
NONLINEAR CONVECTION OVER AN INCLINED
PLATE IN MICROPOLAR AND POWER-LAW

FLUIDS

A THESIS SUBMITTED TO

NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL, (T.S.)

FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

MATHEMATICS

BY

PADIGEPATI NAVEEN
(Roll No. 716050)

UNDER THE SUPERVISION OF

Dr. CH. RAMREDDY

DEPARTMENT OF MATHEMATICS

NATIONAL INSTITUTE OF TECHNOLOGY

WARANGAL-506004, INDIA

MAY 2019



C E R T I F I C A T E

This is to certify that the thesis entitled “Nonlinear Convection over an Inclined

Plate in Micropolar and Power-Law Fluids” submitted to National Institute

of Technology Warangal, for the award of the degree of Doctor of Philosophy, is the

bonafide research work done by Mr. PADIGEPATI NAVEEN under my supervision.

The contents of this thesis have not been submitted elsewhere for the award of any degree.

.

Dr. Ch. Ramreddy
Assistant Professor

Department of Mathematics
National Institute of Technology Warangal

Telangana State, INDIA

i



DECLARATION

This is to certify that the work presented in the thesis entitled “Nonlinear Convection

over an Inclined Plate in Micropolar and Power-Law Fluids”, is a bonafide work

done by me under the supervision of Dr. CH. RAMREDDY and has not been submitted

elsewhere for the award of any degree.

I declare that this written submission represents my ideas in my own words and where

others’ ideas or words have been included, I have adequately cited and referenced the original

sources. I also declare that I have adhered to all principles of academic honesty and integrity

and have not misrepresented or fabricated or falsified any idea / data / fact /source in my

submission. I understand that any violation of the above will be a cause for disciplinary

action by the Institute and can also evoke penal action from the sources which have thus

not been properly cited or from whom proper permission has not been taken when needed.

Padigepati Naveen

Roll No. 716050

Date:

ii



Dedicated to

My Family, My Teachers

&
Sri Venkateshwara Swamy

iii



ACKNOWLEDGEMENTS

It is a rare privilege and boon that I could associate myself for pursuing my research work with

Dr. Ch. Ramreddy, Assistant Professor of Mathematics, National Institute of Technology

Warangal, India. I sincerely record my gratitude for his invaluable guidance and constant

encouragement throughout the preparation of this thesis and his involvement and meticulous

supervision while my work was in progress. With his inimitable qualities as a good teacher,

he chiseled my path towards perfection. Ever since I met him, he has been a perpetual source

of motivation, inspiration, encouragement and enlightenment. He is responsible for making

the period of my research work as an educative and enjoyable learning experience. The thesis

would not have seen the light of the day without his unrelenting support and cooperation. I

deem it a privilege to have worked under his amiable guidance. My vocabulary is inadequate

to express my gratitude. I also thank to his wife Smt. Ch. Geetha Ramreddy, for her

hospitality and her patience during our elongated discussions.

I am greatly indebted to the dynamic personality Prof. D. Srinivasacharya, Head, De-

partment of Mathematics for his affectionate support, encouragement and for sparing his

valuable time in bringing a proper form for presentation of the results in the thesis. It is not

an exaggeration to state that without his assistance and suggestions, this thesis would not

have taken this form.

I am grateful to Prof. T.K.V. Iyengar (Late), Prof. G. Radhakrishnamacharya (Retd.),

Prof. Y. N. Reddy and Prof. K.N.S. Kasi Viswanadham, Department of Mathematics for

their help and support throughout my research period.

I take this opportunity to former Heads, Prof. J. V. Ramana Murthy and Prof. Debashis

Dutta, Department of Mathematics for providing necessary help and support throughout my

research period. Also, I thank all the Faculty members and the office non-teaching staff of

the Department of Mathematics, for their help and constant encouragement.

I thank the members of the Doctoral Scrutiny Committee, Prof. D. Srinivasacharya,

Dr. J. Pranitha, Department of Mathematics and Prof. V. Suresh Babu, Department of

Mechanical Engineering for their valuable suggestions, moral support and encouragement

while my work was in progress.

I acknowledge that, this work was supported by of Council of Scientific and Industrial

Research (CSIR), New Delhi, India (Project No 25 (0246)/15 /EMR-II).

iv



I place on record my gratitude to Prof. N.V. Ramana Rao, Director, National Institute

of Technology, Warangal for his kind support and encouragement at every stage of this

endeavor.

I express my sincere thanks to Prof. Y. Pydisetty, Dean(Academic), National Institute

of Technology, Warangal and his staff for there valuable support through out my research

work.

I owe my special thanks to Dr. K. Kaladhar, Dr. M. Krishna Prasad, Dr. M. Upendar,

Dr. O. Surender, Dr. P. Vijay Kumar, Dr. G. Madhava Rao, Dr. K. Hima Bindu, Dr. T.

Pradeepa, Dr. Md. Shafeeurrahaman, Dr. P. Jagadeeshwar, Dr. Ch. Venkata Rao, and Dr.

G. Venkata Suman, for their support. I thank Mr. I. Sreenath, Mr. K. Sita Ramana, Mr.

Abhinava Srivastav and all other research colleagues in the Department of mathematics and

my friends, who helped me during my Ph.D. for being cooperative and also for making my

stay in the NITW campus fruitful and enjoyable every moment.

My deepest gratitude to my Parents, P. Anjireddy and P. Ramana and in-laws, S. Satya-

narayana Reddy and S. Padma, and other family members for their continuous support and

constant encouragement over the years.

Last but not least, I would like to thank my better half S. Sindhuja and my innocent

daughter P. Raagavarshini for their prayers, patience, encouragement and understanding

that were vital to complete this dissertation. I also thank my new born baby for boosting

my energy with her cute smiles at the end of my work. All of their love and affection have

been motivating force behind what I am today. Without their help and encouragement, I

would not have been finished this thesis.

Padigepati Naveen

v



A B S T R A C T

The prediction of heat or mass transfer characteristics about natural/mixed convection of

non-Newtonian fluids (particularly micropolar fluid or power-law fluids) has received con-

siderable attention because of its important applications in engineering. Micropolar fluids

are defined as fluids consisting of randomly oriented molecules whose fluid elements undergo

translational as well as rotational motions. Further, the micropolar theory is used to char-

acterize the fluid flow pattern of animal blood, polymeric additives, liquid crystals, colloidal

suspensions, lubricants, etc. On the other hand, fluids like molten plastics, glues, pulp,

slurries, and others are described by the Ostwald-de Waele power-law fluid model. The

heat transfer problems in micropolar fluid and power-law fluids subject to the convective

boundary condition are more extensive and it occurs in realistic situations. It is relevant

here to analyze the effect of of nonlinear convection (also known as, nonlinear Boussinesq

approximation) on the convective flow of non-Newtonian fluids in a porous medium. In all

mathematical models of a micropolar fluid and power-law fluids, the physical systems become

slightly more complicated leading to the complex interactions of the flow, heat, and mass

transfer mechanism. An attempt has been made to analyze the nonlinear convective flow

of micropolar fluid and power-law fluids over a convectively heated inclined plate saturated

porous medium in the presence or absence of cross-diffusion and double dispersion effects.

The thesis consists of FOUR parts and EIGHT chapters. Part-I consists of a single

chapter (Chapter-1), which provides an introduction to the concepts in a micropolar fluid,

power-law fluids, convective boundary condition, porous medium and also gives a review

of the pertinent literature. Part II consists of three Chapters (i.e., Chapters 2-4) and the

significance of nonlinear convective flow over an inclined plate in a micropolar fluid satu-

rated non-Darcy porous medium under the convective boundary condition is considered in

Chapter-2 whereas chapter-3 is an extension of chapter-2 in which cross-diffusion effects are

considered. Chapters-4 examines the double dispersion and Biot number effects on the non-

linear convective flow of a micropolar fluid over an inclined plate embedded in a non-Darcy

porous medium. Part III deals with the non-similarity solution of power-law fluid flows over

an inclined flat plate embedded in a non-Darcy porous medium subject to the convective

boundary condition in the presence or absence of cross-diffusion and double dispersion effects.

This part consists of three Chapters (i,e., Chapters 5-7), in which the nonlinear Boussinesq

approximation is also taken into consideration to address the heat and mass transfer phe-

nomena of power-law fluids. The final Part-IV consists of only one chapter (Chapter - 8)

which gives a summary, overall conclusions and scope for future work.
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N O M E N C L A T U R E

b Coefficient of Forchheimer term

Bi Biot number

B Buoyancy ratio

C Concentration

Cf Skin friction coefficient

Cp Specific heat capacity

Cs Concentration susceptibility

Cw Wall concentration

C∞ Ambient concentration

d Pore diameter

D Molecular solutal diffusivity

Da Darcy number

Du Dufour number

Dd Dispersion solutal diffusivity

De Effective solutal diffusivity

Dc Solutal dispersion parameter

Ds Thermal dispersion parameter

f Dimensionless stream function

Fs Non-Darcy parameter (Forch-

heimer number)

g Dimensionless microrotation

g∗ Gravitational acceleration

Gr Thermal Grashof number

Gr∗ Modified Grashof number

hf Convective heat transfer coeffi-

cient

j Micro-inertia density

kd Dispersion thermal conductivity

ke Effective thermal conductivity of

the medium

kf Molecular thermal conductivity

Kp Permeability

KT Thermal diffusion ratio

L Characteristic length

Le Diffusivity ratio

Mw Dimensionless wall couple stress

mw Wall couple stress

N Coupling number

Nux Local Nusselt number

n Power-law index

Pe Global Peclet’s number

Pr Prandtl number

Ped Pore diameter-dependent Peclet’s

number

Ra Global Rayleigh number
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Re Global Reynold’s number

Ri Mixed convection parameter

Sc Schmidt number

Shx Local Sherwood number

Sr Soret number

T Temperature

Tf Convective wall temperature

Tm Mean fluid temperature

T∞ Ambient temperature

u∞ Free stream velocity

u, v Darcy velocity components in the

x and y directions

Greek Symbols

α Molecular thermal diffusivity

αe Effective thermal diffusivity

α1 Nonlinear density-temperature

(NDT) parameter

α2 Nonlinear density-concentration

(NDC) parameter

β0, β1 First and second order thermal ex-

pansion coefficients

β2, β3 First and second order solutal ex-

pansion coefficients

J Dimensionless micro-inertia den-

sity

η Similarity variable

γ Spin-gradient viscosity

ε Porosity

κ Vortex viscosity

χ Thermal dispersion coefficient

λ Dimensionless spin-gradient vis-

cosity

ω Component of microrotation

Ω Angle of inclination

θ Dimensionless temperature

φ Dimensionless concentration

µ∗ Consistency index of power-law

fluid

µ Dynamic viscosity

ζ Solutal dispersion coefficient

ν Kinematic viscosity

ρ Density of the fluid

ψ Stream function

τw Wall shear stress

ξ Stream-wise coordinate

Superscripts

w Wall condition

∞ Ambient condition

Superscripts

′ Differentiation with respect to η
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Chapter 1

Preliminaries and Review

1.1 Introduction

The science of fluid dynamics encompasses the motion of gases and liquids, the forces that

are responsible for this motion and the interaction of the fluid with solids. This field stands

central to much of science and engineering and touches almost every aspect of our daily life.

Fluid dynamics, one way or other, impact defense, transportation, manufacturing, environ-

ment, medicine, energy, etc. From predicting the aerodynamic behavior of moving vehicles

to the movement of biological fluids in the human body, the weather predictions, cooling

of electronic components, the performance of microfluidic devices, all demand a detailed

understanding of the subject of fluid dynamics and substantial research, thereof. Due to

the complexity of the subject and breadth of its applications, fluid dynamics is proven to be

a highly exciting and challenging subject of modern sciences. The quest for deeper under-

standing of the subject has not only inspired the development of the subject itself but has

also suggested the progress in the supporting areas, such as applied mathematics, numerical

computing and experimental techniques. The fundamental axioms of fluid dynamics are the

conservation laws namely conservation of mass, Newton’s second law of motion (known as

conservation of linear momentum) and first law of thermodynamics (known as conservation

of energy) which states that energy and mass can neither be created nor destroyed. A large
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number of problems in fluid dynamics have claimed the attention of mathematicians, physi-

cists, and engineers for many years. As a result, an enormous body of established results

has accumulated steadily but remains scattered in the literature.

Convective heat transfer, or simply, convection is the study of heat transport processes

affected by the flow of fluids and has gained significant importance in recent times. The

convective mode of heat transfer is generally divided into two basic processes. If the motion

of the fluid arises from an external agent, then the process is termed as forced convection. If,

on the other hand, no such externally induced flow is provided and the flow arises from the

effect of a density difference resulting from temperature variations in a body force field such

as the gravitational field, then the process is termed natural or free convection. When both

free and forced convection effects are significant and neither of the two can be neglected, the

process is called mixed convection. The phenomenon of free and mixed convection occurs in

many technical and industrial problems such as cooling of electronic equipment, materials

processing, and drilling operations. Apart from these applications, the free convection has

also been used to explain the connection between skin disease and respiratory disease such

as eczema and asthma respectively whereas the mixed convection has an important role in

controlling the temperature of a medium. Both free and mixed convection processes may be

divided into external flows over immersed bodies (such as flat plates, cones, cylinders and

wires, spheres or other bodies), free boundary flows (such as plumes, jets and wakes), and

internal flow in ducts (such as pipes, channels and enclosures).

The involvement and applications of mass transfer process go to a greater length in

multiple fields of science, engineering, and technology. The transport of a component in a

mixture from a region of high concentration to a region of low concentration is called mass

transfer. It is used by different scientific disciplines for different processes and mechanisms.

Coupled heat and mass transfer flows constitute a major area of research in modern fluid

dynamics. Such flows arise in electronic cooling, drying processes, manufacture of electric

cable insulations, curing of plastics, solar energy system, and purification processes. There

are two modes of mass transfer: mass transfer by diffusion and convective mass transfer.

The transport of mass by random molecular motion in laminar flowing fluids is known as

3



a mass transfer by diffusion, which occurs due to the concentration gradient, temperature

gradient, and hydrostatic pressure difference. The rate of molecular diffusion of mass can be

accelerated by the bulk motion of the fluid. Mass can be transported between the boundary

of a surface and a moving fluid or between two moving fluids which are relatively inhomoge-

neous. This mechanism of mass transfer is called convective mass transfer and is analogous

to heat transfer by convection (free or forced). For more details on the convective heat and

mass transfer, one can refer the text book by Bejan [19].

1.2 Porous Medium

A porous medium may be defined as a solid matrix containing holes either connected or

non-connected, dispersed within the medium in a regular or random manner provided such

holes occur frequently in the medium. If these pores are saturated with fluid, then the solid

matrix with the fluid is called a fluid-saturated porous medium. This type of analysis in

porous media plays an essential role in many fields of science and engineering, for instance,

petroleum engineering, groundwater hydrology, agricultural engineering, and soil mechanics.

But, the flow of the fluid in a porous medium is possible only when some of the pores are

interconnected.

To study the motion of fluids through porous media, one must have sufficient under-

standing of the governing equations for the fluid flow through a porous medium. Owing to

the intricate structure of the porous medium, several models have been proposed to explain

its mathematical and physical aspects. Among these, the Darcy model and a series of its

modifications have attained much acceptance. Further, the boundary layer assumptions have

been successfully applied to these models and much work over the last few decades has been

done on them for a wide variety of geometries.

Darcy Model

The governing equation of fluid motion in a vertical porous column was first given by Darcy

[34] in 1856. It represents a balance of viscous force and pressure gradient. In mathematical
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form, it is written as

−→q = −Kp

µ
(∇p− ρ g∗) (1.1)

where−→q is the space-averaged velocity (also, known as Darcian velocity), Kp is the (intrinsic)

permeability of the medium, p is the fluid pressure, ρ is the density, g∗ is the acceleration

due to gravity and µ is the coefficient of viscosity. For one-dimensional flow and low porosity

system, the above law appears to provide good agreement with experimental results. As this

model does not take inertial effects into consideration, it is valid only for seepage flows, i.e.,

for flows with low Reynolds number [O(Re) < 1].

Darcy-Brinkman Model

It is assumed that the flow through an anisotropic porous medium with high permeability

must reduce to the viscous flow in a limit. In view of this, Brinkman felt the need to account

for the viscous force exerted by a flowing fluid on a dense swarm of spherical particles

embedded in a porous mass and added the term µ′∇2V to balance the pressure gradient.

Here µ′ is the effective viscosity given by µ′ = µ[1− 2.5(1− ε)], in which ε is porosity. The

validity of the Brinkman model is restricted to the high porosity medium (as confirmed by

the experiments) and its governing equation is given by

− [∇p− ρg∗] =
µ

Kp

−→q − µ′∇2−→q (1.2)

Darcy-Forchheimer Model

In 1901, Forchheimer conducted experiments and proposed that inertial effects can be ac-

counted for by the addition of the square of velocity in the momentum equation. The

modification to Darcy′s equation is[
1 +

ρ c
√
Kp

µ
|−→q |

]
−→q = −Kp

µ
[∇p− ρg∗] (1.3)
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where c is the dimensionless form drag coefficient and it varies with the nature of the porous

medium. The coefficients of Darcy and Forchheimer terms contain both fluid properties and the

microstructure of the porous medium. Several other models are found in the literature related to

porous media, and the validity and limitations of these models are well discussed in the textbook

by Nield and Bejan [75].

A Newtonian fluid is the fluid which exhibits a viscosity that remains constant regardless of any

external stress that is placed upon it, such as mixing or a sudden application of force. One example

is water, since it flows the same way, in spite of whether it is left alone or agitated vigorously.

Another way to describe these fluids is that they have a linear relationship between viscosity and

shear stress. Regardless of the shear stress applied to these fluids, the coefficient of viscosity will not

change. Further, Newtonian fluids are those that obey Newtons law relating shear stress and shear

rate with a simple material property (the viscosity) dependent on basic thermodynamic variables

such as temperature, concentration, and pressure, but independent of flow parameters such as shear

rate and time. This can be contrasted with the non-Newtonian fluids, which can become thicker

or thinner when stress is applied.

1.3 Non-Newtonian Fluids

A great deal of involvement has been brought forth to illustrate the nonlinear relationship between

the rate of strain and stress in non-Newtonian fluid models. But there is no single fluid flow model

which undoubtedly exhibits all the properties of real fluids. Therefore, during the last century,

several fluid models are proposed to characterize the real fluid behavior. Among these, the microp-

olar fluid and power-law fluids gained much importance. Micropolar fluid introduced by Eringen

[40] has distinct features such as micro inertial effect, the presence of couple stresses, body couples

and non-symmetric stress tensor. Whereas, Ostwald-de Waele power-law fluid model is proposed

by Ostwald [76] and de Waele [35] and it is one which characterizes the flow pattern of polymer

melt, glass, cosmetic products, grease, and much more, and it has substantial applications in many

engineering industries such as manufacturing processes, oil reservoir and chemical engineering, etc.
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1.3.1 Micropolar Fluid

Micropolar fluid is the subclass of micro-fluids and deal with a class of fluids which exhibit some

microscopic effects arising from the local structure and micromotion of the fluid elements. Com-

pared to the classical Newtonian fluids, the flow motion of micropolar fluid is distinguished by

two supplementary variables, (i.e.,) the spin vector, responsible for the micro-rotations, and the

micro-inertia tensor that describes the distribution of atoms and molecules inside the fluid ele-

ments in addition to the velocity vector. Physically, micropolar fluid is the fluid which comprises

of rigid randomly oriented (spherical) particles where the deformation of the particles is ignored.

Some common examples of micropolar fluid are sediments in rivers, human blood, liquid crystal,

drug suspension in pharmacology, plasma, colloidal fluids, etc. These fluids may have immense

applications in diverse areas such as engineering sciences, lubrication theory, short waves for heat

conducting fluids, etc. A deep monograph to the micropolar fluid theory and its applications has

been reported by Ariman et al. [8, 9], Lukaszewicz [60] and Eremeyev et al. [39].

The governing equations of micropolar fluid are represented in terms of the velocity and the

microrotation vectors associated with each particle present in the fluid medium. The microrotation

vector explores the rotation in an average sense of the rigid particles centered in a small volume

element about the centroid of the element. The governing equations of the an incompressible

micropolar fluid [40], are given by
dρ

dt
+ ρ(∇ · q) = 0 (1.4)

ρ
dq

dt
= ρf −∇p+ κ(∇× ν)− (µ+ κ)[∇× (∇× q)] + (λ+ 2µ+ κ) ∇(∇ · q) (1.5)

ρj
dν

dt
= ρl − 2kν + κ(∇× q)− γ[∇× (∇× ν)] + (α1 + β1 + γ)∇(∇ · ν) (1.6)

where q is the velocity vector, ν is the microrotation vector, j is the micro-gyration parameter or

micro-inertia density of the fluid, f is the body force per unit mass, l is the body couple per unit

mass, κ is the vortex viscosity, γ is the spin-gradient viscosity and t is the time variable. Also, the

material constants { µ, κ, α1 } and {α1, β1, γ} denote the viscosity and gyro-viscosity coefficients

respectively and satisfy the following inequalities:

κ ≥ 0, 2µ+ κ ≥ 0, 3α1 + β1 + γ ≥ 0, 3λ+ 2µ+ κ ≥ 0, |γ| ≥ 0, γ ≥ |β| .
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The force stress tensor τij and the couple stress tensor mij are respectively given by

τi,j = (−p+ λ1 ∇q) δij + (2µ+ κ) eij + κ εijm (Ωm − νm) (1.7)

and

mij = α1 (∇ν) δij + β1 νi,j + γ νj,i (1.8)

where νi and 2Ωi are the components of microrotation and the vorticity vector respectively, δij

is the Kronecker delta, eij is the component of the rate of strain, εijm is the alternative symbol

and comma in suffix represents covariant differentiation. The boundary conditions are treated for

microrotation such that there is no relative spin on the boundary, this condition is the generalization

of classical no-slip condition to require that the fluid particles nearest to a solid boundary stick to

it and neither translating nor rotating.

In the special case where the fluid has constant physical properties, no external body force exists

and for the steady-state flow, the conservation equations can be extremely simplified. Apart from

the previous case, when κ = α1 = β1 = γ = 0 and with vanishing l , the gyration vector disappears

and angular momentum equation (1.6) vanishes identically and the equation (1.5) reduces to the

classical Navier-Stokes equations. We also noticed that in the case of zero vortex viscosity (κ = 0)

only, the velocity vector q and the microrotation vector ν are decoupled and the global motion is

unchanged by the microrotation.

1.3.2 Power-law Fluids

A power-law fluid is a type of generalized non-Newtonian fluids for which the shear stress τxy can

be expressed as

τxy = µ∗
∣∣∣∣∂u∂y

∣∣∣∣n−1 ∂u∂y (1.9)

Here, µ∗ is called the consistency coefficient and n is the power-law index. The dimension of µ∗

depends on the value of n which is non-dimensional. When n = 1, the equation represents a

Newtonian fluid with a dynamic coefficient of viscosity µ∗. Therefore, the deviation of n from

unity indicates the degree of deviation from Newtonian behavior. One may interpret the physical

behavior of the fluid by appealing to an effective viscosity. For n > 1, the fluid is dilatant (e.g.,

suspensions of sand) or shear-thickening fluids in which apparent viscosity at high shear rates. For
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n < 1, the fluid is pseudo-plastic (e.g., polymer solutions) or shear-thinning fluids that have a lower

apparent viscosity at higher shear rates. Shenoy [91, 92] presented many interesting studies on

convective heat transport in non-Newtonian power-law fluids saturated porous media in connection

with geothermal and oil reservoir engineering applications.

1.4 Convective Boundary Condition

In the analysis of convective heat transfer problems, a novel mechanism for the heating process

(known as Convective Boundary Condition) has drawn the involvement of many researchers (for

more details, see Aziz [13]). Because the convective flow of fluids with either wall temperature or

heat flux condition cannot explain the supply of heat with a finite heat capacity to the convecting

fluid through a bounding surface. Further, the heat transfer with a convective boundary condition

is more general and realistic especially with respect to various engineering and industrial processes

including material drying, laser pulse heating and transpiration cooling. Also, it occurs when a solid

substrate is in contact with a fluid at a different temperature and involves relative motion between

the fluid and the substrate. The magnitude of heat exchange is described in terms of Newton’s law

of cooling, for which the relevant constitutive property of the system is the convective heat transfer

coefficient. The convective boundary condition for heat transfer involves equating Fourier’s law of

conduction at the solid surface with Newton’s law of cooling in the fluid, as given below

−kf
∂T

∂y
= hf (Tf − T ) (1.10)

where hf is the convective heat transfer coefficient and kf is the thermal conductivity of the fluid.

1.5 Solution Procedure

The r number of dimensionless coupled nonlinear partial differential equations and their associated

boundary conditions are numerically solved using a novel Successive Linearization Method (SLM)

[64, 11, 56] together with the local similarity and non-similarity procedures [95, 65]. A brief details

of this procedure given in the following steps:
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1. First, by following local similarity and non-similarity approaches,

• Reduce the r number of dimensionless coupled nonlinear partial differential equations

into a system of nonlinear ordinary differential equations by introducing the auxiliary

variables to the partial derivatives of the unknown functions.

• With these approaches, one can obtain 2r number of coupled nonlinear ordinary differ-

ential equations that need to be solved simultaneously in conjunction with the set of

respective boundary conditions.

2. Next, these resulting 2r number of set of nonlinear ordinary differential equations is linearized

using the successive linearization. For this,

• Consider the unknown functions as a combination of ith stage unknown function and

sum of the known functions from initial to (i− 1)th stage, as given below

Q(η) = Qi(η) +
i−1∑
m=0

Qm(η), i = 1, 2, 3...

where Q is the notation for one of the unknown functions.

• Choose the initial guesses Q0(η) in such a way that these satisfy the set of boundary

conditions.

• Linearize the resulting 2r coupled nonlinear ordinary differential equations successively

by substituting the above assumed unknown functions and neglecting the nonlinear

terms containing Qi(η) (i ≥ 1) and its derivatives to obtain set of linearized equations.

3. Later, use the Chebyshev spectral collocation method [21] to solve the system of 2r linearized

equations which are obtained in the previous step. In this method, we use the following steps:

• The transformation
η

S
=
τ + 1

2
, −1 ≤ τ ≤ 1, is used to transform the domain [0, S].

• Discretized the transformed domain [−1, 1] using the Gauss-Lobatto collocation points.

• Approximate the unknown functions and its derivatives in terms of Chebyshev polyno-

mials Tw(τ) = cos[w cos−1τ ] at the collocation points.

• Substitute these expressions in the system of linearized differential equations to obtain

the matrix system.
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4. Finally, solve the resultant matrix system iteratively by starting with the initial approxima-

tions Q0(η).

1.6 Literature Review

The study of free and mixed convection due to a heated or cooled vertical surface provides one

of the basic scenarios for heat and mass transfer theory and thus, is of considerable theoretical

and practical interest. Free convection of heat and mass transfer occurs simultaneously in the

fields of design of chemical processing equipment, formation and dispersion of fog, distributions

of temperature, moisture over agricultural fields and groves of fruit trees. It also occurs in the

context of damage to crops due to freezing and pollution of the environment. The phenomenon

of mixed convection occurs in many technical and industrial problems such as electronic devices

cooled by fans, nuclear reactors cooled during an emergency shutdown, a heat exchanger placed in

a low-velocity environment, solar collectors, and so on.

Convective flow along a vertical surface embedded in a porous medium is one of the fundamental

and classical problems in the heat and mass transfer theory. It has attracted a great deal of interest

from many investigators owing to the broad applications such as geothermal systems, energy-

storage units, heat insulation, heat exchangers, drying technology, catalytic reactors, nuclear waste

repositories, etc. The literature relevant to the convective flows over different surface geometries in

Darcy and non-Darcy porous media has been reported by Ingham and Pop [47], Nield and Bejan

[75] and Vafai [105] (also see the citations therein).

Heat transfer analysis with convective thermal boundary condition is an essential and useful

consideration in the gas turbines, nuclear plants and heat exchangers related industries due to its

realistic nature. Also, it occurs when a solid substrate is in contact with the fluid at a different

temperature and involves relative motion between the fluid and the substrate. In many practical

applications involving cooling or heating of the surface, the presence of convective heat exchange

between the surface and the surrounding fluid cannot be neglected, and this is a very crucial aspect

in thermal materials processing industries. In this mechanism, heat is supplied to the convecting

fluid through a bounding surface with a finite heat capacity, which provides a convective heat

transfer coefficient. To address some of these applications, Makinde and Aziz [62] considered the
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convective thermal boundary condition for the analysis of magnetohydrodynamics cold fluid flow

along a vertical surface, whereas Hayat et al. [43] analyzed the effect of thermal radiation on the

stagnation point flow over a moving surface subject to the convective boundary condition. Influence

of magnetic field under the convective thermal condition has been analyzed by Murthy et al. [68]

for a thermally stratified nanofluid flow over a vertical surface in a non-Darcy porous medium.

Sivasankaran et al. [94] examined the effects of chemical reaction, heat generation/absorption and

radiation on the magnetohydrodynamic flow near a stagnation point in the presence of convective

boundary condition and slip effects.

Several investigators have shown much attention to non-Newtonian fluids in view of their ap-

plications in various aspects of industrial processing, the design of equipment, chemical and allied

processes such as cosmetics, synthetic polymers, biological fluids, synthetic lubricants etc. These

fluids reveal complex rheological nature which is not accomplished by Newtonian fluids. Among

the non-Newtonian fluids, the micropolar fluid is the one which takes care of the rotation of fluid

particles by means of independent kinematic vector known as the microrotation vector. The sub-

ject of free and mixed convective boundary layer flow of a micropolar fluid has been keyed out by

several investigators due to its immense applications in many engineering problems such as solar

energy collecting devices, air conditioning of a room, material processing, passive cooling of nuclear

reactors etc. The boundary layer flow over a semi-infinite flat plate is considered for a deep un-

derstanding of the micropolar fluid theory and its application to low concentration suspension flow

by Ahmadi [3]. Jena and Mathur [48] analyzed the mixed convection over an isothermal vertical

plate in a micropolar fluid and this work extended by the Wang [107] with the addition of wall

conduction. Hayat et al. [41] presented the laminar mixed convective flow of micropolar fluid along

a stretching sheet, whereas the influences of thermal stratification and uniform heat flux on the

natural convective flow of micrpolar fluid along a vertical plate have been discussed by Chang and

Lee [24]. Srinivasacharya and RamReddy [98] analyzed the effect of double stratification on mixed

convective flow of an incompressible micropolar fluid along a vertical plate and pointed out some

useful results. In recent times, the influences of Joule heating and thermal radiation on MHD

micropolar fluid have been discussed by Ramzan et al. [84] by taking the partial slip and convective

boundary conditions into account.

On the other hand, non-Newtonian power-law fluids are so widespread in industrial processes

and in the environment that it would be no exaggeration to affirm that Newtonian shear flows
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are the exceptions rather than the rule. Combined free and forced convective flows of power-law

fluid-saturated porous medium has been studied by Nakayama and Shenoy [72]. Non-Darcy mixed

convective flow of power-law fluids over an isothermal vertical plate with suction/injection effects

has been examined by Ibrahim et al. [46]. Kumari and Nath [58] studied power-law fluid flow

along a horizontal impermeable surface with variable surface temperature. Free convection from a

cone/flat plate in a non-Darcy porous medium saturated by the power-law fluid, has been analyzed

by Kairi and Murthy [52]. Further, Srinivasacharya and Reddy [100] discussed the importance of

chemical reaction and radiation on the power-law fluid flow along a vertical plate embedded in a

porous medium with the variable temperature and concentration wall conditions.

The analysis of convective flows over various geometries in non-Newtonian fluids in a porous

medium, has been provided because of its emerging applications in discrete aspects of engineering,

science and industry like solar energy collecting devices, air conditioning of a room, material pro-

cessing, cooling of molten metals and so on. Fluid flow, heat and mass transfer along an inclined

surface embedded in a porous medium with different boundary conditions is one of the thrust areas

of research in engineering. However, free/mixed convection along an inclined surface has received

less attention than the cases of vertical and horizontal plates. This concept has a wide range of

applications in the ash or scrubber waste treatment, chemical processing, electrical systems, brine

clarification, iron removal, food and dairy processing, coal and other mineral separation. Due to

this importance, Cheng [32] discussed the combined free and forced convective boundary-layer flow

along inclined surfaces embedded in porous media, whereas free convection from an arbitrary in-

clined isothermal plate embedded in a porous medium has been presented by Pop and Na [80].

Chamkha et al. [23] analyzed the influences of the external magnetic field and internal heat gen-

eration or absorption effects on the convective flow along an inclined plate. Numerical simulations

are performed by Rahman et al. [81] to investigate the effects of the non-uniform heat source (or

sink) and the fluid electric conductivity on the convective flow of micropolar fluid flow along an

inclined flat plate. Further, Murthy et al. [70] discussed the double-diffusive convective flow of a

nanofluid past an inclined plate in a non-Darcy porous medium.

The Soret effect (thermal diffusion), the existence of a diffusion flux in view of a temperature

gradient, becomes very noteworthy when the thermal gradient is very large. The energy flux

caused by a concentration gradient is termed as the Dufour effect (diffusion-thermo). Generally,

these effects are considered as a second-order phenomenon and may become significant in areas
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such as petrology, hydrology, geosciences, etc. Eckert and Drake [37] recognized many instances

when the importance of these effects cannot be neglected. Significance of cross-diffusion effects is

examined by Dursunkaya and Worek [36] for the transient and steady natural convection over a

vertical surface, whereas Alam and Rahman [5] studied the same effects with variable suction on

mixed convective flow past the vertical porous plate. Beg et al. [16] obtained a numerical solution to

investigate the influence of Soret and Dufour effects on the mixed convective flow of micropolar fluid

in a Darcy-Forchheimer porous medium. Tai and Char [103] employed the differential quadrature

method to examine the thermal radiation and cross-diffusion effects on the free convective flow of a

power-law fluid in a porous medium. Very recently, Reddy and Krishna [87] discussed micropolar

fluid flow towards a linearly stretching sheet in the presence of Soret and Dufour effects along with

the thermal radiation.

The double dispersion effects are more important in the flow region of a porous medium under

the condition that the inertial effects are not negligible (refer Nield and Bejan [75] and citations

therein). The double dispersion plays an important role in a steady fluid flow due to the combined

action of convection and molecular diffusion, and this concept helps to explain the differences often

observed between transport parameters measured along and across the principal directions of the

fluid flow over the considered geometries. The development of double dispersion has been mainly

related to miscible displacement and solute spreading in porous media. These kinds of effects

have notable importance in many engineering areas such as ceramic processing, oil reservoir, heat

storage beds, etc. In irregular geometries, especially in the packed beds, the transportation of fluid

through tortuous paths will lead to double dispersion effects at the pore level of porous media.

With this consideration, many authors to point out few, Murthy [67], Kairi and Murthy [51], have

exhibited the significance of double dispersion on the characteristics of the fluid flow through a

porous medium.

From the literature, it seems that the Boussinesq approximation is applicable for some flows in

which the temperature and concentration gradients vary a little. Therefore, the density variation

is less and the buoyancy drives the motion. In this approximation, the density is considered as

constant everywhere except in the buoyancy force term. When the temperature and concentra-

tion differences between ambient fluid and inclined surface are appreciably large, the mathematical

model developed by using a linear density relation becomes more inaccurate. For instant, some of

the thermal systems, e.g., areas of reactor safety, combustion, solar collectors, layered porous media
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of high thermal conductivity architecture (metallic foams and sponges), are operated at moderate

and very high temperatures. In such special cases, the temperature-concentration-dependent re-

lation becomes nonlinear. Also, the heat produced by the viscous dissipation and inertia, or the

presence of different densities are other reasons for the nonlinear density-temperature-concentration

relationship. This nonlinear variation in temperature-concentration-dependent density relation (to

be specific, nonlinear Boussinesq approximation or nonlinear convection) gives a strong influence to

the fluid flow characteristics (for more details, one can see the works of Barrow and Sitharamarao

[15], Vajravelu and Sastri [106]). Partha [79] examined the effects of cross-diffusion and double

dispersion with the nonlinear convection to the viscous fluid flow, whereas this work has been ex-

tended by Kameswaran et al. [54] in which thermophoretic effect is discussed in the absence of

cross-diffusion effects. Nonlinear convection over an impulsive stretching sheet has been examined

numerically by Motsa et al. [66] (and also see the citations therein).

This limited literature shows that the analysis of micropolar fluid or power-law fluids flow

over an inclined plate in a porous medium under different conditions has not received significant

attention so far. Also, it seems that the similarity solution does not exist for this kind of complex

fluid flow problems by using either Lie scaling group or other transformations. Hence, one has to

use appropriate non-dimensional transformations to find an approximate solution of the governing

partial differential equations.

Owing to the important applications of the micropolar fluid or power-law fluids saturated porous

medium, the convective flow over an inclined plate has been analyzed in this thesis. In addition,

the nonlinear Boussinesq approximation and convective boundary condition are incorporated into

the analysis. The problems that we studied are outlined in the next section.

1.7 Aim and Scope

The objective of the present thesis is to study the influence of nonlinear Boussinesq approximation,

double dispersion, Soret and Dufour effects on the free and mixed convective flows along an inclined

plate in a micropolar fluid or power-law fluids saturated non-Darcy porous medium in the presence

of convective boundary condition. This study focuses on the attributes of various effects such as

nonlinear convection parameters, Soret and Dufour numbers, Darcy and non-Darcy (Forchheimer)
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numbers, Biot number, thermal and solutal dispersion parameters. The problems considered in

this thesis deal with a semi-infinite inclined flat plate for the two cases: (i) free convection, (ii)

mixed convection.

1.8 Outline of the Thesis

This thesis is arranged in four parts with a total of eight chapters.

Part I consists of single Chapter (i.e., Chapter-1). It is introductory in nature and gives moti-

vation to the investigations carried out in the thesis. A survey of pertinent literature is presented

here to show the significance of the problems considered. The equations which govern the flow,

heat and mass transfers of a micropolar and power-law fluids along with the details of numerical

procedure (viz., local similarity and non-similarity technique, and successive linearisation method)

are given in this chapter.

Part II presents the boundary layer analysis to study the effects of cross-diffusion, thermal and

solutal dispersion on the nonlinear convective flow of a micropolar fluid along an inclined plate

embedded in a non-Darcy porous medium with convective boundary condition. This part consists

of three Chapters (i.e., Chapters 2-4). The details of these chapters are given below.

In Chapter-2, a mathematical model is presented to investigate the nonlinear variation in

temperature-concentration-dependent density relation on the free and mixed convective flows of

a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of

convective boundary condition. The effects of the angle of inclination, Biot number, nonlinear con-

vection, non-Darcy and micropolar parameters on the fluid flow, heat and mass transfer rates are

exhibited graphically. Further, the skin friction and wall couple stress are presented quantitatively

for the above-said parameters.

The combined effects of diffusion-thermal and thermal-diffusion on the free and mixed convec-

tive flows along an inclined plate in a non-Darcy porous medium saturated by a micropolar fluid

subject to the convective boundary condition, are examined in Chapter-3. The effects of physical

parameters on the velocity, microrotation, temperature, concentration, skin friction, wall couple

stress, heat and mass transfer rates along an inclined plate are given and the salient features are
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discussed.

In Chapter-4, the significance of Biot number and double dispersion effects on the natural and

mixed convective flows of an incompressible micropolar fluid saturated non-Darcy porous medium in

the presence of nonlinear Boussinesq approximation, is analyzed. The effects of various parameters

on the velocity, microrotation, temperature, concentration, skin friction, wall couple stress, heat

and mass transfer rates are presented through graphs.

Part III deals with the non-similarity solution of an Ostwald-de Waele power-law fluid flow over

an inclined flat plate in a non-Darcy porous medium subject to the convective boundary condition

in the presence or absence of cross-diffusion and double dispersion effects. This part consists of

three Chapters (i,e., Chapters 5-7), in which the nonlinear Boussinesq approximation (known as

the nonlinear convection) is also taken into consideration to address the heat and mass transfer

phenomena of power-law fluids. The details of these chapters are given below:

Chapter-5 discusses the significance of nonlinear Boussinesq approximation on the free and

mixed convective flows of Ostwald-de Waele power-law fluids along an inclined plate in a non-

Darcy porous medium in the presence of convective thermal boundary condition. This numerical

study explores the impact of pertinent parameters on the fluid flow characteristics through graphs

and the salient features are discussed in detail.

The non-similarity solution for the nonlinear convective flow of non-Newtonian power-law fluids

along an inclined plate in a non-Darcy porous medium, is obtained in Chapter-6. In addition, the

convective thermal boundary condition, diffusion-thermal and thermal-diffusion effects are taken

into account. The effects of the angle of inclination, Soret number, Dufour number, Biot number

and nonlinear convection parameters on the velocity, temperature and concentration profiles are

presented graphically for all three kinds of fluids (pseudo-plastic, Newtonian and dilatant fluids).

Moreover, the non-dimensional Nusselt and Sherwood numbers against stream-wise coordinate for

various values of the pertinent parameters are also analyzed through graphs.

In Chapter-7, an attempt has been made to study the effects of thermal and solutal dispersion

on free and mixed convective flows of Ostwald-de Waele power-law fluids over an inclined plate

embedded in a non-Darcy porous medium subject to the convective boundary condition, are dis-

cussed. Additionally, the nonlinear Boussinesq approximation is incorporated in the momentum

equation. The effects of various parameters, namely thermal dispersion, solutal dispersion, Biot
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number, nonlinear convective parameters and power-law index on physical quantities of the flow

are explored in detail and some interesting results have been obtained.

In all the above chapters (i.e., Chapter-2 to Chapter-7), the nonlinear governing partial differ-

ential equations and their associated boundary conditions are initially cast into dimensionless forms

by using suitable non-similarity transformations. First, the resultant system of nonlinear partial

differential equations is transformed into system of nonlinear ordinary differential equations using

local similarity and non-similarity approaches. Next, the obtained system of nonlinear ordinary

differential equations are converted into an iterative sequence of linearized ordinary differential

equations by using successive linearization procedure. Finally, the Chebyshev collocation method

is used to solve the resultant iterative sequence of linearized ordinary differential equations. In

order to check the accuracy and validity of these problems, the obtained results are compared

against previously published work wherever possible on special cases and are found to be in good

agreement.

Lastly, Part IV consists of a single Chapter (i.e., Chapter-8). The main conclusions of the

earlier chapters are recorded and the directions in which further investigations may be carried out,

are indicated in this chapter.

List of references is given at the end of the thesis. The references are arranged in alphabetical

order and according to this order, citations appear in the text. In the individual Chapters, in

some of the Chapters, details which are already presented in the earlier Chapters are avoided. As

a review of the existing literature is presented in the introductory Chapter itself, in each of the

Chapters only a brief introduction to the concerned problem is given. Also, the physical meaning

of the various parameters is given in the Chapters repeatedly for the easy readability of readers.

All problems undertaken in the present thesis are published/accepted for publication in the

reputed journals. The details are presented below:
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1. “Quadratic Convective Flow of a Micropolar Fluid along an Inclined Plate in a Non-Darcy
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Chapter 2

Effect of Biot Number in a

Non-Darcy Porous Medium Saturated

with a Micropolar Fluid 1

2.1 Introduction

One of the best established theories of fluids with microstructure is the theory of micropolar fluids.

The micropolar fluids may be treated as non-Newtonian fluids consisting of dumbbell molecules

or rigid cylindrical elements. The analysis of free and/or mixed convection in a micropolar fluid

saturated porous medium has received a considerable interest from theoretical and practical point

of view. Several authors, to mention few, Rawat et al. [85], Shafie [88] and Srinivasacharya and

RamReddy [97], examined the heat and mass transfer characteristics of micropolar fluid in a non-

Darcy porous medium.

Convective boundary condition plays a vital role in the mechanism of supplying heat to the

convecting fluid through a bounding surface with a finite heat capacity. It is because of its uni-

versal and realistic nature particularly in diverse technologies and industrial operations such as

transpiration cooling process, textile drying, laser pulse heating etc. In view of these applications,

1Case(a): Published in “Frontiers in Heat and Mass Transfer” 9(35) (2017) 1–10, Case(b): Published
in “Nonlinear Engineering - Modeling and Application” 6(2) (2017) 139–152.
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Yacob and Ishak [108] investigated the stagnation point flow towards a stretching/shrinking sheet

immersed in a micropolar fluid with the convective boundary condition. In recent times, the influ-

ence of homogeneous-heterogeneous reactions on convective heat flow of a micropolar fluid along a

vertical plate in a porous medium under the convective boundary condition, has been discussed by

Ramreddy et al. [83] (also refer the references given therein).

The concept of nonlinear convection in the study of boundary layer fluid flow problems is of great

importance in a variety of disciplines such as astrophysics, geophysics, geothermal and engineering

applications. Mallikarjuna et al. [14] analyzed the effect of thermophoresis on the viscous fluid

flow past a rotating cone in the presence of nonlinear convection. Recently, the effect of nonlinear

thermal convection on the boundary layer flow of a micropolar fluid over a vertical plate subject

to the convective boundary condition, has been investigated by RamReddy and Pradeepa [82].

From the literature survey, it seems that the problem of nonlinear convection along an inclined

plate in a micropolar fluid with the convective boundary condition has not been investigated so

far. Hence, the aim of the present chapter is to analyze the effect of nonlinear convective flow of a

micropolar fluid along an inclined plate in a non-Dacy porous medium with the convective boundary

condition. But, this type of mathematical modeling becomes slightly more complicated leading to

the complex interactions in flow, heat and mass transfer mechanisms. The governing system of

nonlinear partial differential equations is transformed to a set of nonlinear ordinary differential

equations by local similarity and non-similarity procedures and then the successive linearization

method is used to solve the resulting boundary value problem. Also, the influences of important

parameters on the physical quantities of the flow, heat and mass transfer rates are analyzed under

different flow situations.

2.2 Mathematical Formulation

Consider the steady, laminar and two-dimensional flow of an incompressible micropolar fluid along

a semi-infinite inclined flat plate in a non-Darcy porous medium. Choose the coordinate system

such that the x-axis is along the plate and y-axis is normal to the plate. The semi-infinite plate

is inclined about vertical direction with an acute angle Ω as depicted in Fig.(2.1). In the figure,

M.B.L is used to represent the momentum boundary layer, while T.B.L and C.B.L are used to
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Figure 2.1: Physical model and coordinate system.

represent the thermal and concentration boundary layers respectively. The velocity of the outer

flow is assumed to be u∞ whereas the free stream temperature and concentration are taken as T∞

and C∞ respectively. The plate is either heated or cooled from a flow field of temperature Tf to

the left by convection with Tf > T∞ relating to a heated surface (assisting flow) and Tf < T∞

relating to a cooled surface (opposing flow) respectively. On the wall, the solutal concentration

is taken to be Cw which is a constant quantity. The porous medium is taken to be uniform

with a constant permeability and porosity, and is saturated by a micropolar fluid which is in the

local thermodynamic equilibrium with the solid matrix. Further, the temperature difference and

concentration difference between the surface of the plate and the ambient fluid are assumed to be

significantly larger. Hence, the linear Boussinesq approximation becomes inaccurate in the present

analysis.

Under the consideration of usual boundary layer assumptions together with the nonlinear

Boussinesq approximation, the governing equations for the micropolar fluid flow in an isotropic

and homogeneous non-Darcy (Darcy-Forchheimer model) porous medium can be represented as

∂u

∂x
+
∂v

∂y
= 0 (2.1)
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ρ

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=

1

ε
(µ+ κ)

∂2u

∂y2
+ κ

∂ω

∂y
+

µ

Kp
(u∞ − u) +

ρ b

Kp
(u2∞ − u2)

+ρg∗
[
β0 (T − T∞) + β1 (T − T∞)2 + β2 (C − C∞) + β3 (C − C∞)2

]
cosΩ

(2.2)

ρj

ε

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

1

ε

∂u

∂y

)
(2.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(2.4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(2.5)

where u and v are the Darcy velocity components in x and y directions respectively, ω is the

component of micro-rotation whose direction of rotation lies in the xy-plane, T is the temperature, C

is the concentration, g∗ is the acceleration due to gravity, ρ is the density, µ is the dynamic coefficient

of viscosity, b is the empirical constant, Kp is the permeability, κ is the vortex viscosity, j is the

micro-inertia density, γ is the spin-gradient viscosity, ε is the porosity, Ω is the angle of inclination,

α is the thermal diffusivity and D is the solutal diffusivity of the medium. Further, β0 and β1 are

used to represent the first and second order thermal expansion coefficients respectively. Further

more, β2 and β3 are used to represent the first and second order solutal expansion coefficients

respectively.

The corresponding boundary conditions are

u = 0, v = 0, ω = 0, −kf
∂T

∂y
= hf (Tf − T ), C = Cw at y = 0

u = u∞, ω = 0, T = T∞, C = C∞ as y →∞
(2.6)

where the subscripts w and∞ indicate conditions at the wall and at the outer edge of the boundary

layer respectively. Generally, ω = 0 represents the case of concentrated particle flows in which the

micro-elements close to the wall are not able to rotate. Further, the assumption γ =
(
µ+

κ

2

)
j is

incorporated to allow the field equations to predict the correct behavior in the limiting case when

the micro-structure effects become negligible and the total spin ω reduces to the angular velocity

[3]. Furthermore, hf is the convective heat transfer coefficient and kf is the thermal conductivity

of the fluid. The same symbols are used throughout the thesis unless otherwise specified.

Now, we introduce the stream function ψ such that it satisfies the continuity equation (2.1)
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automatically, and it is defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(2.7)

In this chapter, two types (cases) of problems are considered: (a) free/natural convection and

(b) mixed convection.

2.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow which is caused by only buoyancy forces and

without any external agent. Hence, the velocity of the external flow becomes zero (i.e., u∞ = 0).

Initially, we introduce the following dimensionless variables

ξ =
x

L
, η =

y

L

(
Gr

ξ

) 1
4

, ψ =
µGr

1
4 ξ

3
4

ρ
f(ξ, η) ω =

µGr
3
4 ξ

1
4

ρL2
g(ξ, η),

θ(ξ, η) =
T − T∞
Tf − T∞

, φ(ξ, η) =
C − C∞
Cw − C∞

(2.8)

where ξ is the stream-wise coordinate, Gr =
g∗β0(Tf − T∞)L3

ν2
is the global thermal Grashof num-

ber, L is the characteristics length, f is the dimensionless stream function, g is the dimensionless

microrotation, θ is the dimensionless temperature and φ is the dimensionless concentration.

Substituting the stream function (2.7) and the transformations (2.8) into Eqs.(2.1)-(2.5), the

governing equations reduce to the following form:

1

ε

(
1

1−N

)
f ′′′ +

3

4ε2
ff ′′ − 1

2ε2
f ′2 +

(
N

1−N

)
g′ − Fs

Da
ξ f ′2 − ξ

1
2

DaGr
1
2

f ′

+ [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω =
ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

) (2.9)

λg′′ +
3

4ε
fg′ − 1

4ε
f ′g −

(
N

1−N

)
J ξ

1
2

(
2g +

1

ε
f ′′
)

=
ξ

ε

(
f ′
∂g

∂ξ
− ∂f

∂ξ
g′
)

(2.10)

1

Pr
θ′′ +

3

4
fθ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(2.11)

1

Sc
φ′′ +

3

4
fφ′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(2.12)

In the above equations, the primes represent partial derivative with respect to η alone. Fur-
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ther, N =

(
κ

µ+ κ

)
is the coupling number (0 ≤ N < 1) (Ref., Cowin [33]), Da =

Kp

L2
is the

Darcy number, Fs =
b

L
is the Forchheimer number, B =

β2(Cw − C∞)

β0(Tf − T∞)
is the buoyancy ratio,

α1 =
β1(Tf − T∞)

β0
is the nonlinear density-temperature parameter (NDT), α2 =

β3(Cw − C∞)

β2
is the nonlinear density-concentration parameter (NDC), λ =

γ

jρν
is the spin-gradient viscosity,

J =
L2

jGr
1
2

is the micro-inertia density, Pr =
ν

α
is the Prandtl number and Sc =

ν

D
is the Schmidt

number.

The boundary conditions (2.6) become

f ′(ξ, 0) = 0, f(ξ, 0) = −4

3
ξ

(
∂f

∂ξ

)
η=0

, g(ξ, 0) = 0, θ′ (ξ, 0) = −Biξ
1
4 [1− θ(ξ, 0)] ,

φ(ξ, 0) = 1, f ′(ξ,∞) = 0, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0,

(2.13)

where Bi =
hfL

kf Gr
1
4

is the Biot number and physically, it is the ratio of internal thermal resistance

of the plate to the boundary layer thermal resistance of the hot fluid at the bottom of the surface.

The wall shear stress and wall couple stress are given by

τw =

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

and mw = γ

[
∂ω

∂y

]
y=0

, (2.14)

and the heat and mass transfer rates from the plate are given by

qw = −kf
[
∂T

∂y

]
y=0

and qm = −D
[
∂C

∂y

]
y=0

. (2.15)

The non-dimensional skin friction Cf =
2τw
ρu2∗

, wall couple stress Mw =
mw

ρu2∗x
, local Nusselt num-

ber Nux =
qwx

kf (Tf − T∞)
and the local Sherwood number Shx =

qmx

D(Cw − C∞)
, are given by

CfGr
1
4 =

(
2

1−N

)
ξ

−3
4 f ′′(ξ, 0), MwGr

1
2 =

(
λ

ξ J

)
g′(ξ, 0),

NuxGr
−1
4 = −ξ

3
4 θ′(ξ, 0), ShxGr

−1
4 = −ξ

3
4 φ′(ξ, 0),

(2.16)

where u∗ is the characteristic velocity.
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Numerical Solution

The governing Eqs.(2.9)-(2.12) along with the boundary conditions (2.13) are solved numerically

using successive linearization method (SLM) together with the local similarity and non-similarity

approaches. The details are given below:

Local similarity and non-similarity approaches:

It is used to convert the set of nonlinear partial differential equations (2.9)-(2.12) along with the

boundary conditions (2.13) into a set of nonlinear ordinary differential equations along with the

associated boundary conditions (for more details, one can refer [95, 65]).

Before proceeding to the local non-similarity procedure, it is useful to examine the boundary-

layer equations (2.9)-(2.13) from the perspective of local similarity concept.

Local similarity model

To derive the equations for local similarity model, one can assume that the terms on the right side

of Eqs.(2.9)-(2.13) are sufficiently small so that they may be neglected. This can be true for a

particular case of ξ << 1. Under this assumption, the local similarity equations are given by

1

ε

(
1

1−N

)
f ′′′ +

3

4ε2
ff ′′ − 1

2ε2
f ′2 +

(
N

1−N

)
g′ − Fs

Da
ξ f ′2 − 1

DaGr
1
2

ξ
1
2 f ′

+ [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω = 0

(2.17)

λg′′ − 1

4ε
g f ′ +

3

4ε
g′ f −

(
N

1−N

)
J ξ

1
2

(
1

ε
f ′′ + 2g

)
= 0 (2.18)

1

Pr
θ′′ +

3

4
fθ′ = 0 (2.19)

1

Sc
φ′′ +

3

4
fφ′ = 0 (2.20)
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The associated boundary conditions (2.13) become

f ′(ξ, 0) = f(ξ, 0) = g(ξ, 0) = 0, θ′ (ξ, 0) +Bi ξ
1
4 [1− θ(ξ, 0)] = 0,

φ(ξ, 0) = 1, f ′(ξ,∞) = g(ξ,∞) = θ(ξ,∞) = φ(ξ,∞) = 0.
(2.21)

The parameter ξ contained in the governing equations and boundary conditions can be regarded

as assigned constant at any stream-wise location along the plate. As a result, the governing equa-

tions transformed by the local similarity method can be treated as a system of ordinary differential

equations with partial non-similar effects retained in the linear momentum equation, angular mo-

mentum equation and the boundary conditions. Here, the solutions are different for different values

of the stream-wise coordinate ξ. This can be seen by assigning different values to ξ along the plate

and plotting the respective boundary layer distributions.

On the other hand, the non-similar terms on the right hand side of Eqs.(2.9)-(2.13) are vanished

in the local-similarity procedure. The local similarity postulation requires ξ to be close to zero.

Otherwise, the whole term in the bracket on the right hand side of Eqs.(2.9)-(2.13) must be minimal

to justify the exclusion of non-similar terms. The validity of the latter assumption, however, is

subject to uncertainty and this is a weakness of the local-similarity procedure.

Local non-similarity model

In order to overcome the limitations imposed by local-similarity procedure, the local non-similar

equations will now be derived. For this, consider the auxiliary variables U, V,H and K as
∂f

∂ξ
= U ,

∂g

∂ξ
= V ,

∂θ

∂ξ
= H and

∂φ

∂ξ
= K to recover the omitted expressions in the previous model. In-

troducing these functions into Eqs.(2.9)-(2.13), we get the first set of auxiliary equations as given

below

1

ε

(
1

1−N

)
f ′′′ +

3

4ε2
ff ′′ − 1

2ε2
f ′2 +

(
N

1−N

)
g′ − Fs

Da
ξ f ′2 − 1

DaGr
1
2

ξ
1
2 f ′

+ [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω =
ξ

ε2
(
f ′ U ′ − f ′′ U

) (2.22)

λg′′ +
3

4ε
fg′ − 1

4ε
f ′g −

(
N

1−N

)
J ξ

1
2

(
2g +

1

ε
f ′′
)

=
ξ

ε

(
f ′ V − g′ U

)
(2.23)

1

Pr
θ′′ +

3

4
fθ′ = ξ

(
f ′H − θ′ U

)
(2.24)
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1

Sc
φ′′ +

3

4
fφ′ = ξ

(
f ′K − φ′ U

)
(2.25)

along with the boundary conditions

f(ξ, 0) +
4

3
ξ U(ξ, 0) = f ′(ξ, 0) = g(ξ, 0) = 0, θ′ (ξ, 0) = −Biξ

1
4 [θ(ξ, 0)− 1] ,

φ(ξ, 0) = 1, f ′(ξ,∞) = g(ξ,∞) = θ(ξ,∞) = φ(ξ,∞) = 0.

(2.26)

Differentiating the above Eqs.(2.22)- (2.25) along with the boundary condition (2.26) with respect

to ξ and neglecting the terms involving the derivative functions U, V,H and K with respect to ξ,

we obtain the second set of auxiliary equations which are given as

1

ε

(
1

1−N

)
U ′′′ +

7

4ε2
Uf ′′ +

3

4ε2
fU ′′ +

(
N

1−N

)
V ′ − ξ

−1
2

2DaGr
1
2

f ′ − ξ
1
2

DaGr
1
2

U ′ − Fs

Da
f ′2

+ [H(1 + 2α1θ) + BK(1 + 2α2φ)] cos Ω− 2

[
Fs

Da
ξ +

1

ε2

]
f ′U ′ =

ξ

ε2

(
U ′

2 − U ′′U
) (2.27)

λV ′′ +
7

4ε
Ug′ − 1

2

(
N

1−N

)
J ξ

−1
2

(
2g +

1

ε
f ′′
)
−
(

N

1−N

)
J ξ

1
2

(
2V +

1

ε
U ′′
)

+
3

4ε
fV ′ − 1

4ε
U ′g − 5

4ε
V f ′ =

ξ

ε

(
V U ′ − V ′U

) (2.28)

1

Pr
H ′′ +

7

4
Uθ′ +

3

4
fH ′ − f ′H = ξ

(
HU ′ −H ′U

)
(2.29)

1

Sc
K ′′ +

7

4
Uφ′ +

3

4
fK ′ − f ′K = ξ

(
KU ′ −K ′U

)
(2.30)

along with the boundary conditions

U ′(ξ, 0) = U(ξ, 0) = V (ξ, 0) = 0;H ′ (ξ, 0)−Biξ
1
4H (ξ, 0) +

1

4
Biξ

−3
4 [1− θ(ξ, 0)] = 0;

K(ξ, 0) = U ′(ξ,∞) = V (ξ,∞) = H(ξ,∞) = K(ξ,∞) = 0.

(2.31)

The two-equation model involves eight coupled equations [i.e., (2.22)-(2.25) and (2.27)-(2.30)] that

need to be solved simultaneously in conjunction with the two sets of boundary conditions [(2.26)

and (2.31)]. Therefore, the local non-similarity procedure preserves the non-similar terms in original

governing equations and boundary conditions because we are dropping the non-similar terms from

its auxiliary equations only. Since the original governing equations remain intact, the local non-

similarity solution is expected to be more accurate than the local-similarity solution.
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Successive linearization method:

In this section, the resulting system of ordinary differential equations (2.22) to (2.25) and (2.27)

to (2.30) along with the boundary conditions (2.26) and (2.31) is solved using the Successive

Linearization Method (SLM) (for more details, one can refer the works of Makukula et al. [64],

Awad et al. [11] and Khidir et al. [56]). This method utilizes the successive linearization initially

and then the Chebyshev spectral collocation scheme (see., Canuto et al. [21]) to solve the system

of nonlinear ordinary differential equations.

In this method, a notation Q(η) is used to represents one of the unknown functions f(η), g(η),

θ(η), φ(η), U(η), V (η), H(η) and K(η) and it is assumed as given below

Q(η) = Qi(η) +
i−1∑
m=0

Qm(η), i = 1, 2, 3, ... (2.32)

where Qi(η) is the unknown function, and Qm(η) (m ≥ 1) are successive approximations which are

obtained by recursively solving the linear part of the system that results from substituting (2.32)

into the Eqs.(2.22) to (2.25) and (2.27) to (2.30) along with boundary conditions (2.26) and (2.31).

The main assumption of successive linearization is that Qi become increasingly smaller when i

becomes large, that is

lim
i→∞

Qi = 0 (2.33)

The initial guesses Q0(η) are chosen in such a way that these guesses satisfy the boundary condi-

tions (2.26) and (2.31). Thus, starting from the initial guesses, the subsequent solutions Qi(η) are

obtained by successively solving the linearized form of the equations which are obtained by sub-

stituting equation (2.32) in Eqs.(2.22) to (2.25) and (2.27) to (2.30) and neglecting the nonlinear

terms containing Qi(η) (i ≥ 1) and its derivatives. Therefore, the resultant linearized equations

(which are obtained by expressing in terms of unknown functions f , g, θ, φ, U , V , H and K) which

has to be solved, are as following

p̃1,i−1f
′′′
i + p̃2,i−1f

′′
i + p̃3,i−1f

′
i + p̃4,i−1fi + p̃5,i−1g

′
i + p̃6,i−1θi + p̃7,i−1φi

+p̃8,i−1U
′
i + p̃9,i−1Ui = r̃1,i−1

(2.34)
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q̃1,i−1f
′′
i + q̃2,i−1f

′
i + q̃3,i−1fi + q̃4,i−1g

′′
i + q̃5,i−1g

′
i + q̃6,i−1gi + q̃7,i−1Ui

+q̃8,i−1Vi = r̃2,i−1

(2.35)

s̃1,i−1f
′
i + s̃2,i−1fi + s̃3,i−1θ

′′
i + s̃4,i−1θ

′
i + s̃5,i−1Ui + s̃6,i−1Hi = r̃3,i−1 (2.36)

t̃1,i−1f
′
i + t̃2,i−1fi + t̃3,i−1φ

′′
i + t̃4,i−1φ

′
i + t̃5,i−1Ui + t̃6,i−1Ki = r̃4,i−1 (2.37)

ã1,i−1f
′′
i + ã2,i−1f

′
i + ã3,i−1fi + ã4,i−1θi + ã5,i−1φi + ã6,i−1U

′′′
i + ã7,i−1U

′′
i

+ã8,i−1U
′
i + ã9,i−1Ui + ã10,i−1V

′
i + ã11,i−1Hi + ã12,i−1Ki = r̃5,i−1

(2.38)

b̃1,i−1f
′′
i + b̃2,i−1f

′
i + b̃3,i−1fi + b̃4,i−1g

′
i + b̃5,i−1gi + b̃6,i−1U

′′
i + b̃7,i−1U

′
i

+b̃8,i−1Ui + b̃9,i−1V
′′
i + b̃10,i−1V

′
i + b̃11,i−1Vi = r̃6,i−1

(2.39)

c̃1,i−1f
′
i + c̃2,i−1fi + c̃3,i−1θ

′
i + c̃4,i−1U

′
i + c̃5,i−1Ui + c̃6,i−1H

′′
i + c̃7,i−1H

′
i

+c̃8,i−1Hi = r̃7,i−1

(2.40)

d̃1,i−1f
′
i + d̃2,i−1fi + d̃3,i−1φ

′
i + d̃4,i−1U

′
i + d̃5,i−1Ui + d̃6,i−1K

′′
i + d̃7,i−1K

′
i

+d̃8,i−1Ki = r̃8,i−1

(2.41)

together with the reduced boundary conditions

fi(0) = f ′i(0) = f ′i(∞) = 0, gi(0) = gi(∞) = 0, θ′i(0)−Bi ξ
1
4 θi(0) = 0, θi(∞) = 0,

φi(0) = φi(∞) = 0, Ui(0) = U ′i(0) = U ′i(∞) = 0, Vi(0) = Vi(∞) = 0,

H ′i(0)−Bi ξ
1
4Hi(0)− 1

4
Bi ξ

−3
4 θi(0) = 0, Hi(∞) = 0, Ki(0) = Ki(∞) = 0.

(2.42)

Here the coefficient parameters p̃e,i−1, q̃e,i−1, s̃e,i−1, t̃e,i−1, ãe,i−1,, b̃e,i−1, c̃e,n−1, d̃e,i−1 and r̃e,i−1

depend on the initial guesses Q0(η) and on their derivatives. Once each solution for Qi has been

obtained by iteratively solving Eqs.(2.34) - (2.41) for each i, the approximate solutions for Q(η)

are obtained as

Q(η) ≈
M∑
m=0

Qm(η), (2.43)

where M is the order of successive linearization approximations. Since the coefficient parameters

and the right-hand side of Eqs.(2.34)-(2.41) for i = 1, 2, 3... are known (from previous iterations),

the system of Eqs.(2.34)-(2.41) along with the boundary conditions (2.42) can be solved easily using

any suitable numerical method.
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But, the resultant linearized Eqs.(2.34)-(2.41) are solved by an established procedure, namely

Chebyshev spectral collocation method (Canuto et al. [21]). This method is based on the Chebyshev

polynomials which are defined on the interval [−1, 1]. So, the physical region [0,∞) is transformed

into the region [−1, 1] using the domain truncation technique in which the problem is solved on the

interval [0, S] instead of [0,∞). This leads to the mapping

η

S
=
τ + 1

2
, −1 ≤ τ ≤ 1 (2.44)

where S is the scaling parameter which is used to invoke the boundary condition at ∞.

The unknown functions Qi are approximated, as will be discussed below, by the Chebyshev

interpolating polynomials in such a way that they are collocated at the Gauss-Lobatto collocation

points defined as

τm = cos
πm

N
, m = 0, 1, ...,N (2.45)

where N is the number of collocation points.

The unknown functions Qi are approximated at the Gauss-Lobatto collocation points as

Qi(τ) =
N∑
k=0

Qi(τk)Tk(τm),
dZ

dηZ
Qi(τ) =

N∑
k=0

DZ
kmQi(τk), m = 0, 1, ...,N (2.46)

where Tk is the kth Chebyshev polynomial given by Tk(τ) = cos[k cos−1τ ], D is the Chebyshev

spectral derivative matrix such that D = (2/S)D and Z is the order of differentiation.

After substituting (2.44)-(2.46) into the linearized form of equations (2.34)-(2.41), the required

solution is given by

Ỹi = B̃−1i−1R̃i−1, (2.47)

In Eq.(2.47), B̃i−1 is a square matrix of order (8N + 8) and Ỹi, R̃i−1 are column matrices of order

(8N + 1), which are defined by

B̃i−1 =
[
B̃kj

]
, for k, j = 1, 2, ...8, Ỹi =

[
F̃i G̃i Θ̃i Φ̃i Ũi Ṽi H̃i K̃i

]T
,

R̃i−1 = [z̃1,i−1 z̃2,i−1 z̃3,i−1 z̃4,i−1 z̃5,i−1 z̃6,i−1 z̃7,i−1 z̃8,i−1]
T .

(2.48)
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Validation with Shooting Method

The shooting method is employed to validate the present SLM computations. Therefore, the system

of ordinary differential equations (2.17)- (2.20) along with the boundary conditions (2.21) has also

been solved with the shooting method. The major steps of this method are as follows:

• Convert the boundary value problem into the initial value problem;

• Reduce the initial value problem into a system of first order differential equations;

• Identify the missing initial values using the Newton-Raphson method;

• Solve the first order system of resultant ordinary differential equations using the Runge-Kutta

method of fourth-order;

• Update the obtained information until all the free stream boundary conditions are satisfied

asymptotically.

Algebraic details of the shooting method are omitted here for the sake of brevity and there are

many references (to mention few, Ref. [67, 52]) in which these details have been documented.

It is noticed that the present problem reduces to free convection heat transfer over an isothermal

vertical plate in a viscous fluid in the absence of coupling number, buoyancy ratio and nonlinear

convection parameters with ε = 1, Da→∞, λ = 0, ξ = 1, Bi→∞ and Ω = 0. In order to assess

the accuracy and validity of the present investigation, the results of the local similarity equations

(2.17)-(2.20) have been compared with the results reported in the Tab.(4.2) of Bejan [19], as ex-

hibited in Tab. (2.1). Also, the comparison between the SLM computations and shooting method

results has been made for certain values of the physical parameters as shown in the Tab.(2.2). It

shows an excellent agreement with the existing results.

The numerical computations are carried out by following the fixed values of parameters: λ = 5.0,

B = 1.0 , Pr = 0.7, Sc = 0.22, Gr = 10, ε = 0.5 and Da = 0.1. The value of dimensionless

micro-inertia density J = 5.0 is chosen to satisfy the thermodynamic restrictions on the material

parameters given by Eringen [40]. These values are continued same throughout the evaluation,

unless otherwise mentioned.
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Table 2.1: Comparison of −θ′(ξ, 0) for the natural convection along a vertical flat plate in
a viscous fluid when N = 0, B = 0, α1 = 0, α2 = 0, ε = 1, Da → ∞ , λ = 0 , ξ → 0,
Bi→∞, Ω = 0 and Pr = 1.

Bejan [19] Present
0.401 0.40103

Table 2.2: Comparison of f ′′(ξ, 0),−g′(ξ, 0), −θ′(ξ, 0),−φ′(ξ, 0) using the SLM and Shoot-
ing method for different values of N with B = 0.5, ε = 0.3, α1 = 0, α2 = 0, Da → ∞,
λ = 5.0, J = 5.0, Bi→∞, Ω = 0, Pr = 0.7, ξ → 0 and Sc = 0.22.

SLM Shooting Method
N f ′′ −g′ −θ′ −φ′ f ′′ −g′ −θ′ −φ′
0.1 0.44697 0.028502 0.25942 0.13309 0.44697 0.028502 0.25942 0.13309
0.3 0.38280 0.114050 0.25303 0.13114 0.38280 0.114050 0.25303 0.13114
0.6 0.26376 0.295950 0.23859 0.12661 0.26376 0.295950 0.23859 0.12661
0.9 0.09660 0.491030 0.20265 0.11428 0.09660 0.491030 0.20265 0.11428

Results and Discussions

Figures 2.2(a)-2.8(d) displays the influence of various parameters on the fluid flow velocity, micro-

rotation, temperature and concentration profiles. The effects of non-Darcy parameter, micropolar

parameter, Biot number, angle of inclination and nonlinear density-temperature (NDT) and non-

linear density-concentration (NDC) parameters on the skin friction, gradient of microrotation (wall

couple stress), heat and mass transfer rates of the micropolar fluid have been discussed and por-

trayed through the Figs.2.6(a) -2.8(d).

The effect of nonlinear density-temperature (NDT) parameter α1 on the velocity, microrotation,

temperature and the concentration profiles, is displayed in Figs.2.2(a)-2.2(d). As NDT parameter

α1 increases, the variation of fluid velocity is changed from increasing to decreasing far away from

the surface of the wall (i.e., nearer to the free stream condition), as shown in Fig.2.2(a). Physically,

α1 > 0 implies that Tf > T∞; hence, the surface of the wall will induce some amount of heat to the

fluid flow region. Similarly, there is a possibility for heat transfer of fluid flow to the wall in the

case of α1 < 0. It is clearly noticed from Fig.2.2(b) that the effect of the NDT parameter α1 on the

microrotation is notable in every part of the boundary layer, but more significant away from the
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plate and also the rise in α1 changes the sign of microrotation. The magnitudes of the temperature

and concentration are more in the absence of α1 in comparison with the presence of α1, as plotted

in Figs.2.2(c) - 2.2(d).

Figures 2.3(a) to 2.3(d) depict the influences of the nonlinear density-concentration (NDC)

parameter α2 for a fixed value of α1 on the velocity, microrotation, temperature and concentration.

Usually, the motion of the fluid flow increases sequentially away from the plate so that it reaches

maximum position within the boundary layer and then drops to fulfill the free stream value, as

portrayed in Fig.2.3(a). However, the rise in NDC parameter α2 changes the sign of microrotation

within the boundary layer from negative to positive and also the trend of microrotation is modified

from increasing to decreasing nearer to the free stream value η = 5, as shown in Fig.2.3(b). The

temperature and concentration boundary layer thicknesses decrease with the increase of α2 and the

same result is displayed in Figs.2.3(c) and 2.3(d). In the case of thermal and solutal distributions,

present results match with the findings of the work by Partha [79]. This is due to the enhancement of

thermal and solutal gradients by nonlinear terms in the momentum equation. By the experience of

these two (i.e., NDT and NDC) parameters, one can conclude that the influence of NDC parameter

α2 is more prominent compared with that of NDT parameter α1.

The profiles of fluid flow for different values of conductive-convective parameter Bi have been

displayed in Figs.2.4(a) - 2.4(d). It is noteworthy from Fig.2.4(a) that, as the Biot number in-

creases, the velocity of flow field attains peak position in the neighborhood of the plate due to

the reduction in the thermal resistance of inclined plate. It is clear from the Fig.2.4(b) that, the

microrotation changes from increasing to decreasing values within the boundary layer as the Biot

number increases. Figure 2.4(c) displays the impact of Biot number on the temperature distribu-

tion and show results for isothermal and non-isothermal boundary conditions. This condition is

changing into wall condition when the Biot number tends to infinity as depicted in Fig.2.4(c). As Bi

increases from thermally thin case (Bi < 0.1) to thermally thick case (Bi > 0.1), the temperature

distribution increases on the surface of the plate. The effect of Biot number on the concentration

profile is displayed by Fig.2.4(d) and it reveals that the concentration profile decreases within the

boundary layer with the increase of Biot number.

The influence of inclination angle (Ω) on the tangential velocity profile is displayed in Fig.2.5(a).

An increase in the angle of inclination leads to decrease the velocity distribution within the boundary

layer region. From Fig.2.5(b), one can notice that the microrotation increases near the plate and
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it shows a reverse trend far away from the plate, when the position of a plate is changed from

vertical to horizontal. Similar to the results of Chamkha et al. [23] and Chen [27], the thicknesses of

temperature and concentration boundary layers enhance with the increase of inclination angle. The

displacement of the plate from vertical position to horizontal induces a reduction in the buoyancy

force and the same result is portrayed in Figs.2.5(c) and 2.5(d). Also, one can observe that the

maximum buoyancy force for the same temperature and concentration differences occurs for Ω = 00

(vertical plate) and this is shown in the Figs.2.5(a) - 2.5(d).

The effects of nonlinear density-temperature (NDT) and nonlinear density-concentration (NDC)

parameters α1 and α2 respectively, on the skin friction, wall couple stress, heat and mass transfer

rates the stream-wise coordinate ξ, are shown in Figs.2.6(a) - 2.6(d). As expected, both the heat

and mass transfer rates increase with α1 when other parameters are fixed. The effect of α2 on the

heat and mass transfer rates shows the same behavior like that of α1. But, along the stream-wise

coordinate ξ, the nature of mass transfer rate is reverse to the heat transfer rate. The skin friction

and wall couple stresses are enhanced by α1 and α2 parameters, as depicted in Figs.2.6(c)-2.6(d).

The effects of Forchheimer number (Fs) and coupling number (N) on the skin friction, wall

couple stress, heat and mass transfer rates are presented in Figs.2.7(a) - 2.7(d). The results point

out that the heat and mass transfer rates decrease for an increase in Fs. A rise in the coupling

number falls down the heat and mass transfer rates. Since, the microrotation tends to zero as

N → 0 i.e., κ → 0, the Eq.(2.2) is uncoupled with Eq.(2.3) and they reduce to viscous fluid flow

equations. Therefore, an increase in the coupling number tends to decrease the skin friction and

the opposite change is noticed in the wall couple stress. Moreover, the surface drag and the wall

couple stress of a micropolar fluid reduce with the enhancement of Forchheimer number and this

is displayed in Figs.2.7(c) - 2.7(d).

Figures 2.8(a) - 2.8(d) demonstrate the influences of Biot number (Bi) and inclination angle

(Ω) on the skin friction, wall couple stress, heat and mass transfer rates. It is found that the heat

and mass transfer rates diminish when the inclined plate is displaced from vertical to horizontal,

and it is easily perceived from the fact that there is a reduction in the buoyancy force by a function

of Ω with the enhancement in inclination angle. With the increase of Biot number, there is a

considerable enhancement in the heat and mass transfer rates. A modification in the Biot number

ceases the rate of heat conduction inside the inclined plate drastically as compared to thermal

convection away from its surface and these results are confined to the work of Anwar Beg et al.
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[18]. One can notice that the effect of inclination angle is more on mass transfer rate as compared

with that of the heat transfer rate. Furthermore, it is observed that an enhancement in the Biot

number leads to increase the skin friction and couple stress, whereas with the increase of inclination

angle, these show the opposite trend. Nominal influence on the wall couple stress and considerable

increment in the skin friction are experienced for high enough values of Biot number as depicted

in Figs.2.8(c) - 2.8(d).
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Figure 2.2: Effect of α1 on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along η with the fixed values of ξ = 0.1, α2 = 0.5, Ω = 300, N = 0.5, Bi = 0.5
and Fs = 0.5.
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Figure 2.3: Effect of α2 on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along η with the fixed values of ξ = 0.1, α1 = 1, Ω = 300, N = 0.5, Bi = 0.5
and Fs = 0.5.
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Figure 2.4: Effect of Bi on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along η with the fixed values of ξ = 0.1, α1 = 1, α2 = 1, Ω = 300, N = 0.5
and Fs = 0.5.
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Figure 2.5: Effect of Ω on the (a) velocity, (b) microrotation, (c) temperature and (d) con-
centration along η with the fixed values of ξ = 0.1, α1 = 1, α2 = 1, Bi = 0.3, N = 0.5 and
Fs = 0.5.
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Figure 2.6: Effects of α1 and α2 on the (a) heat transfer rate, (b) mass transfer rate, (c)
skin friction and (d) wall couple stress along ξ with the fixed values of Ω = 300, N = 0.5,
Bi = 0.5 and Fs = 0.5.
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Figure 2.7: Effects of Fs and N on the (a) heat transfer rate, (b) mass transfer rate, (c) skin
friction and (d) wall couple stress along ξ with the fixed values of α1 = 1, α2 = 1, Ω = 300

and Bi = 0.5.
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Figure 2.8: Effects of Bi and Ω on the (a) heat transfer rate, (b) mass transfer rate, (c) skin
friction and (d) wall couple stress along ξ with the fixed values of α1 = 1, α2 = 1, N = 0.5,
Fs = 0.5 and Bi = 0.5.
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2.2.2 Case(b): Mixed Convection

The flow is assumed to be a mixed convective flow, which arises from both buoyancy forces and an

external flow with the velocity u∞. We introduce the following dimensionless variables

ξ =
x

L
, η =

y

L

(
Re

ξ

)1/2

, f(ξ, η) =

(
Re

ξ

)1/2 ψ(ξ, η)

Lu∞

g(ξ, η) =
Lω

u∞

(
ξ

Re

)1/2

, θ(ξ, η) =
T − T∞
Tf − T∞

, φ(ξ, η) =
C − C∞
Cw − C∞

(2.49)

where Re =
u∞ L

ν
is the global Reynold’s number and u∞ is free stream velocity.

Substituting the stream function (2.7) and the transformations (2.49) into Eqs.(2.2)-(2.5), we

get the following linear momentum, angular momentum, energy and concentration equations

1

ε

(
1

1−N

)
f ′′′ +

1

2ε2
f f ′′ +

(
N

1−N

)
g′ +Ri ξ [θ(1 + α1θ) + Bϕ(1 + α2φ)] cos Ω

+
1

DaRe
ξ
(
1− f ′

)
+
Fs

Da
ξ
(
1− f ′2

)
=

ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

) (2.50)

λ g′′ +
1

2ε
(f ′ g + f g′)−

(
N

1−N

)
J ξ
(

2g +
1

ε
f ′′
)

=
ξ

ε

(
f ′
∂g

∂ξ
− ∂f

∂ξ
g′
)

(2.51)

1

Pr
θ′′ +

1

2
fθ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(2.52)

1

Sc
φ′′ +

1

2
fφ′ = ξ

(
f ′
∂ϕ

∂ξ
− ∂f

∂ξ
φ′
)

(2.53)

The boundary conditions (2.6) become

f ′(ξ, 0) = 0, f(ξ, 0) = −2ξ

(
∂f

∂ξ

)
η=0

, g(ξ, 0) = 0, θ′ (ξ, 0) = −Biξ1/2 [1− θ (ξ, 0)] ,

φ(ξ, 0) = 1, f ′(ξ,∞) = 1, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(2.54)

In the above equations, J =
L2

j Re
is the micro-inertia density, Bi =

hf L

kf Re1/2
is the Biot number

and Ri =
Gr

Re2
is the mixed convection parameter.

The physical quantities of present interest (such as shear stress, wall couple stress heat and
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mass transfer rates), are defined as

Cf =
2

ρ u2∞

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

, Mw =
γ

ρ u2∞L

[
∂ω

∂y

]
y=0

Nux = − x

(Tf − T∞)

[
∂T

∂y

]
y=0

, Shx = − x

(Cw − C∞)

[
∂C

∂y

]
y=0

(2.55)

The non-dimensional skin friction Cf , wall couple stress Mw, local Nusselt number Nux and

the Sherwood number Shx, are given by

CfRe
1/2 =

(
2

1−N

)
ξ

−1
2 f ′′(ξ, 0), MwRe =

(
λ

ξ J

)
g′(ξ, 0),

NuxRe
−1/2 = −ξ

1
2 θ′(ξ, 0), ShxRe

−1/2 = −ξ
1
2 φ′(ξ, 0)

(2.56)

Results and Discussion

The reduced nonlinear partial differential equations (2.50) - (2.53) along with the boundary condi-

tions (2.54) are solved numerically using SLM together with the local similarity and non-similarity

procedures, as explained in the case (a) of this chapter. In order to assess the accuracy of the

present solutions, we have validated our results by comparing the surface shear stress f ′′(ξ, 0) and

the surface heat transfer rate θ′(ξ, 0) for isothermal case (Bi→∞), non-isothermal case (Bi = 0.2),

Newtonian fluid (N = 0), and micropolar fluid (N = 0.14) with the results of Chang [25]. These

comparisons are shown in Figs.2.9(a)-2.9(b) and results are found to be in good agreement with the

results of Chang [25]. Also, a comparison between the present results and results of Lloyd and Spar-

row [59] for various values of the mixed convection parameter Ri and the stream-wise coordinate

ξ, are given in Tab. (2.3). The comparison shows that the present results are in good agreement

with the similarity solutions reported by Lloyd and Sparrow [59]. In addition, a comparison is

made with the results of shooting method for specific values of the other physical parameters, as

appeared in the Tab. (2.4). The results are in excellent agreement pointing to the accuracy of

solutions obtained by SLM.

In the present study, the numerical computations are carried out by following the fixed values

of parameters: B = 1, Re = 200, Da = 0.1, ε = 0.5, Pr = 0.71, Sc = 0.22 and Ri = 2. The value of

dimensionless micro-inertia density J = 1.0 is chosen to satisfy the thermodynamic restrictions on

the material parameters given by Eringen [40]. These values are used throughout the computations,
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Figure 2.9: Comparison of (a) f ′′(ξ, 0) and (b) θ′(ξ, 0) for Bi → ∞, Bi = 2, N = 0 and
N = 0.14 along ξ with that of Chang [25].

unless otherwise indicated.

The dimensionless velocity, microrotation, temperature and concentration profiles have been

computed for different values of the pertinent parameters and presented graphically in Figs.2.10(a)-

2.14(d). The effects of nonlinear density-temperature (NDT) parameter (α1), nonlinear density-

concentration (NDC) parameter (α2), non-Darcy parameter (Fs), micropolar parameter (N), mixed

convection parameter (Ri), Biot number (Bi) and inclination angle (Ω) have been discussed.

The effect of nonlinear density-temperature parameter (α1) on the velocity, microrotation, tem-

perature and the concentration profiles are shown in Figs.2.10(a)-2.10(d). These results indicate

that the velocity distribution increases with the increase of α1 and the value B = 1 implies that

the thermal and solutal buoyancy forces are of the same order of magnitude. Physically, α1 > 0

implies that Tf > T∞; hence, there will be a supply of heat to the flow region from the wall.

Similarly α1 < 0 implies that Tf < T∞, and in such case there will be a heat transfer from the

fluid to the wall. Also, the changes in velocity with positive values of α1 is more prominent in the

presence of mixed convection parameter. Further, the temperature and concentration boundary
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Table 2.3: Comparison of −θ′(ξ, 0) for N = 0, B = 0, Ω = 0, α1 = 0 and α2 = 0 with
Da→∞ , λ = 0, ε = 1 and Bi→∞.

Variation of −θ′(ξ, 0) with Ri Variation of −θ′(ξ, 0) with ξ
ξ → 0 Pr = 0.72 Pr = 10 Pr = 100 Ri = 7.928 Pr = 10
Ri [59] Present [59] Present [59] Present ξ [59] Present
0.0 0.2956 0.2956 0.7281 0.7281 1.5718 1.5720 0.00125 0.7313 0.7315
0.01 0.2979 0.2979 0.7312 0.7313 1.5754 1.5750 0.00500 0.7404 0.7398
0.04 0.3043 0.3044 0.7403 0.7404 1.5855 1.5850 0.01250 0.7574 0.7569
0.1 0.3156 0.3158 0.7572 0.7574 1.6058 1.6050 0.05000 0.8259 0.8255
0.4 0.3559 0.3561 0.8254 0.8259 1.6905 1.6910 0.12500 0.9212 0.9218
1.0 0.4053 0.4058 0.9207 0.9212 1.8265 1.8260 0.25000 1.0290 1.0288

Table 2.4: Comparison of f ′′,−g′, −θ′,−φ′ using the Shooting method and SLM for various
values of N with α1 = 1.2, ε = 1.0, B = 0.5, Da → ∞, α2 = 1.5, Bi → ∞, ξ → 0 and
Ω = 300.

SLM Shooting Method
N f ′′ −g′ −θ′ −φ′ f ′′ −g′ −θ′ −φ′
0.1 1.63733 0.00222 0.46467 0.26000 1.63733 0.00222 0.46467 0.2600
0.3 1.38112 0.00851 0.44225 0.25119 1.38112 0.00851 0.44225 0.25119
0.6 0.94169 0.02846 0.39436 0.23097 0.94169 0.02846 0.39436 0.23097
0.9 0.34256 0.09345 0.29884 0.18580 0.34256 0.09345 0.29884 0.18580

layer thicknesses decrease with the increase of α1.

Figures 2.11(a) to 2.11(d) depict the influence of nonlinear density-concentration parameter

(α2) for a fixed value of α1 on the velocity, microrotation, temperature and concentration profiles.

The initial velocity is zero at the surface of the plate and increases gradually away from the plate

and reaches the free stream velocity to satisfy the outer boundary condition as plotted in Fig.

2.11(a). However, the rise in NDC parameter changes the sign of microrotation from negative to

positive within the boundary layer as shown in Fig.2.11(b). In the absence, as well as, in the

presence of nonlinear density-concentration parameter α2, the magnitudes of the temperature and

concentration decrease with the increase of α2 which is presented in Figs.2.11(c)-2.11(d). Further,

the impact of α2 on the temperature and concentration distributions is more effective, as compared

with that of α1.
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Figures 2.12(a)-2.12(d) display the velocity, microrotation, temperature and concentration dis-

tributions of the fluid flow for different values of the Biot number Bi. It is noteworthy from

Figs.2.12(a) and 2.12(b) that, as the Biot number increases, the velocity profile increases and

the microrotation changes its behaviour from decreasing to increasing values within the bound-

ary layer. Fig.2.12(c) demonstrates that the effect of Biot number on the temperature profile and

mainly shows two results. The convective boundary condition is changing into wall condition, when

the Biot number tends to infinity and it is proven by Fig.2.12(c). As Bi increases from thermally

thin case (Bi < 0.1) to thermally thick case (Bi > 0.1) the temperature distribution increases at

the plate. The effect of Biot number on the concentration profile is displayed in Fig.2.12(d) and it

reveals that the concentration reduces when the Biot number changes its value from least to large

value.

Figures 2.13(a) to 2.13(d) illustrate the variation of the velocity, microrotation, temperature

and concentration for different values of the angle of inclination (00 ≤ Ω ≤ 900). Moreover,

the equations for the limiting cases of the vertical and horizontal plates are recovered from the

transformed equations by setting Ω = 00 and Ω = 900 respectively. The influence of inclination

angle on the velocity profile is displayed in Fig.2.13(a). Due to the reduction in the thermal

and solutal buoyancy in Eq.(2.50) with respect to changes in the inclination angle Ω, the velocity

distribution reduces within the momentum boundary layer, as shown in Fig.2.13(a). In other words,

an increase in the inclination angle leads to reduce the velocity distribution within the momentum

boundary layer region. Also, one can observe from Fig.2.13(a) that the maximum buoyancy force for

the temperature and concentration difference occurs for Ω = 00 (vertical plate). When the position

of the flat plate is changed from vertical to horizontal, it is observed that the microrotation increases

near the plate and far away from the plate it shows a reverse trend as portrayed in Fig.2.13(b). It

is noticed from Fig.2.13(c) and Fig.2.13(d) that the temperature and concentration enhance with

an increase in the inclination angle. In particular, when the surface is vertical, a small change

in temperature and concentration distributions is observed, whereas there is large change for the

horizontal surface.

Changes in fluid flow profiles are depicted in Figs.2.14(a) to 2.14(d) for different values of the

mixed convection parameter Ri in both aiding (Ri > 0) and opposing (Ri < 0) flows. It reveals that

as the value of Ri increases, the dimensionless velocity rises. Compared with the limiting case of

Ri = 0.0 (i.e., pure forced convection), an increase in the value of Ri gives rise to a higher velocity.
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Since a greater value of Ri indicates a greater buoyancy effects in mixed convective flow leads to an

acceleration of the fluid flow. From Fig.2.14(b), we see that the microrotation completely negative

within the boundary layer in both aiding (Ri > 0) and opposing (Ri < 0) flows. Also, it is clear that

the microrotation increases with an increase in the mixed convection parameter Ri. Fig. 2.14(c)

displays the dimensionless temperature for selected values of Ri in both aiding and opposing flows.

The results indicate that the dimensionless temperature decreases with an increasing value of Ri.

In the limiting case of Ri = 0 (i.e., pure forced convection), an increase in the value of Ri gives

rise to a reduced temperature. The reason for this is that a greater value of Ri indicates a greater

buoyancy effects, which increases the convection cooling effect and hence reduces the temperature.

The effect of mixed convection parameter Ri on the dimensionless concentration is depicted in Fig.

2.14(d) in both aiding and opposing flows. It is clear that the concentration of the fluid decreases

with the increase of mixed convection parameter Ri.

Figures 2.15(a)-2.15(d) are depicted for the effects of nonlinear density-temperature (NDT)

and nonlinear density-concentration (NDC) parameters on the non-dimensional skin friction, wall

couple stress, local heat and mass transfer rates against the stream wise coordinate ξ. It is observed

that both heat and mass transfer rates increase with α1, when other parameters are fixed. The

effect of α2 on Nusselt and Sherwood numbers shows the same behavior as that of α1. Also, the

influence of these two parameters are very prominent on the skin friction and wall couple stress of

micropolar fluid and these are magnified by α1 and α2.

The effects of non-Darcy parameter (Forchheimer number; Fs) and micropolar martial param-

eter N on the non-dimensional physical quantities of the flow are portrayed in Figs.2.16(a)-2.16(d).

The results indicate that as Fs increases, the skin friction, wall couple stress, local heat and mass

transfer rates also increase for a fixed value of micropolar parameter. Hence, the inertial effect in

micropolar fluid saturated non-Darcy porous medium increases the physical quantities of the fluid

flow. Also, it can be observed from these figures that, for a fixed value of Fs, the heat and mass

transfer coefficients fall down with the rise of micropolar parameter. Therefore the presence of

microscopic effects arising from the local structure and micro-motion of the fluid elements reduce

the heat and mass transfer coefficients.

The effects of Biot number Bi and inclination angle Ω on the skin friction, wall couple stress,

local heat and mass transfer rates are depicted in Figs.2.17(a)-2.17(d). The influence of inclination

angle on the heat and mass transfer rates are noted along the stream-wise coordinate ξ, as shown
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in Figs.2.17(a)-2.17(b). The results reveal that the local Nusselt number and Sherwood number

reduce gradually when the plate is displaced from its vertical to horizontal position. Also, a nominal

effect on the wall couple stress and considerable increment in the skin friction are noticed for high

enough values of the Biot number Bi, as depicted in Figs.2.17(c)- 2.17(d).

Finally, the influence of mixed convection parameter on the physical quantities of the flow are

displayed by Figs.2.18(a)-2.18(d). It is found that the skin friction, wall couple stress, local heat

and mass transfer rates increase when the flow direction is changed from opposing to aiding, and

the effect of mixed convection parameter is more on skin friction and wall couple stress as compared

with that of the heat and mass transfer rates.
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Figure 2.10: Effect of α1 on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along η with the fixed values of ξ = 0.5, α2 = 0.5, Ω = 300, N = 0.3, Bi = 0.6,
Ri = 1.0 and Fs = 0.2.
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Figure 2.11: Effect of α2 on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along η with the fixed values of ξ = 0.5, α1 = 1, Ω = 300, N = 0.3, Bi = 0.6,
Ri = 1.0 and Fs = 0.2.
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Figure 2.12: Effect of Bi on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along η with the fixed values of ξ = 0.5, α1 = 1, α2 = 1, Ω = 300, Ri = 1.0,
N = 0.3 and Fs = 0.2.
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Figure 2.13: Effect of Ω on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along η with the fixed values of ξ = 0.5, α1 = 1, α2 = 1, Ri = 1.0, Bi = 0.6,
N = 0.3 and Fs = 0.2.
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Figure 2.14: Effect of Ri on the (a) velocity, (b) microrotation, (c) temperature and (d)
concentration along η with the fixed values of ξ = 0.5, α1 = 1, α2 = 1, Ω = 300, Bi = 0.3,
N = 0.5 and Fs = 0.5.
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Figure 2.15: Effects of α1 and α2 on the (a) heat transfer rate, (b) mass transfer rate, (c)
skin friction and (d) wall couple stress along ξ with the fixed values of Ω = 300, N = 0.5,
Ri = 1.0, Bi = 0.5 and Fs = 0.5.
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Figure 2.16: Effects of Fs and N on the (a) heat transfer rate, (b) mass transfer rate, (c)
skin friction and (d) wall couple stress along ξ with the fixed values of α1 = 1, α2 = 1,
Ω = 300, Ri = 1 and Bi = 0.6.
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Figure 2.17: Effects of Bi and Ω on the (a) heat transfer rate, (b) mass transfer rate, (c) skin
friction and (d) wall couple stress along ξ with the fixed values of α1 = 1, α2 = 1, N = 0.3,
Fs = 0.2, Ri = 1.0 and Bi = 0.6.
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Figure 2.18: Effect of Ri on the (a) heat transfer rate, (b) mass transfer rate, (c) skin friction
and (d) wall couple stress along ξ with the fixed values of α1 = 1, α2 = 1, N = 0.5, Fs = 0.5,
Ω = 300 and Bi = 0.5.
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2.3 Conclusions

In this chapter, a problem of nonlinear convective flow of a micropolar fluid along an inclined plate in

a non-Darcy porous medium under the convective boundary condition has been investigated in two

cases: (a) natural convection and (b) mixed convection. The solution of system of non-dimensional

partial differential equations along with the associated boundary conditions, is obtained by using

the successive linearisation method together with the local similarity and non-similarity approaches.

From this analysis, the following conclusions can be drawn for both the cases (a) and (b).

An increase in the nonlinear density-temperature (NDT) parameter tends to increase the skin

friction, heat and mass transfer rates, but decrease the temperature and concentration of micropolar

fluid in both free and mixed convection cases. The velocity distribution is more near the plate and

far away from the plate, it shows reverse trend with an increase of NDT parameter in case (a), but

in case (b) the velocity increases. Further, the effect of the NDT parameter on the microrotation is

notable in every part of the boundary layer, but more significant away from the plate and also the

rise in NDT parameter changes the sign of microrotation in both cases (a) and (b). The influence

of NDC parameter is same as NDT parameter, but it gives more significant influence as compared

with NDT parameter. An increase in the Biot number leads to increase the velocity near the

plate and away from the plate it decreases in case (a). But in case (b), velocity is magnified by

Biot number. The temperature, skin friction and heat transfer rates enhance with Biot number

whereas the concentration reduces in both cases (a) and (b). In case (a) and case (b), an increase

in the inclination angle leads to decrease the velocity, whereas it increases the temperature and

concentration distributions within the boundary layer region. Further, the micropolar parameter

diminishes the wall couple stress, heat and mass transfer rates, whereas it expands skin friction of

micropolar fluid.
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Chapter 3

Effect of Cross-Diffusion in a

Micropolar Fluid Saturated

Non-Darcy Porous Medium with

Convective Boundary Condition 1

3.1 Introduction

Exceptional studies are established in the analysis of heat and mass transport phenomena of free

and mixed convective flow of a micropolar fluid over different geometries in porous media. Various

disciplines in geophysical and engineering industries are enforced to study the microscopic nature

of fluid elements such as the cooling systems, petroleum reservoirs, agricultural fields, fiber insula-

tion, ceramic processes, grain storage devices, coal combustions, etc. A comprehensive report on

convective flow of a micropolar fluid in a Darcy, as well as, in a non-Darcy porous medium can be

found in the textbook by Nield and Bejan [75] and also see the citations therein.

In many circumstances, the temperature and concentration are directly coupled under the

1Case(a): Published in “International Journal of Pure and Applied Mathematics” 113 (8) (2017)
46–53, Case(b): Published in “Computational Thermal Sciences: An International Journal” 11(3)
(2019) 205–218
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condition that the cross-diffusion (namely, Soret and Dufour) effects are not negligible and these

effects are more significant in areas such as geosciences, petrology, and hydrology etc. In view of

these applications, Awad and Sibanda [10] analyzed the effect of cross-diffusion on micropolar fluid

flow through horizontal channel. Hayat et al. [42] provided a semi-analytical solution to examine

cross-diffusion effects on stagnation-point flow along a stretching sheet in a micropolar fluid. Several

authors to mention few, Beg et al. [17] and Pal et al. [77] extended this concept to various fields of

fluid dynamics.

Due to the realistic nature of convective boundary condition, the analysis of heat transfer with

the convective boundary condition has prominent applications in industrial and engineering fields

such as nuclear plants, gas turbines, heat exchangers, etc. In the presence of convective boundary

condition, heat is supplied to the convecting fluid through a bounding surface with a finite heat

capacity, which provides a convective heat transfer coefficient. Makinde et al. [63] addressed the

impacts of cross-diffusion effects on hydromagnetic flow of a cold fluid over a vertical plate in the

presence of convective boundary condition, whereas Swapna et al. [102] developed a theoretical

model to analyze the collective impact of convective boundary condition and variable viscosity on

the radiative magneto-micropolar fluid flow.

Based on the above-mentioned applications and analysis, the authors are motivated to study

the influence of nonlinear convection on micropolar fluid flow along an inclined plate by including

convective boundary condition and cross-diffusion effects for the first time. Using local similarity

and non-similarity techniques, the governing nonlinear partial differential equations are converted

into a sequence of nonlinear ordinary differential equations and then the resultant equations are

solved by successive linearization method. The fluid flow characteristics are shown and analyzed

through graphical representation. The results are compared with relevant results in the existing

literature and found to be in good agreement.

3.2 Mathematical Formulation

Consider the steady, laminar and two-dimensional flow of an incompressible micropolar fluid over

a semi-infinite inclined flat plate embedded in a non-Darcy porous medium. The plate is inclined

at angle Ω to the vertical direction. The x-axis is along the vertical plate and y-axis normal to the
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plate. This chapter is an extension of chapter-2 by considering the Soret and Dufour effects. Under

the assumptions made in chapter-2 and using the Darcy-Forcheimer model and Dupuit-Forchheimer

relationship [75], the governing equations describing the micropolar fluid are:

∂u

∂x
+
∂v

∂y
= 0 (3.1)

ρ

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=

1

ε
(µ+ κ)

∂2u

∂y2
+ κ

∂ω

∂y
+

µ

Kp
(u∞ − u) +

ρ b

Kp

(
u2∞ − u2

)
+ρg∗

[
β0 (T − T∞) + β1(T − T∞)2 + β2 (C − C∞) + β3(C − C∞)2

]
cosΩ

(3.2)

ρj

ε

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

1

ε

∂u

∂y

)
(3.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
DKT

CsCp

∂2C

∂y2
(3.4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+
DKT

Tm

∂2 T

∂y2
(3.5)

where Cs is the concentration susceptibility, Cp is the specific heat capacity, KT is the thermal

diffusion ratio and Tm is the mean fluid temperature.

The corresponding boundary conditions are

u = 0, v = 0, ω = 0, −kf
∂T

∂y
= hf (Tf − T ), C = Cw at y = 0

u = u∞, ω = 0, T = T∞, C = C∞ as y →∞
(3.6)

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

3.2.1 Case(a): Natural Convection

In the case of natural convection, the fluid flow is due to buoyancy forces only and hence, the

velocity of the outer flow becomes zero (i.e., u∞ = 0). We introduce the following non-dimensional
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variables

ξ =
x

L
, η =

y

L

(
Gr

ξ

)1/4

, ψ(ξ, η) =
µGr1/4 ξ3/4

ρ
f(ξ, η)

ω(ξ, η) =
µGr3/4 ξ1/4

ρL2
g(ξ, η), θ(ξ, η) =

T − T∞
Tf − T∞

, φ(ξ, η) =
C − C∞
Cw − C∞

(3.7)

Substituting the stream function (2.7) and the transformations (3.7) into Eqs.(3.1) - (3.5), we

obtain the following linear momentum, angular momentum, energy and concentration equations

1

ε

(
1

1−N

)
f ′′′ +

3

4ε2
ff ′′ − 1

2ε2
f ′2 +

(
N

1−N

)
g′ − 1

DaGr
1
2

ξ
1
2 f ′ − Fs

Da
ξ f ′2

+ [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω =
ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

) (3.8)

λg′′ +
3

4ε
fg′ − 1

4ε
f ′g −

(
N

1−N

)
J ξ

1
2

(
2g +

1

ε
f ′′
)

=
ξ

ε

(
f ′
∂g

∂ξ
− ∂f

∂ξ
g′
)

(3.9)

1

Pr
θ′′ +

3

4
fθ′ +Duφ′′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(3.10)

1

Sc
φ′′ +

3

4
fφ′ + Sr θ′′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(3.11)

where Sr =
DKT (Tf − T∞)

Tmν(Cw − C∞)
is the Soret number and Du =

DKT (Cw − C∞)

CsCpν(Tf − T∞)
is the Dufour num-

ber.

The associated boundary conditions (3.6) become

f ′(ξ, 0) = 0, f(ξ, 0) = −4

3
ξ

(
∂f

∂ξ

)
η=0

, g(ξ, 0) = 0, θ′ (ξ, 0) = −Biξ
1
4 [1− θ(ξ, 0)] ,

φ(ξ, 0) = 1, f ′(ξ,∞) = 0, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(3.12)

The non-dimensional shear stress Cf , wall couple stress Mw, local Nusselt number Nux and

the Sherwood number Shx, are given by

CfGr
1
4 =

(
2

1−N

)
ξ

−3
4 f ′′(ξ, 0), MwGr

1
2 =

(
λ

ξ J

)
g′(ξ, 0),

NuxGr
−1
4 = −ξ

3
4 θ′(ξ, 0), ShxGr

−1
4 = −ξ

3
4 φ′(ξ, 0).

(3.13)
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Results and Discussion

In this chapter also, the highly coupled nonlinear partial differential equations (3.8)- (3.11) together

with boundary conditions (3.12) are converted into a set of eight coupled nonlinear ordinary differ-

ential equations using local similarity and non-similarity approaches. After that, a novel successive

linearization method is applied to solve the reduced system of nonlinear ordinary differential equa-

tions for those eight unknowns, as explained in the case (a) of previous chapter. In the absence of

cross-diffusion effects, the problem considered in this case reduces to the case (a) of the previous

chapter. Validation of the present problem in this case, can be done on comparison as it was done

in the case (a) of chapter-2. Further, the numerical computations are carried out by following the

fixed values of parameters: J = 5.0, λ = 5.0, B = 1.0 , Pr = 0.7, Sc = 0.22, Gr = 10, ε = 0.4,

Da = 0.1 and ξ = 0.5, and these values are unaltered in this study, unless otherwise specified.

Figures 3.1(a)-3.1(d) are plotted for different values of NDT and NDC parameters on the non-

dimensional velocity (f ′), microrotation (g), temperature (θ) and concentration (φ) with N = 0.6,

Fs = 0.5, Ω = 450, Bi = 0.6, Du = 0.3 and Sr = 1.0. The nonlinear convection parameters (α1 and

α2) measure the nonlinearity in the density-temperature and density-concentration relationships.

The influences of α1 and α2 on the velocity profile are depicted in Fig.3.1(a). With the increase in

both α1 and α2, the velocity increases, but far away from the plate, it shows the opposite trend. It

is observed from Fig.3.1(b) that the microrotation shows reverse rotation near the two boundaries

with the increase in both α1 and α2. Figs.3.1(c) and 3.1(d) exhibit the variation in temperature

and concentration with respect to α1 and α2 and it is clear from these figures that the thermal and

solutal boundary layer thicknesses reduce with an increase in both the NDT and NDC parameters.

Figures 3.2(a) -3.2(d) depict the variations of non-dimensional velocity (f ′), microrotation (g),

temperature (θ) and concentration (φ) across the boundary layers for various values of Biot number

and non-Darcy parameter with N = 0.5, Ω = 300, Du = 0.3, Sr = 0.5, α1 = 1 and α2 = 1.

Fig.3.2(a) displays the fluid velocity profiles for different values of Biot number and non-Darcy

parameter. Initially, the fluid velocity is zero at the surface of the plate and then it rises gradually

away from the plate. Finally, the fluid velocity satisfies the free stream boundary conditions. It is

interesting to reveal that the fluid velocity enhances with an enhancement in the Biot number (Bi)

and reduces with the non-Darcy parameter (Fs). From Fig.3.2(b), it is clear that the microrotation

profile shows reverse rotation near the two boundaries. Fig.3.2(c) depicts that the temperature of
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the fluid is maximum at the wall and it diminishes exponentially to zero far away from the plate.

Comparatively, the internal thermal resistance of the plate is more for a large value of Biot number

than the boundary layer thermal resistance. From Fig.3.2(d), it is noticed that the concentration

increases with an increase in both non-Darcy parameter and Biot number.

Variations in the dimensionless velocity, microrotation, temperature, and concentration profiles

with respect to the Dufour and Soret numbers, are exhibited in Figs.3.3(a) to 3.3(d) for the fixed

values: N = 0.5, Ω = 300, Bi = 0.3, Fs = 0.5, α1 = 1 and α2 = 1. From Fig.3.3(a), it is

clear that the velocity of the micropolar fluid increases with the increase of Soret and Dufour

numbers. Fig.3.3(b) reveals that the microrotation has nominal affect based on the influences of

Soret and Dufour numbers. Figs.3.3(c) and 3.3(d) indicates the influences of Soret and Dufour

numbers on the temperature and concentration profiles. It is noted from these figures that, as the

Dufour number increases, the temperature of fluid increases whereas the concentration decreases.

But, the influence of Soret number is opposite to that of Dufour number on the same temperature

and concentration profiles. It is involved directly in the concentration equation and increases the

concentration, whereas it decreases the temperature of micropolar fluid.

Impacts of the coupling number and inclination angle on the dimensionless velocity, micro-

rotation, temperature and concentration profiles are shown for Du = 0.4, Sr = 1.0, Bi = 0.3,

Fs = 0.5, α1 = 1 and α2 = 1 by Figs.3.4(a)-3.4(d). It is observed from Fig.3.4(a) that the ve-

locity of micropolar fluid flow diminishes with the increase of N and it is not as much as that in

a viscous fluid. Influence of coupling number on the microrotation of micropolar fluid is depicted

by Fig.3.4(b) and it reveals that the microrotation changes sign from negative to positive within

the boundary layer. Additionally, with respect to coupling number, microrotation increases close

to the plate and it diminishes far away from the plate, whereas inclination angle gives opposite

change. Further, the microrotation tends to zero as N −→ 0, so the linear momentum equation

is uncoupled with angular momentum equation and hence the resultant equations reduce to the

viscous fluid flow equations. The impacts of inclination angle on the temperature and concentration

profiles are portrayed in Figs.3.4(c) and 3.4(d) separately. An increase in the angle of inclination

increases the fluid temperature and concentration. This is because of reduction in the thermal and

concentration buoyancy caused by an enhancement in Ω. Also, one can notice that the temperature

and concentration of the micropolar fluid increases with the enhancement of coupling number as

shown in Figs.3.4(c) and 3.4(d).
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Figures 3.5(a) to 3.5(d) are prepared to exhibit the influences of α1 and α2 on the skin fric-

tion (CfGr
1
4 ), wall couple stress (MwGr

1
2 ), heat transfer rate (NuxGr

−1
4 ) and mass transfer rate

(ShxGr
−1
4 ) against the stream-wise coordinate ξ with N = 0.6, Fs = 0.5, Bi = 0.6, Du = 0.3,

Sr = 1.0. It is observed that from these figures that, the above said four physical quantities increase

with an increase in α1 for a fixed value of α2. The effect of α2 is showing the same behavior on

CfGr
1
4 , MwGr

1
2 , NuxGr

−1
4 and ShxGr

−1
4 , as that of α1.

The influences of Biot number and non-Darcy parameter on the skin friction (CfGr
1
4 ), wall

couple stress (MwGr
1
2 ), heat transfer rate (NuxGr

−1
4 ) and mass transfer rate (ShxGr

−1
4 ) are

displayed through Figs.3.6(a) to 3.6(d). Here the magnitudes of these four quantities (CfGr
1
4 ,

MwGr
1
2 , NuxGr

−1
4 and ShxGr

−1
4 ) decrease by the Forchheimer number. Also for fixed N = 0.5,

Ω = 300, Du = 0.3, Sr = 0.5, α1 = 1 and α2 = 1, the skin-friction as well as heat transfer rate

increase, whereas the mass transfer rate decreases with the increase of Biot number Bi.

Effects of Soret and Dufour numbers on the physical quantities of a micropolar fluid are discussed

through Figs.3.7(a) to 3.7(d) for N = 0.5, Ω = 300, Bi = 0.3, Fs = 0.5, α1 = 1 and α2 = 1.

Increment of Dufour number leads to decrease in both the surface drag coefficient and microrotation

gradients, whereas the Soret number shows opposite influences on these two quantities compared to

that of the Dufour number and this can be noticed from Figs.3.7(a) and 3.7(b). An increase in the

Dufour number decreases the temperature of the fluid and thus, increases the Nusselt number as

plotted in Fig.3.7(c). In the similar manner, the Soret number enhances the Sherwood number, as

projected in Fig.3.7(d). Thus, the cross-diffusion coefficients Sr and Du have an opposite influence

on the Nusselt and Sherwood numbers, as portrayed in Figs.3.7(c) -3.7(d).

The influences of coupling number and inclination angle on the skin friction, wall couple stress,

heat and mass transfer rates are depicted through Figs.3.8(a) to 3.8(d) for Du = 0.4, Sr = 1.0,

Bi = 0.3, Fs = 0.5, α1 = 1 and α2 = 1. An increase in the coupling number leads to enhance

both the skin friction and wall couple stress, whereas these two quantities decrease with the angle

of inclination as plotted in Figs.3.8(a) and 3.8(b). Further, the heat and mass transfer rates of

micropolar fluid are decelerated with both inclination angle and coupling number, as depicted in

Fig.3.8(c) and 3.8(d) respectively.
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Figure 3.1: Effects of α1 and α2 on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along η with the fixed values of ξ = 0.5, N = 0.6, Fs = 0.5, Ω = 450,
Bi = 0.6, Du = 0.3 and Sr = 1.0.
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Figure 3.2: Effects of Bi and Fs on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along η with the fixed values of ξ = 0.5, N = 0.5, Ω = 300, Du = 0.3,
Sr = 0.5 , α1 = 1 and α2 = 1.
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Figure 3.3: Effects of Du and Sr on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along η with the fixed values of N = 0.5, Ω = 300, Bi = 0.3, Fs = 0.5,
α1 = 1 and α2 = 1.
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(d)

Figure 3.4: Effects of N and Ω on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along η with the fixed values of Du = 0.4, Sr = 1.0, Bi = 0.3, Fs = 0.5,
α1 = 1 and α2 = 1.
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Figure 3.5: Effects of α1 and α2 on the (a) skin friction, (c) wall couple stress, (c) Nusselt
number and (d) Sherwood number along the stream-wise coordinate ξ with the fixed values of
N = 0.6, Fs = 0.5, Bi = 0.6, Du = 0.3 and Sr = 1.0.
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Figure 3.6: Effects of Bi and Fs on the (a) skin friction, (c) wall couple stress, (c) Nusselt
number and (d) Sherwood number along the stream-wise coordinate ξ with the fixed values of
N = 0.5, Ω = 300, Du = 0.3, Sr = 0.5, α1 = 1 and α2 = 1.
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Figure 3.7: Effects of Du and Sr on the (a) skin friction, (c) wall couple stress, (c) Nusselt
number and (d) Sherwood number along the stream-wise coordinate ξ with the fixed values of
N = 0.5, Ω = 300, Bi = 0.3, Fs = 0.5, α1 = 1 and α2 = 1.
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Figure 3.8: Effects of N and Ω on the (a) skin friction, (c) wall couple stress, (c) Nusselt
number and (d) Sherwood number along the stream-wise coordinate ξ with the fixed values of
Du = 0.4, Sr = 1.0, Bi = 0.3, Fs = 0.5, α1 = 1 and α2 = 1.
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3.2.2 Case(b): Mixed Convection

Assume that the flow to be a mixed convective flow, which arises from an external flow with the

velocity u∞ and buoyancy forces. We introduce the following dimensionless variables

ξ =
x

L
, η =

( y
L

)(Re
ξ

)1/2

, ψ(ξ, η) =

(
ξ

Re

)1/2

Lu∞ f(ξ, η)

ω(ξ, η) =

(
Re

ξ

)1/2 (u∞
L

)
g(ξ, η), θ(ξ, η) =

T − T∞
Tf − T∞

, φ(ξ, η) =
C − C∞
Cw − C∞

(3.14)

Substituting the stream function (2.7) and the transformations (3.14) into Eqs.(3.1)-(3.5), we

obtain the following linear momentum, angular momentum, energy and concentration equations

1

ε

(
1

1−N

)
f ′′′ +

1

2ε2
ff ′′ +

(
N

1−N

)
g′ +

1

DaRe
ξ (1− f ′) +

Fs

Da
ξ (1− f ′2)

+Ri ξ [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω =
ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

) (3.15)

λg′′ +
1

2ε
(fg′ − f ′g)−

(
N

1−N

)
J ξ
(

2g +
1

ε
f ′′
)

=
ξ

ε

(
f ′
∂g

∂ξ
− ∂f

∂ξ
g′
)

(3.16)

1

Pr
θ′′ +

1

2
fθ′ + Duφ′′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(3.17)

1

Sc
φ′′ +

1

2
fφ′ + Sr θ′′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(3.18)

Boundary conditions (3.6) in terms of f , g, θ, φ become

f(ξ, 0) = −2 ξ

(
∂f

∂ξ

)
η=0

, f ′(ξ, 0) = 0, g(ξ, 0) = 0, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0)] ,

φ(ξ, 0) = 1, f ′(ξ,∞) = 1, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(3.19)

The non-dimensional shear stress Cf , wall couple stress Mw, local Nusselt number Nux and

the Sherwood number Shx, are given by

CfRe
1/2 =

(
2

1−N

)
ξ

−1
2 f ′′(ξ, 0), MwRe =

(
λ

ξ J

)
g′(ξ, 0),

NuxRe
−1/2 = −ξ

1
2 θ′(ξ, 0), ShxRe

−1/2 = −ξ
1
2 φ′(ξ, 0)

(3.20)
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Results and Discussion

The highly coupled nonlinear partial differential equations (3.15)-(3.18) together with the boundary

conditions (3.19) are solved numerically using the successive linearization method along with local

similarity and non-similarity approaches, as explained in the previous chapter. In the absence of

cross-diffusion effects, this case reduces to the case (b) problem of the chapter-2. Validation of this

case of the present problem can be done on comparison, as it was done in the case (b) of chapter-2.

Further, the numerical computations are carried out by following the fixed values of parameters:

Ri = 2, J = 0.01, λ = 0.5, B = 1.0 , Pr = 0.71, Sc = 0.22, Re = 200, ε = 0.5, Da = 0.1 and

ξ = 0.5. These values are continued same throughout this study, unless otherwise specified.

The effects of nonlinear convection parameters (α1 and α2), Biot number (Bi), non-Darcy

parameter (Fs), coupling number (N), angle of inclination (Ω), Soret and Dufour numbers (Sr

and Du) on the fluid flow profiles and other physical quantities of the present interest are shown

graphically and displayed in Figs.3.9(a)-3.16(d).

The effects of NDT and NDC parameters (α1 and α2) on the velocity, microrotation, temper-

ature and concentration profiles are shown in Figs.3.9(a)-3.9(d). The results demonstrate that the

velocity distribution increases with the increase of NDT parameter and also for NDC parameter.

The initial velocity is zero at the surface of the plate and then it increases gradually away from

the plate. Finally, the velocity becomes unity to satisfy the boundary conditions as portrayed in

Fig.3.9(a). However, rise in NDT and NDC parameters change the sign of microrotation from neg-

ative to positive inside the boundary layer as displayed in Fig.3.9(b). In the absence, as well as, in

the presence of NDT and NDC parameters, the magnitudes of the temperature and concentration

decrease with the increase of both α1 and α2 as plotted in Figs.3.9(c)-3.9(d). By the experience

of these two nonlinear variations (α1 and α2), one can conclude that the influence of α2 is more

prominent on the fluid flow profiles as compared with that of α1.

The influences of the non-Darcy parameter (Fs) and coupling number (N) on the dimensionless

velocity, microrotation, temperature and concentration are plotted in Figs.3.10(a)-3.10(d) with the

fixed values of other parameters. It is found from Fig.3.10(a) that, the velocity decreases for the

higher values of both N and Fs. Since N → 0 corresponds to the viscous fluid, the velocity in

the case of a micropolar fluid is less compared to that of viscous fluid case. From Fig.3.10(b), it

is observed that the microrotation profiles have nominal variation at the wall and increase just
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away from the wall with increasing values of N . Because, an increase in the value of N implies

a higher vortex viscosity of fluid which promotes the microrotation of the micropolar fluid. But,

the non-Darcy parameter gives opposite influence to the velocity when compared to the influence

of coupling number. The temperature and concentration of the fluid enhance with the increase of

both non-Darcy parameter and coupling number as portrayed in Figs.3.10(c) and 3.10(d).

Figures 3.11(a)-3.11(d), plotted for N = 0.3, Du = 0.5, Sr = 2.5, α1 = 1.0, α2 = 1.0 and Fs =

0.2, refer the variation of angle of inclination and Biot number on the non-dimensional velocity (f ′),

microrotation (g), temperature (θ) and concentration (φ) across the boundary layers. It is noticed

from Fig.3.11(a) that, an increase in Bi leads to enhance the fluid velocity within the momentum

boundary layer. In Fig.3.11(b), microrotation shows reverse rotation near to the boundaries with

the increase of Bi. But, the influence of angle of inclination is reversed to the influence of Biot

number on the velocity and microrotation profiles. As Biot number increases, the convective heating

rises and non-isothermal surface becomes the isothermal surface as displayed Fig.3.11(c). That is,

θ(0) = 1 as Bi → ∞ and this condition is known as isothermal condition at the wall. Usually,

for higher values of the Biot number, the internal thermal resistance of the plate is high and

the boundary layer thermal resistance is low. In this case, the fluid temperature is maximum at

the surface of plate and decreases exponentially to zero far away from the plate. Further, the

temperature increases with the increase of angle of inclination as depicted in Fig.3.11(c). Figure

3.11(d) shows the effects of Biot number and angle of inclination on concentration. It reveals that

concentration increases with respect to both Biot number and inclination angle.

Changes in the non-dimensional velocity, microrotation, temperature, and concentration are

displayed through Figs. 3.12(a)-3.12(d) for different values of cross-Diffusion parameters (Du and

Sr) along η with ξ = 0.5, N = 0.3, Ω = 300, α1 = 1.0, α2 = 1.0, Bi = 0.5 and Fs = 0.2. With an

increase of Dufour number, there is a considerable enhancement in the velocity profile whereas the

nominal effect is noticed for microrotation. Also, the influence of Soret number is the same on these

two (velocity and microrotation) profiles as shown in Figs. 3.12(a)-3.12(b). Figs. 3.12(c)-3.12(d)

depict the effects of Soret and Dufour numbers on the temperature and concentration along the

free stream coordinate η. The temperature increases with the Dufour number Du but, it decreases

with the Soret number Sr. On the other hand, concentration increases with the Soret number Sr,

but it decreases with the Dufour number Du.

Figures 3.13(a)-3.13(d) show the surface drag (CfRe
1/2), gradient of microrotation (MwRe),
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heat and mass transfer rates (NuxRe
−1/2 and ShxRe

−1/2) for various values α1 and α2. One

can observe from Figs.3.13(a)-3.13(d) that, an increase in α1 leads to decrease the Nusselt num-

ber, whereas it increase the Sherwood number, wall couple stress and skin friction. Also, from

Figs.3.13(a)-3.13(d), it is noticed that influence of α2 is same on these physical quantities but more

effective compared to α1.

Influences of Biot number and non-Darcy parameter on the local heat transfer rate, local mass

transfer rate, skin friction and wall couple stress are plotted through Figs.3.14(a) and 3.14(d). An

increase in the Biot number enhances the Nusselt number and skin friction in both Darcy porous

medium (i.e., for Fs = 0) and non-Darcy porous medium (i.e., for Fs 6= 0) along the stream wise

coordinate ξ. Further, the effect of Biot number in non-Darcy porous medium is more significant

compared to the results in the Darcy porous medium as displayed in Figs.3.14(a) and 3.14(c). The

reverse effect is observed from Figs.3.14(b) and 3.14(d) on the mass transfer rate and wall couple

stress.

Variations of local heat transfer rate, local mass transfer rate, skin friction and wall couple

stress for different values of N and Ω are plotted through Figs.3.15(a) and 3.15(d). The case of

mixed convection has a significant impact with the angle of inclination Ω for the physical geometry.

Here, the results are discussed for a special case of the micropolar fluid parameter with N = 0

and N 6= 0. From Figs.3.15(a) and 3.15(b), it is observed that both heat and mass transfer rates

decrease when the position of inclined plate is changed from the vertical to horizontal, and this

will be same in a viscous fluid and micropolar fluid. A rise in inclination angle diminishes the

buoyancy force and hence it reduces the wall couple stress and skin friction coefficients, whereas

these coefficients increase with the increase of coupling number and the same result is shown in

Figs.3.15(c)-3.15(d).

The impacts of Soret and Dufour numbers on the skin friction, wall couple stress, heat and

mass transfer rates are displayed in 3.16(a)-3.16(d). Higher values of Dufour number (Du) lead

to reduce the heat transfer rate and enhance the mass transfer rate, whereas these show reverse

trend with the increase of Soret number (Sr). Thus, the cross-diffusion coefficients (Sr and Du)

have opposite influence on Nusselt and Sherwood numbers as portrayed in Figs.3.16(a)-3.16(b).

However, Figs.3.16(c)-3.16(d) indicate a notable effect on the wall couple stress and skin friction

with high enough values of Dufour number, while the influence of Soret number is nominal on the

same physical quantities.
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Figure 3.9: Effects of α1 and α2 on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along η with fixed ξ = 0.5, Ω = 300, N = 0.3, Du = 0.5, Sr = 2.5,
Bi = 0.5 and Fs = 0.2.
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Figure 3.10: Effects of N and Fs on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along η with the fixed values of ξ = 0.5, Ω = 300, α1 = 1.0, α2 = 1.0,
Du = 0.5, Sr = 2.5 and Bi = 0.5.
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Figure 3.11: Effects of Bi and Ω on the (a) velocity, (b) microrotation, (c) temperature and
(d) concentration along η with the fixed values of ξ = 0.5, N = 0.3, Du = 0.5, Sr = 2.5,
α1 = 1.0, α2 = 1.0 and Fs = 0.2.
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Figure 3.12: Effects of Du and Sr on the (a) velocity, (b) microrotation, (c) temperature
and (d) concentration along η with the fixed values of ξ = 0.5, N = 0.3, Ω = 300, α1 = 1.0,
α2 = 1.0, Bi = 0.5 and Fs = 0.2.
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Figure 3.13: Effects of α1 and α2 on the (a) heat transfer rate, (b) mass transfer rate, (c) skin
friction and (d) wall couple stress along the stream-wise coordinate ξ with the fixed values of
N = 0.3, α1 = 1.0, α2 = 1.0, Ω = 300, Du = 0.5, Sr = 2.5, Bi = 0.5 and Fs = 0.2.
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Figure 3.14: Effects of Bi and Fs on the (a) heat transfer rate, (b) mass transfer rate,
(c) skin friction and (d) wall couple stress along the stream-wise coordinate ξ with the fixed
values of Ω = 300, N = 0.3, Du = 0.5, Sr = 2.5, α1 = 1.0 and α2 = 1.0.
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Figure 3.15: Effects of N and Ω on the (a) heat transfer rate, (b) mass transfer rate, (c) skin
friction and (d) wall couple stress along the stream-wise coordinate ξ with the fixed values of
Bi = 0.6, Fs = 0.2, Du = 0.5, Sr = 2.5, α1 = 1.0 and α2 = 1.0.
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Figure 3.16: Effects of Du and Sr on the (a) heat transfer rate, (b) mass transfer rate,
(c) skin friction and (d) wall couple stress along the stream-wise coordinate ξ with the fixed
values of Ω = 300, N = 0.3, Bi = 0.6, Fs = 0.2, α1 = 1.0 and α2 = 1.0.
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3.3 Conclusions

The natural and mixed convective flows over an inclined plate embedded in a porous medium

saturated by a micropolar fluid with Soret an Dufour effects, are analyzed in this chapter. From

this computational analysis, the following conclusions are drawn for both case (a) and case (b):

As in the previous chapter, the behavior of nonlinear convection parameters is found to be

similar on various profiles. An increase in the Biot number decreases the mass transfer rate and

microrotation, whereas it increases the heat transfer rate, skin friction coefficient, velocity, temper-

ature and concentrations in both case (a) and case (b). The Soret number reduces the temperature

and local Nusselt number, whereas it increases the concentration, skin friction and velocity in case

(a). However, the local Nusselt number and concentration show an opposite trend in case (b). In

case (a) and case (b), the velocity, temperature and heat transfer rates increase, whereas the con-

centration and mass transfer rates decrease with the influence of Dufour number. An increase in Fs

decreases the surface drag, local Nusselt number and local Sherwood number, but it increases the

temperature and concentration in case (a). These profiles and physical quantities show a reverse

trend in case (b).
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Chapter 4

Double Dispersion Effects on

Nonlinear Convective Flow along an

Inclined Plate in a Micropolar Fluid

Saturated Non-Darcy Porous Medium

1

4.1 Introduction

The theory of micropolar fluid saturated porous medium is very rich in literature with various

aspects of the problem having been investigated. To name a few, Helmy et al. [44] and Kim [57]

investigated the flow of a micropolar fluid over a flat plate in a Darcy porous medium whereas

Abo et al. [1], Srinivasacharya and RamReddy [96], and Rawat et al. [86] analysed the flow of a

micropolar fluid saturated non-Darcy porous medium under different circumferences.

From the literature it seems that the thermal and solutal dispersions play an important role

1Case(a): Published in “Heat Transfer - Asian Research” 48 (2019) 414–434, Case(b): Published in
“Engineering Science and Technology, an International Journal” 21(5) (2018) 984–995.
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in a non-Darcy porous medium due to the presence of inertial effects (see Nield and Bejan [75]).

Hence, the effects of thermal and solutal dispersion on the convective heat and mass transfer flows

of non-Newtonian fluids through porous media, are considered by several researchers. To name a

few, Murti et al. [71] analyzed the effects of chemical reaction and double dispersion on a radiative-

convective flow of non-Newtonian fluid in a non-Darcy porous medium. A note on the double

dispersion effects in a non-Darcy porous medium saturated by a nanofluid has been given by Awad

et al. [12]. Benazir and Sivaraj [20] conducted numerical study to examine the double dispersion

effects over a cone in a chemically reacting Casson fluid saturated non-Darcy porous medium.

The convective boundary condition has been attracted great interest for the analysis of heat

transfer in fluid flow problems and it is usually simulated via Biot number. Aman et al. [7] inves-

tigated the magneto-hydrodynamic flow of a micropolar fluid along a convectively heating vertical

plate. Recently, Shehzad et al. [90] considered the convective thermal boundary condition in the

analysis of heat transfer in a micropolar fluid flow along the stretching surface.

The effects of double dispersion and Biot number on the convective flow of a micropolar fluid

over an inclined plate embedded in a non-Darcy porous medium, are discussed in this chapter.

According to the author’s knowledge, the present study has not been addressed in the literature.

As in the previous chapters, here also the governing equations and their associated boundary

conditions are solved numerically using the successive linearization method together with the local

similarity and non-similarity approaches. The results are compared with the relevant results in the

existing literature and are found to be in good agreement. Also, the influences of various physical

parameters on the micropolar fluid flow with heat and mass transfer characteristics are examined

and displayed through graphs.

4.2 Mathematical Formulation

A steady, laminar, two-dimensional and convective flow of an incompressible micropolar fluid over

an inclined plate in a non-Darcy porous medium, is considered. As projected in Fig.(2.1), the plate

is inclined about the vertical direction with an angle Ω. This chapter is an extension of chapter-2

by considering the double dispersion (thermal and solutal dispersions) effects. By employing the

nonlinear Boussinesq approximation and with the assumptions made in chapter-2, the governing
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equations for micropolar fluid saturated non-Darcy porous medium are given by

∂u

∂x
+
∂v

∂y
= 0 (4.1)

ρ

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=

1

ε
(µ+ κ)

∂2u

∂y2
+ κ

∂ω

∂y
+

µ

KP
(u∞ − u) +

ρ b

KP
(u2∞ − u2)

+ρg∗
[
β0 (T − T∞) + β1(T − T∞)2 + β2 (C − C∞) + β3(C − C∞)2

]
cosΩ

(4.2)

ρj

ε

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

1

ε

∂u

∂y

)
(4.3)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[
αe
∂T

∂y

]
(4.4)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

[
De

∂C

∂y

]
(4.5)

along with the boundary conditions

u = 0, v = 0, ω = 0, −kf
∂T

∂y
= hf (Tf − T ), C = Cw at y = 0

u = u∞, ω = 0, T = T∞, C = C∞ as y →∞
(4.6)

where α is the molecular thermal diffusivity, D is the molecular solutal diffusivity, χ is the thermal

dispersion coefficient, d is the pore diameter and ζ is the solutal dispersion coefficient. Further, the

effective thermal and solutal diffusivities are defined as, αe = α + χdu and De = D + ζ d u (Ref.

Telles and Trevisan [104], Murthy [67]) respectively.

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

4.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow which is caused by only buoyancy forces and

without any external agent. Hence, the velocity of the external flow becomes zero (i.e., u∞ = 0).
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Now, we introduce the following non-dimensional variables

ξ =
x

L
, η =

y

L

(
Gr

ξ

)1/4

, ψ(ξ, η) =
µGr1/4 ξ3/4

ρ
f(ξ, η)

ω(ξ, η) =
µGr3/4 ξ1/4

ρL2
g(ξ, η), θ(ξ, η) =

T − T∞
Tf − T∞

, φ(ξ, η) =
C − C∞
Cw − C∞

(4.7)

Substituting the stream function (2.7) and the transformations (4.7) in Eqs.(4.1) - (4.5), we get

the following non-dimensional equations

1

ε

(
1

1−N

)
f ′′′ +

3

4ε2
ff ′′ − 1

2ε2
f ′2 +

(
N

1−N

)
g′ − Fs

Da
ξ f ′2 − ξ

1
2

DaGr
1
2

f ′

+ [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω =
ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

) (4.8)

λg′′ − 1

4ε
f ′ g +

3

4ε
f g′ −

(
N

1−N

)
J ξ

1
2

(
1

ε
f ′′ + 2 g

)
=
ξ

ε

(
f ′
∂g

∂ξ
− ∂f

∂ξ
g′
)

(4.9)

1

Pr
θ′′ +Ds ξ

1
2
(
f ′ θ′

)′
+

3

4
f θ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(4.10)

1

Sc
φ′′ +Dc ξ

1
2
(
f ′ φ′

)′
+

3

4
fφ′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(4.11)

along with the non-dimensional form boundary conditions

f ′(ξ, 0) = 0, f(ξ, 0) +
4

3
ξ

(
∂f

∂ξ

)
η=0

= 0, g(ξ, 0) = 0, θ′ (ξ, 0) = −Biξ
1
4 [1− θ(ξ, 0)] ,

φ(ξ, 0) = 1, f ′(ξ,∞) = 0, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(4.12)

where Ds =
χdGr

1
2

L
is the thermal dispersion parameter and Dc =

ζ dGr
1
2

L
is the solutal dispersion

parameter.

The physical quantities of present interest (such as shear stress, wall couple stress, heat and

mass transfer rates), are defined as

Cf =
2

ρ u2∗

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

, Mw =
γ

ρ u2∗L

[
∂ω

∂y

]
y=0

Nux = − x

kf (Tf − T∞)

[
ke
∂T

∂y

]
y=0

, Shx = − x

D(Cw − C∞)

[
De

∂C

∂y

]
y=0

(4.13)
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where ke is the effective thermal conductivity of the medium which is the sum of the molecular

thermal conductivity kf and the dispersion thermal conductivity kd. Further, De is the effective

solutal diffusivity of the medium which is the sum of the molecular diffusivity D and the disper-

sion solutal diffusivity Dd. Here, the dispersion thermal conductivity and the dispersion solutal

diffusivity are defined as kd = ρχCp d u and Dd = ζ d u (Telles and Trevisan [104], Murthy [67])

respectively.

The non-dimensional skin friction Cf , wall couple stress Mw, local Nusselt number Nux and

the Sherwood number Shx, are given by

CfGr
1
4 =

(
2

1−N

)
ξ

−3
4 f ′′(ξ, 0), MwGr

1
2 =

(
λ

ξ J

)
g′(ξ, 0),

Nux

Gr1/4
= −ξ

3
4

[
1 +Ds Pr ξ

1
2 f ′(ξ, 0)

]
θ′(ξ, 0),

Shx

Gr1/4
= −ξ

3
4

[
1 +Dc Sc ξ

1
2 f ′(ξ, 0)

]
φ′(ξ, 0)

(4.14)

Results and Discussion

The reduced governing Eqs.(4.8)-(4.11) along with the boundary conditions (4.12) are solved nu-

merically using successive linearization method together with local similarity and non-similarity

approaches as explained in the case (a) of chapter-2. In the absence of double dispersion effects,

this case reduces to the case (a) problem of the chapter-2. Validation of the present problem, in

this case, can be done on comparison as it was done in the case (a) of chapter-2. Further, the

numerical computations are carried out by following the fixed values of parameters: J = 0.01,

λ = 0.5, B = 1.0 , Pr = 0.71, Sc = 0.22, Ri = 2, ε = 0.5, Da = 0.1 and ξ = 0.5. These values are

continued same throughout this study, unless otherwise specified. The changes in fluid flow profiles

f ′, g, θ and φ are projected in Figs.(4.1)-(4.3) for different values of α1, α2, Fs, Ds, Dc, Bi, B, N

and Ω.

Variations of fluid flow profiles (such as f ′, g, θ and φ) for α1(1.5, 3.5), α2 (0.5, 2.5) and Fs(0.0,

0.5) with Dc = 0.3, B = 1.0, Ds = 0.5, Bi = 0.3, N = 0.6, ξ = 0.5 and Ω = 600, are displayed

in Figs.4.1(a)-4.1(d). As NDT parameter (α1) increases, the direction of fluid velocity is changed

from increasing to decreasing nearer to the free stream value as shown in Fig.4.1(a). Physically,

α1 > 0 implies that Tf > T∞; hence, the surface of the wall will induce some amount of heat to the

fluid flow region. It is observed from Fig.4.1(b) that the impact of α1 on the angular momentum
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is notable in every part of the boundary layer, but more significant away from the plate. Also,

Figs.4.1(a) and 4.1(b) depict the influence of NDC parameter (α2) on the boundary layer profiles

of velocity and angular momentum. Usually, the velocity of the fluid flow increases sequentially far

from the plate, so that it reaches a maximum position within the boundary layer and after that it

drops to fulfill the free stream value as displayed in Fig.4.1(a). Moreover, Figs.4.1(a) and 4.1(b)

indicate that a rise in α1 or α2 changes the sign of angular momentum within the boundary layer

from negative to positive and also, the trend of angular momentum is changed from increasing to

decreasing away from the plate. Thus, the momentum and angular momentum boundary layer

thicknesses are increased nearer to the surface of the inclined plate for both α1 and α2. The

boundary layer thicknesses of temperature and concentration diminish with the rise of α1 or α2,

which is clearly observed from Figs.4.1(c) and 4.1(d). The nonlinear differences between the wall

and ambient medium temperature and concentration improve with the large values of α1 and α2.

Because of this, a tremendous addition in f ′ and g, and a little change in θ and φ are noticed.

However, the variations in velocity and angular velocity of the micropolar fluid are more in the

Darcy flow when compared with the non-Darcy flow results as displayed in Figs.4.1(a)-4.1(b).

Further, Figs.4.1(c)-4.1(d) indicate a reverse trend to temperature and concentration with respect

to Fs influence. That is, the temperature and concentration of micropolar fluid increase with Fs

and the variations in these two profiles are very less in the absence of Fs in comparison with its

presence. Further, by the experience of these two NDT and NDC parameters, one can conclude

that the impact of nonlinear convection parameters on heat and mass transfer seems to be more in

the Darcy porous medium when compared to those in the non-Darcy porous medium.

Figures 4.2(a) to 4.2(d) are prepared to exhibit the significances of double dispersion parameters

Ds (0.2, 0.8), Dc (0.1, 0.9) and the Biot number Bi (0.5, 6) on f ′, g, θ and φ for the fixed values

of α1 = 3, α2 = 3, Fs = 0.5, B = 1.0, N = 0.6, ξ = 0.5 and Ω = 600. From Figs.4.2(a)-4.2(b), it

is noteworthy that for individual enhancement of double dispersion parameters, both the velocity

and angular velocity of the micropolar fluid are increased and these changes are found to be more

in the case of thermal dispersion when compared to that of the solutal dispersion. It is because

the supplementation of thermal dispersion in the energy equation will favor to the conduction

over convection. Figure 4.2(a) reveals that the velocity of the flow field attains peak position

(i.e., maximum state) in the neighborhood of the plate with the increase of conductive-convection

parameter Bi and this may be due to the reduction in thermal resistance of the inclined plate.
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Additionally, one can observe that, as the Biot number increases, the microrotation changes the

direction (from increasing to decreasing) within the boundary layer as plotted in Fig.4.2(b).

Figure 4.2(c) signifies the impact of Biot number on the temperature distribution and also,

it shows some special cases for non-isothermal and wall conditions. The convective boundary

condition is reduced to wall condition when Bi → ∞ (Ref., Aziz [13]) and it is again proven in

Fig.4.2(c). Usually, for a large value of Biot number, the internal thermal resistance of the plate

is high and the boundary layer thermal resistance is low. Further, when Bi = 0 (i.e., without

Biot number) the left side of the plate with hot fluid is totally insulated and the internal thermal

resistance of the plate is extremely high, then there is no convective heat transfer to the cold fluid

on the right side of the plate takes place. As Bi increase from Bi < 0.1 (thermally thin case)

to Bi > 0.1 (thermally thick case), the temperature distribution accelerates on the surface of the

plate. On the other hand, there is a considerable decrement in the temperature profile for Ds and

it is nominal for Dc. Fig.4.2(d) reveals that the concentration profile diminishes with the increasing

value of Bi. Concerning dispersion parameters, the changes in concentration profiles are observed

to be reverse when compared to those changes in temperature profiles. Moreover, the results of

thermal and solutal dispersion coefficients are unproductive on the boundary layer profiles for a

large value of Biot number.

The influences of inclination of angle Ω (200, 700) and coupling number N (0.1, 0.6) on f ′, g, θ

and φ are portrayed through Figs.4.3(a)-4.3(d) in both aiding (B = 0.5) and opposing (B = −0.5)

buoyancy cases. Changes in Ω (form 00 to 900) lead to decrease the thermal and solutal buoyancy

in momentum equation (4.2), and it ceases the velocity distribution inside the boundary layer

region as displayed in Fig.4.3(a). Also, it can be observed from Fig.4.3(a) that the maximum

buoyancy occurs for the vertical plate and the velocity profile magnifies with coupling number.

An increase in N leads to enhance the angular momentum, whereas this gradient has a opposite

influence with Ω. Notwithstanding, the direction of the angular momentum is changed within the

boundary layer for these two parameters N and Ω as shown in Fig.4.3(b) and similar results can

be found in the work of Rahaman et al. [81]. It is observed from Figs.4.3(c) and 4.3(d) that the

temperature and concentration increase with the enhancement of both coupling number and angle

of inclination. Moreover, the changes in velocity, angular momentum and concentration profiles are

high in opposing buoyancy for both Ω and N as compared with the aiding buoyancy changes, but

temperature profile has different change with respect to both N and Ω.
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The significance of the nonlinear convective parameters α1(1.5, 3.5) and α2(0.5, 2.5) on the local

Nusselt number, local Sherwood number, skin friction and wall couple stress against the stream-

wise coordinate ξ, are discussed in the fourth set of Figs.4.4(a)-4.4(d) with Ds = 0.5, Dc = 0.3,

Bi = 0.3, B = 1.0, N = 0.6, ξ = 0.5 and Ω = 600. This analysis is undertaken for both Darcy

(i.e., for Fs = 0.0) and non-Darcy (i.e., for Fs = 0.5) cases. The rises in α1 and α2 enhance all

the pertinent characteristics of the flow field for the fixed values of other parameters. However,

the impact of α1 and α2 is less in the non-Darcy porous medium as compared to the Darcy porous

medium results. This is due to the nonlinear enhancement of thermal and solutal density differences.

But, along the stream-wise coordinate ξ, the nature of heat transfer rate is contrary to the mass

transfer rate, skin friction and wall couple stress.

Figures 4.5(a)-4.5(d) indicate the impact of the double dispersion parameters Ds (0.2, 0.8),

Dc (0.1, 0.9) and Biot number Bi (0.5, 6.0) on the physical quantities of the flow for the fixed

values: α1 = 3, α2 = 3, Fs = 0.5, B = 1.0, N = 0.6, ξ = 0.5 and Ω = 600. When the inertial

effects are prevalent, the thermal and solutal dispersion effects becomes more important. These

effects are significant in forced and mixed convective flows as well as in natural convective flows.

The results point out that the mass transfer rate, skin friction and wall couple stress increase

significantly with the rise in both Biot number and solutal dispersion parameter, whereas these

quantities shows reverse trend with thermal dispersion parameter. On the other hand, the local

Nusselt number decreases with the Biot number, whereas it increases for both thermal and solutal

dispersion parameters.

Influences of coupling number N (0.1, 0.6) and inclination angle Ω (200, 700) on the heat transfer

rate, mass transfer rate, skin friction and wall couple stress are shown by Figs.4.6(a)-4.6(d) in the

case of aiding (B = 0.5) and opposing (B = −0.5) buoyancy forces with Ds = 0.5, Dc = 0.3,

Bi = 0.3, α1 = 3, α2 = 3, Fs = 0.5 and ξ = 0.5. As Ω increases, there is a decrement in g∗cosΩ

component in the direction of displacement of the plate, and this decreases the buoyancy force in

that direction. Hence, the reduction in the thermal and solutal buoyancy will lead to diminish

heat and mass transfer rates. Also, when the coupling number increases heat and mass transfer

rates decrease. One can notice that, a rise in the coupling number causes an expansion in the wall

couple stress and skin friction, whereas these physical quantities shows an opposite trend with Ω.

The Nusselt number and Sherwood number have opposite variations in both aiding and opposing

buoyancy cases, but the skin friction and wall couple stress are increased in these two cases.
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Figure 4.1: Effects of α1 and α2 for different values of Fs on the (a) velocity, (b) angular
momentum, (c) temperature and (d) concentration with fixed values of B = 1.0, N = 0.6,
Bi = 0.3, Ds = 0.5, Dc = 0.3, Ω = 600 and ξ = 0.5.
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Figure 4.2: Effects of Ds and Dc for different values of Bi on the (a) velocity, (b) angular
momentum, (c) temperature and (d) concentration with fixed values of B = 1.0, Fs = 0.5,
N = 0.6, α1 = 3, α2 = 3, Ω = 600 and ξ = 0.5.
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Figure 4.3: Effects of N and Ω for different values of B on the (a) velocity, (b) angular
momentum, (c) temperature and (d) concentration with fixed values of Fs = 0.5, α1 = 3,
α2 = 3, Bi = 0.3, Ds = 0.5, Dc = 0.3 and ξ = 0.5.
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Figure 4.4: Effects of α1 and α2 for different values of Fs on the (a) heat transfer rate, (b)
mass transfer rate, (c) skin friction and (d) wall couple stress along stream wise coordinate
ξ with fixed values of Ds = 0.5, B = 1.0, Bi = 0.3, N = 0.3, Dc = 0.3 and Ω = 300.
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Figure 4.5: Effects of Ds and Dc for different values of Bi on the (a) heat transfer rate, (b)
mass transfer rate, (c) skin friction and (d) wall couple stress along stream wise coordinate
ξ with fixed values of N = 0.3, α1 = 3, B = 1.0, Fs = 0.5, α2 = 3 and Ω = 300.
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Figure 4.6: Effects of N and Ω for different values of B on the (a) heat transfer rate, (b)
mass transfer rate, (c) skin friction and (d) wall couple stress along stream wise coordinate
ξ with fixed values of α1 = 3, Fs = 0.5, α2 = 3, Bi = 0.3, Ds = 0.5 and Dc = 0.3
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4.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convective flow, which arises from an external flow with the velocity

u∞ and buoyancy forces. We introduce the following dimensionless variables

ξ =
x

L
, η =

y

L

(
Re

ξ

)1/2

, ψ(ξ, η) =

(
ξ

Re

)1/2

Lu∞ f(ξ, η),

ω(ξ, η) =

(
Re

ξ

)1/2 u∞
L

g(ξ, η), θ(ξ, η) =
T − T∞
Tf − T∞

, φ(ξ, η) =
C − C∞
Cw − C∞

.

(4.15)

Substituting the stream function (2.7) and the transformations (4.15) into Eqs.(4.1) - (4.5), the

resultant dimensionless flow equations can be presented as

1

ε

(
1

1−N

)
f ′′′ +

(
N

1−N

)
g′ +

1

2ε2
ff ′′ +

Fs

Da
ξ (1− f ′2) +

1

DaRe
ξ (1− f ′)

+Ri ξ [θ(1 + α1θ) + Bφ(1 + α2φ)] cos Ω =
ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
,

(4.16)

λg′′ −
(

N

1−N

)
J ξ
(

2 g +
1

ε
f ′′
)

+
1

2ε
(f g′ + f ′ g) =

ξ

ε

(
f ′
∂g

∂ξ
− ∂f

∂ξ
g′
)
, (4.17)

1

Pr
θ′′ +Ds

(
f ′ θ′

)′
+

1

2
fθ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
, (4.18)

1

Sc
φ′′ +Dc

(
f ′ φ′

)′
+

1

2
fφ′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)
. (4.19)

Boundary conditions (4.6) in terms of f , g, θ and φ can be written as

f(ξ, 0) = −2 ξ

(
∂f

∂ξ

)
η=0

, f ′(ξ, 0) = 0, g(ξ, 0) = 0, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0)] ,

φ(ξ, 0) = 1, f ′(ξ,∞) = 1, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(4.20)

In the above non-dimensional equations, thermal dispersion parameter is taken as Ds =
χdu∞
ν

and

the solutal dispersion parameter is taken as Dc =
ζdu∞
ν

.

The physical quantities of present interest (such as shear stress, wall couple stress, heat and
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mass transfer rates), are defined as

Cf =
2

ρ u2∞

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

, Mw =
γ

ρ u2∞L

[
∂ω

∂y

]
y=0

Nux = − x

kf (Tf − T∞)

[
ke
∂T

∂y

]
y=0

, Shx = − x

D(Cw − C∞)

[
De

∂C

∂y

]
y=0

(4.21)

The non-dimensional skin friction Cf , wall couple stress Mw, local Nusselt number Nux and

the Sherwood number Shx, are given by

CfRe
1/2 =

(
2

1−N

)
ξ

−1
2 f ′′(ξ, 0), MwRe =

(
λ

ξ J

)
g′(ξ, 0),

Nux

Re
1
2

= −ξ
1
2
[
1 +Ds Pr f ′(ξ, 0)

]
θ′(ξ, 0),

Shx

Re
1
2

= −ξ
1
2
[
1 +Dc Sc f

′(ξ, 0)
]
φ′(ξ, 0)

(4.22)

Results and Discussion

As in the previous case, the nonlinear partial differential equations (4.16) - (4.19) subject to the

boundary conditions (4.20) are solved numerically using the successive linearization method to-

gether with local similarity and non-similarity approaches. In the absence of double dispersion

effects, this case reduces to the case (b) problem of chapter-2. Validation of the present problem

in this case can be done on comparison, as it was done in the case (b) of chapter-2.

We have computed the solutions for the dimensionless velocity (f ′), microrotation (g), temper-

ature (θ), concentration (φ), drag coefficient (CfRe
1/2), gradient of microrotation (−MwRe), heat

and mass transfer rates (NuxRe
−1/2 and ShxRe

−1/2), as shown graphically in Figs.4.7(a)-4.12(d).

The effects of nonlinear convection parameters (α1, α2), double dispersion parameters (Ds, Dc),

Biot number (Bi) and angle of inclination (Ω) have been discussed. To study the effects of α1, α2,

Ds, Dc, Bi and Ω, the computations were carried out by taking Da = 0.1, J = 0.01, Pr = 0.71,

N = 0.3, Re = 200, ε = 0.5, λ = 0.5, Sc = 0.22, Fs = 0.5 and B = 1.0. These values are continued

same throughout this study, unless otherwise specified.

Influences of nonlinear convection parameters on the fluid flow profiles are displayed through the

first set of figures for both aiding and opposing flow cases with N = 0.3, Bi = 0.5, Ds = 0.5, Dc =

0.3, Ω = 300 and ξ = 0.5. Figs.4.7(a)-4.7(b) represents the profiles of velocity and microrotation for

nonlinear convection parameters and it is observed that the velocity enhances while microrotation
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reduces for the larger values of both α1 and α2 in aiding flow case. In opposing flow case, the trend

of these parameters is reverse to the aiding flow results. Impacts of α1 and α2 on the temperature

and concentration of micropolar fluid are depicted in Figs.4.7(c) and 4.7(d). It is found that both

temperature and concentration and their associated thicknesses of boundary layer fall down for the

rise of α1 and α2 in the case of aiding flow, whereas these boundary layer profiles increase in the

case opposing flow.

The behaviors of velocity, microrotation, temperature, and concentration of micropolar fluid

with respect to the Biot number and angle of inclination are depicted in Figs 4.8(a)-4.8(d) with

the fixed values: N = 0.3, α1 = 1, α2 = 1, Ds = 0.5, Dc = 0.3 and ξ = 0.5. From Fig.4.8(a),

it is noted that velocity enhances with the increase of Biot number in the case of aiding flow,

whereas it diminishes in the case of opposing flow. A reduction in microrotation is observed for

larger values of Biot number as shown in Fig.4.8(b). It is also important to note that velocity is

more for vertical plate compared to the horizontal plate in aiding flow case, and in the case of

opposing flow this variation is opposite. In both aiding and opposing flow cases, the temperature

and concentration are magnified by the Biot number and degraded with the angle of inclination as

depicted in Figs.4.8(c) and 4.8(d).

Figures 4.9(a)-4.9(b) are prepared to discuss the effect of thermal dispersion on temperature

profile and solutal dispersion on concentration profile with N = 0.3, Bi = 0.5, α1 = 1, α2 = 1,

Ω = 300 and ξ = 0.5 for both aiding and opposing flow cases respectively. When the inertial

effects are prevalent, the thermal and solutal dispersion effects become more significant. Further,

these effects are important in forced and mixed convective flows as well as in natural convective

flows. Figure 4.9(a) shows the effect of thermal dispersion parameter on the temperature profile for

both aiding and opposing flow cases. It is observed that temperature decreases with the increase

of thermal dispersion parameter in both aiding and opposing flow cases. The concentration of

micropolar fluid increases by the solutal dispersion parameter as shown in Fig.4.9(b) in both the

cases of aiding and opposing flows.

The influences of NDT (α1) and NDC (α2) parameters on the surface drag (CfRe
1/2), gradient

of microrotation (−MwRe), heat transfer rate (NuxRe
−1/2) and mass transfer rate (ShxRe

−1/2),

are displayed in Figs.4.10(a)-4.10(d) with the fixed values: Bi = 0.5, Ω = 300, Ds = 0.5, Dc = 0.3,

N = 0.3, Ri = −0.5 (for opposing flow) and Ri = 2.0 (for aiding flow). It is always very essential

to estimate the magnitudes of heat and mass transfer rates, since the quality of the final product
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depends on the heat and mass transfer rates from the surface. In this context, it is worth to mention

that the non-dimensional heat transfer rate (NuxRe
−1/2) and mass transfer rate (ShxRe

−1/2)

increase with the enhancement of Ri as shown in Fig.4.10(a) and Fig.4.10(b). Hence the mixed

convection parameter has an important role in controlling the temperature and concentration. The

effect of mixed convection parameter Ri on the skin friction coefficient (CfRe
1/2) and the wall

couple stress (−MwRe) is portrayed in Fig.4.10(c) and Fig.4.10(d) respectively. It is observed

that the skin friction coefficient (CfRe
1/2) increases as Ri increases. It is because, an increase

in the buoyancy in mixed convective flow leads to accelerate the fluid flow, which increases the

skin friction coefficient. Also, it is found that the wall couple stress decreases with the increase

of mixed convection parameter Ri. This observation is consistent with the velocity, microrotation,

temperature and concentration distributions.

Figure 4.10(a) reveals that the local Nusselt number (NuxRe
−1/2) decrease as α1 increases in

the opposing flow case, whereas the reverse trend is observed in the case of aiding flow. Physically,

α1 > 0 implies that Tf > T∞; hence, there will be a supply of heat to the flow region from the

wall. Similarly α1 < 0 implies that Tf < T∞, and in such case, there will be a transfer of heat from

the fluid to the wall. Also, Fig.4.10(a) reveals the influence of α2 on the heat transfer rate and the

impact of α2, which is same but more significant as compared with α1. The effects of nonlinear

convection parameters on the mass transfer rate (ShxRe
−1/2), wall couple stress (−MwRe), and

skin friction (CfRe
1/2) are identical with the heat transfer rate (NuxRe

−1/2) results as shown in

Figs.4.10(b)-4.10(d). However, along the stream-wise coordinate ξ, the Nusselt number and wall

couple stress increase, whereas the opposite trend can be observed in Sherwood number and skin

friction. By the experience of these two NDT and NDC parameters, one can that the influence

of NDC parameter is more prominent compared with that of NDT parameter in both aiding and

opposing flows. This is due to the presence of Biot number which controls the influence of NDT

parameter.

Variations in heat transfer rate (NuxRe
−1/2), mass transfer rate (ShxRe

−1/2), skin friction

(CfRe
1/2) and wall couple stress (−MwRe) for different values of the Biot numberBi(0, 0.05, 0.5, 1.0)

and inclination of angle Ω(450, 750), are displayed in Figs.4.11(a)-4.11(d) with α1 = 5, α2 = 6,

Ds = 0.5, Dc = 0.3, Ri = −0.5 (for opposing flow) and Ri = 2.0 (for aiding flow). Fig.4.11(a)

indicates the effect of Bi on the heat transfer rate (NuxRe
−1/2) and it is magnified with the en-

hancement of Bi in both the cases of aiding and opposing flows at the surface of an inclined plate.
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A small reduction can be noticed for mass transfer rate (ShxRe
−1/2) with the increment of Bi in

opposing flow case, whereas reverse change can be found for aiding case as depicted in Fig.4.11(b).

The convective boundary condition is the generalization of isothermal boundary condition and

it effectively furnishes a mechanism for comparing the conduction resistance within a solid body to

the convection resistance external to that body (offered by the surrounding fluid) for heat transfer.

The wall condition, θ(0) = 1 is a limiting result of the convective boundary condition when hf

tends to infinity (stated by Aziz [13]), and it is proven by temperature profile. Usually, for high

Biot number, the internal thermal resistance of the plate is high and the boundary layer thermal

resistance is low. Further, when Bi = 0 (i.e., without Biot number) the left side of the plate with

hot fluid is totally insulated, then the internal thermal resistance of the plate is extremely high

and no convective heat transfer to the cold fluid on the right side of the plate takes place, which is

clearly observed from the Fig.4.11(a). These results are similar to the work of Beg et al. [18] in the

case of assisting flow. Finally, it is observed that the skin friction and wall couple stress increase

with the enhancement of Bi as shown in Fig.4.11(c) and Fig.4.11(d) respectively.

The mixed convective flow has a significant impact with the inclination angle, and so the heat

transfer rate (NuxRe
−1/2), in aiding flow, decreases with the increase of angle of inclination and

in the case of opposing flow it has opposite trend as shown in Fig.4.11(a). Also, from Fig.4.11(b),

a similar effect is pointed out to the Sherwood number (ShxRe
−1/2) with reference to the angle

of inclination. Clearly, Figs.4.11(a) and 4.11(b) reveal that, an increase in angle of inclination

decreases the buoyancy force and it retards the flow. Also, a reduction in the heat and mass

transfer rates is noticed. The maximum values of the dimensionless heat and mass transfer rates

are observed when the plate is in vertical position; in which, the buoyancy force is at its maximum.

Therefore, the heat and mass transfer rates are at a lower level for Ω 6= 00. From Figs.4.11(c) and

4.11(d), it is observed that an increase in the angle of inclination lower the buoyancy force and

hence increases both the skin friction (CfRe
1/2) and wall couple stress (−MwRe) in opposing flow

case, whereas it has a reverse trend in aiding flow case. The inclination of horizontal plate to the

vertical plate reduces the drag force which favors the flow through the medium. Further, the results

of Bi contradict the results of Ω on these coefficients.

The variations in the thermal and solutal dispersion parameters (Ds = 2, 6 and Ds = 1, 5) on

NuxRe
−1/2, ShxRe

−1/2, CfRe
1/2 and−MwRe are displayed in Figs.4.12(a)-4.12(d) forRi(−0.5, 2.0)

and α1 = 5, α2 = 6, Bi = 0.5 and Ω = 300. It is observed that the heat transfer rate (NuxRe
−1/2)
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increases with Ds whereas it decreases for Dc in both opposing and aiding flow cases. Introducing

the thermal dispersion in the energy equation, in general, it favors conduction over convection.

In other words, supplementing dispersion effects to the energy equation give more dominance to

thermal conduction. Further, a nominal influence is noticed for the solutal dispersion parameter on

mass transfer rate for both the cases of Ri, as depicted in Fig.4.12(a). The variations of Sherwood

number (ShxRe
−1/2) as a function of ξ are shown in Fig.4.12(b) for Ds and Dc with the fixed

values of other parameters. It is observed from Fig.4.12(b) that the mass transfer rate decreases

in aiding flow case, whereas a reverse phenomenon is observed for opposing flow case with the

increase of Ds. A rise in mass transfer rate is noticed in both aiding and opposing flow cases

with the increase of solutal dispersion parameter Dc, as plotted in Fig.4.12(b). Also, a nominal

influence of thermal dispersion on the mass transfer rate is observed in both aiding and opposing

flow cases. Figs.4.12(c)-4.12(d) reveal the impact of dispersion coefficients on skin friction and wall

couple stress along stream-wise coordinate. These graphs demonstrate that the thermal dispersion

parameter Ds gives a opposite influence to the drag coefficient and wall couple stress for different

values of the mixed convection parameter (i.e., Ri = −0.5 and Ri = 2.0). An increase in the solutal

dispersion parameter Dc increases the skin friction and wall couple stress for opposing flow and

decrease in aiding flow, as portrayed in Figs.4.12(c)-4.12(d).
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Figure 4.7: Effects of α1 and α2 for different values of Ri on the (a) velocity, (b) micro-
rotation, (c) temperature and (d) concentration with the fixed values of B = 1.0, N = 0.3,
Bi = 0.5, Ds = 0.5, Dc = 0.3, Ω = 300 and ξ = 0.5.
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Figure 4.8: Effects of Ω and Bi for different values of Ri on the (a) velocity, (b) microrota-
tion, (c) temperature and (d) concentration with the fixed values of N = 0.3, α1 = 1, α2 = 1,
Ds = 0.5, Dc = 0.3 and ξ = 0.5.
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Figure 4.9: Effect of Ds on the (a) temperature, and effect of Dc on the (b) concentration for
different values of Ri with the fixed values of N = 0.3, Bi = 0.5, α1 = 1, α2 = 1, Ω = 300

and ξ = 0.5.
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Figure 4.10: Effects of α1 and α2 for different values of Ri on the (a) heat transfer rate,
(b) mass transfer rate, (c) skin friction and (d) wall couple stress with the fixed values of
N = 0.3, Bi = 0.5, Ds = 0.5, Dc = 0.3, Ω = 300 and ξ = 0.5.
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Figure 4.11: Effects of Ω and Bi for different values of Ri on the (a) heat transfer rate,
(b) mass transfer rate, (c) skin friction and (d) wall couple stress with the fixed values of
N = 0.3, α1 = 5, α2 = 6, Ds = 0.5, Dc = 0.3 and ξ = 0.5.
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Figure 4.12: Effects of Ds and Dc for different values of Ri on the (a) heat transfer rate,
(b) mass transfer rate, (c) skin friction and (d) wall couple stress with the fixed values of
N = 0.3, α1 = 5, α2 = 6, Ds = 0.5, Dc = 0.3 and ξ = 0.5.
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4.3 Conclusions

The effect of double dispersion on the nonlinear convective flow of a micropolar fluid along an

inclined plate embedded in a non-Darcy porous medium, is analyzed in this chapter. The resulting

equations are solved numerically by employing the successive linearization method together with the

local similarity and non-similarity approaches. The main findings of this chapter are summarized

as follows:

The major conclusion is that the influence of NDC parameter α2 is more prominent on all

the physical quantities of the present model compared with that of NDT parameter α1 in both

free and mixed convective flows. This may be due to the presence of Biot number as it controls

the influence of NDT parameter. Additionally, the effects of NDT and NDC parameters on the

heat and mass transfer are observed to be more in the Darcy porous medium when compared

to those in the non-Darcy porous medium. In case (b), Sherwood number and drag coefficients

are diminished with the enhancement of nonlinear convection parameters along the stream-wise

coordinate, while the opposite pattern can be seen in the case of heat transfer rate and micro-

rotation gradient. A variation of Biot number leads to enhance all pertinent characteristics except

the Nusselt number and concentration profile. On the other side, the results of double dispersion

parameters are unproductive for a large value of the Biot number. However, the thicknesses of

linear momentum, angular momentum, and solutal boundary layers are enhanced by enhancement

in the buoyancy ratio, whereas the thickness of the thermal boundary layer diminishes for both

aiding and opposing buoyancy cases. Further, the dispersion coefficients have the strong influence

on the respective convective heat and mass transfers. This effect is more prominent in the case of

nonlinear Boussinesq approximation when compared to linear Boussinesq approximation for both

case (a) and case (b).
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Part III

NONLINEAR CONVECTION IN

POWER-LAW FLUIDS
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Chapter 5

Nonlinear Convective Flow of a

Power-law Fluid past an Inclined

Plate with Convective Boundary

Condition 1

5.1 Introduction

The study of thermal and solutal transport phenomena of a Ostwald-de Waele power-law fluid

flow in porous media has gained extensive attention on account of its wide pertinence in energy

and geophysical industries. For example, we can mention thermal insulation, filtration processes,

geophysical flows, petroleum resource, polymer processing, and so forth. Amin [38] discussed the

influence of viscous dissipation and magnetic effects on a power-law fluid flow past horizontal and

vertical flat plates embedded in a porous medium. Cheng [31] investigated free convective flow of

a stratified power-law fluid over a vertical wavy surface in a porous medium. Impact of convective

boundary condition in the heat transfer analysis of a power-law fluid flow along a stretching sheet,

is examined by Shahzad and Ramzan [89]. Chamkha et al. [22] investigated the laminar flow of a

1Case(a): Published in “Nonlinear Engineering” 8(1) (2019) 94–106, Case(b): Published in “Inter-
national Journal of Applied and Computational Mathematics” 4(51) (2018) 1–18.
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power-law fluid in a non-Darcy porous medium filled with nanoparticles. Recently, Ahmed et al. [4]

applied uniform magnetic field and considered the convective boundary condition in the analysis

of a radiative power-law fluid flow over a stretching sheet.

Nowadays, most of the researchers are interested to analyze the convection from an inclined

surface in both the numerical and experimental works. It is because the convective heat and mass

transfers over an inclined surface are frequently encountered in natural and engineering devices

such as solar water heaters, electrical systems, iron removal, brine clarification, etc. It has been

shown that the inclination of the horizontal plate to the vertical direction reduces the drag force

which favors the flow through the medium. Due to this importance, Alam et al. [6] analyzed the

influences of thermal radiation and thermophoresis over a permeable inclined plate in a viscous

fluid, whereas the flow over an inclined plate has been considered by Sui et al. [101] to study the

mixed convective heat transfer of a power-law fluid.

Based on the previous studies, it is relevant to discuss the free and mixed convective flows of a

power-law fluid along an inclined plate embedded in a non-Darcy porous medium with Biot number

effect. In addition, the nonlinear Boussinesq approximation is considered in the formulation of fluid

flow equations. As in the previous chapter, here also, the successive linearization method together

with the local similarity and non-similarity approaches are employed to solve the system of reduced

non-linear partial differential equations. The effects of pertinent parameters on the physical quan-

tities are studied and the results are displayed through graphs. This kind of investigation is useful

in the mechanism of combustion, solar collectors which are performed at high-level temperatures.

5.2 Mathematical Formulation

A two-dimensional, steady and laminar convective flow of a power-law fluid along an inclined plate

embedded in a non-Darcy porous medium, is considered in this chapter. The semi-infinite plate

is inclined about vertical direction with an acute angle Ω as shown in Fig.2.1. The plate is either

heated or cooled from left by convection from a fluid of temperature Tf with Tf > T∞ corresponding

to a heated surface and Tf < T∞ corresponding to a cooled surface, respectively. It is assumed

that the fluid and the porous medium may have constant physical properties except for the density

variation in the buoyancy term. The fluid flow is moderate and the permeability of the medium
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is low, so that the Darcy-Forchheimer model is employed to simulate the resistance of the porous

medium. It is further assumed that the concentration at the wall is Cw and the concentration of

the ambient fluid is taken as C∞.

It has been observed that the behavior of non-Newtonian fluids in the porous matrix is quite

different from that of Newtonian fluids in porous media. Shenoy [92] has been reviewed the studies

of non-Newtonian fluids flow in porous media, with attention concentrated on power-law fluids. The

governing equations for the flow along with heat and mass transfer of a power-law fluid saturated

non-Darcy porous medium (Shenoy [92], Murthy and Singh [69] and Chen [28]), are given by

∂u

∂x
+
∂v

∂y
= 0 (5.1)

un +
b
√
Kp

ν
u2 = −Kp

µ

(
∂p

∂x
+ ρg∗ cos Ω

)
(5.2)

vn +
b
√
Kp

ν
v2 = −Kp

µ

(
∂p

∂y

)
(5.3)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
(5.4)

u
∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
(5.5)

As the fundametal study, several researchers analyzed the solutions of Eqs.(5.1)-(5.5) by considering

the following linear Boussinesq approximation, in which density is expressed as a linear function of

the temperature and concentration. i.e.,

ρ = ρ∞ [1− β0 (T − T∞)− β2 (C − C∞)] (5.6)

But, the presence of temperature variation, radiation, inertia or presence of different densities and

heat released by viscous dissipation, induce significant changes in density variations, and hence the

density, temperature and concentration relationship become nonlinear. Due to this, the results of

fluid flow problem with linear Boussinesq approximation are inaccurate. To explain this situation,

Partha [79] investigated the nonlinear convection in a non-Darcy porous medium using the following

nonlinear relationship called temperature-concentration-dependent density relation (also known as
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nonlinear Boussinesq approximation)

ρ = ρ∞

[
1− β0 (T − T∞)− β1(T − T∞)2 − β2 (C − C∞)− β3(C − C∞)2

]
(5.7)

along with the associated boundary conditions

v = 0, −kf
∂T

∂y
= hf (Tf − T ), C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y →∞
(5.8)

where u and v are the Darcy velocity components in x and y directions respectively, ρ is the density,

p is the pressure, Kp is the permeability, kf is the thermal conductivity, C is the concentration, D

is the solutal diffusivity, ν is the kinematic viscosity, hf is the convective heat transfer coefficient,

α is the thermal diffusivity, b is the empirical constant, Ω is the angle of inclination, g∗ is the

acceleration due to gravity and T is the temperature. Here β0 and β1 are the first and second order

thermal expansion coefficients respectively, whereas β2 and β3 are the first and second order solutal

expansion coefficients respectively. Further, the suffix w and ∞ indicate the conditions at the wall

and at the outer edge of the boundary layer respectively.

Experimental and numerical studies on the convective heat transfer in porous media show

that thermal boundary layers exist adjacent to the heated or cooled bodies. When the thermal

boundary layer is thin (i.e., x � y ∼ δT , δT is the boundary layer thickness), boundary layer

approximations analogous to classical boundary layer theory can be applied (Nield and Bejan [75]).

Near the boundary, the normal component of seepage velocity is small compared with its other

component and the derivatives of any quantity in the normal direction are large compared with

the derivatives of the quantity in the direction of the wall. Now, making use of the boundary

layer assumptions, nonlinear Boussinesq approximations and eliminating pressure gradient from

the momentum equation, the governing equations (5.2)-(5.5) reduce to

∂un

∂y
+
b
√
Kp

ν

∂u2

∂y
=
Kpg

∗

ν

{
[β0 + 2β1(T − T∞)]

∂T

∂y
+ [β2 + 2β3(C − C∞)]

∂C

∂y

}
cosΩ (5.9)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(5.10)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(5.11)
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In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

5.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow caused by only buoyancy forces and without

any external agent. Hence the velocity of an external flow becomes zero (i.e., u∞ = 0).

We introduce the following non-dimensional variables (Huang et al. [45], Kairi and Murthy

[50]):

ξ =
x

L
, η =

y

L
Ra

1
2 ξ

−1
2 , ψ(ξ, η) = α ξ

1
2 Ra

1
2 f(ξ, η)

T (ξ, η) = T∞ + (Tf − T∞) θ(ξ, η), C(ξ, η) = C∞ + (Cw − C∞) φ(ξ, η)

(5.12)

where ξ is the stream-wise coordinate, Ra =
L

α

[
ρ∞Kpg

∗β0(Tf − T∞)

µ∗

]1/n
is the global Rayleigh

number, L is the characteristics length, f is the dimensionless stream function, θ is the dimensionless

temperature and φ is the dimensionless concentration.

Substituting the stream function (2.7) and the transformations (5.12) into Eqs.(5.9) - (5.11),

we obtain the following momentum, energy and concentration equations

n
(
f ′
)n−1

f ′′ + 2Gr∗ f ′f ′′ =
[
(1 + 2α1 θ)θ

′ + B(1 + 2α2 φ)φ′
]

cos Ω (5.13)

θ′′ +
1

2
fθ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(5.14)

1

Le
φ′′ +

1

2
fφ′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(5.15)

Dimensionless form of boundary conditions (5.8) become

f(ξ, 0) = −2 ξ

(
∂f

∂ξ

)
η=0

, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(5.16)

where Gr∗ = b

[
ρ∞

2Kp
2[g∗β0(Tf − T∞)]2−n

µ∗2

]1/n
is the modified Grashof number, Sc =

ν

D
is the
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Schmidt number, B =
β2(Cw − C∞)

β0(Tf − T∞)
is the Buoyancy ratio, α1 =

β1(Tf − T∞)

β0
is the nonlinear

density-temperature (NDT) parameter, α2 =
β3(Cw − C∞)

β2
is the nonlinear density-concentration

(NDC) parameter, Le =
α

D
is the diffusivity ratio, Pr =

ν

α
is the Prandtl number andBi =

hf L

kf Ra1/2

is the Biot number.

The non-dimensional Nusselt number Nux =
−x

(Tf − T∞)

[
∂T

∂y

]
y=0

and the Sherwood number

Shx =
−x

(Cw − C∞)

[
∂C

∂y

]
y=0

are given by

NuxRa
−1
2 = −ξ

1
2 θ′(ξ, 0), ShxRa

−1
2 = −ξ

1
2 φ′(ξ, 0). (5.17)

Results and Discussion

Similar to the previous chapters, the highly coupled nonlinear partial differential equations (5.13)-

(5.15) together with the boundary conditions (5.16) are converted into a set of six coupled ordinary

differential equations using local similarity and non-similarity approaches. After that, a novel

successive linearization method is applied to solve the set of reduced ordinary differential equations

for those six unknowns as explained in the chapter-2 for case(a) problem. In order to assess the

validity and accuracy of the present numerical results, the results have been compared with those

of previous works (Singh and Tiwari [93], and Cheng [30]) in the absence of nonlinear convection

parameters. It is found that they are in good agreement, as shown in Tables (5.1) and (5.2).

Therefore, the developed code can be used with great confidence to study the problem considered

in this case.

The numerical computations are carried out by following the fixed values of parameters: Le = 1,

Gr∗ = 0.5, B = 0.5 and ξ = 0.5. These values are continued same throughout this study, unless

otherwise specified. The physical significance of the pertinent parameters such as ξ, α1, α2, Ω

and Bi is determined through Figs.5.1(a) to 5.5(c) for different flow profiles. Also, the physical

quantities of the present interest such as Nusselt and Sherwood numbers are plotted in Figs.5.6(a)

to 5.7(b) for different values of n.

Variations in the non-dimensional velocity (f ′), temperature (θ) and concentration (φ) across
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Table 5.1: Comparison of −f ′(0, 0) and −θ′(0, 0) for various values of Gr∗when B = 0,
α1 = 0, α2 = 0, n = 1 , Bi→∞ and Ω = 0.

−f ′(0, 0) −θ′(0, 0)
Gr∗ Singh & Tewari [93] Present Singh & Tewari [93] Present
0.4 0.766 0.7656 0.400 0.4001
1 0.618 0.6180 0.366 0.3656
4 0.390 0.3904 0.298 0.2978
6 0.333 0.3333 0.277 0.2767
10 0.270 0.2701 0.251 0.2506

Table 5.2: Comparison of −θ′(0, 0) and −φ′(0, 0) for different values of B and Le when
Gr∗ = 0, α1 = 0, α2 = 0, n = 1 , Bi→∞ and Ω = 0.

−θ′(0, 0) −φ′(0, 0)
B Le Cheng [30] Present Cheng [30] Present
4 1 0.9923 0.9923 0.9923 0.9923
4 4 0.7976 0.7976 2.0550 2.0549
4 10 0.6811 0.6810 3.2899 3.2898
4 100 0.5209 0.5208 10.521 10.521
1 4 0.5585 0.5585 1.3575 1.3575
2 4 0.6494 0.6495 1.6243 1.6244
3 4 0.7278 0.7278 1.8525 1.8524

the boundary layers are plotted in Figs.5.1(a) to 5.1(c) for different values of ξ along the free

stream coordinate η. In a non-similar problem, the flow quantities change along the stream-wise

direction (in the present problem along x-axis). Therefore, it is needed to have a x-dependent

non-dimensional parameter (ξ) which acts as a non-dimensional x-axis. This parameter determines

the stream-wise position where the flow quantities are calculated. When ξ → 0, the flow governing

equations are independent of stream-wise location and hence, it shows that the existence of similar-

ity representation for the present problem. With an increase in the stream-wise coordinate ξ, the

velocity component increases, whereas the temperature and concentrations decrease. Further, the

wall temperature always tends to 1 as ξ → ∞. Hence, the changes in these profiles clearly prove

that the present problem is non-similar. It means that the solutions are not unique for different

values of ξ.

Figures 5.2(a) to 5.2(c) depict the variations of momentum, thermal and solutal boundary layer
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profiles in the presence and absence of α1 for various values of n. As expected from Fig.5.2(a),

an increase in the power-law index n (from n < 1 to n > 1) leads to enhance the velocity, due

to the effect of shear-thinning in power-law fluids. In addition, the non-Newtonian fluid with a

higher power-law index has a lesser thermal and concentration boundary-layer thickness, as shown

in Figs.5.2(b) and 5.2(c). Fig.5.2(a) reveals that the velocity increases with the increase of α1,

whereas it shows reverse trend away from the plate. Physically, α1 > 0 implies that Tf > T∞;

hence, there will be a supply of heat to the flow region from the wall and it accelerates the flow

at the wall. An increase in α1 leads to reduce the temperature and concentration boundary layer

profiles in all three types of power-law fluids and the same results are displayed in Figs.5.2(b) and

5.2(c). Moreover the strength of α1 gradually decreases when power-law index is turned from n < 1

to n > 1.

The effects of nonlinear density-concentration parameter on the dimensionless velocity, tem-

perature and concentration profiles, are shown in Figs.5.3(a) to 5.3(c). The influence of nonlinear

density-concentration parameter α2 (here, α1 is fixed) on the velocity reported similar behavior

to that of α1. Thus, the hydrodynamic boundary layer thickness increases near to the surface for

different values of α2. The effects of nonlinear density-concentration parameter on the temperature

and concentration of the power-law fluid flow, are plotted in Figs.5.3(b) and 5.3(c) respectively.

It is noticed from these figures that the temperature and concentration profiles decrease with the

increase of α2. However, the boundary layer thicknesses of the temperature and concentration are

more in the absence of α1 and α2 in comparison with its presence. This is due to the enhancement

of thermal and solutal gradients by nonlinear terms in the momentum equation.

The significance of Biot number (Bi) on the boundary layer profiles is portrayed in Figs.5.4(a)

to 5.4(c) for different values of n. Figure 5.4(a) displays the variation of the velocity profile with or

without Biot number. It is interesting to note that without Biot number (i.e. Bi = 0) the velocity is

low. As the Biot number increases, the velocity in the neighborhood of the inclined plate increases

significantly. Figs.5.4(b) and 5.4(c) represent the effects of Biot number on the temperature and

concentration profiles of the flow. It is evident that, as Biot number enhances from Bi < 1

(thermally thin case) to Bi > 1 (thermally thick case), the temperature of the flow increases whereas

the concentration decreases. The convective boundary condition is the generalization of isothermal

boundary condition and it effectively furnishes a mechanism for comparing the conduction resistance

within a solid body to the convection resistance external to that body (offered by the surrounding
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fluid) for heat transfer. The isothermal boundary condition is a limiting case of the convective

boundary condition when hf tends to infinity and it is proven by Fig.5.4(b). Usually, for high

Biot number, the internal thermal resistance of the plate is high and the boundary layer thermal

resistance is low. Further, when Bi = 0 (i.e., without Biot number) the left side of the plate with

hot fluid is totally insulated, the internal thermal resistance of the plate is extremely high and no

convective heat transfer to the cold fluid on the right side of the plate takes place. In this case,

the fluid temperature is maximum at the surface of plate and decreases exponentially to zero far

away from the plate, which is clearly observed from the Fig.5.4(b). However, the temperature

distribution is less in dilatant fluid and Newtonian fluid as compared to the pseudo-plastic fluid. A

similar observation was made by Khan and Gorla [55].

The influence of inclination angle (Ω) ranging from 00 to 900, on the boundary layer profiles

are displayed in Figs.5.5(a) to 5.5(c). The physical reason for the depletion in velocity profile with

respect to inclination angle is that the thermal and concentration buoyancy ρg∗cos Ω (as considered

in Eq.(5.9)) falls down when the angle Ω changes from 00 to 900, as displayed in Fig.5.5(a). It

is observed from Figs.5.5(b) and 5.5(c) that the dimensionless temperature and concentrations

enhance with an increase in the inclination angle. Moreover, one can observe that the maximum

buoyancy force for the same temperature and concentration differences occur for Ω = 00 (vertical

plate) and there is no buoyancy force for the case Ω = 900 (horizontal plate). In this case, the

results of thermal and solutal distributions are identically equal to the works of Chamkha et al.

[23] and Chen [27].

Here, the fluid flow profiles (namely, velocity, temperature and concentration) are drawn for

the three distinct values of the power-law index. From the above said discussions, it is observed

that the rise in power-law index increases the velocity of a power-law fluid and also increase the

horizontal boundary layer thickness. That is, the thicknesses is much smaller for shear thinning

(pseudo plastic) fluids than that of shear thickening (dilatant) fluids. In the case of a shear thinning

fluid (n < 1), the shear rates near the walls are higher than those for a Newtonian fluid. Further,

an increase in the powerlaw index decreases both temperature and concentrations of the fluid and

it lead to thinning of both thermal and solutal boundary layer thickness.

The heat and mass transfer rates are analyzed against the stream-wise coordinate ξ for α1 and

α2 through Figs.5.6(a) and 5.6(b) together with the power-law index n. Both the Nusselt and

Sherwood numbers increase with respect to the power-law index in the presence and/or absence of

127



nonlinear convection parameters. Along the stream-wise coordinate ξ, both heat and mass transfer

rates are increased and the influence of α2 is prominent as compared to α1.

Effects of Biot number and inclination angle on the physical quantities of the fluid flow are

displayed in Figs.5.7(a) to 5.7(b) for different values of n. It is worth to mention that, as the Biot

number increases from Bi < 1 (thermally thin case) to Bi > 1 (thermally thick case), evidently,

both heat and mass rates increase as shown in Figs.5.7(a) and 5.7(b). Further, the dimensionless

heat transfer rate and mass transfer rate decrease with an increase in inclination angle Ω. Therefore,

an increase in the buoyancy leads to decrease the temperature and concentration which will enhance

the heat and mass transfer rates. Thus, the heat and mass transfer rates are more for the case of

vertical surface (Ω = 00) as compared to the horizontal surface (Ω = 900).
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Figure 5.1: Effect of ξ for different values of n on the (a) velocity, (b) temperature and (c)
concentration with the fixed values of α1 = 1, α2 = 1, Bi = 0.2 and Ω = 300.
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Figure 5.2: Effect of α1 for different of values n on the (a) velocity, (b) temperature and (c)
concentration with the fixed values of Bi = 0.5, α2 = 1, Ω = 300 and ξ = 0.5.
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Figure 5.3: Effect of α2 for different values of n on the (a) velocity, (b) temperature and (c)
concentration with the fixed values of Bi = 0.5, α1 = 1, Ω = 300 and ξ = 0.5.
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Figure 5.4: Effect of Bi for different values of n on the (a) velocity, (b) temperature and (c)
concentration with the fixed values of α1 = 1, α2 = 1, Ω = 300 and ξ = 0.5.
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Figure 5.5: Effect of Ω for different values of n on the (a) velocity, (b) temperature and (c)
concentration with the fixed values of α1 = 1, α2 = 1, Bi = 0.1 and ξ = 0.5.
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Figure 5.6: Effects of α1 and α2 for different values of n on the (a) Nusselt number and (b)
Sherwood number against ξ with the fixed values of Bi = 0.5 and Ω = 300.
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Figure 5.7: Effects of Bi and Ω for different values of n on the (a) Nusselt number and (b)
Sherwood number against ξ with the fixed values of α1 = 1 and α2 = 1.
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5.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convective flow which arises from an external force with the velocity

u∞ and buoyancy forces. We introduce the dimensionless variables as follows

ξ =
x

L
, η =

y

L
Pe

1
2 ξ

−1
2 , ψ(ξ, η) = α ξ

1
2 Pe

1
2 f(ξ, η)

T (ξ, η) = T∞ + (Tf − T∞) θ(ξ, η), C(ξ, η) = C∞ + (Cw − C∞) φ(ξ, η)

(5.18)

where Pe =
u∞ L

α
is the global Peclet’s number.

Substituting the stream function (2.7) and the transformations (5.18) into Eqs.(5.1) - (5.11),

the resultant dimensionless momentum, energy and concentration equations can be presented as

n
(
f ′
)n−1

f ′′ + 2Fs f ′f ′′ = (Ri)n
[
(1 + 2α1 θ)θ

′ + B(1 + 2α2 φ)φ′
]

cos Ω (5.19)

θ′′ +
1

2
fθ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(5.20)

1

Le
φ′′ +

1

2
fφ′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(5.21)

The associate boundary conditions (5.8) in terms of f , θ, and φ can be written as

f(ξ, 0) = −2 ξ

(
∂f

∂ξ

)
η=0

, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(5.22)

In usual definitions, Ped =
u∞d

α
is the pore diameter-dependent Peclet number, Ri =

Ra

Pe
is the

mixed convection parameter, Fs =

(
b
√
Kp

ν

)(
αPed
d

)2−n
is the non-Darcy parameter (Forch-

heimer number) and Bi =
hfL

kf Pe1/2
is the Biot number.

The non-dimensional Nusselt number Nux =
−x

(Tf − T∞)

[
∂T

∂y

]
y=0

and the Sherwood number

Shx =
−x

(Cw − C∞)

[
∂C

∂y

]
y=0

are given by

Nux Pe
−1
2 = −ξ

1
2 θ′(ξ, 0), Shx Pe

−1
2 = −ξ

1
2φ′(ξ, 0). (5.23)
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Results and Discussion

As explained in the previous chapter (i,e. chapter 2), here also, the the successive linearization

method together with the local similarity and non-similarity procedure is employed to solve the

non-homogeneous and nonlinear coupled partial differential equations (5.19)-(5.21) along with the

boundary conditions (5.22). The validation of the present results is cross verified with previously

established results (Chaoyang et al. [26], Murthy [67]) in the absence of nonlinear convection pa-

rameters, as shown in Tab.(5.3) and Tab.(5.4). From these two tables, we have noticed that the

error between present and previously published numerical results is negligible, so that the numerical

practice which we made by SLM is an appropriate scheme for the present analysis.

The numerical computations are carried out by following the fixed values: B = 0.5, Fs = 1.2,

Pr = 1, Le = 1, Ri = 2 and ξ = 0.5. These values are unaltered throughout this study, unless oth-

erwise specified. The impacts of the pertinent parameters such as nonlinear convection parameters

(α1, α2), angle of inclination (Ω) and Biot number (Bi) are determined through Figs.5.8(a)-5.12(c)

for the fluid flow. Also, the physical quantities of the flow, namely local Nusselt and Sherwood

numbers (i.e, Nux Pe
−1
2 and Shx Pe

−1
2 ) are depicted in Figs.5.13(a)-5.14(b).

The occurrence of non-similar solutions in the present analysis is shown in the Figs.5.8(a)-5.8(c).

On boosting the value of stream-wise coordinate ξ(0.1, 0.5, 1.0), the momentum boundary layer

thickness increases, whereas the thermal and solutal boundary layer thickness decrease. Further,

the wall temperature always tends to 1 as ξ → ∞ and also, the changes in these profiles clearly

prove that the present results are non-similar. It means that the solutions are not unique for

different values of ξ.

The figures displayed in Figs.5.9(a)-5.9(c) exhibit the dependence of NDT parameter α1(0, 2, 6)

and power-law index n (0.5, 1.0, 1.5) on the boundary layer profiles. It reveals that the variation

of the power-law index is considerable and it enhances the momentum boundary layer thickness,

whereas it diminishes the thermal and solutal boundary layer thickness. With respect to the

variation of α1, the dimensionless velocity increases more at the surface of the inclined plate and

it reaches unity for ηmax value. The same result is shown in Fig.5.9(a). From Fig.5.9(b)-5.9(c),

one can notice that the rise of α1 leads to reduce the temperature and solutal boundary layer

thicknesses. Also, the temperature and concentration gradients are more in the absence of α1 as

compared to its presence. Responses of boundary layer profiles for NDC parameter (α2 = 0, 3, 7)
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are portrayed for the three different values of the power-law index in Figs.5.10(a)-5.10(c). The

results of this set of figures repeat the same kind of behavior like α1 in all three profiles, but the

influence of α2 is more on these three boundary layer profiles and also in all three kinds of fluids

(pseudo-plastic, Newtonian and dilatant fluid) compared to the influence of α1.

Figures 5.11(a)-5.11(c) show the impacts of the Biot number (Bi = 0.05, 1.0, 20) on the non-

dimensional velocity, temperature, and concentration for the pseudo-plastic, Newtonian, and dila-

tant fluids. A rise in Biot number changes the magnitude of the velocity in the increasing direction,

as depicted in Fig.5.11(a). The utility of convective boundary condition is possible in two ways;

first, as an isothermal condition and another one as a non-isothermal condition. It is because of

the isothermal condition is a limiting result of the convective boundary condition when hf tends

to infinity (stated by Aziz [13]) and this is proven again by Fig.5.11(b). It means that there is

a drastic change in temperature distribution at the surface of the plate when the Biot number

approaches to a large value. The effect of Biot number on the concentration profile is displayed in

Fig.5.11(c) and it reveals that the concentration profile decreases when the Biot number increases

from zero to a large value. For a fixed value of Biot number, the enhancement of the power-law

index leads to increase the velocity distribution, whereas it decreases the temperature and concen-

tration distributions within the boundary layers. As Biot number enhances from Bi < 1 to Bi > 1,

the temperature increases whereas the concentration decreases as shown in Figs.5.11(b) and 5.11(c)

respectively.

An inclined plate is displaced from vertical to horizontal position with reference to the angle of

inclination (Ω = 00, 400, 800) and the resulting variations in boundary layer profiles are portrayed

in Figs.5.12(a)-5.12(c). The physical reason for the depletion of velocity profile with respect to

the angle of inclination is that the thermal and concentration buoyancy fall down when the angle

of inclination changed from Ω = 00 to 900 as shown in Fig.5.12(a). Moreover, from Fig.5.12(a),

one can observe that the maximum buoyancy force occurs for the temperature and concentration

differences along the vertical plate only. It is observed from Figs.5.12(b) and 5.12(c) that the

concentration and temperature enhance with the rising values of inclination angle.

The variations in the physical quantities (specifically, Nux Pe
−1
2 and Shx Pe

−1
2 ) of the present

analysis are portrayed through the graphs Figs.5.13(a)-5.14(b) for the fixed values: α1 = 0, 6,

α2 = 0, 5, Bi = 0.05, 1.0, and Ω = 00, 600. The magnitude of the heat transfer rate (Nux Pe
−1
2 )

slightly increases when α1 is increased from zero to a nonzero value and the same kind of changes
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occurred for α2, but the influence of α2 is more when compared to α1 effect as plotted in Fig.5.13(a)

for all n. On the other side, for a fixed value of these two parameters, the heat transfer rate is more

for dilatant fluid compared to Newtonian and pseudo-plastic fluids. Fig.5.13(b) drawn for Sherwood

number (Shx Pe
−1
2 ) also shows same results as Nux Pe

−1
2 . Figs.5.14(a)-5.14(b) demonstrate that

the Nux Pe
−1
2 and Shx Pe

−1
2 show the opposite trend when the plate is displaced from vertical to

horizontal position with reference to the angle Ω. But, in the case of Bi, variations in these two

quantities are same and increased. However, for a fixed value of either Bi or Ω, both Nux Pe
−1
2

and Shx Pe
−1
2 fall down when the power-law index moves from n < 1 to n > 1.
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(c)

Figure 5.8: Effect of ξ for different values of n on the (a) velocity, (b) temperature and (c)
concentration with the fixed values of α1 = 1, α2 = 1, Bi = 0.2 and Ω = 300.
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(c)

Figure 5.9: Effect of α1 for different values of n on the (a) velocity, (b) temperature and (c)
concentration with the fixed values of Bi = 0.2, α2 = 1, Ω = 300 and ξ = 0.5.
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(c)

Figure 5.10: Effect of α2 for different values of n on the (a) velocity, (b) temperature and
(c) concentration with the fixed values of Bi = 0.2, α1 = 1, Ω = 300 and ξ = 0.5.
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(c)

Figure 5.11: Effect of Bi for different values of n on the (a) velocity, (b) temperature and
(c) concentration with the fixed values of α1 = 1, α2 = 1, Ω = 300 and ξ = 0.5.
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(c)

Figure 5.12: Effect of Ω for different values of n on the (a) velocity, (b) temperature and (c)
concentration with the fixed values of α1 = 1, α2 = 1, Bi = 0.2 and ξ = 0.5.
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(b)

Figure 5.13: Effects of α1 and α2 for different values of n on the (a) heat transfer rate and
(b) mass transfer rate against ξ with the fixed values of Bi = 0.5 and Ω = 300.
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Figure 5.14: Effects of Bi and Ω for different values of n on the (a) heat transfer rate and
(b) mass transfer rate against ξ with the fixed values of α1 = 1 and α2 = 1.
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5.3 Conclusions

In the present chapter, the nonlinear Boussinesq approximation is considered in the analysis of heat

and mass transfer phenomena of a Ostwald-de Waele power-law fluid flow over a convectively heated

inclined plate in a non-Darcy porous medium. The impact of pertinent parameters on the velocity,

temperature, concentration together with the heat and mass transfer rates have been analyzed.

From this study, the conclusions drawn in both cases (a) and (b) can be summarized as follows:

The influences of α1 and α2 are prominent on all the physical characteristics of the present,

compared therewith its absence, and these two effects are more influenced for pseudo-plastic fluids

in both case (a) and case (b). In both case (a) and case (b), the variation of the Biot number leads

to enhance all the pertinent characteristics and it effectively furnishes a mechanism for comparing

the conduction resistance within a solid body to the convection resistance external to that body

(offered by the surrounding fluid) for heat transfer. Further, it is found that the velocity and mass

transfer rate diminish, whereas the thermal and solutal boundary layer thicknesses enhance with

the increase of angle of inclination. On the other hand, heat transfer rate increases with the angle

of inclination in case (a), but it decreases in case (b).
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Chapter 6

Effects of Biot Number and

Cross-Diffusion on Nonlinear

Convective Flow of a Power-law Fluid

in a Non-Darcy Porous Medium 1

6.1 Introduction

The effect of cross-diffusion plays a vital role in the analysis related to heat and mass transfer of

moving fluid and has unavoidable importance. In view of the above, the analysis of convective flow

along a horizontal/vertical plate in a power-law fluid saturated non-Darcy porous medium with

cross-diffusion effects, has been contemplated by many researchers. In most of the previous studies,

these effects are considered as a second-order phenomenon and furthermore called Soret-Dufour

effects. The importance of Soret and Dufour effects on mixed convective flow a power-law fluid

along an isothermal vertical plate embedded in a porous medium with suction/injection effects,

is discussed by Mahdy [61]. The importance of convective transport along a vertical plate in a

stratified power-law fluid saturated non-Darcy porous medium in the presence of Soret and Dufour

1Case(a): Published in “Journal of Nanofluids” 7(4) (2018) 766–775, Case(b): Published in “Ad-
vanced Science, Engineering and Medicine” 10 (2018) 1–8.
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effects, is examined by Srinivasacharya et al. [99].

From the literature survey, it is observed that the study of free and mixed convective flows of

a power-law fluid over an inclined plate with cross-diffusion effects has not been investigated so

far. Therefore, a problem of nonlinear convective flow of a power-law fluid along inclined plate

embedded in a non-Darcy porous medium under the influence of cross-diffusion and convective

boundary condition, is considered in this chapter. Further, the reduced system of non-dimensional

partial differential equations is solved numerically by employing successive linearization method

along with the local similarity and non-similarity approaches. The effects of Soret number, Dufour

number, Biot number, nonlinear convection parameters and angle of inclination on the velocity,

temperature, and concentration profiles are presented graphically for all three kinds fluids (pseudo-

plastic, Newtonian and dilatant fluids). Moreover, the non-dimensional Nusselt and Sherwood

numbers against the stream-wise coordinate for various values of the pertinent parameters are also

analyzed through graphs.

6.2 Mathematical Formulation

An incompressible power-law fluid flow over an inclined plate in a non-Darcy porous medium,

is considered in this chapter. Further, the flow is assumed to be laminar and in steady state.

Choose the two-dimensional coordinate system such that the x-axis is taken along the plate and

y-axis is measured normal to it. The geometry of the problem is shown in Fig.(2.1). If the direct

coupling between the temperature and concentration gradients exists in the problem and when

these gradients are very large, then the problem becomes more significant from practical point

of view. Hence, an extension of chapter-5 is considered in the present chapter by including the

cross-diffusion effects.

By invoking the assumptions made in chapter-5 along with the nonlinear Boussinesq approx-

imation, the governing equations that describe the physical situation of present problem, can be

written as
∂u

∂x
+
∂v

∂y
= 0 (6.1)

∂un

∂y
+
b
√
Kp

ν

∂u2

∂y
=
Kpg

∗

ν

{
[β0 + 2β1(T − T∞)]

∂T

∂y
+ [β2 + 2β3(C − C∞)]

∂C

∂y

}
cosΩ (6.2)
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u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
DKT

CsCp

∂2C

∂y2
(6.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+
DKT

Tm

∂2 T

∂y2
(6.4)

The corresponding boundary conditions are

v = 0, −kf
∂T

∂y
= hf (Tf − T ), C = Cw at y = 0

u = 0, T = T∞, C = C∞ as y →∞
(6.5)

where Cs is the concentration susceptibility, Cp is the specific heat capacity, KT is the thermal

diffusion ratio and Tm is the mean fluid temperature.

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

6.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow, caused by only buoyancy forces and without

any external agent. Hence, the velocity of the external flow becomes zero (i.e., u∞ = 0). Next, we

introduce the following non-dimensional transformations

ξ =
x

L
, η =

y

L
Ra

1
2 ξ

−1
2 , ψ(ξ, η) = α ξ

1
2 Ra

1
2 f(ξ, η)

T (ξ, η) = T∞ + (Tf − T∞) θ(ξ, η), C(ξ, η) = C∞ + (Cw − C∞) φ(ξ, η)

(6.6)

where Ra =
L

α

[
ρ∞Kpg

∗β0(Tf − T∞)

µ∗

]1/n
is the global Rayleigh number.

Substituting the stream function (2.7) and the transformations (6.6) into Eqs.(6.1) - (6.4), we

obtain the following momentum, energy and concentration equations as

n
(
f ′
)n−1

f ′′ + 2Gr∗f ′f ′′ =
[
(1 + 2α1θ)θ

′ + B(1 + 2α2φ)φ′
]

cos Ω (6.7)

θ′′ +
1

2
fθ′ + Duφ′′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(6.8)

1

Le
φ′′ +

1

2
fφ′ + Sr θ′′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(6.9)
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Boundary conditions (6.5) in terms of f , θ and φ can be written as

f(ξ, 0) = −2 ξ

(
∂f

∂ξ

)
η=0

, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(6.10)

In usual definitions, Sr =
DKT (Tf − T∞)

Tmν(Cw − C∞)
is the Soret number, Du =

DKT (Cw − C∞)

CsCpν(Tf − T∞)
is the

Dufour number and Biot number is taken as Bi =
hfL

kf Ra1/2
.

The non-dimensional Nusselt number Nux =
−x

(Tf − T∞)

[
∂T

∂y

]
y=0

and the Sherwood number

Shx =
−x

(Cw − C∞)

[
∂C

∂y

]
y=0

are given by

NuxRa
−1
2 = −ξ

1
2 θ′(ξ, 0), ShxRa

−1
2 = −ξ

1
2 φ′(ξ, 0). (6.11)

Results and Discussion

With the help of explanations given in previous chapters, the system of Eqs.(6.7)-(6.9) subject

to the boundary conditions (6.10) have been solved numerically using the successive linearization

method along with the local similarity and local non-similarity procedures. In the absence of cross-

diffusion effects, this case reduces to the case (a) problem of the chapter-5. Validation of the present

problem in this case, can be done on comparison as it was done in the case (a) of chapter-5. Further,

the numerical computations are carried out by following the fixed values of parameters: Gr∗ = 0.5,

B = 1 , Le = 1 and ξ = 0.2. These values remain unchanged throughout this study, unless otherwise

specified. The impacts of pertinent parameters, such as the nonlinear convection parameters (α1,

α2), cross-diffusion parameters (Du, Sr), angle of inclination (Ω) and the Biot number (Bi), are

determined through Figs.6.1(a)-6.3(c) within the boundary layer profiles. Additionally, the physical

quantities of the flow, namely Nusselt and Sherwood numbers (i.e, NuxRa
−1
2 and ShxRa

−1
2 ) are

anticipated in Figs.6.4(a)-6.6(b).

Variations of fluid flow profiles (such as f ′, θ and φ) for α1(0, 6), α2 (0, 5) and n (0.5, 1.0,

1.5) with Du = 0.5, Sr = 1.0, Bi = 0.5, ξ = 0.5 and Ω = 300, are depicted in the first set of
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Figs.6.1(a)-6.1(c). The dimensionless velocity increase more at the surface of the inclined plate and

it reaches free stream value for ηmax value with the increase of α1, the similar result can be noticed

in Fig.6.1(a). Additionally, Fig.6.1(a) portrays the behaviour of velocity profile for α2 to the three

distinct values of the power-law index. The results of velocity for α2 repeat the same kind of

behavior as like α1 in all three fluids. The thermal and solutal boundary layer thicknesses diminish

with the rise of α1 or α2, and the same results are displayed in Figs.6.1(b) and 6.1(c). The difference

between wall and ambient medium increases for larger values of α1 and α2. Due to this, higher

velocity (see., Fig.6.1(a)), smaller temperature (see., Fig.6.1(b)) and smaller concentrations (see.,

in Fig.6.1(c)) are obtained. Further, the influence of α2 is more prominent on these three boundary

layer profiles and in all three kinds of fluids (among pseudo-plastic, Newtonian and dilatant fluids)

compared to α1 influence.

The second set of Figs.6.2(a)-6.2(c) exhibits the significance of cross-diffusion parameters Du

(0, 0.5) and Sr (0, 1.5) on the non-dimensional velocity (f ′), temperature (θ) and concentration (φ)

in all three kinds of fluids (among pseudo-plastic, Newtonian and dilatant fluids) for α1 = 4, α2 = 4,

Bi = 0.5, ξ = 0.5 and Ω = 300. From Fig.6.2(a), it is observed that, for an individual improve-

ment of cross-diffusion parameters (i.e when Du varies Sr is fixed and if Sr varies Du should be

fixed), thickness of the momentum boundary layer increases. Diffusion-thermo (Du) and thermal-

diffusion (Sr) effects on the temperature and concentration can be seen in Figs.6.2(b)-6.2(c). The

Dufour number characterizes the concentration difference ratio compared to the temperature, and

the Soret number is the opposite. Hence, an increasing Dufour number stands for a larger concen-

tration difference and leads to increase temperature, while the similar kind of change is observed

in concentration with respect to Soret number as shown in Figs.6.2(b)-6.2(c).

The influences of Ω(00, 600) and Bi(0.05, 0.5) on the boundary layer profiles (such as, f ′, θ and

φ) are plotted through the third set of Figs.6.3(a)-6.3(c) for the fixed values: Du = 0.3, Sr = 1.0,

α1 = 4, α2 = 4 and ξ = 0.5 in three instances of n = 0.5, 1.0, 1.5. The velocity distribution reduces

for the increase of Ω within the boundary layer as shown in Fig.6.3(a). Additionally, the most

extreme buoyancy force occurs at the vertical plate. Also, it is observed from Figs.6.2(b) that the

velocity of the flow field attains a maximum state in the neighborhood of the plate with the rise

of Bi and this may be due to the reduction in the thermal resistance of the inclined plate. From

Figs.6.3(b) and 6.3(c), one can notice that the temperature and concentration enhance with the

increase of Ω. Fig.6.3(b) implies the impact of Bi on the temperature distribution and shows two
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results mainly. First, the convective boundary condition becomes to isothermal condition when

Bi→∞ (i.e for a larger value of Bi), as shown Fig.6.3(a). Secondly, the temperature distribution

is accelerates on the surface of the plate when Bi increases from the thermally thin case (Bi < 0.1)

to the thermally thick case (Bi > 0.1). Further, Fig.6.3(c) reveals that the influence of Biot number

is nominal on the concentration profile.

The above mentioned figures also uncover the effect of power-law index n on f ′, θ and φ

in the presence or absence of pertinent parameters α1, α2, Du, Sr, Bi and Ω, individually. From

Figs.6.1(a), 6.2(a), and 6.3(a), it is observed that the dimensionless velocity decreases at the surface

of the plate, whereas it increases in the outer part of the boundary layer for the rise of n, i.e. the

fluid becomes more shear thickening (dilatant) at the plate and more shear thinning (pseudo-plastic)

away from the inclined plate. It is fascinating to note that the velocity profiles crossed each other

near the wall as depicted in the Figs.6.1(a), 6.2(a) and 6.3(a). The impact of the power-law index n

on the temperature (portrayed by the Figs. 6.1(b), 6.2(b) and 6.3(b)) and concentration (portrayed

by the Figs. 6.1(c), 6.2(c) and 6.3(c)) profiles are prepared for the same governing parameters. An

increase in n leads to decrease the temperature and concentration profiles and also, it reduces the

thermal and concentration boundary layer thicknesses.

The influences of α1(0, 6) and α2(0, 5) on the Nusselt number (NuxRa
−1
2 ) and Sherwood

number (ShxRa
−1
2 ) against the stream wise coordinate ξ, are plotted through the fourth set of

Figs.6.4(a)-6.4(b) with the fixed values: Du = 0.3, Sr = 1.0, Bi = 0.5 and Ω = 300 for the three

kinds of fluids. The rise in α1 or α2 improve all the pertinent characteristics of the pseudo-plastic

fluid flow for a fixed value of α2 or α1 individually. Also, heat and mass transfer rates have the

same change in the Newtonian and dilatant fluid flows. Moreover, the behaviour of NuxRa
−1
2 is

opposite to ShxRa
−1
2 . Further, for a non zero value of either α1 or α2, both the heat and mass

transfer rates fall down when power-law index moves from n < 1 to n > 1, whereas both the heat

and mass transfer rates are considerably enhance in the absence of either α1 or α2 for the change

of power-law index.

The effects of Du(0, 0.5) and Sr(0, 1.5) on the heat and mass transfer rates are displayed in

the fifth set of Figs.6.5(a)-6.5(b) for α1 = 1, α2 = 1, Bi = 0.5 and Ω = 300. Higher values of the

Dufour number leads to reduce NuxRa
−1
2 and enhance ShxRa

−1
2 , while with the expansion of

Sr, these heat and mass transfer rates show reverse trend. Thus, Soret and Dufour numbers have

opposite influence on the heat and mass transfer rates, as depicted in Figs.6.5(a)-6.5(b). However,
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the influence of power-law index n is nominal for the heat transfer rate and considerable for the

mass transfer rate as shown in Figs.6.5(a)-6.5(b).

The sixth set of Figs.6.6(a)-6.6(b) describes the impact ofBi(0.1, 10) and Ω(00, 600) onNuxRa
−1
2

and ShxRa
−1
2 for the three fluid cases with Du = 0.03, Sr = 2.0, α1 = 3, α2 = 3, Fs = 0.5 and

ξ = 0.5. With an increment in Ω, there is a considerable decrement in g∗ component and this

degrades the buoyancy force. Hence, the reduction in the buoyancy will lead to diminish the heat

and mass transfer rates when the inclined plate is displaced from vertical to horizontal direction.

One can notice that an enhancement in the Biot number leads to increase NuxRa
−1
2 , while it

reduces the mass transfer rate ShxRa
−1
2 . Further, the power-law index results an improvement in

NuxRa
−1
2 and ShxRa

−1
2 for the inclined plate, whereas it shows opposite change in the case of

vertical plate.
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Figure 6.1: Effects of α1 and α2 for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of Bi = 0.5, Du = 0.5, Sr = 1.0, Ω = 300 and
ξ = 0.5.
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Figure 6.2: Effects of Du and Sr for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of Bi = 0.5, α1 = 4, α2 = 4, Ω = 300 and ξ = 0.5.

155



0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Solid line:  n= 0.5

Dash line:  n=1.0

Dot line:     n=1.5    

 ,  Bi=1.0

 ,Bi=1.0

 ,Bi=0.05

 ,Bi=0.5

 

 

 

 



f'
 (



)

(a)

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

Solid line:  n= 0.5

Dash line:  n=1.0

Dot line:     n=1.5    

 ,  Bi=1.0

 ,Bi=1.0

 ,Bi=0.05

 ,Bi=0.5

 

 




( 


)

(b)

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Solid line:  n= 0.5

Dash line:  n=1.0

Dot line:     n=1.5    

 ,  Bi=1.0

 ,Bi=1.0

 ,Bi=0.05

 ,Bi=0.5

 

 

 

 




(


)

(c)

Figure 6.3: Effects of Ω and Bi for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of α1 = 4, α2 = 4, Du = 0.3, Sr = 1.0 and
ξ = 0.5.
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Figure 6.4: Effects of α1 and α2 for different values of n on the (a) heat transfer rate and
(b) mass transfer rate against ξ with the fixed values of Bi = 0.5, Du = 0.3, Sr = 1.0 and
Ω = 300.
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Figure 6.5: Effects of Du and Sr for different values of n on the (a) heat transfer rate and (b)
mass transfer rate against ξ with the fixed values of Bi = 0.5,α1 = 4, α2 = 4 and Ω = 300.
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Figure 6.6: Effects of Ω and Bi for different values of n on the (a) heat transfer rate and (b)
mass transfer rate against ξ with the fixed values of α1 = 4, α2 = 4, Du = 0.3 and Sr = 1.0.
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6.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convective flow, arises from buoyancy forces and an external flow

with the velocity u∞. Now, we introduce the following dimensionless variables

ξ =
x

L
, η =

y

L
Pe

1
2 ξ

−1
2 , ψ(ξ, η) = α ξ

1
2 Pe

1
2 f(ξ, η)

T (ξ, η) = T∞ + (Tf − T∞) θ(ξ, η), C(ξ, η) = C∞ + (Cw − C∞) φ(ξ, η)

(6.12)

where Pe =
u∞ L

α
is the global Peclet’s number and u∞ is the free stream velocity.

Substituting stream function (2.7) and the transformation (6.12) into Eqs.(6.1) - (6.4), we

obtain the following momentum, energy and concentration equations

n
(
f ′
)n−1

f ′′ + 2Fsf ′f ′′ = (Ri)n
[
(1 + 2α1θ)θ

′ + B(1 + 2α2φ)φ′
]

cos Ω (6.13)

θ′′ +
1

2
fθ′ + Duφ′′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(6.14)

1

Le
φ′′ +

1

2
fφ′ + Sr θ′′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(6.15)

Boundary conditions (6.5) in terms of f , θ, and φ can be written as

f(ξ, 0) = −2 ξ

(
∂f

∂ξ

)
η=0

, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(6.16)

where the Biot number is taken as Bi =
hfL

kf Pe1/2
.

The non-dimensional Nusselt number Nux =
−x

(Tf − T∞)

[
∂T

∂y

]
y=0

and the Sherwood number

Shx =
−x

(Cw − C∞)

[
∂C

∂y

]
y=0

are given by

NuxPe
−1
2 = −ξ

1
2 θ′(ξ, 0), ShxPe

−1
2 = −ξ

1
2φ′(ξ, 0). (6.17)
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Results and Discussion

Similar to the previous chapters, the numerical solution for the highly coupled nonlinear partial

differential equations (6.13)- (6.15) together with the boundary conditions (6.16) are obtained by

using successive linearization along with the local similarity and non-similarity approaches. In the

absence of cross-diffusion effects, this case reduces to the case (b) problem of the previous chapter.

Validation of the present problem in this case, can be done on comparison as it was done in the

case (b) of chapter-5.

The numerical computations are carried out for the fixed values of parameters: B = 1 , Fs = 1,

Pr = 1, Le = 1, Ri = 2 and ξ = 0.5. These values are continued same throughout this study, unless

otherwise specified. The impacts of the pertinent parameters are determined through Figs.6.7(a)-

6.9(c) for the boundary layer profiles. Additionally, the physical quantities of the flow, Nusselt and

Sherwood numbers (i.e, Nux Pe
−1
2 and Shx Pe

−1
2 ) are anticipated in Figs.6.10(a)-6.12(b) for the

same values.

Variations in the fluid flow profiles (such as f ′, θ and φ) for α1(0, 6), α2 (0.5, 2.5) and n (0.5, 1.0,

1.5) with the fixed values: Du = 0.03, Sr = 2.0, Bi = 0.5, ξ = 0.5 and Ω = 300, are displayed in the

first set of Figs.6.7(a)-6.7(c). It uncovers that the variation of the power-law index is extensive and

diminishes the momentum boundary layer thickness, whereas it enhances the thermal and solutal

boundary layer thickness. The dimensionless velocity increases more at the surface of the inclined

plate and it reaches to free stream value for ηmax value with the increase of α1 and this result is

shown in Fig.6.7(a). Additionally, Figs.6.7(a) portrays the impact of α2 on the behavior of velocity.

The results of this figure repeat the same kind of behavior as α1 in all three kinds of fluids. The

thermal and solutal boundary layer thicknesses diminish with the rise of α1 or α2, and this effect

is displayed in Figs.6.7(b) and 6.7(c).

The second set of Figs.6.8(a)-6.8(c) exhibits the significance of Dufour number Du(0, 0.5) and

Soret number Sr(0, 1.5) on the profiles f ′, θ and φ in all the three kinds of fluids (pseudo-plastic,

Newtonian and dilatant fluids) with α1 = 1, α2 = 1, Bi = 0.5, ξ = 0.5 and Ω = 300. An indi-

vidual improvement of cross-diffusion parameters leads to increase the thickness of the momentum

boundary layer, as shown in Fig.6.8(a). When there is direct coupling between the temperature

and concentration gradients, the mass flux can be generated not only by concentration gradients

but also by temperature gradients. On the other hand, heat fluxes can also be created by concen-
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tration gradients. Due to this, an addition in Du leads to enhance the temperature gradient and

decreases the solutal boundary layer thickness, while the results of Sr are reverse to the results of

Du on these two boundary layer profiles. That is, an increase in Sr leads to enhance concentration

and reduces the temperature as shown in Figs.6.8(b) and 6.8(c). However, in the absence or pres-

ence of cross-diffusion parameters, the temperature and concentration gradients increases with the

power-law index n.

The influences of Ω(00, 600) and Bi(0.1, 20) on the different profiles are projected in the third

set of Figs.6.9(a)-6.9(c) for the fixed values: Du = 0.03, Sr = 2.0, α1 = 1, α2 = 1 and ξ = 0.5 in

three instances of power-law fluids, separately. An expansion in Ω reduces the velocity distribution

inside the boundary layer region as portrayed in Fig.6.9(a). Also, that the velocity of the flow field

attains maximum state in the neighborhood of the plate with the rise of Bi and this may be due

to the reduction in the thermal resistance of the inclined plate. From Figs.6.9(b) and 6.9(c), one

can notice that the temperature and concentration enhance with the rise of Ω. The temperature

distribution accelerates on the surface of the plate when Bi increases from thermally thin case

(Bi < 0.1) to the thermally thick case (Bi > 0.1), as shown in Fig.6.9(b). Further, Fig.6.9(c)

reveals that the concentration profile increases within the boundary layer with the increase of Biot

number.

The impact of α1(0, 6) and α2(0, 5) on the Nusselt number (NuxPe
−1/2) and Sherwood num-

ber (ShxPe
−1/2) against the stream wise coordinate ξ, are discussed through the fourth set of

Figs.6.10(a)-6.10(b) with Du = 0.03, Sr = 2.0, Bi = 1.0 and Ω = 300 for the three kinds of fluids.

The rise in α1 or α2 improves all the pertinent characteristics of the pseudo-plastic fluid flow for a

fixed value of α2 or α1 respectively. Also, these quantities have the same change in the Newtonian

and dilatant fluid flows. Further, along the stream-wise coordinate ξ, the nature of NuxPe
−1/2 is

in opposite way to ShxPe
−1/2. However, for a fixed value of either α1 or α2, both the heat and

mass transfer rates fall down when the power-law index moves from n < 1 to n > 1.

The effects of Du(0, 0.5) and Sr = (0, 1.5) numbers on the heat and mass transfer rates are

displayed in the fifth set of Figs.6.11(a)-6.11(b) for α1 = 1, α2 = 1, Bi = 1 and Ω = 600. Higher

values of Du leads to diminishes NuxPe
−1/2 and enhances ShxPe

−1/2, while with the expansion of

Sr, these demonstrate reverse trend. Thus, the Soret and Dufour numbers have opposite effects on

the Nusselt and Sherwood numbers, as shown in Figs.6.11(a)-6.11(b). However, these two transfer

rates are more in the pseudo-plastic fluids when compared with the Newtonian and dilatant fluids.
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The sixth set of Figs.6.12(a)-6.12(b) displays the impact of Bi = (0.1, 20) and Ω = (00, 600) on

NuxPe
−1/2 and ShxPe

−1/2 for the three fluid cases with Du = 0.03,Sr = 2.0, α1 = 1, α2 = 1,

Fs = 0.5 and ξ = 0.5. As Ω increases, there is a reduction in g∗ component in the direction of

displacement of the plate by angle Ω and this degrades the buoyancy force in that direction. Hence,

the reduction in the buoyancy leads to diminish heat and mass transfer rates when the inclined

plate changes from vertical to horizontal position. One can notice that an enhancement in the Biot

number causes an increase in NuxPe
−1/2, whereas it decreases ShxPe

−1/2. Further, the power-law

index results in an improvement in ShxPe
−1/2 for an isothermal condition, whereas ShxPe

−1/2 has

the opposite trend in the case of non-isothermal condition.
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Figure 6.7: Effects of α1 and α2 for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of Bi = 0.5, Du = 0.03, Sr = 2.0, Ω = 300 and
ξ = 0.5.
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Figure 6.8: Effects of Du and Sr for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of Bi = 0.5, α1 = 1, α2 = 1, Ω = 300 and ξ = 0.5.
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Figure 6.9: Effects of Ω and Bi for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of α1 = 1, α2 = 1, Du = 0.03, Sr = 2.0 and
ξ = 0.5.
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Figure 6.10: Effects of α1 and α2 for different values of n on the (a) heat transfer rate and
(b) mass transfer rate against ξ with the fixed values of Bi = 1, Du = 0.03, Sr = 2.0 and
Ω = 300.
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Figure 6.11: Effects of Du and Sr for different values of n on the (a) heat transfer rate and
(b) mass transfer rate against ξ with the fixed values of Bi = 1, α1 = 1, α2 = 1 and Ω = 300.
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Figure 6.12: Effects of Ω and Bi for different values of n on the (a) heat transfer rate and
(b) mass transfer rate against ξ with the fixed values of α1 = 1, α2 = 1, Du = 0.03 and
Sr = 2.0.
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6.3 Conclusions

In this chapter, the non-similarity solution is obtained to analyze the effects of cross-diffusion and

convective boundary condition on the nonlinear convective flow of a power-law fluid along the

inclined plate in a non-Darcy porous medium. From this analysis, the main findings are drawn in

both cases (a) and (b) as follows:

An increase in nonlinear convection parameters leads to increase the local Nusselt and Sherwood

numbers, but it decreases the temperature and concentration in both case (a) and case (b). Further,

the tangential velocity increases at the wall in both the cases (a) and (b), but it shows opposite

trend in case (b) far away from the inclined plate. With the increase of Biot number, the tangential

velocity, temperature and local Nusselt number enhance, but the local Sherwood number reduces

in both case (a) and case (b). As the angle of inclination increases, the local Nusselt and Sherwood

numbers reduce, but the temperature and concentration enhance. In addition, the tangential

velocity decreases in the cases (a) and (b) at the wall, while it shows a reverse trend far away

from the inclined plate in the case (b). The presence of Soret parameter increases the local heat

transfer rate but decreases the local mass transfer rate. The local heat transfer rate is decreased

and local mass transfer rate is increased due to the presence of Dufour parameter. Moreover, the

higher Nusselt and lower Sherwood numbers are found for the case (b) when compared to those of

the case (a).
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Chapter 7

Effects of Double Dispersion in a

Non-Darcy Porous Medium Saturated

with a Power-law Fluid subject to

Convective Boundary Condition 1

7.1 Introduction

Power-law fluid flow through porous media has gained immense importance as a consequence of its

wide range of applications in energy and geophysical industries, for example, thermal insulation,

filtration processes, geophysical flows, petroleum resource, polymer processing and so forth. Ex-

tensive research has been considered on free/mixed convective flow of a power-law fluid through

different geometries embedded in a Darcy/non-Darcy porous medium by [29, 49, 73]. Several works

have been made in recent years to investigate the problem of convective flow over an inclined plate

in various Newtonian and non-Newtonian fluids due to its geophysical and industrial applications.

These applications include chemical processing, electrical systems, iron removal, brine clarification,

etc. In view of the above said applications, Pal and Chatterjee [78] analyzed non-Newtonian fluid

1Case(a): Published in “Journal of Nanofluids” 7(6) (2018) 1247–1257, Case(b): Accepted by “4th
Thermal and Fluids Engineering Conference (TFEC) April 14–17, 2019 Las Vegas, NV, USA”.
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flow characteristics along an inclined plate under variable thermal conductivity.

The thermal and solutal transport due to the hydrodynamic mixing is called thermal and solutal

dispersions or double dispersion effects. The effects of thermal and solutal dispersions in a porous

medium is necessary due to the presence of inertial effects [75]. Kairi et al. [53] examined importance

of these effects on the natural convective flow of a power-law fluid in a non-Darcy porous medium

(see also, the references therein). Narayana and Sibanda [74] analyzed the double dispersion effects

on MHD mixed convective flow along a vertical flat plate embedded in a non-Darcy porous medium.

The combined convective heat and mass transfers along a vertical surface in a non-Darcy porous

medium in the presence of double dispersion effects, has been discussed by Afify and Elgazery [2].

Survey on earlier studies reveals that the effect of double dispersion on the convective heat and

mass transfer in non-Newtonian fluids saturated non-Darcy porous medium has been investigated

by very few authors. Also, the concept of natural and mixed convective flows of a power-law fluid

over an inclined plate in a non-Dary porous medium with convective heating and double dispersion

effects, is not examined so far. Hence, the present chapter aims to analyze the influence of double

dispersion effects on the nonlinear convective flow over an inclined plate in a non-Darcy porous

medium saturated with a power-law fluid. The effects of pertinent parameters on the physical

quantities are studied, and the results are displayed graphically.

7.2 Mathematical Formulation

Consider an incompressible power-law fluid flow along an inclined plate embedded in a non-Darcy

porous medium and flow is assumed to be two-dimensional, steady and laminar. The semi-infinite

plate is inclined about vertical direction with an angle Ω as shown in Fig.(2.1). It is known from

the literature that in a non-Darcy medium where the inertial effects are prevalent, the thermal and

solutal dispersion effects will become significant in natural and mixed convective flows [75]. Due

to this importance, the thermal and solutal dispersion effects are incorporated in the governing

equations of the power-law fluid. Further, this chapter is an extension of chapter-5 by considering

the double dispersion effects.

Under the consideration of assumptions made in chapter-5 along with the nonlinear Boussinesq

approximation, the governing equations for the power-law fluid flow in a homogeneous and isotropic
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non-Darcy porous medium (Forchheimer model), are given by

∂u

∂x
+
∂v

∂y
= 0 (7.1)

∂un

∂y
+
b
√
Kp

ν

∂u2

∂y
=
Kpg

∗

ν

{
[β0 + 2β1(T − T∞)]

∂T

∂y
+ [β2 + 2β3(C − C∞)]

∂C

∂y

}
cosΩ (7.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[
αe

∂T

∂y

]
(7.3)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

[
De

∂C

∂y

]
(7.4)

along with the boundary conditions

v = 0, −kf
∂T

∂y
= hf (Tf − T ), C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y →∞
(7.5)

where α is the molecular thermal diffusivity, D is the molecular solutal diffusivity, χ is the thermal

dispersion coefficient, d is the pore diameter and ζ is the solutal dispersion coefficient. Further, the

effective thermal and solutal diffusivities are defined as αe = α+ χdu and De = D + ζ d u (Telles

and Trevisan [104], Murthy [67]), respectively.

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

7.2.1 Case(a): Natural Convection

As in the earlier chapters, the flow is assumed to be a natural convective flow which is caused

by only buoyancy forces and without any external agent. Hence, the velocity of the external flow

becomes zero. To convert the system of dimensional equations (7.1) - (7.4) into the non-dimensional

form, we considered the following dimensionless transformations

ξ =
x

L
, η =

y

L
Ra

1
2 ξ

−1
2 , ψ(ξ, η) = α ξ

1
2 Ra

1
2 f(ξ, η)

T (ξ, η) = T∞ + (Tf − T∞) θ(ξ, η), C(ξ, η) = C∞ + (Cw − C∞) φ(ξ, η)

(7.6)
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Substituting the stream function (2.7) and the transformations (7.6) into Eqs.(7.2) - (7.4), we

obtain the following momentum, energy and concentration equations

n
(
f ′
)n−1

f ′′ + 2Gr∗f ′f ′′ =
[
(1 + 2α1θ)θ

′ + B(1 + 2α2φ)φ′
]

cos Ω (7.7)

θ′′ + Ds

(
f ′ θ′

)′
+

1

2
fθ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(7.8)

1

Le
φ′′ + Dc

(
f ′ φ′

)′
+

1

2
fφ′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(7.9)

Boundary conditions (7.5) in terms of f , θ, and φ can be written as

f(ξ, 0) = −2 ξ

(
∂f

∂ξ

)
η=0

, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(7.10)

In the above equations, Rad =
dRa

L
is the modified pore-diameter-dependent Rayleigh number,

Ds = χRad is the thermal dispersion parameter and Dc = ζ Rad is the solutal dispersion parameter.

The physical quantities of present interest such as heat and mass transfer rates, are defined as

Nux = − x

kf (Tf − T∞)

[
ke
∂T

∂y

]
y=0

, Shx = − x

D(Cw − C∞)

[
De

∂C

∂y

]
y=0

(7.11)

The non-dimensional local Nusselt number Nux and the Sherwood number Shx, are given by

NuxRa
1
2 = −ξ

1
2
[
1 +Ds f

′(ξ, 0)
]
θ′(ξ, 0), ShxRa

−1
2 = −ξ

1
2
[
1 +Dc f

′(ξ, 0)
]
φ′(ξ, 0). (7.12)

Results and Discussion

The reduced governing Eqs.(7.7)-(7.9) along with the boundary conditions (7.10) are solved nu-

merically by using the successive linearization method together with the local similarity and non-

similarity approaches, as explained in the case (a) of Chapter-2. In the absence of double dispersion

effects, this case reduces to the case (a) problem of the chapter-5. Validation of the present problem

in this case, can be done on comparison as it was done in the case (a) of chapter-5.
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The numerical computations are carried out by following the fixed values of parameters: Gr∗ =

0.5, B = 0.5 , Le = 1 and ξ = 0.5. These values are continued same throughout this study, unless

otherwise specified. The impacts of pertinent parameters such as nonlinear convection parameters

(α1, α2), double dispersion parameters (Ds, Dc), inclination angle (Ω) and the Biot number (Bi)

are discussed through the Figs.7.1(a)-7.6(b) for the boundary layer profiles along with the physical

quantities of the flow.

Variations in the fluid flow profiles (such as f ′, θ and φ) for α1(0, 6), α2 (0, 5) and n (0.5, 1.0,

1.5) with the fixed values: Ds = 0.6, Dc = 0.3, Bi = 0.5, ξ = 0.5 and Ω = 300, are considered in the

first set of Figs.7.1(a)-7.1(c). With respect to α1, the dimensionless velocity increases more at the

surface of the inclined plate and then it satisfies the free stream condition far away from the wall

as portrayed in Fig.7.1(a). Additionally, Figs.7.1(a) displays the influence of α2 on the behavior

of velocity for different values of the power-law index. The results of α2 repeat the same kind of

behavior as α1 in all three kinds of fluids. The thermal and solutal boundary layer thicknesses

diminish with the rise of α1 or α2, as displayed in Figs.7.1(b) and 7.1(c) respectively. Evidently,

the differences between wall and ambient temperature and concentration increase for larger α1

and α2, due to which higher velocity in Figs.7.1(a), and smaller temperature and concentration

are noticed in Figs.7.1(b)-7.1(c) respectively. Further, the dominance of α2 is more on these three

boundary layer profiles and in all three kinds of fluids (pseudo-plastic, Newtonian and dilatant

fluid) compared to the influence of α1.

The influences of Ω(00, 600) and Bi(0.05, 0.5) on the fluid flow profiles are depicted in the

second set of Figs.7.2(a)-7.2(c) for Ds = 0.3, Dc = 0.3, α1 = 1, α2 = 1 and ξ = 0.5 in three

instances of power-law index (n = 0.5, 1.0, 1.5), separately. An expansion in the value of Ω reduces

the velocity distribution inside the boundary layer region as shown in Fig.7.2(a). Also, maximum

velocity is noticed near the plate with the rise of Bi and this is due to the reduction in the thermal

resistance of the inclined plate. From Figs.7.2(b) and 7.2(c), one can notice that the temperature

and concentration enhance with an increase in Ω. Fig.7.2(b) depicts the impact of Bi on the

temperature distribution, it shows that the isothermal condition is a limiting case of convective

boundary condition. Also, the temperature distribution accelerates on the surface of the plate

when Bi increases from the thermally thin case to the thermally thick case. Further, Fig.7.2(c)

reveals that the influence of Biot number is considerable on the concentration profile.

The third set of Figs.7.3(a)-7.3(c) exhibits the significance of double dispersion parameters Ds
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(0, 5) and Dc (0, 4) on f ′, θ and φ in all three kinds of fluids (pseudo-plastic, Newtonian and

dilatant fluids) for the fixed value: α1 = 1, α2 = 1, Bi = 0.1, ξ = 0.5 and Ω = 300. From

Fig.7.3(a), it is observed that when either of the dispersion parameters is increased with the other

one held fixed (i.e when Ds varies, Dc is fixed and if Dc varies, Ds should be fixed) thickness of the

momentum boundary layer increases. An addition in Ds leads to enhance the temperature gradient

and decreases solutal boundary layer thickness. Introducing the thermal dispersion effect to the

energy equation gives thermal conduction more dominance. That is, thermal dispersion increases

the transport of heat along the normal direction to the inclined plate when compared to the case

Ds = 0. It can be found from Figs.7.3(b)-7.3(c) that, the results of Dc are opposite to Ds influence

on these two boundary layer profiles.

The significance of α1(0, 6) and α2(0, 5) on the Nusselt number (NuxRa
−1/2) and Sherwood

number (ShxRa
−1/2) against the stream wise coordinate ξ, are depicted in the fourth set of

Figs.7.4(a)-7.4(b) with Ds = 0.6, Dc = 0.3, Bi = 0.5 and Ω = 300 for three kinds of fluids.

The rise in α1 or α2 improves all the pertinent characteristics of the pseudo-plastic fluid flow for

the fixed value of α2 or α1 individually. Moreover, these quantities have same effect in the New-

tonian and dilatant fluid flows. Additionally, the changes in NuxRa
−1/2 is reverse to the changes

of ShxRa
−1/2 along the stream wise coordinate ξ. However, both heat and mass transfer rates fall

down in the presence of both α1 and α2 when power-law index changes from n < 1 to n > 1. But,

both heat and mass transfer rates are considerably enhanced in the absence of either α1 or α2,

when the power-law index varies from n < 1 to n > 1.

The fifth set of Figs.7.5(a)-7.5(b) describes the impact ofBi(0.5, 2.0) and Ω(00, 600) onNuxRa
−1/2

and ShxRa
−1/2 for the three fluid cases with Ds = 0.6, Dc = 0.3, α1 = 1 and α2 = 1. With the

increment of Ω, there is a decrement in g∗ component and this degrades the buoyancy force. Hence,

the reduction in the buoyancy will lead to diminish the heat and mass transfer rates when the in-

clined plate displaced from the vertical to horizontal position. One can notice that, an enhancement

in the Biot number causes an increase in both NuxRa
−1/2 and ShxRa

−1/2.

The effects of Ds(0, 5) and Dc(0, 4) on the heat and mass transfer rates are displayed in the

sixth set of Figs.7.6(a)-7.6(b) for the fixed values: α1 = 1, α2 = 1, Bi = 0.1 and Ω = 300. With

respect to above said variation in the temperature and concentration variations, higher values of Ds

give large expansion in NuxRa
−1/2 and less change in ShxRa

−1/2 as shown in Figs.7.6(a)-7.6(b).

But, with the expanding Dc, these figures show a reverse trend. That is, an increase in Dc leads to
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enhance ShxRa
−1/2 and shows a nominal influence on NuxRa

−1/2 as displayed in Figs.7.6(a)-7.6(b).

However, the influence of power-law index n is nominal for heat transfer rate and considerable for

mass transfer rate, as shown in Figs.7.6(a)-7.6(b).
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Figure 7.1: Effects of α1 and α2 for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of Bi = 0.5, Ds = 0.6, Dc = 0.3, Ω = 300 and
ξ = 0.5.
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Figure 7.2: Effects of Ω and Bi for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of α1 = 1, α2 = 1, Ds = 0.6, Dc = 0.3 and
ξ = 0.5.
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Figure 7.3: Effects of Ds and Dc for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of Bi = 0.1, α1 = 1, α2 = 1, Ω = 300 and ξ = 0.5.
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Figure 7.4: Effects of α1 and α2 for different values of n on the (a) Nusselt number and
(b) Sherwood number against ξ with the fixed values of Bi = 0.5, Ds = 0.6, Dc = 0.3 and
Ω = 300.
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Figure 7.5: Effects of Ω and Bi for different values of n on the (a) Nusselt number and (b)
Sherwood number against ξ with the fixed values of α1 = 1, α2 = 1, Ds = 0.6 and Dc = 0.3.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

 D
s
=0.0, D

c
=0.3

 D
s
=5.0, D

c
=0.3

 D
s
=0.5, D

c
=0.0

 D
s
=0.5, D

c
=4.0

n= 0.5, 1.0, 1.5

 

 

Solid line: n= 0.5

Dash line: n=1.0

Dot line: n=1.5    

N
u

x
R

a
-1

/2



(a)

0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

 D
s
=0.0, D

c
=0.3

 D
s
=5.0, D

c
=0.3

 D
s
=0.5, D

c
=0.0

 D
s
=0.5, D

c
=4.0n= 0.5, 1.0, 1.5

Solid line: n= 0.5

Dash line: n=1.0

Dot line: n=1.5    

 

 

S
h

x
R

a
-1

/2



(b)

Figure 7.6: Effects of Ds and Dc for different values of n on the (a) Nusselt number and (b)
Sherwood number against ξ with the fixed values of Bi = 0.1, α1 = 1, α2 = 1 and Ω = 300.
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7.2.2 Case(b): Mixed Convection

It is assumed that the mixed convective flow arises from an external flow with the velocity u∞ and

buoyancy forces. We introduce the non-dimensional transformations in the following form

ξ =
x

L
, η =

y

L
Pe

1
2 ξ

−1
2 , ψ(ξ, η) = α ξ

1
2 Pe

1
2 f(ξ, η),

T (ξ, η) = T∞ + (Tf − T∞) θ(ξ, η), C(ξ, η) = C∞ + (Cw − C∞) φ(ξ, η)

(7.13)

Substituting stream function (2.7) and the transformations (7.13) into Eqs.(7.1)-(7.4), then the

dimensionless form of boundary layer equations can be written as

n
(
f ′
)n−1

f ′′ + 2Fsf ′f ′′ = (Ri)n
[
(1 + 2α1θ)θ

′ + B(1 + 2α2φ)φ′
]

cos Ω (7.14)

θ′′ + Ds

(
f ′ θ′

)′
+

1

2
fθ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

(7.15)

1

Le
φ′′ + Dc

(
f ′ φ′

)′
+

1

2
fφ′ = ξ

(
f ′
∂φ

∂ξ
− ∂f

∂ξ
φ′
)

(7.16)

Boundary conditions (7.5) in terms of f , θ, and φ can be written as

f(ξ, 0) = −2 ξ

(
∂f

∂ξ

)
η=0

, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0)] , φ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

(7.17)

Here, Ds =
χdu∞
α

is the thermal dispersion parameter and Dc =
ζ d u∞
α

is the solutal dispersion

parameter.

The physical quantities of present interest, namely, the non-dimensional Nusselt and Sherwood

numbers are given by

NuxPe
−1
2 = −ξ

1
2
[
1 +Ds f

′(ξ, 0)
]
θ′(ξ, 0), ShxPe

−1
2 = −ξ

1
2
[
1 +Dc f

′(ξ, 0)
]
φ′(ξ, 0). (7.18)
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Results and Discussion

As explained in the Chapter-2 for case (a) problem, in this chapter also, the numerical solution

for the highly nonlinear coupled partial differential equations (7.14)-(7.16) subject to the boundary

conditions (7.17) is obtained by using the successive linearization together with local similarity

and non-similarity approaches. In the absence of double dispersion effects, this case reduces to the

case (b) problem of the chapter-5. Validation of the present problem in this case, can be done on

comparison as it was done in the case (b) of chapter-5.

The numerical computations are carried out by following the fixed values of parameters: B = 1

, Fs = 1, Pr = 1, Le = 1, Ri = 0.5 and ξ = 0.5. These values remains unchanged in this study,

unless otherwise specified. The influences of the pertinent parameters α1, α2, Ds, Dc, Ω and Bi are

determined through Figs.7.7(a)-7.12(b) for the boundary layer profiles (such as f ′, θ and φ) and

the physical quantities of the fluid flow such as the Nusselt and Sherwood numbers (i.e, Nux Pe
−1
2

and Shx Pe
−1
2 ).

Influences of α1(0, 6), α2 (0, 5) and n (0.5, 1.0, 1.5) on the velocity, temperature and concen-

tration profiles, are depicted through Figs.7.7(a)-7.7(c) with the fixed values: Ds = 0.5, Dc = 0.2,

Bi = 0.5, ξ = 0.5 and Ω = 300. It is observed that, the dimensionless velocity increases more at

the surface of the inclined plate and it reaches unity to satisfy the free stream boundary condition

for ηmax value with the increase α1, as shown in Fig.7.7(a). Additionally, Fig.7.7(a) displays the

impact of α2 on the behavior of velocity. The results of this figure repeat the same kind of be-

havior just like α1 in all three kinds of fluids. The thermal and solutal boundary layer thicknesses

diminish with the rise of either α1 or α2 and the same effect is displayed in Figs.7.7(b) and 7.7(c).

Obviously, the nonlinear temperature and concentration differences between the wall and ambient

medium increase for larger values of α1 and α2, due to which higher velocity, smaller temperature

and concentration are obtained. Further, the influence of α2 is more on these three boundary layer

profiles in all three kinds of fluids (pseudo-plastic, Newtonian and dilatant fluid) compared with

α1 influence.

The influences of Ω(00, 600) and Bi(0.1, 10) on the profiles of f ′, θ and φ are plotted through

Figs.7.8(a)-7.8(c) for three instances of power-law index (n = 0.5, 1.0, 1.5). Due to the reduction in

the thermal and solutal buoyancy effect in Eq.(7.2) caused by an increase in Ω, there is a reduction

in the velocity distribution f ′ within the boundary layer, as shown in Fig.7.8(b). In other words,
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an increase in the inclination angle leads to reduce the velocity distribution within the boundary

layer and the most extreme buoyancy force occur for the vertical plate (Ω = 00). Also, one can

see from Fig.7.8(a) that, the velocity of the power-law fluid increases with a rise in Bi and this is

due to the reduction in the thermal resistance of the inclined plate (Ω = 600). From Figs.7.8(b)

and 7.8(c), one can notice that the temperature θ and concentration φ enhance with a rise in Ω.

Fig.7.8(b) shows the impact of Bi on the temperature distribution and shows two results mainly

for the wall condition and non-isothermal condition. The convective thermal condition is changes

into wall condition when Bi→∞ (i.e for a larger value of Bi) as given by Aziz [13] and the same

result is observed in Fig.7.8(b). Also, the temperature distribution accelerates on the surface of

the plate when Bi increases from the thermally thin case (Bi < 0.1) to the thermally thick case

(Bi > 0.1). Further, Fig.7.8(c) reveals that the concentration profile decreases with the increase of

Biot number.

Figures 7.9(a)-7.9(c) exhibit the significance of double dispersion parameters Ds(0, 4) and

Dc(0, 6) on f ′, θ and φ in all three kinds of fluids (pseudo-plastic, Newtonian and dilatant flu-

ids) for the fixed values: α1 = 1, α2 = 1, Bi = 0.3, ξ = 0.5 and Ω = 300. From Fig.7.9(a), it

is significant that, for an individual improvement of double dispersion parameters (i.e., when Ds

varies, Dc is fixed and if Dc varies, Ds should be fixed), thickness of the momentum boundary

layer increases. The addition in Ds leads to enhance the temperature extensively and decreases

solutal boundary layer thickness nominally, while the results of Dc are opposite to Ds for these two

boundary layer profiles. However, in the absence or presence of double dispersion parameters, the

temperature and concentration profiles increase for power-law index n.

Figures 7.10(a)-7.10(b) show the effects of α1(0, 6) and α2(0, 5) on the Nusselt number (NuxPe
−1/2)

and Sherwood number (ShxPe
−1/2) against the stream-wise coordinate ξ. The rise in either α1 or

α2 improves all the pertinent characteristics of the pseudo-plastic fluid flow for the fixed value of

other parameters. Also, these quantities have the same change in the Newtonian and dilatant fluid

flows. It is observed that, these two quantities are qualitatively equal with the findings of Partha

[79] in Newtonian fluid (for n = 1) case. However, both heat and mass transfer rates fall down for

the fixed values of either α1 or α2 when power-law index moves from n < 1 to n > 1.

Figures 7.11(a)-7.11(b) delineate the impact of Bi(0.1, 10) and Ω(00, 600) on NuxPe
−1/2 and

ShxPe
−1/2 for three fluid cases with Ds = 0.6, Dc = 0.3, α1 = 1, α2 = 1. When the inclined

plate is displaced from vertical to horizontal position, there is a decrement in g∗cosΩ component
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and this degrades the buoyancy force. Hence, the reduction in the buoyancy will lead to diminish

NuxPe
−1/2 and ShxPe

−1/2. However, the heat and mass transfer rates are increase with the rise

of Bi and decrease with power-law index n.

The effects of Ds(0, 4) and Dc(0, 6) on the heat and mass transfer rates are displayed in

Figs.7.12(a)-7.12(b) with α1 = 1, α2 = 1, Bi = 0.2 and Ω = 300. With respect to above-said

variation in the temperature and concentration profiles, thermal dispersion favors the heat transfer

and solutal dispersion favors the mass transfer as shown in Figs.7.12(a)-7.12(b). However, these two

transfer rates are more in pseudo-plastic fluids when compared with Newtonian and dilatant fluids.

Also, the variation of the power-law index is extensive and diminishes the momentum boundary

layer thickness, whereas it enhances thermal and solutal boundary layer thicknesses as displayed in

the profiles (see. Figs. 7.9(a)-7.9(c)).
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Figure 7.7: Effects of α1 and α2 for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of Bi = 0.5, Ds = 0.6, Dc = 0.3, Ω = 300 and
ξ = 0.5.
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Figure 7.8: Effects of Ω and Bi for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of α1 = 1, α2 = 1, Ds = 0.6, Dc = 0.3 and
ξ = 0.5.

187



0 2 4 6 8 10
1.0

1.2

1.4

1.6

1.8

Solid line: n= 0.5

Dash line: n=1.0

   Dot line: n=1.5    

 D
s
=0.0, D

c
=0.2

 D
s
=4.0, D

c
=0.2

 D
s
=0.3, D

c
=0.0

 D
s
=0.3, D

c
=6.0

 

 



f'
 (



)

(a)

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 D
s
=0.0, D

c
=0.2

 D
s
=4.0, D

c
=0.2

 D
s
=0.3, D

c
=0.0

 D
s
=0.3, D

c
=6.0

Solid line: n= 0.5

Dash line: n=1.0

   Dot line: n=1.5    

 

 




(


)

(b)

0 3 6 9 12 15
0.0

0.2

0.4

0.6

0.8

1.0

 D
s
=0.0, D

c
=0.2

 D
s
=4.0, D

c
=0.2

 D
s
=0.3, D

c
=0.0

 D
s
=0.3, D

c
=6.0

Solid line: n= 0.5

Dash line: n=1.0

   Dot line: n=1.5    

 

 

 




( 


)

(c)

Figure 7.9: Effects of Ds and Dc for different values of n on the (a) velocity, (b) temperature
and (c) concentration with the fixed values of Bi = 0.1, α1 = 1, α2 = 1, Ω = 300 and ξ = 0.5.
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Figure 7.10: Effects of α1 and α2 for different values of n on the (a) Nusselt number and
(b) Sherwood number against ξ with the fixed values of Bi = 0.5, Ds = 0.6, Dc = 0.3 and
Ω = 300.
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Figure 7.11: Effects of Ω and Bi for different values of n on the (a) Nusselt number and (b)
Sherwood number against ξ with the fixed values of α1 = 1, α2 = 1, Ds = 0.6 and Dc = 0.3.
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Figure 7.12: Effects of Ds and Dc for different values of n on the (a) Nusselt number and (b)
Sherwood number against ξ with the fixed values of Bi = 0.1, α1 = 1, α2 = 1 and Ω = 300.
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7.3 Conclusions

The influence of double dispersion on the nonlinear convective flow of an incompressible power-law

fluid over an inclined plate in a non-Darcy porous medium subject to the convective boundary

condition, is investigated in this chapter. The resultant non-similarity equations are solved using

the successive linearization method together with the local similarity and local non-similarity pro-

cedures. Based on the analysis carried out, the main conclusions drawn for both case (a) and case

(b) are given below:

The behavior of nonlinear convection parameters (α1 and α2) on the various profiles, Nusselt

and Sherwood numbers in both case (a) and case (b), is similar to the results of chapter-5. As Biot

number enhances, the velocity and temperature profiles along with the heat transfer rate enhance,

whereas the mass transfer rate diminishes for both the cases (a) and (b). The temperature and

concentration increase, but the velocity, heat and mass transfer rates decrease, with an increase

in inclination angle in both the cases (a) and (b). Further, it is found that the velocity and

local Nusselt number increase, whereas the concentration decrease with the increase of thermal

dispersion parameter. As the solutal dispersion parameter enhances, the velocity, concentration

and local Sherwood number enhance, whereas the temperature decreases in both case (a) and case

(b).
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Part IV

SUMMARY AND CONCLUSIONS
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Chapter 8

Summary and Conclusions

In this thesis, analysis of convective heat and mass transfer over an inclined plate in micropolar and

power-law fluids saturated non-Darcy porous medium subject to convective boundary condition is

discussed. Additionally, the effect of nonlinear Boussinesq approximation (also known as nonlin-

ear convection) is considered in the momentum equation to address the heat and mass transfer

phenomena of some thermal systems which are operated at moderate to very high temperatures.

The study of convective boundary condition has significant importance in heat transfer problems

because it is more realistic and general, particularly in various engineering and industrial processes.

The non-similarity solution for a convective flow along an inclined plate immersed in a microp-

olar fluid saturated non-Darcy porous medium is analyzed in part-II. The objective of this part is

to study the effects of Biot number, micropolar parameter, non-Darcy parameter, Soret number,

Dufour number, nonlinear convection parameters, and the thermal and solutal dispersion parame-

ters on the free and mixed convective flows of a micropolar fluid. The governing coupled nonlinear

partial differential equations of the considered problem are cast into a sequence of nonlinear or-

dinary differential equations by the local similarity and local non-similarity techniques. Then the

successive linearization method (SLM) is used to solve these transformed set of nonlinear ordinary

differential equations. The main conclusions of the analysis carried out in part-II for both case (a)

and case (b) are given below:

• An increase in coupling number, increases the temperature, concentration, skin friction and

wall couple stress but reduces the heat and mass transfer rates for both free and mixed
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convective flows in the presence of cross-diffusion and double dispersion parameters. In the

absence of cross-diffusion and double dispersion parameters, wall couple stress decreases in

both free and mixed convective flows. Moreover, the velocity increases near the plate and

far away from the plate, it shows reverse behavior in case of free convection, while in mixed

convective flow the velocity increases and reaches free stream velocity for both opposing and

aiding flows.

• For free convective flows, the velocity, temperature, skin friction, wall couple stress and

heat transfer rates increase and concentration decreases with the increase of Biot number.

Meanwhile, for mixed convective flows, the velocity, skin friction, wall couple stress and heat

transfer rate increase. But, concentration decreases in aiding flow of case (b) whereas in

opposing flow these all show a reverse trend.

• Higher values of both the NDT and NDC parameters results higher velocity and microrota-

tion, but lower temperature and concentration in both cases (a) and (b). Also, the surface

drag, wall couple stress, heat and mass transfer rates increase in both cases (a) and (b). Fur-

ther, the presence of cross-diffusion and double dispersion effects has unaltered the influence

of nonlinear convection parameters in this study.

• As the Forchheimer number increases, the velocity and microrotation decrease near the plate

and away from the plate in case (a) and case (b). But the local heat and mass transfer rates

decrease in case (a). The behaviors of physical quantities of the flow in case (b) show an

opposite nature.

• In the presence or absence of cross-diffusion and double dispersion effects, a rise in inclina-

tion angle reduces the velocity and microrotation whereas temperature and concentration

decreased in case (a) and aiding flow of case (b). But, in opposing flow of case (b) it shows

opposite trend.

• A rise in Dufour number increases the temperature of the micropolar fluid and decrease the

concentration in both the free and mixed convective flows. But, Soret number shows the

opposite influence on these profiles. Further, the heat transfer rate increases with Dufour

number in case (a) and decreases in case (b), whereas Soret number has opposite influence

on heat transfer rate as compared with Dufour number results in both cases.
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• In case (a), the mass transfer rate increases with Soret number and decrease with Dufour

number, whereas in case (b) mass transfer has opposite influence with both Soret and Dufour

numbers when compared with the results of case (a).

• Soret and Dufour effects has nominal influence on the microrotation and wall couple stress in

both case (a) and (b), whereas considerable variation is noticed in velocity and skin friction.

• An increase in the thermal dispersion parameter decreases the temperature and increases

the rate of heat transfer in case (a) and aiding flow of case (b). On the other hand, both

the concentration and mass transfer rate increase with an increase in the solutal dispersion

parameter. But, both wall couple stress and skin friction decrease for thermal dispersion

parameter whereas these increase for solutal dispersion parameter in both case (a) and aiding

flow of case (b).

Part-III deals with a non-similarity solution for the nonlinear convective flow of a power-law

fluid along an inclined plate in a non-Darcy porous medium with convective boundary condition.

Additionally, the influences of cross-diffusion and double dispersion effects are analyzed in some

of the chapters. To study the influence of pertinent parameters like Biot number, Soret number,

Dufour number, inclination angle, viscosity index, thermal and solutal dispersions on velocity,

temperature and concentration profiles along with heat and mass transfer rates are the objectives

of this section. Using the non-dimensional variables, the governing equations are transformed into

nonlinear partial differential equations. These equations are solved using the successive linearization

method along with local similarity and non-similarity procedures. The important observations from

these investigations are as following:

• In the presence and absence of both double dispersion and cross-diffusion, the velocity de-

creases with viscosity index, but the temperature and concentration increase in both free and

mixed convective flows. The heat and mass transfer rates increases with viscosity index in

the absence of both double dispersion and cross-diffusion effects, whereas these transfer rates

show the opposite trend when only one of these effects are present.

• An enhancement in the Biot number, the velocity, temperature, and heat transfer rate en-

hance but, concentration reduces for both case (a) and case (b). Further, the mass transfer

rate increases in the absence of Soret number but decreases in the presence of Soret number.

195



• The changes in inclination angle reduces the velocity and increases both temperature and

concentration for both case (a) and case (b), and also in the presence or absence of dispersion

and cross-diffusion parameters. Further, the heat and mass transfer rates decrease for higher

values of inclination angle, but the influence of viscosity index depends on inclination angle.

• The higher values of nonlinear convection parameters result in lower temperature and con-

centration, but higher velocity, heat, and mass transfer rates. The physical quantities of the

flow in case (a) and case (b) show the same behavior and also in the presence or absence of

cross-diffusion and dispersion parameters.

• The velocity, concentration and local heat transfer rate enhance, whereas the temperature

and local mass transfer rates reduce with the increase of Soret number in both case (a) and

case (b).

• In both case (a) and case (b), the velocity, temperature and mass transfer rate increase, but

the concentration and heat transfer rate decrease with the increase of Dufour number.

• Soret and Dufours numbers have an opposite influence on Nusselt and Sherwood number and

these two transfer rates are more in pseudo-plastic fluid when compared with Newtonian and

dilatant fluids.

• The velocity, temperature and local heat transfer rate increase, whereas the concentration

decrease with the increase of thermal dispersion parameter in both free and mixed convective

flows.

• As the solutal dispersion parameter increases, the velocity, concentration and local mass

transfer rate enhances, whereas temperature decreases in both free and mixed convective

flows. However, the presence of dispersion parameters can change the influence of viscosity

index on the heat transfer rate in case (a).

Comparison between the Part-II and Part-III results

• Changes in different profiles with stream-wise coordinate proved that the present results

are non-similar and hence, the present solutions are not unique for different values of the

stream-wise coordinate in both the problems of micropolar and power-law fluids.
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• By the experience of these two NDT and NDC parameters, one can conclude that the influence

of NDC parameter is more prominent compared with that of NDT parameter in both free

and mixed convective flows. This is due to the presence of Biot number which controls the

influence of NDT parameter.

• Influence of nonlinear convection parameters is more in the presence of cross-diffusion and

dispersion effects in both free and mixed convective flows of both micropolar and power-law

fluids.

• In both micropolar and power-law fluids, the nonlinear differences between the wall and

ambient medium improve with bigger estimations of NDT and NDC parameters, and in view

of this, there is tremendous addition in the velocity, microrotation (in the case of micropolar

fluid) and little change in temperature and concentration is obtained. However, the changes

in velocity and angular velocity (in the case of micropolar fluid) of the fluid are more in the

Darcy porous medium when compared with non-Darcy porous medium results.

• Influence of Biot number is unaffected in the presence of cross-diffusion and double dispersion

effects in both micropolar and power-law fluids. Also, the presence of cross-diffusion and

double dispersion effects does not control the influence of inclination angle in both micropolar

and power-law fluids.

The work presented in this thesis can be extended to investigate the effects of Joule heating,

MHD, Hall and Ion slip, heat source/sink, first and second order slip, etc. Further, this work

can be extended with the analysis for various non-Newtonian fluids like nanofluids, Casson fluids,

Jeffrey fluids, etc. Moreover, stability analysis has attracted the curiosity of many researchers in

the recent past. Thus, the work presented in this thesis can be extended to study the stability

and convergence analysis. Such an exhaustive study can be a rewarding experience though it is

challenging as well as time-consuming.
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