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A B S T R A C T

Bioconvection is due to microscopic convection generated by the density gradient pro-

duced by the collective motion of self-propelled motile microorganisms within the fluid.

Several researchers have been enticed in the study of bioconvection in Newtonian and non-

Newtonian fluids due to the multifaceted range of applications in biological systems and

biotechnology. Although the combination of nanofluid elements along with the bioconvec-

tion is important, very little work has been reported in the literature. The purpose of this

thesis is to study the bioconvection flow of nanofluids past an inclined wavy surface.

This thesis consists of Ten chapters. Chapter - 1 provides an introduction to the concepts

and a review of the pertinent literature. Chapter-2 deals with the Computational analysis

of double diffusive bioconvection of a nanofluid past an inclined wavy surface. In Chapter

- 3, the Thermal radiation and double-diffusive effects on bioconvection flow of a nanofluid

past an inclined wavy surface is considered. Chapter - 4 presents the mixed convection

of a nanofluid past an inclined wavy surface in the presence of gyrotactic microorganisms.

Chapter - 5 considers the mixed convection of a nanofluid past an inclined wavy surface in

the presence of gyrotactic microorganisms and magnetic field. In Chapter - 6, the Effect of

variable properties on the bioconvection in a nanofluid flow past an inclined wavy surface is

studied. Chapter - 7 provides the Natural convection of nanofluid flow past an inclined wavy

surface in the presence of gyrotactic microorganisms with activation energy. In Chapter - 8,

the Radiation effect on mixed convection of a nanofluid past an inclined wavy surface in the

presence of gyrotactic microorganisms with variable properties are analyzed. Chapter - 9,

handles the Bioconvection in a nanofluid past a moving inclined wavy surface with convective

boundary conditions.

In all the above chapters, A coordinate transformation is applied to convert the wavy

surface to a plane surface. The equations governing the flow and the accompanying boundary

conditions are non-dimensionalized employing pseudo-similarity variables and then linearized

by utilizing the local linearization method. The bivariate Chebyshev pseudo-spectral collo-

cation procedure is implemented to solve the resulting linear equations

The last chapter, Chapter - 10, gives a summary and overall conclusions and scope for

future work.

vi



N O M E N C L A T U R E

A Angle of the wavy plate.

Bi Biot Number

bc Chemotaxis constant.

C Concentration of the fluid.

Cfx Skinfriction number.

C∞ Ambient concentration.

DB Brownian diffusion coefficient.

DCT Soret type diffusivity.

Dn Diffusivity of the microorganisms.

DS Solutal diffusion coefficient.

DT Thermophoretic diffusion coefficient
of the microorganisms.

DTC Dufour type diffusivity.

E Activation energy parameter.

Ea Coefficient of activation energy.

Ec Eckert number.

f Dimensionless stream function.

g acceleration due to gravity.

Gr Grashof Number.

Ha Magnetic induction parameter.

J0 Joule heating parameter.

k Thermal conductivity.

Ke Mean absorption coefficient.

k0 Thermal conductivity.

L wavelength associated with the wavy
surface.

Le regular Lewis Number.

Ln Nanoparticle Lewis Number.

M Density of the motile microorganism.

M∞ Ambient density of motile microor-
ganism.

Nb Brownian motion parameter.

Nc regular double diffusive buoyancy
Ratio.

Nd Modified Dufour Number.

Nr Nanofluid Buoyancy Ratio.

Nt Thermophoresis parameter.

NShx Nanoparticle Sherwood number.

Nux Local Nusselt number.

P Pressure.

Pe Bio-convection Peclet number.

Pn Pearson number.

Pr Prandtl number.

Qx Motile microorganism Density Num-
ber.

qm Mass flux.

qn Surface motile microorganisms flux.

qnp Nanoparticle Mass Flux.

qw Heat Flux.

Re Rayleigh number.

Rb Bio-convection Rayleigh number.

Rd Radiation Parameter.

Ri Mixed convection parameter.
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Sc Bio-convection Schmidt number.

Shx Local Sherwood number.

Sr Soret Number.

T Fluid Temperature.

Tw Wall temperature.

T∞ Ambient Temperature.

U∞ Free stream velocity.

U Velocity component in X direction.

V Velocity component in Y direction.

Ṽ Average Swimming velocity.

wc Maximum cell swimming speed.

Greek Symbols

α Amplitude associated with the wavy
surface.

αm Thermal diffusivity of the fluid.

β Temperature dependent thermal
conductivity parameter.

βC Coefficient of Solutal expansion.

βM Coefficient of Microorganism expan-
sion.

βT Coefficient of Thermal expansion.

γ Nanofluid heat capacity ratio.

δ Temperature ralative parameter.

δ1 Reaction rate parameter.

δχ Constant.

η Non-dimensional variable / Similar-
ity variable.

σ(x) Wavy surface of the plate.

σ1 Reaction rate parameter.

σ2 Stefan Boltzman constant.

θ Dimensionless temperature.

κ Boltzman constant.

µ Dynamic Viscosity of the fluid.

µ∞ Absolute Viscosity of the fluid.

ν Magnetic diffusivity/kinetic viscos-
ity.

ξ Non-dimensional variable / dimen-
sionless distance.

ρcf Heat capacity of the fluid.

ρf Density of the fluid.

ρp Density of the nanoparticles.

Φ Nanoparticle volume fraction.

ϕ Dimensionless fluid concentration.

χ Dimensionless microorganism.

φ Dimensionless Nanoparticle Volume
fraction.

Φ∞ Ambient nanoparticle volume frac-
tion.

ψ Stream function.

Subscripts

w wall condition.

∞ Ambient condition.

Superscript

′ Partial differentiation with respect
to η.
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Chapter 1

Preliminaries and Review

1.1 Introduction

The study of microorganisms and their swimming behaviour, which can lead to cell aggre-

gation, can provide insight into the lifecycle of these cells. Furthermore, studies of group

motion caused by cell swimming may reveal insights into phenomena such as self-ordering

or cell migration, and the findings of these studies can be used to explore other problems

involving many species and organisms. Many of these microorganisms have applications in

industry and commerce. Some species of microorganisms yield ethanol as a consequence

of intracellular photosynthesis and respiration and have a variety of applications such as

wastewater treatment plants, fertilisers, plastics, and solid fuels. Recently, various microor-

ganisms have been used to produce hydrogen gas and biodiesel, acting as an efficient source

of biofuels or biodiesel industry. As a result, they can serve as a potential source of renew-

able energy, reducing our reliance on depleting fossil fuel reservoirs and biofuels derived from

edible crops such as corn, maze, coconut, palm, and so on.

Flow and heat transfer over irregular surfaces are frequently encountered in many en-

gineering applications to improve heat transfer, such as in a microelectronic device cooling

system, flat-plate condensers flat-plate and solar collectors in refrigerators, electric machin-

ery, underground cable systems, etc. Roughened surfaces could also be used to cool electrical

and nuclear components where the wall heat flux is known. Sometimes surfaces are deliber-
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ately roughened to improve heat transfer. The existence of roughness elements disrupt the

flow past a flat surface and changes the rate of heat transfer.

Engineered suspensions of nanoparticles in liquids, known as nanofluids, have stimulated

the interest of many investigators because of their ability to enhance heat transfer rates in

engineering systems while minimising, or possibly eliminating, erosion, sedimentation, and

clogging issues that crippled previous solid-liquid mixtures with larger particles. Nanofluids

can be employed in a variety of technical applications, medicinal applications, power plant

cooling systems, and computer systems. The convection caused by heated/cooled objects of

various geometries in a nanofluid under diverse physical conditions offers one of the most

essential situations for heat and mass transfer theory and is thus of great theoretical and

practical relevance.

Nanofluid bioconvection is the study of the formation of the spontaneous pattern by

simultaneous interaction of denser self-propelled microorganisms, buoyancy forces, nanopar-

ticles, and density stratification. The mixing nanoparticles issue may be overcome and mass

transport in micro volumes might be improved by using bioconvection motion in nanofluids

([123], [63]). On the other hand, adding micro-organisms to a nanofluid increases its stability

as a suspension [62], and could avoid nanoparticles from agglomerating and accumulating.

1.2 Nanofluids

A class of fluids, referred to as nanofluids, are a mixture of nanoparticles (particles of size 1-

100nm) and a base fluid. Choi [28] first explored the term ’nanofluid’ by presenting a detailed

model to improve the thermal properties of the base fluids. Nanoparticles are small in size

having very large surface areas. The nanoparticles used in nanofluids are typically made of

oxide ceramics (Al2O3, Fe3O4, T iO2, SiO2, CuO,ZnO), metals (Au,Ag, Cu,Al, Fe), metal

carbides (SiC, TiC, graphite, diamond, graphene,), nitrides (AlN, SiN) etc. Base fluids

may be water, ethylene or tri-ethylene-glycols and other coolants, oil and other lubricants,

bio-fluids, and polymer solutions. The addition of nanoparticles to a base liquid improves

its thermal characteristics, resulting in significant improvements in various thermal extru-

sion systems. It was demonstrated experimentally [65, 128, 36] that these fluids provide a

significant improvement in thermal properties when compared to other fluids.

Several models and methods for studying the convective flows of nanofluids have been

proposed by various authors. Two models namely, the Tiwari-Das model [121] and the
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Buongiorno model [19] are more frequently used by several researchers to investigate the

heat transfer improvement in a nanofluid. Tiwari and Das developed a model to analyze

the behaviour of nanofluids by taking the volumetric fraction of nanoparticles into consid-

eration. Buongiorno considered seven slip mechanisms, namely, inertia, Brownian diffusion,

thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, and gravity that can produce

a relative velocity between nanoparticles and the base fluid. In the absence of turbulent ef-

fects, he concluded that only Brownian diffusion and thermophoresis are important slip

mechanisms in nanofluids. Based on this observation, Buongiorno proposed a mathematical

model for the nanofluid based on these effects. Brownian motion refers to the arbitrary

movement of nanoparticles within the base fluid. This is caused by continuous collisions

between nanoparticles and base fluid molecules. The phenomenon of particle diffusion under

the influence of a temperature gradient is known as thermophoresis and is the particle

equivalent of the renowned Soret effect for gaseous or liquid mixtures.

The basic governing equations of a nanofluid using the Buongiorno model are

∇ · ~V = 0, (1.1)

ρf

(
∂~V

∂t
+ ~V · ∇~V

)
= ρf~g−∇p+ µ∇2~V , (1.2)

(
∂T

∂t
+ ~V · ∇T

)
= αm∇2T + γ

[
DB (∇Φ.∇T ) +

DT

Tm
(∇T.∇T )

]
, (1.3)(

∂Φ

∂t
+ ~V · ∇Φ

)
= DB

(
∇2Φ

)
+
DT

Tm

(
∇2T

)
, (1.4)

where ~V is the velocity vector, T is the temperature of the nanofluid, Φ is the nanoparticle

volume fraction, DB is the Brownian diffusion coefficient, DT is the thermophoretic diffusion

coefficient, Tm is the reference temperature, µ is the viscosity of the fluid, ~g is the gravitational

acceleration, αm = km
(ρc)f

is the thermal diffusivity of the fluid and γ = (ρc)p
(ρc)f

is the nanofluid

heat capacity ratio.

The thermophysical properties of the nanofluid, namely the density, heat capacity and

volumetric expansion coefficient of the nanofluid depend on the particle volume fraction ε

and are given by [19]

ρnf = (1− ε)ρf + ερp,

(ρβ)nf = (1− ε)(ρβ)f + ε(ρβ)p,
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(c)nf =
(1− ε)(ρcp)f + ε(ρcp)p

ρnf
.

The Brownian and thermophoretic diffusion coefficients are given by

DB =
KBOT

3πµfdp
and DT = 0.26

kf
2kf + kp

µf
ρf

respectively. The subscripts, f and p and refer to as base fluid and nanoparticle, respectively.

Moreover, dp is the nanoparticle diameter (1nm ≤ dp ≤ 100nm) and KBO is the Boltzmann

constant .

Thermophysical properties of different base fluids and nanoparticles are presented in the

Table.(1.1)

Table 1.1: Thermophysical properties of base fluids and different nanoparticles
Water Alumina Titanium oxide Silver

(Al2O3) (TiO2) (Ag)
ρ(kg/m3) 997.1 3970 4250 10500
cp(J/kg.K) 4179 765 686.2 235
k(W/m.K) 0.613 40 8.9538 429
β × 10−5(K−1) 21 0.86 1.9 1.89
µnf
µf

1 1 + 39.11ε+ 533.9ε2 [89] 1 + 5.45ε+ 108.2ε2 [89] 1.005 + 0.497ε− 0.1149ε2 [37]
knf
kf

1 1 + 7.47ε [89] 1 + 2.92ε− 11.99ε2 [89] 0.9508 + 0.9692ε [37]

Nanofluids have several applications in engineering, which includes microelectronics,

micro-fluidics, high power X-rays, transportation, scientific measurement, solid-state light-

ing, material synthesis, material processing, and coolant in heat exchangers, electronic cool-

ing system (flat plate) [104], Vertical galvanizing furnace [74], photovoltaic-thermal collector

or solar power tower plant [94, 134], etc and radiators. These fluids are additionally utilized

in the manufacturing of nanostructured substances for cleansing oil from surfaces due to

their exquisite wetting and spreading behaviour. The nanofluids containing some precise

nanoparticles will show off biomedical properties if the nanoparticles have drug transport

properties or antibacterial activities.

1.3 Bioconvection

Microorganisms, also called microbes, are microscopic organisms. Microorganisms include

bacteria, archaea, fungi, and protists. Microbes contribute to human culture and wellness

in a number of ways, such as digesting food and purifying waste, as well as manufacturing
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fuel, enzymes, and other bioactive compounds. Microbes have been employed in biological

warfare and bioterrorism and are essential model organisms in biology. Microbes are an

important part of a healthy soil ecosystem. Microorganisms in the human body make up

the microbiota, which includes the essential intestinal flora. Considering microbes are the

source of many infectious diseases, they are the focus of hygiene initiatives.

The term bioconvection pertains to a macroscopic convection motion of fluid-induced

by a density gradient generated by motile microorganisms swimming together. These self-

propelled motile microorganisms cause bioconvection by increasing the density of the base

fluid by swimming in a specific direction[92, 57]. It is found in closely packed cultures of free-

swimming microorganisms in suitable aqueous systems such as rivers, oceans, puddles, and

droplets. Its characteristic feature is the spontaneous self-organization or self-concentration

of swimmers into a macroscopic pattern.

Based on the mechanism of directional motion, or taxis (arrangement)of the cells, bio-

convective systems can be distinguished and classified. Taxis can also include the change in

surroundings along with the mechanisms of an organismś movement as a response to that

change in its surroundings. Generally, in the absence of taxis, organisms move randomly.

Most organisms use a combination of random movement and taxis. Moving microorganisms

include chemotaxis or oxytactic microorganisms, gyrotactic microorganisms, and negative

gravitaxis. As some micro-organisms are bottom-heavy, they swim upwards (geotaxis or

gravitaxis). The oxygen concentration gradient, which is caused by the cells’ oxygen con-

sumption and supply from the air interface, can cause upward swimming towards regions

of higher oxygen concentration (aerotaxis, oxygen taxis, or, in general, chemotaxis). The

movement of organisms towards or away from a light source (phototaxis). The balance of

gravitational and viscous torques determines the direction in which microorganisms swim,

and they swim due to the displacement between the cell centre of mass and buoyancy (Gy-

rotaxis). Gyrotaxis might work to extract more and more nutrients from the bed of a pond

in the absence of wind shear or thermal convection, than a mere geotactic instability.

In biological systems and biotechnology, bioconvection has numerous applications. Thermo-

bioconvection is used to colonise hot springs by a motile microorganism known as ther-

mophiles, or heat-loving microorganisms. Another application is microbial enhanced oil

recovery, which involves inserting microorganisms and nutrients into oil-bearing layers to

control permeability fluctuation. Several investigators have analyzed different aspects of

bioconvection concerns.

The first comprehensive theory for bioconvection of gravitactic swimmers was presented
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by Childress et al. [26]. Their equations took into consideration both the directional and

stochastic components of swimming velocity, but not the effect of local vorticity on swim-

ming direction. The Navier-Stokes equation with the Boussinesq approximation and the

conservation equation for motile microbe concentration are used in this theory. Pedley et

al. [90] developed a continuum model for bioconvection in a suspension of swimming gyro-

tactic microorganisms, demonstrating that gyrotaxis aids in the development of convection

instability. Later, Pedley and Kessler [91] discussed the hydrodynamic phenomena in the

suspension of swimming microorganisms.

Governing equation for the motile microorganisms is given by :

∂M

∂t
−∇ · (Dm∇M) + ~V · ∇M +∇(M · v̄) = 0 (1.5)

where M is the concentration of motile microorganism, Dm is the rate of diffusion of motile

microorganism (which is a constant), ~V is the fluid velocity and v̄ is the average velocity of

swimming of the motile microorganism.

1.4 Basic Terminology

Convective Heat Transfer

The exchange of internal energy between particular constituents or regions of the medium

under consideration is referred to as heat transfer. It always happens in a downward direction

from a higher to a lower temperature location. There are three modes by which heat transfer

occurs. They are conduction, convection, and radiation. The molecular transport of heat

in bodies or between bodies in the thermodynamical system is referred to as conduction.

Heat transfer caused by the movement of fluid from one region of the medium to another is

called convection. Radiation heat transfer is a mechanism in which the internal energy of

a substance is converted into radiant energy. The transport of heat by convection together

with conduction is known as convective heat transfer. Forced convection, free convection,

and mixed convection are the three types of convective heat transfer. Forced convection is

caused by an external agent unrelated to heating effects that causes fluid to flow over the

heated body. Natural forces such as buoyancy forces, which originate from density variations

in a fluid, cause free or natural convection. The temperature gradients within the fluid cause

these density variances. In Mixed Convection the order magnitude of the buoyancy force is

7



comparable with the externally maintained pressure drop to force the flow.

Radiation

Thermal radiation is the transfer of heat caused by the emission of electromagnetic waves.

The importance of radiation becomes intensified at high absolute temperature levels. It

is well known that the thermal radiation heat transfer does not require any intermediate

medium. Thus thermal radiation is of great importance in vacuum and space applications.

The radiation heat flux is qr, under the Rosseland approximation [115] can be written as

qr = −4σ∗

3k∗
∂T 4

∂y
(1.6)

where σ∗ is Stefan-Boltzman constant and k∗ is the coefficient of mean absorption. This

approximation is good only for intensive absorption and is valid at points optically far from

the bounding surface,i.e., for an optically thick boundary layer.

Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the branch of continuum mechanics which deals with

the mutual interaction between the magnetic field and electrically conducting fluid. When a

magnetic field is there in an electrically conducting and incompressible fluid, it interacts with

the fluid through body force and body couple per unit mass. In the absence of gravitational

effects, the regular magneto-fluid dynamics assumption is ρ~f = ρe ~E+ ~J × ~B, where ρe is the

free charge density, ~E is the electric field, ~B is the total magnetic field, and ~J is the current

density and given by the Ohm’s law ~J = σ
[
~E + ~q × ~B

]
. Since ~J × ~B � ρeE, the later can

be neglected. Hence, by adding the electromagnetic force term to the momentum equation

of the fluid, the fluid dynamical aspects of MHD can be studied.

The total magnetic field in the medium is the sum of the applied magnetic field and

induced magnetic field due to the motion of a conducting liquid in an applied magnetic field.

The magnetic Reynolds number describes the relative strength of the induced magnetic

field. When the magnetic Reynolds number is modest, it is reasonable to ignore the induced

magnetic field. The motion of a conducting fluid through a magnetic field induces electric

currents and the fluid experiences a force. This force is called Lorenz force ( ~J × ~B) and it

alters the motion of the fluid.
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Double diffusive convection

Double diffusive convection is a fluid dynamics phenomena that explains a type of convection

that is caused by two separate density gradients with differing diffusion rates. Oceanography

is a good example of double diffusive convection because heat and salt concentrations have

separate gradients and diffuse at different speeds.

Arrehenius Equation

At higher temperatures, chemical reactions are expected to happen more quickly, while at

lower temperatures, they are expected to take longer. At the molecular level, thermal en-

ergy is directly related to motion. Molecules travel quicker and collide more violently as the

temperature rises, dramatically increasing the possibility of bond cleavages and rearrange-

ments. The Arrhenius activation energy is the smallest amount of energy required to start

a chemical reaction. Between unreacted and reacted molecules or atoms, activation energy

acts as a barrier. Once this barrier is crossed, a chemical reaction will occur, and only those

molecules or atoms with greater energy than the fence will be able to pass through. The

Arrhenius equation [11], which combines the notions of activation energy and the Boltzmann

distribution law, is one of the most fundamental relationships in physical chemistry. The

equation is given by

k = Ae
−Ea
RT (1.7)

where k is rate constant of the reaction, Ea is the Activation energy for the reaction, T is the

absolute temperature, R is the universal gas constant and A is the pre-exponential factor,a

constant. The alternative form of the equation is given by

k = Ae
−Ea
κT (1.8)

where κ is the Boltzmann constant. This equation provides us the temperature dependence

of reaction rates.

9



Variable fluid properties

In most engineering applications, the thermophysical properties of the fluid, especially vis-

cosity and thermal conductivity may vary with temperature. Therefore, to predict the heat

transfer rate accurately, it is necessary to take into account this variation of viscosity and

thermal conductivity. Different researchers have taken the variations of the viscosity and

thermal conductivity as different functions of temperature, time, etc. Batchelor and Batch-

elor [14] assumed that the fluid viscosity µ, the thermal conductivity k are considered as

linear functions of temperature and are given by

µ(T ) = µ∞ [1 + A(Tw − T )] and k(T ) = k0 [1 +B(T − T∞)] (1.9)

where µ∞ is the absolute viscosity of the fluid, k0 is the thermal conductivity and A and B

are constants whose values depends on the fluid under consideration.

Oberbeck-Boussinesq Approximation

A convenient and simple way to define the density difference ρ − ρ∞ in the buoyancy part

of the momentum equation for nanofluids is given by

ρ = Φρp + (1− Φ)ρf0[1− βT(T − T0)], (1.10)

where ρp is the nanoparticle density, T0 is the reference temperature and ρf0 is the fluid

density at reference temperature at some point in the medium, βT is the coefficient of thermal

expansion. The Eq. (1.10) is an approximation for the variation of the density, and it is

known as the Oberbeck-Boussinesq approximation

If the density ρ varies linearly with T over the range of values of the physical quantities

encountered in the transport process, βT in Eq. (1.10) are given by

βT = −1

ρ

(
∂ρ

∂T

)
p,C

.

Isothemral/Flux conditions

In most cases, heat transfer occurs when a fluid moves near a wall that is heated or cooled

to a temperature other than the fluid’s temperature. The boundary conditions are expressed
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at the fluid/solid interface in this case. One of the following simplified assumptions is used

in the most common conditions:

1. The fluid/solid interface is at a uniform temperature : Tfluid = Tsolid = constant

2. The heat flux is uniform on the interface : qw = −Kf (n̂ · ∇T ).

where n̂ is the unit normal to the surface.

Convective Boundary Conditions

Many researchers have recently become interested in a unique heating mechanism is known

as the convective boundary condition, in which heat is given to the convecting fluid through

a bounding surface with a finite heat capacity. Furthermore, the rate of heat transmission

through the surface is related to the local temperature differential from ambient conditions.

[76].

−Kf (n̂ · ∇T ) = h(Tsurface − T∞)

where h is the heat transfer coefficient, T∞ is the ambient temperature.

1.5 Bivariate Pseudo Spectral Local Linearisation Method

The bivariate pseudo-spectral local linearisation method (BPSLLM) is initialized by Motsa

[81] and developed by Magagula and Motsa [67, 82]. In his article Motsa [81] solved a

coupled system of non-linear ordinary differential equations by linearizing the equations

about one dependent variable at a time in the sequential order and was labelled as the local

linearisation method (LLM). Later, Magagula and Motsa [67, 82] extended it to system

of partial differential equations wherein spectral collocation method was applied in both

directions of independent variables. The local linearisation method for partial differential

equations along with spectral collocation method is called as bivariate pseudo-spectral local

linearisation method (BPSLLM).

1.5.1 Local Linearisation Method

By using this technique, the iteration process is attained by linearizing the non-linear part of

differential equations about one dependent variable at a time using Taylor series expansion.
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If there are n nonlinear differential equations in n unknown functions Zi, (i = 1, 2, · · · , n),

then the kth nonlinear differential equation is locally linearized about Zk,r (the previous

iteration) assuming that all the remaining Zi,m (i 6= k ) are known. To find the solution Zk

at the present iteration level (Zk,m+1), the updated values Zs (s < k) obtained as solutions

of the previous k = 1, 2, · · · , s equations are used.

To understand more, let us consider a system of equations in three unknowns, say f , g,

and h. Let, fm+1, gm+1, and hm+1 be an approximate solution at the current iteration and

fm, gm, and hm be the solution at the previous iteration of the system of equations. The

first equation is linearized at the present iteration (fm+1) using the values of the functions at

the previous iteration i.e. gm, hm. The second equation is linearized at the current iteration

(gm+1) using the updated value of f at the current iteration i.e. fm+1 and the values of the

remaining functions at the previous iteration hm. Similarly the third equation is linearized

at the present iteration (hm+1) using the updated value of f and g i.e., fm+1 and gm+1 . On

applying this procedure to all the equations, we obtain the set of linear differential equations.

The system of equations thus obtained, can be solved by using Chebyshev spectral col-

location method in both directions of the independent variables, since the each unknown

function is a function of two independent variables.

1.5.2 Bivariate Chebyshev Spectral Collocation Method

The bivariate Chebyshev spectral collocation method ([20, 35, 122]) is based on the Cheby-

shev polynomials defined on the domain [−1, 1]× [−1, 1].

In this method, to solve the partial differential equation in two variable ζ and τ , consider

the Chebyshev-Gauss - Lobatto points in both the directions ζ and τ defined as

ζi = cos
πi

N
, i = 0, 1, . . . , N τj = cos

πj

M
, j = 0, 1, . . . ,M (1.11)

The functions that are to be determined are interpolated at the collocation points de-

scribed by (1.11), using the following bivariate Lagrange interpolation polynomial.

f(ζ, τ) ≈
N∑
m=0

M∑
j=0

f(ζm, τj)Lm(ζ)Lj(τ),
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where Lm(ζ) and Lj(τ) are Lagrange polynomials given by

Lm(ζ) =
N∏
m=0
m6=k

ζ − ζk
ζm − ζk

, Lm(ζk) = δmk =

{
0 if m 6= k

1 if m = k

and

Lj(τ) =
M∏
j=0
j 6=k

τ − τk
τj − τk

, Lj(τk) = δjk =

{
0 if j 6= k

1 if j = k

The pth order derivative of the unknown function f(ζ, τ) with respect to ζ, at (ζk, τi) is

given by

∂pf

∂ζp

∣∣∣∣
(ζk,τi)

=
2

η∞

N∑
r=0

M∑
j=0

f(ζj, τr)
dpLr(ζk)

dζp
Lj(τr) = DpFi (1.12)

Here, D = 2
ζ∞
D, D is the (N + 1)th order Chebyshev spectral differentiation matrices [122],

and the vector Fi is given by Fi = [f(ζ0, τi), f(ζ1, τi), f(ζ2, τi), · · · , f(ζN , τi)]
T

Similarly the derivative of f(ζ, τ) with respect to τ , at (ζk, τi) is

∂f

∂τ

∣∣∣∣
(ζk,τi)

=
2

ξ∞

N∑
r=0

M∑
j=0

f(ζj, τr)
dLjr(τi)

dτ
Lr(ζk) =

2

ξ∞

M∑
j=0

di,jFj (1.13)

where di,j is the element of the chebyshev matrix of order (M + 1) × (M + 1) for the first

derivative.

Substituting the above derivative in the given differential equations, we get the following

system of equations.
Ar−1Xr = Rr−1, (1.14)

in which Ar−1 is a square matrix of order (M+1)× (M+1) while Xr and Rr−1 are (M+1)th

order column vectors. Also each element of the matrix is a diagonal matrix of order N ×N .

Writing the boundary conditions in terms of Chebyshev polynomials, incorporating them

in the above system of equations and solving the reduced system of algebraic equations, we

obtain the solution of the given differential equation. If the domain is [a, b]×[c, d], then it will

be transformed to the domain [−1, 1]× [−1, 1] by using the using suitable transformation.
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1.6 Literature Review

Nanofluids have attracted a lot of attention in the last decade because of their numerous

applications in biomedical, microelectronics, transportation, space, nuclear, and defence in-

dustry, radioactive waves, cooling processes, alternate sources of energy, solar energy systems

and chemo-therapy. Choi et al. [28] demonstrated that adding a modest amount (less than

1% by volume) of nanoparticles to standard heat transfer liquids improved the fluid’s thermal

conductivity. A book by Das et al. [32] on nanofluids gives a comprehensive introduction and

applications. Menni et al. [75] compiled the investigations on nanofluid flow in complex ge-

ometries. Guo [40] presented a review on heat transfer enhancement with nanofluids. Wang

et al. [127]reviewed the literature on heat transfer of nanofluid by applied electric/ magnetic

field. The literature on convective heat transfer characteristics of nanofluids including the

magnetic effect on heat transfer enhancement has been reviewed by Narankhishig et al. [86].

These reviews examine in detail the work done on convective transport in nanofluids.

The analysis of flow, heat and mass transfer over irregular surfaces (wavy surfaces) is

one of the fundamental important research areas due to its occurrence in many practical

situations. An alternative approach for improving heat or mass or microorganism transfer is

the modification to the geometry of the surface adjacent to the transport medium. Instances

of this modification to the geometry of the surface consist of irregular or wavy surfaces,

which have been efficiently used in a wide range of scientific and industrial applications. In

the framework of biofuel cell design, plenty of the latest developments within the structure

of wall surfaces and polymers have empowered engineers to discover wavy heat transfer as

a feasible enhanced system that might significantly improve fuel productivity. Yao [131]

was the first to initiate the study of natural convection along a vertical wavy surface. He

obtained numerical results for a sinusoidal surface. His results revealed that the local heat

transfer rate changes periodically along the wavy surface, with a frequency equal to double

the frequency of the surface. Later, Moulic and Yao [83] considered the natural convection

along a vertical wavy surface with uniform heat flux. Thereafter, several authors investigated

the convective heat and mass transfer along a wavy surface embedded in a nanofluid under

various physical conditions. Sameh and Aziz [4] studied transient convection on a vertical

wavy surface with a thermal non-equilibrium model of a nanofluid. Kabir et al. [55] consid-

ered the effects of stress work on MHD natural convection flow along a vertical wavy surface

with joule heating. Mehmood et al. [72] analysed the heat transfer in the MHD flow near

the wavy rough plate. Rashid et al. [97] considered numerically the magnetic field effect on

the mixed convective nanofluid flow over a sinusoidal wall. Gorla and Kumari [38] presented
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a boundary layer analysis for the warm, laminar nanoliquid flow to a melting vertical wavy

surface in a stagnant nanoliquid. Kameswaran et al. [56] studied the impact of convective

boundary conditions, thermal stratification, and non-linear Boussinesq approximation on

a wavy surface in a non-Darcy porous medium saturated with nanofluid. Mehmood and

Iqbal [70] examined the impact of heat source in the free convective nanofluid flow along a

vertical wavy surface. Javed et al. [54] investigated the radiation effect on hydromagnetic

flow along a vertical impermeable wavy texture heated with uniform flux. Srinivasacharya

et al. [116] examined the consequence of thermophoresis and variable fluid properties on

the convection over a sinusoidal surface in a porous medium. Shenoy et al. [108] attempted

to unify the information on the convective flow and heat transfer from a wavy surface in

different fluids along with nanofluid in the form of a book. Siddiqa et al. [110] discussed the

impact of thermal radiation on the heat and mass transfer features of free convection flow

over a wavy surface. Hassan et al. [42] studied the convective flow of nanofluid over a wavy

surface immersed in a porous medium. Siddiqa et al. [111] discussed the impact of thermal

radiation on the natural convection along a wavy surface. Mehmood et al. [73] analysed

the irreversibility phenomenon, in the presence of nanoparticles in the base fluid, in viscous

flow caused by the uniform motion of a wavy plate. Mustafa and Javed [84] examined the

improvement of heat transfer in natural convection flow of nanofluid past a vertical wavy

plate with a changing heat flux. Roy and Siddiqa [102] considered the effect of nanofluid

on heat transfer enhancement for mixed convection flow over a corrugated surface. Iqbal et

al. [51] provided a computer simulation of the effects of dissipation on the hydromagnetic

convective flow of hybrid nanofluids along a wavy plate. Zeeshan et al. [133] investigated

numerically the effects of MHD, viscous dissipation, Joule heating on the radiative heat and

mass transfer of nanofluid flow towards a vertical wavy surface.

The convective heat transfer over an inclined surface is the topic of interest for the in-

vestigators taking into account its applications in industry and technology. DAlessio et

al. [30] analyzed the film flow overheated wavy inclined surfaces. Cheng [24] investigated

the double-diffusive free convection across an slanted wavy surface embedded in a porous

medium. Srinivasacharya and Vijay Kumar [118] studied the mixed convection flow of a

nanofluid past an inclined wavy surface in a porous medium. Srinivasacharya and Vijay Ku-

mar [119] investigated the effect of radiation on natural convection flow of nanofluid over an

inclined wavy surface in a non-Darcy porous medium. Das et al. [33] considered the natural

convection over an inclined plate implanted in a porous medium suffused with nanofluid.

Srinivasacharya and Vijay Kumar [117] considered the problem of mixed convection along

an inclined wavy surface embedded in a nanofluid saturated porous medium. Ziaei-Rad et

15



al. [135] considered the nanofluid flow on a permeable inclined flat plate. Siddiqa et al.

[110] discussed double diffusive free convection over a wavy surface embedded in the non-

absorbing medium. Nandal and Bhargava [85] discussed convectively heated inclined plate

in a nanofluid for variable fluid properties and magnetic field. Goyal et al. [39] examined

numerically natural convective boundary layer flow of a nanofluid past a heated inclined

plate in the presence of magnetic field Bhat and Samanta [16] analyzed the linear stability

of a contaminated fluid flow down a slippery inclined plane. Prasad et al. [93] considered

the significance of thermal diffusion on unsteady convective transport over an accelerated

wavy plate in a porous medium with a traverse magnetic field. Amit and Kundu [8] studied

the passive control of nanoparticles and double-diffusive effects on the flow past a perme-

able inclined plate in a porous medium. Rashed et al. [96] analyzed the effects of uniform

magnetic field and solar radiation on the natural convective flow of nanofluid near to the

inclined plate embedded in the porous medium under. Mjankwi [77] examined the unsteady

magnetohydrodynamics flow of a nanofluid in the presence of chemical reaction and thermal

radiation over an inclined stretching sheet with variable fluid properties. Khademi et al.

[58] analysed numerically the impact of magnetic field on the convective flow of nanofluid

over an inclined flat plate ingrained in a porous medium. Reddy and Sreedevi [98] presented

the magnetic, thermal radiation and chemical reaction effects on the mixed convection flow

of Buongiorno’s model nanofluid over an inclined porous vertical plate. Barik et al. [13]

studied numerically the MHD characteristics of nanofluid past an inclined stretching sheet.

Roy [101] investigated the influence of magnetic field on the natural convection flow past a

sinusoidal surface with temperature variations.

The study of bioconvection problems attains significant attention due to its applications

in biotechnology, the pharmaceutical industry, biosensors, microbial enhanced oil recovery,

biological polymer synthesis, and medical sciences. Bioconvection is presumed to be an im-

pulsive unicellular microbe movement within fluids created by a density gradient that has

been formed by the directional collective swimming of self-propelled microorganisms. In prac-

tical applications such as hydrogen and biodiesel processing, gyrotactic microorganisms are

found and are considered to be one of the most useful energy tools in water treatment plants.

Nanofluid bioconvection is the study of the formation of the spontaneous pattern by simulta-

neous interaction of denser self-propelled microorganisms, buoyancy forces and nanoparticles

and density stratification. Pedley et al. [90] established a model for the suspension of swim-

ming gyrotactic microorganisms. Since then many findings have been reported on several

characteristics of bioconvection related in different geometries. Ahmed and Mahdy [5] stud-

ied magnetohydrodynamic (MHD) bioconvection near a vertical wavy surface embedded
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in an incompressible electrically conducting nanofluid saturated porous medium containing

gyrotactic microorganisms. Dhanai et al. [33] considered the bioconvection of a nanofluid

comprising gyrotactic microorganisms over an inclined permeable layer. Siddiqa et al. [112]

investigated the heat and mass transfer characteristics of bioconvection flow of a water-

based nanofluid over a vertical wavy surface. Uddin et al. [125] examined natural convective

boundary layer flow past a wavy surface embedded in a water-based bio-nanofluid contain-

ing gyrotactic microorganisms using Buongiornos nanofluid model. Chamkha et al. [23]

considered the effects of radiation on the natural bioconvection flow of a nanofluid contain-

ing gyrotactic microorganisms past a vertical plate with streamwise temperature variation.

Nanofluid bioconvection with variable thermophysical properties was studied by Begum et al.

[15] for the geometry of uniformly heated vertical cone. Rehman et al. [100]investigated the

various aspects of bioconvection related to the internal/external flows in different geometries.

Sivaraj et al. [114] provides an observation of microbes influence on CuO-water nanofluid

by considering an upper horizontal surface of a paraboloid of revolution with thermoelectric

effects. Amirsom et al. [7] studied the impact of melting, dissipation, and magnetic field on

the nanofluid bioconvection with variable thermophysical properties and second-order slip.

Shukla et al. [109] investigated analytically the influence of oblique magnetic field on the

non-similar bioconvection flow of a nanofluid using the homotopy analysis method. Khan

et al. [61] addressed the impact of gyrotactic microorganisms on nonlinear mixed convective

MHD flow of thixotropic nanoliquids by considering Brownian motion and thermophoresis

diffusion effects.

1.7 Aim and Scope

It is not always physically realistic to consider the flow past the vertical or horizontal surface.

The inclinations are always possible, and hence, there is a need to frame a generalized

mathematical model involving the inclination of the surface to carry out the investigation.

With such a generalized model, it gets easier to switch to either of the two cases, horizontal

surface or vertical surface.

The aim of present thesis is to understand the mathematical model for the bioconvection

flow of nanofluids past an inclined wavy surface. The characteristics such as magnetic effects,

thermal radiation effects, Double diffusion effects are also included in some of the problems.

The effects of various flow governing parameters on the skin friction, nusselt number, sher-

wood number, nanoparticle sherwood number and density number of motile microorganism
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are also studied here.

1.8 Overview of the Thesis

The thesis consists of Ten chapters.

The first chapter serves as an introduction and motivation for the research conducted

throughout the thesis. A review of relevant literature is provided, emphasising the signifi-

cance of the problems presented in the thesis. The basic equations governing the Nanofluid

with the density of the motile microorganisms are presented in this chapter.

Chapters 2 to 9 (Eight chapters) deals with the bioconvection flow of a nanofluid past an

inclined wavy surface containing the microorganisms. In all these chapters, we considered the

incompressible, steady, and laminar flow of a nanofluid consisting of motile microorganisms

over a semi-infinite inclined wavy surface. The wavy surface is inclined at an angle A

(0o ≤ A ≤ 90o) to the horizontal line.

In Chapter - 2, the double-diffusive bioconvection of nanofluids flow past an inclined wavy

surface is considered. The non-dimensional Skin friction coefficient, Nusselt number, Sher-

wood number, Sherwood number for nanoparticles and density number of motile microor-

ganisms profiles for different values of bioconvection Peclet number, bioconvection Rayleigh

number, angle of inclination, the amplitude of the wavy surface, nanofluid buoyancy ratio,

regular double-diffusive buoyancy ratio, bioconvection Schmidt number, nanoparticle Lewis

number, Soret number, modified Dufour number and microorganism slip parameter were

studied through graphs. The results obtained are compared with the previously published

results and are in good agreement with them.

Chapter - 3 deals with thermal radiation and double-diffusive effects on bioconvection

flow of a nanofluid past an inclined wavy surface. Along with other effects studied in the

earlier chapter, we analyzed the effect of radiation parameters on the local Nusselt number,

Sherwood number, nanoparticle Sherwood number, and density number of motile microor-

ganisms.

the mixed convection of a nanofluid past an inclined wavy surface in the presence of

gyrotactic microorganisms is considered for study in chapter - 4. The obtained results

are exhibited graphically to demonstrate the influence of various flow governing physical

parameters, like mixed convection parameter along with the other effects on the coefficient
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of skin friction, Nusselt number, nanoparticle Sherwood number, and density number of

motile microbes.

Chapter - 5 considers the mixed convection of a nanofluid past an inclined wavy surface

in the presence of gyrotactic microorganisms and magnetic field. Here, concentration is to

examine the effect of Eckert number, magnetic induction parameter, Joule heating param-

eter, mixed convection parameter on Nusselt number, nanoparticle Sherwood number, and

density number of motile microbes along with the other effects.

In Chapter - 6, an attempt has been made to study the effect of variable properties on

the bioconvection flow of nanofluid over an inclined wavy surface. The focus of this investi-

gation is to analyze the effect of variable viscosity parameter, variable thermal conductivity

parameter apart from the other effects considered in previous chapters, on the coefficient of

skin friction, Nusselt number, nanoparticle Sherwood number, and density number of motile

microbes. The results obtained are compared with the previously published results and are

in good agreement with them.

In Chapter - 7, the natural convection of nanofluid flow past an inclined wavy surface in

the presence of gyrotactic microorganisms with activation energy. The influence of activa-

tion energy parameter, temperature relative parameter, reaction rate parameter, fitted rate

constant along with the other parameters, on the coefficient of skin friction, Nusselt number,

nanoparticle Sherwood number, and density number of motile microbes are obtained and

are shown graphically.

Chapter - 8, is devoted to studying the radiation effect on mixed convection of a nanofluid

past an inclined wavy surface in the presence of gyrotactic microorganisms with variable

Properties. Here, we analyzed the mixed convection parameter, radiation parameter, Pearson

number, and temperature-dependent thermal conductivity parameter on the coefficient of

skin friction, Nusselt number, nanoparticle Sherwood number, and density number of motile

microbes, which are explained through graphs.

Chapter - 9, explores the bioconvection in a nanofluid past a moving inclined wavy surface

with convective boundary conditions. The main discussion in this chapter is on the effect of

Biot number, along with the other effects on the coefficient of skin friction, Nusselt number,

nanoparticle Sherwood number, and density number of motile microbes, which are explained

graphically.

Chapter - 10, consists of the main conclusions of the thesis and the directions in which

further investigations may be carried out.
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In all the above chapters (Chapter 2 to Chapter 9), the coordinate transformations are

employed to convert the wavy surface to a plane surface. The governing system of partial

differential equations describing the total mass, momentum, thermal energy, mass diffusion,

and microorganisms that are non-linear modified into dimensionless differential equations

using pseudo-similarity variables along with their boundary conditions and then linearized

using the local linearization method [81]. Thus obtained linear equations are solved using

the Bivariate Chebyshev pseudo-spectral collocation method [20].
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Chapter 2

Computational Analysis of Double

Diffusive Bioconvection of a Nanofluid

Past an Inclined Wavy Surface 1

2.1 Introduction

The analysis of convective flows with double-diffusion has received significant consideration

during the last several years because of its manifestation in a wide spectrum of natural

and technological situations. Double-diffusive convection is an essential fluid dynamic phe-

nomenon that includes motions driven with the aid of two unique density gradients diffus-

ing at distinctive rates [79]. Several investigations have been reported in the literature on

double-diffusive convection. Siddiqa et al. [110] discussed double diffusive free convection

over a wavy surface embedded in the non-absorbing medium. Das et al. [31] considered the

natural convection over an inclined plate in a porous medium suffused with nanofluid. Amit

and Kundu [8] studied the passive control of nanoparticles and double-diffusive effects on

the flow past a permeable inclined plate in a porous medium.

In this chapter, the effects of double diffusion on the nanofluid flow past an inclined

wavy surface in the presence of gyrotactic microorganism is considered. The Buongiorno

model used for nanofluids. The governing partial differential equations are solved using the

bivariate pseudo-spectral local linearization method (BPSLLM). The BPSLLM introduced

1Published in “International Journal of Applied and Computational Mathematics”,7, No. 4,
173 (2021)
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Figure 2.1: “Physical model and coordinate system”.

by [67, 82] is a modification of the spectral local linearization method [81, 113] to solve

non-linear partial differential equations in two dimensions. The effects of various parameters

governing the flow and geometry on the skin friction, heat transfer rate, mass transfer rate,

nanoparticle mass transfer rate, and density number of the microorganism are presented

through graphs and discussed.

2.2 Mathematical Formulation

Consider the flow of a nanofluid consisting of motile microorganisms past an inclined wavy

surface. The equation for the wavy surface is given by

Y = σ(X) = α sin(
πX

L
)

where 2L and α are the characteristic length and amplitude associated with the wavy surface.

The wavy surface is inclined at an angle A (0o ≤ A ≤ 90o) to the horizontal line as depicted

in Fig. (2.1). A = 0o corresponds to horizontal surface and A = 90o corresponds to vertical

surface. In formulating the problem the following assumptions are made and are considered

throughout the thesis.

23



• The flow is two-dimensional, steady, laminar, and incompressible.

• The movement of nanoparticles is independent of the direction of swimming microbes.

• The nanoparticle suspension is assumed to be stable.

• The volume fraction of the microorganisms is adequately small such that their impact

on the viscosity and inertia of the fluid - microbe suspension is insignificant.

• The wavy surface is maintained at a uniform temperature Tw, nanoparticle volume

fraction Φw, concentration Cw and density of the motile microorganism Mw respec-

tively.

• The temperature, nanoparticle volume fraction, concentration and density of motile

microbes under ambient conditions are T∞, Φ∞, C∞, M∞ respectively. Here Tw > T∞,

Φw > Φ∞, Cw > C∞, Mw > M∞.

• All the fluid properties are considered to be constant except for the density in the

buoyancy component.

The equations governing the flow [90, 14, 19] with the above assumptions are

∂U

∂X
+
∂V

∂Y
= 0, (2.1)

ρf∞

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ µ

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞)(2.2)

+ (1− Φ∞)βCρf∞(C − C∞)− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)(M −M∞)] g sinA,

ρf∞

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ µ

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞)(2.3)

+ (1− Φ∞)βCρf∞(C − C∞)− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)(M −M∞)] g cosA,

U
∂T

∂X
+ V

∂T

∂Y
= αm

(
∂2T

∂X2
+
∂2T

∂Y 2

)
+ γ

{
DB

(
∂Φ

∂X

∂T

∂X
+
∂Φ

∂Y

∂T

∂Y

)
(2.4)

+
DT

T∞

[(
∂T

∂X

)2

+

(
∂T

∂Y

)2
]}

+DTC

(
∂2C

∂X2
+
∂2C

∂Y 2

)

U
∂Φ

∂X
+ V

∂Φ

∂Y
= DB

(
∂2Φ

∂X2
+
∂2Φ

∂Y 2

)
+
DT

T∞

(
∂2T

∂X2
+
∂2T

∂Y 2

)
, (2.5)

24



U
∂C

∂X
+ V

∂C

∂Y
= DS

(
∂2C

∂X2
+
∂2C

∂Y 2

)
+DCT

(
∂2T

∂X2
+
∂2T

∂Y 2

)
, (2.6)

U
∂M

∂X
+ V

∂M

∂Y
+

∂

∂X

(
MṼ

)
+

∂

∂Y

(
MṼ

)
= Dn

(
∂2M

∂X2
+
∂2M

∂Y 2

)
, (2.7)

where (U(X, Y ), V (X, Y ), 0) is the velocity vector. T (X, Y ) is the temperature, Φ(X, Y ) is

the nanoparticle volume friction, C(X, Y ) is the concentration, M(X, Y ) is the density of

the motile microorganism. µ is the viscosity, g is the acceleration due to gravity, ρf∞ is the

density of the base fluid, ρp is the density of the nanoparticles, (ρc)f is the heat capacity of

the fluid, ρm is the density of the microorganisms and (ρc)p is the effective heat capacity of

the nanoparticles, km is the thermal conductivity, βT , βC and βM are the volumetric thermal,

solutal and microorganisms expansion coefficients, DB is the Brownian diffusion coefficient,

DT is the thermophoretic diffusion coefficient, DS is the solutal diffusivity, DTC is the Dufour

type diffusivity, DCT is the Soret type diffusivity and Dn diffusivity of the microorganisms.

Ṽ is the average swimming velocity of microorganism and is given by Ṽ =
bcwc

Φw − Φ∞

∂Φ

∂Y
where bc is the Chemotaxis constant and wc is the maximum cell swimming speed.

The associated boundary conditions are :

U = 0, V = 0, T = Tw, Φ = Φw, C = Cw, M = Mw at Y = Yw = σ(X),

U → 0, T → T∞, Φ→ Φ∞, C → C∞, M →M∞ as Y →∞.

}
(2.8)

The irregular wavy surface is transformed to a flat surface using the following transfor-

mations [131].

ξ =
X

L
, η =

Y − σ
Lξ

1
4

Gr
1
4 , ψ =

µGr
1
2 ξ

3
4

ρf∞
f(ξ, η), p =

PL2Gr−1

ρf∞ν2
,

θ(ξ, η) =
T − T∞
Tw − T∞

, φ(ξ, η) =
Φ− Φ∞

Φw − Φ∞
, ϕ(ξ, η) =

C − C∞
Cw − C∞

, χ(ξ, η) =
M

Mw

,

 (2.9)

where

Gr =
g(1− Φ∞)βT (Tw − T∞)L3

ν2

is the Grashof number. Here ψ is the stream function given by

U =
∂ψ

∂Y
, V = − ∂ψ

∂X
. (2.10)
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Substituting Eq. (2.9) and (2.10) in the governing equations (2.1) to (2.7) and invoking

the boundary layer approximation, we get

(
1 + σ2

ξ

)
f ′′′ +

3

4
ff ′′ −

[
1

2
+
ξσξσξξ
1 + σ2

ξ

]
(f ′)

2
+

(θ +Ncϕ−Nrφ−Rbχ)

(1 + σξ2)
(sinA+ σξ cosA)

= ξ

[
f ′
∂f ′

∂ξ
− ∂f

∂ξ
f ′′
]
, (2.11)

(
1 + σ2

ξ

)
Pr

[
θ′′ +Nbφ

′θ′ +Nt(θ
′)
2

+Ndϕ
′′
]

+
3

4
fθ′ = ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
, (2.12)(

1 + σ2
ξ

)
Le

[
φ′′ +

Nt

Nb

θ′′
]

+
3

4
fφ′ = ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
, (2.13)(

1 + σ2
ξ

)
Ln

[ϕ′′ + Srθ
′′] +

3

4
fϕ′+ = ξ

[
f ′
∂ϕ

∂ξ
− ϕ′∂f

∂ξ

]
, (2.14)(

1 + σ2
ξ

)
Sc

χ′′ − Pe

Sc
(1− σξ) (χφ′′ + χ′φ′) +

3

4
fχ′ = ξ

[
f ′
∂χ

∂ξ
− χ′∂f

∂ξ

]
, (2.15)

and the non-dimensional form of the conditions on the boundary are

f(ξ, 0) = −4

3
ξ
∂f

∂ξ
, f ′(ξ, 0) = 0, θ(ξ, 0) = 1, φ(ξ, 0) = 1, ϕ(ξ, 0) = 1, χ(ξ, 0) = 1

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0, ϕ(ξ,∞) = 0, χ(ξ,∞) = M∞
Mw

= δχ,

 (2.16)

where the prime denotes partial derivative with respect to η, σξ and σξξ are the first and

second derivative of σ with respect to ξ. The parameters Prandtl number Pr, bioconvection

Peclet number Pe, Lewis number Le, nano particle Lewis number Ln, bioconvection Schmidt

number Sc, Brownian motion parameter Nb, regular double diffusive buoyancy ratio Nc,

modified Dufour number Nd, nanofluid buoyancy ratio Nr, thermophoresis parameter Nt,

bioconvection Rayleigh number Rb and Soret number Sr are defined by

Pr =
ν

αm
, P e =

bcwc
Dn

Le =
ν

DB

, Sc =
ν

Dn

, Ln =
ν

DS

, Nb =
γDB (Φw − Φ∞)

αm
,

Rb =
γ(ρm − ρf∞)Mw

(1− Φ∞) βTρf∞ (Tw − T∞)
, Nc =

βC
βT

(Cw − C∞)

(Tw − T∞)
, Nd =

σ1DTC(Cw − C∞)

αm(Tw − T∞)

Nr =
(ρp − ρf∞)

(1− Φ∞) βTρf∞

(Φw − Φ∞)

(Tw − T∞)
, Nt =

γDT (Tw − T∞)

αmT∞
, Sr =

DCT (Tw − T∞)

DS(Cw − C∞)
.

(2.17)
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The objective of this study is to estimate the parameters of the engineering interest,

namely the skin friction coefficient, Nusselt number, Sherwood number, nanoparticle Sher-

wood number, and motile microorganism density number.

The local skin friction coefficient, heat, mass, nanoparticle mass flux, and motile microor-

ganism density flux can be obtained from

Cf =
2µρL2

µ2
∞Gr

(n̂ · ∇U) , qw = −km(n̂ · ∇T )

qm = −DS(n̂ · ∇C) qnp = −DB(n̂ · ∇φ) qM = −Dn(n̂ · ∇M), (2.18)

where n̂ =

(
−σx√
1 + σ2

x

,
1√

1 + σ2
x

)
is the unit normal to the wavy surface.

The non dimensional skin friction coefficient Cfx, Nusselt number Nux, Sherwood num-

ber Shx, nanoparticle Sherwood number NShx and motile microorganism density number

Qx are given by

1

2
(Cfξ)(Gr

1/4
ξ ) = ξ

√
1 + σ2

ξ

∂2f

∂η2

∣∣∣∣
(ξ,0)

,

Nuξ

Gr
1/4
ξ

= −
√

1 + σ2
ξ

∂θ

∂η

∣∣∣∣
(ξ,0)

,
Shξ

Gr
1/4
ξ

= −
√

1 + σ2
ξ

∂ϕ

∂η

∣∣∣∣
(ξ,0)

, (2.19)

NShξ

Gr
1/4
ξ

= −
√

1 + σ2
ξ

∂φ

∂η

∣∣∣∣
(ξ,0)

,
Qξ

Gr
1/4
ξ

= −
√

1 + σ2
ξ

∂χ

∂η

∣∣∣∣
(ξ,0)

.

2.3 Method of Solution

The system of differential equations (2.11) - (2.15) along with the boundary conditions (2.16)

are solved using the bivariate pseudo-spectral local linearisation method (BPSLLM)([82]).

By using this method, the iteration scheme is obtained by linearizing the non-linear compo-

nent of differential equations about one dependent variable at a time.

Let fm+1, θm+1, φm+1, ϕm+1 and χm+1 be an approximate solution at the current iteration

and fm, θm, φm, ϕm and χm be the solutions at the previous iteration of the system of

equations (2.11) - (2.15). The first equation Eq. (2.11) is linearized at the current iteration

(fm+1) using the values of the functions at the previous iteration i.e. θm, φm, ϕm and χm. The

second equation Eq. (2.12) is linearized at the current iteration (θm+1) using the updated

value of f at the current iteration i.e. fm+1 and the values of the remaining functions at the
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previous iteration φm, ϕm and χm and so on. On applying this procedure to the equations

(2.11) - (2.15), we get the following system of linear differential equations.

a1,mf
′′′
m+1 + a2,mf

′′
m+1 + a3,mf

′
m+1 + a4,mfm+1 + a5,m

∂f ′m+1

∂ξ
+ a6,m

∂fm+1

∂ξ
= R1,m, (2.20)

b1,mθ
′′
m+1 + b2,mθ

′
m+1 + b3,m

∂θm+1

∂ξ
= R2,m, (2.21)

c1,mφ
′′
m+1 + c2,mφ

′
m+1 + c3,m

∂φm+1

∂ξ
= R3,m, (2.22)

d1,mϕ
′′
m+1 + d2,mϕ

′
m+1 + d3,m

∂ϕm+1

∂ξ
= R4,m, (2.23)

e1,mχ
′′
m+1 + e2,mχ

′
m+1 + e3,mχm+1 + e4,m

∂χm+1

∂ξ
= R5,m, (2.24)

where the coefficients are

a1,m = 1 + σ2
ξ , a2,m =

3

4
fm + ξ

∂fm
∂ξ

, a3,m = −

[
1

2
+
ξσξσξξ
1 + σ2

ξ

]
2f ′m − ξ

∂f ′m
∂ξ

,

a4,m =
3

4
f ′′m a5,m = −ξf ′m a6,m = ξf ′′m,

R1,m = ξf ′′m
∂fm
∂ξ
−

[
1

2
+
ξσξσξξ
1 + σ2

ξ

]
(f ′m)

2
+

3

4
fmf

′′
m − ξf ′m

∂f ′m
∂ξ

−(θm +Nc ϕm −Nrφm −Rbχm)

(1 + σξ2)
(sinA+ σξ cosA),

b1,m =
1 + σ2

ξ

Pr
, b2,m =

1 + σ2
ξ

Pr
Nbφ

′
m +

1 + σ2
ξ

Pr
2Ntθ

′
m +

3

4
fm+1 + ξ

∂fm+1

∂ξ
,

b3,m = −ξf ′m+1, R2,m =
1 + σ2

ξ

Pr

[
Nt(θ

′
m)2 −Ndϕ

′′
m

]
,

c1,m =
1 + σ2

ξ

Le
, c2,m =

3

4
fm+1 + ξ

∂fm+1

∂ξ
, c3,m = −ξf ′m+1,

R3,m = −
1 + σ2

ξ

Le

Nt

Nb

θ′′m+1, d1,m =
1 + σ2

ξ

Ln
,

d2,m =
3

4
fm+1 + ξ

∂fm+1

∂ξ
, d3,m = −ξf ′m+1, R4,m = −

1 + σ2
ξ

Ln
θ′′m+1,

e1,m =
1 + σ2

ξ

Sc
, e2,m = −Pe

Sc
(1− σξ)φ′m+1 +

3

4
fm+1 + ξ

∂fm+1

∂ξ
,
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e3,m = −Pe
Sc

(1− σξ)φ′′m+1, e4,m = −ξf ′m+1, R5,m = 0.

The corresponding boundary conditions are

f ′m+1(ξ, 0) = 0, fm+1(ξ, 0) = −4

3
ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θm+1(ξ, 0) = 1,

φm+1(ξ, 0) = 1, ϕm+1(ξ, 0) = 1, χm+1(ξ, 0) = 1, f ′m+1(ξ,∞) = 0,

θm+1(ξ,∞) = 0, φm+1(ξ,∞) = 0, ϕm+1(ξ,∞) = 0, χm+1(ξ,∞) = δχ.

 (2.25)

The system of linearized equations (2.20) to (2.24) are solved using the Chebyshev pseudo

spectral method in both ξ and η directions [20]. To apply this method, first the semi-infinite

domain [0,∞) × [0,∞) is truncated to [0, ξ∞] × [0, η∞], where η∞ is the finite value that is

introduced to facilitate the application of the numerical method at infinity and ξ∞ is the

largest values of ξ used in the numerical computations. This domain is then transformed to

[−1, 1]× [−1, 1] by the transformation ζ = 2ξ
ξ∞
− 1, −1 ≤ ζ ≤ 1 and τ = 2η

η∞
− 1, −1 ≤ τ ≤ 1.

Now, the problem is solved in the domain [−1, 1]× [−1, 1].

The functions that are to be determined are approximated by the bivariate Lagrange

interpolation polynomial in such a manner that they are collocated at the Gauss - Lobatto

points defined as

ζi = cos
πi

N
, i = 0, 1, . . . , N τj = cos

πj

M
, j = 0, 1, . . . ,M (2.26)

The functions that are to be determined i.e. fm+1(η, ξ), θm+1(η, ξ), φm+1(η, ξ), ϕm+1(η, ξ),

and χm+1(η, ξ) are interpolated at the collocation points described by (2.26), using the
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following bivariate Lagrange interpolation polynomials.

fm+1(ξ, η) ≈
N∑
m=0

M∑
j=0

fm+1(ζm, τj)Lm(ζ)Lj(τ),

θm+1(ξ, η) ≈
N∑
m=0

M∑
j=0

θm+1(ζm, τj)Lm(ζ)Lj(τ),

φm+1(ξ, η) ≈
N∑
m=0

M∑
j=0

φm+1(ζm, τj)Lm(ζ)Lj(τ), (2.27)

ϕm+1(ξ, η) ≈
N∑
m=0

M∑
j=0

ϕm+1(ζm, τj)Lm(ζ)Lj(τ),

χm+1(ξ, η) ≈
N∑
m=0

M∑
j=0

χm+1(ζm, τj)Lm(ζ)Lj(τ),

where Lm(ζ) and Lj(τ) are well-known Lagrange polynomials.

The derivatives of the unknown functions with respect to η and ξ at the collocation points

ζk and τi are given by

∂mfm+1

∂ηm

∣∣∣∣
(ζk,τi)

= DmFi,
∂fm+1

∂ξ

∣∣∣∣
(ζk,τi)

=
2

ξ∞

M∑
j=0

di,jFj. (2.28)

where m is the order of differentiation, di,j(i, j = 12, · · ·M) are the entries of the matrix

D = 2
ξ∞

[di,j] and D = 2
η∞
D, D and D being the Chebyshev spectral differentiation matrices

[122] of order (M +1)× (M +1) and (N +1)× (N +1) respectively. The vector Fi is defined

as Fi = [f(ζ0, τi), f(ζ1, τi), f(ζ2, τi), · · · , f(ζN , τi)]
T

Similar expressions are obtained for derivatives of the other functions θm+1(η, ξ), φm+1(η, ξ),

ϕm+1(η, ξ), and χm+1(η, ξ) with respect to η and ξ. Applying the pseudo-spectral method

in both η and ξ gives

A(1)Fi + γ
(1)
5,i

M∑
j=0

di,jDFj + γ
(1)
6,i

M∑
j=0

di,jFj = R1,i (2.29)

A(2)Θi + γ
(2)
3,i

M∑
j=0

di,jDΘj = R2,i (2.30)
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A(3)Φi + γ
(3)
3,i

M∑
j=0

di,jDΦj = R3,i (2.31)

A(4)ϕi + γ
(4)
3,i

M∑
j=0

di,jDϕj = R4,i (2.32)

A(5)χr + γ
(5)
4,i

M∑
j=0

di,jDχj = R5,i (2.33)

where

A(1) = γ
(1)
1,i D

3 + γ
(1)
2,i D

2 + γ
(1)
3,i D + γ

(1)
4,i I,

A(2) = γ
(2)
1,i D

2 + γ
(2)
2,i D,

A(3) = γ
(3)
1,i D

2 + γ
(3)
2,i D,

A(4) = γ
(4)
1,i D

2 + γ
(4)
2,i D,

A(5) = γ
(5)
1,i D

2 + γ
(5)
2,i D + γ

(5)
3,i I,

γ
(1)
k,i = diag(ak,r(ζ0, τi), ak,r(ζ1, τi), ak,r(ζ2, τi), · · · , ak,r(ζN , τi)), k = 1, 2, 3, 4, 5,

γ
(2)
k,i = diag(bk,r(ζ0, τi), bk,r(ζ1, τi), bk,r(ζ2, τi), · · · , bk,r(ζN , τi)), k = 1, 2, 3,

γ
(3)
k,i = diag(ck,r(ζ0, τi), ck,r(ζ1, τi), ck,r(ζ2, τi), · · · , ck,r(ζN , τi)), k = 1, 2, 3,

γ
(4)
k,i = diag(dk,r(ζ0, τi), dk,r(ζ1, τi), dk,r(ζ2, τi), · · · , dk,r(ζN , τi)), k = 1, 2, 3,

γ
(5)
k,i = diag(ek,r(ζ0, τi), ek,r(ζ1, τi), ek,r(ζ2, τi), · · · , ek,r(ζN , τi)), k = 1, 2, 3, 4,

Rk,i = diag(Rk,r(ζ0, τi), Rk,r(ζ1, τi), Rk,r(ζ2, τi), · · · , Rk,r(ζN , τi)), k = 1, 2, 3, 4, 5.

Here diag(x1, x2, x3, · · ·xN) is the diagonal matrix of order N ×N with x1, x2, x3, · · ·xN as

its diagonal elements and I is the identity matrix. The matrix form of equation (2.29) can

be written as 

A
(1)
0,0 A

(1)
0,1 A

(1)
0,2 · · · A

(1)
0,M

A
(1)
1,0 A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,M

A
(1)
2,0 A

(1)
2,1 A

(1)
2,2 · · · A

(1)
2,M

...
...

...
. . .

...

A
(1)
M,0 A

(1)
M,1 A

(1)
M,2 · · · A

(1)
M,M





F0

F1

F2

...

FM


=



R1,0

R1,1

R1,2

...

R1,M


(2.34)

where

A
(1)
i,j = A(1) + γ

(1)
5,i di,iD + γ

(1)
6,i di,iI, for i = j;

A
(1)
i,j = γ

(1)
5,i di,jD + γ

(1)
6,i di,jI, for i 6= j (2.35)
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The matrix form of Eq.(2.30) is

A
(2)
0,0 A

(2)
0,1 A

(2)
0,2 · · · A

(2)
0,M

A
(2)
1,0 A

(2)
1,1 A

(2)
1,2 · · · A

(2)
1,M

A
(2)
2,0 A

(2)
2,1 A

(2)
2,2 · · · A

(2)
2,M

...
...

...
. . .

...

A
(2)
M,0 A

(2)
M,1 A

(2)
M,2 · · · A

(2)
M,M





Θ0

Θ1

Θ2

...

ΘM


=



R2,0

R2,1

R2,2

...

R2,M


(2.36)

where

A
(2)
i,j = A(2) + γ

(2)
3,i d, for i = j;

A
(2)
i,j = γ

(2)
3,i d, for i 6= j (2.37)

In a similar manner, we can write the matrix form of the equations (2.31) to (2.33). The

approximate solutions are obtained by solving these matrix equations, iteratively, with the

help of suitable initial approximation.

2.4 Computational Results and Discussion

In this study, attention is given to analyze the computational results of the non-dimensional

skin friction coefficient Cfξ, Nusselt number Nuξ, Sherwood number Shξ, nanoparticle Sher-

wood number NShξ, and density number of motile microorganism Qξ graphically. The effect

of the parameters on the non-dimensional quantities velocity f(ξ, η), temperature θ(ξ, η),

Nanoparticle concentration φ(ξ, η), fluid concentration ϕ(ξ, η) and density of motile mi-

croorganisms χ(ξ, η) are not presented for conciseness. The influence of angle of inclination

A, amplitude of the wavy surface α, bioconvection Peclet number Pe, nanoparticle Lewis

number Ln, bioconvection Schmidt number Sc, Brownian motion parameter Nb, regular

double diffusive buoyancy Ratio Nc, modified Dufour number Nd, nanofluid buoyancy ratio

Nr, Thermophoresis parameter Nt, bioconvection Rayleigh number Rb, Soret number Sr and

microorganism slip parameter δχ on the physical quantities Cfξ, Nuξ, Shξ, NShξ, and Qξ

graphically.is presented through Figs. 2.2 - 2.7.

To check the convergence, the code written to solve 2.11 - 2.15 along with the boundary

conditions 2.16 using the bivariate pseudo-spectral local linearisation method (BPSLLM)

is executed for skin friction coefficient and heat transfer rate by changing the number of

collocation points N and M in both η and ξ directions as N = 20, 40, 50, 60, 80 and M =
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20, 40, 50, 60, 80 and in each case we found very good agreement between them and can

be observed from Table 2.1. The same tendency is witnessed by changing the values of

parameters. Hence, a grid size of 50 × 50 is adopted to be satisfactory for the convergence

criterion of 10−6.

Table 2.1: Convergence of f ′′(ξ, 0) and θ(ξ, 0) by BPSLLM for Pr = 2, Pe = 2, Le = 5,
Sc = 0.5, Sr = 0.5, Nb = 0.5, Nb = 0.5, Nt = 0.1, Nr = 0.3, Rb = 0.5, Nc = 0.3, Ln = 5,
α = 0.01, A = π/4

Number of grid points Number of grid points f ′′(ξ, 0) θ(ξ, 0)
in η direction in ξ direction

20 20 4.406218 -0.178631
20 30 4.406177 -0.178455
30 20 4.431318 -0.178471
30 30 4.431313 -0.178303
40 30 4.431470 -0.178309
40 40 4.431470 -0.178275
50 40 4.431468 -0.178275
50 50 4.431468 -0.178278
60 40 4.431468 -0.178275
70 60 4.431468 -0.178291
80 60 4.431468 -0.178291
90 60 4.431468 -0.178291

To validate the accuracy of the method, the code developed is verified by comparing the

present numerical results of skin friction coefficient and rate of heat transfer coefficient with

the published results of Hossain et al. [46] for different values of Prandtl number Pr by taking

angle of inclination A = π/2, amplitude of the wavy surface α = 0.001, and considering the

parameters Pe, Ln, Le, Sc, Nb, approximately zero and ignoring Nc, Nd, Nr, Nt, Rb, Sr and

δχ. The computed results are presented in the Table 2.2. It is evident from the Table 2.2

that the present results are in good agreement with the results of Hossain et al. [46].

All the numerical computations are carried out by assigning Le = 5, Ln = 5, Pe = 2, Pr

= 2, Sc = 0.5, Nb = 0.5, Nc = 0.3, Nd = 0.5, Nr = 0.3, Nt = 0.1, Rb = 0.5, Sr = 0.5, α =

0.01, and δχ = 0.01 unless otherwise mentioned.

The influence of bioconvection Peclet number Pe and Rayleigh number Rb on skinfriction

coefficient Cfξ, Nusselt number Nuξ, Sherwood number Shξ, nanoparticle Sherwood number

NShξ, and density number of motile microorganism Qξ is demonstrated in Figure 2.2. It is

noticed that from Fig. 2.2(a) to 2.2(e) the enhancement of bioconvection Peclet number Pe

enhances Cfξ, Nuξ, Shξ, NShξ, and Qξ. Pe helps to intensify the speed of the microorgan-
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Table 2.2: Comparative analysis for the values of skin friction coefficient f ′′(x, 0) and heat
transfer coefficient −θ′(x, 0) by the present method for α = 0.001, A = π/2, Pe = 10−5,
Ln = 10−5, Le = 10−5, Sc = 10−5, Nb = 10−5, Sr = Nd = Nt = Nr = Rb = Nc = δχ = 0.0
with the results of Hossain et al. [46]

f ′′(x, 0) −θ′(x, 0)
Pr Present Ref.[46] Present Ref. [46]

1. 0 0.908118 0.908 0.401454 0.401
10.0 0.591434 0.591 0.825327 0.825
25.0 0.485327 0.485 1.067486 1.066
50.0 0.417273 0.485 1.288404 1.066
100.0 0.352136 0.352 1.542391 1.542

isms in the fluid and so the density number of the microorganisms is enhanced at the wavy

surface. An enhancement in bioconvection Rayleigh number results in the reduction of Cfξ,

Nuξ, Shξ, and NShξ, as depicted in Figs. 2.2(a) -2.2(d). It is detected from Fig. 2.2(e) that

Qξ is declining with a rise in the bioconvection Rayleigh number.

Figure 2.3 presents the effect of the inclination angle A and amplitude α on skin friction

coefficient Cfξ, Nusselt number Nuξ, Sherwood number Shξ, nanoparticle Sherwood number

NShξ, and density number of motile microorganism Qξ. It is clear from figures 2.3(a) to

2.3(e), that Cfξ, Nuξ, Shξ, NShξ and Qξ are increasing with the rise in the value of A. It is

perceived from Fig. 2.3(a) that the impact of wavy surface amplitude is not much significant.

On the close observation of graph 2.3(a), it is noticed that the coefficient of skin friction is

decreasing with an increase in α. As there is an increment in amplitude, it is found that

Nuξ, Shξ, and NShξ, are decreasing first and then increasing during one period. This trend

is witnessed at regular intervals over ξ. It is remarkable to observe that Qξ is increasing first

and then decreasing over one period with growth in α as depicted in 2.3(e). Here also, the

variations are observed periodically.

The variation of the Cfξ, Nuξ, Shξ, NShξ and Qξ for diverse values of double-diffusive

buoyancy ratio Nc and nanofluid buoyancy ratio Nr is demonstrated in Fig. 2.4. It is

illustrated from this figure that a rise in the double-diffusive buoyancy ratio results in an

increase in Cfξ, Nuξ, Shξ, NShξ and Qξ. Whereas the reverse trend is observed for the

nanofluid buoyancy ratio.

Figure 2.5 illustrates the influence of bioconvection Schmidt number Sc and nanoparticle

Lewis number Ln on Cfξ, Nuξ, Shξ, NShξ and Qξ. It is observed from Fig. 2.5(a) - 2.5(e)

that Cfξ, Nuξ, Shξ, NShξ and Qξ are rising with the rise in Sc. Cfξ, Nuξ, NShξ and Qξ are

decreasing with a raise in nanoparticle Lewis number except for the Sherwood number. The
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Sherwood number is increasing for an increase in nanoparticle Lewis number as displayed in

Fig. 2.5(c).

The effect of Soret number Sr and modified Dufour number Nd on Cfξ, Nuξ, Shξ, NShξ

and Qξ are depicted in figure (2.6). It is found from the figures 2.6(a), and 2.6(c) - 2.6(e)

that, Cfξ, Shξ, NShξ and Qξ are increasing with an increase in both Sr and Nd. A rise in

the values of Sr and Nd results in the decrease of Nuξ, as displayed in figure 2.6(b).

The variation of on Cfξ, Nuξ, Shξ, NShξ and Qξ with the microorganism slip parameter

is portrayed in figure 2.7. It is perceived from Fig. 2.7(a) that, the effect of the microorgan-

ism slip parameter on the skin-friction coefficient is very small. Though, the skin friction

coefficient is increasing slightly with a rise in δχ. As and when there is an escalation in the

parameter δχ, it is observed from Fig. 2.7(a) - 2.7(e) that the Cfξ, Nuξ, Shξ, NShξ and Qξ

are increasing.

2.5 Conclusions

In this chapter, an analysis is presented to study the double diffusion effect on the biocon-

vection past a slanted sinusoidal surface in a nanofluid encompassing motile microorganisms.

The nonlinear equations are linearized utilizing local linearization procedure and the resul-

tant system is solved by a bivariate pseudo-spectral collocation method. The following are

some important observations:

• The coefficient of skin-friction improves with the rise in the parameters Pe, A, Nc, Sc,

Sr, Nd and δχ.

• Increase in Pe, A, Nc, Sc, δχ, intensify the Nuξ.

• For all parameters, except for the nanoparticle Lewis number, the Sherwood number

for concentration and nanoparticles either increase or decrease simultaneously.

• The skin-friction, Nusselt number, Sherwood number, and NShξ are reducing initially

and then rising over one period with an intensification in α, whereas an opposite

behaviour is perceived for the density number of motile microorganisms.

• The density number of motile microbe reduces for an increase in Rb, Nr, Ln.
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Chapter 3

Thermal Radiation and Double

Diffusion Effects on Bioconvection

Flow of a Nanofluid Past an Inclined

Wavy Surface. 1

3.1 Introduction

The study of the effects of thermal radiation on convective heat and mass transfer processes

has gained great importance in view of its applications in nuclear power plants, steel rolling,

gas turbines, design fins, and various propulsion devices for missiles, aircraft, space vehicles,

and satellites. The radiation within these systems is generally the consequence of discharge

by hot walls and operational fluid. Hayat [43] discussed the effects of nonlinear thermal

radiation, inclined magnetic field, and heat source/sink on the flow of nanofluid. Javed et

al. [54] investigated the radiation effect on hydromagnetic flow along a vertical impermeable

wavy texture heated with uniform flux. Khan et al. [59] analysed the impact of gyrotactic

microorganisms and nonlinear thermal radiation on the Magneto-Burgers nanofluid. Siddiqa

et al. [111] discussed the impact of thermal radiation on the natural convection along a wavy

surface. Srinivasacharya and Vijay Kumar [119] investigated the effect of radiation on natural

convection over an inclined wavy surface embedded in a non-Darcy porous medium saturated

with a nanofluid.

1Published in “Thermal Science and Engineering Progress”, 22 (2021): 100830

42



Several investigators, to mention a few, D’Alessio et al. [30], Cheng [25], Bhat [16] have

analyzed the convective heat/mass from an inclined wavy surface. Cheng [24] investigated

the double-diffusive natural convection along an inclined wavy surface in a porous medium.

Narayana et al. [87] analyzed the double-diffusive convection over a horizontal wavy surface

in a porous medium with uniform heating and salting. Ibrahim and Marin [1] obtained an

analytical solution of thermoelastic interaction in a half-space by pulsed laser heating.

In this chapter, we investigate the influence of thermal radiation and gyrotactic mi-

croorganisms on double-diffusive convection past an inclined wavy surface immersed in a

nanofluid. The governing equations are linearized using the local linearization method and

the resulting equations are solved using the bivariate pseudo-spectral method(BPSLLM).

The effects of various parameters governing the flow and geometry on the rate of heat trans-

fer, mass transfer, nanoparticle mass transfer, and density number of the microorganism are

discussed in detail.

3.2 Mathematical Formulation

Consider the flow of a nanofluid containing motile microorganisms along a semi-infinite

inclined wavy surface. The coordinate system and physical model are as depicted in Fig.

2.1. In addition to the assumptions made in Chapter 2, here we assume that the wavy

surface is maintained at a uniform and constant heat, mass, nanoparticle volume fraction,

and density of motile microorganism fluxes qw, qm, qnp and qn respectively. The fluid is

considered to be a grey, emitting/absorbing radiation, but non-scattering medium, and the

radiative heat flux is defined by Rosseland approximation [115].

The equations governing the flow are [24, 90, 64, 19]

∂U

∂X
+
∂V

∂Y
= 0, (3.1)

ρf∞

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ µ

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞)(3.2)

+ (1− Φ∞)βCρf∞(C − C∞)− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)(M −M∞)] g sinA,
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ρf∞

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ µ

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞)(3.3)

+ (1− Φ∞)βCρf∞(C − C∞)− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)(M −M∞)] g cosA,

U
∂T

∂X
+ V

∂T

∂Y
= αm

(
∂2T

∂X2
+
∂2T

∂Y 2

)
+ γ

{
DB

(
∂Φ

∂X

∂T

∂X
+
∂Φ

∂Y

∂T

∂Y

)
(3.4)

+
DT

T∞

[(
∂T

∂X

)2

+

(
∂T

∂Y

)2
]}

+DTC

(
∂2C

∂X2
+
∂2C

∂Y 2

)
+

16σ2T
3
∞

3Ke

(
∂2T

∂X2
+
∂2T

∂Y 2

)

U
∂Φ

∂X
+ V

∂Φ

∂Y
= DB

(
∂2Φ

∂X2
+
∂2Φ

∂Y 2

)
+
DT

T∞

(
∂2T

∂X2
+
∂2T

∂Y 2

)
, (3.5)

U
∂C

∂X
+ V

∂C

∂Y
= DS

(
∂2C

∂X2
+
∂2C

∂Y 2

)
+DCT

(
∂2T

∂X2
+
∂2T

∂Y 2

)
, (3.6)

U
∂M

∂X
+ V

∂M

∂Y
+

∂

∂X

(
MṼ

)
+

∂

∂Y

(
MṼ

)
= Dn

(
∂2M

∂X2
+
∂2M

∂Y 2

)
, (3.7)

where Ke is the mean absorption coefficient, σ2 is the Stefan Boltzman constant. The average

swimming velocity vector of microorganism is Ṽ =
qnDBbcwc
qnpDnM∞

∂Φ

∂Y
, All other quantities are

defined in Chapter 2.

The corresponding boundary conditions are :

U = V = 0, qw = −k(n̂.∇T ), qnp = −DB(n̂.∇Φ), qm = −DS(n̂.∇C),

qn = −Dn(n̂.∇M) at Y = Yw = σ(X).

U → 0, T → T∞, Φ→ Φ∞, C → C∞, M →M∞ as Y →∞ .

 (3.8)

where n̂ is the unit normal to the wavy surface. The irregular wavy surface is transformed

to a flat surface, by the following transformations ([131])

ξ =
X

L
, η =

Y − σ
Lξ

1
5

Gr
1
5 , ψ =

µGr
2
5 ξ

4
5

ρf∞
f(ξ, η), p =

L2

ρf∞ν2
Gr−

4
5P ,

T − T∞ =
qwL

k
Gr−1/5ξ1/5θ(ξ, η), Φ− Φ∞ =

qnpL

DB

Gr−1/5ξ1/5φ(ξ, η),

C − C∞ =
qmL

DS

Gr−1/5ξ1/5ϕ(ξ, η), M −M∞ =
qnL

Dn

Gr−1/5ξ1/5χ(ξ, η).


(3.9)

where Gr =
(1− Φ∞) gβT qwL

4

kν2
is the Grashof number and ψ is the stream function given in

44



2.10.

Substituting Eq. (3.9) into the Eqs. (3.2) to (3.8), we get

(
1 + σ2

ξ

)
f ′′′ +

4

5
ff ′′ −

[
3

5
+
ξσξσξξ
1 + σ2

ξ

]
(f ′)

2
+

(θ +Ncϕ−Nrφ−Rbχ)

(1 + σξ2)
(sinA+ σξ cosA)

= ξ

[
f ′
∂f ′

∂ξ
− ∂f

∂ξ
f ′′
]
,(3.10)

(
1 + σ2

ξ

)
Pr

[
θ′′ +Nbξ

1
5φ′θ′ +Ntξ

1
5 (θ′)

2
+Ndϕ

′′ +
4Rd Pr

3
θ′′
]
+

1

5
(4fθ′ − f ′θ) = ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
,

(3.11)(
1 + σ2

ξ

)
Le

[
φ′′ +

Nt

Nb

θ′′
]

+
1

5
(4fφ′ − f ′φ) = ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
, (3.12)(

1 + σ2
ξ

)
Ln

[ϕ′′ + Srθ
′′] +

1

5
(4fϕ′ − f ′ϕ) = ξ

[
f ′
∂ϕ

∂ξ
− ϕ′∂f

∂ξ

]
, (3.13)(

1 + σ2
ξ

)
Sc

χ′′ − Pe

Sc
(1− σξ)φ′′ +

1

5
(4fχ′ − f ′χ) = ξ

[
f ′
∂χ

∂ξ
− χ′∂f

∂ξ

]
, (3.14)

and

f ′(ξ, η) = 0, f(ξ, η) = −5

4
ξ
∂f

∂ξ
, θ′(ξ, η) = − 1√

1 + σ2
ξ

,

φ′(ξ, η) = − 1√
1 + σ2

ξ

, ϕ′(ξ, η) = − 1√
1 + σ2

ξ

, χ′(ξ, η) = − 1√
1 + σ2

ξ

at η = 0.

f ′(ξ, η) = θ(ξ, η) = φ(ξ, η) = ϕ(ξ, η) = χ(ξ, η) = 0 as η →∞.


(3.15)

The parameters Brownian motion parameter Nb, regular double diffusive buoyancy ratio

Nc, modified Dufour number Nd, nanofluid buoyancy ratio Nr, thermophoresis parameter

Nt, bioconvection Rayleigh number Rb, Soret number Sr and radiation parameter Rd are

defined by

Nb =
γqnp
αm

, Rb =
γ(ρm − ρf∞)qnk

(1− Φ∞) βTρf∞qwDn

, Nc =
βC
βT

qmk

qwDS

,

Nd =
DTCqmk

DSqwαm
, Nr =

(ρp − ρf∞) qnpk

(1− Φ∞) βTρf∞qwDB

, Nt =
γDT qw
αmT∞k

,

Sr =
DCT qw
kqm

, Rd =
4σ2T

3
∞

Keαm
.


(3.16)
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The remaining parameters are already defined in Chapter 2.

The heat, mass, nanoparticle mass flux and motile microorganism density flux can be

obtained from

qw = −km(n̂ · ∇T ), qm = −DS(n̂ · ∇C),

qnp = −DB(n̂ · ∇φ), qn = −Dn(n̂ · ∇M).

The non dimensional Nusselt number Nuξ, Sherwood number Shξ, nanoparticle Sherwood

number NShξ and motile microorganism density number Qξ are given by :

Nuξ

Gr
1/5
ξ

=
1

θ(ξ, 0)
,

Shξ

Gr
1/5
ξ

=
1

ϕ(ξ, 0)
,

NShξ

Gr
1/5
ξ

=
1

φ(ξ, 0)
,

Qξ

Gr
1/5
ξ

=
1

χ(ξ, 0)
. (3.17)

3.3 Method of Solution

The system of differential equations (3.10) - (3.14) along with the boundary conditions (3.15)

are solved using the bivariate pseudo-spectral local linearisation method (BPSLLM) [67, 82].

On applying the procedure explained in Chapter 2 to the equations (3.10) - (3.14), we

get the following system of linear differential equations.

a1,mf
′′′
m+1 + a2,mf

′′
m+1 + a3,mf

′
m+1 + a4,mfm+1 + a5,m

∂f ′m+1

∂ξ
+ a6,m

∂fm+1

∂ξ
= R1,m, (3.18)

b1,mθ
′′
m+1 + b2,mθ

′
m+1 + b3,mθm+1 + b4,m

∂θm+1

∂ξ
= R2,m, (3.19)

c1,mφ
′′
m+1 + c2,mφ

′
m+1 + cm,rφm+1 + c4,m

∂φm+1

∂ξ
= R3,m, (3.20)

d1,mϕ
′′
m+1 + d2,mϕ

′
m+1 + d3,mϕm+1 + d4,m

∂ϕm+1

∂ξ
= R4,m, (3.21)

e1,mχ
′′
m+1 + e2,mχ

′
m+1 + e3,mχm+1 + e4,m

∂χm+1

∂ξ
= R5,m. (3.22)

The coefficients are :

a1,m = 1 + σ2
ξ , a2,m =

4

5
fm + ξ

∂fm
∂ξ

, a3,m = −

[
3

5
+
ξσξσξξ
1 + σ2

ξ

]
2f ′m − ξ

∂f ′m
∂ξ

,
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a4,m =
4

5
f ′′m, a5,m = −ξf ′m, a6,m = ξf ′′m,

R1,m = ξf ′′m
∂fm
∂ξ
− ξf ′m

∂f ′m
∂ξ
−

[
3

5
+
ξσξσξξ
1 + σ2

ξ

]
(f ′m)

2
+

4

5
fmf

′′
m

(θm +Nc ϕm −Nrφm −Rbχm)

(1 + σξ2)
(sinA+ σξ cosA) ,

b1,m =
(
1 + σξ

2
)( 1

Pr
+

4Rd

3

)
,

b2,m =
1 + σ2

ξ

Pr
ξ1/5Nbφ

′
m +

1 + σ2
ξ

Pr
2Ntξ

1/5θ′m +
4

5
fm+1 + ξ

∂fm+1

∂ξ
,

b3,m = −1

5
f ′m+1, b4,m = −ξf ′m+1, R2,m =

1 + σ2
ξ

Pr

[
ξ1/5Ntθ

′
m

2 −Ndϕ
′′
m

]
,

c1,m =
1 + σ2

ξ

Le
, c2,m =

4

5
fm+1 + ξ

∂fm+1

∂ξ
, c3,m = −1

5
f ′m+1, c4,m = −ξf ′m+1,

R3,m = −
1 + σ2

ξ

Le

Nt

Nb

θ′′m+1, d1,m =
1 + σ2

ξ

Ln
, d2,m =

4

5
fm+1 + ξ

∂fm+1

∂ξ
,

d3,m = −1

5
f ′m+1, d4,m = −ξf ′m+1, R4,m = −

(
1 + σξ

2
) Sr
Ln

θ′′m+1,

e1,m =
1 + σ2

ξ

Sc
, e2,m =

4

5
fm+1 + ξ

∂fm+1

∂ξ
, e3,m = −1

5
f ′m+1,

e4,m = −ξf ′m+1, R5,m = (1− σξ)
Pe

Sc
φ′′m+1.

The corresponding boundary conditions are :

f ′m+1(ξ, 0) = 0 , fm+1(ξ, 0) = −5

4
ξ
∂f

∂ξ
,

θ′m+1(ξ, 0) = φ′m+1(ξ, 0) = ϕ′m+1(ξ, 0) = χ′m+1(ξ, 0) = − 1√
1 + σ2

ξ

,

f ′m+1(ξ,∞) = θm+1(ξ,∞) = φm+1(ξ,∞) = ϕm+1(ξ,∞) = χm+1(ξ,∞) = 0.


(3.23)

As explained in Chapter 2, applying Chebyshev pseudo spectral method in both ξ and η

directions on the system of linearized equations (3.18) to (3.22), we get
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A(1)Fi + γ
(1)
5,i

M∑
j=0

di,jDFj + γ
(1)
6,i

M∑
j=0

di,jFj = R1,i, (3.24)

A(2)Θi + γ
(2)
4,i

M∑
j=0

di,jΘj = R2,i, (3.25)

A(3)Φi + γ
(3)
4,i

M∑
j=0

di,jΦj = R3,i, (3.26)

A(4)ϕi + γ
(4)
4,i

M∑
j=0

di,jϕj = R4,i, (3.27)

A(5)χi + γ
(5)
4,i

M∑
j=0

di,jχj = R5,i, (3.28)

where

A(1) = γ
(1)
1,i D

3 + γ
(1)
2,i D

2 + γ
(1)
3,i D + γ

(1)
4,i I

A(2) = γ
(2)
1,i D

2 + γ
(2)
2,i D + γ

(2)
3,i I

A(3) = γ
(3)
1,i D

2 + γ
(3)
2,i D + γ

(3)
3,i I

A(4) = γ
(4)
1,i D

2 + γ
(4)
2,i D + γ

(4)
3,i I

A(5) = γ
(5)
1,i D

2 + γ
(5)
2,i D + γ

(5)
3,i I .

Here γ
(1)
k,i , γ

(2)
k,i , γ

(3)
k,i , γ

(4)
k,i , γ

(5)
k,i and Rk,i are N th order diagonal matrices with diagonal

elements as, ak,m(ζr, τi), bk,m(ζr, τi), ck,m(ζr, τi), dk,m(ζr, τi), ek,m(ζr, τi) and Rk,m(ζr, τi) for

r = 1, 2, 3, · · ·N respectively and I refers the identity matrix.

The matrix form of equation (3.24) can be written as :

A
(1)
0,0 A

(1)
0,1 A

(1)
0,2 · · · A

(1)
0,M

A
(1)
1,0 A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,M

A
(1)
2,0 A

(1)
2,1 A

(1)
2,2 · · · A

(1)
2,M

...
...

...
. . .

...

A
(1)
M,0 A

(1)
M,1 A

(1)
M,2 · · · A

(1)
M,M





F0

F1

F2

...

FM


=



R1,0

R1,1

R1,2

...

R1,M


, (3.29)
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where

A
(1)
i,j = A(1) + γ

(1)
5,i di,iD + γ

(1)
6,i di,iI, for i = j;

A
(1)
i,j = γ

(1)
5,i di,jD + γ

(1)
6,i di,jI, for i 6= j . (3.30)

In a similar manner, we can write the matrix form of the equations (3.25) to (3.28).

Solving these matrix equations, we obtain the approximate solutions by choosing appropriate

initial approximation.

3.4 Computational Results and Discussion

The bivariate pseudo-spectral local linearisation method (BPSLLM) is used to solve the

equations (3.10) - (3.14) along with the boundary conditions (3.15). As in the previous

chapter, to check the grid independence, the code developed in MATLAB is executed for

heat and mass transfer rates by changing the number of collocation points N and M in

both η and ξ directions i.e. by taking N = 20, 40, 50, 60, 80 and M = 20, 40, 50, 60, 80. In

each case, we found a very good agreement between them. The same tendency is witnessed

by changing the values of the parameters. Hence, a grid size of 50 × 50 is adopted to be

satisfactory for the convergence criterion of 10−6.

The double diffusive convection of a Nanofluid past an inclined wavy surface is governed

by several parameters A, α, Pe, Ln, Sc, Nb, Nc, Nd, Nr, Nt, Rb, Sr and Rd. The values

of the other parameters are fixed as Pr = 2, Le = 5, Ln = 5, Nb = 0.5, Nr = 0.3 and

Nt = 0.1. The choice of values for Nr, Nt and Nb is based on those values utilized by

Nield and Kuznetsov [88] for the case with the isothermal wall boundary condition and the

other values are in the limit of physical requirements of the problem model. Further, the

effect of governing parameters on the non-dimensional velocity components, temperature,

concentration, nanoparticle volume fraction, and motile microorganisms are not presented

for the sake of brevity.

The variation of rate of heat transfer, mass transfer, nanoparticle mass transfer, and

motile microorganisms transfer with radiation parameter Rd is depicted in Fig.3.1. It is

found from the figure 3.1(a) that, the heat transfer rate is decreasing as Rd is increasing. The

radiative energy is proportional to the fourth power of absolute temperature and inversely

proportional to emissivity on the surface. Hence, Rd modifies the temperature even for

quite small values of emissivity. The surface roughness causes weaker temperature gradients
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and reduces the extent of the temperature gradients. The mass transfer, nanoparticle mass

transfer, and density number of motile microorganisms are increasing with an increase in

the radiation parameter.

Figure 3.2 provides the influence of the angle of inclination A on the local Nusselt number,

local Sherwood number, nanoparticle Sherwood number, and density number of motile mi-

croorganisms. It is clear from this figure that the rate of transfer of heat, mass, nanoparticle

mass and motile microorganisms mass across the boundary are increasing with an increase

in inclination angle. Hence, the transfer rate of all the physical quantities is more for the

vertical surface compared to the horizontal surface.

The influence of amplitude of the wavy surface α on heat transfer rate, mass transfer rate,

nanoparticle mass transfer rate, and density number of motile microorganisms is presented

in Fig.3.3. It is seen from Figs.3.3(a) to 3.3(d) that the heat transfer rate, mass transfer rate,

nanoparticle mass transfer are increasing first and then decreasing as there is an increment

in amplitude over one period. This change is observed periodically over ξ. It is interesting

to note that the rate of motile microorganisms is decreasing first and then increasing with

an increase in the amplitude of the wavy surface as depicted in Fig. 3.3(d).

Figure 3.4 shows the effect of bioconvection Peclet number Pe on Nuξ/Gr
1/5
ξ , Shξ/Gr

1/5
ξ ,

NShξ/Gr
1/5
ξ , and Qξ/Gr

1/5
ξ . It is noticed that an increase in the bioconvection Peclet num-

ber causes a rise in the local Nusselt number, local Sherwood number, nanoparticle Sherwood

number, and density number of motile microorganisms. Enhancing the bioconvection Peclet

number results in an increase of movement of microorganisms along with the concentration

of gradients as the bioconvection Peclet number assists to enhance the speed of the microor-

ganisms in the fluid. Hence, an increase of Pe, i.e., an increase of particles movements causes

the rise of all the dimensionless physical quantities under consideration.

The impact of bioconvection Rayleigh number Rb in the profiles of local Nusselt num-

ber, local Sherwood number, nanoparticle Sherwood number and density number of motile

microorganisms is depicted in Fig.3.5. It is noticed that the enhancement of bioconvection

Rayleigh number results in a reduction in the local heat transfer rate, mass transfer rate,

nanoparticle mass transfer rate, and density of motile microorganisms. The reason for this

is the movement of the nanoparticles present in the base fluid. These nanoparticles move

arbitrarily in the fluid and eventually the temperature of the fluid increases. Due to this

heat transport at the surface reduces

Figure 3.6 presents the effect of bioconvection Schmidt number Sc onNuξ/Gr
1/5
ξ , Shξ/Gr

1/5
ξ ,

NShξ/Gr
1/5
ξ , and Qξ/Gr

1/5
ξ . It is observed from figures 3.6(a) - 3.6(d) that all the dimen-
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sionless physical quantities are increasing with a rise in the bioconvection Schmidt number.

The variation of local Nusselt number, local Sherwood number, nanoparticle Sherwood

number, and density number of motile microorganisms for different values of double-diffusive

buoyancy ratio Nc is displayed in Fig.3.7. This figure reveals that an increase in the double-

diffusive buoyancy ratio increases local heat transfer rate, mass transfer rate, nanoparticle

mass transfer rate, and motile microorganisms density rate.

The effect of modified Dufour number Nd on the Nuξ/Gr
1/5
ξ , Shξ/Gr

1/5
ξ , NShξ/Gr

1/5
ξ ,

and Qξ/Gr
1/5
ξ is depicted in Fig. 3.8. It is seen from Fig.3.8(a) that, the local heat trans-

fer rate is decreasing with an increase in the values of Nd. The local mass transfer rate,

nanoparticle mass transfer rate, and motile microorganisms rate are increasing with an in-

crease in modified Dufour number as depicted in Fig. 3.8(b) - 3.8(d). The Dufour number

signifies the influence of the solutal gradients on the thermal energy flux in the flow. Hence,

an enhance in the Dufour number results in an increase in the temperature and a drop in

the concentration.

The influence of Soret number Sr on the local heat transfer rate, mass transfer rate,

nanoparticle mass transfer rate, and density number of motile microorganisms is portrayed

in Fig. 3.9. It is found in Figs. 3.9(c) and 3.9(d) that, the nanoparticle mass transfer and

density number of motile microorganisms are increasing with an increase in Soret number.

The effect of the Soret number on the heat transfer rate is very less. A slight increase in

heat transfer rate at the beginning and then minor decrease as ξ increases is noticed for

increasing values of the Soret number as shown in the enlarged part of the Fig. 3.9(a).

The mass transfer rate decreases in the beginning and changes its behaviour as ξ increases

with an increase in Soret number as depicted in 3.9(b). Soret number is the ratio of a

temperature difference to the concentration. Hence, the increase in the Soret number stands

for an increase in the temperature difference and precipitous gradient.

3.5 Conclusions

In the present chapter, a theoretical analysis is made on the effect of thermal radiation on

free convection double diffusion of a nanofluid past an inclined wavy surface in the presence

of gyrotactic microorganisms. The nonlinear governing equations along with the boundary

conditions are solved using a Bivariate pseudo-spectral local linearization method together

with the Chebyshev collocation method. Important observations are itemized below:
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• Increase in Pe, A, Nc, Sc results in increase of heat transfer rate.

• The mass transfer rate and nanoparticle mass transfer rate either increase or decrease

simultaneously for all parameters except for Le, Ln, and Sr.

• The influence of α on heat transfer rate, mass transfer rate, nanoparticle mass transfer

rate, and density of motile organisms is both increasing and decreasing.

• The density of motile microorganism falls for a raise in Rd, Sr, A, Pe.
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Chapter 4

Mixed Bioconvection of a Nanofluid

Past an Inclined Wavy Surface 1

4.1 Introduction

The mixed convection over an inclined plate has been attracting researchers due to its in-

dustrial and technological applications like electroplating, ash or scrubber waste treatment,

chemical processing of heavy metals, etc. Several investigators have analyzed the convective

heat/mass along inclined surfaces Bhat [16] analyzed the stability of the flow of adulterated

fluid over an inclined slip plane. Goyal and Bhargava [39] numerically studied the transient

convective flow of a nanofluid over an inclined plate with a magnetic effect. Rafique et al.

[95] scrutinized the effect of Soret and Dufour on a Casson nanofluid flow over an inclined

elongating surface. Barik et al. [13] studied numerically the MHD characteristics of nanofluid

past an inclined elongating sheet.

In this chapter, the mixed bioconvection of a nanofluid past an inclined wavy surface

is considered. The solution for the governing equations is attained employing the bivari-

ate pseudo-spectral local linearization method (BPSLLM). The effect of different fluid and

geometry parameters on the rate of heat transfer, rate of nanoparticle mass transfer, and

density number of the microorganism are evaluated and presented through graphs.

1Published in “Heat Transfer”, Early View, 2021, DOI: 10.1002htj.22291
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4.2 Mathematical Formulation

Consider the steady and incompressible flow of a nanofluid containing motile microorganisms

along a semi-infinite inclined wavy surface. The coordinate system and physical model are

as depicted in Fig. 2.1. The flow is assumed to be mixed convective.

By implementing Oberbeck-Boussinesq approximation, the equations governing the flow

are
∂U

∂X
+
∂V

∂Y
= 0 (4.1)

ρf∞

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ µ

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞) (4.2)

− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)(M −M∞)] g sinA

ρf∞

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ µ

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞) (4.3)

− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)(M −M∞)] g cosA

U
∂T

∂X
+ V

∂T

∂Y
= αm

(
∂2T

∂X2
+
∂2T

∂Y 2

)
+ γ

{
DB

(
∂Φ

∂X

∂T

∂X
+
∂Φ

∂Y

∂T

∂Y

)
(4.4)

+
DT

T∞

[(
∂T

∂X

)2

+

(
∂T

∂Y

)2
]}

U
∂Φ

∂X
+ V

∂Φ

∂Y
= DB

(
∂2Φ

∂X2
+
∂2Φ

∂Y 2

)
+
DT

T∞

(
∂2T

∂X2
+
∂2T

∂Y 2

)
(4.5)

U
∂M

∂X
+ V

∂M

∂Y
+

∂

∂X

(
MṼ

)
+

∂

∂Y

(
MṼ

)
= Dn

(
∂2M

∂X2
+
∂2M

∂Y 2

)
(4.6)

where The average swimming velocity vector of microbes is Ṽ =
qnDBbcwc
qnpDnM∞

∂Φ

∂Y
. All other

quantities are defined in Chapter 2.

The conditions on the boundary are :

U = 0, V = 0, qw = −k(n̂.∇T ), qnp = −DB(n̂.∇Φ), qn = −Dn(n̂.∇M) atY = σ(X)

U → U∞, T → T∞, Φ→ Φ∞, M →M∞ as Y →∞

}
(4.7)

where n̂ is the unit normal to the surface.
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The following transformations are applied to convert the irregular wavy surface to a flat

surface [131]

ξ =
X

L
, η =

Y − σ
Lξ

1
2

√
Re, f(ξ, η) =

ψ
√
Re

LU∞
√
ξ

p =
P

ρf∞U2
∞
,

T − T∞ =
qwL

k
Re−1/2ξ1/2θ(ξ, η), Φ− Φ∞ =

qnpL

DB

Re−1/2ξ1/2φ(ξ, η),

M −M∞ =
qnL

Dn

Re−1/2ξ1/2χ(ξ, η),


(4.8)

where Re =
U∞L

ν
is the Reynolds number and ψ is the stream function defined in 2.10 of

Chapter2.

Using Eq. (4.8) in the governing equations (4.1) to (4.6) and invoking the boundary layer

approximation, we get the following dimensionless form.

(
1 + σ2

ξ

)
f ′′′ +

1

2
ff ′′ − ξσξσξξ(

1 + σ2
ξ

)(f ′)
2

+
Ri (θ −Nrφ−Rbχ) ξ

3
2

(1 + σξ2)
(sinA+ σξ cosA)

= ξ

[
f ′
∂f ′

∂ξ
− ∂f

∂ξ
f ′′
]

(4.9)

(
1 + σ2

ξ

)
Pr

[
θ′′ +Nbξ

1
2φ′θ′ +Ntξ

1
2 (θ′)

2
]

+
1

2
(fθ′ − f ′θ) = ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
(4.10)(

1 + σ2
ξ

)
Le

[
φ′′ +

Nt

Nb

θ′′
]

+
1

2
(fφ′ − f ′φ) = ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
(4.11)(

1 + σ2
ξ

)
Sc

χ′′ − Pe

Sc
(1− σξ)φ′′ +

1

2
(fχ′ − f ′χ) = ξ

[
f ′
∂χ

∂ξ
− χ′∂f

∂ξ

]
(4.12)

and

f ′(ξ, 0) = 0, f(ξ, 0) = −2ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θ′(ξ, 0) = − 1√
1 + σ2

ξ

,

φ′(ξ, 0) = − 1√
1 + σ2

ξ

, χ′(ξ, 0) = − 1√
1 + σ2

ξ

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0, χ(ξ,∞) = 0


(4.13)

The parameters Pr, Pe, Le, Sc, Nb, Nr, Nt, Rb, are same as in 3.16 of Chapter 3 and the

mixed convection parameter Ri is defined as Ri =
Gr

Re5/2
.

The non-dimensional form of skin friction, Nusselt number, nanoparticle Sherwood num-
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ber, and the density number of motile microbe. are given by

1

2
(Cfξ)(Re

1/2
ξ ) =

√
1 + σ2

ξf
′′(ξ, 0),

Nuξ

Re
1/2
ξ

=
1

θ(ξ, 0)
,

NShξ

Re
1/2
ξ

=
1

φ(ξ, 0)
,

Qξ

Re
1/2
ξ

=
1

χ(ξ, 0)
, (4.14)

4.3 Method of Solution

The set of non-similar Equations (4.9) - (4.12) with (4.13) are solved using the bivariate

pseudo-spectral local linearization method (BPSLLM) as explained in Chapter 2.

On applying this procedure to the equations (4.9) - (4.12), we obtain the following set of

linear differential equations.

a1,mf
′′′
m+1 + a2,mf

′′
m+1 + a3,mf

′
m+1 + a4,mfm+1 + a5,m

∂f ′m+1

∂ξ
+ a6,m

∂fm+1

∂ξ
= R1,m (4.15)

b1,mθ
′′
m+1 + b2,mθ

′
m+1 + b3,mθm+1 + b4,m

∂θm+1

∂ξ
= R2,m (4.16)

c1,mφ
′′
m+1 + c2,mφ

′
m+1 + c3,mφm+1 + c4,m

∂φm+1

∂ξ
= R3,m (4.17)

d1,mχ
′′
m+1 + d2,mχ

′
m+1 + d3,mχm+1 + d4,m

∂χm+1

∂ξ
= R4,m (4.18)

where the coefficients are

a1,m = 1 + σ2
ξ , a2,m =

1

2
fm + ξ

∂fm
∂ξ

, a3,m = −

[
ξσξσξξ
1 + σ2

ξ

]
2f ′m − ξ

∂f ′m
∂ξ

a4,m =
1

2
f ′′m a5,m = −ξf ′m a6,m = ξf ′′m

R1,m = ξf ′′m
∂fm
∂ξ
− ξσξσξξ

1 + σ2
ξ

(f ′m)
2

+
1

2
fmf

′′
m − ξf ′m

∂f ′m
∂ξ

−Ri (θm −Nr φm −Rb χm) ξ3/2

(1 + σξ2)
(sinA+ σξ cosA)

b1,m =
(1 + σξ

2)

Pr
, b2,m =

1 + σ2
ξ

Pr
ξ1/2Nbφ

′
m +

1 + σ2
ξ

Pr
2Ntξ

1/2θ′m +
1

2
fm+1 + ξ

∂fm+1

∂ξ
,

b3,m = −1

2
f ′m+1, b4,m = −ξf ′m+1, R2,m =

1 + σ2
ξ

Pr
ξ1/2Nt(θ

′
m)

2
,
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c1,m =
1 + σ2

ξ

Le
, c2,m =

1

2
fm+1 + ξ

∂fm+1

∂ξ
, c3,m = −1

2
f ′m+1, c4,m = −ξf ′m+1,

R3,m = −
1 + σ2

ξ

Le

Nt

Nb

θ′′m+1, d1,m =
1 + σ2

ξ

Sc
, d2,m =

1

2
fm+1 + ξ

∂fm+1

∂ξ
,

d3,m = −1

2
f ′m+1, d4,m = −ξf ′m+1, R4,m = (1− σξ)

Pe

Sc
φ′′m+1.

The corresponding boundary conditions are

f ′m+1(ξ, 0) = 0 , fm+1(ξ, 0) = −2ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θ′m+1(ξ, 0) = − 1√
1 + σ2

ξ

,

φ′m+1(ξ, 0) = − 1√
1 + σ2

ξ

, χ′m+1(ξ, 0) = − 1√
1 + σ2

ξ

f ′m+1(ξ,∞) = 1, θm+1(ξ,∞) = 0, φm+1(ξ,∞) = 0, χm+1(ξ,∞) = 0


(4.19)

Applying the pseudo-spectral method in both η and ξ gives, which was explained in

Chapter 2, we get

A(1)Fi + γ
(1)
5,i

M∑
j=0

di,jDFj + γ
(1)
6,i

M∑
j=0

di,jFj = R1,i (4.20)

A(2)Θi + γ
(2)
4,i

M∑
j=0

di,jΘj = R2,i (4.21)

A(3)Φi + γ
(3)
4,i

M∑
j=0

di,jΦj = R3,i (4.22)

A(4)χi + γ
(4)
4,i

M∑
j=0

di,jχj = R4,i (4.23)
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where

A(1) = γ
(1)
1,i D

3 + γ
(1)
2,i D

2 + γ
(1)
3,i D + γ

(1)
4,i I,

A(2) = γ
(2)
1,i D

2 + γ
(2)
2,i D + γ

(2)
3,i I,

A(3) = γ
(3)
1,i D

2 + γ
(3)
2,i D + γ

(3)
3,i I,

A(4) = γ
(4)
1,i D

2 + γ
(4)
2,i D + γ

(4)
3,i I

Here γ
(1)
k,i , γ

(2)
k,i , γ

(3)
k,i , γ

(4)
k,i and Rk,i are N th order diagonal matrices with diagonal elements as,

ak,m(ζr, τi), bk,m(ζr, τi), ck,m(ζr, τi), dk,m(ζr, τi) and Rk,m(ζr, τi) for r = 1, 2, 3, · · ·N respec-

tively and I refers the identity matrix.

The matrix form of equation (4.20) can be written as

A
(1)
0,0 A

(1)
0,1 A

(1)
0,2 · · · A

(1)
0,M

A
(1)
1,0 A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,M

A
(1)
2,0 A

(1)
2,1 A

(1)
2,2 · · · A

(1)
2,M

...
...

...
...

...

A
(1)
M,0 A

(1)
M,1 A

(1)
M,2 · · · A

(1)
M,M





F0

F1

F2

...

FM


=



R1,0

R1,1

R1,2

...

R1,M


(4.24)

where

A
(1)
i,j = A(1) + γ

(1)
5,i di,iD + γ

(1)
6,i di,iI, for i = j;

A
(1)
i,j = γ

(1)
5,i di,jD + γ

(1)
6,i di,jI, for i 6= j (4.25)

In a similar manner, we can write the matrix form of the equations (4.21) to (4.23). The

approximate solutions are obtained by solving these matrix equations, iteratively, with the

help of suitable initial approximation.

4.4 Computational Results and Discussions

To check the convergence, the code developed for the bivariate pseudo-spectral local lin-

earization method (BPSLLM) in MATLAB is executed for f ′′(ξ, 0) and θ(ξ, 0) by changing

the number of collocation points N and M in both η and ξ directions and the results obtained

are presented in Table 4.1 for randomly selected values for various parameters. It is apparent

from this table that the least stable eigenvalue attain convergence criterion of 10−7 for N =
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51 and M = 51. There is no change in the results with an increase of N and M. The same

tendency is witnessed for other values of parameters. Hence, N = 51 and M = 51 is adopted

to implement the numerical calculations.

To confirm the correctness of the method, the code developed is verified by comparing

our computational results
√
ReξCfξ with the published results of Cebeci and Bradshaw [21],

Yih [132], Chamkha et al. [22] and Nuξ/
√
Reξ with the published results of Lin and Lin

[66] for diverse values of Prandtl number Pr by taking the angle of inclination A = π/2

and ignoring the parameters α, Pe, Le, Sc, Nb, Nr, Nt, and Rb, The computed results are

presented in Table 4.2 and Table 4.3 and the comparisons are found to be in very good

agreement.

Table 4.1: Convergence of f ′′(ξ, 0) and θ(ξ, 0) by BPSLLM for Pr = 2, Pe = 0.75, Le = 5,
Sc = 2.5, Ri = 1.0, Nb = 0.5, Nt = 0.1, Nr = 0.3, Rb = 0.6, α = 0.1, ξ = 1, A = π/6

Number of grid points Number of grid points f ′′(ξ, 0) θ(ξ, 0)
in η direction in ξ direction

20 20 0.5456057 2.0609942
30 20 0.5456099 2.0609948
30 30 0.5456108 2.0609966
40 30 0.5456108 2.0609966
40 40 0.5456111 2.0609971
50 40 0.5456111 2.0609971
50 50 0.5456111 2.0609972
60 50 0.5456111 2.0609972
60 60 0.5456111 2.0609972
80 60 0.5456111 2.0609972

Table 4.2: Comparative analysis for the values of
√
ReξCfξ by the present method for

α = 0.0, A = π/2, Pe = 10−5, Le = 10−5, Sc = 10−5, Nb = 10−5, Nt = Nr = Rb = 0.0 with
the results of Cebeci and Bradshaw [21], Yih [132], Chamkha et al. [22]

Cebeci and Bradshaw [21] Yih [132] Chamkha et al. [22] Present
0.33206 0.332057 0.332206 0.332066

In this study, special attention is given to analyze the effect of inclination angle A, am-

plitude α, mixed convection parameter Ri, bioconvection Peclet number Pe, bioconvection

Rayleigh number Rb and bioconvection Schmidt number Sc on the coefficient of skin fric-

tion
√
ReξCfξ, Nusselt number Nuξ/

√
Reξ, nanoparticle Sherwood number NShξ/

√
Reξ

and density number of motile microbes Qξ/
√
Reξ. The other parameter values are fixed as

Pr = 2, Le = 5, Nb = 0.5, Nr = 0.3 and Nt = 0.1.
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Table 4.3: Comparative analysis for the values of Nuξ/
√
Reξ by the present method for

α = 0.0, A = π/2, Pe = 10−5, Le = 10−5, Sc = 10−5, Nb = 10−5, Nt = Nr = Rb = 0.0 with
the results of Lin and Lin [66]

Pr Lin and Lin [66] Present
0.01 0.0775587 0.0775601
0.1 0.200655 0.2006412
1 0.458971 0.4589723
10 0.997888 0.9978392
100 2.15196 2.1522064

Figure 4.1 provides the effect of the inclination angle A on the skin friction coefficient,

local Nusselt number, nanoparticle Sherwood number, and density number of motile mi-

croorganisms It is noticed from Figs. 4.1(a) to 4.1(d) that the coefficient of skin friction,

the rate of transfer of heat, nanoparticle mass, and concentration of motile microorganisms

across the boundary are increasing with the rise in the inclination angle. Hence, the transfer

rate of all the physical quantities is more for the vertical surface compared to the horizontal

surface.

The variation of the coefficient of skin friction, heat exchange rate, nanoparticle mass

transmission rate, and density number of motile microbes the amplitude α is presented in

Fig. 4.2. It is seen from Figs. 4.2(a) to 4.2(c) that the heat transfer rate, nanoparticle mass

transfer are increasing first and then decreasing as there is an increment in amplitude over

one period. This change is observed periodically over ξ. It is interesting to note that the

rate of motile microorganisms is decreasing first and then increasing with an increase in the

amplitude of the wavy surface as depicted in Fig. 4.2(d).

The effect of mixed convection parameter Ri on the skin friction, heat transfer rate, motile

microorganism density number, and nanoparticle mass transfer rate is portrayed graphically

in Fig. 4.3. Forced convection is the dominant mode of transport of heat when Ri → 0,

whereas free convection, is the dominant mode when Ri → ∞. The coefficient of skin

friction, local Nusselt number, Local nanoparticle Sherwood number, and density number

of microorganisms are less for forced convection and more for free convection. There is a

decrease of coefficient of skin friction, local Nusselt number, Local nanoparticle Sherwood

number, and Density number of microorganisms with ξ for forced convection, whereas an

increase in the physical quantities is observed for free convection. It is observed that the

coefficient of skin friction, Nusselt number, nanoparticle Sherwood number, and rate of

transfer of density of motile microorganisms are increasing with a rise in the mixed convection
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parameter.

Figure 4.4 shows the effect of bioconvection Peclet number Pe on the coefficient of skin

friction, local Nusselt number, nanoparticle Sherwood number, and density number of motile

microorganisms. It is witnessed from Figs. 4.4(a) to 4.4(d) that the enhancement in Pe

causes a rise in the profiles of the coefficient of skin friction, local Nusselt number, nanopar-

ticle Sherwood number, and density number of motile microorganisms. Increasing values of

the bioconvection Peclet number enhances the movement of microbes along with the concen-

tration of gradients. Hence, an increase of Pe, i.e., an increase of microorganism movements

cause the rise of all dimensionless parameters under consideration.

The impact of bioconvection Rayleigh number Rb in the profiles of local Nusselt number,

nanoparticle Sherwood number, and density number of motile microorganisms is depicted in

Fig. 4.5. It is noticed from Figs. 4.5(a) - 4.5(d) that an increase in bioconvection Rayleigh

number reduces the skin friction, heat transfer rate, motile microorganism density number,

and nanoparticle mass transfer rate. The possible interpretation of Rb = 0 is the absence of

microorganisms from the expression of Rb. Hence, the presence of microorganisms reduces

all the physical quantities under consideration. The movement of the nanoparticles present

in the base fluid is the explanation for this. These nanoparticles move in the fluid arbitrarily,

and the fluid temperature gradually rises.

Figure 4.6 elucidates the influence of bioconvection Schmidt number Sc on the coefficient

of skin friction, Nusselt number, nanoparticle Sherwood number, and rate of transfer of

density of motile microorganisms. It is observed from Figs. 4.6(a) - 4.6(d) that all the

physical quantities are increasing with a rise in bioconvection Schmidt number.

The effect of Nb on the skin friction, heat transfer rate, motile microorganism density

number, and nanoparticle mass transfer rate is presented in Fig. 4.7. It is noticed from Figs.

4.7(a), 4.7(c), 4.7(d) that, the coefficient of skin friction, nanoparticle Sherwood number and

rate of transfer of density of motile microorganisms are increasing with an increase in Nb.

A rise in the values of the Nb results in the fall of the Nusselt number, as portrayed in Fig.

4.7(b).

The influence of thermophoresis parameter on the local heat transfer rate, nanoparticle

mass transfer rate and density number of motile microorganisms is portrayed in Fig. 4.8.

It is noticed from Fig. 4.8(b) that, a rise in the thermophoresis parameter reduces the

rate of heat transfer. Whereas the
√
ReξCfξ, NShξ/

√
Reξ, and Qξ/

√
Reξ are increasing

for intensification in the values of the thermophoresis parameter as presented in the Figs.

4.8(a), 4.8(c) and 4.8(d).
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4.5 Conclusions

In the present chapter, the nanofluid flow past an inclined wavy surface in the existence of

gyrotactic microbes is studied. The solution of the governing equations is attained using a

bivariate pseudo-spectral local linearization technique followed by the Chebyshev collocation

method. The following are the important observations:

• The skin friction coefficient, heat transfer rate, and nanoparticle mass transfer rate,

and density of motile microorganisms are more for the vertical surface compared to

the horizontal surface.

• An increase in the boiconvection Peclet number and bioconvection Schmidt number

enhances the skin friction coefficient, heat transfer rate and nanoparticle mass transfer

rate, and density of motile microorganisms. A reverse trend is noticed for the influence

of bioconvection Rayleigh number.

• The coefficient of skin friction, Nusselt number, nanoparticle Sherwood number, and

rate of transfer of density of motile microorganisms are increasing with a rise in the

mixed convection parameter.

• The influence of Brownian motion and thermophoresis parameters is to increase the

coefficient of skin friction, nanoparticle mass transfer rate, and density of motile or-

ganisms.
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Figure 4.4: “Effect of the bioconvection Peclet number Pe on the profiles of (a) Cfξ(Re
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Figure 4.5: “Effect of the bioconvection Rayleigh number Rb on the profiles of
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Figure 4.6: “Effect of the bioconvection Schmidt number Sc on the profiles of (a)
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Figure 4.7: “Effect of the Brownian motion parameter Nb on the profiles of (a) Cfξ(Re
1/2
ξ )/2
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Figure 4.8: “Effect of the thermophoresis parameter Nt on the profiles of (a) Cfξ(Re
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Chapter 5

Mixed Bioconvection of a Nanofluid

Past an Inclined Wavy Surface in the

presence of Magnetic Field 1

5.1 Introduction

The magnetic field effect on the heat transfer characteristics and fluid flow behaviour of

nanofluids has captured attention due to its several applications in different areas such as

Medicine, Physics, and Engineering. In particular, the applications are in the files of so-

lar technology, electronic device/microchip cooling, fusion reactors, nuclear reactor, crystal

growth, geothermal energy extraction, polymer sheet, metal casting, food processing, man-

ufacturing filaments, and wind up roller, and so on. The phenomenon of mixed convection

in the presence of a magnetic field has also received a lot of attention [80, 27]. In contrast

to traditional heat transfer fluids, the suspension of nanoparticles in a base-fluid exhibits

meritorious heat transfer properties of the nanofluid and thus amplifies the heat transfer

characteristics.

This chapter deals with the study of mixed convection of a nanofluid past an inclined

wavy surface in the presence of gyrotactic microorganisms and magnetic fields. Bivariate

pseudo-spectral local linearisation (BPSLLM) approach is used to solve the partial differen-

tial equations, which govern the flow. The influence of pertinent parameters on the Nusselt

number, nanoparticle Sherwood number, and density number of the microbes are presented.

1Communicated to “Pramana Journal of Physics”
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5.2 Mathematical Formulation

Consider the flow of a nanofluid containing motile microorganisms along a semi-infinite

inclined wavy surface. The physical model of the problem is given in Fig. 2.1. All the

assumptions considered are the same as in Chapter 2. The equations governing the flow are

∂U

∂X
+
∂V

∂Y
= 0 (5.1)

ρf∞

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ µ

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞)

− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)M ] g sinA− σfB2
0(U − U∞) (5.2)

ρf∞

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ µ

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞)

− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)M ] g cosA (5.3)

U
∂T

∂X
+ V

∂T

∂Y
= αm

(
∂2T

∂X2
+
∂2T

∂Y 2

)
+ γ

{
DB

(
∂Φ

∂X

∂T

∂X
+
∂Φ

∂Y

∂T

∂Y

)
+
DT

T∞

[(
∂T

∂X

)2

+

(
∂T

∂Y

)2
]}

+
µ

ρf∞Cpf

{
2

[(
∂U

∂X

)2

+

(
∂V

∂Y

)2
]

+

(
∂U

∂Y
+
∂V

∂X

)2
}

+
σfB

2
0

ρf∞Cpf
(U − U∞)2(5.4)

U
∂Φ

∂X
+ V

∂Φ

∂Y
= DB

(
∂2Φ

∂X2
+
∂2Φ

∂Y 2

)
+
DT

T∞

(
∂2T

∂X2
+
∂2T

∂Y 2

)
(5.5)

U
∂M

∂X
+ V

∂M

∂Y
+

∂

∂X

(
MṼ

)
+

∂

∂Y

(
MṼ

)
= Dn

(
∂2M

∂X2
+
∂2M

∂Y 2

)
(5.6)

where σf , Cpf are the electrical conductivity, the specific heat of the fluid and B2
0 is Magnetic

field strength. The average swimming velocity of the microorganisms’ is Ṽ =
bcwc

Φw − Φ∞

∂Φ

∂Y
.

All other quantities are defined in the previous chapters.

The boundary conditions are :

U = 0, V = 0, T = Tw, Φ = Φw, M = Mw at Y = σ(X)

U → U∞, T → T∞, Φ→ Φ∞, M →M∞ as Y →∞

}
(5.7)
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The wavy surface is converted to a plane surface using the following non-dimensional

transformations [131]

ξ =
X

L
, η =

Y − σ
Lξ

1
2

√
Re, ψ =

LU∞ξ
1
2f(ξ, η)√
Re

, p =
P

ρf∞U2
∞
,

θ(ξ, η) =
T − T∞
Tw − T∞

, φ(ξ, η) =
Φ− Φ∞

Φw − Φ∞
, χ(ξ, η) =

M

Mw

,

 (5.8)

where

Gr =
(1− Φ∞) gβT (Tw − T∞)L3

ν2
and Re =

U∞L

ν

are the Grashof number and Reynolds number. Here ψ is the stream function defined in

2.10 of Chapter2.

Substituting (5.8) in the equations (5.1) to (5.6), and by invoking the boundary layer

approximation, we get the following non-dimensional equations.(
1 + σ2

ξ

)
f ′′′ +

1

2
ff ′′ − ξσξσξξ(

1 + σ2
ξ

)(f ′)
2

+
Ri (θ −Nrφ−Rbχ) ξ

(1 + σξ2)
(sinA+ σξ cosA)

−Ha
2ξ(f ′ − 1)

(1 + σξ2)
= ξ

[
f ′
∂f ′

∂ξ
− ∂f

∂ξ
f ′′
]

(5.9)

(
1 + σ2

ξ

)
Pr

[
θ′′ +Nbφ

′θ′ +Nt(θ
′)
2
]
+

1

2
fθ′+

(
1 + σ2

ξ

)
(f ′′)

2
Ec+J0 (f ′ − 1)

2
ξ = ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
(5.10)(

1 + σ2
ξ

)
Le

[
φ′′ +

Nt

Nb

θ′′
]

+
1

2
fφ′ = ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
(5.11)(

1 + σ2
ξ

)
Sc

χ′′ − Pe

Sc
(1− σξ) (χφ′′ + χ′φ′) +

1

2
fχ′ = ξ

[
f ′
∂χ

∂ξ
− χ′∂f

∂ξ

]
(5.12)

and

f ′(ξ, 0) = 0, f(ξ, 0) = −2ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θ(ξ, 0) = 1, φ(ξ, 0) = 1, χ(ξ, 0) = 1

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0, χ(ξ,∞) = δχ

 (5.13)

The parameters Pr, Pe, Le, Sc, Nb, Nr, Nt, Rb are same as in 2.17 of Chapter 2 and mixed

convection parameter Ri, Eckert number Ec, magnetic induction number Ha, Joule heating
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parameter J0 are defined by

Ri =
Gr

Re2
, Ec =

U2
∞

Cpf (Tw − T∞)
, Ha2 =

σfB
2
0L

ρf∞U∞
, J0 = EcHa2 =

σfB
2
0LU∞

Cpf (Tw − T∞) ρf∞
.

The quantities Nusselt number, nanoparticle Sherwood number, and motile microorgan-

ism density number are studied and their non-dimensional forms are given by

Nuξ

Re
1/2
ξ

= −
√

1 + σ2
ξ θ
′(ξ, 0),

NShξ

Re
1/2
ξ

= −
√

1 + σ2
ξ φ
′(ξ, 0),

Qξ

Re
1/2
ξ

= −
√

1 + σ2
ξ χ
′(ξ, 0)(5.14)

5.3 Method of Solution

The set of equations (5.9) - (5.12) with (5.13) are solved using BPSLLM [82]. By using

this approach, an iteration scheme is obtained by linearizing the non-linear component of

single differential equations about a single dependent variable at a time as explained earlier

Chapter 2.

On implementing this technique to equations (5.9) - (5.12), we obtain

a1,mf
′′′
m+1 + a2,mf

′′
m+1 + a3,mf

′
m+1 + a4,mfm+1 + a5,m

∂f ′m+1

∂ξ
+ a6,m

∂fm+1

∂ξ
= R1,m (5.15)

b1,mθ
′′
m+1 + b2,mθ

′
m+1 + b3,mθm+1 + b4,m

∂θm+1

∂ξ
= R2,m (5.16)

c1,mφ
′′
m+1 + c2,mφ

′
m+1 + c3,mφm+1 + c4,m

∂φm+1

∂ξ
= R3,m (5.17)

d1,mχ
′′
m+1 + d2,mχ

′
m+1 + d3,mχm+1 + d4,m

∂χm+1

∂ξ
= R4,m (5.18)

where the coefficients are

a1,m = 1 + σ2
ξ , a2,m =

1

2
fm + ξ

∂fm
∂ξ

, a3,m = −

[
ξσξσξξ
1 + σ2

ξ

]
2f ′m − ξ

∂f ′m
∂ξ
− Ha2ξ

(1 + σξ2)
,

a4,m =
1

2
f ′′m, a5,m = −ξf ′m, a6,m = ξf ′′m,
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R1,m = ξf ′′m
∂fm
∂ξ
− ξσξσξξ

1 + σ2
ξ

(f ′m)
2

+
1

2
fmf

′′
m − ξf ′m

∂f ′m
∂ξ

,

−Ri (θm −Nr φm −Rb χm) ξ

(1 + σξ2)
(sinA+ σξ cosA)− Ha2ξ

(1 + σξ2)

b1,m =
(1 + σξ

2)

Pr
, b2,m =

1 + σ2
ξ

Pr
Nbφ

′
m +

1 + σ2
ξ

Pr
2Ntθ

′
m +

1

2
fm+1 + ξ

∂fm+1

∂ξ
, b3,m = 0,

b4,m = −ξf ′m+1, R2,m =
1 + σ2

ξ

Pr
Nt(θ

′
m)

2 −
(
1 + σ2

ξ

)
Ec
(
f ′′m+1

)2 − J0ξ (f ′m+1 − 1
)2
,

c1,m =
1 + σ2

ξ

Le
, c2,m =

1

2
fm+1 + ξ

∂fm+1

∂ξ
, c3,m = 0, c4,m = −ξf ′m+1,

R3,m = −
1 + σ2

ξ

Le

Nt

Nb

θ′′m+1, d1,m =
1 + σ2

ξ

Sc
, d2,m =

1

2
fm+1 + ξ

∂fm+1

∂ξ
− (1− σξ)

Pe

Sc
φ′m+1,

d3,m = − (1− σξ)
Pe

Sc
φ′′m+1, d4,m = −ξf ′m+1, R4,m = 0.

and the boundary conditions (5.13) reduce to

f ′m+1(ξ, 0) = 0 , fm+1(ξ, 0) = −2ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θm+1(ξ, 0) = 1,

φm+1(ξ, 0) = 1 , χm+1(ξ, 0) = 1

f ′m+1(ξ,∞) = 1, θm+1(ξ,∞) = 0, φm+1(ξ,∞) = 0, χm+1(ξ,∞) = δχ

 (5.19)

Applying psuedo-spectral method in both η and ξ on equations (5.15) to (5.18), we get

A(1)Fi + γ
(1)
5,i

M∑
j=0

di,jDFj + γ
(1)
6,i

M∑
j=0

di,jFj = R1,i (5.20)

A(2)Θi + γ
(2)
4,i

M∑
j=0

di,jΘj = R2,i (5.21)

A(3)Φi + γ
(3)
4,i

M∑
j=0

di,jΦj = R3,i (5.22)

A(4)χi + γ
(4)
4,i

M∑
j=0

di,jχj = R4,i (5.23)
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where

A(1) = γ
(1)
1,i D

3 + γ
(1)
2,i D

2 + γ
(1)
3,i D + γ

(1)
4,i I,

A(2) = γ
(2)
1,i D

2 + γ
(2)
2,i D + γ

(2)
3,i I,

A(3) = γ
(3)
1,i D

2 + γ
(3)
2,i D + γ

(3)
3,i I,

A(4) = γ
(4)
1,i D

2 + γ
(4)
2,i D + γ

(4)
3,i I

Here γ
(1)
k,i , γ

(2)
k,i , γ

(3)
k,i , γ

(4)
k,i and Rk,i are N th order diagonal matrices with diagonal elements as,

ak,m(ζr, τi), bk,m(ζr, τi), ck,m(ζr, τi), dk,m(ζr, τi) and Rk,m(ζr, τi) for r = 1, 2, 3, · · ·N respec-

tively and I refers the identity matrix.

Equation (5.20) in the form of matrix is

A
(1)
0,0 A

(1)
0,1 A

(1)
0,2 · · · A

(1)
0,M

A
(1)
1,0 A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,M

A
(1)
2,0 A

(1)
2,1 A

(1)
2,2 · · · A

(1)
2,M

...
...

...
...

...

A
(1)
M,0 A

(1)
M,1 A

(1)
M,2 · · · A

(1)
M,M





F0

F1

F2

...

FM


=



R1,0

R1,1

R1,2

...

R1,M


(5.24)

where

A
(1)
i,j = A(1) + γ

(1)
5,i di,iD + γ

(1)
6,i di,iI, for i = j;

A
(1)
i,j = γ

(1)
5,i di,jD + γ

(1)
6,i di,jI, for i 6= j (5.25)

Similarly, (5.21) to (5.23) can also be written in the form of matrix equations. We solve

these equations, iteratively, using suitable initial approximation.

5.4 Computational Results and Discussion

Here, concentration is to examine the effect of inclination angle A, amplitude α, Eckert

number Ec, magnetic induction parameterHa, Joule heating parameter Jo, mixed convection

parameter Ri on Nusselt number Nuξ/(Reξ)
1
2 , nanoparticle Sherwood number NShξ/(Reξ)

1
2

and density number of motile microorganisms’ Qξ/(Reξ)
1
2 .

Figure 5.1 provides the effect of the angle of the wavy surface A on required parameters.

It is clear from the figures 5.1(b) and 5.1(c) that, NShξ/(Reξ)
1
2 and Qξ/(Reξ)

1
2 are increasing
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rapidly against the increase in angle A. But Nuξ/(Reξ)
1
2 , is increasing in the first half of

the channel and decreasing in the second half, against the increase in angle A. This can

be observed in 5.1(a). Hence we can say that the inclinations of the surface also play an

important role in varying the local heat parameter, nanoparticle mass transfer, and density

of motile microorganisms.

The parameters Nuξ/(Reξ)
1
2 , NShξ/(Reξ)

1
2 and Qξ/(Reξ)

1
2 behave typically with respect

amplitude of the wavy surface α, which we can observe in figures 5.2(a) to 5.2(c). As there

is an increment in amplitude, we found both increasing and decreasing nature in the profiles

based on the parameter ξ. The profiles of Nuξ/(Reξ)
1
2 , NShξ/(Reξ)

1
2 and Qξ/(Reξ)

1
2 are

found to be increasing and decreasing nature for an increase in α. Also we found overall

raise in NShξ/(Reξ)
1
2 and Qξ/(Reξ)

1
2 and overall fall in Nuξ/(Reξ)

1
2 , when we move across

the channel from left to right. This concludes in general that, increasing the wave amplitude

roughens the surface more.

The effect of Eckert number Ec on Nuξ/(Reξ)
1
2 , NShξ/(Reξ)

1
2 and Qξ/(Reξ)

1
2 is spotted

in figure 5.3. It is found from the figures 5.3(b) - 5.3(c) that, the parameters NShξ/(Reξ)
1
2

and Qξ/(Reξ)
1
2 are increasing with an increase in Ec and an raise in the values of Ec results

in the decrease of Nuξ/(Reξ)
1
2 as depicted in figure 5.3(a).

The variation of Nuξ/(Reξ)
1
2 , NShξ/(Reξ)

1
2 and Qξ/(Reξ)

1
2 for different values of mag-

netic induction Ha is displayed in figure 5.4. The figures 5.4(b) and 5.4(c) shows that increase

in the values of magnetic induction results in an increase in NShξ/(Reξ)
1
2 and Qξ/(Reξ)

1
2 .

But, when there is a raise in the values of magnetic induction, Nuξ/(Reξ)
1
2 falls down as

observed in Fig. 5.4(a).

The influence of Joule heating parameter Jo is represented in figures 5.5(a) - 5.5(c).

It is observed that the amplification of Joule heating parameter concludes in shrinkage of

dimensionless parameter given by Nuξ/(Reξ)
1
2 and raise in NShξ/(Reξ)

1
2 , Qξ/(Reξ)

1
2 .

The effect of mixed convection parameterRi onNuξ/(Reξ)
1
2 , NShξ/(Reξ)

1
2 andQξ/(Reξ)

1
2

is depicted graphically in figure 5.6. It is found that, the parameter Nuξ/(Reξ)
1
2 is de-

creasing for a raise in mixed convection parameter Ri. It is observed that the parameters

NShξ/(Reξ)
1
2 , Qξ/(Reξ)

1
2 are rising in anticipation of a rise in the mixed convection param-

eter Ri
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5.5 Conclusions

In this chapter, a theoretical model for mixed convection of a nanofluid past an inclined wavy

surface in the presence of gyrotactic microorganisms and the magnetic field is presented. The

bivariate pseudo-spectral local linearization method along with the Chebyshev collocation

method is used to solve the nonlinear ordinary differential equations with given boundary

conditions. The following are the key findings:

• An increase in the wave amplitude α gives overall raise in nanoparticle mass transfer

rate NShξ/(Reξ)
1
2 and density of motile microorganisms Qξ/(Reξ)

1
2 .

• The nanoparticle mass transfer rate NShξ/(Reξ)
1
2 and the density of motile microor-

ganisms Qξ/(Reξ)
1
2 are increasing, for all parameters under consideration.

• The effect of Eckert number decreases the local heat parameter Nuξ/(Reξ)
1
2 and in-

creases NShξ/(Reξ)
1
2 , Qξ/(Reξ)

1
2 .

• A decrease in heat transfer rate Nuξ/(Reξ)
1
2 is observed for an increase in magnetic

induction.

• The Joule heating parameter influences for a raise in NShξ/(Reξ)
1
2 , Qξ/(Reξ)

1
2 and

fall in Nuξ/(Reξ)
1
2 .
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Chapter 6

Effect of variable properties on the

Bioconvection in the Flow of

Nanofluid over an Inclined Wavy

Surface 1

6.1 Introduction

The characteristics of fluids, such as viscosity and thermal conductivity, are well known to

change with temperature. The intensification in temperature speeds up the transport phe-

nomena by decreasing viscosity all over the thermal boundary layer, which influences the

rate of heat and mass transfer. Heydari and Shokouhmand [45] studied the variable fluid

properties along with nanoparticles through micro-annulus on nanofluid flow and heat trans-

fer. Hayat et al. [44] discussed the influence of changeable thermal conductivity on the mixed

convective flow past a cylinder in a viscoelastic nanofluid in the presence of heat source/sink.

Nanofluid bioconvection with variable thermophysical properties was studied by Siddiqa et al.

[15] for the geometry of uniformly heated vertical cone. Animasaun et al. [9] investigated the

effect of radiation along with variable thermal conductivity and viscosity on the free convec-

tive over a moving porous vertical semi-infinite plate. Srinivasacharya et al. [116] examined

the consequence of thermophoresis and variable fluid properties on the convection over a

sinusoidal surface in a porous medium. Mjankwi et al. et al. [77] examined the unsteady

1Communicated to “Computational Thermal Sciences”
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magnetohydrodynamics flow of a nanofluid in the presence of chemical reaction and thermal

radiation over an inclined stretching sheet with variable fluid properties. The study of Vis-

cosity depending on the temperature of magnetohydrodynamics nanofluid flow past porous

plate has been done by Shahid et al. [106]. Hussain et al. [48] discussed variable viscosity,

thermal conductivity effect on the slip flow, and heat transfer of nanofluids over a porous

plate. Nandal and Bhargava [85] discussed convectively heated inclined plate in a nanofluid

for variable fluid properties and magnetic field. Several researchers [105, 10, 68, 107, 6] also

discussed temperature-dependent viscosity and temperature-dependent thermal conductiv-

ity for different geometries and in different conditions in nanofluids. Amirsom et al. [7]

studied the impact of melting, dissipation, and magnetic field on the nanofluid bioconvec-

tion with variable thermophysical properties and second-order slip. Natural convection with

heat transfer improvement and variable viscosity using hybrid nanofluids was discussed by

Manjunatha et al. [69]. Haddad et al. [41] analyzed the significance of Brownian motion and

thermophoresis effects in nanofluid heat transfer enrichment.

In this chapter, we considered the effect of variable properties on the bioconvection in a

nanofluid flow past an inclined wavy surface. The influence of pertinent parameters on the

Nusselt number, nanoparticle Sherwood number, and density number of the microbes are

examined.

6.2 Mathematical Formulation

Consider the incompressible, steady, and laminar flow of a nanofluid consisting of motile

microorganisms over an inclined wavy surface. The physical model and coordinate system

are shown in Fig. 2.1

The equations governing the flow [90, 19] considered are

∂U

∂X
+
∂V

∂Y
= 0 (6.1)

ρf∞

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ 2

∂

∂X

(
µ(T )

∂U

∂X

)
+ 2

∂

∂Y

(
µ(T )

[
∂U

∂Y
+
∂V

∂X

])
+ [(1− Φ∞) βTρf∞ (T − T∞)− (ρp − ρf∞) (Φ− Φ∞)− βM(ρm − ρf∞)M ] gSinA (6.2)
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ρf∞

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ 2

∂

∂X

(
µ(T )

[
∂U

∂Y
+
∂V

∂X

])
+ 2

∂

∂Y

(
µ(T )

∂V

∂Y

)
+ [(1− Φ∞) βTρf∞ (T − T∞)− (ρp − ρf∞) (Φ− Φ∞)− βM(ρm − ρf∞)M ] gCosA (6.3)

(ρc)f

(
U
∂T

∂X
+ V

∂T

∂Y

)
=

∂

∂X

(
k(T )

∂T

∂X

)
+

∂

∂Y

(
k(T )

∂T

∂Y

)
+ (ρc)p

{
DB

(
∂Φ

∂X

∂T

∂X
+
∂Φ

∂Y

∂T

∂Y

)
+
DT

T∞

[(
∂T

∂X

)2

+

(
∂T

∂Y

)2
]}

(6.4)

U
∂Φ

∂X
+ V

∂Φ

∂Y
= DB

(
∂2Φ

∂X2
+
∂2Φ

∂Y 2

)
+
DT

T∞

(
∂2T

∂X2
+
∂2T

∂Y 2

)
(6.5)

U
∂M

∂X
+ V

∂M

∂Y
+

∂

∂X

(
MṼ

)
+

∂

∂Y

(
MṼ

)
= Dn

(
∂2M

∂X2
+
∂2M

∂Y 2

)
(6.6)

Here, the average swimming velocity of microorganism is Ṽ =
bcwc

Φw − Φ∞

∂Φ

∂Y
. The viscosity

µ, the thermal conductivity k are considered as linear functions of temperature [14] given by

µ(T ) = µ∞ [1 + A(Tw − T )] and k(T ) = k0 [1 +B(T − T∞)] (6.7)

where µ∞ is the absolute viscosity of the fluid, k0 is the thermal conductivity and A and B

are constants. All other quantities are defined in previous Chapters.

The associated conditions on the boundary are :

U = 0, V = 0, T = Tw, Φ = Φw, M = Mw atY = σ(X)

U → 0, T → T∞, Φ→ Φ∞, M →M∞ as Y →∞

}
(6.8)

The irregular wavy surface is converted to a plane surface using the following transformations

[131]

ξ =
X

L
, η =

Y − σ
Lξ

1
4

Gr
1
4 , ψ =

µ∞Gr
1
2 ξ

3
4

ρf∞
f(ξ, η), p =

PL2Gr−1

ρf∞ν2
,

θ(ξ, η) =
T − T∞
Tw − T∞

, φ(ξ, η) =
Φ− Φ∞

Φw − Φ∞
, χ(ξ, η) =

M

Mw

 (6.9)

where

Gr =
(1− Φ∞) gβT (Tw − T∞)L3

ν2

is the Grashof number. Here the stream function ψ is same as in 2.10 of Chapter2.
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The non-dimensional form of Eq. (6.7) is

µ(θ) = µ∞ [1 + ε(1− θ)] and k(θ) = k0 [1 + βθ] (6.10)

where ε = A(Tw − T∞) and β = B(Tw − T∞) are the temperature dependent viscosity and

thermal conductivity parameters.

Substituting Eq. (6.9) in the governing equations (6.1) to (6.6) and invoking the boundary

layer approximation, we get,

(
1 + σ2

ξ

)
([1 + ε(1− θ)]f ′′′ − εθ′f ′′) +

3

4
ff ′′ −

[
1

2
+

ξσξσξξ(
1 + σ2

ξ

)] (f ′)
2

+
(θ −Nrφ−Rbχ)(

1 + σ2
ξ

) (sinA+ σξ cosA) = ξ

[
f
′ ∂f ′

∂ξ
− ∂f

∂ξ
f ′′
]

(6.11)

(
1 + σ2

ξ

)
Pr

[
(1 + βθ)θ′′ + β(θ′)

2
+Nbφ

′θ′ +Nt(θ
′)
2
]

+
3

4
fθ′ = ξ

[
f
′ ∂θ

∂ξ
− θ′∂f

∂ξ

]
(6.12)(

1 + σ2
ξ

)
Le

[
φ′′ +

Nt

Nb

θ′′
]

+
3

4
fφ′ = ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
(6.13)(

1 + σ2
ξ

)
Sc

χ′′ − Pe

Sc
(1− σξ) (χφ′′ + χ′φ′) +

3

4
fχ′ = ξ

[
f ′
∂χ

∂ξ
− χ′∂f

∂ξ

]
(6.14)

and

f ′(ξ, 0) = 0, f( ξ, 0) = −4

3
ξ
∂f

∂ξ

∣∣∣∣
( ξ, 0)

, θ ( ξ, 0) = φ ( ξ, 0) = χ ( ξ, 0) = 1

f ′ ( ξ, ∞) = 0, θ ( ξ, ∞) = 0, φ ( ξ, ∞) = 0, χ ( ξ, ∞) = δχ

 (6.15)

The parameters Pr, Pe, Sc, Le, Nb, Nr, Nt, Rb are same as in 2.17 of Chapter 2.

The non-dimensional form of the coefficient of skin friction, Nusselt number, nanoparticle

mass transfer rate, and density number of motile microbe are given in 2.19 of Chapter 2.

6.3 Method of Solution

The set of equations (6.11) - (6.15) is solved using the BPSLLM [82]. By using this approach,

an iteration scheme is obtained by linearizing the non-linear component of single differential

equations about a single dependent variable at a time, as we saw in chapter 2.
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On implementing this technique to equations (6.11) - (6.14), we obtain

a1,mf
′′′

m+1 + a2,mf
′′

m+1 + a3,mf
′

m+1 + a4,mfm+1 + a5,m
∂f
′
m+1

∂ξ
+ a6,m

∂fm+1

∂ξ
= R1,m (6.16)

b1,mθ
′′

m+1 + b2,mθ
′

m+1 + b3,mθm+1 + b4,m
∂θm+1

∂ξ
= R2,m (6.17)

c1,mφ
′′

m+1 + c2,mφ
′

m+1 + c3,m
∂φm+1

∂ξ
= R3,m (6.18)

d1,mχ
′′

m+1 + d2,mχ
′

m+1 + d3,mχm+1 + d4,m
∂χm+1

∂ξ
= R4,m (6.19)

where the coefficients are

a1,m = [1 + ε(1− θm)]
(
1 + σ2

ξ

)
, a2,m = −ε

(
1 + σ2

ξ

)
θ′m +

3

4
fm + ξ

∂fm
∂ξ

,

a3,m = −2

[
1

2
+
ξσξσξξ
1 + σ2

ξ

]
f ′m − ξ

∂f ′m
∂ξ

, a4,m =
3

4
f ′′m, a5,m = −ξf ′r, a6,m = ξf ′′r ,

R1,m = ξf ′′m
∂fm
∂ξ
−

[
1

2
+
ξσξσξξ
1 + σ2

ξ

]
(f ′m)

2
+

3

4
fmf

′′
m − ξf ′m

∂f ′m
∂ξ

−(θm −Nr φm −Rb χm)

(1 + σξ2)
(sinA+ σξ cosA)

b1,m =
(1 + βθm) (1 + σξ

2)

Pr
, b2,m =

(1 + σ2
ξ )

Pr
Nbφ

′
m +

2(1 + σ2
ξ )(β +Nt)

Pr
θ′m +

3

4
fm+1 + ξ

∂fm+1

∂ξ
,

b3,m =
β(1 + σ2

ξ )

Pr
θ′′r , b4,m = −ξf ′m+1,

R2,m =
(1 + σ2

ξ )(β +Nt)

Pr
(θ′m)

2
+
β(1 + σ2

ξ )

Pr
θ′′mθm

c1,m =
1 + σ2

ξ

Le
, c2,m =

3

4
fm+1 + ξ

∂fm+1

∂ξ
, c3,m = −ξf ′m+1,

R3,m = −
(1 + σ2

ξ )

Le

Nt

Nb

θ′′m+1,

d1,m =
1 + σ2

ξ

Sc
, d2,m =

3

4
fm+1 + ξ

∂fm+1

∂ξ
− (1− σξ)

Pe

Sc
φ′m+1,

d3,m = − (1− σξ)
Pe

Sc
φ′′m+1, d4,m = −ξf ′m+1, R4,m = 0
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The conditions on the boundary are

f ′m+1(ξ, 0) = 0 , fm+1(ξ, 0) = −4

3
ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θm+1(ξ, 0) = 1,

φm+1(ξ, 0) = 1 , χm+1(ξ, 0) = 1

f ′m+1(ξ,∞) = 0, θm+1(ξ,∞) = 0, φm+1(ξ,∞) = 0, χm+1(ξ,∞) = δχ

 (6.20)

The set of linearized equations (6.16) to (6.19) is solved by applying bivariate Chebyshev

spectral collocation method [20]. Implementing this method in both η and ξ directions, we

get

A(1)Fi + γ
(1)
5,i

M∑
j=0

di,jDFj + γ
(1)
6,i

M∑
j=0

di,jFj = R1,i (6.21)

A(2)Θi + γ
(2)
4,i

M∑
j=0

di,jΘj = R2,i (6.22)

A(3)Φi + γ
(3)
3,i

M∑
j=0

di,jΦj = R3,i (6.23)

A(4)χi + γ
(4)
4,i

M∑
j=0

di,jχj = R4,i (6.24)

where

A(1) = γ
(1)
1,i D

3 + γ
(1)
2,i D

2 + γ
(1)
3,i D + γ

(1)
4,i I,

A(2) = γ
(2)
1,i D

2 + γ
(2)
2,i D + γ

(2)
3,i I,

A(3) = γ
(3)
1,i D

2 + γ
(3)
2,i D,

A(4) = γ
(4)
1,i D

2 + γ
(4)
2,i D + γ

(4)
3,i I

Here γ
(1)
k,i , γ

(2)
k,i , γ

(3)
k,i , γ

(4)
k,i and Rk,i are N th order diagonal matrices with diagonal elements as,

ak,m(ζr, τi), bk,m(ζr, τi), ck,m(ζr, τi), dk,m(ζr, τi) and Rk,m(ζr, τi) for r = 1, 2, 3, · · ·N respec-

tively and I refers the identity matrix.
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The equation (6.21) written in matrix form as

A
(1)
0,0 A

(1)
0,1 A

(1)
0,2 · · · A

(1)
0,M

A
(1)
1,0 A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,M

A
(1)
2,0 A

(1)
2,1 A

(1)
2,2 · · · A

(1)
2,M

...
...

... · · · ...

A
(1)
M,0 A

(1)
M,1 A

(1)
M,2 · · · A

(1)
M,M





F0

F1

F2

...

FM


=



R1,0

R1,1

R1,2

...

R1,M


(6.25)

where

A
(1)
i,j = A(1) + γ

(1)
5,rdi,iD + γ

(1)
6,rdi,iI, for i = j;

A
(1)
i,j = γ

(1)
5,rdi,jD + γ

(1)
6,rdi,jI, for i 6= j (6.26)

In a similar manner, the equations (6.22) to (6.24) can be written in matrix form. Solving

these matrix equations, iteratively, we obtain the solution to (6.11) - (6.15).

6.4 Computational Results and Discussion

To validate the method accuracy, the code developed is tested by comparing the existing

numerical values of the coefficients of skin friction and rate of heat transfer with the published

results of Hossain et al. [46] for diverse values of Prandtl number Pr by taking inclination

angle A = π/2, the wavy surface amplitude α = 0.01, and ignoring the parameters Pe, Le,

Sc, Nb, Nr, Nt, Rb, β, ε and δχ. The computed results are demonstrated in Table 6.1. It

is perceived from Table 6.1 that our results are matching with the results of Hossain et al.

[46].

Table 6.1: Comparative analysis for the values of f ′′(x, 0) and −θ′(x, 0) by the present
method for Pe = 10−5, Le = 10−5, Sc = 10−5, Nb = 10−5, Nt = 0.0, Nr = 0.0, Rb = 0.0,
α = 0.01, A = π/2, δχ = 0.0, β = 0.0, ε = 0.0 with the results of Hossain et al. [46]

f ′′(x, 0) −θ′(x, 0)
Pr Present Hossain et al. [46] Present Hossain et al. [46]

1. 0 0.907109 0.908 0.400750 0.401
10.0 0.591821 0.591 0.825911 0.825
25.0 0.486460 0.485 1.067343 1.066
50.0 0.416407 0.485 1.287233 1.066
100.0 0.354761 0.352 1.546196 1.542
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The focus of this investigation is to analyse the effect of bioconvection Peclet number

Pe, bioconvection Rayleigh number Rb, inclination angle A, amplitude of the wavy surface

α, Browninan motion parameter Nb, Thermophoresis parameter Nt, bioconvection Schmidt

number Sc, variable viscosity parameter ε, variable thermal conductivity parameter β, on

coefficient of skin friction Cfξ(Grξ)
1
4 , Nusselt number Nuξ/(Grξ)

1
4 , nanoparticle Sherwood

number NShξ/(Grξ)
1
4 and density number of motile microbes Qξ/(Grξ)

1
4 . All the Numerical

computations are carried out by assigning Pr = 10.0, Pe = 2.0, Le = 5.0, A = π/4,

Nb = 0.05, Nr = 0.03, Nt = 0.01, Rb = 0.05, Sc = 2.0, α = 0.01, δχ = 0.01, β = 0.1, and

ε = 0.1 unless otherwise mentioned.

The variation of non-dimensional skin friction coefficient, local Nusselt number, nanopar-

ticle Sherwood number, and density number of motile microorganisms for distinct values of

bioconvection Peclet number Pe is displayed in Fig. 6.1. An increase in the bioconvec-

tion Peclet number increases all the physical quantities under consideration as shown in the

graphs. The bioconvection Peclet number is the ratio of the characteristic velocity due to gy-

rotactic swimming to a characteristic velocity due to random diffusive swimming. Since the

microorganisms are heavier than water, their up-swimming creates unstable density stratifi-

cation. Pe helps to intensify the speed of the microorganisms in the fluid and so the density

number of the microorganisms is enhanced at the wavy surface.

The impact of Rb, bioconvection Rayleigh number on the coefficient of skin friction, lo-

cal heat transfer rate, local nanoparticle mass transfer rate and local motile microorganism

density number is presented in Figs. 6.2(a) - 6.2(d). It is noticed that, as the bioconvec-

tion Rayleigh number rises, the physical quantities Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 , NShξ/(Grξ)

1
4

and Qξ/(Grξ)
1
4 decrease. The movement of the nanoparticles present in the base fluid is

the explanation for this. These nanoparticles moves in the fluid arbitrarily, and the fluid

temperature gradually rises.

Figure 6.3 presents the effect of the angle of the inclination A on Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 ,

NShξ/(Grξ)
1
4 and Qξ/(Grξ)

1
4 . The skin friction coefficient, local Nusselt number, nanopar-

ticle Sherwood number and density number of motile microorganism are increasing as the

inclination angle A increase. As a result, on a vertical wavy surface, all physical quantities

are greater than on a horizontal wavy surface.

Figure 6.4 presents the variation of the coefficient of skin friction, local heat transfer

rate, local nanoparticle mass transfer rate, and local motile microorganism density number

for the amplitude of the wavy surface α. As ξ rises, it is discovered that the profiles have

both an increasing and decreasing nature. For an increase in α, the profiles of Cfξ(Grξ)
1
4 ,
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Nuξ/(Grξ)
1
4 , NShξ/(Grξ)

1
4 and Qξ/(Grξ)

1
4 are found to be increasing.

The effect of Nb, Brownian motion parameter, on the skin friction coefficient, local Nus-

selt number, nanoparticle Sherwood number and density number of motile microorganism is

depicted in figure 6.5. It is noticed from the figures 6.5(a), 6.5(c), 6.5(d) that, Cfξ(Grξ)
1
4 ,

NShξ/(Grξ)
1
4 and Qξ/(Grξ)

1
4 are increasing with increase in Brownian motion parameter.

This is because, when the Browninan motion increases, there is a raise in the thermal bound-

ary layer thickness, therefore results for the reduced nanoparticle concentration. An improve-

ment in the values of the Brownian motion parameter results in the decrease of Nuξ/(Grξ)
1
4

as shown in figure 6.5(b).

The impact of the thermophoresis parameter Nt, which can be perceived in figures 6.6(a)

to 6.6(d). One can identify from these figures that, for a rise in the thermophoresis pa-

rameter, the physical quantities Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 , NShξ/(Grξ)

1
4 and Qξ/(Grξ)

1
4 are

decreasing.

Figure 6.7 represents the effect of the bioconvection Schmidt number Sc, on the coefficient

of skin friction, local heat transfer rate, local nanoparticle mass transfer rate, and local

motile microorganism density number. It is observed from figures 6.7(a) to 6.7(d), that

the physical quantities rise, for a rise in bioconvection Schmidt number. Physically this is

because the bioconvection Schmidt number rises, the viscous diffusion rate enhances which

in turn decreases the dimensionless velocity and consequently increases the density number

of the microorganisms.

Figure 6.8 demonstrates the effect of the variable viscosity parameter ε on the skin friction

coefficient, local Nusselt number, nanoparticle Sherwood number, and density number of

motile microorganisms. It is noticed that the effect variable viscosity parameter on the

coefficient of skin friction is marginal. A close observation of Fig. 6.8(a) reveals that the

skin friction coefficient is increasing with a rise in ε. Further, the profiles of local Nusselt

number, nanoparticle Sherwood number, and density number of motile microorganisms are

found to be decreasing with an increase in ε.

The influence of variable thermal conductivity parameter β on the coefficient of skin

friction, local heat transfer rate, local nanoparticle mass transfer rate and local motile mi-

croorganism density number is demonstrated in figure 6.9. It is depicted that these quantities

Cfξ(Grξ)
1
4 , NShξ/(Grξ)

1
4 and Qξ/(Grξ)

1
4 are increasing for an increase in the thermal con-

ductivity parameter β and the parameter Nuξ/(Grξ)
1
4 , is decreasing for an rise in the variable

thermal conductivity parameter β.
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The variation of physical quantities with the microorganism slip parameter δχ is de-

picted in figure 6.10. It is found that not much variation or tiny variation in the profiles

of Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 , NShξ/(Grξ)

1
4 is observed. An increase in the parameter δχ,

decreases the coefficient of skin friction, local heat transfer rate, local nanoparticle mass

transfer rate and local motile microorganism density number.

6.5 Conclusions

In this chapter, an analysis is presented to study the nanofluid flow over an inclined si-

nusoidal surface with natural convection in the existence of gyrotactic microorganisms with

variable properties. The nonlinear equations are linearized employing local linearization pro-

cedure and the resultant system is solved by a bivariate pseudo-spectral collocation method.

Important observations are itemized below:

• An increase in the bioconvection Peclet number and bioconvection Schmidt number

enhances the skin friction coefficient, heat transfer rate and nanoparticle mass transfer

rate, and density of motile microorganisms. A reverse trend is noticed for the influence

of bioconvection Rayleigh number.

• The influence of Brownian motion parameter is to increase and thermophoresis is to

decrease the coefficient of skin friction, nanoparticle mass transfer rate, and density of

motile organisms.

• The heat transfer rate, nanoparticle mass transfer rate, and motile microorganism

density number are decreasing whereas the skin friction coefficient is not affected by

an increase in the variable viscosity parameter.

• An increase in variable thermal conductivity parameter increases the skin friction co-

efficient, nanoparticle Sherwood number, and density number of motile microorganism

whereas decreases the Nusselt number.
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Chapter 7

Bioconvection of Nanofluid flow Past

an Inclined Wavy Surface with

Activation Energy 1

7.1 Introduction

Several researchers included activation energy components in their models to study their

effect on flow and heat transfer. Dhlamini et al. , [34] found that the activation energy

increases the concentration of the chemical species in the boundary layer. Ijaz Khan et al. [50]

reported that the activation energy parameter has a direct relation with the concentration

of fluid. Ijaz [49] observed that the nanoparticle concentration is directly proportional to the

chemical reaction with activation energy. Khan et al. [60] studied the natural bioconvective

flow of Sisko nanofluid subject to gyrotactic microorganisms and activation energy. Ahmad

et al. [3] studied activation energy and its effects on hybrid nanofluid in the presence of

Hall and ion slip currents. Chu et al. [29] the significance of activation energy on the

bioconvection and magnetohydrodynamic flow of non-Newtonian fluid using the Buongiorno

model. Bhatti et al. [17] investigated the effect of activation energy on the flow of gyrotactic

microorganisms in magnetized nanofluids past a porous plate. Sajid et al. [103] analysed the

effect of activation energy on the Maxwell Darcy-Forchheimer nanofluid flow in the presence

of nonlinear thermal radiation.

This chapter analyses the natural convection of nanofluid flow past an inclined wavy

1Communicated to “International Journal of Engineering Systems Modelling and Simulation”
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surface in the presence of gyrotactic microorganisms with activation energy. The equations

of the flow are non-dimensionalized and then solved using the bivariate pseudo-spectral local

linearization method (BPSLLM). The influence of pertinent parameters on the heat transfer

rate, nanoparticle mass transfer rate, and density number of the microbes are examined.

7.2 Mathematical Formulation

Consider an incompressible, steady, and laminar flow of a nanofluid containing motile mi-

croorganisms along an inclined wavy surface. The physical model and coordinate system

are shown in Fig. 2.1. Here, in this chapter, the activation energy is incorporated into the

model for its detailed study.

The equations governing the flow are

∂U

∂X
+
∂V

∂Y
= 0 (7.1)

ρf∞

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ µ

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞)

− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)M ] g sinA (7.2)

ρf∞

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ µ

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ [(1− Φ∞)βTρf∞(T − T∞)

− (ρp − ρf∞)(Φ− Φ∞)− βM(ρm − ρf∞)M ] g cosA (7.3)

U
∂T

∂X
+ V

∂T

∂Y
= αm

(
∂2T

∂X2
+
∂2T

∂Y 2

)
+ γ

{
DB

(
∂Φ

∂X

∂T

∂X
+
∂Φ

∂Y

∂T

∂Y

)
+
DT

T∞

[(
∂T

∂X

)2

+

(
∂T

∂Y

)2
]}

(7.4)

U
∂Φ

∂X
+ V

∂Φ

∂Y
= DB

(
∂2Φ

∂X2
+
∂2Φ

∂Y 2

)
+
DT

T∞

(
∂2T

∂X2
+
∂2T

∂Y 2

)
−k20 (Φ− Φ∞)

(
T

T∞

)n
e−

Ea
κT (7.5)
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U
∂M

∂X
+ V

∂M

∂Y
+

∂

∂X

(
MṼ

)
+

∂

∂Y

(
MṼ

)
= Dn

(
∂2M

∂X2
+
∂2M

∂Y 2

)
(7.6)

where k20 is the chemical reaction rate, κ is the Boltzman constant, and Ea is the co-

effincient of activation energy. The whole expression k20 (Φ− Φ∞)
(

T
T∞

)n
e−

Ea
κT is known as

modified Arrhenius equation. The average swimming velocity vector of microorganism is

Ṽ =
bcwc

Φw − Φ∞

∂Φ

∂Y
. All other quantities are defined in Chapter 2.

The associated boundary conditions are :

U = 0, V = 0, T = Tw, Φ = Φw, M = Mw atY = σ(X)

U → 0, T → T∞, Φ→ Φ∞, M →M∞ as Y →∞

}
(7.7)

The irregular wavy surface is transformed to a flat surface, using the following transforma-

tions ([131])

ξ =
X

L
, η =

Y − σ
Lξ

1
4

Gr
1
4 , ψ =

µGr
1
2 ξ

3
4

ρf∞
f(ξ, η), p =

PL2Gr−1

ρf∞ν2
,

θ(ξ, η) =
T − T∞
Tw − T∞

, φ(ξ, η) =
Φ− Φ∞

Φw − Φ∞
, χ(ξ, η) =

M

Mw

 (7.8)

where

Gr =
(1− Φ∞) gβT (Tw − T∞)L3

ν2

is the Grashof number. Here the stream function ψ is same as in 2.10 of Chapter2.

Substituting Eq. (7.8) in the governing equations (7.1) to (7.6) and invoking the boundary

layer approximation, we get the following non-dimensional equations.

(
1 + σ2

ξ

)
f ′′′ +

3

4
ff ′′ −

[
1

2
+

ξσξσξξ(
1 + σ2

ξ

)] (f ′)
2

+
(θ −Nrφ−Rbχ)(

1 + σ2
ξ

) (SinA+ σξCosA) = ξ

[
f ′
∂f ′

∂ξ
− ∂f

∂ξ
f ′′
]

(7.9)

(
1 + σ2

ξ

)
Pr

[
θ′′ +Nt(θ

′)
2

+Nbφ
′θ′
]

+
3

4
fθ′ = ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
(7.10)(

1 + σ2
ξ

)
Le

[
φ′′ +

Nt

Nb

θ′′
]

+
3

4
fφ′ − δ1φξ

1
2 (1 + δθ)ne−

ε
1+δθ = ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
(7.11)(

1 + σ2
ξ

)
Sc

χ′′ − Pe

Sc
(1− σξ) (χφ′′ + χ′φ′) +

3

4
fχ′ = ξ

[
f ′
∂χ

∂ξ
− χ′∂f

∂ξ

]
(7.12)
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and

f ′(ξ, 0) = 0, f(ξ, 0) = −4

3
ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θ′(ξ, 0) = φ′(ξ, 0) = χ′(ξ, 0) = 1

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0, χ(ξ,∞) = M∞
Mw

= δχ

 (7.13)

The parameters Pr, Pe, Le, Sc, Nb, Nr, Nt, Rb are same as in 2.17 of Chapter 2 and

activation energy parameter E, temperature relative parameter δ, reaction rate parameter

δ1 are defined by

E =
Ea

κT∞
, δ =

Tw − T∞
T∞

, δ1 =
k20L

2

ν
Gr−

1
2 (7.14)

The non-dimensional form of the coefficient of skin friction, Nusselt number, nanoparticle

mass transfer rate, and density number of motile microbe are defined in 2.19 of Chapter 2.

7.3 Method of Solution

The set of equations (7.9) - (7.13) is solved using the BPSLLM [82]. On applying BPSLLM

to all the equations (7.9) - (7.12), we get the following system of linear differential equations.

a1,mf
′′′
m+1 + a2,mf

′′
m+1 + a3,mf

′
m+1 + a4,mfm+1 + a5,m

∂f ′m+1

∂ξ
+ a6,m

∂fm+1

∂ξ
= R1,m (7.15)

b1,mθ
′′
m+1 + b2,mθ

′
m+1 + b3,m

∂θm+1

∂ξ
= R2,m (7.16)

c1,mφ
′′
m+1 + c2,mφ

′
m+1 + c3,mφm+1 + c4,m

∂φm+1

∂ξ
= R3,m (7.17)

d1,mχ
′′
m+1 + d2,mχ

′
m+1 + d3,mχm+1 + d4,m

∂χm+1

∂ξ
= R4,m (7.18)

where the coefficients are

a1,m = 1 + σ2
ξ , a2,m =

3

4
fm + ξ

∂fm
∂ξ

,

a3,m = −2

[
1

2
+
ξσξσξξ
1 + σ2

ξ

]
f ′m − ξ

∂f ′m
∂ξ

, a4,m =
3

4
f ′′m, a5,m = −ξf ′r, a6,m = ξf ′′r

R1,m = ξf ′′m
∂fm
∂ξ
−

[
1

2
+
ξσξσξξ
1 + σ2

ξ

]
(f ′m)

2
+

3

4
fmf

′′
m − ξf ′m

∂f ′m
∂ξ

−(θm −Nrφm −Rbχm)(
1 + σ2

ξ

) (SinA+ σξCosA)
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b1,m =
(1 + σξ

2)

Pr
, b2,m =

(1 + σ2
ξ )

Pr
Nbφ

′
m +

2(1 + σ2
ξ )

Pr
Ntθ

′
m +

3

4
fm+1 + ξ

∂fm+1

∂ξ
,

b3,m = −ξf ′m+1, R2,m =
(1 + σ2

ξ )Nt

Pr
(θ′m)

2

c1,m =
1 + σ2

ξ

Le
, c2,m =

3

4
fm+1 + ξ

∂fm+1

∂ξ
, c3,m = δ1ξ

1
2 (1 + δθm+1)

n e
−E

1+δθm+1

c4,m = −ξf ′m+1, R3,m = −
(1 + σ2

ξ )

Le

Nt

Nb

θ′′m+1,

d1,m =
1 + σ2

ξ

Sc
, d2,m = −Pe

Sc
(1− σξ)φ′m+1 +

3

4
fm+1 + ξ

∂fm+1

∂ξ
,

d3,m = −Pe
Sc

(1− σξ)φ′′m+1, d4,m = −ξf ′m+1, R4,m = 0.

The boundary conditions are

f ′m+1(ξ, 0) = 0 , fm+1(ξ, 0) = −4

3
ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θm+1(ξ, 0) = 1,

φm+1(ξ, 0) = 1 , χm+1(ξ, 0) = 1

f ′m+1(ξ,∞) = 0, θm+1(ξ,∞) = 0, φm+1(ξ,∞) = 0, χm+1(ξ,∞) = δχ

 (7.19)

Implementing bivariate Chebyshev spectral collocation method [20] to the set of linearized

equations (7.15) to (7.18) in both η and ξ, we get

A(1)Fi + γ
(1)
5,i

M∑
j=0

di,jDFj + γ
(1)
6,i

M∑
j=0

di,jFj = R1,i (7.20)

A(2)Θi + γ
(2)
3,i

M∑
j=0

di,jΘj = R2,i (7.21)

A(3)Φi + γ
(3)
4,i

M∑
j=0

di,jΦj = R3,i (7.22)

A(4)χi + γ
(4)
4,i

M∑
j=0

di,jχj = R4,i (7.23)

where

A(1) = γ
(1)
1,i D

3 + γ
(1)
2,i D

2 + γ
(1)
3,i D + γ

(1)
4,i I,

A(2) = γ
(2)
1,i D

2 + γ
(2)
2,i D,

A(3) = γ
(3)
1,i D

2 + γ
(3)
2,i D + γ

(3)
3,i I,

A(4) = γ
(4)
1,i D

2 + γ
(4)
2,i D + γ

(4)
3,i I
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Here γ
(1)
k,i , γ

(2)
k,i , γ

(3)
k,i , γ

(4)
k,i and Rk,i are N th order diagonal matrices with diagonal elements as,

ak,m(ζr, τi), bk,m(ζr, τi), ck,m(ζr, τi), dk,m(ζr, τi) and Rk,m(ζr, τi) for r = 1, 2, 3, · · ·N respec-

tively and I refers the identity matrix.

The equation (7.20) written in matrix form as

A
(1)
0,0 A

(1)
0,1 A

(1)
0,2 · · · A

(1)
0,M

A
(1)
1,0 A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,M

A
(1)
2,0 A

(1)
2,1 A

(1)
2,2 · · · A

(1)
2,M

...
...

... · · · ...

A
(1)
M,0 A

(1)
M,1 A

(1)
M,2 · · · A

(1)
M,M





F0

F1

F2

...

FM


=



R1,0

R1,1

R1,2

...

R1,M


(7.24)

where

A
(1)
i,j = A(1) + γ

(1)
5,rdi,iD + γ

(1)
6,rdi,iI, for i = j;

A
(1)
i,j = γ

(1)
5,rdi,jD + γ

(1)
6,rdi,jI, for i 6= j (7.25)

In a similar manner, the equations (7.21) to (7.23) can be written in matrix form. Solving

these matrix equations, iteratively, we obtain the solution to (7.9) - (7.13).

The non-dimensional form of the parameters skin friction, Nusselt number, nanoparticle

Sherwood number and density number of motile microbe are given in 4.14 of Chapter 4

7.4 Computational Results and Discussion

In the present study, we focus our discussion on analyzing the bioconvection Peclet num-

ber Pe, inclination angle effect A, amplitude α, bioconvection Schmidt number Sc, activa-

tion energy paramenter E, temperature relative parameter δ, reaction rate parameter δ1,

microorganism slip parameter δχ, fitted rate constant n on the coeffient of skin friction

Cfξ(Grξ)
1
4 , Nusselt number Nuξ/(Grξ)

1
4 , nanoparticle Sherwood number NShξ/(Grξ)

1
4 and

density number of motile microbes Qξ/(Grξ)
1
4 . The values of the other parameters are fixed

as Pr = 10, P e = 2, Le = 5, Sc = 2, Nb = 0.05, Nt = 0.01, Nr = 0.03, α = 0.01, A =

π/4, δχ = 0.01, δ = 0.1, δ1 = 0.1, E = 1, n = 2 and Rb = 0.1 unless otherwise mentioned.

Figure 7.1 refers to the effects of bioconvection Peclet number Pe. It is found that

Nusselt number, nanoparticle Sherwood number and density number of motile microbes are

escalating for a raise in the bioconvection Peclet number Pe, Increase in Bio-convection

119



Peclet number results in increase of movement of particles along concentration of gradients

(The bioconvection Peclet number helps to increase the speed of the microorganisms in

respect of the fluid).

The effect of the angle of the wavy surface A on skin friction coefficient, Nusselt number,

nanoparticle Sherwood number and density number of motile microbes is depicted in Fig. 7.2.

The raise in the angle of inclination increases the coefficient of skin friction Cfξ(Grξ)
1
4 , Nus-

selt number Nuξ/(Grξ)
1
4 , nanoparticle Sherwood number NShξ/(Grξ)

1
4 and density number

of motile microorganisms Qξ/(Grξ)
1
4 . As a result, the transfer rate of all physical quantities

is greater for the vertical surface than for the horizontal surface.

Figure 7.3 elucidates the behaviour of Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 , NShξ/(Grξ)

1
4 , and

Qξ/(Grξ)
1
4 with amplitude of the wavy surface α. For an increase in α, it is found that both

increasing and decreasing nature in the profiles. Also it is observed that overall raise in all

these quantities.

The variation of Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 , NShξ/(Grξ)

1
4 , and Qξ/(Grξ)

1
4 for different

values of bioconvection Schmidt number Sc is presented in Fig. 7.4. It is noticed from this

figure that increase in the value of Sc result in a increase in on all quantitites. The Schmidt

number Sc describes the concentration layer’s thickness in comparison to the momentum

layer. A lower mass diffusivity is associated with a larger Schmidt number Sc. As a result, the

presence of Sc in the motile microorganisms equation alters the microorganisms’ dispersion

regime significantly.

The effect of the activation parameter E on skin friction, Nusselt number, nanoparticle

Sherwood number, and motile microbe density is shown in Figure 7.5. The energy activation

parameter, in general, refers to the amount of energy used to stimulate atoms or molecules

for chemical reactions. In a chemical reaction, there should be a significant number of atoms

whose activation energy is less than or equal to translational energy. For increasing values of

the parameter E, it is seen that solute layer thickness and concentration dispersion increase.

It is examined that a greater value of the activation energy parameter E causes a decrease

in the term e−
Ea

κT̃ , resulting in parameter modification. This can be seen in figures 7.5(a) to

7.5(d).

Figure 7.6 depicts the effect of the temperature relative parameter δ on skin friction,

Nusselt number, nanoparticle Sherwood number and motile microbe density. As the temper-

ature relative parameter increases, the parameters Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 , NShξ/(Grξ)

1
4 ,

and Qξ/(Grξ)
1
4 are decreasing.

120



Figure 7.7 shows the effect of reaction rate parameter δ1, on Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 ,

NShξ/(Grξ)
1
4 , and Qξ/(Grξ)

1
4 . It is observed from figures 7.7(a) to 7.7(d), that the quantities

are raising for a raise in reaction rate δ1.

The influence of δχ, microorganism slip parameter, is potrayed in figures 7.8(a) - 7.8(d).

It is identified that the increase of microorganism slip parameter results in the diminution

of all the dimensionless parameters Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 , NShξ/(Grξ)

1
4 , and Qξ/(Grξ)

1
4 .

Figure 7.9 shows the effect of fitted rate constant n, on Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 ,

NShξ/(Grξ)
1
4 , and Qξ/(Grξ)

1
4 . It is observed from figures 7.9(a) to 7.9(d), that the

quantities are declining, for a raise in fitted rate constant n.

7.5 Conclusions

In this chapter, an analysis is presented to study the natural convection of nanofluid flow past

an inclined wavy surface in the presence of gyrotactic microbes with activation energy. The

nonlinear equations are linearized employing local linearization procedure and the resultant

system is solved by a bivariate pseudo-spectral collocation method. Important observations

are itemized below:

• The skin friction Cfξ(Grξ)
1
4 , nanoparticle Sherwood number NShξ/(Grξ)

1
4 and the

density of motile microbes Qξ/(Grξ)
1
4 escalates for a raise in bioconvection Peclet

number, angle of inclination, bioconvection Schmidt number and activation energy

parameter.

• An increase in bioconvection Peclet number, angle of inclination, bioconvection Schmidt

number, and activation energy parameter results in an increase in heat transfer rate.

• Skin friction, Nusselt number, nanoparticle Sherwood number and density of motile

microbes are declining for a raise in temperature relative parameter δ and reaction rate

parameter δ1

• Activation energy parameter E enriches the skin friction, Nusselt number, nanoparticle

Sherwood number, and density of motile microorganisms.
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Chapter 8

Radiation effect on Mixed

Bioconvection of a Nanofluid Past an

Inclined Wavy Surface with Variable

Properties 1

8.1 Introduction

It is known that the viscosity of the fluid generally depends on pressure and temperature.

However, less effect in fluid flow is observed with pressure. Therefore, viscosity is depen-

dent on the temperature variation. Further, at high temperatures, the effect of radiation

in space technology, space vehicle re-entry, nuclear engineering applications and other in-

dustrial areas are very significant. Hayat et al. [44] discussed the mixed convection flow of

viscoelastic nanofluid due to a stretching cylinder with variable thermal conductivity and

heat source/sink. Heydari and Shokouhmand [45] studied the effect of variable properties on

the laminar forced convection Al2O3-water nanofluid flow and heat transfer through an an-

nular microchannel. Bilal et al. [18] analyzed the MHD and thermal radiation of Williamson

nanofluid flow with variable thermal conductivity over a stretching cylinder using numeri-

cal simulations. Mkhatshwa et al. [78] investigated the MHD bioconvective flow of Casson

nanofluid past a vertical surface with variable thermophysical characteristics, chemical reac-

tion, nonlinear radiation, Hall, and ion-slip currents. Azam et al. [12] presented a numerical

1Communicated to “Journal of Applied Nonlinear Dynamics”
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simulation for variable thermal properties and heat source/sink in the flow of cross nanofluid

over a moving cylinder. Ayele and Ibrahim [124] discussed hybrid nanofluids flow with mixed

convection of MWCNTs - Al2O3/engine oil with variable viscosity and thermal conductivity

over a spinning cone. Irfan [52] discussed the MHD nonlinear mixed convection Carreau

nanofluid with variable conductivity subject to Buongiorno’s theory along with the heat

source/sink and chemical reaction. Irfan et al. [53] investigated the unsteady MHD flow of

bio-nanofluid in a permeable medium taking thermal radiation and chemical reaction into

account over a stretching sheet with variable thermophysical properties

In this chapter, the effect of radiation on the mixed convection of a nanofluid past an

inclined wavy surface in the presence of gyrotactic microorganisms with variable properties

is considered. The equations of the flow are non-dimensionalized and then solved using the

bivariate pseudo-spectral local linearization method (BPSLLM). The influence of pertinent

parameters on the heat transfer rate, nanoparticle mass transfer rate, and density number

of the microbes are examined.

8.2 Mathematical formulation

Consider an incompressible, steady, and laminar flow of a nanofluid containing motile mi-

croorganisms along an inclined wavy surface. The wavy surface is inclined at an angle A

(0o ≤ A ≤ 90o) for the horizontal line as depicted in Fig. 2.1. The equations governing the

flow are
∂U

∂X
+
∂V

∂Y
= 0, (8.1)

ρf∞

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ 2

∂

∂X

(
µ(T )

∂U

∂X

)
+ 2

∂

∂Y

(
µ(T )

[
∂U

∂Y
+
∂V

∂X

])
+ [(1− Φ∞) βTρf∞ (T − T∞)− (ρp − ρf∞) (Φ− Φ∞)− βM(ρm − ρf∞)(M −M∞)] gSinA

(8.2)

ρf∞
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U
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+ V

∂V
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= −∂P
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+ 2

∂
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(
µ(T )

[
∂U

∂Y
+
∂V

∂X

])
+ 2

∂

∂Y

(
µ(T )

∂V

∂Y

)
+ [(1− Φ∞) βTρf∞ (T − T∞)− (ρp − ρf∞) (Φ− Φ∞)− βM(ρm − ρf∞)(M −M∞)] gCosA

(8.3)

(ρc)f

(
U
∂T

∂X
+ V

∂T

∂Y

)
=

∂

∂X

(
k(T )

∂T

∂X

)
+

∂

∂Y

(
k(T )

∂T

∂Y

)
+ (ρc)p

{
DB

(
∂Φ

∂X

∂T

∂X
+
∂Φ

∂Y

∂T

∂Y

)
+
DT

T∞

[(
∂T

∂X

)2

+

(
∂T

∂Y

)2
]}

+
16σ2T

3
∞

3Ke

∇2T (8.4)
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U
∂Φ

∂X
+ V

∂Φ

∂Y
= DB

(
∂2Φ

∂X2
+
∂2Φ

∂Y 2

)
+
DT

T∞

(
∂2T

∂X2
+
∂2T

∂Y 2

)
, (8.5)

U
∂M

∂X
+ V

∂M

∂Y
+

∂

∂X

(
MṼ

)
+

∂

∂Y

(
MṼ

)
= Dn∇2M, (8.6)

where Ke is the mean absorption coefficient, σ2 is the Stefan Boltzman constant. The average

swimming velocity vector of microorganism is Ṽ =
qnDBbcwc
qnpDnM∞

∂Φ

∂Y
.

The viscosity µ, the thermal conductivity k are considered as linear functions of temper-

ature [14] given by

µ(T ) = µ∞ [1− b(T − T∞)] and k(T ) = k0 [1 + E(T − T∞)] (8.7)

where µ∞ is the absolute viscosity of the fluid, k0 is the thermal conductivity at the wavy

surface temperature, and b, E are constants. All other quantities are defined in previous

Chapters.

The associated boundary conditions are :

U = 0, V = 0, qw = −k(n.∇T ), qnp = −DB(n.∇Φ),

qn = −Dn(n.∇M) at Y = Yw = σ̄(X),

U → U∞, T → T∞, Φ→ Φ∞, M →M∞ as Y →∞

 (8.8)

The irregular wavy surface is transformed to a flat surface, using the following transfor-

mations ([131])

ξ =
X

L
, η =

Y − σ
Lξ

1
2

√
Re, ψ =

LU∞ξ
1
2f(ξ, η)√
Re

, p =
P

ρf∞U2
∞
,

T − T∞ =
qwL

k
Re−1/2ξ1/2θ(ξ, η), Φ− Φ∞ =

qnpL

DB

Re−1/2ξ1/2φ(ξ, η),

M −M∞ =
qnL

Dn

Re−1/2ξ1/2χ(ξ, η), ũ = ∂ψ/∂y and ṽ = −∂ψ/∂x


(8.9)

where

Gr =
(1− Φ∞) gβT qwL

4

kν2
and Re =

U∞L

ν

are the Grashof number and Reynolds number respectively and the stream function ψ is

same as in 2.10 of Chapter2.
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The non-dimensional form of the terms in (8.7) can be written as

µ(T ) = µ∞

[
1− Pnθξ

1
2

]
and k(T ) = k0

[
1 + βθξ

1
2

]
(8.10)

where Pn =
bqwL

k
Re−

1
2 is the temperature dependent viscous parameter known as Pearson

number, β =
EqwL

k
Re−

1
2 is the temperature dependent thermal conductivity parameter.

Substituting Eq. (8.9) in the governing equations (8.1) to (8.6) and invoking the boundary

layer approximation, we get the following non-dimensional form.

[1− Pnθξ
1
2 ]
(
1 + σ2

ξ

)
f ′′′ +

1

2
ff ′′ − ξσξσξξ(

1 + σ2
ξ

)(f ′)2 − Pn (1 + σ2
ξ

)
ξ

1
2 θ′f ′′

+
Riξ

3
2 (θ −Nrφ−Rbχ)(

1 + σ2
ξ

) (SinA+ σξCosA) = ξ

[
f
′ ∂f ′

∂ξ
− ∂f

∂ξ
f ′′
]

(8.11)

(
1 + σ2

ξ

)
Pr

[
(1 + βθξ

1
2 )θ′′ +

4

3
Rdθ

′′ + (β +Nt) ξ
1
2 (θ′)

2
+Nbξ

1
2φ′θ′

]
+

1

2
(fθ′ − f ′θ) = ξ

[
f
′ ∂θ

∂ξ
− θ′∂f

∂ξ

]
(8.12)

(
1 + σ2

ξ

)
Le

[
φ′′ +

Nt

Nb

θ′′
]

+
1

2
(fφ′ − f ′φ) = ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
(8.13)(

1 + σ2
ξ

)
Sc

χ′′ − Pe

Sc
(1− σξ)φ′′ +

1

2
(fχ′ − f ′χ) = ξ

[
f ′
∂χ

∂ξ
− χ′∂f

∂ξ

]
(8.14)

and

f ′(ξ, 0) = 0, f(ξ, 0) = −2ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θ′(ξ, 0) = − 1√
1 + σ2

ξ

,

φ′(ξ, 0) = − 1√
1 + σ2

ξ

, χ′(ξ, 0) = − 1√
1 + σ2

ξ

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0, χ(ξ,∞) = 0


(8.15)

The parameters Pr, Pe, Le, Sc, Nb, Nr, Nt, Rb, Rd are same as in Chapter 3 and Chapter

4.

The non-dimensional form of the parameters coefficient of skin friction, Nusselt number,

nanoparticle Sherwood number and density number of motile microbe are given in 4.14 of

Chapter 4
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8.3 Method of Solution

The set of equations (8.11) - (8.15) is solved using the BPSLLM [82]. By using this BPSLLM

approach, an iteration scheme is obtained by linearizing the non-linear component of single

differential equations about a single dependent variable at a time.

On implementing this technique to equations (8.11) - (8.14), we obtain

a1,mf
′′′
m+1 + a2,mf

′′
m+1 + a3,mf

′
m+1 + a4,mfm+1 + a5,m

∂f ′m+1

∂ξ
+ a6,m

∂fm+1

∂ξ
= R1,m (8.16)

b1,mθ
′′
m+1 + b2,mθ

′
m+1 + b3,mθm+1 + b4,m

∂θm+1

∂ξ
= R2,m (8.17)

c1,mφ
′′
m+1 + c2,mφ

′
m+1 + c3,mφm+1 + c4,m

∂φm+1

∂ξ
= R3,m (8.18)

d1,mχ
′′
m+1 + d2,mχ

′
m+1 + d3,mχm+1 + d4,m

∂χm+1

∂ξ
= R4,m (8.19)

where the coefficients are

a1,m = [1− Pnθmξ
1
2 ]
(
1 + σ2

ξ

)
, a2,m = −Pn

(
1 + σ2

ξ

)
ξ

1
2 θ′m +

1

2
fm + ξ

∂fm
∂ξ

,

a3,m = −2

[
ξσξσξξ
1 + σ2

ξ

]
f ′m − ξ

∂f ′m
∂ξ

, a4,m =
1

2
f ′′m, a5,m = −ξf ′r, a6,m = ξf ′′r

R1,m = ξf ′′m
∂fm
∂ξ
−

[
ξσξσξξ
1 + σ2

ξ

]
(f ′m)

2
+

1

2
fmf

′′
m − ξf ′m

∂f ′m
∂ξ

−Riξ
3
2 (θm −Nrφm −Rbχm)(

1 + σ2
ξ

) (SinA+ σξCosA)

b1,m =
(1 + βθmξ

1
2 + 4

3
Rd) (1 + σξ

2)

Pr
,

b2,m =
(1 + σ2

ξ )

Pr
Nbξ

1
2φ′m +

2(1 + σ2
ξ )(β +Nt)ξ

1
2

Pr
θ′m +

1

2
fm+1 + ξ

∂fm+1

∂ξ
,

b3,m =
β(1 + σ2

ξ )ξ
1
2

Pr
θ′′m −

1

2
f ′m+1, b4,m = −ξf ′m+1,

R2,m =
(1 + σ2

ξ )(β +Nt)ξ
1
2

Pr
(θ′m)

2
+
β(1 + σ2

ξ )ξ
1
2

Pr
θ′′mθm

c1,m =
1 + σ2

ξ

Le
, c2,m =

1

2
fm+1 + ξ

∂fm+1

∂ξ
, c3,m = −1

2
f ′m+1,
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c4,m = −ξf ′m+1, R3,m = −
(1 + σ2

ξ )

Le

Nt

Nb

θ′′m+1,

d1,m =
1 + σ2

ξ

Sc
, d2,m =

1

2
fm+1 + ξ

∂fm+1

∂ξ

d3,m = −1

2
f ′′m+1, d4,m = −ξf ′m+1, R4,m =

Pe

Sc
(1− σξ)φ′′m+1

The boundary conditions are

f ′m+1(ξ, 0) = 0 , fm+1(ξ, 0) = −2ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θ′m+1(ξ, 0) = − 1√
1 + σ2

ξ

,

φ′m+1(ξ, 0) = − 1√
1 + σ2

ξ

, χ′m+1(ξ, 0) = − 1√
1 + σ2

ξ

f ′m+1(ξ,∞) = 1, θm+1(ξ,∞) = 0, φm+1(ξ,∞) = 0, χm+1(ξ,∞) = 0.


(8.20)

Implementing the above method in both η and ξ, to the equations (8.16) to (8.19), we

get

A(1)Fi + γ
(1)
5,i

M∑
j=0

di,jDFj + γ
(1)
6,i

M∑
j=0

di,jFj = R1,i (8.21)

A(2)Θi + γ
(2)
4,i

M∑
j=0

di,jΘj = R2,i (8.22)

A(3)Φi + γ
(3)
3,i

M∑
j=0

di,jΦj = R3,i (8.23)

A(4)χi + γ
(4)
4,i

M∑
j=0

di,jχj = R4,i (8.24)

where

A(1) = γ
(1)
1,i D

3 + γ
(1)
2,i D

2 + γ
(1)
3,i D + γ

(1)
4,i I,

A(2) = γ
(2)
1,i D

2 + γ
(2)
2,i D + γ

(2)
3,i I,

A(3) = γ
(3)
1,i D

2 + γ
(3)
2,i D + γ

(3)
3,i I,

A(4) = γ
(4)
1,i D

2 + γ
(4)
2,i D + γ

(4)
3,i I

Here γ
(1)
k,i , γ

(2)
k,i , γ

(3)
k,i , γ

(4)
k,i and Rk,i are N th order diagonal matrices with diagonal elements as,

ak,m(ζr, τi), bk,m(ζr, τi), ck,m(ζr, τi), dk,m(ζr, τi) and Rk,m(ζr, τi) for r = 1, 2, 3, · · ·N respec-
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tively and I refers the identity matrix.

The equation (8.21) written in matrix form as

A
(1)
0,0 A

(1)
0,1 A

(1)
0,2 · · · A

(1)
0,M

A
(1)
1,0 A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,M

A
(1)
2,0 A

(1)
2,1 A

(1)
2,2 · · · A

(1)
2,M

...
...

... · · · ...

A
(1)
M,0 A

(1)
M,1 A

(1)
M,2 · · · A

(1)
M,M





F0

F1

F2

...

FM


=



R1,0

R1,1

R1,2

...

R1,M


(8.25)

where

A
(1)
i,j = A(1) + γ

(1)
5,rdi,iD + γ

(1)
6,rdi,iI, for i = j;

A
(1)
i,j = γ

(1)
5,rdi,jD + γ

(1)
6,rdi,jI, for i 6= j (8.26)

In a similar manner, the equations (8.22) to (8.24) can be written in matrix form. Solving

these matrix equations, iteratively, we obtain the solution to (8.11) - (8.15).

8.4 Computational Results and Discussions

In the present study, we focus our discussion on analyzing the inclination angle effect

A, amplitude α, mixed convection parameter Ri, bioconvection Peclet number Pe, bio-

convection Schmidt number Sc, radiation parameter Rd, Pearson number Pn and tem-

perature dependent thermal conductivity parameter β on the coefficient of skin friction

Cfξ
√
Reξ, Nusselt number Nuξ/

√
Reξ, nanoparticle Sherwood number NShξ/

√
Reξ and

density number of motile microbes Qξ/
√
Reξ. The values of the other parameters are fixed

as Pr = 2, Le = 5, Nb = 0.5, Nt = 0.1, Nr = 0.3 and Rb = 0.6 unless otherwise mentioned.

Figure 8.1 refers to the effects of bioconvection Peclet number Pe on various physical

parameters for given values of other required parameters in the discussion as mentioned

above. It is found that the parameters are escalating for a raise in the bioconvection Peclet

number Pe, i.e., a raise of particle movements cause the improvement of all dimensionless

parameters under consideration. This is evident from the figures 8.1(a) to 8.1(d). The pro-

cess of the bioconvection Peclet number is the ratio of gyrotactic swimming’s characteristic

velocity to a random diffusive swimming’s characteristic velocity. Because microorganisms

are heavier than water, their up-swimming causes an unstable density stratification. The

137



speed of the microorganisms in the fluid is increased by Pe, resulting in a higher density

number of microorganisms at the wavy surface.

The variation Cfξ
√
Reξ, Nuξ/

√
Reξ, NShξ/

√
Reξ and Qξ/

√
Reξ with bioconvection

Schmidt number Sc on is presented in Figure 8.2. It is noticed from this fugure that

Cfξ
√
Reξ, Nuξ/

√
Reξ, NShξ/

√
Reξ and Qξ/

√
Reξ are increasing with an increase in

the bioconvection Schmidt number Sc. Physically, this is because when the bioconvec-

tion Schmidt number grows, the viscous diffusion rate increases, lowering the dimensionless

velocity and increasing the microbe density number.

Figure 8.3 delineates the effect of the angle of the wavy surface A on required parameters.

The raise in the angle of inclination has positive effect on the coefficient of skin friction

Cfξ
√
Reξ, Nusselt number Nuξ/

√
Reξ, nanoparticle Sherwood number NShξ/

√
Reξ and

density number of motile microorganisms Qξ/
√
Reξ. As a result, the rate of transfer of all

physical quantities is higher for vertical surfaces than for horizontal surfaces. This is clear

from the figures 8.3(a), 8.3(b), 8.3(c) and 8.3(d).

Figure 8.4 elucidates the typical behaviour of Cfξ
√
Reξ, Nuξ/

√
Reξ, NShξ/

√
Reξ and

Qξ/
√
Reξ with respect to amplitude of the wavy surface α, which we can observe in figures

8.4(a) to 8.4(d). We found both increasing and decreasing nature in the profiles of the above

said parameters for an increase in α. Also we found overall raise in all these parameters

when we move across the channel from left to right.

The temperature-dependent thermal conductivity parameter β’s effect on skin friction

Cfξ
√
Reξ, heat transfer rate Nuξ/

√
Reξ, nanaoparticle mass tranfer rate NShξ/

√
Reξ and

density of motile microorganisms Qξ/
√
Reξ is portrayed in figure 8.5. It is found from the

figures 8.5(a), 8.5(c) and 8.5(d) that, the parameters Cfξ
√
Reξ, NShξ/

√
Reξ and Qξ/

√
Reξ

are increasing with an increase in β. An increase in the values of the temperature dependent

thermal conductivity parameter results in the decrease of Nuξ/
√
Reξ as shown in figure

8.5(b). This is a consequence of the fact that the Nusselt number is inversely related to

thermal conductivity.

The influence of Ri, mixed convection parameter, is portrayed in figures 8.6(a) - 8.6(d).

It is identified that the increase of mixed convection parameter results in the enhancement

of all the dimensionless parameters Cfξ
√
Reξ, Nuξ/

√
Reξ, NShξ/

√
Reξ and Qξ/

√
Reξ.

The variation of Cfξ
√
Reξ, Nuξ/

√
Reξ, NShξ/

√
Reξ and Qξ/

√
Reξ for different values

of radiation parameter Rd are displayed in figure 8.7. The figures 8.7(a), 8.7(c) and 8.7(d)

shows that increasing the radiation parameter increases surface drag, nanoparticle mass
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transfer, and motile microbe density. But it is found from the figure 8.7(b) that, the heat

transfer rate is falling for a rise in radiation parameter. Surface emissivity is inversely

proportional to the fourth power of absolute temperature, and radiant energy is proportional

to the fourth power of absolute temperature. As a result, except for very low emissivity

values, Rd changes the temperature. Surface roughness causes temperature gradients to be

weaker and the extent of the gradients to be reduced.

Figure 8.8 shows the effect of Pn, Pearson number, on Cfξ
√
Reξ, Nuξ/

√
Reξ, NShξ/

√
Reξ

and Qξ/
√
Reξ. It is observed from figures 8.8(a) to 8.8(d), that the parameters’ values raise,

for a raise in Pearson number.

8.5 Conclusions

In this chapter, an analysis is presented to study the nanofluid past an inclined wavy surface

with mixed convection in the presence of gyrotactic microorganisms with variable proper-

ties and radiation effects. The nonlinear equations are linearized employing local lineariza-

tion procedure and the resultant system is solved by a bivariate pseudo-spectral collocation

method. Important observations are itemized below:

• An increase in the bioconvection Peclet number, bioconvection Schmidt number, mixed

convection parameter, Pearson number, angle of inclination enhances the skin friction

coefficient, heat transfer rate, nanoparticle mass transfer, and density of motile mi-

croorganisms.

• The influence of temperature-dependent thermal conductivity, radiation parameter

enhances coefficient of skin friction, nanoparticle mass transfer rate, and density of

motile microorganisms.

• The heat transfer rate decreases for an increase in temperature-dependent thermal

conductivity, radiation parameter.

• The amplitude of the wavy surface behaves typically for skin friction. heat transfer

rate, nanoparticle mass transfer rate, and density of microorganisms.
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Chapter 9

Bioconvection in a Nanofluid Past a

Moving Inclined Wavy Surface with

Convective Boundary Conditions 1

9.1 Introduction

The problem of forced convection flow and heat transfer past a continuously moving flat plate

is a classic fluid mechanics problem that has fascinated the interest of many researchers, not

only because of its numerous practical applications in various extrusion processes but also

because of its fundamental role as a fundamental flow problem in Newtonian and non-Newton

boundary layer theory. The study of fluids through moving inclined wavy surfaces has not

gained much attention from researchers. Rees and Pop [99] analyzed the boundary layer

flow and heat transfer on a continuous moving wavy surface. Hossain and Pop [47] discussed

the influence of MHD on boundary-layer flow on a moving wavy surface. Wang and Chen

[126] discussed the influence of the increased area of a continuously moving wavy plate in a

quiescent fluid on its surface compared with a flat plate upon the aerosol particles floating

in the fluid. Thumma et al. [120] presented a mathematical model of magnetohydrodynamic

natural convective boundary layer flow of nanofluids past a stationary and moving inclined

porous plate taking into account suction effects. Yacob et al. [129, 130] analyzed the steady

flow and heat transfer in a nanofluid across a wedge that is either static or moving. Aboel-

dahab et al. [2] considered the free convection effects on MHD boundary layer flow and

1Communicated to “International Journal of Applied Mechanics and Engineering”
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heat transfer over a continuous moving wavy surface in porous media. Mehmood et al. [72]

computed the heat transfer enhancement due to nanofluid and surface the texture of the

moving rough plate. Mehmood et al. [71] investigated the second law of thermodynamics in

a convective heat transfer phenomena over a continuous horizontally moving wavy surface.

This chapter aims to study the bioconvection in a nanofluid past a moving inclined wavy

surface with convective boundary conditions. The bivariate pseudo-spectral local linearisa-

tion (BPSLLM) approach is used to solve the partial differential equations, which govern the

flow. The influence of pertinent parameters on the Nusselt number, nanoparticle Sherwood

number, and density number of the microbes are presented.

9.2 Mathematical Formulation

Consider an incompressible, steady, two-dimensional and laminar mixed convection nanofluid

flow containing motile microorganismsalong a moving inclined wavy surface The flow model

and coordinate system are depicted in Fig. 2.1. It is assumed that, the wavy surface is

moving tangentially to itself with a constant speed Uw.

The equations governing the flow considered are [19, 14]

∂U

∂X
+
∂V

∂Y
= 0 (9.1)

ρf∞

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+ µ

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ [(1− φ∞)βTρf∞(T − T∞) (9.2)

−(ρp − ρf∞)(φ− φ∞)− γ∆ρM ] g sinA

ρf∞

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+ µ

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ [(1− φ∞)βTρf∞(T − T∞) (9.3)

−(ρp − ρf∞)(φ− φ∞)− γ∆ρM ] g cosA

U
∂T

∂X
+ V

∂T

∂Y
= αm

(
∂2T

∂X2
+
∂2T

∂Y 2

)
+ γ

{
DB

(
∂φ

∂X

∂T

∂X
+
∂φ

∂Y

∂T

∂Y

)
(9.4)

+
DT

T∞

[(
∂T

∂X

)2

+

(
∂T

∂Y

)2
]}
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U
∂φ

∂X
+ V

∂φ

∂Y
= DB

(
∂2φ

∂X2
+
∂2φ

∂Y 2

)
+
DT

T∞

(
∂2T

∂X2
+
∂2T

∂Y 2

)
(9.5)

U
∂M

∂X
+ V

∂M

∂Y
+

∂

∂X

(
MṼ

)
+

∂

∂Y

(
MṼ

)
= Dn

(
∂2M

∂X2
+
∂2M

∂Y 2

)
(9.6)

The associated boundary conditions are :

Ut̂y − V t̂x = 0, U t̂x + V t̂y = Uw, −k(n̂ · ∇T ) = hf [Tf − T ],

φ = φw, M = Mw at Y = Yw = σ(X),

U → 0, T → T∞, φ→ φ∞ M →M∞ as Y →∞

 (9.7)

where (t̂x, t̂y) is the unit tangent to the surface an is given by (
1√

1 + σ2
x

,
σx√

1 + σ2
x

)

The wavy surface is converted to a plane surface using the following non-dimensional

transformations [131]

ξ =
X

L
, η =

Y − σ
Lξ

1
2

√
Re, ψ =

LUwξ
1
2f(ξ, η)√
Re

, p =
P

ρU2
w

,

θ(ξ, η) =
T − T∞
Tf − T∞

, φ(ξ, η) =
Φ− Φ∞

Φw − Φ∞
, χ(ξ, η) =

M

Mw


(9.8)

where

Gr =
(1− Φ∞) gβT (Tw − T∞)L3

ν2
and Re =

UwL

ν

are the Grashof number and Reynolds number. Here ψ is the stream function defined in

2.10 of Chapter2.

Substituting Eq. (9.8) in the governing equations (9.1) to (9.6) and invoking the boundary

layer approximation, we get the following non-dimensional equations.

(
1 + σ2

ξ

)
f ′′′ +

1

2
ff ′′ − ξσξσξξ(

1 + σ2
ξ

)(f ′)
2

+
Ri (θ −Nrφ−Rbχ) ξ

(1 + σξ2)
(sinA+ σξ cosA)

= ξ

[
f ′
∂f ′

∂ξ
− ∂f

∂ξ
f ′′
]

(9.9)

(
1 + σ2

ξ

)
Pr

[
θ′′ +Nbφ

′θ′ +Nt(θ
′)
2
]

+
1

2
fθ′ = ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
(9.10)(

1 + σ2
ξ

)
Le

[
φ′′ +

Nt

Nb

θ′′
]

+
1

2
fφ′ = ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
(9.11)
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(
1 + σ2

ξ

)
Sc

χ′′ − Pe

Sc
(1− σξ) (χφ′′ + χ′φ′) +

1

2
fχ′ = ξ

[
f ′
∂χ

∂ξ
− χ′∂f

∂ξ

]
(9.12)

and

f ′(ξ, 0) =
1√

1 + σ2
ξ

, f(ξ, 0) = −2ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θ′(ξ, 0) = −Biξ
1
2 (1− θ)√
1 + σ2

ξ

, φ(ξ, 0) = 1,

χ(ξ, 0) = 1, f ′(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0, χ(ξ,∞) = δχ


(9.13)

The quantities Pr, Pe, Le, Sc, Ri, Nb, Nr, Nt, and Rb are same as in Chapter 2 and Chapter

5 and Bi =
hfL

k
√

Re
is the Biot number.

The parameters, coefficient of skin friction, Nusselt number, nanoparticle Sherwood num-

ber, and motile microorganism density number in their non-dimensional form are given by

1

2
(Cfξ)(Re

1/2
ξ ) =

√
1 + σ2

ξf
′′(ξ, 0),

Nuξ

Re
1/2
ξ

= −
√

1 + σ2
ξ θ
′(ξ, 0),

NShξ

Re
1/2
ξ

= −
√

1 + σ2
ξ φ
′(ξ, 0),

Qξ

Re
1/2
ξ

= −
√

1 + σ2
ξ χ
′(ξ, 0) (9.14)

9.3 Method of Solution

The set of equations (9.9) - (9.12) with (9.13) are solved using BPSLLM [82].

On implementing this technique to equations (9.9) - (9.12), (9.13) we obtain

a1,mf
′′′

m+1 + a2,mf
′′

m+1 + a3,mf
′

m+1 + a4,mfm+1 + a5,m
∂f
′
m+1

∂ξ
+ a6,m

∂fm+1

∂ξ
= R1,m (9.15)

b1,mθ
′′

m+1 + b2,mθ
′

m+1 + b3,mθm+1 + b4,m
∂θm+1

∂ξ
= R2,m (9.16)

c1,mφ
′′

m+1 + c2,mφ
′

m+1 + c3,mφm+1 + c4,m
∂φm+1

∂ξ
= R3,m (9.17)

d1,mχ
′′

m+1 + d2,mχ
′

m+1 + d3,mχm+1 + d4,m
∂χm+1

∂ξ
= R4,m (9.18)

where the coefficients are

a1,m = 1 + σ2
ξ , a2,m =

1

2
fm + ξ

∂fm
∂ξ

, a3,m = −

[
ξσξσξξ
1 + σ2

ξ

]
2f
′

m − ξ
∂f ′m
∂ξ

,
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a4,m =
1

2
f ′′m, a5,m = −ξf ′m, a6,m = ξf ′′m,

R1,m = ξf ′′m
∂fm
∂ξ
− ξσξσξξ

1 + σ2
ξ

(
f
′

m

)2
+

1

2
fmf

′′

m − ξf
′

m

∂f ′m
∂ξ

,

−Ri (θm −Nr φm −Rb χm) ξ

(1 + σξ2)
(sinA+ σξ cosA)

b1,m =
(1 + σξ

2)

Pr
, b2,m =

1 + σ2
ξ

Pr
Nbφ

′
m +

1 + σ2
ξ

Pr
2Ntθ

′
m +

1

2
fm+1 + ξ

∂fm+1

∂ξ
,

b3,m = 0, b4,m = −ξf ′m+1, R2,m =
1 + σ2

ξ

Pr
Nt(θ

′
m)

2
,

c1,m =
1 + σ2

ξ

Le
, c2,m =

1

2
fm+1 + ξ

∂fm+1

∂ξ
, c3,m = 0, c4,m = −ξf ′m+1,

R3,m = −
1 + σ2

ξ

Le

Nt

Nb

θ′′m+1,

d1,m =
1 + σ2

ξ

Sc
, d2,m =

1

2
fm+1 + ξ

∂fm+1

∂ξ
− (1− σξ)

Pe

Sc
φ′m+1,

d3,m = − (1− σξ)
Pe

Sc
φ′′m+1, d4,m = −ξf ′m+1, R4,m = 0.

and

f ′m+1(ξ, 0) =
1√

1 + σ2
ξ

, fm+1(ξ, 0) = −2ξ
∂f

∂ξ

∣∣∣∣
(ξ,0)

, θ′m+1(ξ, 0) = −Biξ
1
2 (1− θ)√
1 + σ2

ξ

,

φm+1(ξ, 0) = 1 , χm+1(ξ, 0) = 1

f ′m+1(ξ,∞) = 0, θm+1(ξ,∞) = 0, φm+1(ξ,∞) = 0, χm+1(ξ,∞) = δχ

 (9.19)

In both η and ξ the pseudo-spectral process yields(Chapter : 2),

A(1)Fi + γ
(1)
5,i

M∑
j=0

di,jDFj + γ
(1)
6,i

M∑
j=0

di,jFj = R1,i (9.20)

A(2)Θi + γ
(2)
4,i

M∑
j=0

di,jΘj = R2,i (9.21)

A(3)Φi + γ
(3)
4,i

M∑
j=0

di,jΦj = R3,i (9.22)

152



A(4)χi + γ
(4)
4,i

M∑
j=0

di,jχj = R4,i (9.23)

where

A(1) = γ
(1)
1,i D

3 + γ
(1)
2,i D

2 + γ
(1)
3,i D + γ

(1)
4,i I,

A(2) = γ
(2)
1,i D

2 + γ
(2)
2,i D + γ

(2)
3,i I,

A(3) = γ
(3)
1,i D

2 + γ
(3)
2,i D + γ

(3)
3,i I,

A(4) = γ
(4)
1,i D

2 + γ
(4)
2,i D + γ

(4)
3,i I

Here γ
(1)
k,i , γ

(2)
k,i , γ

(3)
k,i , γ

(4)
k,i and Rk,i are N th order diagonal matrices with diagonal elements as,

ak,m(ζr, τi), bk,m(ζr, τi), ck,m(ζr, τi), dk,m(ζr, τi) and Rk,m(ζr, τi) for r = 1, 2, 3, · · ·N respec-

tively and I refers the identity matrix.

Equation (9.20) in the form of matrix is

A
(1)
0,0 A

(1)
0,1 A

(1)
0,2 · · · A

(1)
0,M

A
(1)
1,0 A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,M

A
(1)
2,0 A

(1)
2,1 A

(1)
2,2 · · · A

(1)
2,M

...
...

...
...

...

A
(1)
M,0 A

(1)
M,1 A

(1)
M,2 · · · A

(1)
M,M





F0

F1

F2

...

FM


=



R1,0

R1,1

R1,2

...

R1,M


(9.24)

where

A
(1)
i,j = A(1) + γ

(1)
5,i di,iD + γ

(1)
6,i di,iI, for i = j;

A
(1)
i,j = γ

(1)
5,i di,jD + γ

(1)
6,i di,jI, for i 6= j (9.25)

Similarly, (9.21) to (9.23) can also be written in the form of matrix equations. We solve

these equations, iteratively, using suitable initial approximation.

9.4 Computational Results and Discussion

In the present study, we focus our discussion on analyzing the inclination angle effect A,

amplitude α, mixed convection parameter Ri, bioconvection Peclet number Pe, bioconvec-

tion Schmidt number Sc, bioconvection Rayleigh number Rb, Biot number Bi, and mi-

croorganisms slip parameter δχ on the coefficient of skinfriction Cfξ
√
Reξ, Nusselt number

Nuξ/
√
Reξ, nanoparticle Sherwood number NShξ/

√
Reξ and density number of motile mi-
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crobes Qξ/
√
Reξ. The values of the parameters are fixed as Pr = 10, Le = 5, Nb = 0.05, Nt =

0.01, Nr = 0.03, Rb = 0.05, P e = 2.0, Ri = 3.0, bi = 0.5, Sc = 2.0, α = 0.01, A = π/4 and

δχ = 0.01 unless otherwise mentioned.

Figure 9.1 refers to the effects of bioconvection Peclet number Pe on various physical

parameters for given values of other required parameters in the discussion as mentioned

above. It is found that the parameters are escalating for a raise in the bioconvection Peclet

number Pe, i.e., a raise of particle movements cause the improvement of all dimensionless

parameters under consideration. This is evident from the figures 9.1(a) to 9.1(d).

It is observed from the figure 9.2 that, variation of the parameters under consideration

such as, Cfξ
√
Reξ, Nuξ/

√
Reξ, NShξ/

√
Reξ and Qξ/

√
Reξ for different values of biocon-

vection Schmidt number Sc, behave similarly to that of bioconvection Peclet number Pe.

Figure 9.3 delineates the effect of the angle of the wavy surface A on required parameters.

The raise in the angle of inclination has positive effect on the coefficient of skinfriction

Cfξ
√
Reξ, Nusselt number Nuξ/

√
Reξ, nanoparticle Sherwood number NShξ/

√
Reξ and

density number of motile microorganisms Qξ/
√
Reξ. Hence the transfer rate of all the

physical quantities is more for verticle surface compared to horizontal surface. This is clear

from the figures 9.3(a), 9.3(b), 9.3(c) and 9.3(d).

Figure 9.4 elucidates the typical behaviour of Cfξ
√
Reξ, Nuξ/

√
Reξ, NShξ/

√
Reξ and

Qξ/
√
Reξ with respect to amplitude of the wavy surface α. We found both increasing and

decreasing nature in the profiles of the Skin friction parameter and density number of motile

microbes for an increase in α, which we can observe in figures 9.4(a) and 9.4(d). The Nusselt

number and nanoparticle Sherwood number are decreasing for an increase in α (9.4(b),

9.4(c)).

The Biot number Bi’s effect on physical parameters under consideration is portrayed

in figure 9.5. It is found from the figures 9.5(a), 9.5(b) that, the parameters skin friction

Cfξ
√
Reξ, heat transfer rate Nuξ/

√
Reξ are increasing with an increase in Bi. The figure

9.5(c) represents the behaviour of nanoparticle mass transfer rate NShξ/
√
Reξ with respect

to Bi. It is found that the nanoparticle mass transfer rate is decreasing in the first half

of the channel (up to ξ = 4.4) and increasing in the second half of the channel, whenever

Bi increases. Similar behaviour is found for the density of motile microorganisms in figure

9.5(d), i.e., the density of motile microorganisms is decreasing in the first half of the channel

(up to ξ = 3.4) and increasing in the second half of the channel.

The influence of Ri, mixed convection parameter, is portrayed in figures 9.6(a) - 9.6(d),
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and it is similar to the behaviour of Biot number Bi. The increase of mixed convection pa-

rameter results in the enhancement of the dimensionless parameters Cfξ
√
Reξ, Nuξ/

√
Reξ.

Where as the parameters NShξ/
√
Reξ and Qξ/

√
Reξ are decreasing in the first quarter of

the channel (up to ξ = 1 for both nanoparticle Sherwood number and density of motile

microbes) and increasing in the remaining part of the channel.

Figure 9.7 shows the effect ofRb, bioconvection Rayleigh number, on Cfξ
√
Reξ, Nuξ/

√
Reξ,

NShξ/
√
Reξ and Qξ/

√
Reξ. It is observed from figures 9.7(a) to 9.7(d), that the parame-

ters’ values falls, for a raise in bioconvection Rayleigh number. The presence of nanoparticles

movement in the base fluid is a cause for this. These nanoparticles moves in the fluid arbi-

trarily, and the fluid temperature gradually rises.

The variation of physical quantities with the microorganism slip parameter δχ is depicted

in figure 9.8. It is found that not much variation or very small variation in the profiles of

Cfξ(Grξ)
1
4 , Nuξ/(Grξ)

1
4 , and Qξ/(Grξ)

1
4 is observed. An increase in the parameter δχ,

decreases the coefficient of skin friction, local heat transfer rate, local nanoparticle mass

transfer rate and local motile microorganism density number.

9.5 Conclusions

In this chapter, an analysis is presented to study the bioconvection in a nanofluid flow over

a moving inclined sinusoidal surface with convective boundary conditions. The nonlinear

equations are linearized employing local linearization procedure and the resultant system

is solved by a bivariate pseudo-spectral collocation method. Important observations are

itemized below:

• An increase in the bioconvection Peclet number, bioconvection Schmidt number and

angle of wavy surface enhance the skin friction coefficient, heat transfer rate, nanoparti-

cle mass transfer rate and density of motile microorganisms. A reverse trend is noticed

for the influence of bioconvection Rayleigh number.

• The influence of microorganism slip parameter is to decrease the coefficient of skin

friction, nanoparticle mass transfer rate, and density of motile organisms.

• The Biot number and mixed convection parameter are behaving similarly. Both heat

transfer rate and surface drag are increasing for a rise in Bi, Ri. The nanoparticle
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Sherwood number and motile microorganisms density are decreasing at the beginning

and increasing across the channel.

• The heat transfer rate and nanoparticle Sherwood number are decreasing for a rise in

slip parameter
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Chapter 10

Summary and Conclusions

In this thesis, the bioconvection flow of nanofluids past an Inclined Wavy Surface is studied.

The governing partial differential equations of the flow in Chapters - 2 through Chapters

- 9 are transformed into a system of nonlinear ordinary differential equations using suitable

transformations. The resulting non-linear ordinary differential equations were linearized and

solved using the bivariate pseudo-spectral local linearisation method. The effects of various

geometrical and fluid parameters on the skin friction coefficient, Nusselt number, Sherwood

number, nanoparticle Sherwood number, and density of motile microorganisms are presented

through graphs and discussed. The important observations made from this study are listed

below :

• In all the cases, increasing the bioconvection Peclet number Pe, regular double-diffusive

buoyancy ratio Nc, and bioconvection Schmidt number Sc improves the coefficient of

skin friction, heat transfer rate, mass transfer rate, nanoparticle mass transfer rate,

and motile microbe density.

• The influence of the bioconvection Rayleigh number Rb and the nanofluid buoyancy

ratio Nr reduces skin friction, heat transfer rate, mass transfer rate, nanoparticle mass

transfer rate, and motile microbe density.

• The skin friction, local heat, and nanoparticle mass transfer coefficients, and density of

motile microorganisms are enhanced by the angle of inclination A of the wavy surface

to the horizontal.

• Concerning the amplitude of the wavy surface α, the parameters behave as expected.

It is observed that both increasing and decreasing nature in the profiles dependent
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on the parameter ξ since there is an increase in amplitude. For an increase in α, the

parameter profiles are observed to be growing and decreasing in a periodic nature. In

general, it concludes that increasing the wave amplitude roughens the surface more.

• The skin friction coefficient, nanoparticle Sherwood number, and density number of

motile microorganisms all rise when the variable thermal conductivity parameter β

increases, whereas the Nusselt number drops.

• An increase in the variable viscosity parameter ε decreases the heat transfer rate,

nanoparticle mass transfer rate, and motile microbe density number, but does not

affect the skin friction coefficient.

• When the mixed convection parameter Ri is increased, the profiles of coefficient of

skin friction, Nusselt number, nanoparticle Sherwood number, and density of motile

microbes all increase.

• The Joule heating parameter J0 and the Eckert number Ec diminish the local heat

transfer rate. Whereas it is discovered that an increase in J0 leads to an increase in

local nanoparticle mass transfer rate and density of motile microorganisms.

• Increased magnetic induction parameter Ha improves the nanoparticle Sherwood num-

ber NSh and motile microbe density Qx and decreases the local heat transfer rate.

• The Radiation parameter Rd has the impact of reducing heat transfer and increasing

other physical quantities such as skin friction, nanoparticle Sherwood number, and

motile microbe density.

• The heat transfer rate, coefficient of skin friction, nanoparticle mass transfer rate, and

density of motile microorganisms are all reduced when the temperature parameter

delta, response rate parameter σ1, and fitted rate constant n are increased. However,

there is a general trend for an increase in the Pearson number Pn.

• A rise in the Biot number Bi leads to an increase in the Nusselt number, skin friction.

However, for an increase in the Biot number Bi, the nanoparticle Sherwood number and

density of motile microorganisms decrease first and then increase across the channel.

The work presented in the thesis can be extended to analyze the various effects like MHD,

Hall effect, Hall and Ion slip, viscous dissipation, binary chemical reaction, etc. Further, this

work can be extended by studying the analysis in various non-Newtonian fluids like Casson

fluids, Jeffrey fluids, Power-law fluids, and the geometry can be changed to an oscillatory
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vertical plate, inclined plate, through pipes, and an exponentially stretching sheet. This

work can also be extended to porous media.

In the recent past, the study of stability analysis has attracted the curiosity of many

researchers. Thus, the work presented in the thesis can be extended to study the stability

of bioconvection flows in Newtonian and/or non-Newtonian fluids.
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