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ABSTRACT

The penetration of renewable energy sources into distribution system has been increasing due
to environmental concerns. Because of the uncertainty and unpredictability of renewable
energy sources, distribution system operation has become complex and dynamic. Therefore,
monitoring and control of the distribution system became necessary for it to operate reliably
and effectively. But, monitoring of distribution system became difficult with limited metering
infrastructure. As a result, the additional meters must be installed optimally and cost-
effectively. In practical planning studies, trade-off solutions of multiple objectives can assist
the operator to make a better decision in meter allocation in distribution system. Therefore, the
meter placement problem is designed as a multi-objective optimization problem. Thus, the
overall objective of the thesis is to provide optimal meter placement using new multi-objective
evolutionary algorithms for improving the performance and accuracy of distribution system

state estimation as well as monitoring and controlling the active distribution system.

There are many multi-objective optimization models are proposed in the literature, as
all different types of multi-objective problems cannot be solved by a single optimization
method. The multi-objective evolutionary algorithms (MOEAs) are classified into four
categories: i) Pareto dominance based ii) decomposition based iii) indicator based and iv)
model based MOEAs. Therefore, in this thesis an attempt has been made to compute an optimal

locations of meters using different types of hybrid multi-objective evolutionary algorithms.
The contributions of this thesis are as follows:

e A new hybrid multi-objective evolutionary optimization algorithm based on
decomposition and local dominance method is proposed for meter placement in
distribution system state estimation. The meter placement is designed as a trade-off
between three objectives, which are minimizing the cost of the meters, average relative
percentage error of voltage magnitude, and voltage angle. As the meter placement
problem is a combinatorial optimization, the Binomial distribution-based Monte Carlo
method is utilized to initialize the population, which aims to improve the diversity, as
a consequence it improves the convergence.

e A new indicator-based multi-objective evolutionary algorithm (MOEA) using the
objective discretization method is proposed for meter placement in an active
distribution system. As the meter placement problem is a combinatorial optimization, a

combination of measurement sets produces a discrete objective space. Therefore, the



objective discretization method has been adopted to improve the performance of
MOEA. As the performance of MOEA mostly depends on the Pareto front shape.
Therefore, the proposed method employs an adaptive reference point approach to
follow the shape of the Pareto front.

A new inverse model-based multi-objective evolutionary algorithm is proposed for
meter placement in active distribution system state estimation. The inverse model maps
the non-dominated solution from objective space to decision space and is realized using
multi-label Gaussian classification. The inverse model is used as a reproduction
operator to generate additional candidate solutions from the estimated conditional
probability of decision variables for given solutions. The additional solutions are
generated by sampling from the inverse model, which improves the search efficiency
and diversity of Pareto front solutions.

The last contribution of the thesis is, a many-objective evolutionary optimization is
proposed for meter placement in an active distribution system based on numerical
observability. The addition of Pseudo measurements improves the convergence of state
estimation and ensures the observability of the network. Whereas, the huge errors
associated with Pseudo measurements deteriorate the performance of state estimation.
For the first time in the meter placement problem, a numerical observability-based
meter placement problem is proposed, which is used to select the minimum number of
Pseudo measurements to ensure the observability and to improve the accuracy of the
state estimation for a given set of real measurement combinations. The meter placement
problem is designed as many-objective evolutionary optimization with four objectives
as 1) cost of distribution level Phasor measurement units (D-PMUs), ii) cost of
intelligent electronic devices (IEDs), iii) root mean square error of voltage magnitude,

and iv) root mean square error of voltage angle.
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Introduction

1.1  Distribution System Overview

Day by day the electrical load demand is increasing, and to deliver reliable services to the
increasing power consumers the new technologies are adopted in the power system. The
deregulation of the power system was segregated into operation sectors of generation,
transmission, and distribution. The deregulation introduced a competitive environment among
different segments of the power system to provide customer-centric services. The adoption of
new communication and information technologies leads to smart and intelligent grids. Among
the three sectors of power system, distribution system has been embracing many technical and
operational changes and also posing many challenges to the operators and researchers. Mainly,
in recent years the integration of distributed generation (DG) is increased, which provided new
opportunities to build energy markets with the active participation of system operators and
prosumers, who are both producing the electrical energy and consuming power from the grid.

These changes affected the operation of distribution system at a whole new level.

The Renewable sources, mainly wind and photovoltaic power penetration have
increased into the system due to the environmental aspects to reduce the carbon emission from
conventional generation. Moreover, the intermittent and unpredictable nature of renewable
energy sources poses many challenges in distribution system. Previously distribution network
is a passive network with loads, but with the introduction of DGs, distribution system become
an active network. Previously, the power flow is from upstream (substation) to the downstream
(loads), but with introducing the DGs, power may also flow from downstream to upstream.
This causes the bi-directional power flow between loads and DGs, which makes the network
operation more complex. When the power flows from load ends to upstream, cause voltage
profile increases the fault current rating decrease. These changes were made to focus on a
different control and operational functions such as voltage profile control, new protection
schemes, stability of the distribution system, demand-side management, etc. Moreover, the
intermittent, and unpredictable nature of renewable generation made network operation more
dynamic. These reasons made to necessitate the enhancement of real-time monitoring and

control of distribution system.
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The monitoring and control of the network are usually managed by the energy
management system, which works on top of the Supervisory Control and Data Acquisition
(SCADA) system. SCADA gives the real-time status of the network by providing the
measurement data such as bus voltage, line flows, the status of tie-line switches, circuit
breakers. The data provided by SCADA may not be reliable as the measurement data comes
with errors and telemetry, communication failures add noise to the data. This data is provided
to the control actions and applications such as voltage profile control, reconfiguration, optimal
power flow application, security analysis, and so on. For efficient operation and control, the
input data is required to be more reliable as all the controls actions and functions depend on
the data accuracy. Therefore, the data provided by the SCADA need to be filtered from the
errors to get reliable data. State estimation mitigates the errors by filtering raw data from
SCADA and providing the state variables. Therefore, state estimation plays a significant

function as the operation and control actions depend on its estimation results.

1.2 State Estimation
State estimation provides the status of the network in terms of state variables. Generally,

state estimation has typical functionalities as follows:

1. Topology Processing: Topological processing updates the network connectivity
from the data obtained from the SCADA system such as status information of circuit

breakers, tie line switches. It provides the online network diagram.

2. Observability Analysis: Observability analysis determines whether the state
estimation solution is obtainable with the given set of measurements or not. When
the network is unobservable it also provides the observable islands. Observability
depends on the distribution of measurements in the network. If the network is
unobservable with a given measurement set, using observability analysis, additional
Pseudo measurements are added to the measurement set to make the network

observable.

3. State Estimation: State estimation provides an estimation of state variables using
the topology information and measurement data. After state estimation, the state
variables are supplied for various control actions and functions of energy

management systems.
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4. Bad Data Detection and ldentification: Gross errors in the measurement set are
detected, identified using the bad data process, and identified measurements are

eliminated from the measurement set.

A typical power system state estimation functional diagram is presented in fig. 1.1. The four
functionalities are an integral part of the state estimation, and it repeatedly executes time to
time to give the real-time state of the system.

SCADA

L <.:ircuit 'breaker, tie- .
line switches status

Pseudo
measurement data

=y | mMeasurement data

a
>

NO

l )\
=

Other Applications like [ Controllers like voltage Var

Contingency Analysis, security Control, Primary control etc.

analysis, reconfiguration etc.

Fig. 1.1: State estimation typical functional diagram.
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The measurements are collected from monitoring devices and managed by the SCADA
system. The measurement devices at the substation monitor the typical electrical quantities like
voltage, current, and power, etc., and the measured data is collected by Remote Terminal Units
(RTUs). The different substation data is collected by corresponding RTUs and communicates
the data to the SCADA system by different means of communication technologies. The
Distribution Management System (DMS) will have different control and functionalities to
operate the distribution system on top of the SCADA system. The data from the SCADA is
processed by state estimation then the output state variables are fed to different DMS
controllers like voltage regulation, automatic generation control, and fed to functions like
optimal power flow, contingency analysis, etc. The functional diagram of DMS/SCADA is

shown in fig. 1.2.
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Reconfiguration Security Analysis = g

.............

Distribution Management System

Fig. 1.2: Functional diagram of SCADA/DMS.
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Many researchers are proposed different state estimation methods to achieve accurate
state estimation. The state estimation function is widely used in the transmission system to
estimate the state of the system. An in-depth review of transmission system state estimation is
presented in [1]-[3]. Generally, the state estimation problem is formulated using the weighted
least square (WLS) method. As the WLS method is susceptive to bad data, alternative to WLS,
many mathematical models are proposed to formulate the state estimation to address the bad
data issue [4]. The least Median of Squares (LMS), Least Trimmed Squares (LTS) methods
can handle outliers in measurement data [5] and the Least Absolute Value (LAV) estimator can
automatically reject the bad data [6]. However, the WLS method is the widely used approach

to formulate state estimation.

1.3 Weighted Least Square (WLS) based State Estimation
The Weighted Least Square method minimizes a weighted sum of squares of state variable
errors. For a given set of measurements, the measurement model is represented with a
measurement function associated with noise. The measurement model is formulated as

follows:
Z=h(x)+e (1.1)

Where Z is mx1 size matrix and denotes the measurements from the meters, h(x) is mxn size
matrix and represents the measurement function, x is a nx1 size matrix and denotes set of state
variables, m is the number of measurements, n is the number of state variables and e is the
noise associated with the measurements. Different types of measurements are obtained from
the field such as voltage, current, power injection at nodes, and power flows, these
measurements set is represented by Z, which is provided as input to the state estimation. The
measurements are associated with errors, which are due to ageing of meters, communication
failures, device malfunction, and so on. Therefore, the measurements are modelled as functions
of state variables h(x), added with errors ‘e’. The error characteristics follows the normal
distribution. Therefore, the measurements are modelled using measurement mean and meter

variance parameters to represent the errors in measurements.

The errors are scalarized with corresponding measurement variance. Each meter has a
specific variance (c?) due to the manufacturing differences and other reasons. The state
estimation problem is formulated using the least squares method, which minimizes the sum of

squares of errors. The objective function J(x) of WLS optimization is represented as follows:

6
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J(x) = [e]"[W][e] (1.2)

Where, W is the weight matrix, weight is formulated by taking the reciprocal of variances of
each measurement, and the weight is added to the diagonal of the weight matrix corresponding

to each measurement.

The error is unknown, and it is replaced in (1.2) using (1.1), which is in the form as

follows:

JG) = [Z = h()]"W][Z — h(x)] (1.3)

The above nonlinear objective function is solved using the iterative Newton method, which

gives the solution as follows:
Ax; = (GO THHE))W]HIZ — h(x)] (1.4)
() = (H()) W] H () (15)

Where, H (x) is the Jacobian matrix, G (x) denotes the gain matrix and %’ is the iteration count.
The Jacobian matrix H(x) is formulated by differentiating measurements with respect to state

variables. The solutions are iteratively updated as follows:
Xiv1 = X; + Ax; (1.6)

The state estimation is converged when the change in state variables (Ax) is smaller

than a specified threshold (e).

1.4  Differences between Distribution System and Transmission System
The distribution system differs in many ways from the transmission system. Both have different
characteristics due to the following aspects:

1. X/R Ratio: Distribution system has a low X/R ratio as compared to the transmission
system. The feeders in distribution system have a short length as loads are distributed
around the substations, whereas the transmission system has long length lines as it
connects the generation and load centers. The short feeders have less reactance as

compared to the resistance and lead to a low X/R ratio.

2. Network Topology: Transmission system is a connected network with loops, whereas

distribution system is a radial and weakly meshed network.
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3. Unbalanced Network: Transmission system is a balanced three phase network and it
is balanced using transposition of transmission lines and with aggregated loads,
whereas distribution system is mostly an unbalanced system due to distributed loads on
the network.

4. Load Distribution: Distribution system has distributed loads as the substations are
near the load centers. The transmission system connects long distances between
generation and load centers; therefore, the connected loads are aggregated on

transmission system.

5. Size of Network: Distribution system has a large number of loads spread in a small
area compared to transmission system. Therefore, the number of nodes in distribution

system is more compared to transmission system.

6. Metering: As distribution system is a passive network, very few meters are sufficient
to operate the network eventhough having a large number of nodes. Therefore,

substations are installed with limited number of meters.

The transmission system and distribution system are different in characteristics; therefore,
the transmission system state estimation algorithms are not directly applicable to the
distribution system. Distribution system state estimation requires a large data handling
capability due to a large number of nodes in the distribution system and requires it to be
computationally efficient to handle the large data processing. Moreover, the state estimation
accuracy is affected by an unbalanced phase network and load distribution, which introduces
the nonuniform measurement distribution [7]. The large size of the network and the limited
number of meters leads to the unobservability of the network. Therefore, Pseudo measurements
are added to obtain the observability of the network. Whereas Pseudo measurements are
generated from the historical load profiles, therefore, large errors are introduced in Pseudo
measurements. Even though Pseudo measurements improve the redundancy and observability,
the low accuracy of Pseudo measurements degrades the performance of state estimation.
Therefore, the above reasons made to introduce specific algorithms for distribution system state

estimation (DSSE) to handle the need for distribution system.

Due to the difference in basic characteristics of transmission and distribution system,
DSSE formulation differs from conventional state estimation. The measurement function h(x)
modelling in DSSE, is mainly deviates from the transmission system state estimation. Based

on the choice of state variables, measurements and representation of phases in the power flow

8
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equation, the measurement function can have different forms. Based on the choice of state
variables and formulation of measurement function the DSSE can be formulated as i) Voltage-
based DSSE and ii) Branch current-based DSSE.

o Voltage based DSSE: In general, the voltage magnitude and voltage angle are
considered state variables in transmission system state estimation. Similarly, the
conventional state variables are considered in many methods to formulate the
DSSE [8]- [11].

. Branch Current based DSSE: Branch current magnitude and current angle are
used as state variables to formulate the Branch Current based DSSE (BC-
DSSE). The BC-DSSE is widely used in distribution system as it provides better
results compared to VVoltage-based DSSE [12]-[17].

1.5  Branch Current based Distribution System State Estimation (BC-DSSE)

Baran and Kelley [12] proposed branch current based three phase distribution system
state estimation, which is based on WLS method. Each phase measurement function is
represented in terms of its phase currents, so it decouples three phase problem into three sub-
problems. This method forms the constant gain matrix. Therefore, the method performs better
in terms of convergence, computational speed and memory management compared to voltage-
based-DSSE [16]. Many authors have proposed alternative BC-DSSE methods to enhance the
accuracy of state estimation [12]-[17]. The branch current magnitude (i) and phase angle (o)

are considered state variables in BC-DSSE. The state variable ‘X’ is represented as follows:

X = [il,iz, ...... 'iNbT" aq, Ay, ... ... yANDr ] (17)

In [18], the study shows that the voltage measurement at the substation affects the whole state
estimation performance. Therefore, Marco Pau et al. [17] proposed a BC-DSSE algorithm
considering the voltage magnitude at substation as a state variable to enhance the accuracy of

state estimation. A general BC-DSSE algorithm is presented as follows:

1.5.1 Jacobian Matrix Formulation H(x):

The Jacobean is formulated by differentiating measurement with respect to the state variables.
The measurements (Z) consist of different types of measurements from the field such as
voltage, current, active, and reactive power flows, node injection powers, Pseudo
measurements, virtual measurements. Pseudo measurements are produced from historical data

of the loads and virtual measurements are the zero injection power measurements modelled
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using lower value variance in the order of 107 [19]. The Jacobian is formulated for different
measurements using the following expressions:

1. Voltage Magnitude Measurement:

Suppose the voltage at p™ node on k™ branch is measured, there are n branches before the kth

branch to the first branch, then the voltage magnitude is given as follows:
Vo = Vatack — 2iot lic1,jZi-1j (1.8)

Then the Jacobian matrix entries are as follows:

o,
5= 058y 7y cos(a;_1, + 6;-1)
i—-1,j
—sin (Sp 'Zi—l,j sin(ai_l’j + gi—l,j) (19)
o |
3 = COS 6p . Ii—l,jZi—l,j Sln(ai_ljj + 01'_1,]')
A1

—sin 6p . Ii—l,jZi—l,j COS(al’_llj + 91'_1']') (110)

Where § is angle of voltage, a is angle of current and 0 is angle of impedance. When the
currents are away from the path between kth branch and the first branch then the Jacobian

entries are equal to zero.
2. Current Magnitude Measurement:

The Jacobian entries for the current measurement of branch ‘m’ between nodes p, q is

expressed as follows:

Olpq 1 when (i,j) = (p.q)

— = 1.11
ol; j {0 otherwise ( )
Olpg _

_aai_,- =0 (1.12)

3. Power Injection Measurements:

Suppose power injection at bus k is measured and there are m buses connected to k™"
bus and from 1 to n buses the current flow is inward to kth bus, and from n+1 to m
buses the current flow is outward to kth bus, then the power injection is expressed as

follows:

10
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Pe +jQr = VieBiz1 lij — XiZne1 i) (1.13)
Then the corresponding Jacobian entries are as follows:

0Py

o1, = Vi cos(6x — a; ;) (1.14)
P .

W;j = Vi I jsin(6x — a; ) (1.15)
9% — y, sin(s, — a; ; (1.16)
alij 1)

2Q

aa:j = —Vi I jcos(6x — a; ;) (1.17)

When a line is not connected to the measured injection bus, then the related entries are

made zero.
4. Power Flow Measurement:

Suppose the power flow on branch k is measured, which is in between nodes p, q, then the

power flow is expressed as follows:
Boq +JQpq = Vp(lp,q)” (1.18)
Pog +J0pq = Volpg (cos(&k — Qpq) +jsin(6y — ap,q)) (1.19)

The corresponding Jacobian entries are given as follows:

(Z,,]q = Vpcos(8p — apq) (1.20)
?31;_125 = Vp Ip,qsin(6p — apq) (1.21)
Zi_pf = Vpsin(dp — ap,q) (1.22)
?aQa_sz = —VpIpqc0s(6p — @pq) (1.23)

When the state variable and the measurement branch is not in the same branch then the

Jacobian entries are made zero.

1.5.2 Step by Step Procedure of BC-DSSE Algorithm
The BC-DSSE algorithm is based on the WLS method. The algorithm consists of three steps

to estimate the state variables. the steps are described as follows:

11
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1. Initialization: The initial values of state variables affect greatly the performance of
state estimation. Initial values are determined using two steps: i) backward approach
and ii) forward approach. In the first step, in backward approach, the branch currents
are calculated by setting the initial values of node voltages as one per unit and using the
power injections at each node. In the second step, the branch currents calculated in

backward approach are used to calculate the initial values of voltage at each node.

2. Update State Variables: The residuals are calculated, and the state variables are

updated using equations (1.4) and (1.6).

3. Update Node Voltages: The node voltages are calculated from the state variables using

the forward sweep approach.

4. Convergence Criteria: If the change in the state variables is below a specified
threshold limit (€), then the algorithm stops and prints the results. The specified

threshold limit is taken as 10~ for convergence criteria.

1.6 DSSE based on Meter Placement

The network status can be monitored with the help of meters installed at different locations
of the distribution network. The measurements supplied by the meters may have errors and also
due to communication failure, measurement data may become erroneous. The erroneous data
is filtered using the state estimation process to get the actual measurement data. Therefore, the
performance of state estimation significantly influences the operation of the network as the
output of state estimation is supplied to all the control actions [20]. However, the performance
of the state estimation depends on the observability of the network and the redundancy of the
measurements. The observability of the network depends on the distribution of meters in the
network. However, the distribution network is unobservable with a limited number of meters.
Therefore, additional meters are required to be installed to make the system observable.
Distribution system has a large number of nodes and placing meters at each node may not be
economically feasible. The network can be made numerically observable by adding Pseudo
measurements [21], but the huge errors associated with Pseudo measurements deteriorates the
performance of state estimation. By installing the additional real measurements at distribution
network, the desired performance of state estimation can be achieved. Therefore, meters need
to be placed optimally to reduce metering cost, to improve the observability and redundancy
such that altogether it improves the state estimation performance.

12



Chapter 1 Introduction

The meter placement problem can be formulated in two ways as i) using topological
observability and ii) numerical observability, by adding Pseudo measurements to additional
real measurements set to improve the performance of state estimation. The topological
observability is based on graph theory and whereas in second method Pseudo measurements
are fixed, by taking all node injections modelled as Pseudo measurements, whereas additional
real measurements are placed using an optimizing algorithm. The topological observability
requires a greater number of meters to achieve observability compared to using the second
method of meter placement. Moreover, the second method of meter placement ensures the
desired performance of state estimation for a given set of real measurements. Therefore, this
work considers the second approach of meter placement, in which all the node injections are
modelled as Pseudo measurements and the real measurements are placed using the optimization

technique.

The meter placement problem is formulated as an optimization problem. The
optimization techniques like dynamic programming, interior point method and so on are called
conventional optimization methods. Each conventional method provides better results for a
specific type of optimization problem and is not suitable for other types of problems. Moreover,
the conventional optimization method may not handle the mixed variable optimization

problems, struck at local optima and requires existing of objective function derivative.

1.7  Evolutionary Optimization Algorithms

The limitation of conventional optimization methods can be overcome with alternative
optimization techniques such as evolutionary optimization techniques, which can handle
nonlinear, non-differentiable, real-world complex problems, highly constrained, high
dimensionality problems, and discrete optimization problems. Evolutionary optimization
algorithms are one of the branches of meta-heuristic optimization algorithms, which are
inspired by the biological evolutionary theory to solve optimization problems. The
evolutionary algorithms can be classified into two categories: i) population-based and ii)
trajectory-based algorithms. Population-based algorithms are inspired by the biology and
swarms of different species. In population-based algorithms, multiple solutions are propagated
to find the optimal solution in the decision space. Genetic algorithm, Particle swarm
optimization, whale optimization, and bat optimization etc., are examples of population-based
algorithms. Whereas, trajectory-based algorithms are adapted from physics, in which a single
solution is propagated to find the optimal solution. Tabu search, simulated annealing etc., are

examples of trajectory-based algorithms. The Evolutionary optimization algorithms are best

13
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suited to solve the meter placement problem. The meter placement can be formulated as single
objective and multi-objective problems. Whereas, in practical applications of meter placement
in distribution system need to consider multiple objectives instead of a single objective. The
multi-objective formulation provides the trade-off solutions which are useful in making the

decision of distribution system planning studies.

1.8 Multi-Objective Evolutionary Algorithms

The multi-objective meter placement can be designed using multi-objective
evolutionary algorithm (MOEA). The optimization process provides the best feasible solution
which is the maximum or minimum value of a given objective function. In general, the multi-

objective optimization is expressed as follows:

minimize F(x) = (f1(x), f2(x), ... ... i ONT
subjected to constraints

Where F (x) is the multi-objective function formulated from the ‘m’ individual objectivesf (x).

When m>4 then the optimization is referred to as many-objective optimization.

Moreover, in all modern evolutionary algorithms, the balance between exploration and
exploitation is a critical issue for better performance of the algorithm. Exploration refers to the
global search process in objective space whereas exploitation refers to a local search around
the neighbourhood of an optimal or near-optimal solution. Exhaustive exploration increases
the convergence time and excessive exploitation causes the algorithm to be struck at a local
optimum point and may not reach near the global optimal solution. Therefore, the balance
between exploration (global search) and exploitation (local search) is a critical issue in

designing evolutionary algorithms.

In general, multi-objective evolutionary algorithms (MOEAS) are inherently designed
to handle conflict goals, that minimize the distance between solutions on the Pareto front (i.e.,
convergence) and maximize the distribution of solutions along the Pareto front (i.e., diversity)
[23]. The balance between convergence and diversity is a critical issue for obtaining qualitative

and diverse trade-off solutions in MOEAs.

The multi-objective evolutionary algorithms can be divided into four categories as i) Pareto
dominance based ii) decomposition based iii) indicator based and iv) model based methods.
This work tried all types of multi-objective evolutionary algorithms to formulate the meter

placement problem.
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1. Pareto dominance based MOEA: The solutions are ranked based on Pareto
dominance order using the non-dominated sorting method, which improves the
convergence of MOEA, and the crowding distance technique is used to enhance the
diversity of solutions on the Pareto front.

2. Decomposition based MOEA: The multi-objective problem is transformed into
several single objective optimization problems. The algorithm divides the problem into
subproblems using scalarization methods based on different weights. The
neighbourhoods are formed based on the distance between aggregation vectors. The
subproblem is simultaneously solved by exchanging information among the
neighboring solutions. This improves the efficiency of searching the objective space for

optimal solutions.

3. Indicator-based MOEA: These methods use performance indicators to guide the
search process and the solutions are selected based on performance indicator value.
Several types of indicator metrics are available in the literature such as hyper volume

indicator, R2 indicator, inverted generational distance (IGD) and so on.

4. Model based MOEA: The model based MOEAs add the ability to learn from the
environment in evolutionary algorithms. The traditional MOEASs such Pareto based,
decomposition based, and indicator based MOEASs are designed to operate on the fixed
heuristic strategies such as reproduction, selection, and variation. In the process of
searching for a feasible solution, traditional MOEASs may not interact with the rapidly
changing environment due to the complex properties of the problem to be solved. The
model based MOEASs uses machine learning techniques to adapt to the environmental
changes in the evolutionary process. The model based MOEA replaces the traditional
heuristic operators such as selection, reproduction, and fitness evaluation with a
machine learning model. The models use the candidate solutions as sample training
data from the current generation to generate the best solutions by learning the changes

in the environment.

1.9 Combinatorial Nature of Meter Placement Problem

The meter placement problem is basically a combinatorial optimization problem. The meter
locations are randomly initialized at the initial stage of the evolutionary algorithm and the
algorithm need to search all possible combinations of meter locations, which makes the

decision space large and moreover, meter locations are represented using binary variable makes
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the decision space discrete. The objective space is affected by the discrete combinatorial nature
of decision space and which leads to forming a discontinuous objective space. The
combinatorial optimization problems pose the challenge in searching large solution space
whereas, the discontinuous objective space provides the irregular Pareto fronts, which
deteriorates the performance of MOEA and reduces the diversity of the Pareto front. With the
proper design of MOEAs, the issues with the combinatorial optimization problems can be

addressed effectively.
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Literature Review

2.1. General Overview

In recent years the availability of renewable resources in distribution system has increased,
which in turn necessitates the concern for the monitoring and operation of distribution system.
The uncertainty and unpredictability of renewable energy sources made the distribution system
more complex to operate and control [22]. Moreover, the dynamic behavior of distribution
network needs to be monitored and control to make it reliable and operate efficiently. The real-
time state of the system is obtained using state estimation. The accuracy and performance of
the state estimation impact the operation of distribution system as the states are used as input
for control operations such as voltage stability analysis, reconfiguration, etc. [23]. The best
estimation of states is obtained using state estimation (SE), which filters the errors from raw
measurement data. The accuracy of the state estimation is subject to the redundancy of
measurements and network observability [1]. State estimation is widely used in transmission
system to determine the state of the system. whereas, due to different characteristics of
distribution system, the transmission system state estimation algorithms may not be directly
applicable to the distribution system. Many researchers developed specific algorithms for
distribution system state estimation (DSSE). The DSSE can be formulated as i) node based
DSSE and ii) branch current based DSSE.

2.1.1 Node Voltage based DSSE

Baran and Kelley [8] proposed three phase DSSE based on the WLS method with
voltage magnitude and voltage angle are considered as state variables. Lu, Teng and Liu [9]
proposed a DSSE algorithm by converting all the measurements into equivalent current
measurements, which makes the Jacobean elements constant and equal to admittance values.
The authors further extended the equivalent current based DSSE to formulate a fast decoupled
method by decoupling constant gain matrix [24]. Similarly, many authors proposed node
voltage based DSSE, in which node voltage magnitude and angle are considered as state
variables [8]-[11].
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2.1.2 Branch Current based DSSE

Baran and Kelley [12] proposed a branch current based three phase DSSE. The
measurement function is expressed with phase currents to decouple the problem into three
independent measurement functions. The authors showed the better results compared to node
voltage based DSSE. Similarly, many branch current based DSSE techniques are proposed,

which became the conventional way of designing the DSSE [12]-[17].
2.1.3. DSSE based on Meter Placement

In distribution system, the existing measurement devices are few, eventhough the number of
nodes is very large. Therefore, with the existing inadequate measurement set, the distribution
network is unobservable. To resolve this issue, Pseudo measurements are added to the
measurement set in DSSE process to achieve the observability, and it improves the
convergence of DSSE [21]. However, the low accuracy of Pseudo measurements propagates
uncertainty in state variables. As a consequence, the accuracy of DSSE results suffer. To
improve the performance of DSSE, an optimal number and appropriate type of additional real

measurements are required to be deployed in distribution system.

2.2 Meter Placement Problem

Baran et al. [7], proposed simple rules to place the meters on the distribution system.
The authors selected switching locations, which are the best locations for accurate power flow
measurement, and suggested placing the meters at different locations such that the load
aggregation is equal at each meter. This approach is simple and effective for the passive
distribution network, whereas for active and complex distribution networks, it may not
guarantee the optimal solution in terms of the number of meters and cost of the metering

infrastructure.

Wang et al. [16], addressed impact of DSSE performance on the different type of meters
and their locations. The authors concluded that power flow meters are the best among the
current magnitude and voltage magnitude meters, based on the performance results of DSSE.
The power flow meters and current meters improve the performance of DSSE when they are
placed near the source. The voltage measurements improve the performance of DSSE when

placed away from the source.

Li [25], investigated the stochastic results of DSSE and the deviation of voltage and
power flow based on meter locations. The results show that the voltage deviation increase when

the location of meters is away from the substation. The estimated deviation of power flow
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increases once the device is far away from the substation and is also dependent on the deviation
of the Pseudo measurements errors. The authors also investigated the load correlation and the
results show that the higher the degree of load correlation, the lower the estimated voltage

deviation will be.

The meter placement problem deals mainly with the determining of location, type, and
an optimal number of meters with the desired accuracy of DSSE [26]. These three aspects are
dependent on one another and also depends on the objective function, which is used to
formulate the meter placement problem. Based on these aspects, different combinations of
objectives have been proposed for the meter placement problem. Muscas et al. [27] proposed
meter placement using dynamic programming based step-by-step approach for DSSE,
minimization of the weighted mean value of variances of quantities is considered as an
objective. Singh et al. [28], using an ordinal optimization algorithm (OOA), formulated a meter
placement method to minimize the probability of relative state estimation errors. Likewise,
several authors have attempted meter placement problem as single-objective optimization
approach using conventional optimization methods [29]-[30]. The conventional optimization
method may not handle the mixed variable optimization problems, struck at local optima,
which requires the existing of objective function and constraint function derivatives. The
limitation of conventional optimization methods can be overcome with alternative optimization
techniques such as evolutionary optimization techniques, which can handle nonlinear, non-
differentiable, real-world complex problems, highly constrained, high dimensionality

problems, and discrete optimization problems.

In papers [31]-[33], covered an extensive review of distribution system state estimation
and meter placement problem. However, much of the literature deals with single objective
based optimal meter placement in distribution system state estimation. On the contrary, studies
on multi-objective based optimal meter placement in distribution system have been few in
literature.

In practical planning studies, while placing meters in distribution system, the decision-
makers require to meet multiple objectives and the trade-off solutions among different
objectives are more useful in taking a sensible decision. Therefore, meter placement is
modelled as a multi-objective problem rather than single objective problem for practical

applications.
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Jungi Liu et al. [34] proposed weighted-sum-based multi-objective optimization for the
trade-off between Phasor Measurement Units (PMUs) and Smart Metering (SM). In this
optimization problem, the cost of PMUs and SM, relative voltage magnitude deviation, and
voltage phase angle deviation are assigned with weights and then minimized the resultant
weighted sum of the objective function using genetic algorithm. Linear Scalarization or
Weighted-sum-based multi-objective optimization is used for solving the meter placement
problem [35]-[40], in which each objective is assigned a non-negative weight, such that the
sum of all the weights must become unity. However, the weighted sum based multi-objective
methods fails to provide trade-off solutions. Moreover, in the case of concave Pareto fronts,
weighted-sum-based multi-objective optimization gives the solutions, which are optimal in one
of the objectives [41].

2.3 Multi-Objective Evolutionary Algorithms

There are many multi-objective paradigms because all different types of multi-objective
problems cannot be solved by a single method [42]. The MOEAs are classified into four
categories: i) Pareto dominance based ii) decomposition based iii) indicator based and iv)
model based MOEA:s.

1. Pareto Dominance based MOEAs: The dominance based MOEAs select the feasible
solutions based on dominance order ranking. Apart from the selection of candidates,
dominance methods use the secondary ranking method to improve the diversity of the Pareto
front solutions. The Non-dominated Sorting Genetic Algorithm-11 (NSGA-I1) [43] is popular
among this category. NSGA-11 employs non-dominated sorting (NDS) method to identify the
nondominated solutions and crowding distance is applied to preserve the population diversity.
Strength Pareto evolution algorithm 2 (SPEA2) [44] and Pareto envelop-based selection
algorithm-I1 (PESA-II) [45] are the other Pareto dominance based MOEAs. These algorithms
show better performance in handling the multi-objective problems with two and three
objectives. The main drawback of these methods is with increase in number of objectives the
performance of MOEA deteriorates rapidly and may cause the loss of diversity in pareto front
[46]. To overcome these limitations, many researchers proposed algorithms with modifications
in design of Pareto based MOEA such as Grid dominance based evolutionary algorithms [47]
and knee point driven evolutionary algorithm [48].

2. Weighted Sum based MOEAs: The weighted sum based MOEAs are the basic form of the
decomposition based MOEAs. In these methods, the objectives are assigned with weights and
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added together to form a single objective function. The sum of all the weights should equal to
one, so that each objective will gets its equal influence on the resultant objective value. Then
the resultant objective function is solved same as the single objective optimization problem.
These methods are simple in formulation of the optimization problem and converts the multi-
objective problem into a single objective problem. The conventional or single objective
heuristics which are useful to solve the single objective optimization problems can be directly
applied to these problems. However, choosing right weight values for each objective is subject
to the problem dependent. However, the limitation of these methods is that the choice of weight

can influence the final optimal value of the MOEA.

3. Decomposition based MOEAs: The decomposition based MOEAs decomposes multi-
objective problem into several single objective solved simultaneously. MOEA based on
decomposition (MOEA/D) [49] decomposes the objective space into several sub-problems and
neighborhoods defined through weight vectors. Dynamic weight based evolutionary
algorithm[50], multiple single objective Pareto sampling algorithm-11 [51] and multi-objective
genetic local search algorithms [52] are the other methods based on decomposition. Whereas,
with the uniform weight vectors these methods may not follow the shape of the Pareto front

and it will adversely effect the performance of the MOEA [53].

4. Indicator based MOEAs: Indicator based MOEASs selection is guided by the performance
indicator which measures the solution set performance characteristics and serves as selection
criteria. Zitzler and Kunzli [54] proposed first indicator based evolutionary algorithm based on
a predefined binary indicator. This method introduced the basic framework for indicator based
MOEAs. Many authors proposed indicator based MOEAs such as generational distance and e-
dominance-based (GDE-MOEA) [55], hyper volume based MOEA [56] and R2 indicator-
based many-objective metaheuristic-11 (MOMBI-I11) [57]. Several performance indicators are
proposed through several indicator based MOEASs such as predefined binary indicator, R2
indicator, generational distance (GD) [58], inverted generational distance (IGD) [59], hyper
volume (HV) indicator [60] and so on [61]- [63].

5. Model based MOEAs: The traditional MOEAs such as Pareto based, dominance based,
and indicator based MOEAs are built on fixed heuristic rules. Therefore, in evolution process
these MOEASs may not adapt to the changes in evolutionary environment. The model based
MOEA:s are designed to replace the traditional operators such as selection, reproduction, and

fitness evaluations with machine learning models. This provides the ability to learn the
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environment of evolutionary process by building the learning models from the candidate
solutions of current generation. For training of the models, candidate solutions of the current
generation in evolution process are used as sample data. The models can be replaced with the
operators of traditional MOEASs such as reproduction, fitness evaluation and selection. These
methos can be designed to estimate the distribution of candidate solutions. These are used as
reproduction operator to generate the additional candidate solutions from the inverse model to
map the objective space to decision space. when the optimization problems are computationally
complex, or the fitness function is unknown then machine learning models are used as surrogate
fitness functions. Bayesian multi-objective optimization algorithm (BMOA) [64], naive
mixture-based multi-objective iterated density estimation evolutionary algorithm (MIDEA)
[65] uses machine learning models for selections process to estimate the distribution of
candidate solutions. Giagkiozis and Fleming proposed inverse-model based MOEA using
Radial Basis Function Neural Networks (RBFNNSs) [66] to map the objective space to decision
space. Singh et al. proposed a surrogate-assisted simulated annealing algorithm (SASA) to
evaluate the fitness function [67]. Similarly, many authors proposed model based MOEAs [68]-
[70] and in-depth review can be found in [71].

Moreover, in all modern evolutionary algorithms the balance between exploration and
exploitation is a critical issue for better performance of the algorithm. Exploration refers to the
global search process in objective space whereas exploitation refers to a local search around
the neighborhood of an optimal or near-optimal solution. Exhaustive exploration increases the
convergence time and excessive exploitation causes algorithm to be struck at a local optimum
point and may not reach near the global optimal solution. Therefore, proper balance is required

between exploration (global search) and exploitation (local search).

In general, multi-objective evolutionary algorithms (MOEASs) are designed to handle
conflict goals, that minimize the distance between solutions and Pareto front (i.e., convergence)
and maximize the distribution of solutions along Pareto front (i.e., diversity) [72]. The balance
between convergence and diversity is a critical issue for obtaining qualitative and diverse trade-

off solutions.

24 Meter Placement Problem using Multi-Objective Evolutionary Algorithms

In [73], the authors proposed a Pareto-based non-dominated sorting hybrid multi-
objective evolutionary optimization technique to minimize total network configuration cost,
average relative percentage error of bus voltage magnitude, and voltage angle estimates.

Similarly, the same authors extended their work with different objective functions using hybrid
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heuristic dominance based multi-objective optimization for meter placement in distribution
system state estimation [74]-[76]. However, with the increase in objectives, the objective space
in size increases. Therefore, almost all solutions become non-dominated with one another. This
deteriorates the selection pressure towards the set of all Pareto-optimal vectors, known as
Pareto front (PF), and may even cause the loss of the population diversity in the evolutionary
process to a certain extent and slows down the convergence speed of multi-objective

optimization problem [77].

The shape of Pareto front of the problem to be addressed has a significant impact on
MOEA's performance [78], [79]. Whereas, neither dominance-based nor decomposition-based
MOEAs can handle irregular Pareto fronts. The objective values are not continuous in objective
space, due to the combinatorial nature of problem [80]. As a result, objective space is discrete

and Pareto front is also discontinuous in nature [81].

On the other hand, the observability analysis can be classified as i) topological
observability ii) numerical observability and iii) hybrid or path-graph based observability
analysis [82]. Topological observability analysis is based on graph theory, and it involves
combinatorial computational complexity. Whereas the numerical observability is based on
decomposing of the Jacobian matrix. If the linearly independent rows of the Jacobian matrix
are equal or greater than the number of state variable, then the system is observable for a given
set of measurement otherwise unobservable. In recent years, the numerical observability of
distribution systems has received increased attention. Ratmir Gelagaev et al. [83] proposed a
numerical observability analysis in distribution system by taking the X/R ratio impact on the
decomposition of the Jacobian matrix. Moreover, in literature, numerical observability is not

fully explored in distribution system meter placement problem.

2.5  Aimsand Objectives:
The aim of the research to handle the issues with meter placement problem in the active

distribution system in a multi-objective framework. The thesis addresses the issue with
combinatorial optimization, discontinuous and irregular Pareto fronts, initial population
diversity, search ability of the multi-objective evolutionary algorithms, and minimization of set
of pseudo measurements to enhance the performance of state estimation with a set real
measurement. The aims of the thesis is as follows:
e Day by day distribution system network is changing and gaining attention due to
increase in addition of renewable energy sources into the system. The operation and

control of distribution system became a significant area to research to address the
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challenges posed by the changes in distribution network. An efficient monitoring and
control algorithms need to be implemented to operate and address the challenges in
distribution system.

e Distribution system as passive network, required few meter to operate the distribution
system. With addition of distributed generation, the monitoring and control need to be
accurate and efficient. Moreover, to monitor the active and dynamic distribution system
a efficient metering infrastructure is required.

e As the meter placement problem is a offline study, the decision maker needs to inspect
as many as possible trade-off solutions which are feasible in economically and
techinically. Therefore, a robust multi-objective solutions need to be addressed for
meter placement in distribution system.

e The addition of renewable sources transform the distribution system operation and
behaviour. The intermittent nature of renewable sources pose the cahllenges and
introduces uncertainty in operatio of the system. The dynamic behaviour and
uncertainty of the renewable sources need to be addressed in the meter placement of
distribution system.

e The distribution system neeed to adopt the new technology and efficient metering
technologies to provide better performace. The new devices like D-PMUs and IEds
need to be considered to formulate meter placement for the distribution system and to
get the improved performacnes of state estimation.

Objectives:
The objective of the research work is as follows:

e A new hybrid multi-objective evolutionary optimization algorithm based on
decomposition and local dominance is proposed for the meter placement in
distribution state estimation.

e Anew indicator based multi-objective evolutionary algorithm is proposed for meter
placement in active distribution system.

e A new inverse model-based multi-objective evolutionary algorithm with adaptive
reference point method is proposed for meter placement in distribution system state
estimation.

e The trade-off between D-PMUs and IEDs are considered to formulate the meter

placement problem using inverse model-based multi-objective evolutionary
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2.6

algorithm. Numerical observability method is used to minimize the number of

Pseudo measurements.

Motivation
Apart from the advantages reported in the literature available, there are certain limitations.

The disadvantages are listed as follows:

In the literature, the meter placement problem is mostly formulated as a single objective
optimization problem [26]-[30], whereas the practical meter placement problem deals with
more than one objective, and the trade-off solutions play a significant role in taking a
decision in distribution system planning.

The weighted-sum based multi-objective approach [35]-[40] is simple to formulate and
solve for the multi- objective problem. This approach transforms the multi-objective
problem into a single objective problem with the aggregation of weighted objectives. Apart
from the advantages, the main limitations are: (i) this approach is incapable of dealing with
non-convex Pareto Front (PF). In other words, the approach provides the solutions which
are optimal in one of the objectives for non-concave PF and (ii) the weight values assigned
to the objective functions, largely influence the optimal solutions.

The dominance (Pareto) based MOEAs [73]-[76] are gaining in popularity as they
overcome the limitations of weighted-sum based MOEAs. The solutions are ranked based
on Pareto order, instead of weighted objectives, which improves the convergence of
MOEA. Then, the crowding distance method is applied to ensure the diversity of the
solutions in the Pareto front. Apart from the advantages, the Pareto-based MOEAs have
limitations: (i) dominance-based methods might be difficult to guarantee a measure of
convergence and difficult to achieve very regular spacing of solutions in the Pareto front.
(i) With an increase in objective space, almost all solutions in a population become
nondominated with one another [46]. (iii) Due to the presence of dominance resistance
solutions [47], selection pressure deteriorates and may even lead to the loss of population
diversity in the evolutionary process, and it deteriorates the performance of MOEA [48]
and (iv) the Pareto dominance may not provide any guarantee that the solution obtained is
an optimal solution, as there is no measure of performance throughout the evolutionary
process.

To overcome the issues with weighted objectives in weighted-sum-based MOEAs, in
decomposition-based MOEAs the objective functions are scalarized with the weight

vectors. Then, the multi-objective problem is transformed into several single objective
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optimization problems [49]. The disadvantages of decomposition based MOEAs are, that
(i) they require a priori knowledge of the Pareto front position in the objective space and
with increase in the objective space size the number of weight vectors required might grow
rapidly, even if the Pareto front is of low dimension. (ii) The weight vectors are uniformly
distributed in decomposition based MOEAs. If the shape of Pareto front is irregular
(disconnected, degenerated, and with sharp tails), then the best approximation of the Pareto
front with uniform weight vectors cannot be obtained [53].

e Most of MOEASs use population or external archive to store non-dominated solutions
obtained in each generation [84]. In general, only a limited number of diverse non-
dominated solutions can be achieved in each generation, in most of population based
MOEAs. However, the additional diverse solutions can be obtained by properly designing
the reproduction operator in MOEA.

e Meter placement is fundamentally a combinatorial optimization problem, where the
combination of meter set may not provide a continuous objective value in objective space
[80]. Therefore, (i) the objective space is discrete in nature and (ii) the distribution of Pareto
front is discontinuous and irregular in nature.

e The performance of MOEA strongly influences the shape of Pareto front of the problem to
be solved [53], [79]. In other words, most of the MOEASs can deal with only regular Pareto
front, and not just with the irregular (disconnected, degenerated, and with sharp tails) Pareto
fronts.

e In distribution system, state estimation performance can be enhanced using the meter
placement problem and it is handled in literature in two ways using i) topological
observability and ii) numerical observability, by adding Pseudo measurements. Using
topological observability-based meter placement, the total number of meters required is
around one third of the number of nodes in distribution system [85]. Whereas, using the
pseudo-measurement-based meter placement method the number of meters required is very
less than the topological observability-based meter placement method. The advantage of a
smaller number of meters is due to the additional Pseudo measurements that are supplied
along with real measurements.

e However, the drawback with pseudo-measurement-based meter placement is the accuracy
of state estimation suffers due to the huge error associated with Pseudo measurements. The
minimum number of Pseudo measurements that are needed to be added to the measurement

set is not addressed in the literature.
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The research work addressed the gaps in literature and propsed new hybrid multi objective
meter placement problem in distribution system to over come the limitations with single
objective and weighted-sum-based MOEAs [26-40]. The work compared the different types of
MOEA such as Pareto based, Dominace based, indicator based and model based MOEAs and
used to formulate the meter placement problem. The thesis addresses the issue with
combinatorial optimization, discontinuous and irregular Pareto fronts, initial population
diversity, search ability of the multi-objective evolutionary algorithms, and minimization of set
of pseudo measurements to enhance the performance of state estimation with a set real

measurement.

2.7  Contributions
The objective of the thesis is to design multi-objective framework to handle the issues with the

meter placement problem in distribution system.
The contributions of the thesis as follows:

e A new hybrid multi-objective evolutionary optimization algorithm based on
decomposition and local dominance is proposed for the meter placement in distribution
state estimation. To achieve qualitative and quantitative diverse trade-off solutions in
Pareto optimal front, decomposition and dominance techniques are hybridised. In this
approach, the population is initialized with the Binomial distribution-based Monte
Carlo method, as the meter placement problem is a combinatorial optimization problem.
Diversity improvement is the main goal of the Binomial distribution-based Monte Carlo
method, as a consequence, it also improves the convergence.

e A new indicator based multi-objective evolutionary algorithm is proposed for meter
placement in active distribution system. An inverted generational distance indicator
with noncontributing solution detection (IGD-NS) indicator is used to evaluate the
performance of the solution set and used as selection criterion. The IGD-NS indicates
the diversity and convergence of the solution set and minimizes the number of solutions
that have no impact on the indicator value. The objective discretization method is
employed to improve the convergence and diversity of the proposed method, as each
objective value spread on its own range of possible values. It enhances the search ability
of MOEA and decreases the non-dominated solutions in population. The shape of the
Pareto front influences the performance of a multi-objective evolutionary algorithm.
Therefore, the proposed work employed a reference point method, which adaptively
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update the reference points to follow the Pareto front shape. These reference points
serve as priori knowledge of the approximate optimal Pareto front and in the calculation
of performance indicator. The cost of meters and state estimation errors are considered
as objectives to form the multi-objective optimization problem. Moreover, the impact
of meter placement is investigated for various types of renewable sources and different
measurement uncertainties.

e A new inverse model-based multi-objective evolutionary algorithm with adaptive
reference point method is proposed for meter placement in distribution system state
estimation. Inverse model generates the additional non-dominated candidate solutions
by sampling the objective distribution. It improves the search efficiency and diversity
of Pareto front. Meter placement is a combinatorial optimization problem consist of
binary decision variables. Therefore, inverse model is realized by classification as it
maps non-dominated solution from integer domain objective space to the binary
domain decision space. Each meter location is represented as a label to model the binary
string in decision space, as meter locations belong to multiple labels simultaneously.
Therefore, inverse model is realized using multi-label Gaussian classification. The
combination of meter locations may not provide continuous non-dominated solutions
in Pareto front. As a consequence, discontinues Pareto front is formed. The performance
of MOEA is affected by the shape of Pareto front. Therefore, adaptive reference point
method is employed to follow the shape of the Pareto front. Conflicting objectives such
as minimizing the cost of metering infrastructure and error in state estimates is
considered, and the inverse model based multi-objective framework is used to achieve
an optimal meter placement solution in an active distribution network by considering
the measurement uncertainty and different types of renewable sources.

e An inverse model based many-objective evolutionary optimization is designed using
four objectives as minimization of distribution level Phasor measurement units (D-
PMUs) cost, minimization of intelligent electronic devices (IEDs) cost, minimization
of root mean square errors of voltage magnitude and minimization of root mean square
errors of voltage angle. Multi-label Gaussian classification is used to map the objective
space and binary decision space in the inverse model. The trade-off between D-PMUs
and IEDs are considered to formulate the meter placement problem. Numerical
observability method is used to minimize the number of Pseudo measurements for a

given set of real measurements, which are generated by evolutionary optimization.
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2.8 Thesis Organization

The thesis is organized as follows:

Chapter 1 introduces the distribution system state estimation and its importance in monitoring
and operation of the network. It briefly describes about the necessity of meter placement and
the impact of renewable energy penetration in the distribution system. It describes the basics
of meter placement and distribution system state estimation.

Chapter 2 provides a detailed literature review on the meter placement problem in distribution
system and discusses the existing methods of the research topic. It provides various methods
used to formulate the meter placement problem such as single objective and multi-objective

frameworks and discusses the different optimization techniques to handle the problem.

Following an extensive literature review on the topic, the motivation of the proposed
research work is presented, then objectives, contributions, and the organization of the thesis

are presented.

Chapter 3 describes a new hybrid multi-objective evolutionary optimization algorithm based
on decomposition and local dominance for meter placement in distribution system state
estimation. The trade-off between three objectives is considered, which are minimizing the cost
of the meters, average relative percentage error (ARPE) of voltage magnitude, and ARPE of
voltage angle. As the meter placement problem is a combinatorial optimization, the Binomial
distribution-based Monte Carlo method is utilized to initialize the population, which aims to
improve the diversity, as a consequence it improves the convergence. The results of the
proposed method are compared with a multi-objective evolutionary algorithm based on
decomposition (MOEA/D), Non-dominated sorting genetic algorithm-11 (NSGA-II) and with
multi-objective hybrid particle swarm optimization- krill herd algorithm (PSO-KH), multi-
objective hybrid estimation of distribution algorithm- interior point method (EDA-IPM) and
demonstrated on PG&E 69-bus distribution system and Indian Practical 85-bus distribution

system.

Chapter 4 presents a new indicator-based multi-objective evolutionary algorithm (MOEA)
using the objective discretization method for meter placement in active distribution system. As
the meter placement problem is a combinatorial optimization, a combination of measurement
sets produces a discrete objective space. Therefore, the objective discretization method has
been adopted to improve the performance of MOEA. The proposed MOEA is an indicator-

based method based on inverted generational distance indictor with noncontributing solution
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detection (IGD-NS) and with adaptive reference point method. The performance of MOEA
mostly depends on the Pareto front shape, therefore the proposed method employs an adaptive
reference point approach to follow the shape of the Pareto front. Moreover, the effect of
distributed generation is investigated on distribution system state estimation performance for
different measurement uncertainty as well as for various distributed renewable generations.
The meter placement problem is modeled as a multi-objective problem with the objectives
consisting of minimization of total meter cost and state estimation errors. The versatility of the
proposed method is demonstrated on PG&E 69-bus distribution system and Indian Practical
85-bus distribution system. The results obtained are compared to existing MOEAs, to

demonstrate the superiority of the proposed method over other methods.

Chapter 5 addresses a new inverse model-based multi-objective evolutionary algorithm for
meter placement in active distribution system state estimation. The inverse model maps the
non-dominated solution from objective space to decision space and is realized using multi-
label Gaussian classification. The additional solutions are generated by sampling from the
inverse model, which improves the search efficiency and diversity of Pareto front solutions.
The combinatorial nature of the meter placement problem may produce a discontinuous Pareto
front. Therefore, the adaptive reference point method is employed to adjust the reference points
such that they follow the discontinuous Pareto front. The meter placement is designed as a
multi-objective problem with conflict objectives such as meter cost, the estimated error of
voltage magnitude, and voltage angle. The proposed method is tested under different real
measurement uncertainties and for passive and active distribution networks. Different types of
renewable sources are considered in the active distribution system. The superiority of the
proposed method is validated by comparing it with other multi-objective evolutionary
algorithms and tested on PG&E 69-bus distribution system and Indian Practical 85-bus

distribution system.

Chapter 6 proposes many-objective evolutionary optimization for meter placement in active
distribution system based on numerical observability. The meter placement problem can be
formulated i) based on topological observability, in which the meter placement depends on the
connectivity of the network, on the other hand, ii) the network can be made numerically
observable by adding all node power injections as Pseudo measurements and formulated as
combinatorial optimization with state estimation accuracy as an objective. The second
approach is more popular as it ensures the accuracy of state estimates and requires a small

number of real measurements compared to topological observability. Moreover, the addition
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of Pseudo measurements improves the convergence of state estimation and ensures the
observability of the network. Whereas, the huge errors associated with Pseudo measurements
deteriorate the performance of state estimation. Therefore, for the first time, in the meter
placement problem, numerical observability method is used to select the minimum number of
Pseudo measurements to ensure the observability and improve the accuracy of the state
estimation for a given set of real measurement combinations. The meter placement problem is
designed as many-objective evolutionary optimization with four objectives as i) cost of D-
PMUs ii) cost of IEDs iii) root mean square error of voltage magnitude and iv) root mean
square error of voltage angle. The proposed many-objective evolutionary optimization is
utilizing the inverse model that uses multi-label Gaussian process classification as a model to
generate meter locations mapped to objective space, which enhances the search ability and
diversity of evolutionary optimization. The impact of distributed generation, as well as various
real measurement uncertainties, are taken into account to validate the proposed method, which
is tested using the PG&E 69-bus distribution system and Indian Practical 85-bus distribution
systems.

Chapter 7 summarizes the research contribution, findings, and observations on the proposed

research work. Then it presents the scope for the future work that can be preceded in the topic.

2.9 Summary

This chapter provides existing literature on meter placement in distribution system. With the
penetration of renewable energy sources, distribution system operation becomes more
challenging. The state estimation plays a vital role in distribution system operation and control.
The characteristics of distribution system required to formulate the specific algorithms for
distribution system state estimation (DSSE). This chapter discusses the different DSSE

solutions in literature.

DSSE performance is mainly depends on redundancy of measurements and
observability of the network. Current distribution network has limited number of meters in the
network, in spite of having large size of the network. To make network observable additional
meters need to be placed optimally with in the financial feasibility. This chapter discusses the
impact of meter placement due to different factors such as type of meters, location of meters
and so on. This chapter provides multi-objective meter placement problem related existing

research and presents the discussion on various types of multi-objective evolutionary
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algorithms. Furthermore, motivation, contributions and organization of thesis are presented in

this chapter.
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Chapter 3

Multi-Objective Meter Placement in Distribution System State Estimation

Using Hybrid Decomposition and Local Dominance Method

3.1 Introduction

In recent years, the distribution system is adopting changes and advancements of smart
grid technologies and becoming more dynamic in behavior as it is changing from passive to an
active network, due to the penetration of Distributed Generation (DG). These changes are
necessary to enhance the real-time monitoring and control actions of the distribution system.
The network states are required to be monitored and accurately estimated as they are fed as
input to different control functions such as network reconfiguration, volt-var control,
restoration so on. The best estimate of states is obtained using state estimation (SE), which
filters the errors from raw measurement data. The accuracy of the state estimation is subject to
the redundancy of measurements and the network observability. In distribution system, the
existing measurement devices are few as the number of nodes is very large. Therefore, with
the existing inadequate measurement set, the distribution network is unobservable. To resolve
this issue, Pseudo measurements are added to the measurement set in Distribution System State
Estimation (DSSE) process to achieve the observability, and it improves the convergence of
DSSE. However, the low accuracy of Pseudo measurements propagates uncertainty in state
variables. As a consequence, the accuracy of DSSE results suffer. Therefore, to improve the
performance of DSSE, an appropriate number and type of additional real measurements are

required to be deployed in distribution system at proper nodes.

This chapter proposed the meter placement problem in distribution system state
estimation with a multi-objective evolutionary optimization algorithm based on decomposition
and local dominance. The proposed optimal meter placement problem considered the allocation
of power flow meter (PM) and Voltage magnitude meter (VMM) devices, as they are
economical and readily available compared to Phasor Measurement Units (PMU) and
Distribution level Phasor Measurement Units (D-PMUs). The meter placement is mainly a
combinatorial optimization problem, with an increase in distribution network size, the
placement locations increase, because of which individual candidate solution (chromosome)
size also increases. Therefore, the diversity of the initial population may not be assured with a
long binary chromosome. The work utilizes the Binary distribution-based Monte Carlo method

to initialize the population with better distribution, which improves diversity, therefore it
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improves the convergence, which is a by-product of this method. The main contributions of the

work are as follows:

i A new hybrid multi-objective evolutionary optimization algorithm based on
decomposition and local dominance is proposed for the meter placement in distribution

state estimation.

ii. To achieve qualitative and quantitative diverse trade-off solutions in Pareto optimal

front, decomposition and dominance techniques are hybridized.

iii. The proposed work initializes the population with the Binomial distribution-based
Monte Carlo method, as the meter placement problem is a combinatorial optimization
problem. Diversity improvement is the main goal of the Binomial distribution-based
Monte Carlo method; therefore, it improves the convergence, which is a by-product of
this method.

3.2 Problem Formulation

The proposed multi-objective evolutionary algorithm based meter placement problem
considered the minimization of three objective functions: i) total cost of measurement devices
(J1) ii) the average relative percentage error (ARPE) of voltage magnitude (J2) and iii) the
average relative percentage error (ARPE) of voltage angle (J3). The objectives that were
considered can be described as follows:

Min J, = Z?:l1 Cpm,i -Upm,i + Z?=1 CVMM,j -UVMM,j =XCT

Where X = [Upy , Uymn] and C = [Cpy, Cyuu]

(3.1)
n ~
, 11 vi-v,
MinJ, = EZE Z VE x 100
m i=1 i
(3.2)
n
1 1 5F—6;
Min J5 =—Z; Z 5t x 100
m i=1 i
(3.3)
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Subjected to constraints of prespecified limits of voltage magnitude and voltage angle relative
deviation as 1% and 5%, respectively for 95% of simulated cases [30]. The constraints are
expressed as follows

Vit - Vi o
g1 = V—lt <1%
(3.4)
6it - Si o
9o, = 6—5 < 5%
(3.5)

Where J1, J2, J3 are three objective functions, n, nl are the number of nodes and lines in
distribution system, m is the scenarios considered for Monte Carlo simulation, Cpm, Cymm
represents the relative normalized costs of power flow measurement and voltage magnitude
measurement devices. The proposed work is considered VMM as a default measurement.
Therefore, the normalized cost of VMM and PM are considered the same per unit device and
considered normalized cost as 1 per unit device. Upm and Uvmwm indicate the locations of power
flow meter represented as ‘1’ in case of a device placed at a particular node or line and
described as ‘0’ otherwise. Where, g1, and g» are inequality constraints of relative voltage
magnitude and voltage angle limits, V', 7, 6¢ and § are the true value of voltage magnitude,
estimated voltage magnitude, the true value of voltage angle, and estimated voltage angle,
respectively. Branch current based distribution system state estimation (BC-DSSE) algorithm
is used to estimate the state variables such as branch current magnitude and angle along with

slack bus voltage magnitude and slack bus voltage angle [16]-[17].

The next section describes the solution methodology of the proposed hybrid multi-objective
evolutionary algorithm based on decomposition and local dominance method for meter

placement in distribution system state estimation.

3.3  Methodology

The proposed multi-objective evolutionary algorithm (MOEA) combines the
decomposition and non-dominance sorting techniques for the selection of local solutions [49],
[86]. The non-dominance sorting and decomposition techniques are adopted from NSGA-II
[43], MOEA/D [49] algorithms and combined to exploit their advantages and to balance

between convergence and diversity of solutions in Pareto Front.

38



Chapter 3 Multi-Objective =~ Meter  Placement  using
Decomposition and Local Dominanace algorithm

The MOEAs give trade-off solutions in objective space and are distributed on the Pareto
front. The NSGA-II ranks each solution using non-dominated sorting based on the Pareto
dominance order. Whereas decomposition based MOEA (MOEA/D) employs weight vectors
to decompose the multi-objective optimization problem into several subproblems. Then
optimize the subproblems simultaneously. The neighborhoods are formed based on the distance
between weight vectors. The neighborhood information is used to select the solutions in each
population evolution. Penalty based intersection (PBI) method is used to assign each solution
a relative fitness value [49]. The PBI is expressed as follows:

PBI(X|w, z*) = minimise g*®(X|w,z*) = d; + 6d,

Iz = FX)T. w)l
Iwll

where d; =

d, = |[F(X) — (z" — dy.w)||
Where X = [U, s, Uymn| and F(X) = [J1, ]2, 5]
(3.6)

Where z* is the ideal point, w is the weight vector associated with solution X, 6 is the penalty
factor. The combined PBI method and dominance are used to select the local solutions of

neighborhood defined by a weight vector.

3.4  The Proposed Algorithm

The proposed algorithm generates an initial population randomly of size ‘N,’ with binary
strings indicating the locations of power flow measurements on each line. The uniformly
distributed weight vectors are generated using a systematic sampling approach (SSA) [87].
Each individual in the population is assigned weight vectors and attached to a neighborhood.
Then the mating parents are chosen from the neighboring region with a selection probability
of ‘4> using the minimum angle criteria. The value of selection probability '8’ typically
assigned as 0.8. The angle criterion is used to find the nearest neighbors of weight vectors.
The closest neighbors are selected with a minimum value of the angle between the weight
vectors. Each weight vector is assigned with a neighborhood-based on the angle. For each
weight vector, a pair of mating parents are selected from neighborhood-based on associated
weight vectors, in the mating procedure. If there is no individual in the selected nearby region,

then the mating parent is chosen from the whole population. The angle criteria used to select

39



Chapter 3 Multi-Objective =~ Meter  Placement  using
Decomposition and Local Dominanace algorithm

the neighboring subregion for each weight vector [86]. The angle criteria are expressed as

follows:
tan Q= d_1
T .
where d; = —”Wl 'Wj”
[[wll

Wi
and dz = ||WL - d1 m”

wherei,j=1,2,.... ,Nandi #j
(3.7)

Where w is the weight vector, ¢ is the angle between d1 and dz, N is the size of the population

and equal to the number of weight vectors.

The genetic operators such as two-point crossover and mutation are applied to reproduce
the new offspring population. Old and new populations are combined and divided into ‘N’
subpopulation by comparing each solution using PBI method (3.6) and non-dominated sorting
method for local solutions of neighborhood defined by a weight vector. Then the elitist
selection process is applied to ‘N’ subpopulations to choose competent individuals. This
process is repeated until the termination criterion is met. This method used a maximum number
of generations as termination criteria. A fuzzy min-max method is used to determine the

optimal solution from the final Pareto optimal front [88].

3.5 The Binomial Distribution based Monte Carlo Method for Population
Initialization
The meter placement problem is a combinatorial optimization problem. A better-distributed
combination of meter locations in the initial population improves the diversity of solutions in
the objective space. The diversity of the initial population improves the searching operation of
the problem; therefore, convergence improves; this is a by-product of the Binomial
distribution-based Monte Carlo method. The authors in [89], initialized the population using a
normal distribution with upper and lower limits as probability scaling parameters. However, in
this combinatorial optimization problem, the normal distribution is not appropriate to generate
the initial population. The distribution with continuous variables can be expressed using a

normal distribution. However, the meter placement problem is basically a combinatorial
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optimization problem. The placement of measurement devices is represented with binary
variables (X = [Upf,UVMM]) as specified in equation (3.1). Where, X indicates the meter
placement in a binary variable as ‘1’ when the meter is placed in a specific location, otherwise
with ‘0. Thus, the Binomial distribution is suitable to represent the binary variables. Therefore,
the proposed method utilized Binomial distribution to generate an initial population. The
Binomial distribution models the trials of repeated experiments with a constant probability of
success of each trial. The Binomial distribution is expressed as follows:
fUIN,p) = (12/) p'(1-p)h

(3.8)
Where [is equal to the length of X, and where X = [U,;, Uyyn|, lis the number of
outcomes in ‘n’ trials of a Bernoulli process with a probability of success ‘p.’

The meter placement problem is a combinatorial optimization; therefore, each meter
placement can be considered as one trial in Binomial distribution. The set of measurements
obtained from each chromosome can be represented in the binary string as ‘X’ vector in
objective (3.1). The length of the binary string depends on the size of the distribution network.
Therefore, the length of ‘X’ vector in (3.1) is treated as a total number of trials in the Binomial
distribution. However, in distribution system, the increase in the number of meters, the
accuracy of DSSE increases. But, at the same time, a large number of meter installation may
not be a solution, as it increases the cost. The proposed multi-objective algorithm aims to find
optimal solutions; the combination of initial meters affects the quality of solution and
convergence. The combination of meters should be better distributed in the initial population
so that the diversity of individuals improves. Therefore, the Binomial distribution models the
combination of meters, with better distribution of the initial population through Monte Carlo
simulation.

To model binomial distribution, the probability of success ‘p’ needs to be defined. In [85]
suggested that the number of meters required for a distribution system to be topologically
observable is one third (33%) of the distribution network size. The authors have also shown
that, with Pseudo measurements, only 20% of meters are required for numerical observability.
Thus, in this work, the population is initialized with 15% extra meters with topological
observability, that is, 48% of network size, is considered as an initial number of meters. These
number of meters were distributed in the initial population with Binomial distribution with the

probability of success ‘p’ being 48%.
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The multi-objective evolutionary algorithms (MOEAS) are inherently designed to
handle conflict goals, that minimize the distance between solutions and Pareto front (i.e.,
convergence) and maximize the distribution of solutions along Pareto front (i.e., diversity). The
balance between convergence and diversity is a critical issue for obtaining qualitative and

diverse trade-off solutions.

Diversity is the main goal of the Binomial distribution-based Monte Carlo method. This
improvement in diversity arises a question of balance between diversity and convergence, to
examine the same, this work investigated the convergence and diversity improvement in
MOEA. The proposed algorithm with the Binomial distribution-based Monte Carlo method
improved diversity and convergence compared to the conventional proposed method. The
algorithm was run several times to test performance characteristics with the initial population
generated by the Binomial distribution-based Monte Carlo method. To show the versatility of
the proposed Binomial distribution-based Monte Carlo method, the performance (diversity and
convergence) characteristics are investigated, which is based on the performance metric
Inverted Generational Distance (IGD). The definition of IGD [59], [90] is as follows:

Yxep* minyep dis(x,y)
|P|

IGD(P,P*) =

(3.9)

Where P is objective function values of non-dominated solutions, P* is the set of uniformly
distributed weight vectors sampled from the Pareto optimal front and dis(x, y) represents the
Euclidean distance between solutions x and y. IGD metric calculates the average minimum
distance from each weight in P* to those in P, which measures the convergence and diversity
of solution set P. A small value of IGD indicates a better convergence and diversity of solution
set P.
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Fig. 3.1: Indian Practical 85-bus distribution system: The performance characteristics with
and without the Binomial Distribution based Monte Carlo simulation method.

The performance characteristics of the proposed algorithm for a typical trial are shown
in fig. 3.1. The IGD performance metric measures the diversity and convergence of the
proposed MOEA. It is observed from fig. 3.1 that, the proposed MOEA with Binomial
distribution-based Monte Carlo simulation yield better convergence and diversity compared to
without Binomial distribution-based Monte Carlo simulation.

The pseudo-code of the proposed hybrid multi-objective evolutionary algorithm-based

decomposition and local dominance method as follows:

Initialization: Generate initial population (Pt) with size N. Each candidate of the
population generates the random number of power flow measurement devices and their
location. Generate the uniformly distributed weight vectors using SSA [87], and the
number of weight vectors using SSA is calculated as follows:

D+M-1

N(D,M):( o

)forD>O

(3.10)
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Where D is the number of divisions along with each objective coordinate, and M is the

number of objectives.

Then find the objective values for each population candidate by running DSSE and
check the violation of constraints (3.4) and (3.5). If any objective is violating the

constraints, then the objective is added with a penalty (CV(x)) as follows:

J
V@ = ) (g;)
j=1

(3.11)

Where g;(x) are inequality constraints, (g;(x)) takes absolute values of g;(x) if

gj(x) <0, and ‘0 ‘otherwise.

Then find neighbors with minimum angles for each weight vector using angle criteria

(3.7) and find the minimum values for all the objectives to form the current ideal point.
Check for Stopping Criteria and continue for further steps.

Reproduction: Select the N pairs of mating parents based on angle criteria. For each
weight vector, a pair of mating parents are chosen with a probability of 5. Apply the
two-point crossover for N pairs of mating parents. Apply the binary mutation to

generate a new population (Q).

Partition of the combined population: The old (P;) and new (Q:) population are
divided into N subpopulation. Each subpopulation contains Ni individuals based on the

partition. The partition is dividing using comparing the candidates using PBI value.

Compare two individuals x and y, which are closest with associated weight vectors to
divide into N subpopulations. If x dominates y return true else fasle otherwise compare

PBI of both candidates and return the minimum PBI value candidate.

Elitist Selection Procedure: From ‘N’ partitions of population, the elitist candidates
are selected for next-generation population P1. Select the individual from each
partition of the population until it does not exceed the population size ‘N.’ If the

population size is less than ‘N,’ then chose randomly from the partitioned population.
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Apply the fuzzy min-max method [88] for the final Pareto front and print the results.

Start

Initialization: Generate initial population (Pt) and the uniformly
distributed weight vectors using SSA [87] using (3.10).

Find the objective values for each population candidate by
running DSSE and check the violation of constraints (3.4) and
(3.5). If any objective is violating the constraints, then the
objective is added with a penalty (CV(x)) using (3.11).

A\ 4
find neighbors with minimum angles for each weight vector using
angle criteria (3.7) and find the minimum values for all the
objectives to form the current ideal point.
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Reproduction: Select the N pairs of mating parents based on angle

criteria. Apply the two-point crossover, the binary mutation and

generate a new population (Qv).
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Partition of the combined population: The old (Py) and new (Q)
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Y

Fig. 3.2: Flowchart of propsed algorithm.

3.6 Simulation and Test Conditions

The proposed method is simulated by placing the power flow measurement devices and
voltage magnitude meter. Voltage magnitude measurement device is considered as default
measurement and the main aim of the proposed work is to place power flow measurements in
distribution system. The active and reactive power is assumed to be obtained from a single
power flow meter. In this study, a voltage magnitude meter (VMM) is placed at the substation
and considered as default measurements. For SE, BC-DSSE [16]-[17] algorithm is used to
estimate the states of the system for each set of measurements from the proposed algorithm.
For different measurement uncertainties, Monte Carlo simulations assess the satisfactory
performance of SE in terms of voltage magnitude and voltage angle, with prespecified limits
of 1% and 5%, respectively, within 95% simulation cases. If the prespecified limits are
violated, then the corresponding objective function is added with a penalty. In this work, 100
different network operating scenarios are considered, and each scenario is simulated for 1000

Monte Carlo trials with normally distributed measurement uncertainties to check the voltage
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magnitude and angle constraint violations. Further, the following assumptions are considered

for the proposed method:

Voltage magnitude measurement at the slack bus and one power flow meter at
the first line are considered as default measurements, and it is supplied with 1%
accuracy.

Virtual measurements, on the other hand, are zero bus injection measurements,
which are supplied by the operator [26]. The virtual measurements are considered
as the measurements with no error [19]. These are the measurements at the nodes
such as switching stations, where the power injection is equal to zero. These are
treated as very accurate measurements that are no need to be measured physically.
These measurements are virtually treated as measurements with no error that are
supplied with low variance value. Virtual measurements are provided with a small
value of standard deviation in the order of 102 [26].

To test the performance of the algorithm with large errors, Pseudo measurements
are provided with a maximum error of 50% [91].

The proposed algorithm is tested for various measurement uncertainty levels by
considering the real measurements with varied accuracy of 1%, 3%, and 5%.

To check the voltage magnitude and angle constraint violations (4) and (5), 1000
Monte Carlo trials are carried out for different load conditions of 100 scenarios
[73].

Furthermore, the parameters used for the proposed algorithm, MOEA/D, and NSGA-II

are tabulated in Table-3.1. Different population sizes are tested, and it is observed that for 3

objectives, the population size with 100, is suitable to get the near-optimal solutions. The

population size is considered as 100, whereas for decomposition-based methods the population

size is decided based on the weight vectors, which are generated from the Systematic Sampling
Approach (SSA) [87]. For the proposed method and MOEA/D, with three objectives, the
population size is chosen 91 after the SSA. The number of divisions along each objective

coordinate chosen as 12 (D=12), whereas the neighborhood size is chosen as 20 (T=20). The

neighborhood size is chosen as 20% of the population size [49]. Divisions along each objective

coordinate are chosen based on Das and Dennis Systematic Sampling Approach (SSA) [87] for

the given population size and the number of objectives. With three objectives, D becomes 12

for the population size of 91 as (

12+3-1

3_1 ) = 91 from (3.10).
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Different Crossover and Mutation rates are tested and chosen Crossover rate (Pc)
is 1.0, Mutation rate (Pm) is 0.05 for which it gives the better performance of the
MOEA.

Table 3.1: Parameter values of the proposed algorithm, MOEA/D, NSGA-1I
Algorithm Control Parameters

The Proposed algorithm Number of objectives (M) =3, Population size after SSA =91, the number of
divisions along with each objective coordinates D=12, the neighborhood size
T=20, Crossover rate (Pc)=1.0, Mutation rate (Pm)=0.05, the maximum number
of generations=50

MOEA/D[49] Number of objectives (M) =3, Population size after SSA =91, the number of
divisions along with each objective coordinates D=12, the neighborhoods size
T=20, Crossover rate (Pc)=1.0, Mutation rate (Pm)=0.05, the maximum number
of generations=50

NSGA-I1[43] Number of objectives (M) =3, Population size =100, Crossover rate (Pc)=0.8,
Mutation rate (Pm)=0.01, maximum number of generations=50

The real measurements have errors in the range of 1-5%. Pseudo measurements are based
on historical data or provided by the operator based on experience. Therefore, Pseudo
measurements are associated with huge errors in the range of 20- 50%. This proposed work
assumed Pseudo measurements are with maximum value as 50% accuracy and real
measurements are varied with 1%, 3% and 5% of the error to test the versatility of the proposed
algorithm for different measurement uncertainties.

3.7  Results and Discussions
The performance of the proposed hybrid multi-objective evolutionary algorithm is verified on PG&E
69-bus distribution system and Indian Practical 85-bus distribution system.

For all figs. 3.2 to 3.7 the repeating captions are specified as given here:(a) objective-J,
average relative percentage error (ARPE) of voltage magnitude Vs. objective-J; average
relative percentage error (ARPE) of voltage angle. (b) objective-J; average relative percentage
error (ARPE) of voltage magnitude Vs. the number of power flow meters (c), objective-Js
average relative percentage error (ARPE) of voltage angle Vs. the number of power flow

meters.

3.7.1 PG&E 69-bus Distribution System
The proposed algorithm has been tested on PG&E 69-bus distribution system [92], which
has 68 lines, 21 zero bus injection nodes, and total real and reactive power load of 3.802 MW,

2.692 MV AR, respectively. The zero bus injections are modeled as virtual measurements, and
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one VMM and one PM devices are considered as default measurements on the slack bus and

first-line, respectively.

The performance of the proposed algorithm is tested by varying the measurement
uncertainty of real meters with an accuracy of 1%, 3%, and 5%. The results are tabulated in
Table-3.2, and the corresponding comparative plots of objectives are shown in figs. 3.3, 3.4,
and 3.5. The results show that, with 1% accuracy of real measurements, for the proposed
algorithm, the total number of measurements required is 6, including default measurements,
the average relative percentage error of voltage magnitude is 0.0014%, and the average relative
percentage error of voltage angle is 0.4547%. For MOEA/D, NSGA-I11 algorithms, including
default measurements, a total of 8 and 9 meters were needed, respectively. The average relative
percentage error of voltage magnitude, the average relative percentage error of voltage angle
for MOEA/D, NSGA-I1 is 0.0019%, 0.6025%, and 0.0038%, 1.6474%, respectively. Similarly,
for 3% and 5% of measurement uncertainty, the proposed algorithm performed better than
MOEA/D and NSGA-I11. The proposed method was compared with algorithms in the literature,
PSO-KH, EDA-IPM. For PSO-KH, EDA-IPM with 1% measurement accuracy, the number of
meters required is 6 and 6, respectively. The proposed method also required the same number
of meters, that is, 6, but when compared with the average relative percentage error of voltage
magnitude and the average relative percentage error of voltage angle, the proposed method
gives better performance. The proposed algorithm also yielded better performance with 3%
and 5% of metrological uncertainty when compared to PSO-KH, EDA-IPM. The numerical

results, as shown in Table-3.2.

When the Pareto fronts are observed from figs. 3.3, 3.4, and 3.5, real measurement
accuracy with 1%, 3%, and 5%, the proposed algorithm performed better than MOEA/D and
NSGA-I1, in terms of convergence and diversity of candidate solutions in the Pareto optimal
front. However, MOEA/D converges better than NSGA-I1, but the diversity in Pareto front is
lower as it converges to the best candidates of repeated solutions. The Non-dominated sorting
and dominance are combined in the proposed algorithm, it converged quickly, and the
candidate solution quality is also improved as it was evident from the results shown in figs.
3.3,3.4and 3.5.
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Fig. 3.3: PG&E 69-bus distribution system optimal Pareto-front plots: Real measurements

with an accuracy of 1% and Pseudo measurements with an accuracy of 50%.
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Fig. 3.4: PG&E 69-bus distribution system optimal Pareto-front plots: Real measurements

with an accuracy of 3% and Pseudo measurements with an accuracy of 50%.
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Fig. 3.5: PG&E 69-bus distribution system optimal Pareto-front plots: Real measurements

with an accuracy of 5% and Pseudo measurements with an accuracy of 50%.
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Table 3.2: PG&E 69-bus distribution system: Optimal location of the power flow meters
under different metrological errors

Metrological | Algorithm | Location of | Number Objective function values Maximum Maximum
error (in %) Power flow | of power i Jo Js error in | error in
meters  (Line | flow Cost of ARPE of ARPE of Voltage Voltage
numbers) meters meters voltage voltage Magnitude | angle
(1 per magnitude angle (in %) (in %)
unit
device)
1 Proposed 1,5,13,30,54 5 6 0.0014 0.4547 0.0158 5.1732
algorithm
MOEA/D 1,6,11,28,43,53, 7 8 0.0019 0.6025 0.0388 5.8273
[49] 62
NSGA-II 1,4,10,11,12,42, 8 9 0.0038 1.6474 0.0523 6.8294
[43] 55,68
PSO-KH 1,7, 24,54, 66 5 6 0.0028 0.4947 0.0381 5.7922
[73]
EDA-IPM 1,3,7,24,51 5 6 0.0025 0.4821 0.0201 5.2137
[75]
3 Proposed 1,10,14,17,37, 6 7 0.0017 0.4906 0.0289 5.5293
algorithm | 56
MOEA/D 1,9,13,26,37,46, 8 9 0.0055 0.9750 0.0411 5.9032
[49] 59, 64
NSGA-II 1,7,14,29,32,47, 8 9 0.0118 1.5566 0.0612 7.3214
[43] 53,60
PSO-KH 1,11, 18, 43,52 5 6 0.0053 0.9782 0.0417 5.9154
[73]
EDA-IPM 1,11, 19, 43,52 5 6 0.0051 0.9657 0.0317 5.7321
[75]
5 Proposed 19,13, 26, 31, 7 8 0.0023 0.6288 0.0476 5.7682
algorithm 46, 60
MOEA/D 1,9,13,19,30,34, 8 9 0.0032 1.2314 0.0547 6.3262
[49] 47,63
NSGA-II 1,3,8, 14, 29, 36, 12 13 0.0049 1.7634 0.0645 9.2437
[43] 39, 45, 53, 60,
63, 66
PSO-KH 1,7, 14, 21, 28, 9 10 0.0058 1.1491 0.0523 6.3172
[73] 33, 49, 53, 61
EDA-IPM 1,7, 14, 19, 28, 9 10 0.0056 1.1273 0.0513 6.2379
[75] 33,47, 53, 61

54



Chapter 3 Multi-Objective =~ Meter  Placement  using
Decomposition and Local Dominanace algorithm

3.7.2 Indian Practical 85-bus Distribution System

The proposed method has also been investigated on Indian Practical 85-bus distribution
system [93], which has 84 lines, 26 zero injection nodes, and a total load of real and reactive
power of 2.574 MW and 2.622 MV AR, respectively. The zero bus injections are modeled as
virtual measurements, and one VMM and one PM devices are considered as default

measurements on the slack bus and first-line, respectively.

The proposed algorithm is simulated by placing the power flow meters with accuracies of
1%, 3%, and 5%, and the results are tabulated in Table-3.3. The corresponding comparative
plots of objectives are shown in figs. 3.6, 3.7, and 3.8. The proposed algorithm required a total
of 7 meters, including default measurements, whereas MOEA/D and NSGA-I1 required 10 and
11 meters, respectively. The average relative percentage error of voltage magnitude, the
average relative percentage error of voltage angle for the proposed method, MOEA/D, NSGA-
I1'is 0.0337%, 0.0385%, 0.0338%, and 0.7153%, 1.2964%, 0.8526%, respectively. In all cases
of meter uncertainty with 1%, 3%, and 5%, the proposed algorithm performed better compared
to MOEA/D and NSGA-II. For PSO-KH and EDA-IPM with 1% measurement accuracy, the
number of meters required is 8. The proposed method only needed 7 meters, and when
compared with average relative percentage error of voltage magnitude and average relative
percentage error of voltage angle, the proposed method gives better performance even with 3%

and 5% uncertainty cases. The results are shown in Table-3.3.

When the Pareto fronts were observed from figs. 3.6, 3.7, and 3.8 for meter accuracy with
1%, 3% and 5%, the proposed algorithm performs better than MOEA/D and NSGA-II, in terms
of convergence and diversity of candidate solutions in Pareto optimal front. From the results,
it is observed that with an increase in uncertainty of real measurements, the number of meters
required increased, to get the satisfactory performance of DSSE in terms of voltage magnitude
and voltage angle limits.
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Fig. 3.6: Indian Practical 85-bus distribution system optimal Pareto-front plots: Real

measurements with an accuracy of 1% and Pseudo measurements with an accuracy of 50%.
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Fig. 3.7: Indian Practical 85-bus distribution system optimal Pareto-front plots: Real

measurements with an accuracy of 3% and Pseudo measurements with an accuracy of 50%.
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Fig. 3.8: Indian Practical 85-bus distribution system optimal Pareto-front plots: Real
measurements with an accuracy of 5% and Pseudo measurements with an accuracy of 50%.

Ke Li [35] investigated the change in real-time measurement accuracy influences the
results of estimation, it evident that the effect is different for different locations. The effect will
depend on the network structure. Therefore, the change in metrological error percentage has a
different effect on different locations. Consequently, the meter location varies with change in
real measurement accuracy. Haibin Wong et al. [36] also examined the issue of measurement
error impact on the location of meters. The authors had shown that with the change in
measurement error for different locations, based on meter type, the accuracy of distribution
system state estimation varies. The same can be observed from the results, with a change in
effect the location of the measurements. It is obvious that the device measurement uncertainties
are specified by manufacturers. Whereas the proposed work investigated the impact of meter
placement for different measurement uncertainties.

When the results of PG&E 69-bus distribution system and Indian Practical 85-bus

distribution system are observed, the proposed algorithm performed better than decomposition-
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based algorithm MOEA/D, Non-dominated Sorting based NSGA-II, and apart from that, it
showed better results compared with other algorithms in the literature, such as PSO-KH and
EDA-IPM MOEA:s in terms of convergence and diversity of Pareto front as well as in the
quality of solutions.

Table 3.3: Indian Practical 85-bus distribution system: Optimal location of the power
flow meters under different metrological errors

Metrological | Algorithm | Location of Power | Number Obijective function values Maximum Maximu
error (in %) flow meters (Line @ of power Ji Jo Js error in | merrorin
numbers) flow Cost of ARPE of ARPE of | Voltage Voltage
meters meters (1 per voltage voltage | Magnitude | angle
unit device) magnitude angle (in %) (in %)

1 Proposed 1,6,11,26,30,63 6 7 0.0337 0.7153 0.1534 5.0432
algorithm
MOEA/D 1,7, 16, 19, 27, 30, 9 10 0.0385 1.2964 0.1673 5.1723
[49] 47,59, 72
NSGA-II 1,6, 7, 18, 23, 33, 10 11 0.0338 0.8526 0.2089 6.1247
[43] 35, 56, 67, 69
PSO-KH 1, 13,18, 26, 75, 79, 7 8 0.0385 1.1737 0.1853 5.1722
[73] 84
EDA-IPM | 1,13,19, 25,75, 78, 7 8 0.0383 1.0952 0.1692 5.0660
[75] 84

3 Proposed 1,2,5, 10, 30, 56, 67 7 8 0.0448 0.9184 1.7034 5.1763
algorithm
MOEA/D 1,8, 16, 17, 24, 28, 9 10 0.0551 1.2506 0.2322 5.6224
[49] 33,62, 65
NSGA-II 1,4, 8, 15, 25, 32, 11 12 0.0522 1.3259 0.2650 7.4781
[43] 54, 55, 66, 74, 84
PSO-KH 1,17, 22, 30, 36, 73, 7 8 0.0438 1.3355 0.2347 5.5217
[73] 81
EDA-IPM 1, 34,40, 46, 52, 53, 8 9 0.0427 1.0433 0.2117 5.2365
[75] 67, 69

5 Proposed 1,7, 26, 32, 39, 45, 9 10 0.0492 1.4288 0.2431 5.3256
algorithm 57,79, 84
MOEA/D 1,6, 8, 26, 32, 44, 11 12 0.0783 1.7764 0.3011 5.8867
[49] 54, 55, 69, 74, 83
NSGA-II 1,4,6,9, 26, 30, 49, 11 12 0.0884 1.7494 0.3297 8.1215
[43] 59, 63, 71, 80
PSO-KH 1,16, 21, 24, 33, 69, 8 9 0.0439 1.2855 0.2896 5.9407
[73] 77,79
EDA-IPM 1,12, 20, 43,50, 68, 8 9 0.0464 1.4298 0.2896 5.4821
[75] 75, 83
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3.8 Summary

An optimal meter placement in distribution system state estimation using a new hybrid multi-
objective evolutionary algorithm based on decomposition and local dominance is proposed in
this chapter. Minimizing the cost of measurement devices, average relative percentage error of
voltage magnitude and average relative percentage error of voltage angle are the three
objectives, that are considered to evaluate the proposed algorithm. The hybridization of
decomposition and dominance techniques improved the convergence and diversity of solutions
in the Pareto front. As the meter placement is a combinatorial optimization problem, the
population of the proposed algorithm is initialized using the Binomial distribution-based Monte
Carlo method, which improved the diversity of Pareto front. Diversity improvement is the main
goal of the Binomial distribution-based Monte Carlo method; therefore, it improves the
convergence, which is a by-product of this method. The competent results of the proposed
algorithm compared with algorithms such as MOEA/D, NSGA-I1, PSO-KH, and EDA-IPM for

various load demands and uncertainty of measurement devices.

The Pareto dominance and decomposition based MOEAs may not provide any
guarantee that the obtained solution is an optimal, as there is no measure of performance
throughout the evolutionary process. Whereas, in indicator based MOEAs, performance metric
measures the performance (convergence and diversity) of a solution set and serves as selection
criterion. The indicator based MOEASs overcomes the limitation of Pareto based MOEAs and
decomposition based MOEAs. Therefore, chapter 4 proposes an indicator based MOEA for

meter placement in active distribution system.
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Chapter 4

Multi-Objective Meter Placement in Active Distribution System State
Estimation using Objective Discretization and Indicator-Based Algorithm
with Adaptive Reference Point Method

4.1 Introduction

Pareto dominance-based MOEAs are designed to address the drawbacks of weighted-sum
MOEAs. The solutions are ranked based on Pareto order, which improves the convergence of
MOEA, and the crowding distance approach is used to assure that the solutions are diverse.
Besides the advantages, drawback of Pareto-based MOEASs is that the increase in objectives
deteriorates the selection pressure and may cause a reduction in population diversity and
convergence. Whereas, in decomposition-based MOEAs, the multi-objective problem is
transformed into several single objective optimization problems. The drawbacks of
decomposition-based MOEAs are: (i) The weight vectors are uniformly distributed in
decomposition-based MOEAs. With uniformly distributed weight vectors the best
approximated Pareto solutions may not be obtained for irregular (degenerated, disconnected,
and with sharp tails) shape Pareto front. (ii) Even if the Pareto front is of low dimension, the
number of weight vectors may rise exponentially with the objective space size. Moreover,
Pareto dominance and decomposition based MOEAs may not provide any guarantee that the
solution obtained is an optimal solution, as there is no measure of performance throughout the

evolutionary process.

This chapter proposes a method with objective discretization and indicator-based multi-
objective optimization to overcome the above drawbacks. The combination of meter set in each
generation of evolution algorithm results in a discrete objective space. Therefore, the proposed
method utilizes the objective discretization method, which improves the performance
(convergence and diversity) of MOEA. In combinatorial multi objective optimization problem,
a large possible combination of solutions in decision space is mapped to the different ranges of
objective values. It means that different objective functions have different granularities (width
of discretization intervals). The discretization of objective space improves the performance of

combinatorial multi-objective evolutionary algorithm, as it improves the search ability of
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MOEA and reduces the non-dominated solutions in population. The indicator measures the
performance of a solution set and serves as selection criterion. The indicator based MOEAs
overcomes the limitation of Pareto based MOEASs, because they improve the selection pressure.
As the evolution process is guided by a performance indicator, it ensures that the best solutions
are found throughout the evolutionary process. The proposed method is based on inverted
generational distance indicator with noncontributing solution detection (IGD-NS) performance
metric, which indicates the performance of solution set in terms of convergence and diversity,
while also minimizing the number of noncontributing solutions in population. The
noncontributing solutions are the nondominated solutions, which are away from any reference
point and do not contribute to the value of the performance metric. The IGD-NS calculation
requires a priori knowledge of approximate Pareto front. A study reveals that the shape of
Pareto front, strongly influences the performance of MOEAs [53]. Therefore, the proposed
method utilizes an adaptive reference point approach to follow the approximate Pareto front
shape. The work has following main contributions:

I The objective discretization method is employed to improve the convergence and
diversity of the proposed method, as each objective value spread on its own range of
possible values. It enhances the search ability of MOEA and decreases the non-

dominated solutions in population.

ii. A new indicator based multi-objective evolutionary algorithm is proposed for meter
placement in active distribution system. An inverted generational distance indicator
with noncontributing solution detection (IGD-NS) indicator is used to evaluate the
performance of the solution set and used as selection criterion. The IGD-NS indicates
the diversity and convergence of the solution set and minimizes the number of solutions

that have no impact on the indicator value.

iii. The shape of the Pareto front influences the performance of a multi-objective
evolutionary algorithm. Therefore, the proposed work employed a reference point
method, which adaptively update the reference points to follow the Pareto front shape.
These reference points serve as priori knowledge of the approximate optimal Pareto

front in the calculation of performance indicator.

iv. The cost of meters and state estimation errors are considered as objectives to form the

multi-objective optimization problem. Moreover, the impact of meter placement is
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investigated for various types of renewable sources and different measurement

uncertainties.

4.2  Problem Formulation

The multi-objective meter placement problem is formulated using three objectives: i)
minimizing the cost of meters (J1) ii) minimizing the average relative percentage error (ARPE)
of voltage magnitude (J2) and iii) minimizing the average relative percentage error (ARPE) of

voltage angle (Jz). The objectives are given as follows:

. _ nl n
Min ]y = Yiz1 Cpmi -Upmi + 25=1 Cvmm,j -Uvmm,j

(4.1)
n A~
, 11 vi-7,
Min |, = —Z— Z VE x 100
m m n i=1 L
(4.2)
n
Min ] 1zl<z6it_6i>x1oo
infz=—) — 7
m n i=1 6i
(4.3)

The constraints considered are voltage angle relative deviation and voltage magnitude
relative deviation. The boundaries are one percentage and five percentage for voltage
magnitude and angle, respectively. The constraints violations are calculated for 95 percentage

of simulated scenarios [30]. The following are the constraints:
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4.3  Methodology

Indicator based MOEASs use an indicator to measure the performance of a solution set to
guide the search process. An enhanced inverted generational distance with noncontributing
solution detection (IGD-NS) indicator is used to assess the convergence and diversity of the
MOEA. The proposed MOEA is based on IGD-NS with adaptive reference point method [94].
There are several performance indices in literature such as hypervolume (HV) [60], R2
indicator [61], generational distance (GD) indictor and inverted generational distance (IGD)
indicator [59] so on. These indicators are used to measure the performance of a solution set and
adapted as selection criteria in MOEAS.

Inverted generational distance (IGD) [59] metric indicates the convergence and diversity of
a solution set. Some of the nondominated solutions, which do not have any nearest neighboring
reference points, are always ignored in the calculation of the IGD metric. These omitted non-
dominated solutions do not contribute to the value of the IGD metric. Therefore, these are
called noncontributing solutions in non-dominated solutions of the Pareto optimal front
solution set. Considering the noncontributing solutions, the inverted generational distance with

noncontributing solution detection (IGD-NS) [94] is expressed as follows:

IGD — NS(P,P*) = Z minyep dis(x,y) + Z Mminy,ep+ dis(x,y")

XEP* y'ep!
(4.6)

Where P’ is the set of noncontributing solutions in population P, which is not closest to any
reference point P*. The first term in equation (4.6) is identical to IGD metric, which assesses
the diversity and convergence of solution set P. Apart from that, the second term in equation
(4.6), is an addition of the minimum distance from each noncontributing solution to the
reference point P*. This indicator decreases the number of noncontributing solutions in P’. A
set of reference points, sampled from the Pareto front, are used in the calculation of IGD-NS
metric. These reference points serve the purpose of a priori knowledge of approximate Pareto
front. The reference points are adaptively updated as per the approximate Pareto front shape
obtained in each generation. Thus, the adaptive reference points reflect the shape, irrespective
of the regularity or discontinuity of Pareto front shape. The reference points are added or
removed to preserve the diversity of candidate solutions. The proposed algorithm is discussed

in the next section.
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44  The Proposed Indicator based Multi-Objective Evolutionary Algorithm with
Adaptive Reference Point Method Stage 1
The proposed algorithm is based on enhanced inverted generational distance indicator (IGD-

NS), which is a measure of the diversity and convergence of candidate solution set, minimizing
the noncontributing candidate solutions in the nondominated solutions. The proposed approach
updates the reference points adaptively to track the Pareto front. For each generation, the two
reference point sets and two solution sets are preserved and updated. The reference point sets
contain initial reference point set (R) and updated reference point set (R") and population sets
comprise of the present population (P) and the solution set of contributing nondominated

solution of Archive population (A).

Initial population is randomly generated with a size of “N’, as a binary string indicating the
meter locations. Systematic Sampling Approach is used to obtain uniformly distributed

reference points (R) [87].

The mating pool is selected from the population based on tournament selection using the
IGD-NS metric as fitness. Then the reference points (R) and current population (P) and archive
population (A) are normalized to bring them into the same range so that the uniformly
distributed reference points generate uniformly distributed solutions irrespective of the range
of different objective values [95].

The crossover is applied to generate the offspring from mating parents. Binary mutation

operator is used to preserve the diversity of the population.

The solutions are stored in archive populations (A), and repeated and dominated solutions
are removed from it. Then the reference points are updated using angle criteria. The extreme
solutions are preserved in archive population to uphold the diversity of population. The location
of reference points near the extreme points are adjusted using minimum value of product of
ideal point and reference point (Z—*r’). At least one reference point is discovered closest to the
solutions then the identified reference points are transferred to a new archive population (A4").
Remaining solutions are filled until the minimum size of (|R], |A]) reaches the size of new
archive population. Then again, the reference points are updated using minimum angle criteria

using the current population.

Finally, the environmental selection is based on the elitist strategy applied to the combined

population of off-springs and parent population. First, the combined population is sorted using
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efficient nondominated sorting (ENS) [96]. Then the all the candidate solutions in the (k-1)
fronts are directly selected for next-generation (Q), and the IGD-NS indicator is used to select
the candidate solutions from the ki, front. Where k is the minimum number fronts such that the
number of candidate solutions up to ki front is less than or equal to the size of the population
(N). For each candidate solution in front-k, the performance metric IGD-NS value is obtained
using (4.6), and the candidate with the minimum value of IGD-NS is deleted from the front-k.
Then the IGD-NS value is again calculated for the remaining candidate solutions in front-k

until the remaining solutions reach the size of (N-Q).

Step-by-Step Process of the Proposed Algorithm Stage-1

Algorithm 1: The stage-1 of the proposed algorithm using indicator based
multi-objective evolutionary algorithm with adaptive reference point
method:
1 I Initialization //
Step 1: Initialize the population randomly of size ‘N’ as binary string
representing the placement of power flow meter location on the
distribution system. Systematic Sampling Approach (SSA) [87] used
to produce uniformly distributed reference points (R) as follows:
D+M-1
N(D,M)z( o ) forD >0
Where D is the number of divisions per objective coordinate, and M
denotes the number of objectives.
2 Initialize solution sets P, A" and reference point sets R, R'.Copy
solution sets and reference sets as follows:
A"« P; R «R;

Step 3:
3 While (“Stopping Criteria”) do
4 I/l Mating Pool Selection //
fori=1toM /I M is number of objectives
5 | filp) = fi(p) —mingepfi(q), VpE€EP
I1f;(p) i objective value of p
6 End for
7 Calculate the fitness of each candidate solution using (4.6)

Fitness = IGD-NS (P, R)
Initialize the selected population (S), select the mating parents
based on tournament selection

8 fori=1toN

9 Randomly select p, g from population P
10 if Fitness (p) > Fitness (q)

11 S=SUP(p)

12 Else

13 L S=SUP(q)

14 , | Ena it

15 End for
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Step 4. Two-point crossover is applied to generate offspring
from mating parents. Then, binary mutation is used to produce a
new population (Q).

Combined archive population with new offspring population
A=AUQ

/I Reference point Adaptation//

Step 5: // the reference point set, archive population (A), current
population (P) and are normalized

fori=1to M
z; = min,epf;(p)
z]'* = maxyepf;(p)
filp) = filp) -z, Vvp €AUP
R{:Ri]*(z?ad—zf‘), Vjie{l,.... IR}
End for

Step 6: // Archive population (A) updation //

from ‘A’ remove the repeated and dominated solutions

Step 7: /] To preserve the extreme end solutions in Pareto front,
reference points near extreme solutions are adjusted //

Initialize R’

ForreR
p = argminyesIF()|l sin (277, F ()
r_ Ti o .
=L IF @)l cos (Z7,F (), Vi €

{1,2,.....,M}
R« R" U {r'}
End for
Step 8:

Initialize empty archive population A’and contributing solution
ACOTL

ACOm = {p6A| dr e R: dis(r,F(p)) = MiNgey dis(r,F(q))}

A= A"U Aom
Step 9: // fill A" from Aand A" //
//fill remaining space until the size less than minimum size of R
or A/l
hile ( A’ size < min (R or A size)) do

\‘v R" = R’ U (argmax,e(sn gyMiN eg’ arccos(r, F(p)))

End while
Determine the closest reference points to the contributing
solutions (A°°™). Make a copy in R'.
R'=R'U {reR| dpe A°™ : dis(r,F(p)) = minseR(s,F(p))}
Remaining space in R’ copied with candidate solutions from the
new archive A" until the minimum of (|R|,|A’|) size is reached,
with reference points being in R’, having a maximum of
minimum acute angel between reference values and
corresponding objective value of R'and A’, respectively.

hile (size (R") < min(size(R), size (A"))) do
Y\/ R" = R" U (argmax,c 4 p"yMmin eg’ arccos(r, F(p)))
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End while
Step 10: // preserve the extreme end solutions //
Initialize the empty R’

forreR
p = argmin,e,|IF (p)ll sin (27, F(p))
r_ i T .
r =L F @)l cos (Z7,F (1)), Vi €
1,2, ......, M}
R '« R U {r'}
End for

/I Environmental Selection//
Step 11: combine the population P and offspring population Q,
apply elitist selection.

P=PUQ
fori=1to M
| fi®) = fi(p) —mingepfi(q), VpEP
End for

Step 12: sort the combined population using efficient
nondominated sorting (ENS) [96].
Step 13: choose the number of fronts such that it satisfies the
condition k= |UX, Front;| > N
Step 14: copy all the (k-1) fronts candidate solutions into
population ‘O’
Step 15: choose the remaining solutions from the k™ front until
the population size reaches the size ‘N’ using the performance
metric IGD-NS (4.6)
While size (Front) > N — size(O)
identify the solution p with
minimum value of 1GD — NS value
p = argminge pront, IGD — NS(Front,{p},R")
Delete the p solution from the Front

End while
0 = 0 U Front,,
Assign the current population with ‘O’; P=0O

End while

70



Chapter 4 Multi-Objective =~ Meter  Placement  using
Objective Discretization and Indicator based
algorithm

Start

Initialization: Initialize the population randomly of size ‘N’ as binary string
representing the placement of power flow meter location on the distribution
system. generate uniformly distributed reference points (R) using Systematic
Sampling Approach (SSA) [87]. Initialize solution sets P, A" and reference point
sets R, R’'.

v

Check
Stopping
Criteria

lNO

Mating Pool Selection

fori=1toM /I M is number of objectives

fio) = fi(p) — mingepfi(q), Vp€P  Ifi(p)i"objective value of p

|

Initialize the selected population (S), select the mating parents based on
tournament selection
i=1;

Randomly select p, g from population P

A NO O
i<=N » C

if Fitness (p) > Fitness (q)

S=SUP(p) S=SUP(q)

i=i+l;
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Two-point crossover is applied to generate offspring from mating parents. Then, binary
mutation is used to produce a new population (Q). Combined archive population with
new offspring population A=A U Q

Reference point Adaptation: The reference point set, archive population (A), current
population (P) and are normalized.

Archive population (A) updation: from ‘A’ remove the repeated and dominated

solutions.

Environmental Selection: combine the population P and offspring population Q,
apply elitist selection. sort the combined population using efficient nondominated
sorting (ENS) [96].

Y

choose the number of fronts such that it satisfies the condition k= |UX, Front;| > N.
copy all the (k-1) fronts candidate solutions into population ‘O’. choose the remaining
solutions from the k™ front until the population size reaches the size ‘N’ using the
performance metric IGD-NS (4.6). Assign the current population with ‘O’; P=0

O @

A fuzzy min-max method is employed to obtain the final trade-off solution [88].

Fig. 4.1: Flow chart of stage 1 of the proposed algorithm

4.5

Stage 2 of the Proposed Algorithm with Objective Discretization

The meter placement method is generally designed as combinatorial optimization problem.

The objective function values of combinatorial optimization problem are discrete in nature, due

to the large possible combination of solutions in decision space being mapped to the small

possible values in objective space. In multi objective problems, each objective function has a
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different possible range of values. That means some objective functions have different
granularity or width of discretization interval. The appropriate granularity or discretization of
objective space improves the performance of combinatorial multi-objective evolutionary
algorithm [80]. It also improves the search ability of MOEA and reduces the non-dominated
solution in the population [81].

The objective space discretization is performed before an efficient nondominated sorting
(ENS) method in environmental selection in the proposed method (stage 1). The efficient
nondominated sorting (ENS) method is modified with strong Pareto dominance for ranking the
solutions. Before the discretization, the objective values are normalized to an interval [0,1].
The different granularities are tested to choose the resolution of decimal places of normalized
objective values and reserved for four decimal (granularity) values for objectives of the average
relative error percentage (AREP) of voltage magnitude (J2) and the average relative error
percentage (AREP) of voltage angle (J3). Whereas, the first objective (J1), number of meters is
an integer value, therefore no discretization is applied. The pseudo code of the proposed

algorithm stage 2 is given as follows:

v

Initialization: Initialize the population and uniformly distributed reference points (R).
Initialize solution sets P, A" and reference point sets R, R’.

Check Stopping
Criteria

{ YES

Mating Pool Selection: select the mating parents based on tournament selection.

!

Apply two-point crossover, binary mutation and produce a new population (Q).
Combined archive population with new offspring population.

Reference point Adaptation: The reference point set, archive population (A), current
population (P) and are normalized.

Archive population (A) updation: from ‘A’ remove the repeated and dominated
— solutions.

Fig. 4.2. Flow chart of stage of the proposed algorithms
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The main aim of MOEA is to balance between the convergence and diversity, which are
conflict objectives. To show the versatility of the proposed method with objective
discretization, the performance (convergence and diversity) characteristics are investigated
using inverted generational distance (IGD) performance indicator. The IGD indicator [59] is

defined as follows:

1GD(P, p*) = Zxck yce C0C 7

Where P is the objective values of non-dominated solutions, P* denotes the collection of
uniformly distributed reference points taken from the Pareto optimum front, and the Euclidean
distance between solutions x and y is denoted by dis (x, y). IGD metric calculates the average
minimum distance from each reference point in P* to those in P, which measures the
convergence and diversity of solution set P. A lower IGD value indicates that the higher the

convergence and diversity of solution set P.

10
18 - T T T T T T T T T
The proposed algorithm without objective discretization
The proposed algorithm with objective discretization
1.6 |
1.4 -
o 1.2 |
=
©
>
a
[©)
=~ 1k |
0.8 - |
0.6 - \ |
04 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

No. of iterations

Fig. 4.3: Indian Practical 85-bus distribution system: The convergence and diversity measure
with and without the objective discretization method.
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The IGD performance indicator assesses the performance characteristics of the proposed
algorithm. Fig. 4.3 depicts the convergence and divergence characteristics for a typical trial of
the proposed algorithm. The proposed method with objective discretization method provides
better performance characteristics compared to without objective discretization method, as
shown in fig. 4.1. The enhancement in performance characteristics is due to the improvement
in the search ability of MOEA and reduction the non-dominated solutions in population, caused

by the discretization of objective values.

4.6  Simulation and Test Conditions
One power flow meter (PM) and a voltage magnitude meter (VMM) is located on the first

line and at the slack bus, respectively. These meters are considered as default measurements.
The active and reactive power flows are assumed to be acquired from a single PM. The
proposed method is simulated by deploying PM meters at different locations on distribution
network. The BC-DSSE [16]-[17] method is used to estimate the states for meter locations,
which are generated by the proposed method. Monte Carlo simulation evaluate the acceptable
performance of state estimation in terms of voltage magnitude and voltage angle for different
measurement uncertainties, with prespecified state estimation error limitations of 1% and 5%,
respectively, within 95 percent simulated scenarios. If the predefined limitations are exceeded,
a penalty is applied to the corresponding objective function. voltage magnitude and angle
constraint violations are evaluated by considering 100 different network operating scenarios,
each of which is simulated for 1000 Monte Carlo trials with normally distributed measurement
errors. In addition, the following assumptions are considered:

i The default measurements are provided with 1% measurement uncertainty.

ii. Standard deviation of virtual measurements (zero bus injections) is considered in the
order of 108,

iv. Pseudo measurements with a maximum error of 50% are supplied to test the efficacy
of proposed method with huge errors.

V. The population size is considered to be 100 for NSGA-II, whereas for the proposed
method with and without discretization, the population size is obtained using the
Systematic Sampling Approach (SSA), which generates uniformly distributed
reference points. In addition, Table-4.1 gives the parameters that are used in the
proposed algorithm, and NSGA-I1 [43].
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Different population sizes are tested, and it is observed that for 3 objectives, the
population size with 100, is suitable to get the near-optimal solutions. Therefore, population
size is considered as 100, whereas for indicator-based methods the population size is decided
based on the weight vectors, which are generated from the Systematic Sampling Approach
(SSA) [87]. Different Crossover and Mutation rates are tested and chosen Crossover rate (Pc)
is 1.0, Mutation rate (Pm) is 0.05 for which it gives the better performance of the MOEA.

Table 4.1: Parameters used in the proposed algorithm and NSGA-II

Algorithm Control Parameters

The Proposed | Number of objectives (M) are three, Population size after SSA is 91, the
algorithm with and | neighborhood size T is 20, the number of divisions per objective coordinates
without objective | D is 12, maximum number of generations are 100, Crossover rate (Pc) is

discretization 1.0, Mutation rate (Pm) is 0.05.

NSGA-II [43] total objectives (M) are 3, size of population is 100, Crossover rate (Pc) is

0.8, Mutation rate (Pm) is 0.01, maximum number of generations are 100.

4.7  Results and Discussions
By evaluating different network scenarios, this work explores the effect of meter placement

on distribution network. In addition, various types of renewable energy sources had been
investigated. Table-4.2 provides the size and location of different types of renewable energy
sources such as DG generating only active power, DG generating active power and absorbing
reactive power from the network, and DG generating both active and reactive power. In this
work, DGs are modelled as a dispatchable generation. The position of DGs is determined based
on minimum voltage deviation and power loss in the network [73]. The effectiveness of the
proposed algorithm is verified on PG&E 69-bus distribution system and Indian Practical 85-
bus distribution system. The obtained results are compared to NSGA-I1 [43], and other methods
such as with multi-objective hybrid PSO Kirill herd algorithm (PSO-KH) [73], multi-objective
hybrid estimation of distribution algorithm- interior point method (EDA-IPM) [75], dynamic
programming (DP) [38] and ordinal optimization algorithm (OOA) [28].
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Table 4.2: Location and size of different types of distributed generation

DG type and Capacity (MW) base value

Test System Bus Number Type-1 Type-2 Type-3

P (P-iQ) (P+iQ)
PG&E 69-bus Distribution 50 0.180 0.180-j 0.087 0.180+j 0.087
System 61 0.270 0.270-j0.130 0.270+j0.130
Indian Practical 85-bus 45 0.277 0.235-j 0.145 0.235+j0.145
Distribution System 61 0.290 0.246-j0.152 0.246+j0.152

For all figs. 4.3 to 4.13 the repeating captions are specified as given here:(a) objective-J,
average relative percentage error (ARPE) of voltage magnitude Vs. objective-J; average
relative percentage error (ARPE) of voltage angle. (b) objective-J, average relative percentage
error (ARPE) of voltage magnitude Vs. the number of power flow meters (c), objective-Js
average relative percentage error (ARPE) of voltage angle Vs. the number of power flow
meters.

4.7.1 PG&E 69-bus Distribution System

The proposed algorithm is tested on PG&E 69-bus distribution system [92], which has 68
lines, 21 zero bus injection nodes, and total real and reactive power load of 3.802 MW, 2.692
MVAR respectively. The zero bus injections are modeled as virtual measurements, and one
VMM, one power flow meter at substation and one power flow meter is placed at each
distribution generator, which are considered as default measurements.

The proposed algorithm for meter placement problem is investigated with 1%, and 5% real
measurement uncertainty and optimal Pareto front plots are shown in figs. 4.4 and 4.5,
respectively. The results correspond to objective values and performance of state estimation
without DG, which are tabulated in Table-4.3. The proposed algorithm with objective
discretization with 1% accuracy of real measurements, requires 6 meters including the default
measurements, whereas the proposed algorithm without objective discretization, and NSGA-I1I
require 6 and 9 respectively. The average relative percentage error (ARPE) of voltage
magnitude and ARPE of voltage angle for the proposed method are 0.0008% and 0.2641%,
respectively. Whereas, ARPE of voltage magnitude and voltage angle for NSGA-II are
0.0038% and 1.6474%, respectively. Whereas the existing method in literature such as PSO-
KH, EDA-IPM requires 6 meters, same as the proposed method, whereas, DP and OOA
methods require 7 and 8 meters respectively. In terms of objective values quality the proposed
method shows the superiority as shown in Table-4.3.

Similarly, with 5% real measurement uncertainty the proposed method shows superiority
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in terms of quality of solutions and as well as the number of meters required.
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Fig. 4.4: PG&E 69-bus distribution system Optimal Pareto-front plots: Real measurements
with an accuracy of 1% and Pseudo measurements with an accuracy of 50% without DG (OD-

Objective Discretization method)
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Fig. 4.5: PG&E 69-bus distribution system Optimal Pareto-front plots: Real measurements
with an accuracy of 5% and Pseudo measurements with an accuracy of 50% without DG (OD-
Objective Discretization method)

Table 4.3: PG&E 69-bus distribution system: Optimal location of the power flow meters
under different metrological errors for without DG.

Metrological | Algorithm Power flow meters | Number Objective function values
error (in %) location(Line of J1 J2 NE
numbers) power
flow Cost of meters ARPE of voltage ARPE of voltage
meters (1 per unit magnitude angle
device)
1 Proposed 1,13,32,43,55 5 6 0.0008 0.2641
algorithm
with OD*
Proposed 1,5,13, 30,54 5 6 0.0014 0.4547
algorithm
without OD*
NSGA-II 1, 4, 10, 11, 12, 42, 8 9 0.0038 1.6474
[43] 55, 68
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PSO-KH 1,7,24,54, 66 5 6 0.0028 0.4947
[73]
EDA-IPM 1,3,7,24,51 5 6 0.0025 0.4821
[75]
DP [38] 1,11, 18, 33,41, 57 6 7 0.0042 0.7861
OOA [28] 1,9, 17, 29, 42, 51, 7 8 0.0051 0.9292
57
Proposed 1, 15, 29, 40, 47, 56 6 7 0.0020 0.3458
algorithm
with OD*
Proposed 1,9, 13, 26, 31, 46, 7 8 0.0023 0.6288
algorithm 60
without OD*
NSGA-II 1, 3, 8, 14, 29, 36, 12 13 0.0049 1.7634
[43] 39, 45, 53, 60, 63, 66
PSO-KH 1,7, 14, 21, 28, 33, 9 10 0.0058 1.1491
[73] 49,53, 61
EDA-IPM 1,7, 14, 19, 28, 33, 9 10 0.0056 1.1273
[75] 47,53, 61
DP [38] 1, 7, 16, 29, 34, 46, 10 11 0.01512 1.8727
53, 59, 61,65
OOA [28] 1,11, 17, 26, 31, 39, 10 11 0.0223 1.7821
47,53, 58, 63

*OD - Objective Discretization method

The proposed algorithm for meter placement problem in the active distribution system is
investigated with 1%, and 5% real measurement uncertainty and the Pareto optimal plots are
shown in fig. 4.6 to 4.7, respectively. The results for DG type-1 (P), are tabulated in Table-
4.4. The proposed algorithm with objective discretization with 1% accuracy of real
measurements, requires 8 meters including the default measurements at each DG and on the
first line, whereas proposed algorithm without objective discretization, NSGA-11, PSO-KH,
EDA-IPM, DP and OOA requires 9, 12, 8, 8, 9 and 11 respectively. The average relative
percentage error (ARPE) of voltage magnitude and ARPE of voltage angle for proposed
method are 0.0011% and 0.3122%, respectively, whereas for proposed algorithm without
objective discretization, NSGA-I1, PSO-KH, EDA-IPM, DP and OOA are 0.0015%, 0.0044%,
0.0011%, 0.0018%, 0.0037%, 0.0049% and 0.3458%, 0.7954%, 0.2653%, 0.3125%, 0.9127%,
0.8357% respectively. As the proposed method shows superiority with the majority of

algorithms. Whereas, in the case of 5% real measurement uncertainty, when compared to all
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the methods the proposed method shows superiority in terms of quality of solutions and as well
as the number of meters required. Similarly, the proposed method is tested for DG type-2, type-
3 and the optimal Pareto fonts are shown in fig. 4.8 and 4.9, respectively. The performance of

all the algorithms is tabulated in Table 4.5 and 4.6 for DG type-2 and type-3, respectively.
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Fig. 4.6: PG&E 69-bus distribution system Optimal Pareto-front plots: Real measurements
with an accuracy of 1% and Pseudo measurements with an accuracy of 50% with DG Type-1
(P) (OD- Objective Discretization method)
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Fig. 4.7: PG&E 69-bus distribution system Optimal Pareto-front plots: Real measurements
with an accuracy of 5% and Pseudo measurements with an accuracy of 50% with DG Type-1
(P) (OD- Objective Discretization method)
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Table 4.4: PG&E 69-bus distribution system: Optimal location of the power flow meters
under different metrological errors with DG Type-1(P)

Metrological | Algorithm | Location of Power | Number of Obijective function values
error (in %) flow meters(Line | power flow 1 Jz NE
numbers) meters
Cost of meters (1 | ARPE of voltage | ARPE of voltage angle
per unit device) magnitude
1 Proposed | 1,13, 30, 41, 56 5 8 0.0011 0.3122
algorithm
with OD*
Proposed 1, 10, 15, 29, 44,52 6 9 0.0015 0.3458
algorithm
without
OD*
NSGA-II 1, 12, 18, 30, 41, 9 12 0.0044 0.7954
[43] 48, 52, 53, 60
PSO-KH 1,49, 52,59, 67 5 8 0.0011 0.2653
[73]
EDA-IPM | 1,49, 52, 60, 68 5 8 0.0018 0.3125
[75]
DP [38] 1, 23,38, 49,51, 63 6 9 0.0037 0.9127
OOA[28] | 1, 16, 27, 33, 39, 8 11 0.0049 0.8357
52, 61, 63
5 Proposed | 1,14,32,42,47,55 6 9 0.0017 0.4698
algorithm
with OD*
Proposed 1,15, 30,43,47,55 6 9 0.0031 0.4663
algorithm
without
OD*
NSGA-II 1,9, 15, 23, 30, 36, 9 12 0.0087 0.9465
[43] 43, 46, 58
PSO-KH 1, 3,17, 25, 34, 42, 8 11 0.0063 1.0587
[73] 50, 63
EDA-IPM | 1, 3,17, 24, 33, 41, 9 12 0.0051 1.1122
[75] 50, 63
DP [38] 1, 11, 14, 23, 37, 9 12 0.0238 1.6345
44,59, 63, 67
OOA[28] | 1,11,109,26,31, 10 13 0.0321 1.7952
39, 49, 52, 61,
63

*OD - Objective Discretization method

83




Chapter 4 Multi-Objective  Meter  Placement  using
Objective Discretization and Indicator based

algorithm
A Proposed Method without OD

24| © Proposed Method with OD
¢ | O NSGAI
5 % o o %
g2 @
< °) ¢

) o D 0o 4
= R® o A
8 0 1 | 1 | |

0 0.005 0.01 0.015 0.02 0.025
Obj. Jz, ARPE of V

(a)

magnitude

[
§ 15 o
[
E %
310 O and o
< o % o o
g 5 A <>A o ¢
E 0 Cgio Ar'\% | A | |
Z 0 0.005 0.01 0.015 0.02 0.025
Obj.J,, ARPE Of V . e
(b)
515
210 % X
o
z S o o
g 2 ¢
o B B0 o
g o | I Q o1 | | I |
Z 0 0.5 1 1.5 2 2.5 3 3.5 4

Obj. J,, ARPE of V
(c)

angle

Fig. 4.8: PG&E 69-bus distribution system optimal Pareto front plots: Real measurements
with an accuracy of 1% and Pseudo measurements with an accuracy of 50% with DG Type-2
(P-jQ) (OD- Obijective Discretization method)
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Fig. 4.9: PG&E 69-bus distribution system optimal Pareto front plots: Real measurements
with an accuracy of 1% and Pseudo measurements with an accuracy of 50% with DG Type-3
(P+jQ) (OD- Objective Discretization method)
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Table 4.5: PG&E 69-bus distribution system: Optimal location of the power flow meters
with 1% measurement uncertainty with DG Type-2(P-jQ).

Algorithm Location of | Number Objective function values
Power flow of 1 J2 Js
meters(Line power
numbers) flow Cost of ARPE of ARPE of

meters | meters (1 voltage voltage
per unit magnitude angle
device)

Proposed algorithm | 1, 14, 29, 41, 5 8 0.0014 0.3800

with OD* 55

Proposed algorithm | 1, 9, 12, 28, 6 9 0.0023 0.2507

without OD* 29, 41

NSGA-II [43] 1, 16, 21, 31, 8 11 0.0064 0.8544
37,40, 44, 58

EDA-IPM [75] 1, 5, 24, 37, 5 8 0.0069 1.1807
42

DP [38] 1, 7, 15, 41, 6 9 0.0085 1.6137
56, 66

OOA [28] 1, 5, 13, 14, 9 12 0.0088 0.9864
20, 43, 54,

56, 57

*OD - Objective Discretization method

Table 4.6: PG&E 69-bus distribution system: Optimal location of the power flow meters
with 1% measurement uncertainty with DG Type-3(P+jQ).

Algorithm Location of | Number Objective function values
Power flow of NJ] J2 NE
meters(Line power
numbers) flow Cost of ARPE of ARPE of

meters | meters (1 voltage voltage angle
per unit magnitude
device)

Proposed 1, 13, 31, 40, 5 8 0.0012 0.5714

algorithm  with | 5g

OoD*

Proposed 1, 9, 15, 30, 5 8 0.0014 0.7799

algorithm without | 55

OoD*

NSGA-II [43] 1, 9, 13, 22, 9 12 0.0039 1.2852
26, 29,40, 55,

68

EDA-IPM [75] | 1, 11, 32, 45, 5 8 0.0067 0.9864
51

DP [38] 1, 25, 31, 38, 7 10 0.0115 1.7095
65, 67, 68
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OOA [28] 1, 6, 10, 19, 35, 8 11 0.0094 1.4584
45,63, 64

*OD - Obijective Discretization method

When the Pareto fronts in fig. 4.2 to 4.7 are observed, the proposed algorithm with
objective discretization shows the evenly distributed diverse solutions as compared to proposed
algorithm without objective discretization and NSGA-II. The discontinuities in Pareto fronts
are clearly noticeable in all the plots in fig 4.2 to 4.7. Whereas, the irregularities in Pareto fronts

are less in the proposed method Pareto fronts as compared to other methods.

4.7.2 Indian Practical 85-bus Distribution System

Indian Practical 85-bus distribution test system is used to validate the proposed method.
Indian Practical 85-bus distribution system has a total load of 2.574 MW and 2.622 MVAR
[93].

The effectiveness of proposed method is verified with 1%, and 5% measurement error, and
the optimal Pareto fronts are given in fig 4.10 and 4.11, respectively. Table-4.7 presents the
obtained results corresponding to without DG case, in terms of objective values and number of
meters required. The proposed algorithm with and without the objective discretization, with
1% measurement error, both gives 7 meters including the default measurements. On the other
hand, NSGA-I1I, EDA-IPM, PSO-KH, DP and OOA require 11, 8, 8, 9 and 10, respectively. In
terms of average relative percentage error (ARPE) of voltage magnitude (J2) and voltage angle
(J3), the proposed method with objective discretization yields better outcomes compared with
the proposed method without objective discretization and the other MOEAs such as, NSGA-
I, PSO-KH, EDA-IPM, DP and OOA. When compared to all the other methods, in terms of
objective values and total meters the proposed method outperforms others. Furthermore, for
5% measurement error, the proposed method with objective discretization demonstrates
versatility in terms of quality of solutions and total number of meters. The results show that

when the real measurement uncertainty increases, the number of meters required increases.
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Fig. 4.10: Indian Practical 85-bus distribution system optimal Pareto-front plots: 1% error
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Discretization method)
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Discretization method)

Table 4.7: Indian Practical 85-bus distribution system: Optimal location of the power flow
meters different measurement uncertainty without DG.

Metrological

error (in %)

Objective function values

Algorithm Position of PMs | Number
(Line numbers) | of power g
flow Cost of
meters meters
(1 per
unit
device)
Proposed 1,10,17, 24,30,57 6 7
algorithm
with OD*

89

J2 J3
ARPE of | ARPE
voltage of
magnitude | voltage
angle
0.0281 0.6552
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Proposed 1,8,9, 30,57, 67 6 7 0.0286 0.7074

algorithm

without OD*

NSGA-11 [43] | 1,6,7,18,23,33,35 10 11 0.0338 0.8526
,56,67,69

PSO-KH [73] |1, 13, 18, 26, 75, 7 8 0.0385 1.1077
79, 84

EDA-IPM [75] | 1,13,19,25,75,78, 7 8 0.0383 1.0952
84

DP [38] 1, 13, 21, 32, 37, 8 9 0.0444 1.5213
47,51, 54

OOA [28] 1, 9,16, 43, 62, 9 10 0.0579 1.2356
69, 70, 72, 76

5 Proposed 1, 24,28,33,59,71 6 7 0.0451 0.9845

algorithm

with OD*

Proposed 1,8,17, 27, 32,57 6 7 0.0499 1.1709

algorithm

without OD*

NSGA-II [43] | 1, 4,6, 9, 26, 30, 11 12 0.0884 1.7494
49, 59, 63, 71, 80

PSO-KH [73] | 1, 16, 21, 24, 33, 8 9 0.0439 1.2855
69, 77,79

EDA-IPM [75] | 1,12,20,43,50,68, 8 9 0.0464 1.4298
75, 83

DP [38] 1, 7, 14, 19, 33, 11 12 0.0518 1.6239
39,42, 48,53, 59,
61

OOA [28] 1, 18, 21, 23, 34, 11 12 0.0466 1.3689
36, 37, 61, 63, 75,
76

*OD - Objective Discretization method
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Fig. 4.12: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
1% error in real measurements and 50% error in Pseudo measurements with DG Type-1 (P)
(OD- Objective Discretization method)
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Fig. 4.13: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
5% error in real measurements and 50% error in Pseudo measurements with DG Type-1 (P)
(OD- Objective Discretization method)

Table 4.8: Indian Practical 85-bus distribution system: Optimal location of the power flow
meters different measurement uncertainty with DG Type-1(P)

Metrological | Algorithm | Position of PMs | Number Objective function values

error (Line numbers) of J1 J> Js

(in %) power | Costof | ARPE of ARPE
flow meters voltage of

meters (1 per | magnitude | voltage

unit angle
device)
1 Proposed 1,18, 24,56, 62 5 8 0.0265 0.6543
algorithm
with OD*
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Proposed 1,7, 25, 29,57 5 8 0.0276 0.6903

algorithm

without

OD*

NSGA-II 1, 7,11, 24, 27, 31, 8 11 0.0323 1.1849

[43] 39, 67

EDA-IPM 1,9, 23, 28,44 5 8 0.0367 1.0473

[75]

DP [38] 1,10,33,46, 58, 9 12 0.0580 1.0967
63,71,77,79

OOA [28] 1,11, 14, 16, 32, 42, 8 11 0.0574 1.0841
54,70

5 Proposed 1,17,24, 33,57, 63 6 9 0.0326 0.9494

algorithm

with OD*

Proposed 1,17, 24, 29, 30, 56 6 9 0.0337 0.9728

algorithm

without

oD*

NSGA-II 1,16,17,19,26,39, 9 12 0.0582 1.9197

[43] 46, 62, 77

EDA-IPM 1,9, 17, 28, 42, 62, 7 10 0.0400 1.1001

[75] 79

DP [38] 1,14,15,18,22,27, 9 12 0.6683 1.3053
47,54, 72

OOA [28] 1,31,46,48,58,62,65, 10 13 0.6742 1.3053
67,77,78

*QOD - Obijective Discretization method

The proposed algorithm with objective discretization method for DG type-1 (P) case is
evaluated with 1%, and 5% measurement error, and the optimal Pareto fronts are given in figs.
4.12 and 4.13, respectively. Table-4.8 presents the findings for DG type-1 (P). The proposed
algorithm with and without the objective discretization, with 1% measurement error, both
requires total 8 meters. On the other hand, NSGA-II, EDA-IPM, DP and OOA requires 11, 8,
12, and 11 meters, respectively. The average relative percentage error (ARPE) of voltage
magnitude (J2) and ARPE of voltage angle (Js) for the proposed method with and without the
objective discretization, are 0.0265%, 0.6543%, and 0.0276%, 0.6903%, respectively. On the
other hand, for NSGA-11, EDA-IPM, DP and OOA the ARPE of voltage magnitude (J2) and
voltage angle (J3) are 0.0323%, 0.0367%, 0.0580%, 0.0574% and 1.1849%, 1.0473%,
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1.0967%, 1.0841%, respectively. When the proposed method with objective discretization is
compared with the proposed method without objective discretization and EDA-IPM, requires
the same number meters. Moreover, the proposed method with objective discretization
outperforms in terms of average relative percentage error (ARPE) of voltage magnitude (J2)
and voltage angle (J3) as shown in Table-4.8. Furthermore, in the case of a 5% measurement
error, the proposed method with objective discretization outperforms all other methods in terms
of solution quality as well as the number of meters required.
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Fig. 4.14: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
1% error in real measurements and 50% error in Pseudo measurements with DG Type-2 (P-jQ)
(OD- Obijective Discretization method)

It has been noticed that when real measurement uncertainty increases, the meters required

increases. It is worth noting that, when compared to passive network, active network voltage
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magnitude and angle error are reduced. The reason for this is that the DG provides the active
power to nearby loads, where power drawn from the main feeder is reduced. Therefore, the
degree of error related to power flow measurement reduces. The proposed method is also
verified for DG type-2 and type-3, and corresponding final Pareto fonts displayed in fig. 4.14,
4.15 and corresponding results are tabulated in Tables 4.9 and 4.10.
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Fig. 4.15: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
1% error in real measurements and 50% error in Pseudo measurements with DG Type-3 (P+jQ)
(OD- Objective Discretization method)
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Table 4.9: Indian Practical 85-bus distribution system: Optimal location of the power flow
meters with 1% measurement uncertainty for DG Type-2(P-jQ).

Algorithm Position of PMs | Number Objective function values
(Line numbers) of g Jo Js
power Cost of ARPE of | ARPE of
flow meters (1 | voltage voltage

meters per unit | magnitude angle

device)

Proposed 1,17, 25, 31, 57, 63 6 9 0.0270 0.8380

algorithm with

OD*

Proposed 1,17, 25, 30, 57, 65 6 9 0.0305 0.8697

algorithm

without OD*

NSGA-II [43] 1,16, 19, 23, 27, 30, 9 12 0.0533 1.2292
49, 54, 67

EDA-IPM [75] 1,17, 25, 29, 34,58, 7 10 0.0386 1.1584
60

DP [38] 1, 23, 30, 37, 40, 62, 7 10 0.0408 1.3911
75

OOA [28] 1, 3,9, 14, 20, 52, 9 12 0.0387 1.2929
54, 62, 69

*QOD - Obijective Discretization method

Table 4.10: Indian Practical 85-bus distribution system: Optimal location of the power
flow meters with 1% measurement uncertainty for DG Type-3(P+jQ).

Algorithm Position of PMs | Number Objective function values
(Line numbers) of Ji Jo Js
power Cost of ARPE of | ARPE of
flow meters (1 voltage voltage
meters per unit | magnitude angle
device)
Proposed 1, 16, 17, 30, 59, 66 6 9 0.0436 1.1079
algorithm
with OD*
Proposed 1, 16, 17, 26, 29, 56 6 9 0.0440 1.1104
algorithm
without OD*
NSGA-II [43] 1, 23, 24, 50, 57, 62, 8 11 0.0708 1.8956
66, 70

96



Chapter 4 Multi-Objective =~ Meter  Placement  using
Objective Discretization and Indicator based

algorithm
EDA-IPM [75] | 1, 23, 31, 49, 58, 59, 7 10 0.0500 1.1191
61
DP [38] 1, 18, 25, 35, 66, 70, 8 11 0.0513 1.2059
76, 82
OOA [28] 1, 14, 33, 37, 41, 65, 8 11 0.0534 1.3162
83, 84

*OD - Obijective Discretization method

4.8 Summary

This work proposed a new MOEA using objective discretization and indicator-based
approach, which is based on IGD-NS performance indicator. Because of combinatorial nature
of meter placement problem, the objective space is discrete in nature. To enhance the
performance of the proposed method, objective discretization method was adopted, with
different granularity along the objectives, so that it enhances the search ability of MOEA and
decreases the non-dominated solutions in population. IGD-NS indicator measures diversity and
convergence of solution sets and guides the evolution process in MOEA. The indicator IGD-
NS can reduce the non-dominated solutions with no contribution to the indicator value. As the
performance of MOEA depends on the approximate Pareto front shape, the proposed method
employed a reference point method, which adaptively updates the reference points to follow
the Pareto front shape. Moreover, the proposed method improves the performance
characteristics of MOEA, enhances search ability, provides uniformly distributed solutions on
Pareto front, and follow the irregular Pareto front. In addition, the effect of meter placement on
various categories of renewable sources is addressed.

In practical applications, a greater number of non-dominated solutions are required with
a high degree of diversity. Most of MOEAs use population or external archive to store non-
dominated solutions obtained in each generation. In general, only a limited number of diverse
non-dominated solutions can be achieved in each generation, in most of population based
MOEAs. Moreover, all the conventional MOEAs are designed based on fixed heuristic rules.
Therefore, in evolution process these MOEAs may not adapt to the changes in evolutionary
environment. However, the additional diverse solutions can be obtained by properly designing
the reproduction operator in MOEA. Using machine learning model as reproduction operator,
many diverse solutions can be generated directly as needed in the objective space. This
provides the ability to learn the environment of evolutionary process by building the learning
models from the candidate solutions of current generation. Therefore, chapter 5 proposes an

inverse model based MOEAs for meter placement problem in active distribution system.
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Chapter 5

Multi-Objective Meter Placement in Active Distribution System State
Estimation using Inverse Modeling based on Multi-label Gaussian Process

Classification Algorithm with Adaptive Reference Point Method
5.1 Introduction
The model based MOEAs are designed to replace the traditional operators such as selection,
reproduction, and fitness evaluations with machine learning models. This provides the ability
to learn the environment of evolutionary process by building the learning models from the
candidate solutions of current generation. Candidate solutions of current generation in

evolution process used as sample data for training of the models.

This chapter proposed an inverse model based multi-objective evolutionary algorithm
with adaptive reference point method. In practical applications, a greater number of non-
dominated solutions are required with a high degree of diversity. Using inverse model, many
such solutions can be generated directly as needed in the objective space. Inverse model maps
non-dominated solutions from objective space to decision space.

Most of the MOEAs, such as dominance-based, decomposition-based and indicator based
MOEA:s are designed based on developing the effective fitness calculation or selection process
to solve the multi-objective optimization problems. Whereas the model based evolutionary
algorithms focuses primarily on effective reproduction process, which explicitly improves the
connectedness and regularity property [97] in distribution of Pareto solutions. The
connectedness property improves the search efficiency of MOEA.

Inverse model estimates the conditional probability of decision variables, for given
objective values. Meter cost and estimation error in voltage magnitude and angle are considered
as objectives for the meter placement problem. The meter locations on each distribution
network node, are represented as binary value. Therefore, decision space consists of
combination of meters in binary variables. The objective space consists of integer values. The
classification model is employed to map the integer value objective space to binary value
decision space. The output consists of meter combinations represented as binary string, where
meter locations belong to multiple labels simultaneously. Therefore, the proposed method uses

the multi-label Gaussian Classification for inverse model [98]
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The main contributions of this work, are as follows:

i A new inverse model-based multi-objective evolutionary algorithm with adaptive
reference point method is proposed for meter placement in distribution system state
estimation. Inverse model generates the additional non-dominated candidate
solutions by sampling the objective distribution. It improves the search efficiency

and diversity of Pareto front.

ii. Meter placement is a combinatorial optimization problem consist of binary decision
variables. Therefore, inverse model is realized by classification as it maps non-
dominated solution from integer domain objective space to the binary domain
decision space. Each meter location is represented as a label to model the binary
string in decision space, as meter locations belong to multiple labels
simultaneously. Therefore, inverse model is realized using multi-label Gaussian

classification.

iii. The combination of meter locations may not provide continuous non-dominated
solutions in Pareto front. Consequently, discontinues Pareto front is formed. The
performance of MOEA is affected by the shape of Pareto front. Therefore, adaptive
reference point method is employed to follow the shape of the Pareto front.

iv. Conflicting objectives such as minimizing the cost of metering infrastructure and
error in state estimates is considered, and the inverse model based multi-objective
framework is used to achieve an optimal meter placement solution in an active
distribution network by considering effect of the measurement uncertainty and

different types of renewable sources.

5.2 Problem Formulation:
The objectives considered for meter placement are : minimizing i) cost of measurement

devices (J1) ii) the average relative percentage error (ARPE) of voltage magnitude (J2) and iii)
the average relative percentage error (ARPE) of voltage angle (J3). The objectives that are

considered are described as follows:

MinJ; = X Cpm; - Upmi + 2ftq Cymm - Uvmmg (5.1)
. 1 1 V-t—Vi

Min |, = ;Zm;( in=1 lv!i ) X 100 (52)
. 1 1 5'-5;

Min J; = ;zm;( {Ll‘s—_t) x 100 (5.3)
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Subject to constraints of prespecified limits are considered as 1% and 5% of voltage magnitude
and voltage angle relative deviation, respectively for 95% of simulated cases [30], the

constraints are presented as follows:

\n e

g = | Al < 19 (5.4)
t_3.
g, = |5i6_f' < 5% (5.5)

Where n and nl are the number of nodes and lines in distribution system, m is the number of
Monte Carlo simulation cases, Cpm and Cvmm represents the relative normalized costs of power
flow meters (PM) and voltage magnitude meter (VMM). The normalized cost of VMM and
PM are considered to be the same per unit device cost for comparison purpose and normalized
cost is assumed to be 1 unit per device. Upm and Uvmm represents the locations of measurement
devices as binary variables. When the device is placed at node or on line, then the meter
location is represented as ‘1’ and ‘0’ otherwise. Where, g1 and g are inequality constraints of
relative voltage magnitude and voltage angle error limits, V*, V, 8t and § are the true value of
voltage magnitude, estimated value of voltage magnitude, the true value of voltage angle, and

estimated value of voltage angle respectively.

53  Methodology:
The proposed method uses inverse model based multi-objective evolutionary algorithm

with adaptive reference point method. In practical applications, a greater number of non-
dominated solutions are required with a high degree of diversity. Using inverse model, many
such solutions can be generated directly as needed in the objective space. Inverse model maps
non-dominated solutions from objective space to decision space.

Most of the MOEAs, such as dominance-based, decomposition-based and indicator based
MOEA s are designed based on developing the effective fitness calculation or selection process
to solve the multi-objective optimization problems. Whereas, the model based evolutionary
algorithms focuses primarily on effective reproduction process, which explicitly improves the
connectedness and regularity property [97] in distribution of Pareto solutions. The
connectedness property improves the search efficiency of MOEA.

This model estimates the conditional probability of decision variables, for given objective
values. Meter cost and estimation error in voltage magnitude and angle are considered as
objectives for the meter placement problem. The meter locations on each distribution network

node, are represented as binary value. Therefore, decision space consists of combination of
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meters in binary variables. The objective space consists of integer values. The classification
model is employed to map the integer value objective space to binary value decision space.
The output consists of meter combinations represented as binary string, where meter locations
belong to multiple labels simultaneously. Therefore, the proposed method uses the multi-label
Gaussian Classification for inverse model [98].

The algorithm is divided into three stages for simplicity and better understanding. The
stage-1 describes the multi-objective evolutionary algorithm using inverse model and stage-2
explains the proposed multi-objective evolutionary algorithm using inverse model with
adaptive reference point method, stage-3 discusses the inverse model realized by Multi-label
Gaussian Process Classification. The meter placement problem is basically a combinatorial
optimization problem, as a large combination of possible solutions, makes the search space
large and complex. Therefore, the objective space is irregular and discontinuous. As a
consequence, the Pareto front is discontinuous. Therefore, the adaptive reference point method
is employed to adjust the reference vectors according to the Pareto front solutions. Moreover,
the adaptive reference point method improves search ability of the MOEA and enhances the
performance.

The multi-objective evolutionary algorithm using inverse model (stage-1) comprises
initialization, partition of population, selection, inverse model and reproduction phases.

I. Initialization: Initially, the population with size ‘N’, is randomly generated with binary
string, which represents the meter locations on each node or line of distribution system.

The uniformly distributed reference points are generated using Systematic Sampling

Approach (SSA) as follows:

D+M-1
M-1
Where D is the number of divisions along with each objective coordinate, and M is the

N(D, M) = ( ) forD >0 (5.6)

number of objectives.

ii. Partition of Population: Then the population is divided into K subpopulations. The
proposed method divides population is based on objective space. On the other hand,
division of population is done in reference space in most of decomposition based
MOEAs. The partition of population is based on minimum acute angle method

expressed as follows:

. St —
ke = argmlntzl,Z,...,Km X Vi (5.7
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The solution ST is belongs to the ¢"" partition, when the acute angle between unit solution
3: and weight vector v{ is minimum, where t = 1,2, ..., K and operator x gives the sine

function values between unit solution E: and weight vector v{. Then non-dominated
sorting and selection process are performed on the K subpopulations.

Inverse Model: Multi-label Gaussian classification is used to estimate the conditional
probability of decision variables, for given objective variables. Gaussian Process is
used widely for supervised learning. It gives information about the pattern of
distribution over function, which is modelled in terms of mean and variance as a
function of input variables [87]. The Pareto front solutions (objective) values are
considered as input and the meter locations are considered as output labels in multi-
label Gaussian classification. Each meter location is treated as a classification label.
Therefore, multi-label classification is used for inverse model.

Random grouping method is employed before the inverse model, where
multiple decision variables are randomly grouped together to be estimated as output
using each objective through inverse model. In general, the random grouping method
is used for handling the large scale optimization problems [99], [100]. It is difficult to
estimate the m-input and n-output multivariate inverse model directly. This method
reduces the number of inverse models required and also enhances the scalability of the
algorithm. Using the random grouping technique, the m-by-n multivariate model can
be decomposed into m-by-n univariate inverse models to estimate the distribution of
conditional probability P(Y|X). In the model, Y refers to output labels and X to input
values. Let X be the collection of input variables and Y is the output labels. X is the
set of instances of ‘m’ objective vales {x1, X2, ...Xi, ..., Xm} and Y is the class labels
(meter locations) and yi € {0, 1} represented by binary variables. Then the training set
T is given by {(X1, Y1), (X2, Y2), ....., (Xn, Yn)}. If the output labels are independently
sampled over the training set then the conditional probability can be expressed as

p(YIX) = [T, p(ilx;) (5.8)

The above equation can be approximated using the random grouping method, and it

introduces the additive Gaussian noise due to the decomposition from multivariate
model to univariate model. Then the approximated expression can be as follows

p(YIX) ~ [T, p(yilx;) +€j; (5.9)

Where €;;is additive noise in the model and therefore, the above conditional probability

can be estimated using Gaussian process classification.
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To map the distribution of input variables, a latent function is used to quash the
response to limit the interval in between [0,1]. The squashing function used is sigmoid

function o(t), where it is defined as
o(t) =

The classification model is represented with the conditional probability of output y for

1
1+e-t

(5.10)

given sample input x as follows:
p(y = 1| x) = o(f(x)) (5.11)
All the sample labels are generated independently, conditioned on latent function f(x)
for each training samples i=1,2,..., n. Then the joint probability is given by
pID = [1i=; p(yilf(x:)) = [i=; o (yifi) (5.12)
The prediction probability over latent function fis given by Bayes’ rule as follows:

p(y|Dp(flx) (5.13)

PE%y) ==

Then the marginal probability is given by

pyIX) = [ p(yIDp(flx)df (5.14)
Where the likelihood distribution p(f[x) is non-Gaussian and makes the integration
analytically intractable. Then, the solution is determined using Laplace approximation
method [101].
The Gaussian Process can be applied over latent function f(x) as the distribution in term

of mean (m(x)) and variance (K(X, x’)) as given below:

f(x)~Gp(m(x), K(x,x")) (5.15)
where the covariance function K is given by
K = K¥(x, x") ®Ks (5.16)

Where K* is covariance between x and x’, and K¢ gives the correlation among the labels

and operator @ denotes Kronecker product. The K* is calculated as:

KX(x,x) = K, (x,x")
Ny Nyr
xeX,x'ex’
_lx—xr|j?
where K (x,x') = e &2 (5.17)

Where nx, nx’ are dimensions of X and X’, d is the width parameter, which is in taken
in between 1 to 2. Then the joint distribution can be written as

p(fIX, Y, Kp) = NV (flm(x), K*®Ky) (5.18)
Then the prediction probability over the test sample X,.can be given by the join

probability over f(x), f(X,), which are denoted as f, f,
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pCE, X Y, X, KD = (]| [r;(g(*))] , [II((T If(] ®Kp) (5.19)
Where Kxx =K*(Xx,Xx), K« =K*(X=,X). The distribution over latent function f« is given
by approximating the likelihood distribution using Laplace approximation [101] as
p(EIXY,£X,, Kp) = V(£ (KTK'®IPE, (K., — KIK K. )®K; +
(KTK1®I)A L (KTK 1 ®Ip)T (5.20)
Where f = argmax p(f|X, Y, K¢) and A = —VVlog p(f|X, Y, K¢)|,_;, then the predicted
output is given by
p(y. = 1 XY, X, Kp) = [ o(£) p(EIX, Y, £ X,, Kp)df, (5.21)
The above integral is analytically not computable, because of non-linearity of the latent
function. Therefore, the approximation [102] is given by

P(y. = 1] X, Y,X., Kp) ~ o(m/ |1+ =) (5.22)
Where m and s are mean and variance of p(f,|X, Y, f, X,, K¢) respectively.
The whole process is dependent on K¢, with the algorithm is divided into two steps as

estimation step and maximization step. In estimation step, initially K is assumed to be
unity matrix and then the mean f is calculated. In maximization step for a given f value
from previous step, the value of K; is updated. Once the both steps are within the
specified tolerance levels the mean and variance of marginal probability over f, is
calculated, following which the predicted values are calculated for the test samples. The

test inputs are uniformly generated within the interval of obj]-min to obj;"**. Where obj;

is jth objective value and j=1,2,...M, and M is the number of objective values. The
pseudo algorithm for multi-label Gaussian process classification is given in stage-3.
Reproduction: The new offspring population is generated by sampling from the
inverse model. The mutation operation is performed on the new offspring population.
Then the offspring population and old population are combined to form the next
generation. The final optimal solution from the trade-off solutions is obtained using a
min-max fuzzy method [88].

The algorithm in stage-1 performs better with regular Pareto fronts, while in case of

irregular and discontinuous Pareto fronts, the performance deteriorates. This is due to the

uniformly distributed reference points being unable to follow the approximate Pareto front. On

the other hand, the meter placement is a combinatorial optimization problem, where a large

combination of decision variables leads to discontinuous nondominated solutions on Pareto
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front. The adaptive reference point method [94] is employed, to adjust the reference point to

follow the irregular and discontinuous approximate Pareto front. This improves the

performance of the MOEA. Stage-2 algorithm incorporates the adaptive reference point

method to the stage-1 algorithm, which enhance the performance of the MOEA.

Adaptive Reference Point Method: There are two solution sets and two reference
point sets are maintained separately for each generation. The solution sets consist of the
current population (P) and the Archive population (A), while the reference sets consist
uniformly generated reference point set (R) and adaptively adjusted reference point set
(R") are maintained and updated for each generation. Initially, the Archive population
(A) and adaptively adjusted reference point set (R") are copied from the current
population (P) and uniformly generated reference point set (R) respectively.

The Archive population (A) and adaptively adjusted reference point set (R") are
updated for each generation. First, the redundant and dominated solutions are deleted
from the archive population (A). Then the reference points (R') are adjusted based on
the Archive population (A), by selecting the minimum value of objective value with
minimum angle criteria. The extreme end solutions on the Pareto front, are preserved
to maintain the diversity of the population; this is done by adjusting the location of
extreme solutions and their associated reference point locations. The minimum

orthogonal projection of objective values and reference points to the product vector of

ideal point (Z*) and reference point (Z—*r)) are used to adjust the location of extreme end
solutions on PF and their associated reference points, respectively. Then the
contributing solutions, which are nearest to at least one reference point, are identified
and copied into a new archive population(A’). The remaining new archive population
(A") space is filled in by candidate solutions from A or A’, until A’ reaches the maximum
size of a minimum of (|R|, |A|) size. The candidate solutions with a maximum of the
minimum acute angle between two candidate solutions are selected for new archive
population (A"). The reference points are adaptively updated according to the new
archive population (A’). The closest reference points to the contributing solution are
copied into adaptively adjusted reference points (R’). Then the remaining reference
points of R’ are filled with the reference points associated with candidate solutions from
the new archive A’ one by one until the minimum of (|R|, |A’|) size is reached. The
selection of reference points to update R’, is based on the maximum value of minimum

acute angel between objective value in A" and the corresponding reference values in R’.
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Then the reference points (R") are adjusted based on the current population (P), by

selecting the minimum value of objective value with angle criteria.

5.4  Stage wise Process of the Proposed Algorithm:

Stage-1: The multi-objective evolutionary algorithm using inverse model

Step 1: Initialization:
The population (P) with population size ‘N’, is initialized randomly with meter locations as decision variables.
The uniformly distributed reference points (R) are generated using Systematic Sampling Approach (SSA) [87].

Step 2: // Main loop//
While (“Stopping Criteria is not satisfied”) do
Step-3: Population Partition:
The population is partitioned into K subpopulations using minimum acute angle method using
(5.7). Then non-dominated sorting and selection is performed on the K subpopulations.
Step 4: fork=1to K
Inverse Model: the decision variables are grouped using random grouping method.
then the objective space is mapped onto decision space using multi-label Gaussian
classification as shown in stage-3. Then the inverse model is trained to get the
estimated output distribution.
Step 5: Reproduction:
The new offspring population (Q) is generated by sampling the estimated output
distribution from the inverse model. Then the mutation operation is performed.
End for
Step 6: Update the new generation:
The offspring population (Q) and population (P) are combined to form the next generation
population.
End while

Stage-2: The multi-objective evolutionary algorithm using inverse model with adaptive reference point method

Step 1: Initialization: The population (P) with population size ‘N’, is initialized randomly with meter locations as
decision variables. The uniformly distributed reference points (R) are generated using Systematic Sampling
Approach (SSA). Initialize Archive population (A) and adaptive a reference point set (R"). copy the population
(P), Reference point set (R) to the archive population (A) and adaptive reference point set (R”) respectively.

Step 2:  // Main loop//

While (“Stopping Criteria is not satisfied”) do
Step-3: Population Partition: The population is partitioned into K subpopulations through minimum acute
angle method using (5.7). Then non-dominated sorting and selection is performed on the K
subpopulations.

Step 4: fork=1to K

Inverse Model: the decision variables are grouped using random grouping method. then
the objective space is mapped onto decision space using multi-label Gaussian process
classification as shown in stage-3. Then the inverse model is trained to get the estimated
output distribution.

Step 5: Reproduction: The new offspring population (Q) is generated by sampling the estimated

output distribution from the inverse model. Then the mutation operation is performed.

End for
/I Reference point Adaptation method//
Step 6: /I Normalize the current population (P), archive population (A) and reference point set
fori=1to M
/I M is number of objectives //
z; = mianPfi(p)
/If;(p) are objective values belonging to population P/
fi(p) = fi(p) —z{, Vp €EAUP
RI =R *(zM1—z), Vje{l,....,IR]}
End for
Step 7: // Update Archive population (A) //
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Delete the redundant and dominated candidate solutions from ‘A’

Step 8: I/ adjust the location of a reference point set (R) to preserve the extreme end solutions in PF//
Initialize the empty R’

For every r belongs to R

p = argminyeslIF(p)|l sin (27T, F(p))
T; —

r = II_rlII AIF(p)|l cos (Z*r, F(p)), vi € {1,2,...... , M}

R« R U {r'}
End for
Step 9: /1 identify contributing solutions (A°™) in A//
Initialize empty contributing solution A" and archive population A’

A" = {peA| 3reR: dis(r,F(p)) = minge, dis(r, F(q))}

A =AU AcOn
Ste I/ fill remaining space in A" from A and A" //
10: [[fill until the size less than minimum size of R or A//

While (size (A") < min(size(R), size(A))) do

A" = A" U (argmaxpe(ay a")Mingep’ arccos(F(p), F(q)))
End while
/1 identify the reference points near to the contributing solutions A°™ and current population P//
Identify the reference points which are nearest to the contributing solutions A°™ copy them to R’
R’ = R' U {reR| Ipe A®" : dis(r,F(p)) = mingg (s, F(p))}

Ste Update the new generation:
11: The offspring population (Q) and population (P) are combined to form the next generation population.
End while

Stage-3: Multi-label Gaussian process classification
/[Training//

Step 1: Input: X, Y, K
Initialization: Initialize estimated latent function f with unit
vector of size testing sample output Y and initialize K¢ as
identity matrix with the size of number of labels ‘L.

Step 2: Estimation step: for given K, estimate the f .

Step 3: Then apply logarithm for marginal likelihood function and
calculate its value for estimated f, and if the values are within
the tolerance (to) then go to step 4 or else go to step 2.

Step 4: Maximization step: for a given f from estimation step, update
the K.

Step 5: if the difference between the two K values of consequent loops
is smaller than tolerance (t1) then go to next step 6 or else go to
step 2.

/[Testing//
Step6:  Input: X+, X, Y, K, K¢, f
Calculate the mean and variance.

Step 7: predict the output.
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start

\4

Initialization: The population (P) with population size ‘N’, is initialized randomly with meter locations as decision
variables. The uniformly distributed reference points (R) are generated using Systematic Sampling Approach (SSA) [87].

Stopping
Criteria

Population Partition: The population is partitioned into K subpopulations using minimum acute angle method using
(5.7). Then non-dominated sorting and selection is performed on the K subpopulations.

@

—()
YES

Inverse Model: the decision variables are grouped using random grouping method. then the objective space is mapped
onto decision space using multi-label Gaussian classification. Then the inverse model is trained to get the estimated

output distribution.

:

Reproduction: The new offspring population (Q) is generated by sampling the estimated output distribution from the
inverse model. Then the mutation operation is performed.

B k =k+1

Update the new generation: The offspring population (Q) and population (P) are combined to form the next generation

population.

Fig. 5.1: Flowchart of the proposed algorithm.
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55  Simulation and Test Conditions:
The BC-DSSE [16], [17] is supplied with substation measurements, virtual measurements,

and pseudo-measurements, to obtain observable measurement set for the proposed method. For
the proposed method, the following assumptions are considered:

i Voltage magnitude meter at the reference bus is treated as substation measurements.
Substation measurements are provided with 1% accuracy. A power flow meter is
placed at each DG for active distribution system. These measurements are considered
as default measurements.

ii. A small value of the standard deviation is supplied with virtual measurements, in the
order of 108,

iii. The performance of the proposed algorithm is tested with large uncertainty in Pseudo
measurements. The huge errors are considered with a maximum error of 50% in
Pseudo measurements.

iv. The power flow meters and voltage meters are supplied with 1% and 5% error with
Gaussian distribution.

The objective values are obtained using Monte Carlo simulations under different

measurement uncertainties and the following assumptions are considered

i. Monte Carlo simulation is carried out with 1000 trials for different load conditions
for 100 scenarios [37] with each measurement set in population.

ii. The objectives of voltage magnitude error and voltage angle error are calculated and
the constraint violation (5.6) and (5.7) is calculated for 95% simulation cases.

In addition, the parameters used for the proposed algorithm, MOEA/D [49], and
NSGA-II [43] are shown in Table-5.1. The population size is considered to be 100, while the
population size is determined on the basis of the weight vectors created from the Systematic
Sampling Approach (SSA) for decomposition-based methods. For the proposed method, and
MOEA/D, with three objectives, the population size is chosen is 91 after the Systematic
Sampling Approach (SSA). For all the methods the maximum number of generations are
taken as 50. Different Crossover and Mutation rates are tested and chosen Crossover rate
(Pc) is 1.0, Mutation rate (Pm) is 0.05 for which it gives the better performance of the MOEA.

Table 5.1: Parameters of the proposed algorithm, MOEA/DLD, MOEA/D and NSGA-II

Algorithm Control Parameters
The  Proposed  algorithm, | Crossover rate (Pc)=1.0, Mutation rate
MOEA/D [49] (Pm)=0.05.
NSGA-II [43] Population size =100, Crossover rate (Pc)=0.8,

Mutation rate (Pm)=0.01.
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56  Results and Discussions
The competence of proposed MOEA is verified on PG&E 69-bus distribution system and

Indian Practical 85-bus distribution system. This work considered different types of scenarios,
such as the impact of meter placement in passive as well as active distribution network have
been investigated. Moreover, different types of renewable sources in active network are
considered such as DG generating only active power to the network, DG generating active
power and absorbing reactive power from the network, and DG generating both active and
reactive power (Table-5.2). The distributed generation is assumed as dispatch-able and
modelled as a stochastic variable. The details of distributed generation size, location, and types
are given in Table-5.2. The DG locations on the distribution system, are at 50, 61 nodes on
PG&E 69-bus distribution system, and at 45, 61 nodes on Indian Practical 85-bus distribution
system, are decided based on optimal power loss and voltage deviation [75]. The proposed
method is compared with MOEA based on decomposition (MOEA/D) [49], non-dominated
sorting genetic algorithm (NSGA-II) [43], on existing multi-objective methods such as multi-
objective hybrid estimation of distribution algorithm- interior point method (EDA-IPM) [75].

Table 5.2: Distributed generation size and locations
DG type and Capacity (MW) base value

Test System NuBnl:tS) er | Type-l Type-2 Type-3

(P) (P-iQ) (P+jQ)
PG&E 69-bus Distribution 50 0.180 0.180-j 0.087 0.180+j 0.087
System 61 0.270 0.270-j0.130 0.270+j0.130
Indian Practical 85-bus 45 0.277 0.235-j 0.145 0.235+j0.145
Distribution System 61 0.290 0.246-j0.152 0.246+j0.152

For all figs. 5.1 to 5.12 the repeating captions are specified as given here:(a) objective
function-J> average relative percentag error e (ARPE) of voltage magnitude Vs. objective
function-Js; average relative percentage error (ARPE) of voltage angle. (b) objective function-
J> average relative percentage error (ARPE) of voltage magnitude Vs. the number of power
flow meters (c) objective function-Jz average relative percentage error (ARPE) of voltage
angle Vs. the number of power flow meters.

5.6.1 PG&E 69-bus Distribution System

The proposed algorithm is tested on PG&E 69-bus distribution system [92], which has 21
zero bus injection nodes treated as virtual measurements, and a total real power load of 3.802
MW and one VMM, one power flow meter at substation and one power flow meter is placed

at each DG, and these are considered as default measurements. Two renewable energy sources
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are located on the 50" and 61" bus.

The proposed algorithm for meter placement problem is investigated with 1%, and 5% real
measurement uncertainty. The results correspond to objective values and performance of state
estimation without DG, as shown in Table-5.3. The obtained Pareto fronts obtained are shown
in fig. 5.2 and 5.3 for 1%, and 5% real measurement uncertainty, respectively. The proposed
algorithm with and without adaptive reference point method, with 1% accuracy of real
measurements, requires 5 meters including the default measurements, whereas MOEA/D, and
NSGA-II require 7 and 8 respectively. The average relative percentage error (ARPE) of
voltage magnitude and ARPE of voltage angle for the proposed method with and without
adaptive reference point method, are 0.0011%, 0.0012% and 0.3477%, 0.4725%, respectively.
The ARE of voltage magnitude and voltage angle in percentage for MOEA/D and NSGA-II
are 0.0019%, 0.0038% and 0.6025%, 1.6474%, respectively. The existing method in literature
such as PSO-KH, EDA-IPM require 6 meters, the quality of the proposed method is far superior
as shown in Table-5.3.

Similarly, with 5% real measurement uncertainty the proposed method shows superiority
in terms of estimated error of voltage magnitude, angle and as well as the number of meters

required.
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Fig. 5.2: PG&E 69-bus distribution system optimal Pareto-front plots: under 1%
uncertainty in real measurements 50% uncertainty in Pseudo measurements for without DG
(AR —Adaptive reference point method)
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Fig. 5.3: PG&E 69-bus distribution system optimal Pareto-front plots: under 5%
uncertainty in real measurements 50% uncertainty in Pseudo measurements for without DG
(AR —Adaptive reference point method)

Table 5.3: P&G 69-bus distribution system: Optimal location of the power flow meters
under different measurement uncertainty for without DG.

Metrological ~ Algorithm Location of  Number of Objective function values
error (in %) Power flow power flow Ji Jo Js
meters (Line meters
numbers) Cost of meters ARPE of ARPE of
(1 per unit voltage voltage
device) magnitude angle
1 Proposed 7,10, 31, 42 4 5 0.0011 0.3477
algorithm
with AR*
Proposed 4,32, 45,58 4 5 0.0012 0.4725
algorithm
without AR*
MOEA/D [49] 6, 11, 28, 43, 53, 6 7 0.0019 0.6025
62
NSGA-II [43] 4, 10, 11, 12, 42, 7 8 0.0038 1.6474
55, 68
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PSO-KH [73] 1,7,24,54,66 5 6 0.0028
EDA-IPM [75] 1,3,7,24,51 5 6 0.0025
5 Proposed 10, 15, 29, 42, 46 5 6 0.0020

algorithm

with AR*

Proposed 15, 30, 32, 44, 48, 6 7 0.0025

algorithm 54

without AR*

MOEA/D [49] 1,9,13,19, 30, 34, 8 9 0.0032
47, 63

NSGA-II [43] 1, 3,8, 14, 29, 36, 12 13 0.0049
39, 45, 53, 60, 63,
66

PSO-KH [73]  1,7,14,21,28, 33, 9 10 0.0058
49, 53, 61

EDA-IPM [75] 1,7,14,19,28, 33, 9 10 0.0056
47,53, 61

(AR* - Adaptive Reference Point Method)
The proposed algorithm for meter placement problem in the active distribution system

is investigated with 1%, and 5% real measurement uncertainty and the Pareto optimal plots are
shown in figs. 5.4 to 5.5, respectively. The results of DG type-1 (P), are tabulated in Table-
5.4. The proposed algorithm with and without adaptive reference point method, with 1%
accuracy of real measurements, requires 8 meters including the default measurements at each
DG and on the first line, whereas MOEA/D, NSGA-II, PSO-KH, and EDA-IPM requires 10,
12, 8 and 8 respectively. The average relative percentage error (ARPE) of voltage magnitude
and ARPE of voltage angle for the proposed method is 0.0009%, 0.0012% and 0.3018%,
0.3366% respectively, whereas for MOEA/D, NSGA-II, PSO-KH and EDA-IPM the values
are 0.0020%, 0.0044%, 0.0011%, 0.0018% and 0.3813%, 0.7954%, 0.2653%, 0.3125%
respectively. As the proposed method shows superiority with the other algorithms. In the case
of 5% real measurement uncertainty, when compared to other methods, the proposed method
shows superiority in terms of estimated error of voltage magnitude, angle and as well as the
number of meters required. Similarly, the proposed method is tested for DG type-2, type-3 and
the optimal Pareto fonts are shown in figs. 5.6 and 5.7, respectively. The performance of all

the algorithms is tabulated in Table 5.5 and 5.6 for DG type-2 and type-3, respectively.
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Fig. 5.4: PG&E 69-bus distribution system optimal Pareto-front plots: under 1%
uncertainty in real measurements 50% uncertainty in Pseudo measurements with DG Type-1
(P) (AR —Adaptive reference point method)
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Fig. 5.5: PG&E 69-bus distribution system optimal Pareto-front plots: under 5%
uncertainty in real measurements 50% uncertainty in Pseudo measurements with DG Type-1
(P) (AR —Adaptive reference point method).

Table 5.4: P&G 69-bus distribution system: Optimal location of the power flow meters
under different measurement uncertainty for DG Type-1(P).

Metrological ~ Algorithm
error (in %)

1 Proposed
algorithm
with AR*
Proposed
algorithm
without
AR*
MOEA/D
[49]
NSGA-II
[43]

Location of Power Number

flow meters (Line of power Ji
numbers) flow
meters ~ Costof meters
(1 per unit
device)

14, 28, 32, 41, 57 5 8

12, 27,32, 41,57 5 8

6, 14, 31, 33, 44, 45, 7 10

57

9, 12, 18, 30, 41, 48, 9 12

52, 53, 60
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magnitude
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0.0009

0.0012

0.0020
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Obijective function values

J3

ARPE of
voltage
angle
0.3018
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PSO-KH 1,49, 52,59, 67 5 8 0.0011
[73]
EDA-IPM 1,49, 52, 60, 68 5 8 0.0018
[75]
5 Proposed 9, 14, 28, 29, 44, 47 6 9 0.0017
algorithm
with AR*
Proposed 12, 13, 46, 55, 58, 60 6 9 0.0023
algorithm
without
AR*
MOEA/D 6, 10, 14, 16, 30, 43, 7 10 0.0042
[49] 54
NSGA-II 8, 9, 15, 23, 30, 36, 9 12 0.0087
[43] 43, 46, 58
PSO-KH 1, 3, 17, 25, 34, 42, 8 11 0.0063
[73] 50, 63
EDA-IPM 1, 3, 17, 24, 33, 41, 9 12 0.0051
[75] 50, 63
(AR* - Adaptive Reference Point Method)
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Fig. 5.6: PG&E 69-bus distribution system optimal Pareto-front plots: under 1%
uncertainty in real measurements 50% uncertainty in Pseudo measurements with DG Type-2
(P-jQ) (AR —Adaptive reference point method).
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Table 5.5: P&G 69-bus distribution system: Optimal location of the power flow meters
with 1% measurement uncertainty for DG Type-2(P-jQ).

Algorithm Location of Power
flow meters (Line
numbers)

Proposed  algorithm 6,9, 28, 30, 42
with AR*
Proposed algorithm 4,5, 27, 29, 38
without AR*

MOEA/D [49] 7, 13, 30, 40, 45, 57,
63, 68

NSGA-II [43] 7,16, 21, 31, 37, 40,
44,58

EDA-IPM [75] 1,5,24,37,42

(AR* - Adaptive Reference Point Method)

Number
of power
flow
meters

120

J1

Cost of
meters
(1 per
unit
device)
8

8
11

11

Objective function values

J2

ARPE of voltage
magnitude

0.0008
0.0013
0.0019
0.0064

0.0069

J3

ARPE of voltage
angle

0.2399
0.2474
0.3991
0.8544

1.1807
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Fig. 5.7 PG&E 69-bus distribution system optimal Pareto-front plots: under 1%
uncertainty in real measurements 50% uncertainty in Pseudo measurements with DG Type-3
(P+jQ) (AR —Adaptive reference point method).

Table 5.6: P&G 69-bus distribution system: Optimal location of the power flow meters
with 1% measurement uncertainty for DG Type-3(P+jQ).

Location of Power flow

Algorithm meters (Line numbers)
Proposed 8,32,42,54
algorithm  with
AR*
Proposed 6, 30, 37, 56
algorithm without
AR*
MOEA/D [49] 4,11, 31,42,56
NSGA-I1I [43] 4,9, 13, 22, 26, 29, 40, 55, 68
EDA-IPM [75] 1,11, 32, 45,51

(AR* - Adaptive Reference Point Method)

Objective function values

Number I
of power
flow Cost of
meters meters (1 per
unit device)
4 7
4 7
5 8
9 12
5 8

121

J2

ARPE of
voltage
magnitude
0.0010

0.0011

0.0034
0.0039
0.0067
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5.6.2 Indian Practical 85-bus distribution system

The proposed method has been investigated on Indian Practical 85-bus distribution system
[93], which has 84 lines, 26 zero injection nodes, and a total load of real and reactive power of
2.574 MW and 2.622 MVAR respectively. The zero bus injections are modeled as virtual
measurements, and one VMM at the slack bus, one power flow meter on the first line, and one
power flow meter are placed at each DG, which is considered as default measurements.

The proposed algorithm is tested with 1%, and 5% real measurement uncertainty and the
corresponding Pareto fronts are shown in figs. 5.8 and 5.9, respectively. The results correspond
to objective values and performance of state estimation without DG, which are tabulated in
Table-5.7. The proposed algorithm with and without adaptive reference point method, with 1%
accuracy of real measurements, requires 7 meters including the default measurements, while
MOEA/D, and NSGA-II require 10 and 11 respectively. The average relative percentage error
(ARPE) of voltage magnitude and ARPE of voltage angle for the proposed method are
0.0278%, 0.0298% and 0.6894%, 0.7099% respectively. The ARPE of voltage magnitude and
voltage angle for MOEA/D and NSGA-II are 0.0385%, 0.0338% and 1.2964%, 0.8526%,
respectively. The existing methods in literature such as PSO-KH, EDA-IPM requires 8 meters,
and ARPE of voltage magnitude and ARPE of voltage angle of 0.0385%, 0.0383% and
1.1737%, 1.0952%, respectively. The proposed method is superior in terms of objective value
quality and number of meters when compared to all the methods as shown in Table-7.
Similarly, with 5% real measurement uncertainty the proposed method shows superiority in
terms of estimated error of voltage magnitude, angle and as well as the number of meters
required. It is observed from the results that the number of meters required increases with an

increase in uncertainty in real measurement.
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Fig. 5.8: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
Real measurements with an accuracy of 1% and Pseudo measurements with an accuracy of
50% without DG (AR —Adaptive reference point method).
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Fig. 5.9: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
Real measurements with an accuracy of 5% and Pseudo measurements with an accuracy of
50% without DG (AR —Adaptive reference point method).

Table 5.7: Indian Practical 85-bus distribution system: Optimal location of the power

flow meters under different measurement uncertainty for without DG.

) Number Objective function values
Location of J J J
; of 1 2 3
Metrological Algorithm Power flow power
error (in %) meters (Line Cost of ARPE of voltage ARPE of
numbers) flow meters (1 per magnitude voltage angle
Meters  ynit device)
1 Proposed 8, 17, 24, 33, 6 7 0.0278 0.689%4
algorithm 56, 59
with AR*
Proposed 6, 7, 11, 28, 6 7 0.0298 0.7099
algorithm 30, 59
without
AR*
MOEA/D 1,7, 16, 19, 9 10 0.0385 1.2964
[49] 27,30, 47, 59,
72
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NSGA-II 1,6, 7, 18, 23, 10 11 0.0338 0.8526
[43] 33, 35, 56, 67,

69
PSO-KH 1, 13, 18, 26, 7 8 0.0385 1.1737
[73] 75,79, 84
EDA-IPM 1, 13, 19, 25, 7 8 0.0383 1.0952
[75] 75, 78, 84

5 Proposed 9, 16, 17, 24, 7 8 0.0351 0.9056

algorithm 32, 56, 63
with AR*
Proposed 16, 17, 25, 7 8 0.0413 1.2671
algorithm 32, 34,59, 72
without
AR*
MOEA/D 1,6, 8, 26, 32, 11 12 0.0783 1.7764
[49] 44,54, 55, 69,

74, 83
NSGA-II 1,4, 6, 9, 26, 11 12 0.0884 1.7494
[43] 30, 49, 59, 63,

71, 80
PSO-KH 1, 16, 21, 24, 8 9 0.0439 1.2855
[73] 33,69, 77,79
EDA-IPM 1, 12, 20, 43, 8 9 0.0464 1.4298
[75] 50, 68, 75, 83

(AR* - Adaptive Reference Point Method)
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Fig. 5.10: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
Real measurements with an accuracy of 1% and Pseudo measurements with an accuracy of
50% with DG Type-1 (P) (AR —Adaptive reference point method).

The proposed algorithm for meter placement problem in the active distribution system
for DG type-1 is investigated with 1%, and 5% real measurement uncertainty and the Pareto
optimal plots are shown in figs. 5.10 to 5.11, respectively. The results for DG type-1 (P), are
tabulated in Table-5.8. The proposed algorithm with and without adaptive reference point
method, with 1% accuracy of real measurements, requires 8 and 8 respectively, meters
including the default measurements at each DG and on the first line, whereas MOEA/D,
NSGA-II, PSO-KH, and EDA-IPM requires 9, 11, 8 and 8 respectively. The average relative
percentage error (ARPE) of voltage magnitude and ARPE of voltage angle for the proposed
method are 0.0263% and 0.6144%, respectively. Whereas, for MOEA/D, NSGA-I11, PSO-KH
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and EDA-IPM are 0.0323%, 0.0347%, 0.0347%, 0.0367% and 1.1407%, 1.1849%, 1.0013%,
1.0473% respectively. The proposed method is superior to the majority of algorithms already
in use or available. In the case of 5% real measurement uncertainty, when compared to all the
methods the proposed method shows superiority in terms of estimated error of voltage
magnitude, angle and as well as the number of meters required. It is observed that the number
of meters required increases with an increase in real measurement uncertainty.

Similarly, the proposed method is tested for DG type-2, type-3 and the optimal Pareto
fonts are shown in fig. 5.12 and 5.13, respectively. The performance of all the algorithms is
tabulated in Table 5.9 and 5.10 for DG type-2 and type-3, respectively.
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Fig. 5.11: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
Real measurements with an accuracy of 5% and Pseudo measurements with an accuracy of
50% with DG Type-1 (P) (AR —Adaptive reference point method).
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Table 5.8: Indian Practical 85-bus distribution system: Optimal location of the power flow
meters under different measurement uncertainty for with DG Type-1(P).
Obijective function values

Location of Nurc?fber Ji J2 Js
Metrolpglcal Algorithm Power flqw power Cost of ARPE of ARPE of
error (in %) meters (Line flow meters (1 voltage voltage
numbers) meters per unit magnitude angle
device)
1 Proposed 7,10, 29, 47, 56 5 8 0.0263 0.6144
algorithm with
AR*
Proposed algorithm 7, 11, 30, 56, 63 5 8 0.0271 0.7298
without AR*
MOEA/D [49] 3, 6, 24, 31, 69, 6 9 0.0389 1.1407
78
NSGA-II [43] 4,7, 11, 24, 27, 8 11 0.0323 1.1849
31, 39, 67
PSO-KH [73] 1,9,27,33,44 5 8 0.0347 1.0013
EDA-IPM [75] 1,9, 23,28, 44 5 8 0.0367 1.0473
5 Proposed 9, 16, 18, 24, 31, 6 9 0.0268 0.8289
algorithm with 57
AR*
Proposed algorithm 7, 16, 31, 40, 57, 6 9 0.0345 1.0716
without AR* 71
MOEA/D [49] 13, 17, 25, 26, 5 8 0.0588 1.4948
66
NSGA-II [43] 8, 16, 17,19, 26, 9 12 0.0582 1.9197
39, 46, 62, 77
PSO-KH [73] 1,9, 19, 28, 46, 7 10 0.0419 1.2124
62, 79
EDA-IPM [75] 1,9, 17, 28, 42, 7 10 0.0400 1.1001
62, 79

(AR* - Adaptive Reference Point Method)
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Fig. 5.12: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
Real measurements with an accuracy of 1% and Pseudo measurements with an accuracy of
50% with DG Type-2 (P-jQ) (AR —Adaptive reference point method).
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Fig. 5.13: Indian Practical 85-bus active distribution system optimal Pareto-front plots:
Real measurements with an accuracy of 1% and Pseudo measurements with an accuracy of
50% with DG Type-3 (P+jQ) (AR —Adaptive reference point method).

Table 5.9: Indian Practical 85-bus distribution system: Optimal location of the power flow
meters with 1% measurement uncertainty for with DG Type-2(P-jQ).

Algorithm

Proposed
algorithm with
AR*

Proposed
algorithm
without AR*
MOEA/D [49]

Location of Power
flow meters (Line
numbers)

7,8, 26,57, 60

5,17, 24,31, 59

3, 6,23, 26, 29, 33,
38, 45, 57, 65, 83

Objective function values

Nun}ber J1 J2 Js
0
power Cost of ARPE of voltage ARPE of
flow meters (1 magnitude voltage angle
meters per unit
device)
5 8 0.0320 0.9213
5 8 0.0337 0.9642
11 14 0.0321 0.9418
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NSGA-II [43] 13, 16, 19, 23, 27, 9 12 0.0533 1.2292
30, 49, 54, 67

EDA-IPM [75] 1, 17, 25, 29, 34, 7 10 0.0386 1.1584
58, 60

Table 5.10: Indian Practical 85-bus distribution system: Optimal location of the power flow
meters with 1% measurement uncertainty for with DG Type-3 (P+jQ).
Obijective function values

Number J
_ Location of Poyver of 3 J3
Algorithm flow meters(Line power Cost of
numbers) flow meters (1 ARPE of voltage ARPE of
meters per unit magnitude voltage angle
device)
Proposed 8, 15, 16, 17, 31, 59 6 9 0.0404 1.2104
algorithm with
AR*
Proposed 10, 16, 17, 26, 29, 6 9 0.0440 1.2204
algorithm 56
without AR*
MOEA/D [49] 5, 8, 14, 15, 16, 17, 9 12 0.0546 1.2980
32, 36, 67
NSGA-II [43] 6, 23, 24, 50, 57, 8 11 0.0708 1.8956
62, 66, 70
EDA-IPM [75] 1, 23, 31, 49, 58, 7 10 0.0500 1.1191
59, 61

(AR* - Adaptive Reference Point Method)
The inverse model reproduces the addition non-dominated solutions from the estimated

conditional probability, which improves the search efficiency of MOEA. From the results it is
evident that the proposed method out performs compared to other methods, in terms of
estimated error of voltage magnitude, angle and number of meters required. When the Pareto
fronts in figs. 5.2 to 5.13 are examined, the proposed method shows the evenly distributed
diverse solutions on optimal Pareto front as compared to the proposed method without adaptive
reference point method, MOEA/D and NSGA-II Pareto fronts. The discontinuities in Pareto
fronts are clearly noticeable in all the plots from figs. 5.2 to 5.13. These discontinuities are due
to the combinatorial nature of the meter placement problem, may not provide continuous values
in objective space. When the shape of the Pareto front is irregular (disconnected, degenerated,
and with sharp tails), uniformly distributed reference points in MOEA/D, unable to obtain the
best approximation to Pareto front. As the reference points are adaptively adjusted in the
proposed method, the distribution of reference points reflects the shape of the approximate
optimal Pareto front and maintains evenly distributed non-dominated solutions on Pareto front.
Moreover, the results obtained show the efficiency of the proposed algorithm in terms of
estimated error of voltage magnitude, angle, minimum number of meters, diversity, and

distribution of solutions on the Pareto front.
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5.7 Summary
This work proposed a new inverse model based multi-objective evolutionary algorithm

for meter placement in active distribution system state estimation. Inverse model maps the
candidate solution in Pareto front from objective space to decision space. The decision space
is a binary value string, which represents the meter locations and objective values are in integer
domain. To map the binary space to integer domain, the inverse model is realized by multi-
label Gaussian process classification. The inverse model is used as reproduction operator to
generate additional candidate solutions from estimated distribution of conditional probability.
The main benefit of inverse model is to generate samples that are directly belong in desired
objective space and improved search efficiency of the evolutionary algorithm. As the meter
placement problem is combinatorial optimization, the Pareto front is discontinuous. Therefore,
the reference points are adjusted using adaptive reference point method, so that the reference
points follow shape of the approximate Pareto front, which improves the performance of the
proposed algorithm. The meter placement in an active distribution system is modelled as multi-
objective problem of conflicting objectives such as the accuracy of state estimation and the

cost of the meter configuration to achieve the optimal solution.

In distribution system, state estimation performance can be enhanced using the meter
placement problem and it is handled in two ways using i) topological observability and ii) made
numerically observable by adding Pseudo measurements. The second method, made
numerically observable by adding Pseudo measurements, is widely used to formulate the meter
placement problem in distribution system. The power injection measurements at all the nodes
are modeled as Pseudo measurements, and these are fixed set of measurements considered in
meter placement problem. The drawback with pseudo measurement based meter placement is
the accuracy of state estimation suffers due to the huge error associated with Pseudo
measurements. The minimum number of Pseudo measurements that are needed to be added to
the measurement set is not addressed in the literature. Therefore, chapter 6 proposes a multi-
objective meter placement in distribution system using numerical observability to find the

minimum number of Pseudo measurements for given set of real measurements.
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Many Objective Meter Placement in Active Distribution System State

Estimation based on Numerical Observability Method

6.1 Introduction
The distribution system contains a large number of nodes, to make the system observable,

the measurement devices need to be installed almost at each node, which is economically not
suitable. Therefore, meters need to be installed at appropriate locations optimally. The
additional meters are required to improve the observability of the network and redundancy of
measurements, which enhances the performance of state estimation. In distribution system,
state estimation performance is upgraded using the meter placement problem and it is handled
in literature in two ways using i) topological observability and ii) made numerically observable
by adding Pseudo measurements. Using topological observability based meter placement, the
total number of meters required is around one third of the number of nodes in distribution
system. Whereas, using the pseudo measurement based meter placement method the number
of meters required is very less than the topological observability based meter placement
method. The advantage of a smaller number of meters is due to the additional Pseudo

measurements that are supplied along with real measurements.

To improve the performance of state estimation, additional real measurements were added
along with the fixed Pseudo measurements using the optimal meter placement method. The
drawback with pseudo measurement based meter placement is the accuracy of state estimation
suffers due to the huge error associated with Pseudo measurements. The minimum number of
Pseudo measurements that are needed to be added to the measurement set is not addressed in
the literature.

This chapter proposes many-objective evolutionary optimization for meter placement
problem in an active distribution system based on numerical observability. In general, the
Pseudo measurements are fixed, and all the node injections are modeled as Pseudo
measurements. Whereas, with fixed Pseudo measurements, state estimation accuracy degrades,
and the number of actual measurements required to achieve the desired state estimation
accuracy rises. The evolutionary optimization process only selects combination of real
measurements, without changing the fixed Pseudo measurements, so that the formulated

objectives are optimized. For the first time, this work proposes the numerical observability to
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select the minimum number of Pseudo measurements for a given set of real measurements,
which satisfies the observability of the network. By choosing the minimum number of Pseudo
measurements the accuracy of state estimation increases and the number of real measurements
also reduces. The trade-off between distribution leve Phasor measurement units (D-PMUs) and
intelligent electronic devices (IEDs) are considered to formulate the meter placement problem.
When the objectives increase above three, then most of the multi-objectives fail to perform
effectively, as the objective spaces increase. Therefore, many-objective evolutionary
algorithms are utilized to overcome the issues with multiple objectives. A many-objective
optimization is designed to handle the minimization of the number of meters of D-PMUs and
IEDs along with minimization of root mean square errors of voltage magnitude and voltage
angle as objectives. The meter placement problem is a combinatorial optimization, the decision
space consists of the binary values which represent the meter locations and objective space in
integer values. Therefore, to map the integer objective domain to the binary decision domain,
a multi-label Gaussian process classifier as an inverse model generates the additional solution
sets in the decision space. Therefore, a many-objective inverse model based evolutionary
optimization is used to formulate meter placement problem in distribution system. The main

contributions are as follows:

I For the first time, the numerical observability method is used to minimize the
number of Pseudo measurements for a given set of real measurements, which are

generated by evolutionary optimization.

ii. An inverse model based many-objective evolutionary optimization is designed
using four objectives as minimization of D-PMUs cost, minimization of IEDs cost,
minimization of root means square errors of voltage magnitude and minimization
of root mean square errors of voltage angle. Multi-label Gaussian process
classification is used to map the objective space and binary decision space in the

inverse model.

iii. The trade-off between D-PMUs and IEDs are considered to formulate the meter
placement problem.

6.2 Problem Formulation:
The many objective meter placement problem is designed using objectives: minimizing

i) cost of D-PMUs (J1) ii) cost of IEDs (J2) and iii) the root mean square error of voltage
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magnitude (J3) and iv) the root mean square error of voltage angle (Js). The objectives are

mathematically represented as follows:

minJ; = YiL1 Cp_pmu,i - Po-pmu,i (6.1)
min J, = Z?:l1 CIED,i-PIED,i (6.2)
minJ; = 23, \/% (30, (VE - T)2) 6.3)
minJ, = 23, \/% (S, (8 — 8)2) (6.4)

Where Cp-pmu, Ciep are the cost of distribution level PMUs and IEDs respectively. The per-
unit cost of D-PMU is considered as 0.3 and IED is considered as 0.6 [74], [103]. Po-pmu, Piep
are the positions in binary values of D-PMUs and IEDs respectively. Whereas, V', &' are true
values and V7, § are estimated values of states. The number of Monte Carlo Scenarios are

denoted by m, the number of nodes and lines are denoted by n, nl.

6.3  Numerical Observability Method:

The numerical observability method is based Gram-Schmidt on orthogonalization approach of
rows of Jacobian [104]. The numerical observability method determines the orthogonal basis
of Jacobian matrix rows. If the number of vectors in the basis is equal to (n-1), then the system
is observable. The Gram-Schmidt process provides the linearly independent vectors V= span
{v1, V2, ...., vn} and the orthogonalization process is using the projections on linearly
independent vectors which gives the projection of linearly independent vector Vi onto the row
hj in the Jacobian matrix. The projection operator is expressed as follows:

p(h) = (h. V)V, (6.5)

The error of each projection is calculated, and based on the maximum error value of projection
the next row is selected from the Jacobean matrix. In distribution system, Gain matrix is used
for calculating the linearly dependent rows as the Gain matrix is symmetric matrix [83]. Then,
the linearly independent vector is determined using the selected row. The error projection is

evaluated as follows:

e = ||b —p)| (6.6)

The stopping criterion is based on the error of projection, if it is less than or equal to 1077, then

the process is terminated. When the linearly independent vectors V consists of (n-1) vectors
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then the system is observable otherwise unobservable. if the system is unobservable for a given
set of measurements, then the additional Pseudo measurements are determined by using
previous linearly independent vectors V using the Gram-Schmidt process until it reaches the
stopping criteria (projection error < 10”'). The power injections are at each node with 50% error
are modeled as Pseudo measurements and Jacobean is formulated with Pseudo measurements
and projection of rows on linearly independent vectors is calculated, and projection errors are
calculated to select the Pseudo measurements. This procedure gives the minimum number of

Pseudo measurements for a given set of real measurements.

6.4 Many-Objective Evolutionary Optimization using Inverse Model:
The proposed method uses model based many-objective evolutionary optimization. The

locations of measurements are represented with binary values, and the objectives are in integer
values. Multi-label Gaussian Process classification [98] generates additional non-dominated
solutions, which improves the diversity of the population. The inverse model is realized by
Gaussian process classification by mapping the objective space to the meter location binary
decision space. Then in the reproduction process, the offspring population is produced from

the inverse model. The detailed algorithm is provided step by step as follows:

Step 1: Initialization: The initial population with meter locations of D-PMUs and IEDs is
generated randomly. The Systematic Sampling Approach is used to create uniformly dispersed

reference points [87].

Step 2: Numerical Observability Method: The power injections at all the nodes are modeled
as Pseudo measurements. The real measurements (D-PMUs and IEDs) along with Pseudo
measurements are supplied to the numerical observability to determine the minimal number of

Pseudo measurements for a given set of real measurements.

Step 3: State Estimation: State estimation is evaluated for a given set of the substation
measurements, virtual measurements, minimum set of Pseudo measurements, and real
measurements. The state estimation is executed for the ‘m’ number of Monte Carlo simulations

for different measurement errors.

Step 4: Partition of Population: The population is divided into K subpopulations using

the minimum acute angle criteria and it expressed as follows:

—

B 5
ke = AT Gminez1 2, K 5 < V¢ (6.7)
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The candidate of population § is added to partition t, when the acute angle between unit S_t) and
reference vector v{ is minimum, where t = 1,2, ..., K. Then non-dominated sorting is applied
on the K subpopulations.
Step 5: Gaussian Process Classification based Inverse model: The multi-label Gaussian
process classification is used to map the integer objective space to binary decision space [29].
The model involves of the estimation step and maximization step. The estimation step estimates
the latent function for a given covariance function where the maximization step updates the
covariance function for the estimated latent function.
Step 6: Reproduction: Samples from the inverse model are used to produce the additional
offspring. The mutation operator is applied then the offspring and old population are combined
to produces the next generation. Then, using the adaptive reference point method, the reference
points are adaptively modified based on the new population to follow the discontinuous Pareto
front [105]. Then the trade-off objective optimal value is selected using the fuzzy min-max
method [88]. The flow chart of the proposed many-objective evolutionary method is given in
fig. 6.1.
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Initialization: population with meter locations of D-PMUs and IEDs is generated
randomly. The uniformly distributed reference points are generated.

1 Pseudo Measurements

Numerical Observability: Selects minimum number of Pseudo
measurements for given set of D-PMUs and IEDs

—

Monte Carlo Simulation

I State Estimation I

A 4

Partition of Population: Divide the population into K subpopulations. Perform
Non dominated sorting on subpopulation, then selection process is applied

Inverse Model: using Multi-label Gaussian classification, generate additional
candidate solutions from estimated conditional probability of decision variables
for the given objective variables

Reproduction: new offspring population is generated by sampling from the
inverse model. Then Mutation is applied to offspring population

:

Adaptive reference point method: adjust the reference point to follow the
discontinuous approximate Pareto front.

|

Combine: Combine old and new population, for the next generation

/[No

topping Criteria 18
satisfied?

using a min-max fuzzy method, The final optimal solution from the trade-off
solutions is obtained

Fig. 6.1: Flow chart of the proposed numerical observability method based meter placement.
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6.5  Simulation and Test Conditions:

Monte Carlo simulations are used to determine the objective values and constraint violations
for different uncertainties of measurements. the Monte Carlo trials are considered as 1000 for
100 different network conditions [22]. The error percentage of different types of measurements

are considered as follows:

Default measurements: Voltage measurement and power flow measurements at slack
bus and first line are considered as default measurements. In active distribution system
at each DG one power flow measurement is considered as the default measurement.

The error is considered as 1%.

Virtual measurements: Zero bus injections are modeled as virtual measurements with

108 as the variance of measurement.

Real Measurement: D-PMUs and IEDs are placed using the proposed method with

the percentage error is 1% and 5%.

Pseudo measurements: All the power injections at each node are modeled as Pseudo
measurements with 50% error. The minimum set of Pseudo measurements are

identified using numerical observability method.

6.6  Results and Discussion:
The proposed method is verified on PG&E 69-bus and Indian Practical 85-bus distribution test

system and tested for 1% and 5% real measurement error accuracy. The effect of renewable
energy sources is considered and modeled as DGs, which produces active power. The details
of distributed generation locations and their base values are given in Table 6.1. These DG

positions were chosen based on the least amount of power loss and voltage deviation [75].

Table 6.1: Distributed generation size and locations

Test System Bus Number DG base value (MW)
PG&E 69-bus 50 0.180
Distribution System 61 0.270
Indian Practical 85-bus 45 0.277
Distribution System 61 0.290

The proposed method is compared with EDA-IPM [75] and NSGA-I11 [75], both methods have
considered PMUs and IEDs, and authors in EDA-IPM considered the cost of PMUs as 1 per
unit and IEDs as 0.6 per unit. The PMU considered is not distribution level PMU (D-PMU).
Therefore, the authors considered the cost of the PMU is 1 per unit. Whereas the proposed

method considered D-PMUs with 0.3 per unit cost and IEDs with the same cost as 0.6 per unit.
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In EDA-IPM and NSGA-II considered only three objectives, not considered the four
objectives. To asses the performance of D-PMU a 1% Total Vector Error (TVE) is considred
as per the IEEE synchrophasor standards (IEEE C37.118.1a-2014). The total vector error is

defined as folows

IXmeasured - XTheoratical

Total Vector Error (TVE) =

XTheoratical

(6.8)

Where X,,eqsureq 1S the measured voltage from the D-PMU after state estimation and
Xrheoraticar 1S the theoratical voltage from load flow. The maximum total vector error for given
D-PMUs are taken as the performace benchmark for given measurement set obtained from the
proposed algorithm.

6.6.1 PG&E 69-bus Distribution System:

The proposed algorithm with numerical observability method and without numerical
observability method is verified on PG&E 69-bus distribution system, the details of distribution
system is given in [92]. The meter placement is evaluated for 1% and 5% of errors in real
measurements. The Pareto fronts of different objectives are shown in figs. 6.2 and 6.3
correspond to the 1% and 5% errors with DG. For 1% error, the proposed algorithm with
numerical observability shows superiority as it improves the accuracy of state estimates as
objective Js(root mean square error of voltage magnitude) and objective Js(root mean square
error of voltage angle) and the number of D-PMUs and IEDs. The proposed method with
numerical observability requires 2 D-PMUs and 3 IEDs and having minimum state estimate
error as Js equals 5.1892e% and Js4 equals 2.9641e% when compared to proposed method
without numerical observability, EDA-IPM, and NSGA-II. Similarly, the same can be
observed with 5% of error case. The results of with DG case are given in Table-6.2. The same
hold with the without DG case for 1% and 5% errors, the Pareto fronts are given in figs. 6.4,

6.5, and results are tabulated in Table 6.3.
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Fig. 6.2: PG&E 69-bus distribution system optimal Pareto-front plots: with 1% error in
real measurements and Pseudo measurements with an accuracy of 50% with DG
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real measurements and Pseudo measurements with an accuracy of 50% with DG.

Table 6.2: PG&E 69-bus distribution system: Optimal location of the D-PMUs and IEDs
under different measurement uncertainty for with DG

Measurem
ent error
(in %)

Algorithm

Proposed
algorithm
with
Numerical
Observability
Proposed
algorithm

Location
of D-
PMUs
(Node
numbers)

17, 29

4, 17, 23,
29

Location
of IEDs
(Line
numbers)

47,50,60

14, 34, 41,
50, 56
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Objective function values

J1
Per
unit

cost of

D-

PMUs

0.6

1.2

J2
Per unit
cost of
IEDs

1.8

Js J4
Root Root mean
mean square

square error of

error of Voltage

Voltage angle
magnitud (inp.u.)
e (inp.u.)

5.1892e- | 2.9641e-06
05

5.9751e- | 3.6186e-06
05

Maximum
TVE

0.001015

0.003012
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without

Numerical
Observability
EDA-IPM [75] | 27,62

NSGA-II [75] | 21,27,34,
49,57

Proposed 41, 55

algorithm

with

Numerical

Observability

Proposed 12, 36, 43,

algorithm 54

without

Numerical

Observability

EDA-IPM [75] | 27,67

NSGA-II [75] | 14,17,36,
44

1,24
1,6,37

3, 18, 25,
32, 48, 58,
64

10,16, 22,
33, 41, 66,
68

1,2,3,8,25,
29,57,65
1,7,9,13,14
,17,31,32,3
9,
47,54,60,6
3
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Fig. 6.4: PG&E 69-bus distribution system optimal Pareto-front plots: with 1% error in

real measurements and Pseudo measurements with an accuracy of 50% without DG.
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Fig. 6.5: PG&E 69-bus distribution system optimal Pareto-front plots: With 5% error in
real measurements and Pseudo measurements with an accuracy of 50% without DG.

Table 6.3: PG&E 69-bus distribution system: Optimal location of the D-PMUs and IEDs
under different measurement uncertainty for without DG.

Measureme | Algorithm Location | Locatio Objective function values Maximum
nt error (in of D- ' n of g Jo Ja TVE
%) PMUs IEDs Perunit | Per Root Root mean
(Node (Line cost of unit mean square
numbers | number | D-PMUs | costof = square error of
) 5) IEDs | error of Voltage
Voltage angle
magnitud (inp.u.)
e (inp.u)
1 Proposed 10, 13 38, 44, 0.6 24 5.813%- | 2.7467e-06 0.001148
algorithm with 61, 65
Numerical
Observability
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Proposed 4, 17, 23, | 14, 34, 1.2 3 6.2604e- | 3.6742e-06 0.001840
algorithm 29 41, 56, 05
without 59
Numerical
Observability
5 Proposed 10, 16, | 38, 44, 15 3 3.2505e- | 1.0601e-06 0.002114
algorithm with | 37,54,56 | 61, 65, 05
Numerical 68
Observability
Proposed 6, 17, 25, | 4,14, 17, 15 3.6 3.5477e- | 2.9895e-06 0.003015
algorithm 50, 53 20, 46, 05
without 51
Numerical

Observability

6.6.2 Indian Practical 85-bus Distribution System:
The proposed method with and without numerical observabilitymethod is verified on Indian

Practical 85-bus distribution system, the details of which can be found in [93]. The results of
DG for 1% and 5% error case Pareto fronts are displayed in figs. 6.5 and 6.6 and the results are
tabulated in Table-6.4. The obtained results show the effectiveness of the method using
numerical observability method, as it produces fewer state estimate errors (Js= 6.2508e™ and
Js = 1.4338e%) and a smaller number of meters required as compared to the proposed method
without numerical observability method, EDA-IPM, and NSGA-I1. Similarly, the same can be
observed with 5% of error case. The without DG case is presented in Table 6.5 and the Pareto

fronts are given in figs. 6.7 and 6.8.
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Fig. 6.6: Indian Practical 85-bus distribution system optimal Pareto-front plots: With 1%
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Fig. 6.7: Indian Practical 85-bus distribution system optimal Pareto-front plots: With 5%
error in real measurements and Pseudo measurements with an accuracy of 50% with DG.

Table 6.4: Indian Practical 85-bus distribution system: Optimal location of the D-PMUs
and IEDs with 1% measurement uncertainty for with DG.

Measurem | Algorithm | Location Location Obijective function values Maximum
ent error of D- | of IEDs B Jo Js J4 TVE
(in %) PMUs (Line Per unit | Per unit Root Root mean
(Node numbers) | cost of cost of mean square
numbers) D-PMUs IEDs square error of
error of Voltage
Voltage angle
magnitud (inp.u.)
e (in
p.u.)
1 Proposed 11,77 18, 75, 82 0.6 1.8 6.2508e- | 1.4338e-06 0.003154
algorithm 05
with
Numerical
Observabil
ity
Proposed 55,73, 77 | 27, 75, 0.9 24 8.0282e- | 5.2922e-06 0.005415
algorithm 79, 82 05
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without
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[75]
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[75]
Proposed
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Numerical
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ity
Proposed
algorithm
without
Numerical
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Fig. 6.8: Indian Practical 85-bus distribution system optimal Pareto-front plots: With 1%
error in real measurements and Pseudo measurements with an accuracy of 50% without DG
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Fig. 6.9: Indian Practical 85-bus distribution system optimal Pareto-front plots: With 5%
error in real measurements and Pseudo measurements with an accuracy of 50% without DG.

Table 6.5: Indian Practical 85-bus distribution system: Optimal location of the D-PMUs
and IEDs under different measurement uncertainty for without DG.

Measureme | Algorithm Location Location Objective function values Maximum
nt error of D- | of IEDs J1 J2 Js J4 TVE
(in %) PMUs (Line Per Per Root Root mean
(Node numbers unit unit mean square
numbers) |) cost of cost square error of
D- of error of Voltage
PMUs IEDs Voltage angle
magnitud (inp.u.)
e (in
p.u.)
1 Proposed 52,71 35, 49, 0.6 2.4 6.1882e- | 3.6390e-06 0.004105
algorithm with 55,79 05
Numerical
Observability
Proposed 14,51,71 32, 49, 0.9 3.0 6.3180e- | 3.2118e-06 0.004817
algorithm 52, 55, 05
without 77
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Numerical
Observability
5 Proposed 24, 44, 74, | 38, 41, 1.2 4.2 3.9395e- | 4.0684e-06 0.005214
algorithm with | 83 54, 60, 05
Numerical 69, 79,
Observability 82
Proposed 24, 32, 39, | 36, 49, 15 4.8 4.0557e- | 4.3857e-06 0.006142
algorithm 74, 83 54, 60, 05
without 69, 74,
Numerical 79, 82
Observability

The obtained results show the proposed method with numerical observability improves the
accuracy of state estimation. This is evident from objectives Jz and J4 when compared with all
other methods. This in turn leads to reducing the number of meters required. The greater
number of solutions crowded together can be found in all the Pareto front plots from fig. 6.2 to
6.9, which is due to the multi-label Gaussian process classification inverse model, which

improved the diversity and search ability of the evolutionary algorithm.

6.7  The Comparision of Proposed Methods
This thesis proposed four multi-objective meter placement methods for distribution system

state estimation. In chapter 3, Decomposition and Local dominace base MOEA with
Binomial Distribution Mante Carlo simulations (DLD-MOEA-BDMC) method is proposed.
In chapter 4 Indicator Based MOEA using Objective Discretization (IB-MOEA-OD) method
is proposed and chapter 5 proposed a Model Based MOEA using Adaptive Reference point
method (MB-MOEA-AR). All the three methods addresses the same objective functions:
minimization of i) cost of measurement devices (J1) ii) the average relative percentage error
(ARPE) of voltage magnitude (J2) and iii) the average relative percentage error (ARPE) of
voltage angle (J3s). Whereas, in this chapter a inverse model based many-objective
evolutionary algorithm is proposed with different objective functions. Therefore, results of

first three proposed methods are summarised as follows:

6.7.1 PG&E 69-bus Distribution System

For PG&E 69-bus distribution system, without DG case the propsed IB-MOEA-OD gives the
better results as compared to others, whereas in contrary in with DG (Type-1, Type-2, and Type
3) cases the proposed MB-MOEA-AR provides better results in most of the cases. The results
without DG case is presented in Table 6.6. DG type-1, DG type-2 and DG type-3 cases are
tabulated in Tables 6.7, 6.8, and 6.9, respectively.
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Table 6.6: PG&E 69-bus distribution system: Summary of different proposed
algorithms: Optimal location of the power flow meters under different metrological errors
for without DG

Metrological Algorithm Location of Power | Number of Objective function values

error (in %) flow meters (Line power Ji Jo Js
numbers) flow Costof | ARPE of voltage ARPE of
meters meters (1 magnitude voltage angle
per unit
device)
1 Proposed 1,5,13,30,54 5 6 0.0014 0.4547
DLD-MOEA-
BDMC
algorithm
(chapter 3)
Proposed IB- | 1, 13,32,43,55 5 6 0.0008 0.2641
MOEA-OD
algorithm
(chapter 4)
Proposed IM- | 7,10, 31, 42 4 5 0.0011 0.3477
MOEA-AR
algorithm
(chapter 5)
5 Proposed 1,9,13, 26, 31, 46, 7 8 0.0023 0.6288
DLD-MOEA- | 60
BDMC
algorithm
(chapter 3)
Proposed IB- | 1, 15, 29, 40, 47, 56 6 7 0.0020 0.3458
MOEA-OD
algorithm
(chapter 4)
Proposed IM- | 10, 15, 29, 42, 46 5 6 0.0020 0.4555
MOEA-AR
algorithm
(chapter 5)
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Table 6.7: PG&E 69-bus distribution system: Summary of different proposed
algorithms: Optimal location of the power flow meters under different metrological errors

with DG Type-1(P)

Metrological | Algorithm Location of | Number of Objective function values
error (in %) Power flow | power flow J1 J2 J3
meters(Line meters
numbers) Cost of meters ARPE of ARPE of
(1 per unit voltage voltage angle
device) magnitude
1 Proposed IB-MOEA-OD | 1, 13, 30, 41, 5 8 0.0011 0.3122
algorithm 56
(chapter 4)
Proposed IM-MOEA- | 14,28, 32, 41, 5 8 0.0009 0.3018
AR algorithm 57
(chapter 5)
5 Proposed IB-MOEA-OD | 1, 14, 32, 42, 6 9 0.0017 0.4698
algorithm 47,55
(chapter 4)
Proposed IM-MOEA- | 9, 14, 28, 29, 6 9 0.0017 0.3187
AR algorithm 44, 47
(chapter 5)

Table 6.8: PG&E 69-bus distribution system: Summary of different proposed
algorithms: Optimal location of the power flow meters with 1% measurement uncertainty
with DG Type-2(P-jQ).

Algorithm Location of | Number Objective function values
Power flow of Ji J2 Js
meters(Line power
numbers) flow Cost of ARPE of ARPE of voltage

meters meters voltage angle
(1 per magnitude
unit
device)

Proposed IB- | 1, 14, 29, 41, 55 5 8 0.0014 0.3800

MOEA-OD

algorithm

(chapter 4)

Proposed 6,9, 28, 30, 42 5 8 0.0008 0.2399

IM-MOEA-

AR

algorithm
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(chapter 5)

Table 6.9: PG&E 69-bus distribution system: Summary of different proposed
algorithms: Optimal location of the power flow meters with 1% measurement uncertainty

with DG Type-3(P+jQ).

Algorithm Location of | Number Objective function values
Power flow of J1 J2 Js
meters(Line power
numbers) flow Cost of ARPE of ARPE of

meters meters voltage voltage
(1 per magnitude angle
unit
device)

Proposed 1, 13, 31, 40, 5 8 0.0012 0.5714

IB-MOEA- | 58

oD

algorithm

(chapter 4)

Proposed 8,32,42,54 4 7 0.0010 0.7257

IM-MOEA-

AR

algorithm

(chapter 5)

6.7.2

Indian Practical 85-bus Distribution System

For Indian Practical 85-bus distribution system, with and without DG cases the propsed MB-

MOEA-AR gives the better results in most of the cases as compared to others. The results

without DG case is presented in Table 6.10. DG type-1, DG type-2 and DG type-3 cases are
tabulated in Tables 6.11, 6.12, and 6.13, respectively.

Table 6.10: Indian Practical 85-bus distribution system: Summary of different proposed
algorithms: Optimal location of the power flow meters under different metrological errors

without DG

Metrological Algorithm

error (in %)

1 Proposed
MOEA-BDMC

algorithm

DLD-

Location of Power | Number of Obijective function values

flow meters (Line | power flow J Jo Js

numbers) meters Cost of ARPE of ARPE of
meters (1 per voltage voltage
unit device) magnitude angle

1,6,11,26,30,63 6 7 0.0337 0.7153
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(chapter 3)

Proposed IB-MOEA-
OD algorithm
(chapter 4)
Proposed IM-
MOEA-AR
algorithm
(chapter 5)
Proposed DLD-
MOEA-BDMC
algorithm

(chapter 3)

Proposed IB-MOEA-
OD algorithm
(chapter 4)
Proposed IM-
MOEA-AR
algorithm

(chapter 5)

Many-Objective Meter Placement based on

Numerical Observability Method

1,10,17, 24,30,57

8, 17, 24, 33, 56, 59

1,7, 26, 32, 39, 45,
57,79, 84

1, 24,28,33,59,71

9, 16, 17, 24, 32, 56,
63

10

0.0281

0.0278

0.0492

0.0451

0.0351

0.6552

0.6894

1.4288

0.9845

0.9056

Table 6.11: Indian Practical 85-bus distribution system: Summary of different proposed
algorithms: Optimal location of the power flow meters different measurement uncertainty with
DG Type-1(P)

Metrological Algorithm Position of | Number Objective function values
error PMs (Line of Ji Jo Js
(in %) numbers) power | Costof | ARPEof | ARPE of
flow | meters(1 = voltage voltage
meters per unit | magnitude angle
device)
1 Proposed IB- | 1,18, 24, 56, 62 5 8 0.0265 0.6543
MOEA-OD
algorithm
(chapter 4)
Proposed IM- | 7,10, 29, 47, 56 5 8 0.0263 0.6144
MOEA-AR
algorithm
(chapter 5)
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5 Proposed IB- | 1, 17,24, 33,57,
MOEA-OD 63
algorithm
(chapter 4)
Proposed IM- | 9,16, 18, 24,31,
MOEA-AR 57
algorithm
(chapter 5)

Many-Objective Meter Placement based on
Numerical Observability Method

6 9 0.0326 0.9494

9 0.0268 0.8289

Table 6.12: Indian Practical 85-bus distribution system: Summary of different proposed

algorithms: Optimal location of the power flow
DG Type-2(P-jQ).

meters with 1% measurement uncertainty for

Algorithm Position of PMs | Number Objective function values
(Line numbers) of power g Jo Js
flow Costof | ARPEof | ARPE of
meters meters (1 voltage voltage

per unit | magnitude angle
device)

Proposed IB- | 1,17, 25, 31, 57, 63 6 9 0.0270 0.8380

MOEA-OD

algorithm

(chapter 4)

Proposed IM- | 7,8, 26, 57, 60 5 8 0.0320 0.9213

MOEA-AR

algorithm

(chapter 5)

Table 6.13: Indian Practical 85-bus distribution system: Summary of different proposed

algorithms: Optimal location of the power flow
DG Type-3(P+jQ).

meters with 1% measurement uncertainty for

Algorithm Position of PMs | Number Objective function values
(Line numbers) of power Ji Jo J1
flow Cost of ARPE of Cost of
meters meters (1 voltage meters (1
per unit magnitude | per unit
device) device)
Proposed IB- | 1,16, 17, 30, 59, 66 6 9 0.0436 1.1079
MOEA-OD
algorithm
(chapter 4)
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Proposed IM- | 8,15, 16,17, 31, 59 6 9 0.0404 1.2104
MOEA-AR

algorithm

(chapter 5)

6.8 Summary
A many objective meter placement using numerical observability method is proposed for

distribution system state estimation. In general, all the power injections are modeled as Pseudo
measurements. A fixed number of Pseudo measurements deteriorates the accuracy of state
estimation. Therefore, the minimum number of Pseudo measurements is determined using the
numerical observability method for a given combination of real measurements. This approach
improves the performance of meter placement by decreasing the state estimation errors and
decreases the number of real measurements required. An inverse model-based many-objective
evolutionary optimization is used to formulate meter placement, which maps the integer
objective space to discrete decision space and produces combination of meter locations based
on the inverse model, which is realized using multi-label Gaussian process classification. This
improves the search ability of evolutionary optimization and provides diverse solutions in
population. The effectiveness of the proposed method is tested for the active and passive

distribution networks and with different measurement uncertainties.
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7.1  General
In this thesis, an optimal meter placement of meters such as power flow meters, distribution

level Phasor measurement units (D-PMUs) and intelligent electronic devices (IEDs) for active
distribution system state estimation has been investigated using new multi-objective
evolutionary algorithms. This thesis explores the new multi-objective frameworks such as
decomposition based multi-objective evolutionary algorithms (MOEAS), indicator based
MOEAs and model based MOEAs and their application in meter placement problem.
Furthermore, optimal allocation of meters are obtained for passive and active distribution
networks under various operating scenarios. This chapter presents the important findings

proposed in this thesis and discusses future extensions of the proposed research work.

7.2  Summary of Important Findings:

This research work inspects the multi-objective meter placement problem and addresses the
issues with combinatorial optimization, discrete and discontinuous Pareto fronts, population
initialization using Binomial distribution-based Monte Carlo trails, search ability and diversity
issues as well as reducing the Pseudo measurements using numerical observability method are
addressed. The following conclusions are arrived from the research work carried out and

reported in previous chapters of this thesis.

An optimal meter placement in distribution system state estimation using a new hybrid
multi-objective evolutionary algorithm based on decomposition and local dominance is
proposed.

e Minimizing the cost of measurement devices, average relative percentage error of
voltage magnitude and average relative percentage error of voltage angle are the three
objectives, that are considered to model the multi-objective meter placement problem.

e The hybridization of decomposition and dominance techniques improved the
convergence and diversity of solutions in the Pareto front.

e As the meter placement is a combinatorial optimization problem, the population of the
proposed algorithm is initialized using the Binomial distribution-based Monte Carlo
method, which improved the diversity of Pareto front. Diversity improvement is the
main goal of the Binomial distribution-based Monte Carlo method and also improves

the convergence.
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The results of the proposed method are compared with multi-objective evolutionary
algorithm based on decomposition (MOEA/D), Non-dominated sorting genetic
algorithm-I1 (NSGA-I1I) and with multi-objective hybrid particle swarm optimization-
krill herd algorithm (PSO-KH), multi-objective hybrid estimation of distribution
algorithm- interior point method (EDA-IPM) and demonstrated on PG&E 69-bus

distribution system and Indian Practical 85-bus distribution system.

A new indicator based MOEA using objective discretization method is proposed to find the

optimal locations of power flow meter in active distribution system in presence of various

types of DGs.

As the meter placement problem is a combinatorial nature, the objective space is
discrete. Therefore, to enhance the performance of the proposed method, objective
discretization method was adopted, with different granularity along the objectives, so
that it enhances the search ability of MOEA and decreases the non-dominated solutions
in population.

MOEA is an indicator-based method with inverted generational distance indictor,
including non-contributing solution detection (IGD-NS), which measures diversity and
convergence of solution sets and guides the evolution process. The indicator IGD-NS
can reduce the non-dominated solutions with no contribution to the indicator value.
As the performance of MOEA depends on the approximate Pareto front shape, the
proposed method employed a reference point method, which adaptively updates the
reference points to follow the Pareto front shape.

Moreover, the proposed method improves the performance characteristics of MOEA,
enhances search ability, provides uniformly distributed solutions on Pareto front, and
follow the irregular Pareto front.

The versatility of the proposed method is demonstrated on PG&E 69-bus distribution
system and on Indian Practical 85-bus distribution system. The results obtained are
demonstrate the superiority of the proposed method over NSGA-II and other methods
such as with multi-objective hybrid PSO Krill herd algorithm (PSO-KH), multi-
objective hybrid estimation of distribution algorithm- interior point method (EDA-
IPM), dynamic programming (DP) and ordinal optimization algorithm (OOA).

A new inverse model based multi-objective evolutionary algorithm is proposed for meter

placement in active distribution system state estimation.
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Inverse model maps the candidate solution in Pareto front from objective space to
decision space. The decision space is a binary value string, which represents the meter
locations and objective values are in integer domain. To map the binary space to integer
domain, the inverse model is realized by multi-label Gaussian classification.

The inverse model is used as reproduction operator to generate additional candidate
solutions from estimated distribution of conditional probability. The main benefit of
inverse model is to generate samples that are directly belong in desired objective space
and improved search efficiency of the evolutionary algorithm.

As the meter placement problem is combinatorial optimization, the Pareto front is
discontinuous. Therefore, the reference points are adjusted using adaptive reference
point method, so that the reference points follow shape of the approximate Pareto front,
which improves the performance of the proposed algorithm.

The meter placement in an active distribution system is modelled as multi-objective
problem of conflicting objectives such as the accuracy of state estimation and the cost

of the meter configuration to achieve the optimal solution.

iv. A many objective meter placement using numerical observability is proposed for an active

distribution system.

In general, the power injections are modelled as Pseudo measurements. A fixed number
of Pseudo measurements deteriorates the accuracy of state estimation. Therefore, The
minimum number of Pseudo measurements is determined using the numerical
observability for a given combination of real measurements. This approach improves
the performance of meter placement by decreasing the state estimation errors and
decreases the number of real measurements required.

An inverse model-based many-objective evolutionary optimization is used to formulate
meter placement problem, which maps the integer objective space to discrete decision
space and produces combination meter locations based on the model realized using
multi-label Gaussian process classification. This improves the search ability of
evolutionary optimization and provides diverse solutions in population.

The meter placement problem is designed as many-objective evolutionary optimization
with four objectives as i) cost of D-PMUs, ii) cost of IEDs, iii) root mean square error

of voltage magnitude, iv) and root mean square error of voltage angle.
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7.3

The impact of distributed generation, as well as various real measurement uncertainties,
are taken into account in order to validate the proposed method, which is tested using

the PG&E 69-bus and Indian Practical 85-bus distribution test systems.
Scope of the Future Work

The research work in future can be extended on the following aspects:

The meter placement can be extended for formulating robust meter placement to handle
meter malfunctions and measurement tampering aspects to enhance the security in
cyber-physical systems.

Big data, data analytics techniques and machine learning methods can be utilised to
model the multi-objective framework design to adopt the problem specific and
computationally complex problems like meter placement problem.

The meter placement can be extended to multi-level decentralized distribution system
state estimation study in smart grid environment. Since only a limited number of real-
time measurements are present at primary and secondary distribution network and
distributed generation sites, load estimates at unmeasured buses remote from substation
need to provide saticifactory state estimation results. The proposed algorithm can be
applied in either grid connected mode or island mode and can effectively identify the
breakerstatus errors at substations and feeders.

Further, the meter placement problem can take into account the system contingencies
such as phasor failures, the PMU losses and the branch outage under the influence of

distributed generation.
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Appendix-A

PG&E 69-bus distribution system data
Number of buses: 69
Number of lines: 68
Bus voltage: 12.66kV
Total active power load: 3.80MW

Total reactive power load: 2.69 MW
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Fig. A.1: Single-line diagram of PG&E 69-bus system

Table A.1: Line data of PG&E 69-bus distribution system

Line No. From To R X

(in pu) (in pu)
1 1 2 3.12E-06 7.49E-06
2 2 3 3.12E-06 7.49E-06
3 3 4 9.36E-06 2.25E-05
4 4 5 0.00016 0.00018
5 5 6 0.00228 0.00116
6 6 7 0.00238 0.00121
7 7 8 0.00058 0.00029
8 8 9 0.00031 0.00016
9 9 10 0.00511 0.00169
10 10 11 0.00117 0.00039
11 11 12 0.00444 0.00147
12 12 13 0.00643 0.00212
13 13 14 0.00651 0.00215
14 14 15 0.0066 0.00218
15 15 16 0.00123 0.00041
16 16 17 0.00234 0.00077
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17 17 18 2.93E-05 9.98E-06
18 18 19 0.00204 0.00068
19 19 20 0.00131 0.00043
20 20 21 0.00213 0.0007

21 21 22 8.73E-05 2.87E-05
22 22 23 0.00099 0.00033
23 23 24 0.00216 0.00071
24 24 25 0.00467 0.00154
25 25 26 0.00193 0.00064
26 26 27 0.00108 0.00036
27 3 28 2.75E-05 6.74E-05
28 28 29 0.0004 0.00098
29 29 30 0.00248 0.00082
30 30 31 0.00044 0.00015
31 31 32 0.00219 0.00072
32 32 33 0.00524 0.00176
33 33 34 0.01066 0.00352
34 34 35 0.0092 0.00304
35 3 36 2.75E-05 6.74E-05
36 36 37 0.0004 0.00098
37 37 38 0.00066 0.00077
38 38 39 0.00019 0.00022
39 39 40 1.12E-05 1.31E-05
40 40 41 0.00454 0.00531
41 41 42 0.00193 0.00226
42 42 43 0.00026 0.0003

43 43 44 5.74E-05 7.24E-05
44 44 45 0.00068 0.00086
45 45 46 5.62E-06 7.49E-06
46 4 47 2.12E-05 5.24E-05
47 47 48 0.00053 0.0013

48 48 49 0.00181 0.00442
49 49 50 0.00051 0.00126
50 8 51 0.00058 0.0003

51 51 52 0.00207 0.0007

52 9 53 0.00109 0.00055
53 53 54 0.00127 0.00065
54 54 55 0.00177 0.0009

55 55 56 0.00176 0.00089
56 56 57 0.00992 0.00333
57 57 58 0.00489 0.00164
58 58 59 0.0019 0.00063
59 59 60 0.00241 0.00073
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60 60 61 0.00317 0.00161
61 61 62 0.00061 0.00031
62 62 63 0.00091 0.00046
63 63 64 0.00443 0.00226
64 64 65 0.0065 0.00331
65 11 66 0.00126 0.00038
66 66 67 2.93E-05 8.73E-06
67 12 68 0.00461 0.00153
68 68 69 2.93E-05 9.98E-06

Table A.2: Load data of PG&E 69-bus distribution system

Bus P Q
No. (inpu) | (in pu)
1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0.0026 | 0.0022
7 0.0404 0.03
8 0.075 0.054
9 0.03 0.022
10 0.028 0.019
11 0.145 0.104
12 0.145 0.104
13 0.008 0.0055
14 0.008 0.0055
15 0 0

16 0.0455| 0.03
17 0.06 0.035
18 0.06 0.035
19 0 0

20 0.001 0.0006
21 0.114 0.081
22 0.0053 | 0.0035
23 0 0

24 0.028 0.02
25 0 0

26 0.014 0.01
27 0.014 0.01
28 0.026 0.0186
29 0.026 0.0186
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30 0 0

31 0 0

32 0 0

33 0.014 0.01
34 0.0195| 0.014
35 0.006 0.004
36 0.026 0.0186
37 0.026 0.0186
38 0 0

39 0.024 0.017
40 0.024 0.017
41 0.0012 | 0.001
42 0 0

43 0.006 0.0043
44 0 0

45 0.0392 | 0.0263
46 0.0392 | 0.0263
47 0 0

48 0.079 0.0564
49 0.3847 | 0.2745
50 0.3847 | 0.2745
51 0.0405 | 0.0283
52 0.0036 | 0.0027
53 0.0043 | 0.0035
54 0.0264 | 0.019
55 0.024 0.0172
56 0 0

57 0 0

58 0 0

59 0.1 0.072
60 0 0

61 1.244 0.888
62 0.032 0.023
63 0 0

64 0.227 0.162
65 0.059 0.042
66 0.018 0.013
67 0.018 0.013
68 0.028 0.02
69 0.028 0.02
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Appendix-B

Indian Practical 85-bus distribution system data

Number of buses: 85

Number of lines: 84

Bus voltage: 11kV

Total active power load: 2.5708MW
Total reactive power load: 2.6218 MW
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Fig. B.1: Single-line diagram of Indian Practical 85-bus distribution system

Table B.1: Line data of Indian Practical 85-bus distribution system

Line From To R X
No. (inpu) | (inpu)
1 1 2 0.0009 | 0.0006
2 2 3 0.0013 | 0.0009
3 3 4 0.0018 | 0.0012
4 4 5 0.0009 | 0.0006
5 5 6 0.0036 | 0.0025
6 6 7 0.0022 | 0.0015
7 7 8 0.0099 | 0.0068
8 8 9 0.0009 | 0.0006
9 9 10 0.0049 | 0.0034
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10 10 11 0.0045 | 0.0031
11 11 12 0.0045 | 0.0031
12 12 13 0.0049 | 0.0034
13 13 14 0.0022 | 0.0015
14 14 15 0.0027 | 0.0018
15 2 16 0.006 | 0.0025
16 3 17 0.0038 | 0.0016
17 5 18 0.0068 | 0.0028
18 18 19 0.0053 | 0.0022
19 19 20 0.0038 | 0.0016
20 20 21 0.0068 | 0.0028
21 21 22 0.0128 | 0.0053
22 19 23 0.0015 | 0.0006
23 7 24 0.0075 | 0.0031
24 8 25 0.0038 | 0.0016
25 25 26 0.003 0.0012
26 26 27 0.0045 | 0.0019
27 27 28 0.0023 | 0.0009
28 28 29 0.0045 | 0.0019
29 29 30 0.0045 | 0.0019
30 30 31 0.0023 | 0.0009
31 31 32 0.0015 | 0.0006
32 32 33 0.0015 | 0.0006
33 33 34 0.0068 | 0.0028
34 34 35 0.0053 | 0.0022
35 35 36 0.0015 | 0.0006
36 26 37 0.003 0.0012
37 27 38 0.0083 | 0.0034
38 29 39 0.0045 | 0.0019
39 32 40 0.0038 | 0.0016
40 40 41 0.0083 | 0.0034
41 41 42 0.0023 | 0.0009
42 41 43 0.0038 | 0.0016
43 34 44 0.0083 | 0.0034
44 44 45 0.0075 | 0.0031
45 45 46 0.0075 | 0.0031
46 46 47 0.0045 | 0.0019
47 35 48 0.0053 | 0.0022
48 48 49 0.0015 | 0.0006
49 49 50 0.003 0.0012
50 50 51 0.0038 | 0.0016
51 48 52 0.0113 | 0.0047
52 52 53 0.0038 | 0.0016
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53 53 54 0.0045 | 0.0019
54 52 55 0.0045 | 0.0019
55 49 56 0.0045 | 0.0019
56 9 57 0.0023 | 0.0009
57 57 58 0.0068 | 0.0028
58 58 59 0.0015 | 0.0006
59 58 60 0.0045 | 0.0019
60 60 61 0.006 0.0025
61 61 62 0.0083 | 0.0034
62 60 63 0.0015 | 0.0006
63 63 64 0.006 0.0025
64 64 65 0.0015 | 0.0006
65 65 66 0.0015 | 0.0006
66 64 67 0.0038 | 0.0016
67 67 68 0.0075 | 0.0031
68 68 69 0.009 0.0037
69 69 70 0.0038 | 0.0016
70 70 71 0.0045 | 0.0019
71 67 72 0.0015 | 0.0006
72 68 73 0.0098 | 0.0041
73 73 74 0.0023 | 0.0009
74 73 75 0.0083 | 0.0034
75 70 76 0.0045 | 0.0019
76 65 77 0.0008 | 0.0003
77 10 78 0.0053 | 0.0022
78 67 79 0.0045 | 0.0019
79 12 80 0.006 0.0025
80 80 81 0.003 0.0012
81 81 82 0.0008 | 0.0003
82 81 83 0.009 0.0037
83 83 84 0.0083 | 0.0034
84 13 85 0.0068 | 0.0028

Table B.2: Load data of Indian Practical 85-bus distribution system

Bus P Q
No. (in pu) (in pu)
1 0 0
2 0 0
3 0 0
4 0.056 0.0571

5 0 0
6 0.0353 0.036
7 0 0
8 0.0353 0.036
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9 0 0

10 0 0

11 0.056 0.0571
12 0 0

13 0 0

14 0.0353 0.036
15 0.0353 0.036
16 0.0353 0.036
17 0.112 0.1143
18 0.056 0.0571
19 0.056 0.0571
20 0.0353 0.036
21 0.0353 0.036
22 0.0353 0.036
23 0.056 0.0571
24 0.0353 0.036
25 0.0353 0.036
26 0.056 0.0571
27 0 0

28 0.056 0.0571
29 0 0

30 0.0353 0.036
31 0.0353 0.036
32 0 0

33 0.014 0.0143
34 0 0

35 0 0

36 0.0353 0.036
37 0.056 0.0571
38 0.056 0.0571
39 0.056 0.0571
40 0.0353 0.036
41 0 0

42 0.0353 0.036
43 0.0353 0.036
44 0.0353 0.036
45 0.0353 0.036
46 0.0353 0.036
47 0.014 0.0143
48 0 0

49 0 0

50 0.0363 0.037
51 0.056 0.0571




52 0 0

53 0.0353 0.036
54 0.056 0.0571
55 0.056 0.0571
56 0.014 0.0143
57 0.056 0.0571
58 0 0

59 0.056 0.0571
60 0 0

61 0.112 0.1143
62 0.056 0.0571
63 0.014 0.0143
64 0 0

65 0 0

66 0.056 0.0571
67 0 0

68 0 0

69 0.056 0.0571
70 0 0

71 0.0353 0.036
72 0.056 0.0571
73 0 0

74 0.056 0.0571
75 0.0353 0.036
76 0.056 0.0571
77 0.014 0.0143
78 0.056 0.0571
79 0.0353 0.036
80 0.056 0.0571
81 0 0

82 0.056 0.0571
83 0.0353 0.036
84 0.014 0.0143
85 0.0353 0.036
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