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Abstract

Extreme events are becoming more intense, more frequent and more destructive.
Changes in extreme events such as flood and droughts are the primary ways that most people
experience climate change. Flooding may intensify in many regions in the world particularly in
regions of South Asia. Study for prediction of future flood risks in catchment scale using
hydrological models along with climate change projection has played a considerable role in

recent years.

Vietnam is one of the countries severely impacted by climate change. Trian watershed
is located in the upper Saigon-Dongnai River basin and it is one of the biggest sub-basins of
this river. Besides, this region is also the economic center in the south of Vietnam. However,
not many studies have been conducted or reported in the literature to assess the impact of
climate change on this region. It is, hence, necessary to evaluate the potential impact of climate
change in future on this watershed, particularly on flood frequency, because flood events cause

negative impacts on economic and social aspects.

Peak over Threshold (POT) approach uses the available flood data more efficiently and
this approach can estimate return level more accurate. The Generalized Pareto Distribution
(GPD) is fitted with POT magnitude as a default in extreme value analysis. However, there
could be more than one distribution that can be fitted to the data sample. Therefore, it is
important that POT approach for testing numerous distributions should be considered in

assessing the changes of flood frequency.

The downscaled atmospheric data are used as input for a physically-based hydrological
model to simulate future streamflow data. The changes in the frequency of flood peak extracted
by the POT approach is compared between historical and future periods. The results indicate
that there is a significant increase in flood magnitude under climate change for Trian catchment.
To be more specific, the 100-year return level of Trian catchment is increasing up to 32.34 %
in one of future scenario. Moreover, the results of this study also indicate that directly using the

asymptotic distribution to model the POT dataset sometimes provides wrong insights.

The flood characteristics namely, peak, duration and volume for a given frequency

provide important knowledge for the design of hydraulic structures, water resources planning,



reservoir management and flood hazard mapping. Flood is a complex phenomenon defined by
strongly correlated characteristics. If univariate frequency analysis is used to assess the
behaviour of each flood characteristics, it will lead to over or under estimation of associated
flood risk. In these cases, multivariate probability approach, which provides a comprehensive
understanding of flood characteristics and their relationship, may provide better estimate of the

flood magnitude when compared to the univariate approach.

Traditional multivariate parametric distributions have widely been applied for
hydrological applications. However, this approach has some drawbacks such as the dependence
structure between the variables, which depends on the marginal distributions or the flood
variables have the same type of marginal distributions. Copulas are applied to overcome the
restriction of classical multivariate flood frequency analysis by choosing the marginal
distribution from different types of the probability distribution function for flood
characteristics. The most important step in the modelling process using copula is the selection
of copula function which is the best fit to data sample. The choice of copula may significantly

impact on the bivariate quantiles.

From the results of the study, it is observed that the result from tail dependence test is
useful in selecting the appropriate copula for modelling the joint dependence structure of flood
variables. The extreme value copulas with upper tail dependence have proved that they are
appropriate models for the dependence structure of the flood characteristics. Frank, Clayton and
Gaussian copulas have been identified as the appropriate copula models in case of variables,

which are diagnosed to have asymptotic independence.

Flood hazard mapping is one of the important aspects of flood risk assessment which
has a significant implication on the planning of social and economic development activities. It
also provides useful information to operate the flood warning system as well as to prepare the
emergency evacuation plans. However, the development of the hydrodynamic models for the
large river system is a very challenging task. The hydrodynamic models have to be large enough
to cover the entire river basin and it must be sufficiently detailed to represent smaller features.
Therefore, the latest advances in flood modelling techniques, such as flexible meshes generation
and the advantages of coupled hydrodynamic model with the high-resolution of topography
data will be applied in this study.

1



MIKE FLOOD, which is a coupled hydrodynamic model, is used to simulate the flood
regime. The coupled hydrodynamic model has been developed for cross-sections based on
channel modelling with 1D model and linking these floodplain modelling with 2D model. The
design flood hydrograph is estimated using bivariate flood frequency analysis, high-quality
topography data (i.e., DEM and LiDAR) and flexible meshes generation are used as the input
data for hydrodynamic model to simulate the flood regime for the study area. Two parameters
namely flood depth and flow velocity, which are obtained from a coupled hydrodynamic model,

have been used for developing the high-resolution flood hazard maps.

This study presents the results of the assessment of the changes in the flood hazard and
the duration of inundation under climate change context for Saigon-Dongnai River basin,
Vietnam. From the results, it is observed that 54.47 km? of the study area is subjected to H6
hazard index under 100-year return period in the present flood. 140.62 km? and 50.90 km? are
under H6 hazard index for RCPs 4.5 and 8.5 scenarios respectively. This study indicated that
the duration of inundation is not only controlled by flood magnitude but also by the volume of
flood. Further, this study showed that most of the agricultural areas located downstream of

Trian catchment will be severely inundated under climate change context.
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Chapter 1

Introduction

1.1. Flood Frequency Analysis

Among the worst natural disasters, floods cause huge damages annually including loss
of property and human lives. The damage to properties and loss of life caused by floods could
be higher in the future due to changing of climate. Assessment of changes of flood
characteristics under climate change context plays a considerable role in managing the risk of
flood. Quantifying the vulnerable areas associated with the changes of climate allows local
authorities to provide a good future development planning. Therefore, the quantifying the

impact of climate change on flood risk is necessary to be carried out on a river basin scale.

The design and assessment of flood risk of hydraulic structures, water resources
planning, reservoir management and flood hazard maps involve the identifying the given flood
events with a low probability of exceedance. Flood Frequency Analysis (FFA) seeks to connect

the magnitude of extreme events with their frequency of occurrence via probability distribution.



The objective of FFA is to estimate the return period associated with a flood of a given
magnitude. Use of the return period as a standard criterion is common in the design of hydraulic
structures and flood control. It is, hence, necessary in most cases, to obtain the frequency curve
fitting the Probability Distribution Function (PDF) to the observed data to estimate flood

quantiles associated with given return periods.

Annual Maxima (AM) and Peak Over Threshold (POT) are the commonly used
approaches to extract the flood events in the investigation of the changes in flood magnitude.
The maximum peak flow of each year defines the AM sample. However, AM cannot be used
in the case of data of short length, because such data will not provide adequate information
(Bezak et al., 2014, Lang. et al., 1999). Unlike the AM, which only extracts one event per year,
POT considers a broader range of events and provides more information than AM, primarily
for estimation of flood magnitude (Kay et al., 2009, Roth et al., 2012). Many researchers have
investigated the choice between AM and POT. Some have emphasized that POT approach is
more suitable for extreme value analysis and provide better estimates of flood quantiles than

corresponding AM approach (Bezak et al., 2014, Saf, 2009b).

The next step is to select an appropriate PDF that has the best fit for the data sample.
Many PDFs have been considered in different situations for the probability modelling of flood
events. Malamud and Turcotte (2006) and El Adlouni et al. (2008) divided the widespread
distribution in FFA into four groups such as the Generalized Extreme Value (GEV) family, the
Normal family, the Pearson Type III family and the Generalized Pareto Distribution (GPD)
family.

The GPD is fitted with POT magnitudes as a default in extreme values analysis (Coles
et al., 2001, Davison and Smith, 1990, Katz et al., 2002). However, there could be more than
one distribution that can be fitted to the sample data. Hence, identifying the best fitting
distribution to the sample need to be tested with several distributions (Lang. et al., 1999).
Furthermore, many studies are reported which used AM to assess the impact of climate change
on flood frequency at global as well as regional scale (Hirabayashi et al., 2013, Jung et al.,
2011), while there are only a few studies which used POT approach. Even the studies which
used POT approach mostly considered only a single distribution (i.e., GPD). Thus, it becomes

imperative that many distributions which are normally used in extreme values analysis should



be tested and the best fitting distribution needs to be identified for each POT dataset.

FFA can be classified into univariate and multivariate analyses. Although univariate
frequency analysis has been widely used to quantify the behaviour of each flood characteristics,
only a limited assessment of flood events is obtained (Yue, 1999). In fact, univariate frequency
analysis can be useful, if the infrastructure design is based on a single flood characteristic (i.e.,
peak). Otherwise, univariate frequency analysis may not provide the complete behaviour of
flood characteristics (Chebana and Ouarda, 2011). Additionally, the flood is a multivariate
natural calamity characterized by its peak, volume and the duration. Hence, it is essential to
study the multivariate probabilistic behaviour of flood characteristics simultaneously. The joint
probability to be incorporated into flood risk analysis involving two or more flood
characteristics have received significant attention in recent years. However, many aspects need

to be solved related to this subject.

Traditional multivariate FFA does not allow using different marginal distributions and
full coverage of dependence structure between the variables. To overcome these shortcomings,
copulas, one of the promising mathematical tools for investigating multivariate problems, have
been widely applied in hydrological studies in recent times (Li et al., 2012). For example, Reddy
and Ganguli (2012) used a copula approach for flood frequency analysis of Godavari River,
India. Their study indicated that Frank copula was the best-fit copula for bivariate models (i.e,
flood peak and volume, volume and duration pairs). Additionally, climate change impact on the
flood characteristics for the northeast Canadian basin was evaluated using copula-based
bivariate flood frequency analysis in a study of Jeong et al. (2014). The results of projected
changes indicated that an increase in the joint return period of flood characteristics. Similarly,
in their work, Duan et al. (2016) used copula-based bivariate frequency analysis to investigate
the changes in flood characteristics in the Huai River, China under climate change context.
Their study showed that Archimedean copulas were more appropriate to model the dependence
structure of flood characteristics in the study area. Therefore, bivariate flood frequency analysis
based on copula approach is considered to evaluate the inherent flood characteristics in this

study.



1.2. Flood Hazard Mapping

A warmer climate is already causing extreme weather events that affect the lives of
millions of people around the world (Schiermeier, 2011). Specifically, as per IPCC (2014),
extreme climate events are likely to occur more frequently in different parts and during different
seasons in Asia in the future, particularly in East Asia regions. Brunner et al. (2017) indicated
that climate change has an impact not only on the peak but also on the volume and the shape of
the flood hydrograph. Hence, assessment of climate change impacts on floods should consider
all the flood characteristics (i.e., peak, volume and duration) rather than only the flood peak.
Therefore, to make appropriate adaptation strategies, decisions and policies under climate
change context, it is essential to understand the change of the flood characteristics and potential

flood risks on a river basin scale.

Flood hazard mapping is one of the critical aspects of flood risk assessment which has a
significant implication on the planning of social and economic development. The information
of flood hazard is also essential to provide various strategies for mitigating the flood risk, which
in turn, can reduce the losses of human life and damages in urban and rural sectors
(Pappenberger et al., 2012, Sampson et al., 2015). Assessing the flood risk at the river basin is
not a simple task, because of the complex nature of flood generation caused by a combination
of precipitation, river basin characteristics and human activities. However, the development of
numerical flood modelling in recent years, namely the availability of advanced flood modelling
and modern survey techniques for collection of high-quality input data for those models allow

to simulate flood behaviour and to study the characteristics of future floods (Alkema, 2007).

To prepare reliable flood hazard maps, a methodology that combines the advantageous
features of 1D and 2D hydraulic models and also the high-resolution of topographic data, are
typically applied. Flood hazard maps show the intensity of floods and their associated
exceedance probability (Di Baldassarre et al., 2010). One of the common approaches of flood
inundation modelling is use of deterministic approach based on single simulation (Ali, 2018).
In deterministic approach, three main issues in developing the flood hazard maps using
hydrodynamic models such as the topography data resolution, the hydrodynamic model

simulation and the design flood hydrograph estimation are considered in the study.



There are numerous studies related the assessing the impact climate change on floods
have been reported in the literature. Most of the studies on flood frequency analysis focus only
on the flood peak (Camici et al., 2014, Dobler et al., 2012, Qin and Lu, 2014). However, flood
is a complex phenomenon defined by the strong correlation between its characteristics such as
peak, duration and volume. If univariate frequency analysis is used to assess the behaviour of
each flood characteristic, it will lead to over or underestimation of associated flood risk. To
develop flood hazard maps, only the flood peak cannot give a reliable evaluation of hazard.
Consequently, it is also essential to consider simultaneously the flood peak along with other
flood characteristics in developing flood hazard mappings. Furthermore, faster and accurate
flood modelling at high spatial-temporal resolutions remains a significant challenge in
hydrologic and hydraulic studies. Therefore, it is necessary to establish an advanced
deterministic approach, including bivariate frequency analysis, efficient and flexible
hydrodynamic models and high-resolution data to develop the flood hazard maps under climate

change context.
1.3. Motivation for the Study

Floods are one of the most commonly occurring natural disasters in the word. In the past
decade, floods have caused devastating damage to property and loss of life across the world.
For example, tens of billions of US dollars were spent and thousands of people were killed in
every year (Hirabayashi et al., 2013). Climate change is widely recognized to affect flood
regimes in many parts of the world. Thus, the losses are expected to be massive in the future
due to climate change. Studies related to future flood risk provide information on the
frequencies and magnitudes of possible floods in the future. Numerous studies for assessing the
changes of flood hazard at many scales are available in the literature. However, the impact of
climate change on flood has not been sufficiently understood at a catchment scale in Asia, and

in particular for Vietnam.

Flood event is multivariate in nature and hence it is necessary to consider simultaneously
the various component processes in some situations. For example, determination of the
occurrence of the flood peak and volume is necessary to design the hydraulic infrastructure
along a river. To develop the flood hazard maps, information on flood peak alone will not give

a reliable assessment of hazard. It is, therefore, also essential to consider flood peak along with



other flood characteristics simultaneously.

Flood risk plays an essential role in the planning of water infrastructure projects,
reservoir management and flood hazard mapping in river basin scale too. Therefore, the
evaluation of changing of flood characteristics, flood inundation areas and preparation of
possible flood hazard mapping due to climate change are essential to help the policymakers and

stakeholders for social and economic development planning in the river basin scale.
1.4. Objectives of the Study

With this background and appreciating the significance of the studies on flood risk, flood

zone mapping and flood frequency analysis, the objectives of the study have been formulated.
The objectives of this study are listed as follows:

e Evaluating the correctness of directly using the asymptotic distribution to model the

future POT dataset
e Assessing the potential impact of climate change on flood magnitude

e Investigating the potential of performing the tail dependence tests for pairs of flood

characteristics
e Evaluating the choice of copula based on the tail dependence test

e Estimating of the flood design hydrographs using copula theory of flood variables (i.e.,
volume and peak) and shapes through historical observed flood hydrograph combined

with cluster analysis

e Developing the computationally efficient flood model using advanced deterministic

approach based on coupled 1D-2D hydraulic model and high quality of topography data

e Developing of flood hazard maps, which is quantified by considering the flood depth

and velocity in combination

e Assessing the changes of flood risk under climate change context.



1.5. Contribution from the Study

Hydrologists have widely used flood frequency analysis to evaluate the potential flood
risk. This information can provide valuable knowledge for designing infrastructure, reservoir
system operational plans, and flood hazard assessment. The GPD is fitted with POT magnitudes
as a default in extreme values analysis. However, there could be more than one distribution that
can be fitted to the sample data. Furthermore, POT approach is better suited for extreme value
analysis and to arrive at better and reliable accurate estimates of flood quantiles than
corresponding AM approach. However, many studies used AM to assess the impact of climate
change on flood frequency at global as well as regional scale while there are only a few studies
which used POT approach. Even the studies which used POT approach mostly considered only
a single distribution. Thus, it is vital that several distributions generally used in extreme values
analysis should be tested, and the appropriate distribution need to be identified for each POT

dataset.

Single variable flood frequency analysis does not give a comprehensive understanding
and assessment of the actual behaviour of flood phenomena. This approach can lead to high
uncertainty or failure of guidelines in water resources planning, operation and design of
hydraulic structure and floodplain zoning. Therefore, it is essential to study the multivariate
probability behaviour of flood characteristics. Copulas are widely used for multivariate analysis
in various fields. The main advantage of copulas is that the dependence structure is
independently modelled with the marginal distribution that allows for multivariate distribution
with different margins and full coverage of dependence structure. The essential step in the
modelling processing copula is the selection of copula function, which is the best fit for the data
sample. This study suggests that the copula function should be selected based on the
dependence structure of the variable. Furthermore, the performance of extreme value copulas
for asymptotic dependence variable and Clayton, Frank and Gaussian copula for an asymptotic

independent variable are also assessed.

To simulate accurately the spatial and temporal dynamics of the flood process, the three
main issues in creating the flood hazard maps using hydrodynamic models (i.e., design flood
hydrograph estimating, the resolution of topography data and hydraulic model selection) are

carefully assessed. The same joint probability of occurrence of flood peak and volume are used



to estimate the design flood hydrograph.

The surveyed cross-sections and high-resolution LiDAR along with design flood
hydrograph are used as the input data for the coupled hydrodynamic model to simulate the flood
regime. Furthermore, the multi-scale mesh modelling approach, where fine resolution is applied
for channel and raised embankment areas and coarser resolution is developed for uniform
topographic height are used to develop the hydrodynamic model in this study. The coupled
hydrodynamic model in which channel flow is linked to floodplain flow using lateral
connection is used to improve accuracy the flood inundation results without the significant
increasing computational requirement of the hydraulic model. The flood depth and velocity
obtained from the hydrodynamic model are used to develop high-resolution flood hazard maps

for the study area under climate change context.
1.6. Outline of the Study

After introducing the problem taken up for the study and discussing about the
significance of the problem, the objectives of the study is introduced in this chapter. Chapter 2,
a detailed review of the literature related to various methods of transferring climate change,
hydrological modelling, flood frequency analysis and flood hazard mapping is also presented

in this Chapter.

Chapter 3 presents the methodology involved in addressing the research objectives.
Further more. the summaries of all case studies as well as the availbel sofwares are also

presented in this Chapter.

The impact of climate change on flood magnitude is examined and presented in Chapter
4. Besides, the correctness of directly using the asymptotic distribution to model the future POT

dataset is also assessed.

Chapter 5 presents the potential of performing the tail dependence tests for the pairs of
flood characteristics. The choice of copula based on the tail dependence test is also explored.
Besides, assessing the impact of the different copula functions on bivariate quantiles is also

considered in this Chapter.

The design flood hydrographs obtained using copula approach combined with cluster
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analysis is reported in Chapter 6. The high-resolution flood hazard maps, which is quantified

by considering the flood depth and velocity in combination, are also established.

Chapter 7 presents the summary of the study, the conclusions arrived and some
recommendation for further research activities based on the conclusions from study on the

impact of climate change on flood risk.



Chapter 2

Literature Review

2.1 Introduction

This chapter consists of six sections. The first part, dealing with downscaling methods
(i.e., dynamical and statistical) of climate data for use in hydrological models is presented in
Section 2.2, while Section 2.3 discusses the different categories of hydrological models, which
are used to obtain the future discharge time series. In the third part, the focus is on the flood
frequency analysis. The flood hazards mapping estimation based on the deterministic approach
is presented in Section 2.5. The conclusion highlighting the findings from the literature review

is presented in the last section.
2.2 Downscaling Methods Climate Projections

Global Circulation Models (GCMs) are widely used to predict the changes in
atmospheric variables under climate change scenarios (Anandhi et al., 2011). GCMs are

physically-based meteorological models, which represent atmospheric and oceanic dynamics

10



(Angeles et al., 2007). However, the output from GCMs has typically a low spatial resolution
of approximately 100-250 km and it is inadequate for regional impact studies especially for
analyzing the changes in extreme precipitation and floods because it lacks detailed regional
information which is needed to resolve various features at the catchment scale (Fowler et al.,
2007). This obstacle can be solved using the downscaling method, which can be used to derive
local to regional scale information from large-scale spatial and temporal scales. The
downscaling methods have been classified into two types, namely dynamic and statistical. The
dynamical downscaling generates finer resolution output based on atmospheric physics over a
region using GCM as a boundary. Statistical downscaling method establishes an empirical
relationship between the GCMs output with observed climate data. Table 2.1 summaries some
advantages and disadvantages of both dynamical and statistical downscaling methods. The

following section presents more detail information both downscaling methods.
2.2.1 Dynamical downscaling

Dynamic downscaling method refers to the use of high-resolution regional simulations
to dynamically extrapolate the effect of large-scale climate processes to regional or local scales.
Dynamical downscaling uses a limited area, a high-resolution model such as Regional Climate
Models (RCMs) driven large scale and lateral boundary conditions from a GCM to produce
higher resolution outputs (Fowler et al., 2007). RCMs are frequently used to analyze the impact
of climate change on hydrology in the watershed because of its higher resolution. The resolution
of RCMs is around 12-50 km and it accounts for the sub-GCM grid scale forcing (e.g., complex

topographical features and land cover heterogeneities in a physically-based way).

As a consequence of the higher spatial resolution output, RCMs provide a better
description of topographic phenomena. Further, the finer dynamical processes in RCMs
produce more realistic mesoscale circulation pattern. There are numerous RCMs, which are
widely used in climate change downscaling studies. They are the East and South Asia Regional
Climate Model (RegCM4), Canadian Regional Climate Model (CRCM), Dutch Regional
Atmospheric Climate Model (RACMO), UK Met Office Hadley Center’s Regional Climate
Model version 3 (HadRM3), German Regional Climate Model (REMO), the U. S Regional
Climate Model version 3 (RegCM3) and the Hadley Center Global Environment Model version
3 Regional Climate Model (HadGEM3-RA). Some of these studies which used dynamical
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downscaling in hydrological researches are discussed as follows.

Van Roosmalen et al. (2010) used the climate outputs of HIRHAM4 to generate future
time series of precipitation, temperature and evapotranspiration for hydrological impact
assessment in Denmark. The result showed that the HIRHAM4 model simulated the current
output climate which are not too far from observed value and it does not show a significant
difference from ensemble RCMs. Gu et al. (2012) predicted the future climate change by using
regional climate model (RegCM4) for East and South Asia. The result indicated that the
Yangtze river basin will witness the changes of extreme events (i.e., precipitation and drought)
and it indicates potentially increased risks of both floods and droughts at the same time.
Bardossy and Pegram (2011) used the output of three different regional climate models, namely
HadRM3, RACMO2 and REMO modelled the future climate scenarios for Rhine River
catchment. The results indicated that the climate in the Rhine River basin is likely to be wetter

than in the past for the future climate scenarios.

However, RCMs inherit the biases due to systematic model errors caused by imperfect
conceptualization, discretization and spatial averaging within grid cells. Andréasson et al.
(2004) showed that these biases are not only for precipitation but also for temperature. These
biases can affect the result of the hydrological simulation. The statistical downscaling method,
which is computationally inexpensive in comparison to RCMs, is a viable and sometimes
advantageous alternative for an institution that does not have the computational capacity and
technical expertise require in dynamical downscaling. Therefore, the following section will

discuss the statistical downscaling methods.
2.2.2 Statistical downscaling

The statistical downscaling establishes an empirical relationship between GCM
resolution climate variable and local climate. There are several statistical downscaling
approaches which establish statistical links between large-scale climate and the observed local-
scale climate data. Maraun et al. (2010) classified statistical downscaling approaches into
Perfect Prognosis (PP), Model Output Statistics (MOS), and Weather Generators (WGs). PP
method establishes statistical relationships between variables at large scales and local scales.
MOS establishes statistical relationships between variables simulated by the RCM and local

scale observation to correct RCM errors. WGs approach generates local scale climate time
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series resembling the statistical properties of observed climate.

The statistical downscaling methods are also classified based on the techniques such as
regression methods, weather classification scheme (i.e., weather pattern) and stochastic weather
generator. Table 2.2 summaries some advantages and disadvantages of several statistical

downscaling methods.

Regression methods represent the linear and nonlinear relationships between predictand
and predictors. A simple linear regression is widely used to establish the relationship between
one large-scale predictor and one local predictand. This relationship is obtained using observed
local scale data and GCM/RCMs climate output data. Multiple regression methods establish the
relationship between single predictand with two or more of predictor variables. Canonical
correlation and singular value decomposition are widely used for the study of the
interrelationship among spatially distributed coarse simulations and observed local scale

variables by determining the sets of patterns that have strong correlation over time.
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Table 2.1: Comparison of dynamical and statistical downscaling methods (Trzaska and Schnarr, 2014)

Dynamical downscaling

Statistical downscaling

Requires

Advantages

Disadvantages

High computational resources and expertise
High volume of data input
Reliable GCM simulations

Based on consistent, physical mechanism

Resolves atmospheric and surface processes occurring at sub-
GCM grid scale

Not constrained by historical record so that novel scenarios
can be simulated

Experiments involving an ensemble of RCMs are becoming
available for uncertainty analysis

Computationally intensive

Due to computational demands, RCMs are typically driven by
only one or two GMC/ emission scenarios simulations

A limited number of RCMs available and no model results for
many parts of the globe

May require further downscaling and bias correction of RCM
outputs

Results depend on RCM assumptions; different RCMs will
give different results

Affected by the bias of driving GCM

Medium/low computational resources

Medium/low volume of data inputs

Sufficient amount of good quality observation data

Reliable GCM simulations

Computationally inexpensive and efficient, which allows for
many different emissions scenarios and GCM pairing
Methods range from simple to elaborate and are flexible
enough to tailor for specific purposes

The same method can be applied across regions or the entire
globe, which facilitates comparisons across different case
studies

Relies on the observed climate as a basis for driving future
projections

Can provide point-scale climatic variables for GCM scale
output

Tools are freely available and easy to implement and
interpret; some methods can capture extreme events

High quality observed data might be unavailable for many
areas or variables

Assumes that relationships between large and local-scale
processes will remain to be the same in the future (stationarity
assumptions)

The simplest methods may only provide projections at a
monthly resolution
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Table 2.2: Advantages and disadvantages of different of statistical downscaling methods (Trzaska and Schnarr, 2014)

Statistical
downscaling methods

Advantages

Disadvantages

Categories

Regression methods

Weather pattern
approach

Weather generator

Straightforward to apply

Employ full range of available
predictor variables.
Yields  physically interpretable
linkages to surface climate

Apply for both normal and non-normal
distributed data

Provides better understanding of the
climate sensitivity and variability.

Provides sub-daily information
Simulates length of wet and dry spells
Obtains weather time series in region
of scares data by using interpolating
technique

Produces large number of series which
is valuable for uncertainty analysis.

Not suitable for extreme events
Inefficient for non-normal distributed data
Poor representation of observed variance.

Requires additional step of weather type
classification

Unable to predict the new value that are
outsides of the range of the historical data
Requires large amount of data and
intensively computational capacities
Circulation-based schemes may be
insensitive to future climate forcing.
Requires large amount of observed data
Takes little into account of spatial
correlation of climate

Sensitive to missing or erroneous data in
the calibration set.

Simple and multiple regression
Canonical correlation analysis
and singular value decomposition
Artificial neural networks.

Cluster analysis
Analog method
Monte Carlo method
Principle components.

Markov chain approach
The spell length approach
Mixture models
Stochastic methods.
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Weather pattern approaches involve grouping of local meteorological variables about
different weather classification schemes. This method can be applied to variables that have
normal and non-normal distributions. The analog is the simplest of the weather classification
methods. In this method, the large-scale atmospheric circulation simulated by GCM/RCMs is
compared to historical observed and the most similar is chosen as its analog. The
simultaneously observed local weather is then associated with the projected large-scale pattern.
To estimate future values of local predictand, the GCM/RCMs output is compared with the
large-scale observed data over the historical period. Once a large-scale simulation is aggregated
to a cluster, a random observation from the batch of data associated with this cluster is chosen
as the local scale prediction. Artificial Neural Network (ANN) is an established technique with
a flexible mathematical structure that is capable of identifying complex non-linear relationships
between input and output data (Vu et al., 2016). In order to statistically downscale climate
variables, ANN establishes a non-linear relationship between atmospheric and local scale

climate variables.

Weather generator is a statistical model used to generate sequences of daily variables
using GCM/RCM output. It produces multiple daily weather series, which is natural and
logically consistent because any number of small-scale weather sequences may be associated
with a given set of larger scale values. These generators frequently simulate meteorological
variables at the daily or annual time scales on the basis of empirical statistical models. There
are a number of well-known weather generators, which are widely used in agricultural, water
resources and flood risk analysis, such as the Long Ashton Research Stochastic Weather

Generator (LARS-WG), ClimGen, CLIGEN, WXGEN and Met&Roll (Fatichi et al., 2011).

2.3 Hydrological Modelling

Hydrological modelling is considered as an important tool for water resources planning
and management. A hydrological model is a valuable tool for studying the impact of climate
change on water resources from future scenarios of future change. Many river basins have
experienced a change in the frequency and magnitude of hydrological extreme events (Arnell
and Gosling, 2016, Milly et al., 2002). Numerous hydrological models have been developed
and applied to assess the impact of climate change on water resources, particularly for floods.

This section is devoted to a comprehensive review on hydrological models.

16



Also referred to as rainfall-runoff models, hydrological models can be classified into a
number of categories, based on model input parameters as well as the physical principles used
within the models. They can also be classified based on the model parameters as a function of
time and space (i.e., lumped and distributed). Besides, a model is considered as deterministic if
a set of input values will always produce the same output values. A model is stochastic if the
input values need not to produce the same output values. The event and continuous simulation
models are distinguished based on the specific and continuous period of output respectively
(Sharma et al., 2008). The popular classifications, which are widely used in the literature, are
empirical, parameters and physically-based models. Table 2.3 introduces the brief

characteristics of three types of hydrological models.

Table 2.3: Characteristics of hydrological models (Devia et al., 2015)

Empirical model Conceptual model Physically-based model

e Metric or black box e Parametric or grey e Mechanistic or white box
model box model model

e Described by e Based on modelling e Based on spatial distribution,
mathematical structure of reservoir and evaluation of parameters
using time series include semi describing physical
information empirical equations characteristics

e Does not need prior with a physical basis e Model parameters can be
knowledge about e Model parameters measured
hydrology process are calibrated e Complex model and requires

e High predictive power e Simple and easily high computational demand
but low explanatory calculated using e Suffer from extreme data
capacity computer code demand, scale related

e Cannot be generated to e Require large hydro- problems and
another catchment meteorological data overparameterization

2.3.1 Empirical models

Empirical models are derived from experiments or observed input-output relationships.
Although they do not consider the physical law, the empirical models contain parameters that
may have little direct physical significance and can be estimated only using the concurrent
measurement of inputs and outputs (Xu, 2002). The rating curves, unit hydrograph, statistical
models (i.e., linear and non-linear regressions) and machine learning methods are popularly
used in the empirical models. Machine learning methods for empirical models are widely used

to predict streamflows in recent years. There are many machine learning techniques that are
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used for streamflow prediction (like ANN, support vector machines, random forest and k
nearest neighbour, etc.). They have been proved to be appropriate tools for hydrological
modelling and exploratory data analysis, particularly in systems that exhibit complex and non-

linear behavior (Abrahart and See, 2007, Solomatine and Ostfeld, 2008).

Shortridge et al. (2016) used ANN, random forest, Generalized Additive Models
(GAM), multivariate adaptive regression splines and M5 cubist models to simulate monthly
streamflows in the highland of Ethiopia. The results indicated that random forest and GAM
were useful in providing insights into physical watershed function. Yaseen et al. (2016) applied
the Extreme Learning Machine (ELM) method to forecast the monthly streamflow discharge
rate in the Tigris River, Iraq. The results showed a good improvement using ELM model than
support vector regression and generalized regression neural network in forecasting the
streamflow. A study by Badrzadeh et al. (2015) confirmed the robustness of hybrid wavelet-
based models for real-time runoff forecasting at Casino station on Richmond River, Australia
compared to ANN, adaptive neuro-fuzzy inference systems, wavelet neural networks.
However, these models do not add any scientific knowledge or improved understanding in the
field of hydrology. Therefore, parameter and physically-based models are adopted as useful

alternative approaches to able to consider the physical law in these models.

2.3.2 Parameter models

Unlike the empirical models, the structure of parameter models is defined by the
modeller’s understanding of the hydrological system. Parameter models are formulated with
some conceptual elements that are a simple representation of a reference system. Conceptual
models also considered physical law but in a profoundly simplified form. One of the advantages
of conceptual models is its non-linearity, which reflects the threshold presence in the
hydrological system. Conceptual models describe all the component of hydrological processes.
It consists of several interconnected reservoirs representing the physical elements in a
catchment. Conceptual models are useful for various purposes and they can be used to infill the

lost data or reconstruction of flow sequences.

One of the well-known conceptual models is the Stanford Watershed Model (SWM)
elaborated by Crawford and Linsley (1966). The Sacramento model (Bergstrom, 1976) and the

GR4J model (Perrin et al., 2003) are other well-known conceptual rainfall-runoff models with
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different complexities. The GR4J model uses two unit hydrographs and two storages for the
production and routing of water. The storage of rainfall, evapotranspiration and percolation in
the surface soil are controlled by the production storage and the routing of effective rainfall is
controlled by the routing storage. The Sacramento model has five runoff components (i.e.,
direct runoft, surface runoff, interflow, supplementary base flow and primary base flow). These
models have been widely applied in many studies (Petheram et al., 2012, Shin et al., 2015, Shin
and Kim, 2017).

Conceptual models simulate a behaviour of a system based on some perception while
physically-based models represent the relevant process by physically considering the meaning
of the full procedure in a hydrological system. These models, which have been widely used to

simulate streamflows, are discussed in the following section.
2.3.3 Physically-based models

Physically-based models are based on physical laws and theoretical principles. These
models are characterized by parameters derived by field measurements and have a direct
physical significance. The models use a spatial discretization based on grid, hillslopes or some
hydrologic response units. Therefore, these models can be highly appropriate when a high level
of spatial discretization is needed in modelling. The physically-based models can have many
advantages compared to other models because of the use of parameters having a physical
interpretation. The limitation of these models is that large data needed, scale-related problems

and overparameterization.

One of the best-known physically-based models is the MIKE SHE, which was developed
by a consortium of European institutes such as Danish Hydraulic Institute (DHI), British
Institute of hydrology and French consulting agency SOGREAH. MIKE SHE is a fully
distributed, physically-based, distributed model capable of both single event and continuous
simulations. The model can simulate hydrology in plot field and watershed scales (Frana, 2012).
The physically-based nature of the model lends inclusion of topography and watershed

characteristics (i.e., soil, vegetation and weather parameter sets).

Larsen et al. (2014) presented the results from coupling of the HIRAM RCM at 11 km
resolution and MIKE SHE-SWET hydrology and land surface models over the 2,500 km?

19



Skjern River catchment, Denmark. Golmohammadi et al. (2014) used MIKE SHE, Soil and
Water Assessment Tool (SWAT) and Agricultural Policy Environment extender models to
simulate the streamflows of the Canagagigue watershed in the Grand River basin, Canada. The
results indicated that the mean daily and monthly flow simulated by MIKE SHE was much
better than other models. Three hydrological model (i.e., NAM, SWAT and MIKE SHE) were
used to model the combined impact of climate change and land use change on hydrology for a
catchment in Denmark in a study of Karlsson et al. (2016). The results indicated that substantial

changes in discharge extreme due to the changing of land use.

Physically-based models, including SWAT and the Hydrologic Engineering Center-
Hydrologic Modelling System (HEC-HMS) are also used universally to estimate runoff in both
gauged and ungauged watersheds. SWAT is a complex physically-based, continuous model and
was designed to forecast the impact of watershed management practices on hydrology,
sediment, water quality and agriculture production on the gauge and ungauged basins. The
model simulates a watershed by dividing it into sub-basins which are further subdivided into
Hydrologic Response Units (HRU). For each HRU in every sub-basin, SWAT simulates the
soil water balances, groundwater flow, lateral flow, channel routing, evapotranspiration, crop
growth and nutrient uptake, pond and wetland balances, soil pesticide degradation and in-stream

transformation nutrients and pesticides (Vazquez-Amabile and Engel, 2005).

Abbaspour et al. (2015) used SWAT model to simulate the hydrologic regime for sub-
basin scale of Europe. This study contributed essential understanding into continental water
resources quantity and water quality at a sub-basin scale with a monthly time interval. An
improved version of SWAT model was used to predict the impacts on watershed hydrology and
water quality for two watersheds in the Midwest USA (Raj et al., 2016). The study of Lin et al.
(2015) showed a varying change in runoff among three time scale (i.e., daily, monthly and
annual) and three catchments in the Jinjiang River basin under land use change scenarios using

calibrated SWAT model.

HEC-HMS model, a physically-based distributed model, designed to simulate the
rainfall-runoff process of dendritic watershed systems, has been widely used to simulate and

forecast streamflows in humid, tropical, subtropical and arid watersheds (Ibrahim-Bathis and

Ahmed, 2016). HEC-HMS models including Soil Moisture Accounting (SMA) and snow
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algorithms for assessing the climate and land use changes of three watersheds in the Great Lakes
was used by Gyawali and Watkins David (2013). Their study showed that HEC-HMS model
provides a reasonably good estimate of runoff and shows some modest improved results
compared with large basin runoff model. HEC-HMS and Watershed Bounded Network Model
(WBNM) were used to predict runoff hydrograph from the small urban catchments in Azzaba
city. The results indicated that HEC-HMS provided acceptable simulations of the flood events
and simulated flood hydrograph was fitted with the realistic situation (Laouacheria and
Mansouri, 2015). Performance of two hydrological models, namely HEC-HMS and PRMS,
were evaluated by simulating the storm event in Taunton River Basin. Results from a study by
Teng et al. (2018) showed that both models could provide flood predictions of rainfall runoff
during the storm event. Kabiri et al. (2015) combined SDSM and HEC-HMS models to project
the discharge of Klang River, Malaysia under climate change context. An increasing trend in
the discharge during the months of June, September and October in three future periods under

A2 scenario was indicated in their study.
2.4 Flood Frequency Analysis

Flood Frequency Analysis (FFA) can be used for understanding of the probabilistic
behaviour of flood events. Further, FFA is also used for establishing a relationship between
flood magnitude and frequency of occurrence (return period) and providing the flood quantile
estimate at a given location of interest (Castellarin et al., 2012). FFA can be classified into
univariate and multivariate analyses, depending on whether one flood variable or several flood

characteristics are considered.

Univariate flood frequency analysis, in term of flood peaks, are considered as a common
design criterion in flood control engineering. However, in hydrologic planning and design for
flood management, it is used not only to know information about flood peak but also to
determine the characteristics of flood volume and duration. Furthermore, flood events with
associated flood characteristics can be considered as multivariate events. Therefore, instead of
focusing on one flood characteristic, which has been done traditionally, the flood event can be
modelled using the joint distribution of several flood characteristics (Karmakar and Simonovic,
2008, Shiau et al., 2006). A review of univariate and bivariate flood frequency analysis is

presented in the following sub-sections.
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2.4.1 Univariate frequency analysis

The frequency of occurrence of the extreme events is analyzed using statistical
probability distribution fitted to the flood series. The first step is to extract the flood series from
flood data. AM and POT are commonly used to investigate the changes in flood frequency. AM
sample is defined by the maximum peak discharge of each year. However, AM cannot be used
in the case of short data series because it provides less information (some peak values, which
are still relatively high are not considered in AM series while some low values can be part of
the AM series sample) (Bezak et al., 2014, Lang. et al., 1999). Unlike the AM, which extracts
only one event per year. POT considers a wider range of events and provides more information
than AM, especially for flood magnitude estimation (Kay et al., 2009, Roth et al., 2012).
Although POT approach is also widely applied where flood variables have small sample sizes,
AM approach is still used in FFA by several researchers. Bezak et al. (2014) compared the
results of FFA for data from Litija on the Sava river in Slovenia by using both POT and AM.
Their study indicated POT gave better results than AM approach. Similarly, Karim et al. (2017)
indicated that frequency estimates based on POT approach are better than AM for small and

medium floods while both approaches gave the same results for large floods.

Another important step in FFA is the choice of a Probability Distribution Function (PDF)
for the fitting of extreme flood series. There have been several studies which compared the
various probability distributions for FFA. These studies indicated that selection of appropriate
PDF has an important role in FFA, as a wrong choice could lead to significant error and bias in
flood quantile estimation, particularly at higher return periods (Rahman et al., 2013). However,
the choice of an appropriate probability distribution is still one of the major issues in FFA.
There are many probability distributions which are widely used in FFA for extreme events
studies such as Gumbel, Log-Normal (LN), Pearson Type 3 (P3), Log-Pearson Type 3 (LP3),
GPD and Generalized Logistic (GL).

Rahman et al. (2013) used five PDFs to analyze the frequency of flood series in
Australia. The results showed that LP3, GEV and GPD are the three of the best-fit distributions.
Seven different PDFs were considered for Tasmania and the results indicated that LN
distribution provided the best-fit to the observed flood data in a study carried by Haddad and
Rahman (2011). Gumbel distribution provided a better fit to the flood data than LN, P3, LP3,
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and 3-parameters LN distributions for FFA in the Balu-Tongikhal River system in Dhaka city
which was indicated by a study of Gain and Hoque (2013).

2.4.2 Bivariate frequency analysis

In contrast to the univariate frequency analysis in which only one flood variable is used
in the analysis, multivariate frequency analysis simultaneously considered flood characteristics
(i.e., flood volume, duration and peak). Multivariate parametric distributions (e.g., bivariate
normal, bivariate gamma, bivariate extreme value distributions, etc.), which have been
extended from wunivariate distribution, have been used to model multivariate flood

characteristics for different purposes.

Sheng (2001) used bivariate gamma distribution to model the joint probability behaviour
of bivariate flood characteristics in the Madawask River basin in Quebec, Canada. The results
indicated that bivariate gamma distribution could be useful for multivariate extreme events. A
study using bivariate extreme value distribution in FFA was conducted by Shiau (2003) and
another study was done by Escalante-Sandoval (2007). These two studies concluded that
bivariate extreme value distribution showed a good agreement between theoretical model
output and observed data. They also provided more useful information than univariate
frequency analysis. Similarly, under the assumption that flood peak and volume have the same
type of marginal distributions, Yue and Wang (2004) used bivariate extreme value distribution
for FFA of these variables. However, bivariate distribution functions cannot model the joint
probability behaviour of the flood variables that are inter-correlated. Furthermore, for the flood
events, all flood characteristics do not have the same type of marginal probability distribution.

Therefore, the copula approach may provide a flexible solution (Genest et al., 2007).

The copula is a function that links univariate distribution functions to form bivariate
distribution functions. The main advantage of this method is that the dependence structure is
independently modelled with the marginal distributions allowing for different type of
distribution (Dupuis, 2007, Zhang and Singh, 2007). Several researchers have used copulas

approach to investigate the bivariate frequency analysis.

For example, Duan et al. (2016) used copula approach to investigate the flood

characteristics in the Huai River basin under climate change condition. Their study indicated
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that copula can be a viable and flexible tool for FFA and may provide useful information for
risk-based flood control. Filipova et al. (2018) applied copulas to present a method for selecting
different copulas for modelling the joint probability of flood peak and volume for 27 catchments
in Norway. They suggested that two parameter copulas BB1 and BB7 should be selected in
catchments with high steepness, high mean annual runoff and rainfall flood regime.
Additionally, Sraj et al. (2015) applied different bivariate copulas from three families (i.e.,
Archimedean, extreme value and elliptical) to carry out the bivariate flood frequency analysis
of flood characteristics of Sara River in Slovenia. Their study found that Gumbel-Hougaard
copula as the most appropriate for the pair of flood characteristics. Similarly, Karmakar and
Simonovic (2009) indicated that Gumbel-Hougaard copula is the best approach for modelling
the dependence structure between flood characteristics of Red River at Grand Forks, Dakota by

using Archimedean family copula.
2.5 Flood Hazard Maps

All parts of any river basin are vulnerable to floods in different degrees under different
cases and situations. Flood hazard maps are used most commonly for flood risk communication
and management (Luke et al., 2018). A flood hazard map is a useful tool for decision and
policymakers and local authorities to design protection measures in the river basin. Hazard
maps provide information on the probability of the flooding for different return periods as well
as the depth and extent of the spread of floodwater in the affected areas. Therefore, it is
important to identify potential inundation areas with high appropriate level of accuracy. This
information also provides emergency organizations to calibrate and adjust their warning system
and prepare priority evacuation plans. It may be used to find the best strategies for risk

reduction.

There are two main approaches to develop the flood hazard maps, namely deterministic
and probability approaches. The most common representation of simulation results is a
deterministic flood inundation map based on a single simulation. Probabilistic flood mapping
designed to incorporate uncertainty from input data and model parameters, represent spatial and

temporal risk and present flood maps in terms of probabilities and percentages.
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2.5.1 Probabilistic approach

In the probabilistic approach, the process of floodplain mapping requires certain steps.
These steps include: (i) the setting up of flood inundation models; (ii) sensitivity analysis of the
model using historical flood data and (iii) ensemble simulation using an uncertainty design
event. The probabilistic approach, which is based on ensemble simulation, does not necessarily
require the use of physical behaviour of the river and floodplain models. Di Baldassarre et al.
(2010) compared two different methods (i.e., deterministic and probabilistic) for flood hazard
mapping using 2D hydrodynamic hydraulic model. Their study indicated that flood hazard
mapping using probability approach seems to be more reliable. Kalyanapu et al. (2012) used
Monte Carlo based 2D flood inundation framework for estimating flood hazard mapping. Their
study showed that the probability-weighted flood risk approach provides improved accuracy of

flood risk estimation.

However, the main disadvantage of using physically-based 2D hydraulic models in
probability frameworks, has been the simulation time required for each simulation. Simulating
hundreds of flood events with these computational speeds would take large computer time
making 2D model application counterproductive (Timbadiya et al., 2015). A probability
analysis with 2D hydraulic models has been limited to a smaller number of scenarios and
smaller spatial domains. Additionally, Aronica et al. (2012b) suggested that flood inundation
probability alone may be insensitive to discharge in relatively steep urban catchments and
maybe a limited measure of flood hazard. Furthermore, Thompson and Frazier (2014) supposed
that a few probabilistic flood hazard maps were limited with respect to the hazard behaviour
they modelled. These models could also be computationally expensive and parameterization

was difficult to compute for forces that were not fully predictable.

The deterministic approach, which used physically-based 2D flood modelling to
simulate synthetic design flood events, will overcome these problems to develop flood hazard

maps. A review of a deterministic approach will discuss in the following part.
2.5.2 Deterministic approach

In a deterministic approach, floodplain maps consist of construction of a physically-

based fully 2D hydraulic model, calibration and validation of the model using historical flood

25



event, using the best-fit statistical model to generate the design flood hydrograph and
elaboration of the model results to generate flood hazard maps. Deterministic modelling tools
have widely been applied because they are capable of translating changes in input parameters

into a change in flood characteristics.

Flood inundation depth and inundation extent can be computed using computational
models based on solutions of the full or approximate form of the shallow water equations. 2D
hydrodynamic models are identified as the appropriate tools for simulating the flow of water
over flat terrain and complex topography. Such model results provide further opportunity to

develop more meaningful hazard maps by incorporating additional hazard parameters.

The high-resolution flood hazard maps, which was developed using the advanced
deterministic and probability approaches, can provide complete information about the physical
hazard and reduce uncertainty found in traditional approaches. Masood and Takeuchi (2012)
developed flood hazard maps using 1D hydrodynamic model for the city of Dhaka in
Bangladesh. These studies used a simple form of deterministic approach in establishing flood
hazard maps. Mazzoleni et al. (2014) suggested a semi-probabilistic approach to develop the
hazard map due to embankment-overtopping for the Po River basin. They used 1D and 2D
hydrodynamic models to simulate the hydrodynamic regime (i.e., water depth and flow
velocity) and the flood hazard maps were obtained using the hazard curves, which combined
different flood parameters (i.e., flood extent, water depth and flow velocity). Mosquera-
Machado and Ahmad (2007) used flood frequency analysis and 1D hydraulic model (HEC-
RAS) to create three flood hazard maps with different return periods for Atrato River,
Columbia. Their study provided useful information in evacuation planning as well as damages

estimating.

2.6 Conclusions

In this chapter, an overview of the literature on downscaling methods for climate change
projections, hydrological modelling, flood frequency analysis and flood hazard maps estimation
are presented. It is seen that extreme hydrological events (i.e., floods and drought) are likely to
increase in frequency, duration and magnitude in the sensitive climate regions. Besides, climate

change is expected to increase the magnitude and frequency of extreme events and likely to
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cause more intense and frequent floods. Therefore, it is crucial to examine whether the
magnitude of flood characteristics will remain the same or will change under climate change
scenarios at river basin scale. This study assesses the potential impact of climate change on

flood frequency using the POT approach.

One of the measures to mitigate the flood damage is providing useful information
through floodplain areas, the spatial distribution of flood hazard. Therefore, it is of great
importance for understanding flood hazard at river scale. This research aims to determine the
flood hazard maps for Saigon-Dongnai River system, Vietnam under climate change context in
formulating climate adaptation and risk mitigation strategies. Combining the downscaling
methods, which are used to downscale climate variables from climate model outputs,
hydrological models, flood frequency analysis and hydrodynamic models, the flood hazard

maps have been developed.
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Chapter 3

Methodology

3.1 Introduction

The methodology is presented in this chapter aims to address all the research objectives.
The description and linking of each objective corresponding to the methodology are also

introduced in this chapter.
3.2 Methodology

In order to achieve all the research objectives listed in section 1.4, a framework of the
methodology adopted is presented in Fig. 3.1. The aim of this study is to assess the changes of
flood risk under impact of climate change context. In order to achieve the general objective, the
specific objective along with the corresponding actual methodology are presented as follow.
The first objective is obtained by using the univariate flood frequency analysis. For each POT

dataset, the best-fitting distribution is selected by testing several distributions
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(i.e., GPD, P3, LP3, Gumbel, LN and GL) and they are presented in Chapter 4. Downscaling,
hydrological modelling and flood frequency analysis methods are used to achieve the second
objective in this study (Chapter 4). The third and fouth objectives can be acquired by using the
LLHR, tail dependence test and copula approach respectively and they are presented in Chapter
5.

Bivariate flood frequency analysis using copula and hierarchical cluster analysis are
performed to achieve a fifth objective (Chapter 5). The sixth objective and final objective can
be obtained by simulate the flood depth and velocity variables using coupled hydrodynamic
and they are presented in Chapter 6.

The methodology proposed for each part of the present research to achieve a specific
objective is applied for the study area and presented as case studies. Three case studies are
considered. Each case study is summarised below and detailed in its corresponding section. The
details of the available software which are used in this study is also presented in the following

sections.
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Research Objective

(Assessing the changes of flood risk under

climate change context)

v

Evaluating the corectness of directly
using distribution to model the future
POT dataset

Research Methodology

v

Assessing the impact of climate
change on flood magnitude

Univarite flood frequency analysis
(POT approach)

<

Investigating the potential of
performing the tail dependence tests
for pairs of flood characteristics

Downscaling, hydrological
modelling and FFA

Evaluating the choice of copula
based on the tail dependence test

LLHR and tail dependence tests

<

Estimating of the flood design
hydrographs using copula theory of
flood variables

Copula approach (Extreme value and
Gaussian, Clayton, Frank)

Developing the efficient flood
modelling

Bivariate frequency analysis and
hierarchical cluster analysis

Developing of flood hazard maps

Coupled hydrodynamic model

Flood hazard are quantified by
considering the combination of flood
depth and velocity

Fig. 3.1: A methodology schematic
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3.2.1 Case studies

To investigate the changes of flood frequency, flood series extracted using POT
approach are applied to the data of the Trian gauging station in the Saigon-Dongnai River in
the South of Vietnam. In this case study, the monthly change factors concerning the baseline
period of 1980-2005 are calculated for the future period (2020-2045) by using RCMS outputs.
These change factors are used as the input data for LARS-WG to generate the future climate
time series. The continuous hydrological model (i.e., HEC-HMS) is used to generate future
discharge time series based on the future climate series. The best fitting distribution is selected
by testing several distributions that are normally used in extreme value analysis, namely GPD,
P3, LP3, Gumbel, LN and GL distributions. This case study also evaluates the correctness of
directly using the asymptotic distribution to model the future POT dataset.

The bivariate flood frequency analysis based on copulas approach is performed on a
Trian streamflow gauge located in the South of Vietnam. To find the best fit marginal
distributions both parametric and nonparametric family of distribution are used in this study.
Gumbel, GPD, LN, P3, LP3 and GEV belonging to the parametric distributions along with
nonparametric kernel distributions are evaluated. The selection of copulas in this study is
decided based on the tail dependence test. Three extreme value family of copulas (i.e., Gumbel-
Hougaard, Galambos and Husler-Reiss) are evaluated to model asymptotically dependence pair
of flood characteristics. Clayton, Frank and Gaussian copulas are used to assess the potential

their application in case of variables are diagnosed as asymptotic independence.

The flood hazard maps are quantified by considering the water depth and velocity in
combination for the downstream of Trian catchment. In this case, the coupled 1D and 2D
hydrodynamic model (MIKE FLOOD) is used to simulate the flow regime. The design flood
hydrograph obtained from bivariate flood frequency analysis. is used as the input for the
hydrodynamic model. Besides, high-quality topographic data (i.e., DEM and LiDAR) of input
for hydraulic models, collected using modern survey techniques, are also used to improve the
accuracy of flood hazard maps. The latest advancement in flood modelling technique is the
development of flexible meshes. These meshes allow constructing a finer resolution of smaller
features to reflect the changes in the topography and coarser resolution at the broader floodplain

without resorting model grid nesting to save computational effort. Therefore, 2D flexible mesh
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is selected for the hydrodynamic modelling in this study.

3.2.2 Available software

The statistical community is providing a great number of functions for helping in
performing flood frequency analysis using the R software. R is a free and open sources software
for statistical computing and graphics. Several well-known statisticians and computational
scientists have reviewed it. A summary of the R-packages used in performing a specific
computation in this research is included below: (i) the copula (Kojadinovic and Yan, 2010b)
and Vine copula (Schepsmeier et al., 2012) packages for copula modelling, (ii) ismev
(Heffernan et al., 2012), extRemes (Gilleland and Katz, 2016) and nsRFA (Viglione et al.,
2018) packages for marginal distribution modelling; (iii) Kendall (McLeod and Al, 2011)
package for trend analysis; (iv) POT (Ribatet, 2007) package for testing tail independence test

and plotting of parameters estimated at various thresholds.

The free software LARS-WG is used to downscale the climate data that are obtained
from the output of GCMs and RCMs. LARS-WG is a stochastic weather generator which can
be used for the simulation of weather data at the single site. LARS-WG has been considered as
a computationally inexpensive tool to produce daily site-specific climate scenarios for impact
assessment of climate change (Semenov, 2008). LARS-WG can be downloaded from

http://resources.rothamsted.ac.uk/mas-models/larswg.html.

The free software HEC-HMS and HEC-GeoHMS are used to simulate the hydrological
modelling. HEC-HMS is used for modelling rainfall-runoff processes for a dendritic watershed
while HEC-GeoHMS is used to analyze digital terrain data and transforms the drainage paths
and watershed boundaries into a hydrological data structure. The HEC-HMS and HEC-
GeoHMS  software can be downloaded from the USACE  website at

http://www.hec.usace.army.mil/software/hec-hms.html.

The commercial flood modelling package MIKE FLOOD is used to simulate the flood
propagation, flood depth, flood velocity and flood inundations extent in this study. MIKE
FLOOD dynamically links two independently software, namely MIKE 11 and MIKE 21 and
they have been developed by the DHI, Denmark. MIKE 11 and MIKE 21 are coupled by using

links in transferring water between the channels and the overland of the model domain. There

32



are several types of links that can be used in various situations. Standard link, which was
commonly applied in flood modelling, is used in this study. The licensed of this model is
available with the Department of Civil Engineering of National Institute of Technology,
Warangal, India.
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Chapter 4

Impact of Climate Change on Flood Frequency of the

Trian Reservoir in Vietnam Using RCMS

4.1 Introduction

An increasing trend in frequency as well as intensity of extreme rainfall events is being
observed in Southeast Asia and it is projected that more frequent and intense extreme events
will occur in this region (IPCC, 2014). These changes may have a significant impact on the
hydrological cycle of this region (Setegn et al., 2011). The changes in precipitation combined
with evaporation have potential impacts on the runoff, especially, increasing the frequency and
intensity of flood. Flood events may cause negative impacts on economic and societies aspects.
For example, the flood can lead to lower crop production, human and material losses as well as
cause a negative impact on the natural ecosystem. Therefore, it is necessary to analyse the
changes in flood magnitude under climate change context to provide suitable measures in

mitigating climate change impacts.
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Vietnam is one of the countries that is severely impacted by climate change (Rutten et
al., 2014, Trinh et al., 2013). The Saigon-Dongnai River basin is one of the largest river basins
as well as the economic center in the South of Vietnam. Trian watershed is located in the upper
Saigon-Dongnai River basin and it is the biggest sub-basin of this river. In order to meet water
and energy demands as well as flood control for cities located in the downstream (i.e.,
Hochiminh, Bienhoa, Vungtau, etc.), Trian reservoir is being operated for multiple purposes
such as hydropower production, water supply and flood control. However, till date, no study
has been conducted to assess the impact of climate change on this basin. Hence, it is necessary
to evaluate the potential future impact of climate change on this watershed, particularly on flood

frequency.

Flood estimation cannot be done purely by statistical analysis because the characteristics
of the flood events can change in the future due to climate change. Therefore, the physically-
based meteorological and hydrological modelling should be used (Booij, 2005). The framework
for evaluating flood frequency under climate change contexts related to physically-based
approach are widely applied by many researchers (Arnell and Gosling, 2013, Hirabayashi et al.,
2013, Kay and Jones, 2012). This framework includes three steps: (i) extraction of climate data
series from the future climate change scenarios; (ii) simulation of future discharge series using
any hydrological model; (iii) analyzing the flood frequency based on the projected discharge

series using the statistical approach.

GCMs are widely used to predict the changes in atmospheric variables under climate
change scenarios (Anandhi et al., 2011). GCMs are the physics-based meteorological models,
which represent atmospheric and oceanic dynamics (Angeles et al., 2007). However, the output
from GCMs normally has a low spatial resolution of approximately 100-250 km and it is
inadequate for regional impact studies especially for analyzing the changes in extreme
precipitation and floods because it is lacking detailed regional information which is needed to

resolve various features at the catchment scale (Fowler et al., 2007).

In order to overcome these obstacles, statistical and dynamical downscaling approaches
are used as a common approach (Prudhomme et al., 2002). On the other hand, RCMs are
frequently used to analyse the impact of climate change on hydrology in the watershed because

of its higher resolution. The resolution of RCMs is around 12-50 km and it accounts for the
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sub-GCM grid scale forcing (e.g., complex topographical features and land cover
heterogeneities in a physics-based way). However, RCMs inherit the biases due to systematic
model errors caused by imperfect conceptualization, discretization and spatial averaging within
grid cells. Therefore, statistical downscaling is also performed for RCM projection (Chen et al.,

2011, Sunyer et al., 2012).

There are several statistical downscaling methods which establish statistical links
between large-scale weather and observed local-scale weather. Maraun et al. (2010) classified
statistical downscaling approaches into PP, MOS, and WGs. PP method establishes statistical
relationships between variables at large scales and local scales. MOS establishes statistical
relationships between variables simulated by the RCM and local scale observation to correct
RCM errors. WGs approach generates local scale weather time series resembling the statistical
properties of observed weather. WGs are extensively used to generate the daily time series
statistically similar to the observed climate data, which are used as an input data for the
hydrological model to assess the impact of climate change on hydrological risk. Furthermore,
it is a useful approach for assessing the change in extreme events (Semenov, 2008, Wilks and

Wilby, 1999).

Among several WGs, LARS-WG, based on semi-empirical distributions, is probably the
best semi-empirical weather generators (Semenov and Stratonovitch, 2010). More importantly,
the semi-empirical distribution in LARS-WG is very flexible because it can be fitted to several
probability distributions (Mikhail et al., 1998). Further, this weather generator correctly
reproduced most of the characteristics of the observed data in the Asian region (Semenov and
Stratonovitch, 2010). All semi-empirical distribution parameters of weather variables are
determined using observed daily climate data. These parameters combined with the relative
change factor of length of wet and dry spell and mean of precipitation amount as well as an
absolute change in temperature derived from GCMs or RCMs outputs are used to generate time

series for future.

To investigate the changes in flood frequency, AM and POT are commonly used to
extracts the flood events. AM sample is defined by the maximum peak flow of each year.
However, AM cannot be used in the case of short data series because it provides less

information (some peak values, which are still relatively high are not considered in AM series
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while some low values can be part of the AM series sample) (Bezak et al., 2014, Lang. et al.,
1999). Unlike the AM, which only extract one event per year, POT considers a wider range of
events and provides more information than AM, especially for estimation of flood magnitude

(Kay et al., 2009, Roth et al., 2012).

Normally, the GPD is fitted with POT magnitudes as a default in extreme values analysis
(Coles et al., 2001, Davison and Smith, 1990, Katz et al., 2002). However, there could be more
than one distribution that can be fitted to the sample data. Hence, identifying the best fitting
distribution to the sample need to be tested with several distributions (Lang. et al., 1999). The
LN, GPD, P3, LP3, Gumbel, and GL have been widely used for modelling extreme values
(Bezak etal., 2014, Lang. et al., 1999, Saf, 2009a, Salas et al., 2012). Furthermore, many studies
used AM to assess the impact of climate change on flood frequency at global as well as regional
scale (Hirabayashi et al., 2013, Jung et al., 2011) while there are only a few studies which used
POT approach. Even the studies which used POT approach mostly considered only a single
distribution (i.e., GPD). However, in addition to the GPD, researchers have shown that the peak
values can be fitted with many distributions such as Gumbel, LP3, LN, exponential distributions
and etc. (Sarhadi et al., 2012, Seckin et al., 2011, Zaman et al., 2012). Thus, it is important that
numerous distributions which are normally used in extreme values analysis should be tested

and the best fitting distribution needs to be identified for each POT dataset.

Consequently, this study will evaluate the potential impact of climate change on flood
frequency of the Trian reservoir belonging to the Saigon-Dongnai River basin, Vietnam. In
addition, this study also evaluates the correctness of directly using the asymptotic distribution

to model the future POT dataset.
4.2 Study Area and Data

The Trian catchment is one of the largest catchments in the south of Vietnam, which is
a part of the Saigon-Dongnai River basin. The total area of the Trian catchment is 14,200 km?.
The basin lies between latitudes of 10°53'46" N and 12°22'08" N and longitudes of 107°01'52"
E and 108°46'55" E (Fig. 4.1). The Trian basin lies in the monsoon tropical zone, which is
affected by the North-East and South-West monsoon. The climate regime is divided into two

distinct seasons. The rainy season is from April to November and the dry season is from
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December to March of the following year. The annual average rainfall in the Trian basin is
about 2,200 mm, while the annual average temperature is 20.6°C. The maximum temperature
1s 36.6°C in the month of April while the minimum temperature of 4.5°C was recorded in the
month of January. The mean monthly evaporation is 80.3 mm. The seasonal variation shows
that evaporation is high in the dry season, especially in the month of March with the value of
118.6 mm per month while the evaporation is low during the rainy season which occurs in

September (48.5 mm per month).
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Fig. 4.1: The hydro-meteorological network in the study area
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There are 13 rain gauges, six stations located in the Langa River basin and the others
lying in the Dongnai River (Fig. 4.1). Baoloc, Daknong, Dalat, and Lienkhuong are the four
weather stations which record all meteorological variables (i.e., rainfall, temperature, relative
humidity, sunshine hour data, speed and direction of wind). The remaining stations only
measure the precipitation data except for Xuanloc station which records temperature,
evaporation, and humidity. There are seven streamflow gauges which cover the entire basin.
Daknong, Talai, Trian, and Thanhbinh are located in the Dongnai River in which Trian is the
main outlet. Tapao, Phudien, and Dainga are located in the Langa River. However, three main
streamflow gauges (i.e., Trian, Tapao and Talai) which are located in the main river are used
for calibration and validation procedure. Rainfall and runoff data are collected from the
National Hydro—Meteorological Service (NHMS) of Vietnam. Additionally, a Digital Elevation
Model (DEM) with 30 m spatial resolution is downloaded from Shuttle Radar Topography
Mission (SRTM) while the Land Use Land Cover (LULC) and soil type digital maps are
collected from the Ministry of Natural Resources and Environment (MONRE), Vietnam.

4.3 Methodology

The methodology used in this study is shown as a flowchart in Fig. 4.2. LARS-WG is
used to downscale the climate data which are obtained from the RCMs and GCM for 10 stations
in this study. The LARS-WG parameters in each station are determined based on the observed
climate data (1980-2005). The monthly change factors with respect to the baseline period of
1980-2005 are then calculated for the future period (2020-2045) using RCMs and GCM outputs.
These change factors are used as input data in LARS-WG to generate the future climate time
series. Next, the future discharge series are simulated using a continuous hydrological model
(HEC-HMS) and the future climate data are simulated using LARS-WG. The impact of climate
change on flood frequency is analysed using the extreme discharge series extracted using the
POT approach. For each POT series, the best fitting distribution is selected by testing several
distributions which are normally used in extreme values analysis such as, GPD, P3, LP3,
Gumbel, LN and GL distributions. In this study, the parameters of the distribution are estimated
using the method of maximum likelihood and the return levels of flood magnitude are

determined for different return periods ranging from 2 to 100 years.
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Fig. 4.2: The framework for assessing the changes in flood frequency

4.3.1 Statistical downscaling

CORDEX project provides a quality controlled dataset of Regional Climate

Downscaling (RCD)-based information for historical and 21%-century projections (Park et al.,
2016). Two scenarios (i.e., RCP 4.5 and 8.5) from five RCMs, namely, HadGEM3-RA (Had),
SNU-MMS5 (MMS5), SNU-WRF (WRF), RegCM4 (Reg) and YSU-RSM (YSU) which are from
the same GCM (HadGEM2-AO) belonging to the CORDEX-EA projects are used in this study.
Table 4.1 lists the details of CORDEX-EA RCMs used in this study.

Table 4.1: The description of GCM and RCMs

Expansion GCM RCMs Scenarios

National Institute of Meteorological

Research (MOHC) - HadGEM3-RA  RCP 4.5&8.5
o

Kongju National University (ICTP) 83 RegCM4 RCP 4.5&8.5

Seoul National University E

Meso-scale Model version 5 (MMS5) B2 SNU-MM5 RCP 4.5

Seoul National University (WRF) :‘5 SNU-WRF5 RCP 4.5&8.5

Yonsei University

(Regional Spectral Model) YSU-RSM RCP 4.5&8.5

Fig. A. 1 (Appendix A) shows the boxplots of observed, different RCMs and GCM

simulated annual precipitation during the base period (1980-2005) for four rainfall stations.

There is a significant difference between the observed and raw RCMs/GCM annual rainfall for
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rain gauges of the study area.

The Q-Q plots compare the quantiles of observed and simulated data. The Q-Q plots
(Fig. A. 2) show a large bias between observed and RCMs/GCM simulated daily rainfall of
four stations in the study area. Note that similar results are observed at the remaining six stations
of the study area but, in the interest of brevity, boxplots and Q-Q plots are not shown for those
stations. The simulated daily rainfall was underestimated in both GCM and Had while other
RCMs overestimated the daily rainfall. These plots (Fig. A. 1 and Fig. A. 2) show that direct
output of RCMs and GCM cannot be used as input data for the hydrological model. Therefore,
statistical downscaling should be performed to adjust the GCM and RCMs simulated

precipitation and temperature.

To generate future weather details (such as precipitation and temperature), first the
change factors are calculated using the outputs from the RCMs/GCM. Then, along with
observed data, these change factors are used as input in weather generator to simulate future
weather details (Fowler et al., 2007, Kilsby et al., 2007, Sunyer et al., 2012). In this study, the

same methodology is used for simulating future weather details for the study area.

LARS-WG is a stochastic weather generator which is generally used to downscale the
climate data. There are several studies that compared LARS-WG to other statistical
downscaling models (Duan and Mei, 2014, Hassan et al., 2014, Mehan et al., 2017, Semenov
et al., 1998, Sunyer et al., 2012). Most of these studies indicated that the LARS-WG can be
used as an effective tool for assessing the impact of climate change at local scale. In additional,
LARS-WG is widely used in studying the impacts of climate change on hydrological variables.
For example, Agarwal et al. (2014) used LARS-WG to downscale precipitation in assessing the
future precipitation in Nepal. Qin and Lu (2014) assessed the impact of climate change on flood
frequency in China region by combining the LARS-WG and the hydrological model. More
importantly, LARS-WG is good in modelling the extreme rainfall events (Lu et al., 2015),

which is the main cause of floods.

LARS-WG is used to downscale the climate data which are obtained from the RCMs
and GCM for 10 stations in this study. The LARS-WG parameters (i.e., wet/dry spell length,
daily precipitation, minimum and maximum temperatures) are analyzed for each station using

the baseline period (1980-2005) observed climate data. KS, t and F tests are used to ensure the
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results of this model are reliable. The change factors for two future scenarios (i.e., RCP 4.5 and
8.5) are calculated using the output of five RCMs and one GCM. In particular, relative changes
in precipitation amount, wet/dry durations and temperature variability (standard deviation) are
calculated using Eq. (4.1). For minimum and maximum temperature amount, the absolute

changes are calculated using Eq. (4.2).

Future
Fo—— 1
CF i (4.1)
CF =Fuue —Bading (4.2)

where, CF; indicate the change factor for the i month. For example, the change factor for
precipitation amount in the month of January is calculated by dividing average January month
rainfall amount in future time period (2020-2045) with the average January month rainfall
amount in baseline time period (1980-2005). These change factors are used as input for LARS-
WG to generate the daily precipitation and daily temperature for both future scenarios (i.e.,

RCP 4.5 and 8.5).
4.3.2 Hydrological model

The hydrological model used in this study is HEC-HMS version 3.5 developed by the
US Army Corps of Engineers. HEC-HMS is a well-known model for use in the long-term
continuous hydrological modelling. It is a semi-distributed model with horizontal structure
realized via sub-basins. This model consists of four main components (i.e., basin component,
metrological, control specification and summary and display model outputs) which are
combined for a simulation run. Besides, the Geospatial Hydrological Modelling Extension
(HEC-GeoHMY) is also used to create river and basin properties and cross-sections used in the

Muskingum-Cunge routing with the help of 30m SRTM DEM.

HEC-HMS provides the Soil Moisture Accounting (SMA) module for continuous
modelling. SMA, which is designed to compute basin surface runoff, groundwater flow, losses
attributable to potential evapotranspiration, and deep percolation over the entire basin, is used

in this study. Fig. 4.3 shows the conceptual diagram of HEC-HMS SMA continuous algorithm.
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SMA uses five tank storages to simulate the different parts of the rainfall-runoff process

(Dariane et al., 2016). The Soil Conservation Service (SCS) dimensionless unit hydrograph is

used to transform the excess precipitation into a flow hydrograph at the outlet of each basin.

The potential evapotranspiration is calculated by the Priestley-Taylor method.
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Fig. 4.3: The conceptual diagram of SMA continuous algorithm in HEC-HMS (Gyawali and
Watkins David, 2013)
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Precipitation, evapotranspiration, infiltration excess overland flow, saturation excess
overland flow, subsurface storm flow, subsurface flow and river flow are important physical
processes which play a key role in assessing the impact of climate change on flood (Booij,
2005). A conceptual model is a suitable choice to meet the above requirements because all
important physical processes are considered as well as because of its simplicity (fewer data
requirements). Continuous simulation estimates the losses and generates the streamflow by
simulating the wetting and drying of a catchment at daily, hourly time steps (Boughton and
Droop, 2003, Pathiraja et al., 2012). Further, the continuous hydrological models are widely
used to assess the effect of climate change as well (Booij, 2005, Cameron, 2006, Raff et al.,
2009). The main advantage of the continuous hydrological model is that the soil moisture
condition is continuously simulated. It is to be noted that the soil moisture condition is an
important component in flood modelling, especially for catchment with large storages as well
as large difference in runoff between rainy and dry seasons (Pathiraja et al., 2012). SMA
embedded in HEC-HMS is designed to compute basin surface runoff, groundwater flow, losses
due to potential evapotranspiration and deep percolation over the entire basin (Feldman and

Center, 2000).

The HEC-GeoHMS is used to create river network, basin properties and cross-sections
which are used in the Muskingum-Cunge routing with the help of 30m SRTM DEM.
Meteorological data recording sites in each sub-basin (22 sub-basins) are presented in Fig. 4.1.
Theissen polygon approach is used to compute the areal average precipitation based on the
available rain gauges. The SCS dimensionless unit hydrograph is used to transform the excess
precipitation into a flow hydrograph at the outlet of each basin. The lag time (Tiag) is the main
parameter for this method. Lag time is the time difference between the centroid of rainfall
excess and the centroid of the Direct Runoff Hydrograph (DRH). Lag time can be estimated
from the watershed characteristics using Curve Number (CN) by the SCS formula (Ponce,

1994) and it is given by Eq. (4.3).

[ **%(2540-22.86xCN)"’
%07 | 14104xCNYT <Y *3)

where, Tig 1s the catchment lag time in hours, L is the hydraulic length measured along the

main river in meters and Y is the average catchment slope in meter per meter. The hydraulic
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length and the average catchment slope are derived from river and basin properties and the CN
is determined based on the several factors such as hydrologic soil groups, LULC and antecedent
moisture condition. Twelve parameters and five initial conditions of SMA algorithm are

required to characterize the canopy, surface, soil and groundwater storage units.

The estimation of these parameters is based on the processing of the LULC, soil map
using GIS and streamflows analysis. Penman-Monteith and Priestly-Taylor formulations are
normally used to estimate the potential evapotranspiration (Alfieri et al., 2015, Kay et al., 2006,
Taye et al., 2011). Arnell (1999) indicated that there was no difference in estimating runoft for
several regions in Europe using two potential evapotranspiration formulations. Booij (2005)
suggested that the Priestey-Taylor formulation should be preferable to calculate the potential
evapotranspiration if meteorological data is not available. Hence, the Priestey-Taylor

formulation is used in this study for the future climate change scenarios.

In this study, both manual and automatic methods are used to calibrate the hydrologic
model. Manual calibration is used to determine a practical range of parameter values, while
automated calibration is used to refine parameter values. The objective function (percent error
peak) is used in automating calibration steps. Based on the river systems and available
hydrological data in this region, a period of 1985-2005 is selected for the calibration of
parameters in the model which are adjusted using three streamflow gauges in Talai, Tapao and

Trian stations. The remaining streamflow data from 2006 to 2013 is used for the validation step.

Normally, the performance of the model is evaluated by comparing observed and model
discharge in the catchment outlet (Krause et al., 2005). Moriasi et al. (2007) analysed numerous
of model evaluation technique for watershed model evaluation guidelines for streamflow and
suggested the use of quantitative statistics such as Root Mean Square Error-observation
Standard Deviation Ratio (RSR), Nash and Sutcliffe (NSE) and Percent Bias (PBIAS). The
formulation of RSR and PBIAS are presented in Eq. (4.4) and Eq. (4.5). The range of NSE,
PBIAS and RSR values are used to assess the performance ratings. For example, the model

performance is evaluated as satisfactory if NSE>0.5, RSR<0.7 and PBIAS<25%.
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E (4.4)

PBIAS = = (4-5)

where Qi ° and Q; *'™ are the ith observed and simulated discharge, Q™" is the mean of

observed discharge.
4.3.3 Flood frequency analysis

As mentioned earlier, in this study, POT method is used to assess the impact of climate
change on flood frequency. The threshold estimation is the most difficult part in the POT
method (Lang. et al., 1999, Scarrott and MacDonald, 2012). Threshold choice involves
balancing between bias and variance. Too low a threshold may violate the asymptotic basis of
the model, leading to bias while too high a threshold will reduce sample size, leading to high
variance of the parameter estimates (Coles et al., 2001). Three different approaches, namely,
the Mean Residual Life (MRL) plot, threshold stability plots and fitting distribution diagnostics
(P-P, Q-Q, return level and density plots) are used in this study to decide the threshold value.

Since the POT series may have dependence, to deal with the temporal dependence within
each peak flood series, declustering is used to filter the dependent peak flood series. The time
interval between the peaks is chosen based on the catchment area. Lang. et al. (1999) suggested
that five days plus the natural logarithm of square miles of basin area (r< 5 days+ log(A)) as a
time interval. Svensson et al. (2005) used 5 days for catchments <45,000 km? 10 days for
catchments between 45,000 km? and 100,000 km? 20 days for catchments >100,000 km?. Based
on the actual basin area, the time spans for Trian, Talai and Tapao stations are 10, 10 and 5

respectively.

Once the independence condition of POT series is satisfied, the next steps involve the

choice of appropriate distribution and method of parameter estimation. GPD, which is an
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asymptotic model for POT series, is widely used in earlier studies (Coles et al., 2001, Davison
and Smith, 1990, Scarrott and MacDonald, 2012). However, there is no guarantee that the GPD
is the best distribution for all POT datasets, especially the POT datasets of future time (because
threshold values are selected using the observed data). For example, from the P-P and Q-Q plots
(Figs. 4.4a and b), it is observed that the P3 distribution captured the quantiles of flood
magnitude better than GPD distribution for the POT series which is based on Had 85 of the
Tapao station. Fig. 4.3c shows the return levels of flood magnitude, which are determined,
based on GPD, P3 distributions and observed data in Tapao station. The flood magnitude
appears to be overestimated by GPD while P3 is found as a good fit to the data. Therefore, the
best fitting distribution to the sample needs to be tested with several distributions, especially

for future POT samples.
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Fig. 4.4: P-P and Q-Q plots: (a) GPD, (b) P3 and (c) return level of Had 85 calculated using
GPD, P3 and observed calculated using GPD in the Tapao station

The most important aspects for FFA is to find an appropriate distribution. Several two
and three parameters probability distribution functions are commonly used in hydrological
studies such as Gumbel, GEV, GPD, GL, P3, LN and LP3. These distributions are used to
identify the appropriate distribution that best-fit to data sample. The Cumulative Distribution
Functions (CDF) of these distributions and Log-Likelihood (LLH) used in this study are
presented in Table 4.2.

48



Table 4.2: CDF and LLH of distributions

Distribution Cumulative distribution function (CDF) and log-likelihood function (LLH)
x 1 _(nx—py)?
LN CDF F(x) = f e 2% dx
0 xoy(2m)2

n n
1
LLH  L(uy,0y) = —nin(2w) — nlnoy — Z Inx; —FZ(lnxi — uy)?
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Different methods have been introduced to estimate the parameters of univariate
distribution functions. The well-known methods are Maximum Likelihood (ML), the method
of moment and method of L-moments. The method is one of the most widely used for fitting
probability distributions to data (Strupczewski et al., 2001). ML method can be developed for
a large of estimator situations. Another advantage of this method is that the estimates are
consistent and asymptotically normally distributed. The probability of the observed data as a
function of estimated parameters is called the likelihood function. Values of estimated
parameters that have high likelihood correspond to models which give high probability to the
observed data (Coles et al., 2001).

There are several approaches for helping in the selection of the appropriate PDF that are
fitted to data sample. Graphical method, the goodness-of-fit (GoF) and model selection criteria
have been widely used in hydrological studies. A graphical method is used to view the
difference between theoretical and empirical of distributions. In this method, Probability-
Probability (P-P) and Quantile-Quantile (Q-Q) plots are usually used. P-P plot compares the
empirical cumulative distribution function and theoretical cumulative distribution of sample
data. Q-Q plot where the quantiles obtained through the observed data and the distribution fitted

are drawn together.

There are many GoF tests that used in hydrological studies to identify the appropriate
distribution for fitting data, namely, Anderson-Darling (AD), Cramer-von Mises (CVM) and
Kolmogorov-Smirnov (KS) tests. Besides, model selection criteria can be applied to find the
appropriate distribution. Akaike Information Criteria (AIC) is the standard model selection
technique commonly used in hydrology. Additionally, GoF tests can be used to select the
distributions that fitted to the data sample while model selection criteria can be applied for
obtaining the best distribution among those passing the GoF. Therefore, various approaches are
used in this study in selecting the appropriate distributions. Table 4.3 summarises the

description of all the tests that are used in this study.
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Table 4.3: The list of test statistic used in this study

Test Formulation
KS D= maX|FX(QmaX,i) - Fi(X)|
n .
AD A2 = —n — Z (21 - 1)1an(Qmax,i) + ln{l - Fx(Qmax,n—i+1)}
i=1 n
AIC AIC = —2logL(BIX) + 2k
. N 2i—172 1
oW W= )[R ) -] iz
l=

Note: Fi and Fx are empirical and tested distribution functions; Qmax,i is discharge; k is number

of distribution parameters and n is sample size.
4.4 Results and Discussion

4.4.1 Hydrological model

The performance indicators calculated between HEC-HMS simulated and observed
discharge data are presented in Table 4.4. For the Trian station, the NSE values are 0.72 and
0.63 for calibration and validation respectively. It indicates that the model performance is very
good and satisfactory in calibration and validation respectively. Other statistical values (i.e,
RSR and PBIAS) also show that the model performance is good (Moriasi et al., 2007). During
the period 2002-2013, the upstream reservoir operation in Tapao station has changed the natural
flow while this hydrological model only simulated flow in the natural condition. Therefore, the
hydrological model performance in the validation step is unsatisfactory for Tapao station.
However, the main purpose of this reservoir is to supply power and not for flood control (Babel
etal., 2012). In the wet season, the peak inflow of this reservoir is released through the spillway.
Hence, flood value in the downstream has not been affected by reservoir operation. Besides,
there is a good agreement between observed flow and simulated flow by the model for Tapao
station (Fig. 4.5). Furthermore, the model performance is very good and good in the calibration

step. Therefore, the hydrological model can be used to simulate the future streamflow in this
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watershed.

Table 4.4: Model statistics of HEC-HMS for three locations

NSE RSR PBIAS (%)
Stations
Calibration Validation Calibration Validation Calibration ~ Validation
Talai 0.65 0.6 0.59 0.63 2.5 -9.8
(Good) (Satisfactory) (Good) (Satisfactory)  (Very good) (Very good)
Tapao 0.67 0.43 0.57 0.75 -3.1 -13.3
P (Good) (Unsatisfactory) (Good) (Unsatisfactory) (Very good) (Good)
Trian 0.72 0.63 0.52 0.6 -8.9 -11.4
(Good) (Satisfactory) (Good) (Good) (Very good) (Good)

Overall, the hydrologic model performance ranges from very good to satisfactory in both
calibration and validation steps for the three locations in this basin, except for Tapao location
in the validation step. It can be inferred from this that the continuous hydrological model is
suitable to simulate and evaluate the changes of flood frequency due to climate change for this

region as well as for the ungauged catchments belonging to the Saigon-Dongnai River basin.
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Fig. 4.5: Simulated and observed discharge for Tapao station during 1985-2013
4.4.2 Flood frequency analysis

Three criteria such as MRL plot, threshold stability plot and distribution fit diagnostics
are used to search the appropriate threshold for each station. In order to reduce the variance of
parameters estimation, the threshold is chosen in such a way that the length of each POT data
sample after declustering is greater than 2 times the number of years. For example, Fig. A. 3
shows the MRL plot for Tapao location. The threshold value of u = 250 m%/s gives over 574
exceedances before declustering. Fig. A. 4 shows the decluster run of Tapao station with a
threshold u=250 m?®/s and r =5 (time interval for declustering) days. After declustering, the
number of exceedance is 92 which meets the required condition. Besides, the diagnostic plots
(i.e., P-P, Q-Q, return level and density) for the fitted GPD distribution with a threshold of 250

m?/s are shown in Fig. A. 5 and they show a good agreement between model and empirical
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values. Therefore, the threshold value of u =250 m?/s with GPD distribution is a suitable choice
for Tapao location. Similarly, the selected threshold values for Trian and Talai are 950 m*/s and
650 m?/s respectively. After choosing the appropriate threshold, the set of distributions such as
LN, GPD, P3, LP3, Gumbel, and GL distributions are tested to select the appropriate

distribution.

The results of GoF tests for POT datasets of future (2020-2045) scenarios are given in
Tables A.1, A.2, A.3 and A.4. Based on the AD test, most of the scenarios follow the GPD
except for MMS5_45 scenario which fits with P3 distribution in Talai location. 55 % of scenarios
data follow the P3 distribution while 45 % of the remaining data are best fitted with GPD in
Trian location. The AD test shows that, for Tapao station, only the Had 45 scenario follows
the Gumbel distribution while 72.7 % and 18.2 % of samples fit the GPD and P3 distribution
respectively. According to the KS, and CVM tests, the results are nearly similar.

Fig. 4.6 presents the boxplots of flood magnitude for the future time period (2020-2045)
estimated from RCMs and GCM simulations. The results indicate an increasing trend in flood
magnitude for Trian, Talai and Tapao locations under climate change context. For example, for
50-year return period, the percentage changes for the median value of flood magnitude are
+29.68%, +48.76% and +24.22% for Talai, Tapao and Trian respectively. The changes in flood
magnitude for all locations in this catchment are significant. Therefore, flood risk management
strategies and hydraulic structure guidelines for this river basin under climate change context

should be considered with importance.
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4.5 Summary and Conclusions

This study used five RCMs and one GCM to assess the climate change impacts on the
flood frequency of three sub-catchments in the Trian watershed for the future period (2020-
2045). A combination of LARS-WG and HEC-HMS approach is used for studying the impact
of climate change on flood frequency. LARS-WG and HEC-HMS are calibrated and validated
based on the observed data. The performance of these models is found to be satisfactory and,

therefore, used for generating and simulating daily future climate and streamflow data.

The POT approach is used to extract flood series and these extreme flood series are fitted
with six different distributions namely, GPD, Gumbel, LN, LP3, GL and P3. In this study, the
parameters of the distributions are estimated using the method of maximum likelihood and the
best distribution for each POT dataset is selected using the different GoF tests such as AD, AIC,
CVM and KS. Moreover, results of this study also reveal that directly using the asymptotic

distribution to model the POT dataset sometimes provides wrong insights.

The results of five RCMs and one GCM suggest that flood magnitudes increase
significantly in the future period (2020-2045) for three stations in Trian catchment. To be
specific, the 100-year return level of Trian reservoir is increasing up to 32.34 % in one of future
scenarios. Hence, planning or investment for flood management in Trian basin is highly
necessary. Note that this study evaluates only the potential impact of climate change on flood
frequency of the Trian reservoir belonging to the Saigon-Dongnai River basin, Vietnam.
However, the changes in flood frequency owing to the river basin characteristic change (e.g.,
land use change, land cover change, etc.) can also be studied and it would be potential future

work.
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Chapter 5

Assessing the Selection of Copula for Bivariate Frequency

Analysis Based on the Tail Dependence Test

5.1 Introduction

Single variable flood frequency analysis provides limited understanding and assessment
of the true behaviour of flood phenomena which are often characterized by a set of correlated
random variables like, peak, volume and duration (Favre et al., 2004, Yue et al., 2001).
Univariate frequency analysis methods cannot describe the random correlated variables
(Sarhadi et al., 2016). This approach can lead to high uncertainty or failure of guidelines in
water resources planning, operation and design of hydraulic structures or creating the flood risk
mapping (Chebana and Ouarda, 2011). Additionally, flood is a multivariate natural calamity
characterized by peak, volume and duration. Hence, it is important to study the simultaneous,
multivariate, probabilistic behaviour of flood characteristics. Multivariate parametric
distributions (e.g., bivariate normal, bivariate gamma, bivariate extreme value distributions,

etc.), which have been extended from univariate distribution, have been used to model
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multivariate flood characteristics for different purposes (Adamson et al., 1999, Yue, 1999, Yue
et al., 2001). However, this approach has some drawbacks such as the dependence structure
between the variables, which depend on the marginal distributions or the flood variables have

the same type of marginal distributions (Poulin et al., 2007, Zhang and Singh, 2007).

In order to overcome the limitation of multivariate distributions, a copula is a very
versatile approach for simulating joint distribution in a more realistic way (Favre et al., 2004).
The main advantage of this method is that the dependence structure is independently modelled
with the marginal distribution that allows for multivariate distribution with different margins
and dependence structures to be built (Dupuis, 2007, Zhang and Singh, 2007). Several
researchers have used copulas to perform the bivariate frequency analysis (Dung et al., 2015,
Reddy and Ganguli, 2012, Sraj et al., 2015). The most important step in the modelling process
using copula is the selection of copula function which is the best fit to the data sample (Favre
et al., 2004). The chosen copulas should include several classes of copulas and several degrees

of tail dependence (Dupuis, 2007, Poulin et al., 2007).

Tail dependence characteristics constitute important features that differentiate extreme
value copulas from other copula structures (Chowdhary et al., 2011). Therefore, the extreme
value copulas with upper tail dependence are considered as suitable dependence structure
models for the flood characteristics (Genest and Favre, 2007, Gudendorf and Segers, 2011,
Poulin et al., 2007, Vittal et al., 2015). On the other hand, in the multivariate frequency analysis,
the variables can be dependent or independent of each other. The relationship between flood
characteristics (i.e., peak, volume and duration) are analyzed by several researchers. However,
most of the results of the dependence between different pairs of flood variables were not
consistent (Karmakar and Simonovic, 2009, Reddy and Ganguli, 2012, Sraj et al., 2015).
Indeed, identification of the degree of dependence between flood variables is a difficult step,
because the dependence of pairs of flood characteristics is controlled by different climate

features and catchment properties (Gaal et al., 2015, Viglione and Bloschl, 2009).

Most studies used Pearson’s linear correlation coefficient (r), Kendall’s (tr) and
Spearman’s rank correlation (p) for measuring dependence among different flood variables.
However, these measures are based on the association of the entire distributions but do not

reveal the dependence in the specific part of the distribution (Aghakouchak et al., 2010). When
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dealing with extreme events like floods, extreme values will appear in the tail of the
distributions. Hence, the tail dependence, which describes the dependence in the tail of a
multivariate distribution, can be a suitable measure (Aghakouchak et al., 2010, Coles et al.,

1999, Hao and Singh, 2016, Serinaldi et al., 2015).

To describe dependence in multivariate extreme values, there are two possible situations,
namely, asymptotic dependence or asymptotic independence (Coles et al., 1999). Diagnostic
analysis to determine whether the variables have asymptotic dependence or asymptotic
independence is very important in multivariate extreme analysis. In fact, in a situation where
diagnostic checks suggest data to have asymptotically independence, modelling with the
classical families of bivariate extreme value distribution is likely to lead to misleading results
(Coles et al., 2001, Ledford and Tawn, 1996). Different measures of extremal dependence have
been developed. Coles et al. (1999) proposed two measures of extreme dependence (y and )
for bivariate random variables. Nevertheless, recent studies show that there are still difficulties
to detect between asymptotic dependence and independence in many cases (Bacro et al., 2010,

Coles et al., 1999, Serinaldi et al., 2015, Weller et al., 2012).

Apart from these, several parametric and non-parametric approaches are suggested to
determine the tail dependence. Non-parametric tail dependence estimator (Au), namely,
MtO%(Coles et al., 1999, Frahm et al., 2005), AuSEC(Joe et al., 1992), Au“F(Capéraa et al., 1997)
and ASS (Schmidt and StadtmULler, 2006) have been preferred by most researchers in
hydrological analysis (Li et al., 2009, Requena et al., 2016). However, Villarini et al. (2008)
indicated that these tail dependence estimator have some drawbacks (bias, uncertainty).
Furthermore, all tail dependence estimators exhibit very poor performance when the underlying
upper tail dependence coefficient is null. It is, therefore, important to test for tail dependence

before applying the estimator (Frahm et al., 2005, Poulin et al., 2007).

Consequently, upper tail (in)dependence testing is a useful alternative approach.
Serinaldi et al. (2015) suggested that test for tail (in)dependence is mandatory because: (i)
samples exist which seem to fail dependency but they are realizations of a tail dependent
distribution; (ii) the use of misspecified parametric marginals instead of empirical marginals
may lead to wrong interpretations of the dependence structure; and (iii) the tail dependence

estimators can be insensitive to upper tail dependence, thus indicating upper tail dependence
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even if none exist. Similarly, if data are to be independent in the upper tail, then modelling with
dependence will lead to overestimation of probability of extreme joint events. Hence, Falk and
Michel (2006) emphasized that testing for tail (in)dependence is essential in data analysis of

extreme values.

Several recent studies indicated that Gumbel-Hougaard copula belonging to extreme
value copulas work well when variables are asymptotically dependent (Dung et al., 2015,
Karmakar and Simonovic, 2009, Poulin et al., 2007, Zhang and Singh, 2006). However, there
are few studies which suggest that what is the best copula for modelling the dependence
structure where variables have a strength of dependence but weaken at high levels or
asymptotically independence. Therefore, it is important to find the appropriate copula to derive
joint distribution of flood variables where the pair of flood characteristics have asymptotically

independent or weak dependent at a high threshold.

The difference between extreme value copulas and Gaussian copula is that the Gaussian
copula becomes independent at the high threshold. Furthermore, Gaussian copula, which is
characterized by a correlation matrix, generates a wider range of dependence behaviour (Bortot
et al., 2000). Studies by Renard and Lang (2007) also have proved the usefulness of Gaussian
copula in hydrological extreme events analysis. In fact, they suggested that Gaussian copula
can be reasonably well used for field significance determination, regional risk estimation,
discharge-duration-frequency curves and regional frequency analysis. Frank and Clayton
copulas, belonging to the Archimedean family, have been widely used in hydrology analysis
because it can be modelled both negative and positive associated variables. Furthermore, Frank
and Clayton copulas, which have zero dependency in both tails, are suitable in case of tail
dependence does not exist (Dung et al., 2015, Poulin et al., 2007, Sraj et al., 2015). Therefore,
Clayton, Frank and Gaussian copulas are used to assess the potential their application in case
of variables are diagnosed as asymptotic independence for frequency analysis of flood in Trian
watershed, Vietnam. The difference between this study and other studies on bivariate flood
frequency is that this study proposed a copula selection procedure focus on tail dependence test.
If there exists asymptotic dependence in the tail, extreme value copulas including Gumbel-
Hougaard, Husler-Reiss and Galambos copulas should be chosen, Gaussian, Frank and Clayton

copulas might be a good choice when variables are diagnosed as asymptotic independence.
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This study aims to address the following issues: (i) investigating the potential of
performing the tail dependence tests for the pairs of flood characteristics; (ii) evaluating the
performance of extreme value copula for asymptotic dependence variables and Clayton, Frank
and Gaussian copulas for asymptotic independent variables; and (iii) estimating joint return

period of flood characteristics.
5.2 Study Area and Data

The detail of the study area is already presented in section 4.2. The description of the
catchment development is presented in this section. There are two main tributaries of the
Dongnai River (i.e., Dongnai and Langa). There are nine reservoirs, which are operating to
supply water for drinking, irrigation, flood control and hydropower production, in the upstream
of Trian gauge. Most of them began to operate in recent years except for Hamthuan-Dami and
Daininh reservoirs which were operation from 2001 and 2008 respectively. In the Dongnai
tributary, Daininh and Dakrtik reservoirs provide energy with capacity 300 MW and 144 MW
respectively. Dongnai 2, Dongnai 3, Dongnai 4 and Dongnai 5 supply water to hydropower
plants which have installed capacity of 70, 180, 340 and 150 MW respectively. Hamthuan and
Dami reservoirs, located in the Langa tributary are a cascade of two hydropower plants with
installed capacity of 300 MW and 175 MW. Tapao weir, located the downstream of Hamthuan
and Dami reservoirs, is constructed to supply water for drinking and for irrigation of around
20,340 ha (Government, 2016). However, all reservoirs are located far away from the Trian
gauge (Fig. 5.1). The flood from Trian station has significant impacts on the downstream areas
(e.g., Bienhoa, Vungtau, Hochiminh cities, etc.). Therefore, this study mainly focused on the

flood in the Trian gauge.
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Fig. 5.1: Hydropower plants in the study area

Daily discharge data for the period 1978-2013 are available for the study from the Trian
station on the Dongnai river, which is a part of the Saigon-Dongnai River basin and this data is
used for flood frequency analysis. Trian station is located at 106°59'08" E and 11°06'16" N and
it is at the confluence of two Dongnai and Langa rivers. Numerous researchers suggested that
the length of data record should be at least 30 years for extreme value modelling (Bonnin et al.,
2006, Jeong et al., 2014, Kioutsioukis et al., 2010, Yilmaz et al., 2017). Further, there are
several multivariate frequency analysis studies using observed data of less than 35 years of data
(Aissia et al., 2012, Zhang and Singh, 2006). Moreover, several studies suggested that the main
advantage of the POT approach, which is for smaller sample sizes, is also used to increase the

sample sizes (Begueria, 2005, Bezak et al., 2014, Lang. et al., 1999).

Based on the 35 years of observed data, the sample size of the flood variables in this

study is 68. This meets the minimum requirement of the sample size (n=30) for the extreme
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value modelling. Therefore, the length of the observed data is significant for the analysis of the
tail dependence. The mean of daily discharge of Trian stream gauge from 1978 to 2013 is 527.4
m?/s and the observed maximum daily discharge is 3,910 m?/s. The daily time series of river

discharge data are collected from the NHMS of Vietnam.
5.3 Methodology

The methodology used in this study is shown in the form of a flowchart (Fig. 5.2).
Firstly, the identification of flood characteristics (i.e., peak, volume and duration) from the
observed daily discharge time series is carried out. Next is the check whether flood variables
time series are stationary or nonstationary. Tail dependence tests are then performed to diagnose
whether the flood variables have asymptotic dependence or asymptotic independence. Finally,
if the flood variables are having an asymptotic dependence, the extreme value copula is used

for estimation of joint return periods. Otherwise, Gaussian, Frank and Clayton copulas are used.
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Fig. 5.2: Flowchart of methodology
5.3.1 Extracting flood characteristics

AM and POT approaches are widely used to extract flood characteristics. However, AM
cannot consider multiple occurrences of flood events. (Bezak et al., 2014, Lang. et al., 1999).
Unlike the AM, which only extracts one event per year, POT considers a wider range of events
and provides more information than AM. The threshold estimation is the most difficult part in
the POT approach (Lang. et al., 1999, Scarrott and MacDonald, 2012). Threshold choice

involves balancing between bias and variance. Too low a threshold may violate the asymptotic
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basis of the model, leading to bias, while too high a threshold will reduce sample size, leading

to high variance of the parameter estimates (Coles et al., 2001).

There are two common approaches of choosing a threshold, namely, fixed quantile
corresponding to a high non-exceedance probability (95%, 99% or 99.5%) and graphical
method (Vittal et al., 2015). Three different techniques belonging to the graphical method,
namely, the MRL, threshold stability plots and fitting distribution diagnostics (Solari and
Losada, 2012, Thompson et al., 2009) are used in this study to decide the threshold value. In
addition, the lag-autocorrelation plot is used to verify the assumption of the Independence and

Identically Distributed (IID) flood variables (i.e., peak, volume and duration).
5.3.2 Diagnostic test to exanimate nonstationary

The extreme events, particularly for flood events, are intensifying due to global climate
change, urbanization and anthropogenic activities. Therefore, the flood time series can have a
nonstationary component. The flood frequency analysis which considers time series as
stationary may lead to misleading results in estimation flood quantile. Checking nonstationarity
of flood series in flood frequency analysis should be considered as an important initial step
(Vittal et al., 2015). Trend analysis is normally used to detect nonstationarity in the flood
variables. The Mann-Kendall (M-K) test is a non-parametric statistical test which is used to
examine trends in time series and has been widely applied in the hydrological analysis (Lima

etal., 2015, Sun et al., 2015, Villarini et al., 2009).

5.3.3 Tail dependent test

Coles et al. (1999) proposed two measures of extreme dependence ( and y) for bivariate

random variables, as shown in Eq. (5.1) and Eq. (5.2).

_ logP(F1(x)<u,F>(y)<u)

X=2 logu (5.1)
- 2log(1—u) _
X= logP(F; (x)>u,F,(y)>u) (5.2)

With a pair of complementary measure (y,}), a summary of multivariate extremal

dependence can be determined.
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v' If y=1 and 0<y<lI, the variables are asymptotically dependent and y is a measure of

strength of dependence within the class of asymptotic dependence distribution

v' If -1<y<I and =0, the variables are asymptotically independent and y is a measure of

strength of dependence within the class of asymptotically independence distribution.

There are still difficult to detect differentiate between asymptotic dependence and
dependence in many cases using these extremal dependences. Furthermore, non-parametric tail
dependence estimator mentioned earlier exhibit very poor performance when the underlying
upper tail dependence coefficient is null. Therefore, the tail dependence test is used in this study.

A description of tail dependence test is presented in the following sections.

The coefficient of tail dependence (1) introduced by Ledford and Tawn (1996) is used
to detect asymptotically dependent and independent variables. They assumed that the joint
survivor function of the pair (X, Y) with unit Frechet distribution is a regularly varying function,

as shown in Eq. (5.3).
P(X>z, Y>z)=£(z)z'" (5.3)
where £(z) is a slowly varying function and 1 is the coefficient of tail dependence.

v If n=1 and Zh_)rglo £ (z) = c for some 0<c<l1, the variables are asymptotically dependent

with a degree ¢
v 1If n<l, the variables are asymptotically independent.

The coefficient of tail dependence can be estimated by univariate theory because the
joint survivor function can be reduced to univariate survivor function T=min (X, Y). The
coefficient of tail dependence will be equal to shape parameter if T is fitted with GPD. The
Log-likelihood Ratio (LLHR) test can be used to test for asymptotic dependence against the
asymptotic independence. The null hypothesis of asymptotic dependence is tested comparing
the log-likelihood of asymptotic dependence and asymptotic independence. Under the null
hypothesis n=1 versus the alternative n<1, the LLHR test statistic, based on twice the difference
between the log-likelithood of asymptotic dependence and asymptotic independence, has

approximate Chi-square distribution with certain degrees of freedom. The significant of
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asymptotic independence can be measured from the p-value of Chi-square distribution.

One of the most well-known approaches was proposed by Falk and Michel (2006) for
testing tail dependence. Their test is based on the following theorem Eq. (5.4). With c—0, we

have uniformly for t € [0,1]:

F(t) = t?;there is no tail independence

F(t) = ¢; else (54)

P(X+Y >ct |X+Y>c)={
Using this theorem, Falk and Michel (2006) proposed four different tests for tail
dependence namely Neymann-Pearson, Fisher’s, Kolmogorov-Smirnov and Chi square tests.
Frick et al. (2007) proposed a generalization of Falk and Michel’s test, based on a second-order
differential expansion of the spectral decomposition of the non-degenerate distribution

function. This test is based on the following theorem Eq. (5.5).

F(t) = t1*P; tail independence

F(t) =t tail dependence (53)

P(X+Y>ctIX+Y>c)={

where: ¢—0 is a threshold, p>0 is independence measure and F(t) is the standard uniform
distribution with t € [0,1]. According to the central limit theorem, the p-values of the optimal
test is given by Eq. (5.6).

pZQD(Z?;l logC_i+m) (5.6)

ml/2
where C; =(Xi+Yi)/c, i=1,...,m and @ is the standard normal density distribution function.

In the LLHR test, threshold in GPD is selected based on the threshold stability plot.
Frick et al. (2007) suggested the tail dependence test is quite sensitive to the threshold c. Hence,
the threshold is chosen so that the number of exceedance is about 10% to 15% of the total

number of observed data.
5.3.4 Selection of marginal distribution

The work by Vittal et al. (2015) suggested that it is important to use both nonparametric
and parametric distributions for a selection of the appropriate marginal distributions for each

flood characteristic. There are more than one parametric distributions that can be fitted to the
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sample data. Hence, identifying the best fitting distribution to the sample need to be tested with
several distributions rather than assuming that the particular distribution will be sufficient to
provide the necessary insight for flood variables (Lang. et al., 1999, Nguyen et al., 2017, Vittal
etal., 2015). The LN, P3, LP3, GPD, Gumbel, and GEV distributions which have been widely
used for modelling extreme values (Bezak et al., 2014, Lang. et al., 1999, Saf, 2009a, Salas Jose
et al., 2013) are used.

For nonparametric distribution, kernel density estimator with Epanechnikov, Gaussian,
triangular and rectangular kernel functions are used in this study. Both parametric and
nonparametric distributions are used to find the best marginal distribution for each flood

variable in this study.
5.3.5 Extreme value copula and no tail dependence copula functions

A copula is defined as a joint distribution function of standard uniform random variables.
If F(x,y) is any continuous bivariate distribution function with marginal distribution Fi(x) and

F2(y), the copula function can be express as Eq. (5.7)

F(x,y)=C[ Fi(x), Fa(y)] (5.7)

If the F1(x) and F2(y) are continuous, the copula function C is unique and can be written

as Eq. (5.8)
C(u,0)=F[ F{ ' (u), F3%(v)] (5.8)

where the quantile function F;! and F;?are defined by F;*(u)=inf[x: Fi(x)>u] and

F; 1 (v)=inflx: Fa(y)> v] respectively.

There are several copula families and among them, the most well-known are the
elliptical, Archimedean and extreme values copulas. Elliptical copulas come from elliptical
distributions. The most popular copula belonging to this family is Gaussian copula. This copula
represents the dependence structure of the data via a correlation matrix in which the elements
describe the dependence between pairs of variables. Archimedean copula is widely used
because of entailing a broad variety of dependence structure and being easily formulated via

generator function. Clayton and Frank copulas are used extensions and recommended for
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performing hydrological analysis.

Extreme value copulas are more popular for hydrological application, particularly for
extreme events. Indeed, the extreme value copulas with upper tail dependence are considered
as appropriate models for the dependence structure for extreme events. Extreme value copulas
can be used as a convenient choice in modelling data with positive correlation and arise
naturally in the domain of extreme events (Gudendorf and Segers, 2011, Mirabbasi et al., 2012).
The families of extreme value copulas considered in this study include: Gumbel-Hougaard,
Husler-Reiss and Galambos. Besides, Gaussian, Frank and Clayton copulas are also used in
circumstances where diagnostic checks suggest data to be asymptotically independent. More
details and descriptions can be found in Gudendorf and Segers (2011), Salvadori et al. (2013)
and Poulin et al. (2007). The relevant expression for their dependence function and tail

dependence coefficient are presented in Table. 5.1.

Table 5.1: Definition and upper tail dependence coefficient of the copula used in this study

Copula Co(u,v) Ay
Gumbel C(u,v)=exp[-(In(u))®+-(In(v))®]"® 2-21/0
Galambos C(u,u)= uvexp[-(In(u))®+-(In(v))°7° 2-20(1/0)
Husler-Reiss ¢ (u,v)=exp(@®[: + %Gln(%)]— 0O + %eln(g)]) 2219
Gaussian C(u,u)=@[¢" ()6 (V)] 0

Clayton C(u,u)=(u®+u®-1)1/® 0

—-0u_ —-0v_
Frank C (u,u)=-% In[1 +(e 1e)E(ee 1)] 0

where ¢, @ are the cumulative density function of a standard normal and multivariate normal

distribution with mean 0 and covariance Y respectively, u=In(l) and v=In(0).

Several methods have been proposed to estimate the parameter of the copulas. The
Maximum Pseudo-likelihood (MPL) method is a modification of the classical maximum
likelihood method where the empirical marginal distribution are used. This method can be
applied to both one and multi parameters copulas. The MPL method consists of transforming

the marginal variables into uniformly distributed vectors using its empirical distribution
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function. Then the copula parameters are estimated using maximization of pseudo log-

likelihood function. The form of the log-likelihood function is presented in Eq. (5.9).

lg = X1 log[ce{Fl(Xi,l)'FZ(Xi,Z)}] (5.9)

where Fi(x) =Ri/(n+1) and F2(x) = Si/(n+1) are non-parametric marginal probability solely

based on rank.

Genest et al. (1995) and Cherubini et al. (2004) suggested the MPL and canonical
maximum likelihood approaches in case of an unknown marginal distribution to estimate
copula parameters. In order to allow marginal distribution to be free and not restricted by
parametric families, the MPL method is suggested because the marginal distribution is
considered as the empirical distribution function. Furthermore, Kim et al. (2007), Genest and
Favre (2007) and Kojadinovic and Yan (2010a) showed that MPL is the best choice of

estimating copula parameters. Therefore, MPL is used in this study.

Selection of appropriate copula is a complex process and need to be considered through
several different measures. Only one measure can fail to identify the suitable copulas that can
lead to an inappropriate the joint probability of flood characteristics (Fu and Butler, 2014).
There are several different methods to select the best copula, including graphical method, GoF
tests and model selection criteria. The first two methods are used to measure the discrepancy
between the theoretical distribution and empirical distribution, while the model selection
criteria such as AIC, which penalize the minimized negative log-likelihood function for the
number of parameters estimated, would be more appropriate than repeated tests of significance

whose outcomes lose their interpretability (Katz, 2013).

In the graphical method, the theoretical non-exceedance joint probabilities obtained
using copula functions are compared to the empirical non-exceedance joint probabilities which
can be estimated by Gringorten plotting position formula Eq. (5.10).

Shes Doy nimy=0.44
Fyy(x,y1) = P(X S x;, Y S ;) = =meti=iim (5.10)

where nmi is the number of pairs (Xj, yj) counted as xj<xiand yj<yi;ij=1,...,N; I<j<iand N

is the sample size. Besides the graphical method, GoF test is also used to test the adequacy of
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the hypothesized copulas. Genest et al. (2009) reviewed and compared several GoF tests for
copula. They proved that Cramer-von Mises (S}) test comparing the empirical and theoretical
copulas is the best GoF test. However, there is no difference between extreme value copulas in
this test. In order to overcome this shortcoming, the test based on a Cramer-von Mises (S)
statistic, measuring the distance between parametric and non-parametric estimator of the

Pickands dependence function, was introduced by Genest et al. (2011). This test is defined in

Eq. (5.11).
SH = [ nlA, () — Agn(DI2dt (5.11)

where A,(t) and Ay,(t) are the non-parametric and parametric estimator of Pickands

dependence function A. Based on the objective and availability data in this study, S¥/ is used to

find out the appropriate copula functions.
5.3.6 Joint return period estimation

The return periods of hydrological extreme events are normally associated with a certain
exceedance probability. Several theoretical bivariate return periods have been defined in the
literature. The joint return period (OR) in which either x or y have exceedance (i.e., X>x or

Y>y), which is denoted by T{F. The joint return period (AND) in which both x and y are

exceeded (i.e., X>x and Y>y), and is denoted by T¢p°. These two types of joint return period

are given by Eqgs. (5.12) and (5.13).

AND _ HT _ HUr
TX’Y © P(X2xandyzy) 1-Fx(x)—Fy(y)+Fxy(x,y) (5.12)
TR = = T (5.13)

P(Xzx orYzy) - 1-Fxy(x,y)
where, pr is the mean inter-arrival time (years).

The above equations are used for both AM and POT approaches. In the case of block
maxima, pr is equal to 1.0 (Shiau, 2003, Vittal et al., 2015). Since POT is also applied in this

study, the mean inter-arrival time is determined based on the observed flood events.
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5.4 Results and Discussion

5.4.1 Identification of flood characteristics

The POT approach is used to extract flood characteristics in this study. The threshold is
selected based on the three different approaches, namely, the MRL, threshold stability plots and
fitting distribution diagnostics. Fig. 5.3a shows the MRL plot for observed daily discharge for
Trian. It is clear that after the threshold value of u=950 m?/s, the MRL is consistent with a
straight line. Furthermore, with the threshold of u=950 m>/s, the shape and modified scale
parameters begin to reach a plateau (Fig. 5.3b). Besides, the diagnostic plots (i.e., P-P and Q-
Q) for the fitted P3 distribution with the threshold (950 m*/s) after declustering (r=10 days) are

shown in Fig. 5.3c and they show a good agreement between the model and empirical values.

72



8 .
@
o
B =
-1
g § -
i}
[ =4
ie
o -
o
8 -
L) ) 1 L) ]
0 1000 2000 2000 4000
Threshold
. (@
[}
-4 =
» B3 1-%_1,
- ———
] e p— p—p—— }— |} —1
E
g e T T T T T T T T
800 200 1000 1100 1200 1200 1400 1500
Threshold
.
2 97
73 et
» g 3 4__—f-~—"'+
o T T T T T T T T
800 200 1000 1100 1200 1200 1400 1500
Threshold
Probability -Probability Quantile-Quantile

1.0

Ermpincal
1000 2000 3000 4000
[
o
o
o

Erpirical
00 02 04 06 08
|

)
00 02 04 06 08 1.0 1000

T T T
2000 3000 4000

Model Model

- ©

Fig. 5.3: (a) Mean residual life plot; (b) threshold stability plots; (c) diagnostic plots for
observed daily flood data
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Fig. 5.4 shows that there is insignificant autocorrelation for all flood characteristics. The
IID flood variables assumption is still maintained based on this threshold. Therefore, threshold
value of u=950 m?/s is a suitable threshold for Trian. This threshold is used for all future flood
characteristics. Flood duration and volume are also determined based on this threshold. The M-
K test for peak, volume and duration of observed data showed that there is no significant trend
for any of the flood variables observed at the Trian gauge. It indicates that the flood events in
the present data are still stationary. Therefore, stationary flood frequency analysis is used to

estimate the joint return periods.
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Fig. 5.4: The autocorrelation plot up to lag ten for all the flood variables
5.4.2 Tail independence test

The pair of extremal measures (), ¥) is used to detect whether the flood variables have
asymptotically dependent or not. Nevertheless, in this study, the value of y (u) is nearly equal
to 0.5. It means that the pair of flood characteristics has asymptotic dependence for all u.
However, the value of ¥ shows that the pair of flood characteristics is independent for many
cases. For example, Fig. 5.5 shows the Chi and Chi bar plot for the pair of observed flood peak
and volume. Therefore, it is difficult to identify between the asymptotically dependence and

independence based on these plots.
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Fig. 5.5: Extremal measures for dependence of observed flood peak and volume

LLHR and TailDep tests are used to decide asymptotically (in)dependent variables in
case of the extremal measures do not work. The results from two tests are nearly similar. Table
5.2 shows the p-value of LLHR and tail dependence tests for all pair of observed flood variables.

Based on extremal measures and these tests, asymptotically dependence and independence are

identified.
Table 5.2: Likelihood ratio and tail dependence test p-value
p-value
fests DV DP PV
LLH 0.04 0.01 0.01
TailDep 0.3 0.02 0.04
Diagnostic Dep InDep InDep

5.4.3 Marginal distribution of flood variables

To determine the most appropriate marginal distribution for all flood characteristics,
GEV, Gumbel, LN, P3, GPD and LP3 distributions belonging to the parametric distribution and
Epanechnikov, Gaussian, triangular and rectangular kernel functions belonging to
nonparametric distribution are used in this study. The maximum likelihood estimation is used
to estimate the parameters of the distributions. The selection of the appropriate distribution is
based on the AIC value. The selected marginal distributions are presented in Table 5.3, which

provides a comparison of performances for all several marginal distributions. The results
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indicate that LP3 distribution is most appropriate for modelling flood volume and duration

while P3 is found to be the best for flood peak.

Table 5.3: AIC values for all marginal distributions

Flood Parametric
variable LN Gumbel GEV P3 LP3 GPD
\% 1,309 1,318 1,317 1,297 1,285
P 1,066 1,066 1,068 1,061 1,067 1,068
D 654.9 656.0 658.0 641.7 628.9
Flood Nonparametric
variable Gaussian kernel Triangular kernel Rectangular Epanechnikov
kernel kernel
\% 1,310 1,311 1,317 1,313
P 1,074 1,074 1,092 1,074
D 634.8 644.2 644.5 647.0

Note: V is volume (10° m%/s), P is peak (m*/s) and D is duration (days).

5.4.4 Copula selection

Fig. 5.6 shows the theoretical and empirical joint non-exceedance probabilities of

asymptotic tail independence data. It is observed that Frank and Gaussian copulas fit the dataset

which is diagnosed as asymptotic independence better than extreme value copulas.

Additionally, AIC value and GoF test also indicated that the copula function that has no tail

dependence may work well when variables are asymptotically independent.
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The joint return period (AND) of observed flood duration and peak pair are estimated
by using the best fitted models of each group copulas. Gumbel-Hougaard copula (extreme value
copulas) and Frank copula (the no tail dependence copulas) are selected to estimate the joint
return period of the observed flood duration and peak pair. Fig. 5.7 shows the comparison of
joint return period curves of the pairs of observed duration and peak which are estimated by
Frank copula (black) and Gumbel copula (blue). This plot indicates that there are huge
differences between two copulas. For lower return period, the two corresponding curves are
very close to each other. However, there are large differences in the central part in the 50-year

and 100-year return periods.

Besides, the shape of the joint return period of each copula has significant differences.
The bound limits shrink significantly for the Gumbel-Hougaard copula while this situation is
not shown by the Frank copula. For example, at 5-year return period, the corresponding bound

for Gumbel-Hougaard copula is wider than that of Frank copula. At return period of 10-year,
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50-year and 100-year, the phenomenon is the opposite and the curve from Gumbel-Hougaard
becomes sharper. This result indicates that choosing inappropriate copula function will lead to
be serious difference the joint return period results. In this study suggest that the copula function
is selected based on the dependence structure of the variables. The result from tail dependence

test may provide useful additional information about the adequacy of the chosen copula

functions.
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Fig. 5.7: Joint return period of the pair of flood peak and volume modelling by Frank and

Gumbel copulas

Based on the above analysis, in this study, three extreme value families of copulas
(Gumbel-Hougaard, Galambos and Husler-Reiss) are chosen to model asymptotically
dependence pair of flood characteristics. Gaussian, Frank and Clayton copulas are used in
modelling asymptotically independence pair of flood characteristics. The dependence

parameters of copulas are estimated using MPL method. The copula dependence parameter,

AIC and GoF statistics are given in Table 5.4.
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Table 5.4: Copula dependence parameters, AIC and corresponding GoF statistics

DV
Copulas Parameter AIC S p-value
Gumbel- 6.007 -165.01 0.00579 0.003
Hougaard
Galambos 5.268 -162.4 0.00583 0.002
Husler-Reiss 4.377 -137.98 0.00784 0.007
DP
Copulas Parameter AIC S p-value
Gaussian 0.785 -57.509 0.114 0.065
Clayton 1.774 -47.817 0.504 0.001
Frank 8.455 -67.695 0.063 0.285
Copulas PV
Parameter AIC S p-value
Gaussian 0.835 -73.575 0.119 0.05
Clayton 2.066 -55.25 0.477 0.0002
Frank 10.396 -86.929 0.058 0.335

Fig. 5.8a shows the P-P plot of model and empirical joint non-exceedance probabilities
for observed flood duration and volume. This plot indicates that extreme value copulas
(Gumbel-Hougaard, Galambos, Husler-Reiss) give the best fit to the dataset. However,
identifying the differences among three copula functions is difficult. Therefore, AIC and GoF
test are used to choose the best copula function. For example, the AIC value (-165.013) and
statistical test value (0.00579) are shown in Table 5.3, which indicate that Gumbel-Hougaard

copula provides the best performance for the pair of observed flood duration and volume.

For asymptotically independence case, Fig. 5.8b shows the P-P plot of the model and
empirical joint non-exceedance probabilities for the pair of observed flood duration and peak.
It is clear that all copulas (Gaussian, Clayton and Frank) give a good fit to the data. However,
Frank copula fits better than other copulas. Similarly, the best fit copula using AIC (-67.695)
and statistical test values (0.285) is Frank copula (Table 5.3). All measures indicate that Frank
copula is the best fit to the data sample (observed flood duration and peak). The best copula
based on AIC value and GoF test is used to estimate the joint return period for modelling the

pair of flood characteristics.
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5.4.5 Joint return period estimation

The joint return periods (AND and OR) of flood peak and volume for 5, 10, 50, 75 and
100-year return periods are shown in the Fig. 5.9. For example, the flood peak (m?/s)-volume
(10° m®) pairs, (4,011-11,020), (4,119-11,432) and (4,297-11,674) are the joint return period
(OR) of 50, 75 and 100-year respectively. The results from this figure also indicate that the joint
return periods (AND) provide lower flood variable quantile than joint return periods (OR) for
all return periods. Several combinations of flood peak and volume as well as other flood
characteristics in the same return period also are obtained through bivariate frequency analysis.
These results provide more possible choices for a decision maker to select the flood event for
structure designing and water resources planning as well as assessing the variability of the

obtained flood map inundation that cannot be achieved through univariate frequency analysis.
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5.5 Summary and Conclusions

The main emphasis of this study is on the tail dependence test before the selection of
copula function which best fits the data sample. Indeed, extremal measurement is useful
approach, but in many cases, it cannot detect whether data is asymptotically dependence or not.
LLHR and tail dependence tests are used to identify the asymptotically (in)dependence of
observed flood variables. Two pairs of flood characteristics (i.e., peak-volume and duration-
peak) have asymptotically independence while flood duration and volume pair has
asymptotically dependence in this study. Three extreme value families of copula, namely,
Gumbel-Hougaard, Galambos and Husler-Reiss are evaluated to model asymptotically

dependence pair of flood characteristics.

The extreme value copulas with upper tail dependence have proved that they are
appropriate models for the dependence structure of the flood characteristics. However,
identifying the differences among three copula functions is difficult. Therefore, the test based
on a Cramer-von Mises (Sill ) statistic measuring the distance between parametric and non-
parametric estimator of the Pickands dependence function is used and it is proved that it is

highly efficiency for extreme value copula.

Similarly, Gaussian, Frank and Clayton copulas are the appropriate copula models in
case of variables which are diagnosed as asymptotic independence. Then, the best fit copula
models are used to calculate the joint return periods of flood characteristics. These results
provide more possible choices for decision maker to select the flood event for design of
hydraulic structures and water resources planning as well as assessing the variability of the
obtained flood map inundation in the present situation that cannot achieve through univariate

frequency analysis.
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Chapter 6

Flood Hazard in Saigon-Dongnai River Basin Under

Climate Change Context

6.1 Introduction

A warmer climate is already causing extreme weather events that affect the lives of
million people around the word (Schiermeier, 2011). Specifically, extreme climate events seem
to occur more frequently in different parts and seasons in Asia in the future, particularly in East
Asia (IPCC, 2014). Brunner et al. (2017) indicated that climate change has an impact not only
on the peak but also on the volume and hydrograph shape of the flood. Hence, assessment of
climate change impacts on flood should consider all flood characteristics (i.e., peak, volume
and duration) than only the flood peak. Therefore, in order to make appropriate adaptation
strategies, decisions and policies under climate change context, it is important to understand the

change of the flood characteristics and potential flood risk in the river basin scale.
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Vietnam is one of the countries that is highly influenced by climate change (Rutten et
al., 2014, Trinh et al., 2013). The Saigon-Dongnai River basin plays an important role in social
and economic development in the South of Vietnam. However, this basin also is facing many
problems related to climate change (Noi and Nitivattananon, 2015). Indeed, this basin is one of
the most susceptible regions to flood disasters. For example, 971,000 people, which account
for nearly 12% of Ho Chi Minh City’s (HCMC) population have been affected by flooding and
154 communes and wards in HCMC have been covered with flood waters (ADB, 2010). Several
studies indicated that the common causes of flooding in this region are high tides, extreme
rainfall, reservoir releases from the upstream of Saigon-Dongnai River (i.e., Trian, Dautieng
and Phuochoa) and strong urbanization (ADB, 2010, Lasage et al., 2014, Storch and Downes,
2011, World Bank, 2010). Trian reservoir, located in the upper reach of the Saigon-Dongnai
River basin, is one of the largest sub-basins. Therefore, the impact of this reservoir on flood
risk in the downstream is greater than other reservoirs. It is, hence, necessary to evaluate the
potential flood risk for this region to provide the information on present and future flood hazard

(climate change condition) for establishing a flood risk mitigation policy.

There are several studies related the assessing the impact climate change on floods. Most
of the flood frequency analysis studies only focus on the flood peak (Camici et al., 2014, Dobler
etal., 2012, Qin and Lu, 2014). However, flood is a complex phenomenon defined by the strong
correlation of its characteristics such as peak, duration and volume. If univariate frequency
analysis is used to assess the behaviour of each flood characteristics, it will lead to over or
underestimation of associated flood risk. In addition, in order to develop flood hazard maps,
flood peak alone cannot give a reliable evaluation of hazard. Therefore, it is also important to
consider simultaneously flood peak along with other flood characteristics (Aronica et al., 2012a,

Candela et al., 2014).

The bivariate flood frequency is an important extension for climate change impact
studies (Brunner et al., 2017). Copula approach is a very versatile approach for modelling the
joint probability in a more realistic way than other approaches. Copulas can model the
dependence structure independently of the marginal distribution and allow modelling different
marginal distributions (Dupuis, 2007, Favre et al., 2004, Zhang and Singh, 2007). Hence,
copula approach is used in this study to assess the impact of climate change on flood

characteristics. Besides, Karamouz et al. (2011) suggested that floodplain areas determination
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is one of the important parts of flood risk assessment which has a significant implication on the
planning of social and economic development. Therefore, the joint return period of flood peak
and volume, which are obtained from bivariate frequency analysis, is used as the input data for

the hydrodynamic model to estimate flood hazard mapping at river basin scale.

Grimaldi et al. (2013) indicated that there are three main issues in creating the flood
hazard maps using hydrodynamic models, namely the resolution of topography data, hydraulic
model selection and design flood hydrograph estimating. The difference between this study and
other studies related to flood hazards under climate change condition is that above three issues

will be applied to improve the accuracy of the flood hazard mapping estimation.

The estimation of flood hydrograph is truly important in defining the inundation areas
which are used to determine the flood hazard mapping. Angela and Giuseppe (2017) suggested
that using the same joint probabilities of occurrence of flood peak and volume in developing
the design flood hydrograph will significantly enhance the reliability of flood hazard mapping
(Angela and Giuseppe, 2017). Hence, in order to improve the accuracy of flood hazard

mapping, it is necessary to estimate the design flood hydrographs under climate change context.

Deterministic approach has been extensively used to develop flood hazard mappings. A
simple form of deterministic approach is that the design flood hydrograph is used as input data
for 1D hydraulic model to estimate the water level and then water depth is obtained by
extracting the water level with a digital terrain (Merwade et al., 2008). However, flood events
have complex spatial dynamics caused by the interaction between channel and floodplain flows
and the detailed topography of floodplain areas (Stephens et al., 2012). The advanced
deterministic approach, which consists of a combination of a physically-based 1D and 2D
hydraulic models, allows simulating accurately the spatial and temporal dynamics of the flood

process (Di Baldassarre et al., 2009, Prestininzi et al., 2011, Zhou et al., 2012).

The quality and the accuracy of the inundation maps are highly depended on the quality
of topography data which are used to extract cross-section for 1D hydraulic model or surface
elevation for 2D hydraulic model. In fact, in most of the studies, cross-sections have been
extracted from DEM (Merwade et al., 2008). However, the cross-sections obtained from these
sources are often unrealistic because of their lack of adequate horizontal resolution and poor

vertical accuracy (Gichamo et al., 2012, Vaze et al., 2010). Similarly, LiDAR data cannot
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provide a reliable measurement for river cross-section because LiDAR systems use near
infrared laser that cannot penetrate water (Xu et al., 2010). In order to overcome this issue, all
the surveyed cross-sections which are used as input in 1D hydraulic model are applied in this

study.

In case of 2D hydraulic model, information about mesh resolution and topographic detail
can decide the accuracy of model performance result (Dottori et al., 2013). Fine resolution mesh
is necessary for capturing intricate flow paths and connectivity in urban areas (Yin et al., 2016).
However, it is difficult to model large areas with fine resolution mesh because of the limitation
of model preparation and computational intensity (Schubert and Sanders, 2012, Shen et al.,
2015, Teng et al., 2017, Zhou et al., 2012). If the selection of mesh resolution is carefully
considered, the result of the model will be significantly improved. Hence, the multi-scale
modelling approach, where fine resolution is applied for channel or raised embankment areas
and coarser resolution, is developed for uniform topographic height, may be an efficient
solution for this situation. Surface elevations which are used as input in 2D hydraulic model are
obtained using the multi-scale mesh along with detailed topography data. The detailed
topography is derived from Im resolution LiDAR (HCMC area) and 10m resolution DEM

(remaining regions).

Inundation duration is an important parameter for flood risk assessment, mainly in the
evaluation of transport blockades and access to emergency services. They have not been
considered in many flood hazard studies due to the cost involved in its estimation. However,
with the help of latest advances in flood modelling techniques such as flexible meshes
generation and the advantages of coupled hydrodynamic model, in this study, the inundation
duration is also determined. More importantly, with the increases of land use and climate
changes that threaten more extreme flooding, developing the computationally efficient model
is extremely needed. In fact, the need to developing efficient model flooding is growing in
several fields such as flood risk management, real-time flood forecasting system, and flood

evacuation planning.

This study aims to address the following issues: (i) estimation of the flood design
hydrographs using copula theory of flood variables (i.e., volume and peak) and shapes through

historical observed flood hydrograph combined with cluster analysis; (ii) developing the
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computationally efficient flood model using advanced deterministic approach based on couple
1D-2D hydraulic model and high quality of topography data; (iii) creation of flood hazard maps,
which is quantified by considering the flood depth and velocity in combination; and (iv)

assessing flood risk changes under climate change context.

6.2 Study Area and Data

The Saigon-Dongnai river basin is located in the southern part of Vietnam within
latitudes 10°30°N-13°00°N and longtitudes105°15’E-109°30°E. This basin has very significant
impacts on the socio-economic development of south of Vietnam. The surface area of this basin
is 14,800 km? (Trian catchment) and 40,680 km? (Sea). This basin has four major rivers, namely
Dongnai (mainstream), Be, Saigon as major tributaries and Vamcodong rivers that join the
Dongnai river before flowing into the sea (Ringler et al., 2012). The lower part of Saigon-
Dongnai river basin is a lowland area which is covered between downstream of Dautieng,

Phuochoa and Trian reservoirs and coastal line as shown in Fig. 6.1.
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Fig. 6.1 The downstream of Trian catchment

The climate of this basin has been divided into two distinct seasons, namely, rainy (April
to November) and dry (December to March) seasons. The climate is controlled by the North-
East and South-West monsoons. 90% of rainfall occurs in the seven months of rainy season.
The annual average rainfall and temperature are about 2,400 mm and 25.9°C respectively. The
hydrological regime of Saigon-Dongnai River basin is influenced by the semi-diurnal tide,

precipitation and upstream reservoir releases.

6.3 Methodology

The methodology used in this study is shown in the flowchart (Fig. 6.2). Two scenarios
(i.e., RCP 4.5 and 8.5) from five RCMs, namely, HadGEM3-RA, SNU-MMS5, SNU-WRF,
RegCM4 and YSU-RSM belonging to the CORDEX-EA projects are used. Climate outputs in
the future period (2020-2045) obtained from these RCMs are downscaled with respect to the
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observed data. And then, it is used as the input for the physically-based hydrological model to
simulate the future streamflow data. The present and future discharge time series are used to
extract the flood characteristics. Flood design hydrographs are obtained using bivariate
frequency analysis and shape through observed historical flood events and cluster analysis.
Finally, flood design hydrographs are used as input to the hydraulic models to develop flood

hazard maps for present and future scenarios.

Hydro-climate data 1D hydraulic model 2D hydraulic model

Y Y . 4
e River cross section
Bivariate frequency e Observed

analysis hydrological data
* Manning value

* Floodplain
topography Flood hazard analysis
e Manning value

A A h 4

1D-2D hydraulic
Flood design |, Calibrated model nw(lcllmg for 100-year
hydrographs return period present and
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Fig. 6.2: Framework of the methodology
6.3.1 Extracting flood characteristics

AM and POT approaches are widely used to extract flood characteristics. However,
block maxima cannot consider multiple occurrences of flood events. Unlike the AM, which
extracts only one event per year, POT considers a wider range of events and provides more
information than block maxima. Further, several studies suggested the main advantage of using
the POT approach for smaller sample sizes (Begueria, 2005, Bezak et al., 2014). Therefore,
POT is used to extract the present and future flood characteristics in this study. The lag-
autocorrelation plot is also used to check the assumption of IID flood variables (i.e., peak,

volume and duration).
6.3.2 Bivariate frequency analysis

Unlike traditional multivariate parametric distribution, in copula approach, the

dependence structure is independently modelled with the marginal distributions which allow
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for multivariate random events which are modelled using several different marginal
distributions. Several researchers have used copula to investigate the bivariate frequency
analysis (Dung et al., 2015, Reddy and Ganguli, 2012, Sraj et al., 2015). The most important
step in the modelling process using copula approach is the selection of copula function which
best fits the data sample (Favre et al., 2004). Dupuis (2007) and Poulin et al. (2007) suggested
that copulas should be chosen based on several classes of copulas and several degrees of tail

dependence.

To describe dependence in multivariate extreme values, there are two possible situations,
namely, asymptotic dependence or asymptotic independence (Coles et al., 1999).
Determination of whether the variables have asymptotic dependence or asymptotic
independence is very important in multivariate extreme analysis. In fact, in situations where
diagnostic checks suggest data to be asymptotically independence, modelling with the extreme
value copulas is likely to lead to misleading results (Coles et al., 2001, Ledford and Tawn,
1996). Therefore, copulas are chosen based on the results of the tail dependence tests. As
presented in Chapter 4, the LLHR test based on the difference between the log-likelihood of
asymptotic dependence and asymptotic independence and tail dependence test introduced by
Frick et al. (2007), is used to determine whether the variables have asymptotic dependence or

asymptotic independence.

Extreme value copulas can be a suitable selection in modelling data with positive
correlation and arise naturally in the domain of extreme events (Gudendorf and Segers, 2011,
Mirabbasi et al., 2012). In addition, numerous recent studies indicated that Gumbel-Hougaard
copula, belonging to extreme value copulas, can work well when flood variables are
diagnosticated as asymptotical dependence (Dung et al., 2015, Karmakar and Simonovic, 2009,

Poulin et al., 2007, Zhang and Singh, 2006).

Frank and Clayton copulas, belonging to the Archimedean family, have been widely
used in hydrologic analysis because it can model both negative and positive associated
variables. Besides, Frank and Clayton copulas, which have zero dependencies in both tails, may
be suitable in case of the nonexistence of tail dependence (Dung et al., 2015, Poulin et al., 2007,
Sraj et al., 2015). Further, Gaussian copula, which belongs to the family of elliptical, is

characterized by correlation matrix and generates a wider range of dependence behaviour
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(Bortot et al., 2000). Renard and Lang (2007) showed that Gaussian copula can be useful in
modelling the dependence structure in the hydrological application because of its simplicity.
Therefore, Clayton, Frank and Gaussian copulas are used to model the dependence structure

where pairs of flood characteristics are diagnosed as asymptotic independence.

Several distributions which have been widely used for modelling extreme values (i.e.,
LN, P3, LP3, Gumbel, GPD and GEV) are used in this study to identify the best fitting
distribution to the flood variables (Bezak et al., 2014, Lang. et al., 1999, Saf, 2009a, Salas et
al., 2012). In order to choose the appropriate copula, AIC and test introduced by Genest et al.
(2011) based on a Cramer-von Mises (Sill ) statistic measuring the distance between parametric

and non-parametric estimator of the Pickands dependence function are used in this research.

Another important step in bivariate frequency analysis is the selection of the appropriate
return period. The joint return period called OR (X>x or Y>y) and AND (X>x and Y>y) have
been widely used (Shiau, 2003, Vittal et al., 2015). However, in term of flood hazard evaluation,
flooding can occur when only flood peak or volume is exceeded (Angela and Giuseppe, 2017).

Hence, OR joint return period is used to obtain the flood design hydrograph.
6.3.3 Design flood hydrograph

For developing the design flood hydrograph, in addition to the determination of the value
of flood characteristics pair (i.e., flood peak and volume) characterized by the same return
period, it also requires the knowledge of shape to assign them (Aronica et al., 2012a). Cluster
analysis, determined the similarity between different samples using an algorithm to identify the
relationships among attributes, is applied to find the shapes of the hydrograph. Hierarchical
Cluster Analysis (HCA) calculated the distances between all samples using Euclidean or
Manhattan distance and is the most common approach in which cluster can be formed (Berrueta
et al., 2007, Patras et al., 2011). There are several methods to define the distance between two
groups, namely single, complete, centroid and Ward’s method. However, Ward’s method is
widely used in the hydrological analysis (Angela and Giuseppe, 2017, Aronica et al., 2012a).
In the Ward’s method, the distance between two groups is defined as minimizing the increase

in sum of squared errors of the distance of any two clusters.
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6.3.4 Coupled hydrodynamic modelling

Flood models can be categorized into several types depending upon their data
requirements, level of complexity of the underlying equation and the resolution. Using 1D
hydraulic model is common practice in determining floodplain area because it is easy to use
and require fewer input data and the simulation results can be quickly obtained (Pappenberger
et al., 2005). 1D models can solve problems of flood flows in open channels with assumptions
that vertical acceleration is not significant and that water level in the channel cross-section is
approximately horizontal are valid. However, problems arise when the channel is embanked
and water levels are different in the floodplain than in the channel and in such situations, 2D
models are needed. 2D numerical models solve full shallow water equations, which are able to
simulate timing and duration of inundation with high accuracy. 2D flood inundation models are
now important parts of flood risk management practice because they are capable of adequately
predicting water depth, velocity and flood risk with high accuracy (Lamb et al., 2009, Teng et
al., 2017). However, 2D has some limitations such as taking a long time to set up and run 2D

model, particularly for the large area.

To overcome these disadvantages of both 1D and 2D numerical models, coupled 1D and
2D flood model are considered as suitable tools to model flood flows, both in channel and
floodplains. The coupled models offer a great advantage for real-time simulation of flood
events. There are several coupled models for simulating the hydrodynamic regime in the river.
SOBEK 1D and 2D and MIKE FLOOD developed by Delft hydraulics and DHI respectively
are widely used in recent years. MIKE FLOOD allows exploiting the best features of both
MIKE 11 and MIKE 21 to simulate flood regime. Furthermore, MIKE FLOOD allows avoiding
many of the limitations of resolution and accuracy encountered when using MIKE 11 or MIKE

21 separately.

In the 2D hydraulic modelling, the accuracy of the model can be associated with the
computation grid resolution. The selection of the resolution of the grid is based on several
factors such as the available of topographic data, the requirement of the minimizing errors in
the schematization of the physical processes. Dottori et al. (2013) defined the coarse resolution
as a mesh of 20m, fine resolution as a mesh between 2 and 5Sm and very fine resolution as a

mesh below 2m in the urban areas. Huthoff et al. (2015) and Chatterjee et al. (2008) suggested
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that 50m resolution of topographic data is sufficient to resolve flood response for non-urban
areas. However, high resolution of computation mesh cannot be feasible for large scale
floodplain areas. Hence, the different mesh resolution corresponding with the quality of
topographic data in hydraulic modelling is applied in this study. A flexible mesh is an advanced
approach in the model discretization of space, and this is carefully constructed to have a fine
resolution around complex areas to reflect huge changes in the topography and coarser
resolution over large areas with a little spatial variance to save computational effort. The

flexible mesh has a great impact on model performance (Teng et al., 2017).

2D flexible mesh are used as an input data for 2D hydrodynamic models because it easily
allows representing the complex geometry associated with the flood ways. It also allows to be
represented a small scale features at a finer resolution and the broader floodplain at a coarser
resolution without resorting to model grid nesting (Mackay et al., 2015). It also allows fully
hydrodynamic with higher order scheme simulations. The floodplain in the lower of Trian
catchment is modelled using flexible mesh. This allowed higher definition meshes to be applied
over known flood runner and flood ways while much coarser meshes were applied to the
broader floodplain where the terrain if more uniform require less detail. The meshes have been
developed to represent the flood ways and broader floodplain, the triangular mesh with various

sizes depend on the level of resolution required.
6.3.5 Flood hazard analysis

Flood hazard maps provide useful information about the flood severity for the decision
maker, planner, and local governor in flood risk management, master planning development
and flood emergency response planning. Flood hazard maps can be drawn using hazard curves
by combining different flood parameters such as flood extent, water depth and flow velocity
with the return period into different hazard classes (Mazzoleni et al., 2014). In the past, flood
hazard maps were generated based on only on inundation depths. From the flood hazard maps
obtained only from flood depth, it was found that it has the potential to reflect the unsafe areas
for people during the extreme events within the floodplain. Ali (2018) used only flood depth to
generate flood hazard maps using the modifications standards of Japan International
Corporation Agency (JICA). Flood hazard also depends on the duration of inundation, the

amount of energy that is contained in the overland flow and the available warning time to
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evacuate the population. Therefore, it is important to identify a technique to generate multiple

parameters flood hazard maps by incorporating all possible hazardous elements of flood events.

Physical damage to properties during a flood event is closely related to the amount of
energy contained in the floodwater. The extent of soil erosion or the displacement of properties
also depends on flood velocity (Tennakoon, 2004). Therefore, the flood hazard should be
obtained using both flood depth and velocity. Further, Luke et al. (2018) suggested that if
multiple flow velocities are incorporated with flood depths, flood hazard maps can be generated

which would be suitable for reflecting of risk for others (i.e., people, car and building).

Australian studies suggested flood hazardous zones, describing by velocity flow and
water depth, defined by velocity multiple by flood depth thresholds (AEMI, 2014). Similarly,
US Department of Land and Soil Conversation classified the flood hazard categories based on
maximum energy of floodwater and the hazard zone is divided into high hazard and low hazard
zones (OEH, 2005). High hazards correspond to possible danger to people, vehicles and
buildings while low hazards correspond to less difficulty in evacuating people and protecting
properties. The classification by the US Department of Land and Soil Conservation is realistic
for urban applications. However, according to this classification, the threshold of 1.2 m flood
depth with 1.4 m/s velocity is classified as high hazard zone. Their hazard category is
inadequate for an area experiencing a heavy flood. Generally, it is reported that flood depth
ranges from as small as 0.3 m though hazardous to children would be within the self-help range

for adults (Mani et al., 2014).

It was, hence, decided to use the flood hazard classification introduced by AEMI (2014)
in this study. In this classification, the flood hazard assessment considering the impact on
people, vehicle and buildings that may occur when floods meet the following conditions: (i)
flood depth is greater than 0.3; (ii) water velocity is greater than 2 m/s and (iii) the product of
these two parameters is greater than 0.3 m?%/s. The flood hazard classifications that relate to
specific thresholds are presented in Table 6.1, which also contains the limits for classification.
The combined effect of two parameters, viz., flood depth and velocity have been considered.
The hazard classification is done on a 6-point scale, H1 to H6 scale, H1 being safe for vehicles,
people and buildings while H6 being unsafe for vehicles, people and all buildings considered

vulnerable to failure.
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Table 6.1: Combined hazard curves-vulnerable thresholds and limits for classification

Limiting Limiting Classification

Hazard Description still water  velocity limit
classification depth V) (DxV)
(D)
m m/s m?/s
Generally safe for a wvehicle, people and 0.3 2 DxV<0.3
H1 buildings
H2 Unsafe for small vehicles 0.5 2 DxV=<0.3
H3 Unsafe for vehicles, children and the elderly 1.2 2 DxV<0.6
H4 Unsafe for vehicles and people 2 2 DxV<0.6
H5 Unsafe for vehicles and people. All building 4 4 Dxv=4

types are vulnerable to structural damage. Some
less robust building types vulnerable to failure

H6 Unsafe for vehicles and people. All building - - DxV>4
types considered vulnerable to failure

Next to the flood depth and velocity, duration of flooding is also an important parameter
in flood risk analysis. The duration of inundation above flood depth threshold is an important
baseline information when considering isolation aspects of emergency management. Mani et
al. (2014) indicated that the flood inundation of 0.3 m for 1 to 2 days duration can cause severe
damage to crop productivity and manufacturing production process. Besides, in order to
maintain or enhance the ecological functioning of floodplain wetlands, it is important to
understand the timing and duration of connectivity to the river channel vary with streamflow
and climate (Karim et al., 2016). Most of the regions in this study area are agricultural land,
wetland and industrial zones, it is, hence, very important to assess the impact of the inundation
duration on the crop productivity, manufacturing production process as well as floodplain

ecosystems.
6.4 Results and Discussion

6.4.1 Bivariate frequency analysis

LLHR and TailDep tests are used to identify the asymptotic dependence and

independence of flood characteristics pairs. The results from two tests are nearly similar. Table
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6.2 shows the p-value of LLHR and tail dependence tests for all pair of observed and future
flood variables. Based on these tests, the asymptotic dependence and independence of present

and a future pair of flood characteristics are shown in Table 6.2.

Table 6.2: p-value of LLHR and TailDep tests

p-value
Scenarios Tests RCP 4.5 RCP 8.5
DV DP PV DV DP PV
LLH 0.04 0.01 0.01
Obs TailDep 0.30 0.02 0.04
Diagnostic Dep InDep InDep
LLH 0.38 0.24 0.07 0.49 0.25 0.20
Had TailDep 1.00 0.12 0.16 1.00 0.11 0.35
Diagnostic Dep Dep Dep Dep Dep Dep
LLH 0.65 0.19 0.20 0.43 0.24 0.73
Reg TailDep 0.56 0.19 0.13 0.51 0.12 1.00
Diagnostic Dep Dep Dep Dep Dep Dep
LLH 0.65 0.16 0.30 0.80 0.60 0.55
YSU TailDep 1.00 0.25 0.33 1.00 0.16 0.31
Diagnostic Dep Dep Dep Dep Dep Dep
LLH 0.38 0.35 0.22 0.50 0.13 0.13
WRF TailDep 1.00 0.88 0.65 1.00 0.16 0.11
Diagnostic Dep Dep Dep Dep Dep Dep
LLH 0.37 0.13 0.13
MM5 TailDep 1.00 0.04 0.04
Diagnostic Dep InDep InDep
LLH 0.88 0.04 0.05 0.23 0.18 0.39
GCM TailDep 1.00 0.08 0.09 1.00 1.00 1.00
Diagnostic Dep InDep Indep Dep Dep Dep

The best marginal distribution for each flood variable is selected based on the minimum
AIC values. Table A. 5 shows the value of AIC for all marginal distributions used for peak,
volume and duration. The result indicates that most scenarios data follow the LP3 and P3
distributions, namely 36.11% and 30.56 % respectively. 16.67 % and 11.11% of the samples fit
the LN and GEV distributions respectively. Only the 5.56 % data follows the Gumbel

distribution.

Based on the result of tail dependence tests, three extreme value families of copulas (i.e.,

Gumbel-Hougaard, Galambos and Husler-Reiss) are chosen to model asymptotical dependence
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pair of flood characteristics. Gaussian, Frank and Clayton copulas are used in modelling

asymptotically independence pair of flood characteristics. The copula dependence parameter,

AIC value and the Cramer-von Mises (S!) statistic and p-value are given in Table A. 6 and

Table A. 7. Based on the AIC value and S/ test results, the most appropriate copulas are selected

to calculate the joint return periods for all pair of flood characteristics.

The values of the pair of flood peak and volume in the same return period can be obtained

through bivariate frequency analysis. For example, the value of flood peak (m?/s)-volume (10°
m?®) pairs in the same joint return period (OR) of 100-year are (5,585-12,918), (6,368-21,987)
and (4,467-27,641) for the present, mean RCP 4.5 and mean RCP 8.5 scenarios respectively

(Table 6.3).

Table 6.3: Flood magnitudes for the same joint return period of 100 years

The same joint return period of 100 years

Scenarios Variables Values Scenarios Variables Values

Peak 5,585 4,690 4,295 Peak 4278 4,034 3,927
Obs Had 85

Volume 12,918 12,990 13,099 Volume 30,557 31,860 35,670

Peak 6,278 4,036 3,875 Peak 7,824 6,962 6,280
Reg 45 GCM_45

Volume 29,187 30,502 34,355 Volume 33,808 35,556 41,003

Peak 6,159 4,053 3,754 Peak 4348 3,484 3,038
YSU 45 Reg 85

Volume 24,343 24,900 25,517 Volume 21,545 22,008 23,093

Peak 6,278 4,308 4,036 Peak 3,300 3,148 2,972
MMS5 45 YSU 85

Volume 20,259 20,333 20,408 Volume 29,495 31,133 38,228

Peak 3,650 3,367 3,367 Peak 5,755 3,449 3,407
WRF 85 WREF 45

Volume 33,616 34,411 37472 Volume 5,897 7,496 10,603

Peak 5,913 3,797 3,608 Peak 6,761 5,696 5,468
Had 45 GCM_85

Volume 18,429 19,275 20,335 Volume 22,994 23,497 24,675

Note: Peak (m?/s) and Volume (10° m?)

From the results, it is indicated that the future flood could have more volume than the

present flood in both scenarios. The future flood peak of mean RCP 4.5 is larger than observed
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flood peak whereas the flood peak of mean RCP 8.5 is smaller than observed flood peak.

Besides, the flood volume of mean RCP 8.5 is largest compared with others.
6.4.2 Flood design hydrograph

In order to find the typical shape of the hydrograph, cluster analysis with Ward method
is used. A visual representation of the distance at which shapes are combined is shown in the
dendrogram (Fig. A. 6). The number of hydrograph clusters should be large enough to describe
the hydrograph variation but small enough to identify the characteristic of hydrograph shapes.
Therefore, three typical shapes of hydrographs are chosen based on the cluster analysis. The
sampled pairs of flood peak and volume are associated with a randomly selected normalized
characteristics hydrograph conditioned by their probability of occurrences. Merging the
normalized hydrograph and generated peak and volume pair from copulas, flood hydrographs
are obtained. Fig. A. 7 shows three synthetic flood hydrographs corresponding with 100-year
return period for the present and future floods. And then, these flood hydrographs are used as

the upper boundary condition into the hydrodynamic model.
6.4.3 Hydraulic modelling

MIKE 11 is a 1D hydrodynamic model for solving the Saint-Venant equations in the
river networks. The river network, the cross-section data and the boundary condition are defined
for each river. The lower part of Saigon-Dongnai River basin which is covered within
downstream of Dautieng, Phuochoa and Trian reservoirs and coastal line is used in the network
for the model. Five main rivers (i.e., Dongnai, Saigon, Be, Vamcotay and Vamcodong) and 251
small streams are used. More than 300 observed cross-sections surveyed in the year 2009 are
used in this study. Observed releases from Trian, Phuochoa and Dautieng reservoirs, observed
discharges from Godau streamflow gauge located in the VamcoTay river and observed water
levels from Mochoa located in the Vamcodong river are used as the upstream boundary
conditions. Observed sea level (Vungtau gauge) is considered as the downstream boundary
condition. Two hourly observed water levels at Nhabe and Bienhoa, which are located in the

Dongnai River are used in calibration and validation for 1D hydrodynamic model.

The shuffled complex evolution algorithm is used to optimize the parameters.

Manning’s coefficient is selected as the model calibration parameter. Based on the objective
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and the availability of observed data, the observed water level in Nhabe and Bienhoa are used
for calibration and validation of 1D model. The model is calibrated for the using the data of the
year 2009 while the model is validated for the year 2012, for the flood season. The Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) are used to assess the model
performance. There is good agreement between the simulated and observed water levels at most
of the time in both locations, as seen from Fig. 6.3. RMSE and MAE values are 0.236 (0.220)
m and 0.286 (0.190) m for Nhabe and Bienhoa respectively in the calibration procedure.
Similarly, these values are 0.339 (0.280) m and 0.193 (0.140) m for validation step.

A flexible mesh is carefully constructed in 2D hydraulic modelling in this study. The
potential inundation areas, complex areas (i.e., channel and raised embankment) and regions in
which LiDAR data are available are assigned with finer resolution while the coarser resolution
is used for the remaining areas. The flexible mesh with 75,263 elements and 38,202 nodes
covering an area of about 738.02 km? is built. The surface elevations for the study area are
derived from with 1m resolution of LiDAR for HCMC area and 10m resolution DEM for the
remaining areas. The Manning’s n value for floodplain areas, which are selected from the land
use map, can be set for each computational element. The Manning’s n values used are 0.2, 0.07

and 0.03 m'?/s for residential, agriculture and water bodies respectively.
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Fig. 6.3: Simulated and observed water levels for (a) Nhabe and (b) Bienhoa during period of August 2009
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Fig. 6.3 (continues): Simulated and observed water levels for (c) Nhabe and (d) Bienhoa during period of November 2012
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6.4.4 Flood hazard analysis

The changes in 100-year return periods of future flood characteristics in the period
(2020-2045) in the Trian watershed were reflected in the changes of the flood inundation in the
downstream. In fact, the future flood characteristics are showing increasing values in for the
inundation areas and decreasing the flood characteristics will lead to reduce the flooding areas
(Fig. 6.4). The total inundation areas under different hazard indexes are given in Table 6.4. The
inundation areas of 100-year return period under mean RCP 4.5 is greater than the observed
flood. Under mean RCP 8.5 scenario, the inundation area of 100-year return period is smaller

than the present observed flood peak.

Table 6.4: Inundation areas under different hazard indices

Total of Flood hazard index:
Scenarios inundation H1 H2 H3 H4 H5 H6
areas (km?)  (km?) (km?) (km?) (km?) (km?) (km?)
Obs 199.740 37.367 26.227 45.092 22.359 14.230 54.465
RCP 4.5 317.645 34.406 28.186 53.188 27.894 33.352 140.620
RCP 8.5 153.900 29.576 19.831 33983 8.538 11.069 50.903

The land area under the H6 hazard index (i.e., unsafe for vehicles and people and all
building types considered vulnerable to failure) is greater than any other category. For example,
54.465 km? of the study area is subject to H6 hazard index under 100-year return period of the
present flood. 140.620 km? and 50.903 km? are under H6 hazard index for RCP 4.5 and RCP
8.5 respectively.

Based on the spatial distribution of flood hazard in the Saigon-Dongnai River basin,
flood inundation can be more intense in the lowlands and agricultural areas (i.e., Longtan,
Lacan). The urban areas (i.e., Bienhoa and Longdai) are less affected by flood than others

because of ground elevation in these areas may be upgraded for construction purposes.

Besides, considering the inundation areas under climate change context, in this study,
the duration of the inundation is also investigated. Fig. 6.5 shows the maximum inundation
duration above flood depth threshold (0.3 m) for present and future floods. It is clear that the
duration of inundation will increase corresponding to its flood magnitude. However, the

duration of inundation is also greatly affected by the flood volume. For example, the duration
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of inundation in the Phuhuu in the Saigon-Dongnai River basin under RCP 8.5 is greater than
the present flood although the present flood peak is larger than RCP 8.5 scenario. Spatial
variation in inundation duration is mainly controlled by the land topography. Indeed, the
lowland in the lower part of this basin is recorded the inundation duration longer than the upper
parts of floodplains. The main reason for this situation is that the geomorphologic processes,
generally result in large adjacent areas of flat land in the lower parts of a floodplain than its

upper parts.
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Fig. 6.4: Flood hazard maps for flood event with 100-year return period of (a): Observed (b): Mean RCP 4.5 (¢): Mean RCP 8.5
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6.5 Summary and Conclusions

In this study, a comprehensive approach for developing a flood hazard mapping for the
downstream of Trian reservoir under climate change context is presented. The approach
combines the bivariate flood frequency and the coupled hydrodynamic model for simulating

the inundation in a spatial context.

Flood hydrograph estimation has an important role in accurate assessment of flood
hazard. Three flood variables (i.e., peak, volume and shape) are estimated using bivariate
frequency and cluster analysis. Indeed, the multivariate statistical analysis provides a better
approach than the univariate method in term of extreme events statistic. Therefore, the copula
approach is used to model the dependence structure between flood peak and volume. More
importantly, the result from tail dependence test provides more useful information to choose
the more appropriate copula in multivariate frequency analysis. Extreme value copulas are used
when flood variables are diagnosed as asymptotical dependence whereas Clayton, Gaussian and

Frank copulas are considered for asymptotical independence cases.

High-resolution DEM based on the LiDAR data along with fully 2D hydrodynamic
model provides more detail flood hazard mappings for this study area. Flood hazard is
quantified by considering the combination of flood depth and velocity. Spatial variability of
flood hazard is also created. This research provides significant potential for better flood

inundation estimation in the future at river basin scale.

This study also indicated that the inundation duration not only is controlled by flood
magnitude but also by the flood volume. From the results, it is observed that most of the
agricultural areas located downstream of Trian catchment will be greatly inundated under
climate change context. The lower part of this river basin tends to have longer inundation

duration than other parts because of flat land topography.

These results of this study will help the policy makers and stakeholders to plan for the
social and economic development in this river basin. In addition, it also provides significant
information for the emergency preparedness plan, including aid and relief operations for

inundation areas in the future flood events.
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It is very important to highlight that the flood protection and adaptation measures for
agricultural areas need to be implemented to minimize the consequence of flood damages under
climate change conditions. Use of flood-tolerant species may be an effective approach in the
areas where flood is frequently recorded. More importantly, a change in the cropping pattern is

needed. Annual crops need to be replaced by summer period growing varieties for these areas.
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Chapter 7

Summary and Conclusions

7.1 Summary

Floods are one of the worst natural disasters, which cause huge damage annually
including loss of human lives. The damage and loss of life caused by floods could be higher in
the future also due to climate change. Assessment the changes of flood characteristics under
climate change context plays a considerable role in managing the flood risk. Quantifying the
vulnerable areas associated with the changes of climate allows local authorities to provide a
good the future development planning. Therefore, in this study, quantifying the impact of

climate change on flood risk is carried out at river basin scale.

The design and assessment of flood risk of hydraulic structures, water resources
planning, reservoir management and flood hazard maps involve the identification of the given
flood events with a low probability of exceedance. FFA seeks to connect the magnitude of
extreme events with their frequency of occurrence via probability distribution. The objective of

FFA is to estimate the return period associated with a flood of given magnitude. The return
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period is a standard criterion in the design of the hydraulic structures or the flood control. It
becomes necessary, in most studies, to obtain the frequency curve fitting the PDF to the

observed data to estimate flood quantiles associated with given return periods.

To investigate the changes in flood magnitude, AM and POT are commonly used to
extract the flood events. AM sample is defined by the maximum peak flow of each year.
However, AM cannot be used in the case of short data series because it does not provide
adequate information. Unlike the AM, which extracts only one event per year, POT considers
a broader range of events and provides more information than AM, primarily for estimation of
flood magnitude. Many researchers have investigated the choice between AM and POT. Some
have emphasized that POT approach is more suitable for extreme value analysis and provides

more accurate estimates of flood quantiles than corresponding AM approach.

The frequency of occurrence of the flood variables provides important information for
the design of hydraulic structures, water resources planning, reservoir management and flood
hazard mapping. Furthermore, flood is a complex phenomenon defined by strongly correlated
characteristics such as peak, duration and volume. Therefore, it is necessary to study the

simultaneous probabilistic behaviour of flood characteristics.

Traditional multivariate parametric distributions have widely been applied for
hydrological applications. However, this approach has some drawbacks such as the dependence
structure between the variables, which depends on the marginal distributions or the flood
variables that have the same type of marginal distributions. Copulas are widely applied to
overcome the restriction of traditional bivariate frequency analysis by choosing the marginals
from different families of the probability distribution for flood variables. The most important
step in the copula modelling is the selection of copula function which is the best fit to data
sample. The choice of copula may significantly impact the bivariate quantiles. This study will
investigate the potential of performing the tail dependence tests for the pairs of flood
characteristics and evaluating the performance of extreme value copulas for asymptotic
dependence variable and Clayton, Frank and Gaussian copulas for asymptotic independence

variables.

Flood hazard mapping is one of the critical aspects of flood risk assessment which has a

significant implication on the planning of social and economic development. The information
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of flood hazard is also essential to provide various strategies for mitigating the flood risk, which
in turn, can reduce the losses of human life and damages in urban and rural sectors. Assessing
the flood risk at the river basin is not a simple task, because of the complex nature of flood
generation caused by a combination of several sources such as precipitation, tidal, river basin
characteristics and anthropogenic activities. However, the development of numerical flood
modelling methods in recent years and the availability of advanced flood modelling and modern
survey techniques for collection of high-quality input data for those models allow to simulate

flood behaviour and to study the characteristic of future floods.

Flood hazard maps show the intensity of floods and their associated exceedance
probability. To develop reliable flood hazard maps, a methodology, combining the
advantageous features of 1D and 2D hydraulic models, bivariate flood frequency analysis and
high-resolution topographic data, are typically applied. Flood peak alone cannot give a reliable
evaluation of the hazard. It is also essential to consider simultaneously the flood peak along
with other flood characteristics in developing flood hazard mappings. Furthermore, rapid and
accurate flood modelling at high spatial-temporal resolutions remains a significant challenge in
hydrologic and hydraulic studies. Therefore, it is necessary to establish an advanced
deterministic approach, including bivariate flood frequency analysis, efficient and flexible
hydrodynamic models and high-resolution topographic data in developing the flood hazard

maps under climate change context.

The research reported in this thesis contributes towards assessing the flood risk under
climate change context at the river basin scale. Initially, the potential impact of climate change
on flood frequency is evaluated for the Saigon-Dongnai River basin, Vietnam. The correctness
of directly using the asymptotic distribution to model the future POT dataset are also assessed
in this study. In addition, the tail dependence tests for the pairs of flood characteristics are
carried out to select the appropriate copula functions. The performance of extreme value
copulas for asymptotic dependence variables and Clayton, Frank and Gaussian copulas for
asymptotic independent variables are assessed. Finally, the last part of this thesis contributes
towards developing flood hazard maps obtained using coupled hydrodynamic models, bivariate

flood frequency analysis and flood hazard tools.
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7.2 Conclusions

Based on this study, the following conclusions can be arrived.

The changes in Trian reservoir belonging to the Saigon-Dongnai River basin, Vietnam
are analyzed using GCM/RCMs outputs from CORDEX project. The change factors for two
scenarios such as RCP4.5 and 8.5 are calculated by using the outputs of five RCMs and one
GCM. Then, these change factors are used as an input to LARS-WG to generate the daily
precipitation and daily temperature for both scenarios. The continuous hydrological model
(HEC-HMS), which is calibrated and validated using observed discharge data, is applied to
simulate future discharge data based on the future climate data. The changes of flood frequency
of flood peak extracted using POT approach is compared between historical and future time
periods. The analysis reveals that flood magnitudes increase significantly in the future period

for the study area.

Since the flood is a complex phenomenon defined by strongly correlated characteristics,
univariate frequency analysis approach cannot describe accurately the random correlated flood
characteristics. Based on the advantage of copula approach in multivariate frequency analysis,
the copula approach is used to model the joint dependence structure of flood characteristics.
The most important step in the modelling processing using copula is the selection of copula
function that fits the data sample. The chosen copulas should include several classes and
degrees of tail dependence. Therefore, the potential of performing the tail dependence tests for
the pairs of flood characteristics in selection appropriate copula function are assessed in Chapter

5.

LLHR and tail dependence tests are used to identify the asymptotically dependence of
flood characteristics. Three extreme value copulas (i.e., Gumbel-Hougaard, Galambos and
Husler-Reiss) are evaluated to model asymptotically dependence of flood variables. In addition,
Gaussian, Frank and Clayton copulas are considered as the appropriate copula function in case
of which are diagnosed as asymptotic independence. Besides, the extreme value copulas also
with upper tail dependence have proven that they are appropriate copula function for the

dependence structure of flood variables.

Accurate and reliable flood risk maps are ideal tools for decision makers to reduce social
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and economic losses from flood events. These maps provide useful information for
organizations dealing with emergency situations to calibrate and adjust warning systems and
prepare priority evacuation plans. Modelling the potential flood regime due to river flow from
upstream considering the present condition and two future scenarios RCP4.5 and 8.5 are carried
out. Hydrodynamic flow modelling is simulated using coupled model in the lower stream of

Saigon-Dongnai River basin, Vietnam.

The high-resolution flood hazard maps are obtained in this work through three key
components: (i) design flood hydrograph estimated using bivariate flood frequency analysis is
used as the input the hydrodynamic model; (ii) high-quality topographic data (i.e., DEM and
LiDAR), collected using modern survey, are used as an input for the hydraulic models and (iii)
flexible meshes generation, which are the latest advances in flood modelling, are selected for
the coupled hydrodynamic model. Two parameters, namely, flood depth and flow velocity,
which are obtained from coupled hydrodynamic model, have been used for quantifying the

flood hazard.

Flood hazard maps, which were assessed using both flood depth and velocity, are
developed in Chapter 6. In addition, safe locations have also been identified for the industries.
Besides, flood inundation duration is an important parameter for flood risk assessment also as
pointed out in this study. Furthermore, flood hazard maps also provide useful information for

the evaluation of transport blockades and access to emergency services.

To summarise, the major conclusions from this study are:

e The changes of flood frequency of flood peak extracted using POT approach is
compared between historical and future time periods. The analysis reveals that flood
magnitudes increase significantly in the future period for the study area. The results
of this study also indicate that directly using the asymptotic distribution to model
the POT dataset sometimes provides wrong insights.

e There is a huge difference in the joint return period estimation using the families of

extreme value copulas and no upper tail copulas (i.e., Frank, Clayton and Gaussian)
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if there exists asymptotic dependence in the flood characteristics. The extreme value
copulas with upper tail dependence have proved that they are appropriate models
for the dependence structure of the flood characteristics and Frank, Clayton and
Gaussian copulas are the appropriate copula models in case of variables which are
diagnosed as asymptotic independence.

e The high-resolution flood hazard maps are obtained in this work using both flood
depth and velocity, which will help in identifying the potential flood hazard regions
as well as safe locations for the setting up industries and planning for social and

economic development in the river basin scale.

7.3 Scope for Future Studies

The work presented in this thesis could be further extended if relevant data were

available and time is not a constraint.

e Assessing the changes in flood frequency due to the changes of river basin
characteristics changes or land use and land cover

e Analysis of the bivariate flood frequency of nonstationary flood characteristics

e Analysis of regional flood frequency analysis of nonstationary flood characteristics

¢ Quantifying the uncertainty of the flood hazard maps

e Development of flood hazard management system, including a flood evacuation

strategy.
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Fig. A.1:Box plots of observed, RCMs and GCM simulated annual precipitation during baseline period (1980-2005)
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Fig. A.4: POT series of Tapao station based on the threshold value of 250 m?/s and after
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Table A.1: Results of AD test for POT datasets of future (2020-2045) scenario

Scenarios Talai Tapao Trian
GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3
Anderson-Darling
GCM_45 046 223 210 215 0.51 1.07  0.66 6.22 6.04 693 123 077 027 1.19 1.07 078 0.63 1.15
GCM_85 0.44  2.66 258 290 052 1.08 051 1.82 1.80 223 058 112 132 287 269 226 072 144
Had_45 022 0.81 079 097 073 062 480 1.16 .15 1.09 1.61 1.5 099 210 204 193 1.01 1.55
Had_85 038 1.78 1.74 200 052 064 019 239 238 317 033 073 140 1.59 1.54 133 1.01 1.64
Reg 45 040 1.86 1.82 212 0.68 139 025 289 288 377 043 044 186 225 2.16 210 0.80 1.27
Reg 85 029 1.39 138 164 073 145 028 229 224 3,60 040 056 124 130 129 124 120 210
MMS5_45 0.72  3.08 303 315 063 079 045 225 223 263 054 131 124 280 269 248 087 0.99
WRF 45 052 280 275 269 071 070 0.63 245 245 313 123 1.05 049 344 339 362 092 0.59
WREF_85 035 1.07 1.05 167 0.68 132 150 2.78 278 324 058 160 097 251 243 224 084 1.08
YSU 45 051  2.16 214 286 057 058 069 3.96 391 424 062 091 113 258 252 229 156 195
YSU_85 041 147 146 227 057 073 069 3.13 313 346 070 1.01 020 1.07 1.05 138 050 0098
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Table A.2: Results of KS test for POT datasets of future (2020-2045) scenario

Scenarios Talai Tapao Trian
GPD GL Gumbel LN P3 LIP3 GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3
Kolmogorov-Smirnov

GCM_45 0.07  0.09 0.09 0.09 005 0.09 0.07 0.16 0.16 0.19 010 0.07 006 0.09 0.09 0.08 0.08 0.12
GCM 85 0.06 0.11 0.11 0.11 005 0.07 006 0.11 0.11 0.12 006 0.08 009 0.12 0.11 0.11 0.08 0.10
Had 45 0.05 0.07 0.07 0.09 006 0.07 032 022 0.22 022 020 020 009 0.11 0.11 0.11 0.10 0.11
Had 85 0.06 0.13 0.13 0.11 009 0.08 005 0.11 0.11 0.11 005 0.08 0.13 0.15 0.15 0.14 0.12 0.15
Reg_45 0.05 0.09 0.09 0.11 006 0.09 0.04 0.10 0.10 0.13 005 0.04 010 0.11 0.11 0.11 0.08 0.08
Reg 85 0.04 0.09 0.09 0.11 007 0.09 0.05 0.09 0.09 0.12 005 0.06 0.11 0.10 0.10 0.11 0.09 0.12
MMS5 45 0.09 0.14 0.14 0.14 007 0.06 0.05 0.09 0.08 0.10 005 0.08 0.13 0.16 0.16 0.17 0.09 0.09
WREF_45 0.09 0.16 0.16 0.16 009 0.09 0.11 0.18 0.18 0.17 0.14 0.13 007 0.14 0.14 0.16 0.09 0.08
WRF_85 0.06  0.07 0.07 0.09 006 0.08 0.08 0.10 0.10 0.12 005 0.08 011 0.16 0.16 0.16 0.08 0.09
YSU 45 0.06 0.12 0.12 0.12 008 0.07 008 0.15 0.15 0.15 008 0.08 0.10 0.15 0.15 0.16 0.12 0.15
YSU 85 0.07 0.10 0.10 0.14 008 0.08 009 0.13 0.13 0.12 009 0.08 004 0.09 0.09 0.10 0.06 0.08
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Table A.3: Results of CVM test for POT datasets of future (2020-2045) scenario

Scenarios Talai Tapao Trian
GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3
Cramer Von Mises
GCM 45 0.07 0.26 026 031 005 0.13 0.12 1.01 1.00 125 023 0.12 0.04 0.14 0.13 0.10 0.08 0.20
GCM 85 0.07 0.39 038 046 004 0.11 007 026 026 033 007 015 021 044 042 036 008 0.18
Had 45 0.03 0.12 0.12 0.15 0.07 0.10 044 0.19 0.19 0.18 0.13 0.13 0.17 0.34 033 031 015 023
Had 85 0.05 024 024 028 007 009 003 031 031 047 004 0.10 0.19 025 025 021 013 023
Reg 45 0.06 0.26 026 033 006 0.17 0.04 037 037 059 005 0.04 026 032 031 033 006 0.12
Reg 85 0.04 021 021 024 009 020 0.04 027 027 052 004 0.07 0.13 0.17 0.17 0.16 0.16 0.31
MMS5 45 0.12 044 044 049 0.08 0.10 0.05 031 031 040 006 0.19 022 043 042 040 0.12 0.11
WRF 45 0.09 046 045 047 010 0.07 0.11 031 031 046 015 0.13 0.07 0.54 054 064 0.16 0.07
WRF_85 0.06 0.15 0.15 027 007 0.16 0.10 0.38 038 049 007 023 0.18 040 039 037 012 0.13
YSU 45 0.06 032 032 044 008 009 0.13 0.6l 0.60 067 011 0.15 0.19 044 043 038 025 0.30
YSU 85 0.07 0.18 0.18 035 007 0.09 0.12 045 045 054 011 0.16 0.03 0.15 0.14 020 0.04 0.11
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Table A.4: Results of AIC for POT datasets of future (2020-2045) scenario

Scenarios Talai Tapao Trian
GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3
Akaike Information Criterion

GCM 45 1,361 1,404 1,399 1,392 1,361 1,381 1,404 1,481 1,477 1,500 1,409 1,408 1,073 1,073 1,074 1,072 1,074 1,084
GCM 85 1,422 1,479 1,474 1,469 1,422 1,430 1,239 1,280 1,278 1,290 1,244 1,251 1,098 1,098 1,100 1,097 1,100 1,106
Had 45 1,292 1,317 1,314 1,313 1,292 1,304 207 218 216 217 211 213 1,105 1,104 1,106 1,102 1,105 1,113
Had 85 1,132 1,173 1,170 1,164 1,136 1,139 1,579 1,628 1,626 1,642 1,582 1,587 847 842 843 844 846 821
Reg 45 1,253 1,295 1,291 1,289 1,257 1,268 1,401 1,449 1,447 1,461 1,404 1,406 812 813 813 813 813 823
Reg 85 1,333 1,361 1,358 1,357 1,338 1,354 1,388 1,435 1,432 1,451 1,388 1,389 1,007 1,008 1,009 1,009 1,009 1,039
MMS5 45 1,087 1,118 1,114 1,111 1,093 1,104 1,592 1,642 1,640 1,652 1,595 1,605 763 764 764 764 763 768
WRF 45 1,459 1,508 1,504 1,504 1,461 1,464 586 628 626 637 592 589 699 696 692 690 692 710
WRF 85 1,367 1,415 1,412 1,410 1,363 1,374 1,622 1,688 1,686 1,698 1,619 1,631 893 894 895 894 895 912
YSU 45 1,222 1,253 1,250 1,249 1,226 1,236 1,605 1,669 1,666 1,681 1,604 1,608 956 956 958 954 957 981
YSU 85 1,583 1,633 1,629 1,634 1,582 1,590 1,412 1,469 1,467 1,480 1,415 1,419 1,043 1,040 1,042 1,041 1,041 1,062
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Table A.5: AIC values for all marginal distributions

Data Flood variable AIC Data Flood variable AIC
LN Gumbel GEV  P3 LP3 GPD LN Gumbel GEV  P3 LP3 GPD
v 3,188 3,197 3,201 3,176 3,164 v 2,056 2,077 2,071 2,053 2,046
Obs P 1,066 1,066 1,068 1,061 1,067 1,068 WRF 45 P 699.1 695.6 6922 690 692.3 709.9
D 654.9 656 658 641.7 6289 D 356.4 373.2 3493 349.7 3482
v 3,363 3,402 3,373 3,349 3,348 v 2,791 2,816 2,808 2,782 2,791
Had_45 P 1,105 1,104 1,106 1,102 1,105 1,113 WRF_85 P 892.7 893.8 894.6 894 894.6 912.0
D 659.8 692 643.1 6452 6475 D 607.4 626.6 611 607.8 608.5
A% 2,515 2,533 2,534 2,514 2,501 A% 2,979 3,005 2,995 2,960 2,980
Had_85 P 846.8 8424 8433 844.1 8455 821.4 YSU 45 P 956.4 9559 9579 954 9574 980.6
D 546.8 563.5 5472 538.6 5372 D 612.8 636 6124 6135 612.8
v 2,547 2,565 2,565 2540 2543 v 3,257 3,294 3276 3261 3251
Reg_45 P 811.5 8129 8127 813 8129 823.0 YSU_85 P 1,043 1,040 1,042 1,041 1,041 1,062
D 546.5 561.5 551.8 542.8 5422 D 633.4 666.5 6255 06363 6259
A% 3,159 3,188 3,174 3,148 3,154 v 3,068 3,101 3,087 3,057 3,066
Reg_85 P 1,007 1,008 1,009 1,009 1,009 1,039 GCM_45 P 1,073 1,073 1,074 1,072 1,074 1,084
D 642.1 666.5 639.8 640.7 642.8 D 642.3 666.5 6432 643.5 643.7
A% 2,340 2,353 2,357 2332 2,328 A% 3158 3202 3175 3154 3148
MM5_45 P 762.6 763.8  763.5 763.8 7632 768.1 GCM_85 P 1,098 1,008 1,100 1,097 1,100 1,106
D 519.5 528.7 526.5 5134 508.3 D 628.6 667 619.9 629 6194
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Table A.6: Copula dependence parameters, AIC and GoF statistics for both tail independence and dependence

DV DP PV
Copula Copula
Parameter AIC S p-value Parameter AIC S p-value Parameter AIC S p-value
Observed
Gumbel-Hougaard 6.007 -165.013 0.00579  0.003 Gaussian 0.785 -57.509 0.114  0.065 0.835 -73.575 0.119 0.050
Galambos 5268 -162.401 0.00583 0.002 Survival Clayton 1.774 -47.817 0.504  0.000 2.066 -55.250 0.477 0.0002
Husler-Reiss 4377 -137.984 0.00784 0.007 Frank 8.455 -67.695 0.063 0.285  10.396 -86.929 0.058 0.335
GCM_45
Gumbel-Hougaard ~ 10.246 -214.737 0.00029  0.082 Gaussian 0.770  -50.723 0.113  0.100 0.828 -49.339 0.125  0.050
Galambos 9.550 -214.675 0.00029  0.067 Survival Clayton 1572 -39.228 0.148  0.120 2.457 -44.756 0.430  0.000
Husler-Reiss 10.914 -212.448 0.00031 0.102 Frank 6.368 -45719 0.131 0.040  10.299 -58.872 0.052  0.535
MMS5 45
Gumbel-Hougaard ~ 24.578 -236.231 0.00006 0.301 Gaussian 0.791 -41.126 0.146  0.035 0.842 -72.335 0.121  0.020
Galambos 23.869 -236.175 0.00007 0.266 Survival Clayton 2.179 -39.994 0.478  0.000 2.387 -62.494 0.134  0.110
Husler-Reiss 25.882 -233.192 0.00011 0.182 Frank 8.969 -49.683 0.071  0.290 7.990 -62.159 0.171  0.005
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Table A.7: Copula dependence parameters, AIC and GoF statistics for tail dependence

DV DP PV
Copula

Parameter AIC S p-value Parameter AIC S p-value  Parameter AIC S p-value
Had 45

Gumbel-Hougaard 11443 284359  0.000127  0.077 1.906  -43.244  0.004544  0.435 2,124  -55.486 0.0033  0.460

Galambos 10.741 284327  0.000126  0.097 1202 -44276  0.002987  0.624 1420  -56.376 0.002684  0.520

Husler-Reiss 12288  282.523  0.000131  0.147 1.749  -45.605  0.001439  0.813 1.987  -57.567 0.002191 0.475
Had 85

Gumbel-Hougaard 20.001 -234.074  0.000253  0.077 3.929  -70.249  0.011193  0.057 4429  -80.635 0.011463  0.017

Galambos 19.288  -233.980  0.000254  0.117 3244 69799  0.011684  0.027 3.744  -80.073 0.012062  0.017

Husler-Reiss 20919 -230.559  0.000356  0.062 3.663  -64.134  0.014125  0.027 4.048  -72.450 0.015373  0.007
GCM 85

Gumbel-Hougaard 9.644 -221.748  0.000114  0.206 2271 45373 0.003497  0.545 2773 -67.963 0.000373  0.983

Galambos 8.944  -221.557 0.000114  0.291 1.576  -45.493  0.002865  0.580 2081  -68.404 0.000242  0.988

Husler-Reiss 10.011  -217.262  0.000136  0.162 2.148  -45205 0.00252  0.530 2759  -68.993 0.000285  0.978
WRF 45

Gumbel-Hougaard 12.430  -157.319  0.000264  0.127 2.641 34075 0.013971  0.221 3.117  -45.893 0.006588  0.251

Galambos 11.718  -157.080  0.000266  0.132 1939  -33.860  0.013231  0.122 2421  -45.858 0.005407  0.281

Husler-Reiss 12.228  -151.082  0.000314  0.137 2527 33234 0.014539  0.167 3.128  -45.691 0.004445  0.361
WRF 85

Gumbel-Hougaard 16276  -235.865  0.001539  0.007 2755 48428  0.019469  0.047 3.106  -59.932 0.018623  0.022

Galambos 15.606 -235402  0.001548  0.007 2057  -48388  0.019887  0.042 2412 -59.965 0.018891 0.022

Husler-Reiss 11.831  -197.939  0.00269  0.002 2686  -47.984  0.020904  0.052 3.089  -59.470 0.019738  0.007
YSU 45

Gumbel-Hougaard 20.02 29498  5.20E-05  0.147 2629  -52.902  0.001056  0.918 2822  -60.029 0.000767  0.928

Galambos 1931 29491  525E-05 0226 1.935  -53.433  0.001214  0.903 2,126  -60.480 0.000875  0.878

Husler-Reiss 2137 29245 921E-05  0.172 2628  -54.603 0.001777  0.689 2845  -61.585 0.001343  0.729
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YSU_85

Gumbel-Hougaard
Galambos

Husler-Reiss

Gumbel-Hougaard
Galambos

Husler-Reiss

Gumbel-Hougaard
Galambos

Husler-Reiss

11.956
11.248
11.584

16.449
15.750
15.967

14.896
14.185
15.209

-267.953
-267.525
-256.973

-216.406
-216.208
-206.714

-279.101
-278.887
-272.913

6.26E-05
6.47E-05
1.38E-04

0.00021
0.000213
0.000319

0.000561
0.000569
0.001136

0.236
0.261
0.137

0.1269
0.1418
0.1020

0.0075
0.0323
0.0075

2.171 -48.540
1.467 -48.864

2.027 -49.155
Reg 45
3.8116  -72.2819
3.1200  -72.6325
4.0214  -73.8075
Reg 85
2.4645  -54.3523
1.7691  -54.8656
2.4069  -55.6898

0.000705
0.000742
0.001341

0.009135
0.008907
0.009631

0.001851
0.002046
0.002745

0.953
0.923
0.759

0.177
0.117
0.097

0.754
0.639
0.495

2416
1.713
2.322

3.976
3.287
4.257

2.704
2.007
2.667

-61.211
-61.711
-62.460

-77.196
-77.654
-79.391

-64.716
-65.149
-65.769

0.002446
0.002492
0.002704

0.01018
0.00973
0.009921

0.005309
0.005423
0.005865

0.540
0.450
0.391

0.117
0.087
0.087

0.231
0.201
0.182
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