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Controller design for level, flow, temperature and pressure processes in chemical industries, power 

plants, oil industries and aerospace systems is challenging as they are often associated with 

problems such as structural complexity, uncertainties, large transportation lags, nonlinearities and 

external perturbations. Desired response of these control loops cannot be achieved with the 

conventional PID controller. The performance of these control loops can be enhanced using 

fractional controllers.  

The Internal model control (IMC) scheme based design of PID controller has advantage of a 

single tuning parameter which is usually selected for a tradeoff between closed loop performance 

and robustness to model inaccuracies. The performance of IMC based PID controller is determined 

by the IMC filter structure used for designing the controller. In majority of the previous works, an 

integer order IMC filter structure of first order and higher orders have been used for designing the 

controller. These controllers doesn’t always result in an improved closed loop performance. Along 

with these controllers, one may need to use set point filter or set point weighting to minimize the 

overshoot in the response. The advantage of using fractional IMC filter structure is that it eliminates 

the need to use set point filter or set point weighting. The fractional term in the controller serves 

the purpose of minimizing the overshoot. Though, it has the additional tuning parameter it offers 

the tuning flexibility for achieving the desired performance. 

In this research work, a systematic design procedure is proposed for designing the fractional 

controllers for integer and non-integer order systems based on maximum sensitivity (Ms). An 

optimum higher order fractional IMC filter structure is identified from the systematic procedure. 

In addition, Pade’s procedure is incorporated for higher order approximation of time delay. The 

resulting controller has an interesting structure composed of fractional term and controller (PI/PID 

for integer order systems and fractional order PI/PID for non-integer order systems) term. The 

fractional term has additional degree of freedom which offers flexibility in tuning there by enhance 

the performance based on Ms. 

Several examples representing integer order time delay systems (second order plus time delay 

systems, integrating plus time delay systems and first order plus time delay systems in cascade 

loops) and noninteger order plus time delay systems have been considered for simulation study. 

Robustness analysis is carried out to determine the robust stability of closed loop system. Fragility 

ABSTRACT  



 

 

xi 
 

analysis is carried out on all the proposed controllers to investigate the performance deterioration 

for uncertainties in the controller parameters. 

The performance of closed loop system with the proposed fractional controllers is compared 

with the recent methods proposed in the literature. The proposed method shows improved closed 

loop performance in terms of disturbance rejection and set point tracking with low values of errors 

such as IAE and ITAE for all the time delay systems. The work shows that the controller design 

with higher order fractional IMC filter structure and higher order pade’s approximation for time 

delay gives enhanced performance than the controller designed with lower order fractional IMC 

filter structure and first order Pade’s approximation for time delay. Simulation results show that 

the error values are decreasing with increase in the order fractional IMC filter structure but the 

control effort is increasing. The proposed method is also proved to be effective for perturbations 

in the process parameters and noise in the output.  

Keywords: PID controller, Fractional filter IMC-PID controller, Internal Model Control, 

Fractional IMC filter, Pade’s approximation, Robustness, Maximum sensitivity, Fragility 
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1. Introduction and Objectives 

1.1 Introduction  

In modern control engineering, the design gap exists between the complex physical system under 

investigation and the process model used in the control system synthesis. Controller design for 

many industrial systems such as level, flow, temperature and pressure control loops in chemical 

industries, power plants, oil industries and aerospace systems is challenging as they are often 

burdened with problems such as structural complexity, uncertainties, large transportation lags, 

nonlinearities and external perturbations. The main difficulty is associated with the design of 

controller for processes modeled as second order systems, integrating systems and non-integer 

order systems with time delay. For these systems, desired closed loop response cannot be achieved 

with conventional PID (Proportional Integral Derivative) controller because of the practical 

problems (lags, nonlinearities and perturbations) (Feliu-Batlle et al., 2009; Barbosa et al., 2007) 

associated with the industrial processes. The situation worsens if disturbance rejection is the major 

requirement along with set point tracking to meet the specification of desired output. 

1.1.1 General 

Mathematical models of a process take various forms, such as differential equations, state-

space equations and transfer functions. Most of the real processes are modeled by constructing 

mathematical equations based on physical laws. The success of controller design can be attributed 

to reasonably accurate modeling of the real process. A process model has to be used in practice 

before their application in industries. Real processes modeled using integer order differential 

equations results in integer order models.  There has been tremendous work on the design of 

controller for classical integer order models. However, delay is present in all the industrial 

processes due to the transport delays associated with sensors and delays involved in the 

communication of signals. The transfer functions models of the majorly used the integer order time 

delay systems in this research work are: 

Second order plus time delay (SOPTD) system, G
m

(s)=
Ke-Ls

(T1s+1)(T2s+1)
    (1.1) 
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Integrating plus time delay (IPTD) system, G
m

(s)=
K

s
e-Ls  (1.2) 

Now a days, processes are even modeled as time delay systems of non-integer order as they 

represent the process dynamics in a better way than integer order systems. Any physical system 

represented by a differential equation whose derivative order is a real fractional number can be 

called a non-integer order system (Atherton et al., 2014). The significance of non-integer order 

representation is that fractional-order differential equations are more adequate to describe some 

real world systems than integer-order models. The NIOPTD process models are: 

NIOPTD-I, G
m

(s)=
K

Tsα+1
e-Ls   (1.3) 

NIOPTD-II, G
m

(s)=
K

sα+2ζωnsβ+ωn
2 e-Ls   (1.4) 

The closed loop performance of any time delay system can be assessed with the measures 

listed in Table 1.1. 

Table 1.1 Performance measures 

Integral square error, ISE ∫ e2(t)dt
∞

0
  

Integral absolute error, IAE ∫ |e(t)|dt
∞

0
  

Integral time absolute error, ITAE ∫ t|e(t)|dt
∞

0
  

Percentage overshoot, %OS ypeak-yss

yss

×100  

Settling time time taken for the response to settle 

within 2% to 5% of its final value 

Sensitivity, S(jω) 1

1+Gc(jω)Gp(jω)
  

Maximum sensitivity, Ms max
0<ω<∞

|S(jω)|  

Total variation, TV ∑ |ui+1-ui|
∞
i=0   

The closed loop stability of system should be verified in presence of model uncertainties for 

robustness of the designed controller which is derived under nominal process conditions. The 

designed controller should be able to provide better closed loop performance (good servo response 

and regulatory response) irrespective of the perturbations in process parameters which are common 

in practice. The controller that ensures good response characteristics for perturbations in system 
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gain, time delay and time constant is said to be robust. This robust stability of closed loop system 

can be verified with small gain theorem (Morari and Zafiriou, 1989; Maciejowski, 1989).  

The performance of any controller need to be estimated not only for perturbations in process 

parameters but also for perturbations in controller parameters. This is done with the help of 

controller fragility analysis (Alfaro and Vilanova, 2012). The fragile nature of the controller can 

be investigated both in terms of robustness and performance.  

1.2 Motivation  

A closed loop control system encounters different combinations of plant and controllers while 

handling real world problems. They include the integer or fractional order of either plant or 

controller or both. In practice, the plant models have been obtained as integer order models and it 

is natural to consider the fractional nature of the controller. PID controllers are still widely used in 

the industry because they are easy to implement and perform well for wide class of processes. PID 

controllers in general are not very well suited for control of processes with long dead time, 

nonlinearities and perturbations since they can cause stability issues for these closed loop systems. 

The controller design of these processes is a challenging problem.  

The efforts of control engineers and scientists lead to the development of fractional order 

controller (PIλ/PIλDμ) tuning rules. Podlubny (1999) demonstrated a better response for integrator 

and differentiator of the PID controller rise to the fractional powers λ and µ. This is achieved with 

the help of fractional calculus (Miller and Ross, 1993). Fractional order PID (FOPID) controllers 

with additional tuning parameters can provide better closed loop performance and robustness 

features compared to classical PID controllers. Although there are many rule based methods and 

analytical tuning methods, it is difficult to adjust PID parameters properly to meet the requirements. 

The closed loop performance of such systems can be enhanced using fractional controller. The 

fractional controller means any controller consisting of fractional term in their structure. The 

fractional controller structure considered in this thesis comprises of PID/FOPID term cascaded 

with fractional term rather FOPID controller. Though, there are many works on the design of 

FOPID controller there is limited work on the design of considered fractional controller structure. 

The standard internal model control (IMC) design procedure has been used to design the proposed 

fractional controller.  
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The well-known internal model control based tuning rules have the advantage of using only a 

single tuning parameter to achieve a clear tradeoff between closed-loop performance and 

robustness to model inaccuracies. It is clear that, in the IMC-PID approach, the performance of the 

PID controller is mainly determined by the IMC filter structure. In majority of the previous works 

on IMC based controller design, the integer IMC filter structure has been used. Integer order IMC 

filter structures of higher order have also been used for controller design. Clearly, the controller 

designed using IMC procedure and integer order IMC filter structure results in integer order 

controller. Therefore, in the present thesis fractional IMC filter structure has been chosen for 

designing the fractional controller. The selection of fractional IMC filter structure has to be made 

considering the performance and robustness of the resulting fractional controller. The fractional 

IMC filter used in the IMC method plays a crucial role because tuning parameters in the IMC based 

controller are those associated with the fractional IMC filter. Till now, there is a little progress 

observed on design of fractional filter controllers. It is with this intention that the present work has 

been undertaken. 

1.3 Objectives  

For the performance enhancement of integer and non-integer order time delay systems, the 

fractional controllers based on IMC is the most effective method. The present research work aims 

at exploring the design and analysis of fractional filter PID/FOPID controller based on IMC scheme 

by the use of higher order fractional filter structure. 

The objectives of this thesis are set as follows:  

1. To develop fractional filter IMC-PID controller for enhanced performance of second order plus 

time delay processes 

2. To design fractional filter IMC-PID controller for improved performance of integrating 

processes with time delay 

3. To develop fractional filter fractional IMC-PID controller for enhanced performance of non-

integer order plus time delay processes 

4. To design fractional filter IMC-PID controller for cascade loops 

All example systems used to demonstrate the proposed method are simulated in MATLAB 

(2014b) environment using FOMCON toolbox and Simulink. 
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1.4 Problem statement  

The purpose of this work is to develop a systematic analytical method to evaluate the feasibility 

analysis and design of fractional filter IMC-PID controllers to enhance the closed loop 

performance. The methodology should output different designs for various classes of systems: 

second order plus time delay systems, integrating systems (integer order systems) and non-integer 

order plus time delay systems. In addition, design of fractional filter controllers for cascade loops 

consisting of integer order time delay systems has also been taken. To design the fractional filter 

controller, IMC design method has been used considering fractional IMC filter structure of 

different orders. It is also required to consider higher order Pade’s approximation for time delay 

during the controller design. The major problem here is the identification of optimum fractional 

IMC filter structure. Hence, there is a need to develop systematic procedure for identification of 

optimum fractional IMC filter structure based on the robustness. The designed fractional filter 

controller shall be proved to give enhanced performance by using different performance measures 

for nominal process conditions; for perturbations in the process parameters and for noise in the 

measured output. Further, the performance of designed controllers need to be estimated for 

controller parametric uncertainties using fragility analysis. 

1.5 Contributions of the scholar  

 A systematic procedure is proposed based on robustness for identification of optimum fractional 

IMC filter structure  

 The application of proposed fractional filter controller is generalised by checking the closed 

loop performance on broad class of case studies. 

 The tuning parameters of the controller are exclusively associated with the fractional filter term 

of the controller 

 The fragility of the proposed controllers is investigated for perturbations in the controller 

parameters. 

 Numerical simulation of different classes of integer and non-integer order processes with time 

delay to illustrate the proposed methods. 
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1.6 Organization of the thesis  

This thesis is organized in eight chapters.  

Chapter 1 presents an overview of the state of current research in the area of fractional control 

with key objectives of the present research work. 

Chapter 2 deals with the literature review related to the entire research work. Details of the 

work on controller design for SOPTD, IPTD and NIOPTD systems is reviewed in this chapter. It 

also presents the literature on controller design for cascade control loops and fragility analysis. The 

summary of the gaps identified in the literature are discussed. 

Chapter 3 presents the fractional filter IMC-PID controller design using fractional IMC filter 

for second order plus time delay processes. Then, the application of fractional filter IMC-PID 

controller for an unstable inverted pendulum system is discussed. 

In Chapter 4, an improved design of fractional filter IMC-PID controller is proposed for 

SOPTD processes using higher order fractional IMC filter. The optimum higher order fractional 

IMC filter structure is identified using systematic analytical design procedure. Also, the optimum 

Ms range is identified for robust performance of the closed loop system. 

Chapter 5 highlights the need to control the integrating processes and the control of same using 

fractional filter IMC-PID controller. The fractional filter PID controller is designed for different 

integrating processes with time delay after identifying the optimum higher order fractional IMC 

filter structure according to the analytical design procedure. β versus IAE graphs are plotted for 

easy identification of optimum IMC filter structure. The controller fragility is estimated for 

uncertainties in the controller parameters. 

Chapter 6 deals with the fractional filter fractional IMC-PID controller design for NIOPTD 

processes. It also focuses on the design of fractional filter fractional order PID controller for higher 

order systems approximated as NIOPTD systems. Also, the fragility of the controller is investigated 

in terms of robustness and performance for variation in the controller parameters. The effect of L/T 

ratio on the closed loop performance is studied for large changes in time delay. 

Chapter 7 covers the design of fractional filter IMC-PID controller for cascade loops. The 

inner loop controller is designed using integer order IMC filter. The outer loop controller is 

designed using fractional IMC filter structure for different time delay systems. The robust stability 
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of overall cascade control loop is identified through magnitude plots using complementary 

sensitivity functions. Also, the fragility is studied for controller parameter variations 

Chapter 8 draws the general conclusions and perspective of future work.  

Appendix A covers the MATLAB code and Simulink block diagram for Example 1 used in 

chapter 3. 

Appendix B includes MATLAB code and Simulink block diagram for closed loop response of 

Example 1 considered in chapter 4. Also, the MATLAB code is provided for magnitude plot. 

Appendix C provides the MATLAB code and Simulink block diagram for obtaining the closed 

loop response of Example 1 studied in chapter 5. 

Appendix D covers the MATLAB code and Simulink block diagram for Example 1 studied in 

chapter 6. 

Appendix E contains the MATLAB code and Simulink block diagram for providing the closed 

loop response of cascade control loop (Example 1) considered in chapter 7. 
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2. Literature Review 

The main purpose of a feedback control system is to assure the desired response characteristics of 

closed loop system under steady state and dynamic conditions. To ensure the response 

characteristics the system must satisfy the performance criteria: stable, minimal effect of 

disturbance, smooth response to set point change, no offset, no extra control action, robust to plant-

model mismatch and ability to deal with constraints on inputs and outputs. 

The performance of a closed loop system depends on the design and tuning of the controller 

used for control. In the process control industries, different transport delays, communication delays 

associated with sensors and transducers, computational time, time-delay effects are inevitable. 

Therefore, the design and application of controller which takes the time-delay into account are 

necessary.  

The works on the controller design for various integer order plus time delay systems (second 

order plus time delay (SOPTD), integrating plus time delay (IPTD) systems) and noninteger order 

plus time delay (NIOPTD) systems are reviewed in the following sections. Also, the summary of 

literature on controller for cascade control loops and fragility analysis is presented. 

2.1. Integer order plus time delay systems 

2.1.1. Second order plus time delay (SOPTD) systems 

Chen and Seborg (2002) designed a PI/PID controller analytically based on disturbance 

rejection using DS method. Setpoint weighting was used to suppress the overshoot in the servo 

response and derivative weighting was also used to handle the measurement noise. Rao et al. (2009) 

designed a DS based PID controller in series with lead-lag compensator, and they have used 

setpoint weighting to achieve better servo response. Srivastava et al. (2016) proposed a PID 

controller using linear quadratic regulator (LQR) and pole placement based approach. The PID 

parameters were calculated using the user defined values of closed loop damping ratio and natural 

frequency. 
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The IMC method has been the mostly used for designing the controller as the resulting tuning 

rules have only one tuning parameter. There are limited tuning rules of IMC - PID controller for 

SOPTD processes (Weigand and Kegerreis, 1972). However, the tuning rules are still evolving to 

ensure better disturbance rejection for SOPTD processes as the IMC-PID controller doesn't always 

give good disturbance rejection (sluggish response) (Vilanova and Visioli, 2012; Jeng et al., 2014; 

Lee et al., 2013). There was a work in literature addressing the implicit disturbance rejection 

capacity of closed loop controller (Alagoz et al., 2015). Lee et al.  (1998) designed a PID controller 

based on IMC scheme and the controller parameters were obtained using Maclaurin series. Further, 

they have studied different IMC based PID tuning rules to control SOPTD processes. Panda et al. 

(2004) proposed a new PID tuning rule based on closed loop trajectory specification.  

Shamsuzzoha and Lee (2007) used IMC method to design PID controller. In their work, an 

optimum IMC filter was identified by observing the closed loop response after designing the PID 

controller for different process models which gives minimum IAE for a specific Ms. In addition, 

guidelines were provided for selecting the closed loop time constant. Shamsuzzoha and Lee (2008) 

derived an IMC based PID controller cascaded with lead-lag compensator using analytical method 

for SOPTD processes. They have also used setpoint filter to minimize overshoot in the closed loop 

response. Shamsuzzoha (2015) designed an IMC - PID controller for disturbance rejection with an 

intention to have single tuning rule for different types of processes using second order IMC filter. 

Madhuranthakam et al. (2008) designed a PID controller whose parameters were optimized based 

on the minimization of IAE. Wang et al. (2016) designed an IMC-PID controller using pole-zero 

conversion with a unified IMC filter. An imaginary filter was used during the controller design to 

calculate the PID parameters. Also, setpoint weighting was used to minimize the overshoot.  

The work on IMC-PID controller design for SOPTD systems is summarized in Table 2.1. 
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Table 2.1 Reported work on IMC based PID controller design for SOPTD systems 

S.No. Author Description Remarks 

1 Lee et al.  

(1998) 

PID parameters were obtained by 

approximating the controller in s-

domain with a Maclaurin series 

Improved closed loop response 

is observed with increase in dead 

time of the process 

2 Shamsuzzoha 

and Lee (2007) 

Optimum IMC filter structures 

were proposed to design PID 

controller for different process 

models to improve the disturbance 

rejection 

Simulations are carried out for 

same degree of robustness (Ms). 

Better performance is observed 

for lag dominant processes 

3 Shamsuzzoha 

and Lee (2008) 

PIMC based PID controller cascad- 

ed with lead-lag compensator is 

proposed for improved disturbance 

rejection 

Used set point filter to suppress 

the overshoot and simulation 

results are obtained for same 

degree of robustness 

4 Shamsuzzoha 

(2015) 

Unified tuning rule is proposed for 

different process models based on 

IMC for rejecting the disturbance 

Suitable for lag dominant 

processes and used set point 

filter to reduce the overshoot 

5 Wang et al. 

(2016) 

Designed IMC based PID 

controller for different time delay 

models using an unique IMC filter 

and pole zero conversion 

Improved performance is shown 

compared to the recent tuning 

methods 

2.1.2. Integrating plus time delay (IPTD) systems 

There have been several IMC based controllers for time delayed integrating processes. Rao 

and Sree (2010) reported a simple PID controller using IMC principles. Fruehauf et al. (1994) 

developed simplified rules to tune IMC-PID controller that resemble Ziegler-Nichols tuning rules 

to give a less aggressive response. An IMC-PID controller was designed for integrating processes 

approximated as an unstable model of first order with pole located close to origin (Lee et al., 2000; 

Shamsuzzoha and Lee, 2008). A PID controller with derivative filter (Rice and Cooper, 2002) and 

a PID with filter controllers were developed for integrating processes using IMC method (Arbogast 
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and Cooper, 2007). Shamsuzzoha and Lee (2008) developed an IMC-PID controller for a group of 

integrating processes using second order to fourth order IMC filter. They have also used set point 

filter to minimize overshoot. Panda (2009) proposed an IMC-PID controller for integrating 

unstable systems using integer order IMC filter.  

Chia and Lefkowitz (2010) proposed an alternative IMC scheme for integrating processes by 

approximating the integrator by a lag filter of order one with a huge time constant. Liu and Gao 

(2011) developed a modified IMC based controller for rejecting different disturbances on the 

integrating process. Rao et al. (2011) developed a PID controller using direct synthesis method, 

IMC and stability analysis method followed by performance comparison. Zhao et al. (2011) 

proposed a sensitivity based IMC-PID controller for integrating processes approximated as a 

delayed first order model. Vanavil et al. (2014) developed an IMC based PID controller 

sequentially connected to a lead-lag filter. Jin and Liu (2014) proposed a 2Dof (degree of freedom) 

PID controller using IMC scheme. Further, a 1Dof controller was proposed with a trade-off 

between performance/robustness and servo/regulatory performance. Kumar and Sree (2016) 

proposed a PID plus lead-lag filter controller for a class of non-self-regulating processes using 

integer order IMC filter whose denominator order is chosen as one less than the numerator.  

The reported work on IMC - PID controller for integrating systems is presented in Table 2.2. 

 

 

Table 2.2 Description of the work on IMC based PID controller design for integrating systems 

S.No. Author Description Remarks 

1 Fruehauf et al. 

(1994) 

Proposed simple IMC-PID tuning 

rules for Chemical process loops. 

Also, proposed rules for setting 

filter action 

Reported that derivative action 

and filter should not be used 

together as they cancel each 

other 

2 Lee et al.,  

2000 

IMC based PID controller is 

proposed for integrating process 

approximated as unstable FOPTD 

model. PID settings were obtained 

from Maclaurin series expansion 

Improved performance was 

shown compared to the existing 

methods 
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3 Shamsuzzoha 

and Lee (2008) 

Proposed PID controller cascaded 

with lead lag compensator using 

IMC method. Simulations are 

carried out by tuning the controller 

for same Ms 

The integrating process was 

approximated as SOPTD model 

for application of proposed 

method 

4 Chia and 

Lefkowitz 

(2010) 

IMC based controller is proposed 

integrating model approximated as 

a first-order model with very large 

time constant. 

Proposed design introduced a 

second tuning parameter that 

adds flexibility in obtaining the 

desired closed loop response 

5 Liu and Gao 

(2011) 

IMC based controller is developed 

for rejecting the step or ramp type 

disturbances 

The proposed method can be 

used to reject step disturbance 

from input side in presence of 

unknown load disturbance 

6 Zhao et al. 

(2011) 

IMC based controller is designed 

for integrator approximated as first 

order model with time delay. 

Analytical approach is followed for 

obtaining the tuning parameter 

based on Ms. 

Better performance is observed 

with the proposed method. But, 

the integrator is approximated 

as a first order model 

7 Vanavil et al. 

(2014) 

IMC based PID controller in series 

with lead-lag filter is proposed for 

integrating process approximated 

as unstable FOPTD model. Tuning 

parameter was chosen using Ms. 

Tuning parameter was chosen 

as per a systematic procedure 

8 Kumar and  

Sree (2016) 

IMC - PID controller is designed 

for different integrating processes. 

Tuning parameter is chosen with a 

tradeoff between performance and 

robustness  

Controllers are tuned for pre-

defined Ms. Proposed controller 

is better in performance compa- 

red to recent tuning methods 
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2.1.3 Controller for cascade loops 

Krishnaswamy et al. (1990) and Seborg et al. (2004) addresses that the Cascade control is an 

advanced control structure widely used in chemical process industry with flow, pressure, level and 

temperature control loops to attenuate the external disturbances for improved and rapid 

performance of the single feedback loop. This structure also handles nonlinearities in the process 

elements and ensures accurate control performance in presence of large time delays. The enhanced 

performance of cascade system depends on the effective tuning of these loops (Huang et al., 1998; 

Leva and Marinelli, 2009) and PID controllers are mostly used for the purpose due to their adopted 

structure and range of tuning methods available (Song et al., 2003; Brambilla and Semino, 1992; 

Veronesi, and Visioli, 2011; Vivek and Chidambaram, 2013).  

Raja and Ali (2017) reviewed the different series cascade control structures available in the 

literature. Leva and Donida (2009) used IMC based tuning for cascade systems which offers 

flexibility in tuning.  Azar and Serrano (2014) developed an IMC based PID controller for cascade 

loop: first the controller for inner loop is designed and after that the controller for outer loop is 

designed by considering the desired response of inner loop. Vu and Le Hieu Giang (2016) 

developed FOPI controller tuning rules for cascade control systems. The analytical controller 

design using fractional IMC filter produce a fractional filter PID controller in spite of conventional 

three term PID controller (Padula and Visioli, 2014). 

The summary of work on controller design for cascade loops is presented in Table 2.3. 

Table 2.3 Work summary on controller design for cascade loops 

S.No. Author Description Remarks 

1 Huang et al., 

1998 

Cascade loop is tuned in terms of 

figures or simple equations. Perfo- 

rmance specifications are used for 

the selection of tuning parameters 

Developed with simplicity for 

application 

2 Song et al., 

2003 

The process parameters of both the 

loops are identified using relay 

feedback test. Established PID 

tuning rules are used to tune both 

the loops. 

The method was simple and can 

be easily integrated into auto 

tuning systems 
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3 Leva and 

Donida (2009) 

Proposed a tuning method for 

cascade control system based on 

single relay experiment and IMC 

Proposed method is simple and 

involves less computations 

4 Azar and 

Serrano (2014) 

IMC based PID controller is 

designed for both the loops using 

integer order IMC filter and tuned 

for specific gain and phase margin 

Low performance index values 

and good disturbance rejection 

5 Vu and Le Hieu 

Giang (2016) 

Analytical design of fractional 

order PI controller is proposed for 

cascade loop using fractional 

calculus and  IMC 

Improved performance is shown 

with the fractional controller 

2.2 Noninteger order plus time delay (NIOPTD) systems 

Oustaloup (1991) initiated the work on fractional order controllers and Podlubny (1999) 

proposed an FOPID or PIλDµ controller with the help of fractional calculus. The PIλDµ controller 

was developed for higher order systems approximated as lower order time delay systems (Monje 

et al., 2008; Padula and Visioli, 2011). Shah and Agashe (2016) reported several tuning rules for 

tuning the FOPID controller and fractional filter PID controller for integer order time delay systems 

(Sánchez et al., 2017). 

Higher order models describe the process dynamics accurately than lower order models 

(Isaksson and Graebe, 1999; Malwatkar et al., 2009). An alternative to preserve the dynamics while 

ensuring satisfactory control is to approximate higher order models as NIOPTD models (Pan and 

Das, 2013). Bongulwar and Patre (2017) proposed a FOPID controller whose parameters are 

identified based on the stability regions of closed loop system. Das et al. (2011) proposed PIλDµ 

controller tuning strategies in frequency domain and time domain for NIOPTD systems. Tavakoli-

Kakhki and Haeri (2011) proposed an analytical tuning method of FOPID controller for fractional 

order systems after reducing the higher order fractional system by retaining its dynamics. A PIλDµ 

controller was also designed using soft computing technique for delay free non-integer order 

systems (Liu et al., 2015) and by using optimization (Zeng et al., 2015). Vinopraba et al (2012) 

proposed. Maamar and Rachid (2014) proposed an IMC-PID fractional order filter controller for 
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integer order systems with and without time delay. It was extended to delay free, non-integer order 

processes and non-integer order time delay processes (Bettayeb and Mansouri, 2014). With respect 

to integer order systems, the simulations were performed on few delay free systems of second order 

and first order with added integrator. In both cases, the filter time constant and order were chosen 

depending on the phase margin and gain cross over frequency. Li et al. (2015) developed an IMC-

PID controller for NIOPTD systems using integer order IMC filter. 

The details of the work on IMC based FOPID controller for NIOPTD systems is summarized 

in Table 2.4. 

 

Table 2.4 Summary of the work on IMC based FOPID controller design for NIOPTD systems 

S.No. Author Description Remarks 

1 Das et al. (2011) Proposed a procedure to reduce 

higher order models to NIOPTD-

I and NIOPTD - II models. 

Compared the performance of 

FOPID controller using time 

domain and frequency domain 

approaches 

Concluded that each FOPID 

controller tuning approach has 

its own strength and weakness 

and its usage depends on the 

nature of control problem 

2 Tavakoli-Kakhki 

and Haeri (2011) 

A new model reduction technique 

is proposed for approximating 

complicated fractional models 

into lower order fractional 

models. Then, an analytical 

design of FOPI/FOPID controller 

was proposed based on IMC 

Proposed method was efficient 

for reduced fractional order 

models with the help of several 

simulation examples 

3 Maamar and 

Rachid (2014) 

Proposed an analytical PID 

fractional filter controller using 

fractional IMC filter structure for 

integer order systems 

Proposed controllers using only 

Taylor series approximation and 

first order Pade’s procedure for 

time delay 
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4 Bettayeb and 

Mansouri, 2014 

Proposed fractional filter FOPID 

controller using fractional IMC 

filter structure 

Taylor series approximation and 

first order Pade’s procedure for 

time delay was used during the 

controller design 

5 Li et al. (2015) Analytical design of fractional 

IMC-PID controller is proposed 

based on maximum sensitivity 

Simple controller structure and 

easier tuning method. IMC filter 

of integer order is used. 

2.3 Fragility analysis 

A prominent topic to be considered is the controller fragility to variations in the controller 

parameters. Keel and Bhattacharyya (1997) found out that the fragility analysis carried out for 

controllers designed using H2, H∞ and l2 norms provide optimal and robust performance but highly 

fragile controller for minor changes in the controller parameters. The fragile nature of the controller 

would make the system unstable. There are several works on the design of nonfragile controllers 

(Ho M-T, 2000) and an index to estimate the fragility (Alfaro, 2007) of the controllers. This 

fragility is addressed in the context of not only the robustness but also the closed loop performance 

to produce robust and optimal closed loop system (Alfaro et al., 2009; Alfaro and Vilanova, 2012; 

Padula and Visioli, 2016). The reported work on fragility of the controller is given in Table 2.5. 

 

Table 2.5 Reported work on controller fragility analysis 

S.No. Author Description Remarks 

1 Keel and 

Bhattacharyya 

(1997) 

Observed that higher order and 

highly fragile controllers were 

produced when designed under H2, 

H∞ and l1 norms.  

Deep understanding of many 

sophisticated issues is needed 

for controller design. Minimum 

change in controller parameters 

made the system unstable 

2 Ho M-T, 2000 Designed a PID controller which 

gives stable response and tolerate 

controller parameter perturbations 

Designed non-fragile PID 

controller  
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3 Alfaro, 2007 Proposed fragility index for PID 

controllers 

Fragility of different controllers 

can be made for a specific 

perturbation in the controller 

parameters 

4 Alfaro and 

Vilanova 

(2012) 

Proposed an index for measuring the 

fragility in terms of robustness and 

performance 

Controller fragility depends on 

both the tuning rule design 

considerations and controller 

implementation 

2.4 Summary 

It is observed from literature that there is more work on the design of PID controller using 

IMC method for integer order time delays systems (second order systems and integrating plus time 

delay systems). Moreover, integer order IMC filter structures have been used in the previous works. 

There is lack of work on the design of fractional filter controller using IMC method. The little work 

reported in the literature used lower order fractional IMC filter structure (Maamar and Rachid, 

2014; Bettayeb and Mansouri, 2014; Li et al., 2015) to design controller for integer and noninteger 

order systems. 

It is found that there is a gap on the design of fractional filter controller using higher order 

fractional IMC filter structures. In addition, it would be beneficial to include higher order Pade’s 

approximation for time delay in the design. It would be good to develop a generalized systematic 

procedure for identifying the optimum fractional IMC filter structure and to identify the tuning 

parameters based on robustness (Ms). It was also found that the researchers are observing the closed 

loop performance for perturbations in the process parameters but not for perturbations in the 

controller parameters. Hence, the performance of proposed controller for perturbations in their 

parameters need to be studied. This can be achieved through the fragility analysis (Alfaro, 2007; 

Alfaro and Vilanova, 2012). 
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3. Fractional filter IMC-PID controller design for SOPTD 

processes* 

In this chapter, a simple method of designing a fractional filter IMC-PID controller is proposed for 

second order plus time delay (SOPTD) processes using IMC scheme. There has been limited 

number of tuning rules for SOPTD processes developed using direct synthesis method and IMC 

method. The proposed fractional filter IMC-PID controller using fractional IMC filter results in a 

controller structure composed of PID controller cascaded with fractional filter term. Simulations 

have been performed on several second order lag dominant and delay significant processes. 

Robustness checks are performed for variations in the process parameters and robustness analysis 

is carried out using sensitivity functions. The proposed controller results in an enhanced control 

performance for nominal process parameters and with parameter variations. In addition, the effect 

of measurement noise is also studied for set point tracking and load disturbance variations. A case 

study of inverted pendulum system is considered to validate the performance of proposed fractional 

filter PID controller. The system is stabilized by using a compensatory function to cancel out the 

unstable poles and zeros in the model. Now, the controller is designed for the stabilized model 

producing a PID controller along with fractional filter. The simulations are performed for set point 

tracking and disturbance rejection with nominal process model and with perturbations. The results 

show an improvement in the control performance. Further, robustness analysis is done to check the 

stability of the closed loop system for parameter uncertainties. 

3.1. Fractional filter IMC-PID controller design for second order plus 

time delay processes 

3.1.1. Introduction 

Proportional Integral Derivative (PID) controller has been the main choice for industrial sector 

applications from centuries. In spite of the advancements in control, PID controller is still being  

*This work is published in Cogent Engineering (Taylor Francis) - https://doi.org/10.1080/23311916.2017.1366888; 

the application in section 3.2 is published in IEEE explore – doi:10.1109/ICSTM.2017.8089195 
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used by 90% of the applications due to its ability to control wide range of industrial processes 

(Shamsuzzoha, 2013). Moreover, the simple structure and the availability of tuning rules contribute 

to the wider use of PID controller (Astrom and Hagglund, 1995; Skogestad, 2003). However, the 

controller tuning methods are still evolving to ensure improved closed loop performance of the 

processes as they are associated with time delays, external perturbations and non-linearities 

(Vilanova and Visioli, 2012; Silva et al., 2007; Lee et al., 2013; Jeng et al., 2014). The real 

processes need to be approximated as lower order models for the application of PID tuning rules. 

The SOPTD models represent better dynamics of the processes than FOPTD models. The PID 

tuning rules for SOPTD processes are less (Panda et al., 2004; Weigand et al., 1972) in number 

compared to FOPTD processes. Hence, the current work is carried out on SOPTD processes. 

The direct synthesis (DS) method and internal model control (IMC) schemes are mostly used 

for designing the controller for SOPTD processes (Chen and Seborg, 2002; Lee et al., 1998; Panda 

et al., 2004). DS controllers are designed for the desired trajectory of the closed loop transfer 

function. But, the design not necessarily results in a PID form of controller. Direct synthesis 

controllers are suitable for set point tracking and don't give satisfactory performance for 

disturbance rejection. The IMC based design results in a PID controller structure by proper 

approximation of the process model. Several controller tuning methods based on IMC-PID method 

have been proposed for SOPTD processes. The design was based on the selection of optimum IMC 

filter and controller structure (Shamsuzzoha and Lee, 2008; Shamsuzzoha and Lee, 2007). An 

analytical method of designing IMC-PID controller was proposed for all kinds of time delay 

systems (Shamsuzzoha, 2015). For improved disturbance rejection a PID controller cascaded with 

lead-lag compensator has been used (Shamsuzzoha and Lee, 2008; Rao et al., 2009). Further, the 

overshoot in servo response was reduced by utilizing set point weighting. An optimal tuning 

method for SOPTD processes by optimizing IAE was also proposed (Madhuranthakam et al., 

2008). A graphical method of obtaining PID controller parameters for SOPTD processes through 

dominant pole placement approach with assured gain margin and phase margin was also proposed 

(Srivastava and Pandit, 2016). 

Some of the design methods presented above are suitable for set point tracking while others 

were exclusively designed for disturbance rejection. A few of the design procedures doesn’t 

guarantee the PID form of controller structure which is widely used in industries while still 

providing better closed loop performance. Though, the IMC based methods had only one tuning 
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parameter they have used set point weighting and set point filter along with controller to suppress 

the overshoot. So, there was a need to choose the weighting factor or filter parameter along with 

the controller settings. Recently, an IMC-PID controller was proposed using pole zero conversion 

with a unified IMC filter structure (Wang et al., 2016). The design also used derivative coefficient 

weighting along with pole zero conversion to obtain the controller settings for SOPTD processes.  

Also, the overshoot was minimized with set point weighting technique.  Majority of the controllers 

designed for SOPTD processes were based on the use of higher order IMC filter (second to fourth 

order) and by using optimization. The current work focuses on the design of a simple IMC-PID 

controller using fractional IMC filter for SOPTD processes. The resulting controller structure 

consists of a PID in series with fractional filter. The performance metrics like ISE, IAE, %OS and 

Ms are used to estimate the closed loop performance of SOPTD processes. The effectiveness of the 

present method is illustrated with simulations carried out on over damped and critically damped 

SOPTD processes using MATLAB and Simulink. In addition, the simulation is carried out on a 

higher order process reduced to SOPTD process. The effects on process output performance in 

presence of parametric uncertainties and output noise have also been discussed. 

3.1.2. Fractional filter IMC-PID controller design 

 

Fig 3.1 Block diagram: (a) IMC scheme (b) feedback control structure 

The IMC scheme and feedback control loop with internal blocks are shown in Fig 3.1, where G(s), 

G̃(s), GIMC(s) and GC(s) representing process, process model, IMC controller and transfer function 

of the traditional controller. Let r, y, u and d be the set point, controlled variable, control input and 

disturbance respectively.  

The controller design using IMC method is given as follows: 
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1) Decompose the process model into non-invertible and invertible parts 

G̃(s)=G̃
+
(s)G̃

-
(s)          (3.1) 

Where G̃
+

(s) is non-invertible contains all time delays and unstable zeros. G̃
-
(s) is invertible and 

contains minimum phase elements. 

2) The IMC controller is given by 

GIMC(s)=
f(s)

G̃
-
(s)

           (3.2) 

Where f(s) is the IMC filter 

3) The equivalent feedback controller is 

GC(s)=
GIMC(s)

1-GIMC(s)G̃(s)
          (3.3) 

3.1.2.1. Proposed fractional filter IMC-PID controller design 

The proposed controller has the structure 

Gc(s)=(fractional filter)Kp (1+
1

Tis
+Tds)       (3.4) 

Consider a SOPTD model 

G(s)=
Ke-Ls

(T1s+1)(T2s+1)
          (3.5) 

The fractional IMC filter used is 

f(s)=
1

γsp+1
           (3.6) 

Now, the IMC controller according to eq. (3.2) is 

GIMC(s)=
(T1s+1)(T2s+1)

K
(

1

γsp+1
)         (3.7) 

Finally, the fractional filter IMC-PID controller from (3.3), (3.5) & (3.7) is 

GC(s)=
[
(T1s+1)(T2s+1)

K(γsp+1)
]

1-[
(T1s+1)(T2s+1)

K(γsp+1)

Ke-Ls

(T1s+1)(T2s+1)
]
         (3.8) 

GC(s)=
(T1s+1)(T2s+1)

K[(γsp+1)-e-Ls]
          (3.9) 

The delay e-Ls expressed as a first order fraction according to Pade’s rule is 

e-Ls=
1-0.5Ls

1+0.5Ls
           (3.10) 
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Now, the controller becomes 

GC(s)=
(T1s+1)(T2s+1)

K[(γsp+1)-(
1-0.5Ls

1+0.5Ls
)]

         (3.11) 

The above equation can be written as 

GC(s)= (
0.5Ls+1

0.5γLsp+γsp-1+L
) (

T1+T2

K
) [1+

1

(T1+T2)s
+ (

T1T2

T1+T2
) s]     (3.12) 

Comparing eq. (3.4) and eq. (3.12), the controller settings are 

Kp=
T1+T2

K
;Ti=T1+T2;Td=

T1T2

T1+T2
        (3.13) 

and the fractional filter is 

filter=
0.5Ls+1

0.5γLsp+γsp-1+L
          (3.14) 

The tuning parameters γ and p were chosen based on trial and error such that IAE is minimum. 

3.1.2.2. Robustness analysis 

The closed loop stability of system should be verified in presence of model uncertainties for 

robustness of the designed controller which is derived under nominal process conditions. The 

designed controller should be able to provide better closed loop performance (good servo response 

and regulatory response) irrespective of the perturbations in process parameters which are common 

in practice. The controller that ensures good response characteristics for perturbations in system 

gain, time delay and time constant is said to be robust. This robust stability of closed loop system 

can be verified with small gain theorem (Morari and Zafiriou, 1989; Maciejowski, 1989). 

According to this theorem, the closed loop system will be robustly stable if and only if 

‖T(s)lm(s)‖<1           (3.15) 

Where T(s) & lm(s) are the complementary sensitivity function and the bound on multiplicative 

uncertainty. They are defined as 

T(s)=
G(s)Gc(s)

1+G(s)Gc(s)
          (3.16) 

lm(s)=
G(s)-G̃(s)

G̃(s)
           (3.17) 

Where G(s) is the real process representing the nominal model (eq. (3.5)); G̃(s) is the actual model 

of the process. 



Chapter 3 

30 

 

In addition to the condition for robust stability in eq. (3.15), the following inequality constraint 

must hold good to ensure robust closed loop performance 

‖T(s)lm(s)+S(s)Wm(s)‖<1         (3.18) 

Where S(s) is the sensitivity function which can be found from S(s) = 1-T(s) and Wm(s) is the 

multiplicative uncertainty bound on the sensitivity function.   

3.1.3. Results and Discussion 

The performance of different SOPTD processes with the designed controller is analyzed and was 

compared with the control performance obtained from Wang et al. (2016) tuning method. Several 

SOPTD processes representing lag dominant and balanced/delay significant process dynamics are 

considered for simulation. In addition, the simulations are performed on a higher order process 

reduced to SOPTD model. The performance metrics ISE, IAE, TV and Ms used for comparison are 

defined as follows: 

ISE= ∫ e2(t)dt
∞

0
          (3.19) 

IAE= ∫ |e(t)|dt
∞

0
          (3.20) 

Ms= max
0<ω<∞

|
1

1+G(jω)Gc(jω)
|         (3.21) 

TV= ∑ |ui+1-ui|
∞
i=0           (3.22) 

The simulation scheme is shown in Fig 3.2. The closed loop response was observed for a step 

set point changes of unit magnitude with load disturbance. The quality of response was verified by 

introducing a white noise in the output. It is to be noted that the fractional term in fractional filter 

of the controller is approximated using Oustaloup method. The frequency range used for 

approximation is 0.01-100rad/s with an approximation order of 5. 

 

Fig 3.2 Simulation scheme 



Fractional filter IMC-PID controller design for SOPTD processes 

31 

 

3.1.3.1. Example1 

Consider the delay significant SOPTD process as studied in (Lee et al., 2013)  

G1(s)=
e-2s

(s+1)(0.7s+1)
          (3.23) 

The controller obtained for the above process with proposed method is given in eq. (3.24). The 

filter time constant was chosen as γ=2 and the fractional order p=1.02. 

GC(s)= (
s+1

2s1.02+2s0.02+2
) 1.7 [1+

1

1.7s
+0.4117s]       (3.24) 

The controller settings as proposed in Wang et al. (2016) are Kc=0.435; τi=1.653 and τd=0.4. 

The weighting factor used to decrease the overshoot is 0.4. Fig 3.3 shows the servo response with 

step disturbance change of magnitude -0.5 applied at t=50s. The proposed controller results in a 

lower overshoot in the response without set point weighting which was used in Wang et al. (2016) 

method. Lower values of performance metrics ISE and IAE are observed with the proposed 

controller which are shown in Table 3.1. Fig 3.4 shows the closed loop response for perturbations 

of +10% in time delay and process gain. The effect of noise in the measurement is studied by 

introducing a white noise of zero mean and a variance of 0.0001. This is illustrated in Fig 3.5. The 

performance indices for noise rejection case are given in Table 3.2. Note that the TV value 

indicating the control effort is small with the proposed controller for the output mixed with noise. 

The values of Ms from Table 3.1 confirms the robustness of closed loop system for model 

uncertainties. Further, the robust stability of closed loop system is evaluated with a magnitude plot 

comprising complementary sensitivity function and an uncertainty of +10% in time delay. The 

robust stability characteristics are shown in Fig 3.6 and it confirms the stability condition given in 

eq. (3.15) making the system robustly stable. 

Table 3.1 Comparison of closed loop performance of the examples 

Process Method Perfect case Perturbed case Ms 

ISE IAE %OS ISE IAE %OS 

G1 Proposed 3.588 5.91 0.5 4.096 6.674 11.798 1.56 

Wang et al.  4.768 7.328 5.8 5.407 9.151 24.375 1.6 

G2 Proposed 2.563 3.991 0.5 2.787 4.508 8.152 1.77 

Wang et al.  3.025 5.034 0.55 3.323 5.893 19.88 1.787 

G3 Proposed 0.7197 1.427 0.52 0.68 1.322 0.505 1.156 

Wang et al.  0.8204 1.678 -0.18 0.7706 1.551 0.502 1.138 

G4 Proposed 5.638 8.255 0.64 6.305 10.16 11.992 2 

Wang et al.  6.822 11.43 24.37 7.919 14.67 18.476 2.16 
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Fig 3.3 Closed loop response for G1: Solid-Proposed, Dotted-Wang et al. (2016) 

 

 

Fig 3.4 Perturbed response for G1: Solid-Proposed, Dotted-Wang et al. (2016) 
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Fig 3.5 Response in presence of measurement noise for G1: Solid-Proposed, Dotted-Wang et al. 

(2016) 

 

Fig 3.6 Magnitude plot for G1: Solid-Complementary sensitivity function, Dotted-+10% 

uncertainty in L 
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3.1.3.2. Example2 

The second example considered for performance comparison is as follows (Srivastava et al., 2016):  

G2(s)=
e-1.64s

s2+3s+2
           (3.25) 

The proposed controller for this process is given in eq. (3.26) for a filter time constant of 1 and 

fractional order p is equal to 1.02. 

GC(s)= (
0.82s+1

0.82s1.02+s0.02+1.64
) 3 [1+

1

1.5s
+0.3333s]       (3.26) 

The controller used for comparison is having the settings: Kc =1.1069; τi =1.4995 and τd 

=0.3332. The servo response of the closed loop system is evaluated for step set point changes of 

unit magnitude and for step change in load applied at t=40s having a magnitude of -1. Fig 3.7 shows 

the response characteristics of the SOPTD process in (3.25) with the two controllers. The 

performance metrics are provided in Table 3.1 and an improved performance is resulted with the 

proposed controller. There is a reduction in the overshoot, ISE and IAE values which is clear from 

Table 3.1. Fig 3.8 shows the robust performance of the proposed controller for +10% change in 

time delay and process gain. An important observation here is that both the controllers give robust 

control performance as the Ms values are less than 2 which is evident from Table 3.1. 

The impact of white noise having a mean value of zero and a variance of 0.0001 in the output 

was well rejected by both the controllers but the control effort is comparatively small with the 

proposed controller structure. Fig 3.9 and Table 3.2 shows the superior performance of the designed 

controller which is clear from smaller values of ISE and IAE.  

Table 3.2 Performance comparison with measurement noise 

Process Method ISE IAE TV 

G1 Proposed 3.592 6.478 311.225 

Wang et al. 4.771 7.903 87664 

G2 Proposed 2.572 4.484 721.749 

Wang et al. 3.034 5.793 749.317 

G3 Proposed 0.7201 1.658 408.651 

Wang et al. 0.8198 1.9 757.488 

G4 Proposed 5.649 8.955 1263.2 

Wang et al. 6.825 11.91 1745.5 
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Fig 3.7 Closed loop response for G2: Solid-Proposed, Dotted-Wang et al. (2016) 

 

 

Fig 3.8 Perturbed response for G2: Solid-Proposed, Dotted-Wang et al. (2016) 
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Fig 3.9 Response in presence of measurement noise for G2: Solid-Proposed, Dotted-Wang et al. 

(2016) 

Table 3.3 Performance comparison for G2 with proposed method at different values of p 

p ISE IAE 

1.01 2.208 2.673 

1.02 2.21 2.686 

1.03 2.212 2.701 

1.04 2.214 2.718 

1.05 2.216 2.736 

1.06 2.218 2.756 

1.07 2.221 2.777 

1.08 2.224 2.798 

1.09 2.227 2.821 

1.1 2.231 2.843 

 

In addition, the servo responses with the proposed method at different values of p are compared 

and the characteristics are shown in Fig 3.10. The ISE and IAE values at each value of p are given 

in Table 3.3 which are less than ISE and IAE values used for comparison. Hence, the proposed 

method has flexibility that the fractional order p can be varied over a range producing lower values 

of ISE and IAE. The trend of T(s) satisfying the robustness bound is shown in Fig 3.11. The 

characteristics confirm the robust closed loop stability of the simulated system. 
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Fig 3.10 Comparison of closed loop response for process G2 at different values of p 

 

 

Fig 3.11 Magnitude plot for G2: Solid-Complementary sensitivity function, Dotted-+10% 

uncertainty in L 
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3.1.3.3. Example3 

Consider the second order lag dominant linear process (Dey and Mudi 2009) given by  

G3(s)=
e-0.2s

(s+1)
2           (3.27) 

The controller designed according to the design rules in Wang et al. (2016) is used for 

comparison. The controller settings as per their method are: Kc=1.4247; τi=1.9924 and τd=0.498. 

The proposed controller with the filter parameters γ= 1 and p=1.01 is 

GC(s)= (
0.1s+1

0.1s1.01+s0.01+0.2
) 2 [1+

1

2s
+0.5s]       (3.28) 

The set point tracking of closed loop system with a negative step disturbance of magnitude 0.2 

applied at t=20s is shown in Fig 3.12 while the performance metrics are given in Table 3.1. There 

is negligible overshoot in the response for both the controllers but the error values are lesser with 

the proposed controller. The similar response holds even after introducing +10% variation in time 

delay and process gain which is evident from Fig 3.13 and Table 3.1. The Ms values for both 

methods are in the standard range of 1 to 2 which ensure robust control performance. 

 

Fig 3.12 Closed loop response for G3: Solid-Proposed, Dotted-Wang et al. (2016) 
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Fig 3.13 Perturbed response for G3: Solid-Proposed, Dotted-Wang et al. (2016) 

 

 

Fig 3.14 Response in presence of measurement noise for G3: Solid-Proposed, Dotted-Wang et al. 

(2016) 



Chapter 3 

40 

 

The response of closed loop system with added noise is illustrated in Fig 3.14. The white noise 

used has a mean of zero and a variance of 0.0001. The control effort is significantly less with the 

proposed method against the method used for comparison. The ISE, IAE and TV values for this 

case are given in Table 3.2. The closed loop robust stability satisfying the stability condition in eq. 

(3.15) is shown in Fig 3.15. It is clear from the magnitude plot that the system is closed loop stable 

for parametric uncertainties. 

 

Fig 3.15 Magnitude plot for G3: Solid-Complementary sensitivity function, Dotted-+10% 

uncertainty in L 

3.1.3.4. Example4 

Consider a higher order process (Astrom and Hagglund, 1995): 

G4(s)=
1

(s+1)
8           (3.29) 

The second order approximated model for the above process is 

G4(s)=
0.336e-4.3s

s2+1.3878s+0.336
=

1.0002e-4.3s

(3.201s+1)(0.9299s+1)
       (3.30) 

The proposed controller for this process with γ=2 and p=1.1 is 

GC(s)= (
2.15s+1

4.3s1.1+2s0.1+4.3
) 4.13 [1+

1

4.1309s
+0.7205s]      (3.31) 
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The settings of the controller used for comparison are: Kc=0.7086; τi=3.9987 and τd =0.7136. 

Fig 3.16 shows the servo response for step set point change of unit magnitude and step change in 

disturbance applied at t=70s having a magnitude of  -0.2. The response for perturbed process model 

is shown in Fig 3.17 with +10% mismatch in time delay and process gain. The performance metrics 

are provided in Table 3.1. Clearly, the proposed controller outperforms the other one used for 

comparison. There is a drastic reduction in the overshoot.  

Fig 3.18 shows the closed loop response with white noise in the measurement. The TV value 

of the proposed controller with added noise is low compared to the other value. Table 3.2 confirms 

the lower values of ISE, IAE and TV. The Ms value of closed loop system with the proposed 

controller is 2 where as it is 2.17 for the other method. The value of 2 is the higher limit in the 

standard Ms range. It means that both the controllers are likely to respond to model uncertainties 

and their impact could be seen the response. 

 

Fig 3.16 Closed loop response for G4: Solid-Proposed, Dotted-Wang et al. (2016) 
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Fig 3.17 Perturbed response for G4: Solid-Proposed, Dotted-Wang et al. (2016) 

 

 

Fig 3.18 Response in presence of measurement noise for G4: Solid-Proposed, Dotted-Wang et al. 

(2016) 
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Fig 3.19 shows the servo response of the process in (3.30) for the values of p=1.01,1.02,....1.1. 

The performance metrics ISE and IAE are provided in Table 3.4. Better performance is observed 

at every value of p. Also, the magnitude plot in Fig 3.20 tells that the complementary sensitivity 

function with +10% uncertainty in time delay obeys the robust stability condition. Hence, the 

closed loop system ensures robust and stable performance even with uncertainty in the process 

parameters. 

Fig 3.19 Comparison of closed loop response for process G4 at different values of p 

 

Table 3.4 Performance comparison for G4 with proposed method at different values of p 

p ISE IAE 

1.01 5.501 6.729 

1.02 5.5 6.76 

1.03 5.5 6.796 

1.04 5.501 6.833 

1.05 5.502 6.872 

1.06 5.503 6.944 

1.07 5.506 6.951 

1.08 5.509 6.991 

1.09 5.512 7.032 

1.1 5.516 7.072 

 



Chapter 3 

44 

 

 

Fig 3.20 Magnitude plot for G4: Solid-Complementary sensitivity function, Dotted-+10% 

uncertainty in L 

The effect of fractional filter on the robustness of closed loop control system is explained with 

the help of parametric uncertainties. A better closed loop response is obtained compared to Wang 

et al. (2016) method for uncertainty in K and L for all the four examples which proves that the 

closed loop system gives robust performance for uncertainties with fractional filter PID controller. 

Further, the stability of closed loop system with the proposed controller is investigated for 

parametric uncertainties. It is proved that all the four systems used are satisfying robust stability 

condition and the illustrations are shown in Figs 3.6, 3.11, 3.15, 3.20. In addition, the closed loop 

system is robust for noise inputs and the proposed controller successfully attenuates the noise at 

high frequencies. This is clear from the magnitude of complementary sensitivity function which is 

approaching zero (Figs 3.6, 3.11, 3.15, 3.20) with increase in frequency for all the four systems.  

3.1.4. Conclusion 

A simple fractional filter IMC-PID controller is proposed for SOPTD processes using fractional 

IMC filter structure. Different case studies were analyzed for servo response and regulatory control. 

It can be concluded from the results that a good closed loop performance is obtained with nominal 
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model and actual model of the process with the proposed controller. The proposed controller 

resulted in a minimum overshoot in the response in absence of set point weighting. It was also 

shown that the effort of proposed controller is less for noise corrupted measurements. The 

robustness for parametric uncertainties is proved with robustness analysis using sensitivity 

functions. The work is in progress to extend the proposed method for unstable and non-minimum 

phase systems. 
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3.2. Fractional filter IMC-PID Controller design for an unstable 

inverted pendulum system 

3.2.1. Introduction 

The inverted pendulum system (Lundberg and Barton, 2010; Kwakernaak and Sivan, 1972; 

Khalil, 1996) is a benchmark example in the field of control and an extensive work has been carried 

out for controlling the inverted pendulum since the past half century. Many linear and non-linear 

control approaches have been proposed for this unstable, non-linear and highly perturbed system 

(Yang et al., 2009). But, the design procedures are still evolving due to the non-linear behavior of 

the system and stabilization issues. 

The widely accepted PID controller was used to control the inverted pendulum system (Wang, 

2011) because of the availability of vast range of tuning rules. Several other controllers based on 

soft computing techniques (Huang et al., 2011) are also reported in the literature but the simplest 

being PID controller due to the above advantage. But, the PID controller doesn’t always ensure 

stable response of the inverted pendulum system due to its nonlinear behavior. Hence, an improved 

controller structure is required to enhance the closed loop response of inverted pendulum system 

dealing with the nonlinearities. The fractional order control (Chen et al., 2009) is the right choice 

to handle this problem. If a fractional order PID controller is used, the tuning becomes complex 

due to the increase in number of tuning parameters. Hence, a PID controller with minor changes is 

needed to avoid the tuning complexity. 

Here, a fractional filter IMC-PID controller is proposed using fractional IMC filter in the 

controller design. The resulting controller has only two tuning parameters which are the fractional 

filter time constant and fractional order of the filter. The closed loop performance of the inverted 

pendulum system with the proposed controller is compared with the fractional order PID controller 

in Wang et al. (2016). 

3.2.2. Modeling of inverted pendulum system 

The inverted pendulum system consists of a moving cart to which pendulum is attached which 

can rotate freely when the cart moves along the track. The geometry of the inverted pendulum 
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system is shown in Fig 3.21 where M is the mass of cart; m is the mass of pendulum; l is the half 

length of pendulum; F is the driving force; ϕ and x are the angle of pendulum from upright position 

and cart position. The modeling equations of the system as in Wang et al. (2016) are given as 

follows: 

  

Fig 3.21 Geometrical diagram of the inverted pendulum system 

The modeling equations of the system as in Wang et al. (2016) are given as follows: 

mglẍ=(I+ml
2
)ϕ̈-mglϕ          (3.32) 

u=(M+m)ẍ+bẋ-mglϕ          (3.33) 

The transfer function of the inverted pendulum system after applying Laplace transform and then 

substituting system parameters given in Table 3.5 (Wang et al., 2016) is 

G(s)=
4.5455s

s3+0.1818s2-31.1818s-4.4545
         (3.34) 

The pole-zero form of eq. (3.34) is  

G(s)=
4.5455s

(s+5.604)(s+0.1428)(s-5.565)
         (3.35) 

 

 

Fig 3.22 Stabilization block diagram of inverted pendulum system 

 

Table 3.5 Inverted pendulum system parameters 

M(kg) m(kg) l(m) b I(kgm
2
) g(m/s

2
) 

0.5 0.2 0.3 0.1 0.006 9.8 
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Fig 3.22 shows the block diagram of the closed loop with compensator unit F(s). The stabilized 

model of the inverted pendulum system after canceling the unstable pole and zero by choosing F(s) 

as 
s-5.565

s
 (Wang et al., 2016) is 

G1(s)=F(S)G(s)=
4.5455

(s+5.604)(s+0.1428)
        (3.36) 

That is, 

G1(s)=
5.68

(7.0028s+1)(0.1784s+1)
         (3.37) 

3.2.3. Proposed fractional filter IMC-PID controller design 

The structure of the proposed controller is 

Gc(s)=(fractional filter) [Kp (1+
1

τis
+τds)]       (3.38) 

Consider the general transfer function of the stabilized inverted pendulum system with reference 

to eq. (3.37). 

G(s)=
K

(T1s+1)(T2s+1)
          (3.39) 

Where K is the system gain, T1 and T2 are the process time constants. 

The fractional IMC filter used is 

f(s)=
1

γsp+1
           (3.40) 

Where γ is the time constant and p is the fractional order of f(s). Now, the IMC controller is 

GIMC(s)=
(T1s+1)(T2s+1)

K
(

1

γsp+1
)         (3.41) 

Finally, the fractional filter IMC-PID controller is 

Gc(s)=

(T1s+1)(T2s+1)

K(γsp+1)

1-
(T1s+1)(T2s+1)

K(γsp+1)

K

(T1s+1)(T2s+1)

         (3.42) 

The above equation is simplified to 

Gc(s)=
(T1s+1)(T2s+1)

Kγsp
          (3.43) 

Equation (3.43) can be written as 
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GC(s)= (
1

γsp-1
) (

T1+T2

K
) [1+

1

(T1+T2)s
+ (

T1T2

T1+T2
) s]       (3.44) 

Comparing eq. (3.38) and eq. (3.44), the controller settings are 

Kp=
T1+T2

K
;τi=T1+T2;τd=

T1T2

T1+T2
         (3.45) 

and the fractional filter term is 

filter=
1

γsp-1
           (3.46) 

 The tuning parameters are the fractional filter time constant γ and fractional order of the filter 

p. The value of γ is chosen as the smallest of the process time constants. The value of p is identified 

iteratively such that the performance indices ISE and IAE are minimum. 

3.2.4. Results and discussion 

3.2.4.1. Example 1  

Consider the inverted pendulum model in eq. (3.37) 

G(s)=
5.68

(7.0028s+1)(0.1784s+1)
         (3.47) 

The process parameters are: K=5.68, T1=7.0028 and T2=0.1784. The proposed controller is 

obtained according to eq. (3.44). The value of γ is chosen as 0.1 as it is approximately equal to the 

smallest process time constant 0.17. After several simulations the fractional order p is identified as 

1.01. This optimum value identification is illustrated in Fig 3.23 and the ISE and IAE values are 

shown in Table 3.6. The proposed controller is given in eq. (3.48) 

Gproposed(s)=
1

0.1s0.01
[1.2462+

0.176

s
+0.2198s]       (3.48) 

The other controllers designed in Wang et al. (2016) are 

GPID(s)=1.2467+
0.4244

s
+0.0132s        (3.49) 

GFOPD(s)=18.1655+1.8056s0.9537        (3.50) 

GFOPID(s)=0.9997+
0.3373

s0.98
+0.0095s0.953       (3.51) 

The servo response is observed for a unit step change in setpoint and the regulatory response 

for a step magnitude of 0.5. Fig 3.24 shows the servo response for nominal process conditions. The 
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ISE and IAE values with the proposed method are less compared to other three methods which can 

be observed from Table 3.7. The ISE and IAE values with the FOPD controller are close to 

proposed method. Usually, the sensitivity Ms values for unstable systems may not lie in the standard 

range of 1 to 2 to ensure robust performance. But, the Ms values in this case are in the range of 1 

to 1.15 which means that they are close to the lower bound of standard range. So, the probability 

of ensuring robust closed loop performance is 0.5. Similarly, the regulatory response under nominal 

process conditions is shown in Fig 3.25 and performance indices are listed in Table 3.7. It is 

observed from Table 3.7 that the proposed method is giving superior performance which is evident 

in terms of smaller values of ISE, IAE and TV. 

 

 

Fig 3.23 Servo response for variation of fractional order p 

 

Table 3.6 Servo response for variation of fractional order p with proposed method 

p ISE IAE 

1.01 0.0585 0.0953 

1.02 0.0597 0.0975 

1.04 0.0622 0.1051 

1.06 0.0649 0.1137 

1.08 0.0677 0.1225 
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Fig 3.24 Servo response under nominal process conditions: solid - proposed, dashed - PID, dash 

dot - FOPD, dotted – FOPID 

 

Fig 3.25 Regulatory response under nominal process conditions: solid - proposed, dashed - PID, 

dash dot - FOPD, dotted - FOPID 
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Table 3.7 Comparison of ISE, IAE and TV for nominal response 

Method 
Servo response Regulatory response 

Ms 
ISE IAE TV ISE IAE TV 

Proposed 0.0585 0.0965 187.3219 0.004 0.1378 0.506 1 

PID 0.5157 0.9641 2.4214 0.2047 0.9438 0.557 1.152 

FOPD 0.06 0.146 140.0509 0.0035 0.1315 0.6045 1.052 

FOPID 0.6104 1.086 1.4271 0.3141 1.181 0.5468 1.131 

 

The closed loop performance for perturbation of +30% in K is shown in Fig 3.26 and Fig 3.27. 

It is clear from the figures that the proposed method is giving better servo and regulatory 

performance under perturbed process conditions. This is evident from the ISE, IAE and TV values 

in Table 3.8. The TV value for servo performance is high with the proposed method whereas the 

ISE and IAE values are low compared to the other three methods. In case of regulatory performance 

for perturbed case, the ISE and IAE values with the proposed method and FOPD method are almost 

same but the TV value is smaller than the other three methods. 

 

 

Fig 3.26 Servo response for perturbation: solid-proposed, dashed-PID, dash dot-FOPD, dotted-

FOPID 
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Table 3.8 Comparison of ISE, IAE and TV for perturbed response 

Method 
Servo response Regulatory response 

ISE IAE TV ISE IAE TV 

Proposed 0.0478 0.076 195.7574 0.004 0.1382 0.5085 

PID 0.4249 0.8132 2.465 0.213 0.9516 0.5631 

FOPD 0.0504 0.1214 145.8854 0.0035 0.1322 0.6176 

FOPID 0.502 0.923 1.4678 0.3328 1.206 0.5554 

 

 

Fig 3.27 Regulatory response for perturbation: solid-proposed, dashed-PID, dash dot-FOPD, 

dotted-FOPID 

The robust stability of the closed loop system is assessed for +20% uncertainty and +80% 

uncertainty in process time constant T1 and is illustrated in Fig 3.28. All the four methods satisfy 

the robust stability condition provided in eq. (3.15). Further increase in uncertainty causes the four 

complementary sensitivity function lines to cross the uncertainty bound line and hence violating 

the stability condition. Therefore, +80% with a tolerance of +5% is the bound on multiplicative 

uncertainty. Finally, the closed loop system is robustly stable with all the four controllers which 

can be observed from the magnitude plot. 
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Fig 3.28 Magnitude plot 

3.2.5. Conclusion 

A fractional filter IMC-PID controller is proposed for inverted pendulum system after stabilizing 

its model by eliminating unstable poles and zeros. The design had used first order fractional IMC 

filter. The simulation results showed that the proposed method is giving superior servo and 

regulatory performance compared to the other three methods for nominal and perturbed process 

model. The control effort with the proposed method is less especially for disturbance rejection. The 

robust stability of the closed loop system is proved for parametric uncertainties. 
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4. Enhanced fractional filter IMC-PID controller for 

improved disturbance rejection of SOPTD processes* 

A modified fractional internal model control (IMC) filter structure is proposed to design a fractional 

filter Proportional-Integral-Derivative (FFPID) controller for improved disturbance rejection of 

second order plus time delay (SOPTD) processes. The proposed method aims at improving the 

disturbance rejection of slow chemical processes as the tuning rules for such processes are limited. 

The present design also considers the higher order approximation for time delay as it gives 

improved response for higher order processes. There is an additional tuning parameter in the 

proposed IMC filter apart from the conventional IMC filter time constant, which is tuned according 

to the derived formula. The additional adjustable parameter achieves the disturbance rejection and 

the closed loop stability. The simulation results have been performed for the same degree of 

robustness (maximum sensitivity, Ms) for a fair comparison. The results show an improved 

disturbance rejection for lag dominant and delay significant SOPTD processes with the proposed 

controllers designed using higher order Pade's approximation of time delay than the proposed 

method using first order approximation and the conventional method. The closed loop robust 

performance is observed for perturbations in the process parameters and the performance is also 

observed for noise in the measurement. The robust stability analysis is carried out using sensitivity 

functions. In addition, the Ms range is also identified over which the system gives robust 

performance for the controllers designed using higher order pade's approximation of time delay 

compared to conventional method. 

4.1. Introduction 

The PID controller is still being extremely used in process control applications inspite of the 

availability of many advanced control algorithms (Shamsuzzoha, 2013; Silva et al., 2007). This is 

due to the fact that the PID controller has been provided with wide range of tuning rules and it is 

proved to give satisfactory performance (Astrom and Hagglund, 1995; Skogestad, 2003). The IMC 

method has been the mostly used for designing the controller as the resulting tuning rules have only 

*The work is published in Chemical Product and Process Modeling (De Gruyter), doi: 10.1515/cppm-2018-0012 



Chapter 4 

58 

 

one tuning parameter. There are IMC based PID tuning rules for SOPTD processes but their 

number is limited (Weigand and Kegerreis, 1972). However, the tuning rules are still evolving to 

ensure better disturbance rejection for SOPTD processes as the IMC-PID controller doesn't always 

give good disturbance rejection (sluggish response) (Vilanova and Visioli, 2012; Jeng et al., 2014; 

Lee et al., 2013). There was a work in literature addressing the implicit disturbance rejection 

capacity of closed loop controller (Alagoz et al., 2015). Hence, the present work focuses on the 

design of controller for better disturbance rejection of SOPTD processes. The design uses fractional 

calculus that results in a fractional controller for precise monitoring of the closed loop system with 

the help of fractional order differentiation and integration (Miller and Ross, 1993). In practice, 

there is difficulty in adjusting the parameters of the PID controller as the industrial systems are 

often associated with parametric uncertainties, large transportation lags, nonlinearities and 

structural complexities. The performance of these integer order systems can be improved by using 

fractional order controller. Fractional order controller provides robust control with additional 

tuning parameters leading to complexity in tuning. Moreover, it was proved to give improved 

performance than integer order controllers (Podlubny, 1994; Das, 2011; Yeroglu and Tan, 2011; 

Monje et al., 2008). The fact is that the fractional derivative has the ability to model a vast range 

of dynamical systems and can control systems with higher orders and nonlinearities. 

The dominant controller design methods used for SOPTD processes are DS method and IMC 

scheme. A PI/PID controller was designed analytically based on disturbance rejection using DS 

method. Setpoint weighting was used to suppress the overshoot in the servo response and derivative 

weighting was also used to handle the measurement noise (Chen and Seborg, 2002). A PID 

controller was designed based on IMC scheme and the controller parameters were obtained using 

Maclaurin series (Lee et al., 1998). Different PID tuning rules to control SOPTD processes was 

studied with most of them being designed using IMC method. A new PID tuning rule was also 

proposed based on closed loop trajectory specification (Panda et al., 2004). Controllers designed 

using DS method doesn't give satisfactory disturbance rejection and their structure may not always 

takes the PID form. A DS based PID controller in series with lead-lag compensator is reported 

(Rao et al., 2009), and they used setpoint weighting to achieve better servo response. The IMC 

based design always results in a PID form of the controller and there are several IMC-PID tuning 

methods available in literature for SOPTD processes. In Shamsuzzoha and Lee (2007), an optimum 

IMC filter was identified by observing the closed loop response after designing the PID controller 



Enhanced Fractional filter IMC-PID controller design for SOPTD processes 

59 

 

for different process models which gives minimum IAE for a specific Ms. In addition, guidelines 

were provided for selecting the closed loop time constant. A PID controller cascaded with lead-lag 

compensator was analytically derived for SOPTD processes using IMC method. Further, setpoint 

filter was used to reduce overshoot in the closed loop response (Shamsuzzoha and Lee, 2008). An 

IMC based PID controller was designed for disturbance rejection with an intention to have single 

tuning rule for different types of processes using second order IMC filter (Shamsuzzoha, 2015). A 

PID controller was designed whose parameters were optimized based on the minimization of IAE 

(Madhuranthakam et al., 2008). A linear quadratic regulator (LQR) and pole placement based 

approach for designing PID controller is proposed (Srivastava et al., 2016). The PID parameters 

were calculated using the user defined values of closed loop damping ratio and natural frequency. 

An IMC-PID controller using pole-zero conversion is designed with a unified IMC filter (Wang et 

al., 2016). An imaginary filter was used during the controller design to calculate the PID 

parameters. Also, setpoint weighting was used to minimize the overshoot. 

The various IMC based PID controller design methods cited above have used integer order 

IMC filter for their design. Some of them were suitable for either setpoint tracking or disturbance 

rejection. Moreover, they have used setpoint weighting/setpoint filter for suppressing the overshoot 

to improve the servo response. Hence, there is a need to devise new tuning rules for improved 

closed loop performance of SOPTD processes especially disturbance rejection. Hence, the present 

work focuses on the design of controller using fractional IMC filter. The authors have proposed a 

fractional filter IMC-PID controller for SOPTD processes using first order fractional IMC filter in 

the earlier chapter. The tuning parameters were chosen iteratively such that ISE and IAE are 

minimum. The improved closed loop performance with the first order fractional IMC filter 

motivated to design FFPID controller using higher order fractional IMC filter structure. In the 

current work, a FFPID controller is designed using optimum higher order fractional IMC filter for 

a standard Ms as the higher order IMC filter was proved to give better performance for SOPTD 

processes. The novelty of the work lies in finding the optimum higher order fractional IMC filter 

structure and to observe the effect of time delay approximations used during the controller design 

on the closed loop response especially disturbance rejection. A systematic procedure is developed 

to find the optimum IMC filter structure for same robustness. The proposed method improves the 

disturbance rejection through the modified fractional IMC filter structure by cancelling the 

dominant pole in the process. The resulting controller has an additional adjustable parameter apart 
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from filter time constant which offer flexibility in controller tuning. Further, a higher order Pade's 

approximation i.e., the generally encountered second order approximation (Vajta, 2000; Kuo, 

1991), 1/2 order approximation and 2/3 order approximation of time delay (the order of numerator 

is one less than that of denominator) which gives better step response is used during the design (Vu 

et al., 2017). The ISE, IAE, TV and Ms are used to assess the closed loop performance of SOPTD 

processes. 

4.2. Fractional filter IMC-PID Controller design using fractional 

IMC filter 

4.2.1. Internal model control 

The IMC design procedure is same as given in Chapter 3 except for the use of higher order 

fractional IMC filter structure. The modified fractional IMC filter used here is given by, 

f(s)=
(βs+1)n

(γsp+1)n+1
           (4.1) 

The filter order ‘n’ must be large enough such that the IMC controller is realizable; γ is an 

adjustable parameter that affects the speed of response and β improves the disturbance rejection by 

cancelling the dominant pole of Gm which is determined by eq. (4.2) 

(1-GmCIMC)s=
-1

T1

= 0          (4.2) 

where T1 is the dominant pole of Gm. 

4.2.2. Proposed controller design using fractional IMC filter 

The current work uses a fractional IMC filter (eq. (4.1)) with n=1 for designing the controller 

according to the IMC design procedure. The purpose of numerator term in the filter is to cancel out 

the system's dominant pole for effective disturbance rejection. The resulting structure consists of a 

PID term cascaded with fractional filter term. The resulting controller remains same for all the 

proposed methods (for different approximations of time delay) except for the variation in fractional 

filter term. The tuning of this fractional filter term is sufficient to assure improved closed loop 

response without having to use setpoint weighting/setpoint filter. The proposed controller is 

obtained as follows: 
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The proposed controller structure is 

C(s)=(fractional filter)Kp [1+
1

Tis
+Tds]       (4.3) 

Consider a SOPTD model 

Gm(s)=
Ke-Ls

(T1s+1)(T2s+1)
          (4.4) 

The optimum fractional IMC filter structure used is 

f(s)=
βs+1

(γsp+1)2
           (4.5) 

Where γ is the fractional filter time constant, β additional degree of freedom. Now, the IMC 

controller is 

CIMC(s)= [
(T1s+1)(T2s+1)

K
] [

βs+1

(γsp+1)2
]        (4.6) 

Finally, the fractional filter IMC-PID controller according to equations (4.4) and (4.6) is 

C(s)=
[
(T1s+1)(T2s+1)(βs+1)

K(γsp+1)2 ]

[1-
(T1s+1)(T2s+1)(βs+1)

K(γsp+1)2 ][
Ke-Ls

(T1s+1)(T2s+1)
]
        (4.7) 

C(s)=
(T1s+1)(T2s+1)(βs+1)

K[(γsp+1)2-(βs+1)e-Ls]
         (4.8) 

Now, the final controller expression can be obtained by approximating the delay term using Pade's 

approximation of different order. The first, second, 2/3 order and 1/2 order Pade's approximation 

of time delay are listed in Table 4.1. By using these approximations for time delay, the general 

controller structure obtained is 

C(s)=(fractional filter) (
T1+T2

K
) [1+

1

(T1+T2)s
+ (

T1T2

T1+T2
) s]     (4.9) 

The proportional, integral and derivative terms for the four proposed methods are: 

kP=
T1+T2

K
;Ti=T1+T2;Td=

T1T2

T1+T2
         (4.10) 

Table 4.1 Pade's approximation of time delay term 

Pade's approximation of e
-LS

 

First order (1-0.5Ls)/(1+0.5Ls) 

Second order [1-(L 2⁄ )s+(L
2

12⁄ )s2] [1+(L 2⁄ )s+(L
2

12⁄ )s2]⁄   

2/3 order (60-24Ls+3L
2
s2)/(60+36Ls+9L

2
s2+L

3
s3) 

1/2 order (6-2Ls)/(6+4Ls+L
2
s2)
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The Kp, Ti and Td expressions with the proposed method (proposed method in chapter 3 is 

termed as conventional/proposed in this chapter) are same as given in eq. (4.10). The fractional 

filter terms for the four proposed methods and the conventional method are given in Table 4.2 

along with the tuning formula for parameter β. The controller settings Kp, Ti and Td can be obtained 

from the process parameters according to the derived formulae. The remaining parameters to be 

tuned in all the proposed controllers are γ, β and p which are the IMC filter time constant; an extra 

degree of freedom that cancels out the dominant pole and fractional order of the IMC filter. The 

optimum values of these parameters are chosen for a predefined Ms. The proper selection of these 

parameters alters the filter term of the controller, which enhances the closed loop performance. 

Hereafter, the four proposed methods are referred to as Proposed1 (design using IMC filter 

(βs+1)/(γsp+1)2 and with first order Pade's approximation of time delay); Proposed2 (design using 

IMC filter (βs+1)/(γsp+1)2 and with second order Pade's approximation of time delay); Proposed3 

(design using IMC filter (βs+1)/(γsp+1)2 and with 2/3 Pade's approximation of time delay) and 

Proposed4 (design using IMC filter (βs+1)/(γsp+1)2 and with 1/2 Pade's approximation of time 

delay). 

Table 4.2 Fractional filter terms in the proposed controllers 

Method Fractional filter term 

Proposed1 0.5βLs2+(β+0.5L)s+1

0.5γ2Ls2p+γ2s2p-1+γLsp+0.5βLs+2γsp-1+(L-β)
  

Proposed2 βL2

12
s3+(

βL

2
+

L2

12
)s2+(

L

2
+β)s+1

γ2L2

12
s2p+1+

γ2L

2
s2p+

γL2

6
sp+1-

βL2

12
s2+γ2s2p-1+γLsp+

βL

2
s+2γsp-1+(L-β)  

Proposed3 βL3s4+(L3+9βL2)s3+(9L2+36βL)s2+(36L+60β)s+60

γ2L3s2p+2+9γ2L2s2p+1+2γL3sp+2+36γ2Ls2p+18γL2sp+1+(L3-3βL2)s2

+60γ2s2p-1+72γLsp+(6L2+24βL)s+120γsp-1+(60L-60β)
  

Proposed4 βL2s3+(L2+4βL)s2+(4L+6β)s+6

γ2L2s2p+1+4γ2Ls2p+2γL2sp+1+6γ2s2p-1+8γLsp+(L2+2βL)s+12γsp-1+(6L-6β)

  

Proposed  0.5Ls+1

0.5γLsp+γsp-1+L
  

β=T1 {1- [γ (
-1

T1

)
p

+1]
2

e
-L

T1}

  

4.3. Closed loop performance, robustness and fragility analysis 

4.3.1. Performance analysis 
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The closed loop performance is observed for a unit step change in R and a step change in D of 

different magnitude. Also, the performance is observed for perturbations of +10% in time delay 

and gain. White noise with zero mean and a variance of 0.1 is introduced in the output to check the 

performance of closed loop system. The closed loop performance is assessed by using ISE, IAE, 

TV and Ms which are given in equations (4.11) - (4.14). 

ISE=∫ e2(t)dt
∞

0
          (4.11) 

IAE= ∫ |e(t)|dt
∞

0
          (4.12) 

TV=∑ |ui+1-ui|
∞
i=0           (4.13) 

Ms= max
0<ω<∞

|
1

1+C(jω)G(jω)
|          (4.14) 

4.3.2. Robustness analysis 

The closed loop stability must be assessed for the nominal process conditions and with uncertainties 

as they practically exist in all the processes. Hence, the closed loop system must ensure a robust 

and stable control performance for parametric uncertainties with the proposed controller. This is 

verified with the following robust stability condition (Maciejowski, 1989; Morari and Zafiriou, 

1989) 

‖lm(jω)T(jω)‖<1∀ω∈(-∞,∞)         (4.15) 

Where T(s)
s=jω

=
C(s)G(s)

1+C(s)G(s)
 -  the complementary sensitivity function; 

lm(jω)= |
G(jω)-Gm(jω)

Gm(jω)
| - Process multiplicative uncertainty bound.  

The controller must be tuned according to eq. (4.16) for uncertainty in time delay 

‖T(jω)‖∞<
1

|e-∆L-1|
   (4.16) 

4.3.3. Controller fragility analysis 

It is important to note that the closed loop system must be robust for changes in not just the process 

parameters but also the controller parameters. So, the fragility of the controller should be analyzed 

as their exactness is not guaranteed during implementation which degrades the performance of 

closed loop system. The controller fragility is checked using delta 20 fragility index (Alfaro, 2007) 

by varying all the controller parameters by +20%. The delta 20 fragility index (FIΔ20) is defined as 

follows: 
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FI∆20=
Ms∆20

Ms
-1   (4.17) 

Where MsΔ20 is the maximum sensitivity for 20% variation in controller parameters and Ms is the 

nominal maximum sensitivity. 

A controller is said to be fragile if FI∆20>0.5; nonfragile if 0.1<FI∆20≤0.5 and resilient if FI∆20≤0.1. 

In summary, the systematic steps involved in the design of proposed method are:  

Step 1: Select an SOPTD system and derive controller into the form (fractional filter)×(PID) 

Step 2: Derive controller expressions using different IMC filter structures and different Pade’s 

approximation for time delay  

Step 3: Select an IMC filter structure and derive the controller by choosing first order Pade's 

approximation of time delay 

Step 4: Using the IMC filter structure chosen in step 3, derive controllers using second order Pade's 

approximation of time delay and 2/3 order Pade's approximation of time delay 

Step 5: After steps 3 & 4, the PID terms remain same for all the controllers derived with a variation 

in the fractional filter term. 

Step 6: Observe the parameters to be selected from the derived controllers 

Step 7: Kp, Ti and Td are obtained from the process parameters using the derived expressions 

Step 8: Unknown parameters to be selected in the controller are γ, β and p 

Step 9: Select an initial value for p (starting with 1.01) and γ  

Observation: p should always be chosen as a value above 1. In the present algorithm, the initial 

value for p is chosen as 1.01. If the fractional value of p is increased, the overshoot increases and 

the errors (IAE) too. The authors have already presented it in their earlier work (previous chapter) 

about the effect of a change in p on the closed loop response. 

Step 10: Obtain β according to the derived expression such that the Ms is equal to the predefined 

value  

Step 11: If step 10 is not met, repeat steps 9 and 10 

Step 12: Record the ISE and IAE values from the response with the selected controller parameters 

for one IMC filter structure 

Step 13: Change the IMC filter structure and repeat steps 3 to 12 

Step 14: Select the optimum IMC filter structure from the bar chart drawn using ISE and IAE 

values obtained from the response with all controllers designed using different IMC filter structures 

and different Pade's approximation of time delay 
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4.4. Simulation results and discussion 

This section is dedicated to the selection of optimum fractional IMC filter structure and simulation 

study. The effectiveness of the proposed FFPID controller is examined by considering five different 

SOPTD processes. The simulations have been performed on several second order examples. The 

control scheme used for simulations is the standard feedback loop.  

4.4.1. Optimum fractional IMC filter structure for fractional filter IMC-PID 

controller design 

The selection of IMC filter is very important as it produces the best PID controller. The "best" here 

means minimizing performance measures ISE and IAE for a predefined Ms (Shamsuzzoha and Lee, 

2007; Horn et al., 1993).  

 

Fig 4.1 Comparison of ISE and IAE values for identification of optimum IMC filter: A - IMC filter 

1/(γsp+1)2+first order pade's approximation of L; B - IMC filter 1/(γsp+1)2+second order Pade's 

approximation of L; C - IMC filter 1/(γsp+1)2+2/3 Pade's approximation of L; D - Proposed1; E - 

Proposed2; F - Proposed3;  G - IMC filter (βs+1)2/(γsp+1)3+first order pade's approximation of L; 

H - IMC filter (βs+1)2/(γsp+1)3+second order pade's approximation of L; I - IMC filter 

(βs+1)2/(γsp+1)3+2/3 pade's approximation of L; J - Proposed method 
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The optimum fractional IMC filter structure used in the current paper is identified by 

comparing the closed loop performance of different SOPTD processes with the controllers 

designed using different IMC filters. The smallest values of ISE and IAE for a fixed Ms were used 

as measurements to identify the optimum filter structure and these values for different controllers 

are shown as a bar chart in Fig 4.1. It was found that the design using IMC filter (eq. (4.1) with 

n=1) along with second order Pade's approximation of time delay (Proposed2) and 2/3 order Pade's 

approximation of time delay (Proposed3) is better in terms of smaller ISE and IAE. Hence, the 

IMC filter in eq. (4.1) with n=1 is identified as optimum filter structure and simulation results were 

presented with the controllers designed using this optimum filter structure. Though the Proposed1 

method is giving a poor performance (Fig 4.1), this case is still considered for closed loop 

performance comparison in the subsequent sections. But, this case (Proposed1) is not considered 

in identifying Ms range over which the system gives a robust performance. 

4.4.2. Example 1 

Consider the delay significant SOPTD process as studied in Lee et al. (2013) 

Gm(s)=
e-2s

(s+1)(0.7s+1)
          (4.18) 

The PID controller settings for Proposed1, Proposed2, Proposed3, Proposed4 and proposed 

methods are Kp=1.7, Ti=1.7 and Td=0.4117. The corresponding fractional filter terms are listed in 

Table 6.3. The controller settings according to Wang et al., (2016) are Kp=0.435; Ti=1.653 and 

Td=0.4 and the setpoint weighting factor is 0.4. The disturbance input used is a step signal with a 

magnitude of -0.5.  

Table 4.3 Tuning parameters and fractional filter terms for Example 1 

Method γ β P Fractional filter term 

Proposed1 1.165 0.366 1.02 0.336s2+1.366s+1

1.357s2.04+1.357s1.04+2.33s1.02+0.366s+2.33s0.02+1.634
  

Proposed2 0.96 0.480 1.02 0.16s3+0.813s2+1.48s+1

0.307s3.04+0.922s2.04+0.64s2.02-0.16s2+0.922s1.04+1.92s1.02

+0.48s+1.92s0.02+1.52   

Proposed3 0.95 0.485 1.02 3.884s4+25.478s3+70.956s2+101.13s+60

7.22s4.04+32.49s3.04+15.2s3.02+64.98s2.04+68.4s2.02+2.174s2

+54.15s1.04+136.8s1.02+47.304s+114s0.02+90.87   

Proposed4 1.03 0.442 1.02 1.7696s3+7.5392s2+10.6544s+6

4.2436s3.04+8.4872s2.04+8.24s2.02+6.3654s1.04+16.48s1.02

+5.7696s+12.36s0.02+9.3456

  

Proposed 2 - 1.02 
s+1

1.635s1.02+1.635s0.02+2
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The servo and regulatory response for nominal process conditions is shown in Fig 4.2 and for 

perturbations in process parameters is shown in Fig 4.3. The system performance in the presence 

of output white noise is shown in Fig 4.4. The performance measures ISE, IAE and TV are recorded 

for unique Ms value of 1.64. These values for the above three input changes are presented in Tables 

4.4-4.6.  

 

Table 4.4 Performance measures of Example 1 for the perfect process model 

Method Setpoint change Load change Ms 

ISE IAE TV ISE IAE TV 

Proposed1 3.161 3.915 12.229 0.577 1.946 0.511 1.64 

Proposed2 2.786 3.443 23.736 0.480 1.709 0.506 1.64 

Proposed3 2.771 3.424 24.183 0.476 1.697 0.506 1.64 

Proposed4 2.905 3.612 18.739 0.511 1.798 0.507 1.64 

Proposed 2.871 3.591 30.321 0.505 1.792 0.502 1.64 

Wang et al. (2016) 4.148 5.231 0.982 0.621 2.097 0.570 1.64 

 

Table 4.5 Performance measures of Example 1 for the perturbed process model 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 3.267 4.187 12.403 0.709 2.152 0.619 

Proposed2 2.911 3.665 23.937 0.593 1.859 0.607 

Proposed3 2.898 3.638 24.388 0.588 1.845 0.604 

Proposed4 3.02 3.78 18.912 0.629 1.906 0.594 

Proposed 2.981 3.745 30.493 0.62 1.906 0.609 

Wang et al. (2016) 4.233 5.526 1.100 0.769 2.443 0.684 

 

Table 4.6 Performance measures in the presence of output noise 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 8.201 15.55 2185.8 5.728 13.57 2182.9 

Proposed2 7.812 15.21 4240.6 5.618 13.46 4234.8 

Proposed3 7.8 15.21 4390.8 5.616 13.46 4384.9 

Proposed4 7.931 15.31 3395.1 5.654 13.49 3390.5 

Proposed 7.906 15.29 5488.1 5.65 13.49 5480.8 

Wang et al. (2016) 9.092 16.26 6760.2 5.774 13.63 6693.1 
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Fig 4.2 Closed loop response of Example 1 for nominal process conditions 

 

Fig 4.3 Closed loop response of Example 1 for perturbations 
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Fig 4.4 Closed loop response of Example 1 with measurement noise 

It is evident from these results that the Proposed3 method is providing better performance with 

lower values of ISE and IAE. The TV value for nominal process conditions and perturbations is 

less with Proposed3 method especially for disturbance rejection. The TV value for noise case is 

slightly high compared to Proposed2 method while it is smaller compared to conventional method. 

It is observed that the ISE and IAE values are decreasing with the increase in the order of pade's 

approximation for servo and regulation while the TV is increasing for servo response. 

The robust stability analysis is shown through magnitude plot in Fig 4.5 for +10% uncertainty 

in time delay. All the Proposed and old methods are stable by obeying the stability condition in eq. 

(4.16). The Proposed1 method is more robust compared to other methods. The effect of  on the 

robust stability of closed loop system is also analyzed and is shown through magnitude plot in Fig 

4.5. It can be observed that all the proposed methods are robustly stable.  Further, the closed loop 

response for various Ms values are observed to know the range of Ms over which the response is 

robust. It was found that robust Ms range is 1.64-1.9 for Proposed2 and Proposed3 methods 

compared to conventional method. This Ms range is identified from the Ms versus ISE, IAE and 

TV graphs shown in Fig 4.6 and Fig 4.7. The Proposed3 method is superior in performance for this 

robust Ms range. 
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Fig 4.5 Example 1 Magnitude plot: (a) for +10% uncertainty in L (b) for +10% uncertainty in L 

and γ 

 

Fig 4.6 Ms versus ISE, IAE and TV for identification of robust servo performance of Example 1 
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Fig 4.7 Ms versus ISE, IAE and TV for identification of robust regulatory performance of 

Example 1 

4.4.3. Example 2 

The second example (Srivastava et al., 2016) considered for performance comparison is as follows: 

Gm(s)=
e-1.64s

s2+3s+2
           (4.19) 

The PID controller settings for all the proposed methods and conventional method are Kp=3, 

Ti=1.5 and Td=0.3333. The associated fractional filter terms are shown in Table 4.7 respectively. 

The disturbance input used is a step signal of magnitude -1. The closed loop response for different 

input changes are presented in Figs 4.8-4.10 for fixed Ms of 1.7 and the respective ISE, IAE and 

TV values are listed in Tables 4.8-4.10. The Proposed3 method is identified to be better both for 

servo and regulation followed by Proposed2 method. All the Proposed methods are robust which 

is shown through magnitude plot in Fig 4.11. 
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Table 4.7 Tuning parameters and fractional filter terms for Example 2 

Method γ β P Fractional filter term 

Proposed1 0.835 0.347 1.02 0.2846s2+1.1671s+1

0.572s2.04+0.697s1.04+1.369s1.02+0.285s+1.67s0.02+1.293
  

Proposed2 0.68 0.453 1.02 0.1015s3+0.5953s2+1.2727s+1

0.104s3.04+0.379s2.04+0.305s2.02-0.101s2+0.462s1.04

+1.115s1.02+0.371s+1.36s0.02+1.187   

Proposed3 0.67 0.459 1.02 2.025s4+15.526s3+51.318s2+86.592s+60

1.98s4.04+10.866s3.04+5.91s3.02+26.503s2.04+32.437s2.02

+0.706s2+26.934s1.04+79.114s1.02+34.212s+80.4s0.02+70.848  

Proposed4 0.75 0.406 1.02 1.0925s3+5.3542s2+8.9972s+6

1.5129s3.04+3.69s2.04+4.0344s2.02+3.375s1.04+9.84s1.02

+4.0219s+9s0.02+7.4028

  

Proposed 1.16 - 1.02 
0.82s+1

0.951s1.02+1.16s0.02+1.61
  

 

Table 4.8 Performance measures of Example 2 for the perfect process model 

Method Setpoint change Load change Ms 

ISE IAE TV ISE IAE TV 

Proposed1 2.427 2.979 32.472 0.411 1.459 1.055 1.7 

Proposed2 2.127 2.566 66.602 0.334 1.267 1.029 1.7 

Proposed3 2.113 2.544 67.714 0.330 1.254 1.016 1.7 

Proposed4 2.248 2.743 47.037 0.366 1.361 1.020 1.7 

Proposed 2.279 2.781 61.739 0.375 1.385 1.036 1.7 

 

 
Fig 4.8 Closed loop response of Example 2 for nominal process conditions 

 



Enhanced Fractional filter IMC-PID controller design for SOPTD processes 

73 

 

 
Fig 4.9 Closed loop response of Example 2 for perturbations 

 

 
Fig 4.10 Closed loop response of Example 2 with measurement noise 

 



Chapter 4 

74 

 

 

Fig 4.11 Magnitude plot for Example 2 

 

Table 4.9 Performance measures of Example 2 for the perturbed process model 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 2.54 3.293 33 0.507 1.618 1.328 

Proposed2 2.255 2.856 67.55 0.415 1.367 1.276 

Proposed3 2.243 2.822 68.526 0.41 1.352 1.273 

Proposed4 2.364 2.957 47.406 0.452 1.452 1.242 

Proposed 2.392 3.055 62.207 0.463 1.486 1.311 

 

Table 4.10 Performance measures in the presence of output noise 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 6.56 12.4 4718.9 4.68 10.93 4711.2 

Proposed2 6.357 12.18 9306.9 4.69 10.92 9290.9 

Proposed3 6.334 12.16 9763.1 4.674 10.91 9746.9 

Proposed4 6.416 12.24 6862.9 4.66 10.9 6851.4 

Proposed 6.457 12.28 9027.9 4.688 10.93 9013.3 
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4.4.4. Example 3 

Consider the second order lag dominant linear process (Dey and Mudi, 2009) given by  

Gm(s)=
e-0.2s

(s+1)2
           (4.20) 

The PID settings for all the methods are Kp=2, Ti=2 and Td=0.5 and their corresponding fractional 

filter terms along with tuning parameters are given in Table 4.11. The regulatory response is 

observed for a step change in disturbance of magnitude -0.2. The behavior of closed loop system 

is illustrated in Figs 4.12-4.14 and the performance measures are listed in Tables 4.12-4.14 for a 

Ms of 1.7. The Proposed3 method continues to give superior performance for servo and regulation 

compared to the other methods with lower values of ISE and IAE. All the four methods used for 

comparison are stable for +10% uncertainty in L obeying the robust stability condition in eq. (4.16) 

which is illustrated in Fig 4.15.  

 

Table 4.11 Tuning parameters and fractional filter terms for Example 3 

Method γ β P Fractional filter term 

Proposed1 0.095 0.017 1.02 0.0018s2+0.1176s+1

0.00091s2.04+0.0091s1.04+0.0191s1.02+0.0018s+0.191s0.02+0.182
  

Proposed2 0.077 0.049 1.02 0.000165s3+0.0083s2+0.149s+1

0.0000199s3.04+0.000599s2.04+0.00052s2.04-0.00016s2+0.006s1.04

+0.0155s1.02+0.005s+0.1548s0.02+0.1503   

Proposed3 0.076 0.051 1.02 0.00041s4+0.026s3+0.729s2+10.272s+60

0.0000468s4.04+0.002s3.04+0.0012s3.02+0.042s2.04+0.055s2.02

+0.0019s2+0.351s1.04+1.102s1.02+0.486s+9.18s0.02+8.928   

Proposed4 0.085 0.036 1.02 0.001448s3+0.0689s2+1.0172s+6

0.000289s3.04+0.00578s2.04+0.0068s2.02+0.0433s1.04+0.136s1.02

+0.0545s+1.02s0.02+0.9828

  

Proposed 0.135 - 1.02 
0.1s+1

0.0135s1.02+0.135s0.02+0.2
  

 

 

Table 4.12 Performance measures of Example 3 for the perfect process model 

Method Setpoint change Load change Ms 

ISE IAE TV ISE IAE TV 

Proposed1 0.330 0.419 178.005 0.00135 0.073 0.234 1.7 

Proposed2 0.278 0.345 761.273 0.00091 0.06 0.229 1.7 

Proposed3 0.275 0.341 720.174 0.00089 0.059 0.227 1.7 

Proposed4 0.297 0.367 389.478 0.00108 0.065 0.222 1.7 

Proposed 0.294 0.367 560.094 0.001 0.066 0.232 1.7 
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Fig 4.12 Closed loop response of Example 3 for nominal process conditions 

 

 
Fig 4.13 Closed loop response of Example 3 for perturbations 
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Fig 4.14 Closed loop response of Example 3 with measurement noise 

 

 

Fig 4.15 Magnitude plot for Example 3 
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Table 4.13 Performance measures of Example 3 for the perturbed process model 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 0.349 0.476 184.958 0.00137 0.073 0.299 

Proposed2 0.299 0.405 799.276 0.00092 0.06 0.297 

Proposed3 0.297 0.400 764.142 0.00090 0.059 0.302 

Proposed4 0.317 0.421 401.824 0.0011 0.065 0.288 

Proposed 0.314 0.425 570.906 0.0011 0.066 0.302 

 

Table 4.14 Performance measures in the presence of output noise 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 2.926 6.096 11617 2.686 5.836 11567 

Proposed2 3.079 6.224 47927 2.89 6.01 47743 

Proposed3 3.103 6.243 47292 2.916 6.032 47103 

Proposed4 2.995 6.158 26743 2.787 5.925 26635 

Proposed 2.975 6.123 38543 2.766 5.887 38384 

 

4.4.5. Example 4 

Consider a higher order process approximated as SOPTD system (Astrom and Hagglund, 1995): 

Gm(s)=
1

(s+1)8
=

0.336e
-4.3s

s2+1.3878s+0.336
         (4.21) 

The PID settings for the proposed methods and conventional method are Kp=4.13, Ti=4.1312 and 

Td=0.7204 and their respective filter terms in the resulting controller structure are given in Table 

4.15. The disturbance input used in the closed loop system has a magnitude of -0.2.  

Table 4.15 Tuning parameters and fractional filter terms for Example 4 

Method γ β P Fractional filter term 

Proposed1 2.55 0.761 1.1 1.637s2+2.911s+1

13.98s2.2+6.502s1.2+10.965s1.1+1.637s+5.1s0.1+3.539
  

Proposed2 2.01 1.171 1.1 1.805s3+4.059s2+3.321s+1

6.225s3.2+8.686s2.2+6.194s2.1-1.805s2+4.04s1.2

+8.643s1.1+2.518s+4.02s0.1+3.129   

Proposed3 2 1.178 1.1 93.699s4+275.621s3+348.843s2+225.51s+60

318.028s4.2+665.64s3.2+318.028s3.1+619.2s2.2+665.64s2.1

+14.136s2+240s1.2+619.2s1.1+232.561s+240s0.1+187.29   

Proposed4 2.06 1.135 1.1 20.9843s3+38.0103s2+24.0094s+6

78.4641s3.2+72.9899s2.2+76.1788s2.1+25.4616s1.1

+70.864s1.1+28.2501s+24.72s0.1+18.9906

  

Proposed 3.1 - 1.1 
2.15s+1

6.665s1.1+3.1s0.1+4.3
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Figs 4.16-4.18 presents the response of closed loop system for a Ms of 1.8 and the associated ISE, 

IAE and TV values are listed in Tables 4.16-4.18. It is clear from all the Figs and Tables that the 

Proposed3 method is superior in performance followed by Proposed2 method. The robust stability 

is proved through the illustration in Fig 4.19 according to condition in eq. (4.16).  

 
Fig 4.16 Closed loop response of Example 4 for nominal process conditions 

Table 4.16 Performance measures of Example 4 for the perfect process model 

Method Setpoint change Load change Ms 

ISE IAE TV ISE IAE TV 

Proposed1 6.658 8.665 11.658 0.172 1.584 0.235 1.8 

Proposed2 5.693 7.268 28.882 0.134 1.318 0.223 1.8 

Proposed3 5.683 7.21 28.968 0.133 1.315 0.220 1.8 

Proposed4 5.809 7.439 26.293 0.138 1.366 0.222 1.8 

Proposed 5.904 7.42 48.219 0.144 1.355 0.230 1.8 

 

Table 4.17 Performance measures of Example 4 for the perturbed process model 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 7.089 9.688 11.967 0.216 1.821 0.301 

Proposed2 6.163 8.198 29.297 0.169 1.485 0.293 

Proposed3 6.153 8.135 29.356 0.168 1.477 0.291 

Proposed4 6.257 8.276 26.547 0.174 1.527 0.281 

Proposed 6.334 8.532 48.579 0.180 1.548 0.23 
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Fig 4.17 Closed loop response of Example 4 for perturbations 

 

 

Fig 4.18 Closed loop response of Example 4 with measurement noise 
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Fig 4.19 Magnitude plot for Example 4 

Table 4.18 Performance measures in the presence of output noise 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 13.78 23.51 2807.4 7.493 18.38 2806.4 

Proposed2 12.9 22.81 6986.2 7.482 18.37 6983.7 

Proposed3 12.9 22.8 7117.9 7.483 18.36 7115.3 

Proposed4 13 22.89 6456.1 7.483 18.37 6453.8 

Proposed 13.1 23 12198 7.468 18.35 12195 

4.4.6. Example 5 

Gm(s)=
e-10s

s2+2s+1
           (4.22) 

Consider a delay dominant process (Thyagarajan and Yu, 2003) given in eq. (4.22). The derived 

PID controller parameter values are Kp=2, Ti=2 and Td=0.5 applicable for the four proposed 

methods and for the conventional (proposed) method. The corresponding fractional filter terms and 

their associated tuning parameters are given in Table 4.19. The performance graphs and 

performance measures are presented in Figs 4.20-4.22 and Tables 4.20-4.22 for Ms value of 1.8. 

The Proposed3 method is found to be better in terms of low ISE, IAE and TV for regulation and 

servo response followed by Proposed2 method. 
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Table 4.19 Tuning parameters and fractional filter terms for Example 5 

Method γ β P Fractional filter term 

Proposed1 4.1 0.999 1.02 4.994s2+5.999s+1

84.5s2.04+16.81s1.04+41s1.02+4.994s+8.2s0.02+9.0012
  

Proposed2 2.78 0.999 1.02 8.328s3+13.33s2+5.999s+1

64.403s3.04+38.642s2.04+46.333s2.02-8.328s2+7.728s1.04

+27.8s1.02+4.997s+5.56s0.02+9.001   

Proposed3 2.7 0.999 1.02 999.4s4+1899.5s3+1259.8s2+419.964s+60

7290s4.04+6561s3.04+5400s3.02+2624.4s2.04+4860s2.02+700.18s2

+437.4s1.04+1944s1.02+839.856s+324s0.02+540.036   

Proposed4 3.5 0.9991 1.02 99.91s3+139.964s2+45.994s+6

1225s3.04+490s2.04+700s2.02+73.5s1.04+280s1.02

+119.982s+42s0.02+54.0054

  

Proposed 5.88 - 1.02 
5s+1

29.4s1.02+5.88s0.02+10
  

 

 
Fig 4.20 Closed loop response of Example 5 for nominal process conditions 

Table 4.20 Performance measures of Example 5 for the perfect process model 

Method Setpoint change Load change Ms 

ISE IAE TV ISE IAE TV 

Proposed1 14.36 17.47 4.640 0.539 3.482 0.225 1.8 

Proposed2 12.48 14.54 8.915 0.462 2.889 0.223 1.8 

Proposed3 12.4 14.28 9.329 0.458 2.842 0.213 1.8 

Proposed4 13.41 15.82 5.9334 0.500 3.155 0.215 1.8 

Proposed 13.23 16 12.466 0.493 3.187 0.223 1.8 
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Fig 4.21 Closed loop response of Example 5 for perturbations 

 
Fig 4.22 Closed loop response of Example 5 with measurement noise 
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Table 4.21 Performance measures of Example 5 for the perturbed process model 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 15.26 20.07 4.845 0.694 4.381 0.291 

Proposed2 13.44 16.94 9.177 0.603 3.696 0.296 

Proposed3 13.37 16.65 9.566 0.599 3.637 0.287 

Proposed4 14.27 17.88 6.109 0.645 3.901 0.273 

Proposed 14.13 18.51 12.681 0.638 4.031 0.291 

 

Table 4.22 Performance measures in the presence of output noise 

Method Setpoint change Load change 

ISE IAE TV ISE IAE TV 

Proposed1 24.68 37.68 1400.1 11.17 27.15 1399.8 

Proposed2 22.74 36.06 3065 11.15 27.08 3064.3 

Proposed3 22.65 35.95 3253.3 11.14 27.08 3252.5 

Proposed4 23.66 36.79 1932.7 11.16 27.11 1932.2 

Proposed 23.52 36.77 4420.1 11.14 27.12 4419.1 
 
Fig 4.23 shows the magnitude plot which proves the robust stability of closed loop system. All 

five methods are robustly stable but the Proposed1 method is more robust compared to the other 

three methods. The Ms range over which the system is giving robust performance is 1.7-1.9. This 

is depicted through Ms versus ISE, IAE and TV plots for servo and regulation in Fig 4.24. 

 

Fig 4.23 Magnitude plot for Example 5 
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Fig 4.24 Ms versus ISE, IAE and TV for (a) identification of robust servo performance of 

Example 5 (b) identification of robust regulatory performance of Example 5 

4.4.7. Controller fragility 

Fig 4.25 shows the variation of delta epsilon fragility index for Example 2 and Example 3. It can 

be observed from Fig 4.25 and Table 4.23 that all the proposed controllers and the controllers used 

for comparison are nonfragile for +20% change in controller parameters. It means a change of 

+20% in controller parameters is acceptable as the loss of robustness is less than 50%. It is evident 

from Fig 4.25 that the Proposed1 and conventional controllers are resilient in case of Example 2 

meaning that they lose only 10% of its robustness for +20% change in controller parameters. It is 

also observed from Fig 4.25 that all the controllers are nonfragile in case of Example 3. Further, 

the delta 20 fragility index (FIΔ20) for Example 1, Example 4 and Example 5 is presented in Table 

4.23. All the controllers are resilient in case of Example 1 and Example 5. In the case of Example 

4, Proposed1 and conventional are resilient and Proposed2, Proposed3 and Proposed4 are 

nonfragile. Hence, all the proposed controllers and the controllers used for comparison are either 

resilient or nonfragile and thus assuring robust closed loop performance. 
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Fig 4.25 Fragility index variation for Example 2 and Example 3 

Table 4.23 Controllers delta 20 fragility index (FIΔ20) for all the examples 

Method Example 1 Example 2 Example 3 Example 4 Example 5 

Proposed1 0.03 0.05 0.36 0.05 -0.013 

Proposed2 0.07 0.11 0.39 0.12 -0.002 

Proposed3 0.08 0.13 0.40 0.12 0.005 

Proposed4 0.08 0.11 0.39 0.14 0.004 

Proposed -0.016 0.07 0.33 0.08 -0.012 

Wang et al. (2016) -0.016 - - - - 

4.6. Conclusions 

An optimum fractional IMC filter of higher order is identified based on the lower values of ISE 

and IAE for same robustness (Ms). A FFPID controller is designed for SOPTD processes using this 

optimum filter and higher order Pade's approximation of time delay namely 1/2 order, second order 

and 2/3 order. Closed loop response for five different SOPTD systems is presented for changes in 

different inputs acting on the system and for parametric uncertainties. The simulation results 

demonstrate the superiority of the proposed method when various controllers are tuned to have the 

same degree of robustness in terms of Ms. Improved disturbance rejection and servo response is 
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observed with the controllers designed using optimum filter structure and 2/3 order Pade's 

approximation for time delay. This is evident even with perturbations in process parameters and in 

presence of measurement noise. It can be observed that the error values are decreasing with increase 

in the order of Pade's approximation but the control effort is slightly increasing. Hence, there is a 

compromise on the control effort to have better ISE and IAE values. The robust stability of the 

closed loop systems is verified for parametric uncertainty. The Ms range is identified over which 

the closed loop system gives robust performance. Fragility analysis is carried out for uncertainties 

in controller parameters and it is found that all the proposed controllers are either resilient or 

nonfragile for up to an uncertainty of +20% in the controller parameters for all the systems. 
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5. Design of fractional filter IMC-PID controller for enhanced 

performance of integrating processes with time delay* 

An improved fractional filter IMC-PID controller is proposed to enhance the performance of 

integrating processes after identifying the optimum higher order fractional IMC filter structure. 

The identification involves a systematic design procedure based on the minimization of IAE. The 

present design also considers different approximations for time delay. The tuning parameters are 

obtained based on the prefixed robustness (Ms). The present method is compared with recent 

methods in the literature and its superiority is demonstrated with performance measures IAE and 

TV. Enhanced output performance is obtained in terms of servo control and disturbance rejection 

for nominal process conditions; process parameter variations; and for noise in the measurement. 

Robustness analysis is performed using complementary sensitivity function and parametric 

uncertainty bounds. Also, the fragility analysis is carried out to check the sensitivity of closed loop 

system for variation in controller parameters. 

5.1. Introduction 

Maximum number of industrial processes are integrating (non-self-regulating) in nature, though 

there are many self-regulating processes. The integrating nature of the processes is usually found 

in level control systems, distillation columns, reactors, batch processes, power plants, aerospace 

control and oil industries. If the input or process conditions of such processes are varied, the output 

becomes unbounded i.e., output varies quickly and it will be difficult to revert the process to its 

operating point. Process industries predominantly use PID controllers due to the availability of a 

wide range of tuning rules to control broad class of process problems (Vilanova and Visioli, 2012). 

Many IMC based controllers have been there for time delayed integrating processes. A simple 

PID controller using IMC principles was reported for integrating processes (Rao and Sree, 2010). 

Fruehauf et al. (1994) developed simplified rules to tune IMC-PID controller that resemble Ziegler-

Nichols tuning rules to give a less aggressive response. An IMC-PID controller was designed for 

integrating processes approximated as an unstable model of first order with pole located close to 

* This work got published in the journal Indian Chemical Engineer - https://doi.org/10.1080/00194506.2019.1656553 
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origin (Lee et al., 2000; Shamsuzzoha and Lee, 2008). A PID controller with derivative filter and 

a PID with filter controllers were developed for integrating processes using IMC method (Rice and 

Cooper, 2002; Arbogast and Cooper, 2007). An IMC-PID controller was developed for a group of 

integrating processes using second order to fourth order IMC filter (Shamsuzzoha and Lee, 2008). 

Further, they have used set point filter to minimize overshoot. Panda (2009) proposed an IMC-PID 

controller for integrating unstable systems using integer order IMC filter. An alternative IMC 

scheme was proposed for integrating processes by approximating the integrator by a lag filter of 

order one with a huge time constant (Chia and Lefkowitz, 2010). A modified IMC based controller 

(Liu and Gao, 2011) was also developed for rejecting different disturbances on the integrating 

process. There was a PID controller developed using direct synthesis method, IMC and stability 

analysis method (Rao et al., 2011) followed by performance comparison. A sensitivity based IMC-

PID controller (Zhao et al., 2011) was proposed for integrating processes approximated as a 

delayed first order model. A PID controller sequentially connected to a lead-lag filter (Vanavil et 

al., 2014) was developed using IMC. Also, a 2Dof PID controller (Jin and Liu, 2014) was proposed 

using IMC scheme. Further, a 1Dof controller was proposed with a trade-off between 

performance/robustness and servo/regulatory performance. Recently, a PID controller in series 

with lead-lag filter was proposed for a class of non-self-regulating processes (Kumar and Sree, 

2016) using integer order IMC filter whose denominator order is chosen as one less than the 

numerator. 

 Fractional order control has become the research interest to control processes with long time 

delays and nonlinearities. Further, several fractional order controller tuning rules (Padula and 

Visioli, 2015; Yeroglu and Tan, 2011; Muresan et al., 2016) are also developed for different time 

delay systems. The PID controller design employing fractional IMC filter for integer order systems 

and non-integer order systems has been in focus from the past few years. Recently, an IMC-PID 

fractional order filter controller (Maâmar and Rachid, 2014) was proposed for integer order systems 

with and without time delay. It was extended to delay free, non-integer order processes and non-

integer order time delay processes (Bettayeb and Mansouri, 2014). With respect to integer order 

systems, the simulations were performed on few delay free systems of second order and first order 

with added integrator. In both cases, the filter time constant and order were chosen depending on 

the phase margin and gain cross over frequency. Further, an integer order IMC filter was used to 

develop an IMC-PID controller for non-integer order systems (Li et al., 2015). 
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 It is observed from the literature that IMC based methods have used integer order IMC filter 

of the order one and higher. Most Smith predictor based control schemes used two controllers in 

their structure. In addition, Smith Predictor cannot be recommended for open-loop unstable 

processes as it cannot eliminate steady-state error in the response for load disturbances (García and 

Albertos, 2013). Many controller structures have filter in their design which should be carefully 

designed because the filter and derivative action cancel each other if they are used together 

(Fruehauf et al., 1994). Some of the developed controllers have more tuning parameters. All the 

controllers may not assure performance and robustness. Though, there are few controllers which 

can provide improved performance, there is always a scope to improve the controller design. There 

has been limited work on the IMC-PID controller design using a fractional IMC filter. In the above 

work (Maâmar and Rachid, 2014; Bettayeb and Mansouri, 2014), the phase margin and gain 

crossover frequency should be properly selected for better performance as they decide the optimum 

parameters of the filter.  

 Here, a fractional filter IMC-PID controller is designed using a fractional IMC filter for a class 

of integrating processes. Primarily, an optimum fractional IMC filter structure is identified based 

on systematic design procedure minimizing IAE for a fixed Ms. The designed controller consists 

of a PID term cascaded with a fractional filter term that prevents the need to use setpoint filter. The 

proposed controller offers flexibility in tuning with additional degree of freedom thereby enhance 

the system’s performance. The parameters of PID term are directly obtained from process 

parameters according to the derived relations and the parameters need to be tuned are associated 

with the fractional filter term. These tuning parameters are chosen such that Ms is equal to a 

predefined value based on the systematic procedure. The simulations have been performed on 

several examples representing different integrating processes. The robust stability is assessed using 

complementary sensitivity functions under uncertainties. The simulation results show that the 

proposed method gives fairly better results compared to the recent methods. Also, the controller 

fragility analysis is carried out for uncertainties in controller parameters. 

5.2. Proposed Fractional filter IMC-PID controller design 

The controller is designed for different integrating plus time delay processes whose process models 

are given below: 
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Integrating plus time delay (IPTD) process,   

G(s)=
K

s
e-Ls   (5.1) 

Integrating first order plus time delay (IFPTD) process, 

G(s)=
K

s(Ts+1)
e-Ls   (5.2) 

Double integrating plus time delay (DIPTD) process, 

G(s)=
K

s2
e-Ls   (5.3) 

The parameters in the above processes are system gain (K), time delay (L) and time constant (T). 

The proposed structure of the IMC-PID controller using fractional IMC filter is 

C(s)=(fractional filter)Kp [1+
1

Tis
+Tds]   (5.4) 

The designed controller must give a robust and stable closed loop performance. According to the 

IMC method (Morari and Zafiriou, 1989), the feedback loop controller is 

C(s)=
CIMC(s)

1-CIMC(s)G(s)
   (5.5) 

Where CIMC(s) is the IMC controller and G(s) is the process model. The CIMC(s) is   

CIMC(s)=
1

G
-
(s)

F(s)   (5.6) 

Where )s(G
is the invertible part of G(s) and F(s) is the IMC filter which makes a realizable IMC 

controller. The fractional IMC filter structures used in this paper are: 

F(s)=
1

(γsp+1)n
; n=1,2,3   (5.7) 

F(s)=
βs+1

(γsp+1)n+1
; n=1,2   (5.8) 

F(s)=
(βs+1)2

(γsp+1)n+2
; n=1,2   (5.9) 

‘β’ is the additional degree of freedom in equations (5.8) & (5.9). The proposed controllers for 

different integrating processes are explained in the successive sections. 

5.2.1. Design for IPTD model  

Consider the process model given in eq. (5.1). The invertible portion of G(s) is  
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G
-(s)=

K

s
   (5.10) 

The fractional IMC filter used for the design is  

F(s)=
1

(γsp+1)n
   (5.11) 

Where γ is the filter time constant and p is the fractional order of the filter. The IMC controller 

utilizing equations (5.6), (5.10) & (5.11) is 

CIMC(s)=
s

K

1

(γsp+1)n
   (5.12) 

The final controller according to equations (5.1), (5.5) & (5.12) is  

C(s)=
[

s

K

1

(γsp+1)n]

[1-
s

K

1

(γsp+1)n 
K

s
e-Ls]

   (5.13) 

Eq. (5.13) can be rearranged as 

C(s)=
s

K[(γsp+1)n-e-Ls]
   (5.14) 

Similarly, C(s) for fractional IMC filter structure F(s) given in eq. (5.8) is, 

C(s)=
s(βs+1)

K[(γsp+1)n+1-(βs+1)e-Ls]
   (5.15) 

Similarly, C(s) for fractional IMC filter structure F(s) given in eq. (5.9) is, 

C(s)=
s(βs+1)

2

K[(γsp+1)n+2-(βs+1)
2
e-Ls]

   (5.16) 

Using equations (5.14) - (5.16) and by using Pade’s procedure for time delay (Table 5.1) the 

derived expressions for controller are given in Table 5.2. The controller settings given in Table 5.2 

are same for all the IMC filter structures but the difference is only in the fractional filter term. 

 

Table 5.1 Pade's approximation of time delay term 

Approximation order  Equivalent term for 𝐞−𝐋𝐬 

1st  order (1-0.5Ls)/(1+0.5Ls)  

1/2  order (6-2Ls)/(6+4Ls+L
2
s2)  

2nd order [1-(L 2⁄ )s+(L
2

12⁄ )s2] [1+(L 2⁄ )s+(L
2

12⁄ )s2]⁄   

2/3 order (60-24Ls+3L
2
s2)/(60+36Ls+9L

2
s2+L

3
s3)  
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Table 5.2 Controller settings for IPTD process 

Pade’s approximation C(s) 

1st  order (fractional filter term) (
1

K
) [1+0.5Ls]  

1/2 order (fractional filter term) (
4L

K
) [1+

1

0.6667Ls
+0.25Ls]  

2nd order (fractional filter term) (
L

2K
) [1+

1

(L 2)⁄ s
+ (

L

6
) s]  

5.2.2. Design for IFPTD model  

Considering the model in eq. (5.2) and IMC filter in eq. (5.7), the IMC controller is 

CIMC(s)=
s(Ts+1)

K

1

(γsp+1)n
   (5.17) 

The final controller transfer function obtained using the equations (5.2), (5.5) & (5.17) is 

C(s)=
[
s(Ts+1)

K

1

(γsp+1)n]

[1-
s(Ts+1)

K(γsp+1)n
K

s(Ts+1)
e-Ls]

   (5.18) 

Eq. (5.18) can be modified as follows 

C(s)=
s(Ts+1)

K[(γsp+1)n−e-Ls]
   (5.19) 

Similarly, the C(s) expressions using eq. (5.8) and eq. (5.9) are given by eq. (5.20) and eq. (5.21). 

C(s)=
s(Ts+1)(βs+1)

K[(γsp+1)n+1−(βs+1)e-Ls]
   (5.20) 

C(s)=
s(Ts+1)(βs+1)

2

K[(γsp+1)n+2-(βs+1)
2
e-Ls]

   (5.21) 

Using equations (5.19) - (5.21) and by using Table 5.1 the expressions for controller are given in 

Table 5.3. All the derived controllers differ only in the fractional filter term. 

Table 5.3 Controller settings for IFPTD process 

Pade’s approximation C(s) 

1st  order (fractional filter term) (
T+0.5L

K
) [1+

1

(T+0.5L)s
+ (

0.5TL

T+0.5L
) s]  

1/2  order (fractional filter term) (
4L

K
) [1+

1

0.6667Ls
+0.25Ls]  

2nd order (fractional filter term) (
L

2K
) [1+

1

(L 2)⁄ s
+ (

L

6
) s]  

2/3 order (fractional filter term) (
1

K
) [1+Ts] (or) (fractional filter term) (

T

K
) [1+

1

Ts
] 
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5.2.3. Design for DIPTD model 

Similarly, the controller for DIPTD process in eq. (5.3) using equations (5.5), (5.6) & (5.7) is 

C(s)=
[
s2

K

1

(γsp+1)n]

[1-
s2

K

1

(γsp+1)n 
K

s2e-Ls]
   (5.22) 

The above equation can be modified as 

C(s)=
s2

K[(γsp+1)n-e-Ls]
   (5.23) 

Similarly, by using F(s) in eq. (5.8) and eq. (5.9) the expressions for C(s) are: 

C(s)=
s2(βs+1)

K[(γsp+1)n+1-(βs+1)e
-Ls]

   (5.24) 

C(s)=
s2(βs+1)

2

K[(γsp+1)n+2-(βs+1)
2
e

-Ls
]
   (5.25) 

The final controller expressions using Table 5.1 are same as given in Table 5.2 but with a difference 

in the fractional filter term. 

5.3. Closed loop performance, robustness and fragility analysis 

5.3.1. Closed loop performance analysis 

The closed loop response is observed with the controllers designed using optimum fractional IMC 

filter structures identified according to the flowchart given in Fig 5.1. Two optimum fractional 

IMC filter structures are identified for each of the three integrating processes. One is the 

conventional first order fractional IMC filter structure (eq. (5.7) with n=1) and the second is the 

higher order fractional filter structure (any one from eq. (5.7), eq. (5.8) and eq. (5.9)). The only 

exception is that the conventional first order fractional IMC filter structure doesn’t result in a 

realizable controller with DIPTD process. Hence, a higher order fractional IMC filter structure (eq. 

(5.7) with n=3) is used for DIPTD process. After obtaining the optimum fractional IMC filter 

structures, the system’s step response is observed with the optimum controllers. Also, the 

performance is observed for perturbations in the process parameters and for noise in the output. 

The performance is assessed by using IAE, TV and Ms which are given in Table 5.4. 
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Table 5.4 Closed loop performance measures 

IAE TV Ms 

∫ |e(t)|dt
∞

0
  ∑ |ui+1-ui|

∞
i=0   max

0<ω<∞
|

1

1+C(jω)G(jω)
|  

 

 

Fig 5.1 Systematic design procedure for identification of optimum fractional IMC filter structure 
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5.3.2. Robustness analysis 

The controller that is designed for the process assumes that the model used captures the complete 

dynamics of the process. But, there always exists, an error in the model approximating only the 

true dynamics of the process. Thus, the system with feedback must be analysed for robust stability 

with uncertainties present in the parameters and for load changes. The robust stability condition 

(Morari and Zafiriou, 1989) is 

‖lm(jω)T(jω)‖<1∀ω∈(-∞,∞)   (5.26) 

Where T(s)
s=jω

=
C(s)G(s)

1+C(s)G(s)
 is the complementary sensitivity function and lm(jω)= |

G(jω)-Gm(jω)

Gm(jω)
| is the 

bound on the process multiplicative uncertainty.  

The controller must be tuned to satisfy eq. (5.27) for uncertainty in time delay 

‖T(jω)‖∞<
1

|e-∆L-1|
   (5.27) 

Similarly, if there is uncertainty in K and L, the controller should be tuned to satisfy the relation 

‖T(jω)‖∞<
1

|(
∆K

K
+1)e-∆L-1|

   (5.28) 

Also, another constraint to be satisfied for robust closed loop performance is 

‖lm(jω)T(jω)+wm(jω)(1-T(jω))‖<1   (5.29) 

Where wm(jω)is the uncertainty bound on the sensitivity function (1-T(jω)).  

5.3.3. Fragility analysis 

The sensitivity of the closed loop system to give robust performance must be analysed through 

fragility analysis (Alfaro, 2007) for changes in the controller parameters. The fragility is analysed 

through loss of robustness using delta 20 fragility index (FIΔ20). The FIΔ20 is defined as follows: 

FI∆20=
Ms∆20

Ms
-1   (5.30) 

Where MsΔ20 - maximum sensitivity for +20% variation in controller parameters; Ms - nominal 

maximum sensitivity. 

Any controller is said to be resilient if FI∆20≤0.1; nonfragile if 0.1<FI∆20≤0.5 and fragile if 

FI∆20>0.5. 
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5.4. Simulation results and discussion 

In this section, the optimum controller settings identified using the optimum fractional IMC filter 

structure according to the procedure described in section 5.3.1 are discussed. Then, numerous 

integrating time delay systems representing IPTD, IFPTD and DIPTD processes are simulated and 

their performance with the proposed method is analysed with the recent methods (Kumar and Sree, 

2016). The step response is obtained for nominal process conditions; for perturbations of +5% in 

L and -10% in K and with a white noise (mean=0 and variance=0.1). The robust stability analysis 

is carried out for uncertainty of +10% in both L and K. The performance of the closed loop is 

measured with IAE. Total variation (TV) is used to identify the smooth working of the controller.  

5.4.1. Identified optimum fractional filter IMC-PID controller settings 

The optimum fractional filter IMC-PID controller settings for each of the three integrating 

processes studied in this work are identified using the procedure given in flowchart (Fig 5.1). An 

important point to note here is that 2/3 order Pade’s approximation is not used with IPTD and 

DIPTD processes as the resulting controller structure doesn’t comply with the one (eq. (5.4)) 

prescribed in this paper. The optimum proposed methods for the three processes are further referred 

to as Proposed1 ((βs+1 (γsp+1)2⁄ )+ 2nd order Pade’s approximation of e−Ls); Proposed2 

((1 γsp+1⁄ )+ 2nd order Pade’s approximation of e−Ls); Proposed3 ((βs+1 (γsp+1)3⁄ )+ 2/3 order 

Pade’s approximation of e−Ls); Proposed4 ((1 γsp+1⁄ ) + 2/3 order Pade’s approximation of e−Ls); 

Proposed5 ((βs+1 (γsp+1)3⁄ )+ 2nd order Pade’s approximation of e−Ls) and Proposed6 

((1 (γsp+1)3⁄ ) + 2nd order Pade’s approximation of e−Ls). The parameters of the PID term for IPTD, 

IFPTD and DIPTD processes remain same as given in Table 5.2, Table 5.3 and Table 5.2 

respectively. The respective fractional filter terms of the optimum controllers for the above three 

processes are given in Table 5.5. These are identified based on minimum IAE for a fixed Ms as per 

the trends of IAE versus β shown in Figs 5.2-5.4. 
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Fig 5.2 β versus IAE graphs for Example 1 

 

 

Fig 5.3 β versus IAE graphs for Example 2 



Chapter 5 

102 

 

 

Fig 5.4 β versus IAE graphs for Example 3 

Table 5.5 Fractional filter terms of the optimum controllers 

Process Method Fractional filter term 

 

IPTD 

Proposed1 βs2+s

γ2L2

12
s2p+1+

γ2L

2
s2p+

γL2

6
sp+1-

βL2

12
s2+γ2s2p-1+γLsp+

βL

2
s+2γsp-1+(L-β)

  

Proposed2 s

γL2

12
sp+1+

γL

2
sp+γsp-1+L

  

 

IFPTD 

Proposed3 βL3s5+(9βL2+L3)s4+(36βL+9L2)s3+(36L+60β)s2+60s

[γ3L3s3p+2+9γ2L3s3p+1+3γ2L3s2p+2+36γ3Ls3p+27γ2L2s2p+1+3γL3sp+2+60γ3s3p-1+108γ2Ls2p

+27γL2sp+1+(L
3
-3βL2)s2+180γ2s2p-1+108γLsp+(24βL+6L2)s+180γsp-1+(60L-60β)]

  

Proposed4 L3s3+9L2s2+36Ls+60

γL3sp+2+9γL2sp+1+L3s2+36γLsp+6L2s+60γsp-1+60L
  

 

DIPTD 

Proposed5 βs3+s2

γ3L2

12
s3p+1+

γ3L

2
s3p+

γ2L2

4
s2p+1+γ3s3p-1+

3γ2L

2
s2p+

γL2

4
sp+1-

βL2

12
s2+3γ2s2p-1+

3γL

2
s
p
+

βL

2
s+3γsp-1+(L-β)

  

Proposed6 s2

γ3L2

12
s3p+1+

γ3L

2
s3p+

γ2L2

4
s2p+1+γ3s

3p-1
+

3γ2L

2
s2p+

γL2

4
sp+1+3γ2s2p-1+

3γL

2
sp+3γsp-1+L

  

5.4.2. Example 1 

Consider the distillation column bottom level control system (Chen and Seborg, 2002) modelled 

as an IPTD system 

G(s)=
0.2 e-7.4s

s
   (5.31) 
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The Proposed1 and Proposed2 controller settings are given in Table 5.6. The controller equation 

for Kumar and Sree (2016) method is C(s)= (
1

1+1.4836s
) 0.5169 (1+

1

34.1s
+3.2985s). The step response 

for a unit step disturbance applied at t=150s is shown in Fig 5.5 and the corresponding IAE, TV 

values are listed in Table 5.7. The perturbed response and the response for measurement noise is 

shown in Fig 5.6 and Fig 5.7. The associated IAE and TV values are listed in Table 5.7. It is evident 

from these figures and Table 5.7 that the Proposed1 method is better with low IAE followed by 

Proposed2 method compared to Kumar and Sree (2016) method.  

 

 

Fig 5.5 Nominal response of Example 1 

 

Table 5.6 Controller settings for the proposed methods of all the Examples 

Examples Method Kp Ti Td β γ p 

Example 1 
Proposed1 18.5 3.7 1.23 1.1 1.78 1.02 

Proposed2 18.5 3.7 1.23 - 2.54 1.02 

Example 2 
Proposed3 20 4 - 0.2 0.16 1.02 

Proposed4 5 - 4 - 0.25 1.02 

Example 3 
Proposed5 0.5 0.5 0.17 0.6 0.3 1.02 

Proposed6 0.5 0.5 0.17 - 0.14 1.02 
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Fig 5.6 Perturbed response of Example 1 

 

Fig 5.7 Response of Example 1 with measurement noise 

The magnitude plot of T(s) for variation in γ is shown in Fig 5.8 which confirms that the Proposed1 

is more robust compared to Proposed2 for an uncertainty of +10% in L and K. It can be observed 
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that the stability margin increases with increase in γ from +10% to +70% obeying the robust 

stability condition (eq. (5.28)). 

Table 5.7 Comparison of IAE and TV values for Example 1 

Method Nominal case Perturbed case Noise case Ms 

IAE TV IAE TV IAE TV 

Proposed1  20.86 14.50 22.4 14.03 91.04 1775.3 2 

Proposed2 20.82 15.31 22.44 14.56 91.07 2109.4 2 

Kumar and Sree (2016) 36.13 3.82 39.19 3.81 92.57 1281.2 2 

 

 

Fig 5.8 Example 1 magnitude plot 

 

5.4.3. Example 2 

The IFPTD system studied by Jin and Liu (2014) is considered as a second example  

G(s)=
0.2 e-s

s(4s+1)
   (5.32) 

The Proposed3 and Proposed4 controller parameters are listed in Table 5.6 and the controller for 

Kumar and Sree (2016) method is C(s)= (
1+0.5s

1+0.1863s
) 7.415 (1+

1

7.8s
+1.9487s). The closed loop step 

response with a disturbance applied at t=20s is shown in Fig 5.9. Fig 5.10 and Fig 5.11 presents 
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the perturbed response and the response for noise in the measured output. The IAE and TV values 

for the three input changes are given in Table 5.8. It is evident that the Proposed3 method is superior 

in performance for all the three cases with low values of IAE and TV for an Ms of 1.98 followed 

by Proposed4 method (low IAE). It can be observed from magnitude plot (Fig 5.12) that the robust 

stability increases with Proposed3 method for variation of γ in T(s). The robust stability condition 

(eq. 5.28) is obeyed by both the methods (Proposed3, Proposed4) for uncertainty in L and K. 

 

 

Fig 5.9 Nominal response of Example 2 

 

Table 5.8 Comparison of IAE and TV values for Example 2 

Method Nominal case Perturbed case Noise case Ms 

IAE TV IAE TV IAE TV 

Proposed3  2.78 3993 3.08 4214.8 12.7 1.294×105 1.98 

Proposed4 2.95 13191 3.19 13043 13.04 8.287×105 1.98 

Kumar and Sree (2016) 4.22 8847.8 4.64 8829.5 15.07 1.202×106 1.98 
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Fig 5.10 Perturbed response of Example 2 

 

 

Fig 5.11 Response of Example 2 with measurement noise 

 



Chapter 5 

108 

 

 

Fig 5.12 Example 2 magnitude plot 

 

5.4.4. Example 3 

The following DIPTD model is used for the simulation study (Lee et al., 2013) 

G(s)=
e-s

s2
   (5.33) 

The closed loop step response for nominal process conditions; for perturbations and for 

measurement noise is shown in Figs 5.13-5.15. The corresponding performance measures IAE and 

TV are listed in Table 5.9. It is clear that the Proposed5 method is giving improved performance 

with lower values of IAE and TV followed by Proposed6 method compared to Kumar and Sree 

(2016) method. Both the proposed methods are obeying the robust stability condition for an 

uncertainty in L and K.    

Table 5.9 Comparison of IAE and TV values for Example 3 

Method Nominal case Perturbed case Noise case Ms 

IAE TV IAE TV IAE TV 

Proposed5  3.13 139.60 3.34 144.55 21.08 5517.9 2.01 

Proposed6 3.22 144.81 3.49 154.31 21.08 3385.8 2.01 

Kumar and Sree (2016) 6.05 342.70 6.75 342.25 27.95 78943 2.01 
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Fig 5.13 Nominal response of Example 3 

 

 

Fig 5.14 Perturbed response of Example 3 

 



Chapter 5 

110 

 

 

Fig 5.15 Response of Example 3 with measurement noise 

5.4.5. Fragility analysis 

The delta 20 fragility index (FIΔ20) for all the examples with the proposed and Kumar and Sree 

(2016) methods is given in Table 5.10. The variation of delta epsilon fragility index (ε=0.05, 

0.1….0.25, ‘ε’ is the percentage of variation in controller parameters) for all the examples is 

presented in Fig 5.16. The controller with Proposed1 method is resilient with respect to Example 

1 as it doesn’t lose 10% of its robustness whereas Proposed2 and Kumar and Sree (2016) methods 

are nonfragile which needs a careful tuning for variation in controller parameters. In case of 

Example 2, Proposed3 and Proposed4 methods are nonfragile whereas the Kumar and Sree (2016) 

method is fragile as it lose more than 50% of its robustness and is difficult to tune for changes in 

controller parameters. The controllers with Proposed5 and Proposed6 methods are resilient with 

respect to Example 3 and Kumar and Sree (2016) method is fragile. 

Table 5.10 Controller Fragility indices (FIΔ20) for all the examples 

Example 1 Example 2 Example 3 

Method FIΔ20 Method FIΔ20 Method FIΔ20 

Proposed1 0.069 Proposed3 0.136 Proposed5 0.071 

Proposed2 0.113 Proposed4 0.439 Proposed6 0.013 

Kumar and Sree (2016) 0.313 Kumar and Sree (2016) 1.207 Kumar and Sree (2016) 0.696 
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Fig 5.16 Fragility plots for the three examples 

5.5. Conclusions 

In this work, an optimum higher order fractional IMC filter structure is identified based on 

minimum IAE for a prefixed Ms. A fractional filter IMC-PID controller is designed for different 

integrating processes using the optimum higher order fractional IMC filter structure and different 

Pade’s approximation for time delay. The proposed method provides more flexibility in the 

controller design with additional tuning parameters and enhance the system’s performance. The 

step response of three integrating processes is presented for changes in different inputs acting on 

the closed loop system. Enhanced closed loop performance is observed with the controller designed 

using higher order fractional IMC filter structure plus 2nd order Pade’s approximation of time delay 

for IPTD and DIPTD processes. Improved performance of IFPTD process is observed with the 

controller designed using higher order fractional IMC filter structure plus 2/3 order Pade’s 

approximation of time delay. It is observed that the IAE and TV values are decreasing with increase 

in the order of fractional IMC filter structure for IFPTD process and DIPTD process whereas TV 

values are increasing for IPTD process for different process conditions. All the proposed methods 

are robustly stable for parametric uncertainty and for variation in γ. It is found from controller 
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fragility analysis for controller parametric uncertainties that all the proposed methods are either 

resilient (Proposed1, Proposed5 and Proposed6) or nonfragile (Proposed2, Proposed3 and 

Proposed4) and the stability margin is increasing with increase in the uncertainty. 
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6. Fractional filter fractional IMC-PID controller design for 

non-integer order plus time delay (NIOPTD) processes* 

A fractional filter fractional order PID (FFFOPID) controller is designed for Non-integer order plus 

time delay (NIOPTD) systems using fractional IMC filter structure. The novelty of the work lies 

in identifying the higher order fractional IMC filter structure using a systematic design procedure 

based on the minimization of IAE. The design includes different approximation for time delay 

term. The resulting controller consists of a fractional filter term and a fractional PID controller. 

The tuning parameters are identified based on the minimum value IAE for a fixed robustness (Ms). 

Simulations are carried out for servo response and regulatory response and an enhanced 

performance is observed with the proposed controller. Uncertainties in the process parameters are 

considered to check the robustness of the system and the stability is assessed with robust stability 

analysis. In addition, fragility analysis has been done for uncertainties in the controller parameters. 

In the second part, FFFOPID controller design method is proposed for higher order systems 

approximated as NIOPTD models. An analytical tuning method is followed for identification of 

optimum controller settings. Simulation results on different systems shows that the proposed 

method is giving better output performance for set point tracking, disturbance rejection, parameter 

variations and for measurement noise in the output. The robust stability of the system for process 

parametric uncertainties is verified with robustness analysis. Controllability index analysis is also 

accomplished to know the closed loop system performance and robustness.  

The third part of this chapter focuses on the fragility of FFFOPID controllers for higher order 

systems approximated as non-integer order plus time delay systems. The fragility of the controller 

is plotted for individual parameter variations to observe the effect on closed loop performance and 

robustness. Further, the fragility balance of the controller is estimated and the most influencing 

parameter on the fragility is identified. Two examples are used to illustrate the fragility plots and 

results show that this type of controller is nonfragile assuring the stable performance through fine 

tuning of the controller. 

 

*This work has been published in European Journal of Electrical Engineering - https://doi.org/10.18280/ejee.210203; 

the second section has been published as a book chapter in CRC press; the third portion of this chapter is presented in 

an international conference at NIT Warangal. 
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6.1. Fractional filter fractional IMC-PID controller design for 

NIOPTD processes 

6.1.1. Introduction 

The fractional order controllers are gaining wide acceptance in the industrial sector and among the 

scientific community to control the processes modeled as higher order systems. Higher order 

models capture the subtleties of the processes and better represent the dynamics of nonlinear 

processes in a precise manner. It is difficult to control the higher order process models and more 

challenging if they are associated with time delays. The control performance of such systems 

degrades if the standard PID controller is used (Vilanova and Visioli, 2012). This is the concern of 

many researchers from the last twenty years and this fact resulted in the design and application of 

FOPID controller to improve the closed loop response of time delay systems. 

The primary work on fractional order controllers was by Oustaloup in 1991 and subsequently 

Podlubny (1999) proposed an FOPID or PIλDµ controller with the help of fractional calculus. The 

structure of FOPID controller is such that it becomes a PID controller by setting the fractional 

powers of integrator and differentiator to unity. This flexibility in the controller structure ensures 

robust performance of integer order systems and non-integer order systems. Hence, FOPID contro- 

ller can enhance the closed loop performance of higher order systems. The PIλDµ controller for 

such systems was developed by approximating higher order systems by lower order time delay 

systems (Monje et al., 2008; Padula and Visioli, 2011). Further, the FOPID controller was 

developed for non-integer order time delay systems as they represent the system dynamics in a 

better way than integer order systems. Thus, the fractional order PI/PID controller improves the 

closed loop performance of higher order processes. However, this structure of FOPID controller 

complicates the tuning with the additional tuning parameters. There are several tuning methods 

reported in the literature (Shah and Agashe, 2016) for tuning the FOPID controller and fractional 

filter PID controller for integer order time delay systems (Sánchez et al., 2017; Padula and Visioli, 

2013). 

The tuning methods of FOPID controller for fractional order systems gained momentum in the 

last decade. It has been identified that higher order processes need to be brought to the lower order, 

preferably of first and second order for frequency domain tuning and time domain tuning of the 
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FOPID controller. Based on this, PIλDµ controller tuning strategies in frequency domain and time 

domain were proposed for NIOPTD systems (Das et al., 2011). An analytical tuning method of 

FOPID controller for fractional order systems was proposed after reducing the higher order 

fractional system by retaining its dynamics (Tavakoli-Kakhki and Haeri, 2011). A PIλDµ controller 

was also designed using soft computing technique for delay free non-integer order systems (Liu et 

al., 2015) and by using optimization (Zeng et al., 2015). The use of IMC (Shamsuzzoha et al., 

2012) method was predominant in the design of FOPID controller for NIOPTD systems (Vinopraba 

et al., 2012; Bettayeb and Mansouri, 2014; Li et al., 2015). The IMC filter used in the IMC method 

plays a crucial role because the tuning parameters in the IMC based controller are those associated 

with the IMC filter. The controller in Bettayeb and Mansouri (2014) was tuned to meet the 

specifications such as phase margin, flat phase, gain crossover frequency and infinite gain margin. 

The controller designed using the method in Li et al., (2015) was tuned based on maximum 

sensitivity. The aim of the present work is to propose a simple and improved method of designing 

the fractional filter fractional IMC-PID controller using fractional IMC filter for NIOPTD systems. 

The design also includes different approximation for time delay term using Pade’s procedure. The 

resulting structure of the controller consists of a fractional order PID preceded by fractional filter 

to provide robust control. The tuning parameters in the controller are associated with fractional 

filter which are identified through the systematic procedure based on the minimum values of IAE 

and TV and to meet the maximum sensitivity, Ms specification for fair comparison. 

6.1.2. Fractional order system 

The dynamics of real time systems are better represented by non-integer order mathematical 

models using the fractional calculus with the help of fractional integration and differentiation. The 

fractional order systems are often described by the following fractional order differential equation: 

a0y(t)+ ∑ ai
n
i=1 Dαiy(t)=b0u(t-L)+ ∑ bi

m
i=1 Dβiu(t-L)  (6.1) 

Where D is the fractional operator; ai, bi are the real coefficients; αi, βi are the real (R+) orders of 

fractional derivative; u(t) and y(t) are the real input and output; L is the time delay of the system. 

The Laplace transform of eq. (9.1) produces a fractional order transfer function  

a0Y(s)+ ∑ ai
n
i=1 S

αiY(s)=b0U(s)e-Ls+ ∑ bi
m
i=1 S

βiU(s)e-Ls  (6.2) 
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Where S
αiY(s)and S

βiU(s) are the Laplace transform of Dαi y(t) and Dβiu(t) respectively. Then, the 

transfer function of non-integer order system is 

G(s)=
Y(s)

U(s)
=

b0+ ∑ bi
m
i=1 S

βi

a0+ ∑ ai
n
i=1 S

αi
e-Ls   (6.3) 

The fractional operators S
αi  and S

βi are difficult to program for simulations and for practical 

implementation in the hardware. Though, there are several means of practical implementation of 

fractional operators the most widely used one is the approximation of the fractional operator by 

integer order transfer function. The popular approximation used for fractional operator sνwas by 

Oustaloup recursive filter (Oustaloup, 1991) which is based on the recursive distribution of poles 

and zeros over a frequency range [ωl, ωh]. This filter is given by 

sν=K ∏
s+ωk

'

s+ωk

N
k=-N    (6.4) 

Where N is the number of poles and zeros. Selection of N is crucial for the approximation; smaller 

values of N results in ripples in the gain and phase behavior, but they are minimized for higher 

values of N causing an increase in the computational load. The poles, zeros and gain are evaluated 

using the following equations: 

ωk
' =ωl (

ωh

ωl
)

(k+N+
1-ν

2
) (2N+1)⁄

   (6.5.a) 

ωk=ωl (
ωh

ωl
)

(k+N+
1+ν

2
) (2N+1)⁄

   (6.5.b) 

K=ωh
ν    (6.5.c) 

The non-integer order process models used for the design of FOPID controller are: 

(a) One non-integer order plus time delay (NIOPTD-I) system 

Gm(s)=
K

Tsα+1
e-Ls   (6.6) 

Two cases of NIOPTD-I process (Li et al., 2015) are possible based on the value of α: case I 

(0<α<1); case II (1≤α<2). 

(b) Two non-integer order plus time delay (NIOPTD-II) system 

Gm(s)=
K

sα+2ζωnsβ+ωn
2 e-Ls   (6.7) 

Where α and β are the flexible system orders. This flexibility allows the accurate modeling of the 

processes with minimum modeling error compared to first order and second order time delay 
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(FOPTD and SOPTD) models. The two cases of NIOPTD-II process based on the value of α and 

β are: case I (1<α<2, α>β) and case II (2≤α<3, α>β). 

6.1.3. Proposed fractional filter fractional IMC-PID controller design 

The proposed fractional filter fractional order PID controller structure is 

C(s)=(fractional filter term)Kp [1+
1

Tis
λ
+Tdsµ]  (6.8) 

The fractional IMC filter structures used in the present design are: 

f(s)=
1

(γsp+1)n
; n=1,2,3   (6.9) 

f(s)=
ηs+1

(γsp+1)n+1
; n=1,2   (6.10) 

f(s)=
(ηs+1)2

(γsp+1)n+2
; n=1,2   (6.11) 

γ is the filter time constant, p is the fractional order and η is the additional degree of freedom. 

The fractional IMC filter controller for the NIOPTD-I system defined in eq. (6.6) and by using 

fractional IMC filter structure defined in eq. (6.9) is 

CIMC(s)= (
Tsα+1

K
)

1

(γsp+1)n
   (6.12) 

The feedback controller using fractional IMC filter is 

C(s)=
Tsα+1

K[(γsp+1)n-e-Ls]
   (6.13) 

Now, by using Pade’s procedure for e−Ls (Table 6.1), the general expression for C(s) is  

C(s)=(fractional filter term) (
T

K
) (1+

1

Tsα
)    (6.14) 

It can be observed from eq. (6.14) that the controller is composed of fractional PI term in series 

with fractional filter term. Similarly, the controller is derived for other fractional IMC filter 

structures (eqs. (6.10) & (6.11)) by following the above design procedure (steps). The resulting 

controller takes the form given in eq. (6.14). All the controllers derived using different fractional 

IMC filter structures differ only in the fractional filter term.  
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Table 6.1 Equivalent term of e−Ls using Pade’s procedure 

1
st
 order Pade 1/2 order Pade 2

nd
 order Pade 2/3 order Pade 

(1-0.5Ls)/(1+0.5Ls)  (6-2Ls)/(6+4Ls+L
2
s2)  1-(L 2⁄ )s+(L2 12⁄ )s2

1+(L 2⁄ )s+(L2 12⁄ )s2
  

60-24Ls+3L2s2

60+36Ls+9L2s2+L3s3
  

 

The feedback controller for NIOPTD-II process can be obtained by applying the same procedure 

used for NIOPTD-I process. The generalized controller equation for all fractional IMC filter 

structures is 

C(s)=(fractional filter term) (
2ζωn

K
) (1+

ωn

2ζsβ
+

1

2ζωn
sα-β)   (6.15) 

The feedback controller C(s) consists of a fractional PID term in series with fractional filter term. 

The controller settings Kp, Ti, Td, λ and µ can be obtained from the process parameters according 

to the derived formulae. The remaining parameters to be tuned in all the four controllers are 

associated with the fractional filter term which are γ, η and p. They are chosen according the tuning 

procedure given the flowchart (Fig 6.1). The proper selection of these parameters alters the filter 

term of the controller, which enhances the closed loop performance.  

6.1.4. Robustness and fragility analysis 

6.1.4.1. Robustness analysis 

The closed loop stability must be assessed for the nominal process conditions and with uncertainties 

in the processes. This is verified with a robust stability condition (Morari and Zafiriou, 1989).  

‖lm(jω)T(jω)‖<1∀ω∈(-∞,∞)    (6.16) 

Where T(s)
s=jω

=
C(s)G(s)

1+C(s)G(s)
 - the complementary sensitivity function; lm(jω)= |

G(jω)-Gm(jω)

Gm(jω)
| - Process 

multiplicative uncertainty bound.  

Using robust stability analysis, one can know the amount of uncertainty that can be introduced into 

the process parameters for the robust performance once the controller is designed. The controller 

must be tuned according to eq. (6.17) for uncertainty in L 

‖T(jω)‖∞<
1

|e-∆L-1|
   (6.17) 
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6.1.4.2. Fragility analysis 

The robust performance of the closed loop system should also be observed for changes in controller 

parameters. This is found through loss of robustness (Ms) of the system using fragility analysis 

(Alfaro and Vilanova, 2012). The degree of controller fragility is decided based on robustness delta 

20 fragility index (RFIΔ20) which is defined in eq. (6.18) 

RFI∆20 =
MsΔ20

Ms
-1   (6.18) 

MsΔ20 is the Ms for 20% variation in all parameters of the controller and Ms in the nominal 

maximum sensitivity. Any controller is said to be resilient if RFI∆20≤0.1; nonfragile if 

0.1<RFI∆20≤0.5 and fragile if RFI∆20>0.5. 

6.1.5. Simulation results 

The effectiveness of the proposed fractional filter FOPID controller is explained with four 

examples representing all cases of NIOPTD system. The simulations have been performed for a 

step change in set point and disturbance. The system's performance is also observed for 

perturbations (-20% in K and +10% in L) in the process parameters and for Gaussian noise in the 

output. The closed loop performance of the NIOPTD system is assessed by using the performance 

measures given in Table 6.2. 

 

Table 6.2 Performance measures 

IAE ITAE TV Ms 

∫ |e(t)|dt
∞

0
  ∫ t|e(t)|dt

∞

0
  ∑ |ui+1-ui|

∞
i=0   max

0<ω<∞
|

1

1+C(jω)G(jω)
|  
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6.1.5.1. Identified fractional IMC filter structure 

 

Fig 6.1 Systematic procedure for identification of optimum fractional IMC filter structure 
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The optimum fractional filter fractional IMC-PID controller settings for all the NIOPTD 

processes are identified according to the flowchart (Fig 6.1). A point to be noted here is that the 

tuning becomes difficult for controllers designed using higher order fractional IMC filter for case 

I of NIOPTD processes. Hence, a conventional fractional IMC filter is considered during the 

controller design for case I of NIOPTD processes. The FOPI and FOPID controller settings for 

NIOPTD-I and NIOPTD-II processes remain same as given in eq. (6.14) and eq. (6.15). The 

fractional filter terms of the optimum controllers are given in Table 6.3. Hereafter, the optimum 

proposed methods of the NIOPTD processes are referred to as Proposed1 (NIOPTD-I case I): 

(1 γsp+1⁄ )+ 2/3 Pade’s approximation of e−Ls; Proposed2 (NIOPTD-I case II): 

((ηs+1)2 (γsp+1)3⁄ )+ 2/3 Pade’s approximation of e−Ls; Proposed3 (NIOPTD-II case I): 

(1 γsp+1⁄ )+ 2/3 Pade’s approximation of e−Ls; Proposed4 (NIOPTD-II case II): (ηs+1 (γsp+1)3⁄ )+ 

2/3 Pade’s approximation of e−Ls. 

Table 6.3 Fractional filter terms of the optimum controller 

Process Fractional filter term 

NIOPTD-I 

(case I) 

L3s3+9L2s2+36Ls+60

(γL3sp+2+9γL2sp+1+L3s2+36γLsp+6L2s+60γsp-1+60L)s1-α
  

NIOPTD-I 

(case II) 

η3L3s5+(9η2L2+2ηL3)s4+(36η2L+18ηL2+L3)s3+(60η2+72ηL+9L2)s2+(36L+120η)s+60

(
γ3L3s3p+2+9γ3L2s3p+1+3γ2L3s2p+2+36γ3Ls3p+27γ2L2s2p+1+3γL3sp+2-3η2L2s3+60γ3s3p-1+108γ2Ls2p

+27γL2sp+1+(L3+24η2L-6ηL2)s2+180γ2s2p-1+108γLsp+(48ηL+6L2-60η2)s+180γsp-1+(60L-120η)
)s1-α

  

NIOPTD-II 

(case I) 

L3s3+9L2s2+36Ls+60

(γL3sp+2+9γL2sp+1+L3s2+36γLsp+6L2s+60γsp-1+60L)s1-β
  

NIOPTD-II 

(case II) 

ηL3s4+(9ηL2+L3)s3+(36ηL+9L2)s2+(36L+60η)s+60

(
γ3L3s3p+2+9γ3L2s3p+1+3γ2L3s2p+2+36γ3Ls3p+27γ2L2s2p+1+3γL3sp+2+60γ3s3p-1+108γ2Ls2p

+27γL2sp+1+(L3-3ηL2)s2+180γ2s2p-1+108γLsp+(24ηL+6L2)s+180γsp-1+(60L-60η)
)s1-β

  

 

6.1.5.2. Example 1 

The fractional order model of a heat flow experiment (Malek et al., 2013) is considered for the 

current study: 

Gm(s)=
66.16

12.72s0.5+1
e-1.93s   (6.19) 

The value of α=0.5 which represents case I of NIOPTD-I system. The FOPID controller according 

to the Li et al. (2015) method is 

C(s)= (
0.96s+1

4.53s1.5+10.99s0.5
) (0.19+

0.015

s0.5
)   (6.20) 
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The frequency used for Oustaloup filter approximation of fractional operator is 0.001-1000rad/s. 

The Proposed1 controller settings are listed in Table 6.4. The closed loop step response with a 

disturbance of magnitude -1 applied at t=100s is shown in Fig 6.2. The corresponding performance 

measures are given in Table 6.5. It is evident that the Proposed1 method gives improved 

performance with low IAE, ITAE and TV compared to Li et al. (2015) method. The perturbed 

response and the associated performance measures are presented in Fig 6.3 and Table 6.6. The 

Proposed1 method clearly gives better result than the method used for comparison. The IAE and 

ITAE values for the response in presence of output noise of variance 10 given in Table 6.7 are 

close to each other for both the methods but the TV value is low with the Proposed1 method. The 

robust stability with the magnitude plot for T(s) is shown in Fig 6.4. It is found that both the 

methods are robustly stable up to +90% uncertainty in L obeying the stability condition (eq. 6.17). 

 

Table 6.4 Controller settings for proposed methods of all the examples 

Example Kp Ti λ Td µ η γ p Ms 

Example 1 0.19 12.72 0.5 - - - 11.1 1.05 1.15 

Example 2 0.3 1.5 1.5 - - 0.2 0.66 1.01 1.51 

Example 3 1.1963 1.1964 0.9997 0.1648 0.9947 - 0.53 1.03 1.04 

Example 4 1.17 1.17 1.02 0.1912 1.45 0.03 0.1085 1.02 1.49 

 

Table 6.5 Comparison of IAE, ITAE and TV values for nominal process conditions 

Examples Method Servo response Regulatory response Ms 

IAE ITAE TV IAE ITAE TV 

Example 1 Proposed1 694.1 6650 4.128 365.2 11780 1.0046 1.15 

Li et al. (2015) 716 9410 4.334 370 12680 1.323 1.15 

Example 2 Proposed2 2.576 3.28 0.355 0.9444 1.667 0.1093 1.51 

Li et al. (2015) 3.502 7.663 0.2008 1.095 3.057 0.0644 1.51 

Example 3 Proposed3 0.5756 0.2764 19.794 0.2791 0.4618 0.5014 1.04 

Li et al. (2015) 0.581 0.2771 4.987 0.2801 0.4531 0.4979 1.04 

Example 4 Proposed4 0.4761 0.0483 42.56 0.2009 0.2773 0.6106 1.49 

Li et al. (2015) 0.5383 0.1384 25.037 0.2506 0.3776 0.5779 1.49 
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Fig 6.2 Nominal response of Example 1 

 

 

Fig 6.3 Perturbed response of Example 1 
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Fig 6.4 Magnitude plot for (a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4 

6.1.5.3. Example 2 

The example for NIOPTD-I system (Das et al., 2013) with α in the range of 1 to 2 is  

Gm(s)=
5

1.5s1.5+1
e-s   (6.21) 

The controller designed according to Li et al. (2015) method is given by 

C(s)= (
0.5s1.5+s0.5

0.79s2+2.85s+3.52
) (0.3+

0.201

s1.5
)   (6.22) 

The frequency used for Oustaloup filter approximation of fractional functions is 0.001-1000rad/s. 

The Proposed2 method controller settings are listed in Table 6.4. The step response with a 

disturbance of magnitude -0.05 applied at t=25s is shown in Fig 6.5 and corresponding IAE, ITAE 

and TV values are given in Table 6.5. The measures for perturbed response and Gaussian noise 

(variance=0.001) response are listed in Table 6.6 and Table 6.7. It is clear that the Proposed2 

method gives improved response for all the input changes and process conditions except for an 

increase in TV. The Proposed2 and Li et al. (2015) methods obey the stability condition (eq. 6.17) 

for uncertainty in L which is illustrated with magnitude plot in Fig 6.4. 
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Fig 6.5 Nominal response of Example 2 

Table 6.6 Comparison of IAE, ITAE and TV values for perturbations 

Examples Method Servo response Regulatory response 

IAE ITAE TV IAE ITAE TV 

Example 1 Proposed1 866.1 10480 4.524 361.2 12380 1.0002 

Li et al. (2015) 890.5 13740 4.7928 364.7 13170 1.4437 

Example 2 Proposed2 3.184 5.784 0.3817 0.82 2.069 0.1115 

Li et al. (2015) 4.378 12.97 0.2535 0.9372 3.815 0.0596 

Example 3 Proposed3 0.718 0.4431 19.5423 0.2776 0.4935 0.4999 

Li et al. (2015) 0.7244 0.4378 4.7374 0.2784 0.4838 0.4968 

Example 4 Proposed4 0.5371 0.1067 41.5226 0.201 0.2978 0.5294 

Li et al. (2015) 0.6404 0.2446 24.4893 0.2504 0.4076 0.5098 

 

6.1.5.4. Example 3 

The higher order process approximated as NIOPTD-II system (Pan and Das, 2013) is given as 

follows: 

Gm(s)=
5.069

s1.9944+6.0645s0.9997+5.069
e-0.0518s   (6.23) 

The FOPID controller for this system with Li et al. (2015) method is 
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C(s)= (
0.0259s+1

0.0017s2.0003+0.0772s1.0003+0.0582s0.0003
) (1.1964+

0.9999

s0.9997
+0.1972s0.9957)  (6.24) 

 The frequency used for Oustaloup filter approximation is 0.01- 100rad/s. The Proposed3 

method controller settings are listed in Table 6.4. The nominal response (for step disturbance of 

magnitude -0.5 applied at t=5s) is shown in Fig 6.6 and the corresponding measures are listed in 

Table 6.5. Also, the IAE, ITAE and TV values for system response in presence of perturbations 

and noise are given in Table 6.6 and Table 6.7. It can be observed that both the methods are 

performing well while Proposed3 method is showing slight improvement in terms of IAE and 

ITAE. The robust stability condition is obeyed by both the methods which is illustrated in Fig 6.4. 

 

Fig 6.6 Nominal response of Example 3 

Table 6.7 Comparison of IAE, ITAE and TV values in presence of output Gaussian noise 

Examples Method Servo response Regulatory response 

IAE ITAE TV IAE ITAE TV 

Example 1 Proposed1 244 398.3 5.4628 436.5 12070 5.803 

Li et al. (2015) 245.3 463.3 8.7353 435.6 12990 9.1528 

Example 2 Proposed2 3.184 3.091 0.5316 1.436 1.417 0.2929 

Li et al. (2015) 4.019 7.183 0.2699 1.532 2.566 0.1306 

Example 3 Proposed3 0.6153 0.615 22.644 0.2767 0.411 3.3611 

Li et al. (2015) 0.615 0.228 5.6143 0.287 0.4039 1.1652 

Example 4 Proposed4 0.5332 0.1088 50.158 0.245 0.3379 8.5352 

Li et al. (2015) 0.6164 0.2108 29.530 0.2951 0.4501 5.1956 
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6.1.5.5. Example 4 

This example is taken as an approximation of higher order system (Pan and Das, 2013) 

Gm(s)=
4.47

s2.47+5.23s1.02+4.47
e-0.12s   (6.25) 

The values α= 2.47 and β= 1.02 represents case II of NIOPTD-II system. The controller with Li et 

al. (2015) method is given by eq. (6.26). The Proposed4 controller settings are presented in Table 

6.4. 

C(s)= (
0.06s1.02+s0.02

0.000123s3+0.005s2+0.071s+0.5
) (1.17+

0.9945

s1.02
+0.2223s1.45)  (6.26) 

The frequency used is same as given in Example 3. The step response with a disturbance of 

magnitude -0.5 applied at t=6s is shown in Fig 6.7. The performance measures are given in Table 

6.5-6.7. It is observed that Proposed4 method is superior in performance with low IAE and ITAE 

but TV is high compared to Li et al. (2015) method. The Proposed4 and Li et al. (2015) methods 

are robustly stable (Fig 6.5). 

 

 

Fig 6.7 Nominal response of Example 4 
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6.1.5.6. Fragility 

The delta 20 fragility index (RFIΔ20) values are listed in Table 6.8. The observations made from 

Table 6.8 are: Proposed1 method is nonfragile with respect to Example 1 whereas Li et al. (2015) 

method is resilient; Proposed2 and Li et al. (2015) methods are fragile in case of Example 2; 

Proposed3 method is resilient and Li et al. (2015) method is nonfragile for example 3; Proposed4 

is fragile and Li et al. (2015) method is nonfragile for Example 4. It is possible to tune nonfragile 

controllers whereas fragile controllers are difficult to tune. The nonfragile and fragile nature of the 

controller is caused by variation in any one parameter or more parameters of the controller. Hence, 

care should be taken while changing those particular parameters so that the closed loop system 

gives robust response. 

Table 6.8 Robustness delta 20 (RFIΔ20) fragility index for all the examples 

Example 1 Example 2 

Proposed1 0.1513 Proposed2 3.5165 

Li et al. (2015) 0.0035 Li et al. (2015) 0.6874 

Example 3 Example 4 

Proposed3 0.0027 Proposed4 3.604 

Li et al. (2015) 0.1 Li et al. (2015) 0.4697 

6.1.6. Conclusions 

In this chapter, an improved design of the fractional filter fractional IMC-PID controller is 

proposed for non-integer order plus time delay systems after identifying the optimum fractional 

IMC filter based on minimum IAE for a fixed Ms. The proposed method enhances the closed loop 

performance with additional tuning parameters in the controller design. Improved step response is 

observed for different input changes on the closed loop system. Improvement is observed with the 

controller designed using 2/3 order Pade’s approximation for time delay. The error values are 

decreasing with the proposed controller for all the NIOPTD processes but the control effort is 

increasing with increase in the order of approximation. All the proposed methods give robust and 

stable performance for parametric uncertainty. The fractional controllers have become fragile for 

uncertainties in the controller parameters when higher order fractional IMC filter is used during 

their design. Hence, attention should be needed while changing the fractional orders of the 

controller and filter. 
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6.2. Design of fractional filter fractional IMC-PID controller for 

higher order systems 

6.2.1. Introduction 

Higher order models describe the process dynamics accurately than lower order models (Isaksson 

and Graebe, 1999; Malwatkar et al., 2009). However, they complicate the controller design and 

tuning for quality control. There are several controllers tuning rules for higher order models 

approximated as FOPTD models. Most of these rules were to tune controller having PID structure 

which is the widely used till date (Astrom and Hagglund, 1995; Skogestad, 2003). The controller 

designed for such FOPTD models may not give the satisfactory performance as the dynamics are 

compromised during the approximation. An alternative to preserve the dynamics while ensuring 

satisfactory control is to approximate them as NIOPTD models (Pan and Das, 2013). The major 

advantage of NIOPTD models is that they represent the process behavior compactly than integer 

order systems (Podlubny, 1999). 

Fractional order control for fractional order systems has been in focus since the last two 

decades (Shah and Agashe, 2016). Several fractional order controller structures have been 

proposed and the widely accepted one is the FOPID controller (Monje et al., 2008; Luo and Chen 

2009, Tavakoli-Kakhki and Haeri, 2011; Padula and Visioli, 2011; Vinopraba et al., 2012; Das et 

al., 2011; Valerio and da Costa, 2006). The   FOPID controller has the ability to enhance the closed 

loop performance but the tuning is complex as it has more number of tuning parameters than PID 

controller. Recently, there was a work in the literature where the five FOPID parameters are 

identified based on the stability regions of closed loop system (Bongulwar and Patre, 2017). 

Further, the simulation results were shown only for the servo response. 

In this chapter, a FFFOPID controller is proposed using IMC. The present work uses a series 

form of FOPID controller (Hui-fang et al., 2015). The resulting controller has a structure consisting 

of FOPID term along with fractional filter with only two parameters to be tuned. The tuning 

parameters are identified such that the IAE and TV are minimum. The selection is proved to be 

optimum by observing the trends of IAE and TV through an analysis after varying the tuning 

parameters in the range of +10% and -10%. The simulations have been performed for different 

inputs and the measures used to assess the system performance are % overshoot (%OS), settling 
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time (ST), IAE and TVs. Also, the applicability of proposed method for apparent changes in time 

delay is verified by varying the L/T ratio called as controllability index (Lin et al., 2008). The 

performance of the proposed method is validated with three different examples.  

6.2.2. Design of FFFOPID controller  

The structure of the controller used here is 

C(s)=(fractional filter)Kp (
Tis

λ+1

Tis
λ

) (1+Tdsµ)       (6.27) 

To design the controller, the higher order system approximated as NIOPTD model is considered 

and is given by eq. (6.28) 

G̃(s)=
Ke-Ls

Tsα+1
           (6.28) 

The feedback controller C(s) according IMC design procedure using IMC filter f(s)=1/(γsp+1) and 

first Pade's approximation for time delay e-Ls= (1-0.5Ls)/(1+0.5Ls) is 

Cproposed(s)= (
1

0.5γLsp+γsp-1+L
) (

L

2K
) (

1+0.5Ls

0.5Ls
) (1+Tsα)      (6.29) 

Comparing equations (6.27) and (6.29), the settings are 

Kp=
L

2K
;Ti=0.5L;λ=1;Td=T;µ=α 

fractional filter=
1

0.5γLsp+γsp-1+L

}        (6.30) 

γ and p are two tuning parameters of the controller. 

6.2.2.1. Tuning 

The tuning parameters γ and p are chosen in a way that the measures IAE and TV are minimum. 

The optimum values are identified through the behavior of IAE and TV by varying γ and p in the 

range of (-10%, +10%). Finally, γ is chosen for the minimum of both IAE and TV and also p. 

6.2.3. Robustness analysis 

The stability of closed loop system should always be analyzed for process parameter uncertainties 

because the process model is an approximation of the real plant. The robust stability condition 

(Morari & Zafiriou 1989) is 
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‖lm(s)T(s)‖<1;s=jω;∀ω∈(-∞,∞)        (6.31) 

Where lm(s)=
G(s)-G̃(S)

G̃(s)
  is the bound on multiplicative uncertainty and T(s)=C(s)G(s)/1+C(s)G(s) is 

the complementary sensitivity function. For uncertainty in both L and K, the following condition 

must be satisfied 

‖T(jω)‖∞<
1

(
∆K

K
+1)e-∆L-1

          (6.32) 

Another constraint to be satisfied for robust control performance is 

‖T(s)lm(s)+(1-T(s))wm(s)‖<1         (6.33) 

Where 1-T(s) is the sensitivity function and wm(s) is the uncertainty bound on sensitivity function. 

6.2.4. Simulation study 

Three higher order systems approximated as NIOPTD models are simulated in MATLAB and the 

system performance is compared with Bongulwar and Patre (2017) method (hereafter addressed as 

Patre (2017) method). The effectiveness of the proposed method is verified with the performance 

measures %OS, ST, IAE and TV which are defined in Table 6.9. Settling time is defined as the 

time taken for the response to settle within 2% to 5% of its final value. 

Table 6.9 Expressions for %OS, IAE and TV 

%OS IAE TV 

ypeak-yss

yss

×100  ∫ |e(t)|dt
∞

0
  ∑ |ui+1-ui|

∞
i=0   

 

The closed loop system's unit step response is observed with step change in disturbance of 

magnitude 0.5 applied at a later time. Also, the step response is observed for perturbations of +10% 

in L and K and for measurement noise with a variance of 0.0001. The system robustness for 

uncertainty is illustrated in the following sections through stability analysis. The frequency used 

for Oustaloup approximation of fractional order is (0.01,100) rad/s. In addition, the trend of closed 

loop behavior is interpreted for variation in controllability index i.e., L/T ratio in the range of 0.1 

to 2. This analysis demonstrates the difficulty in control for large changes in time delay. 

6.2.4.1. Example 1 

Consider the higher order system (Shen 2002) and its equivalent NIOPTD (Patre 2017) model 
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G1(s)=
1

(s+1)4
=

0.99149

2.8015s1.0759+1
e-1.6745s        (6.34) 

The proposed and Patre (2017) controllers are: 

Cproposed(s)= (
1

0.7535s1.01+0.9s0.01+1.6745
) (0.99149) (

0.8372s+1

0.8372s
) (1+2.8015s1.0759)  (6.35) 

Cold(s)=1.5129+
0.3432

s1.1
+0.1733s1.05        (6.36) 

The optimum values of γ and p for the proposed controller are identified as 0.9 and 1.01 (Fig 

6.8). The performance measures for set point tracking are given in Table 6.10. The proposed 

method is superior in performance compared to Patre (2017) method with lower values of %OS, 

ST, IAE and TV.  

 

Fig 6.8 Identification of optimum γ and p for example1 

Table 6.10 Servo performance comparison for the three different systems 

System Method %OS ST IAE TV 

G1(s) Proposed 18.2 8.7 2.87 8.45 

Patre (2017) 22.3 15 3.57 18.7 

G2(s) Proposed 2.4 1.54 0.78 3.86 

Patre (2017) 5.02 2.97 0.83 4.75 

G3(s) Proposed 21.2 0.94 0.42 12.74 

Patre (2017) 40.7 1.95 0.53 12.35 
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The servo response for a disturbance applied at t=30s is illustrated in Fig 6.9. Betterment is 

observed even with disturbance with lower values of performance measures which is clear from 

Table 6.11. It is evident from Fig 6.9 that a satisfactory performance is observed in terms of 

disturbance rejection. Fig 6.10 shows the step response for perturbed model and response for output 

white noise is illustrated in Fig 6.11. It is observed that there is enhanced performance (Table 6.11) 

for both the cases with proposed method than the Patre (2017) method. Also, there is significantly 

less control effort with the proposed method for all the possible input changes. 

The magnitude plot is shown in Fig 6.12 for +10% uncertainty in K; +10% and +50% 

uncertainty in L. Robust stability condition (eq. 6.32) is violated by both the complementary 

sensitivity functions for +50% uncertainty in L. The proposed method violates the condition a bit 

earlier than the old method. Fig 6.13 and Fig 6.14 shows the trends of IAE and TV for servo and 

regulatory response with increasing L/T ratio. It is evident that increasing trends are observed with 

Patre (2017) method compared to the proposed method. Hence, the proposed method can be 

considered for enhanced closed loop performance of processes with large changes in time delay. 

 

 

Fig 6.9 Closed loop response of G1(s) for step input 
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Fig 6.10 Closed loop step response of G1(s) for perturbations 

 

Fig 6.11 Step response in presence of measurement noise 
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Fig 6.12 Magnitude plot for example 1 

 

 

Fig 6.13 L/T ratio versus IAE, TV for step change in set point 
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Fig 6.14 L/T ratio versus IAE, TV for step change in disturbance 

Table 6.11 Comparison of IAE and TV for the three examples 

System Method Perfect case Perturbed case Noise case 

IAE TV IAE TV IAE TV 

G1(s) Proposed 3.984 9.2133 4.837 10.6533 4.281 38.7359 

Patre (2017) 4.907 19.567 5.988 21.1318 5.02 137.5908 

G2(s) Proposed 1.176 4.393 1.263 4.992 1.207 7.2042 

Patre (2017) 1.243 5.3571 1.353 6.1191 1.248 10.4974 

G3(s) Proposed 0.5663 13.5002 0.6612 16.185 0.6131 20.1658 

Patre (2017) 0.6224 13.506 0.8196 20.2817 0.6767 20.6138 

 

6.2.4.2. Example 2 

The second example (Chen et al., 2008; Patre 2017) considered for performance comparison is 

G2(s)=
9

(s+1)(s2+2s+9)
=

1.0003

0.8864s1.0212+1
e-0.4274s       (6.37) 

The proposed controller and the controller with Patre (2017) method are: 

Cproposed(s)= (
1

0.07479s1.01+0.35s0.01+0.4274
) (0.2136) (

0.2137s+1

0.2137s
) (1+0.8864s1.0212)  (6.38) 

Cold(s)=1.4996+
1.2203

s1.05
+0.0409s1.05        (6.39) 
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The optimum values of γ and p are identified as 0.35 and 1.01. The closed loop system gives 

good servo response with the proposed method. This is true with the lower values of %OS, ST, 

IAE and TV given in Table 6.10. The unit step response with disturbance applied at t=6s is shown 

in Fig 6.15 and the corresponding performance measures are given in Table 6.11. The proposed 

method is giving better servo response which is evident with lower values of performance measures 

while the regulatory performance is almost same for both the controllers. The system response for 

perturbations is presented in Fig 6.16. Fig 6.17 presents the closed loop response for white noise 

in the output. The proposed method continue to give the superior performance compared to Patre 

(2017) method which is clear with the lower values of IAE and TV (Table 6.11). 

 

 

Fig 6.15 Closed loop response of G2(s) for step input 
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Fig 6.16 Closed loop step response of G2(s) for perturbations 

 

 

Fig 6.17 Step response in presence of measurement noise 
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The closed loop robust stability for uncertainties in K and L is illustrated through magnitude 

plot in Fig 6.18. The closed loop system gives robust performance up to +100% uncertainty in time 

delay and +10% uncertainty in gain with the proposed controller whereas the stability condition 

fails for +90% uncertainty in time delay with the Patre (2017) method. Fig 6.19 and Fig 6.20 shows 

the trends of IAE and TV for servo and regulatory response with increase in L/T ratio. The proposed 

method is showing less control effort for servo and regulatory response for the entire variation of 

L/T ratio. The trend followed by IAE for set point tracking is almost same up to L/T ratio of 1 for 

both the methods, after that it starts increasing with the old method. In case of disturbance rejection 

the IAE values are lower up to L/T ratio of 1.3 with the old method and then it had increased. 

Hence, the proposed method is a good choice to have a better control compared to the old method 

(Patre 2017) for increasing L/T ratio. 

 

 

 

Fig 6.18 Magnitude plot for example 2 
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Fig 6.19 L/T ratio versus IAE, TV for step change in set point 

 

 

Fig 6.20 L/T ratio versus IAE, TV for step change in disturbance 
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6.2.4.3. Example 3 

The higher order system studied in Panagopoulos et al. (2002) is considered as the third example 

G3(s)=
1

(s+1)(0.2s+1)(0.04s+1)(0.008s+1)
=

0.99932

1.0842s1.0132+1
e-0.1922s     (6.40) 

The proposed and old (Patre 2017) controllers are given as follows: 

Cproposed(s)= (
1

0.0096s1.1+0.1s0.1+0.1922
) (0.0961) (

0.0961s+1

0.0961s
) (1+1.0842s1.0132)   (6.41) 

Cold(s)=5.0034+
6.4

s1.1
+0.0163s1.1        (6.42) 

The values of γ and p for the proposed method are 0.1 and 1.1. The performance measures 

shown in Table 6.10 for servo response tells that the %OS, ST and IAE values are lower with the 

proposed method but the TV value is slightly higher compared to old (Patre 2017) method. 

Similarly, the step response for a change in disturbance applied at t=5s is shown in Fig 6.21. The 

closed loop step response for process parameter variations and for output noise is illustrated in Fig 

6.22 and Fig 6.23. The corresponding performance measures for all the above cases are presented 

in Table 6.11. It is evident from all these Figs that the proposed method is giving superior servo 

performance but a bit slow in rejecting the disturbance compared to the old method. 

 

Fig 6.21 Closed loop response of G3(s) for step input 
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Fig 6.22 Closed loop step response of G3(s) for perturbations 

 

 

Fig 6.23 Step response in presence of measurement noise 
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The proposed method gives robust performance up to an uncertainty of +70% in L and +10% 

in K while the Patre (2017) method fails for less than +50% uncertainty in L (Fig 6.24).  

 

Fig 6.24 Magnitude plot for example 3 

 

Fig 6.25 L/T ratio versus IAE, TV for step change in set point 
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Fig 6.25 and Fig 6.26 show the performance for variation of L/T ratio. For servo response, the 

variation of IAE is low with the proposed method while the control effort is slightly high up to 

L/T=0.9 and then it increases drastically with the old method. In case of regulatory control, the 

IAE values are higher with the proposed method and the variation of TV is low. Hence, there is a 

tradeoff between IAE and TV for increasing L/T and the proposed method is recommended for 

servo response while it can be used for disturbance rejection at higher values of L/T. 

 

Fig 6.26 L/T ratio versus IAE, TV for step change in disturbance 

6.2.5. Conclusions 

In this chapter, a FFFOPID controller is proposed for higher order systems approximated as 

NIOPTD models using IMC method. Analytical method is followed for identifying the tuning 

parameters by minimizing IAE and TV. Enhanced closed loop performance is observed with the 

proposed method for changes in set point and disturbance. Especially, the proposed method is 

effective in terms of less control effort. The closed loop system is robust with proposed method for 

high uncertainty in process parameters. Also, the proposed method assures better control for large 

changes in time delay which is proved through the variation of L/T ratio. 
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6.3. Fragility of FFFOPID Controller for higher order processes 

approximated as NIOPTD systems 

6.3.1. Introduction 

The controller for a feedback system should be designed to provide desired closed loop 

performance to input changes and robust performance to perturbations in the process parameters. 

However, another prominent topic to be considered is the controller fragility to variations in the 

controller parameters. It has been found in literature (Keel and Bhattacharyya, 1997) that the 

fragility analysis carried out for controllers designed using H2, H∞ and l2 norms provide optimal 

and robust performance but highly fragile controller for minor changes in the controller parameters. 

The fragile nature of the controller would make the system unstable. There are several works on 

the design of nonfragile controllers (Ho M-T, 2000) and an index to estimate the fragility (Alfaro, 

2007) of the controllers. 

The main reason to estimate the fragility of the controller is its fine tuning for changes in the 

controller parameters. This fragility is further addressed in the context of not only the robustness 

but also the closed loop performance to produce robust and optimal closed loop system (Alfaro et 

al., 2009; Alfaro and Vilanova, 2012; Padula and Visioli, 2016). 

FOPID controller design has been in focus from the past few years due to its flexibility in 

tuning with additional tuning parameters (Podlubny, 1999; Valerio and Sada Costa, 2006; Monje 

et al., 2008; Padula and Visioli, 2011). Further, such controllers were designed for integer and 

noninteger order time delay systems (Bettayeb and Mansouri, 2014; Hui-fang et al., 2015). The 

current work aims at the fragility analysis of  FFFOPID controller in series form designed for 

higher order systems approximated as NIOPTD systems (section 6.2). The reason for using 

NIOPTD systems (Pan and Das, 2013) is that they represent the system dynamics in a better way 

than the integer order systems (Valerio and Sada Costa, 2006). The main reason for investigating 

the fragility of FFFOPID controller is to understand which parameter change is making the system 

fragile. Hence, the fragility analysis is carried out for changes in the individual parameter of the 

controller apart from all parameter changes at a time. 
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6.3.2. Controller fragility analysis 

This section briefly describes the fragility indices proposed based on the works in the literature 

(Alfaro, 2007; Alfaro et al., 2009; Alfaro and Vilanova, 2012). The expressions for FFFOPID 

controller structure, NIOPTD system and the proposed FFFOPID controller are given in equations 

6.27- 6.29. 

The performance measure used to assess the unit step response of closed loop system is the integral 

absolute error (IAE) defined in eq. (6.43). 

JE= ∫ |e(t)|dt
∞

0
           (6.43) 

The robustness measure of the closed loop system is the maximum sensitivity, Ms (eq. (6.44)) 

Ms= max
0<ω<∞

|
1

1+C(jω)G(jω)
|          (6.44) 

6.3.2.1. Fragility indices 

The controller fragility is investigated for both robustness and closed loop performance using 

robustness fragility indices (RFI) and performance fragility indices (PFI) (Alfaro and Vilanova, 

2012). The delta epsilon robustness fragility index (RFIΔε) for a controller parameter vector [Kp, 

Ti, Td, µ, γ, p] is defined as 

RFI∆ε=
Ms∆ε

Ms
-1            (6.45) 

MsΔε in eq. (6.45) is the extreme maximum sensitivity for same variation (ε = 0.05 (5%), 0.1 (10%), 

0.15 (15%), 0.2 (20%), 0.25 (25%)) in all parameters of the controller from nominal values and Ms 

is the nominal maximum sensitivity. Similarly, the parametric delta epsilon robustness fragility 

index (RFIδε) for variation in any of the controller parameters can be calculated using eq. (6.46). 

RFIδεp=
Msδεp

Ms
-1          (6.46) 

The delta 20 robustness fragility index (RFIΔ20) for 20% variation in the controller parameters is 

RFI∆20=
Ms∆20

Ms
-1           (6.47) 

Any controller is said to be robustness fragile if RFI∆20>0.5; robustness nonfragile if RFI∆20≤0.5 

and robustness resilient if RFI∆20≤0.1. 
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The performance fragility indices for variation in all controller parameters (PFIΔε); for variation in 

one parameter at a time (PFIδε)  and for 20% variation in the controller parameters (PFIΔ20) are 

defined in equations (6.48) to (6.50). 

PFI∆ε=
JE∆ε

JE
-1           (6.48) 

PFIδεp=
JE∆εp

JE
-1           (6.49) 

PFI∆20=
JE∆ε20

JE
-1          (6.50) 

Any controller is said to be performance fragile if PFI∆20>0.5; performance nonfragile if 

PFI∆20≤0.5 and performance resilient if PFI∆20≤0.1. 

In addition, the controller fragility balance is investigated with average parametric fragility index 

which is defined for both robustness and performance in eq. (6.51) and eq. (6.52) 

RFIδεa=
1

6
∑ RFIδεp

6
i=1           (6.51) 

PFIδεa=
1

6
∑ PFIδεp

6
i=1           (6.52) 

The controller fragility balance around a selected band helps to estimate which parameter of the 

controller is causing unbalance in the fragility of controller. 

6.3.3. Fragility plots and discussion 

This section presents the fragility plots for two examples (eq. (6.53), eq. (6.54)). The nominal 

controller parameters, performance measure and maximum sensitivity for the two examples 

(section 6.2) are listed in Table 6.12. 

G1(s)=
9

(s+1)(s2+2s+9)
=

1.0003

0.8864s1.0212+1
e-0.4274s       (6.53) 

G2(s)=
1

(s+1)(0.2s+1)(0.04s+1)(0.008s+1)
=

0.99932

1.0842s1.0132+1
e-0.1922s     (6.54) 

 

Table 6.12 Controller settings and nominal performance measures for the two examples 

Example Kp Ti Td µ γ p JE Ms 

G1(s) 0.214 0.214 0.886 1.021 0.35 1.01 1.176 1.625 

G2(s) 0.096 0.096 1.084 1.013 0.1 1.1 0.566 1.81 
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6.3.3.1. Robustness fragility plots 

The robustness fragility plot for variation in all of the controller parameters of the two examples is 

shown in Fig 6.27. It can be observed that the FFFOPID controller designed for G1(s) is nonfragile 

whereas the controller designed for G2(s) is fragile. The parameter causing the fragility is found 

out from the parametric robustness fragility plots shown Fig 6.28 and Fig 6.29. It is evident from 

Fig 6.28 that the controller for G1(s) is resilient: for variations in Ti, µ, γ, p and nonfragile: for 

variations in Kp, Td. The controller for G2(s) is resilient for variation in Ti, γ, p and nonfragile for 

changes in Kp, Td and µ which is evident from Fig 6.29. The variation of controller parameter µ is 

responsible for fragile nature of the controller of G2(s) which can be observed for the delta 20 

fragility indices shown in Table 6.13. This parameter (µ) change causes instability in the closed 

loop system. In case of G1(s), controller fine tuning is required as it loses 17% (Table 6.13) of the 

robustness. The controller for G2(s) is difficult to tune as it lose more than 50% (Table 6.13) of its 

robustness. 

 

 

Fig 6.27 Robustness fragility plot for the two examples 
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Fig 6.28 Robustness parametric fragility plot for G1(s) 

 

 

Fig 6.29 Robustness parametric fragility plot for G2(s) 
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Table 6.13 Delta 20 fragility indices (FIΔ20) for the two examples 

Robustness fragility indices (RFI) Performance fragility indices (PFI) 

RFIΔ20 G1(s) G2(s) PFIΔ20 G1(s) G2(s) 

RFIδ20Kp 0.1329 0.1779 PFIδ20Kp 0.0476 0.0591 

RFIδ20Ti 0.0726 0.0917 PFIδ20Ti 0.1819 0.0164 

RFIδ20Td 0.1076 0.1674 PFIδ20Td 0.0161 0.0688 

RFIδ20µ 0.0831 0.4508 PFIδ20µ 0.1734 0.1629 

RFIδ20γ 0.0449 0.0469 PFIδ20γ 0.0756 0.0233 

RFIδ20p 0.0431 0.0342 PFIδ20p 0.1573 0.1919 

RFIΔ20 0.1692 0.5801 PFIΔ20 0.2006 0.3542 

 

 

Fig 6.30 Performance fragility plot for the two examples 

6.3.3.2. Performance fragility plots 

The performance fragility plot shown in Fig 6.30 and performance fragility indices listed in Table 

6.13 tells the controller for both the examples are performance nonfragile for variation in all 

parameters of the controller. The variations in Kp, Td and γ results in a resilient controller for G1(s) 

and makes it nonfragile for variations Td, µ and p which is evident from parametric performance 

fragility plot shown in Fig 6.31. In case of G2(s), the FFFOPID controller is resilient for variations 

in Kp, Ti, Td, γ and nonfragile for variations in µ and p which is clear from Fig 6.32. Hence, fine 
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tuning is required as the controllers of both the systems lose more than 10% and less than 35% 

(Table 6.13) of its nominal performance. 

 

Fig 6.31 Performance parametric fragility plot for G1(s) 

 

Fig 6.32 Performance parametric fragility plot for G2(s) 
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6.3.3.3. Controller fragility balance 

A fragility balanced controller can be identified with parametric delta epsilon fragility plots using 

average fragility indices and a band of fragility indices around the average value. The robustness 

and performance fragility balance plots for the two examples are shown in Fig 6.33 and Fig 6.34.  

The following observations are made from the fragility balance plots: 

1) The FFFOPID controller for G1(s) is fragility unbalanced with respect to robustness and 

performance. 

2) The robustness fragility unbalance is caused by the variation of proportional gain (Kp) and 

derivative time (Td). 

3) The performance fragility unbalance is caused by the variation of Ti, µ and p. 

4) The controller for G2(s) is robustness fragility balanced controller with respect to the variation 

of Kp, Ti, Td, γ and µ. The unbalance in the fragility is caused by the variation of fractional order 

(µ) of the derivative term. 

5) Similarly, the unbalance in the performance fragility of the controller for G2(s) is due to the 

change in the parameters µ and p. 

 

 

Fig 6.33 Fragility balance plot for G1(s) (A) robustness fragility (B) performance fragility 
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Fig 6.34 Fragility balance plot for G2(s) (A) robustness fragility (B) performance fragility 

6.3.4. Conclusions 

The fragility analysis of FFFOPID controller for higher order systems approximated as NIOPTD 

systems is presented for performance and robustness. The fragility plots indicate the influence of 

specific controller parameter on the performance and stability. The FFFOPID controller used for 

the current analysis is nonfragile in terms of both performance and robustness as the controllers 

won’t lose more than 50% of their performance and robustness up to a variation of 20% in the 

controller parameters. This nonfragile nature of the controllers allow for the fine tuning of the 

controller. Care should be taken while changing the fractional order of the derivative term as it 

mostly affects the fragility of controller. This analysis helps to design a resilient (preferred) or 

nonfragile fractional controller to ensure the stability of closed loop system. A key point to note 

here is that the fragility of the controller can also be affected by the process model. Hence, care 

must be taken to design a nonfragile controller considering the effect of model parameter changes 

apart from controller parameter variation which can be taken up as a future work. 
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7. Design of fractional filter IMC - PID control strategy for 

performance enhancement of cascade control systems* 

Cascade control is widely used in chemical industries for disturbance attenuation as an alternative 

to single feedback loop. This article presents an IMC based series cascade control system for 

different time delay process models. The novelty of the work lies in the use of fractional order IMC 

filter of first order and higher order for designing controller in the outer loop. The controller 

designed for inner loop assumes the standard PID controller structure and the outer loop controller 

takes fractional filter IMC-PID controller structure. The proposed method gives improved 

performance for set point tracking and disturbance rejection. Further, the proposed method gives 

robust performance for noise in the measured signal. Also, the robustness analysis is performed to 

check the insensitivity of the closed loop system for process parameter variations. The fragility of 

the controller is investigated for perturbations in the controller parameters. 

7.1. Introduction 

Cascade control is an advanced control structure widely used in chemical process industry with 

flow, pressure, level and temperature control loops to attenuate the external disturbances for 

improved and rapid performance of the single feedback loop (Seborg et al., 2004; Krishnaswamy 

et al., 1990; Raja and Ali, 2017). This structure also handles nonlinearities in the process elements 

and ensures accurate control performance in presence of large time delays. The cascade control 

structure consists of inner (secondary) loop and outer (primary) loop. The enhanced performance 

of cascade system depends on the effective tuning of these loops (Huang et al., 1998; Leva and 

Marinelli, 2009) and PID controllers are mostly used for the purpose due to their adopted structure 

and range of tuning methods available (Song et al., 2003; Brambilla and Semino, 1992; Veronesi, 

and Visioli, 2011; Vivek and Chidambaram, 2013). However, the tuning is quite complex because 

the changes encountered by the inner loop must be considered for tuning the primary loop. 

A series cascade control structure (Raja and Ali, 2017) is widely used in the industries which 

comes with minimum number of controllers and hence less parameters to be tuned.  

* This work has been submitted to the journal International Journal of Systems Science (under review) 
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Initially, sequential tuning was used for tuning the cascade control loop where in the secondary 

loop is tuned first followed by primary loop. Another familiar tuning method used with cascade 

systems is IMC (Leva and Donida, 2009) which offers flexibility in tuning. In the present article, 

a fractional filter IMC-PID tuning method is proposed for cascade control systems by considering 

the tuning flexibility of IMC method (Lee et al., 1998). Firstly, the inner loop controller is designed 

and then the outer loop controller is designed by considering the desired response of inner loop 

(Azar and Serrano, 2014). 

Fractional order control has been in focus for controlling different time delay systems using 

fractional order differentiation and fractional order integration. The analytical controller design 

using fractional IMC filter produce a fractional filter PID controller in spite of conventional three 

term PID controller (Padula and Visioli, 2014). The additional tuning parameters of the fractional 

filter allows for precise control. Vu and Le developed FOPI controller tuning rules for cascade 

control systems (Vu and Le Hieu Giang, 2016). Hence, in the present paper a fractional order IMC 

filter has been used for designing the outer loop controller. The controllers are tuned using the 

generalized systematic design procedure minimizing IAE and TV. The simulations have been done 

for different process models in the inner loop and outer loop. FOPTD models and IPTD models are 

used in the outer loop whereas SOPTD and FOPTD models are used in the inner loop. The 

simulations are carried out for external perturbations, process parameter variations and for noise in 

the measured signal. Further, robustness analysis is carried out for robust stability of the closed 

loop system for uncertainties in the process parameters. 

7.2. IMC based design of series cascade control system 

The IMC based series cascade control structure is shown in Fig 7.1. C1(s) is the controller and G1(s) 

is the process model for inner loop while C2(s) and G2(s) are the outer loop controller and outer 

loop process model respectively. d1 and d2 are the disturbance inputs for the inner and outer loops. 

The controllers for both the loops using IMC method are derived in the following sections. 
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Fig 7.1 IMC based series cascade control structure 

7.2.1. Inner loop controller design 

The IMC controller for the inner loop is given by 

CIMC1(s)=
f1(s)

G̃1
-
(s)

           (7.1) 

Where G̃1

-
(s) is the invertible part of G1(s) and f1(s) is the inner loop IMC filter 

The inner loop feedback controller is 

C1(s)=
CIMC1(s)

1-CIMC1(s)G1(s)
          (7.2) 

7.2.2. Outer loop controller design 

The design procedure is similar to the one used for inner loop. The outer loop process model 

considering the inner loop is 

G̃p2(s)=
G̃1

+
(s)

f1(s)
G̃2(s)          (7.3) 

The IMC controller for the outer loop is given by 

CIMC2(s)=
f2(s)

G̃p2
-

(s)
          (7.4) 

Where G̃p2

-
(s) is the invertible part of Gp2(s) and f2(s) is the outer loop IMC filter 

The outer loop controller C2(s) is 

C2(s)=
CIMC2(s)

1-CIMC2(s)Gp2(s)
          (7.5) 

7.3. Cascade loop controller design with different process models 

The controller structure for inner and outer loops used in the current work takes the following form: 
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C1(s)=(filter term)Kp [1+
1

Tis
+Tds]        (7.6) 

C2(s)=(fractional filter)Kp [1+
1

Tis
+Tds]       (7.7) 

Kp, Ti and Td are proportional gain, integral time and derivative time 

7.3.1. Design of controllers for cascade loop: SOPTD system in the inner loop 

and FOPTD system in the outer loop 

7.3.1.1. Inner loop controller design with SOPTD model 

Consider a SOPTD model 

G1(s)=
K1e-L1s

(T1s+1)(T2s+1)
;  K1-gain;L1-time delay;T1and T2 are time constants    (7.8) 

Inner loop IMC filter  

f1(s)=
1

γ1s+1
;  γ

1
-filter time constant        (7.9) 

Using Taylor series approximation and IMC method, the expression for C1(s) is 

C1(s)= [
T1+T2

K1(γ1+L
1
)
] [1+

1

(T1+T2)s
+ (

T1T2

T1+T2
) s]       (7.10) 

7.3.1.2. Outer loop controller design with FOPTD model 

Consider the FOPTD model 

G2(s)=
K2e-L2s

T3s+1
;  K2-gain;L2-time delay;T3- time constant      (7.11) 

Now, by considering the effect of inner loop, the outer loop process becomes 

Gp2
(s)=

K2e
-(L1+L

2
)s

(T3s+1)(γ1s+1)
; L1+L

2
= L        (7.12) 

The outer loop higher order IMC filter [16] is 

f2(s)=
βs+1

(γ2sp+1)
2           (7.13) 

Where γ2 is the time constant; p is the fractional order and β is the additional degree of freedom 

of f2(s) 

The outer loop controller C2(s) using Taylor series approximation for time delay is 

C2(s)=
βs+1

[γ
2
2s2p-1+βLs+2γ2sp-1+(L-β]

(
T3+γ1

K2
) [1+

1

(T3+γ1)s
+ (

T3γ1

T3+γ1

) s]     (7.14) 

The outer loop controller C2(s) using IMC filter 1/(γ
2
sp+1) and Taylor series approximation for 

time delay is 
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C2(s)= (
1

γ2sp-1+L
) (

T3+γ1

K2
) [1+

1

(T3+γ1)s
+ (

T3γ1

T3+γ1

) s]      (7.15) 

7.3.2. Design of controllers for cascade loop: FOPTD system in the inner loop; 

FOPTD and IPTD systems in the outer loop 

7.3.2.1. Inner loop controller design with FOPTD model 

Consider an FOPTD model 

G1(s)=
K1e-L1s

T1s+1
           (7.16) 

Using IMC filter in eq. (7.9) and first Pade’s procedure, the expression for C1(s) is 

C1(s)= [
1

(0.5γ1L
1
)s+(γ1+L

1
)
] (

T1+0.5L1

K1
) [1+

1

(T1+0.5L1)s
+ (

0.5T1L1

T1+0.5L1
) s]    (7.17) 

7.3.2.2. Outer loop controller design with FOPTD model 

Consider the FOPTD model 

G2(s)=
K2e-L2s

T2s+1
;  K2-gain; L2-time delay; T2 - time constant      (7.18) 

Now, by considering the effect of inner loop, the outer loop process becomes 

Gp2
(s)=

K2e
-(L1+L

2
)s

(T2s+1)(γ1s+1)
          (7.19) 

The outer loop controller C2(s) using higher order fractional IMC filter in eq. (7.13) and 2/3 

Pade’s approximation for time delay is 

C2(s)=
βL3s4+(L3+9βL2)s3+(9L2+36βL)s2+(36L+60β)s+60

[
γ

2
2L3s2p+2+9γ

2
2L2s2p+1+2γ

2
L3sp+2+36γ

2
2Ls2p+18γ

2
L2sp+1+(L3-3βL2)s2+60γ

2
2s2p-1+

72γ
2
Lsp+(6L2+24βL)s+120γ

2
sp-1+(60L-60β)

]

(
T2+γ

1

K2

) [1+
1

(T2+γ
1
)s

+ (
T2γ

1

T2+γ
1

) s] (7.20) 

The outer loop controller C2(s) using IMC filter 1/(γ
2
sp+1) and 2/3 Pade’s approximation for time 

delay is 

C2(s)= (
L

3
s3+9L

2
s2+36Ls+60

γ2L
3
sp+2+9γ2L

2
sp+1+L

3
s2+36γ2Ls

p
+6L

2
s+60γ2sp-1+60L

) (
T2+γ1

K2
) [1+

1

(T2+γ1)s
+ (

T2γ1

T2+γ1

) s]      (7.21) 

7.3.2.3. Outer loop controller design with IPTD model 

Consider an integrating process model 

G2(s)=
K2e-L2s

s
           (7.22) 

Now, by considering the effect of inner loop, the outer loop process becomes 

Gp2
(s)=

K2e
-(L1+L

2
)s

s(γ1s+1)
          (7.23) 

The outer loop higher order IMC filter is 
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f2(s)=
βs+1

(γ2sp+1)
3           (7.24) 

The outer loop controller C2(s) using 2/3 Pade’s approximation for time delay is 

C2(s)=
βL

3
s4+(9βL

2
+L

3
)s3+(36βL+9L

2
)s2+(36L+60β)s+60

[
γ

2
3L

3
s3p+2+9γ

2
2L

3
s3p+1+3γ

2
2L

3
s2p+2+36γ

2
3Ls3p+27γ

2
2L

2
s2p+1+3γ2L

3
sp+2+60γ

2
3s3p-1+108γ

2
2Ls2p

+27γ2L
2
sp+1+(L

3
-3βL

2
)s2+180γ

2
2s2p-1+108γ2Ls

p
+(24βL+6L

2
)s+180γ2sp-1+(60L-60β)

]

(
1

K2
) [1+γ

1
s] (7.25) 

The outer loop controller C2(s) using IMC filter 1/(γ
2
sp+1) and 2/3 Pade’s approximation for time 

delay is 

C2(s)=
L

3
s3+9L

2
s2+36Ls+60

γ2L
3
sp+2+9γ2L

2
sp+1+L

3
s2+36γ2Ls

p
+6L

2
s+60γ2sp-1+60L

(
1

K2
) [1+γ

1
s]    (7.26) 

The higher order fractional IMC filter structures are identified according to the systematic design 

procedure given in Figure 7.2. 

7.4. Robustness and fragility analysis 

7.4.1. Robustness analysis 

The Robustness analysis is important to assess the stability of closed loop control system. This is 

due to the fact that the model behavior used for controller design is different from the real time 

system. Hence, the closed loop system must be insensitive for variations in the process parameters. 

This insensitive capacity of the closed loop system for parameter variations can be expressed 

through robustness analysis. 

The robust stability condition according to the small gain theorem (Zhou and Doyle, 1998) is 

‖δ(jω)T(jω)‖<1∀ω∈(-∞,∞)         (7.27) 

Where T(jω) is the complementary sensitivity function and δ(jω) is the bound on process 

multiplicative uncertainty. 

The controller must be tuned according to eq. (7.28) for uncertainty in L 

‖T(jω)‖∞<
1

|e-∆L-1|
          (7.28) 

The following constraint should also be satisfied for robust closed loop performance 

‖δ(jω)T(jω)+w(jω)S(jω)‖<1         (7.29) 

Where S(jω) = 1 - T(jω) is the sensitivity function and w(jω) is the bound on S(jω). 
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Figure 7.2 Systematic design procedure for identification of optimum fractional IMC filter structure 

7.4.2. Fragility analysis 

The Fragility analysis tells us the robust closed loop performance for perturbations in the controller 

parameters. The controller fragility (Alfaro and Vilanova, 2012) is based on the following criteria: 
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resilient if, RFI∆20≤0.1

nonfragile if, RFI∆20≤0.5

fragile if, RFI∆20>0.5 
          (7.30) 

RFI∆20 =
MsΔ20

Ms
-1          (7.31) 

Where MsΔ20 is the Ms for 20% perturbation in all parameters of the controller and Ms in the 

nominal maximum sensitivity. 

7.5. Results and discussion 

Three examples have been considered for simulation to show the effectiveness of the proposed 

method. The closed loop performance is assessed with the help of performance metrics: IAE, TV 

and Ms. The values of IAE and TV should be small, but an increase in IAE leads to a decrease in 

TV and vice versa (Shamsuzzoha and Skogestad, 2010). It means, there always exists a trade-off 

between IAE and TV. All the proposed methods are further termed as Proposed1, Proposed2, 

Proposed3 and Proposed4 which are listed in Table 7.1. 

Table 7.1 Proposed methods for the three examples 

Method IMC filters and Pade’s procedure used in both the loops 

Proposed1 f1(s)=
1

γ1+1
+Taylor (inner loop) and f2(s)=

βs+1

(γ2sp+1)
2 + Taylor (outer loop) 

Proposed2 f1(s)=
1

γ1+1
+ Taylor (inner loop) and f2(s)=

1

γ2sp+1
 + Taylor (outer loop) 

Proposed3 f1(s)=
1

γ1+1
+1st Pade (inner loop) and f2(s)=

βs+1

(γ2sp+1)
2 + 2/3 Pade (outer loop) 

Proposed4 f1(s)=
1

γ1+1
+1st Pade (inner loop) and f2(s)=

1

γ2sp+1
 + 2/3 Pade (outer loop) 

Proposed5 f1(s)=
1

γ1+1
+1st Pade (inner loop) and f2(s)=

βs+1

(γ2sp+1)
3 + 2/3 Pade (outer loop) 

Proposed6 f1(s)=
1

γ1+1
+1st Pade (inner loop) and f2(s)=

1

γ2sp+1
 + 2/3 Pade (outer loop) 

 

IAE= ∫ |e(t)|dt
∞

0
          (7.32) 

TV= ∑ |ui+1-ui|
∞
i=0           (7.33) 

Ms= max
0<ω<∞

|
1

1+C(jω)G(jω)
|          (7.34) 

7.5.1. Example 1 

The inner loop and outer loop models (Azar and Serrano, 2014) considered for the study are: 
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G1(s)=
100e

-0.0005s

(s+1)(0.0015s+1)
          (7.35) 

G2(s)=
20e

-0.375s

0.495s+1
           (7.36) 

The Proposed controller settings for both the loops of Example 1 are listed in Table 7.2.  The 

closed loop step response of the cascade system with d1 of magnitude 1 applied at t=10s and d2 of 

magnitude 1 applied at t=20s is shown in Figure 7.3. The corresponding IAE and TV are given in 

Table 7.3. These values are low with the Proposed1 and Proposed2 methods for both the loops 

compared to Azar and Serrano (2014) method. The response of cascade loop for perturbations of 

+10% in K and L is shown in Figure 7.4 and the associated IAE and TV are given in Table 7.4. 

The performance measures for an output white noise of zero mean and a variance of 0.1 introduced 

in the outer loop is given in Table 7.4. It is evident that the Proposed1 and Proposed2 methods are 

giving better performance with low IAE and TV compared to Azar and Serrano (2014) method. 

The magnitude plot illustrating the robust stability of overall cascade loop is shown in Figure 7.5. 

It is observed that both the proposed methods are robustly stable with the Proposed1 method being 

more robust compared to Proposed2 method whereas Azar and Serrano (2014) method violates the 

robust stability condition for an uncertainty of +80% in L. 

Table 7.2 Controller settings for Example 1 

 Method Kp Ti Td β γ1 γ2 P Ms 
Inner 

loop 

Proposed1/Proposed2 11.3163 1.0015 0.00149 - 0.000385 - - 1.7 

Azar (2014) 0.2173 1 0.0015 - 0.0455 - - 1.7 

Outer 

loop 

Proposed1 0.0247 0.495385 0.000379 0.00021 - 0.225 1.02 1.63 

Proposed2 0.0247 0.495385 0.000379 - - 0.342 1.02 1.63 

Azar (2014) 0.00146 0.0455 0.495 - - 0.1842  1.63 

 

Table 7.3 Performance measures for nominal response of Example 1 

Method Inner loop Outer loop 

IAE Ms IAE TV Ms 

Proposed1 0.0069 1.7 1.982 0.1506 1.63 

Proposed2 0.0069 1.7 1.708 0.1613 1.63 
Azar and Serrano (2014) 0.0661 1.7 2.836 0.9966 1.63 

 

Table 7.4 Performance measures for perturbations and measurement noise of Example 1 

 Perturbed response Noise response 

Method Inner loop Outer loop Inner loop Outer loop 

IAE IAE TV IAE IAE TV 

Proposed1 0.0117 2.137 0.1717 0.0089 9.412 2.3066 

Proposed2 0.0119 1.86 0.1868 0.0115 9.372 4.3776 

Azar and Serrano (2014) 0.0642 3.36 1.0986 0.3384 9.942 51.9231 
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Figure 7.3 Nominal response for Example 1 

 

 

Figure 7.4 Perturbed response for Example 1 
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Figure 7.5 Robustness analysis of overall cascade loop for Example 1 

7.5.2. Example 2 

The inner loop and outer loop process models (Alfaro et al., 2008) considered for the study are: 

G1(s)=
e-0.3s

s+1
           (7.37) 

G2(s)=
e-1.5s

5s+1
           (7.38) 

The Proposed controller settings for the inner loop and outer loop of Example 2 are listed in 

Table 7.5.  The step response of cascade loop with d1 of magnitude 1 applied at t=50s and d2 of 

magnitude 0.1 applied at t=100s is shown in Figure 7.6. The corresponding performance metrics 

are given in Table 7.6. The value of IAE for the inner loop is small with the Proposed1 method 

whereas IAE for the outer loop is almost same with Proposed3 and Proposed4 methods. The TV 

representing control effort is small with Propsed3 method and very high with Proposed4 method. 

The cascade system response for perturbations of +10% in K and L is shown in Figure 7.7 and the 

associated IAE and TV are given in Table 7.7. The performance measures for white noise in the 

output introduced in the outer loop are listed in Table 7.7. It can be observed that the IAE of inner 

loop is small with Proposed1 method for both responses and the IAE of outer loop with Proposed3 
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method is slightly higher compared to Proposed4 method. But, the TV is small with Proposed3 

method for both the responses and too high for Proposed4 method.  

Table 7.5 Controller settings for Example 2 

 Method Kp Ti Td β γ1 γ2 P Ms 

Inner loop 
Proposed3/ 

Proposed4 

1.15 1.15 0.1304 - 0.338 - - 1.5 

Outer loop 
Proposed3 5.338 5.338 0.3165 0.2 - 0.68 1.02 1.7 

Proposed4 5.338 5.338 0.3165 - - 0.9 1.02 1.7 
 

Table 7.6 Performance measures for nominal response of Example 2 

Method Inner loop Outer loop 

IAE Ms IAE TV Ms 

Proposed3 5.843 1.5 5.364 55.651 1.7 

Proposed4 9.162 1.5 5.034 152.783 1.7 
 

 

Figure 7.6 Nominal response for Example 2 

Table 7.7 Performance measures for perturbations and measurement noise of Example 2 

 Perturbed response Noise response 

Method Inner loop Outer loop Inner loop Outer loop 

IAE IAE TV IAE IAE TV 

Proposed3 7.04 6.299 57.638 392.4 34.62 20597 

Proposed4 12.2 5.991 157.528 950.9 34.44 59109 
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The overall cascade loop is robust up to an uncertainty of +60% in L which is illustrated in 

Figure 7.8. It is observed that Proposed3 method is more robust compared to Proposed4 method. 

 

Figure 7.7 Perturbed response for Example 2 

 

Figure 7.8 Robustness analysis of overall cascade loop for Example 2 
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7.5.3. Example 3 

The process models (Padhan and Majhi, 2013) used here are an integrating process in the outer 

loop and FOPTD system in the inner loop. 

G1(s)=
4e-s

s+1
           (7.39) 

G2(s)=
2e-2s

s
           (7.40) 

The proposed controller settings for inner loop and outer loop are given in Table 7.8. The step 

response of cascade loop with step disturbances d1 of magnitude 0.05 and d2 of magnitude 0.1 

applied at t=100s and t=200s is shown in Figure 7.9. Figure 7.10 shows the response for 

perturbations of +10% in K and L. The performance measures for both the cases are listed in Table 

7.9 and Table 7.10. It can be observed from nominal response and perturbed response that the IAE 

is low for inner loop with the Proposed5 method. The IAE for outer loop with the Proposed5 

method is a bit high compared to Proposed6 method whereas TV is close to zero with Proposed5 

method and too high with Proposed6 method with respect to nominal response. In case of perturbed 

response, the IAE is slightly low with Proposed5 method compared to Proposed6 method and the 

TV is very high with Proposed6 method. The performance measures for output white noise are 

listed in Table 7.10. The change of error and TV is same as observed for nominal response. The 

robust stability of cascade loop is illustrated in Figure 7.11. The Proposed5 method can give robust 

and stable performance up to an uncertainty of +100% in L whereas the Proposed6 method violates 

the robust stability condition after +90% uncertainty in L. 

Table 7.8 Controller settings for Example 3 

 Method Kp Ti Td β γ
1
 γ

𝟐
 P Ms 

Inner loop 
Proposed5/ 

Proposed6 

0.375 1.5 0.333 - 1.525 - - 1.4 

Outer loop 
Proposed5 0.5 - 1.525 1 - 1.65 1.02 1.6 

Proposed6 0.5 - 1.525 - - 2.11 1.02 1.6 

 

Table 7.9 Performance measures for nominal response of Example 3 

Method Inner loop Outer loop 

IAE Ms IAE TV Ms 

Proposed5 0.973 1.4 17.07 0.5406 1.6 

Proposed6 1.645 1.4 16.75 278.098 1.6 
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Figure 7.9 Nominal response for Example 3 

 

 

Figure 7.10 Perturbed response for Example 3 
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Figure 7.11 Robustness analysis of overall cascade loop for Example 3 

Table 7.10 Performance measures for perturbations and measurement noise of Example 3 

 Perturbed response Noise response 

Method Inner loop Outer loop Inner loop Outer loop 

IAE IAE TV IAE IAE TV 

Proposed5 1.09 19.64 0.608 11.53 85.02 165.514 

Proposed6 1.756 20.5 282.678 393.4 84.16 30946 

7.5.4. Controller fragility 

The robustness delta epsilon fragility plot for all the examples is shown in Figure 7.12. The delta 

20 fragility index values are listed in Table 7.11. It is observed that all the proposed controllers are 

nonfragile except for Proposed5 method which is fragile. Hence, it is possible to retune the 

proposed controllers for variation in the controller parameters. 

Table 7.11 Robustness delta 20 (RFIΔ20) fragility index for the three examples 

Examples Method RFIΔ20 

Example1 

Proposed1 0.1472 

Proposed2 0.0184 

Azar and Serrano (2014) 0.0969 

Example2 
Proposed3 0.447 

Proposed4 0.2705 

Example3 
Proposed5 0.6812 

Proposed6 0.275 
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Fig 7.12 Fragility index variation for all the examples of cascade loop 

7.6. Conclusions 

An IMC based series cascade control system is designed for different process models in inner and 

outer loops. Inner loop controller is designed using integer order IMC filter. The outer loop 

controller is designed using fractional order IMC filter of first order and higher order for different 

time delay process models. Improved performance is observed with outer loop controller designed 

using higher order fractional IMC filter especially in terms of control effort. The performance with 

conventional fractional IMC filter is also good in terms of IAE but the control effort is very high. 

Also, the similar enhanced performance is observed for perturbations in process parameters and 

with measurement noise. The robust stability analysis is carried out with multiplicative 

uncertainties in the process parameters and it was found that the controller designed with higher 

order fractional IMC filter is more robust compared to the controller designed using conventional 

fractional IMC filter. The outer loop controllers are nonfragile except for Proposed3 method which 

is fragile.  
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8. Conclusions and Future work 

General Conclusions 

Apart from the specific conclusions made at the end of each chapter of this dissertation, the general 

conclusions of this thesis are drawn as following: 

A systematic design procedure is developed to design the novel fractional controller based on 

IMC for different classes of integer (second order, integrating) and non-integer order systems with 

time delay. A fractional filter IMC-PID controller is designed using conventional fractional IMC 

filter plus first order pade’s approximation for time delay. The design method is improved by 

considering higher order fractional IMC filter structures and higher order pade’s approximation for 

time delay. The improvement is carried out through a systematic design procedure for the 

robustness (Ms) specification based on minimum IAE. An optimum higher order fractional IMC 

filter structure is identified for each and every time delay system using the systematic procedure. 

To quantify the superiority of the proposed controllers, four performance metrics, ISE, IAE, ITAE 

and TV have been used.  

The closed loop performance with the proposed controller is illustrated for various numerical 

examples representing the integer and non-integer order systems. It is observed that there is a 

significant improvement in the performance of closed-loop system. The improvement is evident in 

terms of low values of errors. The errors are decreasing with increase in the order of Pade’s 

approximation for time delay but the control effort is slightly increasing. Robustness analysis is 

performed for variations in the process parameters and robustness analysis is carried out using 

sensitivity functions. The performance is also observed for noise in the measurement. It is found 

that the proposed fractional filter controllers for different time delay systems are giving robust 

performance for parametric uncertainties and improved performance is seen even with output 

noise.  

Fragility analysis is carried out for uncertainties in the controller parameters to know the 

deterioration of closed loop performance and robustness. It is observed that the proposed 

controllers for integer order time delay systems are either resilient or nonfragile assuring robust 

performance for +20% uncertainty in the controller parameters. In case of the proposed controllers 
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designed for NIOPTD systems both nonfragile and fragile nature is observed. Hence, care should 

be taken while designing the fractional filter FOPID controller for NIOPTD systems.    

The proposed method is extended to design a series cascade control system for different 

process models using first order and higher order fractional IMC filter structures. Improved 

performance is observed with outer loop controller designed using higher order fractional IMC 

filter especially in terms of TV. 

Perspective of Future work 

The present work can be extended for further investigation in the following areas: 

1. Experimental evaluation of the proposed design method  

The proposed method can be validated through experiments via chemical processes i.e., 

CSTR and pH neutralization processes etc. 

2. Optimization based design of optimal fractional filter PID controller. 

It would be of interest to consider a multi objective dynamic optimization approach, where 

both robustness and noise sensitivity can be used as constraints to enhance the performance. 

3. Performance evaluation of proposed method on unstable systems 

The present work considered stable single input single output systems for controller design. 

The proposed method can be extended to unstable integer and fractional order systems; 

multiple input multiple output systems consisting of integer and fractional order models. 

4. Performance evaluation for advanced control strategies (Feed forward control) using the 

proposed analytical design approach. 
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Appendix A  

Program for obtaining the closed loop response of Example 1 (Chapter 3.1) 

%--------------------------------------------------Closed loop response---------------------------------------------- 

clc 
sim 'secondorderexample'; 

load proposed 

subplot(2,1,1) 
plot(a(1,:),a(2,:),'r') 

hold on 

sim 'secondorderexample'; 

load wang 
subplot(2,1,1) 

plot(b(1,:),b(2,:),'b') 

hold on 
sim 'secondorderexample'; 

load setpoint 

subplot(2,1,1) 
plot(c(1,:),c(2,:),'k') 

hold off 

xlabel('Time(s)') 

ylabel('Process output') 
%------------------------------------------------------Control effort--------------------------------------------------- 

sim 'secondorderexample'; 

load proposedtv 
subplot(2,1,2) 

plot(A(1,:),A(2,:),'r') 

hold on 
sim 'secondorderexample'; 

load wangtv 

subplot(2,1,2) 

plot(B(1,:),B(2,:),'b') 
hold off 

xlabel('Time(s)') 

ylabel('Control effort') 
%-----------------------------------------------------------TV----------------------------------------------------------- 

sim 'secondorderexample'; 

load proposed1 

TV=sum(abs(diff(proposed1))) 
sim 'secondorderexample'; 

load proposed 

TV=sum(abs(diff(proposed))) 

Program for obtaining the magnitude plot (robust stability) 

%------------------------------------------------------Proposed-------------------------------------------------------- 

clear all 
clc 

ww=logspace(-3,3,500); 

for i=1:500 
    w=ww(i); 
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    xx = j*w; 

    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  
    Gc(i) = (1.7+(1/xx)+0.6998*xx)*((xx+1)/(2*xx^1.02+2*xx^0.02+2)); 

    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 

end 
loglog(ww,T,'r') 

hold on; 

%--------------------------------------------------time delay variation------------------------------------------------ 

ww=logspace(-3,3,500); 
for i=1:500 

    w=ww(i); 

    xx = j*w; 
    G(i)=1/(exp(0.2*xx)-1) 

    T(i) = abs(G(i)); 

end 

loglog(ww,T,'g') 
ylabel('Magnitude', 'FontSize',12); 

xlabel('Frequency(rad/s)', 'FontSize',12); 

hold off; 

 

Simulink diagram for Example 1 
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Program for obtaining the closed loop response (Chapter 3.2) 

%-------------------------------------------------Closed loop response----------------------------------------------- 

clc 
sim 'invertedpendulum'; 

load wang 

subplot(2,1,1) 

plot(a(1,:),a(2,:),'k--') 
hold on 

sim 'invertedpendulum'; 

load wang1 
subplot(2,1,1) 

plot(b(1,:),b(2,:),'b-.') 

hold on 

sim 'invertedpendulum'; 
load wang2 

subplot(2,1,1) 

plot(c(1,:),c(2,:),'m:') 
hold on 

sim 'invertedpendulum'; 

load proposed 
subplot(2,1,1) 

plot(d(1,:),d(2,:),'r') 

hold on 

sim 'invertedpendulum'; 
load setpoint 

subplot(2,1,1) 

plot(e(1,:),e(2,:),'k') 
hold off 

xlabel('Time(s)') 

ylabel('Process output') 
%--------------------------------------------------------control effort--------------------------------------------------- 

sim 'invertedpendulum'; 

load wangtv 

subplot(2,1,2) 
plot(A(1,:),A(2,:),'k--') 

hold on 

sim 'invertedpendulum'; 
load wang1tv 

subplot(2,1,2) 

plot(B(1,:),B(2,:),'b-.') 

hold on 
sim 'invertedpendulum'; 

load wang2tv 

subplot(2,1,2) 
plot(C(1,:),C(2,:),'m:') 

hold on 

sim 'invertedpendulum'; 
load proposedtv 

subplot(2,1,2) 

plot(D(1,:),D(2,:),'r') 
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hold off 

xlabel('Time(s)') 
ylabel('Control effort') 

 

Simulink diagram 
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Appendix B  

Program for obtaining the closed loop response Example 1  

%--------------------------------------------------Closed loop response------------------------------------------------ 

sim 'SOPTDexample1finalrevision'; 
load proposed 

subplot(2,1,1) 

plot(a(1,:),a(2,:),'r-.','LineWidth',1) 
hold on 

sim 'SOPTDexample1finalrevision'; 

load proposed1 

subplot(2,1,1) 
plot(b(1,:),b(2,:),'r--','LineWidth',1) 

hold on 

sim 'SOPTDexample1finalrevision'; 
load proposed2 

subplot(2,1,1) 

plot(c(1,:),c(2,:),'b','LineWidth',1) 
hold on 

sim 'SOPTDexample1finalrevision'; 

load proposed3 

subplot(2,1,1) 
plot(f(1,:),f(2,:),'b--','LineWidth',1) 

hold on 

sim 'SOPTDexample1finalrevision'; 
load proposedconventional 

subplot(2,1,1) 

plot(e(1,:),e(2,:),'g','LineWidth',1) 
hold on 

sim 'SOPTDexample1finalrevision'; 

load wang 

subplot(2,1,1) 
plot(d(1,:),d(2,:),'k','LineWidth',1) 

hold on 

sim 'SOPTDexample1finalrevision'; 
load setpoint 

subplot(2,1,1) 

plot(g(1,:),g(2,:),'k--','LineWidth',0.5) 

hold off 
xlabel('Time(s)') 

ylabel('Process output') 

%------------------------------------------------------Control effort---------------------------------------------------- 
sim 'SOPTDexample1finalrevision'; 

load proposedtv 

subplot(2,1,2) 
plot(A(1,:),A(2,:),'r-.','LineWidth',1) 

hold on 

sim 'SOPTDexample1finalrevision'; 

load proposedtv1 
subplot(2,1,2) 
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plot(B(1,:),B(2,:),'r--','LineWidth',1) 

hold on 
sim 'SOPTDexample1finalrevision'; 

load proposedtv2 

subplot(2,1,2) 
plot(C(1,:),C(2,:),'b','LineWidth',1) 

hold on 

sim 'SOPTDexample1finalrevision'; 

load wangtv 
subplot(2,1,2) 

plot(D(1,:),D(2,:),'k','LineWidth',1) 

hold on 
sim 'SOPTDexample1finalrevision'; 

load proposedtvconventional 

subplot(2,1,2) 

plot(E(1,:),E(2,:),'g','LineWidth',1) 
hold on 

sim 'SOPTDexample1finalrevision'; 

load proposedtv3 
subplot(2,1,2) 

plot(F(1,:),F(2,:),'m','LineWidth',1) 

hold off 
xlabel('Time(s)') 

ylabel('Control effort') 

%------------------------------------------------------------TV---------------------------------------------------------- 

sim 'SOPTDexample1finalrevision'; 
load proposed4 

TV=sum(abs(diff(proposed4))) 

sim 'SOPTDexample1finalrevision'; 
load proposed3 

TV=sum(abs(diff(proposed3))) 

sim 'SOPTDexample1finalrevision'; 
load proposed1 

TV=sum(abs(diff(proposed1))) 

sim 'SOPTDexample1finalrevision'; 

load proposed 
TV=sum(abs(diff(proposed))) 

sim 'SOPTDexample1finalrevision'; 

load proposed2 
TV=sum(abs(diff(proposed2))) 

sim 'SOPTDexample1finalrevision'; 

load proposed5 

TV=sum(abs(diff(proposed5))) 

Program for obtaining the magnitude plot (robust stability) 

%-------------------------------------------------------Proposed1------------------------------------------------------- 

clear all 

clc 
ww=logspace(-3,3,500); 

for i=1:500 

    w=ww(i); 
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    xx = j*w; 

    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  
    Gc(i) = (1.7+(1/xx)+0.7*xx)*((0.3658*xx^2+1.3658*xx+1)/ (1.3572*xx^2.04     

 +1.3572*xx^1.04+2.33*xx^1.02+0.3658*xx+2.33*xx^0.02+1.6342)); 

    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 
end 

subplot(2,1,1) 

loglog(ww,T,'r-.') 

hold on; 
%--------------------------------------------------------Proposed2------------------------------------------------------ 

ww=logspace(-3,3,500); 

for i=1:500 
    w=ww(i); 

    xx = j*w; 

    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  

    Gc(i) = (1.7+(1/xx)+0.6998*xx)*((0.1601*xx^3+0.8135*xx^2+1.4802*xx+1)/ 
 (0.3072*xx^3.04 +0.9216*xx^2.04+0.64*xx^2.02-0.1601*xx^2 +0.9216*xx^1.04 

 +1.92*xx^1.02+0.4802*xx+1.92*xx^0.02+1.5198)); 

    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 
end 

subplot(2,1,1) 

loglog(ww,T,'r--') 
hold on; 

%--------------------------------------------------------Proposed3------------------------------------------------------ 

ww=logspace(-3,3,500); 

for i=1:500 
    w=ww(i); 

    xx = j*w; 

    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  
    Gc(i) = (1.7+(1/xx)+0.7*xx)*((3.884*xx^4+25.478*xx^3+70.956*xx^2+101.13*xx+60)/ 

 (7.22*xx^4.04+32.49*xx^3.04+15.2*xx^3.02+64.98*xx^2.04+68.4*xx^2.02 

 +2.174*xx^2+54.15*xx^1.04+136.8*xx^1.02+47.304*xx+114*xx^0.02+90.87)); 
    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 

end 

subplot(2,1,1) 

loglog(ww,T,'b') 
hold on; 

%--------------------------------------------------------Proposed4------------------------------------------------------ 

ww=logspace(-3,3,500); 
for i=1:500 

    w=ww(i); 

    xx = j*w; 

    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  
    Gc(i) = (1.7+(1/xx)+0.7*xx)*((1.7696*xx^3+7.5392*xx^2+10.6544*xx+6)/ 

 (4.2436*xx^3.04+8.4872*xx^2.04+8.24*xx^2.02+6.3654*xx^1.04+16.48*xx^1.02 

 +5.7696*xx+12.36*xx^0.02+9.3456)); 
    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 

end 

subplot(2,1,1) 
loglog(ww,T,'b--') 

hold on; 



 

195 

 

%---------------------------------------------------------Proposed----------------------------------------------------- 

ww=logspace(-3,3,500); 
for i=1:500 

    w=ww(i); 

    xx = j*w; 
    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  

    Gc(i) = (1.7+(1/xx)+0.7*xx)*((xx+1)/(1.635*xx^1.02+1.635*xx^0.02+2)); 

    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 

end 
subplot(2,1,1) 

loglog(ww,T,'g') 

hold on; 
%-------------------------------------------------time delay variation------------------------------------------------- 

ww=logspace(-3,3,500); 

for i=1:500 

    w=ww(i); 
    xx = j*w; 

    G(i)=1/(exp(0.2*xx)-1) 

    T(i) = abs(G(i)); 
end 

subplot(2,1,1) 

loglog(ww,T,'k') 
ylabel('Magnitude', 'FontSize', 12); 

xlabel('Frequency(rad/s)', 'FontSize', 12); 

hold on; 

legend('complementary sensitivity function (proposed1)','complementary sensitivity function (proposed2)', 
'complementary sensitivity function (proposed3)','complementary sensitivity function (proposed4)', 

'complementary sensitivity function (proposed)','+10% uncertainty in time delay') 

%---------------------------------------------------Gamma variation-------------------------------------------------- 
%--------------------------------------------------------Proposed1----------------------------------------------------- 

clear all 

clc 
ww=logspace(-3,3,500); 

for i=1:500 

    w=ww(i); 

    xx = j*w; 
    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  

    Gc(i) = (1.7+(1/xx)+0.7*xx)*((0.3658*xx^2+1.3658*xx+1)/(1.6422*xx^2.04 

 +1.6422*xx^1.04+2.563*xx^1.02+0.366*xx+2.563*xx^0.02+1.6342)); 
    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 

end 

subplot(2,1,2) 

loglog(ww,T,'r-.') 
hold on; 

%--------------------------------------------------------Proposed2----------------------------------------------------- 

ww=logspace(-3,3,500); 
for i=1:500 

    w=ww(i); 

    xx = j*w; 
    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  
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    Gc(i) = (1.7+(1/xx)+0.6998*xx)*((0.1601*xx^3+0.8135*xx^2+1.4802*xx+1)/ 

 (0.3717*xx^3.04+1.1151*xx^2.04+0.704*xx^2.02-0.1601*xx^2+1.1151*xx^1.04 
 +2.112*xx^1.02+0.4802*xx+2.112*xx^0.02+1.5198)); 

    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 

end 
subplot(2,1,2) 

loglog(ww,T,'r--') 

hold on; 

%--------------------------------------------------------Proposed3----------------------------------------------------- 
ww=logspace(-3,3,500); 

for i=1:500 

    w=ww(i); 
    xx = j*w; 

    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  

    Gc(i) = (1.7+(1/xx)+0.7*xx)*((3.884*xx^4+25.478*xx^3+70.956*xx^2+101.13*xx+60)/ 

 (8.7362*xx^4.04+39.3129*xx^3.04+16.72*xx^3.02+78.6258*xx^2.04+75.24*xx^2.02 
 +2.174*xx^2+65.5215*xx^1.04+150.48*xx^1.02+47.304*xx+125.4*xx^0.02+90.87)); 

    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 

end 
subplot(2,1,2) 

loglog(ww,T,'b') 

hold on; 
%--------------------------------------------------------Proposed4----------------------------------------------------- 

ww=logspace(-3,3,500); 

for i=1:500 

    w=ww(i); 
    xx = j*w; 

    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  

    Gc(i) = (1.7+(1/xx)+0.7*xx)*((1.7696*xx^3+7.5392*xx^2+10.6544*xx+6)/ 
 (5.1347*xx^3.04+10.2695*xx^2.04+9.064*xx^2.02+7.7021*xx^1.04+18.128*xx^1.02 

 +5.7696*xx+13.596*xx^0.02+9.3456)); 

    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 
end 

subplot(2,1,2) 

loglog(ww,T,'b--') 

hold on; 
%---------------------------------------------------------Proposed----------------------------------------------------- 

ww=logspace(-3,3,500); 

for i=1:500 
    w=ww(i); 

    xx = j*w; 

    Gp(i) = 1*exp(-2*xx)/(0.7*xx^2+1.7*xx+1);  

    Gc(i) = (1.7+(1/xx)+0.7*xx)*((xx+1)/(2.2*xx^1.02+2.2*xx^0.02+2)); 
    T(i) = abs((Gc(i)*Gp(i))/(1+Gc(i)*Gp(i))); 

end 

subplot(2,1,2) 
loglog(ww,T,'g') 

hold on; 

%-------------------------------------------------time delay variation------------------------------------------------- 
ww=logspace(-3,3,500); 

for i=1:500 
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    w=ww(i); 

    xx = j*w; 
    G(i)=1/(exp(0.2*xx)-1) 

    T(i) = abs(G(i)); 

end 
subplot(2,1,2) 

loglog(ww,T,'k') 

ylabel('Magnitude', 'FontSize', 12); 

xlabel('Frequency(rad/s)', 'FontSize', 12); 
hold off; 

legend('complementary sensitivity function with +10% variation in \gamma (proposed1)', 'complementary 

sensitivity function with +10% variation in \gamma (proposed2)', 'complementary sensitivity function 
with +10% variation in \gamma (proposed3)', 'complementary sensitivity function with +10% variation in 

\gamma (proposed4)', 'complementary sensitivity function with +10% variation in \gamma (proposed)', 

'+10% uncertainty in time delay') 

Simulink diagram for Example 1 
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(Simulink diagram contd..) 
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Appendix C 

Program for obtaining the closed loop response of Example 1  

%---------------------------------------------------Nominal response-------------------------------------------------- 

clc 
sim 'PUREFINAL'; 

load proposed 

subplot(2,1,1) 
plot(a(1,:),a(2,:),'r','LineWidth',1) 

hold on 

sim 'PUREFINAL'; 

load proposed1 
subplot(2,1,1) 

plot(b(1,:),b(2,:),'b','LineWidth',1) 

hold on 
sim 'PUREFINAL'; 

load padma 

subplot(2,1,1) 
plot(c(1,:),c(2,:),'k','LineWidth',1) 

hold on 

sim 'PUREFINAL'; 

load input 
subplot(2,1,1) 

plot(d(1,:),d(2,:),'k--') 

hold on 
xlabel('Time(s)') 

ylabel('Process output') 

legend('Proposed','Proposed1','Kumar and sree(2016)') 
%-----------------------------------------------------control effort----------------------------------------------------- 

sim 'PUREFINAL'; 

load proposedtv 

subplot(2,1,2) 
plot(A(1,:),A(2,:),'r','LineWidth',1) 

hold on 

sim 'PUREFINAL'; 
load proposedtv1 

subplot(2,1,2) 

plot(B(1,:),B(2,:),'b','LineWidth',1) 

hold on 
sim 'PUREFINAL'; 

load padmatv 

subplot(2,1,2) 
plot(C(1,:),C(2,:),'k','LineWidth',1) 

hold on 

xlabel('Time(s)') 
ylabel('Control effort') 

%------------------------------------------------------------TV---------------------------------------------------------- 

sim 'PUREFINAL'; 

load proposed1 
TV=sum(abs(diff(proposed1))) 
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sim 'PUREFINAL'; 

load proposed2 
TV=sum(abs(diff(proposed2))) 

sim 'PUREFINAL'; 

load proposed 

TV=sum(abs(diff(proposed))) 

 

Simulink diagram for Example 1 
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Appendix D 

Program for obtaining the closed loop response of Example 1 (Chapter 6.1) 

%------------------------------------------------Closed loop response------------------------------------------------- 

clc 
sim 'NIOPTDIexample1FINAL'; 

load proposed 

subplot(2,1,1) 
plot(b(1,:),b(2,:),'b','LineWidth',2) 

hold on 

sim 'NIOPTDIexample1FINAL'; 

load old 
subplot(2,1,1) 

plot(a(1,:),a(2,:),'r--','LineWidth',2) 

hold on 
xlabel('Time(s)') 

ylabel('Process output') 

legend('Proposed1','Li et al.') 
%-----------------------------------------------------control effort----------------------------------------------------- 

sim 'NIOPTDIexample1FINAL'; 

load proposedtv 

subplot(2,1,2) 
plot(B(1,:),B(2,:),'b','LineWidth',2) 

hold on 

sim 'NIOPTDIexample1FINAL'; 
load oldtv 

subplot(2,1,2) 

plot(A(1,:),A(2,:),'r--','LineWidth',2) 
hold off 

xlabel('Time(s)') 

ylabel('Control effort') 

%------------------------------------------------------------TV---------------------------------------------------------- 
sim 'NIOPTDIexample1FINAL'; 

load proposed 

TV=sum(abs(diff(proposed))) 
sim 'NIOPTDIexample1FINAL'; 

load old 

TV=sum(abs(diff(old))) 
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Simulink diagram for Example 1 

 

 

Program for obtaining the closed loop response of Example 1 (Chapter 6.2) 

%-------------------------------------------------closed loop response------------------------------------------------ 
clc 

sim 'new2'; 

load new 
subplot(2,1,1) 

plot(a(1,:),a(2,:),'k') 

hold on 
sim 'new2'; 

load old 

subplot(2,1,1) 

plot(b(1,:),b(2,:),'k--') 
hold on 

sim 'new2'; 

load set 
subplot(2,1,1) 

plot(c(1,:),c(2,:),'k-.') 

hold on 

xlabel('Time(s)') 
ylabel('y') 

legend('Proposed method','Bongulwar & Patre (2017) method') 

%------------------------------------------------------control effort---------------------------------------------------- 
sim 'new2'; 
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load proposed 

subplot(2,1,2) 
plot(A(1,:),A(2,:),'k') 

hold on 

sim 'new2'; 
load old1 

subplot(2,1,2) 

plot(B(1,:),B(2,:),'k--') 

hold on 
xlabel('Time(s)') 

ylabel('u') 

%------------------------------------------------------------TV---------------------------------------------------------- 
sim 'new2'; 

load proposed 

TV=sum(abs(diff(proposed))) 

sim 'new2'; 
load proposed1 

TV=sum(abs(diff(proposed1))) 

 

 

Simulink diagram 
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Appendix E 

Program for obtaining the closed loop response of Example 1  

%-------------------------------------------------Closed loop response----------------------------------------------- 

sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 
load proposed 

subplot(2,1,1) 

plot(a(1,:),a(2,:),'r','LineWidth',2) 
hold on 

sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 

load old 

subplot(2,1,1) 
plot(b(1,:),b(2,:),'b--','LineWidth',2) 

hold on 

sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 
load ahmad 

subplot(2,1,1) 

plot(c(1,:),c(2,:),'k:','LineWidth',2) 
hold off 

xlabel('Time(s)') 

ylabel('Process output') 

legend('Proposed1','Proposed2','Azar and Serrano, 2014') 
%----------------------------------------------------control effort----------------------------------------------------- 

sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 

load proposedtv 
subplot(2,1,2) 

plot(A(1,:),A(2,:),'r','LineWidth',2) 

hold on 
sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 

load oldtv 

subplot(2,1,2) 

plot(B(1,:),B(2,:),'b--','LineWidth',2) 
hold on 

sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 

load ahmadtv 
subplot(2,1,2) 

plot(C(1,:),C(2,:),'k:','LineWidth',2) 

hold off 

xlabel('Time(s)') 
ylabel('Control effort') 

%-------------------------------------------------------------TV------------------------------------------------------ 

sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 
load proposed2 

TV=sum(abs(diff(proposed2))) 

sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 
load proposed3 

TV=sum(abs(diff(proposed3))) 

sim 'CASCADEsoptdINNERfoptdOUTERFINAL'; 

load proposed 
TV=sum(abs(diff(proposed))) 
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Simulink diagram for Example 1 
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