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ABSTRACT 

Climate change is a global phenomenon having varying degrees of regional impacts. 

Management of river water is an important aspect for governing the political and economic 

affairs of any country. With the increasing pace of climate change, it has become indispensable 

to evaluate the impact of climate change over a river basin for efficient management of water 

resources. To assess the climate change induced impact at basin level, Regional Climate Models 

(RCMs) database is the most credible source. The RCM database contains the dynamically 

downscaled products of the coarser resolution Global Climate Model (GCM) outputs to a finer 

resolution by incorporating the physical laws, boundary conditions and atmospheric processes. 

Future projections of important meteorological variables of Representative Concentration 

Pathways (RCP) 4.5, 8.5 climate change scenarios are available for 5 different high-resolution 

GCM outputs under COordinated Regional Downscaling Experiment (CORDEX). Moreover, 

encompassing the uncertainty analysis with the future projection will improve the predictability 

and robustness of real time prediction. 

In this research work, RCM database has been used to assess the climate change impact on 

water resource of river basin, Uncertainty analysis associated with multi model RCMs, 

meteorological and streamflow drought indices and trend analysis of streamflow for future 

projections. Spatio-temporal variations of water balance components have been studied with 

induced climate and Land Use Land Cover (LULC) changes and rule curves are developed for 

reservoir operating system based on the impact analysis using Stochastic Dynamic 

Programming (SDP).  

Initial part of the research is devoted to investigate the variations in stream flow of Wardha 

watershed, India under changing climatic conditions. Regional Climate Models (RCMs) data 

with Representative Concentration Pathway (RCP) of 4.5 and 8.5 scenarios were used to 

simulate the streamflow for the Historic and Future periods using Soil and Water Assessment 

Tool (SWAT) model. Sequential Uncertainty FItting (SUFI-2) algorithm of SWAT calibration 

and uncertainty program (SWAT-CUP) was used for sensitivity analysis, calibration and 

validation of the SWAT model. SWAT simulated streamflow for the future period has been 

analysed by dividing the total period into four twenty years spans as 2020-2039, 2040-2059, 

2060-2079 and 2080-2099. The results indicate a decrease in future streamflow compared to 
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earlier periods. Intra and Inter annual variability of stream flows for the future periods is less 

as compared to historic period.  

Krishna river basin, which is over utilized and highly sensitive to climate change was 

investigated to evaluate the future projections of monthly streamflow under different climate 

forcings. The uncertainty associated with the multiple RCMs is analysed using Reliability 

Ensemble Averaging (REA) method.  SWAT hydrological model is used to simulate the future 

projection of streamflow over the basin and model parameters are optimized using SWAT-CUP 

at multiple gauging stations. The analysis was carried out for four 25-year time slices as 

Historic (1980-2004), Future1 (2020-2044), Future 2 (2045-2069) and Future 3 (2070-2094). 

The results indicate that REA data projects reasonably close values when compared to observed 

values in the middle and lower parts of the Krishna basin. Spatial and temporal variations of 

ensemble climate variables on annual, seasonal and monthly bases are prepared. Future 

projections of the precipitation show a decrease of about 20% in the Future period I.  Absolute 

and relative changes in future streamflow compared to historic streamflow projects lower values 

in monsoon period and higher values in other periods at Huvinhedgi, Mantralayam and 

Pondhugala gauge stations. Trends in the streamflow throughout the basin show a decrease in 

the first future period when compared to the other two future periods. The recommendations 

made from this research work can be used as preliminary measures for formulating water 

management and adaptation practices for Krishna River basin. 

Meteorological and streamflow drought indices are quantified for the future projections (2020 

to 2099) using Standardized Precipitation Index (SPI) and Streamflow Drought Index (SDI) for 

the Krishna river basin. The results show that drought events will be more severe in 

Tungabhadra and lower Krishna regions during future 1 period and more frequent drought 

conditions in Bhima, Upper and Middle Krishna regions in future 3 period. Similarly, SDI for 

the sub basins shows that Tungabhadra basin is less effected by drought whereas Bhima, Middle 

and Lower Krishna regions will face more drought conditions in the future periods. 

The spatiotemporal change of the LULC plays a major role in estimating the reliable predictions 

in hydrology. In the present research work, combined impact of climate and LULC change on 

water balance components of Munneru, a sub basin of Krishna river has been carried out using 

Soil and Water Assessment Tool (SWAT). The decadal LULC change over time is detected for 

the years of 1985, 1995 and 2005. The dominant land use in the study area is Cropland/Irrigated 

land and major changes of land use identified are increase of urban area from 42.85km2 to 

93km2 and deciduous forest from 821.74km2 to 922.87km2 of the total area during the 20-year 
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period. The climate model database obtained projects decrease in precipitation until 2040. 

Hence, simulations were carried out by adapting LULC change from 1985 to 2005 and climate 

model data up to 2040. The results project an increase in Evapotranspiration of about 10%, 

1.7%, 3.84% in the 2020, 2030, 2040 decades respectively. Decrease in surface runoff of about 

50% is predicted in the next three decades with the predicted zero-base flows in most of the sub 

basins by 2040. 

In this research work, adaptive policies are formulated for a reservoir based on climate change 

impact on water resources for future periods. Nagarjuna sagar dam is a multipurpose reservoir 

serving flood control, irrigation and hydropower generation located in Middle Krishna basin, 

India. Hydrologic impacts on the reservoir operation are mitigated considering the performance 

criteria evaluated using r package known as ‘reservoir’ for the adaptation policies. It is observed 

that the reliability decreases with the increase in vulnerability as a result of climate change if 

the Standard Operating Policy (SOP) using the current rule curves is employed. Hence 

Stochastic Dynamic Programming (SDP) is employed to develop a suitable adaptation policy 

to mitigate the impact of climate change. Storage yield curves are developed for all future 

scenarios with varying reliabilities to minimize the storage volumes to adapt to the climate 

change for proper management of resources. The monthly rule curves developed indicate that 

reservoir-operating rules may have to be revised in basins where climate change projects an 

increasing probability of droughts.  

The climate change impact results obtained in this study for Wardha, Krishna, Munneru rivers 

can be used for devising suitable adaptation plans for managing water resources in these basins. 

Adaptive policies proposed for Nagarjuna sagar reservoir are useful for effective sharing of 

water resources between different stakeholders under climate change conditions. The 

methodology proposed in this research work can be used for other river basins in India and 

across the world. 

Keywords: Adaptive policy, Climate Change Impacts, Drought, LULC, RCM, Reservoir 

performance, River basin, Streamflow, Uncertainty.  
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Chapter – 1  

Introduction 

1.1  General 

India is an ancient, tropical country with agriculture as main occupation and agriculture needs 

sumptuous water for cultivation. The main source of water is surface water from streams, rivers, 

natural lakes and man-made ponds to a great extent, and groundwater from open wells, for 

agriculture and domestic use. Rivers in the northern part of the country originate from the 

Himalayas leaving large amounts of gravel and alluvium as sediments in the northern plains. 

The favourable climate and adequate water supply in the plains of the Indus and Ganga 

dominated by the alluvium deposits makes the region highly fertile. The peninsular region 

contains central islands and Deccan plateau, where the main sources of water are Narmada, 

Tapti, Mahanadi, Godavari, Krishna and Kaveri rivers. Ground water is considered major 

source for irrigation and domestic requirements. The water demand is the quantity of water 

required to fulfil a specific need. Agricultural water demand includes water required for crops, 

percolation losses, canal seepage and evaporation. India being a developing country, 

availability of water varies spatially and seasonally, which affects the overall development of 

society. It is also affected by other geographical factors such as land use, vegetation and 

topography. Usage of water has increased significantly due to increase in population and 

expansion of economic activities from the last century. Stream flow is the prime element of 

water cycle influenced by many meteorological factors such as intensity, amount and duration 

of precipitation, temperature, evapotranspiration and relative humidity. 
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Climate is the long-term variation with respect to temperature, humidity, atmospheric pressure, 

wind, precipitation and other meteorological variables in a region. The factors affecting climate 

are location, air pressure, mountain barriers, elevation, continental location, ocean currents, 

wind belts, storms and human activities. The climatic regions of India are dominated by 

monsoon climate condition. Monsoon precipitation in India is distributed in a highly variable 

manner in both space and time (Kripalani et al. 2007). Temperature and precipitation are two 

major parameters affecting climatic conditions. In this context, overall increase in annual mean 

surface temperature by 3.5 to 5.5°C, warming in winter season, decrease in winter precipitation 

less about 10 to 20% over central India by 2050 are predicted (Mall et al. 2006). This results in 

high evapotranspiration, thus affecting the hydrological process. Lowest temperatures are 

observed in the northern most part of India. Rainfall in the country is drawn through South-

West and North-East monsoons, western disturbances and cyclonic depressions. Maximum 

amount of rainfall in India is observed between June and September due to South-West 

monsoon. In contrast, Tamilnadu in south India is mostly influenced by North-East monsoon 

between October-November. Climate change in IPCC 2014, refers to any change in climate 

over time, whether due to natural variability or as a result of human activity. This usage differs 

from that of United Nations Framework Convention on Climate Change (UNFCCC), which 

defines climate change as, “a change of climate which is attributed directly or indirectly to 

human activity that alters the composition of the global atmosphere and which is in addition to 

natural climate variability observed over comparable time periods”.  

1.2 Climate Change Impact Studies 

Changes in the climate regime can influence water resources and result in varying hydrologic 

conditions both globally and regionally. Regional differences in meteorological conditions, 

pollutant sources, water management, physiographic setting and interaction with local scale 

land use are the causes of these variations. A consensus is that the change in mean surface 

temperature may vary between 0.3°C to 0.7°C globally, leading to recurrent hot and cold 

temperature extremes over most areas of the world (IPCC 2014).  

Climate Models are tools to find out what natural processes or human activities may affect a 

region's environment in the future. The climate model fundamentals are based on established 

physical laws, such as conservation of mass, energy and momentum along with a wealth of 

other observations. Models show significant and increasing skill in representing many 

important mean climate features, such as large-scale distributions of atmospheric temperature, 
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precipitation, radiation and wind and oceanic temperatures, currents and sea ice cover. Models 

can also simulate essential aspects of many of the patterns of climate variability observed across 

a range of time scales. Examples include the advance and retreat of major monsoon systems, 

seasonal shifts in temperatures, storm tracks and rain belts and the hemispheric scale seesawing 

of extra tropical surface pressures (IPCC 2014). Hence, the term Climate Modeling refers to 

the use of a model to define the state of Earth's physical system on time scales of seasons to 

centuries. Climate models are also called as General Circulation Models or Global Climate 

Models (GCMs). Atmospheric Global Climate Models (AGCM) and Oceanic Global Climate 

Models (OGCM) are the key components of GCMs along with the sea ice and land surface 

components.  These AGCM and OGCM together form Atmosphere - Ocean Coupled General 

Circulation Models. GCMs establish skill at the continental spatial scale by assimilating a large 

proportion of complex global system and are unable to produce inherent features and dynamics 

of climate at the local sub grid scale (Wigley et al. 1990). These are the coarse resolution climate 

models projected under increased global temperatures for large spatial scales. Whereas, finer 

spatial scales climate models are required for better management of resources at the basin level. 

The use of the GCM data for the regional level impact studies includes the following problems 

(Xu 1999): 

 Impact studies demand higher resolution climate data but increase in scales both 

spatially and temporally leads to decrease in accuracy of GCM.  

 Water balance computations mainly depend on ground surface variables, but GCMs 

simulate free tropospheric variables more accurately compared to surface variables. 

 Variables like precipitation, evapotranspiration, runoff and soil moisture play a 

significant role in hydrologic regimes. However, these variables are predicted with low 

accuracy. 

Therefore, to overcome the disadvantage of using GCM outputs, the downscaled GCM data is 

used for impact analysis at a regional level. Use of the regional climate models compared to 

global climate models have proved to be efficient while assessing the impact of climate change 

on hydrology at basin level (Chien et al. 2013, Kulkarni et al. 2014, Demaria et al. 2016). 

IPCC introduced many global climate emission scenarios as mentioned in the Assessment 

Report (AR) from 1992 to 2007. The Special Report on Emission Scenarios (SRES) comprises 

four different socio-economic “story-lines”, viz. A1, A2, B1 and B2. These scenarios mainly 
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focus on the economic development, industrialisation, fossil fuel utilisation, population growth 

and advancement in technological applications to explore human contribution to future climate 

change (Kripalani et al. 2007). However, Fifth Assessment Report (AR5) of IPCC in 2014 

focuses on the emission trajectory and radioactive forcing rather than social-economic 

conditions. This approach was motivated by varying information requirements of policy makers 

as well as a growing interest to minimize the risk that encompasses reductions in emissions and 

adaptation strategy to reduce climate change consequences. Radioactive forcing is used to 

categorise different climate scenarios, defined as extra energy absorbed by the earth due to 

increase in greenhouse gases. More precisely, it is the difference in the energy balance that 

enters and leaves the atmosphere as compared to the pre-industrial state. The unit of radioactive 

forcing is expressed as watt per meter square (W/m2). The developed scenarios are represented 

as Representative Concentration Pathways (RCPs): these define the projected trajectories of 

concentrations of greenhouse gases, pollutants and dynamic vegetation due to the 

anthropogenic activities over time and their radioactive forcing in 2100. In SRES scenarios, 

climate change evaluation is primarily based on population growth, economic, and technology 

development. However, in RCP scenario the projections are mainly based on the radioactive 

forcing instead of any predefined assumption as in the case of SRES scenarios because different 

socio-economic storylines may produce the same magnitude of radioactive forcing. RCP 

scenarios are categorised into four groups, viz. RCP2.6, RCP4.5, RCP6.0, and RCP8.5. Based 

on the forcing, RCP2.6 and 8.5 are considered as low and high emission scenarios respectively 

with RCP4.5 and 6.0 as intermediate emission scenarios. The values indicate the magnitude of 

forcing in W/m2.  

The climate model scenario projects an increase in both mean and extreme precipitation in 

Indian summer monsoon (Noble et al. 2015). Most reported impacts of climate change are 

attributed to warming and/or to shifts in precipitation patterns and increase in annual mean 

temperature trends (Field et al. 2014). In South Asia, inter-decadal variability and lack of 

monsoons are observed with a declining trend in seasonal mean rainfall regionally. It is also 

observed in the case of extreme rainfall events with some weak rainfall events in many parts of 

India (Noble et al. 2015). RCP projections proposed by IPCC AR5 also indicate the variations 

of precipitation in both space and time like magnitude of intensity, variability and frequency of 

extremes, with prominent positive and negative impact on water resources. Hence, it is essential 

to focus on the availability of water resources in the context of climate change for proper 

allocation of resources without affecting the nature and society. 
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1.3 Climate Change Impact under Uncertainty 

The local and global pressures on natural resources are increasing because of external forces 

like high living standards, anthropogenic changes, land use and water management policies, 

etc. Streamflow is the prime element of water cycle which is influenced by many 

meteorological factors such as intensity, amount and duration of precipitation, temperature, 

evapotranspiration and relative humidity. Previous studies have assessed the effects of climate 

change on water resources using downscaled GCM simulations (Gosain et al. 2006, 2011, Roy 

and Mazumdar 2013, Kulkarni et al. 2014). The future water demands will be more uncertain 

in addition to the uncertainty developed due to changes in demography and climate (Yang et 

al. 2008). The effects of climate change which include seasonal variation in stream flow, 

changeover in extreme high and low flow events and deviation in ground water recharge can 

be simulated with a combination of hydrological models and global climate model database 

(Jha et al. 2004, Chien et al. 2013, Noble et al. 2015). Many studies have proved that the use 

of regional climate data for impact assessment is more reliable compared to GCM data (Chien 

et al. 2013, Kulkarni et al. 2014, Demaria et al. 2016). The climate models come with biases 

and uncertainty that vary from one model to another. The increase in skill and reliability of 

multi-model ensembles compared to single climate model projections has been demonstrated 

through various studies (Giorgi and Mearns 2003a, Tebaldi and Knutti 2007). The additional 

stress as a result of climate change on water resources provides clarity to water managers and 

policy makers for efficient water supply for future periods (Mondal and Mujumdar 2015).  

Climate change impact on water resources includes projections of climate variables downscaled 

to a regional scale, which is modelled for uncertainty with respect to the observed climate. 

RCMs are the most plausible tools to project climate variables for future period on a regional 

scale. Then, the desired climate variables are used in the hydrological model in simulating the 

streamflow for future periods. In addition to these streamflow predictions, uncertainties related 

to RCMs and Hydrological models are to be addressed for better future projections. However, 

most of the studies have concentrated on the overall variations of water resources instead of 

temporal changes in the stream flow variability using GCM data. An attempt has been made 

here to simulate the magnitude and temporal variations of streamflow in a river basin using 

Regional Climate Model (RCM) data. 
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1.4 Hydrological Modelling for Impact Studies 

Hydrologic models represent a part of the hydrologic cycle in simplified and conceptual way. 

These simulate all the natural processes related to water movement such as stream flow, 

evapotranspiration and evaporation, soil moisture, ground water recharge, sediment transport, 

growth of microorganisms in water bodies, sediment transport etc. The hydrologic processes 

include both time and space derivatives in the processes. The hydrologic models are categorized 

as distributed or lumped models, if they consider space derivatives (distributed) or not 

(lumped). On the assumption that some processes account for spatial variations are classified 

as semi distributed models.  

Most of the available hydrologic models measure the peak discharge, hydrograph at specified 

locations in a catchment. The selection of the hydrological model specially depends on the 

assumptions and methods utilized in estimating diverse hydrological components, and their 

efficiency as to how they account for the dispensed techniques on spatial scales. Hydrologic 

models typically operate at a river basin or a watershed scale. They play a widespread function 

in offering an expertise of more than a few problems dealing with water resources and 

hydrologic extremes at river basin and watershed scales. The inputs required by using 

hydrologic fashions depend on the motive for which the model is built. A river float simulation 

version calls for the inputs such as precipitation, catchment characteristics which include the 

soil type, slope of the catchment, kind of plant life, type of land use, temperature, solar radiation 

groundwater contribution, and so forth. The typical output from this type of model includes the 

river flow at a place at some point of a length (such as a day, every week, or a month), and soil 

moisture and evapotranspiration all through the period and thus provides precious data for 

ascertaining the impacts of modifications in land use and climate. 

1.5 Drought Indices under Climate Change 

Droughts are the highest ranked natural hazards having severe impact on people and 

environment, associated with climatic and hydrological processes like precipitation, 

temperature, streamflow etc. Droughts usually result due to increase in low precipitation and 

high temperature events relative to average conditions. According to IPCC AR5, South Asia is 

about to experience lack of monsoons with a declining trend in seasonal mean rainfall and 

recurrent hot and cold temperature extremes (IPCC 2014). Drought is a persisting phenomenon 

of climate, which varies with space, time and intensity. It is one of the most severe problems 
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affecting the sustainable usage of resources. It continuously develops inconsistent rainfall for 

the required period and is categorized as one of the most detrimental types of natural disasters 

over long periods. Efficient planning and decision making require information regarding the 

locations, pattern, severity and timing of the drought. This information enables the people for 

management of the risk brought on by drought. Identification and quantification of drought in 

a particular region by drought indices helps in reducing the impact of drought through early 

warning system. Many indices are developed to monitor the drought based on rainfall and many 

other indicators. Drought is classified mainly into four types: meteorological (shortage of 

precipitation); hydrological (evaporation of stored surface water); agricultural (reduction of soil 

moisture in root zone) and socio-economic (less water supply for socio-economic purposes) 

droughts (Wilhite and Glantz 1985). In recent periods, drought indices have been developed 

with a combination of different variables such as rainfall, temperature and evapotranspiration 

into a single number. Standardized Precipitation Index (SPI) (Thomas et al. 1993), Percent 

Normal, Palmer drought severity index (PDSI), the moisture anomaly index (Z-index) (Alley, 

1984) and aridity index (Gore and Ray, 2002) are the most commonly used drought indices.  

1.6 Effect of Climate and LULC Change on Hydrology  

Economic growth and development of the human and ecosystem functions of the country 

mainly depend on natural resources, such as land and water. However these resources are 

subjected to immense pressure caused by urbanization and industrialization due to increase in 

human population. In addition to these, water systems have been affected by climate change in 

the form of variability of the temperature and rainfall both spatially and temporally, water 

balance changes, sea level rise etc. Hence, land use and climate variability are two important 

factors affecting water resources and sustainability of the ecosystems. In the Hydrological 

processes the parameters like evapotranspiration, infiltration and interception are mainly 

subjected to land use change based on varied surface and subsurface flows (Wang et al. 2014, 

Niraula et al. 2015).  

As discussed earlier, climate change makes a significant impact on the hydrology of a river 

basin. The effect of both LULC and climate changes on the parameters of the hydrologic cycle 

is significant to make necessary decisions for proper utilization and management of water 

resources in future periods. Variations in water balance components like evapotranspiration, 

base flow, surface and sub-surface runoff spatially and temporally are important for 

management of the water resources. Irrigation system design and management, hydrologic 
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water balance, crop yield simulation, planning and management of water resources and water 

loss optimization by improving the use of water in agriculture are the various areas developed 

based on these changes.   

1.7 Climate Change Adaptation Policies 

Based on IPCC 2014, the present stress on water resources is observed to intensify in the future 

period. Variations in temperature and precipitations lead to a 10% to 40% rise of streamflow in 

high latitudes and a loss of about 10% to 30% in mid-latitudes. In India, streamflow is the main 

water source for living and occupation. The effect of climate change needs to be monitored for 

effective utilization of water resources. The positive and negative impact of climate change has 

to modified by developing adaptation policies. Adaptation refers to the actions formulated to 

reduce vulnerability. Vulnerability refers to the ability to anticipate potential harm or damage. 

It includes factors such as absorb stress or effects or ability of a system to cope and to recover 

or “bounce back”. Adaptation measures are of many forms based on the response and 

anticipation to climate change for ex: planned and spontaneous adaptation strategies. Among 

the various types of adaptations, some are categorized as long term such as reduction in the use 

of greenhouse gas emissions and to reduce the changes by decreasing the greenhouse 

concentrations in the atmosphere. Dams, dikes and levees are some flood control works 

suggested to mitigate natural events like floods and droughts. For agriculture, changes in crop 

management practices such as increased irrigation water, additional fertilizer, pest and disease 

control and change in location and cropping patterns are adaptive measures suggested to tackle 

climate change and its variability. 

The effect on local water systems with respect to changes in weather conditions, temperature 

and precipitation, especially in areas like reservoirs, developed for multipurpose use of water, 

has been investigated (Wood et al. 1997, Simonovic and Li 2004, Raje and Mujumdar 2010). 

From the literature, it is apparent that the management of water in storage reservoirs reduces 

potential impact of adverse climate change on water resources. The main purpose of the 

reservoir is not only to serve the needs of people and animals but also to store excess water 

during high seasonal flows and to protect the downstream area from floods. Many scientific 

works have been carried out to illustrate the risk developed in the present reservoir operation 

practices during climate change (Yao and Georgakakos 2001). Reliability, Resilience and 

Vulnerability are the performance indices used to evaluate the effect of climate change for 
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future scenarios and an adaptive policy is developed using Stochastic Dynamic Programming 

(SDP) methods.   

1.8 Research Motivation and Problem Formulation 

An extensive literature review (presented in chapter 2) revealed that, not many studies have 

been undertaken to estimate the impact of climate change on a river basin using ensemble 

climate data developed using multiple climate models and adaptation policies to mitigate the 

risk. Therefore, there is scope to reduce the effect of climate change on hydrology by 

developing proper adaptation policies for sustainable utilisation of resources. In this proposed 

research, an attempt has been made to study the impact of climate change on a river basin using 

ensemble climate data of different scenarios and to develop the adaptation policies for proper 

distribution of resources and help in reducing the effect of climate change.  

Many studies have been successfully carried out to investigate the effect of varying climate on 

hydrology of different rivers and watersheds in the literature. Future projections of the water 

resources have been assessed and quantified using various GCMs all over India. Estimations of 

water resources in the river basins by using RCMs in place of GCMs and uncertainty modelling 

of climate model database portrays the necessity of high-resolution data in climate change 

studies. Considering the effect of LULC changes on water resources, there is a need to assess 

the combined effect of climate and LULC changes on river basins. Spatial and temporal 

variations of the parameters in the hydrological regime are simulated using a distributed rather 

than lumped hydrological model.  

In the literature, it is seen that projected streamflow in the river basin tends to develop risk for 

the future periods. Based on the risk identified in the basin, adaptation strategies are developed 

for a reservoir system using stochastic dynamic programming tool. The adaptation policies 

developed are evaluated using the performance indices for the future scenarios and the best 

among them is selected for proper utilization of the water resources. The main aim of this study 

is to assess the impact of climate change on the river basins of India and to mitigate the risk by 

developing adaptation strategies. For this purpose, Impact analysis is carried out for watershed 

using uncertainty modelled ensemble climate model data and adaptation strategies have been 

developed to reduce the vulnerability.  

Based on the above research studies, it is noticed that there is a need to analyse impact of climate 

change on various river basins with latest climate change scenarios (AR5) using regional 

climate model data. It has also found that necessity for the basin level climate change impact 
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studies has grown to analyse the availability of water resources; water quality etc., in many 

rivers of India, as the water demand is increasing along with the increase in spatial and temporal 

changes of water availability. Hence, it is necessary to conduct hydro- meteorological drought 

studies for the future periods under variable climate conditions. In addition, changes in the 

LULC along with the climate change need to be studied for impacts on the water resources and 

ecosystems. The risk developed due to climate change need to be reduced by developing 

adaptation strategies for proper utilization of resources of the water resource system like 

Reservoirs. Hence, in the present research work it is proposed to study the impact of climate 

change on the water resources of water stressed rivers and to formulate adaptation policy for a 

multipurpose reservoir.  

1.9 Objectives of the study 

The main aim of the research work was to study the climate change impacts on Wardha and 

Krishna river basins using ensemble regional climate model database and well distributed 

hydrologic models and to suggest the adaptive strategies for managing the water resources of 

one of the reservoirs of the study area with the following steps. 

1. To analyse the intra and inter annual streamflow variations of a sub basin using multiple 

climate models. 

2. To analyse the spatial pattern of Reliability Ensemble Average (REA) climate model 

database for assessing meteorological drought using Standardized Precipitation Index 

(SPI) in a river basin. 

3. To assess the hydrological drought and trend analysis of future streamflow projections 

using ensemble climate model database of a river basin using SWAT. 

4. To simulate the impact of both climate and LULC changes on water balance 

components of a watershed. 

5. To develop an adaptive policy for reservoir operation under climate change scenarios. 

1.10 Organization of the thesis 

This thesis consists of the chapter of introduction which presents the motivation for the study 

and objectives of the work. Literature review of the uncertainty in climate models, various 

hydrological models, impact assessment using climate model data in hydrological modelling, 

mitigation of the effect of climate change on water resources by developing adaptation 

strategies for future periods using various tools has been presented in second chapter. The 



 

11 

 

overall methodology with the materials used in the present research study are given in third 

chapter. Chapter four describes the study area and database preparation for the research work. 

Model setup for simulating streamflow using uncertainty modelled climate model is presented 

in chapter five. Results and discussions of the present research work are given in sixth chapter. 

Chapter seven summarises the conclusions and suggests scope for further study. 
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Chapter – 2 

Literature Review 

2.1 General 

To investigate the effect of climate and other factors on hydrologic regime, it is necessary to 

obtain the data for baseline conditions and forecast for future periods using long-term 

monitoring network. Monitoring networks are also necessary for fully assessing the hydrologic 

processes, which lead to changes in water resources and for calibrating and validating models 

used to simulate over a long time. Water is India’s future and its spatial variation was assessed 

by Amarasinghe et al. (2005, 2007) as it is a big country with variable percapita demand over 

regions. They provided better idea about the usage of water, water supply and demand across 

the rivers of India. Analysis was carried out by dividing the area into 19 major river basins. 

Based on the results, future growth in other factors such as domestic, industrial and 

environmental water demand, and internal and international trade are the various factors 

affecting water supply and demand. Among 19 basins, Krishna River is a water scarce river 

with 20-40% of irrigation mainly depending on ground water. The degree of development in 

this basin is greater than 60%, which leads to depletion of water by 50-75% by 2050. Therefore, 

Krishna river basin was selected for assessing water availability under climate change 

scenarios. 

In this chapter, literature available on climate change impacts on hydrology of a river basin 

using hydrological model and RCM database is presented. The literature required to develop 
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adaptation strategies for a reservoir operating system to reduce the risk obtained due to climate 

change is described.     

2.2 Climate Change and its Effects  

India is a semi-arid country highly dependent on precipitation and even minute departures in 

the rainfall patterns may lead to natural disasters like droughts and floods affecting agriculture, 

ecosystems and economic sectors. The study and selection of climate variables plays a major 

role in climate change impact studies. 

Xu (1999) has discussed the limitation of GCM’s ability in simulating the streamflow at 

regional level; this can be obtained by downscaling to basin level. Author suggested that there 

be improvement of methodologies to develop new climate change scenarios, macro scale 

hydrological models to simulate hydrologic processes, and the necessity of uncertainty 

modelling for climate variables etc. 

Bouwer et al. (2006) studied the effect of climate, land use and water consumption changes on 

the streamflow of Krishna river basin in peninsular India over a span of 100 years (1901-2000). 

Streamflow variations in the basin was low in the early period until 1960: later the decrease in 

streamflow was mainly due to reservoir construction and increased water consumption. Hence, 

the study emphasizes the need to consider water consumption, changes in LULC parameters, 

climate changes due to greenhouse gas, using climate models. Reduced peak streamflow and 

shortfalls in precipitation enhance the need to study severe events like droughts in the Krishna 

river basin. 

Kjellström et al. (2010) analysed the performance statistics of RCMs using both weighted and 

unweighted ensemble means. The results show that weighted means variables are more close 

to actual observations than ensemble variables.  

Lee and Bae (2015) assessed the availability of blue and green water over Asian Monsoon 

Region for three future periods compared with a reference period using VIC model. The climate 

data was obtained on zonal basis using Koppen climate classification method. The projections 

show an increase in annual average increase in green water and blue water in future period. The 

climate classification system in the thesis was based on the tropical climate zone. However, 
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Asian continent impact studies need to consider other important estimates like high population, 

adaptable climate zones etc.  

Mondal and Mujumdar (2015) encapsulated modern research on the estimation of the impact 

of climate change on hydrologic regime raising the mismatch issue between scale and physical 

processes. Changes in the availability of water, water quality and irrigation demands were 

mainly focused in these studies. The authors also proposed methodologies to reduce 

uncertainties in future scenarios of multi climate models developed due to human induced 

emissions. In addition to these, the most probable elements responsible for validation of the 

observed data were also discussed.                                                                

Schoof and Robeson (2016) scrutinized the historic and projected change in the precipitation 

and temperature extremes with a high emission scenario RCP 8.5. The authors discussed 

general definitions of extremes based on thresholds and percentiles, quantification of changes 

in extremes using statistical methods using extreme value theory and various downscaling 

methods to inspect regional climate with pros and cons of each method. Estimation of 

temperature extremes were carried out using quantile mapping method using fine resolution 

gridded daily data. The results project an increase in warm extremes with a decrease in cold 

extremes, but stated that the downscaling of GCM data removes the bias and produce 

substantial spatial variability within the relatively small sub-regions.  

2.3 Regional Climate Models and their Uncertainty Modelling 

The changing global climate alters the hydrological cycle, which in return causes variability in 

the frequency of extreme events, availability of water, water use for irrigation, and quality of 

freshwater resources (Simonovic and Li 2004). Furthermore, the hydrological changeability 

affects the productivity of natural and agricultural systems, designing of hydrological 

structures, demand and supply of water, as well as aquatic ecosystem. Change in climate has 

been modelled using GCMs by incorporating changes in atmosphere and anthropogenic 

activities for the historic and future periods. GCM simulates the climate variables at a coarser 

scale i.e. at continental and hemispherical scale; however, the regional impact analysis requires 

the variables at a finer scale. The downsides of the GCM outputs, such as decreasing capability 

at finer temporal as well as spatial scales and the inability to simulate the variables of 

hydrological importance, prevent direct involvement in hydrological studies (Xu 1999). In 
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addition, the circulation pattern causing extreme hydrological events are also not captured 

adequately by GCM (Christensen and Lettenmaier 2007).  

Therefore, in order to analyse the climate change impact, large-scale climatic variables should 

be linked to the hydrologic variables at regional scale (e.g. precipitation, runoff) for better 

planning and management. The method of modelling the hydrologic variables at a regional 

scale based on large-scale GCM outputs is known as downscaling. Dynamic and statistical 

downscaling techniques are the commonly accepted downscaling methodologies, in which the 

former projects the coarser resolution GCM outputs to a finer resolution by incorporating the 

physical laws, boundary conditions, and atmospheric processes (generally known as Regional 

Climate Model, RCM or Limited Area Model, LAM). On the other hand, statistical 

downscaling techniques establish statistical association between large-scale GCM variables and 

regional scale hydrological variables, forecast for future time steps and finally evaluate the 

consequences relative to the present climate. Hence, the following sub-sections review the 

literature related to the climate change impact investigation using dynamic and statistical 

downscaling techniques around the globe. 

Giorgi and Mearns (1991) compared the empirical and GCM nested limited area modelling 

techniques and discussed the advantages, limitations, weakness, and viability of their use. They 

advocated that the implementation of the empirical techniques is quite easy; however, these 

techniques are incapable of representing mesoscale forcings that are more sensitive to future 

climatic conditions. Though the GCM nested limited area models are capable of encompassing 

a wide range of climate variability and atmospheric phenomena, they are computationally 

complex and expensive. Based on the strength and weakness of different modelling approaches, 

they suggested rapid improvement in both the techniques for better representation of regional 

response in the context of climate change. 

Giorgi and Mearns (2003) proposed the use of multi model ensemble mean in probabilistic 

climate projections in the form of REA. The method overcomes the limitation of assuming that 

all simulations are likely equal with reliability based on the likelihood of simulations. The 

authors also state that REA acts as a simple and flexible tool to quantify climate change and 

relate uncertainty and reliability, as well as the probability of change.  

The extreme precipitation over the UK was inspected by Fowler et al. (2005) using HadRM3H 

regional climate model. In spite of the deviations in spatial resolutions between the observed 
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and modelled data, the RCM was able to simulate the extreme rainfall at various return periods 

and durations. Additionally, HadRM3H provides a better representation of spatial variability of 

extreme precipitation for shorter durations in complex orographic regions. Though the model 

overestimates the extreme in high altitude area and underestimates in ‘rain shadow ‘area, the 

authors suggested that RCM has the capability to capture the variability in the extreme 

precipitation under enhanced greenhouse conditions. 

Tebaldi and Knutti (2007) focused on the combination of multi model ensembles like selection 

of metrics and complexity of performance of the model in suggesting the reliable model for 

future projections. It also quantifies the inter model dependencies and the representations of the 

models with some basic uncertainties. The authors suggested that uncertainties of the AOGCMs 

includes basic components and are standard across large model population. The uncertainties 

of the models depend on new challenges like emission scenarios, uncertainties due to social, 

economic and technical developments, as well as uncertainties in scenario based climate models 

and the ability to describe using reasonably efficient computational model. The uncertainties 

developed for regional studies are more compared to Global level studies.  

Gosain et al. (2011) studied the application of Regional Climate Model (RCM) – PRECIS with 

IPCC AR4 emission scenario daily weather data provided by the Indian Institute of Tropical 

Meteorology (IITM) to evaluate the change in water availability of the Indian River systems in 

both space and time. The analysis of the results was carried out to evaluate the severity of Floods 

and Droughts and thus to identify the Hotspots. 

Teutschbein and Seibert (2012) reviewed various simple and sophisticated bias correction 

methods for RCMs and their selection in correcting deviations of the models. The performance 

of raw data and bias corrected data was assessed and an improvement was observed in the 

streamflow using bias corrected data than uncorrected RCM data.  

Chou et al. (2014) applied Eta RCM to two GCMs, the HadGEM2-ES and MICRO5 with 

climate forcing of RCP 4.5 and RCP 8.5 scenarios to generate four downscaling simulations of 

climate change. The downscaled simulations were assessed for climate change over South 

America. Both the models identified reduction in the precipitation in the end of the century. 

The low and high emission RCP scenarios and the use of different GCMs produces different 
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error behaviours necessitating experiment to include more possibilities and uncertainties in the 

evaluation of impacts of climate change.   

Kulkarni et al. (2014) investigated future changes in the water balance components of Krishna 

river basin using RCM (PRECIS) data in SWAT. The simulations were carried out for the 

control and two future scenarios without change in LULC data. The results showed that the 

future annual discharge, base flow and surface runoff show increase in values over the present 

scenario. The limitation in this study was that model simulations were carried out considering 

future climate changes keeping the same LULC.  

2.4 Hydrological Modelling and Impact Studies 

Water resource management studies, flood control and drought mitigations, planning and 

design of water conservancy projects, hydrologic response to climate change and so on rely on 

hydrologic models. The calibration of the hydrological models is based on trial and error 

method and auto-calibration method. Optimization algorithms are also developed for individual 

models for parameterization and uncertainty modelling. Various hydrologic models and their 

suitability for impact studies are reviewed in the sections that follow:  

The simulation biases observed in the simulated streamflow from the hydrologic models were 

addressed by Hashino et al. (2006). Simulations biases tend to reduce the forecasting ability of 

the model and restrict the operational usefulness. In this study, the authors have evaluated the 

quality of probabilistic forecasts by three bias correction methods using a distribution-oriented 

verification approach. It was found that forecasting quality improved by elimination of 

unconditional biases with increase in potential skill.    

Chien et al. 2013 modelled the potential impact of a river basin through the coupling of 

hydrologic models and GCM projections. They demonstrated spatial and temporal variations 

of the future stream flow using multi-site calibration and validation using SWAT. Future 

projections show a decrease in annual and intra annual streamflow variability in all the 

watersheds. The results from the study provide basic knowledge for developing the adaptation 

strategies focused on reducing the impact on climate change on aquatic resources and 

ecosystems. 
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Narsimlu et al. 2013 conducted a study on climate change effects on water resources of Upper 

Sind river basin, India using SWAT. Uncertainty and sensitivity analysis of SWAT model was 

carried using Sequential Uncertainty Fitting algorithm (SUFI-2). Sensitive parameters obtained 

from SUFI-2 were used for calibration and validation of the model. The performance of the 

SWAT model was evaluated by comparing the simulated streamflow with the observed values 

during calibration and validation. Accuracy of the model performance was examined by the 

coefficient of determination (R2) and Nash Sutcliff Efficiency (NSE), p-factor and d-factor. The 

results obtained reveal that average streamflow increases as both surface runoff and base flow 

increases by the end of the century.  

Roy and Mazumdar (2013) has made an effort to assess the river runoff in the flood prone 

systems of Eastern and North Eastern river basins of India using HEC-HMS model. The 

analysis was carried out in the continuous time slices data for the period 2010-2040, 2041-2070 

for A2, A1B and B2 scenarios based on PRECIS model with the baseline 1961-1990 without 

sulphur cycle. The climate vulnerable scale of river runoff of three scenarios shows that A2 and 

B2 scenarios are more vulnerable than A1B scenario. The analysis was carried out for virtual 

water availability, water footprint, green water availability, water sequestration by estimated 

water availability. 

Meenu et al. (2013) studied the hydrologic impact of climate change over Tunga-Bhadra river 

basin, India. Prior to hydrological modelling, precipitation and maximum and minimum 

temperature at daily time scale were downscaled using linear regression based statistical 

downscaling model (SDSM). The future projection of the large-scale climate variables were 

obtained from the Hadley Centre Coupled Model version 3 under A2 and B2 scenarios for three 

future periods, viz. 2011-2040, 2041-2070, and 2071-2099. Authors used Hydrologic 

Engineering Center‘s Hydrologic Modelling System version 3.4 (HEC-HMS 3.4) to assess the 

potential climate change effect over the basin. The water balance evaluation under climate 

change suggested increase in rainfall and runoff with declining rate of actual evapotranspiration 

loss for both the scenarios. However, the highest change was observed in case of B2 scenario. 

Abbaspour et al. (2015) attempted to design and calibrate an uncertainty modelled hydrological 

model SWAT to investigate the various components of water resources under climate change. 

Components were simulated with monthly time levels at monthly time scales. The study made 

a persistent and detailed examination of integrated system behaviour through physically based 
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data driven simulations of large scale and high-resolution water resources models. Availability 

of data, calibration and uncertainty modelling procedures were clearly explained in this study.   

Uniyal et al. (2015) stated that increasing human population and the impact of urbanization lead 

to detrimental consequences for natural resources like land and water. Additionally, the growing 

population has a direct impact on water demand, causing water scarcity; this factor would 

enable one to assess the climate change impact on water resources to ensure better water 

management in future.  

Demaria et al. (2016) analysed the change and trend in streamflow of 124 basins in Northeast 

and Midwest of US using VIC model. Future climate projections from 16 GCMS were obtained 

for regional scale using statistical methods both spatially and temporally. Uncertainty in the 

climate models could be reduced by the performance of the climate model in reproducing the 

observed and future simulations similar to the ensemble mean. From the results, it was observed 

that uncertainty in downscaled GCM data is not reduced due to coarse resolution; therefore, the 

use of RCM data needs to be enhanced for obtaining details of future streamflow. They 

predicted that underestimation of streamflow values was mainly due to the structural biases in 

hydrological models and uncertainty in the bias correction- temporal disaggregation of climate 

data. 

2.5 Drought Analysis under Climate Change 

The severity of climate change which is explained using extreme events like floods, droughts 

etc., are observed during impact analysis. The risk developed by these events needs to be 

monitored to avoid the implications of climate change. From the literature, India is a semi-arid 

country prone to rainfall deficit in the future, leading to the possibility of drought conditions. 

Among the various types of droughts, meteorological drought and hydrological drought have 

been analysed under climate change. High dependencies of various activities such as urban 

development, water supply, hydropower generation on surface water resources increases the 

significance of hydrologic component in analysis of drought in an area. Mishra and Singh 

(2010) inferred that reduction in water supplies, water quality deterioration, limited water for 

irrigation leading to crop failure, minimized power generation, disturbance to riparian habitats, 

reduction in recreation activities and diversity of economic and social activities depend on 
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hydrologic drought. Quantification of droughts through various indices are discussed in the 

following sections. 

The spatio and temporal variability of meteorological drought in arid and semi-arid parts in 

India was computed by Patel et al. (2007) using SPI. The seasonal drought patterns have been 

quantified effectively using SPI at 3-month time scale. Further, this 3-month SPI was 

interpolated to depict spatial patterns of meteorological drought and its severity during typical 

drought and wet years.  

Shukla and Wood (2008) applied the Standardized Runoff Index (SRI) for assessing the effect 

of climate anomalies on present hydrologic conditions governed by land surface physical 

processes. The authors reviewed the advantages and disadvantages of SRI. They have 

concluded that SRI lags in verifying the runoff throughout area as it reflects the customary 

uncertainties of models. Reliability of the SRI value depends on the calibration of the model. 

They also suggested that multi period SRI plays a significant role in drought research, 

monitoring and management communities. 

Vidal and Wade (2009) computed SPI to assess the drought patterns of 183 hydrologic areas   

using bias corrected high resolution gridded precipitation data over the United Kingdom. The 

climate data were obtained from 6 GCMs under two emissions scenarios. Variations of 

streamflow obtained from two scenarios with time necessitated the utilization of multi model 

statistics when assessing the uncertainty in future drought indices to be used in long term water 

resources planning.    

Karavitis et al. (2011) applied the SPI in Greece to analyse the drought based on drought, 

duration, magnitude and spatial extent. SPI has the ability to identify the starting and ending of 

the drought event. Hence, it enables the engineers towards planning of drought contingency by 

providing drought alert mechanisms. SPI was calculated for four different time scales using 

data from 46 precipitation stations. The calculated SPI index is shown spatially to forecast the 

variations over various regions in Greece.  

Tabari et al. (2013) concentrated on quantifying the hydrologic drought using SDI for 

overlapping periods of 3,6,9 and 12 months at 14 hydrometric stations in Iran from 1975-2009. 

The ability of the data was examined by various distributions of probability and the best fit was 
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found to be log normal distribution for long term of streamflow data. It was observed from the 

results that all stations suffered from extreme drought conditions during the study period.    

Ojha et al. (2012) addressed the limitation of uncertainty in preserving temporal correlations, 

frequencies and intensity distributions, which avoid the direct use of GCM data in Hydrological 

modelling studies. Precipitation based drought index SPI was used to predict frequencies and 

occurrences of extreme events across India for a period of 48 years using nested bias corrected 

and raw climate data of 17 GCMs. It was concluded that nested bias corrected GCM data 

projects similar to observed data and an increase in drought events have been observed in west 

central, peninsular and central north east regions of India.  

Van Loon and Laaha (2015) focused on the drought severity due to change in climate and 

catchment characteristics on 44 catchment areas with long-term hydro meteorological data and 

information on a large number of physiographic catchment characteristics. The authors 

estimated the possibility of drought using variable threshold level method where various 

statistical tools were applied to analyse the droughts. From the observations they concluded that 

global scale droughts are more related to climate than catchment characteristics, but at regional 

level, the spatial variations of drought severity are highly dependent on terrestrial hydrological 

processes.  

2.6 Adaptation Strategies Based on Impact Studies 

The study of climate change globally and regionally will act as an endeavour to assess and have 

preparedness to overcome deleterious effects of environmental change. Modelled streamflow 

plays a major role in these studies. Thus, the changes in the stream flow have been propagated 

from climate change scenario in hydrological models and are used to infer the effects on 

availability of resources in the broadest sense. Reservoirs play a dominant role in continuous 

supply of water satisfying the municipal, industrial, agricultural and environmental needs. 

Hence, the reservoir operating systems are to be modelled in meeting the substantial demands 

under climate change.  

Cole et al. (1991) inspected seasonal and daily rainfall in the UK based on different 

GCM assessments of 40 years data. Sequence of runoff and evaporation losses are 

generated on that basis of climate variables. Further, yield versus storage graphs for 
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future periods are generated with yield and storage values proportional to historic annual 

runoff. Systematic fall in the yield from existing storages were observed towards future 

periods. The results recommend optimal planning of reservoir operating system.  

Raje and Mujumdar (2010) derived adaptive policies for the Hirakud reservoir 

performance for future scenarios over changing climate. For this study, the monsoon 

streamflow is downscaled using three GCMs for two future time slices and then analysed 

the performance of annual hydropower generation by four indices of reliability with 

respect to reservoir functions i.e., hydropower, irrigation and flood control, resiliency, 

vulnerability and deficit ratio were taken into considerations with respect to hydropower 

for projected hydrologic scenarios. Performance of the reservoir was examined with 

standard operating policy using current rule curves, which showed an increase in deficit 

ratio and vulnerability, and a decrease in reliability with respect to hydropower and 

irrigation. Hence, Stochastic Dynamic Programming (SDP) was used to develop 

adaptive policies for optimal monthly operation of reservoir. The results show that 

increase in hydropower reliability and generation for future scenarios can be maintained 

by sacrificing reliability in irrigation and flood control. Revision of the reservoir rules 

for flood control was suggested due to increasing probability of droughts in future 

climate change projections.  

Li et al. (2010) focused on performance of reservoir operation subjected to future climate 

change under flood state situated in Northern America Pirarie watershed. Raje and Mujumdar 

2010 has analyzed the performance of reservoir under uncertainty in hydrologic impacts of 

climate change and developed adaptive policies for possible future scenarios with a case study 

of Hirakud reservoir on Mahanadi River in Orissa, India. 

Eum et al. (2010) calculated the optimal water releases for future periods under droughts using 

stochastic dynamic programming model combined with hedging rule. This model helps in 

mitigating the impact of drought in operating reservoir with good water supply probability. 

Emergency operating policy and Normal operating policy were developed based on the 

Aggregate drought index. Limitations of the proposed methodology of the releases can be 

reduced by introducing the hydrologic state variable in SSDP model, which can distinguish the 
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probabilities of scenario conditioned on the selected hydrologic state variable. Applicability of 

the reliable streamflow drought index will also help in quantifying the optimal water releases. 

Turner and Galelli (2016) developed and demonstrated the use of R package named ‘reservoir’, 

designed for rapid and easy routing of runoff data through storages. The uncertainties of the 

data are modelled using SDP in releasing the runoff without affecting the performance of the 

reservoir. It comprises tools for designing the capacity, release policy optimization and 

evaluation of performance, which enables the users in establishing reservoirs to meet the water 

needs of people and crops.  

Ehsani et al. (2017) proposed a neural network based general reservoir operation to 

overcome the harmful observations of dam under climate change at regional scale. It is 

an automated model, which adapts to climate change and adjusts water storage levels 

based on the timing and magnitude of inflows. The authors also developed an indicator 

called Effective Degree of Regulation (EDR) by dams on water resources. Effective 

operating policies showed an increase in EDR, especially in dry months of year. The 

results of EDR indicate the need to increase the size and number of dams in addition to 

modifying their operations and thereby reducing the vulnerability of water resources 

systems to future uncertainties. 

2.7 Critical Appraisal 

Climate change is an emerging element to be considered for quantifying its effect on the 

hydrologic components of a river basin. Planning and management of water resources depends 

on the future climate and flow simulations of hydrologic model. Climate change impact analysis 

depends on 

(i) Availability of regional climate data  

(ii) Selection of suitable hydrological model  

(iii) Uncertainty modelling of climate data and hydrological model 

(iv) Analysis of the climate and hydrology for future scenarios 

(v) Development of adaptation policies for mitigation and management of impact 

effects. 

From the literature, it is observed that use of the RCMs compared to GCMs have proved to be 

efficient while assessing the impact of climate change on hydrology at basin level (Chien et al. 
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2013, Kulkarni et al. 2014, Demaria et al. 2016). SWAT model was proposed being a physically 

distributed model and is applicable to simulate various hydrological parameters with the 

efficiency of preserving the basin characteristics through sensitive analysis and uncertainty 

modelling using SUFI-2 algorithm (Gosain et al. 2006, Abbaspour et al. 2015, Yang et al. 2008, 

Meenu et al. 2013, Uniyal et al. 2015). Future simulations have been interpreted for inter and 

intra annual variations, trend analysis and drought studies. Drought indices proposed for both 

meteorology (Patel et al. 2007, Vidal and Wade 2009, Ojha et al. 2012) and streamflow (Tabari 

et al. 2013) are used for analysing the droughts in the Krishna basin. In addition to climate 

change, LULC is incorporated to determine the water balance components of an agricultural 

watershed. Many studies proved that application of SDP for the reservoir operation system has 

proved to be a powerful tool for developing the operating policies as it considers uncertainty in 

the inflows (Li et al. 2010, Raje and Mujumdar 2010, Eum et al. 2010, Turner and Galelli 

2016). Hence, SWAT model is adopted to simulate the future projections using uncertainty 

modelled REA climate data to assess the impacts of climate change on water resources of river 

basin. SPI and SDI are selected to evaluate the drought indices in the basin. SDP proposed by 

Turner and Galelli 2016 is adopted for developing the operating rules of the reservoir system 

under climate change. The detailed methodology and application of the models are explained 

in the following chapters. 
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Chapter – 3 

Methodology  

3.1 Introduction 

The overall methodology of the research work is shown in Figure 3.1. Hydrologic modelling 

mainly depends on interacting factors of the hydrologic cycle such as soils, topography, 

vegetation cover, climate, water bodies,…etc. Hydrologic models are evolved from simple 

rational models relating to rainfall and runoff to more advanced models integrating more 

complex system components. SWAT model is one among the complex models which simulates 

the water and sediments in large scale basins under varied soil types, land uses and management 

conditions.  Geospatial data DEM, LULC and soil maps are required to set up SWAT model. 

The streamflow data collected at different gauge stations are used in the calibration process. 

The observed daily meteorological data like precipitation, minimum and maximum 

temperatures are used in the SWAT model to simulate the streamflow at each sub basin outlet. 

Model simulated streamflow is calibrated with observed streamflow in SWAT-CUP using 

SUFI-2 algorithm. In order to predict the future streamflow under climate change, multiple 

climate models are selected. Bias in the climate model data is reduced using non-parametric 

quantile mapping method. Thus, future streamflow of the basin is simulated using bias corrected 

climate data and is further analysed for the variations in streamflow both on monthly and annual 

basis.  

Uncertainty in the climate model database compared to IMD data is reduced using the REA 

method (Figure 3.2). REA data is further bias corrected using the Quantile mapping method. 
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Standardized Precipitation Index (SPI) using the bias corrected REA data quantifies 

climatological drought of the basin. Bias corrected REA data is also used in the calibrated and 

validated SWAT model for future streamflow simulations. Future projections of the stream flow 

are analysed for the drought-based impact studies using Streamflow Drought Index (SDI).  

An agricultural watershed is selected to assess the combined impact of LULC and climate 

change. Adaptation strategies are developed for a reservoir using stochastic dynamic 

programming method considering the releases for the water supply (Figure 3.3). Evaluation of 

the adaptation strategies are quantified using performance indices like Reliability, Resilience 

and Vulnerability.  

 

Figure 3.1 Overall Methodology of the Research work 
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Figure 3.2 Flowchart for Reliability Ensemble Average Method 

 

 

 

 

 

 

 

 

 

Figure 3.3 Flowchart for Stochastic Dynamic Programming approach for Reservoir operation 
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3.2 Materials 

Based on the literature review and objectives discussed, a distributed hydrological model 

SWAT for the simulation of all-natural processes related to the movement of water such as the 

flow of the water in a stream, evaporation and evapotranspiration, groundwater recharge, soil 

moisture, sediment transport, chemical transport, growth of microorganisms in water bodies, 

etc, is selected. Impact analysis of the river basin is carried out at the sub basin level. SWAT 

model is developed for all the study areas using geospatial data DEM, LULC, Soil and slope 

maps and meteorological data such as daily precipitation, maximum and minimum 

temperatures. The detailed information about sources of data collected is given in Table 3.1. 

Data is processed and used based on the particular objective for different study areas.  

Table 3.1 Data used for the research study  

DATA DESCRIPTION SOURCE 

Digital 

Elevation 

Model 

30m*30m grid DEM used to delineate 

the boundary of the watershed and 

analyse the drainage pattern of the 

Terrain. 

Advanced Space borne Thermal 

Emission and Reflection Radiometer 

(ASTER) of NASA. 

Land Use 

Land Cover 

(LULC) 

Water base Land use data contains crop 

specific digital layers of 400m 

resolution, suitable for use in GIS 

http://www.waterbase.org/ 

Decadal LULC for 1985, 1995, 2005 of 

100m resolution. 

https://daac.ornl.gov/VEGETATION/gui

des/Decadal_LULC_India.html  

Soil data Soil Map of scale 1:2,50,000 http://www.waterbase.org/ 

Weather data Precipitation and Temperature: 0.5 

km*0.5km regridded data 

Indian Meteorological Department, 

Pune, India. 

Hydrological 

Data 

Gauge data at 20 stations Central Water Commission, Ministry of 

Water Resources, GOI 

Climate 

Model Data 

Regional Climate Model data of 0.5 

km*0.5km obtained for 4 Global 

Climate Models 

ftp://cccr.tropmet.res.in/  

Reservoir 

data 

Inflow, Release and Storage details of 

Nagarjuna sagar for the period (1970-

2013) 

Through personal contact (11-08-2016 

by email) from AE, Nagarjuna sagar 

dam, Andhra Pradesh, India. 

 

https://daac.ornl.gov/VEGETATION/guides/Decadal_LULC_India.html
https://daac.ornl.gov/VEGETATION/guides/Decadal_LULC_India.html
ftp://cccr.tropmet.res.in/
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Aster DEMs were used for all the study areas. LULC obtained from water base of 400m 

resolution was used for impact analysis where, LULC of 100m resolution is used for assessing 

the impact at watershed level. Accuracy of all these geospatial datasets were verified by SWAT 

group (website: http://swat.tamu.edu/software/links/india-dataset/). The meteorological data is 

checked for missing values. Regional climate model data is obtained from COordinated 

Regional Climate Downscaling Experiment (CORDEX) which is of 50km x 50km resolution 

simulated under RCP 4.5and RCP 8.5 scenarios. Based on the availability of climate data, five 

models were selected for the impact studies (Table 3.2). RCP 4.5 is a scenario with stabilized 

radiative forcing of 4.5 W m−2i.e. approximately 650 ppm CO2-equivalent, which considers the 

long-term, global emissions of greenhouse gases on short-lived species. Thomson et al. (2011) 

suggested that RCP4.5 scenario in climate models investigates the remote future response of 

climate system by stabilizing the anthropogenic components of radiative forcing. RCP 8.5 is 

characterized as high greenhouse gas emissions scenario over time with increased concentration 

levels of greenhouse gases (Riahi et al. 2011). Climate model data possess bias when compared 

with observed data.  

Table 3.2 List of climate models  

Accronym Full Name Modelling Centre 

ACCESS Australian Community Climate 

and Earth System Simulator. 

Commonwealth Scientific and 

Industrial Research Organization and 

Bureau of Meteorology, Australia  

CCSM4 Community Climate System 

Model  

National Center for Atmospheric 

Research  

CNRM_CM5 Centre National de Recherché  

Meteorologiques 

Centre National de Recherches 

Meteorologiques, Centre Europeen de 

Recherche et de Formation Avancee 

en Calcul Scientifique  

NorESM 1 Norwegian Earth System Model 1 Bjerknes Centre for Climate Research, 

Norwegian Meteorological Institute  

MPI-ESM-LR Max Plank Institute Earth System 

Model at Base Resolution  

Max Planck Institute for Meteorology  

 

 

 

 

http://swat.tamu.edu/software/links/india-dataset/
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3.2.1 Non-parametric Quantile Mapping Method 

The significant bias developed from system model errors caused by inexact conception, spatial 

averaging and discretization within the grid cells is reduced by using bias correction rules 

applied to the climate variables.  

Non-parametric quantile mapping using empirical quantiles bias correction method has been 

proposed by Gudmundsson et al. 2012, and this has been adopted for precipitation data bias 

correction. The transformation used for bias correction of the model data with the observed data 

is given in equation 3.1. 

 
𝑃𝑜 =  𝐹𝑜

−1(𝐹𝑚(𝑃𝑚))             (3.1) 

Where, Pₒ and Pm are the observed and model precipitations and Fm is the CDF of Pm and Fₒ−1 

is the inverse CDF (or quantile function) corresponding to Po. The empirical cumulative 

distribution function of model and observed data estimated is applied for simulated climate 

model data. The quantile plot comparing uncorrected and corrected precipitation data of a grid 

point is shown in Figure 3.4. 

 

Figure 3.4 Nonparametric Quantile mapping of Precipitation Data for a Grid Point. 

Temperatures (TMP) have been corrected using the additive term based on the difference 

between the observed and control run data (Lenderlink et al. 2007) 

  TMPc(his) =   TMPhis + ( MMTMPobs- MMTMPhis)             (3.2) 

                         𝑇𝑀𝑃𝑐(𝑓𝑢) =   𝑇𝑀𝑃𝑓𝑢 +  (𝑀𝑀𝑇𝑀𝑃𝑜𝑏𝑠 − 𝑀𝑀𝑇𝑀𝑃ℎ𝑖𝑠)                                   (3.3) 

Where TMPc(his) is historic temperature corrected, TMPc(fu) is future temperature corrected, 

TMPhis is temperature historic, TMPfu is temperature future, MMTMPobs is observed mean 

monthly temperature and MMTMPhis is historic mean monthly temperature. 
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3.2.2 Reliability Ensemble Averaging  

In 2003 Giorgi and Mearns developed a probability based REA method which enables the best 

estimate and reliable climate model data with a small range of uncertainty. The uncertainty 

occurred from ensemble inter models is inscribed taking into account performance and 

convergence criteria. This method was used to evaluate the exceedance probability of multiple 

climate model variables based on a threshold. REA analysis was performed for climate 

variables like precipitation and surface air temperature change using different General 

Circulation Models over 10 sub – continental scales. Based on comparative studies with other 

methods the authors inferred that REA is a simple and flexible tool for assessment studies that 

integrates the ensemble model projections. REA measures the model uncertainty in the form of 

model performance and model convergence and assign weight to each model based on their 

ability to capture the observed climate and convergence of the simulated changes across models 

to minimize the model uncertainty before modelling of hydrological processes. Moreover, REA 

allows a reduction in uncertainty range in the simulated series by minimizing the influence of 

outlier and poorly performing models; hence, it enables to measure the reliability of the 

simulated series by fulfilling the model performance and convergence criteria. For this purpose, 

the climate models are assigned separate weights based on different criteria, instead of equal 

weightage. 

For this study, REA is quantified with an algorithm developed by Chandra et al. (2015) for 

variables like precipitation, minimum and maximum temperatures. REA is associated with two 

reliability criteria “model performance” i.e. ability of the model to capture the original series 

and “model convergence” i.e. convergence of the model simulation for a given forcing scenario 

(Giorgi and Mearns 2003). A similar approach is adopted in the present study to quantify the 

model uncertainty in the form of model weighting and applied to atmospheric variables of 

RCMs, scenarios, and different grid points to obtain a weighted projected time series for use in 

hydrologic modelling. Model performance is evaluated based on errors obtained from the 

deviation of Cumulative Distribution Function (CDF) between RCM simulated and original 

series; while model convergence is calculated with respect to weighted mean, CDF is obtained 

from multiple RCM future simulations. Moreover, the convergence criterion measures the 

agreement of a model ‘s future projection with respect to the other models. In REA, initial 

weights (Eq. 3.5) are obtained based on the ability of the RCMs to simulate historical 

observations in terms of root mean square error (RMSE) (Eq. 3.4), which defines the 

performance criteria.  
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𝑅𝑀𝑆𝐸 =  [
1

𝑁
∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝑅𝐶𝑀𝑖)

𝑁
𝑖=1 ]

1
2⁄

      (3.4) 

𝑤𝑖𝑛𝑡 =  
(1

𝑅𝑀𝑆𝐸𝑖
⁄ )

(∑ 1
𝑅𝑀𝑆𝐸𝑖

⁄𝑛
𝑖=1 )

         (3.5) 

The following are the steps used to quantify the reliability of the climate model and to obtain 

the reliability ensemble mean: 

 Divide the total range of RCM variable data into 10 equal intervals of CDF with respect 

to the observed time series data and compute RMSE. Inverse values of RMSE are 

considered as the proportional weights and the sum of the weights of all RCMs is equal 

to one. Higher weights are assigned for better performing models. 

 Model convergence criteria is performed by considering the weights obtained from 

model performance criteria as initial weight for their respective RCMs. 

 The product of the initial weight (𝑤𝑖𝑛𝑡) and corresponding CDF of the future simulated 

ith RCM (FRCMi) is taken as the weighted mean CDF (Fwm) 

𝐹𝑤𝑚 =  ∑ 𝑊𝑖𝑛𝑡(𝑖)𝑖 ×  𝐹𝑅𝐶𝑀𝑖
  

 The same procedure is repeated as step-1 but the RMSE is calculated with respect to the 

weighted CDF and future projection of RCM weights is used in the next iteration for 

the respective RCMs and a new weighted CDF with different weights is computed. 

 Repeat the steps 2 to 4 until the same weight repeats and complete the model 

convergence criteria. 

This procedure was adapted for all grid points and 3 meteorological variables namely 

precipitation, minimum and maximum temperatures under RCP 4.5 and 8.5 scenarios in the 

study area, because of the varied nature of RCMs for different grids and atmospheric variables. 

Ensemble average of the climate variables for a particular grid which was obtained based on 

reliability is the weighted sum of the product of corresponding final weights with the respective 

meteorological variables. Thus, ensemble weighted average of each hydrological variable is 

given as input to the distributed hydrological model for each grid instead of giving each RCM 

input separately.  

The minimum and maximum temperatures of the climate model data projects values similar to 

the observed data. REA precipitation possesses further bias which is reduced by adopting the 

non-parametric quantile mapping method as described in the previous section.  
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3.2.3 SWAT Model 

SWAT model works on a daily time step continuous simulating model for a long period. The 

model is a computationally efficient, physical based model and capable of simulating high-level 

spatial details by dividing the watershed into smaller sub-watersheds (Arnold et al. 2012). The 

Hydrological Response Units (HRUs) are the percentages of sub-watershed area comprising 

homogeneous land use, management, and soil characteristics. SWAT model allows users to 

estimate the anticipated scenarios of a watershed by using different climate data and LULC 

patterns as inputs. In addition, it is capable of assessing the variability in stream flow by 

considering the future projected climate variables. SWAT model requires daily meteorological 

data i.e., either from a measured data set or generated by a weather generator model. The water 

balance equation, which governs the hydrological components of SWAT model, is as follows: 

𝑆𝑊𝑡𝑖 =  𝑆𝑊𝑂 + ∑ (𝑅𝑑𝑎𝑦𝑖 −  𝑄𝑠𝑢𝑟𝑓𝑖 − 𝐸𝑎𝑖 − 𝑊𝑠𝑒𝑒𝑝𝑖 − 𝑄𝑔𝑤𝑖
𝑡
𝑖=1 )            (3.6) 

Where SWti is soil water content at the end of the day (mm H2O),  

SWo is the amount of initial soil water content on day i (mm H2O), 

t is the time in days, Rdayi is the amount of precipitation on day i (mm H2O), 

Qsur f i is the amount of surface runoff on day i (mm H2O),  

Eai  is the amount of evapotranspiration on day i (mm H2O),  

Wseepi is the amount of water entering the vadose zone from the soil profile on day i (mm 

H2O) and 

Qgwi is the amount of return flow on day i(mm H2O).   

3.2.4 Calibration and Uncertainty Analysis using SUFI-2  

Evaluation of the model calibration and validation is carried out through sensitive analysis and 

uncertainty analysis. As SWAT model comprises a large number of input parameters, 

calibration and validation of the model is highly complex, challenging and is a very rigorous 

process. SWAT-CUP (SWAT Calibration Uncertainty Procedures) is a dynamic SWAT edit 

program provided to handle all SWAT parameters including different soil layers and 

management rotation operations, precipitation data etc., is used for calibration and validation 

of model. SWAT-CUP contains various techniques like MCMC (Markov chain Monte Carlo), 

GLUE (Generalized Likelihood Uncertainty Estimation), Parasol (Parameter Solution), and 

SUFI-2. Among all the techniques of SWAT-CUP, Yang et al. 2008 and Khoi and Thom 2014 
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suggest that SUFI-2 needs a minimum number of model simulations to attain high quality 

calibration and uncertainty results. Overall uncertainty in the output of Hydrologic response is 

quantified using the uncertainties developed due to parameter ranges using 95 PPU P-factor, R-

factor, Nash Sutcliff Efficiency (NSE), Coefficient of correlation (R2) etc.  P-factor is the 

percentage of measured data falling into the 95 PPU confidence interval, whereas R-factor is 

the average breadth of the 95 PPU band divided by the standard deviation of the measured data. 

For the present study, the performance of model was evaluated using R2 and NSE at monthly 

temporal scale. R2 varies from 0 to 1 and NSE varies from negative infinity to 1. The values of 

R2 and NSE nearer to one indicate better agreement between simulated and observed values. 

NSE is highly sensitive to estimation errors for high values (i.e., peak flow values). R2 and NSE 

values have been computed as: 

𝑹𝟐 =  
𝒏 ∑ 𝑸𝒐𝒃𝒔𝒊 𝑸𝒔𝒊𝒎𝒊− (∑ 𝑸𝒐𝒃𝒔𝒊)(∑ 𝑸𝒔𝒊𝒎𝒊)

  √𝒏(∑ 𝑸𝒐𝒃𝒔𝒊
𝟐 )−(∑ 𝑸𝒐𝒃𝒔𝒊)𝟐√𝒏(∑ 𝑸𝒔𝒊𝒎𝒊

𝟐 )−(∑ 𝑸𝒔𝒊𝒎𝒊)𝟐

    (3.7) 

𝑵𝑺𝑬 = 𝟏 − [
∑ (𝑸𝒐𝒃𝒔𝒊− 𝑸𝒔𝒊𝒎𝒊)𝟐𝒏

𝒊

∑ (𝑸𝒐𝒃𝒔𝒊− 𝑸𝒎𝒆𝒂𝒏)𝟐𝒏
𝒊

]     (3.8) 

where, n is the total number of observations, Qobsi and Qsimi are the observed and simulated 

discharges at ith observation, respectively, Qmean is the mean of observed data over the 

simulation period.  

The overall methodology of the work is shown in Figure 3.1. The geospatial data like DEM, 

LULC and soil maps are required to set up SWAT model. Observed streamflow data of different 

gauge stations are used in calibration process. The observed daily meteorological data like 

precipitation, minimum and maximum temperatures are used in SWAT model to simulate the 

streamflow at each sub basin outlet. Model simulated streamflow is calibrated with observed 

streamflow in SWAT-CUP using SUFI-2 algorithm. In order to predict the future streamflow 

under climate change, multiple climate models are selected. Bias in the climate model data is 

reduced using non-parametric quantile mapping method. Thus, future streamflow of the basin 

is simulated using bias corrected climate data and is further analysed for variations in 

streamflow both monthly and annually. Uncertainty of the climate model database compared to 

IMD data is reduced using the REA method. REA data is further bias corrected using Quantile 

mapping method. Standardized Precipitation Index (SPI) using bias corrected REA data 

quantifies climatological drought of the basin. Bias corrected REA data is also used in the 

calibrated and validated SWAT model for simulations of the future streamflow. Future 
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projections of the streamflow are analysed for drought-based impact studies using Streamflow 

Drought Index (SDI). From the impact studies, an agricultural watershed is selected to assess 

the combined impact of LULC and climate change. The adaptation strategies are developed for 

a reservoir using stochastic dynamic programming method considering the releases for water 

supply. Evaluation of the adaptation strategies is quantified using performance indices like 

Reliability, Resilience and Vulnerability.  

3.2.5 Inter and Intra Annual Streamflow Variations 

The variations in the streamflow are obtained using inter and intra annual Coefficient of 

Variation (CV). Inter annual variability of a sub basin is calculated using the following equation 

(Lenderlink et al., 2007): 

𝑪𝑽𝒊𝒏𝒕𝒆𝒓  =  
𝑺𝑻𝑫 (𝑸𝒚)

𝑸𝒚̅̅ ̅̅
        (3.9) 

Where 𝑄𝑦 is yearly streamflow, 𝑄𝑦
̅̅ ̅̅  and STD (𝑄𝑦) are the mean and standard deviation of annual 

streamflow. 

CVintra is used to quantify the intra annual variability of predicted stream flow using the 

following equation (Lenderlink et al. 2007): 

𝑪𝑽𝒊𝒏𝒕𝒓𝒂 = 𝟏/𝑵 ∑ (
𝑺𝑻𝑫(𝑸𝒎 )

𝑸𝒎̅̅ ̅̅ ̅
)

𝒊

𝑵
𝒊=𝟏              (3.10) 

Where 𝑄𝑚 is monthly streamflow, 𝑄𝑚
̅̅ ̅̅  and STD (𝑄𝑚) are the mean and standard deviation of 

monthly streamflow in a year, and i is the year number. 𝐶𝑉𝑖𝑛𝑡𝑟𝑎  is Mean of CV for N-years in 

a sub-basin, where N=20 for this study. Overall, Intra annual variability and Inter annual 

variability of streamflow of a watershed is the mean of   𝐶𝑉𝑖𝑛𝑡𝑟𝑎and𝐶𝑉𝑖𝑛𝑡𝑒𝑟 of all sub-basins. 

3.2.6 Standardized Precipitation Index (SPI) 

Based on the previous studies, a notable increase in temperature is observed in future 

projections than past centuries (Jones and Moberg 2003) leading to drastic effect on the severity 

of droughts. It is also stated that change in precipitation in addition to temperature rise has 

serious effect on the drying rate of the land (Abramopoulos et al. 1988). Rebetez et al. (2009) 

showed that cultivation and natural systems in Europe are afflicted because of high temperature 

rise, evaporation and water stress. Lower levels of precipitation are an important factor which 

leads to increase in the severity of drought in a location. Precipitation will be insufficient to 

meet the demands of human activities and environment with the continuation of this phenomena 

for a season or over longer period. Other important factors to be considered in characterizing 

the drought are Temperature, wind and relative humidity. Monitoring of drought also needs to 
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be specific with application, as it varies in various sectors. Based on the type, droughts are 

classified into meteorological, agricultural and hydrological. These differ with duration, 

intensity and spatial coverage from one another. The most common drought indices used to 

quantify, analyze and monitor the drought events are Palmer Drought Severity Index (PDSI) 

(Alley 1984) and Standardized Precipitation Index (SPI) (Thomas et al. 1993).  

SPI is a normalized index representing the probability of occurrence of an observed rainfall 

amount compared to rainfall at a certain geographical location over a reference period. 

Steps involved for SPI calculation are 

 Fit a gamma distribution to the time series of precipitation values for each timescale of 

interest. Compute the parameters of the distribution. 

 Compute the value of cumulative distribution function (CDF) [G(x)] corresponding to 

each value of precipitation (x). 

 SPI value of precipitation is the value of standard normal deviate corresponding to the 

value of CDF [G(x)]. 

SPI was used to evaluate the deficit in precipitation for different time scales, which cast the 

availability of different water resources due to impact of drought.  

3.2.7 Streamflow Drought Index (SDI) 

Significant declination in the availability of water in all forms appearing in the land phase of 

the hydrological cycle is categorized as hydrological drought. Streamflow, lake and reservoir 

level and ground water level are the various forms of hydrological variables. Among all these 

variables, streamflow is the most important variable that reflects the quantity of water in terms 

of surface water resources. Hence, a hydrological drought event related to streamflow deficit 

with respect to normal conditions.  SDI developed by Tabari et al. (2013) is used to evaluate 

the drought. Hydrological year is from June to May of every next year, and four overlapping 

time periods are utilized within each hydrological year: June to August (3 month), June to 

November (6 month), June to February (9 month), and June to May (12 month) drought. 

𝑽𝒊,𝒌 =  ∑ 𝑸𝒊,𝒋
𝟑𝒌
𝒋=𝟏      𝒊 = 𝟏, 𝟐, 𝟑, … , 𝟏𝟐   𝒌 = 𝟏, 𝟐, 𝟑, 𝟒    (3.11) 

where, 𝑄𝑖,𝑗= Streamflow for the j
th month in i

th Hydrological Year, 𝑉𝑖,𝑘 = cumulative streamflow 

volume for the i-th hydrological year and the k-th reference period, k=1 for June - August, k=2 

for June - November, k=3 for June - February and k=4 for June – May. 

𝑺𝑫𝑰𝒊,𝒌 =  
𝑽𝒊,𝒌 − 𝑽̅

𝑺𝒌
      i = 1,2,3,…  k = 1,2,3,4      (3.12) 
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Where 𝑉̅ and 𝑆𝑘 are the mean and standard deviation of the cumulative streamflow values of 

reference period k as these are estimated over a long period of time.  

Positive SDI values indicate Wet conditions; Negative SDI values indicate Dry conditions. SPI 

and SDI were categorized based on the classification given in Table 3.3 

 Table 3.3 Event classification based on SPI value (Thomas et al. 1993) 

SPI Value Category Probability (%) 

≥ 2.00 Extremely wet 2.3 

1.50 to 1.99 Severely wet 4.4 

1.00 to 1.49 Moderately wet 9.2 

0 to 0.99 Mild wet 34.1 

0 to -0.99 Mild Drought 34.1 

-1.00 to -1.49 Moderate Drought 9.2 

-1.50 to -1.99 Severe Drought 4.4 

-2 or less Extreme Drought 2.3 

3.2.8 Mann Kendall Trend Test 

The statistically significant trends in the annual streamflow were determined using the Mann - 

Kendall (M-K) tau non-parametric test for each basin. For a probability value of less than or 

equal to 0.10 i.e. when Kendall’s tau value equals zero, the trend was considered to be 

statistically significant. The degree of correspondence between two variables x and y where x 

variable is time and y variable are streamflow was measured using Kendall's tau. If τ=1, then 

the data shows perfect positive correlation; if τ= -1, then the data exhibits perfect negative 

correlation and τ= 0 shows no correlation between the pairs. Thus, the positive value of τ 

represents an increase in trend and negative value of τ represents a decrease in trend. Sen's 

method was used to estimate the magnitude of the trend (Hamed and Rao 1998, Mann 2016). 

3.2.9 Reservoir Operation under Climate Change. 

Reservoir system operation for various purposes require optimizing the use of water over time.  

The design of the storage capacity of a reservoir is a continuing problem in water resources 

management. The value of releasing water in any period need to be compared to the value of 

stored water. Release policy decisions are necessary to optimize the release decisions. Two 

functions such as deterministic Dynamic Programming (DP) and Stochastic Dynamic 
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Programming (SDP) are available for release policy design. In the present study, releases are 

estimated for the standard operating and adaptive policy using SDP. Standard Operating Policy 

aims to meet target at all times, unless constrained by available water in reservoir plus incoming 

flows. SDP is an extension of the dynamic programming algorithm in which the reservoir 

inflows are random variables described by probability distributions. Such a stochastic 

description of inflow helps in computing the expected benefits attributable to each release 

decisions. Let Qt represents the inflow vector into the reservoir during any time period t. St 

represents the storage vector for period t, Rt the release vector for period t and et(St , St+1) is the 

evaporation loss in period t. The continuity equation used to make the decision is based on the 

reservoir-storage mass balance (Faber and Stedinger 2001) in Eq 3.13. 

𝑆𝑡+1 =  𝑆𝑡 + 𝑄𝑡 − 𝑅𝑡 − 𝑒𝑡(𝑆𝑡, 𝑆𝑡+1)               (3.13) 

The state of the system in each stage t can be described by the reservoir storage St and often 

some variable that represents the hydrologic state of the river basin. At each stage and state, a 

release of water 𝑅𝑡 is chosen which maximizes the sum of the current benefit of that release 

Bt(𝑅𝑡) and the future benefit 𝒇𝒕+𝟏(𝑺𝒕+𝟏) , which depends on the resultant storage 𝑺𝒕+𝟏 in the 

following period, assuming the system is operated optimally from that point onward. The model 

uses a backward recursive starting from a year sufficiently distant in future to arrive at a steady 

state operating policy on a monthly basis. Neglecting streamflow uncertainty and for known 

inflow values 𝑄𝑡 the functional equation is evaluated using Eq 3.14 (Faber and Stedinger 2001). 

𝑓𝑡(𝑆𝑡) = 𝐦𝐚𝐱
𝑹𝒕

 
𝑬
𝑸𝒕

{𝑩𝒕(𝑺𝒕, 𝑸𝒕, 𝑹𝒕)+∝ 𝒇𝒕+𝟏(𝑺𝒕+𝟏)}               ∀𝑺𝒕 𝒂𝒏𝒅 𝒕 ∈ {𝟏, … . . , 𝑻}     (3.14)  

where T being the final period in the model, 𝑩𝒕(. ) the benefit function for period t and α be the 

discount factor. The transition probabilities provide the information on inflow characteristics in 

order to make a decision on the release for a given time step. The SDP adopted in the present 

study uses the release policy decisions made to optimize the release decisions to minimize the 

sum of penalty costs given in Eq (3.15).  Eq (3.16) is used to compute the reservoir storage 

capacity with minimum releases. Penalty costs are function of the volume delivered relative to 

the demand. 

Ct = [1-(Rt / D)]τ                 (3.15) 

where D = Demand or target release   τ = penalty cost exponent (τ = 2 Academic purpose) 

Backward recursive equation (Faber and Stedinger 2001). 

𝒇𝒕(𝑺𝒕, 𝑸𝒕) =  𝐦𝐢𝐧
𝑹𝒕

{𝑪𝒕(𝑺𝒕,  𝑸𝒕, 𝑹𝒕) +
𝑬

𝑸𝒕+𝟏|𝑸𝒕
[𝒇𝒕+𝟏(𝑺𝒕+𝟏, 𝑸𝒕+𝟏)]}

∀𝑺𝒕 , 𝑸𝒕 𝒂𝒏𝒅 𝒕 ∈ {𝟏, … . . , 𝑻}
    (3.16) 
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The release decision Rt is selected to minimize the current period cost 𝐶𝑡(𝑆𝑡,  𝑄𝑡, 𝑅𝑡) plus future 

cost expectation 𝑓𝑡+1(𝑆𝑡+1, 𝑄𝑡+1),  which depends on the resultant state of the system at time 

step t+1.  

The performance Indices for the proposed releases are calculated using the Reliability, 

Resilience and Vulnerability functions (McMahon et al. 2006). Reliability represents the 

probability of no failure. It is classified into Time based and volumetric reliabilities. 

Time based reliability (𝑹𝒕):  𝑹𝒕 =  (
𝑵𝒔

𝑵
)      𝟎 <  𝑹𝒕  ≤ 𝟏              (3.17) 

where 𝑵𝒔= number of intervals with the target demand; 𝑵 = total number of intervals. 

Volumetric reliability (𝑹𝒗):  𝑹𝒗 = 𝟏 − (
∑ (𝑫𝒊− 𝑫𝒊

ˈ )𝑵
𝒊=𝟏

∑ 𝑫𝒊
𝑵
𝒊=𝟏

) ;   𝟎 < 𝑹𝒗 ≤ 𝟏           (3.18) 

where 𝑫𝒊= Target demand during ith period; 𝑫𝒊
ˈ  = Actual volume supplied during the ith period; 

N = Number of time intervals in the simulation. 

Resilience (𝝋): Conditional probability of a recovery from the failure set in single time step. 

𝝋 =
𝒇𝒔

𝒇𝒅 
  ;  𝒇𝒅 ≠ 𝟎                (3.19) 

where 𝒇𝒔 = Number of individual continuous sequences of failure periods; 𝒇𝒅 = Total duration 

of all the failures.  

Vulnerability (ή): Measure of likely damage in a failure event, which refers to the likely 

magnitude of failure. 

ή =  
∑ (𝐦𝐚𝐱 𝒔𝒋)

𝒇𝒔
𝒋=𝟏

𝒇𝒔
      (3.20) 

where 𝑠𝑗= Volumetric shortfall during jth continuous failure sequence; 𝒇𝒔 = Number of 

continuous failure sequences. 

 

3.3 Closure 

In this chapter, methodology, data required, bias correction and uncertainty analysis techniques 

for processing climate model database, description of hydrological models for simulation of 

streamflow in a river basin, and analysis techniques for impact assessment have been explained. 

Flowcharts are given for the impact assessment on water resources; developing ensemble data 

from multi model runoff. Development of adaptation strategies based on the performance 

indices for the future projected streamflow has been discussed. 
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Chapter – 4 

Study Area and Database  

4.1 General 

Different study areas in India have been selected to investigate the proposed research 

methodology. The study areas include Wardha, a sub basin of Godavari river, for analysing the 

Inter and Intra annual stream flow variations for future periods, Krishna river basin for 

analysing the drought conditions, impacts on water resources, Munneru an agricultural 

watershed in the Lower Krishna basin, was chosen to assess the variation of water balance 

components spatially under combined changes of climate and LULC. Assessment of 

performance indices has been carried out for Nagarjuna sagar dam in Krishna river basin using 

Stochastic Dynamic Programming (SDP).  
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Figure 4.1 Location of the study area 

The location map of study areas is shown in Figure 4.1. The geospatial, hydrological data and 

meteorological data of the basins were obtained from WRIS portal1. A detailed explanation of 

all study areas is provided in the following sections. 

4.2 Wardha Sub Basin 

Wardha region is a sub basin of Godavari with a spatial extent of latitude 19° 18ˈ N and 21° 

58ˈN and longitude of 77° 20ˈE and 79° 45ˈ E (Figure 4.1). The drainage area of Wardha sub 

basin is around 15.31% of the Godavari basin (Godavari Basin 2014). The sub basin conveys 

the combined water of the Penganga and Wardha rivers to Pranahitha, the largest tributary of 

Godavari basin. It flows along the entire Northern and Western border from the Mutai plateau 

of the Satpura range of Wardha district, India. The sub basin includes 14 districts consisting of 

around 8,440 villages with a total population of 3,23,21,974 according to 2011-census data 

(Godavari Basin 2014). The streamflow carried by the river serves as the principal source of 

                                                 
1 http://www.india-wris.nrsc.gov.in/wrpinfo/index.php?title=Main_Page 
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water and has witnessed large-scale interventions and problems related to such interventions. 

Hence, Wardha sub basin was selected to analyse streamflow variations in the future periods 

using Regional Climate Model database. Wardha sub-basin is divided into 43 watersheds with 

a total drainage area of 46237.65 sq.km. The terrain of the sub basin is full of undulations like 

ridges and valleys, with the surface marked by a medium density forest cover. The sub-basin 

experiences an average annual rainfall of approximately 1,055 mm. The average minimum and 

maximum temperatures of the Wardha sub basin are 9.4°C to 46°C respectively. 

Geospatial data required for hydrological modelling includes DEM, Soil, LULC and slope map. 

In Figure 4.1 Wardha basin is projected with 30m gridded DEM obtained from ASTER where 

the highest and lowest elevation of the basin are 945m and 84m respectively.  Figure 4.2 

presents drainage pattern with available gauge station in the basin.  LULC of the basin (Figure 

4.3) contains 10 classes with maximum area under cultivation. Classification of the soil classes 

is mainly 3 as shown in Figure 4.4. Slope classes are categorized into 5 classes based on the 

DEM, as shown in Figure 4.5. 

 

Figure 4.2 Drainage pattern and Gauge stations of Wardha basin 
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Figure 4.3 LULC map of the Wardha basin (www.waterbase.org) 

 

Figure 4.4 Soil map of the Wardha basin (www.waterbase.org) 

http://www.waterbase.org/
http://www.waterbase.org/
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Figure 4.5 Slope map of the Wardha basin 

Observed meteorological data required for the study area was retrieved for 27 grid points for 

the period 1975 to 2003 as given in Figure 4.1. Regional climate model database of 27 grid 

points for five climate models under RCP 4.5 and RCP 8.5 scenarios for the period 1975 to 

2099 was retrieved using a Graphical User Interface as shown in Figure 4.6 using R - 

Programming Language. The RCM simulated temperature and precipitation are to be bias 

corrected before being used in the hydrological model as they are subjected to significant biases 

from system model errors caused by inexact conception, spatial averaging and discretization 

within the grid cells.  

Observed streamflow data obtained from the CWC was checked for missing data and gauge 

stations with no or limited missing data for a continuous period of 20 years for calibration of 

the hydrological modelling. Streamflow data from 1984 to 1996 and 1997 to 2003 period have 

been used in calibrating and validating the model respectively by excluding the spin up period 

for analysis. 
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Figure 4.6 Interface to retrieve the climate variables for the latitude and longitude 

4.3 Krishna River Basin 

The Krishna river basin is the fourth biggest with a total area of 258948 km2, located in the four 

states Karnataka (43.8%), Andhra Pradesh, Telangana (29.81%) and Maharashtra (26.36%), 

India as shown in Figure 4.1.  The basin lies between 3°10’ to 19°22’ North latitudes. It consists 

of several tributaries among which Ghatprabha, Malprabha and Tungabadhra are right joining 

while Bhima, Musi, and Munneru are left joining principal tributaries. There are seven 

subbasins in Krishna basin - Bhima Upper, Bhima Lower, Krishna Upper, Krishna Middle, 

Krishna Lower, Tungabadhra Upper and Tungabadhra Lower. Climate of the basin is tropical, 

with the average annual Precipitation of 960 mm and minimum and maximum temperatures of 

the basin being 20.73˚C and 32.2˚C. The basin receives an annual average precipitation i.e. 

maximum value of 2000 mm at the Western Ghats region, with values ranging from 300mm to 

1000mm in the delta region. The DEM (Figure 4.7) projects the minimum, maximum and mean 

elevations of the basin as 18m, 1903m, and 518m. Approximately 50.47% of the total area falls 

under 500m to 750m elevation zone. The climate data includes maximum temperature (Tmax), 
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minimum temperature (Tmin) and precipitation with the spatial resolution of 0.5°x0.5° for 132 

grid points. Streamflow has been characterized by low flows during March to May and high 

flows in August to November with around 47 Hydro – Meteorological stations on the basin. 

The streamflow data obtained from the hydro meteorological stations shows some missing 

values. Due to the missing stream flow data in many stations, only 14 out of 47 stations data 

were used for calibration and validation of the model. Land use information of Krishna basin 

comprises 14 categories as shown in Figure 4.8 with Agriculture (72.56%) as the dominant 

category. Figure 4.9 presents the soil map, which is dominated by fine texture soil. Laterite and 

lateritic soils, red soils, alluvium, black soils, mixed soils (red and black, red and yellow, etc) 

and alkaline and saline soils are important soil types found in the basin. The slope map of 

Krishna river basin is developed based on the percentage rise with 5 classes as shown in Figure 

4.10. 

 

Figure 4.7 DEM of the Krishna river basin with delineated stream and sub watersheds. 
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Figure 4.8 LULC map of the Krishna river basin 

 

Figure 4.9 Soil map of the Krishna river basin 
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Figure 4.10 Slope map of the Krishna river basin 

The total population of the Krishna river basin was 74.2 million as per 2011 census. Around 

68% of the population in the basin lives in rural area with agriculture as the main source of 

livelihood (Sarma et al. 2011). Around 77% of the total geographical area of the basin is 

cultivable area with the main crops being rice, corn, cotton, sorghum, millet, sugar cane and a 

variety of horticulture crops. Increase in population results in high consumption of water for 

domestic and industrial purposes leading to stress on water resources of the basin. The major 

projects developed in all the states provoke interstate conflicts on water rights. According to 

(Biggs et al. 2007) the basin is under water stress due to consumption of more water than is 

available. They also suggest that it is essential to assess the monthly changes of climate 

parameters and their effect on the runoff for framing a water allocation policy for future use. 

The observed meteorological data is retrieved for 132 grid points of 50 km x 50km resolution 

over the basin. Instead of using multiple climate model data, uncertainty modelled ensemble 

mean of the multi climate models is used for impact assessment of climate change on future 

streamflow projections.   
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4.4 Munneru Watershed 

Lower Krishna basin consists of Paleru, Munneru and Musi river basins with the maximum area 

in Andhra Pradesh. Munneru is the left bank major tributary of the basin with a length of 195km, 

lying between latitudes 16°43ˈN to 17°52ˈN and longitudes 79°20ˈE to 80°35ˈE (Figure 4.11). 

It covers a catchment area of 10,409 km2. The average temperature and precipitation of the 

watershed is 28°C/month and 988.64 mm/year between 1970 and 2005. The river plays a major 

role in providing water for irrigation and for domestic purposes. The decreasing trend in the 

annual runoff has been observed from 1991 due to changes in LULC and climate (Figure 4.12).  

 

Figure 4.11 Location of the Munneru watershed with DEM 

 

Figure 4.12 Observed annual streamflow at Keesara gauge station in Munneru watershed 
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In order to assess the combined effect of climate and LULC of watershed, multi temporal LULC 

maps of 100m resolution have been used. The decadal LULC maps (Figure 4.13 a,b,c) for 1985, 

1995 and 2005 were used to detect changes in land use classification. Figure 4.13 (e, f) represent 

the change in the land use from 1985 – 1995 and 1995-2005. Land use of the watershed is 

mainly dominated by the cropland/irrigated land which is the main factor for 

Evapotranspiration. Conversion of barrenland to urbanland, cropland/woodland to the cropland 

/ dryland are the major changes from 1985-1995. On the other hand, during 1995-2005 limited 

changes were observed compared to 1985-1995. LULC change from two decades is considered 

in simulating the water balance components of the study area. REA climate model data for 9 

climate grid points of the Munneru watershed (Figure 4.11) have been used for the hydrological 

modelling and further analysis. 

 

Figure 4.13 Decadal land use maps of the watershed a)1985 b)1995 c)2005 

(https://daac.ornl.gov/VEGETATION/guides/Decadal_LULC_India.html). Change in the land 

use classes between d) 1985-1995 and e) 1995-2005. 
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4.5 Nagarjuna Sagar Dam 

Nagarjunasagar dam is located in the Middle Krishna sub basin and situated downstream of 

Srisailam reservoir in Andhra Pradesh. It is a multipurpose project, comprising dam and two 

main canals, one each on either flank of the river. The catchment area at the dam is 215,193 

km2; the annual rainfall in the catchment is 889 mm, the maximum observed flood is 30,050 

cumec, and the design flood (return period 1,000 year) is 58,340 cumec. When the 

Nagarjunasagar reservoir is full, its backwater extends up to the Srisailam dam and covers an 

area of 285 sq. km. A view of Nagarjunasagar dam can be seen in Figure 4.14. Besides 

providing irrigation facilities to 22 lakh acres, the project was formulated to generate about 810 

MW of hydropower. Subsequently, power units were constructed below the head sluices of 

right and left canal (Jawaharlal & Lalbahadur) for generating 150MW of power, increasing the 

total power generation to 960 MW. The project is conceived mainly to convert rain fed 

cultivation to irrigation agriculture in the districts of Nalgonda, Khammam, Krishna and west 

Godavari on left command and Guntur and Prakasham on right command. Table 4.1 presents 

the salient features of dam. The daily inflow and outflow of the reservoir obtained is verified 

for the missing values and the continuous data is considered for further analysis. The daily data 

was converted into monthly data based on the purpose of the study. Future streamflows 

simulated in the ArcSWATwere used for the designing of adaptation strategies.   

 

Figure 4.14 A view of Nagarjuna Sagar dam 
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Table 4.1 Salient features of the Nagarjuna Sagar dam. 

Location  

Latitude 16°84ʹN 

Longitude 79°19ʹE 

 

It is about 2.4km away from Nandikonda village 

of Peddavoora Mandal, Nalgonda District, 

Andhrapradesh. 

Hydrology  

Catchment area at dam site 83087 Sq. Miles                                                                                                                                                          

(2,15,195 Sq.Kms.) 

Design Flood 58,340 Cumec 

Reservoir   

Full Reservoir Level 590.00 ft. (179.95 m) 

Maximum Water Level 594.00 ft. (181.10 m) 

MDD Level 510.00 ft. (161.58 m) 

Gross storage capacity at                                                                                                                                                 

El. +590.00 ft. 312.045 TMC 

Dead storage capacity at                                                                                                                                                

El. +510.00 ft. 131.669 TMC 

Live storage capacity 180.376 TMC 

Water spread area 285 Sq.Kms 

4.6 Closure 

Wardha and Krishna river basins are chosen as the major study areas based on the availability 

of the spatial and meteorological data. Further, Munneru an agricultural watershed and 

Nagarjuna sagar dam are selected for impact assessment. The required geo database and 

meteorological data is prepared using ArcGIS and meteorological data in the required format 

to be used in ArcSWAT.  
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Chapter – 5 

Model Setup 

In order to study the hydrologic parameters with climate change, a physical based hydrologic 

model is required. Hence, SWAT model is calibrated and validated for all the study areas to 

simulate stream flow for the future periods.  

5.1 Wardha basin 

The DEM, soil and land use GIS layers are the inputs that influence SWAT model. The 

watershed has been divided into 43 sub basins and 549 HRUs based on uniqueness of land use, 

soil type and slope. The daily climate data observed from IMD including precipitation, 

maximum and minimum air temperature from 1980 to 2005 have been used to drive the model 

with a spin up period of 4 years. Stream flow data from 1984 to 1996 and 1997 to 2003 period 

have been used in calibrating and validating the model respectively by excluding the spin up 

period for analysis. The sensitivity of the parameters was measured using t-test, and the p-

values of the global sensitive analysis. T-test values with large absolute values were more 

sensitive than lower ones, where p-value closer to zero had more significance. The Goodness 

of fit of the model was evaluated using R2 and NSE. The best set of parameters with maximum 

R2 and NSE obtained from SUFI-2 calibration period were used to drive SWAT for the historic 

period of 1975 to 2003 and future period of 2020 to 2099.  
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5.1.1 Calibration and Validation of SWAT Model 

Table 5.1 presents details and fitted values of parameters applied for sensitivity analysis. 

Sensitivity analysis results project that few among the 17 parameters considered sensitive are 

applicable to the surface runoff, ground water, channel routing and soil properties. In this study, 

based on the t-test of the global sensitive analysis, CN2 (SCS runoff curve number), 

ALPHA_BF (Base flow alpha factor (days)), GW_DELAY (Groundwater delay (days)), ESCO 

(Soil evaporation compensation factor), EPCO (Plant uptake compensation factor) and 

SOL_AWC (Available water capacity of the soil layer) are the most sensitive parameters in the 

basin. 

Table 5.1Best-fit parameters obtained from calibration of the model and their parameter 

significance.  

Parameter 
Nandgaon Ghughus Bamini 

Fitted value Fitted value Fitted value 

R_CN2 -0.2170 -0.1091 -0.1403 

V_ALPHA_BF -0.5944 0.1170 -0.5947 

V_GW_DELAY 278.7875 29.1203 136.7822 

V_GWQMN -17.8561 1.0609 -71.5096 

V_GW_REVAP 0.1889 0.2427 0.1889 

V_ESCO 0.9764 0.754 0.678 

R_SOL_K 0.8688 0.2567 0.1547 

V_ALPHA_BNK 0.1529 0.6611 0.1892 

R_SOL_AWC -0.0816 0.1375 0.0812 

V_REVAPMN 4.7024 2.5232 5.0656 

R_SOL_BD 0.4520 0.0927 0.4007 

R_OV_N -0.0516 -0.1331 -0.0465 

V_CH_K2 68.1581 64.7485 81.7966 

V_EPCO -0.6815 -0.3766 -0.6815 

R_HRU_SLP 0.1099 0.1225 0.1897 

V_CH_N2 -0.0568 0.0565 0.0565 

R_SLSUBBSN 0.1893 0.1893 0.1676 

CN2: SCS runoff curve number ; ALPHA_BF: Baseflow alpha factor (days); GW_DELAY: 

Groundwater delay time(days); GWQMN: Threshold depth of water in the shallow aquifer 

required for returnflow to ocuur (mm); GW_REVAP: Groundwater "revap" coefficient; ESCO 

: Soil evaporation compensation factor; SOL_K: Saturated hydraulic conductivity in main 

channel alluvium (mm/hr); ALPHA_BNK: Baseflow alpha factor for bank storage (days); 

SOL_AWC: Available water capacity of the soil layer (mm); REVAPMN: Threshold depth of 

water in the shallow aquifer for "revap" or percolation to the deep aquifer to occur(mm); 

SOL_BD: Moist Bulk density (Mg/m3); OV_N: Manning’s "n" value for overland flow; 
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CH_K2: Effective hydraulic conductivity in main channel alluvium (mm/hr); EPCO: Plant 

uptake compensation factor; HRU_SLP: Average slope steepness; CH_N2:Mannings "n" value 

for the main channel; SLSUBBSN: Average slope length. WhereV__ represents that existing 

parameter value is to be replaced by the given value and R__ represents that existing parameter 

value to be multiplied by one plus a given value. Bold values represent the sensitive parameters. 

The best parameters obtained from SUFI-2 iterations with optimum R2 and NSE were adopted 

in SWAT. Bias corrected precipitation; maximum and minimum temperatures of RCMs were 

inputs to SWAT to simulate future stream flow. Quantification of the predicted stream flow and 

its variability of future periods have been carried out by dividing the total period into four 

twenty-year periods i.e., 2020 to 2039, 2040 to 2059, 2060 to 2079 and 2080 to 2099 at Bamini 

gauge station, which is the outlet of Wardha sub-basin. The monthly-simulated stream flow 

from SWAT model is compared with the observed stream flow during the calibration at three-

gauge stations - Bamini, Ghughus and Nandgaon. The model was calibrated for the period 

1984-1996 (Figure 5.1) and validated for the remaining 7 years of the dataset, i.e., 1997-2003 

(Figure 5.2).  

 

Figure 5.1 Best estimation and 95ppu of the Model for the calibration period. 
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Figure 5.2 Best estimation and 95ppu of the Model for the validation period. 

The 95% Prediction Uncertainty band represents 2.5% and 97.5% levels of the cumulative 

distribution of output variables. From Figure 5.1a, calibration results explain that the model is 

unable to predict the observed peak values in years 1986,1988,1989,1990, 1992, and 1994. For 

the validation period the model under predicted stream flow values (Figure 5.2a) in the basin 

from 200 to 2002. Similarly, under prediction of the model was observed in the Nandgaon 

gauge station and over prediction at the Ghughus gauge station during calibration and validation 

periods. From Figures 5.1&5.2, it is seen that the observed values of stream flow at the base 

flow part does not come under 95PPU band. The reason may be the constraint in simulating the 

Ground water flow of SWAT (Narsimlu et.al 2013). The variations of stream flow in calibration 

and validation periods at three-gauge stations with the monthly precipitation on the secondary 

axis are shown in the Figure 5.3 and 5.4.  
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Figure 5.3 Monthly stream flow variations for the calibration period with Rainfall on the 

secondary axis 

 

Figure 5.4 Monthly stream flow variations for the validation period with Rainfall on the 

secondary axis. 
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Table 5.2 presents R2 and NSE of three-gauge stations using SUFI-2 Algorithm. NSE value 

greater than 0.75 is considered to be good and 0.36 as satisfactory (Nash and Sutcliffe 1970). 

The lower performance of the model during the validation period may be due to a mix of errors 

from observed and simulated stream flow, climate data, and changes in LULC. The mean 

monthly variations of the stream flow simulated using climate models for the historic period 

reveal that all the climate models underestimate the flows (Figure 5.5). Stream flow has been 

simulated using CCSM, MPIESM and NORESM models which are in similar pattern with the 

observed data with a decreased percentage change of around 21%, 42% and 40% respectively. 

It shows the range of uncertainty among the climate models for the Historic period, where 

CNRM and ACCESS models simulate peak stream flow values in the months of July and 

September, respectively. Simulated stream flow of climate models over predicts for the non-

monsoon period and under predicts for monsoon season. Simulations using bias corrected 

climate model data show underestimation for July, August, September and October months, 

while the rest of the months are overestimated. 

Table 5.2 Statistical parameters showing the efficiency of the Model 

Gauge 

Station 

Calibration Validation 

R2 NSE R2 NSE 

Bamini 0.78 0.74 0.7 0.50 

Ghughus 0.84 0.84 0.51 0.50 

Nandgaon 0.87 0.85 0.76 0.54 

 

 

Figure 5.5 Mean Monthly variations of the stream flow for the Historic period. 
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5.2 Krishna basin 

The geospatial and meteorological data shown in Table3.1 was used for model set up. SUFI-2 

algorithm was adopted for the sensitivity and uncertainty analysis of SWAT model. 15 

parameters were selected and used for the calibration process. The optimum range of the 

parameters obtained for calibration of the watershed with identical initial parameter ranges are 

shown in Table 5.3. For example, the initial range of ESCO (Soil Evaporation Compensation 

Factor) is 0.4 to 0.8, but the final range is 0.94, 0.55, 0.83, 0.46 and 0.62 for gauge stations 

Huvinhedgi, Narsingapur, Yadgir, Damercherla, and Keesara. Table 5.4 presents the R2 and 

NSE values obtained of 5-gauge stations during the calibration and validation periods. 

Table 5.3Parameter ranges of the five gauge stations for calibration and validation 

S.No Parameter Initial  Final Huvinhedgi Narsingpur Yadgir Damercherla Keesara 

1 R__CN2.mgt -0.20 0.20 -0.19 0.03 0.05 -0.17 0.17 

2 V__ALPHA_BF.gw 0 1.00 0.20 0.96 0.95 0.16 0.26 

3 V__GW_DELAY.gw 0 500 275 45 427 414 352 

4 V__GWQMN.gw 0 5000 1.24 1.75 1.70 1050 1100 

5 V__GW_REVAP.gw 0.02 0.20 0.19 0.19 0.17 0.16 0.14 

6 R__SOL_K(..).sol 0.14 0.99 0.99 0.37 0.66 0.55 0.72 

7 R__SOL_AWC(..).sol -0.15 0.60 0.04 0.55 0.29 0.34 0.42 

8 R__SOL_BD(..).sol 0.05 0.70 0.69 0.12 0.67 0.61 0.58 

9 V__ALPHA_BNK.rte 0.00 1.00 0.60 0.40 0.43 0.36 0.65 

10 V__CH_N2.rte -0.09 0.09 0.09 0.11 0.08 0.07 0.04 

11 V__CH_K2.rte 18.72 103.96 88.36 86.75 47.45 48.42 53.26 

12 V__ESCO.hru 0 1.00 0.94 0.55 0.83 0.46 0.62 

13 R__EPCO.hru 0 1.00 0.30 0.59 0.16 0.51 0.48 

14 R__SLSUBBSN.hru -0.12 0.30 0.13 0.09 -0.05 0.25 0.06 
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Table 5.4 Goodness of fit parameters for calibration and validation periods  

Gauge 

Station 

Calibration Validation 

R2 NSE PBias R2 NSE PBias 

Huvinhedgi 0.62 0.62 -13.5 0.42 0.42 79.8 

Narsingapur 0.62 0.52 -41.9 0.5 0.47 -73.5 

Yadgir 0.86 0.58 -27.1 0.4 0.32 -88.5 

Damercherla 0.8 0.75 -8.35 0.58 0.43 -57.8 

Keesara 0.68 0.62 -12.4 0.52 0.48 65.4 

The performance of the model may be low due to combination of errors in Geospatial data 

including land use, soil map and climate data as well as error between the observed and 

simulated stream flow.  However, when the R2 and NSE values for the Calibration ranged from 

0.52 to 0.86 and 0.32 to 0.58, the performance of the model was classified as good and 

satisfactory for the calibration and validation periods.  

Comparison of observed mean monthly stream flow and those produced by SWAT driven by 

REA data at three gauge stations (Figure 5.6) ie., Huvinhedgi outlet of the Upper Bhima, Lower 

Bhima and Upper Krishna, Mantralayam outlet of the Upper, Lower Tungabadhra, and 

Pondugala the outlet of the Krishna river basin was carried out. The observed stream flows in 

July and August show more variation when compared to the simulated stream flow at 

Huvinhedgi, whereas at Mantralayam, other than in June and July, the model projects similar 

stream flows. Pondhugula gauge station at the downstream of Huvinhedgi and Mantralayam 

gauge stations shows similar pattern in the mean monthly stream flow with Maximum flows in 

the months of August, September and October. The errors in the mean monthly stream flow 

may be due to non-consideration of the reservoirs and the land use changes in Krishna river 

basin. 
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Figure 5.6 Observed and simulated mean monthly stream flow from SWAT for the historic 

period (1975 – 2005) at three-gauge stations. 

5.3 Effect of Climate and LULC Change on Munneru Watershed 

Human consumptive use of surface water resources, reduction in surface water base flows due 

to over abstraction of ground water and fewer releases to ocean are main factors for 

vulnerability of Krishna basin (Amarasinghe et al. 2007). It is also suggested that hydrological 

changes anywhere in the basin affects the lower Krishna adversely in terms of decrease in the 

total water availability and spatial redistribution of water during times of drought. Lower 

Krishna basin is the most densely populated part of the Krishna basin with three rivers Musi, 

Palleru and Munneru contributing to waterflow in the basin. Increase in domestic and industrial 

needs of urban areas and land use patterns are met with resources of the basin. The spatial 

variations of water balance components under climate and LULC change were evaluated. The 

bias corrected REA data and decadal change LULC were induced in calibrated and validated 

SWAT model to assess the variations of Water balance components spatially in the sub basin 

of Lower Krishna as shown in Figure 4.11. The SWAT model is calibrated and validated with 

the measured stream flow at Keesara gauge station using SUFI 2 algorithm in SWAT CUP. 

The climate model for the future period i.e. until 2040 was used to simulate the variations in 

the water balance components in addition to land use change. The river plays a major role in 

providing sources for irrigation and domestic purposes. Decreasing trend in the annual runoff 

has been observed since 1991 due to changes in LU/LC and climate (Figure 4.12). The daily 

streamflow data from 1976 to 2005 at the Keesara gauging station were collected from CWC 

Hyderabad. The decadal variations in the land use were obtained from the LULC maps of the 

1985, 1995, 2005 and changes (Figure 4.13) considered in the hydrological model SWAT. 
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5.3.1 Detection of LULC Change Over Time 

Land use pattern of the watershed shown in Figure 4.13 indicates considerable change from 

1985 to 1995 and insignificant changes between 1995 and 2005.  The change in the land use 

classes of the study area between the decades are shown in Figure 5.7. It projects maximum 

change in the first two LULC maps. Urban land of the watershed in 1995 almost doubled i.e. 

to 91.6km2 from 42.89km2, whereas the Cropland/Dryland increased to 10.03km2 from 1km2 

compared to the land use of 1985. Cropland / Woodland of the 1995 land use map reduced from 

382.0259km2to 280.42km2. The remaining LULC projects fewer changes in 2005 compared to 

1995 except Grassland.  

5.3.2 Calibration and Validation of the SWAT 

SUFI-2 optimizing technique was used to identify sensitive parameters, and to carry out 

calibration and validation of the model. The most sensitive parameters with their ranges and 

fitted values are shown in Table 5.5. Curve Number (CN2), Threshold depth of water in the 

shallow aquifer for "revap" to occur in mm (REVAPMN) and Base flow alpha factor 

(ALPHA_BF) identified as the sensitive parameters based on the p-value and t-stat. The R2 and 

NSE obtained from the best simulation during the calibration is 0.81 and 0.79 whereas 0.75 and 

0.72 were the values obtained during validation period. The 95 PPU plot of the observed and 

simulated stream flow with a certain range of uncertainty for the calibration and validation 

periods are shown in Figure 5.8. The mean monthly variations of the stream flow at the Keesara 

gauge station for the Historic periods (Figure 5.9) show a good correlation with Baseline period.  

 

Figure 5.7 Decadal relative change (percentage) in the land use type of the watershed 
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Table 5.5 Sensitive parameters with the optimum values  

Parameter_Name Fitted_Value Min_value Max_value 

R__CN2.mgt 0.035 0 0.2 

V__ALPHA_BF.gw 0.925 0 1 

V__GW_DELAY.gw 82.5 30 450 

V__GWQMN.gw 687.5 500 2000 

V__ESCO.hru 0.585 0.5 0.7 

V__EPCO.hru 0.705 0.6 0.8 

V__REVAPMN.gw 92.5 0 100 

 

 

Figure 5.8 Calibration and Validation of the Monthly stream flow with 95PPU 

 

Figure 5.9 Monthly Stream flow variations for the Baseline and Historic periods. 
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5.4 Closure 

In this chapter, climate change impact on the stream flow of Wardha, a subbasin of Godavari 

river, was analysed using multi climate model database of two scenarios using SWAT. Effect 

of the uncertainty modelled ensemble climate model on Krishna River with respect to Drought 

analysis was investigated. The results of LULC and climate change on an agricultural watershed 

has also been discussed in this chapter.  
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Chapter – 6 

Results and Discussion 

6.1 General 

While climate model database is processed for bias correction and uncertainty, ensemble-using 

REA is applied to different basins to evaluate its effect on the water resources using SWAT model 

as described in chapter 3. The results are used to develop adaptation policies for reservoir operation 

system using stochastic dynamic programming for future projections.  

6.2 Inter and Intra Annual Streamflow Variations in Wardha Basin  

Regional differences in meteorological conditions, pollutant sources, water management, 

physiographic setting and interaction with local scale land use are the causes for variations in 

hydrologic components. Decrease in mean precipitation in the sub-tropical regions is predicted 

due to increase in the mean temperature. Increase in temperature and change in precipitation 

patterns are the most commonly predicted issues regarding variations in the hydrologic parameters 

in future. The effects of climate change include seasonal variation in stream flow, changeover in 

extreme high and low flow events and deviation in ground water recharge (Jha et al. 2004; IPCC 

2014). Streamflow, precipitation, temperature, ground water recharge are important water balance 

components affecting the management of resources. Hence, inter and intra annual variations of 

streamflow and other water balance components in Wardha basin (Figure 4.1) for the historic and 
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future periods are analyzed using multiple climate model database under RCP 4.5 and RCP 8.5 

scenarios. 

Climate data from multiple models (Table 4.2) are retrieved using the methodology given in 

Chapter 3 and bias corrected using non-parametric quantile mapping method. Figure 6.1 presents 

the quantile plot comparing uncorrected and corrected precipitation data of a grid point in the 

basin. The same procedure of bias correction is applied for all the climate models at 32 grid points. 

The efficiency of the bias corrected precipitation data using non-parametric quantile mapping is 

expressed in terms of monthly average precipitation (mm) as shown in Figure 6.2. It shows that 

four out of five climate models i.e., CCSM4, CNRM, MPIESM, NORESM simulations are similar 

to observed precipitation data with 50% of the data ranging between 800mm to 1200mm. Climate 

model data for future period is bias corrected using the fitted distribution parameters obtained by 

the bias corrected climate models for the historic period of each grid.  

6.2.1 Streamflow of future period 

Five climate models under RCP 4.5 and four climate models under RCP 8.5 scenarios were used 

to simulate the Future streamflow between 2020 and 2099. Analysis of the future predictions of 

the streamflow is carried out by dividing the period 2020-2099 into four 20year periods: Future1 

(2020-2039), Future 2(2040-2059), Future 3(2060-2079) and Future 4(2080-2099) which were 

then compared with the Historic period (1984-2003). Absolute values of the streamflow of nine 

climate models for all future periods present high values under RCP 8.5 than RCP 4.5 as shown in 

Figure 6.3. Future 2 period projects the maximum streamflow compared to historic period under 

RCP 4.5 scenario i.e., 1101.14m3/month where all Models under RCP 8.5 scenario project highest 

maximum streamflow i.e. around 4000m3/month for all future periods. Shift in the peak flows were 

also observed in the climate models for Future periods (Figure 6.3) from August to July under RCP 

4.5 scenario. 
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a) Before bias correction 

After bias correction 

Figure 6.1 Nonparametric Quantile mapping of Precipitation data for a grid point 

 

Figure 6.2 Changes in the annual average precipitation of climate models compared to observed 

precipitation. 
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The variations in the stream flow for future periods are studied using two parameters i.e., Inter and 

Intra annual coefficients of variations (chapter 3) between the Historic and Future periods (Table 

6.1 & 6.2). The coefficient of variation is a measure of the sample that describes the quantity of 

variability with respect to the mean. For example, inter annual variabilities of the observed data 

and ACCESS data for historic period are 0.46 and 0.37 respectively, which reveals that monthly 

variation in streamflow is lower in ACCESS model as compared to the observed data. 

 

Figure 6. 3 Simulated streamflow changes using 5 models under RCP 4.5 (solid line) and 4 models 

under RCP 8.5 (scatter plot) from 2020-2099 
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Table 6. 1 The inter-annual variability of the streamflow in Wardha river for the Historic and 

Future periods.  

Year Observed 
RCP 4.5 RCP 8.5 

ACCESS CCSM CNRM MPIESM NORESM ACCESS CCSM CNRM MPIESM 

1985-2003 0.46 0.37 0.49 0.68 0.493 0.35 -- -- -- -- 

2020-2039  0.40 0.38 0.44 0.35 0.38 0.65 0.47 0.36 0.65 

2040-2059  0.26 1.16 0.38 0.42 0.36 1.01 0.50 0.47 0.36 

2060-2079  0.40 0.44 0.49 0.38 0.43 0.96 0.50 0.40 0.29 

2080-2099  0.63 0.768 0.41 0.31 0.31 1.22 0.53 0.60 0.56 

Table 6. 2 The intra-annual variability of the streamflow in Wardha river for the Historic and 

Future periods. 

Year Observed 
RCP 4.5 RCP 8.5 

ACCESS CCSM CNRM MPIESM NORESM ACCESS CCSM CNRM MPIESM 

1985-2003 1.32 1.09 0.99 0.98 0.89 0.80 -- -- -- -- 

2020-2039  1.09 1.14 1.08 1.00 0.79 1.38 1.46 1.54 1.59 

2040-2059  1.16 1.12 1.04 0.95 0.83 1.48 1.35 1.57 1.60 

2060-2079  1.03 1.03 1.18 0.93 0.74 1.45 1.46 1.45 1.62 

2080-2099  0.81 0.91 0.95 0.87 1.01 1.50 1.39 1.6 1.57 

Most of the Inter annual variations of the streamflow in Wardha river show increase in future under 

RCP 8.5 scenario and produce decreased values for intra annual variations (Table 6.1 & 6.2). The 

changes in precipitation in terms of frequency and magnitude and LULC characteristics are the 

main factors, which affect streamflow. However, in this study LULC was kept constant throughout 

the simulations for the historic and future periods. Increase in inter and intra annual variability 

values may be due to changes in minimum and maximum values of the streamflow simulated using 

climate models.  

Figures 6.4 & 6.5 illustrate Inter annual variability of streamflow showing the range of minimum, 

median and maximum values for one Historic and four Future periods. Among the five models, 

two models i.e., ACCESS and NORESM project lower variations in the Historic period. Maximum 

inter annual variation of value greater than 1 is observed in CCSM (4.5) and ACCESS (8.5) for 

Future 2 period representing higher values of annual average streamflow in Future period 2 

compared to other three periods. 
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Figure 6.4 Changes in the mean, minimum and maximum inter annual streamflow values of 

climate models for Historic period 

 

Figure 6.5 Changes in the mean, minimum and maximum inter annual streamflow values of 

climate models a) Future1 b) Future 2 c) Future 3 d) Future 4 
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Majority of the intra annual streamflow values i.e. around 78%, have values greater than 1 

projecting the maximum variations in monthly streamflow values for future periods. Figures 6.6 

to 6.11 represent variations of the monthly streamflow values from June to November for historic 

and future periods. Lower CV values produced in Future 4 period (Table 6.2) explain minimum 

variation of streamflow in five models under RCP 4.5 scenario. Maximum value of greater than 1 

for the historic and future periods is justified as the high values show more variations in the 

monthly streamflow and low values fewer variations. Monthly variations of streamflow for the 

historic period (Figure 6.6) illustrate the shift in peak monthly flows i.e., from August to June for 

CCSM and CNRM models.  

 

Figure 6.6 Monthly variations of streamflow of five climate models for Historic period 

Figure 6.7 Monthly variations of streamflow of two scenarios for four future periods of ACCESS 

model 
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Figure 6.8 Monthly variations of streamflow of two scenarios for four future periods of CCSM 

model 

 

Figure 6.9 Monthly variations of streamflow of two scenarios for four future periods of CNRM 

Model 
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Figure 6.10 Monthly variations of streamflow of two scenarios for four future periods of 

MPIESM Model 

 

Figure 6.11Monthly variations of streamflow using NORESM for four future periods. 
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Figure 6.7 shows monthly variations of the streamflow for ACCESS model under RCP 4.5 and 

RCP 8.5 scenarios. Streamflow values exhibit peak values in July with highest values using RCP 

4.5 and low values in RCP 8.5 scenario compared to other models. Maximum variations in 

streamflow are projected in CNRM and MPIESM models between RCP 4.5 and RCP 8.5 scenarios 

with a similar trend. Figure 6.11 shows the shift in peak streamflow from August to June for all 

future periods compared to historic period. 

The analyses of the annual and monthly streamflow variations suggest that RCP 4.5 scenario 

produces lower variations of streamflow under decreased precipitation and increased temperature 

without considering changes in LULC. Among the five models, ACCESS and CCSM under predict 

while the other three models CNRM, MPIESM and NORESM predict high streamflow variations. 

The results from this study suggest decrease in the variations with varying climate change. 

Consideration of LULC change may lead to decrease in the variation. Uncertainty in the 

streamflow variations can be reduced by considering the ensemble model data for better 

management and mitigation of the impact of climate change on watershed.  

In addition to the streamflow variability, the effect of climate change on water balance components 

has been analysed. Figure 6.12 emphasizes variations in four water balance components 

(Evapotranspiration (ET), Base flow, Surface Runoff and Ground water recharge) annually for the 

Historic period. It reveals that decrease in the temperature leads to increase in the surface runoff 

in the basin. NORESM model projects similar results whereas other models CCSM, CNRM and 

MPIESM show 50% decrease in components compared with observed data. Water balance 

components of climate models under RCP 4.5 (Figure 6.13) and RCP 8.5 (Figure 6.14) are shown 

for all Future periods. The maximum values of Evapotranspiration and Base flow with a reduced 

Surface runoff and Ground water recharge in Figure 6.13 explain increase in temperature when the 

pattern of rainfall is similar in Future periods. Changes in the water balance components may be 

altered with consideration of changes in land use and land cover with time. 

Figure 6.14 illustrates the variations in the water balance components projecting maximum 

streamflow values by CNRM and MPIESM models compared to other two models. It explains 

how RCP 8.5 scenario changes with increase in rainfall and decrease in temperatures in the basin. 

ACCESS and CCSM results project low streamflow values with high values of ET and Base flow 

and project increase in temperature values. 
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Figure 6.12 Water balance component’s values of different climate models for Historic period. 

 

Figure 6.13 Water balance component’s values of different climate models under RCP 4.5 

scenario for four Future periods. 
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Figure 6.14 Water balance component’s values of different climate models under RCP 8.5 

scenario for four Future periods. 

Overall, it can be inferred from the above results that variations in water balance components in 

the basin is mainly due to changes in temperature and precipitation values. Changes in the 

hydrology of the basin can be balanced by encouraging efficient resource management techniques 

and adaptation approaches.      
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6.3 Future projections of streamflow under changing climate 

The basic objective of this study was to predict streamflow variations and to assess the climate 

change impact at sub basin level in Krishna river basin (Figure 4.1). Based on the availability of 

data, spatial and temporal variations of the climate parameters and streamflow were analysed 

without considering any manmade structures such as dams, diversions, etc. Though, many studies 

have been employed to estimate the impact on water resources using various GCM and RCM data, 

the need for uncertainty reduction in multi models is described in the literature (Chapter 2). 

Therefore, uncertainty was modelled using REA and bias corrected climate data was used in 

calibrated and validated SWAT model to project future streamflows. The climate model data 

obtained from five RCMs of RCP 4.5 and 4 models of RCP 8.5 scenarios were used in developing 

REA of the models. The REA precipitation as well as minimum and maximum temperature data 

were used to simulate the streamflow for future to assess the impact of climate change. The annual 

and seasonal variations of the climate parameters and streamflow were analyzed for the period 

from 1975 to 2100. Trend analysis of the streamflow in the basin at sub basin level was carried out 

using Man-Kendall trend test for all the future periods. 

6.3.1 Future projections of REA climate data 

Comparison of the observed and simulated REA precipitation as well as maximum and minimum 

temperatures before and after bias correction was carried out. Results suggest that the observed 

and simulated REA temperature values are in good agreement where the precipitation data projects 

the same results after reducing the biases using Q-Q mapping. The climate parameters obtained 

are for the period 1975-2099. The analysis was carried out by dividing the total period into four of 

25 years as Historic (1980-2004), Future1 (2020-2044), Future2 (2045-2069) and Future3 (2070-

2094). The annual average precipitation in (mm/year) for the Historic and Future periods of two 

scenarios are shown in Figure 6.15. The annual average variations of precipitation show an 

increase in Western part of the basin in Future 1 and lower values for Future2 period under RCP 

4.5. Decrease of 36% in annual average precipitation is observed in Future1, 10% increase in 

Future2 and 60% decrease in Future3 periods under RCP8.5 scenario. Daily minimum and 

maximum temperatures within the basin show average higher values with an increase of 6 °C in 

future periods compared to the historic period. Future2 period projects higher temperature values 

compared to other two future periods.
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Figure 6.15 Annual average variation of precipitation (mm/year) spatially for Historic and Future periods of Krishna river basin under 

RCP4.5 and RCP 8.5 scenarios. 
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Figure 6.16 Spatial variations in precipitation (mm/month) of Krishna basin a) Monsoon (June-Sep) b) Winter (Oct-Jan) c) Summer 

(Feb-May) for Historic and Future periods under RCP 4.5 and RCP 8.5 scenarios.
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The seasonal variations of precipitation i.e. Monsoon (June-Sep), Winter (Oct-Jan) and Summer 

(Feb-May) are shown in Figure 6.16. Almost 90% of the precipitation is received during the 

monsoon months from May to October under RCP 4.5. Extreme precipitation values are observed 

near the south portion of the basin for future 1 and 3 periods of RCP 8.5 scenario, whereas the 

remaining portion of the basin projects precipitation similar to the values of other scenario. The 

number of extreme precipitation values are reduced in future periods of the basin under RCP 8.5 

compared to 4.5. Decreased precipitation is observed in Future periods compared to the historic 

period. There is an increase in precipitation values in the central portion of the basin in future 3 

period. Increase in precipitation values are observed in winter and summer seasons of future 

periods compared to the historic period. It reflects the shift of the monsoon in future periods. Even 

extreme values are also observed in the central parts of the basin compared to the historic period 

in Winter and Summer seasons. Minimum temperature values show decreased values in monsoon 

and winter periods till future 2 and increase in the minimum temperature values in summer season 

of all future periods. Maximum temperature represents increase in all seasons of the future periods 

compared to the historic period. Overall increase in precipitation and temperatures is observed in 

future 3 period of Krishna basin. 

The peak values are observed in June (560mm in Historic, 410mm in future1, 490mm in future 2, 

520 mm in future 3), while the minimum value of 280mm in future 1 and a maximum value of 

485mm in future 3 period are detected in July. Overall increase of precipitation values is noticed 

in all months of future 3 period. Increase in Minimum and maximum temperature values were 

observed in all months of the future periods. March to May months project high temperature values 

ranging from 20°C/day to 28°C/day of minimum temperature and 33°C/day to 44°C/day of 

maximum temperature. Peak values of Maximum temperatures observed in April are 34⁰ C/day 

in Historic period, 36⁰ C/day in Future period 1, 42⁰ C/day in Future period 2 and 44⁰ C/day in 

Future period 3 respectively under RCP 4.5 scenario.  An overall increase of 2⁰ to 3⁰C/day is 

observed in the basin under RCP 8.5 scenario. 

6.3.2 Future streamflow projections 

The relationship between the magnitude and frequency of streamflow for future period is explained 

using Flow Duration Curves (FDCs) at three-gauge stations: Huvinhedgi, Mantralayam and 
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Pondhugala for both RCP scenarios shown in Figure 6.17 and Figure 6.18. These curves enumerate 

the flow of exceedance for a given level of probability developed under Annual, Monsoon and 

Non-monsoon basis, which helps water managers in obtaining water availability under climate 

change. Figure 6.17a presents the FDC of Huvinhedgi gauge station representing the total flows 

upstream of the basin, which shows an overall decrease in flows of future 1 period with similar 

flows in future 2, and future 3 periods as historic. Even though future periods 2 and 3 project an 

increase in precipitation of the basin, there is a decrease observed in the high flows (flows that 

exceed 10-30% of time) and low flows (flows that are exceeded 80% of time). This is mainly due 

to a likely increase in temperature. The median flows (flows that are exceeded 30-70% of time) 

are similar to the historic period flows.  

Annual FDC of the Mantralayam and Pondhugala stations show a decrease in the high and low 

flows and increase in the median flows under RCP 4.5, 8.5 scenarios. Decreased flows are 

observed in the Future1 period. For FDC of Monsoon period, High flows are projected throughout 

the period with decreased values in the future periods compared to the historic period. It is even 

reported by many studies that Krishna river basin is more vulnerable to increase in human 

consumptive use of surface water resources, reduction in surface water base flows due to over 

abstraction of ground water and fewer releases to ocean (Amarasinghe et al. 2007). It also suggests 

that hydrological changes anywhere in the basin affect the basin adversely in terms of decrease in 

the total water availability and spatial redistribution of water during times of drought. Hence, it is 

important to consider the deficits of water availability for drafting water use policies in the Krishna 

River basin. 

6.3.3 Climate change impact assessment 

The impact of climate change on water resource of the basin was estimated by driving the 

calibrated SWAT model with REA weather data obtained from the ensemble of five RCMs for the 

historic and three future periods. The analysis of streamflow was performed on a monthly basis. 

The REA precipitation data used in the SWAT model for the sub basins of Krishna River basin 

(Figure 6.19) suggests a decrease in the Annual average values of 20% in Future 1, around 4 to 

6% in Future 2 periods while the projection for Future 3 projects same as for the Historic period, 

under RCP 4.5 scenario. The monthly streamflow simulated from the SWAT model for the 

Historic and Future periods were analysed, and the results are projected as the normalized values 
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of Mean monthly flow as a ratio of the Annual flow. The absolute values of the streamflow as the 

ratio of the mean monthly flow and annual flow (Figure 6.19.a) and the relative changes with 

respect to the historic period (Figure 6.19.b) show an increase in Future 2 and Future 3 periods. 

Relative change in the streamflow suggests a decrease in the streamflow throughout the year with 

an increase in June month at the 3-gauge stations. Figure 6.19 presents Mean Monthly flow as a 

ratio of the Mean annual flow for the Historic and Future periods at Huvinhedgi, Mantralayam, 

and Pondhugula (Top: Absolute Values, Bottom: Relative change). 

 

Figure 6.17 Flow Duration Curves of the gauge stations for the Annual, Monsoon and Non-

monsoon periods under RCP 4.5 scenario at a) Huvinhedgi b) Mantralayam c) Pondhugala 
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Figure 6.18 Flow Duration Curves of the gauge stations for the Annual, Monsoon and Non-

monsoon periods under RCP 8.5 scenario at a) Huvinhedgi b) Mantralayam c) Pondhugala
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The statistically significant trends in the annual streamflow of 50 sub basins obtained from the 

SWAT model set up was obtained using the Man-Kendall Trend test. The trend analysis suggests 

that almost all the sub basins project a decreasing trend in historic and future periods (Table 6.3). 

Figure 6.20 presents the positive (increase) and negative (decrease) in trends at the outlets of all 

sub basins spatially. 

Table 6. 3 Number of Sub basins with increasing or decreasing trend  

Climate 

Period 

RCP 4.5 RCP 8.5 

Increasing Decreasing Increasing Decreasing 

Historic 1 28   

Future I ----- 50 --- 48 

Future II 17 2 27 2 

Future III -- 24 38 1 
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Figure 6.19 Mean monthly flow as a ratio of the mean annual flow for the historic and future periods of RCP 4.5 (Line graph) and 

RCP 8.5 (Scatter plot) at a) Huvinhedgi, b) Mantralayam, and c) Pondhugula (Top: Absolute Values, Bottom: Relative change). 
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Figure 6.20 Spatially significant trends of annual streamflow under RCP 4.5 and 8.5 scenarios a) Historic b) Future 1 c) Future 2 and 

d) Future 3 periods
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6.4 Drought Indices under climate change 

In general, drought indices help in finding the commencement of drought events and facilitate the 

preparation for such severe conditions by measuring the severity through spatial and temporal 

characteristics of drought (Alley 1984). Most of the drought indices have a fixed time scale, but 

identification of drought at multiple scales is an efficient way of drought-based impact studies. 

However, SPI is selected for the present study as it calculates the indices at multiple time scales 

such as at 1, 2, 3,…48months over varied periods. For example, a 3-month SPI of any month 

represents the standard deviation in total precipitation of that month along with the preceding two 

months. It is a normalized index representing the probability of occurrence of an observed rainfall 

amount compared to rainfall at a certain geographical location over a reference period. 

Standardized Precipitation Index (SPI) is a most commonly used drought index calculated based 

on precipitation data (Vidal and Wade 2009) at all 132 grid points shown in Figure 6.21. In addition 

to SPI, hydrological drought interms of streamflow is quantified using Streamflow Drought Index 

(SDI) proposed by Tabari et al. (2013) at four different time scales for seven sub basins of the 

Krishna River basin (Figure 6.21). The uncertainty modelled REA climate model data is used for 

evaluating the drought indices of the basin. The REA weights obtained for all 132 grids using the 

concept explained in Section 3.2.2 of Chapter 3. For example, the assigned final weights for 

different RCMs of different hydro-climatic variables are presented in Table 6.4 for one grid point 

(13.5,77.5). 

From Figure 6.16, Spatial variations of ensemble average precipitation for the future periods under 

RCP 4.5 scenario shows an increase in precipitation values throughout the basin. However, RCP 

8.5 scenario projects a decrease in precipitation values compared to historic periods. Based on the 

projections i.e. low precipitation, the Trend analysis carried out in the basin enhances the 

importance of drought analysis. The percentage change in annual average Future precipitation 

compared to Historic period of Krishna basin at all grid points is shown in Figure 6.22. The positive 

value in percentage change represents the decrease in projected precipitation compared to the 

observed precipitation. An increase in annual rainfall is noticed across many parts of the basin like 

Tungabhadra and Lower Krishna basins in Future 1 period, whereas an increase of about 0 to 20% 

in Middle Krishna and Bhima basins and 30 to 50% in Lower and Tungabhadra regions are 

observed in Future 2 period. In Future 3 period, an increase of about 30 to 80 % in Bhīma and 

Middle Krishna basins in Future 3 period represents RCP 4.5 scenario. 
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Figure 6.21 Sub basins of Krishna river with the climate grid points. 

For RCP 8.5 scenario, a decrease of about 40 to 80% is observed in Future 1 and 3 periods whereas 

in Future 2 period an increased precipitation is projected throughout the basin. Further, changes in 

the monsoon and non-monsoon periods and percentage changes are investigated for the three 

future periods and shown in the Figures 6.23 and 6.24. Monsoon precipitation change is identical 

to the annual average precipitation change. However, for the non-monsoon period, the quantity of 

increase in precipitation is high in most parts of the basin. 
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Table 6.4 REA results of the hydro-climatic variables for (13.5, 77.5) grid point  

Precipitation 

Model Historical 

2020-

2044   

2045-

2069   

2070-

2094   

  

1980-

2004 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

ACCESS 0.1486 0.0000 0.1460 0.0000 0.9944 0.0000 0.0940 

CCSM 0.2295 0.0001 0.3568 1.0000 0.0048 0.0000 0.5364 

CNRM 0.2750 0.0000 0.1408 0.0000 0.0006 0.9999 0.2442 

MPIESM 0.1381 0.0000 0.3564 0.0000 0.0002 0.0000 0.1254 

NORESM 0.2089 0.9999   0.0000   0.0000   

Maximum temperature  

Model Historical 

2020-

2044   

2045-

2069   

2070-

2094   

  

1980-

2004 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

ACCESS 0.22016 0.11402 0.121413 0.264346 0.070947 0.212079 0.264368 

CCSM 0.193244 0.024267 0.637381 0.212358 0.547613 0.110369 0.231069 

CNRM 0.206573 0.249615 0.078688 0.078084 0.251249 0.02894 0.190061 

MPIESM 0.200514 0.359089 0.162519 0.140549 0.130191 0.368041 0.314502 

NORESM 0.17951 0.253009   0.304663   0.280571   

Minimum temperature   

Model Historical 

2020-

2044   

2045-

2069   

2070-

2094   

  

1980-

2004 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

ACCESS 0.180468 0.134781 0.983188 0.02905 0.085062 0.066271 0.179577 

CCSM 0.282463 0.011749 0.001862 0.819074 0.079589 0.157125 0.352152 

CNRM 0.22222 0.253629 0.013301 0.046505 0.063946 0.352676 0.291931 

MPIESM 0.159209 0.417908 0.001649 0.03315 0.771403 0.249035 0.176339 

NORESM 0.15564 0.181934   0.072221   0.174892   
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Figure 6.22 Percentage change in the Average annual rainfall across Krishna basin for Future1, 

Future2 and Future3 periods a) RCP4.5 b) RCP8.5. 

 

Figure 6.23 Percentage change in the Average Monsoon rainfall across Krishna basin for 

Future1, Future2 and Future3 periods a) RCP4.5 b) RCP8.5. 
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Figure 6.24 Percentage change in the average Non-Monsoon rainfall across Krishna basin for 

Future1, Future2 and Future3 periods a) RCP4.5 b) RCP8.5. 

Frequency of drought was modelled for the ensemble historic and future periods across Krishna 

basin for both the scenarios. Figure 6.25 presents the frequency of severe wet condition in the 

basin under RCP 4.5 scenario, and later on using RCP8.5 model, in Figure 6.26. Frequency of wet 

events is very low in Historic period. Bhima and Tungabadra region were predicted to have high 

wet conditions in both the scenarios. Future 2 period in the basin was observed to have good 

number of wet conditions across the basin. Decrease in wet conditions was modelled for most parts 

of the basin under RCP 4.5 and RCP 8.5. The variations in drought frequency are shown in Figures 

6.27 and 6.28. The spatial variations in frequency of drought events show an increase in lower 

Krishna and Tungabadra regions of the basin. Less drought events were noticed for future period 

2, while a great increase in drought frequency was noticed, especially in Bhima and Middle 

Krishna regions of the basin. Middle and Lower Krishna regions are considered to be drought 

prone for most of the year as it receives a very small amount of monsoon precipitation. The 

frequency of the severe wet and drought events predicted in both RCP 4.5 and RCP 8.5 scenarios 

are similar, with RCP 8.5 events being high in the basin. The frequency of severe wet conditions 

predicted under RCP 4.5 scenario are greater than that predicted by RCP 8.5.  
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Figure 6.25 Frequency of the Severe Wet conditions based on SPI 12 for Historic and Future 

periods under RCP 4.5 scenario 

 

Figure 6.26 Frequency of the Severe Wet conditions based on SPI 12 for Future periods under 

RCP8.5 scenario. 
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Figure 6.27 Frequency of the Severe Drought conditions based on SPI 12 for Historic and Future 

periods under RCP 4.5 scenario. 

 

Figure 6.28 Frequency of the Severe Drought conditions based on SPI 12 for Historic and Future 

periods under RCP 8.5 scenario. 
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The 5th and 95th percentile SPI values obtained from the time series of Historic precipitation data 

were defined as the threshold values at each grid cell for severe drought and wet events (Burke 

and Brown 2008) for the three future periods. The low (5th), median (50th) and high (95th) percentile 

SPI values for 12 months’ time scale for all the 132 grids are shown spatially in Figures 6.29 to 

6.34. Low and high percentile SPI values have been identified as severe drought and wet events, 

respectively. However, median percentile values represent the mild drought and wet conditions in 

the basin. The variations in the magnitude of the events show seriousness of drought in that region. 

During Historic period, the magnitude of low value varies from -1.98 to -1.28. The low percentile 

value increases to -2.68 in Future 1 period and decreases to 1.88 in many parts of the basin during 

Future period 2. About 60% of the basin shows low values varying from -2.28 to -1.98 in Future 

3 period. The magnitude of the 5th percentile values was slightly lower in the RCP 8.5 scenario 

compared RCP 4.5. 

The median values in Figure 6.31 and 6.32 vary from -0.4 to 0.28 in the basin, in which -0.4 to 0 

is considered as mild drought and 0 to 0.28 as mild wet conditions. The basin is subjected to mild 

wet conditions as shown in Figure 6.31 in historic period with an increase in mild drought 

conditions observed in Future 2 periods throughout the basin. The severity of the median percentile 

values is predicted to be more under RCP 4.5 scenario compared to RCP 8.5 across the basin. The 

high percentile values representing the wet conditions vary from 1.2 to 2.3 with a classification as 

moderately wet to severe wet conditions. In Figure 6.33, the high flow values across the basin 

show that 90% of the basin indicate to magnitude of moderate wet conditions. Increase in wet 

events is observed in Future periods compared to the historic period. Similar results with high 

values are projected in Future periods of the basin under RCP 8.5 scenario (Figure 6.34).  
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Figure 6.29 Low values (5th quantile) of the SPI 12 a) Historic b) Future1 c) Future2 d) Future3 

for RCP 4.5 scenario. 

 

Figure 6.30 Low values (5th quantile) of the SPI 12 a) Future1 b) Future2 c) Future3 for RCP 8.5 

scenario. 
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Figure 6.31 Median values (50th quantile) of the SPI 12 a) Historic b) Future1 c) Future2 d) 

Future3 for RCP 4.5 scenario. 

 

Figure 6.32 Median values (50th quantile) of the SPI 12 a) Future1 b) Future2 c) Future3 for 

RCP 8.5 scenario. 
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Figure 6.33 High values (95th quantile) of the SPI 12 a) Historic b) Future1 c) Future2 d) 

Future3 for RCP 4.5 scenario 

 

Figure 6.34 High values (95th quantile) of the SPI 12 a) Future1 b) Future2 c) Future3 for RCP 

8.5 scenario 
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In addition to SPI, SDI is also evaluated to analyse the effect of climate change on streamflow. 

The streamflow obtained from the calibrated and validated hydrological model SWAT is employed 

for estimating the drought indices. The drought indices are calculated at seven sub basin outlets of 

the Krishna River namely Upper Bhima, Lower Bhima, Upper Krishna, Middle Krishna, Lower 

Krishna, Upper Tungabadra and Lower Tungabadra. SDIs are calculated for 3,6,9,12-month 

timescales for Historic and Future periods of the basin under RCP 4.5 and 8.5 scenarios. The 

temporal variations of the streamflow data simulated using REA climate data for both scenarios 

are compared to the historic periods are shown in Figure 6.35 to 6.37.  Boxplots were used to 

project the temporal variations of the SDI estimated for different time scales. The box represents 

50% range of values with the bar being the median value. The whiskers at the two ends represents 

extreme values with the values beyond the whisker being outliers. Upper ends of the whiskers 

show an increase in the values steadily in future periods. 

Figure 6.35 presents SDI values of the Upper Bhima and Lower Bhima basins. The range of 

drought indices under RCP 4.5 varies similar to the historic period indices, whereas SDI evaluated 

for RCP 8.5 scenario projects that the upper Bhima basin will be under no drought conditions. The 

reason is that streamflow simulated is based on REA climate projections, which show normal 

precipitation throughout the basin without any variations. The SDI calculated is dependent on the 

streamflow simulated in the earlier months, where it is projected that the basin is under no drought 

condition. In lower basin, SDI value range is subjected to severe drought conditions in Future 2 

period and severe wet condition in Future 1 period as shown in Figure 6.35.  

The distribution of SDI values for the Upper, Middle and Lower Krishna basins are shown in 

Figure 6.36. More wet indices are observed in basins for all future periods. Though the basin is 

subjected to an overall increase in precipitation in Future 2 period compared to other periods, more 

drought indices were observed in Future 2 periods of the Middle Krishna basin. SDI-3 of the 

Middle and Lower Krishna basins suggest no drought conditions in the basin, as the streamflow 

simulated does not project intra annual variations. Figure 6.37 presents the boxplots of the SDI for 

the Upper and Lower Tungabhadra basins. It also represents high number of wet conditions for the 

future period, However severe drought conditions in future 3 period in both the basins in both RCP 

scenarios. 
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Figure 6.35 Temporal variations in the SDI values for the Upper and Lower Bhima basins under 

RCP 4.5 and RCP 8.5 scenarios. 

 

 

Figure 6.36 Temporal variations in the SDI values for the Upper, Middle and Lower Krishna 

basins under RCP 4.5 and RCP 8.5 scenarios. 
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Figure 6.37 Temporal variations in the SDI values for the Upper and Lower Tungabadra basins 

under RCP 4.5 and RCP 8.5 scenarios. 

. 
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6.5 Combined effect of climate and LULC changes on water balance 

components 

Economic growth, development of human and ecosystem of the country are mainly dependent on 

natural resources such as land and water. These resources are subjected to immense pressure 

caused by urbanization and industrialization due to increase in human population. In addition to 

these, water systems are affected by climate change in the form of variability of temperature and 

rainfall both spatially and temporally, water balance changes, sea level rise, etc. Hence, land use 

and climate variability are two important factors affecting the water resources and sustainability 

of the ecosystems. In the Hydrological processes, the parameters like evapotranspiration, 

infiltration and interception are mainly subjected to land use changes based on varied surface and 

subsurface flows (Wang et al. 2014, Niraula et al. 2015). Climate change leads to specific 

variations in hydrologic regimes and impact patterns of water resources spatially and temporally 

(Chien et al. 2013, Khoi and Suetsugi 2014). The effect of both LULC and climate changes on the 

parameters of the hydrologic cycle is significant to workout necessary decisions for the proper 

utilization and management of water resources in future periods. Variations in water balance 

components like Evapotranspiration, Base flow, Surface and Sub surface runoff spatially and 

temporally are important for management of water resources. Irrigation system design and 

management, hydrologic water balance, crop yield simulation, planning and management of water 

resources and water loss optimization by improving the usage of water in agriculture are various 

fields which have evolved based on these changes.    

Effect of LULC and climate on the wate balance components of Munneru watershed was simulated 

using calbrated and validated SWAT model. The responses of the study area to the precipitation, 

maximum and minimum temperatures, Evapotranspiration, Baseflow and Surface Runoff were 

shown spatially. Maximum precipitation values were observed to decrease from decade to decade 

as shown in Table 6.5. Lowest prescipitation is observed in the year 2030 with minimum and 

maximum values as 40.96mm and 57.81mm respectively. The maximum and minimum 

temperatures are noticed to increase by 2°C by 2040. Hence, it is evident that changes in 

precipitation and temperature values affect the water balance components adversely.  
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Table 6.5 Observed minimum and maximum values of the Meteorological and Water balance 

Components. 

Variables 

1985 1995 2005 2020 2030 2040 

Min Max Min Max Min Max Min Max Min Max Min Max 

Precipitation 

(mm) 60.63 105.53 49.09 81.36 40.17 72.14 53.75 75.86 40.96 57.81 43.57 61.5 

Minimum 

Temperature(°C) 21.69 22.89 21.91 23.06 22.34 23.42 22.65 23.9 22.92 23.99 23.33 24.47 

Maximum 

Temperature(°C) 31.63 32.09 31.89 32.39 32.42 32.95 32.77 33.41 32.96 33.56 33.7 34.4 

Evapotranspitation 

(mm) 31.04 66.68 28.6 63.8 27.21 63.71 35.18 61 32.61 56.7439 33.17 59.08 

SurfaceRunoff 

(mm) 27 47.94 19.43 32.37 13.06 28.35 11.35 17.87 5.43 8.84 6.83 13.3 

Baseflow 

(mm) 3.58 10.99 0.139 5.57 0 0.48521 4.36 7.43 0.41 2 0 1.17 

It is apparent from Figure 6.38 that decreasing rainfall scenarios tends to decrease in the average 

annual baseflow and surface runoff as presented in Figures 6.42 and 6.43. Evapotranspiration is 

directly related to the temperature. Hence, the response of evapotranspiration in Figure 6.41 

projects varying values from decade to decade with maximum value in 2020. The decadal annual 

average values of Evapotranspiration, Surfacerunoff and Baseflow are compared with annual 

average values for the Historic period i.e. 1975-2005 is 45.72mm, 28.94mm and 3.27mm. The 

spatial variations in Figures 6.38 to 6.43 reveals that if an increase in temperature under a given 

precipitation decreases, there is a decrease in surface runoff and a baseflow with an increase in 

Evapotranspiration. All the results project maximum change from 1985 to 1995 as the LULC 

change is more in 1995 with fewer changes in 2005 compared to 1995. Simulations for the Future 

period (2006-2040) were carried out by considering similar changes to 2005. Hence, decadal 

changes in the water balance components project less variations in the between decade 1995-2005 

when compared to 1985 to 1995.  Evapotranspiration is more in 2020 (Figure 6.41) i.e. 10% more 

in comparison with the annual average value of the Historic with an increase of minimum and 

maximum temperatures of around 3% (Figure 6.39 & 6.40). Baseflow predicted for 2030-2040 

period is almost zero as shown in Figure 6.42. Surface runoff is predicted to be 50% less in 2020, 

2030, 2040 (Figure 6.43) i.e. 48%, 77% and 65% with a decrease of about 9%, 32% and 25% 

respectively in precipitation (Figure 6.38).  
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Figure 6 38 Variations of the Precipitation data spatially for the six decades. 

 

Figure 6.39 Variations of the Maximum Temperature data spatially for the six decades 
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Figure 6.40 Variations of the Minimum Temperature data spatially for the six decades 

 

Figure 6 41Variations of the Evapotranspiration data spatially for the six decades. 
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Figure 6.42 Variations of the Base flow spatially for the six decades. 

 

Figure 6.43 Spatial variations of the Surface runoff for the six decades. 
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The variations in water balance components with respect to precipitation, minimum and maximum 

temperatures temporally are shown in Figure 6.44. Observations made for surface runoff and base 

flow show a similar decreasing trend with precipitation from 1995 to 2005. Evapotranspiration 

and temperatures show an increasing trend, as they are directly in proportion with each other.  

 

Figure 6.44 Temporal variations of climate variables and water balance components 
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6.6 Adaptation policies for Reservoir Operating Systems 

From the previous chapters, it is observed that the Middle Krishna and Lower Krishna basins are 

subjected to severe drought conditions. Literature review in chapter 2 also emphasises the 

importance of adaptation to climate change in the management of water resources in the Krishna 

river basin.  Based on the impact studies on Krishna river basin, Nagarjuna Sagar dam was selected 

for evaluating the effect of climate change and to develop the adaptation policies for mitigating 

the effect of climate change. The salient features and a view of the reservoir are presented in Table 

4.1 and Figure 4.14 respectively. The ensemble climate model data of RCP 4.5 scenario is used to 

simulate the streamflow in the reservoir and is used for developing adaptation strategies. 

Adaptation strategies for future projections are developed considering the ‘business as usual’ 

scenario and with optimal operating policies. Hydrologic impact on the reservoir operation is 

mitigated considering the performance criteria evaluated for the adaptation policies. Climate 

change impact on multipurpose reservoir systems and four performance criteria (reliability with 

respect to time and volume, resilience and vulnerability) are evaluated using the r package known 

as “reservoir”2.  

The performance criteria obtained were studied initially with the standard operating policy (SOP) 

using current rule curves of the observed data. Increase in demands like Irrigation, water supply 

etc., and the projected ensemble climate model data-based streamflow obtained from SWAT 

model are used for projecting the future hydrologic scenarios. The performance indices projected 

with the SOP for future scenario show decrease in reliability, while the vulnerability and resilience 

are likely to increase because of climate change. Therefore, a stochastic Dynamic Programming 

(SDP) model was used to derive an adaptive optimal monthly operating policy by addressing the 

inflow uncertainty with the objective of maximizing reliabilities with respect to multipurpose 

reservoirs. Based on the adaptation policies generated using SDP, release policy decisions have 

been proposed for Future periods. The storage yield curves have been developed to minimize the 

storage volume with change in the targets for future periods. For generating adaptation policies, 

the water releases are obtained from data of the reservoir operation. The annual surface water 

requirements for the Nagarjuna Sagar dam are presented in Table 6.6. 

                                                 
2 https://cran.r-project.org/web/packages/reservoir/reservoir.pdf 
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Based on the quantities listed in Table 6.6, the main purpose for NS dam is irrigation while 

generation of Hydropower was neglected in developing the reservoir operation policies. Monthly 

streamflow values obtained at the Nagarjuna sagar dam from calibrated and validated SWAT 

model were considered as inflows to the reservoir. Figure 6.45 presents mean monthly variations 

of the streamflow during calibration and validation of the models and these were in good 

agreement. FDCs developed for the Annual, Monsoon and Non-monsoon periods of three future 

periods are shown in Figure 6.46. FDCs project low flow values in streamflow for Future1 and 

Future3 periods. 

Table 6. 6 Surface water requirements for Nagarjuna Sagar dam 

Purpose  Quantity (Mm3) 

Irrigation 44230 

Domestic 3348 

Industrial Use 4813 

Hydro power  1154 

Total 53545 

Figure 6.45 Mean monthly variations of the observed and simulated streamflow during 

Calibration and Validation periods 
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Standard operating policy aims to meet all demands in a period of given water availability. SOP 

has been generated considering the target as 0.6 times of the mean obtained based on the observed 

inflows. An optimal adaptive policy needs to be formulated to optimize the impacts of climate 

change on reservoir operations. The adaptation strategies are developed by considering increase in 

the demand and availability of water. From Fig 6.46, high inflows to the reservoir are observed in 

the future 2 and 3 periods supports to raise the releases for the future periods considering the 

increase in demand. SDP model addresses the uncertainty associated with inflow to derive an 

optimal monthly operating policy for future scenarios with the objective of maximizing 

reliabilities. Performance indices were evaluated for the adaptation strategies recommending the 

best strategy to be adapted in future scenarios. Better performance indices were obtained with 

0.6xmean as target from SDP compared to the indices of SOP. Targets for the adaptation strategies 

were fixed by a number of SDP iterations for future periods based on the performance Indices, as 

shown in Table 6.7. Best fit strategy was fixed based on the High Reliability and Resilience with 

low Vulnerability values. The effect of the adapted targets for the SOP and SDP for Historic and 

Future periods are shown in Figures 6.47 to 6.49 investigated using the performance indices. The 

increase in resilience values are observed in the operating policy developed using SDP in Figure 

6.48.   

 

Figure 6.46 Flow Duration Curves of Annual, Monsoon and Non-Monsoon periods 
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Table 6. 7 Summary of Performance Indices 

Inflow Target Time Reliability Volumetric Reliability Resilience Vulnerability 

Observed 0.6*3815 0.89 0.92 0.09 0.93 

Historic  0.97 0.98 0.25 0.9 

Future1  0.6 0.66 0.14 0.79 

Future2  0.92 0.93 0.1 0.85 

Future3  0.98 1 0.8 0.25 

Historic 0.6*3815 0.96 0.97 0.75 0.4 

Future1  0.62 0.69 0.87 0.13 

Future2  0.92 0.93 0.77 0.14 

Future3  0.99 1 0.3 0.33 

Historic Minimum 0.74 0.88 0.42 0.58 

Future1  0.48 0.61 0.16 0.83 

Future2  0.82 0.9 0.26 0.48 

Future3  0.86 0.95 0.4 0.53 

Historic Maximum 0.26 0.59 0.19 0.75 

Future1  0.19 0.39 0.08 0.91 

Future2  0.36 0.65 0.14 0.74 

Future3  0.36 0.69 0.16 0.74 

Historic Mean 0.42 0.71 0.28 0.68 

Future1  0.3 0.48 0.16 0.76 

Future2  0.5 0.74 0.26 0.63 

Future3  0.52 0.79 0.32 0.56 

Future1(SDP) 0.3*3815 0.93 0.97 0.56 0.61 

Future2(SDP) 0.8*3815 0.91 0.93 0.54 0.7 

Future3(SDP) 0.85*3815 0.94 0.98 0.6 0.46 
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Figure 6.47 Effect of applying SOP on performance measures for Historic and Future periods 

 

Figure 6.48 Effect of applying SDP on performance measures for Historic and Future periods 
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Figure 6.49 Performance measures of Adaptation strategies using SDP for Future periods 

Figure 6.49 presents the adaptation strategies for three Future periods with different targets as 

shown in Table 6.7. Increase in vulnerability is observed in Figure 6.49, but there is an increase in 

resilience supporting the significance of the adaptation policies. Based on the performance indices, 

the storage – yield curves are developed for the future scenarios to mitigate the risk of climate 

change and are shown in Figure 6.50. Storage yield curves in Planning a system allow one to 

determine the storage required for given yield and reliability, whereas for existing system it helps 

in determining the sustainable yield. The behavioural analysis obtained with fixed yield and 

reliability is used to estimate the storage capacities for the operation of reservoirs under changing 

climate. In order to obtain the storage yield relation, a demand profile (Table 6.8) is generated 

based on the observed releases. The targets for future periods based on reliability (Table: 6.7) is 

considered for developing the curves. Generally, multipurpose reservoirs operation policies are 

designed to obtain a reliability of 70 to 80%. The storage-yield curves are developed to minimize 

the storage volume with the change in the targets for the future periods. Figure 6.51 presents the 

rule curves, which act as a source in managing resources without affecting performance and help 

to mitigate the risk of climate change.  
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Table 6.8 Factors of demand based on observed releases 

 

 

 

From the observed data, it is observed that annual current water demand is 22066.45Mm3. from 

using the same demand profile (Table 6.8), with the reliabilities obtained from adaptation policies, 

the annual water demand is minimized to 7852.047 in Future 1 period considering the impact of 

climate change on operating the reservoir. As the climate change predicts increase in precipitation 

and stream flow, the annual water demand is maximised to a value of 26,693.21Mm3 in Future 

period 2 followed by 27313.55 Mm3 in Future period 3. It is observed that adaptive policies project 

more releases recommending higher reservoir elevations in August as permitted by the rule curve. 

Progressively increasing weightages for irrigation and water supply in policies for Future 2 and 

Future 3 leads to higher releases, especially in August, for these policies. Therefore, a risk 

assessment strategy considering the risk of flooding needs to be formulated. This strategy can be 

used to derive changes in reservoir operation rules for successful mitigation of climate change 

impacts.  

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Demand 0.54 0.5 0.53 0.32 0.12 0.2 1.1 3.0 2.32 2.04 0.77 0.57 
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Figure 6.50 Impact of climate change on reservoir Storage –Yield for different Empirical Reliability (ER) values a) Observed b) Historic 

c) Future 1 d) Future 2 e) Future 3 
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Figure 6.51 Proposed rule curves based on Empirical Reliability values for Future periods 

6.7 Closure 

In this chapter, climate change impact on the streamflow of Wardha, a subbasin of Godavari 

river is analysed using multi climate model data base of two scenarios using SWAT. Effect of 

the uncertainty modelled ensemble climate model on Krishna River with respect to Drought 

analysis is investigated. The results of LULC and climate change on Agricultural watershed 

and the Adaptation policies to mitigate the impact of climate change on reservoir operating 

policy are discussed in this chapter.  
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Chapter – 7 

Summary and Conclusions 

7.1 Summary 

In the present research work, climate change impacts have been simulated for Krishna and 

Wardha river basins for present and future periods. Future projections of climate obtained from 

dynamically downscaled data from 9 GCMs with two climate forcing’s of RCP 4.5 and RCP 

8.5 are bias corrected using nonparametric quantile mapping method. Multi-site calibration and 

validation of SWAT model has been carried out for Wardha and Krishna river basins. Bias 

corrected RCM data is incorporated in the calibrated and validated SWAT model of Wardha 

basin to evaluate the monthly and annual variations of the streamflow and water balance 

components due to climate change. Uncertainty of the climate model data is reduced by 

developing the REA for two climate scenarios. Spatial and temporal variations of drought have 

been examined over Krishna basin and hotspots with extreme high and low values are 

identified. Future projections of streamflow induced by ensemble climate model data with RCP 

4.5 and RCP 8.5 scenarios are simulated from calibrated SWAT model. FDCs at three-gauge 

points have been generated with different levels for different time periods. Trend analysis for 

all the sub basins generated from SWAT are examined using Mann Kendall trend test. 

Hydrological drought at all the sub basin outlets are evaluated using SDI focusing on the 

intensity and severity of the reduced rainfall and runoff. An agricultural watershed prone to 

LULC change along with the climate change is further analysed for spatial variations of water 
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balance components. Reservoir operation under changing climate is monitored and adaptation 

strategies have been developed to manage the resources optimally without effecting the 

reliability of reservoir using SDP. The storage yield curves for future scenarios are generated 

from the adaptive policies on monthly basis. 

The methodology developed is to investigate the hydrologic changes of Wardha basin under 

climate change of 5 different models and different scenarios. Initially, dynamically downscaled 

climate data of the parent global models under Coordinated Regional Downscaling Experiment 

(CORDEX) is retrieved for 27 grids of 0.5̊ x 0.5̊ resolution for RCP 4.5 and RCP 8.5 emission 

scenarios. The observed high resolution of 0.5̊ x 0.5̊ gridded rainfall and minimum and 

maximum temperature data over Wardha basin are collected from Indian Meteorological 

Department (IMD), Pune. Bias in multiple climate model data in comparison with observed 

data is corrected using the non-parametric quantile mapping method. The SWAT model was 

developed for the basin with all necessary data and is calibrated with data for 1984 to 1996 and 

validated for a period of 1997 to 2003 using observed streamflow data at three-gauge stations. 

Goodness of fit of calibrated model is verified with R2 and NSE values as presented in Table 

5.2. 

From the initial study, it is observed that the projections from the different climate models are 

different from each other. Therefore, it is wise to consider an ensemble of climate models for 

future projections. In this study, Krishna river is considered for the climate change analysis for 

future periods with ensemble mean of two scenarios. Initially, model uncertainty related to 

ensemble models and the parameter uncertainty associated with different return levels are 

considered. The intermodal uncertainty resulting from the ensemble of projections is addressed 

using the Reliability Ensemble Average (REA) method considering the performance and 

convergence criteria.  Subsequently, SWAT model is used to simulate the future streamflow 

values under RCP 4.5 and 8.5 scenarios. The high-resolution meteorological data such as 

precipitation, maximum and minimum temperatures are extracted from different climate 

models under CORDEX experiment. The ensemble average of different meteorological data 

from RCMs after REA analysis shows better agreement of the minimum and maximum 

temperature with respect to observed series. On the other hand, the extreme precipitation events 

are not captured by the ensemble mean. Hence, to correct the bias, a non-parametric quantile 

mapping is performed only for the precipitation data. Then the bias corrected ensembled 

precipitation data with ensemble temperature data are incorporated in the multi-site calibrated 
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and validated SWAT model with monthly streamflow values using SUFI-2 of SWAT-CUP. 

The future projected stream flows under RCP 4.5 and RCP 8.5 are factored to analyse the 

probability of non-exceedance using FDCs and Trend analysis using Mann-Kendall trend test. 

Based on the results of the former study on Krishna river basin, the basin is noticed to be 

subjected to low precipitation and decrease in streamflow. Hence, drought based on the climate 

and streamflow is analysed for future projections. Severity, frequency and intensity of 

meteorological drought is monitored using Standardized Precipitation Index (SPI) over the 

basin using the ensemble mean of 5 models under RCP 4.5 and 4 models under RCP 8.5 

scenarios. Similarly, Streamflow Drought Index (SDI) is quantified at the outlets of seven sub 

basins of the Krishna river. Spatial variations of the meteorological drought and temporal 

variations of the hydrological drought are assessed over the basin. 

Based on the impact study of climate change on various sub basins of Krishna river, Middle 

and Lower Krishna basins are identified as the most affected regions. In addition to climate 

change, the impact caused due to LULC change is also monitored for an agricultural watershed 

of the lower Krishna basin. Decadal LULC images of 100m resolution are used for inducing 

the change in SWAT model which is calibrated and validated. The variations of water balance 

components due to climate change and LULC changes are examined spatially.  

Further, Nagarjuna Sagar reservoir located in the middle Krishna basin is selected to assess the 

hydrologic impacts of climate change under uncertainty and adaptation policies developed for 

future without affecting the reliability of reservoir operations. The streamflow obtained from 

Bhima and Upper Krishna is considered as inflows to the reservoir. The performance of the 

reservoir operations is evaluated using Standard Operating Policy. Adaptation policies for the 

Future scenarios are developed considering the increment in demands with increase in 

population. Based on the adaptation policies, rule curves for storage yield with reliability of not 

less than 70% are developed for future scenarios. 

7.2 Conclusions 

The following are the conclusions of the study presented in the thesis. 

 Among the five models, NORESM model projects similar results with observed data 

while other models ACCESS, CCSM, CNRM and MPIESM show lower values of 41%, 

53%, 58% and 16% respectively. Annual average precipitation from climate models of 



 

119 

 

the basin projects high values with an increase of about 40% to 50% during historic 

period.  

 The analyses of the annual and monthly streamflow variations suggest that RCP 4.5 

scenario produces lower values of streamflow under decreased precipitation and 

increased temperature. 

 Streamflow projected using RCP 8.5 scenario simulates maximum values compared to 

RCP 4.5 with a percentage change of 100-200%  

 The inter and intra annual variations of projected streamflow show much variations 

compared to observed values projecting the uncertainty in climate model and hydrologic 

model simulations. 

 Water balance components of basin simulated for future projections and two different 

scenarios are quantified. Prominent streamflow is observed under RCP 8.5 scenario, as 

a result of extreme rainfall events.    

 The REA precipitation data of Krishna basin projects a decrease in the annual average 

values of 20% in future 1, around 4 to 6% in future 2 periods, whereas future 3 projects 

the same values as in the historic period under RCP 4.5 scenario.  

 Decrease of 36% in annual average precipitation is observed in Future1, 10% increase 

in Future2 and 60% decrease in Future3 periods under RCP8.5 scenario with an increase 

of 6̊ C observed in the basin by the end of 2100. 

 The spatial annual average values of REA precipitation suggest a decrease of about 40% 

in Tungabhadra and Lower Krishna basin during Future 1 period.   

 Spatial variations of annual average precipitation values of Krishna basin for Future 3 

period estimate percentage decreases of 30 to 100 in Bhīma and Middle Krishna basins. 

 Non-monsoon increases in precipitation of about 10-50% are observed in many parts of 

Krishna basin during future 3 period. 

 The performance of the hydrological model is considered to be good and satisfactory 

with R2, NSE and relative bias values ranging from 0.52 to 0.86, 0.32 to 0.58 & -41.9 

to 79.8 during calibration and validation of the model for Krishna river basin. 

 FDCs generated in the basin projects decreased flow in Future1 period at 3-gauge 

stations. FDC generated at gauge stations provides information about the flow at a given 

level of probability, which empower the development of management practices.  
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 Trend analysis predicts that the basin is about to face decrease in streamflow at most of 

the sub basins in RCP 4.5 scenario and increase of stream flow in sub basins in RCP 8.5 

scenario. 

 Increase in average monsoon precipitation of about 120% to 300 % is observed in 

Tungabhadra and Bhima basin for Future 1 and 2 periods respectively. 

 The annual, monsoon and non-monsoon changes in the precipitation are among the two 

projected scenarios where RCP 8.5 projects low precipitation values throughout the 

basin. 

 The severity of the drought events is more in Tungabhadra and Lower Krishna regions 

during future1 and more in Bhīma, Upper and Middle Krishna regions during future 3 

periods, with high frequency. 

 Though there is an increase in monsoon precipitation, SPI calculated for 12-month basis 

shows less frequent wet conditions and drought events of more frequency, for future 

periods and two scenarios. 

 Extreme drought events are observed in Upper Krishna and some parts of the 

Tungabhadra in Future 1 period and Upper and Lower Krishna regions in Future 3 

periods of RCP 4.5. 

 SDI calculated with the reference period of 12 months in all the sub basins shows that 

more than 50% of the data prevails drought conditions in Upper Krishna, Middle 

Krishna, Lower Krishna, Upper Tungabhadra and Lower Tungabhadra basins during 

future 1 period.  

 SDI generated for the sub basins shows that Tungabhadra basin is less affected by 

drought while Bhima, Middle and Lower Krishna region are more prone to drought 

conditions in future periods.  

 Change in the first two decades (1985-1995) shows 100% rise of forests, 50% rise in 

urban land area, around 100% decrease in cropland/woodland, 60% fall in water bodies 

with not much changes in the next two decades (1995-2005).  

 Increase in temperature and decrease in precipitation results in decreased values of 

surface runoff and base flow with an increase in evapotranspiration. 

 Increase is expected in Evapotranspiration of about 10%, 1.7%, 3.84% in 2020, 2030, 

2040 decades respectively with a decrease of about 50%.  Zero-base flows are predicted 

in most of the basin by 2040. 
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 Storage – Yield curves developed for varied targets report decrease in the yield at full 

and dead storage volumes with increased reliabilities. 

 The rule curves obtained propose 58% decrease in release during future period 1 and 

increase in release of about 38% in future 2 and 3 periods. 

7.3 Research Contributions  

The following are the important research contributions of the present study: 

 For the reduction of multi model uncertainty, REA is developed. The REA data show 

more correlation with the observed climate data. 

 SWAT model is applied for Wardha, Krishna, Munneru and Middle Krishna basin 

which helps to simulate all hydrological process of the basins. 

 Adaptation policies are developed for the optimal reservoir operations with a reliability 

of not less than 75% for Nagarjuna sagar dam.  

 Rule curves for the monthly operating of the reservoir are developed for future scenarios 

under climate change. 

7.4 Scope for Further Study 

The scope for further study related to this work is as follows: 

 Multiple ensemble scenarios, other than REA can be used for impact studies. 

 Land Use Land Cover change modelling of the Krishna river basin can be 

incorporated in climate change impact analysis. 

 Development of adaptation strategies considering multi-purpose reservoir system 

can be another area of research. 

 Development of community-based adaptation strategies for various cropping 

patterns in the various sub basins can also be investigated. 
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Appendix A 

The maximum and minimum REA temperatures of the Future periods are presented as the box 

plots(A.1and A.2) on monthly basis.  

 

Figure A.1 : Temporal variations of Minimum Temperature (⁰C/day) for the Historic, Future1, 

Future2 and Future3 periods. 
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Figure A.2: Temporal variations of Maximum Temperature (⁰C/day) for the Historic, Future1, 

Future2 and Future3 periods 
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