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ABSTRACT 

 

Adaptive filtering algorithms play a key role in adaptive signal processing, 

especially for applications where real-time estimation of some unknown parameters is 

required.  

In this thesis, the significance of adaptive filters in system identification 

configuration is considered. Adaptive echo cancellation and channel estimation are 

the two prominent communications applications in system identification 

configuration. 

In order to determine the transfer function estimate for an unknown digital or 

analog system, one can use the adaptive system identification (ASI). System 

identification describes the task of identifying an existing unknown system and 

adaptive filters are widely used for this application. In many scenarios of system 

identification, the impulse response of underlying system is presumed to be sparse 

which means most of its coefficients are zeros (inactive) and have few non-zero 

values (active). The basic methodology behind the sparse system identification is to 

make use of the prior sparse information to improve its filtering/estimation 

performance. 

The traditional system identification algorithms are generally sparsity agnostic 

in nature viz. they are unaware of the underlying system sparsity which makes their 

application impractical for system identification. In order to exploit system sparsity, 

sparse adaptive filters are extensively used. Sparse-aware adaptive filtering algorithms 

offer improved performance. Hence, in this thesis, we consider the development of 

novel sparse adaptive algorithms for system identification. This thesis comprises of 

four parts: 

1. Combinational approaches of adaptive filters for sparse system 

identification. 

2. Sparse adaptive algorithms based on Lyapunov Stability for system 

identification. 
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3. Robust sparse system identification algorithms for impulsive noise 

environments.  

4. Complex domain sparse adaptive algorithms for system identification. 

In the first part, utilizing the benefits of combining two adaptive filters 

through a mixing parameter, we propose an affine combination of two Improved 

Proportionate Normalized LMS (IPNLMS) filters. Further, we also propose an affine 

combination of Reweighted Zero Attracting-NLMS (RZA-NLMS) and NLMS 

algorithm for system identification with variable sparsity. The combination approach 

provides the robust solution to alleviate the convergence speed vs steady-state error 

tradeoff, as well as to efficiently increase the filter robustness to time varying sparsity 

of the system. 

In the second part, we consider the Lyapunov theory-based adaptive filter 

(LA) which offers to improve the convergence and stability, and also overcome the 

problems faced by gradient descent-based adaptive filtering techniques. In order to 

address system sparsity, the Zero-Attracting Lyapunov Adaptation algorithm (ZA-

LA), the Reweighted Zero-Attracting Lyapunov Adaptation algorithm (RZA-LA) and 

an affine combination of the LA and ZA-LA adaptive filters are proposed. We show 

that the proposed sparse Lyapunov algorithms outperform the Least Mean Square 

(LMS) algorithm and its sparse counterpart (ZA-LMS and RZA-LMS) for both white 

input and colored input cases in terms of Mean Square Deviation (MSD) and Mean 

Square Error (MSE). The proposed affine combination filter is also robust in 

identifying the system with variable sparsity. 

In the third part, we investigate the estimation performance of adaptive 

algorithms under the impulsive noise conditions. The novel sparse algorithms based 

on high-order error power (HOEP) criterion i.e., Normalized Least Mean Absolute 

Third (NLMAT) are proposed to mitigate the adverse effects of impulsive noise and 

to utilize the sparsity phenomenon effectively. Modified Least-Mean Mixed-Norm 

algorithm which is based on sigmoid function (SLMMN) is also developed to achieve 

robust performance against impulsive noise and the corresponding sparse SLMMN 

algorithms are proposed in the sparse system identification context.  



 

 

xx 

 

In the fourth part, we discuss the complex domain sparse adaptive filter 

algorithms by incorporating different sparse penalty terms into the affine projection 

normalized correlation algorithm (APNCA). The proposed algorithms address the 

system sparsity as well as robustness against impulsive noise and achieves faster 

convergence for a correlated input. 

All the proposed algorithms in this work are tested by extensive computer 

simulations. The results demonstrate significant performance improvement in terms of 

convergence rate, robustness against impulsive noise and steady-state error. 
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CHAPTER 1 
 

 
1.1 Introduction 

The area of digital signal processing is steadily developing over the past decades. The 

rapid growth in this field has evolved into various specialized topics. One of the examples 

of digital signal processing system is the use of adaptive filters [1-3]. An adaptive filter is 

a self-operating filter that relies on an adaptive algorithm to perform satisfactorily in an 

environment where its relevant characteristics are not available. The main advantage of 

using adaptive filters is that they work excellently in an unknown environment resulting 

in better performance of the filter. Owing to the various configurations of digital signal 

processors along with adaptive algorithms, they are widely used in many areas like radar, 

telecommunications, echo cancellation, noise reduction, channel estimation, etc. [4], [5]. 

Fig.1.1 illustrates the general configuration for an adaptive filter. 

 

Fig. 1.1: General Adaptive Filter Configuration 

where, 

x(n): the input signal to the adaptive filter,  

y(n) : the corresponding output signal,  

d(n): the desired response signal, and 

e(n): the error signal. 
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An adaptive filtering algorithm uses an iterative method to adjust its coefficients to 

minimize the error signal (cost function). The most popular criterion used for updating 

the adaptive algorithm is the minimum mean square error (MMSE) and the least square 

error. Several families of adaptive algorithms such as least mean square (LMS) and its 

variants [6-14] recursive least squares (RLS) [2], [15], [16] are developed. They differ in 

their filter weight updating scheme, computational complexity and convergence speed.  

Adaptive filters are generally evaluated by their convergence rate, steady-state mean 

squared error, computational complexity, and numerical stability. Widrow’s LMS 

adaptive filter [7] is the first in chronology. It is computationally simple and numerically 

stable but slow in convergence, particularly when the filter input data is correlated. 

Subsequently, over the past few decades, numerous algorithms have been developed for 

improving the performance rate. However, such techniques are normally more 

computationally complex. Thus, one needs to balance the tradeoff between complexity 

and performance measure. 

By the manner in which the desired signal is extracted, the adaptive filtering applications 

may be classified as four classes: identification, inverse modeling, prediction and 

interference cancellation [2]. 

The advantages of using adaptive filters for solving the real world problems can be 

summarized into four points:  

 The adaptive filters do not introduce any significant delay in the filter output. 

 Adaptive filters are capable of tracking variations of signal statistics or time-

varying systems. 

 The adaptive filter updates its parameters each time the new signal sample is 

available, thereby saving memory. 

 The adaptive filter, in general, is much simpler to code in software or to 

implement in hardware. 

However, adaptive filtering is governed by certain limitations. The convergence speed, 

being one of the main characteristic performance measures of an adaptive algorithm, 

measures how fast the filter adapts its coefficients to the desired state.  Real time 



 

4 
 

applications such as adaptive noise cancellation (ANC) require usually fast convergence. 

Adaptive filtering is an iterative method which implies the existence of a step size that 

controls the adaptation of the filter’s parameters. As a result, the choice of the step size 

has a direct impact on the convergence speed of the algorithm. In addition, the length of 

the adaptive filter is another factor that affects the convergence of the iterative process. 

For applications where the impulse response of a room needs to be modeled several 

hundreds of filter taps are required. The longer the filter is, the slower the convergence of 

the filter coefficients. The tradeoff between the initial convergence speed and the mean-

square error in steady state is controlled by the step size of the adaptive filtering 

algorithm. Large step size leads to a fast initial convergence but the algorithm also 

exhibits a large mean-square error in the steady state and in contrary, small step size 

slows down the convergence but results in a small steady state error. Recently, there has 

been an interest in the combination scheme that is able to optimize the trade-off between 

convergence speed and steady state error. The scheme consists of two adaptive filters 

which are updated independently and the outputs of these filters are combined through a 

mixing parameter λ.  

In the recent years, sparsity property has been very popular among researchers in the area 

of signal processing using adaptive filtering [17], [18], [19], [20] image processing and 

statistical estimation [21], [22], [23], [24]. If most of the entries of a vector are zeros but 

only a few ones have significant values, the vector is said to be sparse. Sparsity is used in 

adaptive filtering in different manners and offers us many advantages. Actually, in 

adaptive filtering, many systems are generally assumed to be linear. But in some cases, 

like in digital TV transmissions channels [25] and echo paths [26], [27], a few 

components of the impulse response have significant value while the rest are zeros or 

near to zeros. For example, a network echo path has an active region only in a narrow 

interval with significant values and the rest of the impulse response coefficients is zero or 

negligible. An acoustic echo path also has similar characteristics as that of the network 

echo with a little more complicated structure depending on the movement and distance 

between the microphone and loudspeaker. Eventually, such systems are said to be sparse 

systems. By utilizing such sparse prior information we can improve the 

filtering/estimation performance. However, standard adaptive filters do not exploit such 
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information. An approach to promote sparsity is based on assigning proportional step 

sizes to different taps according to their magnitudes, such as the proportionate normalized 

least-mean square (PNLMS). Recently, based on recent progress in compressive sensing, 

the spare information can be utilized by inducing sparse penalties into the cost function of 

the adaptive algorithm.  

 

Fig. 1.2: Typical sparse systems 

A general sparse system having scattered non-zero distribution throughout the system 

response is shown in Fig. 1.2 (top) and a clustering sparse system consisting of one or 

more clusters of non-zero coefficients along the entire system response (for example: 

echo path) is provided in Fig. 1.2 (bottom). 

 

1.2 System identification  

The system identification approach is used to model an unknown system. Adaptive 

System Identification (ASI) describes the task of identifying an existing unknown system 

and using adaptive filters we can estimate a model of the system [28]. The adaptive 

filtering applications such as channel identification [29], network and acoustic echo 
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cancellation [30], [31], [32], adaptive noise cancellation [33] performs the system 

identification task. The block diagram of ASI is shown in Fig. 1.3. In this configuration 

the same input signal x(n)  is fed to both the unknown system and the adaptive filter. The 

output of the adaptive filter y(n)  is subtracted from the desired signal d(n)  to get the 

estimation error, y(n)-d(n)e(n)= . The error signal e(n) will be minimized with the 

adaptive filter’s adaptation process so that the adaptive model approximates the unknown 

system from the view point of input/output. The mean square error (MSE) becomes zero 

when the output of unknown system d(n) is free from the observation noise.  

In practicality the input signal is combined with the noise, thus leading to a high value in 

the error signal. There are various types of noise such as Gaussian noise and Impulsive 

(colored) noise. By using the adaptive filters, we reduce this error signal to a minimum 

value. In other words, minimal error signal means purity of the input signal and 

correctness in the output signal thereby improving the performance accuracy.  

 

Fig. 1.3: Adaptive filter for system identification 

Based on some statistical criterion the adaptive filter’s objective is to minimize the cost 

function of the error signal.  The Gaussian distribution has been by far the most popular 

statistical distribution in signal processing. The minimum mean-square error (MMSE) 

criterion based on L2 norm is well known and is adequate to provide effective estimation 
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under the Gaussian assumption. Algorithms that are based on MMSE rule work better 

when the noise is Gaussian in nature. However, these techniques suffer from serious 

performance degradation in the case of impulsive noise environments. Thus, we propose 

new algorithms for addressing these drawbacks. 

Impulsive, non-Gaussian noise often occurs in practical applications and is characterized 

by large-magnitude outliers with heavy-tailed distributions [34], [35], [36]. Some 

examples of non-Gaussian noise are underwater acoustic noise, communication over 

power lines, and noise on telephone lines [37]-[41]. In acoustic echo cancellation (AEC), 

doubletalk situations can also be viewed as an impulsive interference source.  

 

1.3 Problem Statement 

Most of the real-life applications are sparse in nature. A sparse system is one in which a 

large percentage of the energy is concentrated to only a few coefficients. System sparsity 

can be observed in applications like wireless communication, network and acoustic echo 

cancellers, radar imaging, etc. However, these algorithms are sparse agnostic i.e., they are 

unaware of underlying sparse impulse response.  

Hence, there is a need to develop novel sparse adaptive algorithms to exploit the system 

sparsity in the system identification context and also to exhibit robust performance in the 

presence of impulsive noise environments. 

 

1.4 Motivation 

The LMS and the normalized LMS algorithms are the most widely used adaptive filtering 

algorithms in system identification application because of their low computational 

complexity and simplicity [6], [8]. Still,  they  display  performance  trade-offs  that  can  

hinder  their  use  in  practice,  such  as  the  compromise  between  convergence  rate  

and  steady-state  error. To address this tradeoff problem, combination of adaptive filters 

has been proposed. In many situations, the impulse response of unknown system is 

assumed to be sparse, which means most of its coefficients are zeros (inactive) while only 

a few coefficients are large (active). The basic idea of sparse system identification is to 
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try to incorporate these prior sparse information to improve the filtering/estimation 

performance. 

Sparse-aware adaptive filter algorithms offer improved performance when the system 

impulse response is highly sparse. In order to exploit system sparsity, new sparse 

algorithms has to be developed by including various sparse penalties into the cost 

function of the conventional algorithms. Hence, in the first part of the thesis, sparse-

aware adaptive algorithms are developed for system identification to handle variable 

sparsity as well as to achieve faster convergence rate and lower steady-state error. 

An important issue in system identification is the effect of measurement noise on the 

results. The measurement noise is often assumed to be a random process with finite 

second-order statistics (SOS), making the MSE an appropriate metric for estimation 

error. However, in real-world environments, the noise encountered is more impulsive in 

nature than that predicted by a Gaussian distribution. The noises that exhibit impulsive 

behaviour frequently produce large amplitude outliers and the traditional algorithms fail 

to converge in such noise cases. Hence, in the latter part of the thesis, robust sparse 

adaptive filtering algorithms are developed for impulsive noise environments.  

 

1.5 Objectives 

The objectives of the work are: 

 To propose novel algorithms using affine combination of adaptive filters for echo 

cancellation and system identification with variable sparsity. 

 Implementation of novel sparse techniques based on Lyapunov Stability for 

system identification.  

 Development of robust sparse algorithms for adaptive system identification under 

impulsive noise environments.  

 To develop complex domain sparse adaptive algorithms for system identification. 
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1.6 Contributions of the Thesis 

 The first approach focuses on adaptive system identification using affine 

combination method. To improve the convergence rate and steady-state error 

tradeoff and to increase the robustness to system with different degrees of 

sparsity, an affine combination of two Improved Proportionate NLMS (IPNLMS) 

filters [1**] is developed. Also, another scheme of affine combination of NLMS 

and Reweighted Zero Attracting-NLMS (RZA-NLMS) which is achieved by 

including log-sum penalty into the cost function of the NLMS algorithm is 

developed for identification of unknown system with variable sparsity [1*]. 

  

 The second approach is based on adaptive filtering technique called Lyapunov 

Theory-based Adaptive Filtering (LA) which is used to overcome the limitations 

of LMS algorithm. To promote sparsity, novel sparse algorithms using different 

sparse constraints into the cost function of the LA algorithm are developed. Also, 

an affine combination based filter namely, Affine Combined Lyapunov 

Adaptation (ACLA) filter is proposed to identify the system with variable sparsity 

[2**].  

 

 The third approach is based on adaptive sparse system identification under 

impulsive noise environments. Normalized Least Mean Absolute Third (NLMAT) 

algorithm which is based on high-order error power (HOEP) condition and is 

independent of the power of the input signal and has good immunity to impulsive 

noise. In order to exploit system sparsity and to combat impulsive noise effect, 

novel sparse algorithms [3**] are developed by integrating different sparse 

penalties into the cost function of NLMAT algorithm. To mitigate the adverse 

causes of impulsive noise effectively, another algorithm based on sigmoid 

function i.e., sigmoid least-mean mixed- norm algorithm (SLMMN) is proposed 

and novel sparse algorithms are developed by integrating different sparse 

constraints into the cost function of SLMMN algorithm to exploit system sparsity 

[3*]. 
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 Fourth approach is based on Affine Projection Normalized Correlation Algorithm 

(AP-NCA) which is developed in the complex domain to achieve faster 

convergence for a correlated input and also robust against impulsive noises. For 

sparse system identification novel sparse AP-NCA algorithms are developed [2*]. 

The proposed algorithms are implemented in MATLAB. 

 

1.7 Organization of the Thesis 

The thesis is organized into seven chapters: 

Chapter 1 gives an introduction of adaptive filtering and system identification 

application, motivation and scope, objectives and contributions of the thesis. 

In Chapter 2, literature review of sparse-aware adaptive algorithms is presented and 

overview of adaptive algorithms under impulsive noise environments is discussed.  

Chapter 3 details the proposed adaptive combination approaches for sparse system 

identification. 

Chapter 4 discusses the novel sparse algorithms based on Lyapunov Stability for 

adaptive system identification. 

Chapter 5 deals with the novel sparse algorithms under impulsive noise environments. 

Chapter 6 discusses the complex domain adaptive system identification using sparse 

affine projection normalized correlation algorithms under impulsive noises. 

Finally, in Chapter 7, the conclusion of the thesis is summarized and future scope of the 

work is given. 
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CHAPTER 2 

 

2.1 Introduction 

Adaptive system identification includes many applications such as echo interference 

cancellation, sparse channel estimation, and adaptive beamforming. In many practical 

scenarios of system identification, the unknown system impulse response can be assumed 

to be sparse with varying degree of sparsity. A sparse system has only a few active 

coefficients while most of its coefficients are inactive. Some of the examples where 

sparse systems are encountered are network and acoustic echo cancellers [27], [42], 

wireless multipath channels [23], underwater acoustic communications [43].  Least Mean 

Square (LMS) and Normalized LMS (NLMS) are the most widely used adaptive filters 

for system identification [6], e.g., channel estimation, due to their simplicity. In practice, 

the LMS is highly sensitive to the characteristics of the input signals and has slow 

convergence [44]. The drawback of RLS algorithm is its high computational complexity. 

In addition, most of the adaptive filtering schemes suffer from so-called local minima 

problem, i.e., the optimization search may stop at a local minimum of the cost function in 

the parameter space if the initial values are arbitrarily chosen. To overcome these 

problems, a new adaptive filtering technique called Lyapunov Theory-based Adaptive 

Filtering (LA) is proposed [45]. In [46], a Lyapunov function of the error signal is 

defined and by properly choosing the parameter update rule, the weights of the filter are 

adaptively adjusted based on Lyapunov stability theory so that the error can 

asymptotically converge to zero. The design of Lyapunov adaptive filters is independent 

of the stochastic properties of the random input perturbations. Therefore, the local 

minima problem occurred in the gradient search-based adaptive filters can be avoided. 

New adaptive filter designs based on Lyapunov stability theory are proposed in [47-50]. 

However, they fail to exploit the system sparse structure and their performance is reduced 

when estimating the sparse channels, which makes their application unpractical for sparse 

system identification. The filtering/estimation performance of the unknown system can 

be further improved by utilizing the existing sparse information. 
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The echo paths (for both network and acoustic echo cancellation scenarios) have a 

specific property of system sparsity, which can be used in order to help the adaptation 

process. The Fig. 2.1 shows the sparse system identification based on adaptive filtering 

algorithm. 

 

Fig. 2.1: Adaptive algorithm based sparse system identification 

 

2.2 Sparse Adaptive Filters: A review 

Exploiting the sparseness property of the echo paths, sparse adaptive filters are 

extensively used in AEC applications. Several sparse-aware adaptive filtering algorithms 

exist on proportionate-type methods [51]-[54] and compressed sensing techniques [21], 

[22], [55], [56]. One of the first sparse adaptive filtering algorithms for acoustic echo 

cancellation is Proportionate Normalized LMS (PNLMS) [51]. The underlying principle 

of PNLMS is to adapt each coefficient with an adaptation gain proportional to its own 

magnitude. This makes the PNLMS algorithm to achieve faster initial convergence rate 

when the impulse response is considered as sparse. However, after few iterations the 

convergence rate decreases remarkably, thus making the PNLMS performance much 

slower than NLMS. An Improved PNLMS [52] algorithm was proposed to exploit the 

‘proportionate’ idea by introducing a controlled mixture of proportionate (PNLMS) and 

non-proportionate (NLMS) adaptation. Much research has been done during the last 
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decades in order to develop proportionate-type algorithms for promoting sparsity in 

system identification [19], [57]-[84]. 

In a separate development, an alternative approach to identify sparse systems has been 

proposed by introducing different norm penalty terms to the existing algorithms [85]-

[107]. The ℓ1-norm penalty was incorporated into the cost function of conventional LMS 

algorithm, which resulted in the Zero-Attracting LMS (ZA-LMS) algorithm. Reweighted 

zero-attracting LMS (RZA-LMS) algorithm was obtained by inducing log-sum penalty 

term into the standard LMS [85]. Moreover, it is worth mentioning that some algorithms, 

such as those from [108]-[116], have been developed combining both the proportionate-

type and norm-based strategies. 

However, there exists a tradeoff between convergence and steady state error for these 

sparse algorithms and also tend to show poor performance for systems with time varying 

sparsity. Hence, to handle the situation with variable system sparsity and to alleviate the 

tradeoff behaviour, adaptive filtering using combinational approaches are proposed 

[117]-[136].  

In the convex combination adaptive filtering [120], the two component filters are updated 

according to their own weight adaptation rule and their outputs are combined through a 

mixing parameter, λ. Instead of directly updating λ(n), we define it as the output of a 

sigmoidal activation function,  

                            
,

a(n)-
e+1

1
=sgm[a(n)]=λ(n)                                                                  (2.1) 

and update )(na  using 

                       
)](1)[()]()()[()()1( 12 nnnenenenana a  

                             (2.2)                    

In [122] the adaptation of the mixing parameter is done using the normalized version 

which is very robust when the SNR is not known a priori or when it is time-varying. 

The power-normalized least mean square algorithm is used to minimize the square of the 

error 22 y(n)]-[d(n)=(n)e  in Eq. 2.2, 
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,

da(n)

(n)d
(n)]e-(n)e(n)[e

p(n)

μ
+a(n)=1)+a(n

12
a λ

                                             (2.3) 

where 
a

μ  is a step-size for the adaptation of a(n) , p(n)  is a rough estimate of the power of 

(n)]e-(n)[e
12

, and 

                                    
λ(n)]-λ(n)[1=

da(n)

dsgm[a(n)]
=

da(n)

(n)dλ
                                                  (2.4) 

we update p(n)  using 

                      
2

)]()()[1()1()( nenenpnp 12                                                   (2.5) 

where ‘β’ is the forgetting factor. For instance, choosing β = 0.9 provides a good 

approximation for faster adaptation of p(n) . 

 

2.3 Overview of Adaptive Algorithms under Impulsive Noise  

Most of the algorithms discussed in section 2.2 are based on the renowned MSE criterion, 

assuming that the background noise is Gaussian. Since the MSE criterion is based on the 

second-order statistics consideration, it makes sense in the signal processing with 

Gaussian assumption. Whereas, the noisy conditions which are generated physically or 

man-made, deviate from the assumption of Gaussian distribution because of the 

impulsive behaviour. Some of the examples, multiple access interference in radio 

channels [137], double-talk in acoustic echo-cancellation [138], and other scenarios 

[139]–[140]. These impulsive distribution problems, i.e., the non-Gaussian heavy-tailed 

distribution problems, cannot be satisfactorily solved by the MSE criterion based 

algorithms thus requiring the use of robust adaptive filters.  

Symmetric alpha-Stable (SαS) distribution: 

Symmetric alpha-Stable (SαS) distribution is a classic non-Gaussian distribution which 

can model many impulsive noise processes in communications channels, and, in fact, 

includes the Gaussian density as a special case [36]. 
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Generally, a SαS random distribution can be described by its characteristic function 

                                      ∅(𝒕) = 𝑒𝑥𝑝(𝑗𝜇𝑡 − 𝛾|𝑡|𝛼)                                                         (2.6) 

The characteristic exponent 𝛼 ∈ (0,2] gives the impulsiveness of the noise (if α is small it 

leads to more number of impulses), μ is the location parameter and the dispersion 𝛾 (𝛾 >

0) controls the extent of the distribution around μ and similar to the variance of Gaussian 

random variable. For 2,=α  the SαS probability density function (pdf) is comparable to 

the Gaussian pdf & γ becomes half of the variance. 

 

Fig. 2.2: Impulsive noise generated using SαS distribution for different values of α 

Bernoulli-Gaussian (BG) distribution: 

The impulsive noise modeled by a Bernoulli-Gaussian (BG) distribution is represented by 

[141] 

                                                𝑞(𝑡) = 𝛼(𝑡)𝐼(𝑡)                                                             (2.7) 
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𝐼(𝑡)~𝒩(0, 𝜎𝐼
2) and 𝛼(𝑡) is a binary process described by the probability 𝑝(𝛼(𝑡) = 1) =

𝑃, 𝑝(𝛼(𝑡) = 0) = 1 − 𝑃, where P represents the probability of occurrence of the 

impulsive interference 𝐼(𝑡). Note that the variance of 𝑞(𝑡) is given by 𝜎𝑞
2 = 𝑃𝜎𝐼

2. 

 

Fig. 2.3: Impulsive noise generated using Bernoulli-Gaussian method 

In the recent years, adaptive filtering algorithms that are based on high-order error power 

(HOEP) conditions are proposed [142]-[145] to improve the convergence performance 

and mitigate the noise interference effectively. Least mean absolute third (LMAT) 

algorithm which is an adaptive HOEP algorithm is based on the minimization of the 

mean of the absolute error value to the third power [144], [145]. The LMAT algorithm 

outperforms the LMS algorithm for many noise distributions [146] and often exhibit 

faster convergence than the LMS algorithm. But, its convergence performance depends 

strongly on the input signal power. To alleviate these hostile effects, a normalized form 

of LMAT (NLMAT) algorithm is proposed in [147]. NLMAT algorithm is independent 

of the input signal power and achieves a strong capability of tolerance towards impulsive 

noise and good stability. 

To overcome the sensitivity issues of LMS [6] and LMF [142], the least-mean mixed- 

norm (LMMN) algorithm which is a convex, linear combination of LMS and LMF is 

proposed in [149]-[150]. However, the performance of LMMN algorithm degrades 
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seriously due to impulsive interferences which exist in practical environments [151]-

[153]. 

To improve the filter performance for colored signals, an Affine Projection Algorithm 

(APA) has been proposed [11], [154]. For a larger projection order, the APA algorithm 

has faster convergence, but the steady-state error is higher resulting in a convergence vs 

steady-state error tradeoff. However, these methods may be unreliable in estimating the 

systems under non-Gaussian impulsive noise environments. Normalized correlation 

algorithm (NCA) for complex-domain adaptive filtering is proposed [155] that is highly 

robust against severe impulsive noise environments. In order to utilize the benefits of 

APA and NCA, a complex domain Affine Projection Normalized Correlation Algorithm 

(AP-NCA) is proposed [156]. AP-NCA algorithm achieves faster convergence for a 

correlated input and is also robust against impulsive noises. 

Regrettably, the algorithms mentioned in this section have limited performance under 

sparse system identification. Considering the compressive sensing framework [21], [22], 

[157] and the least absolute shrinkage and selection operator (LASSO) [158], a great deal 

of attention has received recently in developing numerous adaptive algorithms which 

incorporate the sparsity of a system and robustness against impulsive noise [159]-[181].  

 

2.4 Summary 

This chapter summarizes the review of sparse adaptive algorithms for system 

identification is presented. A wide variety of algorithms based on proportionate ideas, 

norm constraints and combinational approaches are detailed. Disadvantage of 

conventional algorithms is discussed in this chapter. The major difference between 

Gaussian and non-Gaussian (impulsive) noise is highlighted and adaptive algorithms 

under impulsive noise environments are discussed. 
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CHAPTER 3 
 

 
3.1 Motivation 

Conventional adaptive filtering algorithms like LMS and Normalized LMS are widely 

used in system identification applications. However, the performance of these algorithms 

is degraded when the system’s echo path is sparse in nature as in network and acoustic 

echo cancellation (AEC) scenarios. To address the sparseness property of the echo paths, 

sparse adaptive filters are extensively used in AEC applications. Several sparsity aware 

adaptive filter algorithms exist on proportionate-type methods and compressed sensing 

techniques. Proportionate-type filters are considered as suitable candidate to achieve 

better performance for sparse echo paths, but they fail to exploit the time varying system 

sparsity. Considering the ongoing progress in compressive sensing and inspired by 

LASSO method, a different approach to identify sparse systems based on introducing 

norm-penalties into the cost function of the existing algorithms has been developed. 

However, they tend to show poor performance for systems with time varying sparsity. 

Moreover, there exists some compromise between their steady-state error and 

convergence speed. To overcome these limitations, the combination approaches of two 

adaptive filters that combines the output of individual filters through a mixing parameter 

are proposed.  

 

3.2 Introduction 

In system identification applications viz., echo cancellation and channel estimation, the 

concept of adaptive filter theory is widely used. In general, we often encounter systems 

with sparse impulse response like network and acoustic echo cancellation systems. A 

sparse system impulse response consists of negligible number of active coefficients while 

most of them are inactive [19]. Low complexity adaptive algorithms such as LMS and 

NLMS that are often used in echo cancellation tend to show slow performance as they 

apply uniform step size across all filter coefficients. Further, irrespective of the adaptive 

algorithm used, a tradeoff between MSE and convergence speed always exists [2]. These 
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conventional system identification algorithms are also incapable of utilizing the existing 

system sparse structure and their performance is reduced when estimating the sparse 

channels. Taking into account the time varying sparsity of echo path, it is essential to 

obtain a robust solution that is acceptable to perform effectively with different echo path 

channels [117]. 

In an echo cancellation set-up as shown in Fig. 3.1, the weight vector w(n) of the 

adaptive filter estimates the echo path impulse response w0(n), and produces the output 

y(n) which is subtracted from the microphone signal, d(n) [2]. The goal of an echo 

canceller is to eliminate the undesired echo signal by replicating the echo signal and 

subtract the echo from the echo corrupted signal. 

 

Fig. 3.1: General echo canceller configuration 

An echo canceller used to model a sparse echo channel usually requires long adaptive 

filters; hence the conventional adaptive algorithms suffer from slow convergence [26]. 

When the sparsity level increases, the traditional methods such as LMS and NLMS 

algorithms fail to exploit the system sparsity, whereas they perform well for non-sparse 

systems [3], [123]. To avoid these problems, proportionate adaptive algorithms are 

developed [17], [53], in which every coefficient is assigned different step size parameter. 

The convergence speed of Proportionate NLMS (PNLMS) filter [51] is faster than NLMS 

for sparse echo paths, but NLMS exhibits better performance when the system is not so 

sparse. Improved Proportionate Normalized LMS (IPNLMS) algorithm was proposed in 

[52]. Motivated from the ideas of compressed Sensing (CS) [21], [55], Zero-Attracting 
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LMS (ZA-LMS) has been presented in [85]. In ZA-LMS algorithm ℓ1-norm penalty term 

is added into the standard LMS error function which makes its implementation simple. 

Based on reweighted ℓ1-minimization sparse recovery algorithm [20], an improved 

version of ZA-LMS namely, Reweighted ZA-LMS (RZA-LMS) which enforces the zero 

attracting term for different taps using reweighted step sizes is also developed in [85]. In 

[182], several sparsity induced NLMS algorithms for system identification is proposed. 

 

3.3 Proportionate update adaptive filters 

3.3.1 Proportionate Normalized LMS (PNLMS) 

The update equation of the LMS algorithm is derived as 

                                            )()()()1( nxnenwnw                                                (3.1) 

The update equation of the ‘proportionate LMS’ (PLMS) algorithm is given as 

                                            )()()()()1( nxnenQnwnw                                       (3.2) 

where )(nQ is the diagonal ‘tap selection matrix’ that is equipped into the standard LMS. 

From the convergence analysis of PLMS in both the mean and the mean square [62], the 

bound on the step-size, µ, is given by   

                                                 
)()()(

2
0

nxnQnxT
                                                 (3.3) 

The a posteriori error is defined as )1()()()(~  nwnxndne T  

We derive the PNLMS by estimating the range of values of µ for which )()(~ nene  . 

By performing a first-order Taylor series expansion of )(~ ne  around )(ne , [63] that is, 
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

                                  (3.4) 

The partial derivative in (3.4) can be obtained from (3.1) as 

                               ),()(2)1()(2
)(

)(
2

nxneinxne
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ne
i

i





    M1,2,...,i                     (3.5) 

Whilst the update )(nwi  in (3.2) is given by 
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                                ).()()()( nxnqnenw iii           M1,2,...,i                                        (3.6) 

A substitution of (3.5)–(3.6) into (3.4) yields 
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i nxngnenxnenene
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22
)()()()()(2)()(~                                

                                )()()()(2)(
22

nxnQnxnene T  

                                 )()()(21)(
2

nxnQnxne T                                                       (3.7) 

For the output error to vanish towards zero as n , we require 

                     )()()(21)()(~ 22
nxnQnxnene T                                                        (3.8) 

As the squared error terms are non-negative, this will occur if and only if 

                            1)()()(21  nxnQnx T                                                                     (3.9) 

resulting in the following bounds on the range of the step-size 

                          
)()()(

1
0

nxnQnxT
                                                                      (3.10) 

From (3.10), to minimise the a posteriori error )(~ ne  and equip the PLMS with an optimal 

learning rate, we have 

                             
)()()(

)()()(
)()1(

nxnenx

nxnenQ
nwnw

T
                                                 (3.11) 

The Eq. (3.11) is the weight update equation of the ‘Proportionate Normalized LMS’ 

(PNLMS) algorithm. 

To prevent numerical instabilities, a small positive constant PNLMS  is added in the 

denominator of (3.11), 

                          PNLMS
T δ(n)x(n)Q(n)x

(n)e(n)x(n)Qμ
(n)w1)(nw

+
+=+

                                                (3.12)

 

𝑤ℎ𝑒𝑟𝑒 𝛿𝑃𝑁𝐿𝑀𝑆 = 𝜎𝑥
2 𝑀⁄  

𝑀 is the length of the adaptive filter.  

𝑄̅(𝑛) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛), … , 𝑞𝑀−1(𝑛)} controls the step size. The elements of the 

control matrix is as shown below 
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                𝑞𝑙(𝑛) =
𝑘𝑙(𝑛)

(1/𝑀) ∑ 𝑘𝑖(𝑛)𝑀−1
𝑖=0

, 𝑙 = 0,1, … , 𝑀 − 1                                          (3.13) 

               𝑘𝑙(𝑛) = max(𝜌 ∗ 𝑚𝑎𝑥[𝛾, |𝑤0(𝑛)|, … , |𝑤𝑀−1(𝑛)| ], |𝑤𝑙(𝑛)|)                      (3.14) 

The typical value of ρ is 5/𝑀 and γ is 0.01, respectively. The parameter ρ avoids the filter 

coefficients from halting if they are negligible compared to the largest coefficient, 

likewise the parameter γ avoids 𝑤(𝑛) from terminating in the initialization step. 

The PNLMS algorithm gives faster initial convergence and then slows down 

substantially. In addition, the PNLMS algorithm is susceptible to the level of sparseness 

of the system, i.e., for non sparse echo path its convergence rate is decreased. NLMS 

outperforms PNLMS in case of less sparse or dense impulse response. 

3.3.2 Improved Proportionate Normalized LMS (IPNLMS) 

The benefits of PNLMS increase with the sparseness of the system and reduce as the 

unknown system becomes more dispersive. In the search for an adaptation rule which 

gives performance always better than NLMS and PNLMS, regardless of whether the 

unknown systems is sparse or dispersive, improved PNLMS (IPNLMS) is proposed [52]. 

In IPNLMS, the update equation is defined as 

                         IPNLMS
T δ(n)x(n)Q(n)x

(n)e(n)x(n)Qμ
(n)w1)(nw




                                        (3.15)

 

Where Q is a diagonal matrix,  (n)}(n),...qq(n),diag{q(n)Q 1M10   

                         
ε(n)w2

(n)w
k)(1

2M
k1

(n)q

(n)q
(n)q ll

l 





11

, 1M0,1,...,l                           (3.16) 

The IPNLMS parameters μ and k  must be properly chosen because,  

1) IPNLMS algorithm exhibits faster convergence with larger step size and slower 

residual misadjustment with smaller step size μ  
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2) Selection of PNLMS filter with 1k   achieves faster convergence for strongly sparse 

channels, but has degraded performance for dispersive (non-sparse) channels.  

 

3.4 Proposed Adaptive Affine Combination of IPNLMS Filters 

3.4.1 Introduction 

Recently, the combination approach of adaptive filters has gained much importance for 

system identification applications [120], [183], as it provides robustness against systems 

with varying sparsity and also achieves better performance than each of the combining 

filters separately. Obtaining the mixing parameter λ(n), through which the combination of 

the outputs of component filters is performed is crucial in this approach. In [120], the 

convex combination approach is used where λ(n) in defined by a sigmoid function, i.e., 

λ(n) is restricted to lie in the range [0, 1]. An approach based on the affine combination 

of two NLMS adaptive filters is proposed in [126], [127], [128], where λ(n) is calculated 

from the two component filter output signals. The affine combination as a generalization 

of convex combination is studied in [184] and two new schemes for estimating the 

optimal unrealizable affine combiner were proposed and in [125], affine combination 

analysis was extended for colored inputs and nonstationary environments. In [185], it is 

shown that the affine combination of two LMS adaptive filters is best suited for multipath 

mitigation in GPS applications. 

3.4.2 Affine Combination approach  

Let us consider two adaptive filters (w1 and w2) combined in a manner as shown in Fig. 

3.2. The input signal is denoted as (n)x  which is fed to the adaptive filters. The two 

filters are adapted using their own set of rules and the outputs are combined as 

                                        
(n),λ(n)]y[1(n)λ(n)yy(n)

21
                                          (3.17) 

to achieve a better performance for the combined filter. (n)λ  is the mixing parameter. 

(n)y1  and (n)y2  denote the output of individual filters i.e., (n),x1)(nw(n)y T
ii   i=1,2. 
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Fig. 3.2: Affine combination of two adaptive filters 

As we employ the IPNLMS as component filters, we consider the update equation (3.15) 

for their adaptation. The parameters  
11

, k  and  
22

, k  are selected in one of the 

following ways: 

a) µ1 > µ2 and k1 = k2: With this configuration, the combined filter achieves faster 

convergence with filter having step size µ1 and minimum steady-state error with filter 

having step size µ2, simultaneously. 

b) µ1 = µ2, k1 < 0, k2 ≈ 1: With this setting, the robustness against systems with varying 

sparsity and better convergence performance can be achieved.  

 

3.4.3 Derivation of mixing parameter, λ 

In our affine combination approach, the mixing parameter ‘ λ(n) ’ is any real number, 

whereas in convex combination approach [120], λ(n) lies between 0 and 1.  
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,(n)x1)(nwd(n)(n)e H

ii                                                  (3.18) 

                                              
v(n)(n)xwd(n) T

0                                                        (3.19) 

where, d(n)is the desired signal and it is assumed that v(n) is Gaussian noise signal with 

zero mean and independent of all other signals statistically. 

The a priori system error signal, (n)ea  is defined as  

    
(n)λ(n)]y[1(n)λ(n)y(n)yy(n)(n)y(n)e

2100a
                                             (3.20) 

where (n)0y is the output signal of the true system i.e., v(n),d(n)(n)xw(n)y T
00   and 

y(n)  is the output of the adaptive filter.
                           

                   

λ(n) is obtained by minimizing the mean square of the a priori system error. The 

derivative of (n)]E[e2

a
 with respect to λ(n)  is given by 

 
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neE a 




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 ))()())(()()()()()((2 122120 nynynynnynnynyE  

 

                    
 2

121220 ))()()(())()())(()((2 nynynnynynynyE  
                         

(3.21) 

Equating the derivative in (3.21) to zero yields 
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21

212

(n))y(n)(yE

(n))y(n)(n))(yy(d(n)E
λ(n)




                                          (3.22) 

where the true system output signal, (n)y
0  

is replaced by its observable noisy version,

d(n).So as to achieve a feasible algorithm, we replace the E[.] operators in (3.22) with 

exponential smoothing of the type 

                                           ,(n)γu1)(nγ)p(1(n)p 2
uu                                           (3.23) 
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where u(n) is the signal to be averaged, (n)pu  is the averaged quantity, and γ = 0.01. 

These averaged quantities were then used in (3.22) to obtain λ. 

 

3.4.4 Simulation Results 

In this section, we evaluate the performance of the proposed affine combination of two 

IPNLMS filters by considering the two parameter settings as discussed earlier. The input 

signal x(n)  of 100000 samples is generated and is considered to be white Gaussian noise 

(WGN). The noise signal ,v(n) with variance 2
0

σ  is added to the reference signal to get an 

SNR of 70dB initially, and it is changed to SNR= 30dB at n= 80000. The echo path 

impulse response is generated synthetically using the method given in [59]. The adaptive 

filter coefficients were initialized to zero vectors. The length of the two component filters 

is set to M=512. A change in the echo path by circular shift operation is observed at 

n=50000 sample index to study the filter’s reconvergence ability. 

The following performance metrics are used to evaluate the proposed filters. 

Normalized Weight Misalignment (NWM) evaluates the convergence of the adaptive 

algorithm. It is defined by 

                               NWM(n)=20log10 (dB)
(n)-

2

2

2

2

0

0

w

ww
                                              (3.24) 

Echo Return Loss Enhancement (ERLE) measures the attenuation of the echo path. A 

higher ERLE leads to better reduction in echo. 

                                            ERLE(n)=
[ ]
[ ]2

2

v(n)-e(n)E

v(n)-d(n)E
                                                  (3.25) 

a) With μ1>μ2 and k1=k2: 

The step size values for each component filter are selected as µ1= 1 and µ2= 0.2 and the 

constant k parameter is fixed to k1 = k2 = -0.5. By using this setting in our combination 
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approach we try to lessen the convergence speed vs steady-state error tradeoff. The 

channel echo path with sparse impulse response is shown in Fig. 3.3. 

 

 
 

Fig. 3.3: Echo path with sparse impulse response 

Fig. 3.4 illustrates the convergence performance of our proposed combination approach 

to which we will refer hereafter as CIPNLMS. The misalignment curves for the 

component filters are also displayed for comparison. From the figure, it is observed that 

the IPNLMS filter with step size µ1 achieves faster convergence and the filter with step 

size µ2 achieves smaller steady-state error. Thus, our CIPNLMS filter keeps the best 

property of each of the component filter at each time instant i.e., faster convergence and 

lower steady-state error. This fact is clear even when the echo path is changed (at 

n=50000). Further, the CIPNLMS filter follows µ2 - filter steady state value when SNR 

decreases to 30dB (at n=80000) showing its robust performance. 
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Fig. 3.4: Misalignment performance evaluation of the proposed CIPNLMS filter. 

From Fig. 3.5, it is evident that the ERLE value of filter 1 is high during the start of the 

iteration and after a sudden change in the echo path. But filter 2 dominates filter 1 after a 

period of time and even at low SNR conditions (n=80000). The ERLE of the CIPNLMS 

filter always attains the highest value. Thus, our proposed filter achieves higher reduction 

in echo at every time instant. 

 
 

Fig. 3.5: ERLE performance evaluation of the proposed CIPNLMS filter. 
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Fig. 3.6 depicts the evolution of mixing parameter, λ(n) for the proposed affine 

combination filter. It can be concluded that the λ(n) is not restricted to lie between [0,1] 

as in the convex combination approach [120] and it can take any real number. 

 
 

Fig. 3.6: Mixing parameter, λ(n) for the proposed affine combination. 

 

b) With k1 < 0, k2 ≈ 1 and μ1= μ2: 

We consider selecting the step size value of individual filters as µ1 = µ2 = 0.5; and for 

parameter k, k1 = -0.5 and k2 = 0.9. With this setting we evaluate the robustness of the 

proposed combination filter to systems with variable sparsity. The impulse response of 

the non sparse and sparse echo channels is represented in Fig. 3.7. We carried our 

simulations assuming that the system echo path is non-sparse initially and later it has 

changed to a completely sparse system at n= 50000. The WGN noise v(n),with 

SNR=20dB is added to the reference signal. 
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Fig. 3.7: Echo path impulse responses: Dispersive (top), Sparse echo path (bottom). 

For non sparse echo path, as shown in Fig. 3.8, the filter with k1 = -0.5 guarantees fast 

convergence and for sparse systems the filter with k2 = 0.9 provides good convergence 

properties and the CIPNLMS filter always inherits the best component filter performance 

at each time instant. Thus, we figure out that the proposed approach is robust to system 

with different degrees of sparsity. 

 

 

Fig. 3.8: Misalignment performance evaluation of the proposed CIPNLMS filter.  
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From Fig. 3.9, the CIPNLMS filter maintains the high ERLE value at each iteration by 

choosing the best of the two component filters depending on the sparsity of the system. 

 

 

Fig. 3.9: ERLE performance evaluation of the proposed CIPNLMS filter. 

 

3.5 Normalized LMS and Reweighted Zero-Attracting NLMS (RZA-

NLMS) Algorithms 

Standard NLMS: 

The NLMS algorithm is obtained by modifying the step size of LMS given by 

                                     (n)x(n)x

α
=μ(n)

T
                                                                     (3.26) 

where α (0<α<2) is the normalized step size. 

The normalized LMS (NLMS) filter weight updation is governed by 
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(n)xe(n)
(n)x

α
+(n)w=1)+(nw

2                                                        (3.27) 

Reweighted ZA-NLMS (RZA-NLMS): 

The error function, (n)L1 of ZA-LMS [85] is represented as  

                              


norm-l

(n)wγ+(n)e
2

1
=(n)L

ZA

function

LMSerror

2

1

11

                                                     (3.28)

 

The ZA-LMS filter update is given by 

                      
(n))wgn(ρ-(n)xμe(n)+(n)w=1)+(nw s

ZA                                             (3.29)
 

where ZAZA μγ=ρ and the sign function sgn(·) is given by                                          

                                            0x      0,            

0x,xx=sgn(x)




                                                     (3.30) 

ZA
γ  is a regularization parameter of ZA-LMS.  

The efficiency of ZA-LMS algorithm deteriorates as it forces all taps to zero uniformly 

and is not suitable for non sparse systems. 

The RZA-LMS error function is represented by 

                        



N

1i
iRZA

2
2 )(n)wεlog(1γ+(n)e

2

1
=(n)L                                          (3.31) 

The RZA-LMS filter update is defined as 

                      
(n)wε+1

(n))wsgn(
ρ-(n)xμe(n)+(n)w=1)+(nw

RZA
RZA                                    (3.32) 
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where RZARZARZA εμγ=ρ  with regularization parameter 0,>γRZA  and  threshold  

0>ε
RZA . 

As the time invariant step size parameter μ of LMS filters cannot guarantee stability, we 

modify the ZA-LMS and RZA-LMS filters by applying the normalization term in their 

update equations. 

For ZA-NLMS, the weight update is  

               

(n)xe(n)
(n)x

α
+(n))wsgn(ρ(n)w=1)+(nw

2ZAN                                       (3.33) 

where ZANZAN αγ=ρ and ZANγ is a regularization parameter of ZA-NLMS algorithm. 

For RZA-NLMS, the weight update is 

              

(n)xe(n)
(n)x

α
+

(n)wε+1

(n))wsgn(
ρ(n)w=1)+(nw

2
RZAN

RZAN

                                  (3.34)

 

where ,εαγ=ρ
RZANRZANRZAN  RZANε =20 and RZANγ  is a regularization parameter of 

RZA-NLMS algorithm. 

 

3.6 Proposed Affine Combination of NLMS and RZA-NLMS Filters 

3.6.1 Description of the combination approach 

Let us consider two adaptive filters (w1 and w2) combined using our proposed affine 

combination approach as shown in Fig. 3.2. Filter 1 is adapted using RZA-NLMS 

algorithm (3.34) and Filter 2 uses the standard NLMS algorithm (3.27). The same input 

signal (n)x  is given to both the filters. The output of the proposed filter is given by  

                             
(n)λ(n)]y-[1+(n)λ(n)y=y(n)

21                                                       (3.35) 
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(n)λ is called the mixing parameter, which is not restricted to lie between 0 and 1 as in 

the convex combination approach [120], (n)y1 and (n)y
2 denote the outputs of the 

combining filters w1(n) and w2(n) respectively, i.e., (n),x1)-(nw=(n)y T
ii  i=1,2. 

The desired signal d(n)is defined by 

                                           v(n)+(n)xw=d(n) T
0                                                          (3.36) 

where the noise, v(n) is zero mean Gaussian signal, and do not depend on the other 

signals statistically. The vector 0w  is the true weight vector we try to estimate with the 

proposed approach. 

The a priori system error signal is written as 

                     
(n)λ(n)]y-[1-(n)λ(n)y-(n)y=y(n)-(n)y=(n)e

2100a                               (3.37)
 

and                 ,v(n)-d(n)=(n)xw=(n)y H
00                                                                 (3.38) 

The derivative of (n)]E[e2

a
with respect to λ(n) is given by 

 
 ))()())(())(1()()()((2

)(

)(
21210

2

nynynynnynnyE
n

neE a 





  

                    
 ))()())(()()()()()((2 122120 nynynynnynnynyE  

 

                     2

121220 ))()()(())()())(()((2 nynynnynynynyE                         (3.39)  
 

The derivative in (3.39) is equated to zero to obtain λ(n), 
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2

21

212

(n))y(n)(yE

(n))y(n)(n))(yy(d(n)E
λ(n)




                                             (3.40) 

where the true system output, (n)y0  is replaced by d(n)which is a valid assumption. 
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As solving for λ(n) from (3.40) involves hard expectation operations in both the 

numerator and denominator and to avoid division by zero, it is necessary to find a 

convenient algorithm. Therefore we use the exponential averaging of the form  

                             
,(n)γu+1)-(nγ)p-(1=(n)p 2

uu                                                          (3.41) 

where (n)pu  is the averaged quantity, u(n)  is the signal to be averaged, and γ = 0.01. 

These results obtained for both the numerator and denominator are substituted in (3.40) to 

obtain λ.  

 

3.6.2 Simulation Results 

We assess the performance of the proposed affine combination of RZA-NLMS and 

NLMS filters for adaptive system identification with variable sparsity. We consider 

simulating two scenarios wherein, Scenario 1 uses general sparse system in which the 

active coefficients may be randomly located and Scenario 2 consists of clustered sparse 

system, where a cluster is a gathering of active coefficients.  

For Scenario 1, let us assume that the system to be identified has 16 tap coefficients. The 

input signal, x(n) of 35000 samples is generated.  Initially, the system has only two active 

coefficients and all other coefficients are set to zero i.e., a highly sparse system. After 

10000 samples, the semi sparse system with six elements is obtained. Finally, after 20000 

samples, a non-sparse system is created with all active tap coefficients. Fig. 3.10 shows 

the impulse response of a general sparse system generated with different sparse levels. 

x(n) is considered to be a white Gaussian noise (WGN) with zero mean and unit variance. 

The noise, v(n)with variance 2
0

σ  is added to the reference signal to get an SNR=30dB.  

The following performance measures are used as the evaluation metric. 

                      Excess MSEi(n)= 1,2=iv(n)]-(n)E[e 2
i ,                                                (3.42) 

Normalized Weight Misalignment (NWM) (3.24) and Echo Return Loss Enhancement 

(ERLE) as defined in (3.25) 
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Fig. 3.10: The impulse responses of a general sparse system (Scenario 1) 

RZA-NLMS and NLMS adaptive filter coefficients were initialized to zero values with 

length equivalent to the unknown system. The parameter set for RZA-NLMS filter are: α

=0.3, RZANρ =0.0008 and RZANε =20. We use the same normalized step-size value α for 

both the filters. The Excess MSE and misalignment performance of the proposed method 

are compared in Fig. 3.11 and Fig. 3.12 respectively. The average of 100 trials is used in 

evaluating the results.  

For the first scenario, it is verified from Fig. 3.11 that the proposed affine combination 

filter always achieves the steady state value of the individual filter which has the lower 

value. For the comparison, we have also simulated the combination approach of two 

NLMS filters in [126] to which we will refer hereafter as combined NLMS (CNLMS) 

filter. One of the NLMS filter in CNLMS has the same step size as α and for the other 

NLMS filter we choose the step size value 0.1. When the system is considered as sparse 

and semi sparse, our proposed filter attains the EMSE value of that of the RZA-NLMS 

filter (red line) and for the non-sparse system it attains to that of the NLMS based filter 

(dotted blue line). From the figure it is clear that the CNLMS filter fails to identify the 

sparse system.  
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The misalignment value of our proposed combination is much better than the CNLMS 

filter for sparse and semi sparse systems and achieves close to that of the RZA-NLMS 

filter. This is illustrated in Fig. 3.12. In the case of non-sparse system, NWM of our 

proposed filter follows the NLMS component filter. 

 

Fig. 3.11: Excess MSE plot comparison with the proposed method. 

 

Fig. 3.12:  NWM plot comparison with the proposed method. 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-50

-45

-40

-35

-30

-25

-20

Sample number (n)

E
M

S
E

(d
B

)

Excess MSE (dB)

 

 

RZA-NLMS

NLMS

CNLMS[13]

Proposed

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Sample number (n)

M
is

a
li
g
n
m

e
n
t 

(d
B

)

NORMALIZED WEIGHT MISALIGNMENT

 

 

RZA-NLMS

NLMS

CNLMS[13]

Proposed

   Sparse Semi Sparse 

<-----Non-Sparse---- 

 



 

40 
 

For Scenario 2, the impulse response of a clustered sparse system is shown in Fig. 3.13. 

The system has 800 tap elements. Initially, the system has two clusters with active taps at 

[405; 429] and [569; 590], respectively and is considered to be highly sparse in nature. A 

change in the system echo path from sparse to semi sparse is observed at 10000 sample 

index with moderate active coefficients, and then the system is changed to non-sparse at 

sample index 20000 with all non-zero taps. The input signal, x(n) is considered to be 

same as in Scenario 1 and the noise variance 
2

0σ is set to 0.1. The parameters for RZA-

NLMS are taken as α =0.8, RZANρ =0.00008 and RZANε =20. 

 

Fig. 3.13: The impulse responses of a clustered sparse system (Scenario 2) 

The Excess MSE performance of our proposed combination filter for the second scenario 

is analyzed from Fig. 3.14. For sparse and semi sparse systems, the proposed filter 

achieves steady state value of that of the RZA-NLMS filter and for non-sparse system, it 

achieves the EMSE value of the NLMS filter which is smaller than RZA-NLMS filter. 

For the system with sparse and semi sparse nature the CNLMS filter has reduced 

convergence speed, and for non sparse system it has the same convergence speed as our 

proposed combination filter. Hence, our proposed combination approach guarantees good 

convergence properties under different sparsity conditions. 
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Fig. 3.14: Excess MSE plot comparison with the proposed method 

Fig. 3.15 shows the misalignment (dB) of our proposed filter which is same as the RZA-

NLMS filter for sparse system and outperforms the two individual filters in the system 

with semi sparse nature. For the non- sparse system, the RZA-NLMS filter has reduced 

performance and the misalignment of our proposed method follows the NLMS filter. 

Thus, the proposed affine combination of two adaptive filters shows better performance 

than each of the combining filters separately. Hence the affine combination of RZA-

NLMS and NLMS filter is capable of providing robust performance in identifying the 

system with variable sparsity. 

 

Fig. 3.15: NWM plot comparison with the proposed method. 
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Fig. 3.16 shows the evolution of mixing parameter, λ(n) for the proposed affine 

combination filter. It can be concluded that the mixing parameter λ(n) is not restricted to 

lie in the range [0, 1] as in convex combination approach [120]. It can take any real 

number. 

 

Fig. 3.16: Evolution of mixing parameter, λ(n) for the proposed affine combination. 

We will now illustrate the performance of our proposed combination filter considering 

the input speech signal as a segment of 3.5sec sampled at 8000 Hz. We shall consider the 

sparse and non-sparse echo paths of Scenario 1 shown in Fig. 3.10 and evaluate the 

robust behaviour of the proposed combination for this variable sparsity system. The 

system echo path is switched from the sparse to the non sparse echo path at time t=2sec. 

The ERLE is considered as the performance metric and simulations are averaged over 

100 trials. 

Fig. 3.17 represents the ERLE evolution of our proposed filter. When the system echo 

path is sparse, the RZA-NLMS filter achieves higher ERLE and the combination filter 

behaves as RZA-NLMS. At t=2sec, when the system echo path is switched to non-sparse, 

the combination filter attains the value of the other component filter i.e., NLMS.  Hence 

depending on the degree of system sparsity, the proposed combination filter achieves 

higher ERLE at every iteration and behaves as the most effective component filter. 
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Fig. 3.17: ERLE performance of the proposed filter. The input is a speech signal (top). At 

t = 2s the echo path changes from sparse to non-sparse. The ERLE performance 

comparison with the proposed filter (bottom). 

 

3.7 Summary 

An adaptive affine combination of two IPNLMS filters that achieves better steady state 

performance at each iteration and attains robustness to systems with varying degrees of 

sparsity is proposed. Performance measures Normalized Weight Misalignment (NWM), 

Echo Return Loss Enhancement (ERLE) are utilized to validate the proposed method. 

The simulation results exemplifies that the proposed combination approach with different 

parameter settings has improved the robustness of proportionate filters to systems with 

varying degrees of sparsity and also alleviated the convergence speed vs steady state 

error tradeoff of adaptive filters. 
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Mean Square Error (EMSE), Normalized Weight Misalignment (NWM), Echo Return 

Lossless Enhancement (ERLE) are utilized to validate the proposed method. The results 

illustrates that the proposed combination filter attains improved robustness to systems 

with varying degrees of sparsity. 
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CHAPTER 4 
 

 

 
4.1 Motivation 

The idea of adaptive filters is most widely used in the unknown system identification. In 

contrast to the existing gradient-search related adaptive filtering methods, the Lyapunov 

Theory-based adaptive filter provides enhanced convergence rate and stability. For the 

sparse system model, the performance of Lyapunov Adaptive (LA) filter is worsened as it 

fails to utilize the system sparsity. To cope up with this situation, two algorithms namely, 

Zero-Attracting Lyapunov Adaptation algorithm (ZA-LA) which relies on ℓ1-norm 

relaxation and Reweighted Zero-Attracting Lyapunov Adaptation algorithm (RZA-LA) 

by applying log-sum penalty are introduced to improve the convergence performance for 

the sparse system identification. Further to exploit the systems with variable sparsity, an 

affine combination scheme of the LA and proposed ZA-LA filters is also developed. 

 

4.2 Introduction 

Adaptive filtering algorithms play a significant role in system identification applications 

e.g., channel estimation and echo cancellation [2]. Ideally the adaptive filter with high 

convergence rate, stability, good tracking capability and robustness to random noise is 

desirable for many applications. The widely used optimization technique for optimal 

filter design is the gradient descent method viz., Least Mean Square (LMS) algorithm [6]. 

Lyapunov Adaptive Filtering (LA) algorithms in the sense of the Lyapunov stability 

theory were proposed in [45], [46], [47], [186], [187] to overcome the problems faced by 

gradient descent-based techniques such as slow rate of convergence, sensitivity to 

variations in the eigenvalue spread and local minima problem. Moreover, the LA 

algorithm is independent of the stochastic properties of the input signal and additive 

noise. However, the LA algorithm suffers from poor convergence performance when the 

underlying system is identified as sparse such as network and acoustic echo path [27], 

digital TV transmission channel [25], and underwater channel [43], [188]. In general, the 
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sparse FIR system is characterized by its impulse response which consists of very few 

active coefficients among many inactive ones [189–191].  

Conventional adaptive algorithms neglect the sparse information which is present in the 

system that leads to degrade their performance when estimating the sparse channels. 

Recent studies on system identification specify that by utilizing the a priori knowledge 

about the system sparsity, the estimation performance can be improved substantially. 

This motivated the researchers towards developing sparse adaptive filtering algorithms in 

the last few years. In [85], sparse LMS algorithms for system identification are developed 

by incorporating ℓ1-norm penalty and log-sum penalty into the cost function of LMS 

algorithm. ZA-LMS algorithm is easy to implement and performs well for the highly 

sparse system, whereas it fails for the system with less sparsity. Reweighted ZA-LMS 

(RZA-LMS) algorithm performs better than ZA-LMS in less sparse conditions but, at the 

cost of increased complexity. Following these ideas, we propose two sparse Lyapunov 

Adaptation algorithms namely, ZA-LA and RZA-LA with application to adaptive sparse 

system identification. 

Over the past decade or so, a combination of adaptive filters has proven to be an efficient 

way to handle systems with variable sparsity. In [120], [192], an adaptive convex 

combination of two LMS filters with different parameter setting is proposed to alleviate 

the speed of convergence vs the residual error trade-off. In [119], a mixture approach of 

adaptively combining LMS and ZALMS algorithm using a convex combination has been 

proposed to achieve robustness against time-varying system sparsity. This approach is 

extended [193] to colored input signal with a convex combination of the Affine 

Projection Algorithm (APA) and Zero Attracting APA (ZA-APA), and in [194] steady 

state mean square analysis of convex combination in the context of acoustic echo 

cancellation is performed. In [117], a convex combination approach using another variant 

of sparse adaptive filtering i.e., Improved Proportionate Normalized LMS (IPNLMS) 

algorithms is proposed. In all these works, the authors have used the convex combination 

to combine effectively the outputs of the individual adaptive filters. The affine 

combination as a generalization of the convex combination is studied in [184] and in 

[125] affine combination analysis was extended for colored inputs and nonstationary 
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environments. In [128], transient analysis for the affine combination of two NLMS 

adaptive filters is studied. In [195], [196], it is demonstrated that affine combination 

results in faster convergence than the convex combination of two adaptive filters. So, in 

this work we use affine combination scheme to combine LA and ZA-LA filters to handle 

systems with variable sparsity.  

 

4.3  Review of LA Algorithms 

The basic idea of sparse system identification is to improve the filtering/estimation 

performance by utilizing the inherent sparse structure information. The block diagram of 

the sparse system identification is shown in Fig. 4.1. We consider an N length FIR filter 

coefficients vector [ ] T

1-N
,....w

1
,w

0
w=

0
w and the input signal vector 

[ ]T1)+N-1),....x(n-x(nx(n),=(n)x  are considered. The input (n)x  is applied to both the 

adaptive filter and the unknown sparse system. The desired signal d(n)  that is generally 

corrupted by the observation noise v(n) is, v(n)+=d(n) T (n)xw
0 . The output estimate 

y(n)  of the adaptive filter (n)w  is subtracted from the reference signal d(n)  to produce 

an error signal e(n) [197]. The error signal e(n)  is then used by the adaptive algorithm in 

an iterative manner to manipulate the filter coefficients such that the error is minimized. 

                        

Fig. 4.1: Sparse system identification 

 

Unknown Sparse 

System 

 

 

 

(n)x  (n)x
T

0
w

 

w0 

θ Σ 

v(n)

 

d(n)  + 

Adaptive Filter 

 

 

 

- 

y(n)  

Adaptive Algorithm 

 

 

 

e(n)

 

(n)w

 



 

49 
 

 

The cost function V(n)  of the LA filter is defined as the square of error between the 

desired reference input and filter output which is considered as the Lyapunov function 

[45], [186], 

                                   (n)e=V(n) 2                                                                                  (4.1) 

where,                      y(n)-d(n)=e(n)                                                                             (4.2) 

The Lyapunov adaptive filter weight update law is properly chosen such that 

1)-V(k-V(k)=ΔV(k)  is negative definite at each iteration. According to Lyapunov 

stability theory [198], when 0,<ΔV(k)  the output of the adaptive filter can 

asymptotically converge to the desired signal which means that the error 0→e(n) . 

For the given desired signal ‘ d(n)’ and filter output, ,=y(n) (n)x(n)w
T

 the LA weight 

update rule is as follows: 

                               g(n)α(n)+= 1)-(nw(n)w                                                              (4.3) 

and                 

                                𝑔(𝑛) =
𝑥(𝑛)

𝜆1+‖𝑥(𝑛)‖2 [1 − 𝜅
|𝑒(𝑛−1)|

𝜆2+|𝛼(𝑛)|
]                                                    (4.4) 

where g(n)  is the adaptation gain and α(n)  is the a priori estimation error defined as 

                                  (n)x1)-(nw=
T-d(n)α(n)                                                         (4.5) 

1<κ≤0  and 21 λ,λ  are small positive constants to prevent the singularities of the 

adaptation gain. The parameter κ  controls the convergence rate of the algorithm. 

To improve the LA filter tracking performance and robustness, the Lyapunov function is 

redefined as  (n)eβ=V(n) 2n  and the adaptation gain g(n)  of the Lyapunov adaptive 

algorithm is modified [47], [187] as                    

                          𝑔(𝑛) =
𝑥̅(𝑛)

𝜆1+‖𝑥̅(𝑛)‖2 [1 −
|𝑒(𝑛−1)|

𝜆2+|𝛼(𝑛)|𝛽𝑛/2]                                                   (4.6) 
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where 1>β  is a constant parameter. 

To achieve faster convergence rate and lower steady state error performance in case of 

noisy environments, a step size parameter μ  is included in the adaptation gain g(n) [48]:  

                             𝑔(𝑛) =
𝜇𝑥̅(𝑛)

𝜆1+‖𝑥̅(𝑛)‖2 [1 − 𝜅
|𝑒(𝑛−1)|

𝜆2+|𝛼(𝑛)|
]                                                   (4.7) 

where μ  : step size parameter. 

The adaptation gain g(n)  for the Lyapunov adaptive algorithm can also be defined as           

                            𝑔(𝑛) =
𝑥̅(𝑛)

𝜆1+‖𝑥̅(𝑛)‖2 [1 −
|𝑒(𝑛−1)|

𝜆2+𝛽
𝑛
2(𝑛−1) |𝛼(𝑛)|

]                                          (4.8) 

where the adaptive adaptation gain rate is adjustable in order to improve the tracking 

capability of the algorithm [49], [50].                                   

                          𝛽(𝑛) = 1 +
𝑒2(𝑛−1)

𝑒2(𝑛)
                                                                              (4.9) 

 

4.4 Proposed Sparse LA Algorithms 

4.4.1 Zero-Attracting Lyapunov Adaptation Algorithm (ZA-LA) 

The cost function (n)V1  of ZA-LA is defined by inducing ℓ1-norm penalty in the 

Lyapunov function of LA filter as 

                  
norml

ZA

nV

2n nenV





1

1

)(

1 )()( (n)w                                                         (4.10) 

where 0>γZA denotes a regularization parameter which balances the error term and 

system sparsity. 

Then, we have  
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1)(nV(n)V(n)ΔV  111      

               )(
11

1)(nw(n)w  
ZA

21n2n γ1)(neβ(n)eβ       

                  
)(][

11
1)-(nw(n)w(n)x(n)w

T -γ+1)-(neβ--d(n)β= ZA
21-n2n       

              )(

][

11
1)-(nw(n)w

(n)x1)-(nwT

-γ   

+1)-(neβ-(n))(n)g+(-d(n)β=

ZA

21-n2Tn 
         

             )(

][

11
1)-(nw(n)w

(n)x

-γ    

+1)-(neβ-(n)α(n)g-α(n)β=

ZA

21-n2Tn

                        (4.11) 

Substituting the adaptation gain g(n)  given in (4.6) into (4.11), we obtain    

     
)(

11
1)-(nw(n)w -γ+1)-(n1)e--(β=(n)ΔV ZA

21-n
1                        (4.12) 

The negative definiteness of the Lyapunov function, ,(n)V1  must be satisfied subjecting 

to the inequality constraint 01)(nV(n)V(n)ΔV 111   which contributes to the 

asymptotical stability of the filtering algorithm in the sense of Lyapunov. The first part 

on the right hand side of (4.12) achieves negative definiteness for all 1n  and 1

[47], [49]. By replacing 
ZA with ,ZA  the negative definiteness of (n),V1 is satisfied 

0.(n)ΔV1   

The ZA-LA filter update rule is given by 

                )sgn(γg(n)α(n)
ZA

(n)w1)(nw(n)w                                        (4.13) 

where sgn(·) is the sign function. The ZA-LA algorithm complexity is slightly higher 

than that of LA algorithm due to the third term of (4.13). 
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4.4.2 Reweighted Zero-Attracting Lyapunov Adaptation Algorithm (RZA-LA) 

The RZA-LA cost function is represented by 

        )(n)wεlog(1γ(n)eβ(n)V
i

N

1iRZA

2n
2  


                                                              (4.14) 

where 0>γ
RZA is a regularization parameter which balances the estimation error term 

and sparsity of .(n)w   

According to the log–det heuristic approach used in [199], [200] the zero attractor term in 

(4.14) yields to a convex optimization problem. 

To establish this connection, consider the problem 

                                 minimize ∑i i )wεlog(1+
                         

 

                                 subject to nR∈w                                                                       (4.15) 

Iterative linearization of this objective function gives 

                  


i (n)

i
wε+1

i
w

argmin=1)+(nw                                                                 (4.16) 

If (n)wi is small, its weighting factor in the next minimization step, ,)(n)wε+(1 -1
i  is 

large. So the small entries in (n)w  are pushed towards zero. Thus, the log-sum penalty 

function has the potential to be much more sparsity encouraging than the ℓ1-norm.                                                        

The RZA-LA filter update is defined as 

           
)ε(1

)sgn(
γg(n)α(n)

RZA
RZA (n)w

(n)w
1)(nw(n)w


                                          (4.17) 

The RZA-LA algorithm complexity is slightly higher than that of LA algorithm due to 

the third term of (4.17). 
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4.5  Computational Complexity 

The numerical complexity in terms of additions, multiplications, and divisions of the 

proposed sparse adaptive algorithms and those of the LMS algorithm and its sparse 

variants are shown in Table 4.1.  

Table 4.1: Comparison of computational complexity of the investigated algorithms 

Algorithms Addition Multiplication Division 

LMS 2N 2N+1 - 

ZA-LMS 3N 3N+1 - 

RZA-LMS 3N+1 3N+2 N 

LA 3N+5 3N+3 N+1 

ZA-LA 4N+5 4N+3 N+1 

RZA-LA 4N+6 4N+4 2N+1 

 

It can be seen from Table 4.1, that the proposed sparse algorithms have a moderate 

computational complexity increase when compared with the original algorithms. 

 

4.6  Proposed Affine Combination of LA and ZA-LA Algorithms 

(ACLA)    

In order to handle the system with varying level of sparseness, we have proposed to 

combine LA and ZA-LA algorithm using an affine combination approach. The 

configuration of the proposed affine combination scheme is shown in Fig. 4.2 in which 

Filter 1 is updated using LA algorithm (4.3), and Filter 2 is updated using ZA-LA 

algorithm as given in (4.13) respectively. We will hereafter call this filter as the Affine 

Combined Lyapunov Adaptation (ACLA) filter.    

The output signal of ACLA filter is given by 

                              
)()](1[)()()(

21
nynnynny                                                            (4.18) 

where λ(n) is the mixing parameter and can be any real number, and (n)y1  and (n)y2

denotes the output of the individual filters, i.e. ( ) ( 1) ( ), 1,2.T

ii
y n W n x n i    The a priori 
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error signal  (n)ae  is obtained by subtracting the output signal of ACLA filter from the 

output signal of the unknown system, 

                    
(n)λ(n)]y-[1-(n)λ(n)y-(n)y=y(n)-(n)y=(n)e 00a 21                        (4.19) 

where, 

                   
)()()()( 00 nvndnxwny

T


                                                                 (4.20) 

 

Fig. 4.2: Affine combination of two adaptive filters with mixing parameter λ(n) 

To find the mixing parameter λ(n), the derivative of mean square of the a priori error with 

respect to λ(n) is evaluated and equated to zero. 
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Setting, 
 

0
)(

)(2






n

neE a


 

                   ][

][

2

21

212

(n))y(n)(yE

(n))y(n)(n))(yy(d(n)E
λ(n)






                                                  (4.22) 

where the unknown system output, (n)y0 , is replaced by d(n), which is a valid 

assumption. 

The mathematical expectation in the numerator and the denominator of (4.22) are 

replaced by exponential averaging 

                         
)()1()1()( 2 nunpnp uu  

                                                         (4.23) 

where (n)p
u  is the averaged quantity, u(n) is the signal to be averaged, and γ = 0.01. 

These results obtained for both the numerator and denominator are substituted in (4.22) to 

obtain λ(n). 

 

4.7  Stability Analysis of ACLA filter 

Let us first provide the convergence analysis of LA filter. 

When the adaptive filter coefficient vector (n)W  is updated by (4.3) and (4.6), the 

Lyapunov function is chosen as 

                                   )()( 2 nenV n                                                                     (4.24) 

According to Lyapunov stability theory [198], the tracking error e(n) will asymptotically 

converge to zero. 

                           
)()()()( nxnWndne T

                                                                 (4.25) 

                                   )())()()1(()( nxnngnWnd TT   
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                                   )()()()()1()( nxnngnxnWnd TT   
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2/)1()( nnene  
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Therefore, the tracking error e(n) converges to zero exponentially according to 
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                                                                    (4.27) 

Now, consider the output of the individual filters of ACLA filter which is expressed as  

                        
2,1),()1()(  inxnWny T

ii                                                                     (4.28) 

and the overall system error is given by 
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where, 

                       
)()()( 0 nvnxwnd T 
                                                                             (4.30) 

and y(n) is the ACLA filter output as given in (4.18).  

Equation (4.18) can be written as 
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                                                                 (4.31)                       

where, 
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                                                                    (4.32) 

The equivalent weight vector cW  of the combined filter can be expressed as 
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                                                                               (4.33)                             

Using (4.30) and (4.31) in (4.29), we get 
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where, 
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The Mean Square Deviation (MSD) of the ACLA filter at time n is 
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              (4.36)                                                                                

Substituting (4.22) in (4.36) yields 
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                                         (4.37) 

The first term of (4.37) corresponds to the MSD of the second adaptive filter, (n)MSD
2  

and since the MSD is a positive quantity, it indicates that (n)MSDc  is smaller than   

(n)MSD
2 . 

Equation (4.33) can also be expressed as 
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                                                            (4.38) 

Now by inserting (4.38) in the first line of (4.36),  
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where, 
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The first term of (4.39) corresponds to the MSD of the first adaptive filter, (n)MSD1  and 

since the MSD is a positive quantity, it indicates that (n)MSDc  is smaller than (n)MSD1 . 

Thus, the combined filter performs at least as well as the best component filter or better 

than any of them, for every n and the stability is guaranteed. 

 

4.8  Simulation Results 

This section shows the simulations that are carried out to evaluate the performance of our 

proposed sparse algorithms. The length of unknown system w0 is set to N = 16, and its 

impulse response consists of only one non-zero value at random position index and 

zeroes elsewhere making the system highly sparse as shown in Fig. 4.3. 

 

Fig. 4.3: Impulse response of a sparse system 

The input signal (n)x  is considered in two ways:  

Case 1: Gaussian random signal with zero mean and unit variance, N(0,1)  and  

Case 2: Correlated/Colored signal generated by passing a white Gaussian, u(n) through a 

first-order autoregressive process, AR(1) with a pole 0.8 that is represented as 

(n)u+1)-(nx0.8=(n)x . 
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The output of the system is corrupted by an independent white Gaussian noise with 

variance 0.001.  

The performance metrics used to evaluate the proposed algorithms are Mean Square 

Deviation (MSD), which is defined as  
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                                                             (4.41) 

where E{•}  denotes expectation operator, and 0w  and (n)W  are the true FIR filter vector 

and its adaptive estimator, respectively.                                                                                                        

and the MSE is given as 

                            
{ }(n)eE=MSE(n) 2                                                                            (4.42) 

The average of 200 trials is used in evaluating the results. 

From the simulation results shown in Fig. 4.4 (a), for the Gaussian input and when the 

system is highly sparse, it is observed that our proposed Sparse LA filters (ZA-LA & 

RZA-LA) converge faster than the existing LMS and LA algorithms which cannot exploit 

the sparseness information present in the system. In Fig. 4.4 (b), for the case of colored 

input, it is observed that the proposed LA algorithms have converged while the LMS 

algorithms fail to converge. 
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(a) 

 
(b) 

Fig. 4.4: MSD comparison of the proposed sparse LA algorithms with existing adaptive 

algorithms for highly sparse system with (a) white input, (b) colored input   
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The MSE performance of the proposed LA algorithms is depicted in Fig. 4.5. It is 

observed that the MSE of proposed LA algorithms is lower than the LMS algorithm and 

their sparse counterpart.                                                                

 

(a) 

 

(b) 

Fig. 4.5: MSE comparison of the proposed sparse LA algorithms with existing 

adaptive algorithms for highly sparse system with (a) white input, (b) colored input 
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Next, we have considered that the unknown system has all its tap coefficients set to non-

zero values, i.e. a non-sparse system zero values, i.e. a non-sparse system. Fig. 4.6 shows 

the impulse response of the used non-sparse system. 

 

Fig. 4.6: Impulse response of a non-sparse system 

With the Gaussian input, the proposed ZA-LA algorithm converges faster than ZA-LMS 

algorithm, but it exhibits high steady state error when the system is non-sparse as shown 

in Fig. 4.7 (a). The convergence of RZA-LA algorithm is the same as that of the LA 

algorithm and much better than the LMS algorithm. In the case of colored input, we 

observe from Fig. 4.7 (b) that the performance of our proposed algorithms is superior to 

that of LMS algorithm and their sparse counterpart. 
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(a) 

 

(b) 

Fig. 4.7: MSD comparison of the proposed sparse LA algorithms with existing 

adaptive algorithms for non-sparse system with (a) white input, (b) colored input 
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The mean square error (MSE) of proposed LA algorithms is shown in Fig. 4.8. The RZA-

LA algorithm achieves lower MSE value than that of the ZA-LA algorithm which is 

lower than that of the LMS algorithm and its sparse counterpart. 

 

(a) 

 

(b) 

Fig. 4.8: MSE comparison of the proposed sparse LA algorithms with existing 

adaptive algorithms for non-sparse system with (a) white input, (b) colored input 
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The performance of the ACLA filter is analyzed for identifying the system of length 

N=16 with variable sparsity. Initially, the system is assumed to be a highly sparse system 

with impulse response as shown in Fig. 4.3. At 600th sample, the system is abruptly 

converted to a non sparse system with impulse response as shown in Fig. 4.6. The 

learning curves of ACLA filter are shown in Fig. 4.9 and Fig. 4.10 for white and colored 

input cases respectively.  

 

Fig. 4.9: Tracking and steady-state performance of ACLA filter for white input 
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Fig. 4.10: Tracking and steady-state performance of ACLA filter for colored input 

From Fig. 4.9, it can be seen clearly that for white input case, the ACLA filter achieves 

faster convergence and better steady state behaviour. When the system is highly sparse 

(before 600th sample), the ACLA filter attains the lower steady state value of ZA-LA 

filter, and when the system is changed to a non-sparse system (at 600th sample), it 

achieves the steady state value of LA filter. When the input is considered as colored 

input, the steady state value of the ACLA filter is slightly better than that of the 

independent filters for a highly sparse system and when the system is converted to a non-

sparse system, the ACLA filter behaves like LA filter that achieves the lower steady state 

value as shown in Fig. 4.10. Thus, the proposed ACLA filter is robust in identifying the 

systems with variable sparsity. Fig. 4.11 shows the evolution of mixing parameter, λ(n) 

for the ACLA filter. 
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Fig. 4.11: Evolution of mixing parameter, λ(n) for the proposed affine combination. 

The behaviour of the proposed algorithms with input as a real speech signal sampled at 8 

kHz is evaluated in the next simulation. The system is considered to have a varying 

degree of sparsity. Initially, the system is assumed to be sparse with impulse response 

shown in Fig. 4.3, and at time t=1.75 sec, it is changed to the non-sparse system as shown 

in Fig. 4.6. The simulations are averaged over 100 trials. The Echo Return Loss 

Enhancement (ERLE) is used as the performance metric and is defined as [125], 

                             
2

2

))]()([(

)]()([(
log10)(

nvneE

nvndE
dBERLE






                                                  (4.43) 

 

Fig. 4.12: ERLE performance plot. The input signal, x(n) is a real speech signal 

sampled at 8 kHz (top). At t = 1.75 sec the system impulse response changes from 

sparse to non-sparse. The ERLE comparison of the proposed filters (bottom). 
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It is observed from Fig. 4.12 that the proposed RZA-LA filter achieves higher ERLE 

values and the ERLE of ZA-LA filter is better than that of the LA filter when the system 

is sparse. At t=1.75 sec, the system’s impulse response is switched to non sparse and it is 

observed that the ERLE performance of ZA-LA is reduced while the RZA-LA filter still 

attains the higher ERLE value closer to the LA filter which performs well under non 

sparse conditions. Hence, the robustness of the proposed algorithms is verified. 

 

4.9 Summary 

The standard Lyapunov Adaptation algorithm does not exploit sparsity present in an 

unknown sparse system. In this chapter, we proposed two novel algorithms, ZA-LA and 

RZA-LA to improve adaptive sparse system identification performance. From the 

simulation results, the effectiveness of the proposed algorithms is verified for both white 

input and colored input case in terms of MSD and MSE.  

Also, an Affine Combined Lyapunov Adaptation (ACLA) filter is presented to identify 

the systems with variable sparsity. The proposed combination filter exhibits robustness 

and achieves lower steady state value irrespective of the level of sparseness for the 

unknown system. The added complexity of the proposed algorithms is worth considering 

due to the increased performance. 
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Chapter 5 
 

Novel Sparse Algorithms under 

Impulsive Noise Environments 
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CHAPTER 5 

 

5.1 Motivation  

The conventional adaptive filtering algorithms based on minimum mean square error 

(MMSE) criterion are best suited for the Gaussian noise assumption. However, in 

practical applications exhibiting the non-Gaussian noise characteristics the performance 

of these algorithms is unsatisfactory. The Normalized Least Mean Absolute Third 

(NLMAT) algorithm using the high-order error power (HOEP) criterion is best suited for 

the impulsive noise environments, but has reduced estimation performance in case of 

sparse systems.  

The performance of the least-mean mixed-norm (LMMN) algorithm degrades seriously 

due to impulsive interferences. The LMMN adaptive algorithm is modified utilizing the 

sigmoid cost function to combat the effect of impulsive noise interference. This new 

algorithm is called as sigmoid LMMN (SLMMN) algorithm. Unfortunately, the proposed 

SLMMN algorithm cannot utilize the a priori sparse structure of the system. 

In this chapter, several sparse algorithms are proposed by inducing sparse-penalty 

functions into the standard NLMAT and the sigmoid LMMN algorithms in order to 

exploit the system with different levels of sparsity under impulsive noise.  

 

5.2 Introduction 

Adaptive filtering algorithms have received much attention over the past decades and are 

widely used for diverse applications such as system identification, adaptive beamforming, 

channel estimation, and interference cancellation [1], [2], [3], [201]. The LMS and 

NLMS are the most popular adaptive algorithms widely used for system identification 

due to their simplicity and low computational complexity. But, they suffer from reduction 

in the performance in the presence of colored noise/ impulsive interferences and slow 

convergence [153]. Therefore, a normalized robust mixed-norm RMN (NRMN) 

algorithm [202], [204] was presented in order to overcome these drawbacks. In [203], a 
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generalisation of the mixed norm stochastic gradient descent algorithms based on least 

exponential (LE) algorithms has been presented. NRMN uses the variable step size rather 

than using the fixed step-size of the RMN algorithm [205]. But, it depends on the 

variance of the white noise and impulsive noise which is unknown in practice. In the 

recent years, adaptive filtering algorithms that were based on high-order error power 

(HOEP) conditions were proposed [142], [143], [144] which can improve the 

convergence rate performance and mitigate the noise interference effectively. The least 

mean absolute third (LMAT) algorithm depends on minimizing the mean of the absolute 

error value to the third power [144,145]. The problem of local minimum is overcome in 

LMAT algorithm since the error function is a perfect convex function with respect to the 

filter coefficients.  The LMAT algorithm often converges faster than the LMS algorithm 

and is suitable for various noise conditions [146]. To alleviate the dependence of the 

input signal power effect, a normalized form of LMAT (NLMAT) algorithm is proposed 

in [147]. The NLMAT algorithm exhibits good stability and can mitigate non-Gaussian 

impulsive noise.  

In many physical scenarios [25], [26], [148], the unknown system to be identified exhibit 

sparse representation and it is worthy to note that if the system sparsity is properly used, 

then the identifying performance can be improved. However, all of the above-mentioned 

algorithms do not utilize such sparse prior information present in the system and may lose 

some estimation performance. 

Recently, many sparse adaptive filter algorithms that exploit system sparsity have been 

proposed, the well-known ones are the proportionate normalized LMS (PNLMS) 

algorithm [51] and its variants [52-54], [57], [59]. On the other hand, motivated by the 

LASSO [158] and recent advances in compressive sensing [21], [22], [55], a different 

way for sparse system identification has been proposed in [85]. The approach applies ℓ1 

relaxation, to improve the performance of the LMS algorithm and the convergence 

analysis is performed in [206]. To achieve further performance improvement in sparse 

system identification, reweighted ℓ1-norm penalty LMS (RL1-LMS) [96], [207] and 

Non-uniform norm constraint LMS (NNC-LMS) [88] algorithms were also proposed. 

Following this idea, sparse-aware LMF algorithms are proposed [208], [209], [210]. 



 

73 
 

Recently, a novel ℓ0-norm approximate method based on the correntropy induced metric 

(CIM) [211] is widely used in sparse channel estimation [179], [212], [213], [214]. 

However, these methods may be unreliable in estimating the system under non-Gaussian 

impulsive noise environments. In [215] the impulsive noise is modelled as a sparse vector 

in the time domain and proved useful for a powerline communication application. 

Fractional adaptive identification algorithms have been applied for parameter estimation 

in channel equalization, linear and nonlinear control autoregressive moving average 

model [216]-[219]. It is observed that fractional based identification algorithms 

outperform standard estimation methods in terms of accuracy, convergence, stability and 

robustness.  

The Normalized LMAT algorithm has been successfully validated for system 

identification under impulsive noise environments [147]. In this chapter, the sparse 

NLMAT algorithms based on different sparsity penalty terms are proposed to deal with 

sparse system identification under impulsive noise environment and various noise 

distributions. The following algorithms that integrate similar approaches presented above 

are proposed: the Zero-Attracting NLMAT (ZA-NLMAT), Reweighted Zero-Attracting 

NLMAT (RZA-NLMAT), Reweighted ℓ1-norm NLMAT (RL1-NLMAT), Non-uniform 

Norm Constraint NLMAT (NNC-NLMAT) and Correntropy-Induced Metric NLMAT 

(CIM-NLMAT). 

The least-mean mixed-norm (LMMN) algorithm to overcome the sensitivity issues of 

LMS and LMF is proposed in [149]. Also, the reweighted least-mean mixed-norm 

algorithm for sparse channel estimation [102] is recently proposed. However, the 

performance of LMMN algorithm degrades seriously due to impulsive interferences 

which exist in practical environments [151], [152], [153]. A recent study focuses on the 

nonlinear sigmoid function which can be used in the traditional cost function of the 

adaptive filtering algorithms to improve the robustness to impulsive noise [220], [221], 

[222].  

In this chapter, we also propose a modified LMMN algorithm based on the sigmoid cost 

function. This new algorithm is called as Sigmoid LMMN (SLMMN) which can improve 

the estimation performance. Unfortunately, the SLMMN algorithm cannot utilize the a 
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priori sparse structure of the system. Hence, two sparsity promoting algorithms, Zero 

attracting (ZA)-SLMMN and Reweighted Zero attracting (RZA)-SLMMN are proposed 

to address the system sparsity. 

 

5.3 Review of LMAT and Normalized LMAT Algorithms 

The general block diagram of sparse system identification using an adaptive filter is 

shown in Fig. 5.1. 

 

Fig. 5.1: Schematic diagram of sparse system identification 
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background noise: ,v(n)  with various noise distributions (Gaussian, uniform, Rayleigh 

and exponential) and impulsive noise. 
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5.3.1 LMAT Algorithm 

The objective function of LMAT algorithm is  

                            

3

LMAT e(n)(n)J =
     

 

                                            
3

y(n)d(n)-=                                                                      (5.1) 

where (n)x(n)Wy(n) T=  is the output of the adaptive filter, y(n)d(n)e(n) -= denotes the 

error signal, and [ ]TL21 (n)(n),.....w(n),ww(n)W =  is the weight vector of the adaptive 

filter. 

The gradient descent method is used to minimize :(n)J
LMAT   

                                     (n)W

(n)J

3
μ

(n)W1)(nW LMAT

∂

∂
-=+

                                                 (5.2)

 

By substituting Eq. (5.1) in the above equation, the LMAT algorithm’s update equation is 

given by                                                                   

                                 
[ ] (n)xe(n)(n)sgnμe(n)W1)(nW 2+=+                                            (5.3) 

where the positive constant μ  is the step size parameter. 

sgn(x) denotes the sign function of x   

The drawback of the LMAT algorithm is that its convergence performance is highly 

dependent on the power of the input signal. 

5.3.2 Normalized LMAT Algorithm 

To avoid the limitation of the LMAT algorithm, NLMAT algorithm [147] is derived by 

considering the following minimization problem [12]:       
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(5.4) 

where •  is the Euclidean norm of a vector. 

Derivating Eq. (5.4) with respect to 1)(nW + and equating to zero yields 

 [ ]
(n)x(n)x

(n)xe(n)(n)sgne
(n)W1)(nW

T

2
+=+  

    (5.5) 

  

The weight update equation for the NLMAT algorithm is given by 

    [ ]
δ(n)x(n)x

(n)xe(n)(n)sgne
μ(n)W1)(nW

T

2

+
+=+  

 

(5.6) 

where μ  is a step-size parameter, and δ  is a small positive constant to prevent division 

by zero when (n)x(n)xT vanishes. 

In the presence of impulsive noises, the squared error term (n)e2  in Eq. (5.6) might 

degrade the performance of NLMAT algorithm and hence we assign an upper-bound upe  

to (n)e2 . 

Thus, the NLMAT algorithm is modified as 

       up
2

T
e(n),emin

δ(n)x(n)x

(n)xe(n)sgn
μ(n)W1)(nW




 

(5.7) 

 

where upe  is the upper-bound assigned to (n)e2  in Eq. (5.6) and is expressed as 

    

μ
(n)σ2π

e e
up =  

 

(5.8) 

The estimate of standard deviation (n)σe  is given by the method in [202]-[205] 
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(5.9) 

where wT  is the diagonal matrix defined as, ,w ......0]...,1,0,..diag[1,...T =  that sets the 

last K  elements of O(n)  to zero, obtaining an unbiased estimate (n)σe  with the remaining 

( KN w- ) elements. 

  






 
T

w 1)Ne(n,.....,e(n)sortO(n)
 
contains the wN  most latest values of e(n) arranged in 

the increasing order of the absolute value. 

In general, wN and K  is chosen as LNw =  and  LPr1K   where    is the floor 

operator and rP  is the probability of the impulsive noise occurrence. 

 

5.4  Proposed Sparse NLMAT Algorithms 

To exploit the system sparsity and robustness against impulsive noise, several sparse 

NLMAT algorithms are proposed by inducing effective sparsity constraints into the 

standard NLMAT namely, Zero-Attracting NLMAT, Reweighted Zero-Attracting 

NLMAT, Reweighted ℓ1-norm (RL1)-NLMAT, Non-uniform Norm Constraint (NNC)-

NLMAT and Correntropy-Induced Metric (CIM)-NLMAT. 

The update equation of LMAT sparse algorithm can be generalized as 

    

  

  

LMAT sparse

penalty  Sparse

LMAT

update error Adaptive (n)W1)(nW 

 

 

(5.10) 

 

5.4.1 Zero-Attracting NLMAT (ZA-NLMAT) 

The cost function of ZA-LMAT filter with ℓ1-norm penalty is: 

    
1ZA

3
ZA (n)Wλe(n)

3

1
(n)J 

 

(5.11) 

The updating equation of ZA-LMAT filter can be written as 
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(n)W

(n)J
μ(n)W1)(nW ZA






 

 

(5.12) 

                                 (n)Wsgn(ρ-(n)xe(n)(n)sgnμe(n)W1)(nW
ZA

2
 

(5.13) 

where .= ZAZA μλρ  

Based on the update Eq. (5.6), the NLMAT filter update equation is generalized as                        

    

  

  

NLMAT sparse

penalty  Sparse

NLMAT

update error            

 Adaptive Normalized(n)W
1)(nW 




 

 

(5.14) 

In order to avoid the stability issues of Eq. (5.13), the modified form is represented as 

     
(n))Wsgn(ρ-

δ(n)x(n)x

(n)xe(n)(n)sgne
μ(n)W1)(nW

ZAT

2




 

 

(5.15) 

Eq. (5.15) corresponds to the updated equation of sparse NLMAT filter. 

The update rule of the modified sparse NLMAT algorithm is: 

        (n))Wsgn(ρ-e(n),emin
δ(n)x(n)x

(n)xe(n)sgn
μ(n)W1)(nW

ZAup
2

T 


 

 

(5.16) 

which is termed as the Zero-Attracting NLMAT (ZA-NLMAT). 

The ZA-NLMAT algorithm based on ℓ1-norm penalty is easy to implement and performs 

well for the system with high sparsity, whereas struggles for the system with less sparsity.  

 

5.4.2 Reweighted Zero-Attracting NLMAT (RZA-NLMAT) 

The cost function of the Reweighted ZA-LMAT algorithm is derived by introducing the 

log-sum penalty 

    
 



L

1i
iRZARZA

3
RZA )(n)wεlog(1λe(n)

3

1
(n)J

 

 

(5.17) 

The ith filter coefficient is then updated as   

                                             

                       (n)w

(n)J
μ(n)w1)(nw

i

RZA
ii 



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 
(n)wε1

(n))sgn(w
ρ-(n)xe(n)(n)sgnμe(n)w

iRZA

i
RZAi

2
i




 

 

(5.18) 

The RZA-LMAT update equation can be expressed in vector form: 

    
 

(n)Wε1

(n))Wsgn(
ρ-(n)xe(n)(n)sgnμe(n)W1)(nW

RZA

RZA
2




 

 

(5.19) 

By using  



L

1i
iRZARZA )(n)wεlog(1λ  as a sparse penalty in Eq. (5.14), the RZA-NLMAT 

update equation is denoted by 

     
(n)Wε1

(n))Wsgn(
ρ-e(n),emin

δ(n)x(n)x

(n)xe(n)sgn
μ(n)W1)(nW

RZA
RZAup

2

T 










 

 

(5.20) 

where RZARZARZA
εμλρ = and 0λRZA >  is the regularization parameter for RZA-

NLMAT. 

A logarithmic penalty which is a close measure of ℓ0-norm is considered in RZA-

NLMAT. This makes RZA-NLMAT to exhibit a better performance than the ZA-

NLMAT. However, the cost function Eq. (5.17) is not convex and the convergence 

analysis is problematic for Eq. (5.20).  

 

5.4.3 Reweighted ℓ1-norm NLMAT (RL1-NLMAT) 

Since the complexity of using the ℓ0-norm penalty is high, a term more similar to the ℓ0-

norm i.e., the reweighted ℓ1-norm penalty is used in the proposed RL1-NLMAT 

algorithm.  

The cost function of the reweighted ℓ1-norm LMAT algorithm is given by 

    
1

RL1
3

RL1 (n)W(n)fλe(n)
3

1
(n)J 

 

 

(5.21) 

where RL1λ  is the parameter related with the penalty parameter and the elements of (n)f  

are set to 
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     
 

,
1)(nWδ

1
(n)f

iRL1

i




10,1,.....Li   

 

(5.22) 

with RL1δ  is a positive number and hence   0(n)f i   for 10,1,.....Li -=  

Differentiating Eq. (5.21) with respect to ,(n)W  the RL1-LMAT update rule is  

    

                          (n)W

(n)J
μ(n)W1)(nW RL1






 

 

 

    

                                      

 
 

1)(nWδ

(n)Wsgn
ρ-(n)xe(n)(n)sgnμe(n)W

RL1

RL1
2




 

 

(5.23) 

According to the NLMAT in Eq. (5.7), the update equation of RL1-NLMAT can be 

written as 

         
1)(nWδ

(n)Wsgn
ρ-e(n),emin

δ(n)x(n)x

(n)xe(n)sgn
μ(n)W1)(nW

RL1

RL1up
2

T




 

 

(5.24) 

where .=
RL1RL1

μλρ  

The cost function Eq. (5.21) is convex unlike the cost function for the RZA-NLMAT. 

Therefore, the algorithm is guaranteed to converge to the global minimum under some 

conditions. 

 

5.4.4 Non-uniform Norm Constraint NLMAT (NNC-NLMAT) 

In all the above algorithms, there is no adjustable factor that can efficiently adapt the 

norm penalty itself to the unknown sparse finite impulse response of the system. To 

further improve the performance of sparse system identification, the non-uniform p-norm 

like constraint is incorporated into NLMAT algorithm. 

Let us consider the cost function of sparse NLMAT with p-norm like constraint as 

    p

p

3
(n)Wλe(n)

3

1
J(n) 

 

 

(5.25) 

where 
pL

1i
i

p

p
(n)w(n)W 



 is called normL
p
p - or p-norm like, 1p0 ≤≤  
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The gradient of the cost function J(n)  with respect to (n)W  is 

    

(n)W

(n)W

λ
(n)W

)e(n)
3

1
(

J(n)

p

p

3












 

 

(5.26) 

Thus the gradient descent recursion of the filter coefficient vector is                                         

                 J(n)μ(n)w1)(nw ii    

    

                          

[ ] L<i≤∀0

(n)w

(n))psgn(w
ρ-i)-x(ne(n)(n)sgnμe(n)w

p-1

i

i2
i ,+=  

 

(5.27) 

The zero attractor term in the Eq. (5.27) is produced by the p−norm-like constraint which 

will cause an estimation error for the desired sparsity exploitation. To solve this problem, 

the non-uniform p-norm like definition which uses a different value of p for each of the L 

entries in (n)W  is provided, 

 ipL

1i
i

p

Lp,
(n)w(n)W 

 1p,0 i   

 

(5.28) 

The new cost function using the non-uniform p-norm-penalty is given as                   

 p

Lp,NNC

3

NNC
(n)Wλe(n)

3

1
(n)J 

 

 

(5.29) 

The corresponding gradient descent recursion equation is  

                                 
[ ]

i
p1

i

ii

NNC
2

ii -
(n)w

(n))sgn(wp
ρ-i)-x(ne(n)(n)sgnμe(n)w1)(nw +=+ Li0, <≤∀  

 

(5.30) 

 [ ],(n)wEg(n) i= Li0 <≤∀  (5.31) 

   (n))sgn(wfρ-i)-x(ne(n)(n)sgnμe(n)w1)(nw
iiNNC

2
ii

 Li0,   
(5.32) 

where 

 

2

1(n)wg(n)sgn
f

i
i










Li0,   

 

(5.33) 

and .= NNCNNC μλρ  
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The reweighted zero attraction which is used to reduce the bias is introduced to Eq. 

(5.33). 

The weight update equation of NNC-LMAT algorithm is: 

 
[ ]

(n)wε1

(n))sgn(wf
ρ i)-x(ne(n)(n)sgnμe(n)w1)(nw

iNNC

ii

NNC
2

ii
-

+
+=+

Li0,   
 

(5.34) 

where 0ε
NNC

>       

The weight update equation of NNC-NLMAT algorithm can be written in vector form as             

    
(n)Wε1

(n))WFsgn(ρ
e(n),emin
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2
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
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(5.35) 

where F  is defined as 
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(5.36) 

 

5.4.5 Correntropy Induced Metric NLMAT (CIM-NLMAT) 

Due to the superiority of the correntropy induced metric (CIM) to approximate the ℓ0-

norm, CIM is used as the penalty term to impart sparsity in the NLMAT algorithm. 

The similarity between two random vectors p  
L21

,....pp,p   and q  
L21

,....qq,q  in kernel 

space can be measured using CIM which is described as 

 
)CIM( qp,   2

1
)(Vk(0) qp,ˆ  

 

(5.37) 

where  

 ,
2πσ

1
k(0)

  

(5.38) 
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(5.39) 
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For the Gaussian kernel,
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q)k(p,                                                         (5.40) 

here qpe -=  and σ  is the kernel width. 

The CIM provides a good approximation for the ℓ0-norm that can be represented as 
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(5.41) 

The Gaussian kernel-based CIM is integrated with cost function of LMAT algorithm i.e., 
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(5.42) 

The gradient of the cost function (n)JCIM  with respect to (n)W  is 
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(5.43) 

The weight update equation of CIM-LMAT is denoted by 

 
               

(n)Jμ(n)w1)(nw
CIMii 

 
 

 
 

 















2

2
i

i3CIM
2

i
2σ

(n)w
(n)expw

2πLσ

1
ρi)-x(ne(n)(n)sgnμe(n)w

 

 

(5.44) 

where 0μλρ
CIMCIM

>=  is a regularization term which balances the estimation error 

and sparsity penalty. 

Equation (5.44) can be rewritten in matrix form as 
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(5.45) 

By using 
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  (5.46) 

The matrix form of CIM-NLMAT algorithm is expressed as 
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(5.47) 

 

5.4.6. Computational Complexity 

The numerical complexity of the proposed sparse algorithms in terms of additions, 

multiplications, divisions, square-roots, and comparisons per iteration is shown in Table 

5.1.  

Table 5.1: Comparison of computational complexity of the investigated algorithms 

Algorithms Additions Multiplications Divisions Square-roots Comparisons Exponents 

NLMAT [147] 4L+2 4L+1 2 1 LlnL+2 - 

ZA-NLMAT 5L+2 5L+1  2 1 LlnL+2 - 

RZA-NLMAT 5L+3 5L+2 L+2 1 LlnL+2 - 

RL1-NLMAT 5L+2 5L+1 L+2 1 LlnL+2 - 

NNC-NLMAT 5L+3 6L+2 L+2 1 LlnL+2 - 

CIM-NLMAT 4L+2 7L+1 L+2 1 LlnL+2 L 
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5.4.7. Simulation Results 

In this section, the performance of the proposed sparse algorithms is evaluated in the 

context of system identification using various noise distributions and impulsive noise 

environment. The unknown system 𝑾𝑜𝑝𝑡 is of length L=16 and its channel impulse 

response (CIR) is assumed to be sparse in the time domain. The adaptive filter is also 

assumed to be of the same length. The proposed algorithms are compared under different 

sparsity levels S=1 & S=4. The active coefficients are uniformly distributed in the 

interval (-1, 1) and the position of the nonzero taps in the CIR is randomly chosen. The 

Gaussian white noise with variance 1σ 2
x =  is considered as the input signal (n)x . The 

correlated signal (n)z  is obtained using a first-order autoregressive process, AR(1), with 

a pole 0.5 and is given by (n)x1)-(nz0.5(n)z += . The system background noise 

comprises of 

Case 1: only White Gaussian noise with N(0,1) , 

Case 2: impulsive noise + White Gaussian noise with N(0,1) ,  

Case 3: impulsive noise + uniformly distributed noise within the range (-1, 1),  

Case 4: impulsive noise + Rayleigh distributed noise with 1 and  

Case 5: impulsive noise + Exponential distributed noise with 2.  

The impulsive noise generated by the Bernoulli-Gaussian (BG) process is given as 

a(n)I(n)ξ(n)= , where a(n) is a white Gaussian signal with )σN(0, 2
a

and I(n)  is a 

Bernoulli process expressed by the probability   rP1I(n)p  ,   ,P10I(n)p r  where rP  

represents the probability of the impulsive noise occurrence. We choose Pr =0.01 and 

12
10σ

4
2

a = .  

The performance metrics Mean Square Deviation (MSD) and Excess Mean Square Error 

(EMSE) are used to evaluate the performance of the proposed algorithms which are 

expressed as 



 

86 
 

 
=

2

2

(n)W 
opt10

10logMSD(dB) -W  
(5.48) 

and 

 =EMSE(dB) [ ] ,2
10

ε(n)10log  respectively. (5.49) 

(n),x(n)θε(n) T= where (n)Woptθ(n) -= W    

The average of 100 independent trials with SNR=20 dB is used in evaluating the results. 

In order to show the effectiveness of the proposed sparse NLMAT algorithms, a 

comparison with the NRMN algorithms is performed. In Fig. 5.2, the simulation results 

for the proposed algorithms are shown for the white Gaussian input and Case 1 as the 

background noise for the system with sparsity S=1. The simulation results shown in Fig. 

5.3 are carried out for the white Gaussian input with Case 2 background noise with 

sparsity level S=1. It can be seen from Figs. 5.2 and 5.3 that the proposed sparse NLMAT 

algorithms exhibit better performance than NLMAT and NRMN algorithms in terms of 

MSD for the very sparse system. Moreover, the proposed CIM-NLMAT algorithm 

achieves lower steady state error. 
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Fig. 5.2: MSD performance for the proposed algorithms with Case 1 as the background 

noise and the Gaussian white input signal for the system with sparsity S=1. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,105ρ 5
ZA

-×= ,103ρRZA
4-×= ,101ρ 5

RL1
-×= 0.01,RL1 =δ ,101ρ 3

NNC
-×= 20,ε

NNC
=

,102ρ 3
CIM

-×= 0.05σ =  

 

Fig. 5.3: MSD performance for the proposed algorithms with Case 2 as the background 

noise and the white Gaussian input signal for the system with sparsity S=1. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,101ρZA
4-×= ,104ρ 4

RZA
-×= ,20RZA =ε ,101ρ 5

RL1
-×= 0.01,RL1 =δ ,101ρ 3

NNC
-×=

20,ε
NNC

= ,102ρCIM
3-×= 0.05σ =

 

In Fig. 5.4, the simulation results for the proposed algorithms are shown for the white 

Gaussian input and Case 3 as the background noise for the system with sparsity S=1. In 

Fig. 5.5, the input is white Gaussian with Case 4 background noise for the system with 

sparsity S=1. In Fig. 5.6, the input is white Gaussian signal and the background noise as 

Case 5 for the system with sparsity S=1. 
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Fig. 5.4: MSD performance for the proposed algorithms with Case 3 background noise 

and the white Gaussian input signal for the system with sparsity S=1. The simulation 

parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ ,101ρZA
4-×=

,104ρ 4
RZA

-×= 20,
RZA

=ε ,101ρ 5
RL1

-×= 0.01,RL1 =δ ,101ρ 3
NNC

-×= 20,ε
NNC

=

,102ρCIM
3-×= 0.05σ =  

 

Fig. 5.5: MSD performance for the proposed algorithms with Case 4 background noise 

and the input is white Gaussian signal for the system with sparsity S=1. The simulation 
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parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,101ρZA
4-×= ,105ρ 4

RZA
-×= 20,

RZA
=ε ,103ρ 5

RL1
-×= 0.01,RL1 =δ ,101ρ 3

NNC
-×=

20,ε
NNC

= ,102ρCIM
3-×= 0.05σ =  

  

 

Fig. 5.6: MSD performance for the proposed algorithms with Case 5 as the background 

noise and the white Gaussian input signal for the system with sparsity S=1. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,101ρZA
4-×= ,105ρ 4

RZA
-×= 20,

RZA
=ε ,103ρ 5

RL1
-×= 0.01,RL1 =δ ,102ρ 3

NNC
-×=

20,ε
NNC

= ,102ρCIM
3-×= 0.05σ =  

 

It can be easily seen from Figs. 5.4, 5.5 and 5.6 that the proposed sparse NLMAT 

algorithms provide better performance than NLMAT and NRMN algorithms in terms of 

MSD for the very sparse system. As shown above, the proposed CIM-NLMAT algorithm 

achieves lower steady state error too. 

The EMSE values of the proposed algorithms obtained for different noise cases with 

uncorrelated input and system sparsity S=1 are given in Table 5.2. It is confirmed that the 

proposed sparse algorithms outperform the NLMAT algorithm in identifying a sparse 

system. 



 

90 
 

Table 5.2: Comparison of EMSE values for different NLMAT algorithms with 

Uncorrelated input signal and different noise cases with system sparsity S=1 

EMSE in dB 

Uncorrelated 

input signal with 
NLMAT ZA-NLMAT 

RZA-

NLMAT 

RL1-

NLMAT 

NNC-

NLMAT 

CIM-

NLMAT 

Gaussian noise -30.5626 -32.2503 -35.4460 -36.0610 -36.1562 -36.3304 

Gaussian + 

impulsive  

noise 

-24.2397 -25.7307 -27.6974 -28.0753 -29.1522 -30.8891 

Uniformly + 

impulsive noise 
-24.4995 -25.9092 -27.6775 -28.0074 -29.1906 -31.4352 

Rayleigh + 

impulsive noise 
-24.7076 -26.1345 -28.3539 -29.8174 -29.4793 -31.5281 

Exponential + 

impulsive noise 
-23.2402 -24.6765 - 26.8894 -28.1389 -28.3890 -29.1493 

 

In the simulations shown in Figs. 5.7 – 5.11 the input signal is the correlated/colored 

input and the system background noise from Case 1 to Case 5 are considered accordingly 

with system sparsity S=1. It is observed from Figs. 5.7–5.11 that the proposed sparse 

NLMAT algorithms exhibit better performance than NLMAT and NRMN algorithms in 

terms of MSD for the very sparse system and colored input. Moreover, like for the 

previous simulations, the proposed CIM-NLMAT algorithm achieves the lowest steady 

state error. 
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Fig. 5.7: MSD performance for the proposed algorithms with Case 1 as the background 

noise and the input is the correlated signal for the system with sparsity S=1. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,105ρZA
5-×= ,103ρ 4

RZA
-×= ,20RZA =ε ,101ρ 5

RL1
-×= 0.01,RL1 =δ ,101ρ 3

NNC
-×=

20,ε
NNC

= ,102ρCIM
3-×= 0.05σ =  

 

Fig. 5.8: MSD performance for the proposed algorithms with Case 2 background noise 

and the input is the correlated signal for the system with sparsity S=1. The simulation 
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parameters for sparse NLMAT algorithms are given as ,0.8μ = ,101 -3×=δ ,101ρZA
4-×=

,104ρ 4
RZA

-×= ,20RZA =ε ,101ρ -5
RL1 ×= 0.01,RL1 =δ ,101ρ 3

NNC
-×= 20,ε

NNC
=

,102CIMρ 3-×= 0.05σ =  

 

Fig. 5.9: MSD performance of the proposed algorithms with Case 3 background noise 

and the correlated input signal for the system with sparsity S=1.  The simulation 

parameters for sparse NLMAT algorithms are given as ,0.8μ = ,101 -3×=δ ,101ρZA
4-×=

,103ρ 4
RZA

-×= 20,
RZA

=ε ,101ρ 5
RL1

-×= 0.01,RL1 =δ ,10ρ 3
NNC

-×1= 20,ε
NNC

=

,102ρCIM
3-×= 0.05σ =  



 

93 
 

 

Fig. 5.10: MSD performance for the proposed algorithms with Case 4 background noise 

and the input is the correlated signal for the system with sparsity S=1. The simulation 

parameters for sparse NLMAT algorithms are given as ,0.8μ = ,101 -3×=δ ,101ρZA
4-×=

,105ρ 4
RZA

-×= ,20RZA =ε ,103ρ 5
RL1

-×= 0.01,RL1 =δ ,10ρ 3
NNC

-×3= 20,ε
NNC

=

,101ρCIM
3-×= 0.05σ =  

 

Fig. 5.11: MSD performance for the proposed algorithms with Case 5 background noise 

and the input is the correlated signal for the system with sparsity S=1. The simulation 
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parameters for sparse NLMAT algorithms are given as 0.8,μ = ,3-101×=δ

,101ρZA
4-×= ,10ρ 4

RZA
-×5= ,20RZA =ε ,103ρ 5

RL1
-×= 0.01,RL1 =δ ,10ρ 3

NNC
-×2=

20,ε
NNC

= ,102ρCIM
3-×= 0.05σ =  

The EMSE values of the proposed algorithms obtained for different noise cases with 

correlated/colored input and system sparsity S=1 are given in Tables 5.3 respectively. It 

clearly shows that the proposed sparse algorithms outperform the NLMAT algorithm in 

identifying a sparse system. 

Table 5.3: Comparison of EMSE values for different NLMAT algorithms with 

Correlated/Colored input signal and different noise cases with system sparsity S=1 

EMSE in dB 

Correlated input 

signal with 
NLMAT 

ZA-

NLMAT 

RZA-

NLMAT 

RL1-

NLMAT 

NNC-

NLMAT 

CIM-

NLMAT 

Gaussian noise -27.7545 -28.9331 -31.5727 -32.5171 -32.6784 -32.9729 

Gaussian + 

impulsive noise 
-23.7591 -25.1377 -27.0692 -27.5438 -28.5263 -30.3892 

Uniformly + 

impulsive noise 

-22.9686  -24.2891 -25.3021 -25.9263 -26.7201 -28.4806 

Rayleigh + 

impulsive noise 

-22.1036 -23.3135 -25.2280 -26.6034 -27.1472 -27.4192 

Exponential + 

impulsive noise 
-21.6826 -22.8867 -25.1323 -26.7080 -26.9945 -27.8838 

 

 

In Figs. 5.12–5.21, the performance of the proposed algorithms when the system sparsity 

is changed to S=4 is shown.  
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Fig. 5.12: MSD performance for the proposed algorithms with Case 1 as the background 

noise and the Gaussian white input signal for the system with sparsity S=4. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,105ρZA
3-×= ,105ρRZA

4-×= 20,
RZA

=ε ,101ρ 4
RL1

-×= 0.01,RL1 =δ ,105ρNNC
3-×=

20,ε
NNC

= ,105ρ 3
CIM

-×= 0.05σ =  

In Fig. 5.12, the simulation results for the proposed algorithms are shown for the white 

Gaussian input with Case 1 as the background noise for the system with sparsity S=4. 

The simulation results shown in Fig. 5.13 are carried out for the white Gaussian input 

with Case 2 background noise for system sparsity level S=4. It can be seen from Figs. 

5.12 and 5.13 that the proposed sparse NLMAT algorithms exhibit better performance 

than NLMAT and NRMN algorithms in terms of MSD even after changing the system 

sparsity to S=4. 
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Fig. 5.13: MSD performance for the proposed algorithms with Case 2 as the background 

noise and the white Gaussian input signal for the system with sparsity S=4. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,105ρZA
4-×= ,105ρ 3

RZA
-×= 20,

RZA
=ε ,108ρ 5

RL1
-×= 0.01,RL1 =δ ,105ρ 3

NNC
-×=

20,ε
NNC

= ,105ρCIM
3-×= 0.05σ =  

 

Fig. 5.14: MSD performance for the proposed algorithms with Case 3 background noise 

and the white Gaussian input signal for the system with sparsity S=4. The simulation 
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parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,101ρZA
4-×= ,105ρ 3

RZA
-×= 20,

RZA
=ε ,101ρ 4

RL1
-×= 0.01,RL1 =δ ,108ρ 3

NNC
-×=

20,ε
NNC

= ,105ρCIM
3-×= 0.05σ =  

 

In Fig. 5.14, the simulation results for the proposed algorithms are shown for the white 

Gaussian input while the background noise is Case 3 for the system with sparsity S=4. In 

Fig. 5.15, the input is white Gaussian with background noise as Case 4 for the system 

with sparsity S=4. In Fig. 5.16, the input is white Gaussian signal and the background 

noise is Case 5 for the system with sparsity S=4. 

 

Fig. 5.15: MSD performance for the proposed algorithms with Case 4 as the background 

noise and the input is white Gaussian signal for the system with sparsity S=4. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,101ρZA
4-×= ,105ρ 3

RZA
-×= 20,

RZA
=ε ,101ρ 4

RL1
-×= 0.01,RL1 =δ ,105ρ 3

NNC
-×=

20,ε
NNC

= ,105ρCIM
3-×= 0.05σ =  
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Fig. 5.16: MSD performance for the proposed algorithms with background noise as Case 

5 and the white Gaussian input signal for the system with sparsity S=4. The simulation 

parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,105ρZA
4-×= ,105ρ 3

RZA
-×= 20,

RZA
=ε ,108ρ 5

RL1
-×= 0.01,RL1 =δ ,106ρ 3

NNC
-×=

20,ε
NNC

= ,105ρCIM
3-×= 0.05σ =  

It can be easily seen from Figs. 5.14, 5.15 and 5.16 that the proposed sparse NLMAT 

algorithms provide better performance than NLMAT and NRMN algorithms in terms of 

MSD even after changing the system sparsity to S=4. As shown above, the proposed 

CIM-NLMAT algorithm achieves lower steady state error too. 

The EMSE values of the proposed algorithms obtained under different noise cases with 

uncorrelated input and system sparsity S=4 are given in Table 5.4. It is confirmed that the 

proposed sparse algorithms outperform the NLMAT algorithm in identifying a sparse 

system. 
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Table 5.4: Comparison of EMSE values for different NLMAT algorithms with 

Uncorrelated input signal and different noise cases with system sparsity S=4 

EMSE in dB 

Uncorrelated 

input signal with 
NLMAT ZA-NLMAT RZA-NLMAT RL1-NLMAT NNC-NLMAT CIM-NLMAT 

Gaussian noise -20.9392 -21.3551 -23.0535 -23.3768 -23.6006 -23.8147 

Gaussian + 

impulsive noise 
-17.9256 -18.4067 -20.1009 -20.2364 -20.4554 -20.7783 

Uniformly + 

impulsive noise 
-20.1611 -20.5581 -22.6783 -22.8724 -23.0897 -23.6132 

Rayleigh + 

impulsive noise 
-20.0824 -20.3172 -22.1620 -22.4268 -22.8624 -23.0831 

Exponential + 

impulsive noise 
-17.3953 -17.8863 - 19.5835 -19.7195 -19.9825 -20.3212 

 

In the simulations shown in Figs. 5.17 – 5.21 the input signal is the correlated/colored 

input and the system background noise from Case 1 to Case 5 are considered accordingly 

with system sparsity changed to S=4. It is observed from Figs. 5.17–5.21 that the 

proposed sparse NLMAT algorithms exhibit better performance than NLMAT and 

NRMN algorithms in terms of MSD even after changing the system sparsity to S=4. 

Moreover, like for the previous simulations, the proposed CIM-NLMAT algorithm 

achieves the lowest steady state error. 
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Fig. 5.17: MSD performance for the proposed algorithms with Case 1 as the background 

noise and the input is the correlated signal for the system with sparsity S=4. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,101ρZA
4-×= ,105ρ 3

RZA
-×= 20,

RZA
=ε ,101ρ 4

RL1
-×= 0.01,RL1 =δ ,105ρ 3

NNC
-×=

20,ε
NNC

= ,105ρCIM
3-×= 0.05σ =  
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Fig. 5.18: MSD performance for the proposed algorithms with Case 2 as the background 

noise and the input is the correlated signal for the system with sparsity S=4. The 

simulation parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,104ρZA
4-×= ,104ρ 3

RZA
-×= 20,

RZA
=ε ,108ρ 5

RL1
-×= 0.01,RL1 =δ ,105ρ 3

NNC
-×=

20,ε
NNC

= ,105ρCIM
3-×= 0.05σ =  

 

Fig. 5.19: MSD performance for the proposed algorithms with Case 3 background noise 

and the correlated input signal for the system with sparsity S=4. The simulation 

parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,103ρZA
4-×= ,105ρ 3

RZA
-×= 20,

RZA
=ε ,107ρ 5

RL1
-×= 0.01,RL1 =δ ,105ρ 3

NNC
-×=

20,ε
NNC

= ,108ρCIM
3-×= 0.05σ =  
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Fig. 5.20: MSD performance for the proposed algorithms with Case 4 background noise 

and the input is the correlated signal for the system with sparsity S=4. The simulation 

parameters for sparse NLMAT algorithms are given as ,0.8μ = ,101 -3×=δ

,102ρZA
4-×= ,105ρ 3

RZA
-×= 20,

RZA
=ε ,101ρ 4

RL1
-×= 0.01,RL1 =δ ,10ρ 3

NNC
-×8=

20,ε
NNC

= ,105ρCIM
3-×= 0.05σ =  

 

Fig. 5.21: MSD performance for the proposed algorithms with Case 5 background noise 

and the input is the correlated signal for the system with sparsity S=4. The simulation 
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parameters for sparse NLMAT algorithms are given as 0.8,μ = ,101 -3×=δ

,102ρZA
4-×= ,10ρ 3

RZA
-×5= 20,

RZA
=ε ,102ρ 4

RL1
-×= 0.01,RL1 =δ ,10ρ 2

NNC
-×1=

20,ε
NNC

= ,105ρCIM
3-×= 0.05σ =  

The EMSE values of the proposed algorithms obtained for different noise cases with 

correlated/colored input and system sparsity S=4 are given in Table 5.5. It can be shown 

that the proposed sparse algorithms outperform the NLMAT algorithm in identifying a 

sparse system. 

Table 5.5: Comparison of EMSE values for different NLMAT algorithms with 

Correlated/Colored input signal and different noise cases with system sparsity S=4 

EMSE in dB 

Correlated input 

signal with 
NLMAT ZA-NLMAT RZA-NLMAT RL1-NLMAT NNC-NLMAT CIM-NLMAT 

Gaussian noise -19.1247 -19.5721 -21.0284 -21.3306 -21.4909 -21.7910 

Gaussian + 

impulsive noise 
-16.8195 -17.2241 -18.8023 -18.8600 -19.0803 -19.5058 

Uniformly + 

impulsive noise 
-19.1671  -19.6554 -21.2712 -21.5192 -21.7299 -21.7390 

Rayleigh + 

impulsive noise 

-17.3378 -17.6872 -19.3570 -19.5731 -19.7939 -20.3204 

Exponential + 

impulsive noise 
-15.3710 -15.7622 -17.2763 -17.4946 -17.7603 -18.2423 

 

Let us now consider a network echo cancellation (NEC) system with the echo path 

impulse response of length L=512 as shown in Fig. 5.22. This is a sparse impulse 

response.  
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Fig. 5.22: Network echo path impulse response 

In Fig. 5.23, the simulation results for the proposed algorithms are shown for the white 

Gaussian input and when the background noise consists of both white Gaussian noise 

with SNR of 20dB, and impulsive noise. From Fig. 5.23, it clearly depicts that the 

proposed sparse NLMAT algorithms exhibit better performance than the NLMAT 

algorithm for long echo paths with sparse impulse response. 
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Fig. 5.23: MSD performance of the proposed algorithms in a NEC sparse system with 

white Gaussian noise and impulsive noise as the background noise and the input is white 

Gaussian signal. 

In Fig. 5.24, the input signal is the correlated/colored input and the system noise 

comprises of both white Gaussian noise and impulsive noise. It is observed that the 

proposed sparse NLMAT algorithms exhibit better performance than NLMAT algorithm. 

Moreover, like for the previous simulations, the proposed CIM-NLMAT algorithm 

achieves the lowest steady state error for long echo paths with sparse impulse response. 

 

Fig. 5.24: MSD performance of the proposed algorithms in a NEC sparse system with 

white Gaussian noise and impulsive noise as the background noise and the input is the 

AR(1) correlated signal. 

 

5.5  Least Mean Mixed Norm (LMMN) Algorithm 

The output of the unknown system as described in Fig. 5.1 is given as 

                 
v(n),+(n)=d(n) opt

T Wx          (5.50) 
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where T1)]L1)....x(nx(n[x(n),(n) x  denotes an 1Lx  input signal vector and 

T
1-L10opt

]....ww,[wW  is an unknown weight vector. The measurement noise v(n) 

consists of white Gaussian noise and impulsive noise. The system error signal is defined 

as 

                     1),(n(n)-d(n)y(n)-d(n)e(n) T  Wx                                                     (5.51) 

where, y(n)  is the output of the adaptive filter .(n)W  

The cost function of the LMMN algorithm can be expressed as 

                       
   ,(n)eE

4

λ1
(n)eE

2

λ
(n)J 42

LMMN


                                         (5.52) 

which is a combination of LMS and LMF algorithm cost functions and λ  is the mixing 

parameter, 1.λ0     

The LMMN weight update equation is derived using the gradient minimization technique 

   (n)Jμ(n)1)(n LMMN(n)WWW  ˆ  

                                              (n),(n)λ)e(1λμe(n)(n) 2 xW                                                   (5.53) 

where μ  is the step-size of LMMN algorithm. 

 

5.6  Proposed Modified LMMN Algorithm Based on Sigmoid Function 

(SLMMN) 

We firstly define the sigmoid function as [223], [224] 

    ,
(n)αJ

e1

1
(n)αJsgmS(n)

LMMN
LMMN 



                                               (5.54) 

where α  is the steepness parameter of the sigmoid function. 

The modified cost function of the LMMN algorithm based on (5.54) can be expressed as 
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  .
(n)αJ

e1

1

α

1
S(n)

α

1
(n)J

LMMN
SLMMN 



                                                (5.55) 

On differentiating the sigmoid LMMN (SLMMN) cost function (5.55) with respect to 

(n)W  yields 

(n)

(n)J
(n)J SLMMN

SLMMN(n) WW 


̂

 

                          
W(n)

(n)J

(n)J

S(n)

α

1 LMMN

LMMN









 

                         (n)JS(n)]S(n)[1 LMMN(n)W ˆ                                                                (5.56) 

The weight update rule of the proposed SLMMN algorithm is given by 

  (n).Jμ(n)1)(n SLMMN(n)WWW  ˆ                                                          (5.57) 

Substituting (5.56) into (5.57), we get 

 
(n)JS(n)]μS(n)[1(n)1)(n LMMN(n)WWW  ˆ

 

                          (n),(n)λ)e(1λS(n)]e(n)μS(n)[1(n) 2 xW                                              (5.58) 

where, 



































 
 (n)e

4

λ1
(n)e

2

λ
αsgmS(n) 42  

                 .



























(n)e
4

λ1
(n)e

2

λ
α

e1

1

42
                                                                (5.59) 

 

5.7  Proposed Sparse SLMMN Algorithms 

To exploit the system sparsity, two sparse algorithms are proposed by introducing ℓ1-

norm and log-sum penalties into the SLMMN namely, Zero Attracting SLMMN (ZA-

SLMMN) and Reweighted Zero Attracting SLMMN (RZA-SLMMN) respectively.  
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5.7.1. Zero Attracting SLMMN (ZA-SLMMN) Algorithm 

Let the cost function of ZA-SLMMN algorithm denoted by 

   1S (n)γ(n)J(n)J ZASLMMNLMMNZA W                                                (5.60) 

where ZAγ  is the regularization parameter which balances the estimation error and 
1

(n)W  

Using the gradient descent rule, the ZA-SLMMN algorithm update is defined as 

        (n)Jμ(n)1)(n SLMMN-ZA(n)WWW  ˆ                                               (5.61) 

where, 

 
(n)

(n)J
(n)J SLMMN-ZA

SLMMN-ZA(n) WW 


̂  

                                 .(n)sgnγ
(n)

(n)J

ZA
SLMMN W

W





                                                           (5.62) 

Using (5.56) in (5.62) and substituting into (5.61), we get 

  (n))sgn(
ZA

ρ-(n)(n)
2

λ)e(1λS(n)]e(n)μS(n)[1(n)1)(n WxWW 

                                  

(5.63) 

where, (.)sgn  is the signum function, ,ZAZA μγρ   and 

 .
1 



































 


 (n)
ZA
γ(n)e

4

λ1
(n)e

2

λ
αsgmS(n) 42 W                                                          (5.64) 

Equation (5.63) corresponds to the weight updating of the proposed ZA-SLMMN 

algorithm. 

5.7.2. Reweighted Zero Attracting SLMMN (RZA-SLMMN) Algorithm 

The cost function of RZA-SLMMN algorithm is obtained by introducing the log-sum 

penalty [20] into the SLMMN cost function as 

 













1L

0i
iRZARZASLMMNLMMNRZA (n)wε1logγ(n)J(n)J S

                                              (5.65)
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where RZAγ  is the regularization parameter. 

The weight update rule of RZA-SLMMN algorithm is derived as 

  (n).Jμ(n)1)(n SLMMN-RZA(n)WWW  ˆ                                                   (5.66) 

On differentiating the second term in (5.66) with respect to (n)W , yields the following 

equation that corresponds to the weight updating of the proposed RZA-SLMMN 

algorithm. 

   

  ,
(n)

RZA
ε1

(n))sgn(

RZA
ρ-(n)(n)λ)e(1λS(n)]e(n)μS(n)[1(n)1)(n

2

W

W
xWW


               (5.67) 

where,  ,
RZARZARZA εμγρ   

    .





















































1L

0i

(n)
i

w
RZA
ε1log(n)e

4

λ1
(n)e

2

λ
αsgmS(n) 42      (5.68) 

 

5.7.3. Simulation Results 

The performance of the proposed SLMMN algorithms in the system identification 

scenario is evaluated in this section. The length of the unknown system to be identified is 

set as L = 16 with system sparsity of K = {1, 4, 8} and the adaptive filter is also assumed 

to have the same length. The correlated (colored) input signal is generated by filtering a 

Gaussian white noise with variance 2 1x   (0 dB) through a first-order autoregressive 

system, AR(1), with a pole at 0.8. The system noise ( )v n  contains white Gaussian noise 

with SNR = 20dB and Bernoulli-Gaussian (B-G) distributed impulsive noise. B-G noise 

is generated as (n).b(n)vq(n)
i

  b(n)  is a binary process, illustrated by the probability 

,P1)p(b(n)  ,1 P0)p(b(n)   where P  represents the probability of occurrence of the 

impulsive noise. (n)v
i

 is assumed to be a zero-mean white Gaussian noise with variance 

.2
v

i
σ  The normalized mean-square deviation (NMSD) defined as 
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(dB)

(n)

logNMSD(n)
2

2opt

2

2opt

W

WW 


10

10  is used to estimate the performance of the proposed 

algorithms. The average of 100 trials is used in evaluating the results. The simulation 

parameters setting are as follows: ,μ 0.04 0.01,P ,
12

104
2

i
vσ 0.5,λ ,α 0.6

,5x10= -5
ZA

ρ ,-41x10
RZA

ρ and 20.
RZA

ε
 

From Figs. 5.25, 5.26 and 5.27, it can be seen that the SLMMN, ZA-SLMMN and RZA-

SLMMN yield better steady state performances than the sparse LMP algorithms (ZA-

LMP and RZA-LMP), while the LMMN algorithm does not converge in the presence of 

impulsive noise. Hence, the proposed algorithms are robust against impulsive noise and 

are capable of handling the system with different sparsity levels, K={1, 4, 8}. The RZA-

SLMMN algorithm exhibits superior performance and achieves the lowest steady-state 

error in all the cases. 

 

 

Fig. 5.25: NMSD comparison of the proposed SLMMN algorithms for the system with 

sparsity K =1 and in the presence of impulsive noise 
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Fig. 5.26: NMSD comparison of the proposed SLMMN algorithms for the system with 

sparsity K =4 and in the presence of impulsive noise 

 

Fig. 5.27: NMSD comparison of the proposed SLMMN algorithms for the system with 

sparsity K =8 and in the presence of impulsive noise 
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Fig. 5.28: NMSD of the proposed SLMMN algorithm with different step-size parameter 

µ 

It can be noticed from Fig. 5.28 that increasing the step-size value leads to an increased 

convergence rate of the proposed SLMMN algorithm, but also results in high steady-state 

error. 

 

Fig. 5.29: NMSD of the proposed SLMMN algorithm with different α  

As can be seen from Fig. 5.29, the greater the constant α, the slower will be the 

convergence, but the lower will be the steady-state misadjustment. Depending on the 

particular practical application the proper choice of the parameters of the SLMMN 
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algorithm can highly reduce the number of needed iterations if a certain NMSD 

performance is needed. 

 

5.8  Summary 

The Normalized LMAT algorithm based on high-order error power (HOEP) criterion 

achieves improved performance and mitigates the noise interference effectively, but it 

does not promote sparsity. Hence, in this chapter, we have proposed different sparse 

Normalized LMAT algorithms in the sparse system identification context. From the 

simulation results, it is verified that our proposed sparse algorithms are capable of 

exploiting the system sparsity as well as providing robustness to impulsive noise. 

Moreover, the proposed CIM-NLMAT algorithm exhibit superior performance in the 

presence of different types of noise. 

The LMMN algorithm which is reported to overcome the sensitivity and to improve the 

misadjustment performance, fails to converge in the presence of non-Gaussian impulsive 

intereferences. So, a modified LMMN algorithm using the sigmoid function, i.e., 

SLMMN algorithm is proposed which is robust against impulsive noise. By incorporating 

different sparsity penalties into the SLMMN filter, ZA-SLMMN and RZA-SLMMN 

algorithms are derived. The proposed sparse algorithms are capable of estimating 

effectively the system with different sparsity levels and achieves lowest steady-state 

misadjustment compared to the SLMMN algorithm. 
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CHAPTER 6 

 

6.1 Motivation 

Sparse adaptive filters are used extensively for enhancing the filter performance in a 

sparse system. The affine projection algorithm (APA) is effective in improving the 

convergence speed for strongly correlated input signals, but it is very sensitive to 

impulsive noise. Normalized Correlation Algorithm (NCA) is robust in impulsive noise 

environments. The affine projection normalized correlation algorithm (AP-NCA) used in 

complex-domain adaptive filters, combines the benefits of APA and NCA and it does not 

take into account the underlying sparsity information of the system. In this chapter, we 

develop sparse AP-NCA algorithms to exploit system sparsity as well as to mitigate 

impulsive noise with correlated complex-valued input. Simulation results show that the 

proposed algorithms exhibit better performance than the AP-NCA for a sparse system. 

 

6.2 Introduction 

The complex valued signals are of fundamental interest and arise frequently in 

applications such as communications, optics, and acoustics. A complex-valued random 

variable is considered circular if it has a rotation invariant distribution, and is otherwise 

known as noncircular [234] [235].  

A vector is called circular if its probability distribution is rotationally invariant, i.e., 𝑧 and 

𝑧′ = 𝑒𝑗𝛼𝑧 have the same probability distribution for any given real 𝛼. 

The covariance matrix of 𝑧′ is 𝐶𝑧′𝑧′ = 𝐸{𝑧′𝑧′𝐻
} = 𝐸{𝑒𝑗𝛼𝑧𝑧𝐻𝑒−𝑗𝛼} = 𝐶𝑧𝑧                (6.1) 

On the other hand, 

The pseudo covariance matrix of 𝑧′ is 𝐶̃𝑧′𝑧′ = 𝐸{𝑧′𝑧′𝑇
} = 𝐸{𝑒𝑗𝛼𝑧𝑧𝑇𝑒𝑗𝛼} = 𝑒𝑗2𝛼𝐶̃𝑧𝑧(6.2) 

Equation (6.2) is true for arbitrary 𝛼 if and only if 𝐶̃𝑧𝑧 = 0. 𝑧 is called proper, where the 

complementary covariance matrix vanishes, 𝐶̃𝑧𝑧 = 0, otherwise improper. Because the 
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Gaussian distribution is completely determined by second-order statistics, a complex 

Gaussian random vector 𝑧 is circular if and only if it is zero-mean and proper. 

The degree of noncircularity can be quantified by the circularity measure r, defined as the 

magnitude of the circularity quotient 𝜌(𝑧) = 𝑟𝑒𝑗𝜃 =
𝜏𝑧

2

𝜎𝑧
2⁄ , where 

                        𝑟 = |𝜌(𝑧)| =
|𝜏𝑧|2

𝜎𝑧
2 , 𝑟 ∈ [0,1]                                                                 (6.3) 

measures the degree of noncircularity in the complex signal, with the circularity angle 

𝜃 = arg (𝜌(𝑧)) indicating orientation of the distribution. Note that, 𝑟 = 0 corresponds to 

a purely circular signal, with θ not providing additional information about the 

distribution, while 𝑟 = 1, corresponding to a highly noncircular signal [236]. 

Adaptive filtering algorithms have received much attention over the past decades and are 

widely used for diverse applications such as system identification, interference 

cancellation, and channel estimation. In recent years, sparse adaptive filters have been 

developed to exploit the system sparse information and the performance can be greatly 

improved when compared with the conventional algorithms such as Least Mean Square 

(LMS) and Affine Projection Algorithm (APA) [2], [6]. Based on the assumption of the 

Gaussian noise model, sparse algorithms are derived by applying the ℓ1-norm relaxation 

into the LMS cost function [85], [89], sparsity-aware ℓp-norm penalized and reweighted 

ℓ1-norm penalized LMS algorithms are derived in [96], [215], and sparsity-aware affine 

projection adaptive algorithms for system identification are proposed in [90], [95]. 

However, these methods may be unreliable in estimating the systems under non-Gaussian 

impulsive noise environments. For example, the least mean square (LMS) [85] algorithm 

performance is affected by strong impulsive noise [153]. Several sign algorithms (SA) 

have been proposed in [225], [226], [227] to suppress impulsive noise under the 

assumption of the dense impulse response. In [228], the standard sign least mean square 

(SLMS) algorithm was proposed in order to achieve the robustness against impulsive 

noise. For adaptive filters defined in the complex-domain, the Normalized correlation 

algorithm (NCA) was proposed [155] for robust filtering in severe impulsive noise 

environments. In [178], [180], [229], considering the sparse information in a wireless 
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channel, several sparse SLMS algorithms were proposed to exploit system sparsity and to 

mitigate non-Gaussian impulsive noise. In [230], [231] a flexible zero attractor constraint 

is utilized in sparse channel estimation under the mixed Gaussian noise environment. 

However, when the input signal is strongly correlated the performance of sparse SLMS 

algorithms deteriorates. 

When the input to the adaptive filter is assumed to be colored (correlated) input, the 

standard LMS filter may converge slowly. To improve the filter performance for colored 

signals, the Affine Projection Algorithm has been proposed [11]. For a large projection 

order, the APA algorithm has faster convergence, but the steady-state error is higher 

resulting in a convergence vs steady-state error tradeoff.  

In order to utilize the benefits of APA and NCA, the Affine Projection Normalized 

Correlation Algorithm (AP-NCA) was proposed [156]. The AP-NCA achieves faster 

convergence for a correlated input and is also robust against impulsive noises. To fully 

take advantage of the sparse structure present in the system, in this chapter, we propose 

sparse AP-NCA algorithms with different sparse norm constraint functions. 

 

6.3 Impulse Noise Models 

The stochastic models used to generate impulse noise are presented in this section. We 

observe that the two types of impulse noise entering adaptive filtering systems can be the 

observation noise and another at the input of adaptive filter. 

A) Gaussian mixture model (GMM) 

A model often used for impulsive observation noise is the Gaussian mixture model 

(GMM) [232]. GMM is a combination of two independent noise sources (n)v(1) and 

(n)v(2) . The noise source (n)v(1)  has a variance 2
v1

σ with probability of occurrence 

(1 − 𝜑), and the noise source (n)v(2)  has 2
v2

σ with the probability of occurrence 𝜑. 

Usually, .>> 2
v

2
v 12

σσ  The GMM distribution is given as 
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)N(0,))N(0,(1p(v(n))

21 vv
22 σ+σ                                                            (6.4) 

The variance of GMM is given by    
1 2

2 2

v v

2 2

v
σ E v (n) 1 φ φ     . Note that v(n) will 

reduce to Gaussian noise model if 𝜑 = 0. 

B) Bernoulli-Gaussian Model (B-G) 

When impulse noise enters the reference input (n)x , the filter input b(n)  is written as 

q(n)x(n)b(n) += . q(n) is the impulse noise modeled by a Bernoulli-Gaussian (BG) 

process [233], given as ,= (n)α(n)vq(n)
a with (n)va  assumed to be a White Gaussian 

process, and its variance is 𝜎𝑣𝑎
2 . α(n) is a binary process, described by the probability

( ( ) 1) ,p n P   ( ( ) 0) 1p n P    , where P  represents the probability of occurrence of the 

impulsive noise, (n)va . 

 

6.4 Affine Projection Normalized Correlation Algorithm (APNCA) 

The system identification problem is shown in Fig. 6.1. Let 

[ ] 1LT C1)Ln1),.....x(x(nx(n),(n)x x∈+--=  be the filter input vector of length L. (n)x  is 

the complex-valued regressor process. The output signal from an unknown system with 

tap coefficient vector h is given by )= (nxu(n) Th . ( ) [ ( ), ( 1),...... ( 1)]TW n w n w n w n L    is an 

estimate of h at iteration n and L is the length of the adaptive filter. The update equation 

for the APA is given by  

                    
*

1
( 1) ( ) ( ) ( ) ( ) ( ),H

MW n W n X n X n X n I e n 


                                           (6.5) 

where [ ] ,∈+--= xMLC1)M(nx1),....(nx(n),x(n)X  is the input signal matrix and M is the 

projection order. μ  is the step-size of APA filter, ε  is the regularization term, MI is the 

MMx  identity matrix, ( )H.  is the conjugate transpose, ( )*.  is the complex conjugate, ( )T.  

is the transpose of a matrix or a vector. 
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Fig. 6.1: Block diagram of adaptive sparse system identification 

                               ,*H* (n)(n)(n)X(n)e vθ +=                                                               (6.5) 

where (n),W-(n) hθ =  is the misalignment vector and, 

[ ] 1MT C1)M1).....v(nv(nv(n),(n) x∈+--=v  is the noise vector. If M=1, the APA 

algorithm simplifies to NLMS algorithm. 

The update equation for Normalized Correlation Algorithm (NCA) is given by 

                             
,

l
+=+ (n)z(n)/zμ(n)W1)(nW                                                         (6.7) 

where, (n)xe(n)(n)(n),....zz(n),z(n)z
T

1L10
==

-  is the correlation vector and 
1

( )z n  is 

the Euclidean norm of the correlation vector. Since 
1

( ) ( ) . ( ) ,z n e n x n  the update 

equation can be rewritten as  

                            
*( 1) ( ) ( ) ( ) / ( ) ,e l

W n W n n x n x n  
                                               (6.8) 

with e(n)e(n)/(n)φe = . 

The Affine Projection Normalized Correlation Algorithm (AP-NCA) is updated as 

follows 

                         
  (n)*φεI(n)X(n)X(n)Xμ(n)W1)(nW

e

1/2

M
H 


                                   (6.9) 
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where, 1MT

eeee
C1)M(n1),....φ(nφ(n),φ(n)φ x∈+--= . If M=1, the AP-NCA algorithm 

behaves as NCA algorithm. 

 

6.5 Proposed Sparse APNCA Algorithms 

To exploit the system sparsity and robustness against impulsive noises, four sparse 

algorithms are proposed by introducing effective sparsity constraints into the standard 

AP-NCA namely, Zero Attracting AP-NCA (ZA-APNCA), Reweighted Zero Attracting 

AP-NCA (RZA-APNCA), Reweighted L1-norm AP-NCA (RL1-APNCA) and Flexible 

Zero Attracting AP-NCA (FZA-APNCA). 

6.5.1. The Zero Attracting AP-NCA (ZA-APNCA) Algorithm 

Let the cost function of ZA-APNCA algorithm denoted by 

                         
   

1
( ) ( ) ( )ZA ZAJ W n J W n W n 

                                                    (6.10) 

Where  ( )J W n  is the cost function related to AP-NCA algorithm without sparsity 

constraint and  ZA  is the regularization parameter which balances the estimation error 

and 
1

( )W n . 

The weight update equation of ZA-APNCA algorithm is derived as 

[ ] (n))Wsgn(ρ-(n)*
e
φ

1/2

M
εI(n)X(n)HX(n)Xμ(n)W1)(nW

ZA

-
++=+

                     (6.11) 
 

where ZA ZA   and sgn(.) denotes the well-known sign function. 

6.5.2 The Reweighted Zero Attracting AP-NCA (RZA-APNCA) Algorithm 

Let the cost function of RZA-APNCA algorithm be 

                     
   

1

0
( ) ( ) log(1 ( ) ),RZA RZA RZA i

L

i
J W n J W n w n 




  

                                    (6.12) 
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where RZA  is the regularization parameter which balances the estimation error and 

1

0
log(1 ( ) )RZA i

L

i
w n




 . 

The weight update equation of RZA-APNCA algorithm is derived as 

                

[ ]
(n)W

RZA
ε1

(n))Wsgn(
RZA

ρ
-(n)*

eφ
1/2

MεI(n)X(n)X(n)Xμ(n)W1)(nW H

+

-
++=+

                     (6.13)

 

where RZA RZA RZA    

6.5.3 The Reweighted ℓ1-norm AP-NCA (RL1-APNCA) Algorithm 

Let the cost function of RL1-APNCA algorithm be 

                                
   1 1

1
( ) ( ) ( ) ( )RL RLJ W n J W n f n W n 

                                      (6.14) 

where 1RLλ  is the weight associated with the penalty term and 

                                  1

1
( ) ,

[ ( 1)]i
RL i

f n
W n

     
10,1,.....Li                                 (6.15) 

1 0RL  and hence   0i(n)f  for 10,1,.....Li  . 

The weight update equation of RL1-APNCA algorithm is derived as 

            

[ ]
1)(nWδ

(n))Wsgn(ρ
-(n)*

eφεI(n)X(n)X(n)Xμ(n)W1)(nW

RL1

RL11/2

M
H

-+
++=+

-

                          (6.16)

 

where 1 1RL RL  . 

6.5.4 The Flexible Zero Attracting AP-NCA (FZA-APNCA) Algorithm 

The flexible zero attractor is realized using the approximation parameter adjustment 

function defined as 
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  1( ( )) (1 ) 1
W n

S W n e


 
  

,                                                        (6.17) 

where α  is a small positive constant. 

The modified cost function obtained by incorporating ( ( ))S W n  function into the AP-NCA 

cost function is the following 

                           
   ( ) ( ) ( ( )).FZA FZAJ W n J W n S W n 

                                                  (6.18) 

The weight update equation of FZA-APNCA algorithm is derived as 

                    
[ ] (n))W('S-(n)*

eφ
1/2

MεI(n)X(n)X(n)Xμ(n)W1)(nW FZAρH
α

-
++=+

                     (6.19)
 

where,      

                    
))sgn(

+α
+α=+ + 1(nW

)1)(nW(-
1)e(1))(nW('S

α
                                               (6.20) 

 

6.6   Simulation Results 

In this section, we evaluate the performance of the proposed sparse adaptive algorithms 

in the context of system identification. The length of the unknown system is set as L = 16 

with system sparsity of K = {1, 4, 8} and the adaptive filter is also assumed to have the 

same length. The correlated (colored) input signal is generated by using a Gaussian white 

noise with variance 2 1x   (0 dB) through a first-order autoregressive process, AR(1), 

with a 0.5 pole. The system noise ( )v n contains white Gaussian noise with SNR = 20 dB 

and impulse noise. The algorithms are compared based on the performance of the Mean 

Square Error (MSE) between the actual and estimated CIR. The average of 100 trials is 

used in evaluating the results. 

Detailed parameters for computer simulation are listed in Table 6.1.  
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Table 6.1: Simulation Parameters 

Parameters Values 

Input Signal  Correlated/Colored Input: AR(1) Gaussian 

process with pole 0.5; x(n)=0.5x(n−1) +u(n) 

Unknown System 

Length 

L=16 

No. of nonzero 

coefficients 

System sparsity, K={1, 4, 8} 

Distribution of 

nonzero 

coefficients 

Random Gaussian distribution )1,0(N  

Projection order M=4 

SNR 20 dB 

Noise types Case 1: “white” Gaussian noise, vσ
2  = 0.01 (–20 

dB) 

Case 2: Observation noise: Gaussian Mixture 

Model (GMM) 

  = 0.1, 
1

2

v = 0.01 (-20 dB), 
2

2

v = 10 (10 dB). 

Case 3: Impulse noise at filter input: Bernoulli-

Gaussian (B-G) model 

0.1
avp  , 

2

av =1000 (30 dB) 

Case 4: GMM & impulse noise at filter input 

 

Comparison of the proposed sparse AP-NCA algorithms under noise case 1 

The performance of the proposed sparse algorithms under the assumption of “white” 

Gaussian noise is shown in Fig. 6.2. It can be noticed that the proposed sparse APNCA 

algorithms exhibit better performance in terms of MSE when the system is highly sparse 

and it reduces as the system sparsity increases. The FZA-APNCA algorithm achieves 

minimum steady state error value. 
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(a) 

 

(b)  

 

(c) 
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Fig. 6.2: MSEs of the proposed sparse AP-NCA algorithms for noise case 1 (“white” 

Gaussian) with the projection order, M=4 and different system sparsity of, (a) K=1, (b) 

K=4 and (c) K=8. 

 

Comparison of the proposed sparse AP-NCA algorithms under noise case 2 

The performance of the proposed sparse algorithms under the assumption of GMM 

modeled impulsive observation noise is shown in Fig. 6.3. It can be noticed that the 

proposed sparse APNCA algorithms exhibit better performance in terms of MSE when 

the system is highly sparse and it reduces as the system sparsity increases. The FZA-

APNCA achieves minimum steady state error value. 

 

(a) 
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(b) 

 

(c) 

Fig. 6.3: MSEs of the proposed sparse AP-NCA algorithms for noise case 2 (impulsive 

observation noise: GMM) with the projection order, M=4 and different system sparsity 

of, (a) K=1, (b) K=4 and (c) K=8. 

Comparison of the proposed sparse AP-NCA algorithms under noise case 3 

The performance of the proposed sparse algorithms under the assumption of impulse 

noise at filter input is shown in Fig. 6.4. It can be noticed that the proposed sparse 

APNCA algorithms exhibit better performance in terms of MSE when the system is 

highly sparse and it reduces as the system sparsity increases.  

 

(a) 
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(b) 

 

(c) 

Fig. 6.4: MSEs of the proposed sparse AP-NCA algorithms for noise case 3 (impulse 

noise at filter input:B-G) with the projection order, M=4 and different system sparsity of, 

(a) K=1, (b) K=4 and (c) K=8. 

Comparison of the proposed sparse AP-NCA algorithms under noise case 4 

The performance of the proposed sparse algorithms under the assumption of GMM 

observation noise & impulse noise at filter input is shown in Fig. 6.5. It can be noticed 

that the proposed sparse APNCA algorithms exhibit better performance in terms of MSE 

when the system is highly sparse and it reduces as the system sparsity increases. The 
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FZA-APNCA achieves minimum steady state error value. Similar results were obtained 

for higher L values in all previous cases. 

 

(a) 

 

(b) 
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(c) 

Fig. 6.5: MSEs of the proposed sparse AP-NCA algorithms for noise case 4 (GMM  noise 

& impulse noise at filter input) with the projection order, M=4 and different system 

sparsity of, (a) K=1, (b) K=4 and (c) K=8. 

Now, let us evaluate the performance of the proposed AP-NCA algorithms for signals 

with complex noncircularity properties. The input is considered to be 16-QAM 

noncircular complex signal and the system is assumed to be of length L=16 with sparsity 

K={1, 4, 8}. 

From Fig. 6.6, it is observed that the proposed algorithms exhibit better performance in 

the MSE sense for different noise cases shown in Table 6.1. The system sparsity is 

assumed to be K=1. The FZA-APNCA algorithm achieves minimum steady state error 

value. 
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(a) 

 

(b) 
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(c) 

 

 

(d) 

Fig. 6.6: MSEs of the proposed sparse AP-NCA algorithms for different noise cases with 

the projection order, M=4 and system sparsity of, K=1. (a) “white” Gaussian, (b) 

impulsive observation noise: GMM, (c) impulse noise at filter input:B-G, and (d) GMM  

noise & impulse noise at filter input. 
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From Fig. 6.7, it is observed that the proposed algorithms exhibit better performance in 

the MSE sense for different noise cases shown in Table 6.1. The system sparsity is 

assumed to be K=4. The FZA-APNCA algorithm achieves minimum steady state error 

value. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 6.7: MSEs of the proposed sparse AP-NCA algorithms for different noise cases with 

the projection order, M=4 and system sparsity of, K=4. (a) “white” Gaussian, (b) 

impulsive observation noise: GMM, (c) impulse noise at filter input:B-G, and (d) GMM  

noise & impulse noise at filter input. 
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From Fig. 6.8, it is observed that the proposed algorithms exhibit better performance in 

the MSE sense for different noise cases shown in Table 6.1. The system sparsity is 

assumed to be K=8. The FZA-APNCA algorithm achieves minimum steady state error 

value. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 6.8: MSEs of the proposed sparse AP-NCA algorithms for different noise cases with 

the projection order, M=4 and system sparsity of, K=8. (a) “white” Gaussian, (b) 

impulsive observation noise: GMM, (c) impulse noise at filter input:B-G, and (d) GMM  

noise & impulse noise at filter input. 
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6.7   Summary 
 

The AP-NCA algorithm developed for adaptive filters in the complex domain has faster 

convergence for correlated inputs and at the same time highly robust in the presence of 

impulsive noise, but it does not promote sparsity. Hence, in this chapter, we have 

proposed four sparse APNCA algorithms in the sparse system identification context. 

Simulation results validate our proposed sparse algorithms in exploiting the system 

sparsity as well as robust to impulsive observation noise and impulsive filter input in the 

complex domain. Moreover, the proposed FZA-APNCA algorithm exhibit superior 

performance in Gaussian and non-Gaussian noise environments.  
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CHAPTER 7 

 

7.1 Conclusions 

This thesis deals with the adaptive filtering algorithms to system identification 

configuration. In applications such as network and acoustic echo cancellation, the 

impulse response of the echo channel is usually considered to be sparse with only a small 

number of non zero taps in the presence of large number of inactive taps.  This thesis 

considers the problem of identifying the unknown system with time varying system 

sparsity. The problem of sparse system identification was formulated under the 

assumption of system background noise described as Gaussian and non-Gaussian 

impulsive noise. Given the above formulation of the problem, several novel contributions 

in the field of sparse system identification are proposed. 

The research that has been carried out in this thesis can be divided in four parts. In 

the first part (Chapter 3) combinational approaches of two adaptive filters for system 

identification was proposed and studied. In the second part (Chapter 4) sparse adaptive 

algorithms based on Lyapunov stability theory to exploit system sparsity was proposed. 

The third part (Chapter 5) is concerned with development of sparse algorithms for system 

identification under impulsive noise environments. Finally, in the fourth part (Chapter 6) 

complex domain adaptive system identification using sparse APNCA algorithms under 

impulsive noises was proposed. 

In Chapter 3, an adaptive affine combination of two IPNLMS filters is proposed. 

In this combination approach, the two adaptive filters are adapted independently and the 

output of individual filters is combined through a mixing parameter. The proposed 

approach tends to alleviate the convergence speed vs steady-state error tradeoff, as well 

as efficiently increase the IPNLMS filter robustness to time varying system sparsity. In a 

separate arrangement, Reweighted Zero Attracting-NLMS (RZA-NLMS) algorithm is 

developed to exploit system sparsity by introducing log-sum penalty into the cost 

function of the NLMS algorithm. In order to identify the system with varying sparseness, 

an affine combination of RZA-NLMS and NLMS algorithm is also proposed. The 
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performance metrics Misalignment, Excess MSE and ERLE are used to validate the 

effectiveness of the proposed approaches. 

In Chapter 4, new sparse adaptive algorithms namely, the Zero-Attracting 

Lyapunov Adaptation algorithm (ZA-LA), the Reweighted Zero-Attracting Lyapunov 

Adaptation algorithm (RZA-LA) and an affine combination of the LA and ZA-LA 

algorithms are proposed for sparse system identification. Adaptive algorithms based on 

Lyapunov stability theory offers improved convergence and stability, and overcome the 

problems faced by gradient descent-based adaptive filtering techniques. Performance 

measures MSD and MSE shows that the proposed algorithms performs better than the 

LMS algorithm and its sparse counterpart (ZA-LMS and RZA-LMS) for both white input 

and colored input cases. 

In Chapter 5, novel sparse algorithms were developed under impulsive noise 

environments. Five different algorithms namely, ZA-NLMAT, RZA-NLMAT, RL1-

LMAT, NNC-NLMAT and CIM-NLMAT are proposed by incorporating different 

sparsity constraints into Normalized Least Mean Absolute Third (NLMAT) which is 

based on high-order error power (HOEP) condition. Further, Modified Least-Mean 

Mixed-Norm algorithm which is based on sigmoid function (SLMMN) is also proposed 

to mitigate the adverse effects of impulsive noise and ZA-SLMMN, RZA-SLMMN 

algorithms are derived in sparse system identification context.  The proposed algorithms 

outperforms the existing algorithms in terms of MSD and EMSE values and achieve 

robust performance against impulsive noise and are capable of exploiting the system with 

different levels of sparsity. 

In Chapter 6, four different sparse algorithms in the complex domain namely, 

ZA-APNCA, RZA-APNCA, RL1-APNCA, and FZA-APNCA are developed using affine 

projection normalized correlation algorithm (APNCA). APNCA achieves faster 

convergence for a correlated input and is also robust against impulsive noise. Simulation 

results have shown that the proposed sparse algorithms outperform the existing APNCA 

in non-Gaussian environments in terms of MSE. 
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7.2 Future Scope 

In chapter 5, the proposed SLMMN algorithms depending on the fixed step size μ and 

steepness parameter α did not guarantee the fast convergence and lower steady state error 

simultaneously. Hence, variable step-size (VSS) methods can be incorporated in the 

proposed algorithms to address this issue. 

Actually in this work, the proposed algorithms were tested using MATLAB. Both 

input and noise signals were artificially generated in the same manner as in other related 

works. So, it is recommended that, the proposed algorithms be tested in real-time 

applications with real speech and noise signals as a future investigation.  

Another possible future work could be the extension to multi-variable (MIMO) 

systems, since the work in this thesis was formulated to SISO systems. 
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