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 ABSTRACT 

For a wider range of stable processes, many analytical PID controller tuning rules are 

available. However, for unstable processes, the availability of analytical tuning rules is limited. In 

this thesis, H2 minimization theory in combination with internal model control (IMC) is used to 

analytically derive PID controller settings which can be used as a ready reference like look-up 

tables. These analytical settings are developed for a defined range of time delay to time constant 

ratio. Maximum sensitivity (Ms) is used for evaluating the robustness of the control system. Case 

studies of unstable systems are considered to evaluate the closed loop performances for set point 

variations and load disturbance variations. Robustness is evaluated for uncertainties in the process 

model as well as for the sensor noise. Recently published methods in the literature are considered 

for the performance comparison with the proposed method. Based on simulation results, it is 

observed that the current methodology provides significantly enhanced performances when 

compared with those techniques available in the recent literature. Experimental implementation is 

carried out on an inverted pendulum for demonstrating the practical applicability of the present 

method. 

 

Optimal H2 internal model controller (IMC) is designed for control of unstable cascade 

processes with time delays. The proposed control structure consists of two controllers in which 

inner loop controller (secondary controller) is designed using IMC principles. The primary 

controller (master controller) is designed as a proportional-integral-derivative (PID) in series with 

a lead-lag filter based on IMC scheme using optimal H2 minimization. Selection of tuning 

parameter is important in any IMC based design and in the present work, maximum sensitivity is 

used for systematic selection of the primary loop tuning parameter. Simulation studies have been 

carried out on various unstable cascade systems. The present method provides significant 

improvement when compared to the recently reported methods in the literature particularly for the 

disturbance rejection. The present method also provides robust closed loop performances for large 

uncertainties in the process parameters. Quantitative comparison has been carried out by 

considering integral of absolute error (IAE) and total variation (TV) as performance indices. 

 

Controller design for unstable processes is relatively difficult when compared to stable 

processes. The complexity increases further for multivariable unstable processes. In this work, 
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simplified tuning rules are proposed to design PID controller for unstable multivariable processes. 

Decouplers are applied to make the loops independent and diagonal elements of equivalent transfer 

function are used to design controllers. Two examples of TITO (two input two outputs) unstable 

system with time delays are considered for simulation. Comparative analysis has been carried out 

with the recently reported methods in the literature and observed that the proposed method 

provides improved closed loop performances. Robustness studies are also carried out with 

perturbations in the model parameters. 

 

Control of unstable processes with time delays usually result in large overshoots in the 

closed loop responses. In industry, set-point weighting is one of the recommended methods to 

minimize the overshoot. In this work, a method is proposed to design the set-point weighting 

parameters which is relatively simple. Weighting is considered for both proportional (β) and 

derivative (γ) terms in the PID control law. In the closed loop transfer function for the servo 

problem, the coefficients of ‘s’ and separately that of ‘s3’ both in the numerator and denominator 

are set equal in order to find β and γ. The obtained expressions for β and 𝛾 are simple and depends 

on the controller parameters. The method is carried out first for single input single output (SISO) 

unstable first order and second order processes with time delays and then for the multi input multi 

output (MIMO) unstable systems. In control of MIMO systems, decouplers are considered to 

ensure that the loops have minimum interactions. With the designed values, the closed loop 

performance is evaluated for different SISO and MIMO unstable systems with time delay. The 

present method is also compared with the recent methods proposed in the literature and it is 

observed that enhanced closed loop performances are achieved with the proposed method.   
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 Chapter 1          

                  Introduction 

1.1   General 

A system whose transfer function has at least one pole lies in the right half plane (RHP) is 

known as an unstable system. This open loop instability characteristic moves the system away 

from the steady state even for small perturbations of process dynamics or operating conditions. 

The controller design for open-loop unstable systems is fundamentally difficult than that of the 

stable processes and the difficulty increases when there exists a time delay. The performance 

specifications that are usually achieved for stable systems are difficult to achieve for unstable 

systems. Because, for unstable systems, the performance specifications such as overshoot, settling 

time are larger and there exists a minimum and maximum value of controller gain below which 

and above which the closed loop system cannot be stabilized. These two values of maximum and 

minimum controller gain narrow down as the time delay increases thereby restricting the 

performance of the closed-loop system. The dynamics of many processes can be represented by 

first or second order system with time delay. For unstable first order plus time delay (UFOPTD) 

processes, the existence of a right half plane pole and time delay makes it difficult to stabilize the 

system, particularly with the conventional proportional integral/proportional integral derivative 

(PI/PID) controllers. 

 

Several methods are proposed for the design of controllers for single-input-single-output 

(SISO) and multi-input-multi-output (MIMO) unstable systems. However, the interactions among 

the control loops and the existence of undesirable overshoots and settling times in the closed loop 

response raise the difficulty bar for MIMO systems as compared to SISO unstable systems. For 

MIMO systems, decouplers can be used to reduce the process interactions to strengthen system 

performance. Unstable systems result in larger overshoots in the closed loop set-point tracking 

responses. In order to minimize the overshoot, either a set-point filter or set-point weighting is 

recommended. In order to properly address the design of set-point weighting parameters, 

knowledge about the PID controller parameters (kc, i, d) is necessary. It is challenging to achieve 
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desired closed-loop performance with the PID controllers for these processes, particularly for set 

point tracking and load disturbance rejection in the presence of process uncertainties.  

 

1.2   Motivation 

Tuning of different types of controllers for right half plane pole processes, which are 

classified as unstable, has been addressed by many people in the open literature.  IMC based design 

using the Laurent series expansion is developed by Panda (2009) and by using Maclaurin series 

approximation is developed by Nasution et al. (2011). Based on the need of an operation, i.e., 

either in a set-point tracking mode or load disturbance rejection mode, Arrieta et al. (2011) 

developed formulae for a controller for unstable and integrating processes. Summary of different 

design methodologies for controllers for such processes is addressed by Rao and Chidambaram 

(2012). To enhance the tracking capability smoothly, either placing a filter for the set point signal 

or using a weight for set point signal is preferred. The methods developed by Nasution et al. (2011) 

and Panda (2009) are applicable for a wider range of time delay to time constant ratios [(μ/n = T0 

= 0.1 to 1.2) where μ = time delay and n = time constant] and have become popular methods since 

then. However, the equations are not simple and are tedious to utilize in practice. Also, the method 

Wang et al. (2015)  is not applicable when the time delay to time constant ratio is greater than 0.9. 

The important points about the methods discussed so far are (1) Analytical tuning rules are not 

available for many methods and (2) some methods cannot be applied when μ/n ≥ 1. Recently, Sree 

and Chidambaram (2017) discussed the importance of unstable systems and their occurrence in 

practice. 

 

Many researchers ( Tan et al., 2000; Lee and Oh, 2002; Liu et al., 2005a) addressed the 

design and analysis of cascade control strategies for stable processes. However, limited research 

work has been carried out for the design of cascade control strategies for unstable processes. Liu 

et al. (2005b) proposed IMC based cascade control scheme for unstable processes with four 

controllers. Kaya and Atherton (2008) proposed a cascade control structure for controlling unstable 

and integrating processes with four controllers. Uma et al. (2009) proposed an improved cascade 

control scheme for unstable processes using a modified Smith predictor with three controllers and 

one filter in the outer loop. Padhan and Majhi (2012) proposed a modified Smith predictor based 

cascade control structure for unstable processes where they used three controllers. Most of the 
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existing methods use more number of controllers and also the design of these controllers is not 

simple. In practice, a cascade controller structure with only two controllers (one for secondary loop 

and another for primary loop) is desirable. 

 

Few methods are reported to design controllers for unstable multivariable systems. Over the 

extensive literature available for multivariable unstable systems, few works (Georgiou et al., 1989; 

Park, 1991; Flesch et al., 2011) proposed a decentralized PID controller design for unstable 

multivariable systems using optimization method. Hazarika and Chidambaram (2014) proposed a 

double loop control structure to decrease the overshoot such as proportional controller followed 

by PI controller in the outer loop based on the equivalent transfer function. They have shown that 

by a single loop PI control with a set point filter, the overshoot is reduced significantly and a good 

servo response is obtained. However, this will not improve the regulatory responses. It may be 

desirable to use better settings, particularly with a PID controller to improve the performances of 

both the servo and regulatory performances. All of these methods follow a complex procedure to 

design the controller. 

 

To get an improved transient response due to the set point change, several researchers 

proposed either set-point filtering or set-point weighting methods. Prashanti and Chidambaram 

(2000) developed formulae to calculate the set point weighting parameters for UFOPTD systems 

for different ratio of time delay to dominant time constant. Chen et al. (2008) recommended the 

tuning rules for set-point weighting based on a three-element control structure. Begum et al. 

(2016), Wang et al. (2016) and Begum et al. (2017) proposed controller tuning rules for stable, 

unstable and integrating processes with time delay based on internal model control (IMC) 

technique. Nasution et al. (2011) designed controller for time-delayed unstable processes with set 

point weighting making use of an optimal H2 IMC-PID control strategy. It is possible to 

demonstrate that tracking performance of the set-point will be improved if suitable weighting for 

the derivative mode is determined. This is determined by Nasution et al. (2011), but in a complex 

way.   
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Based on the review of literature and identified research gaps, the following objectives are 

framed.   

 

1.3   Objectives 

 

1. To design optimal H2 PID controllers for SISO unstable time-delay systems for enhanced 

closed-loop performances. 

2. To experimentally implement the designed controller on an inverted pendulum. 

3. To design optimal H2 PID controllers for unstable cascade time-delay systems for enhanced 

closed-loop performance. 

4. To design multi variable optimal H2 PID controllers for MIMO unstable time-delay 

systems.  

5. To design set-point weighted PID controllers for SISO and MIMO unstable time-delay 

systems. 

1.4   Organization of the thesis 

The organization of the thesis is as follows: 

 

Chapter 2 presents a literature overview for the design of optimal H2 PID controllers, cascade 

control, multivariable control and set point weighted PID controllers for SISO and MIMO unstable 

time delay systems. 

 

Chapter 3 provides an overview of the reported work on the design of optimal H2 PID controllers 

for SISO unstable time delay systems for enhanced closed loop performance. H2 minimization 

theory in combination with the internal model control (IMC) is used to analytically derive PID 

controller settings which can be used as a ready reference like look-up tables. These analytical 

settings are developed for a defined range of time delay to time constant ratio. Maximum 

sensitivity (Ms) is used for evaluating the robustness of the closed loop system. This chapter 

highlights the first objective. 
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Chapter 4 presents the experimental implementation of PID control proposed in chapter 3 to an 

inverted pendulum for the control of pendulum rod angle by manipulating the cart position. This 

chapter focused on the second objective. 

 

 

Chapter 5 proposes an optimal H2 internal model controller (IMC) designed for the cascade control 

of unstable processes with time delays which is the third objective. The proposed control structure 

consists of two controllers in which inner loop controller (secondary controller) is designed using 

IMC principles. The primary controller (master controller) is designed as a proportional-integral-

derivative (PID) in series with a lead-lag filter based on IMC scheme using optimal H2 

minimization. Simulation studies have been executed to show the advantages of the proposed 

method.  

 

Chapter 6 presents a simplified tuning rules to design optimal H2 PID controller for unstable 

multivariable processes. Decouplers are applied to make the loops independent and diagonal 

elements of equivalent transfer function are used to design the controllers. This chapter deals with 

the fourth objective. 

 

Chapter 7 proposes a method to design the set-point weighting parameters for UFOPTD and 

USOPTD processes which is relatively simple and also reduces the overshoot. Weighting is 

considered for both proportional (β) and derivative (γ) terms in the PID control law. In the closed 

loop relation for set-point tracking, the coefficients of ‘s’ and separately ‘s3’ both in the numerator 

and denominator are made equal in order to find β and γ. The obtained expressions for β and 𝛾 are 

simple and depends on the controller parameters. The design is carried out first for single input 

single output (SISO) unstable first order and second order processes with time delays and then for 

the multi input multi output (MIMO) unstable systems. For control of MIMO systems, decouplers 

are considered to ensure that the loops have minimum interactions. With the designed values, the 

closed loop performance is evaluated for different SISO and MIMO unstable processes with time 

delay. This chapter highlights the fifth objective. 
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Chapter 8 gives the summary and conclusions of the present work along with suggestions for the 

future work. 
 

Appendix B gives the MATLAB program developed for simulating PID controllers for SISO 

unstable time delay systems and the corresponding Simulink block diagram for examples 

considered in Chapter 3. 

 

 

Appendix C presents the MATLAB program developed for simulating unstable cascade processes 

with time delays and the corresponding Simulink diagram for examples considered in Chapter 5. 

 

Appendix D gives the MATLAB program for Simplified tuning rules for PID controller for 

unstable multivariable processes considered in Chapter 6.  

 

Appendix E presents the MATLAB program developed for simulating PID controllers for SISO 

and MIMO unstable time delay systems with set point weighting and the corresponding Simulink 

block diagram for examples considered in Chapter 7. 

 

The main contributions of the thesis are  

(i) Enhanced design of PID controllers for unstable time delay systems using optimal H2 

framework (objectives - 1, 2) 

(ii) Design of controllers for unstable cascade time-delay systems to achieve enhanced 

closed-loop performance (objective – 3) 

(iii) Design of multi variable optimal H2 PID controllers for MIMO unstable time-delay 

systems for improved performance (objective – 4).  

(iv) Systematic design of set-point weighted PID controllers for both SISO and MIMO 

unstable time-delay systems for enhanced tracking of set-points (objective – 5). 
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Chapter 2 

 

 

 
 

 

 

 

 

Literature Review 

 

 

 

 

 

 



9 
 

 Chapter 2           

                 Literature Review 

In this chapter, the literature are reviewed on occurrence of unstable process and the design 

of PID controllers for unstable systems. The methods available for the design of PID controllers 

for SISO and MIMO unstable time delay systems are presented. The review is given on the control 

of unstable cascade processes with time delays and on the design of the set-point weighting 

parameters for UFOPTD and USOPTD processes. 

  Existence of unstable processes 

Numerous researchers have been focusing on the systems that exhibit unstable behavior and 

the related literature on the subsistence of unstable processes are listed below. An unstable system 

is the one which has at least one RHP pole in the complex plane. 

 

Van Heerden (1953) has shown that chemical reactors might exhibit multiple steady states and 

oscillatory solutions, depending on particular operating conditions. Real-time systems reveal 

several steady states owing to the certain nonlinearity of the processes. Some of the steady states 

may be unstable and it is essential to operate the system at unstable steady state for economic 

and/or safety measures. 

 

 

Marlin (1995) presented a jacketed continuous stirred tank reactor (CSTR) that is used to perform 

a simple reaction approximated as an USOPTD model consisting of two unstable complex 

conjugate poles and a negative zero when the model equations are linearized around an unstable 

operating point. 

 

Chidambaram (1997) has given the review of the work done on the control of unstable systems. 

A detailed survey has been stated in the previous works which are related to the control of unstable 

processes. 

 

Jacobsen (1999) has studied the dynamics of reactor separator networks and has shown that the 

transfer function model between the composition of the distillate and the recycle ratio of the 
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distillation column results in unstable second order model with one unstable pole and unstable 

zero. 

Bequette (2003) has considered a CSTR with simple reaction; linearization around the unstable 

operating point gives an USOPTD model with a negative zero with two unstable poles. 

 

Stein (2003) has described the practical, physical consequences of unstable process control. 

Extensive information on the physical significance of unstable systems is presented.  

 

Sree and Chidambaram (2006) presented an excellent overview of the physical occurrence of 

unstable processes. Many physical examples are stated as unstable transfer function models. The 

problems in the control of unstable systems are given in detail.  

 

A summary of the reported work on the existence of unstable processes is given in Table 2.1. 

 

 Design of PID controllers for an unstable process with time delay 

 

This section gives the overview of the literature on PID controllers with and without lead lag filters 

for unstable processes. 

 

Yang et al. (2002) have proposed IMC based single loop controller design method in which the 

feedback controller is either PID or higher order form. This can be made automatic for on-line 

tuning of the first order, second order and higher order unstable processes with time delays. 

 

Tan et al. (2003) have presented a modified IMC structure with three controllers. The set point 

tracking controller is a lead lag filter and a proportional (P) controller is used for stabilizing the 

original unstable plant ignoring the time delay, a proportional derivative (PD) controller is used 

for stabilizing the unstable processes with time delay. Good nominal and control action responses 

are achieved. 

 

Sree et al. (2004) have designed PI/PID controllers for stable first order plus time delay (FOPTD) 

systems based on equating the coefficients of corresponding powers of s in the numerator and that 

in the denominator of the closed loop transfer function for a servo problem. They also extended 
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this method to design PI/PID controllers for an UFOPTD system which gave improved 

performance and was robust for uncertainty in the model parameters. 

 

Table 2.1  Literature review on existence of unstable processes 

S.No. Author Description Remarks 

1 van Heerden (1953) Real systems show multiple 

steady states because of 

certain nonlinearity of the 

systems in which some of the 

steady states may be unstable. 

Chemical reactors exhibit 

multiple steady states and it 

becomes necessary to 

operate the system at 

unstable steady state for 

economic and/or safety 

measures. 

2 Marlin (1995) Presented jacketed CSTR, 

when the model equations are 

linearized around an unstable 

operating point, resulting in 

an unstable system. 

USOPTD model that 

contains two unstable 

complex conjugate poles 

and a negative zero. 

3 Chidambaram 

(1997) 

A detailed review of the 

previous work carried out on 

unstable processes. 

Review of unstable systems. 

4 Jacobsen (1999) Transfer function model 

between the composition of 

the distillate and the recycle 

ratio of the distillation column 

as an unstable system. 

An unstable second order 

model with one unstable 

pole and one unstable zero 

5 Bequette (2003) CSTR performing a simple 

reaction; linearized around the 

unstable operating point gives 

USOPTD model. 

Unstable model with two 

unstable poles and a 

negative zero. 

6 Stein (2003) Described the practical, 

physical consequences of 

unstable process control. 

The physical significance of 

unstable systems in the 

context of airplanes. 

7 Sree and 

Chidambaram 

(2006) 

Several examples have been 

stated for the existence of 

unstable behavior in the 

processes. 

 

Gas phase polyolefin 

reactor, Jacketed CSTR, 

Isothermal reactor, cart and 

pole problem, helicopter and 

airplanes. 
 



12 
 

Rao and Chidambaram (2005) have proposed a modified form of smith predictor (SP) for 

unstable processes with time delay for servo and regulatory problems with three controller’s viz., 

the set point PI controller designed based on synthesis method, a P controller for disturbance 

rejection and a PD stabilizing controller. Better control performances were obtained for unstable 

processes with a time delay. 

 

Liu et al. (2005a) have proposed an analytical 2 DoF control scheme for open loop unstable first, 

second order and integrating unstable first order processes with time delay. They have designed 

three controllers in which proportional or plus derivative controller is employed to stabilize the set 

point response; a H2 optimal set point tracking controller is designed based on integral square error 

(ISE) performance specification. The desired disturbance transfer function is used to design the 

disturbance estimator in the inner closed loop to obtain the ISE performance objective. Here the 

servo and regulatory responses can be tuned easily by a single tuning parameter. 

  

Shamsuzzoha and Lee (2007) have elaborated a PID controller using a finest IMC filter structure 

that produces an enhanced disturbance rejection response for stable, integrating, unstable processes 

with time delays. The controllers are all tuned to have the same level of robustness in terms of 

maximum sensitivity (Ms). The tuning parameter (λ) guidelines were also proposed for numerous 

process models over a wide range of θ/τ ratios. 

 

Rao et al. (2007a) have designed the modified smith predictor (SP) with improved closed loop 

responses with two controllers for open loop UFOPTD processes using direct synthesis method to 

design the set point tracking controller and simple analytical tuning rules for the load disturbance 

controller. 

 

Normey-Rico and Camacho (2008) have presented a simple modified smith predictor (SP) 

structure to improve closed loop characteristics. The proposed structure is simple to analyze and 

gives totally decoupled disturbance rejection and set point responses for UFOPTD processes. 

 

Shamsuzzoha and Lee (2008a) have designed a PID controller cascaded with a first order lead/lag 

filter for integrating and first order unstable processes with time delay based on the IMC criterion, 

which has a single tuning parameter to regulate the performance and robustness of the controller. 

A set point filter is used to reduce the overshoot in the servo response. 
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 Shamsuzzoha and Lee (2008b) have discussed the design of IMC based PID controller cascaded 

with a first order lead/lag compensator for a class of second order stable and unstable processes 

with time delay. A set point filter is used to reduce the overshoot in the set point response. 
 

Panda (2009) have designed IMC controller equivalent PID tuning rules using Laurent series 

approximation for unstable first order processes, second order processes with and without left half 

plane (LHP) zeros and integrating processes with time delays. The controller designed is robust, 

stable and can be implemented easily in real-time process. 

 

Nasution et al. (2011) have presented the synthesis of an optimal IMC based design of H2-PID 

controller for unstable processes with single RHP pole and time delay. He compared the control 

performance and robustness resulting from the five desired closed loop transfer functions 

(DCLTF) and recommended to use two from the overall consideration. To reduce overshoots, the 

set point weighting parameters for both proportional and derivative modes have been derived. 

 

Shamsuzzoha et al. (2012) have proposed a modified underdamped IMC filter and derived a PID 

controller based on the new filter for unstable processes with time delays which provided the 

desired integral action and improved closed loop performance of the system. 

 

Cho et al. (2014) have presented PI/PID tuning rules based on direct synthesis method by utilizing 

simple desired closed loop transfer functions and simple approximations of the process time delay. 

It has one design parameter and a set point filter for the 2 Degree of freedom controller. 

 

Vanavil et al. (2013) have designed a PID with lead lag filter based on direct synthesis method. 

Set point weight is considered to reduce the overshoot. Systematic guidelines have been provided 

for selection of the tuning parameter based on the peak value of the sensitivity function and 

improved closed loop performances are obtained.  

 

Vanavil et al. (2014) have proposed an IMC-PID controller with a lead lag filter based on H2 

minimization concept for integrating and UFOPTD processes and provided good closed loop 

performance for normalized dead time (θ/τ) up to 1.8. 
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Table 2.2 Literature review on design of PID controllers for an unstable process with time              

delay 

S.No. Author Description Remarks 

 

1 Yang et al. 
(2002) 

IMC based single loop 

controller design method in 

which the feedback controller is 

either PID or high order form. 

Applicable for on-line tuning of 

the first order, second order and 

higher order unstable processes 

with time delays and gave 

satisfactory performance. 

2 Tan et al. 

(2003) 

Modified IMC structure with 

three controllers. 

For first and second order 

unstable processes and achieved a 

good compromise between time 

domain performance and 

robustness. 

3 Sree et al. 
(2004) 

PI/PID controllers based on 

equating coefficient method. 

For stable and unstable first order 

plus time delay (FOPTD) 

systems. 

4 Rao and 

Chidambaram 
(2005) 

A modified form of smith 

predictor (SP) with three 

controllers. 

Applicable for UFOPTD systems. 

Better responses were obtained. 

5 Liu et al. 

(2005a) 

2 DoF control structure with 

three controllers, H2 optimal 

controller for set point tracking 

and a load disturbance 

estimator. 

Nominal set point response is 

decoupled from the load 

disturbance response for unstable 

first order, second order and 

integrating unstable first order 

processes. 

6 Shamsuzzoha 

and Lee (2007) 

IMC based PID controller. Produced improved disturbance 

rejection response for stable, 

integrating, unstable processes 

with time delays. 

7 Rao et al. 

(2007a) 

Modified smith predictor (SP) 

with two controllers. 

Obtained improved responses for 

open loop unstable first order plus 

time delay. 

8 Normey-Rico 

and Camacho 

(2008) 

Design of dead time 

compensators (DTC) 

To control unstable FOPTD 

systems. 

 

 

9 Shamsuzzoha 

and Lee 

(2008a)  

 

 

PID controller cascaded with a 

first order lead/lag filter based 

on IMC criterion. 

Provided improvement in both set 

point and disturbance rejection for 

integrating and first order 

unstable processes with time 

delays. 

 



15 
 

10 Shamsuzzoha 

and Lee 
(2008b) 

IMC based PID controller 

cascaded with a first order 

lead/lag compensator. 

For a class of second order stable 

and unstable processes with time 

delay. 

 

11 Panda (2009) A robust internal model 

controller equivalent PID 

tuning rules using Laurent 

series approximation. 

For unstable first order processes, 

second order processes with and 

without LHP zero, integrating 

processes with time delays. 

12 Nasution et al. 

(2011) 

IMC based design of H2 optimal 

PID controller using Maclaurin 

series approximation. 

For unstable processes with single 

RHP pole and time delays. Due to 

performance limitation of a 1 DoF 

controller, 2 DoF controller is 

derived. 

13 Shamsuzzoha 

et al. (2012) 

Used a modified underdamped 

IMC filter and derived a PID 

controller. 

Provided better integral action 

and improved closed loop 

performance. 

14 Cho et al. 

(2014) 

PI/PID tuning rules based on 

direct synthesis method. 

Yielded similar or even improved 

performance over previous 

complicated PID tuning methods. 

15 Vanavil et al. 
(2013) 

PID with lead lag filter based on 

direct synthesis method for 

unstable processes. 

Set point weight is used and 

applied to an inverted pendulum 

experiment. 

16 Vanavil et al. 

(2014) 

PID with lead lag filter based on 

H2 minimization concept. 

For controlling integrating and 

UFOPTD processes and provided 

good closed loop performance up 

to θ/τ = 1.8. 

17 Wang et al. 
(2016) 

IMC-PID tuning method based 

on pole zero conversion design. 

Provided improved performance 

than other PID tuning method for 

stable and unstable processes with 

time delay. 

18 Begum et al. 
(2018) 

Developed Optimal controller 

synthesis for second order time 

delay systems with at least one 

RHP pole 

The proposed controller design 

solves the trade-off issue between 

the robustness and performance 

with the help of an adjustable 

parameter. 

 

Wang et al. (2016) have proposed a new IMC-PID tuning method based on pole zero conversion 

design and PID with a lead lag compensator is designed for first order plus integrating and second 

order unstable processes with time delay. The method demonstrated better performance than other 

PID tuning methods. A set point weighing is used to reduce overshoot. 
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Begum et al. (2018) have proposed IMC-PID tuning method based on H2 minimization. The 

controller design is addressed for the second order processes with dead time which has at least one 

pole in the right half of the s plane. 

A summary of the reported work on the tuning of unstable processes with time delays is given in 

Table 2.2. 

 Design of PID controllers based on maximum sensitivity 

In any closed loop system, to guarantee a minimum robustness level, there is always a 

robustness performance trade-off to obtain a smooth response to both step set point and disturbance 

changes. Analytical tuning rules have been developed for stable processes based on maximum 

sensitivity values and the literature review of such tuning rules developed is given below. 

 

Alfaro et al. (2010) developed tuning rules for 2 DoF PI controllers for stable FOPTD models. 

They dealt with the closed loop control system performance robustness trade-off by selecting Ms 

in the 1.4 to 2.0 range and designed control systems with low, minimum, medium or high 

robustness levels. Controller tuning rules were provided for FOPTD models with normalized dead 

times from 0.1 to 2.0.  

 

Padula and Visioli (2011) presented a set of tuning rules for integer and fractional-order PID 

controllers and analytical expressions for performance assessment. They applied for stable FOPTD 

models, which minimized integral absolute error (IAE) with a constraint on the Ms and proved that 

the use of a fractional-order PID controller is more advantageous with respect to improvement in 

performance. 

 

Vilanova et al. (2012) provided tuning rules for 2 DoF PI controller using Ms as the design 

parameter for the desired robustness level for stable FOPTD dynamics in terms of normalized dead 

time allowing the user to select a low/medium/high robust closed loop control system. The 

proposed auto tuning expressions, when compared with other methods, guaranteed the same 

robustness level and provided improved performances. 

 

Alfaro and Vilanova (2012) presented a robust tuning method for 2 DoF PI controllers based on 

the use of a model reference optimization procedure for first order plus time delay (FOPTD) 
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models and second order plus time delay (SOPTD) model process models which allowed the 

designer to deal with the performance/robustness trade-off of the closed loop control system by 

selecting Ms in the range from 1.4 to 2.0. They derived a set of controller tuning equations for 

FOPTD and SOPTD models with normalized dead times from 0.1 to 2.0 that guarantees the 

achievement of the design robustness level. 

 

Table 2.3 Literature review on design of PID controllers based on maximum sensitivity 

S.No. Author 

 

Description Remarks 

 

1 Alfaro et 

al. (2010) 

 

Tuning rules for 2 DoF PI 

controllers. Solved robustness and 

performance trade-off. 

For stable FOPDT models. 

Selected Ms in 1.4-2.0 range and 

designed the control system with 

low, minimum, medium or high 

robustness levels. 

2 Padula 

and 

Visioli 

(2011) 

A set of tuning rules for integer and 

fractional-order PID controllers and 

analytical expressions for 

performance assessment. 

 

Applied for stable FOPTD models 

and minimized IAE with a 

constraint on the Ms. 

3 Vilanova 

et al. 

(2012) 

Tuning rules for a 2 DoF PI 

controller using Ms value as the 

design parameter. 

The user can select a 

high/medium/low robust closed 

loop control system for stable first 

order plus time delay dynamics. 

4 Alfaro 

and 

Vilanova 
(2012) 

A robust tuning method for 2 DoF PI 

controllers based on the use of a 

model reference optimization 

procedure. 

For FOPTD and SOPTD controlled 

process models by selecting Ms in 

the range from 1.4 to 2.0. 

5 Alfaro 

and 

Vilanova 

(2013) 

A model reference robust tuning 

method for 2 DoF PID controllers 

based on the use of an optimization 

procedure. 

For inverse response controlled 

process modeled by a second order 

plus a right half plane zero transfer 

function by selecting robustness 

levels between 1.6 and 2.0.  

6 Begum et 

al. (2016) 

Developed PID tuning rules based on 

maximum sensitivity (Ms) for 

unstable dead time processes 

These tuning rules allow the 

designer to design closed loop 

control system with a specified 

low, medium, or high robustness 

level by selecting the 

corresponding value of Ms. 
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Alfaro and Vilanova (2013) presented a model reference robust tuning method for 2 DoF PID 

controllers based on the use of a model reference optimization procedure for inverse response 

controlled process modelled by a second order plus a right half plane zero transfer function which 

allowed the designer to deal with the performance/robustness trade-off of the closed loop control 

system by selecting robustness levels between 1.6 and 2.0. 

 

Begum et al. (2016) Developed PID tuning rules based on maximum sensitivity (Ms) for unstable 

dead time processes. These tuning rules allow the designer to design closed loop control system 

with a specified low, medium, or high robustness level by selecting the corresponding value of Ms. 

 

A summary of the reported work regarding the maximum sensitivity based analytical tuning of 

stable processes are given in Table 2.3. 

 

 Design of series cascade controllers for an unstable processes 

 

A cascade control can be used to obtain better disturbance rejection existing in the inner loop 

and is used to improve single loop control performance when the disturbances are associated with 

the manipulated variable or when the final control element exhibits nonlinear behavior. The 

desired performance can be obtained with simple PID controllers, IMC controllers and by using 

SP structures. This section gives the overview of the literature on controllers for tuning of series 

cascade processes. 
 

Lee et al. (2002) proposed a general IMC-PID control structure to handle stable, integrating, and 

unstable processes for cascade control systems. The new structure was more robust to 

measurement noises with improved performance than a conventional cascade control structure. 

 

Kaya and Atherton (2008) designed an improved cascade control structure and controller design 

method for controlling unstable and integrating processes where PI-PD-SP scheme was used in 

the outer loop and IMC controller in the inner loop. Simulation results were provided to illustrate 

the proposed structure’s superiority. 
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Table 2.4 Literature review on design of series cascade controllers for an unstable process.  

S. No. Author 

 

Description Remarks 

 

1 Lee et al. 

(2002) 

A robust IMC-PID control 

structure. 

For stable, integrating, and 

unstable processes for cascade 

control systems with improved 

performance. 

2 Kaya and 

Atherton 
(2008) 

An improved cascade control 

structure with PI-PD-SP scheme 

used in the outer loop and IMC 

controller in the inner loop. 

 

Provided improved 

performance for unstable and 

integrating processes.  

3 Uma et al. 
(2009) 

Modified SP structure with three 

controllers: IMC controller for 

inner loop and two PID 

controllers with a filter for the 

outer loop. 

Applied for unstable processes 

with and without zero. The 

primary loop controllers 

designed based on direct 

synthesis method. 

 

4 Uma et al. 

(2010) 

Modified SP structure with three 

controllers: IMC controller for the 

inner loop and PID and PD 

controller with filters for the outer 

loop. 

Applied for integrating 

processes with and without 

zero. 

5 Padhan and 

Majhi (2012) 

Modified SP with three 

controllers. Direct synthesis 

based method for set point 

tracking and 2 PID with second 

order lead lag filter for 

disturbance rejection. 

Provided improved disturbance 

rejection capability. 

6 Santosh and 

Chidambaram 

(2013) 

P/PI controllers based on equating 

coefficient method. 

For a series cascade control 

system with UFOPTD models. 

The degree of robustness for 

uncertainty in the model 

parameters was studied. 

7 Raja and Ali 

(2017) 

Various series cascade control 

strategies are briefly reviewed 

and their advantages and 

disadvantages are discussed 

Suitable tuning strategies for a 

class of stable, unstable and 

integrating process models are 

recommended in order to help 

the user in selecting the 

appropriate control strategy. 

8 Yin et al. 

(2019) 

Improved Cascade Control 

System for a Class of Unstable 

Processes with Time Delay 

 

proposed cascade control 

scheme based on modified 

Smith predictor for controlling a 

class of unstable processes with 

time delay 



20 
 

Uma et al. (2009) presented enhanced modified SP structure for the control of open loop unstable 

cascade processes with/without zero using three controllers in which the secondary loop has one 

IMC controller and the primary loop has two controllers designed based on direct synthesis method 

viz., PID with lag filter for set point tracking and PID with lead lag filter for disturbance rejection 

which provided significant improvement in disturbance rejection characteristics. 

 

Uma et al. (2010) proposed modified SP structure for control of integrating processes with and 

without zero using three controllers in which the secondary loop has one IMC controller and the 

primary loop has two controllers designed based on direct synthesis method viz., PID with lag 

filter for set point tracking and PD with lead lag filter for disturbance rejection. 

 

Padhan and Majhi (2012) presented a modified SP for controlling open loop unstable time delay 

processes. The proposed structure has three controllers of which one is meant for servo response 

designed based on direct synthesis method and the other two are PID controllers cascaded with a 

second order lead/lag filter for regulatory responses with improved disturbance rejection 

capability. Kharitonov’s theorem is used for the robustness analysis. 

 

Santosh and Chidambaram (2013) designed P/PI controllers for a series cascade control system 

for UFOPTD systems based on equating the coefficients of corresponding powers of s and s2 in 

the numerator to α1 and α2 times those of the denominator of the closed loop transfer function for 

a servo problem with only two tuning parameters. The robustness for uncertainty in the model 

parameters was studied and the performances were found to be better.  

 

Raja and Ali (2017) discussed various series cascade control strategies and reviewed their 

advantages and disadvantages. Suitable tuning strategies for a class of stable, unstable and 

integrating process models are recommended in order to help the user in selecting the appropriate 

control strategy. 

Yin et al. (2019) proposed cascade control scheme based on modified Smith predictor for 

controlling a class of unstable processes with time delay. The proposed control structure consist 

three controllers of which the secondary loop has one controller and the primary loop has two 

controllers. 
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A summary of the reported work on the tuning of series cascade unstable processes is given in 

Table 2.4. 

 Design of controllers for multi-input-multi-output (MIMO) unstable 

systems 

This section gives the literature review on design of PID controller for unstable multivariable 

processes. 

 

Georgiou et al. (1989) presented a multivariable controller design technique for open loop 

unstable systems and the controller is tuned in four stages step optimization procedure. The closed 

loop performance and robustness of the multi loop SISO controllers are established by an effective 

damping coefficient and its corresponding effective closed loop time constant. They considered a 

complex system of two reactors in series, where exothermic second order reaction occurs. 

However, the system does not take into account large values of time delay. 

García and Albertos (2010) designed a new dead-time compensator to deal with unstable 

multivariable systems with multiple time delays and a MIMO dead time compensator is suitable 

for any linear plants has been presented which is both applicable for stable and unstable plants. 

Rajapandiyan and Chidambaram (2012) a decoupler with a decentralized control system is 

designed based on ETF models and the proposed method has shown the better performance of 

compared with the centralized control system, ideal, inverted, and normalized decoupling methods. 

Hazarika and Chidambaram (2014) designed multivariable proportional integral controllers for 

unstable multivariable systems and used equivalent transfer function model to design multivariable 

PI controllers for diagonal elements and simplified decouplers are used to decompose the unstable 

multi loop systems into independent loops and the double loop control structure is used to reduce 

the overshoot for unstable systems. 

 

Chandrasekhar et al. (2016) Proposed simple method of designing decentralised PID controllers 

for stable systems by synthesis method and extended the method to unstable systems. The method 

gives improved responses and decreased interactions when compared to that of the 

Govindhakannan decentralized PID control system design method. 
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Table 2.5 Literature review on design of controllers for multi-input-multi-output                   

(MIMO) unstable systems 

S. No. Author Description Remarks 

 

1 García and 

Albertos (2010) 

Designed a new dead-time 

compensator to deal with 

unstable multivariable 

systems with multiple time 

delays. 

Here a MIMO dead time compensator 

suitable for any linear plants has been 

presented which is both applicable for 

stable and unstable plants. 

2 Rajapandiyan 

and 

Chidambaram 

(2012) 

Controller Design for 

MIMO Processes Based on 

Simple Decoupled 

Equivalent Transfer 

Functions and Simplified 

Decoupler. 

A decoupler with a decentralized 

control system is designed based on 

ETF models and the proposed method 

has shown the better performance of 

compared with the centralized control 

system, ideal, inverted, and 

normalized decoupling methods. 

3 Hazarika and 

Chidambaram 

(2014) 

 

Designed multivariable 

proportional integral 

controllers for unstable 

multivariable systems 

Used equivalent transfer function 

model to design multivariable PI 

controllers for diagonal elements and 

simplified decouplers are used to 

decompose the unstable multi loop 

systems into independent loops and 

double loop control structure is used 

to reduce the overshoot for unstable 

systems  

4 Chandrasekhar 

et al. (2016) 

Proposed simple method of 

designing decentralized 

PID controllers for stable 

systems by synthesis 

method is extended to 

unstable systems. 

Decentralized control system is 

designed using maclaurin Series, 

gives improved responses and 

decreased interactions when 

compared to that of the 

Govindhakannan decentralized PID 

control system design method. 

 

 

A summary of the reported work regarding the design of PID controller for unstable multivariable 

processes are given in Table 2.5. 
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 Design of set-point weighting parameters for unstable systems 

This section gives the overview of the literature on set-point weighted PID controllers for 

SISO and MIMO unstable time-delay systems. 

 

 Sree and Chidambaram (2003a) designed set point weighted PI controller for UFOPTD process 

with a zero based on equating coefficient method by matching the corresponding first power of s 

in the numerator and that in the denominator of the closed loop transfer function. Simulation results 

were provided to illustrate the robust performance of the controller which is evaluated by 

simulation on a CSTR with non-ideal mixing carrying out an enzymatic reaction. 

 

 Sree and Chidambaram (2003b)  proposed a set point weighted PI controller for stabilizing an 

unstable bioreactor with a dominant unstable zero based on direct synthesis method. The controller 

design proved to be robust for perturbations in the controller settings. A set point weighting has 

been considered for the controller to reduce the initial jump and undershoot of the servo response. 

 

Liu et al. (2005a) have proposed an analytical 2 DoF control scheme for open loop unstable first, 

second order and integrating unstable first order processes with time delay. They have designed 

three controllers in which proportional or plus derivative controller is employed to stabilize the set 

point response; a H2 optimal set point tracking controller is designed based on ISE performance 

specification. The desired disturbance transfer function is proposed to design the disturbance 

estimator in the inner closed loop to obtain the ISE performance objective. Here the set point and 

load disturbance responses can be tuned easily by a single tuning parameter.  

 

Shamsuzzoha and Lee (2008c) designed a simple 2 DoF IMC based PID controller for integrating 

processes with positive and negative zeros focusing on disturbance rejection. Comparisons with 

the other tuning methods have been carried out for the same level of robustness. Guidelines are 

provided for the selection of tuning parameter. 

 

Uma et al. (2010) proposed a modified smith predictor (SP) design for controlling the non 

minimum phase integrating processes with/without a zero. They used two controllers based on 

direct synthesis approach. The set point tracking controller is PID with lag filter and PD with lead 
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lag structure is the disturbance rejection controller. The method provided good disturbance 

rejection response with significant improvement in servo responses by using a set point weight. 

 

Chen et al. (2008) developed set point weighted PID controller tuning for time delayed unstable 

systems. Based on the set point weighting parameter, they used a simple PID-PD controller to 

achieve basic and modified PID structures 

 

 

Ali and Majhi (2010) presented a tuning method of minimizing the ISE criterion with the 

constraint that the slope of the Nyquist curve has a user specified value at the gain crossover 

frequency, to get the optimal controller parameters for integrating processes providing satisfactory 

set point tracking and load disturbance rejection responses. Guidelines have been provided for 

selecting the gain crossover frequency and the slope of the Nyquist curve. 

 

Jin and Liu (2014) addressed the analytical tuning method of 1 DoF PID controller and 2 DoF 

PID controller with set point weights for integrating processes with and without RHP zero using 

IMC technique and achieved a good performance /robustness trade-off, by specifying the desired 

robustness. 

 

Lee et al. (2014) proposed simple analytical tuning rules for PI/PID controller based on Skogestad 

IMC (SIMC) method. They also designed a set point filter to reduce the overshoot for stable, 

integrating and double integrating processes. 

 

Anil and Sree (2015) designed direct synthesis based PID controller with lead lag filter for 

integrating time delay systems. The effectiveness of the proposed method was shown by providing 

the simulation results on various models and on nonlinear model equations of CSTR. 

 

Padma Sree and Chidambaram (2017) presented an excellent overview of controlling unstable 

single and multi-variable systems. Many physical examples are stated as unstable transfer function 

models. The problems in the control of unstable systems are given in detail.  

 

 

 



25 
 

Table 2.6 Literature review on set-point weighting parameters for UFOPTD and USOPTD 

processes. 

S. No. Author Description Remarks 

 

1  Sree and 

Chidambaram 

(2003a) 

 

Set point weighted PI 

controller based on 

equating coefficient 

method. 

Applied for UFOPTD systems with 

a zero and provided simulation 

results on a CSTR process. 

2  Sree and 

Chidambaram 
(2003b) 

PI controller based on 

direct synthesis method. 

For stabilizing an unstable 

bioreactor with a dominant unstable 

zero, provided robust performance. 

3 Liu et al. (2005a) 2 DoF control scheme with 

three controllers. 

For UFOPTD, USOPTD and 

integrating UFOPTD. 

4 Shamsuzzoha and 

Lee (2008c) 

2 DoF IMC based PID 

controller. 

For integrating processes with 

positive and negative zeros 

focussing on disturbance rejection. 

5 Uma et al. (2010) Modified SP design with 

two controllers designed 

based on direct synthesis 

method. 

Provided good disturbance 

rejection for non minimum phase 

integrating processes with/without 

a zero. 

6 Chen et al. (2008) Developed set point 

weighted PID controller 

tuning for time delayed 

unstable systems. 

Based on the set point weighting 

parameter,  used a simple PID-PD 

controller to achieve basic and 

modified PID structures 

7. Ali and Majhi 
(2010) 

PID controller based on 

minimizing ISE and gain 

crossover frequency in the 

Nyquist curve. 

Provided good servo/regulatory 

responses for integrating processes. 

8 Jin and Liu 
(2014) 

IMC-PID from 2 DoF to 1 

DoF.  

For integrating processes with and 

without RHP zero. 

9 Lee et al. (2014) PI/PID controller based on 

SIMC method 

For stable and integrating 

processes. 

10 Anil and Sree 
(2015) 

Improved PID controller 

with lead lag filter using 

direct synthesis method 

For unstable integrating processes 

with time delays. 

11 Padma Sree and 

Chidambaram 

(2017) 

Presents the equating 

coefficient method for the 

design of PI and PID 

controllers for stable and 

unstable systems. Several 

examples have been stated 

for the existence of 

unstable behavior in the 

processes. 

 

CSTR, bioreactor, fluidization 

reactor, fluid catalytic reactor, 

Jacketed CSTR, Isothermal reactor, 

cart and pole problem, helicopter 

and airplanes. 
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A summary of the reported work for set-point weighted PID controllers for SISO and MIMO 

unstable time-delay systems are given in Table 2.6. 

 

Based on literature survey the following important research problems are noted: 

• Analytical design rules may be developed like look up tables 

• Design of H2 optimal IMC based controllers to unstable systems both theoretically and 

experimentally 

• Enhanced design of H2 optimal PID controllers for cascade and MIMO unstable systems 

• Propose simple set-point weighted PID controllers design for SISO and MIMO unstable 

systems to further reduce the overshoot 
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 Chapter 3         

 Analytical PID Tuning Rules for Unstable Processes 

For a wider range of stable processes, many analytical PID controller tuning rules are 

available. However, for unstable processes, the availability of analytical tuning rules is limited. In 

this chapter, H2 minimization theory in combination with internal model control (IMC) is used to 

analytically derive PID controller settings which can be used as a ready reference like look-up 

tables. These analytical settings are developed for a defined range of time delay to time constant 

ratio. Robustness of the control system is evaluated by Maximum sensitivity (Ms). 

 Introduction 

Tuning of different types of controllers for right half plane pole processes, which are 

classified as unstable, has been addressed by in literature.  IMC based design using the Laurent 

series expansion is developed by Panda (2009) and by using Maclaurin series approximation is 

developed by Nasution et al. (2011). Based on the need of an operation, i.e., either in a set-point 

tracking mode or load disturbance rejection mode, Arrieta et al. (2011) developed formulae for a 

controller for unstable and integrating processes. IMC based design using the Laurent series 

expansion is developed by Panda (2009) and by using Maclaurin series approximation is developed 

by Nasution et al. (2011).  

To enhance the tracking capability smoothly, either placing a filter for the set point signal 

or using a weight for set point signal is preferred. The methods developed by Nasution et al. (2011) 

and Panda (2009) are applicable for wider range of time delay to time constant ratios (μ/n = T0 = 

0.1 to 1.2). However, the equations are not simple and are tedious to utilize in practice. Also, the 

method Wang et al. (2015)  is not applicable when the time delay to time constant ratio is greater 

than 0.9. A method to design PI controller is proposed by Cho et al. (2014) but the major limitation 

of the method is that it does not work when the time delay to time constant ratio is equal to 1. A 

method to design PID controller is addressed by Anusha and Rao (2012) for second order unstable 

processes and IMC based controller with lead-lag filter is developed by Vanavil et al. (2014). The 

important points about the methods discussed so far are (1) Analytical tuning rules are not available 

for many methods and (2) some methods cannot be applied when μ/n ≥ 1.  
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Recently, Sree and Chidambaram (2017) discuss the importance of unstable systems and 

their occurrence in practice. Begum et al. (2016) proposed analytical relations for controller for 

the desired level of robustness. The present work extends the idea used by Nasution et al. (2011) 

to develop robust PID tuning rules for unstable processes using IMC method with optimal H2 

minimization theory. The current design methodology evaluates the performance and robustness 

trade-offs which aim to achieve a smoother response to both servo and regulatory changes while 

at the same time guaranteeing desired robustness. Also, the present method works even when μ/n 

≥ 1. Further, with the provided examples, it is shown that the proposed method is much superior 

to the existing methods regarding performance, particularly for higher values of μ/n.  

 Controller design  

IMC control is shown in Figure 3.1. Analytical relations for PID controller are reported for 

unstable first order plus time delay (UFOPTD) processes by Nasution et al. (2011), however, the 

developed formulae are not easy to use in practice. In the present method, analytical tuning rules 

are provided which are relatively easy for practical use. Let us consider the UFOPTD process as  

 

𝑃(𝑠) =
𝑚𝑒−µ𝑠

𝑛𝑠−1
            (3.1) 

 

Figure 3.1 Internal Model Control 

Based on IMC philosophy, considering perfect model (P = Pm) and optimal H2 theory, the IMC 

controller is derived and is given as Nasution et al. (2011) 

𝐶(𝑠) =
(𝑛𝑠−1)

𝑚
{(𝑒𝜇 𝑛⁄ − 1)𝑛𝑠 + 1}𝐹                                                                        (3.2)

 

Here, F is the filter, which is selected as 

C 

Pm 

+  
+ 

Yd 

Yo 

- 

+ - 
P 

Yr 

 



30 
 

𝐹 = (𝛾𝑠 + 1)/(𝜆𝑠 + 1)3                  (3.3)  

here,  need to be selected properly. Also, the analytical expression for γ is derived based on the 

internal stability conditions for any IMC based structure (Nasution et al., 2011) and is obtained 

as  

𝛾 = {(𝜆 𝑛⁄ )2 + 3(𝜆 𝑛⁄ ) + 3}𝜆                (3.4) 

The equivalent controller GC in single loop control is obtained as 

𝐺𝐶 =
𝐶

1−𝐶𝑃𝑚
                    (3.5)  

Incorporating the expressions for C and Pm, one can achieve 

𝐺𝐶 =
{(𝑒𝜇 𝑛⁄ −1)𝑛𝑠+1}(𝛾𝑠+1)(𝑛𝑠−1)

𝑚[(𝜆𝑠+1)3−{(𝑒𝜇 𝑛⁄ −1)𝑛𝑠+1}(𝛾𝑠+1)𝑒−𝜇𝑠]
              (3.6)  

the above expression for controller is converted into a PID controller form using Maclaurin 

series by defining  

𝑤(𝑠) = 𝑠𝐺𝑐(𝑠)                   (3.7) 

Expanding w(s) using Maclaurin series, we get 

𝐺𝑐(𝑠) =
1

𝑠
(𝑊(0) + 𝑊′(0)𝑠 +

𝑊′′(0)

2!
𝑠2 + ⋯ )                  (3.8)

 
Eq. 3.8 is written as equivalent to a conventional PID controller as    

𝐺𝑐(𝑠) = 𝑘𝑐 (1 +
1

𝜏𝑖𝑠
+ 𝜏𝑑𝑠)                (3.9a) 

 

From Eq. (3.8) & (3.9a), the controller settings are derived as 

𝑘𝑐 = 𝑊′(0),      𝜏𝑖 =
𝑊′(0)

𝑊(0)
𝑎𝑛𝑑   𝜏𝑑 =

𝑊′′(0)

2𝑊′(0)
              (3.9b) 

 

on substitution and simplification, the controller equations can be obtained as a function of μ/n and 

λ/n and which are complicated. Each expression for kc, i, d contain expressions that are intricate 
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and not easy to implement. Moreover, user friendly rules in simple analytical form are always 

recommended in industries. Note that the design equations for the techniques reported by Morari 

and Zafiriou (1989), Nasution et al. (2011), Panda (2009) and Wang et al. (2015)  are more 

involved. Also, it is always preferred to have robust tuning rules to take care of process 

uncertainties. 

 Robust tuning of controller 

For designing a robust controller, it is necessary to select the IMC tuning parameter  as all the 

controller parameters (kc, i, d) are functions of the transfer function model parameters which are 

known except . For robust design, let us again consider the UFOPTD process transfer function 

given in eq. (3.1). 

𝑃(𝑠) =
𝑚𝑒−µ𝑠

𝑛𝑠−1
                        (3.10)

 

Using the transformation ŝ = ns and μp = μ/n, after normalization, the normalized process model is 

obtained as  

𝐶𝑔(𝑠̂) =
𝑒−µ𝑝𝑠̂

𝑠̂−1
                        (3.11)  

similarly, the controller given in eq. (3.9a) is also normalized using the transformations and 

obtained as 

𝐺𝑐
𝑔

(𝑠̂) = 𝑚𝑘𝑐 (1 +
𝑛

𝜏𝑖𝑠̂
+

𝜏𝑑

𝑛
𝑠̂)               (3.12) 

 
with the normalized process and controller expressions, the sensitivity function S is defined as    

𝑆 =
1

1+𝐺𝑐
𝑔

𝑃𝑔
                    (3.13) 
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Based on this, Ms is defined as the maximum value of |S| for all of the frequencies. Using 

the controller expressions, the robustness is evaluated to achieve a minimum possible value for Ms 

for different values of μ/n. The equivalent values are depicted in Table 3.1. From this table, for a 

given process, once μ/n is known, one can select λ/n In order to further simplify the selection of 

λ/n, an analytical relation is determined based on regression analysis. The data is plotted as shown 

in Figure 3.2. The corresponding equation for selection of λ/n is obtained as 

λ/n = 2.0957 (μ/n)2 + 0.9634 (μ/n) – 0.0889                                                                     (3.14) 

Similarly, an equation for Ms is also determined based on λ/n and is given below. 

Ms = 0.2547 (λ/n)3 – 1.7432 (λ/n)2 + 4.7569 (λ/n) +1.3371                                             (3.15) 

Let us assume  μ/n =T,  λ/n=R 

From eq.3.14 and 3.15 

R = 2.0957 (T)2 + 0.9634 (T) – 0.0889                                                                      

Ms = 0.2547 (T)3 – 1.7432 (R)2 + 4.7569 (R) +1.3371                                             

 

In this work, from eq. (3.9b), simple expressions are developed for the controller settings. 

The expressions for kc, τi, τd are developed from eq. (3.9b) after carrying out simple mathematics 

and are obtained as 

 

𝐾𝑐𝑚 = 𝑓1(𝑅, 𝑇)                 (3.16) 

 

𝜏𝑖

𝑛
= 𝑓2(𝑅, 𝑇)                      (3.17) 

 

𝜏𝑑

𝑛
= 𝑓3(𝑅, 𝑇)                  (3.18) 
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Figure 3.2 R for specified T values. 

 

Selection of R is already discussed and  can be obtained from eq. (3.14) for a given process. 

Regression is used to develop simple tuning formulas for controller parameters. For a given 

process, T is known and based on this, the controller parameters are found out as a function of R 

based on eq. (3.9b) and obtained the following equations. 

𝐾𝑐𝑚 = 𝑎1(𝑅)𝑏1 + 𝑐1                                           (3.19) 

𝜏𝑖

𝑛
= 𝑎2(𝑅)𝑏2 + 𝑐2                                                                                               (3.20) 

𝜏𝑑

𝑛
= 𝑎3(𝑅)𝑏3 + 𝑐3                                                                                                                (3.21) 

Where ai, bi, ci (i = 1, 2, 3) are the coefficients whose values change for each T. In this work, the 

range of T is considered as 0.1 to 1.2. After carrying out regression, the values of these coefficients 

are obtained for each T and are shown in the Table 3.1. R can be obtained from eq. (3.14). 
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 Table 3.1 R and Ms Evaluation for defined T range 

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 

R 0.17 0.23 0.23 0.52 0.69 0.95 2.3 2.38 2.4 2.5 3.5 4.2 

Minimum 

possible 

Ms 

 

1.61 

 

2.17 

 

2.86 

 

3.18 

 

3.96 

 

5.13 

 

5.68 

 

5.05 

 

5.8 

 

7.69 

 

8.12 

 

9.18 

 

While the a1,b1,c1,a2,b2,c2,a2,b2,c2,a3,b3,c3 parameter values for 0.1< T <1.2 are available in the 

above table, coefficients for intermediate values of T can be obtained by interpolation. To further 

have simplified tuning rules, the coefficients are also evaluated analytically based on the data given 

in Table 3.1 using curve fitting and the corresponding equations are given in Appendix A.   

 Now, for any value of T, one can find out the controller parameters after appropriately 

selecting the  value. Here, for selection of  , which plays major role in determining the robustness 

of the closed loop control system, Ms is used. To summarize the present tuning method, for the 

known T value, use eq. (3.19, 3.20, and 3.21) along with eqs gives in Appendix A and obtain the 

controller parameters as a function`n of R.  

To summarize the proposed robust tuning, the systematic steps are given here. 

Step 1: For the known unstable transfer function model of the process, calculate T. 

Step 2: Select  based on eq. (3.14) 

Step 3: Use eqs. 3.19, 3.20 and 3.21 along with eqs gives in Appendix A and find out the controller 

parameters kc, i, d 

These steps can be used like look-up tables to design the PID controllers by the operators. 
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 Simulation results 

Evaluation of the performances is verified on many unstable processes and is compared 

with the techniques developed by Wang et al. (2015), Panda (2009) and  Nasution et al. (2011). 

For reasonable evaluation, IAE and TV defined at same Ms are taken into account as metrics.  

Controller Performance Metrics: 

Integral Absolute Error (IAE), Integral Square Error (ISE) and Total variance (TV) are the 

criteria used to estimate the performance of the closed-loop process. 

IAE = ∫ |E(t)|dt 
∞

0
             

Where  E(t) = Y(t) − U(t). 

Total Variance is to measure the total variance in the controller output U(t) which provides an 

acceptable measure of the smoothness of the control.  

TV = ∑ |Uj − Uj−1|∞
j=1                    

Example – 1: Control of a dimerization reactor process is considered here whose dynamics are 

(Sree, 2017) 

 

𝑃(𝑠) =
−0.017𝑒−2.4𝑠

5.8𝑠−1
           (3.23)  

 

Based on this model, the controller is designed and the corresponding values are given in Table 

3.3. For comparison, other recent methods are also accounted and their controller values are also 

given in Table 3.2. Based on these controllers, a unit step change is provided to the set point and 

at a time of 60 sec, a step signal of 0.5 is provided to the disturbance. The simulation graphs are 

given in Figure 3.3 & 3.4 for nominal and perturbed cases. The metrics IAE and TV for both cases 

are calculated and provided in Table 3.3. The current approach provides good responses. It can be 

observed that even with increased perturbations, the TV value remains low for the current method.  
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 Figure 3.3 Output and control action behavior under exact model for example-1, dash dot – 

(Panda, 2009), solid – Present work, dash – (Nasution et al., 2011), , dot - (Wang et al., 2015).  

 

Figure 3.4 Output and control action behavior under mismatch model for example 1, dash – 

(Nasution et al., 2011), solid – Present work, dash dot – (Panda, 2009), dot - (Wang et al., 2015).  

 

Example – 2: Here, unstable process with more than first order is studied (Liu and Gao, 2012)  

 

𝑃(𝑠) =
𝑒−0.5𝑠

(5𝑠−1)(2𝑠+1)(0.5𝑠+1)
               (3.24) 
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λ is obtained as 5.2 according to eq. (3.14) which corresponds to Ms = 4.6. For this value of , the 

controller values are provided in Table 3.2. Based on this controller, a unit step change is provided 

to the set point and at a time of 100 sec, a step signal of 0.5 are provided to the disturbance. The 

simulation graphs are given in Figure 3.5 for nominal and perturbed cases. The metrics IAE and 

TV for both cases are calculated and provided in Table 3.2.  Notice that the current approach 

resulted in fair responses and also smooth control action responses. 

 

Figure 3.5 Output and control action behavior under exact and mismatch model for example 2, 

dash – Mismatch model, Solid - Perfect model. 

 

Example – 3: The following unstable process is considered here (Liu and Gao, 2012)  

 

𝑃(𝑠) =
𝑒−0.5𝑠

(2𝑠−1)(0.5𝑠+1)
                    (3.25) 

 

Here, λ is obtained as 1.72 for which Ms is 3.9. For this value of , the controller values are 

provided in Table 3.2. Based on this controller, a unit step change is provided to the set point and 

at a time of 30 sec, a step signal of 0.5 is provided to the disturbance. The simulation graphs are 

given in Figure 3.6 for nominal and perturbed cases. The metrics IAE and TV for both cases are 
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calculated and provided in Table 3.2.  Notice that the current approach resulted in fair responses 

and also smooth control action responses. 

 

 

Figure 3.6 Output and control action behavior under exact and mismatch model for example 3, 

dash – Mismatch model, solid - Perfect model. 

 

Example – 4: Here, an unstable process with significant time delay is taken whose dynamics are 

 

𝑃(𝑠) =
𝑒−1.2𝑠

𝑠−1
                (3.26) 

 

For this example also, the designed controllers for all considered cases are given in Table 3.3. 

Based on these controllers, a unit step change is provided to the set point and at a time of 40 sec, 

a step signal of 0.08 is provided to the disturbance. The simulation graphs are given in Figure 3.7 

& 3.8 for nominal and perturbed cases. The metrics IAE and TV for both cases are calculated and 

provided in Table 3.2. From the table, it can be observed that even with increased time delay, the 

metrics remain low for the current method than previous techniques. It should be worth mentioning 

here that Wang et al. (2015) technique provides unbounded responses for significant delay process 

for any λ and thus those graphs are kept in Figure 3.7 & 3.8. 
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Figure 3.7 Output and control action behavior under exact model for example 4, dash – 

(Nasution et al., 2011), dash dot – (Panda, 2009), solid - Present work. 

 

Figure 3.8 Output and control action behavior under mismatch model for example 4, dash – 

(Nasution et al., 2011), solid - Present work ,dash dot – (Panda, 2009). 
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Table 3.2 Comparative evaluation in terms of IAE and TV for all methods. 

 

Example – 5: Control of a Chemical Reactor: 

 

 Mathematical model of isothermal chemical reactor is considered here (Vanavil et al., 2014). 

 

𝑑𝐶𝐴

𝑑𝑡
=

𝐹

𝑉
(𝐶𝐴,𝑓 − 𝐶𝐴) −

𝑘1𝐶𝐴

(𝑘2𝐶𝐴+1)2            (3.27a) 

 

Where F is the flow rate (0.0333 L/s) and CA,f is the inlet concentration. V = 1 L, k1 = 10 L/s, and 

k2 = 10 L/mol. The reactor is operated with an inlet concentration of 3.288 mol/L. Corresponding 

Example 1

2.40.017
( )

5.8 1

se
P s

s





 

 

Method 

 

 

λ 

 

kc 

 

τi 

 

τd 

 

Ms 

 

Perfect model 

Perturbations of -

10%in kp +10% in θ 

and -10% in τ 

IAE TV IAE TV 

Proposed 3.87 -137 14.73 0.7 3.81 14 314 12.1 304 

Nasution et 

al. 
2.56 -166 12.6 0.9 3.81 12 351 11.7 636 

Panda 2.51 -164 13.38 1.1 3.81 13 357 9.8 271 

Wang et al. 4.12 -128 27.2 1.7 3.81 26 372 18.93 221 

Example 2

2.7740.9492
( )

5.2644 1

se
P s

s






 
 

-30%in kp +30% in θ 

and -30% in τ 

Proposed 5.2 2 16.3 0.84 4.6 19.5 6.96 19.58 6.96 

Example 3 

1.04160.9657
( )

2.4278 1

se
P s

s






 
 

-10%in  kp  +10% in  

θ  and -10% in  τ 

Proposed 1.72 2.34 6.29 0.3 3.9 5 4.3 5.01 4.31 

Example 4

1.2

( )
1

se
P s

s






 

 
+5% in  θ  and -5% 

in  τ 

Proposed 4 1.14 63.79 0.53 9 12.6 2.3 13 4.5 

Nasution et 

al. 
3.28 1.13 77.9 0.55 9 14.7 2.37 14.7 3.37 

Panda 4.19 1.12 89 0.58 9 16.53 2.35 16.46 3 

Wang et al. Unstable 
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to this, the multiple steady states for the exit concentration are CA = 1.7673, 0.01424 and 1.316 

mol/L. Of these three, CA = 1.316 is an unstable steady state. Inlet concentration is considered as 

the manipulated variable. The above nonlinear model is linearized around this operating condition 

and obtained the Unstable transfer function model as 3.433/ (103.1s-1). For this particular case, a 

time delay of 20 sec is considered. With that, the model is obtained as 

 

𝑃(𝑠) =
3.433   𝑒−20  𝑠

103.1  𝑠−1
                       (3.27b) 

By considering this transfer function model, from eq. (3.14), λ = 18 is obtained to achieve Ms = 

2.6. For this value of, the controller values are provided in Table 3.3. Based on this controller, a 

unit step change is provided to the set point and at a time of 400 sec, a step signal of 0.5 is provided 

to the disturbance. The simulation results are given in Figure 3.9 for perfect model and in Figure 

3.10 for uncertainties. The metrics IAE and TV for both cases are calculated and provided in Table 

3.3. The current method is comparatively better. 

 

Figure 3.9 Output and control action behavior under exact model conditions for example 5, dash 

– (Nasution et al., 2011), Solid - Present work, dash dot – (Panda, 2009), dot - (Wang et al., 

2015).  
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Figure 3.10 Output and control action behaviour under mismatch model conditions for example 

5, dash – (Nasution et al., 2011), solid - Present work, dash dot – (Panda, 2009), dot - (Wang et 

al., 2015).  

Non – linear Simulation: 

            To analyze the performance of the controllers in more realistic manner, closed loop 

simulations are carried out on the original nonlinear model by giving a step change in the set point 

from 1.316 to 1.34 at time t = 0 and a step disturbance of magnitude of 0.034 at t = 400 sec. The 

corresponding results are shown in Figure 3.11 for perfect model and in Figure 3.12 for 

perturbations. From the figure, one can see that the present work shows fair closed loop tracing of 

set point with smooth less oscillatory controller output. The IAE and TV values are given in Table 

3.3.  Further, both increased (positive) and decreased (negative) step inputs of different magnitudes 

are considered with a noise of power 0.0001 in the measurement and the simulation results are 

shown in Figure 3.13. The present method tracks the set point well. 
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Figure 3.11 Output and control action behaviour based on Non Linear true model for example 5, 

dash – (Nasution et al., 2011), solid - Present work, dash dot – (Panda, 2009), dot - (Wang et al., 

2015). 

 

Figure 3.12 Output and control action behaviour based on Non Linear mismatch model for 

example 5. dash – (Nasution et al., 2011), dash dot – (Panda, 2009), solid - Present work, dot - 

(Wang et al., 2015).  
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Figure 3.13 Closed loop response for different set points example 5 with Noise. 

 

Example – 6: Control of a Bio-reactor 

 

A nonlinear continuous bioreactor exhibiting output multiplicity behavior is considered 

whose model is given by (Sree and Chidambaram, 2017)  

𝑑𝑋

𝑑𝑡
= (𝜇 − 𝐷)𝑋                 (3.28) 

𝑑𝑆

𝑑𝑡
= (𝑆𝑓 − 𝑆)𝐷 −

𝜇𝑋

ϒ
                 (3.29) 

Where𝜇 = 𝜇𝑚𝑆 (𝐾𝑚 + 𝑆 + 𝐾𝑙𝑆
2)⁄ , γ = 0.4 g/g, Sf  = 4g/l, m = 0.53 h-1, D = 0.3 h-1, Km = 0.12 g/l, 

Kl = 0.45451 l/g. X and S are the cell and substrate concentrations. The reactor exhibits multiple steady 

states at (X = 0, S = 4), (0.9951, 1.5122) and (1.5301, 0.1746). It is desired to operate the reactor at the 

intermediate unstable steady state (X = 0.9951, S = 1.5122). The dilution rate, D is used as a manipulated 

variable. Measurement delay of 2.4 hours is assumed for X. Linearizing the nonlinear model equations 

around the unstable operating point, the transfer function model is obtained as. 

 

P(s) =  
−5.89 e−2.4s

5.86s−1
                 (3.30) 

 

For this process, λ is obtained as 3.85 as per eq. (3.14) for which Ms is obtained as 3.2. Design 

methods are developed in references (Wang et al., 2015) (Panda, 2009) (Nasution et al., 2011) are 
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considered for comparison. The controller values for all cases are provided in Table 3.3. Based on 

these controllers, a unit step change is provided to the set point and at a time of 50 sec, a step signal 

of 0.5 is provided to the disturbance. The simulation graphs are given in Figure 3.14 & 3.15 for 

nominal and perturbed cases. The metrics IAE and TV for both cases are provided in Table 3.3. It 

can be seen that the IAE and TV are close to Nasution et al. (2011) and better than Wang et al. 

(2015) and Panda (2009). 

 

 

Figure 3.14 Output and control action behavior under exact model for example 6, dash – 

(Nasution et al., 2011), dash dot – (Panda, 2009), solid - Present work. 

 

Figure 3.15 Output and control action behavior under mismatch model conditions for example 6, 

dash – (Nasution et al., 2011), Solid - Present work ,dash dot – (Panda, 2009) 
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Non – linear Simulation: 

Closed loop simulation is carried out by giving a step change in the set point from 0.9951 

to 1.2 at time t = 0 and a step disturbance of magnitude of 0.35 at t = 75 sec for the original 

nonlinear model. The corresponding closed loop and control action responses are shown in Figure 

3.16 for perfect model and in Figure 3.17 for perturbations. One can see that the present work 

shows fair closed loop tracing of set point with smooth less oscillatory controller output. IAE and 

TV values are given in Table 3.2.  Evaluation is also carried out in the presence of Noise with 

power = 0.0001 for both positive and negative step inputs of different magnitudes and shown in 

Figure 3.18. The present method tracks the set point well even in the presence of noise. 

 

Figure 3.16 Performance evaluation for Non Linear true model for example 6. dash –(Nasution 

et al., 2011), solid - Present work, dash dot –(Panda, 2009), dot - (Wang et al., 2015).  
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Figure 3.17 Performance evaluation for Non Linear mismatch model for example 6. dash – 

(Nasution et al., 2011), solid - Present work, dash dot – (Panda, 2009) , dot - (Wang et al., 2015). 

 

 

Figure 3.18 Closed loop response for different set points example 6 with Noise for perfect 

condition. Dot – input, solid – output. 
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Table 3.3 Comparative evaluation in terms of IAE and TV for all methods 

 

 

 

 

 

 

 

 

Example 5 

 

 

Method 

 

λ 

 

kc 

 

τi 

 

τd 

 

Ms 

Perfect model 
+20% in  θ  and -

10% in  τ 

IAE TV IAE TV 

Proposed 18 1.45 75.9 10.1 2.6 99.9 2.85 92.3 4.31 

Nasution et al. 22 1.51 88.9 7.2 2.6 101.2 2.54 112.7 5.33 

Panda 24 1.48 97.3 9.4 2.6 112.2 2.51 111.8 4.14 

Wang et al. 26 1.41 123.4 10.2 2.6 141.7 2.34 143.2 5.83 

Example 5 

Non-linear 

Simulation 

Proposed 18 1.45 75.9 10.1 2.6 3.76 5.8 3.92 5.86 

Nasution et al. 22 1.51 88.9 7.2 2.6 3.9 5.18 4.39 5.3 

Panda 24 1.48 97.3 9.4 2.6 4.18 5.71 4.1 5.71 

Wang et al. 26 1.41 123.4 10.2 2.6 5.2 5.57 5.2 5.5 

Example 6

2.45.89
( )

5.86 1

se
P s

s






 

 
+5% in  θ and -

5% in  τ 

Proposed 3.85 -0.39 14.8 0.7 3.2 27.38 2.28 28.2 2.82 

Nasution et al. 2.9 -0.44 14.7 0.9 3.2 25.5 2.3 25.5 2.76 

Panda 2.9 -0.44 15 1.07 3.2 26.2 2.35 26 2.8 

Wang et al. 3.6 -0.38 23.6 1.52 3.2 44.7 2.6 44.4 3 

Example 6 

Non-linear 

Simulation 

Proposed 3.85 -0.39 14.8 0.7 3.2 4.5 11.2 5 11.3 

Nasution et al. 2.9 -0.44 14.7 0.9 3.2 4.04 15.6 4.55 15.8 

Panda 2.9 -0.44 15 1.07 3.2 4.16 17.6 4.66 17.7 

Wang et al. 3.6 -0.38 23.6 1.52 3.2 6.43 20.24 6.53 20.27 

203.433
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 Summary 

Robust analytical relations for PID controller are developed for time delayed unstable 

systems. These rules can be used like look-up tables by the operators for tuning of PID controllers. 

For unstable systems, it is very crucial to select the tuning parameters to acquire stable responses. 

Robustness always requires lower Ms values which is usually not easy to achieve for such systems. 

The tuning parameter is selected to achieve minimum possible Ms value and analytical formula is 

given to calculate λ. Further, the developed simple tuning formulae provide fair and enhanced 

performances. The present methods can be utilized as look up tables for selection of the PID 

controller tuning parameters. Six case studies are considered to evaluate the applicability of the 

current method. Analytical formula is provided to determine λ based on μ/n. The evaluated 

responses of the current design are superior when compared with existing techniques, especially 

when μ/n is significant. The current methodology is relatively simple and can be applied for any 

system with a right half plane pole. Comparative analysis has also been done using IAE and TV.  
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 Chapter 4         

 Experimental Studies on an Inverted Pendulum 

 

In the present chapter, an experimental assessment of the developed method in chapter 3 is 

verified by testing it on an Inverted Pendulum (IP). The performance of controlled system is 

compared with the methods proposed by  Begum et al. (2018) and Cho et al. (2014). 

 Introduction 

 

Inverted Pendulum (IP) is a platform for study of control theories. There are two separate 

control problems in IP. First is the crane control problem, in which the goal is to move the cart to 

a desired position with as little oscillation of the load (pendulum arms) as possible. The other is to 

stabilize the IP in an upright position. The IP task can be seen as a self-erecting control problem, 

which is present in missile launching and control applications. Furthermore, the pendulum 

application involves a swing up control aspect if initially the pendulum hangs freely in the vertical 

position. These two control problems (inverted pendulum and crane control) have one very 

important difference, which is the stability. The pendulum serving as a crane is stable without a 

working controller. Due to energy loss through friction and air resistance it will always end up at 

an equilibrium point. The inverted pendulum is inherently unstable. Left without a stabilizing 

controller, it will not be able to remain in an upright position when disturbed. 

 System description of inverted pendulum 

 

              An automated digital pendulum is considered as shown in figure 4.1 which consists of a 

cart moving along a one meter track length. The cart is associated with a shaft attached with two 

freely rotating pendulums. The present study aims in maintaining a vertical upright position of the 

pendulum by cart’s action. When the cart’s movement is towards the extreme end (beyond the 

limit switches), the power supply is interrupted with the help of sensors seated on either sides of 

the rail. The belt and DC motor assembly helps the cart to move freely in horizontal directions. 

The belt and DC motor assembly helps the cart to move freely in horizontal directions.  
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This digital IP is a Single Input Multiple Output (SIMO) system. By applying a voltage to 

the motor the force is controlled with which the cart is pulled. The value of the force depends on 

the value of the control voltage. The input signal to system is the control voltage (u) and the output 

are, the cart position coordinate (x) and pendulum angle (ϕ), which can be read using optical 

encoders. The controller’s task will be to change the DC motor voltage depending on these two 

variables, in such a way that the desired control task is fulfilled (stabilizing in an upright position, 

swinging or crane control). Here, our main objective is to control the pendulum angle. The system 

can be thought of an inverted pendulum when ϕ = 0 at vertical position and crane control when ϕ 

= π i.e., when it is suspended freely. Both the cart position and the control signal are bounded in a 

real time application. The bound for the control signal is set to [–2.5 V to +2.5 V] and the generated 

force magnitude of around [–20.0 N to +20.0 N]. The cart position is physically bounded by the 

rail length and is equal to [-0.5 m to +0.5 m]. The model parameters of the above mentioned system 

are given in Table 4.1. 

 

Table 4.1 Model parameters of Inverted Pendulum 

Parameters Notations Values 

 
Cart Mass 𝑀 2.4 𝐾𝑔 

 
Pole Mass 𝑚 0.23 𝐾𝑔 

 
Pole Length 𝑙 0.4 𝑚 

 
Pole Moment of Inertia 𝐼 0.099 𝐾𝑔. 𝑚2 

 
Cart Friction Coefficient 𝑏 0.05 𝑁. 𝑠/𝑠2 

 
Acceleration due to gravity 𝑔 9.81 𝑚/𝑠2 

 

 

 Inverted pendulum modelling 

 

The phenomenological model of the pendulum is nonlinear, meaning that at least one of 

the states (x and its derivative or ϕ and its derivative) is an argument of a nonlinear function. For 

such a model to be presented as a transfer function (a form of linear plant dynamics representation 
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used in control engineering), it has to be linearized. Without a properly designed controller it is 

tough to control an IP to reach its objective, as it is unstable in upright vertical position. The 

objective is to control the pendulum angle. An appropriate mathematical modelling is necessary 

for the design of a controller. The nonlinear differential equations derived through the modelling 

of the IP system are (Rao and Chidambaram, 2015) : 

 

(𝑚 + 𝑀)𝑥̈ +  𝑏𝑥̇ + 𝑚𝑙𝜙̈ cos(𝜙) − 𝑚𝑙𝜙̇2 sin(𝜙) = 𝑢                                                                     (4.1) 

(𝐼 + 𝑚𝑙2)𝜙̈ + 𝑚𝑙𝑥̈ cos(𝜙) + 𝑚𝑔𝑙 sin(𝜙) = 0                                                                                  (4.2) 

 

When the force is applied to the cart (u), the cart position changes (x) and hence the pendulum 

angle with respect to vertical position (ϕ). These nonlinear equations, Eq. 4.1 and Eq. 4.2 needs to 

be linearized around steady state condition to design a suitable controller. The following equation 

shows the conversion of nonlinear model in to linearized one based on which the pendulum angle 

transfer function is derived. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic diagram of Inverted pendulum (IP) 

 

𝐺𝑝(𝑠) =
𝜙(𝑠)

𝑢(𝑠)
=

𝑚𝑙𝑠/𝑞

(𝑠3 +
𝑏(𝐼+𝑚𝑙2)

𝑞
𝑠2 −

(𝑀+𝑚)𝑚𝑔𝑙

𝑞
𝑠 −

𝑏𝑚𝑔𝑙

𝑞
)

                                                              (4.3) 

𝐺𝑝(𝑠) =
𝑚𝑙𝑠

(𝑞𝑠3 + 𝑏(𝐼 + 𝑚𝑙2)𝑠2 − (𝑀 + 𝑚)𝑚𝑔𝑙𝑠 − 𝑏𝑚𝑔𝑙)
                                                           (4.4) 

 

Where 𝑞 = (𝑀 + 𝑚)(𝐼 + 𝑚𝑙2) − (𝑚𝑙)2 
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After substituting all the model parameters in Eq. 4.4, the following transfer function is obtained. 

𝐺𝑝(𝑠) =
0.01119𝑠

(0.0424𝑠3 + 0.0008256𝑠2 − 0.2886𝑠 − 0.005487)
                                                    (4.5) 

 

Assuming cart friction coefficient b = 0, we get 

𝐺𝑝(𝑠) =
0.01119𝑠

(0.0424𝑠3 − 0.2886𝑠)
                                                                                                           (4.6) 

Cancelling out the s terms and on factorization of the denominator in Eq. 4.6, we obtain 

𝐺𝑝(𝑠) =
0.0388

(0.3833𝑠 − 1)(0.3833𝑠 + 1)
                                                                                               (4.7) 

𝐺𝑝(𝑠) =
−0.0388

(0.3833𝑠 − 1)(−0.3833𝑠 − 1)
                                                                                           (4.8) 

 

 Controller design 

 

The PID controller is the most commonly used controller in industry. The controller design 

for unstable process discussed in Chapter 3, section 3.2 is considered here. The structure of the 

controller is considered as PID controller derived based on H2 minimization. The methods 

proposed by Cho et al. (2014) and Begum et al. (2018) are considered here for comparison with 

the above method without using a pre-filter. They have used a simple desired closed loop transfer 

function and the first order Taylor series approximation of process time delay (𝑒−𝜃𝑠 = 1 − 𝜃𝑠).   

 

 Experimental results 

 

         An automated digital pendulum is considered as shown in Figure 4.1 which consists of a cart 

moving along a one meter track length. The cart is associated with a shaft attached with two freely 

rotating pendulums. The present study aims in maintaining a vertical upright position of the 

pendulum by cart’s action. When the cart’s movement is towards the extreme end (beyond the 

limit switches), the power supply is interrupted with the help of sensors seated on either sides of 
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the rail. The belt and DC motor assembly helps the cart to move freely in horizontal directions. 

The design and methodology used for the experimentation are briefly elucidated in Begum et al. 

(2018). 

 

The present work is tested on the process with kp = -0.0388, 1 = 0.3833 and 2 = -0.3833. 

For Ms value of 8.6,  is taken as 0.88 and the controller parameters are kc = 34.5, τi = 6.42, τd = 

0.16. For a balanced evaluation, the present work, Begum et al. (2018) and Cho et al. (2014) 

methods are tuned for same Ms value of 8.6 and the controller settings for Begum et al. (2018) and 

Cho et al. (2014) are kc = 31.0453, τi = 14.8144, τd = 0.1721 for λ =0.81 and  kc = 29.2793, τi = 

45.0954, τd = 0.2155 for λ =1.8 respectively. 

 

The tuning parameters obtained by the proposed method, are used for real time simulation 

on a pendulum setup, where ϕ = π is stable position and ϕ = 0 or 2π implies unstable critical 

position. The aim of controller is to maintain pendulum vertical position shown in Figure 4.2. An 

initial control voltage of 0.18V and the proposed controller parameters being kc = 34.5, τi = 6.42, 

τd = 0.16 are provided to the system. The experiment is performed with a notion of controlling the 

angle of the pendulum by balancing the cart acceleration. The set point for the angle of the 

pendulum is fixed at ϕ = 0 i.e. upright vertical position and the cart position is maintained at zero. 

The controller tracks the required angular set-point as depicted in Figure 4.3 for which the 

controller settings helps the pendulum to reach the upper position at ϕ = 0.  

 

The response of the recommended method is displayed in Figure 4.3. To ensure that 

performance of the present method is improved, the responses achieved using the controller 

settings of Begum et al. (2018) and Cho et al. (2014) method as presented in Figure 4.4 and Figure 

4.5. It is noticed from Figure 4.3 that the pendulum reaches the upright position for a faster settling 

time of 10 sec while it takes 24 sec and 28 sec for the other methods (Figure 4.4 and Figure 4.5). 

This implies that the proposed method gives a smoother response in comparison to the methods 

available in literature.  
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Figure 4.2 Pendulum in the final balanced vertical position. 

 

 

 

Figure 4.3 Response of the Inverted Pendulum from the experiment for the proposed method. 

0 10 20 30 40 50 60
-0.5

0

0.5

C
a
rt

 P
o

s
it

io
n

(m
)

0 10 20 30 40 50 60
0

5

10

A
n

g
le

 (
ra

d
s
)

0 10 20 30 40 50 60
-100

0

100

Time (sec)

C
o

n
tr

o
l 
S

ig
n

a
l 
(V

)



57 
 

 

Figure 4.4 Response of the Inverted Pendulum from the experiment for Begum et al. Method. 

 

 

Figure 4.5 Response of the Inverted Pendulum from the experiment for Cho et al. method. 
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 Summary 

The majority of control loops are of PID type for set point tracking and disturbance rejection. 

In this work, a H2 minimization based IMC-PID controller is developed for controlling the angle 

of an inverted pendulum. The transfer function model identification of the process has been carried 

out based on available parameters of the inverted pendulum system. Experimental implementation 

of the developed PID controller, shows a good response in maintaining the set point angle. The 

performances of the present method is better than that of Begum et al. (2018) and Cho et al. (2014).  
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Chapter 5 

 

 

 
 

 

 

IMC-PID Design for Series Cascade Systems 
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 Chapter 5         

 IMC-PID Design for Series Cascade Systems 

 

Optimal H2 internal model controller (IMC) is designed for control of unstable cascade 

processes with time delays. The proposed control structure consists of two controllers in which 

inner loop controller (secondary controller) is designed using IMC principles. The primary 

controller (master controller) is designed as a proportional-integral-derivative (PID) in series with 

a lead-lag filter based on IMC scheme using optimal H2 minimization. Selection of tuning 

parameter is important in any IMC based design and in the present work, maximum sensitivity is 

used for systematic selection of the primary loop tuning parameter. 

 Introduction 

Unstable processes are comparatively difficult to control than that of stable processes. The 

desired performance for unstable systems accompanying large time delays cannot be achieved with 

simple PID controllers. Despite the fact that Smith delay compensation proved to be a powerful 

tool to deal with time delay systems, it is inapplicable to unstable systems (Camacho, 2007). It is 

a well-known fact that cascade control scheme drastically improves the closed loop performance 

with disturbance rejection. A cascade control structure comprises of two control loops, a secondary 

intermediate loop (slave loop) and a primary outer loop (master loop). In typical cascade control 

structure, the secondary loop process dynamics are faster when compared to the primary loop. This 

provides faster disturbance attenuation and minimizes the possible effect of the disturbances before 

they affect the primary output. 

  

 Kaya (2001) proposed a cascade control scheme combined with Smith predictor for stable 

processes with dominant time delay and achieved improved control performances. Many 

researchers (Huang et al., 1998; Lee et al., 1998; Lee and Oh, 2002; Liu et al., 2005a; Tan et al., 

2000) worked on the design and analysis of cascade control strategies for stable processes. But, 

limited research work has been carried out for the design of cascade control strategies for unstable 

processes. Liu et al. (2005) suggested IMC based cascade control scheme for unstable processes 

with four controllers. Kaya and Atherton (2008) designed a cascade control structure for 
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controlling unstable and integrating processes with four controllers. Uma et al. (2009) proposed 

an improved cascade control scheme for unstable processes with a modified Smith predictor with 

three controllers and one filter in the outer loop. Garcia et al. (2010) developed filtered Smith 

predictor cascade control and generalized predictor cascade control, in which they proposed the 

design in discrete domain. Their method is applicable for stable, integrating and unstable time 

delay processes.  

 

 Padhan and Majhi (2012) proposed a modified Smith predictor based cascade control 

structure for unstable processes where they used three controllers. Recently, Nandong and Zang 

(2014) proposed a multi scale control scheme for cascade processes. In the works of (Kaya and 

Atherton, 2008; Liu et al., 2005b; Padhan and Majhi, 2012; Uma et al., 2009) more than three 

controllers and/or filters were used in the cascade control architecture to improve the performance 

of the unstable time delay processes. Most of the existing methods use more controllers and also 

the design of these controllers is not simple. In practice, a cascade controller structure with only 

two controllers (one for secondary loop and another for primary loop) is desirable. 

 

In this chapter, a cascade control scheme is proposed with only one primary loop controller and 

one secondary loop controller. Tuning rules are derived for the controllers for effective control of 

open-loop unstable plants. 

 Proposed cascade control scheme  

 

The cascade control structure used in the proposed method for the control of open-loop 

unstable processes is shown in Figure 5.1 where Gc1 is the primary loop controller, Gc2 is the 

secondary loop controller. Gp1 and Gp2 are the primary and the secondary loop processes. Simple 

IMC control scheme is used in the secondary loop. Gm2 is the secondary loop process model and 

FR is the set point filter. Usually, the dynamics of the secondary process are stable in nature and 

dynamics of the primary process are unstable in nature. Hence, control of secondary process is 

simple as compared to primary process. 
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Figure 5.1 Proposed cascade control structure. 

 Controller design  

The design of controllers in cascade loops depends on the dynamics of the secondary and 

primary processes. If the dynamics of secondary loop are fast compared to that of primary loop, 

the secondary controller needs to be designed first followed by the primary controller. If the 

dynamics of both secondary as well as primary processes are similar, then simultaneous design of 

controllers in both the loops is more appropriate and need to be carried out.  In the present effort, 

the dynamics of secondary loop is considered to be fast and hence the secondary controller is 

designed first followed by the primary controller. Once the secondary controller is designed, an 

overall primary loop process model is obtained. Based on the overall primary process model, the 

primary controller is designed using H2 norm minimization. In the following sections, design of 

secondary controller is discussed first following by design of primary controller. 

5.3.1 Design of secondary loop controller   

 

         The secondary controller is designed as a simple IMC controller. The controller in the 

secondary loop represented by Gc2 is based on IMC principle and it stabilizes the process through 

good disturbance rejection in the secondary loop. The closed loop transfer function of the 

secondary loop is given by  
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y2 

r2
= 

Gc2 Gp2

1-Gc2 Gm2+Gc2 Gp2
             (5.1) 

As mentioned earlier, the secondary process dynamics are stable in nature and hence the secondary 

loop process is considered as a first order plus time delay (FOPTD) process as 

Gp2 =
kp2e−p2s

(τp2s+1)
           (5.2a) 

Gm2 is the model of the secondary process and is considered as 

Gm2 =
 km2e−m2s

(τm2s+1)
           (5.2b) 

As per the IMC strategy, the secondary controller is obtained as  

Gc2(s) =
(τm2s+1)

km2(λ2s+1)
            (5.3) 

Assuming that the model exactly corresponds to the process ( Gm2 = Gp2)  and 

substituting Gc2,Gp2,Gm2, the closed loop transfer function of the secondary loop is obtained as 

y2

r2
=

e−θm2s

(λ2s+1)
            (5.4) 

Where λ2 is the secondary loop tuning parameter.  

5.3.2 Design of primary loop controller 

 

         The primary loop controller is designed using H2 minimization. To design Gc1, the overall 

primary process model, Gm (relation between y1 and r2) is required and assuming a perfect 

secondary loop process model (Gm2 = Gp2), we get  

Gm =  
y1

r2
= Gc2Gp2Gp1         (5.5) 

In this work, the primary loop process is a considered as an unstable FOPTD process as given in 

Eq. 5.6a 
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Gp1 =
kp1e−p1s

(τp1s−1)
         (5.6a) 

The corresponding primary loop process model is considered as  

Gm1 =
km1e−θm1s

(τm1s−1)
         (5.6b) 

Upon substitution in Eq. 5.5, we get 

Gp =
y1

r2
=

kp1e
−(p1+p2)s

(2s+1)(τp1s−1)
         (5.7a)      

Where Gp is the overall primary loop process. Assuming perfect primary process model, (Gm1= 

Gp1), the overall primary process model (Gm) is obtained as 

Gm =
km1e−ms

(2s+1)(τm1s−1)
         (5.7b)      

Where θm = θm1 + θm2.  

As a generalization, Eq. 5.7b is rewritten as  

Gm =
ke−ms

(τ1s−1)(τ2s−1)
                                (5.8) 

Where 1 = m1, 2 = -2, k = -km1 

Based on this model (Eq. 5.8), the primary loop process controller (Gc1) is designed based on H2 

minimization theory and IMC principles. 

Note: The present method addresses the design only for first order unstable time delay 

processes. However, if the primary loop process has two unstable poles, then Eq. (5.8) will have 

one more pole and becomes third order. In such cases, suitable identification techniques can be 

applied to reduce the third order unstable process into a second order unstable process and still the 

present method can be applied. 

According to IMC principles, the primary loop IMC controller QC,p is equivalent to 
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Qc,p = Q̃c,p F                 (5.9)  

Where F is a filter which is used for altering the robustness of the controller. 

The filter structure should be selected such that the IMC controller Qc,p is proper and realizable 

and also the control structure is internally stable. In addition to these requirements, it should be 

selected such that the resulting controller provides improved closed loop performances. In this 

work, Q̃c,p  is designed for a specific type of step input disturbance (v) to obtain H2 optimal 

performance by Nasution et al. (2011) and is based on the invertible portion of the process model. 

The process model and the input are divided as 

𝐺𝑚 = 𝐺𝑚−𝐺𝑚+     𝑎𝑛𝑑       𝑣 = 𝑣−𝑣+        (5.10)  

Where the subscript “ – “ refers to minimum phase part and “ + ” refers to non-minimum phase 

part. The Blaschke product of RHP poles of Gm and v are defined as  

1 1

k k
i i

m v

i ii i

s p s p
b and b

s p s p 

   
 

 
        (5.11) 

Where pi and
  

𝑝
𝑖̅
 are the ith RHP pole and its conjugate respectively. Based on this, the H2 optimal 

controller is derived by using the following formula (Morari and Zafiriou, 1989) 

𝑄̃𝐶 = 𝑏𝑚(𝐺𝑚−𝑏𝑣𝑣−)−1{(𝑏𝑚𝐺𝑚+)−1𝑏𝑣𝑣−}|∗                                                             (5.12) 

Where {…..}|*
 
is defined as the operator that operates by omitting all terms involving the poles of 

 

(𝐺𝑚+)−1
 after taking the partial fraction expansion. 

                 In the present endeavour, The quantities required for the operator are obtained based on 

the overall primary loop process model (Gm) as (Anusha and Rao, 2012) 

 

𝐺̃𝑚−(𝑠) =
𝑘

𝜏1𝜏2(−𝑠+
1

𝜏1
)(−𝑠+

1

𝜏2
)

;  𝐺̃𝑚+(𝑠) = 𝑒−𝜃𝑚𝑠      (5.13) 

𝑣−(𝑠) =
𝑘

𝜏1𝜏2(−𝑠+
1

𝜏1
)(−𝑠+

1

𝜏2
)𝑠

;  𝑣+(𝑠) = 1       (5.14) 

𝑏𝑝(𝑠) = (−𝑠 +
1

𝜏1
) (−𝑠 +

1

𝜏2
) (𝑠 +

1

𝜏1
) (𝑠 +

1

𝜏2
)⁄       (5.15) 
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  𝑏𝑣(𝑠) = (−𝑠 +
1

𝜏1
) (−𝑠 +

1

𝜏2
) (𝑠 +

1

𝜏1
) (𝑠 +

1

𝜏2
)⁄       (5.16) 

 

Substituting in eq. 5.9, the IMC controller is obtained as  

1 2 1 2/ / / /2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 2 1 1 2
,

1 2

( 1)( 1) ( ) ( ) ( )

( )

m m m m

c p

s s e e s e e s
Q

k

                    

 

           
  

 
 (5.17) 

Considering the filter as   𝐹(𝑠) = (𝛾𝑠 + 1 ) (𝜆1𝑠 + 1)4⁄ , the IMC controller is obtained as 

𝑄𝑐,𝑝(𝑠) = 𝑄̃𝑐,𝑝(𝑠)𝐹(𝑠)                                          (5.18a) 

Where 1 is the primary loop tuning parameter which is to be carefully selected so that good 

nominal and robust closed loop performances are obtained.

 
The desired closed loop transfer function for set point changes is then obtained as  

H(s) =  Qc,p(s)Gm(s) 

The equivalent controller in a conventional feedback form is obtained from IMC structure as 

𝐺𝑐1 = 𝑄𝑐,𝑝 (⁄ 1 − 𝑄𝑐,𝑝𝐺𝑚)     (5.18b) 

The conditions to be followed for internal stability of the above controller are  

Condition 1: QC, p must be stable and should cancel the right half plane poles of Gm                  

Condition 2: QC, p Gm should be stable 

Condition 3: (1-Gm QC, p) at the RHP poles of the process should be zero 

Eq. (5.18b) can also be written as 

Gc1 =  
H(s)

[1−H(s)]Gm(s)
     (5.19) 
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It can be seen that the controller, Gc1, has the zeros and poles at the location of RHP poles of 

Gm(s). The RHP zeros of Gc1 will be canceled out by the zeros of [1 - H(s)] as we satisfy the 

internal stability according to IMC rules i.e.   

QC, p must be stable and should cancel the right half plane poles of Gm and should contain only 

the minimum phase elements of Gm. 

  

Therefore there is no RHP poles-zeros cancellation in the outer loop in conventional feedback 

control structure (Figure 5.1).After substituting Qc, p from eq. 5.18a and Gm from eq. 5.8, the 

primary loop controller Gc1is obtained as  

 

Gc1 =
(τ1s−1)(τ2s−1)(z1s2+z2s+z3)(s+1)

[z3(λ1s+1)4−(z1s2+z2s+z3)e−ms(s+1)]
     (5.20) 

 

To bring the structure of Gc1 to a conventional PID controller format, approximations for 

the time delay are required unless one uses maclaurin series or Laurent series. Here, we did not 

use those approximations instead used first order pade’s approximation so that the final controller 

is in PID format.  

Considering pade’s first order approximation for the time delay term as 

e−ms  =     
1−0.5ms

1+0.5ms
         (5.21) 

The resulting controller is obtained as  

Gc1 =
(1+0.5ms)(τ1s−1)(τ2s−1)(z1s2+z2s+z3)(s+1)

k[(1+0.5ms)z3(λ1s+1)4−(z1s2+z2s+z3)(1−0.5ms)(s+1)]
                                 (5.22) 

Where, 

z1 =  τ1τ2(τ1 − τ2 − τ1eθ/τ1 + τ2eθ/τ2)   (5.23)  

z2=τ1
2eθ/τ1 − τ2

2eθ/τ2 + τ2
2 − τ1

2     (5.24) 

z3=τ1 − τ2 

The denominator in Eq. (5.22) can be simplified as 
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x0s + x1s2 + x2s3 + x3s4 +   x4s5     (5.25) 

Where 

x0 = 4λ1z3 + θz3 − z3 − z2     (5.26) 

x1 = 6z3λ1
2 + 2θz3λ1 + 0.5θz3 − z1 + 0.5θz2 − z2     (5.27) 

x2 = 4z3λ1
2 + 3θλ1

2z3 − z1 + 0.5θz2 + 0.5θz1      (5.28) 

x3 = z3λ1
4 + 2θλ1

3z3 + 0.5θz1        (5.29) 

x4 = 0.5θλ1
4z3 

After simple mathematical algebraic rearrangements, the controller is obtained as  

Gc1 =
(z1s2+z2s+z3)

kx0s
[

(τ1s−1)(τ2s−1)(s+1)(1+0.5θs)

(1+
x1
x0

s+
x2
x0

s2+
x3
x0

s3+
x4
x0

s4)
]                                                               (5.30) 

X1 =
x1

x0

, X2 =
x2

x0 

, X3 =
x3

x0

, X4 =
x4

x0 

 

This expression should be simplified to a PID controller form. Maclaurin series or Laurent series 

may be applied here for approximation to a PID controller form. In the present work, this controller 

is approximated to a PID controller with lead-lag filter as given in eq. 5.31 with simple 

approximations.  

Note that the first term in Eq. (5.23) is in the form of a PID controller. The second term needs to 

be approximated as a lead-lag filter. After retaining the numerator term (s + 1), the remaining 

terms are taken to the denominator and made equal to (βs + 1). With that, the controller is obtained 

as 

Gc1 = kc(1 +
1

τis
+ τds)

(s+1)

(βs+1)
                                                                                      (5.31) 

Where the denominator is 

βs + 1 =
(1+X1s+X2s2+X3s3+X4s4)

(1+0.5θs)(τ1s−1)(τ2s−1)
                                                                         (5.32) 
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Taking first derivative for Eq. (5.32) with respect to ‘s’ and by substituting s = 0, the lag filter 

parameter is obtained as 

 = X1 + 1 +  2 − 0.5θ                                                                                                        (5.33) 

With that, the controller parameters of Eq. (5.31) are obtained as 

kc =
z2

kx0
, τi =

z2

z3
, τd =

z1

z2
         (5.34) 

The value of  is obtained from the condition-3 of internal stability for IMC structure  

i.e. (1-GmQC, p) at the RHP poles of the process should be zero. 

This condition can be applied as  

(1 − 𝑄𝐶,𝑝𝐺𝑚)|𝑠=1 𝜏1⁄ = 0         (5.35)     
 

Substituting QC, p from eq. 5.18a, the values of  is obtained as  

𝛾 =
𝑧3(

𝜆1
𝜏1

+1)
4

𝑒
𝜃

𝜏1𝜏1

(
𝑧1

𝜏1
2+

𝑧2
𝜏1

+𝑧3)
− 𝜏1                                                                    (5.36) 

 By applying this condition, all the three conditions for internal stability are satisfied. With 

the above equations, the analytical expressions for all the controller parameters of Eq. (5.31) are 

available except the tuning parameters λ1 and λ2. In the next section, the guidelines for selection 

of these two tuning parameters are provided. It should be noted that for all practical applications, 

derivative filtering is required in a PID controller to attenuate noise in the process output. Hence, 

the designed PID controller (eq. 5.31) is implemented in the form  

𝐺𝑐1 = 𝑘𝑐 (1 +
1

𝜏𝑖𝑠
+

𝜏𝑑𝑠

𝜏𝑓𝑠+1
)

(𝑠+1)

(𝛽𝑠+1)
                  (5.37) 

Where 𝜏𝑓  is the derivative filter coefficient. Selection of 𝜏𝑓  depends on both performance, 

robustness, noise attenuation and hence trade off exits for selection of 𝜏𝑓. As a compromise 

between performance, robustness and noise attenuation, in the present work, 𝜏𝑓 is selected as 𝜏𝑑/2 

for all the simulation studies. However, this value can be varied based on the requirement and the 

presence of noise magnitude in the process output. 
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 Guidelines for selection of tuning parameters 

5.4.1 Selection of tuning parameter 𝛌2 

 

In synthesis and IMC methods, low values of tuning parameters results in good nominal 

performance. Large values of these tuning parameters produces robust control performance with 

compromise on nominal responses. This sets a tradeoff in deciding the tuning parameter values. 

Over the extensive simulations performed on various processes, the range of tuning parameter is 

selected as λ2 = 0.4θm2 − 2θm2. 

5.4.2 Selection of tuning parameter 𝛌1 

 

To have clear understanding for selection of λ1, a systematic analysis is carried out using 

maximum sensitivity (Ms) as the performance index. (Skogestad and Postlethwaite, 2005) Ms is 

also a robust performance measure like Gain margin (GM) and Phase margin (PM) and is related 

to these margins as    11 , 2sin 1 2s s sGM M M PM M   . In the present work, Ms values are plotted 

against the tuning parameter λ1 and from this plot one can select the tuning parameter and obtain 

the controller based on the required level of robustness. Note that for the same value of Ms, there 

exist two values of 1 in which the higher value need to be selected to ensure robustness of the 

closed loop system. 

5.4.3 Set point filter 

 

For unstable systems, usually there exist undesirable overshoot in the closed loop response. 

To avoid this undesirable overshoots, either set-point weighting or set point filters are 

recommended (Astrom and Hagglund, 1995). In this work, set point filter is considered to 

eliminate the undesirable overshoots in the servo responses. The closed loop relation between y1 

and r1 consists of the term (s + 1) and this term causes overshoot in the closed loop output 

response. To minimize the undesirable overshot, the set point filter is selected as given in Eq. 

(5.38) which is first order in nature. 

FR =  
1

(s+1)
                       (5.38) 
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 Simulation results 

Simulation studies have been performed on different unstable cascaded time delay processes 

and the results are compared with some of the recently reported methods. For quantitative 

comparison, Integral of Absolute Error (IAE) and Total Variation (TV) are used as performance 

indices.  

Example – 1: An example studied by Uma et al. (2009) is considered here. The secondary and 

primary processes considered here are Gp2= e-0.6s/ (2.07s+1) and Gp1= e-0.339s / (5s-1) respectively. 

For the proposed method, the inner loop controller Gc2 is an IMC controller as described earlier, 

and the secondary loop tuning parameter is considered as 𝜆2 =  0.5𝜃 m2 = 0.3. With that the 

secondary loop controller is obtained as Gc2 = (2.07𝑠 + 1) (0.3𝑠 + 1)⁄ . Based on this controller, 

the overall primary process model is obtained from eq. 5.8. To select the primary loop tuning 

parameter (1), an analysis is carried out based on maximum sensitivity. Figure 5.2 shows the 

variation of Ms with respect to 1. It can be observed from the figure that one should not select 1 

corresponding to the Ms peak value of 52.75. Based on this analysis, 1 = 1.2 is selected and the 

corresponding primary loop controller settings are obtained as kc = 0.478, i = 0.99, d = 0.213,  

= 6.821,  = 0.567. The set point filter constant is selected as  = 6.821.  

 

  With these controller settings, simulation studies are performed by giving a unit step 

change in set point at t = 0 sec and a negative disturbance of magnitude 4 at t = 50 sec in the inner 

loop (d2) and a unit negative step disturbance at t = 100 sec in the outer loop (d11) respectively. 

The closed loop performances and the corresponding control action responses are shown in Figure 

5.3 for perfect parameters. The proposed method provides good closed loop responses. In order to 

analyse the robustness, perturbations of +25% in primary time delay and -25% in both time 

constants are given and the corresponding control action and closed loop responses are presented 

in Figure 5.3. It can be observed from the responses that the suggested method provides robust 

closed loop and control action responses. 

  
For a fair comparison, the methods proposed by Uma et al. (2009) and Padhan and Majhi 

(2012) are also considered. Whenever, a comparison is carried out with any other method, it should 

be fair and proper. The proposed method is a simple cascade control scheme with only two loops 
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and two controllers whereas the methods proposed by Uma et al. (2009) and Padhan and Majhi 

(2012) are based on modified Smith predictor and consist of more loops with more controllers. 

Also, these methods have different tuning parameters for each controller. In order to have fair 

comparison with these methods, a unit step change is given in the primary loop disturbance (d11) 

for all the three methods and the corresponding disturbance rejection controllers are tuned to 

provide same value of IAE. For the method of Uma et al. (2009), Gcd is tuned by selecting d = 

1.14 and the other two controllers are obtained by selecting 2 = 0.6 and s = 0.7042. The 

corresponding set point tracking controller settings are obtained as kis = 2.8953, kcs = 9.1554, βs = 

0.2373, and kds = 4.4519. The primary disturbance rejection controller (Gcd) parameters are 

obtained as kid = 0.5712, kcd = 3.8728, kdd = 2.1937, βd = 0.0322, and αd = 0.4695.  

 

For the method of Padhan and Majhi (2012), the disturbance rejection controller Gcd1 is 

tuned by selecting λ1 = 1.24 and the corresponding controller parameters are obtained as Kc1 = 

0.3028, Ti1 = 0.6260 and Td1 = 0.2348, cf1 = 8.7967, cf2 = 13.924, df1 = 0.5535, df2 = 0.1842. The 

set point tracking controller is obtained as Gcs = (10.35s2+2.93s)/(0.64s2+1.6s+1) by choosing the 

tuning parameter as λcs = 0.8. The parameters of Gcd2 are obtained as Kc2 = 0.2752, Ti2 = 0.4 and 

Td2 = 0.15, af1 = 6.1635, af2 = 8.4736, bf1 = 1.8817, bf2 = 0.3705, by selecting the tuning parameter 

as λ2 = 1.7θm2 = 1.02. These controller settings for all the three methods provide an IAE of 2.07 

when a unit step change is given in the primary disturbance d11. A fair comparison can be carried 

out with this approach for all the three methods. Set point responses are not considered for 

comparative analysis as the shape of the set point responses can be altered by adding either a set 

point filter or set point weighting.  

   

  All the three methods are compared using the suggested controller settings  by giving a 

step change of magnitude 4 in the secondary loop disturbance (d2) at time t = 0 and unit step change 

in the primary loop disturbance (d11) at t = 40 respectively.  Their respective closed loop responses 

are presented in Figure 5.4. It can be observed from Figure 5.4 that the proposed method shows 

improved performances with smooth control action responses. In order to analyse the robustness, 

perturbations of +25% in primary time delay and -25% in both time constants are given and the 

corresponding control action and closed loop responses are presented in Figure 5.5. From the 

responses, it can be noted that the proposed method provides improved closed loop and smooth 
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control action responses when compared to the methods of Uma et al. (2009) and Padhan and 

Majhi (2012). The corresponding IAE and TV values are shown in Table 5.1. It can be observed 

from the Table 5.1 that the IAE values for the proposed method are low. From the IAE and TV 

values, it can be identified that the suggested method is better.  

 

  To analyse the effect of the secondary loop tuning parameter (2) on the selection of the 

primary loop tuning parameter (1), a plot of Ms verses 1 is drawn for different values of 2 and 

is shown in Figure 5.6. It can be observed that as 2 increases, the number of peaks for Ms Increases 

which will restrict the selection of 1 to limited zones. This kind of phenomenon is peculiar only 

for unstable processes. To analyse the effect of noise, it is assumed that white noise is present in 

the measurement device with noise power = 0.0001, sampling time of 0.5 and seed = 0 for perfect 

model condition. The corresponding closed loop and control action responses are shown in Figure 

5.7. Note that there will be variations in the control action responses in the presence of noise. To 

reduce the effect of noise, one can consider improved derivative filtering in the PID controller with 

suitable value for the filter coefficient f.   

 

Table 5.1 IAE and TV values for Example 1 

Method Proposed model 

Mismatch of -25 % in both time 

constants and +25 % in primary 

time delay 

 IAE 

 

TV IAE TV 

Present 

 

4.23 16.43 4.26 23.12 

Uma et al. 

(2009) 

4.75 54.88 4.35 121.4 

Padhan and 

Majhi (2012) 

4.38 15.88 4.35 25.42 
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Figure 5.2 Variation of Ms with 1 for example-1. 

 

Figure 5.3 Output and control action behavior for example-1, dash – Perturbations, solid – 

Perfect model. 
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Figure 5.4 Output and control action behavior under exact model for example-1, dot - Padhan 

and Majhi (2012), solid - Proposed method, dash – Uma et al. (2009).  

 

Figure 5.5 Output and control action behavior under mismatch model for example-1, dash – 

Uma et al. (2009), solid - Proposed method, dot - Padhan and Majhi (2012). 
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Figure 5.6 Variation of Ms with 1 for different values of 2 for example-1. 

 

Figure 5.7 Effect of noise on the closed loop and corresponding control action responses for 

example-1. 
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Example – 2: An example studied by many researchers (Liu et al., 2005b; Uma et al., 2009) is 

considered in which the secondary and primary processes are given as Gp2 = 2e-2s/(20s+1) and Gp1= 

e-4s / (20s-1) respectively. The inner loop controller Gc2 is designed as Gc2 = (20𝑠 + 1) 2(𝑠 + 1)⁄  

by choosing the tuning parameter 𝜆2 = 0.5𝜃m2 = 1. Based on this, the overall primary process 

model (eq. 5.8) is obtained and the primary loop controller is designed by appropriately selecting 

the tuning parameter. To select the primary loop tuning parameter (1), an analysis is carried out 

based on maximum sensitivity. Figure 5.8 shows the variation of Ms with respect to 1. From the 

graph, note that 1 should not be selected where peaks exist for Ms value of 40.77 to avoid non-

robust responses. Here, the tuning parameter is selected as 1 = 6.296. With this value of tuning 

parameter, the primary loop controller settings are obtained as kc = 0.438, 𝜏𝑖 = 6.71 𝑎𝑛𝑑 𝜏𝑑= 0.85, 

 = 39.76,  = 4.21. The set point filter time constant is considered as 39.76.  

 

  With these controller settings, simulation studies are performed by giving a unit step 

change in set point at t = 0 sec and a negative disturbance of magnitude 4 at t = 50 sec in the inner 

loop (d2) and a unit negative step disturbance at t = 100 sec in the outer loop (d11) respectively. 

The closed loop performances and the corresponding control action responses are shown in Figure 

5.9 for perfect parameters. The proposed method provides good closed loop responses. In order to 

analyse the robustness, perturbations of -20 % in secondary time constant, -10% in primary time 

constant, +20 % in secondary process gain and time delay & +10% in primary process gain and 

time delay are considered and the corresponding control action and closed loop responses are also 

shown in Figure 5.9. From the responses, it can be noted that the suggested method provides robust 

closed loop and control action responses. 

 

For a fair comparison, the methods proposed by Garcia et al. (2010) and Uma et al. (2009) 

are considered. The methods considered here are also based on modified Smith predictor and they 

are composed of more loops with more controllers. In order to have all the methods at the same 

level, a unit step change is given in the primary loop disturbance (d11) for all the three methods 

and the corresponding disturbance rejection controllers are tuned to provide same value of IAE. 

Generalized predictor cascade controller (GPCC) is used for the method of Garcia et al. (2010). 

For the method of Uma et al. (2009), Gcd is tuned by selecting d = 5.15 and the other two 
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controllers are obtained by selecting 2 = 2 and s = 5. The corresponding set point tracking 

controller settings are obtained as kis = 0.1829, kcs = 4.6571, βs = 2.8571, and kds = 12.2857. The 

controller parameters for primary disturbance rejection (Gcd) are obtained as kid = 0.0874, kcd = 

3.063, kdd = 6.637, αd = 3, and βd = 0.1537. The three methods provide an IAE of 15.34 when a 

unit step change is given in the primary disturbance d11. A fair comparison can be carried out with 

this approach for all the three methods. As explained in example-1, set point responses are not 

considered for comparative analysis as the shape of the set point responses can be altered by adding 

either a set point filter or set point weighting. 

  

  All the three methods are compared using the suggested controller settings by giving a step 

change of magnitude 4 in the secondary loop disturbance (d2) at time t = 0 and unit step change in 

the primary loop disturbance (d11) at t = 150 respectively.  Their respective closed loop responses 

are presented in Figure 5.10. It can be noted from Figure 5.10 that the proposed method shows 

improved performances with smooth control action responses. In order to analyse the robustness, 

perturbations of -20 % in secondary time constant, -10% in primary time constant, +20 % in 

secondary process gain and time delay & +10% in primary process gain and time delay are 

considered and the corresponding control action and closed loop responses are shown in Figure 

5.11. From the responses, it can be noted that the suggested method provides enhanced closed loop 

and smooth control action responses when compared to the methods of Garcia et al. (2010) and 

Uma et al. (2009). In fact, the oscillations in the control action responses for other two methods 

are more whereas the proposed method does not provide such oscillatory responses even if there 

are more perturbations in the process parameters. The corresponding IAE and TV values are shown 

in Table 5.2. It can be observed from the Table 5.2 that the IAE values for the proposed method 

are low. From the IAE and TV values, it can be identified that the proposed method is better.  

 

  To analyse the effect of noise, it is assumed that white noise is present in the measurement 

device with noise power = 0.0001, sampling time = 0.5 and seed = 0 for perfect model condition. 

The corresponding closed loop and control action responses are shown in Figure 5.12. It can be 

noted that the suggested method is able to provide good set point and disturbance rejection 

performances in the presence of noise. The proposed method is also compared with the method of 

Nandong and Zang (2014) and it is observed that the method of Nandong and Zang (2014) is 
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sensitive to model uncertainties (graph not shown here). The proposed method provides 

significantly improved performances when compared to Nandong and Zang (2014) for model 

uncertainties. 

 

Table 5.2 IAE and TV values for Example 2 

Method Proposed model 

Mismatch of  -10% in primary time 

constant , -20 % in secondary time 

constant,  +20 % in secondary 

process gain and time delay & 

+10% in primary gain and time 

delay 

 IAE TV IAE TV 

Present 32.0 18.59 32.60 40.76 

Garcia et al. 

(2010) 
34.78 18.60 37.24 104.39 

Uma et al. 

(2009) 
34.57 96.11 Unstable Unstable 

 

 

 

Figure 5.8 Ms versus 1 for example-2. 
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Figure 5.9 Output and control action behavior for example-2, dash – Perturbations, solid – 

Perfect model. 

 

 

Figure 5.10 Output and control action behavior under exact model for example-2, dash – Garcia 

et al. (2010), solid - Proposed method, dot – Uma et al. (2009). 
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Figure 5.11 Output and control action behavior under mismatch model for example-2, dash – 

Garcia et al. (2010), solid - Proposed method.  

 

Figure 5.12 Effect of noise on the closed loop and corresponding control action responses for 

example-2 
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Example – 3: An example studied by (Liu et al., 2005b; Padhan and Majhi, 2012; Uma et al., 

2009) is considered. The secondary and the primary processes are given as Gp2= 2e-2s/(s+1) and  

Gp1= e-3s / (10s-1) respectively. For the proposed method, the inner loop controller Gc2 is designed 

as Gc2 = (𝑠 + 1) 2(3𝑠 + 1)⁄  after selecting the tuning parameter as 𝜆𝟐 = 1.7𝜃m2 = 3.4. The overall 

primary loop model is obtained as per eq. (5.8) and the primary loop controller is designed as per 

eq. (5.13). To select the primary loop tuning parameter (1), Ms versus 1 is plotted and is shown 

in Figure 5.13. From the graph, it can be observed that there exist three peak values for Ms i.e. 415, 

108, 127 and hence Ms value should not be considered as any of these peaks for selection of 1. 

Based on this, the tuning parameter is selected as 1 = 6.935 and the corresponding controller 

settings are obtained as kc = 0.1223, i= 5.5, 𝜏𝑑 = 1.782,  = 72.25 and β = 0.8856. The set point 

filter time constant is considered as α3 = 72.25.  

 

  With these controller settings, simulation studies are performed by giving a unit step 

change in the set point at t = 0 sec and a negative step change of magnitude 0.5 in the disturbance 

at t = 200 in the inner loop (d2) and a negative step change of magnitude 0.5 in the disturbance at 

t = 400 sec in the outer loop (d11) respectively. The closed loop performances and the 

corresponding control action responses are shown in Figure 5.14 for perfect parameters. The 

proposed method provides good closed loop responses. In order to analyse the robustness, 

perturbations of -20 % in both primary and secondary time constants, +20 % in both primary and 

secondary time delays are considered and the corresponding control action and closed loop 

responses are also shown in Figure 5.14. From the responses, it can be noted that the suggested 

method provides robust closed loop and control action responses. 

 

For a fair comparison, the methods suggested by Uma et al. (2009) and Padhan and Majhi 

(2012) are considered. Again, in order to have fair comparison with these methods, a unit step 

change is given in the primary loop disturbance (d11) for all the three methods and the 

corresponding disturbance rejection controllers are tuned to provide same value of IAE. For the 

method of Uma et al. (2009), Gcd is tuned by selecting d = 7.5 and the other two controllers are 

obtained by selecting 2 = 2 and s = 1.5. The corresponding set point tracking controller settings 

are obtained as kis = 1.7429, kcs = 11.4575, kds = 15.97, and βs = 0.4412. The controller parameters 

for primary disturbance rejection (Gcd) are obtained as kid = 0.0181, kcd = 1.5884, kdd = 4.945, αd 



83 
 

= 2.5, and βd = 0.2864. For the method of Padhan and Majhi (2012), the disturbance rejection 

controller Gcd1 is tuned by selecting λ1 = 7 and the corresponding controller parameters are 

obtained as Kc1 = 0.037, Ti1 = 3.333 and Td1 = 1.25, cf1 = 72.0, cf2 = 71.0, df1 = 2.455, df2 = 4.103. 

The set point tracking controller is obtained as Gcs = (10s2+9s+1)/(4.5s2+6s+2) by choosing the 

tuning parameter as λcs = 1.5. The parameters of Gcd2 are obtained as Kc2 = 0.0015, Ti2 = 1.333 and 

Td2 = 0.5, af1 = 449.55, af2 = 448.55, bf1 = 0.841, bf2 = 0.1633, by selecting the tuning parameter as 

λ2 = 6.8.  These controller settings for all the three methods provide an IAE of 44.9 when a unit 

step change is given in the primary disturbance d11. Set point responses are not considered for 

comparative analysis as the shape of the set point responses can be altered by adding either a set 

point filter or set point weighting.  

 

  All the three methods are compared using the suggested controller settings by giving a unit 

step change in the secondary loop disturbance (d2) at time t = 0 and unit step change in the primary 

loop disturbance (d11) at t = 250 respectively.  Their respective closed loop responses are presented 

in Figure 5.15. It can be noted from Figure 5.15 that the proposed method shows improved 

performances with smooth control action responses. In order to analyse the robustness, 

perturbations of +20% in both primary and secondary time delays and -20% in both time constants 

are given and the corresponding control action and closed loop responses are presented in Figure 

5.16. From the responses, it can be noted that the suggested method provides enhanced closed loop 

and smooth control action responses when compared to the method of Uma et al. (2009). The 

method of and Padhan and Majhi (2012) shows unstable responses and hence are not shown in the 

figure. The corresponding IAE and TV values are shown in Table 5.3. It can be noted from the 

Table 5.3 that the IAE values for the proposed method are low. From the IAE and TV values, it 

can be observed that the proposed method is better. Note that if the perturbations are increased 

further, the other methods are giving more oscillatory or unstable responses whereas the proposed 

methods provides stable closed loop responses with comparatively smooth control action 

responses. 

 

To analyse the effect of noise, it is assumed that white noise is present in the measurement 

device with noise power = 0.0001, sampling time = 0.5 and seed = 0 for perfect model condition. 

The corresponding closed loop and control action responses are shown in Figure 5.17. It can be 

identified that the suggested method is able to provide good set point and disturbance rejection 
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performances in the presence of noise. To reduce the effect of noise, one can alter the derivative 

filtering coefficient to achieve desirable performances.  

Table 5.3  IAE and TV values for Example 3 

 

Method Proposed model 

Mismatch of -20 % in both time 

constants and +20 % in both time 

delays 

 IAE TV IAE TV 

Present 75.86 6.36 9.68 10.82 

Uma et al. 

(2009) 
76.44 8.79 100.98 36.02 

 

 

 

Figure 5.13 Ms versus 1 for example-3. 
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Figure 5.14 Output and control action behavior for example-3, dash – Perturbations, solid – 

Perfect model. 

 

Figure 5.15 Output and control action behavior under exact model for example-3, dash – Uma et 

al. (2009), solid - Proposed method. 
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Figure 5.16 Output and control action behavior under mismatch model for example-3, dash – 

Uma et al. (2009), solid - Proposed method. 

 

 

Figure 5.17 Effect of noise on the output and control action responses for example-3. 
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Example – 4: Control of a chemical reactor 

An isothermal continuous stirred tank reactor is considered which exhibits multiple steady state 

solutions. The mathematical model of the reactor is given as Sree and Chidambaram (2006)   

                                     
dC

dt
=

Q

V
(Cf − C) −

k1C

(k2C+1)2           (5.39) 

 

Where Cf is the inlet concentration, Q is the inlet flow rate, V is the volume of the reactor, C is the 

exit concentration, k1 & k2 are the kinetic parameters. The corresponding values of the parameters 

and constatns are given as Q = 0.0333 L/s, V = 1L, k1 = 10 L/s, and k2 = 10 L/mol. By considering 

Cf = 3.288 mol/L, three steady states are obtained as C = 1.7673, 1.316 and 0.01424 mol/L. Out of 

the three steady states, there is one unstable steady state at C = 1.316 mol/L. Inlet concetration is 

considered as the manipulated variable and exit concentration as the controlled variable. 

Linearization of the manipulated variable around this operating condition C = 1.316 gives the 

unstable transfer function model as 3.433/(103.1s-1). For this particular case , the time delay is 

considered as 20 sec . Hence, the primary loop unstable transfer function model is obtained as, 

Gp1 =
3.433e−20s

103.1s−1
          (5.40) 

The inlet flow rate is acting as a disturbance and hence one can implement cascade control scheme. 

Let us assume that the secondary loop dynamics are given as Gp2 = e-0.5s/(3s+1).  

  The inner loop controller Gc2 is designed as Gc2 = (3𝑠 + 1) (0.25𝑠 + 1)⁄  by choosing the 

tuning parameter as 𝜆𝟐 = 0.5𝜃m2 = 0.25. The overall primary loop model is obtained as per eq. 5.8 

and the primary loop controller is designed as per eq. 5.13. To select the primary loop tuning 

parameter (1), Ms versus 1 is plotted and is shown in Figure 5.18. From the graph, it can be 

observed that there exist peak value for Ms at 142 and hence Ms value should not be considered at 

this peak for selection of 1. Based on this, the tuning parameter is selected as 1 = 22 and the 

corresponding controller settings are obtained as kc = 0.19, i= 22.62, 𝜏𝑑 = 0.247,  = 120.38 and 

β = 18.93. The set point filter time constant is considered as α3 = 120.38. With the corresponding 

controller settings, the proposed method is simulated by giving a unit step change in set point at t 

= 0 sec and a negative step disturbance of magnitude 0.5 at t = 500 sec in the inner loop (d2) and a 

negative step disturbance of magnitude 0.2 at t = 800 sec in the outer loop (d11) respectively. The 
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corresponding closed loop performances and control action responses are shown in Figure 5.19 for 

perfect model parameters. To analyse the robustness, perturbations of +20% in both primary and 

secondary loop time delays are given and the corresponding closed loop and control action 

responses are also shown in Figure 5.19. It can be noted that the suggested method provides good 

closed loop responses.  

 

  To analyse the effect of noise, it is assumed that white noise is present in the measurement 

device with noise power = 0.0001, sampling time = 0.5 and seed = 0 for perfect model condition. 

The corresponding closed loop and control action responses are shown in Figure 5.20. It can be 

noted that the suggested method provides good set point and disturbance rejection performances 

in the presence of noise. To reduce the effect of noise, one can alter the derivative filtering 

coefficient to achieve desirable performances.  Simulation studies are also carried out for different 

values of f and the corresponding closed loop and control action responses are shown in Figure 

5.20 for f  = d/2, d, d/0.1. It can be observed that the control action responses have less variance 

for f = d/0.1 when compared to that of f = d/2.  

 

Discussion: 

    The proposed method follows a simple cascade control strategy and comparatively easy 

for tuning of the controllers. However, the previous approaches make use of more number of 

controllers and more number of tuning parameters, which is difficult for the operator for tuning. 

Hence, the main merit of the proposed method is its simple structure and only two controllers. 

Also, systematic guidelines are provided for the proposed method based on maximum sensitivity 

(Ms). 

 For unstable systems, selection of tuning parameters is very important and in the literature, 

the tuning guidelines are given based on some heuristic rules. Whereas in the present method, Ms 

is used to select the tuning parameter which ensures desired level of robustness for the closed loop. 

In modified Smith predictor based cascade control schemes, one has to consider separately Ms 

values for set point tracking and disturbance rejection which is not easy. Note that the methods of 

Uma et al. (2009), Garcia et al. (2010), Padhan and Majhi (2012) have already shown superiority 

over many existing methods in the literature. One more contribution of the proposed method is 

that it has a traditional cascade structure with only two loops and controllers (one for secondary 
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loop and another for primary loop) which provides smooth control action responses and better 

disturbance rejection performances when compared to the recently stated methods (Garcia et al. 

(2010; Nandong and Zang, 2014; Padhan and Majhi, 2012; Uma et al., 2009). Note that the other 

methods Uma et al. (2009) Padhan and Majhi (2012) Nandong and Zang (2014)  have more number 

of sub loops in the primary loop. Even though Garcia et al. (2010) method is applicable for stable 

and integrating systems, their method is considered here only for unstable systems.  

 

 

Figure 5.18 Ms versus 1 for example-4. 
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Figure 5.19 Output and control action behavior under mismatch model for example-4, solid – 

Perfect model, dash – Perturbations. 

 

Figure 5.20 Output and control action behavior of the proposed method for different values of 

the derivative filter constant for perfect model for example-4. 
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 Summary 

In the present work, enhanced design of controllers is proposed for unstable time delayed 

cascade processes. The performance of the system is analyzed with four different examples. 

Performance of the system for the proposed method is much better than that of the previously 

existing methods particularly for disturbance rejection. The proposed method consists of only two 

controllers whereas in the previous methods, at least two or three controllers were used. The design 

is comparatively easy and can be implemented for any unstable cascade system. The ability to 

provide good stable closed loop response even when there are large amount of perturbations in the 

process parameters is a major advantage of the proposed method over previously existing methods. 

Quantitative comparison is carried out using IAE and TV values and the proposed method  is 

superior over existing methods. One more main advatange of the proposed method is that the 

control action respones are smooth in all examples and correspondingly provides low TV values 

which is recommonded for any control system. 
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 Chapter 6         

 PID Design for Multivariable Unstable Processes 

Controller design for unstable processes is relatively difficult when compared to stable 

processes. The complexity increases further for multivariable unstable processes. In this work, 

simplified tuning rules are proposed to design optimal H2 PID controller for unstable multivariable 

processes. Decouplers are applied to make the loops independent and diagonal elements of 

equivalent transfer function are used to design controllers. 

 Introduction 

Unstable systems are more difficult to control than that of the stable systems. Several 

methods are proposed for the design of controllers for single-input-single-output (SISO) unstable 

systems (Rao and Chidambaram, 2012; Sree Chidambaram, 2006). Design of controllers for 

multivariable systems is difficult than that of SISO systems due to the interactions among the 

control loops. This difficulty increases for multivariable unstable systems as there exist undesirable 

overshoots, settling times in the closed loop responses. Several methods (Katebi, 2012; Wang and 

Nie, 2012) are available in the literature for multivariable stable processes. However, the design 

methods for multivariable unstable systems are limited. Georgiou et al. (1989) have developed 

optimization based method. However the system considered does not have a significant time delay. 

Agamennoni et al. (1992) have proposed a method of designing controllers based on optimization 

method. In the above two methods, the considered systems have unstable components only in one 

of the inputs.  

 Govindhakannan and Chidambaram (1997a) have developed a centralized design of 

controllers for unstable multivariable processes. However, in their method, the interactions are 

found to be significant. Georgiou et al. (1989) designed controllers based on four steps 

optimization approach for multivariable unstable processes. Decentralized PI controllers do not 

stabilize the system if unstable pole is present in all the transfer functions of multivariable system. 

Only centralized PI controllers stabilize such systems. Govindhakannan and Chidambaram (2000) 

have applied a two stage P−PI controllers for the unstable systems. Many works published in the 

literature introduced the concepts of equivalent transfer functions/effective open-loop transfer 
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functions (ETFs/EOTFs) to take into account the loop interactions in the design of multi-loop 

stable systems. Rajapandiyan and Chidambaram (2012) recently proposed a method of designing 

controllers for multi-loop stable systems by combining the simplified decoupler approach with the 

ETF model approximation. Their method provides less interactions and better performances when 

compared to the ideal and inverted decoupling methods. Very recently, Hazarika and 

Chidambaram (2014) proposed a method for unstable two-input-two-output (TITO) systems based 

on ETF model. 

 Theoretical developments 

6.2.1 ETF model development 

 

The TITO block diagram with decouplers and controllers is shown in Figure 6.1. If the 

second feedback controller is in the automatic mode, with yr2 = 0, then the overall closed-loop 

transfer function between y1 and u1 is 
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And similarly for the second loop, the relation can be written as 
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Based on these relations, the ETF is derived as given in Hazarika and Chidambaram (2014).For 

obtaining ETFs, the controller need not be known apriori. Once the ETFs are obtained, the 

corresponding controller is designed. 

6.2.2 Controller design 

 

  The open loop transfer function is  
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             (6.3) 
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Where the simplified decoupler is designed as 
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For these systems, if there exist time delay, it may lead to unrealizable situations. Hence, an extra 

time delay (θ) is to be incorporated into the decoupler matrix which is further added to the 

corresponding ETF. In the presence of the decoupler, the TITO system behaves like two 

independent loops for which the controllers can be designed independently. In the present work, 

diagonal controllers are designed by optimal H2 – IMC based method based on the corresponding 

unstable ETFs. ETFs are developed to take into account the loop interactions in the design of multi-

loop control systems. 

 

 

Figure 6.1 Closed loop control for TITO system 

 

Once the ETFs are derived, based on pairing using relative gain array and Neiderlinski Index, the 

corresponding controllers are designed. The design is based on unstable first order plus time delay 

system. Anusha and Rao (2012) developed a PID design method based on optimal-H2 

minimization concept for second order unstable processes.  

 

  However, in the present work, the controller design is addressed for first order unstable 

processes. Vanavil et al. (2014) recently proposed design of PID controller in series with lead lag 
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filter and is used here for controlling TITO loops. The method is presented here. Assuming the 

ETFs are in the form of  

1
)(


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

s

ek
sG

p

s

p

p




                                       (6.6)  

According to IMC principle, the IMC controller QC is equivalent to 

    

𝑄𝐶 = 𝑄̃𝐶𝐹               (6.7) 

        

Where F is IMC filter which is used for altering the robustness of the controller.  

In eq. (6.7), Q̃c is designed for a specific type of step input disturbance (v) to obtain H2 optimal 

performance and is based on the invertible portion of the process model. The process model and 

the input are divided as 

 

𝐺𝑚 = 𝐺𝑚−𝐺𝑚+     𝑎𝑛𝑑       𝑣 = 𝑣−𝑣+            (6.8)  

Where the subscript “– “ refers to minimum phase part and “ + ” refers to non-minimum phase 

part.  

The Blaschke product of RHP poles of Gm and v are defined as  
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Where pi and
  

𝑝
𝑖̅
 are the ith RHP pole and its conjugate respectively. Based on this, the H2 optimal 

controller can be derived by using the following formula (Morari and Zafiriou, 1989). 

  𝑄̃𝐶 = 𝑏𝑚(𝐺𝑚−𝑏𝑣𝑣−)−1{(𝑏𝑚𝐺𝑚+)−1𝑏𝑣𝑣−}|∗                   (6.10)
 

Where {…..}|* is defined as the operator that operates by omitting all terms involving the poles of  

(𝐺𝑚+)−1 after taking the partial fraction expansion. 

Substituting all expressions, one will get, 
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To get the final form of the IMC controller, here, the filter is selected as  

𝐹 = (𝛼𝑠 + 1 ) (𝜆𝑠 + 1)3⁄            (6.12) 

 

Therefore, the IMC controller is obtained as 

𝑄𝐶 =
(𝜏𝑃𝑠−1)

𝑘𝑃
{(𝑒𝜃 𝜏𝑃⁄ − 1)𝜏𝑃𝑠 + 1}

(𝛼𝑠+1)

(𝜆𝑠+1)3                  (6.13)

 

Here,  is the closed loop tuning parameter. The value of  is obtained from the conditions 

of internal stability for IMC structure. The conditions to be followed for internal stability are  

Condition 1: QC must be stable and should cancel the right half plane poles of Gm 

Condition 2: QC Gm should be stable 

Condition 3: (1-GmQC) at the RHP poles of the process should be zero 

The first two conditions are satisfied from the above design procedure and third condition can be 

applied as 

 

(1 − 𝑄𝐶𝐺𝑚)|𝑠=1 𝜏𝑃⁄ = 0         (6.14)
 

 

Now, this IMC controller is converted in to a unity feedback control system and the 

corresponding unity feedback controller GC is obtained as 

𝐺𝑐 = 𝑄𝑐 (⁄ 1 − 𝑄𝑐𝐺𝑚)                          (6.15) 

Substituting all the terms, we will get 

𝐺𝐶 =
{(𝑒𝜃 𝜏𝑃⁄ −1)𝜏𝑃𝑠+1}(𝛼𝑠+1)(𝜏𝑃𝑠−1)

𝑘𝑃[(𝜆𝑠+1)3−{(𝑒𝜃 𝜏𝑃⁄ −1)𝜏𝑃𝑠+1}(𝛼𝑠+1)𝑒−𝜃𝑠]
         (6.16)

 

This expression is approximated to a PID controller with lead-lag filter as given below with simple 

approximations.  
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Gc(s) = kc(1 +
1

τis
+ τds)

(𝛿s+1)

(s+1)
            (6.17)

  

With the controller parameters as

 

𝑘𝑐 = −
4𝜃

𝑘𝑃[18𝜆+6𝜃−6𝛼−6(𝑒𝜃 𝜏𝑃⁄ −1)𝜏𝑃]
          (6.18) 

𝜏𝑖 = 2 𝜃 3⁄              (6.19) 

𝜏𝑑 = 𝜃 4⁄              (6.20) 

𝛿 = 𝛼 
 

𝛾 =
[18𝜆2+12𝜆𝜃+𝜃2+2𝜃𝛼−6𝛼(𝑒𝜃 𝜏𝑃⁄ −1)𝜏𝑃+2𝜃(𝑒𝜃 𝜏𝑃⁄ −1)𝜏𝑃]

[18𝜆+6𝜃−6𝛼−6(𝑒𝜃 𝜏𝑃⁄ −1)𝜏𝑃]
+ 𝜏𝑃 − (𝑒𝜃 𝜏𝑃⁄ − 1)𝜏𝑃     (6.21) 

 

However, selection of  is very important for unstable processes and there should be systematic 

guidelines for selection of .The guidelines are based on the maximum sensitivity of the individual 

closed loops Vanavil et al. (2014).  

To reduce the undesirable overshoots, set point weighting is considered with a weighting of 

0.3.The usual range of set-point weighting is 0-1. Here, the selection of 0.3 is based on many 

simulation studies on different types of unstable processes and is not random. 

 Simulation results 

Two examples are considered to show the effectiveness of the proposed design method. For 

the purpose of comparison, method proposed by Hazarika and Chidambaram (2014) is considered. 

For quantitative comparison, Integral value of Absolute Error (IAE) is considered. 

Example – 1: Consider an unstable TITO process 






























12.2

7.1

13

7.0

15.2

6.0

16.2

6.1

)(
5.1

5.1

s

e

s

e

s

e

s

e

sG
ss

ss

p

        (6.22) 



99 
 

After pairing, the ETF matrix is obtained as 


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Based on this ETF matrix, the simplified decouplers are obtained as 
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Now, based on the diagonal elements of the ETF matrix, the corresponding controllers (Gc11 and 

Gc22) are designed as PID with lead lag controllers.  

With these controllers, the two methods are compared by giving unit step change in the set point 

and load disturbance separately. For Hazarika and Chidambaram (2014) method, stabilization with 

a P controllers and then outer controller is considered. Figure 6.2 shows the closed loop responses 

for servo problem. Figure 6.3 shows the closed loop responses for servo problem when there exist 

+10% perturbations in all time delays of the process. It can be observed that the proposed method 

performs better for set point changes. Figure 6.4 shows the corresponding control action responses 

and it can be observed that the proposed method shows comparatively smooth responses. Figure 

6.5 shows the responses for load disturbance and Figure 6.6 shows the load disturbance responses 

for +10% uncertainty in time delays. Again, it can be observed that the proposed method performs 

better. Figure 6.7 shows the corresponding control action responses and it can be observed that the 

proposed method shows comparatively smooth responses. 
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Figure 6.2 Servo response for perfect model for example-1. Top two figures for a set point 

change in yr1 and bottom two figures for a set point change in yr2. Solid – present method, dash - 

Hazarika and Chidambaram (2014). 

 

Figure 6.3 Servo response for perturbations of +10% in all process time delays for example-1, 

legend: as shown in Figure 6.2. 
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Figure 6.4 Control action responses for perturbations of +10% in all process time delays for 

example-1, legend: as shown in Figure 6.2. 

 

Figure 6.5 Regulatory response for perfect model for example-1, legend: as shown in Figure 6.2. 
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Figure 6.6 Regulatory responses for perturbations of +10% in all process time delays for 

example-1, legend: as shown in Figure 6.2. 

 

Figure 6.7 Control action responses corresponding to Figure 6.6. 
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Example – 2: Consider another unstable TITO process 
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After pairing, the ETF matrix is obtained as 





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          (6.26) 

Based on this ETF matrix, the simplified decouplers are obtained as 














1001.2

6667.11
=D(s)

           (6.27) 

Now, based on the diagonal elements of the ET1F matrix, the corresponding controllers (Gc11 and 

Gc22) are designed as PID with lead lag controllers. With these controllers, the two methods are 

compared by giving unit step change in the set point and load disturbance separately. Figure 6.8 

shows the closed loop responses and Figure 6.9 shows the corresponding control action response 

for servo problem. Figure 6.10 shows the closed loop responses for servo problem for +10% 

perturbations in all time delays of the process. It can be observed that the proposed method 

performs better for set point changes. 

  Figure 6.11 shows the responses for load disturbance and Figure 6.12 shows the 

corresponding control action response. Figure 6.13 shows the load disturbance responses for +10% 

uncertainty in time delays. Again, it can be observed that the proposed method performs better. 

The corresponding IAE values for example-1 is shown in Table 6.1 and for example-2 is shown in 

Table 6.2. It can be observed that the present method shows low IAE values for perfect model and 

for perturbations. Also shown in the table, the IAE values for different perturbations in the process 

parameters. Note that the present method provides low IAE values for all cases and hence the 

present method is better. 
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Figure 6.8 Servo response for perfect model for example-2. Top two figures for a set point 

change in yr1 and bottom two figures for a set point change in yr2. Legend: as shown in Figure 

6.2. 

 

Figure 6.9 Control action responses corresponding to Figure 6.8. 
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Figure 6.10 Servo response for perturbations of +10% in time delays for example-2, legend: as 

shown in Figure 6.6. 

 

Figure 6.11 Regulatory response for perfect model for example-2, legend: as shown in Figure 

6.6. 
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Figure 6.12 Control action responses corresponding to Figure 6.11. 

 

Figure 6.13 Regulatory responses for perturbations of +10% in time delays for example-2, 

legend: as shown in Figure 6.2. 
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 Table 6.1 IAE value for example-1.  

 Servo Regulatory 

Perturbations Proposed H-C method Proposed H-C method 

Kp 12.42 13.97 21.54 36.54 

1.1kp 13.54 16.03 20.86 36.35 

0.9kp 11.11 11.87 22.78 36.79 

θ 12.42 13.97 21.54 36.54 

1.1θ 12.42 11.87 21.46 36.53 

0.9θ 12.42 13.98 21.62 36.55 

τ 12.42 13.97 21.54 36.54 

1.1τ 12.42 14.01 21.72 36.56 

0.9τ 12.42 13.96 21.33 36.52 
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Table 6.2 IAE value for example-2. 

 Servo Regulatory 

Perturbations Proposed H-C method Proposed H-C method 

Kp 8.8 7.91 20.58 27.81 

1.1kp 9.22 10.44 20.56 27.79 

0.9kp 9.87 4.82 27.44 27.81 

θ 8.8 7.91 20.58 27.81 

1.1θ 8.47 7.91 20.58 27.81 

0.9θ 9.12 7.91 20.72 27.81 

τ 8.8 7.91 20.58 27.81 

1.1τ 9.31 7.91 20.86 27.81 

0.9τ 8.35 7.91 20.58 27.81 

 

 Summary 

Multivariable PID controller in series with lead lag filter is applied based on the equivalent 

transfer function (ETF) model for unstable multivariable systems with time delay. The method 

uses simplified decouplers which decompose the unstable multi-loop systems into independent 

loops with ETFs as the resulting decoupled process model having unstable poles. To reduce the 

undesirable overshoot, set point weighting is used. Two simulation examples are studied and 

showed that the present method provides significantly improved closed loop performances for 

servo responses compared to other methods in the literature.  
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 Chapter 7         

 Set-Point Weighting Design for Unstable Systems 

Control of unstable processes with time delays usually result in large overshoots in the closed 

loop responses. In industry, set-point weighting is one of the recommended methods to minimize 

the overshoot. In this chapter, a method is proposed to design the set-point weighting parameters 

which is relatively simple and also reduces the overshoot significantly. Weighting is considered 

for both proportional (β) and derivative (γ) terms in the PID control law. In the closed loop relation 

for the set-point tracking, the coefficients of ‘s’ and ‘s3’ both in the numerator and denominator 

are made equal in order to find β and γ. The obtained expressions for β and 𝛾 are simple and 

depends on the controller parameters. The design is carried out first for single input single output 

(SISO) unstable first order and second order processes with time delays and then for multi input 

multi output (MIMO) unstable processes. In MIMO process control, decouplers are considered to 

ensure that the loops have minimum interactions.  

 Introduction 

The PID controller is universally adopted in chemical processes. This is primarily due to 

its basic structure. Nonetheless, time delay is unavoidable in majority of the chemical processes 

due to the presence of recycle loops and transportation delays. It is intractable for conventional 

PID controllers to ascertain the stability for unstable time delay processes. Additionally, it becomes 

more problematic to design the PID controller for a process that demonstrates a time delay which 

is open-loop unstable. Unstable systems result in larger overshoots in the closed loop set-point 

tracking responses. In order to minimize the overshoot, either a set-point filter or set-point 

weighting is recommended. In this work, set-point weighting is considered for minimization of the 

overshoot. 

In order to properly address the design of set-point weighting parameters, knowledge about 

the PID controller parameters (kc, i, d) is necessary. There exit many methods in the literature for 

design of PID controllers for unstable first order plus time delay (UFOPTD) and unstable second 

order plus time delay (USOPTD) processes of which internal model control (IMC) and direct 

synthesis methods are recommended (Sree and Chidambaram, 2017).  In the interest to acquire an 
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improved transient response due to set point change, several researchers proposed either set-point 

filtering or set-point weighting methods. Prashanti and Chidambaram (2000) developed formulae 

to calculate the set point weighting parameters for UFOPTD systems for different ratio of time 

delay to dominant time constant. Sree and Chidambaram (2004) developed a method for unstable 

second order systems with a positive or negative zero. Later they developed a method by 

minimizing the integral square error (ISE) for a servo problem (Sree and Chidambaram, 2005). 

Rao et al. (2007) proposed set-point weighting based modified Smith predictor method for 

integrating processes. Rao et al. (2009) used set-point weighting to a PID controller integrated 

with a lead-lag compensator for different types of integrating systems.  

  Chen et al. (2008) recommended the tuning rules for set-point weighting based on three-

element control structure. Vijayan and Panda (2012) designed a set point filter for curtailing the 

overshoot for low order processes. Based on learning automata, a method is projected to select the 

set-point weighted parameter for unstable systems by Musmade and Chidambaram (2014). Begum 

et al. (2016, 2017), Dasari et al. (2017), Rao et al. (2016) and Wang et al. (2016) proposed 

controller tuning rules  for stable, unstable and integrating processes with time delay based on 

internal model control (IMC) technique. Bingi et al. (2017) proposed a new fractional order filter 

for the implementation of PID based control strategy for unstable systems. 

  
 In all the formerly cited works, the derivative action is set free from set-point weighting 

by considering the weighting parameter as one. Nasution et al. (2011) designed controller for time 

delayed unstable processes with set point weighting making use of an optimal H2 IMC-PID control 

strategy. It is possible to demonstrate that tracking performance of the set-point will be improved 

if it is possible to determine the suitable derivative mode weighting. This is determined by 

Nasution et al. (2011), but in a complex way.  

 

Design of the controller for MIMO unstable systems with interactions between the loops 

turned to be an interesting research area in the recent years. Decouplers can be used to overrule 

the process interactions to strengthen the system performance. However, these decouplers are 

susceptible to process changes and demand extremely rigorous process models, which are tough 

to search out. Georgiou et al. (1989) worked on unstable multivariable systems with a 

decentralized PID controller based on optimization method. Govindhakannan, J. and 



112 
 

Chidambaram (1997) designed single stage PI controllers for unstable multivariable systems using 

Tanttu and Lieslehto (1991) method. Besta, C. S., and Chidambaram (2016) used synthesis method 

to come up with an effective solution for the design of decentralized PID controller for unstable 

systems. Dasari et al. (2016), Hazarika and Chidambaram (2014), Rajapandiyan and Chidambaram 

(2012) and Raviteja et al. (2016) used ETF (equivalent transfer function) procedure for the 

controller design for time delay unstable systems. Recently, Dasari and Chidambaram (2018) 

suggested a simple method for calculating dynamic set-point weighting parameters for time 

delayed unstable processes. In the present chapter, this method is extended for higher order SISO 

and MIMO unstable systems.  

 

 Set point weighted PID algorithm  

Let us consider the well-known ideal form of the PID controller with set-point weighting 

on both proportional and derivative terms as  

𝑢(𝑡) = 𝑘𝑐 [𝑒𝑝(𝑡) + (1/𝜏𝐼) ∫ 𝑒(𝑡)𝑑𝑡 + 𝜏𝐷
𝑑𝑒𝑑(𝑡)

𝑑𝑡
]                (7.1) 

Where 

𝑒𝑝(𝑡) = 𝛽𝑦𝑟 − 𝑦(𝑡)      𝑒(𝑡) = 𝑦𝑟 − 𝑦(𝑡)    𝑒𝑑(𝑡) = γ𝑦𝑟 − 𝑦(𝑡)                   (7.2) 

The parameters γ and β are established in order to account for the errors in the derivative and 

proportional terms, respectively. In order to fully comprehend the function of the set-point 

weighted PID controller, eq. 7.1 can be re-written as 

𝑢(𝑡) = 𝑘𝑐 [𝛽𝑒(𝑡) − (1 − 𝛽)y(t) + (1/𝜏𝐼) ∫ 𝑒(𝑡)𝑑𝑡 + γ𝜏𝐷
𝑑𝑒𝑑(𝑡)

𝑑𝑡
− (1 − 𝛾)𝜏𝐷

𝑑y(𝑡)

𝑑𝑡
]                 

𝑢(𝑡) = [𝑘𝑐𝛽𝑒(𝑡) + (𝑘𝑐/) ∫ 𝑒(𝑡)𝑑𝑡 + 𝑘𝑐𝛾𝜏𝐷
𝑑𝑒(𝑡)

𝑑𝑡
] − [𝑘𝑐(1 − 𝛽)𝑦(𝑡) + (𝑘𝑐(1 − γ)𝜏𝐷)

𝑑y(𝑡)

𝑑𝑡
]        

𝑢(𝑡) = [𝑃1𝑒(𝑡) + 𝑃2 ∫ 𝑒(𝑡)𝑑𝑡 + 𝑃3
𝑑𝑒(𝑡)

𝑑𝑡
] − [𝑃4𝑦(𝑡) + 𝑃5

𝑑y(𝑡)

𝑑𝑡
]         (7.3) 

Where 

P1 = Kcβ  

P2 = Kc/τI 

P3 = Kc γ τD 

P4 = Kc (1-β) 

P5 = Kc (1-γ) τD           
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Eq. 7.3 can be represented as shown in Figure 7.1 for any process Gp(s). Set point weighted PID 

algorithm can be represented as shown in Figure 7.1 which is equivalent to a PID feedback with 

an inner loop consisting of a PD controller. There is no set-point weighting done for integral action. 

This is due to the integral error should be true error. It is to prevent any steady-state control error. 

 

 

 

 

 

  

 

 

 

Figure 7.1 Equivalent representation of a set-point weighted PID controller. 

 

 Design of set point weighting parameters for UFOPTD processes 

In eq. 7.1, for UFOPTD processes, let us consider  

 𝑒𝑝 = 𝛽1𝑦𝑟 − 𝑦      𝑒 = 𝑦𝑟 − 𝑦    𝑒𝑑 = γ1𝑦𝑟 − 𝑦                                    (7.4) 

Here, 𝛽1 and γ1 are set point weighting parameters.  

Representing the UFOPTD process as   

𝐺𝑝(𝑠) =
𝑘𝑝𝑒−ө𝑠

(𝜏𝑝𝑠−1)
                                                                                  (7.5) 

With the PID controller, the transfer function between y and yr is   

𝑦

𝑦𝑟
=

[𝑘𝑐𝑘𝑝(𝛽1𝑠+𝑚+γ1𝑠2)𝑒−ө𝑠]

[𝑠(𝜏𝑝𝑠−1)+𝑘𝑐𝑘𝑝(𝑠+𝑚+𝑠2)𝑒−ө𝑠]
                                                                              (7.6) 

Where m = 1/i. The present method requires the numerator and denominator terms in the form of 

a polynomial in ‘s’. To achieve this, a first order Pade’s Approximation for e−өs in the denominator 

is considered and with that, the above equation becomes  

𝑦

𝑦𝑟
=

[𝑘𝑐𝑘𝑝(𝛽1𝑠+𝑚+γ1𝑠2)(1+0.5ө𝑠)𝑒−ө𝑠]

[𝑠(𝜏𝑝𝑠−1)(1+0.5ө𝑠)+𝑘𝑐𝑘𝑝(𝑠+𝑚+𝑠2)(1−0.5ө𝑠)]
                                                                          (7.7) 

Eq. (7.7) can be rewritten as 

u y Yr 

Gp(s) 

P4+P5s 

P1+P2/S+P3S 

d 
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𝑦

𝑦𝑟
=

[𝑘𝑐𝑘𝑝(𝑚+𝑐1s+𝑐2𝑠2+𝑐3𝑠3)exp (−ө𝑠)]

[−𝑠+𝑐4𝑠2+𝑐5𝑠3+𝑘𝑐𝑘𝑝(𝑚+𝑠𝑐6+𝑠2𝑐7+𝑠3𝑐8)]
                           (7.8) 

Where  

𝑐1 = 𝛽1 + 0.5𝑚ө                                                                                 

𝑐2 = 0.5𝛽1ө + γ1𝜏𝐷                                  

𝑐3 = 0.5γ1𝜏𝐷                                          

𝑐4 = 𝜏𝑝 − 0.5ө                                     

𝑐5 = −0.5ө𝜏𝑝                              

𝑐6 = 1 − 0.5ө𝑚                                     

𝑐7 = 𝜏𝐷 − 0.5ө                                     

𝑐8 = −0.5𝜏𝐷ө     

                                   

In the present work, based on the coefficients of ‘s’ and ‘s3’ in the numerator and 

denominator polynomial, the set point weighting parameters are determined. Let L1 represent the 

ratio of coefficients of ‘s’ in the numerator to that in the denominator without any set point 

weighting i.e. 𝛽1=1 

𝐿1 =
[𝑘𝑐𝑘𝑝(1+0.5𝑚ө]

[−1+𝑘𝑐𝑘𝑝(1−0.5𝑚ө)]
                                                      (7.9) 

If 𝐿1 > 1 , then the corresponding coefficient of s in the numerator is equated to that in the 

denominator i.e. 

𝑘𝑐𝑘𝑝(𝛽1 + 0.5𝑚ө) = −1 + 𝑘𝑐𝑘𝑝(1 − 0.5𝑚ө)                              (7.10) 

From Eq. (7.10), we obtain 

𝛽1 = 1 −
1

𝑘𝑐𝑘𝑝
−

ө

𝜏𝐼
                                                                      (7.11a) 

If 𝐿1 ≤ 1, then the corresponding coefficient of s in the numerator is equated to 𝐿1 times that in 

the denominator i.e. 

𝑘𝑐𝑘𝑝(𝛽1 + 0.5𝑚ө) = 𝐿1(−1 + 𝑘𝑐𝑘𝑝(1 − 0.5𝑚ө))                                (7.11b)                                                           

Based on the simulation performed on various transfer models, it is noticed that a reduced 

overshoot is obtained for 𝛽1 = 0.7𝐿1. 

The ratio of corresponding coefficients of s3 with unit set-point weighting (γ1 = 1) is represented 

as L2. 

𝐿2 =
𝑘𝑐𝑘𝑝[0.5γ1𝜏𝐷ө]

[0.5ө𝜏𝑝+𝑘𝑐𝑘𝑝(−0.5𝜏𝐷ө)]
                                                                  (7.12) 
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The corresponding coefficients can be equated as shown below for𝐿2 > 1. 

𝑘𝑐𝑘𝑝[0.5γ1𝜏𝐷ө] = [0.5ө𝜏𝑝 + 𝑘𝑐𝑘𝑝(−0.5𝜏𝐷ө)]                                (7.13) 

From Eq. (7.13), we get 

 γ1 = −1 +
𝜏𝑝

𝜏𝐷𝑘𝑐𝑘𝑝
                                                                               (7.14a) 

The numerator is equated to L2 times the denominator for  𝐿2 ≤ 1 

𝑘𝑐𝑘𝑝[0.5γ1𝜏𝐷ө] = 𝐿2[0.5ө𝜏𝑝 + 𝑘𝑐𝑘𝑝(−0.5𝜏𝐷ө)]                                                                (7.14b) 

Based on the simulation performed on various transfer models, it is noticed that a reduced 

overshoot is obtained for γ = 0.3𝐿2. 

 Design of set point weighting parameters for USOPTD processes 

In eq. 7.1, for USOPTD processes, let us consider  

 

 𝑒𝑝 = 𝛽2𝑦𝑟 − 𝑦      𝑒 = 𝑦𝑟 − 𝑦    𝑒𝑑 = γ2𝑦𝑟 − 𝑦                                  (7.15) 

Here 𝛽2 and γ2 are set point weighting parameters.  

Representing the USOPTD process as    

𝐺𝑝(𝑠) =
𝑘𝑝𝑒−ө𝑠

(𝜏1𝑠−1)(𝜏2𝑠−1)
          (7.16) 

For simplification the above equation 

𝐺𝑝(s) =
𝑘𝑝𝑒−𝑠

(𝑎1𝑠2+𝑎2𝑠+𝑎3)
                                 (7.17) 

Here a1=τ1 τ2, a2=-(τ1+ τ2), a3=1 

With a PID controller in the closed loop, the transfer function relating y to yr is obtained as  

𝑦

𝑦𝑟
=

[𝑘𝑐𝑘𝑝(𝛽2𝑠+𝑚+γ2𝑠2)𝑒−𝑠]

[𝑠(𝑎1𝑠2+𝑎2𝑠+𝑎3)+𝑘𝑐𝑘𝑝(𝑠+𝑚+𝑠2)𝑒−𝑠]
                    (7.18) 

Considering first order Pade’s approximation for e−s in the denominator, Eq. (7.18) becomes 

𝑦

𝑦𝑟
=

[𝑘𝑐𝑘𝑝(𝛽2𝑠+𝑚+γ2𝑠2)(1+0.5𝑠)𝑒−𝑠]

[𝑠(𝑎1𝑠2+𝑎2𝑠+𝑎3)(1+0.5𝐿𝑠)+𝑘𝑐𝑘𝑝(𝑠+𝑚+𝑠2)(1−0.5𝑠)]
                   (7.19) 

Eq. (7.19) can be rewritten as 

𝑦

𝑦𝑟
=

[𝑘𝑐𝑘𝑝(𝑚+𝑣1s+𝑣2𝑠2+𝑣3𝑠3)exp (−𝑠)]

[𝑎3𝑠+𝑣4𝑠2+𝑣5𝑠3+𝑣6𝑠4+𝑘𝑐𝑘𝑝(𝑚+𝑠𝑣7+𝑠2𝑣8+𝑠3𝑣9)]
                            (7.20) 

Where  

𝑣1 = 𝛽2 + 0.5𝑚                                                                                
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𝑣2 = 0.5𝛽2 + γ2𝜏𝐷                                 

𝑣3 = 0.5γ2𝜏𝐷                                          

𝑣4 = 𝑎2 + 0.5𝑎3                                    

𝑣5 = 𝑎1 + 0.5𝑎2                               

𝑣6 = 0.5𝑎1                                      

𝑣7 = 1 − 0.5𝑚                           

𝑣8 = 𝜏𝐷 − 0.5                               

𝑣9 = −0.5𝜏𝐷       

                                            

In the present work, based on the coefficients of ‘s’ and ‘s3’ in the numerator and 

denominator polynomial, the set point weighting parameters are determined. Let L3 represent the 

ratio of coefficients of ‘s’ in the numerator to that in the denominator without any set point 

weighting i.e. 𝛽2=1 

𝐿3 =
[𝑘𝑐𝑘𝑝(1+0.5𝑚ө]

[𝑎3+𝑘𝑐𝑘𝑝(1−0.5𝑚ө)]
                                                       (7.21) 

If 𝐿3 > 1 , then the corresponding coefficient of s in the numerator is equated to that in the 

denominator i.e. 

𝑘𝑐𝑘𝑝(𝛽2 + 0.5𝑚ө) = 𝑎3 + 𝑘𝑐𝑘𝑝(1 − 0.5𝑚ө)                               (7.22) 

From Eq. (7.22), we obtain 

𝛽2 = 1 +
𝑎3

𝑘𝑐𝑘𝑝
− 𝑚ө                                                                             (7.23a) 

If 𝐿3 ≤ 1, then the corresponding coefficient of s in the numerator is equated to 𝐿3 times that in 

the denominator i.e. 

𝑘𝑐𝑘𝑝(𝛽1 + 0.5𝑚ө) = 𝐿3(−1 + 𝑘𝑐𝑘𝑝(1 − 0.5𝑚ө))                (7.23b) 

Based on the simulation performed on various transfer models, it is noticed that a reduced 

overshoot is obtained for𝛽2 = 0.7𝐿3. 

The ratio of corresponding coefficients of s3 with unit set-point weighting (γ2 = 1) is represented 

as L4. 

𝐿4 =
𝑘𝑐𝑘𝑝[0.5γ2𝜏𝐷ө]

[𝑎1+0.5ө𝑎2+𝑘𝑐𝑘𝑝(−0.5𝜏𝐷ө)]
                                                                (7.24) 

The corresponding coefficients can be equated as shown below for𝐿4 > 1. 

.𝑘𝑐𝑘𝑝[0.5γ2𝜏𝐷ө] = [𝑎1 + 0.5ө𝑎2 + 𝑘𝑐𝑘𝑝(−0.5𝜏𝐷ө)]                              (7.25) 
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From Eq. (7.25), we get 

 γ2 =
𝑎1

0.5ө𝜏𝐷𝑘𝑐𝑘𝑝
+

𝑎2

𝜏𝐷𝑘𝑐𝑘𝑝
− 1                                                                          (7.26a) 

The numerator is equated to L4 times the denominator for  𝐿4 ≤ 1 

𝑘𝑐𝑘𝑝[0.5γ2𝜏𝐷ө] = 𝐿4[𝑎1 + 0.5ө𝑎2 + 𝑘𝑐𝑘𝑝(−0.5𝜏𝐷ө)]             (7.26b) 

Based on the simulation performed on various transfer models, it is noticed that a reduced 

overshoot is obtained for γ2 = 0.3𝐿4. 

 Controller saturation 

It is more practical to manage the control saturations for unstable processes in order to 

protect from reset windup. A set-point weighted PID loop along with the reset-feedback form is 

depicted in Figure 2 (Nasution et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Reset feedback scheme of set point weighted PID control system 

 

The two saturation functions, S1 and S2 in figure 7.2 are defined as  

 

𝑢2(𝑡) = {

𝑢max + 𝑘𝑐(1 − 𝛽)𝑟 𝑓𝑜𝑟 𝑢1(𝑡) > 𝑢max + 𝑘𝑐(1 − 𝛽)𝑟

𝑢1(𝑡) 𝑓𝑜𝑟 𝑢min − 𝑘𝑐(1 − 𝛽)𝑟 ≤ 𝑢1(𝑡) ≤ 𝑢max + 𝑘𝑐(1 − 𝛽)𝑟
𝑢min − 𝑘𝑐(1 − 𝛽)𝑟 𝑓𝑜𝑟 𝑢1(𝑡) < 𝑢min − 𝑘𝑐(1 − 𝛽)𝑟

    (7.27) 
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𝑢2(𝑡) = {

𝑢max 𝑓𝑜𝑟 𝑢𝑐(𝑡) > 𝑢max

𝑢𝑐(𝑡) 𝑓𝑜𝑟 𝑢min ≤ 𝑢𝑐(𝑡) ≤ 𝑢max

𝑢min 𝑓𝑜𝑟 𝑢𝑐(𝑡) < 𝑢min

               (7.28) 

Where umax and umin correspond to the maximum and minimum physical saturation limitations of 

the control signal. The signals u1 and u2 are given as  

𝑢1(𝑠) = 𝑘𝑐[𝑟(𝑠) − y(s) + (1/𝜏𝐼𝑠 + 1)𝑢2(𝑠) + 𝑘𝑐𝜏𝐷𝑠/(𝜀𝜏𝐷𝑠 + 1)(γ𝑟(𝑠) − y(s))]           (7.29) 

𝑢𝑐(𝑡) = 𝑢2(𝑡) − 𝑘𝑐(1 − β)𝑟                     (7.30) 

Here, ε is 0.1 which accounts for the derivative filter parameter. The saturation function S1 is useful 

to take care of the anti-reset windup by considering the set-point weighting on proportional mode. 

Additionally, control limitations are taken care by the saturation function S2. By all means, the 

control performance would diminish once the constraints of control saturations are activated. The 

saturation limits are set as umax = +2.5 and umin = -2.5. A point worth noting is that regardless of 

the constraints being met by the controller output, the proposed method resulted in a satisfactory 

performance. 

 Design of set point weighting parameters for MIMO processes 

Several MIMO systems can be altered using a more feasible choice of using a decentralized 

control strategy as recommended by Hazarika and Chidambaram (2014). Figure 7.3 illustrates the 

process under study with U and Y as input and output respectively. The set point weighting 

technique is induced into the decoupler control loops and studied. The proposed set-point 

weighting design (Figure 7.2) is incorporated independently for the two control loops in Figure 

7.3 and simulation studies are carried out for different examples. 

 

Note that Dasari et al. (2016) method is the technique proposed in Chapter 6. This varies from the 

method proposed in Chapter 7 in the view of fixed set-point weighting of 0.3 and in Chapter 7, the 

set-point weighting varies according to the design technique. 
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Figure 7.3 Decoupled control scheme 

 Simulation results 

PID tuning method proposed by Nasution et al. (2011), Wang et al. (2016) and  Dasari et 

al. (2016) are used for calculating the PID settings for SISO and TITO processes. Simulation 

studies were carried out on various unstable processes and the closed loop set-point performances 

are compared with the method proposed by Nasution et al. (2011) and Wang et al. (2016) for SISO 

processes and Hazarika and Chidambaram (2014), Dasari et al. (2016) for TITO processes.The 

controller performance is assessed based on integral of absolute error (IAE) and total variation of 

the manipulated variable at a value of maximum sensitivity. The set-point weighting parameters 

(β1 and γ1) for UFOPTD process are determined from eq. 7.11 & 7.14. Similarly, the set-point 

weighting parameters (β2 and γ2) for USOPTD processes are calculated from eq. 7.23 & 7.26.  All 

the simulations for SISO and TITO processes are carried out based on Figure 7.2 and Figure 7.3. 

 

Example – 1: A UFOPTD process is considered as shown below 

                                               

Gp(s) =  
 e−1.2s

s−1
          (7.31) 

       

For this process, different λ are selected and the corresponding Ms values are obtained based on 

Nasution et al. (2011). Simulations are performed by giving a step change of unity to the set point. 

Figure 7.4 represents the closed loop and control responses. The designed controller settings, set 
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point weighting parameters and the controller performance for the conditions specified are 

illustrated in Table 7.1. It can be observed that the Ms values are higher as the time delay to time 

constant ratio is greater than 1. Ms value of 9 yields good responses as compared to other Ms 

values. 

 

 

Figure 7.4 Output and control action behavior under exact model conditions for example 1 for 

different values of  λ. 
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Figure 7.5 Output and control action behavior under uncertainties model conditions for example 

1 for different values of  λ. 

 

Figure 7.6 Output and control action behaviour under exact model conditions for example 1, 

solid – Proposed work, dash – (Nasution et al., 2011). 
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Figure 7.7 Output and control action behaviour under uncertainties model conditions for 

example 1, solid – Proposed work, dash – (Nasution et al., 2011). 

 

Figure 7.8 Output and control action behaviour under exact model conditions for example 1, 

solid – Proposed work with gama, dash – Present work without gama. 
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Example – 2: A higher-order unstable process studied in (Nasution et al., 2011) is considered 

 

Gp(s) =  
 e−0.5s

(5s−1)(2s+1)(0.5s+1)
          (7.32) 

 

Table 7.1 shows the corresponding controller settings. The simulation responses values are shown 

in Table 7.1 for perfect model and perturbations of +10% in time delay and -10% in time constant. 

It is observed that the controller performance is improved using this method. 

 

 

Figure 7.9 Output and control action behaviour under exact and uncertainties model conditions 

for example 2, solid – Proposed, dash – uncertainties. 

 

Table 7.1 Tuning Parameters and the performance indices for Example 1 and 2. 
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Figure 7.10 Output and control action behaviour under exact model conditions for example 2, 

solid – Present work with gama, dash – Proposed work without gama. 

 

Example – 3: Consider an UFOPTD process as (Sree and Chidambaram, 2017)   

                                          

Gp(s) =  
 4e−2s

4s−1
          (7.33) 

  

For this process, λ = 2.1 was selected as per the Nasution et al. (2011) method. Similarly, when λ 

is considered as 3, Ms is obtained as 1.6 for both the proposed and Wang et al. (2016) methods. 

Simulation studies are carried out separately by giving a step change of unity to the set points for 

all the methods. Figure 7.11 represent the closed loop and control responses. The designed 

controller settings, set point weighting parameters and the controller performance for the 

conditions specified are illustrated in Table 7.2. It is observed that the proposed technique provides 

good satisfactory performances with smoother control action compared to remaining methods. 
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Figure 7.11 Output and control action behaviour under exact model conditions for example 3, 

solid – Proposed work, dash – (Nasution et al., 2011). 

 

 

Figure 7.12 Output and control action behaviour under exact model conditions for example 3, 

solid – Proposed work, dash –(Wang et al., 2016). 
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Figure 7.13 Output and control action behaviour under uncertainties model conditions for 

example 3, solid – Proposed work, dash – (Nasution et al., 2011). 

 

Figure 7.14 Output and control action behaviour under uncertainties model conditions for 

example 3, solid – Proposed work, dash – (Wang et al., 2016). 
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Example – 4: Another UFOPTD process is considered as below 

                                               

Gp(s) =  
e−0.5s

s−1
            (7.34) 

For this process, λ value of 0.8 is chosen which complements to Ms value of 2.8. The designed 

controller settings, set point weighting parameters and the controller performance for the 

conditions specified are illustrated in Table 7.2. In the same way, when λ is taken as 0.9, the 

obtained Ms value is 1.5 for both the proposed and Wang et al. methods.  Simulation studies are 

carried out separately by giving a step change of unity to the set points for both methods. In 

addition to the perturbations given in example 3, time constant is also subjected to -10% change 

to test the robustness; the consequent responses are illustrated in Table 7.2.  

 

 

Figure 7.15 Output and control action behaviour under exact model conditions for example 4, 

solid – Present work, dash – (Nasution et al., 2011). 
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Figure 7.16 Output and control action behaviour under exact model conditions for example 4, 

solid – Present work, dash – (Wang et al., 2016). 

 

 

Figure 7.17 Output and control action behaviour under uncertainties model conditions for 

example 4, solid – Present work, dash – (Nasution et al., 2011). 
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Figure 7.18 Output and control action behaviour under uncertainties model conditions for 

example 4, solid – Present work, dash – (Wang et al., 2016). 

 

Table 7.2 Tuning parameters and the performance indices for Example 3 and 4. 
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Example – 5: A second order unstable process (Nasution et al., 2011) is considered 

 

Gp(s) =  
 e−0.5s

(2s−1)(0.5s+1)
          (7.35) 

 

The corresponding controller values are given in Table 7.3. The time constant and delay time are 

subjected to -10% and +10% perturbations; the consequent responses are illustrated in Table 7.3. 

The results comprehend to better robust performances which reveals that the present method is 

superior. 

 

 

Figure 7.19 Output and control action behaviour under exact model conditions for example 5, 

solid – Present work, dash – (Nasution et al., 2011). 
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Figure 7.20 Output and control action behaviour under uncertainties model conditions for 

example 5, solid – Present work, dash – (Nasution et al., 2011). 

 

Example – 6: Control of a Bio-reactor: 

A nonlinear continuous bioreactor exhibiting multiplicity behavior is modelled (Sree and 

Chidambaram, 2017) by the following equations: 

𝑑𝑋

𝑑𝑡
= (𝜇 − 𝐷)𝑋          (7.36) 

𝑑𝑆

𝑑𝑡
= (𝑆𝑓 − 𝑆)𝐷 −

𝜇𝑋

γ
          (7.37) 

Where𝜇 = 𝜇𝑚𝑆 (𝐾𝑚 + 𝑆 + 𝐾𝑙𝑆
2)⁄ . The parameters are taken as γ = 0.4 g/g, Sf = 4g/l, 

m=0.53 h-1, D =0.3 h-1, Km = 0.12 g/l, Kl = 0.45451 l/g. X and S represent the cell and substrate 

concentrations respectively. An unstable linearization point (X = 0.9951, S = 1.5122) is obtained 

for which a transfer function model is developed as followed. 

 

Gp(s) =  
−5.89 e−2.4s

5.86s−1
         (7.38) 
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For this process, λ=2.56 was selected as per the Nasution et al. (2011) method, which corresponds 

to an Ms Value of 3.78. Simulation studies are carried out separately by giving a step change of 

unity to the set points for all the methods. The designed controller settings, set point weighting 

parameters and the controller performance for the conditions specified are illustrated in Table 7.3. 

The results comprehend to better robust performances which reveals that the present method is 

superior. 

 

 

 

Figure 7.21 Output and control action behaviour under exact model conditions for example 6, 

solid – Present work, dash – (Nasution et al., 2011). 
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Figure 7.22 Output and control action behaviour under uncertainties model conditions for 

example 6, solid – Present work, dash – (Nasution et al., 2011). 

 

Non – linear Simulation: 

 

It is more appropriate to perform simulation directly on the original nonlinear model 

instead of transfer function model. To serve this purpose, λ is selected 2.56 which complements to 

Ms value of 3.78. The designed controller settings, set point weighting parameters and the 

controller performance for the conditions specified are illustrated in Table 7.3. Simulation studies 

are carried out separately by giving a step change from 0.9951 to 1.1 at time t = 0 sec to the set 

point. Figure 7.23 represent the closed loop and the corresponding control responses respectively. 

The delay time is subjected to +5% perturbations to test the robustness; the consequent responses 

are illustrated in Table 7.3. The results again comprehend to better robust performances which 

reveals that the present method is superior with smooth control action. 
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Figure 7.23 Output and control action behaviour for Non Linear exact model conditions for 

example 6, solid – Present work, dash – (Nasution et al., 2011). 

 

 

Figure 7.24 Output and control action behaviour for Non Linear uncertainties model conditions 

for example 6, solid – Present work, dash – (Nasution et al., 2011). 
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Tracking of Different Set-points: 

 

Both increase (positive) and decrease (negative) step inputs of different magnitudes are 

considered. Step magnitudes of 1, 0.2 and -0.2 at times t = 0, 60 and 250 are considered and the 

corresponding closed loop responses for perfect conditions without and with noise are shown in 

Figure 7.25,7.26 and Figure 7.27,7.28. Hence, it is inferred that the present method has the ability 

to track multi set-points without much overshoot. 

 

Figure 7.25 Closed loop response for different setpoints responses for example 6 for exact 

condition. Dot – set point, Solid – output. 

 

Figure 7.26 Closed loop response for different setpoints control actons for example 6, for perfect 

condition.Solid – output. 
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Figure 7.27 Closed loop response for different setpoints for example 6 with Noise for perfect 

condition. Dot – set point, Solid – output. 

 

 

Figure 7.28 Closed loop response for different setpoints control actions for example 6 with 

Noise for perfect condition. Dot – set point, Solid – output. 
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Example - 7: Control of a Chemical Reactor: 

 An isothermal chemical reactor exhibiting multiple steady-state solutions is modelled as 

(Musmade and Chidambaram, 2014): 

 

𝑑𝑐

𝑑𝑡
=

𝑄

𝑉
(𝐶𝑓 − 𝐶) −

𝑘1𝐶

(𝑘2𝐶+1)2         (7.39) 

 

Where Cf and Q are the inlet concentration and flow rate respectively. The values of the operating 

parameters are Q=0.0333 L/s, V=1L, k1=10 L/s, and K2 =10 L/mol. Two steady state 

concentrations (C=1.7673 and 0.01424 mol/L) and one unstable steady state (C=1.316mol/L) are 

obtained around a nominal value of Cf =3.288 mol/L. An unstable transfer function model is 

developed by linearizing the manipulated variable i.e., the feed concentration at C=1.316. A time 

delay of 20s is considered which yield an unstable transfer function model as 

 

Gp(s) =  
3.433e−20s

103.1s−1
            (7.40) 

 

For this process, λ is selected as 26 which complements to Ms value of 2.6. Simulation studies are 

carried out by giving a step change of unity to the set point. Figure 7.29 represent the closed loop 

and the corresponding control responses. The designed controller settings, set point weighting 

parameters and the controller performance for the conditions specified are illustrated in Table 7.3.  

 

Example - 8: Consider a TITO process (Hazarika and Chidambaram, 2014) 


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
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e
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         (7.41) 

RGA and NI are calculated to estimate the pairing selection for the above mentioned system. 











7.17.0

6.06.1
K 














1826.11826.0

1826.01826.1
RGA

        (7.42) 

 NI=0.6969 
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Figure 7.29 Output and control action behaviour under exact model conditions for example 7, 

solid – Present work. 

 

Figure 7.30 Output and control action behaviour under uncertainties model conditions for 

example 7, solid – Present work. 
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Table 7.3 Tuning parameters and the performance indices for Example 5, 6 and 7. 

 

The tuning parameters are derived from (Hazarika and Chidambaram, 2014) which are found to 

be 1.4434, 1.6142. The pairing criteria is to get a positive value for NI as a same number of open 

loop unstable poles is obtained for both Gp(s) and G̅p(s) = diag[gp,ii(s)]. 
































1
1751

)74.15(

820

)38.7(
1

)(
5.0

5.0

s

es

s

es

sD
s

s

        (7.43) 

The controller parameters – normalized gain array, relative average residence time array 

(RARTA), average residence time array, and relative normalized gain array (RNGA) which are 

mentioned below are used for the evaluation of equivalent transfer function 











2.35.4

46.3
arT 










5313.01556.0

15.0444.0
NK

       (7.44) 















1097.11097.0

1097.01097.1
 










9383.06005.0

6005.09383.0

       (7.45) 

Hence, the developed equivalent transfer function is 

 Method λ kc I D Ms β γ 
Proposed  

model 

+10% in θ and -10% 

in τ 

 IAE TV IAE TV 

Example 5 

Proposed 1.23 2.67 6.31 0.41 3.4 0.46 0.14 1.81 7.91 2 8.71 

Nasution et 

al. 
1.23 2.67 6.31 0.41 3.4 0.28 0.26 2.43 9.61 2.42 10.3 

 
-10%in  Kp +10% in 

θ and -10% in τ 

Example 6 

Proposed 2.56 -0.48 12.57 0.9 3.78 0.31 0.39 5 3.5 8.7 4.6 

Nasution 

et al. 
2.56 -0.48 12.57 0.9 3.78 0.37 0.45 5.06 4.02 9.84 5.29 

Example 6 

Non-linear 

simulation 

Proposed 2.56 -0.48 12.57 0.9 3.78 0.31 0.39 2.97 3.85 4.58 4.37 

Nasution 

et al. 
2.56 -0.48 12.57 0.9 3.78 0.37 0.45 3.29 4.05 5.26 4.69 

 

Example 7 Proposed 26 1.41 123 10.2 2.6 0.44 0.32 51 3.9 48 3.6 
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e
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       (7.46) 

A lead lag filter based method is used as in Dasari et al. (2016) to design the controller which is as 

represented below 






















)2346.0
6255.0

1
1(0335.00

0)2346.0
6255.0

1
1(0371.0

s

sGc

     (7.47) 


























13965.0

12497.20
0

0
14537.0

13717.20

)('

s

s
s

s

sF

         (7.48) 

 

This designed controller is applied with set point weighting of magnitudes that is for first 

loop β1=0.3, γ1=0.79 and for the second loop β1=0.25, γ1=0.74 present in the process. A step change 

of unity is given to the set point and disturbance and their corresponding closed loop responses are 

plotted in comparison to Hazarika and Chidambaram (2014) and Dasari et al. (2016). The closed 

loop servo responses are illustrated in Figure 7.31. Other parameters are also subjected to 

perturbations and the respective controller performances values are presented in Tables 7.4 & 7.5. 

It is noticed that the proposed method gives better performance in comparison to the other methods 

and also is stable in nature. 
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Figure 7.31 Output and control action behaviour for servo under exact model conditions for y1 

and y2 for example 8, solid – Present work, dash – (Hazarika and Chidambaram, 2014), dash 

dot– (Dasari et al., 2016) 

 

Figure 7.32 Output and control action behaviour for regulatory under exact model conditions for 

y1 and y2 for example 8, solid – Present work, dash – (Hazarika and Chidambaram, 2014), dash 

dot– (Dasari et al., 2016) 
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Figure 7.33 Output and control action behaviour for servo under 10% uncertainties to time delay   

for y1 and y2 for example 8, solid – Present work, dash – (Hazarika and Chidambaram, 2014), 

dash dot– (Dasari et al., 2016) 

 

Figure 7.34 Output and control action behaviour for regulatory under 10% uncertainties to time 

delay   for y1 and y2 for example 8, solid – Present work, dash – (Hazarika and Chidambaram, 

2014), dash dot– (Dasari et al., 2016) 
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Table 7.4 Analysis of IAE values for servo responses for example-8. 

p
er

tu
rb

a
ti

o
n

s 

Proposed method Hazarika et al. 

 

Dasari et al. 

loop1 loop2 loop1 loop2 loop1 loop2 

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 

kp 2.66 0.04 0.02 2.85 13.96 0 0 14.10 12.42 0 0 11.90 

1.1kp 2.66 0.03 0.02 2.82 15.98 0 0 16.77 13.54 0 0 13.07 

0.9kp 2.66 0.04 0.02 3.28 11.85 0 0 11.92 11.11 0 0 10.57 

 2.66 0.04 0.02 2.85 13.96 0 0 14.10 12.42 0 0 11.90 

1.1 2.73 0.24 0.20 2.65 14 0.36 0.22 14.24 12.42 0.25 0.19 11.9 

0.9 2.78 0.55 0.44 3.46 13.9 1.15 0.79 14.15 12.42 0.25 0.19 11.9 

 2.66 0.04 0.02 2.85 13.96 0 0 14.10 12.42 0 0 11.90 

1.1 3.36 0.71 0.60 5.68 13.96 0.57 0.39 14.3 12.42 0.04 0.03 11.9 

0.9 2.62 0.14 0.11 2.38 13.96 0.09 0.06 14.13 9.12 0.01 0 7.74 

 

Table 7.5 Analysis of IAE values for regulatory responses for example-8 

 

 

Proposed method Hazarika et al. Dasari et al. 

 loop1 loop2 loop1 loop2 loop1 loop2 

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 

kp 4.23 2.49 2.08 6.64 36.54 22.81 14.64 53.12 21.54 10.64 8.96 24.01 

1.1kp 4.10 2.45 2.10 5.78 36.35 22.64 14.58 52.73 20.86 10.34 8.73 23.2 

0.9kp 4.64 2.82 2.07 7.99 36.8 23.22 14.7 54.33 22.78 11.19 9.39 25.48 

 4.23 2.49 2.08 6.64 36.54 22.81 14.64 53.12 21.54 10.64 8.96 24.01 

1.1 4.16 2.71 2.17 6.25 36.56 22.79 14.61 53.17 21.72 10.53 8.86 24.23 

0.9 4.38 2.44 2.16 7.48 36.52 22.83 14.73 53.22 21.34 10.74 9.05 23.77 

 4.23 2.49 2.08 6.64 36.54 22.81 14.64 53.12 21.54 10.64 8.96 24.01 

1.1 6.38 5.74 3.79 13.79 36.53 23.04 14.76 53.46 21.47 10.67 9.02 23.94 

0.9 3.88 2.33 1.98 4.95 36.55 22.71 14.53 53.14 21.62 10.61 8.91 24.11 
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Example 9: 

Another TITO process (Hazarika and Chidambaram, 2014) is considered 
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          (7.49) 

Pairing is done based on RGA and NI 















6667.18333.0

16667.1
K

           (7.50) 















4283.14283.0

4283.04283.1
RGA

           (7.51) 

NI for this system is 0.5833. From Hazarika and Chidambaram (2014) the tuning parameters are 

2.0726, 2.0726 respectively. As the number of open loop unstable poles of Gp(s) is different from 

G̅p(s) = diag[gp,ii(s)]. A different paring criterion is used. As the calculated NI shows a positive 

value, interchanging of columns results in 
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        (7.52) 

Now the relative gain array is calculated as 
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         (7.53) 

 

Equivalent transfer function is calculated as 
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        (7.54) 

Decouplers are designed as 
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
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
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


1001.2

6667.11
)(sD

         (7.55) 

Controller with lead lag filter designed by Dasari et al. (2016) is 






















)25.0
6667.0

1
1(0199.00

0)25.0
6667.0

1
1(0139.0

)(

s

ssGc

     (7.56) 


























13487.0

13746.24
0

0
13673.0

13073.28

)('

s

s
s

s

sF

       (7.57) 

 This designed controller is applied with set point weighting of magnitudes that is for first loop 

β1=0.18, γ1=0.6 and for the second loop β1=0.2, γ1=0.63 present in the process. Figure 7.36 

demonstrate the regulatory responses. The corresponding IAE values for different perturbations 

are given in Table 7.6. It is observed that the proposed method is robust. The IAE values for all 

three methods are given in Table 7.6 and 7.7 and as noticed in first example, the proposed method 

proved to perform better for this example as well.  

 

 

Figure 7.35 Output and control action behaviour for servo under exact model conditions for y1 

and y2 for example 9, solid – Present work, dash – (Hazarika and Chidambaram, 2014), dash 

dot– (Dasari et al., 2016). 
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Figure 7.36 Output and control action behaviour for regulatory under exact model conditions for 

y1 and y2 for example 9, solid – Present work, dash – (Hazarika and Chidambaram, 2014), dash 

dot– (Dasari et al., 2016). 

 

 

Figure 7.37 Output and control action behaviour for servo under 10% uncertainties to time delay   

for y1 and y2 for example 9, solid – Present work, dash – (Hazarika and Chidambaram, 2014), 

dash dot– (Dasari et al., 2016). 
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Figure 7.38 Output and control action behaviour for regulatory under 10% uncertainties to time 

delay  for y1 and y2 for example 9, solid – Present work, dash – (Hazarika and Chidambaram, 

2014), dash dot– (Dasari et al., 2016). 

 

Table 7.6 Analysis of IAE values for servo responses for example 9 

P
er

tu
rb

a
ti

o
n

s Proposed method Hazarika et al. Dasari et al. 

loop1 loop2  loop1  loop2 loop1  loop2 

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 

kp 2.41 0.00 0.00 2.41 7.91 0 0 7.89 8.8 0.01 0 7.734 

1.1kp 2.33 0.00 0.00 2.33 10.43 0.01 0 10.42 9.22 0.01 0 9.30 

0.9kp 3.80 0.00 0.00 3.81 4.82 0.01 0 4.8 9.87 0.011 0 7.39 

 2.41 0.00 0.00 2.41 7.91 0 0 7.89 8.8 0.01 0 7.734 

1.1 2.44 0.00 0.00 2.45 7.91 0.01 0 7.89 9.31 0.01 0 7.74 

0.9 2.99 0.00 0.00 2.99 7.91 0.01 0 7.89 8.35 0.01 0 7.74 

 2.41 0.00 0.00 2.41 7.91 0 0 7.89 8.8 0.01 0 7.734 

1.1 4.39 0.01 0.00 4.39 7.91 0.01 0 7.89 8.47 0.01 0 7.74 

0.9 1.85 0.00 0.00 1.85 7.91 0.01 0 7.89 9.12 0.01 0 7.74 
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Table 7.7 Analysis of IAE values for regulatory responses for example 9 

P
er

tu
rb

a
ti

o
n

s Proposed method 

 

Hazarika et al. Dasari et al. 

loop1 loop2 loop1 loop2 loop1  loop2 

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 

kp 5.6 9.35 9.34 4.66 27.81 46.37 46.35 23.17 20.58 28.75 34.29 14.37 

1.1kp 4.5 7.51 7.5 3.75 27.79 46.34 46.32 23.16 20.58 28.75 34.29 14.37 

0.9kp 8.39 14 13.9 6.9 27.81 46.37 46.35 23.17 27.44 37.05 45.73 18.47 

 5.6 9.35 9.34 4.66 27.81 46.37 46.35 23.17 20.58 28.75 34.29 14.37 

1.1 5.85 9.78 9.76 4.88 27.81 46.37 46.35 23.17 20.86 29.15 34.77 14.56 

0.9 5.91 9.87 9.86 4.93 27.81 46.37 46.34 23.17 20.58 28.75 34.29 14.37 

 5.6 9.35 9.34 4.66 27.81 46.37 46.35 23.17 20.58 28.75 34.29 14.37 

1.1 8.69 14.5 14.49 7.24 27.81 46.37 46.34 23.17 20.58 28.75 34.29 14.37 

0.9 5.06 8.45 8.43 4.21 27.81 46.37 46.35 23.17 20.72 28.96 34.54 14.47 

 

 Summary  

The determination of set point weighting parameters β and γ of a PID controller for unstable 

first and second order systems with time delay and TITO unstable process is found to be simple 

using the technique presented. Comprehending simulation results shown on different transfer 

function models, it is recognized that the overshoot and undershoot are reduced significantly in 

the present work. Assessment of the results with Nasution et al. (2011) and Hazarika and 

Chidambaram (2014) emphasized that, the present technique is easy to implement because of the 

simple calculation procedure to obtain the set weighting parameters. The same is observed for 

TITO systems when a comparison is made between Hazarika and Chidambaram (2014) method 

and Dasari et al. (2016) method. Moreover, an improvement is observed based on the ability to 

give a stable result even when the process parameters are subjected to varied perturbations. Further, 

the IAE and TV values are used to provide a quantitative assessment of the results obtained.   
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 Chapter 8         

 Summary and Conclusions  

 

 Summary 

 In this research, an enhanced design of optimal H2 PID controller for unstable process with 

time delay is addressed. A simple PID design method with and without set point filter and set point 

weighting are proposed. An experimental application of these PID design strategies is performed 

on an inverted pendulum. The proposed control strategy is applied to cascade control structure. 

Finally, a method is proposed for the set-point weighted PID controllers for SISO and MIMO 

unstable time-delay systems. The results obtained in each section are summarized below.  

8.1.1 Analytical PID tuning rules for unstable processes  

 

H2 minimization theory in combination with internal model control (IMC) is used to 

analytically derive novel PID controller settings which can be used as ready reference like look-

up tables. These analytical settings are  developed for a defined range of time delay to time constant 

ratio. Maximum sensitivity (Ms) is used for evaluating the robustness of the closed loop systems. 

Case studies are considered for unstable systems to evaluate the closed loop performances for set 

point variations and separately for load variations. Robustness is evaluated for uncertainities in the 

process model. Recently published methods in the literature are considered for performance 

comparison with the proposed method. Based on several simulation results, it is observed that the 

current methodology provides significantly enhanced performances when compared with those 

techniques available in the recent literature.  

8.1.2 Experimental implementation on an inverted pendulum  

 

A H2 minimization based IMC-PID controller has been proposed for controlling the angle 

of an inverted pendulum. The identification of the process has been carried out based on available 

model parameters and the controller is designed based on the model. The designed controller 

provides a good set point tracking and a good disturbance rejection. The proposed controller also 

shows good performances under experimental implementation. 
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8.1.3 Design of cascade control systems for unstable processes with time delay  

 

H2 minimization based IMC-PID controller design for enhanced control of unstable series 

cascade scheme is proposed. The scheme consists of secondary loop and primary loop. The 

secondary loop controller is designed based on the IMC principles. The primary controller is 

designed to obtain the H2 optimal performance. From the simulation studies, it is observed that 

proposed method provides enhanced closed loop performance when compared to the reported 

method in the literature. To analyze the robustness, the closed loop performances of the process 

model were analyzed in the presence of uncertainties.  
 

8.1.4 PID controller design for multivariable unstable processes  

  

 IMC based PID controller with lead-lag filter is designed for multivariable unstable processes. 

The design is based on H2 optimal closed loop transfer function for set point changes and step 

input disturbances. The individual controllers are designed based on the corresponding equivalent 

transfer function (ETF) model. Simplified decouplers are designed based on the ETF model. Two 

examples are considered to show the closed loop responses. The proposed method provides 

significantly improved closed loop performances for regulatory problem when compared to the 

methods in the literature. 

 

8.1.5 Enhanced set-point weighting design for unstable systems  

 

A method is proposed to design the set-point weighting parameters which is relatively simple 

and also reduces the overshoot significantly. Weighting is considered for both proportional (β) and 

derivative (γ) terms in the PID control law. In the closed loop relation for set-point tracking, the 

coefficients of ‘s’ and separately ‘s3’ both in the numerator and denominator are made equal in 

order to find β and γ. The obtained expressions for β and 𝛾 are simple and depends on the controller 

parameters. The design is carried out first for single input single output (SISO) unstable first order 

and second order processes with time delays and then for multi input multi output (MIMO) 

unstable processes. In MIMO process control, decouplers are considered to ensure that the loops 

have minimum interactions. With the designed values, the closed loop performance is evaluated 

for different SISO and MIMO unstable processes with time delay. The present method is also 
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compared with the recent methods proposed in the literature and it is observed that enhanced closed 

loop performances are achieved with the proposed method.   
 

 Conclusions 

8.2.1. Robust analytical relations for PID controller are developed for time delayed unstable 

systems. These rules can be used like look-up tables by the operators for tuning of PID controllers. 

For unstable systems, it is very crucial to select the tuning parameters to acquire stable responses. 

Robustness always requires lower values of Ms which is usually not easy to achieve for such 

systems. The tuning parameter is selected to achieve minimum possible value of Ms and analytical 

formula is given to calculate λ. Further, the developed simple tuning formulae provide fair and 

enhanced performances. The present methods can be utilized as look up tables for selection of the 

PID controller tuning parameters. Analytical formula is provided to determine λ based on μ/n. The 

current methodology is relatively simple and can be applied for any system with the right half 

plane pole. Comparative analysis has also been carried out using IAE and TV. The evaluated 

responses of the current design reduces 30% IAE values when compared with existing techniques, 

especially when μ/n is significant. One more important asset of the current methodology is that the 

controller output responses are not sluggish and provides minimal TV values.  

8.2.2 The Experimental implementation on an inverted pendulum to control pendulum rod angle 

control with PID controller shows good closed loop performances in tracking the set point with 

faster settling time (reduced by 64%) when compared to the method proposed by Begum et al. 

(2018) and Cho et al. (2014). The proposed method is also robust in the presence of disturbances 

affecting the cart position. 

 

8.2.3 Enhanced design of controllers is proposed for unstable time delayed cascade processes. The 

proposed method consists of only two controllers whereas in the previous methods, at least two or 

three controllers were used. The present design is comparatively easy and can be implemented for 

any unstable cascade system. The ability to provide good stable closed loop response even when 

there are large amount of perturbations in the process parameters is a major advantage of the 

proposed method over previously existing methods. Quantitative comparison is carried out using 

IAE and TV values and the proposed method  reduces 54% IAE values and 68% TV over the 

existing methods. Performance of the system for the proposed method is much better than that of 
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the previously existing methods particularly for the disturbance rejection. One more main 

advatange of the proposed method is that the control action respones are smooth in all the examples 

and correspondingly provides low TV values which is recommonded for any control system. 

8.2.4 Multivariable PID controller is series with lead lag filter is applied based on the equivalent 

transfer function (ETF) model for unstable multivariable systems with time delay. The method 

uses simplified decouplers which decompose the unstable multi-loop systems into independent 

loops with ETFs as the resulting decoupled process model having unstable poles. To reduce the 

undesirable overshoot, set point weighting is used. Two simulation examples are studied and 

showed that the present method provides significantly (reduced by 56% IAE values) improved 

closed loop regulatory performances when compared to the methods in the literature. However, 

the set-point tracking performances are not better for the proposed method 

8.2.5 The determination of set point weighting parameters β and γ of a PID controller for unstable 

first and second order systems with time delay and TITO unstable process is found to be simple 

using the technique presented. Comprehending the simulation results shown on different transfer 

function models, it is recognized that the overshoot, undershoot and 16% TV values are reduced 

compared with existing techniques. Assessment of the results with Nasution et al. (2011) and 

Hazarika and Chidambaram (2014) emphasized that, the present technique is easy to implement 

because of the simple calculation procedure to obtain the set weighting parameters. The same is 

observed for TITO systems when a comparison is made between Hazarika and Chidambaram, 

(2014) method and Dasari et al. (2016) method. Moreover, an improvement is observed based on 

the ability to give a stable result even when the process parameters are subjected to varied 

perturbations. Further, the IAE and TV values are used to provide a quantitative assessment of the 

results obtained.  
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 Suggestions for Future Work 

i. H2 minimization based IMC-PID control technique can be extended to higher order 

unstable processes models. 

ii. Parallel cascade control strategy with underdamped IMC filter structure can be developed 

for improved responses.  

iii. Experimental implementation can also be carried out on the other unstable processes such 

as (a) ball and beam and (b) magnetic levitation systems. 

iv. Control of Multivariable square as well as non-square unstable systems with more than two 

inputs and outputs can be studied.  
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 APPENDIX – A  

Definition of constraints for section 3.2: 

a1 = 18.167 (T)3 - 17.95 (T)2 +5.6733 (T) +1.428                                for  0.1≤ (T) ≤  0.4 

a1 = 0.1667 (T)3 - 0.3357 (T)2 – 0.053 (T) +2.0527                         for  0.4 < (T) ≤ 0.8 

a1 = - 0.333 (T)3 + 0.8 (T)2 – 0.9167 (T) + 2.272                             for  0.8< (T) ≤ 1.2 

b1 = - 2.88 (T)2 + 2.203 (T) – 0.8444                              for  0.1≤ (T) ≤ 0.3 

b1 = - 0.485 (T)2 + 0.8697 (T) – 0.6597                    for  0.3< (T) ≤ 0.6 

b1 = 0.066 (T)3 – 0.3245 (T)2 + 0.6276 (T) – 0.5864               for  0.6< (T) ≤1.2 

c1 = - 0.0455 (T)2 –3.267 (T) – 0.6616                                    for  0.1≤ (T) ≤ 0.3 

c1 = -0.7633 (T)3 + 1.654 (T)2 –1.544 (T) – 0.426                            for  0.3< (T) ≤ 0.7 

c1 = - 0.2148 (T)3 – 0.272 (T)2 – 0.262 (T) + 0.1358                        for  0.7< (T) ≤ 1.2 

a2 = 0.2733                    for 0.1≤ (T) ≤ 0.3 

a2 = 0.8202                    for 0.3< (T) ≤ 0.7 

a2 = - 0.0116 (T)2 + 0.015 (T) + 1.3621                               for  0.7< (T) ≤ 1.2 

b2 = 2.682                    for 0.1≤ (T) ≤ 0.8 

b2 = 2.682                    for 0.8< (T) ≤ 1.1 

b2 = 2.684                    for 1.1< (T) ≤1.2 

c2 = 0.0905 (T) + 0.7166                       for 0.1≤ (T) ≤ 0.3 

c2 = 0.276 (T) + 2.1473                                 for 0.3< (T) ≤ 0.7 

c2 = 0.283 (T)2 + 0.0848 (T) + 3.7066                              for 0.7< (T) ≤ 1.2 

a3 = - 0.8025 (T)2 + 1.2018 (T) –0.6698                        for  0.1≤ (T) ≤ 0.4 
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a3 = - 0.4936 (T)2 + 0.9362 (T) – 0.6127                    for  0.4< (T) ≤ 0.8 

a3 = 0.275 (T)3 – 1.064 (T)2 + 1.3443 (T) - 0.7144                            for  0.7< (T) ≤ 1.2 

b3 = - 0.045 (T)2 + 0.3773 (T) + 0.2469                    for  0.1≤ (T) ≤ 0.4 

b3 = 0.2667 (T)3 + 0.14 (T)2 + 0.3447 (T) + 0.247                for  0.4< (T) ≤ 0.8 

b3 = 0.625 (T)3 – 2.188 (T)2 + 2.3704 (T) - 0.339                 for  0.8< (T) ≤ 1.2 

c3 = - 0.525 (T)2 - 0.2445 (T) + 0.3935                    for  0.1≤ (T) ≤ 0.4 

c3 = - 0.505 (T)2 - 0.2009 (T) + 0.382                                     for  0.4< (T) ≤ 0.8 

c3 = - 0.346 (T)2 + 0.0206 (T) + 0.3038                                      for  0.8< (T) ≤ 1.2     
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 APPENDIX – B   

%......Closed loop response of UFOPTD system-Proposed Method .......% 

%--------------Example_1 for Chapter 3---------------% 

 

clc 

clear all 

  

steptime = 0;                              % step time value 

stepmag = 1;                              % step input change 

Noise=0; 

  

%Example 1 

% km = -0.017; thetam =2.4; taum = 5.8;               % Process model parameters 

% kp1 = -0.017; thetap1 = 2.4; taup1 = 5.8; 

% % give lamda and mf values 

 

% lamda = 3.87;mf1=1;mf2=1;mf3=1; 

% epsilon = 1;%mean=0;variance=0.0025; 

%  

% flag=0;                                                     % Specify 0 for Perfect model and 1 for Perturbations  

% if flag==0 

%     tsim=120; disttime = 60; distmag =50; 

% elseif flag==1 

%     tsim=1000; disttime = 500; distmag = 20; 

% end 

% if flag==0     

%     kp = -0.017; thetap = 2.4; taup = 5.8; 

% elseif flag==1 

%     kp = -0.017*0.9; thetap = 2.4*1.1; taup = 5.8*0.9; 

% end 

  

  

 %----------- Controller equations of the present method-----------% 

 

 X=thetam/taum 

  

if (X>=0.1) && (X<=0.4) 

    a1    =18.167*X^3-17.95*X^2+5.6733*X+1.428; 

    else if (X>0.4) && (X<=0.8) 

    a1   = 0.1667*X^3-0.3357*X^2-0.053*X+2.0527;     

    else if (X>0.8) && (X<=1.2)     

    a1   =-0.3333*X^3+0.8*X^2-0.9167*X+2.272; 

    else  
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       disp('rules are applicable for only 0.1<=theta/taup<=1.2'); 

        end 

        end 

end 

    

      

if (X>=0.1) && (X<=0.3) 

  

       b1   =-2.88*X^2+2.203*X-0.8444; 

  

else if (X>0.3) && (X<=0.6) 

  

       b1   =-0.485*X^2+0.8697*X-0.6597; 

  

else if (X>0.6) && (X<=1.2) 

       b1   =0.0667*X^3-0.3245*X^2+0.6276*X-0.5864; 

  

    end 

    end 

end 

  

  if (X>=0.1) && (X<=0.3)  

       c1   =0.0455*X^2-3.267*X+0.6616; 

       else if (X>0.3) && (X<=0.7) 

               c1=-0.7633*X^3+1.6539*X^2-1.5449*X+0.4259; 

               else if (X>0.7) && (X<=1.2) 

                       c1   =0.2148*X^3-0.2715*X^2-0.262*X+0.1358; 

                   end 

           end 

   end 

  

  

if (X>=0.1) && (X<=0.3) 

 a2   =0.2733; 

else if (X>0.3) && (X<=0.7) 

 a2   =0.8202; 

else if (X>0.7) && (X<=1.2) 

  

a2   =-0.0116*X^2+0.0151*X+1.3621; 

end 

    end 

end 

 if (X>=0.1) && (X<=0.8) 

 b2   =2.682; 

 else if (X>0.8) && (X<=1.1) 

b2   =2.683; 
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else if (X>1.1) && (X<=1.2) 

b2   =2.684; 

end 

    end 

end 

  

if (X>=0.1) && (X<=0.3) 

 c2   =0.0905*X+0.7166; 

  

else if (X>0.3) && (X<=0.7) 

 c2   =0.276*X+2.1473; 

 else if (X>0.7) && (X<=1.2) 

 c2   =0.283*X^2+0.0848*X+3.7066; 

 end 

    end 

end 

   

if (X>=0.1) && (X<=0.4) 

  

 a3   =-0.8025*X^2+1.2018*X-0.6698; 

 else if (X>0.4) && (X<=0.8) 

 a3   =-0.4936*X^2+0.9362*X-0.6127; 

 else if (X>0.8) && (X<=1.2) 

 a3   =0.275*X^3-1.0643*X^2+1.3443*X-0.7144; 

  

        end 

        end 

end 

  

  

if (X>=0.1) && (X<=0.4) 

  

 b3   =-0.045*X^2+0.3773*X+0.2469; 

else if (X>0.4) && (X<=0.8) 

 b3   =-0.2667*X^3+0.14*X^2+0.3447*X+0.2473; 

else if (X>0.8) && (X<=1.2) 

 b3   =0.625*X^3-2.1886*X^2+2.3704*X-0.3396; 

  

        end 

        end 

end 

  

if (X>=0.1) && (X<=0.4) 

c3   =0.525*X^2-0.2445*X+0.3935; 

else if (X>0.4) && (X<=0.8) 

c3   =0.505*X^2-0.2009*X+0.382; 
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else if (X>0.8) && (X<=1.2) 

c3   =0.3468*X^2+0.0206*X+0.3038; 

  

        end 

        end 

end 

 kc= ((a1*((lamda/taum)^b1)+c1)/km)*mf1; 

ti= ((a2*((lamda/taum)^b2)+c2)*taum)*mf2; 

td=  ((a3*((lamda/taum)^b3)+c3)*taum)*mf3; 

  

Gc_Present_Method = [kc ti td]; 

 

% %----------------------------Simulation(Simulink) --------------------------------% 

 

  

sim('PresentMethod3',tsim); 

  

% sim('Present Method',tsim); 

 

%--------------------Calculation of IAE & TV----------------------------------% 

 

   

IAE_Present=sum(abs(stepmag-y_PM)*0.01); 

TV_Present=sum(abs(diff(u_PM))); 

   ;         %...Total variation....% 

  

subplot(2,1,1) 

  plot(t,y_PM,'b','linewidth',2) 

  hold on 

  xlabel('Time'); ylabel('Outputs'); 

subplot(2,1,2) 

  plot(t,u_PM,'b','linewidth',2) 

    hold on 

  xlabel('Time'); ylabel('Control actions'); 

  

   

%-------------------Calculationof Ms------------------%  

 

 

% kp1 = 1; thetap1 = 0.5; taup1 = 1; 

ww=logspace(-2,2,300); 

for ii=1:300 

    w=ww(ii); 

    xx = j*w; 

    Gp = kp1*exp(-thetap1*xx)/(taup1*xx-1); % Unstable FOPTD Process 

    Gc = (kc*(1+(1/(ti*xx))+(td*xx)/(0.01*td*xx+1))); 
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    S(ii) = abs((1+Gc*Gp)^(-1)); % Sensitivity Function Description 

 end 

n = length(S); 

for k=1:n 

   if S(k+1)>=S(k) 

       Mss=S(k+1);      % maxium value of sensitivity  

   else 

       break; 

   end 

end 

Ms_Present = Mss  

 

%-----------------------Display-------------------------------------% 

 

  

ALL = [IAE_Present TV_Present Ms_Present]; 

disp('     PID Controller Settings Calculated          '); 

disp('********************************************************'); 

fprintf('\tKc\t        Ti\t      Td\n'); 

fprintf('%8.4f\t%9.4f\t %6.4f  \n',Gc_Present_Method); 

disp('*********************************************************'); 

disp('     IAE, TV and Ms Values Calculated          '); 

disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'); 

fprintf('\tIAE_Present\t        TV_Present\t      Ms_Present\n'); 

fprintf('%12.4f\t%16.4f\t %13.4f  \n',ALL); 

disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'); 
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Simulink block diagram-UFOPTD_Ex1 
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 APPENDIX – C  

 

%......Optimal H2 IMC-PID controller with set-point weighting for cascaded Time-Delayed 

Unstable process for SOUDP with two unstable pole.......% 

%--------------Example_4 for chapter 5---------------% 

 

clear all 

clc 

 

% G2(s)=kp2*exp(-d2*s)/(tp2*s+1)% 

% .... G(s)= kp*exp(-d*s)/(t1*s-1)(t2*s-1)......% 

  

flag=1;    %flag = 0 (Perfect Model) 

           %flag = 1 (Perturbations of ) 

steptime = 0; stepmag = 1; 

  

if flag==0 

    tsim=1400; 

    disttime1 = 500;   % Secondary loop 

    distmag1 = -0.5; 

    disttime2 = 800;    % Primary loop before process 

    distmag2 = -0.2; 

    disttime3 = 0;      % Primary loop after the process 

    distmag3 = 0; 

elseif flag==1 

    tsim=1400; 

    disttime1 = 500;   % Secondary loop 

    distmag1 = -0.5; 

    disttime2 = 800;    % Primary loop before process 

    distmag2 = -0.2; 

    disttime3 = 0;      % Primary loop after te process 

    distmag3 = 0; 

end 

  

if flag==0 

    kp2 = 1; d2 = 0.5; tp2 = 3; % Secondary process 

    kp1 = 3.433; d1 = 20; tp1 = 103.1; % Primary process 

elseif flag==1 

    kp2 = 1; d2 = 0.5*1.3; tp2 = 3; % Secondary process 

    kp1 = 3.433; d1 = 20*1.3; tp1 = 103.1; % Primary process 

end 
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%----------- Controller equations of the present method-----------% 

 

 

kp2m = 1; d2m = 0.5; tp2m = 3;  % Secondary loop model 

  

lamda2 = 0.5*d2; 

lamda = 22;%6.6 

  

kp = -3.433; d = 20.5; t1 = 103.1; t2 = -lamda2; % Primary loop model 

  

%...........let us define a,b,x,y as follows for simplicity........% 

a=(t2*(exp(d/t2)-1)); 

b=(t1*(exp(d/t1)-1)); 

x=(t1*t2*(a-b)*(1/(t1^2)))+(((t1*b)-(t2*a))*(1/t1))+(t1-t2); 

y=(t1*t2*(a-b)*(1/(t2^2)))+(((t1*b)-(t2*a))*(1/t2))+(t1-t2); 

  

%......filter coefficients alpha1 and alpha2 where 

F(s)=(alpha2*(s^2)+alpha1*s+1)/((lamda*s+1)^4)....% 

  

alpha1=(((((lamda/t1)+1)^4)*(t1-t2)*t1*(exp(d/t1))*(1/x)))-t1; 

a1 = -(t1+t2); 

a2 = (t1*t2); 

D = t1-t2; 

p = t1*t2*(t1-t2-(t1*(exp(d/t1)))+(t2*(exp(d/t2)))); 

q = ((t1^2)*(exp(d/t1))-(t2^2)*(exp(d/t2))+(t2^2)-(t1^2)); 

R = (4*lamda*D)+(d*D)-(alpha1*D)-(q); 

X1=((6*D*(lamda^2))+(2*d*lamda*D)-(p)-(alpha1*q)+(0.5*d*q)+(0.5*d*D*alpha1))/R; 

beta1 = (X1-a1-(0.5*d)); 

kc = (q/(kp*R)); 

tr = (q/D); 

td = (p/q); 

Gc = [kc tr td alpha1 beta1] 

  

tff = 2/td; 

 

 

% %----------------------------Simulation(Simulink) --------------------------------% 

  

sim('Ex4_CSTR',tsim); 

    

%%%%%% ERROR VALUES CALCULATION %%%%%%%%%%%%%%%%%%%%%% 

 

st = 0.01; % sampling time 

IAE = sum(abs(1-y1)*st) 

TV = sum(abs(diff(u1)));          % Total Variation...% 

r = [IAE;TV]; 
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%__________________________________________________________________________ 

%-----------------------Display-------------------------------------% 

 

disp('    IAE and TV Values       '); 

disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'); 

fprintf('\tIAE\t        TV\t\n'); 

fprintf('%8.4f\t%8.4f\t   \n',r); 

disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'); 

%---------------------------------------------------------------------%% 

subplot(2,1,1) 

    plot(t,y1,'r--','LineWidth',2) 

    xlabel('Time','fontsize',12,'fontweight','b') 

    ylabel('Closed loop output, y','fontsize',12,'fontweight','b') 

hold on 

    subplot(2,1,2) 

    plot(t,u1,'r--','LineWidth',2) 

    xlabel('Time','fontsize',12,'fontweight','b'); 

    ylabel('Control action, u','fontsize',12,'fontweight','b') 

hold on 

return 
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Simulink block diagram-Cascade Control_Ex_4 
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 APPENDIX – D   

%......Optimal H2 IMC-PID controller for unstable multivariable processes  .......% 

%--------------Example_1_Servo Case for chapter 6---------------% 

 

clear all; 

clc; 

  

kp11 = 1.6;   

tp11 = -2.6; 

thetap11 = 1*.1; 

  

kp12 = 0.6;   

tp12 = 2.5;   

thetap12 = 1.5*1.1; 

  

kp21 = 0.7;   

tp21 = 3; 

thetap21 = 1.5*1.1; 

  

kp22 = 1.7;   

tp22 = -2.2;   

thetap22 = 1*1.1; 

  

km1 = -1.3529; tm1 = 2.4396; thetam1 = 0.9383; 

lamda1 = 2.7;   %% Recommonded value is 2.1 

  

km2 = -1.437; tm2 = 2.0643; thetam2 = 0.9383; 

lamda2 = 2.5;   

  

tff1 = 25; 

tff2 = 25; 

tsim=100; 

%%%%Proposed method%%%%%%%% 

 

%----------- Controller equations of the present method-----------% 

 

    

x1=(exp(thetam1/tm1)-1)*tm1;     %...for simplicity define x..% 

  

ann1 =(lamda1)*((lamda1/tm1)^2+(3*(lamda1/tm1))+3) ;   

  

an1 = 1*ann1; 
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kc1=-(4*thetam1)/(km1*((18*lamda1)+(6*thetam1)-(6*an1)-(6*x1))); 

  

tau_i1=(2*thetam1)/3; 

  

tau_d1=thetam1/4; 

  

bdd1 =((18*(lamda1^2))+(12*lamda1*thetam1)+(thetam1^2)+(2*thetam1*an1)-

(6*an1*x1)+(2*thetam1*x1))/((18*lamda1)+(6*thetam1)-(6*an1)-(6*x1))+tm1-x1; 

 bd1 = bdd1; 

  

kcp1 = round(kc1*10000)/10000; 

tau_ip1 = round(tau_i1*10000)/10000; 

tau_dp1 = round(tau_d1*10000)/10000; 

anpp1 = round(an1*10000)/10000; 

bdp1 = round(bd1*10000)/10000; 

    

 Gc_Proposed_rounded1 = [kcp1 tau_ip1 tau_dp1 anpp1 bdp1]   

 Gc_proposed1 = [kc1 tau_i1 tau_d1 an1 bd1] 

  

  

  

    

x2=(exp(thetam2/tm2)-1)*tm2;     %...for simplicity define x..% 

  

ann2 =(lamda2)*((lamda2/tm2)^2+(3*(lamda2/tm2))+3) ;   

  

an2 = 1*ann2; 

  

kc2=-(4*thetam2)/(km2*((18*lamda2)+(6*thetam2)-(6*an2)-(6*x2))); 

  

tau_i2=(2*thetam2)/3; 

  

tau_d2=thetam2/4; 

  

bdd2 =((18*(lamda2^2))+(12*lamda2*thetam2)+(thetam2^2)+(2*thetam2*an2)-

(6*an2*x2)+(2*thetam2*x2))/((18*lamda2)+(6*thetam2)-(6*an2)-(6*x2))+tm2-x2; 

 bd2 = bdd2; 

  

kcp2 = round(kc2*10000)/10000; 

tau_ip2 = round(tau_i2*10000)/10000; 

tau_dp2 = round(tau_d2*10000)/10000; 

anpp2 = round(an2*10000)/10000; 

bdp2 = round(bd2*10000)/10000; 

    

 Gc_Proposed_rounded2 = [kcp2 tau_ip2 tau_dp2 anpp2 bdp2]   

 Gc_proposed2 = [kc2 tau_i2 tau_d2 an2 bd2] 
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stepmag1 = 1; 

stepmag2 = 0; 

stepmag3 = 0; 

stepmag4 = 0; 

  

   sim('servoex1',tsim); 

   load y1; 

   subplot(2,2,1) 

   plot(z(1,:),z(2,:),'linewidth',2); 

   hold on 

    

   sim('doublex1',tsim); 

   load y1; 

   subplot(2,2,1) 

   plot(z(1,:),z(2,:),'r--','linewidth',2); 

   xlabel('Time'); 

   ylabel('y1'); 

    

   sim('servoex1',tsim); 

   load y2; 

   subplot(2,2,2) 

   plot(q(1,:),q(2,:),'linewidth',2); 

   xlabel('Time'); 

   ylabel('y2'); 

   hold on 

    

   sim('doublex1',tsim); 

   load y2; 

   subplot(2,2,2) 

   plot(q(1,:),q(2,:),'r--','linewidth',2); 

    

  

stepmag1 = 0; 

stepmag2 = 1; 

stepmag3 = 0; 

stepmag4 = 0; 

  

   sim('servoex1',tsim); 

   load y1; 

   subplot(2,2,3) 

   plot(z(1,:),z(2,:),'linewidth',2); 

   hold on 

    

   sim('doublex1',tsim); 

   load y1; 
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   subplot(2,2,3) 

   plot(z(1,:),z(2,:),'r--','linewidth',2); 

   xlabel('Time'); 

   ylabel('y1'); 

    

   sim('servoex1',tsim); 

   load y2; 

   subplot(2,2,4) 

   plot(q(1,:),q(2,:),'linewidth',2); 

   xlabel('Time'); 

   ylabel('y2');    

   hold on 

    

   sim('doublex1',tsim); 

   load y2; 

   subplot(2,2,4) 

   plot(q(1,:),q(2,:),'r--','linewidth',2); 
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Simulink block diagram-Unstable multivariable processes _Servo_Ex_1 
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%--------------Example_2_Regulatory Case for Unstable multivariable processes ------------% 

 

clear all 

clc 

  

kp11 = -1;   

tp11 = -1.6667; 

thetap11 = 1*1.1; 

  

kp12 = -1.6667;   

tp12 = -1.6667;   

thetap12 = 1*1.1; 

  

kp21 = -1.6667;   

tp21 = -1.6667; 

thetap21 = 1*1.1; 

  

kp22 = -0.8333;   

tp22 = -1.6667;   

thetap22 = 1*1.1; 

  

km1 = -2.3348; tm1 = 1.6667; thetam1 = 1; 

lamda1 = 2.7;   %% Recommonded value is 2.1 

  

km2 = -1.9456; tm2 = 1.6667; thetam2 = 1; 

lamda2 = 2.5;   

  

tff1 = 25; 

tff2 = 25; 

stepmag1 = 0; 

stepmag2 = 0; 

stepmag3=1; 

stepmag4=0; 

tsim=100; 

%%%%Proposed method%%%%%%%% 

    

x1=(exp(thetam1/tm1)-1)*tm1;     %...for simplicity define x..% 

  

ann1 =(lamda1)*((lamda1/tm1)^2+(3*(lamda1/tm1))+3) ;   

  

an1 = 1*ann1; 

  

kc1=-(4*thetam1)/(km1*((18*lamda1)+(6*thetam1)-(6*an1)-(6*x1))); 

  

tau_i1=(2*thetam1)/3; 
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tau_d1=thetam1/4; 

  

bdd1 =((18*(lamda1^2))+(12*lamda1*thetam1)+(thetam1^2)+(2*thetam1*an1)-

(6*an1*x1)+(2*thetam1*x1))/((18*lamda1)+(6*thetam1)-(6*an1)-(6*x1))+tm1-x1; 

 bd1 = bdd1; 

  

kcp1 = round(kc1*10000)/10000; 

tau_ip1 = round(tau_i1*10000)/10000; 

tau_dp1 = round(tau_d1*10000)/10000; 

anpp1 = round(an1*10000)/10000; 

bdp1 = round(bd1*10000)/10000; 

    

 Gc_Proposed_rounded1 = [kcp1 tau_ip1 tau_dp1 anpp1 bdp1]   

 Gc_proposed1 = [kc1 tau_i1 tau_d1 an1 bd1] 

       

x2=(exp(thetam2/tm2)-1)*tm2;     %...for simplicity define x..% 

  

ann2 =(lamda2)*((lamda2/tm2)^2+(3*(lamda2/tm2))+3) ;   

  

an2 = 1*ann2; 

  

kc2=-(4*thetam2)/(km2*((18*lamda2)+(6*thetam2)-(6*an2)-(6*x2))); 

  

tau_i2=(2*thetam2)/3; 

  

tau_d2=thetam2/4; 

  

bdd2 =((18*(lamda2^2))+(12*lamda2*thetam2)+(thetam2^2)+(2*thetam2*an2)-

(6*an2*x2)+(2*thetam2*x2))/((18*lamda2)+(6*thetam2)-(6*an2)-(6*x2))+tm2-x2; 

 bd2 = bdd2; 

 kcp2 = round(kc2*10000)/10000; 

tau_ip2 = round(tau_i2*10000)/10000; 

tau_dp2 = round(tau_d2*10000)/10000; 

anpp2 = round(an2*10000)/10000; 

bdp2 = round(bd2*10000)/10000; 

    

 Gc_Proposed_rounded2 = [kcp2 tau_ip2 tau_dp2 anpp2 bdp2]   

 Gc_proposed2 = [kc2 tau_i2 tau_d2 an2 bd2] 

    sim('regulex2',tsim); 

   load y1; 

   subplot(2,2,1) 

   plot(z(1,:),z(2,:),'linewidth',2); 

   hold on 

      load y2; 

   subplot(2,2,2) 

   plot(q(1,:),q(2,:),'linewidth',2); 
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   xlabel('Time'); 

   ylabel('y2'); 

   hold on 

      sim('regul2ex2',tsim); 

   load y1y; 

   subplot(2,2,1) 

   plot(y1y(1,:),y1y(2,:),'r--','linewidth',2); 

   xlabel('Time'); 

   ylabel('y1'); 

    

   load y2y; 

   subplot(2,2,2) 

   plot(y2y(1,:),y2y(2,:),'r--','linewidth',2); 

  

stepmag1 = 0; 

stepmag2 = 0; 

stepmag3=0; 

stepmag4=1; 

    sim('regulex2',tsim); 

   load y1; 

   subplot(2,2,3) 

   plot(z(1,:),z(2,:),'linewidth',2); 

   hold on 

    

   load y2; 

   subplot(2,2,4) 

   plot(q(1,:),q(2,:),'linewidth',2); 

   xlabel('Time'); 

   ylabel('y2');    

   hold on 

    

   sim('regul2ex2',tsim); 

   load y1y; 

   subplot(2,2,3) 

   plot(y1y(1,:),y1y(2,:),'r--','linewidth',2); 

   xlabel('Time'); 

   ylabel('y1'); 

    

    

   load y2y; 

   subplot(2,2,4) 

   plot(y2y(1,:),y2y(2,:),'r--','linewidth',2); 
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Simulink block diagram-Unstable multivariable processes _Regulatory_Ex_2 
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 APPENDIX – E  

 

%......Dynamic Set-Point Weighting Design for SISO  .......% 

%--------------Example_1 for chapter 7---------------% 

 

clc 

clear all 

steptime = 0; stepmag = 1;e=0.1; 

 % Example:1 

kp = 1; thetap = 1.2; taup = 1; 

%tsim=50; 

flag=1;    % Specify 0 for Perfect model and 1 for Perturbations  

if flag==0 

    tsim=80; disttime = 40; distmag =0.1; 

elseif flag==1 

    tsim=100; disttime = 50; distmag =0.1;              

end 

if flag==0     

    kp1 = 1; thetap1 = 1.2; taup1 = 1; 

elseif flag==1 

    kp1 = 1; thetap1 = 1.2*1.05; taup1 = 1; 

end 

  lamda=3; 

kc= 1.15; 

ti= 63.5; 

td=  0.56;                                          

p1=0.7; 
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p2=0.3; 

beta=(p1*(1-(1/(kc*kp))-(thetap/ti)))   %for FOPTD 

% beta =(p1+(p1/(kc*kp))-((0.5*thetap)/ti)*(1+p1)+((p1-1)/ti))   %FOR USOPTD 

% gama= p2*(1-(0.5*(1/ti)*(thetap+1))+(0.5*thetap)/(kc*kp)) 

% gama= p2*(1+(taup-(0.5*thetap))/(taup*kc*kp)-(((0.5*thetap)*(1+beta))/td)) %for% FOPTD 

s^2 

  

gama=   p2*(((taup)/((kc*kp)*td))-1) %for FOPTD s^3 

% gama=0; 

w =(1-beta)*kc; 

% m=((kc*td)*(1-gama)); 

sim('PresentMethod_setpoint2',tsim); 

   

IAE_Present=sum(abs(stepmag-y_PM)*0.01) 

TV_Present = sum(abs(diff(u_PM)))          %...Total variation....% 

ITAE_present= sum((abs(stepmag-y_PM))*tsim*0.01) 

ISE_present= sum((abs(stepmag-y_PM).^2)*0.01) 

a=[0:0.01:tsim]; 

S = stepinfo(y_PM,a) 

 subplot(2,1,1) 

 plot(t,y_PM,'b','linewidth',4) 

  hold on 

  xlabel('Time'); ylabel('Outputs'); 

subplot(2,1,2) 

  plot(t,u_PM,'b','linewidth',4) 

    hold on 

  xlabel('Time'); ylabel('Control actions'); 
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Simulink block diagram- Dynamic Set-Point Weighting Design for SISO _Ex_1 
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%......Dynamic Set-Point Weighting Design for MIMO  .......% 

%--------------Example_1 for chapter 7---------------% 

 

clear all 

clc 

  

% example 1  

pb1=1;pb2=1;pb3=1; 

kp11 = 1.6*pb1;   

tp11 = -2.6*pb2; 

thetap11 = 1*pb3; 

  

kp12 = 0.6*pb1;   

tp12 = 2.5*pb2;   

thetap12 = 1.5*pb3; 

  

kp21 = 0.7*pb1;   

tp21 = 3*pb2; 

thetap21 = 1.5*pb3; 

  

kp22 = 1.7*pb1;   

tp22 = -2.2*pb2;   

thetap22 = 1*pb3; 

  

km1 = -1.3529; tm1 = 2.4396; thetam1 = 0.9383; 

km2 = -1.437; tm2 = 2.0643; thetam2 = 0.9383; 

  

e=0.1; 

tff1=10; 

tff2=15; 

  

% lamda1 = 1.5;  

% lamda2 = 1.5;  

 mf1=1;mf2=1;mf3=1; 

  

  

%------------------------------------------------- 

  

X1=thetam1/tm1 

  

if (X1>=0.1) && (X1<=0.4) 

    a1    =18.167*X1^3-17.95*X1^2+5.6733*X1+1.428; 

    else if (X1>0.4) && (X1<=0.8) 

    a1   = 0.1667*X1^3-0.3357*X1^2-0.053*X1+2.0527;     

    else if (X1>0.8) && (X1<=1.2)     
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    a1   =-0.3333*X1^3+0.8*X1^2-0.9167*X1+2.272; 

    else  

       disp('rules are applicable for only 0.1<=theta/taup<=1.2'); 

        end 

        end 

end 

    

      

if (X1>=0.1) && (X1<=0.3) 

  

       b1   =-2.88*X1^2+2.203*X1-0.8444; 

  

else if (X1>0.3) && (X1<=0.6) 

  

       b1   =-0.485*X1^2+0.8697*X1-0.6597; 

  

else if (X1>0.6) && (X1<=1.2) 

       b1   =0.0667*X1^3-0.3245*X1^2+0.6276*X1-0.5864; 

  

    end 

    end 

end 

  

  if (X1>=0.1) && (X1<=0.3)  

       c1   =0.0455*X1^2-3.267*X1+0.6616; 

       else if (X1>0.3) && (X1<=0.7) 

               c1=-0.7633*X1^3+1.6539*X1^2-1.5449*X1+0.4259; 

               else if (X1>0.7) && (X1<=1.2) 

                       c1   =0.2148*X1^3-0.2715*X1^2-0.262*X1+0.1358; 

                   end 

           end 

   end 

  

  

  

  

if (X1>=0.1) && (X1<=0.3) 

 a2   =0.2733; 

else if (X1>0.3) && (X1<=0.7) 

 a2   =0.8202; 

else if (X1>0.7) && (X1<=1.2) 

  

a2   =-0.0116*X1^2+0.0151*X1+1.3621; 

end 

    end 

end 
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 if (X1>=0.1) && (X1<=0.8) 

 b2   =2.682; 

 else if (X1>0.8) && (X1<=1.1) 

b2   =2.683; 

else if (X1>1.1) && (X1<=1.2) 

b2   =2.684; 

end 

    end 

end 

  

if (X1>=0.1) && (X1<=0.3) 

 c2   =0.0905*X1+0.7166; 

  

else if (X1>0.3) && (X1<=0.7) 

 c2   =0.276*X1+2.1473; 

 else if (X1>0.7) && (X1<=1.2) 

 c2   =0.283*X1^2+0.0848*X1+3.7066; 

 end 

    end 

end 

  

  

if (X1>=0.1) && (X1<=0.4) 

  

 a3   =-0.8025*X1^2+1.2018*X1-0.6698; 

 else if (X1>0.4) && (X1<=0.8) 

 a3   =-0.4936*X1^2+0.9362*X1-0.6127; 

 else if (X1>0.8) && (X1<=1.2) 

 a3   =0.275*X1^3-1.0643*X1^2+1.3443*X1-0.7144; 

  

        end 

        end 

end 

  

  

if (X1>=0.1) && (X1<=0.4) 

  

 b3   =-0.045*X1^2+0.3773*X1+0.2469; 

else if (X1>0.4) && (X1<=0.8) 

 b3   =-0.2667*X1^3+0.14*X1^2+0.3447*X1+0.2473; 

else if (X1>0.8) && (X1<=1.2) 

 b3   =0.625*X1^3-2.1886*X1^2+2.3704*X1-0.3396; 

  

        end 

        end 

end 
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 if (X1>=0.1) && (X1<=0.4) 

c3   =0.525*X1^2-0.2445*X1+0.3935; 

else if (X1>0.4) && (X1<=0.8) 

c3   =0.505*X1^2-0.2009*X1+0.382; 

else if (X1>0.8) && (X1<=1.2) 

c3   =0.3468*X1^2+0.0206*X1+0.3038; 

  

        end 

        end 

end 

  

    

lamda1 = (2.0957*(X1)^2 + 0.9634*(X1) - 0.0889)*(tm1) 

kc1= ((a1*((lamda1/tm1)^b1)+c1)/km1)*mf1; 

tau_i1= ((a2*((lamda1/tm1)^b2)+c2)*tm1)*mf2; 

tau_d1=  ((a3*((lamda1/tm1)^b3)+c3)*tm1)*mf3; 

  

Gc_Present_Method1 = [kc1 tau_i1 tau_d1]; 

  

  

% kc1=((kca*((lamda1/tm1)^kcb)+kcc)/km1)*mf1 

% tau_i1=((tia*((lamda1/tm1)^tib)+tic)*tm1)*mf2 

% tau_d1=((tda*((lamda1/tm1)^tdb)+tdc)*tm1)*mf3 

  

%--------------------------------------------------------------------------------- 

X2=thetam2/tm2 

  

if (X2>=0.1) && (X2<=0.4) 

    a11    =18.167*X2^3-17.95*X2^2+5.6733*X2+1.428; 

    else if (X2>0.4) && (X2<=0.8) 

    a11   = 0.1667*X2^3-0.3357*X2^2-0.053*X2+2.0527;     

    else if (X2>0.8) && (X2<=1.2)     

    a11   =-0.3333*X2^3+0.8*X2^2-0.9167*X2+2.272; 

    else  

       disp('rules are applicable for only 0.1<=theta/taup<=1.2'); 

        end 

        end 

end 

    

      

if (X2>=0.1) && (X2<=0.3) 

  

       b11   =-2.88*X2^2+2.203*X2-0.8444; 

  

else if (X2>0.3) && (X2<=0.6) 
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       b11   =-0.485*X2^2+0.8697*X2-0.6597; 

  

else if (X2>0.6) && (X2<=1.2) 

       b11   =0.0667*X2^3-0.3245*X2^2+0.6276*X2-0.5864; 

  

    end 

    end 

end 

  

  if (X2>=0.1) && (X2<=0.3)  

       c11   =0.0455*X2^2-3.267*X2+0.6616; 

       else if (X2>0.3) && (X2<=0.7) 

               c11=-0.7633*X2^3+1.6539*X2^2-1.5449*X2+0.4259; 

               else if (X2>0.7) && (X2<=1.2) 

                       c11   =0.2148*X2^3-0.2715*X2^2-0.262*X2+0.1358; 

                   end 

           end 

   end 

  

  

   

if (X2>=0.1) && (X2<=0.3) 

 a22   =0.2733; 

else if (X2>0.3) && (X2<=0.7) 

 a22   =0.8202; 

else if (X2>0.7) && (X2<=1.2) 

  

a22   =-0.0116*X2^2+0.0151*X2+1.3621; 

end 

    end 

end 

  

  

if (X2>=0.1) && (X2<=0.8) 

 b22   =2.682; 

 else if (X2>0.8) && (X2<=1.1) 

b22   =2.683; 

else if (X2>1.1) && (X2<=1.2) 

b22   =2.684; 

end 

    end 

end 

  

if (X2>=0.1) && (X2<=0.3) 

 c22   =0.0905*X2+0.7166; 

  



191 
 

else if (X2>0.3) && (X2<=0.7) 

 c22   =0.276*X2+2.1473; 

 else if (X2>0.7) && (X2<=1.2) 

 c22   =0.283*X2^2+0.0848*X2+3.7066; 

 end 

    end 

end 

  

  

if (X2>=0.1) && (X2<=0.4) 

  

 a33   =-0.8025*X2^2+1.2018*X2-0.6698; 

 else if (X2>0.4) && (X2<=0.8) 

 a33   =-0.4936*X2^2+0.9362*X2-0.6127; 

 else if (X2>0.8) && (X2<=1.2) 

 a33   =0.275*X2^3-1.0643*X2^2+1.3443*X2-0.7144; 

  

        end 

        end 

end 

  

  

if (X2>=0.1) && (X2<=0.4) 

  

 b33   =-0.045*X2^2+0.3773*X2+0.2469; 

else if (X2>0.4) && (X2<=0.8) 

 b33   =-0.2667*X2^3+0.14*X2^2+0.3447*X2+0.2473; 

else if (X2>0.8) && (X2<=1.2) 

 b33   =0.625*X2^3-2.1886*X2^2+2.3704*X2-0.3396; 

  

        end 

        end 

end 

  

if (X2>=0.1) && (X2<=0.4) 

c33   =0.525*X2^2-0.2445*X2+0.3935; 

else if (X2>0.4) && (X2<=0.8) 

c33   =0.505*X2^2-0.2009*X2+0.382; 

else if (X2>0.8) && (X2<=1.2) 

c33   =0.3468*X2^2+0.0206*X2+0.3038; 

  

        end 

        end 

end 
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 lamda2 = (2.0957*(X2)^2 + 0.9634*(X2) - 0.0889)*(tm2) 

kc2= ((a11*((lamda2/tm2)^b11)+c11)/km2)*mf1; 

tau_i2= ((a22*((lamda2/tm2)^b22)+c22)*tm2)*mf2; 

tau_d2=  ((a33*((lamda2/tm2)^b33)+c33)*tm2)*mf3; 

  

Gc_Present_Method2 = [kc2 tau_i2 tau_d2]; 

  

% kc2=((kca*((lamda2/tm2)^kcb)+kcc)/km2)*mf1 

% tau_i2=((tia*((lamda2/tm2)^tib)+tic)*tm2)*mf2 

% tau_d2=((tda*((lamda2/tm2)^tdb)+tdc)*tm2)*mf3 

%--------------------------------------------------------------- 

  

  

p1=0.7; 

p2=0.3; 

  

beta1=(p1*(1-(1/(kc1*km1))-(thetam1/tau_i1)))  

gama1=   p2*(((tm1)/((kc1*km1)*tau_d1))-1) 

w1 =(1-beta1)*kc1; 

  

  

beta2=(p1*(1-(1/(kc2*km2))-(thetam2/tau_i2)))  

gama2=   p2*(((tm2)/((kc2*km2)*tau_d2))-1) 

w2 =(1-beta2)*kc2; 

  

  

stepmag1=1; 

stepmag2=0; 

stepmag3=0; 

stepmag4=0; 

tsim=100; 

  

sim('setpoint_ex33',tsim); 

   load y1; 

   subplot(2,2,1) 

   plot(z(1,:),z(2,:),'b','linewidth',4); 

   hold on 

    

   sim('doublex_11',tsim); 

   load y1; 

   subplot(2,2,1) 

   plot(z(1,:),z(2,:),'r--','linewidth',4); 

   xlabel('Time'); 

   ylabel('y1'); 

    

   sim('setpoint_ex33',tsim); 
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   load y2; 

   subplot(2,2,2) 

   plot(q(1,:),q(2,:),'b','linewidth',4); 

   xlabel('Time'); 

   ylabel('y2'); 

   hold on 

    

   sim('doublex_11',tsim); 

   load y2; 

   subplot(2,2,2) 

   plot(q(1,:),q(2,:),'r--','linewidth',4); 

fprintf('------------------------unit step change in setpoint of  y1 only----------------');    

   IAE_Present_y1=sum(abs(stepmag1-y1_PM)*0.01) 

   IAE_hazarika_y1=sum(abs(stepmag1-y1_hz)*0.01) 

   TV_Present_y1 = sum(abs(diff(u1_PM))) 

   TV_hazarika_y1 = sum(abs(diff(u1_hz))) 

   IAE_Present_y2=sum(abs(stepmag2-y2_PM)*0.01) 

   IAE_hazarika_y2=sum(abs(stepmag2-y2_hz)*0.01) 

   TV_Present_y2 = sum(abs(diff(u2_PM))) 

   TV_hazarika_y2 = sum(abs(diff(u2_hz))) 

    

     

stepmag1 = 0; 

stepmag2 =1; 

stepmag3=0; 

stepmag4=0; 

  

   sim('setpoint_ex33',tsim); 

   load y1; 

   subplot(2,2,3) 

   plot(z(1,:),z(2,:),'b','linewidth',4); 

   hold on 

     

   sim('doublex_11',tsim); 

   load y1; 

   subplot(2,2,3) 

   plot(z(1,:),z(2,:),'r--','linewidth',4); 

   xlabel('Time'); 

   ylabel('y1'); 

    

   sim('setpoint_ex33',tsim); 

   load y2; 

   subplot(2,2,4) 

   plot(q(1,:),q(2,:),'b','linewidth',4); 

   xlabel('Time'); 

   ylabel('y2');    
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   hold on 

    

   sim('doublex_11',tsim); 

   load y2; 

   subplot(2,2,4) 

   plot(q(1,:),q(2,:),'r--','linewidth',4);    

    

fprintf('------------------------unit step change in setpoint of  y2 only----------------'); 

 

   IAE_Present_y1_mag2=sum(abs(stepmag1-y1_PM)*0.01) 

   IAE_hazarika_y1_mag2=sum(abs(stepmag1-y1_hz)*0.01) 

   TV_Present_y1_mag2 = sum(abs(diff(u1_PM))) 

   TV_hazarika_y1_mag2 = sum(abs(diff(u1_hz))) 

   IAE_Present_y2_mag2=sum(abs(stepmag2-y2_PM)*0.01) 

   IAE_hazarika_y2_mag2=sum(abs(stepmag2-y2_hz)*0.01) 

   TV_Present_y2_mag2 = sum(abs(diff(u2_PM))) 

   TV_hazarika_y2_mag2 = sum(abs(diff(u2_hz))) 

    

   Gc_Present_Method2 = [kc2 tau_i2 tau_d2] 

   Gc_Present_Method1 = [kc1 tau_i1 tau_d1] 

  

   fprintf('%f %f %f 

%f',IAE_Present_y1,IAE_Present_y2,IAE_Present_y1_mag2,IAE_Present_y2_mag2) 

    

   fprintf('\n%f %f %f 

%f',IAE_hazarika_y1,IAE_hazarika_y2,IAE_hazarika_y1_mag2,IAE_hazarika_y2_mag2) 
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Simulink block diagram- Dynamic Set-Point Weighting Design for MIMO _Ex_1 
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 APPENDIX – F   

Nasution et al. (2011) method: 

Controller Design for an unstable first order processes 

Figure 1 depicts the IMC structure, in which Gp(s) is the unstable process considered as first order 

in nature. Gm(s) is the corresponding model. Qc is IMC controller. In this study, the dynamics of 

the UFOPTD element is considered as 

𝐺𝑝(𝑠) =
𝑘𝑝𝑒−𝜃𝑠

𝜏𝑠 − 1
                                                                                                                                 (𝐹. 1) 

 

 

  

Figure F.1 Internal model control structure

 

As stated by the H2 optimal controller design, the IMC controller Qc is outlined as, 

C CQ Q F                                        (F.2)  

Where F is a filter which is used for altering the robustness of the controller. The filter structure 

should be selected such that the IMC controller Qc is proper and realizable and also the control 

structure is internally stable. In addition to these requirements, it should be selected such that the 

resulting controller provides improved closed loop performance. 𝑄̃𝑐 is designed for a specific type 

of step input type (v) to obtain H2 optimal performance (Morari, M. and Zafiriou, 1989) and is 

based on the invertible portion of the process model. The process model and the input are divided 

as  

 

 

 

 

m m mG G G and v v v                                                   (F.3) 

Qc Gp 
y 

r 

d 

+ + 
- 

+ 

+ 

- 
𝐺𝑚  

u 
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where the sign ' – ' indicates invertible phase part and ' + ' indicates non invertible phase part where 

the Blaschke product of RHP poles of 

 

𝐺𝑚(𝑠) and v(s) are denoted as  

 

1 1

k k
i i

m v

i ii i

s p s p
b and b

s p s p 

   
 

 
                                                 (F.4) 

where ip
 and ip

 are the ith RHP pole and its conjugate, respectively. Based on this, the H2 optimal 

controller is derived by using the following formula given by Morari and Zafiriou (1989). 

 

1 1

*( ) {( ) }|C m m v m m vQ b G b v b G b v 

   
                          (F.5) 

where *{....}|
is defined as the operator that operates by omitting all terms involving the poles of  

1( )mG 

  after taking the partial fraction expansion. This idea is applied successfully by Nasution et 

al. (2011) for deriving the IMC based PID controller. The same derivation for obtaining the IMC 

controller Qc for UFOPTD processes is given here for clear understanding. Considering perfect 

model case i.e., Gp = Gm , split the process model and input into minimum and non-minimum 

phase parts as  

𝐺𝑚− =
−𝑘𝑝

𝜏(−𝑠 + (1/𝜏))
 𝑎𝑛𝑑    𝐺𝑚+ =  𝑒−𝜃𝑠                                                                                     (𝐹. 6) 

𝑣− =
−𝑘𝑝

𝜏(−𝑠 + (1/𝜏))𝑠
 𝑎𝑛𝑑    𝑣+ = 1                                                                                                (𝐹. 7) 

Based on Eq. F.6 and Eq. F.7, the Blaschke product is obtained as    

𝑏𝑚 =
(−𝑠 + (1 𝜏))⁄

(𝑠 + (1 𝜏⁄ ))
     and  𝑏𝑣 =

(−𝑠 + (1 𝜏)) ⁄

(𝑠 + (1 𝜏⁄ ))
                                                                          (𝐹. 8)

 

By using Eqs. F.6-F.8 in Eq. F.5, the controller is obtained 

𝑄̃𝑐 =
(𝜏𝑠 − 1)

𝑘𝑝

{(𝑒
𝜃

𝜏 − 1) 𝜏𝑠 + 1}                                                                                                   (𝐹. 9) 

Now, the filter F(s) has to be chosen properly as the closed loop performance and robustness is 

dependent on the form of the filter used. The new optimal filter is considered as 

𝐹(𝑠) = (𝛼𝑠 + 1)/((𝜆2𝑠2 + 2V𝜆𝑠 + 1)(𝜆𝑠 + 1))                                                                       (F.10) 
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The IMC controller as per Eq. F.2 is obtained as 

𝑄𝑐 = ((𝑠 − 1){(𝑒
𝜃

 − 1)𝑠 + 1}(𝛼𝑠 + 1))/𝑘𝑝(𝜆2𝑠2 + 2V𝜆𝑠 + 1)(𝜆𝑠 + 1))                      (F.11) 

 

The corresponding controller (Gc) in conventional feedback form according to Figure F.2 is 

obtained as 

   𝐺𝑐(𝑠) = 𝑄𝑐/(1 − 𝑄𝑐𝐺𝑚)                                                                                                               (𝐹. 12𝑎)  

 

 

 

Figure F.2 Unity feedback system 

After substituting all the terms, the controller Gc is derived as 

𝐺𝑐(𝑠) =
(𝜏𝑠 − 1) {(𝑒

𝜃

 − 1)  𝑠 + 1} (𝛼𝑠 + 1)

𝑘𝑝 [(𝜆𝑠 + 1)(𝜆2𝑠2 + 2V𝜆𝑠 + 1) − {(𝑒
𝜃

 − 1) 𝑠 + 1} (𝛼𝑠 + 1)𝑒−𝜃𝑠]
            (𝐹. 12𝑏) 

However, Eq. F.12b is complex and need to be simplified for practical implementation. One can 

convert this into a simple controller of PID in nature or a PID in addition to a lead and lag filter by 

using suitable estimations.  

 

Maclaurin series is used to convert the complex Eq. F.15b into a simple PID controller. To 

approximate using Maclaurin series, L(s) is defined as, L(s) = sGc(s). Expand L(s) using Maclaurin 

series  

 

𝐺𝑐(𝑠) =
1

𝑠
(𝐿(0) + 𝐿′(0)𝑠 +

𝐿′′(0)

2!
𝑠2 + ⋯ )                                                                        (𝐹. 13) 
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+ 
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The conventional controller is considered in the form of 

 

   𝐺𝑐(𝑠) = 𝑘𝑐(1 +
1

𝜏𝑖𝑠
+ 𝜏𝑑𝑠)                                                                                               (F.14)     

 

On comparing Eqs. F.16 and F.17, the PID controller parameters are obtained as 

 

𝑘𝑐 = 𝐿′(0),      𝜏𝑖 =
𝐿′(0)

𝐿(0)
𝑎𝑛𝑑   𝜏𝑑 =

𝐿′′(0)

2𝐿′(0)
 

 

 

Wang et al. (2016) method: 

Wang et al. (2016) have proposed a new IMC-PID tuning method based on pole zero conversion 

design and PID with a lead lag compensator is designed for first order plus integrating and second 

order unstable processes with time delay.  

In this study, the dynamics of the UFOPTD element is considered as 

 

𝐺𝑝(𝑠) =
𝑘𝑝𝑒−𝜃𝑠

𝜏𝑠 − 1
                                                                                                                     (𝐹. 15) 

 By using IMC-PID tuning method on pole zero conversion these tuning parameters find out 

  

     𝛼 = (𝜆2 + 2𝜆𝑇 + 𝜏𝑇) /(𝑇 − 𝜏)) 

𝑘𝑐 = (𝛼 + 𝜆)/𝑘𝑝(𝛼 − 2𝜆 − 𝜏)),      

𝜏𝑖 = 𝛼 + 𝜆 

  

 𝜏𝑑 = (0.5𝛼𝜆)/(𝛼 + 𝜆)),      

Here imaginary filter is (𝜆2 + 2𝜆𝑇 + 𝜏𝑇)/(𝑇𝑠 + 1) 
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Hazarika and Chidambaram (2014) method: 

 

Hazarika and Chidambaram (2014) designed multivariable proportional integral controllers for 

unstable multivariable systems and used equivalent transfer function model to design multivariable 

PI controllers for diagonal elements and simplified decouplers are used to decompose the unstable 

multi loop systems into independent loops and the double loop control structure is used to reduce 

the overshoot for unstable systems. 

 

Design based ETF model development 

The TITO block diagram with decouplers and controllers is shown in Figure F.3. If the 

second feedback controller is in the automatic mode, with yr2 = 0, then the overall closed-loop 

transfer function between y1 and u1 is 
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p
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gggg
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
                                  (F.16) 

And similarly for the second loop, the relation can be written as 

11,11,1,

11,1,12,21,

22,
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p
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gggg
g

u

y


                                 (F.17) 

Based on these relations, the ETF is derived as given in Hazarika and Chidambaram (2014).For 

obtaining ETFs, the controller need not be known apriori. Once the ETFs are obtained, the 

corresponding controller is designed. 

Controller design 

  The open loop transfer function is  

)()()()( sUsDsGsY p
           (F.18) 
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Where the simplified decoupler is designed as 
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For these systems, if there exist time delay, it may lead to unrealizable situations. Hence, an extra 

time delay (θ) is to be incorporated into the decoupler matrix which is further added to the 

corresponding ETF. In the presence of the decoupler, the TITO system behaves like two 

independent loops for which the controllers can be designed independently. In the present work, 

diagonal controllers are designed by optimal H2 – IMC based method based on the corresponding 

unstable ETFs. ETFs are developed to take into account the loop interactions in the design of multi-

loop control systems. 

 

 

Figure F.3 Closed loop control for TITO system 

 

Once the ETFs are derived, based on pairing using relative gain array and Neiderlinski Index, the 

corresponding controllers are designed. The design is based on unstable first order plus time delay 

system. Anusha and Rao (2012) developed a PID design method based on optimal-H2 

minimization concept for second order unstable processes.  
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