (portrayed
by the Figs. 6.1(c), 6.2(c) and 6.3(c)) profiles are prepared for the same governing parameters. An
increase in n leads to decrease the temperature and concentration profiles and also, it reduces the

thermal and concentration boundary layer thicknesses.

The influences of «1(0,6) and «3(0,5) on the Nusselt number (Nu, Ra%l) and Sherwood
number (Sh, Ra_Tl) against the stream wise coordinate £, are plotted through the fourth set of
Figs.6.4(a)-6.4(b) with the fixed values: Du = 0.3, Sr = 1.0, Bi = 0.5 and = 30° for the three
kinds of fluids. The rise in a7 or ag improve all the pertinent characteristics of the pseudo-plastic
fluid flow for a fixed value of g or a7 individually. Also, heat and mass transfer rates have the
same change in the Newtonian and dilatant fluid flows. Moreover, the behaviour of Nu, Ra7 is
opposite to Sh, Ra® . Further, for a non zero value of either oy or asg, both the heat and mass
transfer rates fall down when power-law index moves from n < 1 to n > 1, whereas both the heat
and mass transfer rates are considerably enhance in the absence of either oy or ag for the change

of power-law index.

The effects of Du(0,0.5) and S7(0,1.5) on the heat and mass transfer rates are displayed in
the fifth set of Figs.6.5(a)-6.5(b) for ay = 1, ag = 1, Bi = 0.5 and Q = 30°. Higher values of the
Dufour number leads to reduce Nu, Ra? and enhance Sh Ra= , while with the expansion of
Sr, these heat and mass transfer rates show reverse trend. Thus, Soret and Dufour numbers have

opposite influence on the heat and mass transfer rates, as depicted in Figs.6.5(a)-6.5(b). However,
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the influence of power-law index n is nominal for the heat transfer rate and considerable for the

mass transfer rate as shown in Figs.6.5(a)-6.5(b).

The sixth set of Figs.6.6(a)-6.6(b) describes the impact of Bi(0.1,10) and Q(0°, 60°) on Nu, Ra 2
and Sh, Ra® for the three fluid cases with Du = 0.03, St = 2.0, a1 =3, ag = 3, Fs = 0.5 and
& = 0.5. With an increment in €, there is a considerable decrement in ¢g* component and this
degrades the buoyancy force. Hence, the reduction in the buoyancy will lead to diminish the heat
and mass transfer rates when the inclined plate is displaced from vertical to horizontal direction.
One can notice that an enhancement in the Biot number leads to increase Nuy, Ra%l, while it
reduces the mass transfer rate Shy, Ra=. Further, the power-law index results an improvement in
Nuyg Ra? and Sh Ra® for the inclined plate, whereas it shows opposite change in the case of

vertical plate.
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6.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convective flow, arises from buoyancy forces and an external flow

with the velocity u~. Now, we introduce the following dimensionless variables

§=T. m=2Perg?, (g m) = ag? Pe: f(gn)

-y
L (6.12)
T(ﬁ,ﬁ) =Tw + (Tf - Too) 9(5, n)a 0(5,77) =Cx + (Cw - Coo) ¢(£a 77)

U
where Pe = is the global Peclet’s number and u., is the free stream velocity.

Substituting stream function (2.7) and the transformation (6.12) into Egs.(6.1) - (6.4), we

obtain the following momentum, energy and concentration equations

n (f/)n_l "+ 2Fsf' " = (Ri)" [(1 +2a10)0 + B(1 + 2a2¢)¢’} cos () (6.13)
w1 "o_ /@ . ﬁ /
0"+ 5f0+ Dug —£< o€ a§9> (6.14)
1 /! 1 / /" /@ _ g /
feqS +§f¢+5ﬂ9 —§<f o€ 8£¢> (6.15)

Boundary conditions (6.5) in terms of f, 6, and ¢ can be written as

or

&0 = -2¢(

) ) 9/(57 0) = _BZ£% [1 - 0(& 0)] 7¢(£a 0) =1,
n=0 (6.16)

f’(f,OO) = 17 9(6700) - 0, (b(f,OO) =0.

where the Biot number is taken as Bi = %.
. . —x oT
The non-dimensional Nusselt number Nu, = ——— [] and the Sherwood number
(Tf _Too) oy y=0
—T oC
Shy = —+— {} are given by
(Cw—Cx) |0 =0
NuyPes = —£20/(€,0), ShyPe? = —£34/(€, 0). (6.17)
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Results and Discussion

Similar to the previous chapters, the numerical solution for the highly coupled nonlinear partial
differential equations (6.13)- (6.15) together with the boundary conditions (6.16) are obtained by
using successive linearization along with the local similarity and non-similarity approaches. In the
absence of cross-diffusion effects, this case reduces to the case (b) problem of the previous chapter.
Validation of the present problem in this case, can be done on comparison as it was done in the

case (b) of chapter-5.

The numerical computations are carried out for the fixed values of parameters: B=1, F's =1,
Pr=1, Le=1, Ri = 2 and £ = 0.5. These values are continued same throughout this study, unless
otherwise specified. The impacts of the pertinent parameters are determined through Figs.6.7(a)-
6.9(c) for the boundary layer profiles. Additionally, the physical quantities of the flow, Nusselt and
Sherwood numbers (i.e, Nu, Pe? and Sh, Pe_Tl) are anticipated in Figs.6.10(a)-6.12(b) for the

same values.

Variations in the fluid flow profiles (such as f’, 6 and ¢) for a1 (0, 6), as (0.5, 2.5) and n (0.5, 1.0,
1.5) with the fixed values: Du = 0.03, Sr = 2.0, Bi = 0.5, ¢ = 0.5 and Q = 30°, are displayed in the
first set of Figs.6.7(a)-6.7(c). It uncovers that the variation of the power-law index is extensive and
diminishes the momentum boundary layer thickness, whereas it enhances the thermal and solutal
boundary layer thickness. The dimensionless velocity increases more at the surface of the inclined
plate and it reaches to free stream value for 7,4, value with the increase of o and this result is
shown in Fig.6.7(a). Additionally, Figs.6.7(a) portrays the impact of ay on the behavior of velocity.
The results of this figure repeat the same kind of behavior as oy in all three kinds of fluids. The
thermal and solutal boundary layer thicknesses diminish with the rise of a; or a9, and this effect

is displayed in Figs.6.7(b) and 6.7(c).

The second set of Figs.6.8(a)-6.8(c) exhibits the significance of Dufour number Du/(0,0.5) and
Soret number S7(0,1.5) on the profiles f’, § and ¢ in all the three kinds of fluids (pseudo-plastic,
Newtonian and dilatant fluids) with a; = 1, ap = 1, Bi = 0.5, £ = 0.5 and = 30°. An indi-
vidual improvement of cross-diffusion parameters leads to increase the thickness of the momentum
boundary layer, as shown in Fig.6.8(a). When there is direct coupling between the temperature
and concentration gradients, the mass flux can be generated not only by concentration gradients

but also by temperature gradients. On the other hand, heat fluxes can also be created by concen-
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tration gradients. Due to this, an addition in Du leads to enhance the temperature gradient and
decreases the solutal boundary layer thickness, while the results of ST are reverse to the results of
Du on these two boundary layer profiles. That is, an increase in St leads to enhance concentration
and reduces the temperature as shown in Figs.6.8(b) and 6.8(c). However, in the absence or pres-
ence of cross-diffusion parameters, the temperature and concentration gradients increases with the

power-law index n.

The influences of 2(0%,60°) and Bi(0.1,20) on the different profiles are projected in the third
set of Figs.6.9(a)-6.9(c) for the fixed values: Du = 0.03, Sr =2.0, a1 =1, ag = 1 and £ = 0.5 in
three instances of power-law fluids, separately. An expansion in €2 reduces the velocity distribution
inside the boundary layer region as portrayed in Fig.6.9(a). Also, that the velocity of the flow field
attains maximum state in the neighborhood of the plate with the rise of Bi and this may be due
to the reduction in the thermal resistance of the inclined plate. From Figs.6.9(b) and 6.9(c), one
can notice that the temperature and concentration enhance with the rise of 2. The temperature
distribution accelerates on the surface of the plate when Bi increases from thermally thin case
(Bi < 0.1) to the thermally thick case (Bi > 0.1), as shown in Fig.6.9(b). Further, Fig.6.9(c)
reveals that the concentration profile increases within the boundary layer with the increase of Biot

number.

The impact of a;(0,6) and a3(0,5) on the Nusselt number (Nu,Pe~/?) and Sherwood num-
ber (thPe_l/ 2) against the stream wise coordinate ¢, are discussed through the fourth set of
Figs.6.10(a)-6.10(b) with Du = 0.03, Sr = 2.0, Bi = 1.0 and Q = 30° for the three kinds of fluids.
The rise in a1 or ao improves all the pertinent characteristics of the pseudo-plastic fluid flow for a
fixed value of ai or oy respectively. Also, these quantities have the same change in the Newtonian
and dilatant fluid flows. Further, along the stream-wise coordinate £, the nature of NugPe /2 is
in opposite way to ShyPe~1/2. However, for a fixed value of either a; or as, both the heat and

mass transfer rates fall down when the power-law index moves from n < 1 ton > 1.

The effects of Du(0,0.5) and Sr = (0,1.5) numbers on the heat and mass transfer rates are
displayed in the fifth set of Figs.6.11(a)-6.11(b) for a1 = 1, ap = 1, Bi = 1 and Q = 60°. Higher
values of Du leads to diminishes IV uxPe_l/ 2 and enhances Shy Pe™1/ 2 while with the expansion of
Sr, these demonstrate reverse trend. Thus, the Soret and Dufour numbers have opposite effects on
the Nusselt and Sherwood numbers, as shown in Figs.6.11(a)-6.11(b). However, these two transfer

rates are more in the pseudo-plastic fluids when compared with the Newtonian and dilatant fluids.
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The sixth set of Figs.6.12(a)-6.12(b) displays the impact of Bi = (0.1,20) and 2 = (0°,60°) on
NugyPe Y2 and ShyPe~'/2 for the three fluid cases with Du = 0.03,Sr = 2.0, a1 = 1, ay = 1,
Fs = 0.5 and £ = 0.5. As () increases, there is a reduction in g* component in the direction of
displacement of the plate by angle €2 and this degrades the buoyancy force in that direction. Hence,
the reduction in the buoyancy leads to diminish heat and mass transfer rates when the inclined
plate changes from vertical to horizontal position. One can notice that an enhancement in the Biot

1/2 Further, the power-law

number causes an increase in N umPe_l/ 2 whereas it decreases ShyPe™
index results in an improvement in Sh, Pe~'/2 for an isothermal condition, whereas Sh,Pe~'/2 has

the opposite trend in the case of non-isothermal condition.
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(b) mass transfer rate against & with the fized values of Bi =1, ay = 1, ap = 1 and Q = 30°.
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6.3 Conclusions

In this chapter, the non-similarity solution is obtained to analyze the effects of cross-diffusion and
convective boundary condition on the nonlinear convective flow of a power-law fluid along the
inclined plate in a non-Darcy porous medium. From this analysis, the main findings are drawn in

both cases (a) and (b) as follows:

An increase in nonlinear convection parameters leads to increase the local Nusselt and Sherwood
numbers, but it decreases the temperature and concentration in both case (a) and case (b). Further,
the tangential velocity increases at the wall in both the cases (a) and (b), but it shows opposite
trend in case (b) far away from the inclined plate. With the increase of Biot number, the tangential
velocity, temperature and local Nusselt number enhance, but the local Sherwood number reduces
in both case (a) and case (b). As the angle of inclination increases, the local Nusselt and Sherwood
numbers reduce, but the temperature and concentration enhance. In addition, the tangential
velocity decreases in the cases (a) and (b) at the wall, while it shows a reverse trend far away
from the inclined plate in the case (b). The presence of Soret parameter increases the local heat
transfer rate but decreases the local mass transfer rate. The local heat transfer rate is decreased
and local mass transfer rate is increased due to the presence of Dufour parameter. Moreover, the
higher Nusselt and lower Sherwood numbers are found for the case (b) when compared to those of

the case (a).
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Chapter 7

Effects of Double Dispersion in a
Non-Darcy Porous Medium Saturated

with a Power-law Fluid subject to

Convective Boundary Condition !

7.1 Introduction

Power-law fluid flow through porous media has gained immense importance as a consequence of its
wide range of applications in energy and geophysical industries, for example, thermal insulation,
filtration processes, geophysical flows, petroleum resource, polymer processing and so forth. Ex-
tensive research has been considered on free/mixed convective flow of a power-law fluid through
different geometries embedded in a Darcy/non-Darcy porous medium by [29, 49, 73]. Several works
have been made in recent years to investigate the problem of convective flow over an inclined plate
in various Newtonian and non-Newtonian fluids due to its geophysical and industrial applications.
These applications include chemical processing, electrical systems, iron removal, brine clarification,

etc. In view of the above said applications, Pal and Chatterjee [78] analyzed non-Newtonian fluid

!Case(a): Published in “Journal of Nanofluids” 7(6) (2018) 1247-1257, Case(b): Accepted by “4th
Thermal and Fluids Engineering Conference (TFEC) April 14-17, 2019 Las Vegas, NV, USA”.
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flow characteristics along an inclined plate under variable thermal conductivity.

The thermal and solutal transport due to the hydrodynamic mixing is called thermal and solutal
dispersions or double dispersion effects. The effects of thermal and solutal dispersions in a porous
medium is necessary due to the presence of inertial effects [75]. Kairi et al. [53] examined importance
of these effects on the natural convective flow of a power-law fluid in a non-Darcy porous medium
(see also, the references therein). Narayana and Sibanda [74] analyzed the double dispersion effects
on MHD mixed convective flow along a vertical flat plate embedded in a non-Darcy porous medium.
The combined convective heat and mass transfers along a vertical surface in a non-Darcy porous

medium in the presence of double dispersion effects, has been discussed by Afify and Elgazery [2].

Survey on earlier studies reveals that the effect of double dispersion on the convective heat and
mass transfer in non-Newtonian fluids saturated non-Darcy porous medium has been investigated
by very few authors. Also, the concept of natural and mixed convective flows of a power-law fluid
over an inclined plate in a non-Dary porous medium with convective heating and double dispersion
effects, is not examined so far. Hence, the present chapter aims to analyze the influence of double
dispersion effects on the nonlinear convective flow over an inclined plate in a non-Darcy porous
medium saturated with a power-law fluid. The effects of pertinent parameters on the physical

quantities are studied, and the results are displayed graphically.

7.2 Mathematical Formulation

Consider an incompressible power-law fluid flow along an inclined plate embedded in a non-Darcy
porous medium and flow is assumed to be two-dimensional, steady and laminar. The semi-infinite
plate is inclined about vertical direction with an angle 2 as shown in Fig.(2.1). It is known from
the literature that in a non-Darcy medium where the inertial effects are prevalent, the thermal and
solutal dispersion effects will become significant in natural and mixed convective flows [75]. Due
to this importance, the thermal and solutal dispersion effects are incorporated in the governing
equations of the power-law fluid. Further, this chapter is an extension of chapter-5 by considering

the double dispersion effects.

Under the consideration of assumptions made in chapter-5 along with the nonlinear Boussinesq

approximation, the governing equations for the power-law fluid flow in a homogeneous and isotropic
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non-Darcy porous medium (Forchheimer model), are given by

ou Ov
el 1
o + 3y 0 (7.1)
ou™  b\/Kp,ou? K,g* or oC
—_— — = 201(T — To)| — 203(C — Cx)] — Q 7.2
o+ RO B (4 2 (T - T G+ B+ 20(C - ol o beostt (72
oT or o oT
Gt = 5 %) 7
oC oc 0 oC
== =2 D 4
or "oy Gy[ (’9y] (74
along with the boundary conditions
T
v =20, *kjf%:hf(Tf*T), cC=C, at y=0
Y (7.5)

U= U, 1 =T, C=Csx as y— o0

where « is the molecular thermal diffusivity, D is the molecular solutal diffusivity, x is the thermal
dispersion coeflicient, d is the pore diameter and ( is the solutal dispersion coefficient. Further, the
effective thermal and solutal diffusivities are defined as ae = a + xdu and D, = D + ( du (Telles
and Trevisan [104], Murthy [67]), respectively.

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

7.2.1 Case(a): Natural Convection

As in the earlier chapters, the flow is assumed to be a natural convective flow which is caused
by only buoyancy forces and without any external agent. Hence, the velocity of the external flow
becomes zero. To convert the system of dimensional equations (7.1) - (7.4) into the non-dimensional
form, we considered the following dimensionless transformations

§=T. n=1Ra1&7, (&) = ag? Ras f(En)
(7.6)

T(§777) =Tw + (Tf - Too) 9(5777)7 0(5777) = Coo + (Cw - Coo) ¢(§777)
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Substituting the stream function (2.7) and the transformations (7.6) into Eqs.(7.2) - (7.4), we

obtain the following momentum, energy and concentration equations

n (f)" 26 1 = [(1 4 2000)8 + B(1 + 2 a2¢)¢'] cos Q (7.7)
/" 1y, L r_ /ae_ai/
6+Ds(f0)+2f6§< % 8£0> (7.8)

Ly, Y 1 o /@_ﬁ /
7.9+ De (f19) + 519 —«S(f 9 a§¢) (7.9)

Boundary conditions (7.5) in terms of f, , and ¢ can be written as

af / L1
f§70 :_25 O 79 570 :_B,L‘SQ 1_9‘570 7¢£70 :17
&0 <a§>n_0 (&0 [1-6(6,0)],6(¢,0) .
f'(€,00) =0, 0(&,00) = 0, $(&,00) = 0.
d Ra

In the above equations, Rag = is the modified pore-diameter-dependent Rayleigh number,

D4 = xRay is the thermal dispersion parameter and D, = ( Raq is the solutal dispersion parameter.

The physical quantities of present interest such as heat and mass transfer rates, are defined as

Nu, = —

x oT _ oc
D(Cy — Cx “ Oy

T oC
— | ke , Shg = ———7+———|D 7.11
k(T — Too) 53/L—0 ) [ Lzo (7.11)

The non-dimensional local Nusselt number Nu, and the Sherwood number Sh,, are given by

NugRa® = —€2 [1 + D, f'(€, 0)] 0'(€, 0), ShyRa> = €3 [1 + D, f'(€,0)] ¢/(£,0).  (7.12)

Results and Discussion

The reduced governing Eqs.(7.7)-(7.9) along with the boundary conditions (7.10) are solved nu-
merically by using the successive linearization method together with the local similarity and non-
similarity approaches, as explained in the case (a) of Chapter-2. In the absence of double dispersion
effects, this case reduces to the case (a) problem of the chapter-5. Validation of the present problem

in this case, can be done on comparison as it was done in the case (a) of chapter-5.
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The numerical computations are carried out by following the fixed values of parameters: Gr* =
0.5, B=0.5, Le =1 and £ = 0.5. These values are continued same throughout this study, unless
otherwise specified. The impacts of pertinent parameters such as nonlinear convection parameters
(a1, a2), double dispersion parameters (D, D.), inclination angle () and the Biot number (B7)
are discussed through the Figs.7.1(a)-7.6(b) for the boundary layer profiles along with the physical

quantities of the flow.

Variations in the fluid flow profiles (such as f’, 6 and ¢) for a1(0, 6), a2 (0, 5) and n (0.5, 1.0,
1.5) with the fixed values: Dy = 0.6, D, = 0.3, Bi = 0.5, £ = 0.5 and Q = 30°, are considered in the
first set of Figs.7.1(a)-7.1(c). With respect to ai, the dimensionless velocity increases more at the
surface of the inclined plate and then it satisfies the free stream condition far away from the wall
as portrayed in Fig.7.1(a). Additionally, Figs.7.1(a) displays the influence of ay on the behavior
of velocity for different values of the power-law index. The results of as repeat the same kind of
behavior as «j in all three kinds of fluids. The thermal and solutal boundary layer thicknesses
diminish with the rise of a; or ap, as displayed in Figs.7.1(b) and 7.1(c) respectively. Evidently,
the differences between wall and ambient temperature and concentration increase for larger oy
and ag, due to which higher velocity in Figs.7.1(a), and smaller temperature and concentration
are noticed in Figs.7.1(b)-7.1(c) respectively. Further, the dominance of ap is more on these three
boundary layer profiles and in all three kinds of fluids (pseudo-plastic, Newtonian and dilatant

fluid) compared to the influence of «;.

The influences of (0%,60°) and Bi(0.05,0.5) on the fluid flow profiles are depicted in the
second set of Figs.7.2(a)-7.2(c) for Dy = 0.3, D. = 0.3, a3 = 1, ag = 1 and £ = 0.5 in three
instances of power-law index (n = 0.5,1.0, 1.5), separately. An expansion in the value of € reduces
the velocity distribution inside the boundary layer region as shown in Fig.7.2(a). Also, maximum
velocity is noticed near the plate with the rise of Bi and this is due to the reduction in the thermal
resistance of the inclined plate. From Figs.7.2(b) and 7.2(c), one can notice that the temperature
and concentration enhance with an increase in Q. Fig.7.2(b) depicts the impact of Bi on the
temperature distribution, it shows that the isothermal condition is a limiting case of convective
boundary condition. Also, the temperature distribution accelerates on the surface of the plate
when Bi increases from the thermally thin case to the thermally thick case. Further, Fig.7.2(c)

reveals that the influence of Biot number is considerable on the concentration profile.
The third set of Figs.7.3(a)-7.3(c) exhibits the significance of double dispersion parameters Dj
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(0, 5) and D, (0, 4) on f’, # and ¢ in all three kinds of fluids (pseudo-plastic, Newtonian and
dilatant fluids) for the fixed value: oy = 1, ag = 1, Bi = 0.1, £ = 0.5 and Q = 30. From
Fig.7.3(a), it is observed that when either of the dispersion parameters is increased with the other
one held fixed (i.e when D; varies, D, is fixed and if D, varies, D4 should be fixed) thickness of the
momentum boundary layer increases. An addition in Dy leads to enhance the temperature gradient
and decreases solutal boundary layer thickness. Introducing the thermal dispersion effect to the
energy equation gives thermal conduction more dominance. That is, thermal dispersion increases
the transport of heat along the normal direction to the inclined plate when compared to the case
Dy = 0. It can be found from Figs.7.3(b)-7.3(c) that, the results of D, are opposite to D influence

on these two boundary layer profiles.

The significance of a;(0,6) and a9(0,5) on the Nusselt number (Nu,Ra~/?) and Sherwood
number (thRa_l/ 2) against the stream wise coordinate &, are depicted in the fourth set of
Figs.7.4(a)-7.4(b) with Dy = 0.6, D, = 0.3, Bi = 0.5 and Q = 30° for three kinds of fluids.
The rise in aq or oo improves all the pertinent characteristics of the pseudo-plastic fluid flow for
the fixed value of as or «y individually. Moreover, these quantities have same effect in the New-
tonian and dilatant fluid flows. Additionally, the changes in Nu,Ra~/2 is reverse to the changes
of ShyRa~'/? along the stream wise coordinate £&. However, both heat and mass transfer rates fall
down in the presence of both a1 and as when power-law index changes from n < 1 to n > 1. But,
both heat and mass transfer rates are considerably enhanced in the absence of either a; or g,

when the power-law index varies from n < 1 ton > 1.

The fifth set of Figs.7.5(a)-7.5(b) describes the impact of Bi(0.5,2.0) and Q(0°, 60°) on Nu, Ra~1/?
and thRa_l/2 for the three fluid cases with Dy, = 0.6, D, = 0.3, a1 = 1 and as = 1. With the
increment of (), there is a decrement in ¢g* component and this degrades the buoyancy force. Hence,
the reduction in the buoyancy will lead to diminish the heat and mass transfer rates when the in-
clined plate displaced from the vertical to horizontal position. One can notice that, an enhancement

in the Biot number causes an increase in both NuxRa*1/2 and ShmRa*I/Q.

The effects of Ds(0,5) and D.(0,4) on the heat and mass transfer rates are displayed in the
sixth set of Figs.7.6(a)-7.6(b) for the fixed values: a; = 1, az = 1, Bi = 0.1 and Q = 30°. With
respect to above said variation in the temperature and concentration variations, higher values of Dy
give large expansion in Nu,Ra~'/? and less change in Sh,Ra~'/? as shown in Figs.7.6(a)-7.6(b).

But, with the expanding D,, these figures show a reverse trend. That is, an increase in D, leads to
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enhance Sh, Ra~'/? and shows a nominal influence on Nu, Ra~'/? as displayed in Figs.7.6(a)-7.6(b).
However, the influence of power-law index n is nominal for heat transfer rate and considerable for

mass transfer rate, as shown in Figs.7.6(a)-7.6(b).
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7.2.2 Case(b): Mixed Convection

It is assumed that the mixed convective flow arises from an external flow with the velocity us, and
buoyancy forces. We introduce the non-dimensional transformations in the following form

=T =1 P17 U(&n) = ag? Pel f(gm),
(7.13)

T(ﬁ,ﬁ) =Tw + (Tf - Too) 9(5,77% 0(5,77) =Cx + (Cw - Coo) ¢(£a77)

Substituting stream function (2.7) and the transformations (7.13) into Eqgs.(7.1)-(7.4), then the

dimensionless form of boundary layer equations can be written as

n (F)" 2P = (Ri)" [(14+ 2010)8 + B(1 +220)'] cos (7.14)
7 P L e _ /@ - ﬂ /
«9+Ds(f0)+2f0—§( 5 a§9> (7.15)
Ly, Y L. _ /@ o g !
720"+ De(f1¢) + 5f¢ —f(f 9% o > (7.16)

Boundary conditions (7.5) in terms of f, #, and ¢ can be written as

F(.0) = —25(5’7) L €.0) = =Bigh [1-0(€.0) 616.0) = 1
.

3 (7.17)

f(€§00) =1, 0(¢,00) =0, ¢(¢,00) = 0.

X d Uoo

: : : duco . : :
Here, D;, = is the thermal dispersion parameter and D, = ¢ dtoo is the solutal dispersion
o

parameter.

The physical quantities of present interest, namely, the non-dimensional Nusselt and Sherwood

numbers are given by

NugPez =—¢2 [1 + D, f/(€, 0)] 0/(&, 0), ShyPez =—£2 [1+ D, f(€,0)] ¢(¢,0). (7.18)
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Results and Discussion

As explained in the Chapter-2 for case (a) problem, in this chapter also, the numerical solution
for the highly nonlinear coupled partial differential equations (7.14)-(7.16) subject to the boundary
conditions (7.17) is obtained by using the successive linearization together with local similarity
and non-similarity approaches. In the absence of double dispersion effects, this case reduces to the
case (b) problem of the chapter-5. Validation of the present problem in this case, can be done on

comparison as it was done in the case (b) of chapter-5.

The numerical computations are carried out by following the fixed values of parameters: B =1
,Fs=1 Pr=1, Le =1, Ri = 0.5 and £ = 0.5. These values remains unchanged in this study,
unless otherwise specified. The influences of the pertinent parameters o, as, D, D.,  and Bi are
determined through Figs.7.7(a)-7.12(b) for the boundary layer profiles (such as f/, # and ¢) and
the physical quantities of the fluid flow such as the Nusselt and Sherwood numbers (i.e, Nu, Pe?
and Shy Pe? ).

Influences of a4 (0, 6), a2 (0, 5) and n (0.5, 1.0, 1.5) on the velocity, temperature and concen-
tration profiles, are depicted through Figs.7.7(a)-7.7(c) with the fixed values: Ds = 0.5, D, = 0.2,
Bi = 0.5, ¢ = 0.5 and Q = 30°. It is observed that, the dimensionless velocity increases more at
the surface of the inclined plate and it reaches unity to satisfy the free stream boundary condition
for Nmaee value with the increase ay, as shown in Fig.7.7(a). Additionally, Fig.7.7(a) displays the
impact of as on the behavior of velocity. The results of this figure repeat the same kind of be-
havior just like a1 in all three kinds of fluids. The thermal and solutal boundary layer thicknesses
diminish with the rise of either a; or e and the same effect is displayed in Figs.7.7(b) and 7.7(c).
Obviously, the nonlinear temperature and concentration differences between the wall and ambient
medium increase for larger values of oy and aso, due to which higher velocity, smaller temperature
and concentration are obtained. Further, the influence of ais is more on these three boundary layer
profiles in all three kinds of fluids (pseudo-plastic, Newtonian and dilatant fluid) compared with

o1 influence.

The influences of ©(0°,60°) and Bi(0.1,10) on the profiles of f’, # and ¢ are plotted through
Figs.7.8(a)-7.8(c) for three instances of power-law index (n = 0.5,1.0,1.5). Due to the reduction in
the thermal and solutal buoyancy effect in Eq.(7.2) caused by an increase in €, there is a reduction

in the velocity distribution f’ within the boundary layer, as shown in Fig.7.8(b). In other words,
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an increase in the inclination angle leads to reduce the velocity distribution within the boundary
layer and the most extreme buoyancy force occur for the vertical plate (@ = 0°). Also, one can
see from Fig.7.8(a) that, the velocity of the power-law fluid increases with a rise in Bi and this is
due to the reduction in the thermal resistance of the inclined plate (2 = 60°). From Figs.7.8(b)
and 7.8(c), one can notice that the temperature # and concentration ¢ enhance with a rise in Q.
Fig.7.8(b) shows the impact of Bi on the temperature distribution and shows two results mainly
for the wall condition and non-isothermal condition. The convective thermal condition is changes
into wall condition when Bi — oo (i.e for a larger value of Bi) as given by Aziz [13] and the same
result is observed in Fig.7.8(b). Also, the temperature distribution accelerates on the surface of
the plate when Bi increases from the thermally thin case (Bi < 0.1) to the thermally thick case
(Bi > 0.1). Further, Fig.7.8(c) reveals that the concentration profile decreases with the increase of

Biot number.

Figures 7.9(a)-7.9(c) exhibit the significance of double dispersion parameters Ds(0,4) and
D.(0,6) on f’, 6 and ¢ in all three kinds of fluids (pseudo-plastic, Newtonian and dilatant flu-
ids) for the fixed values: a; = 1, ap = 1, Bi = 0.3, £ = 0.5 and Q = 30°. From Fig.7.9(a), it
is significant that, for an individual improvement of double dispersion parameters (i.e., when D,
varies, D, is fixed and if D, varies, Dy should be fixed), thickness of the momentum boundary
layer increases. The addition in Dy leads to enhance the temperature extensively and decreases
solutal boundary layer thickness nominally, while the results of D, are opposite to D, for these two
boundary layer profiles. However, in the absence or presence of double dispersion parameters, the

temperature and concentration profiles increase for power-law index n.

Figures 7.10(a)-7.10(b) show the effects of a1 (0, 6) and a(0, 5) on the Nusselt number (Nu, Pe~'/?)
and Sherwood number (Sh,Pe~1/?) against the stream-wise coordinate . The rise in either a; or
a improves all the pertinent characteristics of the pseudo-plastic fluid flow for the fixed value of
other parameters. Also, these quantities have the same change in the Newtonian and dilatant fluid
flows. It is observed that, these two quantities are qualitatively equal with the findings of Partha
[79] in Newtonian fluid (for n = 1) case. However, both heat and mass transfer rates fall down for

the fixed values of either a1 or ap when power-law index moves from n < 1 to n > 1.

Figures 7.11(a)-7.11(b) delineate the impact of Bi(0.1,10) and ©(0°,60°) on Nu,Pe~/? and
Sh,Pe 12 for three fluid cases with Dy = 0.6, D. = 0.3, a1 = 1, ap = 1. When the inclined

plate is displaced from vertical to horizontal position, there is a decrement in g*cos{2 component
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and this degrades the buoyancy force. Hence, the reduction in the buoyancy will lead to diminish
N uxPe_l/ 2 and S the_l/ 2, However, the heat and mass transfer rates are increase with the rise

of Bi and decrease with power-law index n.

The effects of Ds(0,4) and D.(0,6) on the heat and mass transfer rates are displayed in
Figs.7.12(a)-7.12(b) with a; = 1, as = 1, Bi = 0.2 and Q = 30". With respect to above-said
variation in the temperature and concentration profiles, thermal dispersion favors the heat transfer
and solutal dispersion favors the mass transfer as shown in Figs.7.12(a)-7.12(b). However, these two
transfer rates are more in pseudo-plastic fluids when compared with Newtonian and dilatant fluids.
Also, the variation of the power-law index is extensive and diminishes the momentum boundary
layer thickness, whereas it enhances thermal and solutal boundary layer thicknesses as displayed in

the profiles (see. Figs. 7.9(a)-7.9(c)).
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7.3 Conclusions

The influence of double dispersion on the nonlinear convective flow of an incompressible power-law
fluid over an inclined plate in a non-Darcy porous medium subject to the convective boundary
condition, is investigated in this chapter. The resultant non-similarity equations are solved using
the successive linearization method together with the local similarity and local non-similarity pro-
cedures. Based on the analysis carried out, the main conclusions drawn for both case (a) and case

(b) are given below:

The behavior of nonlinear convection parameters (o1 and «s) on the various profiles, Nusselt
and Sherwood numbers in both case (a) and case (b), is similar to the results of chapter-5. As Biot
number enhances, the velocity and temperature profiles along with the heat transfer rate enhance,
whereas the mass transfer rate diminishes for both the cases (a) and (b). The temperature and
concentration increase, but the velocity, heat and mass transfer rates decrease, with an increase
in inclination angle in both the cases (a) and (b). Further, it is found that the velocity and
local Nusselt number increase, whereas the concentration decrease with the increase of thermal
dispersion parameter. As the solutal dispersion parameter enhances, the velocity, concentration

and local Sherwood number enhance, whereas the temperature decreases in both case (a) and case

(b).
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Part IV

SUMMARY AND CONCLUSIONS
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Chapter 8

Summary and Conclusions

In this thesis, analysis of convective heat and mass transfer over an inclined plate in micropolar and
power-law fluids saturated non-Darcy porous medium subject to convective boundary condition is
discussed. Additionally, the effect of nonlinear Boussinesq approximation (also known as nonlin-
ear convection) is considered in the momentum equation to address the heat and mass transfer
phenomena of some thermal systems which are operated at moderate to very high temperatures.
The study of convective boundary condition has significant importance in heat transfer problems

because it is more realistic and general, particularly in various engineering and industrial processes.

The non-similarity solution for a convective flow along an inclined plate immersed in a microp-
olar fluid saturated non-Darcy porous medium is analyzed in part-II. The objective of this part is
to study the effects of Biot number, micropolar parameter, non-Darcy parameter, Soret number,
Dufour number, nonlinear convection parameters, and the thermal and solutal dispersion parame-
ters on the free and mixed convective flows of a micropolar fluid. The governing coupled nonlinear
partial differential equations of the considered problem are cast into a sequence of nonlinear or-
dinary differential equations by the local similarity and local non-similarity techniques. Then the
successive linearization method (SLM) is used to solve these transformed set of nonlinear ordinary
differential equations. The main conclusions of the analysis carried out in part-II for both case (a)

and case (b) are given below:

e An increase in coupling number, increases the temperature, concentration, skin friction and

wall couple stress but reduces the heat and mass transfer rates for both free and mixed
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convective flows in the presence of cross-diffusion and double dispersion parameters. In the
absence of cross-diffusion and double dispersion parameters, wall couple stress decreases in
both free and mixed convective flows. Moreover, the velocity increases near the plate and
far away from the plate, it shows reverse behavior in case of free convection, while in mixed
convective flow the velocity increases and reaches free stream velocity for both opposing and

aiding flows.

For free convective flows, the velocity, temperature, skin friction, wall couple stress and
heat transfer rates increase and concentration decreases with the increase of Biot number.
Meanwhile, for mixed convective flows, the velocity, skin friction, wall couple stress and heat
transfer rate increase. But, concentration decreases in aiding flow of case (b) whereas in

opposing flow these all show a reverse trend.

Higher values of both the NDT and NDC parameters results higher velocity and microrota-
tion, but lower temperature and concentration in both cases (a) and (b). Also, the surface
drag, wall couple stress, heat and mass transfer rates increase in both cases (a) and (b). Fur-
ther, the presence of cross-diffusion and double dispersion effects has unaltered the influence

of nonlinear convection parameters in this study.

As the Forchheimer number increases, the velocity and microrotation decrease near the plate
and away from the plate in case (a) and case (b). But the local heat and mass transfer rates
decrease in case (a). The behaviors of physical quantities of the flow in case (b) show an

opposite nature.

In the presence or absence of cross-diffusion and double dispersion effects, a rise in inclina-
tion angle reduces the velocity and microrotation whereas temperature and concentration
decreased in case (a) and aiding flow of case (b). But, in opposing flow of case (b) it shows

opposite trend.

A rise in Dufour number increases the temperature of the micropolar fluid and decrease the
concentration in both the free and mixed convective flows. But, Soret number shows the
opposite influence on these profiles. Further, the heat transfer rate increases with Dufour
number in case (a) and decreases in case (b), whereas Soret number has opposite influence

on heat transfer rate as compared with Dufour number results in both cases.
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e In case (a), the mass transfer rate increases with Soret number and decrease with Dufour
number, whereas in case (b) mass transfer has opposite influence with both Soret and Dufour

numbers when compared with the results of case (a).

e Soret and Dufour effects has nominal influence on the microrotation and wall couple stress in

both case (a) and (b), whereas considerable variation is noticed in velocity and skin friction.

e An increase in the thermal dispersion parameter decreases the temperature and increases
the rate of heat transfer in case (a) and aiding flow of case (b). On the other hand, both
the concentration and mass transfer rate increase with an increase in the solutal dispersion
parameter. But, both wall couple stress and skin friction decrease for thermal dispersion
parameter whereas these increase for solutal dispersion parameter in both case (a) and aiding

flow of case (b).

Part-III deals with a non-similarity solution for the nonlinear convective flow of a power-law
fluid along an inclined plate in a non-Darcy porous medium with convective boundary condition.
Additionally, the influences of cross-diffusion and double dispersion effects are analyzed in some
of the chapters. To study the influence of pertinent parameters like Biot number, Soret number,
Dufour number, inclination angle, viscosity index, thermal and solutal dispersions on velocity,
temperature and concentration profiles along with heat and mass transfer rates are the objectives
of this section. Using the non-dimensional variables, the governing equations are transformed into
nonlinear partial differential equations. These equations are solved using the successive linearization
method along with local similarity and non-similarity procedures. The important observations from

these investigations are as following:

e In the presence and absence of both double dispersion and cross-diffusion, the velocity de-
creases with viscosity index, but the temperature and concentration increase in both free and
mixed convective flows. The heat and mass transfer rates increases with viscosity index in
the absence of both double dispersion and cross-diffusion effects, whereas these transfer rates

show the opposite trend when only one of these effects are present.

e An enhancement in the Biot number, the velocity, temperature, and heat transfer rate en-
hance but, concentration reduces for both case (a) and case (b). Further, the mass transfer

rate increases in the absence of Soret number but decreases in the presence of Soret number.
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e The changes in inclination angle reduces the velocity and increases both temperature and
concentration for both case (a) and case (b), and also in the presence or absence of dispersion
and cross-diffusion parameters. Further, the heat and mass transfer rates decrease for higher

values of inclination angle, but the influence of viscosity index depends on inclination angle.

e The higher values of nonlinear convection parameters result in lower temperature and con-
centration, but higher velocity, heat, and mass transfer rates. The physical quantities of the
flow in case (a) and case (b) show the same behavior and also in the presence or absence of

cross-diffusion and dispersion parameters.

e The velocity, concentration and local heat transfer rate enhance, whereas the temperature
and local mass transfer rates reduce with the increase of Soret number in both case (a) and

case (b).

e In both case (a) and case (b), the velocity, temperature and mass transfer rate increase, but

the concentration and heat transfer rate decrease with the increase of Dufour number.

e Soret and Dufours numbers have an opposite influence on Nusselt and Sherwood number and
these two transfer rates are more in pseudo-plastic fluid when compared with Newtonian and

dilatant fluids.

e The velocity, temperature and local heat transfer rate increase, whereas the concentration
decrease with the increase of thermal dispersion parameter in both free and mixed convective

flows.

e As the solutal dispersion parameter increases, the velocity, concentration and local mass
transfer rate enhances, whereas temperature decreases in both free and mixed convective
flows. However, the presence of dispersion parameters can change the influence of viscosity

index on the heat transfer rate in case (a).

Comparison between the Part-I1I and Part-III results

e Changes in different profiles with stream-wise coordinate proved that the present results
are non-similar and hence, the present solutions are not unique for different values of the

stream-wise coordinate in both the problems of micropolar and power-law fluids.
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e By the experience of these two NDT and NDC parameters, one can conclude that the influence
of NDC parameter is more prominent compared with that of NDT parameter in both free
and mixed convective flows. This is due to the presence of Biot number which controls the

influence of NDT parameter.

e Influence of nonlinear convection parameters is more in the presence of cross-diffusion and
dispersion effects in both free and mixed convective flows of both micropolar and power-law

fluids.

e In both micropolar and power-law fluids, the nonlinear differences between the wall and
ambient medium improve with bigger estimations of NDT and NDC parameters, and in view
of this, there is tremendous addition in the velocity, microrotation (in the case of micropolar
fluid) and little change in temperature and concentration is obtained. However, the changes
in velocity and angular velocity (in the case of micropolar fluid) of the fluid are more in the

Darcy porous medium when compared with non-Darcy porous medium results.

e Influence of Biot number is unaffected in the presence of cross-diffusion and double dispersion
effects in both micropolar and power-law fluids. Also, the presence of cross-diffusion and
double dispersion effects does not control the influence of inclination angle in both micropolar

and power-law fluids.

The work presented in this thesis can be extended to investigate the effects of Joule heating,
MHD, Hall and Ion slip, heat source/sink, first and second order slip, etc. Further, this work
can be extended with the analysis for various non-Newtonian fluids like nanofluids, Casson fluids,
Jeffrey fluids, etc. Moreover, stability analysis has attracted the curiosity of many researchers in
the recent past. Thus, the work presented in this thesis can be extended to study the stability
and convergence analysis. Such an exhaustive study can be a rewarding experience though it is

challenging as well as time-consuming.
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