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A B S T R A C T

The study of linear and nonlinear stability analyis of Rayleigh Benard convection

and thermohaline convection in a SPPM (sparsely packed porous medium) with

the effects of rotation and magnetic field interest in the natural environment, and

important in geophysics, meteorology, oceanography, physics and applied mathe-

matics as well as engineering. The aim of present thesis is to study, Convective

instabilities in the presence of horizontal magnetoconvection and vertical rotating

convection due to a sparsely packed porous medium. The thesis consists of seven

chapters. Chapter 1 deals with general introduction, Chapter 2 explains the linear

and nonlinear horizontal magnetoconvection in a sparsely packed porous medium

in two parts, Chapter 3 consists of linear and nonlinear horizontal magneto rotat-

ing convection in a sparsely packed porous medium, Chapter 4 deals thermohaline

convection in a sparsely packed porous medium due to horizontal magnetic field,

Chapter 5 consists thermohaline convection in a SPPM due to rotating fluid, Chap-

ter 6 deals stability of thermohaline horizontal magneto convection in a rotating

SPPM, Chapter 7 consists of conclusions and scope of the future work. In this

thesis Stress-free boundary conditions are used in all chapters. Rayleigh-Benard

convection with Magnetoconvection, Rotating convection, Thermohaline convection

are multiple diffusive systems. These diffusive system show both stationary convec-

tion and oscillatory convection.

Chapter 2 - Chapter 6, we studied the linear stability analysis using normal mode

method. We derived critical Rayleigh number at the onset of stationary and oscil-

latory convection. Takens-Bogdanov bifurcation points and co-dimension two bifur-

cation points obtained by plotting graphs of neutral curves. The instabilities occurs

at Pitchfork bifurcation (stationary convection) and Hopf bifurcation (oscillatory

convection) in the parameter regime.

In nonlinear stability analysis using Newell and Whitehead method deriving a non-

linear two-dimensional LG (Landau-Ginzburg) equation at the supercritical Pitch-

fork bifurcation, discussed about Nusselt number and occurrence of secondary in-

stabilities (Eckhaus and Zigzag instabilities). We derived coupled LG equations at

supercritical Hopf bifurcation, discussed about travelling waves and standing wave.

Conclusions and Scope of future work are presented in Chapter 7.
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Non-Dimensional Variables

A Complex amplitude

A1L Amplitude of left travelling

waves

A1R Amplitude of right travelling

waves

Da Darcy number

L Lewis number

M Heat capacity

Nu Nusselt number

Pr Prandtl number

Pr1 Thermal Prandtl number

Pr2 Magnetic Prandtl number

q Wave number

Q Chandrasekhar number

R Rayleigh number

R1 Thermal Rayleigh number

R2 Magnetic Rayleigh number

Rs Stationary Rayleigh number

Ro oscillatory Rayleigh number

Rsc Critical stationary Rayleigh

number

Roc Critical oscillatory Rayleigh

number

Dimensional Variables

C Concentration mol/m3

d Depth of the layer m

g Acceleration due gravity m/s2

H Magnetic field wb/m2

Hx Magnetic field along x-

axis wb/m2

Hy Magnetic field along y-

axis wb/m2

Hz Magnetic field along z-

axis wb/m2

K Permeability H/m

kT Thermal diffusivity m2/s

kS Saline diffusivity m2/s

P Pressure Pa

∆S Salinity difference g/kg

∆T Temperature difference k

u Velocity along x-axis m/s

v Velocity along y-axis m/s

w Velocity along z-axis m/s

V Mean fluid velocity m/s

Greek Symbols
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Non-Dimensional Variables

α Thermal expansion coefficient

β Solute expansion coefficient

Λ Brinkmann number

ω Vorticity

Dimensional Variables

η Magnetic diffusivity m2/s

µ Fluid viscosity Kg.m−1.s−1

µe Effective fluid Viscos-

ity Kg.m−1.s−1

µm Magnetic Permeability w

ρ Fluid density kr/m3

ν Kinematic viscosityKg.m−1.s−1

θ Temperature k

Operators

∇ del operator

∇2 3-D Laplacian operator

∇2
h 2-D Laplacian operator
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1.1 Introduction

Hydrodynamic stability is an important subject of fluid mechanics, which is con-

cerned with the stability and instability of motion of fluids as well as the prob-

lem of transition from laminar to turbulent flows. The instability of flows and

their transition to turbulence are a widespread phenomena in various science and

engineering applications such as astrophysics, oceanography, geophysics, magneto-

hydrodynamics, meteorology, etc. The essential hydrodynamic stability problems

were recognized and formulated by Helmholtz [42], Kelvin [42], Rayleigh [59] and

Reynolds [35]. The instability of flow of fluids and transition to turbulence is in-

vestigated experimentally, numerically and through simulation models. The study

of mathematical theories in hydrodynamics stability such as bifurcation theory and

nonlinear theory becomes very difficult, so computational fluid dynamics plays an

important role where Navier-Stokes equations are integrated more accurately. The

method of linear stability analysis determines whether the flow is stable or unstable

for an infinitely small disturbance; in this method, the governing equations are lin-

earized. Nonlinear governing equations allow disturbances of different wavelengths

to interact with each other. The qualitative theory of bifurcation and chaos theory

focus on the behaviour of nonlinear dynamical systems, when a small change in

the parameters of the system effects a qualitative change in its behaviour or the

system behaves completely differently. Some important applications of hydrody-

namic stability are KelvinHelmholtz instability [42], Rayleigh-Taylor instability [59]

and Rayleigh Benard instabilities [35]. Kelvin-Helmholtz instability occurs when

there is velocity difference across the interface between two fluids. Rayleigh-Taylor

instability occurs at the interface between two fluids of different densities. Rayleigh-

Benard instability occurs when a plane horizontal layer of fluid is heated from below.

The study of the stability of fluid is important to understand simplistic systems.
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1.2 Rayleigh-Benard Convection

Rayleigh-Benard convection is a natural convection phenomenon that causes insta-

bility in a plane horizontal layer of a fluid heated from below to produce a fixed

temperature gradient. The warmer fluid moves upwards from the layer heated be-

low, when the density at the layer below becomes lighter than at the top. The

buoyancy force and viscosity differences are responsible for the appearance of con-

vection cells. These regular patterns of convection cells are known as Benard cells.

In 1900, Benard [18], first made an experiment by heating a layer of fluid from below

and observed hexagonal cells, when the convection developed. Motivated by Benard

experiments, Lord Rayleigh [91] first derived theoretical conditions for convective

motion in a layer of fluid with two free surfaces. The instability of a layer of fluid

heated from below depends on the non-dimensional Rayleigh number (R), defined

as

R =
gα∆Td3

kµ
, (1.1)

where g is acceleration due to gravity, α is thermal expansion coefficient, ∆T is

temperature difference between the upper and lower layers, d is distance between

two layer, µ is kinematic viscosity and k is thermal diffusivity. The Rayleigh number

characterizes the laminar to turbulence transition flow of a free convection boundary

layer. Rayleigh showed that instability sets in when R exceeds a certain critical value

Rc and that when R just exceeds Rc a stationary pattern of motions must come to

prevail, then there are two possibilities,

1. R < Rc : there is no convection, only conduction and steady rolls can’t be

observed. Besides, the evolution of temperature is linear.

2. R > Rc : the exchange is made by conduction and convection and rolls appear.

The evolution of temperature becomes non-linear.

Figure 1.1 illustrates the marginal stability curve stability of the neutral curve.

Benard Marangoni convection mechanism coexists with Rayleigh mechanism but

dominates thin layer. The instabilities driven by surface tension decreases as the
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Rayleigh number                 
(R)

Wave number (q)

Neutral  Curve

Stable 

Unstable 

Figure 1.1: Marginal stability curve, Rayleigh number (R) verses Wave number (q).

layer becomes thicker. Thermal convection leads to convective cells of many form

such as rolls, square and hexagons.

1.3 Boundary conditions

The fluid is confined between the planes z = 0 and z = 1. The temperature for

perfectly conducting boundaries and normal component of the velocity vanishes, i.e.

θ = w = 0 at z = 0, 1. (1.2)

Since these planes are maintained at constant temperature, the normal component

of velocity must vanish on these planes.

Rigid surfaces : When the flow takes place over a rigid plate, the velocity component

vanishes at the boundaries i.e. no slip conditions hold. Hence u = v = 0, in addition
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to w = 0. This along with equation of continuity implies that

∂w

∂z
= 0. (1.3)

Free surfaces: When there is flow over a free surface, the vertical component of

velocity vanishes and there is no surface tension at a horizontal free surface. i.e.

τxz = µ

(
∂u

∂z
+
∂w

∂x

)
= 0, τyz = µ

(
∂v

∂z
+
∂w

∂y

)
= 0, (1.4)

where µ is the dynamic viscosity and it implies that

∂u

∂z
=
∂v

∂z
= 0. (1.5)

This with equation of continuity implies that

∂2w

∂z2
= 0. (1.6)

Thus the conditions for free surface are w = D2w = D4w = · · · = 0 at z = 0, 1.

Table 1.1 shows critical Rayleigh number corresponding to critical wave number for

each set of boundary conditions.

Boundaries Rc qc
Rigid-Rigid 1707.8 3.117
Rigid-Free 1100.7 2.682
Free-Free 657.5 2.221

Table 1.1: Critical Rayleigh number at different boundaries, taken from Chan-
drasekhar [35]

1.4 Porous medium

A porous medium is a solid containing voids which are either connected or dis-

connected. The voids are usually filled with a liquid or gas. A porous medium is



CHAPTER 1. 6

characterized by porosity. The porous media model is applied in many areas like fil-

tration, mechanics, engineering, geosciences, biophysics and material science. Heat

transfer through the porous medium consists of predicting the heat transfer between

the medium and the fluid flow. Darcy number (Da) is used to study heat transfer

through porous medium and momentum transfer in porous medium.

Da =
K

d2
,

where K is the permeability of the medium and d is the characteristic length. Several

models have been proposed to explain mathematical and physical aspects of porous

media.

Darcy model

Darcy [38] has proposed the fluid motion in a porous medium in 1856 for the first

time. It tells us the balance among pressure gradient, viscous force, and gravitational

force. The mathematical form Darcy model can be given as

q = −K
µ

(∇p− ρg) ,

Where q is Darcian velocity, µ is the coefficient of viscosity whereas K represents

the permeability of the medium. It was observed that there is an excellent matching

of experimental results with Darcy model for a one-dimensional flow at low porosity.

Darcy Brinkman Model

It is assumed that the flow through an anisotropic porous medium with high per-

meability must reduce to viscous flow in a limit. In viewing this, to to balance the

pressure gradient, Brinkman added a significant term µ∇2V and reached the need

to account for flowing fluids viscous force on a dense pack of spherical particles of a

porous mass. Here µ is the effective viscosity. The validity of the Brinkman model
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is restricted to high porosity medium and its governing equation is given by

− (∇p− ρg) =
µ

K
q − µ∇2q. (1.7)

Darcy Forchheimer Model

In 1901, Forchheimer conducted experiments and proposed that inertial effects can

be accounted for by the addition of the square of velocity in the momentum equation.

The modification to Darcy’s equation is

(
µ+ ρc

√
K|q|

)
q = −K (∇p− ρg) , (1.8)

where c is the dimensionless form drag coefficient and it varies with the nature of

the porous medium. The coefficients of Darcy and Forchheimer terms contain both

fluid properties and the microstructure of the porous medium. Several other models

are available in the literature on porous media, Neild and Bejan [80] only could gave

a satisfied discussion on validation and limitations of all the models.

Darcy Lapwood Brinkman Model

When the Laplace of the velocity is small in the porous medium, Darcy Brinkman

and Darcy Forchheimer models neglected the shearing action of viscous fluids and

fluid inertia was taken into account. As the presence of solid wall near the velocity

gradient is high, both fluid inertia and viscous shearing action should be considered.

Darcy Brinkman model takes into account both fluid inertia and viscous shearing

action.

1.5 Rotation

A fluid motion is characterized by translation, rotation and continuous deformatons.

In uniform motion, fluid elements are simply translated without and rotational de-
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formations. Variations in the velocity components with space coordinated causes the

rotation and deformations. The rate of change in length per unit original length of a

linear fluid element determines the Linear strain or deformation whereas the rate of

change of angle between two linear elements which are perpendicular to each other

initially, determines the rate of angular deformation. Rotation can be defined as the

arithmetic mean of two angular velocities which perpendicular linear segments at a

point. The absence of deformation in the fluid rotation is known to be rigid body

rotation or pure body rotation. When the rotational components at all points in a

flow are observed to be zero, the flow is said to be irrotational.

1.6 Magnetohydrodynamics

The motion of an electrically conducting fluid in the presence of a magnetic field is

described by Magneto-hydrodynamics. Because of the motion of conducting fluids

across the lines of force of magnetic field, a potential difference would be created

which in turn causes a flow of electric currents. The magnetic file produced by

the electric currents modifies the magnetic field which has created them and there

would be a flow of electric currents across these magnetic fields associated with

a body force which is known as Lorentz force. Magnetohydrodynamic and heat

transfer for a viscous incompressible fluid over a plate have immense applications

in variety of industrial and engineering problems like petroleum industries, plasma

studies and geophysics and so on.

1.7 Thermohaline Convection

The study of convective motions when there is more than one diffusing component

with different molecular diffusivities, is of recent development in the field of convec-

tion. When the diffusing components have opposing effects on the vertical density

distribution, a number of interesting phenomena could happen. This phenomenon
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was first studied with an application to oceans in mind because heat and salinity are

contest in oceans related and the process is termed thermohaline or thermosolutal

convection. The importance of thermohaline convection study was recognized in

many fields such as astrophysics, geophysics, chemistry and limnology. Thermoha-

line convection has two requirements for it to occurs,

1. The fluid should contain two or more diffusing components with different molec-

ular diffusivities.

2. The components must make opposing contributions to the vertical density gra-

dient. Overstability is a characteristic feature of thermohaline convection, in which

temperature and solute concentration are provide two diffusivities. Temperature

and salinity act as opposite function on the vertical density gradient of this system.

In thermohaline convection, the stable solute gradient is destabilized by raising the

temperature of the lower boundary. The stability problems in the thermohaline

convection focuses on the stability of periodic solution.

1.8 Chandrasekhar number Q

The Chandrasekhar number is a dimensionless quantity used in magnetic convec-

tion to represent ratio of the Lorentz force to the viscosity. It is named after the

Indian astrophysicist Subrahmanyan Chandrasekhar. The main function function of

Chandrasekhar number is measure of the magnetic field, being proportional to the

square of a characteristic magnetic field in a system. The Chandrasekhar number

is defined as

Q =
H2
od

2

µoρνλ
(1.9)

where µo is the magnetic permeability, ρ is the density of the fluid, ν is the kinematic

and λ is the magnetic diffusivity. Ho and d are a characteristic magnetic and a length

scale of the system respectively.
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1.9 Magnetic Permeability

Magnetic permeability, relative increase or decrease in the resultant magnetic field

inside a material compared with the magnetizing field in which the given material

is located; or the property of a material that is equal to the magnetic flux density B

established within the material by a magnetizing field divided by the magnetic field

strength H of the magnetizing field. Magnetic permeability µ is defined as µ = B
H

.

Magnetic flux density B is a measure of the actual magnetic field within a material

considered as a concentration of magnetic field lines, or flux, per unit cross-sectional

area. Magnetic field strength H is a measure of the magnetizing field produced by

electric current flow. The magnetic permeability is defined as the property of the

material to allow the magnetic line of force to pass through it. The magnetic line of

force is directly proportional to the conductivity of the material. SI unit is Henry

per meter (H/M or Hm2).The magnetic permeability is equal to the ratio of the

field intensity to the flux density. It is expressed as, µm,

µm =
B

H
(1.10)

where B is magnetic flux density and H is magnetic field intensity.

1.10 Magnetic Diffusivity

The magnetic diffusivity is a parameter in plasma physics which appears in the

magnetic Reynolds number. It has SI units of m2/s and is defined as

η =
1

µoρo
(1.11)

where µ0 is the permeability of free space, and ρ0 is the electrical conductivity. A

measure of the tendency of a magnetic field to diffuse through a conducting medium

at rest; it is equal to the partial derivative of the magnetic field strength with respect
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to time divided by the Laplacian of the magnetic field, or to the reciprocal of 4πµρ,

where µ is the magnetic permeability and ρ is the conductivity in electromagnetic

units.

1.11 Long wave instabilities (secondary instabili-

ties)

The two dimensional Landau-Ginzburg equation in fast variables x, y, t andA(X, Y, T ) =

A(x,y,t)
ε

, as

λ0
∂A

∂T
− λ1

(
∂

∂X
− i

2q

∂2

∂Y 2

)2

A− λ2A+ λ3|A|2A = 0, (1.12)

Newell and Whitehead [77] derived envelope equations, In order to study the prop-

erties of a structure with a given phase winding number δq, we write equation (1.12)

in fast variables x, y, t and A(X, Y, T ) = A(x,y,t)
ε

, as

∂A1

∂t
−
(
ε2
λ2

λ0

− λ1

λ0

δq2
)
A1 + 2iδq

λ1

λ0

( ∂
∂x
− i

2qsc

∂2

∂y2

)
A1+

λ1

λ0

( ∂
∂x
− i

2qsc

∂2

∂y2

)2

A1 −
λ3

λ0

|A1|2A1 = 0, (1.13)

A1 =

[
ε2λ2 − λ1δq

2

λ3

] 1
2

. (1.14)

Let ũ + iṽ be an infinitesimal perturbation of steady state solution A1 given by

equation (3.59). Substitute

A1 = ũ+ iṽ + [
(
ε2λ2 − λ1δq

2
)
λ−1

3 ]
1
2 , (1.15)
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into equation (1.13) and equate the real and imaginary parts, we obtain

∂ũ

∂t
=− 2

(
ε2
λ2

λ0

− λ1

λ0

δq2

)
ũ+

λ1

λ0

ũ− λ1

λ2

∂2
∂ṽ

∂x
, (1.16a)

∂ṽ

∂t
=
λ1

λ0

∂2
∂ũ

∂x
+
λ1

λ0

∂1ṽ. (1.16b)

where ∂1 = ∂2

∂x2 + δq
qsc

∂2

∂y2 − 1
4q2
sc

∂4

∂y4 and ∂2 = 2δq− 1
qsc

∂2

∂y2 We analyse equations (1.16a)

and (1.16b) by using normal modes form

ũ = U cos(qxx) cos(qyy)eSt, ṽ = V sin(qxx) cos(qyy)eSt. (1.17)

Substituting equation (1.17) in equations (1.16a) and (1.16b) weget,

[
2(ε2λ2 − λ1δk

2) + λ0S + χ1

]
U + λ1χ2qxV = 0 (1.18a)

λ1qxχ2U + (χ1 + λ0S)V = 0. (1.18b)

Here χ1 = λ1

(
q2
x +

q2
yδk

qsc
+

q4
y

4q2
sc

)
and χ2 = (2δk +

q2
y

qsc
). On solving equations (1.18a)

and (1.18b), we get

S2 +
2S

λ0

[
2
(
ε2λ2−λ1(δk)2

)
+χ1

]
+
[
2
(ε2λ2

λ2
0

− λ1δk
2

λ2
0

)
+χ1

]
ψ1−q2

xχ2
λ1

λ2
0

= 0, (1.19)

whose real roots are (S±),

(S±) = − 1

λ2
0

{[
2λ0(ε2λ2 − λ1δkq

2) + λ0χ1

]
±
[
2λ0(ε2λ2 − λ1δq

2)2 + λ2
1q

2
xχ

2
2

] 1
2

}
.

(1.20)

The equivalent mode is stable if S(−) is negative and unstable if S(+) is positive.

Symmetry significance helps to confine the field of S(+) to qx ≥ 0, qy ≥ 0.
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Eckhaus Instability

Putting qy = 0 into equation (1.20), we get

S2 +
2S

λ0

[
2(ε2λ2 − λ1δq

2) + λ1q
2
x

]
+
λ1q

2
x

λ2
0

[
2(ε2λ2 − 3λ1δq

2) + q2
x

]
= 0, (1.21)

The roots are real numbers and their sum is negative number and the product

of roots is positive number, the pattern is stable and if the product of roots is

negative number then the pattern becomes unstable. Eckhaus instability defines

q2
x ≤ 2

(
3λ1δq

2 − ε2λ2

)
for |δq| ≥

√
ε2λ2

3λ1
and unstable wave tends to zero when

|δq| →
√

ε2λ2

3λ1
.

Zigzag Instability

putting qx = 0 into equation (1.21), we get

λ2
0S

2 + 2S(2λ0χ11 + λ0χ12) + (2χ11 + χ12)χ12 = 0, (1.22)

where χ11 = ε2λ2 − λ1δq
2 and χ12 = λ1

(
q2
yδq

qsc
+

q4
y

4q2
sc

)
, the two eigen conditions are

unrelated and amplified when S(−) = −2(ε2λ2 − λ1δq
2) − λ1

qsc
q2
yδq − λ1

4q2
sc
q2
y < 0

and S(+) = −λ1q
2
y

(
δq +

q2
y

4qsc

)
> 0. These conditions define the domain of Zigzag

Instability when δqs < 0.

1.12 Literature Survey

1.12.1 Rayleigh Benard Convection in a Porous Medium

with the Effect of Rotation and Magnetic Field.

Rayleigh Benard Convection with the Effect of Rotation

Rayleigh Benard convection with the effect of rotation is an interesting application

in hydrodynamic system which combines thermal buoyancy with rotation induced
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centrifugal and coriolis forces. Chandrasekhar [35], Busse et al. [29, 30] and Buell

and Ivan [27] investigated the effect of rotation in atmospheric and oceanic flow.

A Taylor number (Ta) characterizes the centrifugal forces due to the rotation of a

fluid about the vertical axis, relative to viscous forces. Chandrasekhar [35] derived

Rayleigh number (R) as a function of Taylor number (Ta). Davies and Oilman [39]

found that for a large Ta, the Rayleigh number for steady convection is less and

the system is more constrained. Chandrasekhar [35], Tagare et al. [119] and Benerji

et al. [8] studied linear and nonlinear instabilities of Rayleigh Benard convection in

rotating fluid between stress-free boundaries and observed the rotation effect on the

onset thermal instability.

Rayleigh Benard Convection with Effect of the Magnetic

Field

The Rayleigh-Benard convection with an imposed magnetic field has significant im-

portance in astrophysical applications and observation of sunspots. The theory of

sunspots was studied by Thompson and Weiss [122]. In outer layers of the sun

and other late type stars, thermal convection is affected by the presence of mag-

netic fields. Thermal stability of magnetoconvection was first carried out by Thom-

son [124] who observed that the Rayleigh number increases linearly with Chan-

drasekhar number Q. Chandrasekhar [35], Kloosterziel and Carnevale [56] who

observed the onset of stationary convection, predicted that magnetic prandtl num-

ber Pr2would be less than the thermal Prandtl number Pr1. Nakagawa [74] and

Jirlow [54] investigated magnetoconvection experimentally, found that vertical mag-

netic fields delay the thermal convection and the marginal stability boundary is

determined. Bhatia and Steiner [22] found that a magnetic field has a stabilizing

effect on thermal convection. In the magnetoconvection, the magnetic field strongly

affects all kinds of convective flows by varying the direction and density. The pres-

ence of a vertical magnetic field leads the boundary of monotonous instability and
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increases the stability of the conductive state. The presence of a horizontal magnetic

field breaks the symmetry and convection occurs in the form of rolls with axes par-

allel to them. A strong horizontal magnetic field leads to time-dependent convection

and purely geometrical effects cause oscillations. Chandrasekhar [35], Knobloch et

al. [58], Busse et al. [30] , Clever et al. [36] and Basak et al. [15] investigated a

uniform vertical magnetic field that suppresses the onset of convection, reduces con-

vective heat transport across the fluid layer and affects the primary and secondary

instabilities. Gotoh and Yamada [48] discussed thermal convection in a horizon-

tal layer of magnetic fluid. Bajaj and Malik [12, 13] studied the Rayleigh Benard

convection in magnetic fluids and examined the stability of various flow patterns.

Burr and Muller [126] studied RayleighBnard convection in liquid metal layers un-

der the influence of a horizontal magnetic field. The linear and nonlinear stability

of magnetoconvection was studied by Kloosterziel and Carnevale [56], Thompson et

al. [123] and Bhatta [23]. A broad review of magnetoconvection was given by Weiss

and Proctor [131]. Their study concerned nonlinear models of the geomagnetic field

and interactions of magnetic fields and they combined analytical and computational

approach to provide a model for the study of a wide range of problems. Magneto-

convection has multi-faceted applications in astrophysics, geophysics, aerodynam-

ics, nuclear reactors, growth of large-diameter semiconductor crystals, meteorology,

biomedical problems, engineering and industry. Chandrasekhar [35] identified that

if magnetic field is imposed in a purely horizontal field and electromagnetic forces

are strong compared to inertial ones, then the flow undergoes a two-dimensional

convective rolls which is considerably less than Joule dissipation.

Rayleigh Benard Convection in a Porous Medium

Rayleigh-Benard convection in a porous medium has considerable interest in geo-

physical fluid dynamics and the phenomenon occurs within the Earth’s outer core.

Convection in a layer of viscous fluid was first studied by Rayleigh [91]. According to
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Darcys law, which states the fluid flowing with velocity V through a porous medium

experiences a resistance gV
K

per unit mass, where K is the coefficient of permeability

and g is gravitational acceleration. Horton and Rogers [53] and Lapwood [61] ana-

lyzed the critical Rayleigh number, which determines the onset of natural convection

in horizontal isotropic porous layer heated from below and cooled from above assum-

ing Darcy’s law. They found that the critical Rayleigh number is 4π2 corresponding

to critical wave number π. This discrepancy between theory and experiments were

sought to be removed by Rogers and Morrison [94] and Rogers et al. [95] by al-

lowing for temperature dependence of fluid properties and columnar (rather than

cellular) form of convection. Lapwood’s problem was greatly extended by Wood-

ing [132–134] at different states experimentally and theoretically. Palm et al. [82]

pointed out that convection in a porous media may provide a convenient means of

experimentally demonstrating nonlinear effects in convection such as the preferred

cell pattern or hysteresis. Beck [16] was the first who investigated the selection

of these roll patterns in rectangular porous boxes according to linear theory. The

formulation and derivation of the basic equations using Boussinesq approximation

was given in a treatise by Joseph [55]. The linear stability problem for the onset

of convection and various nonlinear instability phenomena in porous media have

been reviewed by Rees et al. [92, 93]. In Benard convection, it is necessary to use

extremely thin fluid layers to detect these phenomena, but in porous media the fric-

tion force is much larger, so the depth of the fluid layer can be greatly increased. An

alternative to Darcys equation is Brinkman equation which is valid for a sparsely

packed porous medium.

Rayleigh Benard Convection with the Effect of Rotation and

Magnetic Field

Both effects inhibit the onset of instability and elongate the cells which appear

at marginal stability. Nakagawa [75] experiments the thermal instability in the
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presence of magnetic field and rotation successfully. The critical Rayleigh number

for the onset of instability, for a constant speed of rotation and strength of magnetic

field, was determined by measuring the steady temperature gradients which are

established for various rates of heating. The onset of overstability could always be

distinguished by the nearly pure sinusoidal oscillations exhibited by the temperature

records. The thermal instability with the effect of rotation and magnetic field was

theoretically studied by Chandrasekhar [34] and Eltayeb [43]. Gupta et al. [49]

studied Rayleigh-Benard convection problem under the simultaneous action of a

uniform vertical rotation and magnetic field for the validity of principle of exchange

of stabilities. Mulone and Rionero [69] studied the nonlinear stability of the magnetic

Benard problem with rotation through Lyapunov direct method, in stressfree case

and for vanishing stress at the boundaries, the nonlinear critical Rayleigh number has

the same behaviour as in the linear case. Friedrich et al. [44] experimentally studied

the effects of a rotating magnetic field on fluid flow in an electrically conducting melt

kept in a cylindrical container heated from below; experimental data were compared

to three-dimensional, time-dependent numerical calculations. Volz and Muzuruk

[128,129] observed the rotating magnetic field increases the critical Rayleigh number

and not affect the onset of instability for axisymmetric. Aurnou and Olson [6]

studied thermal convection subject to a uniform rotation and a vertical magnetic

field of liquid gallium layer experimentally, measured heat transfer at a low Prandtl

number and observed the critical Rayleigh number increases with magnetic energy

density and the convective heat transfer is inhibited by rotation. Varshney et al. [127]

numerically studied the effect of a vertical magnetic field on rotating convection of

low Prandtl number liquid metal in a cubical cavity; they found that the magnetic

field generates a strong damping effect on flow velocities and heat transfer at low

rotation rates. Podvigina [87] studied the onset of rotating convection with an

imposed vertical magnetic field, identified the region of parameter values for which

rolls emerge at the onset of convection. Ghosh and Pal [45] investigated instabilities

and chaos near the onset of convection with free-slip boundaries in the presence
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of vertical rotation and horizontal magnetic field without Prandtl-number, using

Direct numerical simulations.

Rayleigh Benard Convection in a Porous Medium with the

Effect of Magnetic Field

Convection in a porous medium with magnetic field is of considerable interest in

geophysical fluid dynamics problems, for example, earth’s interior and the mushy

layer of earth’s outer core. Patil and Rudraiah [84] investigated the stability ther-

mal convection in a porous medium of a conducting viscous fluid using normal mode

technique and the energy method of stability theories. Rudraiah [98] studied lin-

ear theory for stationary and oscillatory modes using the normal modes and simple

and Hopf-bifurcations, studied linear and steady nonlinear magnetoconvection in a

sparsely packed porous medium using Brinkman model, and considered the effective

viscosity µe was the same as fluid viscosity µ. Gilver and Altobelli [46] who inves-

tigated the phenomenon found that effective fluid viscosity µe to fluid viscosity µ

takes a value ranging from 0.5 to 10.9. Sekar and Vaidyanathan [106,107] , Borglin et

al. [26] and Desaive et al. [40] studied instability of saturating a porous medium with

the effect of rotation in a magnetized ferrofluid. Alchaar et al. [3,4] who investigated

the phenomena using the Brinkman model obtained closed form solutions based on

a parallel flow assumption. Bian et al. [24, 25] studied convection in a shallow hor-

izontal porous layer, which a transverse magnetic field is applied. Saravanan and

Yamaguchi [101] are studied the onset convection in a porous layer with magnetic

fluid. The critical Rayleigh number, critical wave number, and the eigenfunctions

were calculated using a combination of analytical and numerical methods. Ben-

erji et al. [7] investigated the problem of magnetoconvection in a sparsely packed

porous medium also studied linear and weakly nonlinear hydrodynamic stability,

bifurcations and instabilities.
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1.12.2 Thermohaline Convection in a Porous Medium with

the Effects of Rotation and Magnetic Field.

Thermohaline Convection with the Effect of Rotation

Thermohaline convection with the effect of rotation has fundamental importance in

geophysical problems involving water in oceans, Helium in Hydrogen and sulphur in

molten from with iron in earth’s outer core. Rotation brings in a new phenomena

leading to the distortion of convection cells as well as causing in overstable oscilla-

tions. This analysis reveals that for infinitesimal interference in the form of rolls.

The marginal state will be oscillatory and the critical Rayleigh number increases

with increase in rotation parameter. Further it is found that for disturbances of

finite amplitude, subcritical instability is possible, which means that the system be-

comes unstable to steady finite amplitude disturbances before it becomes unstable

to infinitesimal disturbances. The rotating thermohaline convection is consequently

expected to show a line of secondary bifurcation which culminates in tertiary bifur-

cation. For large Prandtl number, there exists only one secondary bifurcation point,

not a line of secondary bifurcation points, which culminates in tertiary bifurcation

point. The onset of instabilities in rotating thermohaline convection was studied by

Subha Sengupta et al. [108], Pearlstein [86], Benerji [8], Tagare [118–120].

Thermohaline Convection with the Effect of Magnetic Field

The Thermohaline magneto convection provides a lot of information about the dy-

namics dealt with by astrophysicists, geophysicists, oceanographers and engineers

on a varity of problems. The dynamo theory, which is a significant part of cosmic

magneto hydrodynamics, explains the generation mechanism and origin of these

magnetic fields and their spatial and temporal evolution and changes. Lortz [62]

was the first to study double-diffusive convection with the effect of magnetic field.

Malkus and Veronis [66] clarified some of the mathematical aspects of stability cri-
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terion. Rudhraiah et al. [98, 99] investigated and studied the linear and nonlinear

theory of the thermohaline convection in the presence of a magnetic field. The effect

of magnetic field and salinity gradient are to suppress the steady convective motions

depending on the strength of the magnetic field and under certain conditions where

the system is unstable. Banerjee et al. [14] and Mohan [68] studied a characteriza-

tion theorem in magnetothermohaline convection; the total kinetic energy associated

with a disturbance is greater than the sum of its total magnetic and concentration

energies. Abdullah [1] studied thermosolutal convection in a nonlinear magnetic

fluid when the fluid is heated from above and soluted from below. Narayana et

al. [76] studied magneto thermohaline convection for viscoelastic fluids, Harfash et

al. [51] in a reacting fluid and Bhadauria and Kiran [19] studied the weakly nonlinear

double diffusive magneto convection in Newtonian fluids.

Thermohaline Convection in the Porous Medium

In geothermal areas, the ground water usually contains salts in solution, and hence it

is of interest to consider the onset of convection in porous medium when both thermal

expansion and solute concentration variations can produce variations in density.

The onset of thermohaline convection in a porous medium was first studied by

Nield [78] who analysed the effect of a stable salinity gradient of a saturated porous

medium using Darcy model. Patil and Rudraiah [84] and Rubin [96,97] studied the

effect of stable and unstable temperature and salinity gradients on the stability of

conducting single component and two component fluids in a porous medium using

Brinkman model. Patil et al. [85] studied various cases of stabilising and destabilising

concentrations and temperature gradients for both Brinkman and Darcy models for

two component fluids. Poulikakos [88] used Brinkman extension of the Darcy model

to study the effect of sparsely packed porous medium on double diffusive convection.

Murray and Chen [71] experimentally examined the double-diffusive convection in

a porous medium. Parthiban et al. [83] studied the effect of inclined gradients on
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thermohaline convection in a porous medium, Murty et al. [72] studied numerically

the stability of thermohaline convection in a rectangular box containing a porous

medium and Curtis et al. [81] studied plume separation by transient thermohaline

convection in porous media. Mulone and Straughan [70] used change of variable in

an energy method and discussed the coincidence of the critical linear and nonlinear

stability parameters. Musuuza et al. [73] studied a thermohaline system in which the

density gradients arise from salinity and temperature difference. Benerji et al. [10]

studied the thermohaline convection between stress-free boundaries in a sparsely

packed porous medium, using the DLB model. Sekar et al. studied [103,104] stability

analysis of thermohaline convection in Ferrofluids and dusty ferrofluids in a sparsely

packed porous medium.

Thermohaline Convection with the Effect of Rotation and

Magnetic Field

The effects of rotation about vertical axis and magnetic field about vertical direction

have often been emphasized in the literature by Chandrasekhar [35]. Convection un-

der rotation or magnetic field is interesting because each can stabilize conduction

state independently. Similarly oscillatory convection and subcritical steady finite

amplitude convection can both occur in presence of a magnetic field and during

rotation. Gupta et al. [50] and Dhiman [41] analysed the governing equations of

thermohaline convection with a uniform vertical rotation and magnetic field. Sekar

et al. [105] interested to find out the effect of rotation on two component ferrofluids

for both sparsely and densely packed porous medium using Brinkman and Darcy

models. The thermohaline convection was analysed for both the stationary and

oscillatory modes. Mahinder and Pradeep [113] are studied the thermosolutal con-

vection in a couple-stress fluid in a porous medium in the presence of rotation and

vertical magnetic field, using normal mode analysis. Chand et al. [33] theoretically

investigated the effect of rotation with internal angular momentum in a magnetized
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ferrofluid, soluted and heated from below, and subjected to a transverse uniform

magnetic field.

Thermohaline Convection in a Porous Medium with the Ef-

fect of Magnetic Field

Thermohaline magneto convction in a porous medium is an example of triple dif-

fusive mechanism, and exercises a huge influence on many science and engineering

applications. Marked improvement in theoretical investigation of the planetary and

stellar magnetism has come into being, especially in recent years. Sharma et al. [109]

studied thermohaline convection in a porous medium subject to magnetic field in

a layer of fluid subject to a stable salinity gradient. Rayleigh value increased with

increase in stable salinity gradient as well as magnetic field. Sunil et al. [116, 117]

studied convection of saturated porous medium on the effects of rotation and mag-

netic fields in a ferromagnetic fluid using linear stability analysis. Bhadauria and

Srivastava [21] studied thermohaline magneto convection in the porous medium,

characterized by BrinkmanDarcy model. Sekar et al. studied [102] studied stabil-

ity analysis of thermohaline convection in ferromagnetic fluids in a densely packed

porous medium. Benerji et al. [10] used DLB model to study stability analysis

of thermohaline magneto convection in a sparsely packed porous medium and ob-

tained the conditions for the occurrence of various types of bifurcations and derived

Landau-Ginzburg equations to study the instabilities. Prakesh et al. [89] studied

linear stability analysis of thermohaline convection in porous medium in the pres-

ence of a uniform vertical magnetic field, characterization theorem was proved for

magnetothermohaline convection of the Stern type.
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1.13 Objective of the Present Work

The objective of the present study is to explore the linear and nonlinear convec-

tion in a porous medium with the effects of rotation due to vertical and horizon-

tal magnetic field for single diffusive, double diffusive and triple diffusive systems.

Rayleigh Benard convection in a sparsely packed porous medium with magnetic field

and rotation and thermohaline convection is an example of double diffusive system.

Thermohaline convection in a sparsely packed porous medium with magnetic field

and rotation is example of triple diffusive system. In linear and nonlinear analysis,

we write analytical conditions for varies bifurcation points and instabilities. Graphi-

cally, reprsented the stability regions of Eckhaus and Zigzag instabilities at the onset

of Pitchfork bifurcation. At the onset of nonstationary mode we identified travelling

wave and standing wave regions for various parameters.

1.14 Outline of the Thesis

This thesis consists of seven chapters. Chapter 1 consists of introduction to the

study and is general in it provides rationale for investigations carried out in the

thesis. Chapter 2 discusses the linear and nonlinear instabilities of Rayleigh Benard

convection in a sparsely porous medium due to horizontal magnetic field. Chapter 3

looks at the instabilities of Rayleigh Benard convection in a sparsely packed porous

medium with the effect of rotation and horizontal magnetic field. Chapter 4 inves-

tigates linear and nonlinear instabilities of thermohaline convection in a sparsely

porous medium due to horizontal magnetic field. Chapter 5 discusses thermohaline

convection in a sparsely porous medium with the effect of rotation. Chapter 6 looks

at the problem of thermohaline convection in a porous medium with the effect of

rotation and horizontal magnetic field. Chapter 7 deals with conclusions and scope

of future work.
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2.1 Introduction

Convection in a plane horizontal fluid heated from below and cooled from above is a

conventional problem in hydrodynamic stability. The rolls with axes parallel to the

horizontal magnetic field were arises on the set of convection. Magnetoconvection

is the study of thermal convection of electrically conducting fluid in the presence

of magnetic field. Thompson [125] and Chandrashekar [35] were studied the effect

of vertical magnetic field on the onset of convection. The frontier of monotones

instability is unnatural only by the vertical component of the magnetic field. How-

ever,the property of isotropy, are kept in the case of a purely vertical magnetic

field and Busse [28] and Proctor [90] also studied. In the magnetoconvection, the

magnetic field strongly affects all kinds of convective flows by varying direction and

density. The presence of a vertical magnetic field leads the boundary of monotonous

instability and increases the stability of the conductive state. The presence of a

horizontal magnetic field breaks the symmetry and arise the convection in the form

of rolls with axes parallel to them. The horizontal magnetic field not change the

primary instability and affects for secondary instability. A strong horizontal mag-

netic field lead to time-dependent convection and purely geometrical effects cause

oscillations. However Horizontal magnetoconvection in a porous medium has not

conventional any attention in-spite of its geophysical application. The linear and

nonlinear stability of magnetoconvection was studied by Kloosterziel [56], Thomp-

son [123] and Bhatta [23]. A broad review about magnetoconvection given by Broad

Weiss and Proctor [131], concerned nonlinear models of the geomagnetic field and

interactions of magnetic fields. Magnetoconvection has multi-faceted applications

in astrophysics, geophysics, aerodynamics, nuclear reactors, the growth of large-

diameter semiconductor crystals, meteorology, biomedical problems, engineering and

industry.

A study of convection in porous medium broadly given by Nield and Bejan [80].

Magnetoconvection in a porous medium by using Darcy’s law studied by Anwar [17]
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and Srivastava [114]. Magnetoconvection in a sparsely packed porous medium stud-

ied by Benerji [7] and Shivakumara [112]. Magnetoconvection in a porous medium

has important relevance in the study of the Earth’s core in geophysics, efficiency of

petroleum reservoir and engineering applications.

In this chapter, we studied primary and secondary instabilities and bifurcation

of the magnetoconvection in a sparsely packed porous medium due to horizontal

magnetic field by deriving Ginzburg Landau equations. At the supercritical pitch-

fork bifurcation we evolved two-dimensional LG equation derived at the supercritical

Hopf bifurcation we evolved one dimensional LG equations at the onset of oscilla-

tory convection and identified secondary instabilities and region of travelling and

standing waves. Tagare et al. [119, 120], Benerji et al. [10] derived one dimensional

and two dimensional Ginzburg Landau equations at the onset of stationary and

oscillatory convection.

The basic equations for weakly nonlinear magnetoconvection in a sparsely porous

medium are derived. Normal mode technique is used to study the linear stability

analysis. Two dimensional Ginzburg Landau equation derived and study the trans-

port of heat by convection and occurrence of secondary instabilities. The system

of nonlinear one dimensional Ginzburg Landau equations are derived and obtained

the stability regions of steady state, standing and travelling waves.

2.2 Basic equations

We considered the thermally and electrically conducting fluid in an unbounded hor-

izontal layer of a thinly packed porous medium with an magnetic field Ho of depth

d in the horizontal x-direction. Upper and lower force free bounding surfaces of the

layer heated from below is valid Bousssinesq approximation. The temperature vari-

ation across the free-free boundaries is ∆T ′. The flow in the thinly packed porous

medium is governed by the DLB model. The dimensionless equations for horizontal

magneto convection in a porous medium are
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Figure 2.1: Physical Configuration

∇′.V ′ = 0, and ∇′.H ′ = 0, (2.1)

ρ′o

[
1

φ

∂V
′

∂t′
+

1

φ2
(V
′
.∇′)V ′

]
− µm

4π

[
H ′o

∂H
′

∂x′
+ (H

′
.∇′)H ′

]
=

−∇
(
P ′ +

µm
8π
|H ′|2 +

µmH0

4π2
H ′y

)
+ ρ′g − µ

K
V
′
+ µe∇′2V

′
, (2.2)

M
∂T ′

∂t′
+ (V

′
.∇′)T ′ = κ∇′2T ′, (2.3)

φ
∂H

′

∂t′
= ∇′ × (V

′ ×H ′oêy) +∇′ × (V
′ ×H ′) + η∇′2H ′. (2.4)

The fluid density ρ′ is described as

ρ′ = ρ′0 [1− α(T ′ − T ′b)] , (2.5)

where ρ′0 - fluid density, α = 1
−ρ′0

( ∂ρ
′

∂T ′
) is thermal expansion coefficient, V

′
- fluid

velocity, P ′ - pressure, H
′

- magnetic field, T ′ - temperature, g - acceleration due

to gravity, φ - porosity and 0.8 < φ < 1 for DLB model, µe - coefficient of effective

fluid viscosity, K - permeability of porous medium, µm - magnetic permeability,

κ - thermal diffusivity and η - magnetic diffusivity. Λ = µe/µ varies from 0.5 to

10.9. The dimensionless quantity M represents the dimensionless Heat capacity.
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The conduction state is characterized by

V
′
s = 0, T ′s = T ′0 − (∆T ′/d)z′, (2.6)

and we take the temperature perturbation as θ′ = T ′ − T ′s. We use the scaling

x =
x′

d
u =

u′

κ/Md
t =

t′

Md2/κ
H =

H
′

κHo/η

y =
y′

d
v =

v′

κ/Md
θ =

θ′

∆T ′
P =

P ′

ρ′oM
−2κ2d−2

z =
z′

d
w =

w′

κ/Md

The basic dimensionless equations are

∇.V = 0, and ∇.H = 0, (2.7)

1

M2φPr1

[
∂V

∂t
+

1

φ
(V .∇)V

]
−Q∂H

∂y
−QPr2

Pr1

(H.∇)H =

−∇
(

P

MPr1

+
Q

2

Pr2

Pr1

|H|2 +QHy

)
− 1

MDa

V +
Λ

M
∇2V +Rθêz, (2.8)

∂θ

∂t
+

1

M
(V .∇)θ =

w

M
+∇2θ, (2.9)

φ
Pr2

Pr1

∂H

∂t
−M∇2H = ∇× (V × êy) +

Pr2

Pr1

∇× (V ×H). (2.10)

The non dimensional numbers are defined as

R =
gα∆Td3

κν
Pr1 =

ν

κ
Pr2 =

ν

η

Q =
µmH

2
0d

2

4πρ0νη
Da =

K

d2
(2.11)
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Now taking the scalar product of curl of curl of equation (2.8) and equation (2.10)

with êz. we get,

(
1

M2φPr1

∂

∂t
+

1

MDa

− Λ

M
∇2

)
∇2w +Q

Pr2

Pr1

êz
{
∇×

[
(H.∇)J − (J.∇)H

]}
=

1

M2φ2Pr1

êz
{
∇×

[
(V .∇)W − (W∇)V

]}
+R∇2

hθ +Q
∂

∂y
(∇2Hz), (2.12)

(
φ
Pr2

Pr1

∂

∂t
−M∇2

)
Hz −

∂w

∂z
=
Pr2

Pr1

[
∇× (V ×H)

]
· êz, (2.13)

using equations (2.9), (2.12) and (2.13) can be brought to a form given as

Lw = N , (2.14)

where

L =DφDPr1
[
D∇2 −Q∂2

yD∇2
]
− R

M
∇2
hDφ, (2.15)

N =QD∇2Pr2

Pr1

∂y
[
(H.∇)w − (V .∇)Hz

]
+

1

M2φ2Pr1

DDφêzs1

−QPr2

Pr1

DDφêz
{
∇×

[
(H.∇)J − (J.∇)H

]}
− R

M
∇2
hDφ(V .∇)θ, (2.16)

where D =
(
∂
∂t
−∇2

)
, Dφ =

(
φPr2
Pr1

∂
∂t
−M∇2

)
, DPr1 =

(
1

M2φPr1
∂
∂t

+ 1
MDa

− Λ
M
∇2
)
,

∇2
h = ( ∂2

∂x2 + ∂2

∂y2 ) and ∇2 = ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ).

2.2.1 Boundary Conditions

Let us assume the fluid is contained between z = 0 and z = 1, For perfectly con-

ducting boundary with temperature, we have

θ = 0 and Hz = 0 on z = 0, z = 1 for all x, y.
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The tangential stresses on surfaces vanish and stress-free conditions are considered

on the surface and vanishing of temperature fluctuations.

τxz = µ

(
∂u

∂z
+
∂w

∂x

)
= 0, τyz = µ

(
∂v

∂z
+
∂w

∂y

)
= 0, (2.17)

where µ is the dynamic viscosity, thus equation of continuity implies that w =

D2w = D4w = 0 at z = 0, 1.

2.3 (i). Linear Instabilities of Rayleigh Benard

Convection in a Sparsely Packed Porous medium

due to Horizontal Magnetic Field

Linear stability analysis approach to studying stability of a flow is to analyse how

the system responds to small disturbance. The solution of linearised system Lw =

0, assumes the periodic disturbances with period 2π/l along x-direction, periodic

disturbances with period 2π/m along y-direction with growth rate p of the form

w = W (z)ei(lx+my)+pt, (2.18)

we perform a linear stability analysis of the problem by substituting w into Lw = 0,

we get

{
DqDqpMφ

[ Λ

M
Dq −

1

MDa

− p

M2φPr1

]
+
Rq2

M
Mφ +Qm2DqDqp

}
W (z) = 0.

(2.19)

where Dq = D2 − q2, Dqp = D2 − q2 − p and Mφ = MDq − φPr2Pr1
p
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2.3.1 Determination of Marginal Stability when Rayleigh

number R is a Dependent Variable

Substituting W (z) = sinπz and p = iω into equation (2.19), we get

R =
M

q2
D1

[
A1 + iω(B1ω

2 + C1)
]
, (2.20)

where

A1 = M

[(
Λδ2 +

1

Da

)
δ2 +Qm2

]
δ4 +

[
φ2Pr2

2

MPr2
1

(
Λδ2 +

1

Da

)
δ2 +

φ2Pr2

Pr1

Qm2

]
ω2

− φPr2
2

M2Pr3
1

ω4, (2.21)

B1 =
φPr2

2

MPr2
1

(
φΛ +

1

MPr1

)
δ2 +

φ2Pr2
2

DaMPr2
1

, (2.22)

C1 =

(
MΛ +

1

φPr1

)
δ4 +

M

Da
δ2 +

(
M − φPr2

Pr1

)
Qm2, (2.23)

D1 =
δ2

M4δ4 + φ2 Pr
2
2

Pr2
1
ω2
, δ2 = π2 + q2 and q2 = l2 +m2. (2.24)

Stationary Convection (ω = 0):

Substituting ω = 0 in equation (2.20), we get the stationary Rayleigh number Rs,

Rs =
δ2

q2

[
Qm2 + δ2

(
1

Da
+ δ2Λ

)]
, (2.25)

The critical stationary Rayleigh number Rsc for critical wave numbers lsc and msc

is

Rsc =
δ2
sc

q2
sc

[
Qm2

sc + δ2
sc

(
1

Da
+ δ2

scΛ

)]
, (2.26)

where δ2
sc = π2 +q2

sc and q2
sc = l2sc+m2

sc. which is convectively stable when Rs < Rsc,

unstable when Rs > Rsc and marginal stable when Rs = Rsc. If the temperatures

at stress-free boundaries are fixed and at nonporous medium, φ = M = Λ = 1, the

value of critical stationary Rayleigh number Rsc = 27π4/4 for critical wave number
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qsc = π/
√

2. If there is no periodic disturbance along x-direction and periodic dis-

turbance along y-direction with growth rate p, then the stationary Rayleigh number

Rsy is,

Rsy = (m2 + π2)Q+ (m2 + π2)2

[
1

Da
+ (m2 + π2)Λ

]
. (2.27)

If there are periodic disturbances along x-direction and no periodic disturbance along

y-direction with growth rate p, then stationary Rayleigh number Rsx is,

Rsx =
(l2 + π2)2

l2

[
1

Da
+ (l2 + π2)Λ

]
. (2.28)

Oscillatory Convection (ω2 > 0):

From equation (2.20), R represents imaginary number but Rayleigh number is always

real so equating imaginary part of equation (2.20) to zero. i.e.,

B1ω
2 + C1 = 0, (2.29)

where B1 and C1 are given by equations (2.22) and (2.23). For oscillatory convec-

tion ω2 = −C1

B1
> 0 since B1 > 0, for oscillatory convection C1 < 0. For oscillatory

convection, from the equation (2.29)

ω2 =
−M2φ2Pr2

1 [MφPr1(Dam2Q+ δ2 +Daδ4Λ) +Da(δ4 −m2QPr2)]

φ2Pr2
2 (Daδ2 +M(1 +Daδ2Λ)φPr1)

, (2.30)

A necessary condition for ω2 > 0 is Q >
Mδ2o
Da

+δ2
o

(
MΛ+ 1

φPr1

)
m2
(
φ
Pr2
Pr1
−M

) and Pr2
Pr1

> 1
φ
. Substituting

ω2 into real part of equation (2.20), we get oscillatory Rayleigh number R0,

Ro =
δ2x1

[
M
Da

(x1δ
2 + x2φ) + δ4 Pr2

Pr1

]
x3q2φ3(Pr2/Pr1)2

, (2.31)
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where

x1 = Daδ2 + (1 +Daδ2Λ)φ2Pr2,

x2 = Dam2Q+ δ2 +Daδ4Λ,

x3 = Daδ2 +M(1 +Daδ2Λ)φPr1).

The following figures 2.2 to 2.4 which are plotted in (q, R)-plane, calculate the

Rayleigh value based on the effect of physical parameters Q, Pr1 and Pr2. Station-

ary Rayleigh number is independent of Pr1 and Pr2. In figure 2.2, by increasing

Chandrasekhar number Q and fixed remaining parameters stationary and oscilla-

tory convection increases. In figure 2.2, at Q = 5000, there exists a codimension

with two bifurcation points. In figure2.3, there exists a codimension two-bifurcation

point occurs for an oscillatory marginal curve at Pr1 = 1.2 while the remaining in-

tersecting points are Takens-Bogdanov (T-B) bifurcation points. In figure 2.4, there

exists a co-dimension two-bifurcation point that occurs for an oscillatory marginal

curve at Pr2 = 1.25 and the remaining intersecting points are Takens-Bogdanov (T-

B) bifurcation points. This co-dimension two bifurcation point moves downwards

when Pr1 increases while co-dimension two bifurcation point moves upwards when

Pr2 decreases. Solid lines represent Rayleigh value at stationary convection Rs and

dotted lines represent Rayleigh value at oscillatory convection Ro

2.3.2 Determination of Marginal Stability when Rayleigh

number R is an Independent Variable

Substituting W = sinπz, in to equation (2.19) we get a third order polynomial in p

of the following form:

p3 +Bp2 + Cp+D = 0, (2.32)
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Figure 2.2: Neutral curves are plotted for Da = 1500, Λ = 2, M = 0.9, φ = 0.85,
Pr1 = 1, Pr2 = 1.65, (a) Q = 4000, (b) Q = 5000, (c) Q = 6000.
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Figure 2.3: Neutral curves are plotted for Da = 1500, Λ = 8, M = 0.9, φ = 0.85,
Q = 5000, Pr2 = 1.5, Pr1 = 1.1, 1.2, 1.3.
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Figure 2.4: Neutral curves are plotted for Da = 1500, Λ = 8, M = 0.9, φ = 0.85,
Pr1 = 1, Q = 5000, Pr2 = 1.1, 1.25, 1.3.
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where

B =δ2 + Pr1

[(
1

Da
+ δ2Λ

)
Mφ+

Mδ2

φPr2

]
, (2.33)

C =
1

DaMφPr1

[ (
Daδ6 +Mδ2Dam2Q+ δ2 +Daδ4Λ

)
φPr1+(

−Daq2R + δ4 +Daδ6Λ
)
φ2Pr2

]
, (2.34)

D =M2 Pr2
1

δ2Pr2

(
−q2Rδ2 +m2Qδ4 + δ6Da+ δ8Λ

)
. (2.35)

If cubic polynomial equation (2.32), B is positive. The classification of stability

modes of the system are the roots of equation (2.32). Unstable means there exists

at least one root of equation (2.32) with Re(p) > 0, stable means all roots of equation

(2.32) with Re(p) < 0. We get pitchfork bifurcaation when D = 0 and BC−D > 0.

We get the Hopf bifurcation when D > 0 and BC −D = 0. With the root of each

cubic equation there is an associated combination of flow field and temperature

distribution.

Stationary Convection(w = 0)

When p = 0 ,the cubic equation becomes D = 0

Rq2

δ2
= Qm2 + δ2(

1

Da
+ δ2Λ). (2.36)

If the periodic disturbance only along y-direction,

Rm2 = Qm2(m2 + π2) + (m2 + π2)2

[
1

Da
+ (m2 + π2)Λ

]
, (2.37)

differentiating equation (2.37) w.r.t m, we get

R = Q(π2 + 2m2)m2 +
2

Da
(π2 +m2) + 3Λ(π2 +m2)2, (2.38)
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Figure 2.5: Stationary and oscillatory curves in (R,Q)- plane for Da = 1500, Λ =
0.85, M = 1, φ = 0.9, Pr2 = 4 at (a) Pr1 = 1.85, (b) Pr1 = 1.9, (c) Pr1 = 1.95,
d)Pr1 = 2.
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by eliminating R from equations (2.36) and (2.37), we get the stationary Chan-

drasekhar number Qs

Qsc =
Λ(π2 +m2)3 − 3Λ(π2 +m2)2m2 + 1

Da
(π4 −m4)

m4
, (2.39)

from equation (2.37),

m2 =

(√
R

3Λ
− π2

) 1
2

, (2.40)

substitute this value in equation (2.39), Then Qsc(R) is the critical stationary Chan-

drasekhar number.

Oscillatory Convection(w2 > 0)

By eliminating R from w2 = C and w2 = D
B

, we get oscillatory chandrasekhar

number Qoc as

Qoc =
(π2 +m2)

[
(π2 +m2) +MΛφPr1(π2 +m2) + 1

Da
MφPr1)

]
m2φ(φPr2 −MPr1)

, (2.41)

BC −D = 0 gives

m2 = 3

√
o1R

o2

, (2.42)

where o1 = −M2Pr2
2

Pr2
and o2 = 1

MφPr1
+ 1

φ2Pr2
− Λ2φ2Pr2 − ΛφPr2

MPr1
. Substitute m2

from equation (2.42) in to equation (2.41), we get critical oscillatory Chandrasekhar

number Qoc in terms of R. In Figure 2.5, by increasing the thermal prandtl value

the intersection of stationary and oscillatory Rayleigh number and chandrasekhar

number increases.
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2.4 (ii). Nonlinear Instabilities of Rayleigh Be-

nard Convection in a Sparsely Packed Porous

medium due to Horizontal Magnetic Field

2.4.1 Two-dimensional nonlinear LG equation at the onset

of stationary convection

According to Newell and Whitehead [77] multiple scale analysis , a small scale con-

vection cell is disturbed on the vital flow. If the scale range is O(ε) then the the

collaboration of the cell with itself forces a second harmonic and a standard state

of rectification of range O(ε2) and these in turn impel an O(ε3) rectification to the

structural module of the imposed roll. Let us assume the solution of equations

(2.8)-(2.10) in series ε have the form

f(u, v, w, θ,Hx, Hy, Hz) = f = εf0 + ε2f1 + ε3f2 + · · · . (2.43)

The zeroth order calculations of the linearised problem given by approximation are

identified by the eigenvectors

u0 =
iπ

lsc

[
Aei(lscx+mscy) cosπz − c · c·

]
,

v0 =0,

w0 =Aei(lscx+mscy) sin πz + c · c·,

θ0 =
1

Mδ2
sc

[
Aei(lscx+mscy) sin πz + c · c·

]
,

Hx0 =
−mπ
Mlscδ2

sc

[
Aei(lscx+mscy) cosπz + c · c·

]
,

Hy0 =0,

Hz0 =
im

Mδ2
sc

[
Aei(lscx+mscy) sin πz − c · c·

]
, (2.44)
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where A = A(X, Y, T ) is the complex scale on the gradual variables X, Y and T

and the complex conjugate is represented as c.c. The analytical mode for the linear

problem at R1s = R1sc is eiqx sin πz. The variables x, y, z and t are scaled by

X = εx, Y = ε
1
2y, Z = z T = ε2t, (2.45)

and are suitably scattered as fast and slow dependent variables in f . The derivative

operators can be formulated as

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂y
→ ∂

∂y
+ ε

1
2
∂

∂Y
,

∂

∂z
→ ∂

∂Z
,

∂

∂t
→ ε2

∂

∂T
. (2.46)

with the transformations equation (2.46), the linear and nonlinear operators (2.15)

and (2.16) are written as

L = L0 + εL1 + ε2L2 · · · , (2.47)

N = ε2N0 + ε3N1 + · · · , (2.48)

substituting equations (2.47), (2.48) and (2.43) into equation (2.14), equating the

ε, ε2, ε3 coefficients on both sides, we get

L0w0 = 0, (2.49)

L0w1 + L1w0 = N0, (2.50)

L0w2 + L1w1 + L2w0 = N1, (2.51)

where

L0 =− Λ∇8 +
1

Da
∇6 +Q∇4 ∂

2

∂y2
+Rsc∇2∇2

h, (2.52)

L1 =DxyDQ +D2
y

[(
1

Da
− Λ∇2

)
∇6 +Q∇2 ∂

2

∂y2

]
+Q∇4 ∂

2

∂y2
, (2.53)



CHAPTER 2. 42

L2 =
∂

∂T

[(
Λ +

1

MφPr1

+ φ
Λ

M

Pr2

Pr1

)
∇6 −

( 1

Da
+ φ

Pr2

Pr1

1

MDa

)
∇4−

Q∇2 ∂
2

∂y2
− Rsc

M
φ
Pr2

Pr1

∇2
h

]
+

∂2

∂X2
DQ + 2Dxy

[
− 6Λ∇4 +

3

Da
∇2 +Q

∂2

∂y2
+Rsc

]
+

4D2
yDxy

( 1

Da
− 8Λ∇2 +Q

)
+ 8DxD

2
y

( 1

Da
− 3Λ∇2 +Q

)
+D2

xyQ∇2 ∂
2

∂y2
16D4

yΛ+

4QD2
y

∂2

∂Y 2
+ 2Q∇2Dx

∂2

∂Y 2
, (2.54)

where Dx = ∂2

∂x∂X
, Dy = ∂2

∂y∂Y
, Dxy =

(
2 ∂2

∂x∂X
+ ∂2

∂Y 2

)
, DQ = [Rsc∇2 − 4Λ∇6]

Substituting zeroth order solution w0 in equation (2.52), L0w0 = 0, we get

Rsc =
δ2
sc

q2
sc

[
δ4
scΛ +

1

Da

δ2
sc +Qm2

sc

]
. (2.55)

From equation (2.50), N0 = 0,L1w0 = 0 and substituting zeroth order solutions we

get first order solutions,

u1 =0, v1 = 0, w1 = 0,

θ1 =− 1

2πM2δ2
sc

|A|2 sin 2πz, (2.56)

Hx1 =
Pr2

Pr1

· msc

M2δ2
sclsc
|A|2 cos 2πz,

Hy1 =0, Hz1 = 0.

Taking w1 = 0 in equation (2.51), N1 − L2w0 is vertical to w0. This is ensured if

the coefficient of sin πz in N1 − L2w0 is zero. By using zeroth order and first order

solutions, we get the two dimensional time dependent nonlinear Landau-Ginzburg

equation

λ0
∂A

∂T
− λ1

(
∂

∂X
− i

2qsc

∂2

∂Y 2

)2

A− λ2A+ λ3|A|2A = 0, (2.57)
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Figure 2.6: Neutral curve for the coefficient of LG equation at the onset of stationary
convection. Pitchfork bifurcation is supercritical if λ3 > 0, subcritical if λ3 < 0 and
λ3 = 0 for the curve Da = 1500, Λ = 0.85, M = 0.85, φ = 0.9 and Pr2 = 1.5

where

λ0 =

(
Λ +

1

MφPr1

+ φ
Pr2

Pr1

Λ

M

)
δ6
sc +

(
1

Da

+ φ
Pr2

Pr1

1

MDa

)
δ4
sc +Qm2

scδ
2
sc −

Rsc

M

Pr2

Pr1

q2
scφ,

λ1 = 4l2sc

[
6Λδ4

sc +
3

Da

δ2
sc +Qm2

sc −Rsc

]
,

λ2 = Rscq
2
scδ

2
sc,

λ3 = Q
Pr2

2

Pr2
1

π2(q2
sc − π2)

M2
+

Rsc

2M2
q2
sc. (2.58)

According to Steinberg and Brand [115], if λ3 > 0, the pitchfork bifurcation is

supercritical, if λ3 < 0, the pitchfork bifurcation is subcritical and if λ3 = 0, then

tricritical bifurcation point is attained. From the Figure 2.6, we studied pitchfork

bifurcation. Dropping t and y dependence from equation (2.57), we get

d2A

dX2
+
λ2

λ1

(1− λ3

λ2

|A|2)A = 0, (2.59)
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Figure 2.7: Above figure is plotted for Da = 1500, Λ = 3, M = 0.85, φ = 0.9,
Pr1 = 1.1, Pr2 = 1.25 at (a) Q = 600, (b) Q = 800.

A(X) = A1 tanh(X/ L1), (2.60)

where A1 = (λ2

λ3
)

1
2 and  L1 = (2λ1

λ2
)

1
2 .

Heat Transport by Convection

The maximum aptitude of A is denoted by |Amax| which is given as

|Amax| =
(
ε2λ2

λ3

) 1
2

. (2.61)

Nusselt number Nu calculated in terms of amplitude as

Nu =
ε2

δ2
sc

|Amax|2 + 1. (2.62)

Nusselt number grows if R
Rsc

> 1 and decays if R
Rsc
≤ 1 convection for Nu > 1. Then

there is convection if Nu > 1, conduction if Nu ≤ 1. In Figure 2.7 Nusselt number
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Nu was derived for distinct values of Q and for some fixed values of remaining

parameters. It was observed that by increasing the value of Q, Nusselt number

grows exponentially at unit value.

Long Wave-length Instabilities

Newell and Whitehead [77] derived envelope equations In order to study the proper-

ties of a structure with a given phase winding number δq, we write equation (2.57)

in fast variables x, y, t and A(X, Y, T ) = A(x,y,t)
ε

, as

∂A1

∂t
−
(
ε2
λ2

λ0

− λ1

λ0

δq2
)
A1 + 2iδq

λ1

λ0

( ∂
∂x
− i

2qsc

∂2

∂y2

)
A1+

λ1

λ0

( ∂
∂x
− i

2qsc

∂2

∂y2

)2

A1 −
λ3

λ0

|A1|2A1 = 0, (2.63)

A1 =

[
ε2λ2 − λ1δq

2

λ3

] 1
2

. (2.64)

Let ũ + iṽ be an infinitesimal perturbation of steady state solution A1 given by

equation (2.64). Substitute

A1 = ũ+ iṽ + [
(
ε2λ2 − λ1δq

2
)
λ−1

3 ]
1
2 , (2.65)

into equation (2.63) and equate the real and imaginary parts, we obtain

∂ũ

∂t
=− 2

(
ε2
λ2

λ0

− λ1

λ0

δq2

)
ũ+

λ1

λ0

ũ− λ1

λ2

∂2
∂ṽ

∂x
, (2.66a)

∂ṽ

∂t
=
λ1

λ0

∂2
∂ũ

∂x
+
λ1

λ0

∂1ṽ. (2.66b)

where ∂1 = ∂2

∂x2 + δq
qsc

∂2

∂y2 − 1
4q2
sc

∂4

∂y4 and ∂2 = 2δq− 1
qsc

∂2

∂y2 We analyse equations (2.66a)

and (2.66b) by using normal modes form

ũ = U cos(qxx) cos(qyy)eSt, ṽ = V sin(qxx) cos(qyy)eSt. (2.67)
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Substituting equation (2.67) in equations (2.66a) and (2.66b) weget,

[
2(ε2λ2 − λ1δk

2) + λ0S + χ1

]
U + λ1χ2qxV = 0 (2.68a)

λ1qxχ2U + (χ1 + λ0S)V = 0. (2.68b)

Here χ1 = λ1

(
q2
x +

q2
yδk

qsc
+

q4
y

4q2
sc

)
and χ2 = (2δk +

q2
y

qsc
). On solving equations (2.68a)

and (2.68b), we get

S2 +
2S

λ0

[
2
(
ε2λ2−λ1(δk)2

)
+χ1

]
+
[
2
(ε2λ2

λ2
0

− λ1δk
2

λ2
0

)
+χ1

]
ψ1−q2

xχ2
λ1

λ2
0

= 0, (2.69)

whose real roots are (S±),

(S±) = − 1

λ2
0

{[
2λ0(ε2λ2 − λ1δkq

2) + λ0χ1

]
±
[
2λ0(ε2λ2 − λ1δq

2)2 + λ2
1q

2
xχ

2
2

] 1
2

}
.

(2.70)

The equivalent mode is stable if S(−) is negative and unstable if S(+) is positive.

Symmetry significance helps to confine the field of S(+) to qx ≥ 0, qy ≥ 0.

Eckhaus Instability

Putting qy = 0 into equation (2.70), we get

S2 +
2S

λ0

[
2(ε2λ2 − λ1δq

2) + λ1q
2
x

]
+
λ1q

2
x

λ2
0

[
2(ε2λ2 − 3λ1δq

2) + q2
x

]
= 0, (2.71)

The roots are real numbers and their sum is negative number and the product of

roots is positive number, the pattern is stable and if the product of roots is negative

number then the pattern becomes unstable.

Eckhaus instability defines q2
x ≤ 2

(
3λ1δq

2 − ε2λ2

)
for |δq| ≥

√
ε2λ2

3λ1
and unstable

wave tends to zero when |δq| →
√

ε2λ2

3λ1
.
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Figure 2.8: Numerically calculated secondary instability regions of Eckhaus insta-
bility (E), Zigzag instability (Z), and Stable region (S) are plotted for Da = 1500,
Λ = 2, M = 0.9,φ = 0.9, Pr1 = 1, Pr2 = 2, Q = 105.

Zigzag Instability

putting qx = 0 into equation (2.71), we get

λ2
0S

2 + 2S(2λ0χ11 + λ0χ12) + (2χ11 + χ12)χ12 = 0, (2.72)

where χ11 = ε2λ2 − λ1δq
2 and χ12 = λ1

(
q2
yδq

qsc
+

q4
y

4q2
sc

)
, the two eigen conditions are

unrelated and amplified when S(−) = −2(ε2λ2 − λ1δq
2) − λ1

qsc
q2
yδq − λ1

4q2
sc
q2
y < 0

and S(+) = −λ1q
2
y

(
δq +

q2
y

4qsc

)
> 0. These conditions define the domain of Zigzag

Instability when δqs < 0. In Figure 2.8, we observed that by increasing the Q value,

the region of Eckhaus and Zigzag instability increases.
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2.4.2 One dimensional amplitude equation at the onset of

oscillatory convection

Consider cylindrical rolls along y-axis, so only x-dependence and z-dependence ap-

pears from Lw = N . Obtained coupled one dimensional nonlinear time dependent

Landau-Ginzburg type equations at the supercritical Hopf bifurcation. We define ε

as

ε2 =
Ro −Roc

Roc

� 1, (2.73)

and take

w0 =
[
A1Le

i(locx+mocy+ωoct) + A1Re
i(locx+mocy−ωoct) + c · c.

]
sin πz, (2.74)

is a solution of Lw = 0. Here A1L and A1R represents the amplitudes of left and right

travelling wave rolls respectively and depend on slow space X and time variables

τ, T , Knobloch and Luca [57],

X = εx, τ = εt, T = ε2t, (2.75)

and assume that A1L = A1L(X, τ, T ), A1R = A1R(X, τ, T ). Differential operators

can be expressed as

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
+ ε2

∂

∂T
. (2.76)

The solution of basic equations can be sought as power series in ε, the first approx-

imation is given by eigenvector of the linearised problem
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u0 =− π

iqoc

[
A1Le

i(locx+mocy+ωoct) + A1Re
i(locx+mocy−ωoct) − c · c.

]
cos πz,

v0 =0,

θ0 =
1

M

[
1

e1

A1Le
i(locx+mocy+ωoct) +

1

e∗1
A1Re

i(locx+mocy−ωoct) + c · c.
]

sin πz,

Hx0 =
−mocπ

loc

[
1

e2

A1Le
i(locx+mocy+ωoct) +

1

e∗2
A1Re

i(locx+mocy−ωoct) + c · c.
]

cos πz,

Hy0 =0,

Hz0 =imoc

[
1

e2

A1Le
i(locx+mocy+ωoct) +

1

e∗2
A1Re

i(locx+mocy−ωoct) − c · c.
]

sinπz. (2.77)

where δ2
oc = (π2 + q2

oc), e1 = (δ2
oc + iωoc) and e2 = (Mδ2

oc + iωocφ
Pr2
Pr1

), here e∗1 and e∗2

are complex conjugate of e1 and e2. From equations (2.49), (2.50) and (2.51)

L0 =(DφDPr1 −Q
∂2

∂y2
)D∇2 − R

M
∇2
hDφ,

L1 =
∂

∂τ
F1 +DxyF2 + 4D2

yF3,

L2 =
∂F1

∂T
+
∂2F2

∂X2
+D2

xF4 + 2Dx
∂

∂τ
F5 +

∂2

∂τ 2
F6 +

∂

∂τ
4D2

yF7 + 4D2
YDxyF8

−Q(∇2 −∇)DYDxy + 4QDYD
2
y − 16

Λ

M
D4
y, (2.78)

F1 =(DφDPr1 + φ
Pr2

Pr1

DDPr1 +
1

M2φPr1

DDφ)∇2 −Q∇2 ∂
2

∂y2
− φRPr2

MPr1

∇2
h,

F2 =(DDφ −Dφ∇2 −MD∇2)DPr1 −
Λ

M
DDφ∇2 +Q∇2 ∂

2

∂y2
−QD ∂2

∂y2
− R

M
Dφ +R∇2

h,

F3 =Q(
∂2

∂y2
+∇2 −D)− R

M
+

Λ

M
(D∇2 −DDφ +Dφ∇2) +DPr1(∇2 −D −Dφ),

F4 =(M∇2 − (Dφ +MD))DPr1 + ΛD∇2 − Λ

M
DDφ +

Λ

M
Dφ∇2 +Q

∂2

∂y2
+R,

F5 =DφDPr1 −M∇2DPr1 − φ∇2DPr1
Pr2

Pr1

− (M + φ
Pr2

Pr1

)DPr1∇2 −Q ∂2

∂y2
−(

φ
Pr2

Pr1

Λ

M
+

1

MφPr1

)
D∇2 +

1

M2φPr1

DDφ + φ
Pr2

Pr1

DDPr1 −
φRPr2

MPr1

−
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F6 =φ
Pr2

Pr1

DPr1∇2 +
Pr2

M2Pr2
1

D∇2 +
1

M2φPr1

Dφ∇2,

F7 =
1

M2φPr1

(∇2 −D −Dφ) + φ
Λ

M

Pr2

Pr1

(∇2 −D) +
Λ

M
(1−Dφ)− φDPr1

Pr2

Pr1

,

F8 =2Q+ Λ(D +D2) +MDPr1 + 2DPr1 +
Λ

M
(2D −D2 + 3Dφ − 1), DY =

∂2

∂Y 2
.

At O(ε), equation (2.49) gives critical Rayleigh number for the onset of oscillatory

convection). At O(ε2), from equation (2.50) N0 = 0 and L1w0 = 0 gives

∂A1L

∂τ
− vg

∂A1L

∂X
= 0 and

∂A1R

∂τ
− vg

∂A1R

∂X
= 0, (2.79)

where vg = (∂ω/∂q)q=qoc is the group velocity and is real. We get,

u1 =0, v1 = 0, w1 = 0,

θ1 =
−π
M2

[(
|A1L|2 + |A1R|2

)
e7 +

2

e1e4

e6 +
2

e∗1e
∗
4

e∗6

]
sin 2πz,

Hx1 =
2mocπ

2

loc

Pr2

Pr1

[
2

e2e3

A1LA
∗
1Re

2iωoct +
2

e∗2e
∗
3

A1RA
∗
1Le
−2iωoct

+
1

4Mπ2

(
1

e2

+
1

e∗2

)(
|A1L|2 + |A1R|2

)]
cos 2πz,

Hy1 =0, Hz1 = 0, (2.80)

where e3 =
(

iω
M2φPr

+ Λ
M
δ2 + 1

MDa

)
, e4 = (4π2+2iωoc), e5 = (4Mq2

oc+2iφωoc
Pr2
Pr1

),e6 =

A1LA
∗
1Re

2iωoct, e7 = 1
4π2

(
1
e1

+ 1
e∗1

)
, and e∗3, e∗4, e∗5, e∗6 and e∗7 are complex conjugate

of e3, e4, e5, e6 and e7 respectively. The equation (2.51) is solvable when L0w0 = 0,

equate the coefficients of sin πz in N1 − L2w0 to zero. We get

Λ0
∂A1L

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2L − Λ2

∂2A1L

∂X2
− Λ3A1L

+ Λ4|A1L|2A1L + Λ5|A1R|2A1L = 0, (2.81)

Λ0
∂A1R

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2R − Λ2

∂2A1R

∂X2
− Λ3A1R

+ Λ4|A1R|2A1R + Λ5|A1L|2A1R = 0. (2.82)
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Where

Λ0 =

(
1

M2φPr1

e1e2 + e2e3 + φ
Pr2

Pr1

e1e3 +Qm2
oc

)
δ2
oc −

Rocq
2
ocφPr2

MPr1

,

Λ1 =δ2
oc

[
e3φ

Pr2

Pr1

+
e1Pr2

M2Pr2
1

+
e2

M2φPr1

]
,

Λ2 =4l2oc

[
e2e3 +Me3δ

2
oc + Λe1δ

2
oc +

Λ

M
e1e2 +Me1e3 +

Λ

M
e2δ

2
oc +Qm2

oc −R
]
,

Λ3 =
R

M
q2
oce2,

Λ4 =Qm2
ocδ

2
oce1

1

2M

(
1

e2

+
1

e∗2

)
− e2

R

4M3
q2
oc

(
1

e1

+
1

e∗1

)
,

Λ5 =Qπ2m2
ocδ

2
oc

Pr2
2

Pr2
1

e1

(
1

e2

+
1

e∗2

)(
e1

e2

+ 1

)
− 2Qπ2m2

ocδ
2
oc

Pr2
2

Pr2
1

e1

e3e∗2

− π2q2
oc

R

M3
e2

[
2

e1ed
+

1

4π2

(
1

e1

+
1

e∗1

)]
. (2.83)

Here it needs to be noted that A1L and A1R are of order ε and A2L and A2R are

of order ε2. If ωoc = 0 in Λ0, Λ1, Λ2, Λ3 and Λ4, these expressions match with

coefficients λ0, λ1, λ2 and λ3 of LG equation at the onset of stationary convection.

From equation (2.79), we get A1L(ξ′, T ) and A1R(η′, T ), where ξ′ = vgτ + X, η′ =

vgτ −X. Equations (2.81) and (2.82) can be written as

2vgΛ1
∂A2L

∂η′
=− Λ0

∂A1L

∂T
+ Λ2

∂A1L

∂X2
+ λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (2.84)

2vgΛ1
∂A2R

∂η′
=− Λ0

∂A1R

∂T
+ Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (2.85)

Let ξ′ε[0, l1], η′ε[0, l2] where l1 and l2 are periods of A1L and A1R. This condition is

obtained by integrating equation (2.84) over η′ and equation (2.85) over ξ′, we get

Λ0
∂A1L

∂T
= Λ2

∂A1L

∂X2
+ λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (2.86)

Λ0
∂A1R

∂T
= Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (2.87)
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Travelling wave and standing wave convection

According to Coullet [37] and Matthews [67], we studied the region of waves by

dropping variable X from equations (2.86) and (2.87), we get a pair of first order

differential equations

dA1L

dT
=

Λ3

Λ0

A1L −
Λ4

Λ0

A1L|A1L|2 −
Λ5

Λ0

A1L|A1R|2, (2.88)

dA1R

dT
=

Λ3

Λ0

A1R −
Λ4

Λ0

A1R|A1R|2 −
Λ5

Λ0

A1R|A1L|2. (2.89)

Put β′ = Λ3

Λ0
, γ′ = −Λ4

Λ0
and δ′ = −Λ5

Λ0
. Then equations (2.88) and (2.89) take

the following form

dA1L

dT
= β′A1L + γ′A1L|A1L|2 + δ′A1L|A1R|2, (2.90)

dA1R

dT
= β′A1R + γ′A1R|A1R|2 + δ′A1R|A1L|2. (2.91)

Consider A1L=aLe
iφL and A1R=aLe

iφR , where aL = |A1L|, φL = tan−1
(
Im(A1L)
Re(A1L)

)
=

arg(A1L) and aR = |A1R|, φR = tan−1
(
Im(A1R)
Re(A1R

) = arg(A1R)
)

, here aL, aR, φL and

φR are functions of time T , aL and aR are positive functions. Substitute A1L, A1R,

β′ = β1 + iβ2, γ′ = γ1 + iγ2, δ′ = δ1 + iδ2 into equations (2.90) and (2.91) we get,

(aL, aR) = (−β1/(γ1 + δ1),−β1/(γ1 + δ1)) for standing waves. (aL, aR) = (aL, 0) for

left travelling waves and (aL, aR) = (0, aR) for right travelling waves. (aL, aR) =

(0, 0) for conduction state. In Figure 2.9, we studied the regions of travelling and

standing waves at Hopf bifurcation. The stability regions of standing wave increased

when Pr2/Pr1 increases.

2.5 Conclusions

In this chapter we studied linear and nonlinear stabilities of magnetoconvection in

a sparsely packed porous medium over a horizontal magnetic field. We have de-
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Figure 2.9: Stability regions of steady state (S.S) and standing waves Da = 1500,
Λ = 2, M = 0.9, φ = 0.85, Pr2 = 1.5, (a)Pr2
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= 2, (b)Pr2
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= 6, (c)Pr2
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= 12,
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= 24.
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rived thermal Rayleigh value at the onset of stationary and oscillatory convection

by assuming periodic disturbances along x-direction, y-direction and in both x-y di-

rections, and obtained critical thermal Rayleigh values at the corresponding critical

wave numbers by considering R1 as dependent variable. We also traced marginal

stability curves between thermal Rayleigh value and wave number. We found an

analytical relation for stationary and oscillatory convective curves by considering R1

as independent variable. Takens-Bogdanov bifurcation and co-dimension two bifur-

cation points on neutral curves were identified and are shown in figures 2.2 - 2.3. We

observed the thermal and magnetic Prandtl numbers are not affected on convective

stationary thermal Rayleigh value. We derived two dimensional Ginzburg Landau

equation at the onset of stationary mode, explored heat transport from Nusselt num-

ber, studied long wave length aas well as Eukhaus and Zigzag instabilities. At the

onset of super critical pitchfork bifurcation, we obtained two dimensional Ginzburg

Landau equation which is valid only for λ3 > 0. If λ3 = 0 we get tricritical bifur-

cation point. λ3 = 0 is a necessary condition to study heat transport for various

physical parameters. Nusselt number grows exponentially if R
Rsc

> 1 and decay if

R
Rsc
≤ 1 for Nu > 1. Nusselt number grows exponentially for unit value. At the

onset of Hopf bifurcation, we obtained LG equations and we discussed secondary

instabilities. For β1 > 0 and γ1 < 0 travelling and standing waves are stable and for

β1 < 0 and γ1 < 0 travelling and standing waves are unstable (see Figure 2.9). The

region of existing standing waves increases by increasing the ratio of magneto and

thermal prandtl number.
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3.1 Introduction

The Hydrodynamic and Hydromagnetic stability problems have several scientific

applications in astrophysics, geophysics and space sciences. These problems with

the effect of rotation and externally impressed magnetic field was carried out by

Chandrasekhar [35] The effects of both magnetic field and rotation prevent the

onset of instability and increase the cells at marginal stability. The magnetic field

affects the rate of flow velocity, mass and heat transfer of the onset of convection.

In the presence of vertical magnetic field, the magnetic field leads the boundary

of monotonous instability and increases the stability of the conductive state. The

presence of horizontal magnetic field creates the rolls and breaks the symmetry.

Busse and Pesch [31] studied the effect of horizontal magnetic field at the onset of

thermal convectoin. The system is also subjected to the rotation about its vertical

axis and the Buoyancy-driven flows are affected by this rotation. The presence of

the rotating fluid layer is what makes the system more stable. Lyubimov et al. [63]

studied the effect of rotating magnetic field convection emerge in the form of rolls.

Nield and Bejan [80] have made deep investigations on various porous medium

convective problems. Detailed investigations on thermal instability of horizontal

fluid layer which is heated from below through a porous medium under the influence

of a uniform magnetic field were presented by Sharma and Thakur [111], Anwar et

al [17], Wang et al. [130], Srivastava et al. [114], Altawallbeh et al. [5] and Harfash et

al. [52]. Linear and nonlinear stability analysis onset of convection through sparsely

packed porous medium with Darcy Lapwood Brinkman model was studied by Tagare

[119, 120], Benerji et al. [7, 9–11] and Shivakumara et al. [112]. In this chapter, we

study Rayleigh Benard convection with respect to the effect of the convection vertical

axis of rotation and horizontal magnetic field in a sparsely packed porous medium.

Travelling and standing waves in magneto convection in a nonporous medium was

studied by Matthews et al. [67].

The basic equations and boundary conditions are discussed in section 3.2. Linear
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Figure 3.1: Schematic of the physical configuration

and nonlinear stability analysis of stationary and oscillatory convection are studied

in section 3.3 and section 3.4 respectively. Finally, conclusions are discussed in

section 3.5.

3.2 Basic Equations

We considered the thermally and electrically conducting fluid in an unbounded hor-

izontal layer of a thinly packed porous medium with an magnetic field Ho of depth d

in the horizontal x-direction and vertical angular rotation Ω. Upper and lower force

free bounding surfaces of the layer heated from below is valid Bousssinesq approxi-

mation. The temperature variation across the free-free boundaries is ∆T ′. The flow

in the thinly packed porous medium is governed by the Darcy-Lapwood-Brinkman

model. The relevant basic equations of continuity, momentum, energy and magnetic

induction along with Boussinesq approximation are

ρ = ρ0 [1− α(T ′ − T ′o)] , (3.1)
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and

∇′.V ′ = 0,∇′.H ′ = 0, (3.2)

ρ′0

[
1

φ

∂V
′

∂t′
+

2

φ
(Ω× V ′) +

1

φ2
(V
′
.∇′)V ′

]
− µm

4π

[
H0

∂H
′

∂y′
+ (H

′
.∇′)H ′

]
=

−∇′
[
P ′ +

µm
8π
|H ′|2 +

µm
4π
HoHy

′ − 1

2
|Ω× V ′|2

]
+ ρ′g − µ

K
V
′
+ µe∇′2V

′
, (3.3)

M
∂T ′

∂t′
− k∇′2T ′ = −(V

′
.∇′)T ′, (3.4)

φ
∂H

′

∂t
−∇′ × (V ×H0êy) = ∇′ × (V ×H ′) + η∇′2H ′. (3.5)

Where fluid density is ρ , mean fluid density is ρ0, thermal expansion coefficient

is α = − 1
ρ0

( ∂ρ
∂T ′

), temperature is T ′, mean flow fluid velocity is V
′
, magnetic field

is H
′
, porosity is φ, magnetic permeability is µm, angular velocity along vertical

direction is Ω̄ = Ωêz, pressure is P ′, acceleration due to gravity is g, permeability

of porous medium is K, effective fluid viscosity is µe, dimensionless heat capacity

is M , thermal diffusivity is k and magnetic diffusivity is η. We use the following

scaling

x =x′/d u =
u′

(k/Md)
t =

t′

(Md2/k)

y =y′/d v =
v′

(k/Md)
θ =

θ′

4T ′

z =z′/d w =
w′

(k/Md)
ρ =

ρ′

ρ0k2M−2d−2

H =
H
′

κHo/η
R =

gα∆Td3

κν
Pr1 =

ν

κ

Pr2 =
ν

η
Q =

µmH
2
0d

2

4πρ0νη
Da =

κ

d2

Ta =
4Ω2d4

ν2
(3.6)

[47] shows the value of Λ = µe
µ

varies from 0.5 to 10.9 . The dimensionless equa-

tions for magneto rotating convection in a sparsely packed porous medium due to



CHAPTER 3. 59

horizontal magnetic field with Boussinesq approximation are

∇.V = 0,∇.H = 0, (3.7)(
1

M2φPr1

∂

∂t
− Λ

M
∇2 +

1

MDa

)
V − Ta

1
2

Mφ

(
V × êz

)
−Q∂H

∂y
−Rθêz = Q

Pr2

Pr1

(H.∇)H

− 1

M2φ2Pr1

(V .∇)V −∇
(

P

MPr1

+
Q

2

Pr2

Pr1

|H|2 +QHy −
TaPr1

8φ
|êz × V |2

)
,

(3.8)(
∂

∂t
−∇2

)
θ − w

M
= − 1

M

(
V .∇

)
θ, (3.9)(

φ
Pr2

Pr1

∂

∂t
−M∇2

)
H −∇× (V × êy) =

Pr2

Pr1

[
∇×

(
V ×H

)]
. (3.10)

The curl and curl of curl of equation (3.8) are

(
1

M2φPr1

∂

∂t
− Λ

M
∇2 +

1

MDa

)
(∇× V )− Ta

1
2

Mφ

[
∇×

(
V × êz

)]
−

Q

(
∇× ∂H

∂y

)
−R(∇× θêz) = Q

Pr2

Pr1

[
∇× (H.∇)H

]
− 1

M2φ2Pr1

[
∇× (V .∇)V

]
.

(3.11)

(
1

M2φPr1

∂

∂t
− Λ

M
∇2 +

1

MDa

)[
∇× (∇× V )

]
− Ta

1
2

Mφ

{
∇×

[
∇×

(
V × êz

)]}
−

Q

[
∇×

(
∇× ∂H

∂y

)]
−R [∇× (∇× θêz)] = Q

Pr2

Pr1

{
∇×

[
∇×

(
H.∇

)
H
]}
−

1

M2φ2Pr1

{
∇×

[
∇× (V .∇)V

]}
. (3.12)

The curl of equation (3.10) is

(
φ
Pr2

Pr1

∂

∂t
−M∇2

)
(∇×H)−

[
∇×∇× (V × êy)

]
=
Pr2

Pr1

{
∇×

[
∇×

(
V ×H

)]}
,

(3.13)
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from equation (3.9) and z-component of equations (3.10), (3.11), (3.12) and (3.13),

we obtain a single equation of the form

Lw = N , (3.14)

where

L =D2
y∇2D − R

M
Dy∇2

hDφ +
Ta

M2φ2
∂2
zD2Dφ2, (3.15)

N =Dy
{
−DDφD∇.ez +Q

Pr2

Pr1

∇2D∂y
[
∇× (V ×H)ez

]
− R

M
Dφ∇2

h(V∇)θ

}
−

Ta1/2

Mφ
DDφ∂z

{
DφD∇ez +Q

Pr2

Pr1

∂y
[
∇×∇× (V ×H)ez

]}
, (3.16)

where D =
(
∂
∂t
−∇2

)
, Dφ = φPr2

Pr1
∂
∂t
−M∇2, DPr1 = 1

M2φPr1
∂
∂t

+ 1
MDa
− Λ

M
∇2, ∇2 =

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , ∇2
h = ∂2

∂x2 + ∂2

∂y2 , Dy = DPr1Dφ−Q∂2
y , D∇ = − 1

M2φ2Pr1

[
∇×∇× (V · ∇)V

]
+

QPr2
Pr1

[
∇×∇× (H · ∇)H

]
, ∂y = ∂

∂y
, ∂z = ∂

∂z
. The boundary conditions are are fol-

lows from the section 2.2.1.

3.3 Linear stability analysis

The solution of linearised system Lω = 0 corresponds to the formation of convection

rolls. The rolls characterised by assuming periodic disturbances with period 2π
l

along

x-direction and periodic disturbances with period 2π
m

along y-direction with growth

rate p of the form

w = W (z)ei(lx+my)+pt, (3.17)

where W (z) = sinπz and p = iω. substituting w into Lw = 0, we get
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(p+ δ2)δ2

[(
1

M2φPr1

p+
Λ

M
δ2 +

1

MDa

)(
φ
Pr2

Pr1

p+Mδ2

)
+Qm2

]2

−

R

M
q2

(
φ
Pr2

Pr1

p+Mδ2

)[(
1

M2φPr1

p+
Λ

M
δ2 +

1

MDa

)(
φ
Pr2

Pr1

p+Mδ2

)
+Qm2

]
+

Ta1/2

M2φ2
π2(p+ δ2)

(
φ
Pr2

Pr1

p+Mδ2

)2

= 0, (3.18)

where q2 = l2 +m2 and δ2 = q2 + π2.

3.3.1 When Rayleigh number R is a Dependent Variable

Substitute w in equation 3.18, we get

R =
M

q2
K
[(
h1 + h2ω

2 + h3ω
4 + h4ω

6 + h5ω
8
)

+ iω
(
I1 + I2ω

2 + I3ω
4 + I4ω

6
)]
,

(3.19)

where K = (F1 + F2ω
2)2 + ω2(F3 + F4ω

2)2−1
, h1 = F1G1, h2 = F2G1 +F1G2−F3G4,

h3 = F2G2 + F1G3 − F4G4 − F3G5, h4 = F2G3 − F4G5 − F3G6, h5 = −F4G6, where

I1 =F3G1 + F1G4, F1 =m2Qa2 + a2
2b2,

I2 =F4G1 + F3G2 + F2G4 + F1G5, F2 =− 2a1a2b1 − a2
2b2,

I3 =F4G2 + F3G3 + F2G5 + F1G6, F3 =m2Qa1 + a2
2b1 + 2a1a2b2,

I4 =F4G3 + F2G6 F4 =− a2
1b1, (3.20)

G1 =m4Q2δ4 + 2m2Qδ4a2b2 + δ4a2
2b

2
2 + Taδ2a2

2c1,

G2 =− δ4(2m2Qa1b1 + 4a1a2b1b2 + a2
2b

2
1 + a2

1b
2
2)− δ2(2m2Qa2b1+

2m2Qa1b2 + 2a2
2b1b2 + 2a1a2b

2
2 + Taa2

1c1)− 2Taa1a2c1,

G3 =δ4a2
1b

2
1 + 2δ2a1a2b

2
1 + 2δ2a2

1b1b2,
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G4 =2δ4(m2Qa2b1 +m2Qa1b2 + a2
2b1b2 + a1a2b

2
2) + δ2(m4Q2+

2m2Qa2b2 + a2
2b

2
2 + 2Taa1a2c1) + Taa2

2c1,

G5 =− 2δ4(a1a2b
2
1 + a2

1b1b2)− δ2(2m2Qa1b1 + a2
2b

2
1 + 4a1a2b1b2 + a2

1b
2
2)− Taa2

1b
2
2,

G6 =δ2a2
1b

2
1, a1 = φ

Pr2

Pr1

, a2 = Mδ2, b1 =
1

M2φPr1

, b2 =
1

M

(
Λδ2 +

1

Da

)
, c1 =

π2

M2φ2
.

Stationary Convection

For stationary convection put p = 0 i.e. ω = 0 in equation (3.18), we then obtain

stationary Rayleigh number and it is represented as Rs,

Rs =
δ2

q2

[(
Λδ2 +

1

Da

)
δ2 +Qm2

]
+
Taπ2δ4

φ2q2

1[(
Λδ2 + 1

Da

)
δ2 +Qm2

] , (3.21)

Cross rolls : If there is a periodic disturbance along x-direction and no perturbation

along y-direction with growth rate p, we take m = 0 in equation (3.21) and obtain

stationary Rayleigh number for cross roll which is represented as Rl
s(m = 0),

Rl
s(m = 0) =

(l2 + π2)

l2

[(
Λ(l2 + π2) +

1

Da

)
(l2 + π2)

]
+

1

l2
Taπ2(l2 + π2)2

φ2

1[(
Λ(l2 + π2) + 1

Da

)
(l2 + π2)

] , (3.22)

the critical stationary Rayleigh number for cross rolls is Rl
sc(m = 0),

Rl
sc(m = 0) = Λ

(l2c + π2)3

l2c
+
Taπ2

φ2

1

l2c
.

Parallel rolls : If there is no periodic disturbance along x-direction but periodic

disturbance along y-direction with growth rate p, we take l = 0 in Equation (3.21),
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Figure 3.2: Marginal stability curves of the cross, parallel and oblique rolls for
Da = 1500, Λ = 0.8, M = 0.9, φ = 0.85, Pr1 = 1.5, Pr2 = 1.65, Ta = 105,
(a) Q = 100, (b) Q = 1000.
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Figure 3.3: Marginal stability curves of the cross, parallel and oblique rolls for
Da = 1500, Λ = 0.8, M = 0.9, φ = 0.85, Pr1 = 1.5, Pr2 = 1.65, Q = 500,
(a) Ta = 104, (b) Ta = 106.
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and get stationary Rayleigh number for parallel rolls is Rm
s (l = 0),

Rm
s (l = 0) =

(m2 + π2)

m2

{[
Λ(m2 + π2) +

1

Da

]
(m2 + π2) +Qm2

}
+

1

m2

Taπ2

φ2

(m2 + π2)2{[
Λ(m2 + π2) + 1

Da

]
(m2 + π2) +Qm2

} ,
The critical stationary Rayleigh number for parallel rolls is Rm

sc(l = 0) ,

Rm
sc(l = 0) =

m2
c + π2

m2
c

[
Λ(m2

c + π2)2 +Qm2
c

]
+

1

m2
c

Taπ2

φ2

(m2
c + π2)2

[Λ(m2
c + π2)2 +Qm2

c ]
,

(3.23)

Oblique rolls : If there is a periodic disturbance along x-direction and y-direction

with growth rate p. The stationary Rayleigh number for oblique rolls is Equation(3.21).

The critical stationary Rayleigh number is Rsc for critical wave numbers qsc,

Rsc =
δ2
sc

q2
sc

[(
Λδ2

sc +
1

Da

)
δ2
sc +Qm2

]
+
Taπ2δ4

sc

φ2q2
sc

1[(
Λδ2

sc + 1
Da

)
δ2
sc +Qm2

] , (3.24)

where q2
sc = l2 + m2 and δ2

sc = π2 + q2
sc. Figures 3.2 - 3.3 show the marginal curves

of cross rolls Rl
s(m = 0), parallel rolls Rm

s (l = 0) and oblique rolls Rs. As shown in

Figure 3.2, the critical Rayleigh number is increasing along with increasing magnetic

field. In Figure 3.3, critical Rayleigh number is smaller for cross roll Rm
s (l = 0) than

parallel roll Rl
s(m = 0) in the low rotation case while the opposite is true in high

rotation case. The oblique critical Rayleigh number is always between the cross rolls

and parallel rolls.

Oscillatory Convection

For oscillatory convection (ω2 > 0) and from equation (3.18), R represents imaginary

number but Rayleigh number is always real, so equate imaginary part of the equation
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Figure 3.4: Solid lines represent stationary Rayleigh number Rs and doted lines
represents oscillatory Rayleigh number Ro for Da = 1500, Λ = 0.8, M = 0.9,
φ = 0.85, Pr1 = 1.5, Pr2 = 3.5, Q = 1200, (a) Ta = 106, (b) Ta = 107, (c) Ta = 108.



CHAPTER 3. 67

1 0 2 0 3 01 1

1 2

1 3

1 4

 

 

R o

l o g  R

q

R s

(a)

4 8 1 2 1 6

1 1 . 2

1 1 . 6

1 2 . 0

1 2 . 4

R o

 

 

l o g  R

q

R s

(b)

4 8 1 2 1 6

1 1 . 2

1 1 . 6

1 2 . 0

1 2 . 4

R o

 

 

l o g  R

q

R s

(c)

Figure 3.5: Solid lines represent Stationary convection Rs and doted lines represents
Oscillatory convection Ro for Da = 1500, Λ = 0.8, M = 0.9, φ = 0.85, Pr1 = 1.5,
Pr2 = 1.65, Ta = 6× 105 at (a) Q = 200, (b) Q = 600, (c) Q = 1400.
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Figure 3.6: Solid lines represent Stationary convection Rs and doted lines represents
Oscillatory convection Ro for Da = 1500, Λ = 0.9, M = 0.9, φ = 0.85, Q = 500,
Ta = 8× 106, (a) Pr2 = 3, (b) Pr1 = 0.8.
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(3.18) to zero. By solving the imaginary part, the oscillatory Rayleigh number is

Ro =
MK1

q2

[
H1 +H2ω

2 +H3ω
4 +H4ω

6 +H5ω
8
]
, (3.25)

ω2 =
I2

3 + I5(I3 + I2)− 3I4I2

I4I5

, (3.26)

where G1 = m4Q2δ4 + 2m2QΛδ8 + Λ2δ10 + Taδ4

Pr2
1

, G2 = 2m2Qφδ4Pr2
M2φPr1

+ Λδ4Pr2
M2Pr2

1
+

δ2Pr2
2

M4Pr2
1

+

Pr2
2

M2Pr4
1

+ Qm2δ4

MφPr1
− 2δ2m2Q2 + Taπδ2Pr2

MφPr1
− φPr

2
2

Pr2
1
, G3 =

δ4Pr2
2

M4Pr4
1

+ δ2Pr2
M3Pr3

1
+

2Λδ4Pr2
2

M3Pr3
1

,

G4 = Taπδ4Pr2
MφPr1

+ Qm2δ2

MφPr1
+ 2m2Q2δ2, G5 = −φPr

2
2

Pr2
1

+ ΛM2δ6 + 2m2Qφδ4Pr2
M2φPr1

,

G6 =
δ2Pr2

2

M4Pr4
1
, F1 = Qδ2m2 + ΛM2δ6, F2 = −2δ2Pr2

Pr2
1
, F3 = QMδ2m2 + δ4

φPr1
,

F4 = −φPr
2
2

Pr2
1
, H1 = F1G1, H2 = F2G1 +F1G2−F3G4, H3 = F2G2 +F1G3−F4G4−

F3G5, H4 = F2G3 − F4G5 − F3G6, H5 = −F4G6, I1 = F3G1 + F1G4,

I2 = F4G1+F3G2+F2G4+F1G5, I3 = F4G2+F3G3+F2G5+F1G6, I4 = F4G3+F2G6,

I5 = [−2I3
3 + 9I4I3I2− 27I2

4I1 + [4(−I2
3 + 3I4I2)3 + (−2I3

3 + 9I4I3I2− 27I2
4I1)2]1/2]1/3.

In Figures 3.3 - 3.5, the neutral curves are plotted in the (q, R) - plane with the

effects of Ta, Q, Pr1 and Pr2. The solid line represents the stationary Rayleigh

number Rs while the dotted line represents the oscillatory Rayleigh number Ro. At

Takens-Bogdanov bifurcation point we get Rs(qs) = Ro(qo) = Rc(qc) and qs = qo =

qc. At co-dimension two bifurcation point we get Rs(qs) = Rc(qc) and qs 6= qc.

The stationary Rayleigh number was not affected by thermal and magnetic prandtl

numbers. There exist co-dimension two bifurcation points in Figure 3.3(b), Figure

3.4(b), at Pr1 = 1.2 in Figure 3.5(a) and at Pr2 = 3 in Figure 3.5(b). Over the

oscillatory convection, the critical Rayleigh value increases when the thermal prandtl

value decreases and the critical Rayleigh value decreases when the magnetic prandtl

number increases.
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3.3.2 When Rayleigh number R is an Independent Variable

The equation (3.18) represents as a fifth degree polynomial in powers of p,

Ap5 +Bp4 + Cp3 +Dp2 + Ep+ F = 0, (3.27)

where

A =− δ2a2
1b

2
1, B = −δ2a1b1[2a2b1 + a1(δ2b1 + 2b2)],

C =− 1

M2φ2
{M2δ2φ2a2

2b
2
1 + 2M2δ2φ2a1b1[m2Q+ a2(δ2b1 + 2b2)]+

a2
1[π2Ta+M2δ2φ2b2

2 +Mφ2b1(−q2R + 2Mδ4b2)]},

D =− 1

M2φ2
{a2

1(π2Taδ −Mq2Rφ2b2 +M2δ4φ2b2
2)M2δ2φ2a2b1[2m2Q+ a2(δ2b1 + 2b2)]+

2a1[m2M2Qδ2φ2(δ2b1 + b2) + a2[π2Ta+M2δ2φ2b2
2 +Mφ2b1(−q2R + 2Mδ4b2)]]},

E =− 1

M2φ2
{m4M2Q2δ2φ2 + 2m2M2Qδ2φ2a2(δ2b1 + b2) + a2

2[π2Ta+

M2δ2φ2b2
2 +Mφ2b1(−q2R + 2Mδ4b2) + a1[m2MQφ2(−q2R + 2Mδ4b2)+

2a2(π2Taδ2 −Mq2Rφ2b2 +M2δ4φ2b2
2)]},

F =−m4Q2δ4 +
M2Qa2(q2R− 2Mδ4b2)

M
+ a2

2

(
−π

2Taδ2

M2φ2
+
q2Rb2

M
− δ4b2

2

)
.

(3.28)

Take p = iω in equation (3.27), we get

(Bω4 −Dω2 + F ) + iω(Aω4 − Cω2 + E) = 0, (3.29)

from the above equation 3.29, the real and imaginary parts are Bω4−Dω2 +E = 0

and Aω4 − Cω2 + E = 0.
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stationary convection (ω = 0)

At the onset of stationary convection take ω = 0 in equation (3.27), we get F = 0.

q2

[
m2Q+

(
Λδ2 +

1

Da

)
δ2

]
R = δ2

[
m2Q+

(
Λδ2 +

1

Da

)
δ2

]2

+
π2Ta

φ2
δ4, (3.30)

which is same as equation (3.21). If there is a periodic disturbance along x-direction

and no perturbation along y-direction with growth rate p, then which represents

cross rolls in the system. If vanish the Chandrasekhar number we get

l2λR = Λ(l2 + π2)3 +
Taπ2

φ2
, (3.31)

differentiating equation (3.31) with respect to l, we get

l2 =

√
R

3
− π2, (3.32)

substituting l2 in equation (3.31), we get

Tax =
Λφ2

π2

[
R

(√
R

3
− π2

)
− Λ

3

√
R

3

]
(3.33)

If there is a periodic disturbance along y-direction and no disturbance along x-

direction with growth rate p, then which represents parallel rolls. If vanish the

Chandrasekhar number we get

m2λR = Λ2(m2 + π2)3 +
Taπ2

φ2
, (3.34)

differentiating above equation (3.34) with respect to m, we get

m2 =

√
R

3Λ
− π2, (3.35)
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substituting l2 in equation (3.34), we get

Tay =
Λφ2

π2

[
R

(√
R

3Λ
− π2

)
− Λ

3

√
R

3Λ

]
. (3.36)

The equations (3.33) and (3.36) both are same if Λ = 1. The Stationary Taylor

number by considering R as an independent variable represents as Tas,

Tas =
φ2

π2

[
R

(√
R

3
− π2

)
− 3

√
R

3

]
. (3.37)

Oscillatory convection (ω2 > 0)

We have marginal stability if ω2 = C±
√
C2−4AE
2A

from Aω4 − Cω2 + E = 0 and

substitute this ω2 in Bω4−Dω2 +E = 0, 2BC2− 4AE− 2ADC + 4A2E± (2BC ±

2AD)
√
C2 −−4AE = 0 with C2 > 4AE. At Takens-Bogdanov bifurcation point

we get ω2 = 0, which gives F = 0 and E = 0. Eliminating R from F = 0 and E = 0

we get

Taoc = −M
2δ2φ2(m2Q+ a2b2)2[−m2Qδ2a1 + a2(m2Q+ a2(δ2b1 + b2))]

π2a2
2[m2Qδ2a1 + a2(m2Q+ a2(−δ2b1 + b2))]

(3.38)

We get Takens-Bogdanov bifurcation point if Ta > 0. Here Ta > 0 if

Q <
a2

2(δ2b1 + b2)

m2(δ2a1 − a2)
. (3.39)

On eliminating Q and Ta from D = 0, E = 0 and F = 0 we get codimention three

bifurcation point.
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3.4 Nonlinear stability analysis

3.4.1 Amplitude equation at the onset of stationary convec-

tion

According to Newell and Whitehead Multiple scale analysis [77] when small scale

convection cells disturb basic flow, we assume that the solution is in the form of

f = εf0 + ε2f1 + ε3f2 + ·, (3.40)

where ε2 = R−Rsc
Rsc

<< 1 and f = f(u, v, w, θ,Hx, Hy, Hz), with the first approxima-

tion given by the eigenvectors of the linearised problem as

u0 =
iπ

l

[
Aei(lx+my) − c · c·

]
cosπz,

v0 =− iπTa1/2δ2

φl (λδ4 +Qm2)

[
Aei(lx+my) − c · c·

]
cos πz,

w0 =
[
Aei(lx+my) + c · c·

]
sin πz,

θ0 =
1

Mδ2

[
Aei(lx+my) + c · c·

]
sin πz,

Hx0 =
−mπ
Mlδ2

[
Aei(lx+my) + c · c·

]
cosπz,

Hy0 =
mπTa1/2

Mφl (λδ4 +Qm2)

[
Aei(lx+my) + c · c·

]
cos πz,

Hz0 =
im

Mδ2

[
Aei(lx+my) − c · c·

]
sin πz, (3.41)

where A = A(X, Y, T ) is the amplitude and c.c represents the complex conjugate

of the amplitude. The variables X, Y, Z and T are scaled as

X = εx, Y = ε
1
2y, Z = z T = ε2t, (3.42)

are suitably scattered the fast and slow unconventional variables in f . The derivative

operators can be formulated as
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∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂y
→ ∂

∂y
+ ε

1
2
∂

∂Y
,

∂

∂z
→ ∂

∂Z
,

∂

∂t
→ ε2

∂

∂T
. (3.43)

with the transformations equation (3.43), the linear and nonlinear operators L and

N are written as

L = L0 + εL1 + ε2L2 · · · , (3.44)

N = ε2N0 + ε3N1 + · · · , (3.45)

substituting equations (3.44) and (3.45) into equation (3.14), equating the ε, ε2 and

ε3 coefficients on both side.

L0w0 = 0, (3.46)

L0w1 + L1w0 = N0, (3.47)

L0w2 + L1w1 + L2w0 = N1, (3.48)

where

L0 =− R

Da
∇2
h∇4 +RΛ∇2

h∇6 − 1

Da2
∇8 +

2Λ

Da
∇10 − Λ2∇12 −Qr∇2

h∇2∂2
y−

2Q

Da
∇6∂2

y −Q2∇4∂4
y −

Ta

φ2
∇6∂2

Z ,

L1 =− 4R∇2
h∂

2
y∂

2
Y

(
Q+

1

Da
+ 3Λ∇2

)
− (2∂x∂X + ∂2

Y )∇2F1 −∇2∂2
y∂

2
Y F2+

F3 − ∂2
y∂

2
Y∇2 − 4Q∂4

y∂
2
Y

[
R + 2

(
2Q+

3

Da

)
∇2 + 12Λ∇4

]
− 4Q2∂6

y∂
2
Y ,

L2 =(2∂x∂X + ∂2
Y )
[
(2∂y∂Y )2F4 − ∂2

Y F5

]
+ (2∂x∂X + ∂2

Y )2F6 − (2∂y∂Y )4[
Q2 +RΛ + ∂1Da2 +

2Q

Da
+ (

10Λ

Da
+ 8QΛ)∇2

]
+ ∂2

X∂
2
yF7 + ∂2

X∇2
h−

(3RΛ∇4 2R

Da
∇2) + ∂2

X∇2F8 + ∂TF9 − ∂2
Y (2∂ − Y ∂Y )2, (3.49)



CHAPTER 3. 75

F1 =
(

2Q2∂4
y +QR∂2

y

)
+
(

3
Ta

φ2
∂2
z − 3RΛ∇2

h

)
∇2 − 8QΛ∂2

y∇4 + 6∇2δ8,

F2 =
(
QR + 12

Ta

φ2
∂2
z

)
+
(

6Q2 − 12ΛR
)
∇2 − 16QΛ∇4 + 60∇2

h∇6,

F3 =2∇6Q∂2
YQ∇2 −QR∇2

h∂
2
Y

(
2∂x∂X + ∂2

Y +∇2
)
,

F4 =− 3Ta

φ2
∂2
Z + 4Q2∂2

y + 2QR− 3RΛ∇2
h +∇2

(
9RΛ + 24QΛ∂2

y

)
+∇4QΛ∇4 − 60∇6Λ2,

F5 =QR∇2
h +∇2Q(R− 4∇2∂2

y)− 8QΛ∇6,

F6 =3RΛ∇2
h +∇4(3RΛ− 3Ta

φ2
∂2
Z) +∇4(3RΛ + 12QΛ∂2

y)− 15Λ2∇8 −QR∂2
yQ

2∂4
y ,

F7 =−QR∇2
h −QR∇2 + 8QΛ∇6

F8 =− 2Q∂2
y −

3Ta

φ2
∂T +RΛ∇4 − 6Λ2∇8,

F9 =
QRφPr2

MPr1

∇2
h∂

2
y +Q2∂6

y +
(Ta
φ2

+
2TaPr2

MφPr1

)
∂2
Z +

2RΛφPr2

Pr1

∇4 −
(
− 2QΛ+

2Q

MφPr1

+
2QΛφPr2

MPr1

)
∂2
y∇6 − 4ΛφPr2

DaMPr1

∇8 + (Λ2 +
2Λ

MφPr1

+
2Λ2φPr2

MPr1

)∇10,

F10 =∂2
X∇2F8 + ∂TF9 − ∂2

Y (2q − Y ∂Y )2
[
QR + 2q2∂2

y + 4Q2∇2 − 12QΛ∇4
]
. (3.50)

Substituting the zeroth order solution w0 in equation L0w0 = 0, we get

Rs =
δ2
s

q2
s

[(
Λδ2

s +
1

Da

)
δ2
s +Qm2

]
+

1

q2
s

Taπ2δ4
s

φ2

1[(
Λδ2

s + 1
Da

)
δ2
s +Qm2

] , (3.51)

from the equations (3.46) to (3.48), N0 = 0, L1w0 = 0 and hence w1 = 0. The

second order approximations which are based on the eigen vector of the problem are

u1 =0, w1 = 0,

v1 =K1

[
A2e2i(lx+my) − c · c·

]
,

θ1 =− 1

2πM2δ2
|A|2sin2πz,
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Hx1 =
m

2M2δ2l
|A|2cos2πz,

Hy1 =
mK1

2Mq2

[
A2e2i(lx+my) cosπz + c · c·

]
,

Hz1 =0, (3.52)

where K1 =
−4iπ2q2

√
Taδ2( 1

Mφ2 +
Qm2Pr2

δ4
)

Pr1Mφl(4ΛMq4+4QM2)(ΛMq4+QM2)
. Taking w1 = 0 in equation (3.48),

N1 − L2w0 is orthogonal to w0. Equating the coefficient of sinπz in N1 − L2w0

is zero. We obtain two dimensional time dependent nonlinear Landau-Ginzburg

equation

λ0
∂A

∂T
− λ1

(
∂

∂X
− i

2q

∂2

∂Y 2

)2

A− λ2A+ λ3|A|2A = 0, (3.53)

where

λ0 =
φPr2QR

Pr1M
q2m2 −Q2m4δ2 +

(
− Ta

φ2
π2 +

2RΛφPr2

MPr1

q2 − 2Taπ2Pr2

MφPr1

)
δ4−

2QΛm2
(

1 +
φPr2

MPr1

)
δ6 − Λ2δ10,

λ1 =QRm2 −Q2m4 +
(

3RΛq2 − 3Taπ2

φ2

)
δ2 +

(
3RΛ− 15Λ2 − 12ΛQm2

)
δ4,

λ2 =
(
Qm2 + Λδ4

)
q2,

λ3 =

[
Qm2Pr2

4Pr1

(
δ2

π2
− l2

M2

)
+
Rq2

2M2

] (
Qm2 + Λδ4

)
−

Ta1/2δ4

φ

[
2π2δ2S3

Mφ2Pr1

+Mδ2Q

(
lS2 +

mπS1

8π2M2δ2

)
+Q

S1lmPr2

4MπPr1

]
, (3.54)

where S1 = 2π2Ta1/2mPr2
(Qm2+Λδ4)Pr1

, S2 = πm2Ta1/2

4M2δ2l(Qm2+Λδ4)
and S3 = 4π2q2Ta1/2δ2

φPr1l[4Qm2+4ΛMq4]
. From

figure 3.7, if λ3 > 0 then the pitchfork bifurcation is supercritical, if λ3 < 0 then it

is subcritical and tricritical bifurcation at λ3 = 0. Dropping the t and y dependent

terms from equation (3.53), we get

d2A

dX2
+
λ2

λ1

A− λ3

λ1

|A|2A = 0, (3.55)
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Figure 3.7: The curve λ3 is plotted for Da = 1500, Λ = 1.5, M = 0.85, φ = 0.85,
Q = 500, Pr2 = 50, R = 68000 and Ta = 8 × 106. The pitchfork bifurcation is
super-critical if λ3 > 0, sub-critical if λ3 < 0.

the solution is

A(X) = A0 tanh

(
X

Λ1

)
. (3.56)

where

A0 =

(
λ2

λ3

) 1
2

and Λ1 = 2

(
λ1

λ2

) 1
2

. (3.57)

Secondary Instabilities and Nusselt Number

Newell and Whitehead [77] derived envelope equations In order to study the proper-

ties of a structure with a given phase winding number δq, we write equation (3.53)

in fast variables x, y, t and A(X, Y, T ) = A(x,y,t)
ε

, as

∂A1

∂t
−
(
ε2
λ2

λ0

− λ1

λ0

δq2
)
A1 + 2iδq

λ1

λ0

( ∂
∂x
− i

2qsc

∂2

∂y2

)
A1+

λ1

λ0

( ∂
∂x
− i

2qsc

∂2

∂y2

)2

A1 −
λ3

λ0

|A1|2A1 = 0, (3.58)
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A1 =

[
ε2λ2 − λ1δq

2

λ3

] 1
2

. (3.59)

Let ũ + iṽ be an infinitesimal perturbation of steady state solution A1 given by

equation (3.59). Substitute

A1 = ũ+ iṽ + [
(
ε2λ2 − λ1δq

2
)
λ−1

3 ]
1
2 , (3.60)

into equation (3.58) and equate the real and imaginary parts, we obtain

∂ũ

∂t
=− 2

(
ε2
λ2

λ0

− λ1

λ0

δq2

)
ũ+

λ1

λ0

ũ− λ1

λ2

∂2
∂ṽ

∂x
, (3.61a)

∂ṽ

∂t
=
λ1

λ0

∂2
∂ũ

∂x
+
λ1

λ0

∂1ṽ. (3.61b)

where ∂1 = ∂2

∂x2 + δq
qsc

∂2

∂y2 − 1
4q2
sc

∂4

∂y4 and ∂2 = 2δq− 1
qsc

∂2

∂y2 We analyse equations (4.63a)

and (4.63b) by using normal modes form

ũ = U cos(qxx) cos(qyy)eSt, ṽ = V sin(qxx) cos(qyy)eSt. (3.62)

Substituting equation (3.62) in equations (3.61a) and (3.61b) weget,

[
2(ε2λ2 − λ1δk

2) + λ0S + χ1

]
U + λ1χ2qxV = 0 (3.63a)

λ1qxχ2U + (χ1 + λ0S)V = 0. (3.63b)

Here χ1 = λ1

(
q2
x +

q2
yδk

qsc
+

q4
y

4q2
sc

)
and χ2 = (2δk +

q2
y

qsc
). On solving equations (3.63a)

and (3.63b), we get

S2 +
2S

λ0

[
2
(
ε2λ2−λ1(δk)2

)
+χ1

]
+
[
2
(ε2λ2

λ2
0

− λ1δk
2

λ2
0

)
+χ1

]
ψ1−q2

xχ2
λ1

λ2
0

= 0, (3.64)
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whose real roots are (S±),

(S±) = − 1

λ2
0

{[
2λ0(ε2λ2 − λ1δkq

2) + λ0χ1

]
±
[
2λ0(ε2λ2 − λ1δq

2)2 + λ2
1q

2
xχ

2
2

] 1
2

}
.

(3.65)

The equivalent mode is stable if S(−) is negative and unstable if S(+) is positive.

Symmetry significance helps to confine the field of S(+) to qx ≥ 0, qy ≥ 0.

Eckhaus Instability

Putting qy = 0 into equation (3.65), we get

S2 +
2S

λ0

[
2(ε2λ2 − λ1δq

2) + λ1q
2
x

]
+
λ1q

2
x

λ2
0

[
2(ε2λ2 − 3λ1δq

2) + q2
x

]
= 0, (3.66)

The roots are real numbers and their sum is negative number and the product of

roots is positive number, the pattern is stable and if the product of roots is negative

number then the pattern becomes unstable.

Eckhaus instability defines q2
x ≤ 2

(
3λ1δq

2 − ε2λ2

)
for |δq| ≥

√
ε2λ2

3λ1
and unstable

wave tends to zero when |δq| →
√

ε2λ2

3λ1
.

Zigzag Instability

putting qx = 0 into equation (3.66), we get

λ2
0S

2 + 2S(2λ0χ11 + λ0χ12) + (2χ11 + χ12)χ12 = 0, (3.67)

where χ11 = ε2λ2 − λ1δq
2 and χ12 = λ1

(
q2
yδq

qsc
+

q4
y

4q2
sc

)
, the two eigen conditions are

unrelated and amplified when S(−) = −2(ε2λ2 − λ1δq
2) − λ1

qsc
q2
yδq − λ1

4q2
sc
q2
y < 0

and S(+) = −λ1q
2
y

(
δq +

q2
y

4qsc

)
> 0. These conditions define the domain of Zigzag

Instability when δqs < 0. In figure 3.8, we have shown the Eckhaus and Zigzag

instabilities known as secondary instabilities regions at fixed parameters. When
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Figure 3.8: Region of secondary instabilities and stable region for Da = 1500,
Λ = 1.5, M = 0.9, φ = 0.85, Pr1 = 1.5, Pr2 = 1.55, R = 41000, Q = 500,
Ta = 1320.

increase the magnetic field the stability regions also increases.

Nusselt Number

Heat transport by the convection, the Nusselt number studied in section 2.4.1. λ1

and λ2 are always positive. The Nusselt number Nu can calculated in terms of

amplitude (A) as

Nu = 1 +
ε2

δ2
|Am|2. (3.68)

Nusselt number grows if R
Rsc

> 1 and decays if R
Rsc
≤ 1 convection for Nu > 1.

Then there is convection if Nu > 1, conduction if Nu ≤ 1. Amplitude is valid for

λ3 > 0 and it is possible when R > Rsc, Thus we obtain convection for Nu > 1 and

conduction for Nu ≤ 1 see in Figure 3.9.
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Figure 3.9: solid lines represents Stationary convection Rs and doted lines represents
Oscillatory convection Ro for Da = 1500, Λ = 1.5, M = 0.9, φ = 0.85, Pr1 = 1.5,
Pr2 = 1.55, Q = 1000, Ta = 105, R = 41000.

3.4.2 Amplitude equations at the onset of oscillatory con-

vection

We have assumed that the solution of the equation Lw = 0, which satisfies the linear

system of the form

w0 =
[
A1Le

i(lx+my+ωt) + A1Re
i(lx+my−ωt) + c · c.

]
sin πz, (3.69)

where A1L = A1L(X, τ, T ) and A1R = A1R(X, τ, T ) are the amplitudes of left trav-

elling and right travelling waves of the roll and these amplitudes depend on the

following slow variables

X = εx, Y = ε
1
2y, τ = εt, T = ε2t, (3.70)
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we express the differential operators in the form of

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂y
→ ∂

∂y
+ ε

1
2
∂

∂Y
,

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
+ ε2

∂

∂T
. (3.71)

We consider the solution of basic equations in the form of

f = εf0 + ε2f1 + ε3f2 + · · · , (3.72)

where

ε2 =
Ro −Roc

Roc

� 1, (3.73)

here f = f(u, v, w, θ,Hx, Hy, Hz) and the first approximation or zeroth order solu-

tions is given by eigenvector of the linearized problem are

u0 =
iπ

l

[
A1Le

i(lx+my+ωt) + A1Re
i(lx+my−ωt) − c · c.

]
cos πz,

v0 =
iTa1/2π

Mφl

[
A1Le3e

i(lx+my+ωt) + A1Re
∗
3e
i(lx+my−ωt) − c · c.

]
cos πz,

w0 =
[
A1Le

i(lx+my+ωt) + A1Re
i(lx+my−ωt) + c · c.

]
sin πz,

θ0 =
1

M

[
1

e1

A1Le
i(lx+my+ωt) +

1

e∗1
A1Re

i(lx+my−ωt) + c · c.
]

sin πz,

Hx0 =
−mπ
l

[
1

e2

A1Le
i(lx+my+ωt) +

1

e∗2
A1Re

i(lx+my−ωt) + c · c.
]

cosπz,

Hy0 =
mTa1/2π

lMφ

[
K1

e2

A1Le
i(lx+my+ωt) +

K2

e∗2
A1Re

i(lx+my−ωt) + c · c.
]

cos πz,

Hz0 =im

[
1

e2

A1Le
i(lx+my+ωt) +

1

e∗2
A1Re

i(lx+my−ωt) − c · c.
]

sin πz. (3.74)

where δ2 = (π2+q2
oc), e1 = (δ2+iω), e2 = (Mδ2+iωφ

Pr2
Pr1

) and e3 = e2

( iw
M2φPr1

+ Λδ2

M
)e2+Qm2

,

here e∗1, e∗2, e∗3 are complex conjugate of e1, e2 and e3. We obtain the critical Rayleigh

number from the linear equation L0w0 = 0. At O(ε2), N0 = 0 and L1w0 = 0 gives

∂A1L

∂τ
−νg ∂A1L

∂X
= 0 and ∂A1L

∂τ
+νg

∂A1L

∂X
= 0. Where νg = (∂ω

∂q
)q=qsc is the group velocity

and is real. Hence we obtain u1 = 0. Similarly, the remaining first order solutions
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are

u1 =0,

v1 =
−i
2le8

[
A2

1Le5e
2i(lx+my+tω) + A2

1Re
∗
5e

2i(lx+my−tω) − c · c
]
−

i

2l[(Λq2

M
+ 1

MDa
)Mq2 + 4Qm2]

[
A1LA1Re

2i(lx+my) − c · c
]
,

w1 =0,

θ1 =
π

M2(ω2 + δ4
oc)

[
A1LA

∗
1R

e∗1
e7

e2itω + δ2
oc(|A1L|2 + |A1R|2) + c · c

]
sin 2πz,

Hx1 =[(
Λq2

M
+

1

MDa
)Mq2 + 4Qm2]

[
A1LA1Re

2i(lx+my) + c · c
]

cos 2πz+

2mπ2Pr2

l|e2|2Pr1

[
A1LA

∗
1R

e∗2
e∗4
e2itω +

δ2
oc

4π2
(|A1L|2 + |A1R|2) + c · c

]
,

Hy1 =
m

4Mlq2e6

[
A1LA1Re

2i(lx+my) + c · c
]

+
2πδ2

ocmPr2

|e2|2lP r1

(|A1L|2 + |A1R|2) sin 2πz+

m

2le6e8

[
|A1L|2e5e

2i(lx+my+tω) + |A1R|2e∗5z1e
2i(lx+my−tω) + c · c

]
+

4π3mPr2

l|e2|2e4Pr1

[
A1LA

∗
1Re
∗
2e

2itω − c · c
]
,

Hz1 =0, (3.75)

where e4 = 2Mπ2 + φPr2
Pr1

iω, e5 = Λ
M
δ2 + 1

MDa
+ 1

M2φPr1
iω, e6 = 2Mq2 + φPr2

Pr1
iω,

e7 = 2π2 + iω and e8 = Λ
4M
δ2 + 1

MDa
+ 2

M2φPr1
iω, their corresponding complex

conjugates are e∗4, e∗5, e∗6, e∗7 and e∗8 respectively. Equating the coefficients of sinπz

in N1 − L2w0 equal to zero. We get,

Λ0
∂A1L

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2L − Λ2

∂2A1L

∂X2
− Λ3A1L

+ Λ4|A1L|2A1L + Λ5|A1R|2A1L = 0, (3.76)

Λ0
∂A1R

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2R − Λ2

∂2A1R

∂X2
− Λ3A1R

+ Λ4|A1R|2A1R + Λ5|A1L|2A1R = 0. (3.77)
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Where

Λ0 =− Taπ2e2

M2φ2
− Rq2e2

2

M3φPr1

+ (Taπ2Pr2 +Qm2δ2
oc)

2e1e2

M2φPr1

+Q2m4δ2
oc+

2φQδ2
ocm

2Pr2

Pr1

e1e5 + 2(Qm2δ2
oc −

φδ2
ocPr2

MPr1

)e2e5 −
φRQq2m2Pr2

MPr1

+

2δ2
oc(

e1

M2φPr1

− φPr2e5

Pr1

)e1e2e5,

Λ1 =− δ2
oce1e

2
2

M4φ2Pr2
1

+
2δ2
oce5

M2φPr1

(e4 − e2
2)− 2Taπ2e2Pr2

M2φPr1

+
2e1δ

2
ocPr2

M2Pr2
1

(Qe4 − 2e2e5)−

Taφ2Pr2

M2Pr2
1

− 2φδ2
ocPr2

Pr1

(e2e5 − e4)e5 +
φ2Pr2

2

Pr2
1

(Rq2 − e1e5δ
2
oc) +

2Rq2e2Pr2

M3Pr2
1

,

Λ2 =− 2Rq2e2e5 + 2δ2
oce1e2e5(Me5 +

Λe2

M
)− RΛq2

M2
e2

5 + (δ2
oc + e1)e2

2e
2
5+

2Tae1e2π
2

Mφ2
+
Taπ2e2

5

M2φ2
+RQq2e4 − 2MQδ2

oce1e4e5 +Q(
R

M
− 2δ2

oce5)e2e4−

2Q(e5 + λδ2
oc)e1e2e4 +Q2(δ2

oc + e1)e2
4,

Λ3 =− Qm2q2

M
e2 −

q2

M
e5e

2
2,

Λ4 =
Qlmδ2

oct2Pr2

4Pr1

(e2e5 +Qm2)(4 +
m2

π2
)−
√
TaQm2π2e1e2e7Pr2(1− i)

2Mφe9Pr1

(
1

e6

+
e7

e∗2
) +

√
Tae1e

2
2e7π

Me9φPr1

(
QPr2m

2

le6e∗2
i− π

M2φ2
)− TaQδ2

oclme1e2e7t2Pr2

4M2φ2Pr1

,

Λ5 =(e1e5 +Qm2)
Qlmδ2

ocPr2

Pr1

[(
3− l2

m2

)
t2
e2

+ e1

(
e10 +

t2δ
2
oc

2π2
+
t2e
∗
2

e∗4

)]
+

√
Tae1e2m

2π2QPr2

MφPr1

(
1

4Mq2e6

+
1

2e2t1

)
+

2
√
Tae1e

2
2π

6MφPr1

(
π

t1
− Qm2Pr2

4lq2e6Pr1

i

)
+

Tae1e
2
2Qφ

2Pr2

2M2φ2Pr1

[
l(m+

1

e2

)e∗7e10 −m
(
δ2e7l

2
− e8

2e
∗
7

e∗4

)]
, (3.78)

where t1 = ( 1
MDa

+ Λq2

M
)Mq2 + 4Qm2, t2 = 2mπ2Pr2

l|e2|2Pr1 , e9 = 2e8e6 + 4Qm2 and e10 =

−m2π2
√
TaPr2

21ω

2M2δ2
ocl

2|e2|2Pr2
1

(e∗5−e1). Where Λ0, Λ1, Λ2, Λ3, Λ4 and Λ5 are the complex coefficients

in physical components qoc, Ro, Ez, Λ, α and qz. Here e1 = δ2
oc + iωoc, e2 =

δ2
oc + αq2

oc + iωoc
qz

and e5 = δ2
oc + αq2

oc +Roiωoc.

Here A2L =
(
∂
∂τ

+ νg
∂
∂X

)
A1L and A2R =

(
∂
∂τ
− νg

∂
∂X

)
A1R. A1L, A1R and A2L,

A2R are of orders ε and ε2 respectively. From the equations ∂A1L

∂τ
− νg

∂A1L

∂X
= 0
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and∂A1L

∂τ
+ νg

∂A1L

∂X
= 0 we obtain A1L(ξ′, T ) and A1R(η′, T ). Where ξ′ = νgτ + X

η′ = νgτ −X. Equations (3.76) and (3.77) can be written as

2vgΛ1
∂A2L

∂η′
=− Λ0

∂A1L

∂T
+ Λ2

∂A1L

∂X2
+ Λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (3.79)

2vgΛ1
∂A2R

∂η′
=− Λ0

∂A1R

∂T
+ Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (3.80)

Let ξ′ε[0, l1], η′ε[0, l2] where l1 is the period of A1L and l2 is the period of A1R .

Expansion (3.72) remains asymptotic for times t = O (ε−2) only if an appropriate

solvability condition holds. This condition is derived by integrating equations (3.79)

and (3.80) over η′, ξ′ respectively, we obtain

Λ0
∂A1L

∂T
= Λ2

∂A1L

∂X2
+ λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (3.81)

Λ0
∂A1R

∂T
= Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (3.82)

Equations (3.81) and (3.82) are left and right moving waves known as coupled one-

dimensional LG equations.

Travelling wave and standing wave

Dropping the variable X from equations (3.81) and (3.82)

dA1L

dT
=

Λ3

Λ0

A1L −
Λ4

Λ0

A1L|A1L|2 −
Λ5

Λ0

A1L|A1R|2, (3.83)

dA1R

dT
=

Λ3

Λ0

A1R −
Λ4

Λ0

A1R|A1R|2 −
Λ5

Λ0

A1R|A1L|2. (3.84)

Put

β′ =
Λ3

Λ0

, γ′ = −Λ4

Λ0

and δ′ = −Λ5

Λ0

.
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Then equations (3.83) and (3.84) take the following form

dA1L

dT
= β′A1L + γ′A1L|A1L|2 + δ′A1L|A1R|2, (3.85)

dA1R

dT
= β′A1R + γ′A1R|A1R|2 + δ′A1R|A1L|2. (3.86)

Where

A1L =aLe
iφL aL =|A1L| φL =arg(A1L)

A1R =aLe
iφR aR =|A1R| φR =arg(A1R)

β′ =β1 + iβ2 γ′ =γ1 + iγ2 δ′ =δ1 + iδ2 (3.87)

Substituting of A1L,A1R,β′, γ′ and δ′ in (3.85) and (3.86). we get,

(aL, aR) = (−β1/(γ1 + δ1),−β1/(γ1 + δ1)) , (3.88)

Substituting A1L, A1R, β′ , γ′ and δ′ in (3.85) and (3.86). we get aL = −β1/(γ1 +δ1)

and aR = −β1/(γ1+δ1) for standing waves. (aL, aR) = (aL, 0) for left travelling waves

and (aL, aR) = (0, aR) for right travelling waves. (aL, aR) = (0, 0) for conduction

state. Standing waves exist if | AL |2=| AR |2= − β1

γ1+δ1
> 0 and supercritical if

γ1 + δ1 < 0. Standing waves are stable if β1 > 0, γ1 < 0 and

(i) if δ1 > 0, then −γ1 > δ1 > 0,

(ii) if δ1 < 0, then −γ1 > −δ1 > 0.

Travelling waves exist if | AL |2= −β1

γ1
> 0 and they are supercritical if γ1 < 0.

Travelling waves are stable if β1 > 0, γ1 < 0 and δ1 < γ1 < 0. We studied onset of

Hopf bifurcation of stability regions of travelling, standing wave and steady states in

figure 3.10. It can be observed that, when Pr2
Pr1

increases, the standing wave stability

regions decreases for fixed parameters.
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Figure 3.10: Stability regions of steady state (S.S), standing waves (S.W.) and
travelling waves (T.W.) for Da = 1500, Λ = 2, M = 0.9, φ = 0.85, R = 41000,
Ta = 105, (a)Pr2

Pr1
= 6, (b)Pr2

Pr1
= 9, (c)Pr2

Pr1
= 12.
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3.5 Conclusions

In this chapter, linear and weakly nonlinear stabilities of horizontal magneto con-

vection in a sparsely packed porous medium due to rotation have been discussed.

Rayleigh value at the onset of stationary and oscillatory convection by assuming pe-

riodic disturbances along x-direction, y-direction and both directions was obtained.

Marginal stability curves between Rayleigh value and wave number was discussed

graphically. The existence of Takens-Bogdanov bifurcation and codimension of two

bifurcation points on neutral curves was shown in Figures 3.3 - 3.6. The thermal and

magnetic Prandtl numbers do not have an effect on convective stationary Rayleigh

value. By deriving two dimensional LG equation at the onset of stationary mode,

we have studied heat transport from Nusselt number and the occurrence of long

wave length instabilities. Heat transport by convection through Nusselt number

was discussed. Nusselt number grows exponentially if R
Rsc

> 1 and decays if R
Rsc
≤ 1

for Nu > 1. Nusselt number grows exponentially at unit value. From Figure 3.10

it can be observed that the region of existing standing waves starts decreasing by

increasing the ratio of magneto and thermal prandtl number.
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4.1 Introduction

Thermohaline convection arises due to the gradient in the molecular diffusivities

of salt and temperature and the density gradients is caused by temperature and

solute concentration. Thermohaline convection affects the large-scale dynamics of

ocean circulation and it begins when the salt gradient is high compared with the

thermal gradient. Rudraiah et al. [100], Bhadauria [20], Malashetty et al. [64, 65]

and Kumar [60] resesarchers studied thermohaline convection by Darcy flow model

which is related to densely packed porous media. This process is mainly used in

oceanography, limnology and ocean mixing. A broad study of this type of convection

about porous medium was done by Nield and Bejan [80]. Malashetty [64] and Benerji

Babu [7] studied thermohaline convection due to sparsely packed porous medium as

well as studied linear and nonlinear stability analysis.

The onset of convection in electrically conducting fluid in the presence of mag-

netic field was studied by Thompson [125], Chandrasekhar [35] and Drazin [42]. The

presence of vertical magnetic field leads to the boundary of monotonous instability

and increases the stability of the conductive state. The presence of a horizontal

magnetic field breaks the symmetry and convection in the form of rolls. In this

chapter, we studied instabilities and bifurcation of the thermohaline convection due

to horizontal magnetic field in porous medium. Tagare [119, 120] and Benerji [7],

derived amplitude equations to study heat transport, instabilities and traveling and

standing wave regions. Benerji [10] derived amplitude equations for thermohaline

magneto convection in a sparsely packed porous medium.

In this chapter, we examine thermohaline horizontal magneto convection in a

sparsely packed porous medium. In section 4.2, the basic dimensionless equations

are derived using Boussinesq approximation. In section 4.3, we studied linear stabil-

ity analysis and identified bifurcation points in neutral curves. In section 4.4, using

multiple scale analysis derived two dimensional nonlinear LG equation in complex

amplitude with real coefficients. We studied Nusselt number and secondary insta-
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bilities. In section 4.5, we derived coupled LG equations with complex coefficients

and studied the stability regions of the steady state, standing waves and travelling

waves.

4.2 Basic Equations

We consider an electrically and thermally conducting infinitely extended layer of a

sparsely packed isotropic porous medium of depth ′d′ with horizontal magnetic field

Ho. This layer is heated from below saturated with a solute solution of a specific

concentration gradient. The temperature and salinity differences across the stress-

free boundaries are denoted by ∆T ′ and ∆S ′ and the flow in sparsely packed porous

medium governed by DLB model, the basic equations for which are

∇′.V ′ = 0, and ∇′.H ′ = 0, (4.1)

ρ′0
φ

[
∂V
′

∂t′
+

1

φ
(V
′
.∇′)V ′

]
− µm

4π

[
H
′
0

∂H
′

∂y′
+ (H

′
.∇′)H ′

]
=

−∇′
(
P ′ +

µm
8π
|H ′|2 +

µm
4π2

H
′
0H
′
y

)
+ ρ′g − µ

k
V
′
+ µe∇′2V

′
, (4.2)
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M
∂T ′

∂t′
+ (V

′
.∇′)T ′ = kT∇′2T ′, (4.3)

φ
∂S ′

∂t′
+ (V

′
.∇′)S ′ = kS∇′2S ′, (4.4)

φ
∂H

′

∂t′
−∇′ × (V

′ ×H ′0êy) = ∇′ × (V
′ ×H ′) + η∇′2H ′, (4.5)

fluid density ρ′ is defined as

ρ′ = ρ′0 [1− α(T ′ − T ′0) + β(S ′ − S ′0)] , (4.6)

where α = −ρ′−1
0

∂ρ′

∂T ′
, β = −ρ′−1

0
∂ρ′

∂S′
. Using the transformations, x = x′

d
, y = y′

d
,

z = z′

d
, t = t′

(Md2/k)
, u = u′

(k/Md)
, v = v′

(k/Md)
, w = w′

(k/Md)
, θ = θ′

4T ′ , c = c′

4S′ ,

P = P ′

(ρ′0M
−1k2d−2)

, H = H′

kHo/η
, the non dimensional governing equations are,

∇ · V = 0, and ∇ ·H = 0, (4.7)

1

M2φPr

[
∂V

∂t
+

1

φ
(V · ∇)V

]
−Q∂H

∂y
+

1

MDa
V −QPr2

Pr1

(H · ∇)H =

Λ

M
∇2V −∇

(
P

MPr1

− Q

2

Pr2

Pr1

|H|2 +QHy

)
+ (R1θ −R2C)êz, (4.8)

∂θ

∂t
+

1

M
(V .∇)θ =

w

M
+∇2θ, (4.9)

φ

L

∂C

∂t
+

1

ML
(V .∇)C =

w

ML
+∇2C, (4.10)

φ
Pr2

Pr1

∂H

∂t
−∇× (V × êy)−M∇2H =

Pr2

Pr1

∇× (V ×H), (4.11)

the non dimensional numbers are L = kS
kT

, Da = k
d2 , R1 = αg4Td3

νkT
, R2 = αg4Sd3

γkT
,

Q = µmH2
od

2

4πρoνη
, Pr1 = ν

k
, Pr2 = ν

η
and Λ = µe

µ
. The z-component of curl of equation
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(4.8) is

DPr1(∇× V ) · êz −Q
∂

∂y
(∇×H) · êz −R1(∇× θêz) · êz +R2(∇× Cêz)êz =

− 1

M2φ2Pr1

[
∇× (V · ∇)V

]
· êz +Q

Pr2

Pr1

[
∇× (H · ∇)H

]
· êz, (4.12)

the z-component of curl of curl of (4.8) is

DPr1∇2w −Q ∂

∂y
∇2Hz −R1∇2

hθ +R2∇2
hC = Q

Pr2

Pr1

[
∇×∇× (H · ∇)H

]
· êz−

1

M2φ2Pr1

[
∇×∇× (V · ∇)V

]
· êz, (4.13)

the z-component of equation (4.11) is

DφHz =
∂w

∂y
+
Pr2

Pr1

∇× (V ×H) · êz (4.14)

eliminating θ, C and Hz from equations (4.9), (4.10), (4.12), (4.13) and (4.14), we

get the equation in the form

Lw = N , (4.15)

L =DDφDLDPr1∇2 −QDDL∇2 ∂
2

∂y2
− R1

M
DLDφ∇2

h +
R2

ML
DDφ,

N =DDLDφ
[

1

M2φ2Pr1

(∇×∇× (V · ∇)V ) · êz −Q
Pr2

Pr1

(∇×∇× (H · ∇)H) · êz
]

R1

M
DφDL∇2

h(V · ∇)θ +
R2

ML
DDφ∇2

h(V · ∇)C +QDDL
Pr2

Pr1

∂

∂y
∇× (V ×H) · êz,

(4.16)

where

∇2
h =

∂2

∂x2
+

∂2

∂y2
, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, D =

∂

∂t
−∇2,

Dφ = φ
Pr2

Pr1

∂

∂t
−∇2, DPr1 =

1

M2φPr1

∂

∂t
+

1

MDa
− Λ

M
∇2, DL =

φ

L

∂

∂t
−∇2.



CHAPTER 4. 94

4.3 Linear Stability Analysis

The linearised system of Lw = N is Lω = 0, by assuming periodic disturbances

with period 2π
l

along x-direction and periodic disturbances with period 2π
m

along

y-direction with growth rate p of the form w = sinπzei(lx+my)+pt. We get,

(
p+ δ2

)(φ
L
p+ δ2

)(
φ
Pr2

Pr1

p+Mδ2

)(
1

M2φPr1

p+
1

MDa
+

Λ

M
δ2

)
δ2+

Q
(
p+ δ2

)(φ
L
p+ δ2

)
δ2m2 − R1

M
q2

(
φ

L
p+ δ2

)(
φ
Pr2

Pr1

p+Mδ2

)
+

R2

ML
q2
(
p+ δ2

)(
φ
Pr2

Pr1

p+Mδ2

)
= 0, (4.17)

where q2 = l2 + m2 and δ2 = π2 + q2, substituting p = iω into equation (4.15), we

get

R1 =
M

q2
K
[
c0 − c2ω

2 + c4ω
4 − c6ω

6 + iω
(
c1 − c3ω

2 + c5ω
4
)]
, (4.18)

here we have given different coefficient values

K =(δ4 +
φ2

L2
ω2)−1(M2δ4 + φ2Pr

2
2

Pr2
1

ω2)−1, c0 = Mδ8(Qm2δ2 +
1

Da
+ Λδ6 +

R2

L
q2),

c1 =
[
M(m2Qδ2 +

δ4

Da
+ Λδ6) +

δ6

Pr1

(
1

φ
−m2QφPr2δ

2) +
Mq2R2

L2
(L− φ)

]
δ6,

c2 =
δ10

φPr1

− q2δ4φR2

L
(
M

L
+

φ

M

Pr2
2

Pr2
1

)− δ8φ2M(
1

L2
+

1

M2

Pr2
2

Pr2
1

)(
1

Da
+ δ2Λ)−

m2Qδ6φ(
Mφ

L2
+
Pr2

Pr1

),

c3 =
q2δ2φ2

L2M

Pr2
2

Pr2
1

R2(φ− L)−
[
Mδ6φ2(

1

Da
+ δ2Λ)− φδ8

Pr1

]
(

1

M2

Pr2
2

Pr2
1

+
1

L2
)−

m2Qδ4φ2

L2
(M − φPr2

Pr1

),

c4 =
δ4φ4

L2M

Pr2
2

Pr2
1

(
1

Da
+ Λδ2) +

q2φ3

L2M

Pr2
2

Pr2
1

R2 −
δ6φ

Pr1

(
1

L2
+

1

M2

Pr2
2

Pr2
1

) +
m2Qδ6φ3

L3

Pr2

Pr1

,

c5 =
δ2φ4

L2M

Pr2
2

Pr2
1

(
1

Da
+ Λδ2 +

δ2

MφPr1

), c6 =
δ2φ3Pr2

2

L2M2Pr3
1

. (4.19)
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4.3.1 Marginal stability analysis when R1 is a dependent

variable

Stationary convection:

At the onset of stationary convection take ω = 0 in equation (4.18), we get

R1s =
1

q2

[(
1

Da
+ Λδ2

)
δ4 +Qm2δ2 +

R2

L
q2

]
(4.20)

where R1s is the stationary thermal Rayleigh number. The critical stationary ther-

mal Rayleigh number R1sc for critical wave numbers lsc and msc which represent the

oblique rolls is

R1sc =
1

q2
sc

[(
1

Da
+ Λδ2

sc

)
δ4
sc +Qm2

scδ
2
sc +

R2

L
q2
sc

]
, (4.21)

where q2
sc = l2sc +m2

sc and δ2
sc = q2

sc + π2.

For parallel rolls, there is no periodic disturbance along x-direction and periodic

disturbance along y-direction with growth rate p, take l = 0 in equation (4.20), we

get the stationary thermal Rayleigh number for parallel rolls R1sm as

R1sm =
1

m2

[(
1

Da
+ Λ(m2 + π2)

)
(m2 + π2)2 +Qm2(m2 + π2)2 +

R2

L
m2

]
. (4.22)

The critical Rayleigh number for parallel rolls at the critical wave number m2 = π2

3√2

is R1scm,

R1scm =
3
√

2Λπ4(1 +
1
3
√

2
)3 +Qπ2(1 +

1
3
√

2
) +

R2

L
, (4.23)

the critical value R1scm depends on Q, R2 and L.

For cross rolls, there is no periodic disturbance along y-direction and periodic dis-

turbance along x-direction with growth rate p, take m = 0 in equation (4.20), we
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get the stationary thermal Rayleigh number for cross rolls R1sl is

R1sl =
1

l2

[(
1

Da
+ Λ(l2 + π2)

)
(l2 + π2)2 +

R2

L
l2

]
. (4.24)

The critical Rayleigh number for cross rolls at the critical wave number l2 = π2

2
(
√

5−

1) is R1scl,

R1scl ≈
27π4

4
Λ +

R2

L
, (4.25)

the critical value R1scl depends on R2 and L not on Q value.

Oscillatory convection

At the onset of oscillatory convection, equation (4.18) represents the imaginary but

Rayleigh number is always real so equating the imaginary value of equation (4.18)

to zero,

c1 − c3ω
2 + c5ω

4 = 0, (4.26)

ω2 =
c3 ±

√
c2

3 − 4c1c5

2c5

, (4.27)

by substituting positive ω2 from equation (4.27) into the real part of equation (4.18),

we get the oscillatory thermal Rayleigh number R1o,

R1o =
M

q2
K
(
c0 − c2ω

2 + c4ω
4 − c6ω

6
)
, (4.28)

where c0, c2, c4, c6 and K are given from relation (4.19). A necessary condition for

ω2 > 0 is

Q <
δ6
(

ΛM + 1
φPr1

)
+ Mq2R2

L
(1− φ

L
)

m2δ2(φδ
6Pr2
Pr1

−M)
(4.29)

Figures 4.2 - 4.5 are marginal curves traced in (q, R1)-plane, the solid and dotted

lines represents stationary and oscillatory Rayleigh numbers respectively. We ob-
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Figure 4.2: Neutral curves are plotted for Da = 1500, Λ = 6, M = 0.9, φ = 0.85,
Pr1 = 1, Pr2 = 1.5, R2 = 500, (a)Q = 1300, (b)Q = 1750, (c)Q = 3000. Solid lines
represent stationary convection R1s and dotted lines represent oscillatory R10
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Figure 4.3: Neutral curves are plotted for Da = 1500, Λ = 5, M = 0.9, φ = 0.85,
Pr1 = 1, Pr2 = 1.5, Q = 1750, (a)R2 = 100, (b)R2 = 500, (c)R2 = 1800. Solid
lines represent stationary convection R1s and dotted lines represent oscillatory R1o
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Figure 4.4: Neutral curves are plotted for Da = 1500, M = 0.9, φ = 0.85, Pr1 = 1,
Pr2 = 1.5, Q = 1750, R2 = 800, (a) Λ = 2, (b) Λ = 5, (c) Λ = 7. Solid lines
represent stationary convection R1s and dotted lines represent oscillatory R1o



CHAPTER 4. 100

1 2 3 41 0 0 0 0

1 5 0 0 0

2 0 0 0 0
R 1 s

P r 1 = 0 . 8

P r 1 = 1
P r 1 = 1 . 0 5

 

 

R 1

q

-  -  -  -   R 1 o

(a)

1 2 3 4
1 2 0 0 0

1 6 0 0 0

2 0 0 0 0

2 4 0 0 0
R 1 s

P r 2 = 1 . 7 5
P r 2 = 1 . 5
P r 2 = 1 . 4

 

 

R 1

q
-  -  -  -  R 1 o  

(b)

Figure 4.5: Neutral curves are plotted for Da = 1500, Λ = 2, M = 0.9, φ = 0.85,
R2 = 500 in sub figure (a) Pr2 = 1.5, vary Pr1 values,Pr1 = 0.8, 1, 1.05, in sub figure
(b) Pr1 = 1, vary Pr2 values,Pr2 = 1.4, 1.5, 1.75. Solid lines represent stationary
convection R1s and dotted lines represent oscillatory R10
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tained co-dimension two bifurcation points and Takens-Bogdanov bifurcations. At

the co-dimension two bifurcation point we get Rs(qs) = Rc(qc) and qs 6= qc. At

Takens-Bogdanov bifurcation point R10(qo) = R1s(qs) = R1c(qc) and qo = qs = qc.

The stationary Rayleigh number is not affected by thermal or magnetic prandtl num-

bers. In Figures 4.2(b), 4.3(b), 4.4(b), 4.5(a) at Pr1 = 1 and 4.5(b) at Pr2 = 1.5

there exists co-dimension two bifurcation points , while other intersection points

represents Takens-Bogdanov bifurcation points. In Figure 4.5(a) co-dimension two

bifurcation point moves upwards when Pr1 increases, in Figure 4.5(b) co-dimension

two bifurcation point moves downwards when Pr2 increases.

4.3.2 Marginal stability analysis when R1 is an independent

variable

In equation (4.17) represents a fourth degree polynomial in powers of p,

Ap4 +Bp3 + Cp2 +Dp+ E = 0, (4.30)

where

A =
δ4φPr2

LM2Pr2
1

, B =
δ4Pr2

M2Pr2
1

(1 +
φ

L
) +

δ2φ2Pr2

LMPr1

(Λ +
1

Da
) +

δ4

LMPr1

,

C =
φδ2

L
(m2Q+

δ2

Da
) +

δ4φPr2

MPr1

(1 +
φ

L
)(Λφδ2 +

1

Da
) +

δ6

MPr1

(
1

φ
+

Pr2

MPr1

)+

δ6

L
(Λφ+

1

MPr1

) +
q2φPr2

LMPr1

(R1 −R1φ),

D =q2δ2

[
φPr2

MPr1

(R1 +
R2

L
) +

1

L
(R1 − φR1)

]
+m2Qδ4(1 +

φ

L
) +

δ6

Da
(1 +

φ

L
+

φPr2

MPr1

) + δ8

[
Λ(1 +

φ

L
) +

1

MPr1

(ΛφPr2 +
1

φ
)

]
,

E =δ4

[
m2Qδ2 + δ4(Λδ2) +

1

Da
− q2(R1 −

R2

L
))

]
. (4.31)
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Substituting p = iω in equation (4.30), we get

(Aω4 − Cω2 + E)− iω(Bω2 −D) = 0, (4.32)

the real and imigenary part of above equation (4.32) are

Aω4 − Cω2 + E =0, (4.33)

Bω2 −D =0 (4.34)

Stationary convection:

At the onset of stationary convection taking ω = 0 in equation (4.30), we get E = 0,

m2Qδ2 + δ4(Λδ2 +
1

Da
)− q2(R1 −

R2

L
)) = 0 (4.35)

from equation (4.35), we get stationary thermal Rayleigh number R1s is

R1s =
1

q2

[(
1

Da
+ Λδ2

)
δ4 +Qm2δ2 +

R2

L
q2

]
, (4.36)

which is the same as equation (4.20). Differentiating equation (4.35) with respect

to l2 and m2, we get

Qm2 +
1

Da
2(l2 +m2 + π2) + 3Λ(l2 +m2 + π2)2 − (R1 −

R2

L
) = 0 (4.37)

Q(l2 + 2m2 + π2) +
1

Da
2(l2 +m2 + π2) + 3Λ(l2 +m2 + π2)2 − (R1 −

R2

L
) = 0,

(4.38)

solving equations (4.37) and (4.38) we get

δ2 =

(
R1 − R2

L

3Λ

)1/2

(4.39)
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now substituting δ2 from equation (4.39) in equation (4.36), we get the stationary

critical Chandrasekhar number Q = Qsc where

Qsc =
1

2m2

[
2

(
R1 −

R2

L

)
− Λ

√
Rrb

(
R1 −

R2

L

)1/2
]
, (4.40)

where Rrb is the critical thermal Rayleigh number of the Rayleigh-Benard convec-

tion, Rrb = 27π4

4
. From equation (4.39),

qsc =

(R1 − R2

L

3Λ

)1/2

− π2

 1
2

, (4.41)

we use equation (4.41) to determine the sign of E, (i.e. E = 0, E > 0). In figure 4.6

shows the plotted curve (R1, Qsc)- plane for equation (4.40). In figure on R1 x-axis

Q = 0 and each solid line represents R2 and starting from R1 = R1rb + R1

L
.

Oscillatory convection:

At the onset of oscillatory convection, from equation (4.32) Aω4−Cω2 +E = 0 and

Bω2−D = 0. From equation Bω2−D = 0, ω2 = D
B

. Substituting ω2 = D
B

in equation

Aω4−Cω2+E = 0, we get AD2−BCD+B2E = 0 and the thermal Rayleigh number

onset of oscillatory convection exists for a set of physical parameters corresponding

to positive value of ω2. For a large value of Da and unit values of Λ, L, the equation

AD2 −BCD +B2E = 0 is expressed as

−Qm
2δ2(Pr2 +MPr1)

M3φPr3
1

+ q2(R1O1 −R2O2)− δ6O3 = 0, (4.42)

where O1 =
φ(MPr1+Pr2)(M2Pr2

1+Pr2
2)

M5Pr5
1

, O2 =
M2Pr2

1(MPr1−Pr2)+φ2Pr3
2

M5φPr5
1

and

O3 = (MPr1+Pr2)(MPr1+φPr2)

M5φ2Pr5
1

. Comparing equations (4.35) and (4.42), and substitut-

ing in equations (4.39) and (4.40), we get the critical wave number qoc and critical
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Figure 4.6: curves are plotted forR2=-120, 0 and 120 in (R1, Q)- plane atDa = 1500,
Λ = 0.8, M = 0.85, φ = 0.9, Pr1 = 1, Pr2 = 1.25 and L = 1.

Chandrasekhar number Qoc,

qoc =

[
1√
3

(R1O1 −R2O2)1/2 − π2

] 1
2

, (4.43)

Qoc =
1

m2

[
2 (R1O1 −R2O2)− π23

√
3 (R1O1 −R2O2)1/2

]
. (4.44)

In Figure 4.7, if w2 > 0 the get codimension two bifurcation point.It moves upward

when Pr1 increases and it moves downwards when Pr2 decreases.

4.4 Nonlinear stability analysis

4.4.1 LG equation at the onset of stationary convection

According to Newell and Whitehead [77] multiple scale analysis , small scale convec-

tion cells disturb the vital flow. If the scale range is O(ε) then the the collaboration

of the cell with itself forces a second harmonic and a standard state of rectification of

range O(ε2) and these in turn impel an O(ε3) rectification to the structural module
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Figure 4.7: Solid curve represent stationary critical Chandrasekhar number (Qsc)
and dotted curves represents the oscillatory critical Chandrasekhar number at Da =
1500, Λ = 0.6, M = 0.85, L = 1, φ = 0.85 (a) Pr1=3, 3.1, 3.2 and Pr2 = 4.2 (b)
Pr1 = 3.3 and Pr2 = 4.8, 4.9, 5.
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of the imposed roll. Let us assume the solution of equations (4.7)-(4.11) in series ε

form

f(u, v, w, θ, C,Hx, Hy, Hz) = f = εf0 + ε2f1 + ε3f2 + · · · . (4.45)

The first order calculations of the linearised problem given by approximation are

given by the eigenvectors

u0 =
iπ

lsc

[
Aei(lscx+mscy) − c · c·

]
cos πz, v0 = 0,

w0 =
[
Aei(lscx+mscy)z + c · c·

]
sin π,

θ0 =
1

Mδ2
sc

[
Aei(lscx+mscy) + c · c·

]
sin πz,

C0 =
1

MLδ2
sc

[
Aei(lscx+mscy) + c · c·

]
sin πz,

Hx0 =
−πmsc

Mlscδ2
sc

[
Aei(lscx+mscy) + c · c·

]
cosπz,Hy0 = 0,

Hz0 =
imsc

Mδ2
sc

[
Aei(lscx+mscy) − c · c·

]
sin πz, (4.46)

here A = A(X, Y, T ) is the complex scale varying on gradual variables X, Y and T

while complex conjugates are represented as c.c. The analytical mode for the linear

problem at R1s = R1sc is eiqx sin πz. The variables x, y, z and t are scaled by

X = εx, Y = ε
1
2y, Z = z and T = ε2t, (4.47)

are suitably scattered for the fast and slow unconventional variables in f . The

derivative operators can be formulated as

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂y
→ ∂

∂y
+ ε

1
2
∂

∂Y
,

∂

∂z
→ ∂

∂Z
,

∂

∂t
→ ε2

∂

∂T
. (4.48)

Based on the transformations equation (4.48), the linear and nonlinear operators L

and N are written as

L = L0 + εL1 + ε2L2 · · · , (4.49)
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N = ε2N0 + ε3N1 + · · · , (4.50)

substituting equations (4.49), (4.50) and (4.45) into equation (4.15), and equating

the ε, ε2, ε3 coefficients on both sides, we obtain

L0w0 = 0, (4.51)

L0w1 + L1w0 = N0, (4.52)

L0w2 + L1w1 + L2w0 = N1, (4.53)

where

L0 =−∇6

(
Q
∂2

∂y2
+

1

Da
∇2 − Λ∇4

)
−∇4∇2

hR12,

L1 =

[
∇2(−3Q∂2

y −∇2(
6

Da
+ 3Q) + 10Λ∇4)−R12(∇2

h + 2∇2)

]
a2

3−

R12a2∇2(a5 + 2∇2
h) + a2∇4(−3Q∂2

y −
4

Da
∇2 + 5Λ∇4)−Qc2∇6,

L2 =(1 +
φ

L
)(Q∂2

y +
∇2

Da
− Λ∇4)∇2 +R12(

1

L
+

φPr2

MPr1

)∇2
2∇2−[

∇2

φ
+ φPr2(

1

Da
− Λ∇2)

]
∇6

MφPr1

+ a2
2∇2[−3Q∂2

y − 2R12]−

3Qa2∇4∂2
y − a2

2∇2
hR12 + a2a

3
3p1 + a2

2p2 − 3a2a
2
3p3, (4.54)

where a1 = ∂2

∂X2 , a2 = ∂2

∂x∂X
, a3 = 2 ∂2

∂y∂Y
, R12 =

(
R1 − R2

L

)
, p1 = −6(Q + 2

Da
)∇2 −

3R12 + 30Λ∇4 − 3Q∂2
y , p2 = ∇2(−3Q∂2

y − 6∇2

Da
+ 10Λ∇4) − R12(∇2

h + 2∇2), p3 =

−2(Q+ 2
Da

)∇2+10Λ∇4−Q∂2
y−R12 Substituting zeroth order solution w0 in equation

(4.54) L0w0 = 0, we get

Rsc =
δ2
sc

q2
sc

[
δ4
scΛ +

1

Da

δ2
sc +Qm2

sc

]
. (4.55)
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In equation (4.52), N0 = 0,L1w0 = 0 and hence

u1 =0, v1 = 0, w1 = 0,

θ1 =− 1

2πM2δ2
sc

|A|2 sin 2πz,

C1 =− 1

2M2L2δ2
sc

|A|2 sin 2πz,

Hx1 =
1

M2δ2

m

l

Pr2

Pr1

|A|2 cos 2πz,

Hy1 =0, Hz1 = 0. (4.56)

Taking w1 = 0 in equation (4.53), N1 − L2w0 is vertical to w0. This is ensured if

the coefficient of sin πz in N1−L2w0 is zero. We get 2-D time dependent nonlinear

LG equation as follows

λ0
∂A

∂T
− λ1

(
∂

∂X
− i

2qsc

∂2

∂Y 2

)2

A− λ2A+ λ3|A|2A = 0, (4.57)

where

λ0 = δ4(1 +
φ

L
)

[
−Qm2 − δ2

Da
− Λδ4

]
+ q2δ2

[
R2

2
(1 + φ

Pr2

Pr1

) + φR1(
1

L
+
Pr2

Pr1

)

]
−

δ6

MPr1

[
φPr2(

1

Da
+ Λδ2) +

δ2

φ

]
,

λ1 = −δ2(Qm2 +
6δ2

Da
+ 10δ4) +R12(q2 + δ2),

λ2 = q2δ4R1,

λ3 = −Qm
2δ2

2M2
(
Pr2

Pr1

)2(−3π2 + l2)− δ2q2

2M2
(R1 −

R2

2ML3
) +

Qm2δ4

2M2
(
Pr2

Pr1

)2. (4.58)

According to Steinberg and Brand [115], from the Fig. 4.10, if λ3 > 0 the pitchfork

bifurcation is supercritical, if λ3 < 0 subcritical and if λ3 = 0, then tricritical

bifurcation point.
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Figure 4.8: The figure is plotted for Q=600, Da=1500, Λ = 3, M=0.85, Pr1 = 1,
Pr2 = 1.25 and φ = 0.9, R/Rsc increases then Nu increases.
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Figure 4.9: Numerically calculated secondary instability regions of Eckhaus insta-
bility (E), Zigzqg instability (Z), and Stable region (S) are plotted for Da = 1500,
Λ = 2, M = 0.9, φ = 0.9, Pr1 = 1, Pr2 = 2, Q = 105.
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Figure 4.10: λ3 is nonlinear coefficient of LG equation at the onset of stationary
convection. The pitchfork bifurcation is supercritical if λ3 > 0, subcritical if λ3 < 0
and λ3 = 0 for the curve Da=1500, Λ = 0.85, φ = 0.9, R2 = 500 and Pr2 = 1.5

Nusselt Number

Heat transport by the convection, the Nusselt number studied in section 2.4.1. λ1

and λ2 are always positive. The Nusselt number Nu can calculated in terms of

amplitude (A) as

Nu = 1 +
ε2

δ2
sc

|Amax|2. (4.59)

Nusselt number grows if R
Rsc

> 1 and decays if R
Rsc
≤ 1 convection for Nu > 1.

Then there is convection if Nu > 1, conduction if Nu ≤ 1. Amplitude is valid for

λ3 > 0 and it is possible when R > Rsc, Thus we obtain convection for Nu > 1 and

conduction for Nu ≤ 1 see in Figure 4.8.It is observed that by increasing the value

of Q, Nusselt number grows exponentially at unit value.
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Secondary Instabilities

Newell and Whitehead [77] derived envelope equations In order to study the proper-

ties of a structure with a given phase winding number δq, we write equation (4.57)

in fast variables x, y, t and A(X, Y, T ) = A(x,y,t)
ε

, as

∂A1

∂t
−
(
ε2
λ2

λ0

− λ1

λ0

δq2
)
A1 + 2iδq

λ1

λ0

( ∂
∂x
− i

2qsc

∂2

∂y2

)
A1+

λ1

λ0

( ∂
∂x
− i

2qsc

∂2

∂y2

)2

A1 −
λ3

λ0

|A1|2A1 = 0, (4.60)

A1 =

[
ε2λ2 − λ1δq

2

λ3

] 1
2

. (4.61)

Let ũ + iṽ be an infinitesimal perturbation of steady state solution A1 given by

equation (4.61). Substitute

A1 = ũ+ iṽ + [
(
ε2λ2 − λ1δq

2
)
λ−1

3 ]
1
2 , (4.62)

into equation (4.60) and equate the real and imaginary parts, we obtain

∂ũ

∂t
=− 2

(
ε2
λ2

λ0

− λ1

λ0

δq2

)
ũ+

λ1

λ0

ũ− λ1

λ2

∂2
∂ṽ

∂x
, (4.63a)

∂ṽ

∂t
=
λ1

λ0

∂2
∂ũ

∂x
+
λ1

λ0

∂1ṽ. (4.63b)

where ∂1 = ∂2

∂x2 + δq
qsc

∂2

∂y2 − 1
4q2
sc

∂4

∂y4 and ∂2 = 2δq− 1
qsc

∂2

∂y2 We analyse equations (4.63a)

and (4.63b) by using normal modes form

ũ = U cos(qxx) cos(qyy)eSt, ṽ = V sin(qxx) cos(qyy)eSt. (4.64)
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Substituting equation (4.64) in equations (4.63a) and (4.63b) weget,

[
2(ε2λ2 − λ1δk

2) + λ0S + χ1

]
U + λ1χ2qxV = 0 (4.65a)

λ1qxχ2U + (χ1 + λ0S)V = 0. (4.65b)

Here χ1 = λ1

(
q2
x +

q2
yδk

qsc
+

q4
y

4q2
sc

)
and χ2 = (2δk +

q2
y

qsc
). On solving equations (4.65a)

and (4.65b), we get

S2 +
2S

λ0

[
2
(
ε2λ2−λ1(δk)2

)
+χ1

]
+
[
2
(ε2λ2

λ2
0

− λ1δk
2

λ2
0

)
+χ1

]
ψ1−q2

xχ2
λ1

λ2
0

= 0, (4.66)

whose real roots are (S±),

(S±) = − 1

λ2
0

{[
2λ0(ε2λ2 − λ1δkq

2) + λ0χ1

]
±
[
2λ0(ε2λ2 − λ1δq

2)2 + λ2
1q

2
xχ

2
2

] 1
2

}
.

(4.67)

The equivalent mode is stable if S(−) is negative and unstable if S(+) is positive.

Symmetry significance helps to confine the field of S(+) to qx ≥ 0, qy ≥ 0.

Eckhaus Instability

Putting qy = 0 into equation (4.67), we get

S2 +
2S

λ0

[
2(ε2λ2 − λ1δq

2) + λ1q
2
x

]
+
λ1q

2
x

λ2
0

[
2(ε2λ2 − 3λ1δq

2) + q2
x

]
= 0, (4.68)

The roots are real numbers and their sum is negative number and the product of

roots is positive number, the pattern is stable and if the product of roots is negative

number then the pattern becomes unstable.

Eckhaus instability defines q2
x ≤ 2

(
3λ1δq

2 − ε2λ2

)
for |δq| ≥

√
ε2λ2

3λ1
and unstable

wave tends to zero when |δq| →
√

ε2λ2

3λ1
.
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Zigzag Instability

putting qx = 0 into equation (4.68), we get

λ2
0S

2 + 2S(2λ0χ11 + λ0χ12) + (2χ11 + χ12)χ12 = 0, (4.69)

where χ11 = ε2λ2 − λ1δq
2 and χ12 = λ1

(
q2
yδq

qsc
+

q4
y

4q2
sc

)
, the two eigen conditions are

unrelated and amplified when S(−) = −2(ε2λ2 − λ1δq
2) − λ1

qsc
q2
yδq − λ1

4q2
sc
q2
y < 0

and S(+) = −λ1q
2
y

(
δq +

q2
y

4qsc

)
> 0. These conditions define the domain of Zigzag

Instability when δqs < 0. In Figure 4.9, we have shown the secondary instability

regions like Eckhaus instability and Zigzag instability regions and fixed parameters,

we observed this by increasing Q value, the region of Eckhaus and Zigzag instability

increases.

4.4.2 LG equations at the onset of Oscillatory Convection

When cylindrical rolls along y-axis are considered only x-dependence and z-dependence

appears from Lw = N . Based on this we coupled one dimensional nonlinear time

dependent LG type equations at the supercritical Hopf bifurcation. We establish ε

as

ε2 =
Ro −Roc

Roc

� 1, (4.70)

and take

w0 =
[
A1Le

i(locx+mocy+ωoct) + A1Re
i(locx+mocy−ωoct) + c · c.

]
sin πz,

is a solution of Lw = 0. Here A1L and A1R represents the amplitude of left and right

travelling wave for the rolls respectively and this depends on slow space X and time

variables τ, T , Knobloch and Luca [57],

X = εx, τ = εt, T = ε2t, (4.71)
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we assume that A1L = A1L(X, τ, T ), A1R = A1R(X, τ, T ). The differential operators

can be expressed as

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
+ ε2

∂

∂T
. (4.72)

The solution of basic equations can be sought as power series in ε, the first approx-

imation is given by eigenvector of the linearised problem

u0 =− iπ

loc

[
A1Le

i(locx+mocy+ωoct) + A1Re
i(locx+mocy−ωoct) − c · c.

]
cos πz,

v0 =0,

w0 =
[
A1Le

i(locx+mocy+ωoct) + A1Re
i(locx+mocy−ωoct) + c · c.

]
sin πz

θ0 =
1

M

[
A1L

e1

ei(locx+mocy+ωoct) +
A1R

e∗1
ei(locx+mocy−ωoct) + c · c.

]
sin πz,

C0 =
1

ML

[
A1L

e2

ei(locx+mocy+ωoct) +
A1R

e∗2
ei(locx+mocy−ωoct) + c · c.

]
sin πz,

Hx0 =− mocπ

loc

[
A1L

e3

ei(locx+mocy+ωoct) +
A1R

e∗3
ei(locx+mocy−ωoct) + c · c.

]
cosπz,

Hy0 =0,

Hz0 =imoc

[
A1L

e3

ei(locx+mocy+ωoct) +
A1R

e∗3
ei(locx+mocy−ωoct) − c · c.

]
sin πz. (4.73)

where δ2
oc = (π2+q2

oc), e1 = (δ2
oc+iωoc) and e2 = (δ2

oc+iωoc
φ
L

,e3 = Mδ2+iωφPr2
Pr1

), here

e∗1, e∗2 and e∗3 are complex conjugate of e1, e2 and e3 respectively.. From equations

(4.51), (4.52) and (4.53). At O(ε), the equation (4.51) gives critical Rayleigh number

for the onset of oscillatory convection), at O(ε2), from equation (4.52) N0 = 0 and

L1w0 = 0 gives

∂A1L

∂τ
− vg

∂A1L

∂X
= 0 and

∂A1R

∂τ
− vg

∂A1R

∂X
= 0, (4.74)
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where vg = (∂ω/∂q)q=qoc is the group velocity and is real. We get,

u1 =0, v1 = 0, w1 = 0,

θ1 =− 1

M2

[
(|A1L|2 + |A1R|2)

e1

+
πA1LA

∗
1R

e1e4

e2itω + c · c.
]

sin 2πz,

C1 =− π

M2L2

[
(|A1L|2 + |A1R|2)

e2

+
A1LA

∗
1R

e2e5

e2itω + c · c.
]

sin 2πz,

Hx1 =
2mocπ

2

loc

Pr2

Pr1

[
(|A1L|2 + |A1R|2)

e3

+
A1LA

∗
1R

e3e6

e2itω + c · c.
]

cos 2πz,

Hy1 =0, Hz1 = 0, (4.75)

by using zeroth and first order solutions, the coefficients of sin πz in N1 −L2w0 are

equal to zero. We get

Λ0
∂A1L

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2L − Λ2

∂2A1L

∂X2
− Λ3A1L

+ Λ4|A1L|2A1L + Λ5|A1R|2A1L = 0, (4.76)

Λ0
∂A1R

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2R − Λ2

∂2A1R

∂X2
− Λ3A1R

+ Λ4|A1R|2A1R + Λ5|A1L|2A1R = 0, (4.77)

where

Λ0 =
[
δ4(1 +

φ

L
)(m2Q+

δ2

Da
+ Λδ2)− (φR1 −R2)

q2δ2

L
− q2δ2φR12Pr2

MPr1

−

3δ4ω2Pr2

M2Pr2
1

(1 +
φ

L
) +

δ2φPr2

MPr1

(
1

+
Da+ Λδ2)(δ4 − 3φ2ω2

L
) +

δ4

MPr1

(
δ4

φ
− 3ω2

L
)
]

+ i
[2δ6ω

L
(Λφ+

1

MPr1

) +
2δ6ω

MPr1

(
1

φ
+

Pr2

MPr1

) +
2δ2φω

L

(m2Q+
δ2

Da
) +

2δ4φωPr2

MPr1

(
1

Da
+ Λδ2)(1 +

φ

L
)− 4δ2φω3Pr2

LM2Pr2
1

]
,
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Λ1 =
[ q2φPr2

LMPr1

(R2 − φR1) +
δ6

MPr1

(
1

L
+

1

φ
+
Pr2

Pr1

) +
δ2φ

L
(m2Q− 6ω2Pr2

M2Pr2
1

)+

δ4φ(
1

Da
+ δ2Λ)(

1

L
+
Pr2

Pr1

+
φPr2

LMPr1

)
]

+ i
[3δ2φ2ωPr2

LMPr1

(
1

Da
+ δ2Λ)+

3δ2ω

MPr1

(
1

L
+

Pr2

MPr1

+
φPr2

LMPr1

)
]
,

Λ2 =
[δ2φω2Pr2

MPr1

(1 +
φ

L
)(

2

Da
+ 3Λδ2) +

3δ4ω2

MPr1

(
1

L
+

1

φ
+

Pr2

MPr1

)−

(
ω2

MPr1

+ φR1 −R2) + δ2(R1 −
R2

L
)(2Qq2 + δ2) +

φω2

L
(m2Q+

2δ2

Da
)+

δ4(3m2Q+
4δ2

Da
+ 5Λδ4 − 3ω2Λδ4

L
)
]

+ i
[φ2ω3Pr2

LMPr1

(
1

Da
+ 2δ2)−

2ωδ2(1 +
φ

L
)(m2Q− ω2Pr2

M2Pr2
1

)− 4δ6ω(
Λφ

L
+

1

MφPr1

+
ΛφPr2

MPr1

)+

δ2ω(
2ω62

LMPr1

− 3δ2φ

DaL
− 4δ4Λ) + φωR1(q2 + δ2)(

1

L
+

Pr2

MPr1

)+

ω(1 +
φPr2

MPr1

)(
(q2 + δ2)R2

L
+

3δ4

Da
),

Λ3 =q2(δ4 − φ2ω2Pr2

LMPr1

) + iq2δ2φω(
1

L
+

Pr2

MPr1

),

Λ4 =− QPr2

4Mπ2Pr1

e1e2e3

[
s1

e3

(
1

e6

) + (
s1

2
+ s2)(

1

e3
3

+
1

|e3|2
)

]
+
R1q

2

4M3
e2e3(

1

e1

+
1

e∗1
)−

R2q
2

4M3L3
e1e3(

1

e2

+
1

e∗2
)− Qm2δ2

4M
(
Pr2

Pr1

)2e1e2(
1

e3

+
1

e∗3
),

Λ5 =− QPr2

Pr1

e1e2e3

{
1

4Mπ2

[s1

e3

(
1

e3

+
1

e∗3
) + (s1 + s2)(

1

e2
3

+
1

|e3|2
)
]

+
1

|e3|2e6

(
3s1

2
+ s2)

}
+

R1q
2

M
e2e3

[ 1

4M2
(

1

e1

+
1

e∗1
) +

π2

M2e1e4

]
− R2q

2

ML
e1e3

[ 1

4M2L2
(

1

e2

+
1

e∗2
) +

π2

M2L2e2e5

]
−

Qδ2Pr2

Pr1

e1e2

[m2Pr2

4MPr1

(
1

e3

+
1

e∗3
) +

m2π2Pr2

Pr1e3e6

]
(4.78)

e1 =iω + δ2, e4 =iω + 2π2, s1 =− 2m2π4Pr2

Pr1

,

e2 =
φ

L
ω + δ2, e5 =

φ

L
iω + 2π2, s2 =− l2m2π2Pr2

Pr1

,

e3 =φ
Pr2

Pr1

iω + δ2, e6 =φ
Pr2

Pr1

iω + 2Mπ2.
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Figure 4.11: Stability regions of steady state (S.S) and standing waves Da = 1500,
Λ = 2, M = 0.9, φ = 0.85, (a)Pr2

Pr1
= 3, (b)Pr2

Pr1
= 6

Solving equations (4.76) and (4.77) by taking ξ′ = νgτ + X and η′ = νgτ − X, we

get

2vgΛ1
∂A2L

∂η′
=− Λ0

∂A1L

∂T
+ Λ2

∂A1L

∂X2
+ Λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (4.79)

2vgΛ1
∂A2R

∂η′
=− Λ0

∂A1R

∂T
+ Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (4.80)

This integrating equations (5.69) and (5.70) over η′ and ξ′ respectively, we get

Λ0
∂A1L

∂T
= Λ2

∂A1L

∂X2
+ λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (4.81)

Λ0
∂A1R

∂T
= Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (4.82)

Equations (4.81) and (4.82) are left and right moving waves known as coupled one-

dimensional LG equations.
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Travelling wave and standing wave

Dropping the variable X from equations (4.81) and (4.82)

dA1L

dT
=

Λ3

Λ0

A1L −
Λ4

Λ0

A1L|A1L|2 −
Λ5

Λ0

A1L|A1R|2, (4.83)

dA1R

dT
=

Λ3

Λ0

A1R −
Λ4

Λ0

A1R|A1R|2 −
Λ5

Λ0

A1R|A1L|2. (4.84)

Put

β′ =
Λ3

Λ0

, γ′ = −Λ4

Λ0

and δ′ = −Λ5

Λ0

.

Then equations (4.83) and (4.84) take the following form

dA1L

dT
= β′A1L + γ′A1L|A1L|2 + δ′A1L|A1R|2, (4.85)

dA1R

dT
= β′A1R + γ′A1R|A1R|2 + δ′A1R|A1L|2. (4.86)

Where

A1L =aLe
iφL aL =|A1L| φL =arg(A1L)

A1R =aLe
iφR aR =|A1R| φR =arg(A1R)

β′ =β1 + iβ2 γ′ =γ1 + iγ2 δ′ =δ1 + iδ2 (4.87)

Substituting of A1L,A1R,β′, γ′ and δ′ in (4.85) and (4.86). we get,

(aL, aR) = (−β1/(γ1 + δ1),−β1/(γ1 + δ1)) , (4.88)

Substituting A1L, A1R, β′ , γ′ and δ′ in (4.85) and (4.86). we get aL = −β1/(γ1 +δ1)

and aR = −β1/(γ1+δ1) for standing waves. (aL, aR) = (aL, 0) for left travelling waves

and (aL, aR) = (0, aR) for right travelling waves. (aL, aR) = (0, 0) for conduction

state. Standing waves exist if | AL |2=| AR |2= − β1

γ1+δ1
> 0 and supercritical if
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γ1 + δ1 < 0. Standing waves are stable if β1 > 0, γ1 < 0 and

(i) if δ1 > 0, then −γ1 > δ1 > 0,

(ii) if δ1 < 0, then −γ1 > −δ1 > 0.

Travelling waves exist if | AL |2= −β1

γ1
> 0 and they are supercritical if γ1 < 0.

Travelling waves are stable if β1 > 0, γ1 < 0 and δ1 < γ1 < 0. We studied onset of

Hopf bifurcation of stability regions of travelling, standing wave and steady states in

figure 4.11. It can be observed that the stability regions of standing waves increases

when Pr2/Pr1 increases for fixed parameters and fixed Pr1.

4.5 Conclusions

This chapter studied linear and weakly nonlinear stabilities of thermohaline convec-

tion in a sparsely packed porous medium over horizontal magnetic field. Derived

thermal Rayleigh value at the onset of stationary and oscillatory convection by

assuming periodic disturbances along x-direction, y-direction and both directions,

obtained critical thermal Rayleigh values at the corresponding critical wave numbers

by considering R1 as dependent variable. The chapter also traced marginal stability

curves between thermal Rayleigh value and wave number. An analytical relation

was found for stationary oscillatory convective curves in by considering R1 as an

independent variable. Takens-Bogdanov bifurcation and co-dimension two bifurca-

tion points were identified and shown in neutral curves Figs 4.2 -4.5. We observed

that thermal and magnetic Prandtl numbers are not affected on convective station-

ary thermal Rayleigh value. Two dimensional LG equation was derived at onset

of stationary mode, studied heat transport from Nusselt number was explored and

long wave length Eukhaus and Zigzag instabilities. At the onset of super critical

pitchfork bifurcation we obtained two dimensional LG equation which is valid only

for λ3 > 0. If λ3 = 0 we get tricritical bifurcation point. λ3 = 0 is a necessary

condition to study heat transport for various physical parameters. Nusselt number

grows exponentially if R
Rsc

> 1 and decay if R
Rsc
≤ 1 for Nu > 1. Nusselt number
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grows exponentially at unit value. At the onset of Hopf bifurcation, we obtained

one dimensional nonlinear coupled LG equations by using multiple scale analysis

and studied secondary instabilities. For β1 > 0 and γ1 < 0, travelling and standing

waves are stable and for β1 < 0 and γ1 < 0 travelling and standing waves are unsta-

ble (see Fig. 4.11). From the ratio Pr2/Pr1, first we getting steady state and it is

replaced by standing waves, and travelling waves are unstable.

The region of existing standing waves increases by increasing the ratio of magneto

and thermal prandtl number.
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5.1 Introduction

Thermohaline convection is a double diffusive convection, density gradients are

caused by temperature and solute concentration. Nield and Bejan [79] have made

exhaustive investigation on various porous mediums for convective problems. Darcy

and Brinkman equation are for fluid flow through porous medium. In case of sig-

nificant macroscopic and shear inertial effects, DLB equation is adequate enough to

describe the fluid flow in a porous medium. Thermohaline convection in a porous

medium was first studied by Nield [78], Poulikakos [88], Sunil et al. [117], Tagare et

al. [120] and Benerji et al. [9]. Thermohaline convection in porous media has many

applications in atmospheric science, astrophysics, earth’s mantle convection, oceanic

and continental crust, seawater flow, solidification of binary alloys.

The effect of rotation in thermohaline convection has important implications for

mixing of light alloys at the earth’s outer core, mixing of different masses of water

in oceans and mixing of Helium with Hydrogen in stellar core. This chapter studies

the thermohaline convection in rotating fluid with a constant angular velocity about

the vertical axis between horizontal stress free boundaries and in a sparsely packed

porous medium. Pearlstein [86], Chakrabarti et al. [32] and Tagare et al. [121]

studied the effect of instabilities of thermohaline convection on rotation.

Normal mode is used to understand linear stability analysis. Two dimensional

Ginzburg Landau equation was derived and the transport of heat by convection was

investigated in addition to the occurrence of secondary instabilities. The system of

one dimensional Ginzburg Landau equations are derived and obtained the stability

regions of steady state, standing and travelling waves.

5.2 Basic Equations

Consider an infinitely horizontal fluid sparsely packed porous medium rotating with

an angular velocity Ω about z-axis of depth d. This layer is heated from below and
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Figure 5.1: Physical Configuration

saturated with a solute solution of a specific concentration gradient. The salinity and

temperature differences across the stress-free boundaries are ∆S ′ and ∆T ′. Darcy-

lapwood-Brinkman model was used to study sparsely packed porous medium. The

governing equations, the equation of continuity, Darcy-Lapwood -Brinkman model

for momentum equation, energy equation and solute concentration over Boussinesq

approximation have been included to understand the phenomenon of rotation in a

fluid that is sparely packed and rotating with a fixed angular velocity are

∇′.V ′ = 0, (5.1)

ρ′0

[
1

φ

∂V
′

∂t′
+ Ω× (Ω× V ′) +

2

φ
(Ω× V ′) +

1

φ2
(V
′
.∇′)V ′

]
=

µe∇′2V
′ −∇′p′ + ρ′g − µ

κ
V
′
, (5.2)

M
∂T ′

∂t′
+ (V

′
.∇′)T ′ = κT∇′2T ′, (5.3)

φ
∂S ′

∂t′
+ (V

′
.∇′)S ′ = κS∇′2S ′. (5.4)

Fluid density ρ′ is defined as

ρ′ = ρ′0 [1− βs(S ′ − S ′b)− αt(T ′ − T ′b)] , (5.5)
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where thermal expansion coefficient αt = −ρ′−1
0 ( ∂ρ

′

∂T ′
), solutal expansion coefficient

βs = −ρ′−1
0 ( ∂ρ

′

∂S′
), mean flow velocity is V

′
, pressure is P ′, porosity is φ, acceler-

ation due to gravity is g, temperature is T ′, κT is thermal diffusivity, S ′ is saline

concentration, M is dimensionless heat capacity, κS saline diffusivity, κ is the per-

meability of the porous medium and µ is fluid viscosity. The conduction state is

characterized by V
′

= 0, T ′s = T ′b − (4T
′

d
)z′ and S ′s = S ′b − (4S

′

d
)z′. Now the

temperature and concentration perturbations can be written as θ′ = T ′ − T ′s and

C ′ = S ′ − S ′s. We use the scaling x = x′

d
, y = y′

d
, z = z′

d
, t = t′

(Md2/k)
, u =

u′

(k/Md)
, v = v′

(k/Md)
, w = w′

(k/Md)
, θ = θ′

4T ′ , C = c′

4S′ , p = p′

(ρ′0M
−1k2d−2)

,Thermal

Prandtl number Pr = ν
κT

, Lewis number L = κS
κT

, Darcy number Da = κ
d2 , Ther-

mal Rayleigh number R1 = αg4Td3

νkT
, Salinity Rayleigh number R2 = αg4Sd3

νkS
, Taylor

number Ta = 4Ω2d4

ν2 . The basic non dimensionless equations are

∇ · V = 0, (5.6)

1

M2φPr

[
1

φ
(V · ∇)V +

∂V

∂t

]
− (R1θ −R2C)êz +

1

MDa
V =

−∇
(

P

MPr
− TaPr

8Mφ2
|êz × V |2

)
+
Ta

1
2

φ
(V × êz) +

Λ

M
∇2V , (5.7)(

∂

∂t
−∇2

)
θ +

1

M
(V · ∇)θ =

ω

M
, (5.8)

φ

L

∂C

∂t
+

1

ML
(V · ∇)C =

ω

ML
+∇2C. (5.9)

The curl of equation (5.7) is

[ 1

M2φPr

∂

∂t
+

1

MDa
− Λ

M
∇2
]
(∇× V )− Ta1/2

φ
∇× (V × êz)−∇× (R1θêz)

+∇× (R2Cêz) = − 1

M2φ2Pr
∇× (V .∇)V . (5.10)
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The curl of equation (5.10) is

[ 1

M2φPr

∂

∂t
+

1

MDa
− Λ

M
∇2
]
(∇×∇× V )− Ta1/2

φ
∇×∇× (V × êz)

−∇×∇× (R1θêz) +∇×∇× (R2Cêz) = − 1

M2φ2Pr
∇×∇× (V .∇)V .

(5.11)

Now taking z-component of equations (5.10) and (5.11)

[ 1

M2φPr

∂

∂t
+

1

MDa
− Λ

M
∇2
]
wz−

Ta1/2

φ

∂w

∂z
= − 1

M2φ2Pr

[
∇×(V .∇)V

]
.êz, (5.12)

[ 1

M2φPr

∂

∂t
+

1

MDa
− Λ

M
∇2
]
∇2w − Ta1/2

φ

∂wz
∂z
−R1∇2

hθ +R2∇2
hC =

− 1

M2φ2Pr

[
∇×∇× (V .∇)V

]
.êz. (5.13)

Where ∇ × V = W = (wx, wy, wz) and ∇2
h = ∂2

∂x2 + ∂2

∂y2 . By eliminating wz, θ, C

from equations (5.8), (5.9), (5.12) and equation (5.13), we get

Lw = N , (5.14)

where

L =DDφ
(
D2
Pr∇2 +

Ta

φ2
∂2
z

)
− 1

M
DPr∇2

h(R1Dφ −
R2

M
D), (5.15)

N =
1

M2φ2Pr
DDφDPr

{
∇×

[
(V .∇)W − (W.∇)V

]}
.êz +

Ta
1
2

M2φ3Pr
DDφ[

(V∇)wz − (W.∇)w
]
− 1

M
DPr∇2

h(V .∇)(R1Dφθ −
R2

M
DC), (5.16)

where D = ( ∂
∂t
− ∇2), Dφ = ( φ

L
∂
∂t
− ∇2), DPr = ( 1

M2φPr
∂
∂t

+ 1
MDa

− Λ
M
∇2), and

∂z = ∂
∂z

. The boundary conditions are follows from the section 2.2.1.
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5.3 Linear Stability Analysis

The linearised system Lw = N is Lω = 0, by assuming periodic disturbances with

a period 2π
q

along x-direction at a growth rate p of the form w = W (z)eiqx+pt and

we obtain[(
1

M2φPr
p+

1

MDa
+

Λ

M
q2 − Λ

M
D2

)2(
φ

L
p+ q2 −D2

)
(p+ q2 −D2)(D2 − q2)

+
R1

M

(
1

M2φPr
p+

1

MDa
+

Λ

M
q2 − Λ

M
D2

)(
φ

L
p+ q2 −D2

)
(D2 − q2)q2

− R2

ML

(
1

M2φPr
p+

1

MDa
+

Λ

M
q2 − Λ

M
D2

)
(p+ q2 −D2)q2

+
Ta

φ2

(
φ

L
p+ q2 −D2

)
(p+ q2 −D2)D2

]
W (z) = 0, (5.17)

put W (z) = sin πz and growth rate p = iω in to equation (5.17), we get

R1 =

[
Λaδ

4

q2
− δ2ω2

M1q2
+
TaM2π2

φ2q2

Λ2
aδ

2 + ω2

M1

Λ2
a + ω2

M2
1

+
R2

L

δ4 + φ
L
ω2

δ4 + φ2

L2ω2

]
+

iω
1

D1

[
A1ω

4 +B1ω
2 + C1

]
, (5.18)

where

A1 =
φ2δ2

M2
1L

2q2

(
Λa +

δ2

M1

)
, (5.19)

B1 =
(

Λa +
δ2

M1

)[ δ6

M2
1 q

2
+

Λ2
aφ

2δ2

L2q2

]
+
(

Λa −
δ2

M1

)TaM2π2δ4

L2q2
+
R2δ

2

M2
1L

(
1− φ

L

)
,

(5.20)

C1 =
δ6

q2

(
Λa +

δ2

M1

)
Λ2
a +

TaM2π2

φ2q2

(
Λa −

δ2

M1

)
δ4 +

R2Λ2
aδ

2

L

(
1− φ

L

)
, (5.21)

D1 =

[
Λ2
a + ω2 1

M2
1

][
δ4 +

φ2

L2
ω2

]
, (5.22)

where Λa = 1
Da

+ Λδ2 and M1 = MφPr.
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5.3.1 Rayleigh Number R1 is a Dependent Variable

Stationary Convection:

The onset of stationary convection take ω = 0 in to equation (5.18) leads to,

R1s = Λa
δ4

q2
+
TaM2π2δ2

Λaφ2q2
+
R2

L
, (5.23)

where R1s represents the stationary convection of Rayleigh number R1. Differenti-

ating equation (5.23) with respect to q and equating it to zero, we get

2Λ3s5 +

(
5

Da
− 3Λπ2

)
Λ2s4 + 4

Λ

Da

(
1

Da
− 2Λπ2

)
s3+(

1

Da3
− 7Λπ2

Da2
+
TaM2π2

Λφ2
(

1

Da
− Λπ2)

)
s2 −

(
2TaM2π4

Λφ2Da
+

2π2

Da3

)
s+

TaM2π2π4

Λφ2Da
= 0 (5.24)

and s = δ2 = q2+π2. From equation (5.24), the critical wave number q = qsc, δ = δsc

and critical Rayleigh number is R1sc,

R1sc = Λasc
δ4
sc

q2
sc

+
TaM2π2δ2

sc

φ2q2
scΛas

+
R2

L
, (5.25)

where Λasc = 1
Da

+ Λδ2
sc. For large value of Da, equations (5.24) and (5.25) are

2(
q

π
)6 + 3(

q

π
)4 = 1 +

TaM2

Λ2φ2π4
(5.26)

R1sc =
Λδ6

sc

q2
sc

+
TaM2π2

Λφ2q2
sc

+
R2

L
(5.27)

Eliminating Ta from equations (5.26) and (5.27) we get

R1sc = 3δ4
sc +

R2

L
(5.28)
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Oscillatory Convection:

The thermal Rayleigh number R1 is a real number and equating imaginary part of

equation (5.18) to zero, we obtainA1ω
4 +B1ω

2 + C1 = 0. From these

ω2 =
−B1 +

√
B2

1 − 4A1C1

2A1

,

Where A1, B1 and C1 are from the equations (5.19), (5.20) and (5.21). The value

A1 is always positive.According to Descarte’s rule the quadratic equation has two

positive roots because of B1 < 0 and C1 > 0 when L
φ
< ΛMφPr < 1. By substituting

ω2 in real part of R1 in equation (5.18), we get oscillatory thermal Rayleigh number

R1o,

R1o =
Λaδ

4

q2
− δ2ω2

M1q2
+
TaM2π2

φ2q2

Λ2
aδ

2 + ω2

M1

Λ2
a + ω2

M2
1

+
R2

L

δ4 + φ
L
ω2

δ4 + φ2

L2ω2
(5.29)

Takens-Bogdanov bifurcation points arises,

R1s(qs) = R1o(qo) = R1c(qc) (5.30)

when

qs = qo = qc (5.31)

Co-dimension two bifurcation points arises,

R1sc(qsc) = R1oc(qoc) (5.32)

when

qsc 6= qoc. (5.33)

In Figures 5.2 - 5.4, solid and dotted marginal curves represent the thermal sta-

tionary and oscillatory Rayleigh numbers respectively. Stationary thermal Rayleigh

number is independent of Prandtl number Pr. There is variation of Rayleigh num-

ber with wave number for different values of physical parameters viz. Ta, R2 and Pr.



CHAPTER 5. 129

7 8 9 1 0 1 1 1 2
2 . 6 x 1 0 4

2 . 8 x 1 0 4

3 . 0 x 1 0 4

3 . 2 x 1 0 4

 

 

R 1  

q
(a)

1 6 1 8 2 0 2 2 2 4 2 64 . 8 x 1 0 5

5 . 2 x 1 0 5

5 . 6 x 1 0 5

6 . 0 x 1 0 5

 

 

R 1

q
(b)

2 0 3 0 4 0 5 0 6 0 7 0

1 . 2 x 1 0 7

1 . 6 x 1 0 7

2 . 0 x 1 0 7

2 . 4 x 1 0 7
 

 

R 1

q
(c)

Figure 5.2: The neutral curves in (q, R1) plane for Da = 1500,Λ = 0.85, M = 1,
φ = 0.9, P r = 0.5, R2 = 0.5, L = 0.1, (a)Ta = 105, (b)Ta = 107, (c)Ta = 109.
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Figure 5.3: The neutral curves in (q, R1) plane for Da = 1500, Λ = 0.85, M =
1, φ = 0.9, P r = 0.5, Ta = 2000and L = 0.1 at (a) R2 = 50, (b) R2 = 110,
(c) R2 = 200.
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Figure 5.4: The neutral curves in (q, R1) plane for for Da = 1500,Λ = 0.85, M =
1, φ = 0.9, Ta = 2000, R2 = −0.5 and L = 0.1 at (a) Pr = 0.25, (b) Pr = 0.5,
(c) Pr = 0.75.
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Figure 5.5: Solid and dotted lines represents for stationary and oscillatory Rayleigh
number plotted in (R1, R2) plane for Da = 1500, Λ = 0.85, M = 1, φ = 0.9, P r =
0.5 and L = 0.1 at Ta = 500, 1000, 2000.
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In Figure 5.2 the Ta value of rotation is increased while other parameters remain

constant. Thus, Rayleigh value increased along with parallel rolls. In Figures 5.3

and 5.4, salinity Rayleigh R2 value and Pr increased respectively, we also observed

increases in Rayleigh value along with wave number. Takens-Bogdanov and co-

dimention two bifurcation points were identified on neutral curves. In Figures

5.3(b) and 5.4(b), co-dimension two bifurcation point exists. Figure 5.5 is plotted

in (R2, R1) plane, the region of Salinity Rayleigh value R2 verses thermal Rayleigh

value R1 over stationary and oscillatory waves increased from internal forces over the

rotating field. The intersection point of a solid line and dotted line appears at cor-

responding to the bifurcation point associated with a TakensBogdanov bifurcation

point.

5.3.2 Rayleigh number R1 is an independent variable

Putting W = sinπz and p = iω into equation(5.17), we get

(
ω4 − Cω2 + E

)
+ iω

(
Bω2 −D

)
= 0 (5.34)

where

B =
2MPrφ

Da
+ δ2

(
1 +

L

φ
+ 2MPrΛφ

)
,

C =2MPrδ4Λ(L+ φ) +M2Pr2 + δ4 + λ2φ2 +
M2Pr2φ2

Da2
+ 2M2Pr2φ2δ2Λ

)
+

1

Da

(
2MPr(L+ φ)δ2 +

1

δ2

(
M4π2Pr2Ta+MPrq2(R1φ+R2)

)
,

D =
MPrδ2

Da2δ2φ

[
MPrδ2φ2(L+ φ) + 2Daδ4φ(L+ LMPrΛφ+MPrΛφ2)+

Da2
(
LM3π2PrTa+M3π2PrTaφ+ 2Lδ6Λφ+ LMPrδ6Λ2φ2

)]
E =

M2Pr2

Da2φ

[
Da2LM2π2Taδ2 + Lδ4φ2(1 +Daδ2Λ)2 −Daq2φ2(1 +Daδ2Λ)(R1 −R2)

]
.

(5.35)
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Stationary Convection

Putting ω = 0 into equation (5.34), we get E2 = 0 and written as

(
R1 −

R2

L

)
q2 =

M2δ2

1
Da

+ Λδ2

(
Λ2

M2
δ6 +

2Λ

DaM2
δ4 +

1

Da2M2
δ2 +

Taπ2

φ2

)
. (5.36)

The critical stationary Taylor number derived Rayleigh number R1 as an indepen-

dent variable,Kloosterziel [56]. For finding Taylor number, differentiate equation

(5.36) with respect to q2 , we get

R1 −
R2

L
=− Λ

M2
(

1
DaM2 + Λ

M2 q2
)2

(
Λ2

M2
q8 +

2Λ

DaM2
q6 +

1

Da2M2
q4 +

Taπ2

φ2
q2

)
+

1(
1

DaM2 + Λ
M2 q2

)(4
Λ2

M2
q6 +

6Λ

DaM2
q4 +

2

Da2M2
q2 +

Taπ2

φ2

)
, (5.37)

eliminating R1 and R2 from (5.36) and (5.37), we get

2Λ3δ10 +

(
5

Da
− 3Λπ2

)
Λ2δ8 + 4

Λ

Da

(
1

Da
− 2Λπ2

)
δ6+(

1

Da3
− 7Λπ2

Da2
+
TaM2π2

Λφ2
(

1

Da
− Λπ2)

)
δ4 −

(
2TaM2π4

Λφ2Da
+

2π2

Da3

)
δ2+

TaM2π2π4

Λφ2Da
= 0, (5.38)

equations (5.24) and (5.38) are same. For large value of Da the equation (5.37) is

q2 =

(
R1 − R2

L

3Λ

) 1
2

− π2, (5.39)
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Figure 5.6: The lines are plotted for R2 = −500, 0, 500 at Da = 1500, Λ =
0.85, M = 1, φ = 0.9, P r = 0.5, Ta = 500, L = 0.1.

for large Da, substituting q2 from equation (5.39) in equation (5.36), we get critical

Taylor number Ta = Tasc. where

Tasc =
φ2

π2

{(
R1 −

R2

L

)[
Λ

(
R1−R2

L

3Λ

) 1
2 − π2

M2

][
1− π2(

R1−R2
L

3Λ

) 1
2 − π2

]
−

Λ2

M2

[(R1 − R2

L

3Λ

) 1
2 − π2

]3}
, (5.40)

In Figure 5.6, the figure plotted in (R1, Ta) region for E = 0, the right hand side

region E > 0 is stable and the left hand side region E < 0 is unstable.

Oscillatory Convection

From equation (5.34), equate imaginary part to zero

ω2 =
D

B
,
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Figure 5.7: Solid and dotted lines are represent the Taylor number for stationary
and oscillatory convection. Da = 1500, Λ = 0.85, M = 0.9, φ = 0.9, R1 = 1000,
R2 = −1000, L = 0.05, (a) Pr = 0.2, (b) Pr = 0.255, (c) Pr = 0.355.
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Figure 5.8: Marginal stability curves for Taylor number Ta(Solid lines represents sta-
tionary convection (Tasc) and dotted lines represents oscillatory convection (Taoc))
Da = 1500,Λ = 0.85, M = 0.9, φ = 0.9, L = 0.4, R2 = 5000, (a) Pr = 0.1,
(b) Pr = 0.2, (c) Pr = 0.3.
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substitute ω2 only in the real part of equation (5.34) and equate it to zero, to get

D2 −BCD +B2E = 0 (5.41)

The oscillatory Taylor number is not in terms of R1, R2 like equation (5.40) at

ω2 > 0. Eliminating Ta from D = 0 and E = 0, we get

q6 + 3π2q4 +

[
3π4 +

R2

2

(
1

ΛL
−Mφ2Pr

)
− R1

2

(
1

Λ
−MφPrΛ

)]
q2 + π6 = 0.

(5.42)

If the roots of above equation (5.42) are positive we get Takens-Bogdanov bifur-

cation points, which is represented in Figure 5.7. Solid and dotted lines represent

the Taylor number for stationary and oscillatory convection. Figure 5.7 shows pri-

mary and secondary instabilities and Figure 5.8 represented in (R1, Ta) plane, where

co-dimension two bifurcation point decreases at the intersection of stationary and

oscillatory of Rayleigh and Taylor marginal curves because of variation in prandtl

value.

5.4 Nonlinear Stability Analysis

5.4.1 Derivation of nonlinear two-dimensional Landau Ginzburg

equation near onset of stationary convection

According to Newell and Whitehead Multiple scale analysis [77], small scale con-

vection cells disturbed vital flow. If the scale range is O(ε), then the collaboration of

the cell with itself forces a second harmonic and a standard state of rectification of

range O(ε2) and these in turn impel an O(ε3) rectification to the structural module

of the imposed roll. Let us assume the solution of equations (5.6) - (5.9) take the

form form

f = f(u, v, w, θ, C) = εf0 + ε2f1 + ε3f2 + · · · , (5.43)
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where

ε2 =
R1 −R1sc

R1sc

<< 1,

The first order calculations of the linearised problem are given by the eigenvectors,

u0 =
iπ

q

[
A.eiqx − cos πz − c.c

]
,

v0 =− iπTa
1
2

qφ( 1
Da

+ Λ
M
δ2)

[
A.eiqx − cos πz − c.c

]
,

w0 =
[
A.eiqx sin πz + c.c

]
C0 =

1

MLδ2

[
A.eiqx − sin πz + c.c

]
,

θ0 =
1

Mδ2

[
A.eiqx − sinπz + c.c

]
, (5.44)

where A = A(X, Y, T ) is the complex scale varying on the gradual variables X, Y

and T with complex conjugate represented as c.c. The analytical mode for the linear

problem at R1s = R1sc is eiqx sin πz. The variables x, y, z and t are scaled by

X = εx, Y = ε
1
2y, Z = z, T = ε2t,

are suitably scattered as fast and slow unconventional variables in f . The derivative

operators can be formulated as

∂

∂x
→ ε

∂

∂X
+

∂

∂x
,

∂

∂y
→ ε

1
2
∂

∂Y
,

∂

∂z
→ ∂

∂Z
, and

∂

∂t
→ ε2

∂

∂T
. (5.45)

By using the transformations equation (5.45), the linear and nonlinear operators of

equation(5.14) can be written as

L =L0 + εL1 + ε2L2 · · · , (5.46)

N =N0 + εN1 + ε2N2 · · · , (5.47)



CHAPTER 5. 140

Substituting the zeroth order solution w0 in to L0w0 = 0, we get

Λ2

M2
δ8 +

2Λ

DaM2
δ6 +

1

Da2M2
δ4 +

Taπ2

φ2
δ2− q2

M2

(
R1−

R2

L

)( 1

Da
+ Λδ2

)
= 0, (5.48)

from the equation L0w1 + L1w0 = N0, N0 = 0 and L1w0 = 0.

u1 =0, w1 = 0,

v1 =− iMπ2Ta
1
2

qφ
(

1
Da

+ 4Λq2
)(

1
Da

+ 4δ2
)[A2e2iqx − c.c

]
,

C1 =− 1

2M2L2δ2π
|A|2 sin 2πz,

θ1 =− 1

2M2δ2π
|A|2 sin 2πz, (5.49)

taking w1 = 0 in equation (5.46), N1 − L2w0 is vertical to w0 and the coefficient of

sinπz in N1 − L2w0 is vanishes. We get

λ0
∂A

∂T
− λ1

(
∂

∂X
− i

2q

∂2

∂Y 2

)2

− λ2A+ λ3|A|2A = 0, (5.50)

where

λ0 =δ8
( Λ2

M2
+

2Λ

M3Prφ
+

Λ2φ

LM2

)
+ δ6

( 2Λ

DaM2
+

2

DaM3Prφ
+

2Λφ

DaLM2

)
+

δ4
( 1

Da2M2

)
+ δ2q2 R2

LM2

( Λ

M
+

1

MφPr

)
− δ2q2 R1

M2

( 1

MφPr
+

Λφ

L

)
+

δ2π2Ta

φ

(1

φ
+

1

L

)
+

q2

DaLM2

(
R2 −R1φ

)
,

λ1 =
10Λ2

M2
δ6 +

12Λ

DaM2
δ4 +

3

Da2M2
δ2 +

Ta

φ2
π2 −

(
R1 −

R2

L

)(5

4

1

DaM2
+

5

2

Λ

M2
δ2
)
,

λ2 =
R1

DaM2
δ2q2 +

ΛR1

M2
δ4q2,

λ3 =
q2

2M4

(
R1 −

R2

L3

)( 1

Da
+ Λδ2

)
− 2π4Taδ4

M2φ4Pr2
(

1
MDa

+ 4 Λ
M
q2
)(

1
MDa

+ 4
M
δ2
)
.

(5.51)
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Figure 5.9: The bifurcation is supercritical if λ3 > 0 and subcritical if λ3 < 0, λ3 = 0
gives critical bifurcation point. Da = 1500,Λ = 0.85, M = 1, φ = 0.9, P r =
0.5, L = 0.8, R1 = 50000, R2 = 100.

By using multiple scaling and A(x, y, t) = A(X,Y,T )
ε

, equation (5.50) can be written

as a time dependent nonlinear two-dimensional L-G (Landau-Ginzburg) equation in

fast variables as

λ0
∂A

∂t
− λ1

( ∂
∂x
− i

2q

∂2

∂y2

)2

A− ε2λ2A+ λ3|A|2A = 0, (5.52)

which describes slow extensional scale εx vertical to the rolls and the variation of

slow time scale ε2t. If R2 < R2c then λ0 is positive and if R2 > R2c then λ0 is

negative. λ1 is positive when independent of R1, R2 and L. λ2 is always positive.

The ratio λ0

λ2
is growth rate amplitude and λ1

λ2
is curvature of the marginal stability

curve. Forward, backward and tricritical bifurcations occur when λ3 > 0, λ3 < 0

and λ3 = 0 respectively in Figure 5.9. Neglecting the y, t-dependence terms from

equation (5.52), we get
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d2A

dX2
+
ε2λ2

λ1

(1− λ3

ε2λ2

|A|2)A = 0. (5.53)

A(X) = A0 tanh(
X

Λ0

),

where

A0 =

(
ε2
λ2

λ3

) 1
2

and Λ0 =

(
2λ1

ε2λ2

) 1
2

.

Heat Transport by Convection

If | X
Λ0
| ≤ 1 then |A| reaches maximum value. The maximum amplitude of A is

|Amax|,

|Amax| =
(
ε2λ2

λ3

) 1
2

, (5.54)

Heat transfer in field is Nusselt number Nu,

Nu = 1 +
ε2

δ2
sc

|Amax|2. (5.55)

In Figure 5.10, Nusselt number increases if R1

R1sc
> 1 and decays if R1

R1sc
≤ 1 convection

for Nu > 1. Then there is convection if Nu > 1, conduction if Nu ≤ 1. Nusselt

number increases by increasing Ta value.

In Figure 5.11, we observed by increasing the Ta value, the region of Eckhaus

and Zigzag instability increases.

5.4.2 Derivation of coupled LG equation at the onset of

oscillatory convection

Consider cylindrical rolls along y-axis, so only x-dependence and z-dependence ap-

pears from Lw = N . Based on this we obtained coupled LG equations at the

supercritical Hopf bifurcation. We establish ε as

ε2 =
Ro −Roc

Roc

� 1. (5.56)
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Figure 5.10: Nu grows exponentially for Da = 1500, Λ = 0.85, M = 1, φ = 0.9, L =
0.1, R2 = 100 and Ta = 105
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Figure 5.11: Regions of Eckhaus instability (E), zigzag instability (Z) and stable
region (S) are plotted for φ = 0.9, Pr = 0.5, Da = 1500, Λ = 0.85, R2 = 100,
L=0.1, M=0.9, (a) Ta = 105.
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take

w0 =
[
A1Le

i(ωoct+qocx) + A1Re
i(ωoct−qocx) + c.c

]
sin πz,

where A1L and A1R represents left and right travelling amplitude of the rolls respec-

tively and depends on varibles X, τ and T from Knobloch and Luca [57],

X = εx, τ = εt, T = ε2t, (5.57)

the derivative operators are expressed as

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
+ ε2

∂

∂T
. (5.58)

The power series solution becomes

f = εf0 + ε2f1 + ε3f2 + · · · , (5.59)

in ε term. The first approximation of the linearized problem is then

u0 =
iπ

q

[
A1Le

i(ωoct+qocx) − A1Re
i(ωoct−qocx) − c.c

]
cos πz,

v0 =− iπTa
1
2

qφ

1
1
Da

+ Λ
M
δ2
oc

[
A1Le

i(ωoct+qocx) − A1Re
i(ωoct−qocx) − c.c

]
cosπz,

w0 =
[
A1Le

i(ωoct+qocx) + A1Re
i(ωoct−qocx) + c.c

]
sin πz,

C0 =
1

ML

1

δ2
oc + iω2

oc
φ
L

[
A1Le

i(ωoct+qocx) + A1Re
i(ωoct−qocx) + c.c

]
sin πz,

θ0 =
1

M

1

δ2
oc + iωoc

[
A1Le

i(ωoct+qocx) + A1Re
i(ωoct−qocx) + c.c

]
sin πz, (5.60)



CHAPTER 5. 145

where δ2
oc = (q2

oc + π2). By substituting equations (5.58) and equation (5.59) in to

equation (5.14) and equating the coefficients of ε, ε2, ε3 to zero, we get

L0w0 =0,

L1w0 + L0w1 =N0,

L2w0 + L1w1 + L0w2 =N1, (5.61)

we get critical Rayleigh number from the linear equation L0w0 = 0. At O(ε2),N0 = 0

and L1w0 = 0 gives ∂A1L

∂τ
− νg ∂A1L

∂X
= 0 and ∂A1L

∂τ
+ νg

∂A1L

∂X
= 0. Where νg = (∂ω

∂q
)q=qsc

and get

[ 1

M2φPr

∂

∂t
+

1

MDa
− Λ

M
∇2
]
wz1 =

Ta1/2

φ

∂w1

∂z
− 1

M2φ2Pr

[
∇× (V0.∇)V0

]
.êz,

(5.62)

( ∂
∂t
−∇2

)
θ1 =

ω1

M
− 1

M
(V0.∇)θ0, (5.63)

(φ
L

∂

∂t
−∇2

)
C1 =

ω1

ML
− 1

ML
(V0.∇)C0. (5.64)

By using zeroth order solutions we get

u1 =0, w1 = 0,

v1 =− Ta
1
2
π2

qocφ

[
2qocA

2
1Le

2i(ωoct+qocx) + 2qA2
1Re

2i(ωoct−qocx)(
1

MDa
+ Λ

M
δ2 + iωoc

1
M2φPr

)(
1

MDa
+ Λ

M
δ2 + iωoc

1
M2φPr

)
+

4qA∗1LA1Re
−2iqocx

( 1
MDa

+ Λ
M

4q2
oc)(

1
MDa

+ Λ
M
δ2 + iωoc

1
M2φPr

)
− c.c

]
,

C1 =− π

M2L2

[
|A1L|2 + |A1R|2

4π2(δ2
oc + φ

L
iωoc)

+
A1LA1Re

2iωoct

(2π2 + iωoc
φ
L

)(δ2
oc + iωoc

φ
L

)
+ c.c

]
sin 2πz,

θ1 =− π

M2

[
|A1L|2 + |A1R|2

4π2(δ2
oc + iωoc)

+
A1LA1Re

2iωoct

(2π2 + iωoc)(δ2
oc + iωoc)

+ c.c

]
sin 2πz. (5.65)
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Equation (5.61) is solvable when L0w0 = 0, coefficients of sin πz in N1 − L2w0 are

equal to zero, we get

Λ0
∂A1L

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2L − Λ2

∂2A1L

∂X2
− Λ3A1L + Λ4|A1L|2A1L + Λ5|A1R|2A1L = 0

(5.66)

Λ0
∂A1R

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2R − Λ2

∂2A1R

∂X2
− Λ3A1R + Λ4|A1R|2A1R + Λ5|A1L|2A1R = 0.

(5.67)

Λ0 =(e2 +
φ

L
e1)δ2e2

3 +
Taπ2

φ2
(
φ

L
e1 + e2) +

2e1e2e
2
3δ

2

M2φPr
− q2

M3φPr
(e2R1 − e1

R2

L
)−

q2e3

LM
(φR1 −R2),

Λ1 =
( e1e2

M4Pr2φ2
+

2e1e3

LM2Pr
+

2e2e3

M2φPr
+
φ

L
e2

3

)
δ2 +

Ta

φL
π2 +

R1

M

( e2

M2φPr
+

φe3

L
− q2

LM2Pr

)
− R2

LM

( e1

M2φPr
+ e3 −

q2

M2φPr

)
,

Λ2 =4q2

[
− 2λ

M
e1e2e3 + (e1 + e2)e2

3 +
λ2

M2
e1e2δ

2 +
2λ

M
e1e3δ

2 − λR1

M
(e2 + q2)−

e3

M
(R1 −

R2

L
) +

λR2

LM2
(e1 + q2)

]
,

Λ3 =
R1

M
q2e2e3,

Λ4 =
4iTaφ2q

M2φ4Pr

e1e2

e3e4

+
R1q

2

4M2

e2e3

e1

− R2φq
2

4M3L3

e1e3

e2

,

Λ5 =
8iTaφ4q

M2φ4Pr

e1e2

e3e4

+
R1q

2φ2

M2

e2e3

e1e5

− R2φq
2

4M3L3

e1e3

e2

. (5.68)
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Where

e1 = δ2 + iω, e2 = δ2 + iω
φ

L
A2L =

( ∂
∂τ

+ νg
∂

∂X

)
A1L

e3 =
1

MDa
+

Λ

M
q2 +

1

M2φPr
iω A2R =

( ∂
∂τ
− νg

∂

∂X

)
A1R

e4 =
1

MDa
+

Λ

M
4q2 +

1

M2φPr
iω e5 = 2π2 + iω

Solving equations (5.66) and (5.67) by taking ξ′ = νgτ + X and η′ = νgτ − X, we

get

2vgΛ1
∂A2L

∂η′
=− Λ0

∂A1L

∂T
+ Λ2

∂A1L

∂X2
+ Λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (5.69)

2vgΛ1
∂A2R

∂η′
=− Λ0

∂A1R

∂T
+ Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (5.70)

This integrating equations (5.69) and (5.70) over η′ and ξ′ respectively, we get

Λ0
∂A1L

∂T
= Λ2

∂A1L

∂X2
+ λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (5.71)

Λ0
∂A1R

∂T
= Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (5.72)

Equations (5.71) and (5.72) are left and right moving waves known as coupled one-

dimensional LG equations.

Travelling Waves and Standing Waves

Knobloch [57] and Coullet [37] studied regions of travelling standing waves, on mag-

neto convection which Matthews [67] derived. Dropping variable X from equations

(5.71) and (5.72), we get

dA1L

dT
=

Λ3

Λ0

A1L −
Λ4

Λ0

A1L|A1L|2 −
Λ5

Λ0

A1L|A1R|2, (5.73)
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dA1R

dT
=

Λ3

Λ0

A1R −
Λ4

Λ0

A1R|A1R|2 −
Λ5

Λ0

A1R|A1L|2. (5.74)

Put

β′ =
Λ3

Λ0

, γ′ = −Λ4

Λ0

and δ′ = −Λ5

Λ0

.

Then equations (5.73) and (5.74) take the following form

dA1L

dT
= β′A1L + γ′A1L|A1L|2 + δ′A1L|A1R|2, (5.75)

dA1R

dT
= β′A1R + γ′A1R|A1R|2 + δ′A1R|A1L|2. (5.76)

Where

A1L =aLe
iφL aL =|A1L| φL =arg(A1L) = tan−1

(
Im(A1L)

Re(A1L)

)
A1R =aLe

iφR aR =|A1R| φR =arg(A1R) = tan−1

(
Im(A1R)

Re(A1R

)

)
β′ =β1 + iβ2 γ′ =γ1 + iγ2 δ′ =δ1 + iδ2 (5.77)

Substituting of A1L,A1R,β′, γ′ and δ′ in (5.75) and (5.76). we get,

(aL, aR) = (−β1/(γ1 + δ1),−β1/(γ1 + δ1)) , (5.78)

for standing waves. (aL, aR) = (aL, 0) for left travelling waves and (aL, aR) = (0, aR)

for right travelling waves. (aL, aR) = (0, 0) for conduction state. In Fig. 5.12,

We have observed that the stability regions of standing waves and travelling waves

increase when Pr increases.
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Figure 5.12: Stability regions of steady state (SS), standing waves (SW), trav-
elling waves(TW) are plotted at the onset of oscillatory convection for φ =
0.9, Da=1500, Λ = 0.85, M=1, L=0.1, (a) Pr=1.1, (b) Pr=1.
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5.5 Conclusions

In linear stability analysis, we traced marginal stability curves in (q, R1) plane at

different parameters. Prandtl number does not affect convective stationary Rayleigh

value. We also identified Takens-Bogdanov and co-dimension two bifurcation points

on neutral curves. The region of salinity Rayleigh value R2 verses thermal Rayleigh

value R1 over convective stationary and oscillatory grew by increased internal forces

over rotating field. Two dimensional L-G equation at onset of stationary mode

was derived and we studied heat transport from Nusselt number, and also long

wave length baased on Eukhaus and Zigzag instabilities. Nusselt number grows

exponentially if R1

R1sc
> 1 and decays if R1

R1sc
≤ 1 for Nu > 1. Nusselt number grows

exponentially at unit value. We derived two nonlinear LG equations and observed

stability regions for travelling and standing waves for fixed physical and porous

parameters. Here the region of standing waves are unstable, region of travelling

waves exits along with the steady state.
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6.1 Introduction

Thermohaline convection is a double diffusive convection. Nield and Bejan [79] stud-

ied double diffusive convection in a horizontal layer of a saturated porous medium

by linear perturbation analysis and observed cellular flow pattern induced by so-

lute effects, thermal effects and both solute and thermal effects. Benerji Babu et

al. [9] studied stability of thermohaline convection using Darcy-Lapwood-Brinman

model with Boussinesq approximation between stress free boundaries. Thermoha-

line convection over a porous medium is applicable in several scientific and industrial

applications such as atmospheric pollution, food processing, lakes and underground

water and materials processing.

The study of thermohaline convection in a porous medium with the effects of

magnetic field and rotation has importance in many fields, such as investigation of

magnectic field and rotation of the earth in geothermal areas, study of core of earth

in geophysics and study of manufacturing materials in industries. The magnetic field

affects the rate of flow of velocity as well as rate of heat and mass transfer. The pres-

ence of a vertical magnetic field leads the boundary of monotonous instability and

increases the stability of the conductive state. The presence of a horizontal magnetic

field breaks the symmetry and form rolls with axes parallel to them. Chakrabarti et

al. [32] studied the effect of rotation on thermohaline convection in a horizontal layer

of a saturated porous medium. Infinitesimal disturbances in the form of rolls leads

to marginal state of convection may be oscillatory depending on the magnitude of

the rotation and solute Rayleigh parameters. Thermohaline convection over rotating

fluids was studied by Tagare et al. [120, 121] who observed feasible subcritical in-

stabilities. Malashetty [64] studied double diffusive convection in a rotating porous

layer using a thermal non-equilibrium model. Thermohaline convection rotating

system in a sparsely packed porous medium is one of the reason for minimizing of

different phases of alloying elements like Sulphur, Iron in earth’s outer core and

Helium and Hydrogen in stellar core. The effects of horizontal magnetic field and
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rotation of thermohaline convection through porous medium was studied by Sharma

et al. [110], Sunil et al. [117], Kumar [60] and Abdullah et al. [2].

6.2 Basic Equations

Considere an horizontal layer of fluid with sparsely packed porous medium, rotat-

ing with angular velocity Ω̂ about z-axis and horizontal magnetic field along y-axis

between parallel stress free boundaries z = 0 and z = d. This layer is heated from

below and saturated with a solution of a specific concentration gradient. The tem-

perature and salinity differences across the stress-free boundaries are denoted by ∆T ′

and ∆S ′. Darcy-lapwood-Brinkman model is used for the study of sparsely packed

porous medium. In Boussinesq approximation, the dimensioned governing equa-

tions, equation of continuity, Darcy-Lapwood -Brinkman model to the momentum

equation, energy equation, equation of magnetic induction and solute concentration

are
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∇.V = 0, ∇.H = 0 (6.1)(
1

M2φPr1

∂

∂t
− Λ

M
∇2 +

1

MDa

)
V − Ta

1
2

Mφ

(
V × êz

)
−Q∂H

∂y
−

(R1θ −R2C)êz −Q
Pr2

Pr1

(H.∇)H − 1

M2φ2Pr1

(V .∇)V =

−∇
(

P

MPr1

+
Q

2

Pr2

Pr1

|H|2 +QHy −
TaPr1

8φ
|êz × V |2

)
, (6.2)

(
∂

∂t
−∇2

)
θ − w

M
= − 1

M

(
V .∇

)
θ, (6.3)

(
φ
Pr2

Pr1

∂

∂t
−M∇2

)
H −∇× (V × êy) =

Pr2

Pr1

[
∇×

(
V ×H

)]
. (6.4)

φ

L

∂C

∂t
+

1

ML
(v · ∇)C =

w

ML
+∇2C (6.5)

Thermal Prandtl number Pr1 = ν
κ
, Magnetic Prandtl number Pr2 = ν

η
Lewis num-

ber L = κS
κT

, Darcy number Da = K
d2 , Thermal Rayleigh number R1 = αg4Td3

νkT

, Salinity Rayleigh number R2 = αg4Sd3

νkS
, Taylor number Ta = 4Ω2d4

ν2 , velocity

V (u, v, w), magnetic field H(Hx, Hy, Hz), dimensionless heat capacity is M , chan-

drasekhar number Q, presser P , temperature θ, and Λ = Pr2
Pr1

which varies from 0.5

to 10.9 from Givler and Altobelli [47] and concentration C. The curl of equation

(6.2) is

(
1

M2φPr1

∂

∂t
− Λ

M
∇2 +

1

MDa

)
(∇× V )− Ta

1
2

Mφ

[
∇×

(
V × êz

)]
−Q

(
∇× ∂H

∂y

)
+

∇× (R1θ −R2C)êz = Q
Pr2

Pr1

[
∇× (H.∇)H

]
− 1

M2φ2Pr1

[
∇× (V .∇)V

]
. (6.6)

The curl of equation (6.6) is

(
1

M2φPr1

∂

∂t
− Λ

M
∇2 +

1

MDa

)[
∇× (∇× V )

]
− Ta

1
2

Mφ

{
∇×

[
∇×

(
V × êz

)]}
−

Q

[
∇×

(
∇× ∂H

∂y

)]
+∇×∇× (R1θ −R2C)êz = Q

Pr2

Pr1

{
∇×

[
∇×

(
H.∇

)
H
]}
−

1

M2φ2Pr1

{
∇×

[
∇× (V .∇)V

]}
. (6.7)
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The curl of equation (6.4) is

(
φ
Pr2

Pr1

∂

∂t
−M∇2

)
(∇×H)−

[
∇×∇× (V × êy)

]
=
Pr2

Pr1

{
∇×

[
∇×

(
V ×H

)]}
.

(6.8)

By using equations (6.3) and (6.5) and z-component of equations (6.4), (6.6), (6.7)

and (6.8) we write the equation in the form

Lw = N , (6.9)

where

L =
(
DQDPr1 −Q∂2

y

) (
DDφDPr1D2

y∇2 −QDDφ∇2
h −

R1

M
DφDQ∇2

h +
R2

M
DφDQ∇2

h

)
+

Ta

M2φ2
∂2
zD2Dφ2, (6.10)

N =
(
DQDPr1 −Q∂2

y

)
N3 −

Ta1/2

M2φ2
DDφD2

Q∂
2
z

{
DQN1 +Q∂y

Pr2

Pr1

[∇×∇× (V ×H)] · ez
}
,

(6.11)

where

N1 =− 1

M2φ2Pr1

[∇× (V · ∇)V ] · ez +Q
Pr2

Pr1

[∇× (H · ∇)H] · ez

N2 =
1

M2φ2Pr1

[∇×∇× (V · ∇)V ] · ez +Q
Pr2

Pr1

[∇×∇× (H · ∇)H] · ez

N3 =DDφDQN2 +DDφQ∇2∂y{DQN1 +Q∂y
Pr2

Pr1

[∇×∇× (V ×H)] · ez}

D =
∂

∂t
−∇2, ∂y =

∂

∂y
∇2
h =

∂2

∂x2
+

∂2

∂y2
,

Dφ =
φ

L

∂

∂t
−∇2, ∂z =

∂

∂z
∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

DPr1 =
1

M2φPr1

∂

∂t
+

1

MDa
− Λ

M
∇2, DQ =φ

Pr2

Pr1

∂

∂t
−M∇2
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6.3 Linear Stability Analysis

Analysing the disturbances into normal modes, assume the perturbation quantity

w = W (z)ei(lx+my)+pt,

where l, and m are horizontal wave numbers of the harmonic disturbance, q2 =

l2 + m2 and p is the growth rate. The boundary conditions appropriate for the

problem are

w =
∂2w

∂z2
=
∂4w

∂z4
= 0,

the proper solution of equation Lw = 0 characterizing the lowest mode is

W (z) = sin πz

and p = iω. For linear stability analysis substitute w = sinπzei(lx+my)+iωt in Lω = 0.

We get the thermal Rayleigh number R1,

R1 =
M

q2

[ (
iω + δ2

)( 1

M2φPr1

iω +
1

MDa
− Λ

M
∇2

)
δ2 +

R2

L

iω + δ2

φ
L
iω + δ2

q2+

Ta

M2φ2

(iω + δ2)
(
φPr2
Pr1

iω +Mδ2
)

(
1

M2φPr1
iω + 1

MDa
− Λ

M
∇2
) (

φ
L
iω + δ2

)
+Qm2

+Q
(iω + δ2) δ2m2

φPr2
Pr1

iω +Mδ2

]

(6.12)

6.3.1 Stationary Convection

For the onset of stationary convection we set ω = 0 into (6.12), we get the stationary

thermal Rayleigh number R1s as

R1s =

(
1

MDa
+

Λ

M
δ2

)
δ4

q2
+
R2

L
+
Qδ2m2

q2
+

Ta

φ2q2

δ4(
1

MDa
+ Λ

M
δ2
)
δ2 +Qm2

. (6.13)
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The stationary thermal Rayleigh number R1s is independent of thermal and mag-

netic Prandtl numbers Pr1 and Pr2 respectively. The critical thermal Rayleigh

number R1sc at stationary wave numbers ls and ms is

R1sc =
1

q2
s

[(
1

MDa
+

Λ

M
δ2
s

)
δ4
s +

R2

L
q2
s +Qδ2

sm
2
s +

Ta

φ2

δ4
s(

1
MDa

+ Λ
M
δ2
s

)
δ2
s +Qm2

s

]
.

(6.14)

cross rolls: If there is a periodic disturbance along x-direction and no perturbation

along y-direction, with growth rate p, take m = 0 in equation (6.12). For cross rolls

the thermal Rayleigh number is Rl
1s (m = 0) is,

Rl
1s (m = 0) =

(l2 + π2)3Λ

l2
+
TaM

Λφ2l2
+
R2

L
, (6.15)

parallel rolls: If there is a periodic disturbance along y-direction and no perturbation

along x-direction with growth rate p, take l = 0 in equation (6.12). For cross rolls

the thermal Rayleigh number is Rm
1s (l = 0) is,

Rm
1s (l = 0) =

Λ(m2 + π2)3

m2
+Q(m2 + π2) +

R2

L
+

Ta(m2 + π2)2

φ2m2[Λ/M(m2 + π2)2 +Qm2]
.

(6.16)

From equations (6.12), (6.15) and (6.16), independent of Q, Ta, R2 , Λ = M = 1

and high permeability

R1 = R1s = Rl
1s (m = 0) = Rm

1s (l = 0) =
(π2 + a2)3

a2
, (6.17)

which is equal to Rayleigh number for stress free boundaries. The critical Rayleigh

number for the onset of instability is 27
4
π4 at a critical wave number a = π√

2
.
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6.3.2 Oscillatory Convection

The thermal Rayleigh number R1 is a real number and so equating the imaginary

part of equation (6.12) to zero, we get oscillatory convection for positive value of ω2

which is placed in the real part of equation (6.12). We get the oscillatory thermal

Rayleigh number R10.

R1o = δ2
(
−cω2 + dδ2

)
+ e

(
bω2 +Mδ4

)
+ f

(
dω2 + δ4

)
+

Ta

M2φ2K1

K2, (6.18)

ω2 =
I1

I2

+ I3 +
1

2

√
I4, (6.19)

where a = φ
L
, b = QPr2

Pr1
, c = 1

M2φPr1
, d = Λ

M
δ2 + 1

MDa
, e = Qδ2m2

b2ω2+M2δ4 ,

f = R2q2

ML(a2ω2+δ4)
, g = Ta

M2φ2K1
, I1 = aa4b2c2ML(d + cδ2)φ, I2 = a2M [b2LTa(adb +

bcδ2 − acbδ2 − acMδ2) + LM2δ2(−2ab2cm2Q(d+ cδ2) + 2b2c2δ4(d+ cδ2) + a2b2b3 +

c(b2d2 + am2(−L+M)Q)δ2 + c2dM2δ4 + c3M2δ6)φ2 + (−1 + a)b2c2Mδ2φ2R2],

I3 =
√

I2
1

4I2
2
−K3, I4 =

I2
2

2I2
1
− 4

3I1
, I5 = Md2[L(a4d2M2δ2) +m2(M − b)Q+ dM2δ2 +

cM2δ4 +2cm2M2Qδ2(d+cδ2)−m2Q(Mδ2(d+cδ2))(−2acm2Qδ4 +c2δ8 +a2(m4Q2 +

2dm2Qδ2 + 2δ6))], I6 = 3I1 − I2
4I1

+ 3I2 + K2

K3
1+K2

2
,

K1 = a2c62ω4 +(c2δ4−2acm2Q)ω2 +m4Q2 +2dm2Qδ4 +a2d2, K2 = abcω4 +bm2Q+

d[(−1 + a)b+Ma+ cδ4(b+M − aM)ω2 +m2MQδ6], K3 = I5
I6
.

Figures 6.2 - 6.4 illustrate the stationary and oscillatory marginal curves at differ-

ent values for physical parameters viz. Chandrashakar number Q, Taylor number

Ta, thermal Prandtl number Pr1 and magnetic Prandtl number Pr2. At Takens-

Bogdanov bifurcation point

R1s(qs) = R1o(qo) = R1c(qc), (6.20)

and qs = qo = qc. At co-dimension two bifurcation points arises,

R1sc(q) = R1oc(q) (6.21)
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and qsc 6= qoc. In Figures 6.2 and Figure 6.3, critical stationary and oscillatory

critical thermal Rayleigh values are equal in the middle sub-figure. This represents

a codimension two bifurcation point. In Figures 6.2 and Figure 6.3 other sub-

graph intersection points are represented in Takens-Bogdanov bifurcation point.

The Rayleigh values are increases by increasing Q, Ta, Pr1 and Pr2. In Figure 6.4

(a) the Takens-Bogdanov bifurcation point moves upward when Pr1 increases and

in Figure 6.4 (b) the Takens-Bogdanov bifurcation point moves downward when Pr2

increases. At Pr1 = 0.65 and Pr2 = 2.65 there exists a co-dimension two bifurcation

point. In Figures 6.5- 6.6, the marginal curve l = 0 represents for cross rolls and

m = 0 represents for parallel rolls. In Figure 6.5 critical Rayleigh number is smaller

for the cross roll (l = 0) than for the parallel roll at low magnetic field, critical

Rayleigh number is smaller for the parallel roll (m = 0) than for the cross roll for

a high magnetic field. In Figure 6.6, the critical Rayleigh number is smaller for the

parallel roll (m = 0) than for the cross roll (l = 0) a weak magnetic field and the

critical Rayleigh number for crross rolls (l = 0) is smaller than parallel rolls (m = 0).

6.4 Nonlinear Analysis

6.4.1 Amplitude equation at the onset of Hopf Bifurcation

According to Newell and Whitehead [77] multiple scale analysis , small scale con-

vection cells disturb the vital flow. If the scale range is O(ε) then the collaboration

of the cell with itself forces a second harmonic and a standard state of rectification of

range O(ε2) and these in turn impel an O(ε3) rectification to the structural module

of the imposed roll. Let us assume that the solution of equations (6.1) - (6.5)take

the form given below

f = f(u, v, w, θ,Hx, Hy, Hz, C) = εf0 + ε2f1 + ε3f2 + · · · , (6.22)
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Figure 6.2: Marginal stability curves of R1s and R1o for Da = 1500, Λ = 10.5,
M = 0.85, φ = 0.9, Pr1 = 1, Pr2 = 5, Ta = 2000, (a) Q = 100, (b) Q = 150,
(c) Q = 250.
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Figure 6.3: Marginal stability curves of R1s and R1o for Da = 1500, Λ = 10.5,
M = 0.85, φ = 0.9, Pr1 = 1, Pr2 = 5, Q = 150, (a) Ta = 500, (b) Ta = 1000,
(c) Ta = 2000.
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Figure 6.4: Marginal stability curves of R1s and R1o for Da = 1500, Λ = 10.5,
M = 0.85, φ = 0.9, Pr1 = 1, Pr2 = 5, Ta = 1000, Q = 150 (a) Pr2 = 2.65 and
(b) Pr1 = 0.65
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Figure 6.5: The marginal thermal Rayleigh number R1, for steady parallel rolls
(m = 0) and cross rolls (l = 0) at Da = 1500, Λ = 10.5, M = 0.85, φ = 0.9,
Pr1 = 1, Pr2 = 5, Ta = 1000, (a) Q = 150, (b) Q = 1000.
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Figure 6.6: The marginal thermal Rayleigh number R1, for steady parallel rolls
(m = 0) and cross rolls (l = 0) at Da = 1500, Λ = 10.5, M = 0.85, φ = 0.9,
Pr1 = 1, Pr2 = 5, Q = 150, (a) Ta = 500, (b) Ta = 50000.
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where

ε2 =
R1 −R1sc

R1sc

<< 1,

The first order calculations of the linearised problem given by approximation is given

by the eigenvectors

u0 =
iπ

l

[
Aei(lx+my) − c · c·

]
cos πz,

v0 =− iπTa1/2δ2

φl(δ4 +Qm2)

[
Aei(lx+my) − c · c·

]
cos πz,

w0 =
[
Aei(lx+my)z + c · c·

]
sin π,

θ0 =
1

Mδ2

[
Aei(lx+my) + c · c·

]
sin πz,

Hx0 =
−πm
Mlδ2

[
Aei(lx+my) + c · c·

]
cosπz,

Hy0 =
mπTa1/2δ2

Mφl(δ4 +Qm2)
,
[
Aei(lx+my) + c · c·

]
cosπz,

Hz0 =
im

Mδ2

[
Aei(lx+my) − c · c·

]
sin πz,

C0 =
1

MLδ2

[
Aei(lx+my) + c · c·

]
sin πz, (6.23)

where A = A(X, Y, T ) is the complex scale vary on the gradual variables X, Y and

T and c.c represents the complex conjugate. The independent variables x, y, z and

t are scaled by introducing multiple scales

X = εx, Y = ε
1
2y, Z = z, T = ε2t,

are suitably scattered at the fast and slow unconventional variables in f . The linear

and nonlinear operators L and N are written as

L = L0 + εL1 + ε2L2 · · · , (6.24)

N = ε2N0 + ε3N1 + · · · , (6.25)
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substituting equations L, N and w in Lw = N and equating ε, ε2 and ε3 coefficients

on both side, we obtain

L0w0 =0, (6.26)

L0w1 + L1w0 =N0, (6.27)

L0w2 + L1w1 + L2w0 =N1, (6.28)

The second order calculations of the linearised problem given by approximation are

given by the eigenvectors

u1 =0, w1 = 0,

v1 =S1

[
A2e2i(lscx+mscy) − c · c·

]
,

θ1 =− 1

2πM2δ2
|A|2sin2πz,

Hx1 =
m

2M2δ2l
|A|2cos2πz

Hy1 =
mK1

2Mq2

[
A2e2i(lscx+mscy) cosπz + c · c·

]
,

Hz1 =0,

C1 =− 1

2M2L2δ2
|A|2sin2πz, (6.29)

taking w1 = 0 in equation (6.24), N1−L2w0 is vertical to w0 and coefficient of sinπz

in N1 − L2w0 vanishes. We get

λ0
∂A

∂T
− λ1

(
∂

∂X
− i

2q

∂2

∂Y 2

)2

A−
(
λ2 + λ3|A|2

)
A = 0, (6.30)
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where

λ0 =(Q+ φδ4)
2φPr2δ

8

MPr1

+ (R1 −
R2

L
)
φq2δ2Pr2

MPr1

+ (1 +
φ

L
)(Q2m2 + Taπ2δ4 + Λ2δ8)δ4−

2Qδ8m2(Λ +
1

MφPr1

) + (R1Q−R2)(Qm2 − Λδ4)
q2δ2

L
− 2qR2Taδ

4Pr2

Pr1

,

λ1 =m2Qδ2(3m2Q+ 20δ4) + (R1 −R2L)[m2Q(3q2 + 2π2) + 2δ4(5q2 + 2π2)]+

21δ10Λ2 +
6π2δ4Ta

φ2
,

λ2 =R1Λq2δ8 +QR1q
2δ4m2,

λ3 =(Λδ4 +Qm2)

[
(R1 −

R2π

2ML3
)
δ2q2

2M2
−QQm

2Pr2

4M2Pr1

(1 + δ2(l2 +m2))

]
− Ta1/2πQδ8Pr2

φPr1(
m2ππTa1/2

2M3δ2lφ(Λδ4 +Qm2)
+

lmS2

4πM2δ2

)
+
Taπ2m2δ6QPr2

4M2φ2Pr1

(6.31)

By using multiple scaling and A(x, y, t) = A(X,Y,T )
ε

, equation (6.30) can be written

as a nonlinear two-dimensional time dependent LG equation in fast variables as

λ0
∂A

∂t
− λ1

( ∂
∂x
− i

2q

∂2

∂y2

)2

A−
(
ε2λ2 + λ3|A|2

)
A = 0, (6.32)

which describes slow extensional scale εx vertical to the rolls and the variation of

the slow time scale ε2t. Independent of y and t terms from equation (6.32), we get

d2A

dX2
+
ε2λ2

λ1

(1− λ3

ε2λ2

|A|2)A = 0. (6.33)

A(X) = A0 tanh

(
X

Λ0

)
,

where

A0 =

(
ε2
λ2

λ3

) 1
2

and Λ0 =

(
2λ1

ε2λ2

) 1
2

.
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Figure 6.7: The curve λ3 = 0 gives critical bifurcation point for Da = 1500, Λ =
10.5, M = 0.85, φ = 0.9, Pr1 = 1, Pr2 = 5, Ta = 1000 and Q = 150. The salinity
Rayleigh number increases by increasing the thermal Rayleigh number

Heat Transport by Convection

If | X
Λ0
| ≤ 1 then |A| reaches maximum value. The maximum amplitude of A is

|Amax|,

|Amax| =
(
ε2λ2

λ3

) 1
2

, (6.34)

Heat transfer in field is Nusselt number Nu,

Nu = 1 +
ε2

δ2
|Amax|2. (6.35)

From Figure 6.8, Nusselt number Nu increases while thermal Rayleigh number R1

also increases. In Figure 6.9, regions of Eckhaus (E), zigzag (Z) and stable (S)

regions are plotted.
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Figure 6.8: Graph is plotted in (Nu,R1s) plane for Da = 1500, Λ = 10.5, M = 0.85,
φ = 0.9, Pr1 = 1, Pr2 = 5, Q = 150 and Ta = 500.
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Figure 6.9: Regions of Eckhaus instability (E), zigzag instability (Z)and stable region
(S) are plotted for Da = 1500, Λ = 10.5, M = 0.85, φ = 0.9, Q = 150, Ta = 1000,
Pr1 = 1, Pr2 = 5.
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6.4.2 Amplitude equation at the onset of Pitchfork Bifur-

cation

Consider cylindrical rolls along y-axis, so that only x-dependence and z-dependence

appears from Lw = N . Coupled time dependent nonlinear Landau-Ginzburg type

equations were obtained at the supercritical Hopf bifurcation. We establish ε as

ε2 =
Ro −R
R

� 1. (6.36)

Take

w0 =
[
A1Le

i(lx+my+ωt) + A1Re
i(lx+my−ωt) + c.c

]
sinπz,

which is a solution of Lw = 0. Here A1L and A1R represent the amplitude of left

and right travelling wave the rolls respectively and depends on slow space X and

time variables τ, T , Knobloch and Luca [57],

X = εx, τ = εt, T = ε2t. (6.37)

The derivative operators are expressed as

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
+ ε2

∂

∂T
. (6.38)

The power series solution is

f = εf0 + ε2f1 + ε3f2 + · · · , (6.39)
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in ε term. The first order approximation of the linearized problem is then

u0 =− πm

l

[
A1Le

i(lx+my+ωt) + A1Re
i(lx+my−ωt) − c.c

]
cosπz,

v0 =− iπTa
1
2

Mφl

[
k1A1Le

i(lx+my+ωt) − kc1A1Re
i(lx+my−ωt) − c.c

]
cosπz,

w0 =
[
A1Le

i(lx+my+ωt) + A1Re
i(lx+my−ωt) + c.c

]
sinπz,

θ0 =
1

M

[A1L

b1
ei(lx+my+ωt) +

A1R

b1c
ei(lx+my−ωt) + c.c

]
sin πz,

C0 =
1

ML

[A1L

c1
ei(lx+my+ωt) +

A1R

c1c
ei(lx+my−ωt) + c.c

]
sin πz,

Hx0 =− πm

l

[A1L

d1
ei(lx+my+ωt) +

A1R

d1c
ei(lx+my−ωt) + c.c

]
cosπz,

Hy0 =
Ta1/2πm

Mφl

[k1A1L

d1
ei(lx+my+ωt) +

k2A1R

d1c
ei(lx+my−ωt) + c.c

]
cosπz,

Hz0 =− im
[A1L

d1
ei(lx+my+ωt) +

A1R

d1c
ei(lx+my−ωt) − c.c

]
sin πz. (6.40)

The second order calculations of the problem given by approximation are given by

the eigen vectors

u1 =0,

v1 =
i

2ls1

[
(A2

1L + A2
1R)e2i(lx+my+ωt) + A1LA1Re

2i(lx+my) − c.c
]
,

w1 =0,

θ1 =− 1

M2

[
|A1L|2 + |A1R|2

4πb
+
πA1LA

c
1R

b1pb1
e2iωt + c.c

]
sin 2πz,

C1 =− π

M2L2

[
|A1L|2 + |A1R|2

4π2c1
+
A1LA1Re

2iωt

c1cc1p
+ c.c

]
sin 2πz,

Hx1 =
2mπ2Pr2

lP r1

[
|A1L|2 + |A1R|2

4Mπ2d1
+
A1LA

c
1R

d1pd1
+ c.c

]
cos 2πz,

Hy1 =
2mπδ2Pr2

lP r1

[
|A1L|2 + |A1R|2 + A1LA1Re

2i(lx+my) +
A1LA

c
1R

e1pd1
+ c.c

]
cos 2πz,

Hz1 =0, (6.41)
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where b1 = δ2 + iω, c1 = δ2 + φ
L
iω, d1 = Mδ2 +φPr2

Pr1
iω, e1 = Mδ2 +φPr2

Pr1
iω, b1p =

2π2 + iω, c1p = 2π2 + φ
L
iω, d1p = 2Mπ2 + φPr2

Pr1
iω, e1p = 2Mπ2 + φPr2

Pr1
iω and

b1c, c1c, d1c are complements of b1, c1, d1 respectively. Equation (6.28) is solvable

when L0w0 = 0 and equate the coefficients of sinπz in N1 − L2w0 zero, we get

Λ0
∂A1L

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2L − Λ2

∂2A1L

∂X2
− Λ3A1L + Λ4|A1L|2A1L + Λ5|A1R|2A1L = 0

(6.42)

Λ0
∂A1R

∂T
+ Λ1

(
∂

∂τ
− vg

∂

∂X

)
A2R − Λ2

∂2A1R

∂X2
− Λ3A1R + Λ4|A1R|2A1R + Λ5|A1L|2A1R = 0.

(6.43)

Solve equations (6.42) and (6.43) by taking ξ′ = νgτ +X and η′ = νgτ −X, we get

2vgΛ1
∂A2L

∂η′
=− Λ0

∂A1L

∂T
+ Λ2

∂A1L

∂X2
+ Λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (6.44)

2vgΛ1
∂A2R

∂η′
=− Λ0

∂A1R

∂T
+ Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (6.45)

This is obtained on integrating equations (6.44) and (6.45) over η′ and ξ′ respectively

by which, we get

Λ0
∂A1L

∂T
= Λ2

∂A1L

∂X2
+ λ3A1L −

(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L, (6.46)

Λ0
∂A1R

∂T
= Λ2

∂A1R

∂X2
+ λ3A1R −

(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R. (6.47)

Equations (6.46) and (6.47) are left and right moving amplitude waves known as

coupled one dimensional LG equations.

Travelling Waves and Standing Waves

Coullet [37] and Knobloch [57] studied regions of travelling standing waves, on mag-

neto convection which Matthews [67] derived. On dropping slow variable X from
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equations (6.46) and (6.47), we get

dA1L

dT
=

Λ3

Λ0

A1L −
Λ4

Λ0

A1L|A1L|2 −
Λ5

Λ0

A1L|A1R|2, (6.48)

dA1R

dT
=

Λ3

Λ0

A1R −
Λ4

Λ0

A1R|A1R|2 −
Λ5

Λ0

A1R|A1L|2. (6.49)

Put

β′ =
Λ3

Λ0

, γ′ = −Λ4

Λ0

and δ′ = −Λ5

Λ0

.

Then equations (6.48) and (6.49) take the following form

dA1L

dT
= β′A1L + γ′A1L|A1L|2 + δ′A1L|A1R|2, (6.50)

dA1R

dT
= β′A1R + γ′A1R|A1R|2 + δ′A1R|A1L|2. (6.51)

Where

A1L =aLe
iφL aL =|A1L| φL =arg(A1L) = tan−1

(
Im(A1L)

Re(A1L)

)
A1R =aLe

iφR aR =|A1R| φR =arg(A1R) = tan−1

(
Im(A1R)

Re(A1R

)

)
β′ =β1 + iβ2 γ′ =γ1 + iγ2 δ′ =δ1 + iδ2 (6.52)

Substituting A1L,A1R,β′, γ′ and δ′ in (6.50) and (6.51). we get aL = −β1/(γ1 + δ1)

and aR = −β1/(γ1+δ1) for standing waves. (aL, aR) = (aL, 0) for left travelling waves

and (aL, aR) = (0, aR) for right travelling waves. (aL, aR) = (0, 0) for conduction

state. In Figure 6.10, we study the stability of regions of travelling and standing

waves. The stability regions of standing waves and travelling waves increase when

the ratio of thermal and magnetic prandtl number increases.
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Figure 6.10: Diagram illustrates the stability regions of steady state, standing and
travelling waves for Da = 1500, Λ = 5.85, M = 0.9, φ = 0.09 at (a) Pr2/Pr1 = 6,
(b) Pr2/Pr1 = 12.
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6.5 Conclusions

By using stress free boundary conditions, an analytic expressions has been found in

linear convective stability analysis. In the linear model for equation Lw = 0, at the

onset of convection we identified rolls emerge region. The corresponding marginal

stability curves were also traced. Thermal and magnetic Prandtl numbers do not

affect on convective stationary thermal Rayleigh value. Identified Takens-Bogdanov

and co-dimension two bifurcation points on neutral curves were identified. The

region of salinity Rayleigh value R2 verses thermal Rayleigh value R1 over convective

stationary and oscillatory increased by increasing internal forces over a rotating

field. Two dimensional LG equation was derived at the onset of stationary mode,

heat transport from Nusselt number and long wave length wave based on Eukhaus

and Zigzag instabilities were also studied. Nusselt number grows exponentially if

thermal Rayleigh value increases. We derived two nonlinear L-G equations and

observed stability regions for travelling and standing wave for fixed physical and

porous parameters.



Chapter 7

Conclusions and Scope of Future

Work

176



CHAPTER 7. 177

Conclusions

In this dissertation, we have taken model Rayleigh-Benard convection (which is ex-

ample of single diffusive system), magnetoconvection, convection in rotating fluid

and thermohaline convection ( which are examples of double diffusive system), ther-

mohaline magnetoconvection (which is an example of triple diffusive system) in a

sparsely packed porous medium. Throughout this dissertation we have used stress-

free boundary conditions. Even though stress-free boundary conditions cannot be

achieved in laboratory, we can use it since they allow simple trigonometric eigen-

functions. Our goal is to identify the region of parameter values, for which rolls

emerge at the onset of convection. In Chapter 2, we studied the stability of finite

amplitude Rayleigh-Benard convection in a sparsely packed porous medium due to

horizontal magnetic field, which is an example of double diffusive problem, where

problems of both stationary convection and oscillatory convection are exists. By

performing weakly nonlinear analysis, we derived a nonlinear time dependent two

dimensional Landau-Ginzburg equation at supercritical Pitchfork bifurcation and

showed the existence of Eckhaus and Zigzag instabilities and also studied Nusselt

number contribution. We derived couple one dimensional Landau Ginzburg equation

and computed stability regions of standing waves and travelling waves. In Chap-

ter 3, we investigated the Rayleigh-Benard convection in a sparsely packed porous

medium with the effect of rotation and horizontal magnetic field. This is an example

of triple diffusive convection. We observed for increasing the ratio of thermal and

magnetic prandtl number the instability regions are increased. In Chapter 4, we

studied linear and nonlinear instabilities of thermohaline convection in a sparsely

packed porous medium with the effect of horizontal magnetic field. We first iden-

tified steady state and it is replaced by standing waves, and travelling waves are

unstable. In Chapter 5, we studied instabilities of thermohaline convection in a

sparsely packed porous medium with the effect of rotation. The region of standing

waves unstable. In Chapter 6, we investigated instabilities of thermohaline convec-
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tion in a sparsely packed porous medium with the effect of rotation and magnetic

field. The region of standing and travelling waves exits along with the steady state.

Chapter 4 to Chapter 6 are examples of multiple diffusive systems. In double, triple

and multiple diffusive systems, both stationary convection and oscillatory convec-

tion exist. Chapter 2 to Chapter 5, we have studied the linear stability analysis

were analysed by taking thermal Rayleigh number R as a dependent variable and

then by taking Rayleigh number R as an independent variable. By using multiple

scale analysis we derived a nonlinear two-dimensional Landau-Ginzburg equation in

complex amplitude A(X, Y, T ) with real coefficients near a supercritical Pitchfork

bifurcation. We have also shown the occurrence of secondary instabilities like Eck-

haus and Zigzag instabilities and we also studied Nusselt number contribution at

the onset of stationary convection from Landau-Ginzburg equation. We obtained

the general pattern near the onset of oscillatory convection at a supercritical Hopf

bifurcation. We derived coupled nonlinear one-dimensional Landau-Ginzburg equa-

tions and studied the condition for occurrence of instability for both travelling and

standing waves.

Scope of Future Work

In future we wish to investigate linear and nonlinear models along with the effect

of different external fields with anisotropy in convective instabilities in a sparsely

packed porous medium. We also want to explore the occurrence of Kuppers-Lortz

instability and skew-varicose instability with realistic boundary conditions.
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