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ABSTRACT 
 

The objective of the present study has been to make available hydrodynamic and 

thermal characteristics of a Newtonian fluid for laminar incompressible flow in channels 

partially filled with porous material. The given amount of porous material porous layer 

was distributed equally at the two walls. Porous fraction, pγ ,  is defined as the ratio of the 

porous layer thickness to the distance between the walls of the channel.  

 

Analytical or numerical solutions have been obtained for the following values of 

the parameters characterizing the different problems studied. Porous fraction pγ : 

0 1.0pγ≤ ≤ , Darcy number, Da:  0.001 to 1.0. When magnetic field is considered, the 

Hartman number, M is between 1 to 10. When axial conduction is considered, the Peclet 

number, Pe ranges from 5 to 100. When viscous dissipation is included, the Brinkman 

number  Br assumes a value between 1.0−  and 1.0, i.e., 1.0 1.0Br− ≤ ≤ . Numerical 

solutions have been obtained employing Successive Accelerated Replacement scheme 

after validating the scheme.  

 

 As Hartmann number (Magnetic field parameter)  M increases, the porous channel 

behaves like a clear fluid channel for all Darcy numbers. The magnetic field parameter is 

negligible in the fully filled porous region with such high Hartmann number. 

 

 Axial conduction effects are significant for Pe < 100 and become negligible even 

near the entry for Pe > 100 in channels partially filled with porous material. When 

viscous dissipation is included, the limiting bulk mean temperature is higher than the wall 

temperature. The local Nusselt number displays an unbounded swing since the bulk mean 

temperature reaches the wall temperature and exceeds it because of viscous dissipation.  

 

 Limiting temperature and limiting Nusselt number depend on the Brinkman 

number when the channel walls are subjected to constant wall heat flux. In the case of 

sharath
Highlight

sharath
Highlight
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constant wall temperate,  limiting Nusselt number is independent of  Brinkman number 

for Br ≠ 0. 

 

 Developed flow depends on Da, γp and developing temperature field depends on 

Da, pγ , Pe, and Br. Local Nusselt number, Nupx is significantly large when Pe is low. 

Nupx decreases with increasing X*. Influence of axial conduction, viscous dissipation and 

developing thermal field  on temperature profiles and local Nusselt number, have been 

evaluated when different models have been employed. The local Nusselt number attains a 

minimum for some, 0 1.0pγ< <   (subjected to constant wall heat flux). It has been found 

that minimum value of pγ is practically independent of the axial location and Peclet 

number. 

 

Effects of viscous dissipation employing Darcy model and the clear fluid 

compatible model have been studied. The results include the effects of viscous 

dissipation on temperature profiles and Nusselt numbers. In general the effects of axial 

conduction are subdued when viscous dissipation is strong and vice versa.  
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N O M E N C L A T U R E 

Ac Axial conduction  pxh  Local heat transfer coefficient, 
at the porous wall, W/m2K 

iA  Constants which are given in 
appendix. 

H  Width of the channel, m 

B  Magnetic induction vector, 0B B=  

, kgs-2A-1 

J  Electric current density, A/m2 

Br         
Brinkman number,

 

2
f refu

Br
qH

µ
=  

(subjected to constant wall heat 

flux), 
( )

2
f ref

f e w

u
Br

k T T
µ

=
−

 (subjected to 

constant wall temperature)
  

K Permeability, m2 

c Constant less than unity kf Thermal conductivity in fluid 
region, W/(m. K) 

pC  Specific heat, J / g °C effk  Effective thermal conductivity 
in porous region, 

(1 )  ,eff s fk k kϕ ϕ= − + W/(m. 
K) 

fpC  
Skin friction coefficient  sk  Thermal conductivity of the 

solid, W/(m. K) 

Da Darcy number, 2/Da K H=  pl  Thickness of the porous region, 
m 

Fc Forchheimer number M Hartmann number( Magnetic 
field parameter), 

2 2
0

f

B HM σ
µ

=  

FL Lorentz forces, LF J B= ×  MD Number of divisions  in the 
axial distance (X) direction 

G Acceleration due to gravity, m/s2 m1 Slope of the Darcy model 

ph  
Heat transfer coefficient, W/m2K m2 Slope of the form drag model 
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m3 Slope of the clear fluid compatible 
model 

Re Reynolds number, 
/ref fRe u Hρ µ=  

N Grid number in the computational 
mess corresponding to non-
dimensional normal coordinate Y 

bT  Bulk mean temperature, K 

ND Number of divisions  in the 
normal(Y) direction 

eT  Inlet temperature, K 

NP Grid number at the porous-fluid 
interface 

iT  Interfacial temperature, K 

Nup,CL1 Nusselt number  due to Darcy model   fT  Temperature in fluid region, K 

Nup,CL2    Nusselt number  due to form drag 
 model  

pT  Temperature in porous region, 
K 

Nup,CL3    Nusselt number  due to clear fluid   
compatible model  

1wT  Temperature at wall1(at 
/ 2Y H= − ) 

fNu  
Nusselt number in fluid region 2wT  Temperature at wall 2 (at 

/ 2Y H= ) 

pNu  
Nusselt number in porous region Uf Non dimensional velocity in 

the fluid region 

M
pNu  Nusselt number in porous region 

with effect of Magnetic field 
Up Non dimensional velocity in 

the porous region 

pxNu
 

Local Nusselt number in porous 
region 

iU  Non-dimensional interfacial 
velocity 

P Non-dimensional pressure ,f pu  Velocity vector 

p Pressure,   kg m-1s-2 fu  Fluid velocity, m/s 

Pe Peclet number, /ref fPe u H α=  pu  Porous velocity, m/s 

gP       g
dPP
dX

=  refu  Reference velocity, m/s 

grP  gr
dpP Re
dx

=
 

iu  Interfacial velocity, m/s 

Q Volumetric flow rate,  m3/s  x Longitudinal coordinate, m 

q Constant heat flux, W/m2  X Non-dimensional axial 
distance, x/H 

 



x 
 

*X  Normalized non dimensional axial 
distance, ( / )X Pe=  

ϕ  Porosity 

*
fd

X   Normalized fully developed length. ω  Acceleration factor 

y Transverse coordinate, m iθ
 

Non-dimensional  interfacial 
temperature 

Y Non-dimensional transverse 
coordínate, y/H 

fθ  
Non-dimensional temperature 
in fluid region 

 Greek symbols pθ  Non-dimensional temperature 
in porous region 

fα  Thermal diffusivity in fluid region, 
m2/s 

θ ∗  Non-dimensional bulk mean 
temperature, 

* ( ) / ( / )b e fT T qH kθ = −  

effα  Thermal diffusivity in porous region, 
m2/s 

θf, CL1    Non-dimensional temperature 
in  fluid region due to Darcy 
model  

η  The ratio between thermal diffusivity 
in fluid and porous regions, /f effα α  

θf, CL2    Non-dimensional temperature 
in fl fluid region due to form 
drag model  

ε  /f effµ µ  θf, CL3     Non-dimensional temperature 
in fl fluid region due to clear 
fluid compatible model  

tε  
Error tolerance limit θp, CL1     Non-dimensional temperature 

in fl porous region due to 
Darcy model  

σ  Electric conductivity,  

kg-1m-3s3A2 

θp, CL2     Non-dimensional temperature 
in fl porous region due to from 
drag model  

pγ  Non-dimensional porous fraction θp, CL3     Non-dimensional temperature 
in porous region due to clear 
fluid compatible model  

fµ  Fluid viscosity, (N. s)/m2 θCL Non dimensional temperature 
in the conduction limit for 
three dissipation   

effµ  Effective viscosity in porous region, 
(N. s)/m2 

*
CLθ   Non dimensional bulk mean 

temperature in the conduction 
limit  

ρ
 

Fluid density, kg/m3 
*

1CLθ
 

Non dimensional bulk mean  
temperature in the conduction 
limit  for Darcy model  
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*
2CLθ  Non dimensional bulk mean 

temperature in the conduction limit 
for from drag model  

MNu∆  The net change in the Nusselt 
number with effect of Magnetic 
field 

*
3CLθ
 

 Non dimensional bulk mean 
temperature in the conduction limit 
for clear fluid compatible model  

1Nu∆  Net change in the Nusselt 
number  
 for the Darcy model 

1wθ  Non-dimensional wall 1(at 1/ 2Y = −
)   temperature 

2Nu∆  Net change in the Nusselt 
number  
 for the form drag model 

2wθ  Non-dimensional wall 2(at 1/ 2Y = )   
temperature 

3Nu∆  Net change in the Nusselt 
number  
for the clear fluid compatible 
model 

wθ  Non-dimensional wall temperature 
*X∆  

grid size in the flow 

direction=1/MD 

fθ  
Error  in the energy equation in the  

fluid region  
Y∆  

grid size in the normal 

direction=1/ND 

pθ  
Error  in the energy equation in the  

porous region  
*

1X∆  
First non-uniform grid width 

defined by, * *
1X c X∆ ∆=  

Nu∆
 

The net change Nusselt number Φ  Dissipation function 
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Chapter 1 

Introduction 
 

 

1.1   Introduction 

In recent times, several researchers have studied fluid flow and heat transfer in porous 

media, in view of the significant applications in situations such as enhanced recovery of 

oil by thermal methods, cooling of electronic components, risk assessment of disposal of 

nuclear waste, proton exchange membrane (PEM) fuel cells. 

 

  It is observed that, in fully filled systems, there is significant pressure drop. Hence, 

there is necessity for enhancing heat transfer partially in a desirable way. This can even 

be done by keeping the pumping expense at an appropriate level. The application of 

convective heat transfer in porous medium, such as solid matrix heat exchangers and 

thermal insulation, oil recovery, geothermal engineering, heat pipes, chemical reactors, 

and hydrogeology, has been a topic of interest to mathematicians. Forced convective 

Nusselt number is higher when ducts have been filled with porous material. Recent 

applications, where studies on partially filled porous channels can be gainfully employed, 

include solar absorbers, catalytic and inert packed bed reactors, fuel cells, and compact 

heat exchangers. Several studies examined the boundary conditions at the porous-fluid 

interface. 
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1.2  Brief Review on Flow and Heat Transfer in Laminar 

Internal Flow Through Parallel Plate Channels  

The problem of forced convection in a channel formed by two parallel plates is a classical 

problem that has been revisited in recent years in connection with the cooling of 

electronic equipments using materials involving hyper porous media or micro channels. 

The review presented here describes representative developments, and recent studies that 

include parallel plates kept at uniform but unequal temperatures and viscous dissipation. 

 

Hatton and Turton [1] obtained series solution in the case of constant, unequal 

wall temperature boundary condition assuming that the flow is developed and the 

temperature field is developing. Also, Hatton and Turton[1] results show that the limiting 

Nusselt number is 4. This Nusselt number is independent of the degree of asymmetry in 

the wall temperatures.  More recently, Mitrovic, Maletic and Baclic [2] addressed the 

asymmetric Graetz problem for asymmetric isothermal case referred by Nield [3]. Nusselt 

number under asymmetric isothermal case exhibits an unbounded swing, at the wall kept 

at lower of the two temperatures. Similarly, when viscous dissipation is included, Barletta 

[4] found the limiting Nusselt number (=17.5) to be independent of the Brinkman 

number, for all  Br ≠ 0. 

 

Comprehensive relations for Nusselt numbers for thermally developed duct flows 

subjected to different boundary conditions have been presented by Sparrow and Patankar 
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[5]. Pins, Mulder and Schenk [6] obtained the temperature profile for hydrodynamically 

developed and thermally developing flow, including axial conduction using power series 

method for flow between parallel plates. Weigand, Kanzamar and Beer [7] studied 

analytically the influence of axial heat conduction on heat transfer in a circular pipe and 

in a parallel plate channel with uniform heating of the wall for two cases; of semi infinite 

length and finite length of the heated section. Cheng and Wu [8] studied the effects of 

viscous dissipation on convective instability in horizontal parallel plate channel when the 

fluid is heated from below. The effect is significant for Prandtl number, when Pr ≥  10. 

Barletta [9] investigated the laminar convection in a parallel plate vertical channel by 

taking into account both viscous dissipation and buoyancy. Nguyen [10] presented the 

results of numerical studies on hydrodynamically and thermally developing flow at low 

Reynolds number in the entrance region of a cascade of parallel horizontal plates. Two-

dimensional Navier-Stokes and energy equations employed by Nguyen have been solved 

by ADI [11 and 12] and QUICK [13] methods.  

 

 Comprehensive studies on laminar forced convection in hydrodynamically and 

thermally developing region of parallel plate channels have been presented by Ramjee 

[14]. The parallel plates have been kept at unequal temperatures. Ramjee and Satyamurty 

[15] reported basic heat transfer characteristics for the asymmetrically heated channel and 

introduced a Nusselt number based on the average wall temperature. The limiting Nusselt 

numbers when viscous dissipation has been included and the channel walls are kept at 

unequal temperatures are available in Ramjee and Satyamurty [16]. Satyamurty and 



4 

 

Ramjee [17] also developed the superposition relations from which the Nusselt numbers 

at the two walls of the channel at unequal temperatures can be calculated for any desired 

degree of asymmetry from the solution of the problem subjected to boundary conditions 

of first kind, see  p. 17 of Shah and London [18].  

 

1.3   Porous Medium  

A porous medium may be defined as a solid having holes connected in continuous paths 

in several directions. Fibrous aggregates, porous or fissured rocks, glass wool and 

fiberglass are some of the examples of porous material. Studies on flow through porous 

media date back to the 19th century, the pioneer being Darcy who devoted considerable 

attention in developing the theory of ground water motion.  

 

 The porous matrix is in general characterized by an effective porosity, ϕ , and 

permeability, K. Pores or fraction of the medium that is filled by the fluid determine 

effective porosity. To distinguish two porous media having the same porosity, additional 

characteristic term, called permeability. Permeability is essentially the conductance of the 

medium defined with direct reference to Darcy’s law. The permeability depends on the 

porosity of the medium and an equivalent diameter of the particle. 
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1.3.1 Characterization and Governing Equations for Momentum 

Darcy Law  

Darcy law formulates that the volumetric flow rate, Q, through a porous medium is 

directly proportional to the hydraulic head difference, hd, and the cross sectional area, A, 

and inversely proportional to the length, l, of the porous column. Stated in the form of an 

equation, Darcy law can be expressed as, 

[( ) / ]dQ h A l∝                            (1.1)                        

The hydraulic head difference, hd can be obtained from the relation below, 

 = +d
ph z
gρ

                                            (1.2)                                                                       

where z denotes the elevation, p, pressure, ρ, the density of the fluid and g is acceleration 

due to gravity. The Darcian velocity v, is related to the volumetric flow rate by, 

  /v Q A=                                                     (1.3) 

Darcy law can be expressed in a differential form as, 

  x
f

K dpv g
dx

ρ
µ

 = − − 
 

                                             (1.4) 

In Eq. (1.4), K is the permeability of the medium and μf  is the viscosity of the fluid                 

For a three dimensional flow, Eq. (1.4), as given in Stanek and Szekely [19], takes the 

following form, 

( )
f

KV p gρ
µ

= − ∇ −
 

                                                     (1.5)                                 
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In Eq. (1.5), V


 is the Darcian velocity vector and g


 is the gravity vector. From Eq. (1.5)

, it may be noted that Darcy flow does not satisfy the no slip condition at solid 

boundaries. Modifications to the Darcy description, in general, become necessary when 

the flow Reynolds number, based on the local velocity  and pore diameter, is high. 

Non-Darcy Extensions  

In order to account for the flow inertia effects and boundary effects, extensions to the 

Darcy law have been put forth by including classical convective terms, non-linear inertia 

terms and viscous terms. Methodology to derive the governing equation using the local 

volume averaging technique can be found in Slattery [20]. The governing equation for 

conservation of momentum from Catton [21] in vector form can be expressed as, 

2
'

2[ . ]    f eff
eff

f

KV V V V V p F V
K K
µ µ

ρ ρ µ
µ

 
+ ∇ + = −∇ + + ∇  

 

      
                        (1.6) 

In Eq. (1.6), 'K  is the Forchheimer coefficient and μeff is an effective viscosity that takes 

into account the difference in the resistance offered for the fluid flow, though 

permeability may remain the same. For high-permeability foam, the effective viscosity 

can differ from the fluid viscosity by a factor of ten as demonstrated by Givler and 

Altobellis [22]. At times, the ratio μf /μeff is referred to as porosity in the literature. This 

terminology is not followed in the present thesis. F


 is the body force vector. In addition, 

non-dimensionalization of Eq. (1.6) leads to the parameters, Da, the Darcy number and 

Fc, the Forchheimer number being defined by,  

Da = K/H2                (1.7) 
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' /Fc K H=              (1.8)   

 It has been reported in the literature {see for example, Kaviany [23], Vafai and 

Kim [24] and Nield, Junqueira, and Lage [25]} that, results very close to the clear fluid 

flow configurations are obtained when the Darcy number is high.  

 

In Eq. (1.6) the second term on the left hand side is the modified convective term, 

which includes the permeability and the porosity of the medium. The third term often 

referred to as Forchheimer non-linear inertial term, accounts for turbulent kinetic energy. 

The second term on the right hand side is due to Brinkman, which accounts for the 

boundary effects. Inclusion of Brinkman friction terms enables no-slip velocity boundary 

condition to be satisfied. 

 

A comprehensive account of the early literature on momentum transfer through 

fluid saturated porous media is available in Bear [26] and Greenkorn [27]. Early 

theoretical and experimental studies on convective heat transfer in porous media are due 

to Rogers, Schilberg and Morrison [28], Wooding [29] and Elder [30 and 31]. Studies 

reported in [28-31] are devoted to understanding the flow structure when the medium is 

heated from below. The onset of convection has been theoretically predicted by Lapwood 

[32] which has been confirmed experimentally by Katto and Masuoka [33].  

 

In general, the literature dealing with flow in porous media uses Eq. (1.6) or 

simplified forms. The simplified forms include some of the terms of Eq. (1.6), though the 
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Darcy model is part of all the forms. Many studies have established that the effect of 

convective terms in the LHS of Eq. (1.6) is not significant, e.g., Kaviany [23], Vafai and 

Tien [34], Lage [35], Manole and Lage [36]. 

 
      Fig. 1.1: Examples of porous medium. 

 

1.3.2 Interfacial Boundary Conditions 

The conditions to be satisfied at the porous-fluid interface for a class of problems studied 

in the present are dealt with here. Beavers and Joseph [37] addressed this issue when the 

no-slip assumption is needed to be reviewed for high permeability porous media. Beavers 

and Joseph postulated that a slip velocity can exist across the interface given by,   

'( / ) f p pu u K uα− =                                                               (1.9)    

In Eq. (1.9), uf and up denote velocities on either side of the  fluid-porous interface. 'α  is 

experimentally determined to be '0.1 4α≤ ≤ . Saffman [38] justified the Beavers and 

Joseph [37] condition theoretically. 
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 Neale and Nader [39], Vafai and Thiyagaraja [40] and Vafai and Kim [41], 

proposed that both velocity and shear stress are continuous at the interface. 

f pu u=                                           (1.10) 

p f
eff f

du du
dy dy

µ µ=                                 (1.11)  

 
The conditions given Eq. (1.10) and Eq. (1.11) are extensively used by Sahraoui  and 

Kaviany [42], Chandesris and Jamet [43],  Prathap Kumar, Umavathi and Chamkha [44] 

and Bhargavi, Satymurty and Raja Sekhar [45]. 

 

1.4   Forced Convection in Porous Material Filled Ducts 

Forced convection heat transfer in porous media is an interesting problem, the solution of 

which is important in several areas of engineering practice, see for e.g. Bejan et al. [46]. 

Various fluid flow and heat transfer arrangements have been treated both analytically and 

numerically, see Kaviany [47], Nield and Bejan [48], Bejan [49] and Vafai [50]. 

 

1.4.1   Porous Material Filled Pipes and Annuli 

Poulikakos and Renken [51] examined the effect of Forchheimer non-linear inertial 

terms, Brinkman viscous terms and variable porosity on heat transfer through channels 

and pipes filled with porous materials subjected to constant temperature. Marpu [52] 

reported numerical results for the local Nusselt number in the entrance region considering 

two-dimensional descriptions for flow and thermal fields. Momentum equations included 
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convective terms and non-linear inertial terms due to Forchheimer and Brinkman viscous 

terms. Axial conduction in the energy equation has also been included.  

 

 Recent studies by Mitrovic and Maletic [53] have dealt with forced convection in 

the entrance region of annuli filled with porous medium where the inner and outer pipes 

are subjected to unequal temperatures. Mitrovic and Maletic [53] employed fully 

developed velocity profile though they included axial conduction in the energy equation. 

Mitrovic and Maletic [53] gave an excellent account of intermediate developments on 

porous material filled annuli.  

 

1.4.2   Porous Material Filled Channels 

Studies on laminar flow through a channel filled with porous material bounded by 

isothermal parallel plates employing Brinkman extended Darcy flow model along with 

the classical convective terms for the momentum equation have been reported by 

Kaviany [23]. Vafai and Kim [24] investigated a fully developed forced convection in a 

porous material filled channel, both walls subjected to equal heat flux. Satyamurty and 

Marpu [54] reported numerical results for the porous material filled channels, similar to 

those in [52] described above for annuli. The study [54] concluded that, when Brinkman 

extended Darcy model is employed, the local Nusselt number values are significantly 

lower from the values obtained employing Darcy flow model.   
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 Hwang, Wu and Chao [55] investigated non-Darcian forced convection in an 

asymmetrically heated sintered porous channel. Nield, Junqueira and Lage [25] analyzed 

the fully developed forced convection in a fluid-saturated porous material filled channel 

with isothermal or isoflux boundaries. Xiong and Kuznetsov [56] investigated thermal 

dispersion and non-Darcian effects with forced convection in a Couette flow in a 

composite flat conduit. The walls were subjected to constant but different heat fluxes. 

  

Nield, Kuznetsov and Xiong [57] investigated the thermal development of forced 

convection in parallel plate channel and a circular tube filled by a saturated porous 

medium, with walls subjected to constant heat flux. Similar studies when the walls were 

kept at constant temperature are available in [58]. Axial conduction has been neglected in 

both [57] and [58]. The analyses for various cross sections of conduits with embedded 

porous media presented by Haji-Sheikh and Vafai [59] gave insight into the effect of the 

Darcy number on the thermal performance of such ducts. Mitrovic and Maletic [60] dealt 

with forced convection in the entrance region of porous material filled channel, where the 

walls are subjected to unequal temperatures. Mitrovic and Maletic [60] employed fully 

developed velocity profile though included axial conduction, as has been the case in 

Mitrovic et al. [2]. A summary of additional literature on the subject of flow and heat 

transfer in porous material filled ducts (pipes, annuli, channels and other cross sections) 

is given in Table 1.1. 
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Table 1.1:  A Summary of Additional Literature on the Subject of Flow and Heat Transfer in Porous 
Material Filled Ducts 

Sl. 
No. 

Geometry, Flow Field, Thermal Field and 
other Features in Brief 

Boundary 
Conditions 

Reference 

1 Rectangular channel and circular duct filled 
with porous material, fully developed flow 
with Darcy-Brinkman-Forchheimer model. 
Developed thermal field.  

Constant wall 
heat flux 

Marafie and 
Vafai [61] 

2 Circular tube with porous medium, fully 
developed flow with Darcy-Brinkman 
model. Developed thermal field. Analytical 
solution and numerical solution. 

Constant wall 
heat flux 

Hooman and 
Ranjbar-Kani 
[62] 

3 Parallel plates and circular pipe with porous 
material, fully developed flow field with 
Darcy-Brinkman model. Developing thermal 
field, axial conduction neglected. Analytical 
solution. Correlations for both local and 
average heat transfer coefficients have been 
obtained. 

Constant wall 
temperature 

Haji-Sheikh 

[63] 

4 Parallel plates and circular porous passages, 
fully developed flow with Darcy-Brinkman 
model. Developing thermal field, axial 
conduction included.  

Constant wall 
temperature 

Minkowycz and 
Haji-Sheikh[64] 

5 Circular tube with porous material, fully 
developed flow with Darcy-Brinkman-
Forchheimer model. Developed thermal 
field, axial conduction neglected.  

Constant wall 
heat flux 

Hooman and 
Gurgenci [65] 

6 Parallel plate channel and circular tube filled 
by a porous medium saturated by a rarefied 
gas, fully developed flow with Darcy-
Brinkman model. Developing thermal field, 
axial conduction neglected. Analytical 
solution. 

Constant heat 
flux 

Kuznetsov and 
Nield [66] 

 

Contd. on next page 
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Table 1.1 - Contd. 

Sl. 
No. 

Geometry, Flow Field, Thermal Field and 
other Features in Brief 

Boundary 
Conditions 

Reference 

7 Porous material filled parallel plate channel, 
hydrodynamics of developing flow field 
with Darcy-Brinkman model. At the entry 
three inlet velocity distributions are 
considered. Analytical solution obtained by 
using Fourier series.  

No slip condition 
at the walls, and 
fully developed 
condition 

Huang and Liu 
[67] 

8 Porous material filled parallel plate channel, 
hydrodynamics of fully developed flow with 
Darcy’s model, Darcy-Forchheimer model, 
Darcy-Lapwood-Brinkman model. 

No slip condition 
at the walls 

Awartani and 
Hamdan [68] 

9 Various rectangular ducts with porous 
medium, fully developed flow with Darcy-
Brinkman model. Developing thermal field. 
Fourier series solution for fully developed 
velocity filed, temperature field.  

Constant wall 
temperature, 
constant wall  
heat flux 

Haji-Sheikh [69] 

10 Porous material filled parallel plate channel, 
fully developed flow with Brinkman-
Forchheimer model. Developed thermal 
field. Analytical solution. Compared with 
numerical solution. 

Constant wall 

heat flux 

Hooman [70] 

11 Parallel plate channel and circular duct filled 
by a porous medium, fully developed flow 
with  Darcy and Brinkman-Forchheimer 
model. Analytical solution.  

uniform 
temperature and  
uniform heat flux 

Nield and 
Kuznetsov[71] 

12 Circular channel filled with a porous 
medium saturated using the Darcy extended 
Brinkman-Forchheimer momentum equation 
with the entropy generation due to heat 
transfer, analytical solution. fully developed 
velocity filed, temperature field. 

Constant wall 
heat flux 

Dileep and 
Vikas[72] 
 

 
 

Contd. on next page 



14 

 

 
Table 1.1 - Contd. 

13 Triangular porous passages filled with a 
porous medium with Darcy Brinkman 
equation. Weighted residual method is used, 
a fully developed flow and thermally 
developing temperature field. Axial 
conduction is included.  

Constant wall 
heat flux. 

Banerjee, Haji-
Sheikh, and 
Seiichi[73] 
 

 

1.5   Forced Convection in Ducts Partially Filled with Porous 

Material  

Poulikakos and Kazmierczak [74] obtained closed form analytical solutions for parallel  

plates  and  circular  pipes  partially  filled  with  porous  material  subjected  to  constant 

heat flux employing Darcy-Brinkman flow model while numerical results were computed 

for constant wall temperature. They have shown that the Nusselt number attains a 

minimum for a certain porous layer thickness, the porous material being attached to the 

pipe or channel walls.  

 

1.5.1   Channels Partially Filled with Porous Material  

 Forced convection flow within an asymmetrically heated horizontal double-passage 

(baffle) channel was studied by Cheng, Kou and Huang [75]. Also, an exact solution for a 

fully developed flow, between plate and an unbounded porous medium has been obtained 

by Vafai and Kim [41] who employed continuity of velocity and velocity gradients at the 

interface. Jang and Chen [76] considered the configuration of a channel, the fluid region 

being at the core and the porous layers being attached to the walls. Jang and Chen [76] 
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included the effect of thermal dispersion in the porous matrix. Kuznetsov [77-80] 

obtained analytical solutions for fluid flow in channels partially filled with a porous 

medium, employing different flow models to describe the porous region.  

 

Transient forced convection flow in parallel-plate channels partially filled with 

porous substrate has been reported by Hamdan, Al-Nimr and Alkam [81]. The porous 

layer has been inserted in the channel core and the porous region is governed by Darcy-

Brinkman-Forchheimer model. It has been found that the effect of Darcy number and 

microscopic inertial coefficient is higher in the developing region. Existence of an 

optimum porous substrate thickness has been established, for which the Nusselt number 

attains a maximum. Subsequently Alkam, Al-Nimr and Hamdan [82] examined the 

efficiency of depositing a given amount of porous material on one wall compared to 

distributing on both the walls of the channel.  

 

Jen and Yan [83] employed three-dimensional velocity and temperature fields to 

describe forced convection in a channel partially filled with porous medium. 

Investigations by Jen and Yan established that, as the porous ratio increases, the flow 

velocity in the fluid layer increases leading to an increase in the friction factor and 

Nusselt Number. Additional literature on laminar forced convection in ducts partially 

filled with porous medium is given in Table 1.2.  
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Table 1.2: Additional Literature on Laminar Forced Convection in Ducts Partially Filled with Porous 

Medium 

Sl. 
No. 

Geometry, Flow Field, Thermal Field and 
other Features in Brief Description 

Boundary 
Conditions 

Reference 

1 Parallel plate channel bounded below by a 
porous layer of finite thickness and above by 
an impermeable plate moving with a uniform 
velocity. Hydrodynamics of fully developed 
flow employing Poiseuille-Couette flow and 
Darcy-Brinkman model in fluid and porous 
regions has been analytically studied. 

At one wall no 
slip, other 
wall is 
moving with 
constant 
velocity 

Rudraiah [84] 

2 Flow and heat transfer past a plate with a 
porous material attached the plate have been 
studied numerically employing two-
dimensional Navier-Stokes and Darcy-
Brinkman-Forchheimer model in the fluid and 
porous regions respectively. 

Constant wall 
temperature 

Vafai and  Kim 
[85] 

3 Developing, two-dimensional flow and 
thermal fields including axial conduction have 
been considered in studying external flow past 
a plate with alternate porous cavity-block 
obstacles. Numerical solutions have been 
obtained employing Navier-Stokes equations 
and Darcy-Brinkman-Forchheimer model in 
fluid and porous regions respectively.   

Constant wall 
temperature 

Huang and 

Vafai [86] 

4 Existence of optimum porous matrix for 
parallel plate channel with porous block 
obstacles on one wall of the channel 
considering hydrodynamically and thermally 
developing fields employing two-dimensional 
description has been established. 

Constant wall 
temperature 

Huang  and  

Vafai [87] 

5 Flow past a plate with an attached porous 
substrate, boundary layer approximation has 
been made and significant reduction in 
computational time compared to the approach 
in Sl. No. 2 has resulted.  

Constant wall 
temperature 

Huang and Vafai 
[88] 

Contd. on next page 
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Table 1.2 - Contd. 

Sl. 
No. 

Geometry, Flow Field, Thermal Field and 
other Features in Brief Description 

Boundary 
Conditions 

Reference 

6 Parallel plate channel with alternate porous 
cavity-block obstacles on the bottom plate, 
hydrodynamically developing, two-
dimensional flow employing Navier-Stokes 
equations and Darcy-Brinkman-Forchheimer 
model in fluid and porous regions respectively. 
Developing thermal field, axial conduction 
included. Stream function-vorticity 
formulation. Numerical solution. 

Constant wall 
temperature 

Huang and Vafai 
[89] 

 

 

 

7 Flow over intermittently emplaced porous 
cavities, two-dimensional hydrodynamically 
developing flow employing Navier-Stokes 
equations and Darcy-Brinkman-Forchheimer 
model in fluid and porous regions respectively. 
Developing thermal field, axial conduction 
included. Numerical solution. Stream function-
vorticity formulation. 

Constant wall 
temperature 

Vafai and Huang 
[90] 

8 Vertical parallel plate channel with porous 
substrates attached to both the walls, 
hydrodynamically developing two-
dimensional, mixed convection flow 
employing Navier-Stokes equations and 
Darcy-Brinkman-Forchheimer model in fluid 
and porous regions respectively. Developing 
thermal field, axial conduction included. 
Numerical solution. 

Constant wall 
temperature 

Chang and 
Chang [91] 

9 Pulsating flow through a circular pipe with a 
porous layer attached to inside of the pipe. 
Navier-Stokes equations and Darcy-Brinkman-
Forchheimer equations have been employed. 
Axial conduction neglected.  

Constant wall 
heat flux 

Guo, Kim and 
Sung  [92] 

Contd. on next page 
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Table 1.2 - Contd. 

Sl. 
No. 

Geometry, Flow Field, Thermal Field and 
other Features in Brief Description 

Boundary 
Conditions 

Reference 

10 Vertical tube with a porous layer attached to 
inside of the tube, hydrodynamically 
developing, two-dimensional, mixed 
convection flow employing Navier-Stokes 
equations and Darcy-Brinkman-Forchheimer 
model in fluid and porous regions respectively. 
Developing thermal filed, axial conduction 
included. Numerical solution. 

Constant wall 
temperature 

Chang, Dai and 
Chang [93] 

11 Performance enhancement of a double-pipe 
heat exchanger, by inserting porous substrates 
at inner and on outer sides of the inner pipe 
has been numerically studied Navier-Stokes 
and Darcy-Brinkman-Forchheimer equations.   

Constant wall 
temperature 

Alkam 

and  

Al-Nimr [94] 

12 Circular duct with a porous substrate attached 
to the duct wall, fully developed flow 
employing Darcy-Brinkman-Forchheimer 
model in the region. Developed thermal field. 
Two boundary conditions have been 
considered. 

Constant wall 
temperature, 

constant wall 
heat flux 

Kuznetsov 

 and  

Xiong [95] 

13 Parallel plate channel with porous layer 
attached to bottom wall. Hydro dynamically 
and thermally developing flow. Darcy-
Brinkman-Forchheimer model in the porous 
region has been employed. Boundary layer 
approximation has been made for both flow 
and thermal fields.  

Constant wall 
temperature 

Alkam,  Al-Nimr 
and Hamdan  

[96] 

14 Effect of local inertial term on unsteady fully 
developed flow through a parallel plate 
channel with the porous layer attached to top 
wall has been numerically studied employing, 
Poiseuille and Darcy-Brinkman Forchheimer 
descriptions.  

 Abu-Hijleh and  

Al-Nimr [97] 

 

Contd. on next page 
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Table 1.2 - Contd. 

Sl. 
No. 

Geometry, Flow Field, Thermal Field and 
other Features in Brief Description 

Boundary 
Conditions 

Reference 

   15 Circular pipe with a porous layer attached to 
inside of the pipe. The porous insert is attached 
at the pipe wall and extends inward, toward the 
centerline. The flow and thermal field are fully 
developed. Darcy-Brinkman-Forchheimer 
equation in the porous region. Numerical 
solution. 

Constant 
wall heat 
flux 

Habibollah and 
Hossein [98] 
 

16 Circular pipe with 1) a porous layer attached to 
the tube wall and 2) placed at the center. Fully 
developed flow and thermal fields have been 
assumed in both the regions. Darcy-Brinkman-
Forchheimer description has been employed in 
the porous region. Developed thermal field. 
Numerical solution. 

Constant wall 
temperature, 

constant wall 
heat flux 

Kim et al. [99] 

17 Multiple porous-covering heated blocks, 
hydrodynamically developing flow employing 
Navier-Stokes equations and Darcy-Brinkman-
Forchheimer model in fluid and porous regions 
respectively. Developing thermal field. Stream 
function-vorticity method. Numerical solution. 

Two walls are 
insulated 

Huang et al. 
[100] 

18 Parallel plate channel with porous insert at the 
entry of the channel, hydrodynamically 
developing flow employing Navier-Stokes 
equations and Darcy-Brinkman-model in the 
fluid and porous regions respectively. 
Developing thermal field. Numerical solution. 

Constant wall 
temperature 

Keyhani, Karimi 
and Nazari [101] 

19 Circular pipe with a porous layer attached to 
inside of the pipe. The flow in the porous and 
fluid regions is fully developed. Darcy-
Brinkman-Forchheimer equation in the porous 
region. Developed thermal field. Numerical 
solution. 

Constant wall 
heat flux 

Sayehvand and 
Shokouhmand 
[102] 

Contd. on next page 
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Table 1.2 - Contd. 

Sl. 
No. 

Geometry, Flow Field, Thermal Field and 
other Features in Brief Description 

Boundary 
Conditions 

Reference 

20 Circular channel with i) a porous insert is 
placed adjacent to the pipe wall, and ii) a 
cylindrical element of porous material is 
inserted at the centre. Hydrodynamics of 
unsteady fully developed flow employing 
Poiseuille and Darcy-Brinkman equations in 
the fluid and porous regions respectively has 
been analytically studied . 

 Alkam 

and 

Al-Nimr [103] 

   21 Circular pipe with 1) porous material has a 
cylindrical shape placed at the centerline of the 
pipe 2) the porous material has an annular 
shape, 3) a cylindrical shape placed at the pipe 
inlet. Fully and thermal fields are developing. 
Darcy-Brinkman-Forchheimer description has 
been employed in the porous region. 
Numerical solution. 

Constant 
wall heat 
flux 

Mohamed , 
Maghlany and 
Dawood[104] 
 
 
 
 
 

   22 Circular pipe with partially filled with porous 
media, Brinkman–Forchheimer-extended 
Darcy model is employed for the region of 
porous medium. Flow and thermal fields are 
developing. Numerical solution. The new 
axisymmetric lattice Boltzmann model is used. 

Constant 
wall 
temperature 

Fumei et 
al.[105] 
 

   23 Two configurations, (1) fully filled with a 
porous channel, and (2) partially porous 
channel. Hydrodynamically and Thermally 
developing. Darcy-Brinkman Forchheimer 
equation is used in the porous region. 
Numerical solution.  

Lower wall 
is subjected 
to constant 
wall heat 
flux 

Hadim[106] 
 

   24 Parallel plate channel partially filled with a 
porous material with porous insert is placed at 
bottom wall of the channel walls. Darcy 
equation in the porous region. The flow and 
thermal fields are  developed. Analytical 
solution. 

Constant 
wall heat 
flux 

Kuznetsov and 
Nield[107] 
 

 
 
 

Contd. on next page 
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Table 1.2 - Contd. 

Sl. 
No. 

Geometry, Flow Field, Thermal Field and 
other Features in Brief Description 

Boundary 
Conditions 

Reference 

  25 Parallel plate channel with 1) porous material 
is attached to one of the walls of the channel, 
2) distributed equally at the two walls, and 3) 
placed as one insert in the middle of the 
channel. Flow and thermal fields are 
developed. Analytical solution. 

Constant  
wall heat 
flux 

Bhargavi and 
Satyamurty 
[108] 
 

  26 Parallel plate channel partially filled with a 
porous material with porous insert is placed at 
the center of the channel. Darcy-Brinkman-
Forchheimer equation in the porous region.  
Flow and thermal fields are developed. 
Analytical  and numerical solutions. 

Constant 
wall heat 
flux 

Cekmer et al. 
[109] 
 

27 Inclined parallel plate channel partially filled 
with porous material. Darcy-Brinkman 
equation in the porous region. Flow and 
thermal fields are  developed. Analytical 
solution. 

Constant 
different 
temperatures 

Malashetty, 
Umavathi and 
Prathap Kumar 
[110] 
 

28 A three dimensional channel partially filled 
with porous material. Darcy-Brinkman 
equation in the porous region Flow and 
thermal fields are  developing. Numerical 
solution. 

Isothermal  Tien and Yan 
[111] 
 

29 Parallel plate channel with 1) porous material 
is distributed equally at the two walls, and 2) 
placed at centre of the channel. Darcy- 
Forchheimer equation in the porous region. 
Flow and thermal fields are  developing.  

Constant 
wall 
temperature. 

Shokouhmand, 
Jam and 
Salimpour [112] 
 

30 Parallel plate channel partially filled with a 
porous insert with porous insert is attached to 
the lower plate of the channel. Darcy-
Brinkman equation in the porous region. Flow 
and thermal fields are developing. Numerical 
solution. 

Constant 
wall 
temperature 

Madera et al. 
[113] 
 

31 Circular pipe with 1) porous material is 
inserted at the core of the pipe, and 2) annulus 
porous material is attached to the inner wall. 
Darcy-Brinkman-Forchheimer equation in the 
porous region. Flow and thermal fields are  
developing. Numerical solution. 

1) Constant 
wall 
temperature  
2)Constant 
wall heat 
flux 

Maerefat, 
Mahmoudi  and 
Mazaheri [114] 
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1.6    Magnetohydrodynamics (MHD) 

In recent years, the study of Magnetohydrodynamic (MHD) flow and heat transfer for a 

viscous incompressible fluid over a plate has immense applications in engineering and 

industrial problems such as petroleum industries, plasma studies, geothermal energy 

extractions and many others. Magnetohydrodynamics is a branch of continuum 

mechanics which deals with the motion of an electrically conducting fluid in the presence 

of a magnetic field. The motion of conducting material across the magnetic lines of force 

creates potential differences which in general cause electric currents to flow. The 

magnetic fields associated with these currents modify the magnetic field which creates 

them. On the other hand, the flow of electric current across a magnetic field associated 

with a body force, called Lorentz force, influences the fluid flow.  

 

        Raju et al. [115] studied MHD forced convective flow of a viscous fluid of finite 

depth in a saturated porous medium over a fixed horizontal channel with thermally 

insulated and impermeable bottom wall in the presence of viscous dissipation and Joule 

heating.  Sharmilaa and Saranya [116] studied the effect of magnetic field in a fully 

developed forced convection through a porous medium bounded by parallel plate 

channel, with the inclusion of boundary and inertial effects. The effect of magnetic field 

on fluid flow through various geometries under different conditions have been studied by 

several authors, among whom were Kurzweg [117], Gulab Ram and Mishra [118],  

Raptis and Kafousias [119], Raptis and Perdikis [120], Manju et al. [121] and Vineet 

Kumar and Amit Kumar [122]. 
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          Baoku, Israel-Cookey and Olajuwon [123] studied the effects of thermal radiation, 

magnetic field and thermal conductivity on Couette flow of a high viscous fluid with 

temperature dependent viscosity through a porous channel and they obtained numerical 

solution using finite difference methods. Varshney, Katiyar and Kumar [124] analyzed 

the effect of the externally applied transverse magnetic field which enhances flow 

resistance.   

 

         Many investigators{Ashish, Satya and Filippov [125], Ghofrani et al. [126], 

Sheikholeslami, Rashidi and Ganji [127] and  Sheikhnejad, Hosseini and Majid Saffar 

[128], Takhar and Beg [129], Barletta et al. [130], Guven, Aytac and Ibrahim [131], 

Sahar [132], Srivastava and  Satya [133] and Jhankal, Jat and Kumar [134]} studied the 

interaction of forced convection with porous medium/magnetic field in view of its 

importance in engineering applications.  

 

1.7   Viscous Dissipation in Flows Through Porous Media 

Production of thermal energy through the mechanism of viscous stresses is encountered 

in both the viscous flow of clear fluids and the fluid flow within porous media. The effect 

of the heat released by viscous dissipation can be significant when a non-dimensional 

parameter, the Brinkman number, 2(  ) / ( )f ref fBr u k Tµ= ∆  is high. Considering that the 

effective viscosity can be significantly higher {see, Givler and Altobellis [22]} than fluid 

viscosity when it flows through the porous medium, the Brinkman number shall be 
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considerably higher compared to that for clear fluid flows. Present day applications 

involving flow through porous media, call for including viscous dissipation effects in the 

conservation of energy equation. Some of them may generically be described as internal 

flows, say, flow through a porous material fully or partially filled pipes, channels and, in 

general, ducts. If the effective fluid viscosity is high or temperature differences are small 

or kinetic energy is high, viscous dissipation can be expected to be significant. An 

account of the importance of dissipation can be found in Vafai [50]. 

 

1.7.1   Dissipation Modeling 

The form of the dissipation function Φ  for flows through porous media is not unique. In 

deriving the conservation of {as in say, Al-Hadhrami, Elliott and Ingham [135 and 136], 

or Schlichting and Gersten [137] for more generality} thermal energy equation for clear 

fluid flows, mechanical energy equation is subtracted from the overall conservation of 

energy equation. Different models proposed by different researchers/investigators for the 

dissipation function for porous media, have not always been compatible with the 

momentum equation actually used in such investigations. The five forms of the 

dissipation function, Φ , available in the literature for flow through porous media for 

unidirectional flow are as following.  

Bejan [49]: 2( / )f K uµΦ =                    (1.12)    

Takhar and Beg [129] and Takhar, Soundalgekar and Gupta [138]:  

2( / )f u yµΦ = ∂ ∂                (1.13)   
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Murthy and Singh [139]: 2'[( /K) ( / ) ]fu u K K uµ ρΦ = +                   (1.14) 

Nield [140]: 2 2 2( / ) ( / )f effK u u d u dyµ µΦ = −               (1.15)            

Al-Hadhrami et al. [135 and 136]: 2 2( / ) + ( / )f effK u du dyµ µΦ =                (1.16) 

 

1.7.2   Forced Convection in Channels Filled with Porous Material with 

Viscous Dissipation 

A general review of the dissipation models in porous media has been developed and the 

background is available in Nield and Bejan [48]. When the thermal energy equation 

includes a viscous dissipation term involving the Brinkman number, Nield [141] termed 

it as Brinkman-Brinkman problem. The different dissipation functions that have been 

proposed are given by Eqs. (1.12) to (1.16).  

 

 A summary of the literature on convective heat transfer through porous media, 

including dissipation, along with the model employed is given in Tables 1.3. Dissipation 

function employed in column number 2 is indicated by the reference number.  
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Table 1.3: A Summary of Literature on Convective Heat Transfer through Porous Media Including 
Dissipation 

Sl. 
No. 

Geometry, Flow Field, Thermal Field , other 
Features in Brief and Dissipation Function, Φ  

Boundary 
Conditions Reference 

1 Vertical plate channel. Numerical solution for fully 
developed free and forced convection flow 
employing Darcy model. Axial conduction included 
in the energy equation. [49] 

Equal and 
unequal 
wall 
temperature 

Ingham 
and Pop 

[142] 

2 Vertical plate. Steady mixed convection flow 
employing Darcy-Forchheimer model. Boundary 
layer approximation has been made in the energy 
equation. Effect of thermal dispersion and viscous 
dissipation are studied. [139] 

Isothermal 
wall 
temperature 

Murthy 
[143] 

3 Vertical Plate. Analytical solution for two-
dimensional mixed convection employing Darcy-
Forchheimer model. Boundary layer approximation 
has been made in the energy equation. [139] 

Isothermal 
wall 
temperature 

Tashtoush 

[144] 

4 Circular duct filled with porous material, fully 
developed flow with Darcy Brinkman model. 
Developing thermal field, including axial conduction. 
A modified Graetz methodology. Three models have 
been evaluated. [49], [135 and 136] and [140] 

Constant 
wall 
temperature 

Nield, 
Kuznetsov 
and Xiong 

[145] 

5 Vertical plate. Analytical solution for steady free 
convection employing Darcy model. Boundary layer 
approximation has been made in the energy equation. 
[49] 

Constant 
wall 
temperature 

Rees, 
Magyari 

and 
Keller 
[146] 

6 Porous material bounded by parallel plate channel, 
fully developed flow and thermal fields, with Darcy-
Brinkman model. Different dissipation models shown 
to yield almost the same results for small Darcy 
number. [49], [135 and 136] and [140] 

Constant 
wall 
temperature 
and 
constant 
wall heat 
flux 

Nield, 
Kuznetsov 

and 
Xiong 
[147] 

 

Contd. on next page 
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7 Circular pipe filled with porous material, fully 
developed flow with Darcy-Brinkman model. 
Developed thermal field. Analytical solution using 
perturbation method. [49] 

Constant 
wall 
temperature 

Hooman 
and 

Ranjbar-
Kani [148] 

8 Vertical channel. Numerical solution for mixed 
Convection employing Darcy-Brinkman-
Forchheimer model. Boundary layer approximation 
has been made in the energy equation. [135 and 136] 

Isothermal 
and Isoflux  

Umavathi 
et al. 
[149] 

9 Porous material filled parallel plate channel, fully 
developed flow with Darcy-Brinkman model. 
Developed thermal field. Analytical and numerical 
solutions have been obtained. [49], [135 and 136] and 
[140] 

Unequal 
Constant 
wall 
temperature 

Mahmud 
and Fraser 

[150] 

10 Porous material filled parallel plate channel, fully 
developed flow with Darcy model. Developed 
thermal field. The limiting Nusselt number is 
independent of the Brinkman number. [49] 

Constant 
wall 
temperature 

Hooman 
and Gorji-
Bandpy 
[151] 

11 Pipes and channels partially (porous insert has been 
placed symmetrically at the center) and fully filled 
with porous material. Two-dimensional, developing 
flow field with Darcy-Brinkman-Forchheimer model 
with convective terms. Developing thermal field 
included axial conduction. Included viscous 
dissipation to estimate entropy generation. [139] 

Constant 
wall 

temperature 

Morosuk 
[152] 

   12 Circular duct filled porous material, fully developed 
flow with Darcy Brinkman model. Developing 
thermal field included axial conduction and viscous 
dissipation. Analytical solution. [49], [135 and 136] 
and [140] 

Constant 
wall 

temperature 

Kuznetsov, 
Xiong and 
Nield [153] 

   13 Circular duct filled with porous material, Darcy 
Brinkman model. Developing thermal field included 
axial conduction and viscous dissipation. Numerical 
solution.[49] 
 

Constant 
wall heat 

flux  

Hooman, 
Pourshaghag
hy and  
Ejlali [154] 

                                                                                                            
                                                                                                             Contd. on next page 
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  14 Porous material filled parallel plate channel, fully 
developed flow with Darcy-Brinkman-Forchheimer 
model. Developing thermal field included axial 
conduction and viscous dissipation. Three viscous 
dissipation models are studied. Analytical solution 
and numerical solution. [49], [135 and 136] and 
[140] 

Constant 
wall 

temperature 
and constant 

wall heat 
flux 

Hooman and 
Gurgenci 
[155] 

  15 Circular tube filled with porous material parallel 
plate channel, fully developed flow with Darcy 
Brinkman model. Developed thermal field included 
and viscous dissipation. Analytical solution. [129] 
and [138] 

Constant 
wall heat 

flux 

Shigeru and  
Koichi 

Ichimiya 
[156] 

  16 Porous material filled parallel plate channel, fully 
developed flow with Darcy-Brinkman model. 
Developed field included viscous dissipation. 
Analytical solution. [129] and [138] 
 
 

Lower wall 
with constant 
heat flux, the 
upper wall is 

fixed and 
adiabatic. 

Olaseni and 
Philip [157] 

 

1.8   Lacunae in the Past Studies on Laminar Forced Convection 

in Parallel Plate Channels Filled with Porous Material 

The focus of the present study has been to examine forced convection through channels 

partially or fully filled with porous material owing to a number of present day applications 

such as fuel cells, solar absorbers and catalytic converters. As mentioned earlier, channels 

partially filled with porous material may be geometry of interest for a device or the porous 

insert has been included to enhance heat transfer. Forced convection in porous material 

filled ducts gives an opportunity to enhance heat transfer not only by providing a tortuous 

path but also by providing a scope to manipulate the effective thermal conductivity. On the 

basis of earlier studies, {Hamdan, Al-Nimr and Alkam [81], Alkam, Al-Nimr and Hamdan 
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[82], Huang and Vafai [86 and 87] and Bhargavi, Satyamurty and Raja Sekhar [45], 

Bhargavi and Satyamurty [108] and Satyamurty and Bhargavi [158]}, partially filled 

channels leads to higher increase in Nusselt number than fully filled channel compared to 

clear fluid flow configuration. A cautious interpretation of the improvement or otherwise 

of heat transfer needs to be made, when effects such as axial conduction and viscous 

dissipation are included.  

 

 The studies available in the literature involving forced convection in porous 

material filled channels are reasonably comprehensive within the frame work of two-

dimensional flow and temperature fields. However, there is no unanimity in viscous 

dissipation modeling for the flows through porous media. Further, studies that include 

dissipation in flows through channels partially filled with porous material, to the best 

knowledge of the author, have not been reported widely, particularly in the context of heat 

transfer enhancement. Morosuk [152] studied pipes and channels partially (porous insert 

has been placed symmetrically at the center) and fully filled with porous material. Morosuk 

[152] included viscous dissipation to estimate entropy generation. In order to fill some of 

the lacunae, the present investigations have been taken up. Specific aspects investigated in 

this thesis are given in § 1.10 on the scope and objectives of the present thesis.  

 

1.9  Numerical Method 

The studies which are proposed to be undertaken involve obtaining numerical solutions to 

two-dimensional conservation of energy equation, including axial conduction and viscous 
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dissipation and these are computationally intensive even within the framework of 

developed velocity field. When axial conduction is included, the conservation of thermal 

energy equation is elliptic in nature. Applying the downstream boundary condition at a 

priori unknown axial distance makes the process of arriving at a  solution an iterative 

process. Some of the numerical techniques that have been employed extensively for the 

class of internal flows considered are as follows. The energy conservation equation with 

boundary layer approximation was solved by Habchi and Acharya [159] using implicit 

finite-difference scheme. Numerical solutions to the full Navier-Stokes and energy 

equations have been obtained by Naito and Nagano [160] using Successive Over-

Relaxation (SOR) method. Nguyen [10 and 161] used Alternating Direction Implicit 

(ADI) [11 and 12] and Quadratic Upwind Interpolation for Convective Kinematics 

(QUICK) [13] methods, to solve Navier-Stokes and energy equations in the finite 

difference form. SIMPLER (Semi-Implicit Method for Pressure Linked Equations-

Revised) algorithm [162] with a staggered grid system was employed by Jeng, Chen and 

Aung [163]. Crank-Nicholson semi-implicit scheme was used by Krishnan and Sastri 

[164] to solve the energy equation. Discretized momentum and energy equations have 

been solved by Min et al. [165] using a line-by-line, TDMA, Tri-Diagonal Matrix 

Algorithm [166] while the pressure equation has been solved using a line SOR.  

 

 The Successive Accelerated Replacement (SAR) scheme has been employed 

successfully for a wide class of problems by a group of researchers at Energy Systems 

Laboratory, of Mechanical Engineering Department, IIT Kharagpur, India. SAR scheme 
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is essentially non-linear over relaxation method due to Lew [167], Lieberstein [168] and 

Dellinger [169]. Lew [167] and Dellinger [169] applied the SAR scheme for solving non-

linear ordinary differential equations. Dellinger’s scheme differs from the non-linear over 

relaxation method essentially in choosing the relaxation factor. Satyamurty [170] 

demonstrated the applicability of the SAR scheme for solving a system of partial 

differential equations in the study of two-dimensional natural convection heat transfer in 

porous media. This scheme has been extensively applied by Satyamurty and Marpu 

[171], Marpu and Satyamurty [172], Satyamurty and Marpu [173], Marpu and 

Satyamurty [174], Marpu [175], Sharma [176], Prakash Chandra [177] and Satyamurty 

and Prakash Chandra [178]. More recently the method has been employed for forced 

convection studies by Ramjee and Satyamurty [15], Satyamurty and Bhargavi [158],   

and Jagadeesh and Satyamurty [179] SAR scheme has been chosen to obtain numerical 

solutions to the problems studied in the present thesis.  

Philosophy of Successive Accelerated Replacement (SAR) 

The basic philosophy of the SAR scheme is to guess a profile for each variable that 

satisfies the boundary conditions. Let the partial differential equation governing a 

variable, φ (X, Y), expressed in finite difference form given by , 0M Nφ = . (M, N) represent 

the nodal point when the non-dimensional height and length of the channel are divided 

into a finite number of intervals MD and ND respectively. The guessed profile for the 

variable φ  at any mesh point, in general, will not satisfy the equation. Let the error in the 

equation at (M, N) and at kth iteration be k

,M Nφ . 
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 The (k+1)th approximation to the variable φ  is obtained from, 

 ( ){ }k kk 1 k
, ,, , ,M N M NM N M N M Nφ φ ω φ φ φ+ = − ∂ ∂        (1.17) 

In Eq. (1.17), ω is an acceleration factor which varies between 0 < ω < 2. ω < 1 

represents under-relaxation and  ω > 1 represents over relaxation.  

 

 The procedure for correcting the variable φ  at each mesh point in the entire 

region of interest is repeated until a convergence criterion is satisfied. The criterion is that 

the normalized change in the variable at any mesh point between kth and (k+1)th 

approximation satisfies, 

( )k k 1
, ,1 M N M Nφ φ +− <  εt        (1.18) 

where εt, the error tolerance limit, is a prescribed small positive number. To correct the 

guessed profiles, each dependent variable has to be associated with one equation. It is 

natural to associate the equation that contains the highest order derivative of that variable.  

 

1.10   Scope and Objectives 

The objective of the present study is to study laminar forced convection in channels 

partially filled with porous material. In particular, the effects of axial conduction and 

viscous dissipation have been evaluated in the thermally developing region of the flow. 
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 The scope includes employing fully developed flow field corresponding to 

Poiseuille flow in the clear fluid region and Darcy-Brinkman model in the porous region. 

Thermal field has been considered to be developing and a two-dimensional description 

has been employed in both the porous and fluid regions. Varying degrees of 

approximation to describe the temperature field have been made in different studies 

reported in Chapters 2  to 7. The effects of viscous dissipation on heat transfer have been 

evaluated considering three dissipation models; those of the Darcy model due to 

Bejan[49], Eq. (1.12) , form drag model due to Nield [140],  Eq. (1.15) and that of clear 

fluid compatible model given by Al-Hadhrami et al. [135 and 136], Eq. (1.16). 

 

The physical model is that of a channel formed by parallel plates, H distance 

apart. The fluid enters at an average velocity of uref  and a temperature of Te. The plates at 

y = ± H/2 are subjected to constant heat flux, q or constant temperature Tw. The channel is 

partially filled with a porous material of thickness lp. The total thickness of the porous 

material adjacent to the plates is lp. The porous fraction is defined by  γp = lp/ H.  

 

The following topics, which form the subject matter of chapters 2 to 7 of the 

present thesis, have been studied. 

 Analytical investigation of laminar forced convection in a channel partially filled 

with porous material subjected to constant wall heat flux. 

 Analytical study of  forced convection in a channel partially filled with porous 

material with effect of magnetic field subjected to constant wall heat flux. 
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 Analytical investigation of laminar forced convection with viscous dissipation in 

parallel plate channels partially filled with a porous material at the conduction 

limit. 

 Effect of heat transfer in the thermally developing region of the channel partially 

filled with a porous medium: constant wall heat flux. 

 Effect of axial conduction in the thermally developing region of the channel 

partially filled with a porous medium: constant wall heat flux. 

 Effect of viscous dissipation and axial conduction in the thermally developing 

region of the channel partially filled with a porous material subjected to constant 

wall heat flux. 

 

It has been assumed that the effective and fluid viscosities are equal throughout 

the studies reported here. Similarly, it has also been assumed that effective thermal 

conductivity is equal to fluid thermal conductivity. The flow field has been assumed to be 

fully developed in all the investigations reported in the present thesis. This assumption 

has been made to facilitate obtaining analytical solutions in certain cases and for ease in 

obtaining numerical solutions when the thermal field is developing. 

 

 Studies on laminar forced convection in hydrodynamically and thermally 

developed flow between the parallel plates partially filled with the porous medium have 

been presented in Chapter 2. The given amount of porous material porous layer has been 

distributed equally at the two walls. The channel walls are subjected to constant heat flux. 
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A porous material of thickness lp/2 is attached to both the walls of the channel. The 

problem is characterized by Darcy number, Da, Reynolds number, Re, and the porous 

fraction, γp. Analytical expressions for the non-dimensional velocity and temperature 

profiles in the porous and clear fluid regions have been obtained. From the velocity and 

temperature expressions, the fully developed skin friction coefficients and the Nusselt 

numbers on the porous wall have been obtained analytically.  

 

Studies on laminar forced convection in hydrodynamically developed and thermally 

developed flow between the parallel plates partially filled with the porous material have 

been presented in Chapter 3. The parallel plates have been subjected to uniform heat flux. 

In addition to the parameters, /p pl Hγ = , Da = K/H2 and /ref fRe u Hρ µ= , the problem 

is characterized by the Hartmann number, 
2 2

0

f

B HM σ
µ

= . Analytical solution has been 

obtained and closed form expressions have been derived for velocity, skin friction 

coefficient and temperature profiles in the porous and fluid regions and for the Nusselt 

number in the porous region. It has been shown that the analytical expressions yield the 

standard values for the Hartmann number, M  = 0 {absence of magnetic field)} for all 

porous fractions γp , 0 ≤ γp ≤ 1.0.   

 

 Enhancement in the fully developed Nusselt number for parallel plate channel 

flow subjected to constant wall heat flux and constant wall temperature with porous 

inserts distributed equally at the two walls of the channel for the three dissipation models 
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has been studied in Chapter 4,. The three dissipation models are 1) the Darcy model, 2) 

form drag model and 3) clear fluid compatible model in the porous region. Two boundary 

conditions are considered. Channel walls are subjected to (i) constant wall heat flux and 

(ii)  constant wall temperature. Analytical expressions for limiting temperature profile 

and limiting Nusselt number plots are obtained. Limiting temperature profile and limiting 

Nusselt number depend on the Brinkman number for the constant wall heat flux boundary 

condition. Nusselt numbers in the conduction limit have been found to be independent of 

the Brinkman number, a feature well reported for clear fluid channels, see Barletta [9] for 

the constant wall temperature boundary condition. 

 

 Studies on laminar forced convection in hydrodynamically developed and thermally 

developing flow between the parallel plates partially filled with the porous material have 

been presented in Chapter 5. The parallel plates have been subjected to uniform heat flux. 

Numerical solutions to the conservation of thermal energy equation without axial conduction 

in the porous and fluid regions have been obtained for 0 1.0pγ≤ ≤ and Da = 0.001, 0.005, 

0.01, 0.05 and 0.1, applying successive acceleration replacement (SAR) scheme [15, 158 and 

179]. When axial conduction is neglected Peclet number does not appear explicitly in the 

conservation of the thermal energy equation expressed in terms of the normalized non-

dimensional axial distance X*.  

 

 Extensive numerical trials have been conducted and the following values for the 

parameters involved have been found to be satisfactory. a) The acceleration factor, 0.5 ≤ 
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ω ≤ 1.5  b) Error tolerance limit, εt = 10−4, 10−5, 10−6 and 10−7 c) Number of divisions in 

the Y direction, 60 100ND≤ ≤  (uniform) and d) Non-uniform divisions in the axial 

direction, 1000 8000MD≤ ≤ . The non-uniform grids have been generated in geometric 

progression.  

 

Based on the numerical trials conducted, the following values for the parameters 

have been employed in obtaining numerical solutions presented.  a) Acceleration factor ω 

≤ 1 has been determined as per Eqs. (5.17) and (5.20) b) Error tolerance limit, εt = 10−5 c) 

*
fdX  = 0.4  d) MD = 1000 with *

MX∆  generated in geometric progression with c = 1/8 in 

Eq. (5.51) and  e) ND = 90 with 1/ 90Y∆ = .  

 

 The values of the local Nusselt numbers when the channel is a clear fluid channel and 

when the channel is fully filled with a porous material agree well with the values available in 

Shah and London [18] and Nield et al. [57 and 58]. The local Nusselt number Nupx decreases 

as X* increases for all γp and Da, and reaches the fully developed values for X* = 0.4.  Nupx is 

a minimum when γp ≈ 0.6 at low Da = 0.005. Thus, there exists an optimum porous fraction 

to attain minimum enhancement in the Nusselt numbers.  

 

 The effect of axial conduction in hydrodynamically developed and thermally 

developing region of parallel plate channels partially filled with a porous material has 

been studied numerically in Chapter 6. The parallel plates have been subjected to 

constant heat flux. In addition to the parameters, γp, Da and Re = (uref H)/ν, the problem is 
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characterized by the Peclet number, /ref fPe u H α= , where fα  is the thermal diffusivity 

of the fluid. Numerical solutions to the conservation of thermal energy equation with 

axial conduction in the porous and fluid regions have been obtained for 0 ≤ γp ≤ 1.0, 5 ≤ 

Pe ≤ 100 and Da = 0.001, 0.005, 0.01, 0.05 and 0.1, applying the Successive Acceleration 

Replacement (SAR) scheme [15, 158 and 179]. When axial conduction is neglected, the 

Peclet number does not appear explicitly and this case is denoted by Ac = 0. 

 

       It has been concluded that the non-dimensional temperature profiles become 

independent of the Peclet number for Pe ≥ 100 indicating that the effect of axial 

conduction has become negligible. The downstream condition satisfied by the clear fluid 

ducts */b Xθ∂ ∂  → 0, has been found to be valid for parallel plate channels partially filled 

with porous material also. This feature assumes importance since the flow and thermal 

fields are not symmetric when the channel is partially filled with porous material. Non-

dimensional bulk mean temperature excess of wall temperature, *
wθ θ− , increases as X* 

increases. *
wθ θ−  decreases as Peclet number decreases. This indicates that a stronger 

axial conduction effect present at lower Peclet numbers makes the fluid less heated or 

less cooled compared to when axial conduction is neglected. The local Nusselt number 

Nupx decreases as X* increases for all γp and reaches the fully developed values for X* ≥ 

0.4. 
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 Laminar forced convection including viscous dissipation in the thermally 

developing region of parallel plate channels partially filled with porous material, when 

the parallel plates have been subjected to constant wall heat flux, has been numerically 

investigated employing the SAR scheme [15, 158 and 179] in Chapter 7. The two 

dissipation models have been employed in the porous region. Br > 0 represents fluid 

getting cooled and Br < 0 shows fluid getting heated. Two dissipation models, namely, a) 

Darcy model due to Bejan [49] and b) clear fluid compatible model due to Al-Hadhrami 

et al. [135 and 136] have been employed in the porous region. The conventional 

dissipation function {see, Schlichting and Gersten [137]} has been employed in the fluid 

region. Numerical solutions have been obtained neglecting axial conduction and 

including axial conduction terms in the energy equation for Pe = 5, 25 and 100. Ranges 

for the other parameters are, 0 ≤ γp ≤ 1.0,  0.005 ≤ Da ≤ 0.01 and −1.0 ≤ Br ≤ 1.0. 

 

 Nusselt number displays an unbounded swing at some X* = *
swX  when Br < 0. 

*
swX , decreases as Br decreases, i.e., for larger negative values of Br. The limiting values 

of the Nusselt numbers (for large X*) on the fluid and porous sides, Nupx are dependent on 

Br for all Br ≠ 0 in the developing region also. These limiting values depend on the 

porous fraction too. Nupx, decreases as X* increases for all porous fractions when Br > 0.  

In chapter 8, we have given conclusions of all chapters. 

 

 A summary of the studies presented and the important conclusions drawn from 

the present studies have been recorded in Chapter 8. 



40 

 

Chapter 2 

Analytical Investigation of Laminar Forced Convection 

In a Channel Partially Filled with Porous Material 

Subjected to Constant Wall Heat Flux 
 

 

2.1 Introduction 

Fluid flow and heat transfer in channels partially filled with porous media mainly depend 

on the porous fraction, permeability, porosity (or the ratio of effective viscosity in the 

porous region to the fluid viscosity), the flow (fully developed or developing), the 

thermal boundary conditions at the channel walls, and the interfacial boundary 

conditions. 

 

 The objective of the present chapter is to study the hydrodynamic and thermal 

field characteristics for flow through a channel partially filled with a porous material. The 

flow in the porous material is described by the Brinkman–extended Darcy equation. The 

problem is characterized by the porous fraction and Darcy number. The objectives have 

been set to examine the establish the optimum porous fraction for maximum 

enhancement in the Nusselt number.  In the present chapter, it is assumed that both the 

flow and the thermal fields are developed and the channel walls are subjected to constant 

heat flux. These assumptions enable obtaining analytical solutions for the flow and 

temperature fields. 
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2.2 Mathematical Formulation  

The physical model and the coordinate system, of a channel formed by parallel plates, H 

distance apart, are shown in Fig. 2.1. x is the axial distance and y is normal to the flow 

direction measured from the center line of the channel. As per the coordinate system, the 

plates are at / 2y H= ± . The total thickness of the porous material, adjacent to the plates 

at / 2y H= ± , is lp. It is assumed that the flow and thermal fields are fully developed and 

the fluid enters the channel with a uniform temperature of Te. The parallel plates have 

been subjected to a constant heat flux, q. The problem has been studied assuming 

laminar, steady, incompressible flow of a Newtonian fluid. The fluid and the porous 

matrix are in local thermal equilibrium. The porous medium is homogeneous and 

isotropic.  Further, it is assumed that the pressure work is negligible and the thermo-

physical properties are constant. The flow in the fluid region is assumed to be governed 

by Poiseuille description, and in the porous region by Brinkman extended non-Darcy 

flow. 

                                                                                
(a) Dimensional                                                                (b) Non Dimensional 

Fig. 2.1:   Physical Model and Coordinate System. 
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Governing Equations 

Momentum Equation in Fluid Region : 

2

2
1f

f

d u dp
dy dxµ

=
 

(2.1) 

In Eq. (2.1), p is the pressure, fµ  is the dynamic viscosity and uf  is the velocity in the 

fluid region. 

Energy Equation in Fluid Region : 

2

2
f f

p f f

T T
C u k

x y
ρ

 ∂ ∂ 
=     ∂ ∂     

(2.2) 

In Eq. (2.2), Tf   is the temperature in the fluid region ρ, Cp and  kf  are the density, the 

specific heat and the thermal conductivity of the fluid respectively. 

Momentum Equation in Porous Region : 

2

2
eff p

p
f f

d uK dpu K
dx dy

µ
µ µ

= − +
 

(2.3) 

In Eq. (2.3), up is the velocity in the porous region, K is the permeability of the porous 

medium, μeff  is the effective viscosity associated with the Brinkman viscous term which 

may differ from fµ , the fluid viscosity.  

Energy Equation in Porous Region : 

2

2
p p

p p eff

T T
C u k

x y
ρ

 ∂ ∂ 
=     ∂ ∂     

(2.4) 

In Eq. (2.4), Tp is the temperature in the porous region and keff is the effective thermal 

conductivity of the porous medium. keff can be calculated from Catton [21] as 
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(1 )  eff s fk k kϕ ϕ= − +  (2.5) 

In Eq. (2.5), ϕ  is the porosity and ks is the thermal conductivity of the solid in the porous 

matrix. 

Eqs. (2.1) and (2.2) , applicable for the fluid region and Eqs. (2.3) and (2.4) for the 

porous region, are subjected to the following boundary and interfacial conditions. 

Boundary and Interfacial Conditions  

0pu = ,     p
eff

dT
k q

dy
− =

    
at     / 2y H= −  

(2.6) 

f p iu u u= =    ,  p f
eff f

du du
dy dy

µ µ=
            

 at  interface  2 2
plHy = − +

         

(2.7) 

f p iT T T= = ,      ( ) ( )/ /f f eff pk dT dy k dT dy=    at  interface  2 2
plHy = − +

          
 

(2.8) 

0,fdu
dy

= 0fdT
dy

=     at  0y =   {Symmetry boundary conditions}     
(2.9) 

It may be noted that the boundary conditions given by Eqs. (2.6) to  (2.9) for Fig. 2.1, are 

written for the half channel, making use of the symmetry.  

Non-dimensionalization 

Governing equations {Eqs. (2.1) to (2.4)} are rendered non-dimensional by introducing 

the following non-dimensional variables. 

/X x H= ,  /Y y H= ,  /f f refU u u= ,  /i i refU u u= , /p p refU u u= , 2/  
ref

P p uρ= , 

( ) /( / )f f e fT T qH kθ = − , ( ) /( / )p p e fT T qH kθ = −  

                

(2.10) 
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In Eq. (2.10), X and Y are the non-dimensional coordinates. U and P are the non-

dimensional velocity, and pressure. The subscripts f and p refer to fluid and porous 

regions. θ,{ fθ in the fluid region and pθ  in the porous region}, is the non-dimensional 

temperature. uref is the average velocity through the channel. uref  is related to pu and fu

by,  

02 2

/ 2
2 2

2
p

p

lH

p f ref
lH H

u dy u dy u
H

− +

−
− +

 
 

+ = 
 
 

∫ ∫
 

 (2.11) 

In addition, the non-dimensional porous layer thickness γp, which shall be referred to as 

porous fraction is defined by,  

/p pl Hγ =   (2.12) 

On introducing the non-dimensional variables given by Eq. (2.10), the governing 

equations for conservation of momentum and energy applicable in the fluid {Eqs. (2.1)

and (2.2)  }and porous {Eqs. (2.3) and (2.4) } regions in non-dimensional form become, 

Fluid Region: 

2

2
fd U dPRe

dY dX
=  

 (2.13) 

2

2

1f f
fU

X Pe Y
θ θ∂ ∂

=
∂ ∂  

 (2.14) 

In Eq. (2.13), Re, the Reynolds number and in Eq. (2.14), Pe, the Peclet number are 

defined by, 
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/ref fRe u Hρ µ=   (2.15) 

/ref fPe u H α=   (2.16) 

Porous Region : 

2

2   p
p

d UdP DaU ReDa
dX dYε

= − +
 

 (2.17) 

2

2

1
 

p p
pU

X Pe Y
θ θ

η
∂ ∂

=
∂ ∂  

 (2.18) 

In Eq. (2.17),  Da, the Darcy number is defined by, 

2/Da K H=   (2.19) 

In Eqs. (2.17) and (2.18) , ε and η are defined by,   

/f effε µ µ=  
 (2.20) 

/f effk kη =  
 (2.21) 

Non-dimensional Boundary Conditions 

The boundary and interfacial conditions given by Eqs. (2.6) to (2.9)  take the following 

non-dimensional form {using Eq. (2.10)} 

0pU = , pd
dY
θ

η
 

= − 
     

   at   1/ 2Y = −  
(2.22) 

f p iU U U= = ,  1 p fdU dU
dY dYε

=
    

at the interface     1
2 2

pY
γ

= − +  
(2.23) 



46 

 

f p iθ θ θ= = ,  f pd d
dY dY
θ θ

η
   

=   
   

 
  
 at the interface     1

2 2
pY

γ
= − +  

 (2.24) 

0,fdU
dY

=  0fd
dY
θ

=                         at          0Y =  
(2.25) 

 

2.3  Expressions for Non-dimensional Velocity and Skin 

Friction Coefficient 

2.3.1. Non-dimensional velocity Profiles 

Fluid Region: 

Upon solving Eq. (2.13) along with the boundary conditions given by Eq. (2.23) and 

(2.25)  velocity in the fluid region is obtained thus: 

( ){ }221( ) 8 4 1
8f i p grU Y U Y Pγ = + − − +    

 (2.26) 

where   

( )2 2 21 2 1 1 1

2 1

p p p

p

Da Da Da
p gr

i

Da

Da e Da e e P

U

e

γ γ γε ε ε

εγ

ε γ
       − − − − + −      

            =
 
+  

   

  

 (2.27) 

  and   
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( ) ( )

( ) ( )2

2 33/2

12 1

24 1 6 1 1 1 1

12 2 4 1 2

p

p p p

p
p Da Da

Da

gr

Da Da Da
p p

p p p

e
dpP Re
dx

Da e Da e e

Da e e
γε εγ

εγ

ε ε εγ γ γ

ε

ε γ ε γ

ε γ γ γ

 
+  

 = =
      
 − − − − + + − +                
 

  
− − − + −  

     

  

 (2.28) 

Porous Region: 

Similarly, upon solving Eq. (2.17) along with the boundary conditions given by Eq. 

(2.22) and  (2.23), velocity in the porous region is obtained as 

(1 2 ) 1 1
2 2 2 2 2 21 1

( )

1

p p p
p

p

YY Y Y
Da Da Da Da Da Da Da Da Da Da

i gr

p

Da

e e U e e e Da e e e e e P

U Y

e

γ γ γε ε ε ε ε ε ε ε ε εγ

εγ

+ − −
−            − + − − − −                        =

 
−  

   

  (2.29) 

where iU  and grP  are given Eqs. (2.27) and (2.28). 

 

2.3.2 Skin friction coefficient 

Skin friction coefficient Cfp at the walls 1
2

Y = −  is defined as 

2

2

| /p
fp eff H refy

du
C u

dy
µ ρ−

=

 
=  
   

(2.30) 

by using Eq. (2.10), we get 

1
2

1  |p
fp Y

dU
C

Re dYε −
=

=
 

 (2.31) 

where  Re  and  ε  are  given in Eqs. (2.15)  and (2.20). 
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Using Eqs. (2.27) and (2.28) to simplify Up in Eq.(2.29), then substitute simplified Up in 

Eq. (2.31), ReCfp is obtained as 

( )

( ) ( )

( ) ( )2

2 33/2

6 2 1 2 1

24 1 6 1 1 1 1

12 2 4 1 2

p p

p ppDa Da

p
p Da Da

Da Da
p

fp

Da
p p

p p p

Da e e

ReC

Da e Da e e

Da e e

ε εγ γ

γε εγ

ε εγ γ

εγ

ε γ

ε γ ε γ

ε γ γ γ

  
 − − + −     =

     
 − − − − + + −             
 

  
+ − − − + −  

   
  

  

 (2.32) 

2.4  Expressions for Non-dimensional Temperature and 

Nusselt Number 

2.4.1 Non-dimensional temperature 

It may be noted that, when the thermal field is fully developed, /T X∂ ∂ = Constant = 

constant= /bdT dX when the channel walls are subjected to constant heat flux. where Tb is 

bulk mean temperature and  defined by  

02 2

2 2 2

02 2

2 2 2

2 u  T   T  

2

p

p

p

p

lH

p p f f
H lH

b lH

p f
H lH

dy u dy

T

u dy u dy

−
+

− −
+

−
+

− −
+

 
 

+ 
 
 =

 
 

+ 
 
 

∫ ∫

∫ ∫
 

  

 (2.33) 

 Peclet number appearing in Eqs. (2.14)  and (2.18) can be absorbed by defining 

/X X Pe∗ =   (2.34) 
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Eqs. (2.14) and (2.18) take the form,  

2

* 2
f f

fU
X Y
θ θ∂ ∂

=
∂ ∂  

(2.35) 

2

* 2

1
 

p p
pU

X Y
θ θ

η
∂ ∂

=
∂ ∂  

(2.36) 

Noting that the derivatives, ( */f Xθ∂ ∂ ) and ( */p Xθ∂ ∂ ) are constant, Eqs. (2.35)  and 

(2.36) can be rewritten as,  

2

2 f
f

d
U

dY
θ

λ =
 

(2.37) 

2

2

1 
 

p
p

d
U

dY
θ

λ
η

=
 

(2.38) 

where, the constant, λ is used to denote,  

( ) ( ) ( )/ / /f pX X d dXλ θ θ θ∗ ∗ ∗ ∗= ∂ ∂ = ∂ ∂ =  
(2.39) 

In Eq. (2.39), *θ  is the non-dimensional bulk mean temperature denoted by 

( )
*

/
b e

f

T T
qH k

θ −
=

 

(2.40) 

 and defined as (since from Eq. (2.33)), 
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1
02 2

1 1
2 2 2*

1
02 2

1 1
2 2 2

2     

2

p

p

p

p

p p f f

p f

U dY U dY

U dY U dY

γ

γ

γ

γ

θ θ

θ

−
+

− −
+

−
+

− −
+

 
 

+ 
 
 =

 
 

+ 
 
 

∫ ∫

∫ ∫
 

 

(2.41) 

Therefore  

1
02 2

*
1 1 1

1 1
2 2 2

2  ( )  ( ) 

p

p

w p w p f w fU dY U dY

γ

γ

θ θ θ θ θ θ

−
+

− −
+

 
 

− = − + − 
 
 

∫ ∫  

(2.42) 

The constant /( )  /   /f pX X d dXλ θ θ θ∗ ∗ ∗ ∗=∂ ∂ = ∂ ∂ = can be evaluated by making energy 

balance on an element.  

   ( / ) = 2 p ref bC H u dT dx qρ  
 (2.43) 

Introducing the non-dimensional bulk mean temperature, *θ , defined by Eq.(2.39), it can 

be readily shown that,  

  ( / ) 2 ( / )  ( / )f pPe d dX Pe X Pe Xθ λ θ θ∗ ∗ ∗= = = ∂ ∂ = ∂ ∂  
 (2.44) 

Using Eqs. (2.26) and (2.29) for Uf  and Up and the boundary conditions given by Eqs. 

(2.22),(2.24)  and (2.25) , the problems have been solved. Since the boundary condition is 

of Neumann type, Eqs. (2.22)  and (2.25)  have been solved in terms of temperature 

difference between the fluid and one of the walls. Let the temperature at wall 1 (at 

/ 2Y H= − ) be 1wT  and at wall 2 (at / 2Y H= ) be 2wT . The corresponding non-

dimensional wall temperatures, 1wθ  and 2wθ  are now expressed as,   
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( )1 1 ( / )/w w e fT T qH kθ = − ; ( )2 2 ( / )/w w e fT T qH kθ = −   (2.45) 

The solutions to Eqs. (2.37) and (2.38), for ( )f Yθ  and ( )p Yθ  contain 1wθ . The 

temperature profiles in the fluid and porous regions are expressed relative to 1wθ .  

 1[ ( )]w f Yθ θ−  and 1[ ( )]w p Yθ θ−  are obtained as,    

Fluid Region: 

On solving Eq. (2.37) along with the boundary conditions given by Eq. (2.24) and (2.25)  

, temperature in the fluid region is obtained as 

( ) ( )
( )

( )( )

2 2 2 1/2 2 2
1 2 3

3/2 1/2 1/2 3/2 2 2 2
3 3 2 1

4 5

1
31/2

48 5( 1) 4 24( ) ( 1) ( 1) 4

( 1) 24 6 ( 1) ( 1) 48
8

6 3 4 ( 1) 4 3 4
( )

24
32

p p p

p p p p

p p p p

w f

DaA A Y Da A Y

Da A A Da A Da A

Da A A
Y

A Da

ε γ ε γ γ

γ ε ε γ γ ε γλ
η

εγ γ γ γ
θ θ

ε

    + − − − − − −    
  − + − − − − 

 + 
 − − − − + −   − = −

( )

3/2 1/2 1/2 3
3 2

1/2
5 4

  
6 ( 1)

12 ( 2)( 1) 4 ( 1)
p

p p

A Da A

Da A A

ε ε γ

ε γ γ

  − + −    + − + − −   

 

  

 

(2.46)

 

Porous Region: 

Similarly, on solving Eq. (2.38)  along with the boundary conditions given by  Eq. (2.22) 

and (2.24) , temperature  in the porous region is obtained as   
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7 8

9

7 8
7 8

26
2 4 10 4

10 5

1

( )(1 2 ) ( 1 2 )

2 (1 2 )
6 ( )(1 2 )

8 ( )(1 2 ) 4 ( 1)

( )

Y
Da

p p

Y
Da

Y
DaY

DaY
p pDa

Y
Da

Y p pDa
p p

w p

e A A Y Y

A e Y
Da e A A Y

Da e A A Y Da
e A

A e A A
e A A

Y

ε

ε

ε
ε

ε

ε

ε

εγ γ

γ ε γ
ηλ

γ γ
γ γ

θ θ

−


+ + − −


 
− + +     − +  + + + − + −   −    − +   + +   

− =
( )

2 2 3/2 3/2 2
1 3 3

7 3
2 5 4

3/2
3

48 24 ( 1) 6 ( 1)
(1 2 )

( 1) 6 3 ( 4 3 ) 4 4 ( 1)

24
4

p p p

p p p p p p

p

Da A Da A Da A
A Y

A Da A A

Da A

ε γ ε γ γ

ε γ γ εγ γ γ γ

εγ

  
  
  
  
  
  
     

  
      

  − + − + − 
  + + 
  − − − + − + − − −    

−

( )

2 3
3 2

5 4

6 ( 1) ( 1)

12 ( 2) 4 ( 1) 2
p p

p p p

Da A A

Da A A

ε γ ε γ

ε γ γ γ

  − + −   
 + − − − + −   

 

    

 

 

   

(2.47)

 

2.4.2 Nusselt numbers 

The heat transfer coefficient hp , at the plate / 2y H= − adjacent to the porous medium is 

defined by 

1  
2

| ( )p
eff H p w by

dT
k h T T

dy = −
− = −  

(2.48) 

Upon non-dimensionalizing (using Eq. (2.10)), the Nusselt number at 1/ 2Y = −  .  Nup is 

given by 

*
1

(2 ) 2p
p

f w

h H
Nu

k θ θ
= =

−
 

(2.49) 

Therefore using Eq. (2.42), Nup is given by 
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2

11 12 13 14

1
5/2 2

16 11 5 17

1
2 3/2 3 3 22 2

15 5 2 5 5 18

1 1
3 5 22 21

18 4 4 52 2
5 19

140 6 12

480 ( 1)

( 2)( 1) 2 ( ) ( 1)
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96 4

p

Da
p

Da Da
p p p p

Da Da
p pDa

A DaA A Da A
Nu

Da A A A A e

A A A e Dae A A A

e A A A e A
Da A e A Da

ε

ε ε

ε ε
ε

ε

γ

η ε γ γ γ ε γ

γ γ
ε ε

 − + + =

+ × × − −

× − − − − − −

− − − + −
−

3

1
2 3 32

20 5 5

2 2 3/2
1 21 3 22

2 2 3
3

3
2

3/2
3 23 4

)
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1680 840 ( 1)
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( 1) 5

Da
p p

p

p p

p p

p p
p

e A A A

Da A A Da A A

DaA

A

DaA A A
Da

ε

ε γ γ

η εη γ

ε γ η γ

γ η γ

ε γ γ
γ

 
 
 
 
 
 
 
   +       − + + +  
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− + − −
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1
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1)(1 (3 1) )

( 1) (17 (35 17) ) 42 ( 1)

8 ( 1) 4 ( 1)( 1 3 )
840

(2 (5 2) )

p

p p p

p p p

p

A A

A DaA

A A A A
Da A

A A A A

η γ

γ η γ γ

ε γ γ γ η
η γ

 
 
 
 

  
  

++ − +   
   ×  

  − + − + − ×   − − × + − − − +    +       + − + × ×    









 

(2.50) 

Where Ai ,  i = 1, 2,....25 are constants given in appendix. 

2.5  Results and Discussion  

In this section, velocity profiles and skin friction coefficient for flow through the channel 

partially filled with porous material have been discussed. It has been assumed that ε = μf 

/μeff  = 1 and η = kf/ keff = 1. The channel is referred to as the clear fluid channel here 

when γp = 0. Similarly, when γp = 1.0, the geometry shall be referred to as channel fully 

filled with the porous material. When the porous fraction is 0 < γp < 1.0, the channel is 

referred to as channel partially filled with the porous material.  
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2.5.1 Limiting Cases 

Clear Fluid Channel: 

By setting γp = 0, in Eqs. (2.26), and by using Eqs. (2.27) and (2.28) and (2.32), Uf  and 

Cff, for the clear fluid reduce to,         

( )23[ ] 1 4
2fU Y Y= −

 
(2.51) 

  6 / ffC Re=  
(2.52) 

when the porous fraction  γp = 0, in Eqs. (2.46) and (2.50), 1 ( )w f Yθ θ−  and fNu  for the 

clear fluid reduces to,   

( )2 4
1

1( ) 5 24 16
16w f Y Y Yθ θ− = − +  (2.53) 

 and  

140 /17fNu =  (2.54) 

          Further, when γp = 0, Eqs. (2.51)  to (2.54) correspond to the exact solutions for the 

velocity, skin friction coefficient, temperature and the fully developed Nusselt number 

available in, say, Shah and London [18],  p.153 and p.157.  

 

channel fully filled with the porous material: 

          Similarly the porous fraction  γp = 1  analytical expressions for pU , 1 ( )w p Yθ θ− , 

fpC and pNu , given by Eqs. (2.29),(2.47),(2.32) and (2.50) reduces respectively, 
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cosh cosh
2

[ ]
cosh 2 sinh

2 2

p

Y
Da Da

U Y
Da

Da Da

ε ε ε

ε εε

    
−    

     =
   

−   
     

 

(2.55) 

( )

( )

2 2

1

1 8 ( 1 4 ) 16 cosh

[ ]

4 2 2

Da Da

w p

Da

Ye Da Y Dae
Da

Y

Da e Da

ε ε

ε

εε

θ θ

ε ε ε

   
 − + − + − + +      − =

 
+ − + + 

  

 

 

(2.56) 

1 
 coth 2

2

fpReC
Da Da

Da
εε

=
 

− 
   

(2.57) 

When the present coordinate system is used the expression available in Haji-Sheikh and 

Vafai [59] for pU reduces to Eq. (2.55).  

( ) ( )
( ) ( )

2

2 2

3/2

24 cosh 2 sinh

( 36 ) ( 24 )cosh 60 sinh
Da Da

p

Da Da

Da
Nu

Da Da Da

ε ε

ε ε

ε ε

ε ε ε ε

 − − =
− + + − + +

 

(2.58) 

Eq. (2.58) for pNu  has been verified to be equivalent to the result given in Nield et al. 

[25].    

 

             Variation of the product ( )fpReC  {given by Eq. (2.57)} with the Darcy number is 

shown in Fig. 2.2(a). For large values of Da, ( )fpReC → 6 [see, Eq. (2.52)], as the porous 

material filled channel approaches the behavior of clear fluid channel, a feature that has 

been documented. 
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            Variation of the fully developed Nusselt number pNu  with Da is shown in Fig. 

2.2(b). pNu  decreases with  Da.  For large Da, i.e.  1.0≥ , pNu  → 8.23529 (= 140/17), 

which is the value for clear fluid channel, see, Shah and London [18], p. 157 and also in 

Nield et al.  [25]. 
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Fig. 2.2:  Variation of (a) skin friction coefficient and  (b) Nusselt number with Darcy number in the porous 

material-filled channel  1.0pγ = . 

 
 

2.5.2 Hydrodynamics 

Velocity profiles: 

Non-dimensional velocity profiles for different Da, for porous layer thickness, γp = 0, 0.2, 

0.4, 0.6, 0.8 and 1.0 are shown in Figs. 2.3(a) to 2.3(f). As the porous fraction increases, 

the maximum velocity, which occurs in the fluid region, increases for γp < 1.0. Also, plots 

are given with different scales on the X-axis. Velocity in the porous region Up is higher at 

higher Darcy number, whereas, in the fluid region, Uf, is lower at higher Da. As can be 

expected, this is due to the porous region behaving like a clear fluid region as Darcy 
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number increases. This is evident from the non-dimensional velocity approaching a 

maximum of 1.5 even at Da = 0.1. Also, the maximum value of the velocity occurs in the 

fluid region for all porous fractions and this maximum value is even higher than 1.5. It 

can be noticed from Fig. 2.3(e) that when γp = 0.8, the increase in the velocity in the fluid 

region becomes profound since the resistance in the porous region at the high porous 

fraction further decelerates the flow resulting in a  consequent further increase in the fluid 

region. 

 

Skin Friction Coefficient: 

ReCfp has been evaluated using Eqs. (2.27), (2.28), (2.29) and (2.31). Variation of the 

product ReCfp with γp is shown in Fig. 2.4 for Darcy numbers, Da = 0.001, 0.005, 0.01, 

0.05  and 0.1.  ReCfp increases with Da for 0.7pγ ≤ . However, this trend of monotonic 

variation changes at higher γp, which becomes pronounced at γp = 0.8. This is due to the 

channel partially filled with porous material approaching the behavior of a channel fully 

filled with porous material for which ReCfp decreases with Da, as can be seen in Fig. 2.4, 

this is a consequence of higher resistance offered with increasing porous fraction  which 

again is a consequence of higher resistance offered with increasing porous fraction.  
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Fig. 2.3: Variation of velocity profiles for different values of Darcy numbers, Da for   (a) 0pγ =  (b)
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Fig. 2.4: Variation of ReCfp with porous fraction pγ  at different values of Darcy number. 

 
2.5.3 Thermal Field 

Profiles of the non-dimensional temperature in excess of the wall temperature, 1( )w pθ θ− , 

1( )w fθ θ−  are shown in Figs. 2.5(a) to 2.5(f) for γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 for 

different Darcy numbers. From Figs. 2.5(b) to 2.5(e), the effect of porous fraction on 

1( )w pθ θ− , 1( )w fθ θ−  can be assessed. Maximum in 1( )wθ θ−  occurs closer to the wall at 

Y = 0. This is commensurate with the acceleration associated with the fluid in the fluid 

region at higher γp. It may also be noticed that 1( )wθ θ−  is lower for higher Darcy number 

for all 0< γp ≤1.0.  

        In contrast, the profiles shown in Fig. 2.5(a) and Fig. 2.5(f) for γp = 0 and 1.0 are 

symmetric about  Y = 0. The profile in Fig. 2.5(a) is independent of the Darcy number 

and is also very close to the profile in Fig. 2.5(f) for Da = 0.1, the highest Darcy number 

depicted in Fig. 2.5. Indeed, the porous material filled channel behaves like the clear fluid 

channel at higher Da, which is also noticeable in Figs. 2.5(b) to 2.5(c) as well, even 

though these two profiles pertain to a partially filled channel. 
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Fig. 2.5: Variation of 1w pθ θ−  , 1w fθ θ−
 
profiles for different values of Darcy numbers, Da  for   (a)

0pγ =   (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  (e)  0.8pγ =  and  (f) 1.0.pγ =
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Fully Developed Nusselt Number: 

Variation of fully developed Nusselt number on the fluid side, (i.e., at Y = − 1/2, the 

lower plate which is adjacent to the porous region), pNu , with the porous fraction γp for 

different Darcy numbers is shown in Fig. 2.6(a). fNu  displays minimum for  0 < γp < 

1.0. The min( )p pNuγ → 140/17 as Da increases which signifies that the flow approaches 

that of a clear fluid channel flow. min( )p pNuγ  decreases with increasing Da. 

             

 

                                      (a) pNu                                                                (b) Nu∆  
Fig. 2.6: Variation of (a) Nup   and  (b) Nu∆ with porous fraction pγ  at different values of  Darcy number, 

Da. 
 
        The net change, Nu∆ , is shown in Eq. (2.59), in comparison with the fully 

developed clear fluid channel value and this is given below 

2 | (140 /17)
ppNu  Nu γ

 ∆ = −   (2.59) 

 Variation of Nu∆  with γp for different Da is shown in Fig. 2.6(b). It is clear from 

Fig. 2.6(b) that Nu∆  is negative for γp say, < 0.9 with a minimum for some 0 < γp < 0.9. 
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Nu∆  is > 0 for higher γp > 0.9. Nu∆  reaches a limit, a possible maximum in general, at 

γp = 1.0, which is equal to the difference in the Nusselt number values corresponding to a 

porous material filled channel and a clear channel. Enhancement in the Nusselt number 

when porous material of thickness lp/2 is attached to each of the two walls of the channel 

is low, compared to the enhancement when the channel is fully filled with porous 

material. The value of Nu∆  is maximum at γp = 1.0. 

 

2.6  Conclusions 

Fluid flow and heat transfer in parallel plate channels partially filled with porous medium 

have been studied assuming fully developed flow and temperature fields. The given 

amount of porous material in the porous layer has been distributed equally at the two 

walls. The channel walls are subjected to constant heat flux.  

 

 The problem is characterized by Darcy number, Da, Reynolds number, Re, and 

the porous fraction, γp. Analytical expressions for the non-dimensional velocity and 

temperature profiles in the porous and clear fluid regions have been obtained. From the 

velocity and temperature expressions, the fully developed skin friction coefficients and 

the Nusselt numbers on the porous wall has been obtained analytically. It has been shown 

that the analytical expressions yield the standard values for a clear fluid channel and for 

fully porous material filled channels when the porous fraction γp is set equal to 0 and 1.0 

respectively. The value of the porous fraction where the minimum value of Nusselt 

number occurs, decreases as Darcy number increases. 
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Chapter 3 

Analytical Study of  Forced Convection In a Channel 

Partially Filled with Porous Material with Effect of 

Magnetic Field Subjected to Constant Wall Heat Flux 
 

 

3.1  Introduction 

The objective of the present chapter is to study the effect of magnetic field on Newtonian 

fluid flow in a parallel plate channel partially filled with fluid saturated porous medium. 

The channel walls are subjected to constant wall heat flux. The fluid flow is taken to be 

fully developed. Analytical solutions have been obtained. Following the analysis of 

chapter 2, analytical solutions have been obtained. Closed form expressions for flow 

variables such as velocity, skin friction coefficient, temperature and Nusselt number have 

been obtained and the effects of various relevant parameters such as Darcy number Da, 

porous fraction pγ , Hartmann number, M and the flow variables have been studied.   

 

3.2  Mathematical Formulation 

The physical model and the coordinate system, that of a channel formed by parallel 

plates, H distance apart, are shown in Fig. 3.1.  x is the flow direction and y is normal to 

the flow direction measured from the center of the channel. As per the coordinate system, 

the plates are at / 2y H= ± . The thickness of the porous medium, adjacent to the plates at
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/ 2y H= ± , is lp. It is assumed that the flow and thermal fields are fully developed and 

the fluid enters the channel with a uniform temperature  Te. The parallel plates have been 

subjected to constant heat flux, q.  The problem has been studied by assuming steady, 

laminar, incompressible flow of a Newtonian fluid. The fluid and the porous matrix are in 

local thermal equilibrium. The porous medium is homogeneous and isotropic. Further, it 

is assumed that the thermo-physical properties are constant. 

 

        A transverse magnetic field of uniform intensity is applied. The Magnetic Reynolds 

number is assumed to be very small and there is no external electric field so that the 

induced current is very small and hence it can be neglected. The flow in the fluid region 

is assumed to be governed by Poiseuille description, and in the porous region by 

Brinkman extended non-Darcy flow with effect of the magnetic field.  

                                                                                
                      (a) Dimensional                                                          (b) Non Dimensional 

Fig. 3.1:  Physical Model and Coordinate System. 
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The governing equation for the flow in the fluid region can be expressed by 

2

2
f

f

d u dpJ B
dy dx

µ + × =  
(3.1) 

Also the flow in the porous region can be expressed by 

2

2
p f

eff p

d u dpu J B
dy K dx

µ
µ − + × =  

(3.2) 

Eqs. (3.1) and (3.2) were taken from the literature Ashish, Satya and Filippov [125]. 

In Eq. (3.1), p is the pressure, fµ  is the dynamic viscosity and uf  is the velocity in the 

fluid region.  In Eq. (3.2), up is the velocity in the porous region, K is the permeability of 

the porous medium, μeff  is the effective viscosity associated with the Brinkman viscous 

term which may differ from fµ , the fluid viscosity. In Eqs. (3.1) and (3.2), J is the 

electric current density and B  is the  magnetic induction vector of applied uniform 

magnetic field. Assume that external electric field is absent and internal causes such as 

separation of charges or polarization do not cause an induced electric field, 

( )f ,pJ u Bσ= × , where σ is electric conductivity. Therefore Lorentz forces LF J B= ×  

and velocity vector f ,pu  are collinear and opposite in direction. Hence

2
0L f ,pF J B B uσ= × = − , where 0B B= . Therefore, the governing equations given in 

Eqs. (3.1) and (3.2)  are reduced to, 

 

Momentum equation in fluid region: 

sharath
Highlight



66 

 

2
2

02
f

f f

d u dpB u
dy dx

µ σ− =  
 (3.3) 

Momentum equation in porous region: 

2
2

02
p f

eff p p

d u dpu B u
dy K dx

µ
µ σ− − =  

 (3.4) 

Energy Equation in Fluid Region : 

2

2
f f

p f f

T T
C u k

x y
ρ

 ∂ ∂ 
=     ∂ ∂     

 (3.5) 

In Eq. (3.5), Tf   is the temperature in the fluid region ρ, Cp and  kf  are the density, the 

specific heat and the thermal conductivity of the fluid respectively. 

Energy Equation in Porous Region : 

2

2
p p

p p eff

T T
C u k

x y
ρ

 ∂ ∂ 
=     ∂ ∂     

(3.6) 

In Eq. (3.6), Tp is the temperature in the porous region and keff is the effective thermal 

conductivity of the porous medium. keff can be calculated from Catton [21] as,  

(1 ) eff s fk k kϕ ϕ= − +  (3.7) 

In Eq. (3.7), ϕ  is the porosity and ks is the thermal conductivity of the solid in the porous 

matrix. 

 

        Eqs. (3.3) and (3.5) , applicable for the fluid region and Eqs. (3.4) and (3.6) for the 

porous region, are subjected to the following boundary and interfacial conditions. 
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Boundary and Interfacial Conditions  

0pu = ,     p
eff

dT
k q

dy
− =

    
at     / 2y H= −  

(3.8) 

f p iu u u= =    ,  p f
eff f

du du
dy dy

µ µ=
               

 at  interface  2 2
plHy = − +

           

(3.9) 

f p iT T T= = ,      ( ) ( )/ /f f eff pk dT dy k dT dy=      at  interface  2 2
plHy = − +

          
 

 (3.10) 

0,fdu
dy

= 0fdT
dy

=     at  0y =   {Symmetry boundary conditions}     
 (3.11) 

It may be noted that the boundary conditions given by Eqs. (3.8) to (3.11)  for Fig. 3.1, 

are written for half channel, making use of the symmetry.  

Non-dimensionalization: 
 
The governing equations {Eqs. (3.3) to (3.6)} are rendered non-dimensional by 

introducing the following non-dimensional variables. 

xX
H

= ,  yY
H

= ,  /f f refU u u= ,  /i i refU u u= , /p p refU u u= , 
 /f ref

pP
u Hµ

= , 

( ) / ( / ),f f e fT T qH kθ = −  ( ) / ( / ),p p e fT T qH kθ = −  
2 2

0

f

B HM σ
µ

=  

 

(3.12) 

In Eq. (3.12), X and Y are non-dimensional coordinates. U and P are non-dimensional 

velocity, and pressure. The subscripts f and p refer to fluid and porous regions. θ,{ fθ in 
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the fluid region and pθ  in the porous region}, is the non-dimensional temperature. uref is 

the average velocity through the channel. uref  is related to pu and fu by  

02 2

/2
2 2

2
p

p

lH

p f ref
lH H

u dy u dy u
H

− +

−
− +

 
 

+ = 
 
 

∫ ∫  

(3.13) 

In addition, the non-dimensional porous layer thickness γp, which shall be referred to as 

porous fraction is defined by,  

/p pl Hγ =  (3.14) 

         On introducing the non-dimensional variables given by Eq. (3.12), the governing 

equations for conservation of momentum and energy applicable in the fluid {Eqs. (3.3) 

and (3.5)}and porous {Eqs. (3.4)and (3.6) } regions in non-dimensional form become, 

Fluid Region: 

2
2

2
f

f

d U dPM U
dY dX

− =  
(3.15) 

2

2

1f f
fU

X Pe Y
θ θ∂ ∂

=
∂ ∂  

(3.16) 

In Eq. (3.15), M, the Hartmann number (Magnetic field parameter) and in Eq. (3.16), Pe, 

the Peclet number is defined by, 

ref f Pe u H / α=  (3.17) 

Porous Region: 
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2
2

2

1  p
p

d U dPM U
dY Da dX

ε ε − + = 
 

 
(3.18) 

2

2

1
 

p p
pU

X Pe Y
θ θ

η
∂ ∂

=
∂ ∂  

(3.19) 

In Eq. (3.18), Da, the Darcy number is defined by, 

2/Da K H=  (3.20) 

In Eqs. (3.18) and (3.19) , ε and η are defined by,   

/f effε µ µ=  
(3.21) 

/f effk kη =  
(3.22) 

Non-dimensional Boundary Conditions 

The boundary and interfacial conditions given by, Eqs. (3.8) to (3.11)  take the following 

non-dimensional form {using Eq. (3.12)} 

0pU = , pd
dY
θ

η
 

= − 
     

 at   1/ 2Y = −  
(3.23) 

f p iU U U= = ,  1 p fdU dU
dY dYε

=
    

at the interface     1
2 2

pY
γ

= − +  
(3.24) 

f p iθ θ θ= = ,  f pd d
dY dY
θ θ

η
   

=   
   

 
  
 at the interface     1

2 2
pY

γ
= − +  

(3.25) 

0 ,fdU
dY

= 0 fd
dY
θ

=           at          0Y =  
(3.26) 
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3.3  Expressions for Non-dimensional Velocity and Skin 

Friction 

3.3.1 Non-dimensional velocity profiles 

Fluid Region: 

On solving Eq. (3.15) along with the boundary conditions given by Eq. (3.24) and Eq. 

(3.26), the velocity in the fluid region is obtained as 

( )

( ) ( ) ( ) ( ) ( )

( )( )

1 1 4 112 22 2 2

1 2

1

1

p p pp

p

M M M YM YMY MY MY
i

f M

e U e e M e e e e
U Y

e M

γ γ γγ

γ

− − + −+ −−

−

  
+ + − + −     =

+

 

  

 (3.27) 

Porous Region: 

Similarly, on solving Eq. (3.18) along with the boundary conditions given by Eqs. (3.23) 

and  (3.24), velocity in the porous region is obtained as 

( )

2 2

2 2

2 2 2

2

(1 ) (1 2 ) (1 )
2

1 (1 ) (1 )
22

26 27

(1 ) 1 (1 ) (1 )
2

27

1 (1 )
2

26

( ) 1

1

            

DaM Y DaMY
Da Da

p

DaM DaMY
Da Da

i

DaM DaM DaMY Y
Da Da Da

DaM
Da

U Y e e

U A e A e DaM

e A e e
Da

A e

ε ε

ε ε

ε ε ε

ε

+ + +
−

+ +
−

+ + +
−

+
−

 
 = −
 
 

 
 + +
 
 
  
  − +

  −   

+ 

2
26           / ( 1)(1 )

gp

A DaM

 
 
 
 
 
 
 
 
 

 
 

− +

 

 

(3.28) 

where   
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(3.29) 

and   

( )
3
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3 2
41 42
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A M DaM A

DaM A A DaM A A
M DaM A A

ε

= =
  − + − − −  
  − +   
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+  + +   

 

(3.30) 

Where iU  and gP  are given Eqs. (3.29) and (3.30). 

3.3.2 Skin friction coefficient 

Skin friction coefficient Cfp at the walls 1/ 2Y = −  is defined as, 

2

2

| /p
fp eff H refy

du
C u

dy
µ ρ−

=

 
=  
   

(3.31) 

by using Eq. (3.12), we get 

1
2

1  |p
fp Y

dU
C

Re dYε −
=

=
 

(3.32) 

Using Eqs. (3.29) and (3.30) to simplify Up in Eq. (3.28), substitute simplified Up in Eq. 

(3.32), ReCfp is obtained as 
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(3.33) 

3.4  Expressions for Non-dimensional Temperature and 

Nusselt Number 

3.4.1 Non-dimensional temperature 

It may be noted that, when the thermal field is fully developed, /T X∂ ∂ =constant=

/bdT dX when the channel walls are subjected to constant heat flux. Peclet number 

appearing in Eqs. (3.16)  and (3.19) can be absorbed by defining 

/X X Pe∗ =  (3.34) 

Eqs. (3.16) and (3.19) take the form,  

2

* 2
f f

fU
X Y
θ θ∂ ∂

=
∂ ∂  

(3.35) 

2

* 2

1
 

p p
pU

X Y
θ θ

η
∂ ∂

=
∂ ∂  

(3.36) 

Noting that the derivatives, ( */f Xθ∂ ∂ ) and ( */p Xθ∂ ∂ ) are constant, Eqs. (3.35)  and 

(3.36) can be rewritten as,  



73 

 

2

2 f
f

d
U

dY
θ

λ =
 

(3.37) 
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θ
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η

=
 

(3.38) 

where, the constant λ is used to denote,  

( ) ( ) ( )/ / /f pX X d dXλ θ θ θ∗ ∗ ∗ ∗= ∂ ∂ = ∂ ∂ =  
(3.39) 

In Eq. (3.39), *θ  is the non-dimensional bulk mean temperature denoted by 

( )
*

/
b e

f

T T
qH k

θ −
=

 

(3.40) 

 and defined as, 
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 
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∫ ∫
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(3.41) 

Therefore  

1
02 2

*
1 1 1

1 1
2 2 2

2  ( )  ( ) 

p

p

w p w p f w fU dY U dY

γ

γ

θ θ θ θ θ θ

−
+

− −
+

 
 

− = − + − 
 
 

∫ ∫  

(3.42) 

           The constant /( )  /   /f pX X d dXλ θ θ θ∗ ∗ ∗ ∗=∂ ∂ = ∂ ∂ =  can be evaluated by making 

energy balance on an element.  
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   ( / ) = 2 p ref bC H u dT dx qρ  
(3.43) 

 Introducing the non-dimensional bulk mean temperature, *θ , defined by Eq. 

(3.39), it can be readily shown that,  

 

  ( / ) 2 ( / )  ( / )f pPe d dX Pe X Pe Xθ λ θ θ∗ ∗ ∗= = = ∂ ∂ = ∂ ∂  
(3.44) 

 Using Eqs. (3.27) and (3.28) for Uf  and Up  and the boundary conditions given by 

Eqs. (3.23),(3.25)  and (3.26) , energy Eqs. (3.37) and (3.38) have been solved. Since the 

boundary condition is of Neumann type, Eqs. (3.23)  and (3.26)  have been solved in 

terms of temperature difference between the fluid and one of the walls. Let the 

temperature at wall 1 (at / 2Y H= − ) be 1wT  and at wall 2 (at / 2Y H= ) be 2wT . The 

corresponding non-dimensional wall temperatures, 1wθ  and 2wθ  are now expressed as,   

( )1 1 ( / )/w w e fT T qH kθ = − ; ( )2 2 ( / )/w w e fT T qH kθ = −  (3.45) 

          The solutions to Eqs. (3.37) and (3.38), for ( )f Yθ  and ( )p Yθ  contain 1wθ . The 

temperature profiles in the fluid and porous regions are expressed relative to 1wθ . 

 

Porous Region:  

Solving Eq. (3.38) along with the boundary conditions given by  Eqs. (3.23) and (3.25), 

the temperature  in the porous region is obtained as 
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(3.46) 

Fluid  Region:  

Similarly,  solving Eq. (3.37) along with the boundary conditions given by Eqs. (3.25) 

and (3.26), the temperature in the fluid region is obtained as 
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(3.47) 
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Where Ai , i = 26, 27, .....53 are constants given in appendix. 

 

3.4.2 Nusselt numbers 

The heat transfer coefficient hp, at the plate / 2y H= − adjacent to the porous medium is 

defined by 

1  
2

| ( )p
eff H p w by

dT
k h T T

dy = −
− = −  

(3.48) 

Upon non-dimensionalizing {using Eq. (3.12)}, the Nusselt number at 1/ 2Y = −  , M
pNu  

is given by 

*
1

(2 ) 2pM
p

f w

h H
Nu

k θ θ
= =

−
 

(3.49) 

Therefore using Eq. (3.42), M
pNu   in Eq. (3.49) is obtained. Because of lengthy 

expression, only numerical results are given in plots. 

 

3.5  Results and Discussion 

It has been assumed that ε = μf /μeff  = 1 and η = kf/ keff = 1.  Here, when γp = 0, the 

channel is referred to as clear fluid channel. Similarly, when γp = 1.0, the channel is 

referred to as channel fully filled with the porous medium. When the porous fraction is 0 

< γp < 1.0, the channel is treated  as partially filled with the porous material. 
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3.5.1 Limiting Cases 

Clear Fluid Channel: 

By setting γp = 0, in Eq. (3.27), and by using Eqs. (3.29) and (3.30) , Uf   for the clear 

fluid reduces to,         

1 1 1
2 2 22 2 2

2

(1 ) 1

( )
(1 )

M Y M Y M Y
MY MY

i g

f M

e U e M e e e p

U Y
e M

     − − +     
     

   + − − + −  
    =
+

 

 

 (3.50) 

when the porous fraction  γp = 0, in Eq. (3.47) , 1 ( )w f Yθ θ−   for the clear fluid reduces to,   

(1 4 ) (1 ) 2 22 2

1

8 8 ( ) (1 4 ) 8
( )

8 2 ( 2)

M M YMY MY M Y

w f M

e e e e e M Y
Y

M e M M
θ θ

+− + 
 + + + − −  

 − =
 + − + 

 

 

(3.51) 

Further, when γp = 0, substituting M = 0 in Eqs. (3.50) and (3.51), the expressions reduce 

to the equations given in chapter 2, § 2.5, which are available in Shah and London [18],  

p.153 and p.157. 

 

channel fully filled with the porous material:   

Similarly, for the porous fraction  γp = 1.0 analytical expressions for pU , 1 ( )w p Yθ θ−  are 

given by Eqs. (3.28) and (3.46), which  reduce respectively, 
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(3.53) 

 

Substituting M = 0 in Eqs. (3.52) and (3.53), the expressions reduce to the equations 

given in  Haji-Sheikh and Vafai [59] and chapter 2, § 2.5.  In the presence of the 

magnetic field, for pγ  = 0, the present results are agreeing with the results in Chorlton 

[180], for pγ  =1.0, the present results are compared with the coordinate system in the 

paper published by Raju et al. [115]. It is found to be good agreement. Variation of 

velocity profiles with different Darcy numbers, Da, for channels fully filled with porous 

medium ( 1 0p .γ = ) are shown in Fig. 3.2. For large values of Da, the porous material 



79 

 

filled channel approaches the behavior of clear fluid channel, a feature that has been 

reported in literature Bhargavi, Satyamurty and Raja Sekhar[45]. 

                                        
Fig. 3.2: Variation of velocity profiles for different Darcy numbers, Da and for M = 2.0 for 1 0p . .γ =

 
 

3.5.2 Hydrodynamics 

Velocity Profiles: 

Non-dimensional velocity profiles for different Hartmann numbers are  M = 1, 2, 5 and 

10 for a typical Darcy number Da =0.005 and, for porous layer thickness, γp = 0, 0.2, 0.4, 

0.6, 0.8 and 1.0, as shown in Figs. 3.3(a) to 3.3(f). The flow behavior for the present 

geometry in the absence of magnetic field parameter (M = 0) has already been discussed 

in chapter 2, § 2.5. For clear fluid channel γp = 0, the maximum velocity decreases as 

Hartmann number M increases at the centre of the channel {Chorlton [180], Baoku et al. 

[123]}. This is due to the magnetic field parameter (M), which depicts the ratio of 

magnetic induction to the viscous force. Hence, an increase in the magnetic field 

parameter reduces the viscosity of the fluid. It means magnetic field is limited to 

retardation. Velocity in the porous region increases, as Hartmann number M increases 

and velocity in the fluid region decreases as Hartmann number M, increases for all porous 
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fractions 0 < γp < 1.0. The maximum velocity is occurs in the fluid region at Y = 0. As 

Hartmann number M increases, the porous channel behaves like a clear fluid channel for 

all Darcy numbers. It means presence of the magnetic field parameter is negligible in the 

fully filled porous region with such high Hartmann number. This fact can be observed 

from the profiles of Fig. 3.3(f).   

 

Skin friction Coefficient: 

ReCfp has been evaluated using Eqs. (3.28), (3.29), (3.30) and (3.32). Variation of the 

product ReCfp with γp is shown in Fig. 3.4 for different Hartmann numbers, M = 1, 2, 5 

and 10.  As Hartmann number, M  increases, ReCfp increases for all porous fractions, γp. 

In the absence of the magnetic parameter (M =0), 6fpReC →  as mentioned in  Chapter 2, 

§ 2.5. 
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                                       (a) 0pγ =                                                                     (b) 0 2p .γ =

 

                       
                                          (c) 0 4p .γ =                                                             (d) 0 6p .γ =   

                        
                                    (e) 0 8p .γ =                                                                      (f) 1 0p .γ =   

Fig. 3.3: Variation of velocity profiles for different values of Hartmann number, M for Da = 0.005 for (a)
0pγ =  (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  (e)  0.8pγ =  and  (f) 1.0.pγ =
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Fig. 3.4: Variation of ReCfp with porous fraction pγ  at different values Hartmann number. 

 

3.5.3 Thermal Field 

Non-dimensional temperature profiles in excess of the wall temperature, 1( )w pθ θ− , 

1( )w fθ θ−  are shown in Figs. 3.5(a) to 3.5(f) for different Hartmann numbers, M = 1,2,5 

and 10, for Da = 0.005 and for porous layer thickness, γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. 

The flow behavior in the absence of magnetic field parameter (M = 0) is already 

discussed in chapter 2, §  2.5.  From Figs. 3.5(b) to 3.5(e), the effect of porous fraction, γp 

on 1( )w pθ θ− , 1( )w fθ θ−  can be assessed in the presence of magnetic parameter 

Hartmann number, M.  The maximum value in 1( )wθ θ−  occurs closer to the wall at Y = 

0. It may also be noticed that 1( )wθ θ−  is lower for higher Hartmann number, M for all 

porous fraction, 0≤ γp ≤1.0. In contrast with the profiles shown in Figs. 3.5(b) to  3.5(e), 

the profiles shown in Figs. 3.5(a) and 3.5(f) for γp = 0 and 1.0 are symmetric about Y = 0. 

The profiles in Fig. 3.5(a) are very close to the profiles in Fig. 3.5(f) for large Hartmann 

number, say M = 10. For the profile in Fig. 3.5(f) where γp =1.0 for a fully porous 
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channel, we observe that the effect of magnetic field parameter is not felt much. This 

behavior is same for all Darcy numbers. 

 

Fully Developed Nusselt Numbers: 

Variation of fully developed Nusselt number on the porous side, (i.e., at Y = − 1/2, the 

lower plate which is adjacent to the porous region), M
pNu , with the porous fraction γp for 

different Hartmann numbers, M = 1, 2, 5 and 10 and for Da = 0.005 is shown in Fig. 3.6. 

As Hartmann number increases, the Nusselt number also increases for all porous 

fractions and for all Darcy numbers. Also, the minimum value of M
pNu  at 0.55 0.6pγ≤ ≤

for all Hartmann numbers, which is also the same for M = 0 given in chapter 2, §  2.5. 

The net change, MNu∆ , is defined  relative to the fully developed Nusselt number 

value in the porous region in the absence of magnetic field (M = 0),     

02M M M
p PNu  Nu Nu = ∆ = −   (3.54) 

            Variation of MNu∆  with M for different porous fractions 0.2pγ =  and 0.8pγ =  

for Da = 0.005 is shown in Fig. 3.7.  As Hartmann number, M increases MNu∆  is also 

increases for 0.2pγ =  and 0.8pγ = . Also, it can be observe that as the porous fraction, 

γp,  increases,  MNu∆  decreases for all Hartmann numbers. This implies that as porous 

fraction increases, the effect of magnetic field decreases. 
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                                    (a) 0pγ =                                                                   (b) 0 2p .γ =

 

                    
                                      (c) 0 4p .γ =                                                                 (d) 0 6p .γ =

 

                     
                                            (e) 0 8p .γ =                                                             (f) 1 0p .γ =   

Fig. 3.5:  Variation of 1w pθ θ−  , 1w fθ θ−
 
profiles for different values of Hartmann number, M for Da 

=0.005 for   (a) 0pγ =   (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  (e)  0.8pγ =  and  (f) 1.0.pγ =  
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Fig. 3.6: Variation of M

pNu  with porous fraction pγ  at different values of Hartmann number, M for  
Darcy number, Da=0.005. 

 

                                 
Fig. 3.7: Variation of MNu∆ for porous fractions 0.2pγ =  and 0.8pγ =  with Hartmann number, M  for  

Darcy number, Da=0.005. 

 

3.6 Conclusions 

The effects of forced convection and magnetic field for a fully developed flow of 

Newtonian fluid in a parallel plate channel partially filled with porous material have been 

studied. Analytical solution has been obtained and closed form expressions have been 

derived for velocity, skin friction coefficient and temperature profiles in the porous and 
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fluid regions and the Nusselt number has also been obtained for the porous region. The 

effects of relevant parameters such as Darcy number, Da, Hartmann number, M, and the 

porous fraction, γp have been studied graphically. It has been shown that analytical 

expressions yield standard values for the Hartmann number, M  = 0 {absence of the 

magnetic field)} for all porous fractions γp , 0 ≤ γp ≤1.0 {Chapter 2, § 2.5}. 

Some important conclusions are  

 Nusselt number and the net change in the Nusselt number increase with 

Hartmann number, M for all porous fractions, γp. Hence the effect of the 

magnetic field can be considered to enhance the heat transfer in the channels 

partially filled with porous medium.  

 Further, it is also observed that Nusselt number and the net change in the 

Nusselt number decrease with porous fraction, γp and then increase with 

porous fraction, γp. Hence, optimal value for the porous fraction to decrease 

the Nusselt number in the presence of magnetic field is around 0.6. 
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Chapter 4 

Analytical Investigation of Laminar Forced Convection 

with Viscous Dissipation in Parallel Plate Channels 

Partially Filled with a Porous Material at the 

Conduction Limit 

 

4.1  Introduction 
A general review of the dissipation models in porous media  is available in Nield and 

Bejan [48], but none of those models deal with the effect of viscous dissipation at the 

conduction limit. Viscous dissipation effects are to be included in the energy equation 

when Br (Characterized by viscous dissipation) is large, for a flow through a porous 

medium. Though the problem of flow in porous media with dissipation have been studied 

by several researchers{ Nield and Bejan [48], Murthy [143 and 181], Hooman and Gorji-

Bandpy [151], Hooman, Pourshaghaghy and Ejlali [154] and Ramjee and Satyamurty 

[182] etc.}, the effect of viscous dissipation at conduction limit (neglecting the 

convective terms in the energy equation and hence, it is a balance of conduction and 

dissipation terms) has not received sufficient attention. Since the conduction limit (i.e., 

neglecting convection terms in the energy equation), since ∂T/∂x = ∂Tb/∂x = 0, the 

condition 
*

0ref

b ref

T T

x T T

 
    

 is not violated for say Tref = Te for constant flux boundary 

condition and Tref = Tw for constant wall boundary condition. Also, 
*

0ref

b ref

T T

x T T

 
    

 

also implies no further net heat transfer to the fluid. There is heat transfer after the 

Nusselt number reached the fully developed value, until when T = Tb = Tw which occurs 

at the same X*.  Thus the difference between the fully developed Nusselt number and the 

limiting Nusselt number is that, heat transfer continues to take place after attaining the 
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fully developed value, whereas, after the limiting value is reached, the net heat transfer is 

zero. 

       In view of the above, in this chapter, a laminar forced convection in parallel plate 

channels partially filled with a porous medium has been investigated. Three dissipation  

models in the energy equation at the conduction limit, namely, the Darcy model due to 

Bejan [49] , form drag model due to Nield [140] and  the clear fluid compatible model 

due to Al-Hadhrami, Elliott and Ingham [135 and 136] have been considered. Further, it 

is assumed that the flow field is fully developed. Two types of boundary conditions are 

considered.  They are (i) constant wall heat flux and (ii) constant wall temperature. Based 

on the analysis of  chapter 2, for fluid flow, analytical solutions have been obtained for 

energy equations. Further expressions for temperature, bulk mean temperature and 

Nusselt number at the conduction limit have been derived for both the cases of the 

boundary conditions. The effect of important relevant parameters on them, have been 

investigated.   

4.2  Mathematical Formulation 

The physical model and the coordinate system, that of a channel formed by parallel 

plates, H distance apart, partially filled with porous material shown in Fig. 4.1. Two 

porous materials, each of thickness lp/2, attached to both the walls. x is the axial distance 

and y is normal to flow direction measured from center of the channel. As per the 

coordinate system the walls are at / 2y H  . The fluid enters the channel at inlet 

temperature Te. It has been assumed that the parallel plates of the channel have been 

subjected to uniform heat flux, q or constant wall temperature, T=Tw. The flow in the 

fluid region is assumed to be governed by Poiseuille description, and by Brinkman 

sharath
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extended non-Darcy flow in the porous region. The problem has been studied on the 

assumptions, that the flow is steady, incompressible and fully developed. The fluid and 

the porous matrix are in local thermal equilibrium. The porous medium is homogeneous 

and isotropic and the fluid properties are assumed to be constant.  

                                                                                
                                   (a) Dimensional                                                      (b) Non Dimensional 

Fig. 4.1: Physical Model and the Coordinate System. 
 

Governing Equations: 

Momentum Equation in Fluid Region : 

2

2

1f

f

d u dp

dy dx
  

(4.1) 

In Eq. (4.1), p is the pressure, f  is the dynamic viscosity and uf  is the velocity in the 

fluid region. 

Energy Equation in the Conduction Limit: 

The governing equation in the conduction limit is obtained by neglecting the convective 

term in the energy equation and hence, it is a balance of conduction and dissipation 

terms. 
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22

2
0f f

f f

d T du
k

dy dy


 
  

 
 

(4.2) 

In Eq. (4.2), fT  is the temperature in fluid region, fk
 
is the thermal conductivity in fluid 

region. 

 

Momentum Equation in Porous Region : 

2

2

eff p
p

f f

d uK dp
u K

dx dy


 

    
(4.3) 

Energy Equations in the Conduction Limit: 

2

2
0p

eff i

d T
k

dy
   

(4.4) 

=(1 )  eff s fk k k    (4.5) 

In Eq. (4.5),   is the porosity and ks is the thermal conductivity of the solid in the porous 

matrix. 

In Eq. (4.4),  i   is dissipation models, 1) the Darcy model due to Bejan [49], 2) form 

drag model due to Nield [140] and 3) the clear fluid compatible model due to Al-

Hadhrami et al. [135 and 136]. 

Darcy model: 

2
1

f
pu

K


   

(4.6) 

Form drag model:  

2
2

2 2

f p
p eff p

d u
u u

K dy


    

(4.7) 

Clear fluid compatible model: 
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2

2
3

f p
p f

du
u

K dy




 
    

 
 

(4.8) 

Boundary and Interfacial Conditions:  

0 ,pu  p
eff

dT
k q

dy
 

   
at   / 2y H   {subjected to constant wall heat flux}  

0 ,pu 
 wT T

     
at  / 2y H    {subjected to constant wall temperature}     

  

(4.9) 

f p iu u u     ,  p f
eff f

du du

dy dy
 

           
     at  interface  2 2

plH
y   

                   

(4.10) 

f p iT T T  ,         / /f f eff pk dT dy k dT dy  at  interface  2 2
plH

y   
                  

 (4.11) 

0,fdu

dy
 0fdT

dy


    
at  0y     

 (4.12)    

 

 It may be noted that the boundary conditions given by Eqs. (4.9) to (4.12)  for Fig. 

4.1  are written for the half channel, making use of the symmetry. These interface 

conditions have been taken from Mahmoudi, Karimi and Mazaheri [183] and  Mahmoudi 

and Karimi [184]. 

 

Non-dimensionalization: 

Governing equations {Eqs. (4.1) to (4.4)} are rendered non-dimensional by introducing 

the following non-dimensional variables. 

/X x H ,  /Y y H ,  /f f refU u u ,  /i i refU u u , /p p refU u u , 2/  
ref

P p u ,  

( ) /( / )f f e fT T qH k   , ( ) /( / )p p e fT T qH k   { here f and p are subjected  

to constant wall heat flux}
 

 

 

(4.13) 
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( ) / ( )f f w e wT T T T    , ( ) / ( )p p w e wT T T T    { here f and p are subjected  

to constant wall temperature} 

In Eq. (4.13), X and Y are non-dimensional coordinates. U and P are non-dimensional 

velocity and pressure. The subscripts f and p refer to fluid and porous regions. θ,{ f in 

the fluid region and p  
in the porous region}, is non-dimensional temperature. uref is 

average velocity through the channel. uref  is related to pu and fu by,  

02 2

/ 2

2 2

2
p

p

lH

p f ref
lH H

u dy u dy u
H

 


 

 
 

  
 
 

   

 

(4.14) 

In addition, the non-dimensional porous layer thickness γp, which is referred to as porous 

fraction is defined by,  

/p pl H 
 
 (4.15) 

         On introducing non-dimensional variables given in Eq. (4.13), the governing 

equations for conservation of momentum and energy equation applicable in the fluid 

{Eqs. (4.1) and (4.2) } and porous {Eqs. (4.3) and (4.4) } regions in non-dimensional 

form become, 

 

Non dimensional governing equations: 

Fluid region: 

2

2

1
0  fd UdP

dX Re dY
    

(4.16) 

22

2
0f fd dU

Br
dY dY

  
  

 
 

(4.17) 
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In Eq. (4.16) and Eq. (4.17), Re , the Reynolds number and Br, The Brinkman number are 

defined by      

ref

f

u H
Re




  
(4.18) 

2
f refu

Br
qH


  {here Br is subjected to constant wall heat flux}  

 

2
f ref

f e w

u
Br

k T T





{here Br is subjected to constant wall temperature} 

 

 (4.19) 

Porous region:     

2

2
   p

p

d UdP Da
U ReDa

dX dY
    

(4.20) 

In Eq. (4.20), Da, the Darcy number and  are defined as, 

2/Da K H  and  (4.21) 

/f eff    (4.22) 

2

2
0p

i

d

dY


    

(4.23) 

In Eq.  (4.23), i  is non-dimensional dissipation model is given by,  

Darcy model: 

2
1 p

Br
U

Da


   

(4.24) 

Form drag model: 

2

2 2

1p p
p

U d U
BrU

Da dY



 

    
 

 
(4.25) 

Clear fluid compatible model : 



94 
 

22

3
p pU dU

Br
Da dY


  
        

 
(4.26) 

In Eqs. (4.24) to (4.26),   

/f effk k   (4.27) 

 

Br > 0 represents, the fluid is getting cooled and Br < 0 represents the fluid is getting 

heated. 

Non-dimensional Boundary Conditions: 

The boundary and interfacial conditions given by, Eqs. (4.9) to (4.12)  take the following 

non-dimensional form {using Eq.(4.13)} 

0pU  , pd

dY




 
  

     
 at   1/ 2Y     {subjected to constant wall heat flux}  

 0pU  ,   0p 
   

     at   1/ 2Y     {subjected to constant wall temperature}    

 

(4.28) 

f p iU U U  ,  
1 p fdU dU

dY dY


    
at the interface     

1

2 2
pY


    

(4.29) 

f p i    ,  f pd d

dY dY

 

   

   
   

 
  

 at interface     
1

2 2
pY


    

(4.30) 

0,fdU

dY
 0fd

dY




   
at   0Y   

(4.31) 

  

 Analytical expressions for velocity in fluid and porous regions are available in 

chapter 2, §  2.3.  
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4.3 Non-dimensional Limiting Temperature Profiles and 

Nusselt Number 

4.3.1 Case(i): Subjected to constant wall heat flux 

4.3.1.1  Limiting temperature profiles 

The limiting temperature profiles have been taken using ( )pU Y  and ( )fU Y  taken from 

chapter 2, § 2.3 and boundary conditions given by Eqs. (4.28), (4.30) and (4.31). Since 

the boundary condition is of Neumann type, Eqs. (4.28)  and  (4.31) have been solved in 

terms of temperature difference between the fluid and one of the walls. Let the 

temperature at wall 1 (at / 2Y H  ) be 1wT  and at wall 2 (at / 2Y H ) be 2wT . The 

corresponding non-dimensional wall temperatures, 1w  and 2w  are now expressed as,  

  

 
1 1 ( / )/w w e fT T qH k   ;  

2 2 ( / )/w w e fT T qH k    (4.32) 

 

The solutions to Eq. (4.17) and Eq. (4.23) for three dissipation models given in Eq.(4.24), 

(4.25) and (4.26), for ( )f Y  and ( )p Y  contain 1w . The limiting temperature profiles in 

the fluid and porous regions are expressed relative to 1w . Since ( )f Y  and ( )p Y  have 

the function of Brinkman number Br. Therefore limiting temperature profiles expressed 

as, 1 , ( ) /w f CL Y Br     
and  1 , ( ) /w p CL Y Br     for three  dissipation models are 

obtained at the conduction limit. This above procedure is adopted from a study on 

convective heat and mass transfer by Kays et al. [185]. 
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Darcy model:  

Solving  Eqs. (4.17) and (4.23) with boundary conditions given by Eqs. (4.28), (4.30) and 

(4.31) for  2
1 p

Br
U

Da


  , the expressions of 1 , 1( ) /w f CL Y Br    and  

1 , 1( ) /w p CL Y Br     are as follows 

 

 
 

 

 

2 4 4
54

2
3/2 2 3

55 54 56

1 , 1

2 3 2 3/2
54 57 58 59 55 60 61

2
3/2 2 3

55 54 56

3 16 ( 1)

24 24 6 ( 1) ( 1) 12
( )

3
3 ( 1) 4 8

24 6 ( 1) ( 1) 12

p

p p

w f CL

p p
p

p p

A Y

Da Da A A Da A
Y

Br A Da A Da A A DaA A Da A

Da Da A A Da A

 

    
 

   


    

  

      
  

       
  
      

 
 
 
 
 
 
 
 
 
  

 

 

 

(4.33) 
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(4.34) 

 

Form drag model Dissipation model:  

Solving  Eqs. (4.17) and (4.23) with boundary conditions given by Eqs. (4.28), (4.30) and 

(4.31) for 
2

2 2

1p p
p

U d U
BrU

Da dY



 

    
 

, the expressions of 1 , 2( ) /w f CL Y Br    and  

1 , 2( ) /w p CL Y Br     are as follows 
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(4.36) 

 

Clear fluid compatible model:  

Solving  Eqs. (4.17) and (4.23) with boundary conditions given by Eqs. (4.28), (4.30) and 

(4.31) for 
22

3
p pU dU

Br
Da dY


  
        

. Then the expressions of 1 , 3( ) /w f CL Y Br    and  

1 , 3( ) /w p CL Y Br     are as follows 
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(4.38) 

Where Ai , i = 54, 55, .....95 are constants given in appendix.  
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4.3.1.2 Limiting Nusselt number 

The present investigation is concerned with determining optimum configuration for 

Nusselt number augmentation. It is straightforward, though cumbersome, to apply the 

procedure available in chapter 2,  to obtain the expressions for the Nusselt numbers. In 

general, h, the heat transfer coefficient at a  wall is evaluated from the defining equation,  

  

      | ( )f w w b

dT
k h T T

dy
    

(4.39) 

  

where, fk  is the thermal conductivity of the fluid. wT is the wall temperature and bT  is 

the bulk mean temperature. On non-dimensionalizing, the Nusselt number Nu, based on 

the hydraulic diameter, 2H.   

Let Tb is bulk mean temperature, is defined by  

      

02 2

2 2 2
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2 2 2

2 u  T   T  

2
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p

p

p
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p p f f
H lH
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dy u dy
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


 


 
 

 
 
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 
 

 
 
 

 

 

 

 

 

(4.40) 

*  is the non-dimensional bulk mean temperature denoted by 

      
 

*

/
b e

f

T T

qH k
 

  
(4.41) 

and defined as (Using Eqs. (4.40), (4.41) and (4.13) ) 
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Therefore 
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(4.43) 

Since 
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(4.44) 

The heat transfer coefficient hp , at the plate / 2y H   adjacent to the porous medium is 

defined by 

      1
  

2

| ( )p
eff H p w b

y

dT
k h T T

dy  
    

(4.45) 

Upon non-dimensionalizing (using Eq. (4.13)), The Nusselt number at 1/ 2Y   , Nup,CL 

is given by 

      . *
1

(2 ) 2p
p CL

f w

h H
Nu

k  
 


 

(4.46) 

 

 The expressions for Nusselt number were arrived at with product of Brinkman 

number Br, for different dissipation models using Eq. (4.46) and denoted as , 1p CLBrNu ( 
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using Eqs. (4.33),(4.34) and (4.43)), , 2p CLBrNu (using Eqs. (4.35),(4.36) and  (4.43) ) and 

, 3p CLBrNu (using  Eqs. (4.37),(4.38) and (4.43)) . The numerical results of Nusselt number 

with product of Brinkman Br, for different dissipation models are  given graphically. 

 

Net change in the Nusselt number: 

The net change, Nu  for the three dissipation models is defined, in comparison with 

fully developed clear fluid channel value, as follows 

      1 02
pp,CL p ,CL  Nu Br Nu Br Nu | 

      (4.47) 

Darcy model:  

      1 1

35
2

12p,CLNu Br Nu
         

 
(4.48) 

Form drag model: 

      2 2

35
2

12p ,CLNu Br Nu
         

 
(4.49) 

Clear fluid compatible model: 

      3 3

35
2

12p,CLNu Br Nu
         

 
(4.50) 

 

4.3.2 Case(ii): Subjected to constant wall temperature 

4.3.2.1 Non-dimensional limiting temperature profiles 

The limiting temperature profiles are obtained using ( )pU Y  and ( )fU Y  taken from 

chapter 2, § 2.3 and the boundary conditions given by Eqs. (4.28), (4.30) and (4.31). The 

solutions to Eq. (4.17) and Eq. (4.23) for three dissipation models are supplied by  Eqs. 
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(4.24) to (4.26)  for ( )f Y  and ( )p Y . Since ( )f Y  and ( )p Y  are functions of 

Brinkman number Br, it leads to limiting temperature profiles expressed, , ( ) /f CL Y Br

and , ( ) /p CL Y Br  for three  dissipation models are obtained.  

 

Darcy model:  

Solving Eqs. (4.17) and (4.23) with boundary conditions given by Eqs. (4.28), (4.30) and 

(4.31) for  2
1 p

Br
U

Da


   . Then the expressions of , 1( ) /f CL Y Br and , 1( ) /p CL Y Br  

become 
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(4.51) 
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Form drag Model:   

Solving Eqs. (4.17) and (4.23) with boundary conditions given by Eqs. (4.28), (4.30) and 

(4.31) for 
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 . Then the expressions of , 2 ( ) /f CL Y Br and 
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Clear fluid compatible model :  

Solving Eqs. (4.17) and (4.23) with boundary conditions given by Eqs. (4.28), (4.30) and 

(4.31)  for 
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. Then the expressions of , 3( ) /f CL Y Br and 

, 3( ) /p CL Y Br  become 
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(4.56) 

It is clear from Eqs. (4.51) to (4.56) that CL varies linearly with Br. Thus,   
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1,2,3( , )CL m Y Da Br 
 
 (4.57) 

where m1 is a slope for Darcy model, m2 is a slope for form drag model and m3 is a slope 

for clear fluid compatible model. 

 

4.3.2.2  Limiting Nusselt Numbers 

The heat transfer coefficient hp , at the plate Y = -H/2 adjacent to the porous medium is 

defined by 

  
2

| ( )p
eff H p w b

y

dT
k h T T

dy  
  

 
 

(4.58) 

wT is the wall temperature and bT  is the bulk mean temperature, is defined by  
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 (4.59) 

On non-dimensionalizing, the limiting Nusselt number based on the hydraulic diameter, 

2H, it is given by  

1/2
, *

2
(2 )

p

p Y
p CL

eff

d

h H dY
Nu

k






 
 
    

 

 

(4.60) 

In Eq. (4.60), *  is the non-dimensional bulk mean temperature defined by, 

* b w

e w

T T

T T
 




 
(4.61) 

and evaluated  using,  
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    (4.62) 

The limiting Nusselt number expressions for three models are (using Eqs. (4.52), (4.54), 

(4.56) and  (4.60)) 
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     (4.63) 
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Form drag model: 
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   (4.64) 

Clear fluid compatible model:  
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  (4.65) 

Where Ai , i = 96, 97, .....170 are constants given in appendix.  
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4.4  Result and Discussion 

In this section, temperature  profiles and Nusselt number for flow through the channel 

partially filled with porous material is discussed.  We have assumed that ε = μf /μeff  = 1 

and η = kf/ keff = 1. When γp = 0, the channel referred  to is clear fluid channel. Similarly, 

when γp = 1.0, the channel referred to fully filled with the porous medium. When the 

porous fraction is 0 < γp < 1.0, the channel is referred to as channel partially filled with 

the porous material.  

4.4.1 Case(i): Subjected  to constant wall heat flux 

4.4.1.1 Limiting Cases 

γp = 0, for the clear fluid channel, substituting in Eqs. (4.33), (4.35) and (4.37), the 

temperature profile reduces to  

      4
1 , ( ) / 12 (3 / 4)w f CL Y Br Y       (4.66) 

       Similarly,  γp = 1.0 is substituted for the fully filled with the porous medium in Eqs. 

(4.34), (4.36) and (4.38), the temperature profiles for fully porous channel for three 

dissipation models reach the following form  

Darcy model: 
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Form drag model: 
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Clear fluid compatible model: 
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4.4.1.2 Thermal Field 

Darcy model:  

The ratio between the non-dimensional limiting temperature excess of wall temperature 

to Brinkman number,    1 1 1 1w p,CL w f ,CL / Br ,  / Br      is shown in Figs. 4.2(a) to 

4.2(f) for γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 for different Darcy numbers, Da = 

0.001,0.005,0.01,0.05 and 0.1 for the Darcy Model. From Figs. 4.2(b) to 4.2(e), the effect 

of porous fraction on    1 1 1 1w p,CL w f ,CL / Br ,  / Br       can be assessed.  The 

maximum value of  1w p, f ,CL|  | / Br   occurs at the centre of the channel at Y = 0 for all 

Darcy numbers where the fluid is placed. The maximum value of  1w p, f ,CL|  | / Br   at 
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Y = 0 is decreasing with the increasing Darcy number for a porous fraction. This is 

commensurate with acceleration associated with the fluid in the fluid region at higher γp. 

It is apparent too that the value of  1w p, f ,CL|  | / Br   is minimum other than at centre 

of the channel for higher Darcy number, say Da = 0.1 for all 0< γp ≤1.0. This implies that 

the porous medium tends to behave almost like a clear fluid channel. 

 

The profiles shown in Figs. 4.2(a) and 4.2(f) for γp = 0 and 1.0 are clear fluid channel 

and fully filled with porous material. The profile in Fig. 4.2 (f)  is very close to the profile 

in Fig. 4.2 (a){ for γp = 0} for Da = 0.1. Indeed, the porous material filled channel 

behaves like the clear fluid channel at higher Da which is also evident in Figs. 4.2(b) to 

4.2(c) as well, even though these two profiles pertain to a channel containing partially 

filled porous medium. 

 

Form drag model: 

The ratio between the non-dimensional limiting temperature excess of wall temperature 

to Brinkman number,    1 2 1 2w p,CL w f ,CL / Br ,  / Br     is featured in Figs. 4.3(a) to 

4.3(f) for γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 for different Darcy numbers, 

Da=0.001,0.005,0.01,0.05 and 0.1 for the Form drag model. From Figs. 4.3(b) to 4.3(e), 

the effect of porous fraction on    1 2 1 2w p,CL w f ,CL / Br ,  / Br       can be assessed.  

The maximum value  1w p, f ,CL|  | / Br   occurs at the centre of the channel at Y = 0 for 

all Darcy numbers where the fluid is placed. The maximum value of  1w p, f ,CL|  | / Br   

at Y = 0 is decreasing with increasing Darcy number for a porous fraction. This aligns 
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with the acceleration associated with the fluid in the fluid region at higher γp. It may also 

be noticed that the value of  1w p, f ,CL|  | / Br   is minimum except at the centre of the 

channel for higher Darcy number, say Da = 0.1 for all 0< γp ≤1.0. This indicates that the 

porous medium behaves as if it were a clear fluid channel. 

 

The profiles shown in Figs. 4.3(a) and 4.3(f) for γp = 0 and 1.0 are clear fluid channel 

and fully filled with porous material. The profile in Fig. 4.3(f)  nearly approximate the 

profile in Fig. 4.3 (a){ for γp = 0} for Da = 0.1. Indeed, the porous material filled channel 

behaves like the clear fluid channel at higher Da, which is clearly seen in Figs. 4.3(b) to 

4.3(c) as well, even though these two profiles pertain to a channel partially filled porous 

medium. 

 

Clear fluid compatible model: 

The ratio between the non-dimensional limiting  temperature which is in excess of wall 

temperature to Brinkman number,    1 3 1 3w p ,CL w f ,CL / Br,  / Br     is featured in 

Figs. 4.4(a) to 4.4(f) for γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 for different Darcy numbers, 

Da=0.001,0.005,0.01,0.05 and 0.1 for the clear fluid compatible model. From Figs. 4.4(b) 

to 4.4(e), the effect of porous fraction on    1 3 1 3w p ,CL w f ,CL / Br,  / Br       can be 

assessed.  The maximum value of  1w p, f ,CL|  | / Br   occurs at the centre of the channel 

at Y = 0 for all Darcy numbers,  where the fluid is placed. The maximum value of 

 1w p, f ,CL|  | / Br   at Y = 0 is decreasing with the increasing Darcy number for a porous 

fraction. This is commensurate with the acceleration associated with the fluid in the fluid 
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region at higher γp. It may also be noticed that the value of  1w p, f ,CL|  | / Br   is 

minimum other than at the centre of the channel for higher Darcy number, say Da = 0.1 

for all 0< γp ≤1.0. It means that the porous medium is behaving almost like a clear fluid 

channel. 

 

The profiles shown in Figs. 4.4(a) and 4.4(f) for γp = 0 and 1.0 are clear fluid channel 

and fully filled with porous material. The profile in Fig. 4.4 (f)  is very close to the profile 

in Fig. 4.4 (a){ for γp = 0} for Da = 0.1. Indeed, the porous material filled channel 

behaves like the clear fluid channel at higher Da which is also noticeable in Figs. 4.4(b) 

to 4.4(c) as well, even though these two profiles pertain to a channel that has partially 

filled porous medium. 

 

4.4.1.3 Limiting Nusselt Number 

Variation of product of Brinkman number and the Nusselt number with porous fraction, 

p  for the three dissipation models are shown in Figs. 4.5(a) to 4.5(c) for different Darcy 

numbers, Da = 0.001, 0.005, 0.01, 0.05 and 0.1. From Figs. 4.5(a) to 4.5(c), 1 2 3p ,CL , ,Br Nu

decreases as Darcy number increases and tends to the value of -35/12, which is the value 

for the clear fluid channel. As porous fraction increases 1 2 3p ,CL , ,Br Nu  increases for all 

Darcy numbers. But for higher Da = 0.05 and 0.1 1 2p ,CL ,Br Nu
 
exhibits a minimum value 

of p . This may due to the fluid region being more compared to the porous region. From 

Figs. 4.5(a) to 4.5(c), limiting Nusselt number can be calculated for any Brinkman 

number value for all the dissipation models. For small Darcy number, say Da = 0.001, the 



115 
 

difference between these models in limiting Nusselt number is negligible, but for larger 

Darcy number, say Da = 0.05, the difference is significant (Nield et al. [58]). 

                            
                                              (a)                                                                                  (b) 

                             
                                              (c)                                                                                  (d) 

                              
                                              (e)                                                                               (f) 

Fig. 4.2 : Variation of limiting temperature profiles for (a) 0p    (b) 0.2p   (c) 0.4p   (d)

0.6p   (e)   0.8p    (f) 1.0p   for different Darcy number for Darcy model. 
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                                                 (a)                                                                                   (b) 

                                 
                                               (c)                                                                                   (d) 

                                  
                                                 (e)                                                                                 (f) 

Fig. 4.3: Variation of limiting temperature profiles for (a) 0p    (b) 0.2p   (c) 0.4p   (d)

0.6p     (e) 0.8p    (f) 1.0p   for different Darcy number for Form drag model. 
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                                              (a)                                                                                   (b) 

                                        
                                            (c)                                                                                     (d) 

                                  
                                           (e)                                                                                     (f) 

Fig. 4.4: Variation of limiting temperature profiles for (a) 0p    (b) 0.2p   (c) 0.4p   (d)

0.6p     (e) 0.8p    (f) 1.0p   for different Darcy number for Clear fluid compatible model. 
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                                               (a)                                                                                  (b) 
 

                                       
                                                                        (c) 

Fig. 4.5: Variation of (a) , 1 p CLBr Nu  {the Darcy model } (b) , 2 p CLBr Nu {form drag model} (c)

, 3 p CLBr Nu  {clear fluid compatible model} with porous fraction, p  for different Darcy numbers. 
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included. In the case of clear fluid compatible model, dissipation effect is more as 

compared to the Darcy model and form drag model. 

 

                        
                                               (a)                                                                              (b) 

                                                     
                                                                                        (c) 

Fig. 4.6 : Variation of (a) 1Nu  (b) 2Nu  and (c)
 3Nu with porous fraction, p  for different Darcy 

numbers. 
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, 17.5f CLNu 
 
  (4.71) 

  These are standard results available in Ramjee and Satyamurty[182] and Barletta [4]. 

 

 The values of 
1.0( / )p

CL Br 
 obtained with Darcy model due to Bejan [49], form 

drag model due to Nield [140] and clear fluid compatible model due to Al-Hadhrami, 

Elliott and Ingham[135 and 136] are designated respectively by 
1.0

1( / )p

CL Br 
, 

1.0
2( / )p

CL Br 
and 

1.0
3( / )p

CL Br 
. Substituting  γp = 1.0 for fully filled porous medium in 

Eqs. (4.52), (4.54), (4.56), (4.63), (4.64) and (4.65), the expressions for  
1.0

1( / )p

CL Br 
, 

1.0
2( / )p

CL Br 
and 

1.0
2( / )p

CL Br 
 and the limiting Nusselt numbers for three dissipation 

models are as follows, 
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Form drag model: 
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Clear fluid compatible model: 
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(4.76) 

 

It is clear from Eqs. (4.72), (4.74) and (4.76) that 1.0p

CL

  varies linearly with Br. Thus,   

1.0

1,2,3 ( , )p

CL m Y Da Br    (4.77) 

 

where m1 is a slope for the Darcy model, m2 is a slope for form drag model and m3 is 

a slope for the clear fluid compatible model. 
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 These results for γp = 1.0 are standard results available in Bhargavi [186] thesis 

for the Darcy model and clear fluid compatible model.                                                             

 

4.4.2.2 Thermal Field 

Darcy model: 

Non dimensional temperature profiles , 1( ) / ,p CL Y Br  , 1( ) /f CL Y Br  at the conduction 

limit are shown in Figs. 4.7(a) to 4.7(f) for porous fraction, γp = 0, 0.2, 0.4, 0.6, 0.8 and 

1.0 for different Darcy numbers for Darcy model. From Figs. 4.7(a) to 4.7(f), the effect of 

porous fraction on , 1( ) / ,p CL Y Br , 1( ) /f CL Y Br
 

can be assessed. Maximum value of 

, 1( ) / ,p CL Y Br  , 1( ) /f CL Y Br  occurs at the centre of the channel at Y = 0 for all Darcy 

numbers where fluid is placed. Maximum value of , 1( ) / ,p CL Y Br  , 1( ) /f CL Y Br at Y = 0 is 

decreasing with the increasing Darcy number for all porous fractions. This is 

commensurate with the acceleration associated with the fluid in the fluid region at higher 

γp. As porous fraction, γp increases, the maximum value of , 1( ) / ,p CL Y Br   , 1( ) /f CL Y Br  

increases for all Darcy numbers.  

 

      The profiles shown in Figs. 4.7(a) and 4.7(f) for γp = 0 and 1.0 are for clear fluid 

channel and fully filled with a porous material. The profile in Fig. 4.7(f)  is very close to 

the profile in Fig. Fig. 4.7(a) for Da = 0.1. Indeed, the porous material filled channel 

behaves like clear fluid channel at higher Da. Which is also noticeable in Figs. 4.7(b) and 

4.7(c) as well, even though these two profiles pertain to a channel partially filled with a 

porous medium. 
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Form drag model: 

Non dimensional temperature profiles , 2 ( ) / ,p CL Y Br  , 2 ( ) /f CL Y Br  at the conduction 

limit are shown in Figs. 4.8(a) to 4.8(f) for porous fraction, γp = 0, 0.2, 0.4, 0.6, 0.8 and 

1.0 for different Darcy numbers for form drag model. From Figs. 4.8(a) to 4.8(f), the 

effect of porous fraction on , 2 ( ) / ,p CL Y Br , 2 ( ) /f CL Y Br
 
can be assessed. Maximum value 

of , 2 ( ) / ,p CL Y Br  , 2 ( ) /f CL Y Br  occurs at the centre of the channel at Y = 0 for all Darcy 

numbers where the fluid is placed. The maximum value of , 2 ( ) / ,p CL Y Br  , 2 ( ) /f CL Y Br at 

Y = 0 is decreasing with the increasing Darcy number for all porous fractions. This is 

commensurate with the acceleration associated with the fluid in the fluid region at higher 

γp. As porous fraction, γp increases, the maximum value of , 2 ( ) / ,p CL Y Br   , 2 ( ) /f CL Y Br  

increases for all Darcy numbers.  

 

      The profiles shown in Figs. 4.8(a) and 4.8(f) for γp = 0 and 1.0 are clear fluid 

channel and fully filled with a porous material. The profile in Fig. 4.8(f)  is very close to 

the profile in Fig. 4.8(a) for Da = 0.1. Indeed, the porous material filled channel behaving 

like the clear fluid channel at higher Da. Which is also noticeable in Figs 4.8(b) and 

4.8(c) as well, even though these two profiles pertain to a channel partially filled with a 

porous medium. 

 

Clear fluid compatible model: 

Non dimensional temperature profiles , 3( ) / ,p CL Y Br  , 3( ) /f CL Y Br  at the conduction 

limit are shown in Figs. 4.9(a) to 4.9(f) for porous fraction, γp = 0, 0.2, 0.4, 0.6, 0.8 and 
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1.0 for different Darcy numbers for clear fluid compatible model. From Figs 4.9(a) to 

4.9(f), the effect of porous fraction on , 3( ) / ,p CL Y Br , 3( ) /f CL Y Br
 

can be assessed. 

Maximum value of , 3( ) / ,p CL Y Br  , 3( ) /f CL Y Br occurs at the centre of the channel at Y = 

0 for all Darcy numbers where fluid is placed. Maximum value of , 3( ) / ,p CL Y Br  

, 3( ) /f CL Y Br  at Y = 0 is decreasing with the increasing Darcy number for all porous 

fractions. This is in line with the acceleration associated with the fluid in the fluid region 

at higher γp. As porous fraction, γp increases, the maximum value of , 3( ) / ,p CL Y Br   

, 3( ) /f CL Y Br  increases for all Darcy numbers.  

 

      The profiles shown in Figs. 4.9(a) and 4.9(f) for γp = 0 and 1.0 are clear fluid 

channels and fully filled with a porous  material. The profile in Fig. 4.9(f)  is indeed close 

to the profile in Fig. 4.9(a) for Da = 0.1. Indeed, the porous material filled channel is 

known to behave like clear fluid channel at higher Da. This fact is also noticeable in Figs. 

4.9(b) and 4.9(c) as well, even though these two profiles pertain to a channel partially 

filled with a porous medium. 

 

The values of m1 , m 2 and m 3 in Eq. (4.77), for the three dissipation models for γp = 

1.0 have also been given in Figs. 4.7(f), 4.8(f) and 4.9(f). 

Observations from Figs. 4.7 (a) and 4.7(f) , Fig. 4.8(a) and 4.8(f) and Fig. 4.9(a) and 

4.9(f) lead us to the following conclusions. 

a) m1, m 2 and m 3 values for the three models are close to each other at lower Da has 

been observed already (γp = 1.0). 
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      b) Of course, m1, m 2 and m 3 are not dependent on Da for both the models for γp = 0. 

      c) m1 , m 2 and m 3 decrease with increase in Da for a given γp and Y for both the 

models. 

 

        The difference between the Darcy model and the clear fluid compatible model is 

brought out in Fig. 4.10, where the variation of [
1.0

3( / )p

CL Br 
−

1.0
1( / )p

CL Br 
] with Y has 

been given for different Da. It is evident that 
1.0

1( / )p

CL Br 
 values are closer to the values 

of 
1.0

3( / )p

CL Br 
 at lower Da. At the lowest considered, Da = 0.001, [

1.0
3( / )p

CL Br 
 − 

1.0
1( / )p

CL Br 
] ≈ 0.28, which is less than 2.5% considering that 

1.0( / )p

CL Br 
 is of the order 

of 140. At the highest Da, [
1.0

3( / )p

CL Br 
−

1.0
1( / )p

CL Br 
] ≈ 0.65, where 

1.0( / )p

CL Br 
 is of 

the order of 2.5. The difference in the values of 
1.0( / )p

CL Br 
 for the two models is less 

than 30% for Da < 0.05.  
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                                             (a)                                                                                 (b) 

                          
                                          (c)                                                                                   (d) 

                           
                                           (e)                                                                                    (f) 

Fig. 4.7: Variation of limiting temperature profiles for (a) 0p   (b) 0.2p   (c) 0.4p   (d)

0.6p   (e) 0.8p   and (f) 1.0p   for different Darcy numbers for Darcy model. 
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                                               (a)                                                                                  (b) 

                          
                                             (c)                                                                                 (d) 

                      
                                     (e)                                                                                 (f) 

Fig. 4.8: Variation of limiting temperature profiles for (a) 0p   (b) 0.2p   (c) 0.4p   (d)

0.6p   (e) 0.8p   and (f) 1.0p   for different Darcy numbers for form drag model. 
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                                               (a)                                                                                  (b) 

                                
                                            (c)                                                                                     (d) 

                           
                                          (e)                                                                                         (f) 

Fig. 4.9: Variation of limiting temperature profiles for (a) 0p   (b) 0.2p   (c) 0.4p   (d)

0.6p   (e) 0.8p   and  (f) 1.0p   for different Darcy numbers for the clear fluid compatible 

model. 
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Fig. 4.10: Variation of [
1.0

3( / )p

CL Br 
−

1.0
1( / )p

CL Br 
] for different Darcy numbers for γp = 1.0. 
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CL  varies linearly with Br, since *
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*
2 /CL Br  and *

3 /CL Br  with porous fraction, p  for different Darcy numbers is shown in 

Figs. 4.11(a), 4.11(b) and 4.11(c) for the Darcy model, form drag model and the clear 

fluid compatible model respectively. As porous fraction, p  increases * /CL Br  increases 

for all Darcy numbers for both the models.  As Darcy number increases * /CL Br  

decreases with porous fraction for both the models. For higher Darcy number (say Da 

=1.0),  * /CL Br  is almost constant with porous fraction. 
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                                      (a)                                                                                      (b)             

 
                                                                                          (c) 

Fig. 4.11: Variation of (a) 
*

1 /CL Br  {the Darcy model } (b)
 

*
2 /CL Br  {the form drag model}

 
 (c)

 
*

3 /CL Br  {clear fluid compatible model}with porous fraction, p  for different Darcy numbers. 

 
 

4.4.2.3  Limiting Nusselt Numbers  

Limiting Nusselt numbers 1p ,CLNu  , 2p,CLNu  and
 3p,CLNu  for the three models, {Eq. (4.63), 

(4.64) and Eq. (4.65)} are independent of the Brinkman number. Variations of limiting 

Nusselt number with porous fraction, p  for the two dissipation models are shown in 

Figs. 4.12(a), 4.12(b) and 4.12(c) for different Darcy numbers, Da = 0.001, 0.005, 0.01, 

0.05 and 0.1. From Eqs. (4.63),  (4.64) and (4.65), the limiting Nusselt numbers for three 
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models are independent of Br, for all Br ≠ 0, a feature widely reported in the literature for 

clear fluid flow channels, by Barletta [4]. From Figs. 4.12(a), 4.12(b) and 4.12(c),
 1p ,CLNu  

,
 2p,CLNu  and

 3p,CLNu  
 
decrease up to a certain porous fraction and then increase for all 

Darcy numbers. This may due to the fluid region being low compared to the porous 

region. From Figs. 4.12(a) and 4.12(b) , as Darcy number increases, 1p ,CLNu  and 2p,CLNu  

increases up to certain porous fraction then decreases with porous fraction, γp.  From Fig. 

4.12(c), as the Darcy number increases 3p,CLNu  increases up to a certain porous fraction 

then declines with porous fraction, γp.  It is true that for small Darcy numbers( say, Da < 

0.01), 3p,CLNu  always increases with porous fraction for higher Darcy numbers( say, Da 

  0.01).  From this it may be concluded that as Darcy number increases, porous region 

starts to behave like a clear fluid region for clear fluid compatible model but it is not true 

in the case of Darcy model and form drag model. For small Darcy number, say Da = 

0.001, the difference between these three models in limiting Nusselt number is negligible, 

but for larger Darcy number, say Da = 0.05 the difference becomes significant{ Nield, 

Kuznetsov and Xioang [58] }. From, Fig. 4.12, it is a foregone conclusion  that the 

limiting Nusselt number differs significantly and even in qualitative behavior for the two 

dissipation models. Also, these values differ significantly from 17.5 { Ramjee and 

Satyamurty [182] and Barletta [4] }. Further, it is clear from Figs. 4.12(a), 4.12(b) and 

4.12(c)  that the values of ,p CLNu  at γp = 0 are independent of the dissipation models; the 

dissipation function is unique. 
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                                               (a)                                                                               (b) 

 
    (c) 

Fig. 4.12: Variation of (a) , 1p CLNu  {the Darcy model } (b)
 , 2p CLNu  {form drag model (c)

 , 3p CLNu  {clear 

fluid compatible model} with porous fraction, p  for different Darcy numbers. 
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  2 2

35
2

2p,CLNu Nu
        

 
(4.80) 

 

Clear fluid compatible model: 

  3 3

35
2

2p ,CLNu Nu
         

 
(4.81) 

 

 

                        
                                             (a)                                                                                (b) 

 
          (c) 

Fig. 4.13: Variation of (a) 1Nu  {the Darcy model } (b)
 2Nu  {form drag model}(c) 3Nu  {clear fluid 

compatible model} with porous fraction, p  for different Darcy numbers. 
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Variation of (a) 1Nu  {the Darcy model}(b) 2Nu  {form drag model} (c) 3Nu  {clear 

fluid compatible model} with porous fraction, p  for different Darcy numbers, Da = 

0.001, 0.005, 0.01, 0.05 and 0.1 is shown in Figs. 4.13(a), 4.13(b) and 4.13(c).  

Enhancement in the Nusselt number when porous material of thickness lp is attached to 

both the walls of the channel, is lower than for the channel fully filled with a porous 

material, when dissipation is included.  

 

4.5   Conclusions 

Enhancement in the fully developed Nusselt number for a parallel plate channel flow 

subjected to (i) constant wall heat flux and (ii) constant wall temperature with porous 

inserts distributed equally at the two walls of the channel for the three dissipation models, 

has been studied. Three dissipations models, namely, the Darcy model due to Bejan[49], 

form drag mode due to Nield [140] and the clear fluid compatible model due to Al-

Hadhrami, Elliott and Ingham [135 and 136] are used in the conservation of thermal 

energy equation. Using the fully developed velocity profiles, as obtained in Chapter 2, § 

2.3, the limiting temperature profile and the limiting Nusselt number at the conduction 

limit have been obtained for porous fraction 0 1.0p  . The viscous dissipation is 

characterized by Brinkman number. Both the wall heating and wall cooling cases can be 

examined from the given plots for all values of Brinkman numbers.  

 

Case (i): constant wall heat flux   

Limiting temperature profile and limiting Nusselt number plots are given and are depend 

on the Brinkman number. The maximum in the value of Nusselt number and net change 
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in the Nusselt number occurs only at 1 0p .  . For small Darcy numbers, the difference 

between these models in limiting temperatures  and limiting Nusselt numbers is 

negligible, but for larger Darcy number, the difference is significant. 1 2,Br Nu  attains 

minimum value at certain porous fraction, 0.4p   for higher Da, whereas 3 Br Nu  is 

always increases as porous fraction increases for all Darcy numbers. Hence heat transfer 

enhancement is better in clear fluid compatible model compared with Darcy and form 

drag model.  

 

Case (i): constant wall temperature 

 It has been found that the non-dimensional temperature and the bulk mean temperature 

when viscous dissipation is included are linearly proportional to Brinkman number at the 

conduction limit.  

 

Nusselt numbers in the conduction limit have been found to be independent of the 

Brinkman number, a feature reported for clear fluid channels, see, Barletta [4]. The three 

models that describe dissipation yield comparable to Nusselt number values when Da is 

small (say Da < 0.01), for the channel partially filled with a porous material also. This 

feature has been reported by Nield, Kuznetsov and Xioang [58], for channels fully filled 

with a porous material. The Nusselt number in the conduction limit monotonically 

increases as Da increases for three models up to certain porous fraction. In Darcy model, 

and form drag model, Nusselt number becomes minimum at higher Darcy number when 

γp = 1.0, whereas, for the clear fluid compatible model, Nusselt number displays a 

minimum at Da ≈ 0.015 when γp = 1.0.  
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Chapter 5 

Effect of Heat Transfer in the Thermally Developing 

Region of the Channel Partially Filled with a Porous 

Medium: Constant Wall Heat Flux 

 

 

 

5.1 Introduction 

In recent times, several authors have studied forced convection in the porous medium and 

channel partially filled with a porous medium and different conditions, but aspects such 

as bulk mean temperature and wall temperature as a function of axial distance have not 

been addressed in any of these investigations. Fully developed forced convection in a 

parallel plate channel with a centered porous layer was studied by Cekmer et al. [109]. 

Bhargavi and Satyamurty [108] studied optimum porous insert configurations for 

enhanced heat transfer in channels. However, the problem of a thermally developing 

region in a channel partially filled with a porous material  and without using the boundary 

layer approximation has not received enough attention. Since many of the researchers 

have not discussed about the wall temperature which is unknown temperature profiles for 

an excess of wall temperature for different porous fractions and fully developed condition 

in items of the wall temperature when channel walls are subjected to constant wall heat 

flux.  

 In the studies reported in the present chapter, it is assumed that the velocity field 

is fully developed while the temperature field is developing in the channel partially filled 
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with the porous medium. The walls of the channel are subjected to constant heat flux. 

The objective of the present chapter is to examine the existence of optimal porous 

fraction and its dependence on the axial location. The other parameters, the Darcy 

number and the porous fraction are common to thermal and flow fields. Analytical 

expressions for momentum equations are available in Chapter 2, § 2.3. Numerical 

solutions using finite difference successive accelerated replacement (SAR) scheme 

(Ramjee and Satyamurty [15] and Satyamurty and Bhargavi [158]) have been obtained 

for energy equations in both the regions. The effects of important relevant parameters on  

temperature, bulk mean temperature and Nusselt number have been studied.  

 

5.2  Mathematical Formulation  

The physical model and the coordinate system, that of a channel formed by two parallel 

plates, H distance apart, is shown in Fig. 5.1. Let x be the axial distance and y be normal 

to the flow direction measured from the center of the channel. As per the coordinate 

system, the plates are at / 2y H  . The total thickness of a porous medium, adjacent to 

the plates at / 2y H  , is lp. It is assumed that the flow field is fully developed, while 

the thermal field is developing while the axial conduction is negligible. The fluid enters 

the channel with a uniform temperature of Te. The parallel plates are subjected to a 

constant heat flux q. The problem has been studied assuming steady, laminar, 

incompressible flow of a Newtonian fluid. The porous and fluid matrix are in local 

thermal equilibrium. The porous material is homogeneous and isotropic. Further, it is 

assumed that all the thermo-physical properties are constant. The flow in the fluid region 
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is assumed to be governed by Poiseuille description and in the porous region, by Darcy-

Brinkman equation.  

                                                                                    
                               (a) Dimensional                                                             (b) Non Dimensional 

Fig. 5.1: Physical Model and Coordinate System. 
 

Generalized Governing Equations 

Fluid Region: 

Momentum Equation: 

2

2

f
f

d u dp

dy dx
 

    
 

(5.1) 

In Eq. (5.1), p is the pressure, f  is the dynamic viscosity and uf  is the velocity in the 

fluid region. 

Conservation of Thermal Energy Equation:  

22 2

1 22 2

f f f f
p f f f

T T T du
C u k F F

x x y dy
 

     
                

 
(5.2) 

In Eq. (5.2), Tf  is the temperature in the fluid region ρ, Cp and kf are the density, the 

specific heat and the thermal conductivity of the fluid respectively. 
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Porous Region: 

Momentum Equation: 

2

2

p f
eff p

d u dp
u

dy K dx


  

    
 

(5.3) 

In Eq. (5.3), up is the velocity in the porous region, K is the permeability of the porous 

medium, μeff is the effective viscosity. 

Conservation of Thermal Energy Equation: 

2 2

1 22 2p eff i
p p p

p

T T T
C u k F F

x x y


   
        

 
 (5.4) 

In Eq. (5.2) and Eq. (5.4), 1F  is a constant associated with the axial conduction term and 

2F  is a constant associated with the viscous dissipation.  In Eq. (5.4),  i   is dissipation 

model, for i = 1, the Darcy model due to Bejan [49], for i = 2, clear fluid compatible 

model due to Al-Hadhrami et al. [135 and 136] given by, 

Darcy model: 

2
1

f
pu

K


   

 (5.5) 

Clear fluid compatible model: 

2

2
2

f p
p f

du
u

K dy




 
    

 
 

 (5.6) 

In Eq. (5.4), Tp is the temperature in the porous region and keff is the effective thermal 

conductivity of the porous medium. keff can be calculated from Catton [21] as,  

(1 )  eff s fk k k   
 
  (5.7) 
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In Eq.  (5.7),   is the porosity and ks is the thermal conductivity of the solid in the 

porous matrix. Eqs. (5.1) and (5.2), applicable for the fluid region and Eqs. (5.3) and 

(5.4) for the porous region. 

 In the present Chapter, the effects of axial conduction (F1) and the viscous 

dissipation (F2) are neglected. i.e., F1 = 0 and F2 = 0. Then the governing Eq. (5.2) and 

Eq. (5.4) in fluid and porous regions respectively, become, 

Conservation of thermal energy in fluid region: 

2

2

f f f
f

p

T k T
u

x C y
  

          
 

(5.8) 

Conservation of thermal energy in porous region: 

2

2

p eff p
p

p

T k T
u

x C y
  

     
 

 (5.9) 

Boundary and Interfacial Conditions  

 p eT T         at       0x   ,    
2 2 2

plH H
y      

(5.10)      

f eT T          at       0x   ,     0
2 2

plH
y     

(5.11) 

0pu 
 ,     

p
eff

T
k q

y


 

     
at     / 2y H   

(5.12) 

f p iu u u     ,  p f
eff f

du du

dy dy
 

     
                 at  interface  2 2

plH
y   

                

(5.13) 

f p iT T T  ,        / /f f eff pk T dy k T dy  
        

at  interface  2 2
plH

y   
                   

(5.14) 

sharath
Highlight
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0,fdu

dy
 0fT

y




     
at  0y    {Symmetry boundary conditions}                                        

(5.15) 

Non-dimensionalization 

The governing equations are rendered non-dimensional by introducing the following non-

dimensional variables. 

/X x H ,  /Y y H ,  /f f refU u u ,  /i i refU u u , /p p refU u u , 2/  
ref

P p u , 

( ) /( / )f f e fT T qH k   , ( ) /( / )p p e fT T qH k    

 

(5.16) 

In Eq. (5.16), X and Y are non-dimensional coordinates. U and P are the non-dimensional 

velocity and pressure. The subscripts f and p refer to fluid and porous regions. θ{ f in the 

fluid region and p  in the porous region}, is the non-dimensional temperature. uref is the 

average velocity through the channel. uref  is related to pu and fu by,  

02 2

/ 2

2 2

2
p

p

lH

p f ref
lH H

u dy u dy u
H

 


 

 
 

  
 
 

   

   

(5.17) 

The non-dimensional porous layer thickness γp, which shall be referred to as porous 

fraction is defined by,  

/p pl H   (5.18)  

when the channel walls are subjected to constant heat flux,  Peclet number can be 

absorbed by defining 

/X X Pe   (5.19) 

On introducing the non-dimensional variables given by Eq. (5.16), the governing 

equations for conservation of momentum and energy applicable in the fluid {Eqs. (5.1) 

and (5.8)} and porous {Eqs. (5.3) and (5.9) } regions in non-dimensional form become, 
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Fluid Region 

2

2
 fd U dP

Re
dY dX

  
(5.20) 

2

* 2

f f
fU

X Y

  


 
 

(5.21) 

In Eq. (5.20), Re, the Reynolds number and in Eq. (5.21), Pe, the Peclet number are 

defined by,  

 , ref f ref fRe u H / Pe u H /     (5.22) 

Porous Region 

2

2
 p

p

d U dP
U Re

dY Da dX

    
(5.23) 

2

* 2

1p p
pU

X Y

 


 


   
(5.24) 

In Eq. (5.23),  Da, the Darcy number is defined by, 

2/Da K H  (5.25) 

In Eqs. (5.23) and (5.24) , ε and η are defined by,    

/  , /f eff f effk k      (5.26) 

Non-dimensional Boundary Conditions 

The boundary and interfacial conditions given by, Eqs. (5.10) to (5.15) take the following 

non-dimensional form (using Eq. (5.16)) 

(0, ) 0p Y      for  
1 1

2 2 2
pY


         

(5.27) 

(0, ) 0f Y       for  
1

0
2 2

p Y


     
(5.28) 
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0,fdU

dY
 0f

Y




    
at   0Y   

(5.29) 

f p iU U U  ,  
1f pdU dU

dY dY


    
at the interface     

1

2 2
pY


    

(5.30) 

f p i    ,  
1f p

Y Y

 


 


 
 
  

 at the interface     
1

2 2
pY


    

(5.31) 

0pU  ,   p

Y





 

    
 at   1/ 2Y  

 

(5.32) 

5. 3 Expressions for velocity  

5.3.1 Non Dimensional Velocity Profiles 

Fluid Region: 

On solving Eq. (5.20) along with the boundary conditions given in Eq. (5.29) and Eq. 

(5.30), velocity in the fluid region is obtained as 

  221
[ ] 8 4 1

8f i p grU Y U Y P        
(5.33) 

Porous Region: 

Similarly, on solving Eq. (5.23) along with the boundary conditions given in Eq. (5.30) 

and Eq. (5.32), velocity in the porous region is obtained as 

2

(1 2 )

2 2 2

2 2

1

1

[ ]

1

p

p

p p

p

Y

Da Da

Y Y Y

Da Da Da Da Da
i gr

Da Da Da

p

Da

e e

e e U e e e Da P

e e e

U Y

e

 

    

   

 

  



   
   
                                    



 

   

 

(5.34) 

  where  
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 2 2 21 2 1 1 1
p p p

Da Da Da
i p grU Da e Da e e P

     

 
                   

            
 

(5.35) 

gr

dp
P Re

dx
    and  obtained as using non dimensional form of Eq. (5.17) 

    
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 
 
 
 

    
         
        
 

  
       
    

 

   

(5.36) 

 

5.3.2 Numerical Scheme: Successive Accelerated Replacement (SAR)         

Application of the SAR Scheme (Ramjee and Satyamurty [15] and Satyamurty and 

Bhargavi [158]): Let MD and ND be the number of divisions in X and Y direction and 

*X and Y  be the width in X and Y direction respectively. When the terms in energy 

Eqs. (5.21) and (5.24) are expressed in finite difference form, the errors f , p  in fluid 

and porous regions respectively, are given by,  

 Discretization of the governing equations {Eq. (5.21) and Eq. (5.24)} have been 

done using uniform grid in the X and Y directions bring us the equations given below: 

* 2

( , ) ( 1, ) ( , 1) 2 ( , ) ( , 1)
( , ) ( )

( )
f f f f f

f f

M N M N M N M N M N
M N U N

X Y

    


        
        

  
(5.37) 
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* 2

( , ) ( 1, ) ( , 1) 2 ( , ) ( , 1)
( , )  ( )

( )
p p p p p

p p

M N M N M N M N M N
M N U N

X Y

    
 

        
        



 

(5.38) 

where *X is the uniform grid size in the X-direction, defined by, 

* * /
fd

X X MD   (5.39) 

where *

fd
X  is the normalized fully developed length.  

1/Y ND   (5.40) 

To correct the profile for f and p  , the following derivatives become necessary 

* 2

( , ) ( ) 2

( , ) ( )
f f

f

M N U N

M N X Y





 
  


 

(5.41) 

* 2

( , )  ( ) 2

( , ) ( )
p p

p

M N U N

M N X Y

 



 
  


 

(5.42) 

 Discretization of the governing equations {Eq. (5.21) and Eq. (5.24)} using non-

uniform grids in the X -direction and uniform grid in the Y direction: 

2

( , ) ( 1, ) ( , 1) 2 ( , ) ( , 1)
( , ) ( )

( ) ( 1) ( )
f f f f f

f f

M N M N M N M N M N
M N U N

X M X M Y

    


        
         

  
(5.43)

 

2

( , ) ( 1, ) ( , 1) 2 ( , ) ( , 1)
( , )  ( )

( ) ( 1) ( )
p p p p p

p p

M N M N M N M N M N
M N U N

X M X M Y

    
 

        
         

  
(5.44) 

To correct the profile for f  and p , the following derivatives become necessary 
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(5.45) 
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( , )  ( ) 2

( , ) ( ) ( 1) ( )
p p
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M N U N

M N X M X M Y

 



 
   


 

(5.46) 

Discretised boundary conditions  

(0, ) 0p N 
                      

for         1 1
2

pN ND
 

   
 

 
(5.47)

 

(0, ) 0f N                         for         1 1
2 2

p ND
ND N

 
    

 
 

(5.48)

 

   4 , 1 , 2
( , )

3
f f

f

M N M N
M N

 


  


                    
at         1

2

ND
N    

(5.49) 

   2  , 2 4 , 1
( , )

3
p p

p

Y M N M N
M N

  


    
            at    1N        

(5.50) 

         Let NP be a grid number corresponding to the interface. It is assumed that the 

interface coincides with one of the grid planes in the Y direction. When large numbers of 

ND are used, the error involved is not likely to be significant even if the interface does 

not exactly correspond to an integer NP. Boundary conditions given by Eq. (5.31) and on 

f and p  in finite difference form become, 

( , ) ( , )f pM NP M NP                                 at     1
2

pNP ND
 

  
 

      
(5.51) 

1
( , ) ( , 1) ( , 1) ( , )f f p pM NP M NP M NP M NP   


       at     1

2
pNP ND

 
  
   

(5.52) 
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5.3.3 Numerical Trial 

In order to obtain satisfactory numerical solutions, suitable values for the parameters that 

yield converged solutions need to be determined. The parameters are, the acceleration 

factor, ω, error tolerance limit, εt, and the number of divisions MD and ND in X* and Y 

directions. 

 

 Numerical trials have been made employing Eqs. (5.21) and (5.24), along with the 

boundary conditions {Eqs. (5.27) to (5.32)}. Eqs. (5.21) and (5.24),  are parabolic and the 

solutions can be obtained with ease. The finite difference expressions, which are needed 

to apply in SAR (Ramjee and Satyamurty [15] and Satyamurty and Bhargavi [158]) 

scheme, are given by Eqs. (5.37) and (5.38) have been used for fixed Da = 0.005, and a 

porous fraction of γp = 0.4. Numerical trials have been conducted with 0.5 ≤ ω ≤ 1.5, εt = 

10−4, 10−5, 10−6 and 10−7, 1000 ≤ MD ≤ 8000 and 60 ≤ ND ≤ 100.  

Generation of the non uniform grids(given in Bhargavi[186]) 

Uniform grids are generated by using the formula

  

*( ) ( 1)X i i X   (5.53) 

 Non uniform grids are generated by increasing the axial distance following a 

geometric progression. Let *
MX  be the increase in geometric progression with a 

common ratio of (1+r). *
MX  is related to the common ratio and the first term of the 

geometric progression, *
1X  by,   

 ( 1)* *
11

M

MX r X


     (5.54) 
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Let *
1X  be the first non-uniform grid width defined by,  

1

* *X c X   (5.55) 

where c is a constant less than unity and * X  is uniform cell width. 

Common ratio of (1+r). can be evaluated by,  

 
1

* * 1 1
fd

MD
r

X X
r


  

  
 

 
(5.56)  

 
Number of Grids, Uniform Spacing 

Numerical trials have been made to determine the suitable number of grids in X* and Y 

directions for fixed εt = 10−5. MD and ND have been varied between 1000 ≤ MD ≤ 8000 

and 60 ≤ ND ≤ 100. Values of Nupx at different values of X* for ND = 60, 70, 80, 90 and 

100 with MD = 1000, 2000, 4000, 6000 and 8000 are given in Table 5.1.  The value of  

Nupx = 7.0065 with ND = 90 obtained in the present numerical trails for grid 

independence test, shown in Table 5.1 at X* = 0.4, agree well with the corresponding 

fully developed values of 6.9962 obtained analytically in chapter 2. It appears that ND = 

90 grids is suitable. If uniform grids are employed, ND = 90 and MD = 8000 appear to 

yield satisfactory local Nusselt number values that do not change significantly with 

further increase in ND and MD. 
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Table 5.1: Grid Independence Test, Uniform Mesh: Nupx at Different X* for γp = 0.4, Da = 0.005, εt = 10−5 

and ω = 0.8( NI = No. of Iterations ). 

ND MD 
X* 

NI 
0.0016 0.0050 0.0100 0.0300 0.1000 0.150 0.2000 0.3000 0.4000 

60 

1000 15.9547 10.9527 9.2407 7.5155 7.0056 6.9975 6.9968 6.9962 6.9960 4756 

2000 15.7035 11.0186 9.2177 7.5096 7.0054 6.9975 6.9967 6.9962 6.9961 4941 

4000 15.5801 10.9904 9.2062 7.5066 7.0052 6.9975 6.9967 6.9961 6.9959 5311 

6000 15.5394 10.9810 9.2024 7.5057 7.0052 6.9975 6.9967 6.9961 6.9961 5661 

8000 15.5191 10.9764 9.2005 7.5052 7.0052 6.9975 6.9967 6.9961 6.9961 5974 

70 

1000 15.9005 10.9376 9.2335 7.5136 7.0053 7.0051 7.0052 7.0050 7.0007 6167 

2000 15.6521 11.0032 9.2105 7.5077 7.0050 7.0049 7.0043 7.0039 7.0005 6350 

4000 15.5301 10.9752 9.1991 7.5048 7.0049 7.0044 7.0040 7.0025 7.0004 6722 

6000 15.4898 10.9659 9.1953 7.5038 7.0049 7.0045 7.0043 7.0022 7.0002 7085 

8000 15.4697 10.9612 9.1934 7.5033 7.0048 7.0041 7.0039 7.0038 7.0007 7429 

80 

1000 15.8641 10.9276 9.2287 7.5124 7.0051 7.0051 7.0050 7.0048 7.0004 7747 

2000 15.6177 10.9929 9.2058 7.5065 7.0048 7.0045 7.0041 7.0043 7.0024 7927 

4000 15.4966 10.9650 9.1944 7.5035 7.0047 7.0042 7.0042 7.0039 7.0025 8300 

6000 15.4566 10.9558 9.1906 7.5025 7.0047 7.0042 7.0041 7.0038 7.0025 8667 

8000 15.4366 10.9512 9.1887 7.5021 7.0046 7.0046 7.0046 7.0046 7.0025 9025 

90 

1000 15.8385 10.9205 9.2253 7.5115 7.0050 7.0048 7.0047 7.0046 7.0042 9492 

2000 15.5934 10.9857 9.2025 7.5056 7.0047 7.0046 7.0044 7.0044 7.0040 9669 

4000 15.4730 10.9580 9.1911 7.5027 7.0046 7.0044 7.0044 7.0044 7.0041 10041 

6000 15.4332 10.9487 9.1873 7.5017 7.0045 7.0044 7.0043 7.0040 7.0042 10411 

8000 15.4134 10.9441 9.1854 7.5012 7.0075 7.0070 7.0068 7.0065 7.0065 10774 

100 

1000 15.8198 10.9154 9.2229 7.5109 7.0049 7.0047 7.0047 7.0046 7.0034 11397 

2000 15.5758 10.9805 9.2001 7.5050 7.0046 7.0040 7.0039 7.0038 7.0036 11571 

4000 15.4559 10.9528 9.1887 7.5020 7.0045 7.0042 7.0040 7.0039 7.0039 11941 

6000 15.4262 10.9436 9.1849 7.5010 7.0044 7.0043 7.0044 7.0044 7.0066 12312 

8000 15.4234 10.9541 9.1954 7.5013 7.0075 7.0070 7.0068 7.0065 7.0065 12679 
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   For a chosen value of c, *
fdX  = 0.4 and MD, r can be calculated using Eq. (5.56). 

*
fdX  = 0.4 and MD = 2000, with uniform grid size of *X = 0.0002 yielded satisfactory 

solution. If the first non-uniform grid *
1X  = 0.0002 has been chosen, for *

fdX  = 0.4, the 

constant c values and r values are given in Table 5.2  for MD = 500, 1000 and 2000. 

 

Table 5.2: The constant values of c and r for MD = 500, 1000 and  2000. 

c 
values  of r for MD is 

500 1000 2000 

1/4 0.004691189370 0.002341121189 0.001169445089 

1/8 0.006660863418 0.003322638941 0.001658206827 

1/16 0.008505441991 0.004240980432 0.002117565251 

From,  Table 5.2, the value of c chooses as 1/8. Non-uniform grids are generated by using 

the formula Eq. (5.54).  

 

 
*
MX , the grids in geometric progression have been generated as described above. 

Values of Nupx for γp = 0.4 and Da = 0.005 at different X* are given in Table 5.3. Values 

of Nupx obtained with 8000 uniform grids also are given in Table 5.3. The values of Nupx 

at different X* obtained with non-uniform grids generated in geometric progression with 

MD = 1000 are very close to the values obtained with 8000 uniform grids. It is concluded 

that non-uniform grids generated in geometric progression with MD = 1000 are suitable 

to obtain the accuracy comparable to that obtained with 8000 uniform grids. The 

reduction in computational time is substantial. 
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Table 5.3: Comparison of  Nupx at Different X* Values for Uniform and Non-uniform  Grids, ND = 90, εt = 

10-5, Da = 0.005, ω = 0.8 for γp = 0.4, using GP. 

MD 
Nupx at different  X* values 

NI 
CPU Time 0.0016 0.0050 0.0100 0.0300 0.1000 0.150 0.2000 0.3000 0.4000 

500 Non-uniform 0m 51s 15.2924 10.9267 9.1686 7.5001 7.0047 6.9970 6.9965 6.9968 7.0066 11318 

1000 Non-Uniform 1m 40s 15.3458 10.9113 9.1738 7.5010 7.0045 6.9970 6.9964 6.9967 7.0065 11250 

2000 Non-Uniform 3m 18s 15.3242 10.9310 9.1765 7.4991 7.0045 6.9970 6.9965 6.9967 7.0065 11195 

8000 Non-Uniform 11m 10s 15.4134 10.9441 9.1854 7.5012 7.0075 7.0070 7.0068 7.0065 7.0065 12679 

 

Based on the numerical trials conducted, the following values for the parameters 

have been employed in obtaining numerical solutions presented.  a) Acceleration factor ω 

≤ 1 has been determined as per Eqs. (5.21) and (5.24), b) Error tolerance limit, εt = 10−5, 

c) *
fdX  = 0.4,  d) MD = 1000 with *

MX  generated in geometric progression with c = 1/8 

in Eq. (5.55),  e) ND = 90 with 1/ 90Y  .  

 

However, no converged solution could be obtained for ω ≥ 1.2. A smaller value of ω 

may ensure convergence but requires larger number of iterations. Similarly, a larger value 

of ω may result in an advantage of faster convergence; when the solution converges.  

The acceleration factor is obtained from,  

 

ω = (εt / ,
k

M N ) ,
k
M N  , ,( / )

k

M N M N         (5.57)   
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In order to ensure convergence, under relaxation is preferred. As adapted by 

Dellinger [169] and more recently in [15 and 158], the acceleration factor ω is chosen 

according to,   

 

ω = ω, if ω < 1 and; ω = 1 if ω ≥ 1      (5.58) 

                        

This ensures that the correction to a variable is never greater than εt (error 

tolerance limit) times the previous magnitude of the variable. 

 

5.3.4 Local Nusselt Numbers 

The heat transfer coefficient hpx , at the plate / 2y H  adjacent to the porous medium is 

defined by 

  
2

| ( )p
eff H px w b

y

T
k h T T

y  


  


 

(5.59) 

Upon non-dimensionalizing (using Eq. (5.16)), The Nusselt number at 1/ 2Y   , Nupx is 

given by 

  1/2

**

2 / |(2 ) 2

( )( )

p Ypx
px

f ww

Yh H
Nu

k XX


   

 
   

  
 

(5.60) 
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5.4  Result and Discussion 

It has been assumed that ε = μf /μeff  = 1, η = kf/ keff = 1, c = 1/8, *
fdX = 0.4 and MD = 1000 

and ND = 90. The channel is referred to as the clear fluid channel here when γp = 0. 

Similarly, when γp = 1.0, the geometry shall be referred to as channel filled with a porous 

medium fully. When the porous fraction is 0 < γp < 1.0, the channel is referred as a 

channel partially filled with a porous medium. 

 

5.4.1 Thermal Field:  For Da = 0.005 and Da = 0.050 

Non-dimensional temperature profiles for an excess of wall temperature w p   , w f   

for porous fractions p  0, 0.2, 0.4, 0.6, 0.8 and  1.0 at different values of X* are shown 

in Figs. 5.2(a) to 5.2(f) for Da = 0.005 and Figs. 5.3(a) to 5.3(f) for Da = 0.050 

respectively.  These values of X* correspond to the entrance region and to near fully 

developed region. As X* increases, w p   , w f   increase in both the fluid and porous 

regions for all porous fractions. If X* is larger (say, = 0.4) w p  , w f   tend  to have 

fully developed profiles for all porous fractions and Darcy numbers, which are given in 

chapter 2, § 2.3. From Figs. 5.2(a){for 0p  } and 5.2(f) {for 1.0p  } and Figs. 

5.3(a){for 0p  } and 5.3(f) {for 1.0p  } for large X* (say = 0.4),
 w f   becomes a 

fully developed profile, as given in Kays et al. [185] and w p   tends to the fully 

developed profiles given in Nield et al. [57]. As Darcy number increases, the porous 

region behaves like a clear fluid region for all porous fractions. This fact is recorded  in 

the literature. 
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5.4.2 Non dimensional bulk mean temperature 

Non-dimensional bulk mean temperature excess of wall temperature , *
w   profiles 

with X*, for p  0, 0.2, 0.4, 0.6, 0.8 and 1.0 and for different Darcy numbers,  Da = 

0.001, 0.005, 0.010, 0.050 and 0.100, are shown in Figs. 5.4(a) to 5.4(f). As X* increases, 

*
w   increases for all Darcy numbers. From Figs. 5.4(a) to 5.4(e), as Darcy number 

increases, *
w   decreases for all X* values. This fact is reported in Satyamurty and 

Bhargavi [158]. From Figs. 5.4(a) and 5.4(f), as Darcy number is large, the porous region 

behaves like a clear fluid region. This fact features reported in the literature. Comparison 

between analytical and numerical values of bulk mean temperature in excess of wall 

temperature *
w   is shown in Table 5.4 for all porous fractions and for Da = 0.005 and 

0.050. From Table 5.4, it is seen that the results are in good agreement, with the available 

literature for 0p  and 1.0p  (Satyamurty and Bhargavi [158] and chapter 2, § 2.5). 

 

Table 5.4: Comparison of Numerical Values of  
*

w 
 
with Analytical Values (Chapter 2) of 

*
w  at 

Fully Developed Length X* = 0.4. 

p  
Da = 0.005 Da = 0.050 

Numerical value Analytical value Numerical value Analytical value 

0.0 0.2425 0.2428 0.2425 0.2428 

0.2 0.2562 0.2566 0.2444 0.2447 

0.4 0.2853 0.2858 0.2498 0.2501 

0.6 0.2993 0.2999 0.2519 0.2522 

0.8 0.2632 0.2636 0.2451 0.2454 

1.0 0.2039 0.2037 0.2325 0.2326 
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                                              (a)                                                                                     (b) 

                      
                                         (c)                                                                                      (d) 

                        
                                           (e)                                                                                       (f) 

Fig. 5.2: Variation of w p  , w f 
 
profiles for different X* for Da = 0.005 for (a) 0p    (b)

0.2p    (c) 0.4p   (d) 0.6p   (e)  0.8p   and  (f) 1.0p  . 
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                                            (a)                                                                                       (b) 

                        
                                              (c)                                                                                  (d) 

                       
                                             (e)                                                                                       (f) 

Fig. 5.3: Variation of w p   , w f 
 
profiles for different X* for Da = 0.05 for  (a) 0p    (b)

0.2p    (c) 0.4p   (d) 0.6p   (e)  0.8p   and  (f) 1.0p  .
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                                          (a)                                                                                  (b) 

                     
                                                 (c)                                                                                     (d) 

                    
                                                     (e)                                                                                   (f) 

Fig. 5.4: Variation of the non dimensional bulk mean temperature excess of wall temperature 
*

w 
 
with 

X* for different Darcy numbers, Da for (a) 0p    (b) 0.2p    (c) 0.4p   (d) 0.6p   (e)  

0.8p   and  (f) 1.0p  . 
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 Plots of non dimensional wall temperature w  against porous fraction p  for X*= 

0.00005, 0.00500, 0.05000, 0.10000 and 0.20000 is shown in Figs. 5.5(a) and 5.5(b) for  

Da = 0.005 and Da = 0.050 respectively.  From Figs. 5.5(a)  and 5.5(b), w  increases as 

X*  increases, for all porous fractions and for all Darcy numbers. From, Figs. 5.5(a) and 

5.5(b), it is observed that non dimensional wall temperature w , increases up to a certain 

porous fraction and then it decreases for all X* values. It is true for both the Darcy 

numbers Da = 0.005 and 0.05. As Darcy number increases, non dimensional wall 

temperature w  is almost constant with porous fraction,
 p  for all X* values, which can 

be observed from Fig. 5.5(b).  

 

           
                                        (a)                                                                                (b) 

Fig. 5.5: Non dimensional wall temperature w  with porous fraction p  for different X*  for (a) Da = 0.005 

and (b) Da = 0.05. 
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5.4.3 Local Nusselt Number 

Variation of the local Nusselt numbers, pxNu with X* for different Darcy numbers,  Da = 

0.001, 0.005, 0.010, 0.050 and 0.100 and for different porous fractions p = 0, 0.2, 0.4, 

0.6, 0.8 and 1.0 is shown in Figs. 5.6(a) to 5.6(f). From Figs. 5.6(a) to 5.6(f), It can be 

observed that the local Nusselt number pxNu  decreases as X* increases, for all porous 

fractions and for all Darcy numbers. This fact is well known (Nield et al. [57], 

Satyamurty and Bhargavi [158] and Pavel and Mohammad [187]) for the channel fully 

filled with porous and clear fluid regions, as also for different arrangements of porous 

inserts in channels. From, Figs. 5.6(b) to 5.6(d), it is observed that local Nusselt number

pxNu  increases as Darcy number, Da increases at any X*. But, for p  = 0.8 and 1.0 {Figs. 

5.6(e) and 5.6(f)}, pxNu  decreases as Darcy number, Da increases. This is may be due to 

the fact that the porous region is dominating in a channel partially filled with a porous 

medium at high porous fractions. This fact is given in chapter 2, § 2.5 for fully developed 

Nusselt numbers. Also, as Darcy number increases, pxNu , for a fully filled porous 

medium {Fig. 5.6(f)} is the same as pxNu  for clear fluid channel {5.6(a)}, which is 

independent of Darcy number. This means at higher Da, the porous region behaves like a 

clear fluid region. Comparison between analytical and numerical values of fully 

developed Nusselt numbers
 
is shown in Table 5.5 for all porous fractions and at Da = 

0.005 and  0.050. From Table 5.5,  it is found to be in good agreement, and also with 

those{ 0p 
 
and 1.0p  } values available in the literature. 
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Table 5.5: Comparison between Numerical Values of Nusselt numbers
 
with Analytical Values (Chapter 2) 

of Nusselt numbers at Fully Developed Length X*= 0.4. 

p  
Da = 0.005 Da = 0.050 

Numerical value Analytical value Numerical value Analytical value 

0.0 8.2420 8.2352 8.2420 8.2352 

0.2 7.8022 7.7939 8.1780 8.1715 

0.4 7.0065 6.9962 8.0018 7.9945 

0.6 6.6787 6.6681 7.9346 7.9272 

0.8 7.5938 7.5869 8.1544 8.1483 

1.0 9.8087 9.8155 8.5991 8.5968 

             

   A comparison of the present values of xNu  for clear fluid channel( 0
p
  ) with 

the values available in Shah and London [18], p. 181 are given in Table 5.6. The present 

results shown in Table 5.6 are obtained after neglecting axial conduction. The agreement 

of the present values with experimental values is good.  

Table 5.6: A Comparison of the Present Values of xNu  for the clear fluid channel ( 0
p
  ) with the 

Values Available in the Literature 

X* 0.0004 0.0020 0.0080 0.0203 0.0402 0.1250 0.2000 0.3000 0.4000 

Present 32.1560 19.1100 12.6100 9.9902 8.8040 8.2459 8.2356 8.2355 8.2353 

Shah and 

London 
32.1530 19.1130 12.6040 9.9878 8.8031 8.2458 8.2353 8.2353 8.2353 

 

5.4.4 Comparison with experimental results for γp = 1.0 

Jiang et al. [188] conducted experimental investigation on heat transfer in parallel plate 

channels filled with sintered bronze. The dimensional heat transfer coefficients for water 

and air systems have been presented at different Reynolds numbers. This type of 

comparison is available in Bhargavi [186]. 
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 The dimensional graphical results available in Fig. 5(a) of Jiang et al. [188] have 

been converted to correspond to the present non-dimensional system as follows. 

 

Nux= hx(2H)/kef ; X
*= X/DePe, where Pe the Peclet number is the product of Re, as 

given in Jiang et al.[188] and the Prandtl number for water is taken as 7. De has been 

taken as 0.02 m and ke has been taken as 2.012 W/(m C), as given in Table 3 of Jiang et 

al. [188]. The Peclet numbers for the experimental conditions of Jiang et al. [188] ranged 

from 910 to 17675 for water system. Regardless of the conditions very near the entry, the 

Peclet number range allows neglecting the axial conduction in the energy equation; even 

if included, there is no much difference in the numerical values. A comparison of Nupx for 

Da = 0.005 with the values obtained in the present computations is shown in Fig. 5.7 for 

water system. The agreement for the water system is good though the present numerical 

prediction is an average of four different Reynolds numbers presented in Jiang et al. 

[188]. The difference in the Nusselt number values between the present numerical values 

and the experimental results of Jiang et al. [188] may be due to the assumption of fully 

developed flows in the computations whereas, the flow is developing graphically in the 

experiments which explains the dependence of the Nusselt number on the Reynolds 

number even in a plot with X*.  
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                                                   (a )                                                                               (b) 

                                  
                                         (c)                                                                                (d) 

                                  
                                          (e)                                                                              (f) 

Fig. 5.6: Variation of the local Nusselt numbers, Nupx with X* for different Darcy numbers, Da for  (a)

0p    (b) 0.2p    (c) 0.4p   (d) 0.6p   (e)  0.8p   and  (f) 1.0p  .
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Fig. 5.7: pxNu with  X* for different Re, for  γp = 1.0 and Da = 0.005 for water  particle diameter (not a 

parameter in the experiment). 
 
 

          The variation of pxNu  with p  for different values of X* is shown in Figs. 5.8(a) 

and 5.8(b) for Darcy numbers,  Da = 0.005 and 0.050 respectively. It is observed that 

pxNu  attains minimum value at p  ≈ 0.6 at lower Da for a given X* .  

 

                                      (a)                                                                                     (b) 

Fig. 5.8: Variation of the local Nusselt number Nupx with porous fraction p  for different values of X* for 

(a) Da = 0.005 and (b) Da = 0.050. 
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5.5   Conclusions 

Laminar forced convection in the thermally developing region of parallel plate channels 

partially filled with a porous material has been studied numerically. The parallel plates 

have been subjected to constant wall heat flux. The flow field has been assumed to be 

fully developed. Axial conduction is neglected in the conservation of the thermal energy 

equation. The problem is characterized by the Darcy number, Da and the porous fraction, 

γp. Numerical solutions have been obtained for 0 ≤ γp ≤ 1.0 and Da = 0.001, 0.005, 0.010, 

0.050, and 0.100, employing Successive Acceleration Replacement (SAR) scheme ( 

Ramjee and Satyamurty [15] and Satyamurty and Bhargavi [158]). When axial 

conduction is neglected, Peclet number does not appear explicitly in the conservation of 

the thermal energy equation expressed in terms of the normalized non-dimensional axial 

distance X*.  

 

 The non-dimensional temperature at the wall, θw attains maximum value at a certain 

porous fraction. With this feature, it is envisaged that the local Nusselt number at the wall 

attains a minimum for some, 0 < γp < 1.0. In the context of constant wall heat flux 

condition, this implies that the transfer of a given heat flux takes place with a lower 

temperature difference between the wall and the fluid.  

 

 Non-dimensional bulk mean temperature, θ*, increases as X* increases. The values of the 

local Nusselt numbers when the channel is a clear fluid channel and when the channel is 

fully filled with a porous material agree well with the values available in Shah and 

London [18] and Nield et al. [57 and 58]. The local Nusselt number Nupx decreases as X* 
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increases for all γp and Da, and reaches the fully developed values for X* = 0.4.  Nupx is at 

a minimum when γp ≈ 0.6 at low Da = 0.005. Thus, there exists an optimum porous 

fraction to attain minimum enhancement in the Nusselt numbers.  
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Chapter 6 

Effect of Axial Conduction in the Thermally Developing 

Region of the Channel Partially Filled with a Porous 

Medium: Constant Wall Heat Flux 
 

 

 

6.1  Introduction 

In this chapter, the effect of axial conduction on forced convection in a channel partially 

filled with a porous medium subjected to constant wall heat flux, has been investigated. 

The walls of the channel have been subjected to constant heat flux. In the studies 

undertaken, it has been assumed that the flow field is fully developed. The flow field in 

the channel partially filled with porous material is characterized by the Darcy number, Da 

and the porous fraction, γp. In addition, the problem is characterized by the Peclet 

number, Pe, when the axial conduction is included in the conservation of thermal energy 

equation.   

 

 Numerical solutions for two dimensional energy equations in both the fluid and 

porous regions have been obtained using successive accelerated replacement (SAR) 

numerical scheme (Ramjee and Satyamurty [15], Satyamurty and Bhargavi [158] and 

Jagadeesh and Satyamurty [179]). The effects of important relevant parameters on 
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temperature, bulk mean temperature, temperature based on bulk mean temperature and 

local Nusselt number have been studied.  

 

6.2 Mathematical Formulation  

The physical model and the coordinate system(refer to Fig. 5.1) are the same as those 

considered in chapter 5, § 5.2. The usual assumptions of isotropic and homogeneous 

porous medium, Newtonian fluid and local equilibrium have been made. The relevant 

expressions for a fully developed velocity profile can be obtained in Eqs. (2.26) and 

(2.29) of chapter 2, § 2.3.  

Governing Equations 

In the present Chapter effect of axial conduction (F1) is considered and viscous 

dissipation(F2) effects are neglected. i.e  F1 =1 and F2 = 0. Substituting, F1 =1 and F2 = 0  

in Eqs. (5.2) and (5.4) of Chapter 5 § 5.2, then the conservation of thermal energy 

equations in fluid and porous regions respectively, given by,  

Fluid Region: 

2 2

2 2
f f f f

f
p

T k T T
u

x C x yρ
 ∂ ∂ ∂

= +  ∂ ∂ ∂ 
 

(6.1) 

In Eq. (6.1), uf is the velocity in the fluid region, Tf is the temperature in the fluid region 

ρ, Cp and kf are the density, the specific heat and the thermal conductivity of the fluid 

respectively. 

Porous Region: 

sharath
Highlight
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2 2

2 2
p eff p p

p
p

T k T T
u

x C x yρ
 ∂ ∂ ∂

= +  ∂ ∂ ∂ 
 

(6.2) 

In Eq. (6.2), up is the velocity in the porous region, Tp is the temperature in the porous 

region and keff is the effective thermal conductivity of the porous medium. keff can be 

calculated from Catton [21] as,  

(1 )  eff s fk k kϕ ϕ= − +  (6.3) 

In Eq. (6.3), ϕ  is the porosity and ks is the thermal conductivity of the solid in the porous 

matrix.  

 

              Eqs. (6.1) and (6.2), applicable for the fluid region and porous region 

respctively, are subjected to the following boundary and interfacial conditions. 

 

Boundary and Interfacial Conditions  

0pu =  ,     
p

eff

T
k q

y
∂

− =
∂     

at     / 2y H= −  
(6.4) 

f p iu u u= =    ,  p f
eff f

du du
dy dy

µ µ=
     

                    at  interface  2 2
plHy = − +

                
 

(6.5) 

f p iT T T= = ,      ( ) ( )/ /f f eff pk T y k T y∂ ∂ = ∂ ∂         
at  interface  2 2

plHy = − +  
(6.6) 

0,fdu
dy

= 0fT
y

∂
=

∂     
at  0y =   {Symmetry boundary conditions}                                         

(6.7) 

f p eT T T= =         at       0x =  ,    0
2
H y− ≤ ≤    (Inlet condition) (6.8) 
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0w

b w

T T
x T T
 −∂

= ∂ − 
    at  

2 2
H Hy− ≤ ≤    {downstream condition}    

(6.9) 

Non-dimensionalization 

Governing equations {Eqs. (6.1) and  (6.2)} are rendered non-dimensional by introducing 

the following non-dimensional variables. 

/X x H= ,  /Y y H= ,  /f f refU u u= ,  /i i refU u u= , /p p refU u u= , 2/  
ref

P p uρ= , 

( ) /( / )f f e fT T qH kθ = − , ( ) /( / )p p e fT T qH kθ = −  

 

(6.10) 

In Eq. (6.10), X and Y are the non-dimensional coordinates. U and P are the non-

dimensional velocity and pressure. The subscripts f and p refer to fluid and porous 

regions. θ,{ fθ in the fluid region and pθ in the porous region}, is the non-dimensional 

temperature. uref is the average velocity through the channel. uref  is related to pu and fu

and is given by,  

 

02 2

/ 2
2 2

2
p

p

lH

p f ref
lH H

u dy u dy u
H

− +

−
− +

 
 

+ = 
 
 

∫ ∫  

(6.11) 

In addition, the non-dimensional porous layer thickness γp, which shall be referred to as 

porous fraction is defined by,  

 

/p pl Hγ =  (6.12) 
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 On introducing the non-dimensional variables given in Eq. (6.10), the governing 

equations for conservation of momentum and energy equations applicable in the fluid and 

porous regions in non-dimensional form become, 

Fluid Region 

 

2

2 2

* 2 2*

1f f f
f cU A

X Pe YX

θ θ θ∂ ∂ ∂
= +

∂ ∂∂
 

 (6.13) 

In Eq. (6.13),  Pe is the Peclet number and X* is the normalized X, defined by,  

/ref fPe u H α=  (6.14) 

/X X Pe∗ =  (6.15) 

 

Porous Region 

 

2

2 2

* 2 2*

1 1p p p
p cU A

X Pe YX

θ θ θ
η
 ∂ ∂ ∂

= +  ∂ ∂∂ 
 

(6.16) 

In Eq. (6.16) , η are defined by,    

/f effk kη =  (6.17) 

 

When cA  = 1, in Eqs. (6.13) and (6.16) axial conduction is included, and when cA  = 

0, axial conduction is neglected. When cA  = 0, the solutions to Eqs. (6.13) and (6.16)in 
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terms of X* do not depend on Pe.  Eqs. (6.13) and (6.16) are subjected to the following 

boundary conditions. 

 

 

Non-dimensional Boundary and Interfacial Conditions 

, (0, ) 0f p Yθ =     for  1 0
2

Y− ≤ ≤  {inlet condition}      
(6.18) 

0,fdU
dY

= 0f

Y
θ∂

=
∂    

at   0Y =  {symmetry condition} 
(6.19) 

f p iU U U= = ,  1f pdU dU
dY dYε

=
    

at the interface     1
2 2

pY
γ

= − +  
(6.20) 

f p iθ θ θ= = ,  1f p

Y Y
θ θ

η
∂ ∂

=
∂ ∂

 
  
 at the interface     1

2 2
pY

γ
= − +  

(6.21) 

0pU = ,   p

Y
θ

η
∂

= −
∂    

 at   1/ 2Y = −
 

(6.22) 

* 0b

X
θ∂

= ⇒
∂

*
, ,
* * *

f p f p

X X
θ θ θ

θ
∂ ∂

=
∂ ∂

 at X* ≥ X*
fd  for -1/2 ≤ Y ≤ 1/2 {downstream 

condition}        

(6.23) 

In Eq. (6.23), θb is the non-dimensional temperature based on the bulk mean 

temperature defined by  
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*
e

b
b e

T T
T T

θθ
θ

−
= =

−  
(6.24) 

 Further, the conditions given in Eq. (6.20) ensure the continuity of the velocity 

and the shear stress as given in Bhargavi and Satyamurty [108] and Satyamurty and 

Bhargavi [158]  at the interface.  

6.3 Numerical Scheme: Successive Accelerated Replacement 

(SAR)         

Numerical solutions to Eqs. (6.13) and (6.16) along with the boundary conditions on θ 

given in Eqs. (6.18) to (6.23) have been obtained employing the successive accelerated 

replacement (SAR) scheme as described in  Ramjee and Satyamurty [15] and Satyamurty 

and Bhargavi [158]. This iterative scheme was originally derived to solve systems of non-

linear algebraic equations by Lieberstein [168], these equations being mildly nonlinear 

elliptic partial differential equations. This scheme has been used extensively to solve 

nonlinear ordinary differential equations arising in compressible flows Lew [167] and 

Dellinger [169]. The scheme is basically the Gauss Siedel Successive Over-relaxation 

scheme, see, Antia [189]. The terminology of SAR has been used by Dellinger [169]. 

 

6.3.1 Application of the SAR Scheme 

Non Uniform: 

Non-uniform grids described in Chapter 5, § 5.3.3 have been employed in the axial 

direction. Let MD and ND be the number of divisions in X and Y direction and X∆ and 
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Y∆  be the width in X and Y direction respectively. When the terms in energy Eqs. (6.13) 

and (6.16)are expressed in finite difference form, the errors fθ , pθ  are given by,  

( ) ( )
( )

( ) ( )22

( , ) ( 1, )
( , ) ( )

( ) ( 1)

( 1) ( 2) ( , ) ( 2) ( ) ( 1, )

( ) ( 1) ( 2, )1              
( ) ( 1) ( 1) ( 2)

( , 1) 2 (
              

f f
f f

f f

f
c

f f

M N M N
M N U N

X M X M

X M X M M N X M X M M N

X M X M M N
A

Pe X M X M X M X M

M N M

θ θ
θ

θ θ

θ

θ θ

− − 
=  − − 

− − − + − − − 
 
+ − − − −  − − − − − 
  

+ −
−



2

, ) ( , 1)
( )

fN M N
Y

θ+ − 
 ∆ 

 

 

 

(6.25) 

( ) ( )
( )

( ) ( )22

( , ) ( 1, )
( , ) ( )

( ) ( 1)

( 1) ( 2) ( , ) ( 2) ( ) ( 1, )

( ) ( 1) ( 2, )1              
( ) ( 1) ( 1) ( 2)

( , 1) 2 (
              

p p
p p

p p

p
c

p p

M N M N
M N U N

X M X M

X M X M M N X M X M M N

X M X M M N
A

Pe X M X M X M X M

M N

θ θ
θ η

θ θ

θ

θ θ

− − 
=  − − 

− − − + − − − 
 
+ − − − −  − − − − − 
  

+ −
−



2

, ) ( , 1)
( )

pM N M N
Y

θ+ − 
 ∆ 

 

 

 

(6.26) 

To correct the profile for fθ  and pθ , according to the SAR scheme, the following 

derivatives become necessary 

 

[ ]2 22

( , ) ( ) 1 2
( , ) ( ) ( 1) ( )( ) ( 1)

f f
c

f

M N U N
A

M N X M X M YPe X M X M

θ
θ
∂

= − +
∂ − − ∆− −



 
(6.27) 

[ ]2 22

( , )  ( ) 1 2
( , ) ( ) ( 1) ( )( ) ( 1)

p p
c

p

M N U N
A

M N X M X M YPe X M X M

θ η
θ
∂

= − +
∂ − − ∆− −



 
(6.28) 

Boundary conditions: 
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( ) ( )4 , 1 , 2
( , )

3
f f

f

M N M N
M N

θ θ
θ

− − −
=

                               
at  1

2
NDN = +                     

(6.29) 

( ) ( )2  , 2 4 , 1
( , )

3
p p

p

Y M N M N
M N

η θ θ
θ

∆ − + + +
=                     at    1N =      

(6.30) 

     Let NP be a grid number corresponding to the interface. It is assumed that the 

interface coincides with one of the grid planes in the Y direction. When a large number of 

ND's are used, the error involved is not likely to be significant even if the interface does 

not exactly correspond to an integer NP. Boundary conditions given by Eq. (6.21) on fθ  

and pθ  in finite difference form become, 

 

( , ) ( , )f pM NP M NPθ θ=                                  at      1
2

pNP ND
γ 

= + 
 

        
(6.31) 

1( , ) ( , 1) ( , 1) ( , )f f p pM NP M NP M NP M NPθ θ θ θ
η
 = − + + − 

     
at      1

2
pNP ND

γ 
= + 
   

(6.32) 

Inlet condition 

 

(0, ) 0p Nθ =                        for         1 1
2

pN ND
γ 

≤ ≤ + 
    

 
(6.33) 

(0, ) 0f Nθ =                         for         1 1
2 2

p NDND N
γ 

+ ≤ ≤ + 
 

 
(6.34) 
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The downstream boundary conditions {Eq. (6.23)} are expressed in finite difference 

form as follows  

 

{ }
{ }

* * * 2
2 1

* * 2 * *
2 1

( 1) [1 ( / )] ( , ) ( 1, )
( 1, )

[1 ( / )] ( ) ( 1)
MD MD p p

p
MD MD

MD X X MD N MD N
MD N

X X MD MD

θ θ θ
θ

θ θ
− −

− −

+ + ∆ ∆ − −
+ =

+ ∆ ∆ − −
 

                                                   for 1 ≤ N ≤ NP    for * *
fdX X>     

{ }
{ }

* * * 2
2 1

* * 2 * *
2 1

( 1) [1 ( / )] ( , ) ( 1, )
( 1, )

[1 ( / )] ( ) ( 1)
MD MD f f

f
MD MD

MD X X MD N MD N
MD N

X X MD MD

θ θ θ
θ

θ θ
− −

− −

+ + ∆ ∆ − −
+ =

+ ∆ ∆ − −
 

                                                             for NP ≤ N ≤ ND      for * *
fdX X>      

 

 

(6.35) 

Further, in Eq. (6.35), 

 

* * *( 1) ( )MX X M X M∆ = + −  (6.36) 

When the axial conduction is neglected, i.e., Ac = 0 in Eqs. (6.13) and (6.16), the 

condition given by Eq. (6.35) need not be applied since the governing equations become 

parabolic.  Several numerical trials have been made to establish grid independence, 

suitable number of grids in X* and Y directions, error tolerence, εt and acceleration factor, 

ω. Numerical trials are given in chapter 5.  ω ≤ 1 has been chosen, lower values being 

associated with higher Pe. εt = 10-5, X*
fd = 0.4, MD = 1000 and ND = 90 have been found 

to be satisfactory.      
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6.3.2 Local Nusselt Number 

The heat transfer coefficient hpx, at the plate / 2y H= −  adjacent to the porous medium is 

defined by 

  
2

| ( )p
eff H px w by

dT
k h T T

dy = −
− = −  

(6.37) 

Upon non-dimensionalizing (using Eq. (6.10)), the Nusselt number at 1/ 2Y = −  , Nupx is 

given by 

*

(2 ) 2px
px

f w

h H
Nu

k θ θ
= =

−
 

(6.38) 

6.4 Result and Discussion 

It has been assumed that ε = μf /μeff  = 1 and η = kf /keff = 1. Numerical solutions to the 

conservation of thermal energy equation applicable in the porous and fluid regions 

employing the fully developed velocity profile have been obtained for 0  ≤   γp  ≤ 1.0,  Pe 

= 5, 10, 25, 50 and 100 and  Da = 0.001, 0.005, 0.01, 0.05 and 0.1 by the successive 

accelerated replacement (SAR) scheme which has been extensively used for this class of 

problems (Ramjee and Satyamurty[15] and Satyamurty and Bhargavi [158]). 

6.4.1 Thermal Field 

Variation with porous fraction γp

Non-dimensional temperature in excess of wall temperature, 

: 

,w p w fθ θ θ θ− − , profiles at 

different axial locations for Da = 0.005 and Pe = 5, 100 are shown in Figs. 6.1(a) to 6.1(f) 

and Figs. 6.2(a) to 6.2(f) for γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 respectively. It can be 
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noticed that ,w p w fθ θ θ θ− −  profiles are symmetric about Y = 0 when γp = 0 and γp = 1.0, 

in (a) and (f) of Figs. 6.1 and 6.2. From Figs. 6.1(a) to 6.1(f) and 6.2(a) to 6.2(f), as X* 

increases, w pθ θ−  , w fθ θ−  increase in both the fluid and porous regions for all porous 

fractions. If X* is large (say, = 0.4) and the Peclet number is large too say, Pe ≥ 100,  

w pθ θ− , w fθ θ−  tend  to fully developed profiles for all porous fractions and Darcy 

numbers, as given in chapter 2. From Fig. 6.2(a){for 0pγ = } and 6.2(f) {for 1.0pγ = } 

for large X* (say = 0.4), w fθ θ−  tends to be fully developed profiles given in Kays, 

Crawford and Weigand [185]. 

,w p w fθ θ θ θ− −

Variation  of θ profiles with Peclet number, Pe :  

The non-dimensional temperature in excess of wall temperature  profiles 

at different axial locations for Da = 0.005 and γp = 0.4 are shown in Figs. 6.3(a) to 6.3(f) 

respectively, for Peclet numbers, Pe = 5, 10, 25, 50, 100 and Ac = 0, i.e., when axial 

conduction is neglected.  From Fig. 6.3, as X* increases, w pθ θ−  , w fθ θ−  increase in both 

the fluid and porous regions for all Peclet numbers. Fig. 6.3(e) {Pe = 100} and Fig. 6.3(f) 

{ Ac = 0} are almost identical except for very small X* values, indicating that the effect of 

axial conduction is negligible when Pe ≥ 100. That is, if X* is larger (say, = 0.4), w pθ θ− , 

w fθ θ−  tend  to be fully developed profiles,  as  given in chapter 2, § 2.5 when Pe ≥ 100. 
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                                         (a)                                                                                    (b)   

                 
                                         (c)                                                                                    (d)  

            
                                         (e)                                                                                 (f) 
Fig. 6.1: Variation of w pθ θ−  , w fθ θ−

 
profiles for different X* values for Da = 0.005 and Pe = 5  for (a)

0pγ =   (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  (e)  0.8pγ =  and  (f)
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                                         (a)                                                                                   (b) 

                 
                                         (c)                                                                                    (d) 

                    
                                         (e)                                                                                 (f) 
Fig. 6.2: Variation of w pθ θ−  , w fθ θ−

 
profiles for different X* values for Da = 0.005 and Pe = 100  for 

(a) 0pγ =   (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  (e)  0.8pγ =  and  (f)
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                                       (a)                                                                                 (b) 

               
                                      (c)                                                                                   (d)          

         
                                       (e)                                                                                   (f) 
Fig. 6.3: Variation of w pθ θ−  , w fθ θ−

 
profiles for different X* values for Da = 0.005 and 0.4pγ =  for 

(a) Pe = 5 (b) Pe = 10 (c) Pe = 25 (d) Pe = 50  (e) Pe = 100  and  (f) Ac = 0, i.e., when axial conduction is 
neglected. 
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Non dimensional temperature based on bulk mean temperature: 

θb {the non-dimensional temperature based on bulk mean temperature defined by Eq. 

(6.24)} profiles at different axial locations are shown in Figs. 6.4(a) to 6.4(f) for γp = 

0{the clear fluid channel}, 0.2, 0.4, 0.6, 0.8 and γp = 1.0{the channel fully filled with 

porous material}, for Da = 0.005, Pe = 25 . As noted with reference to ,w p fθ θ−  profiles 

in Figs. 6.1  and 6.2, θb profiles are also symmetric about Y = 0, for two cases of the clear 

fluid channel (γp = 0) and the channel fully filled with the porous material(γp = 1.0). θb is 

dependent on the Darcy number and approaches that of clear fluid profile for large Da.  

For 0 and 1.0pγ ≠ , θb profiles are not symmetric about Y = 0. Axial conduction effect 

decreases for larger X*, where  θb profiles are almost the same for all Pe. The plots in Fig. 

6.4 also confirm that 
*

/∂ ∂b Xθ → 0 for large X*.  

 

6.4.2 Non Dimensional Bulk Mean Temperature  

Non dimensional bulk mean temperature in excess of wall temperature, 
*

wθ θ− with X*, 

for different Peclet numbers, Pe = 5, 10, 25, 50 and 100 for Da = 0.05 for γp = 0, 0.2, 0.4, 

0.6, 0.8 and 1.0 are presented in Figs. 6.5(a) to 6.5(f). From Fig. 6.5, the effect of Peclet 

number can be accessed.  For all X*, *
wθ θ−  is lower for lower Pe. The effect of axial 

conduction thus results in the fluid getting less heated or less cooled.  From Figs. 6.5(a) 

to 6.5(f), as X* increases, *
wθ θ−  increases for all Peclet numbers and porous fractions. 

As Peclet number increases, *
wθ θ−  increases with  X* values for all porous fractions. 

 
 
 



183 

 

    
                                            (a)                                                                                  (b) 

   
                                             (c)                                                                                   (d) 

    
                                            (e)                                                                                     (f) 

Fig. 6.4: Variation of non dimensional temperature based on Bulk mean temperature, bθ  profiles for 

different X* values for Da = 0.005 and Pe = 25  for (a) 0pγ =   (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  

(e)  0.8pγ =  and  (f)
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                                       (a)                                                                                      (b) 

          
                                       (c)                                                                                    (d) 

           
                                       (e)                                                                                     (f) 
Fig. 6.5: Variation of Non dimensional bulk mean temperature *

wθ θ− with X* values for different Peclet 

numbers, Pe and Darcy number, Da = 0.05 for  (a) 0pγ =   (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  (e)  

0.8pγ =  and  (f) 1.0 .pγ =  
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6.4.3 Local Nusselt number  

6.4.3.1 Comparison and Experimental Validation:  

Table 6.1: A Comparison of the Present Values of Nupx for Peclet number, Pe =100 for the Clear Fluid 
Channel (γp = 0) with the Values Available in the Literature [18]. 

 
X* 0.002 0.008 0.02 0.04 0.125 0.2 0.3 0.4 

Present 20.732 12.859 10.063 8.832 8.249 8.236 8.235 8.235 

Shah and London [17] 19.113 12.604 9.988 8.803 8.246 8.235 8.235 8.235 

 

A comparison of the present values of Nupx for clear fluid channel( 0pγ = ) with the 

values available in Shah and London [18] is given in Table 6.1. The present results 

shown in Table 6.1 are obtained for Pe . The agreement of the present values with the 

values in literature  is good. A comparison of the present values of Nupx for 1.0pγ =   with 

the experimental results available in chapter 5 is also given in Fig. 5.7 of chapter 5 for the 

case of axial conduction neglected. 

 

 Variation of Nupx with X* for Darcy number,  Da = 0.001 is shown in Figs. 6.6(a) 

to 6.6(f) for all porous fractions, γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, for the different Peclet 

numbers, Pe.  Similar plots are given in Figs. 6.7(a) to 6.7(f) for  Darcy numbers, Da = 

0.01. The trends in the variation of Nupx with X* for the channel partially filled with 

porous material are similar to the well reported trends for channels with clear fluid flow 

or channels fully filled with porous material. From Figs. 6.6(a) to 6.6(f) and Figs. 6.7(a) 

to 6.7(f), as Pe increases, Nupx decreases with X* for all porous fractions. As X* increases, 

Nupx decreases for all Peclet numbers and porous fractions. For all X*, Nupx is lower for 

higher Pe. The features that (i) Nupx decreases as X* increases and reaches the fully 
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developed values (ii) Nupx is higher at lower Peclet numbers, (iii) Axial conduction 

effects are negligible for e  100P ≥ , are displayed.  In addition, when γp ≠ 0 or γp ≠ 1.0, 

Nupx tends to different constant values for large X*. These values obviously differ from 

the fully developed values for the clear fluid channel and the channel fully filled with 

porous material. Further, it can be expected that the fully developed values of Nupx 

depends on the porous fraction and Darcy number because of the coupling between the 

porous and clear fluid regions. It has been found that Nupx → 8.2353 for Da > 0.1, i.e., 

the channel behaves like a clear fluid channel. 

 

Effect of Axial Conduction 

The plots of Nupx vs. X* and Nupx vs. X are shown in Figs. 6.8(a) and 6.8(b) for different 

Peclet numbers Pe = 5, 10, 25, 50, 100 and Ac = 0 for Da = 0.05 and γp = 0.2. Plots of 

Nupx vs. X* and Nupx vs. X are shown in Figs. 6.9(a) and 6.9(b) for different Peclet 

numbers Pe = 5, 10, 25, 50, 100 and Ac = 0 for Da = 0.05 and γp = 0.8. From Figs. 6.8 and 

6.9, Nupx, increases as Pe decreases at a fixed X*, whereas, Nupx decreases as Pe decreases 

at a fixed X= X*.Pe. This feature is similar to that followed by clear fluid channel. 
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                                        (a)                                                                                       (b) 

        
                                  (c)                                                                                     (d) 

        
                                         (e)                                                                                     (f) 
Fig.  6.6: Variation of Nusselt number, Nupx with X* values for different Peclet numbers, Pe and Da = 0.001 

for  (a) 0pγ =   (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  (e)  0.8pγ =  and  (f)
 

1.0pγ =  .
 

0.0001 0.0010 0.0100 0.10000

50

100

150

200

250

300

γp=0

X*

 

 

 Pe = 5
 Pe = 10
 Pe = 25
 Pe = 50
 Pe = 100Nu

px

0.0001 0.0010 0.0100 0.10000

50

100

150

200

250

300

γp=0.2, Da = 0.001

X*

 

 

 Pe = 5
 Pe = 10
 Pe = 25
 Pe = 50
 Pe = 100Nu

px

0.0001 0.0010 0.0100 0.10000

50

100

150

200

250

300

γp=0.4, Da = 0.001

X*

 

 

 Pe = 5
 Pe = 10
 Pe = 25
 Pe = 50
 Pe = 100Nu

px

0.0001 0.0010 0.0100 0.10000

50

100

150

200

250

300

γp=0.6, Da = 0.001

X*

 

 

 Pe = 5
 Pe = 10
 Pe = 25
 Pe = 50
 Pe = 100Nu
px

0.0001 0.0010 0.0100 0.10000

50

100

150

200

250

300

γp=0.8, Da = 0.001

X*

 

 

 Pe = 5
 Pe = 10
 Pe = 25
 Pe = 50
 Pe = 100Nu

px

0.0001 0.0010 0.0100 0.10000

50

100

150

200

250

300

γp=1.0, Da = 0.001

X*

 

 

 Pe = 5
 Pe = 10
 Pe = 25
 Pe = 50
 Pe = 100Nu

px



188 

 

        
                                         (a)                                                                                        (b) 

        
                                         (c)                                                                                       (d) 

        
                                         (e)                                                                                         (f) 
Fig.  6.7: Variation of Nusselt number, Nupx with X* values for different Peclet numbers, Pe and Da = 0.01 

for  (a) 0pγ =   (b) 0.2pγ =   (c) 0.4pγ =  (d) 0.6pγ =  (e)  0.8pγ =  and  (f)
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                                     (a)                                                                                      (b) 

Fig. 6.8: Variation of (a) Nupx vs. X* (b) Nupx vs. X for different Peclet numbers, Pe and Da = 0.05 for  
0.2pγ = . 

 

                  
                                            (a)                                                                                     (b) 

Fig. 6.9: Variation of (a) Nupx vs. X* (b) Nupx vs. X for different Peclet numbers, Pe and Da = 0.05 for  
0.8pγ = . 

 
 

 To examine further, a plot of Nupx with  γp for different Da values at (a) X* = 

0.005, (b) X* = 0.01, (c) X* = 0.05 and (d) X* = 0.1 for Pe = 5 and 50 are shown in Fig. 

6.10 and Fig. 6.11  respectively. 
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 It is clear from Figs. 6.10 and 6.11, that the variation of Nupx with γp depends on 

Da. Nupx clearly increases as Da increases when γp < 0.8, whereas for γp > 0.8, Nupx 

decreases as Da increases.  Nupx, decreases as Da increases for γp = 1.0, becoming equal 

to the clear fluid channel value for large Da. This fact is observed in thesis of Bhargavi 

[186] for different channel geometry in Chapter 3. Also, Nupx decreases as Pe increases 

with porous fraction, γp for all Darcy numbers. The minimum value of Nupx depends on 

Da but is independent of Pe and X*. 

          
                                            (a)                                                                                        (b) 

           
                                             (c)                                                                                          (d) 
Fig. 6.10: Variation of Nupx with γp at (a) X* = 0.005 (b) X* = 0.01 (c) X* = 0.05 and (d) X* = 0.1 for Pe = 5 

at different Darcy numbers. 
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                                            (a)                                                                                       (b) 

           
                                            (c)                                                                                         (d) 

Fig. 6.11: Variation of Nupx with γp at (a) X* = 0.005 (b) X* = 0.01 (c) X* = 0.05 and (d) X* = 0.1  for Pe = 

50 at different Darcy numbers. 

 

6.5   Conclusions 
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100 and Da = 0.001, 0.005, 0.01, 0.05 and 0.1, employing successive acceleration 

replacement (SAR) scheme (Ramjee and Satyamurty [15] Satyamurty and Bhargavi 

[158]). When axial conduction is neglected, Peclet number does not appear explicitly in 

the conservation of thermal energy equation expressed in terms of the normalized non-

dimensional axial distance X*.  

 

       It has been concluded that the non-dimensional temperature profiles become 

independent of the Peclet number for Pe ≥ 100 indicating that the effect of axial 

conduction has become negligible. The downstream condition satisfied by the clear fluid 

ducts, */b Xθ∂ ∂  → 0, has been found to be valid for parallel plate channels partially 

filled with porous material also. This feature assumes importance since the flow and 

thermal fields are not symmetric when the channel is partially filled with porous material. 

Non-dimensional bulk mean temperature excess of wall temperature, *
wθ θ− , increases 

as X* increases. *
wθ θ−  decreases as Peclet number decreases. This indicates that a 

stronger axial conduction effect present at lower Peclet numbers makes the fluid get less 

heated or less cooled compared to when axial conduction is neglected.  

 

 The values of the local Nusselt numbers when the channel is a clear fluid channel 

agree well with the values available in Shah and London [18].  The local Nusselt number 

Nupx decreases as X* increases for all γp and then reaches as the fully developed values for 

X* ≥ 0.4. Similarly, Nupx increases as Pe decreases for a given X*. However, at a given X, 

Nupx decreases as Pe decreases. For Pe ≥ 100, the axial conduction effect becomes 

negligible except very close to entrance.   
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 Nupx is a minimum when γp ≈ 0.6 at low Da = 0.001 increasing to γp ≈ 0.8 when 

Da = 0.1. Nupx attains a minimum almost independent of Peclet number and X*. Thus, 

there exists an optimum porous fraction to attain deterioration in the Nusselt numbers. In 

the context of constant wall heat flux condition, this implies that transfer of a given heat 

flux takes place with higher temperature difference between the wall and the fluid in the 

present channel geometry. 
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Chapter 7 

Effect of Viscous dissipation and Axial Conduction in 

the Thermally Developing Region of the Channel 

Partially Filled with a Porous Material Subjected to 

Constant Wall Heat Flux 
 

 

 

7.1  Introduction 

Studies on steady two-dimensional laminar forced convection in hydrodynamically 

developed and thermally developing flow between parallel plates partially filled with the 

porous material including viscous dissipation have been presented in this chapter. The 

channel walls have been kept at constant wall heat flux. The non-dimensional governing 

conservation of thermal energy equations {same as Eqs. (6.13) and (6.16) of Chapter 6} 

in the fluid and porous regions are elliptic when axial conduction is included. The non-

dimensional temperature profiles in the conduction limit obtained in Chapter 4 are used 

as the downstream boundary condition needed to solve the governing equations.  

 

 In this chapter, numerical solutions to the governing conservation of thermal 

energy equation including dissipation and axial conduction in the fluid and porous 

regions have been obtained employing the SAR {Ramjee and Satyamurty[15] and 

Satyamurty and Bhargavi [158]} scheme. The solutions have been obtained with and 

without axial conduction terms for 0 ≤ γp ≤ 1.0, 0.005 ≤ Da ≤ 0.01, Pe = 5, 25, 100 and 
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−1.0 ≤ Br ≤ 1.0. The influence of dissipation at different porous fractions, Darcy numbers 

and Peclet numbers on local Nusselt numbers has been studied. 

 

7.2 Mathematical Formulation 

With reference to the physical model already described in Chapter 5 (Fig. 5.1, § 5.2), the 

governing equations in non-dimensional form for the temperature, including dissipation 

and axial conduction in the fluid and porous regions in non-dimensional form are given 

below. Two dissipation functions, i) due to Bejan [49] commonly referred to as, Darcy 

model and ii) due to Al-Hadhrami, Elliott and Ingham [135 and 136], referred to as, clear 

fluid comparable model have been evaluated. The assumptions are that ε = μf /μeff  = 1 and 

η =  kf / keff  = 1 have been made. 

Governing Equations 

In the present Chapter effects of axial conduction (F1) and viscous dissipation(F2) effects 

are considered. i.e  F1 =1 and F2 = 1. Substituting, F1 =1 and F2 = 1  in Eqs. (5.2) and 

(5.4) of Chapter 5 § 5.2, then the conservation of thermal energy equations in fluid and 

porous regions respectively, given by,  

Fluid Region: 

22 2

2 2
f f f f

p f f f

T T T du
C u k

x x y dy
ρ µ

 ∂ ∂ ∂  
= + +    ∂ ∂ ∂   

                     (7.1)                                                                                            

In Eq. (7.1), Tf is the temperature in the fluid region ρ, Cp and kf are the density, the 

specific heat and the thermal conductivity of the fluid respectively. 

 

 

sharath
Highlight
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Porous Region: 

2 2

2 2
p p p

p efp f i

T T T
C u k

x x y
ρ

 ∂ ∂ ∂
= + +Φ  ∂ ∂ ∂         

(7.2) 

In Eq. (7.2),  iΦ   is dissipation model, for i = 1, the Darcy model due to Bejan [49], for i 

= 2, clear fluid compatible model due to Al-Hadhrami et al. [135 and 136] given by,  

Darcy model: 

2
1

f
pu

K
µ

Φ =                                    (7.3) 

Clear fluid compatible model: 

2
2

2
f p

p f

du
u

K dy
µ

µ
 

Φ = +  
 

                              (7.4) 

In Eq. (7.2), Tp is the temperature in the porous region and keff is the effective thermal 

conductivity of the porous medium. keff can be calculated from Catton [21] as,  

(1 )  eff s fk k kϕ ϕ= − +          (7.5) 

In Eq. (7.5), ϕ  is the porosity and ks is the thermal conductivity of the solid in the porous 

matrix. 

Boundary and Interfacial Conditions  

0pu =  ,     
p

eff

T
k q

y
∂

− =
∂     

at     / 2y H= −  
 (7.6) 

f p iu u u= =    ,  p f
eff f

du du
dy dy

µ µ=
     

                    at  interface  2 2
plHy = − +

                
 

 (7.7) 
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f p iT T T= = ,      ( ) ( )/ /f f eff pk T y k T y∂ ∂ = ∂ ∂         
at  interface  2 2

plHy = − +
                     

0,fdu
dy

= 0fT
y

∂
=

∂     
at  0y =   {Symmetry boundary conditions}                                         

 (7.8) 

 

 (7.9) 

Inlet condition is: 

    p eT T=         at       0x =  ,    
2 2 2

plH Hy− ≤ ≤ − +  
(7.10) 

    f eT T=         at       0x =  ,     0
2 2

plH y− + ≤ ≤  
(7.11) 

0w

b w

T T
x T T
 −∂

= ∂ − 
at 

2 2
H Hy− ≤ ≤  {downstream condition}                                    (7.12) 

Non-dimensionalization 

Governing equations {Eqs. (7.1) and (7.2)} are rendered non-dimensional by introducing 

the following non-dimensional variables. 

/X x H= ,  /Y y H= ,  /f f refU u u= ,  /i i refU u u= , /p p refU u u= , 

2/  
ref

P p uρ= , ( ) /( / )f f e fT T qH kθ = − , ( ) /( / )p p e fT T qH kθ = −  

     

(7.13) 

In Eq. (7.13), X and Y are the non-dimensional coordinates. U and P are non-dimensional 

velocity, and pressure. The subscripts f and p refer to fluid and porous regions. θ,{ fθ in 

the fluid region and pθ in the porous region}, is the non-dimensional temperature. uref is 

the average velocity through the channel. uref  is related to pu and fu by,  
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02 2

/ 2
2 2

2
p

p

lH

p f ref
lH H

u dy u dy u
H

− +

−
− +

 
 

+ = 
 
 

∫ ∫  

   

(7.14) 

In addition, the non-dimensional porous layer thickness γp, which shall be referred to as 

porous fraction is defined by,  

/p pl Hγ =      (7.15) 

when the channel walls are subjected to constant heat flux.  Peclet number can be 

absorbed by defining 

 /X X Pe∗ =                                     (7.16)                                                                                                                                                                                  

 On introducing the non-dimensional variables given by Eq. (7.13), the governing 

equations for energy applicable in the fluid {Eq. (7.1)}and porous {Eq. (7.2) } regions in 

non-dimensional form become, 

 

Fluid Region 

2

22 2

* 2 2*

1f f f f
f

dU
U Br

X Pe Y dYX

θ θ θ∂ ∂ ∂  
= + +  ∂ ∂∂  

 
      (7.17) 

In Eq. (7.17), Pe, Peclet number and Br, Brinkman number are defined by,  

2/ , /ref f f refPe u H  Br u qHα µ= =        (7.18) 

when Br > 0 implies that, the fluid is getting cooled while Br < 0 represents the fluid is 

getting heated. 
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Porous Region 

2

2 2

* 2 2*

1 1p p p
p iU

X Pe YX

θ θ θ
η
 ∂ ∂ ∂

= + +Ψ  ∂ ∂∂ 
 

  (7.19) 

In Eq. (7.19) , iΨ   is non-dimensional dissipation model given by,  

Darcy model: 

2
1 p

Br U
Da

Ψ =                  (7.20) 

Clear fluid compatible model : 

22

2
p pU dU

Br
Da dY

  
Ψ = +  

   
                                                                                  (7.21)          

In Eq. (7.19) , ε and η are defined by,    

 /f effk kη =    (7.22) 

Non-dimensional Boundary Conditions 

The boundary and interfacial conditions given by Eqs.(7.6) to (7.12) assume the 

following non-dimensional form (using Eq.(7.13)) 

0,fdU
dY

= 0f

Y
θ∂

=
∂    

at   0Y =  
 (7.23) 

f p iU U U= = ,  1f pdU dU
dY dYε

=
    

at the interface     1
2 2

pY
γ

= − +  
 (7.24) 

f p iθ θ θ= = ,  1f p

Y Y
θ θ

η
∂ ∂

=
∂ ∂

 
  
 at the interface     1

2 2
pY

γ
= − +  

 (7.25) 
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0pU = ,   p

Y
θ

η
∂

= −
∂    

 at   1/ 2Y = −
 

 (7.26) 

Inlet conditions 

(0, ) 0p Yθ =     for  1 1
2 2 2

pY
γ

− ≤ ≤ − +                                                                (7.27) 

(0, ) 0f Yθ =     for  1 0
2 2

p Y
γ

− + ≤ ≤                                                                   (7.28) 

* 0b

X
θ∂

= ⇒
∂

*
, ,
* * *

f p f p

X X
θ θ θ

θ
∂ ∂

=
∂ ∂

 at X* ≥ X*
fd  for -1/2 ≤ Y ≤ 1/2                             (7.29) 

In Eq. (7.29), θb is the non-dimensional temperature based on the bulk mean 

temperature defined by  

*
e

b
b e

T T
T T

θθ
θ

−
= =

−  
 (7.30) 

 

7. 3 Numerical Scheme: Successive Accelerated Replacement 

(SAR)         

In order to obtain numerical solutions to Eqs. (7.17) and (7.19), as per the SAR [15 and 

158] scheme, (described in § 6.3 of Chapter 6 in detail), the required finite difference 

expressions and the derivatives have been written similar to Eqs. (6.13) and (6.16) of 

Chapter 6, § 6.3, with the additional terms arising due to viscous dissipation, associated 

with the Brinkman number, Br in Eqs. (7.17) and (7.19). The number of grids in the axial 

and normal directions, MD and ND have been chosen as 1000 and 90 respectively as 
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indicated in Chapter 5. The axial distance needed *
CLX  for the thermal field to reach the 

conduction limit, has been divided into MD divisions. *
MX∆ , the non-uniform grid in the 

axial direction has been generated according to Eq. (5.50), § 5.3.3 of Chapter 5 and Y∆  = 

1/ND. Further, the error tolerance limit, εt = 10−5 and acceleration factor as per Eqs. 

(5.53) and (5.54), § 5.3.3, have been factored in the equation.  

 

 Eqs. (2.26) and (2.29), § 2.3.1, Chapter 2 have been used to calculate the fully 

developed velocities in the fluid and porous regions. Numerical solutions have been 

obtained for, 0.001 ≤ Da ≤ 1.0, γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, − 1.0 ≤ Br ≤ 1.0 and Pe = 

5, 50, 100 and neglecting axial conduction (designated by Ac = 0) for the two dissipation 

models, [49, 135 and 136]. The number of combinations of the parameters is very high; 

detailed computations have been performed and the results are available with the 

researcher. However, only select results that are needed to bring out the features arising 

out of including viscous dissipation have been included. 

 

7. 4 Result and Discussion 

7.4.1 Channel fully filled with porous medium 

Non-dimensional temperature Profiles 

The influence of viscous dissipation can be evaluated using non-dimensional temperature 

in  excess of wall temperature, w pθ θ−  profiles available in Chapter 6, § 6.4.1, {e.g., Fig. 

6.1(f) and Fig. 6.2(f)} with the profiles obtained in the present chapter with the two 

different dissipation models.  
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 Non-dimensional temperature in  excess of wall temperature, w pθ θ−  profiles for  

Da = 0.005 and 1.0pγ =  at  different axial locations, X*  for (a) 0.5Br = −  and (b) 

0.5Br =  for the Darcy model are shown in Fig.  7.1 for Pe = 5  and in Fig. 7.2  for Pe = 

100 respectively.  Similarly, Non-dimensional temperature in  excess of wall temperature, 

w pθ θ−  profiles for  Da = 0.005 and 1.0pγ =  at  different X*  for (a) 0.5Br = −  and (b) 

0.5Br =  for the clear fluid compatible model are shown in Fig.  7.3 for Pe = 5  and in 

Fig. 7.4 for Pe = 100 respectively.   

 

 The non-dimensional temperature in  excess of wall temperature, w pθ θ−  profiles 

for γp = 1.0 obtained using Darcy model [49] given in Figs. 7.1 and 7.2 {Eq. (7.20) 

applied for − 0.5 ≤ Y ≤ 0 because of symmetry of the channel} are not similar to those 

shown in Figs. 7.3 and 7.4 for clear fluid compatible model [135 and 136]{Eq. (7.21)}. 

The difference in the w pθ θ−  profiles for the two dissipation models can be found even 

when Da is high. The difference in the profiles shown in Figs. 7.1, 7.2 and Figs. 7.3, 7.4  

emerge from the dissipation function employed, for the Darcy model and the clear fluid 

compatible model.  

 

 It is clear that Pe = 5 (lowest of the values computed) represents the strongest 

axial conduction effect while Pe = 100, shows almost negligible axial conduction effect.  



203 

 

 On examining Figs. 7.1 and 7.2 for the Darcy model and Figs. 7.3 and 7.4 for 

clear fluid compatible model, the following conclusions emerge by comparing 

( )
0w p Br

θ θ
≠

−  with ( )
0w p Br

θ θ
=

−    {Chapter 6},  

 

( ) ( )
0 0w p w pBr Br

θ θ θ θ
< =

− > −
     

and  ( ) ( )
0 0w p w pBr Br

θ θ θ θ
> =

− < −
           

(7.31) 

The relation given in Eq. (7.31) is satisfied  for Darcy model. 

( ) ( )
0 0w p w pBr Br

θ θ θ θ
< =

− < −     and    ( ) ( )
0 0w p w pBr Br

θ θ θ θ
> =

− > −                 (7.32) 

 The relation given in Eq. (7.32) is satisfied  for clear fluid compatible model. 

 

 The limiting value of ( )
0w p Br

θ θ
≠

−
 
, i.e., ( ), 0w p CL Br

θ θ
≠

−  {given in Chapter-4, 

Eqs.(4.67), (4.69)} and the values of ( )
0w p Br

θ θ
≠

− at the entry region of the channel, 

depend on the Brinkman number for both the dissipation models.  As per our definition, 

Br > 0 represents fluid getting cooled and dissipation prevents the fluid from cooling 

down to wall temperature, leaving  ( )
0

0w p Br
θ θ

>
− < . Similarly when Br < 0, the fluid is 

getting heated and the fluid exceeds the wall temperature making ( )
0

0w p Br
θ θ

<
− >

 
for the 

Darcy model. Whereas, in the case of clear fluid compatible dissipation model, 

( )
0

0w p Br
θ θ

>
− >

 
for Br > 0  and ( )

0
0w p Br

θ θ
<

− <  for Br < 0. 
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Fig. 7.1: Variation of non-dimensional temperature    
excess of wall temperature w pθ θ−  profiles for  Da 

= 0.005 and 1.0pγ =
 
for Pe = 5  at  different X*  

for (a) 0.5Br = −  and (b) 0.5Br =   for Darcy 
model.   
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Fig. 7.2: Variation of non-dimensional temperature    
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for Pe = 100   at  different X*  

for (a) 0.5Br = −  and (b) 0.5Br =   for Darcy 
model.   
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Fig. 7.3: Variation of non-dimensional temperature    
excess of wall temperature w pθ θ−  profiles for  Da 

= 0.005 and 1.0pγ =
 
for Pe = 5 at  different X*  

for (a) 0.5Br = −  and (b) 0.5Br =   for the clear 
fluid compatible  model.   
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= 0.005 and 1.0pγ =
 
for Pe = 100   at  different X*  

for (a) 0.5Br = −  and (b) 0.5Br =   for the clear 
fluid compatible  model.   
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 Plots of w pθ θ−  vs. Br are shown in Fig. 7.5 for (a) Darcy model (b) clear fluid 

compatible model for Pe = 5, when axial conduction has been included at X* = 0.0005 for 

different Y = -0.4, -0.3, -0.2, -0.1 and 0.0 for Da = 0.005 for γp = 1.0.  From Fig. 7.5,  

w pθ θ−  does vary linearly with Br for both the models. This fact is also true when axial 

conduction is neglected.  

                                 (a) Darcy model                                             (b) Clear fluid compatible model    

Fig.7.5 : Variation of non-dimensional temperature excess of wall temperature w pθ θ−  profiles vs. Br for  

Da = 0.005 and 1.0pγ =
 
for Pe = 5 at  X* = 0.0005  for (a) the Darcy model and (b) the clear fluid 

compatible model 
 
Local Nusselt number 

Variation of  local Nusselt number with X* for (a)  0Br ≤   and  (b) 0Br ≥  for the Darcy 

model and the clear fluid compatible model are shown in Fig. 7.6 and Fig. 7.7 

respectively for Da = 0.005  when the axial conduction is neglected (Ac = 0).   

 From Figs. 7.6 and 7.7, it is apparent that  Nupx  displays an unbounded swing for 

Br > 0 at, say, *
swX  for the Darcy model.  On the other hand for the clear fluid compatible 

model, Nupx  displays an unbounded swing for Br < 0 at *
swX . Nupx  displays an 

unbounded swing since the bulk mean temperature reaches the wall temperature and 
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exceeds it because of viscous dissipation . This fact is the same in case of the clear fluid 

channels ( 0pγ = ) . This  fact is reported for 0pγ =  when channel walls are subjected to 

constant temperature {Ramjee and Satyamurty[182] and Jagadeesh kumar [190]}. Also, 

Nupx, increases as Br increases for the Darcy model when  0Br ≤ . Whereas, Nupx, 

decreases as Br increases for the clear fluid compatible model when 0Br ≥ .     
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                                             (b) 
Fig. 7.6: Variation of local Nusselt number with X* 
for 1.0pγ = and Da = 0.005 for  (a)  0Br ≤  (b) 

0Br ≥  for Darcy model when axial conduction 
neglected(Ac = 0).  

0.000 0.001 0.010 0.100
-150
-125
-100
-75
-50
-25

0
25
50
75

100
125
150

X*

Nu
px

γp = 1.0

 Br = -1.0
 Br = -0.5
 Br =  0.0

 

 

 

 

                                      (a) 

0.000 0.001 0.010 0.1000

25

50

75

100

125

150

175

X*

Nu
px

  

 

 

γp = 1.0

 Br = 0.0
 Br = 0.5
 Br = 1.0

                                               (b) 
Fig. 7.7: Variation of local Nusselt number with X* 
for 1.0pγ = and Da = 0.005 for  (a)  0Br ≤  (b) 

0Br ≥  for clear fluid compatible  model when 
axial conduction neglected(Ac = 0).  
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 Variation of local Nusselt number with X* for Da = 0.005 and 1.0pγ =  for 

different Peclet numbers, Pe = 5, 25 and 100 for (a) 0.5Br = −   and (b) 0.5Br = ,are 

shown in Fig. 7.8 and Fig. 7.9 for the Darcy model and the clear fluid compatible  model 

respectively.      
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               (b) 
Fig. 7.8: Variation of local Nusselt number with X* 
for Da = 0.005 for different Peclet numbers, Pe at 
(a) 0.5Br = −  (b) 0.5Br =  for Darcy model. 
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Fig. 7.9: Variation of local Nusselt number with X* 
for Da = 0.005 for different Peclet numbers, Pe at 
(a) 0.5Br = −  (b) 0.5Br =  for the clear fluid 
compatible model. 
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 From Fig. 7.8 and Fig. 7.9, Nupx displays an unbounded swing, *
swX  for Br  > 0 

for Darcy model. Whereas, for the clear fluid compatible model, Nupx displays an 

unbounded swing, *
swX  for Br < 0. For both the models, at low Peclet number, the value 

of the *
swX  is high. Also Nupx, decreases as Pe increases for Darcy model when Br  < 0. 

But for the clear fluid compatible model,  Nupx, decreases as Pe increases when Br  > 0. 

This model is consistent with the clear fluid channel in the behavior of Nusselt number 

with X* for all Da and Pe. 

 

7.4.2 Channel Partially filled with porous medium 

Non-dimensional temperature profiles 

Non-dimensional temperature excess of wall temperature profiles, ,w p w fθ θ θ θ− − ,for  

Da = 0.005, Pe = 5  and 0.5,  0, 0.5Br = −  at X* = 0.005 for (a) 0.2pγ =  and (b) 0.8pγ =  

are shown in Fig. 7.10 and Fig. 7.11 for the Darcy and the clear fluid compatible model 

respectively. 

 

 On examining Figs. 7.10(a) and 7.10(b) for the Darcy model and Figs. 7.11(a) and 

7.11(b) for the clear fluid compatible model, the following conclusions emerge by 

comparing ( ), 0w f p Br
θ θ

≠
−  with ( ), 0w f p Br

θ θ
=

−             {Chapter 6},  

( ) ( ), ,0 0w f p w f pBr Br
θ θ θ θ

< =
− < −     and    ( ) ( ), ,0 0w f p w f pBr Br

θ θ θ θ
> =

− > −      (7.33) 

( ) ( ), ,0 0w f p w f pBr Br
θ θ θ θ

< =
− > −    and   ( ) ( ), ,0 0w f p w f pBr Br

θ θ θ θ
> =

− < −        (7.34) 
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The relations given in Eqs.  (7.33) and (7.34)  are valid for all porous fraction in the fluid 

region and porous regions respectively for both the models.  
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          (b) 

Fig. 7.10: Variation of non-dimensional temperature 
excess of wall temperature ,w p w fθ θ θ θ− −  
profiles for  Da = 0.005, Pe = 5  and 

0.5,  0, 0.5Br = −  at X* = 0.005 for (a) 0.2pγ =
 

and (b) 0.8pγ =  for Darcy model.   
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          (b) 

Fig. 7.11: Variation of non-dimensional temperature 
excess of wall temperature ,w p w fθ θ θ θ− −  
profiles for  Da = 0.005, Pe = 5  and 

0.5,  0, 0.5Br = −  at X* = 0.005 for (a) 0.2pγ =
 

and (b) 0.8pγ =  for the clear fluid compatible 
model.   
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 Plots of ,w f pθ θ−  vs. Br are shown in Fig. 7.12 for the Darcy model and Fig. 7.13 

for the clear fluid compatible model for Pe = 5, when axial conduction has been included 

at X* = 0.0005 for different Y = -0.4, -0.3, -0.2, -0.1 and 0.0 for Da = 0.005 for (a) γp = 

0.2 and (b) γp = 0.8.  From Figs. 7.12 and 7.13,  w pθ θ−  does vary linearly with Br for 

both the models. This fact is true even when axial conduction is neglected.    

  
                                    (a)                                                                                 (a) 

 
                                      (b)                                                                               (b) 
Fig. 7.12: Variation of non-dimensional 
temperature excess of wall temperature 

,w p w fθ θ θ θ− −   profiles vs. Br for  Da = 
0.005 for Pe = 5 at  X* = 0.0005 for (a)

 0.2pγ =  and (b) 0.8pγ =  for the Darcy 
model.   

Fig. 7.13: Variation of non-dimensional temperature 
excess of wall temperature ,w p w fθ θ θ θ− −   
profiles vs. Br for  Da = 0.005 for Pe = 5 at  X* = 
0.0005 for (a)

 
0.2pγ =  and (b) 0.8pγ =   for the 

clear fluid compatible model.
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Local Nusselt Numbers 

Variation of local Nusselt number with X* for Da = 0.005, 0.2pγ =  and  Pe = 5 for  (a)

0Br ≤  and (b) 0Br ≥  is shown in Figs. 7.14 and 7.15 for Darcy and clear fluid 

compatible models  respectively. Similarly, variation of local Nusselt number with X* for 

Da = 0.005, 0.8pγ =  and   Pe = 5 for  (a) 0Br ≤  and (b) 0Br ≥  is shown in Figs. 7.16 

and 7.17  for Darcy and clear fluid compatible model  respectively.       

   

 From Fig. 7.14 to Fig. 7.17,  for both the models,  Nupx  reveals an unbounded 

swing for Br < 0 at say, *
swX . This unbounded swing *

swX  happens for the porous 

fraction, 0.8.pγ ≤  Also, for both the models, Nupx decreases as Br increases when Br > 0 

for the porous fractions with 0.8.pγ ≤   As porous fraction increases, *
swX  increases for 

the Darcy model. whereas *
swX  decreases as porous fraction increases in the clear fluid 

compatible dissipation model,  
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Fig. 7.14: Variation of the local Nusselt number with 
X* for Da = 0.005, 0.2pγ =  and   Pe = 5 for  (a)

0Br ≤  and (b) 0Br ≥   for Darcy model .  
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         (b) 

Fig. 7.15: Variation of the local Nusselt number 
with X* for Da = 0.005, 0.2pγ =  and   Pe = 5 for 

(a) 0Br ≤  and (b) 0Br ≥  for clear fluid 
compatible model .  
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Fig. 7.16: Variation of local Nusselt number with X* 
for Da = 0.005, 0.8pγ =  and   Pe = 5 for (a)  

0Br ≤  and (b) 0Br ≥  for Darcy model.   
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Fig. 7.17: Variation of local Nusselt number with X* 
for Da = 0.005, 0.8pγ =  and   Pe = 5 for (a)  

0Br ≤  and (b) 0Br ≥  for Clear fluid compatible 
model. 

 

Nusselt Number Changes with Porous Fraction  

To examine the changes of the local Nusselt number with porous fraction, plots are given 

at the entry locations of the channel. Variation of the local Nusselt number, Nupx with ,pγ  

for different Darcy numbers, Da = 0.005, 0.01 for Pe = 5 for 0.5Br =  at (a) X*= 0.0005  
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and at (b) X*= 0.005 is shown in Fig. 7.18 for Darcy model. From Fig. 7.18, it is clear 

that there is no maximum or minimum in local Nusselt number at a given porous fraction 

other than ,pγ  = 0 and 1.0. Hence we cannot have enhancement or reduction in the local 

Nusselt number at a given porous fraction in the case of Darcy model. 
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Fig. 7.18: Variation of local Nusselt number with ,pγ  

for different Darcy numbers, Da = 0.005, 0.01 and   

Pe = 5 at (a) X*= 0.0005 and (b) X
*= 0.005 for 0.5Br = for the Darcy model. 

 Variation of the local Nusselt number, Nupx with ,pγ  for different Darcy numbers, 

Da = 0.005, 0.01 for Pe = 5 for 0.5Br =  at (a) X*= 0.0005 and at (b) X*= 0.005 is shown 

in Fig. 7.19 for the clear fluid compatible model. It can be seen from Figs. 7.19(a) and 

7.19(b), that the maximum value in local Nusselt number occurs at 0.2pγ ≈  while the 

minimum occurs in Nupx for 0.6pγ ≈ .  The minimum and maximum values do not 

depend on the axial location of X*. 
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Fig. 7.19: Variation of local Nusselt number with ,pγ  

for different Darcy numbers, Da = 0.005, 0.01  and 

Pe = 5 at (a) X*= 0.0005  and (b) X
*= 0.005 for 0.5Br =  for the clear fluid compatible model.  

 

7.5  Conclusions 

Laminar forced convection including axial conduction and viscous dissipation in the 

thermally developing region of parallel plate channels partially filled with porous 

material has been numerically studied in the present chapter. The parallel plates have 

been subjected to constant wall heat flux. The flow field has been assumed to be fully 

developed. Two dissipation models, namely, a) Darcy model due to Bejan [49] and b) the 

clear fluid compatible model due to Al-Hadhrami et al. [135 and 136] have been 

employed in the porous region. The conventional dissipation function {see, Schlichting 

and Gersten [137]} has been employed in the fluid region. Brinkman number, Br, 

characterizes the viscous dissipation. As defined in the present thesis, Br > 0 represents 

fluid getting cooled while Br < 0, indicates the fluid getting heated.  
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Numerical solutions have been obtained employing the Successive Acceleration 

Replacement (SAR) scheme [15 and 158] for both cases, after i) neglecting axial 

conduction and ii) including axial conduction terms in the energy equation for Pe = 5, 25 

and 100. Ranges for the other parameters are 0 ≤ γp ≤ 1.0, 0.005≤ Da ≤ 0.01, and −1.0 ≤ 

Br ≤ 1.0. 

 

 Nusselt number displays an unbounded swing at some X* = *
swX  when Br < 0. 

*
swX , decreases as Br decreases, i.e., for larger negative values of Br. The limiting values 

of the Nusselt numbers (for large X*) on the fluid and porous sides, Nupx are dependent on 

Br for all Br ≠ 0 in the developing region also. These limiting values depend on the 

porous fraction too. Nupx, decreases as X* increases for all porous fractions when Br > 0.  

Nupx, decreases as Br increases for all porous fractions when Br > 0. These results are 

true for both the models when the channel is partially filled with porous material. When 

fully filled with porous material channels, Nupx increases as Br increases for  Br < 0 in 

Darcy model. On the contrary, in the case of the clear fluid compatible model,  Nupx, 

decreases as Br increases for Br > 0. The qualitative behavior of Nupx, in the channels 

partially filled with porous material (0 < γp < 1.0) and the channel fully filled with porous 

material (γp = 1.0) for the clear fluid compatible model [Eq. (7.21)] is the same as that of 

clear fluid channel ( 0pγ = ). This fact is reported in { Ramjee and Satyamurty [182] and 

Mohan Jagadeesh Kumar [190]} for ducts subjected to the constant wall temperature. 

However, this qualitative behavior of Nupx is not the same in the Darcy model when 

compared with clear fluid channel. Hence clear fluid compatible dissipation model is 

more suitable for porous region than Darcy model. 
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Chapter 8 

Summary and Conclusions 
 

 

 

Flows and heat transfer through porous media find several applications in diverse fields 

and circumstances such as compact heat exchangers, packed beds, aerosol transport, 

geophysics, thermal insulation and heat storage oil and gas extraction, filtration of fluids 

and seepage of water in river beds, movement of underground water and oil, seepage 

under a dam, etc. Due to various applications of porous media, the effects of such media 

on the motion of the fluid have been studied by many investigators. 

 

The conditions to be satisfied at the porous-fluid interface for a class of problem 

identified in the present study are dealt with here. Slip boundary condition walls were 

first studied by Beavers and Joseph [37]. Later, Neale and Nader [39] extended this study 

to include the effect of porous medium. Detailed literature survey on slip condition has 

been given by Nield and Bejan [48]. Vafai and Kim [41] studied fluid flow in a duct 

using Darcy Brinkman Forchheimer equation. 

 

 A general review of  dissipation models applicable for porous media is available 

in Nield and Bejan [48]. Five forms of the dissipation functions due to Bejan [49], 

Takhar, Soundalgekar and Gupta [138], Murthy and Singh [139], Nield [140] and Al-

Hadhrami, Elliott and Ingham [135 and 136] are available in the literature for flow 
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through porous media. After identifying the lacunae in the studies available in the 

literature, pertaining to laminar forced convection in thermally developing region of 

channels partially filled with porous material, the present study has been undertaken.  

 

 The flow field has been assumed to be fully developed governed by Poiseuille 

equation in the fluid region and by Darcy-Brinkman equation in the porous region. The 

walls of the channel have been subjected to uniform heat flux. The thermal field has been 

considered to be developing. After examining the plausible forms for the dissipation 

function for two-dimensional flow and thermal fields, in general, dissipation effect on the 

thermal field and heat transfer has been examined. Two models, i) Darcy model [49] and 

ii)  clear fluid compatible dissipation model [135 and 136] to describe dissipation have 

been considered.  

 

 The following is a summary of the results of the studies and the conclusions 

drawn in Chapters 2 to 7. Certain key points appearing in Chapters 2 to 7 have been 

reproduced here for completeness.  

 

Analytical or numerical solutions have been obtained in Chapters 2 to 7 of the thesis 

for the following values of the parameters characterizing the different problems studied. 

Porous fraction: γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. Darcy number: Da = 0.001, 0.005, 0.01, 

0.05, 0.1 and 1.0. When magnetic field is considered,  Hartman number: M = 1, 2, 5 and 

10. When axial conduction is considered, Peclet number: Pe = 5, 10, 25, 50 and 100. 

When axial conduction is neglected, designated by Ac = 0, Pe is absorbed in X* and does 

not appear explicitly. When viscous dissipation is included, the Brinkman number: Br = 
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0, ±0.5 and ±1.0 and selected small values. Analytical solutions to governing equations 

for the problems studied in Chapters 2, 3 and 4. Numerical solutions to the governing 

equations for the problems studied in Chapters 5, 6 and 7 have been obtained employing 

the Successive Accelerated Replacement (SAR) scheme. The methodology of SAR 

scheme can be found in [15, 158 and 179]. The subject matter dealt with, in Chapters 2 to 

7 is summarized below. 

 

 Fluid flow and heat transfer in parallel plate channels partially filled with porous 

medium has been studied in Chapter 2, assuming there is fully developed flow and there 

are temperature fields. The given amount of porous material has been distributed equally 

at the two walls. The channel walls are subjected to constant wall heat flux.  

 

 Analytical expressions for the non-dimensional velocity and temperature profiles 

in the porous and clear fluid regions have been obtained. From the velocity and 

temperature expressions, the fully developed skin friction coefficients and the Nusselt 

numbers on the porous wall have been obtained analytically. It has been shown that the 

analytical expressions yield the standard values for a clear fluid channel and for fully 

porous material filled channels when the porous fraction γp is equal to 0 and 1.0 

respectively. The porous fraction where the minimum value of Nusselt number occurs 

decreases as Darcy number increases. 

  

 The effects of forced convection and magnetic field for fully developed flow of 

Newtonian fluid in a parallel plate channel partially filled with porous material have been 
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studied in Chapter 3. Analytical solution has been obtained and closed form expressions 

have been derived for velocity, skin friction coefficient and temperature profiles in the 

porous and fluid regions and for the Nusselt number in the porous region. It has been 

shown that the analytical expressions yield standard values for Hartmann number, M  = 0 

{absence of the magnetic field)} for all porous fractions γp , 0 ≤ γp ≤ 1.0{Chapter 2}.  

Nusselt number and the net change in the Nusselt number increase with Hartmann 

number, M for all porous fractions, γp. Hence the effect of the magnetic field may be 

considered to enhance the heat transfer in the channels partially filled with porous 

medium.  

 

 Enhancement in the fully developed Nusselt number for parallel plate channel 

flow subjected to constant wall heat flux and constant wall temperature with porous 

inserts distributed equally at the two walls of the channel for the three dissipation models 

has been studied at the conduction limit in Chapter 4. The three dissipation models, 

namely, 1) the Darcy model [49], 2) form drag model [140] and 3) clear fluid compatible 

model [135 and 136] in the porous region are employed in the porous region.   

 

Case (i): Subjected to constant wall heat flux 

Both the wall heating and wall cooling cases can be examined from the given plots for all 

values of Brinkman numbers. Limiting temperature profile and limiting Nusselt number 

plots are given and these depend on the Brinkman number for constant wall heat flux 

boundary condition. Maximum value of Nusselt number and net change in the Nusselt 

number occur only at 1 0p .γ = . For small Darcy number, the difference between these 
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models in limiting temperatures  and limiting Nusselt numbers is negligible, but for larger 

Darcy number, the difference is significant. Heat transfer enhancement is better in clear 

fluid compatible model compared with Darcy and form drag model.  

 

Case (ii): Subjected to constant wall temperature 

It has been found that the non-dimensional temperature and the bulk mean temperature 

when viscous dissipation is included are linearly proportional to  Brinkman number at the 

conduction limit. Nusselt numbers in the conduction limit have been found to be 

independent of Brinkman number, a feature well reported for clear fluid channels, see 

Barletta [4]. The three models that describe dissipation yield comparable Nusselt number 

values when Da is small (say, Da < 0.01) for a channel partially filled with a porous 

material also.  

 

 Laminar forced convection in the thermally developing region of parallel plate 

channels partially filled with a porous material has been studied numerically in Chapter 5. 

The parallel plates have been subjected to constant wall heat flux. Axial conduction is 

neglected in the conservation of thermal energy equation. The non-dimensional 

temperature at the wall, θw attains maximum value at a certain porous fraction. With this 

feature, it is envisaged that the local Nusselt number at the wall attains a minimum for 

some  0 < γp < 1.0. In the context of constant wall heat flux condition, this implies that 

the transfer of a given heat flux takes place with a lower temperature difference between 

the wall and the fluid.  
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 Effect of axial conduction in the thermally developing region of parallel plate 

channels partially filled with a porous material has been numerically studied in Chapter 6. 

The parallel plates have been subjected to constant heat flux.  It has been concluded that 

the non-dimensional temperature profiles become independent of the Peclet number for 

Pe ≥ 100 indicating that the effect of axial conduction has become negligible. Non-

dimensional bulk mean temperature in excess of wall temperature, *
wθ θ− , increases as 

X* increases. *
wθ θ−  decreases as Peclet number decreases. This indicates that a stronger 

axial conduction effect being present at lower Peclet numbers that makes the fluid less 

heated or less cooled compared to when axial conduction is neglected. Nupx is a minimum 

when γp ≈ 0.6 at low Da = 0.001 increasing to γp ≈ 0.8 when Da = 0.1. Nupx attains a 

minimum almost independent of Peclet number and X*.  

 

 Laminar forced convection including axial conduction and viscous dissipation in 

the thermally developing region of parallel plate channels partially filled with porous 

material has been numerically studied in Chapter 7. The parallel plates have been 

subjected to constant wall heat flux. Two dissipation models are employed in the porous 

region. Brinkman number, Br, characterizes the viscous dissipation. As defined in the 

present thesis,  Br > 0 represents fluid getting cooled and Br < 0,  shows fluid getting 

heated.  

 Nusselt number displays an unbounded swing at some X* = *
swX  when Br < 0. 

*
swX , decreases as Br decreases, i.e., for larger negative value for Br. The limiting values 

of the Nusselt numbers (for large X*) on the fluid and porous sides, Nupx are dependent on 

Br for all Br ≠ 0 in the developing region also. These limiting values depend on the 
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porous fraction also. Nupx, decreases as X* increases for all porous fractions when Br > 0.  

Nupx, decreases as Br increases for all porous fractions when Br > 0. These results are 

true for both models when the channel is partially filled with porous material. For fully 

filled channels with porous material, Nupx, increases as Br increases when Br < 0 for 

Darcy model. On the other hand, in the case of clear fluid compatible model,  Nupx, 

decreases as Br increases for Br > 0. The qualitative behavior of Nupx, in the channels 

partially filled with porous material (0 < γp < 1.0) and the channel fully filled with porous 

material (γp = 1.0) for the clear fluid compatible model {Eq. (7.21)} is same that of clear 

fluid channel( 0pγ = ).  

Some Potential Applications ( Mohamad [191] and Yucel and Guven [192]): 

1. Heat transfer enhancements in heat transfer devices, such as heat exchangers 

2. Heat transfer enhancements for single and multiphase flows such as vortex generators 

and mixers. 

3. Cooling of heat-generating obstacles mounted on adiabatic walls in a parallel-plate 
channel. 
 
Scope for Future Work 

The following investigations may be undertaken in future as an extension of the   

present study: 

1. An evaluation of the relative performance of the porous inserts attached to both 

the walls or placed at the center of the channel as well as the present arrangement 

when the flow and thermal fields are simultaneously developing may be 

undertaken with different boundary conditions.  

 

sharath
Highlight



225 
 

2. Similar evaluation for pipes and annuli partially filled with porous material leads 

to a desirable configuration given that there are no constraints in choosing the 

duct size. Investigations may be earned out to establish conditions under which a 

desirable configuration is obtained. 

 

3. Studies on flow and heat transfer through, ducts, partially filled with porous 

material considering anisotropic and heterogeneous porous media are warranted 

for some of the newer applications.   
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