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ABSTRACT

The study of linear and nonlinear stability analyis of Rayleigh Benard convection
and thermohaline convection in a SPPM (sparsely packed porous medium) with
the effects of rotation and magnetic field interest in the natural environment, and
important in geophysics, meteorology, oceanography, physics and applied mathe-
matics as well as engineering. The aim of present thesis is to study, Convective
instabilities in the presence of horizontal magnetoconvection and vertical rotating
convection due to a sparsely packed porous medium. The thesis consists of seven
chapters. Chapter 1 deals with general introduction, Chapter 2 explains the linear
and nonlinear horizontal magnetoconvection in a sparsely packed porous medium
in two parts, Chapter 3 consists of linear and nonlinear horizontal magneto rotat-
ing convection in a sparsely packed porous medium, Chapter 4 deals thermohaline
convection in a sparsely packed porous medium due to horizontal magnetic field,
Chapter 5 consists thermohaline convection in a SPPM due to rotating fluid, Chap-
ter 6 deals stability of thermohaline horizontal magneto convection in a rotating
SPPM, Chapter 7 consists of conclusions and scope of the future work. In this
thesis Stress-free boundary conditions are used in all chapters. Rayleigh-Benard
convection with Magnetoconvection, Rotating convection, Thermohaline convection
are multiple diffusive systems. These diffusive system show both stationary convec-
tion and oscillatory convection.

Chapter 2 - Chapter 6, we studied the linear stability analysis using normal mode
method. We derived critical Rayleigh number at the onset of stationary and oscil-
latory convection. Takens-Bogdanov bifurcation points and co-dimension two bifur-
cation points obtained by plotting graphs of neutral curves. The instabilities occurs
at Pitchfork bifurcation (stationary convection) and Hopf bifurcation (oscillatory
convection) in the parameter regime.

In nonlinear stability analysis using Newell and Whitehead method deriving a non-
linear two-dimensional LG (Landau-Ginzburg) equation at the supercritical Pitch-
fork bifurcation, discussed about Nusselt number and occurrence of secondary in-
stabilities (Eckhaus and Zigzag instabilities). We derived coupled LG equations at
supercritical Hopf bifurcation, discussed about travelling waves and standing wave.

Conclusions and Scope of future work are presented in Chapter 7.



NOMENCLATURE

Non-Dimensional Variables

A
Air

Aig

Complex amplitude
Amplitude of left travelling
waves

Amplitude of right travelling
waves

Darcy number

Lewis number

Heat capacity

Nusselt number

Prandtl number

Thermal Prandtl number
Magnetic Prandtl number
Wave number

Chandrasekhar number
Rayleigh number

Thermal Rayleigh number
Magnetic Rayleigh number
Stationary Rayleigh number
oscillatory Rayleigh number
Critical stationary Rayleigh
number

Critical oscillatory Rayleigh

number

Dimensional Variables

C

ks

AS

AT

w

v

Concentration mol /m?

Depth of the layer m
Acceleration due gravity m/s>
Magnetic field wb/m?
Magnetic  field along x-
axis wb/m?

Magnetic field along y-
axis wb/m?

Magnetic  field along  z-
axis wb/m?

Permeability H/m

Thermal diffusivity m?/s
Saline diffusivity m?/s
Pressure Pa

Salinity difference ¢/kg
Temperature difference k
Velocity along x-axis m/s
Velocity along y-axis m/s
Velocity along z-axis m/s

Mean fluid velocity m/s

Greek Symbols
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Non-Dimensional Variables ity Kg.m™t.s71

« Thermal expansion coefficient i, Magnetic Permeability w

6] Solute expansion coefficient p Fluid density kr/m?

A Brinkmann number v Kinematic viscosity K g.m=t.s7*
w Vorticity 0 Temperature k

Dimensional Variables Operators

n Magnetic diffusivity m?/s \Y del operator

1 Fluid viscosity Kg.m=t.s71 \% 3-D Laplacian operator

Lhe Effective fluid Viscos- V3 2-D Laplacian operator
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CHAPTER 1. 2

1.1 Introduction

Hydrodynamic stability is an important subject of fluid mechanics, which is con-
cerned with the stability and instability of motion of fluids as well as the prob-
lem of transition from laminar to turbulent flows. The instability of flows and
their transition to turbulence are a widespread phenomena in various science and
engineering applications such as astrophysics, oceanography, geophysics, magneto-
hydrodynamics, meteorology, etc. The essential hydrodynamic stability problems
were recognized and formulated by Helmholtz [42], Kelvin [42], Rayleigh [59] and
Reynolds [35]. The instability of flow of fluids and transition to turbulence is in-
vestigated experimentally, numerically and through simulation models. The study
of mathematical theories in hydrodynamics stability such as bifurcation theory and
nonlinear theory becomes very difficult, so computational fluid dynamics plays an
important role where Navier-Stokes equations are integrated more accurately. The
method of linear stability analysis determines whether the flow is stable or unstable
for an infinitely small disturbance; in this method, the governing equations are lin-
earized. Nonlinear governing equations allow disturbances of different wavelengths
to interact with each other. The qualitative theory of bifurcation and chaos theory
focus on the behaviour of nonlinear dynamical systems, when a small change in
the parameters of the system effects a qualitative change in its behaviour or the
system behaves completely differently. Some important applications of hydrody-
namic stability are KelvinHelmholtz instability [42], Rayleigh-Taylor instability [59]
and Rayleigh Benard instabilities [35]. Kelvin-Helmholtz instability occurs when
there is velocity difference across the interface between two fluids. Rayleigh-Taylor
instability occurs at the interface between two fluids of different densities. Rayleigh-
Benard instability occurs when a plane horizontal layer of fluid is heated from below.

The study of the stability of fluid is important to understand simplistic systems.
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1.2 Rayleigh-Benard Convection

Rayleigh-Benard convection is a natural convection phenomenon that causes insta-
bility in a plane horizontal layer of a fluid heated from below to produce a fixed
temperature gradient. The warmer fluid moves upwards from the layer heated be-
low, when the density at the layer below becomes lighter than at the top. The
buoyancy force and viscosity differences are responsible for the appearance of con-
vection cells. These regular patterns of convection cells are known as Benard cells.
In 1900, Benard [18], first made an experiment by heating a layer of fluid from below
and observed hexagonal cells, when the convection developed. Motivated by Benard
experiments, Lord Rayleigh [91] first derived theoretical conditions for convective
motion in a layer of fluid with two free surfaces. The instability of a layer of fluid
heated from below depends on the non-dimensional Rayleigh number (R), defined

as
B gaATd?

R ”

: (1.1)

where ¢ is acceleration due to gravity, a is thermal expansion coefficient, AT is
temperature difference between the upper and lower layers, d is distance between
two layer, p is kinematic viscosity and k is thermal diffusivity. The Rayleigh number
characterizes the laminar to turbulence transition flow of a free convection boundary
layer. Rayleigh showed that instability sets in when R exceeds a certain critical value
R. and that when R just exceeds R, a stationary pattern of motions must come to
prevail, then there are two possibilities,

1. R < R. : there is no convection, only conduction and steady rolls can’t be
observed. Besides, the evolution of temperature is linear.

2. R > R, : the exchange is made by conduction and convection and rolls appear.
The evolution of temperature becomes non-linear.

Figure 1.1 illustrates the marginal stability curve stability of the neutral curve.
Benard Marangoni convection mechanism coexists with Rayleigh mechanism but

dominates thin layer. The instabilities driven by surface tension decreases as the
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Figure 1.1: Marginal stability curve, Rayleigh number (R) verses Wave number (q).

layer becomes thicker. Thermal convection leads to convective cells of many form

such as rolls, square and hexagons.

1.3 Boundary conditions

The fluid is confined between the planes z = 0 and z = 1. The temperature for

perfectly conducting boundaries and normal component of the velocity vanishes; i.e.
f=w=0 at 2=0,1 (1.2)

Since these planes are maintained at constant temperature, the normal component
of velocity must vanish on these planes.
Rigid surfaces : When the flow takes place over a rigid plate, the velocity component

vanishes at the boundaries i.e. no slip conditions hold. Hence u = v = 0, in addition
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to w = 0. This along with equation of continuity implies that

ow

Free surfaces: When there is flow over a free surface, the vertical component of

velocity vanishes and there is no surface tension at a horizontal free surface. i.e.

ou Ow ov  Ow

where p is the dynamic viscosity and it implies that

au_é?v

—=—=0. 1.5
0z 0z (1.5)
This with equation of continuity implies that
0w
— = 0. 1.6
552 (1.6)
Thus the conditions for free surface are w = D?*w = Diw = --- =0 at z = 0, 1.

Table 1.1 shows critical Rayleigh number corresponding to critical wave number for

each set of boundary conditions.

Boundaries R, qe
Rigid-Rigid | 1707.8 | 3.117
Rigid-Free | 1100.7 | 2.682
Free-Free 657.5 | 2.221

Table 1.1: Critical Rayleigh number at different boundaries, taken from Chan-
drasekhar [35]

1.4 Porous medium

A porous medium is a solid containing voids which are either connected or dis-

connected. The voids are usually filled with a liquid or gas. A porous medium is
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characterized by porosity. The porous media model is applied in many areas like fil-
tration, mechanics, engineering, geosciences, biophysics and material science. Heat
transfer through the porous medium consists of predicting the heat transfer between
the medium and the fluid flow. Darcy number (Da) is used to study heat transfer
through porous medium and momentum transfer in porous medium.

Da =

K
ﬁ?
where K is the permeability of the medium and d is the characteristic length. Several

models have been proposed to explain mathematical and physical aspects of porous

media.

Darcy model

Darcy [38] has proposed the fluid motion in a porous medium in 1856 for the first
time. It tells us the balance among pressure gradient, viscous force, and gravitational

force. The mathematical form Darcy model can be given as

K
7g=——(Vp—npg),
L

Where q is Darcian velocity, u is the coefficient of viscosity whereas K represents
the permeability of the medium. It was observed that there is an excellent matching

of experimental results with Darcy model for a one-dimensional flow at low porosity.

Darcy Brinkman Model

It is assumed that the flow through an anisotropic porous medium with high per-
meability must reduce to viscous flow in a limit. In viewing this, to to balance the
pressure gradient, Brinkman added a significant term V2V and reached the need
to account for flowing fluids viscous force on a dense pack of spherical particles of a

porous mass. Here p is the effective viscosity. The validity of the Brinkman model
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is restricted to high porosity medium and its governing equation is given by

—(Vp—pg) = %6 — uVg. (1.7)

Darcy Forchheimer Model

In 1901, Forchheimer conducted experiments and proposed that inertial effects can
be accounted for by the addition of the square of velocity in the momentum equation.

The modification to Darcy’s equation is
(1 + pevElal) 7= K (Vb - pg). (1.8)

where ¢ is the dimensionless form drag coefficient and it varies with the nature of
the porous medium. The coefficients of Darcy and Forchheimer terms contain both
fluid properties and the microstructure of the porous medium. Several other models
are available in the literature on porous media, Neild and Bejan [80] only could gave

a satisfied discussion on validation and limitations of all the models.

Darcy Lapwood Brinkman Model

When the Laplace of the velocity is small in the porous medium, Darcy Brinkman
and Darcy Forchheimer models neglected the shearing action of viscous fluids and
fluid inertia was taken into account. As the presence of solid wall near the velocity
gradient is high, both fluid inertia and viscous shearing action should be considered.
Darcy Brinkman model takes into account both fluid inertia and viscous shearing

action.

1.5 Rotation

A fluid motion is characterized by translation, rotation and continuous deformatons.

In uniform motion, fluid elements are simply translated without and rotational de-
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formations. Variations in the velocity components with space coordinated causes the
rotation and deformations. The rate of change in length per unit original length of a
linear fluid element determines the Linear strain or deformation whereas the rate of
change of angle between two linear elements which are perpendicular to each other
initially, determines the rate of angular deformation. Rotation can be defined as the
arithmetic mean of two angular velocities which perpendicular linear segments at a
point. The absence of deformation in the fluid rotation is known to be rigid body
rotation or pure body rotation. When the rotational components at all points in a

flow are observed to be zero, the flow is said to be irrotational.

1.6 Magnetohydrodynamics

The motion of an electrically conducting fluid in the presence of a magnetic field is
described by Magneto-hydrodynamics. Because of the motion of conducting fluids
across the lines of force of magnetic field, a potential difference would be created
which in turn causes a flow of electric currents. The magnetic file produced by
the electric currents modifies the magnetic field which has created them and there
would be a flow of electric currents across these magnetic fields associated with
a body force which is known as Lorentz force. Magnetohydrodynamic and heat
transfer for a viscous incompressible fluid over a plate have immense applications
in variety of industrial and engineering problems like petroleum industries, plasma

studies and geophysics and so on.

1.7 Thermohaline Convection

The study of convective motions when there is more than one diffusing component
with different molecular diffusivities, is of recent development in the field of convec-
tion. When the diffusing components have opposing effects on the vertical density

distribution, a number of interesting phenomena could happen. This phenomenon
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was first studied with an application to oceans in mind because heat and salinity are
contest in oceans related and the process is termed thermohaline or thermosolutal
convection. The importance of thermohaline convection study was recognized in
many fields such as astrophysics, geophysics, chemistry and limnology. Thermoha-
line convection has two requirements for it to occurs,

1. The fluid should contain two or more diffusing components with different molec-
ular diffusivities.

2. The components must make opposing contributions to the vertical density gra-
dient. Overstability is a characteristic feature of thermohaline convection, in which
temperature and solute concentration are provide two diffusivities. Temperature
and salinity act as opposite function on the vertical density gradient of this system.
In thermohaline convection, the stable solute gradient is destabilized by raising the
temperature of the lower boundary. The stability problems in the thermohaline

convection focuses on the stability of periodic solution.

1.8 Chandrasekhar number ()

The Chandrasekhar number is a dimensionless quantity used in magnetic convec-
tion to represent ratio of the Lorentz force to the viscosity. It is named after the
Indian astrophysicist Subrahmanyan Chandrasekhar. The main function function of
Chandrasekhar number is measure of the magnetic field, being proportional to the
square of a characteristic magnetic field in a system. The Chandrasekhar number

is defined as
H2d?
" oprX

Q (1.9)

where 1, is the magnetic permeability, p is the density of the fluid, v is the kinematic
and A is the magnetic diffusivity. H, and d are a characteristic magnetic and a length

scale of the system respectively.
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1.9 Magnetic Permeability

Magnetic permeability, relative increase or decrease in the resultant magnetic field
inside a material compared with the magnetizing field in which the given material
is located; or the property of a material that is equal to the magnetic flux density B
established within the material by a magnetizing field divided by the magnetic field
strength H of the magnetizing field. Magnetic permeability u is defined as u = %.
Magnetic flux density B is a measure of the actual magnetic field within a material
considered as a concentration of magnetic field lines, or flux, per unit cross-sectional
area. Magnetic field strength H is a measure of the magnetizing field produced by
electric current flow. The magnetic permeability is defined as the property of the
material to allow the magnetic line of force to pass through it. The magnetic line of
force is directly proportional to the conductivity of the material. SI unit is Henry
per meter (H/M or Hm?).The magnetic permeability is equal to the ratio of the
field intensity to the flux density. It is expressed as, [y,

fn, = (1.10)

Sefiive

where B is magnetic flux density and H is magnetic field intensity.

1.10 Magnetic Diffusivity

The magnetic diffusivity is a parameter in plasma physics which appears in the

magnetic Reynolds number. It has SI units of m?/s and is defined as

1
HoPo

n = (1.11)

where 1 is the permeability of free space, and pq is the electrical conductivity. A
measure of the tendency of a magnetic field to diffuse through a conducting medium

at rest; it is equal to the partial derivative of the magnetic field strength with respect



CHAPTER 1. 11

to time divided by the Laplacian of the magnetic field, or to the reciprocal of 4mwup,
where p is the magnetic permeability and p is the conductivity in electromagnetic

units.

1.11 Long wave instabilities (secondary instabili-
ties)

The two dimensional Landau-Ginzburg equation in fast variables =, y,t and A(X,Y,T) =

A(z,y,t)

) as

dA o i Y\
Ao=— — — — ——— ) A=A+ N|APA= 1.12
*oT 1(0)( 2qay2) 24+ Al | 0 (1.12)
Newell and Whitehead [77] derived envelope equations, In order to study the prop-
erties of a structure with a given phase winding number dq, we write equation (1.12)

in fast variables x,y,t and A(X,Y,T) = —A(xéy’t)7 as

8A1 2/\2 /\1 2 R /\1 8 1 82

TR (222 A2V A+ 2igt (= — 2 ) A

ot (E Ao Ao q) 1+ q/\o <8x 2(se 8y2) 1t

)\1 0 ) 62 2 )\3 2

O VA - 224 PA =0 1.13
)\0(8:1: 2qscay2> ! )\0| 1A =0, (1.13)

A = {—E% — Mﬂ °)

” (1.14)

Let u + v be an infinitesimal perturbation of steady state solution A; given by

equation (3.59). Substitute

Ay =@ 400+ [(2Xs — Mdg?) A3z, (1.15)
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into equation (1.13) and equate the real and imaginary parts, we obtain

ot Ao N D SR VI )

k) (P DAY P AL N 1.1

ot (6 o ol ) LW W P (1.16a)

00 A, 0u A .

— =—0y— + —040. 1.16b

ot )\0 281‘ + )\0 v ( )
where 0; = 88—; + %g—; — Klic% and 0y = 20q — qééd_;z We analyse equations (1.16a)

and (1.16b) by using normal modes form
it = U cos(qux) cos(qy)e®, o = Vsin(q,r) cos(quy)e. (1.17)

Substituting equation (1.17) in equations (1.16a) and (1.16b) weget,

[2(62)\2 — )\1(5]?2) + )\QS + X1 U + Alxgqu =0 (118&)
MG x2U + (X1 + AoS)V = 0. (1.18b)
Here x1 = A\ <q§ + qqgik + %) and x2 = (20k + 5—3). On solving equations (1.18a)
and (1.18b), we get
28 Xy A\ Ok? A
5%+ oW [2 (e% —Al(ék)2) +x1} + [2<)\—f - 1)\—2> +X1] WP —q§x2>\—; =0, (1.19)
0 0 0 0

whose real roots are (S+),

1 1
(54) = —5 { [200(€2X2 = Mibkg®) + o] + [200(2hs — Midg®)? + X2 } .
0

(1.20)

The equivalent mode is stable if S(—) is negative and unstable if S(+) is positive.

Symmetry significance helps to confine the field of S(+) to ¢, > 0,¢g, > 0.
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Eckhaus Instability

Putting ¢, = 0 into equation (1.20), we get

25
52422 [2(6% MNP + Alqi} +
Ao

)\1%26

o [2(6% —3M0¢?) + qg] —0, (1.21)
0

The roots are real numbers and their sum is negative number and the product
of roots is positive number, the pattern is stable and if the product of roots is
negative number then the pattern becomes unstable. Eckhaus instability defines

qi < 2(3)\15q2 — 52/\2> for |0q| > ,/‘S;T’\f and unstable wave tends to zero when

2
|6q] = /532

Zigzag Instability

putting ¢, = 0 into equation (1.21), we get

AS? + 252 ox11 + Xoxi2) + (211 + X12)X12 = 0, (1.22)

2 4

4,99 q . .-

ot ﬁ), the two eigen conditions are
s sc

unrelated and amplified when S(—) = —2(e*\y — M\0¢°%) — %qidq - 4’\(1—5(]5 <0

where y11 = €\ — M\1d¢? and y12 = N (

and S(+) = —\ig; (5(] + 42%) > (. These conditions define the domain of Zigzag
Instability when dgs < 0.

1.12 Literature Survey

1.12.1 Rayleigh Benard Convection in a Porous Medium
with the Effect of Rotation and Magnetic Field.

Rayleigh Benard Convection with the Effect of Rotation

Rayleigh Benard convection with the effect of rotation is an interesting application

in hydrodynamic system which combines thermal buoyancy with rotation induced
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centrifugal and coriolis forces. Chandrasekhar [35], Busse et al. [29,30] and Buell
and Ivan [27] investigated the effect of rotation in atmospheric and oceanic flow.
A Taylor number (T'a) characterizes the centrifugal forces due to the rotation of a
fluid about the vertical axis, relative to viscous forces. Chandrasekhar [35] derived
Rayleigh number (R) as a function of Taylor number (T'a). Davies and Oilman [39]
found that for a large Ta, the Rayleigh number for steady convection is less and
the system is more constrained. Chandrasekhar [35], Tagare et al. [119] and Benerji
et al. [8] studied linear and nonlinear instabilities of Rayleigh Benard convection in
rotating fluid between stress-free boundaries and observed the rotation effect on the

onset thermal instability.

Rayleigh Benard Convection with Effect of the Magnetic
Field

The Rayleigh-Benard convection with an imposed magnetic field has significant im-
portance in astrophysical applications and observation of sunspots. The theory of
sunspots was studied by Thompson and Weiss [122]. In outer layers of the sun
and other late type stars, thermal convection is affected by the presence of mag-
netic fields. Thermal stability of magnetoconvection was first carried out by Thom-
son [124] who observed that the Rayleigh number increases linearly with Chan-
drasekhar number ). Chandrasekhar [35], Kloosterziel and Carnevale [56] who
observed the onset of stationary convection, predicted that magnetic prandtl num-
ber Prowould be less than the thermal Prandtl number Pr;. Nakagawa [74] and
Jirlow [54] investigated magnetoconvection experimentally, found that vertical mag-
netic fields delay the thermal convection and the marginal stability boundary is
determined. Bhatia and Steiner [22] found that a magnetic field has a stabilizing
effect on thermal convection. In the magnetoconvection, the magnetic field strongly
affects all kinds of convective flows by varying the direction and density. The pres-

ence of a vertical magnetic field leads the boundary of monotonous instability and
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increases the stability of the conductive state. The presence of a horizontal magnetic
field breaks the symmetry and convection occurs in the form of rolls with axes par-
allel to them. A strong horizontal magnetic field leads to time-dependent convection
and purely geometrical effects cause oscillations. Chandrasekhar [35], Knobloch et
al. [58], Busse et al. [30] , Clever et al. [36] and Basak et al. [15] investigated a
uniform vertical magnetic field that suppresses the onset of convection, reduces con-
vective heat transport across the fluid layer and affects the primary and secondary
instabilities. Gotoh and Yamada [48] discussed thermal convection in a horizon-
tal layer of magnetic fluid. Bajaj and Malik [12,13] studied the Rayleigh Benard
convection in magnetic fluids and examined the stability of various flow patterns.
Burr and Muller [126] studied RayleighBnard convection in liquid metal layers un-
der the influence of a horizontal magnetic field. The linear and nonlinear stability
of magnetoconvection was studied by Kloosterziel and Carnevale [56], Thompson et
al. [123] and Bhatta [23]. A broad review of magnetoconvection was given by Weiss
and Proctor [131]. Their study concerned nonlinear models of the geomagnetic field
and interactions of magnetic fields and they combined analytical and computational
approach to provide a model for the study of a wide range of problems. Magneto-
convection has multi-faceted applications in astrophysics, geophysics, aerodynam-
ics, nuclear reactors, growth of large-diameter semiconductor crystals, meteorology,
biomedical problems, engineering and industry. Chandrasekhar [35] identified that
if magnetic field is imposed in a purely horizontal field and electromagnetic forces
are strong compared to inertial ones, then the flow undergoes a two-dimensional

convective rolls which is considerably less than Joule dissipation.

Rayleigh Benard Convection in a Porous Medium

Rayleigh-Benard convection in a porous medium has considerable interest in geo-
physical fluid dynamics and the phenomenon occurs within the Earth’s outer core.

Convection in a layer of viscous fluid was first studied by Rayleigh [91]. According to
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Darcys law, which states the fluid flowing with velocity V' through a porous medium

experiences a resistance % per unit mass, where K is the coefficient of permeability
and g is gravitational acceleration. Horton and Rogers [53] and Lapwood [61] ana-
lyzed the critical Rayleigh number, which determines the onset of natural convection
in horizontal isotropic porous layer heated from below and cooled from above assum-
ing Darcy’s law. They found that the critical Rayleigh number is 472 corresponding
to critical wave number 7. This discrepancy between theory and experiments were
sought to be removed by Rogers and Morrison [94] and Rogers et al. [95] by al-
lowing for temperature dependence of fluid properties and columnar (rather than
cellular) form of convection. Lapwood’s problem was greatly extended by Wood-
ing [132-134] at different states experimentally and theoretically. Palm et al. [82]
pointed out that convection in a porous media may provide a convenient means of
experimentally demonstrating nonlinear effects in convection such as the preferred
cell pattern or hysteresis. Beck [16] was the first who investigated the selection
of these roll patterns in rectangular porous boxes according to linear theory. The
formulation and derivation of the basic equations using Boussinesq approximation
was given in a treatise by Joseph [55]. The linear stability problem for the onset
of convection and various nonlinear instability phenomena in porous media have
been reviewed by Rees et al. [92,93]. In Benard convection, it is necessary to use
extremely thin fluid layers to detect these phenomena, but in porous media the fric-
tion force is much larger, so the depth of the fluid layer can be greatly increased. An

alternative to Darcys equation is Brinkman equation which is valid for a sparsely

packed porous medium.

Rayleigh Benard Convection with the Effect of Rotation and
Magnetic Field

Both effects inhibit the onset of instability and elongate the cells which appear

at marginal stability. Nakagawa [75] experiments the thermal instability in the
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presence of magnetic field and rotation successfully. The critical Rayleigh number
for the onset of instability, for a constant speed of rotation and strength of magnetic
field, was determined by measuring the steady temperature gradients which are
established for various rates of heating. The onset of overstability could always be
distinguished by the nearly pure sinusoidal oscillations exhibited by the temperature
records. The thermal instability with the effect of rotation and magnetic field was
theoretically studied by Chandrasekhar [34] and Eltayeb [43]. Gupta et al. [49]
studied Rayleigh-Benard convection problem under the simultaneous action of a
uniform vertical rotation and magnetic field for the validity of principle of exchange
of stabilities. Mulone and Rionero [69] studied the nonlinear stability of the magnetic
Benard problem with rotation through Lyapunov direct method, in stressfree case
and for vanishing stress at the boundaries, the nonlinear critical Rayleigh number has
the same behaviour as in the linear case. Friedrich et al. [44] experimentally studied
the effects of a rotating magnetic field on fluid flow in an electrically conducting melt
kept in a cylindrical container heated from below; experimental data were compared
to three-dimensional, time-dependent numerical calculations. Volz and Muzuruk
[128,129] observed the rotating magnetic field increases the critical Rayleigh number
and not affect the onset of instability for axisymmetric. Aurnou and Olson [6]
studied thermal convection subject to a uniform rotation and a vertical magnetic
field of liquid gallium layer experimentally, measured heat transfer at a low Prandtl
number and observed the critical Rayleigh number increases with magnetic energy
density and the convective heat transfer is inhibited by rotation. Varshney et al. [127]
numerically studied the effect of a vertical magnetic field on rotating convection of
low Prandtl number liquid metal in a cubical cavity; they found that the magnetic
field generates a strong damping effect on flow velocities and heat transfer at low
rotation rates. Podvigina [87] studied the onset of rotating convection with an
imposed vertical magnetic field, identified the region of parameter values for which
rolls emerge at the onset of convection. Ghosh and Pal [45] investigated instabilities

and chaos near the onset of convection with free-slip boundaries in the presence
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of vertical rotation and horizontal magnetic field without Prandtl-number, using

Direct numerical simulations.

Rayleigh Benard Convection in a Porous Medium with the

Effect of Magnetic Field

Convection in a porous medium with magnetic field is of considerable interest in
geophysical fluid dynamics problems, for example, earth’s interior and the mushy
layer of earth’s outer core. Patil and Rudraiah [84] investigated the stability ther-
mal convection in a porous medium of a conducting viscous fluid using normal mode
technique and the energy method of stability theories. Rudraiah [98] studied lin-
ear theory for stationary and oscillatory modes using the normal modes and simple
and Hopf-bifurcations, studied linear and steady nonlinear magnetoconvection in a
sparsely packed porous medium using Brinkman model, and considered the effective
viscosity p. was the same as fluid viscosity u. Gilver and Altobelli [46] who inves-
tigated the phenomenon found that effective fluid viscosity p. to fluid viscosity u
takes a value ranging from 0.5 to 10.9. Sekar and Vaidyanathan [106,107] , Borglin et
al. [26] and Desaive et al. [40] studied instability of saturating a porous medium with
the effect of rotation in a magnetized ferrofluid. Alchaar et al. [3,4] who investigated
the phenomena using the Brinkman model obtained closed form solutions based on
a parallel flow assumption. Bian et al. [24,25] studied convection in a shallow hor-
izontal porous layer, which a transverse magnetic field is applied. Saravanan and
Yamaguchi [101] are studied the onset convection in a porous layer with magnetic
fluid. The critical Rayleigh number, critical wave number, and the eigenfunctions
were calculated using a combination of analytical and numerical methods. Ben-
erji et al. [7] investigated the problem of magnetoconvection in a sparsely packed
porous medium also studied linear and weakly nonlinear hydrodynamic stability,

bifurcations and instabilities.
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1.12.2 Thermohaline Convection in a Porous Medium with

the Effects of Rotation and Magnetic Field.

Thermohaline Convection with the Effect of Rotation

Thermohaline convection with the effect of rotation has fundamental importance in
geophysical problems involving water in oceans, Helium in Hydrogen and sulphur in
molten from with iron in earth’s outer core. Rotation brings in a new phenomena
leading to the distortion of convection cells as well as causing in overstable oscilla-
tions. This analysis reveals that for infinitesimal interference in the form of rolls.
The marginal state will be oscillatory and the critical Rayleigh number increases
with increase in rotation parameter. Further it is found that for disturbances of
finite amplitude, subcritical instability is possible, which means that the system be-
comes unstable to steady finite amplitude disturbances before it becomes unstable
to infinitesimal disturbances. The rotating thermohaline convection is consequently
expected to show a line of secondary bifurcation which culminates in tertiary bifur-
cation. For large Prandtl number, there exists only one secondary bifurcation point,
not a line of secondary bifurcation points, which culminates in tertiary bifurcation
point. The onset of instabilities in rotating thermohaline convection was studied by

Subha Sengupta et al. [108], Pearlstein [86], Benerji [8], Tagare [118-120].

Thermohaline Convection with the Effect of Magnetic Field

The Thermohaline magneto convection provides a lot of information about the dy-
namics dealt with by astrophysicists, geophysicists, oceanographers and engineers
on a varity of problems. The dynamo theory, which is a significant part of cosmic
magneto hydrodynamics, explains the generation mechanism and origin of these
magnetic fields and their spatial and temporal evolution and changes. Lortz [62]
was the first to study double-diffusive convection with the effect of magnetic field.

Malkus and Veronis [66] clarified some of the mathematical aspects of stability cri-
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terion. Rudhraiah et al. [98,99] investigated and studied the linear and nonlinear
theory of the thermohaline convection in the presence of a magnetic field. The effect
of magnetic field and salinity gradient are to suppress the steady convective motions
depending on the strength of the magnetic field and under certain conditions where
the system is unstable. Banerjee et al. [14] and Mohan [68] studied a characteriza-
tion theorem in magnetothermohaline convection; the total kinetic energy associated
with a disturbance is greater than the sum of its total magnetic and concentration
energies. Abdullah [1] studied thermosolutal convection in a nonlinear magnetic
fluid when the fluid is heated from above and soluted from below. Narayana et
al. [76] studied magneto thermohaline convection for viscoelastic fluids, Harfash et
al. [51] in a reacting fluid and Bhadauria and Kiran [19] studied the weakly nonlinear

double diffusive magneto convection in Newtonian fluids.

Thermohaline Convection in the Porous Medium

In geothermal areas, the ground water usually contains salts in solution, and hence it
is of interest to consider the onset of convection in porous medium when both thermal
expansion and solute concentration variations can produce variations in density.
The onset of thermohaline convection in a porous medium was first studied by
Nield [78] who analysed the effect of a stable salinity gradient of a saturated porous
medium using Darcy model. Patil and Rudraiah [84] and Rubin [96,97] studied the
effect of stable and unstable temperature and salinity gradients on the stability of
conducting single component and two component fluids in a porous medium using
Brinkman model. Patil et al. [85] studied various cases of stabilising and destabilising
concentrations and temperature gradients for both Brinkman and Darcy models for
two component fluids. Poulikakos [88] used Brinkman extension of the Darcy model
to study the effect of sparsely packed porous medium on double diffusive convection.
Murray and Chen [71] experimentally examined the double-diffusive convection in

a porous medium. Parthiban et al. [83] studied the effect of inclined gradients on
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thermohaline convection in a porous medium, Murty et al. [72] studied numerically
the stability of thermohaline convection in a rectangular box containing a porous
medium and Curtis et al. [81] studied plume separation by transient thermohaline
convection in porous media. Mulone and Straughan [70] used change of variable in
an energy method and discussed the coincidence of the critical linear and nonlinear
stability parameters. Musuuza et al. [73] studied a thermohaline system in which the
density gradients arise from salinity and temperature difference. Benerji et al. [10]
studied the thermohaline convection between stress-free boundaries in a sparsely
packed porous medium, using the DLB model. Sekar et al. studied [103,104] stability
analysis of thermohaline convection in Ferrofluids and dusty ferrofluids in a sparsely

packed porous medium.

Thermohaline Convection with the Effect of Rotation and

Magnetic Field

The effects of rotation about vertical axis and magnetic field about vertical direction
have often been emphasized in the literature by Chandrasekhar [35]. Convection un-
der rotation or magnetic field is interesting because each can stabilize conduction
state independently. Similarly oscillatory convection and subcritical steady finite
amplitude convection can both occur in presence of a magnetic field and during
rotation. Gupta et al. [50] and Dhiman [41] analysed the governing equations of
thermohaline convection with a uniform vertical rotation and magnetic field. Sekar
et al. [105] interested to find out the effect of rotation on two component ferrofluids
for both sparsely and densely packed porous medium using Brinkman and Darcy
models. The thermohaline convection was analysed for both the stationary and
oscillatory modes. Mahinder and Pradeep [113] are studied the thermosolutal con-
vection in a couple-stress fluid in a porous medium in the presence of rotation and
vertical magnetic field, using normal mode analysis. Chand et al. [33] theoretically

investigated the effect of rotation with internal angular momentum in a magnetized
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ferrofluid, soluted and heated from below, and subjected to a transverse uniform

magnetic field.

Thermohaline Convection in a Porous Medium with the Ef-

fect of Magnetic Field

Thermohaline magneto convction in a porous medium is an example of triple dif-
fusive mechanism, and exercises a huge influence on many science and engineering
applications. Marked improvement in theoretical investigation of the planetary and
stellar magnetism has come into being, especially in recent years. Sharma et al. [109]
studied thermohaline convection in a porous medium subject to magnetic field in
a layer of fluid subject to a stable salinity gradient. Rayleigh value increased with
increase in stable salinity gradient as well as magnetic field. Sunil et al. [116,117]
studied convection of saturated porous medium on the effects of rotation and mag-
netic fields in a ferromagnetic fluid using linear stability analysis. Bhadauria and
Srivastava [21] studied thermohaline magneto convection in the porous medium,
characterized by BrinkmanDarcy model. Sekar et al. studied [102] studied stabil-
ity analysis of thermohaline convection in ferromagnetic fluids in a densely packed
porous medium. Benerji et al. [10] used DLB model to study stability analysis
of thermohaline magneto convection in a sparsely packed porous medium and ob-
tained the conditions for the occurrence of various types of bifurcations and derived
Landau-Ginzburg equations to study the instabilities. Prakesh et al. [89] studied
linear stability analysis of thermohaline convection in porous medium in the pres-
ence of a uniform vertical magnetic field, characterization theorem was proved for

magnetothermohaline convection of the Stern type.
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1.13 Objective of the Present Work

The objective of the present study is to explore the linear and nonlinear convec-
tion in a porous medium with the effects of rotation due to vertical and horizon-
tal magnetic field for single diffusive, double diffusive and triple diffusive systems.
Rayleigh Benard convection in a sparsely packed porous medium with magnetic field
and rotation and thermohaline convection is an example of double diffusive system.
Thermohaline convection in a sparsely packed porous medium with magnetic field
and rotation is example of triple diffusive system. In linear and nonlinear analysis,
we write analytical conditions for varies bifurcation points and instabilities. Graphi-
cally, reprsented the stability regions of Eckhaus and Zigzag instabilities at the onset
of Pitchfork bifurcation. At the onset of nonstationary mode we identified travelling

wave and standing wave regions for various parameters.

1.14 Outline of the Thesis

This thesis consists of seven chapters. Chapter 1 consists of introduction to the
study and is general in it provides rationale for investigations carried out in the
thesis. Chapter 2 discusses the linear and nonlinear instabilities of Rayleigh Benard
convection in a sparsely porous medium due to horizontal magnetic field. Chapter 3
looks at the instabilities of Rayleigh Benard convection in a sparsely packed porous
medium with the effect of rotation and horizontal magnetic field. Chapter 4 inves-
tigates linear and nonlinear instabilities of thermohaline convection in a sparsely
porous medium due to horizontal magnetic field. Chapter 5 discusses thermohaline
convection in a sparsely porous medium with the effect of rotation. Chapter 6 looks
at the problem of thermohaline convection in a porous medium with the effect of
rotation and horizontal magnetic field. Chapter 7 deals with conclusions and scope

of future work.
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2.1 Introduction

Convection in a plane horizontal fluid heated from below and cooled from above is a
conventional problem in hydrodynamic stability. The rolls with axes parallel to the
horizontal magnetic field were arises on the set of convection. Magnetoconvection
is the study of thermal convection of electrically conducting fluid in the presence
of magnetic field. Thompson [125] and Chandrashekar [35] were studied the effect
of vertical magnetic field on the onset of convection. The frontier of monotones
instability is unnatural only by the vertical component of the magnetic field. How-
ever,the property of isotropy, are kept in the case of a purely vertical magnetic
field and Busse [28] and Proctor [90] also studied. In the magnetoconvection, the
magnetic field strongly affects all kinds of convective flows by varying direction and
density. The presence of a vertical magnetic field leads the boundary of monotonous
instability and increases the stability of the conductive state. The presence of a
horizontal magnetic field breaks the symmetry and arise the convection in the form
of rolls with axes parallel to them. The horizontal magnetic field not change the
primary instability and affects for secondary instability. A strong horizontal mag-
netic field lead to time-dependent convection and purely geometrical effects cause
oscillations. However Horizontal magnetoconvection in a porous medium has not
conventional any attention in-spite of its geophysical application. The linear and
nonlinear stability of magnetoconvection was studied by Kloosterziel [56], Thomp-
son [123] and Bhatta [23]. A broad review about magnetoconvection given by Broad
Weiss and Proctor [131], concerned nonlinear models of the geomagnetic field and
interactions of magnetic fields. Magnetoconvection has multi-faceted applications
in astrophysics, geophysics, aerodynamics, nuclear reactors, the growth of large-
diameter semiconductor crystals, meteorology, biomedical problems, engineering and
industry.

A study of convection in porous medium broadly given by Nield and Bejan [80].

Magnetoconvection in a porous medium by using Darcy’s law studied by Anwar [17]
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and Srivastava [114]. Magnetoconvection in a sparsely packed porous medium stud-
ied by Benerji [7] and Shivakumara [112]. Magnetoconvection in a porous medium
has important relevance in the study of the Earth’s core in geophysics, efficiency of
petroleum reservoir and engineering applications.

In this chapter, we studied primary and secondary instabilities and bifurcation
of the magnetoconvection in a sparsely packed porous medium due to horizontal
magnetic field by deriving Ginzburg Landau equations. At the supercritical pitch-
fork bifurcation we evolved two-dimensional LG equation derived at the supercritical
Hopf bifurcation we evolved one dimensional LG equations at the onset of oscilla-
tory convection and identified secondary instabilities and region of travelling and
standing waves. Tagare et al. [119,120], Benerji et al. [10] derived one dimensional
and two dimensional Ginzburg Landau equations at the onset of stationary and
oscillatory convection.

The basic equations for weakly nonlinear magnetoconvection in a sparsely porous
medium are derived. Normal mode technique is used to study the linear stability
analysis. Two dimensional Ginzburg Landau equation derived and study the trans-
port of heat by convection and occurrence of secondary instabilities. The system
of nonlinear one dimensional Ginzburg Landau equations are derived and obtained

the stability regions of steady state, standing and travelling waves.

2.2 Basic equations

We considered the thermally and electrically conducting fluid in an unbounded hor-
izontal layer of a thinly packed porous medium with an magnetic field H, of depth
d in the horizontal x-direction. Upper and lower force free bounding surfaces of the
layer heated from below is valid Bousssinesq approximation. The temperature vari-
ation across the free-free boundaries is AT’. The flow in the thinly packed porous
medium is governed by the DLB model. The dimensionless equations for horizontal

magneto convection in a porous medium are
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Figure 2.1: Physical Configuration
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The fluid density p’ is described as
d = b1 — (T ~ T, (2.5)

where pf, - fluid density, a = _;, (gg/,) is thermal expansion coefficient, V' - fluid
0

velocity, P’ - pressure, H - magnetic field, 7" - temperature, g - acceleration due

to gravity, ¢ - porosity and 0.8 < ¢ < 1 for DLLB model, p. - coefficient of effective
fluid viscosity, K - permeability of porous medium, pu,, - magnetic permeability,
k - thermal diffusivity and n - magnetic diffusivity. A = p./p varies from 0.5 to

10.9. The dimensionless quantity M represents the dimensionless Heat capacity.
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The conduction state is characterized by

—/

Vi=0, T =T, —(AT'/d), (2.6)

and we take the temperature perturbation as ' = 7" — T7. We use the scaling
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The basic dimensionless equations are
VV =0, and V.H =0, (2.7)
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Now taking the scalar product of curl of curl of equation (2.8) and equation (2.10)

with é,. we get,

1 0 1 A Pr -
<M2¢pr1§+MD —MVQ) W+ Q5= 2V x [(H.V)] - (J.V)H]}

1 5 T N _ (T 2 2
= NEepr {Vx[(V.V)W - (WV)W} + RV30 + Qa_y(v H,), (2.12)
Pry 9 ow  Pry - —
SR VA ve R I e H)] - 2.1
(¢Pr1 ot v ) 0z  Pry VX (VxH)-e., (2.13)
using equations (2.9), (2.12) and (2.13) can be brought to a form given as
Lw =N, (2.14)
where
2 27972 R
L =DyDp,, [DV? - QI;DV?] — 77 Vi D (2.15)
P?”Q — 1
=QDV? H. —(V.V)H ———DDye,
N =QDV By 18 , [(HV)w — (V.V)H.] + NPoEP, 5€-51
PTQ R

— Q—DD¢ez {(Vx[HNV)]-(JV)H]} - Mvim(vvw, (2.16)
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WhereD_(a—V),Dd)_(qﬁP—ga—MV>,DPT1_(WE+M—DG—MV),
Vi=(&+5) ad V2= (&+ 5+ %)

2.2.1 Boundary Conditions

Let us assume the fluid is contained between z = 0 and z = 1, For perfectly con-

ducting boundary with temperature, we have

=0 and H,=0 on z=0,z=1 forall zy.
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The tangential stresses on surfaces vanish and stress-free conditions are considered

on the surface and vanishing of temperature fluctuations.

ou Ow ov  Ow

where p is the dynamic viscosity, thus equation of continuity implies that w =

D?*w = D*w=0at z=0,1.

2.3 (i). Linear Instabilities of Rayleigh Benard
Convection in a Sparsely Packed Porous medium
due to Horizontal Magnetic Field

Linear stability analysis approach to studying stability of a flow is to analyse how
the system responds to small disturbance. The solution of linearised system Lw =
0, assumes the periodic disturbances with period 27/l along x-direction, periodic

disturbances with period 27 /m along y-direction with growth rate p of the form
w = W(z)elletmy)+et (2.18)
we perform a linear stability analysis of the problem by substituting w into Lw = 0,

we get

A 1 p R¢? 2
{Dququ5 [MDq 1D " Tape) t o Me+ Qm Dqup}W(z) ~0.

(2.19)

where Dq:Dz—QZ, quZDZ—QZ—p and M¢:MDq_¢1€_2p
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2.3.1 Determination of Marginal Stability when Rayleigh

number R is a Dependent Variable
Substituting W (z) = sin 7z and p = iw into equation (2.19), we get

M .
R = ?Dl [Al + zw(Blw2 + Cl)] s (220)

where

1 ¢*Pr3 1 ¢ Pry
A =M A 2 _ 2 2 4 2 A 2 - 2 Yoz 2 2
1 K(S—%Da)é—l—Qm}é—l— MPr%<5+Da>6+Pr1 Qm*|w
(bPT% 4
— 2.21
M2Pr3Y (221)
¢PT% 2 ¢2PT§
By = — |0t 2.22
1= \ YA T aen ) O T Danipr (2.22)
M ¢PT2
= MA PR —, M — 2 2.2
G ( * ¢>Pr1) o’ T ( Pry > @m’, (2.23)
2
Dy = i = 00 =7" 4+ ¢" and ¢* = I + m”. (2.24)
M454 + ¢2P_:§w2

Stationary Convection (w = 0):

Substituting w = 0 in equation (2.20), we get the stationary Rayleigh number Ry,

52 1
Ry = — 2407 =+ 82N 2.25
7 (om0t (g 229
The critical stationary Rayleigh number R,. for critical wave numbers [,. and my,.
18
2

_ 530 2 2 1 2
Rse = = {Qmsc + 0%, ( Da + 5301\)] , (2.26)

Sc
where 62, = 7% +¢2, and ¢2. = [2.+m?.. which is convectively stable when R, < R,
unstable when Ry > R,. and marginal stable when R, = R,.. If the temperatures
at stress-free boundaries are fixed and at nonporous medium, ¢ = M = A =1, the

value of critical stationary Rayleigh number R, = 277*/4 for critical wave number
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Qse = T/ V2. If there is no periodic disturbance along x-direction and periodic dis-
turbance along y-direction with growth rate p, then the stationary Rayleigh number
Ry, is,

Ry = (m* 4+ 73)Q + (m* + 7%)? {% + (m? + 7T2)A:| : (2.27)

If there are periodic disturbances along x-direction and no periodic disturbance along
y-direction with growth rate p, then stationary Rayleigh number R, is,

(12 + %)

Rsz = 2

{% + (P + WQ)A] . (2.28)

Oscillatory Convection (w? > 0):

From equation (2.20), R represents imaginary number but Rayleigh number is always

real so equating imaginary part of equation (2.20) to zero. i.e.,
Biw? +C; =0, (2.29)

where By and C are given by equations (2.22) and (2.23). For oscillatory convec-

2:

tion w —% > 0 since By > 0, for oscillatory convection C; < 0. For oscillatory

convection, from the equation (2.29)

» _ ZM*¢*Pri [M¢Pri(Dam’Q + 8 + Dad'h) + Da(3' = m*QPra)] ;o)
“ = ¢*Pr3 (Dad® + M(1+ Dab?A)oPry) -

M62 | <o 1
L (MA+ e ) 1
P

o) ¢
w? into real part of equation (2.20), we get oscillatory Rayleigh number Ry,

. Substituting

A necessary condition for w? > 0is Q > and £2 >
Yy Pry

0221 |5 (010% + 220) + 652 |

RO = )
x3q2¢>(Pry/ Pry)?

(2.31)
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where

z1 = Daé* + (1 + Dad*N)¢? Pro,
Ty = Dam?Q + 8% + Dad* A,

x5 = Dad® + M (1 + Dad*A)pPry).

The following figures 2.2 to 2.4 which are plotted in (g, R)-plane, calculate the
Rayleigh value based on the effect of physical parameters ), Pry and Pry. Station-
ary Rayleigh number is independent of Pr; and Pre. In figure 2.2, by increasing
Chandrasekhar number () and fixed remaining parameters stationary and oscilla-
tory convection increases. In figure 2.2, at () = 5000, there exists a codimension
with two bifurcation points. In figure2.3, there exists a codimension two-bifurcation
point occurs for an oscillatory marginal curve at Pry = 1.2 while the remaining in-
tersecting points are Takens-Bogdanov (T-B) bifurcation points. In figure 2.4, there
exists a co-dimension two-bifurcation point that occurs for an oscillatory marginal
curve at Pro = 1.25 and the remaining intersecting points are Takens-Bogdanov (T-
B) bifurcation points. This co-dimension two bifurcation point moves downwards
when Pr; increases while co-dimension two bifurcation point moves upwards when
Pry decreases. Solid lines represent Rayleigh value at stationary convection R and

dotted lines represent Rayleigh value at oscillatory convection R,

2.3.2 Determination of Marginal Stability when Rayleigh

number R is an Independent Variable
Substituting W = sin 7z, in to equation (2.19) we get a third order polynomial in p

of the following form:

p*+ Bp*+Cp+ D=0, (2.32)
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Figure 2.2: Neutral curves are plotted for Da = 1500, A =2, M = 0.9, ¢ = 0.85,
Pry =1, Pry =1.65, (a) @ = 4000, (b) Q = 5000, (c) @ = 6000.
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60000

50000+

40000

30000+

Figure 2.3: Neutral curves are plotted for Da = 1500, A =8, M = 0.9, ¢ = 0.85,
Q = 5000, Pry = 1.5, Pry = 1.1, 1.2, 1.3.

45000F 1 ST
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S~ Pr=1
40000+ S
R R ALY
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B0l N A
R
0

10 15 20 25 30
q

Figure 2.4: Neutral curves are plotted for Da = 1500, A =8, M = 0.9, ¢ = 0.85,
Pri =1, Q = 5000, Pry = 1.1, 1.25, 1.3.



CHAPTER 2. 37

where
1 M§?
2 2
_ 2.
B =6 +Pr1KDa+5A>M¢+¢PTJ, (2.33)
_ 1 6 2 2 2 4
C _—DaM¢Pr1 [(Daé + Mé*Dam*Q + 6° + Dad A) OPri+
(—Dag®R + 6* + Dad®A) qs?Prz} , (2.34)
P 2
D :MQ# (—*R6* + m2Q8* + 6°Da + 5*A) . (2.35)
T2

If cubic polynomial equation (2.32), B is positive. The classification of stability
modes of the system are the roots of equation (2.32). Unstable means there exists
at least one root of equation (2.32) with Re(p) > 0, stable means all roots of equation
(2.32) with Re(p) < 0. We get pitchfork bifurcaation when D = 0 and BC'— D > 0.
We get the Hopf bifurcation when D > 0 and BC — D = 0. With the root of each
cubic equation there is an associated combination of flow field and temperature

distribution.

Stationary Convection(w = 0)

When p = 0 ,the cubic equation becomes D = 0

1
— =Qm’+ 52(E + 6%A). (2.36)

If the periodic disturbance only along y-direction,

1
Rm? = Qm*(m? +7%) + (m® 4+ 1) | o 4 (m* + 7)A | (2.37)
a

differentiating equation (2.37) w.r.t m, we get

2
R = Q(n* + 2m*)m* + D—(7T2 +m?) + 3A (7 + m?)?, (2.38)
a
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Figure 2.5: Stationary and oscillatory curves in (R, @)- plane for Da = 1500, A =
085, M =1,¢ =009, Pro =4 at (a) Pry = 1.85, (b) Pry = 1.9, (¢) Pr; = 1.95,
d)PT'l = 2.
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by eliminating R from equations (2.36) and (2.37), we get the stationary Chan-

drasekhar number @)

0. — A(m? +m?)3 — 3N (7% + m?)’m? + - (n* — m4)7 (2.39)

ma

m? = (\/BEA - 7r2> % , (2.40)

substitute this value in equation (2.39), Then Q,.(R) is the critical stationary Chan-

from equation (2.37),

drasekhar number.

Oscillatory Convection(w? > 0)

By eliminating R from w? = C and w? = %, we get oscillatory chandrasekhar

number @Q),c as

(w2 +m?) [(7% +m?) + MAGPri(7* + m?) + 2-M¢Pry)]

Qoc = 2o(0Pry — MPr) : (2.41)

BC — D =0 gives

o R
m? = ¢ 2=, (2.42)
09
2 2
where 0, = —MPZTZ and 0y = m + ﬁ — A2¢?Pry — /]\\j—]f:f. Substitute m?

from equation (2.42) in to equation (2.41), we get critical oscillatory Chandrasekhar
number ), in terms of R. In Figure 2.5, by increasing the thermal prandtl value
the intersection of stationary and oscillatory Rayleigh number and chandrasekhar

number increases.



CHAPTER 2. 40

2.4 (ii). Nonlinear Instabilities of Rayleigh Be-
nard Convection in a Sparsely Packed Porous

medium due to Horizontal Magnetic Field

2.4.1 Two-dimensional nonlinear LG equation at the onset

of stationary convection

According to Newell and Whitehead [77] multiple scale analysis , a small scale con-
vection cell is disturbed on the vital flow. If the scale range is O(e) then the the
collaboration of the cell with itself forces a second harmonic and a standard state
of rectification of range O(e®) and these in turn impel an O(e®) rectification to the
structural module of the imposed roll. Let us assume the solution of equations

(2.8)-(2.10) in series € have the form
f(U,U,U}, Qa Hx7Hy7Hz) = f = Ef() + €2f1 + 63f2 + .- (243)

The zeroth order calculations of the linearised problem given by approximation are
identified by the eigenvectors
v

o =7- [Ael(l“”m“y) cosTz —c- ¢,
Sc

Vo :07

wo =AMV gin 2 4 ¢ -

0, :Mlégc [Aei(lschrmscy) sinmz + ¢ - c-] ’
H,, :]\;l:;;c [Agilleatmset) cos 7z + ¢+ ]|
Hy, =0,
H., m [Aei(lscmrmscy) Sin7wz — ¢ - c-} 7 (2.44)

M2,
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where A = A(X,Y,T) is the complex scale on the gradual variables X, Y and T
and the complex conjugate is represented as c.c. The analytical mode for the linear

problem at Ri; = Ri, is €9 sinmz. The variables z, y, 2 and t are scaled by
X=e, Y= e%y, 7=z T=E¢é4, (2.45)

and are suitably scattered as fast and slow dependent variables in f. The derivative

operators can be formulated as

g%gﬁ-Ei Qénge%i 2%2 2—>62i (2.46)
or Ox 0X Oy Oy oy’ 0z 0Z ot oT '

with the transformations equation (2.46), the linear and nonlinear operators (2.15)

and (2.16) are written as
L= /;0 + 6£1 + €2£2 ety (247)

N262N0+63N1+"' s (248)

substituting equations (2.47), (2.48) and (2.43) into equation (2.14), equating the

€, €2, € coefficients on both sides, we get

ﬁowo = 0, (249)
ﬁowl + £1w0 = No, (250)
Eowg + £1w1 -+ £2w0 = Nl, (251)
where
Lo=—AVS 4 — Vb & Qv4a—2 + R..V?V} (2.52)
0 Da 8y2 Sc ho .

1 d? 0?
Ly =D,,Dg + D [(D—a — sz) Vo + QVQG—yQ} + Qv4a—y2, (2.53)
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8 1 APTQ P’I"Q 1 4
=— (A _
L2 =571 ( +M¢Pr1+¢MPr1>v < Pri MD, )v
82 R PTQ 2 3
2 Tl 22|y = Do 42D, | — 6AVE+ -V + Q— + R,,
Qv 37 M¢P1 + 5573 De +2Day | —6AV' + £-V Q +R

1 1 0?
4D ny( = 8AV 4 Q) 48D D2< = 3AV + Q) + D2 QV2—16D4A+

, 0 0

2
1QD] =5 +2QV° Do (2.54)

whete D, = 52c, Dy = 520, Doy = (2555 + &), Do = [RuV? — 4AV']

Substituting zeroth order solution wy in equation (2.52), Lowy = 0, we get
52
Ry = = {54 A+ —52 - ngc} : (2.55)
qz

sc

From equation (2.50), Ny = 0, Lywe = 0 and substituting zeroth order solutions we

get first order solutions,

u; =0, v;1 =0, w; =0,
1

2w M?252,

Proy Myge

~Pry M2821,
H,, =0, H., =0.

0, = — | A sin 272, (2.56)

|AJ? cos 27z,

Taking w; = 0 in equation (2.51), N7 — Lowy is vertical to wg. This is ensured if
the coefficient of sin7z in N7 — Lowg is zero. By using zeroth order and first order
solutions, we get the two dimensional time dependent nonlinear Landau-Ginzburg
equation

Ao

A ) i 9% \? 2
04 (a_X ~ 2qscm) A= MA + A APA = 0, (2.57)
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15¢

Pr1 10t

0 1000 2000 3000
Q

Figure 2.6: Neutral curve for the coefficient of LG equation at the onset of stationary
convection. Pitchfork bifurcation is supercritical if A3 > 0, subcritical if A3 < 0 and
A3 = 0 for the curve Da = 1500, A = 0.85, M =0.85, ¢ = 0.9 and Pry, = 1.5

where

1 Pry A 1 Pry 1 R, Pro
M=[A — 56 _ - 54 2 52 R )
’ < i Mo¢Pr +¢P7“1 M) ot (Da +¢PT1 MDa) se T @MOsc M Prlqsc¢’

)\1 = 4l§c |:6A5§C + Diégc + ngc - Rsc:| )

)\2 = Rsc(ﬁcégc?
P?“% 7r2(q§c - WZ) i Rse 4

A = .
3 QPr‘f‘ M? o2 dse

(2.58)

According to Steinberg and Brand [115], if A3 > 0, the pitchfork bifurcation is
supercritical, if A3 < 0, the pitchfork bifurcation is subcritical and if A3 = 0, then
tricritical bifurcation point is attained. From the Figure 2.6, we studied pitchfork

bifurcation. Dropping ¢ and y dependence from equation (2.57), we get

BA A, A3
Tt TApa=o, (2.59)
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Figure 2.7: Above figure is plotted for Da = 1500, A = 3, M = 0.85, ¢ = 0.9,
Pry=1.1, Pry =1.25 at (a) Q = 600, (b) @ = 800.

A(X) = A, tanh(X/Ly), (2.60)

where A; = (i—z)% and L; = (%)%

Heat Transport by Convection

The maximum aptitude of A is denoted by | A4, which is given as

2)\ %
’Amaz| = <_€ 2) . (261)
Az

Nusselt number Nu calculated in terms of amplitude as

62

=52
580

Nu | Appaz)® + 1. (2.62)

Nusselt number grows if P% > 1 and decays if RL;C < 1 convection for Nu > 1. Then

there is convection if Nu > 1, conduction if Nu < 1. In Figure 2.7 Nusselt number
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Nu was derived for distinct values of ) and for some fixed values of remaining
parameters. It was observed that by increasing the value of (), Nusselt number

grows exponentially at unit value.

Long Wave-length Instabilities

Newell and Whitehead [77] derived envelope equations In order to study the proper-
ties of a structure with a given phase winding number dg, we write equation (2.57)

in fast variables x,y,t and A(X,Y,T) = —A(‘”éy’t)7 as

0A, g A2 A Ay O i 0?
— — = — —0q¢° ) A1 + 200 A
o1 ( M M ) 1+ sogy (ax 2q303y) 1t
Ay O i 0%\2
AN AU b ——A A = 2.
)\0(895 2q806y2> ! A" Ar =0, (2.63)
2y _ 273
A= {M} . (2.64)
A3

Let u + v be an infinitesimal perturbation of steady state solution A; given by

equation (2.64). Substitute
Ay = @400+ [(2Xs — Mdg?) A3z, (2.65)

into equation (2.63) and equate the real and imaginary parts, we obtain

ou P VIR S N VIV VI 0 )

o9 ) e BENALY, Wik 2.

ot ( S WL A s W WeCr (2.662)

ov )\1 ou )\1

A 2 2.66b

at (92 81‘ 811} ( 66 )
where 0, = 88—;2 + %g—; — ﬁa_y“ and Oy = 20q — iaa— We analyse equations (2.66a)
and (2.66b) by using normal modes form

it = U cos(qux) cos(q,y)e®, o = Vsin(q,r) cos(qy)e. (2.67)
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Substituting equation (2.67) in equations (2.66a) and (2.66b) weget,

[2(6% — AOK?) + oS + X1 | U + MxeqsV =0 (2.684)

quk
gsc

+ i) and xo = (20k + %). On solving equations (2.68a)

442,

Here xy1 = A\ (qfc +
and (2.68b), we get
62)\2 )\151{52

52+ % [2 (62)\2 —A1(5k)2> +X1} + [2<)\—% — )\—(2)> +X1]1/11 —(]in;—% =0, (2.69)

whose real roots are (S+),

! ;
(54) = - { [2)\0(62/\2 ~ \okg?) + onl} 1 [on(e% ~ Mg+ qugxg] } .
0

(2.70)

The equivalent mode is stable if S(—) is negative and unstable if S(+) is positive.

Symmetry significance helps to confine the field of S(+) to ¢, > 0, ¢, > 0.
Eckhaus Instability

Putting ¢, = 0 into equation (2.70), we get

28
S*+ N [2(62)\2 — Mdq?) + )\1%%} +

)\1(13

S

2% = 3M0%) + ¢ =0, (271)

The roots are real numbers and their sum is negative number and the product of
roots is positive number, the pattern is stable and if the product of roots is negative
number then the pattern becomes unstable.

Eckhaus instability defines ¢2 < 2(3)\1(5(]2 — 62)\2> for |0q| > 1/657)‘12 and unstable

€2 )\o
31

wave tends to zero when |§g| —
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Figure 2.8: Numerically calculated secondary instability regions of Eckhaus insta-
bility (E), Zigzag instability (Z), and Stable region (S) are plotted for Da = 1500,
A=2 M=09¢=09, Pry=1, Pry =2, Q = 10°.

Zigzag Instability

putting ¢, = 0 into equation (2.71), we get

)\352 +25(2Xox11 + Aoxiz2) + (2x11 + x12)X12 = 0, (2.72)

2 4

q:0q q . ..

T g >, the two eigen conditions are
sc

gsc

where y11 = €2\ — M\10¢? and Y12 = N (

unrelated and amplified when S(—) = —2(€?\y — M\10¢°%) — %qgéq - %qs <0
2

and S(+4) = —)\1%3 <5q + %) > 0. These conditions define the domain of Zigzag

Instability when dg, < 0. In Figure 2.8, we observed that by increasing the () value,

the region of Eckhaus and Zigzag instability increases.
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2.4.2 One dimensional amplitude equation at the onset of

oscillatory convection
Consider cylindrical rolls along y-axis, so only x-dependence and z-dependence ap-

pears from Lw = N. Obtained coupled one dimensional nonlinear time dependent

Landau-Ginzburg type equations at the supercritical Hopf bifurcation. We define €

as
R,— R
2 o oc
_ o~ foe 2.73
€ o (2.73)
and take
'I,UO — [AlLei(locx‘i‘mocy“FWOct) _I_ AlRei(locI‘f‘mocy_UJoct) _I_ c- C:| Sln ﬂ_z, (274)

is a solution of Lw = 0. Here A1, and A, represents the amplitudes of left and right
travelling wave rolls respectively and depend on slow space X and time variables

7, T, Knobloch and Luca [57],
X =ex, T=¢€t, T=¢4, (2.75)

and assume that A;;, = A1 (X, 7,T), Aig = A1gr(X,7,T). Differential operators

can be expressed as

0 0 0 0 0 0 5 0
B — ax+€a—X, a%aﬁ*EE‘FE a7 (2.76)

The solution of basic equations can be sought as power series in €, the first approx-

imation is given by eigenvector of the linearised problem
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T

. [AlLeZ(locw+mocy+Woct) + AlReZ(locfE+mocy_woct) —cC- C:| CcoS 7-‘-27
/I/QOC

Uy = —

Vo :O,
1 1 t(locT+Mmocy+woct) 1 1(locT+Mocy—woct)

Oy =— | — A, peillecttmocytwoct) 4 — AR llocrtmocy—woct) | o ¢ | gin 7z,
MoeT

— 1
on _ |ie Al P i(locT+Mocy+woct) + - Al et i(locT+mocy—woct) +c-c.| cosmz,
2 2

lOC

H,, =0,

, 1 , 1 - _ )
H., =imqe {—Al 1 e ocBFmocyFwoct) | —A peillocttmocy=woct) _ ¢ | sin gz, (2.77)
€9 €o

where 67, = (7 + ¢2.), e1 = (02, + iwoe) and ey = (M3, + iwocppr2 ), here ef and

are complex conjugate of e; and ey. From equations (2.49), (2.50) and (2.51)

82 2 R 2
Ly =(DyDp,, — Q 3 —)DV? - 77 Vi Do
0
Ly :8—-7:1 + Dyy Fo + 4D§-7:37
OF,  0°F %) 02 %)
Lo =—2 o7t axe D2F, + 2Dﬂ”a_f5 P ——F6+ 874175/?7 +4D% D, Fy
A
— Q(V? = V)Dy D,y +4QDy D}, — 16MD§, (2.78)
1 8> ¢RPry
D,D DD ———DD,)V? 2
‘Fl ( ¢ P7”1+¢ PTI+M2¢PT1 ¢)v QV 82 MPl
2 2 A 2 2 82 R
Fy =(DDy — DyV? — MDV?*)Dp,, — MDD(N + Qv QD MD¢ + RV3,
82 2 R A 2 2 2
fng(mw )—M+M(DV — DD, + DyV?) + Dp,, (V> — D — D),
2 s A A 2 0’
Fy =(MV?* - (Dy+ MD))Dp,, + ADV? — 17 PP + DoV + Q— + R,
Fs =DyDp,, — MV?D ¢V>D Pry — (M + ¢—)D V2 — 3—2—
5 — d) P7'1 PT‘1 PT1 P Prl ay2
Pry A 1 ) 1 ORPry
(¢P_7«1M M¢Pr1) PV P, M2¢Pry Cb_DDP” - MPr



CHAPTER 2. 20

P’I“Q P?"Q

D . 2 D 2 D 2
=P, PN T appa Y  apgpn DY
1 9 A Prg A Pry
= (V*-D-D — —2(V*=D)+ —(1-D,) — ¢Dp,, ——
'F7 M2(Z5P7’1 (V ¢>) ¢ ( ) + M( ¢) ¢ Pry PT’1’
A 02
Fs =2Q + A(D + D?) + MDp,, + 2Dp,, + M(w —~D?*+3D, — 1), Dy = Sy

At O(e), equation (2.49) gives critical Rayleigh number for the onset of oscillatory
convection). At O(€?), from equation (2.50) Ny = 0 and Liwy = 0 gives

0Ay, DA DA DA
or 90X or 90X

=0, (2.79)
where v, = (0w/0q)4=q,. is the group velocity and is real. We get,
Uy :Oa U1 = 07 wy = 07

2 2
0 = M2 [(’AlL’ + |A1g| ) er + E€6 + 16466] sin 27z,

2Mpem? Pry [ 2 ,
ch _ oc A A eQuuoct + A A* 6721woct
1 l,. Pr {6263 LR eses IRAL
(el (JA1L]? + [A1r[?) | cos 27z
AMm? \ ey €} ’
H, =0, H, =0, (2.80)
Where €3 = <M+2PW‘ + %52 + M;D,l>7 €4 = (477'24-27:&]00) (4Mqoc+22gz§wocP ) €g —
App At pe2ivoct | op — ﬁ <é + é), and e3, e), ei, e; and e} are complex conjugate

of e3, e4, €5, €6 and e7 respectively. The equation (2.51) is solvable when Lywg = 0,

equate the coefficients of sin 7z in N} — Lowy to zero. We get

a141L a a 82A1L
ANo—— oT Ay (E - Uga_X) Aop, — No—- X2 — N3AqL
+ Al Aip P A + As|Arg?Arp = 0, (2.81)
0Air 0 0 0?Aqg
No—— T + A4 (E — Uga_X) Aosp — No——- X2 — NsAir

+ Al AirPAig + As|Aip P Arr = 0. (2.82)
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Where

Roc qgc Qﬁ P T

1 P
Ao = (—6162 + eqes + qu—:ieleg + szc) 526 — NP

Mngp’l“l

A —(52 |:6 ngTQ €1PT2 ()] :|
l_oc 3

Pry  M?Pr? + M?2¢pPr,

A A
—ejeg + Mejes + M€25§C +Qm?2, — R|,

AQ :4[30 |:6263 -+ Megégc + Aeldgc -+ Wi

R
As ZMQEC(%

1 /1 1 R 11
Ay = FPe— [+ =) —eg——?2 | =+ =
1 =Qmedoceryy ( i e;) YTVER (61 * eik) :

=Qn*m?2 5 PTQ (i+i*> (E—Fl)—QQﬂ' 252Pr2 il

oc OCP 2 ey €h €9 Moc °“ Pr? ezes
R 2 1 1 1
2 2
PR ey | — +— (—+— ] 2.83
T q"‘;Md62 [eled 472 (61 * e*{)} ( )

Here it needs to be noted that A;;, and A;r are of order ¢ and Ay, and Ayp are

of order €2.

If woe = 0 in Ag, Ay, Ay, A3 and Ay, these expressions match with
coefficients g, A1, A2 and A3 of LG equation at the onset of stationary convection.
From equation (2.79), we get A;1(¢',T) and Aix(n',T), where & = v,7 + X, 1 =

v,T — X. Equations (2.81) and (2.82) can be written as

0A 0A 0A

Qvgmﬁ =~ Ao~ + Mg+ dadus — (MalAwf + AslAigf) Auz, (284)
0A 0A 0A

QUQAIWZ,R = — AO 8%1% + AQ a);;{ + /\31413 — (A4|AlR|2 + A5|A1L|2) AlR- (285)

Let '€[0, 11], /€[]0, ls] where [ and [y are periods of Ajy and Ajg. This condition is
obtained by integrating equation (2.84) over 1’ and equation (2.85) over &', we get

0A1L A 0A1L

b= = Mg

+ AsA1L — (AglAiL]? + As|Arg|?) Avg, (2.86)

31413 0Air

oT 9X2 + AzAir — (A4|A1R’ + As|Arr] )Am. (2.87)



CHAPTER 2. 59

Travelling wave and standing wave convection

According to Coullet [37] and Matthews [67], we studied the region of waves by
dropping variable X from equations (2.86) and (2.87), we get a pair of first order

differential equations

dA A A A
d;f — A—zA A4A1L|A1L|2 5A1L\A13|2 (2.88)
dA A A A
T A Al Al = A A, (2.89)
Put g’ = A—i, vy = —2—3 and 0 = —A—5 Then equations (2.88) and (2.89) take
the following form
A _ gy "Avp)Arp? + 8 A Al
a7 = B'Aip + ' Aip|Aup|” + 0" Arn| Asrl7, (2.90)
ir _ 5 'Air|Arr|* + &' Arg|AiL 2.91
T = ' Air + 7' AirlAirl” + 0" Air| ArL]”. (2.91)

Consider A =are’®t and Ag=ape'®®, where a; = |A;L|, ¢ = tan~! <;"Z((j11£))> =

arg(Air) and ag = |Aig|, ¢r = tan™! (Iz?e((iﬁ)) = Wg(AlR)>’ here ar, ag, ¢r and

¢r are functions of time 7', a; and ag are positive functions. Substitute Ay, Aig,
B =B+ iba, 7 =71 + iy, & = d; + idy into equations (2.90) and (2.91) we get,
(ap,ar) = (=B1/(71 + 01), —B1/(71 + 61)) for standing waves. (ar,ar) = (ar,0) for
left travelling waves and (ar,ar) = (0,ag) for right travelling waves. (ar,ar) =
(0,0) for conduction state. In Figure 2.9, we studied the regions of travelling and
standing waves at Hopf bifurcation. The stability regions of standing wave increased

when Pry/Pry increases.

2.5 Conclusions

In this chapter we studied linear and nonlinear stabilities of magnetoconvection in

a sparsely packed porous medium over a horizontal magnetic field. We have de-
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rived thermal Rayleigh value at the onset of stationary and oscillatory convection
by assuming periodic disturbances along x-direction, y-direction and in both x-y di-
rections, and obtained critical thermal Rayleigh values at the corresponding critical
wave numbers by considering R, as dependent variable. We also traced marginal
stability curves between thermal Rayleigh value and wave number. We found an
analytical relation for stationary and oscillatory convective curves by considering R;
as independent variable. Takens-Bogdanov bifurcation and co-dimension two bifur-
cation points on neutral curves were identified and are shown in figures 2.2 - 2.3. We
observed the thermal and magnetic Prandtl numbers are not affected on convective
stationary thermal Rayleigh value. We derived two dimensional Ginzburg Landau
equation at the onset of stationary mode, explored heat transport from Nusselt num-
ber, studied long wave length aas well as Eukhaus and Zigzag instabilities. At the
onset of super critical pitchfork bifurcation, we obtained two dimensional Ginzburg
Landau equation which is valid only for A3 > 0. If A3 = 0 we get tricritical bifur-
cation point. A3 = 0 is a necessary condition to study heat transport for various

physical parameters. Nusselt number grows exponentially if RL; > 1 and decay if

R

SC

< 1 for Nu > 1. Nusselt number grows exponentially for unit value. At the
onset of Hopf bifurcation, we obtained LG equations and we discussed secondary
instabilities. For #; > 0 and 7; < 0 travelling and standing waves are stable and for
f1 < 0 and v; < 0 travelling and standing waves are unstable (see Figure 2.9). The
region of existing standing waves increases by increasing the ratio of magneto and

thermal prandtl number.
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3.1 Introduction

The Hydrodynamic and Hydromagnetic stability problems have several scientific
applications in astrophysics, geophysics and space sciences. These problems with
the effect of rotation and externally impressed magnetic field was carried out by
Chandrasekhar [35] The effects of both magnetic field and rotation prevent the
onset of instability and increase the cells at marginal stability. The magnetic field
affects the rate of flow velocity, mass and heat transfer of the onset of convection.
In the presence of vertical magnetic field, the magnetic field leads the boundary
of monotonous instability and increases the stability of the conductive state. The
presence of horizontal magnetic field creates the rolls and breaks the symmetry.
Busse and Pesch [31] studied the effect of horizontal magnetic field at the onset of
thermal convectoin. The system is also subjected to the rotation about its vertical
axis and the Buoyancy-driven flows are affected by this rotation. The presence of
the rotating fluid layer is what makes the system more stable. Lyubimov et al. [63]
studied the effect of rotating magnetic field convection emerge in the form of rolls.

Nield and Bejan [80] have made deep investigations on various porous medium
convective problems. Detailed investigations on thermal instability of horizontal
fluid layer which is heated from below through a porous medium under the influence
of a uniform magnetic field were presented by Sharma and Thakur [111], Anwar et
al [17], Wang et al. [130], Srivastava et al. [114], Altawallbeh et al. [5] and Harfash et
al. [52]. Linear and nonlinear stability analysis onset of convection through sparsely
packed porous medium with Darcy Lapwood Brinkman model was studied by Tagare
[119,120], Benerji et al. [7,9-11] and Shivakumara et al. [112]. In this chapter, we
study Rayleigh Benard convection with respect to the effect of the convection vertical
axis of rotation and horizontal magnetic field in a sparsely packed porous medium.
Travelling and standing waves in magneto convection in a nonporous medium was
studied by Matthews et al. [67].

The basic equations and boundary conditions are discussed in section 3.2. Linear
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Figure 3.1: Schematic of the physical configuration
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and nonlinear stability analysis of stationary and oscillatory convection are studied
in section 3.3 and section 3.4 respectively. Finally, conclusions are discussed in

section 3.5.

3.2 Basic Equations

We considered the thermally and electrically conducting fluid in an unbounded hor-
izontal layer of a thinly packed porous medium with an magnetic field H, of depth d
in the horizontal x-direction and vertical angular rotation . Upper and lower force
free bounding surfaces of the layer heated from below is valid Bousssinesq approxi-
mation. The temperature variation across the free-free boundaries is AT”. The flow
in the thinly packed porous medium is governed by the Darcy-Lapwood-Brinkman
model. The relevant basic equations of continuity, momentum, energy and magnetic

induction along with Boussinesq approximation are

p=po[l —a(T" = T7)], (3.1)
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and
V'V =0V.H =0, (3.2)
é%zl + %(ﬁxvl) = — (V' VWV - “m [H()%H,/ (F.V’)F’] =
—V’{P’ “m|H|2 . HH’——|Q><V|2}+pg—?V+ NV (3.3)
M%f/l — kNPT = —(V . VT, (3.4)
gb—/ — V' x (VxHy&) =V x (VxH)+nV"*H. (3.5)

Where fluid density is p , mean fluid density is py, thermal expansion coefficient
s = —L (BT,) temperature is 7", mean flow fluid velocity is V', magnetic field
is ﬁ/, porosity is ¢, magnetic permeability is u,,, angular velocity along vertical
direction is Q = Qé,, pressure is P’, acceleration due to gravity is g, permeability
of porous medium is K, effective fluid viscosity is p., dimensionless heat capacity

is M, thermal diffusivity is & and magnetic diffusivity is n. We use the following

scaling
/ t/
'/d - t
e (/0d) (ML&F)
v’ o'
/
y=y/d (k/Md) N
/ /
— / d w . p
2=/ (k/Md) P k2 M—2d~?
—
— gaATd? v
H = Pri ——
kH,/n h RV Ty
P?”z —Z ’umchp Da :i
n 47 porn d?
40%d*
Ta=— (3.6)

[47] shows the value of A = ’% varies from 0.5 to 10.9 . The dimensionless equa-

tions for magneto rotating convection in a sparsely packed porous medium due to
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horizontal magnetic field with Boussinesq approximation are

V.V =0,V.H=0, (3.7)

_ mmwv v ( Mirl + %;ﬁ AP +QH, - T‘;];“ 6 VF) ,
(3.8)
(% - v2) 0 — % - —% (V.V) 6, (3.9)
(¢]IZ—2%—MV2)F—VX V6= 52 [V (V< )] (3.10)

The curl and curl of curl of equation (3.8) are
(M2;Pr1% - %V2+ M;Da) (V> V)= % Vo (Vx&)) =

0 (v . %) (Y X 06.) = QET2 [V < (H.9)] - s [V % V97
(3.11)

1 0 A 1 — . Ta® L
(M%Prlﬁ —uv ot MDa> [V x (VX V)] = Mi¢{v x [Vx (Vxé&)}-

Q{Vx (VX%_Z)} ~RIV (V06 = QP {V x [V x (ALV) ]} -
1 -

The curl of equation (3.10) is

_PT’Q

—P—rl{Vx [V x (VxH)|},

<¢@2_MV2> (VxH) = [VxVx(Vxé)

(3.13)
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from equation (3.9) and z-component of equations (3.10), (3.11), (3.12) and (3.13),

we obtain a single equation of the form

Lw=N, (3.14)

where
L =D>V*D RD V3D Ta 9*D*D,? 3.15
Ty _Myh¢+M2¢2z ? > ()

N =D, { DD4Dy .. + Q—V2D8 [V x (VxH)e.| - %mvi(?vw} _

T 1/2 —
A‘; 5 Db {D¢Dvez + Q 0, [V x VX (V x H)éz]} , (3.16)
whore D= (§ — V7). D, = 0528~ MV, Dy, = sl 3 — 4V V7 =

L+t Vi = Mz—i—ayz, D, mepd, Q02, Dy = —gmepr [V X V x (V- V)V]+
QPTQ [V x V x (H-V) } Oy = 39 0, = %. The boundary conditions are are fol-

lows from the section 2.2.1.

3.3 Linear stability analysis

The solution of linearised system Lw = 0 corresponds to the formation of convection
rolls. The rolls characterised by assuming periodic disturbances with period 27“ along
x-direction and periodic disturbances with period % along y-direction with growth
rate p of the form

w = W(z)elletmy)+et (3.17)

where W (z) = sinmz and p = iw. substituting w into Lw = 0, we get
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(p + 0%)8? 1 +£62+L ¢@ + Mé&* | + Qm? T
P M2oPr Y T M T MDa 7

R 2 P?"Q 2 1 A 2 1 P’l“g 2 2
7 <¢5Php+M§) KM%PmerM(S + 2 Da ¢Pr1p+M5 +Qm”| +

Ta'? ) T )\
AT @) (o p MET) =0, (3.18)

where ¢? = 2+ m? and 62 = ¢® + 2.

3.3.1 When Rayleigh number R is a Dependent Variable

Substitute w in equation 3.18, we get

R= %/c (71 + haw? + hw + haw® + hsw®) + iw (I + Lw’® + Isw + Lw®)]

(3.19)

where IC = (Fl -+ F2w2)2 -+ LL)2(F3 -+ F4w2)2_1, hl = FlGl, hg = F2G1+F1G2—F3G4,
]’L3 = F2G2 + F1G3 - F4G4 - F3G5, h4 = F2G3 - F4G5 - F3G6, h5 = —F4G6, where

I =F3G, + F\Gy, Fy =m*Qay + a3by,

I, =F,G| + F3Gy + 2G4 + F1Gs, Fy = — 2aya3b, — ajbs,

I3 =F,Gy + F5G5 + F2Gs + F1 G, Fy =m?Qay + a2b; + 2aiazb,,

I, =F,G3 + FyGg Fy = —a’by, (3.20)

G1 =m*Q*6* + 2m*Qd*aghy + 5*a3bs + Tad*a3cy,
GQ = — 54(2m2Qa1b1 + 4a1a2b1b2 + a%bf -+ G%b%) — 52(2m2Qa2b1+
2m?Qayby + 2a3b1by + 2a1a3b3 + Taa’c,) — 2T aa ascy,

G3 :54a%bf + 252a1a2b% + 252afb1b2,
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G4 :254(m2Qa2b1 + mQQale + (Igblbg + alagbg) + 52(m4Q2+
2m?Qagby + a3bs + 2Taa asc,) + Taascy,

G5 = — 20%(ayagb] + a3biby) — 6%(2m*Qayby + a3bi + dayazbiby + ajbs) — Taaibs,

PTQ

GG :62a%b%7 ay = (bP_T’l,

ar = M b = — p = L (A ) =
2 — 71—M2¢PT172—M Da 71—M2¢2-
Stationary Convection

For stationary convection put p = 0 i.e. w = 0 in equation (3.18), we then obtain

stationary Rayleigh number and it is represented as R,

52 1 Tar?64 1
R, =— || AS* + —) 6%+ mﬂ + . (321

¢ K Da “ ?*¢® [(AS2 + 3-) 6% + Qm?] (3:21)
Cross rolls : 1f there is a periodic disturbance along x-direction and no perturbation
along y-direction with growth rate p, we take m = 0 in equation (3.21) and obtain

stationary Rayleigh number for cross roll which is represented as R.(m = 0),

2 Da
1 Tar?(1* + w2)? 1
12 ¢? (A2 +72) + 5=) (P4 72)]

Rgm:oyiﬁifﬁ[Quﬁ+w%+—L)u?+ﬁﬂ+

(3.22)

the critical stationary Rayleigh number for cross rolls is R (m = 0),

(2 +7°®  Tan®1

l _ _
R..(m=0)=A P + 2B

Parallel rolls : 1f there is no periodic disturbance along x-direction but periodic

disturbance along y-direction with growth rate p, we take | = 0 in Equation (3.21),
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Figure 3.2: Marginal stability curves of the cross, parallel and oblique rolls for
Da = 1500, A = 0.8, M = 0.9, ¢ = 0.85, Pr; = 1.5, Pry = 1.65, Ta = 105,

(a) Q = 100, (b) Q = 1000.
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Figure 3.3: Marginal stability curves of the cross, parallel and oblique rolls for
Da = 1500, A = 0.8, M = 0.9, ¢ = 0.85, Pry = 1.5, Pry = 1.65, @ = 500,
(a) Ta =10%, (b) Ta = 10°.
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and get stationary Rayleigh number for parallel rolls is RZ*(I = 0),

m gy (M) 2 2 1 2 2 2
RI'(1=0) = — A(m +7r)+Da (m*+7°) +Qm* » +
1 Tar? (m? + 7%)?

m? ¢* {[A(m?+72) + &) (m? + 72) + Qm?}’
The critical stationary Rayleigh number for parallel rolls is R (I = 0) ,

Tarn? (m2 4+ 72)?
¢* [A(mZ +7%)? + Qmg]’
(3.23)

m2+7r2

1
R™(1 = 0) [A(mZ + 7*)* + Qm?] + —

2
me

Oblique rolls : If there is a periodic disturbance along x-direction and y-direction
with growth rate p. The stationary Rayleigh number for oblique rolls is Equation(3.21).

The critical stationary Rayleigh number is R,. for critical wave numbers ¢,

52 1 Tarn26* 1
Ree = =S¢ | A2 + — | 62 + 2] + sc . (3.24
2 K . Da) so + 2, [0z s oy, 1 qme 82

qSC

where ¢2, = I? + m? and 02, = 7* + ¢2,. Figures 3.2 - 3.3 show the marginal curves
of cross rolls R.(m = 0), parallel rolls R™(I = 0) and oblique rolls R,. As shown in
Figure 3.2, the critical Rayleigh number is increasing along with increasing magnetic
field. In Figure 3.3, critical Rayleigh number is smaller for cross roll R7*(I = 0) than
parallel roll R.(m = 0) in the low rotation case while the opposite is true in high
rotation case. The oblique critical Rayleigh number is always between the cross rolls

and parallel rolls.

Oscillatory Convection

For oscillatory convection (w? > 0) and from equation (3.18), R represents imaginary

number but Rayleigh number is always real, so equate imaginary part of the equation
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Figure 3.4: Solid lines represent stationary Rayleigh number R, and doted lines
represents oscillatory Rayleigh number R, for Da = 1500, A = 0.8, M = 0.9,
¢ = 0.85, Pry = 1.5, Pry = 3.5, Q = 1200, (a) Ta = 10%, (b) Ta = 107, (¢) Ta = 108.
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Figure 3.5: Solid lines represent Stationary convection Ry and doted lines represents
Oscillatory convection R, for Da = 1500, A = 0.8, M = 0.9, ¢ = 0.85, Pr; = 1.5,
Pry =1.65, Ta =6 x 10° at (a) Q = 200, (b) Q = 600, (c) Q = 1400.
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Figure 3.6: Solid lines represent Stationary convection Ry and doted lines represents
Oscillatory convection R, for Da = 1500, A = 0.9, M = 0.9, ¢ = 0.85, ) = 500,
Ta =8 x 105 (a) Pry =3, (b) Pry =0.8.
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(3.18) to zero. By solving the imaginary part, the oscillatory Rayleigh number is

MK,
Fo=—

[Hl + H2w2 + H3w4 + H4CL)6 + H5w8} s (325)

e L4 s + 1) = 3L,

2
o , (326)

— 40254 2 8 2510 | Tad* _ 2m2Q¢s4Pra | AS*Pro 52Pr3
where G1 = m*Q*6* +2m~QAé° + A%6 + B Gy = pim o+ P T aripe

Pr? Qm?2s* 2,212 | Tard®Pry Pr3 _ &*Pr3 §2Pry | 2A6*Pr3
M2Pri + MoPr; 20°m Q"+ MéPri QSPT‘%’ Gy = MA4Prg M3Pr3 M3Pr$

2
G4 _ Tand* Pro + Qm?262 + 2777,2@2(52, G5 _ _(bi_:% + AM2(56 + 2rr12Q<z>(54P7"27

MPry MePry M2gPr
2 ,,,2 T
Go = arimis, Fi = Q8*m? + AM25S, Fy = =250 By = QM&*m? + 55,
T‘2
Fy=— i_r%’ Hy = FiGy, Hy = [5Gy + 11Gy — F3Gy, Hy = FyGy + F1Gs — FiyGy —

F3Gs, Hy = F2Gy — FyGs — F3Gg, Hs = —FyGg, I = F3G1 + F1Gy,

I = FyG 1+ F3Go+FoGy+F1Gs, I3 = FyGot+F3Ga+FyGs+F1Gg, 1y = FyGs+ G,
Is = [=213 + 914 I3 15 — 27121, + [4(— 12 + 314 015)% + (=213 + 91, Iz 1, — 27121,) %)Y/ 4)/3.
In Figures 3.3 - 3.5, the neutral curves are plotted in the (¢, R) - plane with the
effects of Ta, @), Pry and Pry. The solid line represents the stationary Rayleigh
number R, while the dotted line represents the oscillatory Rayleigh number R,. At
Takens-Bogdanov bifurcation point we get Ry(qs) = Ro(q,) = Re(q.) and ¢ = q, =
¢.. At co-dimension two bifurcation point we get Rs(¢s) = R.(q.) and ¢s # ge.
The stationary Rayleigh number was not affected by thermal and magnetic prandtl
numbers. There exist co-dimension two bifurcation points in Figure 3.3(b), Figure
3.4(b), at Pr; = 1.2 in Figure 3.5(a) and at Pry = 3 in Figure 3.5(b). Over the
oscillatory convection, the critical Rayleigh value increases when the thermal prandtl
value decreases and the critical Rayleigh value decreases when the magnetic prandtl

number increases.
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3.3.2 When Rayleigh number R is an Independent Variable

The equation (3.18) represents as a fifth degree polynomial in powers of p,
Ap® + Bp* + Cp* + Dp* + Ep + F = 0, (3.27)
where

A=— 52a%bf, B = —52a1b1 [2&2[)1 + a (52[)1 -+ ng)],
1

C=- W{M%%%gzﬁ + 2M?8%¢%arby [m*Q + az(5°by + 2by)]+
a2[m*Ta + M?6°¢*b3 + M¢?bi (—¢*R + 2M 6*by)]},

1

M2¢2

2@1 [m2M2Q52¢2(52b1 + bg) + ao [7T2TCL -+ M252¢2b§ -+ M(bel(—qQR -+ 2M(5462)H},

1
o M2¢2
M?52¢°b3 + M @by (—q* R + 2M 6*by) + ay[m* M Q¢*(—q* R + 2M 6% by)+

D=-—

{a}(7°Tad — Mq*R¢*by + M>5*¢*b3) M252d*asby [2m>Q + az(6%by + 2by) ]+

E = {m*M2Q*5¢? + 2m?* M>Q6*p*ay(0%by + by) + ai[r*Ta+

2ay(7°Tad® — Mq* Rg*by + M?5"9?03)]},
M?Qas(q> R — 2M§*by) 2 ( w*Tad®  q*Rby (54b2)
— 52 ).

F:_m4Q254+

M C\ Tz T M
(3.28)
Take p = iw in equation (3.27), we get
(Bw* — Dw? + F) + iw(Aw* — Cw? + E) =0, (3.29)

from the above equation 3.29, the real and imaginary parts are Bw* — Dw? + E =0

and Aw* — Cw? + E = 0.
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stationary convection (w = 0)

At the onset of stationary convection take w = 0 in equation (3.27), we get F' = 0.

1 1 > prT
¢ [mQQ + <A62 + D—a> 52] R = §? {mQQ + <A62 + D—a> 52} + W¢2a547 (3.30)

which is same as equation (3.21). If there is a periodic disturbance along x-direction
and no perturbation along y-direction with growth rate p, then which represents

cross rolls in the system. If vanish the Chandrasekhar number we get

Tar?
PAR = A(I* 4+ 72)* + o (3.31)
differentiating equation (3.31) with respect to [, we get
R
=4/ —n° (3.32)
3
substituting [ in equation (3.31), we get
Ag? IR 9 s/ R
Ta, = — — — — Ay = .
a - R ( 5 T 5 (3.33)

If there is a periodic disturbance along y-direction and no disturbance along x-
direction with growth rate p, then which represents parallel rolls. If vanish the

Chandrasekhar number we get

Tan?

m*AR = A*(m? + 72)* + poa

(3.34)

differentiating above equation (3.34) with respect to m, we get

m? = W/gﬁA — 72, (3.35)
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substituting ? in equation (3.34), we get

The equations (3.33) and (3.36) both are same if A = 1. The Stationary Taylor

_ A

Ta
Y 71.2

. (3.36)

number by considering R as an independent variable represents as T'as,

_¢2 R_ 2 _SE
TGS—PIRWE ”) \/;

Oscillatory convection (w? > 0)

(3.37)

We have marginal stability if w? = @ from Aw* — Cw? + E = 0 and
substitute this w? in Bw* — Dw? + E =0, 2BC? —4AE —2ADC + 4A’F + (2BC +
2AD)y/C? — —4AE = 0 with C? > 4AE. At Takens-Bogdanov bifurcation point
we get w? = 0, which gives F' = 0 and £ = 0. Eliminating R from F' =0 and £ =0

we get

Ta. — — M252¢2(m2Q + a2b2)2[—m2Q52a1 + ag(m2Q + a2(52b1 + bg))] (3 38)
e m2a3[m?Qd%a; + az(m?Q + ax(—0%b; + bs))] '

We get Takens-Bogdanov bifurcation point if T'a > 0. Here T'a > 0 if

a%(52b1 + bg)
m2(62%ay — ag)’

Q < (3.39)

On eliminating @ and T'a from D =0, E = 0 and F' = 0 we get codimention three

bifurcation point.
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3.4 Nonlinear stability analysis

3.4.1 Amplitude equation at the onset of stationary convec-
tion
According to Newell and Whitehead Multiple scale analysis [77] when small scale
convection cells disturb basic flow, we assume that the solution is in the form of
f=efo+Efi+efat, (3.40)
where €2 = % << land f = f(u,v,w,0,H;, H,, H,), with the first approxima-
tion given by the eigenvectors of the linearised problem as

s

up = [Ae"(l”m” —c-c]cosmz,
e W
wo = [AetHm) | e e] sinmz,
0o :]\4152 [Ae'letmy) 4. ] sinmre,
Hy, 2]:;;;; [Aei(lﬁmy) +c-c]cosmz,
H., :]\ZZ;Q [Aei(l”my) — ¢ ¢]sinmz, (3.41)

where A = A(X,Y,T) is the amplitude and c.c represents the complex conjugate
of the amplitude. The variables X, Y, Z and T are scaled as

X=ex, Y= e%y, 7=z T=¢%4, (3.42)

are suitably scattered the fast and slow unconventional variables in f. The derivative

operators can be formulated as
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00 0 0 o,
Jor  Ox 0X’' 0Oy Oy

o 9 9 a8 ,0

with the transformations equation (3.43), the linear and nonlinear operators £ and

N are written as

L=Ly+ el + €Ly, (3.44)
N:€2N0+63N1+"' 5 (345)
substituting equations (3.44) and (3.45) into equation (3.14), equating the ¢, €* and

€3 coefficients on both side.
Lowy = 0, (3.46)
Lo’wl + £1w0 = ./\/2), (347)
E(]U)Q + £1w1 -+ ,CQUJ(] = Nl, (348)

where
Lo=— £V2V4 + RAV2V6 L — Vi %Vlo — A2V — Qrviv2oi—
Da? Da hT Ty
Q 6 92 274 04 6 92
V ('9 - Q°V 8y — FV a7,

1
L= 4Rvia§a§(c2 + oo BAV?) — (20,0x + 0%)V2F, — V20205 Pyt
3
— P02V — 4Q002 [R v 2(2@ n D—@)W n 12Av4} —4Q2002,

Lo =(20,0x + 62) [(28y8y)2F4 - am} + (20,0x + 02)2Fs — (20,0 )"

2 10A
Q%+ RA + 01Da* + D—Q + (DL + SQA)W} + 0% 03 Fy + 0% Vi —
(3RAV* sz) + 0% V2 Ey + OrFy — 02(20 — Yoy )?, (3.49)
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T
Py =(2Q%0) + QRO?) + <3¢—§a§ — 3RAVE) V2 — SQAGZV' + 6V26",

F :(QR + 12%&3) + (6@2 - 12AR> V2 — 16QAV* + 60V2 VS,
Fy =2V5Q02QV? — QRV252 (2@60}( O 4 v2>,
Fy=— ?’%a; +4Q%0 + 2QR — BRAV? + V2 <9RA n 24@A8§) + VAQAV! — 60VOAZ,
F5 =QRV;, + V’Q(R — 4V*9]) — 8QAV°,
Fs =3RAV? + V*(3RA — %a@) + V' (BRA + 12QA0]) — 15A°V® — QRO2Q%D;,
F; = — QRV; — QRV? + 8QAV°
Fy = —2Q0” — %aT + RAV* — 6A2V,
Fy :QMiPJZQV,%a; + Q% + (% + 2]\;;];:)03 + %ﬁf“v‘* — (2004
Mig’rl + 2%\2ir2>aEVG B Z;L;\]TZIPPT; Vit (A2 + be/;ﬁ + 2§iijz)v107

Fig =05 V> Fy + 0pFy — 0%(2q — YOy)? [QR +2¢°02 + 4Q°V? — 12QAV4} . (3.50)

Substituting the zeroth order solution wy in equation Lowy = 0, we get

52 1 1 Tar?6* 1
R, == | A 4+ — | 62 ol [ —— $ . (3.51
7 K S*Da> 5+Qm]+q§ & (AR erom] oY

N

from the equations (3.46) to (3.48), ANy = 0, Lywy = 0 and hence w; = 0. The

second order approximations which are based on the eigen vector of the problem are

U1 :O, w1 = 0,

v, =K, |:A262i(lx+my) —c- C'} ’
1
6, — —
! 2w M?2§?

|A|*sin2rz,
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m

H,, = 301257 |A|*cos2rz,
K )
H, :;anlQ [A%e?letm) cosrz + ¢ ]
H., =0, (3.52)

—4in?q \/Ta62(ﬁ+Qm PT2)

_ Mo 1
where Ky = 5 raamaia a0 S (AN g 1o -

Taking w; = 0 in equation (3.48),
N7 — Lowy is orthogonal to wy. Equating the coefficient of sin7z in N; — Lowy
is zero. We obtain two dimensional time dependent nonlinear Landau-Ginzburg
equation

A 0 i 9% \? )
Mg — (ﬁ‘%@) A= DA+ X\|APA =0, (3.53)

where

oProaQR 5, 5 9 4c2 Ta 2 2RAGPry , 2Tam*Pryy
N =2t 22 92t ( LRAOTT _—) —
0= prar I @ R R vy o S vy
Pr
2A2<1 ¢ 2)6_A210
QAm~( 1+ MPr ) 0,

A =QRm? — Q*m* + (3RAq2 37;;” )52 (3RA —15A% — 12AQm2)54

= (Qm* + As") ¢,

[Q@m2Pry (62 12 Rq? 9 A
A?’_{ P 2 ae) T (@A) -

Ta1/254 271'26253 m7r51 SllmPTQ
Ms? 1S+ —————= —_— 3.54
¢ {MQS?PH MG ( 2 87T2M252) Q4M7TPT1} (3:54)
where S, = 272Ta'/2mPry Sy = mm2Tal/? and S5 = 472¢2Tal/252 From

(Qm2+A3%) Pry ? = AMZ2U(Qm2+AsY) = SPrIAQm2AAM¢Y"

figure 3.7, if A3 > 0 then the pitchfork bifurcation is supercritical, if A3 < 0 then it
is subcritical and tricritical bifurcation at A3 = 0. Dropping the ¢ and y dependent

terms from equation (3.53), we get

d2A X\ A3
+Z2A-221A4PA=0 3.55
dX2 )\ 1 | ‘ ) ( )
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Figure 3.7: The curve A3 is plotted for Da = 1500, A = 1.5, M = 0.85, ¢ = 0.85,
Q = 500, Pry = 50, R = 68000 and T'a = 8 x 10°. The pitchfork bifurcation is
super-critical if A3 > 0, sub-critical if A3 < 0.

the solution is

A(X) = Ag tanh (Af) | (3.56)

A 2 A 2
Ay = = A =21— . .
0 <>\3) and 1 ()\2) (3.57)

Secondary Instabilities and Nusselt Number

where

Newell and Whitehead [77] derived envelope equations In order to study the proper-
ties of a structure with a given phase winding number dg, we write equation (3.53)

in fast variables x,y,t and A(X,Y,T) = —A(”’C;W)’ as

0 i 0?

8A1 2/\2 /\1 ) . /\1

— — = — —Hq° Ay + 200g— — — — A

ot (6 Ao Ao 4 ) 12 q/\o <8m 2(se (9y2) 1t

A/ O i 0% \2 A3 2

— = = — ) Ay — =|AFA; =0 3.58
Ao (8:)@ 2se ay2> ! )\0| 1A =0, (3:58)
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1

2 — A\i6g>]?

Ay = {%} . (3.59)
3

Let u + v be an infinitesimal perturbation of steady state solution A; given by

equation (3.59). Substitute
Ay =a+ 0+ [(Xa — Mdg?) A1z, (3.60)

into equation (3.58) and equate the real and imaginary parts, we obtain

i __y(ode Ao\ A M 00
ov _)\1 8U )\1

where 0, = 8‘9—;2 + 5—‘18—22 — L—4 and Jy = 20q — iaa— We analyse equations (4.63a)

and (4.63b) by using normal modes form
it = U cos(qux) cos(q,y)e®, o = Vsin(q,r) cos(quy)e. (3.62)
Substituting equation (3.62) in equations (3.61a) and (3.61b) weget,

[2(62>\2 — )\151{52) + )\QS + X1 U+ )\1X2qxv =0 (363&)

qZ6k qy

g T @) and xo = (20k + 5—5) On solving equations (3.63a)

Here x1 = A (qf, +
and (3.63b), we get

28 Xy A\ Ok?

S2+A—0[2(62A2—A1(5k)2)+x1}+[2(A—g— v )+X1]¢1—qu2;—% — 0, (3.64)
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whose real roots are (S+),

1 1
(S4) = -5 { [200(€2X2 = Mibkg®) + Ao | [200(2hs = ide?)? + X2 } .
0

(3.65)

The equivalent mode is stable if S(—) is negative and unstable if S(+) is positive.
Symmetry significance helps to confine the field of S(+) to ¢, > 0, ¢, > 0.

Eckhaus Instability

Putting ¢, = 0 into equation (3.65), we get

)\1%25

25
52+ 22 [2(eh — Mdg?) + Mig?] + =
0

[2(6% ~300¢%) + qg] —0, (3.66)
Ao

The roots are real numbers and their sum is negative number and the product of
roots is positive number, the pattern is stable and if the product of roots is negative

number then the pattern becomes unstable.

Eckhaus instability defines ¢? < 2(3)\1&]2 — 62)\2> for |dg| > ./G;X\f and unstable

€2 \o

wave tends to zero when |dq| — /552

Zigzag Instability

putting ¢, = 0 into equation (3.66), we get

A5S% + 252 0x11 + Aoxaz) + (2xa1 + x12)x12 = 0, (3.67)
2 4
where y11 = €\ — M\1d¢? and y12 = N (% + fq—%), the two eigen conditions are

unrelated and amplified when S(—) = —2(e?\y — M\10¢°%) — %qgéq — ﬁch; <0
and S(+) = —Alqz <6q + ;{%) > 0. These conditions define the domain of Zigzag
Instability when dg, < 0. In figure 3.8, we have shown the Eckhaus and Zigzag

instabilities known as secondary instabilities regions at fixed parameters. When
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12

Figure 3.8: Region of secondary instabilities and stable region for Da = 1500,
A=15 M =09, ¢ = 0.85 Pr; = 1.5, Pro, = 1.55, R = 41000, Q = 500,
Ta = 1320.

increase the magnetic field the stability regions also increases.

Nusselt Number

Heat transport by the convection, the Nusselt number studied in section 2.4.1. \;
and )y are always positive. The Nusselt number Nu can calculated in terms of
amplitude (A) as
2
€
Nu = 1+§]Am\2. (3.68)

Nusselt number grows if % > 1 and decays if RL;C < 1 convection for Nu > 1.
Then there is convection if Nu > 1, conduction if Nu < 1. Amplitude is valid for
A3 > 0 and it is possible when R > R,., Thus we obtain convection for Nu > 1 and

conduction for Nu < 1 see in Figure 3.9.
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o0 200 2400 2600
RR

SC

Figure 3.9: solid lines represents Stationary convection Ry and doted lines represents
Oscillatory convection R, for Da = 1500, A = 1.5, M = 0.9, ¢ = 0.85, Pr; = 1.5,
Pry = 1.55, Q = 1000, T'a = 10°, R = 41000.

3.4.2 Amplitude equations at the onset of oscillatory con-

vection

We have assumed that the solution of the equation Lw = 0, which satisfies the linear

system of the form
wy = [AlLei(l“myJ“"t) + Ajgetltmy=—wt) 4 .. c.} sinmz, (3.69)

where Ay, = A1 (X, 7,T) and A1p = A1r(X, 7,T) are the amplitudes of left trav-
elling and right travelling waves of the roll and these amplitudes depend on the

following slow variables

X=ex, Y=ey, 1=c¢t, T=0¢t, (3.70)
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we express the differential operators in the form of

or Ox 90X Oy Oy oy’ ot ot ot oT”

We consider the solution of basic equations in the form of

f=¢efo+eEfi+eElfat---, (3.72)
where
Ro - Roc
e = —5 < 1, (3.73)

here f = f(u,v,w,0,H,, H,, H,) and the first approximation or zeroth order solu-

tions is given by eigenvector of the linearized problem are

s

wo :7 [AlLei(lx—f—my-i-wt) + AlRei(ll‘-‘rmy—Wt) —c- C.] COS T2,
iTa*?r , ;
vy = Ajpegetlatmytet) L g pexpilletmy—wt) _ o 01 cogy
0 Mol [ 1L€3 1R€3 } Tz,
wy = [AlLei(lx—i-my-i-wt) + AlRei(lsL‘-‘rmy—wt) +c- C.] sin 7z,
1 1 . 1 )
90 _ - |:_A1Lez(lx+my+wt) + _*AlRez(lx-i-my—wt) +c- C.:| sin Tz,
M |e €1
-m 1 - 1 -
on _ v |:_A1L€z(l:c+my+wt) + _*A1R61(1x+my—wt) +c- C.:| cos Tz,
[ ()] =)
mTa?r [K , K. -
o :Wqﬁﬂ {G_;Amez(lff*m“m) + e—gAlRe’(l“my_“t) +c- c} cos Tz,
1 } 1 ,
H., =im [—AlLeZ(lirmerwt) + —*AlReZ(l”my_wt) —c- c.] sin7z. (3.74)
€9 €9
M2¢Pr{ ' M /2

here e}, €5, ej are complex conjugate of e1, e; and es. We obtain the critical Rayleigh
number from the linear equation Lowy = 0. At O(e?), Ny = 0 and Lywy = 0 gives
a‘g—;L —Vgag—)l(]“ = 0 and E)‘;—;L —I—Vgag‘—)lf = 0. Where v, = (g—“;)q:qsc is the group velocity

and is real. Hence we obtain u; = 0. Similarly, the remaining first order solutions
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are
Uy :0,
vy 2;628 [A%LG e 2i(lz+my+tw) + A2 * 2z(lx+my tw) - C] .
1
A LA Re iletmy) _ c-c|,
2A[(A2 + ) Mg? +4Qm?] A ]
wq :07
01 - AlLATRe—Teww + 62 (|A1L]? + |Ag|*) + ¢ c| sin 27z,
WP g [
Ag? 1 ,
H,, =[(—r 4 + W Da ———YMq® + 4Qm?] [AlLAlReQZ(l”my) +c- c} cos 2mz+
2mm? Pry e 52
2 A A -2 2ztw i A 2 A 2 .
llea|? Pry [ e 64 47r2(| if” + [Awrf) +eel
m , 2102 mPr
H —  [A-A 2i(lz+my) i oc 2 A 2 A 2\ o1 )
U T A Migeq [ 1LA1RE +c C} +—\€2|2IP7’1 (|A1z|* + |Ag|?) sin 272+
m . .
ST [|A1L|265622(lw+my+tw) + |AlR|26321€21(lz+my_tw) +e- C} +
6E8
Am3mPry
A A x 2itw
l|ea|?eq Pry [ LLARC2C ¢ C} ’
H,, =0, (3.75)

where e, = 2M? —l—qzﬁpr%w e5 = A52+ L

er = 2% 4+ jw and ey = ﬁ(S? MlDa + MQ;Pm w, thelr corresponding Complex
conjugates are e, ef, ef, es and e§ respectively. Equating the coefficients of sin 7z

in M7 — Lowg equal to zero. We get,

a141L 8 a 8 AIL
AO 8T -+ A1 (E — Uga_X) AQL A2 8X2 A3A1L
+ Al Aip P A + As|Arg]?Arp = 0, (3.76)
0Air 0 0 0?Aqg
No—— T + A4 (E — Uga_X) Aosp — No——- X2 — NsAir

+ Al AirPAig + As|Aip P Arr = 0. (3.77)



CHAPTER 3. 84

Where
Ay = — Tar’e, — s + (Tam®Pry + Qm?6? )—26162 + Q*m*o? +
M252  MPoPr ) M2 Pry oc
—Z(bQ(%:?Pweleg) +2(Qm?*8;, — ¢5£:2)6265 - —(ﬁRC]?\j][Z:iijL
P
200 sz;pm - ¢P7;~21€5 Jereacs,
A R e R

Tag*Pry  2¢02.Pro

2pr2 2Rq%ey Pr

(Rq2 — 6165(530) +

M?2Pr? Pry Pr? M3pPr?
Ae RAqG?
AQ = — 2Rq26265 + 2636616265(]\465 + WQ) — Mg €§ + ((536 + eﬁe%eé—}-
2Tae ean?  Tam?e? R
Mtb; M2¢25 + RQq¢’es — 2M Q01465 + Q(M — 200.e5)€264—
2Q(e5 + A02,)ereses + Q% (02, + e1)ed,
202 2
Ay =— QMC] €y — qug,eg,
QImd? to Pry ) m? VTaQm?m2eieqe7 Pry(1 — 1)
A, =" %0ct27 T2 4y
4 4P7"1 (6265 + Qm )( + 71‘2 ) 2M¢69P’f’1
(i N i) N VTaeiezerm QPrngZ, o ) TaQd?2,Ime eserts Pry
e €5 MegpPrq leges M?2¢p? AM?¢?Prq
le(52 PTQ 12 tg t252 tge§
Ar = 2\ %" " "oc” "4 3 )= oc
5 (6165 —+ Qm ) P’/’l m2 e + e €10 -+ 27’(’2 + GZ +
VTaeieam?m2QPry 1 N 1 N 2V Taeie3m (7 Qm?*Pry N
—
M¢PT1 4Mq266 2€2t1 6M¢P7“1 tl 4lq2€6PT'1
Tae1e3Q¢* Pry 1 6eql  €Sex
{ —eseo — - = 3.78
2M242Pr, (m + e Jezein —m 5 = ; (3.78)
where ¢ = (375 + AW‘12)M(]2 +4Qm?, ty = ?@T;g:f, eg = 2egeg + 4Qm? and ey =

—m2n2V/TaPril .
WM( f—eq). Where Ag, Ay, Ag, A3, Ay and A5 are the complex coefficients
oc 1

in physical components q,., Ro, E., A, a and ¢q.. Here e; = 02, + iwpe, €3 =

02, + aqz. + % and e5 = 62, + ag2. + Roiw,.

Here Ay = (% + Vga%>AlL and Asp = (6% — Vgaix>AlR' Aqr, Aig and Asp,

AL, _ v oA __

2 . .
Asr are of orders € and € respectively. From the equations <5t T =
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and241L + y, 2L = O we obtain A;r(¢,T) and Aig(y/,T). Where & = v, + X

n' = v,7 — X. Equations (3.76) and (3.77) can be written as

0A 0A dA
20,7\ a;L = — Ay le + Ay 8X12L + AsAry — (Mg Aip? + As|Avgl?) Air, (3.79)
DA DA DA
QUgAl 8 2/R - - AO a,zljR + A2 a)(lf + >\3A1R - (A4|A1R‘2 + A5’A1L|2) AlR' (380)

Let £'€[0, 1], n'e[0, 3] where I is the period of A;;, and [y is the period of Ajg .
Expansion (3.72) remains asymptotic for times ¢ = O (e72) only if an appropriate
solvability condition holds. This condition is derived by integrating equations (3.79)
and (3.80) over 7/, &' respectively, we obtain

0A 0A

AO 871"L o A2 a)(li + )‘3A1L - (A4|A1L|2 + A5‘A1R‘2) AIL; (381)
0A 0A

Bo ot = 0o A — (AdlAuinl + AslAu ) Ain. (382)

Equations (3.81) and (3.82) are left and right moving waves known as coupled one-

dimensional LG equations.

Travelling wave and standing wave

Dropping the variable X from equations (3.81) and (3.82)

dA A A A
djl,L = A_zAlL — A—§A1L|A1L\2 A5 Ay Aigl?, (3.83)
dA A A A
T A_ZAlR - A4A1R|A1R|2 - —5A1R|A1L| (3.84)
Put
& / 4 A5
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Then equations (3.83) and (3.84) take the following form

dA
T = B Ay A A+ 8 A Asl, (3.85)
dAlR _ /A /A A 2 5/A A 2
ar B'Aig + 7 Air|Aig|” + 6" Air|ArL|” (3.86)
Where
A =ae' ar, =| A ¢ =arg(Aiy)
Aig =are'" ar =|A1g| ¢r =arg(Air)
B =P +iBs Y =n+ i & =0) + 0, (3.87)

Substituting of Ayz,A1r,5,7" and ¢’ in (3.85) and (3.86). we get,

(ar,ar) = (=B1/(n + 61), =B/ (7 + 1)), (3.88)

Substituting Ayr, Aig, ', and ¢’ in (3.85) and (3.86). we get ar, = —f1/ (71 +01)
and agr = —(1/(11+91) for standing waves. (ar,ar) = (ar,0) for left travelling waves

and (ar,ar) = (0,ag) for right travelling waves. (ar,ar) = (0,0) for conduction

B1

o il 0 and supercritical if

state. Standing waves exist if | Ay |*=| Agr [*= —
v1 + 61 < 0. Standing waves are stable if 5, > 0,7, < 0 and
(i) if 61 > 0, then —y; > §; > 0,
(ii) if 9y < 0, then —v; > —§; > 0.

B1

Travelling waves exist if | Ay |*= —=- > 0 and they are supercritical if y < 0.

Travelling waves are stable if §; > 0,71 < 0 and 9; < 71 < 0. We studied onset of
Hopf bifurcation of stability regions of travelling, standing wave and steady states in
figure 3.10. It can be observed that, when ﬁ—ﬁ increases, the standing wave stability

regions decreases for fixed parameters.
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Figure 3.10: Stability regions of steady state (S.S), standing waves (S.W.) and
travelling waves (T.W.) for Da = 1500, A = 2, M = 0.9, ¢ = 0.85, R = 41000,

Ta=10° (a) 52 =6, (b) 52 =9, ()52 = 12.
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3.5 Conclusions

In this chapter, linear and weakly nonlinear stabilities of horizontal magneto con-
vection in a sparsely packed porous medium due to rotation have been discussed.
Rayleigh value at the onset of stationary and oscillatory convection by assuming pe-
riodic disturbances along x-direction, y-direction and both directions was obtained.
Marginal stability curves between Rayleigh value and wave number was discussed
graphically. The existence of Takens-Bogdanov bifurcation and codimension of two
bifurcation points on neutral curves was shown in Figures 3.3 - 3.6. The thermal and
magnetic Prandtl numbers do not have an effect on convective stationary Rayleigh
value. By deriving two dimensional LG equation at the onset of stationary mode,
we have studied heat transport from Nusselt number and the occurrence of long
wave length instabilities. Heat transport by convection through Nusselt number
was discussed. Nusselt number grows exponentially if R%C > 1 and decays if Ri;c <1
for Nu > 1. Nusselt number grows exponentially at unit value. From Figure 3.10
it can be observed that the region of existing standing waves starts decreasing by

increasing the ratio of magneto and thermal prandtl number.
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4.1 Introduction

Thermohaline convection arises due to the gradient in the molecular diffusivities
of salt and temperature and the density gradients is caused by temperature and
solute concentration. Thermohaline convection affects the large-scale dynamics of
ocean circulation and it begins when the salt gradient is high compared with the
thermal gradient. Rudraiah et al. [100], Bhadauria [20], Malashetty et al. [64, 65]
and Kumar [60] resesarchers studied thermohaline convection by Darcy flow model
which is related to densely packed porous media. This process is mainly used in
oceanography, limnology and ocean mixing. A broad study of this type of convection
about porous medium was done by Nield and Bejan [80]. Malashetty [64] and Benerji
Babu [7] studied thermohaline convection due to sparsely packed porous medium as
well as studied linear and nonlinear stability analysis.

The onset of convection in electrically conducting fluid in the presence of mag-
netic field was studied by Thompson [125], Chandrasekhar [35] and Drazin [42]. The
presence of vertical magnetic field leads to the boundary of monotonous instability
and increases the stability of the conductive state. The presence of a horizontal
magnetic field breaks the symmetry and convection in the form of rolls. In this
chapter, we studied instabilities and bifurcation of the thermohaline convection due
to horizontal magnetic field in porous medium. Tagare [119,120] and Benerji [7],
derived amplitude equations to study heat transport, instabilities and traveling and
standing wave regions. Benerji [10] derived amplitude equations for thermohaline
magneto convection in a sparsely packed porous medium.

In this chapter, we examine thermohaline horizontal magneto convection in a
sparsely packed porous medium. In section 4.2, the basic dimensionless equations
are derived using Boussinesq approximation. In section 4.3, we studied linear stabil-
ity analysis and identified bifurcation points in neutral curves. In section 4.4, using
multiple scale analysis derived two dimensional nonlinear LG equation in complex

amplitude with real coefficients. We studied Nusselt number and secondary insta-
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Figure 4.1: Physical Configuration

bilities. In section 4.5, we derived coupled LG equations with complex coefficients
and studied the stability regions of the steady state, standing waves and travelling

waves.

4.2 Basic Equations

We consider an electrically and thermally conducting infinitely extended layer of a
sparsely packed isotropic porous medium of depth 'd’ with horizontal magnetic field
H,. This layer is heated from below saturated with a solute solution of a specific
concentration gradient. The temperature and salinity differences across the stress-
free boundaries are denoted by AT” and AS’ and the flow in sparsely packed porous

medium governed by DLB model, the basic equations for which are

V'V =0, and V.H =0, (4.1)
p6 87/ 1 — N Um |5 8?’ — T
— | = +-=(V. —— |Hy—+(H.VH | =
5 8t’+¢(v vHv 47T[ an,+( %!

-V (P' + g—:!ﬁF + Z—gﬁéﬁ;) +0'g - %V’ AV (4.2)
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1" 7 o\ 12
Mo+ (V)T = ke VT, (4.3)
08" —
b + (V08 = ksV7S (4.4)
oH
b = V' (V' x Hyé,) =V' x (V' x H) +nV"*H (4.5)
fluid density p’ is defined as
pr=py[1— (T =T5) + B(S" = Syl (4.6)
where a = —pj 13;,, B = —py 1% Using the transformations, z = %, y = %,
Zz%atZJWv“:mvvz@f—maw—<k/Md>’9_ AT € = g

/ . .
P = W, H = H /n’ the non dimensional governing equations are,

V-V=0, and V-H =0, (4.7)
MQ;PT B_Y - %(V V)V] Q%H * MlD V- QJZ_Z(_ VH =
%V2V v (M];n %i H|> + QH ) (R0 — RoC) (4.8)
% + %(V.V)e = % + V%, (4.9)
%%—f + ﬁ(V.V)C =4V, (4.10)
¢§_28_H_vx (vXéy)—MWﬁ:g—:iVx (V x H), (4.11)
the non dimensional numbers are L = Z—i, Da =% Ry = agszdd, 2 = %id?),

H24d? :
Q = e Pry={, Pry = Y and A = £¢. The z-component of curl of equation
TPoV k n W
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(4.8) is

_ 0 _
Dp (VXV)- €, — Qa—y(v X H)-€,— R (V x0¢E,)-é,+ Ry(V x Cé,)é, =
1 Pry
(&1

~apgpn VXV V] &+ Qp = [V x (H-V)H] €, (4.12)

P

the z-component of curl of curl of (4.8) is

) P I

Dy, V2w — Qa—yVQHZ — RiV20 + RyV2(0 = Qp—f [V xV x (H-V)H] - é.—
1

1

the z-component of equation (4.11) is
DyH,=— +—=V x(VxH)-é, (4.14)

eliminating 0, C' and H, from equations (4.9), (4.10), (4.12), (4.13) and (4.14), we

get the equation in the form

Lw =N, (4.15)
o R R
L =DD,D.Dp, V> — QDDLVQa—y2 - MIDLD¢V}QL + M_ZLDD¢’
i 74 Pry o7 T s
Rl 2/Y7 RQ 2/Y7 PT'Q a —_— _ R
1 DeDLVI(V - V)0 + — = DDy Vi(V - V)C + QDDLP“ 8yv x (V x H) - €.,
(4.16)
where
92 02 oG 0
2 _ Y Y9 2_ Y 9 Y D=9 _ 2
Vi= o2 T g V=2 o o oV
_  Prd 190 1 A, X
Dy = Pry Ot Vi Den = M2¢Pr, 0t | MDa Y e re Ve
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4.3 Linear Stability Analysis

The linearised system of Lw = N is Lw = 0, by assuming periodic disturbances
with period 27” along x-direction and periodic disturbances with period %’r along

y-direction with growth rate p of the form w = sin wze'(@+m)+rt We get,

n (¢ 2 Pry 2 1 1 A 2\ 2
(p—|—5 ) (Lp+5> (¢Pr1p+M5) (M2¢PT1P+MDCL+M6 0"+
o [P 2\ 2 2 Bi o0 2 Pry 2
@ _ e (2 M
Q(p+5)(Lp+5)5m 7 (Lp+5><¢Pr1p+ 5)+
24 (p+6%) (gb%erMd?) =0, (4.17)
where ¢? = [ + m? and §? = 7% + ¢?, substituting p = iw into equation (4.15), we
get

M
Ry = 5K [co — cx0® + exo® — co® + i (¢ — e® + esw)] | (4.18)
q

here we have given different coefficient values

K =(5" + ¢2 W) (M2 % )7 o= MA@ + o+ AP 4+ 2g?)

o =[Mmor + 2 +A66> ﬁ—(a—mzwpré?) M?%L—@]éﬁ,
mEQI( L+ o)

o= T R~ 1) = (MO + 0 - S (o P )
L )

LTS s ST Dok e

¢ = ii\igj(; A52+Mi;ﬁ), cﬁz%. (4.19)
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4.3.1 Marginal stability analysis when R; is a dependent

variable
Stationary convection:

At the onset of stationary convection take w = 0 in equation (4.18), we get

_ Lt 2\ 4 252, B2 o
Rls_q2[(Da+A6)5 + Qm*6° + 74 (4.20)

where Rj, is the stationary thermal Rayleigh number. The critical stationary ther-
mal Rayleigh number R;,. for critical wave numbers [,. and m,. which represent the

oblique rolls is

1 1 Ry
Rige=—| | = + A2 ) 08 22+ = 4.21
1 gc[<Da+ sc) sc+Qmscsc+quc’ ( )
where ¢%, = 2, + m?2, and 6%, = ¢>, + 7°.

For parallel rolls, there is no periodic disturbance along x-direction and periodic
disturbance along y-direction with growth rate p, take [ = 0 in equation (4.20), we

get the stationary thermal Rayleigh number for parallel rolls Ry, as

1
m?

Rlsm -

1
(E + A(m?* + 7r2)> (m? + %)% + Qm*(m* + 7%)? + %m2 . (4.22)

2

The critical Rayleigh number for parallel rolls at the critical wave number m? = §7§
1s Rlscma
3 4 L s 2 1 Ry
Rigem = V2AT (1 + —=)% + Qr*(1 + —=) + (4.23)

2 ITL
the critical value Ris., depends on @), Ry and L.
For cross rolls, there is no periodic disturbance along y-direction and periodic dis-

turbance along x-direction with growth rate p, take m = 0 in equation (4.20), we
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get the stationary thermal Rayleigh number for cross rolls Ry is

1
Rlsl = l_2

1

(— + A + 7r2)) (P4 m)? + U

?.
L

o (4.24)

The critical Rayleigh number for cross rolls at the critical wave number [? = %(\/_ —

1) is Rlscb

277T4A+ RQ

Rsc% T
1scl 4 I

(4.25)

the critical value Ris, depends on Ry and L not on () value.

Oscillatory convection

At the onset of oscillatory convection, equation (4.18) represents the imaginary but

Rayleigh number is always real so equating the imaginary value of equation (4.18)

to zero,
c1 — c3w? + cswt =0, (4.26)
2 + /3 — 40105’ (4.27)
265

by substituting positive w? from equation (4.27) into the real part of equation (4.18),
we get the oscillatory thermal Rayleigh number R;,,

M 4

Ry, =K (co — cow? + et — 06w6) , (4.28)
q

where ¢, ¢, ¢4, cg and K are given from relation (4.19). A necessary condition for

w? > 0is
M¢’R
Q< 66 (AM+¢>1irl>+ qL 2<1_%) (4 29)
m252<¢6;ir2 B M) ’

Figures 4.2 - 4.5 are marginal curves traced in (g, R;)-plane, the solid and dotted

lines represents stationary and oscillatory Rayleigh numbers respectively. We ob-
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1.8x10°

Figure 4.2: Neutral curves are plotted for Da = 1500, A = 6, M = 0.9, ¢ = 0.85,
Pry =1, Pry = 1.5, Ry =500, (a)Q = 1300, (b)Q = 1750, (¢)Q = 3000. Solid lines
represent stationary convection R, and dotted lines represent oscillatory Riq
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Figure 4.3: Neutral curves are plotted for Da = 1500, A =5, M = 0.9, ¢ = 0.85,
Pry =1, Pry = 1.5, Q = 1750, (a)Ry = 100, (b)Rs = 500, (c¢)Ry = 1800. Solid
lines represent stationary convection R;s and dotted lines represent oscillatory Ry,
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16000 -

10000+

Figure 4.4: Neutral curves are plotted for Da = 1500, M = 0.9, ¢ = 0.85, Pr; = 1,
Pro = 1.5, Q = 1750, Ry = 800, (a) A = 2, (b) A =5, (¢) A = 7. Solid lines
represent stationary convection R, and dotted lines represent oscillatory R,
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Figure 4.5: Neutral curves are plotted for Da = 1500, A =2, M = 0.9, ¢ = 0.85,
Ry = 500 in sub figure (a) Pry = 1.5, vary Pry values,Pr; = 0.8, 1, 1.05, in sub figure
(b) Pry = 1, vary Pry values,Pry = 1.4,1.5,1.75. Solid lines represent stationary
convection Rj, and dotted lines represent oscillatory Ry
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tained co-dimension two bifurcation points and Takens-Bogdanov bifurcations. At
the co-dimension two bifurcation point we get Rs(qs) = R.(q.) and ¢ # q.. At
Takens-Bogdanov bifurcation point Rig(q,) = Ris(qs) = Ric(qe) and ¢, = ¢s = ¢e.
The stationary Rayleigh number is not affected by thermal or magnetic prandtl num-
bers. In Figures 4.2(b), 4.3(b), 4.4(b), 4.5(a) at Pr; = 1 and 4.5(b) at Pry = 1.5
there exists co-dimension two bifurcation points , while other intersection points
represents Takens-Bogdanov bifurcation points. In Figure 4.5(a) co-dimension two
bifurcation point moves upwards when Pr; increases, in Figure 4.5(b) co-dimension

two bifurcation point moves downwards when Pry increases.

4.3.2 Marginal stability analysis when R; is an independent

variable

In equation (4.17) represents a fourth degree polynomial in powers of p,

Ap* + Bp* + Cp* + Dp+ E =0, (4.30)
where
54¢P7‘2 (54P7”2 qb 52¢2P7’2 1 (54
A _LMQPT%’B B M2Pr§(1 o) LMPry (At pg)+ LMPry’
92552 2 52 54¢PT‘2 925 2 1 (56 1 PT’Q
= — 1+ 2)(A — -
C=T mQ+ 50+ 3p, U+ )0 + 50+ 5 (0 + 3rp )+
50 1 GO Pry
phe+ MPrl) tIMPr (Fr = 19),
_ g2 | 2P Roy  1in 205414+ 2y 8. 2
D =¢*§ {MPTI(RNL L)+L(R1 ¢R1)} +m°Qd (1+L)+Da(1+L+
¢ Pry . ¢ 1
MPT1)+5 A1+ L)+ MPTI(A¢Pr2+ ¢) :

E =6* {mQQcS? + 54 (AS?) + Dia — (R — @))} : (4.31)
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Substituting p = iw in equation (4.30), we get
(Aw* — Cw? + F) — iw(Bw* — D) =0, (4.32)
the real and imigenary part of above equation (4.32) are

Aw* — Cw? + E =0, (4.33)

Bw? - D =0 (4.34)

Stationary convection:

At the onset of stationary convection taking w = 0 in equation (4.30), we get E = 0,

2,52 40 A £2 L_2 _& _
mQ8 + 6' (A8 + =) = PRy = ) =0 (4.35)

from equation (4.35), we get stationary thermal Rayleigh number Ry is

1 1 R,
Ris=— | —+ A% 25% 4 242 4.36
| qQI(Da+ ) +Qm +Lq]7 (4.36)

which is the same as equation (4.20). Differentiating equation (4.35) with respect

to (% and m?, we get

1
Qm?> + D—a2(52 +m? +72) + 3A° +m® +7%)? — (R — %) =0 (4.37)
1
QU +2m? + 1) + 521" + m? 4 %) + BA( + m* + 7%) — (By — %) =0,
a
(4.38)

solving equations (4.37) and (4.38) we get

= Ry 1/2
2 _ L
52 = ( oA ) (4.39)
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now substituting 6 from equation (4.39) in equation (4.36), we get the stationary

critical Chandrasekhar number @) = Q). where
1/2
(=) v (- )

where R,; is the critical thermal Rayleigh number of the Rayleigh-Benard convec-

Qsc = 5— : (4.40)

2m

27” . From equation (4.39),

1
1/2 2
R, — 12
Gse = <—13AL> —| (4.41)

we use equation (4.41) to determine the sign of F, (i.e. £ =0,E > 0). In figure 4.6

tiOIl, R,«b =

shows the plotted curve (Ry, Qs.)- plane for equation (4.40). In figure on R; x-axis

@ = 0 and each solid line represents Ry and starting from Ry = Ry, + %.

Oscillatory convection:

At the onset of oscillatory convection, from equation (4.32) Aw* —Cw?+ E = 0 and
Bw?—D = 0. From equation Bw?—D = 0, w? = Substltutlng w? B in equation
Aw*—Cw?+E = 0, we get AD?>—~BCD+B?E = 0 and the thermal Rayleigh number
onset of oscillatory convection exists for a set of physical parameters corresponding

to positive value of w?. For a large value of Da and unit values of A, L, the equation

AD? — BCD + B?E = 0 is expressed as

m?6*(Pry + M Pry)

2 6
R Ve ¢ (7101 = R20p) = 0705 = 0, (4.42)

where O; = (MP”J“PAZQS)](DAT/ﬂPT%P%) Oy = M2PT1(MJS§;PI:W)+¢ Pri o4
O3 = (MPrﬁlzﬁgzﬂéglwpw . Comparing equations (4.35) and (4.42), and substitut-

ing in equations (4.39) and (4.40), we get the critical wave number g,. and critical
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Figure 4.6: curves are plotted for Ro=-120, 0 and 120 in (Ry, Q)- plane at Da = 1500,
A=08 M =0.85 ¢=0.9, Pry =1, Pro =125 and L = 1.

Chandrasekhar number @),

1

1 1/2 2} ?
- R0y — RyO)Y? — 22| 4.43
q {\/3( 1U1 202) n ( )
1
Qe = — |2(R101 = Ro02) = 7*3V3 (101 = Ry0,)'"?]. (4.44)

In Figure 4.7, if w? > 0 the get codimension two bifurcation point.It moves upward

when Pry increases and it moves downwards when Pry decreases.

4.4 Nonlinear stability analysis

4.4.1 LG equation at the onset of stationary convection

According to Newell and Whitehead [77] multiple scale analysis , small scale convec-
tion cells disturb the vital flow. If the scale range is O(¢) then the the collaboration
of the cell with itself forces a second harmonic and a standard state of rectification of

range O(e?) and these in turn impel an O(e?) rectification to the structural module
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Figure 4.7: Solid curve represent stationary critical Chandrasekhar number (Qs.)
and dotted curves represents the oscillatory critical Chandrasekhar number at Da =
1500, A = 0.6, M =0.85, L =1, ¢ = 0.85 (a) Pr;=3, 3.1, 3.2 and Pry = 4.2 (b)
Pry =3.3 and Pry = 4.8, 4.9, 5.
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of the imposed roll. Let us assume the solution of equations (4.7)-(4.11) in series €

form

flu,v,w,0,C,H,,H,, H,) = [ = €fy +Efi+Ef+---. (4.45)

The first order calculations of the linearised problem given by approximation are
given by the eigenvectors
LT

o =7- [Aez(l“”m“y) —c-c]cosmz, vy =0,
Sc

wo — [Ael(lscm“rmscy)z + C- c] SlIl 7-‘-7

to :]\/[1(536 [Ae“lscﬁmscy) +c- c-} sinmz,
Co :Miagc [Aei(l““m“y) +c- c-] sinmz,
H,, :]\_47;::;266 [Ae“lscwrmscy) +c-c]cosmz, Hy, =0,
H,, :% [Aei(l“”m“y) —c-c]sinmz, (4.46)

here A = A(X,Y,T) is the complex scale varying on gradual variables X, Y and T’
while complex conjugates are represented as c.c. The analytical mode for the linear

problem at Ri; = R, is €% sinwz. The variables x, y, z and t are scaled by
X=e, Y= e%y, Z=z and T =¢€t, (4.47)

are suitably scattered for the fast and slow unconventional variables in f. The

derivative operators can be formulated as

0,0, 0 9,9 490 0 0 0 .0 (4.48)
or Ox 0X' Oy Oy oy’ 0z 0Z ot oT '

Based on the transformations equation (4.48), the linear and nonlinear operators £
and N are written as

L= [,0 + Eﬁl + €2£2 Tty (449)
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N = €2N0 + €3N1 + - 5 (450)

substituting equations (4.49), (4.50) and (4.45) into equation (4.15), and equating

the €, €2, € coefficients on both sides, we obtain

ﬁowo = 0, (451)
£0w1 + £1’LU() = No, (452)
,Cowg + Elwl + £2w0 == Nl, (453)
where
Ly = (Q— + —V2 AV4) — V*ViR,,
L= {VQ(—BQé); — VQ(% +3Q) + 10AV?*) — Ry»(Vi +2V?)| a3

4
ngaQVQ(ag, + QV;QL) + &2V4(—3Q85 — —VQ + 5AV4) — QCQVG,
¢ V2 oPry

2y 4\ 2 202
Lo=(1+ )(Q@ — AVHV +R12(L + AV Pr 1)V2V
V2 1 Ve
— + ¢Pry(— — A SV2[-3Q0? — 2Ry5]—
|:¢+¢ TQ(Da V) M¢PT1+CL2V[ Qy 12]
3Qa2V482 —a3ViRyy + a2a3p1 + aspy — 3a2a§p3, (4.54)
where a; = 3‘9—;2, ag = a;?;)w = 26y8Y’ Rip = (Ri— %), pp = —6(Q + %)VQ —
3Ry + 30AV* — 3Q02, po = V3(—3Q0% — S + 10AV?) — R12(V2 + 2V?), ps =

—2(Q+14)V2+10AV* - Q82 R,5 Substituting zeroth order solution wy in equation
(4.54) Lowy = 0, we get

52
Ry = =2 |64 A + 352 +Qm?|. (4.55)

SC
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In equation (4.52), Ny = 0, L1wy = 0 and hence
Uy :0,U1 = 0,11)1 = 0,
1 .
91 = — %T%EJA' SIHQ’/TZ,
L ey
Cl = — m| | SIDQWZ,
1 mP?"g
" =152 1 Pre —=|A|? cos 27z,
H,, =0,H, = 0. (4.56)

Taking wy = 0 in equation (4.53), N7 — Lowy is vertical to wy

the coefficient of sin 7z in N

. This is ensured if

— Lowg is zero. We get 2-D time dependent nonlinear
LG equation as follows

A B i 02 \° )
Mg — (87_@@) A— XA+ A|APA =0, (4.57)

where

(52 R P P
Ao=54(1+%>{ Qm* _D_a_A54] +q252[ (1+¢£)+¢R1(L PT?) -
56

Pro( 4 A%+ %
i (#0045

652
A = —0%(Qm? + e +106*) + Ria(¢* + 6%),

>\2 = q254R17

m26% Pry ., 5%q? R, Qm?2§*  Pry
A = 24 2) — _ 2 (4
3 Q2M2(P V(=3 + 1) s B o) T e (Prl) (4.58)

According to Steinberg and Brand [115], from the Fig. 4.10, if A3 > 0 the pitchfork

bifurcation is supercritical, if A3 < 0 subcritical and if A3 = 0, then tricritical

bifurcation point.
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Figure 4.8: The figure is plotted for Q=600, Da=1500, A = 3, M=0.85, Pr; = 1,
Proy=1.25 and ¢ = 0.9, R/R,. increases then Nu increases.
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Figure 4.9: Numerically calculated secondary instability regions of Eckhaus insta-

bility (E), Zigzqg instability (Z), and Stable region (S) are plotted for Da = 1500,
A=2 M=09,¢=09, Pri =1, Pry =2, Q = 10°.



CHAPTER 4. 110

40 T T T T T T
0 20

30! -

Pr1
20! -
<0

10} -

100 200 300

Q

Figure 4.10: A3 is nonlinear coefficient of LG equation at the onset of stationary
convection. The pitchfork bifurcation is supercritical if A3 > 0, subcritical if A3 < 0
and A3 = 0 for the curve Da=1500, A = 0.85, ¢ = 0.9, Ry = 500 and Pry, = 1.5

Nusselt Number

Heat transport by the convection, the Nusselt number studied in section 2.4.1. Ay
and X\, are always positive. The Nusselt number Nu can calculated in terms of

amplitude (A) as
2
€

Nu:1+5—2

| Appaz | (4.59)

Nusselt number grows if R%C > 1 and decays if R%C < 1 convection for Nu > 1.
Then there is convection if Nu > 1, conduction if Nu < 1. Amplitude is valid for
A3 > 0 and it is possible when R > R,., Thus we obtain convection for Nu > 1 and
conduction for Nu < 1 see in Figure 4.8.1t is observed that by increasing the value

of @), Nusselt number grows exponentially at unit value.
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Secondary Instabilities

Newell and Whitehead [77] derived envelope equations In order to study the proper-
ties of a structure with a given phase winding number dq, we write equation (4.57)

in fast variables z,y,t and A(X,Y,T) = A(wéy,t)7 as

%—( 202 _ AL oo >A1+225q)\1<6 ! 8—2>A1+

ot )\0 )\0 )\0 ox 2(]50 8y2
Ay 0 i 02
_(837 5oy 2) Ay — —|A1| A =0, (4.60)
2y 2735
A = {M} (4.61)
3

Let @ + 0 be an infinitesimal perturbation of steady state solution A; given by

equation (4.61). Substitute
~ .~ 2 111
Ap = a+1i0+ [(€Xh — Mdg®) Az, (4.62)

into equation (4.60) and equate the real and imaginary parts, we obtain

ou A2 A )\1 AL 0D

U _ g2 Mg 2, 4.

T (e N )\05 ) )\Ou N 828 , (4.63a)
817 8u )\1 ~

- 2 - ) 4.
TR 82 e + N 010 (4.63b)

where 9, = 25 +94.0° L 0% 4149, = 20q —

527 T or 5% — I oy We analyse equations (4.63a)

q<92

and (4.63b) by using normal modes form

it = U cos(quz) cos(qyy)e™, & = Vsin(gux) cos(qyy)e”". (4.64)
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Substituting equation (4.64) in equations (4.63a) and (4.63b) weget,

[2(6% — AOK?) + oS + X1 | U + MxeqsV =0 (4.65a)

quk
gsc

+ i) and xo = (20k + %). On solving equations (4.65a)

442,

Here xy1 = A\ (qfc +
and (4.65b), we get
62)\2 )\151{52

52+ % [2 (62)\2 —A1(5k)2> +X1} + [2<)\—% — )\—(2)> +X1]1/11 —(]in;—% =0, (4.66)

whose real roots are (S+),

! ;
(54) = - { [2)\0(62/\2 ~ \okg?) + onl} 1 [on(e% ~ Mg+ qugxg] } .
0

(4.67)

The equivalent mode is stable if S(—) is negative and unstable if S(+) is positive.

Symmetry significance helps to confine the field of S(+) to ¢, > 0, ¢, > 0.
Eckhaus Instability

Putting ¢, = 0 into equation (4.67), we get

28
S*+ N [2(62)\2 — Mdq?) + )\1%%} +

)\1(13

S

220 = 3M0¢%) +¢2] =0, (4.68)

The roots are real numbers and their sum is negative number and the product of
roots is positive number, the pattern is stable and if the product of roots is negative
number then the pattern becomes unstable.

Eckhaus instability defines ¢2 < 2(3)\1(5(]2 — 62)\2> for |0q| > 1/657)‘12 and unstable

€2 )\o
31

wave tends to zero when |§g| —
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Zigzag Instability

putting ¢, = 0 into equation (4.68), we get

A5S% +25(2X0x11 + Aoxa2) + (2x11 + X12)x12 = 0, (4.69)

2 4
where y11 = €)Xy — M\1d¢? and y12 = N (qgjcq + 4‘;%.), the two eigen conditions are
unrelated and amplified when S(—) = —2(e*\y — M\10¢°) — %qgéq - ﬁ}gcqs <0

and S(+) = —\ig; <5q + 42%) > 0. These conditions define the domain of Zigzag
Instability when dg; < 0. In Figure 4.9, we have shown the secondary instability
regions like Eckhaus instability and Zigzag instability regions and fixed parameters,
we observed this by increasing () value, the region of Eckhaus and Zigzag instability

mcreases.

4.4.2 LG equations at the onset of Oscillatory Convection

When cylindrical rolls along y-axis are considered only x-dependence and z-dependence
appears from Lw = N. Based on this we coupled one dimensional nonlinear time
dependent LG type equations at the supercritical Hopf bifurcation. We establish e
as

=20 «1, (4.70)

and take
wy = |:A1L6’L(loc.1’+mocy+uk)ct) + AlRel(locl‘+mocy_woct) + c - C.] Sin TZ,

is a solution of Lw = 0. Here A;; and A;g represents the amplitude of left and right
travelling wave for the rolls respectively and this depends on slow space X and time

variables 7, T', Knobloch and Luca [57],

X =ex, T=¢t, T=¢4, (4.71)
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we assume that Ayp = A1 (X, 7,T), A1g = A1r(X, 7, T). The differential operators

can be expressed as

0 0 0 0 0 0 0
0— ax'f‘ aX 0— a—l—EE—l—E O_T (4.72)

The solution of basic equations can be sought as power series in €, the first approx-

imation is given by eigenvector of the linearised problem

i
Uy = — —

l |:A1 6 locx"l‘mocy‘H’JOCt +A e locx+mocy "Joct)
oc

c- c.} COS T Z,

Vo :07
wy = |:A1 ez(locz+mocy+woct) + AlRel(loc(E“rmocy*L&bct) +ec- C.} Sin Tz

1 AIL Air .
90 —_ locx‘i‘mocy“l’woct) + el(locx+mocyfwoct) _|_ c-c.|sin 7.‘-2’

M| e €]
CO 1 AIL 1(locx+mocy+woct) + AIR locw‘i‘mocy Woct) +C C. SlnT('Z,
ML e
MocT AlL Air _
Hzo - _ lovil?"rmocy“'wopt) + _*el(locm+moey wnct) _|_ c-c.| cos 7TZ,
loe es3 e;

H,, =0,

. AlL z(l T4+Mocy+woct) AlR (l THMocy—woct) :
H,, =im,. oelTMocyTtoct) = tlloc®TMocy=Woc) _ ¢ ¢ | sinwz.  (4.73)

where 62, = (m2442.), e1 = (62, +iw,.) and e3 = (92, —HwOCL,eg M(52—|—zwgz5pr2) here
e}, e5 and e} are complex conjugate of e;, ey and e3 respectively.. From equations
(4.51), (4.52) and (4.53). At O(e), the equation (4.51) gives critical Rayleigh number
for the onset of oscillatory convection), at O(e?), from equation (4.52) Ny = 0 and

Liwg = 0 gives

0A L . 0A:L — 0 and 0Air . 0Air
or 70X or Y 0X

=0, (4.74)
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where v, = (0w/0q)y=q,. is the group velocity and is real. We get,

U :07 U1 :Oa wy = 07

1 Ail? + |Air|? AL Al o
6, = — {(| 1] + |Awg] )+7T 1L 1Re2ztw_|_c.c.:| sin 272,

M2

€1 €1€4

T [(Awl + AR | AuLAlg s :
Ci=— 2L l - + v e +c-c.|sin2nz,
2mpem? P Airl? + |Aig|? AiLAL s
H,, =M™ 1T (1AL]” + | 1R|)Jr LR it 4 e | cos 2z,
loo Pri €3 €3€6
H,, =0,H., =0, (4.75)

by using zeroth and first order solutions, the coefficients of sin 7z in N7 — Low, are

equal to zero. We get

Ao 854; A (a% - vgaix) Agp — AQ% — AsAy;
+ Ag|ALLP A + As|Aig|* A1 = 0, (4.76)
Ao 8(;4%3 + Ay ((927' - ’UgaiX) Ao — AQ% — AsAir
+ Ay| AP Aig + As| AP A1g = 0, (4.77)
where
Mo =[50+ D)@ + g—z +A0%) — (6R; — Rz)qu52 - qzéjﬁipm -
—335\;;;];;2 (1+ %) + 52]\;;:2 (%Da + AG%) (5" - 3¢zw2) + Mirl
OB [ g B



CHAPTER 4. 116

R
o + N+ e+ Tagpey)] [ g (g +
2
ffpfl 7+ AZ;Z + Efvf;?l >]
(oo + 61 )5 - %)(2Qq2+52) Mg+ )
(3 2Q+ +5A64 3w2LA54)} z‘[fﬁgj(%& +26%)—
52W(L2wa32r1 N ?ji N 464A) Towi(d + 52)(L * J\ZZIH
2 2 4
o1+ Lo (TP +%>,
R =g~ 0TI 4 iP5+ ),
Ay =— 4]\327]:27; 1616263 S—;(e—lﬁ) (821 + 52)( 13 + ‘eilg) fﬁj@ 3( 11 + 6_1{)_
Ryq? 1 1 Qm2(52 Pry, 1 1

AMBL ey e AM (Prl) es e

A5:— QPT26162€3{ 1 [81(1 +i)+(81+$2)(l+i)] +;<ﬁ+52)}+

Prq AMm? leg es e} 6% les|? les|?es 2
Rig? 111 n? Rog? 111 7
M [4M2( ot M2elej T ML [4M2L2 otat MZLQeQeJ N

Q52PT2 [ QPT2 1 +1 +m27T2P7‘2]
Pry AMPr, es e} Prieseq

Pr
e1 =iw + 82, eq =iw + 272, S1 = — 2m27r4—2,
Prl
P
€ —%w + 62, es —%z’w + 272, Sg = — l2m27r2P—:j,

P
e3 =b—iw + &2, e :¢P—::2iw oM,
1
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9t . 8l ]
SW.
6 16 -
Pr Pr
; : $S.

4_ i

3_ i

| 2 | | |
200

600 700 'Q800 000

Figure 4.11: Stability regions of steady state (S.S) and standing waves Da = 1500,
A=2,M =09, ¢=085 (a)p2 =3, (h) 52 =6

Solving equations (4.76) and (4.77) by taking &' = v,7 4+ X and ' = v,7 — X, we

get
HA HA HA
2ng1WZ’,L = — Ao azlf + Ao le + AgArp — (Aa|Ain? + As|Arg[?) Aip, (4.79)
oA HA dA
2UQA1W2,R — — Ay 871,3 Ao X%f + NsArg — (M Aspl* 4+ As|A1L]?) Arg. (4.80)

This integrating equations (5.69) and (5.70) over " and £ respectively, we get

DA dA

0 a’_Zl"’L - A2 8)55 + )‘3A1L - (A4|A1L‘2 + A5‘A13‘2) AlL; (481)
DA DA

Bo ot = o= 4 N — (AdlAunl + AslAu ) Ain. (482)

Equations (4.81) and (4.82) are left and right moving waves known as coupled one-

dimensional LG equations.
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Travelling wave and standing wave

Dropping the variable X from equations (4.81) and (4.82)

dA A A A
d%L = A_iAlL — A_§A1L|A1L|2 A5 Ay Aigl?, (4.83)
dA A A A
T A_zAlR - A4A1R|A1Rl2 - —5A1R|A1L| (4.84)
Put
As Ay As
13 r_ 4 / 45
15} A, 1, and 0 A,
Then equations (4.83) and (4.84) take the following form
dAlL - /A /A A 2 5/A A 2 4
a7 = ' A+ A AL” + 10| Ar|%, (4.85)
dAlR o /A /A A 2 (SIA A 2 4
a B'Aig + 7 Aig|Aig|” + 6" Air|ArL|” (4.86)
Where
Ay =ape' " ar, =|Aiz| ¢, =arg(Air)
Aig :CLLBi(Z)R aRr :|A1R| Or :a’l“g(AlR)
B/ :51 + 2/62 ’}/ =7 + Z"YQ (5/ :(51 + 252 (487)

Substituting of Ayz,A1g,5,7" and ¢ in (4.85) and (4.86). we get,

(a,ar) = (=B1/(m +61), =B/ (1 + 01)) (4.88)

Substituting Ay, A1g, ', 7 and ¢’ in (4.85) and (4.86). we get ar, = —f1 /(71 +01)
and ag = —f1/(11+01) for standing waves. (ar,ar) = (ar,0) for left travelling waves

and (ar,agr) = (0,ag) for right travelling waves. (ar,ar) = (0,0) for conduction

B1
Y1491

state. Standing waves exist if | Ay |*=| Agr [*= — > (0 and supercritical if
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v1 + 61 < 0. Standing waves are stable if 5; > 0,7, < 0 and
(i) if 9; > 0, then —v; > §; > 0,
(11) if 51 < 0, then —Y1 > —(51 > 0.

Travelling waves exist if | Ay |>= =2 > 0 and they are supercritical if 5, < 0.

71
Travelling waves are stable if 5; > 0,77 < 0 and d; < 73 < 0. We studied onset of
Hopf bifurcation of stability regions of travelling, standing wave and steady states in
figure 4.11. It can be observed that the stability regions of standing waves increases

when Pry/Pry increases for fixed parameters and fixed Pry.

4.5 Conclusions

This chapter studied linear and weakly nonlinear stabilities of thermohaline convec-
tion in a sparsely packed porous medium over horizontal magnetic field. Derived
thermal Rayleigh value at the onset of stationary and oscillatory convection by
assuming periodic disturbances along x-direction, y-direction and both directions,
obtained critical thermal Rayleigh values at the corresponding critical wave numbers
by considering R; as dependent variable. The chapter also traced marginal stability
curves between thermal Rayleigh value and wave number. An analytical relation
was found for stationary oscillatory convective curves in by considering R; as an
independent variable. Takens-Bogdanov bifurcation and co-dimension two bifurca-
tion points were identified and shown in neutral curves Figs 4.2 -4.5. We observed
that thermal and magnetic Prandtl numbers are not affected on convective station-
ary thermal Rayleigh value. Two dimensional LG equation was derived at onset
of stationary mode, studied heat transport from Nusselt number was explored and
long wave length Eukhaus and Zigzag instabilities. At the onset of super critical
pitchfork bifurcation we obtained two dimensional LG equation which is valid only
for A3 > 0. If \3 = 0 we get tricritical bifurcation point. A3 = 0 is a necessary
condition to study heat transport for various physical parameters. Nusselt number

grows exponentially if Ri;c > 1 and decay if % < 1 for Nu > 1. Nusselt number

e —
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grows exponentially at unit value. At the onset of Hopf bifurcation, we obtained
one dimensional nonlinear coupled LG equations by using multiple scale analysis
and studied secondary instabilities. For 5; > 0 and v; < 0, travelling and standing
waves are stable and for 81 < 0 and 7, < 0 travelling and standing waves are unsta-
ble (see Fig. 4.11). From the ratio Pry/Pry, first we getting steady state and it is
replaced by standing waves, and travelling waves are unstable.

The region of existing standing waves increases by increasing the ratio of magneto

and thermal prandtl number.



Chapter 5

Nonlinear Thermohaline

Convection in a Sparsely Packed
Porous Medium with the Effect of

Rotation

121



CHAPTER 5. 122

5.1 Introduction

Thermohaline convection is a double diffusive convection, density gradients are
caused by temperature and solute concentration. Nield and Bejan [79] have made
exhaustive investigation on various porous mediums for convective problems. Darcy
and Brinkman equation are for fluid flow through porous medium. In case of sig-
nificant macroscopic and shear inertial effects, DLB equation is adequate enough to
describe the fluid flow in a porous medium. Thermohaline convection in a porous
medium was first studied by Nield [78], Poulikakos [88], Sunil et al. [117], Tagare et
al. [120] and Benerji et al. [9]. Thermohaline convection in porous media has many
applications in atmospheric science, astrophysics, earth’s mantle convection, oceanic
and continental crust, seawater flow, solidification of binary alloys.

The effect of rotation in thermohaline convection has important implications for
mixing of light alloys at the earth’s outer core, mixing of different masses of water
in oceans and mixing of Helium with Hydrogen in stellar core. This chapter studies
the thermohaline convection in rotating fluid with a constant angular velocity about
the vertical axis between horizontal stress free boundaries and in a sparsely packed
porous medium. Pearlstein [86], Chakrabarti et al. [32] and Tagare et al. [121]
studied the effect of instabilities of thermohaline convection on rotation.

Normal mode is used to understand linear stability analysis. Two dimensional
Ginzburg Landau equation was derived and the transport of heat by convection was
investigated in addition to the occurrence of secondary instabilities. The system of
one dimensional Ginzburg Landau equations are derived and obtained the stability

regions of steady state, standing and travelling waves.

5.2 Basic Equations

Consider an infinitely horizontal fluid sparsely packed porous medium rotating with

an angular velocity ) about z-axis of depth d. This layer is heated from below and
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Figure 5.1: Physical Configuration

saturated with a solute solution of a specific concentration gradient. The salinity and
temperature differences across the stress-free boundaries are AS” and AT’. Darcy-
lapwood-Brinkman model was used to study sparsely packed porous medium. The
governing equations, the equation of continuity, Darcy-Lapwood -Brinkman model
for momentum equation, energy equation and solute concentration over Boussinesq
approximation have been included to understand the phenomenon of rotation in a

fluid that is sparely packed and rotating with a fixed angular velocity are

~

V'V =0, (5.1)
oV o 2
/| 5 ar +Q><(Q><V)+$(Q><V)+E(V.V)V =
1NV =Ny + g — gvl, (5.2)
M%f/ + (V.VT' = s V2T, (5.3)
¢%f, + (V. V)S = kgV?5'. (5.4)

Fluid density p is defined as

pr=ro[1=B:(5" = 5p) — au(T" = T})], (5.5)
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where thermal expansion coefficient oy = —pf; *( 8T’> solutal expansion coefficient
/ . . . .
Bs = —pg_l(%), mean flow velocity is V, pressure is P’, porosity is ¢, acceler-

ation due to gravity is g, temperature is T, kr is thermal diffusivity, S’ is saline
concentration, M is dimensionless heat capacity, kg saline diffusivity, x is the per-
meability of the porous medium and g is fluid viscosity. The conduction state is
characterized by V' = 0, T/ = T| — (AT )z’ and S, = S; — (ATS/)?. Now the

temperature and concentration perturbations can be written as ¢/ = 7" — 77 and

C" =5 — 5. We use the scaling x = ‘% y = % <= ZE/’ t = (M;;/k)’ v
o . Y o w’ _ 0 _
e U= whme W= ahme 0= 2w C = X5 P = Graripee, Thermal

Prandtl number Pr = LT, Lewis number L = ”—i, Darcy number Da = 7, Ther-

mal Rayleigh number R, = O‘gATd , Salinity Rayleigh number Ry, = “gAS & , Taylor
number Ta = 2 d . The basic non dimensionless equations are
V-V =0, (5.6)
M%Pr E(V V)V + %} — (R0 — RC)é, + ﬁv =
_ (Mf; g;;;géz V|2) + Tf (V x &) + %Wv, (5.7)
(% _ v?) 0+ %(v V)=, (5.8)
%% ﬁ(v Ve =g v (5.9)
The curl of equation (5.7) is
ﬁ% + Mi)a — % 2(V x V) - TC:;/QV x (V x é,) =V x (R,0¢,)
LV % (RaCE) = ——— v % (V.V)T. (5.10)
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The curl of equation (5.10) is

G, 1 A_, —.  Tal'/?
Moprai T aipa Y SV XV XV) -

—V xV x(R0é,)+V xV x(RCé,) =

VxVx(Vxe,)

1

—mv x V X (VV)V

(5.11)

Now taking z-component of equations (5.10) and (5.11)

[ 1 a+ 1 A 2} Ta'’? dw 1
M?¢pProt MDa M ‘

% = " IEFPr VX (V)7 é., (512)

1 8 1 A 9 9 Ta1/2 awz , , -
|:M2¢PT§+MDCL_M } w= 3 E—&Vﬁﬂthvh(J_
1 £V Y7 ~
— S VXV x (P97 519

Where V XV = W = (w,,w,,w,) and Vi = 38—;2 + %. By eliminating w,, 6, C
from equations (5.8), (5.9), (5.12) and equation (5.13), we get

Lw=N, (5.14)
where
Ta 1 R
£ =DD, (D}%TW + Eaf) ~ —Dp,Vi(RiD, — D), (5.15)
1 — — — — R Ta%
_ _ | _ R
[(VV)wz - (W.V)w} — D, Vi(V.V)(RiDyf) — 2 DC), (5.16)

where D = (% —V?), D, = (%% ~V?), Dp, = (—M%PT% + B — 4V?), and

0, = %. The boundary conditions are follows from the section 2.2.1.
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5.3 Linear Stability Analysis

The linearised system Lw = N is Lw = 0, by assuming periodic disturbances with
a period 27” along x-direction at a growth rate p of the form w = W (z)e" " and

we obtain

M26Pr" " MDa ' M L

Ry 1 1 2 A 2 ¢ 2 2 2 2\ .2
- ~P-=p*) (2 — D*)(D? -
+M(M2¢PTP+MD Tul ™ Pte (D" = a7

Ry 1 1 A 2 A, s oo
— e R ) -D
( P+ + 274 T (p+q )q

[( L A/}D2> (?erqQ—D2)(p+q2—D2)(D2—q2)
A

ML \2Pr" " MDa
+ % ((bp +q° Dz) (p+d* Dz)DQI W(z) =0, (5.17)

put W(z) = sinmz and growth rate p = iw in to equation (5.17), we get

At 2w? TaMPm?A2P+ 4 R, 6+

Ry = - + LR L e e
' ¢ Mg ¢*¢* A4, Lgy w2
1
w5 Ayt 4+ Biw* + Cy |, (5.18)
1
where
¢252 52
A =3p7as (A M> (5.19)
82N | 60 A2¢%2 62\ TaM?725*  Ry6° b
By =(A +M)[M2 g + (A _M> L2 +M12L<1_Z>’
(5.20)
56 82N o,  TaM*r? 02N 4 RoA28? ¢
Cl —E(A“ﬁmﬁw@a‘mﬁ i U B G2
Dy =[A? +w o + A (5.22)
1= a M2 L2 ’

where A, = p- + Aé% and My = M¢Pr.
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5.3.1 Rayleigh Number R; is a Dependent Variable

Stationary Convection:

The onset of stationary convection take w = 0 in to equation (5.18) leads to,

0 TaM?7%5% Ry

P W , 2
Ry q2+ N + 7 (5.23)

where R, represents the stationary convection of Rayleigh number R;. Differenti-

ating equation (5.23) with respect to ¢ and equating it to zero, we get

2A3s° + (Di — 3A7T2) A%st + 4A (L — 2A7T2) 3+

a Da \ Da
1 TAT? . Ta]\/[2772( 1 A 2) 9 2T aM?*7* N 272 n
— — — Ax 5% — s
Da®  Da? A¢? " Da A¢?Da Da?
TaM?*r%rt
— =0 5.24
A¢?Da (5:24)

and s = 62 = ¢>+7%. From equation (5.24), the critical wave number q = ¢, 0 = J,.
and critical Rayleigh number is Ry,

54 TaM?*726? R,
R sc — Aascﬁ —= -, 5.25
1 2 P@A. L (5-25)

sc

where g = 5= 4+ AdZ,. For large value of Da, equations (5.24) and (5.25) are

q.6 q.4 TaM?
2(= =) =14 —==— 2
Ay sy =1 g (5.26)
A& TaM?7? Ry
sc = = - 2
=g " Ao, T T 520
Eliminating T'a from equations (5.26) and (5.27) we get
R
Rize = 364 + =2 (5.28)

L
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Oscillatory Convection:

The thermal Rayleigh number R; is a real number and equating imaginary part of

equation (5.18) to zero, we obtainA;w? + Byw? + C; = 0. From these

,  —Bi++/BI—4A,C,

w Al

Where A;, B; and C) are from the equations (5.19), (5.20) and (5.21). The value

Aq is always positive.According to Descarte’s rule the quadratic equation has two

positive roots because of B; < 0 and C; > 0 when % < AM@¢Pr < 1. By substituting

w? in real part of Ry in equation (5.18), we get oscillatory thermal Rayleigh number

Rloa
A B 82w?  TaM?*m? A26* + fj—i Ry 0* + %WQ

Ry, + — 5.29
Y@ M@ @@ A2+ i Lot G (529)
Takens-Bogdanov bifurcation points arises,

Rls(qs) = Rlo(Qo) = RlC(QC) (530)

when
ds = o = qc (531)

Co-dimension two bifurcation points arises,

Rlsc(qsc) = Rloc(qoc> (532)

when
Gse F Goc- (5.33)

In Figures 5.2 - 5.4, solid and dotted marginal curves represent the thermal sta-
tionary and oscillatory Rayleigh numbers respectively. Stationary thermal Rayleigh
number is independent of Prandtl number Pr. There is variation of Rayleigh num-

ber with wave number for different values of physical parameters viz. T'a, Ry and Pr.
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Figure 5.2: The neutral curves in (g, Ry) plane for Da = 1500,A = 0.85, M = 1,
¢ =09, Pr=0.5, Ry=0.5, L=0.1, (a)Ta =105, (b)Ta =107, (¢)T'a = 10°.
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Figure 5.3: The neutral curves in (g, Ry) plane for Da = 1500, A = 0.85, M =
1, ¢ =09, Pr = 05,Ta = 2000and L = 0.1 at (a) Ry = 50, (b) Ry = 110,
(C) R2 = 200.
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Figure 5.4: The neutral curves in (¢, R;) plane for for Da = 1500, A = 0.85, M =
1, ¢ =0.9,Ta = 2000, Ry = —0.5 and L = 0.1 at (a) Pr = 0.25, (b) Pr = 0.5,
(¢) Pr =0.75.
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Figure 5.5: Solid and dotted lines represents for stationary and oscillatory Rayleigh
number plotted in (Ry, Ry) plane for Da = 1500, A = 0.85, M =1, ¢ = 0.9, Pr =
0.5 and L = 0.1 at T'a = 500, 1000, 2000.
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In Figure 5.2 the Ta value of rotation is increased while other parameters remain
constant. Thus, Rayleigh value increased along with parallel rolls. In Figures 5.3
and 5.4, salinity Rayleigh Rs value and Pr increased respectively, we also observed
increases in Rayleigh value along with wave number. Takens-Bogdanov and co-
dimention two bifurcation points were identified on neutral curves. In Figures
5.3(b) and 5.4(b), co-dimension two bifurcation point exists. Figure 5.5 is plotted
in (Ry, R;) plane, the region of Salinity Rayleigh value Ry verses thermal Rayleigh
value R; over stationary and oscillatory waves increased from internal forces over the
rotating field. The intersection point of a solid line and dotted line appears at cor-
responding to the bifurcation point associated with a TakensBogdanov bifurcation

point.

5.3.2 Rayleigh number R; is an independent variable

Putting W = sin7z and p = iw into equation(5.17), we get

(w* = Cw?+ E) +iw (Bw” — D) =0 (5.34)
where
2MPré o/ L
B=" 40 <1+$+2MPTA¢>,
2 2 12
C =2MPr§*A(L + ¢) + M*Pr® + 6" + X*¢° + Mg—rfﬁ + 2M2P7"2¢2(52A>
a
1 2 1 4 2 2 2
+ 5o <2MPr(L +0)0 + = (M 72Pr?*Ta + MPrg®(Rié + Rg)>,
_ MPré®

2 42 4 2
~Da2o%p [M Pro*¢*(L + ¢) + 2Dad*¢(L + LM PrA¢ + M PrAg?)+

Da? (LM37T2PrTa + M3 PrTa¢ + 2L6%Aé + LMPT(SGAQ&H
_ M?*Pr?
"~ Da2¢

[DaZLM%zTadQ + L& (1 + Dad®A)? — Dag?¢*(1 + Dad®A)(R, — Ry)|.

(5.35)
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Stationary Convection

Putting w = 0 into equation (5.34), we get Fy = 0 and written as

Roy M?2§? A? 6 2, 1 9 Tan?
- 5 = —| 79 ) ) ) .
(=T )a T A\ 32 " Daaz’ T Daa’ T T (5.36)

The critical stationary Taylor number derived Rayleigh number R; as an indepen-
dent variable,Kloosterziel [56]. For finding Taylor number, differentiate equation

(5.36) with respect to ¢* , we get

A2 2A 1 Tan?

Ry A

R _ = — 8 6 4 9

LL Mz(;Jr—A q2)2<M2q T Dar? T et T ¢? q)+
DaM? M?2

1 A? 6A 2 Tar?
4——rqf 4 2 5.37
= +%q2)< w2? T par? T b’ T ) (5:7)
M

DaM?

eliminating R; and Ry from (5.36) and (5.37), we get

Da \ Da
1 TAT2  TaM?*n? 1 2T aM?7* 22
_ - A 2 54 o 52
(Da3 Dz T At pa M >> ( Ad?Da +Da3) *
TaM?*r%mt
A¢?Da

A /1
2A3610 + <Dia — 3A7r2) A%08 +4— (— — 2A7r2) 5%+

=0, (5.38)

equations (5.24) and (5.38) are same. For large value of Da the equation (5.37) is

1
Rl_& 2
2 _ L 2
q-( A ) m, (5.39)
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6.0x10°

4.0x10°r
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2.0x10°F
0.0 —
2x10
1
Figure 5.6: The lines are plotted for Ry = —500,0,500 at Da = 1500, A =

085, M =1, $=09, Pr=0.5, Ta=>500, L =0.1.

for large Da, substituting ¢ from equation (5.39) in equation (5.36), we get critical

Taylor number T'a = Ta,.. where

(ngj\%)é —7#] } (5.40)

In Figure 5.6, the figure plotted in (R;,Ta) region for E = 0, the right hand side

region £ > 0 is stable and the left hand side region F < 0 is unstable.

Oscillatory Convection

From equation (5.34), equate imaginary part to zero
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Figure 5.7: Solid and dotted lines are represent the Taylor number for stationary
and oscillatory convection. Da = 1500, A = 0.85, M = 0.9, ¢ = 0.9, R; = 1000,
Ry = —1000, L = 0.05, (a) Pr =0.2, (b) Pr =0.255,(c) Pr = 0.355.
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2000 1000
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Figure 5.8: Marginal stability curves for Taylor number Ta(Solid lines represents sta-
tionary convection (T'as.) and dotted lines represents oscillatory convection (T'a,.))
Da = 1500,A = 085, M = 0.9,¢ = 0.9, L = 0.4, Ry, = 5000, (a) Pr = 0.1,
(b) Pr=0.2, (¢) Pr=0.3.
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substitute w? only in the real part of equation (5.34) and equate it to zero, to get
D?* - BCD + B’E =0 (5.41)

The oscillatory Taylor number is not in terms of R;, Ry like equation (5.40) at
w? > 0. Eliminating Ta from D = 0 and F = 0, we get

fe (L —M¢2Pr> _ (

¢ + 372t + {3%4—%—(

2

1 2 6 __
o7 5 ——M¢PrA)}q + 78 =0,

A

(5.42)
If the roots of above equation (5.42) are positive we get Takens-Bogdanov bifur-
cation points, which is represented in Figure 5.7. Solid and dotted lines represent
the Taylor number for stationary and oscillatory convection. Figure 5.7 shows pri-
mary and secondary instabilities and Figure 5.8 represented in (Ry, T'a) plane, where
co-dimension two bifurcation point decreases at the intersection of stationary and
oscillatory of Rayleigh and Taylor marginal curves because of variation in prandtl

value.

5.4 Nonlinear Stability Analysis

5.4.1 Derivation of nonlinear two-dimensional Landau Ginzburg

equation near onset of stationary convection

According to Newell and Whitehead Multiple scale analysis [77], small scale con-
vection cells disturbed vital flow. If the scale range is O(e), then the collaboration of
the cell with itself forces a second harmonic and a standard state of rectification of
range O(e?) and these in turn impel an O(e?) rectification to the structural module
of the imposed roll. Let us assume the solution of equations (5.6) - (5.9) take the

form form

f=flu,v,w,0,0)=cfo+Efi +fo+ -, (5.43)
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where

2 _ Rl - Rlsc

<<1
Rlsc ’

€

The first order calculations of the linearised problem are given by the eigenvectors,

s ,
Uy =— [A.e“” —cosTmz — c.c],
q

B inTaz
49( 5 + 262)

Wy = [A.e“” sinwz + c.c]

vy = [A.e“”C —Ccosmz — c.c] ,

1 iqT :
CO :W |:A.€q —SlIl7TZ+C.Ci|,
1 1qx :
6o =I5 [A.e ™ —sinmz 4+ c.c], (5.44)

where A = A(X,Y,T) is the complex scale varying on the gradual variables X, Y
and T with complex conjugate represented as c.c. The analytical mode for the linear

problem at Ri; = R, is €% sin7z. The variables x, y, z and t are scaled by

are suitably scattered as fast and slow unconventional variables in f. The derivative

operators can be formulated as

0 0 0 0
— €+, T —E€
dy

0 5 0
e ox T 5 — = —, and — — € — (5.45)

oY’ 0z 07 ot oT”

N[

By using the transformations equation (5.45), the linear and nonlinear operators of

equation(5.14) can be written as

L :EQ + Eﬁl + €2£2 Tty (546)
N =Ny +eNi +ENy - - (5.47)
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Substituting the zeroth order solution wy in to Lowy = 0, we get

A? 2N 1 . Tar? , ¢ Ry 9
0+ 58 + 5 <R1—f><Da+A5 ) — 0, (5.48)

Da2’ T Dazarz® o M?
from the equation Low; + Liwy = Ny, Ny = 0 and Lyw, = 0.

U1 :O, w1 = 0,

. 2 1
v = iMmTa> [AQG%W _ C.C},
ng( +ang?) (2 +402)
1 -
Cl = — m|A| S1n 27'('2,
1 2 .
(91 = — m‘A’ sin 27TZ, (549)

taking w; = 0 in equation (5.46), N7 — Lowy is vertical to wy and the coefficient of

sinmz in N7 — Lywy is vanishes. We get

dA o i 97\ )
)\oa—T - (a_X - ?qm) — XA+ N]AFA =0, (5.50)
where
A2 2 A% 20 2 206
_ s 6

Ao =0 <M2 T rpre T LM2> +9 (DaM2 * DadPrg DaLM2>+

1 Ry /A 1 Ri/, 1 Ao

4 2 2 f2 [ g2 27U a2y
(Da2M2> M SVe (M + quPr) e <M¢Pr 7 >+

2

W%(% 1)+ o (e - R@)’

10A2 12A 3 Ta_ Ro\ /5 1 5 A
A 50 + 5+ 52 + e (I il &
SN VE DaM? D’ T e” (P” L ) (4 Dadl® " 201 )
R ot ARy ,
>\2 D M26 M 5 q,
2 R 24T ad*
b =gy (B~ 73) (5 +49°) - :
a M2 Pr2 (s + 4450?) (w7 + 4507,

(5.51)
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Figure 5.9: The bifurcation is supercritical if A3 > 0 and subcritical if A3 < 0, A3 =0
gives critical bifurcation point. Da = 1500,A = 0.85, M =1, ¢ = 0.9, Pr =
0.5, L =0.8, R; =50000, Ry, = 100.

AXY.T)

By using multiple scaling and A(z,y,t) = , equation (5.50) can be written

as a time dependent nonlinear two-dimensional L-G (Landau-Ginzburg) equation in

fast variables as

0A ( 0 i O
1

N (L oL
0 Jxr  2q0y?

2
2 24 _
- ) A — XA + A APA = 0, (5.52)

which describes slow extensional scale ex vertical to the rolls and the variation of
slow time scale €2t. If Ry < Ry. then )y is positive and if Ry > Ry, then )\ is
negative. A; is positive when independent of R;, R; and L. )\, is always positive.
The ratio :\\—0 is growth rate amplitude and % is curvature of the marginal stability
2 2

curve. Forward, backward and tricritical bifurcations occur when A3 > 0, A3 < 0
and A3 = 0 respectively in Figure 5.9. Neglecting the y, t-dependence terms from
equation (5.52), we get
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d2A €2>\2 )\3
1—
dX? * A ( €2\

|AHA = 0. (5.53)

X
A(X) = AO tanh(A—O),

1 1
A2\ 2 2M1\?

o 2/\2 o 1
AO = <E /\—3> and AO = (%> .

Heat Transport by Convection

where

If |A£0| < 1 then |A] reaches maximum value. The maximum amplitude of A is

|Ama:c|7
2)\ %
!Amax!=<—€ 2) , (5.54)
A3

Heat transfer in field is Nusselt number Nu,

2
€

Nu=1+ 5—2|Am|2. (5.55)

In Figure 5.10, Nusselt number increases if Rlic > 1 and decays if R}EC < 1 convection

for Nu > 1. Then there is convection if Nu > 1, conduction if Nu < 1. Nusselt
number increases by increasing T'a value.
In Figure 5.11, we observed by increasing the T'a value, the region of Eckhaus

and Zigzag instability increases.

5.4.2  Derivation of coupled LG equation at the onset of

oscillatory convection

Consider cylindrical rolls along y-axis, so only x-dependence and z-dependence ap-
pears from Lw = N. Based on this we obtained coupled LG equations at the

supercritical Hopf bifurcation. We establish € as

=% 1. (5.56)
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Figure 5.10: Nu grows exponentially for Da = 1500, A =085, M =1,¢=0.9, L =
0.1, Ry = 100 and Ta = 10°
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Figure 5.11: Regions of Eckhaus instability (E), zigzag instability (Z) and stable
region (S) are plotted for ¢ = 0.9, Pr = 0.5, Da = 1500, A = 0.85, Ry = 100,
L=0.1, M=0.9, (a) Ta = 10°.
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take

where Ay, and A;g represents left and right travelling amplitude of the rolls respec-

tively and depends on varibles X, 7 and T from Knobloch and Luca [57],
X =ex, T=¢t, T =¢4,

the derivative operators are expressed as

9,9,.90 90,90 0 _ .0
or or  ox’ ot "ot ‘or "Cor

The power series solution becomes

f=cfotElfit+eElfot

in € term. The first approximation of the linearized problem is then

1T . ; _
m :E |:A1L€Z(UJ0ct+chx) _ AlRel(woct QocT) __ C.C:| COSTZ,

inTaz 1

49 D + ardhe

vy = Ay pet@octFaoct) _ A pei@oct=aoc) _ c} COS T2
* )

wo — |:A1Lei(woct+Qch) + AlRei(WOctfqocx) + CC:| Sln 7TZ,

Cy = [AlLeZ(w“Hq“x) + A geieet=doct) 4 c.c] sin 7z
. @ ’
ML 630 + ngcf
90 :Mm |:A1L€l(woct+Qch) + AlRel(woct_Qch) _.I_ CC:| Sln 7'('2’

(5.57)

(5.58)

(5.59)

(5.60)
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where 62, = (g2, + 72). By substituting equations (5.58) and equation (5.59) in to

equation (5.14) and equating the coefficients of €, €2, €* to zero, we get

,Co’LUO :O,
Liwy + Lowy =Ny,

ngo + £1w1 + £0w2 :Nl, (561)

we get critical Rayleigh number from the linear equation Lowy = 0. At O(e?), Ny = 0

_ 3 8A1L 8A1L _ BAIL aAlL _ . ow
and Lywy = 0 gives =0 and + v, = 0. Where v, = (%%),=q..

or  Yoox or 0X Bq
and get
1 0 1 A, Ta''? dw, 1 BN
[M%Pr& T 3Da MY ]“’Zl =5 0. argpr Y VeV e
(5.62)
@ 2 . (,Ul ]_ -
(a - V?)h, v~ VoV, (5.63)
¢ 0 2 W 1 —

(Lat -V = =~ (.9)Co. (5.64)

By using zeroth order solutions we get

Uq :O, w, = 0,

Taéﬂ Uoe A%L e2i(woct+qocz) | 9 q A%RBQi(woct—qocx)
vV = —
Goc® (M},a + 4452 4 iwocm> <M1Da + L6274+ z‘wocﬁm>
: —c.cl,
(Mijzz + %4qgc)(MBa + %52 + Zwocm)
_ T | A ” + [Aigl® Ay A ge?ect .
Ci=———%73 Y —3 —~ Fc.cfsin2nz,
MZL? | A2 (02, + Siwoe) (272 + 1woe? ) (02, + iwoeT)
e |A1L|2 + ’A1R|2 AlLAlR€2iw°Ct .
0 =—— + c.c| sin 27 z. 5.65
! M2 | A72(62, + iwee) (272 + iwoe) (02, + iwoe) g (5.65)
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Equation (5.61) is solvable when Lywy = 0, coefficients of sin7z in N} — Lowg are

equal to zero, we get

0A 0 0 0%*A
Ao (,ﬂlf + Ay <E - vga—X> Ao = Do le AsAvg, + M| AP Arr + As| AP A = 0
(5.66)
0A 0 0 0%A
Mo+ (55 =g ) A= AR — Mo+ Aulnf v+ Aol v P v = 0.
(5.67)
b oo Tam?, ¢ 2e1 696302 q* R,
Ay = Z -z — P P
0 (62 + L€1)5 €3 + ¢2 (L€1 62) M2¢PT M3¢P7’(62R1 €1 I )
e
q LB (R, — )
e1ésy 2eqe3 2eq63 ¢ 2 Ta 2 R €9
e S
S\apeg T aeer T arepr T o™ T \arepr T
ges ¢ ) - R2< e, _q_2>
L LM2Pr) LM\M24Pr ' ° M2¢Pr/’
2\ A2 2\ AR
Ny =4¢%| — M€1€263 + (e1 + ez)eg + e 2600 + Melegé - Wl(eg +q )—
€3 RQ )\RQ 9
R
Az Zﬁlq262€37
A :4z'Tagb2q eres  Rig® exes _ Ropg® eqes
YT M2¢APrese;, | AM? e AMBL3 ey
As 8iTa¢'q ere N Rig?¢* eses  Rodg® eres (5.68)

T M2 Prege, | M2 cjes  AMBIB ey
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Where
. . 0 0
€1 = 52+zw, €9 = (52 —i—zw% AQL = <E +V98_X)A1L
1 A, 1 0 B)
T e (Y
“=upa " M? T g™ 2=\ ~Vigx )R
64:M—M+M4q —f—mlw 65:27T +Zu}

Solving equations (5.66) and (5.67) by taking &' = v,7 + X and ' = v,7 — X, we

get
0A 0A 0A
2ng1W2,L = — Ao a;f + s S T Asi = (Ml Aw P + As|Aigf) Avz, (5.69)
0A 0A 0A
2”9A1W2'R = — Ay a%R + Ay 8le + AsAir — (MalAsg)> + As|ArL ) Arg. (5.70)

This integrating equations (5.69) and (5.70) over " and £ respectively, we get

0A 0A

AO 871’L - A2 a‘X}QL + )‘3A1L - (A4|A1L|2 + A5‘A1R|2) AIL; (571)
0A 0A

Bo ot = o 4 N — (MdlAunl + AslAu ) Ain. (572)

Equations (5.71) and (5.72) are left and right moving waves known as coupled one-

dimensional LG equations.

Travelling Waves and Standing Waves

Knobloch [57] and Coullet [37] studied regions of travelling standing waves, on mag-
neto convection which Matthews [67] derived. Dropping variable X from equations

(5.71) and (5.72), we get

dA A A
d;f = A—EAIL - A—§A1L|A1L|2

A
A5A1L|A1R|2 (5.73)
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dA A A A
dTlR — A—ZAlR - A—§A13|A1R12 - A—ZAlR|A1L|2. (5.74)
Put
A3 Ay As
== = —— d §=-=".
Then equations (5.73) and (5.74) take the following form
dA
d;f = B' Ay + 4 AL AP + 8 A Arrl?, (5.75)
dAlR _ ol / 2 / 2
dT —5A1R+’7A1R|A1R| +5A13|A1L| . (576)
Where
. Im(A
Ay =ape’r ap =|Ai ¢r =arg(A;z) = tan™! (Re((Allj)>>
. Im(A
Aig =ape'® ar =|Aig ¢r =arg(Aig) = tan™! <ﬁ))
B'=p+ifs A =ntir &' =6y + 10y (5.77)
Substituting of Ay7,A1g,5,7" and ¢ in (5.75) and (5.76). we get,
(ap,ar) = (=P1/(n +61), =B1/(n + 1)), (5.78)

for standing waves. (ar,ar) = (ar,0) for left travelling waves and (ar,ar) = (0, ar)
for right travelling waves. (ar,ar) = (0,0) for conduction state. In Fig. 5.12,
We have observed that the stability regions of standing waves and travelling waves

increase when Pr increases.
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Figure 5.12: Stability regions of steady state (SS), standing waves (SW), trav-
elling waves(TW) are plotted at the onset of oscillatory convection for ¢ =
0.9, Da=1500, A = 0.85, M=1, L=0.1, (a) Pr=1.1, (b) Pr=1.
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5.5 Conclusions

In linear stability analysis, we traced marginal stability curves in (¢, R;) plane at
different parameters. Prandtl number does not affect convective stationary Rayleigh
value. We also identified Takens-Bogdanov and co-dimension two bifurcation points
on neutral curves. The region of salinity Rayleigh value Ry verses thermal Rayleigh
value R; over convective stationary and oscillatory grew by increased internal forces
over rotating field. Two dimensional L-G equation at onset of stationary mode
was derived and we studied heat transport from Nusselt number, and also long
wave length baased on Eukhaus and Zigzag instabilities. Nusselt number grows
exponentially if % > 1 and decays if % <1 for Nu > 1. Nusselt number grows
exponentially at unit value. We derived two nonlinear LG equations and observed
stability regions for travelling and standing waves for fixed physical and porous
parameters. Here the region of standing waves are unstable, region of travelling

waves exits along with the steady state.
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6.1 Introduction

Thermohaline convection is a double diffusive convection. Nield and Bejan [79] stud-
ied double diffusive convection in a horizontal layer of a saturated porous medium
by linear perturbation analysis and observed cellular flow pattern induced by so-
lute effects, thermal effects and both solute and thermal effects. Benerji Babu et
al. [9] studied stability of thermohaline convection using Darcy-Lapwood-Brinman
model with Boussinesq approximation between stress free boundaries. Thermoha-
line convection over a porous medium is applicable in several scientific and industrial
applications such as atmospheric pollution, food processing, lakes and underground
water and materials processing.

The study of thermohaline convection in a porous medium with the effects of
magnetic field and rotation has importance in many fields, such as investigation of
magnectic field and rotation of the earth in geothermal areas, study of core of earth
in geophysics and study of manufacturing materials in industries. The magnetic field
affects the rate of flow of velocity as well as rate of heat and mass transfer. The pres-
ence of a vertical magnetic field leads the boundary of monotonous instability and
increases the stability of the conductive state. The presence of a horizontal magnetic
field breaks the symmetry and form rolls with axes parallel to them. Chakrabarti et
al. [32] studied the effect of rotation on thermohaline convection in a horizontal layer
of a saturated porous medium. Infinitesimal disturbances in the form of rolls leads
to marginal state of convection may be oscillatory depending on the magnitude of
the rotation and solute Rayleigh parameters. Thermohaline convection over rotating
fluids was studied by Tagare et al. [120,121] who observed feasible subcritical in-
stabilities. Malashetty [64] studied double diffusive convection in a rotating porous
layer using a thermal non-equilibrium model. Thermohaline convection rotating
system in a sparsely packed porous medium is one of the reason for minimizing of
different phases of alloying elements like Sulphur, Iron in earth’s outer core and

Helium and Hydrogen in stellar core. The effects of horizontal magnetic field and
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Figure 6.1: Physical Configuration

rotation of thermohaline convection through porous medium was studied by Sharma

et al. [110], Sunil et al. [117], Kumar [60] and Abdullah et al. [2].

6.2 Basic Equations

Considere an horizontal layer of fluid with sparsely packed porous medium, rotat-
ing with angular velocity Q) about z-axis and horizontal magnetic field along y-axis
between parallel stress free boundaries z = 0 and z = d. This layer is heated from
below and saturated with a solution of a specific concentration gradient. The tem-
perature and salinity differences across the stress-free boundaries are denoted by AT’
and AS’. Darcy-lapwood-Brinkman model is used for the study of sparsely packed
porous medium. In Boussinesq approximation, the dimensioned governing equa-
tions, equation of continuity, Darcy-Lapwood -Brinkman model to the momentum
equation, energy equation, equation of magnetic induction and solute concentration

are
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VV =0, V.H=0 (6.1)
1 8 A_, 1 \o Taz . _ OH
(M%Prl& VAR MDa) V= qrg VX&) Q-
“ P?“g — —_— 1 — 7
B P QPTQ — 9 B TaPrq, . —9
v (MP“ + > Pro |H|* + QH, —8¢ e, x VI* ), (6.2)
0 9 w1
(E—v ) 0 — ST (V.V) 6, (6.3)
PT’Q 0 2\ 77 — AN PTQ — =
((bprlat—MV>H—V><(V><ey)—PT1 [Vx(VxH). (6.4)
¢ oC 1 L w 9
T oyt VIO =g VO (6.5)

Thermal Prandtl number Pr; = £, Magnetic Prandtl number Pry = % Lewis num-

ber L = :—i, Darcy number Da = d%, Thermal Rayleigh number R, = %:dg
, Salinity Rayleigh number Ry = %‘%S, Taylor number Ta = 4%22‘14, velocity

V(u,v,w), magnetic field H(H,, H,, H,), dimensionless heat capacity is M, chan-

drasekhar number (), presser P, temperature #, and A = i—:? which varies from 0.5

to 10.9 from Givler and Altobelli [47] and concentration C. The curl of equation
(6.2) is

1 o A_, 1 . Ta: — OH
(Wa—ﬁv—i‘M—m)(VXV)— [VX(VX€Z>}—Q(VX—>+

N P’T’Q —_— — 1
V x (R0 — RyC)e, = QP—T1 [V x (HV)H| - VPP [V x (V.V)V] (6.6)
The curl of equation (6.6) is
Taz

o A, _ o
(ma—ﬁv —i—MlDa)[VX(VXV)]—M—¢{VX[VX(VX@Z)}}—

Q[Vx (Vx@)] +VXVX(R19—RQC)éZ:QE{VX [V x (HV)H]} -
oy Pry
1
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The curl of equation (6.4) is

(¢§_:%_Mv2)<wﬁ)_[vaX(Vxéyﬂ:]]j_:j{w VX (Vx H)]}.

(6.8)

By using equations (6.3) and (6.5) and z-component of equations (6.4), (6.6), (6.7)

and (6.8) we write the equation in the form
Lw =N, (6.9)
where

R R
£ = (DoDer, — Q02) (DD,Dp DIV? — QDD V3 — S1D,DVi + 22Dy DV} ) +
Ta

Ve ¢2a§7321>¢,2, (6.10)

Ta1/2

N - (DQDPTl - Q@j) N3 - MTng

P L
DDﬂ?é@ﬁ{DQNl + Qayp—:[v XV x (V x H)] - ez},

(6.11)

where

1 7 £ 32 PT’Q — —
_W[Vx(V.V)V].eZ+QP—Tl[VX(H.V)H].ez

]_ —_— — PT’2 J— J—
:W[VxVx(v.v) ]'€Z+Qp—h[VXVX(H'V)H]'ez

P J— PR
N3 =DD DN, + DDyQV23,{DoN + Qay—PZQ [V x V x (VxH) e}
1

le

Ny

_8 2 _a 2_82 82

D_a_v’ay_ﬁy vh_8x2+8y2’

60, D , P

Dy Lot V5 0. = 0z v - Oz? +8y2 +622’
19 1 A, Pry

Dpy, -V Dq :¢_r_ - MV?

“APoPr 0t T MDa M
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6.3 Linear Stability Analysis

Analysing the disturbances into normal modes, assume the perturbation quantity
w = W(Z)ei(la:ery)ert’

where [, and m are horizontal wave numbers of the harmonic disturbance, ¢*> =
12 +m? and p is the growth rate. The boundary conditions appropriate for the

problem are
_Pw 9w

22 _“ %
v 022 0z4 ’

the proper solution of equation Lw = 0 characterizing the lowest mode is
W(z) =sinnz

and p = iw. For linear stability analysis substitute w = sin wze!(@+m+it in [, = 0.

We get the thermal Rayleigh number Ry,

‘ I 1 A Ry iw + &?
(w) + 52) ( w + — MVQ) 52 + f;;JM—WqQ
L

M?¢Pry M Da
Ta (iw + 52) <¢§—:?ZW + M52> (iw + 52) 52m?2
M2¢? (# 1 %W) (Liw+82) + Qm2  Opiiw + Mo?

(6.12)

6.3.1 Stationary Convection

For the onset of stationary convection we set w = 0 into (6.12), we get the stationary

thermal Rayleigh number R;, as

(6.13)

4 2.2 4
Rls:( 1 A52)5_+R2 Qo*m Ta )

+= 2y + |
MDa M" )@ L@ PR (3 + 507) 0%+ Qm?
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The stationary thermal Rayleigh number R;; is independent of thermal and mag-
netic Prandtl numbers Pr; and Pry respectively. The critical thermal Rayleigh

number R, at stationary wave numbers [, and my is

1 1 A RQ Ta 54
Rise =— +—07 ) 0y + =45 + Qoim’ + — . :
1 qg [(MD(Z M s) s I qs Q s, QSQ (MlDa + %53) (53 +ng

(6.14)

cross rolls: If there is a periodic disturbance along x-direction and no perturbation
along y-direction, with growth rate p, take m = 0 in equation (6.12). For cross rolls
the thermal Rayleigh number is R, (m = 0) is,

(P + 723N TaM R,
+ + =2
[? Ap?l2 L

R, (m=0)= (6.15)

parallel rolls: If there is a periodic disturbance along y-direction and no perturbation
along x-direction with growth rate p, take [ = 0 in equation (6.12). For cross rolls
the thermal Rayleigh number is RY (I = 0) is,

A(m? + m2)3

Rﬁ (ZZO):T+Q(TH2+7T2)+

Ry Ta(m? + 7%)?
T A M(mE ) 1 Q]
(6.16)

From equations (6.12), (6.15) and (6.16), independent of @), Ta, Ry , A =M =1

and high permeability
Ri=R,=R,, (m=0=R" (1=0)= —p—, (6.17)

which is equal to Rayleigh number for stress free boundaries. The critical Rayleigh

27

number for the onset of instability is

w4 at a critical wave number a = \/Li
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6.3.2 Oscillatory Convection

The thermal Rayleigh number R; is a real number and so equating the imaginary
part of equation (6.12) to zero, we get oscillatory convection for positive value of w?
which is placed in the real part of equation (6.12). We get the oscillatory thermal
Rayleigh number Ryg.

Ta
Ri, = 0 (—cw® + d0%) + € (bw? + M&*) + f (dw® + &%) + WKZ, (6.18)

W= \/_ (6.19)

Iz
2m2
Wherea:%, b:Qllz—:i CZW, d= A52 MDa, €:bsz+wa
f= ﬁgzﬂ%)a 9= M2¢2K , i = aa’b*ML(d + c6*)p, Ir = a>M[b*LTa(adb +

bed? — achd? — acM?) + LM?5?(—2ab*em?Q(d + ¢6?) + 262254 (d + ¢6?) + a*b*b? +
c(O*d* + am*(—L + M)Q)d6? + 2dM?* + > M?0%)¢* + (—1 + a)b* P M %> Ry),

Iy = /1 = Ks, Iy = 55 — 5, Is = Md[L(a*d>M25%) + m*(M — b)Q + dM?5* +
eM?5* + 2em? M?Q6%(d + ¢6%) —m2Q (M 6*(d + ¢6?)) (—2acm?Q6* + 258 + a?(m*Q* +
2dm?*Q5* + 20%))], Iy = 3L, — % + 3L, + ﬁ

K = a?c62wt + (c*6* — 2acm?®Q)w? +mrQ? +2dm?Qé* + a*d?, Ky = abcw™ +bm?*Q +
d[(=1+a)b+ Ma+ c5*(b+ M — aM)w? + m*MQ%], K3 = .
Figures 6.2 - 6.4 illustrate the stationary and oscillatory marginal curves at differ-
ent values for physical parameters viz. Chandrashakar number @), Taylor number

Ta, thermal Prandtl number Pr; and magnetic Prandtl number Pry. At Takens-

Bogdanov bifurcation point

RlS(QS) = RIO(QO) = Rlc(Qc)» (6'20)

and ¢; = ¢, = ¢.. At co-dimension two bifurcation points arises,

Rise(q) = Rioe(q) (6.21)
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and ¢sc # Goe- In Figures 6.2 and Figure 6.3, critical stationary and oscillatory
critical thermal Rayleigh values are equal in the middle sub-figure. This represents
a codimension two bifurcation point. In Figures 6.2 and Figure 6.3 other sub-
graph intersection points are represented in Takens-Bogdanov bifurcation point.
The Rayleigh values are increases by increasing ), T'a, Pry and Pry. In Figure 6.4
(a) the Takens-Bogdanov bifurcation point moves upward when Pr; increases and
in Figure 6.4 (b) the Takens-Bogdanov bifurcation point moves downward when Pry
increases. At Pr; = 0.65 and Pry = 2.65 there exists a co-dimension two bifurcation
point.  In Figures 6.5- 6.6, the marginal curve [ = 0 represents for cross rolls and
m = 0 represents for parallel rolls. In Figure 6.5 critical Rayleigh number is smaller
for the cross roll (I = 0) than for the parallel roll at low magnetic field, critical
Rayleigh number is smaller for the parallel roll (m = 0) than for the cross roll for
a high magnetic field. In Figure 6.6, the critical Rayleigh number is smaller for the
parallel roll (m = 0) than for the cross roll (I = 0) a weak magnetic field and the

critical Rayleigh number for crross rolls (I = 0) is smaller than parallel rolls (m = 0).

6.4 Nonlinear Analysis

6.4.1 Amplitude equation at the onset of Hopf Bifurcation

According to Newell and Whitehead [77] multiple scale analysis , small scale con-
vection cells disturb the vital flow. If the scale range is O(e) then the collaboration
of the cell with itself forces a second harmonic and a standard state of rectification of
range O(e?) and these in turn impel an O(e?) rectification to the structural module
of the imposed roll. Let us assume that the solution of equations (6.1) - (6.5)take

the form given below

f = f(U,U,U},H,Hw,Hy,HZ,C) = 6f0+€2f1 +€3f2+ ) (622)
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Figure 6.2: Marginal stability curves of R;s and R, for Da = 1500, A = 10.5,
M =085, ¢ =09, Pry =1, Pry =5, Ta = 2000, (a) @ = 100, (b) Q@ = 150,
(c) @ = 250.
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Figure 6.3: Marginal stability curves of R;s and R, for Da = 1500, A = 10.5,

M =085 6 =09, Pry =1, Pro = 5, Q = 150, (a) Ta = 500, (b) Ta = 1000,
(¢) Ta = 2000.



CHAPTER 6. 162

100
10.0¢
95
9.5¢ logR
logR, g;.o-
9.0r
85
85¢
012q345 01 243 4

Figure 6.4: Marginal stability curves of Ry, and R, for Da = 1500, A = 10.5,
M =085 ¢ =09, Pry =1, Pro =5, Ta = 1000, Q = 150 (a) Pry = 2.65 and
(b) Pry = 0.65
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Figure 6.5: The marginal thermal Rayleigh number R, for steady parallel rolls
(m = 0) and cross rolls (I = 0) at Da = 1500, A = 10.5, M = 0.85, ¢ = 0.9,
Pry =1, Pro =5, Ta = 1000, (a) @ = 150, (b) @ = 1000.
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Figure 6.6: The marginal thermal Rayleigh number R, for steady parallel rolls
(m = 0) and cross rolls (I = 0) at Da = 1500, A = 10.5, M = 0.85, ¢ = 0.9,
Pri =1, Pro =5, Q =150, (a) Ta =500, (b) Ta = 50000.
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where
2 Rl - Rlsc

<<1
Rlsc ’

€

The first order calculations of the linearised problem given by approximation is given

by the eigenvectors

" :ZTW [Ae'letmy) — ¢ c] cos mz,
irTa'/%5? ;
___wWmiaro ilz+my) _ . ..
Y == i gy ACT™ — e e] cosmz,
wy = [Aei(lermy)Z +c- c-} sin T,
1 4
6 :_M(52 [Aez(l“my) +c- c~} sinmz,

mnTa'/252

o i(lz+my)
Hy,  Ml(64 + Qm?2)’ [Ae Yte-e]cosme,

H,, :J\ZZZ [Aei(l”my) —c-c]sinmz,
1 ,
Co =I5 [AGZ(lz-i-my) +e- C-} sin 7z, (6.23)

where A = A(X,Y,T) is the complex scale vary on the gradual variables X, Y and
T and c.c represents the complex conjugate. The independent variables z, y, z and

t are scaled by introducing multiple scales
X =ex, Y:e%y, Z =z T=E¢€%t,

are suitably scattered at the fast and slow unconventional variables in f. The linear

and nonlinear operators £ and N are written as
L= /.,10 + E,Cl + €2£2 Tty (624)

N262N0+63N1+"' 5 (625)
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substituting equations £, N and w in Lw = N and equating e, €2 and € coefficients

on both side, we obtain

Lowo =0, (6.26)
Lowl + Ele :N(), (627)
EowQ + £1w1 + £2w0 :Nl, (628)

The second order calculations of the linearised problem given by approximation are

given by the eigenvectors

U :07 Wy = 07

vy =S [A2ezz(lscx+mscy) —c- c-} ’

1

— 245
01 = — W|A| SZTZQTFZ,
m
HJ:1 :W|A|2COSQ7TZ
K ‘
H, :277‘;4(]12 |:A262Z(lscm+mscy) cosmz + ¢ - c~} ’
H,, =0,
C L APsin2 (6.29)
= — = Sinamz .
S VEIRTE ’

taking w; = 0 in equation (6.24), N7 — Lowy is vertical to wy and coefficient of sin 7wz

in M} — Lywg vanishes. We get
0A 0 i 02
or !

2
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where
2¢PT258 RQ ¢q252p’l"2 ¢
4 i hd 2,2 2 54 25854
=(Q+¢0") 75— = (Fi——) i + (14 2)(Q*m? + Tar®§" + A?6%)9
2Q6*m? (A + )+ (R1Q — Ro)(Qm”® A54)E—2 RyTa 54P’”2
m M¢P7’1 1 2 I qivy Prl
=m2Q0%(3m*Q + 206*) + (Ry — Ry L)[m2Q(3¢* + 27%) + 26 (5¢* + 27%)]+
6m204T
216'0A% + %
Ay =R1AG*0% + QR ¢*0*m?
Rom  6%¢? Qm?Pry Ta1/27TQ58Pr2
_ 4 2 N N 2/712 2 .
A3 =(A6" + Qm”*) l(Rl 2ML3)2M2 Q4M2PT1(1+5 (I +m?)) P,
m2rrTal/? N ImSs Tam*m?§°Q Pr, (6.31)
IMB352p(AG* + Qm2) 4w M252 AM2$2Pry '
A(X,Y,T)

By using multiple scaling and A(x,y,t) = , equation (6.30) can be written

€

as a nonlinear two-dimensional time dependent LG equation in fast variables as

0A (8 i 0?

P WY (R A
0 "\ oz 2q 0y?

2
= ) A= (X + NslA2) A =0, (6.32)

which describes slow extensional scale ex vertical to the rolls and the variation of

the slow time scale €?t. Independent of y and ¢ terms from equation (6.32), we get

d2A 62)\2
+ (1-
dXx? A 62)\

S |AP)A (6.33)

A(X) = Aptanh </i(0> ,

1 1
Ao\ 2 201\ 2

_ [ 272 o 1
AO = <€ )\3) and AO = (—62)\2> .

where
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Figure 6.7: The curve A3 = 0 gives critical bifurcation point for Da = 1500, A =
10.5, M =0.85, ¢ = 0.9, Pry =1, Pry =5, Ta = 1000 and @) = 150. The salinity
Rayleigh number increases by increasing the thermal Rayleigh number

Heat Transport by Convection

If \A%] < 1 then |A| reaches maximum value. The maximum amplitude of A is

’Amam|7 )
62)\2 2
|Amax| = A3 ) (6.34)

Heat transfer in field is Nusselt number Nu,
€ 9
Nu=1+ E‘Am‘m’ : (6.35)

From Figure 6.8, Nusselt number Nu increases while thermal Rayleigh number R
also increases. In Figure 6.9, regions of Eckhaus (E), zigzag (Z) and stable (S)

regions are plotted.
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Figure 6.8: Graph is plotted in (Nu, Ry,) plane for Da = 1500, A = 10.5, M = 0.85,
¢=0.9, Pry =1, Pro =5, Q = 150 and T'a = 500.
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Figure 6.9: Regions of Eckhaus instability (E), zigzag instability (Z)and stable region
(S) are plotted for Da = 1500, A = 10.5, M = 0.85, ¢ = 0.9, Q = 150, T'a = 1000,
PT1:1,P7”2:5.



CHAPTER 6. 170

6.4.2 Amplitude equation at the onset of Pitchfork Bifur-

cation

Consider cylindrical rolls along y-axis, so that only x-dependence and z-dependence
appears from Lw = N. Coupled time dependent nonlinear Landau-Ginzburg type

equations were obtained at the supercritical Hopf bifurcation. We establish ¢ as

R,— R
e = 7 <1 (6.36)

Take

we = [AlLei(la:-‘rmy—i-wt) + AlRei(lz-i-my—wt) + C.C] sinTz,

which is a solution of Lw = 0. Here A;; and A;r represent the amplitude of left
and right travelling wave the rolls respectively and depends on slow space X and

time variables 7, T', Knobloch and Luca [57],
X=cx, T=¢t, T=¢ct (6.37)

The derivative operators are expressed as

0 0 0 0 0 0 5 0
ox o Tox oo T o (6:38)

The power series solution is

f = Efo + €2f1 + €3f2 4+ - y (639)
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in € term. The first order approximation of the linearized problem is then

Uy = — ? [AlLei(ll'-me“rWt) + AlRei(lx+my_wt) _ C.C:| COSTZ,
Z'7TTCL% i(lz+my+wt) c i(lz+my—wt)
T Mgl k1 Aize T — ki Aqge 7 = ce] cosmz,
wo :[AlLei(lz-‘rmy—i-wt) + AlRei(la:—i-my—wt) + C.C} sin7z,
1A A
90 M [ bllL i(lz+my+wt) + bif ez(laz-ﬁ-my wt) +ec C] sin nz,
1 A A
Co =07 [—AL 11L i(letmytwt) | iR ilatmy=wt) 4 c.c] sinTz,
C C
mm AlL i(lx+my+wt) A 1R i(lz+my—wt)
H, =-— e [ T + it ——e + c.c} CosTZ,
Tall/? ki A koA .
Hyo 63\4¢7;m[ 1d11L6 (lz+my+wt) + le('l:Rez(lx—l-my—wt) —|—C.C] COS T2,
A A
HZ() Zm[ dllLe i(lz+my—+wt) + difez(lx-i-my wt) c. C} sin 2.

(6.40)

The second order calculations of the problem given by approximation are given by

the eigen vectors

uy =0,
v, = 2l [(A%L + A ) 2i(lz+my—+wt) + AlLAlRe i(le+my) C.C},
S
wy :07
U [JAwP + 1Al | mAinAlg s
91__W[ 1 DIPbL + c.c| sin 27z,
B ™ |A1p)? + |Air? AL Ajge®™t :
Cr=- M2L2 [ 4m2cl * cleclr +ec|sin2mz,
2mm? Pry [|A1L? + |Ag]? AipASy
H, — . oz,
" Pe { AN 72dl dipdl T eC|coseme
2mm6? Proy - AL Af
Hy, :T [’AlL’2 + ‘AIR‘2 + AlLAlRe imy) WdllR + c.c| cos2mz,

H, =0,

(6.41)
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where bl = 62 +iw, cl = 6%+ Liw, dl—M(52+¢Pr22w 61—M52+¢miw b1P =
272 +iw, cl? = 27 + —w) dlP = 2Mm? + 085 ’"%w el? = 2Mn? + 085 ”%w and
bl¢, c1° d1°¢ are complements of b1, cl, d1 respectively. Equation (6.28) is solvable

when Lowy = 0 and equate the coefficients of sin 7z in N — Lowy zero, we get

0A 9, 0 0?A
Ao a%L + A (E - Uga_X> Agr, — As aXIQL AsArp 4+ Ag|AL)P A + As|Aig|* A = 0
(6.42)
0A 0 0 0%A
o 3711]% i (E B U"ﬁ_X> Aar = Ao aX12R AsAig + Mg AigPAig + As|Aip P Arg = 0.

(6.43)

Solve equations (6.42) and (6.43) by taking ¢’ = v,7 + X and 1/ = v,7 — X, we get

0A DA DA

mmﬁ = — Mo + Ao+ A — (Ml Awc + Asl Aral’) Auz, (6.44)
DA DA DA

2“9A1W2/R —— Ao miR A X%f + A3Asg — (AaArgl? + As|A1Lf?) Aig. (6.45)

This is obtained on integrating equations (6.44) and (6.45) over i’ and &’ respectively
by which, we get

Ay T = No—— X2 + X341, — <A4|A1L| + As|Aqg| )AlL’ (6.46)
0A 0A
Mot = Mo g+ Asdin — (Al Aigf” + As|Avf) Aun (6.47)

Equations (6.46) and (6.47) are left and right moving amplitude waves known as
coupled one dimensional LG equations.
Travelling Waves and Standing Waves

Coullet [37] and Knobloch [57] studied regions of travelling standing waves, on mag-

neto convection which Matthews [67] derived. On dropping slow variable X from
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equations (6.46) and (6.47), we get

dAlL A3 A4 A5

T AoA A, — Ay |Ag]? - AlL\A1R|2 (6.48)
dA A A A
dTIR = A—2A1R - /\—41411~2|1411~2!2 /\51‘111~2!141L|2 (6.49)
Put
Az Ay As
'=—= 4 =—— and §=-—.
TN TR, Ao
Then equations (6.48) and (6.49) take the following form
dAlL . /A /A A 2 5/A A 2
g~ PAty 1o Aiz|? + 8" A Arrl?, (6.50)
dhin _ gy 'Avp| Avg|? + 8 Aig| ArL)? 6.51
a7 = ['Air + 7V Air|Air|” + 1| AwLl™ (6.51)
Where
; _ Im(AlL)
Ay =aper =|A = Ajp) =tan! [ ——=
1L =are ar, =|AiL] ¢r =arg(A;L) = tan (Re(AlL)>
; Im(A
Arp =are' ar =|Aig| ¢r =arg(Aig) = tan™" (ﬁ))
B =1 +ifs Y =y iy &' =61 + by (6.52)

Substituting Ay,A1x,0',7" and ¢’ in (6.50) and (6.51). we get ap, = —f1/(71 + 1)
and ag = —f1/(y1401) for standing waves. (ar,ar) = (ar,0) for left travelling waves
and (ar,agr) = (0,ag) for right travelling waves. (ar,ar) = (0,0) for conduction
state. In Figure 6.10, we study the stability of regions of travelling and standing
waves. The stability regions of standing waves and travelling waves increase when

the ratio of thermal and magnetic prandtl number increases.
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Figure 6.10: Diagram illustrates the stability regions of steady state, standing and
travelling waves for Da = 1500, A = 5.85, M = 0.9, ¢ = 0.09 at (a) Pry/Pr; = 6,
(b) P?”Q/Prl =12.
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6.5 Conclusions

By using stress free boundary conditions, an analytic expressions has been found in
linear convective stability analysis. In the linear model for equation Lw = 0, at the
onset of convection we identified rolls emerge region. The corresponding marginal
stability curves were also traced. Thermal and magnetic Prandtl numbers do not
affect on convective stationary thermal Rayleigh value. Identified Takens-Bogdanov
and co-dimension two bifurcation points on neutral curves were identified. The
region of salinity Rayleigh value R, verses thermal Rayleigh value R; over convective
stationary and oscillatory increased by increasing internal forces over a rotating
field. Two dimensional LG equation was derived at the onset of stationary mode,
heat transport from Nusselt number and long wave length wave based on Eukhaus
and Zigzag instabilities were also studied. Nusselt number grows exponentially if
thermal Rayleigh value increases. We derived two nonlinear L-G equations and
observed stability regions for travelling and standing wave for fixed physical and

porous parameters.
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Conclusions

In this dissertation, we have taken model Rayleigh-Benard convection (which is ex-
ample of single diffusive system), magnetoconvection, convection in rotating fluid
and thermohaline convection ( which are examples of double diffusive system), ther-
mohaline magnetoconvection (which is an example of triple diffusive system) in a
sparsely packed porous medium. Throughout this dissertation we have used stress-
free boundary conditions. Even though stress-free boundary conditions cannot be
achieved in laboratory, we can use it since they allow simple trigonometric eigen-
functions. Our goal is to identify the region of parameter values, for which rolls
emerge at the onset of convection. In Chapter 2, we studied the stability of finite
amplitude Rayleigh-Benard convection in a sparsely packed porous medium due to
horizontal magnetic field, which is an example of double diffusive problem, where
problems of both stationary convection and oscillatory convection are exists. By
performing weakly nonlinear analysis, we derived a nonlinear time dependent two
dimensional Landau-Ginzburg equation at supercritical Pitchfork bifurcation and
showed the existence of Eckhaus and Zigzag instabilities and also studied Nusselt
number contribution. We derived couple one dimensional Landau Ginzburg equation
and computed stability regions of standing waves and travelling waves. In Chap-
ter 3, we investigated the Rayleigh-Benard convection in a sparsely packed porous
medium with the effect of rotation and horizontal magnetic field. This is an example
of triple diffusive convection. We observed for increasing the ratio of thermal and
magnetic prandtl number the instability regions are increased. In Chapter 4, we
studied linear and nonlinear instabilities of thermohaline convection in a sparsely
packed porous medium with the effect of horizontal magnetic field. We first iden-
tified steady state and it is replaced by standing waves, and travelling waves are
unstable. In Chapter 5, we studied instabilities of thermohaline convection in a
sparsely packed porous medium with the effect of rotation. The region of standing

waves unstable. In Chapter 6, we investigated instabilities of thermohaline convec-
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tion in a sparsely packed porous medium with the effect of rotation and magnetic
field. The region of standing and travelling waves exits along with the steady state.
Chapter 4 to Chapter 6 are examples of multiple diffusive systems. In double, triple
and multiple diffusive systems, both stationary convection and oscillatory convec-
tion exist. Chapter 2 to Chapter 5, we have studied the linear stability analysis
were analysed by taking thermal Rayleigh number R as a dependent variable and
then by taking Rayleigh number R as an independent variable. By using multiple
scale analysis we derived a nonlinear two-dimensional Landau-Ginzburg equation in
complex amplitude A(X,Y,T) with real coefficients near a supercritical Pitchfork
bifurcation. We have also shown the occurrence of secondary instabilities like Eck-
haus and Zigzag instabilities and we also studied Nusselt number contribution at
the onset of stationary convection from Landau-Ginzburg equation. We obtained
the general pattern near the onset of oscillatory convection at a supercritical Hopf
bifurcation. We derived coupled nonlinear one-dimensional Landau-Ginzburg equa-
tions and studied the condition for occurrence of instability for both travelling and

standing waves.

Scope of Future Work

In future we wish to investigate linear and nonlinear models along with the effect
of different external fields with anisotropy in convective instabilities in a sparsely
packed porous medium. We also want to explore the occurrence of Kuppers-Lortz

instability and skew-varicose instability with realistic boundary conditions.
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