FORCED CONVECTION HEAT TRANSFER IN
PARALLEL PLATE CHANNELS PARTIALLY FILLED
WITH POROUS MATERIAL

A THESIS SUBMITTED TO
NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL, (T.S.)
FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN

MATHEMATICS

BY

J SHARATH KUMAR REDDY
(ROLL NO: 715079)

UNDER THE SUPERVISION OF
Dr. D. BHARGAVI

WARANGAL

DEPARTMENT OF MATHEMATICS
NATIONAL INSTITUTE OF TECHNOLOGY
WARANGAL - 506 004 INDIA
MARCH, 2019



CERTIFICATE

This is to certify that the thesis entitled " Forced Convection Heat Transfer in Parallel
Plate Channels Partially Filled with Porous Material” submitted to National Institute
of Technology Warangal, India for the award of the degree of Doctor of Philosophy, is
the bonafide research work done by Mr. J. SHARATH KUMAR REDDY under my
supervision. The contents of this thesis have not been submitted elsewhere for the award
of any degree.

Dr. D. Bhargavi
(Supervisor)
Assistant Professor
Department of Mathematics
National Institute of Technology, Warangal

Telangana State, INDIA - 506004.
Date: 01-03-2019

Place: NIT Warangal



DECLARATION

This is to certify that the work presented in the thesis entitled " Forced Convection Heat
Transfer in Parallel Plate Channels Partially Filled with Porous Material”, is a
bonafide work done by me under the supervision of Dr. D. Bhargavi and has not been

submitted elsewhere for the award of any degree.

I declare that this written submission represents my ideas in my own words and
where others' ideas or words have been included, | have adequately cited and referenced
the original sources. | also declare that | have adhered to all principles of academic
honesty and integrity and have not misrepresented or fabricated or falsified any idea /
data / fact /source in my submission. | understand that any violation of the above will be a
cause for disciplinary action by the Institute and can also evoke penal action from the
sources which have thus not been properly cited or from whom proper permission has not

been taken when needed.

J Sharath Kumar Reddy
(Roll No: 715079)
Date: 01-03-2019
Place: NIT Warangal



Dedicated to

my wife and son
Smt. Vishala and Sai Vaasvik Reddy

and

My Parents



ACKNOWLEDGEMENTS

It is a rare privilege and boon that I could associate myself for pursuing my research work
with Dr. D. Bhargavi, Assistant Professor of Mathematics, National Institute of
Technology, Warangal, India. | sincerely record my gratitude for her invaluable guidance
and constant encouragement throughout the preparation of this thesis and her
involvement and meticulous supervision while my work was in progress. | recall how my
mentor persistently motivated me during the difficult moments of my research tenure by
her astounding knowledge and sound logical sense. | cherish the kind support of my
supervisor, philosopher and guide in all the ways. Her constant and critical evaluation
during this period is thankfully acknowledged. | deem it a privilege to have worked under

her amiable guidance.

Fellowship provided by GATE, India during the course of my research is

gratefully acknowledged.

I thank the Doctoral Scrutiny Committee members, Prof. J. V. Ramana Murthy,
Prof. D. Srinivasacharya, Department of Mathematics and Prof. R.L.N. Sai Prasad,
Department of Physics for their constructive criticism at different stages of my research

work.

It is a pleasure to express my thanks to Prof. D. Srinivasacharya, Head,
Department of Mathematics, Prof. G. Radhakrishnamacharya(Retd.), Prof. Y. N.
Reddy, Prof. K. N. S. Kasi Viswanadham, Prof. D. Dutta, Dr. P. Muthu, Dr. A.
Benarji Babu, Dr. H. P. Rani, Dr. R. S. Selvaraj, Dr. T. Kurmayya, Dr. J. Pranitha,
Dr. Ch. Ram Reddy, Dr. E. Satyanarayana, Dr. Y. Sreenivasa Rao and non teaching

staff of the Department for their valuable suggestions, support and timely help.

I express my sincere thanks to Dr. Ch. Sudhakar, Associate Professor,
Department of Computer Science Engineering. He generously provided the

computational facility needed to carry out my doctoral research. I also thank Dr. M. Raja

iv



Vishwanathan, Head, Department of Humanities and Social Sciences for his diligent

proof reading of this thesis.

I also express my thanks to my co-research scholars Dr. K. Appi Reddy, Dr. S.
Mallishwar Reddy, Smt. S.V. Kiranmayi Ch, Mr. N.V. Koteswar Rao, Mr. G. Shiva
Kumar Reddy, Mr. M. Pavan Kumar Reddy, Mr. I. Sreenath, Mr. P. Jagadeeshwar,
Mr. P. Naveen Mr. K. Sita Ramana and other scholars for their suggestions, technical
help and encouragement during my research period. Also express my thanks to my best
friends Mr. P. Srenu, Mr. B. Kala Raman, Mr. P. Santhosh, Mr. B. Rajender, Mr.
Nallapu Vijender, Mr. Naresh Yadav, Mr. Chirra Suman, Mr. Vijay Vardhan, Mr.
G. Sreenivasulu , Mr. K. Naga Raju and all other friends for their continuous support,

encouragement to do this research work.

I express my sincere thanks to Dr. P. Venkat Reddy, Head, Department of
Science and Humanities and Management of Sreenidhi Institute of Science and
Technology for grateful support and encouragement for pursuing my Ph.D.

There are no words to express my sincere gratitude to my wife Smt. Vishala,
loving son Mr. Sai Vaasvik Reddy and my parents Sree Venkat Reddy, Smt.
Bhagyamma and all my family members, who supported me a lot throughout my
academic career. Yours love and affection are the most important part of my life, which
always encourages me to bravely chase my dream. Finally, 1 would like to take this
opportunity to extend my heartfelt thanks to my father in law Sree Shekar Reddy,
mother in law Smt. Alivelamma and other family members for their continuous support,

encouragement cooperation to do this research work.

Finally, I bow down before the almighty that has made everything possible.

Place: NIT Warangal
Date: 01-03-2019 (J Sharath Kumar Reddy)



ABSTRACT

The objective of the present study has been to make available hydrodynamic and
thermal characteristics of a Newtonian fluid for laminar incompressible flow in channels

partially filled with porous material. The given amount of porous material porous layer

was distributed equally at the two walls. Porous fraction, y, is defined as the ratio of the

porous layer thickness to the distance between the walls of the channel.

Analytical or numerical solutions have been obtained for the following values of

the parameters characterizing the different problems studied. Porous fraction y:
0<y,<1.0, Darcy number, Da: 0.001 to 1.0. When magnetic field is considered, the

Hartman number, M is between 1 to 10. When axial conduction is considered, the Peclet
number, Pe ranges from 5 to 100. When viscous dissipation is included, the Brinkman
number Br assumes a value between —-1.0 and 1.0, i.e.,—1.0<Br<1.0. Numerical
solutions have been obtained employing Successive Accelerated Replacement scheme

after validating the scheme.

As Hartmann number (Magnetic field parameter) M increases, the porous channel
behaves like a clear fluid channel for all Darcy numbers. The magnetic field parameter is

negligible in the fully filled porous region with such high Hartmann number.

Axial conduction effects are significant for Pe < 100 and become negligible even
near the entry for Pe > 100 in channels partially filled with porous material. When
viscous dissipation is included, the limiting bulk mean temperature is higher than the wall
temperature. The local Nusselt number displays an unbounded swing since the bulk mean
temperature reaches the wall temperature and exceeds it because of viscous dissipation.

Limiting temperature and limiting Nusselt number depend on the Brinkman

number when the channel walls are subjected to constant wall heat flux. In the case of
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constant wall temperate, limiting Nusselt number is independent of Brinkman number
for Br £ 0.

Developed flow depends on Da, y, and developing temperature field depends on
Da, y,, Pe, and Br. Local Nusselt number, Nup, is significantly large when Pe is low.
Nupx decreases with increasing X*. Influence of axial conduction, viscous dissipation and

developing thermal field on temperature profiles and local Nusselt number, have been

evaluated when different models have been employed. The local Nusselt number attains a

minimum for some, 0 <y, <1.0 (subjected to constant wall heat flux). It has been found

that minimum value of y is practically independent of the axial location and Peclet

number.

Effects of viscous dissipation employing Darcy model and the clear fluid
compatible model have been studied. The results include the effects of viscous
dissipation on temperature profiles and Nusselt numbers. In general the effects of axial

conduction are subdued when viscous dissipation is strong and vice versa.
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Chapter 1

Introduction

1.1 Introduction

In recent times, several researchers have studied fluid flow and heat transfer in porous
media, in view of the significant applications in situations such as enhanced recovery of
oil by thermal methods, cooling of electronic components, risk assessment of disposal of

nuclear waste, proton exchange membrane (PEM) fuel cells.

It is observed that, in fully filled systems, there is significant pressure drop. Hence,
there is necessity for enhancing heat transfer partially in a desirable way. This can even
be done by keeping the pumping expense at an appropriate level. The application of
convective heat transfer in porous medium, such as solid matrix heat exchangers and
thermal insulation, oil recovery, geothermal engineering, heat pipes, chemical reactors,
and hydrogeology, has been a topic of interest to mathematicians. Forced convective
Nusselt number is higher when ducts have been filled with porous material. Recent
applications, where studies on partially filled porous channels can be gainfully employed,
include solar absorbers, catalytic and inert packed bed reactors, fuel cells, and compact
heat exchangers. Several studies examined the boundary conditions at the porous-fluid

interface.



1.2 Brief Review on Flow and Heat Transfer in Laminar

Internal Flow Through Parallel Plate Channels

The problem of forced convection in a channel formed by two parallel plates is a classical
problem that has been revisited in recent years in connection with the cooling of
electronic equipments using materials involving hyper porous media or micro channels.
The review presented here describes representative developments, and recent studies that

include parallel plates kept at uniform but unequal temperatures and viscous dissipation.

Hatton and Turton [1] obtained series solution in the case of constant, unequal
wall temperature boundary condition assuming that the flow is developed and the
temperature field is developing. Also, Hatton and Turton[1] results show that the limiting
Nusselt number is 4. This Nusselt number is independent of the degree of asymmetry in
the wall temperatures. More recently, Mitrovic, Maletic and Baclic [2] addressed the
asymmetric Graetz problem for asymmetric isothermal case referred by Nield [3]. Nusselt
number under asymmetric isothermal case exhibits an unbounded swing, at the wall kept
at lower of the two temperatures. Similarly, when viscous dissipation is included, Barletta
[4] found the limiting Nusselt number (=17.5) to be independent of the Brinkman

number, for all Br # 0.

Comprehensive relations for Nusselt numbers for thermally developed duct flows

subjected to different boundary conditions have been presented by Sparrow and Patankar



[5]. Pins, Mulder and Schenk [6] obtained the temperature profile for hydrodynamically
developed and thermally developing flow, including axial conduction using power series
method for flow between parallel plates. Weigand, Kanzamar and Beer [7] studied
analytically the influence of axial heat conduction on heat transfer in a circular pipe and
in a parallel plate channel with uniform heating of the wall for two cases; of semi infinite
length and finite length of the heated section. Cheng and Wu [8] studied the effects of
viscous dissipation on convective instability in horizontal parallel plate channel when the
fluid is heated from below. The effect is significant for Prandtl number, when Pr > 10.
Barletta [9] investigated the laminar convection in a parallel plate vertical channel by
taking into account both viscous dissipation and buoyancy. Nguyen [10] presented the
results of numerical studies on hydrodynamically and thermally developing flow at low
Reynolds number in the entrance region of a cascade of parallel horizontal plates. Two-
dimensional Navier-Stokes and energy equations employed by Nguyen have been solved

by ADI [11 and 12] and QUICK [13] methods.

Comprehensive studies on laminar forced convection in hydrodynamically and
thermally developing region of parallel plate channels have been presented by Ramjee
[14]. The parallel plates have been kept at unequal temperatures. Ramjee and Satyamurty
[15] reported basic heat transfer characteristics for the asymmetrically heated channel and
introduced a Nusselt number based on the average wall temperature. The limiting Nusselt
numbers when viscous dissipation has been included and the channel walls are kept at

unequal temperatures are available in Ramjee and Satyamurty [16]. Satyamurty and

3



Ramjee [17] also developed the superposition relations from which the Nusselt numbers
at the two walls of the channel at unequal temperatures can be calculated for any desired
degree of asymmetry from the solution of the problem subjected to boundary conditions

of first kind, see p. 17 of Shah and London [18].

1.3 Porous Medium

A porous medium may be defined as a solid having holes connected in continuous paths
in several directions. Fibrous aggregates, porous or fissured rocks, glass wool and
fiberglass are some of the examples of porous material. Studies on flow through porous
media date back to the 19™ century, the pioneer being Darcy who devoted considerable

attention in developing the theory of ground water motion.

The porous matrix is in general characterized by an effective porosity, ¢, and

permeability, K. Pores or fraction of the medium that is filled by the fluid determine
effective porosity. To distinguish two porous media having the same porosity, additional
characteristic term, called permeability. Permeability is essentially the conductance of the
medium defined with direct reference to Darcy’s law. The permeability depends on the

porosity of the medium and an equivalent diameter of the particle.



1.3.1 Characterization and Governing Equations for Momentum

Darcy Law

Darcy law formulates that the volumetric flow rate, Q, through a porous medium is
directly proportional to the hydraulic head difference, hy, and the cross sectional area, A,
and inversely proportional to the length, I, of the porous column. Stated in the form of an

equation, Darcy law can be expressed as,
Qoc[(hyA) /1] (11)

The hydraulic head difference, hq can be obtained from the relation below,

hy =2+ (1.2)
P4

where z denotes the elevation, p, pressure, p, the density of the fluid and g is acceleration
due to gravity. The Darcian velocity v, is related to the volumetric flow rate by,
v = Q/A (1.3

Darcy law can be expressed in a differential form as,

K (d
v - __(_p_ngJ (1.4)
ey L dX

In Eq. (1.4), K is the permeability of the medium and y; is the viscosity of the fluid
For a three dimensional flow, Eq. (1.4), as given in Stanek and Szekely [19], takes the

following form,

V—-=(vp-pg) (15

Hi



In Eq. (1.5), V is the Darcian velocity vector and g is the gravity vector. From Eq. (1.5)

, it may be noted that Darcy flow does not satisfy the no slip condition at solid
boundaries. Modifications to the Darcy description, in general, become necessary when
the flow Reynolds number, based on the local velocity and pore diameter, is high.
Non-Darcy Extensions

In order to account for the flow inertia effects and boundary effects, extensions to the
Darcy law have been put forth by including classical convective terms, non-linear inertia
terms and viscous terms. Methodology to derive the governing equation using the local
volume averaging technique can be found in Slattery [20]. The governing equation for

conservation of momentum from Catton [21] in vector form can be expressed as,

2 v
s p(”eﬂ] VYN oK = 994 F vV 16)
Hy

In Eq. (1.6), K is the Forchheimer coefficient and uer is an effective viscosity that takes
into account the difference in the resistance offered for the fluid flow, though
permeability may remain the same. For high-permeability foam, the effective viscosity
can differ from the fluid viscosity by a factor of ten as demonstrated by Givler and
Altobellis [22]. At times, the ratio us /uer is referred to as porosity in the literature. This
terminology is not followed in the present thesis. F is the body force vector. In addition,
non-dimensionalization of Eq. (1.6) leads to the parameters, Da, the Darcy number and
Fc, the Forchheimer number being defined by,

Da = K/H? (1.7)



Fc=K /H (1.8)
It has been reported in the literature {see for example, Kaviany [23], Vafai and
Kim [24] and Nield, Junqueira, and Lage [25]} that, results very close to the clear fluid

flow configurations are obtained when the Darcy number is high.

In EQ. (1.6) the second term on the left hand side is the modified convective term,
which includes the permeability and the porosity of the medium. The third term often
referred to as Forchheimer non-linear inertial term, accounts for turbulent kinetic energy.
The second term on the right hand side is due to Brinkman, which accounts for the
boundary effects. Inclusion of Brinkman friction terms enables no-slip velocity boundary

condition to be satisfied.

A comprehensive account of the early literature on momentum transfer through
fluid saturated porous media is available in Bear [26] and Greenkorn [27]. Early
theoretical and experimental studies on convective heat transfer in porous media are due
to Rogers, Schilberg and Morrison [28], Wooding [29] and Elder [30 and 31]. Studies
reported in [28-31] are devoted to understanding the flow structure when the medium is
heated from below. The onset of convection has been theoretically predicted by Lapwood

[32] which has been confirmed experimentally by Katto and Masuoka [33].

In general, the literature dealing with flow in porous media uses Eq. (1.6) or

simplified forms. The simplified forms include some of the terms of Eq. (1.6), though the
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Darcy model is part of all the forms. Many studies have established that the effect of
convective terms in the LHS of Eq. (1.6) is not significant, e.g., Kaviany [23], Vafai and

Tien [34], Lage [35], Manole and Lage [36].

1.3.2 Interfacial Boundary Conditions

The conditions to be satisfied at the porous-fluid interface for a class of problems studied
in the present are dealt with here. Beavers and Joseph [37] addressed this issue when the
no-slip assumption is needed to be reviewed for high permeability porous media. Beavers

and Joseph postulated that a slip velocity can exist across the interface given by,
u,—u, =K /a)u, (1.9)
In Eq. (1.9), ur and u, denote velocities on either side of the fluid-porous interface. o' is

experimentally determined to be 0.1<a <4. Saffman [38] justified the Beavers and

Joseph [37] condition theoretically.



Neale and Nader [39], Vafai and Thiyagaraja [40] and Vafai and Kim [41],

proposed that both velocity and shear stress are continuous at the interface.

Uy =u, (1.10)
du du
e, f 1.11
/Ueff dy lLlf dy ( )

The conditions given Eq. (1.10) and Eq. (1.11) are extensively used by Sahraoui and
Kaviany [42], Chandesris and Jamet [43], Prathap Kumar, Umavathi and Chamkha [44]

and Bhargavi, Satymurty and Raja Sekhar [45].

1.4 Forced Convection in Porous Material Filled Ducts

Forced convection heat transfer in porous media is an interesting problem, the solution of
which is important in several areas of engineering practice, see for e.g. Bejan et al. [46].
Various fluid flow and heat transfer arrangements have been treated both analytically and

numerically, see Kaviany [47], Nield and Bejan [48], Bejan [49] and Vafai [50].

1.4.1 Porous Material Filled Pipes and Annuli

Poulikakos and Renken [51] examined the effect of Forchheimer non-linear inertial
terms, Brinkman viscous terms and variable porosity on heat transfer through channels
and pipes filled with porous materials subjected to constant temperature. Marpu [52]
reported numerical results for the local Nusselt number in the entrance region considering

two-dimensional descriptions for flow and thermal fields. Momentum equations included



convective terms and non-linear inertial terms due to Forchheimer and Brinkman viscous

terms. Axial conduction in the energy equation has also been included.

Recent studies by Mitrovic and Maletic [53] have dealt with forced convection in
the entrance region of annuli filled with porous medium where the inner and outer pipes
are subjected to unequal temperatures. Mitrovic and Maletic [53] employed fully
developed velocity profile though they included axial conduction in the energy equation.
Mitrovic and Maletic [53] gave an excellent account of intermediate developments on

porous material filled annuli.

1.4.2 Porous Material Filled Channels

Studies on laminar flow through a channel filled with porous material bounded by
isothermal parallel plates employing Brinkman extended Darcy flow model along with
the classical convective terms for the momentum equation have been reported by
Kaviany [23]. Vafai and Kim [24] investigated a fully developed forced convection in a
porous material filled channel, both walls subjected to equal heat flux. Satyamurty and
Marpu [54] reported numerical results for the porous material filled channels, similar to
those in [52] described above for annuli. The study [54] concluded that, when Brinkman
extended Darcy model is employed, the local Nusselt number values are significantly

lower from the values obtained employing Darcy flow model.
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Hwang, Wu and Chao [55] investigated non-Darcian forced convection in an
asymmetrically heated sintered porous channel. Nield, Junqueira and Lage [25] analyzed
the fully developed forced convection in a fluid-saturated porous material filled channel
with isothermal or isoflux boundaries. Xiong and Kuznetsov [56] investigated thermal
dispersion and non-Darcian effects with forced convection in a Couette flow in a

composite flat conduit. The walls were subjected to constant but different heat fluxes.

Nield, Kuznetsov and Xiong [57] investigated the thermal development of forced
convection in parallel plate channel and a circular tube filled by a saturated porous
medium, with walls subjected to constant heat flux. Similar studies when the walls were
kept at constant temperature are available in [58]. Axial conduction has been neglected in
both [57] and [58]. The analyses for various cross sections of conduits with embedded
porous media presented by Haji-Sheikh and Vafai [59] gave insight into the effect of the
Darcy number on the thermal performance of such ducts. Mitrovic and Maletic [60] dealt
with forced convection in the entrance region of porous material filled channel, where the
walls are subjected to unequal temperatures. Mitrovic and Maletic [60] employed fully
developed velocity profile though included axial conduction, as has been the case in
Mitrovic et al. [2]. A summary of additional literature on the subject of flow and heat
transfer in porous material filled ducts (pipes, annuli, channels and other cross sections)

is given in Table 1.1.
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Table 1.1: A Summary of Additional Literature on the Subject of Flow and Heat Transfer in Porous
Material Filled Ducts

Sl.| Geometry, Flow Field, Thermal Field and Boundary Reference

No. other Features in Brief Conditions

1 | Rectangular channel and circular duct filled | Constant wall Marafie and
with porous material, fully developed flow | heat flux Vafai [61]
with Darcy-Brinkman-Forchheimer model.

Developed thermal field.

2 | Circular tube with porous medium, fully |Constant wall Hooman and
developed flow with Darcy-Brinkman | heat flux Ranjbar-Kani
model. Developed thermal field. Analytical [62]
solution and numerical solution.

3 | Parallel plates and circular pipe with porous |Constant wall Haji-Sheikh
material, fully developed flow field with | temperature
Darcy-Brinkman model. Developing thermal [63]
field, axial conduction neglected. Analytical
solution. Correlations for both local and
average heat transfer coefficients have been
obtained.

4 | Parallel plates and circular porous passages, | Constant wall Minkowycz and
fully developed flow with Darcy-Brinkman | temperature Haji-Sheikh[64]
model. Developing thermal field, axial
conduction included.

5 | Circular tube with porous material, fully |Constant wall Hooman and
developed flow with Darcy-Brinkman- | heat flux Gurgenci [65]
Forchheimer model. Developed thermal
field, axial conduction neglected.

6 | Parallel plate channel and circular tube filled | Constant heat Kuznetsov and

by a porous medium saturated by a rarefied
gas, fully developed flow with Darcy-
Brinkman model. Developing thermal field,
axial conduction neglected. Analytical
solution.

flux

Nield [66]
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SI.

No.

Geometry, Flow Field, Thermal Field and
other Features in Brief

Boundary
Conditions

Reference

Porous material filled parallel plate channel,
hydrodynamics of developing flow field
with Darcy-Brinkman model. At the entry
three inlet velocity distributions are
considered. Analytical solution obtained by
using Fourier series.

No slip condition
at the walls, and
fully developed
condition

Huang and Liu
[67]

Porous material filled parallel plate channel,
hydrodynamics of fully developed flow with
Darcy’s model, Darcy-Forchheimer model,
Darcy-Lapwood-Brinkman model.

No slip condition
at the walls

Awartani and
Hamdan [68]

Various rectangular ducts with porous
medium, fully developed flow with Darcy-
Brinkman model. Developing thermal field.
Fourier series solution for fully developed
velocity filed, temperature field.

Constant wall

temperature,
constant wall
heat flux

Haji-Sheikh [69]

10

Porous material filled parallel plate channel,
fully developed flow with Brinkman-
Forchheimer model. Developed thermal
field. Analytical solution. Compared with
numerical solution.

Constant wall

heat flux

Hooman [70]

11

Parallel plate channel and circular duct filled
by a porous medium, fully developed flow
with  Darcy and Brinkman-Forchheimer
model. Analytical solution.

uniform
temperature and
uniform heat flux

Nield and
Kuznetsov[71]

12

Circular channel filled with a porous
medium saturated using the Darcy extended
Brinkman-Forchheimer momentum equation
with the entropy generation due to heat
transfer, analytical solution. fully developed
velocity filed, temperature field.

Constant wall
heat flux

Dileep and
Vikas[72]
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13 | Triangular porous passages filled with a | Constant wall Banerjee, Haji-
porous medium with Darcy Brinkman | heat flux. Sheikh, and
equation. Weighted residual method is used, Seiichi[73]

a fully developed flow and thermally
developing  temperature field.  Axial
conduction is included.

1.5 Forced Convection in Ducts Partially Filled with Porous

Material

Poulikakos and Kazmierczak [74] obtained closed form analytical solutions for parallel
plates and circular pipes partially filled with porous material subjected to constant
heat flux employing Darcy-Brinkman flow model while numerical results were computed
for constant wall temperature. They have shown that the Nusselt number attains a
minimum for a certain porous layer thickness, the porous material being attached to the

pipe or channel walls.

1.5.1 Channels Partially Filled with Porous Material

Forced convection flow within an asymmetrically heated horizontal double-passage
(baffle) channel was studied by Cheng, Kou and Huang [75]. Also, an exact solution for a
fully developed flow, between plate and an unbounded porous medium has been obtained
by Vafai and Kim [41] who employed continuity of velocity and velocity gradients at the
interface. Jang and Chen [76] considered the configuration of a channel, the fluid region

being at the core and the porous layers being attached to the walls. Jang and Chen [76]
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included the effect of thermal dispersion in the porous matrix. Kuznetsov [77-80]
obtained analytical solutions for fluid flow in channels partially filled with a porous

medium, employing different flow models to describe the porous region.

Transient forced convection flow in parallel-plate channels partially filled with
porous substrate has been reported by Hamdan, Al-Nimr and Alkam [81]. The porous
layer has been inserted in the channel core and the porous region is governed by Darcy-
Brinkman-Forchheimer model. It has been found that the effect of Darcy number and
microscopic inertial coefficient is higher in the developing region. Existence of an
optimum porous substrate thickness has been established, for which the Nusselt number
attains a maximum. Subsequently Alkam, Al-Nimr and Hamdan [82] examined the
efficiency of depositing a given amount of porous material on one wall compared to

distributing on both the walls of the channel.

Jen and Yan [83] employed three-dimensional velocity and temperature fields to
describe forced convection in a channel partially filled with porous medium.
Investigations by Jen and Yan established that, as the porous ratio increases, the flow
velocity in the fluid layer increases leading to an increase in the friction factor and
Nusselt Number. Additional literature on laminar forced convection in ducts partially

filled with porous medium is given in Table 1.2.
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Table 1.2: Additional Literature on Laminar Forced Convection in Ducts Partially Filled with Porous

Medium

Sl
No.

Geometry, Flow Field, Thermal Field and
other Features in Brief Description

Boundary
Conditions

Reference

Parallel plate channel bounded below by a
porous layer of finite thickness and above by
an impermeable plate moving with a uniform
velocity. Hydrodynamics of fully developed
flow employing Poiseuille-Couette flow and
Darcy-Brinkman model in fluid and porous
regions has been analytically studied.

At one wall no
slip, other
wall is
moving with
constant
velocity

Rudraiah [84]

Flow and heat transfer past a plate with a
porous material attached the plate have been
studied  numerically  employing  two-
dimensional  Navier-Stokes and  Darcy-
Brinkman-Forchheimer model in the fluid and
porous regions respectively.

Constant wall
temperature

Vafai and Kim
[85]

Developing, two-dimensional flow and
thermal fields including axial conduction have
been considered in studying external flow past
a plate with alternate porous cavity-block
obstacles. Numerical solutions have been
obtained employing Navier-Stokes equations
and Darcy-Brinkman-Forchheimer model in
fluid and porous regions respectively.

Constant wall
temperature

Huang and

Vafai [86]

Existence of optimum porous matrix for
parallel plate channel with porous block
obstacles on one wall of the channel
considering hydrodynamically and thermally
developing fields employing two-dimensional
description has been established.

Constant wall
temperature

Huang and

Vafai [87]

Flow past a plate with an attached porous
substrate, boundary layer approximation has
been made and significant reduction in
computational time compared to the approach
in SI. No. 2 has resulted.

Constant wall
temperature

Huang and Vafai
[88]

16

Contd. on next page




Table 1.2 - Contd.

SI.

No.

Geometry, Flow Field, Thermal Field and
other Features in Brief Description

Boundary
Conditions

Reference

Parallel plate channel with alternate porous
cavity-block obstacles on the bottom plate,
hydrodynamically developing, two-
dimensional flow employing Navier-Stokes
equations and Darcy-Brinkman-Forchheimer
model in fluid and porous regions respectively.
Developing thermal field, axial conduction
included. Stream function-vorticity
formulation. Numerical solution.

Constant wall
temperature

Huang and Vafai
[89]

Flow over intermittently emplaced porous
cavities, two-dimensional hydrodynamically
developing flow employing Navier-Stokes
equations and Darcy-Brinkman-Forchheimer
model in fluid and porous regions respectively.
Developing thermal field, axial conduction
included. Numerical solution. Stream function-
vorticity formulation.

Constant wall
temperature

Vafai and Huang
[90]

Vertical parallel plate channel with porous
substrates attached to both the walls,
hydrodynamically developing two-
dimensional,  mixed  convection  flow
employing  Navier-Stokes equations and
Darcy-Brinkman-Forchheimer model in fluid
and porous regions respectively. Developing
thermal field, axial conduction included.
Numerical solution.

Constant wall
temperature

Chang and
Chang [91]

Pulsating flow through a circular pipe with a
porous layer attached to inside of the pipe.
Navier-Stokes equations and Darcy-Brinkman-
Forchheimer equations have been employed.
Axial conduction neglected.

Constant wall
heat flux

Guo, Kim and
Sung [92]
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Sl
No.

Geometry, Flow Field, Thermal Field and
other Features in Brief Description

Boundary
Conditions

Reference

10

Vertical tube with a porous layer attached to
inside of the tube, hydrodynamically
developing, two-dimensional, mixed
convection flow employing Navier-Stokes
equations and Darcy-Brinkman-Forchheimer
model in fluid and porous regions respectively.
Developing thermal filed, axial conduction
included. Numerical solution.

Constant wall
temperature

Chang, Dai and
Chang [93]

11

Performance enhancement of a double-pipe
heat exchanger, by inserting porous substrates
at inner and on outer sides of the inner pipe
has been numerically studied Navier-Stokes
and Darcy-Brinkman-Forchheimer equations.

Constant wall
temperature

Alkam
and

Al-Nimr [94]

12

Circular duct with a porous substrate attached
to the duct wall, fully developed flow
employing Darcy-Brinkman-Forchheimer
model in the region. Developed thermal field.
Two boundary conditions have been
considered.

Constant wall
temperature,

constant wall
heat flux

Kuznetsov
and

Xiong [95]

13

Parallel plate channel with porous layer
attached to bottom wall. Hydro dynamically
and thermally developing flow. Darcy-
Brinkman-Forchheimer model in the porous
region has been employed. Boundary layer
approximation has been made for both flow
and thermal fields.

Constant wall
temperature

Alkam, Al-Nimr
and Hamdan

[96]

14

Effect of local inertial term on unsteady fully
developed flow through a parallel plate
channel with the porous layer attached to top
wall has been numerically studied employing,
Poiseuille and Darcy-Brinkman Forchheimer
descriptions.

Abu-Hijleh and

Al-Nimr [97]

18

Contd. on next page




Table 1.2 - Contd.

Sl Geometry, Flow Field, Thermal Field and Boundary Reference
No. other Features in Brief Description Conditions

15 | Circular pipe with a porous layer attached to | Constant Habibollah and
inside of the pipe. The porous insert is attached | wall heat | Hossein [98]
at the pipe wall and extends inward, toward the | flux
centerline. The flow and thermal field are fully
developed. Darcy-Brinkman-Forchheimer
equation in the porous region. Numerical
solution.

16 | Circular pipe with 1) a porous layer attached to |Constant wall| Kim et al. [99]
the tube wall and 2) placed at the center. Fully | temperature,
developed flow and thermal fields have been
assumed in both the regions. Darcy-Brinkman- |constant  wall
Forchheimer description has been employed in | heat flux
the porous region. Developed thermal field.

Numerical solution.

17 | Multiple porous-covering heated blocks, | Two walls are|Huang et al.
hydrodynamically developing flow employing | insulated [100]
Navier-Stokes equations and Darcy-Brinkman-

Forchheimer model in fluid and porous regions
respectively. Developing thermal field. Stream
function-vorticity method. Numerical solution.

18 | Parallel plate channel with porous insert at the |Constant wall| Keyhani, Karimi
entry of the channel, hydrodynamically | temperature | and Nazari [101]
developing flow employing Navier-Stokes
equations and Darcy-Brinkman-model in the
fluid and porous regions respectively.

Developing thermal field. Numerical solution.

19 | Circular pipe with a porous layer attached to |Constant wall| Sayehvand and
inside of the pipe. The flow in the porous and | heat flux Shokouhmand
fluid regions is fully developed. Darcy- [102]

Brinkman-Forchheimer equation in the porous
region. Developed thermal field. Numerical
solution.
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Sl Geometry, Flow Field, Thermal Field and Boundary Reference
No. other Features in Brief Description Conditions

20 | Circular channel with i) a porous insert is Alkam
placed adjacent to the pipe wall, and ii) a
cylindrical element of porous material is and
inserted at the centre. Hydrodynamics of ]
unsteady fully developed flow employing Al-Nimr [103]
Poiseuille and Darcy-Brinkman equations in
the fluid and porous regions respectively has
been analytically studied .

21 | Circular pipe with 1) porous material has a | Constant Mohamed :
cylindrical shape placed at the centerline of the | wall heat | Maghlany and
pipe 2) the porous material has an annular | flux Dawood[104]
shape, 3) a cylindrical shape placed at the pipe
inlet. Fully and thermal fields are developing.

Darcy-Brinkman-Forchheimer description has
been employed in the porous region.
Numerical solution.

22 | Circular pipe with partially filled with porous | Constant Fumei et
media, Brinkman—-Forchheimer-extended | wall al.[105]
Darcy model is employed for the region of | temperature
porous medium. Flow and thermal fields are
developing. Numerical solution. The new
axisymmetric lattice Boltzmann model is used.

23 | Two configurations, (1) fully filled with a | Lower wall | Hadim[106]
porous channel, and (2) partially porous |is subjected
channel. Hydrodynamically and Thermally | to  constant
developing. Darcy-Brinkman Forchheimer | wall heat
equation is wused in the porous region. | flux
Numerical solution.

24 | Parallel plate channel partially filled with a | Constant Kuznetsov and
porous material with porous insert is placed at | wall heat | Nield[107]
bottom wall of the channel walls. Darcy | flux

equation in the porous region. The flow and
thermal fields are  developed. Analytical
solution.

20
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Sl Geometry, Flow Field, Thermal Field and | Boundary Reference

No. | other Features in Brief Description Conditions

25 | Parallel plate channel with 1) porous material | Constant Bhargavi and
is attached to one of the walls of the channel, | wall heat | Satyamurty
2) distributed equally at the two walls, and 3) | flux [108]
placed as one insert in the middle of the
channel. Flow and thermal fields are
developed. Analytical solution.

26 | Parallel plate channel partially filled with a | Constant Cekmer et al.
porous material with porous insert is placed at | wall heat | [109]
the center of the channel. Darcy-Brinkman- | flux
Forchheimer equation in the porous region.

Flow and thermal fields are developed.
Analytical and numerical solutions.

27 | Inclined parallel plate channel partially filled | Constant Malashetty,
with  porous material.  Darcy-Brinkman | different Umavathi and
equation in the porous region. Flow and | temperatures | Prathap Kumar
thermal fields are  developed. Analytical [110]
solution.

28 | A three dimensional channel partially filled | Isothermal Tien and Yan
with  porous material.  Darcy-Brinkman [111]
equation in the porous region Flow and
thermal fields are developing. Numerical
solution.

29 | Parallel plate channel with 1) porous material | Constant Shokouhmand,
is distributed equally at the two walls, and 2) | wall Jam and
placed at centre of the channel. Darcy- | temperature. | Salimpour [112]
Forchheimer equation in the porous region.

Flow and thermal fields are developing.

30 | Parallel plate channel partially filled with a | Constant Madera et al.
porous insert with porous insert is attached to | wall [113]
the lower plate of the channel. Darcy- | temperature
Brinkman equation in the porous region. Flow
and thermal fields are developing. Numerical
solution.

31 | Circular pipe with 1) porous material is| 1) Constant | Maerefat,

inserted at the core of the pipe, and 2) annulus
porous material is attached to the inner wall.
Darcy-Brinkman-Forchheimer equation in the
porous region. Flow and thermal fields are
developing. Numerical solution.

wall
temperature
2)Constant
wall heat
flux

Mahmoudi and
Mazaheri [114]
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1.6 Magnetohydrodynamics (MHD)

In recent years, the study of Magnetohydrodynamic (MHD) flow and heat transfer for a
viscous incompressible fluid over a plate has immense applications in engineering and
industrial problems such as petroleum industries, plasma studies, geothermal energy
extractions and many others. Magnetohydrodynamics is a branch of continuum
mechanics which deals with the motion of an electrically conducting fluid in the presence
of a magnetic field. The motion of conducting material across the magnetic lines of force
creates potential differences which in general cause electric currents to flow. The
magnetic fields associated with these currents modify the magnetic field which creates
them. On the other hand, the flow of electric current across a magnetic field associated

with a body force, called Lorentz force, influences the fluid flow.

Raju et al. [115] studied MHD forced convective flow of a viscous fluid of finite
depth in a saturated porous medium over a fixed horizontal channel with thermally
insulated and impermeable bottom wall in the presence of viscous dissipation and Joule
heating. Sharmilaa and Saranya [116] studied the effect of magnetic field in a fully
developed forced convection through a porous medium bounded by parallel plate
channel, with the inclusion of boundary and inertial effects. The effect of magnetic field
on fluid flow through various geometries under different conditions have been studied by
several authors, among whom were Kurzweg [117], Gulab Ram and Mishra [118],
Raptis and Kafousias [119], Raptis and Perdikis [120], Manju et al. [121] and Vineet

Kumar and Amit Kumar [122].
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Baoku, Israel-Cookey and Olajuwon [123] studied the effects of thermal radiation,
magnetic field and thermal conductivity on Couette flow of a high viscous fluid with
temperature dependent viscosity through a porous channel and they obtained numerical
solution using finite difference methods. Varshney, Katiyar and Kumar [124] analyzed
the effect of the externally applied transverse magnetic field which enhances flow

resistance.

Many investigators{Ashish, Satya and Filippov [125], Ghofrani et al. [126],
Sheikholeslami, Rashidi and Ganji [127] and Sheikhnejad, Hosseini and Majid Saffar
[128], Takhar and Beg [129], Barletta et al. [130], Guven, Aytac and lIbrahim [131],
Sahar [132], Srivastava and Satya [133] and Jhankal, Jat and Kumar [134]} studied the
interaction of forced convection with porous medium/magnetic field in view of its

importance in engineering applications.

1.7 Viscous Dissipation in Flows Through Porous Media

Production of thermal energy through the mechanism of viscous stresses is encountered
in both the viscous flow of clear fluids and the fluid flow within porous media. The effect

of the heat released by viscous dissipation can be significant when a non-dimensional

parameter, the Brinkman number, Br = (u, U’ )/(k,AT) is high. Considering that the

effective viscosity can be significantly higher {see, Givler and Altobellis [22]} than fluid

viscosity when it flows through the porous medium, the Brinkman number shall be
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considerably higher compared to that for clear fluid flows. Present day applications
involving flow through porous media, call for including viscous dissipation effects in the
conservation of energy equation. Some of them may generically be described as internal
flows, say, flow through a porous material fully or partially filled pipes, channels and, in
general, ducts. If the effective fluid viscosity is high or temperature differences are small
or Kinetic energy is high, viscous dissipation can be expected to be significant. An

account of the importance of dissipation can be found in Vafai [50].

1.7.1 Dissipation Modeling

The form of the dissipation function @ for flows through porous media is not unique. In
deriving the conservation of {as in say, Al-Hadhrami, Elliott and Ingham [135 and 136],
or Schlichting and Gersten [137] for more generality} thermal energy equation for clear
fluid flows, mechanical energy equation is subtracted from the overall conservation of
energy equation. Different models proposed by different researchers/investigators for the
dissipation function for porous media, have not always been compatible with the
momentum equation actually used in such investigations. The five forms of the
dissipation function, @, available in the literature for flow through porous media for
unidirectional flow are as following.

Bejan [49]: @ = (u, / K)u? (1.12)

Takhar and Beg [129] and Takhar, Soundalgekar and Gupta [138]:

® = u, (0u/oy)? (1.13)
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Murthy and Singh [139]: ® = u[(z, /K)u+ p(K / K)u?] (1.14)
Nield [140]: ® = (u, / K)u? — g u(d®u/ dy?) (1.15)

Al-Hadhrami et al. [135 and 136]: @ = (x, / K)u?+, (du / dy)? (1.16)

1.7.2 Forced Convection in Channels Filled with Porous Material with

Viscous Dissipation

A general review of the dissipation models in porous media has been developed and the
background is available in Nield and Bejan [48]. When the thermal energy equation
includes a viscous dissipation term involving the Brinkman number, Nield [141] termed
it as Brinkman-Brinkman problem. The different dissipation functions that have been

proposed are given by Egs. (1.12) to (1.16).
A summary of the literature on convective heat transfer through porous media,

including dissipation, along with the model employed is given in Tables 1.3. Dissipation

function employed in column number 2 is indicated by the reference number.
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Table 1.3: A Summary of Literature on Convective Heat Transfer through Porous Media Including

Dissipation

Sl Geometry, Flow Field, Thermal Field , other Boundary Reference

No.| Features in Brief and Dissipation Function, @ | Conditions

1 | Vertical plate channel. Numerical solution for fully| Equal and Ingham
developed free and forced convection flow| unequal and Pop
employing Darcy model. Axial conduction included| wall [142]
in the energy equation. [49] temperature

2 | Vertical plate. Steady mixed convection flow| Isothermal Murthy
employing Darcy-Forchheimer model. Boundary| wall [143]
layer approximation has been made in the energy| temperature
equation. Effect of thermal dispersion and viscous
dissipation are studied. [139]

3 | Vertical Plate. Analytical solution for two-| Isothermal Tashtoush
dimensional mixed convection employing Darcy-| wall
Forchheimer model. Boundary layer approximation| temperature [144]
has been made in the energy equation. [139]

4 | Circular duct filled with porous material, fully| Constant Nield,
developed flow with Darcy Brinkman model.| wall Kuznetsov
Developing thermal field, including axial conduction.| temperature | and Xiong
A modified Graetz methodology. Three models have [145]
been evaluated. [49], [135 and 136] and [140]

5 | Vertical plate. Analytical solution for steady free| Constant Rees,
convection employing Darcy model. Boundary layer| wall Magyari
approximation has been made in the energy equation.| temperature and
[49] Keller

[146]

6 | Porous material bounded by parallel plate channel,| Constant Nield,
fully developed flow and thermal fields, with Darcy-| wall Kuznetsov
Brinkman model. Different dissipation models shown| temperature and
to yield almost the same results for small Darcy| and Xiong
number. [49], [135 and 136] and [140] constant [147]

wall heat
flux
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7 | Circular pipe filled with porous material, fully| Constant Hooman
developed flow with Darcy-Brinkman model.| wall and
Developed thermal field. Analytical solution using| temperature | Ranjbar-
perturbation method. [49] Kani [148]

8 | Vertical channel. Numerical solution for mixed| Isothermal Umavathi
Convection employing Darcy-Brinkman-| and Isoflux et al.
Forchheimer model. Boundary layer approximation [149]
has been made in the energy equation. [135 and 136]

9 | Porous material filled parallel plate channel, fully| Unequal Mahmud
developed flow with Darcy-Brinkman model.| Constant and Fraser
Developed thermal field. Analytical and numerical | wall [150]
solutions have been obtained. [49], [135 and 136] and| temperature
[140]

10 | Porous material filled parallel plate channel, fully| Constant Hooman
developed flow with Darcy model. Developed| wall and Gorji-
thermal field. The limiting Nusselt number is| temperature Bandpy
independent of the Brinkman number. [49] [151]

11 | Pipes and channels partially (porous insert has been | Constant | Morosuk
placed symmetrically at the center) and fully filled wall [152]
with porous material. Two-dimensional, developing | temperature
flow field with Darcy-Brinkman-Forchheimer model
with convective terms. Developing thermal field
included axial conduction. Included viscous
dissipation to estimate entropy generation. [139]

12 | Circular duct filled porous material, fully developed Constant | Kuznetsov,
flow with Darcy Brinkman model. Developing wall Xiong and
thermal field included axial conduction and viscous | temperature| Nield [153]
dissipation. Analytical solution. [49], [135 and 136]
and [140]

13 | Circular duct filled with porous material, Darcy | Constant | Hooman,
Brinkman model. Developing thermal field included | wall heat | Pourshaghag
axial conduction and viscous dissipation. Numerical flux hy and
solution.[49] Ejlali [154]
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Table 1.3 - Contd.

14 | Porous material filled parallel plate channel, fully Constant | Hooman and
developed flow with Darcy-Brinkman-Forchheimer wall Gurgenci
model. Developing thermal field included axial | temperature| [155]
conduction and viscous dissipation. Three viscous | and constant
dissipation models are studied. Analytical solution | wall heat
and numerical solution. [49], [135 and 136] and flux
[140]

15 | Circular tube filled with porous material parallel Constant | Shigeru and
plate channel, fully developed flow with Darcy | wall heat Koichi
Brinkman model. Developed thermal field included flux Ichimiya
and viscous dissipation. Analytical solution. [129] [156]
and [138]

16 | Porous material filled parallel plate channel, fully | Lower wall| Olaseni and
developed flow with Darcy-Brinkman model. | with constant Philip [157]

Developed field included viscous dissipation.
Analytical solution. [129] and [138]

heat flux, the
upper wall i
fixed and

adiabatic.

1.8 Lacunae in the Past Studies on Laminar Forced Convection

in Parallel Plate Channels Filled with Porous Material

The focus of the present study has been to examine forced convection through channels

partially or fully filled with porous material owing to a number of present day applications

such as fuel cells, solar absorbers and catalytic converters. As mentioned earlier, channels

partially filled with porous material may be geometry of interest for a device or the porous

insert has been included to enhance heat transfer. Forced convection in porous material

filled ducts gives an opportunity to enhance heat transfer not only by providing a tortuous

path but also by providing a scope to manipulate the effective thermal conductivity. On the

basis of earlier studies, {Hamdan, Al-Nimr and Alkam [81], Alkam, Al-Nimr and Hamdan
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[82], Huang and Vafai [86 and 87] and Bhargavi, Satyamurty and Raja Sekhar [45],
Bhargavi and Satyamurty [108] and Satyamurty and Bhargavi [158]}, partially filled
channels leads to higher increase in Nusselt number than fully filled channel compared to
clear fluid flow configuration. A cautious interpretation of the improvement or otherwise
of heat transfer needs to be made, when effects such as axial conduction and viscous

dissipation are included.

The studies available in the literature involving forced convection in porous
material filled channels are reasonably comprehensive within the frame work of two-
dimensional flow and temperature fields. However, there is no unanimity in viscous
dissipation modeling for the flows through porous media. Further, studies that include
dissipation in flows through channels partially filled with porous material, to the best
knowledge of the author, have not been reported widely, particularly in the context of heat
transfer enhancement. Morosuk [152] studied pipes and channels partially (porous insert
has been placed symmetrically at the center) and fully filled with porous material. Morosuk
[152] included viscous dissipation to estimate entropy generation. In order to fill some of
the lacunae, the present investigations have been taken up. Specific aspects investigated in

this thesis are given in § 1.10 on the scope and objectives of the present thesis.

1.9 Numerical Method

The studies which are proposed to be undertaken involve obtaining numerical solutions to

two-dimensional conservation of energy equation, including axial conduction and viscous
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dissipation and these are computationally intensive even within the framework of
developed velocity field. When axial conduction is included, the conservation of thermal
energy equation is elliptic in nature. Applying the downstream boundary condition at a
priori unknown axial distance makes the process of arriving at a solution an iterative
process. Some of the numerical techniques that have been employed extensively for the
class of internal flows considered are as follows. The energy conservation equation with
boundary layer approximation was solved by Habchi and Acharya [159] using implicit
finite-difference scheme. Numerical solutions to the full Navier-Stokes and energy
equations have been obtained by Naito and Nagano [160] using Successive Over-
Relaxation (SOR) method. Nguyen [10 and 161] used Alternating Direction Implicit
(ADI) [11 and 12] and Quadratic Upwind Interpolation for Convective Kinematics
(QUICK) [13] methods, to solve Navier-Stokes and energy equations in the finite
difference form. SIMPLER (Semi-Implicit Method for Pressure Linked Equations-
Revised) algorithm [162] with a staggered grid system was employed by Jeng, Chen and
Aung [163]. Crank-Nicholson semi-implicit scheme was used by Krishnan and Sastri
[164] to solve the energy equation. Discretized momentum and energy equations have
been solved by Min et al. [165] using a line-by-line, TDMA, Tri-Diagonal Matrix

Algorithm [166] while the pressure equation has been solved using a line SOR.

The Successive Accelerated Replacement (SAR) scheme has been employed
successfully for a wide class of problems by a group of researchers at Energy Systems

Laboratory, of Mechanical Engineering Department, IIT Kharagpur, India. SAR scheme
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is essentially non-linear over relaxation method due to Lew [167], Lieberstein [168] and
Dellinger [169]. Lew [167] and Dellinger [169] applied the SAR scheme for solving non-
linear ordinary differential equations. Dellinger’s scheme differs from the non-linear over
relaxation method essentially in choosing the relaxation factor. Satyamurty [170]
demonstrated the applicability of the SAR scheme for solving a system of partial
differential equations in the study of two-dimensional natural convection heat transfer in
porous media. This scheme has been extensively applied by Satyamurty and Marpu
[171], Marpu and Satyamurty [172], Satyamurty and Marpu [173], Marpu and
Satyamurty [174], Marpu [175], Sharma [176], Prakash Chandra [177] and Satyamurty
and Prakash Chandra [178]. More recently the method has been employed for forced
convection studies by Ramjee and Satyamurty [15], Satyamurty and Bhargavi [158],
and Jagadeesh and Satyamurty [179] SAR scheme has been chosen to obtain numerical

solutions to the problems studied in the present thesis.
Philosophy of Successive Accelerated Replacement (SAR)

The basic philosophy of the SAR scheme is to guess a profile for each variable that

satisfies the boundary conditions. Let the partial differential equation governing a
variable, ¢ (X, Y), expressed in finite difference form given by 5M,N =0. (M, N) represent

the nodal point when the non-dimensional height and length of the channel are divided
into a finite number of intervals MD and ND respectively. The guessed profile for the

variable ¢ at any mesh point, in general, will not satisfy the equation. Let the error in the
equation at (M, N) and at k™ iteration be Z;,N :
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The (k+1)™ approximation to the variable ¢ I1s obtained from,

A AT LT | (147)

In Eq. (1.17),  is an acceleration factor which varies between 0 < w < 2. v < 1

represents under-relaxation and o > 1 represents over relaxation.

The procedure for correcting the variable ¢ at each mesh point in the entire

region of interest is repeated until a convergence criterion is satisfied. The criterion is that
the normalized change in the variable at any mesh point between k™ and (k+1)"

approximation satisfies,
L= (gl /200 )| < (118)
where &, the error tolerance limit, is a prescribed small positive number. To correct the

guessed profiles, each dependent variable has to be associated with one equation. It is

natural to associate the equation that contains the highest order derivative of that variable.

1.10 Scope and Objectives

The objective of the present study is to study laminar forced convection in channels
partially filled with porous material. In particular, the effects of axial conduction and

viscous dissipation have been evaluated in the thermally developing region of the flow.
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The scope includes employing fully developed flow field corresponding to
Poiseuille flow in the clear fluid region and Darcy-Brinkman model in the porous region.
Thermal field has been considered to be developing and a two-dimensional description
has been employed in both the porous and fluid regions. Varying degrees of
approximation to describe the temperature field have been made in different studies
reported in Chapters 2 to 7. The effects of viscous dissipation on heat transfer have been
evaluated considering three dissipation models; those of the Darcy model due to
Bejan[49], Eq. (1.12) , form drag model due to Nield [140], Eg. (1.15) and that of clear

fluid compatible model given by Al-Hadhrami et al. [135 and 136], Eq. (1.16).

The physical model is that of a channel formed by parallel plates, H distance
apart. The fluid enters at an average velocity of u,¢ and a temperature of Te. The plates at
y = £ H/2 are subjected to constant heat flux, g or constant temperature T,. The channel is
partially filled with a porous material of thickness l,. The total thickness of the porous

material adjacent to the plates is l,. The porous fraction is defined by y, = I,/ H.

The following topics, which form the subject matter of chapters 2 to 7 of the
present thesis, have been studied.
» Analytical investigation of laminar forced convection in a channel partially filled
with porous material subjected to constant wall heat flux.
» Analytical study of forced convection in a channel partially filled with porous

material with effect of magnetic field subjected to constant wall heat flux.
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» Analytical investigation of laminar forced convection with viscous dissipation in
parallel plate channels partially filled with a porous material at the conduction
limit.

» Effect of heat transfer in the thermally developing region of the channel partially
filled with a porous medium: constant wall heat flux.

» Effect of axial conduction in the thermally developing region of the channel
partially filled with a porous medium: constant wall heat flux.

» Effect of viscous dissipation and axial conduction in the thermally developing
region of the channel partially filled with a porous material subjected to constant

wall heat flux.

It has been assumed that the effective and fluid viscosities are equal throughout
the studies reported here. Similarly, it has also been assumed that effective thermal
conductivity is equal to fluid thermal conductivity. The flow field has been assumed to be
fully developed in all the investigations reported in the present thesis. This assumption
has been made to facilitate obtaining analytical solutions in certain cases and for ease in

obtaining numerical solutions when the thermal field is developing.

Studies on laminar forced convection in hydrodynamically and thermally
developed flow between the parallel plates partially filled with the porous medium have
been presented in Chapter 2. The given amount of porous material porous layer has been

distributed equally at the two walls. The channel walls are subjected to constant heat flux.
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A porous material of thickness 1,/2 is attached to both the walls of the channel. The
problem is characterized by Darcy number, Da, Reynolds number, Re, and the porous
fraction, y,. Analytical expressions for the non-dimensional velocity and temperature
profiles in the porous and clear fluid regions have been obtained. From the velocity and
temperature expressions, the fully developed skin friction coefficients and the Nusselt

numbers on the porous wall have been obtained analytically.

Studies on laminar forced convection in hydrodynamically developed and thermally
developed flow between the parallel plates partially filled with the porous material have
been presented in Chapter 3. The parallel plates have been subjected to uniform heat flux.

In addition to the parameters, y, =1 /H , Da= K/H? and Re = pu_ H [ 1, , the problem

ref

oB,’H?
My

is characterized by the Hartmann number, M = . Analytical solution has been

obtained and closed form expressions have been derived for velocity, skin friction
coefficient and temperature profiles in the porous and fluid regions and for the Nusselt
number in the porous region. It has been shown that the analytical expressions yield the
standard values for the Hartmann number, M = 0 {absence of magnetic field)} for all

porous fractions y, , 0 <y, < 1.0.

Enhancement in the fully developed Nusselt number for parallel plate channel
flow subjected to constant wall heat flux and constant wall temperature with porous

inserts distributed equally at the two walls of the channel for the three dissipation models
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has been studied in Chapter 4,. The three dissipation models are 1) the Darcy model, 2)
form drag model and 3) clear fluid compatible model in the porous region. Two boundary
conditions are considered. Channel walls are subjected to (i) constant wall heat flux and
(if) constant wall temperature. Analytical expressions for limiting temperature profile
and limiting Nusselt number plots are obtained. Limiting temperature profile and limiting
Nusselt number depend on the Brinkman number for the constant wall heat flux boundary
condition. Nusselt numbers in the conduction limit have been found to be independent of
the Brinkman number, a feature well reported for clear fluid channels, see Barletta [9] for

the constant wall temperature boundary condition.

Studies on laminar forced convection in hydrodynamically developed and thermally
developing flow between the parallel plates partially filled with the porous material have
been presented in Chapter 5. The parallel plates have been subjected to uniform heat flux.

Numerical solutions to the conservation of thermal energy equation without axial conduction

in the porous and fluid regions have been obtained for 0<y <1.0and Da = 0.001, 0.005,

0.01, 0.05 and 0.1, applying successive acceleration replacement (SAR) scheme [15, 158 and
179]. When axial conduction is neglected Peclet number does not appear explicitly in the
conservation of the thermal energy equation expressed in terms of the normalized non-

dimensional axial distance X".

Extensive numerical trials have been conducted and the following values for the

parameters involved have been found to be satisfactory. a) The acceleration factor, 0.5
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w < 1.5 b) Error tolerance limit, & = 10, 107, 10 ° and 10" ¢) Number of divisions in
the Y direction, 60 < ND <100 (uniform) and d) Non-uniform divisions in the axial
direction, 1000 < MD <8000. The non-uniform grids have been generated in geometric

progression.

Based on the numerical trials conducted, the following values for the parameters
have been employed in obtaining numerical solutions presented. a) Acceleration factor w

< 1 has been determined as per Eqgs. (5.17) and (5.20) b) Error tolerance limit, & = 10 ° c)

X3, =0.4 d) MD = 1000 with AX;, generated in geometric progression with ¢ = 1/8 in

Eq. (5.51) and €) ND = 90 with AY =1/90.

The values of the local Nusselt numbers when the channel is a clear fluid channel and
when the channel is fully filled with a porous material agree well with the values available in
Shah and London [18] and Nield et al. [57 and 58]. The local Nusselt number Nuyy decreases
as X" increases for all yp and Da, and reaches the fully developed values for X" =0.4. Nupx IS
a minimum when y, = 0.6 at low Da = 0.005. Thus, there exists an optimum porous fraction

to attain minimum enhancement in the Nusselt numbers.

The effect of axial conduction in hydrodynamically developed and thermally
developing region of parallel plate channels partially filled with a porous material has
been studied numerically in Chapter 6. The parallel plates have been subjected to

constant heat flux. In addition to the parameters, y,, Da and Re = (uret H)/v, the problem is
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characterized by the Peclet number, Pe=u,H /«,, where «, is the thermal diffusivity

ref
of the fluid. Numerical solutions to the conservation of thermal energy equation with
axial conduction in the porous and fluid regions have been obtained for & y,<1.0,5 <
Pe <100 and Da = 0.001, 0.005, 0.01, 0.05 and 0.1, applying the Successive Acceleration
Replacement (SAR) scheme [15, 158 and 179]. When axial conduction is neglected, the

Peclet number does not appear explicitly and this case is denoted by A. = 0.

It has been concluded that the non-dimensional temperature profiles become
independent of the Peclet number for Pe > 100 indicating that the effect of axial
conduction has become negligible. The downstream condition satisfied by the clear fluid
ducts 06, /60X~ — 0, has been found to be valid for parallel plate channels partially filled
with porous material also. This feature assumes importance since the flow and thermal

fields are not symmetric when the channel is partially filled with porous material. Non-

dimensional bulk mean temperature excess of wall temperature, 8, -6, increases as X"

increases. 6, —& decreases as Peclet number decreases. This indicates that a stronger

axial conduction effect present at lower Peclet numbers makes the fluid less heated or
less cooled compared to when axial conduction is neglected. The local Nusselt number
Nupx decreases as X increases for all % and reaches the fully developed values for X >

0.4.
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Laminar forced convection including viscous dissipation in the thermally
developing region of parallel plate channels partially filled with porous material, when
the parallel plates have been subjected to constant wall heat flux, has been numerically
investigated employing the SAR scheme [15, 158 and 179] in Chapter 7. The two
dissipation models have been employed in the porous region. Br > 0 represents fluid
getting cooled and Br < 0 shows fluid getting heated. Two dissipation models, namely, a)
Darcy model due to Bejan [49] and b) clear fluid compatible model due to Al-Hadhrami
et al. [135 and 136] have been employed in the porous region. The conventional
dissipation function {see, Schlichting and Gersten [137]} has been employed in the fluid
region. Numerical solutions have been obtained neglecting axial conduction and
including axial conduction terms in the energy equation for Pe = 5, 25 and 100. Ranges

for the other parameters are, 0 < y, < 1.0, 0.005 <Da<0.01 and -1.0 <Br < 1.0.

Nusselt number displays an unbounded swing at some X" = X, when Br < 0.

*

X.,, decreases as Br decreases, i.e., for larger negative values of Br. The limiting values

o
of the Nusselt numbers (for large X*) on the fluid and porous sides, Nupx are dependent on
Br for all Br # 0 in the developing region also. These limiting values depend on the
porous fraction too. Nuy,, decreases as X~ increases for all porous fractions when Br > 0.

In chapter 8, we have given conclusions of all chapters.

A summary of the studies presented and the important conclusions drawn from

the present studies have been recorded in Chapter 8.
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Chapter 2
Analytical Investigation of Laminar Forced Convection
In a Channel Partially Filled with Porous Material
Subjected to Constant Wall Heat Flux

2.1 Introduction

Fluid flow and heat transfer in channels partially filled with porous media mainly depend
on the porous fraction, permeability, porosity (or the ratio of effective viscosity in the
porous region to the fluid viscosity), the flow (fully developed or developing), the
thermal boundary conditions at the channel walls, and the interfacial boundary

conditions.

The objective of the present chapter is to study the hydrodynamic and thermal
field characteristics for flow through a channel partially filled with a porous material. The
flow in the porous material is described by the Brinkman—extended Darcy equation. The
problem is characterized by the porous fraction and Darcy number. The objectives have
been set to examine the establish the optimum porous fraction for maximum
enhancement in the Nusselt number. In the present chapter, it is assumed that both the
flow and the thermal fields are developed and the channel walls are subjected to constant
heat flux. These assumptions enable obtaining analytical solutions for the flow and

temperature fields.
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2.2 Mathematical Formulation

The physical model and the coordinate system, of a channel formed by parallel plates, H
distance apart, are shown in Fig. 2.1. x is the axial distance and y is normal to the flow
direction measured from the center line of the channel. As per the coordinate system, the

plates are aty =+H /2. The total thickness of the porous material, adjacent to the plates
aty=+H /2, is l,. It is assumed that the flow and thermal fields are fully developed and

the fluid enters the channel with a uniform temperature of Te. The parallel plates have
been subjected to a constant heat flux, g. The problem has been studied assuming
laminar, steady, incompressible flow of a Newtonian fluid. The fluid and the porous
matrix are in local thermal equilibrium. The porous medium is homogeneous and
isotropic. Further, it is assumed that the pressure work is negligible and the thermo-
physical properties are constant. The flow in the fluid region is assumed to be governed
by Poiseuille description, and in the porous region by Brinkman extended non-Darcy

flow.

(a) Dimensional (b) Non Dimensional

Fig. 2.1: Physical Model and Coordinate System.
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Governing Equations

Momentum Equation in Fluid Region :

d?u, _1dp (2.1)
dy? g dx

In Eq. (2.1), p is the pressure, g, is the dynamic viscosity and u; is the velocity in the

fluid region.

Energy Equation in Fluid Region :
oT, o°T, (2.2)
PCy | Ui =k Ea

In Eq. (2.2), T¢ is the temperature in the fluid region p, C, and k; are the density, the
specific heat and the thermal conductivity of the fluid respectively.

Momentum Equation in Porous Region :

y o Kdp e A7, (2.3)

i My dx e dy?

In Eq. (2.3), up is the velocity in the porous region, K is the permeability of the porous
medium, e 1S the effective viscosity associated with the Brinkman viscous term which

may differ from . , the fluid viscosity.

Energy Equation in Porous Region :

o[y ), (2T (2.4)
Py upaj_ eff ayz

In Eq. (2.4), T, is the temperature in the porous region and ke is the effective thermal

conductivity of the porous medium. ke can be calculated from Catton [21] as
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keff = (1_(P) ks +o kf (25)

In Eq. (2.5), ¢ is the porosity and ks is the thermal conductivity of the solid in the porous
matrix.

Egs. (2.1) and (2.2) , applicable for the fluid region and Egs. (2.3) and (2.4) for the
porous region, are subjected to the following boundary and interfacial conditions.

Boundary and Interfacial Conditions

dT, (2.6)
u,=0, —keﬁW:q at y=-H/2
du, du; H |, (2.7)
Up =Up =Ui Ly oy Ay at interface Y="7+7

H | (2.8)
Te=Tp=T Kk (de /dy):keﬁ (dTp /dy) at interface y:—?+5p
du, dT, N 2.9)
q =0, Y 0 at y=0 {Symmetry boundary conditions}
y y

It may be noted that the boundary conditions given by Egs. (2.6) to (2.9) for Fig. 2.1, are
written for the half channel, making use of the symmetry.
Non-dimensionalization

Governing equations {Egs. (2.1) to (2.4)} are rendered non-dimensional by introducing
the following non-dimensional variables.

X=x/H, Y=y/H, U =u/uy, U=ulu,, U,=ulu,, P=p/lpu’,

0, =T, -T)I(aH 7k;) 6, =(T,-T.)/(qH /k,) (2.10)
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In Eg. (2.10), X and Y are the non-dimensional coordinates. U and P are the non-
dimensional velocity, and pressure. The subscripts f and p refer to fluid and porous

regions. 6,{ & in the fluid region and &, in the porous region}, is the non-dimensional

temperature. Urer is the average velocity through the channel. ure is related to u and u;,

by,
Hb (2.11)
2 ZJ_ 2 j).
— u dy + u.dy |=u,
H —H/2 P H 1, f f

e
2 2

In addition, the non-dimensional porous layer thickness y,, which shall be referred to as

porous fraction is defined by,

y, =1 1H (2.12)

On introducing the non-dimensional variables given by Eq. (2.10), the governing
equations for conservation of momentum and energy applicable in the fluid {Egs. (2.1)

and (2.2) }and porous {Egs. (2.3) and (2.4) } regions in non-dimensional form become,

Fluid Region:
d?u, Re dP (2.13)
dy? dX
00, 1 0°6 (2.14)
"X Pe ay?

In Eqg. (2.13), Re, the Reynolds number and in Eq. (2.14), Pe, the Peclet number are

defined by,
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Re=pu. H/u, (2.15)

ref

Pe=u,H/«, (2.16)

ref

Porous Region :

d’U 2.17

U, = —RreDa " D3 25, @17)
P aX & dY

06, 1 0%, (2.18)

Up = 2
oX nPeoY

In Eqg. (2.17), Da, the Darcy number is defined by,

Da=K/H? (2.19)
In Egs. (2.17) and (2.18) , ¢ and # are defined by,
e=u l pg (2.20)

n=K; kg (2.21)

Non-dimensional Boundary Conditions
The boundary and interfacial conditions given by Egs. (2.6) to (2.9) take the following

non-dimensional form {using Eq. (2.10)}

déo (2.22)
Up=0,[—pJ=—n at Y=-1/2
dy
du, du 2.23
u,=U, =U, 1%, & at the interface Y=—1+ﬁ (2.23)
P e dy dY 2 2
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do do
0;=0,=6,n —L|=| =2| atthe interface Y:_1+ﬁ
ay ) \dy 2"
du, do,
=0, =0 at Y =0
dy dy

(2.24)

(2.25)

2.3  Expressions for Non-dimensional Velocity and Skin

Friction Coefficient

2.3.1. Non-dimensional velocity Profiles

Fluid Region:

Upon solving Eq. (2.13) along with the boundary conditions given by Eq. (2.23) and

(2.25) velocity in the fluid region is obtained thus:

U, (Y) :%{wi +[4\(2 —(—1+yp)1pgr}

where

—Jﬁ{ewg 1}{2@{;}@ —1] {1+ ewﬂﬁ(yp 1)} P
U =

2(1+eyp\/§J

and
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12[1+e’“ Dﬁ}

dp

P =Re—=

o dx s B B (2.28)
24Da‘°”2[eyp£ ] [“J; = [1+e Da]ﬁ( 1)+

j
2

12Daf|: f( 2)-4e F( 1)+, - }

Porous Region:
Similarly, upon solving Eq. (2.17) along with the boundary conditions given by Eq.

(2.22) and (2.23), velocity in the porous region is obtained as

T e R e e A B

where U; and B, are given Egs. (2.27) and (2.28).

U, (V)=

2.3.2 Skin friction coefficient

Skin friction coefficient Cy, at the walls Y = —% is defined as

du, ) (2.30)
fo = Mett W| _% I pU

by using Eqg. (2.10), we get

(2.31)

where Re and ¢ are given in Egs. (2.15) and (2.20).
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Using Egs. (2.27) and (2.28) to simplify U, in Eq.(2.29), then substitute simplified U, in

Eqg. (2.31), ReCyy is obtained as
6!—2\/D_a [epr; —1]+ 2epr;\/E (7, —1)]

24Da” [ef —1]—6x/D_a [ey”& —1]€ (7,-1) +[1+e.,pg ]*/E (7,-1)

ReC, =

fo —

(2.32)

+12Da\/2[eyp& (7, _2)_46? " (7,147, —2]

2.4  Expressions for Non-dimensional Temperature and

Nusselt Number

2.4.1 Non-dimensional temperature
It may be noted that, when the thermal field is fully developed, dT /06X = Constant =

constant=dT, / dX when the channel walls are subjected to constant heat flux. where Ty is

bulk mean temperature and defined by

H I
“H.h
22

0
2 I u, T, dy+ J u, T, dy
—H TR
: i 239
-H I
2 0
2 J u,dy + I u,dy

“H H I
H.lb
2 2

T, =

2

Peclet number appearing in Egs. (2.14) and (2.18) can be absorbed by defining

X*=X/Pe (2.34)
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Egs. (2.14) and (2.18) take the form,

06, 0%, (2.35)
foX* oaY?

06, 1 0%, (2.36)
PoX® o2

Noting that the derivatives, (06, /0X") and (00, /oX™) are constant, Egs. (2.35) and

(2.36) can be rewritten as,

d?e 2.37
U A= def (2.37)
d?’6 (2.38)
U, 1 L v .
n

where, the constant, A is used to denote,

A=(00,10X")=(00,10X")=(dg" /dX") (2.39)

In Eq. (2.39), &" is the non-dimensional bulk mean temperature denoted by

s BT, (2.40)

(aH 7k, )

and defined as (since from Eq. (2.33)),
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2 2 0
2 [u,6,dv+ [ U 6 dY
-1 _ P
g L2 L7 (2.41)
17
2 2 0
2| [ udv+ [ Uy
-1 1.7
2 272
Therefore
1.7 (2.42)
2 2 0
0u-0"=2] [ U, (6,-0,)dY+ [ U, (6,,-06,)dY

el -1
2 2"

7o
2

The constant A(=06; /0X™ =06, /10X"=d#" /dX™) can be evaluated by making energy

balance on an element.

pC, Hu, (dT,/dx)=2¢ (2.43)

Introducing the non-dimensional bulk mean temperature, ", defined by Eq.(2.39), it can

be readily shown that,

Pe(dg" /dX) =1 =2=Pe(06; / 0X")=Pe(6, / 0X") (2.44)

Using Egs. (2.26) and (2.29) for Us and U, and the boundary conditions given by Egs.
(2.22),(2.24) and (2.25) , the problems have been solved. Since the boundary condition is
of Neumann type, Egs. (2.22) and (2.25) have been solved in terms of temperature
difference between the fluid and one of the walls. Let the temperature at wall 1 (at

Y=-H/2) be T, and at wall 2 (at Y=H/2) beT,. The corresponding non-

dimensional wall temperatures, &,, and 6,, are now expressed as,
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O =T =T/ @H 1K(): 0,, =(T,, = T.)/ (aH /) (2.45)

wl

The solutions to Egs. (2.37) and (2.38), for &,(Y) and 6, (Y) contain 6,,. The
temperature profiles in the fluid and porous regions are expressed relative to 6,, .
[0, —0; (Y)] and [6,, —&,(Y)] are obtained as,

Fluid Region:
On solving Eqg. (2.37) along with the boundary conditions given by Eqg. (2.24) and (2.25)
, temperature in the fluid region is obtained as
5[48 DaA’ + A, (5(7, -1 - 4Y)- 24 Dac)“ Ay, —1)}[((yp ~1)? —4Y2)}
(7, -1)(24Da”* Ag" +6ADa"e" (v, -1) - Ay (7, 1)’ ) - 48Da’A’

~6Dazy, (37, ~4A (7, -1) -4+ A (37, -4))
{32 o[ 24ADa% ~BAEDA" + A" (7, 1) ]} (2.46)
&

+12Dag" (1, -9 (A +)-4A (7, -1)
Similarly, on solving Eq. (2.38) along with the boundary conditions given by Eq. (2.22)

A
+8n

-6, ()=~

Porous Region:

and (2.24) , temperature in the porous region is obtained as
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o - A2, 121

—ZAJEVJ% (1+20)+
6Da

e_ﬁw +8Da evg(m/sg)(mv-yp) +4Davz(y, 1) (h-ANL2)

o SR IVY
Da p 0 p
€ DaAiO]/p-l_ptyp

+A (1+2Y)

48D’ A + 4Da** Az (7, -1)+6vDaAg (1, -1y,
. _ Aoelr, 17, 8Dy, (37, + A(4+37,)-4-4A (7, 1)
s 24Da" A, -6DaA(y, -1 + ANe (7, -1
4\/2}/p
+12Dave (A (r, -2)-4A (7, -1 +7,-2)

(2.47)

2.4.2 Nusselt numbers
The heat transfer coefficient h, , at the plate y =—H /2adjacent to the porous medium is

defined by

dT (2.48)
_pl __H™ hp(Twl_Tb)

—k
eft dy v=-7

Upon non-dimensionalizing (using Eq. (2.10)), the Nusselt number at Y =-1/2 . Nu, is
given by

Ch2H) 2 (2.49)

P K, 0, -0

Nu

Therefore using Eq. (2.42), Nu, is given by
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140[ A, ~6DaA, + A, +12DazA, | (2.50)

Nup =
DG, + A, x A A (7,0~
Ve ;Jz
Agn| Ax AR5 (y, - 2)(y, ~1)'7, - 2Dae?' ™ (A - A’)e(y, ~1) Ay -
1[e _ %\/% _ 3 A5 %\/% 2 3
geD AGH o V3, —4Dads| U 1)/\8(#:4 €A4)+2e K27, 40+
5(6—9y5+57§>)+e2J;A20<&+A§>
1680Da’A’nA,, ~840Da”* Aen A, (7, -1) +
40DaA e (r, ~1)*(L+(3n-)y,) -
Ay, -1+ Gn-2)7,)+
84/DaAe" (7, -1) [A% -8A,(y, -1+ (377—1)7p)+] +
+(,-1) 5Da
A x Ay
A2y, ~D°(A7+(357-17)y,) +42DaA, (7, 1) x
£ [%—%(n—l)x ]+840Da2A12[A25+4A4(7p—1)(7p —1—3n)+j
(2+(577_2)7p)+A5XA24 A x Ay
Where A;, 1=1, 2,....25 are constants given in appendix.

2.5 Results and Discussion

In this section, velocity profiles and skin friction coefficient for flow through the channel
partially filled with porous material have been discussed. It has been assumed that ¢ = s
/uett = 1 and n = kil ket = 1. The channel is referred to as the clear fluid channel here
when y, = 0. Similarly, when y, = 1.0, the geometry shall be referred to as channel fully
filled with the porous material. When the porous fraction is 0 < y, < 1.0, the channel is

referred to as channel partially filled with the porous material.
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2.5.1 Limiting Cases

Clear Fluid Channel:
By setting y, = 0, in Egs. (2.26), and by using Egs. (2.27) and (2.28) and (2.32), Us and
Cy, for the clear fluid reduce to,

U, [Y] :%(1—4\(2) (2:51)

C,. =6/Re (2.52)

when the porous fraction y, =0, in Egs. (2.46) and (2.50), 6,, -6, (Y) and Nu, for the

clear fluid reduces to,

1 2 4 (2.53)
O, -0, (Y) =E(5—24Y +16Y*)
and
Nu, =140/17 (2.54)

Further, when y, = 0, Egs. (2.51) to (2.54) correspond to the exact solutions for the
velocity, skin friction coefficient, temperature and the fully developed Nusselt number

available in, say, Shah and London [18], p.153 and p.157.

channel fully filled with the porous material:

Similarly the porous fraction y, = 1 analytical expressions for U, 6,,-6,(Y),

Cand Nu, given by Egs. (2.29),(2.47),(2.32) and (2.50) reduces respectively,
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=

Ye
[ a2

J Zﬁsmh&\/%J (259

[cosh [ >/Da
Je cosh( Je

-6, [Y]= L

U Y]=

no
U

N
2/Da Y\/;
J ~8Da+(-1+4Y?)z)+16Dae cosh(m]

(2.56)
2\/_a+eJ_ 2\/D_a+\/z)+\/E]\/;
1 2.57
ReC,, = 7 (257)
v Da ¢ coth [Zx/D_aJ —2Da

When the present coordinate system is used the expression available in Haji-Sheikh and

Vafai [59] for U reduces to Eg. (2.55).

—24\/7[fcosh(2f_) 2\/—Sinh(2f_)]2 (2.58)

' \/7( 36Da+&)+e (- 24Da+e)cosh( )+60Da3’2smh(jDia)

Nu

Eg. (2.58) for Nu, has been verified to be equivalent to the result given in Nield et al.

[25].

Variation of the product (ReC,)) {given by Eq. (2.57)} with the Darcy number is
shown in Fig. 2.2(a). For large values of Da, (ReC)— 6 [see, Eq. (2.52)], as the porous

material filled channel approaches the behavior of clear fluid channel, a feature that has

been documented.
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Variation of the fully developed Nusselt number Nu, with Da is shown in Fig.

2.2(b). Nu, decreases with Da. For large Da, i.e. >1.0, Nu, — 8.23529 (= 140/17),

which is the value for clear fluid channel, see, Shah and London [18], p. 157 and also in

Nield et al. [25].
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Da D
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Fig. 2.2: Variation of (a) skin friction coefficient and (b) Nusselt number with Darcy number in the porous
material-filled channel y, =1.0.

2.5.2 Hydrodynamics

Velocity profiles:

Non-dimensional velocity profiles for different Da, for porous layer thickness, y, = 0, 0.2,
0.4, 0.6, 0.8 and 1.0 are shown in Figs. 2.3(a) to 2.3(f). As the porous fraction increases,
the maximum velocity, which occurs in the fluid region, increases for y, < 1.0. Also, plots
are given with different scales on the X-axis. Velocity in the porous region Uy, is higher at
higher Darcy number, whereas, in the fluid region, Uy, is lower at higher Da. As can be

expected, this is due to the porous region behaving like a clear fluid region as Darcy
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number increases. This is evident from the non-dimensional velocity approaching a
maximum of 1.5 even at Da = 0.1. Also, the maximum value of the velocity occurs in the
fluid region for all porous fractions and this maximum value is even higher than 1.5. It
can be noticed from Fig. 2.3(e) that when y, = 0.8, the increase in the velocity in the fluid
region becomes profound since the resistance in the porous region at the high porous
fraction further decelerates the flow resulting in a consequent further increase in the fluid

region.

Skin Friction Coefficient:
ReCs, has been evaluated using Egs. (2.27), (2.28), (2.29) and (2.31). Variation of the
product ReCs, with y, is shown in Fig. 2.4 for Darcy numbers, Da = 0.001, 0.005, 0.01,

0.05 and 0.1. ReCy, increases with Da for y, <0.7. However, this trend of monotonic

variation changes at higher y,, which becomes pronounced at y, = 0.8. This is due to the
channel partially filled with porous material approaching the behavior of a channel fully
filled with porous material for which ReCy, decreases with Da, as can be seen in Fig. 2.4,
this is a consequence of higher resistance offered with increasing porous fraction which

again is a consequence of higher resistance offered with increasing porous fraction.
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Fig. 2.4: Variation of ReCy, with porous fraction 7, at different values of Darcy number.

2.5.3 Thermal Field

Profiles of the non-dimensional temperature in excess of the wall temperature, (6,, —6,),
(6,,—0;) are shown in Figs. 2.5(a) to 2.5(f) for y, = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 for

different Darcy numbers. From Figs. 2.5(b) to 2.5(e), the effect of porous fraction on

(6, —0,), (6,,—0;) can be assessed. Maximum in (8,, — &) occurs closer to the wall at

Y = 0. This is commensurate with the acceleration associated with the fluid in the fluid

region at higher y,. It may also be noticed that (6,, — &) is lower for higher Darcy number

for all 0< y, <1.0.

In contrast, the profiles shown in Fig. 2.5(a) and Fig. 2.5(f) for y, = 0 and 1.0 are
symmetric about Y = 0. The profile in Fig. 2.5(a) is independent of the Darcy number
and is also very close to the profile in Fig. 2.5(f) for Da = 0.1, the highest Darcy number
depicted in Fig. 2.5. Indeed, the porous material filled channel behaves like the clear fluid
channel at higher Da, which is also noticeable in Figs. 2.5(b) to 2.5(c) as well, even
though these two profiles pertain to a partially filled channel.
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Fully Developed Nusselt Number:
Variation of fully developed Nusselt number on the fluid side, (i.e., at Y =— 1/2, the

lower plate which is adjacent to the porous region), Nu,, with the porous fraction y, for
different Darcy numbers is shown in Fig. 2.6(a). Nu; displays minimum for 0 <y, <
1.0. The y,(Nupmin) — 140/17 as Da increases which signifies that the flow approaches

that of a clear fluid channel flow. y,(Nu,,) decreases with increasing Da.

6 —————— : :
——Da=0001] | |

4l — Da=0005
2 4,

% 0 ef:
oL N>l _
4l i
_6 [ 1 | 1 | 1 | 1 | 1 ]

00 02 04 ¥ 0.6 0.8 1.0
p
@ Nu, (b) ANU

Fig. 2.6: Variation of (a) Nu, and (b) ANU with porous fraction 7, at different values of Darcy number,
Da.

The net change, ANu, is shown in Eg. (2.59), in comparison with the fully

developed clear fluid channel value and this is given below

ANu=2 [Nu, |, ~(140/17)] (2.59)

Variation of ANu with y, for different Da is shown in Fig. 2.6(b). It is clear from

Fig. 2.6(b) that ANu is negative for y, say, < 0.9 with a minimum for some 0 < y, < 0.9.
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ANu is > 0 for higher y, > 0.9. ANu reaches a limit, a possible maximum in general, at
yp = 1.0, which is equal to the difference in the Nusselt number values corresponding to a
porous material filled channel and a clear channel. Enhancement in the Nusselt number
when porous material of thickness 1,/2 is attached to each of the two walls of the channel
is low, compared to the enhancement when the channel is fully filled with porous

material. The value of ANu is maximum at y, = 1.0.

2.6 Conclusions

Fluid flow and heat transfer in parallel plate channels partially filled with porous medium
have been studied assuming fully developed flow and temperature fields. The given
amount of porous material in the porous layer has been distributed equally at the two

walls. The channel walls are subjected to constant heat flux.

The problem is characterized by Darcy number, Da, Reynolds number, Re, and
the porous fraction, y,. Analytical expressions for the non-dimensional velocity and
temperature profiles in the porous and clear fluid regions have been obtained. From the
velocity and temperature expressions, the fully developed skin friction coefficients and
the Nusselt numbers on the porous wall has been obtained analytically. It has been shown
that the analytical expressions yield the standard values for a clear fluid channel and for
fully porous material filled channels when the porous fraction y, is set equal to 0 and 1.0
respectively. The value of the porous fraction where the minimum value of Nusselt

number occurs, decreases as Darcy number increases.
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Chapter 3

Analytical Study of Forced Convection In a Channel
Partially Filled with Porous Material with Effect of
Magnetic Field Subjected to Constant Wall Heat Flux

3.1 Introduction

The objective of the present chapter is to study the effect of magnetic field on Newtonian
fluid flow in a parallel plate channel partially filled with fluid saturated porous medium.
The channel walls are subjected to constant wall heat flux. The fluid flow is taken to be
fully developed. Analytical solutions have been obtained. Following the analysis of
chapter 2, analytical solutions have been obtained. Closed form expressions for flow
variables such as velocity, skin friction coefficient, temperature and Nusselt number have

been obtained and the effects of various relevant parameters such as Darcy number Da,

porous fraction y ;, Hartmann number, M and the flow variables have been studied.

3.2 Mathematical Formulation

The physical model and the coordinate system, that of a channel formed by parallel
plates, H distance apart, are shown in Fig. 3.1. x is the flow direction and y is normal to
the flow direction measured from the center of the channel. As per the coordinate system,

the plates are at y = +H / 2. The thickness of the porous medium, adjacent to the plates at
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y=+H/2,is |, It is assumed that the flow and thermal fields are fully developed and

the fluid enters the channel with a uniform temperature T.. The parallel plates have been
subjected to constant heat flux, g. The problem has been studied by assuming steady,
laminar, incompressible flow of a Newtonian fluid. The fluid and the porous matrix are in
local thermal equilibrium. The porous medium is homogeneous and isotropic. Further, it

is assumed that the thermo-physical properties are constant.

A transverse magnetic field of uniform intensity is applied. The Magnetic Reynolds
number is assumed to be very small and there is no external electric field so that the
induced current is very small and hence it can be neglected. The flow in the fluid region
is assumed to be governed by Poiseuille description, and in the porous region by

Brinkman extended non-Darcy flow with effect of the magnetic field.

(a) Dimensional (b) Non Dimensional
Fig. 3.1: Physical Model and Coordinate System.
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The governing equation for the flow in the fluid region can be expressed by

d2uf dp (3.1)

Also the flow in the porous region can be expressed by

d’u, u - (3.2)
_p__fu +J B=_p
My K OPT T T ax

Egs. (3.1) and (3.2) were taken from the literature Ashish, Satya and Filippov [125].

In Eq. (3.1), p is the pressure, g, is the dynamic viscosity and u; is the velocity in the

fluid region. In Eq. (3.2), u, is the velocity in the porous region, K is the permeability of
the porous medium, wet IS the effective viscosity associated with the Brinkman viscous

term which may differ from x,, the fluid viscosity. In Egs. (3.1) and (3.2), Jis the

electric current density and B is the magnetic induction vector of applied uniform
magnetic field. Assume that external electric field is absent and internal causes such as

separation of charges or polarization do not cause an induced electric field,

J=0(T,,xB), where ois electric conductivity. Therefore Lorentz forces F =JxB
and velocity vector T, ~ are collinear and opposite in direction. Hence

F. :J_xl§:—aBozuf'p, where B, =|I§|. Therefore, the governing equations given in

Egs. (3.1) and (3.2) are reduced to,

Momentum equation in fluid region:
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d?u,
dy?

dp (3.3)

—UBOZUf :&

r

Momentum equation in porous region:

d?u, u d (3.4)
Hest —zp__fup _GBOZUp =_p
dy K dx

Energy Equation in Fluid Region :
oT, o°T, (3.5)
PO | Yo T

In Eq. (3.5), T¢ is the temperature in the fluid region p, C, and k; are the density, the
specific heat and the thermal conductivity of the fluid respectively.

Energy Equation in Porous Region :

(4 ), (7T, (3.6)
p p(ung_ eff ay2

In Eq. (3.6), T, is the temperature in the porous region and ke is the effective thermal

conductivity of the porous medium. ke can be calculated from Catton [21] as,

keff = (1_(P) ks +¢kf (37)

In Eq. (3.7), ¢ is the porosity and ks is the thermal conductivity of the solid in the porous

matrix.

Egs. (3.3) and (3.5) , applicable for the fluid region and Egs. (3.4) and (3.6) for the

porous region, are subjected to the following boundary and interfacial conditions.
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Boundary and Interfacial Conditions

dT, (3.8)
up:O, —keﬁW:q at yZ—H/Z
U —u —u du,  du, _ ~ |-|+Ip (3.9)
f =Up = ey dy = K dy at interface Y= 55

H | (3.10)
To=T, =T K (dT,/dy)=ky (dT,/dy) at interface ¥=--+
du dT 3.11
d—f=0,d—f=0 at y=0 {Symmetry boundary conditions} (.10
y y

It may be noted that the boundary conditions given by Egs. (3.8) to (3.11) for Fig. 3.1,
are written for half channel, making use of the symmetry.

Non-dimensionalization:

The governing equations {Egs. (3.3) to (3.6)} are rendered non-dimensional by

introducing the following non-dimensional variables.

X y P
X=—, Y=, U, =u;/uy, U =uluy,,U =u/lUy, P=—F——,
H H f f ref i i f p p f /uf uref/H
(3.12)
2 2
0, =(T, ~T)/(@H IK,), 0,=(T,~T)/(qH k), M = "B;H
f

In Eq. (3.12), X and Y are non-dimensional coordinates. U and P are non-dimensional

velocity, and pressure. The subscripts f and p refer to fluid and porous regions. 6,{ 6, in
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the fluid region and 6, in the porous region}, is the non-dimensional temperature. Ures is

the average velocity through the channel. ur is related to u and u; by

Hl . (3.13)
2 2

J' u,dy + J. u,dy |=U,

H/2

H 1,

2|
Hi

In addition, the non-dimensional porous layer thickness y,, which shall be referred to as
porous fraction is defined by,

y,=1,1H (3.14)

On introducing the non-dimensional variables given by Eq. (3.12), the governing
equations for conservation of momentum and energy applicable in the fluid {Egs. (3.3)

and (3.5)}and porous {Egs. (3.4)and (3.6) } regions in non-dimensional form become,

Fluid Region:
dU, , _dP (3.15)
dy? fdX
06, 1 06 (3.16)
"OX  Pe oY?

In Eg. (3.15), M, the Hartmann number (Magnetic field parameter) and in Eq. (3.16), Pe,
the Peclet number is defined by,

Pe=u,H/a, (3.17)

ref

Porous Region:
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d’U (3.18)
_p_g(iJr M Zjup =gd_P

00, 1 2%, (3.19)

p

Up = 2
oX 7 Pe oY

In Eq. (3.18), Da, the Darcy number is defined by,

Da=K/H? (3.20)

In Egs. (3.18) and (3.19) , ¢ and # are defined by,
& =/Jf /lueff (321)

n =K kg (3.22)

Non-dimensional Boundary Conditions
The boundary and interfacial conditions given by, Egs. (3.8) to (3.11) take the following

non-dimensional form {using Eq. (3.12)}

a9 (3.23)
Up:O{_iJ:_ at Y =-1/2
dy
du_ du 204
U, :Up:Ui! i P = L at the interface Y:—l+ﬁ ( )
49 ) _(do (3.25)
6,=0,-6, 7| ==/ e | attheinterface v=-147
dy ) Ly >
v a9 3.26
fzov fZO at Y =0 ( )
dy dy
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3.3 Expressions for Non-dimensional Velocity and Skin

Friction

3.3.1 Non-dimensional velocity profiles

Fluid Region:
On solving Eq. (3.15) along with the boundary conditions given by Eq. (3.24) and Eq.

(3.26), the velocity in the fluid region is obtained as

oMY (Uie'\;(ﬂnl) (l+ a2MY ) M 2 +(eh;(7p1) _ eM(Y+7p-1) " e%(””p*l) M ]J

U, (Y)= (Hem(ypl))M 2 (3.27)

Porous Region:
Similarly, on solving Eqg. (3.18) along with the boundary conditions given by Egs. (3.23)

and (3.24), velocity in the porous region is obtained as

7Y /g(1+DaM2) @+2Y) [¢(1+DaM?)
_ D 2 D
U,(Y)=e a e S
1 /5(1+DaM2) v /g(1+DaM2)
U|Age? P +Ae' P |(1+DaM?)
v [£(1+Dam?) 7}\/5(1+DaM2) Y\/g(l+DaM2)
e Da _A2 e 2 Da +e Da
7
Py
1 [¢(+Dam?)
2 D
+A,e a

/(A —1)(@1+DaM ?)

(3.28)

—-Da

where
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4 g(1+ DaM 2)
JDa tanh {4" Da} tanh[l\/l (J’p —1)/2]

Py +

g(1+ DaM 2) M
Y, (3.29)
J1+DaMZ coth| 22, /M '
M tanh| ¥ ( 1) 2 Da
anh| —(y, — -
( |: 2 & }j \/Dag
and
o dP _ 1 (3.30)
g

dx Da 2( A27 _1)3(1+ A27)A28 - Azg (Aso +A31)+(Aze _1)M (A3,2 - 2A26(A33 +A34))
(A —DM 1+ DaM )" Ve (Ag+A,))

. (-1-DaM?)A,, + A, +(1+DaM?*)A, + A,
M?*(1+DaM?*)(A,, + A,,)

Where U; and P, are given Egs. (3.29) and (3.30).

3.3.2 Skin friction coefficient

Skin friction coefficient Cr, at the walls Y =—1/2 is defined as,

c - dupl o (3.31)
fpo /ueff dy yz% P ref

by using Eqg. (3.12), we get

1 du, (3.32)

"~ ZRe dY lY:;l

2

Using Egs. (3.29) and (3.30) to simplify U, in Eq. (3.28), substitute simplified U, in Eq.

(3.32), ReCyy is obtained as
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2( Az7 _1)3(A27 +1)A28 - Azg(A30 + A31)
D2l L p o {(A262+1);/p«/(1+ DaMz)g]

112 (1+pam? 3.33
ReCfp:i[eZVDa( )(AM—DaAAS)] (333)

25 (A + Ay)
(A, —)M (1+ DaM 2)¥2[g (A, + A,,)

Ag + Py + Ay + Ay
M 3(1+ DaM 2)(A41 - A4z)

3.4  Expressions for Non-dimensional Temperature and

Nusselt Number

3.4.1 Non-dimensional temperature
It may be noted that, when the thermal field is fully developed,dT /0X =constant=
dT, /dX when the channel walls are subjected to constant heat flux. Peclet number

appearing in Egs. (3.16) and (3.19) can be absorbed by defining
X*=X/Pe (3.34)

Egs. (3.16) and (3.19) take the form,

00, 0°0, (3.35)
"oXT oY?
y %6 _ 19, (3.36)
PoXT n oY?

Noting that the derivatives, (06, /0X™) and (00, /oX™) are constant, Egs. (3.35) and

(3.36) can be rewritten as,
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d%0, (337)

U, A= vE
4% (3.38)
Up //L:i dYZp
n

where, the constant A is used to denote,

A=(00,10X")=(06,10X")=(do"/dX") (3.39)

In Eq. (3.39), &" is the non-dimensional bulk mean temperature denoted by

(aH/k,)

R - (3.40)

and defined as,

1%

2 2 0
2 [u,6,dv+ [ U, 6 dY
-1 _ b
g L L7 (3.41)
1,7

2 2 0
2| [ udv+ [ Uy
;l

-1 7p
2 272
Therefore
17 (3.42)
2 2 0
0u-0"=2 [ U, (0,-0,)dY+ [ U, (6,-6,)dY
e L7
2 2 2

The constant A(=06; /0X™ =06, /0X"=d@#" /dX™) can be evaluated by making

energy balance on an element.
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pC, Hu,(dT,/dx)=2q (3.43)

Introducing the non-dimensional bulk mean temperature, 6", defined by Eq.

(3.39), it can be readily shown that,

Pe(dg” /dX)=1=2=Pe(80; | 0X")=Pe(00,/0X") (3.44)

Using Egs. (3.27) and (3.28) for Uy and U, and the boundary conditions given by
Egs. (3.23),(3.25) and (3.26) , energy Egs. (3.37) and (3.38) have been solved. Since the
boundary condition is of Neumann type, Egs. (3.23) and (3.26) have been solved in
terms of temperature difference between the fluid and one of the walls. Let the

temperature at wall 1 (at Y =—H /2) be T, and at wall 2 (at Y =H/2) beT,,. The
corresponding non-dimensional wall temperatures, 6,, and 6,, are now expressed as,

0= Ty —-T.) @HIK,); 6,, =(T,,—-T,)/ (aH /k;) (3.45)

The solutions to Egs. (3.37) and (3.38), for &,(Y) and g,(Y) containg,,. The

temperature profiles in the fluid and porous regions are expressed relative to 6, , .

Porous Region:
Solving Eq. (3.38) along with the boundary conditions given by Egs. (3.23) and (3.25),

the temperature in the porous region is obtained as
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(2y-1) | ¢ 2 .
0. 0. ()= ni e—% /a(h—DaM ) (3.46)
" P 2( Aze _1)2 A27

£ _(1+DaM?2) —|-£_(1+DamM?)
2Da(A26 —l)Ui [(ezv,loa 1+DaM _e VDa ]Azepr

-1 £ (1+Dam?

AU, (A=A )e 2 Vo oy ) 2Da(A, 1) + Agy/Da)

<" @+ DaM?) s DaA, —1) 02 8 (A~ Aur)

(2Y -1)

e TN (6 B[ ME s 200 2Y ) ]]

(2vy-1) [ ¢ 2
—(1+DaM “)
+H(A, — A )ee 2 V0 A+2Y)A+2Y —7,))pg

A D (A —AR)e B0 0 av)(A, + Ay)

Fluid Region:
Similarly, solving Eq. (3.37) along with the boundary conditions given by Egs. (3.25)

and (3.26), the temperature in the fluid region is obtained as

- (3.47)

0,-0;()= T
8[1+e : ]

_8Ui (eMY _e%(yp—l) +eM(yp+Y—1) _e'\;(ypww-l)j

M 2
2
477Ui\/5(ew +eM(7p+Y—1)) 24/ Da(AZz 1)\/1+W (l+ A27)}/p\/2
+(1+ DaM*)
X< —

(A, -1+ DaM?)**¢

T +eMA v
2 | p, —(e" +eM o 1))Wp(AM —Ay)
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Where A; , i = 26, 27, .....53 are constants given in appendix.

3.4.2 Nusselt numbers

The heat transfer coefficient hy, at the plate y=—H /2adjacent to the porous medium is
defined by

dT, (3.48)
—Ke d_y |y: ~ %: he (T —Ty)

Upon non-dimensionalizing {using Eq. (3.12)}, the Nusselt number at Y =-1/2 , Nug”

IS given by
UM = h,(2H) _ 2 * (3.49)
P kf gwl_e

Therefore using Eq. (3.42), Nug” in Eq. (3.49) is obtained. Because of lengthy

expression, only numerical results are given in plots.

3.5 Results and Discussion

It has been assumed that ¢ = us /uerr = 1 and n = ki ket = 1. Here, when y, = 0, the
channel is referred to as clear fluid channel. Similarly, when y, = 1.0, the channel is
referred to as channel fully filled with the porous medium. When the porous fraction is 0

<9, < 1.0, the channel is treated as partially filled with the porous material.
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3.5.1 Limiting Cases

Clear Fluid Channel:
By setting y, = 0, in Eq. (3.27), and by using Egs. (3.29) and (3.30) , Us for the clear

fluid reduces to,

eM(7Yj {U, @+e™)m? {eM(YZJ —eW jLeM[TYJ —1} pg}

(1+e")M?

U, (Y)= (3.50)

when the porous fraction y, =0, in Eq. (3.47), 6,,—6,(Y) for the clear fluid reduces to,

M

- M(1+ 4Y)
8e2 +8e?

e-MY{ +(e" +eM) [ M 2(1—4\(2)—8]}
ewl _Hf (Y) =

8M|[2+e" (M -2)+M | (3.51)

Further, when y, = 0, substituting M = 0 in Egs. (3.50) and (3.51), the expressions reduce
to the equations given in chapter 2, § 2.5, which are available in Shah and London [18],

p.153 and p.157.

channel fully filled with the porous material:

Similarly, for the porous fraction y, = 1.0 analytical expressions for U , 6,,—6 (Y) are

given by Egs. (3.28) and (3.46), which reduce respectively,
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z 2 @a2v) [z X 3.52
U p(Y) _ e—Y ’E(“DaM ) (e L zY /a(h—DaM ) _1] ( )

@2y) [z 2
—(1+DaM*)
Ui[1+e 2 Voa M ](1+ DaM ?)
« /[eVDa(l+DaM ) —1} (1+ DaM?)
+Da(e /a(hDaMz) —1J[GY /a(uoamz) _1] Pg

—0,(v)=¢ 1o 59

1]e

= = (1+Dam?)
2y [£-(+Dam?) | 2102
A3 —8e Da
£ 2 1
pattPMI 2 3 [ 1+pam?)
xq Age (4Y°-1)+Da _ge2\pa

_+A32eY (a0 (M 2e(1-4Y?) —8) |

£_(1+Dam?)
/8A33[eVDal o —1]\/1+ DaM’

Substituting M = 0 in Egs. (3.52) and (3.53), the expressions reduce to the equations

given in Haji-Sheikh and Vafai [59] and chapter 2, § 2.5. In the presence of the
magnetic field, for y, =0, the present results are agreeing with the results in Chorlton
[180], for y, =1.0, the present results are compared with the coordinate system in the

paper published by Raju et al. [115]. It is found to be good agreement. Variation of

velocity profiles with different Darcy numbers, Da, for channels fully filled with porous

medium (y, =1.0) are shown in Fig. 3.2. For large values of Da, the porous material
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filled channel approaches the behavior of clear fluid channel, a feature that has been

reported in literature Bhargavi, Satyamurty and Raja Sekhar[45].
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U
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Fig. 3.2: Variation of velocity profiles for different Darcy numbers, Da and for M = 2.0 for Vo= 1.0.

3.5.2 Hydrodynamics

Velocity Profiles:

Non-dimensional velocity profiles for different Hartmann numbers are M =1, 2, 5 and
10 for a typical Darcy number Da =0.005 and, for porous layer thickness, y, =0, 0.2, 0.4,
0.6, 0.8 and 1.0, as shown in Figs. 3.3(a) to 3.3(f). The flow behavior for the present
geometry in the absence of magnetic field parameter (M = 0) has already been discussed
in chapter 2, § 2.5. For clear fluid channel y, = 0, the maximum velocity decreases as
Hartmann number M increases at the centre of the channel {Chorlton [180], Baoku et al.
[123]}. This is due to the magnetic field parameter (M), which depicts the ratio of
magnetic induction to the viscous force. Hence, an increase in the magnetic field
parameter reduces the viscosity of the fluid. It means magnetic field is limited to
retardation. Velocity in the porous region increases, as Hartmann number M increases

and velocity in the fluid region decreases as Hartmann number M, increases for all porous
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fractions 0 < y, < 1.0. The maximum velocity is occurs in the fluid region at Y = 0. As
Hartmann number M increases, the porous channel behaves like a clear fluid channel for
all Darcy numbers. It means presence of the magnetic field parameter is negligible in the
fully filled porous region with such high Hartmann number. This fact can be observed

from the profiles of Fig. 3.3(f).

Skin friction Coefficient:

ReCs, has been evaluated using Egs. (3.28), (3.29), (3.30) and (3.32). Variation of the
product ReCs, with y, is shown in Fig. 3.4 for different Hartmann numbers, M =1, 2, 5
and 10. As Hartmann number, M increases, ReCy, increases for all porous fractions, .

In the absence of the magnetic parameter (M =0), ReC,, — 6 as mentioned in Chapter 2,

§2.5.
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Fig. 3.4: Variation of ReCy, with porous fraction 7, at different values Hartmann number.

3.5.3 Thermal Field
Non-dimensional temperature profiles in excess of the wall temperature, (6,,-6,),

(6,,—6,) are shown in Figs. 3.5(a) to 3.5(f) for different Hartmann numbers, M = 1,2,5

and 10, for Da = 0.005 and for porous layer thickness, y, = 0, 0.2, 0.4, 0.6, 0.8 and 1.0.
The flow behavior in the absence of magnetic field parameter (M = 0) is already
discussed in chapter 2, § 2.5. From Figs. 3.5(b) to 3.5(e), the effect of porous fraction, y,

on (6,-0,), (6,,—0;) can be assessed in the presence of magnetic parameter
Hartmann number, M. The maximum value in (6,, —8) occurs closer to the wall at Y =

0. It may also be noticed that (6,,—6) is lower for higher Hartmann number, M for all

porous fraction, 0< y, <1.0. In contrast with the profiles shown in Figs. 3.5(b) to 3.5(e),
the profiles shown in Figs. 3.5(a) and 3.5(f) for y, = 0 and 1.0 are symmetric about Y = 0.
The profiles in Fig. 3.5(a) are very close to the profiles in Fig. 3.5(f) for large Hartmann

number, say M = 10. For the profile in Fig. 3.5(f) where y, =1.0 for a fully porous
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channel, we observe that the effect of magnetic field parameter is not felt much. This

behavior is same for all Darcy numbers.

Fully Developed Nusselt Numbers:

Variation of fully developed Nusselt number on the porous side, (i.e., at Y =— 1/2, the
lower plate which is adjacent to the porous region), Nug’I , with the porous fraction y, for
different Hartmann numbers, M = 1, 2, 5 and 10 and for Da = 0.005 is shown in Fig. 3.6.
As Hartmann number increases, the Nusselt number also increases for all porous
fractions and for all Darcy numbers. Also, the minimum value of Nu’r‘)’I at 0.55<y,<0.6
for all Hartmann numbers, which is also the same for M = 0 given in chapter 2, § 2.5.

The net change, ANu" , is defined relative to the fully developed Nusselt number

value in the porous region in the absence of magnetic field (M = 0),

ANU™ =2 [ Nuy' —Nup'™ | (3.54)

p

Variation of ANu" with M for different porous fractions y,=0.2 and y, =0.8

for Da = 0.005 is shown in Fig. 3.7. As Hartmann number, M increases ANu™ is also

increases for y, =0.2 and y, =0.8. Also, it can be observe that as the porous fraction,

7p, increases, ANu" decreases for all Hartmann numbers. This implies that as porous

fraction increases, the effect of magnetic field decreases.
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Fig. 3.6: Variation of Nu'F\,’I with porous fraction 7, at different values of Hartmann number, M for
Darcy number, Da=0.005.
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Fig. 3.7: Variation of ANu" for porous fractions Vo= 0.2 and Vo= 0.8 with Hartmann number, M for
Darcy number, Da=0.005.

3.6 Conclusions

The effects of forced convection and magnetic field for a fully developed flow of
Newtonian fluid in a parallel plate channel partially filled with porous material have been
studied. Analytical solution has been obtained and closed form expressions have been

derived for velocity, skin friction coefficient and temperature profiles in the porous and
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fluid regions and the Nusselt number has also been obtained for the porous region. The
effects of relevant parameters such as Darcy number, Da, Hartmann number, M, and the
porous fraction, y, have been studied graphically. It has been shown that analytical
expressions yield standard values for the Hartmann number, M = 0 {absence of the

magnetic field)} for all porous fractions y, , 0 <y, <1.0 {Chapter 2, § 2.5}.

Some important conclusions are

> Nusselt number and the net change in the Nusselt number increase with
Hartmann number, M for all porous fractions, y,. Hence the effect of the
magnetic field can be considered to enhance the heat transfer in the channels

partially filled with porous medium.

» Further, it is also observed that Nusselt number and the net change in the
Nusselt number decrease with porous fraction, y, and then increase with
porous fraction, y,. Hence, optimal value for the porous fraction to decrease

the Nusselt number in the presence of magnetic field is around 0.6.
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Chapter 4
Analytical Investigation of Laminar Forced Convection
with Viscous Dissipation in Parallel Plate Channels
Partially Filled with a Porous Material at the

Conduction Limit

4.1 Introduction

A general review of the dissipation models in porous media is available in Nield and
Bejan [48], but none of those models deal with the effect of viscous dissipation at the
conduction limit. Viscous dissipation effects are to be included in the energy equation
when Br (Characterized by viscous dissipation) is large, for a flow through a porous
medium. Though the problem of flow in porous media with dissipation have been studied
by several researchers{ Nield and Bejan [48], Murthy [143 and 181], Hooman and Gorji-
Bandpy [151], Hooman, Pourshaghaghy and Ejlali [154] and Ramjee and Satyamurty
[182] etc.}, the effect of viscous dissipation at conduction limit (neglecting the
convective terms in the energy equation and hence, it is a balance of conduction and
dissipation terms) has not received sufficient attention. Since the conduction limit (i.e.,

neglecting convection terms in the energy equation), since 07/0x = 0T/0x = 0, the

condition

x | T, - T

T-T,
g ( - }: 0 is not violated for say 7,.,= T, for constant flux boundary
ref

ox \T,-T,

T-T,
condition and 7,,,= T, for constant wall boundary condition. Also, i{—”’] =0
b
also implies no further net heat transfer to the fluid. There is heat transfer after the
Nusselt number reached the fully developed value, until when 7'= T}, = T, which occurs
at the same X'. Thus the difference between the fully developed Nusselt number and the

limiting Nusselt number is that, heat transfer continues to take place after attaining the
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fully developed value, whereas, after the limiting value is reached, the net heat transfer is
Zero.

In view of the above, in this chapter, a laminar forced convection in parallel plate
channels partially filled with a porous medium has been investigated. Three dissipation
models in the energy equation at the conduction limit, namely, the Darcy model due to
Bejan [49] , form drag model due to Nield [140] and the clear fluid compatible model
due to Al-Hadhrami, Elliott and Ingham [135 and 136] have been considered. Further, it
is assumed that the flow field is fully developed. Two types of boundary conditions are
considered. They are (i) constant wall heat flux and (ii) constant wall temperature. Based
on the analysis of chapter 2, for fluid flow, analytical solutions have been obtained for
energy equations. Further expressions for temperature, bulk mean temperature and
Nusselt number at the conduction limit have been derived for both the cases of the
boundary conditions. The effect of important relevant parameters on them, have been

investigated.

4.2 Mathematical Formulation

The physical model and the coordinate system, that of a channel formed by parallel
plates, H distance apart, partially filled with porous material shown in Fig. 4.1. Two
porous materials, each of thickness /,/2, attached to both the walls. x is the axial distance

and yis normal to flow direction measured from center of the channel. As per the
coordinate system the walls are at y=+H/H /2. The fluid enters the channel at inlet

temperature 7,. It has been assumed that the parallel plates of the channel have been
subjected to uniform heat flux, ¢ or constant wall temperature, 7=T,,. The flow in the

fluid region is assumed to be governed by Poiseuille description, and by Brinkman

88


sharath
Highlight


extended non-Darcy flow in the porous region. The problem has been studied on the
assumptions, that the flow is steady, incompressible and fully developed. The fluid and
the porous matrix are in local thermal equilibrium. The porous medium is homogeneous

and isotropic and the fluid properties are assumed to be constant.

(a) Dimensional (b) Non Dimensional
Fig. 4.1: Physical Model and the Coordinate System.

Governing Equations:

Momentum Equation in Fluid Region :

Cu, 1 dp (4.
dy*  p, dx

In Eq. (4.1), p is the pressure, Ky is the dynamic viscosity and uy is the velocity in the
fluid region.

Energy Equation in the Conduction Limit:

The governing equation in the conduction limit is obtained by neglecting the convective
term in the energy equation and hence, it is a balance of conduction and dissipation

terms.
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d*T du, Y (4.2)
ky—— | =L =0
In Eq. (4.2), T, is the temperature in fluid region, &, is the thermal conductivity in fluid

region.

Momentum Equation in Porous Region :

d2 (4.3)
up — _£d_p+ K M_u;
Uy dx Uy dy
Energy Equations in the Conduction Limit:
d’T, 4.4)
ky——+®, =0
(4.5)

kg_[/‘ :(1 - (P) ks +@ k f

In Eq. (4.5), ¢ is the porosity and £; is the thermal conductivity of the solid in the porous

matrix.
In Eq. (4.4), @, is dissipation models, 1) the Darcy model due to Bejan [49], 2) form
drag model due to Nield [140] and 3) the clear fluid compatible model due to Al-

Hadhrami et al. [135 and 136].

Darcy model:
: 4.6
D, = 'LI;—fupz (4.6)
Form drag model:
Uy dzup 4.7)
@, = ?up — Hylh, W

Clear fluid compatible model:
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, du Y (4.8)
@, Z:U_fu 2"'/{/( upj

Boundary and Interfacial Conditions:

dT
u,=0, -k, —L =g at y=-H/2 {subjected to constant wall heat flux}
(4.9)

u,=0, T'=T, at y=-H/2 {subjected to constant wall temperature}

du, du, , (4.10)
u,=u,=u, , f,—-=u —- : - 4r
oW 7 gy Hy dy at interface V )

H ! 4.11)

Tf :Tp =T, kf (de /dy):kf—?ff(dTp /dy) at interface y:—?+5"
d dT 4.12
dy dy

It may be noted that the boundary conditions given by Egs. (4.9) to (4.12) for Fig.
4.1 are written for the half channel, making use of the symmetry. These interface
conditions have been taken from Mahmoudi, Karimi and Mazaheri [183] and Mahmoudi

and Karimi [184].

Non-dimensionalization:
Governing equations {Eqgs. (4.1) to (4.4)} are rendered non-dimensional by introducing

the following non-dimensional variables.

P

ref °

X=x/H, Y=y/H, U,=u,/u,,, U=ulu,,U,=ulu, P=p/pu

ref 2
0,=T,-T)/(qH/k,),0,=(T,~T,)/(qH /k,) { here 6,and 6, are subjected @13

to constant wall heat flux}
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0,=T,-T)/(T,-T,),0,=(T,-T,)/(T,-T,) { here 6,and 6, are subjected

to constant wall temperature}

In Eq. (4.13), X and Y are non-dimensional coordinates. U and P are non-dimensional

velocity and pressure. The subscripts f'and p refer to fluid and porous regions. 6,{ 6, in
the fluid region and 6, in the porous region}, is non-dimensional temperature. us is

average velocity through the channel. u,.r is related to u,and u , by,

2
7 I u,dy + HJ udy |=u,, (4.14)

In addition, the non-dimensional porous layer thickness y,, which is referred to as porous

fraction is defined by,

v,=l,/H (4.15)
On introducing non-dimensional variables given in Eq. (4.13), the governing

equations for conservation of momentum and energy equation applicable in the fluid

{Egs. (4.1) and (4.2) } and porous {Egs. (4.3) and (4.4) } regions in non-dimensional

form become,

Non dimensional governing equations:

Fluid region:
P 1 dsz (4.16)
0= ———+——
dX Re dY
d*e. du, Y (4.17)
‘2f+Br L1 =0
dY dYy
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In Eq. (4.16) and Eq. (4.17), Re , the Reynolds number and Br, The Brinkman number are

defined by
H (4.18)
Re=Pr "
Hy
1 2 I
Br="L"7_ (here Bris subjected to constant wall heat flux}
1 (4.19)
o,
Br=—"2"%__ (here Br is subjected to constant wall temperature}
k (T.-T,)
~/
Porous region:
d’u (4.20)
U, = —ReDad—P+& -
i dX ¢ dY
In Eq. (4.20), Da, the Darcy number and ¢ are defined as,
Da=K/H? gnd (4.21)
e=p, |ty (4.22)
d’o (4.23)
Y; +¥,=0
In Eq. (4.23), ', is non-dimensional dissipation model is given by,
Darcy model:
4.24
¥ = nBr Upz ( )
Da
Form drag model:
Y BrU v, 1 dzUp (4.25)
= 14 —_—
= Da e ar

Clear fluid compatible model :
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U? (du, Y (4.26)
Y, =nBr| —+—+ B
Da dy

In Egs. (4.24) to (4.26),

n=k 'k, (4.27)

Br > 0 represents, the fluid is getting cooled and Br < 0 represents the fluid is getting

heated.
Non-dimensional Boundary Conditions:

The boundary and interfacial conditions given by, Egs. (4.9) to (4.12) take the following

non-dimensional form {using Eq.(4.13)}

do
U,= O,( L ] =-n at Y =-1/2 {subjected to constant wall heat flux}

“ (4.28)
v,=0, 6,=0 at Y=-1/2 {subjected to constant wall temperature}
dU  dU 4.29
u,=U,=U, T8 % attheinterface ¥ =—itl2 (4.29)
i & dY dY 2 2
o, (do (4.30)
0,=6,=0, —L =] —2Z| atinterface Y:—l+7/_l’
! ay ) \ dy 2 2
dU do 4.31
—L-0,—L=0 at Y=0 (4.31)
dy dy

Analytical expressions for velocity in fluid and porous regions are available in

chapter 2, § 2.3.
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4.3 Non-dimensional Limiting Temperature Profiles and

Nusselt Number

4.3.1 Case(i): Subjected to constant wall heat flux

4.3.1.1 Limiting temperature profiles

The limiting temperature profiles have been taken using U,(Y) and U,(Y) taken from
chapter 2, § 2.3 and boundary conditions given by Egs. (4.28), (4.30) and (4.31). Since
the boundary condition is of Neumann type, Egs. (4.28) and (4.31) have been solved in
terms of temperature difference between the fluid and one of the walls. Let the

temperature at wall 1 (at Y=—H/2) be T, and at wall 2 (at Y =H/2) beT,,. The
corresponding non-dimensional wall temperatures, €, and €, , are now expressed as,

6, =(T,

wl

~T,)/(qH /k,); 0, =(T,,~T,)/ (qH | k;) (4.32)

The solutions to Eq. (4.17) and Eq. (4.23) for three dissipation models given in Eq.(4.24),
(4.25) and (4.26), for 6,(Y) and 6, (Y) contain 6,,. The limiting temperature profiles in
the fluid and porous regions are expressed relative to 6,,. Since €,(Y) and 6,(Y) have
the function of Brinkman number Br. Therefore limiting temperature profiles expressed

as, [‘91_9,4@(}7)]/ Br and [‘91—9,7,@(1/)]/ Br for three dissipation models are

obtained at the conduction limit. This above procedure is adopted from a study on

convective heat and mass transfer by Kays et al. [185].
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Darcy model:
Solving Egs. (4.17) and (4.23) with boundary conditions given by Egs. (4.28), (4.30) and

(431) for Y, —77—BrU ?, the expressions of [le -0

-Tou, ) cn(¥) ]/ Brand

w

[9 =0, Y )] / Br are as follows

34,7¢(-16Y* + (7, - 1)*)
24[(240513/2 ~6vDas(y, ~1)?) s + AN (y, -1 +12Daz A T

le _9/,CL1(Y) _
Br 3y, |:A542g(}/p -1’ —;(—4Da2A57 +8Da"* Ay, — Ay, +~Da Ay Ay, —DagAm):I (4.33)

P

[(24Da3/2 ~6vDac(y, -1 ) A + Az (y, ~1) +12Dae A, T
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ewl _ep.CLl(Y) _ _377

Br

3 7(1+2y)\[z
Da
——e Ay

em\/g [576Da3A63 +12\/DaA64]

+576Da” A —4Da’ 4,
) 5 -2
—A54‘(1+2Y)£(7,,—1)3A62‘+le ] y‘/;(1+2Y3 Ay, =1 +Ay +VDad,
7 +27), -2
! ve' Mol 12Da(1420)a(y, -1y 4, | || ~Dagd,

-144Dd’ 4,

as2v) [&

e masan, —1—2)’){2x/DaA72 +e“*"*’”\/; AnJ

(2+4Y

'+37,) [« P
2= (142Y+7,),|—
2 ‘[;]—Ze ‘/;(9+g+2Y(9+5)—8;/p)

+e(]+m‘]; [l +ezy”‘[;J(—7 +&)(1+2Y-7,)

3+2y) [&
e 2 Vge

2(1427),[ -2 27,5

) y,(1+¢)| e y‘/;+ey‘[;
(3+6)+2;/,,)Jz u+zy+4yp)\/z P

+e 2 Da +e 2 Da

(+&)y, -1 ypey”‘!; [He‘““”\/; ]

16(1+2Y) [e(MM" )J; +e

o

+4Da

(142Y+27,) [
2 Da

-8y,

+Dag H1+2V)A(1+ )y, =3y, ~1-&(7, _l)z)e(my;‘j; [Hem\[;j

"N (142Y =7, X20+4Y)y, -y, ~1-e(1=4(1+Y)y,")
4
) 5 = 2\ Da
& m\]; _4(1+zy)[e’”\[;_1]—(l+s)(2+4Y—7p) ¢ 3, \F
_o2im

~4Da**\e(1+7,)

N
3 \/Z w2 [ 7 JZ 3, \/Z es(uzyw)\/;
2N Da _ 2 \Da 2\ Da 2\Da |_
+1+e)y,e 4y, e e +e Grorzr,) \F
+e 2

(2400 ~6VDuasty, ~17) A + ANz~ +12D0N 4, |

Form drag model Dissipation model:

(4.34)

Solving Egs. (4.17) and (4.23) with boundary conditions given by Egs. (4.28), (4.30) and

(4.31) for ‘112=nBrUp[

[le _gp,CLz (Y):I/Bl” are a

u, 1dU
D—;-% dep}’ the expressions of [Gwl—@_f,az(Y)]/Brand

s follows
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34,7(-16Y7 +(y, - 1))
—0,c(Y) 4] (2400 ~6Daz(y, =) s + A (7, ~1) +12Da\/§A56}2 (4.35)
br : N 3 A, -Aue(y, -1y, —6Dad,, |
[(24Da3/2 ~6v/Daz(y, -1 )ASS +A,Ne(y, -1) +12Dave A%T

6,

wl

M (1+!

zy)\/z
e @ VP ((142Y) 4, ~6Da(1+2Y) Ay 4y,
(+2Y+7,) [
—2(1+2Y)e 2 J;
e(1+zy)\/g
)
(142Y+27,) [&
+e 2 \/g

(1+2Y)\/Z ,\/Z
—(1+2Y), in +}/p e Da +eVl Da

0,,~0, o, (¥) |73¢
e +6Da

B -
' (l—e%\/g]

(1+2Y) | &

(1+2Y)e 2 Vo

r | £ 37, [¢
+4~/Dag(y,—1) -7, {eg\/;-kez\/;J

(1+27),]-= _
e ‘/;(1+2Y)A76 +8Dad,,| T2V =7,

(4.36)

P

2
7, [(24Da3/2 ~6vDae(y, - 1)*) A+ ANe(y, ~ 1) + 12Da\/ZA5J

Clear fluid compatible model:

Solving Egs. (4.17) and (4.23) with boundary conditions given by Egs. (4.28), (4.30) and

u? (du,Y
(4.31) for ¥, = nBr[ Dpa -{ dej J Then the expressions of [le —Qf,w(Y)]/Br and

[49 — HP,CB(Y)] / Br are as follows

w
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(o8]

9w1 _ef,CL3 (Y) _ B
Br

+12¢

/

2 i;/p
+e \/; (8—1)82(}/p —1)2}/1,2 - Da53/2(7/p -1y, 4 |

[ A2e(-16Y" +(r, D))~ 44 en(y, 1)y,

= e\%” (4D 4,, +8Da”* e Ay, ~ Daz 4, |

36—(1+2Y) é
le - ‘gp,az (Y) _ n
Br

—(l+2Y)€(H2Y)\{;AM +

+4Dd’

4D e (y, 1)

2
4[(241)613/2 ~6\Das(y, -1 ) dg + A \e (7, ~1) +12Da\/EA56J

emm\[gAﬁz(S%Das —48Da3’2\/2A82)

3e"/g(1+2Y) +12\/Ee2(””)\[g(1+2Y)A83AM

_'-e(nzy)‘/g 576[)&15/2\/;14551485
+12Dae(y, 1y 4, —144Dd’ e 4,

[e‘{gyp (4Da21438 +8Da’ /2\/;1439 _Dagsz) + _\/E‘C'M(yp -y, PA91]

(121),[ 2 (421, |-=
2 Dae J;(1+2Y),,(—y,, +142Y) 4, +(142Y )y, +1+2Y)e ‘/;A%

Qv [7 Qe [7 =
— —_— = (142 W
16(1+2Y)[e z J;—e z ‘[;]—%l Y”‘[;(9+18Y—8yp)

_7e(l+2Y)Jg (1+2Y_}/ )_76(“2“27'))‘]%
P

‘/? (142Y427,) ‘/?

Da +e 2 Da

(+67427,) JT (12¥+47,) JT
te 2 Vmie 2

+2. +~”)i (+2)i
—4(1+2Y)[e“ g Y‘[;J+(2+4Y—yp)e DY

3(14+2Y)
2 e :
—8}/,)

-7,

el

(MYWP)JE
- 2 ye 2

& &
er,,\/; +e(2+4Y+r,,)J;J

(2400 -6ty 17 ) A + Atz ) +1200z 8, |

2<1+2y>‘jE 27,\/Z
{e Dy N

(24Y43y,) [=

E2r) )Jz 3(14+2Y+y, )JE Crerr,) )JE
e 2 Da __ e Da __ e 2 Da

(142Y+37,) JT
+e 2 I

(2+44Y+y,)

~4y,

‘[;(—2+4Y +7,)

+Dag| HIF2NAE1+Y)y, _37,,2 —l){eﬂm)‘j; +e(1+zm,,,> J;]

L2067y, ~(y, =17, +1)’

&
H2Y+y, ) [—
7 Da

42412y, 6, )¢

Where 4;,1=54, 55,

7, [(240@”2 6V Dac(y, 1) s+ A7, -1 +12Da«/EASGT

95 are constants given in appendix.
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4.3.1.2 Limiting Nusselt number

The present investigation is concerned with determining optimum configuration for
Nusselt number augmentation. It is straightforward, though cumbersome, to apply the
procedure available in chapter 2, to obtain the expressions for the Nusselt numbers. In

general, 4, the heat transfer coefficient at a wall is evaluated from the defining equation,

4.
&, 9T w1 (4.39)

where, &, is the thermal conductivity of the fluid. 7 is the wall temperature and 7, is

the bulk mean temperature. On non-dimensionalizing, the Nusselt number Nu, based on
the hydraulic diameter, 2H.

Let T} is bulk mean temperature, is defined by

_H+lp
2 2 0
2 J. u, T, dy+ I u, T, dy
_H _H+ll
2 2

2

T, = A (4.40)
2 2 0
2 u dy+ u,dy
__L P _HI . J
2 ERE)

0" is the non-dimensional bulk mean temperature denoted by

g LT, (4.41)

(qH/kf)

and defined as (Using Egs. (4.40), (4.41) and (4.13) )
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1.7,
* 0

2 2
2 _lep 0,dv+ [ U, 6, ady

-1 7,

_ 2 2 2
o= ERA (4.42)
2 2 0
2| [ udr+ [ Udy
-1 -1 7p

2 2 2

Therefore

-1.7,
17 .

2 2
0,-0"=2 [ U, (0,-0)dr+ [ U, (0,-0,)d¥ (4.43)
-1

,1}/71}

2 2 2
Since

-1.7,

2 2 0
2 Udy+ [ U,dy|=1
Il r I s (4.44)

-1 7,

2 2 2

The heat transfer coefficient 4, , at the plate ¥ = —H /2 adjacent to the porous medium is

defined by

darT, (4.45)
_keﬁ" g ‘y: - %: hp(Twl -1,

Upon non-dimensionalizing (using Eq. (4.13)), The Nusselt number at ¥ =—1 /2, Nuy, c1
is given by

ChQH) 2 (4.46)

Nu -
r ko 0,-0

The expressions for Nusselt number were arrived at with product of Brinkman

number Br, for different dissipation models using Eq. (4.46) and denoted as BrNu,, -, (
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using Egs. (4.33),(4.34) and (4.43)), BrNu,, ,, (using Egs. (4.35),(4.36) and (4.43) ) and

BrNu, ., ;(using Egs. (4.37),(4.38) and (4.43)) . The numerical results of Nusselt number

with product of Brinkman Br, for different dissipation models are given graphically.

Net change in the Nusselt number:
The net change, ANu for the three dissipation models is defined, in comparison with

fully developed clear fluid channel value, as follows

ANu, = 2| Br Nu, o, =Br Nu, ¢, |, | (4.47)
Darcy model:
4.48
ANu, = 2[31’ Nu, o, —(—3—5)} (1:48)
’ 12
Form drag model:
4.49
ANu, = 2[31/ Nu, ¢, —(—f—;ﬂ (+:49)

Clear fluid compatible model.:

4.50
ANu, = Z{Br Nu, ;s —(—f—;ﬂ (4.50)

4.3.2 Case(ii): Subjected to constant wall temperature

4.3.2.1 Non-dimensional limiting temperature profiles

The limiting temperature profiles are obtained using U, (Y) and U (Y) taken from
chapter 2, § 2.3 and the boundary conditions given by Egs. (4.28), (4.30) and (4.31). The
solutions to Eq. (4.17) and Eq. (4.23) for three dissipation models are supplied by Egs.

102



(4.24) to (4.26) for &,(Y) and 6,(Y). Since &,(Y) and 6 (Y) are functions of
Brinkman number Br, it leads to limiting temperature profiles expressed, 6, ., (Y)/Br

and 6, ., (Y)/ Br for three dissipation models are obtained.

Darcy model:

Solving Egs. (4.17) and (4.23) with boundary conditions given by Egs. (4.28), (4.30) and

(4.31) for V¥, =77D—BrUp2 . Then the expressions of 6, ,(Y)/Brand 6,.,(Y)/Br
a
become
0., 1 4 (4.51)
=11 (=D 16r) p, T A+ Ay + Ay
ac| e -
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—(2Y+y, )JZ
917,CL1(Y) _ e ’ P

u égDa(en\/g

2
_IJ 67/1)

2UDa

A
+‘4101

S

+2|

2Da

1

2y, 1=
e ‘/;(1+2Y)(1+2Y—)/p))/p+Da ~,

Larey, £
e J;a+2Y)(1+2Y—yp)A»

Qrip )= @ridp)
—3(1+2Y){e iy 7 ‘/;}Am

- 4Y+3y, P
(1+4Y+2y, )‘/g [72 ,,N;
—}/p e +e

1 & 1 &
Loviay, - /7 Lirazy, +n £
e? Da _ o2 Da
Lavisy, < Lerasy, |5
» i3
22 Da + 62 Da

1 & 1 &
—(8Y+3y,+2),|— —(4Y+5y,),|—
+7,{e2 2 dmj

+y,

26 3o+ 7)

1 & £
7{62(2Y+2yp +1)\/; 3 e(1+2Y)\/; J

1 £ 1 &
—(+21r), [ £ —(2Y+yp+l)J: —(4Y+yp+2)J:
e —l] +8[e2 n—e e

3 & &
=(2Y+1),|— Yor|l—
22 \ Da _e’\IDa

(7,420~
B3 Y)\/;(1+2Y)(1+2Y—7/F)A103

+112e<"’””@(1+2Y>(A%+AW+A98)

104

Py

VoPy

&
(7, +2Y )\/;

e
(1+27)

+e(3 7 +2Y)\/g

(%H)JZ

e Da
(1427, +4Y)\/g

+e

2y, 4L
e J;(zyp—4Y—2)

(4.52)



Form drag Model:

Solving Egs. (4.17) and (4.23) with boundary conditions given by Egs. (4.28), (4.30) and

(4.31) for ¥,=nBrvU, U, 140,
or rU, | —+——

- Da ¢ dY’
0, c.,(Y)/ Br are as follows
O, (Y) Py 4
e e (1) - 16Y*) py, 4 e[ 24U, A, + Agp, |

Br 192 , e
gle -1

ep,CLZ ) ~ ef[%]\/g

Br k2
48 [eyp \/; - 1] &,

+6Da

4

48UiDa[{(l + 2Y)e(1+zyj\r (1 e’ o ]
(e )

8Da

—(4Y+;/I,+2)\/: —(2Y+Zyl,+1)\/:
2 Da 4 o2 Da

_e@ ]\F(l e \F](1+2Y)g(1+2Y—7,,)
|

(1+2Y &

2 J‘/; (1+2Y) [24U,~A104 + A105pgr:|

Yo
2

o))

YDy

J . Then the expressions of 6, .,(Y)/Brand

(4.53)

(4.54)

Clear fluid compatible model :

Solving Egs. (4.17) and (4.23) with boundary conditions given by Egs. (4.28), (4.30) and

U 2 dU 2 .
Da +( de J J Then the expressions of &, .,,(Y)/ Br and

(4.31) for ¥, nBr[

0, c:(Y)/ Br become

0, (V) 1 (4.55)

Br 192{((7"

_1)4 _16y4)pgr2 _8777/p [A106 + A + Ay + A ]}
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l(2+4Y+,vp) £
e’ \/;(1+2Y)(1+2Y—7p)/199

205 vy, [
(5—3)(1+2Y)(e \/;+e \/;J

1 £ 3 &
eE(2Y+y,,+l)\/; +eE(ZY+yI,+1)\/;
+4y
r - -
2U.Da Lovey +n ]2 Lavasy w2
2 r D 2 r D
2Da —¢ ‘e ‘
+
1 & &
25(4”7!)”)\/; . e(2+4y+yp )\/g
1 £ 1 &
—(8Y+y +4)\/: —(4Y+3y,+2)‘/:
_eZ ” Da +€2 ’ Da
(1+2Y+7,,)‘/g
+2e (3-2v(e-3)+&(y,-D+7,)
1 & 1 & 1 &
eE(6Y+,vp *3)\/; . ei(zhzyp +1)\/£ . eE(6Y+2,vp *3)\/;
- ; 31427 ;
30+42Y) [& 1(2Y+yp+1)\jz (142Y+y,) [&
8 —e 2 Da _82 Da —e 2 Da

1 £ 1 £
—(2Y+4y,+1)J: Larsay, +1)\/:
—e? " NDa 4 g2 » " NDa
(1+2Y)\/E (142Y+2y )\/Z
—(6‘—7)(6 bate "\ ba

+4,, -1+ 5)7p

(1+27), |-

9p,CL3(Y) _ e bap 2Da
- 2 2
Br yp\/DE —Da 2(1+2Y) Di %(4}’+yp+2)\/1)z
a a a
8Da| e -1 ¢y, e +4,,+2e
& 1 &
1 &
+2ei(4Y+3yp+2)‘/;
(1+2Y+7, )\/E
209+¢&)e "N Da

(1+27), |-
—e \/;(1+2Y)(1+2Y—}/I,)A112

(147, +2),| -2
&M avie i, 120,

1+ 2Y)[e(l+m\/g N e(1+2,vp +2Y)\/gJ
U2 & &
! Vor|— (247, +4Y),[—
+Da(l1+¢) (e \/; te ‘/;]

+2 7

214y, +27), |2

+e P2y, -4Y -2)

2
2 = + A4
1 e I ¢ b -1 (1+2Y)%[A‘°"’ o J
6 +A108 + A109

It is clear from Eqgs. (4.51) to (4.56) that 6., varies linearly with Br. Thus,
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0., =my,;(Y,Da)Br (4.57)

where m; is a slope for Darcy model, m; is a slope for form drag model and m; is a slope

for clear fluid compatible model.

4.3.2.2 Limiting Nusselt Numbers

The heat transfer coefficient 4, , at the plate ¥ = -H/2 adjacent to the porous medium is

defined by
dT (4.58)
—k,, —L —h (T, -T,
eff dy ‘y=7§ p( w b)
T is the wall temperature and 7, is the bulk mean temperature, is defined by
-H I,
) 0
2 J. u, T, dy+ I u, T, dy
-H -H 1
_ 2 RS
T, = A (4.59)
2 2 0
2 I u,dy+ I u,dy
-H -H I,
2 22

On non-dimensionalizing, the limiting Nusselt number based on the hydraulic diameter,

2H, it is given by

(de j

2 )4

h (2H) dY

_r _ E Y=—1/2 4.60
p,CL keﬁ 0 ( )

Nu

In Eq. (4.60), " is the non-dimensional bulk mean temperature defined by,

g LT, (4.61)
T -T

e w

and evaluated using,
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-1 7,
0

dY

[u,6,dar+ [ U, 0,
-1 -1 7,
9* _ 2 22
-7
2 0
[ var+ [ var
-1 -1.7,
2 272

(4.62)

The limiting Nusselt number expressions for three models are (using Egs. (4.52), (4.54),

(4.56) and (4.60))

Darcy model

1120 " 7”‘/;\/277/1113 (A +45)

Nz,tp‘CL1 = =

- 2
1/[!” D"—l]

2
Da{em/; - lj

3/2(7/ )

AlZ‘)

+1/35 Da({e' Da

4> (2Da3’2,4116 ~2DaNe 4, + Ay
7y [ 6Da3/2 _
16807 —SU[ ( 1][ Ao =4 Py

+3vDaA,, —2Da4,,,
—Da [e“/; - l]

»(80Dd*> 4, —4Da,,
+12Da™ Ay + Ay
-8Da*Je4,,, —4Da s A,

2
2147, -1 pg,2+A130—1/105Da[e“ b —1} £x

Tp | &
48U A, — 48UDc{e \/;—IJUAmpgr

+Da[e o ] Ve (A +Vedy ),
]

{ +1J(7 -1y

481]1'277‘4131 _48UiDa[ ]nAISZPgr
X 2 7 \/:
% [ 144Da™?| e VP —1 |y
+Da{e \F—l] \/Z [ }7 ’ Dy
+\/ZA134

108

pgr
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Form drag model:

Nup,CLZ =T7r

64\/277 Apss

E B
[6[!” ba +1}/§Al3é(yp —1y° /5A137J+ 6[?’ Da +1J ey, -1 /74y,

7p £
(6435 (7, = DAy + Ay) | Ay ) + [Z[e i + IJ(yp 1) (A + A/ 5Am]

A141 (A142 + Al43 + A144)

96Dae{l+§“ ]\E,]

145

+[e’ ')\/; + IJ(A F Ayt Ayt A+ Ay + AISO)

Clear fluid compatible model:

1 120\/;7714113 (AISI + AISZ)

Nup,CL3 =

2
Da(eyp\{; - IJ

e+37,) [ =
aU 2 2D613/2 (e 2 ba _ 1][6/’)‘]; - 1] A153

+3vDad, + Ass + A
2 2+37,)
= ) [ Ay, — Ay +3Dasy 4
1/ e"‘/;—l 1680p( e > Voo —1|| 48U Da| T T T »
+2DaJe A,

16Da*” 4, + 4 Dad,, - 4,
+Da| +12Da*’¢ey, 4, ~4DaNs A |p,’
+8Da*Je 4,

217, ~ 1) > + Ay +1/ 1050a[e”‘/; “1| ex

7 |e
—48U. 114, +48U,Da [e 2 E - 1}7/1168 Py

129 e 2
+Da{e‘2\/; - 1] \/E(Ame _\/;Am)pmz

2
—1/35{&;5[{”&—1} Jx

0
—48U A ; —48U.Da| ¢V —1 ndp,,
[e”"ﬂ + 1] (7, -1

+&"%(y, 1)

2
+Da[€yzp\/; - 1] \/;(Amg _\/;AIM)pgrz

Where 4;,1=96, 97, .....170 are constants given in appendix.
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4.4 Result and Discussion

In this section, temperature profiles and Nusselt number for flow through the channel
partially filled with porous material is discussed. We have assumed that & = uy /ey = 1
and n = k/ key= 1. When y, = 0, the channel referred to is clear fluid channel. Similarly,
when y, = 1.0, the channel referred to fully filled with the porous medium. When the
porous fraction is 0 < y, < 1.0, the channel is referred to as channel partially filled with
the porous material.

4.4.1 Case(i): Subjected to constant wall heat flux

4.4.1.1 Limiting Cases

yp = 0, for the clear fluid channel, substituting in Eqs. (4.33), (4.35) and (4.37), the

temperature profile reduces to

[6,,-0,,(Y)]/Br=12Y"-(3/4) (4.66)

Similarly, y, = 1.0 is substituted for the fully filled with the porous medium in Egs.
(4.34), (4.36) and (4.38), the temperature profiles for fully porous channel for three

dissipation models reach the following form

Darcy model:
2\/Z 2(1+21/)\/z (1+2y)\/Z (3+21/)\/z
e P +16e ba 70 e ba 4 e Da
2Da 3(1+2Y)\/Z G+27) | &
—<1+zy>\/z e Da y o 2 NDa 2(1+Y)JZ
e Da _ +e Da 77
s+27) [= s+67) [=
+e 2 Da +e 2 Da
2(1+Y)\/E (1+2Y)\/E (3+2Y)JE
+ 4e” Ve e Ve o T NDe |(L144Y%)e (4.67)
awl _Hp,CLl(Y) .
- 2
Br 8DaA,,
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Form drag model:

e_Y\/; (1+e\/;] —8Da Y\/z \E n
+e VP (1+e Da ](—1+4Y2)5
0 1 _ep,CLZ(Y) _

Br 8DaA,,’

(4.68)

Clear fluid compatible model.:

) o (3+2Y) {i
& 2 Da 2 Da
1662(1”/)158 e +e
(5+27),| -5 G+oy) | &
+e Da +e 2 Da
&

0 = 1ar) )£ 4 £ + £
e bl (14 ay?)ee ”J;A%um —[e“ My ”)‘/;J(—Hs) n (4.69)

2\/Z 2(1427), -5
+| e VP te ba \(1+¢)

ewl B 6p,CL3(Y) _
Br 8Dad,,’

4.4.1.2 Thermal Field
Darcy model:

The ratio between the non-dimensional limiting temperature excess of wall temperature

to Brinkman number, (le - GPYCLI)/BV, (4911 - ef,CLl)/Br is shown in Figs. 4.2(a) to

w

4.2(f) for y, = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 for different Darcy numbers, Da =

0.001,0.005,0.01,0.05 and 0.1 for the Darcy Model. From Figs. 4.2(b) to 4.2(e), the effect

of porous fraction on (6’W1— GP,CL])/ Br, (le— af,CLl)/ Br  can be assessed. The

maximum value of | (le -0

I L ) | /Br occurs at the centre of the channel at ¥ = 0 for all

Darcy numbers where the fluid is placed. The maximum value of | (le -0, ) | /Br at
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Y = 0 is decreasing with the increasing Darcy number for a porous fraction. This is

commensurate with acceleration associated with the fluid in the fluid region at higher y,.

It is apparent too that the value of |(<9W1 -0, a

)| /Br is minimum other than at centre
of the channel for higher Darcy number, say Da = 0.1 for all 0< y, <1.0. This implies that

the porous medium tends to behave almost like a clear fluid channel.

The profiles shown in Figs. 4.2(a) and 4.2(f) for y, = 0 and 1.0 are clear fluid channel
and fully filled with porous material. The profile in Fig. 4.2 (f) is very close to the profile
in Fig. 4.2 (a){ for y, = 0} for Da = 0.1. Indeed, the porous material filled channel
behaves like the clear fluid channel at higher Da which is also evident in Figs. 4.2(b) to
4.2(c) as well, even though these two profiles pertain to a channel containing partially

filled porous medium.

Form drag model:

The ratio between the non-dimensional limiting temperature excess of wall temperature
to Brinkman number, (le - GP’C“)/ Br, (le - Hfaz) / Bris featured in Figs. 4.3(a) to
43(f) for y, = 0, 0.2, 04, 0.6, 0.8 and 1.0 for different Darcy numbers,
Da=0.001,0.005,0.01,0.05 and 0.1 for the Form drag model. From Figs. 4.3(b) to 4.3(e),

-0

the effect of porous fraction on (0 L2

wl

)/Br, (le - Gfaz)/ Br can be assessed.
The maximum value ](6’W1 -0,,a )| /Br occurs at the centre of the channel at ¥ = 0 for

all Darcy numbers where the fluid is placed. The maximum value of | (9w1 -0, a ) | /Br

at Y = 0 is decreasing with increasing Darcy number for a porous fraction. This aligns
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with the acceleration associated with the fluid in the fluid region at higher y,. It may also

be noticed that the value of |(<9W1 -0

I L ) | /Br is minimum except at the centre of the
channel for higher Darcy number, say Da = 0.1 for all 0< y, <1.0. This indicates that the

porous medium behaves as if it were a clear fluid channel.

The profiles shown in Figs. 4.3(a) and 4.3(f) for y, = 0 and 1.0 are clear fluid channel
and fully filled with porous material. The profile in Fig. 4.3(f) nearly approximate the
profile in Fig. 4.3 (a){ for y, = 0} for Da = 0.1. Indeed, the porous material filled channel
behaves like the clear fluid channel at higher Da, which is clearly seen in Figs. 4.3(b) to
4.3(c) as well, even though these two profiles pertain to a channel partially filled porous

medium.

Clear fluid compatible model.:

The ratio between the non-dimensional limiting temperature which is in excess of wall

temperature to Brinkman number, (6’W1— Gp‘cm)/Br, (le— Qf'cm)/Br is featured in

Figs. 4.4(a) to 4.4(f) for y, =0, 0.2, 0.4, 0.6, 0.8 and 1.0 for different Darcy numbers,

Da=0.001,0.005,0.01,0.05 and 0.1 for the clear fluid compatible model. From Figs. 4.4(b)

to 4.4(e), the effect of porous fraction on (le - prm)/Br, (9w1 - ef,m)/Br can be
assessed. The maximum value of | (le -0, ) | /Br occurs at the centre of the channel
at Y = 0 for all Darcy numbers, where the fluid is placed. The maximum value of

|(91_ g

y o f.CL ) | /Br at Y =0 is decreasing with the increasing Darcy number for a porous

fraction. This is commensurate with the acceleration associated with the fluid in the fluid
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region at higher y,. It may also be noticed that the value of |(9w1— 0, f,CL)|/B’” is

minimum other than at the centre of the channel for higher Darcy number, say Da = 0.1
for all 0< y, <1.0. It means that the porous medium is behaving almost like a clear fluid

channel.

The profiles shown in Figs. 4.4(a) and 4.4(f) for y, = 0 and 1.0 are clear fluid channel
and fully filled with porous material. The profile in Fig. 4.4 (f) is very close to the profile
in Fig. 4.4 (a){ for y, = 0} for Da = 0.1. Indeed, the porous material filled channel
behaves like the clear fluid channel at higher Da which is also noticeable in Figs. 4.4(b)
to 4.4(c) as well, even though these two profiles pertain to a channel that has partially

filled porous medium.

4.4.1.3 Limiting Nusselt Number
Variation of product of Brinkman number and the Nusselt number with porous fraction,

7, for the three dissipation models are shown in Figs. 4.5(a) to 4.5(c) for different Darcy

numbers, Da = 0.001, 0.005, 0.01, 0.05 and 0.1. From Figs. 4.5(a) to 4.5(c), Br Nu,, o, 5

decreases as Darcy number increases and tends to the value of -35/12, which is the value

for the clear fluid channel. As porous fraction increases Br Nu, ., ,, increases for all
Darcy numbers. But for higher Da = 0.05 and 0.1 Br Nu, ,,, exhibits a minimum value

of y,. This may due to the fluid region being more compared to the porous region. From

Figs. 4.5(a) to 4.5(c), limiting Nusselt number can be calculated for any Brinkman

number value for all the dissipation models. For small Darcy number, say Da = 0.001, the
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difference between these models in limiting Nusselt number is negligible, but for larger

Darcy number, say Da = 0.05, the difference is significant (Nield et al. [58]).
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Fig. 4.5: Variation of (a) Br Nu,, ;, {the Darcy model } (b) Br Nu,, ., , {form drag model} (c)

Br Nu p.CL3 {clear fluid compatible model} with porous fraction, ¥ » for different Darcy numbers.

Net change in the Nusselt number:
Variation of (a) ANu, {the Darcy model}(b) ANu, {form drag model}(c) ANu, {clear
fluid compatible model} with porous fraction, y, for different Darcy numbers, Da =

0.001, 0.005, 0.01, 0.05 and 0.1 is depicted in Figs. 4.6(a) to 4.6(c). Enhancement in the
Nusselt number when porous material of thickness /, is attached to both the walls of the

channel, is lower than a the channel fully filled with porous material, when dissipation is
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included. In the case of clear fluid compatible model, dissipation effect is more as

compared to the Darcy model and form drag model.
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Fig. 4.6 : Variation of (a) ANu, (b) ANu, and (c) ANu, with porous fraction, y, for different Darcy
numbers.

4.4.2 Case(ii): Subjected to constant wall temperature

4.4.2.1 Limiting cases
Substituting y, = 0 for the clear fluid channel, in Eqgs. (4.51), (4.53), (4.55),(4.63), (4.64)
and (4.65), the temperature profile and the Nusselt number reduce to

Yal) _3 (4.70)

~—12v7*
Br 4
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Nu, o, =175 4.71)

These are standard results available in Ramjee and Satyamurty[182] and Barletta [4].

The values of (Hcyfl'o / Br) obtained with Darcy model due to Bejan [49], form
drag model due to Nield [140] and clear fluid compatible model due to Al-Hadhrami,

Elliott and Ingham[135 and 136] are designated respectively by (ngfl'o / Br),
(6727 / Bryand (872;"°/ Br). Substituting y, = 1.0 for fully filled porous medium in
Egs. (4.52), (4.54), (4.56), (4.63), (4.64) and (4.65), the expressions for (ﬁngl'o/Br),

(627" / Bryand (8/2,"°/Br) and the limiting Nusselt numbers for three dissipation

models are as follows,

Darcy model:
I aeon [z a0 2 )]
& & & 2 Da 2 Da
e\/; +7 ezy\/; +ez<1m\/; -8 ¢ e
(3+2Y) [& (1+6Y) [
2Da > \Da 2 \Da
oy - +e 2 Da +e 2 Da
_ Da
€ n (1+2Y)JZ (1+4Y)JZ
+16e Da 4 o Da
2Y\/E F 2\/2
+e VP (4Y? —Dg| 1+4eVPe 4 V0e
o i 4.72)

. 8Da [—2\/5 (e\/; - 1} + [e\/; + 1}/2 ]
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—2JDa (e\/; —1J ~3JDa [ez\/g - 1J
12 Je (4.73)
+(e\/;+1]\/; +{1+4e‘/;+e2‘/;}/2

p.CLL ™ B & & &
153(e2\/;—eJ;J 59[@2\/; +eJ;J s(ﬂ;ﬁ}

Da™ ~3Da +

+89£e3\/g —1} +11£e3\/g +1}/§ N

Nu

3/2

Form drag model:

+eY\/g {e o +1](4Y2 e

0"
a (4.74)

v 8Da[—2JD_a (er J+(e\/g +1]\/— ]2

N [2@% J (EHJ J\F (4.75)
- 60Da3/2£e2JT 1} 24Da( e\E+e2rJ (1+e\FIg”

n

i [e\/; +1J
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Clear fluid compatible model:

(1+2Y) \/z 3(142Y) \/z
<1+2Y>\/z e ? Vg 2
16e ba_Q
2Da +e 2 e 2 U
=2¥ E & & & &
e n 2Y\/: 2(1+Y)\/: \F (1+4Y)\/:
—(5—7)(e bye D“j+(5+l)(e bye ba

21, -5 21E K
iy +e \/;(4Y2 —1)8(14—6\/;—26 D“(E—Z)]
s

" _ SDalzJE (e\/; —1}+[e\/; +1]\/E]2

(4.76)

It is clear from Egs. (4.72), (4.74) and (4.76) that 93:“’ varies linearly with Br. Thus,

07" =m,,,(Y,Da)Br (4.77)

where m; is a slope for the Darcy model, m; is a slope for form drag model and mj is

a slope for the clear fluid compatible model.

2JDa [e\/; —1] ~JDa {eﬁ —1} (e-3)
J{eJg +1}/E +[2(;;—2)ng —eng —1}/2

Nu as =
| T gt
z 7¢—-89)| 1 B 11 1 z D
Da”[e\/; —1] e )£ " —3Da[e\/; +1J\/2 et —[e’:’“ﬂ] lre &
+8€\/g(8—6)

12

Ve (4.78)

+ng (465 —242)
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These results for y, = 1.0 are standard results available in Bhargavi [186] thesis

for the Darcy model and clear fluid compatible model.

4.4.2.2 Thermal Field

Darcy model:

Non dimensional temperature profiles 6,.,,(Y)/Br, 6,.,(Y)/Br at the conduction
limit are shown in Figs. 4.7(a) to 4.7(f) for porous fraction, y, = 0, 0.2, 0.4, 0.6, 0.8 and
1.0 for different Darcy numbers for Darcy model. From Figs. 4.7(a) to 4.7(f), the effect of

porous fraction on 6, ., (Y)/Br, 0, .,(Y)/Br can be assessed. Maximum value of
0,c.(Y)/Br, 6, .,(Y)/Br occurs at the centre of the channel at ¥ = 0 for all Darcy
numbers where fluid is placed. Maximum value of 6, .,,(Y)/Br, 6, ,,(Y)/BratY=0is
decreasing with the increasing Darcy number for all porous fractions. This is

commensurate with the acceleration associated with the fluid in the fluid region at higher

7p- As porous fraction, y, increases, the maximum value of 6, ,,(Y)/Br, 6, .,(Y)/Br

increases for all Darcy numbers.

The profiles shown in Figs. 4.7(a) and 4.7(f) for y, = 0 and 1.0 are for clear fluid
channel and fully filled with a porous material. The profile in Fig. 4.7(f) is very close to
the profile in Fig. Fig. 4.7(a) for Da = 0.1. Indeed, the porous material filled channel
behaves like clear fluid channel at higher Da. Which is also noticeable in Figs. 4.7(b) and
4.7(c) as well, even though these two profiles pertain to a channel partially filled with a

porous medium.
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Form drag model:

Non dimensional temperature profiles 6, .,,(Y)/Br, 6,.,(Y)/Br at the conduction
limit are shown in Figs. 4.8(a) to 4.8(f) for porous fraction, y, = 0, 0.2, 0.4, 0.6, 0.8 and
1.0 for different Darcy numbers for form drag model. From Figs. 4.8(a) to 4.8(f), the

effect of porous fraction on 6, .,,(Y)/ Br, 0, ,,(Y)/ Br can be assessed. Maximum value
of 6, .,(Y)/Br, 6,.,(Y)/Br occurs at the centre of the channel at Y = 0 for all Darcy

numbers where the fluid is placed. The maximum value of 6, .,,(Y)/Br, 6, .,,(Y)/ Brat
Y = 0 is decreasing with the increasing Darcy number for all porous fractions. This is
commensurate with the acceleration associated with the fluid in the fluid region at higher

7p- As porous fraction, y, increases, the maximum value of 6, ., (Y)/Br, &, .,(Y)/Br

increases for all Darcy numbers.

The profiles shown in Figs. 4.8(a) and 4.8(f) for y, = 0 and 1.0 are clear fluid
channel and fully filled with a porous material. The profile in Fig. 4.8(f) is very close to
the profile in Fig. 4.8(a) for Da = 0.1. Indeed, the porous material filled channel behaving
like the clear fluid channel at higher Da. Which is also noticeable in Figs 4.8(b) and
4.8(c) as well, even though these two profiles pertain to a channel partially filled with a

porous medium.

Clear fluid compatible model.:

Non dimensional temperature profiles 6, ,,(Y)/Br, 6, .,(Y)/Br at the conduction

limit are shown in Figs. 4.9(a) to 4.9(f) for porous fraction, y, = 0, 0.2, 0.4, 0.6, 0.8 and
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1.0 for different Darcy numbers for clear fluid compatible model. From Figs 4.9(a) to

4.9(f), the effect of porous fraction on 6, (Y)/Br,8,.,(Y)/Br can be assessed.
Maximum value of 6, ,,(Y)/Br, 6, .,,(Y)/Br occurs at the centre of the channel at ¥ =
0 for all Darcy numbers where fluid is placed. Maximum value of 6, ..(Y)/ Br,
0,c;(Y)/Br at Y =0 is decreasing with the increasing Darcy number for all porous

fractions. This is in line with the acceleration associated with the fluid in the fluid region

at higher y,. As porous fraction, y, increases, the maximum value of 6, .,(Y)/ Br,

0, ,;(Y)/ Br increases for all Darcy numbers.

The profiles shown in Figs. 4.9(a) and 4.9(f) for y, = 0 and 1.0 are clear fluid
channels and fully filled with a porous material. The profile in Fig. 4.9(f) is indeed close
to the profile in Fig. 4.9(a) for Da = 0.1. Indeed, the porous material filled channel is
known to behave like clear fluid channel at higher Da. This fact is also noticeable in Figs.
4.9(b) and 4.9(c) as well, even though these two profiles pertain to a channel partially

filled with a porous medium.

The values of m; , m , and m 3 in Eq. (4.77), for the three dissipation models for y, =
1.0 have also been given in Figs. 4.7(f), 4.8(f) and 4.9(%).

Observations from Figs. 4.7 (a) and 4.7(f) , Fig. 4.8(a) and 4.8(f) and Fig. 4.9(a) and
4.9(f) lead us to the following conclusions.

a) mi, m» and m 3 values for the three models are close to each other at lower Da has

been observed already (y, = 1.0).
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b) Of course, m;, mand m 3 are not dependent on Da for both the models for y, = 0.
c) m; , m» and m 3 decrease with increase in Da for a given y, and Y for both the

models.

The difference between the Darcy model and the clear fluid compatible model is

brought out in Fig. 4.10, where the variation of [ (8225 /Br)— (8" / Br)] with Y has
been given for different Da. It is evident that (62, / Br) values are closer to the values
of (075" /Br) at lower Da. At the lowest considered, Da = 0.001, [(8%;"/Br) —
(6727 / Br)] = 0.28, which is less than 2.5% considering that (62" / Br) is of the order
of 140. At the highest Da, [(8%;"° / Br)— (8" / Br)] = 0.65, where (827~ / Br) is of

the order of 2.5. The difference in the values of (6?3:1'0 / Br) for the two models is less

than 30% for Da < 0.05.
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Bulk mean temperature:

g, varies linearly with Br, since 6, is defined in terms of 6, . Variation of ,,, / Br,

s

0,,,/ Br and @,,,/ Br with porous fraction, y, for different Darcy numbers is shown in
Figs. 4.11(a), 4.11(b) and 4.11(c) for the Darcy model, form drag model and the clear
fluid compatible model respectively. As porous fraction, y, increases 8;, / Br increases
for all Darcy numbers for both the models. As Darcy number increases 6, / Br

decreases with porous fraction for both the models. For higher Darcy number (say Da

=1.0), @, / Br is almost constant with porous fraction.
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Fig. 4.11: Variation of (a) HZLI / Br {the Darcy model } (b) HELZ / Br {the form drag model} (c)

02L3 / Br {clear fluid compatible model}with porous fraction, 7y for different Darcy numbers.

4.4.2.3 Limiting Nusselt Numbers

Limiting Nusselt numbers Nu, ., , Nu,,, and Nu, ., for the three models, {Eq. (4.63),

(4.64) and Eq. (4.65)} are independent of the Brinkman number. Variations of limiting

Nusselt number with porous fraction, y, for the two dissipation models are shown in

Figs. 4.12(a), 4.12(b) and 4.12(c) for different Darcy numbers, Da = 0.001, 0.005, 0.01,

0.05 and 0.1. From Eqgs. (4.63), (4.64) and (4.65), the limiting Nusselt numbers for three
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models are independent of Br, for all Br # 0, a feature widely reported in the literature for

clear fluid flow channels, by Barletta [4]. From Figs. 4.12(a), 4.12(b) and 4.12(¢c), Nu,, .,
, Nu,., and Nu,., decrease up to a certain porous fraction and then increase for all

Darcy numbers. This may due to the fluid region being low compared to the porous

region. From Figs. 4.12(a) and 4.12(b) , as Darcy number increases, Nu, ., and Nu, .,

increases up to certain porous fraction then decreases with porous fraction, y,. From Fig.

4.12(c), as the Darcy number increases Nu, ., increases up to a certain porous fraction

then declines with porous fraction, y,. It is true that for small Darcy numbers( say, Da <

0.01), Nu, ., always increases with porous fraction for higher Darcy numbers( say, Da

> 0.01). From this it may be concluded that as Darcy number increases, porous region
starts to behave like a clear fluid region for clear fluid compatible model but it is not true
in the case of Darcy model and form drag model. For small Darcy number, say Da =
0.001, the difference between these three models in limiting Nusselt number is negligible,
but for larger Darcy number, say Da = 0.05 the difference becomes significant{ Nield,
Kuznetsov and Xioang [58] }. From, Fig. 4.12, it is a foregone conclusion that the
limiting Nusselt number differs significantly and even in qualitative behavior for the two
dissipation models. Also, these values differ significantly from 17.5 { Ramjee and
Satyamurty [182] and Barletta [4] }. Further, it is clear from Figs. 4.12(a), 4.12(b) and

4.12(c) that the values of Nu, ., aty, =0 are independent of the dissipation models; the

dissipation function is unique.
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Net change in the Nusselt number:

The net change, ANu for the three dissipation models is defined, in comparison to the

fully developed clear fluid channel value as,

Darcy model:

35
ANu, = 2{Nupa1 —(?ﬂ

Form drag model:

133

(4.79)



4.80
ANu, = 2{Nup,az _(§ﬂ ( :

Clear fluid compatible model:

35 (4.81)
ANu, = 2{Nupa3 _(Tﬂ
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Fig. 4.13: Variation of (a) ANu, {the Darcy model } (b) ANu, {form drag model}(c) ANu, {clear fluid

compatible model} with porous fraction, ) » for different Darcy numbers.
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Variation of (a) ANu, {the Darcy model}(b) ANu, {form drag model} (c) ANu, {clear
fluid compatible model} with porous fraction, y, for different Darcy numbers, Da =

0.001, 0.005, 0.01, 0.05 and 0.1 is shown in Figs. 4.13(a), 4.13(b) and 4.13(c).
Enhancement in the Nusselt number when porous material of thickness /, is attached to
both the walls of the channel, is lower than for the channel fully filled with a porous

material, when dissipation is included.

4.5 Conclusions

Enhancement in the fully developed Nusselt number for a parallel plate channel flow
subjected to (i) constant wall heat flux and (ii) constant wall temperature with porous
inserts distributed equally at the two walls of the channel for the three dissipation models,
has been studied. Three dissipations models, namely, the Darcy model due to Bejan[49],
form drag mode due to Nield [140] and the clear fluid compatible model due to Al-
Hadhrami, Elliott and Ingham [135 and 136] are used in the conservation of thermal
energy equation. Using the fully developed velocity profiles, as obtained in Chapter 2, §

2.3, the limiting temperature profile and the limiting Nusselt number at the conduction

limit have been obtained for porous fraction 0<y, 6 <1.0. The viscous dissipation is

characterized by Brinkman number. Both the wall heating and wall cooling cases can be

examined from the given plots for all values of Brinkman numbers.

Case (i): constant wall heat flux
Limiting temperature profile and limiting Nusselt number plots are given and are depend

on the Brinkman number. The maximum in the value of Nusselt number and net change
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in the Nusselt number occurs only aty, =1.0. For small Darcy numbers, the difference

between these models in limiting temperatures and limiting Nusselt numbers is

negligible, but for larger Darcy number, the difference is significant. Br Nu,, attains
minimum value at certain porous fraction, y, ~0.4 for higher Da, whereas Br Nu, is

always increases as porous fraction increases for all Darcy numbers. Hence heat transfer
enhancement is better in clear fluid compatible model compared with Darcy and form

drag model.

Case (1): constant wall temperature
It has been found that the non-dimensional temperature and the bulk mean temperature
when viscous dissipation is included are linearly proportional to Brinkman number at the

conduction limit.

Nusselt numbers in the conduction limit have been found to be independent of the
Brinkman number, a feature reported for clear fluid channels, see, Barletta [4]. The three
models that describe dissipation yield comparable to Nusselt number values when Da is
small (say Da < 0.01), for the channel partially filled with a porous material also. This
feature has been reported by Nield, Kuznetsov and Xioang [58], for channels fully filled
with a porous material. The Nusselt number in the conduction limit monotonically
increases as Da increases for three models up to certain porous fraction. In Darcy model,
and form drag model, Nusselt number becomes minimum at higher Darcy number when
7 = 1.0, whereas, for the clear fluid compatible model, Nusselt number displays a

minimum at Da = 0.015 when y, = 1.0.
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Chapter 5
Effect of Heat Transfer in the Thermally Developing
Region of the Channel Partially Filled with a Porous
Medium: Constant Wall Heat Flux

5.1 Introduction

In recent times, several authors have studied forced convection in the porous medium and
channel partially filled with a porous medium and different conditions, but aspects such
as bulk mean temperature and wall temperature as a function of axial distance have not
been addressed in any of these investigations. Fully developed forced convection in a
parallel plate channel with a centered porous layer was studied by Cekmer et al. [109].
Bhargavi and Satyamurty [108] studied optimum porous insert configurations for
enhanced heat transfer in channels. However, the problem of a thermally developing
region in a channel partially filled with a porous material and without using the boundary
layer approximation has not received enough attention. Since many of the researchers
have not discussed about the wall temperature which is unknown temperature profiles for
an excess of wall temperature for different porous fractions and fully developed condition
in items of the wall temperature when channel walls are subjected to constant wall heat
flux.

In the studies reported in the present chapter, it is assumed that the velocity field

is fully developed while the temperature field is developing in the channel partially filled
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with the porous medium. The walls of the channel are subjected to constant heat flux.
The objective of the present chapter is to examine the existence of optimal porous
fraction and its dependence on the axial location. The other parameters, the Darcy
number and the porous fraction are common to thermal and flow fields. Analytical
expressions for momentum equations are available in Chapter 2, § 2.3. Numerical
solutions using finite difference successive accelerated replacement (SAR) scheme
(Ramjee and Satyamurty [15] and Satyamurty and Bhargavi [158]) have been obtained
for energy equations in both the regions. The effects of important relevant parameters on

temperature, bulk mean temperature and Nusselt number have been studied.

5.2 Mathematical Formulation

The physical model and the coordinate system, that of a channel formed by two parallel
plates, H distance apart, is shown in Fig. 5.1. Let x be the axial distance and y be normal
to the flow direction measured from the center of the channel. As per the coordinate
system, the plates are at y =+ H /2. The total thickness of a porous medium, adjacent to
the plates at y =+H /2, is [,. It is assumed that the flow field is fully developed, while
the thermal field is developing while the axial conduction is negligible. The fluid enters
the channel with a uniform temperature of 7,. The parallel plates are subjected to a
constant heat flux ¢. The problem has been studied assuming steady, laminar,
incompressible flow of a Newtonian fluid. The porous and fluid matrix are in local
thermal equilibrium. The porous material is homogeneous and isotropic. Further, it is

assumed that all the thermo-physical properties are constant. The flow in the fluid region
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is assumed to be governed by Poiseuille description and in the porous region, by Darcy-

Brinkman equation.

N
=

L o] ehadeabels o o

——————————————————————————— V=

Fluid region

(a) Dimensional (b) Non Dimensional
Fig. 5.1: Physical Model and Coordinate System.

Generalized Governing Equations
Fluid Region:
Momentum Equation:

L _dp (5.1)
f dyz dx

In Eq. (5.1), p is the pressure, u, is the dynamic viscosity and uy is the velocity in the

fluid region.

Conservation of Thermal Energy Equation:

or, T, T, du, Y L2
PCp”fgzkf Fl?+y +Fu, d_y

In Eq. (5.2), Ty is the temperature in the fluid region p, C, and k; are the density, the

specific heat and the thermal conductivity of the fluid respectively.
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Porous Region:

Momentum Equation:

dzup My o _dp (5.3)

Her d* K 7 dx
In Eq. (5.3), u, 1s the velocity in the porous region, K is the permeability of the porous
medium, u.z1s the effective viscosity.

Conservation of Thermal Energy Equation:

oT, o°’T, T, (5.4)
pCu, = =k | B P -F & + F,D,

In Eq. (5.2) and Eq. (5.4), F; is a constant associated with the axial conduction term and

F, is a constant associated with the viscous dissipation. In Eq. (5.4), @, is dissipation

model, for i = 1, the Darcy model due to Bejan [49], for i = 2, clear fluid compatible

model due to Al-Hadhrami et al. [135 and 136] given by,

Darcy model:

® - % up2 (5.5)
Clear fluid compatible model.:

o =%up2 o [CZ; jz (5.6)

In Eq. (5.4), T, is the temperature in the porous region and k. is the effective thermal

conductivity of the porous medium. k.5 can be calculated from Catton [21] as,

ky=(-p)k +ok, (5.7)
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In Eq. (5.7), ¢ 1is the porosity and k; is the thermal conductivity of the solid in the
porous matrix. Egs. (5.1) and (5.2), applicable for the fluid region and Egs. (5.3) and
(5.4) for the porous region.

In the present Chapter, the effects of axial conduction (F;) and the viscous
dissipation (F) are neglected. i.e., F; = 0 and F, = 0. Then the governing Eq. (5.2) and
Eq. (5.4) in fluid and porous regions respectively, become,

Conservation of thermal energy in fluid region:

Lok 0T, (5.8)
Tax pC, | &

Conservation of thermal energy in porous region.

0T, _ ky o', (5.9)
"oax pC, &

Boundary and Interfacial Conditions

5.10
Tp:]:: at x=0 , _ESyS_E'F—p ( )
2 2 2
! 5.11
T, =T, at x=0, _£+_P§y§0 ( )
2 2
or, (5.12)
up=0 —keﬁ.—p:q at y=-H/2
’ ) ay
du, du, R (5.13)
u,=u,=u, , f,—-=u —- : -
poUy = U Hep dy Hy dy at interface V N
(5.14)

H [
T,=T,=T, k(0T /dy)=k,(0T,/dy)  at interface y==T+
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du, oT, . (5.15)
e =0, E =0 at y=0 {Symmetry boundary conditions}
'y

Non-dimensionalization

The governing equations are rendered non-dimensional by introducing the following non-
dimensional variables.

X=x/H, Y=y/H, U, =u,/u U=ulu,,U =u,lu,, P:p/pui/,

ref
5.16
0, =(T,-T)/(qH 'k,),0,=(T,-T,)(qH k) o

In Eq. (5.16), X and Y are non-dimensional coordinates. U and P are the non-dimensional

velocity and pressure. The subscripts fand p refer to fluid and porous regions. 6{ 6, in the
fluid region and 6, in the porous region}, is the non-dimensional temperature. u,. is the

average velocity through the channel. u,.r is related to u,and u, by,

2
2 T ware | uay|eu, s

The non-dimensional porous layer thickness y,, which shall be referred to as porous
fraction is defined by,

v,=1,1H (5.18)

when the channel walls are subjected to constant heat flux, Peclet number can be
absorbed by defining

X*=X/Pe (5.19)
On introducing the non-dimensional variables given by Eq. (5.16), the governing
equations for conservation of momentum and energy applicable in the fluid {Egs. (5.1)

and (5.8)} and porous {Egs. (5.3) and (5.9) } regions in non-dimensional form become,
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Fluid Region

U (5.20)
_Zf: Re ar
dY dx
00, _o0, (5.21)
Toxt oy’

In Eq. (5.20), Re, the Reynolds number and in Eq. (5.21), Pe, the Peclet number are
defined by,

Re=pu, H/u, Pe=u,H/a, (5.22)

ref

Porous Region

d*U (5.23)
r_ Ly —¢ re P
dy Da ? d
00, 1%, (5.24)
"oX*  p oY>

In Eq. (5.23), Da, the Darcy number is defined by,

Da=K/H’ (5.25)
In Egs. (5.23) and (5.24) , ¢ and # are defined by,

E=p, g, n=k,k, (5.26)
Non-dimensional Boundary Conditions

The boundary and interfacial conditions given by, Egs. (5.10) to (5.15) take the following

non-dimensional form (using Eq. (5.16))

5.27
0,(0,Y)=0 for Ly LD (5.27)
’ 2 22

5.8
6,(0,Y)=0 for —%+%’JSY30 (5.28)
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dUu 06 5.29
s 0,220 at ¥=0 (5-29)
dy oY
dUu dU 5.30
u,=U0,=U, &y 18, at the interface Y:—l+7/—p (5-30)
i dy & dY 2 2
00, 00 5.31
0,=0,=0, % _1%% at the interface Y:—l+7—p (>31)
? oY n oY 2 2
06 5.32
U,=0, L=y at Y=-1/2 (-32)
oY

5. 3 Expressions for velocity

5.3.1 Non Dimensional Velocity Profiles
Fluid Region:
On solving Eq. (5.20) along with the boundary conditions given in Eq. (5.29) and Eq.

(5.30), velocity in the fluid region is obtained as

U, V=80, +[ 41 (s, —1)2}%} (533)

Porous Region:
Similarly, on solving Eq. (5.23) along with the boundary conditions given in Eq. (5.30)

and Eq. (5.32), velocity in the porous region is obtained as

—vNe [ a+2rve 7o _Jz Ye
eVba | g 2WDa _q U,ezﬁ eV 4 o¥Da | _ Dy

e [ e 7pE &
—e2\Da ezﬁ _e\/ﬁ

(5.34)
U,[Y]= o - =
evre |
where
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y e Nz y e (5.35)
U, =—Da| e -1 12JDa| e -1 || 1+ |Je(y,-1){ P,
P, :Rej’—p and obtained as using non dimensional form of Eq. (5.17)
X
e
12| 14+e¥2 e
5.36
P, = (5.36)
g ype , 7oe X
e -1 (24Da3/2—6 Dae(y,-1) )+ 1+e™ [e(y,-1)
oe ype
+12Da\/; el (yp _2)_462\/5 (yp _1)+7p -2

5.3.2 Numerical Scheme: Successive Accelerated Replacement (SAR)

Application of the SAR Scheme (Ramjee and Satyamurty [15] and Satyamurty and

Bhargavi [158]): Let MD and ND be the number of divisions in X and Y direction and

AX " and AY be the width in X and Y direction respectively. When the terms in energy
Egs. (5.21) and (5.24) are expressed in finite difference form, the errors éf»,ép in fluid

and porous regions respectively, are given by,
Discretization of the governing equations {Eq. (5.21) and Eq. (5.24)} have been
done using uniform grid in the X and Y directions bring us the equations given below:

H

6,(M,N)-6,(M~1,N)
A

0,(M,N+1)~26,(M,N)+6,(M,N-1)
(AYY’

i (5.37)
ef(MﬂN):Uf(N)|: i|
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g,(M.N)=1 UI,(N)[

6,(M,N)-60,(M-1,N)| [ 6,(M,N+1)-26,(M,N)+6,(M,N-1)] (5.38)
AX" - (AY)

where AX " is the uniform grid size in the X-direction, defined by,

AX = X’; / MD (5.39)

where X ; is the normalized fully developed length.

AY =1/ ND (5.40)

To correct the profile for 6,and 6, , the following derivatives become necessary

00,(M,N) _U,(N) L2 (5:41)

*

00,(M,N) AX"  (AY)

00,(M,N) nU,N) 2 (5:42)
00 (M,N)  AX"  (AY)

Discretization of the governing equations {Eq. (5.21) and Eq. (5.24)} using non-

uniform grids in the X -direction and uniform grid in the Y direction:

.. M:Uf(m[ef(M,N)—@(M—l,N) B @.(M,N+l)—20f(M,N)+0f(M,N_1)} (5.43)

X(M)-X(M-1) | (AY)

) —,M-LN) | | - - 5.44
6,(M.N)=n U,,<N)[9P(M’M 0,(M-LN)] [6,(M,N+1)~26, (M, N)+6,(M.N 1)} (5.44)

X(O0-X(M~1) | (AYy

To correct the profile for 6, and 6,, the following derivatives become necessary
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00,(M,N) U,(N) L2 (5.45)
00, (M,N) X(M)-X(M-1) (AY)

00,(M,N)  nU,N) L2 (5.46)
00 (M,N) X(M)-X(M-1) (AY)

Discretised boundary conditions

6,(0,N)=0 for ISNS(%’jND-H (5.47)
6,(0,N)=0 for [%JNDHSNg%H (5.48)
gf(M,N):491-(M,N—1)3—0f(M,N—2) NV V- FP G
QP(M,N):277AY—QP(M,NJ;2)+46’1,(M,N+1)  Nel (5.50)

Let NP be a grid number corresponding to the interface. It is assumed that the
interface coincides with one of the grid planes in the Y direction. When large numbers of
ND are used, the error involved is not likely to be significant even if the interface does
not exactly correspond to an integer NP. Boundary conditions given by Eq. (5.31) and on

6_’f and 6’p in finite difference form become,

7, (5.51)
0,(M,NP) =6, (M, NP) at NP=| L |ND+1

y (5.52)
0,(M,NP)=0,(M,NP-1)+ %[ep (M,NP+1)-6,(M,NP)|at NP = (7‘”) ND+1
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5.3.3 Numerical Trial

In order to obtain satisfactory numerical solutions, suitable values for the parameters that
yield converged solutions need to be determined. The parameters are, the acceleration
factor, w, error tolerance limit, &;, and the number of divisions MD and ND in X and Y

directions.

Numerical trials have been made employing Eqs. (5.21) and (5.24), along with the
boundary conditions {Egs. (5.27) to (5.32)}. Egs. (5.21) and (5.24), are parabolic and the
solutions can be obtained with ease. The finite difference expressions, which are needed
to apply in SAR (Ramjee and Satyamurty [15] and Satyamurty and Bhargavi [158])
scheme, are given by Egs. (5.37) and (5.38) have been used for fixed Da = 0.005, and a
porous fraction of y, = 0.4. Numerical trials have been conducted with 0.5 <w < 1.5, ¢ =

10,107, 10 and 107, 1000 < MD < 8000 and 60 < ND < 100.
Generation of the non uniform grids(given in Bhargavi[ 186])

Uniform grids are generated by using the formula
X(@)=(G-1)ax’ (5.53)
Non uniform grids are generated by increasing the axial distance following a

geometric progression. Let AX, be the increase in geometric progression with a
common ratio of (1+r). AX,, is related to the common ratio and the first term of the
geometric progression, AX, by,

AX; =(1+r)" " Ax (5.54)
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Let AX," be the first non-uniform grid width defined by,
AX =c AX (5.55)

where c is a constant less than unity and AX" is uniform cell width.

Common ratio of (1+r). can be evaluated by,

14" —1j (5.56)

X :AX*(
fd 1 r

Number of Grids, Uniform Spacing

Numerical trials have been made to determine the suitable number of grids in X and Y
directions for fixed ¢, = 107°. MD and ND have been varied between 1000 < MD < 8000
and 60 < ND < 100. Values of Nu,, at different values of X for ND = 60, 70, 80, 90 and
100 with MD = 1000, 2000, 4000, 6000 and 8000 are given in Table 5.1. The value of
Nuy,, = 7.0065 with ND = 90 obtained in the present numerical trails for grid
independence test, shown in Table 5.1 at X =04, agree well with the corresponding
fully developed values of 6.9962 obtained analytically in chapter 2. It appears that ND =
90 grids is suitable. If uniform grids are employed, ND = 90 and MD = 8000 appear to
yield satisfactory local Nusselt number values that do not change significantly with

further increase in ND and MD.

149



Table 5.1: Grid Independence Test, Uniform Mesh: Nu,,, at Different X " for 7, = 0.4, Da =0.005, &= 107
and @ = 0.8( NI = No. of Iterations ).

0

X
ND| MD NI
0.0016 | 0.0050 | 0.0100 | 0.0300 | 0.1000 | 0.150 |0.2000| 0.3000 | 0.4000

1000 |15.9547]10.9527( 9.2407 | 7.5155 | 7.0056 | 6.9975 [6.9968( 6.9962 | 6.9960 4756

2000 (15.7035]|11.0186( 9.2177 | 7.5096 | 7.0054 | 6.9975 |6.9967| 6.9962 | 6.9961 4941

60 | 4000 |15.5801]10.9904 9.2062 | 7.5066 [ 7.0052 | 6.9975 [6.9967| 6.9961 [ 6.9959 5311

6000 (15.5394110.9810( 9.2024 | 7.5057 | 7.0052 | 6.9975 |6.9967| 6.9961 | 6.9961 5661

8000 |15.5191(10.9764| 9.2005 | 7.5052 | 7.0052 | 6.9975 [6.9967| 6.9961 | 6.9961 5974

1000 [15.9005]10.9376| 9.2335 | 7.5136 | 7.0053 | 7.0051 |7.0052| 7.0050 | 7.0007 6167

2000 [15.6521]11.0032( 9.2105 | 7.5077 | 7.0050 | 7.0049 |7.0043| 7.0039 | 7.0005 6350

70 | 4000 |15.5301(10.9752| 9.1991 | 7.5048 | 7.0049 [ 7.0044 [7.0040( 7.0025 [ 7.0004 6722

6000 |15.4898(10.9659| 9.1953 | 7.5038 [ 7.0049 [ 7.0045 [7.0043( 7.0022 [ 7.0002 7085

8000 |15.4697|10.9612( 9.1934 | 7.5033 | 7.0048 | 7.0041 |7.0039| 7.0038 | 7.0007 7429

1000 |15.8641]10.9276( 9.2287 | 7.5124 | 7.0051 | 7.0051 |7.0050( 7.0048 [ 7.0004 7747

2000 [15.6177]110.9929 9.2058 | 7.5065 | 7.0048 | 7.0045 |7.0041| 7.0043 | 7.0024 7927

80| 4000 |15.4966(10.9650| 9.1944 | 7.5035 [ 7.0047 | 7.0042 |7.0042( 7.0039 [ 7.0025 8300

6000 [15.4566]10.9558( 9.1906 | 7.5025 | 7.0047 | 7.0042 |7.0041| 7.0038 | 7.0025 8667

8000 |15.4366(10.9512| 9.1887 | 7.5021 | 7.0046 | 7.0046 |7.0046| 7.0046 | 7.0025 9025

1000 |[15.8385]10.9205| 9.2253 [ 7.5115 | 7.0050 | 7.0048 |7.0047| 7.0046 | 7.0042 9492

2000 (15.5934110.9857( 9.2025 | 7.5056 | 7.0047 | 7.0046 |7.0044| 7.0044 | 7.0040 9669

90 | 4000 |15.4730(10.9580| 9.1911 | 7.5027 | 7.0046 | 7.0044 [7.0044| 7.0044 [ 7.0041 10041

6000 |15.4332(10.9487| 9.1873 | 7.5017 [ 7.0045 | 7.0044 [7.0043( 7.0040 [ 7.0042 10411

8000 |15.4134|10.9441 | 9.1854 | 7.5012 | 7.0075 | 7.0070 |7.0068| 7.0065 | 7.0065 10774

1000 |15.8198(10.9154( 9.2229 | 7.5109 | 7.0049 | 7.0047 |7.0047| 7.0046 | 7.0034 11397

2000 [15.5758]10.9805| 9.2001 | 7.5050 | 7.0046 | 7.0040 |7.0039| 7.0038 | 7.0036 11571

100| 4000 |15.4559(10.9528| 9.1887 | 7.5020 [ 7.0045 | 7.0042 [7.0040( 7.0039 | 7.0039 11941

6000 (15.4262]10.9436( 9.1849 | 7.5010 | 7.0044 | 7.0043 |7.0044| 7.0044 | 7.0066 12312

8000 |15.4234(10.9541| 9.1954 | 7.5013 | 7.0075 | 7.0070 [7.0068| 7.0065 | 7.0065 12679
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For a chosen value of ¢, X ;d = 0.4 and MD, r can be calculated using Eq. (5.56).
X;d = 0.4 and MD = 2000, with uniform grid size of AX" = 0.0002 yielded satisfactory

solution. If the first non-uniform grid AX 1* = (0.0002 has been chosen, for X ;d = 0.4, the

constant ¢ values and 7 values are given in Table 5.2 for MD = 500, 1000 and 2000.

Table 5.2: The constant values of ¢ and » for MD = 500, 1000 and 2000.

values of r for MD is

500 1000 2000

1/4

0.004691189370

0.002341121189

0.001169445089

1/8

0.006660863418

0.003322638941

0.001658206827

1/16

0.008505441991

0.004240980432

0.002117565251

From, Table 5.2, the value of ¢ chooses as 1/8. Non-uniform grids are generated by using

the formula Eq. (5.54).

AX,, , the grids in geometric progression have been generated as described above.

Values of Nu, for y, = 0.4 and Da = 0.005 at different X" are given in Table 5.3. Values
of Nu,, obtained with 8000 uniform grids also are given in Table 5.3. The values of Nu,,
at different X~ obtained with non-uniform grids generated in geometric progression with
MD = 1000 are very close to the values obtained with 8000 uniform grids. It is concluded
that non-uniform grids generated in geometric progression with MD = 1000 are suitable
to obtain the accuracy comparable to that obtained with 8000 uniform grids. The

reduction in computational time is substantial.
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Table 5.3: Comparison of Nu,, at Different X" Values for Uniform and Non-uniform Grids, ND =90, ¢, =
10”, Da = 0.005, » = 0.8 for y, = 0.4, using GP.

Nuy, at different X " values
MD NI
CPU Time| 0.0016 | 0.0050 | 0.0100 |0.0300|0.1000| 0.150 |0.2000(0.3000( 0.4000

500 Non-uniform | Om 51s |15.292410.9267 | 9.1686 |7.5001(7.0047]| 6.9970 | 6.9965 [6.9968| 7.0066 (11318

1000 Non-Uniform| 1m40s [15.3458|10.9113 | 9.1738 [7.5010(7.0045| 6.9970 [6.9964 (6.9967| 7.0065 | 11250

2000 Non-Uniform| 3m 18s |15.3242(10.9310| 9.1765 |7.4991(7.0045] 6.9970 [ 6.9965 [6.9967| 7.0065 [11195

8000 Non-Uniform{ 11m 10s [15.4134]|10.9441 [ 9.1854 (7.5012|7.0075| 7.0070 | 7.0068|7.0065| 7.0065 |12679

Based on the numerical trials conducted, the following values for the parameters
have been employed in obtaining numerical solutions presented. a) Acceleration factor w

< 1 has been determined as per Eqs. (5.21) and (5.24), b) Error tolerance limit, & = 107,
C) X;.d =0.4, d) MD = 1000 with AX,, generated in geometric progression with ¢ = 1/8

in Eq. (5.55), ) ND =90 with AY =1/90.
However, no converged solution could be obtained for w > 1.2. A smaller value of w
may ensure convergence but requires larger number of iterations. Similarly, a larger value

of w may result in an advantage of faster convergence; when the solution converges.

The acceleration factor is obtained from,

0= (6B ) B @Frr /0By (5.57)

152



In order to ensure convergence, under relaxation is preferred. As adapted by
Dellinger [169] and more recently in [15 and 158], the acceleration factor @ is chosen

according to,
w=o,ifo<land;o=1ifw>1 (5.58)

This ensures that the correction to a variable is never greater than ¢ (error

tolerance limit) times the previous magnitude of the variable.

5.3.4 Local Nusselt Numbers
The heat transfer coefficient /4, , at the plate y = —H /2 adjacent to the porous medium is

defined by

or, (5.59)
I

Upon non-dimensionalizing (using Eq. (5.16)), The Nusselt number at ¥ =—1/2, Nu,, is
given by

_h,QH) _ 2(06,/8Y ),y 2 (5.60)

U, . -

, n[6,-0'(x)] 6,-6'(X)
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5.4 Result and Discussion

It has been assumed that & = s /uey =1, n = kp/ k=1, ¢ = 1/8, X_;d =0.4 and MD = 1000

and ND = 90. The channel is referred to as the clear fluid channel here when y, = 0.
Similarly, when y, = 1.0, the geometry shall be referred to as channel filled with a porous
medium fully. When the porous fraction is 0 < y, < 1.0, the channel is referred as a

channel partially filled with a porous medium.

5.4.1 Thermal Field: For Da = 0.005 and Da = 0.050
Non-dimensional temperature profiles for an excess of wall temperature 6, _‘917 , 0, —6’].
for porous fractions y, =0, 0.2, 0.4, 0.6, 0.8 and 1.0 at different values of X" are shown

in Figs. 5.2(a) to 5.2(f) for Da = 0.005 and Figs. 5.3(a) to 5.3(f) for Da = 0.050

respectively. These values of X~ correspond to the entrance region and to near fully
developed region. As X increases, 6,—0,, 6,-0, increase in both the fluid and porous
regions for all porous fractions. If X* is larger (say, = 0.4) 6,-06,, 6,-0, tend to have
fully developed profiles for all porous fractions and Darcy numbers, which are given in
chapter 2, § 2.3. From Figs. 5.2(a){for y,=0} and 5.2(f) {for y,=1.0} and Figs.
5.3(a){for y, =0} and 5.3(f) {for y, =1.0} for large X (say = 0.4), 6, —0, becomes a
fully developed profile, as given in Kays et al. [185] and 6,6, tends to the fully

developed profiles given in Nield et al. [57]. As Darcy number increases, the porous
region behaves like a clear fluid region for all porous fractions. This fact is recorded in

the literature.
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5.4.2 Non dimensional bulk mean temperature

Non-dimensional bulk mean temperature excess of wall temperature , 6, —6 profiles
with X*, for y,=0,0.2, 0.4, 0.6, 0.8 and 1.0 and for different Darcy numbers, Da =

0.001, 0.005, 0.010, 0.050 and 0.100, are shown in Figs. 5.4(a) to 5.4(f). As X increases,

0,—6 increases for all Darcy numbers. From Figs. 5.4(a) to 5.4(e), as Darcy number

increases, HW—H* decreases for all X values. This fact is reported in Satyamurty and

Bhargavi [158]. From Figs. 5.4(a) and 5.4(f), as Darcy number is large, the porous region
behaves like a clear fluid region. This fact features reported in the literature. Comparison

between analytical and numerical values of bulk mean temperature in excess of wall
temperature &, —@ is shown in Table 5.4 for all porous fractions and for Da = 0.005 and
0.050. From Table 5.4, it is seen that the results are in good agreement, with the available

literature for y, =0and y, =1.0(Satyamurty and Bhargavi [158] and chapter 2, § 2.5).

Table 5.4: Comparison of Numerical Values of 6’W —0 with Analytical Values (Chapter 2) of 6’W —0 at

Fully Developed Length X = 0.4.

Da =0.005 Da =0.050
7p Numerical value | Analytical value | Numerical value | Analytical value
0.0 0.2425 0.2428 0.2425 0.2428
0.2 0.2562 0.2566 0.2444 0.2447
0.4 0.2853 0.2858 0.2498 0.2501
0.6 0.2993 0.2999 0.2519 0.2522
0.8 0.2632 0.2636 0.2451 0.2454
1.0 0.2039 0.2037 0.2325 0.2326
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Plots of non dimensional wall temperature 6, against porous fraction y, for X "=

0.00005, 0.00500, 0.05000, 0.10000 and 0.20000 is shown in Figs. 5.5(a) and 5.5(b) for

Da = 0.005 and Da = 0.050 respectively. From Figs. 5.5(a) and 5.5(b), €, increases as

X increases, for all porous fractions and for all Darcy numbers. From, Figs. 5.5(a) and

5.5(b), it is observed that non dimensional wall temperature &, increases up to a certain

porous fraction and then it decreases for all X" values. It is true for both the Darcy

numbers Da = 0.005 and 0.05. As Darcy number increases, non dimensional wall

temperature 6, is almost constant with porous fraction, y, for all X" values, which can

be observed from Fig. 5.5(b).
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Fig. 5.5: Non dimensional wall temperature l9w with porous fraction » for different X" for (a) Da = 0.005
and (b) Da = 0.05.
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5.4.3 Local Nusselt Number

Variation of the local Nusselt numbers, Nu, with X " for different Darcy numbers, Da =

0.001, 0.005, 0.010, 0.050 and 0.100 and for different porous fractions y,= 0, 0.2, 0.4,

0.6, 0.8 and 1.0 is shown in Figs. 5.6(a) to 5.6(f). From Figs. 5.6(a) to 5.6(f), It can be
observed that the local Nusselt number Mu,, decreases as X" increases, for all porous
fractions and for all Darcy numbers. This fact is well known (Nield et al. [57],
Satyamurty and Bhargavi [158] and Pavel and Mohammad [187]) for the channel fully

filled with porous and clear fluid regions, as also for different arrangements of porous

inserts in channels. From, Figs. 5.6(b) to 5.6(d), it is observed that local Nusselt number

Nu,, increases as Darcy number, Da increases at any X *. But, for 7, =0.8 and 1.0 {Figs.
5.6(e) and 5.6(f)}, Nu, decreases as Darcy number, Da increases. This is may be due to
the fact that the porous region is dominating in a channel partially filled with a porous

medium at high porous fractions. This fact is given in chapter 2, § 2.5 for fully developed

Nusselt numbers. Also, as Darcy number increases, Nu, , for a fully filled porous
medium {Fig. 5.6(f)} is the same as Nu, for clear fluid channel {5.6(a)}, which is

independent of Darcy number. This means at higher Da, the porous region behaves like a
clear fluid region. Comparison between analytical and numerical values of fully
developed Nusselt numbers is shown in Table 5.5 for all porous fractions and at Da =

0.005 and 0.050. From Table 5.5, it is found to be in good agreement, and also with

those{y, =0 and y, =1.0} values available in the literature.
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Table 5.5: Comparison between Numerical Values of Nusselt numbers with Analytical Values (Chapter 2)

of Nusselt numbers at Fully Developed Length X ™= 0.4.

Da = 0.005 Da =0.050
Yy Numerical value | Analytical value | Numerical value | Analytical value
0.0 8.2420 8.2352 8.2420 8.2352
0.2 7.8022 7.7939 8.1780 8.1715
0.4 7.0065 6.9962 8.0018 7.9945
0.6 6.6787 6.6681 7.9346 7.9272
0.8 7.5938 7.5869 8.1544 8.1483
1.0 9.8087 9.8155 8.5991 8.5968

A comparison of the present values of Nu_ for clear fluid channel(7, =0) with

the values available in Shah and London [18], p. 181 are given in Table 5.6. The present

results shown in Table 5.6 are obtained after neglecting axial conduction. The agreement

of the present values with experimental values is good.

Table 5.6: A Comparison of the Present Values of Nu_ for the clear fluid channel (7, =0) with the

Values Available in the Literature

X 0.0004 0.0020 0.0080 0.0203 0.0402 0.1250 0.2000 0.3000 0.4000
Present 32.1560 | 19.1100 12.6100 9.9902 8.8040 8.2459 8.2356 8.2355 8.2353
Shah and
32.1530 | 19.1130 12.6040 9.9878 8.8031 8.2458 8.2353 8.2353 8.2353
London

5.4.4 Comparison with experimental results for y, = 1.0

Jiang et al. [188] conducted experimental investigation on heat transfer in parallel plate

channels filled with sintered bronze. The dimensional heat transfer coefficients for water

and air systems have been presented at different Reynolds numbers. This type of

comparison is available in Bhargavi [186].
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The dimensional graphical results available in Fig. 5(a) of Jiang et al. [188] have

been converted to correspond to the present non-dimensional system as follows.

Nu=h(2H)/ker; X "= X/D.Pe, where Pe the Peclet number is the product of Re, as
given in Jiang et al.[188] and the Prandtl number for water is taken as 7. D, has been
taken as 0.02 m and k, has been taken as 2.012 W/(m C), as given in Table 3 of Jiang et
al. [188]. The Peclet numbers for the experimental conditions of Jiang et al. [188] ranged
from 910 to 17675 for water system. Regardless of the conditions very near the entry, the
Peclet number range allows neglecting the axial conduction in the energy equation; even
if included, there is no much difference in the numerical values. A comparison of Nu,, for
Da = 0.005 with the values obtained in the present computations is shown in Fig. 5.7 for
water system. The agreement for the water system is good though the present numerical
prediction is an average of four different Reynolds numbers presented in Jiang et al.
[188]. The difference in the Nusselt number values between the present numerical values
and the experimental results of Jiang et al. [188] may be due to the assumption of fully
developed flows in the computations whereas, the flow is developing graphically in the
experiments which explains the dependence of the Nusselt number on the Reynolds

number even in a plot with X,
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The variation of Nu, with y, for different values of X" is shown in Figs. 5.8(a)

and 5.8(b) for Darcy numbers, Da = 0.005 and 0.050 respectively. It is observed that
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5.5 Conclusions

Laminar forced convection in the thermally developing region of parallel plate channels
partially filled with a porous material has been studied numerically. The parallel plates
have been subjected to constant wall heat flux. The flow field has been assumed to be
fully developed. Axial conduction is neglected in the conservation of the thermal energy
equation. The problem is characterized by the Darcy number, Da and the porous fraction,
7. Numerical solutions have been obtained for 0 <y, < 1.0 and Da = 0.001, 0.005, 0.010,
0.050, and 0.100, employing Successive Acceleration Replacement (SAR) scheme (
Ramjee and Satyamurty [15] and Satyamurty and Bhargavi [158]). When axial
conduction is neglected, Peclet number does not appear explicitly in the conservation of
the thermal energy equation expressed in terms of the normalized non-dimensional axial

distance X .

The non-dimensional temperature at the wall, 6, attains maximum value at a certain
porous fraction. With this feature, it is envisaged that the local Nusselt number at the wall
attains a minimum for some, 0 < y, < 1.0. In the context of constant wall heat flux
condition, this implies that the transfer of a given heat flux takes place with a lower

temperature difference between the wall and the fluid.

Non-dimensional bulk mean temperature, 0", increases as X increases. The values of the
local Nusselt numbers when the channel is a clear fluid channel and when the channel is
fully filled with a porous material agree well with the values available in Shah and

London [18] and Nield et al. [57 and 58]. The local Nusselt number Nu,,, decreases as X
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increases for all y, and Da, and reaches the fully developed values for X "=04. Nuy, is at
a minimum when y, = 0.6 at low Da = 0.005. Thus, there exists an optimum porous

fraction to attain minimum enhancement in the Nusselt numbers.
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Chapter 6
Effect of Axial Conduction in the Thermally Developing
Region of the Channel Partially Filled with a Porous
Medium: Constant Wall Heat Flux

6.1 Introduction

In this chapter, the effect of axial conduction on forced convection in a channel partially
filled with a porous medium subjected to constant wall heat flux, has been investigated.
The walls of the channel have been subjected to constant heat flux. In the studies
undertaken, it has been assumed that the flow field is fully developed. The flow field in
the channel partially filled with porous material is characterized by the Darcy number, Da
and the porous fraction, 7. In addition, the problem is characterized by the Peclet
number, Pe, when the axial conduction is included in the conservation of thermal energy

equation.

Numerical solutions for two dimensional energy equations in both the fluid and
porous regions have been obtained using successive accelerated replacement (SAR)
numerical scheme (Ramjee and Satyamurty [15], Satyamurty and Bhargavi [158] and

Jagadeesh and Satyamurty [179]). The effects of important relevant parameters on
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temperature, bulk mean temperature, temperature based on bulk mean temperature and

local Nusselt number have been studied.

6.2 Mathematical Formulation

The physical model and the coordinate system(refer to Fig. 5.1) are the same as those
considered in chapter 5, § 5.2. The usual assumptions of isotropic and homogeneous
porous medium, Newtonian fluid and local equilibrium have been made. The relevant
expressions for a fully developed velocity profile can be obtained in Egs. (2.26) and
(2.29) of chapter 2, § 2.3.

Governing Equations

In the present Chapter effect of axial conduction (F;) is considered and viscous
dissipation(F,) effects are neglected. i.e F; =1 and F, = 0. Substituting, F; =1 and F, =0
in Egs. (5.2) and (5.4) of Chapter 5 § 5.2, then the conservation of thermal energy

equations in fluid and porous regions respectively, given by,

Fluid Region:

ar k, (T, 07T, (6.1)
= +

"ox pCl ox* oy’

In Eq. (6.1), usis the velocity in the fluid region, T;is the temperature in the fluid region
p, Cp and ks are the density, the specific heat and the thermal conductivity of the fluid
respectively.

Porous Region:
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u =
P ox pC,

oT, kg (0°T, o°T, (6.2)
+
oxt oy’

In Eq. (6.2), uy is the velocity in the porous region, T, is the temperature in the porous

region and ke is the effective thermal conductivity of the porous medium. ket can be

calculated from Catton [21] as,

Kt =(1—0) k; +@ k; (6.3)

In Eq. (6.3), ¢ is the porosity and ks is the thermal conductivity of the solid in the porous

matrix.

Egs. (6.1) and (6.2), applicable for the fluid region and porous region

respctively, are subjected to the following boundary and interfacial conditions.

Boundary and Interfacial Conditions

oT, (6.4)
u,=0 ks —=q at y=-H/2
’ oy

U —u —u du,  du _ __H (6.5)

f=Up =W M dy = Hi dy at interface Y= > 5
H o (6.6)

To=T,=T,, Kk (aT,/oy)=ky (3T, /0y)  at interface y:—?+5p
du or 6.7
—1=-0,—=0 at y=0 {Symmetry boundary conditions} ©.7

dy oy

T, =T,=T, at x=0, —%g y <0 (Inlet condition) (6.:8)
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Q[T —TWJ H H (6.9)
2

=0 at ——<y<— {downstream condition}
x|\ T, -T, 2

Non-dimensionalization

Governing equations {Eqgs. (6.1) and (6.2)} are rendered non-dimensional by introducing
the following non-dimensional variables.

X=x/H, Y=y/H, U =u/uy, U=U/lu,, U,=ulu,, P=p/lpu’’

ref ! ref !

0; =(T; ~T)/I(QH /k;), 6, = (T, -T,)/(qH / k) (6.10)

In Eg. (6.10), X and Y are the non-dimensional coordinates. U and P are the non-

dimensional velocity and pressure. The subscripts f and p refer to fluid and porous

regions. 6,{ @, in the fluid region and 6, in the porous region}, is the non-dimensional
temperature. Urer is the average velocity through the channel. urs is related to u and u;,

and is given by,

‘%Jz“ . (6.11)
— J u,dy + J. u,dy |=U,
—H/2 _E+LP

In addition, the non-dimensional porous layer thickness y,, which shall be referred to as

porous fraction is defined by,

7, =I,/1H (6.12)
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On introducing the non-dimensional variables given in Eq. (6.10), the governing
equations for conservation of momentum and energy equations applicable in the fluid and
porous regions in non-dimensional form become,

Fluid Region

00, 1 09, 06, (6.13)

* 2 +
" ox Pe? ox*  oY?

In Eq. (6.13), Pe is the Peclet number and X" is the normalized X, defined by,

Pe=u,H/«; (6.14)

X*=X/Pe (6.15)

Porous Region

y 20 1(/% 1 0%, azepJ (6.16)

*:_ 2+
PoX” m| " Pe?ox”  oY?

In Eq. (6.16) , # are defined by,

n =K Ky (6.17)

When A, =1, in Egs. (6.13) and (6.16) axial conduction is included, and when A, =

0, axial conduction is neglected. When A, = 0, the solutions to Egs. (6.13) and (6.16)in
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terms of X~ do not depend on Pe. Egs. (6.13) and (6.16) are subjected to the following

boundary conditions.

Non-dimensional Boundary and Interfacial Conditions

; ,(0,Y)=0 for —%SY <0 {inlet condition} (6.18)
Wi 0% g a v 0 {symmetry condition} (6.19)
VI = iti
du du 6.20
U, =U,=U;, f=£ . atthe interface Y:-Luﬁ (6.20)
P dy g dy 2 2
6.21
0,=6,=0, %:1% at the interface Y:-Luﬁ (6.21)
o n oY 2 92
00 6.22
U,=0, —t=-—p at Y=-1/2 (6.22)
oY
66’2:03 80@ :eff 00 at X" > X'y for -1/2< Y < 1/2 {downstream (6.23)
oX oX oX
condition}

In Eq. (6.23), 6, is the non-dimensional temperature based on the bulk mean

temperature defined by
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T-T, 0 (6.24)

Further, the conditions given in Eq. (6.20) ensure the continuity of the velocity
and the shear stress as given in Bhargavi and Satyamurty [108] and Satyamurty and

Bhargavi [158] at the interface.

6.3 Numerical Scheme: Successive Accelerated Replacement

(SAR)

Numerical solutions to Egs. (6.13) and (6.16) along with the boundary conditions on &
given in Egs. (6.18) to (6.23) have been obtained employing the successive accelerated
replacement (SAR) scheme as described in Ramjee and Satyamurty [15] and Satyamurty
and Bhargavi [158]. This iterative scheme was originally derived to solve systems of non-
linear algebraic equations by Lieberstein [168], these equations being mildly nonlinear
elliptic partial differential equations. This scheme has been used extensively to solve
nonlinear ordinary differential equations arising in compressible flows Lew [167] and
Dellinger [169]. The scheme is basically the Gauss Siedel Successive Over-relaxation

scheme, see, Antia [189]. The terminology of SAR has been used by Dellinger [169].

6.3.1 Application of the SAR Scheme

Non Uniform:
Non-uniform grids described in Chapter 5, § 5.3.3 have been employed in the axial

direction. Let MD and ND be the number of divisions in X and Y direction and AX and
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AY be the width in X and Y direction respectively. When the terms in energy Egs. (6.13)

and (6.16)are expressed in finite difference form, the errors 4, 8, are given by,

@(M.N)=uf(N){"f(“"’N)—9f<M —LN)}

X (M)=X (M —1)
(X(M =2)= X (M =2))6, (M, N)+(X (M —2)— X (M))6, (M ~1,N)
1| +(X(M)=X (M -1))g,(M -2,N)
Pe? (X(M)=X(M -1))’ (XM -1)— X (M —2))

(6.25)

6, (M,N +1)—26, (M,N)+6, (M,N 1)
B (AY)?

0,(M,N)-8,(M —1,N)}
X(M)=X (M -1)
(X(M =1)= X (M —2))8,(M,N)+(X (M =2) - X (M))6,(M 1 N)
1| +(X(M)=X(M-1))6,(M -2,N)
“Ape (X(M)=X(M 1)) (X(M-1)-X (M -2))

5p(M,N)=ﬂUp(N){

(6.26)

6,(M,N +1)-26,(M,N)+6,(M,N -1)
{ (AY)? }

To correct the profile for 6, and 6,, according to the SAR scheme, the following

derivatives become necessary

00,(M,N) U (N) A 1 L2 (6.27)
06, (M,N) ~ X(M)=X(M-1) " pe?[X(M)-X(M-D] (AY)’

00,(M,N) U, (N) A 1 L2 (6.28)
06,(M,N)  X(M)=X(M-1) " pe?[X(M)-X(M-1] (AY)’

Boundary conditions:
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40, (M,N -1)-6, (M,N -2) ND (6.29)

0,(M,N) = at N=—"+1
(M,N) 3 5

- 1 6.30
2n AY ep(M,N+32)+49p(M,N+) i N1 (6.30)

6,(M,N) =

Let NP be a grid number corresponding to the interface. It is assumed that the
interface coincides with one of the grid planes in the Y direction. When a large number of

ND's are used, the error involved is not likely to be significant even if the interface does

not exactly correspond to an integer NP. Boundary conditions given by Eq. (6.21) on 6,

and €p in finite difference form become,

y (6.31)
ef(M,NP)zep(M,NP) at NP= ?" ND +1
1 v, (6.32)
Hf(M,NP)=6’f(M,NP—1)+—[HP(M,NP+1)—0P(M,NP)] at NP= o ND +1
n
Inlet condition
v (6.33)
6,(0,N)=0 for 1<N< 7" ND +1
6.34
6,(0,N)=0 for (7/—2”jND+1SNS%+1 (6.34)
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The downstream boundary conditions {Eq. (6.23)} are expressed in finite difference

form as follows

0" (MD +1){[1+ (AX o, / AX )6, (MD,N) - 6,(MD -1, N)} ~

0, (MD+1,N) = - - i *
p {[L+(AX o, | AXyyp 1) 6" (MD) - 6" (MD - 1)}
forL<N< NP for X" > X,
(6.35)
0, (MD+1,N) = 0*(MD+1){[1+(AX;D—2 I AX o 1)]*0; (MD,N) -6, (MD -1, N)}
S fIL+ (X /X )6 (MD) -6 (MD -1}
for NP<N< ND for X" > X,
Further, in Eq. (6.35), /
AXy =X (M +1) - X"(M) (6.36)

When the axial conduction is neglected, i.e., A; = 0 in Egs. (6.13) and (6.16), the
condition given by Eq. (6.35) need not be applied since the governing equations become
parabolic. Several numerical trials have been made to establish grid independence,
suitable number of grids in X~ and Y directions, error tolerence, & and acceleration factor,
. Numerical trials are given in chapter 5. @ < 1 has been chosen, lower values being
associated with higher Pe. & = 10”, Xy = 0.4, MD = 1000 and ND = 90 have been found

to be satisfactory.
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6.3.2 Local Nusselt Number
The heat transfer coefficient hy,, at the plate y=—H /2 adjacent to the porous medium is

defined by

dT, (6.37)
_keff d_y |y: B E: hpx (TW _Tb)

2

Upon non-dimensionalizing (using Eq. (6.10)), the Nusselt number at Y =-1/2 , Nuy is
given by

Ch,(@H) 2 (6.38)
Tk, 6,-0

w

Nu

6.4 Result and Discussion

It has been assumed that & = us /luer = 1 and n = ki /ker = 1. Numerical solutions to the
conservation of thermal energy equation applicable in the porous and fluid regions
employing the fully developed velocity profile have been obtained for 0< y, < 1.0, Pe
=5, 10, 25, 50 and 100 and Da = 0.001, 0.005, 0.01, 0.05 and 0.1 by the successive
accelerated replacement (SAR) scheme which has been extensively used for this class of

problems (Ramjee and Satyamurty[15] and Satyamurty and Bhargavi [158]).
6.4.1 Thermal Field

Variation with porous fraction yy:

Non-dimensional temperature in excess of wall temperature, 6, -6,,6, — 0, , profiles at

different axial locations for Da = 0.005 and Pe =5, 100 are shown in Figs. 6.1(a) to 6.1(f)

and Figs. 6.2(a) to 6.2(f) for y, = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 respectively. It can be
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noticed that 6, —6,,6, — 0, profiles are symmetric about Y = 0 when y, = 0 and y, = 1.0,

in (a) and (f) of Figs. 6.1 and 6.2. From Figs. 6.1(a) to 6.1(f) and 6.2(a) to 6.2(f), as X

increases, 6, -6, , 6, —0; increase in both the fluid and porous regions for all porous
fractions. If X" is large (say, = 0.4) and the Peclet number is large too say, Pe > 100,
6,—0,, 6,—0, tend to fully developed profiles for all porous fractions and Darcy
numbers, as given in chapter 2. From Fig. 6.2(a){for y, =0} and 6.2(f) {for y, =10}
for large X~ (say = 0.4), 6,—06, tends to be fully developed profiles given in Kays,

Crawford and Weigand [185].

Variation of @ profiles with Peclet number, Pe :

The non-dimensional temperature in excess of wall temperature 6, —6,,6, —6; profiles

at different axial locations for Da = 0.005 and y, = 0.4 are shown in Figs. 6.3(a) to 6.3(f)
respectively, for Peclet numbers, Pe = 5, 10, 25, 50, 100 and A; = 0, i.e., when axial
conduction is neglected. From Fig. 6.3, as X_ increases, 6, -0, , 6, —0; increase in both
the fluid and porous regions for all Peclet numbers. Fig. 6.3(e) {Pe = 100} and Fig. 6.3(f)
{ A. = 0} are almost identical except for very small X" values, indicating that the effect of

axial conduction is negligible when Pe > 100. That is, if X" is larger (say, = 0.4), 6,0,

6, -0, tend to be fully developed profiles, as given in chapter 2, § 2.5 when Pe > 100.
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Non dimensional temperature based on bulk mean temperature:

6, {the non-dimensional temperature based on bulk mean temperature defined by Eq.
(6.24)} profiles at different axial locations are shown in Figs. 6.4(a) to 6.4(f) for y, =
O{the clear fluid channel}, 0.2, 0.4, 0.6, 0.8 and y, = 1.0{the channel fully filled with

porous material}, for Da = 0.005, Pe = 25 . As noted with reference to 6, -6, ; profiles

in Figs. 6.1 and 6.2, 6, profiles are also symmetric about Y = 0, for two cases of the clear
fluid channel (y, = 0) and the channel fully filled with the porous material(y, = 1.0). 6 is

dependent on the Darcy number and approaches that of clear fluid profile for large Da.

For y,#0and 1.0, 6, profiles are not symmetric about Y = 0. Axial conduction effect
decreases for larger X', where 6, profiles are almost the same for all Pe. The plots in Fig.

6.4 also confirm that 86, /0X — 0 for large X,

6.4.2 Non Dimensional Bulk Mean Temperature
Non dimensional bulk mean temperature in excess of wall temperature, 6, —6" with X,

for different Peclet numbers, Pe =5, 10, 25, 50 and 100 for Da = 0.05 for y, =0, 0.2, 0.4,

0.6, 0.8 and 1.0 are presented in Figs. 6.5(a) to 6.5(f). From Fig. 6.5, the effect of Peclet
number can be accessed. For all X', §,—6" is lower for lower Pe. The effect of axial
conduction thus results in the fluid getting less heated or less cooled. From Figs. 6.5(a)

to 6.5(f), as X increases, g,—0 increases for all Peclet numbers and porous fractions.

As Peclet number increases, 6, —6" increases with X values for all porous fractions.
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6.4.3 Local Nusselt number
6.4.3.1 Comparison and Experimental Validation:

Table 6.1: A Comparison of the Present Values of Nu,, for Peclet number, Pe =100 for the Clear Fluid
Channel (y, = 0) with the Values Available in the Literature [18].

*

X 0.002 | 0.008 0.02 0.04 | 0125| 0.2 0.3 0.4

Present 20.732 | 12.859 | 10.063 | 8.832 | 8.249 | 8.236 | 8.235 | 8.235

Shah and London [17] | 19.113 | 12.604 | 9.988 | 8.803 | 8.246 | 8.235 | 8.235 | 8.235

A comparison of the present values of Nup for clear fluid channel(y, =0) with the

values available in Shah and London [18] is given in Table 6.1. The present results

shown in Table 6.1 are obtained for Pe . The agreement of the present values with the

values in literature is good. A comparison of the present values of Nuy for y, =1.0 with

the experimental results available in chapter 5 is also given in Fig. 5.7 of chapter 5 for the

case of axial conduction neglected.

Variation of Nupy with X" for Darcy number, Da = 0.001 is shown in Figs. 6.6(a)
to 6.6(f) for all porous fractions, y, = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, for the different Peclet
numbers, Pe. Similar plots are given in Figs. 6.7(a) to 6.7(f) for Darcy numbers, Da =
0.01. The trends in the variation of Nug with X" for the channel partially filled with
porous material are similar to the well reported trends for channels with clear fluid flow
or channels fully filled with porous material. From Figs. 6.6(a) to 6.6(f) and Figs. 6.7(a)
to 6.7(f), as Pe increases, Nuyy decreases with X" for all porous fractions. As X" increases,
Nuyx decreases for all Peclet numbers and porous fractions. For all X”, Nuy, is lower for
higher Pe. The features that (i) Nupy decreases as X" increases and reaches the fully
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developed values (i) Nupy is higher at lower Peclet numbers, (iii) Axial conduction
effects are negligible for Pe > 100, are displayed. In addition, when y, # 0 or y, # 1.0,
Nupx tends to different constant values for large X". These values obviously differ from
the fully developed values for the clear fluid channel and the channel fully filled with
porous material. Further, it can be expected that the fully developed values of Nup
depends on the porous fraction and Darcy number because of the coupling between the
porous and clear fluid regions. It has been found that Nup,, — 8.2353 for Da > 0.1, i.e,,

the channel behaves like a clear fluid channel.

Effect of Axial Conduction

The plots of Nupy Vvs. X" and Nupx vs. X are shown in Figs. 6.8(a) and 6.8(b) for different
Peclet numbers Pe = 5, 10, 25, 50, 100 and A; = 0 for Da = 0.05 and y, = 0.2. Plots of
NUpx VS. X" and Nupx vs. X are shown in Figs. 6.9(a) and 6.9(b) for different Peclet
numbers Pe =5, 10, 25, 50, 100 and A; = 0 for Da = 0.05 and y, = 0.8. From Figs. 6.8 and
6.9, Nup,, increases as Pe decreases at a fixed X', whereas, Nuy, decreases as Pe decreases

at a fixed X= X".Pe. This feature is similar to that followed by clear fluid channel.

186



3CXJ'I'I'I'I'I'I'|_I_I'I'I'I'I'I'I'| T IIIIIIT| T IIIIIIT'_ 300'I'I'I'I11'|_I_I'I'I'I'I11'|_I_I'I'I'I111'|_I_I'I'I'I'I11'|_

250~ ———Pe=5 _ 250 ——Pe=5 _
Pe=10 - — Pe=10 i

200 200} . ----Pe=25|
y S N —-— Pe=50| |
2 150 2 1501\ °, —--—Pe=100
100 100" ;/p=O.2, Da=0.001 _

50 50
0 0.0001 0.0010 0.0100 0.1000 0 0.0001 0.0010 0.0100 0.1000
X X
(@) (b)
3u)'I'I'I'I'I'I'|_I_I'I'I'I1TI'| T |||||IT| T |||||I1'|_ 30O'I'I'I1TI'|_I_I'I'I'I1TI'|_I_I'I'I'I'I'I'I'|_I_I'I'I'I1TI'|_
250 —Pe=5 | _] 250 ——Pe=5 | _|
A - — Pe=10| _ - — Pe=10 4
20012 ----Pe=25| _| 200, ----Pe=25| _
s I —-—Pe=50| | N —-—Pe=50| -
2150y —--=Pe=100 - 2 150k ¢, \ —--=Pe=100 -
[\

%=04, Da=0001_] %06, Da=0001 ]

50

0 0.0001 0.0010 0.0100 0.1000

X

(©
3cx-)'I'I'I'I'I'I'|_I_I'I'I'I1TI'| T |||||I'I'| T |||||I1'|_
250 —Pe=5 _
:‘ \ - = Pe=10 i
200k * ----Pe=25| _]
= b‘\“‘ _'_Pe=50 -
2 150\ —--—Pe=100 —

%=0.8, Da=0001 _

©

Fig. 6.6: Variation of Nusselt number, Nu,, with X" values for different Peclet numbers, Pe and Da = 0.001

for @y,=0 (b)y,=0.2 (c) ,=0.4 () y,=0.6 () »,=08and (f) y,=1.0.
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Fig. 6.9: Variation of (a) Nupx vs. X (b) Nup vs. X for different Peclet numbers, Pe and Da = 0.05 for
7,=038.

To examine further, a plot of Nup, with y, for different Da values at (a) X"
0.005, (b) X" = 0.01, (c) X" = 0.05 and (d) X" = 0.1 for Pe = 5 and 50 are shown in Fig.

6.10 and Fig. 6.11 respectively.
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It is clear from Figs. 6.10 and 6.11, that the variation of Nup, with y, depends on
Da. Nupy clearly increases as Da increases when y, < 0.8, whereas for y, > 0.8, Nupy
decreases as Da increases. Nupy, decreases as Da increases for y, = 1.0, becoming equal
to the clear fluid channel value for large Da. This fact is observed in thesis of Bhargavi
[186] for different channel geometry in Chapter 3. Also, Nupy decreases as Pe increases
with porous fraction, y, for all Darcy numbers. The minimum value of Nup, depends on

Da but is independent of Pe and X".

44 T I T T T T I T 30 T I T T T T T I T
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(©) (d)
Fig. 6.10: Variation of Nuy, with y, at (a) X" = 0.005 (b) X" = 0.01 (c) X" = 0.05 and (d) X" = 0.1 for Pe =5

at different Darcy numbers.
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Fig. 6.11: Variation of Nuy, with y, at (a) X" = 0.005 (b) X" =0.01 (c) X" =0.05 and (d) X" = 0.1 for Pe =

50 at different Darcy numbers.

6.5 Conclusions

The effect of axial conduction in the thermally developing region of parallel plate
channels partially filled with a porous material has been numerically studied. The parallel
plates were subjected to constant heat flux. The flow field has been assumed to be fully
developed. The problem is characterized by Darcy number, Da, Peclet number, Pe, and

the porous fraction, 3. Numerical solutions have been obtained for 0< % <1.0, 5 <Pe <
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100 and Da = 0.001, 0.005, 0.01, 0.05 and 0.1, employing successive acceleration
replacement (SAR) scheme (Ramjee and Satyamurty [15] Satyamurty and Bhargavi
[158]). When axial conduction is neglected, Peclet number does not appear explicitly in
the conservation of thermal energy equation expressed in terms of the normalized non-

dimensional axial distance X".

It has been concluded that the non-dimensional temperature profiles become
independent of the Peclet number for Pe > 100 indicating that the effect of axial

conduction has become negligible. The downstream condition satisfied by the clear fluid

ducts, 86,/0X" — 0, has been found to be valid for parallel plate channels partially

filled with porous material also. This feature assumes importance since the flow and

thermal fields are not symmetric when the channel is partially filled with porous material.

Non-dimensional bulk mean temperature excess of wall temperature, 6, -6, increases

as X increases. §,—6" decreases as Peclet number decreases. This indicates that a

stronger axial conduction effect present at lower Peclet numbers makes the fluid get less

heated or less cooled compared to when axial conduction is neglected.

The values of the local Nusselt numbers when the channel is a clear fluid channel
agree well with the values available in Shah and London [18]. The local Nusselt number
Nupx decreases as X increases for all 7 and then reaches as the fully developed values for
X" > 0.4. Similarly, Nupx increases as Pe decreases for a given X". However, at a given X,
Nupx decreases as Pe decreases. For Pe > 100, the axial conduction effect becomes

negligible except very close to entrance.
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Nupx is @ minimum when j = 0.6 at low Da = 0.001 increasing to » = 0.8 when
Da = 0.1. Nupy attains a minimum almost independent of Peclet number and X". Thus,
there exists an optimum porous fraction to attain deterioration in the Nusselt numbers. In
the context of constant wall heat flux condition, this implies that transfer of a given heat

flux takes place with higher temperature difference between the wall and the fluid in the

present channel geometry.
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Chapter 7
Effect of Viscous dissipation and Axial Conduction in
the Thermally Developing Region of the Channel
Partially Filled with a Porous Material Subjected to
Constant Wall Heat Flux

7.1 Introduction

Studies on steady two-dimensional laminar forced convection in hydrodynamically
developed and thermally developing flow between parallel plates partially filled with the
porous material including viscous dissipation have been presented in this chapter. The
channel walls have been kept at constant wall heat flux. The non-dimensional governing
conservation of thermal energy equations {same as Eqs. (6.13) and (6.16) of Chapter 6}
in the fluid and porous regions are elliptic when axial conduction is included. The non-
dimensional temperature profiles in the conduction limit obtained in Chapter 4 are used

as the downstream boundary condition needed to solve the governing equations.

In this chapter, numerical solutions to the governing conservation of thermal
energy equation including dissipation and axial conduction in the fluid and porous
regions have been obtained employing the SAR {Ramjee and Satyamurty[15] and
Satyamurty and Bhargavi [158]} scheme. The solutions have been obtained with and

without axial conduction terms for 0< y, < 1.0, 0.005 < Da < 0.01, Pe = 5, 25, 100 and
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—1.0 < Br < 1.0. The influence of dissipation at different porous fractions, Darcy numbers

and Peclet numbers on local Nusselt numbers has been studied.

7.2 Mathematical Formulation

With reference to the physical model already described in Chapter 5 (Fig. 5.1, § 5.2), the
governing equations in non-dimensional form for the temperature, including dissipation
and axial conduction in the fluid and porous regions in non-dimensional form are given
below. Two dissipation functions, i) due to Bejan [49] commonly referred to as, Darcy
model and ii) due to Al-Hadhrami, Elliott and Ingham [135 and 136], referred to as, clear
fluid comparable model have been evaluated. The assumptions are that & = u;/uer = 1 and
n = kil ket = 1 have been made.

Governing Equations

In the present Chapter effects of axial conduction (F;) and viscous dissipation(F;) effects
are considered. i.e F; =1 and F, = 1. Substituting, F; =1 and F, =1 in Egs. (5.2) and
(5.4) of Chapter 5 § 5.2, then the conservation of thermal energy equations in fluid and

porous regions respectively, given by,

Fluid Region:
aT, o, O°T, du, Y’
pC U, ™ =K, PV + Y + U d_y (7.2)

In Eq. (7.1), Ts is the temperature in the fluid region p, C, and ks are the density, the

specific heat and the thermal conductivity of the fluid respectively.
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Porous Region:

pC U %=kﬁ oT, +62Tp + O (7.2)
p=p 8X € aXZ ayZ i

In Eq. (7.2), @, is dissipation model, for i =1, the Darcy model due to Bejan [49], for i

= 2, clear fluid compatible model due to Al-Hadhrami et al. [135 and 136] given by,

Darcy model:

He
q)l :?Up (73)

Clear fluid compatible model:

2
(D2 :ﬂup2 +/Llf (_pj (74)

In Eq. (7.2), T, is the temperature in the porous region and ke is the effective thermal

conductivity of the porous medium. ke can be calculated from Catton [21] as,

ke =(@—9) k, +o k; (7.5)

In Eq. (7.5), ¢ is the porosity and ks is the thermal conductivity of the solid in the porous
matrix.

Boundary and Interfacial Conditions

ot (7.6)
u =0 —k,—2=q at y=-H/2

p

du du; H | (7.7)
-V = at interface Y=—?+E
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H | (7.8)
To=T,=T,, k(T /oy)=ky (3T, /0y)  at interface y:—?+5p

du, oT, -
—=0,—=0 at y=0 {Symmetry boundary conditions}

Inlet condition is:

' 7.10
T,=T, at x=0, Hoye BS (7.10)
2 2
! 7.11
Tf:Te at x=0, —i+_pgyso ( )
2 2
(7.12)

oI, =0at _H <y< H {downstream condition}
ox\ T, -T, 2 2

Non-dimensionalization

Governing equations {Egs. (7.1) and (7.2)} are rendered non-dimensional by introducing
the following non-dimensional variables.

X=x/H, Y=y/H, U, =u, /u,, U =u/u,, U,=u/u.;

P=plpu’ .6, =T, -T)I(qH /k,),0,=(T,-T,)/(qH /k,) (7.13)
In Eqg. (7.13), X and Y are the non-dimensional coordinates. U and P are non-dimensional

velocity, and pressure. The subscripts f and p refer to fluid and porous regions. 6,{ 6, in
the fluid region and &, in the porous region}, is the non-dimensional temperature. Ures is

the average velocity through the channel. ur is related to u and u; by,
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I
_H.h

2 2 2 0
“ leupdy+ HII u.dy [=U, (7.14)
'

In addition, the non-dimensional porous layer thickness y,, which shall be referred to as
porous fraction is defined by,

vy =1p/H (7.15)

when the channel walls are subjected to constant heat flux. Peclet number can be
absorbed by defining
X*=X/Pe (7.16)
On introducing the non-dimensional variables given by Eq. (7.13), the governing
equations for energy applicable in the fluid {Eq. (7.1)}and porous {Eqg. (7.2) } regions in

non-dimensional form become,

Fluid Region

00, 1 %6, %, du, \’ (7.17)
i ~ = 3 -+ > + br

X" Pe?ox” oY dy

In Eq. (7.17), Pe, Peclet number and Br, Brinkman number are defined by,

Pe=u,H/a,, Br=pu.,*/qH (7.18)

ref

when Br > 0 implies that, the fluid is getting cooled while Br < 0 represents the fluid is

getting heated.
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Porous Region

00 1( 1 0%, azepjﬂj (7.19)

U —%r== "+
POX" nl Pe*ax”  oY?

In Eq. (7.19), ¥, is non-dimensional dissipation model given by,

Darcy model:

Br
Y =—U? 7.20
' Da " (7.20)

Clear fluid compatible model :

U2 (du,Y
‘P2=Br D—a+ d_Y (721)

In Eq. (7.19) , ¢ and # are defined by,

n =K kg (7.22)

Non-dimensional Boundary Conditions
The boundary and interfacial conditions given by Egs.(7.6) to (7.12) assume the

following non-dimensional form (using Eq.(7.13))

i 00, (7.23)
Gy gy t0 et Y=0
du du 7.24
U, =U,=U, 1% at the interface Y=_l+ﬁ (7.24)
P dY & dY 2 2
00 00 .
6,=0,-6, 1% atneinterface Y =-2472 (7.25)
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00 7.26
U =0, —L=—p at Y=-1/2 (7.20)
oY

p

Inlet conditions

1 1y

6.(0Y)=0 for —=<y<-—+-°% 7.27

,(0,Y) 5 515 (7.27)
1 7,

6,0)=0 for —>+7b<y <0 (7.28)

00 = 90s 015 00 x> X'y for-12<Y <12 (7.29)

oX oX 0 oX

In Eq. (7.29), 6, is the non-dimensional temperature based on the bulk mean
temperature defined by

(7.30)

7. 3 Numerical Scheme: Successive Accelerated Replacement

(SAR)

In order to obtain numerical solutions to Egs. (7.17) and (7.19), as per the SAR [15 and
158] scheme, (described in § 6.3 of Chapter 6 in detail), the required finite difference
expressions and the derivatives have been written similar to Eqgs. (6.13) and (6.16) of
Chapter 6, 8 6.3, with the additional terms arising due to viscous dissipation, associated
with the Brinkman number, Br in Egs. (7.17) and (7.19). The number of grids in the axial

and normal directions, MD and ND have been chosen as 1000 and 90 respectively as
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indicated in Chapter 5. The axial distance needed X, for the thermal field to reach the
conduction limit, has been divided into MD divisions. AX , the non-uniform grid in the

axial direction has been generated according to Eq. (5.50), 8§ 5.3.3 of Chapter 5 and AY =
1/ND. Further, the error tolerance limit, & = 10> and acceleration factor as per Egs.

(5.53) and (5.54), § 5.3.3, have been factored in the equation.

Egs. (2.26) and (2.29), § 2.3.1, Chapter 2 have been used to calculate the fully
developed velocities in the fluid and porous regions. Numerical solutions have been
obtained for, 0.001 <Da<1.0,y,=0,0.2,0.4,0.6,0.8 and 1.0,— 1.0 < Br < 1.0 and Pe =
5, 50, 100 and neglecting axial conduction (designated by A. = 0) for the two dissipation
models, [49, 135 and 136]. The number of combinations of the parameters is very high;
detailed computations have been performed and the results are available with the
researcher. However, only select results that are needed to bring out the features arising

out of including viscous dissipation have been included.

7. 4 Result and Discussion

7.4.1 Channel fully filled with porous medium

Non-dimensional temperature Profiles

The influence of viscous dissipation can be evaluated using non-dimensional temperature
in excess of wall temperature, 6, —6, profiles available in Chapter 6, § 6.4.1, {e.g., Fig.

6.1(f) and Fig. 6.2(f)} with the profiles obtained in the present chapter with the two

different dissipation models.
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Non-dimensional temperature in excess of wall temperature, 6, —6, profiles for
Da = 0.005 and y,=1.0 at different axial locations, X" for (a) Br=-0.5 and (b)

Br =0.5 for the Darcy model are shown in Fig. 7.1 for Pe =5 and in Fig. 7.2 for Pe =
100 respectively. Similarly, Non-dimensional temperature in excess of wall temperature,
6, — 0, profiles for Da = 0.005 and y, =1.0 at different X° for (a) Br=-0.5 and (b)

Br =0.5 for the clear fluid compatible model are shown in Fig. 7.3 for Pe =5 and in

Fig. 7.4 for Pe = 100 respectively.

The non-dimensional temperature in excess of wall temperature, 6, —6, profiles

for y, = 1.0 obtained using Darcy model [49] given in Figs. 7.1 and 7.2 {Eq. (7.20)
applied for— 0.5 < Y < 0 because of symmetry of the channel} are not similar to those

shown in Figs. 7.3 and 7.4 for clear fluid compatible model [135 and 136]{Eq. (7.21)}.

The difference in the 6, -6, profiles for the two dissipation models can be found even

when Da is high. The difference in the profiles shown in Figs. 7.1, 7.2 and Figs. 7.3, 7.4
emerge from the dissipation function employed, for the Darcy model and the clear fluid

compatible model.

It is clear that Pe = 5 (lowest of the values computed) represents the strongest

axial conduction effect while Pe = 100, shows almost negligible axial conduction effect.
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On examining Figs. 7.1 and 7.2 for the Darcy model and Figs. 7.3 and 7.4 for

clear fluid compatible model, the following conclusions emerge by comparing

(6, —ep)mo with (@, —ep)Brzo {Chapter 6},

(0.-6,), ,>(0.-06,) , ad (6,-6,) <(6,-6,) . (7.31)
The relation given in Eq. (7.31) is satisfied for Darcy model.

(6.-6,), <(6.-6,) , ad (6,-6,) >(6,-6,), (7.32)

The relation given in Eq. (7.32) is satisfied for clear fluid compatible model.

The limiting value of (9,-6,) . ie., (49W—6?pYCL)Br . {given in Chapter-4,

Br=0

EQs.(4.67), (4.69)} and the values of (ew_ep)mo at the entry region of the channel,

depend on the Brinkman number for both the dissipation models. As per our definition,

Br > 0 represents fluid getting cooled and dissipation prevents the fluid from cooling

down to wall temperature, leaving (HW—Bp)B , <0 Similarly when Br < 0, the fluid is

getting heated and the fluid exceeds the wall temperature making (HW —Hp)Br ,>0 for the

Darcy model. Whereas, in the case of clear fluid compatible dissipation model,

(6,-6,), >0 forBr>0 and (¢,-6,) <0 forBr<o.
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Fig. 7.1: Variation of non-dimensional temperature
excess of wall temperature 6, — 6, profiles for Da

=0.005 and y,=1.0 for Pe =5 at different X’
for (@) Br=-0.5 and (b) Br=0.5 for Darcy

model.

model.
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Fig. 7.2: Variation of non-dimensional temperature
excess of wall temperature 6, — 6, profiles for Da

=0.005and y, =1.0 for Pe=100 at different X"
for (@) Br=-0.5 and (b) Br=0.5 for Darcy
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Fig. 7.3: Variation of non-dimensional temperature
excess of wall temperature 6, — 6, profiles for Da

=0.005 and y, =1.0 for Pe = 5 at different X’
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fluid compatible model.
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Fig. 7.4: Variation of non-dimensional temperature
excess of wall temperature 8, — Hp profiles for Da

=0.005and y, =1.0 forPe=100 at different X"
for (@) Br=-0.5 and (b) Br =0.5 for the clear



Plots of 6, -6, vs. Br are shown in Fig. 7.5 for (a) Darcy model (b) clear fluid

compatible model for Pe = 5, when axial conduction has been included at X~ = 0.0005 for

different Y = -0.4, -0.3, -0.2, -0.1 and 0.0 for Da = 0.005 for y, = 1.0. From Fig. 7.5,

6, — 0, does vary linearly with Br for both the models. This fact is also true when axial

conduction is neglected.
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Fig.7.5 : Variation of non-dimensional temperature excess of wall temperature 6, — Hp profiles vs. Br for

Da = 0.005 and 7o =1.0 for Pe = 5 at X" = 0.0005 for (a) the Darcy model and (b) the clear fluid
compatible model

Local Nusselt number

Variation of local Nusselt number with X for (@) Br< 0 and (b) Br >0 for the Darcy
model and the clear fluid compatible model are shown in Fig. 7.6 and Fig. 7.7
respectively for Da = 0.005 when the axial conduction is neglected (A; = 0).

From Figs. 7.6 and 7.7, it is apparent that Nupy displays an unbounded swing for

Br > 0 at, say, XSW for the Darcy model. On the other hand for the clear fluid compatible

model, Nup, displays an unbounded swing for Br < 0 atxzw. Nupx displays an

unbounded swing since the bulk mean temperature reaches the wall temperature and
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exceeds it because of viscous dissipation . This fact is the same in case of the clear fluid
channels (y,=0) . This fact is reported for y, =0 when channel walls are subjected to
constant temperature {Ramjee and Satyamurty[182] and Jagadeesh kumar [190]}. Also,

Nupx, increases as Br increases for the Darcy model when Br < 0. Whereas, Nupy,

decreases as Br increases for the clear fluid compatible model when Br >0.
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Fig. 7.6: Variation of local Nusselt number with X Fig. 7.7: Variation of local Nusselt number with X"
for y,=1.0and Da = 0.005 for (a) Br< 0 (b) for y, =1.0and Da = 0.005 for (a) Br< 0 (b)

Br >0 for Darcy model when axial conduction Br >0 for clear fluid compatible model when
neglected(A; = 0). axial conduction neglected(A. = 0).
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Variation of local Nusselt number with X~ for Da = 0.005 and 7, =1.0 for
different Peclet numbers, Pe = 5, 25 and 100 for (a) Br=-0.5 and (b) Br=0.5 are

shown in Fig. 7.8 and Fig. 7.9 for the Darcy model and the clear fluid compatible model

respectively.
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Fig. 7.8: Variation of local Nusselt number with X* Fig. 7.9: Variation of local Nusselt number with X"
for Da = 0.005 for different Peclet numbers, Pe at for Da = 0.005 for different Peclet numbers, Pe at

(@) Br =—0.5 (b) Br = 0.5 for Darcy model. @ Br=-0.5 (b) Br=0.5 for the clear fluid
compatible model.
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From Fig. 7.8 and Fig. 7.9, Nupy displays an unbounded swing, X:W for Br >0
for Darcy model. Whereas, for the clear fluid compatible model, Nuy displays an

unbounded swing, X, for Br < 0. For both the models, at low Peclet number, the value

of the Xg, is high. Also Nu,, decreases as Pe increases for Darcy model when Br < 0.

But for the clear fluid compatible model, Nuy, decreases as Pe increases when Br > 0.
This model is consistent with the clear fluid channel in the behavior of Nusselt number

with X~ for all Da and Pe.

7.4.2 Channel Partially filled with porous medium
Non-dimensional temperature profiles

Non-dimensional temperature excess of wall temperature profiles, 6,-6,,6, —6; for

Da = 0.005, Pe =5 and Br=-0.5, 0,0.5 at X = 0.005 for (a) y, =0.2 and (b) y,=0.8

are shown in Fig. 7.10 and Fig. 7.11 for the Darcy and the clear fluid compatible model

respectively.

On examining Figs. 7.10(a) and 7.10(b) for the Darcy model and Figs. 7.11(a) and

7.11(b) for the clear fluid compatible model, the following conclusions emerge by

comparing (ew—efyp)sr}‘o with (ew—efyp)Brzo {Chapter 6},

(0.-0; ), <(6,-06:,), , ad (6,-6,,) >(6,-6,,) . (733

(0.-6.,),  >(0,-06:,) , and (6,-0,,) <(6,-6,,) . (734
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The relations given in Eqs. (7.33) and (7.34) are valid for all porous fraction in the fluid

region and porous regions respectively for both the models.
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Fig. 7.10: Variation of non-dimensional temperature
excess of wall temperature 6, —6,,6, — 0
profiles for Da = 0.005 Pe = 5 and
Br=-0.5, 0, 0.5 at X" =0.005 for (a) 7, =0.2

and (b) 7, = 0.8 for Darcy model.

Fig. 7.11: Variation of non-dimensional temperature
excess of wall temperature 6, —6,,6, — 0
profiles for Da = 0.005 Pe = 5 and
Br=-0.5, 0, 0.5 at X" =0.005 for (a) 7, =0.2
and (b) y, =0.8 for the clear fluid compatible
model.
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Plots of 6, -6, , vs. Br are shown in Fig. 7.12 for the Darcy model and Fig. 7.13

for the clear fluid compatible model for Pe = 5, when axial conduction has been included

at X~ = 0.0005 for different Y = -0.4, -0.3, -0.2, -0.1 and 0.0 for Da = 0.005 for (a) Yo =

0.2 and (b) yp = 0.8. From Figs. 7.12 and 7.13, 6, —6, does vary linearly with Br for

both the models. This fact is true even when axial conduction is neglected.
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Fig. 7.12: Variation of non-dimensional
temperature excess of wall temperature

6,—0,,0,,—0, profiles vs. Br for Da =
0.005 for Pe = 5 at X" = 0.0005 for (a)
7, =0.2 and (b) 7, =0.8 for the Darcy

model.
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Local Nusselt Numbers

Variation of local Nusselt number with X~ for Da = 0.005, 7,=0.2 and Pe =5 for (a)

Br<0 and (b) Br>0 is shown in Figs. 7.14 and 7.15 for Darcy and clear fluid
compatible models respectively. Similarly, variation of local Nusselt number with X" for

Da = 0.005, y,=0.8 and Pe =5 for (a)Br<0 and (b) Br>0 is shown in Figs. 7.16

and 7.17 for Darcy and clear fluid compatible model respectively.

From Fig. 7.14 to Fig. 7.17, for both the models, Nup, reveals an unbounded

swing for Br < 0 at say, X:W. This unbounded swing X;W happens for the porous

fraction, y, <0.8. Also, for both the models, Nuyx decreases as Br increases when Br > 0
for the porous fractions with y, <0.8. As porous fraction increases, X4, increases for

the Darcy model. whereas X:W decreases as porous fraction increases in the clear fluid

compatible dissipation model,

212



125 . !

0.001

0,010
X

(@)

0.100

1

E

(b)

Fig. 7.14: Variation of the local Nusselt number with
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Fig. 7.16: Variation of local Nusselt number with X~ Fig. 7.17: Variation of local Nusselt number with X
for Da = 0.005, ¥, =0.8 and Pe =5 for (a) for Da = 0.005, y, =0.8 and Pe =5 for (a)

Br <0 and (b) Br >0 for Darcy model. Br <0 and (b) Br >0 for Clear fluid compatible
model.

Nusselt Number Changes with Porous Fraction

To examine the changes of the local Nusselt number with porous fraction, plots are given
at the entry locations of the channel. Variation of the local Nusselt number, Nupx with y,

for different Darcy numbers, Da = 0.005, 0.01 for Pe = 5 for Br =0.5 at (a) X = 0.0005
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and at (b) X "= 0.005 is shown in Fig. 7.18 for Darcy model. From Fig. 7.18, it is clear
that there is no maximum or minimum in local Nusselt number at a given porous fraction

other than »,, = 0 and 1.0. Hence we cannot have enhancement or reduction in the local

Nusselt number at a given porous fraction in the case of Darcy model.
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Fig. 7.18: Variation of local Nusselt number with Yo for different Darcy numbers, Da = 0.005, 0.01 and

Pe =5 at (a) X'= 0.0005 and (b) X"= 0.005 for Br = 0.5for the Darcy model.

Variation of the local Nusselt number, Nup, with y, for different Darcy numbers,

Da = 0.005, 0.01 for Pe = 5 for Br =0.5 at (a) X = 0.0005 and at (b) X = 0.005 is shown

in Fig. 7.19 for the clear fluid compatible model. It can be seen from Figs. 7.19(a) and

7.19(b), that the maximum value in local Nusselt number occurs at y, ~0.2 while the

minimum occurs in Nup for y, ~0.6. The minimum and maximum values do not

depend on the axial location of X
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Fig. 7.19: Variation of local Nusselt number with Vo for different Darcy numbers, Da = 0.005, 0.01 and
Pe =5at (a) X'=0.0005 and (b) X"= 0.005 for Br = 0.5 for the clear fluid compatible model.

7.5 Conclusions

Laminar forced convection including axial conduction and viscous dissipation in the
thermally developing region of parallel plate channels partially filled with porous
material has been numerically studied in the present chapter. The parallel plates have
been subjected to constant wall heat flux. The flow field has been assumed to be fully
developed. Two dissipation models, namely, a) Darcy model due to Bejan [49] and b) the
clear fluid compatible model due to Al-Hadhrami et al. [135 and 136] have been
employed in the porous region. The conventional dissipation function {see, Schlichting
and Gersten [137]} has been employed in the fluid region. Brinkman number, Br,
characterizes the viscous dissipation. As defined in the present thesis, Br > 0 represents

fluid getting cooled while Br < 0, indicates the fluid getting heated.
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Numerical solutions have been obtained employing the Successive Acceleration
Replacement (SAR) scheme [15 and 158] for both cases, after i) neglecting axial
conduction and ii) including axial conduction terms in the energy equation for Pe =5, 25
and 100. Ranges for the other parameters are 0< y, < 1.0, 0.005< Da < 0.01, and —1.0 <

Br<1.0.

Nusselt number displays an unbounded swing at some X = X, when Br < 0.

*

X.,, decreases as Br decreases, i.e., for larger negative values of Br. The limiting values

of the Nusselt numbers (for large X*) on the fluid and porous sides, Nupx are dependent on
Br for all Br # 0 in the developing region also. These limiting values depend on the
porous fraction too. Nuy,, decreases as X~ increases for all porous fractions when Br > 0.
Nupx, decreases as Br increases for all porous fractions when Br > 0. These results are
true for both the models when the channel is partially filled with porous material. When
fully filled with porous material channels, Nupy increases as Br increases for Br < 0 in
Darcy model. On the contrary, in the case of the clear fluid compatible model, Nupy,
decreases as Br increases for Br > 0. The qualitative behavior of Nuy, in the channels
partially filled with porous material (0 < y, < 1.0) and the channel fully filled with porous
material (y, = 1.0) for the clear fluid compatible model [Eq. (7.21)] is the same as that of

clear fluid channel (, =0). This fact is reported in { Ramjee and Satyamurty [182] and

Mohan Jagadeesh Kumar [190]} for ducts subjected to the constant wall temperature.
However, this qualitative behavior of Nuyy is not the same in the Darcy model when
compared with clear fluid channel. Hence clear fluid compatible dissipation model is

more suitable for porous region than Darcy model.
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Chapter 8

Summary and Conclusions

Flows and heat transfer through porous media find several applications in diverse fields
and circumstances such as compact heat exchangers, packed beds, aerosol transport,
geophysics, thermal insulation and heat storage oil and gas extraction, filtration of fluids
and seepage of water in river beds, movement of underground water and oil, seepage
under a dam, etc. Due to various applications of porous media, the effects of such media

on the motion of the fluid have been studied by many investigators.

The conditions to be satisfied at the porous-fluid interface for a class of problem
identified in the present study are dealt with here. Slip boundary condition walls were
first studied by Beavers and Joseph [37]. Later, Neale and Nader [39] extended this study
to include the effect of porous medium. Detailed literature survey on slip condition has
been given by Nield and Bejan [48]. Vafai and Kim [41] studied fluid flow in a duct

using Darcy Brinkman Forchheimer equation.

A general review of dissipation models applicable for porous media is available
in Nield and Bejan [48]. Five forms of the dissipation functions due to Bejan [49],
Takhar, Soundalgekar and Gupta [138], Murthy and Singh [139], Nield [140] and Al-

Hadhrami, Elliott and Ingham [135 and 136] are available in the literature for flow
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through porous media. After identifying the lacunae in the studies available in the
literature, pertaining to laminar forced convection in thermally developing region of

channels partially filled with porous material, the present study has been undertaken.

The flow field has been assumed to be fully developed governed by Poiseuille
equation in the fluid region and by Darcy-Brinkman equation in the porous region. The
walls of the channel have been subjected to uniform heat flux. The thermal field has been
considered to be developing. After examining the plausible forms for the dissipation
function for two-dimensional flow and thermal fields, in general, dissipation effect on the
thermal field and heat transfer has been examined. Two models, i) Darcy model [49] and
il) clear fluid compatible dissipation model [135 and 136] to describe dissipation have

been considered.

The following is a summary of the results of the studies and the conclusions
drawn in Chapters 2 to 7. Certain key points appearing in Chapters 2 to 7 have been

reproduced here for completeness.

Analytical or numerical solutions have been obtained in Chapters 2 to 7 of the thesis
for the following values of the parameters characterizing the different problems studied.
Porous fraction: y, =0, 0.2, 0.4, 0.6, 0.8 and 1.0. Darcy number: Da = 0.001, 0.005, 0.01,
0.05, 0.1 and 1.0. When magnetic field is considered, Hartman number: M =1, 2, 5 and
10. When axial conduction is considered, Peclet number: Pe = 5, 10, 25, 50 and 100.
When axial conduction is neglected, designated by A, = 0, Pe is absorbed in X~ and does

not appear explicitly. When viscous dissipation is included, the Brinkman number: Br =
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0, £0.5 and +1.0 and selected small values. Analytical solutions to governing equations
for the problems studied in Chapters 2, 3 and 4. Numerical solutions to the governing
equations for the problems studied in Chapters 5, 6 and 7 have been obtained employing
the Successive Accelerated Replacement (SAR) scheme. The methodology of SAR
scheme can be found in [15, 158 and 179]. The subject matter dealt with, in Chapters 2 to

7 is summarized below.

Fluid flow and heat transfer in parallel plate channels partially filled with porous
medium has been studied in Chapter 2, assuming there is fully developed flow and there
are temperature fields. The given amount of porous material has been distributed equally

at the two walls. The channel walls are subjected to constant wall heat flux.

Analytical expressions for the non-dimensional velocity and temperature profiles
in the porous and clear fluid regions have been obtained. From the velocity and
temperature expressions, the fully developed skin friction coefficients and the Nusselt
numbers on the porous wall have been obtained analytically. It has been shown that the
analytical expressions yield the standard values for a clear fluid channel and for fully
porous material filled channels when the porous fraction y, is equal to 0 and 1.0
respectively. The porous fraction where the minimum value of Nusselt number occurs

decreases as Darcy number increases.

The effects of forced convection and magnetic field for fully developed flow of

Newtonian fluid in a parallel plate channel partially filled with porous material have been
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studied in Chapter 3. Analytical solution has been obtained and closed form expressions
have been derived for velocity, skin friction coefficient and temperature profiles in the
porous and fluid regions and for the Nusselt number in the porous region. It has been
shown that the analytical expressions yield standard values for Hartmann number, M =0
{absence of the magnetic field)} for all porous fractions y, , 0 < y, < 1.0{Chapter 2}.
Nusselt number and the net change in the Nusselt number increase with Hartmann
number, M for all porous fractions, y,. Hence the effect of the magnetic field may be
considered to enhance the heat transfer in the channels partially filled with porous

medium.

Enhancement in the fully developed Nusselt number for parallel plate channel
flow subjected to constant wall heat flux and constant wall temperature with porous
inserts distributed equally at the two walls of the channel for the three dissipation models
has been studied at the conduction limit in Chapter 4. The three dissipation models,
namely, 1) the Darcy model [49], 2) form drag model [140] and 3) clear fluid compatible

model [135 and 136] in the porous region are employed in the porous region.

Case (i): Subjected to constant wall heat flux

Both the wall heating and wall cooling cases can be examined from the given plots for all
values of Brinkman numbers. Limiting temperature profile and limiting Nusselt number
plots are given and these depend on the Brinkman number for constant wall heat flux

boundary condition. Maximum value of Nusselt number and net change in the Nusselt

number occur only aty, =1.0. For small Darcy number, the difference between these
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models in limiting temperatures and limiting Nusselt numbers is negligible, but for larger
Darcy number, the difference is significant. Heat transfer enhancement is better in clear

fluid compatible model compared with Darcy and form drag model.

Case (ii): Subjected to constant wall temperature

It has been found that the non-dimensional temperature and the bulk mean temperature
when viscous dissipation is included are linearly proportional to Brinkman number at the
conduction limit. Nusselt numbers in the conduction limit have been found to be
independent of Brinkman number, a feature well reported for clear fluid channels, see
Barletta [4]. The three models that describe dissipation yield comparable Nusselt number
values when Da is small (say, Da < 0.01) for a channel partially filled with a porous

material also.

Laminar forced convection in the thermally developing region of parallel plate
channels partially filled with a porous material has been studied numerically in Chapter 5.
The parallel plates have been subjected to constant wall heat flux. Axial conduction is
neglected in the conservation of thermal energy equation. The non-dimensional
temperature at the wall, 6,, attains maximum value at a certain porous fraction. With this
feature, it is envisaged that the local Nusselt number at the wall attains a minimum for
some 0 <y, < 1.0. In the context of constant wall heat flux condition, this implies that
the transfer of a given heat flux takes place with a lower temperature difference between

the wall and the fluid.
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Effect of axial conduction in the thermally developing region of parallel plate
channels partially filled with a porous material has been numerically studied in Chapter 6.
The parallel plates have been subjected to constant heat flux. It has been concluded that
the non-dimensional temperature profiles become independent of the Peclet number for

Pe > 100 indicating that the effect of axial conduction has become negligible. Non-

dimensional bulk mean temperature in excess of wall temperature, 6, —8", increases as

X" increases. 6, —6" decreases as Peclet number decreases. This indicates that a stronger

axial conduction effect being present at lower Peclet numbers that makes the fluid less
heated or less cooled compared to when axial conduction is neglected. Nupy is a minimum
when 3 = 0.6 at low Da = 0.001 increasing to y ~ 0.8 when Da = 0.1. Nupy attains a

minimum almost independent of Peclet number and X

Laminar forced convection including axial conduction and viscous dissipation in
the thermally developing region of parallel plate channels partially filled with porous
material has been numerically studied in Chapter 7. The parallel plates have been
subjected to constant wall heat flux. Two dissipation models are employed in the porous
region. Brinkman number, Br, characterizes the viscous dissipation. As defined in the
present thesis, Br > 0 represents fluid getting cooled and Br < 0, shows fluid getting

heated.

Nusselt number displays an unbounded swing at some X = X, when Br < 0.

*

X.,, decreases as Br decreases, i.e., for larger negative value for Br. The limiting values

of the Nusselt numbers (for large X*) on the fluid and porous sides, Nupx are dependent on

Br for all Br # 0 in the developing region also. These limiting values depend on the
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porous fraction also. Nuy,, decreases as X~ increases for all porous fractions when Br > 0.
Nupx, decreases as Br increases for all porous fractions when Br > 0. These results are
true for both models when the channel is partially filled with porous material. For fully
filled channels with porous material, Nup, increases as Br increases when Br < 0 for
Darcy model. On the other hand, in the case of clear fluid compatible model, Nuy,
decreases as Br increases for Br > 0. The qualitative behavior of Nuy, in the channels
partially filled with porous material (0 < y, < 1.0) and the channel fully filled with porous
material (y, = 1.0) for the clear fluid compatible model {Eq. (7.21)} is same that of clear

fluid channel(y, =0).

Some Potential Applications ( Mohamad [191] and Yucel and Guven [192]):

1. Heat transfer enhancements in heat transfer devices, such as heat exchangers
2. Heat transfer enhancements for single and multiphase flows such as vortex generators
and mixers.

3. Cooling of heat-generating obstacles mounted on adiabatic walls in a parallel-plate
channel.

Scope for Future Work

The following investigations may be undertaken in future as an extension of the
present study:
1. An evaluation of the relative performance of the porous inserts attached to both
the walls or placed at the center of the channel as well as the present arrangement
when the flow and thermal fields are simultaneously developing may be

undertaken with different boundary conditions.
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2. Similar evaluation for pipes and annuli partially filled with porous material leads
to a desirable configuration given that there are no constraints in choosing the
duct size. Investigations may be earned out to establish conditions under which a

desirable configuration is obtained.

3. Studies on flow and heat transfer through, ducts, partially filled with porous

material considering anisotropic and heterogeneous porous media are warranted

for some of the newer applications.
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