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Abstract 

Extreme events are becoming more intense, more frequent and more destructive. 

Changes in extreme events such as flood and droughts are the primary ways that most people 

experience climate change. Flooding may intensify in many regions in the world particularly in 

regions of South Asia. Study for prediction of future flood risks in catchment scale using 

hydrological models along with climate change projection has played a considerable role in 

recent years. 

Vietnam is one of the countries severely impacted by climate change. Trian watershed 

is located in the upper Saigon-Dongnai River basin and it is one of the biggest sub-basins of 

this river. Besides, this region is also the economic center in the south of Vietnam. However, 

not many studies have been conducted or reported in the literature to assess the impact of 

climate change on this region. It is, hence, necessary to evaluate the potential impact of climate 

change in future on this watershed, particularly on flood frequency, because flood events cause 

negative impacts on economic and social aspects. 

Peak over Threshold (POT) approach uses the available flood data more efficiently and 

this approach can estimate return level more accurate. The Generalized Pareto Distribution 

(GPD) is fitted with POT magnitude as a default in extreme value analysis. However, there 

could be more than one distribution that can be fitted to the data sample. Therefore, it is 

important that POT approach for testing numerous distributions should be considered in 

assessing the changes of flood frequency. 

The downscaled atmospheric data are used as input for a physically-based hydrological 

model to simulate future streamflow data. The changes in the frequency of flood peak extracted 

by the POT approach is compared between historical and future periods. The results indicate 

that there is a significant increase in flood magnitude under climate change for Trian catchment. 

To be more specific, the 100-year return level of Trian catchment is increasing up to 32.34 % 

in one of future scenario. Moreover, the results of this study also indicate that directly using the 

asymptotic distribution to model the POT dataset sometimes provides wrong insights. 

The flood characteristics namely, peak, duration and volume for a given frequency 

provide important knowledge for the design of hydraulic structures, water resources planning, 
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reservoir management and flood hazard mapping. Flood is a complex phenomenon defined by 

strongly correlated characteristics. If univariate frequency analysis is used to assess the 

behaviour of each flood characteristics, it will lead to over or under estimation of associated 

flood risk. In these cases, multivariate probability approach, which provides a comprehensive 

understanding of flood characteristics and their relationship, may provide better estimate of the 

flood magnitude when compared to the univariate approach. 

Traditional multivariate parametric distributions have widely been applied for 

hydrological applications. However, this approach has some drawbacks such as the dependence 

structure between the variables, which depends on the marginal distributions or the flood 

variables have the same type of marginal distributions. Copulas are applied to overcome the 

restriction of classical multivariate flood frequency analysis by choosing the marginal 

distribution from different types of the probability distribution function for flood 

characteristics. The most important step in the modelling process using copula is the selection 

of copula function which is the best fit to data sample. The choice of copula may significantly 

impact on the bivariate quantiles. 

From the results of the study, it is observed that the result from tail dependence test is 

useful in selecting the appropriate copula for modelling the joint dependence structure of flood 

variables. The extreme value copulas with upper tail dependence have proved that they are 

appropriate models for the dependence structure of the flood characteristics. Frank, Clayton and 

Gaussian copulas have been identified as the appropriate copula models in case of variables, 

which are diagnosed to have asymptotic independence. 

Flood hazard mapping is one of the important aspects of flood risk assessment which 

has a significant implication on the planning of social and economic development activities. It 

also provides useful information to operate the flood warning system as well as to prepare the 

emergency evacuation plans. However, the development of the hydrodynamic models for the 

large river system is a very challenging task. The hydrodynamic models have to be large enough 

to cover the entire river basin and it must be sufficiently detailed to represent smaller features. 

Therefore, the latest advances in flood modelling techniques, such as flexible meshes generation 

and the advantages of coupled hydrodynamic model with the high-resolution of topography 

data will be applied in this study. 



iii 

 

MIKE FLOOD, which is a coupled hydrodynamic model, is used to simulate the flood 

regime. The coupled hydrodynamic model has been developed for cross-sections based on 

channel modelling with 1D model and linking these floodplain modelling with 2D model. The 

design flood hydrograph is estimated using bivariate flood frequency analysis, high-quality 

topography data (i.e., DEM and LiDAR) and flexible meshes generation are used as the input 

data for hydrodynamic model to simulate the flood regime for the study area. Two parameters 

namely flood depth and flow velocity, which are obtained from a coupled hydrodynamic model, 

have been used for developing the high-resolution flood hazard maps. 

This study presents the results of the assessment of the changes in the flood hazard and 

the duration of inundation under climate change context for Saigon-Dongnai River basin, 

Vietnam. From the results, it is observed that 54.47 km2 of the study area is subjected to H6 

hazard index under 100-year return period in the present flood. 140.62 km2 and 50.90 km2 are 

under H6 hazard index for RCPs 4.5 and 8.5 scenarios respectively. This study indicated that 

the duration of inundation is not only controlled by flood magnitude but also by the volume of 

flood. Further, this study showed that most of the agricultural areas located downstream of 

Trian catchment will be severely inundated under climate change context. 
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Chapter 1 

Introduction 

 

 

 

1.1. Flood Frequency Analysis 

Among the worst natural disasters, floods cause huge damages annually including loss 

of property and human lives. The damage to properties and loss of life caused by floods could 

be higher in the future due to changing of climate. Assessment of changes of flood 

characteristics under climate change context plays a considerable role in managing the risk of 

flood. Quantifying the vulnerable areas associated with the changes of climate allows local 

authorities to provide a good future development planning. Therefore, the quantifying the 

impact of climate change on flood risk is necessary to be carried out on a river basin scale. 

The design and assessment of flood risk of hydraulic structures, water resources 

planning, reservoir management and flood hazard maps involve the identifying the given flood 

events with a low probability of exceedance. Flood Frequency Analysis (FFA) seeks to connect 

the magnitude of extreme events with their frequency of occurrence via probability distribution.
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The objective of FFA is to estimate the return period associated with a flood of a given 

magnitude. Use of the return period as a standard criterion is common in the design of hydraulic 

structures and flood control. It is, hence, necessary in most cases, to obtain the frequency curve 

fitting the Probability Distribution Function (PDF) to the observed data to estimate flood 

quantiles associated with given return periods. 

Annual Maxima (AM) and Peak Over Threshold (POT) are the commonly used 

approaches to extract the flood events in the investigation of the changes in flood magnitude. 

The maximum peak flow of each year defines the AM sample. However, AM cannot be used 

in the case of data of short length, because such data will not provide adequate information 

(Bezak et al., 2014, Lang. et al., 1999). Unlike the AM, which only extracts one event per year, 

POT considers a broader range of events and provides more information than AM, primarily 

for estimation of flood magnitude (Kay et al., 2009, Roth et al., 2012). Many researchers have 

investigated the choice between AM and POT. Some have emphasized that POT approach is 

more suitable for extreme value analysis and provide better estimates of flood quantiles than 

corresponding AM approach (Bezak et al., 2014, Saf, 2009b). 

The next step is to select an appropriate PDF that has the best fit for the data sample. 

Many PDFs have been considered in different situations for the probability modelling of flood 

events. Malamud and Turcotte (2006) and El Adlouni et al. (2008) divided the widespread 

distribution in FFA into four groups such as the Generalized Extreme Value (GEV) family, the 

Normal family, the Pearson Type III family and the Generalized Pareto Distribution (GPD) 

family. 

The GPD is fitted with POT magnitudes as a default in extreme values analysis (Coles 

et al., 2001, Davison and Smith, 1990, Katz et al., 2002). However, there could be more than 

one distribution that can be fitted to the sample data. Hence, identifying the best fitting 

distribution to the sample need to be tested with several distributions (Lang. et al., 1999). 

Furthermore, many studies are reported which used AM to assess the impact of climate change 

on flood frequency at global as well as regional scale (Hirabayashi et al., 2013, Jung et al., 

2011), while there are only a few studies which used POT approach. Even the studies which 

used POT approach mostly considered only a single distribution (i.e., GPD). Thus, it becomes 

imperative that many distributions which are normally used in extreme values analysis should 
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be tested and the best fitting distribution needs to be identified for each POT dataset. 

FFA can be classified into univariate and multivariate analyses. Although univariate 

frequency analysis has been widely used to quantify the behaviour of each flood characteristics, 

only a  limited assessment of flood events is obtained (Yue, 1999). In fact, univariate frequency 

analysis can be useful, if the infrastructure design is based on a single flood characteristic (i.e., 

peak). Otherwise, univariate frequency analysis may not provide the complete behaviour of 

flood characteristics (Chebana and Ouarda, 2011). Additionally, the flood is a multivariate 

natural calamity characterized by its peak, volume and the duration. Hence, it is essential to 

study the multivariate probabilistic behaviour of flood characteristics simultaneously. The joint 

probability to be incorporated into flood risk analysis involving two or more flood 

characteristics have received significant attention in recent years. However, many aspects need 

to be solved related to this subject. 

Traditional multivariate FFA does not allow using different marginal distributions and 

full coverage of dependence structure between the variables. To overcome these shortcomings, 

copulas, one of the promising mathematical tools for investigating multivariate problems, have 

been widely applied in hydrological studies in recent times (Li et al., 2012). For example, Reddy 

and Ganguli (2012) used a copula approach for flood frequency analysis of Godavari River, 

India. Their study indicated that Frank copula was the best-fit copula for bivariate models (i.e, 

flood peak and volume, volume and duration pairs). Additionally, climate change impact on the 

flood characteristics for the northeast Canadian basin was evaluated using copula-based 

bivariate flood frequency analysis in a study of Jeong et al. (2014). The results of projected 

changes indicated that an increase in the joint return period of flood characteristics. Similarly, 

in their work, Duan et al. (2016) used copula-based bivariate frequency analysis to investigate 

the changes in flood characteristics in the Huai River, China under climate change context. 

Their study showed that Archimedean copulas were more appropriate to model the dependence 

structure of flood characteristics in the study area. Therefore, bivariate flood frequency analysis 

based on copula approach is considered to evaluate the inherent flood characteristics in this 

study. 
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1.2. Flood Hazard Mapping 

A warmer climate is already causing extreme weather events that affect the lives of 

millions of people around the world (Schiermeier, 2011). Specifically, as per IPCC (2014), 

extreme climate events are likely to occur more frequently in different parts and during different 

seasons in Asia in the future, particularly in East Asia regions. Brunner et al. (2017) indicated 

that climate change has an impact not only on the peak but also on the volume and the shape of 

the flood hydrograph. Hence, assessment of climate change impacts on floods should consider 

all the flood characteristics (i.e., peak, volume and duration) rather than only the flood peak. 

Therefore, to make appropriate adaptation strategies, decisions and policies under climate 

change context, it is essential to understand the change of the flood characteristics and potential 

flood risks on a river basin scale. 

Flood hazard mapping is one of the critical aspects of flood risk assessment which has a 

significant implication on the planning of social and economic development. The information 

of flood hazard is also essential to provide various strategies for mitigating the flood risk, which 

in turn, can reduce the losses of human life and damages in urban and rural sectors 

(Pappenberger et al., 2012, Sampson et al., 2015). Assessing the flood risk at the river basin is 

not a simple task, because of the complex nature of flood generation caused by a combination 

of precipitation, river basin characteristics and human activities. However, the development of 

numerical flood modelling in recent years, namely the availability of advanced flood modelling 

and modern survey techniques for collection of high-quality input data for those models allow 

to simulate flood behaviour and to study the characteristics of future floods (Alkema, 2007). 

To prepare reliable flood hazard maps, a methodology that combines the advantageous 

features of 1D and 2D hydraulic models and also the high-resolution of topographic data, are 

typically applied. Flood hazard maps show the intensity of floods and their associated 

exceedance probability (Di Baldassarre et al., 2010). One of the common approaches of flood 

inundation modelling is use of  deterministic approach based on single simulation (Ali, 2018). 

In deterministic approach, three main issues in developing the flood hazard maps using 

hydrodynamic models such as the topography data resolution, the hydrodynamic model 

simulation and the design flood hydrograph estimation are considered in the study. 
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There are numerous studies related the assessing the impact climate change on floods 

have been reported in the literature. Most of the studies on flood frequency analysis focus only 

on the flood peak (Camici et al., 2014, Dobler et al., 2012, Qin and Lu, 2014). However, flood 

is a complex phenomenon defined by the strong correlation between its characteristics such as 

peak, duration and volume. If univariate frequency analysis is used to assess the behaviour of 

each flood characteristic, it will lead to over or underestimation of associated flood risk. To 

develop flood hazard maps, only the flood peak cannot give a reliable evaluation of hazard. 

Consequently, it is also essential to consider simultaneously the flood peak along with other 

flood characteristics in developing flood hazard mappings. Furthermore, faster and accurate 

flood modelling at high spatial-temporal resolutions remains a significant challenge in 

hydrologic and hydraulic studies. Therefore, it is necessary to establish an advanced 

deterministic approach, including bivariate frequency analysis, efficient and flexible 

hydrodynamic models and high-resolution data to develop the flood hazard maps under climate 

change context. 

1.3. Motivation for the Study 

Floods are one of the most commonly occurring natural disasters in the word. In the past 

decade, floods have caused devastating damage to property and loss of life across the world. 

For example, tens of billions of US dollars were spent and thousands of people were killed in 

every year (Hirabayashi et al., 2013). Climate change is widely recognized to affect flood 

regimes in many parts of the world. Thus, the losses are expected to be massive in the future 

due to climate change. Studies related to future flood risk provide information on the 

frequencies and magnitudes of possible floods in the future. Numerous studies for assessing the 

changes of flood hazard at many scales are available in the literature. However, the impact of 

climate change on flood has not been sufficiently understood at a catchment scale in Asia, and 

in particular for Vietnam. 

Flood event is multivariate in nature and hence it is necessary to consider simultaneously 

the various component processes in some situations. For example, determination of the 

occurrence of the flood peak and volume is necessary to design the hydraulic infrastructure 

along a river. To develop the flood hazard maps, information on flood peak alone will not give 

a reliable assessment of hazard. It is, therefore, also essential to consider flood peak along with 
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other flood characteristics simultaneously. 

Flood risk plays an essential role in the planning of water infrastructure projects, 

reservoir management and flood hazard mapping in river basin scale too. Therefore, the 

evaluation of changing of flood characteristics, flood inundation areas and preparation of 

possible flood hazard mapping due to climate change are essential to help the policymakers and 

stakeholders for social and economic development planning in the river basin scale. 

1.4. Objectives of the Study 

With this background and appreciating the significance of the studies on flood risk, flood 

zone mapping and flood frequency analysis, the objectives of the study have been formulated. 

The objectives of this study are listed as follows: 

 Evaluating the correctness of directly using the asymptotic distribution to model the 

future POT dataset 

 Assessing the potential impact of climate change on flood magnitude 

 Investigating the potential of performing the tail dependence tests for pairs of flood 

characteristics 

 Evaluating the choice of copula based on the tail dependence test 

 Estimating of the flood design hydrographs using copula theory of flood variables (i.e., 

volume and peak) and shapes through historical observed flood hydrograph combined 

with cluster analysis 

 Developing the computationally efficient flood model using advanced deterministic 

approach based on coupled 1D-2D hydraulic model and high quality of topography data 

 Developing of flood hazard maps, which is quantified by considering the flood depth 

and velocity in combination 

 Assessing the changes of flood risk under climate change context. 
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1.5. Contribution from the Study 

Hydrologists have widely used flood frequency analysis to evaluate the potential flood 

risk. This information can provide valuable knowledge for designing infrastructure, reservoir 

system operational plans, and flood hazard assessment. The GPD is fitted with POT magnitudes 

as a default in extreme values analysis. However, there could be more than one distribution that 

can be fitted to the sample data. Furthermore, POT approach is better suited for extreme value 

analysis and to arrive at better and reliable accurate estimates of flood quantiles than 

corresponding AM approach. However, many studies used AM to assess the impact of climate 

change on flood frequency at global as well as regional scale while there are only a few studies 

which used POT approach. Even the studies which used POT approach mostly considered only 

a single distribution. Thus, it is vital that several distributions generally used in extreme values 

analysis should be tested, and the appropriate distribution need to be identified for each POT 

dataset. 

Single variable flood frequency analysis does not give a comprehensive understanding 

and assessment of the actual behaviour of flood phenomena. This approach can lead to high 

uncertainty or failure of guidelines in water resources planning, operation and design of 

hydraulic structure and floodplain zoning. Therefore, it is essential to study the multivariate 

probability behaviour of flood characteristics. Copulas are widely used for multivariate analysis 

in various fields. The main advantage of copulas is that the dependence structure is 

independently modelled with the marginal distribution that allows for multivariate distribution 

with different margins and full coverage of dependence structure. The essential step in the 

modelling processing copula is the selection of copula function, which is the best fit for the data 

sample. This study suggests that the copula function should be selected based on the 

dependence structure of the variable. Furthermore, the performance of extreme value copulas 

for asymptotic dependence variable and Clayton, Frank and Gaussian copula for an asymptotic 

independent variable are also assessed. 

To simulate accurately the spatial and temporal dynamics of the flood process, the three 

main issues in creating the flood hazard maps using hydrodynamic models (i.e., design flood 

hydrograph estimating, the resolution of topography data and hydraulic model selection) are 

carefully assessed. The same joint probability of occurrence of flood peak and volume are used 
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to estimate the design flood hydrograph. 

The surveyed cross-sections and high-resolution LiDAR along with design flood 

hydrograph are used as the input data for the coupled hydrodynamic model to simulate the flood 

regime. Furthermore, the multi-scale mesh modelling approach, where fine resolution is applied 

for channel and raised embankment areas and coarser resolution is developed for uniform 

topographic height are used to develop the hydrodynamic model in this study. The coupled 

hydrodynamic model in which channel flow is linked to floodplain flow using lateral 

connection is used to improve accuracy the flood inundation results without the significant 

increasing computational requirement of the hydraulic model. The flood depth and velocity 

obtained from the hydrodynamic model are used to develop high-resolution flood hazard maps 

for the study area under climate change context. 

1.6. Outline of the Study 

After introducing the problem taken up for the study and discussing about the 

significance of the problem, the objectives of the study is introduced in this chapter. Chapter 2, 

a detailed review of the literature related to various methods of transferring climate change, 

hydrological modelling, flood frequency analysis and flood hazard mapping is also presented 

in this Chapter. 

Chapter 3 presents the methodology involved in addressing the research objectives. 

Further more. the summaries of all case studies as well as the availbel sofwares are also 

presented in this Chapter. 

The impact of climate change on flood magnitude is examined and presented in Chapter 

4. Besides, the correctness of directly using the asymptotic distribution to model the future POT 

dataset is also assessed. 

Chapter 5 presents the potential of performing the tail dependence tests for the pairs of 

flood characteristics. The choice of copula based on the tail dependence test is also explored. 

Besides, assessing the impact of the different copula functions on bivariate quantiles is also 

considered in this Chapter. 

The design flood hydrographs obtained using copula approach combined with cluster 
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analysis is reported in Chapter 6. The high-resolution flood hazard maps, which is quantified 

by considering the flood depth and velocity in combination, are also established. 

Chapter 7 presents the summary of the study, the conclusions arrived and some 

recommendation for further research activities based on the conclusions from study on the 

impact of climate change on flood risk. 
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Chapter 2 

Literature Review 

 

 

 

2.1 Introduction 

This chapter consists of six sections. The first part, dealing with downscaling methods 

(i.e., dynamical and statistical) of climate data for use in hydrological models is presented in 

Section 2.2, while Section 2.3 discusses the different categories of hydrological models, which 

are used to obtain the future discharge time series. In the third part, the focus is on the flood 

frequency analysis. The flood hazards mapping estimation based on the deterministic approach 

is presented in Section 2.5. The conclusion highlighting the findings from the literature review 

is presented in the last section. 

2.2 Downscaling Methods Climate Projections 

Global Circulation Models (GCMs) are widely used to predict the changes in 

atmospheric variables under climate change scenarios (Anandhi et al., 2011). GCMs are 

physically-based meteorological models, which represent atmospheric and oceanic dynamics 
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(Angeles et al., 2007). However, the output from GCMs has typically a low spatial resolution 

of approximately 100-250 km and it is inadequate for regional impact studies especially for 

analyzing the changes in extreme precipitation and floods because it lacks detailed regional 

information which is needed to resolve various features at the catchment scale (Fowler et al., 

2007). This obstacle can be solved using the downscaling method, which can be used to derive 

local to regional scale information from large-scale spatial and temporal scales. The 

downscaling methods have been classified into two types, namely dynamic and statistical. The 

dynamical downscaling generates finer resolution output based on atmospheric physics over a 

region using GCM as a boundary. Statistical downscaling method establishes an empirical 

relationship between the GCMs output with observed climate data. Table 2.1 summaries some 

advantages and disadvantages of both dynamical and statistical downscaling methods. The 

following section presents more detail information both downscaling methods. 

2.2.1 Dynamical downscaling 

Dynamic downscaling method refers to the use of high-resolution regional simulations 

to dynamically extrapolate the effect of large-scale climate processes to regional or local scales. 

Dynamical downscaling uses a limited area, a high-resolution model such as Regional Climate 

Models (RCMs) driven large scale and lateral boundary conditions from a GCM to produce 

higher resolution outputs (Fowler et al., 2007). RCMs are frequently used to analyze the impact 

of climate change on hydrology in the watershed because of its higher resolution. The resolution 

of RCMs is around 12-50 km and it accounts for the sub-GCM grid scale forcing (e.g., complex 

topographical features and land cover heterogeneities in a physically-based way). 

As a consequence of the higher spatial resolution output, RCMs provide a better 

description of topographic phenomena. Further, the finer dynamical processes in RCMs 

produce more realistic mesoscale circulation pattern. There are numerous RCMs, which are 

widely used in climate change downscaling studies. They are the East and South Asia Regional 

Climate Model (RegCM4), Canadian Regional Climate Model (CRCM), Dutch Regional 

Atmospheric Climate Model (RACMO), UK Met Office Hadley Center’s Regional Climate 

Model version 3 (HadRM3), German Regional Climate Model (REMO), the U. S Regional 

Climate Model version 3 (RegCM3) and the Hadley Center Global Environment Model version 

3 Regional Climate Model (HadGEM3-RA). Some of these studies which used dynamical 
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downscaling in hydrological researches are discussed as follows. 

Van Roosmalen et al. (2010) used the climate outputs of HIRHAM4 to generate future 

time series of precipitation, temperature and evapotranspiration for hydrological impact 

assessment in Denmark. The result showed that the HIRHAM4 model simulated the current 

output climate which are not too far from observed value and it does not show a significant 

difference from ensemble RCMs. Gu et al. (2012) predicted the future climate change by using 

regional climate model (RegCM4) for East and South Asia. The result indicated that the 

Yangtze river basin will witness the changes of extreme events (i.e., precipitation and drought) 

and it indicates potentially increased risks of both floods and droughts at the same time. 

Bárdossy and Pegram (2011) used the output of three different regional climate models, namely 

HadRM3, RACMO2 and REMO modelled the future climate scenarios for Rhine River 

catchment. The results indicated that the climate in the Rhine River basin is likely to be wetter 

than in the past for the future climate scenarios. 

However, RCMs inherit the biases due to systematic model errors caused by imperfect 

conceptualization, discretization and spatial averaging within grid cells. Andréasson et al. 

(2004) showed that these biases are not only for precipitation but also for temperature. These 

biases can affect the result of the hydrological simulation. The statistical downscaling method, 

which is computationally inexpensive in comparison to RCMs, is a viable and sometimes 

advantageous alternative for an institution that does not have the computational capacity and 

technical expertise require in dynamical downscaling. Therefore, the following section will 

discuss the statistical downscaling methods. 

2.2.2 Statistical downscaling 

The statistical downscaling establishes an empirical relationship between GCM 

resolution climate variable and local climate. There are several statistical downscaling 

approaches which establish statistical links between large-scale climate and the observed local-

scale climate data. Maraun et al. (2010) classified statistical downscaling approaches into 

Perfect Prognosis (PP), Model Output Statistics (MOS), and Weather Generators (WGs). PP 

method establishes statistical relationships between variables at large scales and local scales. 

MOS establishes statistical relationships between variables simulated by the RCM and local 

scale observation to correct RCM errors. WGs approach generates local scale climate time 



13 

 

series resembling the statistical properties of observed climate. 

The statistical downscaling methods are also classified based on the techniques such as 

regression methods, weather classification scheme (i.e., weather pattern) and stochastic weather 

generator. Table 2.2 summaries some advantages and disadvantages of several statistical 

downscaling methods. 

Regression methods represent the linear and nonlinear relationships between predictand 

and predictors. A simple linear regression is widely used to establish the relationship between 

one large-scale predictor and one local predictand. This relationship is obtained using observed 

local scale data and GCM/RCMs climate output data. Multiple regression methods establish the 

relationship between single predictand with two or more of predictor variables. Canonical 

correlation and singular value decomposition are widely used for the study of the 

interrelationship among spatially distributed coarse simulations and observed local scale 

variables by determining the sets of patterns that have strong correlation over time. 
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Table 2.1: Comparison of dynamical and statistical downscaling methods (Trzaska and Schnarr, 2014) 

 Dynamical downscaling Statistical downscaling 
Requires  High computational resources and expertise 

 High volume of data input 

 Reliable GCM simulations 

 Medium/low computational resources 

 Medium/low volume of data inputs 

 Sufficient amount of good quality observation data 

 Reliable GCM simulations 
Advantages  Based on consistent, physical mechanism 

 Resolves atmospheric and surface processes occurring at sub-
GCM grid scale 

 Not constrained by historical record so that novel scenarios 
can be simulated 

 Experiments involving an ensemble of RCMs are becoming 
available for uncertainty analysis 

 Computationally inexpensive and efficient, which allows for 
many different emissions scenarios and GCM pairing 

 Methods range from simple to elaborate and are flexible 
enough to tailor for specific purposes 

 The same method can be applied across regions or the entire 
globe, which facilitates comparisons across different case 
studies 

 Relies on the observed climate as a basis for driving future 
projections 

 Can provide point-scale climatic variables for GCM scale 
output 

 Tools are freely available and easy to implement and 
interpret; some methods can capture extreme events 

Disadvantages  Computationally intensive 

 Due to computational demands, RCMs are typically driven by 
only one or two GMC/ emission scenarios simulations 

 A limited number of RCMs available and no model results for 
many parts of the globe 

 May require further downscaling and bias correction of RCM 
outputs 

 Results depend on RCM assumptions; different RCMs will 
give different results 

 Affected by the bias of driving GCM 

 High quality observed data might be unavailable for many 
areas or variables 

 Assumes that relationships between large and local-scale 
processes will remain to be the same in the future (stationarity 
assumptions) 

 The simplest methods may only provide projections at a 
monthly resolution 
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Table 2.2: Advantages and disadvantages of different of statistical downscaling methods (Trzaska and Schnarr, 2014) 

Statistical 
downscaling methods 

Advantages Disadvantages Categories 

Regression methods  Straightforward to apply 

 Employ full range of available 
predictor variables. 

 Not suitable for extreme events 

 Inefficient for non-normal distributed data 

 Poor representation of observed variance. 

 Simple and multiple regression 

 Canonical correlation analysis 
and singular value decomposition 

 Artificial neural networks. 

Weather pattern 
approach 

 Yields physically interpretable 
linkages to surface climate 

 Apply for both normal and non-normal 
distributed data 

 Provides better understanding of the 
climate sensitivity and variability. 

 Requires additional step of weather type 
classification 

 Unable to predict the new value that are 
outsides of the range of the historical data 

 Requires large amount of data and 
intensively computational capacities 

 Circulation-based schemes may be 
insensitive to future climate forcing. 

 Cluster analysis 

 Analog method 

 Monte Carlo method 

 Principle components. 

Weather generator  Provides sub-daily information 

 Simulates length of wet and dry spells 

 Obtains weather time series in region 
of scares data by using interpolating 
technique 

 Produces large number of series which 
is valuable for uncertainty analysis. 

 Requires large amount of observed data 

 Takes little into account of spatial 
correlation of climate 

 Sensitive to missing or erroneous data in 
the calibration set. 

 Markov chain approach 

 The spell length approach 

 Mixture models 

 Stochastic methods. 
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Weather pattern approaches involve grouping of local meteorological variables about 

different weather classification schemes. This method can be applied to variables that have 

normal and non-normal distributions. The analog is the simplest of the weather classification 

methods. In this method, the large-scale atmospheric circulation simulated by GCM/RCMs is 

compared to historical observed and the most similar is chosen as its analog. The 

simultaneously observed local weather is then associated with the projected large-scale pattern. 

To estimate future values of local predictand, the GCM/RCMs output is compared with the 

large-scale observed data over the historical period. Once a large-scale simulation is aggregated 

to a cluster, a random observation from the batch of data associated with this cluster is chosen 

as the local scale prediction. Artificial Neural Network (ANN) is an established technique with 

a flexible mathematical structure that is capable of identifying complex non-linear relationships 

between input and output data (Vu et al., 2016). In order to statistically downscale climate 

variables, ANN establishes a non-linear relationship between atmospheric and local scale 

climate variables. 

Weather generator is a statistical model used to generate sequences of daily variables 

using GCM/RCM output. It produces multiple daily weather series, which is natural and 

logically consistent because any number of small-scale weather sequences may be associated 

with a given set of larger scale values. These generators frequently simulate meteorological 

variables at the daily or annual time scales on the basis of empirical statistical models. There 

are a number of well-known weather generators, which are widely used in agricultural, water 

resources and flood risk analysis, such as the Long Ashton Research Stochastic Weather 

Generator (LARS-WG), ClimGen, CLIGEN, WXGEN and Met&Roll (Fatichi et al., 2011). 

2.3 Hydrological Modelling 

Hydrological modelling is considered as an important tool for water resources planning 

and management. A hydrological model is a valuable tool for studying the impact of climate 

change on water resources from future scenarios of future change. Many river basins have 

experienced a change in the frequency and magnitude of hydrological extreme events (Arnell 

and Gosling, 2016, Milly et al., 2002). Numerous hydrological models have been developed 

and applied to assess the impact of climate change on water resources, particularly for floods. 

This section is devoted to a comprehensive review on hydrological models. 
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Also referred to as rainfall-runoff models, hydrological models can be classified into a 

number of categories, based on model input parameters as well as the physical principles used 

within the models. They can also be classified based on the model parameters as a function of 

time and space (i.e., lumped and distributed). Besides, a model is considered as deterministic if 

a set of input values will always produce the same output values. A model is stochastic if the 

input values need not to produce the same output values. The event and continuous simulation 

models are distinguished based on the specific and continuous period of output respectively 

(Sharma et al., 2008). The popular classifications, which are widely used in the literature, are 

empirical, parameters and physically-based models. Table 2.3 introduces the brief 

characteristics of three types of hydrological models. 

Table 2.3: Characteristics of hydrological models (Devia et al., 2015) 

Empirical model Conceptual model Physically-based model
 Metric or black box 

model 
 Described by 

mathematical structure 
using time series 
information 

 Does not need prior 
knowledge about 
hydrology process  

 High predictive power 
but low explanatory 
capacity 

 Cannot be generated to 
another catchment 

 Parametric or grey 
box model 

 Based on modelling 
of reservoir and 
include semi 
empirical equations 
with a physical basis 

 Model parameters 
are calibrated 

 Simple and easily 
calculated using 
computer code 

 Require large hydro-
meteorological data

 Mechanistic or white box 
model 

 Based on spatial distribution, 
evaluation of parameters 
describing physical 
characteristics 

 Model parameters can be 
measured 

 Complex model and requires 
high computational demand 

 Suffer from extreme data 
demand, scale related 
problems and 
overparameterization

2.3.1 Empirical models 

Empirical models are derived from experiments or observed input-output relationships. 

Although they do not consider the physical law, the empirical models contain parameters that 

may have little direct physical significance and can be estimated only using the concurrent 

measurement of inputs and outputs (Xu, 2002). The rating curves, unit hydrograph, statistical 

models (i.e., linear and non-linear regressions) and machine learning methods are popularly 

used in the empirical models. Machine learning methods for empirical models are widely used 

to predict streamflows in recent years. There are many machine learning techniques that are 
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used for streamflow prediction (like ANN, support vector machines, random forest and k 

nearest neighbour, etc.). They have been proved to be appropriate tools for hydrological 

modelling and exploratory data analysis, particularly in systems that exhibit complex and non-

linear behavior (Abrahart and See, 2007, Solomatine and Ostfeld, 2008). 

Shortridge et al. (2016) used ANN, random forest, Generalized Additive Models 

(GAM), multivariate adaptive regression splines and M5 cubist models to simulate monthly 

streamflows in the highland of Ethiopia. The results indicated that random forest and GAM 

were useful in providing insights into physical watershed function. Yaseen et al. (2016) applied 

the Extreme Learning Machine (ELM) method to forecast the monthly streamflow discharge 

rate in the Tigris River, Iraq. The results showed a good improvement using ELM model than 

support vector regression and generalized regression neural network in forecasting the 

streamflow. A study by Badrzadeh et al. (2015) confirmed the robustness of hybrid wavelet-

based models for real-time runoff forecasting at Casino station on Richmond River, Australia 

compared to ANN, adaptive neuro-fuzzy inference systems, wavelet neural networks. 

However, these models do not add any scientific knowledge or improved understanding in the 

field of hydrology. Therefore, parameter and physically-based models are adopted as useful 

alternative approaches to able to consider the physical law in these models. 

2.3.2 Parameter models 

Unlike the empirical models, the structure of parameter models is defined by the 

modeller’s understanding of the hydrological system. Parameter models are formulated with 

some conceptual elements that are a simple representation of a reference system. Conceptual 

models also considered physical law but in a profoundly simplified form. One of the advantages 

of conceptual models is its non-linearity, which reflects the threshold presence in the 

hydrological system. Conceptual models describe all the component of hydrological processes. 

It consists of several interconnected reservoirs representing the physical elements in a 

catchment. Conceptual models are useful for various purposes and they can be used to infill the 

lost data or reconstruction of flow sequences. 

One of the well-known conceptual models is the Stanford Watershed Model (SWM) 

elaborated by Crawford and Linsley (1966). The Sacramento model (Bergstrom, 1976) and the 

GR4J model (Perrin et al., 2003) are other well-known conceptual rainfall-runoff models with 
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different complexities. The GR4J model uses two unit hydrographs and two storages for the 

production and routing of water. The storage of rainfall, evapotranspiration and percolation in 

the surface soil are controlled by the production storage and the routing of effective rainfall is 

controlled by the routing storage. The Sacramento model has five runoff components (i.e., 

direct runoff, surface runoff, interflow, supplementary base flow and primary base flow). These 

models have been widely applied in many studies (Petheram et al., 2012, Shin et al., 2015, Shin 

and Kim, 2017). 

Conceptual models simulate a behaviour of a system based on some perception while 

physically-based models represent the relevant process by physically considering the meaning 

of the full procedure in a hydrological system. These models, which have been widely used to 

simulate streamflows, are discussed in the following section. 

2.3.3 Physically-based models 

Physically-based models are based on physical laws and theoretical principles. These 

models are characterized by parameters derived by field measurements and have a direct 

physical significance. The models use a spatial discretization based on grid, hillslopes or some 

hydrologic response units. Therefore, these models can be highly appropriate when a high level 

of spatial discretization is needed in modelling. The physically-based models can have many 

advantages compared to other models because of the use of parameters having a physical 

interpretation. The limitation of these models is that large data needed, scale-related problems 

and overparameterization. 

One of the best-known physically-based models is the MIKE SHE, which was developed 

by a consortium of European institutes such as Danish Hydraulic Institute (DHI), British 

Institute of hydrology and French consulting agency SOGREAH. MIKE SHE is a fully 

distributed, physically-based, distributed model capable of both single event and continuous 

simulations. The model can simulate hydrology in plot field and watershed scales (Frana, 2012). 

The physically-based nature of the model lends inclusion of topography and watershed 

characteristics (i.e., soil, vegetation and weather parameter sets). 

Larsen et al. (2014) presented the results from coupling of the HIRAM RCM at 11 km 

resolution and MIKE SHE-SWET hydrology and land surface models over the 2,500 km2 



20 

 

Skjern River catchment, Denmark. Golmohammadi et al. (2014) used MIKE SHE, Soil and 

Water Assessment Tool (SWAT) and Agricultural Policy Environment extender models to 

simulate the streamflows of the Canagagigue watershed in the Grand River basin, Canada. The 

results indicated that the mean daily and monthly flow simulated by MIKE SHE was much 

better than other models. Three hydrological model (i.e., NAM, SWAT and MIKE SHE) were 

used to model the combined impact of climate change and land use change on hydrology for a 

catchment in Denmark in a study of Karlsson et al. (2016). The results indicated that substantial 

changes in discharge extreme due to the changing of land use. 

Physically-based models, including SWAT and the Hydrologic Engineering Center-

Hydrologic Modelling System (HEC-HMS) are also used universally to estimate runoff in both 

gauged and ungauged watersheds. SWAT is a complex physically-based, continuous model and 

was designed to forecast the impact of watershed management practices on hydrology, 

sediment, water quality and agriculture production on the gauge and ungauged basins. The 

model simulates a watershed by dividing it into sub-basins which are further subdivided into 

Hydrologic Response Units (HRU). For each HRU in every sub-basin, SWAT simulates the 

soil water balances, groundwater flow, lateral flow, channel routing, evapotranspiration, crop 

growth and nutrient uptake, pond and wetland balances, soil pesticide degradation and in-stream 

transformation nutrients and pesticides (Vazquez-Amábile and Engel, 2005). 

Abbaspour et al. (2015) used SWAT model to simulate the hydrologic regime for sub-

basin scale of Europe. This study contributed essential understanding into continental water 

resources quantity and water quality at a sub-basin scale with a monthly time interval. An 

improved version of SWAT model was used to predict the impacts on watershed hydrology and 

water quality for two watersheds in the Midwest USA (Raj et al., 2016). The study of Lin et al. 

(2015) showed a varying change in runoff among three time scale (i.e., daily, monthly and 

annual) and three catchments in the Jinjiang River basin under land use change scenarios using 

calibrated SWAT model. 

HEC-HMS model, a physically-based distributed model, designed to simulate the 

rainfall-runoff process of dendritic watershed systems, has been widely used to simulate and 

forecast streamflows in humid, tropical, subtropical and arid watersheds (Ibrahim-Bathis and 

Ahmed, 2016). HEC-HMS models including Soil Moisture Accounting (SMA) and snow 
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algorithms for assessing the climate and land use changes of three watersheds in the Great Lakes 

was used by Gyawali and Watkins David (2013). Their study showed that HEC-HMS model 

provides a reasonably good estimate of runoff and shows some modest improved results 

compared with large basin runoff model. HEC-HMS and Watershed Bounded Network Model 

(WBNM) were used to predict runoff hydrograph from the small urban catchments in Azzaba 

city. The results indicated that HEC-HMS provided acceptable simulations of the flood events 

and simulated flood hydrograph was fitted with the realistic situation (Laouacheria and 

Mansouri, 2015). Performance of two hydrological models, namely HEC-HMS and PRMS, 

were evaluated by simulating the storm event in Taunton River Basin. Results from a study by 

Teng et al. (2018) showed that both models could provide flood predictions of rainfall runoff 

during the storm event. Kabiri et al. (2015) combined SDSM and HEC-HMS models to project 

the discharge of Klang River, Malaysia under climate change context. An increasing trend in 

the discharge during the months of June, September and October in three future periods under 

A2 scenario was indicated in their study. 

2.4 Flood Frequency Analysis 

Flood Frequency Analysis (FFA) can be used for understanding of the probabilistic 

behaviour of flood events. Further, FFA is also used for establishing a relationship between 

flood magnitude and frequency of occurrence (return period) and providing the flood quantile 

estimate at a given location of interest (Castellarin et al., 2012). FFA can be classified into 

univariate and multivariate analyses, depending on whether one flood variable or several flood 

characteristics are considered. 

Univariate flood frequency analysis, in term of flood peaks, are considered as a common 

design criterion in flood control engineering. However, in hydrologic planning and design for 

flood management, it is used not only to know information about flood peak but also to 

determine the characteristics of flood volume and duration. Furthermore, flood events with 

associated flood characteristics can be considered as multivariate events. Therefore, instead of 

focusing on one flood characteristic, which has been done traditionally, the flood event can be 

modelled using the joint distribution of several flood characteristics (Karmakar and Simonovic, 

2008, Shiau et al., 2006). A review of univariate and bivariate flood frequency analysis is 

presented in the following sub-sections. 
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2.4.1 Univariate frequency analysis 

The frequency of occurrence of the extreme events is analyzed using statistical 

probability distribution fitted to the flood series. The first step is to extract the flood series from 

flood data. AM and POT are commonly used to investigate the changes in flood frequency. AM 

sample is defined by the maximum peak discharge of each year. However, AM cannot be used 

in the case of short data series because it provides less information (some peak values, which 

are still relatively high are not considered in AM series while some low values can be part of 

the AM series sample) (Bezak et al., 2014, Lang. et al., 1999). Unlike the AM, which extracts 

only one event per year. POT considers a wider range of events and provides more information 

than AM, especially for flood magnitude estimation (Kay et al., 2009, Roth et al., 2012). 

Although POT approach is also widely applied where flood variables have small sample sizes, 

AM approach is still used in FFA by several researchers. Bezak et al. (2014) compared the 

results of FFA for data from Litija on the Sava river in Slovenia by using both POT and AM. 

Their study indicated POT gave better results than AM approach. Similarly, Karim et al. (2017) 

indicated that frequency estimates based on POT approach are better than AM for small and 

medium floods while both approaches gave the same results for large floods. 

Another important step in FFA is the choice of a Probability Distribution Function (PDF) 

for the fitting of extreme flood series. There have been several studies which compared the 

various probability distributions for FFA. These studies indicated that selection of appropriate 

PDF has an important role in FFA, as a wrong choice could lead to significant error and bias in 

flood quantile estimation, particularly at higher return periods (Rahman et al., 2013). However, 

the choice of an appropriate probability distribution is still one of the major issues in FFA. 

There are many probability distributions which are widely used in FFA for extreme events 

studies such as Gumbel, Log-Normal (LN), Pearson Type 3 (P3), Log-Pearson Type 3 (LP3), 

GPD and Generalized Logistic (GL). 

Rahman et al. (2013) used five PDFs to analyze the frequency of flood series in 

Australia. The results showed that LP3, GEV and GPD are the three of the best-fit distributions. 

Seven different PDFs were considered for Tasmania and the results indicated that LN 

distribution provided the best-fit to the observed flood data in a study carried by Haddad and 

Rahman (2011). Gumbel distribution provided a better fit to the flood data than LN, P3, LP3, 



23 

 

and 3-parameters LN distributions for FFA in the Balu-Tongikhal River system in Dhaka city 

which was indicated by a study of Gain and Hoque (2013). 

2.4.2 Bivariate frequency analysis 

In contrast to the univariate frequency analysis in which only one flood variable is used 

in the analysis, multivariate frequency analysis simultaneously considered flood characteristics 

(i.e., flood volume, duration and peak). Multivariate parametric distributions (e.g., bivariate 

normal, bivariate gamma, bivariate extreme value distributions, etc.), which have been 

extended from univariate distribution, have been used to model multivariate flood 

characteristics for different purposes. 

Sheng (2001) used bivariate gamma distribution to model the joint probability behaviour 

of bivariate flood characteristics in the Madawask River basin in Quebec, Canada. The results 

indicated that bivariate gamma distribution could be useful for multivariate extreme events. A 

study using bivariate extreme value distribution in FFA was conducted by Shiau (2003) and 

another study was done by Escalante-Sandoval (2007). These two studies concluded that 

bivariate extreme value distribution showed a good agreement between theoretical model 

output and observed data. They also provided more useful information than univariate 

frequency analysis. Similarly, under the assumption that flood peak and volume have the same 

type of marginal distributions, Yue and Wang (2004) used bivariate extreme value distribution 

for FFA of these variables. However, bivariate distribution functions cannot model the joint 

probability behaviour of the flood variables that are inter-correlated. Furthermore, for the flood 

events, all flood characteristics do not have the same type of marginal probability distribution. 

Therefore, the copula approach may provide a flexible solution (Genest et al., 2007). 

The copula is a function that links univariate distribution functions to form bivariate 

distribution functions. The main advantage of this method is that the dependence structure is 

independently modelled with the marginal distributions allowing for different type of 

distribution (Dupuis, 2007, Zhang and Singh, 2007). Several researchers have used copulas 

approach to investigate the bivariate frequency analysis. 

For example, Duan et al. (2016) used copula approach to investigate the flood 

characteristics in the Huai River basin under climate change condition. Their study indicated 
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that copula can be a viable and flexible tool for FFA and may provide useful information for 

risk-based flood control. Filipova et al. (2018) applied copulas to present a method for selecting 

different copulas for modelling the joint probability of flood peak and volume for 27 catchments 

in Norway. They suggested that two parameter copulas BB1 and BB7 should be selected in 

catchments with high steepness, high mean annual runoff and rainfall flood regime. 

Additionally, Sraj et al. (2015) applied different bivariate copulas from three families (i.e., 

Archimedean, extreme value and elliptical) to carry out the bivariate flood frequency analysis 

of flood characteristics of Sara River in Slovenia. Their study found that Gumbel-Hougaard 

copula as the most appropriate for the pair of flood characteristics. Similarly, Karmakar and 

Simonovic (2009) indicated that Gumbel-Hougaard copula is the best approach for modelling 

the dependence structure between flood characteristics of Red River at Grand Forks, Dakota by 

using Archimedean family copula. 

2.5 Flood Hazard Maps 

All parts of any river basin are vulnerable to floods in different degrees under different 

cases and situations. Flood hazard maps are used most commonly for flood risk communication 

and management (Luke et al., 2018). A flood hazard map is a useful tool for decision and 

policymakers and local authorities to design protection measures in the river basin. Hazard 

maps provide information on the probability of the flooding for different return periods as well 

as the depth and extent of the spread of floodwater in the affected areas. Therefore, it is 

important to identify potential inundation areas with high appropriate level of accuracy. This 

information also provides emergency organizations to calibrate and adjust their warning system 

and prepare priority evacuation plans. It may be used to find the best strategies for risk 

reduction. 

There are two main approaches to develop the flood hazard maps, namely deterministic 

and probability approaches. The most common representation of simulation results is a 

deterministic flood inundation map based on a single simulation. Probabilistic flood mapping 

designed to incorporate uncertainty from input data and model parameters, represent spatial and 

temporal risk and present flood maps in terms of probabilities and percentages. 
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2.5.1 Probabilistic approach 

In the probabilistic approach, the process of floodplain mapping requires certain steps. 

These steps include: (i) the setting up of flood inundation models; (ii) sensitivity analysis of the 

model using historical flood data and (iii) ensemble simulation using an uncertainty design 

event. The probabilistic approach, which is based on ensemble simulation, does not necessarily 

require the use of physical behaviour of the river and floodplain models. Di Baldassarre et al. 

(2010) compared two different methods (i.e., deterministic and probabilistic) for flood hazard 

mapping using 2D hydrodynamic hydraulic model. Their study indicated that flood hazard 

mapping using probability approach seems to be more reliable. Kalyanapu et al. (2012) used 

Monte Carlo based 2D flood inundation framework for estimating flood hazard mapping. Their 

study showed that the probability-weighted flood risk approach provides improved accuracy of 

flood risk estimation. 

However, the main disadvantage of using physically-based 2D hydraulic models in 

probability frameworks, has been the simulation time required for each simulation. Simulating 

hundreds of flood events with these computational speeds would take large computer time 

making 2D model application counterproductive (Timbadiya et al., 2015). A probability 

analysis with 2D hydraulic models has been limited to a smaller number of scenarios and 

smaller spatial domains. Additionally, Aronica et al. (2012b) suggested that flood inundation 

probability alone may be insensitive to discharge in relatively steep urban catchments and 

maybe a limited measure of flood hazard. Furthermore, Thompson and Frazier (2014) supposed 

that a few probabilistic flood hazard maps were limited with respect to the hazard behaviour 

they modelled. These models could also be computationally expensive and parameterization 

was difficult to compute for forces that were not fully predictable. 

The deterministic approach, which used physically-based 2D flood modelling to 

simulate synthetic design flood events, will overcome these problems to develop flood hazard 

maps. A review of a deterministic approach will discuss in the following part. 

2.5.2 Deterministic approach 

In a deterministic approach, floodplain maps consist of construction of a physically-

based fully 2D hydraulic model, calibration and validation of the model using historical flood 
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event, using the best-fit statistical model to generate the design flood hydrograph and 

elaboration of the model results to generate flood hazard maps. Deterministic modelling tools 

have widely been applied because they are capable of translating changes in input parameters 

into a change in flood characteristics. 

Flood inundation depth and inundation extent can be computed using computational 

models based on solutions of the full or approximate form of the shallow water equations. 2D 

hydrodynamic models are identified as the appropriate tools for simulating the flow of water 

over flat terrain and complex topography. Such model results provide further opportunity to 

develop more meaningful hazard maps by incorporating additional hazard parameters. 

The high-resolution flood hazard maps, which was developed using the advanced 

deterministic and probability approaches, can provide complete information about the physical 

hazard and reduce uncertainty found in traditional approaches. Masood and Takeuchi (2012) 

developed flood hazard maps using 1D hydrodynamic model for the city of Dhaka in 

Bangladesh. These studies used a simple form of deterministic approach in establishing flood 

hazard maps. Mazzoleni et al. (2014) suggested a semi-probabilistic approach to develop the 

hazard map due to embankment-overtopping for the Po River basin. They used 1D and 2D 

hydrodynamic models to simulate the hydrodynamic regime (i.e., water depth and flow 

velocity) and the flood hazard maps were obtained using the hazard curves, which combined 

different flood parameters (i.e., flood extent, water depth and flow velocity). Mosquera-

Machado and Ahmad (2007) used flood frequency analysis and 1D hydraulic model (HEC-

RAS) to create three flood hazard maps with different return periods for Atrato River, 

Columbia. Their study provided useful information in evacuation planning as well as damages 

estimating. 

2.6 Conclusions 

In this chapter, an overview of the literature on downscaling methods for climate change 

projections, hydrological modelling, flood frequency analysis and flood hazard maps estimation 

are presented. It is seen that extreme hydrological events (i.e., floods and drought) are likely to 

increase in frequency, duration and magnitude in the sensitive climate regions. Besides, climate 

change is expected to increase the magnitude and frequency of extreme events and likely to 
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cause more intense and frequent floods. Therefore, it is crucial to examine whether the 

magnitude of flood characteristics will remain the same or will change under climate change 

scenarios at river basin scale. This study assesses the potential impact of climate change on 

flood frequency using the POT approach. 

One of the measures to mitigate the flood damage is providing useful information 

through floodplain areas, the spatial distribution of flood hazard. Therefore, it is of great 

importance for understanding flood hazard at river scale. This research aims to determine the 

flood hazard maps for Saigon-Dongnai River system, Vietnam under climate change context in 

formulating climate adaptation and risk mitigation strategies. Combining the downscaling 

methods, which are used to downscale climate variables from climate model outputs, 

hydrological models, flood frequency analysis and hydrodynamic models, the flood hazard 

maps have been developed. 
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Chapter 3 

Methodology 

 

 

 

3.1 Introduction 

The methodology is presented in this chapter aims to address all the research objectives. 

The description and linking of each objective corresponding to the methodology are also 

introduced in this chapter. 

3.2 Methodology 

In order to achieve all the research objectives listed in section 1.4, a framework of the 

methodology adopted is presented in Fig. 3.1. The aim of this study is to assess the changes of 

flood risk under impact of climate change context. In order to achieve the general objective, the 

specific objective along with the corresponding actual methodology are presented as follow. 

The first objective is obtained by using the univariate flood frequency analysis. For each POT 

dataset, the best-fitting distribution is selected by testing several distributions 
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(i.e., GPD, P3, LP3, Gumbel, LN and GL) and they are presented in Chapter 4. Downscaling, 

hydrological modelling and flood frequency analysis methods are used to achieve the second 

objective in this study (Chapter 4). The third and fouth objectives can be acquired by using the 

LLHR, tail dependence test and copula approach respectively and they are presented in Chapter 

5. 

Bivariate flood frequency analysis using copula and hierarchical cluster analysis are 

performed to achieve a fifth objective (Chapter 5). The sixth objective and final objective can 

be obtained by simulate the flood depth and velocity variables using coupled hydrodynamic 

and they are presented in Chapter 6. 

The methodology proposed for each part of the present research to achieve a specific 

objective is applied for the study area and presented as case studies. Three case studies are 

considered. Each case study is summarised below and detailed in its corresponding section. The 

details of the available software which are used in this study is also presented in the following 

sections. 
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Fig. 3.1: A methodology schematic 
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3.2.1 Case studies 

To investigate the changes of flood frequency, flood series extracted using POT 

approach are applied to the data of the Trian gauging station in the Saigon-Dongnai River in 

the South of Vietnam. In this case study, the monthly change factors concerning the baseline 

period of 1980-2005 are calculated for the future period (2020-2045) by using RCMS outputs. 

These change factors are used as the input data for LARS-WG to generate the future climate 

time series. The continuous hydrological model (i.e., HEC-HMS) is used to generate future 

discharge time series based on the future climate series. The best fitting distribution is selected 

by testing several distributions that are normally used in extreme value analysis, namely GPD, 

P3, LP3, Gumbel, LN and GL distributions. This case study also evaluates the correctness of 

directly using the asymptotic distribution to model the future POT dataset. 

The bivariate flood frequency analysis based on copulas approach is performed on a 

Trian streamflow gauge located in the South of Vietnam. To find the best fit marginal 

distributions both parametric and nonparametric family of distribution are used in this study. 

Gumbel, GPD, LN, P3, LP3 and GEV belonging to the parametric distributions along with 

nonparametric kernel distributions are evaluated. The selection of copulas in this study is 

decided based on the tail dependence test. Three extreme value family of copulas (i.e., Gumbel-

Hougaard, Galambos and Husler-Reiss) are evaluated to model asymptotically dependence pair 

of flood characteristics. Clayton, Frank and Gaussian copulas are used to assess the potential 

their application in case of variables are diagnosed as asymptotic independence. 

The flood hazard maps are quantified by considering the water depth and velocity in 

combination for the downstream of Trian catchment. In this case, the coupled 1D and 2D 

hydrodynamic model (MIKE FLOOD) is used to simulate the flow regime. The design flood 

hydrograph obtained from bivariate flood frequency analysis. is used as the input for the 

hydrodynamic model. Besides, high-quality topographic data (i.e., DEM and LiDAR) of input 

for hydraulic models, collected using modern survey techniques, are also used to improve the 

accuracy of flood hazard maps. The latest advancement in flood modelling technique is the 

development of flexible meshes. These meshes allow constructing a finer resolution of smaller 

features to reflect the changes in the topography and coarser resolution at the broader floodplain 

without resorting model grid nesting to save computational effort. Therefore, 2D flexible mesh 
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is selected for the hydrodynamic modelling in this study. 

3.2.2 Available software 

The statistical community is providing a great number of functions for helping in 

performing flood frequency analysis using the R software. R is a free and open sources software 

for statistical computing and graphics. Several well-known statisticians and computational 

scientists have reviewed it. A summary of the R-packages used in performing a specific 

computation in this research is included below: (i) the copula (Kojadinovic and Yan, 2010b) 

and Vine copula (Schepsmeier et al., 2012) packages for copula modelling, (ii) ismev 

(Heffernan et al., 2012), extRemes (Gilleland and Katz, 2016) and nsRFA (Viglione et al., 

2018) packages for marginal distribution modelling; (iii) Kendall (McLeod and AI, 2011) 

package for trend analysis; (iv) POT (Ribatet, 2007) package for testing tail independence test 

and plotting of parameters estimated at various thresholds. 

The free software LARS-WG is used to downscale the climate data that are obtained 

from the output of GCMs and RCMs. LARS-WG is a stochastic weather generator which can 

be used for the simulation of weather data at the single site. LARS-WG has been considered as 

a computationally inexpensive tool to produce daily site-specific climate scenarios for impact 

assessment of climate change (Semenov, 2008). LARS-WG can be downloaded from 

http://resources.rothamsted.ac.uk/mas-models/larswg.html. 

The free software HEC-HMS and HEC-GeoHMS are used to simulate the hydrological 

modelling. HEC-HMS is used for modelling rainfall-runoff processes for a dendritic watershed 

while HEC-GeoHMS is used to analyze digital terrain data and transforms the drainage paths 

and watershed boundaries into a hydrological data structure. The HEC-HMS and HEC-

GeoHMS software can be downloaded from the USACE website at 

http://www.hec.usace.army.mil/software/hec-hms.html. 

The commercial flood modelling package MIKE FLOOD is used to simulate the flood 

propagation, flood depth, flood velocity and flood inundations extent in this study. MIKE 

FLOOD dynamically links two independently software, namely MIKE 11 and MIKE 21 and 

they have been developed by the DHI, Denmark. MIKE 11 and MIKE 21 are coupled by using 

links in transferring water between the channels and the overland of the model domain. There 
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are several types of links that can be used in various situations. Standard link, which was 

commonly applied in flood modelling, is used in this study. The licensed of this model is 

available with the Department of Civil Engineering of National Institute of Technology, 

Warangal, India. 
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Chapter 4 

Impact of Climate Change on Flood Frequency of the 

Trian Reservoir in Vietnam Using RCMS 

 

 

 

4.1 Introduction 

An increasing trend in frequency as well as intensity of extreme rainfall events is being 

observed in Southeast Asia and it is projected that more frequent and intense extreme events 

will occur in this region (IPCC, 2014). These changes may have a significant impact on the 

hydrological cycle of this region (Setegn et al., 2011). The changes in precipitation combined 

with evaporation have potential impacts on the runoff, especially, increasing the frequency and 

intensity of flood. Flood events may cause negative impacts on economic and societies aspects. 

For example, the flood can lead to lower crop production, human and material losses as well as 

cause a negative impact on the natural ecosystem. Therefore, it is necessary to analyse the 

changes in flood magnitude under climate change context to provide suitable measures in 

mitigating climate change impacts. 



35 

 

Vietnam is one of the countries that is severely impacted by climate change (Rutten et 

al., 2014, Trinh et al., 2013). The Saigon-Dongnai River basin is one of the largest river basins 

as well as the economic center in the South of Vietnam. Trian watershed is located in the upper 

Saigon-Dongnai River basin and it is the biggest sub-basin of this river. In order to meet water 

and energy demands as well as flood control for cities located in the downstream (i.e., 

Hochiminh, Bienhoa, Vungtau, etc.), Trian reservoir is being operated for multiple purposes 

such as hydropower production, water supply and flood control. However, till date, no study 

has been conducted to assess the impact of climate change on this basin. Hence, it is necessary 

to evaluate the potential future impact of climate change on this watershed, particularly on flood 

frequency. 

Flood estimation cannot be done purely by statistical analysis because the characteristics 

of the flood events can change in the future due to climate change. Therefore, the physically-

based meteorological and hydrological modelling should be used (Booij, 2005). The framework 

for evaluating flood frequency under climate change contexts related to physically-based 

approach are widely applied by many researchers (Arnell and Gosling, 2013, Hirabayashi et al., 

2013, Kay and Jones, 2012). This framework includes three steps: (i) extraction of climate data 

series from the future climate change scenarios; (ii) simulation of future discharge series using 

any hydrological model; (iii) analyzing the flood frequency based on the projected discharge 

series using the statistical approach. 

GCMs are widely used to predict the changes in atmospheric variables under climate 

change scenarios (Anandhi et al., 2011). GCMs are the physics-based meteorological models, 

which represent atmospheric and oceanic dynamics (Angeles et al., 2007). However, the output 

from GCMs normally has a low spatial resolution of approximately 100-250 km and it is 

inadequate for regional impact studies especially for analyzing the changes in extreme 

precipitation and floods because it is lacking detailed regional information which is needed to 

resolve various features at the catchment scale (Fowler et al., 2007). 

In order to overcome these obstacles, statistical and dynamical downscaling approaches 

are used as a common approach (Prudhomme et al., 2002). On the other hand, RCMs are 

frequently used to analyse the impact of climate change on hydrology in the watershed because 

of its higher resolution. The resolution of RCMs is around 12-50 km and it accounts for the 
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sub-GCM grid scale forcing (e.g., complex topographical features and land cover 

heterogeneities in a physics-based way). However, RCMs inherit the biases due to systematic 

model errors caused by imperfect conceptualization, discretization and spatial averaging within 

grid cells. Therefore, statistical downscaling is also performed for RCM projection (Chen et al., 

2011, Sunyer et al., 2012). 

There are several statistical downscaling methods which establish statistical links 

between large-scale weather and observed local-scale weather. Maraun et al. (2010) classified 

statistical downscaling approaches into PP, MOS, and WGs. PP method establishes statistical 

relationships between variables at large scales and local scales. MOS establishes statistical 

relationships between variables simulated by the RCM and local scale observation to correct 

RCM errors. WGs approach generates local scale weather time series resembling the statistical 

properties of observed weather. WGs are extensively used to generate the daily time series 

statistically similar to the observed climate data, which are used as an input data for the 

hydrological model to assess the impact of climate change on hydrological risk. Furthermore, 

it is a useful approach for assessing the change in extreme events (Semenov, 2008, Wilks and 

Wilby, 1999). 

Among several WGs, LARS-WG, based on semi-empirical distributions, is probably the 

best semi-empirical weather generators (Semenov and Stratonovitch, 2010). More importantly, 

the semi-empirical distribution in LARS-WG is very flexible because it can be fitted to several 

probability distributions (Mikhail et al., 1998). Further, this weather generator correctly 

reproduced most of the characteristics of the observed data in the Asian region (Semenov and 

Stratonovitch, 2010). All semi-empirical distribution parameters of weather variables are 

determined using observed daily climate data. These parameters combined with the relative 

change factor of length of wet and dry spell and mean of precipitation amount as well as an 

absolute change in temperature derived from GCMs or RCMs outputs are used to generate time 

series for future. 

To investigate the changes in flood frequency, AM and POT are commonly used to 

extracts the flood events. AM sample is defined by the maximum peak flow of each year. 

However, AM cannot be used in the case of short data series because it provides less 

information (some peak values, which are still relatively high are not considered in AM series 
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while some low values can be part of the AM series sample) (Bezak et al., 2014, Lang. et al., 

1999). Unlike the AM, which only extract one event per year, POT considers a wider range of 

events and provides more information than AM, especially for estimation of flood magnitude 

(Kay et al., 2009, Roth et al., 2012). 

Normally, the GPD is fitted with POT magnitudes as a default in extreme values analysis 

(Coles et al., 2001, Davison and Smith, 1990, Katz et al., 2002). However, there could be more 

than one distribution that can be fitted to the sample data. Hence, identifying the best fitting 

distribution to the sample need to be tested with several distributions (Lang. et al., 1999). The 

LN, GPD, P3, LP3, Gumbel, and GL have been widely used for modelling extreme values 

(Bezak et al., 2014, Lang. et al., 1999, Saf, 2009a, Salas et al., 2012). Furthermore, many studies 

used AM to assess the impact of climate change on flood frequency at global as well as regional 

scale (Hirabayashi et al., 2013, Jung et al., 2011) while there are only a few studies which used 

POT approach. Even the studies which used POT approach mostly considered only a single 

distribution (i.e., GPD). However, in addition to the GPD, researchers have shown that the peak 

values can be fitted with many distributions such as Gumbel, LP3, LN, exponential distributions 

and etc. (Sarhadi et al., 2012, Seckin et al., 2011, Zaman et al., 2012). Thus, it is important that 

numerous distributions which are normally used in extreme values analysis should be tested 

and the best fitting distribution needs to be identified for each POT dataset. 

Consequently, this study will evaluate the potential impact of climate change on flood 

frequency of the Trian reservoir belonging to the Saigon-Dongnai River basin, Vietnam. In 

addition, this study also evaluates the correctness of directly using the asymptotic distribution 

to model the future POT dataset. 

4.2 Study Area and Data 

The Trian catchment is one of the largest catchments in the south of Vietnam, which is 

a part of the Saigon-Dongnai River basin. The total area of the Trian catchment is 14,200 km2. 

The basin lies between latitudes of 10o53'46'' N and 12o22'08'' N and longitudes of 107o01'52'' 

E and 108o46'55'' E (Fig. 4.1). The Trian basin lies in the monsoon tropical zone, which is 

affected by the North-East and South-West monsoon. The climate regime is divided into two 

distinct seasons. The rainy season is from April to November and the dry season is from 
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December to March of the following year. The annual average rainfall in the Trian basin is 

about 2,200 mm, while the annual average temperature is 20.6oC. The maximum temperature 

is 36.6oC in the month of April while the minimum temperature of 4.5oC was recorded in the 

month of January. The mean monthly evaporation is 80.3 mm. The seasonal variation shows 

that evaporation is high in the dry season, especially in the month of March with the value of 

118.6 mm per month while the evaporation is low during the rainy season which occurs in 

September (48.5 mm per month). 

 

Fig. 4.1: The hydro-meteorological network in the study area 
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There are 13 rain gauges, six stations located in the Langa River basin and the others 

lying in the Dongnai River (Fig. 4.1). Baoloc, Daknong, Dalat, and Lienkhuong are the four 

weather stations which record all meteorological variables (i.e., rainfall, temperature, relative 

humidity, sunshine hour data, speed and direction of wind). The remaining stations only 

measure the precipitation data except for Xuanloc station which records temperature, 

evaporation, and humidity. There are seven streamflow gauges which cover the entire basin. 

Daknong, Talai, Trian, and Thanhbinh are located in the Dongnai River in which Trian is the 

main outlet. Tapao, Phudien, and Dainga are located in the Langa River. However, three main 

streamflow gauges (i.e., Trian, Tapao and Talai) which are located in the main river are used 

for calibration and validation procedure. Rainfall and runoff data are collected from the 

National Hydro–Meteorological Service (NHMS) of Vietnam. Additionally, a Digital Elevation 

Model (DEM) with 30 m spatial resolution is downloaded from Shuttle Radar Topography 

Mission (SRTM) while the Land Use Land Cover (LULC) and soil type digital maps are 

collected from the Ministry of Natural Resources and Environment (MONRE), Vietnam. 

4.3 Methodology 

The methodology used in this study is shown as a flowchart in Fig. 4.2. LARS-WG is 

used to downscale the climate data which are obtained from the RCMs and GCM for 10 stations 

in this study. The LARS-WG parameters in each station are determined based on the observed 

climate data (1980-2005). The monthly change factors with respect to the baseline period of 

1980-2005 are then calculated for the future period (2020-2045) using RCMs and GCM outputs. 

These change factors are used as input data in LARS-WG to generate the future climate time 

series. Next, the future discharge series are simulated using a continuous hydrological model 

(HEC-HMS) and the future climate data are simulated using LARS-WG. The impact of climate 

change on flood frequency is analysed using the extreme discharge series extracted using the 

POT approach. For each POT series, the best fitting distribution is selected by testing several 

distributions which are normally used in extreme values analysis such as, GPD, P3, LP3, 

Gumbel, LN and GL distributions. In this study, the parameters of the distribution are estimated 

using the method of maximum likelihood and the return levels of flood magnitude are 

determined for different return periods ranging from 2 to 100 years. 
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Fig. 4.2: The framework for assessing the changes in flood frequency 

4.3.1 Statistical downscaling 

CORDEX project provides a quality controlled dataset of Regional Climate 

Downscaling (RCD)-based information for historical and 21st-century projections (Park et al., 

2016). Two scenarios (i.e., RCP 4.5 and 8.5) from five RCMs, namely, HadGEM3-RA (Had), 

SNU-MM5 (MM5), SNU-WRF (WRF), RegCM4 (Reg) and YSU-RSM (YSU) which are from 

the same GCM (HadGEM2-AO) belonging to the CORDEX-EA projects are used in this study. 

Table 4.1 lists the details of CORDEX-EA RCMs used in this study. 

Table 4.1: The description of GCM and RCMs 

Expansion GCM RCMs Scenarios
National Institute of Meteorological 
Research (MOHC) H

adG
E

M
2-A

O
 

HadGEM3-RA RCP 4.5&8.5

Kongju National University (ICTP) RegCM4 RCP 4.5&8.5
Seoul National University 
Meso-scale Model version 5 (MM5) SNU-MM5  RCP 4.5
Seoul National University (WRF) SNU-WRF5 RCP 4.5&8.5
Yonsei University 
(Regional Spectral Model) YSU-RSM RCP 4.5&8.5

Fig. A. 1 (Appendix A) shows the boxplots of observed, different RCMs and GCM 

simulated annual precipitation during the base period (1980-2005) for four rainfall stations. 

There is a significant difference between the observed and raw RCMs/GCM annual rainfall for 
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rain gauges of the study area. 

The Q-Q plots compare the quantiles of observed and simulated data. The Q-Q plots 

(Fig. A. 2) show a large bias between observed and RCMs/GCM simulated daily rainfall of 

four stations in the study area. Note that similar results are observed at the remaining six stations 

of the study area but, in the interest of brevity, boxplots and Q-Q plots are not shown for those 

stations. The simulated daily rainfall was underestimated in both GCM and Had while other 

RCMs overestimated the daily rainfall. These plots (Fig. A. 1 and Fig. A. 2) show that direct 

output of RCMs and GCM cannot be used as input data for the hydrological model. Therefore, 

statistical downscaling should be performed to adjust the GCM and RCMs simulated 

precipitation and temperature. 

To generate future weather details (such as precipitation and temperature), first the 

change factors are calculated using the outputs from the RCMs/GCM. Then, along with 

observed data, these change factors are used as input in weather generator to simulate future 

weather details (Fowler et al., 2007, Kilsby et al., 2007, Sunyer et al., 2012). In this study, the 

same methodology is used for simulating future weather details for the study area. 

LARS-WG is a stochastic weather generator which is generally used to downscale the 

climate data. There are several studies that compared LARS-WG to other statistical 

downscaling models (Duan and Mei, 2014, Hassan et al., 2014, Mehan et al., 2017, Semenov 

et al., 1998, Sunyer et al., 2012). Most of these studies indicated that the LARS-WG can be 

used as an effective tool for assessing the impact of climate change at local scale. In additional, 

LARS-WG is widely used in studying the impacts of climate change on hydrological variables. 

For example, Agarwal et al. (2014) used LARS-WG to downscale precipitation in assessing the 

future precipitation in Nepal. Qin and Lu (2014) assessed the impact of climate change on flood 

frequency in China region by combining the LARS-WG and the hydrological model. More 

importantly, LARS-WG is good in modelling the extreme rainfall events (Lu et al., 2015), 

which is the main cause of floods. 

LARS-WG is used to downscale the climate data which are obtained from the RCMs 

and GCM for 10 stations in this study. The LARS-WG parameters (i.e., wet/dry spell length, 

daily precipitation, minimum and maximum temperatures) are analyzed for each station using 

the baseline period (1980-2005) observed climate data. KS, t and F tests are used to ensure the 
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results of this model are reliable. The change factors for two future scenarios (i.e., RCP 4.5 and 

8.5) are calculated using the output of five RCMs and one GCM. In particular, relative changes 

in precipitation amount, wet/dry durations and temperature variability (standard deviation) are 

calculated using Eq. (4.1). For minimum and maximum temperature amount, the absolute 

changes are calculated using Eq. (4.2). 

 i
i

i

Future
CF

Baseline
         (4.1) 

 i i iCF Future Baseline         (4.2) 

where, CFi indicate the change factor for the ith month. For example, the change factor for 

precipitation amount in the month of January is calculated by dividing average January month 

rainfall amount in future time period (2020-2045) with the average January month rainfall 

amount in baseline time period (1980-2005). These change factors are used as input for LARS-

WG to generate the daily precipitation and daily temperature for both future scenarios (i.e., 

RCP 4.5 and 8.5). 

4.3.2 Hydrological model 

The hydrological model used in this study is HEC-HMS version 3.5 developed by the 

US Army Corps of Engineers. HEC-HMS is a well-known model for use in the long-term 

continuous hydrological modelling. It is a semi-distributed model with horizontal structure 

realized via sub-basins. This model consists of four main components (i.e., basin component, 

metrological, control specification and summary and display model outputs) which are 

combined for a simulation run. Besides, the Geospatial Hydrological Modelling Extension 

(HEC-GeoHMS) is also used to create river and basin properties and cross-sections used in the 

Muskingum-Cunge routing with the help of 30m SRTM DEM. 

HEC-HMS provides the Soil Moisture Accounting (SMA) module for continuous 

modelling. SMA, which is designed to compute basin surface runoff, groundwater flow, losses 

attributable to potential evapotranspiration, and deep percolation over the entire basin, is used 

in this study. Fig. 4.3 shows the conceptual diagram of HEC-HMS SMA continuous algorithm. 
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SMA uses five tank storages to simulate the different parts of the rainfall-runoff process 

(Dariane et al., 2016). The Soil Conservation Service (SCS) dimensionless unit hydrograph is 

used to transform the excess precipitation into a flow hydrograph at the outlet of each basin. 

The potential evapotranspiration is calculated by the Priestley-Taylor method. 

 

Fig. 4.3: The conceptual diagram of SMA continuous algorithm in HEC-HMS (Gyawali and 

Watkins David, 2013) 
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Precipitation, evapotranspiration, infiltration excess overland flow, saturation excess 

overland flow, subsurface storm flow, subsurface flow and river flow are important physical 

processes which play a key role in assessing the impact of climate change on flood (Booij, 

2005). A conceptual model is a suitable choice to meet the above requirements because all 

important physical processes are considered as well as because of its simplicity (fewer data 

requirements). Continuous simulation estimates the losses and generates the streamflow by 

simulating the wetting and drying of a catchment at daily, hourly time steps (Boughton and 

Droop, 2003, Pathiraja et al., 2012). Further, the continuous hydrological models are widely 

used to assess the effect of climate change as well (Booij, 2005, Cameron, 2006, Raff et al., 

2009). The main advantage of the continuous hydrological model is that the soil moisture 

condition is continuously simulated. It is to be noted that the soil moisture condition is an 

important component in flood modelling, especially for catchment with large storages as well 

as large difference in runoff between rainy and dry seasons (Pathiraja et al., 2012). SMA 

embedded in HEC-HMS is designed to compute basin surface runoff, groundwater flow, losses 

due to potential evapotranspiration and deep percolation over the entire basin (Feldman and 

Center, 2000). 

The HEC-GeoHMS is used to create river network, basin properties and cross-sections 

which are used in the Muskingum-Cunge routing with the help of 30m SRTM DEM. 

Meteorological data recording sites in each sub-basin (22 sub-basins) are presented in Fig. 4.1. 

Theissen polygon approach is used to compute the areal average precipitation based on the 

available rain gauges. The SCS dimensionless unit hydrograph is used to transform the excess 

precipitation into a flow hydrograph at the outlet of each basin. The lag time (Tlag) is the main 

parameter for this method. Lag time is the time difference between the centroid of rainfall 

excess and the centroid of the Direct Runoff Hydrograph (DRH). Lag time can be estimated 

from the watershed characteristics using Curve Number (CN) by the SCS formula (Ponce, 

1994) and it is given by Eq. (4.3). 

 













5.07.0

7.08.0

104,14

86.222540

YCN

CNL
Tlag       (4.3) 

where, Tlag is the catchment lag time in hours, L is the hydraulic length measured along the 

main river in meters and Y is the average catchment slope in meter per meter. The hydraulic 



45 

 

length and the average catchment slope are derived from river and basin properties and the CN 

is determined based on the several factors such as hydrologic soil groups, LULC and antecedent 

moisture condition. Twelve parameters and five initial conditions of SMA algorithm are 

required to characterize the canopy, surface, soil and groundwater storage units. 

The estimation of these parameters is based on the processing of the LULC, soil map 

using GIS and streamflows analysis. Penman-Monteith and Priestly-Taylor formulations are 

normally used to estimate the potential evapotranspiration (Alfieri et al., 2015, Kay et al., 2006, 

Taye et al., 2011). Arnell (1999) indicated that there was no difference in estimating runoff for 

several regions in Europe using two potential evapotranspiration formulations. Booij (2005) 

suggested that the Priestey-Taylor formulation should be preferable to calculate the potential 

evapotranspiration if meteorological data is not available. Hence, the Priestey-Taylor 

formulation is used in this study for the future climate change scenarios. 

In this study, both manual and automatic methods are used to calibrate the hydrologic 

model. Manual calibration is used to determine a practical range of parameter values, while 

automated calibration is used to refine parameter values. The objective function (percent error 

peak) is used in automating calibration steps. Based on the river systems and available 

hydrological data in this region, a period of 1985-2005 is selected for the calibration of 

parameters in the model which are adjusted using three streamflow gauges in Talai, Tapao and 

Trian stations. The remaining streamflow data from 2006 to 2013 is used for the validation step. 

Normally, the performance of the model is evaluated by comparing observed and model 

discharge in the catchment outlet (Krause et al., 2005). Moriasi et al. (2007) analysed numerous 

of model evaluation technique for watershed model evaluation guidelines for streamflow and 

suggested the use of quantitative statistics such as Root Mean Square Error-observation 

Standard Deviation Ratio (RSR), Nash and Sutcliffe (NSE) and Percent Bias (PBIAS). The 

formulation of RSR and PBIAS are presented in Eq. (4.4) and Eq. (4.5). The range of NSE, 

PBIAS and RSR values are used to assess the performance ratings. For example, the model 

performance is evaluated as satisfactory if NSE>0.5, RSR≤0.7 and PBIAS≤25%. 
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where Qi obs and Qi sim are the ith observed and simulated discharge, Qmean is the mean of 

observed discharge. 

4.3.3 Flood frequency analysis 

As mentioned earlier, in this study, POT method is used to assess the impact of climate 

change on flood frequency. The threshold estimation is the most difficult part in the POT 

method (Lang. et al., 1999, Scarrott and MacDonald, 2012). Threshold choice involves 

balancing between bias and variance. Too low a threshold may violate the asymptotic basis of 

the model, leading to bias while too high a threshold will reduce sample size, leading to high 

variance of the parameter estimates (Coles et al., 2001). Three different approaches, namely, 

the Mean Residual Life (MRL) plot, threshold stability plots and fitting distribution diagnostics 

(P-P, Q-Q, return level and density plots) are used in this study to decide the threshold value. 

Since the POT series may have dependence, to deal with the temporal dependence within 

each peak flood series, declustering is used to filter the dependent peak flood series. The time 

interval between the peaks is chosen based on the catchment area. Lang. et al. (1999) suggested 

that five days plus the natural logarithm of square miles of basin area (r< 5 days+ log(A)) as a 

time interval. Svensson et al. (2005) used 5 days for catchments <45,000 km2
, 10 days for 

catchments between 45,000 km2 and 100,000 km2 20 days for catchments >100,000 km2. Based 

on the actual basin area, the time spans for Trian, Talai and Tapao stations are 10, 10 and 5 

respectively. 

Once the independence condition of POT series is satisfied, the next steps involve the 

choice of appropriate distribution and method of parameter estimation. GPD, which is an 
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asymptotic model for POT series, is widely used in earlier studies (Coles et al., 2001, Davison 

and Smith, 1990, Scarrott and MacDonald, 2012). However, there is no guarantee that the GPD 

is the best distribution for all POT datasets, especially the POT datasets of future time (because 

threshold values are selected using the observed data). For example, from the P-P and Q-Q plots 

(Figs. 4.4a and b), it is observed that the P3 distribution captured the quantiles of flood 

magnitude better than GPD distribution for the POT series which is based on Had_85 of the 

Tapao station. Fig. 4.3c shows the return levels of flood magnitude, which are determined, 

based on GPD, P3 distributions and observed data in Tapao station. The flood magnitude 

appears to be overestimated by GPD while P3 is found as a good fit to the data. Therefore, the 

best fitting distribution to the sample needs to be tested with several distributions, especially 

for future POT samples. 
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Fig. 4.4: P-P and Q-Q plots: (a) GPD, (b) P3 and (c) return level of Had_85 calculated using 

GPD, P3 and observed calculated using GPD in the Tapao station 

The most important aspects for FFA is to find an appropriate distribution. Several two 

and three parameters probability distribution functions are commonly used in hydrological 

studies such as Gumbel, GEV, GPD, GL, P3, LN and LP3. These distributions are used to 

identify the appropriate distribution that best-fit to data sample. The Cumulative Distribution 

Functions (CDF) of these distributions and Log-Likelihood (LLH) used in this study are 

presented in Table 4.2.
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Table 4.2: CDF and LLH of distributions 

Distribution Cumulative distribution function (CDF) and log-likelihood function (LLH) 

 
LN 

 
CDF Fሺxሻ ൌ න

1

𝑥𝜎௒ሺ2𝜋ሻ
ଵ
ଶ

௫

଴
𝑒

ି
ሺ௟௡௫ିఓೊሻమ

ଶఙೊ
య

𝑑𝑥 

 
LLH 𝐿ሺ𝜇௒, 𝜎௒ሻ ൌ െ𝑛𝑙𝑛ሺ2𝜋ሻ െ 𝑛𝑙𝑛𝜎௒ െ ෍ 𝑙𝑛𝑥௜ െ

௡

௜ୀଵ

1
2𝜎௒

ଶ ෍ሺ𝑙𝑛𝑥௜ െ 𝜇௒ሻଶ

௡

௜ୀଵ

 

 
 

P3 
 

CDF Fሺxሻ ൌ න
1

𝛽𝛤ሺ𝛼ሻ
൬

𝑥 െ 𝑐
𝛽

൰
ఈିଵ

𝑒
ି

ሺ௫ି௖ሻ
ఉ 𝑑𝑥

௫

௖
 

 
LLH 

𝐿ሺ𝛼, 𝛽, 𝑐ሻ ൌ െ𝑛𝑙𝑛ሺ𝛽ሻ െ 𝑛𝑙𝑛൫𝛤ሺ𝛼ሻ൯ െ 𝑛ሺ𝛼 െ 1ሻ lnሺ𝛽ሻ

൅ ሺ𝛼 െ 1ሻ ෍ 𝑙𝑛ሺ𝑥௜ െ 𝑐ሻ െ

௡

௜ୀଵ

1
𝛽

෍ሺ𝑥௜ െ 𝑐ሻ
௡

௜ୀଵ

 

 
 

LP3 
 

CDF Fሺyሻ ൌ න
1

𝛤ሺ𝛼ሻ
൬

𝑦 െ 𝑐
𝛽

൰
ఈିଵ

𝑒
ି

ሺ௬ି௖ሻ
ఉ 𝑑𝑦

௬

଴
; 𝑦 ൌ 𝑙𝑜𝑔𝑥 

 
LLH 𝐿ሺ𝛼, 𝛽, 𝑐ሻ ൌ െ𝑛𝛼𝑙𝑛ሺ𝛽ሻ െ 𝑛𝑙𝑛൫𝛤ሺ𝛼ሻ൯ െ ෍ 𝑦௜

௡

௜ୀଵ

൅ ሺ𝛼 െ 1ሻ ෍ 𝑙𝑛ሺ𝑦௜ െ 𝑐ሻ െ

௡

௜ୀଵ

1
𝛽

෍ሺ𝑦௜ െ 𝑐ሻ
௡

௜ୀଵ

 

 
Gumbel 

 
CDF Fሺxሻ ൌ 𝑒ି௘ష

ሺೣషೠሻ
ഀ  

 

 
LLH 𝐿ሺ𝑢, 𝛼ሻ ൌ െ𝑛𝑙𝑛ሺ𝛼ሻ െ

1
𝛼

෍ሺ𝑥௜

௡

௜ୀଵ

െ 𝑢ሻ െ ෍ 𝑒
ିሺ௫೔ି௨ሻ

ఈ

௡

௜ୀଵ

 

 
GL 

 
CDF 
 

 

Fሺxሻ ൌ ൬1 ൅ ൜1 െ
𝑘
𝛼

ሾ𝑥 െ 𝜉ሿ
ଵ
௞ൠ൰ 

 
 

LLH 𝐿ሺ𝑘, 𝜉, 𝛼ሻ ൌ െ𝑛𝑙𝑛ሺ𝛼ሻ ൅ ൬
1
𝑘

െ 1൰ ෍ 𝑙𝑛

௡

௜ୀଵ

൬1 െ 𝑘
𝑥௜ െ 𝜉

𝛼
൰

െ 2 ෍ 𝑙𝑛 ቌ1 ൅ ൬1 െ 𝑘
𝑥௜ െ 𝜉

𝛼
൰

ଵ
௞

ቍ

௡

௜ୀଵ

 

 

 
GPD 

 
CDF 

Fሺxሻ ൌ

⎩
⎨

⎧1 െ ሾ1 ൅ ξ ቀ
x െ µ

σ
ቁ

ି
ଵ
ஞ
ሿ, ξ ് 0

1 െ expሾെ
x െ µ

σ
ሿ, ξ ൌ 0

 

 
LLH 𝐿ሺ𝜎, 𝜉ሻ ൌ െ𝑛𝑙𝑛ሺ𝜎ሻ െ ൬1 ൅

1
𝜉

൰ ෍ 𝑙𝑛

௡

௜ୀଵ

൬1 ൅
𝜉𝑥௜

𝜎
൰ , 𝜉 ് 0 

𝐿ሺ𝜎ሻ ൌ െ𝑛𝑙𝑛ሺ𝜎ሻ െ
1
𝜎

෍ 𝑥௜

௡

௜ୀଵ

, 𝜉 ൌ 0 

 



50 

 

Different methods have been introduced to estimate the parameters of univariate 

distribution functions. The well-known methods are Maximum Likelihood (ML), the method 

of moment and method of L-moments. The method is one of the most widely used for fitting 

probability distributions to data (Strupczewski et al., 2001). ML method can be developed for 

a large of estimator situations. Another advantage of this method is that the estimates are 

consistent and asymptotically normally distributed. The probability of the observed data as a 

function of estimated parameters is called the likelihood function. Values of estimated 

parameters that have high likelihood correspond to models which give high probability to the 

observed data (Coles et al., 2001). 

There are several approaches for helping in the selection of the appropriate PDF that are 

fitted to data sample. Graphical method, the goodness-of-fit (GoF) and model selection criteria 

have been widely used in hydrological studies. A graphical method is used to view the 

difference between theoretical and empirical of distributions. In this method, Probability-

Probability (P-P) and Quantile-Quantile (Q-Q) plots are usually used. P-P plot compares the 

empirical cumulative distribution function and theoretical cumulative distribution of sample 

data. Q-Q plot where the quantiles obtained through the observed data and the distribution fitted 

are drawn together. 

There are many GoF tests that used in hydrological studies to identify the appropriate 

distribution for fitting data, namely, Anderson-Darling (AD), Cramer-von Mises (CVM) and 

Kolmogorov-Smirnov (KS) tests. Besides, model selection criteria can be applied to find the 

appropriate distribution. Akaike Information Criteria (AIC) is the standard model selection 

technique commonly used in hydrology. Additionally, GoF tests can be used to select the 

distributions that fitted to the data sample while model selection criteria can be applied for 

obtaining the best distribution among those passing the GoF. Therefore, various approaches are 

used in this study in selecting the appropriate distributions. Table 4.3 summarises the 

description of all the tests that are used in this study. 
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Table 4.3: The list of test statistic used in this study 

Test Formulation 
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Note: Fi and Fx are empirical and tested distribution functions; Qmax,i is discharge; k is number 

of distribution parameters and n is sample size. 

4.4 Results and Discussion 

4.4.1 Hydrological model 

The performance indicators calculated between HEC-HMS simulated and observed 

discharge data are presented in Table 4.4. For the Trian station, the NSE values are 0.72 and 

0.63 for calibration and validation respectively. It indicates that the model performance is very 

good and satisfactory in calibration and validation respectively. Other statistical values (i.e, 

RSR and PBIAS) also show that the model performance is good (Moriasi et al., 2007). During 

the period 2002-2013, the upstream reservoir operation in Tapao station has changed the natural 

flow while this hydrological model only simulated flow in the natural condition. Therefore, the 

hydrological model performance in the validation step is unsatisfactory for Tapao station. 

However, the main purpose of this reservoir is to supply power and not for flood control (Babel 

et al., 2012). In the wet season, the peak inflow of this reservoir is released through the spillway. 

Hence, flood value in the downstream has not been affected by reservoir operation. Besides, 

there is a good agreement between observed flow and simulated flow by the model for Tapao 

station (Fig. 4.5). Furthermore, the model performance is very good and good in the calibration 

step. Therefore, the hydrological model can be used to simulate the future streamflow in this 
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watershed. 

Table 4.4: Model statistics of HEC-HMS for three locations 

Stations 

NSE RSR PBIAS (%) 

Calibration Validation Calibration Validation Calibration Validation 

Talai 
0.65 

(Good) 
0.6 

(Satisfactory) 
0.59 

(Good) 
0.63 

(Satisfactory) 
-2.5 

(Very good) 
-9.8 

(Very good) 

Tapao 
0.67 

(Good) 
0.43 

(Unsatisfactory) 
0.57 

(Good) 
0.75 

(Unsatisfactory) 
-3.1 

(Very good) 
-13.3 

(Good) 

Trian 
0.72 

(Good) 
0.63 

(Satisfactory) 
0.52 

(Good) 
0.6 

(Good) 
-8.9 

(Very good) 
-11.4 

(Good) 

Overall, the hydrologic model performance ranges from very good to satisfactory in both 

calibration and validation steps for the three locations in this basin, except for Tapao location 

in the validation step. It can be inferred from this that the continuous hydrological model is 

suitable to simulate and evaluate the changes of flood frequency due to climate change for this 

region as well as for the ungauged catchments belonging to the Saigon-Dongnai River basin. 
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Fig. 4.5: Simulated and observed discharge for Tapao station during 1985-2013 

4.4.2 Flood frequency analysis 

Three criteria such as MRL plot, threshold stability plot and distribution fit diagnostics 

are used to search the appropriate threshold for each station. In order to reduce the variance of 

parameters estimation, the threshold is chosen in such a way that the length of each POT data 

sample after declustering is greater than 2 times the number of years. For example, Fig. A. 3 

shows the MRL plot for Tapao location. The threshold value of u = 250 m3/s gives over 574 

exceedances before declustering. Fig. A. 4 shows the decluster run of Tapao station with a 

threshold u=250 m3/s and r =5 (time interval for declustering) days. After declustering, the 

number of exceedance is 92 which meets the required condition. Besides, the diagnostic plots 

(i.e., P-P, Q-Q, return level and density) for the fitted GPD distribution with a threshold of 250 

m3/s are shown in Fig. A. 5 and they show a good agreement between model and empirical 
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values. Therefore, the threshold value of u = 250 m3/s with GPD distribution is a suitable choice 

for Tapao location. Similarly, the selected threshold values for Trian and Talai are 950 m3/s and 

650 m3/s respectively. After choosing the appropriate threshold, the set of distributions such as 

LN, GPD, P3, LP3, Gumbel, and GL distributions are tested to select the appropriate 

distribution. 

The results of GoF tests for POT datasets of future (2020-2045) scenarios are given in 

Tables A.1, A.2, A.3 and A.4. Based on the AD test, most of the scenarios follow the GPD 

except for MM5_45 scenario which fits with P3 distribution in Talai location. 55 % of scenarios 

data follow the P3 distribution while 45 % of the remaining data are best fitted with GPD in 

Trian location. The AD test shows that, for Tapao station, only the Had_45 scenario follows 

the Gumbel distribution while 72.7 % and 18.2 % of samples fit the GPD and P3 distribution 

respectively. According to the KS, and CVM tests, the results are nearly similar. 

Fig. 4.6 presents the boxplots of flood magnitude for the future time period (2020-2045) 

estimated from RCMs and GCM simulations. The results indicate an increasing trend in flood 

magnitude for Trian, Talai and Tapao locations under climate change context. For example, for 

50-year return period, the percentage changes for the median value of flood magnitude are 

+29.68%, +48.76% and +24.22% for Talai, Tapao and Trian respectively. The changes in flood 

magnitude for all locations in this catchment are significant. Therefore, flood risk management 

strategies and hydraulic structure guidelines for this river basin under climate change context 

should be considered with importance. 
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Fig. 4.6: Boxplots of flood magnitude with RCMs and GCM future simulations for (a) Talai, 

(b) Trian and (c) Tapao 
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4.5 Summary and Conclusions 

This study used five RCMs and one GCM to assess the climate change impacts on the 

flood frequency of three sub-catchments in the Trian watershed for the future period (2020-

2045). A combination of LARS-WG and HEC-HMS approach is used for studying the impact 

of climate change on flood frequency. LARS-WG and HEC-HMS are calibrated and validated 

based on the observed data. The performance of these models is found to be satisfactory and, 

therefore, used for generating and simulating daily future climate and streamflow data. 

The POT approach is used to extract flood series and these extreme flood series are fitted 

with six different distributions namely, GPD, Gumbel, LN, LP3, GL and P3. In this study, the 

parameters of the distributions are estimated using the method of maximum likelihood and the 

best distribution for each POT dataset is selected using the different GoF tests such as AD, AIC, 

CVM and KS. Moreover, results of this study also reveal that directly using the asymptotic 

distribution to model the POT dataset sometimes provides wrong insights. 

The results of five RCMs and one GCM suggest that flood magnitudes increase 

significantly in the future period (2020-2045) for three stations in Trian catchment. To be 

specific, the 100-year return level of Trian reservoir is increasing up to 32.34 % in one of future 

scenarios. Hence, planning or investment for flood management in Trian basin is highly 

necessary. Note that this study evaluates only the potential impact of climate change on flood 

frequency of the Trian reservoir belonging to the Saigon-Dongnai River basin, Vietnam. 

However, the changes in flood frequency owing to the river basin characteristic change (e.g., 

land use change, land cover change, etc.) can also be studied and it would be potential future 

work. 
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Chapter 5 

Assessing the Selection of Copula for Bivariate Frequency 

Analysis Based on the Tail Dependence Test 

 

 

 

5.1 Introduction 

Single variable flood frequency analysis provides limited understanding and assessment 

of the true behaviour of flood phenomena which are often characterized by a set of correlated 

random variables like, peak, volume and duration (Favre et al., 2004, Yue et al., 2001). 

Univariate frequency analysis methods cannot describe the random correlated variables 

(Sarhadi et al., 2016). This approach can lead to high uncertainty or failure of guidelines in 

water resources planning, operation and design of hydraulic structures or creating the flood risk 

mapping (Chebana and Ouarda, 2011). Additionally, flood is a multivariate natural calamity 

characterized by peak, volume and duration. Hence, it is important to study the simultaneous, 

multivariate, probabilistic behaviour of flood characteristics. Multivariate parametric 

distributions (e.g., bivariate normal, bivariate gamma, bivariate extreme value distributions, 

etc.), which have been extended from univariate distribution, have been used to model 
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multivariate flood characteristics for different purposes (Adamson et al., 1999, Yue, 1999, Yue 

et al., 2001). However, this approach has some drawbacks such as the dependence structure 

between the variables, which depend on the marginal distributions or the flood variables have 

the same type of marginal distributions (Poulin et al., 2007, Zhang and Singh, 2007). 

In order to overcome the limitation of multivariate distributions, a copula is a very 

versatile approach for simulating joint distribution in a more realistic way (Favre et al., 2004). 

The main advantage of this method is that the dependence structure is independently modelled 

with the marginal distribution that allows for multivariate distribution with different margins 

and dependence structures to be built (Dupuis, 2007, Zhang and Singh, 2007). Several 

researchers have used copulas to perform the bivariate frequency analysis (Dung et al., 2015, 

Reddy and Ganguli, 2012, Sraj et al., 2015). The most important step in the modelling process 

using copula is the selection of copula function which is the best fit to the data sample (Favre 

et al., 2004). The chosen copulas should include several classes of copulas and several degrees 

of tail dependence (Dupuis, 2007, Poulin et al., 2007). 

Tail dependence characteristics constitute important features that differentiate extreme 

value copulas from other copula structures (Chowdhary et al., 2011). Therefore, the extreme 

value copulas with upper tail dependence are considered as suitable dependence structure 

models for the flood characteristics (Genest and Favre, 2007, Gudendorf and Segers, 2011, 

Poulin et al., 2007, Vittal et al., 2015). On the other hand, in the multivariate frequency analysis, 

the variables can be dependent or independent of each other. The relationship between flood 

characteristics (i.e., peak, volume and duration) are analyzed by several researchers. However, 

most of the results of the dependence between different pairs of flood variables were not 

consistent (Karmakar and Simonovic, 2009, Reddy and Ganguli, 2012, Sraj et al., 2015). 

Indeed, identification of the degree of dependence between flood variables is a difficult step, 

because the dependence of pairs of flood characteristics is controlled by different climate 

features and catchment properties (Gaál et al., 2015, Viglione and Blöschl, 2009). 

Most studies used Pearson’s linear correlation coefficient (r), Kendall’s (τ) and 

Spearman’s rank correlation (ρ) for measuring dependence among different flood variables. 

However, these measures are based on the association of the entire distributions but do not 

reveal the dependence in the specific part of the distribution (Aghakouchak et al., 2010). When 
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dealing with extreme events like floods, extreme values will appear in the tail of the 

distributions. Hence, the tail dependence, which describes the dependence in the tail of a 

multivariate distribution, can be a suitable measure (Aghakouchak et al., 2010, Coles et al., 

1999, Hao and Singh, 2016, Serinaldi et al., 2015). 

To describe dependence in multivariate extreme values, there are two possible situations, 

namely, asymptotic dependence or asymptotic independence (Coles et al., 1999). Diagnostic 

analysis to determine whether the variables have asymptotic dependence or asymptotic 

independence is very important in multivariate extreme analysis. In fact, in a situation where 

diagnostic checks suggest data to have asymptotically independence, modelling with the 

classical families of bivariate extreme value distribution is likely to lead to misleading results 

(Coles et al., 2001, Ledford and Tawn, 1996). Different measures of extremal dependence have 

been developed. Coles et al. (1999) proposed two measures of extreme dependence (χ and 𝜒̅) 

for bivariate random variables. Nevertheless, recent studies show that there are still difficulties 

to detect between asymptotic dependence and independence in many cases (Bacro et al., 2010, 

Coles et al., 1999, Serinaldi et al., 2015, Weller et al., 2012). 

Apart from these, several parametric and non-parametric approaches are suggested to 

determine the tail dependence. Non-parametric tail dependence estimator (λU), namely, 

λU
LOG(Coles et al., 1999, Frahm et al., 2005), λU

SEC(Joe et al., 1992), λU
CFG(Capéraà et al., 1997) 

and λU
SS (Schmidt and StadtmÜLler, 2006) have been preferred by most researchers in 

hydrological analysis (Li et al., 2009, Requena et al., 2016). However, Villarini et al. (2008) 

indicated that these tail dependence estimator have some drawbacks (bias, uncertainty). 

Furthermore, all tail dependence estimators exhibit very poor performance when the underlying 

upper tail dependence coefficient is null. It is, therefore, important to test for tail dependence 

before applying the estimator (Frahm et al., 2005, Poulin et al., 2007). 

Consequently, upper tail (in)dependence testing is a useful alternative approach. 

Serinaldi et al. (2015) suggested that test for tail (in)dependence is mandatory because: (i) 

samples exist which seem to fail dependency but they are realizations of a tail dependent 

distribution; (ii) the use of misspecified parametric marginals instead of empirical marginals 

may lead to wrong interpretations of the dependence structure; and (iii) the tail dependence 

estimators can be insensitive to upper tail dependence, thus indicating upper tail dependence 
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even if none exist. Similarly, if data are to be independent in the upper tail, then modelling with 

dependence will lead to overestimation of probability of extreme joint events. Hence, Falk and 

Michel (2006) emphasized that testing for tail (in)dependence is essential in data analysis of 

extreme values. 

Several recent studies indicated that Gumbel-Hougaard copula belonging to extreme 

value copulas work well when variables are asymptotically dependent (Dung et al., 2015, 

Karmakar and Simonovic, 2009, Poulin et al., 2007, Zhang and Singh, 2006). However, there 

are few studies which suggest that what is the best copula for modelling the dependence 

structure where variables have a strength of dependence but weaken at high levels or 

asymptotically independence. Therefore, it is important to find the appropriate copula to derive 

joint distribution of flood variables where the pair of flood characteristics have asymptotically 

independent or weak dependent at a high threshold. 

The difference between extreme value copulas and Gaussian copula is that the Gaussian 

copula becomes independent at the high threshold. Furthermore, Gaussian copula, which is 

characterized by a correlation matrix, generates a wider range of dependence behaviour (Bortot 

et al., 2000). Studies by Renard and Lang (2007) also have proved the usefulness of Gaussian 

copula in hydrological extreme events analysis. In fact, they suggested that Gaussian copula 

can be reasonably well used for field significance determination, regional risk estimation, 

discharge-duration-frequency curves and regional frequency analysis. Frank and Clayton 

copulas, belonging to the Archimedean family, have been widely used in hydrology analysis 

because it can be modelled both negative and positive associated variables. Furthermore, Frank 

and Clayton copulas, which have zero dependency in both tails, are suitable in case of tail 

dependence does not exist (Dung et al., 2015, Poulin et al., 2007, Sraj et al., 2015). Therefore, 

Clayton, Frank and Gaussian copulas are used to assess the potential their application in case 

of variables are diagnosed as asymptotic independence for frequency analysis of flood in Trian 

watershed, Vietnam. The difference between this study and other studies on bivariate flood 

frequency is that this study proposed a copula selection procedure focus on tail dependence test. 

If there exists asymptotic dependence in the tail, extreme value copulas including Gumbel-

Hougaard, Husler-Reiss and Galambos copulas should be chosen, Gaussian, Frank and Clayton 

copulas might be a good choice when variables are diagnosed as asymptotic independence. 
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This study aims to address the following issues: (i) investigating the potential of 

performing the tail dependence tests for the pairs of flood characteristics; (ii) evaluating the 

performance of extreme value copula for asymptotic dependence variables and Clayton, Frank 

and Gaussian copulas for asymptotic independent variables; and (iii) estimating joint return 

period of flood characteristics. 

5.2 Study Area and Data 

The detail of the study area is already presented in section 4.2. The description of the 

catchment development is presented in this section. There are two main tributaries of the 

Dongnai River (i.e., Dongnai and Langa). There are nine reservoirs, which are operating to 

supply water for drinking, irrigation, flood control and hydropower production, in the upstream 

of Trian gauge. Most of them began to operate in recent years except for Hamthuan-Dami and 

Daininh reservoirs which were operation from 2001 and 2008 respectively. In the Dongnai 

tributary, Daininh and Dakrtik reservoirs provide energy with capacity 300 MW and 144 MW 

respectively. Dongnai 2, Dongnai 3, Dongnai 4 and Dongnai 5 supply water to hydropower 

plants which have installed capacity of 70, 180, 340 and 150 MW respectively. Hamthuan and 

Dami reservoirs, located in the Langa tributary are a cascade of two hydropower plants with 

installed capacity of 300 MW and 175 MW. Tapao weir, located the downstream of Hamthuan 

and Dami reservoirs, is constructed to supply water for drinking and for irrigation of around 

20,340 ha (Government, 2016). However, all reservoirs are located far away from the Trian 

gauge (Fig. 5.1). The flood from Trian station has significant impacts on the downstream areas 

(e.g., Bienhoa, Vungtau, Hochiminh cities, etc.). Therefore, this study mainly focused on the 

flood in the Trian gauge. 
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Fig. 5.1: Hydropower plants in the study area 

Daily discharge data for the period 1978-2013 are available for the study from the Trian 

station on the Dongnai river, which is a part of the Saigon-Dongnai River basin and this data is 

used for flood frequency analysis. Trian station is located at 106o59'08'' E and 11o06'16'' N and 

it is at the confluence of two Dongnai and Langa rivers. Numerous researchers suggested that 

the length of data record should be at least 30 years for extreme value modelling (Bonnin et al., 

2006, Jeong et al., 2014, Kioutsioukis et al., 2010, Yilmaz et al., 2017). Further, there are 

several multivariate frequency analysis studies using observed data of less than 35 years of data 

(Aissia et al., 2012, Zhang and Singh, 2006). Moreover, several studies suggested that the main 

advantage of the POT approach, which is for smaller sample sizes, is also used to increase the 

sample sizes (Beguería, 2005, Bezak et al., 2014, Lang. et al., 1999). 

Based on the 35 years of observed data, the sample size of the flood variables in this 

study is 68. This meets the minimum requirement of the sample size (n=30) for the extreme 
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value modelling. Therefore, the length of the observed data is significant for the analysis of the 

tail dependence. The mean of daily discharge of Trian stream gauge from 1978 to 2013 is 527.4 

m3/s and the observed maximum daily discharge is 3,910 m3/s. The daily time series of river 

discharge data are collected from the NHMS of Vietnam. 

5.3 Methodology 

The methodology used in this study is shown in the form of a flowchart (Fig. 5.2). 

Firstly, the identification of flood characteristics (i.e., peak, volume and duration) from the 

observed daily discharge time series is carried out. Next is the check whether flood variables 

time series are stationary or nonstationary. Tail dependence tests are then performed to diagnose 

whether the flood variables have asymptotic dependence or asymptotic independence. Finally, 

if the flood variables are having an asymptotic dependence, the extreme value copula is used 

for estimation of joint return periods. Otherwise, Gaussian, Frank and Clayton copulas are used. 
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Fig. 5.2: Flowchart of methodology 

5.3.1 Extracting flood characteristics 

AM and POT approaches are widely used to extract flood characteristics. However, AM 

cannot consider multiple occurrences of flood events. (Bezak et al., 2014, Lang. et al., 1999). 

Unlike the AM, which only extracts one event per year, POT considers a wider range of events 

and provides more information than AM. The threshold estimation is the most difficult part in 

the POT approach (Lang. et al., 1999, Scarrott and MacDonald, 2012). Threshold choice 

involves balancing between bias and variance. Too low a threshold may violate the asymptotic 
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basis of the model, leading to bias, while too high a threshold will reduce sample size, leading 

to high variance of the parameter estimates (Coles et al., 2001). 

There are two common approaches of choosing a threshold, namely, fixed quantile 

corresponding to a high non-exceedance probability (95%, 99% or 99.5%) and graphical 

method (Vittal et al., 2015). Three different techniques belonging to the graphical method, 

namely, the MRL, threshold stability plots and fitting distribution diagnostics (Solari and 

Losada, 2012, Thompson et al., 2009) are used in this study to decide the threshold value. In 

addition, the lag-autocorrelation plot is used to verify the assumption of the Independence and 

Identically Distributed (IID) flood variables (i.e., peak, volume and duration). 

5.3.2 Diagnostic test to exanimate nonstationary 

The extreme events, particularly for flood events, are intensifying due to global climate 

change, urbanization and anthropogenic activities. Therefore, the flood time series can have a 

nonstationary component. The flood frequency analysis which considers time series as 

stationary may lead to misleading results in estimation flood quantile. Checking nonstationarity 

of flood series in flood frequency analysis should be considered as an important initial step 

(Vittal et al., 2015). Trend analysis is normally used to detect nonstationarity in the flood 

variables. The Mann-Kendall (M-K) test is a non-parametric statistical test which is used to 

examine trends in time series and has been widely applied in the hydrological analysis (Lima 

et al., 2015, Sun et al., 2015, Villarini et al., 2009). 

5.3.3 Tail dependent test 

Coles et al. (1999) proposed two measures of extreme dependence (χ and 𝜒̅) for bivariate 

random variables, as shown in Eq. (5.1) and Eq. (5.2). 

χ ൌ 2 െ ௟௢௚௉ሺிభሺ௫ሻழ௨,ிమሺ௬ሻழ௨ሻ

௟௢௚௨
   (5.1) 

𝜒̅ ൌ ଶ௟௢௚ሺଵି௨ሻ

௟௢௚௉ሺிభሺ௫ሻவ௨,ிమሺ௬ሻவ௨ሻ
െ   (5.2) 

With a pair of complementary measure (χ,𝜒̅), a summary of multivariate extremal 

dependence can be determined. 
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 If 𝜒̅=1 and 0<χ<1, the variables are asymptotically dependent and χ is a measure of 

strength of dependence within the class of asymptotic dependence distribution 

 If -1<𝜒̅<1 and χ=0, the variables are asymptotically independent and 𝜒̅ is a measure of 

strength of dependence within the class of asymptotically independence distribution. 

There are still difficult to detect differentiate between asymptotic dependence and 

dependence in many cases using these extremal dependences. Furthermore, non-parametric tail 

dependence estimator mentioned earlier exhibit very poor performance when the underlying 

upper tail dependence coefficient is null. Therefore, the tail dependence test is used in this study. 

A description of tail dependence test is presented in the following sections. 

The coefficient of tail dependence (η) introduced by Ledford and Tawn (1996) is used 

to detect asymptotically dependent and independent variables. They assumed that the joint 

survivor function of the pair (X, Y) with unit Frechet distribution is a regularly varying function, 

as shown in Eq. (5.3). 

P(X>z, Y>z)=£(z)z-1/η         (5.3) 

where £(z) is a slowly varying function and η is the coefficient of tail dependence. 

 If η=1 and lim
௭→ஶ

£ ሺzሻ ൌ 𝑐 for some 0<c≤1, the variables are asymptotically dependent 

with a degree c 

 If η<1, the variables are asymptotically independent. 

The coefficient of tail dependence can be estimated by univariate theory because the 

joint survivor function can be reduced to univariate survivor function T=min (X, Y). The 

coefficient of tail dependence will be equal to shape parameter if T is fitted with GPD. The 

Log-likelihood Ratio (LLHR) test can be used to test for asymptotic dependence against the 

asymptotic independence. The null hypothesis of asymptotic dependence is tested comparing 

the log-likelihood of asymptotic dependence and asymptotic independence. Under the null 

hypothesis η=1 versus the alternative η<1, the LLHR test statistic, based on twice the difference 

between the log-likelihood of asymptotic dependence and asymptotic independence, has 

approximate Chi-square distribution with certain degrees of freedom. The significant of 
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asymptotic independence can be measured from the p-value of Chi-square distribution. 

One of the most well-known approaches was proposed by Falk and Michel (2006) for 

testing tail dependence. Their test is based on the following theorem Eq. (5.4). With c→0, we 

have uniformly for t ϵ [0,1]: 

𝑃ሺ𝑋 ൅ 𝑌 ൐ 𝑐𝑡⃓𝑋 ൅ 𝑌 ൐ 𝑐ሻ ൌ ൜
𝐹ሺ𝑡ሻ ൌ 𝑡ଶ; there is no 𝑡𝑎𝑖𝑙 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒
𝐹ሺ𝑡ሻ ൌ 𝑡;           𝑒𝑙𝑠𝑒                                          

 (5.4) 

Using this theorem, Falk and Michel (2006) proposed four different tests for tail 

dependence namely Neymann-Pearson, Fisher’s, Kolmogorov-Smirnov and Chi square tests. 

Frick et al. (2007) proposed a generalization of Falk and Michel’s test, based on a second-order 

differential expansion of the spectral decomposition of the non-degenerate distribution 

function. This test is based on the following theorem Eq. (5.5). 

𝑃ሺ𝑋 ൅ 𝑌 ൐ 𝑐𝑡⃓𝑋 ൅ 𝑌 ൐ 𝑐ሻ ൌ ൜
𝐹ሺ𝑡ሻ ൌ 𝑡ଵା஡; 𝑡𝑎𝑖𝑙 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒
𝐹ሺ𝑡ሻ ൌ 𝑡;           𝑡𝑎𝑖𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒

   (5.5) 

where: c→0 is a threshold, ρ≥0 is independence measure and 𝐹ሺ𝑡ሻ is the standard uniform 

distribution with t ϵ [0,1]. According to the central limit theorem, the p-values of the optimal 

test is given by Eq. (5.6). 

p=Фቀ
∑ ௟௢௚஼೔̅ା௠೘

೔సభ

௠భ/మ ቁ    (5.6) 

where 𝐶ത𝑖 =(Xi+Yi)/c, i=1,…,m and Ф is the standard normal density distribution function. 

In the LLHR test, threshold in GPD is selected based on the threshold stability plot. 

Frick et al. (2007) suggested the tail dependence test is quite sensitive to the threshold c. Hence, 

the threshold is chosen so that the number of exceedance is about 10% to 15% of the total 

number of observed data. 

5.3.4 Selection of marginal distribution  

The work by Vittal et al. (2015) suggested that it is important to use both nonparametric 

and parametric distributions for a selection of the appropriate marginal distributions for each 

flood characteristic. There are more than one parametric distributions that can be fitted to the 
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sample data. Hence, identifying the best fitting distribution to the sample need to be tested with 

several distributions rather than assuming that the particular distribution will be sufficient to 

provide the necessary insight for flood variables (Lang. et al., 1999, Nguyen et al., 2017, Vittal 

et al., 2015). The LN, P3, LP3, GPD, Gumbel, and GEV distributions which have been widely 

used for modelling extreme values (Bezak et al., 2014, Lang. et al., 1999, Saf, 2009a, Salas Jose 

et al., 2013) are used. 

For nonparametric distribution, kernel density estimator with Epanechnikov, Gaussian, 

triangular and rectangular kernel functions are used in this study. Both parametric and 

nonparametric distributions are used to find the best marginal distribution for each flood 

variable in this study. 

5.3.5 Extreme value copula and no tail dependence copula functions 

A copula is defined as a joint distribution function of standard uniform random variables. 

If F(x,y) is any continuous bivariate distribution function with marginal distribution F1(x) and 

F2(y), the copula function can be express as Eq. (5.7) 

F(x,y)=C[ F1(x), F2(y)]       (5.7) 

If the F1(x) and F2(y) are continuous, the copula function C is unique and can be written 

as Eq. (5.8) 

C(u,υ)=F[ 𝐹ଵ
ିଵ(u), 𝐹ଶ

ିଶ(υ)]       (5.8) 

where the quantile function 𝐹ଵ
ିଵ and 𝐹ଶ

ିଶare defined by 𝐹ଵ
ିଵሺ𝑢ሻ=inf[x: F1(x)≥u] and 

𝐹ଶ
ିଵሺυሻ=inf[x: F2(y)≥ υ] respectively. 

There are several copula families and among them, the most well-known are the 

elliptical, Archimedean and extreme values copulas. Elliptical copulas come from elliptical 

distributions. The most popular copula belonging to this family is Gaussian copula. This copula 

represents the dependence structure of the data via a correlation matrix in which the elements 

describe the dependence between pairs of variables. Archimedean copula is widely used 

because of entailing a broad variety of dependence structure and being easily formulated via 

generator function. Clayton and Frank copulas are used extensions and recommended for 
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performing hydrological analysis. 

Extreme value copulas are more popular for hydrological application, particularly for 

extreme events. Indeed, the extreme value copulas with upper tail dependence are considered 

as appropriate models for the dependence structure for extreme events. Extreme value copulas 

can be used as a convenient choice in modelling data with positive correlation and arise 

naturally in the domain of extreme events (Gudendorf and Segers, 2011, Mirabbasi et al., 2012). 

The families of extreme value copulas considered in this study include: Gumbel-Hougaard, 

Husler-Reiss and Galambos. Besides, Gaussian, Frank and Clayton copulas are also used in 

circumstances where diagnostic checks suggest data to be asymptotically independent. More 

details and descriptions can be found in Gudendorf and Segers (2011), Salvadori et al. (2013) 

and Poulin et al. (2007). The relevant expression for their dependence function and tail 

dependence coefficient are presented in Table. 5.1. 

Table 5.1: Definition and upper tail dependence coefficient of the copula used in this study 

Copula 𝐶Ɵ(u,υ) 𝜆௨ 

Gumbel C(u,υ)=exp[-(ln(u))Ɵ+-(ln(υ))Ɵ]1/Ɵ 2-21/Ɵ 

Galambos C(u,υ)= uυexp[-(ln(u))-Ɵ+-(ln(υ))-Ɵ]-1/Ɵ 2-2ϕ(1/Ɵ) 

Husler-Reiss C(u,υ)=exp(𝑢ොФ[
ଵ

Ɵ
൅

ଵ

ଶ
Ɵln(

௨ෝ

஥ෝ
)]- υොФ[

ଵ

Ɵ
൅

ଵ

ଶ
Ɵln(

஥ෝ

௨ෝ
)]) 2-21/Ɵ 

Gaussian C(u,υ)=Ф[ϕ-1(u),ϕ-1(υ)] 0 

Clayton C(u,υ)=(u‐Ɵ+υ‐Ɵ‐1)‐1/Ɵ 0 

Frank 
C(u,υ)=-

ଵ

Ɵ
𝑙𝑛[1+

ሺ௘షഇೠିଵሻሺሺ௘షഇಝିଵሻ

௘షഇ ] 
0 

where ϕ, Ф are the cumulative density function of a standard normal and multivariate normal 

distribution with mean 0 and covariance ∑ respectively, u=ln(𝑢ො) and υ=ln(υො). 

Several methods have been proposed to estimate the parameter of the copulas. The 

Maximum Pseudo-likelihood (MPL) method is a modification of the classical maximum 

likelihood method where the empirical marginal distribution are used. This method can be 

applied to both one and multi parameters copulas. The MPL method consists of transforming 

the marginal variables into uniformly distributed vectors using its empirical distribution 
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function. Then the copula parameters are estimated using maximization of pseudo log-

likelihood function. The form of the log-likelihood function is presented in Eq. (5.9). 

𝑙ఏ ൌ ∑ 𝑙𝑜𝑔ൣ𝑐ఏ൛𝐹ଵ൫𝑋௜,ଵ൯, 𝐹ଶ൫𝑋௜,ଶ൯ൟ൧௡
௜ୀଵ    (5.9) 

where F1(x) =Ri/(n+1) and F2(x) = Si/(n+1) are non-parametric marginal probability solely 

based on rank. 

Genest et al. (1995) and Cherubini et al. (2004) suggested the MPL and canonical 

maximum likelihood approaches in case of an unknown marginal distribution to estimate 

copula parameters. In order to allow marginal distribution to be free and not restricted by 

parametric families, the MPL method is suggested because the marginal distribution is 

considered as the empirical distribution function. Furthermore, Kim et al. (2007), Genest and 

Favre (2007) and Kojadinovic and Yan (2010a) showed that MPL is the best choice of 

estimating copula parameters. Therefore, MPL is used in this study. 

Selection of appropriate copula is a complex process and need to be considered through 

several different measures. Only one measure can fail to identify the suitable copulas that can 

lead to an inappropriate the joint probability of flood characteristics (Fu and Butler, 2014). 

There are several different methods to select the best copula, including graphical method, GoF 

tests and model selection criteria. The first two methods are used to measure the discrepancy 

between the theoretical distribution and empirical distribution, while the model selection 

criteria such as AIC, which penalize the minimized negative log-likelihood function for the 

number of parameters estimated, would be more appropriate than repeated tests of significance 

whose outcomes lose their interpretability (Katz, 2013). 

In the graphical method, the theoretical non-exceedance joint probabilities obtained 

using copula functions are compared to the empirical non-exceedance joint probabilities which 

can be estimated by Gringorten plotting position formula Eq. (5.10). 

𝐹௑௒ሺ𝑥௜, 𝑦௜ሻ ൌ PሺX ൑ 𝑥௜, Y ൑ 𝑦௜ሻ ൌ
∑ ∑ ௡೘೗

೔
೗సభ

೔
೘సభ ି଴.ସସ

ேା଴.ଵଶ
    (5.10) 

where nml is the number of pairs (xj, yj) counted as xj൑xi and yj൑yi; i,j =1,…,N; 1൑ j ൑ i and N 

is the sample size. Besides the graphical method, GoF test is also used to test the adequacy of 
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the hypothesized copulas. Genest et al. (2009) reviewed and compared several GoF tests for 

copula. They proved that Cramer-von Mises (𝑆𝑛
𝐼 ) test comparing the empirical and theoretical 

copulas is the best GoF test. However, there is no difference between extreme value copulas in 

this test. In order to overcome this shortcoming, the test based on a Cramer-von Mises (𝑆𝑛
𝐼𝐼) 

statistic, measuring the distance between parametric and non-parametric estimator of the 

Pickands dependence function, was introduced by Genest et al. (2011). This test is defined in 

Eq. (5.11). 

𝑆௡
ூூ ൌ ׬ 𝑛|𝐴௡ሺ𝑡ሻ െ 𝐴ఏ௡ሺ𝑡ሻ|ଶ𝑑𝑡

ଵ
଴       (5.11) 

where 𝐴𝑛ሺ𝑡ሻ and 𝐴𝜃𝑛ሺ𝑡ሻ are the non-parametric and parametric estimator of Pickands 

dependence function A. Based on the objective and availability data in this study, 𝑆𝑛
𝐼𝐼 is used to 

find out the appropriate copula functions. 

5.3.6 Joint return period estimation 

The return periods of hydrological extreme events are normally associated with a certain 

exceedance probability. Several theoretical bivariate return periods have been defined in the 

literature. The joint return period (OR) in which either x or y have exceedance (i.e., X>x or 

Y>y), which is denoted by 𝑇௑,௒
ைோ. The joint return period (AND) in which both x and y are 

exceeded (i.e., X>x and Y>y), and is denoted by 𝑇௑,௒
஺ே஽. These two types of joint return period 

are given by Eqs. (5.12) and (5.13). 

𝑇௑,௒
஺ே஽ ൌ ఓ೅

௉ሺ௑ஹ௫ ௔௡ௗ௒ஹ௬ሻ
ൌ ఓ೅

ଵିி೉ሺ௫ሻିிೊሺ௬ሻାி೉ೊሺ௫,௬ሻ
      (5.12) 

𝑇௑,௒
ைோ ൌ ఓ೅

௉ሺ௑ஹ௫ ௢௥௒ஹ௬ሻ
ൌ ఓ೅

ଵିி೉ೊሺ௫,௬ሻ
       (5.13) 

where, 𝜇் is the mean inter-arrival time (years). 

The above equations are used for both AM and POT approaches. In the case of block 

maxima, 𝜇் is equal to 1.0 (Shiau, 2003, Vittal et al., 2015). Since POT is also applied in this 

study, the mean inter-arrival time is determined based on the observed flood events. 
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5.4 Results and Discussion 

5.4.1 Identification of flood characteristics 

The POT approach is used to extract flood characteristics in this study. The threshold is 

selected based on the three different approaches, namely, the MRL, threshold stability plots and 

fitting distribution diagnostics. Fig. 5.3a shows the MRL plot for observed daily discharge for 

Trian. It is clear that after the threshold value of u=950 m3/s, the MRL is consistent with a 

straight line. Furthermore, with the threshold of u=950 m3/s, the shape and modified scale 

parameters begin to reach a plateau (Fig. 5.3b). Besides, the diagnostic plots (i.e., P-P and Q-

Q) for the fitted P3 distribution with the threshold (950 m3/s) after declustering (r=10 days) are 

shown in Fig. 5.3c and they show a good agreement between the model and empirical values. 
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Fig. 5.3: (a) Mean residual life plot; (b) threshold stability plots; (c) diagnostic plots for 

observed daily flood data 
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Fig. 5.4 shows that there is insignificant autocorrelation for all flood characteristics. The 

IID flood variables assumption is still maintained based on this threshold. Therefore, threshold 

value of u=950 m3/s is a suitable threshold for Trian. This threshold is used for all future flood 

characteristics. Flood duration and volume are also determined based on this threshold. The M-

K test for peak, volume and duration of observed data showed that there is no significant trend 

for any of the flood variables observed at the Trian gauge. It indicates that the flood events in 

the present data are still stationary. Therefore, stationary flood frequency analysis is used to 

estimate the joint return periods. 

 

Fig. 5.4: The autocorrelation plot up to lag ten for all the flood variables 

5.4.2 Tail independence test 

The pair of extremal measures (χ, 𝜒̅) is used to detect whether the flood variables have 

asymptotically dependent or not. Nevertheless, in this study, the value of χ (u) is nearly equal 

to 0.5. It means that the pair of flood characteristics has asymptotic dependence for all u. 

However, the value of 𝜒̅ shows that the pair of flood characteristics is independent for many 

cases. For example, Fig. 5.5 shows the Chi and Chi bar plot for the pair of observed flood peak 

and volume. Therefore, it is difficult to identify between the asymptotically dependence and 

independence based on these plots. 
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Fig. 5.5: Extremal measures for dependence of observed flood peak and volume 

LLHR and TailDep tests are used to decide asymptotically (in)dependent variables in 

case of the extremal measures do not work. The results from two tests are nearly similar. Table 

5.2 shows the p-value of LLHR and tail dependence tests for all pair of observed flood variables. 

Based on extremal measures and these tests, asymptotically dependence and independence are 

identified. 

Table 5.2: Likelihood ratio and tail dependence test p-value 

Tests 
p-value 

DV DP PV 
LLH 0.04 0.01 0.01 
TailDep 0.3 0.02 0.04 
Diagnostic Dep InDep InDep 

5.4.3 Marginal distribution of flood variables 

To determine the most appropriate marginal distribution for all flood characteristics, 

GEV, Gumbel, LN, P3, GPD and LP3 distributions belonging to the parametric distribution and 

Epanechnikov, Gaussian, triangular and rectangular kernel functions belonging to 

nonparametric distribution are used in this study. The maximum likelihood estimation is used 

to estimate the parameters of the distributions. The selection of the appropriate distribution is 

based on the AIC value. The selected marginal distributions are presented in Table 5.3, which 

provides a comparison of performances for all several marginal distributions. The results 
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indicate that LP3 distribution is most appropriate for modelling flood volume and duration 

while P3 is found to be the best for flood peak. 

Table 5.3: AIC values for all marginal distributions 

Flood 
variable 

Parametric 

LN Gumbel GEV P3 LP3 GPD 

V 1,309 1,318 1,317 1,297 1,285 

P 1,066 1,066 1,068 1,061 1,067 1,068 

D 654.9 656.0 658.0 641.7 628.9   

Flood 
variable 

Nonparametric 

Gaussian kernel Triangular kernel 
Rectangular 

kernel 
Epanechnikov 

kernel

V 1,310 1,311 1,317 1,313 

P 1,074 1,074 1,092 1,074 

D 634.8 644.2 644.5 647.0 

Note: V is volume (106 m3/s), P is peak (m3/s) and D is duration (days). 

5.4.4 Copula selection 

Fig. 5.6 shows the theoretical and empirical joint non-exceedance probabilities of 

asymptotic tail independence data. It is observed that Frank and Gaussian copulas fit the dataset 

which is diagnosed as asymptotic independence better than extreme value copulas. 

Additionally, AIC value and GoF test also indicated that the copula function that has no tail 

dependence may work well when variables are asymptotically independent. 
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Fig. 5.6: Theoretical and empirical joint non-exceedance probabilities of observed flood 

duration and volume (asymptotic independence) 

The joint return period (AND) of observed flood duration and peak pair are estimated 

by using the best fitted models of each group copulas. Gumbel-Hougaard copula (extreme value 

copulas) and Frank copula (the no tail dependence copulas) are selected to estimate the joint 

return period of the observed flood duration and peak pair. Fig. 5.7 shows the comparison of 

joint return period curves of the pairs of observed duration and peak which are estimated by 

Frank copula (black) and Gumbel copula (blue). This plot indicates that there are huge 

differences between two copulas. For lower return period, the two corresponding curves are 

very close to each other. However, there are large differences in the central part in the 50-year 

and 100-year return periods. 

Besides, the shape of the joint return period of each copula has significant differences. 

The bound limits shrink significantly for the Gumbel-Hougaard copula while this situation is 

not shown by the Frank copula. For example, at 5-year return period, the corresponding bound 

for Gumbel-Hougaard copula is wider than that of Frank copula. At return period of 10-year, 
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50-year and 100-year, the phenomenon is the opposite and the curve from Gumbel-Hougaard 

becomes sharper. This result indicates that choosing inappropriate copula function will lead to 

be serious difference the joint return period results. In this study suggest that the copula function 

is selected based on the dependence structure of the variables. The result from tail dependence 

test may provide useful additional information about the adequacy of the chosen copula 

functions. 

 

Fig. 5.7: Joint return period of the pair of flood peak and volume modelling by Frank and 

Gumbel copulas 

Based on the above analysis, in this study, three extreme value families of copulas 

(Gumbel-Hougaard, Galambos and Husler-Reiss) are chosen to model asymptotically 

dependence pair of flood characteristics. Gaussian, Frank and Clayton copulas are used in 

modelling asymptotically independence pair of flood characteristics. The dependence 

parameters of copulas are estimated using MPL method. The copula dependence parameter, 

AIC and GoF statistics are given in Table 5.4. 
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Table 5.4: Copula dependence parameters, AIC and corresponding GoF statistics 

Copulas 
DV 

Parameter AIC S p-value 
Gumbel-
Hougaard 

6.007 -165.01 0.00579 0.003 

Galambos 5.268 -162.4 0.00583 0.002 
Husler-Reiss 4.377 -137.98 0.00784 0.007 

Copulas 
DP 

Parameter AIC S p-value 
Gaussian 0.785 -57.509 0.114 0.065 
Clayton 1.774 -47.817 0.504 0.001 
Frank 8.455 -67.695 0.063 0.285 

Copulas 
PV 

Parameter AIC S p-value 
Gaussian 0.835 -73.575 0.119 0.05 
Clayton 2.066 -55.25 0.477 0.0002 
Frank 10.396 -86.929 0.058 0.335 

Fig. 5.8a shows the P-P plot of model and empirical joint non-exceedance probabilities 

for observed flood duration and volume. This plot indicates that extreme value copulas 

(Gumbel-Hougaard, Galambos, Husler-Reiss) give the best fit to the dataset. However, 

identifying the differences among three copula functions is difficult. Therefore, AIC and GoF 

test are used to choose the best copula function. For example, the AIC value (-165.013) and 

statistical test value (0.00579) are shown in Table 5.3, which indicate that Gumbel-Hougaard 

copula provides the best performance for the pair of observed flood duration and volume. 

For asymptotically independence case, Fig. 5.8b shows the P-P plot of the model and 

empirical joint non-exceedance probabilities for the pair of observed flood duration and peak. 

It is clear that all copulas (Gaussian, Clayton and Frank) give a good fit to the data. However, 

Frank copula fits better than other copulas. Similarly, the best fit copula using AIC (-67.695) 

and statistical test values (0.285) is Frank copula (Table 5.3). All measures indicate that Frank 

copula is the best fit to the data sample (observed flood duration and peak). The best copula 

based on AIC value and GoF test is used to estimate the joint return period for modelling the 

pair of flood characteristics. 
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Fig. 5.8: Theoretical and empirical joint non-exceedance probabilities of: (top) Observed 

duration and volume; (down) Observed duration and peak 
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5.4.5 Joint return period estimation 

The joint return periods (AND and OR) of flood peak and volume for 5, 10, 50, 75 and 

100-year return periods are shown in the Fig. 5.9. For example, the flood peak (m3/s)-volume 

(106 m3) pairs, (4,011-11,020), (4,119-11,432) and (4,297-11,674) are the joint return period 

(OR) of 50, 75 and 100-year respectively. The results from this figure also indicate that the joint 

return periods (AND) provide lower flood variable quantile than joint return periods (OR) for 

all return periods. Several combinations of flood peak and volume as well as other flood 

characteristics in the same return period also are obtained through bivariate frequency analysis. 

These results provide more possible choices for a decision maker to select the flood event for 

structure designing and water resources planning as well as assessing the variability of the 

obtained flood map inundation that cannot be achieved through univariate frequency analysis. 
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Fig. 5.9: The joint return periods of peak and volume: (a) AND both peak and volume are 

exceeded; (b) OR either peak or volume are exceeded 
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5.5 Summary and Conclusions 

The main emphasis of this study is on the tail dependence test before the selection of 

copula function which best fits the data sample. Indeed, extremal measurement is useful 

approach, but in many cases, it cannot detect whether data is asymptotically dependence or not. 

LLHR and tail dependence tests are used to identify the asymptotically (in)dependence of 

observed flood variables. Two pairs of flood characteristics (i.e., peak-volume and duration-

peak) have asymptotically independence while flood duration and volume pair has 

asymptotically dependence in this study. Three extreme value families of copula, namely, 

Gumbel-Hougaard, Galambos and Husler-Reiss are evaluated to model asymptotically 

dependence pair of flood characteristics. 

The extreme value copulas with upper tail dependence have proved that they are 

appropriate models for the dependence structure of the flood characteristics. However, 

identifying the differences among three copula functions is difficult. Therefore, the test based 

on a Cramer-von Mises (𝑆𝑛
𝐼𝐼) statistic measuring the distance between parametric and non-

parametric estimator of the Pickands dependence function is used and it is proved that it is 

highly efficiency for extreme value copula. 

Similarly, Gaussian, Frank and Clayton copulas are the appropriate copula models in 

case of variables which are diagnosed as asymptotic independence. Then, the best fit copula 

models are used to calculate the joint return periods of flood characteristics. These results 

provide more possible choices for decision maker to select the flood event for design of 

hydraulic structures and water resources planning as well as assessing the variability of the 

obtained flood map inundation in the present situation that cannot achieve through univariate 

frequency analysis. 
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Chapter 6 

Flood Hazard in Saigon-Dongnai River Basin Under 

Climate Change Context 

 

 

 

6.1 Introduction 

A warmer climate is already causing extreme weather events that affect the lives of 

million people around the word (Schiermeier, 2011). Specifically, extreme climate events seem 

to occur more frequently in different parts and seasons in Asia in the future, particularly in East 

Asia (IPCC, 2014). Brunner et al. (2017) indicated that climate change has an impact not only 

on the peak but also on the volume and hydrograph shape of the flood. Hence, assessment of 

climate change impacts on flood should consider all flood characteristics (i.e., peak, volume 

and duration) than only the flood peak. Therefore, in order to make appropriate adaptation 

strategies, decisions and policies under climate change context, it is important to understand the 

change of the flood characteristics and potential flood risk in the river basin scale.
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Vietnam is one of the countries that is highly influenced by climate change (Rutten et 

al., 2014, Trinh et al., 2013). The Saigon-Dongnai River basin plays an important role in social 

and economic development in the South of Vietnam. However, this basin also is facing many 

problems related to climate change (Noi and Nitivattananon, 2015). Indeed, this basin is one of 

the most susceptible regions to flood disasters. For example, 971,000 people, which account 

for nearly 12% of Ho Chi Minh City’s (HCMC) population have been affected by flooding and 

154 communes and wards in HCMC have been covered with flood waters (ADB, 2010). Several 

studies indicated that the common causes of flooding in this region are high tides, extreme 

rainfall, reservoir releases from the upstream of Saigon-Dongnai River (i.e., Trian, Dautieng 

and Phuochoa) and strong urbanization (ADB, 2010, Lasage et al., 2014, Storch and Downes, 

2011, World Bank, 2010). Trian reservoir, located in the upper reach of the Saigon-Dongnai 

River basin, is one of the largest sub-basins. Therefore, the impact of this reservoir on flood 

risk in the downstream is greater than other reservoirs. It is, hence, necessary to evaluate the 

potential flood risk for this region to provide the information on present and future flood hazard 

(climate change condition) for establishing a flood risk mitigation policy. 

There are several studies related the assessing the impact climate change on floods. Most 

of the flood frequency analysis studies only focus on the flood peak (Camici et al., 2014, Dobler 

et al., 2012, Qin and Lu, 2014). However, flood is a complex phenomenon defined by the strong 

correlation of its characteristics such as peak, duration and volume. If univariate frequency 

analysis is used to assess the behaviour of each flood characteristics, it will lead to over or 

underestimation of associated flood risk. In addition, in order to develop flood hazard maps, 

flood peak alone cannot give a reliable evaluation of hazard. Therefore, it is also important to 

consider simultaneously flood peak along with other flood characteristics (Aronica et al., 2012a, 

Candela et al., 2014). 

The bivariate flood frequency is an important extension for climate change impact 

studies (Brunner et al., 2017). Copula approach is a very versatile approach for modelling the 

joint probability in a more realistic way than other approaches. Copulas can model the 

dependence structure independently of the marginal distribution and allow modelling different 

marginal distributions (Dupuis, 2007, Favre et al., 2004, Zhang and Singh, 2007). Hence, 

copula approach is used in this study to assess the impact of climate change on flood 

characteristics. Besides, Karamouz et al. (2011) suggested that floodplain areas determination 
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is one of the important parts of flood risk assessment which has a significant implication on the 

planning of social and economic development. Therefore, the joint return period of flood peak 

and volume, which are obtained from bivariate frequency analysis, is used as the input data for 

the hydrodynamic model to estimate flood hazard mapping at river basin scale. 

Grimaldi et al. (2013) indicated that there are three main issues in creating the flood 

hazard maps using hydrodynamic models, namely the resolution of topography data, hydraulic 

model selection and design flood hydrograph estimating. The difference between this study and 

other studies related to flood hazards under climate change condition is that above three issues 

will be applied to improve the accuracy of the flood hazard mapping estimation. 

The estimation of flood hydrograph is truly important in defining the inundation areas 

which are used to determine the flood hazard mapping. Angela and Giuseppe (2017) suggested 

that using the same joint probabilities of occurrence of flood peak and volume in developing 

the design flood hydrograph will significantly enhance the reliability of flood hazard mapping 

(Angela and Giuseppe, 2017). Hence, in order to improve the accuracy of flood hazard 

mapping, it is necessary to estimate the design flood hydrographs under climate change context. 

Deterministic approach has been extensively used to develop flood hazard mappings. A 

simple form of deterministic approach is that the design flood hydrograph is used as input data 

for 1D hydraulic model to estimate the water level and then water depth is obtained by 

extracting the water level with a digital terrain (Merwade et al., 2008). However, flood events 

have complex spatial dynamics caused by the interaction between channel and floodplain flows 

and the detailed topography of floodplain areas (Stephens et al., 2012). The advanced 

deterministic approach, which consists of a combination of a physically-based 1D and 2D 

hydraulic models, allows simulating accurately the spatial and temporal dynamics of the flood 

process (Di Baldassarre et al., 2009, Prestininzi et al., 2011, Zhou et al., 2012). 

The quality and the accuracy of the inundation maps are highly depended on the quality 

of topography data which are used to extract cross-section for 1D hydraulic model or surface 

elevation for 2D hydraulic model. In fact, in most of the studies, cross-sections have been 

extracted from DEM (Merwade et al., 2008). However, the cross-sections obtained from these 

sources are often unrealistic because of their lack of adequate horizontal resolution and poor 

vertical accuracy (Gichamo et al., 2012, Vaze et al., 2010). Similarly, LiDAR data cannot 
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provide a reliable measurement for river cross-section because LiDAR systems use near 

infrared laser that cannot penetrate water (Xu et al., 2010). In order to overcome this issue, all 

the surveyed cross-sections which are used as input in 1D hydraulic model are applied in this 

study. 

In case of 2D hydraulic model, information about mesh resolution and topographic detail 

can decide the accuracy of model performance result (Dottori et al., 2013). Fine resolution mesh 

is necessary for capturing intricate flow paths and connectivity in urban areas (Yin et al., 2016). 

However, it is difficult to model large areas with fine resolution mesh because of the limitation 

of model preparation and computational intensity (Schubert and Sanders, 2012, Shen et al., 

2015, Teng et al., 2017, Zhou et al., 2012). If the selection of mesh resolution is carefully 

considered, the result of the model will be significantly improved. Hence, the multi-scale 

modelling approach, where fine resolution is applied for channel or raised embankment areas 

and coarser resolution, is developed for uniform topographic height, may be an efficient 

solution for this situation. Surface elevations which are used as input in 2D hydraulic model are 

obtained using the multi-scale mesh along with detailed topography data. The detailed 

topography is derived from 1m resolution LiDAR (HCMC area) and 10m resolution DEM 

(remaining regions). 

Inundation duration is an important parameter for flood risk assessment, mainly in the 

evaluation of transport blockades and access to emergency services. They have not been 

considered in many flood hazard studies due to the cost involved in its estimation. However, 

with the help of latest advances in flood modelling techniques such as flexible meshes 

generation and the advantages of coupled hydrodynamic model, in this study, the inundation 

duration is also determined. More importantly, with the increases of land use and climate 

changes that threaten more extreme flooding, developing the computationally efficient model 

is extremely needed. In fact, the need to developing efficient model flooding is growing in 

several fields such as flood risk management, real-time flood forecasting system, and flood 

evacuation planning. 

This study aims to address the following issues: (i) estimation of the flood design 

hydrographs using copula theory of flood variables (i.e., volume and peak) and shapes through 

historical observed flood hydrograph combined with cluster analysis; (ii) developing the 
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computationally efficient flood model using advanced deterministic approach based on couple 

1D-2D hydraulic model and high quality of topography data; (iii) creation of flood hazard maps, 

which is quantified by considering the flood depth and velocity in combination; and (iv) 

assessing flood risk changes under climate change context. 

6.2 Study Area and Data 

The Saigon-Dongnai river basin is located in the southern part of Vietnam within 

latitudes 10o30’N-13o00’N and longtitudes105o15’E-109o30’E. This basin has very significant 

impacts on the socio-economic development of south of Vietnam. The surface area of this basin 

is 14,800 km2 (Trian catchment) and 40,680 km2 (Sea). This basin has four major rivers, namely 

Dongnai (mainstream), Be, Saigon as major tributaries and Vamcodong rivers that join the 

Dongnai river before flowing into the sea (Ringler et al., 2012). The lower part of Saigon-

Dongnai river basin is a lowland area which is covered between downstream of Dautieng, 

Phuochoa and Trian reservoirs and coastal line as shown in Fig. 6.1. 



89 

 

 

Fig. 6.1 The downstream of Trian catchment 

The climate of this basin has been divided into two distinct seasons, namely, rainy (April 

to November) and dry (December to March) seasons. The climate is controlled by the North-

East and South-West monsoons. 90% of rainfall occurs in the seven months of rainy season. 

The annual average rainfall and temperature are about 2,400 mm and 25.9oC respectively. The 

hydrological regime of Saigon-Dongnai River basin is influenced by the semi-diurnal tide, 

precipitation and upstream reservoir releases. 

6.3 Methodology 

The methodology used in this study is shown in the flowchart (Fig. 6.2). Two scenarios 

(i.e., RCP 4.5 and 8.5) from five RCMs, namely, HadGEM3-RA, SNU-MM5, SNU-WRF, 

RegCM4 and YSU-RSM belonging to the CORDEX-EA projects are used. Climate outputs in 

the future period (2020-2045) obtained from these RCMs are downscaled with respect to the 
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observed data. And then, it is used as the input for the physically-based hydrological model to 

simulate the future streamflow data. The present and future discharge time series are used to 

extract the flood characteristics. Flood design hydrographs are obtained using bivariate 

frequency analysis and shape through observed historical flood events and cluster analysis. 

Finally, flood design hydrographs are used as input to the hydraulic models to develop flood 

hazard maps for present and future scenarios. 

 

Fig. 6.2: Framework of the methodology 

6.3.1 Extracting flood characteristics 

AM and POT approaches are widely used to extract flood characteristics. However, 

block maxima cannot consider multiple occurrences of flood events. Unlike the AM, which 

extracts only one event per year, POT considers a wider range of events and provides more 

information than block maxima. Further, several studies suggested the main advantage of using 

the POT approach for smaller sample sizes (Beguería, 2005, Bezak et al., 2014). Therefore, 

POT is used to extract the present and future flood characteristics in this study. The lag-

autocorrelation plot is also used to check the assumption of IID flood variables (i.e., peak, 

volume and duration). 

6.3.2 Bivariate frequency analysis 

Unlike traditional multivariate parametric distribution, in copula approach, the 

dependence structure is independently modelled with the marginal distributions which allow 
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for multivariate random events which are modelled using several different marginal 

distributions. Several researchers have used copula to investigate the bivariate frequency 

analysis (Dung et al., 2015, Reddy and Ganguli, 2012, Sraj et al., 2015). The most important 

step in the modelling process using copula approach is the selection of copula function which 

best fits the data sample (Favre et al., 2004). Dupuis (2007) and Poulin et al. (2007) suggested 

that copulas should be chosen based on several classes of copulas and several degrees of tail 

dependence. 

To describe dependence in multivariate extreme values, there are two possible situations, 

namely, asymptotic dependence or asymptotic independence (Coles et al., 1999). 

Determination of whether the variables have asymptotic dependence or asymptotic 

independence is very important in multivariate extreme analysis. In fact, in situations where 

diagnostic checks suggest data to be asymptotically independence, modelling with the extreme 

value copulas is likely to lead to misleading results (Coles et al., 2001, Ledford and Tawn, 

1996). Therefore, copulas are chosen based on the results of the tail dependence tests. As 

presented in Chapter 4, the LLHR test based on the difference between the log-likelihood of 

asymptotic dependence and asymptotic independence and tail dependence test introduced by 

Frick et al. (2007), is used to determine whether the variables have asymptotic dependence or 

asymptotic independence. 

Extreme value copulas can be a suitable selection in modelling data with positive 

correlation and arise naturally in the domain of extreme events (Gudendorf and Segers, 2011, 

Mirabbasi et al., 2012). In addition, numerous recent studies indicated that Gumbel-Hougaard 

copula, belonging to extreme value copulas, can work well when flood variables are 

diagnosticated as asymptotical dependence (Dung et al., 2015, Karmakar and Simonovic, 2009, 

Poulin et al., 2007, Zhang and Singh, 2006). 

Frank and Clayton copulas, belonging to the Archimedean family, have been widely 

used in hydrologic analysis because it can model both negative and positive associated 

variables. Besides, Frank and Clayton copulas, which have zero dependencies in both tails, may 

be suitable in case of the nonexistence of tail dependence (Dung et al., 2015, Poulin et al., 2007, 

Sraj et al., 2015). Further, Gaussian copula, which belongs to the family of elliptical, is 

characterized by correlation matrix and generates a wider range of dependence behaviour 
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(Bortot et al., 2000). Renard and Lang (2007) showed that Gaussian copula can be useful in 

modelling the dependence structure in the hydrological application because of its simplicity. 

Therefore, Clayton, Frank and Gaussian copulas are used to model the dependence structure 

where pairs of flood characteristics are diagnosed as asymptotic independence. 

Several distributions which have been widely used for modelling extreme values (i.e., 

LN, P3, LP3, Gumbel, GPD and GEV) are used in this study to identify the best fitting 

distribution to the flood variables (Bezak et al., 2014, Lang. et al., 1999, Saf, 2009a, Salas et 

al., 2012). In order to choose the appropriate copula, AIC and test introduced by Genest et al. 

(2011) based on a Cramer-von Mises (𝑆𝑛
𝐼𝐼) statistic measuring the distance between parametric 

and non-parametric estimator of the Pickands dependence function are used in this research. 

Another important step in bivariate frequency analysis is the selection of the appropriate 

return period. The joint return period called OR (X≥x or Y≥y) and AND (X≥x and Y≥y) have 

been widely used (Shiau, 2003, Vittal et al., 2015). However, in term of flood hazard evaluation, 

flooding can occur when only flood peak or volume is exceeded (Angela and Giuseppe, 2017). 

Hence, OR joint return period is used to obtain the flood design hydrograph. 

6.3.3 Design flood hydrograph 

For developing the design flood hydrograph, in addition to the determination of the value 

of flood characteristics pair (i.e., flood peak and volume) characterized by the same return 

period, it also requires the knowledge of shape to assign them (Aronica et al., 2012a). Cluster 

analysis, determined the similarity between different samples using an algorithm to identify the 

relationships among attributes, is applied to find the shapes of the hydrograph. Hierarchical 

Cluster Analysis (HCA) calculated the distances between all samples using Euclidean or 

Manhattan distance and is the most common approach in which cluster can be formed (Berrueta 

et al., 2007, Patras et al., 2011). There are several methods to define the distance between two 

groups, namely single, complete, centroid and Ward’s method. However, Ward’s method is 

widely used in the hydrological analysis (Angela and Giuseppe, 2017, Aronica et al., 2012a). 

In the Ward’s method, the distance between two groups is defined as minimizing the increase 

in sum of squared errors of the distance of any two clusters. 
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6.3.4 Coupled hydrodynamic modelling 

Flood models can be categorized into several types depending upon their data 

requirements, level of complexity of the underlying equation and the resolution. Using 1D 

hydraulic model is common practice in determining floodplain area because it is easy to use 

and require fewer input data and the simulation results can be quickly obtained (Pappenberger 

et al., 2005). 1D models can solve problems of flood flows in open channels with assumptions 

that vertical acceleration is not significant and that water level in the channel cross-section is 

approximately horizontal are valid. However, problems arise when the channel is embanked 

and water levels are different in the floodplain than in the channel and in such situations, 2D 

models are needed. 2D numerical models solve full shallow water equations, which are able to 

simulate timing and duration of inundation with high accuracy. 2D flood inundation models are 

now important parts of flood risk management practice because they are capable of adequately 

predicting water depth, velocity and flood risk with high accuracy (Lamb et al., 2009, Teng et 

al., 2017). However, 2D has some limitations such as taking a long time to set up and run 2D 

model, particularly for the large area. 

To overcome these disadvantages of both 1D and 2D numerical models, coupled 1D and 

2D flood model are considered as suitable tools to model flood flows, both in channel and 

floodplains. The coupled models offer a great advantage for real-time simulation of flood 

events. There are several coupled models for simulating the hydrodynamic regime in the river. 

SOBEK 1D and 2D and MIKE FLOOD developed by Delft hydraulics and DHI respectively 

are widely used in recent years. MIKE FLOOD allows exploiting the best features of both 

MIKE 11 and MIKE 21 to simulate flood regime. Furthermore, MIKE FLOOD allows avoiding 

many of the limitations of resolution and accuracy encountered when using MIKE 11 or MIKE 

21 separately. 

In the 2D hydraulic modelling, the accuracy of the model can be associated with the 

computation grid resolution. The selection of the resolution of the grid is based on several 

factors such as the available of topographic data, the requirement of the minimizing errors in 

the schematization of the physical processes. Dottori et al. (2013) defined the coarse resolution 

as a mesh of 20m, fine resolution as a mesh between 2 and 5m and very fine resolution as a 

mesh below 2m in the urban areas. Huthoff et al. (2015) and Chatterjee et al. (2008) suggested 
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that 50m resolution of topographic data is sufficient to resolve flood response for non-urban 

areas. However, high resolution of computation mesh cannot be feasible for large scale 

floodplain areas. Hence, the different mesh resolution corresponding with the quality of 

topographic data in hydraulic modelling is applied in this study. A flexible mesh is an advanced 

approach in the model discretization of space, and this is carefully constructed to have a fine 

resolution around complex areas to reflect huge changes in the topography and coarser 

resolution over large areas with a little spatial variance to save computational effort. The 

flexible mesh has a great impact on model performance (Teng et al., 2017). 

2D flexible mesh are used as an input data for 2D hydrodynamic models because it easily 

allows representing the complex geometry associated with the flood ways. It also allows to be 

represented a small scale features at a finer resolution and the broader floodplain at a coarser 

resolution without resorting to model grid nesting (Mackay et al., 2015). It also allows fully 

hydrodynamic with higher order scheme simulations. The floodplain in the lower of Trian 

catchment is modelled using flexible mesh. This allowed higher definition meshes to be applied 

over known flood runner and flood ways while much coarser meshes were applied to the 

broader floodplain where the terrain if more uniform require less detail. The meshes have been 

developed to represent the flood ways and broader floodplain, the triangular mesh with various 

sizes depend on the level of resolution required. 

6.3.5 Flood hazard analysis 

Flood hazard maps provide useful information about the flood severity for the decision 

maker, planner, and local governor in flood risk management, master planning development 

and flood emergency response planning. Flood hazard maps can be drawn using hazard curves 

by combining different flood parameters such as flood extent, water depth and flow velocity 

with the return period into different hazard classes (Mazzoleni et al., 2014). In the past, flood 

hazard maps were generated based on only on inundation depths. From the flood hazard maps 

obtained only from flood depth, it was found that it has the potential to reflect the unsafe areas 

for people during the extreme events within the floodplain. Ali (2018) used only flood depth to 

generate flood hazard maps using the modifications standards of Japan International 

Corporation Agency (JICA). Flood hazard also depends on the duration of inundation, the 

amount of energy that is contained in the overland flow and the available warning time to 
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evacuate the population. Therefore, it is important to identify a technique to generate multiple 

parameters flood hazard maps by incorporating all possible hazardous elements of flood events. 

Physical damage to properties during a flood event is closely related to the amount of 

energy contained in the floodwater. The extent of soil erosion or the displacement of properties 

also depends on flood velocity (Tennakoon, 2004). Therefore, the flood hazard should be 

obtained using both flood depth and velocity. Further, Luke et al. (2018) suggested that if 

multiple flow velocities are incorporated with flood depths, flood hazard maps can be generated 

which would be suitable for reflecting of risk for others (i.e., people, car and building). 

Australian studies suggested flood hazardous zones, describing by velocity flow and 

water depth, defined by velocity multiple by flood depth thresholds (AEMI, 2014). Similarly, 

US Department of Land and Soil Conversation classified the flood hazard categories based on 

maximum energy of floodwater and the hazard zone is divided into high hazard and low hazard 

zones (OEH, 2005). High hazards correspond to possible danger to people, vehicles and 

buildings while low hazards correspond to less difficulty in evacuating people and protecting 

properties. The classification by the US Department of Land and Soil Conservation is realistic 

for urban applications. However, according to this classification, the threshold of 1.2 m flood 

depth with 1.4 m/s velocity is classified as high hazard zone. Their hazard category is 

inadequate for an area experiencing a heavy flood. Generally, it is reported that flood depth 

ranges from as small as 0.3 m though hazardous to children would be within the self-help range 

for adults (Mani et al., 2014). 

It was, hence, decided to use the flood hazard classification introduced by AEMI (2014) 

in this study. In this classification, the flood hazard assessment considering the impact on 

people, vehicle and buildings that may occur when floods meet the following conditions: (i) 

flood depth is greater than 0.3; (ii) water velocity is greater than 2 m/s and (iii) the product of 

these two parameters is greater than 0.3 m2/s. The flood hazard classifications that relate to 

specific thresholds are presented in Table 6.1, which also contains the limits for classification. 

The combined effect of two parameters, viz., flood depth and velocity have been considered. 

The hazard classification is done on a 6-point scale, H1 to H6 scale, H1 being safe for vehicles, 

people and buildings while H6 being unsafe for vehicles, people and all buildings considered 

vulnerable to failure. 
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Table 6.1: Combined hazard curves-vulnerable thresholds and limits for classification 

Next to the flood depth and velocity, duration of flooding is also an important parameter 

in flood risk analysis. The duration of inundation above flood depth threshold is an important 

baseline information when considering isolation aspects of emergency management. Mani et 

al. (2014) indicated that the flood inundation of 0.3 m for 1 to 2 days duration can cause severe 

damage to crop productivity and manufacturing production process. Besides, in order to 

maintain or enhance the ecological functioning of floodplain wetlands, it is important to 

understand the timing and duration of connectivity to the river channel vary with streamflow 

and climate (Karim et al., 2016). Most of the regions in this study area are agricultural land, 

wetland and industrial zones, it is, hence, very important to assess the impact of the inundation 

duration on the crop productivity, manufacturing production process as well as floodplain 

ecosystems. 

6.4 Results and Discussion 

6.4.1 Bivariate frequency analysis 

LLHR and TailDep tests are used to identify the asymptotic dependence and 

independence of flood characteristics pairs. The results from two tests are nearly similar. Table 

Hazard 
classification 

Description 
Limiting 
still water 

depth  
(D) 
m

Limiting 
velocity 

(V) 

m/s 

Classification 
limit 

(D×V) 
 

m2/s

H1 
Generally safe for a vehicle, people and 
buildings 

0.3 2 D×V≤0.3 

H2 Unsafe for small vehicles 0.5 2 D×V≤0.3

H3 Unsafe for vehicles, children and the elderly 1.2 2 D×V≤0.6

H4 Unsafe for vehicles and people 2 2 D×V≤0.6

H5 Unsafe for vehicles and people. All building 
types are vulnerable to structural damage. Some 
less robust building types vulnerable to failure

4 4 D×V≤4 

H6 Unsafe for vehicles and people. All building 
types considered vulnerable to failure

- - D×V>4 
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6.2 shows the p-value of LLHR and tail dependence tests for all pair of observed and future 

flood variables. Based on these tests, the asymptotic dependence and independence of present 

and a future pair of flood characteristics are shown in Table 6.2. 

Table 6.2: p-value of LLHR and TailDep tests 

Scenarios Tests 
p-value

 RCP 4.5 RCP 8.5 
DV DP PV DV DP PV

Obs 
LLH 0.04 0.01 0.01   
TailDep 0.30 0.02 0.04   
Diagnostic Dep InDep InDep   

Had 
LLH 0.38 0.24 0.07 0.49 0.25 0.20
TailDep 1.00 0.12 0.16 1.00 0.11 0.35
Diagnostic Dep Dep Dep Dep Dep Dep

Reg 
LLH 0.65 0.19 0.20 0.43 0.24 0.73
TailDep 0.56 0.19 0.13 0.51 0.12 1.00
Diagnostic Dep Dep Dep Dep Dep Dep

YSU 
LLH 0.65 0.16 0.30 0.80 0.60 0.55
TailDep 1.00 0.25 0.33 1.00 0.16 0.31
Diagnostic Dep Dep Dep Dep Dep Dep

WRF 
LLH 0.38 0.35 0.22 0.50 0.13 0.13
TailDep 1.00 0.88 0.65 1.00 0.16 0.11
Diagnostic Dep Dep Dep Dep Dep Dep

MM5 
LLH 0.37 0.13 0.13   
TailDep 1.00 0.04 0.04   
Diagnostic Dep InDep InDep   

GCM 
LLH 0.88 0.04 0.05 0.23 0.18 0.39
TailDep 1.00 0.08 0.09 1.00 1.00 1.00
Diagnostic Dep InDep Indep Dep Dep Dep

The best marginal distribution for each flood variable is selected based on the minimum 

AIC values. Table A. 5 shows the value of AIC for all marginal distributions used for peak, 

volume and duration. The result indicates that most scenarios data follow the LP3 and P3 

distributions, namely 36.11% and 30.56 % respectively. 16.67 % and 11.11% of the samples fit 

the LN and GEV distributions respectively. Only the 5.56 % data follows the Gumbel 

distribution. 

Based on the result of tail dependence tests, three extreme value families of copulas (i.e., 

Gumbel-Hougaard, Galambos and Husler-Reiss) are chosen to model asymptotical dependence 
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pair of flood characteristics. Gaussian, Frank and Clayton copulas are used in modelling 

asymptotically independence pair of flood characteristics. The copula dependence parameter, 

AIC value and the Cramer-von Mises (𝑆𝑛
𝐼𝐼) statistic and p-value are given in Table A. 6 and 

Table A. 7. Based on the AIC value and 𝑆𝑛
𝐼𝐼test results, the most appropriate copulas are selected 

to calculate the joint return periods for all pair of flood characteristics. 

The values of the pair of flood peak and volume in the same return period can be obtained 

through bivariate frequency analysis. For example, the value of flood peak (m3/s)-volume (106 

m3) pairs in the same joint return period (OR) of 100-year are (5,585-12,918), (6,368-21,987) 

and (4,467-27,641) for the present, mean RCP 4.5 and mean RCP 8.5 scenarios respectively 

(Table 6.3). 

Table 6.3: Flood magnitudes for the same joint return period of 100 years 

The same joint return period of 100 years 

Scenarios Variables  Values Scenarios Variables  Values

Obs 
Peak 5,585 4,690 4,295 

Had_85 
Peak 4,278 4,034 3,927 

Volume 12,918 12,990 13,099 Volume 30,557 31,860 35,670

Reg_45 
Peak 6,278 4,036 3,875 

GCM_45 
Peak 7,824 6,962 6,280 

Volume 29,187 30,502 34,355 Volume 33,808 35,556 41,003

YSU_45 
Peak 6,159 4,053 3,754 

Reg_85 
Peak 4,348 3,484 3,038 

Volume 24,343 24,900 25,517 Volume 21,545 22,008 23,093

MM5_45 
Peak 6,278 4,308 4,036 

YSU_85 
Peak 3,300 3,148 2,972 

Volume 20,259 20,333 20,408 Volume 29,495 31,133 38,228

WRF_85 
Peak 3,650 3,367 3,367 

WRF_45 
Peak 5,755 3,449 3,407 

Volume 33,616 34,411 37,472 Volume 5,897 7,496 10,603

Had_45 
Peak 5,913 3,797 3,608 

GCM_85 
Peak 6,761 5,696 5,468 

Volume 18,429 19,275 20,335 Volume 22,994 23,497 24,675

Note: Peak (m3/s) and Volume (106 m3) 

From the results, it is indicated that the future flood could have more volume than the 

present flood in both scenarios. The future flood peak of mean RCP 4.5 is larger than observed 
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flood peak whereas the flood peak of mean RCP 8.5 is smaller than observed flood peak. 

Besides, the flood volume of mean RCP 8.5 is largest compared with others. 

6.4.2 Flood design hydrograph 

In order to find the typical shape of the hydrograph, cluster analysis with Ward method 

is used. A visual representation of the distance at which shapes are combined is shown in the 

dendrogram (Fig. A. 6). The number of hydrograph clusters should be large enough to describe 

the hydrograph variation but small enough to identify the characteristic of hydrograph shapes. 

Therefore, three typical shapes of hydrographs are chosen based on the cluster analysis. The 

sampled pairs of flood peak and volume are associated with a randomly selected normalized 

characteristics hydrograph conditioned by their probability of occurrences. Merging the 

normalized hydrograph and generated peak and volume pair from copulas, flood hydrographs 

are obtained. Fig. A. 7 shows three synthetic flood hydrographs corresponding with 100-year 

return period for the present and future floods. And then, these flood hydrographs are used as 

the upper boundary condition into the hydrodynamic model. 

6.4.3 Hydraulic modelling  

MIKE 11 is a 1D hydrodynamic model for solving the Saint-Venant equations in the 

river networks. The river network, the cross-section data and the boundary condition are defined 

for each river. The lower part of Saigon-Dongnai River basin which is covered within 

downstream of Dautieng, Phuochoa and Trian reservoirs and coastal line is used in the network 

for the model. Five main rivers (i.e., Dongnai, Saigon, Be, Vamcotay and Vamcodong) and 251 

small streams are used. More than 300 observed cross-sections surveyed in the year 2009 are 

used in this study. Observed releases from Trian, Phuochoa and Dautieng reservoirs, observed 

discharges from Godau streamflow gauge located in the VamcoTay river and observed water 

levels from Mochoa located in the Vamcodong river are used as the upstream boundary 

conditions. Observed sea level (Vungtau gauge) is considered as the downstream boundary 

condition. Two hourly observed water levels at Nhabe and Bienhoa, which are located in the 

Dongnai River are used in calibration and validation for 1D hydrodynamic model. 

The shuffled complex evolution algorithm is used to optimize the parameters. 

Manning’s coefficient is selected as the model calibration parameter. Based on the objective 
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and the availability of observed data, the observed water level in Nhabe and Bienhoa are used 

for calibration and validation of 1D model. The model is calibrated for the using the data of the 

year 2009 while the model is validated for the year 2012, for the flood season. The Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE) are used to assess the model 

performance. There is good agreement between the simulated and observed water levels at most 

of the time in both locations, as seen from Fig. 6.3. RMSE and MAE values are 0.236 (0.220) 

m and 0.286 (0.190) m for Nhabe and Bienhoa respectively in the calibration procedure. 

Similarly, these values are 0.339 (0.280) m and 0.193 (0.140) m for validation step. 

A flexible mesh is carefully constructed in 2D hydraulic modelling in this study. The 

potential inundation areas, complex areas (i.e., channel and raised embankment) and regions in 

which LiDAR data are available are assigned with finer resolution while the coarser resolution 

is used for the remaining areas. The flexible mesh with 75,263 elements and 38,202 nodes 

covering an area of about 738.02 km2 is built. The surface elevations for the study area are 

derived from with 1m resolution of LiDAR for HCMC area and 10m resolution DEM for the 

remaining areas. The Manning’s n value for floodplain areas, which are selected from the land 

use map, can be set for each computational element. The Manning’s n values used are 0.2, 0.07 

and 0.03 m1/3/s for residential, agriculture and water bodies respectively. 
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(a)

 
(b)  

Fig. 6.3: Simulated and observed water levels for (a) Nhabe and (b) Bienhoa during period of August 2009 
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Fig. 6.3 (continues): Simulated and observed water levels for (c) Nhabe and (d) Bienhoa during period of November 2012 
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6.4.4 Flood hazard analysis 

The changes in 100-year return periods of future flood characteristics in the period 

(2020-2045) in the Trian watershed were reflected in the changes of the flood inundation in the 

downstream. In fact, the future flood characteristics are showing increasing values in for the 

inundation areas and decreasing the flood characteristics will lead to reduce the flooding areas 

(Fig. 6.4). The total inundation areas under different hazard indexes are given in Table 6.4. The 

inundation areas of 100-year return period under mean RCP 4.5 is greater than the observed 

flood. Under mean RCP 8.5 scenario, the inundation area of 100-year return period is smaller 

than the present observed flood peak. 

Table 6.4: Inundation areas under different hazard indices 

Scenarios 
Total of 

inundation 
areas (km2) 

Flood hazard index: 
H1 

(km2)
H2 

(km2)
H3 

(km2)
H4 

(km2) 
H5 

(km2) 
H6 

(km2)
Obs 199.740 37.367 26.227 45.092 22.359 14.230 54.465
RCP 4.5 317.645 34.406 28.186 53.188 27.894 33.352 140.620
RCP 8.5 153.900 29.576 19.831 33.983 8.538 11.069 50.903

The land area under the H6 hazard index (i.e., unsafe for vehicles and people and all 

building types considered vulnerable to failure) is greater than any other category. For example, 

54.465 km2 of the study area is subject to H6 hazard index under 100-year return period of the 

present flood. 140.620 km2 and 50.903 km2 are under H6 hazard index for RCP 4.5 and RCP 

8.5 respectively. 

Based on the spatial distribution of flood hazard in the Saigon-Dongnai River basin, 

flood inundation can be more intense in the lowlands and agricultural areas (i.e., Longtan, 

Lacan). The urban areas (i.e., Bienhoa and Longdai) are less affected by flood than others 

because of ground elevation in these areas may be upgraded for construction purposes. 

Besides, considering the inundation areas under climate change context, in this study, 

the duration of the inundation is also investigated. Fig. 6.5 shows the maximum inundation 

duration above flood depth threshold (0.3 m) for present and future floods. It is clear that the 

duration of inundation will increase corresponding to its flood magnitude. However, the 

duration of inundation is also greatly affected by the flood volume. For example, the duration 
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of inundation in the Phuhuu in the Saigon-Dongnai River basin under RCP 8.5 is greater than 

the present flood although the present flood peak is larger than RCP 8.5 scenario. Spatial 

variation in inundation duration is mainly controlled by the land topography. Indeed, the 

lowland in the lower part of this basin is recorded the inundation duration longer than the upper 

parts of floodplains. The main reason for this situation is that the geomorphologic processes, 

generally result in large adjacent areas of flat land in the lower parts of a floodplain than its 

upper parts. 
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(a) (b) (c) 

Fig. 6.4: Flood hazard maps for flood event with 100-year return period of (a): Observed (b): Mean RCP 4.5 (c): Mean RCP 8.5 

 



106 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.5: Maps of maximum inundation duration above threshold (a): Observed (b): Mean RCP 4.5 (c): Mean RCP 8.5 



107 

 

6.5 Summary and Conclusions 

In this study, a comprehensive approach for developing a flood hazard mapping for the 

downstream of Trian reservoir under climate change context is presented. The approach 

combines the bivariate flood frequency and the coupled hydrodynamic model for simulating 

the inundation in a spatial context. 

Flood hydrograph estimation has an important role in accurate assessment of flood 

hazard. Three flood variables (i.e., peak, volume and shape) are estimated using bivariate 

frequency and cluster analysis. Indeed, the multivariate statistical analysis provides a better 

approach than the univariate method in term of extreme events statistic. Therefore, the copula 

approach is used to model the dependence structure between flood peak and volume. More 

importantly, the result from tail dependence test provides more useful information to choose 

the more appropriate copula in multivariate frequency analysis. Extreme value copulas are used 

when flood variables are diagnosed as asymptotical dependence whereas Clayton, Gaussian and 

Frank copulas are considered for asymptotical independence cases. 

High-resolution DEM based on the LiDAR data along with fully 2D hydrodynamic 

model provides more detail flood hazard mappings for this study area. Flood hazard is 

quantified by considering the combination of flood depth and velocity. Spatial variability of 

flood hazard is also created. This research provides significant potential for better flood 

inundation estimation in the future at river basin scale. 

This study also indicated that the inundation duration not only is controlled by flood 

magnitude but also by the flood volume. From the results, it is observed that most of the 

agricultural areas located downstream of Trian catchment will be greatly inundated under 

climate change context. The lower part of this river basin tends to have longer inundation 

duration than other parts because of flat land topography. 

These results of this study will help the policy makers and stakeholders to plan for the 

social and economic development in this river basin. In addition, it also provides significant 

information for the emergency preparedness plan, including aid and relief operations for 

inundation areas in the future flood events. 
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It is very important to highlight that the flood protection and adaptation measures for 

agricultural areas need to be implemented to minimize the consequence of flood damages under 

climate change conditions. Use of flood-tolerant species may be an effective approach in the 

areas where flood is frequently recorded. More importantly, a change in the cropping pattern is 

needed. Annual crops need to be replaced by summer period growing varieties for these areas. 



109 

 

Chapter 7 

Summary and Conclusions 

 

 

 

7.1  Summary 

Floods are one of the worst natural disasters, which cause huge damage annually 

including loss of human lives. The damage and loss of life caused by floods could be higher in 

the future also due to climate change. Assessment the changes of flood characteristics under 

climate change context plays a considerable role in managing the flood risk. Quantifying the 

vulnerable areas associated with the changes of climate allows local authorities to provide a 

good the future development planning. Therefore, in this study, quantifying the impact of 

climate change on flood risk is carried out at river basin scale. 

The design and assessment of flood risk of hydraulic structures, water resources 

planning, reservoir management and flood hazard maps involve the identification of the given 

flood events with a low probability of exceedance. FFA seeks to connect the magnitude of 

extreme events with their frequency of occurrence via probability distribution. The objective of 

FFA is to estimate the return period associated with a flood of given magnitude. The return 
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period is a standard criterion in the design of the hydraulic structures or the flood control. It 

becomes necessary, in most studies, to obtain the frequency curve fitting the PDF to the 

observed data to estimate flood quantiles associated with given return periods. 

To investigate the changes in flood magnitude, AM and POT are commonly used to 

extract the flood events. AM sample is defined by the maximum peak flow of each year. 

However, AM cannot be used in the case of short data series because it does not provide 

adequate information. Unlike the AM, which extracts only one event per year, POT considers 

a broader range of events and provides more information than AM, primarily for estimation of 

flood magnitude. Many researchers have investigated the choice between AM and POT. Some 

have emphasized that POT approach is more suitable for extreme value analysis and provides 

more accurate estimates of flood quantiles than corresponding AM approach. 

The frequency of occurrence of the flood variables provides important information for 

the design of hydraulic structures, water resources planning, reservoir management and flood 

hazard mapping. Furthermore, flood is a complex phenomenon defined by strongly correlated 

characteristics such as peak, duration and volume. Therefore, it is necessary to study the 

simultaneous probabilistic behaviour of flood characteristics. 

Traditional multivariate parametric distributions have widely been applied for 

hydrological applications. However, this approach has some drawbacks such as the dependence 

structure between the variables, which depends on the marginal distributions or the flood 

variables that have the same type of marginal distributions. Copulas are widely applied to 

overcome the restriction of traditional bivariate frequency analysis by choosing the marginals 

from different families of the probability distribution for flood variables. The most important 

step in the copula modelling is the selection of copula function which is the best fit to data 

sample. The choice of copula may significantly impact the bivariate quantiles. This study will 

investigate the potential of performing the tail dependence tests for the pairs of flood 

characteristics and evaluating the performance of extreme value copulas for asymptotic 

dependence variable and Clayton, Frank and Gaussian copulas for asymptotic independence 

variables. 

Flood hazard mapping is one of the critical aspects of flood risk assessment which has a 

significant implication on the planning of social and economic development. The information 
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of flood hazard is also essential to provide various strategies for mitigating the flood risk, which 

in turn, can reduce the losses of human life and damages in urban and rural sectors. Assessing 

the flood risk at the river basin is not a simple task, because of the complex nature of flood 

generation caused by a combination of several sources such as precipitation, tidal, river basin 

characteristics and anthropogenic activities. However, the development of numerical flood 

modelling methods in recent years and the availability of advanced flood modelling and modern 

survey techniques for collection of high-quality input data for those models allow to simulate 

flood behaviour and to study the characteristic of future floods. 

Flood hazard maps show the intensity of floods and their associated exceedance 

probability. To develop reliable flood hazard maps, a methodology, combining the 

advantageous features of 1D and 2D hydraulic models, bivariate flood frequency analysis and 

high-resolution topographic data, are typically applied. Flood peak alone cannot give a reliable 

evaluation of the hazard. It is also essential to consider simultaneously the flood peak along 

with other flood characteristics in developing flood hazard mappings. Furthermore, rapid and 

accurate flood modelling at high spatial-temporal resolutions remains a significant challenge in 

hydrologic and hydraulic studies. Therefore, it is necessary to establish an advanced 

deterministic approach, including bivariate flood frequency analysis, efficient and flexible 

hydrodynamic models and high-resolution topographic data in developing the flood hazard 

maps under climate change context. 

The research reported in this thesis contributes towards assessing the flood risk under 

climate change context at the river basin scale. Initially, the potential impact of climate change 

on flood frequency is evaluated for the Saigon-Dongnai River basin, Vietnam. The correctness 

of directly using the asymptotic distribution to model the future POT dataset are also assessed 

in this study. In addition, the tail dependence tests for the pairs of flood characteristics are 

carried out to select the appropriate copula functions. The performance of extreme value 

copulas for asymptotic dependence variables and Clayton, Frank and Gaussian copulas for 

asymptotic independent variables are assessed. Finally, the last part of this thesis contributes 

towards developing flood hazard maps obtained using coupled hydrodynamic models, bivariate 

flood frequency analysis and flood hazard tools. 
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7.2 Conclusions 

Based on this study, the following conclusions can be arrived. 

The changes in Trian reservoir belonging to the Saigon-Dongnai River basin, Vietnam 

are analyzed using GCM/RCMs outputs from CORDEX project. The change factors for two 

scenarios such as RCP4.5 and 8.5 are calculated by using the outputs of five RCMs and one 

GCM. Then, these change factors are used as an input to LARS-WG to generate the daily 

precipitation and daily temperature for both scenarios. The continuous hydrological model 

(HEC-HMS), which is calibrated and validated using observed discharge data, is applied to 

simulate future discharge data based on the future climate data. The changes of flood frequency 

of flood peak extracted using POT approach is compared between historical and future time 

periods. The analysis reveals that flood magnitudes increase significantly in the future period 

for the study area. 

Since the flood is a complex phenomenon defined by strongly correlated characteristics, 

univariate frequency analysis approach cannot describe accurately the random correlated flood 

characteristics. Based on the advantage of copula approach in multivariate frequency analysis, 

the copula approach is used to model the joint dependence structure of flood characteristics. 

The most important step in the modelling processing using copula is the selection of copula 

function that fits the data sample. The chosen copulas should include several classes and 

degrees of tail dependence. Therefore, the potential of performing the tail dependence tests for 

the pairs of flood characteristics in selection appropriate copula function are assessed in Chapter 

5. 

LLHR and tail dependence tests are used to identify the asymptotically dependence of 

flood characteristics. Three extreme value copulas (i.e., Gumbel-Hougaard, Galambos and 

Husler-Reiss) are evaluated to model asymptotically dependence of flood variables. In addition, 

Gaussian, Frank and Clayton copulas are considered as the appropriate copula function in case 

of which are diagnosed as asymptotic independence. Besides, the extreme value copulas also 

with upper tail dependence have proven that they are appropriate copula function for the 

dependence structure of flood variables. 

Accurate and reliable flood risk maps are ideal tools for decision makers to reduce social 
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and economic losses from flood events. These maps provide useful information for 

organizations dealing with emergency situations to calibrate and adjust warning systems and 

prepare priority evacuation plans. Modelling the potential flood regime due to river flow from 

upstream considering the present condition and two future scenarios RCP4.5 and 8.5 are carried 

out. Hydrodynamic flow modelling is simulated using coupled model in the lower stream of 

Saigon-Dongnai River basin, Vietnam. 

The high-resolution flood hazard maps are obtained in this work through three key 

components: (i) design flood hydrograph estimated using bivariate flood frequency analysis is 

used as the input the hydrodynamic model; (ii) high-quality topographic data (i.e., DEM and 

LiDAR), collected using modern survey, are used as an input for the hydraulic models and (iii) 

flexible meshes generation, which are the latest advances in flood modelling, are selected for 

the coupled hydrodynamic model. Two parameters, namely, flood depth and flow velocity, 

which are obtained from coupled hydrodynamic model, have been used for quantifying the 

flood hazard. 

Flood hazard maps, which were assessed using both flood depth and velocity, are 

developed in Chapter 6. In addition, safe locations have also been identified for the industries. 

Besides, flood inundation duration is an important parameter for flood risk assessment also as 

pointed out in this study. Furthermore, flood hazard maps also provide useful information for 

the evaluation of transport blockades and access to emergency services. 

To summarise, the major conclusions from this study are: 

 The changes of flood frequency of flood peak extracted using POT approach is 

compared between historical and future time periods. The analysis reveals that flood 

magnitudes increase significantly in the future period for the study area. The results 

of this study also indicate that directly using the asymptotic distribution to model 

the POT dataset sometimes provides wrong insights. 

 There is a huge difference in the joint return period estimation using the families of 

extreme value copulas and no upper tail copulas (i.e., Frank, Clayton and Gaussian) 
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if there exists asymptotic dependence in the flood characteristics. The extreme value 

copulas with upper tail dependence have proved that they are appropriate models 

for the dependence structure of the flood characteristics and Frank, Clayton and 

Gaussian copulas are the appropriate copula models in case of variables which are 

diagnosed as asymptotic independence. 

 The high-resolution flood hazard maps are obtained in this work using both flood 

depth and velocity, which will help in identifying the potential flood hazard regions 

as well as safe locations for the setting up industries and planning for social and 

economic development in the river basin scale. 

7.3 Scope for Future Studies 

The work presented in this thesis could be further extended if relevant data were 

available and time is not a constraint. 

 Assessing the changes in flood frequency due to the changes of river basin 

characteristics changes or land use and land cover 

 Analysis of the bivariate flood frequency of nonstationary flood characteristics 

 Analysis of regional flood frequency analysis of nonstationary flood characteristics 

 Quantifying the uncertainty of the flood hazard maps 

 Development of flood hazard management system, including a flood evacuation 

strategy.
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Fig. A.1:Box plots of observed, RCMs and GCM simulated annual precipitation during baseline period (1980-2005) 
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Fig. A.2: Q-Q plots between observed and raw RCMs & GCM simulated daily precipitation
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Fig. A.3: Mean residual life plot for daily flood data in Tapao 

 

Fig. A.4: POT series of Tapao station based on the threshold value of 250 m3/s and after 

declustering with independence criteria of 5 days 
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Fig. A.5: Diagnostic plots for threshold (250 m3/s) excesses of Tapao observed discharge 

fitted with GPD distribution 
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Fig. A.6: Dendrogram of the cluster analysis of hydrographs 

 

1

10

11

12

13

14

15

16

17

18

19

2

20

21

22

23

24

25

26

27

28

29
3

30

31

32

33

34

35

36

37

38

39

4

40

41

42

43

44
45

46

47

48

49

5

50

51

52

53

6

7

8

9

cluster

a

a

a

1

2

3



121 

 

 

Fig. A.7: Design flood hydrographs for 100-year return period for present and future scenarios
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Table A.1: Results of AD test for POT datasets of future (2020-2045) scenario 

Scenarios 
Talai Tapao Trian

GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 

Anderson-Darling 

GCM_45 0.46 2.23 2.10 2.15 0.51 1.07 0.66 6.22 6.04 6.93 1.23 0.77 0.27 1.19 1.07 0.78 0.63 1.15 

GCM_85 0.44 2.66 2.58 2.90 0.52 1.08 0.51 1.82 1.80 2.23 0.58 1.12 1.32 2.87 2.69 2.26 0.72 1.44 

Had_45 0.22 0.81 0.79 0.97 0.73 0.62 4.80 1.16 1.15 1.09 1.61 1.65 0.99 2.10 2.04 1.93 1.01 1.55 

Had_85 0.38 1.78 1.74 2.00 0.52 0.64 0.19 2.39 2.38 3.17 0.33 0.73 1.40 1.59 1.54 1.33 1.01 1.64 

Reg_45 0.40 1.86 1.82 2.12 0.68 1.39 0.25 2.89 2.88 3.77 0.43 0.44 1.86 2.25 2.16 2.10 0.80 1.27 

Reg_85 0.29 1.39 1.38 1.64 0.73 1.45 0.28 2.29 2.24 3.60 0.40 0.56 1.24 1.30 1.29 1.24 1.20 2.10 

MM5_45 0.72 3.08 3.03 3.15 0.63 0.79 0.45 2.25 2.23 2.63 0.54 1.31 1.24 2.80 2.69 2.48 0.87 0.99 

WRF_45 0.52 2.80 2.75 2.69 0.71 0.70 0.63 2.45 2.45 3.13 1.23 1.05 0.49 3.44 3.39 3.62 0.92 0.59 

WRF_85 0.35 1.07 1.05 1.67 0.68 1.32 1.50 2.78 2.78 3.24 0.58 1.60 0.97 2.51 2.43 2.24 0.84 1.08 

YSU_45 0.51 2.16 2.14 2.86 0.57 0.58 0.69 3.96 3.91 4.24 0.62 0.91 1.13 2.58 2.52 2.29 1.56 1.95 

YSU_85 0.41 1.47 1.46 2.27 0.57 0.73 0.69 3.13 3.13 3.46 0.70 1.01 0.20 1.07 1.05 1.38 0.50 0.98 
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Table A.2: Results of KS test for POT datasets of future (2020-2045) scenario 

Scenarios 
Talai Tapao Trian

GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 

Kolmogorov-Smirnov 

GCM_45 0.07 0.09 0.09 0.09 0.05 0.09 0.07 0.16 0.16 0.19 0.10 0.07 0.06 0.09 0.09 0.08 0.08 0.12 

GCM_85 0.06 0.11 0.11 0.11 0.05 0.07 0.06 0.11 0.11 0.12 0.06 0.08 0.09 0.12 0.11 0.11 0.08 0.10 

Had_45 0.05 0.07 0.07 0.09 0.06 0.07 0.32 0.22 0.22 0.22 0.20 0.20 0.09 0.11 0.11 0.11 0.10 0.11 

Had_85 0.06 0.13 0.13 0.11 0.09 0.08 0.05 0.11 0.11 0.11 0.05 0.08 0.13 0.15 0.15 0.14 0.12 0.15 

Reg_45 0.05 0.09 0.09 0.11 0.06 0.09 0.04 0.10 0.10 0.13 0.05 0.04 0.10 0.11 0.11 0.11 0.08 0.08 

Reg_85 0.04 0.09 0.09 0.11 0.07 0.09 0.05 0.09 0.09 0.12 0.05 0.06 0.11 0.10 0.10 0.11 0.09 0.12 

MM5_45 0.09 0.14 0.14 0.14 0.07 0.06 0.05 0.09 0.08 0.10 0.05 0.08 0.13 0.16 0.16 0.17 0.09 0.09 

WRF_45 0.09 0.16 0.16 0.16 0.09 0.09 0.11 0.18 0.18 0.17 0.14 0.13 0.07 0.14 0.14 0.16 0.09 0.08 

WRF_85 0.06 0.07 0.07 0.09 0.06 0.08 0.08 0.10 0.10 0.12 0.05 0.08 0.11 0.16 0.16 0.16 0.08 0.09 

YSU_45 0.06 0.12 0.12 0.12 0.08 0.07 0.08 0.15 0.15 0.15 0.08 0.08 0.10 0.15 0.15 0.16 0.12 0.15 

YSU_85 0.07 0.10 0.10 0.14 0.08 0.08 0.09 0.13 0.13 0.12 0.09 0.08 0.04 0.09 0.09 0.10 0.06 0.08 
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Table A.3: Results of CVM test for POT datasets of future (2020-2045) scenario 

Scenarios 
Talai Tapao Trian

GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 

Cramer Von Mises 

GCM_45 0.07 0.26 0.26 0.31 0.05 0.13 0.12 1.01 1.00 1.25 0.23 0.12 0.04 0.14 0.13 0.10 0.08 0.20 

GCM_85 0.07 0.39 0.38 0.46 0.04 0.11 0.07 0.26 0.26 0.33 0.07 0.15 0.21 0.44 0.42 0.36 0.08 0.18 

Had_45 0.03 0.12 0.12 0.15 0.07 0.10 0.44 0.19 0.19 0.18 0.13 0.13 0.17 0.34 0.33 0.31 0.15 0.23 

Had_85 0.05 0.24 0.24 0.28 0.07 0.09 0.03 0.31 0.31 0.47 0.04 0.10 0.19 0.25 0.25 0.21 0.13 0.23 

Reg_45 0.06 0.26 0.26 0.33 0.06 0.17 0.04 0.37 0.37 0.59 0.05 0.04 0.26 0.32 0.31 0.33 0.06 0.12 

Reg_85 0.04 0.21 0.21 0.24 0.09 0.20 0.04 0.27 0.27 0.52 0.04 0.07 0.13 0.17 0.17 0.16 0.16 0.31 

MM5_45 0.12 0.44 0.44 0.49 0.08 0.10 0.05 0.31 0.31 0.40 0.06 0.19 0.22 0.43 0.42 0.40 0.12 0.11 

WRF_45 0.09 0.46 0.45 0.47 0.10 0.07 0.11 0.31 0.31 0.46 0.15 0.13 0.07 0.54 0.54 0.64 0.16 0.07 

WRF_85 0.06 0.15 0.15 0.27 0.07 0.16 0.10 0.38 0.38 0.49 0.07 0.23 0.18 0.40 0.39 0.37 0.12 0.13 

YSU_45 0.06 0.32 0.32 0.44 0.08 0.09 0.13 0.61 0.60 0.67 0.11 0.15 0.19 0.44 0.43 0.38 0.25 0.30 

YSU_85 0.07 0.18 0.18 0.35 0.07 0.09 0.12 0.45 0.45 0.54 0.11 0.16 0.03 0.15 0.14 0.20 0.04 0.11 
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Table A.4: Results of AIC for POT datasets of future (2020-2045) scenario 

Scenarios 
Talai Tapao Trian

GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 GPD GL Gumbel LN P3 LP3 
Akaike Information Criterion

GCM_45 1,361 1,404 1,399 1,392 1,361 1,381 1,404 1,481 1,477 1,500 1,409 1,408 1,073 1,073 1,074 1,072 1,074 1,084 

GCM_85 1,422 1,479 1,474 1,469 1,422 1,430 1,239 1,280 1,278 1,290 1,244 1,251 1,098 1,098 1,100 1,097 1,100 1,106 

Had_45 1,292 1,317 1,314 1,313 1,292 1,304 207 218 216 217 211 213 1,105 1,104 1,106 1,102 1,105 1,113 

Had_85 1,132 1,173 1,170 1,164 1,136 1,139 1,579 1,628 1,626 1,642 1,582 1,587 847 842 843 844 846 821 

Reg_45 1,253 1,295 1,291 1,289 1,257 1,268 1,401 1,449 1,447 1,461 1,404 1,406 812 813 813 813 813 823 

Reg_85 1,333 1,361 1,358 1,357 1,338 1,354 1,388 1,435 1,432 1,451 1,388 1,389 1,007 1,008 1,009 1,009 1,009 1,039 

MM5_45 1,087 1,118 1,114 1,111 1,093 1,104 1,592 1,642 1,640 1,652 1,595 1,605 763 764 764 764 763 768 

WRF_45 1,459 1,508 1,504 1,504 1,461 1,464 586 628 626 637 592 589 699 696 692 690 692 710 

WRF_85 1,367 1,415 1,412 1,410 1,363 1,374 1,622 1,688 1,686 1,698 1,619 1,631 893 894 895 894 895 912 

YSU_45 1,222 1,253 1,250 1,249 1,226 1,236 1,605 1,669 1,666 1,681 1,604 1,608 956 956 958 954 957 981 

YSU_85 1,583 1,633 1,629 1,634 1,582 1,590 1,412 1,469 1,467 1,480 1,415 1,419 1,043 1,040 1,042 1,041 1,041 1,062 
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Table A.5: AIC values for all marginal distributions 

Data Flood variable 
AIC

Data Flood variable 
AIC

LN Gumbel GEV P3 LP3 GPD LN Gumbel GEV P3 LP3 GPD 

Obs 

V 3,188 3,197 3,201 3,176 3,164 

WRF_45 

V 2,056 2,077 2,071 2,053 2,046  

P 1,066 1,066 1,068 1,061 1,067 1,068 P 699.1 695.6 692.2 690 692.3 709.9 

D 654.9 656 658 641.7 628.9   D 356.4 373.2 349.3 349.7 348.2   

Had_45 

V 3,363 3,402 3,373 3,349 3,348   

WRF_85 

V 2,791 2,816 2,808 2,782 2,791  

P 1,105 1,104 1,106 1,102 1,105 1,113 P 892.7 893.8 894.6 894 894.6 912.0 

D 659.8 692 643.1 645.2 647.5   D 607.4 626.6 611 607.8 608.5   

Had_85 

V 2,515 2,533 2,534 2,514 2,501   

YSU_45 

V 2,979 3,005 2,995 2,960 2,980  

P 846.8 842.4 843.3 844.1 845.5 821.4 P 956.4 955.9 957.9 954 957.4 980.6 

D 546.8 563.5 547.2 538.6 537.2   D 612.8 636 612.4 613.5 612.8   

Reg_45 

V 2,547 2,565 2,565 2540 2543   

YSU_85 

V 3,257 3,294 3,276 3,261 3,251  

P 811.5 812.9 812.7 813 812.9 823.0 P 1,043 1,040 1,042 1,041 1,041 1,062 

D 546.5 561.5 551.8 542.8 542.2   D 633.4 666.5 625.5 636.3 625.9   

Reg_85 

V 3,159 3,188 3,174 3,148 3,154   

GCM_45 

V 3,068 3,101 3,087 3,057 3,066  

P 1,007 1,008 1,009 1,009 1,009 1,039 P 1,073 1,073 1,074 1,072 1,074 1,084 

D 642.1 666.5 639.8 640.7 642.8   D 642.3 666.5 643.2 643.5 643.7   

MM5_45 

V 2,340 2,353 2,357 2,332 2,328 

GCM_85 

V 3158 3202 3175 3154 3148  

P 762.6 763.8 763.5 763.8 763.2 768.1 P 1,098 1,098 1,100 1,097 1,100 1,106 

D 519.5 528.7 526.5 513.4 508.3   D 628.6 667 619.9 629 619.4   

 



127 

 

Table A.6: Copula dependence parameters, AIC and GoF statistics for both tail independence and dependence 

Copula 
DV 

Copula 
DP PV 

Parameter AIC S p-value Parameter AIC S p-value Parameter AIC S p-value 

Observed 

Gumbel-Hougaard 6.007 -165.013 0.00579 0.003 Gaussian 0.785 -57.509 0.114 0.065 0.835 -73.575 0.119 0.050 
Galambos 5.268 -162.401 0.00583 0.002 Survival Clayton 1.774 -47.817 0.504 0.000 2.066 -55.250 0.477 0.0002 
Husler-Reiss 4.377 -137.984 0.00784 0.007 Frank 8.455 -67.695 0.063 0.285 10.396 -86.929 0.058 0.335 

GCM_45 

Gumbel-Hougaard 10.246 -214.737 0.00029 0.082 Gaussian 0.770 -50.723 0.113 0.100 0.828 -49.339 0.125 0.050 
Galambos 9.550 -214.675 0.00029 0.067 Survival Clayton 1.572 -39.228 0.148 0.120 2.457 -44.756 0.430 0.000 
Husler-Reiss 10.914 -212.448 0.00031 0.102 Frank 6.368 -45.719 0.131 0.040 10.299 -58.872 0.052 0.535 

MM5_45 

Gumbel-Hougaard 24.578 -236.231 0.00006 0.301 Gaussian 0.791 -41.126 0.146 0.035 0.842 -72.335 0.121 0.020 
Galambos 23.869 -236.175 0.00007 0.266 Survival Clayton 2.179 -39.994 0.478 0.000 2.387 -62.494 0.134 0.110 
Husler-Reiss 25.882 -233.192 0.00011 0.182 Frank 8.969 -49.683 0.071 0.290 7.990 -62.159 0.171 0.005 
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Table A.7: Copula dependence parameters, AIC and GoF statistics for tail dependence 

Copula 
DV DP PV 

Parameter AIC S p-value Parameter AIC S p-value Parameter AIC S p-value 

Had_45 

Gumbel-Hougaard 11.443 -284.359 0.000127 0.077 1.906 -43.244 0.004544 0.435 2.124 -55.486 0.0033 0.460 

Galambos 10.741 -284.327 0.000126 0.097 1.202 -44.276 0.002987 0.624 1.420 -56.376 0.002684 0.520 
Husler-Reiss 12.288 -282.523 0.000131 0.147 1.749 -45.605 0.001439 0.813 1.987 -57.567 0.002191 0.475 

Had_85 

Gumbel-Hougaard 20.001 -234.074 0.000253 0.077 3.929 -70.249 0.011193 0.057 4.429 -80.635 0.011463 0.017 
Galambos 19.288 -233.980 0.000254 0.117 3.244 -69.799 0.011684 0.027 3.744 -80.073 0.012062 0.017 
Husler-Reiss 20.919 -230.559 0.000356 0.062 3.663 -64.134 0.014125 0.027 4.048 -72.450 0.015373 0.007 

GCM_85 

Gumbel-Hougaard 9.644 -221.748 0.000114 0.206 2.271 -45.373 0.003497 0.545 2.773 -67.963 0.000373 0.983 
Galambos 8.944 -221.557 0.000114 0.291 1.576 -45.493 0.002865 0.580 2.081 -68.404 0.000242 0.988 
Husler-Reiss 10.011 -217.262 0.000136 0.162 2.148 -45.205 0.00252 0.530 2.759 -68.993 0.000285 0.978 

WRF_45 

Gumbel-Hougaard 12.430 -157.319 0.000264 0.127 2.641 -34.075 0.013971 0.221 3.117 -45.893 0.006588 0.251 
Galambos 11.718 -157.080 0.000266 0.132 1.939 -33.860 0.013231 0.122 2.421 -45.858 0.005407 0.281 
Husler-Reiss 12.228 -151.082 0.000314 0.137 2.527 -33.234 0.014539 0.167 3.128 -45.691 0.004445 0.361 

WRF_85 

Gumbel-Hougaard 16.276 -235.865 0.001539 0.007 2.755 -48.428 0.019469 0.047 3.106 -59.932 0.018623 0.022 
Galambos 15.606 -235.402 0.001548 0.007 2.057 -48.388 0.019887 0.042 2.412 -59.965 0.018891 0.022 
Husler-Reiss 11.831 -197.939 0.00269 0.002 2.686 -47.984 0.020904 0.052 3.089 -59.470 0.019738 0.007 

YSU_45 

Gumbel-Hougaard 20.02 -294.98 5.20E-05 0.147 2.629 -52.902 0.001056 0.918 2.822 -60.029 0.000767 0.928 
Galambos 19.31 -294.91 5.25E-05 0.226 1.935 -53.433 0.001214 0.903 2.126 -60.480 0.000875 0.878 
Husler-Reiss 21.37 -292.45 9.21E-05 0.172 2.628 -54.603 0.001777 0.689 2.845 -61.585 0.001343 0.729 
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YSU_85 

Gumbel-Hougaard 11.956 -267.953 6.26E-05 0.236 2.171 -48.540 0.000705 0.953 2.416 -61.211 0.002446 0.540 
Galambos 11.248 -267.525 6.47E-05 0.261 1.467 -48.864 0.000742 0.923 1.713 -61.711 0.002492 0.450 
Husler-Reiss 11.584 -256.973 1.38E-04 0.137 2.027 -49.155 0.001341 0.759 2.322 -62.460 0.002704 0.391 

Reg_45 

Gumbel-Hougaard 16.449 -216.406 0.00021 0.1269 3.8116 -72.2819 0.009135 0.177 3.976 -77.196 0.01018 0.117 
Galambos 15.750 -216.208 0.000213 0.1418 3.1200 -72.6325 0.008907 0.117 3.287 -77.654 0.00973 0.087 
Husler-Reiss 15.967 -206.714 0.000319 0.1020 4.0214 -73.8075 0.009631 0.097 4.257 -79.391 0.009921 0.087 

Reg_85 

Gumbel-Hougaard 14.896 -279.101 0.000561 0.0075 2.4645 -54.3523 0.001851 0.754 2.704 -64.716 0.005309 0.231 
Galambos 14.185 -278.887 0.000569 0.0323 1.7691 -54.8656 0.002046 0.639 2.007 -65.149 0.005423 0.201 
Husler-Reiss 15.209 -272.913 0.001136 0.0075 2.4069 -55.6898 0.002745 0.495 2.667 -65.769 0.005865 0.182 
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