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A B S T R A C T

The heat transfer characteristics in natural/mixed convective flow of non-Newtonian fluids

(particularly power-law fluids, power-law nanofluids and power-law hybrid nanofluids) are

very important because of its significant applications in engineering and science. Fluids

like molten plastics, glues, pulp, slurries etc., are described by the Ostwald-de Waele type

of power-law fluids. The heat transfer problems in different power-law fluids subject to

the convective boundary condition are more extensive and these occur in various realistic

situations. In the mathematical models of these type of power-law fluids, the physical systems

become slightly more complicated leading to the complex interactions of the fluid flow and

heat transfer mechanism. In this thesis, an attempt has been made to analyze the flow

of different power-law fluids over a truncated cone placed in a non-Darcy porous medium

with various important effects. The flow governing equations and boundary conditions are

changed into dimensionless form by introducing suitable non-dimensional variables. The

resulting system of equations is then solved numerically by employing combined approach of

local non-similarity and spectral local linearisation method (SLLM). The error analysis and

convergence test have been conducted to examine the accuracy of this combined numerical

approach. In addition to this, the obtained numerical results are also validated and compared

with the existing results in some special cases and the outcomes are observed to be in a very

good agreement.

This thesis consists of SEVEN chapters. Chapter - 1 is introductory in nature and gives

motivation to the investigations carried out in the thesis. A survey of pertinent literature

is presented to exhibit the importance of the problems considered. The basic governing

equations of the flow and physical quantities related to power-law fluids, power-law nanofluids

and power-law hybrid nanofluids along with the details of used methodology, are given.

In the case of nanofluids and hybrid nanofluids, the Tiwari and Das model is adopted to

examine the fluid flow. Chapter - 2 consists of a numerical investigation on the flow of

stratified power-law fluids over a convectively heated truncated cone in a non-Darcy porous

medium with nonlinear convection and thermal dispersion effects. Chapter - 3 deals with

the entropy generation and Bejan number estimation in power-law fluid flows. Chapter -

4 gives a combined study of linear, quadratic and nonlinear thermal radiation in the flow

of power-law fluids. Chapter - 5 explores the inspection of power-law nanofluid flows in

which Titanium alloy and multi wall Carbon nanotubes are used separately as nanoparticles

whereas water is taken as the base fluid. Chapter - 6 reports the convective flow analysis of

power-law hybrid nanofluids and these fluids are formed with the two nanoparticles together,

namely, Titanium alloy and multi wall Carbon nanotubes along with water. In all the above
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chapters, a truncated cone placed in a non-Darcy porous medium is used as the geometry.

The obtained numerical results are exhibited graphically to illustrate the effects of various

parameters, nanoparticle volume fraction and streamwise coordinate on the dimensionless

velocity, temperature, heat transfer rate and skin friction coefficient. Chapter - 7 includes

the main conclusions of the earlier chapters and the directions in which further investigations

may be carried out.
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N O M E N C L A T U R E

A∗ Stratification intensity control pa-

rameter

b Empirical constant

Bi Biot number

Be Bejan number

Br Brinkman number

Cf Skin friction coefficient

Cp Specific heat capacity

d Pore diameter

Ds Thermal dispersion parameter

Ef Error norm for velocity

Eθ Error norm for temperature

Fs Non-Darcy parameter (Forch-

heimer number)

g Gravitational acceleration

Gr∗ Modified Grashof number

hf Convective heat transfer coeffi-

cient

k, km Thermal conductivity

kd Dispersion thermal conductivity

ke Effective thermal conductivity

Kp Intrinsic permeability

K∗ Modified permeability

k̄ Mean absorption coefficient

Lx Numerical approximation at infin-

ity

n Power-law index

Nux Local Nusselt number

Ns Dimensionless entropy generation

rate

Nx Collocation points in η direction

N1 Dimensionless entropy generation

due to heat transfer

N2 Dimensionless entropy generation

due to fluid friction

O Origin of coordinate system

p Fluid pressure

Pe Peclet number

Pr Prandtl number

−→q Darcian velocity

r Radius of truncated cone

Ra Rayleigh number

Re Reynolds number

S Scaling parameter

ST Thermal stratification parameter

S ′′′g Dimensional entropy generation

rate
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(
S ′′′g
)

0
Characteristic entropy generation

rate

T Temperature

Tf Convective wall temperature

u∗ Characteristic velocity

u Velocity in x direction

v Velocity in y direction

x̄ Modified streamwise coordinate

Greek Symbols

α Molecular diffusivity

αd Thermal diffusivity

α1 Nonlinear convection parameter

β0 , β1 First and second order thermal ex-

pansion coefficients

ε Viscous dissipation parameter

η Dimensionless variable in y-

direction

γ Inclination of angle

χ Mechanical dispersion coefficient

λ Mixed convection parameter

θ Dimensionless temperature

θw Temperature ratio

φ , φ′ Nanoparticle volume fraction

φ∗ Porosity of the medium

µ Dynamic viscosity

µ∗ Consistency index of power-law

fluid

µ′ Effective viscosity

ν Kinematic viscosity

ρ Density

σ Stefan-Boltzmann constant

ψ Stream function

τ Shear stress

ξ Dimensionless streamwise coordi-

nate

Ω Dimensionless temperature differ-

ence

Subscripts

f Fluid

nf Nanofluid

hnf Hybrid nanofluid

s Solid particle

w Wall condition

∞ Ambient condition

Superscript

′ Differentiation with respect to η
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Chapter 1

Preliminaries and Review

1.1 Introduction

The area of fluid dynamics surrounds the movement in different liquids and gases, the forces

behind this movement and the interlinkage of the fluids with solids. Fluid dynamics can

be treated as a centre of many engineering and science sectors and it is involved in almost

each direction of our day-to-day survival. From the field of aerodynamics and related mov-

able vehicles to the motion of biological fluids in the human body, the weather forecast,

the efficiency of microfluidic gadgets, all require a proper comprehension of this subject.

Since fluid dynamics contains complex flow studies and carries widespread applications, it

is proved to be a broad area with various exciting and challenging problems related to re-

cent advancement in engineering and science. The search for extensive grip in this area

has not only stimulated the evolution of the subject but has also given the breakthrough in

the assisting fields, such as applied mathematics, numerical computation and experimental

techniques. The foundational postulates of fluid dynamics are the conservation laws namely

conservation of mass, Newton’s second law of motion and first law of thermodynamics. A

large number of problems in fluid dynamics have claimed the attention of mathematicians,

physicists, and engineers for many years. As a result, an enormous body of established

results has been accumulated steadily but remains scattered in the literature.
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Convective heat transfer, or simply, convection is the study of heat transport processes

affected by the flow of fluids and has gained significant importance in recent times. In general,

the convection process is classified into two processes. If any outsider source is responsible

for the fluid motion, then it is called forced convection and if no such external induced flow is

supplied and the flow takes place due to effect of a density difference resulting from changes

in temperature in a body force field such as the gravitational field, then it is called free or

natural convection. When both free and forced convection effects are significant and neither

of the two can be neglected, the process is called mixed convection. The phenomenon of

free and mixed convection occurs in many technical and industrial problems such as cooling

of electronic equipment, materials processing, and drilling operations. Apart from these

applications, the free convection has also been used to explain the connection between skin

disease and respiratory disease such as eczema and asthma respectively whereas the mixed

convection has an important role in controlling the temperature of a medium. For more

details on the convective heat transfer, one can refer the text book by Bejan [9].

1.2 Porous Medium

A medium (or material) which contains voids is termed as porous medium whose skeletal

portion is usually called the frame or matrix. In general, a fluid (liquid or gas) is typically

filled in these pores and the solid matrix with the fluid is called a fluid-saturated porous

medium. A porous medium is normally distinguished by porosity defined as the fraction of

the volume of void spaces over the total volume (between 0 and 1). Examples of porous

media are very wide ranging from natural substances (e.g., soil, rocks and biological tissues)

to artificial ones (e.g., cements and ceramics) and different properties of these materials are

only rationalized by treating these as porous media.

Porous medium concept is used in different areas of engineering and applied science, for

example, petroleum, construction or material science, filtration, geomechanics, soil mechan-

ics, acoustics, etc. Thus, flow of fluids (Newtonian or non-Newtonian) in porous medium

exerts a huge amount of interest among researchers and has been emerged as a separate area
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of research. In particular, if the temperature and moisture distribution over agricultural

fields are studied with this approach then these ideas can be used in the control of environ-

ment pollution. Keeping all these in mind, many different fluid models have been developed

and a few of them are analysed to explain fluid flow properties through non-Darcy porous

media in different books by Pop and Ingham [98], Nield and Bejan [88], and Vafai [124].

Further, the boundary layer assumptions have been successfully applied to these models and

a good amount of related work over the last a few decades have been done for a wide va-

riety of geometries. The Darcy model and a series of its modifications have attained much

acceptance in comparison with other models.

Darcy Model

In 1856, Darcy [25] was the first who gave a governing equation to analyse the fluid flow in

upstanding porous column. This equation depicts a stabilization of pressure gradient and

viscous force. Mathematically,

−→q = −Kp

µ
(∇p− ρ g), (1.1)

where −→q is known as Darcian velocity, Kp, p, g, ρ and µ are termed as intrinsic permeability

of the medium, fluid pressure, acceleration due to gravity, density and coefficient of viscosity

respectively. This law provides better consistency with experimental observations for 1−D

flows in low porosity system. Since this law does not involve inertial effects, it is applicable

only for seepage flows [Re = O(1)].

Darcy-Brinkman Model

It is assumed that the flow through an anisotropic porous medium with notable permeability

must reduce to the viscous flow in a limit. In view of this, Brinkmann [88] realised the

necessity to consider the viscous force employed by a flowing fluid on a dense swarm of

spherical particles immersed in a porous mass and joined the term µ′∇2V to stabilize the

pressure gradient. Here, µ′ is the effective viscosity given by µ′ = µ[1−2.5(1−φ∗)], in which
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φ∗ is porosity. From experiments, it is confirmed that this Brinkmann model is valid for the

high porosity medium. The governing equation for this model can be written as

− [∇p− ρg] =
µ

Kp

−→q − µ′∇2−→q . (1.2)

Darcy-Forchheimer Model

In 1901, Forchheimer made some assessment and suggested that inertial effects may be

considered with the incorporation of the square of velocity in the momentum equation. So,

the adjustment in Darcy′s equation can be given as[
1 +

ρ b
√
Kp

µ
|−→q |

]
−→q = −Kp

µ
[∇p− ρg] , (1.3)

where b is the non-dimensional drag coefficient which differs with the porous medium char-

acteristics. Many more versions of modifications in this model can be seen in the literature.

The validation along with associated restrictions of these models are properly described by

Nield and Bejan [88].

1.3 Newtonian and Non-Newtonian Fluids

“A Newtonian fluid is the fluid which exhibits a viscosity that remains constant regardless

of any external stress that is placed upon it, such as mixing or a sudden application of force.

One example is water, since it flows the same way, in spite of whether it is left alone or

agitated vigorously [7].” In other words, “Newtonian fluids are those that obey Newtons law

relating shear stress and shear rate with a simple material property (the viscosity) dependent

on basic thermodynamic variables such as temperature and pressure, but independent of flow

parameters such as shear rate and time [7].” Convective heat transfer in ‘Newtonian fluid’

and ‘Newtonian fluid saturated porous media’ has been widely examined since the middle

of the last century by incorporating various physical effects.
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“A non-Newtonian fluid can be defined as a fluid with viscosity as a variable dependent on

applied force or stress [52].” Corn starch dissolved in water is one of the routine examples of a

non-Newtonian fluid, which occurs in day-to-day survival. Opposite to the Newtonian fluids,

the non-Newtonian fluids become thicker or thinner when stress is applied. Therefore, a great

amount of work has been brought forth to illustrate the nonlinear relationship between the

rate of strain and stress in non-Newtonian fluid models. But there is no single fluid flow model

which undoubtedly exhibits all the properties of real fluids. During the last century, several

fluid models (viscoelastic fluids, dusty fluids, micropolar fluids, couple stress fluids, Casson

fluids etc.) were proposed to characterize the real fluid behaviour. Among these, Ostwald-de

Waele power-law fluid model, proposed by Ostwald [90] and de Waele [128] gained much

importance. It is the one which characterizes the flow pattern of polymers, glass, cosmetic

products, grease, and many more, and it has substantial applications in many engineering

industries such as manufacturing processes, oil reservoir and chemical engineering, etc. These

power-law fluids can be studied under following points:

1.3.1 Power-law Fluids

“A power-law fluid is a type of generalized non-Newtonian fluids for which the shear stress

τxy can be expressed as

τxy = µ∗
∣∣∣∣∂u∂y

∣∣∣∣n−1
∂u

∂y
, (1.4)

where µ∗ is called the consistency coefficient and n is the power-law index. The dimension of

µ∗ depends on the value of n which is non-dimensional. When n = 1, the equation represents

a Newtonian fluid with a dynamic coefficient of viscosity µ∗. Therefore, the deviation of n

from unity indicates the degree of deviation from Newtonian behaviour [90, 128].” One may

interpret the physical behaviour of the fluid by appealing to an effective viscosity. For n > 1,

the fluid is dilatant (e.g., suspensions of sand) or shear-thickening fluids in which apparent

viscosity at high shear rates. For n < 1, the fluid is pseudoplastic (e.g., polymer solutions) or

shear-thinning fluids that have a lower apparent viscosity at higher shear rates. Shenoy [110]

presented many interesting studies on convective heat transport in non-Newtonian power-law
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fluids saturated porous media in connection with geothermal and oil reservoir engineering

applications.

1.3.2 Power-law Nanofluids

In the last few decades, several works in the field of power-law fluids and nanotechnology

have attracted many investigators due to its broad-ranging applications. Nanofluids are

classified as the engineered colloids containing base fluid and nanoparticles. The suspen-

sion of nanoparticles without sedimentation in the base fluid makes them different from

regular particles and this happens mainly because of their small size (10−9 meter). Water,

polymeric solutions, organic liquids etc., are frequently used base fluids whereas chemically

stable metals (e.g., Copper, Aluminium, Gold and Titanium) and metal oxides (e.g., Alu-

mina, Titania and Silica) along with Carbon in its different form (e.g., Graphite, Diamond

and Carbon nanotubes) are utilised as important nanoparticles. The nanoparticle insertion

in the base fluid even at low volume concentrations, results into significant enhancement

of the thermal performance. During last few decades, the exploration of nanofluids has

attracted immense enthusiasm from researchers, because of its tremendous applications in

computing technologies, communication, medicines, lasers, high power X-rays, optical de-

vices, electronics, scientific measurement, material processing, material synthesis, etc. The

detailed introduction and applications of nanofluids can be seen in the textbook by Das et

al. [27].

1.3.3 Power-law Hybrid Nanofluids

A hybrid nanofluid is formed by taking a base fluid with two different types of nanoparticles

dispersed in it. Each of these nanoparticles strengthen the important properties of other one.

Various metals e.g., Aluminium, Copper, Titanium and their alloys possess large thermal

conductivities. Although few nanoparticles have lesser thermal conductivity in comparison

to metallic ones, but these possess various important properties e.g., chemical inertness

and stability. So, it can be expected that the insertion of metallic nanoparticle in another
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nanofluid may enhance the significant properties of the resultant mixture with sustained

stability of the nanofluid. The detailed information about hybrid nanofluids can be found

in the paper of Sarkar et al. [105] where the recent developments and challenges of hybrid

nanofluids are included.

There are mainly two different popular models in this area: (i) Tiwari-Das model [123],

and (ii) Buongiorno model [11]. These models have been used frequently by several re-

searchers to investigate the heat transfer enhancement process.

Tiwari-Das model

Tiwari and Das [123] developed a model to analyse the behaviour of nanofluids by taking

the volumetric fraction of nanoparticles (φ) into the consideration. In this model, viscosity

of the nanofluid (µnf ), density of the nanofluid (ρnf ) and thermal diffusivity of the nanofluid

(αnf ) are given by

µnf =
µf

(1− φ)2.5
, ρnf = (1− φ)ρf + φρs, αnf =

knf
ρCpnf

,

where

ρCpnf = (1− φ)ρCpf + φρCps,
knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

.

Here, µf is the viscosity of the base fluid, ρf is the density of the base fluid, ρs is the density

of the solid particle, knf is the effective thermal conductivity of the nanofluid, Cpf and Cps

are the heat capacities whereas kf and ks are the thermal conductivities of the base fluid

and nanoparticle, respectively.

Buongiorno model

Buongiorno [11] proposed an analytical model for convective transport in nanofluids, which

incorporates the effects of Brownian diffusion and thermophoresis. Contrary to the Tiwari-
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Das model [123], that focuses on volumetric fraction of nanoparticles, Buongiorno model

pays more attention to Brownian motion and thermophoresis effects. The arbitrary mo-

tion of nanoparticles within the base fluid is called Brownian motion, and this results from

continuous collisions between nanoparticles and molecules of the base fluid. Along with

this, particles can also be diffused under the influence of a temperature gradient. This phe-

nomenon is called thermophoresis, and is the particle equivalent of the renowned Soret effect

for gaseous or liquid mixtures. This Buongiorno model has been used in recent works by

many researchers.

With the Tiwari-Das model it is worth noting that the nanoparticle volume fraction is

taken to a constant, unlike, in the Buongiorno model it needs to be calculated. In case

of nanofluids and hybrid nanofluids, the Tiwari and Das model is adopted throughout the

thesis.

1.4 Solution Procedure

The governing equations of convective heat transport in Newtonian and/or non-Newtonian

fluids are essentially coupled and nonlinear partial differential equations (PDEs). In general,

these nonlinear PDEs cannot be easily solved analytically, therefore some numerical method

should be adopted. Various numerical methods, including the finite element methods, finite

difference methods, finite volume methods, spectral methods, shooting methods, boundary

element methods, homotopy analysis method, cubic spline collocation method, etc., have

been used by several researches to solve the boundary value problems. Among these, we

apply a novel and rapid convergence approach named as the Spectral Local Linearisation

Method (SLLM) [76] together with the non-similarity procedure [115, 74] to solve the gov-

erning differential equations in the present thesis. Initially, SLLM has been introduced by

Motsa [76] and it is a combination of local linearisation technique and spectral collocation

method. This procedure carries many beneficial properties that make it relevant for the

approximate solutions of differential equations. A few outstanding theoretical results on

the various spectral methods, for solving the coupled system of highly nonlinear differential
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equations defined on both regular and irregular domains, have been discussed by Gottlieb

and Orszag [40]. A brief step-wise detail of this solution procedure can be given in the

following points:

1. First, incorporating the non-similarity approach:

• Reduce the r number of nonlinear coupled PDEs into a system of nonlinear cou-

pled ordinary differential equations (ODEs) by introducing the auxiliary variables

to the partial derivatives of the unknown functions.

• With this approach, one can obtain 2r number of nonlinear coupled ODEs which

are to be solved concurrently along with the boundary conditions.

2. Next, the set of resulting 2r number of nonlinear coupled ODEs is linearised using the

local linearisation method. For this,

• To generate the iteration scheme, local linearisation is applied about the unknown

function (the previous iteration) to the ith nonlinear equation presuming that all

other functions are known.

• To get a decoupled iteration scheme, the Gauss-Seidel approach of decoupling

linear algebraic system is taken into consideration.

3. To solve this iterative scheme, Chebyshev spectral collocation method [12] is utilized.

In this method, we use the following steps:

• The transformation
η

S
=
τ + 1

2
, −1 ≤ τ ≤ 1, is incorporated to change the do-

main [0, S].

• Discretize the new domain [−1, 1] employing the Gauss-Lobatto collocation points.

• Approximate the unknown functions and their derivatives in terms of Chebyshev

polynomials Tw(τ) = cos[w cos−1τ ] at the collocation points.

• Replace these expressions in the system of linearised differential equations to get

the matrix system.
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4. Finally, solve the resultant matrix system iteratively by starting with the initial ap-

proximations.

1.5 Literature Review

The study of free and mixed convective flows gives one of the fundamental frameworks in the

mechanism of heat transfer and so it is an area of appreciable conceptual and experiential

curiosity. Natural convection plays a significant role in various industries, for example,

chemical processing apparatus designing, emergence and diffusion of smog, temperature

distribution, wetness in farm lands and thicket of fruit trees. It also occurs in the context of

destruction to crops on account of chilling and contamination of the surroundings. The mixed

convection takes place in several technological and commercial areas, for example, electric

gadget unheated by air coolers, nuclear reactor cooling in time of any crisis situation, a heat

exchanger situated in a low-velocity atmosphere, solar panels etc.

Convective flows over a vertical surface placed in a porous medium is one of the fundamen-

tal and classical problems in the heat transfer theory. It has fascinated a substantial amount

of attentiveness from several researchers owing to the broad applications such as geothermal

systems, energy-storage units, heat insulation, heat exchangers, drying technology, catalytic

reactors, nuclear waste repositories, etc. The literature relevant to the convective flows over

different surface geometries in Darcy and non-Darcy porous media has been reported by In-

gham and Pop [51], Nield and Bejan [88] and Vafai [124] among others (also see the citations

therein).

The presence of convective boundary condition in any heat transport mechanism gives

important and convenient platform to control the situations in the heat exchangers, reactors

and gas turbine related construction sites due to its pragmatic character. In several day-to-

day implementations which demand surface heating or cooling, the existence of convective

heat exchange between the neighbouring fluid and surface cannot be ignored, and it is an

extremely important phase in industry related to thermal material processing. This operation
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involves the transfer of heat to the fluid via any enclosed surface with a certain heat capacity,

which gives a convective heat transfer coefficient. To explain this, a novel mechanism for the

laminar thermal boundary layer flow along a flat plate is introduced by Aziz [4]. Hayat et

al. [46] discussed the thermal radiation impact on the stagnation point flow past a movable

surface with the convective boundary condition. Influence of a magnetic field under the

convective boundary condition has been analysed by Murthy et al. [81] for a thermally

stratified nanofluid flow over a vertical surface in a non-Darcy porous medium.

Non-Newtonian fluids are very extensive in the environment and industrial processes and

it would be no magnification to assert that flow of Newtonian fluids is the anomaly rather

than the law. The interest of learning about non-Newtonian fluid flow has attracted the

researchers from many decades ago [63]. The power-law fluids are the time independent

non-Newtonian fluids (generalized Newtonian fluid). Broadly, we classify the power-law

fluids into two categories: shear thickening (dilatant) and shear thinning (pseudoplastic).

The viscosity of the fluid increases with stress for the first and decreases for the later one.

Several investigators have shown much attention to non-Newtonian fluids in view of their

applications in various aspects of the industrial processing, design of equipment, chemical and

allied processes such as cosmetics, synthetic polymers, biological fluids, synthetic lubricants

etc. These fluids reveal complex rheological nature which is not accomplished by Newtonian

fluids. The viscosity in two type of power-law fluids, shear thinning (pseudoplastic) and

shear thickening (dilatant), decreases and increases with stress respectively.

Due to wide application of power-law fluids in modern science and technology, Shenoy

[110] and Cheng [16] explored the influence of pertinent parameters for applicable geome-

tries. Non-Darcy mixed convective flow of power-law fluids over an isothermal vertical plate

with suction/injection effect has been examined by Ibrahim et al. [50]. Free convection from

a cone/flat plate in a non-Darcy porous medium saturated by the power-law fluid, has been

analysed by Kairi and Murthy [55]. Further, Srinivasacharya and Reddy [119] scrutinized the

importance of chemical reaction and radiation on the power-law fluid flow along a vertical

plate embedded in a porous medium in the presence of variable temperature and concen-

tration conditions. The study of power-law fluid also takes part as a significant role in the
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medical science to find the characteristic of blood flow in arteries and veins. In view of these,

Kumar and Diwakar [64] have developed a mathematical model to investigate the blood flow

via an artery with stenosis. The role of local production of thermal energy through viscous

stress mechanism of power-law fluid flow due to buoyancy forces has been evaluated in de-

tail by Khidir et al. [61]. Kairi [53] concluded that the increment in the radius of slender

paraboloid in a porous medium reduces the Nusselt number for all shear thickening and

thinning fluids. Recently, the influence of activation energy in a power-law fluid flow over

a permeable inclined plate is studied by Ramreddy and Naveen [101] (also see the citations

therein) and they have shown that the results are significant in the different mechanisms of

ignition, technologies related to aerosol and polymeric mixtures at high temperature.

The available literature reveals that the power-law fluid flow studies can serve as a useful

productive tool to solve engineering and industrial problems. There are some works avail-

able in the literature, namely, Na and Chiou [82], Gorla et al. [39] and Cheng [18] where

researchers explored the studies related to power-law fluid flow over truncated cone main-

tained at uniform wall temperature and/or subject to uniform heat flux conditions. But,

many engineering and industrial problems e.g., processing of melted plastics at a large level,

edible items or slurries and polymers etc., require free convective transport in a power-law

fluid flow from vertical surfaces subjected to the convective boundary condition in porous

media. This motivates investigators to analyse the power-law fluid flow problems in detail

as it helps us to understand various effects like: (i) ratio of internal thermal resistance of

truncated cone surface to the thermal resistance of boundary layer in terms of Biot number,

and (ii) effectiveness of non-uniform pore level velocity over temperature field within the

specific porous medium in terms of thermal dispersion parameter. In view of this, the simi-

larity solutions of power-law fluid flows past a convectively heated vertical surface have been

obtained by Ece and Buyuk [31]. Khan and Gorla [59] discussed the power-law fluid flows

over a convectively heating vertical wedge which are useful in thermal engineering sector, in

particular, geothermal systems, ground water pollution, crude oil extractions and storage of

nuclear waste etc.

It is well established from the literature survey and experiments that the Boussinesq
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approximation is appropriate only for a few fluid flows where very less variations in tem-

perature gradient exist. So, the density variation is less and the buoyancy controls the

movement. In this approximation, the density is taken as constant everywhere except in the

buoyancy force term. When the temperature difference between surface and ambient fluid

is noticeably great, the mathematical models established by involving linear density relation

does not give proper result. In other words, a few thermal systems, e.g. solar collector and

nuclear reactor which are handled at much higher temperatures and so the density relation

with temperature loses its linearity nature ρ = ρ∞ [1− β0(T − T∞)] (See, Pop and Ingham

[98]). The resultant nonlinearity contrast in temperature-dependent density relationship

ρ = ρ∞ [1− β0(T − T∞)− β1(T − T∞)2] (for more details, Partha [93] and citations therein

may be referred) strongly influences the fluid flow and heat transfer characteristics, and

termed as nonlinear density temperature relationship (specifically, nonlinear convection or

nonlinear Boussinesq approximation). Partha [93] examined the effect of cross-diffusion,

double dispersion and nonlinear convection in a viscous fluid flow, whereas this work has

been extended by Kameswaran et al. [57] in which thermophoretic effect is discussed in the

absence of cross-diffusion effects. Nonlinear convection over an impulsive stretching sheet

has been examined numerically by Motsa et al. [77] (see the references therein). A broad

span of problems in the field of geophysical and energy industries such as geophysical flows,

thermal insulation etc., requires convective flow analysis of non-Newtonian fluids in a porous

medium [88].

Thermal dispersion effect in a non-Darcy porous medium is important because of the

existence of inertial effects. In non-uniform geometries, particularly in the packed beds, flow

of fluid through curvy paths led to the thermal dispersion at pore level of the involved porous

media. In view of the mechanism of thermal dispersion effect, Cheng [21] and Plumb [96]

provided a model for the fluid flow and heat transfer in porous media by taking these effects

into consideration. Also, Hong et al. [48] conducted the theoretical studies extensively on

thermal dispersion effect by treating
χdu∞
α

= χPeχ as a single parameter Ds. By adopting

the similar representations, Kairi and Murthy [54] conducted the study of free convective flow

of non-Newtonian fluids from a vertical flat plate with the thermal dispersion. Numerical
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study for the same fluid flow but without prescribing the temperature and concentration on

the vertical surface has been presented by Srinivasacharya et al. [117] and they concluded

that the obtained similarity solutions are valid only for small values of X - location (i.e.

0 < X < 1). On the other hand, Lai and Kulacki [65] concluded the similar results of Hong

et al. [48] without treating
χdu∞
α

as single parameter Ds. In a precise way, they treated

χdu∞
α

as χPeχ instead of Ds, by assigning the experimental value for χ within

[
1

7
,
1

3

]
.

However, Murthy [79] and his collaborators [57] conducted further comprehensive study

on the validity of thermal dispersion under different flow conditions over various surface

geometries and revealed the fact that it enhances the heat transfer rate (for sake of brevity

only a few references are cited here).

The study related to thermal stratification with its consequences in different porous media

has gained significant recognition in modern times in view of its major applications in heat

exchangers for solar hot water storage tanks to use in domestic purposes. Dake and Harleman

[24] gave the analytical and laboratory studies of thermal stratification in lakes. The widely

used model of solar domestic hot water systems requires heat exchanger involvement in

order to transfer heat from solar collector (contains hot fluid) to storage tank (contains

water). One can refer to the works of Knudsen and Simon [62] for more details. In view of

these applications, Narayana et al. [86] and Cheng [17] conducted independent studies on

the free convective flows over vertical flat plate and vertical wavy surface, respectively, with

dilatant and pseudoplastic fluids and concluded that the total Nusselt number value for wavy

surface is more in comparison to the smooth surface. RamReddy et al. [100] investigated the

effects of linear and nonlinear stratification on mixed convective flow in a porous medium

and concluded that the stratification significantly affects the heat and mass transfer rates

and delays the boundary layer separation (also see the references given there). Vasu et al.

[127] emphasized the significance of entropy generation, thermal dispersion and nonlinear

temperature density relationship on the thermally stratified fluid flow over a vertical plate

embedded in a porous medium.

The locally produced thermal energy due to viscous stress mechanism, commonly known

as viscous dissipation, influences forced, mixed and free convective flows for fluid saturated
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porous medium and clear viscous fluids. For the uniform forced convective flows along a

plane surface, its effects in the presence of wall temperature distribution have been discussed

by Magyari et al. [67]. Aydin and Kaya [3] explained viscous dissipation impact in the

convective flows over an isothermal vertical plane surface immersed in non-Darcy and Darcy

porous media respectively. An expression to show the rate of change of kinetic energy using

upscaled momentum equation has been well established by Salama [103]. El-Amin et al. [34]

employed the Darcy-Brinkman model for the explanation of flow field by involving viscous

dissipation in a novel form. Megahed and Reddy [73] described the theoretical and numerical

studies related to viscous dissipation on the flow of viscoelastic fluid.

The effect of thermal radiation in different fluid flows, is very useful in the nuclear plants,

gas turbines, various propulsion devices for aircraft, missiles, satellites, space vehicles, etc.

Also, the thermal radiation may play an essential role in controlling the heat transfer in

industries where the quality of final product depends on the heat controlling factors to

some extent. Mixed convective flow analysis along a vertical plate with the companionship

of nonlinear radiation has been properly analysed by Murthy et al. [80]. Also, Chen [15]

examined the effect of linear thermal radiation on the flow of power-law fluid with electrical

properties. The linear radiation effect in a MHD non-Darcy porous medium using numerical

techniques has been studied by Srinivasacharya et al. [118]. Simultaneous impact of the

nonlinear thermal radiation and MHD in a stagnation point flow of power-law fluids has been

investigated by Hayat et al. [44]. Megahed [72] discussed the impact of constant heat flux on

power-law fluid flows exposed to the linear thermal radiation. Srinivasacharya and Reddy

[120] addressed the role of mixed convection study in a power-law fluid flow with chemical

reaction and nonlinear radiation impacts. The usefulness of linear thermal radiation on the

natural convective flow past a truncated cone has been scrutinized by Elbashbeshy et al. [35].

RamReddy and Naveen [101] analysed the effect of linear thermal radiation and activation

energy for power-law fluid flows in the presence of convective heating.

The second law of thermodynamics gives an idea of optimization in the design of different

devices involved in the thermal field by making the sum of thermal and frictional entropy

generation rates minimum. To get an optimal set of operating and design conditions, one
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can minimize the system’s irreversibility. There is a basic difference between transfer of

energy into a system in the form of heat and doing the same by work. Both can be of equal

quantity but after being a part of system’s energy, these have much distinct character. This

can be seen as the amount of energy involved in the process of energy transport (e.g., heat

transfer), energy character and its change in the course of transport activity. So, in order

to measure this character along with its possible decay in the process of energy transfer,

entropy plays a very significant part. The entropy generation analysis has great importance

in the manufacturing and upgrading of various thermofluidic components e.g., turbines,

heat exchangers, pumps, energy storage systems etc. To explain these applications, Bejan

[8] studied the effectiveness of various factors involved in the entropy generation in different

thermal systems. Khan and Gorla [60] considered the non-Newtonian fluid flows over a

horizontal plate immersed in a porous medium and performed the second law analysis. Das

et al. [26] explained the combined effect of Navier slip, convective heating and magnetic field

on the analysis of entropy generation (for more details, see the citations therein).

In recent past, a good amount of interest is developed in the scientific and research

community to deal nanofluids along with convective flow studies [81, 42, 84]. Khan and

Khan [58] used Buongiorno type of power-law nanofluids to discuss the boundary layer flow

involving a new mass flux condition (also see the citations therein). Dogonchi and Ganji [30]

explored the impact of Cattaneo-Christov heat flux on the flow of a MHD nanofluid with

thermal radiation and Joule heating. Further, many useful references related to nanofluids

are collected in the books by Das et al. [27] and Minkowycz et al. [75]. The review papers by

Kakac and Pramuanjaroenkij [56] and Fan and Wang [36] also gave a detailed reference list.

Chougule and Sahu [22] investigated the thermal performance of radiators experimentally

using Carbon nanotube-water nanofluid. The non-Newtonian nature of nanofluid containing

MWCNTs nanoparticles has been experimentally verified by Liu et al. [66]. The numerical

investigation of the entropy generation on MHD mixed convective flow of Cu-water nanofluid

with partial slip influence has been done by Chamkha et al. [13]. Similarly, Rashad et al.

[102] performed a numerical investigation related to impact of the heat sink, source size and

location on the entropy generation and MHD free convection flow. The effect of partial slips
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on entropy generation analysis has been given by Shashikumar et al. [107].

Selimefendigil and Chamkha [106] performed the numerical investigation related to the

free convection in a triangular annulus containing hybrid nanofluid. Also, the preparation

and thermal properties including heat transfer and friction factor have been provided by

many researchers [111, 121]. On the other hand, these hybrid nanofluids have a broad

range of significant application in the domestic and technical fields e.g., refrigerators, trans-

formers, brake fluids for different type of automobiles etc. The analysis of heat transfer

in Ag-CuO/water hybrid nanofluid has been done by Hayat [45]. Sozen et al. [114] dis-

cussed the improvement in heat recovery unit performance where working fluid is taken

as CuO-ZnO/water hybrid nanofluid. Recently, Basha et al. [6] revealed the impact of

suction/injection parameter on skin friction coefficient for Ag-MgO/water hybrid nanofluid

flow.

The limited literature related to this power-law fluid flow model over a truncated cone

in a non-Darcy porous medium under different conditions motivates us to explore it. Also,

considering the important applications of these different power-law fluids in real world, the

flow studies over a truncated cone have been analysed in this thesis. In addition, various

important effects and nanoparticles are incorporated in different types of analysis. The

problems considered in this thesis are outlined in the next section.

1.6 Aim and Scope

The objective of the present thesis is to explore the flow behaviour of different non-Newtonian

fluids, namely, power-law fluids, power-law nanofluids and power-law hybrid nanofluids over a

truncated cone in a non-Darcy porous medium. The study focuses on the attributes of various

effects such as Biot number, thermal dispersion, thermal stratification, nonlinear convection,

viscous dissipation, thermal radiation, nanoparticle volume fraction, streamwise coordinate,

mixed convection and non-Darcy parameters. The problems considered in the thesis are

properly explored for the two flow cases: (i) free convection and (ii) mixed convection.
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1.7 Outline of the Thesis

This thesis consists of SEVEN chapters.

Chapter - 1 consists of preliminary knowledge and provides inspiration to the explorations

given in the thesis. An overview of relevant literature is supplied to portray the significance of

the problems undertaken. The basic governing equations of the flow and physical quantities

related to power-law fluids, power-law nanofluids and power-law hybrid nanofluids along

with the details of used methodology (local non-similarity technique [115] and spectral local

linearisation method [76]) are given.

A numerical investigation of the flow of a stratified power-law fluids over a convectively

heated truncated cone with nonlinear convection and dispersion effect, is presented in Chap-

ter - 2. The non-dimensional velocity and temperature profiles are displayed graphically for

different values of the Biot number, nonlinear convection, thermal stratification and ther-

mal dispersion parameters. In addition, the variation in non-dimensional heat transfer rate

and skin friction coefficient is also presented and discussed for various values of pertinent

parameters.

Chapter - 3 deals with the entropy generation rate and Bejan number estimation in

power-law fluid flows over a truncated cone embedded in a non-Darcy porous medium in the

presence of viscous dissipation, thermal dispersion and nonlinear convection. The effect of

pertinent parameters on the non-dimensional velocity and temperature profiles is portrayed.

Along with the rate of heat transfer and entropy generation, Bejan number study is also

incorporated and all these are analysed through graphs.

A combined analysis of linear, quadratic and nonlinear thermal radiation in the flow

of power-law fluids over a truncated cone in a non-Darcy porous medium, is examined in

Chapter - 4. The obtained numerical results are exhibited graphically to demonstrate the

influence of each thermal radiation parameter on the dimensionless velocity and temperature

profiles in every case. Further, the effect of these parameters on the non-dimensional heat

transfer rate and skin friction coefficient versus streamwise coordinate is also explored and
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displayed through graphs.

In Chapter - 5, an attempt has been made to investigate the power-law nanofluid flows

over a truncated cone in a non-Darcy porous medium. The Titanium alloy and multi wall

Carbon nanotubes are used separately as nanoparticles and water is taken for the base fluid.

The impact of volume fraction of these nanoparticles on dimensionless velocity, temperature,

heat transfer rate and skin friction coefficient is explored properly. The effect of streamwise

coordinate on the velocity and temperature profiles is also carried out separately and some

interesting results have been obtained.

Chapter - 6 reports a study of power-law hybrid nanofluid flows over a truncated cone

placed in a non-Darcy porous medium. The power-law hybrid nanofluids are formed with two

nanoparticles together, namely, Titanium alloy and multi wall Carbon nanotubes along with

water as the base fluid. The obtained numerical results are exhibited graphically to illustrate

usefulness of the nanoparticle volume fraction and streamwise coordinate on dimensionless

velocity, temperature, heat transfer rate and skin friction coefficient.

In all the above chapters (2 - 6), the nonlinear governing boundary layer equations and

the boundary conditions are changed into dimensionless form by introducing suitable non-

dimensional variables. The resulting system of equations is then solved numerically by

employing combined approach of local non-similarity and spectral local linearisation method

(SLLM). Initially, non-similarity technique [115] is used to obtain the system of ordinary

differential equations by employing the three levels of truncation. Later, the SLLM [76]

is used to solve the resultant system of ordinary differential equations. It consists of the

following three steps:

(i) first, an innovative linearisation procedure locally based on quasi-linearisation tech-

nique is used to linearise the nonlinear components of the obtained ordinary differential

equations after applying local non-similarity technique;

(ii) next, the Chebyshev spectral collocation method is adopted to transform the set of

linearised ordinary differential equations into the set of algebraic equations in the matrix

form;
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(iii) finally, this matrix system is solved iteratively using appropriate initial approxima-

tions (which are taken to satisfy the boundary conditions).

The error analysis and convergence test have been conducted to examine the accuracy of

this spectral method. In addition to this, the obtained numerical results are also validated

and compared with the existing results in some special cases and the outcomes are observed

to be in a very good agreement.

The main conclusions of the earlier chapters and the directions in which further investi-

gations may be carried out are indicated in Chapter - 7.

List of references is given at the end of the thesis. The references are arranged in an

alphabetical order and according to this order, citations appear in the text. In each chapter,

the details which are already presented in the earlier chapters are avoided. Since a detailed

review of the existing literature is presented in the introductory chapter itself, in each of

the next chapters, only a brief introduction to the concerned problem is given. Also, the

physical meaning of the various parameters is given in the chapters repeatedly for the easy

readability of readers.

A substantial portion of the research problems dealt in the thesis is already published/accepted

for publication in reputed journals. The remaining portion is communicated for publication.

The complete information is as following:

List of papers published

1. “Efficient spectral method for stable stratified power-law fluid flows with dispersion

over convectively heated truncated cone in a non-Darcy porous medium”, Interna-

tional Journal of Applied and Computational Mathematics, Vol. 7(3), pp.

1-17, (2021).

2. “Effect of dispersion on thermally stable stratified power-law fluids over the vertical

frustum of a cone in a non-Darcy porous medium: Flow separation”, Heat Transfer ,

Vol. 50(3), pp. 2380-2402, (2021).
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3. “Aqueous Titanium alloy-MWCNTs hybrid nanofluid flow in a non-Darcy porous

medium”, Computational Thermal Sciences: An International Journal , Vol.

13(5), pp. 31-43, (2021).

4. “Numerical study and error estimation in power-law nanofluid flow over vertical frus-

tum of a cone”, Indian Journal of Physics, March 2021. DOI: 10.1007/s12648-

021-02055-8.

5. “The second law analysis in free convective flow of pseudoplastic and dilatant fluids over

a truncated cone with viscous dissipation: Forchheimer model”, Journal of Thermal

Analysis and Calorimetry , June 2021. DOI: 10.1007/s10973-021-10823-1.
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Chapter 2

Stable Stratified Power-law Fluid

Flows over Convectively Heated

Truncated Cone Embedded in a

Non-Darcy Porous Medium 1

2.1 Introduction

Ostwald-de Waele power-law fluid model [90, 128] is one among the best established models

dealing with various daily life applications. The combined study of pseudoplastic and dilatant

fluids helps to obtain a complete analysis of deviation from the Newtonian behaviour. The

importance of flow studies in a porous medium is well established and it has attracted a

significant amount of attention in the recent times. Convective boundary condition is playing

a vital role in different kinds of complex flow studies involved in laboratories and industries.

Besides, it is more realistic and general, especially in various technologies and industrial

operations such as textile drying, transpiration cooling process, laser pulse heating and so

1Case(a): Published in “International Journal of Applied and Computational Mathematics”
7(3), 1–17, (2021), Case(b): Published in “Heat Transfer” 50(3), 2380–2402, (2021).
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on. Cheng [19] discussed the double diffusion from a truncated cone in a non-Newtonian

fluid saturated porous medium with variable heat and mass fluxes. Also, he explained

various effects on heat and mass transfer by natural convection from the same geometry in a

fluid-saturated porous medium with variable wall temperature and concentration [20]. Free

convection from a cone/flat plate in a non-Darcy porous medium saturated by a power-law

fluid, has been analysed by Kairi and Murthy [55].

In this chapter, the natural and mixed convective flow of stratified power-law fluids over

a convectively heated truncated cone situated in a non-Darcy porous medium, are studied in

detail. In addition, the significance of thermal dispersion and nonlinear thermal convection

effects is also discussed. Along with these, the mixed convection is explained carefully for

both opposing and aiding flow cases. For this purpose, the combined local non-similarity and

spectral local linearisation methods are utilized and the influence of pertinent parameters

is shown through graphs. It is concluded from the literature survey that this work is not

attained much regard though it has several notable applications in multiple directions of

engineering and science and so it is attempted here.

2.2 Mathematical Analysis

Consider the convective flow over a truncated cone immersed in a power-law fluid saturated

non-Darcy porous medium with thermal dispersion and convective boundary condition. The

physical model with coordinate system is displayed in Fig. 2.1. The leading edge of the

truncated cone is kept at a distance x0 from the origin O, where x and y axes are taken

along and normal to the surface of the truncated cone, respectively. The free stream ve-

locity is taken as u∞ and it is assumed that the ambient medium temperature is linearly

stratified as T∞(x̄) = T∞,0 + A∗x̄ , where the modified streamwise coordinate x̄ is defined as

x̄ = x − x0 and the parameter A∗ is used to control the stratification intensity. The fluid

temperature is taken as Tf , and the truncated cone surface is either heated (Tf > T∞(x̄)) or

cooled (Tf < T∞(x̄)). In addition, this fluid flow is taken for granted to be two dimensional

and steady along with the laminar behaviour and the porous medium is assumed to be homo-
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geneous and isotropic. The flow intensity is taken to be moderate and the permeability of the

medium is presumed to be less in order to explore the applicability of the Forchheimer flow

model and negligence of boundary effect. Also, the nonlinear temperature density variations

bring a significant influence on the flow field due to notably large changes in temperature

between the surface of the truncated cone and ambient fluid.

Figure 2.1: Physical model and coordinate system.

One more assumption involved is that the boundary layer thickness is very small in com-

parison with the local radius of the truncated cone. So, the two radii, namely, local radius at

a point located in the boundary layer and the radius of truncated cone can be approximated

by r = x sinγ (see Singh et al. [113]). Therefore, the equations and boundary conditions

involved will be valid only in the region x0 < x < ∞. Hence, the above assumptions are

physically realistic in nature with more relevance in practical situations.

Taking the boundary layer hypothesis into consideration together with the above-mentioned

approximations and assumptions, the governing equations for the fluid flow over a truncated
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cone are given by
∂(ru)

∂x
+
∂(rv)

∂y
= 0, (2.1)

∂un

∂y
+
bK∗

ν

∂u2

∂y
=
K∗g

ν

{
[β0 + 2β1(T − T∞(x̄))]

∂T

∂y

}
cosγ, (2.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α∗
∂T

∂y

)
, (2.3)

and the boundary conditions can be written as

v = 0, −km
∂T

∂y
= hf (Tf − T ) at y = 0,

u→ u∞, T → T∞(x̄) as y →∞,
(2.4)

where ν, hf , b, γ, g, T , km, u∞ and (u, v) denote the kinematic viscosity, convective heat

transfer coefficient, empirical constant, inclination of angle, acceleration due to gravity, tem-

perature, thermal conductivity, free steam and Darcian velocities, respectively. A variable

quantity α∗ = α+αd is used to denote the sum of the molecular diffusivity α and the thermal

diffusivity αd = χud followed by Plumb [96], where χ denote the coefficient of mechanical

dispersion whose value is based on experiments and d represents the pore diameter. Next,

we have considered the thermal expansion coefficients of first and second order, namely, β0

and β1 respectively. Here n is the power-law index (for n < 1, the fluid is pseudoplastic; for

n > 1, the fluid is dilatant; and for n = 1, the fluid is Newtonian). K∗ is the modified per-

meability and by following Christopher and Middleman [23], and Dharmadhikari and Kale

[28], its expression is given by

K∗ =
1

2 ct

(
nφ∗

3n+ 1

)n(
50Kd

3φ∗

)n+1
2

,

where φ∗ is the porosity of the medium, Kd =
φ∗3d2

150(1− φ∗)2
, and

ct =


25
12
,

2

3

(
8n

9n+ 3

)n(
10n− 3

6n+ 1

)(
75

16

)3(10n−3)/(10n+11)

.
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The stream function ψ is introduced in such a way that it satisfies the equation of

continuity (2.1). Mathematically,

u =
1

r

∂ψ

∂y
v = −1

r

∂ψ

∂x
. (2.5)

In this chapter, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

2.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow which is caused by only buoyancy forces

and without any external agent. Hence, the velocity of the external flow becomes zero

(i.e., u∞ = 0). The non-dimensional relations utilized to get the non-dimensional form of

equations (2.2)-(2.4) are

ξ =
x̄

x0

, η =
y

x̄
Ra

1
2 , f(ξ, η) =

Ra−
1
2

α r
ψ(ξ, η), θ(ξ, η) =

T (ξ, η)− T∞(x− x0)

(Tf − T∞,0)
, (2.6)

where ξ is streamwise coordinate, η is the dimensionless variable in y−direction and Ra =

x̄

α

(
ρ β0 g K

∗ cosγ (Tf − T∞,0)

µ

) 1
n

is the local modified Darcy-Rayleigh number.

Using these transformations (2.6) in the equations (2.2) to (2.3) and the boundary con-

ditions (2.4), the non-dimensional form of the above equations become

[
n (f ′)

n−1
+ 2Gr∗f ′

]
f ′′ = (2α1θ + 1)θ′, (2.7)

θ′′ + (f ′ θ′′ + f ′′ θ′)Ds +

(
ξ

ξ + 1
+ 0.5

)
fθ′ − ST ξ f ′ = ξf ′

∂θ

∂ξ
− ξ ∂f

∂ξ
θ′, (2.8)
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along with its transformed boundary conditions

2 ξ (ξ + 1)

(
∂f

∂ξ

)
η=0

+ (3 ξ + 1)f(ξ, 0) = 0, θ′(ξ, 0)−Bi ξ
1
2 [θ(ξ, 0) − 1 + ST ξ] = 0,

f ′(ξ, η)→ 0, θ(ξ, η)→ 0 as η →∞.
(2.9)

Here, prime indicates the differentiation in respect of η and Gr∗ =
bK∗

ν

(
αRa

x̄

)2−n

, α1 =

β1

β0

(Tf − T∞,0), Ds =
χdRa

x̄
, ST =

A∗x0

(Tf − T∞,0)
, Bi =

hf
√
x0

km

( x̄

Ra

) 1
2

represent the modified

Grashof number, nonlinear density-temperature parameter, thermal dispersion parameter,

thermal stratification parameter and Biot number respectively. When ξ → 0 (i.e., x→ x0),

this problem is converted to the flow problem past a vertical plate. Similarly, when x0 = 0,

ξ becomes very large which is utilized to obtain the same problem with the full cone as a

geometry.

Non-dimensional representation of the Nusselt number Nux = − x̄
k

(k + kd)

(Tf − T∞,0)

[
∂T

∂y

]
y=0

and the skin friction coefficient Cf =
2

ρ u2
∗

[
µ
∂u

∂y

]
y=0

is

Nux̄

Ra
1
2

= − [Dsf ′(ξ, 0) + 1] θ′(ξ, 0),
1

2

Ra
1
2

Pr
Cf = f ′′(ξ, 0). (2.10)

Here u∗ and µ denote the characteristic velocity and the dynamic viscosity respectively, ke

(the effective thermal conductivity of the medium) is the sum of kd (the dispersion ther-

mal conductivity) and k (the molecular thermal conductivity), and Pr denotes the Prandtl

number.

Numerical Solution

The governing equations (2.7)-(2.8) along with the boundary conditions (2.9) are solved nu-

merically using spectral local linearisation method (SLLM) together with the non-similarity

approach. The details are given below:
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Local Similarity and Non-similarity Approaches:

It is used to convert the set of nonlinear partial differential equations (2.7)-(2.8) and the

boundary conditions (2.9) into a set of nonlinear ordinary differential equations and bound-

ary conditions by employing the three levels of truncation (for more details, one can refer

[115, 74]). When ξ << 1 , the preliminary approximation is found from the local similar-

ity equations and insignificant terms involving ξ
∂

∂ξ
are removed. Consequently, the local

similarity equations for the first level truncation of equations (2.7)-(2.8) are

[
n (f ′)

n−1
+ 2Gr∗f ′

]
f ′′ − (2α1θ + 1)θ′ = 0, (2.11)

θ′′ + (f ′′ θ′ + f ′ θ′′)Ds +

(
ξ

ξ + 1
+ 0.5

)
fθ′ − ST ξ f ′ = 0, (2.12)

and the corresponding boundary conditions (2.9) are

f(ξ, 0) = 0, θ′(ξ, 0) +Bi ξ
1
2 [1− θ(ξ, 0) − ST ξ] = 0,

f ′(ξ, η)→ 0, θ(ξ, η)→ 0 as η →∞.
(2.13)

The parameter ξ contained in the governing equations and boundary conditions can be

regarded as assigned constant at any streamwise location along the surface. As a result, the

governing equations transformed by the local similarity method can be treated as a system

of ordinary differential equations with partial non-similar effects retained in the momentum

equation and the boundary conditions. Here, the solutions are different for different values

of the streamwise coordinate ξ. This can be seen by assigning different values to ξ along the

surface and plotting the respective boundary layer distributions.

On the other hand, the non-similar terms on the right-hand side of equations (2.7)-(2.9)

are vanished in the local similarity procedure. The local similarity postulation requires ξ to

be close to zero. Otherwise, the whole term in the bracket on the right-hand side of equations

(2.7)-(2.9) must be minimal to justify the exclusion of non-similar terms. The validity of

the latter assumption, however, is subject to uncertainty and this is a weakness of the local

similarity procedure.
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The second level truncation involves the use of new variables U =
∂f

∂ξ
, V =

∂θ

∂ξ
, by which

the local non-similarity nonlinear ODEs are derived to get the previously omitted terms.

Hence, updated governing equations are

[
n (f ′)

n−1
+ 2Gr∗f ′

]
f ′′ − (2α1θ + 1)θ′ = 0, (2.14)

θ′′ + (f ′′ θ′ + f ′ θ′′)Ds +

(
ξ

ξ + 1
+ 0.5

)
fθ′ − ST ξ f ′ − ξ V f ′ + ξ U θ′ = 0, (2.15)

with boundary conditions

(3 ξ + 1)f(ξ, 0) + 2 (ξ + 1) ξ U(ξ, 0) = 0,

θ′(ξ, 0) +Bi ξ
1
2 [1− ST ξ − θ(ξ, 0)] = 0,

f ′(ξ, η)→ 0, θ(ξ, η)→ 0 as η →∞.

(2.16)

Finally, in the last truncation level, equations (2.14)-(2.16) are differentiated in respect

of ξ and all partial derivatives of U and V are removed. Therefore, the final equations are

n (f ′)
n−1

U ′′ + n(n− 1) (f ′)
n−2

f ′′U ′ + 2Gr∗(U ′′f ′ + f ′′U ′)−

−V ′ − 2α1(θV ′ + V θ′) = 0,
(2.17)

V ′′ +Ds(f ′V ′′ + f ′′V ′) +

(
1

2
+

ξ

ξ + 1

)
fV ′ − f ′V + ξUV ′ − ξU ′V+

Ds(U ′′θ′ + U ′θ′′) +

(
1

2
+

ξ

ξ + 1

)
Uθ′ − STf ′ − ξSTU ′ + θ′U +

1

(ξ + 1)2
fθ′ = 0,

(2.18)

with boundary conditions

3f(ξ, 0) + (7ξ + 3)U(ξ, 0) = 0,

V ′ (ξ, 0)−Biξ
1
2V (ξ, 0) + 0.5Biξ−

1
2 [1− θ(ξ, 0)]− 1.5Biξ

1
2ST = 0,

U ′(ξ, η)→ 0, V (ξ, η)→ 0 as η →∞.

(2.19)

The two-equation model involves four coupled equations [i.e., (2.14)-(2.15) and (2.17)-

(2.18)] that need to be solved simultaneously in conjunction with the two sets of boundary

30



conditions [(2.16) and (2.19)]. Therefore, the local non-similarity procedure preserves the

non-similar terms in original governing equations and boundary conditions because we are

dropping the non-similar terms from its auxiliary equations only. Since the original governing

equations remain intact, the local non-similarity solution is expected to be more accurate

than the local similarity solution.

Spectral Local Linearisation Method (SLLM):

The SLLM is based on developing a decoupled iterative scheme that is then chronologically

solved using spectral methods. Local linearisation is applied to the equations before gener-

ating the iterative scheme in a manner similar to the Gauss-Seidel approach of decoupling

linear algebraic systems. Consider a system of n nonlinear ordinary differential equations

in n unknown functions Yj(η), j = 1, 2, 3, ..., n written as a sum of its linear and nonlinear

terms as follows:

Lj[Y1, Y2, ..., Yn] +Nj[Y1, Y2, ..., Yn] = 0, j = 1, 2, 3, ..., n. (2.20)

Let the subscripts r and r + 1 represent the previous and current iteration, respectively.

Local linearisation of Nj at the previous iteration about Yj is then carried out as follows:

Nj[Y1, Y2, ..., Yn] = Nj[Y1,r, Y2,r, ..., Yn,r] +
∂Nj

∂Yj
[Y1,r, Y2,r, ..., Yn,r](Yj − Yj,r), (2.21)

using this, at the current iteration with Yj = Yj,r+1, equation (2.20) becomes

Lj[Y1,r+1, Y2,r+1, ..., Yn,r+1] +
∂Nj

∂Yj
[Y1,r, Y2,r, ..., Yn,r]Yj,r+1

=
∂Nj

∂Yj
[Y1,r, Y2,r, ..., Yn,r]Yj,r −Nj[Y1,r, Y2,r, ..., Yn,r].

(2.22)

Following the Gauss-Sidel approach, whereby the updated solutions Yk(k < j), obtained at

previous equations are utilised to get a solution Yj at the current iteration level Yj,r+1, the
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local linearisation iteration scheme can be generated as follows:

L1[Y1,r+1, Y2,r+1, ..., Yn,r+1] +
∂N1

∂Y1

[...]Y1,r+1

=
∂N1

∂Y1

[...]Y1,r −N1[Y1,r, Y2,r, ..., Yn,r],

L2[Y1,r+1, Y2,r+1, ..., Yn,r+1] +
∂N2

∂Y2

[...]Y2,r+1

=
∂N2

∂Y2

[...]Y2,r −N2[Y1,r+1, Y2,r, ..., Yn,r],

(2.23)

...

Ln[Y1,r+1, Y2,r+1, ..., Yn,r+1] +
∂Nn

∂Yn
[...]Yn,r+1

=
∂Nn

∂Yn
[...]Yn,r −Nn[Y1,r+1, ..., Yn−1,r+1, Yn,r],

where [...] at the jth iteration represents [Y1,r+1, Y2,r+1..., Yj−1,r+1, Yj,r, ..., Yn,r]. Hence, start-

ing from an initial approximation Y1,0, Y2,0, ..., Yn,0, the iterative scheme (2.23) is solved until

convergence is reached for all the unknowns. Utilising this procedure, the iterative scheme

for four coupled equations [(2.14)-(2.15) and (2.17)-(2.18)] along with two sets of boundary

conditions [(2.16) and (2.19)] is generated as following:

f ′′r+1 + a1,rf
′
r+1 = K1,r, (2.24)

θ′′r+1 + b1,rθ
′
r+1 = K2,r, (2.25)

U ′′r+1 + x1,rU
′
r+1 = K3,r, (2.26)

V ′′r+1 + y1,rV
′
r+1 + y2,rVr+1 = K4,r, (2.27)

where

a1,r =
n(n− 1)f ′′r (f ′r)

n−2 + 2Gr∗f ′′r
n (f ′r)

n−1 + 2Gr∗f ′r
,
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K1,r =
θ′r + 2α1θrθ

′
r + n(n− 1)f ′′r (f ′r)

n−1 + 2Gr∗f ′′r f
′
r

n (f ′r)
n−1 + 2Gr∗f ′r

,

b1,r =
Dsf ′′r+1 +

(
1
2

+ ξ
ξ+1

)
fr+1 + ξUr

1 +Dsf ′r+1

,

K2,r =
ξSTf

′
r+1 + ξf ′r+1Vr

1 +Dsf ′r+1

,

x1,r =
n(n− 1)

(
f ′r+1

)n−2
f ′′r+1 + 2Gr∗f ′′r+1

2Gr∗f ′r+1 + n
(
f ′r+1

)n−1 ,

K3,r =
V ′r + 2α1θ

′
r+1Vr + 2α1θr+1V

′
r

n
(
f ′r+1

)n−1
+ 2Gr∗f ′r+1

,

y1,r =
Dsf ′′r+1 +

(
1
2

+ ξ
ξ+1

)
fr+1 + ξUr+1

1 +Dsf ′r+1

, y2,r =
−f ′r+1 − ξU ′r+1

1 +Dsf ′r+1

,

K4,r =
−Ds

(
U ′r+1θ

′′
r+1 + U ′′r+1θ

′
r+1

)
−
(

3
2

+ ξ
ξ+1

)
Ur+1θ

′
r+1 + ξSTU

′
r+1 + STf

′
r+1 − 1

(ξ+1)2
fr+1θ

′
r+1

1 +Dsf ′r+1

,

with linearised boundary conditions

fr+1(ξ, 0) = −2ξ(ξ + 1)

3ξ + 1
Ur(ξ, 0),

θ′r+1(ξ, 0)− ξ
1
2Bi θr+1(ξ, 0) = −Biξ

1
2 +Biξ

3
2ST ,

Ur+1(ξ, 0) = − 3

7ξ + 3
fr+1(ξ, 0),

V ′r+1(ξ, 0)−Biξ
1
2Vr+1(ξ, 0) = −1

2
Biξ

−1
2 +

1

2
Biξ

−1
2 θr+1(ξ, 0) +

3

2
Biξ

1
2ST ,

f ′r+1(ξ, η)→ 0, θr+1(ξ, η)→ 0, U ′r+1(ξ, η)→ 0, Vr+1(ξ, η)→ 0, as η →∞.

(2.28)

Since the coefficient parameters and the right-hand side of these equations are known (from

previous iterations), it can easily be solved using any numerical method. Here, the equa-

tions are solved using the Chebyshev spectral collocation method (Canuto et al. [12]). This
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method is based on approximating the unknown functions by the Chebyshev interpolating

polynomials in such a way that they are collocated at the Gauss-Lobatto points defined as

τm = cos
πm

Nx

, m = 0, 1, ..., Nx, (2.29)

where Nx is the number of collocation points.

The Chebyshev polynomials are defined on the interval [−1, 1]. So, the physical region

[0,∞) is transformed into the region [−1, 1] using the domain truncation technique in which

the problem is solved on the interval [0, S] instead of [0,∞). This leads to the mapping

η

S
=
τ + 1

2
, −1 ≤ τ ≤ 1, (2.30)

where S is the scaling parameter which is used to invoke the boundary condition at ∞.

The unknown functions Yj,r+1 are approximated at the collocation points as

Yj(τ) =
Nx∑
k=0

Yj(τk)Tk(τm),
dZ

dηZ
Yj(τ) =

Nx∑
k=0

DZ
kmYj(τk), m = 0, 1, ..., Nx, (2.31)

where Tk is the kth Chebyshev polynomial given by Tk(τ) = cos[k cos−1τ ], D is the Cheby-

shev spectral derivative matrix such that D = (2/S)D and Z is the order of differentiation.

After substituting (2.30)-(2.31) into the linearised form of equations (2.24)-(2.28), the

required solution is given by

Ỹi = B̃−1
i−1R̃i−1, (2.32)

In equation (2.32), B̃i−1 is a square matrix of order (4Nx + 4) and Ỹi, R̃i−1 are the col-

umn matrices of order (4Nx + 1). In a simplified way, the matrix representation of equations

(2.24)-(2.27) can be given as

A1 F = B1,

A2 Θ = B2,

A3 U = B3,
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A4 V = B4,

where

A1=D2+diag(a1,r)D, B1=K1,r,

A2=D2+diag(b1,r)D, B2=K2,r,

A3=D2+diag(x1,r)D, B3=K3,r,

A4=D2+diag(y1,r)D+diag(y2,r)I, B4=K4,r,

where I is the (Nx+1)th order identity matrix and F , Θ, U and V are the vectors containing

f , θ, U and V values evaluated at the Gauss - Lobatto (collocation) points. In this way, the

solution of system of equations along with the boundary conditions are obtained by making

use of appropriate initial approximations and the fluid flow behaviour is studied.

Validation and Residual Error Analysis:

To validate the numerical solution obtained by using the method as described in the above

section, the solutions about different values of ξ have been computed for residual errors.

The residual error analysis is performed in MATLAB by taking 50 collocation points in η-

direction (i.e. Nx = 50) and Lx = 10 is fixed in the η-direction to get the asymptotic nature

at infinity. These residuals are defined as the norm of the difference between two successive

iterations, and it is said to have convergence when the norms are less than a given tolerance

level. The convergence property is shown by using the following expressions for the error in

the fluid velocity and fluid temperature at (r + 1)th level

Ef = max||fr+1,i − fr,i||∞, 0 ≤ i ≤ Nx,

Eθ = max||θr+1,i − θr,i||∞, 0 ≤ i ≤ Nx.
(2.33)

Figs. 2.2(a)-2.3(b) are prepared to display the variation in the norm of residual error with

iterations for equations (2.14) and (2.15) with different ξ. The residual error is decreased

with increase in iterations and its very less value for different values of ξ shows the faster

convergence and accuracy of the present method (for more details, one can refer the work
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of Motsa et al. [78]). Hence, the validation of this spectral local linearisation method is

justified.

Results and Discussions

Apart from the above-said residual error estimations, to check the accuracy of computations

and the exactness of formulation, the results of this problem in the case of wall temperature

condition (θ(ξ, η) = 1 as Bi → ∞) for vertical plate (i.e. ξ → 0) when Ds = 0, α1 = 0

and ST = 0 are also compared with the results of Plumb and Huenefeld [97] and the exact

results (see Nakayama et al. [83] and citations therein) for the Newtonian fluid case. These

comparisons show that the results are matching at a very good extent as displayed in Table

(2.1). Further, the behaviour of temperature and velocity profiles along with the skin friction

coefficient and heat transfer rate for various values of streamwise coordinate ξ are given in

the tabular form for pseudoplastic fluid and dilatant fluid in Table (2.2) and Table (2.3)

respectively. From these results, it is self-evident that the solutions are not similar. This

flow model reveals some of the interesting observations regarding the boundary layer flows

in the practically feasible range of important parameters and these are very useful in various

emerging applications.

Table 2.1: Comparative analysis of −θ′(ξ, 0) for different values of Gr∗ when ξ → 0, Ds = 0,

α1 = 0, ST = 0, Bi→∞ and n = 1 (Newtonian fluid).

Gr∗ Present Exact [83] Plumb [97]

0 0.44390437 0.4439 0.44390

0.01 0.44231590 0.4423 0.44232

0.1 0.42968906 0.4297 0.42969

1 0.36616650 0.3662 0.36617

10 0.25748252 0.2513 0.25126

100 0.16190872 0.1519 0.15186
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Table 2.2: The non-dimensional velocities, temperatures, Nusselt number and skin friction

coefficients for various values of ξ when Gr∗ = 1.0, Ds = 0.5, α1 = 1.0, Bi = 1.0, ST = 0.01

and n = 0.8 (pseudoplastic fluids).

ξ f ′(ξ, 0) θ(ξ, 0)
Nux̄

Ra
1
2

1

2

Ra
1
2

Pr
Cf

0.1 0.4497 0.4778 0.2019 -0.1734

0.2 0.5169 0.5375 0.2592 -0.2155

0.3 0.5513 0.5727 0.2965 -0.2447

0.4 0.5730 0.5984 0.3235 -0.2683

0.5 0.5894 0.6185 0.3474 -0.2877

0.6 0.6033 0.6341 0.3628 -0.3035

0.7 0.6200 0.6428 0.3838 -0.3128

Table 2.3: The non-dimensional velocities, temperatures, Nusselt number and skin friction

coefficients for various values of ξ when Gr∗ = 1.0, Ds = 0.5, α1 = 1.0, Bi = 1.0, ST = 0.01

and n = 1.2 (dilatant fluids).

ξ f ′(ξ, 0) θ(ξ, 0)
Nux̄

Ra
1
2

1

2

Ra
1
2

Pr
Cf

0.1 0.4896 0.4561 0.2137 -0.1626

0.2 0.5494 0.5194 0.2728 -0.2017

0.3 0.5830 0.5551 0.3126 -0.2277

0.4 0.6062 0.5798 0.3430 -0.2474

0.5 0.6239 0.5986 0.3677 -0.2632

0.6 0.6382 0.6138 0.3884 -0.2764

0.7 0.6501 0.6265 0.4063 -0.2877

The variation in the non-dimensional velocity, temperature, heat transfer rate and skin

friction coefficient for different Bi is portrayed graphically in Figs. 2.4(a)-2.4(d) where all
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other parameters are given fixed values. Bi is defined as the proportion of internally heated

resistance in the truncated cone surface to the boundary layer heated resistance. Fig. 2.4(a)

depicts the fluid velocity increments with higher values of Bi and the dilatant fluid is more

influenced in comparison with the pseudoplastic fluid. In Fig. 2.4(b), the influence of Bi

on temperature profiles is displayed which shows that the higher values of temperature are

obtained with the increment in Biot number. It is clear from this figure that the temperature

is more for both the fluids when the surface is subjected to wall temperature condition (i.e.,

θ(ξ, 0) = 1 − ξ ST which is obtained when Bi → ∞) in comparison with the convectively

heated surface (as shown in Boundary condition (2.9)). The variation in Nusselt number

with the nonlinear convection parameter α1 for various values of Biot number is shown in

Fig. 2.4(c). From this figure, the domination of dilatant fluid over the pseudoplastic fluid

is observed and also the higher rate of heat transfer is noticed with an increment of Bi.

Similarly, in Fig. 2.4(d), the change in skin friction coefficient with α1 for different values of

Bi is displayed. Less negative values are obtained for the dilatant fluid with an increment of

Bi and this negativity increases with the Biot number increment. This type of analysis where

the temperature of surface is fixed in later stage, may be very useful in many applications

because if the surface temperature is fixed initially, it may further result into damage of

materials involved in the experiment or even in industry.

The variation in the non-dimensional velocity, temperature, Nusselt number and skin

friction coefficient for different values of the thermal dispersion parameter Ds is depicted

in Figs. 2.5(a)-2.5(d). Thermal dispersion raises the potency of non-uniform pore level

velocities on the temperature field in a certain porous medium. In addition, the importance

of integrated variations in the temperature and velocity profiles to the heat transportation

can also be seen with the help of thermal dispersion. It is found from the Fig. 2.5(a) that

there is increment in velocity when the thermal dispersion is present in the case of dilatant

and pseudoplastic fluids. Likewise, Fig. 2.5(b) portrays that there is again increment in the

temperature profiles for non-zero values of Ds. Due to higher flow velocities in the porous

medium, the thermal dispersion dominates molecular diffusion. Hence, a detailed analysis

must be given about its impact on the heat transfer properties in this study. In view of
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this, the impact of Ds with α1 on Nusselt number is shown in Fig. 2.5(c). With enhanced

values of Ds, the heat transfer is also enhanced for both the dilatant and pseudoplastic

fluids. The values for dilatant fluid are found to be more. The influence of Ds on the skin

friction coefficient with α1 is displayed in Fig. 2.5(d). When Ds is increased, less negative

skin friction is observed for the two fluids. The magnitude of Ds is higher for pseudoplastic

fluid than that of the dilatant fluid.

In the Figs. 2.6(a)-2.6(d), the significance of ST on non-dimensional velocity of the

fluid flow, temperature, heat transfer rate and skin friction coefficient is depicted. There

is decrement in the velocity and temperature profiles in the case of increasing values of

stable stratification (i.e., for ST > 0) for both dilatant and pseudoplastic fluids. Due to ST

increment, density of the fluid is increased which results the decrement in the convective

flow and so the velocity profiles are decreased and this effect is less for pseudoplastic fluid.

Also, in the presence of ST , the temperature variation between the surface of the truncated

cone and the marginal fluid decreases, which thickens the thermal boundary layer resulting

into temperature profile decrement. In Fig. 2.6(c), the impact of stratification on Nusselt

number with α1 is shown for dilatant and pseudoplastic fluids. Increase in ST values results

into the decrement of Nusselt number for both the fluids. Nusselt number is noticed to be

less in the case of pseudoplastic fluid. Fig. 2.6(d) shows the impact of stratification on the

skin friction coefficient with α1 and increment in ST makes skin friction values less negative

for dilatant and pseudoplastic fluids and there is rapid variation with α1 values.

The effect of α1 on the dimensionless velocity and temperature is displayed in Figs. 2.7(a)-

2.7(b). The nonlinear convection parameter shows a non-linearity relationship between the

temperature and density. Physically, α1 > 0 refers the expression Tf > T∞, so the truncated

cone surface gives significant amount of heat to the fluid flow region. The presence and

absence of α1 are taken to analyse its influence when other parameters are assigned specific

values. Fig. 2.7(a) displays that the presence of α1 makes velocity to increase and this effect

is less for the pseudoplastic fluid. Fig. 2.7(b) displays the temperature decrements in the

presence of α1 for both the fluids and these decrements are found to be more in the case of

pseudoplastic fluid. As α1 increases, from Figs. 2.4(c)-2.4(d) and Figs. 2.5(c)-2.5(d), it is
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evident that the Nusselt number and skin friction are less affected for pseudoplastic fluids

than the dilatant fluids in the presence/absence of either convective boundary condition or

thermal dispersion. With the increment in α1, the Nusselt number is identified to be more

for pseudoplastic fluid when compared to dilatant fluid with/without ST as displayed in Fig.

2.6(c). The behaviour of skin friction coefficient is noticed to be opposite to that of the

Nusselt number as shown in Fig. 2.6(d) with the enhancement of α1.
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Figure 2.2: Residual errors over iterations for Newtonian fluid when Ds = 1.0, α1 = 0.1,

Gr∗ = 0.01, Bi = 1.0, ST = 0.01.
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Figure 2.3: Residual errors over iterations for non-Newtonian fluid when Ds = 0.5, α1 = 0.1,

Gr∗ = 0.01, Bi = 1.0, ST = 0.01.
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Figure 2.4: Effect of Biot Number (Bi) on non-dimensional (a) velocity, (b) temperature,
(c) Nusselt number and (d) skin friction coefficient profiles for different values of n.
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Figure 2.5: Effect of thermal dispersion parameter (Ds) on non-dimensional (a) velocity, (b)
temperature, (c) Nusselt number and (d) skin friction coefficient profiles for different values
of n.
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Figure 2.6: Effect of thermal stratification parameter (ST ) on non-dimensional (a) velocity,
(b) temperature, (c) Nusselt number and (d) skin friction coefficient profiles for different
values of n.
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Figure 2.7: Effect of nonlinear convection parameter (α1) on non-dimensional (a) velocity
and (b) temperature profiles for different values of n.
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2.2.2 Case(b): Mixed Convection

The flow is assumed to be a mixed convective flow, which arises from both buoyancy forces

and an external flow with the velocity u∞. To get the non-dimensional form of the system

of equations (2.2) - (2.3) and boundary conditions (2.4), the dimensionless transformations

are given below

ξ =
x̄

x0

, η =
y

x̄
Pe

1
2 , ψ(ξ, η) = α r Pe

1
2 f(ξ, η),

T (ξ, η) = T∞(x̄) + (Tf − T∞,0) θ(ξ, η),

(2.34)

where Pe =
u∞x̄

α
is the local Peclet number.

Using these transformations (2.34) in the equations (2.2) to (2.3) and the boundary

conditions (2.4), the non-dimensional form of the above equations become

n (f ′)
n−1

f ′′ + 2Fs f ′f ′′ = λn(1 + 2α1θ)θ
′, (2.35)

(1 +Dsf ′)θ′′ +Dsf ′′ θ′ +

(
1

2
+

ξ

ξ + 1

)
fθ′ − ξ ST f ′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
, (2.36)

along with the boundary conditions

(3 ξ + 1)f(ξ, 0) + 2 ξ (ξ + 1)

(
∂f

∂ξ

)
η=0

= 0, θ′(ξ, 0) = −Bi ξ
1
2 [1− θ(ξ, 0) − ξ ST ] ,

f ′(ξ, η)→ 1, θ(ξ, η)→ 0 as η →∞.
(2.37)

Here, Ra =
x̄

α

(
ρ β0 g K

∗ cosγ (Tf − T∞,0)

µ

) 1
n

, λ =
Ra

Pe
, Fs =

bK∗ u2−n
∞

ν
, Bi =

hf
√
x0

km

( x̄

Pe

) 1
2

,

α1 =
β1

β0

(Tf − T∞,0), ST =
A∗x0

(Tf − T∞,0)
, and Ds =

χdu∞
α

. The symbol Ra is the lo-

cal modified Darcy-Rayleigh number, λ is the mixed convection parameter, Fs is the non-

Darcian parameter(Forchheimer number), Bi is the Biot number, α1 is the nonlinear density-

temperature parameter, ST is the thermal stratification parameter and Ds is the thermal

dispersion parameter.
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Non-dimensional form of the Nusselt number Nux̄ = − x̄
k

(k + kd)

(Tf − T∞,0)

[
∂T

∂y

]
y=0

and the

skin friction coefficient Cf =
2

ρ u2
∞

[
µ
∂u

∂y

]
y=0

, is given by

Nux̄

Pe
1
2

= − [1 +Dsf ′(ξ, 0)] θ′(ξ, 0),
1

2

Pe
1
2

Pr
Cf = f ′′(ξ, 0). (2.38)

Results and Discussion

In this part, the numerical findings related to the solution of equations (2.35)-(2.36) subject

to the boundary conditions (2.37) by the method mentioned in the previous section for

various values of physical parameters, are discussed. All the computations in this solution

procedure have been carried out with 50 collocation points (i.e., Nx = 50) in η-direction

and Lx = 20 is used for numerical approximations at infinity in η-direction. To verify the

correctness of the formulation and accurate calculations further, the outcomes of present

problem subject to the wall temperature condition (i.e., Bi → ∞) in the case of vertical

plate (i.e., ξ → 0) when Fs = 0, Ds = 0, α1 = 0, and ST = 0, are also compared with the

results (similarity solutions) of Cheng [95] and Chaoyang et al. [14] in the case of aiding and

opposing flows for the Newtonian fluids. Further, a comparison is also done with the work of

Chaoyang et al. [14] for non-Newtonian fluids by taking n = 0.5 for the pseudoplastic fluid

and n = 1.5 for the dilatant fluid. The comparison in all these cases is matching at a good

extent which is shown in Tables (2.4)-(2.5), respectively. Due to the emerging applications

in diverse fields, we are also interested in the analysis of fluid flow and heat transfer rate

results. In this study, all the results for power-law fluids, are analysed for both the aiding

and opposing flow situations. Also, these results reveal a few interesting facts involving

boundary layer flow field and heat transfer rate for physically realistic values of pertinent

parameters.
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Table 2.4: Comparison of −θ′(ξ, 0) for various values of λ when Fs = 0, ξ → 0, Ds = 0,

α1 = 0, Bi→∞ and ST = 0: Newtonian fluid case (n = 1).

λ Cheng [95] Chaoyang et al. [14] Present

0.0 0.5641 0.5641 0.564189

0.5 0.6473 0.6473 0.647396

1.0 0.7205 0.7205 0.720584

3.0 0.9574 - 0.957475

4.0 - 1.025 1.055796

8.0 - 1.354 1.380081

10.0 1.5160 - 1.516269

20.0 2.0660 - 2.066331

-0.2 0.5269 0.5269 0.526943

-0.4 0.4865 0.4865 0.486565

-0.6 0.4420 0.4420 0.442053

-0.8 0.3916 0.3916 0.391697

-1.0 0.3320 0.3320 0.332057

Table 2.5: Comparison of −θ′(ξ, 0) for various values of λ when Fs = 0, ξ → 0, Ds = 0,

α1 = 0, Bi → ∞ and ST = 0: non-Newtonian fluid cases by taking n = 0.5 and n = 1.5

respectively.

λ Chaoyang et al. [14] Present Chaoyang et al. [14] Present

0.0 0.5641 0.56418958 0.5641 0.56418958

0.5 0.8209 0.82170383 0.6034 0.60339901

1.0 0.9303 0.92963529 0.6634 0.66337472

4.0 1.301 1.30068542 1.018 1.01758150

8.0 1.610 1.60971523 1.380 1.38021127
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The variation in the dimensionless velocity, temperature, Nusselt number and skin friction

coefficient for pseudoplastic (n < 1) and dilatant (n > 1) fluids with increasing values of

the Biot number is displayed in Figs. 2.8(a)-2.9(d). The Biot number denotes the ratio of

internal thermal resistance of the surface of truncated cone to the thermal resistance of the

boundary layer. It is to be noted that the first four graphs i.e., Figs. 2.8(a)-2.8(d), are drawn

for the opposing flow case (λ = −3) and the next four figures i.e., Figs. 2.9(a)-2.9(d), are

plotted for the aiding flow case (λ = 3). In all these plots, all the other parameters are given

a fixed value and only Biot number is changed. It is observed from Fig. 2.8(a) that the

increment of Biot number increases velocity and the influence is more in the case of dilatant

fluid. But, from Fig. 2.9(a), it is evidently visible that the Biot number effect is much more

in aiding flow case as velocity touches the higher values (as expected) in comparison with

the opposing flow case. The physical reason behind this difference in the velocity between

these two fluid flow cases is that the presence of favourable pressure gradient in the aiding

flow case. In Figs. 2.8(b) and 2.9(b), the Biot number effect on temperature profiles are

shown and the temperature is more for higher values of the Biot number. The effect is

almost same for both the opposing and aiding flow cases as there is no direct involvement

of mixed convection parameter in energy equation. The variations in the non-dimensional

heat transfer rate (Nusselt number) with respect to λ for different values of the Biot number

are shown in Figs. 2.8(c) and 2.9(c). It is seen from the opposing flow graph that the

Nusselt number variation is very less in the case of pseudoplastic fluid when compared to the

dilatant fluid and the heat transfer is more for higher Biot number. The similar behaviour

is found for aiding flow but the Nusselt number values are much more for higher values

of the Biot number in this case. Similarly, in Figs. 2.8(d) and 2.9(d), variation in the

skin friction coefficient in respect of λ for varying values of the Biot number is shown. In

opposing flow case, the magnitude of skin friction coefficient is more for the dilatant fluid

in comparison with the pseudoplastic fluid for all the values of Biot number and it increases

with the higher values of the Biot number. In aiding flow case, the behaviour is found to be

similar to opposing flow with the larger magnitude of skin friction coefficient. When Fs = 0,

n = 1 and ξ → 0, the present investigation gives the results of Vasu et al. [127], who have

conducted similar analysis for the nonlinear convective flow of thermally stratified Newtonian
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fluid along a vertical plate in a porous medium in the presence of thermal dispersion and

convective boundary condition, and important results are also noted there.

The effect of nonlinear convection parameter (α1) on the dimensionless velocity, tem-

perature, Nusselt number and skin friction coefficient for opposing and aiding flow cases

are shown in Figs. 2.10(a)-2.11(d). This nonlinear convection parameter deals with the

nonlinearity in the density temperature relationship. Due to this reason, it is also termed

as nonlinear density temperature parameter. As in the previous case, the first four graphs

i.e., Figs. 2.10(a)-2.10(d) are drawn for the opposing flow case (λ = −3) and the next four

graphs i.e., Figs. 2.11(a)-2.11(d) are plotted in the case of aiding flow (λ = 3) and the effect

of α1 on both the fluids i.e., pseudoplastic (n < 1) and dilatant (n > 1) fluids are shown in

single figure. The three different values of α1 are used to study its effect and all the other

parameters are assigned a physically valid fixed value in all these graphs. In the physical

sense, α1 > 0 refers the relation Tf > T∞, so the surface of truncated cone will produce

remarkable quantity of heat to the fluid flow region. It is seen from Fig. 2.10(a) that due

to increment in α1, the velocity is increased and its influence is more in the case of dilatant

fluid. But, from Fig. 2.11(a), it is clearly visible that the effect of α1 is much more in aiding

flow, which is similar to the Biot number case. In Figs. 2.10(b) and 2.11(b), the effect of

α1 on temperature profiles are shown and the temperature is more for higher values of α1.

The effect is almost same for both opposing and aiding flows due to the same reason stated

in above effect. The variations in Nusselt number with respect to λ for different values of

the nonlinear convection parameter are shown in Figs. 2.10(c) and 2.11(c). It is pointed

out from the opposing flow graph that the Nusselt number variation is very less in the case

of pseudoplastic fluid when compared to the dilatant fluid and increment in α1 gave higher

heat transfer rate. The similar behaviour is found for aiding flow but the values of heat

transfer rate are much more for higher values of α1 in this case. Similarly, in Figs. 2.10(d)

and 2.11(d), the variations in skin friction coefficient in respect of λ for fixed values of α1

are shown. In opposing flow case, as nonlinear convection parameter is increased, the skin

friction coefficient values approach to its higher magnitude and this effect is more in dilatant

fluids when compared to the pseudoplastic fluids. The similar behaviour is seen in aiding
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flow but magnitude of skin friction coefficient is more in this case. Finally, it is concluded

from these graphs that the heat transfer rate is less and skin friction is more for both these

fluids when the linear Bousinesq approximation is employed in comparison to the nonlinear

Bousinesq approximation.

Effect of thermal dispersion parameter (Ds) on the dimensionless velocity, temperature,

Nusselt number and skin friction coefficient for both the pseudoplastic (n < 1) and dilatant

(n < 1) fluids, is shown in Figs. 2.12(a)-2.12(d) for opposing flow case and in Figs. 2.13(a)-

2.13(d) for aiding flow case. Basically, this effect brings up the effectiveness of non-uniform

pore level velocity on the temperature field inside the particular porous medium. Also, it

shows the significance of combined changes in velocity and temperature profiles to the heat

transportation. The different values ofDs are used to study its effect and all other parameters

are fixed to a certain value within their physical ranges, in all these graphs. It is found from

the Figs. 2.12(a) and 2.13(a) that the velocity profiles are increased in the presence of

dispersion parameter for both these fluids in opposing and aiding flow cases. As expected,

the velocity is more in the case of aiding flow. Similarly, the temperature profiles are also

increased in the presence of Ds as shown in Figs. 2.12(b) and 2.13(b). Since the flow velocity

becomes high enough in the porous medium, there is a domination of thermal dispersion over

molecular diffusion. So, it is crucial to give a satisfactory record of its influence on the heat

transfer characteristics in power-law fluid saturated non-Darcy porous medium. The effect

of dispersion parameter on Nusselt number for opposing (λ = −3) and aiding (λ = 3) flow

cases is shown in Figs. 2.12(c) and 2.13(c), respectively. With higher values of Ds, the heat

transfer is increased in both the flow cases for pseudoplastic and dilatant fluids and it is

more in the case of aiding flow. The influence of dispersion parameter on the skin friction

coefficient with respect to λ is shown in Figs. 2.12(d) and 2.13(d). Due to increment in Ds,

more variation in the skin friction is observed in opposing flow case but reverse behaviour is

seen in the aiding flow case for both these power-law fluids. The magnitude of skin friction

coefficient is more in the case of aiding flow in comparison with the opposing flow case. As

a conclusion, more heat transfer rate and less skin friction coefficient are observed in the

presence of thermal dispersion when compared to its absence in the power-law fluid flows.
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Also, we can say that the effect of thermal dispersion is significant when the inertial effect

is frequent and its negligence can result into a decent amount of error.

The velocity profiles of pseudoplastic and dilatant fluids in the absence and presence of

stable stratification for various values of λ are depicted in the Figs. 2.14(a)-2.14(d). It is

significant to perceive the existence of flow separation in this study. More gain in the velocity

of dilatant fluid is seen when compared to the pseudoplastic fluid. As the value of λ changes

from zero to negative values, the flow separation occurs. The boundary layer separation

takes place when the flow direction is reversed in the nearest part of the boundary layer to

the surface or main edge. In other words, the point in the middle of forward and backward

flow, where shear stress is zero, is also termed as the separation point. For positive values

of λ, the velocity is more in comparison to that of the forced convection (λ = 0) for both

these fluids. On the other hand, it is comparatively less in the case of negative λs. Also,

it is evident from these graphs that the separation of flow is less in the presence of thermal

stratification but it is more in the absence of thermal stratification.

In Figs. 2.15(a)-2.16(a), the effect of thermal stratification parameter (ST ) on non-

dimensional temperature in the fluid flow is depicted for both opposing and aiding flow cases

respectively. The temperature profiles are influenced with the presence of stable stratification

(i.e., for ST > 0) and these are decreased with an increment in ST . In the presence of ST , the

resultant temperature difference between the surface of truncated cone and the ambient fluid

is reduced, and it results into thickening of thermal boundary layer which is responsible for

decrements in the temperature profiles. In Figs. 2.15(b) and 2.16(b), the impact of thermal

stratification on the heat transfer is shown and it is observed to be completely different for

both the fluids (pseudoplastic and dilatant). In the case of opposing flow, the heat transfer

is increased linearly with more negatives λ for the pseudoplastic fluid and rapid increase is

found for the dilatant fluid. With higher values of the stratification parameter, the heat

transfer is decreased for both the pseudoplastic and dilatant fluids. The similar behaviour is

found in the case of aiding flow but the linear behaviour related to pseudoplastic fluid is lost

and the heat transfer is more in comparison with the opposing flow for a particular value

of stratification parameter. The impact of stratification on skin friction coefficient with λ
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is shown in Figs. 2.15(c) and 2.16(c), and it is observed that due to increment in ST , the

skin friction values are less negative in opposing flow case and the linear nature of change

is found with negative λ’s for the pseudoplastic fluid and rapid change is observed for the

dilatant fluid. In aiding flow case, the linear behaviour related to pseudoplastic fluid is lost

and magnitude of skin friction coefficient is more in comparison with the opposing flow for a

certain value of ST . Opposite to previous flow case, more negative skin friction is found with

the increment in stratification parameter in this case. In this way, it can be said that the

thermal stratification significantly affects the heat transfer rate of power-law fluids besides

delay the boundary layer separation. The results are in tune with the observation made in

references [RamReddy et al. [100]; Vasu et al. [127] and citations therein].
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Figure 2.8: Effect of Biot number Bi for the two values of n on (a) velocity, (b) temperature,
(c) Nusselt number and (d) skin friction coefficient in the case of opposing flow with the fixed
values Ds = 0.3, α1 = 2.0, Fs = 0.5, ξ = 0.1, ST = 0.01.
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Figure 2.9: Effect of Biot number Bi for the two values of n on (a) velocity, (b) temperature,
(c) Nusselt number and (d) skin friction coefficient in the case of aiding flow with the fixed
values Ds = 0.3, α1 = 2.0, Fs = 0.5, ξ = 0.1, ST = 0.01.
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Figure 2.10: Effect of α1 for the two values of n on (a) velocity, (b) temperature, (c) Nusselt
number and (d) skin friction coefficient in the case of opposing flow with the fixed values
Ds = 0.1, Bi = 1.0, Fs = 0.5, ξ = 0.1, ST = 0.01.
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Figure 2.11: Effect of α1 for the two values of n on (a) velocity, (b) temperature, (c) Nusselt
number and (d) skin friction coefficient in the case of aiding flow with the fixed values Ds =
0.1, Bi = 1.0, Fs = 0.5, ξ = 0.1, ST = 0.01.

57



0 1 2 3 4 5

1.0

1.1

1.2

1.3

f'



n=0.5, Ds=0
n=1.5, Ds=0
n=0.5, Ds=0.5
n=1.5, Ds=0.5

(a)

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3





n=0.5, Ds=0
n=1.5, Ds=0
n=0.5, Ds=0.5
n=1.5, Ds=0.5

(b)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

N
u

x
 P

e
-1

/2



 n=0.5, Ds=0.0
 n=0.5, Ds=0.2
 n=0.5, Ds=0.5
 n=1.5, Ds=0.0
 n=1.5, Ds=0.2
 n=1.5, Ds=0.5

(c)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

-0.3

-0.2

-0.1

0.0

P
e

1
/2
C

f(
2
P

r)
-1



 n=0.5, Ds=0.0
 n=0.5, Ds=0.2
 n=0.5, Ds=0.5
 n=1.5, Ds=0.0
 n=1.5, Ds=0.2
 n=1.5, Ds=0.5

(d)

Figure 2.12: Effect of dispersion parameter Ds for the two values of n on (a) velocity, (b)
temperature, (c) Nusselt number and (d) skin friction coefficient in the case of opposing flow
with the fixed values α1 = 2.0, Bi = 1.0, Fs = 0.5, ξ = 0.1, ST = 0.01.
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Figure 2.13: Effect of dispersion parameter Ds for the two values of n on (a) velocity, (b)
temperature, (c) Nusselt number and (d) skin friction coefficient in the case of aiding flow
with the fixed values α1 = 2.0, Bi = 1.0, Fs = 0.5, ξ = 0.1, ST = 0.01.

59



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

 

 

    ST=0
 =-3
 =-2
 =-1
 =0
 =1
 =2
 =3

f'



(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
    ST=0.2

 =-3
 =-2
 =-1
 =0
 =1
 =2
 =3

f'



(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
    ST=0

 =-3
 =-2
 =-1
 =0
 =1
 =2
 =3

f'



(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
    ST=0.2

 =-3
 =-2
 =-1
 =0
 =1
 =2
 =3

f'



(d)

Figure 2.14: Effect of stratification parameter ST on the velocity profiles in opposing and
aiding flow cases for (a),(b) pseudoplastic (n = 0.8) and (c), (d) dilatant (n = 1.2) fluids
respectively when Ds = 0.5, α1 = 2.0, Fs = 1.0, ξ = 0.1, Bi = 1.0.
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Figure 2.15: Effect of stratification ST for the two values of n on temperature, Nusselt number
and skin friction coefficient in the case of opposing flow with the fixed values Ds = 0.5,
α1 = 2.0, Fs = 1.0, ξ = 0.1, Bi = 1.0.
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Figure 2.16: Effect of stratification ST for the two values of n on temperature, Nusselt number
and skin friction coefficient in the case of aiding flow with the fixed values Ds = 0.5, α1 = 2.0,
Fs = 1.0, ξ = 0.1, Bi = 1.0.
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2.3 Conclusions

In this chapter, the effect of nonlinear density-temperature and thermal dispersion param-

eters on the thermally stable stratified power-law fluid flows over a convectively heated

truncated cone in a non-Darcy porous medium, is discussed in detail for the two cases:

(a) natural convection and (b) mixed convection. Consideration of the thermally strati-

fied power-law fluids over a truncated cone with convective heating enhanced the number

of non-dimensional parameters considerably thereby increasing the nonlinear complexity of

the present problem. So, the governing equations are handled by the combination of local

non-similarity and spectral local linearisation approaches. These kinds of analysis play very

important part in the area of polymeric mixtures maintained at very high temperatures,

aerosol technology etc., and these all are related to temperature-dependent density. The

conclusive remarks of this work in both the cases (a) and (b) for physically suitable values

of flow governing parameters, are:

Case (a): Natural Convection

• The velocity, temperature and Nusselt number are increased for larger Bi but the skin

friction coefficient is reduced for pseudoplastic and dilatant fluids.

• Thermal stratification parameter influences temperature, velocity and rate of heat

transfer in a similar way and all these face decrement with higher values of ST . But,

the different trend is seen in the case of skin friction coefficient.

• The thermal dispersion parameter increases temperature, velocity, heat transfer rate

and skin friction coefficient with its presence.

• The impact of nonlinear convection parameter α1 on the velocity and temperature

profiles is opposite in nature as its presence gives increment in the velocity profiles,

and decrement in the temperature profiles.
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Case (b): Mixed Convection

• The velocity, temperature and heat transfer rate are found to be more for higher Biot

number but the skin friction coefficient is less for both the pseudoplastic and dilatant

fluids.

• The impact of nonlinear convection parameter is almost as Biot number. Also, the

heat transfer rate is less and skin friction coefficient is more for both the fluids when

the linear Boussinesq approximation is employed in comparison with the nonlinear

Boussinesq approximation.

• The effect of dispersion parameter on velocity, temperature and heat transfer is same

as of stratification but opposite nature is found for the skin friction coefficient with

respect to the flow behaviour.

• The separation of flow is found to be less in the thermally stratified fluids but it is more

in the thermally unstratified fluids. Also, thermal stratification significantly affects the

heat transfer rate of power-law fluids besides delay in the boundary layer separation.

• The flow separation is more in the pseudoplastic fluid in comparison to the dilatant

fluid.
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Chapter 3

Second Law Analysis on Power-law

Fluid Flows over a Truncated Cone

with Viscous Dissipation:

Forchheimer Model 1

3.1 Introduction

The entropy generation analysis in flow studies over vertical surfaces are very useful due to its

regular involvement in various industrial applications such as geothermal reservoirs, cooling

of nuclear reactors, thermal insulation and petroleum reservoirs. In particular, the entropy

generation analysis builds optimization ideas to prepare the blueprint of many gadgets in-

volved in thermal field by making the total of frictional and thermal entropy generation

rates minimum. Also, the criteria of optimal design in thermal systems by minimizing their

entropy generation involve the flow studies over vertical surfaces. In this regard, Bejan [10]

studied the effectiveness of various factors involved in entropy generation in thermal systems.

1Case(a): Published in “Journal of Thermal Analysis and Calorimetry”, June 2021, DOI:
10.1007/s10973-021-10823-1, Case(b): Published in “International Journal of Ambient Energy”, July
2021, DOI: 10.1080/01430750.2021.1951838.
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In addition to this, the impact of nonlinear convection, viscous dissipation and thermal dis-

persion plays very crucial role in these types of flow studies. El-Amin et al. [33] considered

the power-law fluid flow over a plane surface to investigate the impact of viscous dissipation

which is related to the locally produced thermal energy.

In recent times, Sheikholeslami et al. [109] demonstrated the heat transfer and entropy

generation by considering nanofluid flow via heat exchanger. Recently, Noreen and Ain

[89] investigated the entropy generation for electroosmotic flow across a non-Darcy porous

medium by peristaltic pumping. Saleem and El-Aziz [104] performed the second law analy-

sis in a power-law fluid flow past an exponentially movable plane with slip impacts. Srini-

vasacharya and Bindu [116] discussed the entropy generation for micropolar fluid in an in-

clined channel. The impact of viscous energy dissipation on electro-magnetohydrodynamic

flow and heat transfer of a third-grade fluid using a Darcy-Brinkman-Forchheimer model,

has been explained by Zhang et al. [130]. Entropy optimization of non-Newtonian fluids and

study of Darcy-Forchheimer flows can be found in the papers by Nayak et al. [87] and Shaw

et al. [108].

The problem of convective transport of power-law fluid flows over a truncated cone em-

bedded in a non-Darcy porous medium is analysed in this chapter. Further, the nonlinear

Boussinesq approximation and thermal dispersion are incorporated. As per the authors’

knowledge, the present study has not been addressed in the literature even though it has

many industrial applications due to involvement of cone-shaped bodies.

3.2 Mathematical Analysis

In this chapter, the effect of viscous dissipation, nonlinear convection and thermal dispersion

on free and mixed convective flows over a truncated cone immersed in a Forchheimer type

of non-Darcy porous medium saturated by dilatant and pseudoplastic fluids, is considered.

The physical model with coordinate system is displayed in Fig. 3.1. The leading edge of the

truncated cone is kept at a distance x0 from the origin O, where x and y axes are taken along
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and normal to the surface of the truncated cone, respectively. The ambient medium and wall

temperatures are taken as T∞ and Tw respectively together with the modified streamwise

coordinate x̄, which is defined as x̄ = x− x0 for the truncated cone.

Figure 3.1: Physical model and coordinate system.

Taking the boundary layer hypothesis into the consideration along with the general and

basic approximations and assumptions related to truncated cone as mentioned in Chapter-2,

the governing equations for the fluid flow over a truncated cone are given by [39, 55, 85]

∂(ru)

∂x
+
∂(rv)

∂y
= 0, (3.1)

∂un

∂y
+
bK∗

ν

∂u2

∂y
=
K∗gcosγ

ν
{β0 + 2β1(T − T∞)} ∂T

∂y
, (3.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α∗
∂T

∂y

)
+

νu

K∗CP

(
un +

bK∗

ν
u2

)
, (3.3)
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subject to

v(x, y) = 0, T (x, y) = Tw at y = 0,

u(x, y)→ u∞, T (x, y)→ T∞ +
( ν

K∗
un∞ + bu2

∞

) x

CP
as y →∞,

(3.4)

where ν is the kinematic viscosity, γ is the angle inclination, g is the gravitational acceler-

ation, T is the temperature, b is the empirical constant, CP is the specific heat capacity, β0

and β1 are the 1st and 2nd order thermal expansion coefficients, (u, v) and u∞ denote the

Darcian and free stream velocities, respectively. Also, α∗ = α+ αd where α is the molecular

diffusivity and αd = χud is the thermal diffusivity. Here, χ is the mechanical dispersion co-

efficient and d is the pore diameter. K∗ is the modified permeability in the porous medium

and it depends on the power-law index (n). It is important to mention that an assumption

of constant ambient temperature along with this type of modeling of viscous dissipation

(u2-type) gives an inconsistent solution. It is because the constant ambient temperature

condition does not satisfy the energy equation. It is a well-known deficiency in the modeling

of viscous dissipation in a porous media and there has been much argument on whether to

include the work done due to pressure in such a model. This inconsistency is resolved by

allowing the ambient temperature to vary with x.

In this chapter also, two types (cases) of problems are considered: (a) free/natural con-

vection and (b) mixed convection.

3.2.1 Case(a): Natural Convection

Since natural convective flows are caused by only buoyancy forces and there is no involvement

of any external agent. Hence, the external flow velocity becomes zero (i.e., u∞ = 0). So, the

non-dimensional relations used to get the non-dimensional form of equations (3.2)-(3.4) are

ξ =
x̄

x0

, η =
y

x̄
Ra

1
2 , ψ(ξ, η) = α r Ra

1
2 f(ξ, η), T (ξ, η) = T∞ + (Tw − T∞) θ(ξ, η), (3.5)
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where Ra =
x̄

α

(
ρ β0 g K

∗ cosγ (Tw − T∞)

µ

) 1
n

is the local modified Darcy-Rayleigh number.

On substituting the transformations (3.5) in the equations (3.2) to (3.3), the non-dimensional

form of these equations become

n (f ′)
n−1

f ′′ + 2Gr∗ f ′f ′′ = (1 + 2α1θ)θ
′, (3.6)

(1 +Dsf ′)θ′′ +Dsf ′′ θ′ +

(
1

2
+

ξ

ξ + 1

)
fθ′ + εξf ′

[
(f ′)

n
+Gr∗ (f ′)

2
]

= ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
,

(3.7)

The boundary conditions (3.4) in their transformed forms can be written as

2 ξ (ξ + 1)

(
∂f

∂ξ

)
η=0

+ (3 ξ + 1)f(ξ, η) = 0, θ(ξ, η) = 1 as η = 0,

f ′(ξ, η)→ 0, θ(ξ, η)→ 0 as η →∞.
(3.8)

Here, the differentiation with respect to η is indicated by primes. In usual notations, Gr∗ =
bK∗

ν

(
αRa

x̄

)2−n

, ε =
ν x0

K∗CP (Tw − T∞)

(
αRa

x̄

)n
, α1 =

β1

β0

(Tw − T∞), and Ds =
χdRa

x̄
.

Here, Gr∗ is the modified Grashof number, ε is the viscous dissipation parameter, α1 is the

nonlinear density-temperature parameter and Ds is the thermal dispersion parameter. When

x0 = 0, ξ becomes very large and this limiting case is used to get the fluid flow problem over

a full cone. Likewise, when ξ = 0 (i.e., x = x0), the present problem reduces to fluid flow

problem along a vertical plate.

Non-dimensional form of the heat transfer coefficient, commonly known as Nusselt num-

ber Nux̄ = − x̄
k

(k + kd)

(Tw − T∞)

[
∂T

∂y

]
y=0

is given by

Nux̄

Ra
1
2

= − [1 +Dsf ′(ξ, 0)] θ′(ξ, 0), (3.9)

where the addition of dispersion thermal conductivity kd and molecular thermal conductivity

k is used as the effective thermal conductivity of the porous medium.
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The available amount of energy in any system related to industrial or engineering pro-

cesses, is destroyed by entropy generation and so this property plays a significant role in these

fields. It is therefore important to determine the entropy generation rate in any system so

that the operation efficiency of the system can be optimized. The dimensional form of the

expression for entropy generation related to the present flow problem is written as

S ′′′g =
K∗

T 2
∞

(
∂T

∂y

)2

+
ν

K∗CP T∞

(
un+1 +

bK∗

ν
u3

)
. (3.10)

The characteristic entropy generation is defined as
(
S ′′′g
)

0
=
K∗

T 2
∞

(Tw − T∞)2

x̄2
and so the

non-dimensional form of entropy generation Ns =
S ′′′g(
S ′′′g
)

0

can be written as

Ns

Ra
= θ′2 +

Br

Ω
ξ
[
(f ′)n+1 +Gr∗(f ′)3

]
, (3.11)

where Br =
α ν x0

K∗2CP (Tw − T∞)

(
αRa

x̄

)2−n

is the Brinkman number and Ω =
Tw − T∞
T∞

is

the dimensionless temperature difference.

The above equation (3.11) can be split into two parts as Ns = N1 +N2,

where N1 = Ra θ′2 and N2 =
BrRa

Ω
ξ [(f ′)n+1 +Gr∗(f ′)3]. The first part denotes the entropy

generation due to heat transfer and the second part is responsible for the entropy generation

due to fluid friction. To check the domination of fluid friction irreversibility over heat transfer

irreversibility, one more irreversibility distribution parameter is defined which is the ratio of

entropy generation due to heat transfer over total entropy generation and known as Bejan

number (Be). The expression for the Bejan number can be given as

Be =
N1

Ns
=

θ′2

θ′2 +
Br

Ω
ξ [(f ′)n+1 +Gr∗(f ′)3]

∈ [0, 1]. (3.12)

In particular, Be = 0 shows that the irreversibility due to fluid friction dominates, butBe = 1

reveals that the irreversibility due to heat transfer dominates. Further, the irreversibility due

to fluid friction and heat transfer are equal in the process of entropy generation if Be = 0.5.
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Results and Discussion

In this chapter (and further chapters in the entire thesis), the governing equations (3.6)-

(3.7) along with the boundary conditions (3.8) are solved numerically using spectral local

linearization method (SLLM) together with the non-similarity approach. Validation of the

present problem can be done on comparison as it was done in the case (a) of Chapter-2 by

putting ξ = 0, Ds = 0, ε = 0 and α1 = 0.

Here, the graphs in Figs. 3.2(a)-3.2(e) related to non-dimensional velocity and tem-

perature profiles, heat transfer and entropy generation rates along with Bejan number re-

spectively, are displayed. The effect of viscous dissipation parameter on these profiles and

quantities, is analysed properly for pseudoplastic, Newtonian and dilatant fluids. In the

physical sense, ε refers to the transformation of energy from the motion of fluid to the fluid’s

internal energy. Viscous dissipation is high in the regions of large gradients, e.g., boundary

layers, shear layers etc. Velocity and temperature profiles are studied in respect of η and from

Fig. 3.2(a), it is observed that the velocity in dilatant fluid flow is higher when compared

to the pseudoplastic fluid flow. The presence of ε increases the velocity and temperature for

each fluid, but the temperature is found to be higher in the case of pseudoplastic fluid as

displayed in Fig. 3.2(b). The presence of ε makes the temperature of the system stable for all

the fluids because viscous dissipation behaves like a source term in the fluid flow generating

notable rise in the fluid temperature as the kinetic motion of fluid is converted to thermal

energy. This observation has significance in the heat and fluid flow in microchannel having

larger ratio of length to diameter. The non-dimensional heat transfer and entropy generation

rates along with the Bejan number are analysed in respect of streamwise coordinate ξ and

the variation in these quantities proves the non-similar nature of this problem. From Figs.

3.2(c)-3.2(e), it is seen that these quantities show decrements with increasing values of ε

for all the fluids. As the streamwise coordinate increases, there is continuous increment in

the heat transfer and entropy generation rates but opposite is observed with Bejan number.

As expected, Bejan number approaches to zero for higher values of ξ. These smaller values

of Bejan number indicate the domination of irreversibility due to fluid friction in the areas

where streamwise coordinate is large. In all these three analyses, the dilatant fluid domi-
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nates. The entropy generation minimization is very useful in the thermal engineering and

design variable selection in many efficient fluid systems.

Here, the thermal dispersion parameter effect on the non-dimensional velocity and tem-

perature profiles, Nusselt number, entropy generation rate and Bejan number is shown in

Figs. 3.3(a)-3.3(e). The first two graphs show the variations in respect of η and the later

three show in respect of ξ. The study of pseudoplastic, Newtonian and dilatant fluids are

combined in single figure. Basically, this effect brings up the effectiveness of non-uniform

pore level velocity on the temperature field inside the particular porous medium. As there

are sufficiently high velocity due to the fluid flow through a porous medium, hence the

molecular diffusion is dominated by the thermal dispersion. Also, it shows the significance

of combined changes from the velocity and temperature to the heat transportation. From

Figs. 3.3(a) and 3.3(b), it is observed that the presence of Ds enhances the velocity and

temperature profiles for all the fluids and dilatant fluid dominates in the case of velocity

profiles and pseudoplastic fluid dominates for the temperature profiles. It is found from the

Fig. 3.3(c) that the heat transfer rate is increased in the presence of dispersion parameter

for all these fluids and there is domination of dilatant fluid in this case too. There is slight

change is the heat transfer rate with ξ in the absence of dispersion but variation is compar-

atively larger in its presence. In the Figs. 3.3(d) and 3.3(e), the impact of Ds on entropy

generation and Bejan number is shown and both are decreased for its higher values. The

values of entropy generation rate and Bejan number are more for dilatant fluid in comparison

with pseudoplastic and Newtonian fluids. With higher streamwise coordinate, as expected,

entropy generation rate increases and Bejan number decreases. This entropy generation and

Bejan number analysis gives the idea of components and processes (mechanisms) of the sys-

tem which provides real advantage in the improvement of the system efficiency by allocating

proper engineering resources and efforts.

The non-dimensional velocity and temperature profiles, heat transfer and entropy gen-

eration rates along with the Bejan number respectively, are shown in the graphs in Figs.

3.4(a)-3.4(e). The nonlinear convection parameter effect on these profiles and quantities, is

analysed properly for the pseudoplastic, Newtonian and dilatant fluids. This nonlinear con-
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vection parameter deals with the nonlinearity in the density temperature relationship. Due

to this reason, it is also termed as nonlinear density temperature parameter. In the physical

sense, α1 > 0 refers to the relation Tw > T∞, so the surface of a truncated cone produces

remarkable quantity of heat to the fluid flow region. Velocity and temperature profiles are

studied in respect of η and from Fig. 3.4(a), continuous increment is noticed in the velocity

profiles with increase in α1 value for all the fluids but overall there is domination of dilatant

fluid. On the other hand, pseudoplastic fluid dominates in the case of temperature profile

and it decreases with increase in α1 as displayed in Fig. 3.4(b). The non-dimensional heat

transfer rate, entropy generation rate and Bejan number are analysed in respect of stream-

wise coordinate ξ. From Figs. 3.4(c)-3.4(e), it is found that the heat transfer and entropy

generation rates increase with increasing values of α1 but the Bejan number decreases for all

the fluids. With the increasing values of streamwise coordinate, the continuous increment in

heat transfer and entropy generation rates is seen but opposite is observed with the Bejan

number. The Bejan number lies between 0 and 1 and approaches to zero for higher values

of ξ. The higher values of Bejan number show the domination of irreversibility due to heat

transfer in the case of small ξ. The Bejan number analysis is widely useful in various areas

of heat transfer e.g., electronic cooling, contact melting, lubrication etc.

73



0 2 4 6 8 10

0.0

0.2

0.4

0.6

 n=0.8, =0
 n=0.8, =1
 n=1.0, =0
 n=1.0, =1
 n=1.2, =0
 n=1.2, =1

f'



(a)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

2.0 2.1 2.2 2.3 2.4
0.25

0.30

0.35

0.40

0.45

0.50

 n=0.8, =0
 n=0.8, =1
 n=1.0, =0
 n=1.0, =1
 n=1.2, =0
 n=1.2, =1





 

 

(b)

0.0 0.4 0.8 1.2 1.6 2.0
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
 n=0.8, =0
 n=0.8, =0.1
 n=1.0, =0
 n=1.0, =0.1
 n=1.2, =0
 n=1.2, =0.1

N
u 

x R
a-1

/2



(c)

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.4

0.8

1.2

1.6
 n=0.8, =0
 n=0.8, =0.1
 n=1.0, =0
 n=1.0, =0.1
 n=1.2, =0
 n=1.2, =0.1

N
s/

R
a



(d)

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.2

0.4

0.6

0.8

1.0

0.790 0.795 0.800 0.805 0.810 0.815 0.820
0.14

0.15

0.16

0.17

0.18

 n=0.8, =0
 n=0.8, =0.1
 n=1.0, =0
 n=1.0, =0.1
 n=1.2, =0
 n=1.2, =0.1

B
e



 

 

(e)

Figure 3.2: Effect of ε on (a) velocity profiles, (b) temperature profiles, (c) Nusselt number,
(d) entropy generation and (e) Bejan number with the fixed values Ds = 1.5, α1 = 0.1,
Gr∗ = 1.0, ξ = 1.0 (for (a),(b)), Br

Ω
= 1. 74
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Figure 3.3: Effect of Ds on (a) velocity profiles, (b) temperature profiles, (c) Nusselt number,
(d) entropy generation and (e) Bejan number with the fixed values α1 = 0.1, Gr∗ = 1.0,
ε = 0.1, ξ = 0.1 (for (a),(b)), Br

Ω
= 1. 75
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Figure 3.4: Effect of α1 on (a) velocity profiles, (b) temperature profiles, (c) Nusselt number,
(d) entropy generation and (e) Bejan number with the fixed values Ds = 1.5, Gr∗ = 2.0,
ε = 0.1, ξ = 0.2 (for (a),(b)), Br
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3.2.2 Case(b): Mixed Convection

The mixed convective flow arises from both buoyancy forces and an external flow with the

velocity u∞. To get the non-dimensional form of the system of equations (3.2) - (3.3), the

dimensionless transformations are given below

ξ =
x̄

x0

, η =
y

x̄
Pe

1
2 , ψ(ξ, η) = α r Pe

1
2 f(ξ, η), T (ξ, η) = T∞ + (Tw − T∞) θ(ξ, η), (3.13)

where Pe =
u∞x̄

α
is the local Peclet number.

Using these transformations (3.13) in the equations (3.2) to (3.3), the non-dimensional

form of the above equations become

[
n (f ′)

n−1
+ 2Fs f ′

]
f ′′ = λn(1 + 2α1θ)θ

′, (3.14)

(1 +Dsf ′)θ′′ +

[
Dsf ′′ +

(
1

2
+

ξ

ξ + 1

)
f

]
θ′ + εξf ′

[
(f ′)

n
+ Fs (f ′)

2
]

= ξ

(
∂θ

∂ξ
f ′ − θ′∂f

∂ξ

)
,

(3.15)

subject to the transformed boundary conditions (3.4)

(ξ2 + ξ)

(3 ξ + 1)

(
∂f

∂ξ

)
η=0

+
1

2
f(ξ, 0) = 0, θ(ξ, 0) = 1,

f ′(ξ, η)→ 1, θ(ξ, η)→ ε(ξ + 1)(1 + Fs) as η →∞.
(3.16)

Here, λ =
Ra

Pe
is the mixed convection parameter, Ra =

x̄

α

(
ρ β0 g K

∗ cosγ (Tw − T∞)

µ

) 1
n

is

the local modified Darcy-Rayleigh number, Fs =
bK∗ u2−n

∞
ν

is the non-Darcian parameter

(Forchheimer number), ε =
ν un∞ x0

K∗ CP (Tw − T∞)
is the viscous dissipation parameter,

α1 =
β1

β0

(Tw − T∞) is the nonlinear density-temperature parameter and Ds =
χdu∞
α

is the

thermal dispersion parameter.
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The non-dimensional form of Nusselt number Nux̄ = − x̄
k

(k + kd)

(Tw − T∞)

[
∂T

∂y

]
y=0

is given by

Nux̄

Pe
1
2

= − [1 +Dsf ′(ξ, 0)] θ′(ξ, 0). (3.17)

The non-dimensional form of entropy generation Ns =
S ′′′g(
S ′′′g
)

0

in this case, can be written

as
Ns

Pe
= θ′2 +

Br

Ω
ξ
[
(f ′)n+1 + Fs(f ′)3

]
, (3.18)

where Br =
α ν x0 u

n
∞

K∗2CP (Tw − T∞)
is the Brinkman number and Ω =

Tw − T∞
T∞

is the dimen-

sionless temperature difference.

The above equation (3.18) can be written into two parts as Ns = N1 +N2, where

N1 = Pe θ′2 and N2 =
Br Pe

Ω
ξ [(f ′)n+1 + Fs(f ′)3]. The first part denotes entropy generation

on account of heat transfer besides second part is responsible for the entropy generation

because of fluid friction. In this case, the expression for Bejan number (Be) can be given as

Be =
N1

Ns

=
θ′2

θ′2 +
Br

Ω
ξ [(f ′)n+1 + Fs(f ′)3]

∈ [0, 1]. (3.19)

Results and Discussion

The governing equations (3.14)-(3.15) along with the boundary conditions (3.16) are solved

numerically using spectral local linearization method (SLLM) together with the non-similarity

approach. Validation of the present problem can be done on comparison as it was done in

the case (b) of Chapter-2 by putting ξ = 0, Fs = 0, Ds = 0, ε = 0 and α1 = 0.

Figs. 3.5(a)-3.5(e) depict the ε influence on velocity, temperature, Nusselt number, en-

tropy generation rate and Bejan number for aiding and opposing flows over a vertical trun-

cated cone. In the first two graphs, study is done with respect to η and in the later three

with respect to λ. The other physical parameters are fixed with certain relevant values and

ε is varied. From Fig. 3.5(a), it is observed that the presence of ε lowers velocity profiles for
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both the fluids and velocity is more for the aiding flow case in comparison with the opposing

flow case due to the presence of favourable pressure gradient for the aiding flow. In Fig.

3.5(b), the viscous dissipation parameter impact on temperature profiles is shown and found

to be same in both the flow cases. The presence of ε makes temperature of system stable to a

non-zero value for both the fluids because the viscous dissipation behaves like an originator

generating notable increase in the temperature of fluid as fluid’s active shifting results into

thermal energy. It has importance in the flow in microchannels having larger ratio of length

to diameter. The variation in Nusselt number with respect to λ for different values of ε is

shown in Fig. 3.5(c). Less variation is noticed in the opposing flow case when compared

to the aiding flow and the pseudoplastic fluid constantly dominates over the dilatant fluid.

It is seen from Fig. 3.5(d) that due to increment in ε, the entropy generation is decreased

for both the fluids and influence is more for the aiding flow case. This entropy generation

minimization is very much useful in thermal engineering and design variable selection in

many efficient fluid systems. The study of Bejan number in respect of λ for both the fluids

with different values of ε is shown in Fig. 3.5(e). This study shows that maximum value

of Bejan number is obtained for λ = 0 (i.e., in the case of forced convection) and its effect

is less in the case of aiding and opposing flows for every combination considered, and with

increment in the viscous dissipation parameter, it is decreased effectively. It is observed that

Bejan number is higher for the dilatant fluids. The small Bejan numbers specify domination

of irreversibility due to fluid friction. The heat transfer is found to be less for higher values

of the viscous dissipation parameter.

Figs. 3.6(a)-3.6(e) display the velocity and temperature profiles, Nusselt number, entropy

generation and Bejan number for aiding and opposing flows with varying values of the thermal

dispersion parameter Ds. The first two graphs show the variation in respect of η and the

later three show in respect of λ. The other physical parameters are fixed with certain

relevant values. The importance of combined changes in temperature and velocity to the

heat transportation is shown by Ds parameter. From Fig. 3.6(a), it is observed that the

presence of Ds enhances velocity profiles for both the fluids and the velocity is more for the

aiding flow case as in previous effect. Fig. 3.6(b) shows the influence of thermal dispersion

79



on temperature profiles and found to be same in both the flow cases. The presence of

Ds increases temperature profiles by the same amount irrespective of the nature of fluid

and its flow. Fig. 3.6(c) displays the variation in Nusselt number and slight variation is

noticed in both the aiding and opposing flows. But, the dilatant fluid dominates over the

pseudoplastic fluid in aiding flow case, whereas the pseudoplastic fluid dominates in opposing

flow case. The higher Nusselt number is observed with higher values of the thermal dispersion

parameter. It is worth mentioning that entropy generation is much more for the aiding flow

when compared with the opposing flow case which is evidently shown in Fig. 3.6(d). The

Bejan number study in respect of λ, in Fig. 3.6(e), shows that the larger values are found for

the dilatant fluids when compared to the pseudoplastic fluid for both the flow cases (λ 6= 0)

and highest Bejan number is found for λ = 0.

Figs. 3.7(a)-3.7(e) depict the impact of α1 on non-dimensional velocity and temperature

profiles, Nusselt number, entropy generation and Bejan number for the aiding and opposing

flows. The other physical parameters are fixed with certain relevant values and α1 is varied.

From Fig. 3.7(a), it is noted that the presence of α1 makes huge impact on the velocity

profiles and large increment is found in its presence for the aiding flow case. The Fig. 3.7(b)

shows that α1 slightly influences the temperature profiles. In its presence, the temperature

is more for both the fluids in aiding and opposing flows. From Fig. 3.7(c), a completely

different behaviour is noticed in the variation of Nusselt number for opposing and aiding

flows. Lesser Nusselt number is observed in the aiding flow case when compared to the

opposing flow case. It is seen from Fig. 3.7(d) that due to increment in α1, the entropy

generation is increased and the influence is more for the aiding flow and reverse nature is

noticed in the opposing flow for both the fluids. In Fig. 3.7(e), the effect of α1 on Bejan

number is shown for both the fluids and it decreases in the presence of α1 and higher Bejan

number is noticed for the dilatant fluids when compared to the pseudoplastic fluids. The

influence is similar for both the aiding and opposing flows but its range is wide for negative

λs and maximum Bejan number is noticed for λ = 0.
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Figure 3.5: Effect of ε on (a) velocity profiles, (b) temperature profiles, (c) Nusselt number,
(d) entropy generation and (e) Bejan number with the fixed values Ds = 2.5, α1 = 1.0,
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Figure 3.6: Effect of Ds on (a) velocity profiles, (b) temperature profiles, (c) Nusselt number,
(d) entropy generation and (e) Bejan number with the fixed values ε = 0.1, α1 = 1.5,
Fs = 2.0, ξ = 0.5 and Br
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Figure 3.7: Effect of α1 on (a) velocity profiles, (b) temperature profiles, (c) Nusselt number,
(d) entropy generation and (e) Bejan number with the fixed values ε = 0.1, Ds = 1.5,
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3.3 Conclusions

In this chapter, the effect of viscous dissipation, thermal dispersion and nonlinear density-

temperature parameters on the velocity and temperature profiles, heat transfer and entropy

generation rates along with Bejan number for the power-law fluid flows over a truncated

cone in a non-Darcy porous medium, is discussed in detail for the two cases: (a) natural

convection and (b) mixed convection. The conclusive remarks of this work in both the cases

(a) and (b) for physically suitable values of flow governing parameters, are:

Case (a): Natural Convection

• The higher values of viscous dissipation, thermal dispersion and non-linear convection

parameters increase the velocity, and the dilatant fluid dominates over the Newtonian

and pseudoplastic fluids.

• The temperature profiles are increased in the presence of viscous dissipation and ther-

mal dispersion parameters and decreased with the higher values of non-linear convec-

tion parameter for all the fluids.

• The entropy generation and heat transfer rates increase with the streamwise coordinate

(ξ) for all the fluids irrespective of presence and absence of all these parameters which

shows that the heat transfer and entropy generation rates for a truncated cone are less

than that for a full cone (higher values of ξ) and more than that for a vertical plate

(ξ=0).

• The smaller values of Bejan number for higher values of ξ show the domination of

irreversibility due to fluid friction in the case of a full cone.

Case (b): Mixed Convection

• The presence of viscous dissipation lowers velocity but the presence of thermal disper-

sion and non-linear convection increases velocity with considerable amount.
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• Temperature profiles are enhanced in the existence of thermal dispersion and viscous

dissipation, and very less impact of the non-linear convection is found on these profiles.

• Study of Bejan number and entropy generation gives idea about the stability of the

system. Greater entropy generation results into a unstable system.

• This kind of work is very helpful in various technological fields which carry relation

with the temperature dependent density as high temperature polymeric mixtures and

aerosol technology.
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Chapter 4

Numerical Estimations in a

Non-Darcy Porous Medium Saturated

by Power-law Fluids with Thermal

Radiation: A Complete Case Study 1

4.1 Introduction

The well-established importance of thermal radiation in solar exploration missions, space

sectors and polymer processing industries make its analysis more significant. Its impact is

also found to have more importance for the analysis of heat transfer in furnaces, combustion

chambers, nuclear blast sites etc. Further, the impact of thermal radiation is more valuable

when the difference between temperature of the surface and its ambient medium is huge in

any flow problem. Apart from these, the literature shows that the distribution of temperature

in thermal boundary layer flows is remarkably influenced by the thermal radiation at high

temperatures.

1Case(a): Communicated to “International Communications in Heat and Mass Transfer”,
Case(b): Communicated to “International Journal of Thermal Sciences”.

86



In view of all these applications, a good number of works on various flow studies related

to either linear, quadratic or nonlinear radiation are performed in recent years. A boundary

layer study related to the nonlinear thermal radiation on the fluid flow past a vertical wedge

is done by Mansour and Gorla [70]. Grosan and Pop [41] studied the radiation effect using

the Rosseland model for its simplification. A numerical investigation of non-Newtonian

power-law fluid flows with the mass transfer and linear thermal radiation, is conducted by

Tai and Char [122]. Mahapatra et al. [69] analysed a two-dimensional stagnation point flow

of a power-law fluid in the presence of linear thermal radiation. Huang [49] obtained the

non-similar solutions for non-Newtonian fluid flows past a permeable vertical plate with

Rosseland diffusion approximation on thermal radiation. Impact of opposing and aiding

flows on the mixed convection heat transfer, by incorporating the same approximation on

radiation term, is examined by Manzur et al. [71]. Oyelakin et al. [91] studied about a

non-Darcian mixed convective flow of a non-Newtonian power-law fluid by considering the

nonlinear radiation and then demonstrated the applicability of a spectral method. Ahmad

and Nadeem [1] performed thermal analysis numerically in a buoyancy driven flow in the

presence of nonlinear radiation. Vasu et al. [125, 126] numerically investigated MHD natural

convection-radiation interaction in a non-Darcy porous medium along with Soret/Dufour

effects. But, very limited literature is available on the quadratic thermal radiation and its

effect on boundary layer flows over a vertical plane surface is given by Mahanthesh et al.

[68] (for more literature, refer the citations therein).

From the literature, it appears that the effect of thermal radiation on convective flow

over a truncated cone immersed in a non-Darcy porous medium saturated by of power-law

fluids, has not been investigated so far. To fulfil the above said gap and in view of its useful

industrial and engineering applications, a novel aspect is attempted to analysis of power-

law fluid flows over a truncated cone by inserting linear, quadratic and nonlinear thermal

radiation effects one by one. Also, the details of various types of approximations on the

thermal radiation are also provided.
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4.2 Mathematical Analysis

The effect of thermal radiation on free and mixed convective flows of power-law fluids over a

truncated cone immersed in a Forchheimer type of non-Darcy porous medium, is considered

in this chapter. It deals with the linear, quadratic and nonlinear thermal radiation effects.

The physical model with coordinate system is displayed in Fig. 4.1. The leading edge of the

truncated cone is kept at a distance x0 from the origin O, where x and y axes are taken along

and normal to the surface of the truncated cone, respectively. The ambient medium and wall

temperatures are taken as T∞ and Tw respectively together with the modified streamwise

coordinate x̄, which is defined as x̄ = x− x0 for the truncated cone.

Figure 4.1: Physical model and coordinate system.

Taking the boundary layer hypothesis into the consideration along with the general and

basic approximations and assumptions related to truncated cone as mentioned in Chapter-

2, the governing equations for the fluid flow over a truncated cone can be written in the
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following form
∂(ru)

∂x
+
∂(rv)

∂y
= 0, (4.1)

∂un

∂y
+
bK∗

ν

∂u2

∂y
=
g β K∗ cos γ

ν

∂T

∂y
, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

4σ

3 ρCP k̄

∂2T 4

∂y2
, (4.3)

along with the boundary conditions

v(x, y) = 0, T (x, y) = Tw at y = 0,

u(x, y)→ u∞, T (x, y)→ T∞ as y →∞.
(4.4)

where n is the power-law index (n > 1, n = 1 and n < 1 denote the dilatant, Newtonian and

pseudoplastic nature), ρ is the density, ν is the kinematic viscosity, k̄ is the mean absorption

coefficient, β is the coefficient of thermal expansion, σ is the Stefan-Boltzmann constant,

α is the thermal diffusivity constant and CP is the specific heat capacity. Also, γ is the

angle inclination, b is the empirical constant, g is the gravitational acceleration, T is the

temperature and (u, v) are the Darcian velocities in x and y direction respectively. K∗

indicates the improved permeability of a porous medium, which is a function of n.

Two types (cases) of problems with (a) free/natural convection and (b) mixed convection

are considered in this chapter too, as specified in previous chapters.

4.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convective flow which is caused by only buoyancy

forces and without any external agent which implies zero velocity for the external flow

(i.e., u∞ = 0). The non-dimensional relations utilized to get the non-dimensional form of

equations (4.2)-(4.4) are

ξ =
x̄

x0

, η =
y

x̄
Ra

1
2 , θ(ξ, η) =

T (ξ, η)− T∞
(Tw − T∞)

, ψ(ξ, η) = α r Ra
1
2 f(ξ, η), (4.5)
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where Ra =
x̄

α

(
β g K∗ cos γ (Tw − T∞)

ν

) 1
n

is the local modified Darcy-Rayleigh number.

In order to simplify the radiation term, the Taylor series expansion of T about T∞ yields

T 4 = T∞
4 + 4T∞

3 (T − T∞) + 6T∞
2 (T − T∞)2 + ..., (4.6)

and its truncation up to first and second order gives equations (4.7) and (4.8) respectively.

T 4 = 4T∞
3 T − 3T∞

4, (4.7)

T 4 = 6T∞
2 T 2 − 8T∞

3 T + 3T∞
4, (4.8)

Using the transformations (4.5) and the Taylor series expansions (4.6)-(4.8) in the equa-

tions (4.2) to (4.3), the non-dimensional form of the above equations becomes

[
n (f ′)

n−1
+ 2Gr∗ f ′

]
f ′′ − θ′ = 0, (4.9)

Case (a): Linear Approximation (using equation (4.7))

θ′′ +

(
1

2
+

ξ

ξ + 1

)
fθ′ +

4

3
R1 θ

′′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
, (4.10)

Case (b): Quadratic Approximation (using equation (4.8))

θ′′ +

(
1

2
+

ξ

ξ + 1

)
fθ′ +

4

3
R2

[
θ′′ + 3 (θw − 1) θ θ′′ + 3 (θw − 1) θ′2

]
= ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
,

(4.11)

Case (c): Nonlinear Approximation (using equation (4.5))

θ′′ +

(
1

2
+

ξ

ξ + 1

)
fθ′ +

4

3
R3

[
3 (θw − 1) {1 + (θw − 1)θ}2 θ′2 + {1 + (θw − 1)θ}3 θ′′

]
= ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
,

(4.12)
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together with the transformed boundary conditions

f(ξ, 0) +
2 ξ (ξ + 1)

3 ξ + 1

[
∂f

∂ξ

]
η=0

= 0, θ(ξ, 0) = 1, f ′(ξ, η)→ 0, θ(ξ, η)→ 0 when η →∞.

(4.13)

Here, the prime symbol represents differentiation in respect of η and the modified Grashof

number is represented by Gr∗ =
bK∗

ν

(α
x̄
Ra
)2−n

. The linear, quadratic and nonlinear

radiation parameters are denoted by R1, R2 and R3 respectively and each parameter carry

the value
4σ T 3

∞

k k̄
. The parameter θw =

Tw
T∞

represents the temperature ratio. With distinct

values of ξ, the analysis for two geometries [viz., the vertical plate and full cone] can also be

performed.

Non-dimensional form of the skin friction coefficient Cf =
2

ρ u2
∗

[
µ
∂u

∂y

]
y=0

is given by

1

2

Ra
1
2

Pr
Cf = f ′′(ξ, 0), (4.14)

where u∗ and Pr are used to denote the characteristic velocity and the Prandtl number

respectively

The heat transfer rates in terms of Nusselt numberNux̄ =
x̄

k (Tw − T∞)

[
−k∂T

∂y
− 4σ

3k̄

∂T 4

∂y

]
y=0

for linear, quadratic and nonlinear cases of thermal radiation can be written as

Nux̄

Ra
1
2

= −
[
1 +

4

3
R1

]
θ′(ξ, 0), (4.15)

Nux̄

Ra
1
2

= −
[
1 +

4

3
R2 (1 + 3(θw − 1)) θ(ξ, 0)

]
θ′(ξ, 0), (4.16)

Nux̄

Ra
1
2

= −
[
1 +

4

3
R3{(1 + (θw − 1)) θ(ξ, 0)}3

]
θ′(ξ, 0). (4.17)
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Results and Discussion

In this chapter also, the governing equations (4.9)-(4.12) along with the boundary conditions

(4.13) are solved numerically using spectral local linearization method (SLLM) together with

the non-similarity approach. Validation of the present problem can be done on comparison

as it was done in the case (a) of Chapter-2 in the absence of thermal radiation with ξ = 0.

Fig. 4.2 presents the velocity and temperature profiles along with Nusselt number and

skin friction coefficient for different values of the linear radiation parameter R1 when Gr∗ =

0.5 and ξ = 5.0. It is observed from Fig. 4.2(a) that the non-dimensional velocity increases

with enhancing values of R1. It is significant to point out that the velocity for dilatant fluid

dominates in comparison with the pseudoplastic fluid. The influence of R1 is similar on both

these fluids. The physical reason behind this increment in the velocity with R1 enhancement

is the weakening of bonds which hold the fluid particle components. As the thermal radiation

R1 increases, these bond split with more ease. This phenomenon is applicable in faster cooling

process by reducing thermal radiation. Fig. 4.2(b) displays the temperature distribution with

increasing values of R1 for pseudoplastic and dilatant fluids. The dominance of pseudoplastic

fluid is noticed when compared to that of the dilatant fluid for the temperature profiles.

Increment is observed in the temperature with greater values of R1. The enhanced values of

radiation parameter make the boundary layer more thick and better thermal performance

can be observed. The Nusselt number and skin friction coefficient are plotted with respect

to streamwise coordinate (ξ) for pseudoplastic and dilatant fluids. As expected, Fig. 4.2(c)

confirms the increment in the non-dimensional heat transfer rate or Nusselt number with

increase in the R1 values. The dominance of dilatant fluid over pseudoplastic fluid is observed

for Nusselt number case. Fig. 4.2(d) shows that the magnitude of skin friction coefficient

decreases with enhancing values of the linear radiation parameter. One more important

point can be seen from Figs. 4.2(c) and 4.2(d) that the Nusselt number and skin friction

coefficient become almost constant for higher values of ξ.

Figs. 4.3 and 4.4 portray the velocity and temperature profiles, Nusselt number and skin

friction coefficient for different values of quadratic and nonlinear radiation parameters when
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Gr∗ = 0.5, θw = 0.1 (quadratic), θw = 0.001 (nonlinear) and ξ = 5.0. Figs. 4.3(a) and

4.4(a) display the non-dimensional velocity profiles with variation in the quadratic radiation

parameter (R2) and nonlinear radiation parameter (R3). Similar to linear case, the velocity

for dilatant fluid dominates in comparison with the pseudoplastic fluid. With increasing

values of R2 and R3, there is enhancement in the velocity profiles. The temperature variation

in the case of quadratic and nonlinear radiations are given in Figs. 4.3(b) and 4.4(b). These

figures include both the pseudoplastic and dilatant fluids and the dominance of pseudoplastic

fluid is again noticed as in the case of linear radiation. With increasing values of radiation

parameters, the temperature profiles are enhanced. The increment in the Nusselt number

with enhancing values R2 and R3 is again confirmed with the domination of dilatant fluid

over the pseudoplastic fluid from the Figs. 4.3(c) and 4.4(c). It is assured from the fact

that the enhancement in the thermal radiation parameter implies decay in mean absorption

coefficient and hence enhances the radiative heat flux divergence. Therefore, the heat transfer

rate increases and so the temperature of the fluid. Figs. 4.3(d) and 4.4(d) depict the skin

friction coefficient variation with respect to the streamwise coordinate (ξ) for pseudoplastic

and dilatant fluids. From Fig. 4.3(d), a decrement in the absolute value of skin friction is

noticed for increase in R2 and similar behaviour is also found in the Fig. 4.4(d).

93



0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

f'



 n=0.8, R1=0.1
 n=0.8, R1=0.6
 n=0.8, R1=1.1
 n=1.2, R1=0.1
 n=1.2, R1=0.6
 n=1.2, R1=1.1

(a)

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0
 n=0.8, R1=0.1
 n=0.8, R1=0.6
 n=0.8, R1=1.1
 n=1.2, R1=0.1
 n=1.2, R1=0.6
 n=1.2, R1=1.1





(b)

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

1.2

 n=0.8, R1=0.1
 n=0.8, R1=0.6
 n=0.8, R1=1.1
 n=1.2, R1=0.1
 n=1.2, R1=0.6
 n=1.2, R1=1.1

N
u


x
 R

a
-1

/2



(c)

0 2 4 6 8 10
-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00
 n=0.8, R1=0.1
 n=0.8, R1=0.6
 n=0.8, R1=1.1
 n=1.2, R1=0.1
 n=1.2, R1=0.6
 n=1.2, R1=1.1

R
a

1
/2
C

f(
2
P

r)
-1


(d)

Figure 4.2: Effect of linear radiation parameter (R1) on (a) velocities, (b) temperatures, (c)
Nusselt number and (d) skin friction coefficient.
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Figure 4.3: Effect of quadratic radiation parameter (R2) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient.

95



0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

f'



 n=0.8, R3=0.1
 n=0.8, R3=0.6
 n=0.8, R3=1.1
 n=1.2, R3=0.1
 n=1.2, R3=0.6
 n=1.2, R3=1.1

(a)

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0
 n=0.8, R3=0.1
 n=0.8, R3=0.6
 n=0.8, R3=1.1
 n=1.2, R3=0.1
 n=1.2, R3=0.6
 n=1.2, R3=1.1





(b)

0 2 4 6 8
0.2

0.4

0.6

0.8

1.0

1.2

 n=0.8, R3=0.1
 n=0.8, R3=0.6
 n=0.8, R3=1.1
 n=1.2, R3=0.1
 n=1.2, R3=0.6
 n=1.2, R3=1.1

N
u


x
 R

a
-1

/2



(c)

0 2 4 6 8
-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05
 n=0.8, R3=0.1
 n=0.8, R3=0.6
 n=0.8, R3=1.1
 n=1.2, R3=0.1
 n=1.2, R3=0.6
 n=1.2, R3=1.1

R
a

1
/2
C

f(
2
P

r)
-1


(d)

Figure 4.4: Effect of nonlinear radiation parameter (R3) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient.
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4.2.2 Case(b): Mixed Convection

The flow is assumed to be a mixed convective flow, which arises from both buoyancy forces

and an external flow with the velocity u∞. To get the non-dimensional form of the system

of equations (4.2) - (4.3), the dimensionless transformations are given below

ξ =
x̄

x0

, η =
y

x̄
Pe

1
2 , θ(ξ, η) =

T (ξ, η)− T∞
(Tw − T∞)

, ψ(ξ, η) = α r Pe
1
2 f(ξ, η), (4.18)

where Pe =
u∞x̄

α
is the local Peclet number.

Using the transformations (4.18) and the Taylor series expansions (4.6)-(4.8) in the equa-

tions (4.2) to (4.3), the non-dimensional form of the above equations become

[
n (f ′)

n−1
+ 2Fs f ′

]
f ′′ − λn θ′ = 0, (4.19)

Case (a): Linear Approximation (using equation (4.7))

θ′′ +

(
1

2
+

ξ

ξ + 1

)
fθ′ +

4

3
R1 θ

′′ = ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
, (4.20)

Case (b): Quadratic Approximation (using equation (4.8))

θ′′ +

(
1

2
+

ξ

ξ + 1

)
fθ′ +

4

3
R2

[
θ′′ + 3 (θw − 1) θ θ′′ + 3 (θw − 1) θ′2

]
= ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
,

(4.21)

Case (c): Nonlinear Approximation (using equation (4.18))

θ′′ +

(
1

2
+

ξ

ξ + 1

)
fθ′ +

4

3
R3

[
{1 + (θw − 1)θ}3 θ′′ + 3 (θw − 1) {1 + (θw − 1)θ}2 θ′2

]
= ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
.

(4.22)
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The boundary conditions (4.4) in their transformed form can be written as

f(ξ, 0) +
2 ξ (ξ + 1)

3 ξ + 1

[
∂f

∂ξ

]
η=0

= 0, f ′(ξ, η)→ 1, θ(ξ, 0) = 1, θ(ξ, η)→ 0 when η →∞.

(4.23)

Here, Fs =
bK∗ u2−n

∞
ν

is the Forchheimer number (non-Darcian parameter). The mixed con-

vection parameter is λ =
Ra

Pe
whose negative and positive values correspond to opposing and

aiding flows and Ra =
x̄

α

(
β g K∗ cos γ (Tw − T∞)

ν

) 1
n

. The linear, quadratic and nonlinear

radiation parameters are denoted by R1, R2 and R3 respectively and each carry the value
4σ T 3

∞

k k̄
. The parameter θw =

Tw
T∞

represents temperature ratio.

Non-dimensional form of the skin friction coefficient Cf =
2

ρ u2
∞

[
µ
∂u

∂y

]
y=0

is given by

1

2

Pe
1
2

Pr
Cf = f ′′(ξ, 0). (4.24)

The heat transfer rates in terms of Nusselt numberNux̄ =
x̄

k (Tw − T∞)

[
−k∂T

∂y
− 4σ

3k̄

∂T 4

∂y

]
y=0

for linear, quadratic and nonlinear cases of the thermal radiation can be written as

Nux̄

Pe
1
2

= −
[
1 +

4

3
R1

]
θ′(ξ, 0), (4.25)

Nux̄

Pe
1
2

= −
[
1 +

4

3
R2 (1 + 3(θw − 1)) θ(ξ, 0)

]
θ′(ξ, 0), (4.26)

Nux̄

Pe
1
2

= −
[
1 +

4

3
R3{(1 + (θw − 1)) θ(ξ, 0)}3

]
θ′(ξ, 0). (4.27)

Results and Discussion

The governing equations (4.19)-(4.22) along with the boundary conditions (4.23) are solved

numerically using spectral local linearization method (SLLM) together with the local non-
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similarity approach. Validation of the present problem can be done on comparison as it was

done in the case (b) of Chapter-2 in the absence of thermal radiation with ξ = 0 and Fs = 0.

Figs. 4.5 and 4.6 present the velocity, temperature, dimensionless heat transfer rate and

skin friction coefficient variations for three values of linear radiation parameter R1 when

Fs = 1.5 and ξ = 5.0 for pseudoplastic and dilatant fluids respectively. It is observed from

Figs. 4.5(a) and 4.6(a) that the non-dimensional velocity increases with enhancing values of

R1 in the aiding flow case and decreases in the opposing flow case for both type of fluids.

The phenomenon of flow separation is clearly visible from these plots. The influence of

thermal radiation is similar on both these fluids. The physical reason behind this increment

in velocity with thermal radiation enhancement for the aiding flow case is the weakening

of bonds which hold the fluid particle components. As thermal radiation increases, these

bond split with more ease. This phenomenon is applicable in faster cooling process by

reducing thermal radiation. Figs. 4.5(b) and 4.6(b) display the temperature distribution

with increasing values of R1 for pseudoplastic and dilatant fluids respectively. The dominance

of temperature profiles is noticed for the aiding flow case when compared to the opposing

flow case for both these fluids. Increment is observed in the temperature with greater values

of R1. The Nusselt number and skin friction coefficient variations are plotted with respect to

streamwise coordinate (ξ) for opposing and aiding flow situations. As expected, Figs. 4.5(c)

and 4.6(c) confirm the increment in the non-dimensional heat transfer rate with increase in

R1 values. Higher heat transfer rate is seen in the aiding flow case when compared with

the opposing flow for both pseudoplastic and dilatant fluids. Figs. 4.5(d) and 4.6(d) depict

that the magnitude of skin friction coefficient decreases with enhancing values of the linear

radiation parameter in both opposing and aiding flow cases. The variations are more for

higher values of ξ. One more important point can be seen from these figures that the skin

friction coefficient and Nusselt number become almost constant for higher values of ξ as in

case(a).

Figs. 4.7 and 4.8 portray the change in velocity, temperature, Nusselt number and skin

friction coefficient for various values of the quadratic radiation parameter when Fs = 1.5,

θw = 0.1 and ξ = 5.0 for both pseudoplastic and dilatant fluids respectively. Figs. 4.7(a) and
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4.8(a) display the non-dimensional velocity profiles with variation in the quadratic radiation

parameter (R2). Similar to the linear case, the velocity in aiding flow dominant in comparison

with opposing flow. With increasing values of R2, there is enhancement and diminution in

the velocity profiles for aiding and opposing flows respectively. The temperature variation

in pseudoplastic and dilatant fluid flows subject to quadratic radiation is given in Figs.

4.7(b) and 4.8(b). These figures include both the opposing and aiding flow cases. With

increasing values of this radiation parameter, the temperature profiles are enhanced. The

enhanced values of radiation parameter make the boundary layer more thick and better

thermal performance can be observed. The increment in Nusselt number with enhancing

values R2 is again confirmed from the Figs. 4.7(c) and 4.8(c). The higher rate of heat

transfer is clearly visible in the case aiding flow when compared to the opposing flow for

both these fluids. Figs. 4.7(d) and 4.8(d) depict the skin friction coefficient variations with

respect to the streamwise coordinate (ξ) for pseudoplastic and dilatant fluids respectively.

From Fig. 4.7(d), a decrement in the magnitude of skin friction coefficient is noticed with

increase in R2 and similar behaviour is also found in the Fig. 4.8(d).

Similar to previous two cases, the influence of nonlinear thermal radiation parameter (R3)

on velocity and temperature profiles along with skin friction coefficient and Nusselt number

are collected in the Figs. 4.9 and 4.10 for pseudoplastic and dilatant fluids respectively.

The fixed values are Fs = 1.5, θw = 0.001 and ξ = 5.0. Increment and decrement in

velocity with increase in R3 values are noticed from the Figs. 4.9(a) and 4.10(a) in aiding

and opposing flow cases and also the occurrence of flow separation is seen. The increment

in R3 increases temperature profiles which are displayed in the Figs. 4.9(b) and 4.10(b) for

pseudoplastic and dilatant fluids respectively and higher temperature is seen in aiding flow in

comparison with the opposing flow. The study of Nusselt number and skin friction coefficient

in respect of streamwise coordinate (ξ) for opposing and aiding flows is also included. The

enhancement in Nusselt number with increasing values of the nonlinear radiation parameter

is shown in the Figs. 4.9(c) and 4.10(c) for pseudoplastic and dilatant fluids respectively.

This non-dimensional heat transfer rate carries higher values in aiding flow when compared

to that of the opposing flow for both these fluids. It is assured from the fact that the
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enhancement in thermal radiation parameter implies decay in mean absorption coefficient

and hence enhances the radiative heat flux divergence. Therefore, the heat transfer rate

increases and so the temperature of the fluid. The variations in the magnitude of skin

friction coefficient with different values of the nonlinear radiation parameter are depicted in

the Figs. 4.9(d) and 4.10(d) for pseudoplastic and dilatant fluids respectively and decrement

is noticed with higher values of R3 in both the opposing and aiding flow cases. Again, the

variations are more for higher values of ξ.
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Figure 4.5: Effect of linear radiation parameter (R1) on (a) velocities, (b) temperatures, (c)
Nusselt number and (d) skin friction coefficient for pseudoplastic fluid.
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Figure 4.6: Effect of linear radiation parameter (R1) on (a) velocities, (b) temperatures, (c)
Nusselt number and (d) skin friction coefficient for dilatant fluid.
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Figure 4.7: Effect of quadratic radiation parameter (R2) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient for pseudoplastic fluid.
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Figure 4.8: Effect of quadratic radiation parameter (R2) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient for dilatant fluid.
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Figure 4.9: Effect of nonlinear radiation parameter (R3) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient for pseudoplastic fluid.
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Figure 4.10: Effect of nonlinear radiation parameter (R3) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient for dilatant fluid.
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4.3 Conclusions

In this chapter, the linear, quadratic and nonlinear radiation effects on power-law fluid flows

past a truncated cone in a non-Darcy porous medium, are discussed in detail for the two

cases: (a) natural convection and (b) mixed convection. The conclusive remarks of this work

in both the cases (a) and (b) for physically suitable values of flow governing parameters, are:

Case (a): Natural Convection

• Higher velocity is obtained with increased values of the thermal radiation parameters

in linear, quadratic and nonlinear cases along with the dominance of dilatant fluid over

the pseudoplastic fluid.

• The dominance of pseudoplastic fluid over the dilatant fluid is noticed in the plots of

temperature and it is higher for increment in all three radiation parameters.

• Larger absolute values of the skin friction is noticed for all the three cases of radiations

for smaller values of R1, R2 and R3. Here, quadratic radiation is more effective in this

study.

Case (b): Mixed Convection

• The phenomenon of flow separation is observed between aiding and opposing flows for

pseudoplastic and dilatant fluids in linear, quadratic and nonlinear radiation cases.

• The higher temperature is noticed in opposing flow when compared with the aiding flow

case and the temperature is enhanced with increment in all three radiation parameters.

• The Nusselt number is greater for enhanced values of R1, R2 and R3 with its dominance

in the aiding flow case. For the quadratic and nonlinear radiation cases, the heat

transfer rate is more in comparison with linear radiation case.
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Chapter 5

Analysis of Ostwald-de Waele

Power-law Nanofluid Flows over a

Truncated Cone in a Non-Darcy

Porous Medium 1

5.1 Introduction

In modern days, several investigations in the field of nanotechnology have attracted many

other researchers due to its broad-ranging applications. To understand the various aspects

of experimental applications, different types of nanoparticles are introduced in Tiwari-Das

nanofluid model and their efficiency is verified. For instance, Barnoon and Toghraie [5]

investigated numerically the heat transfer and laminar flow of pseudoplastic non-Newtonian

nanofluid (Al2O3 and Carboxy-Methyl-Cellulose) in a porous medium (also see the citations

therein). But, the Alloys have distinct features among other nanoparticles and are defined

as metals combined with one or other elements. A short description about different alloys

1Case(a): Accepted in “Discontinuity, Nonlinearity, and Complexity”, January 2021, Case(b):
Published in “Indian Journal of Physics”, March 2021, DOI: 10.1007/s12648-021-02055-8.
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with their usefulness and properties is provided in the papers [47, 92]. In particular, the

Ti-alloys are mainly classified as α, α− β and β alloys. Among these, α− β alloys are most

important and have multi-sector applications. The Ti6Al4V alloy which falls under α − β

category, is frequently used in the manufacturing of aircraft turbines, engine components,

high-performance automatic parts, sports equipment etc. Peters et al. [94] and Singh et al.

[112] have given the details about applications of Titanium and its alloys in the aerospace

sector. On the other hand, Multi Walled Carbon Nanotubes (MWCNTs) comprise many

rolled layers of aligned nanotubes of graphene inside other nanotubes which are hollow and

cylindrical in shape with high aspect ratio (length to diameter ratio). Its properties are

also unique due to their complicated line-up and each aligned nanotube may be of distinct

shape. It has a wide range of applications e.g., in drug delivery, filters and membrane,

Li+ batteries, sporting goods (bike rims, tennis rackets), aerospace materials, textiles, fibres

and many more. Chougule and Sahu [22] analysed the thermal performance of radiators

experimentally using Carbon nanotube-water nanofluid. Goodarzi et al. [38] performed a

numerical simulation related to the free convective heat transfer involving three different

nanoparticles (viz., Cu, MWCNT, and Al2O3) with water as the base fluid. The non-

Newtonian nature of nanofluid containing MWCNT nanoparticles is experimentally verified

by Liu et al. [66].

In this chapter, the Ostwald-de Waele power-law nanofluid flows over a vertical truncated

cone embedded in a non-Darcy porous medium are investigated. From the literature, it is

evident that the above said work is not received sufficient attention as per the best of

authors’ knowledge. Since the concept of using truncated cone in a nanofluid is relatively

new, therefore there are not many well established applications but, there are several fields

in which this geometry will be very helpful along with nanofluids. One such field is the study

of nanofluid with gyrotactic microorganism over a truncated cone. Hence, it can be said that

the consideration of these two nanoparticles for this fluid flow is noteworthy.

110



5.2 Mathematical Analysis

In this chapter, the free and mixed convective Ostwald-de Waele power-law nanofluid flows

over a truncated cone in a non-Darcy porous medium, are considered. In addition, the

Ti-alloy and Multi Walled Carbon Nanotubes (MWCNTs) are taken as nanoparticle one

by one to form regular nanofluid model. The physical model with coordinate system is

displayed in Fig. 5.1. The leading edge of the truncated cone is kept at a distance x0

from the origin O, where x and y axes are taken along and normal to the surface of the

truncated cone, respectively. The ambient medium and wall temperatures are taken as T∞

and Tw respectively together with the modified streamwise coordinate x̄, which is defined as

x̄ = x− x0 for the truncated cone.

Figure 5.1: Physical model and coordinate system.

Taking the boundary layer hypothesis into the consideration along with the basic ap-

proximations and assumptions related to truncated cone as mentioned in Chapter-2, the
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governing equations for the fluid flow over a truncated cone are given by

∂(ru)

∂x
+
∂(rv)

∂y
= 0, (5.1)

∂un

∂y
+
bK∗ ρnf
µnf

∂u2

∂y
=
K∗ g (ρ β)nf cos γ

µnf

∂T

∂y
, (5.2)

u
∂T

∂x
+ v

∂T

∂y
=

knf
(ρCP )nf

∂2T

∂y2
, (5.3)

along with the boundary conditions

v(x, y) = 0, T (x, y) = Tw at y = 0

u(x, y)→ u∞, T (x, y)→ T∞ as y →∞.
(5.4)

where ρnf , µnf , βnf , knf and CPnf denote the density, dynamic viscosity, thermal expansion

coefficient, thermal conductivity and specific heat capacity of the power-law nanofluid re-

spectively. Also, b, g, γ, T , u∞ and (u, v) are used for the empirical constant, acceleration

due to gravity, inclination of angle, temperature, free stream and Darcian velocities respec-

tively. K∗ is the modified permeability of the porous medium which depends on power-law

index n. The three values of the power-law index n < 1, n = 1 and n > 1 denote the

pseudoplastic, Newtonian and dilatant nanofluids respectively.

In this chapter also, two types (cases) of problems are considered: (a) free/natural con-

vection and (b) mixed convection.

5.2.1 Case(a): Natural Convection

In this case, the flow is caused due to buoyancy forces only without the external flow velocities

(i.e., u∞ = 0). By considering the above-said assumptions, the non-dimensional relations

utilized to get the non-dimensional form of equations (5.2)-(5.4) are

ξ =
x̄

x0

, η =
y

x̄
Ra

1
2 , ψ(ξ, η) = αf r Ra

1
2 f(ξ, η), T (ξ, η) = T∞ + (Tw − T∞) θ(ξ, η), (5.5)
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where Ra =
x̄

αf

(
(ρ β)f g K

∗ cos γ (Tw − T∞)

µf

) 1
n

is the local modified Darcy-Rayleigh num-

ber and αf is the thermal diffusivity of the base fluid.

On substituting the transformations (5.5) in the equations (5.2) to (5.3) and the boundary

conditions (5.4), the non-dimensional form of the these equations and boundary conditions

become

n (f ′)
n−1

f ′′ + 2

[
(1− φ)2.5

(
φ
ρs
ρf

+ 1− φ
)]

Gr∗ f ′f ′′

=

[
(1− φ)2.5

(
φ

(ρ β)s
(ρ β)f

+ 1− φ
)]

θ′,

(5.6)

2A (ξ + 1) θ′′ + (3ξ + 1) fθ′ = 2ξ(ξ + 1)

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
, (5.7)

f(ξ, 0) +
2 ξ (ξ + 1)

3 ξ + 1

[
∂f

∂ξ

]
η=0

= 0, θ(ξ, 0) = 1,

f ′(ξ, η)→ 0, θ(ξ, η)→ 0 as η →∞,
(5.8)

where the differentiation in respect of η is denoted by primes. Gr∗ =
bK∗

νf

(α
x̄
Ra
)2−n

is the

modified Grashof number, νf is the kinematic viscosity. Further, A depends on nanoparticle

volume fraction and its expression can be written as:

A =
1[(

φ
(ρCP )s
(ρCP )f

+ 1− φ
)] [ks + 2 kf − 2φ (kf − ks)

ks + 2 kf + φ (kf − ks)

]
.

Here, φ is the volume fraction of nanoparticles. The suffixes f and s are utilized to denote

the base fluid and solid nanoparticle. In this work, Ti-alloy and MWCNTs nanoparticles

are used and their different characteristics are discussed. The different thermo-physical

properties associated to these nanoparticles and the base fluid are given in the Table (5.1).
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Table 5.1: Thermophysical Properties

Properties Ti-alloy[99] MWCNTs[37] Water[99]

ρ (kg/m3) 4420 2100 997.1

CP (J/kgK) 526.3 710 4179

β (1/K) ∗ 10−5 0.89 2.1 21

k (W/mK) 6.7 2000 0.613

With the help of this problem formulation, the Ostwald-de Waele power-law type of

nanofluid flow over a full cone and along a vertical plate can also be studied directly just

by assigning two different values of streamwise coordinate ξ. This property makes it very

interesting and important. Very large values of ξ imply x0 = 0 which leads the problem over

a full cone. Similarly, this problem reduces to fluid flow problem over a vertical plate when

ξ = 0 (i.e., x = x0). These possible limiting cases and their comparative analysis is also

presented through graphs in this chapter.

Non-dimensional form of the Nusselt number Nux̄ = − x̄

(Tw − T∞)

knf
kf

[
∂T

∂y

]
y=0

and the

skin friction coefficient Cf =
2

ρ u2
∗

[
µnf

∂u

∂y

]
y=0

is given by

Nux̄

Ra
1
2

= −knf
kf

θ′(ξ, 0),
1

2

Ra
1
2

Pr
Cf =

µnf
µf

f ′′(ξ, 0), (5.9)

where u∗ and Pr are the characteristic velocity and the Prandtl number respectively.

Results and Discussion

As specified in the previous chapters, the flow governing equations (5.6)-(5.7) along with the

boundary conditions (5.8) are solved numerically using spectral local linearisation method

(SLLM) together with the non-similarity approach in this chapter. Validation of the present
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problem can be done on comparison as it was done in the case (a) of Chapter-2 by putting

ξ = 0 and no volume fraction of Ti-alloy and MWCNTs are inserted.

The volume fraction of Ti-alloy and MWCNTs is denoted by φ1 and φ2 respectively to

discuss the results undertaken. Also, φ1 = 0.1, φ2 = 0.02 and ξ = 2.5 are fixed throughout

the computation otherwise mentioned specifically. Here, the influence of volume fraction of

Ti-alloy (φ1) and MWCNTs (φ2) and graphical representation of non-dimensional velocity,

temperature, Nusselt number and skin friction coefficient are discussed. Figs. 5.2 and 5.3

display the impact of volume fraction of Ti-alloy nanoparticle and MWCNTs nanoparticle

respectively.

The influence of φ1 and φ2 on velocity profiles is displayed in Figs. 5.2(a) and 5.3(a) re-

spectively. The domination of dilatant nanofluid over the pseudoplastic nanofluid is clearly

visible from these graphs. The velocity is decreased with φ1 and φ2 increment and this

variation is more for small change in the volume fraction of MWCNTs nanoparticle. One

important observation is that all the profiles asymptotically satisfied the boundary condi-

tions at infinity, so this is another way to show the accuracy of these numerical results.

This asymptotic condition is satisfied by the temperature profiles too. The temperature

profiles are increased with increment in volume fraction of both the nanoparticles φ1 and φ2

as displayed in Figs. 5.2(b) and 5.3(b) respectively. But, opposite to velocity profiles, there

is domination of pseudoplastic nanofluid over the dilatant nanofluid. The physical reason

behind this enhancement in temperature profiles with the nanoparticle volume fraction in-

crement is the increased thermal conductivity when larger φ1 and φ2 are used. This happens

due to the larger thermal conductivity of solid particles in comparison to the base fluid.

Effect of φ1 and φ2 on non-dimensional heat transfer rate (Nusselt number) for both the

dilatant and pseudoplastic nanofluids, is presented in Figs. 5.2(c) and 5.3(c) respectively.

Here, the analysis is done in respect of streamwise coordinate ξ. It is noticed that the heat

transfer rate is decreased with the addition of volume fraction of nanoparticle. In this study,

there is again domination of dilatant nanofluid over the pseudoplastic nanofluid. For very

small values of ξ, the heat transfer is very less and there is rapid increment in the range near

zero. For higher values (after ξ = 5), the Nusselt number becomes constant. In this way, it
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is observed that the heat transfer rate over a truncated cone lies between the heat transfer

rate over a vertical plate (ξ = 0) and full cone (ξ →∞).

The same kind of analysis is done for skin friction coefficient too. The impact of φ1 and φ2

variations on non-dimensional skin friction coefficient for both the dilatant and pseudoplastic

nanofluids, are portrayed in Figs. 5.2(d) and 5.3(d) respectively. As the volume fraction of

nanoparticle is increased, magnitude of the skin friction coefficient decreases for both Ti-

alloy and MWCNTs cases. The magnitude of skin friction coefficient is more for dilatant

nanofluid when compared to pseudoplastic nanofluid in the presence of nanoparticle volume

fraction. A sharp increment in its magnitude is noted when ξ is nearly zero. For higher

values, it almost becomes constant or change is negligible. So, it can be said that the skin

friction coefficient in a fluid flow over a truncated cone lies between the vertical plate (ξ = 0)

and full cone (ξ →∞) as in the case of heat transfer rate. In this way, all these profiles and

their variations with nanoparticle volume fraction can be interpreted and these results are

useful in daily life applications.

Figs. 5.4 and 5.5 are prepared to illustrate the significance of modified Grashof number

on the velocity and temperature profiles, heat transfer rate and skin friction coefficient. The

Grashof number plays the same role in natural convection which is played by the Reynolds

number in forced convective flow. It depends on the dynamic, geometric and thermodynamic

parameters of the heat transport problem. In the case of non-zero increasing values of Gr∗,

there is reduction in the flow intensity and increment in the inertial effects which thickens the

boundary layer and resist the heat transfer which is noticed in Figs. 5.4(c) and 5.5(c). In the

Figs. 5.4(a) and 5.5(a), it is seen that the velocity profiles are also decreased with increment

in the modified Grashof number. The domination of dilatant nanofluid is noted over the

pseudoplastic nanofluid from these graphs. The temperature profiles are increased with an

increment of modified Grashof number and the domination of pseudoplastic nanofluid is

noticed as depicted in Figs. 5.4(b) and 5.5(b). The influence of Gr∗ on magnitude of skin

friction coefficient is shown in Figs. 5.4(d) and 5.5(d) and large decrement in its magnitude

is readily visible with the domination of pseudoplastic nanofluid. Similar to the previous

cases, this analysis is also helpful in the study the present problem with both full cone as

116



well as vertical plate geometries.

The variation in velocity and temperature profiles with respect to streamwise coordinate

is shown in 5.6. It is observed that the velocity profiles are higher for dilatant nanofluid and

there is decrement with higher values of ξ. The temperature profiles show similar trend too

but, in this case, there is a domination of pseudoplastic nanofluid over dilatant nanofluid. It

can be said from these graphs that the velocity and temperature in these kinds of flow over

a truncated cone fall between the vertical plate and full cone geometries.
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Figure 5.2: Effect of volume fraction of Ti-alloy (φ1) on (a) velocity and (b) temperature
profiles, (c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant
nanofluids.

118



0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4
 n=0.8, 2 =0.01
 n=0.8, 2 =0.05
 n=0.8, 2 =0.10
 n=1.2, 2 =0.01
 n=1.2, 2 =0.05
 n=1.2, 2 =0.10

f'



(a)

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0
 n=0.8, 2 =0.01
 n=0.8, 2 =0.05
 n=0.8, 2 =0.10
 n=1.2, 2 =0.01
 n=1.2, 2 =0.05
 n=1.2, 2 =0.10





(b)

0 5 10 15 20
0.30

0.35

0.40

0.45

0.50

0.55

0.60

 n=0.8, 2 =0.01
 n=0.8, 2 =0.05
 n=0.8, 2 =0.10
 n=1.2, 2 =0.01
 n=1.2, 2 =0.05
 n=1.2, 2 =0.10

N
u


x
 R

a
-1

/2



(c)

0 5 10 15 20
-0.16

-0.14

-0.12

-0.10

-0.08
 n=0.8, 2 =0.01
 n=0.8, 2 =0.05
 n=0.8, 2 =0.10
 n=1.2, 2 =0.01
 n=1.2, 2 =0.05
 n=1.2, 2 =0.10

R
a

1
/2
C

f(
2
P

r)
-1



(d)

Figure 5.3: Effect of volume fraction of MWCNTs (φ2) on (a) velocity and (b) temperature
profiles, (c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant
nanofluids.
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Figure 5.4: Effect of Gr∗ on (a) velocity and (b) temperature profiles, (c) Nusselt number
and (d) skin friction coefficient for pseudoplastic and dilatant nanofluids containing Ti-alloy
nanoparticles.

120



0 2 4 6 8

0.00

0.15

0.30

0.45

0.60

0.75

0.90  n=0.8, Gr* =0
 n=0.8, Gr* =1
 n=0.8, Gr* =2
 n=1.2, Gr* =0
 n=1.2, Gr* =1
 n=1.2, Gr* =2

f'



(a)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0
 n=0.8, Gr* =0
 n=0.8, Gr* =1
 n=0.8, Gr* =2
 n=1.2, Gr* =0
 n=1.2, Gr* =1
 n=1.2, Gr* =2





(b)

0 5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

 n=0.8, Gr* =0
 n=0.8, Gr* =1
 n=0.8, Gr* =2
 n=1.2, Gr* =0
 n=1.2, Gr* =1
 n=1.2, Gr* =2

N
u


x
 R

a
-1

/2



(c)

0 5 10 15 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 n=0.8, Gr* =0
 n=0.8, Gr* =1
 n=0.8, Gr* =2
 n=1.2, Gr* =0
 n=1.2, Gr* =1
 n=1.2, Gr* =2

R
a

1
/2
C

f(
2
P

r)
-1



(d)

Figure 5.5: Effect of Gr∗ on (a) velocity and (b) temperature profiles, (c) Nusselt number and
(d) skin friction coefficient for pseudoplastic and dilatant nanofluids containing MWCNTs
nanoparticles.
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Figure 5.6: Effect of ξ on velocity and temperature profiles for pseudoplastic and dilatant
nanofluids containing Ti-alloy ((a), (b)) and MWCNTs nanoparticles ((c), (d)).
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5.2.2 Case(b): Mixed Convection

In this case, the flow arises due to buoyancy forces and external flow with the velocity u∞.

Taking the above-said points into consideration, the dimensionless transformations for the

present setup are given by

ξ =
x̄

x0

, η =
y

x̄
Pe

1
2 , ψ(ξ, η) = αf r Pe

1
2 f(ξ, η), T (ξ, η) = T∞ + (Tw − T∞) θ(ξ, η), (5.10)

where Pe =
u∞ x̄

αf
is the local Peclet number and αf is the thermal diffusivity of the base

fluid.

Using these transformations (5.10) in the equations (5.2) to (5.3), the non-dimensional

form of the above equations become

n (f ′)
n−1

f ′′ + 2

[
(1− φ)2.5

(
φ
ρs
ρf

+ 1− φ
)]

Fs f ′f ′′

= λn
[
(1− φ)2.5

(
φ

(ρ β)s
(ρ β)f

+ 1− φ
)]

θ′,

(5.11)

2A (ξ + 1) θ′′ + (3ξ + 1) fθ′ = 2ξ(ξ + 1)

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
. (5.12)

The boundary conditions (5.4) in their transformed form can be written as

(3 ξ + 1)f(ξ, 0) + 2 ξ (ξ + 1)

(
∂f

∂ξ

)
η=0

= 0, θ(ξ, 0) = 1,

f ′(ξ, η)→ 1, θ(ξ, η)→ 0 as η →∞,
(5.13)

where primes indicate differentiation with respect to η, Fs =
bK∗ u2−n

∞
νf

, λ =
Ra

Pe
and

Ra =
x̄

αf

(
(ρ β)f g K

∗ cos γ (Tw − T∞)

µf

) 1
n

. Here, Fs is the non-Darcian parameter (Forch-

heimer number), νf is the kinematic viscosity and λ is the mixed convection parameter. The

expression of A, which depend on nanoparticle volume fraction is given in Case (a) of this

chapter.
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Non-dimensional form of the Nusselt number Nux̄ = − x̄

(Tw − T∞)

knf
kf

[
∂T

∂y

]
y=0

and the

skin friction coefficient Cf =
2

ρ u2
∞

[
µnf

∂u

∂y

]
y=0

is given by

Nux̄

Pe
1
2

= −knf
kf

θ′(ξ, 0),
1

2

Pe
1
2

Pr
Cf =

µnf
µf

f ′′(ξ, 0). (5.14)

Results and Discussion

The governing equations (5.11)-(5.12) along with the boundary conditions (5.13) are solved

numerically using spectral local linearisation method (SLLM) together with the non-similarity

approach. Validation of the present problem can be done on comparison as it was done in

the case (b) of Chapter-2 by putting ξ = 0, Fs = 0 and no volume fraction of Ti-alloy and

MWCNTs are inserted.

In this case also, the volume fraction of Ti-alloy and MWCNTs are denoted by φ1 and φ2

respectively to discuss the results. Also, Fs = 0.5, λ = 3 (for aiding flow), λ = −3 (for oppos-

ing flow) and ξ = 2.5 are fixed throughout the computation otherwise mentioned specifically.

To understand the physical model of this fluid flow problem, the non-dimensional velocity,

temperature, Nusselt number and skin friction coefficient in the opposing and aiding flow

cases are graphically represented. The influence of volume fraction of Ti-alloy nanoparticles

(φ1) and MWCNTs nanoparticles (φ2) is shown in Figs. 5.7-5.8 and 5.9-5.10 respectively.

In the aiding flow case, higher velocity is obtained in comparison with the opposing flow

case (Figs. 5.7(a), 5.8(a) and 5.9(a), 5.10(a)). The domination of dilatant nanofluid over

pseudoplastic nanofluid in both the flow cases is also noted. The velocity is decreased with

φ1 and φ2 increments and this variation is more for small volume fraction of MWCNTs

nanoparticles. It is observed again that all the profiles asymptotically satisfied the boundary

conditions at infinity. The temperature profiles are almost similar in the opposing and

aiding flow cases for respective values of φ1 and φ2 (Figs. 5.7(b), 5.8(b) and 5.9(b), 5.10(b)).

But, opposite to the velocity profiles, there is domination of pseudoplastic nanofluid over
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the dilatant nanofluid in this case. As the nanoparticle volume fraction increases, there

is enhancement in temperature profiles. The physical reason behind this enhancement in

temperature profiles with higher φ1 and φ2 is the increased thermal conductivity. This

happens due to the reason that the solid particles have greater thermal conductivity in

comparison to the base fluid.

In the Figs. 5.7(c), 5.8(c) and 5.9(c), 5.10(c), the impact of φ1 and φ2 variations on

dimensionless heat transfer rate (Nusselt number) for both the dilatant and pseudoplastic

nanofluids is presented. For this analysis, the opposing and aiding flow situations are taken

into account. This study is done in respect of streamwise coordinate ξ. The heat transfer rate

is higher in the case of aiding flow when compared to the opposing flow for both the fluids.

When nanoparticle volume fraction is added further, it results into higher heat transfer due

to larger thermal conductivity of Ti-alloy and MWCNTs. Also, in the physical sense, it is

due to the increased collision among different nanoparticles which dissipates energy in the

form of heat and results into increment of the heat transfer rate. In this study, there is again

domination of dilatant nanofluid over the pseudoplastic nanofluid. For very small values of

ξ, the heat transfer rate is very less and there is rapid increment in the range near zero. For

higher values (after ξ = 5), the Nusselt number becomes constant. In this way, it is observed

that heat transfer rate over a truncated cone lies between the heat transfer rate over vertical

plate (ξ = 0) and full cone (ξ → 0). Therefore, this additional analysis can also be done

easily with the help of this physical model.

In the same way, the Figs. 5.7(d), 5.8(d) and 5.9(d), 5.10(d) show the impact of φ1 and φ2

variations on non-dimensional skin friction coefficient for both the dilatant and pseudoplastic

nanofluids in the case of opposing and aiding flows respectively. This is also studied in respect

of streamwise coordinate ξ. More negative skin friction coefficient is seen in the case of aiding

flow when compared to the opposing flow for both these fluids. As volume fraction of the

nanoparticles is increased, magnitude of skin friction coefficient decreases for both the Ti-

alloy and MWCNTs. There is again domination of dilatant nanofluid over the pseudoplastic

nanofluid as higher magnitude of skin friction coefficient is noted for dilatant nanofluid for all

considered nanoparticle volume fractions. There is also a rapid increment in its magnitude
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near zero. For higher values, it almost becomes constant or change is negligible. So, similar

to heat transfer rate, it can be said that skin friction coefficient in a fluid flow over a truncated

cone lies between its values over the vertical plate (ξ = 0) and full cone (ξ → 0).

The velocity and temperature profiles with respect to streamwise coordinate ξ for both

the dilatant and pseudoplastic nanofluids in the case of opposing and aiding flows are por-

trayed in Figs. (5.11) and (5.12) respectively. The first two graphs in each of these set of

Figs. (5.11(a)-5.11(b) and 5.12(a)-5.12(b)) show the variation for nanofluids involving Ti-

alloy nanoparticles and other graphs (5.11(c)-5.11(d) and 5.12(c)-5.12(d)) are for MWCNTs

nanoparticles. It is readily visible from these figures that the velocity profiles are higher for

dilatant nanofluid when compared to the pseudoplastic nanofluid but opposite is found for

temperature profiles in both the flow cases. As ξ increases, all the profiles are decreased

which implies the higher velocity and temperature in the case of flow over a vertical plate.

So, these are minimum in the case of full cone and present study lies between them.
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Figure 5.7: Effect of volume fraction of Ti-alloy (φ1) on (a) velocity and (b) temperature
profiles, (c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant
nanofluids in opposing flow case.
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Figure 5.8: Effect of volume fraction of Ti-alloy (φ1) on (a) velocity and (b) temperature
profiles, (c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant
nanofluids in aiding flow case.
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Figure 5.9: Effect of volume fraction of MWCNTs (φ2) on (a) velocity and (b) temperature
profiles, (c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant
nanofluids in opposing flow case.
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Figure 5.10: Effect of volume fraction of MWCNTs (φ2) on (a) velocity and (b) temperature
profiles, (c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant
nanofluids in aiding flow case.
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Figure 5.11: Effect of ξ on velocity and temperature profiles for pseudoplastic and dilatant
nanofluids involving Ti-alloy nanoparticles (a), (b) and MWCNTs nanoparticles (c), (d) in
opposing flow case.
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Figure 5.12: Effect of ξ on velocity and temperature profiles for pseudoplastic and dilatant
nanofluids involving Ti-alloy nanoparticles (a), (b) and MWCNTs nanoparticles (c), (d) in
aiding flow case.
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5.3 Conclusions

In this chapter, the analysis of Ostwald-de Waele power-law nanofluid flows over a truncated

cone situated in a non-Darcy porous medium, is done in detail for the two cases: (a) natural

convection and (b) mixed convection. The Ti-alloy (Ti6Al4V) and multi walled Carbon

nanotubes (MWCNTs) are used as nanoparticles in the base fluid water to get the power-

law nanofluid model. The conclusive remarks of this work in both the cases (a) and (b) for

physically suitable values of flow governing parameters, are:

Case (a): Natural Convection

• There is domination of pseudoplastic nanofluid over the dilatant nanofluid for the

temperature profiles and the temperature is enhanced with increment in φ1 and φ2.

• The addition of nanoparticle volume fraction results into lower heat transfer rate and

the dilatant nanofluid dominates.

• Higher magnitude of skin friction coefficient is observed for the dilatant nanofluid when

compared to the pseudoplastic nanofluid for all values of φ1 and φ2.

• The change in all the profiles for various values of the streamwise coordinate show the

non-similar nature of this problem.

Case (b): Mixed Convection

• There is domination of dilatant nanofluid over the pseudoplastic nanofluid in both the

flow cases for velocity profiles and the velocity is decreased with increment in φ1 and

φ2.

• Higher temperature is obtained for pseudoplastic nanofluid over the dilatant nanofluid

in both the flow cases and the temperature is enhanced with φ1 and φ2 increments.

• The heat transfer rate is higher in the case of aiding flow when compared to opposing

flow for both the fluids. The addition of nanoparticle volume fraction results into
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higher heat transfer rate due to increased collision among different nanoparticles which

dissipates energy in the form of heat.

• Nusselt number and magnitude of skin friction coefficient in the fluid flow over a

truncated cone are found to be in between vertical plate and full cone.
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Chapter 6

Flow of Aqueous Titanium

Alloy-MWCNTs Hybrid Nanofluids in

a Non-Darcy Porous Medium 1

6.1 Introduction

In free and mixed convective flow mechanism, the heat transfer coefficient is comparatively

lower to other mechanism which affects the performance of that thermal system. Thus, to

increase this coefficient, the accompaniment of various nanoparticles in the base fluid is done

and it is well established that this process increases the heat transfer property of resultant

fluids (commonly known as nanofluids). Few mechanisms involved in the nanofluid heat

transport are nanocluster, nanolayer, thermophoresis, Brownian motion etc. The thermal

conductivity of nanofluids significantly relies on these mechanisms. This is due to its great

capacity of enhancement in the flow characteristics and heat transfer. But, it has some draw-

backs too, for example, increment in the pressure drop, long term stability of nanoparticles,

etc. Hybrid nanofluids are made by the inserting two distinct type of nanoparticles in any

1Case(a): Published in “Computational Thermal Sciences: An International Journal” 13(5), 31–
43, (2021), Case(b): Communicated to “International Journal for Numerical Methods in Fluids”.
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suitable base fluid. It consists of some additional properties in comparison to the regular

nanofluids. The main idea behind its use is to increase the favourable properties of regular

nanofluids and to overcome the drawbacks involved in regular nanofluid as much as possible.

Following this concept, a few drawbacks can be resolved and this is the reason that hybrid

nanofluid concept becomes more significant.

A detailed review of the preparation and thermal properties including friction factor and

heat transfer is provided by Akilu et al. [2]. Hassan et al. [43] investigated hybrid nanoparticle

impact on the thermal and momentum boundary layer flows over the wedge. Waini et al.

[129] explained the mixed convective flow involving nanofluid based on hybrid structure in

a porous medium. Recently, a new hybridity model is well developed by Dinarvand and

Rostami [29] which involves the analysis of shape factor effects. From literature survey, it is

noticed that the flow problem related to power-law hybrid nanofluids with truncated cone

as a geometry is not properly explored though it carries a variety of applications. So, the

aim of the present chapter is to analyse the basic impact of nanoparticle volume fraction on

flow characteristics.

6.2 Mathematical Analysis

In this chapter, the free and mixed convective flows of a power-law hybrid nanofluids over a

truncated cone in a non-Darcy porous medium, are considered. This chapter is an extension

of previous chapter by taking both Ti-alloy and Multi Walled Carbon Nanotubes (MWCNTs)

nanoparticles at a time. The physical model with coordinate system is taken as displayed

in Fig. 5.1. Considering all the assumptions and approximations of previous chapter, the

governing equations for the power-law hybrid nanofluid flows over a truncated cone are given

by
∂(ru)

∂x
+
∂(rv)

∂y
= 0, (6.1)

∂un

∂y
+
bK∗ ρhnf
µhnf

∂u2

∂y
=
K∗ g (ρ β)hnf cos γ

µhnf

∂T

∂y
, (6.2)
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u
∂T

∂x
+ v

∂T

∂y
=

khnf
ρhnf (CP )hnf

∂

∂y

[
∂T

∂y

]
, (6.3)

subject to the boundary conditions

v(x, y) = 0, T (x, y) = Tw at y = 0

u(x, y)→ u∞, T (x, y)→ T∞ as y →∞
(6.4)

where ρhnf , µhnf , βhnf , khnf and CPhnf denote the density, dynamic viscosity, thermal ex-

pansion coefficient, thermal conductivity and specific heat capacity of the power-law hybrid

nanofluid respectively. Also, b, g, γ, T , u∞ and (u, v) is used for the empirical constant,

acceleration due to gravity, inclination of angle, temperature, free stream and Darcian ve-

locities individually. The three values of the power-law index n < 1, n = 1 and n > 1 denote

the pseudoplastic, Newtonian and dilatant hybrid nanofluids respectively. The modified

permeability K∗ of the porous medium which depends on power-law index n.

This chapter is analyzed for two types (cases) of problems: (a) free/natural convection

and (b) mixed convection.

6.2.1 Case(a): Natural Convection

In this case, the flow is caused by only buoyancy forces and without any external velocity

(i.e., u∞ = 0). Hence, the non-dimensional relations utilized to get the non-dimensional form

of equations (6.2)-(6.4) are

ξ =
x̄

x0

, η =
y

x̄
Ra

1
2 , T (ξ, η) = T∞ + (Tw − T∞) θ(ξ, η), ψ(ξ, η) = αf r Ra

1
2 f(ξ, η), (6.5)

where Ra =
x̄

αf

(
(ρ β)f g K

∗ cos γ (Tw − T∞)

µf

) 1
n

is the local modified Darcy-Rayleigh num-

ber and αf is the base fluid’s thermal diffusivity.

Using these transformations (6.5) in the equations (6.2) to (6.3) and the boundary con-
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ditions (6.4), the resultant equations become

[
n (f ′)

n−1
+ 2A1Gr

∗ f ′
]
f ′′ = A2 θ

′, (6.6)

2A3 (ξ + 1) θ′′ + (3ξ + 1) fθ′ = 2ξ(ξ + 1)

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
, (6.7)

f(ξ, 0) +
2 ξ (ξ + 1)

3 ξ + 1

[
∂f

∂ξ

]
η=0

= 0, θ(ξ, 0) = 1,

f ′(ξ, η)→ 0, θ(ξ, η)→ 0 as η →∞.
(6.8)

where the differentiation in respect of η is denoted by primes and Gr∗ =
bK∗

νf

(α
x̄
Ra
)2−n

.

Symbol νf is the kinematic viscosity and Gr∗ is the modified Grashof number. The expres-

sions of A1, A2 and A3 which depend on nanoparticle volume fraction can be given as:

A1 =
µf
µhnf

[
(1− φ1)(1− φ2) + φ1(1− φ2)

ρs1
ρf

+ φ2
ρs2
ρf

]
,

A2 =
µf
µhnf

[
(1− φ1)(1− φ2) + φ1(1− φ2)

(ρ β)s1
(ρ β)f

+ φ2
(ρ β)s2
(ρ β)f

]
,

A3 =

[
ks2 + 2 knf − 2φ2 (knf − ks2)

ks2 + 2 knf + φ2 (knf − ks2)

] [
2 kf + ks1 − 2φ1 kf + 2φ1 ks1

2 kf + ks1 + φ1 kf − φ1 ks1

]
[
(1− φ1)(1− φ2) + φ1 (1− φ2)

(ρCP )s1
(ρCP )f

+ φ2
(ρCP )s2
(ρCP )f

] ,

where

knf =

[
2 kf + ks1 − 2φ1 kf + 2φ1 ks1

2 kf + ks1 + φ1 kf − φ1 ks1

]
kf .

Here, φ1 and φ2 are the volume fraction of Ti-alloy and MWCNTs particles respectively.

The suffixes f, nf, s1 and s2 are used to denote the base fluid, regular nanofluid, Ti-alloy

and MWCNTs nanoparticles. The different thermo-physical properties associated to these

nanoparticles together with the base fluid are given in the Table (5.1) of Chapter-5.

138



This problem can be utilized to study the Ostwald-de Waele power-law type of hybrid

nanofluid flow over a full cone and along a vertical plate by considering two different values

of streamwise coordinate ξ. Very large values of ξ imply x0 = 0 which leads the problem

over a full cone. Similarly, ξ = 0 (i.e., x = x0) indicates flow problem along a vertical plate.

These possible limiting cases and their comparative analysis is also presented through graphs

in this chapter.

Non-dimensional form of the Nusselt number Nux̄ = − x̄

(Tw − T∞)

khnf
kf

[
∂T

∂y

]
y=0

and the

skin friction coefficient Cf =
2

ρ u2
∗

[
µhnf

∂u

∂y

]
y=0

is given by

Nux̄

Ra
1
2

= −khnf
kf

θ′(ξ, 0),
1

2

Ra
1
2

Pr
Cf =

µhnf
µf

f ′′(ξ, 0), (6.9)

where u∗ and Pr represent the characteristic velocity and the Prandtl number respectively.

Results and Discussion

Utilizing the numerical procedure explained in Chapter-2, the governing equations (6.6)-(6.7)

along with the boundary conditions (6.8) are solved in this chapter. In addition to this, the

validation of present problem has been conducted as it was done in the case (a) of Chapter-2

by putting ξ = 0 in the absence of nanoparticle volume fraction.

The volume fraction of Ti-alloy and MWCNTs are denoted by φ1 and φ2 respectively to

discuss the results. Also, φ1 = 0.1, φ2 = 0.02 and ξ = 2.5 are fixed throughout the com-

putation unless otherwise mentioned. Here, the detailed description about the influence of

volume fraction of Ti-alloy and MWCNTs is given. It includes the graphs of non-dimensional

velocity, temperature, Nusselt number and skin friction coefficient to get a proper under-

standing of φ1 and φ2 influences. Figs. 6.1 and 6.2 display the impact of volume fraction of

Ti-alloy nanoparticle (φ1) and MWCNTs nanoparticle (φ2) respectively. These graphs also

include the impact on dilatant and pseudoplastic hybrid nanofluids as specified in the figure

itself.
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The influence of φ1 and φ2 on velocity profiles is displayed in Figs. 6.1(a) and 6.2(a)

respectively. The domination of dilatant hybrid nanofluid over the pseudoplastic hybrid

nanofluid is also noted in both these graphs. The velocity is decreased with φ1 and φ2 incre-

ments and these variations are more for a small change in the volume fraction of MWCNTs

nanoparticle. It is noticed that all the profiles asymptotically satisfied the boundary condi-

tions at infinity, so this is another way to show the accuracy of these numerical results. This

asymptotic condition is satisfied by the temperature profiles too. The temperature profiles

are increased with increments in volume fraction of both the nanoparticles φ1 and φ2 as

displayed in Figs. 6.1(b) and 6.2(b) respectively. But, opposite to the velocity profiles, there

is domination of pseudoplastic hybrid nanofluid over dilatant hybrid nanofluid. The physical

reason behind this enhancement in temperature profiles with the nanoparticle volume frac-

tion increment is the increased thermal conductivity when larger φ1 and φ2 are used because

solid particles have larger thermal conductivity in comparison with the base fluid.

In Figs. 6.1(c) and 6.2(c), the significance of φ1 and φ2 on non-dimensional heat transfer

rate (Nusselt number) for both the dilatant and pseudoplastic hybrid nanofluids is presented.

In this case, the analysis is done in respect of streamwise coordinate ξ. It is noticed that

the heat transfer rate is decreased with the addition of volume fraction of nanoparticle. In

the study, there is again domination of dilatant hybrid nanofluids over pseudoplastic hybrid

nanofluids. For very small values of ξ, the heat transfer is very less and there is rapid

increment in the range near zero. For higher values (after ξ = 5), the Nusselt number

becomes constant. In this way, it is observed that heat transfer rate over a truncated cone

lies between heat transfer rate over vertical plate (ξ = 0) and full cone (ξ → 0) geometries.

The same kind of analysis is done for the skin friction coefficient too. The impact of

φ1 and φ2 variations on non-dimensional skin friction coefficient for both the dilatant and

pseudoplastic hybrid nanofluids is displayed in Figs. 6.1(d) and 6.2(d) respectively. As the

volume fraction of nanoparticle is increased, the skin friction coefficient, in absolute values,

decreases for both Ti-alloy and MWCNTs. The skin friction coefficient, in absolute values,

is greater for dilatant hybrid nanofluid when compared to the pseudoplastic hybrid nanofluid

for each nanoparticle volume fraction undertaken. A sharp increment in its magnitude is
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noted when ξ is nearly zero. For higher values, it almost becomes constant or change is

negligible. So, it can be said that the skin friction coefficient in a fluid flow over a truncated

cone lies between the skin friction coefficient in flow over vertical plate (ξ = 0) and full cone

(ξ → 0) as in the case of heat transfer rate.

The three values of modified Grashof number are used to analyse its influence on velocity

and temperature profiles, heat transfer rate and skin friction coefficient in this case. This

influence is portrayed in Fig. 6.3. The Grashof number plays the same role in natural

convection which is played by the Reynolds number in forced convective flow. It depends

on the dynamic, geometric and thermodynamic parameters of the heat transport problem.

In the case of non-zero increasing values of Gr∗, there is reduction in the flow intensity and

increment in the inertial effects which thickens the boundary layer and resist the heat transfer

which is noticed in Fig. 6.3(c). From the Fig. 6.3(a), it is seen that the velocity profiles are

also decreased with increment in the modified Grashof number. The domination of dilatant

hybrid nanofluid is noted over the pseudoplastic hybrid nanofluid from both these graphs.

But, the temperature profiles are increased with its increment and pseudoplastic hybrid

nanofluid dominates here in these profiles as depicted in Fig. 6.3(b). The influence of Gr∗

on magnitude of skin friction coefficient is shown in Fig. 6.3(d) and large decrement in its

magnitude is readily visible with the domination of pseudoplastic hybrid nanofluid. Similar

to the previous cases, this analysis is also helpful in the study of fluid flow over full cone and

vertical plate.

The variation in velocity and temperature profiles with respect to streamwise coordinate

is shown in Fig. 6.4. It is observed that the velocity profiles are higher for dilatant hybrid

nanofluid and there is decrement with higher values of ξ. The same trend is observed

for temperature profiles too but in this case, there is domination of pseudoplastic hybrid

nanofluid over the dilatant hybrid nanofluid. It can be said from these graphs that the

velocity and temperature in these kind of flow over a truncated cone fall between the vertical

plate and full cone.

141



0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

f'



 n=0.8, 

 =0.1

 n=0.8, 

 =0.2

 n=0.8, 

 =0.3

 n=1.2, 

 =0.1

 n=1.2, 

 =0.2

 n=1.2, 

 =0.3

(a)

0 3 6 9 12 15 18

0.0

0.2

0.4

0.6

0.8

1.0
 n=0.8, 


 =0.1

 n=0.8, 

 =0.2

 n=0.8, 

 =0.3

 n=1.2, 

 =0.1

 n=1.2, 

 =0.2

 n=1.2, 

 =0.3




(b)

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

 n=0.8, 

 =0.1

 n=0.8, 

 =0.2

 n=0.8, 

 =0.3

 n=1.2, 

 =0.1

 n=1.2, 

 =0.2

 n=1.2, 

 =0.3

N
u


x
 R

a
-1

/2



(c)

0 5 10 15 20
-0.16

-0.14

-0.12

-0.10

-0.08

-0.06
 n=0.8, 


 =0.1

 n=0.8, 

 =0.2

 n=0.8, 

 =0.3

 n=1.2, 

 =0.1

 n=1.2, 

 =0.2

 n=1.2, 

 =0.3

R
a

1
/2
C

f(
2
P

r)
-1


(d)

Figure 6.1: Effect of volume fraction of Ti-alloy (φ1) on (a) velocity and (b) temperature
profiles, (c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant
hybrid nanofluids.
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Figure 6.2: Effect of volume fraction of MWCNTs (φ2) on (a) velocity and (b) temperature
profiles, (c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant
hybrid nanofluids.
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Figure 6.3: Effect of Gr∗ on (a) velocity and (b) temperature profiles, (c) Nusselt number
and (d) skin friction coefficient for pseudoplastic and dilatant hybrid nanofluids.
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Figure 6.4: Effect of ξ on (a) velocity and (b) temperature profiles for pseudoplastic and
dilatant hybrid nanofluids.
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6.2.2 Case(b): Mixed Convection

In this case, the flow arises from both buoyancy forces and an external flow with the ve-

locity u∞. To get the non-dimensional form of flow governing equations, the dimensionless

transformations are given below

ξ =
x̄

x0

, η =
y

x̄
Pe

1
2 , ψ(ξ, η) = αf r Pe

1
2 f(ξ, η),

T (ξ, η) = T∞ + (Tw − T∞) θ(ξ, η),

(6.10)

where Pe =
u∞ x̄

αf
is the local Peclet number and αf is the thermal diffusivity of base fluid.

Using these transformations (6.10) in the equations (6.2) to (6.3) and boundary conditions

(6.4), the non-dimensional form of equations become

n f ′′ (f ′)
n−1

+ 2A1 Fs f
′′ f ′ = λnA2 θ

′, (6.11)

2A3 (ξ + 1) θ′′ + (3ξ + 1) fθ′ = 2ξ(ξ + 1)

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)
, (6.12)

together with the resultant boundary conditions

f(ξ, 0) + 2
ξ (ξ + 1)

(3 ξ + 1)

[
∂f

∂ξ

]
η=0

= 0, θ(ξ, 0) = 1, f ′(ξ, η)→ 1, θ(ξ, η)→ 0 as η →∞,

(6.13)

where primes denote differentiation in respect of η, Ra =
x̄

αf

(
(ρ β)f g K

∗ cos γ (Tw − T∞)

µf

) 1
n

,

λ =
Ra

Pe
and Fs =

bK∗ u2−n
∞

νf
. Here, Ra is the local modified Darcy-Rayleigh number, λ is

the mixed convection parameter, νf is the kinematic viscosity, Fs is the non-Darcian param-

eter (Forchheimer number). The expressions of A1, A2 and A3 which depend on nanoparticle

volume fraction are given in Case (a) of this chapter.

Non-dimensional representation of the heat transfer rateNux̄ = − x̄

(Tw − T∞)

khnf
kf

[
∂T

∂y

]
y=0
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and the skin friction coefficient Cf =
2

ρ u2
∞

[
µhnf

∂u

∂y

]
y=0

is given by

Nux̄

Pe
1
2

= −khnf
kf

θ′(ξ, 0),
1

2

Pe
1
2

Pr
Cf =

µhnf
µf

f ′′(ξ, 0). (6.14)

Results and Discussion

The governing equations (6.11)-(6.12) along with the boundary conditions (6.13) are solved

numerically using spectral local linearisation method (SLLM) together with the non-similarity

approach as explained in Chapter-2. Validation of the present problem has been conducted

as it was done in the case (b) of Chapter-2 by putting ξ = 0 and Fs = 0 in the absence of

nanoparticle volume fraction.

The volume fraction of Ti-alloy and MWCNTs is denoted by φ1 and φ2 respectively

to discuss the results. Also, Fs = 0.5, φ1 = 0.1, φ2 = 0.02, λ = 3 (for aiding flow),

λ = −3 (for opposing flow) and ξ = 2.5 are unchanged during calculation otherwise described

separately. A graphical representation of dimensionless velocity, temperature, heat transfer

rate and skin friction coefficient for the opposing and aiding flows is provided to get a proper

understanding of this physical model. Figs. 6.5-6.6 and 6.7-6.8 display the influence of φ1

and φ2 respectively.

As expected, the greater velocity is noticed for aiding flows in comparison to opposing

flows (Figs. 6.5(a), 6.6(a) and 6.7(a), 6.8(a)). The dominance of dilatant hybrid nanofluid

over the pseudoplastic hybrid nanofluid for these flows is also found. The velocity is reduced

when φ1 and φ2 are increased and these changes are more in the case of smaller values

of φ2. There is slight variation in temperature profiles for opposing and aiding flows for

respective values of φ1 and φ2 (Figs. 6.5(b), 6.6(b) and 6.7(b), 6.8(b)). The dominance of

pseudoplastic hybrid nanofluid on dilatant hybrid nanofluid is noticed for the temperature

profiles which is different from the velocity profiles. As φ1 and φ2 escalates, there is increase

in the temperature profile because of the increased thermal conductivity when larger φ1 and

φ2 are used. Physically, the solid particle has larger thermal conductivity in comparison with
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the base fluid.

The influence of φ1 and φ2 alterations with respect to the streamwise coordinate ξ on

Nusselt number in the case of dilatant and pseudoplastic hybrid nanofluids for both opposing

and aiding flows, is presented in Figs. 6.5(c), 6.6(c) and 6.7(c), 6.8(c) respectively. Higher

Nusselt number is noticed in the case of aiding flow for pseudoplastic and dilatant hybrid

nanofluids. With further addition of φ1 and φ2, greater heat transfer is noticed because of

higher thermal conductivity of Titanium alloy and MWCNTs. In physical aspect, collision

of various nanoparticles is enhanced after insertion of φ1 and φ2. Therefore, the dissipation

of energy takes place in the form of heat which results higher Nusselt number. Dominance

of the dilatant hybrid nanofluid is again noticed in this case. With smaller ξ values, lesser

Nusselt number is found and sharp increase is observed near zero. With grater values (ξ = 5

beyond), the heat transfer rate becomes stable. One important observation is that the

Nusselt number in a flow past truncated cone lies between the Nusselt number in a flow past

full cone (ξ → 0) and vertical plate (ξ = 0).

Similar to the heat transfer rate, impact of φ1 and φ2 alterations on dimensionless skin

friction coefficient in opposing and aiding flows for pseudoplastic and dilatant hybrid nanoflu-

ids, is presented in Figs. 6.5(d), 6.6(d) and 6.7(d), 6.8(d) respectively. Greater negative skin

friction coefficient is observed for aiding flow in the case of pseudoplastic and dilatant fluids.

With further addition of φ1 and φ2, its magnitude declines for Titanium alloy and MWC-

NTs. The dominance of dilatant hybrid nanofluid is retained as its smaller magnitude is

noticed for pseudoplastic hybrid nanofluid for all the values of φ1 and φ2 undertaken. A

sharp increase is observed near zero in this study too. With greater ξ values, the variation

is very less. Again, it may be pointed out that the skin friction coefficient for fluid flow past

a truncated cone lies between the skin friction coefficient for flow past a full cone (ξ → 0)

and vertical plate (ξ = 0) as in the case of heat transfer rate.

The Fig. 6.9 shows the variation in velocity and temperature in respect of ξ for opposing

(Figs. 6.9(a)-6.9(b)) and aiding (Figs. 6.9(c)-6.9(d)) flows. Higher velocity in the case of

dilatant hybrid nanofluid is noticed in comparison with pseudoplastic hybrid nanofluid. On

the other hand, reverse nature is observed in the case of temperature profiles for opposing and
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aiding flows. With ξ increments, there is decrement in each profile and hence it can be said

that the velocity and temperature are higher for the flow past a vertical plate. Therefore,

these are minimal for full cone and this study of flow past a truncated cone lies between

them. It can be considered as an additional feature of this type of flow study which gives

a feasibility of simultaneous study of flow field past full cone and vertical plate geometries.

Also, the different profiles with respect to different ξ values prove the non-similar property

of this considered flow.
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Figure 6.5: Effect of volume fraction of Ti-alloy (φ1) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant hybrid
nanofluids in opposing flows.
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Figure 6.6: Effect of volume fraction of Ti-alloy (φ1) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant hybrid
nanofluids in aiding flows.
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Figure 6.7: Effect of volume fraction of MWCNTs (φ2) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant hybrid
nanofluids in opposing flows.
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Figure 6.8: Effect of volume fraction of MWCNTs (φ2) on (a) velocities, (b) temperatures,
(c) Nusselt number and (d) skin friction coefficient for pseudoplastic and dilatant hybrid
nanofluids in aiding flows.
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Figure 6.9: Influence of ξ on velocities and temperatures for pseudoplastic and dilatant hybrid
nanofluids in the case of (a), (b) opposing flows and (c), (d) aiding flows.
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6.3 Conclusions

In this chapter, a detailed analysis of power-law hybrid nanofluid flows over a truncated cone

placed in a non-Darcy porous medium, is given for the two cases: (a) natural convection

and (b) mixed convection. The Ti-alloy (Ti6Al4V) and multi walled carbon nanotubes

(MWCNTs) are used together as nanoparticles in the base fluid water to get the power-law

hybrid nanofluid model. The conclusive remarks of this work in both the cases (a) and (b)

for physically suitable values of flow governing parameters, are:

Case (a): Natural Convection

• Higher velocity is obtained for the dilatant hybrid nanofluid over pseudoplastic hybrid

nanofluid and the velocity is decreased with φ1 and φ2 increments.

• There is domination of pseudoplastic hybrid nanofluid over dilatant hybrid nanofluid

for the temperature profiles and the temperature is enhanced with increment in φ1 and

φ2.

• The addition of nanoparticle volume fraction results into lower heat transfer rate and

again the dilatant hybrid nanofluid dominates.

• The changes in all the profiles for various values of streamwise coordinate ξ show the

non-similar nature of this problem.

Case (b): Mixed Convection

• The dominance of pseudoplastic hybrid nanofluid over dilatant hybrid nanofluid for

the temperature profiles is noticed and the temperature is enhanced with increment in

φ1 and φ2.

• The Nusselt number is greater for aiding flows in the case of pseudoplastic and dilatant

fluids. The further insertion of φ1 and φ2 increases Nusselt number values due to

enhanced collision among nanoparticles which dissipates energy in the form of heat.
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• Larger magnitude of skin friction coefficient is noticed in the case of dilatant hybrid

nanofluid with each φ1 and φ2 value for opposing and aiding flows.

• The magnitude of skin friction coefficient and Nusselt number for this flow past trun-

cated cone is observed between full cone and vertical plate geometries.
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Chapter 7

Summary and Conclusions

The steady, two-dimensional natural and mixed convective flows of power-law fluids, power-

law nanofluids and power-law hybrid nanofluids over a truncated cone in a non-Darcy porous

medium have been investigated in this thesis. Ostwald-de Waele type of power-law fluids,

namely the pseudoplastic and dilatant fluids, are taken into the consideration in all the

chapters. Incorporating a suitable set of dimensionless variables, the governing equations

are transformed into a system of nonlinear ordinary differential equations and then solved

by using combined approach of local non-similarity technique and spectral local linearisation

method. The attention is given to explain the effects of Biot number, thermal dispersion,

thermal stratification, nonlinear convection, viscous dissipation, thermal radiation, nanopar-

ticle volume fraction, streamwise coordinate, mixed convection and non-Darcy parameters

on the various profiles and physical quantities. The important observations are as follows:

• The velocity, temperature and Nusselt number are increased but the skin friction coef-

ficient is reduced with increasing values of Biot number (Bi) for the power-law fluids in

both the natural and mixed convection cases. Further, the flow separation is identified

and it is more in the pseudoplastic fluid in comparison with the dilatant fluid for larger

values of the mixed convection parameter (λ).

• Thermal stratification parameter (ST ) decreases the temperature, velocity and rate of

heat transfer with its higher values. But, the opposite trend is seen in the case of
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skin friction coefficient for power-law fluids with increasing values of ST . This analysis

shows that the separation of flow is less in the thermally stratified power-law fluids but

it is more in the thermally unstratified power-law fluids.

• The thermal dispersion parameter (Ds) enhances temperature, velocity, heat transfer

rate and magnitude of skin friction coefficient for the power-law fluids. The variation

in skin friction coefficient is more for the opposing flow case in comparison with the

aiding flow case for enhancing values of Ds.

• Increasing values of the nonlinear convection parameter (α1) give increment in the ve-

locity profiles and decrement in the temperature profiles. Also, the heat transfer rate

is less and skin friction is more for the power-law fluids when the linear Boussinesq ap-

proximation is employed in comparison with the nonlinear Boussinesq approximation.

• The increasing values of viscous dissipation parameter (ε) increases the velocity for

natural convection case and the dilatant fluid dominates over the pseudoplastic fluid

but it decreases the same in mixed convection. Further, the temperature profiles are

increased with increasing values of ε for both the natural and mixed convection cases.

• The entropy generation and heat transfer rates increase with an enhancement in the

streamwise coordinate (ξ) for power-law fluids which shows that the heat transfer and

entropy generation rates for a truncated cone are less than that for a full cone (higher

values of ξ) and more than that for a vertical plate (ξ=0). The smaller values of Bejan

number (Be) for higher values of ξ show the domination of irreversibility due to fluid

friction in the case of a full cone.

• In natural convection case, higher velocity and temperature are obtained with in-

creased values of the linear, quadratic and nonlinear radiation parameters along with

the dominance of dilatant fluid over the pseudoplastic fluid. The phenomenon of flow

separation is observed between aiding and opposing flows of the power-law fluids for

linear, quadratic and nonlinear radiation cases in mixed convective flow.

• The Nusselt number is greater for enhanced values of linear, quadratic and nonlinear

radiation parameters with its dominance in the aiding flow case. For the quadratic
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and nonlinear radiation cases, the heat transfer rate is more in comparison with linear

radiation case.

• In natural and mixed convective flows of power-law nanofluid and power-law hybrid

nanofluid, the velocity is decreased and temperature is increased with an increment in

the volume fraction of Titanium alloy and multi wall Carbon nanotubes.

• The addition of nanoparticle volume fraction results into lower heat transfer rate in

the natural convection case but it results into higher heat transfer rate in the mixed

convective flow due to increased collision among different nanoparticles which dissipates

energy in the form of heat.

• Larger magnitude of skin friction coefficient is noticed for dilatant nanofluid and dila-

tant hybrid nanofluid in comparison with respective pseudoplastic ones for each value

of the nanoparticle volume fraction in both natural and mixed convective flows.

• In the case of non-zero increasing values of modified Grashof number, there is reduction

in the flow intensity and increment in the inertial effects which thickens the boundary

layer and resist the heat transfer.

• The change in all the profiles for various values of the streamwise coordinate shows the

non-similar nature of this problem.

• Nusselt number and magnitude of skin friction coefficient in the power-law fluid flows

over a truncated cone are found to be in between a vertical plate and a full cone.

The work presented in this thesis can be extended to investigate the effects of Joule

heating, magnetic field, activation energy, etc. In addition, similar analysis can be done

with various non-Newtonian fluids like micropolar fluids, couple stress fluids, visco-elastic

fluids, Cassion fluids, etc. Further, this work can be extended for different combinations

of nanoparticles to examine the flows of new power-law nanofluids and power-law hybrid

nanofluids. Moreover, the stability analysis has attracted the curiosity of many researchers

in the recent past. So, this work can be extended to perform the stability analysis too. Such

a challenging study can be a rewarding experience though it is typical and time consuming.
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