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ABSTRACT

The study of convective transport through porous media has been a fascinating and promi-
nent topic during recent years because of its relevance in a wide range of industrial and
engineering applications. Further, the convective instability in a fluid-saturated porous layer
heated from below had been an area that attracted the interest of researchers over many
years under different physical conditions. It has many applications in geophysics, food pro-
cessing, oil reservoir modelling, the building of thermal insulations and nuclear reactors. The
prophecy of the instability mechanism of incompressible viscous and nanofluid flow through
a porous medium is very important because of its practical applications in engineering. A
viscous fluid is a fluid that flows like water - its stress versus the rate of strain curve is linear
and passes through the origin. Nanofluids are prepared by the uniform dispersion and sus-
pension of nanometer-sized metallic particles into conventional heat transfer fluids such as
water, oil, or ethylene glycol. The main aim of the thesis is to investigate the linear stability
analysis of incompressible viscous and nanofluid flow in a horizontal /vertical channel filled

with a porous medium.

This thesis consists of four parts and twelve chapters. Part - I consists of a single chapter
(Chapter-1), which provides an introduction to the concepts of viscous fluid, nanofluid and

porous medium and a review of the pertinent literature.

Part-1I contains four chapters (Chapters 2, 3, 4 and 5). Chapter - 2 deals with the impact
of variable gravity on the stability of the viscous fluid saturated porous layer using Darcy
law due to the combined effects of the Soret parameter, vertical throughflow and viscous
dissipation. In Chapter - 3, the influence of viscous dissipation, vertical throughflow and
variable gravity field on the stability in a horizontal porous layer filled with a viscous fluid
using the Brinkman model is examined. Chapter - 4 considers the effect of variable gravity
on the onset of convection in a porous horizontal channel filled with viscous fluid subjected
to third kind boundary conditions. In Chapter - 5, the influence of variable gravity, vertical
throughflow and local thermal non-equilibrium (LTNE) on the stability in a horizontal porous

channel is presented.

Part-III contains six chapters (Chapters 6, 7, 8, 9, 10 and 11). Chapter - 6 analyzes
the linear stability of the nanofluid flow in a vertical porous channel. Chapter - 7 explores
the impact of the transverse magnetic effect on the instability mechanism of double-diffusive
convection in a vertical channel filled with nanofluid. In Chapter - 8, the effect of local
thermal non-equilibrium on the stability of nanofluid flow in a vertical channel filled with a

porous medium is examined. Chapter - 9 presents the local thermal non-equilibrium effect

vi



on the convective instability in a vertical channel filled with nanofluid in the presence of the
transverse magnetic field. In Chapter - 10, the effect of varying gravity field on the onset of
convection in a horizontal porous channel filled with a nanofluid under free-free, rigid-free,
and rigid-rigid boundaries is considered. The onset of convection in a non-Darcy horizontal
porous layer filled with nanofluid due to the viscous dissipation effect is discussed in Chapter
- 11.

In all the above chapters, the non-linear governing equations and their associated bound-
ary conditions are initially cast into dimensionless form by using a suitable set of non-
dimensional transformations and convert them system of linear ordinary differential equa-
tions by using linear stability analysis along with normal mode technique. The resulting
system of ordinary differential equations is solved using either bup/c routine in MATLAB or
Chebyshev spectral collocation method. The influence of pertinent parameters on the onset
of convection is presented through graphs and in tabular form. Moreover, the pattern of
the streamlines, isotherms and isonanoconcentrations are plotted at a critical level over one

period for some problems.

Part - IV consists of a single chapter (Chapter - 12), which gives a summary and overall

conclusions and scope for future work.
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INTRODUCTION



Chapter 1

Preliminaries and Review

1.1 Introduction

Convective transport in porous media has gained prominence in recent years due to its
numerous applications in mechanical, chemical, and civil engineering. These applications
include migration of moisture in fibrous insulation, the spreading of chemical pollutants in
saturated soil, the extraction of geothermal energy, food processing and storage, geophysical
systems, underground disposal of nuclear or non-nuclear waste, electro-chemistry, thermal
insulation of buildings, metallurgy, the design of pebble-bed nuclear reactors, the cooling
system of electronic devices, etc. For the past several decades, many researchers have studied

convective heat and mass transfer in porous media under various physical conditions.

Engineered suspensions of nanoparticles in liquids, known recently as nanofluids, have
attracted the attention of many researchers due to their potential to improve heat transfer
rates in engineering systems, while lowering, or possibly removing, the erosion, sedimenta-
tion, and clogging issues that crippled previous solid-liquid mixtures with larger particles.
Nanofluids can be employed in a variety of technical applications, including the automobile
industry, medicinal applications, power plant cooling systems, and computer systems. The
convection due to heated/cooled objects of various geometries under different physical condi-
tions in a nanofluid saturated porous medium yields one of the most important scenarios for

heat and mass transfer theory and thus is of considerable theoretical and practical interest.



In the mathematical study of a physical system, the concept of stability has a major im-
pact on development. Stability characteristics can be a critical consideration for the practical
application of many technical systems, as demonstrated by real-world examples. Stability
is important in engineering constructions (bridges, plates, shells structures under pressure
loading or unloading by flowing fluids), high-speed vehicles, truck-trailer combinations, rail-
way trains, and hydrodynamics challenges, to name a few. The response of laminar flow
to a small amplitude perturbation is referred to as hydrodynamic stability. A flow is char-
acterised as stable if it returns to its previous (laminar) state after a period of time and
remains in that state, whereas it is characterised as unstable if it transitions into a different
state. Over the last few decades, researchers have used a linearized stability analysis to solve
many of their hydrodynamic and hydromagnetic stability problems in different geometries

using diverse fluid models.

1.2 Newtonian Fluids

A Newtonian fluid is one in which the viscous stresses generated from its flow are linearly
proportional to the local strain rate, or the rate at which its deformation changes over time,
at every point. A fluid is Newtonian if the tensors describing viscous stress and strain rate are
related by a constant viscosity tensor that is dependent on basic thermodynamic variables
such as temperature and pressure but independent of flow parameters such as shear rate
and time. Newtonian fluids are the simplest mathematical models of fluids that account for

viscosity. Fluids such as water, oil or ethylene glycol all are Newtonian.

1.3 Nanofluids

Conventional heat transfer fluids like water, ethylene glycol, and oil have relatively low
thermal conductivities when compared to the thermal conductivity of solids. Hence, an
innovative way of improving the thermal conductivities of fluids is to suspend small solid
particles, such as nanometre- or nanometre-sized particles, into the conventional fluids. A
nanofluid is a mixture of a regular fluid with a very small amount of suspended metallic or
metallic oxide nanoparticles or nanotubes [36]. Nanoparticle materials may be taken as oxide
ceramics (Al,O3, CuO), metal carbides (SiC), nitrides (AIN, SiN) or metals (Al, Cu) etc.
Base fluids may be water, ethylene or tri-ethylene—glycols and other coolants, oil and other

lubricants, bio-fluids and polymer solutions. Nanofluids exhibit exceptionally high thermal



conductivity, as well as a significant change in properties such as viscosity and specific heat
when compared to the base fluid. During the past decade, the study of nanofluids has
attracted immense enthusiasm from researchers in view of its exceptional applications in
electronics, communication, high-power X-rays, computing technologies, medicine, lasers,
scientific measurement, optical devices, material processing and material synthesis [26, 39,
74].

Several models and methods for studying the convective flows of nanofluids have been
proposed by various authors. Two models namely, the Tiwari-Das model [111] and the
Buongiorno model [25] are more frequently used by several researchers to investigate the
heat transfer enhancement by very fine particles suspended in a fluid. Tiwari and Das de-
veloped a model to analyze the behaviour of nanofluids by taking the volumetric fraction of
nanoparticles into consideration. Buongiorno considered seven slip mechanisms, namely, in-
ertia, Brownian diffusion, thermophoresis, diffusiophoresis, magnus effect, fluid drainage, and
gravity that can produce a relative velocity between nanoparticles and the base fluid. In the
absence of turbulent effects, he concluded that only Brownian diffusion and thermophoresis
are important slip mechanisms in nanofluids. Based on this observation, Buongiorno pro-
posed a mathematical model for the nanofluid based on these effects. Brownian motion
refers to the arbitrary movement of nanoparticles within the base fluid. This is caused by
continuous collisions between nanoparticles and base fluid molecules. The phenomenon of
particle diffusion under the influence of a temperature gradient is known as thermophoresis

and is the “particle” equivalent of the renowned Soret effect for gaseous or liquid mixtures.

The basic equations of continuity, momentum and energy and nanoparticle concentration

for this model are given by

V-v=0, (1.1)
ov 2
Dt E_FV.VV =pg— Vp+uVv, (1.2)
T D
(%_t+v.v:r) :aanQTJra{DBVqS-VTnLT—TVT-VT , (1.3)
8¢ . 2 Dr 2
<§+V'V¢)_DBV¢+T_mVT' (1.4)

where v is the velocity vector, T' is the temperature of the nanofluid, ¢ is the nanoparticle
volume fraction, Dy is the Brownian diffusion coefficient, D is the thermophoretic diffusion

coefficient, T}, is the reference temperature, u is the viscosity of the fluid, g is the gravita-



tional acceleration, ay¢ is the thermal diffusivity for nanofluid, and o = (pc),/(pc) is the

ratio between heat capacity of nanofluid and nanoparticles.

1.4 Porous Medium

A porous medium is a solid matrix that contains holes, either connected or unconnected, that
are dispersed inside the medium on a regular or random basis, provided that such holes occur
frequently in the medium. If these pores are saturated with fluid, the solid matrix containing
the fluid is referred to as a fluid-saturated porous medium. Fluid flow in a saturated porous

material is only possible when some of the pores are connected.

To analyse the motion of fluids through porous media, a thorough knowledge of the
governing equations for fluid flow through porous media is required. Because of the complex
structure of porous media, several models have been proposed to describe the mathematical
and physical aspects of porous media. Among these the Darcy model, and a series of its

modifications, attained much acceptance.

Darcy Model

Darcy [38] was the first to present the governing equation for fluid motion in a vertical porous
column. It is a balancing act of viscous force, gravitational force, and pressure gradient. In

mathematical form, it is given as
K
w= (VP pg). (1.5)

where u is the space averaged velocity (or Darcian velocity), K is the (intrinsic) permeability
of the medium,  is the coefficient of viscosity, P is the pressure, p is the density of the fluid
and g is the gravitational acceleration. The above law appears to provide good agreement
with experimental results for one-dimensional flows and low porosity systems. Because this
model does not account for inertial effects, it is only applicable to seepage flows, i.e., flows
with a low Reynolds number (O(Re) < 1).



Darcy-Forchheimer Model

In 1901, Forchheimer [47] carried out experiments and postulated that inertial effects can
be accounted for by including a velocity squared term in the momentum equation. The

modification to the Darcy’s equation is
VK K
[1+’”FT|u|] u=—"[VP g, (1.6)

where cp is the dimensionless form drag coefficient and it varies with the nature of the
porous medium. Darcy and Forchheimer coefficients include both the fluid properties and
the microstructure of the porous medium. A number of experimental works have confirmed

the model’s validity.

Darcy-Brinkman Model

Brinkman [24] has corrected Darcy’s equation with the addition of the Laplace term under
the assumption that flow through an isotropic porous medium with high permeability must
reduce to viscous flow in the limit. Brinkman recognised the importance of accounting for
the viscous force exerted by a flowing fluid on a dense swarm of spherical particles embedded
in a porous mass and added the term ji V?u to balance the pressure gradient. Here i is
the effective viscosity given by fi = p(1 — 2.5(1 — €)). The validity of the Brinkman model
is restricted to the high porosity medium (as confirmed by the experiments). Its governing
equation is given by
— VP - pg] = %u — iVu. (1.7)
Several other models are found in the literature related to porous media, the validity and

limitations of these models are well discussed in Nield and Bejan [78].

1.5 Basic Terminology

Oberbeck-Boussinesq Approximation

The fluid density relies linearly on temperature and concentration differences for adequately

small isobaric temperature and concentration changes ([112]). A convenient and simple way



to define the density difference p — po in the buoyancy part of the momentum equation for

nanofluids is given by
p = dpp + (1 = B)pr[l — Br(T — Tp)], (1.8)

where p,, is the nanoparticle density, ¢ is the nanoparticle volume fraction, 7j is the ref-
erence temperature and pg is the fluid density at reference temperature at some point in
the medium, St is the coefficient of thermal expansion. The Eq. (1.8) is an approximation
for the variation of the density, and it is known as the Oberbeck-Boussinesq approximation,
which states that

e Except for density in the momentum equation, all variations in fluid properties can be

simply neglected.

e The density is considered to vary with the temperature only and its variations can be

ignored everywhere except where they give rise to buoyancy force.

If the density p varies linearly with T" over the range of values of the physical quantities

encountered in the transport process, Ot in Eq. (1.8) are given by
1 /0
p \OT p,C

Convection

Convection is a mechanism in which the movement of fluid from one region to the other region
because of density differences. The difference in density produces buoyancy forces when acted
upon by gravity. Lighter, less dense fluid intends to rise in comparison to heavier fluid, while
heavier fluid strives to sink in comparison to its lighter surroundings. When there is a
horizontal component to the local temperature gradient, like a non-horizontal uniform layer
of fluid is enclosed between two plane surfaces held at distinct but constant temperatures,
the density variations drive the fluid motion directly. Free convection occurs when there is
no motivating force, such as an applied pressure gradient. When the uniform layer of fluid is
horizontal, no buoyancy forces occur since the temperature gradient vector is parallel to the
gravity vector, and thus no flow occurs. However, if the layer is heated from below, the fluid
would be susceptible to instability, and convective motion occurs if the buoyancy forces are

good enough to withstand the viscous dissipative forces that act to keep the fluid in place.



Local Thermal Non-Equilibrium (LTNE)

Local thermal equilibrium (LTE) occurs when the temperature and rate of heat flux at the
interface between the solid and fluid phases are in equilibrium. Thus, it is assumed that there
is no heat transfer between the two phases. Generally, the assumption of LTE is valid if one
of the phases dominates or if the characteristic length scale of the porous medium is small.
This supposition is not appropriate for a large temperature change amongst the phases or
high-speed flows. The solid and fluid phases having significantly different temperatures and
the porous medium is said to be in Local Thermal Non-Equilibrium (LTNE). In such a
situation, the fluid temperature fluctuates quickly with a location on a nano-scale particle
and the system becomes quite complicated. Hence, separate temperature equations for solid
particle and fluid phases to represent local thermal non-equilibrium (LTNE) are needed.

Nield and Bejan [78] gave the simplest form of the heat transport equation as

T.
(1—- e)(pc)s% — (1= OV kYT + (T, - T), (1.9)
0T
€(pCp)f E +u-VT;| =V - kEkVTi + h(TS — Tf), (1.10)

where h is the inter-phase heat transfer coefficient, V1" is the temperature gradient and e is
the porosity of the porous medium. The subscripts s and f refer to the solid and fluid phases
respectively. The specific heat of the solid is denoted by ¢, ¢, is the specific heat at constant

pressure of the fluid and £ is the thermal conductivity.

Hydrodynamic Stability

A physical system is said to be stable when it returns to its original state after being per-
turbed in some way. To analyse a system’s stability, it is subjected to arbitrary small
perturbations, and the system’s response to these perturbations is evaluated. To be of the
permanent type, an equilibrium state or steady flow must not only satisfy the governing

equations but also be stable against arbitrary small perturbations.

Hydrodynamic stability concerns the stability and instability of motions of fluids. Hy-
drodynamic stability theory determines the reaction of a steady motion of a fluid (base flow)
to small disturbances. The stability of fluid flow is determined by the growth rate of distur-
bances. If the disturbances grow in time, the flow is considered unstable. Conversely, the

flow is considered stable if all the possible disturbances that it can be subjected to decay in



time. The origins of this theory can be traced back to the nineteenth century to Helmholtz,

Kelvin, Rayleigh, and Reynolds.

Method of Normal Mode

The method of normal modes is equivalent to superimposing infinitesimal perturbations
on base flow. In doing so, the linearized equations that govern the perturbations can be
derived. The fluid system is considered unstable if at least one eigenvalue of the resulting
linear operator exists in the right half of the complex plane. And the eigenvector associated
with the most unstable eigenvalue (the most unstable mode of disturbance) is expected to
dominate the form of the instability. Finding the eigenvalues and the eigenvectors is very
challenging due to the large dimensions of the linear operator. The problem can be simplified

if some assumptions about the base flow and the nature of disturbances are made.

1.6 Literature Review

Thermal instability theory has stimulated significant attention and has been identified as a
fundamental problem in many areas of fluid dynamics. For a horizontal fluid layer cooled
from above and heated from below, the effect of buoyancy can become a dominant force
driving a possible convective instability. Bénard [17] provided a detailed description of
the development of convective flow. Rayleigh [89] was the first to develop an analytical
perspective to the problem to establish the criteria that delineate the breakdown of the
basic state. As a consequence of these works the thermal instability convection driven by
buoyancy is called Rayleigh-Bénard convection. Chandrasekhar [32] explained in detail,
the thermal instability of a Newtonian fluid, under varying assumptions of hydrodynamics
and hydromagnetics. As a result, several theoretical and experimental research has been

conducted to demonstrate various facts about thermal convection.

Thermal instability in a porous medium is a phenomenon that can occur in a variety of
situations. It has many applications in geophysics, food processing, the building of thermal
insulations, oil reservoir modelling, and nuclear reactors [51, 97]. The porous media analogue
of Rayleigh-Bénard convection in a clear fluid is the Darcy-Bénard problem. It is the pro-
totypical problem for thermoconvective stability in porous media. The fluid flow and heat
transport in porous media was initially studied by Horton and Rogers [58] and Lapwood [66].

These researches are based on the Darcy law, which ignores inertial forces and solid bound-
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ary effects. Hence, this problem is also known as the Horton - Rogers - Lapwood (HRL)
problem. The Darcy—Bénard problem was formulated for a horizontal fluid-saturated porous
layer in a motionless state, bounded by two horizontal, isothermal, and impermeable walls
maintained at different temperatures. Since then, several investigators have studied exten-
sively the instability mechanism of viscous fluid flows in a horizontal porous layer via diverse
physical situations. A detailed and comprehensive survey of the work on fluid convection in

porous media is presented in a book by Nield and Bejan [78].

It is known that the assumption of a uniform gravity field is not valid for large-scale
convection phenomenon that arises in the climate, atmosphere, sea or mantle of the earth
[57,67, 110]. In such a situation, the gravitational field changes with elevation from its surface
and some parts of the fluid layers may show a more stable nature and another part more
unstable. To overcome this problem, it is necessary to consider the variable gravity field that
depends on the height of the earth’s surface . The nonlinear variation of gravity field with
depth (parabolic, binomial and exponential) can occurs in sedimentary basins, epeirogenic
and orogenic movements of the Earth’s crust and crustal structures ([37, 103, 101]). The
existence of elevated gravity levels varying with distance, during the formation of crystals
grown from the molten phase in a furnace placed at the arm extremity of a centrifuge, have
been reported by Rodot et al. [92]. Rao et al. [120] compared the exponential, binomial and
parabolic functions and found that the parabolic model fits more closely with most crustal
structures. Pradhan and Samal [87] were the first to analyze the instability mechanism
between two horizontal plates under the action of varying gravity field and they noticed
that the value of the variable gravity parameter plays an important role on the convection
motion. Alex et al. [6] considered internal heat source and inclined temperature gradient on
the instability mechanism for inconstant varying gravity field and later extension of this work
has been reported in an anisotropic porous region by Alex and Patil [5]. They concluded
that when the variable gravity parameter is nonnegative, an increase in heat generation
destabilises the system, and when it is negative, the reverse effect occurs. Harfash [53, 54]
studied the effect of variable gravity field on the three-dimensional simulations for convection
an anisotropic region with nonhomogeneous porosity and thermal diffusivity and inside a
porous medium with the internal heat source. Their results reveal that the linear threshold
accurately predicts on the onset of instability in the basic steady state. They also observed
found as the Rayleigh number approaches the linear threshold, the time required to attain
the basic steady state increases significantly. Harfash and Alshara [56] analyzed the impact
of variable gravity and chemical reaction on the double-diffusive convection in a porous

medium in the presence of a traverse magnetic field. They concluded that gravity and
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magnetic fields have a considerable stabilising impact. Roy and Murthy [94] investigated
the effect of the variable gravity field and viscous dissipation on the free convection in
a horizontal porous layer. They found a significant decrease in the value of the critical
horizontal Rayleigh number when the modified variable gravity parameter is changed from
—1 to 1. Mahajan and Tripathi [71] examined the influence of spatially varying gravity,
temperature and concentration on the linear and non-linear stability analysis of a chemically
reacting fluid layer. Yadav [124, 125] considered the effect of the variable gravity field and
rotation on the onset convection in a porous layer and the thermal instability in an anisotropic
porous layer. The results demonstrated that both the rotation parameter and the gravity
variation parameter prevent convection from arriving. The measurement of convection cells

decreases as the rotation and gravity variation parameters are increased.

The effect of throughflow has been considered by several researchers for the reason that
it gives the possibility to control the convective instability. The first investigation on the
Rayleigh instability of convection was carried out by Wooding [122] under the influence of
throughflow in a porous medium and this study was followed by Sutton [109] and Chen [33].
Later, Vanishree [119] considered the effect of internal heat generation in a variable viscosity
liquid saturating an anisotropic porous medium to study the stability analysis in the presence
of the throughflow effect. Kuznetsov and Nield [65] examined vertical throughflow effect the
stability of an internally heated fluid-saturated porous layer under the local thermal non-
equilibrium circumstance and concluded that downward throughflow is destabilizing effect,
while upward throughflow is stabilizing effect. Kiran [60] considered the effect of through-
flow and gravity modulation on the weakly nonlinear stability analysis of the Darcy-Bénard
convection. He demonstrated that throughflow increases heat transport in the upward di-
rection while decreasing it in the downward way. Bhadauria and Singh [22] analyzed the
effect of throughflow and G-jitter on the convection in an anisotropic porous medium. They
concluded that the throughflow parameter delays chaotic convection, resulting in a reduc-
tion in heat transmission in the system. Dubey and Murthy [43, 44] considered the effects
of throughflow on the convective instability of horizontal porous layer with inclined thermal
and solutal gradients and mixed thermal conditions. They identified that the magnitude of
throughflow varies in different flow regimes, which has an impact on stability. Yadav [123]
investigated numerically the combined effect of variable gravity field and throughflow on
the onset convection in a porous layer. His results indicate that both the throughflow and

gravity variation parameters delay the onset of convective motion.

In most of the studies on convection in a fluid-saturated porous medium, the contribution

of the viscous dissipation is ignored. However, viscous dissipation has a substantial influence
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on the convective flows in a porous medium when the fluid has both high viscosity and low
thermal conductivity. The irreversible process through which the work done by a fluid on
adjacent layers due to the action of shear forces is transformed into heat is defined as viscous
dissipation. The importance of viscous dissipation effect on the natural convection has been
discussed firstly by Gebhart [48]. He introduced a new term to study the effect of viscous
dissipation which does not depend on the Grashof number and Prandtl number. Later
on, Gebhart and Mollendorf [49] investigated the effect of viscous dissipation on external
natural convection. Turcotte et al. [113] reported the influence of viscous dissipation on
finite amplitude Bénard convection. Barletta et al. [12] considered horizontal flow in a
porous layer induced by viscous dissipation. Barletta and Storesletten [14] discussed the
impact of vertical throughflow with viscous dissipation on the convective roll instabilities in
a horizontal porous layer. Their findings show that, while the effect of viscous dissipation is
generally weak, it is stabilising in the case of downward throughflow and destabilising in the
case of upward throughflow. Barletta and Nield [15] studied the thermosolutal convective
instability in the presence of viscous dissipation effect. They demonstrated that the combined
effects of viscous dissipation and mass diffusion can cause the basic horizontal flow to become
unstable. Roy and Murthy [94, 95, 96] investigated the effect of viscous dissipation on the
convective instability with variable gravity, in an inclined temperature gradient, horizontal
throughflow and Soret effect with double diffusion. Except for some positive values of the
Soret parameter, they concluded that the critical Rayleigh number decreases in the presence
of viscous dissipation. Dubey and Murthy [45] carried out the influence of viscous dissipation

in a Brinkman porous region with throughflow and Soret effect.

The convection of nanofluids based on Buongiorno’s model has attracted great interest
because of its wide range of applications. Using this model for nanofluid, Tzou [114, 115]
analysed the Bénard problem for a nanofluid and found that the critical Rayleigh number
is lowered by one or two orders of magnitude than for regular fluids. Nield and Kuznetsov
[79] analyzed the thermal instability in a porous medium layer saturated by a nanofluid.
They discovered that the inclusion of nanoparticles can lower or increase the critical thermal
Rayleigh number by a significant amount, depending on whether the basic nanoparticle
distribution is top-heavy or bottom-heavy. Kuznetsov and Nield [64] investigated the thermal
instability in porous layer saturated by nanofluid using the Brinkman model and concluded
that in the case of a bottom-heavy nanoparticle distribution, oscillatory instability is possible.
Bhadauria and Agarwal [21] performed a nonlinear study of natural convection in a nanofluid
saturated rotating porous layer. Chand and Rana [29, 30] considered the onset of thermal

convection in rotating nanofluid and oscillating convection of nanofluid in the porous medium
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and found that stationary convection is possible for both bottom and top-heavy distribution
of nanoparticles. Yadav et al. [126] considered the boundary and internal heat source effects
on the onset of Darcy-Brinkman convection in a porous layer saturated with nanofluid. They
noticed that the internal heat source, nanoparticle Rayleigh number, modified diffusivity
ratio, and Lewis number have a destabilising effect on the system, whereas Darcy number
and porosity have a stabilising effect. Nield and Kuznetsov [82, 83] examined the onset
of convection in a nanofluid layer with internal heating and using the revised model. The
results showed that the presence of the nanofluid particles leads to increased instability of
the system and the effect of the nanoparticles on non-oscillatory convection is destabilizing.
Rana and Chand [88] studied the onset of thermal convection in a rotating nanofluid layer
saturated with Darcy-Brinkman porous medium. Ahuja and Sharma [3] summarized the
studies about the instability of a horizontal nanofluid layer under the impact of various
parameters such as rotation, magnetic field, Hall currents and LTNE effects in both porous

and non-porous medium.

In recent years, several investigators have analyzed the fluid flow and heat transfer prob-
lems by including the transverse magnetic field when the fluid is electrically conducting.
Furthermore, due to the effect of magnetic fields on flow control and the efficiency of several
systems using electrically conducting fluids, there has been a growing interest in investigating
Magnetohydrodynamics (MHD) flow and heat transfer in porous media. The investigation
of MHD flow for electrically conducting fluids in a channel has numerous engineering appli-
cations, for instance, crystal growth in fluids, purification of molten metals, metal casting,
nuclear reactor cooling, microelectronic devices and geothermal energy extractions. Although
the effect of magnetic field on the flow of nanofluid saturated porous medium is important,
only a few studies have been reported on the stability of fluid flow in a channel in the pres-
ence of the transverse magnetic field. Alboussiere et al. [4] presented an asymptotic analysis
and Davoust et al. [40] investigated experimentally the buoyancy-driven convection due to
uniform magnetic effect. Yadav et al. [127] considered the effect of vertical magnetic field on
the onset of convection in an electrically conducting nanofluid layer heated uniformly from
below for free—free, rigid—rigid and lower-rigid and upper-free boundaries. The corresponding
eigenvalue problem is solved analytically for free—free boundaries and numerically for others
two boundaries using Galerkin method. Gupta et al. [50] examined the stability analysis for
the onset of convection in a nanofluid layer with the magnetic field and found that a mag-
netic field can stabilise a nanofluid layer in both stationary and oscillatory motions. Harfash
[52, 55] studied the effect of magnetic field on the convection in a porous medium with vari-

able gravity and chemical reaction and demonstrated the strong stabilising effect of gravity
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and magnetic fields. Hudoba and Molokov [59] studied the effect of transverse magnetic field
and internal heat sources on the linear stability of buoyant convective flow through a vertical
channel and concluded that the basic flow of liquid metals in high magnetic fields is very
stable.

The study of double-diffusive convection in a porous medium is a current topic due to its
many applications in the fields of engineering, food processing, bio-engineering and cancer
therapy, movement of biological fluid and oceanography. The prospect of heat transfer in
the medium cannot narrate exclusively in situations involving more than one solute fields.
In such a situation, both heat and mass transfers are required. The combined effects of
temperature differences and concentration variation in a saturated porous medium induce
the buoyancy forces. Starting from the study of the onset of thermohaline convection in a
horizontal layer of the fluid-saturated porous medium by Nield [75], several authors analyzed
the double-diffusive convection in a saturated porous medium by considering different effects.
Kuznetsov and Nield [63] examined the onset of double-diffusive nanofluid convection in a
layer saturated by the porous medium and found that in order for oscillations to occur, two
of the buoyancy forces must be in opposite directions. Nield and Kuznetsov [81] considered
the onset of double-diffusive convection in a nanofluid layer. Agarwal and Rana [1] analysed
the periodic and aperiodic convective stability of double-diffusive nanofluid convection in
a rotating porous layer. They concluded that convection in binary nanofluids is delayed
compared to ordinary nanofluids. Yadav et al. [128] studied the onset of double-diffusive
nanofluid convection in a rotating porous medium layer with variations in thermal conduc-
tivity and viscosity. Umavathi et al. [116] investigated the cross-diffusion effects on the onset
of double diffusive convection in nanofluid saturated porous medium. They deduced that
the Soret and Dufour parameters, viscosity ratio, and thermal conductivity ratio have a sta-
bilising effect for the stationary mode, whereas the solutal Rayleigh number destabilises the
system. Deepika [41] studied the linear and nonlinear stability of double-diffusive convection
with the Soret effect and observed that the effect of the Soret parameter on stabilisation
or destabilisation is significant for Soret parameters less than 2. Mahajan and Sharma [69]
considered the double-diffusive convection in a magnetic nanofluid with cross-diffusion ef-
fects. They noticed that in both the gravity and microgravity environments, increasing the
values of the Dufour parameter delays the beginning of double-diffusive magnetic nanofluid
convection, but increasing the values of the Soret parameter advances it. Dubey and Murthy
[46] investigated the onset of double-diffusive convection in a Brinkman porous layer with
convective boundary conditions. They found that when the direction of the solute concentra-

tion gradient opposes the direction of thermal buoyancy, the Soret parameter has a linearly
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destabilising influence on the flow.

Most of the investigations on the convective instability were under the local thermal equi-
librium (LTE) mode. This supposition is not appropriate for a large temperature change
amongst the phases or high-speed flows. In such a situation, separate temperature equa-
tions for solid particle and fluid phases to represent local thermal non-equilibrium (LTNE)
are needed. Vadasz [117] proposed that both the phases (fluid phase and particle phase)
have a temperature difference. Theories of thermal convection which involve local thermal
non-equilibrium effects, including a concentration on microfluidic effect have been well docu-
mented in the book by Straughan [108]. The study of LTNE for nanofluid saturated porous
media turns to be an important research area due to its interesting applications in microwave
heating, cooling and drying of foods, and rapid heat transfer from computer chips via the
use of porous metal foams. Several investigators carried out their research on the effect of
LTNE on the instability mechanism. Straughan [107] presented global nonlinear stability in
porous convection with a thermal non-equilibrium model. Malshetty et al. [73] analyzed the
double-diffusive convection in porous layer using thermal non-equilibrium model and noticed
that small inter-phase heat transfer coefficient has significant effect on the stability of the
system. Kuznetsov and Nield [62] studied the onset of convection in a porous layer saturated
by nanofluid with LTNE effect. They claimed that the LTNE effect can be significant when
the Nield numbers maintain a certain range but remain unimportant for distinctive dilute
nanofluids. Nield and Kuznetsov [80] investigated analytically the effect of local thermal
non-equilibrium on the onset of convection in a nanofluid layer. Their analysis revealed that
while LTNE can have a considerable influence in specific situations, it has a minor effect in a
typical dilute nanofluid (with a big Lewis number and a small particle-to-fluid heat capacity
ratio). Bhadauria and Agarwal [20] considered the convective transport in a nanofluid satu-
rated porous layer with thermal non-equilibrium model and concluded that convection sets
in earlier for LTNE as compared to LTE. Agarwal et al. [2] studied the Rayleigh Bénard
convection in a nanofluid layer using thermal non-equilibrium model. Barletta and Rees [16]
carried out the local thermal non-equilibrium analysis of the thermoconvection instability
in an inclined porous layer. The scaling of the Darcy-Rayleigh number with cosine of the
inclination angle to the horizontal, which corresponds to the well-known LTE regime, implies
a monotonic increase in the stability of the basic flow as the inclination to the horizontal
increases. Bera and Khandelwal [19] examined the effect of local thermal non-equilibrium
perspective on the stability characteristics of non-isothermal Poiseuille flow in a vertical
porous channel. Their findings indicated that the inter-phase heat transfer coefficient (the

porosity scaled conductivity ratio) have the effect of stabilising (destabilising) the flow. Celli
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et al. [28] discussed the effect of local thermal non-equilibrium on the thermoconvective
instability of Horton-Rogers-Lapwood problem with a free surface and conclude that the
fluid layer is more stable when the free surface is highly capable of exchanging heat with the
external environment. Sharma and Gupta [100] considered the LTNE effect on the nanofluid
convection under Hall current. They concluded that, in contrast to the LTE model, the
presence of nanoparticles has a significant influence on critical wave number via LTNE pa-
rameters. Mahajan and Sharma [70] studied the impact of LTNE on the stability analysis
in a magnetic nanofluid layer. They observed that ester-based magnetic nanofluids are more

stable than water-based magnetic nanofluids in both gravity and microgravity environments.

1.7 Aim and Scope

The present thesis aims to study the linear stability analysis of incompressible viscous and
nanofluid flow in a horizontal/vertical channel filled with a porous medium. The effect of
double diffusion, magnetic field, inter-phase heat transfer parameter (LTNE parameter), vis-
cous dissipation, variable gravity, Biot number (convective boundary condition parameter),
Soret number, Dufour number on the stability is analyzed numerically. To initiate the work
on the stability of the flows in channels, few simple extensions on the viscous fluid-saturated
horizontal porous layer with the variable gravity are considered. Hence, the effect of various
governing parameters on stability is analysed. In the case of nanofluids, the patterns of
the streamlines, isotherms and isonanoconcentrations are analyzed at the critical level. The
problems considered in the thesis deal with the unsteady horizontal /vertical porous channels
where the walls are maintained by one of the isothermal, heat flux conditions, convective

boundary conditions.

1.8 Outline of the Thesis

This thesis consists of four parts and twelve chapters.

Part - I consists of a single chapter, Chapter-1. It deals with the introduction and
presents the motivation for the investigations carried out in the thesis. A survey of pertinent
literature is presented explaining the significance of the problems considered. The basic
equations governing the nanofluid based on the Buongiorno model has been given in this

chapter.
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Part - II deals with the effect of variable gravity on the stability of viscous fluid in a
horizontal channel. This part consists of four chapters (Chapters 2, 3, 4 and 5). In each
of these chapters, the governing equations and their associated boundary conditions are
initially cast into dimensionless form. The resulting system forms an eigenvalue problem.
This system of equations is solved using bvp4c routine available in MATLAB software. For
solving purpose, the system of higher-order ordinary differential equations is transformed
into a system of first-order ordinary differential equations. The normalization condition is
used corresponds to non-trivial solutions at z = 0. In these chapters, four types of variations
viz., linear, quadratic, cubic and exponential, in the gravitational force are considered. As

the problems considered are

In Chapter - 2, the impact of variable gravity on the instability mechanism of the viscous
fluid-saturated porous layer is studied due to the combined effects of the Soret parameter,
vertical throughflow and viscous dissipation. The effect of various parameters viz., solutal
Rayleigh number, Lewis number, Gebhart number (viscous dissipation parameter), Soret
number and gravity variation parameter on the instability mechanism is shown graphically

and analyzed.

Chapter - 3 analyzes the influence of viscous dissipation, vertical throughflow and vari-
able gravity field on the onset of convective instability in a horizontal porous layer filled
with a viscous fluid. The Brinkman extended Darcy model is accounted into the momentum
equation of the governing flow through the porous layer. The effects of pertinent parameters
i.e. non-dimensional throughflow parameter, viscous dissipation, Darcy number and grav-
ity variation parameter on the instability mechanism is discussed for linear, quadratic and

exponential varying gravity field.

In Chapter - 4, the effect of variable gravity on the onset of convection in a Brinkman
porous medium in an infinite horizontal channel packed with viscous fluid in the presence
of third kind boundary conditions is addressed. The breakdown of convection has been
identified under the influence of Darcy number, gravity variation parameter, and Biot num-
bers for linear and quadratic varying gravity fields and presented through graphs. Also, the
critical Rayleigh number and corresponding wavenumber are calculated when one boundary

maintains constant heat flux while another one attains the isothermal condition.

In Chapter - 5, the effect of variable gravity on the stability analysis has been investigated
in a horizontal porous medium with throughflow under a local thermal non-equilibrium
(LTNE) situation. The influence of onset of convection due to the governing parameters, such

as gravity variation parameter, throughflow parameter, inter-phase heat transfer parameter

18



and porosity modified conductivity ratio for the above gravity fields. Further, the critical
Rayleigh number and corresponding wavenumber are obtained at the limiting cases of LTNE

approaches.

Part - IIT deals with the stability of convective flows in a vertical channel filled with a
nanofluid. This part consists of six chapters (Chapters 6, 7, 8, 9, 10 and 11). In all these
chapters, The model which incorporates the Brownian motion and thermophoresis is used
for nanofluid. The eigenvalue problem for the perturbed state is obtained from a normal

mode analysis and solved using the Chebyshev spectral collocation technique.

Chapter - 6 analyzes the linear stability analysis of the nanofluid flow in a vertical porous
channel. The basic velocity, temperature and volume fraction profiles have been shown
graphically for a typical nanofluid (for which the Lewis number is large). Also, the onset of
convection has been discussed graphically for different values of Darcy number, Prandtl num-
ber, concentration Rayleigh number, Lewis number, modified diffusivity ratio and modified
particle density increment. Further, the pattern of streamlines, isotherms, isonanoconcen-
trations, eigenfunctions and growth rate have been examined for the governing parameters

related to nanofluid at the critical level.

In Chapter - 7, the effect of the transverse magnetic effect on the instability mechanism
of double-diffusive convection in a vertical channel filled with nanofluid is considered. The
instability boundaries have been investigated for various values of the magnetic effect, solu-
tal Rayleigh number, thermo-solutal Lewis number, Dufour parameter and Soret parameter.
Also, patterns of the streamlines, isotherms, isonanoconcentrations, isosolutes and growth
rate are shown graphically for various values of Darcy number and Hartmann number (mag-

netic parameter) under critical situation.

In Chapter - 8, the stability of the flow of nanofluid saturated porous medium in a vertical
channel is examined numerically when the fluid, particle and solid-matrix phases are not in
local thermal equilibrium (LTE). The impact of the LTNE parameters, namely, inter-phase
heat transfer parameters, modified thermal capacity ratios and modified thermal diffusivity
ratios between the fluid and particles phases and fluid and solid phases on the breakdown
of convection has been disclosed. Further, patterns of the streamlines, isotherms(fluid),
isotherms(particle), isotherm(solid-matrix), isonanoconcentrations and eigenfunctions have

been presented for Nield numbers(inter-phase heat transfer parameters) at a critical level.

Chapter - 9 presents the local thermal non-equilibrium effect on the convective instability
in a vertical channel filled with nanofluid in the presence of the transverse magnetic field.

The Buongiorno model is used for the nanofluid and the two-field model is used for the energy
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equation each representing the fluid and particle phases separately. The stability region has
been discussed for the occurrence of physical parameters Hartmann number, concentration
Rayleigh number, modified diffusivity ratio, Lewis number, inter-phase heat transfer parame-
ter and thermal diffusivity ratio. Apart from these, the pattern of streamlines, isotherms and
isonanoconcentrations for various values of Hartmann number and inter-phase heat transfer

parameter is shown over a period.

Chapter - 10 deals with the variable gravity effect in a horizontal porous channel filled
with a nanofluid. The impact of variable (linear, quadratic, cubic and exponential) gravity
fields on the stability analysis have been carried out for the governing parameters under

free-free, rigid-free, and rigid-rigid boundaries.

In Chapter - 11, the onset of longitudinal convective rolls of a horizontal porous layer filled
with nanofluid induced by viscous dissipation is investigated numerically. An infinitely long
horizontal porous region has been considered which is bounded by two rigid surfaces. The
lower surface is thermally insulated, whereas the upper surface is considered to be isothermal.
The Buongiorno model for the nanofluid and the Brinkman-extended Darcy model for porous
medium are adopted. The effect of pertinent parameters on the longitudinal convective rolls

ia analysed and presented graphically.

Part - IV consists of a single chapter, Chapter - 12, which includes the principal conclu-

sions of the thesis and the directions in which further investigations may be carried out.

In all the above chapters, it is assumed the porous medium is homogeneous and hydro-

dynamically as well as thermally isotropic.

A list of references is given at the end of the thesis. The references are arranged in
alphabetical order. In some of the chapters, details which are already presented in the earlier
Chapters are avoided. As a review of the existing literature is presented in the introductory
chapter itself, in each of the chapters only a brief introduction to the concerned problem is
given. Also, the physical meaning of the various parameters is repeated in each chapter for

easy readability.

A considerable part of the work in the thesis is published/accepted for publication in
reputed journals. The remaining part is communicated for possible publications. The details

are presented below.
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Part 11

STABILITY OF VISCOUS FLOW IN
A POROUS HORIZONTAL
CHANNEL WITH VARIABLE
GRAVITY
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Chapter 2

The variable gravity field and viscous
dissipation effects on the double
diffusive and Soret driven convective
instability in a porous layer with

throughflow !

2.1 Introduction

The convection with double diffusion in a porous medium has gained more attention ow-
ing to its many applications in the areas of food processing, geophysics, chemical science,
engineering and nuclear industries, movement of biological fluid, cancer therapy and oceanog-
raphy. The prospect of heat transfer in the medium cannot narrate exclusively in conditions
containing at least one solute fields. In this type of situations, heat and mass transfers
together are required. The cumulative impact of concentration and temperature differences
in a fluid-saturated porous matrix induces the buoyancy forces. Nield [75] initiated the
first investigation on the instability mechanism of convection in a horizontal fluid saturated
porous layer with double diffusion. Several authors analyzed the double diffusion convection
in a fluid-saturated porous layer by incorporating different effects in their study. Nield and

Bejan [78] and Vafai [118] presented a prevalent literature on the double-diffusive convection

!Published in “International Communications in Heat and Mass Transfer” 120, ID No. 105050,
2021
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in porous matrix.

It is well known that viscous dissipation has great importance in mixed or natural con-
vection processes. The viscous dissipation effects may also be present a significant role in
stronger gravitational fields. Gebhart [48] investigated the viscous dissipation effect in nat-
ural convection under two type of boundary conditions. This dissipation number does not
depend on the Grashof number and Prandtl number. Several investigators analysed the

effect of viscous dissipation on the convective instabilities in a porous channel/layer.

Several researchers were attracted to the study of the influence of vertical throughflow as
it contributes to the chance to regulate convective instability. Wooding [122] was the first
to consider the throughflow in a porous medium. Later, it was extended by Sutton [109],
Chen [33] and Nield [77] and Nield and Kuznetsov [82]. The variation of gravity with height
is taken into account in large-scale convection problems as it variates the buoyancy force
applied by the fluid. This causes a certain section of the fluid layer to be stable and other
section unstable. Straughan [106] examined the linear stability of convection in a variable
gravity field. Several researchers, Harfash [53] and Yadav [123] examined the variable gravity

effects on the convective flow.

In this chapter, we consider the linear stability analysis for the onset of double diffu-
sion convection in the presence of variable gravity, viscous dissipation and vertical through-
flow. The influence of these governing parameters on the stability of convection is presented

through graphs and tabular form.

2.2 Mathematical Formulation

Consider an incompressible and double diffusive horizontal fluid layer saturated with porous
medium of thickness L. The Cartesian co-ordinate system is selected such that z—axis is
taken along the horizontal direction and z— axis is vertically upwards. The boundary planes
of the porous layer are z = 0 and z = L. The variable gravity g(z) is acting in the direction
of negative z— axis as plotted in Fig. 2.1. The temperatures (7') of the bottom and top
layers are taken as T} and Ty (77 > T3) and the corresponding concentrations (C') are as C4
and Cy (Cy > Cy), respectively.
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Figure 2.1: Schematic representation of the problem.

The fluid and porous medium are supposed to be in a local thermal equilibrium state.
The porous medium is isotropic and homogeneous. The Darcy law for porous medium is
employed in the momentum equation. Also, a concurrent mass diffusion that is present due
to the concentration difference maintained at the horizontal walls gets effected due to the
thermal gradients contributing to the concentration distribution (due to the Soret effect).
But the Dufour effect is not considered. The fluid that saturates the porous matrix is

assumed to be Newtonian.

Under the above assumptions and invoking Oberbeck-Boussinesq approximation, the

equations governing the flow can be written as ([78, 93]):

V-u=0, (2.1)

0=—Vp— %u — poll = Br(T — Tz) — Be(C — Co)lg(2)8,, (2.2)
oT _ 2 H

(pc)ma + (po)pu - VT = kyy VT + o (2.3)
aC , ,

GE +u- VC = DV O + DCTV T, (24)

where u(= (u,v,w)) is the Darcy velocity vector. p, u and K are pressure, dynamic vis-
cosity, and permeability, respectively. pg is the density of the fluid, &, is unit vector in the

z—direction, (pc)y, is the heat capacity of the medium, (pc)s is heat capacity of the fluid,

26



kyn and € are the thermal conductivity and porosity of the porous medium, respectively. D
is the mass diffusivity and D¢t is the Soret coefficient. Also, St and ¢ are thermal and
solutal expansion coefficients of the fluid. Here, g(z) = g,(1 + AG(2)), where g, and \ are
the reference gravity and the gravity variation parameter, respectively. The overall heat

capacity per unit volume, overall thermal conductivity of the medium are given by ([78])
(pC)m = (L —€)(pc)s + €(pcp)e and  kyy = (1 — €)ks + €k,

where the subscripts s, f and m referring to the solid, fluid and porous components, respec-

tively, ¢, is the specific heat at constant pressure of the fluid.

The conditions on the boundary planes are given by

w=W., T=T, C=C, at z=0, (2.5a)
w=W., T=1T,, C=Cy at z=1L. (2.5b)

The non-dimensional variables are defined as

coe oo @yz) . ulL . Kp
(xayvz)* L 9 u*a_a pfﬂTa
mt T—T: c-C

AL s 2 (2.6)
el T1 TQ Cl 02

where oy, = is the thermal diffusivity.

(pp)s
The dimensionless form of Egs. (2.1)-(2.4), after eliminating pressure term from Eq.

(2.2), are (after dropping asterisk)

Viw = (RaV%{T + %V%C) (14+ \G(2)), (2.7)
0 9 Ge

(7§+U-V)T—VT+%u-u, (2.8)
0 1, 5

(8t+u V)C:L_ev C + SrVv°T. (2.9)

2 2 KL(T, - T
Here V3 = %%—% The non-dimensional parameters are defied as Ra = Pogo St ,ua( ! 2)

PogoBc K L(Cy — Cy) .

is the thermal Rayleigh number, Rs = is the solutal Rayleigh number,

wD
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Uy : (PC)m

Le = — is the Lewis number, v = is the

L
is the heat capacity ratio, Ge = BTi
e(pcp)r Cp
Gebhart number due to viscous dissipation effect and Sr = % is the Soret parameter.

The dimensionless conditions on the boundary are

w=@, T=1, C=1 at z=0, (2.10a)
w=Q, T=0 C=0 at z=1, (2.10Db)
WL
where @) = is the throughflow parameter.
Om

2.3 Basic state solution

The flow in the basic state is assumed as steady, uni-directional and fully developed and then
the velocity, temperature and concentration in basic state are of the form: ug = (0,0,Q),
To = To(z) and Cy = Cy(z), respectively. The solution of the basic state temperature and

concentration are, respectively,

Ge Ge
@+ 52 Rf+1)€Qz+GeQ

To= e? — 1 e@ —1 Raz’

(2.11)

_ (eQLe_eQlLex) SrL GeQ Q_eQLe Lez
Co=— (1—eQL¢) + (lfLe)(lfeQLe) (_ + 1) [L +e? ]

SrLe GeQ z

T Le)(1-e9) (% +1) ¥ (212)
In the basic temperature and concentration profiles given in Eqs. 2.11 and 2.12, both ) =0
and Le = 1 are singular points. In the limit () — 0, the basic temperature profile is a linear

function of z (i.e., To = 1 — z ). The basic concentration profile for Le = 1 is obtained as

Q _ Q= S G
Co="gq (@ T_Q1)2 ( Ref + 1) [(e9 = 2e%%) + €% (2 — 1)]. (2.13)

By considering the limit () — 0 and Le — 1, the basic concentration profile can be obtained

as Chp=1-—z.
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2.4 Linear stability analysis

The linear stability analysis is studied by imposing the infinitesimal disturbances in the

velocity, temperature, and concentration as given below
u=1ug+ (511/, T= To(Z) + (5T/, C= Co(Z) + 50/, (214)

where 0 < 1 is a small disturbance parameter and the prime denotes an infinitesimal dis-
turbance. Substituting Eq. (2.14) into Eqgs. (2.7)-(2.9) and neglecting 4% and higher order

terms, we get the following equations for disturbances.

Vi = (RaV%IT' + %v%ﬂ) (1+ MG(2)), (2.15)
o1’ , , . 2Ge ,

5 + (0 - V)Ty + (ug - V)T = VT + g Yo W, (2.16)
ac/ !/ ! 1 2, 2

5 + (U -V)Cy+ (ug - V)C :L_ev C" 4+ SrveT. (2.17)

By applying the usual normal mode form, the disturbances are specified by
[w', T, C"] = [(2), T(z), C(z))e!@=rtavy)tnt (2.18)

where a = /a2 + a7 is wavenumber, and 7 = 1, + i7; is a complex parameter, where 7, and

7; are describing the growth rate and angular frequency of the disturbances, respectively.

On substituting Eq. (2.18) into Egs. (2.15)-(2.17) and by putting n = 0, we get the

following differential equations for neutral stability mode

de 2 2 ~ RS A
(dz2 a w) +a (Ra + L@C’) (14+MG(2)) =0, (2.19)
AT, (&*T  dT  ,.\ 2Ge .
0 (d_ —Qg e T) TR Q=0 (2:20)
dCy | 1 (d2C dc T L\
U T T <d— - ) o el (d_ —aT =0 (220
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The associated conditions on the boundary are

A

Ww=T=C=0 at z=0 and z=1. (2.22)

2.5 Results and discussion

The Egs. (2.19)-(2.21) form an eigenvalue problem with Ra as the eigenvalue. This system
of equations is solved using buvp4c routine in MATLAB. For solving purpose, the system of
Egs. (2.19)-(2.21) is transformed into a system of first order differential equations. The
normalization condition Dw(0) = 1 is used corresponds to non-trivial solutions, at z = 0.
Using the governing parameters (a, Rs, Le, Ge, Sr, (), the eigenvalue Ra can be obtained.
The critical Rayleigh number Ra. and the corresponding wavenumber a. are obtained by
calculating the minimum of the function Ra(a). The absolute and relative tolerance are

taken as 1071 and 1079, respectively.

In this study, four types of variations viz., linear, quadratic, cubic and exponential, in
the gravitational force are considered. The gravity force functions are taken as G(z) = —z
(for linear variations and is denoted by Case-A), G(z) = —2?% (for quadratic variations and
is denoted by Case-B), G(z) = —2z* (for cubic variations and is denoted by Case-C), and
G(z) = —(e* — 1) (for exponential variations and is denoted by Case-D).

To verify the exactness of our code, the results obtained from the present analysis are
compared with the published results of Rionero and Straughan [91] for () = 0 and Yadav [123]
for () # 0 and presented in Tables 2.1 and 2.2, respectively. The Ra. and the corresponding
a. are calculated for stationary convection. The parameters Rs, Ge and Sr are taken to be
zero for both the studies. Also, we have consider the ratio of thermal and solutal diffusivity
as unity. It can be observed from Tables 2.1 and 2.2 that the outcomes are in good accord
with the results of Rionero and Straughan [91] and Yadav [123].

The influence of the solutal Rayleigh number, gravity variation parameter, throughflow
parameter, Gebhart number, Lewis number, and Soret parameter on the Ra. and corre-
sponding a. is computed and results are presented in Figs. 2.2 to 2.6 and also in Tables 2.3
and 2.4.

Fig. 2.2 displays the variation of Ra. as a function of gravity changeable parameter \ for
various values of solutal Rayleigh number Rs for four cases (Case-A, B, C and D) of gravity

field variations. It is noticed from this figure that the effect of Rs on the critical Rayleigh
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number is not visible for all four cases of gravity variations. Further, it is noticed that the
critical Rayleigh number is increasing with an increase in the gravity variation parameter
A. Hence, A has a stabilizing effect. An improvement of \ imparts a decay in the gravity
field and the disturbance in the system regain. This refers to delay the convection. To have
a clear understanding of the effect of Rs for fixed values of A, the critical Rayleigh number
and critical wavenumber are computed for different values of A\ and Rs and presented in
the Table 2.3. It is noticed from this table that critical Rayleigh number Ra. decreases for
increasing the values of Rs. Thus, this factor has a destabilizing effect and the destabilizing

rate is very less.

The influence of the throughflow parameter on the instability mechanism is displayed in
Fig. 2.3. It is noticed that Ra. enhances with an increase in the value of (). Thus, @) has a

stabilizing effect.

The impact of mass diffusivity and thermal diffusivity on the stability mechanism is
portrayed in Fig. 2.4. It is seen that Ra. rises with an improvement in the Lewis number
Le. Thus, Le has a stabilizing effect when thermal diffusivity dominates the mass diffusivity
and hence delays the convection. Further, an increase in Le augments the rate of heat supply

to the system that manages to increase the values of critical Rayleigh number.

Fig. 2.5 demonstrate the effect of viscous dissipation parameter Ge on the variation of
critical Rayleigh number. It is perceived that the critical Rayleigh number is decreasing with
an increase in the viscous dissipation parameter. The influence of Ge is very less for Case-A
and Case-D. Hence, the flow has a destabilizing character in presence of viscous dissipation
parameter. This is due to the reason that the work done by a fluid on contiguous layers
is converted into heat because of the action of shear forces and this directs to advance the
convective motion. The critical value of Ra is calculated against A for different values of
the Soret parameter and plotted in Fig. 2.6 for four cases of gravity force variations. It
is observed that the system is becoming stable when Sr > 0, as Ra. is growing with an
increase in Sr. Further, it is found that the stability of the convection is more for Case - D

and instability are more for Case - C.

The impact of the parameters Le, Ge, Sr and A on a. with () = 0.5 and Rs = 20 for four
cases (Case A, B, C and D) of gravity variations is presented in the Table 2.4. It is noticed
from this table that the critical wavenumber is increasing with a rise value in A\. This increase
is more pronounced for the cases A and D. a. increases when Le and Sr increase. The a, has
dual nature i.e., increasing and decreasing nature when Ge increases and variation is very

less.
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Table 2.1: Comparison of Ra. and a? of the present analysis with the results of Rionero and
Straughan [91] for Rs =0, Ge =0, Sr =0, Q =0 and Le = 1.

G(z) A Rionero and Straughan [91] Present results
Ra, a2 Ra, a?

Case-A 0 39478 9.870 39.478  9.870

1 77.020 10.209 77.080 10.209

1.5 132.020 12.314 132.021 12.314

1.8 189.908 17.198 189.908 17.198

1.9 212.280 19.477 212.284 19.477

Case-B 0 39.478 9.870 39.478  9.870

0.2 41.832 9.874 41.832  9.874

0.4 44.455 9.887 44.455  9.887

0.6 47.389 9.915 47.389 9915

0.8 50.682 9.961 20.682  9.961

1 54.390 10.034 04.390  10.034

Case-D 0 39478 9.870 39.478  9.870

0.1 42331 9.872 42.331  9.872

0.2 45.607 9.883 45.607  9.883

0.3 49.398 9.904 49.398  9.904

0.4 53.828 9.942 03.828  9.942

0.5 59.053 10.005 59.053  10.005

Table 2.2: Comparison of Ra. and a. of the present analysis with the results of Yadav [123]
for Rs =0, Ge=0,Sr=0,Q =0.5, and Le = 1.
G(z) A Yadav [123] Present results
Ra, e Ra, e
Case-A 0  39.827 3.151 39.828  3.150
0.6 57.569 3.146 57.571  3.149
1.2 99.660 3.224 99.664  3.226
Case-B 0 39.827 3.151 39.828  3.150
0.6 48.469 3.146 48471  3.142
1.2 61.088 3.167 61.091 3.167
Case-C 0 39.827 3.151 39.828  3.150
0.6 44.857 3.146 44.859  3.146
1.2 51.029 3.153 51.031  3.152
Case-D 0 39.827 3.151 39.828  3.150
0.6 67.948 3.162 67.951 3.163
1.2 157.128 3.798 157.133  3.795
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Table 2.3: Evaluation of Ra. and a. for various values of solutal Rayleigh number (Rs) and
gravity variation parameter (\) when Le = 10, Ge = 1, @ = 0.5 and Sr = 0.1 for four cases
A, B, C and D.
Rs A Case - A Case - B Case - C Case - D
Ra, e Ra, c Ra, Qe Ra, e
5 0 38814 3.103 38.805 3.147 38.815 3.101 38.816  3.098
0.5 52.603 3.105 45.774  3.103 42.921 3.104 59.950  3.157
1 79.628 3.158 55.263 3.123 47.789 3.114 114.738  3.398
1.5 144.185 3.460 68.505 3.179 53.567 3.135 232.312  4.621
15 0 38782 3.084 38.765 3.145 38.776  3.098 38.765 3.144
0.5 52541 3.099 45.715  3.099 42.867 3.100 59.868  3.154
1 79.575 3.156 55.179  3.119 47.717  3.109 114.572  3.365
1.5 144.004 3.479 68.389 3.173 53.476  3.130 232.063 4.617
25 0 38.737  3.098 38.726  3.143 38.725 3.144 38.737  3.092
0.5 52465 3.144 45.651 3.109 42.802 3.142 59.784  3.153
1 79.423 3.141 55.095 3.114 47.645 3.104 114.408 3.360
1.5 143.818 3.479 68.273 3.168 53.385 3.124 231.812 4.630
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Table 2.4: Evaluation of a. for various values of Le, Ge, Sr and A with () = 0.5 and Rs = 20
for four types of gravity variations.
Le Ge Sr A Case-A Case-B Case-C Case-D

01 1 01 0 0.702 0.702 0.701 0.702
0.4 0.784 0.745 0.727 0.821
0.8 0.904 0.797 0.755 1.026
1.6 1.472 0.941 0.822 2.362
1 1 01 O 2.111 2.094 2.095 2.109
0.4 2.267 2.201 2.169 2.329
0.8 2.437 2.279 2.226 2.628
1.6 3.206 2.518 2.334 4.473
10 1 01 O 3.142 3.144 3.144 3.143
0.4 3.144 3.143 3.097 3.148
0.8 3.156 3.106 3.102 3.188
1.2 3.209 3.132 3.113 3.773
10 0 01 O 3.145 3.146 3.146 3.145
0.4 3.143 3.143 3.143 3.124
0.8 3.153 3.147 3.144 3.205
1.2 3.215 3.166 3.151 3.787
10 2 01 O 3.142 3.143 3.143 3.142
0.4 3.144 3.143 3.143 3.091
0.8 3.159 3.151 3.146 3.229
1.2 3.234 3.174 3.156 3.758
10 1 0 0 3.117 3.117 3.118 3.117
0.6 3.066 3.126 3.122 3.094
1.2 3.181 3.158 3.137 3.760
1.8 4.117 3.237 3.173 5.341
10 1 -05 O 2.876 2777 2.781 2.873
0.6 2.973 2.854 2.831 2.956
1.2 3.089 2.948 2.887 3.698
1.8 4.066 3.104 2.959 5.302
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2.6 Conclusions

The double diffusive convection in a fluid saturated porous layer is studied due to the com-
bined effects of the Soret parameter, vertical throughflow, changeable gravity field with
height and viscous dissipation. Four different types (linear, quadratic, cubic and exponen-
tial) of gravity field variations are considered for the study. The main conclusions of the

linear stability analysis are described in the following:
e The impact of increasing @), Le, A\ and Sr are found to lag the onset of convection,
whereas Rs and Ge react to elevate the onset of convective motion.

e The size of the convective cells decreases with rising the effect of gravity field param-
eter, Lewis number and Soret parameter, while solutal Rayleigh number and Gebhart

number has a dual character on the dimension of convection cells.

e [t is distinguished that for Case - D the flow is more stable and for Case - C the flow

is more unstable.
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Figure 2.2: Influence of solutal Rayleigh number (Rs) on Ra. for four cases A, B, C and D
when () = 0.5, Ge =1, Le = 10 and Sr = 0.1.
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Chapter 3

The variable gravity field and viscous
dissipation effects on the convective
instability in a porous layer with
throughflow: Brinkman Model !

3.1 Introduction

The fluid flow and heat transfer in a horizontal porous layer is a fundamental convection
problem due to its several fields of application such as chemical science, geophysics, engineer-
ing and nuclear industries, food processing and oceanography. The first investigation on the
onset convection in a porous medium was done by Horton and Rogers Jr. [58] and Lapwood
[66]. These problems are familiar as Horton—Rogers—Lapwood problem and are based on
the Darcy model, which ignores the inertia force effect. A modification to the Darcy model
was suggested by Brinkman [24] to model the flows with high porosity and large shear rates.
Later, Nield [76] shown that the Brinkman term is more comfortable to study the inertia
effect when the porosity of the medium is greater than 0.6. Several authors viz., Postelnicu
and Rees [86], Postelnicu [85] and Wang and Tan [121] studied the onset convection in a
porous layer using the Brinkman model under different situations. A comprehensive discus-
sion on the thermal convection for Darcy—Brinkman model can be found in Nield and Bejan
[78].

'Published in “Journal of Porous Media” 24(6), 1-13, 2021
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In this chapter, the effects of the variable gravity field and viscous dissipation on the
convective instability in a porous layer in the presence of throughflow using the Brinkman
Model are analyzed by taking the top and bottom layer surfaces are rigid boundaries. The

corresponding eigenvalue problem is solved numerically by using bvp4c routine in MATLAB.

3.2 Mathematical Formulation

Consider a horizontal porous layer of thickness L saturated with an incompressible viscous
fluid. The variable gravity g(z) is acting in the opposite direction of z—axis as shown in
Fig. 2.1. The Brinkman model and Oberbeck-Boussinesq are employed in the momentum
equation. Also, the dissipation effect is assumed to be prominent in the medium. Under the

above assumptions, the corresponding governing equations can be written as

V-u=0, (3.1)
Pou_ ~Vp— fut iV - poll — Br(T —1T1)]g(=)é (3.2)
€ Ot K 2
or _ 2 H K __»
(PC)m 5 T (pe)u- VT = knV'T + -u (u— Muv u) , (3.3)

where p is the dynamic viscosity, i is the effective dynamic viscosity and the remaining

quantities are defined in Chapter - 2.
The corresponding boundary conditions are written as

ow

w=W,, E:O’ T=T, at z=0, (3.4a)
B

w =W, a—wzo, T=T, at »=L. (3.4b)
z

Using the non-dimensional scheme defined in Eq. (2.6), the dimensionless form of Egs.

(3.1)—(3.3), after eliminating pressure term from Eq. (3.2), are

D
Pra % (V*w) = —V*w + ADaV*w + RaVET(1 + AG(z)), (3.5)

Geba (Dahu— AVu) . (3.6)
a

T
7§+u~VT:V2T+

% .
The non-dimensional parameters are defied as Da = Iz is the Darcy number, A = K is the
1
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2
€
viscosity ratio, and Pr, = a is the modified Prandtl number. Also, A = 1 has been
QmpPo
taken in this study due to a specific measurement of it.

The corresponding dimensionless boundary conditions are

B

w=Q, 8—2’:0, T=1, at 2=0, (3.72)
9

w=Q, a—fzo, T=0 at z=1, (3.7b)

W.L .
where () = is the throughflow parameter.
Om

3.3 Basic state solution

Considering the basic state as steady, unidirectional and fully developed and then the ba-
sic velocity and the basic temperature are of the form: uy, = (0,0,Q) and Ty = Ty(z2),
respectively. The solution of the basic state temperature is
Q Ge Ge
e + 3= 1+ 3
Ra RaQ eQz

To= Q-1  eQ—1

Ge

3.4 Linear stability analysis

As in Chapter - 2, we impose the infinitesimal disturbances (Eq. (2.14)) on the basic state
solution and apply the usual normal mode form for the disturbances (Eq. (2.18)). Sub-
stituting Eq. (2.14) into Egs. (3.5)—(3.6), neglecting 6% and higher order terms and then
applying Eq. (2.18) into the resulting equations, we obtain the following system of ordinary

differential equations for neutral stability modes (n = 0).

d4 A A2 d?i ~
be <d_w - 200+ “’) - (d_w - “’> —@Ral (1+XG(2)) =0,  (3.9)
dTy .  QGeDa L (o, 2T AT -
_ oD _ (2T L/ &) = 1
=" " Ra [ e = R =R - (310

where a = /a3 + a is the resulting wavenumber. The corresponding perturbed boundary

conditions are
L S R 0,1 (3.11)
w = —= g Zz = . .
dz ’
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3.5 Results and discussion

The Egs. (3.9)—(3.10) define an eigenvalue problem solved using the bup4c routine in MAT-

LAB. In this investigation, three types of gravitational force viz., linear, quadratic and

exponential are considered. The gravity force functions are taken as G(z) = —z (for linear
variations and is denoted by Case - A), G(z) = —2? (for quadratic variations and is denoted
by Case - B) and G(z) = —(e* — 1) (for exponential variations and is denoted by Case -

C). To confirm the exactness of our code, the results obtained from the present analysis are
compared with the results of Rionero and Straughan [91] in absence of throughflow param-
eter () and Yadav [123] in presence of throughflow parameter (Q)) for Cases A, B and C,
and tabulated in Tables 3.1 and 3.2, respectively. The critical Rayleigh number and cor-
responding wavenumber are calculated for stationary convection. The parameters Ge and
Da are taken to be zero for both tables. From Tables 3.1 and 3.2, it can be noticed that
the results are in good agreement with the results of Rionero and Straughan [91] and Yadav
[123]. The effects of viscous dissipation and the gravity variation parameter for the onset of
convective rolls are depicted through the results exhibited in Table 3.3 for linear, quadratic
and exponential gravity field at ) = 0.5 and Da = 0.1. The values of Ge are taken as 0,
107°,1072,1071, 0.5 and 1 (Barletta et al. [14]). It is observed that the critical Rayleigh
number Ra. and corresponding wavenumber a. depend significantly on A, while they depend
weakly on Ge. In the other words, viscous dissipation has a weak destabilizing effect on the
Brinkman flow regime. This is because the action of shear forces leads the work done by a
fluid on adjacent layers is transformed into heat and it refers to rise the convective motion.
The critical Rayleigh number enhances with an increased value of A and it indicates A has
a stabilizing effect on the flow field. This is happening since the disturbances of the system
regain due to the increment of A\ which offers a delay in the gravity field. Thus the convective
instability is postponing with the augment of A. The size of the convective cells decreases
upon enhancing the value of Ge, while it increases for small values of A and opposite nature
has been observed for large values of A\. Fig. 3.1 reveals the variation of critical Rayleigh
number Ra. and corresponding wavenumber a. due to the effect of throughflow parameter
Q. It may note that the value of Ra. increases with (). Therefore, convective motion delays
due to the growing value of (). Since the urgent heat gradients to a boundary layer can
modify with the increased value of the throughflow parameter () and also it can shift where
the throughflow is narrated. This indicates that () stabilizes the flow.

Quantitatively speaking, the value of Ra, is changed from 357.029 to 380.138, 275.437 to
290.238 and 455.688 to 504.069 (i.e., Ra,. increased 6.5%, 5.4% and 10.5%, respectively) for
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linear, quadratic and exponential gravity field variable, respectively, on replacing ) equal
to 0 by 1 at A = 0.8, Da = 0.1 and Ge = 1. Further enhancing the value of @) from 1 to
2, Ra. increased 15.5% (i.e., from 380.138 to 438.951) for linear, 14.3% (i.e., from 290.238
to 331.895) for quadratic gravity field variable and 20.6% (i.e., from 504.069 to 607.737)
for exponential field variable. However, when A replaced by 1.5 the corresponding critical
Rayleigh number is changed from 799.911 to 945.649 (i.e., increased approximately 18.2%)
and 945.649 to 1230.067 (i.e., increased approximately 30.1%) for linear gravity function,
from 362.071 to 396.779 (i.e., increased approximately 9.6%) and 396.779 to 474.024 (i.e.,
increased approximately 19.5%) for quadratic gravity function and from 1826.612 to 2430.965
(i.e., increased approximately 33%) and 2430.965 to 3508.877 (i.e., increased approximately
44.3%) for exponential gravity function on the stepwise changing of @ from 0 to 1 and 1
to 2, respectively. So, from this quantitative analysis, it can be concluded that the onset
of convection can manage via throughflow parameter, i.e., by choosing suitable governing
parameter, the onset convection can advance or postpone. The effect of Darcy number Da on
the variation of critical Rayleigh number Ra, and corresponding wavenumber a. are displayed
in the Fig. 3.2 for categories (A) G(z) = —z, (B) G(z) = —2% and (C) G(z) = —(e*—1). It is
observed that Ra. increases with growing value of Da, while a. decreases with augment value
of Da. Therefore, the characteristic of enhancing Da delays the arrival of convective motion.
Since the viscous effects, as mediated by the Brinkman terms, increase as Da increases,
which leads the enhance value of Ra., which leads to enhance in the estimate of Ra.. Also,
the dimension of convective cells elevated as in the increase value of Da. In particular, the
limiting case of the Darcy flow regime (Da — oo0) without porous medium and in absence
of throughflow parameter (@ = 0) and viscous dissipation (Ge = 0) gives Ra. = 1707.765
and a. = 3.116 for constant gravity variation function (A = 0), which matches up to second
decimal places with the corresponding exact and well-known results Ra. = 1707.762 and
a. = 3.117 for Rayleigh-Bénard convection presented by Chandrasekhar [32]. Further, it
is noticed that the system is more stable for exponential varying gravity field, while more
unstable for quadratic varying gravity field. When Da = 0, the Brinkman flow regime is
switching back to the Darcy flow regime. The onset of convection of Darcy flow is addressed
by Yadav [123] in absence of viscous dissipation effect. From Table 3.4, it is clear that viscous

dissipation has a weak destabilizing effect on the Darcy flow regime also.
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Table 3.1: Comparison of Ra,. and a? between the results obtained by Rionero and Straughan
[91] and present results when Ge = 0, @ = 0 and Da = 0 for cases (A) G(z) = —z, (B)
G(z) = —2? and (C) G(z2) = —(e* — 1).

G(z) A Rionero and Straughan [91] Present results
Ra. a? Ra, a?

Case-A 0 39478 9.870 39.478  9.870

1 77.020 10.209 77.080  10.209

1.5 132.020 12.314 132.021 12.314

1.8 189.908 17.198 189.908 17.198

1.9 212.280 19.477 212.284 19.477

Case-B 0  39.478 9.870 39.478  9.870

0.2 41.832 9.874 41.832 9.874

0.4 44.455 9.887 44.455  9.887

0.6 47.389 9.915 47.389 9915

0.8 50.682 9.961 50.682  9.961

1 54.390 10.034 54.390 10.034

Case- C 0  39.478 9.870 39.478  9.870

0.1 42.331 9.872 42.331  9.872

0.2 45.607 9.883 45.607  9.883

0.3 49.398 9.904 49.398  9.904

0.4 53.828 9.942 03.828  9.942

0.5 959.053 10.005 59.053  10.005
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Table 3.2: Comparison of Ra. and a. between the results obtained by Yadav [123] and
present results when Ge = 0 and Da = 0 for cases (A) G(z) = —z, (B) G(z) = —2? and (C)
G(z)=—(e* = 1).
G(z) Q A Yadav [123] Present results
Ra. Qe Ra. Qe

Case-A 05 0 39827 3.151 39.827  3.151

0.6 57.569 3.146 57.569  3.146

1.2 99.660 3.224 99.661 3.224

1 0 40.873 3.179 40.873  3.179

0.6 60.071 3.159 60.073  3.159

1.2 108.160 3.208 108.164 3.208

Case-B 05 0 39.827 3.151 39.827 3.151

0.6 48.469 3.146 48.469  3.146

1.2 61.088 3.167 61.089 3.167

1 0 40873 3.179 40.873  3.179

0.6 50462 3.161 50.463 3.161

1.2 64.938 3.166 64.939 3.166

Case-C 0.5 0 39.827 3.151 39.827  3.151

0.6 67948 3.162 67.948 3.162

1.2 157.128 3.798 157.127  3.798

1 0 40.873 3.179 40.873  3.179

0.6 72.001 3.162 72.050  3.162

1.2 179.933 3.812 179.934 3.812
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Table 3.3: Evaluation of Ra. (in roman) and a. (in italic) for different values of Ge and A
when Da = 0.1 and Q = 0.5 for cases (A) G(z) = —z, (B) G(z) = —2% and (C) G(z) =

—(e* —1).

G(2) A Ge=0 Ge=10"7° Ge=10"2 Ge=10"! Ge=05 Ge=1
Case- A 0 217348  217.339 217.330 217.149  216.341  215.331
3.154 3.154 3.154 3.154 8.157 3.159

0.2 242122  242.122 242.078 241.902  241.108  240.085

3.153 3.153 3.153 3.154 3.155 3.158

0.4 273.143  273.143 273.123 272.941 272,131  271.118

3.152 3.152 3.152 3.153 3.154 3.157

0.6 313.145  313.145 313.125 312.942 312,129  311.114

3.152 3.152 3.152 3.152 3.154 3.156

0.8 366.539  366.539 366.538 366.335  365.519  364.498

3.152 3.153 3.153 3.153 3.155 3.156

1 441.107  441.107 441.087 440.902  440.078  439.054

3.157 3.157 3.157 3.157 8.159 3.160

1.2 551.645  551.645 551.624 551.436  550.601  549.553

3.169 3.169 3.169 3.169 8.170 3.171

Case-B 0 217.348  217.339 217.330 217.149  216.341  215.331
3.154 3.154 3.154 8.154 8.157 3.159

0.2 230.619  230.618 230.599 230.417  229.6071  228.596

3.153 3.153 3.153 3.154 3.156 3.158

0.4 245.551  245.550 245.530 245.348  244.538  243.460

3.152 3.152 3.152 3.153 3.155 3.157

0.6 262.466  262.466 262.446 262.263  261.448  260.431

3.152 3.152 3.152 3.152 3.154 3.156

0.8 281.765  281.765 281.744 281.561  280.746  279.727

3.152 3.152 3.152 3.152 3.154 3.156

1 303.959  303.959 303.939 303.754  302.933  301.912

3.153 3.153 3.153 3.153 8.155 3.157

1.2 329.700  329.700 329.679 329.494  328.671  327.642

3.155 3.155 3.155 3.156 8.157 3.159

Case-C 0 217.337  217.337 217.330 217.149  216.341  215.332
3.154 8.154 3.154 8.154 8.157 3.159

0.2 252.075  252.075 252.055 251.872  251.062  250.051

3.153 3.152 3.152 3.153 3.155 3.157

0.4 299.670  299.670 299.649 299.467  298.653  297.637

3.152 3.152 3.152 3.152 3.154 3.156

0.6 368.578  368.578 368.557 368.372  367.552  366.527

3.155 3.155 3.155 3.155 3.156 3.158

0.8 476.012  476.012 475.991 475.804  474.968  473.923

3.166 3.167 3.167 3.167 3.168 3.169

1 660.960  660.960 660.938 660.742  659.869  658.776

3.210 3.210 3.210 8.210 8.211 3.212

1.2 1014.252 1014.252  1014.228  1014.003  1013.023 1011.790

3.372 3.372 3.872 3.373 3.373 3.874
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Table 3.4: Evaluation of Ra. (in roman) and a. (in italic) for Darcy regime flow at different
values of Ge and A when Q = 0.5 for cases (A) G(z) = —z, (B) G(z) = —2% and (C)
G(z) = —(e* — 1).

G(2) A Ge=10"° Ge=10"%2 Ge=10"! Ge=05 Ge=1

Case-A 0 39.827 39.821 39.727 39.326  38.825
3.151 3.151 3.151 3.151 3.151

0.2 44.427 44.417 44.326 43.924  43.424
3.148 3.148 3.1/8 3.148  3.1/8

04  50.183 50.173 50.082 49.680  49.176
3.146 3.146 3.1/6 3.146  3.146

0.6  57.569 57.559 57.469 57.065  56.562
3.147 3.146 3.1/6 3.146  3.1)7

0.8  67.334 67.324 67.233 66.828  66.321
3.153 3.153 3.153 3.153  3.158

1 80.697 80.687 80.595 80.188  79.679
3.173 3.173 3.178 3.173  3.178

12 99.661 99.651 99.558 99.148  98.636
3.22 3.22 3.22 3.225  3.225
Case-B 0 39.827 39.821 39.727 39.326  38.825
3.151 3.151 3.151 3.151 3.151

0.2  42.374 42.364 42.274 41.872  41.370
3.148 3.148 3.1/8 3.148  3.148

0.4  45.237 45.227 45.136 44734 44.231
3.146 3.146 3.1/6 3.146  3.146

0.6  48.469 48.459 48.368 47.965  47.461
3.146 3.146 3.1/6 3.16  3.146

0.8  52.136 52.126 52.035 51.631  51.126
3.149 3.149 3.1/9 3.149  3.149

1 56.314 56.304 56.213 55.807  55.300
3.155 3.155 3.155 3.155  3.155

12 61.089 61.079 60.987 60.581  60.072
3.167 3.167 3.167 3.168  3.168
Case-C 0 39.827 39.821 39.727 39.326  38.825
3.151 3.151 3.151 3.151 3.151

0.2  46.350 46.340 46.250 45.848  45.345
3.146 3.146 3.146 3.146  3.146

04 55254 55.244 55.153 54.749  54.244
3.147 3.147 3.147 3.147  8.147

0.6  67.949 67.939 67.847 67.441  66.933
3.163 3.163 3.163 3.163  3.146

0.8  86.899 86.889 86.797 86.387  85.875
3.219 3.219 3.219 3.219  3.219

1 115.855 115.844 115.751  115.336  114.818
3.389 3.389 3.389 3.389  3.389

1.2 157.131 157.121 157.026  156.607  156.080
3.798 3.798 3.798 3.798  3.798
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Figure 3.1: Effect of throughflow parameter (@) on Ra. and a,. for cases - A, B and C when
Ge=1and Da = 0.1.
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3.6 Conclusions

The combined effect of the changeable gravity field, throughflow, viscous dissipation, and
Darcy number in a horizontal porous layer has been studied on the onset of convection.
Also, the boundaries of the planes are kept at constant temperatures. Linear, quadratic and

exponential changeable gravity fields are taken into account in this investigation.

e [t is found that the Darcy number, throughflow parameter, and gravity variation pa-
rameter have a stabilizing effect. The system is destabilizing due to the effect of viscous

dissipation.

e The dimension of the convective cells increases with the rising Darcy number, decreases
with the enhancing value of Gebhart number, while the dual character is observed with

the increasing magnitudes of throughflow parameter and gravity variation parameter.

e The convective motion postpones very quickly for exponential varying gravity field

while advances very quickly for quadratic varying gravity field.

e The critical wavenumber a. increases monotonically in absence of the vertical through-
flow parameter (), but it shows a dual nature (first decreases and then increases) in

the presence of the vertical throughflow parameter (Q)) when A increases from 0 to 1.5.

e The viscous dissipation has a weak destabilizing effect for the Darcy flow regime also. It
is observed that the flow field becomes more stable for the Brinkam model as compared

with the Darcy model.
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Chapter 4

Effect of variable gravity field on the
onset of convection in a Brinkman
porous medium under convective
boundary conditions !

4.1 Introduction

The majority of the investigations on the Darcy-Bénard convection or Horten-Rogers-Lapwood
problem were carried out either by using the combination of two Dirichlet boundary con-
ditions at the two boundaries maintained at prescribed temperature or the combination of
Neumann (prescribed heat flux) and Dirichlet (Prescribed temperature) thermal boundary

conditions at the two boundaries.

Recently, a novel mechanism for the heating process, by providing the heat with a finite
capacity to the convecting fluid through the bounding surface, has been attracted by nu-
merous researchers. This type of thermal boundary condition is called convective thermal
boundary condition or Robin-type boundary condition and is a mixture of Dirichlet and
Neumann thermal boundaries. Robin boundary conditions are the mathematical formula-
tion of Newton’s law of cooling where the heat transfer coefficient is utilized. This condition
corresponds to the existence of convection heating (or cooling) at the surface and is obtained
from the surface energy balance. Investigation of heat transfer with the convective thermal
condition has received significant attention in mechanical and design fields, for example,
heat exchangers, atomic plants, gas turbines, and so forth. Also, it occurs when a solid

substrate is in contact with the fluid at a different temperature and involves relative motion

!Communicated in “Indian Journal of Physics”
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between the fluid and the substrate. In many practical applications involving cooling or
heating of the surface, the presence of convective heat exchange between the surface and
the surrounding fluid cannot be neglected, and this is a very crucial aspect in the thermal

materials processing industries.

Several researchers investigated the Darcy-Bénard convection by invoking the general
case of the thermal boundary condition i.e. Robin-type boundary condition by considering
the imperfectly conducting boundaries. Storesletten and Barletta [105] studied the onset
of convection by assuming the lower boundary as adiabatic while the upper boundary is
subject to Robin-type boundary condition which introduced the non-dimensional parameter
Bi known as Biot number. They claimed that the onset of convection strongly depends on
Bi. Barletta et al. [10] discussed the instability mechanism due to the combined effect of
free surface and convective boundary condition inside a non-equilibrium regime. Braga et
al. [23] investigated the stability analysis inside a porous channel where the lower boundary
is heated by uniform heat flux and the upper boundary is cooled by external cooling. Dubey
and Murthy [45] studied the onset of convection on the Brinkman extended Darcy’s model
in the presence of convective thermal boundary conditions on the boundaries and extended

for double diffusive convection [46].

In this chapter, we investigated the instability mechanism due to the effect of third kind
thermal boundary or Robin type boundary conditions in a horizontal porous layer in the
presence of linear and quadratic varying gravity fields. The bvp4c routine in MATLAB used

to calculate the critical Rayleigh number (Ra.) and corresponding wavenumber (ay).

4.2 Mathematical Formulation

Consider an incompressible fluid saturated in a horizontal porous layer of thickness L with
rigid, impermeable and thermally conducting boundary planes. The geoetry and coordinate
system is shown in Fig. 2.1. The variable gravity g(z) is acting in the opposite direction of
z—axis. There is a basic temperature difference AT across the two boundaries. The fluid-
saturated porous layer is considered to be heated from below with further heating by some

external sources at both the boundaries.

Using the Brinkman extension to the Darcy’s law, the governing equations of the flow
are
V-u=0, (4.1)
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ou - R
P~ vy Ly iV2u + pogfr(T — Tp)g(2)é., (4.2)
e Ot K
aT 9
(pc)ma + (po)(u-VT) = k' VT, (4.3)
All the quantities are defined in Chapter - 2.
ow oT
z2=0: w=0, 520, —km&—kho(T—To—AT):qO, (4.4a)
ow aoT
z=L: w=0, 2% =0, —kma—hl(T—Tg) = qo, (4.4b)

L
where AT = 620—, o is the constant heat flux at both the boundaries.

Applying the non-dimensional variables given in Eq. (2.6) in the Eqgs. (4.1)—(4.4), after

eliminating pressure term, we get (by removing asterisk)

Da 0

Py a(VQw) = —V?w + DaV*w + RaVHT[1 + A\G(2)], (4.5)
T 2
’}/E—FU-VT:VT, (4.6)
subject to the boundary conditions
ow oT
-0 = — = —— 4+ By(T—-1)=1 4.
2=0: w=0, o 0, 5 + By ) : (4.7a)
ow or
=1: = — = —— —-BT=1 4.
z w =0, ) 0, 5 1 , (4.7b)

hoL h{L
where By = kL and B; = k;l_ are the Biot numbers for the lower and upper boundaries,

respectively. The other paramlgters are defined in Chapter - 2.

4.3 Basic state solution

The basic state is considered as time independent, unidirectional and fully developed. The
basic velocity and the basic temperature are of the form uy = (0,0,0) and Ty = Ty(z2),

respectively.
The Eq. (4.6) can be written
d*T,
dz?

—0, (4.8)
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subject to the boundary conditions

dT,
2=0: —d—0+BO(TO—1):1, (4.9a)
z
dT,
—1: ——2_-BTy=1 4.9b
: dz 1o (4.9b)

The solution of the basic temperature (after applying boundary conditions Eq. (4.9)) is

To(z) =1-—z. (4.10)

4.4 Linear stability analysis

As in Chapter - 2 and Chapter - 3, imposing the infinitesimal disturbances on the basic
state solution and applying the usual normal mode form for the disturbances, we obtain the

following system of ordinary differential equations for neutral stability modes (n = 0)

d* d* d* A
Da (d:f — 24? d;; + a4w> - (d—;’ - a%@) — a®RaT (14 \G(2)) =0, (4.11)
Ty &PT .
—— — —a’T | =0 4.12
dz * <d22 ¢ ) ’ (4.12)
corresponding disturbances boundary conditions are
iy dT 5
=0: w=0 —=0, ——+BT=0 4.13
: eSO ’ dz +Po ’ (4.132)
i dT .
=1: w= — = — 4+ BT =0. 4.13b
z w =0, P 0, - th 0 (4.13b)

4.5 Results and discussion

The solutions of the governing Eqs. (4.11)—(4.12) corresponding with boundary conditions
Eq. (4.13) is obtained using the bvp4c routine in MATLAB. The numerical results of the
convective instability in a horizontal porous layer considering the linear (G(z) = —z denoted
by Case (A)) and quadratic (G(z) = —2?, denoted by Case (B)) variable gravity field under
third kind of thermal boundary conditions are presented graphically. The values of By and
By are taken as 0.01, 0.1, 1, 10 and 100 ([46]).

To validate the correctness of our present results, the results obtained from the present

analysis are compared with the results of Rionero and Straughan [91] in absence of ) and A
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and Da — 0, By — oo and B; — oo and presented in Table 4.1 for the linear (G(z) = —z)
and quadratic (G(z) = —2?) varying gravity fields. From this Table 4.1, it can be noticed

that the results are in good agreement with the results of Rionero and Straughan [91].

Table 4.2 describes the effect of linear and quadratic varying gravity fields, Darcy number
(Da) and Biot numbers By and By for fixed value of A = 0.5. It is noticed that the linearly
varying gravity field shows a more stabilizing nature compared to the quadratic varying
gravity field. As the Darcy number increases, the critical Rayleigh number is also increasing
for both linear and quadratic gravity fields. Hence the Darcy number exerts a stabilizing
influence on the stationary convection regime. The effect of Biot number at the lower plate
i.e. heat served from the lower boundary is to increase the critical Rayleigh number for both
linear and quadratic gravity fields. A similar trend is observed for the effect of the Biot

number at the upper plate.

Figure 4.1 display the variation of critical Rayleigh number as a function of variable
gravity parameter A for different values of the Biot numbers By and B; in different flow
regimes. In particular, Figs. 4.1(a), 4.1(c), 4.1(e) and 4.1(g) represents the linearly gravity
field and Figs. 4.1(b), 4.1(d), 4.1(f) and 4.1(h) denote quadratic varying gravity field for
Da = 0, 0.01, 1 and 100, respectively. It is seen from Fig. 4.1 that the preferred mode of
instability occurs at A = 0 in all the flow regimes represented by the various values of Da. The
values of Ra. increases with an increase in the gravity variation parameter (\). Hence, the
gravity variation parameter has a stabilizing effect. Because the disturbance in the system
regain as the gravitational field decreases and this refers to delay the convection. Further,
the quantitative response of Ra. indicates that Da has a stabilizing effect in the Brinkman
flow regime, with different combinations of Biot numbers. This is happening because of
enhancing the viscous effects. The size of the convective cells shows a dual nature with an
increased value of A and Da. The critical Rayleigh number is increasing with increasing

values of By and Bj.

Figures 4.2(a), 4.2(c), 4.2(e) and 4.2(g) display the variation of critical wavenumber for
linearly varying gravity field with A for different values of the Biot numbers By and B; for
Da = 0, 0.01, 1 and 100, respectively. It is observed from these figures that the effect of
Biot numbers is to increase a.. But the effect of gravity varaition parameter is visible only
for A > 1. Figs. 4.2(b), 4.2(d), 4.2(f) and 4.2(h) denote the variation of critical wavenumber
for quadratic varying gravity field with A for different values of the Biot numbers By and
Bifor Da = 0, 0.01, 1 and 100, respectively. It is observed from these figures that the effect

of Biot numbers is to increase critical wavenumber.
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The effect of coefficients of external heating on the stability mechanism is depicted for
Darcy (represented by Figs. 4.3(a)-4.3(d)) as well as Brinkman (represented by Figs. 4.3(e)—
4.3(h)) flow regimes for linear and quadratic varying gravity fields. The variation of critical
Rayleigh number shows against B, for fixed values of Bj in all the figures. From the figures,
it is observed that Ra. increases with the increasing values of the coefficient of external
heating at the lower boundary for particular values of B;. Similar nature has been observed
for B; on Ra. when By is fixed. And, this scenario has been found for all the flow regimes.
Thus, stability of fluid flow increases monotonically with improving values of external heating

parameters i.e., for Biot numbers By and B;.

4.5.1 Limiting case By =0 and B; —

In this limiting case the bottom boundary maintains constant heat flux while the isothermal
condition attains at the top boundary. In this case, the perturbed boundary conditions as

mentioned in the Eq. (4.13) reduces to

) iy dT

z=0: ’UJ—O, E—O, E—O, (414&)
dw .

=1: w= — = T=0. 4.14b

z w =0, - 0, 0 ( )

In this case, Ra. = 27.097533091 and corresponding wavenumber a. = 2.326215 are
obtained for Da = 0 and A = 0, which coincides upto three decimal places with the given
outcomes by Murthy [61]. The variation of Ra. against gravity variation parameter A has
been calculated and presented in the Table 4.3 at Da = 0.1, 1 and 10 for linear and quadratic
varying gravity fields. From the table, it is observed that the stability of the system increases
monotonically with the increasing values of A for both the gravity fields, at fixed values of
Da. Therefore, the impression of growing Da and A delay the onset of convection, for this
limiting case. On the other hand, a. decreases with an augmenting value of A for both the
gravity fields. This feature shows that size of the convective cells increases due to the rising
effect of A for linear and quadratic varying gravity fields. Further, it is noticed that the size
of the cell is more for linearly varying gravity field as compared with a quadratic varying

gravity field.
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4.5.2 Limiting case By — oo and B; =0

In this limiting case the top boundary maintains constant heat flux while the isothermal con-
dition attains at the bottom boundary. In this situation, the perturbed boundary conditions

as mentioned in the Eq. (4.13) reduces to

dab .
=0: w=0 —=0 T=0 4.15
Z w ] dZ M M ( a‘)

di dT
=1: w=0 —=0—=0. 4.15b
2 w=0, — T ( )

In this limiting case also, we have calculated the variation of Ra. and a. against gravity
variation parameter A for both the gravity fields at different Darcy number and tabulated
them in Table 4.4. It is observed that Ra. increases with increasing A for both the gravity
fields. Further noticed that the corresponding critical wavenumber a. increases with rising
A. Thus, A and Da are stabilizing the flow, while the size of the convective cells decreases

with the increase of A for both the gravity fields.
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Table 4.1: Comparison of Ra, and a? between the results obtained by Rionero and Straughan
[91] and present results when Da — 0, By — 0o, By — oo for case (A) G(z) = —z and (B)
G(z) = —2%

G(z) A Rionero and Straughan [91] Our results
Ra, a? Ra, a?

Case-A 0 39478 9.870 39.478  9.870

1 77.020 10.209 77.020 10.209

1.5 132.020 12.314 132.020 12.314

1.8 189.908 17.198 189.908 17.198

1.9 212.280 19.477 212.280 19.477

Case-B 0 39478 9.870 39.478  9.870

0.2 41.832 9.874 41.832  9.874

0.4 44.455 9.887 44.455  9.887

0.6 47.389 9.915 47.389 9915

0.8 50.682 9.961 50.682  9.961

1 54.390 10.034 54.390 10.034
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Table 4.2: The values of Ra. when A = 0.5 for both the gravity fields.

B

Da G(z) By 0.01 0.1 1 10 100
1007 —z 001 12558148  134.72582  162.04568  199.30992  211.96512
0.1 13500846  140.72218  165.14441  200.59637  212.65456
1 164.11154  167.14953  184.31993  216.90255  228.57944
10 206.38432  208.31143 22243826  253.62165  266.13728
100 221.08635  223.06180  237.05021  269.02399  282.06943
—27 001 109.97342  117.89265  141.93601  173.63881  184.28931
0.1 11811583  123.10347  144.49507  175.59078  186.19196
1 143.37356  146.00852  160.84643  189.61122  199.88708
10 179.69925  181.51284  193.75990  221.03996  231.95089
100 192.37502  193.80124 20629566  234.17609  245.58342
1 —z 001 1037.73539 110845051 1324.98423 1617.97959 1716.79931
0.1  1110.72270 115541131  1348.98032  1636.20276  1734.60152
1 1343.59514 136540172  1503.09563  1766.10670  1863.48553
10 1680.36613  1696.55593  1810.74251  2065.77954  2168.53320
100 1800.23553  1816.15445  1929.64276  2190.91989  2298.37757
—27 001 907.75875  969.69747  1159.13365 1416.03250  1502.85675
0.1  971.95167  1010.4627  1180.55926  1431.71362  1518.16487
1 1173.31803 119233771  1312.90531 154229985  1625.13322
10 1463.43764  1477.56813  1577.24010  1800.05598  1889.88716
100 1566.19733  1580.01127  1677.41017  1905.78041  1999.78025
10—z  0.01 10148.63598 10842.72852 12951.71902 15811.74014 16777.52216
0.1 10865.23112 11299.53571 13185.56943 15989.57541 16951.39274
1 13131.87849 13344.47513 14688.35959 17255.77976 18207.77162
10 16418.74773 16576.77491 17691.83923 20185.13644 21205.40749
100 17588.59674 17743.51019 18853.43932 21408.03137 22458.99485
—2%7  0.01 887875200 948550123 11330.13394 13837.68340 14686.17000
0.1  9502.37363  9881.76679 11532.35064 13990.72881 14835.57918
1 11468.09408 11654.01961 12829.15763 15079.27722 15916.67242
10 14298.67262 14436.60711 15410.13844 17601.56755 18466.84302
100 15301.54316 15436.54387 16403.90389 18631.41401 19548.41046
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Table 4.3: Critical values of Ra. and a. for both gravity fields when By = 0, By — oo.

G(z)=—= G(z) = =22
Da A Ra. Qe Ra, e

1071 0 163.14193  2.54953 163.14193  2.54953
0.3 189.32185  2.53896 175.93468  2.54080

0.6 225.32652  2.52580 190.81294  2.53144

0.9 277.77293  2.50939 208.30376  2.52155

1.2 360.60369  2.49012 229.11557  2.51130

1.5  507.76959  2.47532 254.21442  2.50114

1 0 1329.44484 2.55174 1329.44484  2.55174
0.3 1543.74931 2.54171 1434.32828  2.54345

0.6 1838.88966 2.52898 1556.37897  2.53440

0.9 2270.14580 2.51274 1700.13051  2.52468

1.2 2954.96978  2.49265 1871.60322  2.51438

1.5  4185.35670 2.47367 2079.07978  2.50382

10 0 12991.59291 2.55190 12991.59291 2.55190
0.3 15085.62256 2.54188 14016.08122 2.54360

0.6 17971.44894 2.52922 15209.54907 2.53461

0.9 22189.56679 2.51302 16615.55391 2.52491

1.2 28891.74105 2.49282 18293.10658 2.51461

1.5 40948.37313 2.47343 20323.59226  2.50400

Table 4.4: Critical values of Ra. and a. for both the gravity fields when By — oo, By = 0.

G(z) = —=z G(z) = =27
Da )\ Ra, Qe Ra, e

10710 163.14193  2.54953 163.14193  2.54953
0.3 194.51153  2.56131 180.39710  2.56164

0.6  240.57653  2.58039 201.58524  2.57783

0.9 314.41744  2.61555 227.76058  2.60230

1.2 449.63699  2.69533 261.77353  2.63484

1.5  750.74662  2.94388 307.15061  2.68125

1 0  1328.15107 2.55300 1328.15107  2.55300
0.3 1584.40793 2.56286 1469.27274  2.56318

0.6 1958.39301 2.58057 1640.76716  2.57818

0.9 2557.65573 2.61279 1855.62398  2.59881

1.2 3656.76477 2.68437 2131.45747  2.62809

1.5 6139.15761 2.90401 249557717  2.67182

10 0 12991.75219 2.55189 12991.75219 2.55189
0.3 15480.91729 2.56292 14355.95134  2.56320

0.6 19134.04632 2.58052 16030.52939 2.57808

0.9 24987.12507 2.61238 18128.36966 2.59848

1.2 35724.21237 2.68299 20821.67496 2.62745

1.5 60012.25609 2.89950 24377.90001 2.67056
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4.6 Conclusions

The onset of convection in a horizontal porous layer subjected to external heating on the
boundaries under the influence of a changeable gravity field is considered. Two different
types (linear and quadratic) of gravity field variations are considered for this investigation.
The effect of Da, A\, By and B; on the critical Rayleigh number (Ra.) and corresponding

wavenumber (a.) is analyzed. The main conclusions from this investigation are listed below:

e The convection comes earlier for quadratic varying gravity field compares to linear
varying gravity field when the external heat supplies on both the boundaries. The same
nature of quadratic varying gravity field has been observed one boundary maintains
a constant heat flux while another one is an isothermal condition or external heat

supplies from the boundaries exchange their role.

e The gravity variation parameter has a stabilizing effect on the flow in the presence of
external heat supplies on the boundaries and both the limiting cases also, in any flow

regimes.

e The Brinkman flow regime shows more stability when two the boundaries are subjected

to external heating for both the gravity fields.

e The rise in the heat supplied both the boundaries stabilize the flow field. Further, the
flow shows more stability when the external heating on the lower boundaries is higher

than at the top boundary.

e The stability of the flow increases when the upper boundary maintains constant heat
flux and lower one as at isothermal state compare to the lower boundary maintain

constant heat flux and upper one as at isothermal state.

e The dimension of the convective cells displays dual nature for the rising effect of Da
and A when two the boundaries are subjected to the external heating for both the
gravity fields. But, the cell size decreases due to the augmenting values of By and Bj.
On the other hand, the cells size increases when By = 0 and B; — oo, but it decreases
when By — oo and By = 0 for both the gravity fields.

66



Chapter 5

The effect of local thermal
non-equilibrium on the stability
analysis in the presence of variable

gravity field with throughflow !

5.1 Introduction

Most of the investigations on Horton—Rogers—Lapwood were under the local thermal equi-
librium (LTE) mode. This supposition is not appropriate for a large temperature change
amongst the phases or high-speed flows. In this situation, the fluid phase and the solid
phase are unable to maintain the identical temperatures. Thus, two different temperature
equations needed to represent each phase, which was discussed by Nield and Bejan [78].
The extension of the HRL problem on the instability mechanism has been observed analyt-
ically and numerically under the LTNE model by Banu and Rees [9]. Taking into account
of LTNE effects, several investigations has been carried out on the stability analysis by ac-
counting additional effects such as double diffusion [73], variable viscosity [102], nanofluid
2, 62], inclined porous layer [16] and free surface [28] etc. The stability characteristic of non-
isothermal Poiseuille flow was examined by Bera and Khandelwal [19] in a vertical porous
channel due to the impact of LTNE state. Mahajan and Sharma [70] studied the impact of

LTNE on the stability analysis in a magnetic nanofluid layer.

!Communicated in “International Communications in Heat and Mass Transfer”
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In this chapter, we study the onset of convection in the presence of both the LTNE and
variable gravity effects. This is an extension of the work done by Banu and Rees [9]. Two
temperature models have been accounted to address the solid and fluid phases for a porous
layer. The resulting eigenvalue problem is solved using the bup/c routine in MATLAB. The
critical Rayleigh number (Ra.) is calculated to analyze the breakdown of convection and the

impact of governing paramters on Ra. is shown graphically.

5.2 Mathematical Formulation

Consider an incompressible fluid enclosed in a horizontal porous layer of width L, lying in
the region 0 < z < L, which is heated from below. The geometry and coordinate system is
displayed in Fig. 2.1. A changeable gravity force g(z) is applied in the vertically downward
direction. Further, it is assumed that the fluid and solid phases are not in local thermal
equilibrium state, which motivated us to consider two-field model for temperatures inside an
isotropic porous medium. The Darcy model and the Oberbeck-Boussinesq are employed in

the momentum equation. The corresponding governing equations are

V-u=0, (5.1)
Zu=—Vp - pi[L - Br(T; — T1)] 822 (5.2)
T
(pC>f {GE +u- VTf:| = kaVQTf + h(Ts — Tf), (53)
oT.
(1—¢) (pc)sg = (1—€)kV*T, + h(T; — T,), (5.4)

where k¢ and kg are the thermal conductivities of the fluid and solid phases, respectively, and

h is the interphase heat transfer coefficient. All other quantities are defined in Chapter - 2.

The corresponding boundary conditions are assumed as

z2=0: w=W,, Ti=T,, 1T,="1, (5.5a)
c=L: w=W. Ti=T, T.=T, (5.5b)

where W, is the constant upward throughflow.

Applying the non-dimensional variables given in Eq. (2.6) in the Egs. (5.1)-(5.4), after
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removing pressure term from Eq. (5.2), are

V2w = RaViTi(1 + M\G(2)), (5.6)

%—Fu-vj}: VT + H(T, — Ty), (5.7)

€m %7;5 = VT, + mH(T; - T.), (5.8)

where H = E—fz is the interphase heat transfer parameter, ¢, = % is the diffusivity ratio
ek °

of the fluid and solid phases and ~,, = is the porosity modified conductivity ratio.

(1 — €)ks

The corresponding dimensionless boundary conditions are

z2=0: w=Q, Tir=1, T,=1, (5.9a)
z=1: w=Q, T;=0, T,=0, (5.9b)

W.L .
where () = is the throughflow parameter.
0%

5.3 Basic state solution

The equations for the basic state (stationary) are (with temperatures of fluid phase and solid

phase varying in the vertical direction)

d*Th dTx
—Q—+H (T —Typ) =0, 5.10
72 de + H (Tso — Tho) (5.10)
d*Ty
T H (T — T) =0, (5.11)

with corresponding boundary conditions are

2=0: Tp=1 Tyo=1, (5.12a)
z=1: Tf(] = O, TsO =0. (512b)

The basic temperature profiles for fluid and solid phases versus z for vertical throughflow (Q)

and inter-phase heat transfer parameter (H) are displayed in Fig. 5.1. From these figures, it

is observed that the thermal boundary layer decreases with increasing values of H for fluid
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phase and while very small variation has been observed for solid phase when H is very large.
Further, it is recognized that the gap between fluid phase and solid phase enhances due to

the rising impact of the throughflow parameter.

5.4 Linear stability analysis

As in Chapter - 2, imposing the infinitesimal disturbances on the basic state solution and
applying the usual normal mode form for the disturbances, we obtain the following system

of ordinary differential equations for neutral stability modes (n = 0)

d? .
(@ — CL2) ’UAJ + GQRan<]. —+ )\G(Z)) = 07 (5].3)
. dTy d? 2 d a o
d? . .

where a = /a2 + aZ is the overall wavenumber. Also, the perturbed boundary conditions
can be converted as

~

Ww=Ti=T,=0, at 2=0,1. (5.16)

5.5 Results and discussion

The solutions of the governing Eqgs. (5.13)-(5.15) corresponding to the boundary conditions
Eq. (5.16) is obtained using the bvp/c routine in MATLAB.

To verify the exactness of our present results, firstly a comparison has been made between
the results given by Rionero and Straughan [91] without throughflow effect (@) and tabulated
in Table 5.1 for cases (A) G(z) = —z, (B) G(z) = —z* and (D) G(z) = —(e*—1). Secondly, a
comparison has been made between the results given Yadav [123] in presence of throughflow
parameter (@) and it tabulated in Table 5.2 for cases (A) G(z) = —z, (B) G(z) = —2z2, (C)
G(z) = —z% and (D) G(z) = —(e* —1). Finally, another comparison has been made between
the results given by Banu and Rees [9] for constant gravity field and tabulated in Table 5.3.
The values of Ra. and a. are calculated at stationary convection. From Tables 5.1, 5.2 and

5.3, it is clear that the results are in good agreement.
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The main focus of this investigation is to analyze the impact of the local thermal non-
equilibrium (LTNE) state on the stability mechanism inside a horizontal porous medium
in the presence of a variable gravity field with a vertical throughflow effect. The critical
Rayleigh number and corresponding wavenumber are calculated for four types of gravity field
deviations: (A) G(z) = —z, (B) G(2) = =22, (C) G(2) = —2% and (D) G(z) = —(e* — 1) for
various values of throughflow parameter (@), gravity variation parameter (1)), inter-phase

heat transfer parameter (H) and porosity modified conductivity ratio (7).

In Figs. 5.2-5.3, the variation of critical Rayleigh number (Ra.) and corresponding
wavenumber (a.) with A is illustrated for different values of H for four types of gravity
fields with keeping fix values of ) = 0.5 and v, = 0.1, respectively. The gravity variation
parameter has a stabilizing impact because the promotion of A forced to decline the gravity
field. Since the system restores its disturbances as the gravitational field decreases and it
indicates postponing the convection. On the other hand, it is also recognized that the critical

wavenumber increases with A.

The critical Rayleigh number is calculated with the inter-phase heat transfer parameter
H and decorated in the Figs. 5.4(a)-5.4(d) for a long-range of values of 7, when @ = 0.5
and A = 0.2. From the figures, it is clear that Ra. decreases with increasing values of 7y,
for all the gravity fields. Also, the impact of H on Ra,. is unaffected when ~,, > 10. Thus
the impact of rising the conductivity ratio is to destabilize the system. The impact is more
manifested for small values of v,,. Further, we have noticed that Ra. is independent of ~,,
when H is very small. This is happening because the heat transfer between the phases is not
giving any contribution on the medium when H — 0 i.e., at local thermal equilibrium (LTE)
state. Thus, the convective instability does not affect this situation. On the other hand, it is
observed that the variation of critical Rayleigh number is also negligible for all four gravity
field when H — oo. Since, both the phases behave like a single in this situation also. This

is because the temperature differs by an amount which is of order 1/H when H — oc.

Fig. 5.5 envisages the effect of H and v, on the critical wavenumber a. for linear,
quadratic, cubic and exponential varying gravity fields, respectively. It is observed that
there is no variation on the critical wavenumber at both the limiting cases of inter-phase
heat transfer parameter, i.e., at H — 0 and H — oo. Further, a. decreases monotonically
with the rising effect of porosity modified conductivity ratio, while it increases due to the
enhancing values of H for the intermediate values of H. Also, the size of the convective cells
is always less than for LTNE state as a. is greater than for LTNE state as compared with
LTE state.
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In Figs. 5.6(a)-5.6(d), the variation of Ra. based on the mean properties of the fluid
with the inter-phase heat transfer coefficient H with different values of ~,, are portrayed for
four types of the gravity fields, respectively. The value of Racym/(1 4+ 7m) is independent
of the impact of inter-phase heat transfer effect when H — oo, i.e., LTE state, but it does
not converges a common limit for all assigned values of v, when the flow is maintained by
gravity variable, while Malashetty et al. [72] claimed that it has a common limit for LTE
case i.e. 472 as H — oo for constant gravity. Further, the variation of critical wavenumber
is plotted in Fig. 5.7 for a range of values of the parameter ~,, under the influence of the
four types of changeable gravity variation. It is observed that the value of a. enhances with
rising the values of H from LTE value when H is small, to its maximum LTNE value for
intermediate of H, and finally bounces back to its LTE value for large H. This indicates
that a. converges to its LTE value when H — 0 and H — oo. Apart from that, it is noticed
that a. attains maximum value for exponential varying gravity field, while it offers minimum

value for cubic varying gravity field at the intermediate range of H.

Table 5.4 reveals that the critical Rayleigh number increases with the rising effect of the
throughflow parameter (@), which shows that the throughflow parameter has a stabilizing
effect on the flow field. The urgent heat gradients can transfer to a boundary layer at the
boundary with the increased value of the throughflow parameter (), where the throughflow

is described. This ensures to postponing of the convection due to the rising effect of Q).
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Table 5.1: Comparison of Ra. and a? between the results received by Rionero and Straughan
[91] and present results when Q = 0 and H = 0 for linear, quadratic and exponential varying
gravity fields.

G(z) A Rionero and Straughan [91] Present results
Ra. a2 Ra. a?

0 39478 9.870 39.478  9.870

1 77.020 10.209 77.080 10.209

—z 1.5 132.020 12.314 132.021 12.314

1.8 189.908 17.198 189.908 17.198

1.9 212.280 19.477 212.284 19.477

0 39478 9.870 39.478  9.870

0.2 41.832 9.874 41.832 9.874

—22 0.4 44.455 9.887 44.455  9.887

0.6 47.389 9.915 47.389 9915

0.8 50.682 9.961 50.682  9.961

1 54.390 10.034 04.390  10.034

39.478 9.870 39.478  9.870

0.1 42331 9.872 42.331  9.872

—(e*—1) 0.2 45.607 9.883 45.607  9.883

0.3 49.398 9.904 49.398  9.904

0.4 53.828 9.942 53.828  9.942

0.5 59.053 10.005 59.053  10.005

Table 5.2: Comparison of Ra. and a. between the results obtained by Yadav [123] and
present results when H = 0 and ) = 0.5 for four types of gravity fields.
G(z) A Yadav [123] Present results
Ra. Qe Ra. Qe
0 39.827 3.151 39.827 3.151
—Z 0.6 57.569 3.146 57.569  3.146
1.2 99.660 3.224 99.661 3.224
0 39.827 3.151 39.827  3.151
—22 0.6 48.469 3.146 48.469  3.146
1.2 61.088 3.167 61.089  3.167
0 39.827 3.151 39.827 3.151
—23 0.6 44.857 3.146 44.857  3.146
1.2 51.029 3.153 51.030  3.153
0 39.827 3.151 39.827 3.151
—(e#—=1) 0.6 67948 3.162 67.948 3.162
1.2 157.128 3.798 157.127  3.798
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Table 5.3: Comparison of Ra. and a. between the results obtained by Banu and Rees [9]
and present results when A = 0 and ) = 0 for a range values of .

VY H Banu and Rees [9] Present results
Ra, Qe Ra, Qe
10> 0.196657 39.67538  3.145507 39.67616  3.145580
100 1.905025 41.41133  3.179696 41.41223  3.179778
10°  15.40310 56.32689  3.451618 56.32990  3.451851
1071 93.98499 151.28364 4.61538 151.28364 4.615375
1072 640.7896  764.3386  7.384372 764.3387  7.384373
1073 5402.725 5739.522 12.69114 5739.522 12.69114
107% 50828.39 51840.03 22.32576 51840.09  22.32525
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Table 5.4: Evaluation of Ra. and a. for different values vertical throughflow parameter (Q),
inter-phase heat transfer parameter (H) and gravity variation parameter (A\) when 7, = 0.1.

Q H ) G(z)=—2 G(z) = —2* G(z) = —23 G(z) = —(e# = 1)

Ra, Qe Ra,. Qe Ra, Qe Ra, Qe

0 01 0 39.693 3.151 39.693  3.151 39.693 3.151 38.816 3.151
0.5 52.758 3.156 46.112  3.154 43.403  3.152 09.348 3.171

1 77456 3.204 54.660 3.176 47.738  3.163 106.746  3.430

1 0 41461 3.219 41.461 3.219 41.461 3.219 41.461 3.219
0.5 55.098 3.224 48.158  3.223 45.332  3.221 61.953 3.241

1 80.785 3.276 57.053  3.246 49.844  3.232 110.739  3.513

10 0 57.079 3.699 57.079  3.699 57.079  3.699 57.079 3.699
0.5 75.740 3.708 66.223  3.705 62.362  3.702 84.868 3.736

1 109.891 3.794 78.079 3.744 68.402 3.722 144.871  4.124

100 0 156.404 4.614 156.404 4.614 156.404 4.614 156.404 4.614
0.5 206.766 4.662 180.973  4.649 170.627 4.635 229.409  4.774

1 291.112 5.010 210.545 4.799 185.877 4.711 351.404 5.871

1 01 0 41070 3.187 41.070  3.187 41.070  3.187 41.070 3.187
0.5 56.008 3.169 48.811  3.170 45.727  3.173 64.444  3.166

1 86.405 3.176 59.647  3.167 51.353  3.167 129.451  3.385

1 0 42750 3.251 42.750  3.251 42,750  3.251 42.750 3.251
0.5 58.217 3.236 50.745  3.237 47.553  3.239 66.867  3.235

1 89430 3.249 57.053  3.237 53.321  3.234 132.303  3.475

10 0 57916 3.714 57916 3.714 57.916 3.714 597.916 3.714
0.5 78178 3.710 68.215 3.709 64.038  3.709 88.849 3.726

1 116.986 3.771 81.962 3.733 71.158 3.718 160.731  4.115

100 0 156.711 4.617 156.711 4.617 156.711 4.617 156.711  4.617
0.5 208.632 4.649 182.421 4.639 171.762  4.629 232.751  4.751

1 297313 4.974 213.756 4.778 188.034 4.697 362.934  5.852

2 01 0 45238 3.298 45.238  3.298 45.238  3.298 45.238  3.298
0.5 63.367 3.255 55.120  3.257 51.403  3.263 74.814  3.227

1 103.274 3.213 69.728  3.222 59.150 3.234 171.059  3.406

1 0 46.675 3.352 46.675  3.352 46.675  3.352 46.675  3.352
0.5 65.173 3.312 56.700  3.314 52.909  3.320 76.672  3.288

1 105.350 3.249 71.380 3.285 60.683  3.294 170.373  3.500

10 0 60.501 3.767 60.501  3.767 60.501  3.767 60.501 3.767
0.5 83.048 3.745 72.353  3.746 67.724  3.748 95.816  3.748

1 128.301 3.781 88.691 3.754 76.319  3.746 183.987  4.148

100 0 157.633 4.628 157.633 4.628 157.633 4.628 157.633  4.628
0.5 211.338 4.643 184.616 4.636 173.604 4.629 237.100  4.735

1 304.885 4.946 217.924 4.763 191.016  4.689 376.471  5.843
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5.6 Conclusions

The onset of convection in a horizontal porous layer is investigated numerically for the
variable gravity field with height and vertical throughflow effects under non-equilibrium
conditions. Linear, quadratic, cubic and exponential varying gravity fields have been taken

to study for the above consideration.

e The system acts like an LTE model when inter-phase heat transfer parameter H con-
verges both the limiting cases, i.e. H — 0 and H — oo, while H shows the stabilizing

nature inside the intermediate range.

e The effect of the gravity variation parameter and the vertical throughflow parameter
is to improve the stability of the system. On the other hand, the impact of rising the

porosity modified conductivity ratio (v,,) is to destabilize the system.

e Ra. is independent of H when ~,,, > 10. Also, the system is more stable for exponential

varying gravity field, while more unstable for cubic varying gravity field.

e The variation of critical wavenumber keeps constant for both the limiting cases, i.e.
H — 0 and H — oo, while it maintains more value as compared with LTE value inside
the intermediate values of H. Also, the size of the cell reduces for enhancing the values
of gravity variation parameter when the throughflow effect is ignored, otherwise, it

shows dual nature.

e The effect of vertical throughflow on the cell size shows dual nature, while it increases

with the porosity modified conductivity ratio.

e The dimension of the convective cells is more for cubic varying gravity field and very less
for exponential varying gravity field and remains the same when the flow is independent
of the throughflow effect.
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Part 111

STABILITY OF NANOFLUID
FLOW IN A POROUS VERTICAL
CHANNEL
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Chapter 6

Linear stability of convection in a
vertical channel filled with nanofluid
saturated porous medium !

6.1 Introduction

A new class of heat transfer fluids, called nanofluids, can be prepared by mixing metal or
metallic oxide (Cu, Al;O3, CuO) nanoparticles in the base fluid such as water, oil, ethylene
glycol etc. [36]. The resultant nanofluids are anticipated to demonstrate high thermal
conductivity compared to those of usual heat transfer fluids. The nanofluids have diverse
applications, ranging from laser-assisted drug delivery to the electronic chip cooling. After
examining the impact of seven slip mechanisms of suspended nanoparticles, a mathematical
model for nanofluid was proposed by Buongiorno [25] based on the Brownian motion and
thermophoresis effects. Convection in nanofluid using the Buongiorno’s model was studied
by Tzou [115], Kuznetsov and Nield [63, 64], Nield and Kuznetsov [79, 81], Yadav et al. [127],
Chand and Rana [29, 30]. Shankar et al. [98] investigated the influence of the magnetic field

on the instability of mixed convection in a differentially heated vertical layer.

For the last few decades, several authors have analyzed the stability of the flow in vertical
channels. Bera and Khalili [18] studied the stability of convection in a vertical channel
occupied with an anisotropic porous medium with zero temperature and zero heat flux
condition. Chen [34] analyzed the stability of convection in a vertical channel filled with a
porous medium with the Darcy-Brinkman-Forchheimer model. Sharma et al. [99] studied

amplitude analysis of non-isothermal parallel flow in a vertical channel filled with a highly

!Published in “Heat Transfer” 50(4), 3220-3239, 2021
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permeable porous medium.

In this chapter, we investigate the linear stability of the flow in a vertical channel filled
with a nanofluid saturated porous medium. The Brinkman model [24] for the flow in a
porous medium and the Buongiorno model [25] for the nanofluid are the basis to the present
study. A linear stability analysis is done by adopting normal modes. The resulting eigenvalue
problem for small disturbance is solved using the Chebyshev spectral collocation methods.
The numerical solution that is obtained is analyzed graphically by varying the governing

parameters.

6.2 Mathematical Formulation

Consider an incompressible unsteady convection flow in a long vertical channel of width 2L
filled with nanofluid saturated porous medium. Assume that the nanofluid is modelled by
the Buongiorno [25] model. The Cartesian coordinate system is chosen in such a way that
the y-axis is taken along vertically upward direction through the center line of the channel
and the x—axis makes right angles to vertical plates as shown in Fig. 6.1. Let éx, €, and &,
be the unit vector along x—, y— and z— direction. The gravitational acceleration g = —gé,,
is oriented in the opposite direction of the vertical y—axis. The plates of the channel are
at © = —L and z = L, respectively. The constant temperatures 77 and Ty (T > T5) are
maintained at the left and right walls, respectively. Also, the corresponding nanoparticles

volume fractions ¢y at the left wall and ¢, at the right wall are constant.

The thermo-physical properties of the fluid are assumed to be constant except for the
density variations in the buoyancy force term in the momentum equation which is satisfied by
the Oberbeck-Boussinesq approximation. It is assumed that the fluid and porous medium
are everywhere in a local thermal equilibrium state, the porous medium is homogeneous
and hydro-dynamically as well as thermally isotropic. The flow within the porous region is

governed by Brinkman’s [24] equation.
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Figure 6.1: Schematic representation of the problem.

With the above assumptions, the equations of mass, momentum, energy and volume

fraction of nanofluid in porous medium are

V.-u=0, (6.1)
1ou 1 I 1
pr| =g + (e VIu) = =Vp+ Vi — u+ [op, + (1= @)pr{l = B2(T — Thlg, (6.2)
or 2 DT
(pc)ma + (pc)pu - VT =k, VT + €(pc), | DV - VT + ?VT VT, (6.3)
1
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09
=+ u Vo = D2+ 28 T1 V2T, (6.4)

where ¢ is the volume fraction of the nanoparticles, p; is the density of the base flow,
pp is the density of the nanoparticles, (pc), is the heat capacity of the nanoparticles, Dy
is the Brownian diffusion coefficient and Dt is the thermophoretic diffusion coefficient of
nanoparticles. The remaining quantities are defined in Chapter - 2.

The boundary conditions are

x:—L:u:O,T:T1,¢:¢2, (65&)
x:L:u:O,T:Tg,gb:d)l. (65b)

Introducing non-dimensional scheme is defined as follows

(x*y*z*):M Y p*:ﬂ
b b L ) am ) /j}am’
* Oémt * T — T1 * Qb - ¢1
t _ — = — .
oL?’ TQ_TI, ¢ ¢2—¢1 (66)
and
km m
O = , and o= (pcy) : (6.7)
(Pcp)f (Pcp)f

where «, and ¢ are thermal diffusivity of porous medium and thermal capacity ratio, re-

spectively.

Substituting the non-dimenisonal variables Eq. (6.6) in Eqgs. (6.1)-(6.5) and dropping

asterisk, we get

V-u=0, (6.8)
1 [1du 1
== a‘; ~(u-V)u| = ~Vp+ADaV?u — u + RaT@, — Rnge, — Rmé,,  (6.9)
oT
S tu- VT = (6.10)
190 1, . ve—L Nagep 11
00t+6 Ve LeV(b%_LeV ’ (6.11)

The dimensionless boundary conditions are

r=—1:u=0 T=0, ¢=1, (6.12a)
r=1:u=0 T=1, ¢=0. (6.12b)
In the above the non-dimensional parameters are Va = % is the Vadasz number, Rn =
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[pp¢>1+p2(;*¢’l)]gKL is the basic-

% is the m0~diﬁed diffusivity ratio, Ng = 6((:; g))fp (po—

¢1) is the modified particle density increment, A = ﬁ is the ratio of effective viscosity to the

(pp—p1)(p2—¢1)gK L
HOm

density Rayleigh number, Ny =

is concentration Rayleigh number, Rm =

fluid viscosity and Le = %—g is the Lewis number.

In the present study, we have taken the viscosity ratio A = 1 and thermal capacity ratio

o =1, to avoid too many parameter studies.

6.3 Basic state solution

The flow in the basic state is assumed as steady, unidirectional and fully developed and is
described by ug = (0, Vy(x),0) is the basic velocity vector, Ty = Ty(x) is the basic temper-
ature, ¢y = ¢o(x) is the basic volume fraction and py = py(y) is the basic pressure. Under

these conditions, the governing Eqs. (6.8)-(6.11) reduce to

d*V, 1 1 dpy Ra Rn Rm
= W M, T T 6.13
d2  Da ' Dady Da "’ + a¢0 + a’ (6.13)

Ty Npdpodly NaNg (dTp\>
o  Npdgodly AlVB (dlo )" _ 0, (6.14)
dz?>  Le dr dz Le dz
d*pq d*T,
N =0 6.15
dax? A dx? ’ (6.15)
The corresponding boundary conditions are:
r=—-1: Vo=0,To=0, ¢pg =1, (6.16a)
x=1: V=0, Tho=1, ¢o=0. (6.16Db)

Integrating the Eq. (6.15) and incorporating the boundary condition Eq. (6.16), we get ¢q

in terms of Ty as formed by

¢o = —NaTp — (1_2NA)93+ (HQNA). (6.17)

Substituting this into Eq. (6.14) and solving the resulting differential equation in Tj, we get

1-NA)N
1— 67( 21{2) B (1+a)

Ty = (6.18)

_ (1—NA)NB
1—e Le
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According to Buongiorno [25] for most nanofluids investigated so far Le is large, of order
10> — 10%, Ng is of order 107! — 10™® while N, is not greater than about 10 [64]. A good

approximation of Ti, therefore, is

1
y—— (6.19)
2
and approximation for ¢ is
11—z
Po=—— (6.20)

A comparison of the solutions has been made for exact and approximate basic tempera-
ture and volume fraction profiles and presented in the Fig. 6.2 for Ny =5, Ng = 0.02 and
Le = 500. From these figures, it is observed that the solutions are exactly matches with the
approximate solution for basic temperature and basic volume fraction, respectively. Hence,
the approximate solutions of the basic temperature and volume fraction has been taken for

further discussions.

Now, using the Eqgs. (6.19) and (6.20) into the Eq. (6.13) with the help of the global

mass conservation (i.e. f_ll Vodz = 2) and incorporating the boundary conditions Eq. (6.16),

(R
sinh(2/v/Da)

sinh(2/v/Da) — v/Da(cosh(2/v/Da) — 1)

The basic velocity profiles are shown in Fig. 6.3 for different values of Da and Ra.

the basic velocity is obtained as

Vel cosh(x/v/Da)
° cosh(1/v/Da)

sinh(1/v/Da) (6.21)

. sinh(x/\/D_a)]

where s =

6.4 Linear stability analysis

The linear stability is studied by imposing the infinitesimal disturbances on the basic state

flow. Hence, the velocity, temperature, volume fraction and pressure fields can be written as

(uv Tu (b:p) = <u07 T0<x>7 ¢0($>,p0(y)) + (ulv Tl? ¢/7p/)7 (6'22>

where the prime denotes an infinitesimal disturbance. By substituting Eq. (6.22) into Eqs.

(6.8)-(6.11) and neglecting nonlinear terms, we get following linearized perturbed equations

V-u' =0, (6.23)
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1 0 1
al; + - c —{(u" - V)ug + (uy - )u'}] = —Vp' + DaV*u' —u' + RaT'é, — Rn¢'é,, (6.24)
o1’ ,dTy o1’ 9 doo 0T dTy 0¢’ 2NN dTy 0T
Vi ! —_— .
T A oy =V Le de Oxr  dx Ox Le dx Ox’ (6:25)
P +
a¢/ d(bo 8(?’ 2 1 NA 21
= — T. 2
8t+ {d:c Vbay eV(b—l— —V (6.26)
By applying the usual normal mode form [42], the disturbances are given by
(W, T, ¢,p) = (a(x), T(x), b(x), pl))e’ @), (6.27)

where o and § are real and represent the wavenumber in streamwise (y) and spanwise (z)
directions, and ¢ = ¢, +i¢; is a wavespeed. The growth or decay of the disturbance depends
on the sign of ¢;. For ¢; < 0, the disturbances are stable, ¢; = 0, the disturbances are

neutrally stable and ¢; > 0, the disturbances are unstable.

On substituting Eq. (6.27) into the governing Eqs. (6.23)-(6.26), linearized disturbance

equations become

d'a d*u e (1 d*a
Da | — — 2(a? 22 il 2 2. Ly au 9 2\ ~
a{d4 (a +B)da;2+(0‘ +ﬁ)u] Va(e% )[d2 (a? + B2)a
T d2‘/0A d2A 9 9\ dT dglg
eV_a Ir? U — [@ —( +ﬁ )u} —ZozRad— —i—zoan@ =0, (6.28)

G dVy . ia (1 . d*n R . u
Vade ' T Va 6Vo c|n— Da 73 — (o + B*)i| + 17 — BRaT + BRn¢ = 0, (6.29)

dTy . . d*T o doy dTy\ dT
o Vo— ol — |25 — (a2 + 8)T| - N il
g Lo —oT =0 — (@7 + ) Le(dx Az ) da
Ny dTp do
Teddr " (030
1ddy . 1|, | Na | BT, s
~ % Vo—e)p— — |22 ALY 7| =046.31
edxu—i_wé( Vo C)¢ Le [dﬁ ( B)e Le | dx? (" +57) 0{6.31)
where a(z) = (4, 0,w) and 7 = S0 — W
The corresponding boundary conditions are
.ooda . .
U=—=n=T=¢=0 at z=F1. (6.32)
dx
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6.5 Numerical solution

The system of differential equations Eqs. (6.28)-(6.31) along with their boundary conditions
Eq. (6.32) form a generalized eigenvalue problem with complex disturbance wave speed as
the eigenvalue and is solved using Chebyshev spectral collocation method [27]. To solve the
eigenvalue problem using the Chebyshev spectral collocation method on [—1,1], first the

interval [—1, 1] is descritized using the following N + 1 Gauss-Lobatto collocation points

m)

Tj = €S o, ij=0,1,2,...,N. (6.33)
Next, the unknown functions u, 7, T and gg are approximated at the collocation points as
follows
N N
~ > o) Th(zy),  Ar) =Y ale)Tk(z;),
k=0 k=0

N (6.34)
ZTZL’k Tk IL’J Qg %Z {L‘k Tk I‘J j:O,l,...,N,
=0

where T}, is the k' Chebyshev polynomial defined by Tj(x) = cos(k cos™* z).

The m** order of differentiation of the unknown functions at the collocation points are

represented as
d™a

J ~
m ™) _
doem Ziju(5k>7 om Z D50(8k),
gm kjo qu; k:JO (6.35)
o = 2DET(E). = D)
k=0 k=0

where the elements of Chebyshev spectral differentiation matrix D are given by

.

2N;+1’ j=k=0,
¢ (LI o
T——— j#k; j,k=0,1,2,...,N,
T (6.36)
_2(1?6:1:%)7 J:k’ .].7k:]-,273,...,]\/7—17
\_Lzﬂa ]:k:N

where
2, 7 = 0or N,

1, Otherwise
Substituting Eqs. (6.34) - (6.35) into Eqgs. (6.28)-(6.31), we obtain the following (4N + 4)x
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(4N + 4) eigenvalue problem:

AX = cBX (6.37)
with
All O Alg A14 Bll 0 0 O QAL
Aoy Ay Agy A 0 B 0 0 i
A — 21 22 23 24 ’ B — 22 and X — TZ
A31 0 A33 A34 0 0 ng 0 T
Ay 0 Ay Ay 0 O O By ¢

Here ¢ is the complex eigenvalue, X is the representation of the complex eigenfunction, and

A and B are the square complex matrices.

where
Ay = Da[Dy —2(a® + 83Dy + (o + 5%)%1] — Z'—O‘V +1)(Dy—(a®+)I) + o d?Vy
H * 2 eVa " 2 eVa dz?
Alg == —i()éRCLDl, A14 = iaRnDl, Agl = i% ,
eVa dx
o 2 2 dTy
A22 = _‘/OI - DOJ[DQ - (Oé + B )I] + I, A23 = —BROJI, A24 = ﬁRnI, A31 = —, 1
eVa dz
‘ 2N Np dT; Ng doy Ny dTy
A — (D — (a2 oy _ 2aNB dloy VB AP0y __Nedlp
3 = iaVh = (Dy = (a”+ 5)1) Le dx ' Le dr "V i Le dx "
1 dgy Na 1

X6}
An=—"2L Ag=-7"(De— (@ + D), Au=—Vo— (D~ (o’ + F)),

€ Le

T

By = —
1 Va

(DQ — (062 + 52)I>, BQQ = ‘Z/—aI, ng = iOéI, B44 = 1ol
a

Here Dy and Dy are obtained from usual first and second Chebyshev derivative matrices
D and D? = D x D after imposing the boundary conditions 4(41) = 0. Dy is the fourth
derivative matrix imposing the clamped boundary conditions @(+1) = u,(+1) = 0 and given
by

D, = [diag(1 — 2*)D* — 8diag(z)D?* — 12D?] diag(1/(1 — 7)),

Vo = diag[Vo(x;)], To = diag[To(z;)], ¢o = diag|po(z;)], I and 0 are (N +1)x (N +1) identity
and zeros matrices, respectively. Also diag | | means that the entries are placed on the main

diagonal of an (N + 1)x(N + 1) matrix with the rest of the entries being zero.

To check the convergence, the code written to solve the eigenvalue problem Eq. (?7?) is
executed by changing the number of collocation points (/V) and the least stable eigenvalues
obtained are presented in the Table 6.1 for randomly selected values for various parameters.

It is apparent from this table that the least stable eigenvalue attain convergence criterion of
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10~7 for N > 51. There is no change in the results with an increase of N. The same tendency
is witnessed for other values of parameters. Hence, N = 51, is adopted to implement the

numerical calculations.

The results obtained from the present analysis are compared with the results of an isother-
mal channel flow without a porous medium. The critical Reynolds number Re. and critical
wavenumber «, for the isothermal channel are obtained as Re. = 3848.278 (in this paper
1/Pr) and . = 1.0205 from the present analysis by setting Rn =0, ¢ = 1, 3 = 0, Da = 105,
Ny =0, Ng = 0 and Le = 10°. These values are in good agreement with those given by
Orszag [84].

6.6 Results and discussion

The present work analyses of linear stability of a convective flow in a vertical channel filled
with nanofluid saturated by porous medium. The effect of the governing parameters i.e.,
Rn, e, Pr, Npn, Ng and Le on the critical Rayleigh number Ra. and critical wavenumber
a. is presented graphically through Figs. 6.5 to 6.10. A logarithmic scale is used along
the horizontal axis to display all the instability boundaries. Throughout the numerical
investigation, the range for the parameter N, is considered as 1 < N4 < 10, the values of Le
are taken as 100, 300, 500, Ng is taken as very small values 0.002, 0.02, 0.2, the values of the
porosity parameter are taken as 0.6, 0.7, 0.8 and the values for Rn are taken as 15, 30, 60
which are not against the physical requirements. The effect of Prandtl number (Pr) on the
stability of the flow is emphasized by taking three different values of Pr as (0.7, 1 and 7). As
in the case of viscous fluid, Ra. is computed for several values of spanwise wavenumber ()
to scrutinize the dimension of least stable mode and displayed in Fig. 6.4. It is observed that
the computational results ensure the Squire’s theorem [104] for nanofluid also, i.e., the least

stable mode is 2-dimensional. Therefore, we have taken g = 0 in the rest of the discussions.

The effect of the Prandtl number Pr on the instability boundaries is presented in the Fig.
6.5 for various values of Da for Rn = 15, € = 0.6, Le = 500, Ny = 8 and Ng = 0.02. It is
noticed from Fig. 6.5(a) that the critical Rayleigh number is increasing with an increase in
the value of Darcy number Da, which indicates that permeability has a stabilizing effect. For
small values of the Darcy number (Da < 1), the variation of Ra, is slow and smooth. A rapid
increase in Ra, is observed for Da > 1. As Darcy number increases, the permeability of the
porous medium increase. For small values of Darcy number, noticeable flow resistance in the

porous medium is observed. This flow resistance decreases with increasing the permeability
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and the flow is accelerated in a porous medium, indicates the contribution of viscous forces
contained in the momentum equation. Further, it is noticed that an increase in momentum
diffusivity in terms of Pr increases the critical Rayleigh number. Hence, the influence of
the Prandtl number is to stabilize the system. Fig. 6.5(b) displays the impact of Pr for a.
on critical wavenumber in the (log,,Da, a.)-plane for different values of Da. It is seen from
Fig. 6.5(b) that the critical wavenumber is increasing with the increase in the value of Da.
This increase is drastic for Da < 1 and then it is smooth and slow. The impact of Pr on

the critical wavenumber profile is very small when Da < 1, but after that it is significant.

Fig. 6.6 depicts the variation of Ra. and a, with the Darcy number Da for the different
values of Rn for Pr = 7, ¢ = 0.6, Le = 500, Ny = 8 and Ny = 0.02. It is seen from Fig.
6.6(a) that the variation in Ra. is visible for Rn = 60 when Da < 0.3. As Rn increases,
the variation in the critical Rayleigh number is very small for the remaining values of Da.
Similarly, the effect of Rn in a. is not significant except for Da < 0.3 when Rn = 60 as
plotted in Fig. 6.6(b). The critical wavenumber is increasing with an increase in Rn for
Da < 3. To have a clear understanding on the effect of Rn for fixed values of Da, the critical
Rayleigh number and critical wavenumber are computed for different values of Da and Rn
and presented in the Table 6.2. It is noticed from this table that critical Rayleigh number
Ra decreases for rising the values of Rn. Thus, this factor has a destabilizing effect on the
medium. It is observed that enhancing the value of Rn has a dual effect on the dimension

of the convective cells.

The instability boundaries as a functions of the permeability parameter Da and the
porosity (€) parameter is plotted in Fig. 6.7 for Pr = 7, Rn = 15, Le = 500, Ny = 8
and Ng = 0.02. It is understood from the Fig. 6.7(a) that an increase of porosity e tends
to increase the critical Rayleigh number Ra.. Since porosity is a fraction of the volume of
voids over the total volume which is a measure of the void spaces in the porous medium. As
porosity increases, the volume of the voids increase and hence the porosity has a stabilizing
effect. It is noticed from Fig. 6.7(b) that there is a small variation in «. for increase in the

value of the porosity parameter.

The variation in the critical value of Rayleigh number and critical wavenumber with Da
for different value of Le is displayed in Fig. 6.8 for Pr =7, Rn = 15, ¢ = 0.6, Ny = 8 and
Np = 0.02. It is observed from Fig. 6.8(a) that the variation of critical Rayleigh number
with the Lewis number is not visible. Also, Fig. 6.8(b) shows that the impact of Le on «.
is very small. For fixed values of Da and (3, streamwise critical wavenumber «. and critical
value of the Rayleigh number Ra. are computed for different values of Le and presented in

Table 6.3. It is perceived from this table that Ra. is increasing slightly with an increase
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in Lewis number, whereas «. is decreasing when § = 0. This signifies that Le is mild on
the stability of the flow. This is because an increment in the values Le directs rising in the
Brownian diffusion of nanoparticles which supports the power of disturbance in the system.
Thus, the effect of rising Le is to postpone the convection. Also, it is observed that Ra.

increases and a, decreases with the increased values of .

Fig. 6.9 presents the influence of the modified diffusivity ratio Ny on the instability
boundaries for Pr =7, Rn = 15, ¢ = 0.6, Le = 500 and Ng = 0.02. It is noticed from Fig.
6.9(a) that there is no visible effect of the modified diffusivity ratio on Ra.. Further, the
influence of Na on «. is also negligible as displayed in Fig. 6.9(b). This is may be due to the
restriction of N values which does not variate much Brownian motion and thermophoresis

of nanoparticles to support the disturbance in the present study.

The influence of modified particle density ratio Ng on Ra. and «. is shown in Fig. 6.10
for Pr = 7, Rn = 15, ¢ = 0.6, Le = 500 and Ny = 8. It is seen from Fig. 6.10(a)
that the influence of modified particle density ratio Ng on the critical Rayleigh number
Ra, is almost negligible. In addition, the effect of Ng on a. is also negligible as shown in
Fig. 6.10(b). Therefore, N does not affect the stability. This is because the term Np is

containing as a function of L_B in the governing equation and which is very small, of order
e
1073 to 107% pointing to almost no contribution of the nanoparticle flux in the thermal

energy conversation.

To focus more attention on the instability mechanism due to the effect of nanofluid
parameters, we plotted the variations in the growth rate at the neighbourhood (Ra. =
Ra.(1 4 0.01)) in the Fig. 6.11 for different values of Le, Ny and Ng. From Fig. 6.11(a),
it is seen that there is a small variation of the growth rate for increasing values of Le but
no variation for increasing values of Ny and Ng as plotted in Fig. 6.11(b) and 6.11(c),
respectively. Also, from Figs. 6.11(a)-6.11(c), it is observed that the disturbances of the

growth rate are decreasing with an increase in permeability.

The influence of Lewis number on the instability boundary curve in Fig. 6.8 is more
enlightened by means of the plots of eigenfunctions at the critical position and Fig. 6.12
presents the eigenfunctions for Le = 100 and Le = 500 at Da = 0.1, Pr = 7, Rn = 15,
Nx = 8, Ng = 0.02 and € = 0.6 at the critical level. From this figure, it is noted that
the magnitude of the eigenfunctions for the velocities are more than the magnitude of the
eigenfunctions for the temperature and volume fraction. It is observed from the Figs. 6.12(a)
and 6.12(b) that magnitude of the eigenfunctions of the velocities disturbances in the x-

direction and y-direction decreases when Lewis number increases. But, the variation of the
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magnitude of the eigenfunctions of temperature and volume fraction are almost negligible
due to the effect of Le, as depicted in Figs. 6.12(c) and 6.12(d).

Apart from the variations of Ra. and a. with different parameters, to understand the dy-
namics of the flow field and variation in the pattern of temperature and volume fraction the
contour plots for streamlines, isotherms and isonanoconcentration at critical level are drawn
and illustrated in Figs. 6.13 - 6.16 with varing values of permeability parameter (Da), Lewis
number (Le), modified diffusivity ratio (N) and modified particle density increment (Ng)
for fixed values of the other parameters Rn = 15, Pr = 7, ¢ = 0.6. In the case of stream-
line contour, the positive contours are associated with anti-clockwise rotation, whereas, the
negative contours are associated with clockwise rotation and for the case isotherms and
isonanoconcentrations contour, solid lines indicate the positive contours while dashed line
exhibits the negative contours. In the following, we have discussed the flow dynamics in

below.

Fig. 6.13 exhibits the streamlines, isotherms and isonanoconcentrations for various values
of the Darcy number for fixed values of Ny = 8 N = 0.02 and Le = 500 over one
period. From Figs. 6.13(a) - 6.13(c), it is observed that the flow is mainly controlled by
two asymmetric cells, where one cell (primary cell) is rotating clockwise direction and the
other cell (secondary cell) is rotating anticlockwise direction. The shape of the inner cells
of this bi-cellular structure is changing with an increase in the Darcy number. Further,
it is noticed that the primary cell pushes the secondary cell in upwards direction in the
vertical channel as the value of the Darcy number increase. The pattern of the isotherms
are almost the same and spread the whole channel over a period for all values of Da shown
in Figs. 6.13(d) - 6.13(f). This is because the transfer of the temperature receives mainly
by diffusion, indicating to disturbances into flow configuration. The isonanoconcentration
lines for the flow in a vertical channel are depicted in Figs. 6.13(g) - 6.13(i) and shows a
two-cell structure with each cell on either side to the centre of the channel. These figures
reveal that the isonanoconcentration lines are more concentrated in the centre of the channel
over a period for different values of permeability. Further, it is noticed that the size of the

convective cells reduce as the Darcy number rises.

The influence of Lewis number in the pattern of streamlines, isotherms and isonanocon-
centrations for Da = 1071, Ny = 8 and N = 0.02 is plotted in Fig. 6.14 over a period. From
Figs. 6.14(a) - 6.14(c), it is noticed that the flow is controlled by bi-cellular patterns where
one cell (primary cell) has full structure but another one (secondary cell) has half structure.
It is noticed that the streamline pattern looks like moving downwards slowly the vertical

channel as the value of Le enhances due to small variation of critical eigenvalue value. The
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shape of the inner cells in each of the bi-cellular structure is changed with increasing the
potency of the Lewis number. The isotherms of the flow are portrayed in Figs. 6.14(d) -
6.14(f). Here also the isotherms are looking like shifting downwards slowly the vertical chan-
nel as Le increases. The isotherms occupy the large part of the channel. The variation of the
isonanoconcentration contours is plotted in Figs. 6.14(g)-6.14(i) and observed that patterns
are dense at the centre of the channel. The magnitude of the stream function, isotherms and
isonanoconcentration reduce indicating the system becoming more stable with augmenting

value in the Lewis number.

The deviation of streamlines, isotherms and isonanoconcentrations at the critical level for
various values of the modified diffusivity ratio Ny and modified particle density increment
Ng in the Figs. 6.15 and 6.16, respectively, over a period. From Figs. 6.15 and 6.16, it is
cleared that the patterns of streamlines, isotherms and isonanoconcentrations are looking
like same, as we have seen in Figs. 6.13 and 6.14. Further, it is noticeable that there are no
changes in shape or size or shiftiness of cells of the lines with the rising the effect of both
the parameters. This is because the variation of Ny and Ng does not affect on the onset of

convection as we have disclosed in Figs. 6.9 and 6.10.
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Table 6.1: Convergence of the least stable eigenvalue by Chebyshev collocation method.
Here Da =1, Pr =7, Ra = 100, Rn = 15, ¢ = 0.6, Ny = 8, Ng = 0.2, Le = 500, a = 1,
g =0.

N Least stable eigenvalue

30 7.254272433915-0.116633842910i
35 7.254500877193-0.1170159503981
40 7.254526715361-0.1170633013051
45 7.254526825573-0.1170669751411
50 7.254526952722-0.1170676399851
51 7.254526831391-0.117067549380i
25 7.254526857357-0.1170675039701
60 7.254526835407-0.1170675333371

Table 6.2: Critical values of o and Ra for different values of Rn and Da at Le = 500, € = 0.6,
Pr=7 Ny =8 and Ng = 0.02.
Da Rn Qe Ra,
0.1 15 0.9631 1430.805
30 0.9542  1427.007
60 1.6700  587.623
1 15 1.3424 3037.209
30 1.3406  3032.995
60 1.3369 3024.707
10 15 1.3819 25253.439
30 1.3821 25248.012
60 1.3817 25237.248
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Figure 6.2: Comparision of basic temperature and volume fraction profiles.

Table 6.3: Critical values of o and Ra for different values of Le and § at Rn = 15, € = 0.6,
Pr=7 Ny =8and Ng = 0.02.
Da [ Le Qe Ra,
0.1 0 100 0.9645 1418.198
0 300 0.9632 1428.58
0 500 0.9631 1430.805
0.5 500 0.902 1649.284
1 500 0.7273 2915.056
0 100 1.343 3030.343
0 300 1.3425 3035.799
0 500 1.3424 3037.209
0.5 500 1.2951 3263.854
1 500 1.1423 4203.374
0 100 1.3824 25247.08
0 300 1.3823 25252.12
0 500 1.3819 25253.44
0.5 500 1.3361 27021.49
1 500 1.1894 34195.04
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Figure 6.5: Instabilities boundaries in (a) ((log;yDa, Ra.), Ra.)-plane and (b) ((log,,Da, a)-
plane for different values of Pr when Rn = 15,¢ = 0.6, Le = 500, Ny = 8 and Ny = 0.02.
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Figure 6.7: Instabilities boundaries in (a) (log;,Da, Ra.)-plane and (b) (log,,Da, c)-plane
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Figure 6.9: Instabilities boundaries in (a) (log;,Da, Ra.)-plane and (b) (log,,Da, c)-plane
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Figure 6.11: Growth rate (ac;) as a function of Da for (a) Le (at Ny = 8 and N = 0.02),
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Figure 6.13: The disturbance of streamlines ((a) to (c)), isotherms ((d) to (f)) and iso-
nanoconcentrations ((g) to (i)) for various values of Darcy number (Da) over one period

when Pr =7, Rn =15, € = 0.6, Le = 500, Ny = 8 and Ny = 0.02.
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Figure 6.14: The disturbance of streamlines ((a) to (c)), isotherms ((d) to (f)) and iso-
nanoconcentrations ((g) to (i)) for various values of Lewis number (Le) over one period
when Pr =7, Rn =15, € = 0.6, Da = 0.1, Ny =8 and N = 0.02.
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Figure 6.15: The disturbance of streamlines ((a) to (c)), isotherms ((d) to (f)) and iso-
nanoconcentrations ((g) to (i)) for various values of modified diffusivity ratio (Na) over one
period when Pr =7, Rn =15, ¢ = 0.6, Da = 0.1, Le = 500 and Ng = 0.02.
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Figure 6.16: The disturbance of streamlines ((a) to (c)), isotherms ((d) to (f)) and iso-
nanoconcentrations ((g) to (i)) for various values of modified particle density increment
(Ng) over one period when Pr =7, Rn =15, ¢ = 0.6, Da = 0.1, Le = 500 and N = 8.
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6.7 Conclusions

In this study, we have investigated the instability mechanism of the nanofluid flow in a vertical
channel which is filled with a porous medium. The eigenvalue problem solved numerically

using the spectral method. The main observations from the obtained results are:

e The critical Rayleigh number increases when the values of Pr, Da, ¢ and Le increase,
it decreases with rising the value of Rn, it remains same for the enhancing values of
N and Np.

e The effects of increasing Pr, Da, € and Le delay the onset of convection, Rn advances

the convective motion while Ny and Ng do not change the stability of the system.

e The dimension of the convective cells reduces on enhancing Da, increases on rising Le,

duals character on gaining Pr, Rn and €, while remains same on growing N, and Ng.
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Chapter 7

Linear stability of double diffusive
convection in a vertical channel filled
with nanofluid saturated porous
medium in the presence of transverse
magnetic field !

7.1 Introduction

The study of double-diffusive convection in a porous medium is an active research area due
to its many applications in the fields of chemical science, engineering and nuclear industries,
food processing, geophysics, bio-engineering and cancer therapy, movement of biological
fluid, oceanography. The prospect of heat transfer in the medium cannot narrate exclusively
in situations involving one or more solute fields. In such conditions, both heat and mass
transfers are needed to be considered. The buoyancy forces are induced by the combined

effects of temperature and concentration differences in a saturated porous medium.

In recent years, several investigators have analyzed the nanofluid flow and heat transfer
problems by including in the presence of transverse of magnetic field when the fluid is
electrically conducting. In addition, there has been a renewed interest in studying MHD
flow and heat transfer in porous media due to the effect of magnetic fields on flow control
and on the performance of many systems using electrically conducting fluids. The study of

MHD flow for an electrically conducting nanofluid in channels has important applications in

!'Communicated in “Journal of Porous Media”
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many engineering problems crystal growth in fluids, purification of molten metals, the metal
casting, nuclear reactor cooling, microelectronic devices and geothermal energy extractions.
Although the effect of magnetic field on the flow of the nanofluid saturated porous medium is
important, very little attention has been given in literature [7, 8]. Only few studies have been
reported to analyze the stability of the fluid flow in a channel in the presence of transverse
magnetic filed. Hudoba and Molokov [59] studied the effect of internal heat sources and a
transverse magnetic field of a buoyancy convective flow in a vertical channel. The interesting
phenomenon of elevator convection modes in vertical ducts with imposed magnetic field and

mean flow directed downwards was investigated by Lin and Zikanov [68].

The majority of the works reported deal with the stability in a horizontal porous layer
saturated by nanofluid. As per the author’s knowledge, no work has been done in a vertical
channel filled with nanofluid saturated porous medium. Further, the stability characteristics
of double-diffusive convective nanofluid saturated porous medium in a vertical channel with

the effect a transverse magnetic field has not been studied.

In this chapter, we study the effect of transverse magnetic field in a vertical channel filled

with saturated porous medium for double diffusion convection for Darcy-Brinkman model.

7.2 Mathematical Formulation

Consider an incompressible, unsteady and double diffusive nanofluid flow in a vertical porous
channel of width 2L bounded by two impermeable and perfectly thermally conducting walls
as shown in Fig. 6.1. Both the left wall (x = —L) and right wall (x = L) exchange heat
between the internal and external fluid environment, with the reference temperatures 77 and
T,, respectively, with the former being the greater. The volume fraction at the left and right
wall are taken as ¢o and ¢, and the corresponding solute concentrations are as C and Cj,
respectively. A uniform magnetic field Bg = Béy, where B is the strength of the magnetic
field, is applied normal to the channel. The magnetic Reynolds number is assumed to be
small so that the induced magnetic field can be neglected in comparison with the applied
magnetic field. Hence, the governing equations for double diffusive convection can be written
as

V-u=0, (7.1)
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(——u+ (u V)u) :—Vp—kﬂVQu—%quijO

€ Ot

+{ppp + (1 = @)ps[1 = Br(T — T1) — Bc(C = C1)l} 8, (7.2)
or ) Dy )
(IOC)mE + (pc)pu - VT =k, VT + €(pc), | DV - VT + TVT VT| + (pc)eDrcV2C,
2
(7.3)
dp 1

ot + e V¢ = DgV? ¢+ T V2T, (7.4)
88—3 11,1 VO = st C+ DCTVQT (75)

where Dg is the solutal dlffusnnty for the porous medium, Dr¢ is a diffusivity of Dufour
type and Dcr is a diffusivity of Soret. The second last term in the momentum equation is
due to imposition of a transverse magnetic field, where Bg = Bé, is the magnetic induction

field and j is the current. The relation between them is given by
j X Bg = 01(u x Bé&,) x Bé, (7.6)
where o0, is the electric conductivity.
The corresponding boundary conditions are written as
x=—L:u=0,T=T, ¢=¢y, C=C0C, (7.7a)

I:LIUZO,T:T2,¢:¢1,C:CQ. (77b)

Substituting the non-dimensional variables given in Eq. (6.6) in the governing Egs.

(7.1)-(7.5), the boundary conditions Eq. (7.7) and dropping asterisk, we get

V-u=0, (7.8)
1 [10u 1 ) o
— at—i— (u-V)u| = —-Vp+ADaVu—u+ DaHa*(u x éx) X &
o
A . s . A
+RaTé, — Rngé, + ECey — Rmé,, (7.9)
oT Ng
il VT = V2T 4+ 2 1
5 +u-V VT + To C, (7.10)
1 1 1 N,
19 +-u-Ve = —v2¢ + —AVQT, (7.11)
odt €
1 1
—@ +-u- VO = —VQC + Srv*T, (7.12)
o Ot
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r=—1:u=0 T=0 ¢6=1 C=0, (7.13a)
r=1:u=0,T=1 ¢=0, C=1. (7.13b)

Rs — pegBc K L(C2—C1)
uDs

is the familiar solutal Rayleigh number, Ln = %= is the thermo-solutal Lewis number.

Dg
_ Dpc(Ca—Ch) - — Dor(To—Th)
Dy = —O?:(T;_Tl; is the Dufour parameter and Sr = —aiT(c;—Cll)

avoid too many parameter studies, we have taken the viscosity ratio A = 1 and thermal

where Ha = BL % is the magnetic parameter (Hartmann number),
is the Soret parameter. To

capacity ratio o = 1.

7.3 Basic state solution

The flow in the basic state is assumed as steady, unidirectional and fully developed and is
defined as uy = (0, Vo(z), 0) is the basic velocity vector, Ty = Ty(x) is the basic temperature,
¢o = ¢o(x) is the basic volume fraction, Cy = Cy(x) is the basic concentration and py = po(y)
is the basic pressure. With these assumptions, the governing Eqs. (7.8)-(7.12) are reduced

into the following set of coupled ordinary differential equations:

d?V, 1 1 dpy Ra Rn Rs Rm
TV (i g vy M R T 14
dx? (Da T Ha ) Yo Dady Da "’ i Da% DaLnOO " Da (7.14)

d®Ty  Ngdoodly NaNg (dTp\° d2C
LRk Bt -0 D = Nl
dx? Le dx dx + Le dx Fdx? 0, (7.15)
d? ¢y d’T,
N =0 7.16
1 d?C, 4T,
_ — Nl
Ln dx? o dx? 0, (7.17)

The solution of the base flow Eqs. (7.14)-(7.17) admits the boundary conditions:

z=—1:Vy=0Ty=0, ¢g=1, Cy=0, (7.18a)
z=1: Vo=0,To=1, ¢ =0, Co = 1. (7.18Db)

Proceeding as in Chapter - 6, we get basic solutions as

71—|—x

T, — 7 71—m l—l—x‘
2

¢0 = 5 and C() = 9

(7.19)
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Table 7.1: Minimum values of Ra for point of inflection and backflow at Rs = 200, Rn = 10
and Ln = 40.

Ha Da Ra; Ray,
1 101 72 192

10° -4 8

107! -19 -10
2 10* 142 265

10° 3 16

107! -19 -9
3 10 257 388

10° 15 28

1071 -20 -8

Vsl cosh(mz) N 1 Ra + Rs TR _ sinh(mz) (7.20)
0= cosh(m) om?Da \' """ In Ak sinh(m) |’ '

inh(2m)
here m = /-1 + Ha? and s = = .
wherem pa T AT and s =m (m(sinh(Qm)) —cosh(2m) + 1

The basic velocity profiles with Ra for the different values of Da and Ha with Rs = 200,
Rn = 10 and Ln = 40 are shown in Fig. 7.1 by fixing the division of Ra and Da as constants
at 5, 10 and 15. Figs. 7.1(a)-7.1(c) depicts the variation of basic velocity profile for three
different values of Ha = 1,2 and 3 for the fixed value Da = 10'. From Figs. 7.1(b) and
7.1(c), it is noticed that the velocity profile has no point of inflection as well as back flow (or,
negative flow) but Fig. 7.1(a) contains point of inflection without backflow for Ra = 150.
The velocity profiles for the fixed value of Da = 1, different values Ra = 5, Ra = 10 and
Ra = 15 are presented at Ha = 1, Ha = 2 and Ha = 3 in Fig. 7.1(d)-7.1(f), respectively.
It is observed that the velocity profile possesses the point of inflection only at Ra = 15 for
Ha = 3 shown in Fig. 7.1(f), but 7.1(d) and 7.1(e) contain point of inflection for all values of
Ra, whereas backflow contains only at Ra = 10 and Ra = 15 for Ha = 1. At Da = 107!, the
basic velocity profile possesses the point of inflection as well as back flow for all values of Ra
at different values of Ha, which are shown in Figs. 7.1(g)-7.1(i). The above discussion gives
the indication that the Darcy number effect and magnetic effect in the momentum equation
has significant impact on the flow regime. The possibility for the instability in the basic
flow is the sustenance of the inflection points in the velocity profiles. Hence, the minimum
integer value of Rayleigh number (Ra) for which the inflection points (Ra;) and back flow
(Ray) appear in the flow field for the values of Ha and Da are presented Table 7.1.

In the literature [35], it has been noticed that the point of inflection is a potential for
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instability in the velocity profile, because of that we are very much interest to know the
minimum of Rayleigh number (Ra) for which non-Darcy flow will have a point of inflection
for a particular value of Darcy number Da. For this, the minimum value of Ra has been
calculated for different values of Da in the Table 7.1 for which the back flow and point of
inflection appear in the flow regime. Here, Ra; and Ra, denote the respective minimum

values of for which point of inflection and back flow appear in the velocity profile.

7.4 Linear stability analysis

As in Chapter - 6, imposing the infinitesimal disturbances (§) on the basic state solutions,
neglecting §? and higher order terms and then using the usual normal mode form [42] to
express infinitesimal disturbances of corresponding field variables, and eliminating pressure

terms from the resulting equations, the linearized stability equations become

d*a I d*4 ) ia d?Vy |
D“[ﬁ—2< ) g t @A) 1‘%”}&2 (o* +5>} Vadi?
d*i ) ,d20 dT dp . RsdC
LZ 5 — (@ + 3% ] DaHa? w—zaRa%+zaRn%—zaE%
iac [d*a )
— 21
e |G - @i a2
B Ve, i %
00— Vi — DaH T
eVa dx +€Vavo77 Da da? (o +B> i+ Da a77 P Ra +BRngz5
RSA lac |
—5— 2%777 (7-22)
dTy . . . |&T ) | NedTy (dé Ng d¢o dT
FraR il Rl CHRRLN Iy dl«”NAdx Te dv dr
L
— Dy %—( + 8)C| =iacT, (7.23)
ldgy. o 1 |6 5 | Na|PT 5 ol .
S0 Vg — — | —— — S A T| = 7.24
c dxu 0¢ Le [dl_Q ( _'_/8 )¢ Le dxz (Oé _'_/B) Z&C¢7 ( )
1dCy . ia.. » 1 |d2C s g 2T s
0% VO - — | — — —Sr|=— — T| = 2
- eVO T | 7 (a* 4+ pB5)C'| — Sr 73 (o + 57) iacC, (7.25)
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The associated boundary conditions for non-permeable rigid walls are no-slip condition for
the velocity disturbance and the isothermal condition for the temperature, volume fraction

and concentration disturbances are given by

di .
azﬁzﬁ:T:qﬁzO:O at = Fl. (7.26)

7.5 Results and discussion

The system of differential equations (7.21)-(7.25) along with their boundary conditions at
the walls Eq. (7.26) form a generalized eigenvalue problem with complex disturbance wave

speed as the eigenvalue and solved using Chebyshev spectral collocation method.

To examine the convergence, the least stable eigenvalues are calculated by switching the
number of grid points (/) and tabulated them in the Table 7.2 for arbitrarily chosen values of
governing parameters. This table shows that the least stable eigenvalue achieve convergence
requirement of 10~7 for N > 51. The results are consistent for increasing values of N. The
same tendency has been observed for other governing parameter values. As a result, the

numerical computations have been performed with N = 51.

The results obtained from the present analysis are verified by comparing with the pub-
lished results of an isothermal channel flow without porous medium. The critical Reynolds
number Re. and critical wavenumber «, for the isothermal channel are obtained as Re. =
3848.278 (in this paper 1/Pr) and a. = 1.0205 from the present analysis by setting Ra = 0,
Rn=0 Rs=0 Ha=0, Da=105 3=0,e=1, Ny =0, Ng =0, Le = 107, Sr = 0,
D¢ =0 and Ln = 107. These values are in good agreement with those given by Orszag [84].

The double-diffusive convective instabilities in a vertical channel filled with nanofluid
saturated porous medium by considering the effect of a transverse magnetic field is governed
by several parameters Pr, Da, Ha, Rn, Rs, Ln, ¢, Nxo, Ng, Le, D¢ and Sr. In this study, a
special attention is given to analyze the influence Darcy number (Da), the magnetic param-
eter (Hartmann number Ha), solutal Rayleigh number (Rs), thermo-solutal Lewis number
(Ln), Soret parameter (Sr) and Dufour parameter (D) on the instability of the flow. The
values of the remaining parameters are fixed as ¢ = 0.6, Rn = 10, Pr =7, Ny =8, Ng = 0.2
and Le = 1000. As in the case of viscous fluid, here we have also examined the dimension
of the least stable mode by calculating Ra,. for various values of spanwise wavenumber (/3)
in the (Ha, Ra.)-plane. It has been observed that the numerical results follow the Squire’s

theorem [104] for nanofluid also, i.e., least stable mode is two dimensional as it displayed in
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Fig. 7.2. Therefore, we have been taken g = 0 in the rest of the conversations. Also, the
results obtained for the critical Rayleigh number (Ra.) and critical wavenumber (a.) with

other parameters are presented graphically.

The combined effect of the magnetic field and permeability parameter (Darcy number)
on the instability boundaries is presented in (Ha, Ra.) and (Ha, a.) planes in the Fig. 7.3
for various values of Da with fixing the other parameters i.e., Rs = 200, Ln = 40, Sr = 0.3
and Dg = 0.04. Tt is observed from Fig. 7.3(a) that the critical Rayleigh number is increasing
with an increase in the value of Darcy number Da, which indicates that permeability has a
stabilizing effect. For small values of Darcy number, the porous layer is considered to be less
permeable to fluid penetration and consequently the fluid experiences a pronounced large
resistance as it flows through the porous matrix. This results in hindering flow activities in
the porous region. Further, it is noticed that an increase in the magnetic parameter increases
the critical Rayleigh number. Hence, the influence of the magnetic field is to stabilize the
system. It is well known that the initiation of a magnetic field is perpendicular to the flow
direction has a trend to generate the drag known as the Lorentz force. As a result, a great
deal of energy is used by the system to overcome this resistance and hence convection is
delayed giving rise to a stabilizing effect. Thus magnetic field can be effectively used to
regulate convection in a nanofluid saturated porous medium. Fig. 7.3(b) reveals that the
critical wavenumber decreases with an increase in Ha for fixed Darcy number. But, the
critical wavenumber increases with the permeability and increasing rate is very less when

Da goes from 1 to 10 compared to Da changes from 0.1 to 1.

For various values of solutal Rayleigh number, the critical Rayleigh number (Ra.) and
the corresponding critical wavenumber are plotted in Fig. 7.4 with the Hartmann number
(Ha) when Da = 0.1, Ln = 40, Sr = 0.3 and Dy = 0.04. From this, it is observed that there
is no visible effect of the solutal Rayleigh number on the critical Rayleigh number but a
very small variation on the critical wavenumber. The critical wavenumber decreases with an
increase in the values of Rs and this decreasing rate is very small. Therefore, the influence

of solutal Rayleigh number on the instability boundaries is almost insignificant.

Fig. 7.5 displays the variation of the critical Rayleigh number and critical wavenumber
plotted against the magnetic parameter for different values of Ln with Da = 107!, Rs =
200, Sr = 0.3 and Dy = 0.04. It is seen from 7.5(a) that the critical Rayleigh number
decreases with an increase in the values of thermo-solutal Lewis number (Ln). Thus, Ln
has a destabilizing effect. When the Lewis number is increased, the heat is more than that
of solute, and therefore, it destabilizes the system. The wavenumber is increasing with an

increase of Ln as depicted in Fig. 7.5(b). It is interesting to note that for Ha > 2.7, the
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variation of the critical wavenumber is not significant.

The influence of Soret parameter (Sr) on the critical Rayleigh number and critical
wavenumber is presented in Fig. 7.6 when Da = 107!, Rs = 200, Ln = 40 and D; = 0.04.
It is observed from Fig. 7.6(a) that the critical Rayleigh number decreases with an increase
in the value of Sr but the decreasing rate is very small. Therefore, the Soret parameter has
a destabilizing effect of the flow field when the nanofluid flow in a vertical channel. The
physical interpretation is that the Soret effect enhances the density gradient of solute, which
leads to a convective instability at fixed temperature differences. On the other hand, there
is a visible variation of the critical wavenumber () for the effect of the Soret parameter to
the Hartmann number. Fig. 7.6(b) reveals that a. increases when Sr increasing from —0.5
to 0 in the whole range of Ha and this trend continues when Sr increases from 0 to 0.5 up

to Ha < 2.3 and after that it has decreasing nature.

Fig. 7.7 depicts the patterns of the critical Rayleigh number and the critical wavenumber
against Hartmann number for the different effect of the Dufour parameter (Dy) by fixing the
values of Da, Rs,Ln and Sr at 107!, 200, 40 and 0.3, respectively. From Fig. 7.7(a), it is
visible that the critical Rayleigh number decreases with the increase in the value of Dufour
parameter. Thus, it gives the conclusion that the Dufour parameter (Dy) has a destabilizing
effect on the system. The critical wavenumber is increasing with the increase in the Dufour

parameter as portrayed in Fig. 7.7(b).

The variations in the growth rate in the neighbourhood (Ra. = Rac(1 + 0.01)) of the
critical point is plotted in Fig. 7.8 for different values of the permeability parameter to
understand instability mechanism more clearly, when Rs = 200, Ln = 40, Sr = 0.3 and
Dy = 0.04. From Fig. 7.8, it is clear that disturbances of the growth rate decrease with
an increase in the magnetic parameter. Further, it is noticed that the growth rate is also
decreasing with the increase in Da. This is because the impacts of rising both the parameters
postpone the onset of convective motion. From Figs. 7.8(a)-7.8(c), it is observed that the

curve of the growth rate is smooth nature for all values of Darcy number (Da).

The variation in the pattern of the streamlines, isotherms, isonanoconcentrations and
isosolutes at the critical level for various values of the Darcy number (Da) and the Hartmann
number (Ha) are displayed in Figs. 7.9 and 7.10 with Rs = 200, Ln = 40, Sr = 0.3 and
D¢ = 0.04. Fig. 7.9 exhibits the streamlines, isotherms, isonanoconcentrations and isosolutes
for various values of the Darcy number with fixing Ha = 2. From Figs. 7.9(a)-7.9(c), it is
observed that the flow is mainly controlled by a bi-cellular structure (two asymmetric cells),

where one cell (primary cell) is rotating clockwise direction and the other cell (secondary cell)
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is rotating anticlockwise direction. The shape of the inner cells of this bi-cellular structure
is changing with an increase in the Darcy number. Further, it is noticed that the primary
cell pushes the secondary cell in upwards direction in the vertical channel as the value of
the Darcy number increase. Figs. 7.9(d)-7.9(f) shows that the pattern of the isotherms are
almost the same and spread the whole channel over a period for all values of Da. Since, the
transfer of the disturbance temperature takes place mainly by diffusion, leading to a more
stable flow configuration. The isonanoconcentration lines and isosolute for the flow in a
vertical channel are depicted in Figs. 7.9(g)-7.9(i) and Figs. 7.9(j)-7.9(1), respectively. These
figures reveal that the isonanoconcentration lines and isosolute lines are more concentrated
in the centre of the channel over a period for different values of permeability. It is noticed
that the isonanoconcentration lines and isosoultes lines have also a two-cell structure with
each cell on either side to the centre of the channel. Further, it is observed that the size of

the cells is decreasing as the Darcy number is increasing.

The influence of magnetic parameter on the pattern of streamlines, isotherms, isonanocon-
centrations and isosolutes for Da = 0.1, is shown in Fig. 7.10. From Figs. 7.10(a) - 7.10(c),
it is noticed that the flow is controlled by bi-cellular patterns where one cell (primary cell)
has full structure but another one (secondary cell) has half structure. It is noticed that
the streamline pattern looks like moving downwards the vertical channel as the value of
the magnetic parameter Ha increase. The shape of the inner cells in each of the bi-cellular
structure is changed with increasing of the strength of magnetic field. The isotherms of the
flow are presented in Figs. 7.10(d) - 7.10(f). Here also the isotherms are looking like shifting
downwards the vertical channel as the Hartmann number Ha increase. The isotherms occu-
pies the large part of the channel for all values of Ha. The iso-nanoconcentration contours
and isosolutes of the flow are depicted in Figs. 7.10(g)-7.10(i) and 7.10(j)- 7.10(1). The
variation of the isonanoconcentration contours and isosolutes with the increasing values of
the magnetic parameter are similar. Both the patterns are dense at the centre of the chan-
nel. The magnitude of the stream function, isotherms, isonanoconcentration and isosolutes
reduce indicating the system becoming more stable with augmenting value in the Hartmann

number.
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Table 7.2: Convergence of the least stable eigenvalue by Chebyshev collocation method.
Here Da = 0.1, Ha = 2, Pr =7, Ra = 10, Rn = 10, Rs = 200, Ln = 40, ¢ = 0.6, Ny = §,
N = 0.2, Le = 1000, Sr = 0.5, Dy =0.04, « = 1 and = 0.

N Least stable eigenvalue

30 7.485859172934-0.043104194212i

40 7.486328518031-0.0431923580071

45 7.486321875150-0.043187337026i1

50  7.486321164723-0.043187583713i1

51  7.486321141281-0.043187659108i

55  7.486321134844-0.043187629962i

60  7.486321156386-0.0431876533301
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Figure 7.1: Basic velocity profiles for Rs = 200, Rn = 10 and Ln = 40.
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Figure 7.2: Instabilities boundaries in (Ha, Rac)-plane for different values of 3, when Da =
0.1, Pr=7,Rn = 10,e = 0.6, Rs = 200, Le = 1000, Ny = 8, Ng = 0.2, Ln = 40,57 = 0.3
and Dy = 0.04.
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Figure 7.3: Instabilities boundaries in (a) (Ha, Ra.)-plane and (b) (Ha, a.)-plane for differ-
ent values of Da when Rs = 200, Ln = 40, Sr = 0.3, Dy = 0.04.
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Figure 7.4: Instabilities boundaries in (a) (Ha, Ra.)-plane and (b) (Ha, a.)-plane for differ-
ent values of Rs when Da = 0.1, Ln = 40, Sr = 0.3, D¢ = 0.04.
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Figure 7.5: Instabilities boundaries in (a) (Ha, Ra.)-plane and (b) (Ha, a.)-plane for differ-
ent values of Ln when Da = 0.1, Rs = 200, Sr = 0.3, Dy = 0.04.
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Figure 7.6: Instabilities boundaries in (a) (Ha, Ra.)-plane and (b) (Ha, a.)-plane for differ-
ent values of St when Da = 0.1, Rs = 200, Ln = 40, D¢y = 0.04.
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Figure 7.7: Instabilities boundaries in (a) (Ha, Ra.)-plane and (b) (Ha, a.)-plane for differ-
ent values of Dy when Da = 0.1, Rs = 200, Ln = 40, Sr = 0.3.
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Figure 7.9: The disturbance of streamlines ((a) to (c)), isotherms ((d) to (f)), isonanocon-
centrations ((g) to (i)) and isosolutes ((j) to (1)) for various values of Darcy number (Da)
over one period.
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Figure 7.10: The disturbance of streamlines (a) to (c), isotherms (d) to (f), iso-
nanoconcentrations (g) to (i) and isosolutes (j) to (1) for various values of Hartmann number
(Ha) over one period.
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7.6 Conclusions

The linear stability of double-diffusive convective with a transverse magnetic effect in a ver-
tical channel filled with a nanofluid saturated porous medium for Brinkman-extended Darcy
model is examined. The influence of the Hartmann number (Ha) is studied numerically
with the Chebyshev spectral collocation method. The critical Rayleigh number and critical
wavenumber are calculated and the results displayed graphically for various values of Da,

Rs, Ln, Sr and Dy against Ha. The main observations from the obtained results are:

e The stability of the fluid is emphasized with an increase in the value of the magnetic

parameter. Thus, the Hartmann number (Ha) has a stabilizing effect on the flow field.

e Permeability of the medium has a stabilizing effect on the flow regime and it increases
rapidly when permeability increases. Thus, impacts of rising Da postpone the onset

of convection.

e The effect of the solutal Rayleigh number (Rs) on the stability of the system is not

significant but it dual effect on the size of convection cells.

e Thermo-solutal Lewis number (Ln), Soret parameter (Sr) and Dufour parameter (D)
have destabilizing nature of the flow in a vertical channel. Hence, the effects of in-

creasing these parameters are to advance the onset of convective motion in the flow

field.

e The dimension of the convective cells is becoming more with the rising effect of Ha and
Rs, becoming less for the enhancing effect of Dy, while it is showing a dual character

with rising the effect of Ln and Sr.
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Chapter 8

Effect of local thermal
non-equilibrium on the stability of the
flow in a vertical channel filled with

nanofluid saturated porous medium !

8.1 Introduction

The majority of the theoretical studies available in the literature have been observed by
considering LTE between the fluid, particle and porous medium. The study of LTNE state
for nanofluid is found to be a significant research area due to its interesting applications in
cooling and drying of foods, microwave heating and rapid heat transfer etc. Nield and Bejan
[78] discussed LTNE model for fluid phase and solid-matrix in the temperature equation,
instead of using the LTE model. Bera and Khandelwal [19] analyzed the instability of non-
isothermal Poiseuille flow in a vertical porous channel under the influence of LTNE state.
Recently, Mahajan and Sharma [70] discussed the effect of LNTE on the onset of convection

in a magnetic nanofluid layer.

From the literature survey, it is noticed that the stability characteristics of a nanofluid
in a vertical channel under LTNE state between fluid and particle phases and fluid and

solid-matrix phases has not been studied.

In this chapter, we analyzes the effect of LTNE on the stability of convection in a nanofluid
flow through a vertical channel occupied with porous medium. A linear stability analysis

is carried out by adopting normal modes. Then, the system of differential equations for

! Accepted in “Journal of Heat Transfer”
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small disturbance is solved entirely using the spectral method. The computational results

are analyzed graphically for diverse values of the governing LTNE parameter.

8.2 Mathematical Formulation

Consider an incompressible, unsteady nanofluid flow in a vertical channel of width 2L
bounded by two impermeable and perfectly thermally conducting walls. The schematic
representation of the problem is displayed in Fig. 6.1. The LTNE state between fluid, parti-
cle and solid-matrix phases is assumed. The three-temperature model is considered. Three

heat transport equations are thus considered, one for each of the three phases.

Applying Oberbeck-Boussinesq approximation and Darcy-Brinkman model for the flow

in the porous medium, the governing equations of the flow are:

V-u=0, (8.1)
0
Ps (%a—ltl + é(u . V)u) = —Vp+ iViu — %u
+ [ppp + (L = @)pe{l — Sr(Tr — T1)}] &, (8.2)
(1 — 1) (pc)ee (% + %u . VTf) = (1 — 1)k V2Tr + (1 — ¢1)e(pe)y

D
X [DBV¢ VT + ?TVTf : VTf] — h(Ty = T,) — he (T = To),  (8.3)
1

oT, 1
«é1(ecp ( o tew VTp) = c1ky VT, + hiy(Th — T, (8.4)
oT, ,
(1— e)(pc)sg = (1 — e)ks VT, + h(T7 — T), (8.5)
o6 1 D
a—(f +-u- Vo = DgV2%p + ?EVQTf, (8.6)

where subscripts ‘f’, ‘p’ and ‘s’ refers to fluid, particle and solid phases. T¢, T}, and Tj
are temperatures in three phases, hg, and hg are the inter-phase heat transfer coefficients

between the fluid and particles phases and fluid and solid phases, respectively.

132



The corresponding boundary conditions are written as

r=—L: UZO, Tf:Tl, Tp:Tl, TS:Tl, ¢:¢2, (87&)
,ZE:LZLI:O,T‘f:TQ, ZTIPZZTQ7 TS:T2,¢:¢1. (87b)

The non-dimensional scheme is defined by

* ok ¥\ (I,y,Z) * kR (U,U,’UJ)L * Kp * agt
(x ?y7z)7 L ) (u?/v 7w)7 af Y p 7/1,0@’ 7L27
T — T T, — T T, — T, —
Tf* _ f 1’ ; _’p 17 s* _ 17 ¢* _ ¢ (bl ’ (88)
Ih—-T -1, =T, P2 — b1
where oy = () is the thermal diffusivity of porous medium.
PC)t

Substituting the non dimensional variables given in Eq. (8.8) in the governing Eqs. (8.1)-
(8.6), the boundary conditions Eq. (8.7) and dropping asterisk, we get

V.ou=0, (8.9)
1 (’9u 1 9 . . .
825 (u Vu| = =Vp+ ADaV*u — u + RaTié, — Rngé, — Rméy, (8.10)
oIy 1 N Na N
a—tf+ u-VT; = VTi+ —Bv¢~VTf+ A BVTf VT — Nup(Ti—T,) — Nus(Ti—T2), (8.11)
T, 1
E +-u- VT, = epV>T, + vp Nup (Tt — T,), (8.12)
T,
e esV* Ty + s Nus(T; — To), (8.13)
9¢ 2
E—l——u Vqﬁ——V <b+ V 1z, (8.14)
r=—-1:u=0,T4=0,1T,=0, T, =0, ¢ =1, (8.15a)
r=1:u=0 Tr=1 T, =1, T,=1, ¢=0. (8.15b)
g, L? he L? .
here Nyp = ————— and Nys = ——————— are the inter-phase heat transf t
where Nyp 0= ok and Nyg Aok are the inter-phase heat transfer parameters
1-— 11—
called as Nield number([117]), 7p = (1= 91) (po)r and v = el = 91) (pe)s are modified
¢1 (PO (I=¢) (po)s

ky (pe)e 4 o= (po)s
ke (pe)p ke (pc)s

ratios, respectively. To avoid too many parameter studies, the viscosity ratio (A) is taken as

thermal capacity ratios and ep = are modified thermal diffusivity
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constant 1.

8.3 Basic state solution

The flow in the basic state is assumed as steady, unidirectional and fully developed and is
permit a solution of the form: ug = (0, Vh(x),0) is the basic velocity vector, Ty = Tio(x)
is the basic temperature for fluid phase, T,0 = Tpo(x) is the basic temperature for particle
phase, Ty = Ty () is the basic temperature for solid phase, ¢y = ¢o(x) is the basic volume
fraction and py = po(y) is the basic pressure. Under these situations, the governing Eqs.
(8.9)-(8.14) reduce to

RAYA 1 _1dpy, Ra +Rn¢ _l_Rm
d2 Da ' Dady Da ™' Da’" Da’

(8.16)

Ty NpddodTyy NaNg [dT\>
o, Npdg o, A B( fo) + Nup(Tpo — Tio) + Nus(Tso — Tho) = 0, (8.17)

dzx? Le dx dx Le dz
P d:zfé’o + e Nup (T — Tpo) =0, (8.18)
€s d;f;() + 75 Nus (T — To) = 0, (8.19)
‘ZZ@O + Ny d;;f“ =0. (8.20)
The associated boundary conditions are:
r=—1: Vo=0,Tp=0,Ty=0, Tyy=0, ¢ =1, (8.21a)
r=1: V=0, To=1 Tyo=1 Ty=1, ¢o=0. (8.21Db)

As explained in Chapter - 6, solutions of the Eqs. (8.17)-(8.20) and Eq. (8.16) with boundary
conditions Eq. (8.21) are

Tro = Ty = Ty = 1;:(; and ¢y = 1;5”, (8.22)
_ |, _ cosh(z/VDa) Ra+ Rn\ [ sinh(z/vDa)
o= [1 cosh(1/v/Da) *( 2 ) Smhu/w—a)]’ (8.23)

sinh(2/v/Da)
sinh(2/v/Da) — v/Da(cosh(2/v/Da) — 1)

where s =
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8.4 Linear stability analysis

As in Chapter - 6, imposing the infinitesimal disturbances (§) on the basic state solutions,
neglecting 62 and higher order terms and then using the usual normal mode form to express
infinitesimal disturbances of corresponding field variables, and eliminating pressure terms

from the resulting equations, the linearized stability equations become

d*a o A% 9 9\ o (1 d*4 9 2
Da[ﬁ—% +B) +(a +ﬁ)u] Va(%_)[ﬁ_m + B)u
i d2VOA dT; do
eVa ol [—— o? + B }—zozRad——i—szn% =0, (8.24)
g dVy . i« . d*n 9 ona . . -

_— V— —Da |—; — — BRaT; Rn¢p =0, (825
=i (Vo= ¢ ) i = Da | ) — (o + 8| + 7~ BRaTi+ BRnd = 0, (3.25)
1dTy . LT, Ng [ dy T\ d1}
e e O | B A e e

Ng dTy do .
B R U T, —T1) — Nus(T, — Tp) = 2
Te do du up(Tp — 1) us(Ts —Tr) =0,  (8.26)
1dT, . . 41 A
e w(—%—@Tp—ep[ Tz — (@ + )T = wNup(Ti = T,) =0, (8.27)
A 2T o
iacTy + €5 {? —( 2+52)TS] + Y Nus (Tt — 13) = 0, (8.28)
Ldgy . -1 | d% 2 2 NA d*T; )
-0 “Vp—c)p—— |— SESRE 2
where u(x) = (4,0, w) and 7 = 0 — aw.
The associated conditions on the boundary are
odu . - . P
U= =0 = Ti=T,=Ts=¢=0 at z=FL. (8.30)

8.5 Results and discussion

The system of Egs. (8.24)-(8.29) along with Eq. (8.30) form a generalized eigenvalue problem
with complex disturbance wave speed as the eigenvalue and solved using Chebyshev spectral
collocation method ([27]).
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To examine the convergence, the least stable eigenvalues are calculated by switching the
number of grid points (V) and tabulated them in the Table 8.1 for arbitrarily chosen values of
governing parameters. This table shows that the least stable eigenvalue achieve convergence
requirement of 10~7 for N > 51. The results are consistent for increasing values of N. The
same tendency has been observed for other governing parameter values. As a result, the

numerical computations have been performed with N = 51.

The results obtained from the present analysis are verified by comparing with the pub-
lished results of channel flow with equal temperatures at the walls and in the absence of a
porous medium for local thermal equilibrium. The critical Reynolds number Re. and critical
wavenumber «. for the isothermal channel are obtained as Re. = 3848.278 ( in this paper
1/Pr ) and a, = 1.0205 from the present analysis by setting Ra = 0, Rn = 0, Da = 105,
B=0,e=1 Nyr=0, Ng =0, Le = 10", Ngp = 0, Ngg = 0, ep = 1 and €5 = 1. These

values are in good agreement with those given by Orszag [84].

The effect of LTNE state on the instability mechanism studied in a vertical channel filled
with nanofluid saturated porous medium. The flow is governed by fourteen parameters,
namely, Ra, Rn, Da, Pr,e, Nx, Ng, Le (related to LTE state), Ngp, Nus, Vp, 7s, €p and eg
namely, inter-phase heat transfer parameters Nygp and Nys, modified thermal capacity ratios
~vp and g and modified thermal diffusivity ratios ep and eg are also added in the governing

parameters list.

As the number of parameters are more, the analysis is simplified to focus on the effect of
LTNE parameters only. Therefore the LTE parameters fixed at Da = 0.5, Pr =7, Rn = 10,
e = 0.6, Ny, = 8, Ng = 0.02 and Le = 100 for the rest of discussions. The dimension
of the least stable mode is studied by computing the critical Rayleigh number for integer
and non-integer values of spanwise wavenumber () in the (Nyp, Ra.) and (Nys, Ra.)-planes
and presented in Fig. 8.1. From this figure, it is clarified that the computational results
conform the Squire’s theorem [104] for LTNE state, i.e., least stable mode is two dimensional.

Therefore, in the entire section, 8 has been taken to zero.

The variation of critical Rayleigh number (Ra.) and critical wavenumber (a.) calculated
as functions of Nield numbers Ngp and Ngg for different LTNE parameters and plotted in
Figs. 8.2-8.7. Since, an increase in the values of Nyp and Nyg rises the heat-release from
fluid to solid and fluid to nanoparticle or vice-versa, respectively, the variation of Rayleigh
number is significant up to a certain value of Ngp or Ngg and further than that all the
three phases have nearly the identical temperatures and operate as a single phase, i.e., local

thermal equilibrium state will be attained. This is because, the temperature differ by an
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amount which is of order 1/(inter-phase heat transfer parameters) when Nyp — oo and

NHS — OQ.

The influence of Ngp and Nyg on the critical Rayleigh number Ra. and critical wavenum-
ber wavenumber «, with is presented Figs. 8.2 and 8.3 for different values of Nield numbers
for fluid/solid-matrix and fluid/particle inter-phases, respectively. Fig. 8.2(a) indicates that
the critical Rayleigh number reduces with Nyp, but rises due to the rising effect of Nyg. The
same characteristic of Ra. has been observed in the Fig. 8.3(a) for the impact of inter-phase
heat transfer parameters. Further, it is observed that the variation of Ra. is insignificant
when Nygp and Nyg are very small. This is happening because, at Ngp — 0, Nys — 0, i.e.,
occurrence of heat transfer between fluid/nanoparticle and fluid/solid-matrix inter-phases
are almost zero. Thus, the convective instability does not affected in this situation. Also,
it is recognized that the variation of the critical Rayleigh number is almost uniform when
Nygp — o0 and Ngg — oo. Therefore, the system behaves like LTE state for both the limiting
cases for Nyp and Nyg. Further, it is distinguished that the system converges to destabilize
for the intermediate values of Ngp, while opposite nature for the system has been recorded
for the intermediate values of Nug. After that, the variation of critical wavenumber are
displayed in Figs. 8.2(b) and 8.3(b) for the effect of Ngp and Nys, respectively. We observe
that alternation of a. is almost negligible when Ngp — 0 and Ngg — 0, and when Ngp — 00
and Nygg — oo. Therefore, a. approaches to its LTE value for both the limiting case, i.e.,
Nup — 0, Ngs — 0 and Ngp — oo, Ngs — oo. It is noticed that a,. decreases firstly up
to certain value of Nyp and after that it increases very quickly in the intermediate value of
Nyp, as shown Fig. 8.2(b). This is may be happen due to the domination of heat transfer
of fluid/ particle by fluid/solid-matrix. But, a. decreases monotonically in the intermediate
value of Nyg, as displayed in Fig. 8.3(b). Further noticed that, a. decreases with Nyg, while

reverse trends has been noted for the effect of Nyp.

Figs. 8.4 and 8.5 are presented the impact of modified thermal capacity ratios, vp and
s on the critical Rayleigh number and corresponding wavenumber with inter-phase heat
transfer parameters by fixing the other governing parameters. It is noticed that Ra. increases
with vp as shown in Figs. 8.4(a) and 8.4(b), while it decreases with 75 as portrayed in Figs.
8.5(a) and 8.5(b). Thus, vp has a stabilizing effect, while the system is destabilize due to the
rising effect of v5. Also, a, increases with vp as pictured in Figs. 8.4(c) and 8.4(d), while it
has dual nature for the effect of 75 as captured in Figs. 8.5(c) and 8.5(d).

The influence of the modified thermal diffusivity ratios, ep and eg, on Ra. and corre-
sponding a. are depicted in the Figs. 8.6 and 8.7 with inter-phase heat transfer parameters,

respectively. It is seen that Ra. increases with the modified thermal diffusivity ratios except
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in the plane (Nyp, Rac) as displayed in Fig. 8.7(a). This may be the reason that the impact
of eg does not affect the instability boundary when the system absorbed more heat between
fluid /particle inter-phase as compared with fluid/solid-matrix inter-phase. The correspond-
ing wavenumber increases with the enhancing values of the modified thermal diffusivity
ratios, as shown in Figs. 8.6(c)-8.6(d) and 8.7(c)-8.7(d).

The impact of Nield number Nyp on the instability boundary curve in Figs. 8.2 and
8.4-8.7 are more highlighted by means of the plots of eigenfunctions at the critical position
and Fig. 8.8 presents the eigenfunctions for Ngp = 1,10 and 100 at yp = 0.04, v = 0.01,
ep = 0.7, e = 0.2 and Ngg = 50. From the figures, it is observed that magnitude of the
eigenfunctions for the velocities are more than the magnitude of the eigenfunctions for the
all three temperature phases and volume fraction. It is noticed from the Figs. 8.8(a), 8.8(b),
8.8(d) and 8.8(e) that magnitude of the eigenfunctions of the velocities disturbances in the x-
direction, y-direction and temperature disturbances for fluid and solid phases, respectively,
decreases when Nyp increases. Also, magnitude of the eigenfunctions of the temperature
disturbances for fluid phase increases when Nyp increases as displayed in Fig. 8.8(c). But,
the variation of the magnitude of the eigenfunctions of volume fraction are almost negligible
due to the effect Nyp, as depicted in Fig. 8.8(f).

The influence of Nield number Nyg on the instability boundary curve in Figs. 8.3-8.7
are more enlightened by means of the plots of eigenfunctions at the critical position and Fig.
8.9 presents the eigenfunctions for Ngyg = 1,10 and 100 at vp = 0.04, v = 0.01, ep = 0.7,
s = 0.2 and Ngp = 100. Here also, it is observed that magnitude of the eigenfunctions for
the velocities are more than the magnitude of the eigenfunctions for the all three temperature
phases and volume fraction. It is noticed from the Figs. 8.9(a), 8.9(b) and 8.9(e) that
magnitude of the eigenfunctions of the velocities disturbances in the x-direction, y-direction
and temperature disturbances for solid phase, respectively, increases when Ngp increases.
Also, magnitude of the eigenfunctions of the temperature disturbances for fluid and particle
phases decreases when Npp increases as displayed in Figs. 8.9(c) and 8.9(d). But, the
variation of the magnitude of the eigenfunctions of volume fraction are almost negligible due
to the effect Npp, as depicted in Fig. 8.9(f).

Apart from the variations of critical Ra and critical a, with different parameters, to
understand the dynamics of the flow field and behaviour of the patterns of temperature and
volume fraction are demonstrated by means of the contour plots of streamlines, isotherms
and isonanoconcentration at critical level is plotted in Figs. 8.10-8.11 with different values
of inter-phase heat transfer parameters or Nield numbers Nyp and Nyg for fixed values of

other parameters vp = 0.04, 75 = 0.01, ep = 0.7 and 5 = 0.2.
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In the case of streamline contour, the positive contours are concomitant with clockwise
rotation, whereas, the negative contours are concerned with anti-clockwise rotation and
for the case isotherms and isonanoconcentrations contour, solid lines indicate the positive

contours while dashed line exhibits the negative contours.

Fig. 8.10 illustrates the pattern of streamlines, isotherms and isonanoconcentrations for
various values of Nyp for Nyg = 50 over one period. From Figs. 8.10(a)-8.10(c), it is observed
that the flow is mainly controlled (two asymmetric cells), where one cell (primary cell) is
rotating clockwise direction and the other cell (secondary cell) is rotating anticlockwise
direction. The shape of the inner cells of this bi-cellular structure is changing with the
increasing values of the heat transfer parameter for fluid/nanoparticle inter-phase. Further,
it is noticed that the primary cell pushes the secondary cell in upwards direction in the vertical
channel as the value of Ngp increases. The pattern of the isotherms for fluid, nanoparticle
and solid-matrix phases are almost the same over a period for all values of Nyp shown in
Figs. 8.10(d)-8.10(1). This is because the transfer of the temperature receives mainly by
diffusion, indicating to disturbances into flow configuration. The isonanoconcentration lines
for the flow in a vertical channel are depicted in Figs. 8.10(m)-8.10(o) and shows that a
two-cell structure is spreading in the middle portion of the channel over a period for different
values of Nygp. Also, we did not observe any significant variation in the isonanoconcentration
pattern due to the effect of Ngp. Further, it is noticed that the size of the convective cells

reduces as the inter-phase heat transfer parameter for fluid/nanoparticle rises.

The influence of the fluid /solid-matrix inter-phase Nield number (Npg) in the pattern of
streamlines, isotherms and isonanoconcentrations for Ngp = 100 is displayed in Fig. 8.11
over a period. From Figs. 8.11(a)-8.11(c), it is noticed that the flow is controlled by bi-
cellular patterns where one cell (primary cell) has full structure but another one (secondary
cell) has half structure. It is noticed that the streamline pattern looks like moving downwards
the vertical channel as the value of Nygg enhances due to variation of critical eigenvalue value.
The shape of the inner cells in each of the bi-cellular structure is changed with increasing
the potency of the heat transfer parameter for fluid/solid-matrix phases. The pattern of
the isotherms for fluid, nanoparticle and solid-matrix phases are portrayed in Figs. 8.11(d)—
8.11(1) are looking like shifting downwards in the vertical channel Nyg increases. Since,
the transmission of the disturbance temperature occurs primarily by diffusion, directing to a
more stable flow configuration. The variation of the isonanoconcentration contours is plotted
in Figs. 8.11(g)-8.11(i) and observed that patterns are dense at the middle portion of the
channel. The magnitude of the stream function, isotherms and isonanoconcentration reduce

indicating the system becoming more stable with augmenting the value of Nys.
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Figure 8.1: Instabilities boundaries in (a) (Nygp, Rac)-plane at Ngg = 50 and (b) (Nus, Rac)-
plane at Ngp = 100 for different values of § when vp = 0.04, 75 = 0.01, ep = 0.7 and
g = 0.2.

Table 8.1: Convergence of the eigenvalue for least stable mode by Chebyshev collocation
method. Here Da = 0.5, Pr =7, Ra = 20, Rn = 10, ¢ = 0.6, Ny = 8, Ng = 0.02, Le = 100,
Ngp = 100, Ngs = 200, ep = 0.7, es = 0.2, p = 0.08, 75 = 0.03, « = 1 and g = 0.

N Least stable mode

20 1.381714977153-0.001363069077i
25 1.382332575796-0.001675627942i
30 1.382331740470-0.001669739266i
40 1.382331654595-0.001669726083i1
45 1.382331990285-0.001669694091i
50 1.382331733296-0.001669754193i
51 1.382331725969-0.001669747977i
55 1.382331722677-0.001669748729i
60 1.382331726960-0.001669749819i
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8.6 Conclusions

The impact of local thermal non-equilibrium (LTNE) state on the onset convection of
nanofluid flow in a vertical porous-medium channel is investigated. The Darcy-Brinkman
model for the porous medium and three medium temperature treatment has been taken for
the energy equation. Stability of the flow is analysed using normal mode technique. The

main observations from the obtained results are:

e The rising effect of Nys, vp and ep delay the convective motion, while v5 and Ngp give

the onset convection quickly.

e Enhancing the effect of eg postpones the convection when Nyp dominated by Nys,
but in the opposite case, the effect of g is insignificant on the convective motion.
However, the destabilizing characteristic of Ngp and stabilizing characteristic of Nyg
die out when they converge to zero and beyond sufficiently large values of them, where

system behaves as in LTE state.

e The size of the convective cells reduces on rising the values of vp, ep and g, while dual
character has been observed for increasing values of 75 and Ngg when Nygg dominates

to Nyp, otherwise cells size increases.

e The size of the cell decreases with enhancing the value of Ngp, while Nyg is more than

Nyp, otherwise it has a dual character on it.
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Chapter 9

Local thermal non-equilibrium effect
on the convective instability in a
vertical channel filled with nanofluid
in the presence of transverse magnetic

field !

9.1 Introduction

The study of LTNE for nanofluid saturated porous media turns to be an important research
area due to its interesting applications in Engineering and science. Several reserchers consid-
ered the stability of the fluid flow in porous layer /channel with different physical situations.
Although the influence of the magnetic field on the flow of nanofluids is important, relatively
little attention was paid in the literature [7, 8]. Hudoba and Molokov [59] studied the effect
of internal heat sources and a transverse magnetic field of a buoyancy convective flow in a
channel. Mahajan and Sharma [70] considered the effect of LTNE on the onset of convection

in a magnetic nanofluid layer.

In this chapter, the stability characteristics of nanofluid flow in a vertical channel under
LTNE mode for fluid and solid particle are examined. The linear disturbance equations are
solved by applying the spectral method and obtained results are verified with existing results

in the literature.

!Communicated in “Special Topics € Reviews in Porous Medium - An international journal”
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9.2 Mathematical Formulation

Consider an unsteady, incompressible, electrically conducting nanofluid flow in a vertical
channel of width 2L bounded by two impermeable and perfectly thermally conducting walls.
Assume that the nanofluid is modelled by the Buongiorno [25] model and under LTNE mode.
The coordinate system is shown in Fig. 9.1. Let &4, &, and €, be the unit vector along z—,
y— and z— direction. The heat flow is described using two temperature equations model
by considering the LTNE between the particle and fluid phase. Also, a uniform magnetic
field By = Bé,, where B is the strength of the magnetic field, is applied normal to the
channel. The assumption that the neglect of induced magnetic field in comparison with the
applied magnetic field gives the magnetic Reynolds to be small. With these assumptions,

the governing equations are

T: T2

Figure 9.1: Graphical representation of the problem.

V-v=0, (9.1)
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05 [% (v v)v] = —Vp+ Vv +jx Bo+ [ppp + (1 — @)pe{l — Br(Tr — T1) g, (9.2)

T D h
(pc)e [—f +v- VTf] = keV2Tr + (po)y {DBW VT + ?QTVTf VT + —2 (T, — Tp),

ot (1—¢1)
(9.3)
oT. h
(pC)p {a—tp +v- VTP] = k:pV2Tp + (b—ff(Tf —T5), (9.4)
¢ B 2, Proo
5 TV Vo= DuV'o+ VI (9.5)

where v(= (u,v,w)) is the nanofluid velocity vector and other quantities are defined in

previous chapters.
The conditions on the walls of the channel are
v=0, Ti=T, T,=T, ¢=¢ at x=-L, (9.6a)

v=0, Ti=T; 1T,=T5, ¢=¢1 at zxz=0L. (9.6b)

Substituting Eq. (8.8) in the governing Eqs. (9.1)-(9.5) and the boundary conditions Eq.
(9.6) and dropping tildes, we get

V.-v=0, (9.7)
1 [0

o {O—‘t’ + (v - v)v} = —Vp+AV*v + Ha*(v x &) X & + RaTw@, — Rng&, — Rmé,, (9.8)

7T, N, Na N,
v VL = VT + 22V - VIi + ——BVT; - VI + Nup(Tp, — T),  (9.9)

ot Le Le

oT, 9
E +v- VTP = €pv Tp -+ ")/pNHp(Tf — Tp), (910)
99 o2 2
Le E+V~V¢ = V¢ + NAVTi, (9.11)
v=0, T;=0, T,=0, ¢=1 at x=-1, (9.12a)
v=0, Tr=1 1T,=1 ¢=0 at z=1, (9.12Db)
1 —

where 7p = ( ?1) (po)s is the modified thermal capacity ratio, and ep = Z—‘: is the thermal

¢1 (Pc)p

diffusivity ratio. The remaining parameters are already defined in the previous chapters.
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9.3 Basic state solution

In the basic state, the flow is considered to be steady, unidirectional and fully developed and
the corresponding form are as mentioned in the previous chapter. With these considerations,
the Egs. (9.7)-(9.11) reduce to

d?V; d
O Ha*Vy = 2 _ RaTy + Rneo + Rm, (9.13)
dx? dy
d*Tyy  NpdeydTyy | NaNg (dTn\’
B Nup(Too — Tho) = .14
da? Le dz dx Le dx + Nae p0 o) =0, (9.14)
d2T
d 5 + ’YPNHP(TfO — TpO) O (915)
d*¢o d*Tr
N =0. 9.16
dx? A dx? ( )

Following Chapter - 8, the basic state solutions are given by

B 1+x 1—=x

Tf() = Tp() = and ¢0 = 9 s (917)
cosh(Hax) (Ra + Rn) sinh(Hax)
=r|l— — 1
Yo r[ cosh(Ha)] 2Ha? sinh(Ha) (9.18)

where r = Ha ( sinh(2Ha) )

Ha(sinh(2Ha)) — cosh(2Ha) + 1

9.4 Linear stability analysis

As in Chapter - 6, imposing the infinitesimal disturbances (§) on the basic state solutions,
neglecting 6 and higher order terms and then using the usual normal mode form to express
infinitesimal disturbances of corresponding field variables, and eliminating pressure terms

from the resulting equations, the linearized stability equations become

d*a d*a iaVy [d*a ia d?V;
“r 9 2\ ¢ v 2 232~ o | 9 2\ L dvo .
LH @+ P tla +5)“} I PR A e
,d20 dT; do ioe [d*a )
—HCL @ — ZQRG% + Z&Rn% = —ﬁ |:d B (CY + ﬁ ) 1 X (919>
B dVy . iaVy . dzﬁ ) _iac,
ﬁ%al Pr n dr ) (Of ‘f‘ﬁ ) ‘f‘HCL 77 BRan‘f'ﬁRngb P_ (920)
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AT . - | 2T . Ny dTy [ do dTy\  Ng doo dT;
el P e Tp| - 2B (99 o, 20 BP0t
dx U+ iaVoli da? (" + 57 Le dx \ dx +2la dx Le dx dx

—Nup(T, — Ty) = iacTy,  (9.21)

dTh . . o PT, 5 s L
ppa +iaVpT, —ep o (a4 B9)T, | — vwNup (Tt — 1p,) = iacTy, (9.22)
¢0 ~ 1 Q(b 2 N NA d2Tf 9 o\ ) ~
—xu+zaV0¢—L—e F_( + 7)o -7 W—(a + /7)1t | = iacp,  (9.23)
where 1 = 0 — aw and v = (4, 0, W)
The associated boundary conditions are
odu . - L
=7 =i=T=T,=9=0 at o=7L (9.24)
x

9.5 Results and discussion

The system of differential equations (9.19)-(9.23) together with Eq. (9.24) form a generalized
eigenvalue problem with ¢ = ¢, + ic; as the eigenvalue. This eigenvalue problem is solved

using spectral collocation method.

To check the convergence, the least stable eigenvalues are computed varying the number
of collocation points (N) as 10, 20, 30, 40, 45, 50, 51, 55 and 60 as shown in Table 9.1. In
each case, we found very good agreement between them. The same tendency is witnessed
by changing the values of the parameters. Hence, a grid size of N = 51 is adopted to be

satisfactory for the convergence criterion of 10~7.

The results obtained from the current study are checked by comparing the published
channel flow results for the local thermal equilibrium state. The critical Reynolds number
Re. and critical wavenumber «, for the isothermal channel are obtained as Re. = 3848.278
(in this paper 1/Pr ) and a, = 1.0205 from the current study by taking Ra = 0, Rn = 0,
Ha=0,=0,ep =1, Ny =0, N5 =0, Le = 10", Ngp = 0. These values are well in line
with those given by Orszag [84].

The influence of local thermal non-equilibrium (LTNE) state on the instability mechanism
studied in a vertical channel filled with nanofluid. The computations are carried out by taking

the viscosity ratio A = 1 and Prandtl number Pr = 7. The critical values of Ra and « have
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been represented by Ra. and a., respectively, throughout this section, and the variations
of them with different values of the governing parameters is shown on the (Nyp, Ra.) and
(Nup, e )-planes . Further, it is observed that the two dimensional mode is most unstable
for convective motion as shown in Fig. 9.2. Therefore, in the entire section, § = 0 has been

taken.

Fig. 9.3 represents the comparative neutral stability curves for different states of fluid.
It is observed that Rayleigh number Ra is less in the case of non-equilibrium mode than
equilibrium mode as shown in Fig. 9.3(a). Which indicates that LTNE mode is found to
quick the onset of convective motion than LTE mode. This observation can be explained
by the fact that the energy transfer occurs between fluid and particle phases due to the
temperature difference between them. Also, from Fig. 9.3(b), it is noticed that Ra is less for
nanofluids than clear fluids, or to say convection postpones in clear fluids than nanofluids.

Therefore, Fig. 9.3 exhibits that onset of convection sets in earlier when the nanofluids is
an under LTNE mode.

The influence of the magnetic paramter Ha, concentration Rayleigh number Rn, the
thermal diffusivity ratio ep, the modified thermal capacity ratio ~p, the inter-phase heat
transfer parameter (Nield number) Nyp, Lewis number Le and the modified diffusivity ratio
Na on the neutral stability curves for the least stable mode is depicted in Fig. 9.4. It is
evident from Figs. 9.4(a), 9.4(c), 9.4(d) and 9.4(f) that, an increase in the Ha, €p, vp, and
Le leads to an increase in the Rayleigh number Ra. With an increase in these parameters,
the stability area increases. Hence, these parameters stabilizes the system. Similarly, it is
perceived from Figs. 9.4(b), 9.4(e) and 9.4(g) that the Rayleigh number Ra is decreasing for
increasing values of Rn, Ngyp and N,. The influence of Ng on the Rayleigh number is almost
insignificant as shown in the Fig. 9.4(h). The variation of critical Rayleigh number (Ra.)
and the corresponding critical wavenumber (c.) calculated as function of inter-phase heat
transfer parameter or Nield numbers (Nyp) for various values of the governing parameters
and plotted in Figs. 9.5-9.10. Since it is to be noted that the increase of Nyp intensifies the
heat release from the nanoparticle to fluid or from the fluid to nanoparticles . Therefore,
the variance of Rayleigh number is assumed to be significant up to a certain value of Nyp,
beyond that they have almost the same temperatures and behave as a single phase, i.e. it
will achieve local thermal equilibrium state. This is because, the temperature differ by an
amount which is of order 1/(inter-phase heat transfer parameter) when Nygp — oco. The
values of the parameters are taken as Ha = 1, Rn = 15, Le = 50, Ny = 8, Ng = 0.2 and

~vp = 0.01 unless and otherwise specified.

The variation of critical Rayleigh number Ra. and corresponding wavenumber o, with
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Nield number Ngp are presented Figs. 9.5 and 9.6 for different values of Hartmann number
Ha and concentration Rayleigh number Rn, respectively. Figs. 9.5(a) and 9.6(a) indicate
that the critical Rayleigh number is decreasing with Nyp. Further, it is observed that the
variation of Ra,. is insignificant when Ngp is very small. This is happening because, at Ngp —
0, i.e., occurrence of heat transfer between fluid/nanoparticle inter-phase is almost zero.
Thus, the convective instability does not affected in this situation. Also, it is recognized that
the variation of the critical Rayleigh number is almost uniform when Nyp — oo. Therefore,
the system behaves like LTE state for both the limiting case of Nyp. Also, the same trend
has been observed for all the critical plots. Further, it is distinguished that the system
shows a destabilizing nature for the intermediate values of Nyp. Also, Ra. increases with an
increased values of Ha indicates that Ha has a stabilizing effect in the flow field as shown in
Fig. 9.5(a). Since the applied magnetic field is perpendicular to the direction of flow, there
is a tendency to produce a drag called the Lorentz force. As a consequence, the system uses
a great deal of energy to overcome this resistance and thus delays convection, giving rise
to a stabilizing effect. Thus magnetic field can be effectively used to regulate convection of
nanofluid in a channel flow. On the other hand, it has been observed that the convection
comes earlier due to the rising effect of Rn and it displayed in Fig. 9.6(a). After that, the
variation of critical wavenumber are displayed in Figs. 9.5(b) and 9.6(b) for the effect of Ha
and Rn, respectively. We observe that alternation of a. is almost negligible when Nyp — 0,
and Ngp — o0o. Therefore, a. approaches to its LTE value for both the limiting case, i.e.,
Nygp — 0 and Ngp — oo. It is noticed that a. increases quickly in the intermediate value
of Nyp and beyond that it has a uniform nature. Also, it has been seen that . increase
with Hartmann number (Ha) and concentration Rayleigh number (Rn) in the case of LTNE

mode.

The influence of the thermal diffusivity ratio ep and modified thermal capacity ratio 7p,
on Ra. and corresponding . are depicted in the Figs. 9.7 and 9.8 with inter-phase heat
transfer parameter, respectively. It is noticed that Ra. increases with ep and ~p as shown
in Figs. 9.7(a) and 9.8(a), respectively. Thus, ep and yp have a stabilizing effect on the flow
field under non-equilibrium mode. Also, «. decreases with ep and ~p as pictured in Figs.
9.7(b) and 9.8(b). Thus, the size of the convective cells increase with the enhancing values

of ep and ~p.

Figs. 9.9 and 9.10 are presented the impact of Lewis number Le and modified diffusivity
ratio N on the critical Rayleigh number and corresponding wavenumber with inter-phase
heat transfer parameter by fixing the other governing parameters. It is noticed that Ra.

increases with Le, while it decreases with N as shown in Figs. 9.9(a) and 9.10(a), respec-
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tively. Thus, convection sets delay due to the rising effect of Lewis number, while it comes
earlier for the enhanced value of modified diffusivity ratio in the LTNE mode. Also, the

dimension of the convective cells decrease with the increased values of Le and Nj.

The impact of inter-phase heat transfer parameter Nyp on the instability boundary curves
in Figs. 9.5-9.10 could be further enlightened through the plots of eigenfunctions u, v, T,
T p» and gfg at the critical position. In Fig. 9.11 represents the disturbance eigenfunction curve
for Ngp = 10,100 and 1000 at Ha = 1,Rn = 15,ep = 0.04,vp = 0.01, Le = 50, Np =
8, Ng = 0.2. The figures reveal that the magnitude of the eigenfunctions for the velocities
is greater than the magnitude of the eigenfunctions for the fluid phase temperature, the
particle phase temperature, and the volume fraction. We observed that the magnitude of
the eigenfunction for the temperatures disturbance for fluid phase and particle phase and
the volume fraction disturbance increase with Nyp increases, while it shows a decreasing
nature for the velocity disturbance of the x-axis and y-axis. Also, we have examined the the
variations of eigenfunctions in the absence and presence of the magnetic parameter in Fig.
9.12. It is observed that the magnitude of the eigenfunctions decrease with the rising effect

of magnetic field.

In addition to the variations of Ra. and a, with governing parameters, the contour
plots of streamlines, isotherms and isonanoconcentration at the critical level for various
values of inter-phase heat transfer parameter (Nyp) and magnetic parameter (Ha) are shown
in Figs. 9.13 and 9.14 by fixing the other governing parameters are at Ha = 1, Rn =
15,Le = 50,ep = 0.04,7p = 0.01, No = 8 and Ny = 0.2. The positive contours are
associated with clockwise rotation in the case of streamline contour, while the negative
contours are associated with anti-clockwise rotation. The solid lines indicate the positive
values for isotherms and isonanoconcentration contours, while the negative values are shown
by the dotted line.

The pattern of streamlines, isotherms and isonanoconcentrations for various values of Nyp
are shown in the Fig. 9.13 for Ha = 1 over a period. From Figs. 9.13(a)-9.13(c), The flow is
mainly regulated by bi-cellular structure i.e. two asymmetric cells, where one cell (primary
cell) rotates clockwise and the other cell (secondary cell) rotates clockwise. The form of the
inner contour of this bi-cellular configuration is modified by enhancing the value of the heat
transfer parameter Nyp. As shown in Figs. 9.13(d)-9.13(i), the isotherm cells are mainly
belongs to the right part of the channel for all values of Ngp, while only shiffting arrangement
has been seen with alternation of the inter-phase heat transfer parameter. This is because
the transfer of the temperature receives mainly by diffusion, indicating to disturbances into

flow configuration. Further noticed that the patterns of the isotherms for fluid and particle
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phases are same when Nyp = 1000, which indicates that temperature phases are coinciding
in a single phase as Nyp takes higher value. The isonanoconcentration contours for the flow
are depicted in Figs. 9.13(j)—9.13(1) and shows that for different values of Nyp, the two-cell
configuration moves to the right wall of the channel over a period. In addition, it is noted

that with an enhancement of Nyp, the dimension of the isonanoconcentration cells reduces.

Further, we have drawn the patterns of the contours in the absence and presence of
magnetic effect over a period when Nyp = 10. Here also, it is noticed that the stream-
line disturbances of the primary and secondary cells are moving along the y-direction as
shown in Figs. 9.14(a)-9.14(c). Also, it is seen in Figs. 9.14(d)-9.14(1) that isotherms and

isonanoconcentrations contours are shifting towards the right wall of the channel.

Table 9.1: Convergence of the least stable eigenvalue by Chebyshev collocation method.
Here Ha = 1.2, Pr = 7, Ra = 50, Rn = 12, ep = 0.05, vp = 0.001, Le = 30, Ny = 4,
Np = 0.007, Ngp = 100, « =1 and § = 0.

N (terms) Least stable eigenvalue
10 2.842701938014-0.2358316795741
20 2.836571699188-0.2370828089971
30 2.836571686677-0.237082760143i
40 2.836571683491-0.2370827530441
45 2.836571721854-0.2370827401831
50 2.836571699924-0.237082760318i1
51 2.836571715071-0.2370827636471
55 2.836571718023-0.2370827651041
60 2.836571711764-0.2370827641021
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9.6 Conclusions

The linear stability of nanofluid flow in a vertical channel has been investigated under the
influence of local thermal non-equilibrium (LTNE) mode in the presence of transverse mag-
netic effect. The model incorporates the effect of Brownian motion and thermophoresis has
been used into the momentum equation, under non-equilibrium conditions. The eigenvalue
problem solved numerically using spectral method and the effect of the various parameter on
the instability boundary has been calculated and presented them graphically. The following

conclusions are drawn.
e The system shows more unstable when the flow is two dimensional, i.e., when spanwise
wavenumber [ = 0.
e System becomes more unstable for LTNE as compared to LTE.
e Convection sets in earlier for nanofluid than clear fluid under LTNE mode.

e The effect of Rn and N advances the onset of convective motion, while convection
delays due to the effect of Ha,ep, 7p Le, and Ng.

e For small and large values of Ngp, LTNE converges to LTE. However, Ngp has a

destabilizing nature in the intermediate range.

e Dimension of the convective cells amplifies on rising ep and ~p while Ha, Rn, Le and

Na have no significant effect on the size of the convection cells.
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Chapter 10

The effect of changeable gravity field
on the stability of convection in a
porous layer filled with nanofluid:
Brinkman model !

10.1 Introduction

Due to fascinating uses in modern chemistry, chemical and nuclear industries, engineering
and technology and biomechanics, a massive number of papers have appeared in the literature
on nanofluid flow for the last few decades. In 1995, Choi [36] proposed the term “nanofluids”,
which are the mixtures of nanoparticles (ranged between 1nm and 100 nm) in a base fluid-
like water, kerosene, ethylene glycol, etc. The selection of the base fluid and nanoparticle

for nanofluid depends on the application is intended.

Recently, the heat transfer and fluid flow in a horizontal porous layer filled with nanofluids
is an active research area for convection problem because of its wide area of applications such
as chemical technology, geophysics, engineering and nuclear industries, food processing and
oceanography. The works of Horton and Rogers Jr. [58] and Lapwood [66] were extended for
nanofluid saturated in a porous medium based on the transport equations of Buongiorno’s
model by Kuznetsov and Nield [63], Chand and Rana [29], Nield and Kuznetsov [83], Rana
and Chand [88] etc.

It is understood that the concept of a uniform gravitational field is not true for large-scale

flows, such as the flow in the sea or the veil of the earth, as the gravitational field of the

!Published in “Computational Thermal Sciences: An International Journal”, 13(6), 1-17, 2021
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earth varies with altitude from the surface. Thus, a changeable gravity field with height
is to be considered for such problems. Pradhan and Samal [87] analyzed the instability
mechanism between two horizontal plates under the action of varying gravity field. Later,
several authors, to mention a few, Chand et al. [31], Yadav [123, 124] (see the references
therein) analysed the effect of gravity field variations on the instability mechanism in an

anisotropic porous layer filled with nanofluid

After reviewing the literature, it is noted that very lack attention has been paid on the
onset of convection due to the effect of the variable gravity field on the stability analysis of
the horizontal porous layer filled with the nanofluid using Darcy extended Brinkman model,
taking into account the effects of Brownian diffusion and thermophoresis. Such investigations
may be very useful to execute problem connected with the fluid flows for large-scale, such as

saturated soils, petroleum drilling, atmosphere, ocean, fuel piercing and space science.

In this chapter, linear, quadratic, cubic and exponential varying gravity has been consid-
ered to study the region of instabilities in a porous layer filled with nanofluid for rigid-rigid,

free-free and rigid-free boundaries.

10.2 Mathematical Formulation

Consider an incompressible nanofluid saturated in a horizontal porous layer of width L. The
geometry and coordinates system is shown in Fig. 2.1. The changeable gravity g is acting

toward negative z—direction.

Using the Oberbeck—Boussinesq approximation, the equations governing the flow are

Vou=0, (10.1)
ou . A
pef 5 = ~Vp + iViu — %u — [ppp + (1 = @)pe{1l — Br(T — 1) }g(2)é,, (10.2)
oT ) D
(pehm— + (pe)ra - VT =k V*T + €(pe)y | DV - VT + —=VT - VT| , (10.3)
1
O u Vo= DyVo+ T (104)
ot T ' '

The gravity field is assumed as a function of z i.e., g(z) = go(1 + AG(z)), where g, is the

reference gravity and A is the gravity variation parameter.

It is assumed that the isothermal boundaries are either rigid or free with constant temper-
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atures and the nanoparticle flux is zero on the boundaries, which is physically more realistic.

Hence,
ow O*w 0¢ Dy OT
=0, — L—=0, T=T; Dg—+——=0 at =0 10.5
R t 022 ’ b 5oz + T, 0z woE=u (10.52)
ow 9*w 0¢p Dy dT
=0, — —kl——=0, T=1T Dp—/—+——=0 at =1L 10.5b
w ) 92 K2 822 ) 2, BaZ T1 Oz a z ) ( )

where k1 and k9 are parameters which take the values 0 and oo for the rigid boundary and

free boundary cases, respectively.

The non-dimensional scheme is defined as follows:

(z,y,2) . _uL(pc) .  Kp(pc)

(2%, y",2") = 7 S e
amt T—-1T, ¢®— o1
th = — T = * = . 10.6

Eliminating pressure term from Eq. (10.2), substituting Eq. (10.6) in Egs. (10.1)-(10.4) and

dropping asterisk, we get

Da 9
%& (V*w) = ADaV*'w — V?w + (RaV{T — RnVi¢) (1 + AG(z2)), (10.7)
T s Ng NaNg
Yoy T VT = VT + Lengb VT + Ten VT VT, (10.8)
) 1, Na_,
o7 T Vo= Lemv ¢ + Lemv T. (10.9)

All the parameters are already defined in the previous chapters. The conditions Eq. (10.5)

in dimensionless form are

ow 0w 0¢ oT
= — —_— = T=1 — 4+ Ny— = = 10.1
w =0, o + K1 5. 0, 5, + A, 0 at z=0, (10.10a)
ow 0w 0¢ oT
w =0, 5, "5 0, 0, P + A, 0 at =z (10.10b)

10.3 Basic state solution

We look for a time independent, unidirectional and fully developed solution of the nanofluid,

which is of the form
Uy — O, TO == To(Z), ¢0 == ¢Q(Z) (1011)
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Then Egs. (10.8)-(10.9) can be written as:

d*Ty ~ Np dTy (dey dTy
—— | — 4+ Na— ) =0 10.12
it Le,, dx (dx T ’ ( )
d%¢y d*Ty
N = 0. 10.1
dx? T Na dx? 0 (10.13)
The boundary conditions for Ty(z) and ¢g(z) are:
Do 0Ty
Th=1 L= 4+ Ny— = t = 10.14
=1 5 + Na P 0 at z=0, (10.14a)
do Iy
Th — Ny—2 — t z=1. 10.14b
0=0, % + Na ER 0 at =z (10.14b)

On solving Eqgs. (10.12)-(10.13) with the boundary conditions Eq. (10.14), the basic tem-

perature and volume fraction fields found that, respectively:
To(z)=1-2 and ¢o(2) = ¢« + Naz, (10.15)

where ¢, is the reference value for nanoparticle volume fraction.

10.4 Linear stability analysis

As in Chapter - 6 (or Chapter - 2), imposing the infinitesimal disturbances (0) on the basic
state solutions, neglecting 4% and higher order terms and then using the usual normal mode
form to express infinitesimal disturbances of corresponding field variables, and by putting

n = 0, the equations for neutral stability modes are

[Da(D? — a®)? — (D? — a®)|w — a*(RaT — Rno)(1 + AG(z)) = 0, (10.16)
NN . Ng -
W+ (D2—a2— A BD)T——BD¢:0, (10.17)
€m Le,,
— Nt + &(m — T + L(D2 —a®)p=0 (10.18)
Le,, Le,, ’ ’

where D = £ and a = /a2 + a2 is the wavenumber.

The solution of the system of Eqs. (10.16)-(10.18) is to be obtained subject to the three

types of boundary conditions given below:
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Type - a (Free-Free): Both upper and lower boundaries are stress-free:

2w . do dT
b= =T =2 N0 at 2=0.1. 10.19
w 12 dz+ Adz , at =z ) ( )

Type - b (Rigid-Free): Lower boundary is rigid and upper boundary is stress free:

d -~ do dT
0 = — = T = — N _— = t =
V=T 5O Nagn =00 at 2 =0,
2w . do dT
v dz? dz + VA dz ) 8t 2 ( )

Type - ¢ (Rigid-Rigid): Both upper and lower boundaries are rigid (no-slip boundaries):

div . do dT
w:—szz—(bJrNAd—:o, at z=0,1. (10.21)
z

10.5 Results and discussion

The eigenvalue problem defined by the Eqgs. (10.16)-(10.18) is solved using the bup4c routine
in MATLAB.

In this investigation, four forms of gravitational force functions are considered.They are
linear i.e. G(z) = —z (designated by Case — A), quadratic i.e. G(2) = —2z? (designated
by Case — B), cubic i.e. G(z) = —2z3 (designated by Case — C) and exponential i.e.,
G(z) = —(e* — 1) (designated by Case — D).

The critical Rayleigh number and corresponding wavenumber calculated for stationary
convection from the present study by taking Rn = 0, Ny = 0 and Ny = 0 are compared with
the results of Rionero and Straughan [91] for variable gravity and Chandrasekhar [32] for
constant gravity fields of clear fluid and tabulated in Table 10.1 and Table 10.2 to confirm
the accuracy of our code. It can be observed from these tables that the findings are in strong

agreement with Rionero and Straughan [91] and Chandrasekhar [32] results.

The variation of (Ra.) and (a.) as a function of gravity variation parameter A are pre-
sented in the Table 10.3 and shown in the Figs. 10.1 and 10.2 for four forms of the gravity
field with different values of Darcy number (Da). From Fig. 10.1, it is distinguished that
A and Da, i.e., both the parameters have a stabilizing impact on the convective instability.
This is happening since the disturbances of the system regain due to the increment of A,
which states to delay in the gravity field. This is the reason to postpone the convective with

augment of A\. Also, Ra, increases with Da. This is happening because the viscous effect
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becomes more strong in the presence of Brinkman term with rising the values of the Darcy
number and it leads to increase the values of Ra.. Further, it is perceived that the critical
wavenumber rises with increasing the values of both A and Da. Thus, the convective cells

dimension decrease in the estimate of both A and Da.

The impact of basic density Rayleigh number on (Ra.) and (a.) are presented in the Figs.
10.3 and 10.4, respectively. It is noticed that with an enhancement in the value of Rn, the
critical Rayleigh number decreases, suggesting that Rn has a destabilizing effect on the flow
region. With the top-heavy distribution of nanoparticles, too, the scale of the convective

cells increases.

Figs. 10.5 and 10.6 illustrate the influence of Lewis number and Figs. 10.7 and 10.8
demonstrate the impact of modified diffusivity ratio on the instability boundaries for four
forms of gravity field with different boundary conditions. From Figs. 10.5 and 10.7, it is
noticed that the critical Rayleigh number reduces with the enhancing values of Le,, and Ny .
Thus, Le,, and N has a destabilizing effect on the stability of the scheme. Also, size of the
convective cells increases with augmenting values of Le,, and N as shown in Figs. 10.6 and

10.8, respectively.

The deviation of the critical Rayleigh number for various values of N has shown in the
Fig. 10.9 and Table 10.4 for linear, quadratic, cubic and exponential gravity fields. From
this figure, it is clear that Ny has a stabilizing effect when both the boundaries are free-free
or rigid-rigid, while it shows a destabilizing effect when lower boundary is rigid and upper
one is free. It indicates that convection is postponing or advancing for the effect of Ny under
different boundary of the planes. Also, it is seen that the critical wavenumber increases for
rigid-rigid boundaries, while decreases for Type - a and Type - b boundary conditions as
shown in Fig. 10.10.

In addition, it is noted that the convection for the cubic varying gravity field arrives
faster, while the convection is more delayed by the exponential varying gravity field. It
is also found that when both boundaries are rigid due to the removal of disruptions, the

structure becomes more stable, although more unstable for free-free boundaries.
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Table 10.1: Comparison of Ra. and a? with the results of Rionero and Straughan [91] for
Rn =0, Ny =0, Ng =0, Le,, =1 and Da = 0.

G(z) A Rionero and Straughan [91] Present results
Ra, a? Ra, a?

Case-A 0 39478 9.870 39.478  9.870

1 77.020 10.209 77.020 10.209

1.5 132.020 12.314 132.021 12.314

1.8 189.908 17.198 189.908 17.198

1.9 212.280 19.477 212.284 19.477

Case-B 0  39.478 9.870 39.478  9.870

0.2 41.832 9.874 41.832  9.874

0.4 44.455 9.887 44.455  9.887

0.6 47.389 9.915 47.389 9915

0.8 50.682 9.961 50.682  9.961

1 54.390 10.034 54.390  10.034

Case-D 0 39478 9.870 39.478  9.870

0.1 42331 9.872 42.331  9.872

0.2 45.607 9.883 45.607  9.883

0.3 49.398 9.904 49.398  9.904

0.4 53.828 9.942 53.828  9.942

0.5 59.053 10.005 59.053  10.005

Table 10.2: Comparison of Ra., a. and 27/a. with the results of Chandrasekhar [32] for
Rn=0,Na=0,Ng=0,A=0, Le,, =1 and Da — oo.

Boundary status Chandrasekhar [32] Present results
Ra. e 27 o Ra. Qe 27 /e
Type - a 657.511 2.2214 2.828 657.511365 2.221441 2.8284
Type - b 1100.65  2.682  2.342 1100.64978 2.682321 2.3424
Type - ¢ 1707.762  3.117  2.016 1707.76178 3.116324 2.0162
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Table 10.3: Influence of Da and A on Ra. and a. for Type - a, Type - b and Type - ¢
boundaries when Le,, =5, Ny =6, Ng = 0.5 and Rn = 2.

G(z) Da A Type - a Type - b Type - ¢
Ra. e Ra, G Ra, Gc
Case-A 06 0 257.905 1.718 532.074 2.438 967.589 3.034

0.4 375.839 1.886 715.998 2.489 1235.281 3.060
0.8 564.313 2.015 1036.433 2.544 1675.565 3.088
1.2 926.366 2.130 1726.061 2.620 2521.748 3.138
Case - B 0 257.905 1.718 532.074 2.438 967.589 3.034
0.4 320.097 1.825 631.408 2.472 1100.366 3.049
0.8 397.678 1.914 763.588 2.508 1268.557 3.067
1.2 498.640 1.994 947.294 2.549 1487.378 3.089
Case - C 0 257.905 1.718 532.074 2.438 967.589 3.034
0.4 295.797 1.791 592.931 2.462 1042.843 3.044
0.8 338.588 1.855 664.976 2.487 1128.495 3.055
1.2 387.647 1.914 751.413 2.514 1226.634 3.068
Case-D 0 257.905 1.718 532.074 2.438 967.589 3.034
0.4 432.074 1.938 813.363 2.512 1358.084 3.069
0.8 788.092 2.106 1477.908 2.612 2164.848 3.129
1.2 1892.228 2.356 4054.363 3.063 4459.790 3.352

Case-A 07 0 328.241 1.822 635.348 2.463 1139.515 3.046
0.4 460.652 1.946 847.419 2.507 1449.807 3.067
0.8 675.235 2.049 1217.212 2.554 1960.198 3.094
1.2 1089.836 2.146 2013.714 2.625 2941.232 3.141
Case - B 0 328.241 1.822 635.348 2.463 1139.515 3.046
0.4 397.469 1.900 749.678 2.492 1293.332 3.060
0.8 484.872 1.968 901.904 2.524 1488.180 3.076
1.2 599.399 2.032 1113.615 2.560 1741.708 3.096
Case - C 0 328.241 1.822 635.348 2.463 1139.515 3.046
0.4 370.085 1.874 705.250 2.484 1226.630 3.055
0.8 417.802 1.923 788.043 2.505 1325.785 3.065

1.2 472.879 1.968 887.423 2.520 1439400  3.077
Case - D 0 328.241 1.822 635.348 2463 1139515 3.046
0.4 524.244 1.987 959.577 2527  1592.076  3.078
0.8 930.718 2.125 1726.536  2.617  2527.205  3.133
12 2198.943 2355  4711.012  3.059  5189.330  3.352
Case-A 08 0 396.994 1.889 738.484 2.481 1311.398  3.055

0.4 044.717 1.987 978.752 2.519 1664.299 3.074
0.8 785.816 2.073 1397.939 2.562 2244.808 3.099
1.2 1253.183 2.157 2301.317 2.628 3360.701 3.144
Case - B 0 396.994 1.889 738.484 2.481 1311.398 3.055
0.4 473.840 1.950 867.842 2.507 1486.262 3.067
0.8 571.427 2.006 1040.157 2.535 1707.671 3.082
1.2 699.761 2.059 1279.882 2.568 1996.013 3.102
Case - C 0 396.994 1.889 738.484 2.481 1311.398 3.055
0.4 443.207 1.930 817.453 2.500 1410.398 3.063
0.8 496.157 1.969 911.017 2.519 1523.041 3.073
1.2 557.479 2.006 1023.359 2.540 1652.135 3.084
Case - D 0 396.994 1.889 738.484 2.481 1311.398 3.055
0.4 615.856 2.021 1105.718 2.538 1826.039 3.084
0.8 1073.183 2.139 1975.133 2.621 2889.546 3.137
1.2 2505.628 2.354 5367.581 3.056 5918.853 3.352
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Table 10.4: Influence of Ny and A on Ra. and a. for Type - a, Type - b and Type - ¢
boundaries when Le,, =5, Ny =6, Da = 0.8 and Rn = 2.
G(z) Ng )\ Type - a Type - b Type - ¢
Ra, Qe Ra, Qe Ra. Qe
Case-A 05 0 396.994 1.889 738.484 2481 1311.398 3.055
501.585 1.964 907.207 2.510 1560.792 3.069
593.357 2.009 1060.723 2.529 1781.270 3.079
1 975.230 2.114 1749.564 2.589 2699.608 3.117
Case - B 0 396.994 1.889 738.484 2.481 1311.398 3.055
452.974 1.935 832.153 2.501 1438.774 3.064
495.983 1.964 906.168 2.514 1536.632 3.071
1 630.908 2.033 1149.436 2.551 1841.911 3.091
Case - C 0 396.994 1.889 738.484 2481 1311.398 3.055
0.3 431.075 1.920 796.479 2.495 1384.445 3.061
0.5 455.757 1.940 839.335 2.504 1437.164 3.066
1 525.651 1.988 964.525 2.529 1585.337 3.078
Case - D 0 396.994 1.889 738.484 2.481 1311.398 3.055
547.941 1.990 988.208 2.523 1666.058 3.072
696.945 2.051 1250.001 2.554 2016.758 3.093
1 1552.245 2.213 3026.392 2.724 3957.834 3.199

Case-A 15 0 405.620 1.874 653.108 2.351 1375.952 3.061
514.264 1.950 805.058 2.379 1636.319 3.081
609.620 1.996 943.374 2.399 1865.215 3.098

1 1004.760 2.104 1563.145 2.464 2800.817 3.161
Case - B 0 405.620 1.874 653.108 2.351 1375.952 3.061

o
ST

0.3 463.888 1.921 737.517 2.371 1507.326 3.076

0.5 508.612 1.951 804.186 2.385 1607.520 3.087

1 648.423 2.022 1022.853 2.425 1915.272 3.123

Case - C 0 405.620 1.874 653.108 2.351 1375.952 3.061
0.3 441.151 1.906 705.360 2.365 1450.297 3.071

0.5 466.847 1.927 743.941 2.375 1503.575 3.079

1 539.408 1.977 856.413 2.403 1651.453 3.102

Case - D 0 405.620 1.874 653.108 2.351 1375.952 3.061

0.3 562.478 1.977 878.023 2.393 1743.678 3.094
0.5 716.982 2.040 1113.598 2.426 2102.160 3.124
1 1573.518 2.217 2674.911 2.620 3951.178 3.273

Case-A 25 0 425.183 1.838 590.534 2.243 1563.332 3.072
0.3 542.846 1.914 730.682 2.270 1857.360 3.109

0.5 646.178 1.960 858.347 2.289 2111.549 3.139

1 1068.946 2.075 1428.666 2.357 3093.845 3.239

Case - B 0 425.183 1.838 590.534 2.243 1563.332 3.072
488.243 1.886 668.395 2.262 1706.156 3.101
536.525 1.917 729.840 2.277 1812.514 3.122
1 685.870 1.993 930.582 2.319 2123.915 3.181

Case - C 0 425.183 1.838 590.534 2.243 1563.332 3.072

0.3 463.591 1.871 638.677 2.258 1640.440 3.094

0.5 491.275 1.893 674.168 2.268 1694.384 3.108

1 568.788 1.947 777.246 2.297 1838.230 3.147

Case - D 0 425.183 1.838 590.534 2.243 1563.332 3.072

0.3 594.898 1.942 797.939 2.284 1969.800 3.131
0.5 760.935 2.007 1014.786 2.318 2348.928 3.181
1 1601.793 2.217 2389.786 2.540 3998.814 3.346
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10.6 Conclusions

The effect of changeable gravity field on the onset of convection in an infinite horizontal
porous filled with nanofluid was investigated for three types of boundaries under Brinkman-
extended Darcy model. This study has been carried out for four different forms of gravity field
variations. The impact of the governing parameters on the instability mechanism has been
investigated numerically using bvp4c routine in MATLAB. The main observations drawn

from the analysis are as follows:

e The influence of rising the values of A and Da is found to be delay of the convection

motion, while Rn, Ny and Le react to fast the onset of convective motion.

e With Da and A, the size of the convective cells decreases, while Rn, Ny and Le amplify

the size of the convective cells.

e The impact of rising Ng shows stabilizing effect for Type - a and Type - ¢ boundaries,
while it shows destabilizing effect for Type - b boundaries. Also, the size of the con-
vective cells amplify for Type - a and Type - b boundaries, while reduces for Type - ¢

boundaries for the rising effect of Ng.

e The system becomes more unstable for the exponential gravity field and more stable

for cubic gravity field.

e [t is observed that the system is more stable for Type - ¢ boundaries and more unstable
for Type - a boundaries, i.e., (Rac)igid-rigid > (Rac)rigid-free > (Rc)free free. Also, size
of the convection cells is more for Type - a boundaries compared to other types of

boundaries, i'e'7 (ac)rigidfrigid > (ac)rigidffree > (ac)freeffree'
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Chapter 11

Linear stability of longitudinal
convective rolls in a non-Darcy porous
layer filled with nanofluid due to

viscous dissipation effect 1

11.1 Introduction

In most of the earlier investigations of convection, the contribution of the viscous dissipation
effect has been ignored in the energy balance of a fluid saturated porous medium. However,
it has a significant effect in the mixed and natural convection flows in a porous medium
when the fluid has both a high viscosity and a low thermal conductivity. The importance
of viscous dissipation effect on the natural convection was discussed firstly by Gebhart [48].
This dissipation number does not depend on Prantdl number and Grashof number. Turcotte
et al. [113] has been reported the effect of the viscous dissipation parameter on the finite
amplitude Bénard convection. He noticed that viscous dissipation can play a significant
role on thermal convection. Later, Rees et al. [90] analyzed the instability mechanism
in a parallel external flow solution in the presence of viscous dissipation for the boundary
layer around an inclined cold surface embedded in a porous medium. Barletta et al. [12]
investigated the effect of viscous dissipation on parallel Darcy flow in a horizontal porous
layer. In this observation, they have taken lower boundary as adiabatic and the upper one as
an isothermal. The extension of this has been disclosed by Barletta et al. [13] for Brinkman
model. Recently, the viscous dissipation effect on the double diffusion convection in a porous

medium discussed by Roy and Murthy [93] by taking the Soret effect.

In this chapter, we investigate the onset of convective instability due to viscous heating

!'Communicated in “Thermal Science and Engineering Progress”
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in a horizontal porous layer filled with nanofluid. The Brinkman-extended Darcy law is used
to formulate the momentum balance equation and viscous dissipation in the medium. The
governing parameter is taken as R = GePe? (introduced by Barletta et al. [11, 12, 13]),
where Ge is the Gebhart number and Pe is the Péclet number. The basic state solution is
obtained analytically. The resulting eigenvalue problem for stability is solved using buvp/c
routine in MATLAB.

11.2 Mathematical Formulation

Consider an incompressible fluid saturated in a horizontal porous layer of thickness L,
bounded by a isothermal impermeable upper wall and a thermally insulated impermeable
lower wall as shown in Fig. 2.1. The Darcy-Brinkman model is adopted in order to derive
the equations governing flow in the porous layer along with the effect of viscous dissipation.
Applying Oberbeck-Boussinesq approximation conservation equations for the total mass,

momentum, thermal energy and nanoparticles volume fraction are given below.

V-u=0, (11.1)
%u — VU= —Vp+ [pp + (1 — ¢)pe{1 — Br(T — Tu)} g, (11.2)
oI T = 0, 02T+ 0 | puve . v+ Pyt VT}
ot (pe) T
Vou (- P o2

+ chu <u . \Y u), (11.3)

dp 1 _ 2 Dy 2
5 o Vo= DeVo+ VT, (11.4)

The corresponding boundary conditions are written as

oT 06 Dy T
0. u— _ 90 L T 11.
z=0: u=0, 5 0, B, + T, 9- 0, (11.5a)
o B B d¢ ~ Drdl
z=1: 11—0, T—Tg, DBE—F?Q&—O (115b)

Substituting the non-dimensional variables given in Eq. (10.6) into Eqs. (11.1)-(11.4)
(after eliminating pressure term from the Eq. (11.2), we get (after dropping asterisk)

V-u=0, (11.6)

V x (Da~'u— AV?*u) =V x [(AT — RnDa"'¢) &,] (11.7)
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T NaAN
T wvr= V2T+—V¢ vr 4 DN DOGr G Gen. (Da™'u — AV*u), (11.8)
ot Le,, Lem
8gz5 2 NADCL
Xa+u'v¢ Lemv qb—l— Lew V T. (119)
The dimensionless conditions on the boundary are

oT a¢> orT
z=0: u=0, E—O, 7, NAADQE—O, (11.10a)

8¢ or
z=1: u=0, T=0, 7 NAADaa—O (11.10b)

To avoid too many parameter studies, we have taken A = 1 and y = 1 in this investigation.

11.3 Basic state solution

The magnitude of the horizontal mass flow is obtained by

1
/ Ug - sdz = Pe, (11.11)
0

where Pe is the Péclet number and s = (cos ¢, sin ¢, 0). Further, ug is the dimensionless
basic velocity, which is defined as
Uy = Ug S, (1112)

where ug is the magnitude of the basic velocity.
Under the above situations, the governing equations for ug, Ty and ¢y can be reduced from

Egs. (11.6)-(11.9) and are given the following set of coupled ordinary differential equations

as
d®ug(2) Ldug(2)
— Da" ——— = 11.1
dz3 “ T 0 (11.13)
d*To(z) | Nedgo(z) dTp(2) . NaNgDa dTy(2)\*
dz? Le dz dz Le dz
d2
4 Ge [ Datu2(2) — wo() 22\ o, (1114
dz?
d*o(2) d*T(2)
Tt NaDa— 2= =0, (11.15)
The solution of the base flow Eqs. (11.13)-(11.15) admits the boundary conditions:
dT d dTy(z
z2=0: wuy=0, M:O, gbo() + NaDa O():O, (11.16a)
dz dz dz
dgo(2) dTy(z)
=1: =0, T =0 NaDa =0 11.16b
z Up ) O(Z> ) dz + dz ) ( )
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where suffix ‘0’ represents the base flow.
On solving Eqgs. (11.13)-(11.15), the basic velocity, temperature and volume fraction profiles
are obtained as

Pe&
~ ¢ cosh(¢) — sinh(€)

uo(2)

{cosh(f) — cosh[¢(1 — 22)]}, (11.17)

= £?R cosh(§) 201 _ .2Y 1] cos
o) ) s L 2617 7 e
— 9(1 — 2)¢ sinh(€) + cosh[¢(1 — 2z)]}, (11.18)
and
N b 0.25Np R cosh(§) 21 — 22— 1] cos
O(2) = 0 = e (L 2671 ) — 1 eosh(©)
— (1 — 2)¢ sinh(€) + coshl(1 — 2z)]}, (11.19)

where Pe is the Péclet number related to the average basic velocity and ¢, is the reference

value for nanoparticle volume fraction. Also,
1
2v Da

Here, € is related to the permeability of the medium, which can be referred as the Brinkman

€= and R = GePe’. (11.20)

parameter. Here, & — 0 refers to the clear fluid regime, while ¢ — oo refers to the Darcy
flow regime. Also the basic velocity and temperature profiles are exactly matches with the
one obtained by Barletta et al. [13] for viscous fluid. Further, the parameter R is considered
by Barletta et al. [11, 12], Barletta et al. [13] and Dubey and Murthy [45], which governs
the threshold curve of the marginal stability beyond which the flow is definitely unstable.

11.4 Linear stability analysis

The instability of this system is investigated by imposing the infinitesimal disturbances on
the basic state solution. Thus the velocity, temperature and volume fraction can be written
as

(u,T,¢) = (ug, To, ¢o) + 6(U, 0, D), (11.21)

where § < 1 is a small disturbance parameter and U = (U, V, W), 6 and ® are the infinitesi-
mal disturbance for velocity, temperature and concentration fields. Substituting Eq. (11.21)
into Egs. (11.6)-(11.10) and neglecting §? and higher order terms, the linearized continuity,

momentum, thermal energy and nanoparticle volume fraction equations for the disturbed

193



quantities become

V-U=0, (11.22)
V x (48°U - V?U) =V x {(§ — 4Rn&*®)&, }, (11.23)
00 Ng NaNp
— VO+U-VT, =V¥H4+ — Vo Ty - V) + —"VT,-V0
at-f-llo Vo + VIpg=V +Lem (Vo - VO + VI -V )+2Lemf2v 0V

+Geuy - (4§2U — V2U) + GeU - (4§2u0 — V2u0) , (11.24)

0P 1 Na

— Vo : = °® %0, 11.2
5 +uy- VO +U- Vo Lemv + 4Lem§2v 0 (11.25)
The corresponding boundary condition becomes
00 0P  Np 00
=0: U=0, —=0, —+-—5—=0 11.26
: 9z 0z * 4620z 7 ( 2)
0P N, 00
z=1: U=0, =0, 27 o (11.26D)

9. Tagos
The values of the Gebhart number is usually very small for some of the typical fluids in
most general cases as it discussed by Barletta et al. [13], except for the case when there
is a relatively high flow rate. Thus, R = GePe? is of O(1) when |Pe| > 1 and Ge < 1.
Hence all terms are of , then the fourth and fifth term on the the right hand side of Eq.
(11.24) are negligible with respect to other terms, since both are of O(|Pe|™). Under this
consideration, the simplified form of Eq. (11.24) is

% +uy-VO+U- VT = V0 + LNTi (Vo - VO+ VT, - V) + %vn V6. (11.27)
Expand the above equations to get

42 (%—V; — (?9_‘2/) - V2 (%—2/ - %—Z) = g—z - 4Rn§2g—;{;, (11.28)

42 @—Z - %—Z/) —V? (%—Z - %) =— (% - 4Rn§2g—i) : (11.29)

e (g_‘;_g_[yf) _ 2 (g_‘;_g_[;) 0, (11.30)

%_f i W% 4 uog—(}: — iv% + 4L]zz§2v29. (11.32)

The longitudinal rolls and transverse rolls occur with the parallel and perpendicular axes to

the basic flow, which have been discussed in the rest of the section.
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It is assumed that the disturbances are in the two dimensional oblique structures inclined
to the base flow at an angle, ¢ € [O, g} Hence, the disturbance functions can be defined as

the functions of z, 2z and t and are given as

U=U(z,zt), V=0 W=W(z2t), 0=0(,z1), (11.33)
0 5}
O =P(x,2,t), and V= <%,O,§>.

Introducing the stream function formulation, the velocity components can be written as

o o

Thus, Eqgs. (11.22)-(11.26) can be reduced as
Vi) — 463V — ? + 4Rné? a—q) =0, (11.35)
00 00 oY 9 Ng 0P Ny 0l
a5 + PF(z, 5) - RG(z,f)a =V 0—1— RG(z,é’) ( +— 1620 ) (11.36)
L 9% N 0 _ 1 (Gog ., Nage
The corresponding boundary conditions are
o B o 90 0P N, 00
z2=0: =0, P =0, 8,2_0’ +4£282 0, (11.38a)
1. we—p H_ _ a_@ Nadl _
z=1: =0, 62_0’ 0 =0, +4§28z_0’ (11.38Db)
where
P = Pe cosy, (11.39)
_ § N _
F(56) = ¢ ooi®) —sih(@) {cosh(g) cosh[¢(1 2z)]}, (11.40)
and
—2&3 cosh(&) , .
G(z,§) = 2 h(§) — sinh(§) + sinh[£(1 — 22)] ;. 11.41
(z,€) € cosh(¢) —sinh(ﬁ')]z{ z€cosh (&) — sinh(€) + sinh[£( 2)|} ( )
The plane wave solutions are expressed as
(w2, t) = R{if(2)e'@M L f(x, 2, t) = R{h(z)e' @M},
D(z,z,t) = R{g(z)e'l==M 1. (11.42)

Here, R indicates the real part of the expression and a is the wave number. Further, n =
7y + in; is the growth rate, where 7, and 7; describes the real and imaginary part of 7,

respectively, where 1; > 0 leads to instability of the system, 7, < 0 leads to stability of
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the system and 7; = 0 leads to the neutral or marginal stability. Since, we are very much
interested in studying the marginal stability, so that we assume 7, = 0 and 7, = w. Also,
f(2), h(z) and ¢q(z) are complex valued functions. After applying Eq. (11.42) in Eqs. (11.35)-
(11.38), the final set of governing equations with corresponding boundary conditions for the

general oblique structures is given as

[(D? = a*)? = 46*(D? — a®)] f — ah + 4aRn&®q = 0, (11.43)
NAN. N
D+ 4£§Ljn RG(z,6)D — a® — i(aPF(z,€) —w)| h+ KfnRG(z, £)Dg
—aRG(z,§)f =0, (11.44)
NALem

[D? —a® —iLey, (aPF(2,€) —w)] ¢+ &(DQ —a®)h + aRG(z,6)f =0, (11.45)

42 A2

d dh d Ny dh
_f_() -0 aq A _

_ _ _o D _ Nadh _ 11.4
2=0 f=00 =0 = e 0 (11.462)
df dg  Nadh
1. f=0 Y_g poo WU adh_, 11.46b
: f=0 =0 & T agds (11.46b)

d
where D = —.
z

11.5 Results and discussion

The set of Eqs. (11.43)-(11.45) defines a real valued eigenvalue problem when and R is the
only eigenvalue (as w is set to zero) for longitudinal role i.e., when v = 7/2 or P = 0. Then

we solved this problem using bup/c routine in MATLAB.

In this work, we investigated the onset of longitudinal convective rolls with viscous dis-
sipation effect inside a porous region filled by nanofluid. The impact of the governing pa-
rameters, Rn, Le, Ny, Ng and & has been calculated throughout the paper and shown them
graphically.

Fig. 11.1 shows the influence of concentration Rayleigh number, Lewis number, modified
diffusivity ratio and modified particle density increment on critical R at Rn = 0.1, Le =
5 Npn = 3 and Ng = 0.01. It is observed that the values of R. decreases as Rn, Le, Np
and Np decreases, which indicates that all the parameters have a destabilizing effect. Thus,

convection comes earlier for Rn, Le, Ny and Ng. Further noticed that, switching parameter
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(€) has a dual character, i.e., R, increases for small increment of £ and attained its maximum
value for some ¢ and finally bounces back. Also, the impact on R. is invisible for large values
of €.

11.5.1 Convective rolls

The pattern of streamlines, isotherms and isonanoconcentrations for longitudinal rolls are

plotted in this section for different values of £ and N,. The region of the disturbance lines are

T

shown z € [O, ﬂ for streamlines and x € [—%, %} for isotherms and isonanoconcentrations.

Fig. 11.2 represents the effect of ¢ on streamlines, isotherms and isonanoconcentrations
for fixed values of Rn = 0.1, Ny = 2, Ng = 0.01 and Le = 5 at the critical label. The
streamlines, isotherms and isonanoconcentrations are asymmetric with respect to the mid-
plane z = 1/2. The streamlines are in fact slightly more compressed to the central part of
channel when ¢ is large. The isotherms lines are more closer near the adiabatic boundary
for the small . Further, the isonanoconcentrations lines are more dense inside the channel
when & = 0.5.

Fig. 11.3 describe the changes in the streamlines, isotherms and isonanoconcentrations
due to modified diffusivity ratio (N,) or fixed values of Rn = 0.1, = 0.5, Ng = 0.01 and
Le = 5 at the critical label. There are no marked qualitative differences on the streamlines
due to modified diffusivity ratio effect. The density of the isotherms curves is less near the
upper boundary when modified diffusivity ratio more. This change is more prominent when

N, is large, whereas isonanoconcentrations lines are not affected due to Ny effect.
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Table 11.1: Comparison of a. and R. between the results obtained by Barletta et al. [13] and
Dubey and Murthy [45] with present results when Ny =0, Ng =0, Rn =0 and Le,, = 1.

13 Barletta et al. [13] Dubey and Murthy [45] Present results

G Rc Q¢ Rc Ac RC
0 2.665502  235.3163 2.665501 235.3163 2.665502  235.3163
0.001 2.665502 235.3162 2.665501 235.3162 2.665502  235.3162
0.01 2.665502 235.3094 2.665503 235.3094 2.665502  235.3094
0.1 2.665538 234.6241 2.665537 234.6241 2.665538 234.6241
0.2 2.665647 232.5806 2.665649  232.5806 2.665647 232.5806
0.3 2.665826 229.2814 2.665825 229.2814 2.665826 229.2814
0.4 2.666072 224.8738 2.666074 224.8738 2.666073 224.8736
0.5 2.666380 219.5407 2.666379 219.5407 2.666380 219.5407
1 2.668627 185.8752 2.668628 185.8752 2.668627 185.8752
1.5 2.671296 153.5797 2.671298 153.5797 2.671296 153.5797
2 2.673358 129.3689 2.673354  129.3689 2.673358 129.3689
2.470719 2.674075 113.3695 2.674075 113.3695 2.674075 113.3695
3 2.673120 100.9718 2.673126 100.9718 2.673120 100.9718
4 2.666550 87.07186 2.666549 87.07186 2.666550 87.07186
) 2.655707 79.58888 2.655707 79.58888 2.655707 79.58888
6 2.642980 75.15759 2.642976  75.15759 2.642980 75.15759
7 2.629979 72.32003 2.629976 72.32003 2.629979 72.32003
8 2.617557 70.38715 2.617561 70.38715 2.617557 70.38716
9 2.606083 69.00467 2.606088 69.00467 2.606083  69.00467
10 2.595662 67.97654 2.595668 67.97654 2.595662 67.97654
00 2.448266 61.86657 2.448255  61.86657 2.448266 61.86657
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Figure 11.1: Longitudinal rolls: effect of (a) Rn, (b) Ley, (¢) Na and (d) N on R. for
longitudinal rolls at Rn = 0.1, Le,, = 5, Ny = 3 and Ny = 0.01.

199



-0.005 =
[y
001 \
08 0 8 g E’-_—-—? . ‘ w
N o W~ o 0, % 4 7 \%%
b
0.6 0.6 TN A . %2
N N 5 N ) N
2 & Al
04§ 0.4 % \E:i ) .
o og5 o018 o
02 0 2 ‘II% 001 JE— s B
-‘-I-_.-_____._—
0 ‘ = 0 ‘ ‘
T T I T T T 3 T T
0 4a 2 m a 0 I Ja I a a
x
(a) € = 0.05 (b) € =05
1 Ly

4

T
T
(f)¢=5
-\ VAN
- . v T
. G
é ;
, 0.4
g s henph s B g bbb b
0.2 ‘ O 0.2 m\\\ 020 %58
0 \ L 0 N 0 H\ N
"% T Wk o w U w B T
x z T
(g) € = 0.05 (h) £=0.5 ) e=5

Figure 11.2: Convective rolls: effect of £ on streamlines (i) = constant) ((a) to (c)), isotherms

0
(0 = constant) ((d) to (f)) and isonanoconcentrations (® = constant) ((g) to (i)) for longi-
tudinal rolls at critical situation.

200



6 am .,
h 0,
0.6 /\ %
h &
! 2 s ¢
4 ¥
04 WS
~—~ o
0 . gt
' ‘0‘005 0] —— an
.-‘-—-____-“ -

%
0 ‘
T T dn T
0 da 20 da a
x
(a) N, A= 1

06
N
04
02
I

0 le i [
% T
T
(d) Na =1
AR
0.8 e |
06 C ]
04 g
“T
0k ‘ ‘ /'b Hle|
% w V&
T
(g) Na=1

Figure 11.3: Convective rolls:

rolls at critical situation.

0.
0.,

020

ol — N

)

=
<
s
B
Py N
b (
=
& -0,
2

0.8

0.6

04

0.2

© .
; 1 A

( k -r?
% N

201

0.8

(.

fe=p)

(.

S,

0.2

0.6

04

effect of N on streamlines ¥ = constant ((
0 = constant ((d) to (f)) and isonanoconcentrations ® = constant ((g) to

0.8

0.2

o (c)), isotherms

) for longitudinal



11.6 Conclusions

In this study, we have analyzed the stability analysis of longitudinal convective rolls with

viscous dissipation effect in a horizontal porous layer filled with nanofluid.

e It is observed that R. decreases when the values of Rn, N, Ng and Le increase, whereas
R, follows dual nature due to the effect of &, i.e., R. increases for small values of &,

but it decreases for further values of €.

e The convection comes earlier for the rising effect of Rn, Ny, Ng and Le, whereas it

delays before some particular values of &.
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Part 1V

SUMMARY AND CONCLUSIONS
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Chapter 12

Summary and Conclusions

Linear stability analysis of viscous and nanofluid flows in horizontal/vertical channels has
been investigated in this thesis. The effect of double diffusion, Magnetic effect, interphase
heat transfer parameter (LTNE parameter), viscous dissipation, variable gravity effect, Biots
number (convective boundary conditions parameter), Soret number, Dufour number are

studied to the beginning of convection

The governing partial differential equations of the flow in the Chapters - 2 through
Chapters - 11 are transformed into a system of nonlinear ordinary differential equations
using suitable transformations. The resulting non-linear ordinary differential equations were
linearized using perturbation technique and converted them ordinary differential equations
using normal mode analysis. The eigenvalue problem equations together with corresponding
boundary conditions were solved using either Chebyshev spectral collocation method or
boundary value problem solver bup/c routine in MATLAB. The effects of various geometrical
and fluid parameters on the onset of convection is presented through graphs and discussed.

The important observations made from this study are listed below:

e The impact of increasing throughflow parameter (Q)), gravity variation parameter (\)
are found to lag the onset of convection, whereas Gebhart number (Ge) is react to

elevate the onset of convective motion.
e The flow field is more stable for Brinkam model as compared with the Darcy model.

e The convection comes earlier for quadratic varying gravity field compare to linear
varying gravity field when the external heat supplies on both the boundaries. The same

nature of quadratic varying gravity field has been observed one boundary maintains
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a constant heat flux while another one is an isothermal condition or external heat

supplies from the boundaries exchange their role.

The Brinkman flow regime shows more stability when two the boundaries are subjected

to the external heating for both the gravity fields.

The size of the convective cells decreases with rising the effect of gravity field param-
eter, Lewis number and Soret parameter, while solutal Rayleigh number and Gebhart

number has a dual character on the dimension of convection cells.

It is distinguished that the flow is more stable for exponential varying gravity field

whereas more unstable for cubic varying gravity field.

The rise in the heat supplied both the boundaries stabilize the flow field. Further, the
flow shows more stable when the external heating on the lower boundaries is higher

than at the top boundary.

The stability of the flow increases when the upper boundary maintain constant heat
flux and lower one as at isothermal state compare to the lower boundary maintain

constant heat flux and upper one as at isothermal state.

Soret parameter (S7) has a stabilizing effect for horizontal flow of viscous fluid in the
presence of variable gravity field, whereas it has a destabilizing effect for nanofluid
flow in vertical channel for constant gravity field. Further, Lewis number (Le) shows

a stabilizing nature for both the cases.
The disturbance is least stable for two dimensional flows.

Interphase heat transfer parameter (H) shows the stabilizing nature inside the inter-
mediate range, while the system acts like an LTE model when H — 0 and H — o0
for horizontal flow of viscous fluid with inconstant gravity field. On the other hand,
interphase heat transfer parameter for fluid/nanoparticle has a destabilizing nature,
whereas interphase heat transfer parameter for fluid/solid-matrix has a stabilizing na-
ture inside the intermediate range but these effects die out when they converge to zero
and beyond sufficiently large values of them, where system behaves as in LTE state for

constant varying gravity filled filled with nanofluid.

Convection delays due to the rising effect of Hartmann number (Ha) and Prandtl
number (Pr) and it comes earlier for growing values of concentration Rayleigh num-

ber (Rn), thermo-solutal Lewis number (Ln) and Dufour number (D), whereas no
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significant effect has been detected for the enhance values of modified diffusivity ratio
(Na), modified particle density increment (Ng) and solutal Rayleigh number (Rs) for
constant gravity field. But, both Ny and Ng shows significant impact on stability

analysis when the flow is controlled by variable gravity fields.

e The dimension of the convective cells displays dual nature for the rising effect of Darcy
number Da and A when two the boundaries are subjected to the external heating for
both the gravity fields. But, the cell size decreases due to the augmenting values of B
and By (Biots number). On the other hand, the cells size increases when By = 0 and

By — oo, but it decreases when By — oo and By = 0 for both the gravity fields.

The work presented in the thesis can be extended by studying the analysis in various
non-Newtonian fluids like Micropolar fluids, Couple stress fluids, Power-law fluids and the
geometry can be changed to pipe, inclined channel, through annulus and an inclined pipe.
This work can also be extended to porous media. Further, this work can be extended to

study the analysis on nonlinear stability.
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