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ABSTRACT

For a wider range of stable processes, many analytical PID controller tuning rules are
available. However, for unstable processes, the availability of analytical tuning rules is limited. In
this thesis, H> minimization theory in combination with internal model control (IMC) is used to
analytically derive PID controller settings which can be used as a ready reference like look-up
tables. These analytical settings are developed for a defined range of time delay to time constant
ratio. Maximum sensitivity (Ms) is used for evaluating the robustness of the control system. Case
studies of unstable systems are considered to evaluate the closed loop performances for set point
variations and load disturbance variations. Robustness is evaluated for uncertainties in the process
model as well as for the sensor noise. Recently published methods in the literature are considered
for the performance comparison with the proposed method. Based on simulation results, it is
observed that the current methodology provides significantly enhanced performances when
compared with those techniques available in the recent literature. Experimental implementation is
carried out on an inverted pendulum for demonstrating the practical applicability of the present

method.

Optimal Hz internal model controller (IMC) is designed for control of unstable cascade
processes with time delays. The proposed control structure consists of two controllers in which
inner loop controller (secondary controller) is designed using IMC principles. The primary
controller (master controller) is designed as a proportional-integral-derivative (PID) in series with
a lead-lag filter based on IMC scheme using optimal H> minimization. Selection of tuning
parameter is important in any IMC based design and in the present work, maximum sensitivity is
used for systematic selection of the primary loop tuning parameter. Simulation studies have been
carried out on various unstable cascade systems. The present method provides significant
improvement when compared to the recently reported methods in the literature particularly for the
disturbance rejection. The present method also provides robust closed loop performances for large
uncertainties in the process parameters. Quantitative comparison has been carried out by

considering integral of absolute error (IAE) and total variation (TV) as performance indices.

Controller design for unstable processes is relatively difficult when compared to stable

processes. The complexity increases further for multivariable unstable processes. In this work,

Vi



simplified tuning rules are proposed to design PID controller for unstable multivariable processes.
Decouplers are applied to make the loops independent and diagonal elements of equivalent transfer
function are used to design controllers. Two examples of TITO (two input two outputs) unstable
system with time delays are considered for simulation. Comparative analysis has been carried out
with the recently reported methods in the literature and observed that the proposed method
provides improved closed loop performances. Robustness studies are also carried out with
perturbations in the model parameters.

Control of unstable processes with time delays usually result in large overshoots in the
closed loop responses. In industry, set-point weighting is one of the recommended methods to
minimize the overshoot. In this work, a method is proposed to design the set-point weighting
parameters which is relatively simple. Weighting is considered for both proportional (B) and
derivative (y) terms in the PID control law. In the closed loop transfer function for the servo
problem, the coefficients of ‘s’ and separately that of ‘s®> both in the numerator and denominator
are set equal in order to find B and y. The obtained expressions for 3 and y are simple and depends
on the controller parameters. The method is carried out first for single input single output (SISO)
unstable first order and second order processes with time delays and then for the multi input multi
output (MIMO) unstable systems. In control of MIMO systems, decouplers are considered to
ensure that the loops have minimum interactions. With the designed values, the closed loop
performance is evaluated for different SISO and MIMO unstable systems with time delay. The
present method is also compared with the recent methods proposed in the literature and it is

observed that enhanced closed loop performances are achieved with the proposed method.
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Chapter 1

Introduction

1.1 General

A system whose transfer function has at least one pole lies in the right half plane (RHP) is
known as an unstable system. This open loop instability characteristic moves the system away
from the steady state even for small perturbations of process dynamics or operating conditions.
The controller design for open-loop unstable systems is fundamentally difficult than that of the
stable processes and the difficulty increases when there exists a time delay. The performance
specifications that are usually achieved for stable systems are difficult to achieve for unstable
systems. Because, for unstable systems, the performance specifications such as overshoot, settling
time are larger and there exists a minimum and maximum value of controller gain below which
and above which the closed loop system cannot be stabilized. These two values of maximum and
minimum controller gain narrow down as the time delay increases thereby restricting the
performance of the closed-loop system. The dynamics of many processes can be represented by
first or second order system with time delay. For unstable first order plus time delay (UFOPTD)
processes, the existence of a right half plane pole and time delay makes it difficult to stabilize the
system, particularly with the conventional proportional integral/proportional integral derivative
(P1/PID) controllers.

Several methods are proposed for the design of controllers for single-input-single-output
(S1SO) and multi-input-multi-output (MIMO) unstable systems. However, the interactions among
the control loops and the existence of undesirable overshoots and settling times in the closed loop
response raise the difficulty bar for MIMO systems as compared to SISO unstable systems. For
MIMO systems, decouplers can be used to reduce the process interactions to strengthen system
performance. Unstable systems result in larger overshoots in the closed loop set-point tracking
responses. In order to minimize the overshoot, either a set-point filter or set-point weighting is
recommended. In order to properly address the design of set-point weighting parameters,

knowledge about the PID controller parameters (ke, ti, td) is necessary. It is challenging to achieve



desired closed-loop performance with the PID controllers for these processes, particularly for set
point tracking and load disturbance rejection in the presence of process uncertainties.

1.2 Motivation

Tuning of different types of controllers for right half plane pole processes, which are
classified as unstable, has been addressed by many people in the open literature. IMC based design
using the Laurent series expansion is developed by Panda (2009) and by using Maclaurin series
approximation is developed by Nasution et al. (2011). Based on the need of an operation, i.e.,
either in a set-point tracking mode or load disturbance rejection mode, Arrieta et al. (2011)
developed formulae for a controller for unstable and integrating processes. Summary of different
design methodologies for controllers for such processes is addressed by Rao and Chidambaram
(2012). To enhance the tracking capability smoothly, either placing a filter for the set point signal
or using a weight for set point signal is preferred. The methods developed by Nasution et al. (2011)
and Panda (2009) are applicable for a wider range of time delay to time constant ratios [(w/n = To
=0.1 to 1.2) where p = time delay and n = time constant] and have become popular methods since
then. However, the equations are not simple and are tedious to utilize in practice. Also, the method
Wang et al. (2015) is not applicable when the time delay to time constant ratio is greater than 0.9.
The important points about the methods discussed so far are (1) Analytical tuning rules are not
available for many methods and (2) some methods cannot be applied when p/n> 1. Recently, Sree
and Chidambaram (2017) discussed the importance of unstable systems and their occurrence in

practice.

Many researchers ( Tan et al., 2000; Lee and Oh, 2002; Liu et al., 2005a) addressed the
design and analysis of cascade control strategies for stable processes. However, limited research
work has been carried out for the design of cascade control strategies for unstable processes. Liu
et al. (2005b) proposed IMC based cascade control scheme for unstable processes with four
controllers. Kaya and Atherton (2008) proposed a cascade control structure for controlling unstable
and integrating processes with four controllers. Uma et al. (2009) proposed an improved cascade
control scheme for unstable processes using a modified Smith predictor with three controllers and
one filter in the outer loop. Padhan and Majhi (2012) proposed a modified Smith predictor based

cascade control structure for unstable processes where they used three controllers. Most of the

3



existing methods use more number of controllers and also the design of these controllers is not
simple. In practice, a cascade controller structure with only two controllers (one for secondary loop
and another for primary loop) is desirable.

Few methods are reported to design controllers for unstable multivariable systems. Over the
extensive literature available for multivariable unstable systems, few works (Georgiou et al., 1989;
Park, 1991; Flesch et al., 2011) proposed a decentralized PID controller design for unstable
multivariable systems using optimization method. Hazarika and Chidambaram (2014) proposed a
double loop control structure to decrease the overshoot such as proportional controller followed
by PI controller in the outer loop based on the equivalent transfer function. They have shown that
by a single loop PI control with a set point filter, the overshoot is reduced significantly and a good
servo response is obtained. However, this will not improve the regulatory responses. It may be
desirable to use better settings, particularly with a PID controller to improve the performances of
both the servo and regulatory performances. All of these methods follow a complex procedure to
design the controller.

To get an improved transient response due to the set point change, several researchers
proposed either set-point filtering or set-point weighting methods. Prashanti and Chidambaram
(2000) developed formulae to calculate the set point weighting parameters for UFOPTD systems
for different ratio of time delay to dominant time constant. Chen et al. (2008) recommended the
tuning rules for set-point weighting based on a three-element control structure. Begum et al.
(2016), Wang et al. (2016) and Begum et al. (2017) proposed controller tuning rules for stable,
unstable and integrating processes with time delay based on internal model control (IMC)
technique. Nasution et al. (2011) designed controller for time-delayed unstable processes with set
point weighting making use of an optimal H2 IMC-PID control strategy. It is possible to
demonstrate that tracking performance of the set-point will be improved if suitable weighting for
the derivative mode is determined. This is determined by Nasution et al. (2011), but in a complex

way.



Based on the review of literature and identified research gaps, the following objectives are

framed.

1.3 Objectives

1. To design optimal H2 PID controllers for SISO unstable time-delay systems for enhanced
closed-loop performances.

2. To experimentally implement the designed controller on an inverted pendulum.

3. Todesign optimal H2 PID controllers for unstable cascade time-delay systems for enhanced
closed-loop performance.

4. To design multi variable optimal H> PID controllers for MIMO unstable time-delay
systems.

5. To design set-point weighted PID controllers for SISO and MIMO unstable time-delay

systems.
1.4 Organization of the thesis

The organization of the thesis is as follows:

Chapter 2 presents a literature overview for the design of optimal Hz PID controllers, cascade
control, multivariable control and set point weighted PID controllers for SISO and MIMO unstable

time delay systems.

Chapter 3 provides an overview of the reported work on the design of optimal Hz PID controllers
for SISO unstable time delay systems for enhanced closed loop performance. H> minimization
theory in combination with the internal model control (IMC) is used to analytically derive PID
controller settings which can be used as a ready reference like look-up tables. These analytical
settings are developed for a defined range of time delay to time constant ratio. Maximum
sensitivity (Ms) is used for evaluating the robustness of the closed loop system. This chapter

highlights the first objective.



Chapter 4 presents the experimental implementation of PID control proposed in chapter 3 to an
inverted pendulum for the control of pendulum rod angle by manipulating the cart position. This
chapter focused on the second objective.

Chapter 5 proposes an optimal H internal model controller (IMC) designed for the cascade control
of unstable processes with time delays which is the third objective. The proposed control structure
consists of two controllers in which inner loop controller (secondary controller) is designed using
IMC principles. The primary controller (master controller) is designed as a proportional-integral-
derivative (PID) in series with a lead-lag filter based on IMC scheme using optimal H:
minimization. Simulation studies have been executed to show the advantages of the proposed
method.

Chapter 6 presents a simplified tuning rules to design optimal H> PID controller for unstable
multivariable processes. Decouplers are applied to make the loops independent and diagonal
elements of equivalent transfer function are used to design the controllers. This chapter deals with

the fourth objective.

Chapter 7 proposes a method to design the set-point weighting parameters for UFOPTD and
USOPTD processes which is relatively simple and also reduces the overshoot. Weighting is
considered for both proportional () and derivative (y) terms in the PID control law. In the closed
loop relation for set-point tracking, the coefficients of ‘s” and separately ‘s> both in the numerator
and denominator are made equal in order to find B and y. The obtained expressions for 3 and y are
simple and depends on the controller parameters. The design is carried out first for single input
single output (SISO) unstable first order and second order processes with time delays and then for
the multi input multi output (MIMO) unstable systems. For control of MIMO systems, decouplers
are considered to ensure that the loops have minimum interactions. With the designed values, the
closed loop performance is evaluated for different SISO and MIMO unstable processes with time

delay. This chapter highlights the fifth objective.



Chapter 8 gives the summary and conclusions of the present work along with suggestions for the

future work.

Appendix B gives the MATLAB program developed for simulating PID controllers for SISO
unstable time delay systems and the corresponding Simulink block diagram for examples

considered in Chapter 3.

Appendix C presents the MATLAB program developed for simulating unstable cascade processes

with time delays and the corresponding Simulink diagram for examples considered in Chapter 5.

Appendix D gives the MATLAB program for Simplified tuning rules for PID controller for

unstable multivariable processes considered in Chapter 6.

Appendix E presents the MATLAB program developed for simulating PID controllers for SISO
and MIMO unstable time delay systems with set point weighting and the corresponding Simulink
block diagram for examples considered in Chapter 7.

The main contributions of the thesis are

Q) Enhanced design of PID controllers for unstable time delay systems using optimal H>
framework (objectives - 1, 2)

(i) Design of controllers for unstable cascade time-delay systems to achieve enhanced
closed-loop performance (objective — 3)

(iii)  Design of multi variable optimal H> PID controllers for MIMO unstable time-delay
systems for improved performance (objective — 4).

(iv)  Systematic design of set-point weighted PID controllers for both SISO and MIMO

unstable time-delay systems for enhanced tracking of set-points (objective — 5).
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Chapter 2

Literature Review

In this chapter, the literature are reviewed on occurrence of unstable process and the design
of PID controllers for unstable systems. The methods available for the design of PID controllers
for SISO and MIMO unstable time delay systems are presented. The review is given on the control
of unstable cascade processes with time delays and on the design of the set-point weighting
parameters for UFOPTD and USOPTD processes.

2.1 Existence of unstable processes

Numerous researchers have been focusing on the systems that exhibit unstable behavior and
the related literature on the subsistence of unstable processes are listed below. An unstable system
is the one which has at least one RHP pole in the complex plane.

Van Heerden (1953) has shown that chemical reactors might exhibit multiple steady states and
oscillatory solutions, depending on particular operating conditions. Real-time systems reveal
several steady states owing to the certain nonlinearity of the processes. Some of the steady states
may be unstable and it is essential to operate the system at unstable steady state for economic

and/or safety measures.

Marlin (1995) presented a jacketed continuous stirred tank reactor (CSTR) that is used to perform
a simple reaction approximated as an USOPTD model consisting of two unstable complex
conjugate poles and a negative zero when the model equations are linearized around an unstable

operating point.

Chidambaram (1997) has given the review of the work done on the control of unstable systems.
A detailed survey has been stated in the previous works which are related to the control of unstable

processes.

Jacobsen (1999) has studied the dynamics of reactor separator networks and has shown that the

transfer function model between the composition of the distillate and the recycle ratio of the



distillation column results in unstable second order model with one unstable pole and unstable

Zero.

Bequette (2003) has considered a CSTR with simple reaction; linearization around the unstable

operating point gives an USOPTD model with a negative zero with two unstable poles.

Stein (2003) has described the practical, physical consequences of unstable process control.

Extensive information on the physical significance of unstable systems is presented.

Sree and Chidambaram (2006) presented an excellent overview of the physical occurrence of
unstable processes. Many physical examples are stated as unstable transfer function models. The
problems in the control of unstable systems are given in detail.

A summary of the reported work on the existence of unstable processes is given in Table 2.1.

2.2 Design of PID controllers for an unstable process with time delay

This section gives the overview of the literature on PID controllers with and without lead lag filters

for unstable processes.

Yang et al. (2002) have proposed IMC based single loop controller design method in which the
feedback controller is either PID or higher order form. This can be made automatic for on-line

tuning of the first order, second order and higher order unstable processes with time delays.

Tan et al. (2003) have presented a modified IMC structure with three controllers. The set point
tracking controller is a lead lag filter and a proportional (P) controller is used for stabilizing the
original unstable plant ignoring the time delay, a proportional derivative (PD) controller is used
for stabilizing the unstable processes with time delay. Good nominal and control action responses

are achieved.

Sree et al. (2004) have designed PI/PID controllers for stable first order plus time delay (FOPTD)
systems based on equating the coefficients of corresponding powers of s in the numerator and that

in the denominator of the closed loop transfer function for a servo problem. They also extended
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this method to design PI/PID controllers for an UFOPTD system which gave improved

performance and was robust for uncertainty in the model parameters.

Table 2.1 Literature review on existence of unstable processes

S.No. Author Description Remarks

1 van Heerden (1953) | Real systems show multiple | Chemical reactors exhibit
steady states because of | multiple steady states and it
certain nonlinearity of the | becomes  necessary to
systems in which some of the | operate the system at
steady states may be unstable. | unstable steady state for
economic and/or  safety
measures.

2 Marlin (1995) Presented jacketed CSTR, | USOPTD model  that
when the model equations are | contains  two  unstable
linearized around an unstable | complex conjugate poles
operating point, resulting in | and a negative zero.

an unstable system.

3 Chidambaram A detailed review of the | Review of unstable systems.
(1997) previous work carried out on
unstable processes.

4 Jacobsen (1999) Transfer  function  model | An unstable second order
between the composition of | model with one unstable
the distillate and the recycle | pole and one unstable zero
ratio of the distillation column
as an unstable system.

5 Bequette (2003) CSTR performing a simple | Unstable model with two
reaction; linearized around the | unstable poles and a
unstable operating point gives | negative zero.

USOPTD model.

6 Stein (2003) Described the  practical, | The physical significance of
physical consequences of | unstable systems in the
unstable process control. context of airplanes.

7 Sree and Several examples have been | Gas  phase  polyolefin

Chidambaram stated for the existence of | reactor, Jacketed CSTR,
(2006) unstable behavior in the | Isothermal reactor, cart and
Processes. pole problem, helicopter and

airplanes.
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Rao and Chidambaram (2005) have proposed a modified form of smith predictor (SP) for
unstable processes with time delay for servo and regulatory problems with three controller’s viz.,
the set point PI controller designed based on synthesis method, a P controller for disturbance
rejection and a PD stabilizing controller. Better control performances were obtained for unstable

processes with a time delay.

Liu et al. (2005a) have proposed an analytical 2 DoF control scheme for open loop unstable first,
second order and integrating unstable first order processes with time delay. They have designed
three controllers in which proportional or plus derivative controller is employed to stabilize the set
point response; a Hz optimal set point tracking controller is designed based on integral square error
(ISE) performance specification. The desired disturbance transfer function is used to design the
disturbance estimator in the inner closed loop to obtain the ISE performance objective. Here the

servo and regulatory responses can be tuned easily by a single tuning parameter.

Shamsuzzoha and Lee (2007) have elaborated a PID controller using a finest IMC filter structure
that produces an enhanced disturbance rejection response for stable, integrating, unstable processes
with time delays. The controllers are all tuned to have the same level of robustness in terms of
maximum sensitivity (Ms). The tuning parameter (A) guidelines were also proposed for numerous

process models over a wide range of 6/t ratios.

Rao et al. (2007a) have designed the modified smith predictor (SP) with improved closed loop
responses with two controllers for open loop UFOPTD processes using direct synthesis method to
design the set point tracking controller and simple analytical tuning rules for the load disturbance

controller.

Normey-Rico and Camacho (2008) have presented a simple modified smith predictor (SP)
structure to improve closed loop characteristics. The proposed structure is simple to analyze and

gives totally decoupled disturbance rejection and set point responses for UFOPTD processes.

Shamsuzzoha and Lee (2008a) have designed a PID controller cascaded with a first order lead/lag
filter for integrating and first order unstable processes with time delay based on the IMC criterion,
which has a single tuning parameter to regulate the performance and robustness of the controller.

A set point filter is used to reduce the overshoot in the servo response.

12



Shamsuzzoha and Lee (2008b) have discussed the design of IMC based PID controller cascaded
with a first order lead/lag compensator for a class of second order stable and unstable processes
with time delay. A set point filter is used to reduce the overshoot in the set point response.

Panda (2009) have designed IMC controller equivalent PID tuning rules using Laurent series
approximation for unstable first order processes, second order processes with and without left half
plane (LHP) zeros and integrating processes with time delays. The controller designed is robust,

stable and can be implemented easily in real-time process.

Nasution et al. (2011) have presented the synthesis of an optimal IMC based design of H>-PID
controller for unstable processes with single RHP pole and time delay. He compared the control
performance and robustness resulting from the five desired closed loop transfer functions
(DCLTF) and recommended to use two from the overall consideration. To reduce overshoots, the
set point weighting parameters for both proportional and derivative modes have been derived.

Shamsuzzoha et al. (2012) have proposed a modified underdamped IMC filter and derived a PID
controller based on the new filter for unstable processes with time delays which provided the

desired integral action and improved closed loop performance of the system.

Cho et al. (2014) have presented PI/PID tuning rules based on direct synthesis method by utilizing
simple desired closed loop transfer functions and simple approximations of the process time delay.

It has one design parameter and a set point filter for the 2 Degree of freedom controller.

Vanavil et al. (2013) have designed a PID with lead lag filter based on direct synthesis method.
Set point weight is considered to reduce the overshoot. Systematic guidelines have been provided
for selection of the tuning parameter based on the peak value of the sensitivity function and

improved closed loop performances are obtained.

Vanavil et al. (2014) have proposed an IMC-PID controller with a lead lag filter based on H;
minimization concept for integrating and UFOPTD processes and provided good closed loop

performance for normalized dead time (6/1) up to 1.8.
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Table 2.2 Literature review on design of PID controllers for an unstable process with time

delay
S.No. Author Description Remarks
1 Yang et al. IMC based single loop | Applicable for on-line tuning of
(2002) controller design method in | the first order, second order and
which the feedback controller is | higher order unstable processes
either PID or high order form. | with time delays and gave
satisfactory performance.
2 Tan et al. Modified IMC structure with | For first and second order
(2003) three controllers. unstable processes and achieved a
good compromise between time
domain performance and
robustness.
3 Sree et al. PI/PID controllers based on | For stable and unstable first order
(2004) equating coefficient method. plus time delay (FOPTD)
systems.
4 Rao and A modified form of smith | Applicable for UFOPTD systems.
Chidambaram | predictor (SP) with three | Better responses were obtained.
(2005) controllers.
5 Liu et al. 2 DoF control structure with | Nominal set point response is
(2005a) three controllers, Hx optimal | decoupled from the load
controller for set point tracking | disturbance response for unstable
and a load disturbance | first order, second order and
estimator. integrating unstable first order
processes.
6 Shamsuzzoha | IMC based PID controller. Produced improved disturbance
and Lee (2007) rejection response for stable,
integrating, unstable processes
with time delays.
7 Rao et al. Modified smith predictor (SP) | Obtained improved responses for
(2007a) with two controllers. open loop unstable first order plus
time delay.
8 Normey-Rico | Design of dead time|To control unstable FOPTD
and Camacho | compensators (DTC) systems.
(2008)
9 Shamsuzzoha | PID controller cascaded with a | Provided improvement in both set
and Lee first order lead/lag filter based | point and disturbance rejection for
(2008a) on IMC criterion. integrating and  first  order

unstable processes with time
delays.
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10 Shamsuzzoha | IMC based PID controller | For a class of second order stable
and Lee cascaded with a first order | and unstable processes with time
(2008b) lead/lag compensator. delay.

11 Panda (2009) | A robust internal model | For unstable first order processes,
controller  equivalent  PID | second order processes with and
tuning rules using Laurent | without LHP zero, integrating

series approximation. processes with time delays.
12 Nasution et al. | IMC based design of H, optimal | For unstable processes with single
(2011) PID controller using Maclaurin | RHP pole and time delays. Due to
series approximation. performance limitation of a 1 DoF
controller, 2 DoF controller is
derived.

13 Shamsuzzoha | Used a modified underdamped | Provided better integral action
et al. (2012) IMC filter and derived a PID | and improved closed loop

controller. performance.
14 Cho et al. PI/PID tuning rules based on | Yielded similar or even improved
(2014) direct synthesis method. performance over previous

complicated PID tuning methods.
15 Vanavil et al. | PID with lead lag filter based on | Set point weight is used and

(2013) direct synthesis method for | applied to an inverted pendulum

unstable processes. experiment.
16 Vanavil et al. | PID with lead lag filter based on | For controlling integrating and
(2014) H> minimization concept. UFOPTD processes and provided
good closed loop performance up

to 6/t =1.8.
17 Wang et al. IMC-PID tuning method based | Provided improved performance
(2016) on pole zero conversion design. | than other PID tuning method for
stable and unstable processes with

time delay.
18 Begum et al. | Developed Optimal controller | The proposed controller design
(2018) synthesis for second order time | solves the trade-off issue between
delay systems with at least one | the robustness and performance
RHP pole with the help of an adjustable

parameter.

Wang et al. (2016) have proposed a new IMC-PID tuning method based on pole zero conversion
design and PID with a lead lag compensator is designed for first order plus integrating and second
order unstable processes with time delay. The method demonstrated better performance than other

PID tuning methods. A set point weighing is used to reduce overshoot.
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Begum et al. (2018) have proposed IMC-PID tuning method based on H> minimization. The
controller design is addressed for the second order processes with dead time which has at least one

pole in the right half of the s plane.

A summary of the reported work on the tuning of unstable processes with time delays is given in
Table 2.2.

2.3 Design of PID controllers based on maximum sensitivity

In any closed loop system, to guarantee a minimum robustness level, there is always a
robustness performance trade-off to obtain a smooth response to both step set point and disturbance
changes. Analytical tuning rules have been developed for stable processes based on maximum

sensitivity values and the literature review of such tuning rules developed is given below.

Alfaro et al. (2010) developed tuning rules for 2 DoF PI controllers for stable FOPTD models.
They dealt with the closed loop control system performance robustness trade-off by selecting Ms
in the 1.4 to 2.0 range and designed control systems with low, minimum, medium or high
robustness levels. Controller tuning rules were provided for FOPTD models with normalized dead

times from 0.1 to 2.0.

Padula and Visioli (2011) presented a set of tuning rules for integer and fractional-order PID
controllers and analytical expressions for performance assessment. They applied for stable FOPTD
models, which minimized integral absolute error (IAE) with a constraint on the Ms and proved that
the use of a fractional-order PID controller is more advantageous with respect to improvement in

performance.

Vilanova et al. (2012) provided tuning rules for 2 DoF PI controller using Ms as the design
parameter for the desired robustness level for stable FOPTD dynamics in terms of normalized dead
time allowing the user to select a low/medium/high robust closed loop control system. The
proposed auto tuning expressions, when compared with other methods, guaranteed the same

robustness level and provided improved performances.

Alfaro and Vilanova (2012) presented a robust tuning method for 2 DoF PI controllers based on

the use of a model reference optimization procedure for first order plus time delay (FOPTD)
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models and second order plus time delay (SOPTD) model process models which allowed the
designer to deal with the performance/robustness trade-off of the closed loop control system by
selecting Ms in the range from 1.4 to 2.0. They derived a set of controller tuning equations for
FOPTD and SOPTD models with normalized dead times from 0.1 to 2.0 that guarantees the
achievement of the design robustness level.

Table 2.3 Literature review on design of PID controllers based on maximum sensitivity

S.No. | Author Description Remarks
1 Alfaroet | Tuning rules for 2 DoF Pl |For stable FOPDT models.
al. (2010) | controllers. Solved robustness and | Selected Ms in 1.4-2.0 range and
performance trade-off. designed the control system with
low, minimum, medium or high
robustness levels.
2 Padula | A set of tuning rules for integer and | Applied for stable FOPTD models
and fractional-order PID controllers and | and minimized IAE with a
Visioli | analytical expressions for | constraint on the Ms.
(2011) | performance assessment.
3 Vilanova | Tuning rules for a 2 DoF Pl|The user can select a
et al. controller using M;s value as the | high/medium/low robust closed
(2012) | design parameter. loop control system for stable first
order plus time delay dynamics.
4 Alfaro | Arobust tuning method for 2 DoF PI | For FOPTD and SOPTD controlled
and controllers based on the use of a | process models by selecting Ms in
Vilanova | model  reference  optimization | the range from 1.4 to 2.0.
(2012) | procedure.
5 Alfaro | A model reference robust tuning | For inverse response controlled
and method for 2 DoF PID controllers | process modeled by a second order
Vilanova | based on the use of an optimization | plus a right half plane zero transfer
(2013) | procedure. function by selecting robustness
levels between 1.6 and 2.0.
6 Begum et | Developed PID tuning rules based on | These tuning rules allow the
al. (2016) | maximum sensitivity (Ms) for | designer to design closed loop

unstable dead time processes

control system with a specified
low, medium, or high robustness
level by selecting the
corresponding value of Ms.
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Alfaro and Vilanova (2013) presented a model reference robust tuning method for 2 DoF PID
controllers based on the use of a model reference optimization procedure for inverse response
controlled process modelled by a second order plus a right half plane zero transfer function which
allowed the designer to deal with the performance/robustness trade-off of the closed loop control
system by selecting robustness levels between 1.6 and 2.0.

Begum et al. (2016) Developed PID tuning rules based on maximum sensitivity (Ms) for unstable
dead time processes. These tuning rules allow the designer to design closed loop control system

with a specified low, medium, or high robustness level by selecting the corresponding value of Ms.

A summary of the reported work regarding the maximum sensitivity based analytical tuning of

stable processes are given in Table 2.3.

2.4 Design of series cascade controllers for an unstable processes

A cascade control can be used to obtain better disturbance rejection existing in the inner loop
and is used to improve single loop control performance when the disturbances are associated with
the manipulated variable or when the final control element exhibits nonlinear behavior. The
desired performance can be obtained with simple PID controllers, IMC controllers and by using
SP structures. This section gives the overview of the literature on controllers for tuning of series

cascade processes.

Lee et al. (2002) proposed a general IMC-PID control structure to handle stable, integrating, and
unstable processes for cascade control systems. The new structure was more robust to

measurement noises with improved performance than a conventional cascade control structure.

Kaya and Atherton (2008) designed an improved cascade control structure and controller design
method for controlling unstable and integrating processes where PI1-PD-SP scheme was used in
the outer loop and IMC controller in the inner loop. Simulation results were provided to illustrate

the proposed structure’s superiority.
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Table 2.4 Literature review on design of series cascade controllers for an unstable process.

S. No. Author Description Remarks
1 Lee et al. A robust IMC-PID control | For stable, integrating, and
(2002) structure. unstable processes for cascade
control systems with improved
performance.
2 Kaya and An improved cascade control | Provided improved
Atherton structure with PI-PD-SP scheme | performance for unstable and
(2008) used in the outer loop and IMC | integrating processes.
controller in the inner loop.
3 Umaet al. Modified SP structure with three | Applied for unstable processes
(2009) controllers: IMC controller for | with and without zero. The
inner loop and two PID |primary loop  controllers
controllers with a filter for the | designed based on direct
outer loop. synthesis method.
4 Uma et al. Modified SP structure with three | Applied for integrating
(2010) controllers: IMC controller for the | processes with and without
inner loop and PID and PD | zero.
controller with filters for the outer
loop.
5 Padhanand | Modified SP  with  three | Provided improved disturbance
Majhi (2012) | controllers.  Direct  synthesis | rejection capability.
based method for set point
tracking and 2 PID with second
order lead lag filter for
disturbance rejection.
6 Santosh and | P/PI controllers based on equating | For a series cascade control

Chidambaram

coefficient method.

system with UFOPTD models.

(2013) The degree of robustness for
uncertainty in the model
parameters was studied.

7 Raja and Ali | Various series cascade control | Suitable tuning strategies for a

(2017) strategies are briefly reviewed | class of stable, unstable and

and their advantages and | integrating process models are
disadvantages are discussed recommended in order to help
the user in selecting the
appropriate control strategy.
8 Yin et al. Improved  Cascade  Control | proposed  cascade  control
(2019) System for a Class of Unstable | scheme based on modified

Processes with Time Delay

Smith predictor for controlling a
class of unstable processes with
time delay
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Uma et al. (2009) presented enhanced modified SP structure for the control of open loop unstable
cascade processes with/without zero using three controllers in which the secondary loop has one
IMC controller and the primary loop has two controllers designed based on direct synthesis method
viz., PID with lag filter for set point tracking and PID with lead lag filter for disturbance rejection

which provided significant improvement in disturbance rejection characteristics.

Uma et al. (2010) proposed modified SP structure for control of integrating processes with and
without zero using three controllers in which the secondary loop has one IMC controller and the
primary loop has two controllers designed based on direct synthesis method viz., PID with lag
filter for set point tracking and PD with lead lag filter for disturbance rejection.

Padhan and Majhi (2012) presented a modified SP for controlling open loop unstable time delay
processes. The proposed structure has three controllers of which one is meant for servo response
designed based on direct synthesis method and the other two are PID controllers cascaded with a
second order lead/lag filter for regulatory responses with improved disturbance rejection

capability. Kharitonov’s theorem is used for the robustness analysis.

Santosh and Chidambaram (2013) designed P/PI controllers for a series cascade control system
for UFOPTD systems based on equating the coefficients of corresponding powers of s and s? in
the numerator to a1 and a times those of the denominator of the closed loop transfer function for
a servo problem with only two tuning parameters. The robustness for uncertainty in the model

parameters was studied and the performances were found to be better.

Raja and Ali (2017) discussed various series cascade control strategies and reviewed their
advantages and disadvantages. Suitable tuning strategies for a class of stable, unstable and
integrating process models are recommended in order to help the user in selecting the appropriate

control strategy.

Yin et al. (2019) proposed cascade control scheme based on modified Smith predictor for
controlling a class of unstable processes with time delay. The proposed control structure consist
three controllers of which the secondary loop has one controller and the primary loop has two

controllers.
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A summary of the reported work on the tuning of series cascade unstable processes is given in
Table 2.4.

2.5 Design of controllers for multi-input-multi-output (MIMO) unstable

systems

This section gives the literature review on design of PID controller for unstable multivariable

processes.

Georgiou et al. (1989) presented a multivariable controller design technique for open loop
unstable systems and the controller is tuned in four stages step optimization procedure. The closed
loop performance and robustness of the multi loop SISO controllers are established by an effective
damping coefficient and its corresponding effective closed loop time constant. They considered a
complex system of two reactors in series, where exothermic second order reaction occurs.

However, the system does not take into account large values of time delay.

Garcia and Albertos (2010) designed a new dead-time compensator to deal with unstable
multivariable systems with multiple time delays and a MIMO dead time compensator is suitable

for any linear plants has been presented which is both applicable for stable and unstable plants.

Rajapandiyan and Chidambaram (2012) a decoupler with a decentralized control system is
designed based on ETF models and the proposed method has shown the better performance of

compared with the centralized control system, ideal, inverted, and normalized decoupling methods.

Hazarika and Chidambaram (2014) designed multivariable proportional integral controllers for
unstable multivariable systems and used equivalent transfer function model to design multivariable
PI controllers for diagonal elements and simplified decouplers are used to decompose the unstable
multi loop systems into independent loops and the double loop control structure is used to reduce

the overshoot for unstable systems.

Chandrasekhar et al. (2016) Proposed simple method of designing decentralised PID controllers
for stable systems by synthesis method and extended the method to unstable systems. The method
gives improved responses and decreased interactions when compared to that of the

Govindhakannan decentralized PID control system design method.
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Table 2.5 Literature review on design of controllers for multi-input-multi-output
(MIMO) unstable systems

(2014)

multivariable systems

S. No Author Description Remarks
1 Garcia and Designed a new dead-time | Here a MIMO dead time compensator
Albertos (2010) | compensator to deal with | suitable for any linear plants has been
unstable multivariable | presented which is both applicable for
systems with multiple time | stable and unstable plants.
delays.
2 Rajapandiyan | Controller  Design  for | A decoupler with a decentralized
and MIMO Processes Based on | control system is designed based on
Chidambaram | Simple Decoupled | ETF models and the proposed method
(2012) Equivalent Transfer | has shown the better performance of
Functions and Simplified | compared with the centralized control
Decoupler. system, ideal, inverted, and
normalized decoupling methods.
3 Hazarika and | Designed multivariable | Used equivalent transfer function
Chidambaram proportional integral | model to design multivariable PI
controllers  for unstable | controllers for diagonal elements and

simplified decouplers are used to
decompose the unstable multi loop
systems into independent loops and
double loop control structure is used
to reduce the overshoot for unstable
systems

4 Chandrasekhar
et al. (2016)

Proposed simple method of
designing  decentralized
PID controllers for stable
systems by  synthesis
method is extended to
unstable systems.

Decentralized control system s
designed using maclaurin Series,

gives improved responses and
decreased interactions when
compared to that of the

Govindhakannan decentralized PID
control system design method.

A summary of the reported work regarding the design of PID controller for unstable multivariable

processes are given in Table 2.5.
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2.6 Design of set-point weighting parameters for unstable systems

This section gives the overview of the literature on set-point weighted PID controllers for
SISO and MIMO unstable time-delay systems.

Sree and Chidambaram (2003a) designed set point weighted PI controller for UFOPTD process
with a zero based on equating coefficient method by matching the corresponding first power of s
in the numerator and that in the denominator of the closed loop transfer function. Simulation results
were provided to illustrate the robust performance of the controller which is evaluated by

simulation on a CSTR with non-ideal mixing carrying out an enzymatic reaction.

Sree and Chidambaram (2003b) proposed a set point weighted PI controller for stabilizing an
unstable bioreactor with a dominant unstable zero based on direct synthesis method. The controller
design proved to be robust for perturbations in the controller settings. A set point weighting has
been considered for the controller to reduce the initial jump and undershoot of the servo response.

Liu et al. (2005a) have proposed an analytical 2 DoF control scheme for open loop unstable first,
second order and integrating unstable first order processes with time delay. They have designed
three controllers in which proportional or plus derivative controller is employed to stabilize the set
point response; a Hz optimal set point tracking controller is designed based on ISE performance
specification. The desired disturbance transfer function is proposed to design the disturbance
estimator in the inner closed loop to obtain the ISE performance objective. Here the set point and

load disturbance responses can be tuned easily by a single tuning parameter.

Shamsuzzoha and Lee (2008c) designed a simple 2 DoF IMC based PID controller for integrating
processes with positive and negative zeros focusing on disturbance rejection. Comparisons with
the other tuning methods have been carried out for the same level of robustness. Guidelines are

provided for the selection of tuning parameter.
Uma et al. (2010) proposed a modified smith predictor (SP) design for controlling the non

minimum phase integrating processes with/without a zero. They used two controllers based on

direct synthesis approach. The set point tracking controller is PID with lag filter and PD with lead
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lag structure is the disturbance rejection controller. The method provided good disturbance

rejection response with significant improvement in servo responses by using a set point weight.

Chen et al. (2008) developed set point weighted PID controller tuning for time delayed unstable
systems. Based on the set point weighting parameter, they used a simple PID-PD controller to
achieve basic and modified PID structures

Ali and Majhi (2010) presented a tuning method of minimizing the ISE criterion with the
constraint that the slope of the Nyquist curve has a user specified value at the gain crossover
frequency, to get the optimal controller parameters for integrating processes providing satisfactory
set point tracking and load disturbance rejection responses. Guidelines have been provided for
selecting the gain crossover frequency and the slope of the Nyquist curve.

Jin and Liu (2014) addressed the analytical tuning method of 1 DoF PID controller and 2 DoF
PID controller with set point weights for integrating processes with and without RHP zero using
IMC technique and achieved a good performance /robustness trade-off, by specifying the desired

robustness.

Lee et al. (2014) proposed simple analytical tuning rules for PI/P1D controller based on Skogestad
IMC (SIMC) method. They also designed a set point filter to reduce the overshoot for stable,

integrating and double integrating processes.

Anil and Sree (2015) designed direct synthesis based PID controller with lead lag filter for
integrating time delay systems. The effectiveness of the proposed method was shown by providing

the simulation results on various models and on nonlinear model equations of CSTR.
Padma Sree and Chidambaram (2017) presented an excellent overview of controlling unstable

single and multi-variable systems. Many physical examples are stated as unstable transfer function

models. The problems in the control of unstable systems are given in detail.

24



Table 2.6 Literature review on set-point weighting parameters for UFOPTD and USOPTD

processes.
S. No. Author Description Remarks
1 Sree and Set point weighted PI | Applied for UFOPTD systems with
Chidambaram | controller ~ based on|a zero and provided simulation
(2003a) equating coefficient | results on a CSTR process.
method.
2 Sree and Pl controller based on | For stabilizing an unstable
Chidambaram | direct synthesis method. bioreactor with a dominant unstable
(2003b) zero, provided robust performance.
3 Liu et al. (2005a) | 2 DoF control scheme with | For UFOPTD, USOPTD and
three controllers, integrating UFOPTD.
4 Shamsuzzoha and | 2 DoF IMC based PID | For integrating processes with
Lee (2008c) controller. positive and negative  zeros

focussing on disturbance rejection.

5 Uma et al. (2010) | Modified SP design with | Provided good disturbance
two controllers designed | rejection for non minimum phase
based on direct synthesis | integrating processes with/without
method. a zero.

6 Chen et al. (2008) | Developed set point | Based on the set point weighting
weighted PID controller | parameter, used a simple PID-PD
tuning for time delayed | controller to achieve basic and
unstable systems. modified PID structures

7. Ali and Majhi PID controller based on | Provided good servo/regulatory

(2010) minimizing ISE and gain | responses for integrating processes.
crossover frequency in the
Nyquist curve.
8 Jin and Liu IMC-PID from 2 DoF to 1 | For integrating processes with and
(2014) DoF. without RHP zero.

9 Lee et al. (2014) PI/PID controller based on | For  stable and  integrating
SIMC method processes.

10 Anil and Sree Improved PID controller | For unstable integrating processes

(2015) with lead lag filter using | with time delays.
direct synthesis method
11 Padma Sree and | Presents the equating | CSTR, bioreactor, fluidization
Chidambaram | coefficient method for the | reactor, fluid catalytic reactor,
(2017) design of Pl and PID | Jacketed CSTR, Isothermal reactor,

controllers for stable and
unstable systems. Several
examples have been stated
for the existence of
unstable behavior in the
processes.

cart and pole problem, helicopter
and airplanes.
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A summary of the reported work for set-point weighted PID controllers for SISO and MIMO
unstable time-delay systems are given in Table 2.6.

Based on literature survey the following important research problems are noted:
» Analytical design rules may be developed like look up tables

» Design of H2 optimal IMC based controllers to unstable systems both theoretically and
experimentally

» Enhanced design of H, optimal PID controllers for cascade and MIMO unstable systems

» Propose simple set-point weighted PID controllers design for SISO and MIMO unstable
systems to further reduce the overshoot
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Chapter 3

Analytical PID Tuning Rules for Unstable Processes
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Chapter 3

Analytical PID Tuning Rules for Unstable Processes

For a wider range of stable processes, many analytical PID controller tuning rules are
available. However, for unstable processes, the availability of analytical tuning rules is limited. In
this chapter, H> minimization theory in combination with internal model control (IMC) is used to
analytically derive PID controller settings which can be used as a ready reference like look-up
tables. These analytical settings are developed for a defined range of time delay to time constant
ratio. Robustness of the control system is evaluated by Maximum sensitivity (Ms).

3.1 Introduction

Tuning of different types of controllers for right half plane pole processes, which are
classified as unstable, has been addressed by in literature. IMC based design using the Laurent
series expansion is developed by Panda (2009) and by using Maclaurin series approximation is
developed by Nasution et al. (2011). Based on the need of an operation, i.e., either in a set-point
tracking mode or load disturbance rejection mode, Arrieta et al. (2011) developed formulae for a
controller for unstable and integrating processes. IMC based design using the Laurent series
expansion is developed by Panda (2009) and by using Maclaurin series approximation is developed
by Nasution et al. (2011).

To enhance the tracking capability smoothly, either placing a filter for the set point signal
or using a weight for set point signal is preferred. The methods developed by Nasution et al. (2011)
and Panda (2009) are applicable for wider range of time delay to time constant ratios (w/n = To =
0.1 to 1.2). However, the equations are not simple and are tedious to utilize in practice. Also, the
method Wang et al. (2015) is not applicable when the time delay to time constant ratio is greater
than 0.9. A method to design P1 controller is proposed by Cho et al. (2014) but the major limitation
of the method is that it does not work when the time delay to time constant ratio is equal to 1. A
method to design PID controller is addressed by Anusha and Rao (2012) for second order unstable
processes and IMC based controller with lead-lag filter is developed by Vanavil et al. (2014). The
important points about the methods discussed so far are (1) Analytical tuning rules are not available

for many methods and (2) some methods cannot be applied when wn > 1.
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Recently, Sree and Chidambaram (2017) discuss the importance of unstable systems and
their occurrence in practice. Begum et al. (2016) proposed analytical relations for controller for
the desired level of robustness. The present work extends the idea used by Nasution et al. (2011)
to develop robust PID tuning rules for unstable processes using IMC method with optimal H>
minimization theory. The current design methodology evaluates the performance and robustness
trade-offs which aim to achieve a smoother response to both servo and regulatory changes while
at the same time guaranteeing desired robustness. Also, the present method works even when p/n
> 1. Further, with the provided examples, it is shown that the proposed method is much superior

to the existing methods regarding performance, particularly for higher values of p/n.
3.2 Controller design

IMC control is shown in Figure 3.1. Analytical relations for PID controller are reported for
unstable first order plus time delay (UFOPTD) processes by Nasution et al. (2011), however, the
developed formulae are not easy to use in practice. In the present method, analytical tuning rules

are provided which are relatively easy for practical use. Let us consider the UFOPTD process as

me™HS

P(s) = (3.1)

ns—1

Y,

+
o
Xy =
v
o
J-(
o

Figure 3.1 Internal Model Control
Based on IMC philosophy, considering perfect model (P = Pm) and optimal H2 theory, the IMC

controller is derived and is given as Nasution et al. (2011)

(ns—1)
m

C(s) = {(e*/™ — D)ns + 1}F (3.2)

Here, F is the filter, which is selected as
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F=((s+1)/(As+ 1)3 (3.3)
here, A need to be selected properly. Also, the analytical expression for vy is derived based on the
internal stability conditions for any IMC based structure (Nasution et al., 2011) and is obtained

as

y ={@A/n)? +3@/n) +3}2 (3.4)
The equivalent controller Gc in single loop control is obtained as

Ge = — (3.5)

T 1-CPp

Incorporating the expressions for C and P, one can achieve

_ {(e*/M—1)ns+1}(ys+1)(ns—1)
C ™ m[(As+1)3-{(e¥/m—1)ns+1}(ys+1)e—HS]

(3.6)

the above expression for controller is converted into a PID controller form using Maclaurin
series by defining

w(s) = sG.(s) (3.7)
Expanding w(s) using Maclaurin series, we get

Ge(s) = 2 (W) + W' ()5 + 5257 + .. (3.8)
Eq. 3.8 is written as equivalent to a conventional PID controller as

G.(s) =k, (1 + ?15 + ‘L'dS) (3.93)

From Eqg. (3.8) & (3.9a), the controller settings are derived as

k.=wW'(0), ;= LACPY, Ty = w(©) (3.9b)

w(0) 2w (0)

on substitution and simplification, the controller equations can be obtained as a function of w/n and

Mn and which are complicated. Each expression for ke, Ti, T4 contain expressions that are intricate
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and not easy to implement. Moreover, user friendly rules in simple analytical form are always
recommended in industries. Note that the design equations for the techniques reported by Morari
and Zafiriou (1989), Nasution et al. (2011), Panda (2009) and Wang et al. (2015) are more
involved. Also, it is always preferred to have robust tuning rules to take care of process

uncertainties.

3.3 Robust tuning of controller

For designing a robust controller, it is necessary to select the IMC tuning parameter A as all the
controller parameters (Kc, ti, T4) are functions of the transfer function model parameters which are
known except A. For robust design, let us again consider the UFOPTD process transfer function
givenineq. (3.1).

me™HS

P(s) =

(3.10)

ns—1

Using the transformation § = ns and pp = p/n, after normalization, the normalized process model is

obtained as

e~Mps

5-1

CI(s) = (3.11)

similarly, the controller given in eqg. (3.9a) is also normalized using the transformations and

obtained as

GI(3) =mkc(1+%+fn—d§) (3.12)

with the normalized process and controller expressions, the sensitivity function S is defined as

1
S = Tratre (3.13)
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Based on this, M is defined as the maximum value of |S| for all of the frequencies. Using
the controller expressions, the robustness is evaluated to achieve a minimum possible value for Ms
for different values of wn. The equivalent values are depicted in Table 3.1. From this table, for a
given process, once p/n is known, one can select A/n In order to further simplify the selection of
AMn, an analytical relation is determined based on regression analysis. The data is plotted as shown
in Figure 3.2. The corresponding equation for selection of A/n is obtained as
Mn=2.0957 (w/n)? + 0.9634 (wn) — 0.0889 (3.14)
Similarly, an equation for M is also determined based on A/n and is given below.

Ms = 0.2547 (Mn)® — 1.7432 (M/n)? + 4.7569 (M/n) +1.3371 (3.15)
Let us assume p/n =T, A/n=R

Fromeq.3.14 and 3.15

R =2.0957 (T)? + 0.9634 (T) — 0.0889

M = 0.2547 (T)? — 1.7432 (R)? + 4.7569 (R) +1.3371

In this work, from eq. (3.9b), simple expressions are developed for the controller settings.
The expressions for ke, i, 7q are developed from eq. (3.9b) after carrying out simple mathematics

and are obtained as

Km = fi(R,T) (3.16)
L= f(RT) (3.17)
“=fRT) (3.18)
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4 y =2.0957x2 + 0.9634x - 0.0889/

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 3.2 R for specified T values.

Selection of R is already discussed and A can be obtained from eq. (3.14) for a given process.
Regression is used to develop simple tuning formulas for controller parameters. For a given
process, T is known and based on this, the controller parameters are found out as a function of R

based on eq. (3.9b) and obtained the following equations.

K.m=a;(R)’1 + ¢, (3.19)
% = a,(R)"2 + ¢, (3.20)
4 — a,(R)P2 + 5 (3.21)

n

Where a;, b, ci (i = 1, 2, 3) are the coefficients whose values change for each T. In this work, the
range of T is considered as 0.1 to 1.2. After carrying out regression, the values of these coefficients

are obtained for each T and are shown in the Table 3.1. R can be obtained from eq. (3.14).
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Table 3.1 R and M;s Evaluation for defined T range

T 01 |02 |03 (04 |05 |06 |07 |08 |09 |1 1.1 |12
R 0.17 {023 |0.23 |052 |0.69 |0.95 |23 |238 |24 |25 |35 |42
Minimum
possible |1.61 | 2.17 | 2.86 |3.18 | 3.96 | 5.13 | 5.68 | 5.05 | 5.8 |7.69 |8.12 | 9.18
M;s

While the a1,b1,c1,a2,b2,C2,a2,02,C2,a3,b3,c3 parameter values for 0.1< T <1.2 are available in the

above table, coefficients for intermediate values of T can be obtained by interpolation. To further

have simplified tuning rules, the coefficients are also evaluated analytically based on the data given

in Table 3.1 using curve fitting and the corresponding equations are given in Appendix A.

Now, for any value of T, one can find out the controller parameters after appropriately

selecting the A value. Here, for selection of A, which plays major role in determining the robustness

of the closed loop control system, Ms is used. To summarize the present tuning method, for the

known T value, use eg. (3.19, 3.20, and 3.21) along with eqgs gives in Appendix A and obtain the

controller parameters as a function'n of R.

To summarize the proposed robust tuning, the systematic steps are given here.

Step 1: For the known unstable transfer function model of the process, calculate T.

Step 2: Select A based on eq. (3.14)

Step 3: Use egs. 3.19, 3.20 and 3.21 along with eqs gives in Appendix A and find out the controller

parameters K¢, 7,

These steps can be used like look-up tables to design the PID controllers by the operators.
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3.4 Simulation results

Evaluation of the performances is verified on many unstable processes and is compared
with the techniques developed by Wang et al. (2015), Panda (2009) and Nasution et al. (2011).
For reasonable evaluation, IAE and TV defined at same M;s are taken into account as metrics.

Controller Performance Metrics:

Integral Absolute Error (IAE), Integral Square Error (ISE) and Total variance (TV) are the
criteria used to estimate the performance of the closed-loop process.

IAE = ["|E(t)|dt
Where E(t) = Y(t) — U(%).

Total Variance is to measure the total variance in the controller output U(t) which provides an

acceptable measure of the smoothness of the control.
TV = Zf.illUi - UJ‘—1|

Example — 1: Control of a dimerization reactor process is considered here whose dynamics are
(Sree, 2017)

—0.017e724S

P(S) - 5.85—-1

(3.23)

Based on this model, the controller is designed and the corresponding values are given in Table
3.3. For comparison, other recent methods are also accounted and their controller values are also
given in Table 3.2. Based on these controllers, a unit step change is provided to the set point and
at a time of 60 sec, a step signal of 0.5 is provided to the disturbance. The simulation graphs are
given in Figure 3.3 & 3.4 for nominal and perturbed cases. The metrics IAE and TV for both cases
are calculated and provided in Table 3.3. The current approach provides good responses. It can be

observed that even with increased perturbations, the TV value remains low for the current method.
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Figure 3.4 Output and control action behavior under mismatch model for example 1, dash —
(Nasution et al., 2011), solid — Present work, dash dot — (Panda, 2009), dot - (Wang et al., 2015).

Example — 2: Here, unstable process with more than first order is studied (Liu and Gao, 2012)

e—O.SS

(55—1)(25+1)(0.55+1)

P(s) =
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A is obtained as 5.2 according to eq. (3.14) which corresponds to Ms=4.6. For this value of A, the
controller values are provided in Table 3.2. Based on this controller, a unit step change is provided
to the set point and at a time of 100 sec, a step signal of 0.5 are provided to the disturbance. The
simulation graphs are given in Figure 3.5 for nominal and perturbed cases. The metrics IAE and
TV for both cases are calculated and provided in Table 3.2. Notice that the current approach

resulted in fair responses and also smooth control action responses.
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Figure 3.5 Output and control action behavior under exact and mismatch model for example 2,
dash — Mismatch model, Solid - Perfect model.

Example — 3: The following unstable process is considered here (Liu and Gao, 2012)

e—OES
P(s) = (2s—-1)(0.55+1) (3.25)

Here, A is obtained as 1.72 for which Ms is 3.9. For this value of X, the controller values are

provided in Table 3.2. Based on this controller, a unit step change is provided to the set point and
at a time of 30 sec, a step signal of 0.5 is provided to the disturbance. The simulation graphs are

given in Figure 3.6 for nominal and perturbed cases. The metrics IAE and TV for both cases are
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calculated and provided in Table 3.2. Notice that the current approach resulted in fair responses

and also smooth control action responses.
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Figure 3.6 Output and control action behavior under exact and mismatch model for example 3,
dash — Mismatch model, solid - Perfect model.

Example — 4: Here, an unstable process with significant time delay is taken whose dynamics are

e—l.ZS

P(s) = (3.26)

s—1

For this example also, the designed controllers for all considered cases are given in Table 3.3.
Based on these controllers, a unit step change is provided to the set point and at a time of 40 sec,
a step signal of 0.08 is provided to the disturbance. The simulation graphs are given in Figure 3.7
& 3.8 for nominal and perturbed cases. The metrics IAE and TV for both cases are calculated and
provided in Table 3.2. From the table, it can be observed that even with increased time delay, the
metrics remain low for the current method than previous techniques. It should be worth mentioning
here that Wang et al. (2015) technique provides unbounded responses for significant delay process

for any A and thus those graphs are kept in Figure 3.7 & 3.8.
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Table 3.2 Comparative evaluation in terms of IAE and TV for all methods.

Perturbations of -
10%in kp +10% in 0
Method Perfect model
A Ke Ti Td Ms and -10% in t
Example 1 IAE TV IAE TV
P —0.017e7%* Proposed 3.87 | -137 | 14.73 0.7 | 3.81 14 314 12.1 304
S)=
585-1 Nasution et
| 2.56 | -166 12.6 0.9 | 3.81 12 351 11.7 636
al.
Panda 251 | -164 | 13.38 1.1 | 381 13 357 9.8 271
Wangetal. | 412 | -128 27.2 1.7 | 381 26 372 18.93 221
0.9492¢ 275 and -30% in T
P(S)=—r——
>2044s-1 1 proposed | 5.2 2 163 [ 084 [ 46 [ 195 | 6.96 19.58 6.96
-109461 04 |
Example 3 10%in kp +10% in
e 09657 0 and -10% in T
242781 proposed | 1.72 [ 234 ] 629 | 03 [ 3.9 5 4.3 5.01 4.31
+5% in 0 and -5%
in 1t
Example 4 Proposed 4 1.14 | 63.79 | 0.53 9 12.6 2.3 13 4.5
g2 | Nasution et
P(s) = 3.28 | 1.13 77.9 0.55 9 14.7 2.37 14.7 3.37
s-1 al.
Panda 419 | 112 89 0.58 9 16.53 2.35 16.46 3
Wang et al. Unstable

Example — 5: Control of a Chemical Reactor:

Mathematical model of isothermal chemical reactor is considered here (Vanavil et al., 2014).

dcCy

ek §(CA,f —Ca) =

ki1Ca
(k2Ca+1)?

(3.27a)

Where F is the flow rate (0.0333 L/s) and Car is the inlet concentration. V =1L, ky=10 L/s, and

k> = 10 L/mol. The reactor is operated with an inlet concentration of 3.288 mol/L. Corresponding
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to this, the multiple steady states for the exit concentration are Ca = 1.7673, 0.01424 and 1.316
mol/L. Of these three, Ca = 1.316 is an unstable steady state. Inlet concentration is considered as
the manipulated variable. The above nonlinear model is linearized around this operating condition
and obtained the Unstable transfer function model as 3.433/ (103.1s-1). For this particular case, a

time delay of 20 sec is considered. With that, the model is obtained as

3.433 205

103.1 s—1 (3.27b)

P(s) =

By considering this transfer function model, from eq. (3.14), A = 18 is obtained to achieve Ms=
2.6. For this value ofi, the controller values are provided in Table 3.3. Based on this controller, a
unit step change is provided to the set point and at a time of 400 sec, a step signal of 0.5 is provided
to the disturbance. The simulation results are given in Figure 3.9 for perfect model and in Figure
3.10 for uncertainties. The metrics IAE and TV for both cases are calculated and provided in Table

3.3. The current method is comparatively better.
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Figure 3.9 Output and control action behavior under exact model conditions for example 5, dash
— (Nasution et al., 2011), Solid - Present work, dash dot — (Panda, 2009), dot - (Wang et al.,
2015).

41



2 [ [ [ [ [ [ [
1)
=) "‘:.. N gna
a1
Bl e =
O Al
0 [ [ [ [ [ [ [
0 100 200 300 400 500 600 700 800
Time
) 1 [ [ [ [
c
e, 5
00 o |
& 2
—_ RS
g 17 ) ‘o,‘ s’ A _l
c
@] .
O

[ [ [ [ [ [ [
100 200 300 400 500 600 700 800
Time

SE

Figure 3.10 Output and control action behaviour under mismatch model conditions for example
5, dash — (Nasution et al., 2011), solid - Present work, dash dot — (Panda, 2009), dot - (Wang et
al., 2015).

Non — linear Simulation:

To analyze the performance of the controllers in more realistic manner, closed loop
simulations are carried out on the original nonlinear model by giving a step change in the set point
from 1.316 to 1.34 at time t = 0 and a step disturbance of magnitude of 0.034 at t = 400 sec. The
corresponding results are shown in Figure 3.11 for perfect model and in Figure 3.12 for
perturbations. From the figure, one can see that the present work shows fair closed loop tracing of
set point with smooth less oscillatory controller output. The IAE and TV values are given in Table
3.3. Further, both increased (positive) and decreased (negative) step inputs of different magnitudes
are considered with a noise of power 0.0001 in the measurement and the simulation results are

shown in Figure 3.13. The present method tracks the set point well.
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Figure 3.13 Closed loop response for different set points example 5 with Noise.
Example — 6: Control of a Bio-reactor

A nonlinear continuous bioreactor exhibiting output multiplicity behavior is considered

whose model is given by (Sree and Chidambaram, 2017)
ax

= w-D)x (3.28)
S=(s,-S)p-= (3.29)

Wherep = S/ (K, + S + K;S%), y=0.4 g/g, St = 4g/l, m=0.53 h*, D=0.3 h?, Kn=0.12 g/l
Ki = 0.45451 I/g. X and S are the cell and substrate concentrations. The reactor exhibits multiple steady
states at (X =0, S = 4), (0.9951, 1.5122) and (1.5301, 0.1746). It is desired to operate the reactor at the
intermediate unstable steady state (X = 0.9951, S = 1.5122). The dilution rate, D is used as a manipulated
variable. Measurement delay of 2.4 hours is assumed for X. Linearizing the nonlinear model equations

around the unstable operating point, the transfer function model is obtained as.

—5.89 ¢~2:45
5.865—1

P(s) = (3.30)

For this process, A is obtained as 3.85 as per eq. (3.14) for which Ms is obtained as 3.2. Design
methods are developed in references (Wang et al., 2015) (Panda, 2009) (Nasution et al., 2011) are
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considered for comparison. The controller values for all cases are provided in Table 3.3. Based on
these controllers, a unit step change is provided to the set point and at a time of 50 sec, a step signal
of 0.5 is provided to the disturbance. The simulation graphs are given in Figure 3.14 & 3.15 for
nominal and perturbed cases. The metrics IAE and TV for both cases are provided in Table 3.3. It
can be seen that the IAE and TV are close to Nasution et al. (2011) and better than Wang et al.
(2015) and Panda (2009).
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Figure 3.14 Output and control action behavior under exact model for example 6, dash —
(Nasution et al., 2011), dash dot — (Panda, 2009), solid - Present work.
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Figure 3.15 Output and control action behavior under mismatch model conditions for example 6,
dash — (Nasution et al., 2011), Solid - Present work ,dash dot — (Panda, 2009)
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Non - linear Simulation:

Closed loop simulation is carried out by giving a step change in the set point from 0.9951
to 1.2 at time t = 0 and a step disturbance of magnitude of 0.35 at t = 75 sec for the original
nonlinear model. The corresponding closed loop and control action responses are shown in Figure
3.16 for perfect model and in Figure 3.17 for perturbations. One can see that the present work
shows fair closed loop tracing of set point with smooth less oscillatory controller output. IAE and
TV values are given in Table 3.2. Evaluation is also carried out in the presence of Noise with
power = 0.0001 for both positive and negative step inputs of different magnitudes and shown in

Figure 3.18. The present method tracks the set point well even in the presence of noise.

1 \ A= .

[
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Time

Control actions

- [
0 50 100 150
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Figure 3.16 Performance evaluation for Non Linear true model for example 6. dash —(Nasution
et al., 2011), solid - Present work, dash dot —(Panda, 2009), dot - (Wang et al., 2015).
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Figure 3.17 Performance evaluation for Non Linear mismatch model for example 6. dash —
(Nasution et al., 2011), solid - Present work, dash dot — (Panda, 2009) , dot - (Wang et al., 2015).
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Figure 3.18 Closed loop response for different set points example 6 with Noise for perfect
condition. Dot — input, solid — output.
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Table 3.3 Comparative evaluation in terms of IAE and TV for all methods

Perfect model

+20% in 0 and -

10% in T
Method A Ke Ti Td Ms
Example 5 IAE TV IAE TV
Proposed 18 145 [759 [10.1 [26 |[99.9 2.85 |92.3 4.31
p(s):?gi el Nasutionetal. |22 | 151 |889 |7.2 |26 |101.2 |254 |1127 |5.33
1S—
Panda 24 148 [97.3 |94 26 | 1122 |251 |111.8 |4.14
Wang et al. 26 141 [ 1234 [102 |26 |141.7 |234 [1432 |583
Proposed 18 145 [759 |101 |26 |3.76 5.8 3.92 5.86
Example 5 .
) Nasutionetal. | 22 1.51 88.9 7.2 2.6 3.9 5.18 4.39 5.3
Non-linear
_ ) Panda 24 148 [97.3 |94 26 |4.18 571 |41 5.71
Simulation
Wang et al. 26 141 [ 1234 [102 |26 |52 557 |52 5.5
+5% in 0 and -
5% in T
Example 6 Proposed 385 |-039 | 148 |07 |32 |2738 |228 |282 |2.82
Pe-20¢"" [Nasutionetal. |29 |-044 |147 |09 |32 |255 |23 |255 |2.76
Panda 29 [-044 |15 1.07 [32 [26.2 235 |26 2.8
Wang et al. 36 |-038 [236 [152 [32 |[447 2.6 44.4 3
Proposed 3.85 | -0.39 | 148 0.7 3.2 4.5 11.2 5 11.3
Example 6 i
) Nasutionetal. | 2.9 -044 | 147 |09 3.2 4.04 156 | 4.55 15.8
Non-linear
_ ) Panda 29 [-044 |15 1.07 [32 [4.16 176 | 4.66 17.7
Simulation
Wang et al. 36 |-038 [236 [152 [32 [6.43 20.24 | 6.53 20.27
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3.5 Summary

Robust analytical relations for PID controller are developed for time delayed unstable
systems. These rules can be used like look-up tables by the operators for tuning of PID controllers.
For unstable systems, it is very crucial to select the tuning parameters to acquire stable responses.
Robustness always requires lower Ms values which is usually not easy to achieve for such systems.
The tuning parameter is selected to achieve minimum possible Ms value and analytical formula is
given to calculate A. Further, the developed simple tuning formulae provide fair and enhanced
performances. The present methods can be utilized as look up tables for selection of the PID
controller tuning parameters. Six case studies are considered to evaluate the applicability of the
current method. Analytical formula is provided to determine A based on wn. The evaluated
responses of the current design are superior when compared with existing techniques, especially
when p/n is significant. The current methodology is relatively simple and can be applied for any
system with a right half plane pole. Comparative analysis has also been done using IAE and TV.
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Chapter 4

Experimental Studies on an Inverted Pendulum
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Chapter 4

Experimental Studies on an Inverted Pendulum

In the present chapter, an experimental assessment of the developed method in chapter 3 is
verified by testing it on an Inverted Pendulum (IP). The performance of controlled system is
compared with the methods proposed by Begum et al. (2018) and Cho et al. (2014).

4.1 Introduction

Inverted Pendulum (IP) is a platform for study of control theories. There are two separate
control problems in IP. First is the crane control problem, in which the goal is to move the cart to
a desired position with as little oscillation of the load (pendulum arms) as possible. The other is to
stabilize the IP in an upright position. The IP task can be seen as a self-erecting control problem,
which is present in missile launching and control applications. Furthermore, the pendulum
application involves a swing up control aspect if initially the pendulum hangs freely in the vertical
position. These two control problems (inverted pendulum and crane control) have one very
important difference, which is the stability. The pendulum serving as a crane is stable without a
working controller. Due to energy loss through friction and air resistance it will always end up at
an equilibrium point. The inverted pendulum is inherently unstable. Left without a stabilizing

controller, it will not be able to remain in an upright position when disturbed.

4.2 System description of inverted pendulum

An automated digital pendulum is considered as shown in figure 4.1 which consists of a
cart moving along a one meter track length. The cart is associated with a shaft attached with two
freely rotating pendulums. The present study aims in maintaining a vertical upright position of the
pendulum by cart’s action. When the cart’s movement is towards the extreme end (beyond the
limit switches), the power supply is interrupted with the help of sensors seated on either sides of
the rail. The belt and DC motor assembly helps the cart to move freely in horizontal directions.

The belt and DC motor assembly helps the cart to move freely in horizontal directions.
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This digital IP is a Single Input Multiple Output (SIMO) system. By applying a voltage to
the motor the force is controlled with which the cart is pulled. The value of the force depends on
the value of the control voltage. The input signal to system is the control voltage (u) and the output
are, the cart position coordinate (x) and pendulum angle (¢), which can be read using optical
encoders. The controller’s task will be to change the DC motor voltage depending on these two
variables, in such a way that the desired control task is fulfilled (stabilizing in an upright position,
swinging or crane control). Here, our main objective is to control the pendulum angle. The system
can be thought of an inverted pendulum when ¢ = 0 at vertical position and crane control when ¢
=1 i.e., when it is suspended freely. Both the cart position and the control signal are bounded in a
real time application. The bound for the control signal is set to [-2.5 V to +2.5 V] and the generated
force magnitude of around [-20.0 N to +20.0 N]. The cart position is physically bounded by the
rail length and is equal to [-0.5 mto +0.5 m]. The model parameters of the above mentioned system
are given in Table 4.1.

Table 4.1 Model parameters of Inverted Pendulum

Parameters Notations Values
Cart Mass M 24Kg
Pole Mass m 0.23 Kg
Pole Length l 0.4m
Pole Moment of Inertia I 0.099 Kg.m?
Cart Friction Coefficient b 0.05 N.s/s?
Acceleration due to gravity g 9.81 m/s?

4.3 Inverted pendulum modelling

The phenomenological model of the pendulum is nonlinear, meaning that at least one of
the states (x and its derivative or ¢ and its derivative) is an argument of a nonlinear function. For

such a model to be presented as a transfer function (a form of linear plant dynamics representation
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used in control engineering), it has to be linearized. Without a properly designed controller it is
tough to control an IP to reach its objective, as it is unstable in upright vertical position. The
objective is to control the pendulum angle. An appropriate mathematical modelling is necessary
for the design of a controller. The nonlinear differential equations derived through the modelling
of the IP system are (Rao and Chidambaram, 2015) :

(m + M)% + bx + ml¢ cos(¢p) — mlp? sin(¢) = u (4.1)
(I + mI?)¢ + mlx cos(¢p) + mgl sin(¢p) = 0 (4.2)

When the force is applied to the cart (u), the cart position changes (x) and hence the pendulum
angle with respect to vertical position (¢). These nonlinear equations, Eq. 4.1 and Eq. 4.2 needs to
be linearized around steady state condition to design a suitable controller. The following equation
shows the conversion of nonlinear model in to linearized one based on which the pendulum angle

transfer function is derived.

(]
m
y o
|
X
u
M 5

o O

Figure 4.1 Schematic diagram of Inverted pendulum (IP)

_P(s) mls/q
Gp(s) - u(s) - (53 n b(I+ml?) $2 _ (M+m)mgls _ bmgl) (43)
q q q
mls
Gp(s) = (4.4)

(gs® + b(I + ml?)s? — (M + m)mgls — bmgl)

Where ¢ = (M + m)(I + ml?) — (ml)?
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After substituting all the model parameters in Eq. 4.4, the following transfer function is obtained.

(o) = 0.01119s L5
p(s) = (0.0424s3 + 0.0008256s2 — 0.2886s — 0.005487) (4:5)

Assuming cart friction coefficient b = 0, we get

c B 0.01119s L6
»(S) = (0042457 = 0.28869) (4.6)

Cancelling out the s terms and on factorization of the denominator in Eq. 4.6, we obtain

(o) = 0.0388 47
»(9) = (038335 = 1)(038335 + 1) 47)

—0.0388
Gy(s) = (4.8)

(0.38335 — 1)(—0.3833s — 1)

4.4 Controller design

The PID controller is the most commonly used controller in industry. The controller design
for unstable process discussed in Chapter 3, section 3.2 is considered here. The structure of the
controller is considered as PID controller derived based on H, minimization. The methods
proposed by Cho et al. (2014) and Begum et al. (2018) are considered here for comparison with
the above method without using a pre-filter. They have used a simple desired closed loop transfer

function and the first order Taylor series approximation of process time delay (e =%° = 1 — 05s).

4.5 Experimental results

An automated digital pendulum is considered as shown in Figure 4.1 which consists of a cart
moving along a one meter track length. The cart is associated with a shaft attached with two freely
rotating pendulums. The present study aims in maintaining a vertical upright position of the
pendulum by cart’s action. When the cart’s movement is towards the extreme end (beyond the

limit switches), the power supply is interrupted with the help of sensors seated on either sides of
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the rail. The belt and DC motor assembly helps the cart to move freely in horizontal directions.
The design and methodology used for the experimentation are briefly elucidated in Begum et al.
(2018).

The present work is tested on the process with k, = -0.0388, 11 = 0.3833 and 12 = -0.3833.
For Ms value of 8.6, A is taken as 0.88 and the controller parameters are ke= 34.5, 1i= 6.42, 14=
0.16. For a balanced evaluation, the present work, Begum et al. (2018) and Cho et al. (2014)
methods are tuned for same M;svalue of 8.6 and the controller settings for Begum et al. (2018) and
Cho et al. (2014) are ke= 31.0453, ti= 14.8144, t¢= 0.1721 for A =0.81 and Kk¢=29.2793, 1i=
45.0954, 1¢= 0.2155 for A =1.8 respectively.

The tuning parameters obtained by the proposed method, are used for real time simulation
on a pendulum setup, where ¢ = 7 is stable position and ¢ = 0 or 2z implies unstable critical
position. The aim of controller is to maintain pendulum vertical position shown in Figure 4.2. An
initial control voltage of 0.18V and the proposed controller parameters being kc= 34.5, ti= 6.42,
1¢= 0.16 are provided to the system. The experiment is performed with a notion of controlling the
angle of the pendulum by balancing the cart acceleration. The set point for the angle of the
pendulum is fixed at ¢ = 0 i.e. upright vertical position and the cart position is maintained at zero.
The controller tracks the required angular set-point as depicted in Figure 4.3 for which the

controller settings helps the pendulum to reach the upper position at ¢ = 0.

The response of the recommended method is displayed in Figure 4.3. To ensure that
performance of the present method is improved, the responses achieved using the controller
settings of Begum et al. (2018) and Cho et al. (2014) method as presented in Figure 4.4 and Figure
4.5. It is noticed from Figure 4.3 that the pendulum reaches the upright position for a faster settling
time of 10 sec while it takes 24 sec and 28 sec for the other methods (Figure 4.4 and Figure 4.5).
This implies that the proposed method gives a smoother response in comparison to the methods

available in literature.
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Figure 4.3 Response of the Inverted Pendulum from the experiment for the proposed method.
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Figure 4.5 Response of the Inverted Pendulum from the experiment for Cho et al. method.

57



4.6 Summary

The majority of control loops are of PID type for set point tracking and disturbance rejection.
In this work, a H> minimization based IMC-PID controller is developed for controlling the angle
of an inverted pendulum. The transfer function model identification of the process has been carried
out based on available parameters of the inverted pendulum system. Experimental implementation
of the developed PID controller, shows a good response in maintaining the set point angle. The
performances of the present method is better than that of Begum et al. (2018) and Cho et al. (2014).
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Chapter 5

IMC-PID Design for Series Cascade Systems
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Chapter 5
IMC-PID Design for Series Cascade Systems

Optimal H: internal model controller (IMC) is designed for control of unstable cascade
processes with time delays. The proposed control structure consists of two controllers in which
inner loop controller (secondary controller) is designed using IMC principles. The primary
controller (master controller) is designed as a proportional-integral-derivative (PID) in series with
a lead-lag filter based on IMC scheme using optimal H> minimization. Selection of tuning
parameter is important in any IMC based design and in the present work, maximum sensitivity is

used for systematic selection of the primary loop tuning parameter.
5.1 Introduction

Unstable processes are comparatively difficult to control than that of stable processes. The
desired performance for unstable systems accompanying large time delays cannot be achieved with
simple PID controllers. Despite the fact that Smith delay compensation proved to be a powerful
tool to deal with time delay systems, it is inapplicable to unstable systems (Camacho, 2007). It is
a well-known fact that cascade control scheme drastically improves the closed loop performance
with disturbance rejection. A cascade control structure comprises of two control loops, a secondary
intermediate loop (slave loop) and a primary outer loop (master loop). In typical cascade control
structure, the secondary loop process dynamics are faster when compared to the primary loop. This
provides faster disturbance attenuation and minimizes the possible effect of the disturbances before

they affect the primary output.

Kaya (2001) proposed a cascade control scheme combined with Smith predictor for stable
processes with dominant time delay and achieved improved control performances. Many
researchers (Huang et al., 1998; Lee et al., 1998; Lee and Oh, 2002; Liu et al., 2005a; Tan et al.,
2000) worked on the design and analysis of cascade control strategies for stable processes. But,
limited research work has been carried out for the design of cascade control strategies for unstable
processes. Liu et al. (2005) suggested IMC based cascade control scheme for unstable processes

with four controllers. Kaya and Atherton (2008) designed a cascade control structure for
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controlling unstable and integrating processes with four controllers. Uma et al. (2009) proposed
an improved cascade control scheme for unstable processes with a modified Smith predictor with
three controllers and one filter in the outer loop. Garcia et al. (2010) developed filtered Smith
predictor cascade control and generalized predictor cascade control, in which they proposed the
design in discrete domain. Their method is applicable for stable, integrating and unstable time

delay processes.

Padhan and Majhi (2012) proposed a modified Smith predictor based cascade control
structure for unstable processes where they used three controllers. Recently, Nandong and Zang
(2014) proposed a multi scale control scheme for cascade processes. In the works of (Kaya and
Atherton, 2008; Liu et al., 2005b; Padhan and Majhi, 2012; Uma et al., 2009) more than three
controllers and/or filters were used in the cascade control architecture to improve the performance
of the unstable time delay processes. Most of the existing methods use more controllers and also
the design of these controllers is not simple. In practice, a cascade controller structure with only

two controllers (one for secondary loop and another for primary loop) is desirable.

In this chapter, a cascade control scheme is proposed with only one primary loop controller and
one secondary loop controller. Tuning rules are derived for the controllers for effective control of

open-loop unstable plants.

5.2 Proposed cascade control scheme

The cascade control structure used in the proposed method for the control of open-loop
unstable processes is shown in Figure 5.1 where G is the primary loop controller, Ge. is the
secondary loop controller. Gp1 and G2 are the primary and the secondary loop processes. Simple
IMC control scheme is used in the secondary loop. G2 is the secondary loop process model and
Fr is the set point filter. Usually, the dynamics of the secondary process are stable in nature and
dynamics of the primary process are unstable in nature. Hence, control of secondary process is

simple as compared to primary process.
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Figure 5.1 Proposed cascade control structure.

5.3 Controller design

The design of controllers in cascade loops depends on the dynamics of the secondary and
primary processes. If the dynamics of secondary loop are fast compared to that of primary loop,
the secondary controller needs to be designed first followed by the primary controller. If the
dynamics of both secondary as well as primary processes are similar, then simultaneous design of
controllers in both the loops is more appropriate and need to be carried out. In the present effort,
the dynamics of secondary loop is considered to be fast and hence the secondary controller is
designed first followed by the primary controller. Once the secondary controller is designed, an
overall primary loop process model is obtained. Based on the overall primary process model, the
primary controller is designed using H> norm minimization. In the following sections, design of

secondary controller is discussed first following by design of primary controller.

5.3.1 Design of secondary loop controller

The secondary controller is designed as a simple IMC controller. The controller in the
secondary loop represented by G is based on IMC principle and it stabilizes the process through
good disturbance rejection in the secondary loop. The closed loop transfer function of the

secondary loop is given by

62



y_z — Ge2 Gp2 (5 1)
Iy 1-Ge2 Gmz+Gez Gp2

As mentioned earlier, the secondary process dynamics are stable in nature and hence the secondary
loop process is considered as a first order plus time delay (FOPTD) process as

k... e~ 0p2s
Gpz = % (5.23)
Gm2 is the model of the secondary process and is considered as

Ko e~Om2s
Gm2 = T (5.2b)
As per the IMC strategy, the secondary controller is obtained as
Gy (5) = % (5.3)

Assuming that the model exactly corresponds to the process ( Gp, = Gpp) and

substituting G¢,,Gpz,Gmz, the closed loop transfer function of the secondary loop is obtained as

y_2 _ e—emZS
r, (Ays+1)

(5.4)

Where 2, is the secondary loop tuning parameter.

5.3.2 Design of primary loop controller

The primary loop controller is designed using Hz2 minimization. To design Gci, the overall
primary process model, Gm (relation between y: and rz2) is required and assuming a perfect

secondary loop process model (G, = Gp,), We get

Gy = 4= GCZGpZGpl (5.5)

ra

In this work, the primary loop process is a considered as an unstable FOPTD process as given in
Eqg. 5.6a
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—0p1S
_ kpie™ Pt

Gy = 5.6a
P1 = s D) (5.6a)

The corresponding primary loop process model is considered as

_ kmle—6m1s
Gpq = oD (5.6b)
Upon substitution in Eq. 5.5, we get

—(0,1+0p2)s

y ky,e “P1TP

G, === (5.7a)

P, (A,s+1)(Tprs—1)

Where G, is the overall primary loop process. Assuming perfect primary process model, (Gmi=

Gp1), the overall primary process model (G,,) is obtained as

_ kmle_ems
M= (h,5+1) (Tmys—1) (5.7b)
Where 0, = 01 + Oz
As a generalization, Eq. 5.7b is rewritten as
k —Oms
= (5.8)

m = (s 1)(tys-1)
Where t1 = tm1, T2 = -A2, K = -Km1

Based on this model (Eq. 5.8), the primary loop process controller (Gc) is designed based on H;

minimization theory and IMC principles.

Note: The present method addresses the design only for first order unstable time delay
processes. However, if the primary loop process has two unstable poles, then Eq. (5.8) will have
one more pole and becomes third order. In such cases, suitable identification techniques can be
applied to reduce the third order unstable process into a second order unstable process and still the

present method can be applied.

According to IMC principles, the primary loop IMC controller Qc is equivalent to

64



Qc,p = Qc,p F (5.9)
Where F is a filter which is used for altering the robustness of the controller.

The filter structure should be selected such that the IMC controller Qcp is proper and realizable
and also the control structure is internally stable. In addition to these requirements, it should be
selected such that the resulting controller provides improved closed loop performances. In this
work, Qc,p is designed for a specific type of step input disturbance (v) to obtain H> optimal
performance by Nasution et al. (2011) and is based on the invertible portion of the process model.
The process model and the input are divided as

Gn=0G6n_-Gpy and v=v_v, (5.10)
Where the subscript “ — “ refers to minimum phase part and “ +  refers to non-minimum phase

part. The Blaschke product of RHP poles of G and v are defined as

k K

—S+ P —S+ P,
b =]]——— and b =]]———
= =10 5.1

Where piand p, are the ith RHP pole and its conjugate respectively. Based on this, the H2 optimal

controller is derived by using the following formula (Morari and Zafiriou, 1989)

@C = bm(Gm—bvv—)_l{(mem+)_1bvv—}|* (512)
Where {.....}|* is defined as the operator that operates by omitting all terms involving the poles of
(G )™ after taking the partial fraction expansion.

In the present endeavour, The quantities required for the operator are obtained based on

the overall primary loop process model (Gm) as (Anusha and Rao, 2012)

Gn-(9) = ey G () = 7 (5.13)
v-(s) = mz(-s+ik)(_s+i)s; vi(s) =1 (5.14)
b,(s) = (—s + il) (—s + é)/(s + il) (s + iz) (5.15)
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b,(s) = (—s + i) (—s + é)/(s + 1—11) (s + %) (5.16)

Substituting in eq. 5.9, the IMC controller is obtained as

< (65-D(r,8-D)| 7, (1~ 7, ~ 7% + 1,8%)s? + (r /6% — 1) 1 1) 1)+ (1, - 7,)

Q.= " (6-7) (5.17)

Considering the filter as F(s) = (ys + 1)/(A;s + 1)#, the IMC controller is obtained as

Qc,p (s) = Qc,p(S)F(S) (5.188.)

Where A1 is the primary loop tuning parameter which is to be carefully selected so that good

nominal and robust closed loop performances are obtained.

The desired closed loop transfer function for set point changes is then obtained as

H(s) = Qcp(8)Gm(s)

The equivalent controller in a conventional feedback form is obtained from IMC structure as

Ger = Qcp/ (1= Qe pGr) (5.18h)
The conditions to be followed for internal stability of the above controller are

Condition 1: Qc, p must be stable and should cancel the right half plane poles of G

Condition 2: Qc, p Gm should be stable

Condition 3: (1-Gm Qc, p) at the RHP poles of the process should be zero

Eqg. (5.18b) can also be written as

H(s)

Ge1 = Toeion®

(5.19)
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It can be seen that the controller, Gei, has the zeros and poles at the location of RHP poles of
Gm(s). The RHP zeros of G¢ will be canceled out by the zeros of [1 - H(s)] as we satisfy the
internal stability according to IMC rules i.e.

Qc, p must be stable and should cancel the right half plane poles of G and should contain only

the minimum phase elements of Gn,.

Therefore there is no RHP poles-zeros cancellation in the outer loop in conventional feedback
control structure (Figure 5.1).After substituting Qc, , from eq. 5.18a and G from eq. 5.8, the
primary loop controller G:is obtained as

(t15—1)(t25-1)(z152 +225+73) (ys+1)
[z3(A1S+1)4—(z152+Z,5+23)e ¥mS(ys+1)]

Ge, = (5.20)

To bring the structure of G to a conventional PID controller format, approximations for
the time delay are required unless one uses maclaurin series or Laurent series. Here, we did not
use those approximations instead used first order pade’s approximation so that the final controller

is in PID format.

Considering pade’s first order approximation for the time delay term as

e_ems _ 1-0.501,s (5.21)
1+0.50,,s

The resulting controller is obtained as

(1+0.50,,8)(Tt,5—1)(Tt,5—1)(21S%+2,5+73) (ys+1)

Geq = K[(140.50,,5)Z3 (A1 S+1)*—(215%2+Z,5+23)(1-0.50,,5)(ys+1)] (5.22)
Where,

7, = TyTo(T; — T, — 1,e%/ ™ + 1,e9/72) (5.23)
7,=1,%e%/7 — 1,28/ 4 1,2 — 1,2 (5.24)
Z3=T; — T,

The denominator in Eq. (5.22) can be simplified as
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XoS + X152 +X,58% + x35* + x,s° (5.25)

Where

X = 4\ 23 + 023 —yZ3 — 7, (5.26)
X; = 62z3A% + 202737, + 0.50yz; — z; + 0.50z, — yz, (5.27)
X, = 47303 + 30M\%z; — yz; + 0.50yz, + 0.50z, (5.28)
X3 = Z3A] + 20A3z; + 0.50yz, (5.29)

X3 = 059)\%Z3

After simple mathematical algebraic rearrangements, the controller is obtained as

G = (z15%+235423) | (t15-1)(T25—1) (ys+1)(1+0.50s)
= kxos (1+325+3252 4 X363 4 X464,
X0 Xo X0 X0

(5.30)

X1 X2 X3 X4
X1 = _'XZ =—’X3 =—,X4 = —
X0 X0 X0 X0

This expression should be simplified to a PID controller form. Maclaurin series or Laurent series
may be applied here for approximation to a PID controller form. In the present work, this controller
is approximated to a PID controller with lead-lag filter as given in eq. 5.31 with simple

approximations.

Note that the first term in Eq. (5.23) is in the form of a PID controller. The second term needs to
be approximated as a lead-lag filter. After retaining the numerator term (ys + 1), the remaining

terms are taken to the denominator and made equal to (Bs + 1). With that, the controller is obtained

as
_ 1 (ys+1)
Ger = k(1 + p— + 145) B51) (5.31)
Where the denominator is
(1+X;s+X,5%+X353+X,5%)
Bs+ 1= (5.32)

(1+0.50s)(t15—-1)(T35-1)
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Taking first derivative for Eq. (5.32) with respect to ‘s’ and by substituting s = 0, the lag filter
parameter is obtained as

B = X1 + T1 + Ty — 056 (533)

With that, the controller parameters of Eq. (5.31) are obtained as

ke=-2,1 =2 14=2 (5.34)

kXO Z3 Z)

The value of vy is obtained from the condition-3 of internal stability for IMC structure
i.e. (1-GmQc, p) at the RHP poles of the process should be zero.

This condition can be applied as
(1 - QC,me)|s=1/1'1 =0 (5.35)

Substituting Qc, p from eq. 5.18a, the values of y is obtained as

zZ h+1 46%’1'
v= 3((zf_i+;+z3) - (5.36)

‘L'12 T1

By applying this condition, all the three conditions for internal stability are satisfied. With
the above equations, the analytical expressions for all the controller parameters of Eq. (5.31) are
available except the tuning parameters A; and A,. In the next section, the guidelines for selection
of these two tuning parameters are provided. It should be noted that for all practical applications,
derivative filtering is required in a PID controller to attenuate noise in the process output. Hence,
the designed PID controller (eg. 5.31) is implemented in the form
Goy =k, (1 + is + ﬁ) ((;Z—:)) (5.37)
Where 7, is the derivative filter coefficient. Selection of 7, depends on both performance,
robustness, noise attenuation and hence trade off exits for selection of z;. As a compromise
between performance, robustness and noise attenuation, in the present work, z, is selected as 7, /2
for all the simulation studies. However, this value can be varied based on the requirement and the

presence of noise magnitude in the process output.
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5.4 Guidelines for selection of tuning parameters

5.4.1 Selection of tuning parameter A,

In synthesis and IMC methods, low values of tuning parameters results in good nominal
performance. Large values of these tuning parameters produces robust control performance with
compromise on nominal responses. This sets a tradeoff in deciding the tuning parameter values.
Over the extensive simulations performed on various processes, the range of tuning parameter is
selected as A, = 0.460,,, — 26,,,.

5.4.2 Selection of tuning parameter A;

To have clear understanding for selection of A1, a systematic analysis is carried out using
maximum sensitivity (Ms) as the performance index. (Skogestad and Postlethwaite, 2005) Ms is
also a robust performance measure like Gain margin (GM) and Phase margin (PM) and is related

to these margins asem >mMm, /(M, -1), PM >2sin*(y/2M,). In the present work, Ms values are plotted

against the tuning parameter A1 and from this plot one can select the tuning parameter and obtain
the controller based on the required level of robustness. Note that for the same value of Ms, there
exist two values of A1 in which the higher value need to be selected to ensure robustness of the

closed loop system.

5.4.3 Set point filter

For unstable systems, usually there exist undesirable overshoot in the closed loop response.
To avoid this undesirable overshoots, either set-point weighting or set point filters are
recommended (Astrom and Hagglund, 1995). In this work, set point filter is considered to
eliminate the undesirable overshoots in the servo responses. The closed loop relation between y;
and ry consists of the term (ys + 1) and this term causes overshoot in the closed loop output
response. To minimize the undesirable overshot, the set point filter is selected as given in Eq.

(5.38) which is first order in nature.

1
Fr= —F (5.38)
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5.5 Simulation results

Simulation studies have been performed on different unstable cascaded time delay processes
and the results are compared with some of the recently reported methods. For quantitative
comparison, Integral of Absolute Error (IAE) and Total Variation (TV) are used as performance

indices.

Example — 1: An example studied by Uma et al. (2009) is considered here. The secondary and
primary processes considered here are Gpo= €%/ (2.07s+1) and Gpi= e%-33%/ (5s-1) respectively.
For the proposed method, the inner loop controller Ge is an IMC controller as described earlier,
and the secondary loop tuning parameter is considered as 1,= 0.58m> = 0.3. With that the
secondary loop controller is obtained as Gez = (2.07s + 1)/(0.3s + 1). Based on this controller,
the overall primary process model is obtained from eq. 5.8. To select the primary loop tuning
parameter (A1), an analysis is carried out based on maximum sensitivity. Figure 5.2 shows the
variation of Ms with respect to A1. It can be observed from the figure that one should not select A1
corresponding to the Ms peak value of 52.75. Based on this analysis, A1 = 1.2 is selected and the
corresponding primary loop controller settings are obtained as kc= 0.478, ti = 0.99, t¢ = 0.213, y

=6.821, B = 0.567. The set point filter constant is selected as y = 6.821.

With these controller settings, simulation studies are performed by giving a unit step
change in set point at t = 0 sec and a negative disturbance of magnitude 4 at t = 50 sec in the inner
loop (d2) and a unit negative step disturbance at t = 100 sec in the outer loop (di1) respectively.
The closed loop performances and the corresponding control action responses are shown in Figure
5.3 for perfect parameters. The proposed method provides good closed loop responses. In order to
analyse the robustness, perturbations of +25% in primary time delay and -25% in both time
constants are given and the corresponding control action and closed loop responses are presented
in Figure 5.3. It can be observed from the responses that the suggested method provides robust

closed loop and control action responses.

For a fair comparison, the methods proposed by Uma et al. (2009) and Padhan and Majhi
(2012) are also considered. Whenever, a comparison is carried out with any other method, it should

be fair and proper. The proposed method is a simple cascade control scheme with only two loops
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and two controllers whereas the methods proposed by Uma et al. (2009) and Padhan and Majhi
(2012) are based on modified Smith predictor and consist of more loops with more controllers.
Also, these methods have different tuning parameters for each controller. In order to have fair
comparison with these methods, a unit step change is given in the primary loop disturbance (d11)
for all the three methods and the corresponding disturbance rejection controllers are tuned to
provide same value of IAE. For the method of Uma et al. (2009), Gcq is tuned by selecting Aq =
1.14 and the other two controllers are obtained by selecting 2> = 0.6 and As = 0.7042. The
corresponding set point tracking controller settings are obtained as kis = 2.8953, kes = 9.1554, s =
0.2373, and kgs = 4.4519. The primary disturbance rejection controller (Gcg) parameters are
obtained as kig = 0.5712, Keg = 3.8728, kqa = 2.1937, Ba = 0.0322, and og = 0.4695.

For the method of Padhan and Majhi (2012), the disturbance rejection controller Geq is
tuned by selecting A1 = 1.24 and the corresponding controller parameters are obtained as Kc1 =
0.3028, Tiz = 0.6260 and Tq1 = 0.2348, cn = 8.7967, cr, = 13.924, dn = 0.5535, dr, = 0.1842. The
set point tracking controller is obtained as Ges = (10.355%+2.93s)/(0.64s%+1.6s+1) by choosing the
tuning parameter as Acs = 0.8. The parameters of Gq are obtained as Ke; = 0.2752, Ti, = 0.4 and
Ta2 =0.15, an = 6.1635, ar, = 8.4736, bry = 1.8817, br, = 0.3705, by selecting the tuning parameter
as A2 = 1.70m2 = 1.02. These controller settings for all the three methods provide an IAE of 2.07
when a unit step change is given in the primary disturbance di1. A fair comparison can be carried
out with this approach for all the three methods. Set point responses are not considered for
comparative analysis as the shape of the set point responses can be altered by adding either a set

point filter or set point weighting.

All the three methods are compared using the suggested controller settings by giving a
step change of magnitude 4 in the secondary loop disturbance (d) at time t = 0 and unit step change
in the primary loop disturbance (di11) at t = 40 respectively. Their respective closed loop responses
are presented in Figure 5.4. It can be observed from Figure 5.4 that the proposed method shows
improved performances with smooth control action responses. In order to analyse the robustness,
perturbations of +25% in primary time delay and -25% in both time constants are given and the
corresponding control action and closed loop responses are presented in Figure 5.5. From the

responses, it can be noted that the proposed method provides improved closed loop and smooth
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control action responses when compared to the methods of Uma et al. (2009) and Padhan and
Majhi (2012). The corresponding IAE and TV values are shown in Table 5.1. It can be observed
from the Table 5.1 that the IAE values for the proposed method are low. From the IAE and TV

values, it can be identified that the suggested method is better.

To analyse the effect of the secondary loop tuning parameter (12) on the selection of the
primary loop tuning parameter (A1), a plot of Ms verses A1 is drawn for different values of A, and
is shown in Figure 5.6. It can be observed that as A, increases, the number of peaks for Ms Increases
which will restrict the selection of A1 to limited zones. This kind of phenomenon is peculiar only
for unstable processes. To analyse the effect of noise, it is assumed that white noise is present in
the measurement device with noise power = 0.0001, sampling time of 0.5 and seed = 0 for perfect
model condition. The corresponding closed loop and control action responses are shown in Figure
5.7. Note that there will be variations in the control action responses in the presence of noise. To
reduce the effect of noise, one can consider improved derivative filtering in the PID controller with

suitable value for the filter coefficient t+.

Table 5.1 IAE and TV values for Example 1

Mismatch of -25 % in both time
Method Proposed model constants and +25 % in primary
time delay
IAE TV IAE TV
Present 4.23 16.43 4.26 23.12
Uma et al. 4.75 54.88 4.35 121.4
(2009)
Padhan and 4.38 15.88 4.35 25.42
Majhi (2012)
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Example — 2: An example studied by many researchers (Liu et al., 2005b; Uma et al., 2009) is
considered in which the secondary and primary processes are given as Gp, = 262%/(20s+1) and Gp1=
e/ (20s-1) respectively. The inner loop controller G, is designed as Gz = (20s + 1)/2(s + 1)
by choosing the tuning parameter A, = 0.56m2 = 1. Based on this, the overall primary process
model (eq. 5.8) is obtained and the primary loop controller is designed by appropriately selecting
the tuning parameter. To select the primary loop tuning parameter (A1), an analysis is carried out
based on maximum sensitivity. Figure 5.8 shows the variation of Ms with respect to A1. From the
graph, note that A, should not be selected where peaks exist for Ms value of 40.77 to avoid non-
robust responses. Here, the tuning parameter is selected as A1 = 6.296. With this value of tuning
parameter, the primary loop controller settings are obtained as ke=0.438, 7; = 6.71 and 7,=0.85,

y=39.76, B = 4.21. The set point filter time constant is considered as 39.76.

With these controller settings, simulation studies are performed by giving a unit step
change in set point at t = 0 sec and a negative disturbance of magnitude 4 at t = 50 sec in the inner
loop (d2) and a unit negative step disturbance at t = 100 sec in the outer loop (di1) respectively.
The closed loop performances and the corresponding control action responses are shown in Figure
5.9 for perfect parameters. The proposed method provides good closed loop responses. In order to
analyse the robustness, perturbations of -20 % in secondary time constant, -10% in primary time
constant, +20 % in secondary process gain and time delay & +10% in primary process gain and
time delay are considered and the corresponding control action and closed loop responses are also
shown in Figure 5.9. From the responses, it can be noted that the suggested method provides robust

closed loop and control action responses.

For a fair comparison, the methods proposed by Garcia et al. (2010) and Uma et al. (2009)
are considered. The methods considered here are also based on modified Smith predictor and they
are composed of more loops with more controllers. In order to have all the methods at the same
level, a unit step change is given in the primary loop disturbance (di1) for all the three methods
and the corresponding disturbance rejection controllers are tuned to provide same value of IAE.
Generalized predictor cascade controller (GPCC) is used for the method of Garcia et al. (2010).

For the method of Uma et al. (2009), G is tuned by selecting Aq¢ = 5.15 and the other two
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controllers are obtained by selecting 2> = 2 and As = 5. The corresponding set point tracking
controller settings are obtained as kis = 0.1829, kes = 4.6571, Bs = 2.8571, and Kkgs = 12.2857. The
controller parameters for primary disturbance rejection (Geqg) are obtained as kig = 0.0874, keq =
3.063, kdd = 6.637, aq = 3, and B¢ = 0.1537. The three methods provide an IAE of 15.34 when a
unit step change is given in the primary disturbance di1. A fair comparison can be carried out with
this approach for all the three methods. As explained in example-1, set point responses are not
considered for comparative analysis as the shape of the set point responses can be altered by adding
either a set point filter or set point weighting.

All the three methods are compared using the suggested controller settings by giving a step
change of magnitude 4 in the secondary loop disturbance (d2) at time t = 0 and unit step change in
the primary loop disturbance (di1) at t = 150 respectively. Their respective closed loop responses
are presented in Figure 5.10. It can be noted from Figure 5.10 that the proposed method shows
improved performances with smooth control action responses. In order to analyse the robustness,
perturbations of -20 % in secondary time constant, -10% in primary time constant, +20 % in
secondary process gain and time delay & +10% in primary process gain and time delay are
considered and the corresponding control action and closed loop responses are shown in Figure
5.11. From the responses, it can be noted that the suggested method provides enhanced closed loop
and smooth control action responses when compared to the methods of Garcia et al. (2010) and
Uma et al. (2009). In fact, the oscillations in the control action responses for other two methods
are more whereas the proposed method does not provide such oscillatory responses even if there
are more perturbations in the process parameters. The corresponding IAE and TV values are shown
in Table 5.2. It can be observed from the Table 5.2 that the IAE values for the proposed method

are low. From the IAE and TV values, it can be identified that the proposed method is better.

To analyse the effect of noise, it is assumed that white noise is present in the measurement
device with noise power = 0.0001, sampling time = 0.5 and seed = 0 for perfect model condition.
The corresponding closed loop and control action responses are shown in Figure 5.12. It can be
noted that the suggested method is able to provide good set point and disturbance rejection
performances in the presence of noise. The proposed method is also compared with the method of
Nandong and Zang (2014) and it is observed that the method of Nandong and Zang (2014) is
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sensitive to model uncertainties (graph not shown here). The proposed method provides

significantly improved performances when compared to Nandong and Zang (2014) for model
uncertainties.

Table 5.2 IAE and TV values for Example 2

Mismatch of -10% in primary time
constant , -20 % in secondary time
constant, +20 % in secondary
Method Proposed model process gain and time delay &
+10% in primary gain and time
delay
IAE TV IAE TV
Present 32.0 18.59 32.60 40.76
Garcia et al. 34.78 18.60 37.24 104.39
(2010)
Uma et al. 34.57 96.11 Unstable Unstable
(2009)
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Figure 5.8 Ms versus A1 for example-2.
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Example — 3: An example studied by (Liu et al., 2005b; Padhan and Majhi, 2012; Uma et al.,
2009) is considered. The secondary and the primary processes are given as Gpo= 2e%/(s+1) and

Gpi= €/ (10s-1) respectively. For the proposed method, the inner loop controller Ge; is designed
as G = (s + 1)/2(3s + 1) after selecting the tuning parameter as 1, = 1.76m2 = 3.4. The overall
primary loop model is obtained as per eq. (5.8) and the primary loop controller is designed as per
eq. (5.13). To select the primary loop tuning parameter (A1), Ms versus A1 is plotted and is shown
in Figure 5.13. From the graph, it can be observed that there exist three peak values for Mg i.e. 415,
108, 127 and hence M;s value should not be considered as any of these peaks for selection of A1,
Based on this, the tuning parameter is selected as A1 = 6.935 and the corresponding controller
settings are obtained as kc= 0.1223, ti= 5.5, 74, = 1.782, y = 72.25 and = 0.8856. The set point

filter time constant is considered as a3z = 72.25.

With these controller settings, simulation studies are performed by giving a unit step
change in the set point at t = 0 sec and a negative step change of magnitude 0.5 in the disturbance
at t = 200 in the inner loop (d2) and a negative step change of magnitude 0.5 in the disturbance at
t = 400 sec in the outer loop (di1) respectively. The closed loop performances and the
corresponding control action responses are shown in Figure 5.14 for perfect parameters. The
proposed method provides good closed loop responses. In order to analyse the robustness,
perturbations of -20 % in both primary and secondary time constants, +20 % in both primary and
secondary time delays are considered and the corresponding control action and closed loop
responses are also shown in Figure 5.14. From the responses, it can be noted that the suggested

method provides robust closed loop and control action responses.

For a fair comparison, the methods suggested by Uma et al. (2009) and Padhan and Majhi
(2012) are considered. Again, in order to have fair comparison with these methods, a unit step
change is given in the primary loop disturbance (di1) for all the three methods and the
corresponding disturbance rejection controllers are tuned to provide same value of IAE. For the
method of Uma et al. (2009), Gcq is tuned by selecting Aq¢ = 7.5 and the other two controllers are
obtained by selecting 1> = 2 and As = 1.5. The corresponding set point tracking controller settings
are obtained as kis = 1.7429, kes = 11.4575, kgs = 15.97, and s = 0.4412. The controller parameters
for primary disturbance rejection (Gcq) are obtained as kig = 0.0181, ked = 1.5884, kag = 4.945, ag

82



= 2.5, and Bq = 0.2864. For the method of Padhan and Majhi (2012), the disturbance rejection
controller Gea1 is tuned by selecting A1 = 7 and the corresponding controller parameters are
obtained as K1 = 0.037, Ti1 = 3.333 and Tg1 = 1.25, ¢ = 72.0, ¢rp = 71.0, dr. = 2.455, dr, = 4.103.
The set point tracking controller is obtained as Ges = (10s?+9s+1)/(4.5s2+6s+2) by choosing the
tuning parameter as Acs = 1.5. The parameters of Gq2 are obtained as K¢ = 0.0015, Ti> = 1.333 and
Ta2 = 0.5, an = 449.55, ap = 448.55, by = 0.841, br, = 0.1633, by selecting the tuning parameter as
A2 = 6.8. These controller settings for all the three methods provide an IAE of 44.9 when a unit
step change is given in the primary disturbance di1. Set point responses are not considered for
comparative analysis as the shape of the set point responses can be altered by adding either a set
point filter or set point weighting.

All the three methods are compared using the suggested controller settings by giving a unit
step change in the secondary loop disturbance (d2) at time t = 0 and unit step change in the primary
loop disturbance (d11) at t = 250 respectively. Their respective closed loop responses are presented
in Figure 5.15. It can be noted from Figure 5.15 that the proposed method shows improved
performances with smooth control action responses. In order to analyse the robustness,
perturbations of +20% in both primary and secondary time delays and -20% in both time constants
are given and the corresponding control action and closed loop responses are presented in Figure
5.16. From the responses, it can be noted that the suggested method provides enhanced closed loop
and smooth control action responses when compared to the method of Uma et al. (2009). The
method of and Padhan and Majhi (2012) shows unstable responses and hence are not shown in the
figure. The corresponding IAE and TV values are shown in Table 5.3. It can be noted from the
Table 5.3 that the IAE values for the proposed method are low. From the IAE and TV values, it
can be observed that the proposed method is better. Note that if the perturbations are increased
further, the other methods are giving more oscillatory or unstable responses whereas the proposed
methods provides stable closed loop responses with comparatively smooth control action

responses.

To analyse the effect of noise, it is assumed that white noise is present in the measurement
device with noise power = 0.0001, sampling time = 0.5 and seed = 0 for perfect model condition.
The corresponding closed loop and control action responses are shown in Figure 5.17. It can be

identified that the suggested method is able to provide good set point and disturbance rejection
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performances in the presence of noise. To reduce the effect of noise, one can alter the derivative

filtering coefficient to achieve desirable performances.

Table 5.3 IAE and TV values for Example 3

Method

Proposed model

Mismatch of -20 % in both time
constants and +20 % in both time

delays

IAE

TV

IAE

TV

Present

75.86

6.36

9.68

10.82

Uma et al.
(2009)

76.44

8.79

100.98

36.02

Maximum Sensitivity (Ms)
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Figure 5.13 M;s versus A1 for example-3.
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Example — 4: Control of a chemical reactor

An isothermal continuous stirred tank reactor is considered which exhibits multiple steady state
solutions. The mathematical model of the reactor is given as Sree and Chidambaram (2006)

dC _ Qr
E—V(Cf C)

k,C
(kyC+1)2

(5.39)

Where Ct is the inlet concentration, Q is the inlet flow rate, V is the volume of the reactor, C is the
exit concentration, ki1 & ko are the kinetic parameters. The corresponding values of the parameters
and constatns are given as Q = 0.0333 L/s, V = 1L, k: = 10 L/s, and k2 = 10 L/mol. By considering
Ct = 3.288 mol/L, three steady states are obtained as C = 1.7673, 1.316 and 0.01424 mol/L. Out of
the three steady states, there is one unstable steady state at C = 1.316 mol/L. Inlet concetration is
considered as the manipulated variable and exit concentration as the controlled variable.
Linearization of the manipulated variable around this operating condition C = 1.316 gives the
unstable transfer function model as 3.433/(103.1s-1). For this particular case , the time delay is

considered as 20 sec . Hence, the primary loop unstable transfer function model is obtained as,

_3.433e7208

G, = >433¢ "~
pl 103.15—1

(5.40)

The inlet flow rate is acting as a disturbance and hence one can implement cascade control scheme.

Let us assume that the secondary loop dynamics are given as Gpz = e9°%/(3s+1).

The inner loop controller G, is designed as G2 = (3s + 1)/(0.25s + 1) by choosing the
tuning parameter as A, = 0.50m2 = 0.25. The overall primary loop model is obtained as per eq. 5.8
and the primary loop controller is designed as per eqg. 5.13. To select the primary loop tuning
parameter (A1), Ms versus A1 is plotted and is shown in Figure 5.18. From the graph, it can be
observed that there exist peak value for M;s at 142 and hence Ms value should not be considered at
this peak for selection of A1 Based on this, the tuning parameter is selected as A1 = 22 and the
corresponding controller settings are obtained as ke = 0.19, ti= 22.62, 74, = 0.247, y = 120.38 and
B = 18.93. The set point filter time constant is considered as a3 = 120.38. With the corresponding
controller settings, the proposed method is simulated by giving a unit step change in set point at t
= 0 sec and a negative step disturbance of magnitude 0.5 at t = 500 sec in the inner loop (d2) and a

negative step disturbance of magnitude 0.2 at t = 800 sec in the outer loop (d11) respectively. The
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corresponding closed loop performances and control action responses are shown in Figure 5.19 for
perfect model parameters. To analyse the robustness, perturbations of +20% in both primary and
secondary loop time delays are given and the corresponding closed loop and control action
responses are also shown in Figure 5.19. It can be noted that the suggested method provides good
closed loop responses.

To analyse the effect of noise, it is assumed that white noise is present in the measurement
device with noise power = 0.0001, sampling time = 0.5 and seed = 0 for perfect model condition.
The corresponding closed loop and control action responses are shown in Figure 5.20. It can be
noted that the suggested method provides good set point and disturbance rejection performances
in the presence of noise. To reduce the effect of noise, one can alter the derivative filtering
coefficient to achieve desirable performances. Simulation studies are also carried out for different
values of tr and the corresponding closed loop and control action responses are shown in Figure
5.20 for 1t = ta/2, T4, t4/0.1. It can be observed that the control action responses have less variance

for ¢ = 14/0.1 when compared to that of t¢ = t4/2.

Discussion:

The proposed method follows a simple cascade control strategy and comparatively easy
for tuning of the controllers. However, the previous approaches make use of more number of
controllers and more number of tuning parameters, which is difficult for the operator for tuning.
Hence, the main merit of the proposed method is its simple structure and only two controllers.
Also, systematic guidelines are provided for the proposed method based on maximum sensitivity
(Ms).

For unstable systems, selection of tuning parameters is very important and in the literature,
the tuning guidelines are given based on some heuristic rules. Whereas in the present method, Ms
is used to select the tuning parameter which ensures desired level of robustness for the closed loop.
In modified Smith predictor based cascade control schemes, one has to consider separately Ms
values for set point tracking and disturbance rejection which is not easy. Note that the methods of
Uma et al. (2009), Garcia et al. (2010), Padhan and Majhi (2012) have already shown superiority
over many existing methods in the literature. One more contribution of the proposed method is

that it has a traditional cascade structure with only two loops and controllers (one for secondary
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loop and another for primary loop) which provides smooth control action responses and better
disturbance rejection performances when compared to the recently stated methods (Garcia et al.
(2010; Nandong and Zang, 2014; Padhan and Majhi, 2012; Uma et al., 2009). Note that the other
methods Uma et al. (2009) Padhan and Majhi (2012) Nandong and Zang (2014) have more number
of sub loops in the primary loop. Even though Garcia et al. (2010) method is applicable for stable
and integrating systems, their method is considered here only for unstable systems.

150 ¢

100

Maximum Sensitivity (Ms)

o
]
H—

SN

[e] 5 10 15 20 25 30 35

Figure 5.18 M;s versus A1 for example-4.
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5.6 Summary

In the present work, enhanced design of controllers is proposed for unstable time delayed
cascade processes. The performance of the system is analyzed with four different examples.
Performance of the system for the proposed method is much better than that of the previously
existing methods particularly for disturbance rejection. The proposed method consists of only two
controllers whereas in the previous methods, at least two or three controllers were used. The design
is comparatively easy and can be implemented for any unstable cascade system. The ability to
provide good stable closed loop response even when there are large amount of perturbations in the
process parameters is a major advantage of the proposed method over previously existing methods.
Quantitative comparison is carried out using IAE and TV values and the proposed method is
superior over existing methods. One more main advatange of the proposed method is that the
control action respones are smooth in all examples and correspondingly provides low TV values

which is recommonded for any control system.
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Chapter 6

PID Design for Multivariable Unstable Processes

Controller design for unstable processes is relatively difficult when compared to stable
processes. The complexity increases further for multivariable unstable processes. In this work,
simplified tuning rules are proposed to design optimal Hz PID controller for unstable multivariable
processes. Decouplers are applied to make the loops independent and diagonal elements of

equivalent transfer function are used to design controllers.
6.1 Introduction

Unstable systems are more difficult to control than that of the stable systems. Several
methods are proposed for the design of controllers for single-input-single-output (SISO) unstable
systems (Rao and Chidambaram, 2012; Sree Chidambaram, 2006). Design of controllers for
multivariable systems is difficult than that of SISO systems due to the interactions among the
control loops. This difficulty increases for multivariable unstable systems as there exist undesirable
overshoots, settling times in the closed loop responses. Several methods (Katebi, 2012; Wang and
Nie, 2012) are available in the literature for multivariable stable processes. However, the design
methods for multivariable unstable systems are limited. Georgiou et al. (1989) have developed
optimization based method. However the system considered does not have a significant time delay.
Agamennoni et al. (1992) have proposed a method of designing controllers based on optimization
method. In the above two methods, the considered systems have unstable components only in one

of the inputs.

Govindhakannan and Chidambaram (1997a) have developed a centralized design of
controllers for unstable multivariable processes. However, in their method, the interactions are
found to be significant. Georgiou et al. (1989) designed controllers based on four steps
optimization approach for multivariable unstable processes. Decentralized Pl controllers do not
stabilize the system if unstable pole is present in all the transfer functions of multivariable system.
Only centralized PI controllers stabilize such systems. Govindhakannan and Chidambaram (2000)
have applied a two stage P—PI controllers for the unstable systems. Many works published in the

literature introduced the concepts of equivalent transfer functions/effective open-loop transfer

93



functions (ETFs/EOTFs) to take into account the loop interactions in the design of multi-loop
stable systems. Rajapandiyan and Chidambaram (2012) recently proposed a method of designing
controllers for multi-loop stable systems by combining the simplified decoupler approach with the
ETF model approximation. Their method provides less interactions and better performances when
compared to the ideal and inverted decoupling methods. Very recently, Hazarika and
Chidambaram (2014) proposed a method for unstable two-input-two-output (TITO) systems based
on ETF model.

6.2 Theoretical developments

6.2.1 ETF model development

The TITO block diagram with decouplers and controllers is shown in Figure 6.1. If the
second feedback controller is in the automatic mode, with yr» = 0, then the overall closed-loop

transfer function between y; and us is

Y Oy - 9,129 p,21(gc,2g p,22) 6.1)
U, (1+9..9 p,22)g D22

And similarly for the second loop, the relation can be written as

Y, 05.219p129c19p11

< = g 2~ (6'2)
u, P (1+9..9 p,11)g pi1

Based on these relations, the ETF is derived as given in Hazarika and Chidambaram (2014).For
obtaining ETFs, the controller need not be known apriori. Once the ETFs are obtained, the

corresponding controller is designed.
6.2.2 Controller design

The open loop transfer function is

Y(s)=G,(s)D(s)U (s)
_ gp,ll gp,lZ 1 d12 _ g:),ll O
Gp(S)D(S)_|:gp'21 gp,22i||:d21 1 }—[ 0 g;,zj
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Where the simplified decoupler is designed as

. g p,12 (S) ;dlz (S) — g p,21(S)
g p,ll(s) gp’22 (S)

For these systems, if there exist time delay, it may lead to unrealizable situations. Hence, an extra

d12 (S) = (6.5)

time delay (0) is to be incorporated into the decoupler matrix which is further added to the
corresponding ETF. In the presence of the decoupler, the TITO system behaves like two
independent loops for which the controllers can be designed independently. In the present work,
diagonal controllers are designed by optimal H> — IMC based method based on the corresponding
unstable ETFs. ETFs are developed to take into account the loop interactions in the design of multi-
loop control systems.

R1* +* Y1
GCll [T Dil [— ol a()—1—»

D21

A 4
A 4

GP21

GP12

R2 + + Y2
—> % —>» GC22 D22 > GP22 —>
+ +,

Figure 6.1 Closed loop control for TITO system

A 4

D12

A 4

h 4

Once the ETFs are derived, based on pairing using relative gain array and Neiderlinski Index, the
corresponding controllers are designed. The design is based on unstable first order plus time delay
system. Anusha and Rao (2012) developed a PID design method based on optimal-H;

minimization concept for second order unstable processes.

However, in the present work, the controller design is addressed for first order unstable

processes. Vanavil et al. (2014) recently proposed design of PID controller in series with lead lag
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filter and is used here for controlling TITO loops. The method is presented here. Assuming the
ETFs are in the form of

k.e™®
G, (s)=—" 6.6
©= (66)
According to IMC principle, the IMC controller Qc is equivalent to
Qc = QcF (6.7)

Where F is IMC filter which is used for altering the robustness of the controller.

In eq. (6.7), Q. is designed for a specific type of step input disturbance (v) to obtain H2 optimal
performance and is based on the invertible portion of the process model. The process model and

the input are divided as

Gp=Gn_-Gpy and v =v_v, (6.8)
Where the subscript “— “ refers to minimum phase part and “ + ” refers to non-minimum phase
part.

The Blaschke product of RHP poles of G and v are defined as

K =S+ p; K s+ =s+p

i=1 S+p| i=1 S+p|

Where piand p, are the ith RHP pole and its conjugate respectively. Based on this, the Hz optimal

controller can be derived by using the following formula (Morari and Zafiriou, 1989).

Qc = b (Gm-byv_) " {(byr, Gt ) " hyv ], (6.10)

Where {.....}|* is defined as the operator that operates by omitting all terms involving the poles of

(G,,+) 1 after taking the partial fraction expansion.
Substituting all expressions, one will get,

(z,5-1

Q = {(e”"" ~D7,s+1} (6.11)

P
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To get the final form of the IMC controller, here, the filter is selected as

F=(as+1)/(As + 1)3 (6.12)

Therefore, the IMC controller is obtained as

(tps—1) (as+1)
Qc = Pk—P{(ee/fP —1)tps + 1} T (6.13)

Here, A is the closed loop tuning parameter. The value of o is obtained from the conditions

of internal stability for IMC structure. The conditions to be followed for internal stability are
Condition 1: Qc must be stable and should cancel the right half plane poles of G

Condition 2: Qc Gm should be stable

Condition 3: (1-GmQc) at the RHP poles of the process should be zero

The first two conditions are satisfied from the above design procedure and third condition can be

applied as

(1 - QCGm)|s=1/Tp =0 (6.14)

Now, this IMC controller is converted in to a unity feedback control system and the

corresponding unity feedback controller Gc is obtained as

Ge = Qc/( 1- Qch) (615)

Substituting all the terms, we will get

{(eP/"P-1)Tps+1}(as+1)(tps—1)
kp[(As+1)3—{(e?/TP—1)tps+1}(as+1)e~0"]

GC:

(6.16)

This expression is approximated to a PID controller with lead-lag filter as given below with simple

approximations.
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(8s+1)

1
G.(s) =k (1 + s + 145) ot D) (6.17)
With the controller parameters as
46

ke = _kp[18/‘1+69—6a—6(e9/TP—1)rP] (6.18)
7,=260/3 (6.19)
7, =0/4 (6.20)
d=a

_ [182241220+0% +20a—6a(e?tP —ytp+20(eP P Dtp] | o o6/tp _ qyp, (6.21)

[182+66-6a—6(e?/™P—1)1p]

However, selection of A is very important for unstable processes and there should be systematic
guidelines for selection of A..The guidelines are based on the maximum sensitivity of the individual

closed loops Vanavil et al. (2014).

To reduce the undesirable overshoots, set point weighting is considered with a weighting of
0.3.The usual range of set-point weighting is 0-1. Here, the selection of 0.3 is based on many

simulation studies on different types of unstable processes and is not random.
6.3 Simulation results

Two examples are considered to show the effectiveness of the proposed design method. For
the purpose of comparison, method proposed by Hazarika and Chidambaram (2014) is considered.

For quantitative comparison, Integral value of Absolute Error (IAE) is considered.
Example — 1: Consider an unstable TITO process

1.6e7° 0.6e7+°°

—2.6s+1 2.5s5+1
G,(s)=

0.7e*°° 1.7e°
3s+1 —2.2s+1 (6.22)
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After pairing, the ETF matrix is obtained as

1.3529¢ 098 _3.2857¢ %990

G —| —24396s+1 1.5013s +1
P | —3.8333e%%%  1.4375¢ %%
1.8016s+1 —2.0643s+1 (6.23)

Based on this ETF matrix, the simplified decouplers are obtained as

—0.5s
1 (7.8s—3)e

_ 20s+8
D(s) =
) =| 1545 7)o L

51s +17 (6.24)

Now, based on the diagonal elements of the ETF matrix, the corresponding controllers (Gci1 and

Gc22) are designed as PID with lead lag controllers.

With these controllers, the two methods are compared by giving unit step change in the set point
and load disturbance separately. For Hazarika and Chidambaram (2014) method, stabilization with
a P controllers and then outer controller is considered. Figure 6.2 shows the closed loop responses
for servo problem. Figure 6.3 shows the closed loop responses for servo problem when there exist
+10% perturbations in all time delays of the process. It can be observed that the proposed method
performs better for set point changes. Figure 6.4 shows the corresponding control action responses
and it can be observed that the proposed method shows comparatively smooth responses. Figure
6.5 shows the responses for load disturbance and Figure 6.6 shows the load disturbance responses
for +10% uncertainty in time delays. Again, it can be observed that the proposed method performs
better. Figure 6.7 shows the corresponding control action responses and it can be observed that the

proposed method shows comparatively smooth responses.
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Figure 6.2 Servo response for perfect model for example-1. Top two figures for a set point
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Hazarika and Chidambaram (2014).
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Figure 6.4 Control action responses for perturbations of +10% in all process time delays for
example-1, legend: as shown in Figure 6.2.
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Example — 2: Consider another unstable TITO process

—1.6667e7° —1e7®
G.(S)=| —26s+1 —1.6667s+1
»(S) —0.8333¢e°° —1.6667e°
—-1.6667s+1 —1.6667s-+1 (6.25)

After pairing, the ETF matrix is obtained as

2.3348e° -1.16711e®

G, —|-16667s+1 —26s5+1
~1.16711e  1.9456¢"°
—1.6667s+1 —1.6667s+1 (6.26)

Based on this ETF matrix, the simplified decouplers are obtained as

D(s) = { 1 —1.6667}

—2.001 1 (6.27)

Now, based on the diagonal elements of the ET1F matrix, the corresponding controllers (Gci1 and
Gc22) are designed as PID with lead lag controllers. With these controllers, the two methods are
compared by giving unit step change in the set point and load disturbance separately. Figure 6.8
shows the closed loop responses and Figure 6.9 shows the corresponding control action response
for servo problem. Figure 6.10 shows the closed loop responses for servo problem for +10%
perturbations in all time delays of the process. It can be observed that the proposed method

performs better for set point changes.

Figure 6.11 shows the responses for load disturbance and Figure 6.12 shows the
corresponding control action response. Figure 6.13 shows the load disturbance responses for +10%
uncertainty in time delays. Again, it can be observed that the proposed method performs better.
The corresponding IAE values for example-1 is shown in Table 6.1 and for example-2 is shown in
Table 6.2. It can be observed that the present method shows low IAE values for perfect model and
for perturbations. Also shown in the table, the I AE values for different perturbations in the process
parameters. Note that the present method provides low IAE values for all cases and hence the

present method is better.
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Figure 6.8 Servo response for perfect model for example-2. Top two figures for a set point
change in yr1 and bottom two figures for a set point change in yr.. Legend: as shown in Figure
6.2.
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Figure 6.9 Control action responses corresponding to Figure 6.8.
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Figure 6.10 Servo response for perturbations of +10% in time delays for example-2, legend: as
shown in Figure 6.6.
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Table 6.1 IAE value for example-1.

Servo Regulatory
Perturbations Proposed H-C method Proposed H-C method
Ko 12.42 13.97 21.54 36.54
1.1kp 13.54 16.03 20.86 36.35
0.9kp 11.11 11.87 22.78 36.79
0 12.42 13.97 21.54 36.54
1.10 12.42 11.87 21.46 36.53
0.96 12.42 13.98 21.62 36.55
T 12.42 13.97 21.54 36.54
1.1t 12.42 14.01 21.72 36.56
0.91 12.42 13.96 21.33 36.52
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Table 6.2 IAE value for example-2.

Servo Regulatory
Perturbations Proposed H-C method Proposed H-C method
Ko 8.8 7.91 20.58 27.81
1.1Kp 9.22 10.44 20.56 27.79
0.9kp 9.87 4.82 27.44 27.81
0 8.8 7.91 20.58 27.81
1.16 8.47 7.91 20.58 27.81
0.96 9.12 7.91 20.72 27.81
T 8.8 7.91 20.58 27.81
1.1t 9.31 7.91 20.86 27.81
0.91 8.35 7.91 20.58 27.81

6.4 Summary

Multivariable PID controller in series with lead lag filter is applied based on the equivalent
transfer function (ETF) model for unstable multivariable systems with time delay. The method
uses simplified decouplers which decompose the unstable multi-loop systems into independent
loops with ETFs as the resulting decoupled process model having unstable poles. To reduce the
undesirable overshoot, set point weighting is used. Two simulation examples are studied and
showed that the present method provides significantly improved closed loop performances for

servo responses compared to other methods in the literature.
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Chapter 7
Set-Point Weighting Design for Unstable Systems

Control of unstable processes with time delays usually result in large overshoots in the closed
loop responses. In industry, set-point weighting is one of the recommended methods to minimize
the overshoot. In this chapter, a method is proposed to design the set-point weighting parameters
which is relatively simple and also reduces the overshoot significantly. Weighting is considered
for both proportional (B) and derivative (y) terms in the PID control law. In the closed loop relation
for the set-point tracking, the coefficients of ‘s’ and ‘s both in the numerator and denominator
are made equal in order to find f and y. The obtained expressions for B and y are simple and
depends on the controller parameters. The design is carried out first for single input single output
(S1SO) unstable first order and second order processes with time delays and then for multi input
multi output (MIMO) unstable processes. In MIMO process control, decouplers are considered to

ensure that the loops have minimum interactions.
7.1 Introduction

The PID controller is universally adopted in chemical processes. This is primarily due to
its basic structure. Nonetheless, time delay is unavoidable in majority of the chemical processes
due to the presence of recycle loops and transportation delays. It is intractable for conventional
PID controllers to ascertain the stability for unstable time delay processes. Additionally, it becomes
more problematic to design the PID controller for a process that demonstrates a time delay which
is open-loop unstable. Unstable systems result in larger overshoots in the closed loop set-point
tracking responses. In order to minimize the overshoot, either a set-point filter or set-point
weighting is recommended. In this work, set-point weighting is considered for minimization of the

overshoot.

In order to properly address the design of set-point weighting parameters, knowledge about
the PID controller parameters (K, i, Td) is necessary. There exit many methods in the literature for
design of PID controllers for unstable first order plus time delay (UFOPTD) and unstable second
order plus time delay (USOPTD) processes of which internal model control (IMC) and direct

synthesis methods are recommended (Sree and Chidambaram, 2017). In the interest to acquire an
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improved transient response due to set point change, several researchers proposed either set-point
filtering or set-point weighting methods. Prashanti and Chidambaram (2000) developed formulae
to calculate the set point weighting parameters for UFOPTD systems for different ratio of time
delay to dominant time constant. Sree and Chidambaram (2004) developed a method for unstable
second order systems with a positive or negative zero. Later they developed a method by
minimizing the integral square error (ISE) for a servo problem (Sree and Chidambaram, 2005).
Rao et al. (2007) proposed set-point weighting based modified Smith predictor method for
integrating processes. Rao et al. (2009) used set-point weighting to a PID controller integrated
with a lead-lag compensator for different types of integrating systems.

Chen et al. (2008) recommended the tuning rules for set-point weighting based on three-
element control structure. Vijayan and Panda (2012) designed a set point filter for curtailing the
overshoot for low order processes. Based on learning automata, a method is projected to select the
set-point weighted parameter for unstable systems by Musmade and Chidambaram (2014). Begum
et al. (2016, 2017), Dasari et al. (2017), Rao et al. (2016) and Wang et al. (2016) proposed
controller tuning rules for stable, unstable and integrating processes with time delay based on
internal model control (IMC) technique. Bingi et al. (2017) proposed a new fractional order filter

for the implementation of PID based control strategy for unstable systems.

In all the formerly cited works, the derivative action is set free from set-point weighting
by considering the weighting parameter as one. Nasution et al. (2011) designed controller for time
delayed unstable processes with set point weighting making use of an optimal H2 IMC-PID control
strategy. It is possible to demonstrate that tracking performance of the set-point will be improved
if it is possible to determine the suitable derivative mode weighting. This is determined by

Nasution et al. (2011), but in a complex way.

Design of the controller for MIMO unstable systems with interactions between the loops
turned to be an interesting research area in the recent years. Decouplers can be used to overrule
the process interactions to strengthen the system performance. However, these decouplers are
susceptible to process changes and demand extremely rigorous process models, which are tough
to search out. Georgiou et al. (1989) worked on unstable multivariable systems with a

decentralized PID controller based on optimization method. Govindhakannan, J. and
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Chidambaram (1997) designed single stage PI controllers for unstable multivariable systems using
Tanttu and Lieslehto (1991) method. Besta, C. S., and Chidambaram (2016) used synthesis method
to come up with an effective solution for the design of decentralized PID controller for unstable
systems. Dasari et al. (2016), Hazarika and Chidambaram (2014), Rajapandiyan and Chidambaram
(2012) and Raviteja et al. (2016) used ETF (equivalent transfer function) procedure for the
controller design for time delay unstable systems. Recently, Dasari and Chidambaram (2018)
suggested a simple method for calculating dynamic set-point weighting parameters for time
delayed unstable processes. In the present chapter, this method is extended for higher order SISO
and MIMO unstable systems.

7.2 Set point weighted PID algorithm

Let us consider the well-known ideal form of the PID controller with set-point weighting

on both proportional and derivative terms as

u(t) = ke [e,(®) + (1/7)) [ e(t)dt + 7, 4] (7.1)
Where
ep() =Py-—y(t) e®) =y —yt) eq®)=vy—y() (7.2)

The parameters y and B are established in order to account for the errors in the derivative and
proportional terms, respectively. In order to fully comprehend the function of the set-point

weighted PID controller, eq. 7.1 can be re-written as

u(t) = ke [Be(®) = (1 = Py + (1/1)) [ e(®)dt +y7p

deg(t) 4 dy(t)
dt (1-y)tp dt

de(t)

u(t) = |keBe(®) + (ke/) (@)t +kecyp 52| = [ke(1 = By (®) + (ke(1 = y)Tp) 22

de(t)
dt

u(t) = [Pre(t) + P, [ e(®)dt + Py 9| — [Py(6) + Py 22 (7.3)

at
Where

P1=Kcp

P2= K¢/t

P3=Kcy 10

Ps= K¢ (1-B)

Ps= K¢ (1-y) 10
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Eq. 7.3 can be represented as shown in Figure 7.1 for any process Gp(s). Set point weighted PID
algorithm can be represented as shown in Figure 7.1 which is equivalent to a PID feedback with
an inner loop consisting of a PD controller. There is no set-point weighting done for integral action.

This is due to the integral error should be true error. It is to prevent any steady-state control error.

Y, X ! y
P1.+P2/S+P3S Gp(S) 5

P4+Pss

y N

Figure 7.1 Equivalent representation of a set-point weighted PID controller.

7.3 Design of set point weighting parameters for UFOPTD processes

Ineq. 7.1, for UFOPTD processes, let us consider
ep=Pyr—yY e=Y—Y e=YiVr—Y (7.4)
Here, B, and y; are set point weighting parameters.

Representing the UFOPTD process as

kpe

Gp(s) = (eps—1) (7.5)
With the PID controller, the transfer function between y and y; is
y _ |kckp(Bis+m+yis®)e™] (7.6)

y_r - [s(Tps—1)+kckp(s+m+s2)e=o5]
Where m = 1/4. The present method requires the numerator and denominator terms in the form of
a polynomial in ‘s’. To achieve this, a first order Pade’s Approximation for e~®S in the denominator

is considered and with that, the above equation becomes

y [kckp(Bis+m+y15%)(1+0.505)e 55|
Ve [s(Tps—1)(1+0.505)+kckp(s+m+s2)(1-0.50s)]

(7.7)

Eq. (7.7) can be rewritten as

113



Y _ [kckp(m+cys+cys®+css®)exp(-es)] (7 8)

Vr [—s+c4sz+css3+kckp(m+sc6+szc7+s3c3)]
Where
¢, =1 +0.5me

¢, = 056,06 +v,7p
c3 = 0.5v,7)p

¢y =1, — 050

cs = —0.5e1,

cc =1—0.5em

c; =15 — 0.50

cg = —0.57p0

In the present work, based on the coefficients of ‘s’ and ‘s* in the numerator and
denominator polynomial, the set point weighting parameters are determined. Let L1 represent the
ratio of coefficients of ‘s’ in the numerator to that in the denominator without any set point
weighting i.e. ;=1

[kckp(1+0.5me]
—1+kcky(1—0.5me)
14

L, = (7.9)

If L, > 1, then the corresponding coefficient of s in the numerator is equated to that in the

denominator i.e.

kck,(By + 0.5me) = —1 + k. k,(1 — 0.5me) (7.10)
From Eqg. (7.10), we obtain

_q__1 _ e
B =1 P (7.11a)

If L; < 1, then the corresponding coefficient of s in the numerator is equated to L, times that in
the denominator i.e.

kcky,(By + 0.5me) = L (=1 + k:k,(1 — 0.5me)) (7.11b)
Based on the simulation performed on various transfer models, it is noticed that a reduced
overshoot is obtained for 8; = 0.7L,.

The ratio of corresponding coefficients of s* with unit set-point weighting (y, = 1) is represented

as Lo.

_ kcky [0.5y1Tp6]
LZ - [0.56‘L'p+kckp(—0.5‘L'D6)] (712)
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The corresponding coefficients can be equated as shown below forL, > 1.
kck,[0.5y,Tp6] = [0.567, + kcky(—0.57p0)] (7.13)
From Eq. (7.13), we get

vy =—1+—2 (7.14a)

Tpkckp
The numerator is equated to L» times the denominator for L, <1
kck,[0.5y1Tp6] = Ly[0.56T, + k Kk, (—0.57,0)] (7.14b)
Based on the simulation performed on various transfer models, it is noticed that a reduced

overshoot is obtained for y = 0.3L,.
7.4 Design of set point weighting parameters for USOPTD processes

Ineq. 7.1, for USOPTD processes, let us consider

ep=Pyr—y e=yr—y ea=Y2Vr—Y (7.15)
Here 8, and y, are set point weighting parameters.

Representing the USOPTD process as

_ kpe—es
Gp(S) T (115-1)(T25-1) (7'16)
For simplification the above equation

_ kpe™
Gp(S) "~ (a152+azs+as) (7.17)

Here a1=11 12, a2=-(t1t 12), a3=1
With a PID controller in the closed loop, the transfer function relating y to y; is obtained as

Y _ [kckp(ﬁzs+m+yzsz)e"95] (7 18)

yr  [s(ais?+azs+az)+kckp(s+m+s2)e= %]

Considering first order Pade’s approximation for e=% in the denominator, Eq. (7.18) becomes

Y _ [kckp (B2s+m+y2s2)(1+0.565)e~ %] (7.19)
yr [s(ay152+azs+a3)(1+0.5Ls)+kckp(s+m+52)(1-0.565) ] '
Eq. (7.19) can be rewritten as

v _ [kckp (Mm+v15+v352+v353)exp (—65)] (7.20)

Vr |azs+vas?+vssd+vest+kckp(m+svy+s2vg+s3vg)|

Where
Ul = ﬁz + O.SmH
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vy, = 0.56,0+v,7)p
v3 = 0.5y,7p0

v, =a, +0.5a;60
vs = a, +0.5a,0

vg = 0.5, 6

v, =1—-0.5mé
vg =1p — 0560
vy = —0.57,60

In the present work, based on the coefficients of ‘s’ and ‘s* in the numerator and
denominator polynomial, the set point weighting parameters are determined. Let L3 represent the
ratio of coefficients of ‘s’ in the numerator to that in the denominator without any set point
weighting i.e. 5,=1

[kckp(1+0.5me]

Ly = [as+kcky(1-0.5me)]

(7.21)

If L; > 1, then the corresponding coefficient of s in the numerator is equated to that in the
denominator i.e.

kck, (B, +0.5me) = az + k.k,(1 — 0.5me) (7.22)
From Eq. (7.22), we obtain

as

B2 = 1+kckp

—me (7.23a)

If L; < 1, then the corresponding coefficient of s in the numerator is equated to L times that in
the denominator i.e.

kcky,(By + 0.5me) = Ly(—1 + k.k,(1 — 0.5me)) (7.23b)
Based on the simulation performed on various transfer models, it is noticed that a reduced
overshoot is obtained forg, = 0.7L5.

The ratio of corresponding coefficients of s* with unit set-point weighting (y, = 1) is represented

as La.

L, =

kckpl[0.5y2Tpe]
[a1+0.50a2+kckp(—0.5Tpe)] (7.24)

The corresponding coefficients can be equated as shown below forL, > 1.

kcky[0.5y,Tp0] = [a; + 0.50a, + kck,(—0.57,6)] (7.25)
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From Eq. (7.25), we get
Y2 e | (7.26a)

" 0.5etpkcky  Tokckyp

The numerator is equated to L4 times the denominator for L, <1
kck,[0.5y,tp6] = Ly[ay + 0.5ea, + k.k,(—0.57p0)] (7.26b)
Based on the simulation performed on various transfer models, it is noticed that a reduced

overshoot is obtained fory, = 0.3L,.
7.5 Controller saturation

It is more practical to manage the control saturations for unstable processes in order to
protect from reset windup. A set-point weighted PID loop along with the reset-feedback form is
depicted in Figure 2 (Nasution et al., 2011).

A

K.(1-p)

v

Sz

= X)~

er,s+l

Figure 7.2 Reset feedback scheme of set point weighted PID control system

The two saturation functions, S1 and S; in figure 7.2 are defined as

Umax T kc(l - ﬁ)T‘ fOT' ul(t) > Umax T kc(l - ﬁ)T
U; (t) = ul(t) fOT' Umin — kc(l - ﬁ)r = ul(t) < Upax + kc(l - ,8)7' (727)
Umin — kc(l - ﬁ)T‘ fOT' ul(t) < Upin — kc(l - ﬁ)T
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Uc (t) fO‘)" Umin < uc(t) < Umax (728)

{umax for Uc(t) > Unmax

u,(t) =

Upin  fOT U () < Upin

Where Umax and umin correspond to the maximum and minimum physical saturation limitations of
the control signal. The signals us and u. are given as

U (s) = k. r(s) —y(s) + (1/t;s + Duy(s) + ke.tps/(etps + 1) (yr(s) — y(s))] (7.29)
uc(t) = uy(6) — k(1= B)r (7.30)
Here, € is 0.1 which accounts for the derivative filter parameter. The saturation function St is useful
to take care of the anti-reset windup by considering the set-point weighting on proportional mode.
Additionally, control limitations are taken care by the saturation function S». By all means, the
control performance would diminish once the constraints of control saturations are activated. The
saturation limits are set as Umax = +2.5 and umin = -2.5. A point worth noting is that regardless of
the constraints being met by the controller output, the proposed method resulted in a satisfactory

performance.
7.6 Design of set point weighting parameters for MIMO processes

Several MIMO systems can be altered using a more feasible choice of using a decentralized
control strategy as recommended by Hazarika and Chidambaram (2014). Figure 7.3 illustrates the
process under study with U and Y as input and output respectively. The set point weighting
technique is induced into the decoupler control loops and studied. The proposed set-point
weighting design (Figure 7.2) is incorporated independently for the two control loops in Figure

7.3 and simulation studies are carried out for different examples.
Note that Dasari et al. (2016) method is the technique proposed in Chapter 6. This varies from the

method proposed in Chapter 7 in the view of fixed set-point weighting of 0.3 and in Chapter 7, the

set-point weighting varies according to the design technique.
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7.7 Simulation results

PID tuning method proposed by Nasution et al. (2011), Wang et al. (2016) and Dasari et
al. (2016) are used for calculating the PID settings for SISO and TITO processes. Simulation
studies were carried out on various unstable processes and the closed loop set-point performances
are compared with the method proposed by Nasution et al. (2011) and Wang et al. (2016) for SISO
processes and Hazarika and Chidambaram (2014), Dasari et al. (2016) for TITO processes.The
controller performance is assessed based on integral of absolute error (IAE) and total variation of
the manipulated variable at a value of maximum sensitivity. The set-point weighting parameters
(B1 and y1) for UFOPTD process are determined from eq. 7.11 & 7.14. Similarly, the set-point
weighting parameters (B2 and y2) for USOPTD processes are calculated fromeq. 7.23 & 7.26. All

the simulations for SISO and TITO processes are carried out based on Figure 7.2 and Figure 7.3.

Figure 7.3 Decoupled control scheme

Example — 1: A UFOPTD process is considered as shown below

e—l.ZS

s—1

Gp(s) =

For this process, different A are selected and the corresponding M; values are obtained based on
Nasution et al. (2011). Simulations are performed by giving a step change of unity to the set point.

Figure 7.4 represents the closed loop and control responses. The designed controller settings, set



point weighting parameters and the controller performance for the conditions specified are
illustrated in Table 7.1. It can be observed that the Ms values are higher as the time delay to time
constant ratio is greater than 1. Ms value of 9 yields good responses as compared to other Ms

values.
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Figure 7.4 Output and control action behavior under exact model conditions for example 1 for
different values of A.
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Figure 7.5 Output and control action behavior under uncertainties model conditions for example
1 for different values of A.
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Figure 7.6 Output and control action behaviour under exact model conditions for example 1,
solid — Proposed work, dash — (Nasution et al., 2011).
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Figure 7.7 Output and control action behaviour under uncertainties model conditions for
example 1, solid — Proposed work, dash — (Nasution et al., 2011).
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Figure 7.8 Output and control action behaviour under exact model conditions for example 1,
solid — Proposed work with gama, dash — Present work without gama.
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Example — 2: A higher-order unstable process studied in (Nasution et al., 2011) is considered

—0.5s

e
Gp(s) = (55—1)(2s+1)(0.55+1) (7.32)

Table 7.1 shows the corresponding controller settings. The simulation responses values are shown
in Table 7.1 for perfect model and perturbations of +10% in time delay and -10% in time constant.

It is observed that the controller performance is improved using this method.

(o2}
o

N
(?
|

N
o
T

|

Control actions

[ [ [ — —L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

OO

Figure 7.9 Output and control action behaviour under exact and uncertainties model conditions
for example 2, solid — Proposed, dash — uncertainties.

Table 7.1 Tuning Parameters and the performance indices for Example 1 and 2.

Proposed
Method A ke Ti | ta | Ms | B Y +5% in 0
model
IAE | TV IAE ™V
25 | 119 | 424 | 057 | 12 | 0.09 | 0.14 | 43 | 6.8 13 20
3 1.15 | 635 | 056 | 9.5 | 0.07 | 0.16 | 3.8 | 4.9 4.4 6.2
Example 1 Proposed
328 | 113 | 779 | 055 | 9 0.06 | 0.18 | 3.9 | 45 4 5
4 11 124 | 053 | 116 | 0.05 | 0.21 | 463 | 4.2 4.6 4.4
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Figure 7.10 Output and control action behaviour under exact model conditions for example 2,
solid — Present work with gama, dash — Proposed work without gama.

Example — 3: Consider an UFOPTD process as (Sree and Chidambaram, 2017)

Gp(s) = ::_21 (7.33)

For this process, A = 2.1 was selected as per the Nasution et al. (2011) method. Similarly, when A
is considered as 3, Ms is obtained as 1.6 for both the proposed and Wang et al. (2016) methods.
Simulation studies are carried out separately by giving a step change of unity to the set points for
all the methods. Figure 7.11 represent the closed loop and control responses. The designed
controller settings, set point weighting parameters and the controller performance for the
conditions specified are illustrated in Table 7.2. It is observed that the proposed technique provides

good satisfactory performances with smoother control action compared to remaining methods.
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Figure 7.11 Output and control action behaviour under exact model conditions for example 3,
solid — Proposed work, dash — (Nasution et al., 2011).

15 [ [ [ [ [ [ [
i
o 1L —
=) : b -..,...-I"'-.-..--
Q_ " »
5 4
00-57 n 7
0 [ [ [ [ [ [ [
0 5 10 15 20 25 30 35 40 45 50
Time
50 § [ § § § § [
[72]
c
=)
g
[ .
s O
IS
(@]
(@)
_50 [ [ [ [ [ [ [ [ [
0 5 10 15 20 25 30 35 40 45 50
Time

Figure 7.12 Output and control action behaviour under exact model conditions for example 3,
solid — Proposed work, dash —(Wang et al., 2016).
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Figure 7.13 Output and control action behaviour under uncertainties model conditions for

example 3, solid — Proposed work, dash — (Nasution et al., 2011).
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Figure 7.14 Output and control action behaviour under uncertainties model conditions for
example 3, solid — Proposed work, dash — (Wang et al., 2016).

126



Example — 4: Another UFOPTD process is considered as below

e—O.SS

Gp (s) = - (7.34)

For this process, A value of 0.8 is chosen which complements to Ms value of 2.8. The designed
controller settings, set point weighting parameters and the controller performance for the
conditions specified are illustrated in Table 7.2. In the same way, when A is taken as 0.9, the
obtained Ms value is 1.5 for both the proposed and Wang et al. methods. Simulation studies are
carried out separately by giving a step change of unity to the set points for both methods. In
addition to the perturbations given in example 3, time constant is also subjected to -10% change

to test the robustness; the consequent responses are illustrated in Table 7.2.
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Figure 7.15 Output and control action behaviour under exact model conditions for example 4,
solid — Present work, dash — (Nasution et al., 2011).
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Figure 7.16 Output and control action behaviour under exact model conditions for example 4,
solid — Present work, dash — (Wang et al., 2016).
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Figure 7.17 Output and control action behaviour under uncertainties model conditions for
example 4, solid — Present work, dash — (Nasution et al., 2011).
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Figure 7.18 Output and control action behaviour under uncertainties model conditions for
example 4, solid — Present work, dash — (Wang et al., 2016).

Table 7.2 Tuning parameters and the performance indices for Example 3 and 4.

~10%in K,
Method A ke Ti Td Ms B Y P:ﬁgg:fd and +10% in
0
I1AE TV 1AE TV
Proposed 21 061 | 11 | 084 | 480291027 ) 4ol 435 | 55 | 41
Nasution | 2.1 g1 | 17 | ggg | 461032037 5 1559 | 59 | 49
Example 3 et al. 1
Proposed | 3 | 047 | 235 | 13 | 16 | 026 | 0.19 | 6.1 | 22 | 552 | 233
Waar:g e | 3 | 047 | 235 | 13 | 16 02 | 016 ] 5a1 | 907 | 502 | 909
-10%in Kp
+10% in 0 and
-10% int
Proposed 0.8 | 1.94 5.02 0.18 2.8 0.27 0.53 1.20 2.5 1.25 35
Naei“atl'on 08| 194 | 502 | 018 | 28 | 018 | 019 | 167 | 24 | 138 | 28
Example 4 .
Proposed | & | 1.81 | 712 | 030 | 1° | 920 012 1166 | 537 | 176 | 59
Waar:g et % 181 | 712 | 039 | 12| 02 2 | 380 | 73| 382

129




Example — 5: A second order unstable process (Nasution et al., 2011) is considered

—0.5s

e
Gp(s) = (25—1)(0.55+1) (7.35)

The corresponding controller values are given in Table 7.3. The time constant and delay time are
subjected to -10% and +10% perturbations; the consequent responses are illustrated in Table 7.3.

The results comprehend to better robust performances which reveals that the present method is

superior.
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Figure 7.19 Output and control action behaviour under exact model conditions for example 5,
solid — Present work, dash — (Nasution et al., 2011).
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Figure 7.20 Output and control action behaviour under uncertainties model conditions for
example 5, solid — Present work, dash — (Nasution et al., 2011).

Example — 6: Control of a Bio-reactor:
A nonlinear continuous bioreactor exhibiting multiplicity behavior is modelled (Sree and

Chidambaram, 2017) by the following equations:

W _ (4= D)X (7.36)

as X

w=( 5D (7.37)
Wherep = (4, S/ (K,, + S + K;S?). The parameters are taken as y = 0.4 g/g, St = 4g/l,

m=0.53 h, D =0.3 h!, Km = 0.12 g/I, K; = 0.45451 I/g. X and S represent the cell and substrate

concentrations respectively. An unstable linearization point (X = 0.9951, S = 1.5122) is obtained

for which a transfer function model is developed as followed.

—5.89 ¢~2:45
Gp(s) " 5.86s5—-1 (7.38)
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For this process, A=2.56 was selected as per the Nasution et al. (2011) method, which corresponds
to an Ms Value of 3.78. Simulation studies are carried out separately by giving a step change of
unity to the set points for all the methods. The designed controller settings, set point weighting
parameters and the controller performance for the conditions specified are illustrated in Table 7.3.
The results comprehend to better robust performances which reveals that the present method is

superior.
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Figure 7.21 Output and control action behaviour under exact model conditions for example 6,
solid — Present work, dash — (Nasution et al., 2011).
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Figure 7.22 Output and control action behaviour under uncertainties model conditions for
example 6, solid — Present work, dash — (Nasution et al., 2011).

Non — linear Simulation:

It is more appropriate to perform simulation directly on the original nonlinear model
instead of transfer function model. To serve this purpose, A is selected 2.56 which complements to
Ms value of 3.78. The designed controller settings, set point weighting parameters and the
controller performance for the conditions specified are illustrated in Table 7.3. Simulation studies
are carried out separately by giving a step change from 0.9951 to 1.1 at time t = 0 sec to the set
point. Figure 7.23 represent the closed loop and the corresponding control responses respectively.
The delay time is subjected to +5% perturbations to test the robustness; the consequent responses
are illustrated in Table 7.3. The results again comprehend to better robust performances which

reveals that the present method is superior with smooth control action.
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Figure 7.23 Output and control action behaviour for Non Linear exact model conditions for
example 6, solid — Present work, dash — (Nasution et al., 2011).
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Figure 7.24 Output and control action behaviour for Non Linear uncertainties model conditions
for example 6, solid — Present work, dash — (Nasution et al., 2011).
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Tracking of Different Set-points:

Both increase (positive) and decrease (negative) step inputs of different magnitudes are
considered. Step magnitudes of 1, 0.2 and -0.2 at times t = 0, 60 and 250 are considered and the
corresponding closed loop responses for perfect conditions without and with noise are shown in
Figure 7.25,7.26 and Figure 7.27,7.28. Hence, it is inferred that the present method has the ability

to track multi set-points without much overshoot.
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Figure 7.25 Closed loop response for different setpoints responses for example 6 for exact
condition. Dot — set point, Solid — output.
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Figure 7.26 Closed loop response for different setpoints control actons for example 6, for perfect
condition.Solid — output.
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Figure 7.27 Closed loop response for different setpoints for example 6 with Noise for perfect

condition. Dot — set point, Solid — output.
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Figure 7.28 Closed loop response for different setpoints control actions for example 6 with

Noise for perfect condition. Dot — set point, Solid — output.
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Example - 7: Control of a Chemical Reactor:
An isothermal chemical reactor exhibiting multiple steady-state solutions is modelled as
(Musmade and Chidambaram, 2014):

dc g _ _ k.C
a v (Cf C) (k2C1+1)2 (7.39)

Where Cr and Q are the inlet concentration and flow rate respectively. The values of the operating
parameters are Q=0.0333 L/s, V=1L, k:=10 L/s, and K: =10 L/mol. Two steady state
concentrations (C=1.7673 and 0.01424 mol/L) and one unstable steady state (C=1.316mol/L) are
obtained around a nominal value of Cf=3.288 mol/L. An unstable transfer function model is
developed by linearizing the manipulated variable i.e., the feed concentration at C=1.316. A time
delay of 20s is considered which yield an unstable transfer function model as

3.433e7208
Gp(s) = 103.1s—1 (7.40)
For this process, A is selected as 26 which complements to Ms value of 2.6. Simulation studies are
carried out by giving a step change of unity to the set point. Figure 7.29 represent the closed loop
and the corresponding control responses. The designed controller settings, set point weighting

parameters and the controller performance for the conditions specified are illustrated in Table 7.3.

Example - 8: Consider a TITO process (Hazarika and Chidambaram, 2014)

16e”5 061>
~26s+1 25s+1
Gp(s) =
0765 17¢7
3s+1  -22s+1 (7.41)

RGA and NI are calculated to estimate the pairing selection for the above mentioned system.

1.1826 -0.1826
[ sopren o

0.7 1.7 1-0.1826 1.1826 (7.42)

NI1=0.6969
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Figure 7.30 Output and control action behaviour under uncertainties model conditions for

example 7, solid — Present work.
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Table 7.3 Tuning parameters and the performance indices for Example 5, 6 and 7.

Proposed +10% in 0 and -10%
Method A ke Tl L Ms B Y
model int
IAE TV IAE TV
Proposed 1.23 2.67 6.31 0.41 34 0.46 0.14 1.81 7.91 2 8.71
Example 5 Nasution et
| 1.23 2.67 6.31 0.41 34 0.28 0.26 243 9.61 242 10.3
al.
-10%in Kp+10% in
0 and -10% in T
Proposed | 256 | -048 | 1257 | 0.9 378 | 031 | 0.39 5 35 8.7 4.6
Example 6 Nasution
| 2.56 -0.48 12.57 0.9 3.78 0.37 0.45 5.06 4.02 9.84 5.29
etal.
Example 6 Proposed 2.56 -0.48 12.57 0.9 3.78 0.31 0.39 2.97 3.85 458 4.37
Non-linear Nasution
i i 2.56 -0.48 12.57 0.9 3.78 0.37 0.45 3.29 4.05 5.26 4.69
simulation etal.
Example 7 ‘ Proposed ’ 26 ’ 141 ’ 123 | 10.2 | 26 ‘ 0.44 ‘ 032 ‘ 51 ‘ 39 ‘ 48 ‘ 36

The tuning parameters are derived from (Hazarika and Chidambaram, 2014) which are found to
be 1.4434, 1.6142. The pairing criteria is to get a positive value for NI as a same number of open
loop unstable poles is obtained for both Gp(s) and Gp(s) = diag[gp,ii(s)].

(7.85—3)e 058

1
D(s) 20s+8
) (15.45 — 7)e 05 .

51s+17 (7.43)

The controller parameters — normalized gain array, relative average residence time array
(RARTA), average residence time array, and relative normalized gain array (RNGA) which are

mentioned below are used for the evaluation of equivalent transfer function
36 4 0.444  0.15
Tar =\ 45 32|"N=|01556 05313
> : ' (7.44)

_{ 11097 - 0.1097} r- {0.9383 0.6005}

©1-0.1097 1.1097 0.6005 0.9383

(7.45)

Hence, the developed equivalent transfer function is

139



1.3529¢ 0-983s 3 9g57,-0-9008s
—2.43965 +1 1.5013s +1

G, =
p
~3.8333¢70:%008s 4 4375¢-0-93833
—~1.80165 +1 —2.0643s +1 (7.46)

A lead lag filter based method is used as in Dasari et al. (2016) to design the controller which is as

represented below
1

~0.0371(L+ +0.2346) 0
G, - 0.62555
0 ~0.0335(1+ +0.2346)
0.62555 (7.47)
20.3717s +1 .
oy _ | 045375 +1

F ()= 20.2497s +1

0.39655 + 1 (7.48)

This designed controller is applied with set point weighting of magnitudes that is for first
loop B1=0.3, y1=0.79 and for the second loop B1=0.25, y1=0.74 present in the process. A step change
of unity is given to the set point and disturbance and their corresponding closed loop responses are
plotted in comparison to Hazarika and Chidambaram (2014) and Dasari et al. (2016). The closed
loop servo responses are illustrated in Figure 7.31. Other parameters are also subjected to
perturbations and the respective controller performances values are presented in Tables 7.4 & 7.5.
It is noticed that the proposed method gives better performance in comparison to the other methods

and also is stable in nature.
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Figure 7.31 Output and control action behaviour for servo under exact model conditions for y:
and y» for example 8, solid — Present work, dash — (Hazarika and Chidambaram, 2014), dash
dot— (Dasari et al., 2016)
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Figure 7.32 Output and control action behaviour for regulatory under exact model conditions for
y1 and y» for example 8, solid — Present work, dash — (Hazarika and Chidambaram, 2014), dash
dot— (Dasari et al., 2016)
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Figure 7.33 Output and control action behaviour for servo under 10% uncertainties to time delay
for y1 and y» for example 8, solid — Present work, dash — (Hazarika and Chidambaram, 2014),
dash dot— (Dasari et al., 2016)
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Figure 7.34 Output and control action behaviour for regulatory under 10% uncertainties to time
delay for y: and y» for example 8, solid — Present work, dash — (Hazarika and Chidambaram,

2014), dash dot— (Dasari et al., 2016)
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Table 7.4 Analysis of IAE values for servo responses for example-8.

0
'% Proposed method Hazarika et al. Dasari et al.
% loopl loop2 loopl loop2 loopl loop2
E Y1 Y2 Y1 | Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2
kp 2.66 | 0.04 | 0.02 | 285|139 | O 0 |14.10| 1242 0 0 |11.90
1.1kp | 2.66 | 0.03 | 0.02 | 2.82 | 1598 | O 0 |16.77 | 13.54 0 0 |13.07
0.9kp | 2.66 | 0.04 | 0.02 | 3.28 | 11.85| O 0 |11.92 1111 0 0 |10.57
T 2.66 | 0.04 | 0.02 285|139 | O 0 |14.10| 1242 0 0 |11.90
11t | 273024 |020|265| 14 |0.36 | 0.22 | 14.24|12.42| 0.25 | 0.19| 11.9
09t | 278 | 055|044 |346| 139 | 1.15|0.79 | 14.15|12.42| 0.25 | 0.19| 11.9
0 2.66 | 0.04 | 0.02 285|139 | O 0 |14.10| 1242 0 0 |11.90
1.16 | 3.36 | 0.71 | 0.60 | 5.68 | 13.96 | 0.57 | 0.39 | 14.3 | 12.42| 0.04 | 0.03| 11.9
0906 |262|0.14|0.11|2.38|13.96| 0.09 | 0.06 | 14.13| 9.12 | 0.01 0 7.74
Table 7.5 Analysis of IAE values for regulatory responses for example-8
Proposed method Hazarika et al. Dasari et al.
loopl loop2 loopl loop2 loopl loop2
Y | Y2 | Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2
kp |4.23|249|2.08| 6.64 | 36.54 |22.81 |14.64 | 53.12 | 21.54 | 10.64 | 8.96 | 24.01
1.1kp | 4.10 | 2.45| 2.10 | 5.78 | 36.35 | 22.64 | 14.58 | 52.73 | 20.86 | 10.34 | 8.73 | 23.2
09kp | 4.64 | 282 |2.07| 799 | 36.8 | 23.22 | 14.7 | 54.33 |22.78 | 11.19 | 9.39 | 25.48
T 423|249 |2.08| 6.64 |36.54|22.81 |14.64 | 53.12 | 21.54 | 10.64 | 8.96 | 24.01
1.1t | 416|271 |217 | 6.25 | 36.56 | 22.79 | 14.61 | 53.17 | 21.72 | 10.53 | 8.86 | 24.23
09t | 438|244 |216| 7.48 | 36.52 | 22.83 | 14.73 | 53.22 | 21.34 | 10.74 | 9.05 | 23.77
0 423|249 |2.08| 6.64 |36.54|22.81 |14.64 | 53.12 | 21.54 | 10.64 | 8.96 | 24.01
1.16 | 6.38 | 5.74 | 3.79 | 13.79 | 36.53 | 23.04 | 14.76 | 53.46 | 21.47 | 10.67 | 9.02 | 23.94
0.90 | 3.88 1233|198 | 4.95 |36.55|22.71 | 14.53 | 53.14 | 21.62 | 10.61 | 8.91 | 24.11
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Example 9:
Another TITO process (Hazarika and Chidambaram, 2014) is considered

[ _16667¢"5  —1e~S
“265+1  —1.6667s+1

Gp(S)=
~-0.8333¢° -1.6667e"°
| -1.6667s+1 -1.6667s+1] (7.49)

Pairing is done based on RGA and NI
_[-16667 -1
~|-0.8333 -1.6667 (7.50)

14283 —0.4283
RGA =
{— 0.4283 14283 }

(7.51)
NI for this system is 0.5833. From Hazarika and Chidambaram (2014) the tuning parameters are
2.0726, 2.0726 respectively. As the number of open loop unstable poles of Gp(s) is different from
Gp(s) = diag[gp,ii(s)]. A different paring criterion is used. As the calculated NI shows a positive

value, interchanging of columns results in

—1e78 —~1.6667e”S
—-1.6667s+1 —2.6s5+1
Gp(S) =
—-1.6667e"°  —0.8333e°
~1.6667s+1 —1.6667s+1 (7.52)

Now the relative gain array is calculated as

~0.4283 1.4283
RGA =
1.4283 -0.4283 (7.53)
Equivalent transfer function is calculated as
2.3348e°  -1.16711le"°
. -1.6667s+1  —-2.6s+1
Gp=
~1.16711e™%  1.9456e°
-1.6667s+1 -1.6667s+1 (7.54)

Decouplers are designed as
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1 ~1.6667
D(s) =

| —2.001 1 } (7.55)
Controller with lead lag filter designed by Dasari et al. (2016) is

7—0.0139(1+;+ 0.25) 0
Ge(s) = 0.6667s

0 ~0.0199(1+ +0.25)
L 0.6667s (7.56)
28.3073s +1 0
"(ey—| 0.3673s+1
F )= 2437465 +1
0.3487s +1 (757)

This designed controller is applied with set point weighting of magnitudes that is for first loop
B:1=0.18, y1=0.6 and for the second loop P1=0.2, y1=0.63 present in the process. Figure 7.36
demonstrate the regulatory responses. The corresponding IAE values for different perturbations
are given in Table 7.6. It is observed that the proposed method is robust. The IAE values for all
three methods are given in Table 7.6 and 7.7 and as noticed in first example, the proposed method

proved to perform better for this example as well.

60 80 100

c L
60 80 100

Figure 7.35 Output and control action behaviour for servo under exact model conditions for y;
and y» for example 9, solid — Present work, dash — (Hazarika and Chidambaram, 2014), dash
dot— (Dasari et al., 2016).
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Figure 7.36 Output and control action behaviour for regulatory under exact model conditions for
y1 and y» for example 9, solid — Present work, dash — (Hazarika and Chidambaram, 2014), dash
dot— (Dasari et al., 2016).
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Figure 7.37 Output and control action behaviour for servo under 10% uncertainties to time delay
for y1 and y» for example 9, solid — Present work, dash — (Hazarika and Chidambaram, 2014),
dash dot— (Dasari et al., 2016).
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Figure 7.38 Output and control action behaviour for regulatory under 10% uncertainties to time
delay for y: and y» for example 9, solid — Present work, dash — (Hazarika and Chidambaram,
2014), dash dot— (Dasari et al., 2016).

Table 7.6 Analysis of IAE values for servo responses for example 9

o Proposed method Hazarika et al. Dasari et al.
E loopl loop2 loopl loop2 loopl loop2
-
g Y1 Y: Y1 Y: Y1 Y: Y1 Y: Y1 Y2 Y1 Y2
kp 241 | 000 | 000 | 241 | 791 | O 0O | 789 |88 | 001| 0 |7.734
1.1kp | 2.33 | 0.00 | 0.00 | 2.33 {1043 | 0.01| O [1042| 922|001 | O 9.30
0.9kp 3.80 | 0.00 | 0.00 | 3.81 | 482 | 0.01 0 48 | 9870011 O 7.39
T 241 | 0.00 | 0.00 | 241 | 791 0 0 789 | 8.8 | 0.01 0 7.734
1.1z 244 | 0.00 | 0.00 | 245 | 791 | 0.01 0 7.89 | 9.31 | 0.01 0 7.74
0.9t 299 | 0.00 | 0.00 | 299 | 7.91 | 0.01 0 7.89 | 835 | 0.01 0 7.74
0 241 | 0.00 | 0.00 | 241 | 791 0 0 789 | 8.8 | 0.01 0 7.734
1.16 439 | 0.01 | 0.00 | 439 | 7.91 | 0.01 0 7.89 | 847 | 0.01 0 7.74
0.96 185 | 0.00 | 0.00 | 1.85 | 7.91 | 0.01 0 789 | 9.12 | 0.01 0 7.74
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Table 7.7 Analysis of IAE values for regulatory responses for example 9

@ Proposed method Hazarika et al. Dasari et al.
§
5 loopl loop2 loopl loop2 loopl loop2
$ Y. [ Y. | Y [ 2| Vi | Y2 | Vi | Y2 | 2] Y2 | Y1 Yz
kp 56 | 9.35 | 9.34 | 4.66 | 27.81 | 46.37 | 46.35 | 23.17 | 20.58 | 28.75 | 34.29 | 14.37
1.1kp 45 | 751 | 75 | 3.75 | 27.79 | 46.34 | 46.32 | 23.16 | 20.58 | 28.75 | 34.29 | 14.37
0.9kp | 8.39 14 139 | 6.9 | 27.81 | 46.37 | 46.35 | 23.17 | 27.44 | 37.05 | 45.73 | 18.47
T 56 | 9.35 | 9.34 | 4.66 | 27.81 | 46.37 | 46.35 | 23.17 | 20.58 | 28.75 | 34.29 | 14.37
1.1z 585 | 9.78 | 9.76 | 4.88 | 27.81 | 46.37 | 46.35 | 23.17 | 20.86 | 29.15 | 34.77 | 14.56
0.91 591 | 9.87 | 9.86 | 4.93 | 27.81 | 46.37 | 46.34 | 23.17 | 20.58 | 28.75 | 34.29 | 14.37
0 56 | 9.35 | 9.34 | 4.66 | 27.81 | 46.37 | 46.35 | 23.17 | 20.58 | 28.75 | 34.29 | 14.37
1.16 8.69 | 145 | 14.49 | 7.24 | 27.81 | 46.37 | 46.34 | 23.17 | 20.58 | 28.75 | 34.29 | 14.37
0.96 5.06 | 8.45 | 8.43 | 4.21 | 27.81 | 46.37 | 46.35 | 23.17 | 20.72 | 28.96 | 34.54 | 14.47

7.8 Summary

The determination of set point weighting parameters p and y of a PID controller for unstable

first and second order systems with time delay and TITO unstable process is found to be simple

using the technique presented. Comprehending simulation results shown on different transfer

function models, it is recognized that the overshoot and undershoot are reduced significantly in

the present work. Assessment of the results with Nasution et al. (2011) and Hazarika and

Chidambaram (2014) emphasized that, the present technique is easy to implement because of the

simple calculation procedure to obtain the set weighting parameters. The same is observed for

TITO systems when a comparison is made between Hazarika and Chidambaram (2014) method

and Dasari et al. (2016) method. Moreover, an improvement is observed based on the ability to

give a stable result even when the process parameters are subjected to varied perturbations. Further,

the IAE and TV values are used to provide a quantitative assessment of the results obtained.
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Chapter 8

Summary and Conclusions

8.1 Summary

In this research, an enhanced design of optimal H2 PID controller for unstable process with
time delay is addressed. A simple PID design method with and without set point filter and set point
weighting are proposed. An experimental application of these PID design strategies is performed
on an inverted pendulum. The proposed control strategy is applied to cascade control structure.
Finally, a method is proposed for the set-point weighted PID controllers for SISO and MIMO

unstable time-delay systems. The results obtained in each section are summarized below.

8.1.1 Analytical PID tuning rules for unstable processes

H> minimization theory in combination with internal model control (IMC) is used to
analytically derive novel PID controller settings which can be used as ready reference like look-
up tables. These analytical settings are developed for a defined range of time delay to time constant
ratio. Maximum sensitivity (Ms) is used for evaluating the robustness of the closed loop systems.
Case studies are considered for unstable systems to evaluate the closed loop performances for set
point variations and separately for load variations. Robustness is evaluated for uncertainities in the
process model. Recently published methods in the literature are considered for performance
comparison with the proposed method. Based on several simulation results, it is observed that the
current methodology provides significantly enhanced performances when compared with those

techniques available in the recent literature.

8.1.2 Experimental implementation on an inverted pendulum

A H> minimization based IMC-PID controller has been proposed for controlling the angle
of an inverted pendulum. The identification of the process has been carried out based on available
model parameters and the controller is designed based on the model. The designed controller
provides a good set point tracking and a good disturbance rejection. The proposed controller also

shows good performances under experimental implementation.
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8.1.3 Design of cascade control systems for unstable processes with time delay

H> minimization based IMC-PID controller design for enhanced control of unstable series
cascade scheme is proposed. The scheme consists of secondary loop and primary loop. The
secondary loop controller is designed based on the IMC principles. The primary controller is
designed to obtain the H, optimal performance. From the simulation studies, it is observed that
proposed method provides enhanced closed loop performance when compared to the reported
method in the literature. To analyze the robustness, the closed loop performances of the process

model were analyzed in the presence of uncertainties.

8.1.4 PID controller design for multivariable unstable processes

IMC based PID controller with lead-lag filter is designed for multivariable unstable processes.
The design is based on H> optimal closed loop transfer function for set point changes and step
input disturbances. The individual controllers are designed based on the corresponding equivalent
transfer function (ETF) model. Simplified decouplers are designed based on the ETF model. Two
examples are considered to show the closed loop responses. The proposed method provides
significantly improved closed loop performances for regulatory problem when compared to the

methods in the literature.

8.1.5 Enhanced set-point weighting design for unstable systems

A method is proposed to design the set-point weighting parameters which is relatively simple
and also reduces the overshoot significantly. Weighting is considered for both proportional () and
derivative (y) terms in the PID control law. In the closed loop relation for set-point tracking, the
coefficients of ‘s’ and separately ‘s®” both in the numerator and denominator are made equal in
order to find B and y. The obtained expressions for f and y are simple and depends on the controller
parameters. The design is carried out first for single input single output (SISO) unstable first order
and second order processes with time delays and then for multi input multi output (MIMO)
unstable processes. In MIMO process control, decouplers are considered to ensure that the loops
have minimum interactions. With the designed values, the closed loop performance is evaluated

for different SISO and MIMO unstable processes with time delay. The present method is also
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compared with the recent methods proposed in the literature and it is observed that enhanced closed
loop performances are achieved with the proposed method.

8.2 Conclusions

8.2.1. Robust analytical relations for PID controller are developed for time delayed unstable
systems. These rules can be used like look-up tables by the operators for tuning of PID controllers.
For unstable systems, it is very crucial to select the tuning parameters to acquire stable responses.
Robustness always requires lower values of Ms which is usually not easy to achieve for such
systems. The tuning parameter is selected to achieve minimum possible value of Ms and analytical
formula is given to calculate A. Further, the developed simple tuning formulae provide fair and
enhanced performances. The present methods can be utilized as look up tables for selection of the
PID controller tuning parameters. Analytical formula is provided to determine A based on p/n. The
current methodology is relatively simple and can be applied for any system with the right half
plane pole. Comparative analysis has also been carried out using IAE and TV. The evaluated
responses of the current design reduces 30% IAE values when compared with existing techniques,
especially when p/n is significant. One more important asset of the current methodology is that the

controller output responses are not sluggish and provides minimal TV values.

8.2.2 The Experimental implementation on an inverted pendulum to control pendulum rod angle
control with PID controller shows good closed loop performances in tracking the set point with
faster settling time (reduced by 64%) when compared to the method proposed by Begum et al.
(2018) and Cho et al. (2014). The proposed method is also robust in the presence of disturbances

affecting the cart position.

8.2.3 Enhanced design of controllers is proposed for unstable time delayed cascade processes. The
proposed method consists of only two controllers whereas in the previous methods, at least two or
three controllers were used. The present design is comparatively easy and can be implemented for
any unstable cascade system. The ability to provide good stable closed loop response even when
there are large amount of perturbations in the process parameters is a major advantage of the
proposed method over previously existing methods. Quantitative comparison is carried out using
IAE and TV values and the proposed method reduces 54% IAE values and 68% TV over the

existing methods. Performance of the system for the proposed method is much better than that of
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the previously existing methods particularly for the disturbance rejection. One more main
advatange of the proposed method is that the control action respones are smooth in all the examples
and correspondingly provides low TV values which is recommonded for any control system.

8.2.4 Multivariable PID controller is series with lead lag filter is applied based on the equivalent
transfer function (ETF) model for unstable multivariable systems with time delay. The method
uses simplified decouplers which decompose the unstable multi-loop systems into independent
loops with ETFs as the resulting decoupled process model having unstable poles. To reduce the
undesirable overshoot, set point weighting is used. Two simulation examples are studied and
showed that the present method provides significantly (reduced by 56% IAE values) improved
closed loop regulatory performances when compared to the methods in the literature. However,

the set-point tracking performances are not better for the proposed method

8.2.5 The determination of set point weighting parameters  and y of a PID controller for unstable
first and second order systems with time delay and TITO unstable process is found to be simple
using the technique presented. Comprehending the simulation results shown on different transfer
function models, it is recognized that the overshoot, undershoot and 16% TV values are reduced
compared with existing techniques. Assessment of the results with Nasution et al. (2011) and
Hazarika and Chidambaram (2014) emphasized that, the present technique is easy to implement
because of the simple calculation procedure to obtain the set weighting parameters. The same is
observed for TITO systems when a comparison is made between Hazarika and Chidambaram,
(2014) method and Dasari et al. (2016) method. Moreover, an improvement is observed based on
the ability to give a stable result even when the process parameters are subjected to varied
perturbations. Further, the IAE and TV values are used to provide a quantitative assessment of the

results obtained.
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8.3 Suggestions for Future Work

H> minimization based IMC-PID control technique can be extended to higher order
unstable processes models.

Parallel cascade control strategy with underdamped IMC filter structure can be developed
for improved responses.

Experimental implementation can also be carried out on the other unstable processes such
as (a) ball and beam and (b) magnetic levitation systems.

Control of Multivariable square as well as non-square unstable systems with more than two
inputs and outputs can be studied.
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APPENDIX - A

Definition of constraints for section 3.2:

a1 = 18.167 (T)® - 17.95 (T)? +5.6733 (T) +1.428 for 0.1<(T) < 0.4
a1 = 0.1667 (T)® - 0.3357 (T)?— 0.053 (T) +2.0527 for 0.4<(T)<0.8
a1 =-0.333 (T)%+ 0.8 (T)? - 0.9167 (T) + 2.272 for 0.8<(T)<1.2
b1 = - 2.88 (T)? + 2.203 (T) — 0.8444 for 0.1<(T)<0.3
b1 = - 0.485 (T)? + 0.8697 (T) — 0.6597 for 0.3<(T)<0.6
by = 0.066 (T)® —0.3245 (T)? + 0.6276 (T) — 0.5864 for 0.6<(T)<1.2
c1 = - 0.0455 (T)? —3.267 (T) — 0.6616 for 0.1<(T)<0.3
c1=-0.7633 (T)® + 1.654 (T)> —1.544 (T) — 0.426 for 0.3<(T)<0.7
c1 = -0.2148 (T)* - 0.272 (T)? - 0.262 (T) + 0.1358 for 0.7<(T)<1.2
a2 =0.2733 for 0.1<(T) <0.3
a» = 0.8202 for 0.3<(T) <0.7
a2 = - 0.0116 (T)? + 0.015 (T) + 1.3621 for 0.7<(T)<1.2
b, = 2.682 for 0.1<(T) <0.8
b, = 2.682 for 0.8<(T)< 1.1
b, = 2.684 for 1.1<(T) <1.2
c2 = 0.0905 (T) + 0.7166 for 0.1<(T) <0.3
2 = 0.276 (T) + 2.1473 for 0.3<(T)<0.7
c2 = 0.283 (T)? + 0.0848 (T) + 3.7066 for 0.7<(T)< 1.2
as = - 0.8025 (T)? + 1.2018 (T) —0.6698 for 0.1<(T)< 0.4
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as = - 0.4936 (T)? + 0.9362 (T) — 0.6127 for 0.4<(T)<0.8

as = 0.275 (T) — 1.064 (T)? + 1.3443 (T) - 0.7144 for 0.7<(T)<1.2
bs = - 0.045 (T)? + 0.3773 (T) + 0.2469 for 0.1<(T) <0.4
bs = 0.2667 (T)® + 0.14 (T)? + 0.3447 (T) + 0.247 for 0.4<(T)<0.8
bs = 0.625 (T)® — 2.188 (T)2 + 2.3704 (T) - 0.339 for 0.8<(T)<1.2
Cs = - 0.525 (T)? - 0.2445 (T) + 0.3935 for 0.1<(T) < 0.4
Cs = - 0.505 (T)2 - 0.2009 (T) + 0.382 for 0.4<(T)<0.8
Cs = - 0.346 (T)2 + 0.0206 (T) + 0.3038 for 0.8<(T)< 1.2
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APPENDIX -B

%......Closed loop response of UFOPTD system-Proposed Method ....... %

%o=-=-=nnnmemem- Example_1 for Chapter 3--------------- %
clc

clear all

steptime = 0; % step time value
stepmag = 1; % step input change
Noise=0;

%Example 1

% km =-0.017; thetam =2.4; taum = 5.8; % Process model parameters
% kpl =-0.017; thetapl = 2.4; taupl = 5.8;

% % give lamda and mf values

% lamda = 3.87;mf1=1;mf2=1;mf3=1;

% epsilon = 1;%mean=0;variance=0.0025;

%

% flag=0; % Specify 0 for Perfect model and 1 for Perturbations
% if flag==

% tsim=120; disttime = 60; distmag =50;

% elseif flag==1

%  tsim=1000; disttime = 500; distmag = 20;

% end

% if flag==0

% kp=-0.017; thetap = 2.4; taup = 5.8;

% elseif flag==1

% kp=-0.017*0.9; thetap = 2.4*1.1; taup = 5.8*0.9;
% end

X=thetam/taum

if (X>=0.1) && (X<=0.4)
al =18.167*X"3-17.95*X"2+5.6733*X+1.428;
else if (X>0.4) && (X<=0.8)
al =0.1667*X"3-0.3357*X"2-0.053*X+2.0527;
else if (X>0.8) && (X<=1.2)
al =-0.3333*X"3+0.8*X"2-0.9167*X+2.272;
else
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disp(‘rules are applicable for only 0.1<=theta/taup<=1.2");
end
end

end

if (X>=0.1) && (X<=0.3)

bl =-2.88*X"2+2.203*X-0.8444;
else if (X>0.3) && (X<=0.6)

bl =-0.485*X"2+0.8697*X-0.6597;

else if (X>0.6) && (X<=1.2)
bl =0.0667*X"3-0.3245*X"2+0.6276*X-0.5864;

end
end
end

if (X>=0.1) && (X<=0.3)
cl =0.0455*X"2-3.267*X+0.6616;
else if (X>0.3) && (X<=0.7)
€1=-0.7633*X"3+1.6539*X"2-1.5449*X+0.4259;
else if (X>0.7) && (X<=1.2)
cl =0.2148*X"3-0.2715*X"2-0.262*X+0.1358;
end
end
end

if (X>=0.1) && (X<=0.3)

a2 =0.2733;

else if (X>0.3) && (X<=0.7)
a2 =0.8202;

else if (X>0.7) && (X<=1.2)

a2 =-0.0116*X"2+0.0151*X+1.3621;
end
end
end
if (X>=0.1) && (X<=0.8)
h2 =2.682;
else if (X>0.8) && (X<=1.1)
h2 =2.683;
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else if (X>1.1) && (X<=1.2)
b2 =2.684;
end
end
end

if (X>=0.1) && (X<=0.3)
c2 =0.0905*X+0.7166;

else if (X>0.3) && (X<=0.7)
c2 =0.276*X+2.1473;
else if (X>0.7) && (X<=1.2)
c2 =0.283*X"2+0.0848*X+3.7066;
end
end
end

if (X>=0.1) && (X<=0.4)

a3 =-0.8025*X"2+1.2018*X-0.6698;

else if (X>0.4) && (X<=0.8)

a3 =-0.4936*X"2+0.9362*X-0.6127;

else if (X>0.8) && (X<=1.2)

a3 =0.275*X"3-1.0643*X"2+1.3443*X-0.7144;

end
end
end

if (X>=0.1) && (X<=0.4)

b3 =-0.045*X"2+0.3773*X+0.2469;

else if (X>0.4) && (X<=0.8)

b3 =-0.2667*X"3+0.14*X"2+0.3447*X+0.2473,;
else if (X>0.8) && (X<=1.2)

b3 =0.625*X"3-2.1886*X"2+2.3704*X-0.3396;

end
end
end

if (X>=0.1) && (X<=0.4)

c3 =0.525*X"2-0.2445*X+0.3935;
else if (X>0.4) && (X<=0.8)

c3 =0.505*X"2-0.2009*X+0.382;
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else if (X>0.8) && (X<=1.2)
c3 =0.3468*X"2+0.0206*X+0.3038;

end

end
end
kc= ((al*((lamda/taum)”bl)+cl)/km)*mfl;
ti= ((a2*((lamda/taum)”b2)+c2)*taum)*mf2;
td= ((a3*((lamda/taum)”b3)+c3)*taum)*mf3;

Gc_Present_Method = [ke ti td];

sim('PresentMethod3',tsim);

% sim('Present Method',tsim);

IAE_Present=sum(abs(stepmag-y_PM)*0.01);
TV_Present=sum(abs(diff(u_PM)));
; %...Total variation....%

subplot(2,1,1)

plot(t,y PM,'b",'linewidth’,2)

hold on

xlabel('Time"); ylabel(‘Outputs");
subplot(2,1,2)

plot(t,u_PM,'b",'linewidth’,2)

hold on
xlabel('Time"); ylabel('Control actions');

% kpl = 1; thetapl = 0.5; taupl = 1;
ww=logspace(-2,2,300);
for ii=1:300
w=ww(ii);
XX = j*w;
Gp = kpl*exp(-thetapl*xx)/(taupl*xx-1); % Unstable FOPTD Process
Ge = (Ke*(1+(1/(ti*xx))+(td*xx)/(0.01*td*xx+1)));
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S(ii) = abs((1+Gc*Gp)™(-1)); % Sensitivity Function Description
end
n = length(S);
for k=1:n
if S(k+1)>=S(k)
Mss=S(k+1); % maxium value of sensitivity
else
break;
end
end
Ms_Present = Mss

ALL = [IAE_Present TV_Present Ms_Present];

disp("  PID Controller Settings Calculated );

d isp('********************************************************') ’
fprintf(‘\tKc\t Tit  Td\nY);

fprintf('%8.47\t%9.41\t %6.4f \n',Gc_Present_Method);

d is p ('*********************************************************‘) .

disp(" IAE, TV and Ms Values Calculated );

disp(" ~ );
fprintf(\tIAE_Present\t TV _Present\t Ms_Present\n’);
fprintf('%12.47\t%16.41\t %13.4f \n',ALL);

disp(’ ~ );
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APPENDIX -C

%......0ptimal H2 IMC-PID controller with set-point weighting for cascaded Time-Delayed
Unstable process for SOUDP with two unstable pole.......%

clear all
clc

% G2(s)=kp2*exp(-d2*s)/(tp2*s+1)%
% .... G(S)= kp*exp(-d*s)/(t1*s-1)(t2*s-1)......%

flag=1; %flag = 0 (Perfect Model)
%flag = 1 (Perturbations of )
steptime = 0; stepmag = 1;

if flag==
tsim=1400;
disttimel = 500; % Secondary loop
distmagl = -0.5;
disttime2 = 800; % Primary loop before process
distmag2 = -0.2;
disttime3 =0; % Primary loop after the process
distmag3 = 0;
elseif flag==1
tsim=1400;
disttimel = 500; % Secondary loop
distmagl = -0.5;
disttime2 = 800; % Primary loop before process
distmag2 = -0.2;
disttime3 =0; % Primary loop after te process
distmag3 = 0;
end
if flag==

kp2 = 1; d2 = 0.5; tp2 = 3; % Secondary process

kpl = 3.433; d1 = 20; tpl = 103.1; % Primary process
elseif flag==1

kp2 = 1; d2 = 0.5*1.3; tp2 = 3; % Secondary process

kpl = 3.433; d1 = 20*1.3; tpl = 103.1; % Primary process
end
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kp2m =1; d2m = 0.5; tp2m = 3; % Secondary loop model

lamda2 = 0.5*d2;
lamda = 22;%6.6

kp =-3.433; d = 20.5; t1 = 103.1; t2 = -lamda2; % Primary loop model

%...cocn. let us define a,b,x,y as follows for simplicity........ %
a=(t2*(exp(d/t2)-1));

b=(t1*(exp(d/t1)-1));
X=(t1*t2*(a-b)*(1/(t1"2)))+(((t1*b)-(t2*a))*(1/t1))+(t1-t2);
y=(t1*t2*(a-b)*(1/(t2°2)))+(((t1*b)-(t2*a))*(1/t2))+(t1-t2);

%......filter coefficients alphal and alpha2 where
F(s)=(alpha2*(s"2)+alphal*s+1)/((lamda*s+1)"4)....%

alphal=(((((lamda/t1)+1)"4)*(t1-t2)*t1*(exp(d/t1))*(1/x)))-t1;
al = -(t1+t2);

a2 = (t1*t2);

D =t1-t2;

p = t1*t2*(t1-t2-(t1*(exp(d/t1)))+(t2*(exp(d/t2))));

q = ((t21"2)*(exp(d/tl))-(t2"2)*(exp(d/t2))+(t2"2)-(t1"2));

R = (4*lamda*D)+(d*D)-(alphal*D)-(q);
X1=((6*D*(lamda”2))+(2*d*lamda*D)-(p)-(alphal*q)+(0.5*d*q)+(0.5*d*D*alphal))/R;
betal = (X1-al-(0.5*d));

ke = (a/(kp*R));

tr = (q/D);

td = (p/q);

Gc = [ke tr td alphal betal]

tff = 2/td;

sim('Ex4_CSTR',tsim);

%%%%%% ERROR VALUES CALCULATION %%%%%%%%%%%%%%%%%%%%%%
st = 0.01; % sampling time

IAE = sum(abs(1-y1)*st)

TV = sum(abs(diff(ul))); % Total Variation...%
r=[IAE;TV];

171



%

disp(' IAEand TV Values );

disp(’ )i
fprintf(\tIAE\t TV\t\nY);
fprintf('%8.47t%8.47\t \n'r);

disp(’ )i

subplot(2,1,1)
plot(t,yl1,r--",'LineWidth',2)
xlabel('Time','fontsize’,12, ' fontweight','b")
ylabel('Closed loop output, y',"fontsize’,12, fontweight','b’)
hold on
subplot(2,1,2)
plot(t,ul,'r--",'LineWidth',2)
xlabel("Time','fontsize',12, fontweight','b");
ylabel('Control action, u','fontsize’,12, fontweight','b"
hold on
return
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APPENDIX -D

%......0ptimal H> IMC-PID controller for unstable multivariable processes ....... %

clear all;
clc;

kpll = 1.6;
tpll = -2.6;
thetapll = 1*.1;

kp12 = 0.6;
tpl2 = 2.5;
thetapl2 = 1.5*1.1;

kp21 =0.7;

tp21 = 3;

thetap21 = 1.5*1.1;
kp22 =1.7;

tp22 = -2.2;
thetap22 = 1*1.1;

kml = -1.3529; tml = 2.4396; thetaml1 = 0.9383;
lamdal =2.7; %% Recommonded value is 2.1

km2 = -1.437; tm2 = 2.0643; thetam2 = 0.9383;
lamda2 = 2.5;

tffl = 25;
tff2 = 25;

tsim=100;
%%%%Proposed method%%%%%%%%

x1=(exp(thetaml/tm1)-1)*tml; %...for simplicity define x..%
annl =(lamdal)*((lamdal/tm1)"2+(3*(lamdal/tm1))+3) ;

anl = 1*annl;
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kcl=-(4*thetaml)/(km1*((18*lamdal)+(6*thetam1l)-(6*anl)-(6*x1)));
tau_i1=(2*thetam1)/3;

tau_dl=thetaml/4;

bddl =((18*(lamdal”2))+(12*lamdal*thetaml)+(thetam1”2)+(2*thetaml*anl)-
(6*an1*x1)+(2*thetam1*x1))/((18*lamdal)+(6*thetaml)-(6*anl)-(6*x1))+tm1-x1;
bdl = bdd1;

kcpl = round(kc1*10000)/10000;

tau_ipl = round(tau_i1*10000)/10000;

tau_dpl = round(tau_d1*10000)/10000;

anppl = round(an1*10000)/10000;

bdpl = round(bd1*10000)/10000;

Gc_Proposed_roundedl = [kepl tau_ipl tau_dpl anppl bdpl]
Gc_proposedl = [kcl tau_il tau_d1 anl bd1]

x2=(exp(thetam2/tm2)-1)*tm2;  %...for simplicity define X..%

ann2 =(lamda2)*((lamda2/tm2)"2+(3*(lamda2/tm2))+3) ;

an2 = 1*ann2;
kc2=-(4*thetam2)/(km2*((18*lamda2)+(6*thetam2)-(6*an2)-(6*x2)));
tau_i2=(2*thetam?2)/3;

tau_d2=thetam2/4;

bdd2 =((18*(lamda2"2))+(12*lamda2*thetam?2)+(thetam2/2)+(2*thetam2*an2)-
(6*an2*x2)+(2*thetam2*x2))/((18*lamda2)+(6*thetam2)-(6*an2)-(6*x2))+tm2-x2;
bd2 = bdd2;

kcp2 = round(kc2*10000)/10000;

tau_ip2 = round(tau_i2*10000)/10000;

tau_dp2 = round(tau_d2*10000)/10000;

anpp2 = round(an2*10000)/10000;

bdp2 = round(bd2*10000)/10000;

Gc_Proposed_rounded2 = [kep?2 tau_ip2 tau_dp2 anpp2 bdp2]
Gc_proposed2 = [ke2 tau_i2 tau_d2 an2 bd2]
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stepmagl = 1;
stepmag?2 = 0;
stepmag3 = 0;
stepmag4 = 0;

sim('servoex1',tsim);

load y1;

subplot(2,2,1)
plot(z(1,:),z(2,), linewidth',2);
hold on

sim(‘doublex1',tsim);

load y1;

subplot(2,2,1)
plot(z(1,:),z(2,:),r--",'linewidth’,2);
xlabel('Time’);

ylabel('yl1);

sim('servoex1',tsim);

load y2;

subplot(2,2,2)
plot(q(1,:),q(2,:), linewidth’,2);
xlabel('Time");

ylabel('y2";

hold on

sim(‘doublex1',tsim);

load y2;

subplot(2,2,2)
plot(q(1,:),q(2,:),'r--",'linewidth’,2);

stepmagl = 0;
stepmag?2 = 1;
stepmag3 = 0;
stepmag4 = 0;

sim('servoex1',tsim);

load y1;

subplot(2,2,3)
plot(z(1,:),z(2,), linewidth’,2);
hold on

sim(‘doublex1',tsim);
load y1;
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subplot(2,2,3)
plot(z(1,:),z(2,:),'r--",'linewidth',2);
xlabel('Time");

ylabel('y1);

sim('servoex1',tsim);

load y2;

subplot(2,2,4)
plot(q(1,:),9(2,:), linewidth',2);
xlabel('Time’);

ylabel('y2");

hold on

sim(‘doublex1',tsim);

load y2;

subplot(2,2,4)
plot(q(1,:),q(2,:),r--",'linewidth’,2);
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clear all
clc

kpll =-1,
tpll = -1.6667,
thetapll = 1*1.1;

kpl2 =-1.6667;
tpl2 = -1.6667,
thetapl2 = 1*1.1;

kp21 =-1.6667,
tp21 = -1.6667,
thetap2l = 1*1.1;

kp22 = -0.8333,;
tp22 = -1.6667,
thetap22 = 1*1.1;

kml =-2.3348; tml1 = 1.6667; thetaml = 1;
lamdal =2.7; %% Recommonded value is 2.1

km2 = -1.9456; tm2 = 1.6667; thetam2 = 1;
lamda2 = 2.5;

tffl = 25;

tff2 = 25;

stepmagl = 0;

stepmag2 = 0;

stepmag3=1;

stepmag4=0;

tsim=100;

%%%%Proposed method%%%%%%%%

x1=(exp(thetaml/tml)-1)*tml; %...for simplicity define X..%

annl =(lamdal)*((lamdal/tm1)"2+(3*(lamdal/tm1))+3) ;

anl = 1*annl;

kcl=-(4*thetaml)/(km1*((18*lamdal)+(6*thetam1l)-(6*anl)-(6*x1)));

tau_il=(2*thetaml)/3;
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tau_dl=thetaml/4;

bdd1 =((18*(lamdal”2))+(12*lamdal*thetaml)+(thetam1”2)+(2*thetaml*anl)-
(6*an1*x1)+(2*thetam1*x1))/((18*lamdal)+(6*thetaml)-(6*anl)-(6*x1))+tm1-x1;
bdl = bdd1;

kcpl = round(kc1*10000)/10000;
tau_ipl = round(tau_i1*10000)/10000;
tau_dpl = round(tau_d1*10000)/10000;
anppl = round(an1*10000)/10000;
bdpl = round(bd1*10000)/10000;

Gc_Proposed_roundedl = [kepl tau_ipl tau_dpl anppl bdpl]
Gc_proposedl = [kcl tau_il tau_d1 anl bd1]

x2=(exp(thetam2/tm2)-1)*tm2;  %...for simplicity define x..%

ann2 =(lamda2)*((lamda2/tm2)"2+(3*(lamda2/tm2))+3) ;

an2 = 1*ann2;
kc2=-(4*thetam2)/(km2*((18*lamda2)+(6*thetam2)-(6*an2)-(6*x2)));
tau_i2=(2*thetam?2)/3;

tau_d2=thetam2/4;

bdd2 =((18*(lamda2"2))+(12*lamda2*thetam?2)+(thetam2/2)+(2*thetam2*an2)-
(6*an2*x2)+(2*thetam2*x2))/((18*lamda2)+(6*thetam?2)-(6*an2)-(6*x2))+tm2-x2;
bd2 = bdd2;

kcp2 = round(kc2*10000)/10000;

tau_ip2 = round(tau_i2*10000)/10000;

tau_dp2 = round(tau_d2*10000)/10000;

anpp2 = round(an2*10000)/10000;

bdp2 = round(bd2*10000)/10000;

Gc_Proposed_rounded2 = [kep?2 tau_ip2 tau_dp2 anpp2 bdp2]
Gc_proposed2 = [kc2 tau_i2 tau_d2 an2 bd2]

sim(‘regulex2',tsim);

load y1;

subplot(2,2,1)

plot(z(1,:),z(2,), linewidth’,2);

hold on

load y2;
subplot(2,2,2)
plot(q(1,:),q(2,:),'linewidth’,2);
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xlabel('Time");
ylabel('y2");
hold on
sim(‘regul2ex2',tsim);
load yly;
subplot(2,2,1)
plot(yly(1,:),yly(2,:),r--",linewidth',2);
xlabel("Time’);
ylabel('y1);

load y2y;
subplot(2,2,2)
plot(y2y(1,:),y2y(2,),'r--",'linewidth’,2);

stepmagl = 0;

stepmag?2 = 0;

stepmag3=0;

stepmag4=1;
sim(‘regulex2',tsim);

load y1;

subplot(2,2,3)
plot(z(1,:),z(2,), linewidth',2);
hold on

load y2;

subplot(2,2,4)
plot(q(1,:),q(2,:), linewidth’,2);
xlabel('Time");

ylabel('y2";

hold on

sim(‘regul2ex2',tsim);

load yly;

subplot(2,2,3)
plot(yly(1,:),y1ly(2,)),r--",linewidth’,2);
xlabel('Time");

ylabel('y1);

load y2y;
subplot(2,2,4)
plot(y2y(1,:),y2y(2,)),'r--",'linewidth’,2);
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APPENDIX -E

clc
clear all
steptime = 0; stepmag = 1;e=0.1,
% Example:1
kp = 1; thetap = 1.2; taup = 1,
%tsim=50;
flag=1; % Specify 0 for Perfect model and 1 for Perturbations
if flag==

tsim=80; disttime = 40; distmag =0.1;
elseif flag==1

tsim=100; disttime = 50; distmag =0.1;
end
if flag==

kpl = 1; thetapl = 1.2; taupl = 1;
elseif flag==1

kpl = 1; thetapl = 1.2*1.05; taupl = 1,
end

lamda=3;

kc=1.15;
ti= 63.5;
td= 0.56;
p1=0.7;
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p2=0.3;

beta=(p1*(1-(1/(kc*kp))-(thetap/ti))) %for FOPTD

% beta =(p1+(p1/(kc*kp))-((0.5*thetap)/ti)*(1+pl)+((p1l-1)/ti)) %FOR USOPTD
% gama= p2*(1-(0.5*(1/ti)*(thetap+1))+(0.5*thetap)/(kc*kp))

% gama= p2*(1+(taup-(0.5*thetap))/(taup*kc*kp)-(((0.5*thetap)*(1+beta))/td)) %for% FOPTD
s"2

gama=p2*(((taup)/((kc*kp)*td))-1) %for FOPTD s"3
% gama=0;

w =(1-beta)*kc;

% m=((kc*td)*(1-gama));

sim('PresentMethod_setpoint2',tsim);

IAE_Present=sum(abs(stepmag-y_PM)*0.01)
TV_Present = sum(abs(diff(u_PM))) %...Total variation....%
ITAE_present= sum((abs(stepmag-y_PM))*tsim*0.01)
ISE_present= sum((abs(stepmag-y_PM).~2)*0.01)
a=[0:0.01:tsim];
S = stepinfo(y_PM,a)

subplot(2,1,1)

plot(t,y PM,'b",'linewidth’,4)

hold on

xlabel('Time"); ylabel(‘Outputs");
subplot(2,1,2)

plot(t,u PM,'b",'linewidth',4)

hold on

xlabel('Time"); ylabel('Control actions");
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clear all
clc

% example 1
pbl=1;pb2=1;pb3=1,;
kpll = 1.6*pbl;
tpll = -2.6*ph2;
thetapll = 1*pb3;

kp12 = 0.6*pb1;
tpl2 = 2.5*pb2;
thetapl2 = 1.5*pb3;

kp21 = 0.7*pb1;
tp21 = 3*pb2;
thetap2l = 1.5*pb3;

kp22 = 1.7*pb1;
tp22 = -2.2*ph2;
thetap22 = 1*pb3;

kml = -1.3529; tml = 2.4396; thetaml1 = 0.9383;
km2 = -1.437; tm2 = 2.0643; thetam2 = 0.9383;

e=0.1;
tff1=10;
tff2=15;

% lamdal = 1.5;
% lamda2 = 1.5;
mfl=1;mf2=1;mf3=1;

Ofymmmmmmmmmm e mem —
X1=thetaml1/tm1

if (X1>=0.1) && (X1<=0.4)
al =18.167*X1"3-17.95*X1"2+5.6733*X1+1.428;
else if (X1>0.4) && (X1<=0.8)
al =0.1667*X1"3-0.3357*X1"2-0.053*X1+2.0527;
else if (X1>0.8) && (X1<=1.2)
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al =-0.3333*X1"3+0.8*X1"2-0.9167*X1+2.272;
else
disp(‘rules are applicable for only 0.1<=theta/taup<=1.2");
end
end
end

if (X1>=0.1) && (X1<=0.3)

bl =-2.88*X1"2+2.203*X1-0.8444;
else if (X1>0.3) && (X1<=0.6)

bl =-0.485*X1"2+0.8697*X1-0.6597;

else if (X1>0.6) && (X1<=1.2)
bl =0.0667*X1"3-0.3245*X1"2+0.6276*X1-0.5864;

end
end
end

if (X1>=0.1) && (X1<=0.3)
cl =0.0455*X1"2-3.267*X1+0.6616;
else if (X1>0.3) && (X1<=0.7)
c1=-0.7633*X1"3+1.6539*X1"2-1.5449*X1+0.4259;
else if (X1>0.7) && (X1<=1.2)
cl =0.2148*X1"3-0.2715*X172-0.262*X1+0.1358;
end
end
end

if (X1>=0.1) && (X1<=0.3)

a2 =0.2733;

else if (X1>0.3) && (X1<=0.7)
a2 =0.8202;

else if (X1>0.7) && (X1<=1.2)

a2 =-0.0116*X172+0.0151*X1+1.3621;
end

end
end
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if (X1>=0.1) && (X1<=0.8)
b2 =2.682;
else if (X1>0.8) && (X1<=1.1)
b2 =2.683;
else if (X1>1.1) && (X1<=1.2)
b2 =2.684;
end
end
end

if (X1>=0.1) && (X1<=0.3)
2 =0.0905*X1+0.7166;

else if (X1>0.3) && (X1<=0.7)
c2 =0.276*X1+2.1473;
else if (X1>0.7) && (X1<=1.2)
c2 =0.283*X1"2+0.0848*X1+3.7066;
end
end
end

if (X1>=0.1) && (X1<=0.4)

a3 =-0.8025*X1/2+1.2018*X1-0.6698:;
else if (X1>0.4) && (X1<=0.8)

a3 =-0.4936*X1/2+0.9362*X1-0.6127:

else if (X1>0.8) && (X1<=1.2)

a3 =0.275*X173-1.0643*X112+1.3443*X1-0.7144;

end
end
end

if (X1>=0.1) && (X1<=0.4)

b3 =-0.045*X1"2+0.3773*X1+0.2469;

else if (X1>0.4) && (X1<=0.8)

b3 =-0.2667*X1"3+0.14*X172+0.3447*X1+0.2473;
else if (X1>0.8) && (X1<=1.2)

b3 =0.625*X113-2.1886*X1"2+2.3704*X1-0.3396;

end

end
end
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if (X1>=0.1) && (X1<=0.4)

c3 =0.525*X1"2-0.2445*X1+0.3935;
else if (X1>0.4) && (X1<=0.8)

c3 =0.505*X1"2-0.2009*X1+0.382;
else if (X1>0.8) && (X1<=1.2)

c3 =0.3468*X1"2+0.0206*X1+0.3038;

end
end
end

lamdal = (2.0957*(X1)"2 + 0.9634*(X1) - 0.0889)*(tm1)
kcl= ((al*((lamdal/tm1)”bl)+cl)/kml)*mf1;

tau_il= ((a2*((lamdal/tm1)"b2)+c2)*tml)*mf2;

tau_d1= ((a3*((lamdal/tm1)"b3)+c3)*tm1l)*mf3;

Gc_Present_Methodl = [kcl tau_il tau_d1];

% kcl=((kca*((lamdal/tml)~kcb)+kcc)/kml)*mfl
% tau_il=((tia*((lamdal/tm1)"tib)+tic)*tml)*mf2
% tau_d1=((tda*((lamdal/tm1)"tdb)+tdc)*tm1)*mf3

X2=thetam2/tm2

if (X2>=0.1) && (X2<=0.4)
all =18.167*X2"3-17.95*X2"2+5.6733*X2+1.428;
else if (X2>0.4) && (X2<=0.8)
all =0.1667*X2"3-0.3357*X2"2-0.053*X2+2.0527;
else if (X2>0.8) && (X2<=1.2)
all =-0.3333*X2"3+0.8*X2/2-0.9167*X2+2.272;
else
disp('rules are applicable for only 0.1<=theta/taup<=1.2");
end
end
end

if (X2>=0.1) && (X2<=0.3)
bll =-2.88*X2"2+2.203*X2-0.8444;

else if (X2>0.3) && (X2<=0.6)
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b1l =-0.485*X2"2+0.8697*X2-0.6597;

else if (X2>0.6) && (X2<=1.2)
b1l =0.0667*X2"3-0.3245*X2"2+0.6276*X2-0.5864;

end
end
end

if (X2>=0.1) && (X2<=0.3)
cll =0.0455*X2"2-3.267*X2+0.6616;
else if (X2>0.3) && (X2<=0.7)
€11=-0.7633*X2"3+1.6539*X2/2-1.5449*X2+0.4259;
else if (X2>0.7) && (X2<=1.2)
cll =0.2148*X273-0.2715*X272-0.262*X2+0.1358;
end
end
end

if (X2>=0.1) && (X2<=0.3)
a22 =0.2733;

else if (X2>0.3) && (X2<=0.7)
a22 =0.8202;

else if (X2>0.7) && (X2<=1.2)

a22 =-0.0116*X272+0.0151*X2+1.3621;
end

end
end

if (X2>=0.1) && (X2<=0.8)

h22 =2.682;

else if (X2>0.8) && (X2<=1.1)
h22 =2.683;

else if (X2>1.1) && (X2<=1.2)
h22 =2.684;

end

end
end

if (X2>=0.1) && (X2<=0.3)
c22 =0.0905*X2+0.7166;
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else if (X2>0.3) && (X2<=0.7)
c22 =0.276*X2+2.1473;
else if (X2>0.7) && (X2<=1.2)
c22 =0.283*X2"2+0.0848*X2+3.7066;
end
end
end

if (X2>=0.1) && (X2<=0.4)

a33 =-0.8025*X2"2+1.2018*X2-0.6698;

else if (X2>0.4) && (X2<=0.8)

a33 =-0.4936*X272+0.9362*X2-0.6127;

else if (X2>0.8) && (X2<=1.2)

a33 =0.275*X2/3-1.0643*X2"2+1.3443*X2-0.7144;

end
end
end

if (X2>=0.1) && (X2<=0.4)

b33 =-0.045*X272+0.3773*X2+0.2469;

else if (X2>0.4) && (X2<=0.8)

b33 =-0.2667*X273+0.14%X2"2+0.3447*X2+0.2473;
else if (X2>0.8) && (X2<=1.2)

b33 =0.625%X2"3-2.1886*X2"2+2.3704*X2-0.3396:

end
end
end

if (X2>=0.1) && (X2<=0.4)

c33 =0.525*X2/2-0.2445*X2+0.3935;
else if (X2>0.4) && (X2<=0.8)

c33 =0.505*X2/2-0.2009*X2+0.382;
else if (X2>0.8) && (X2<=1.2)

c33 =0.3468*X272+0.0206*X2+0.3038;

end

end
end
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lamda2 = (2.0957*(X2)"2 + 0.9634*(X2) - 0.0889)*(tm2)
kc2= ((al1*((lamda2/tm2)"b11)+c11)/km2)*mf1;

tau_i2= ((a22*((lamda2/tm2)"b22)+c22)*tm2)*mf2;
tau_d2= ((a33*((lamda2/tm2)"b33)+c33)*tm2)*mf3;

Gc_Present_Method2 = [kc2 tau_i2 tau_d2];

% kc2=((kca*((lamda2/tm2)"kcb)+kcc)/km2)*mfl
% tau_i2=((tia*((lamda2/tm2)"tib)+tic)*tm2)*mf2
% tau_d2=((tda*((lamda2/tm2)"tdb)+tdc)*tm2)*mf3

p1=0.7,
p2=0.3;

betal=(p1*(1-(1/(kc1*kml))-(thetaml/tau_il)))
gamal= p2*(((tm1)/((kc1*kml)*tau_d1))-1)
w1l =(1-betal)*kcl;

beta2=(p1*(1-(1/(kc2*km2))-(thetam2/tau_i2)))
gama2=p2*(((tm2)/((kc2*km2)*tau_d2))-1)
w2 =(1-beta2)*kc2;

stepmagl=1;
stepmag2=0;
stepmag3=0;
stepmag4=0;
tsim=100;

sim('setpoint_ex33',tsim);
load y1;
subplot(2,2,1)
plot(z(1,:),z(2,:),'b",'linewidth',4);
hold on

sim(‘doublex_11',tsim);

load y1;

subplot(2,2,1)
plot(z(1,:),z(2,)),'r--",'linewidth',4);
xlabel('Time");

ylabel('y1");

sim('setpoint_ex33',tsim);

192



load y2;

subplot(2,2,2)
plot(q(1,:),q(2,:),'b", linewidth’,4);
xlabel("Time’);

ylabel('y2");

hold on

sim(‘doublex_11",tsim);

load y2;
subplot(2,2,2)
plot(q(1,:),q(2,:),'r--",'linewidth’,4);
fprintf(’ unit step change in setpoint of y1 only

IAE_Present_yl=sum(abs(stepmagl-yl PM)*0.01)
IAE_hazarika_yl=sum(abs(stepmagl-yl_hz)*0.01)
TV_Present_yl = sum(abs(diff(ul_PM)))
TV_hazarika_y1 = sum(abs(diff(ul_hz)))
IAE_Present_y2=sum(abs(stepmag2-y2_PM)*0.01)
IAE_hazarika_y2=sum(abs(stepmag2-y2_hz)*0.01)
TV_Present_y2 = sum(abs(diff(u2_PM)))
TV_hazarika_y2 = sum(abs(diff(u2_hz)))

stepmagl = 0;
stepmag?2 =1;
stepmag3=0;
stepmag4=0;

sim('setpoint_ex33',tsim);

load y1;

subplot(2,2,3)
plot(z(1,:),z(2,:),'b", linewidth’,4);
hold on

sim(‘doublex_11',tsim);

load y1;

subplot(2,2,3)
plot(z(1,:),z(2,)),'r--",'linewidth',4);
xlabel('Time");

ylabel('y1);

sim('setpoint_ex33',tsim);

load y2;

subplot(2,2,4)
plot(q(1,:),q(2,:),'b", linewidth',4);
xlabel('Time");

ylabel('y2');
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hold on

sim('doublex_11',tsim);

load y2;

subplot(2,2,4)
plot(q(1,:),q(2,:),"r--",'linewidth',4);

fprintf(’ unit step change in setpoint of y2 only---------------- );

IAE_Present_yl mag2=sum(abs(stepmagl-yl PM)*0.01)
IAE_hazarika_y1l mag2=sum(abs(stepmagl-yl hz)*0.01)
TV_Present_yl_mag2 = sum(abs(diff(ul_PM)))
TV_hazarika_yl_mag2 = sum(abs(diff(ul_hz)))
IAE_Present_y2 mag2=sum(abs(stepmag2-y2_PM)*0.01)
IAE_hazarika_y2_mag2=sum(abs(stepmag2-y2_hz)*0.01)
TV_Present_y2_mag2 = sum(abs(diff(u2_PM)))
TV_hazarika_y2_mag2 = sum(abs(diff(u2_hz)))

Gc_Present_Method?2 = [kc2 tau_i2 tau_d2]
Gc_Present_Methodl = [kcl tau_il tau_d1]

fprintf("%f %f %f
%f',IAE_Present_y1,IAE_Present_y2,IAE_Present_yl mag2,IAE_Present_y2 mag?2)

fprintf(\n%f %f %f
%f',|AE_hazarika_yl1,IAE_hazarika_y2,IAE_hazarika_yl mag2,lIAE_hazarika_y2 mag2)
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APPENDIX -F

Nasution et al. (2011) method:

Controller Design for an unstable first order processes

Figure 1 depicts the IMC structure, in which Gp(s) is the unstable process considered as first order
in nature. Gm(s) is the corresponding model. Q¢ is IMC controller. In this study, the dynamics of
the UFOPTD element is considered as

k e—Hs
Gy(s) = —— (F.1)

v
D
3

Figure F.1 Internal model control structure

As stated by the H, optimal controller design, the IMC controller Q¢ is outlined as,

Q. =Q.F (F.2)

Where F is a filter which is used for altering the robustness of the controller. The filter Structure

should be selected such that the IMC controller Q. is proper and realizable and also the control
structure is internally stable. In addition to these requirements, it should be selected such that the
resulting controller provides improved closed loop performance. Q. is designed for a specific type
of step input type (v) to obtain H> optimal performance (Morari, M. and Zafiriou, 1989) and is
based on the invertible portion of the process model. The process model and the input are divided

as

G =G_G and v=vyVv (F.3)
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where the sign ' — " indicates invertible phase part and ' + " indicates non invertible phase part where
the Blaschke product of RHP poles of G,,,(s) and v(s) are denoted as

k

S+ p, K —Ss+p,
b =]]——— and b =]]———
i ¥ S s e (F.4)

where Pi and P, are the i RHP pole and its conjugate, respectively. Based on this, the H, optimal
controller is derived by using the following formula given by Morari and Zafiriou (1989).

Q. =b, (G, by.) {(0,G,..) "V - F5)
£}

where

G

is defined as the operator that operates by omitting all terms involving the poles of

ne) after taking the partial fraction expansion. This idea is applied successfully by Nasution et
al. (2011) for deriving the IMC based PID controller. The same derivation for obtaining the IMC
controller Qc for UFOPTD processes is given here for clear understanding. Considering perfect
model case i.e., Gp = Gm , split the process model and input into minimum and non-minimum

phase parts as

— _kp — ,—0s
Gy = (=5 + (1/0) and G, = e (F.6)
—k,
_ :T(—S+(1/T))S and v, =1 (F.7)

Based on Eq. F.6 and Eq. F.7, the Blaschke product is obtained as

_(=s+(1/1) _(=s+ (/1)
=Gy M T Ter @) (9
By using Egs. F.6-F.8 in Eq. F.5, the controller is obtained
~ (ts—=1)( 8
Q.= k) {(er — 1> Ts + 1} (F.9)

Now, the filter F(s) has to be chosen properly as the closed loop performance and robustness is
dependent on the form of the filter used. The new optimal filter is considered as
F(s) = (as+1)/((A%s? + 2¢As + 1)(As + 1)) (F.10)
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The IMC controller as per Eq. F.2 is obtained as

Q.= ((zs — 1){(eg — s+ 1}as + 1)) /k,(A%s* + 26As + 1)(As + 1)) (F.11)

The corresponding controller (G¢) in conventional feedback form according to Figure F.2 is

obtained as
Gc(s) = Qc/(l - Qch) q (F- 12a)
r m ++ y
) GC Gp —»

Figure F.2 Unity feedback system

After substituting all the terms, the controller G. is derived as

(zs—1) {(egr — 1) s+ 1} (as+1)

kp|(As + 1D (A%s% + 2505 + 1) — {(egf - 1) s + 1} (as + 1)e—‘95]

G.(s) = (F.12b)

However, Eq. F.12b is complex and need to be simplified for practical implementation. One can
convert this into a simple controller of PID in nature or a PID in addition to a lead and lag filter by

using suitable estimations.

Maclaurin series is used to convert the complex Eq. F.15b into a simple PID controller. To
approximate using Maclaurin series, L(s) is defined as, L(s) = sG¢(s). Expand L(s) using Maclaurin

series

G.(s) = %(L(O) +L'(0)s + LHZ(!O) s+ > (F.13)
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The conventional controller is considered in the form of
Ge($) = k(1 +—+1745) (F.14)

On comparing Egs. F.16 and F.17, the PID controller parameters are obtained as

L'(0) L'"(0)

kc = L’(O), T, = L(O) and Tqg = m

Wang et al. (2016) method:

Wang et al. (2016) have proposed a new IMC-PID tuning method based on pole zero conversion
design and PID with a lead lag compensator is designed for first order plus integrating and second
order unstable processes with time delay.

In this study, the dynamics of the UFOPTD element is considered as

kpe—es
G,(s) = — (F.15)

By using IMC-PID tuning method on pole zero conversion these tuning parameters find out

a=(1*+2AT +1T) /(T - 1)
ke = (a+ 1) /k,(a— 21 —1)),

Ti:a+/1

14 = (0.5a1)/(@+ ),

Here imaginary filter is (A% + 2AT +1T)/(Ts + 1)
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Hazarika and Chidambaram (2014) method:

Hazarika and Chidambaram (2014) designed multivariable proportional integral controllers for
unstable multivariable systems and used equivalent transfer function model to design multivariable
P1 controllers for diagonal elements and simplified decouplers are used to decompose the unstable
multi loop systems into independent loops and the double loop control structure is used to reduce

the overshoot for unstable systems.

Design based ETF model development

The TITO block diagram with decouplers and controllers is shown in Figure F.3. If the
second feedback controller is in the automatic mode, with yr» = 0, then the overall closed-loop

transfer function between y; and us is

Y Oy - 9,129 p,21(gc,2g p,22) (F.16)
U, (1+9..9 p,22)g p.22

And similarly for the second loop, the relation can be written as

Yo _ 0y 00— 05.219p129c19,11 (F.17)

u, (1+9..9 p,11)gp,11

Based on these relations, the ETF is derived as given in Hazarika and Chidambaram (2014).For
obtaining ETFs, the controller need not be known apriori. Once the ETFs are obtained, the

corresponding controller is designed.

Controller design

The open loop transfer function is

Y (s) =G, (s)D(s)U(s) (F.18)

G (S)D(S) — gp,ll gp,lZ 1 d12 — g;,ll O
P Opn Opa2 | dy 1 0 g;22 (
Sl ' F.19)

Where the simplified decoupler is designed as
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g p,12 (S) R

d, =TT N
(S) g p,ll(s)

time delay (0) is to be incorporated into the decoupler matrix which is further added to the
corresponding ETF. In the presence of the decoupler, the TITO system behaves like two
independent loops for which the controllers can be designed independently. In the present work,
diagonal controllers are designed by optimal H. — IMC based method based on the corresponding

unstable ETFs. ETFs are developed to take into account the loop interactions in the design of multi-

loop control systems.

C112 (S) =

. g p,21(s)
gp,22 (S)

For these systems, if there exist time delay, it may lead to unrealizable situations. Hence, an extra

R1+

GC11

\ 4

D11

\ 4

D21

A 4

D12

D22

R2
— % —» GC22
+

GP11

A 4

GP21

A 4

GP12

GP22

Figure F.3 Closed loop control for TITO system

Once the ETFs are derived, based on pairing using relative gain array and Neiderlinski Index, the
corresponding controllers are designed. The design is based on unstable first order plus time delay
system. Anusha and Rao (2012) developed a PID design method based on optimal-H>

minimization concept for second order unstable processes.
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