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ABSTRACT 

The penetration of renewable energy sources into distribution system has been increasing due 

to environmental concerns. Because of the uncertainty and unpredictability of renewable 

energy sources, distribution system operation has become complex and dynamic. Therefore, 

monitoring and control of the distribution system became necessary for it to operate reliably 

and effectively. But, monitoring of distribution system became difficult with limited metering 

infrastructure. As a result, the additional meters must be installed optimally and cost-

effectively. In practical planning studies, trade-off solutions of multiple objectives can assist 

the operator to make a better decision in meter allocation in distribution system. Therefore, the 

meter placement problem is designed as a multi-objective optimization problem. Thus, the 

overall objective of the thesis is to provide optimal meter placement using new multi-objective 

evolutionary algorithms for improving the performance and accuracy of distribution system 

state estimation as well as monitoring and controlling the active distribution system. 

There are many multi-objective optimization models are proposed in the literature, as 

all different types of multi-objective problems cannot be solved by a single optimization 

method. The multi-objective evolutionary algorithms (MOEAs) are classified into four 

categories: i) Pareto dominance based ii) decomposition based iii) indicator based and iv) 

model based MOEAs. Therefore, in this thesis an attempt has been made to compute an optimal 

locations of meters using different types of hybrid multi-objective evolutionary algorithms. 

The contributions of this thesis are as follows: 

• A new hybrid multi-objective evolutionary optimization algorithm based on 

decomposition and local dominance method is proposed for meter placement in 

distribution system state estimation. The meter placement is designed as a trade-off 

between three objectives, which are minimizing the cost of the meters, average relative 

percentage error of voltage magnitude, and voltage angle. As the meter placement 

problem is a combinatorial optimization, the Binomial distribution-based Monte Carlo 

method is utilized to initialize the population, which aims to improve the diversity, as 

a consequence it improves the convergence.  

• A new indicator-based multi-objective evolutionary algorithm (MOEA) using the 

objective discretization method is proposed for meter placement in an active 

distribution system. As the meter placement problem is a combinatorial optimization, a 

combination of measurement sets produces a discrete objective space. Therefore, the 
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objective discretization method has been adopted to improve the performance of 

MOEA. As the performance of MOEA mostly depends on the Pareto front shape. 

Therefore, the proposed method employs an adaptive reference point approach to 

follow the shape of the Pareto front.  

• A new inverse model-based multi-objective evolutionary algorithm is proposed for 

meter placement in active distribution system state estimation. The inverse model maps 

the non-dominated solution from objective space to decision space and is realized using 

multi-label Gaussian classification. The inverse model is used as a reproduction 

operator to generate additional candidate solutions from the estimated conditional 

probability of decision variables for given solutions. The additional solutions are 

generated by sampling from the inverse model, which improves the search efficiency 

and diversity of Pareto front solutions.  

• The last contribution of the thesis is, a many-objective evolutionary optimization is 

proposed for meter placement in an active distribution system based on numerical 

observability. The addition of Pseudo measurements improves the convergence of state 

estimation and ensures the observability of the network. Whereas, the huge errors 

associated with Pseudo measurements deteriorate the performance of state estimation. 

For the first time in the meter placement problem, a numerical observability-based 

meter placement problem is proposed, which is used to select the minimum number of 

Pseudo measurements to ensure the observability and to improve the accuracy of the 

state estimation for a given set of real measurement combinations. The meter placement 

problem is designed as many-objective evolutionary optimization with four objectives 

as i) cost of distribution level Phasor measurement units (D-PMUs), ii) cost of 

intelligent electronic devices (IEDs), iii) root mean square error of voltage magnitude, 

and iv) root mean square error of voltage angle.  
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Chapter 1  
 

Introduction 

1.1 Distribution System Overview 

Day by day the electrical load demand is increasing, and to deliver reliable services to the 

increasing power consumers the new technologies are adopted in the power system. The 

deregulation of the power system was segregated into operation sectors of generation, 

transmission, and distribution. The deregulation introduced a competitive environment among 

different segments of the power system to provide customer-centric services. The adoption of 

new communication and information technologies leads to smart and intelligent grids. Among 

the three sectors of power system, distribution system has been embracing many technical and 

operational changes and also posing many challenges to the operators and researchers. Mainly, 

in recent years the integration of distributed generation (DG) is increased, which provided new 

opportunities to build energy markets with the active participation of system operators and 

prosumers, who are both producing the electrical energy and consuming power from the grid. 

These changes affected the operation of distribution system at a whole new level.  

The Renewable sources, mainly wind and photovoltaic power penetration have 

increased into the system due to the environmental aspects to reduce the carbon emission from 

conventional generation. Moreover, the intermittent and unpredictable nature of renewable 

energy sources poses many challenges in distribution system. Previously distribution network 

is a passive network with loads, but with the introduction of DGs, distribution system become 

an active network. Previously, the power flow is from upstream (substation) to the downstream 

(loads), but with introducing the DGs, power may also flow from downstream to upstream. 

This causes the bi-directional power flow between loads and DGs, which makes the network 

operation more complex. When the power flows from load ends to upstream, cause voltage 

profile increases the fault current rating decrease. These changes were made to focus on a 

different control and operational functions such as voltage profile control, new protection 

schemes, stability of the distribution system, demand-side management, etc. Moreover, the 

intermittent, and unpredictable nature of renewable generation made network operation more 

dynamic. These reasons made to necessitate the enhancement of real-time monitoring and 

control of distribution system.  



Chapter 1  Introduction 

 

3 
 

The monitoring and control of the network are usually managed by the energy 

management system, which works on top of the Supervisory Control and Data Acquisition 

(SCADA) system. SCADA gives the real-time status of the network by providing the 

measurement data such as bus voltage, line flows, the status of tie-line switches, circuit 

breakers. The data provided by SCADA may not be reliable as the measurement data comes 

with errors and telemetry, communication failures add noise to the data. This data is provided 

to the control actions and applications such as voltage profile control, reconfiguration, optimal 

power flow application, security analysis, and so on. For efficient operation and control, the 

input data is required to be more reliable as all the controls actions and functions depend on 

the data accuracy. Therefore, the data provided by the SCADA need to be filtered from the 

errors to get reliable data. State estimation mitigates the errors by filtering raw data from 

SCADA and providing the state variables. Therefore, state estimation plays a significant 

function as the operation and control actions depend on its estimation results.  

1.2 State Estimation 

State estimation provides the status of the network in terms of state variables. Generally, 

state estimation has typical functionalities as follows: 

1. Topology Processing: Topological processing updates the network connectivity 

from the data obtained from the SCADA system such as status information of circuit 

breakers, tie line switches. It provides the online network diagram. 

2. Observability Analysis: Observability analysis determines whether the state 

estimation solution is obtainable with the given set of measurements or not. When 

the network is unobservable it also provides the observable islands. Observability 

depends on the distribution of measurements in the network. If the network is 

unobservable with a given measurement set, using observability analysis, additional 

Pseudo measurements are added to the measurement set to make the network 

observable.  

3. State Estimation: State estimation provides an estimation of state variables using 

the topology information and measurement data. After state estimation, the state 

variables are supplied for various control actions and functions of energy 

management systems.  
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4. Bad Data Detection and Identification: Gross errors in the measurement set are 

detected, identified using the bad data process, and identified measurements are 

eliminated from the measurement set.  

A typical power system state estimation functional diagram is presented in fig. 1.1. The four 

functionalities are an integral part of the state estimation, and it repeatedly executes time to 

time to give the real-time state of the system.  

 

Fig. 1.1: State estimation typical functional diagram. 



Chapter 1  Introduction 

5 
 

The measurements are collected from monitoring devices and managed by the SCADA 

system. The measurement devices at the substation monitor the typical electrical quantities like 

voltage, current, and power, etc., and the measured data is collected by Remote Terminal Units 

(RTUs). The different substation data is collected by corresponding RTUs and communicates 

the data to the SCADA system by different means of communication technologies. The 

Distribution Management System (DMS) will have different control and functionalities to 

operate the distribution system on top of the SCADA system. The data from the SCADA is 

processed by state estimation then the output state variables are fed to different DMS 

controllers like voltage regulation, automatic generation control, and fed to functions like 

optimal power flow, contingency analysis, etc. The functional diagram of DMS/SCADA is 

shown in fig. 1.2. 

 

Fig. 1.2: Functional diagram of SCADA/DMS. 
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Many researchers are proposed different state estimation methods to achieve accurate 

state estimation. The state estimation function is widely used in the transmission system to 

estimate the state of the system.  An in-depth review of transmission system state estimation is 

presented in [1]-[3]. Generally, the state estimation problem is formulated using the weighted 

least square (WLS) method. As the WLS method is susceptive to bad data, alternative to WLS, 

many mathematical models are proposed to formulate the state estimation to address the bad 

data issue [4]. The least Median of Squares (LMS), Least Trimmed Squares (LTS) methods 

can handle outliers in measurement data [5] and the Least Absolute Value (LAV) estimator can 

automatically reject the bad data [6]. However, the WLS method is the widely used approach 

to formulate state estimation. 

1.3 Weighted Least Square (WLS) based State Estimation 

The Weighted Least Square method minimizes a weighted sum of squares of state variable 

errors. For a given set of measurements, the measurement model is represented with a 

measurement function associated with noise. The measurement model is formulated as 

follows: 

𝑍 = ℎ(𝑥) + 𝑒                                                              (1.1) 

Where Z is mx1 size matrix and denotes the measurements from the meters, ℎ(𝑥) is mxn size 

matrix and represents the measurement function, 𝑥 is a nx1 size matrix and denotes set of state 

variables, m is the number of measurements, n is the number of state variables and 𝑒 is the 

noise associated with the measurements. Different types of measurements are obtained from 

the field such as voltage, current, power injection at nodes, and power flows, these 

measurements set is represented by Z, which is provided as input to the state estimation. The 

measurements are associated with errors, which are due to ageing of meters, communication 

failures, device malfunction, and so on. Therefore, the measurements are modelled as functions 

of state variables ℎ(𝑥), added with errors ‘e’. The error characteristics follows the normal 

distribution. Therefore, the measurements are modelled using measurement mean and meter 

variance parameters to represent the errors in measurements.   

The errors are scalarized with corresponding measurement variance. Each meter has a 

specific variance (σ2) due to the manufacturing differences and other reasons. The state 

estimation problem is formulated using the least squares method, which minimizes the sum of 

squares of errors. The objective function 𝐽(𝑥) of WLS optimization is represented as follows: 
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𝐽(𝑥) = [𝑒]𝑇[𝑊][𝑒]                                                             (1.2) 

Where, W is the weight matrix, weight is formulated by taking the reciprocal of variances of 

each measurement, and the weight is added to the diagonal of the weight matrix corresponding 

to each measurement.  

The error is unknown, and it is replaced in (1.2) using (1.1), which is in the form as 

follows:  

𝐽(𝑥) = [𝑍 − ℎ(𝑥)]𝑇[𝑊][𝑍 − ℎ(𝑥)]                                       (1.3) 

The above nonlinear objective function is solved using the iterative Newton method, which 

gives the solution as follows: 

∆𝑥𝑖 = (𝐺(𝑥))−1[(𝐻(𝑥𝑖))
𝑇[𝑊]−1][𝑍 − ℎ(𝑥)]                           (1.4) 

𝐺(𝑥) = (𝐻(𝑥))
𝑇
[𝑊]−1𝐻(𝑥)                                          (1.5) 

Where, 𝐻(𝑥) is the Jacobian matrix, 𝐺(𝑥) denotes the gain matrix and ‘i’ is the iteration count. 

The Jacobian matrix 𝐻(𝑥) is formulated by differentiating measurements with respect to state 

variables. The solutions are iteratively updated as follows: 

𝑥𝑖+1 = 𝑥𝑖 + ∆𝑥𝑖                                                  (1.6) 

 The state estimation is converged when the change in state variables (∆𝑥) is smaller 

than a specified threshold (ϵ).    

1.4 Differences between Distribution System and Transmission System  

The distribution system differs in many ways from the transmission system. Both have different 

characteristics due to the following aspects: 

1. X/R Ratio: Distribution system has a low X/R ratio as compared to the transmission 

system. The feeders in distribution system have a short length as loads are distributed 

around the substations, whereas the transmission system has long length lines as it 

connects the generation and load centers. The short feeders have less reactance as 

compared to the resistance and lead to a low X/R ratio.  

2. Network Topology: Transmission system is a connected network with loops, whereas 

distribution system is a radial and weakly meshed network.  
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3. Unbalanced Network: Transmission system is a balanced three phase network and it 

is balanced using transposition of transmission lines and with aggregated loads, 

whereas distribution system is mostly an unbalanced system due to distributed loads on 

the network.  

4. Load Distribution: Distribution system has distributed loads as the substations are 

near the load centers. The transmission system connects long distances between 

generation and load centers; therefore, the connected loads are aggregated on 

transmission system. 

5. Size of Network: Distribution system has a large number of loads spread in a small 

area compared to transmission system. Therefore, the number of nodes in distribution 

system is more compared to transmission system. 

6. Metering: As distribution system is a passive network, very few meters are sufficient 

to operate the network eventhough having a large number of nodes. Therefore,  

substations are installed with limited number of meters.  

   The transmission system and distribution system are different in characteristics; therefore, 

the transmission system state estimation algorithms are not directly applicable to the 

distribution system. Distribution system state estimation requires a large data handling 

capability due to a large number of nodes in the distribution system and requires it to be 

computationally efficient to handle the large data processing. Moreover, the state estimation 

accuracy is affected by an unbalanced phase network and load distribution, which introduces 

the nonuniform measurement distribution [7]. The large size of the network and the limited 

number of meters leads to the unobservability of the network. Therefore, Pseudo measurements 

are added to obtain the observability of the network. Whereas Pseudo measurements are 

generated from the historical load profiles, therefore, large errors are introduced in Pseudo 

measurements. Even though Pseudo measurements improve the redundancy and observability, 

the low accuracy of Pseudo measurements degrades the performance of state estimation. 

Therefore, the above reasons made to introduce specific algorithms for distribution system state 

estimation (DSSE) to handle the need for distribution system.  

 Due to the difference in basic characteristics of transmission and distribution system, 

DSSE formulation differs from conventional state estimation. The measurement function ℎ(𝑥) 

modelling in DSSE, is mainly deviates from the transmission system state estimation. Based 

on the choice of state variables, measurements and representation of phases in the power flow 
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equation, the measurement function can have different forms. Based on the choice of state 

variables and formulation of measurement function the DSSE can be formulated as i) Voltage-

based DSSE and ii) Branch current-based DSSE. 

• Voltage based DSSE: In general, the voltage magnitude and voltage angle are 

considered state variables in transmission system state estimation. Similarly, the 

conventional state variables are considered in many methods to formulate the 

DSSE [8]- [11]. 

• Branch Current based DSSE: Branch current magnitude and current angle are 

used as state variables to formulate the Branch Current based DSSE (BC-

DSSE). The BC-DSSE is widely used in distribution system as it provides better 

results compared to Voltage-based DSSE [12]-[17].   

1.5 Branch Current based Distribution System State Estimation (BC-DSSE) 

Baran and Kelley [12] proposed branch current based three phase distribution system 

state estimation, which is based on WLS method. Each phase measurement function is 

represented in terms of its phase currents, so it decouples three phase problem into three sub-

problems. This method forms the constant gain matrix. Therefore, the method performs better 

in terms of convergence, computational speed and memory management compared to voltage-

based-DSSE [16]. Many authors have proposed alternative BC-DSSE methods to enhance the 

accuracy of state estimation [12]-[17]. The branch current magnitude (i) and phase angle (α) 

are considered state variables in BC-DSSE. The state variable ‘x’ is represented as follows: 

𝑥 = [𝑖1, 𝑖2, …… , 𝑖𝑁𝑏𝑟, 𝛼1, 𝛼2, …… , 𝛼𝑁𝑏𝑟  ]                              (1.7) 

In [18], the study shows that the voltage measurement at the substation affects the whole state 

estimation performance. Therefore, Marco Pau et al. [17] proposed a BC-DSSE algorithm 

considering the voltage magnitude at substation as a state variable to enhance the accuracy of 

state estimation. A general BC-DSSE algorithm is presented as follows: 

1.5.1 Jacobian Matrix Formulation H(x):  

The Jacobean is formulated by differentiating measurement with respect to the state variables. 

The measurements (Z) consist of different types of measurements from the field such as 

voltage, current, active, and reactive power flows, node injection powers, Pseudo 

measurements, virtual measurements. Pseudo measurements are produced from historical data 

of the loads and virtual measurements are the zero injection power measurements modelled 
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using lower value variance in the order of 10-7 [19]. The Jacobian is formulated for different 

measurements using the following expressions: 

1. Voltage Magnitude Measurement: 

Suppose the voltage at pth node on kth branch is measured, there are n branches before the kth 

branch to the first branch, then the voltage magnitude is given as follows: 

𝑉𝑝 = 𝑉𝑠𝑙𝑎𝑐𝑘 − ∑ 𝐼𝑖−1,𝑗𝑍𝑖−1,𝑗
𝑛+1
𝑖=1                                           (1.8) 

Then the Jacobian matrix entries are as follows: 

𝜕𝑉𝑝

𝜕𝐼𝑖−1,𝑗
= −cos 𝛿𝑝 . 𝑍𝑖−1,𝑗 cos(𝛼𝑖−1,𝑗 + 𝜃𝑖−1,𝑗) 

−sin 𝛿𝑝 . 𝑍𝑖−1,𝑗 sin(𝛼𝑖−1,𝑗 + 𝜃𝑖−1,𝑗)   (1.9) 

𝜕𝑉𝑝

𝜕𝛼𝑖−1,𝑗
= cos 𝛿𝑝 . 𝐼𝑖−1,𝑗𝑍𝑖−1,𝑗 sin(𝛼𝑖−1,𝑗 + 𝜃𝑖−1,𝑗) 

−sin 𝛿𝑝 . 𝐼𝑖−1,𝑗𝑍𝑖−1,𝑗 cos(𝛼𝑖−1,𝑗 + 𝜃𝑖−1,𝑗)  (1.10) 

Where 𝛿 is angle of voltage, α is angle of current and θ is angle of impedance. When the 

currents are away from the path between kth branch and the first branch then the Jacobian 

entries are equal to zero.  

2. Current Magnitude Measurement: 

The Jacobian entries for the current measurement of branch ‘m’ between nodes p, q is 

expressed as follows: 

𝜕𝐼𝑝𝑞

𝜕𝐼𝑖,𝑗
= {

1   𝑤ℎ𝑒𝑛 (𝑖, 𝑗) = (𝑝, 𝑞)
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

                                          (1.11) 

𝜕𝐼𝑝𝑞

𝜕𝛼𝑖,𝑗
= 0                                                                           (1.12) 

3. Power Injection Measurements: 

Suppose power injection at bus k is measured and there are m buses connected to kth 

bus and from 1 to n buses the current flow is inward to kth bus, and from n+1 to m 

buses the current flow is outward to kth bus, then the power injection is expressed as 

follows: 
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𝑃𝑘 + 𝑗𝑄𝑘 = 𝑉𝑘(∑ 𝐼𝑖,𝑗 − ∑ 𝐼𝑗,𝑖
𝑚
𝑖=𝑛+1

𝑛
𝑖=1 )                            (1.13) 

Then the corresponding Jacobian entries are as follows: 

𝜕𝑃𝑘

𝜕𝐼𝑖,𝑗
= 𝑉𝑘 cos(𝛿𝑘 − 𝛼𝑖,𝑗)                                           (1.14) 

𝜕𝑃𝑘

𝜕𝛼𝑖,𝑗
= 𝑉𝑘 I𝑖,𝑗sin(𝛿𝑘 − 𝛼𝑖,𝑗)                                       (1.15) 

𝜕𝑄𝑘

𝜕𝐼𝑖,𝑗
= 𝑉𝑘 sin(𝛿𝑘 − 𝛼𝑖,𝑗)                                            (1.16) 

𝜕𝑄𝑘

𝜕𝛼𝑖,𝑗
= −𝑉𝑘 I𝑖,𝑗cos(𝛿𝑘 − 𝛼𝑖,𝑗)                                    (1.17) 

When a line is not connected to the measured injection bus, then the related entries are 

made zero. 

4. Power Flow Measurement: 

Suppose the power flow on branch k is measured, which is in between nodes p, q, then the 

power flow is expressed as follows: 

𝑃𝑝,𝑞 + 𝑗𝑄𝑝,𝑞 = 𝑉𝑝(𝐼𝑝,𝑞)
∗                                                   (1.18) 

𝑃𝑝,𝑞 + 𝑗𝑄𝑝,𝑞 = 𝑉𝑝𝐼𝑝,𝑞(cos(𝛿𝑘 − 𝛼𝑝,𝑞) + 𝑗 sin(𝛿𝑘 − 𝛼𝑝,𝑞))                      (1.19) 

The corresponding Jacobian entries are given as follows: 

𝜕𝑃𝑝,𝑞

𝜕𝐼𝑖,𝑗
= 𝑉𝑝 cos(𝛿𝑝 − 𝛼𝑝,𝑞)                                          (1.20) 

   
𝜕𝑃𝑝,𝑞

𝜕𝛼𝑖,𝑗
= 𝑉𝑝 I𝑝,𝑞sin(𝛿𝑝 − 𝛼𝑝,𝑞)                                      (1.21) 

𝜕𝑄𝑝,𝑞

𝜕𝐼𝑖,𝑗
= 𝑉𝑝 sin(𝛿𝑝 − 𝛼𝑝,𝑞)                                            (1.22) 

𝜕𝑄𝑝,𝑞

𝜕𝛼𝑖,𝑗
= −𝑉𝑝 I𝑝,𝑞cos(𝛿𝑝 − 𝛼𝑝,𝑞)                                   (1.23) 

When the state variable and the measurement branch is not in the same branch then the 

Jacobian entries are made zero. 

1.5.2 Step by Step Procedure of BC-DSSE Algorithm 

The BC-DSSE algorithm is based on the WLS method. The algorithm consists of three steps 

to estimate the state variables. the steps are described as follows: 
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1. Initialization: The initial values of state variables affect greatly the performance of 

state estimation. Initial values are determined using two steps: i) backward approach 

and ii) forward approach. In the first step, in backward approach, the branch currents 

are calculated by setting the initial values of node voltages as one per unit and using the 

power injections at each node. In the second step, the branch currents calculated in 

backward approach are used to calculate the initial values of voltage at each node. 

2. Update State Variables: The residuals are calculated, and the state variables are 

updated using equations (1.4) and (1.6). 

3. Update Node Voltages: The node voltages are calculated from the state variables using 

the forward sweep approach.  

4. Convergence Criteria: If the change in the state variables is below a specified 

threshold limit (ϵ), then the algorithm stops and prints the results. The specified 

threshold limit is taken as 10-7 for convergence criteria. 

1.6 DSSE based on Meter Placement 

The network status can be monitored with the help of meters installed at different locations 

of the distribution network. The measurements supplied by the meters may have errors and also 

due to communication failure, measurement data may become erroneous. The erroneous data 

is filtered using the state estimation process to get the actual measurement data. Therefore, the 

performance of state estimation significantly influences the operation of the network as the 

output of state estimation is supplied to all the control actions [20]. However, the performance 

of the state estimation depends on the observability of the network and the redundancy of the 

measurements. The observability of the network depends on the distribution of meters in the 

network. However, the distribution network is unobservable with a limited number of meters. 

Therefore, additional meters are required to be installed to make the system observable. 

Distribution system has a large number of nodes and placing meters at each node may not be 

economically feasible. The network can be made numerically observable by adding Pseudo 

measurements [21], but the huge errors associated with Pseudo measurements deteriorates the 

performance of state estimation. By installing the additional real measurements at distribution 

network, the desired performance of state estimation can be achieved. Therefore, meters need 

to be placed optimally to reduce metering cost, to improve the observability and redundancy 

such that altogether it improves the state estimation performance.  
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 The meter placement problem can be formulated in two ways as i) using topological 

observability and ii) numerical observability, by adding Pseudo measurements to additional 

real measurements set to improve the performance of state estimation. The topological 

observability is based on graph theory and whereas in second method Pseudo measurements 

are fixed, by taking all node injections modelled as Pseudo measurements, whereas additional 

real measurements are placed using an optimizing algorithm. The topological observability 

requires a greater number of meters to achieve observability compared to using the second 

method of meter placement. Moreover, the second method of meter placement ensures the 

desired performance of state estimation for a given set of real measurements. Therefore, this 

work considers the second approach of meter placement, in which all the node injections are 

modelled as Pseudo measurements and the real measurements are placed using the optimization 

technique.   

 The meter placement problem is formulated as an optimization problem. The 

optimization techniques like dynamic programming, interior point method and so on are called 

conventional optimization methods. Each conventional method provides better results for a 

specific type of optimization problem and is not suitable for other types of problems. Moreover, 

the conventional optimization method may not handle the mixed variable optimization 

problems, struck at local optima and requires existing of objective function derivative.  

1.7 Evolutionary Optimization Algorithms 

 The limitation of conventional optimization methods can be overcome with alternative 

optimization techniques such as evolutionary optimization techniques, which can handle 

nonlinear, non-differentiable, real-world complex problems, highly constrained, high 

dimensionality problems, and discrete optimization problems. Evolutionary optimization 

algorithms are one of the branches of meta-heuristic optimization algorithms, which are 

inspired by the biological evolutionary theory to solve optimization problems. The 

evolutionary algorithms can be classified into two categories: i) population-based and ii) 

trajectory-based algorithms. Population-based algorithms are inspired by the biology and 

swarms of different species. In population-based algorithms, multiple solutions are propagated 

to find the optimal solution in the decision space. Genetic algorithm, Particle swarm 

optimization, whale optimization, and bat optimization etc., are examples of population-based 

algorithms. Whereas, trajectory-based algorithms are adapted from physics, in which a single 

solution is propagated to find the optimal solution. Tabu search, simulated annealing etc., are 

examples of trajectory-based algorithms. The Evolutionary optimization algorithms are best 
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suited to solve the meter placement problem. The meter placement can be formulated as single 

objective and multi-objective problems. Whereas, in practical applications of meter placement 

in distribution system need to consider multiple objectives instead of a single objective. The 

multi-objective formulation provides the trade-off solutions which are useful in making the 

decision of distribution system planning studies. 

1.8 Multi-Objective Evolutionary Algorithms 

 The multi-objective meter placement can be designed using multi-objective 

evolutionary algorithm (MOEA). The optimization process provides the best feasible solution 

which is the maximum or minimum value of a given objective function. In general, the multi-

objective optimization is expressed as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥),…… , 𝑓𝑚(𝑥))𝑇 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

Where 𝐹(𝑥) is the multi-objective function formulated from the ‘m’ individual objectives𝑓(𝑥). 

When m≥4 then the optimization is referred to as many-objective optimization.  

Moreover, in all modern evolutionary algorithms, the balance between exploration and 

exploitation is a critical issue for better performance of the algorithm. Exploration refers to the 

global search process in objective space whereas exploitation refers to a local search around 

the neighbourhood of an optimal or near-optimal solution. Exhaustive exploration increases 

the convergence time and excessive exploitation causes the algorithm to be struck at a local 

optimum point and may not reach near the global optimal solution. Therefore, the balance 

between exploration (global search) and exploitation (local search) is a critical issue in 

designing evolutionary algorithms.  

In general, multi-objective evolutionary algorithms (MOEAs) are inherently designed 

to handle conflict goals, that minimize the distance between solutions on the Pareto front (i.e., 

convergence) and maximize the distribution of solutions along the Pareto front (i.e., diversity) 

[23]. The balance between convergence and diversity is a critical issue for obtaining qualitative 

and diverse trade-off solutions in MOEAs.  

The multi-objective evolutionary algorithms can be divided into four categories as i) Pareto 

dominance based ii) decomposition based iii) indicator based and iv) model based methods. 

This work tried all types of multi-objective evolutionary algorithms to formulate the meter 

placement problem.  
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1. Pareto dominance based MOEA: The solutions are ranked based on Pareto 

dominance order using the non-dominated sorting method, which improves the 

convergence of MOEA, and the crowding distance technique is used to enhance the 

diversity of solutions on the Pareto front. 

2. Decomposition based MOEA: The multi-objective problem is transformed into 

several single objective optimization problems. The algorithm divides the problem into 

subproblems using scalarization methods based on different weights. The 

neighbourhoods are formed based on the distance between aggregation vectors. The 

subproblem is simultaneously solved by exchanging information among the 

neighboring solutions. This improves the efficiency of searching the objective space for 

optimal solutions. 

3. Indicator-based MOEA: These methods use performance indicators to guide the 

search process and the solutions are selected based on performance indicator value. 

Several types of indicator metrics are available in the literature such as hyper volume 

indicator, R2 indicator, inverted generational distance (IGD) and so on.  

4. Model based MOEA: The model based MOEAs add the ability to learn from the 

environment in evolutionary algorithms. The traditional MOEAs such Pareto based, 

decomposition based, and indicator based MOEAs are designed to operate on the fixed 

heuristic strategies such as reproduction, selection, and variation. In the process of 

searching for a feasible solution, traditional MOEAs may not interact with the rapidly 

changing environment due to the complex properties of the problem to be solved. The 

model based MOEAs uses machine learning techniques to adapt to the environmental 

changes in the evolutionary process. The model based MOEA replaces the traditional 

heuristic operators such as selection, reproduction, and fitness evaluation with a 

machine learning model. The models use the candidate solutions as sample training 

data from the current generation to generate the best solutions by learning the changes 

in the environment. 

1.9 Combinatorial Nature of Meter Placement Problem 

The meter placement problem is basically a combinatorial optimization problem. The meter 

locations are randomly initialized at the initial stage of the evolutionary algorithm and the 

algorithm need to search all possible combinations of meter locations, which makes the 

decision space large and moreover, meter locations are represented using binary variable makes 
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the decision space discrete. The objective space is affected by the discrete combinatorial nature 

of decision space and which leads to forming a discontinuous objective space. The 

combinatorial optimization problems pose the challenge in searching large solution space 

whereas, the discontinuous objective space provides the irregular Pareto fronts, which 

deteriorates the performance of MOEA and reduces the diversity of the Pareto front. With the 

proper design of MOEAs, the issues with the combinatorial optimization problems can be 

addressed effectively.  
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Chapter 2  

Literature Review 

2.1. General Overview 

In recent years the availability of renewable resources in distribution system has increased, 

which in turn necessitates the concern for the monitoring and operation of distribution system. 

The uncertainty and unpredictability of renewable energy sources made the distribution system 

more complex to operate and control [22]. Moreover, the dynamic behavior of distribution 

network needs to be monitored and control to make it reliable and operate efficiently. The real-

time state of the system is obtained using state estimation. The accuracy and performance of 

the state estimation impact the operation of distribution system as the states are used as input 

for control operations such as voltage stability analysis, reconfiguration, etc. [23]. The best 

estimation of states is obtained using state estimation (SE), which filters the errors from raw 

measurement data. The accuracy of the state estimation is subject to the redundancy of 

measurements and network observability [1]. State estimation is widely used in transmission 

system to determine the state of the system. whereas, due to different characteristics of 

distribution system, the transmission system state estimation algorithms may not be directly 

applicable to the distribution system. Many researchers developed specific algorithms for 

distribution system state estimation (DSSE). The DSSE can be formulated as i) node based 

DSSE and ii) branch current based DSSE. 

2.1.1 Node Voltage based DSSE 

 Baran and Kelley [8] proposed three phase DSSE based on the WLS method with 

voltage magnitude and voltage angle are considered as state variables. Lu, Teng and Liu [9] 

proposed a DSSE algorithm by converting all the measurements into equivalent current 

measurements, which makes the Jacobean elements constant and equal to admittance values. 

The authors further extended the equivalent current based DSSE to formulate a fast decoupled 

method by decoupling constant gain matrix [24]. Similarly, many authors proposed node 

voltage based DSSE, in which node voltage magnitude and angle are considered as state 

variables [8]-[11]. 
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2.1.2 Branch Current based DSSE 

 Baran and Kelley [12] proposed a branch current based three phase DSSE. The 

measurement function is expressed with phase currents to decouple the problem into three 

independent measurement functions. The authors showed the better results compared to node 

voltage based DSSE. Similarly, many branch current based DSSE techniques are proposed, 

which became the  conventional way of designing the DSSE [12]-[17]. 

2.1.3. DSSE based on Meter Placement 

In distribution system, the existing measurement devices are few, eventhough the number of 

nodes is very large. Therefore, with the existing inadequate measurement set, the distribution 

network is unobservable. To resolve this issue, Pseudo measurements are added to the 

measurement set in DSSE process to achieve the observability, and it improves the 

convergence of DSSE [21]. However, the low accuracy of Pseudo measurements propagates 

uncertainty in state variables. As a consequence, the accuracy of DSSE results suffer. To 

improve the performance of DSSE, an optimal number and appropriate type of additional real 

measurements are required to be deployed in distribution system.  

2.2 Meter Placement Problem 

Baran et al. [7], proposed simple rules to place the meters on the distribution system. 

The authors selected switching locations, which are the best locations for accurate power flow 

measurement, and suggested placing the meters at different locations such that the load 

aggregation is equal at each meter. This approach is simple and effective for the passive 

distribution network, whereas for active and complex distribution networks, it may not 

guarantee the optimal solution in terms of the number of meters and cost of the metering 

infrastructure. 

Wang et al. [16], addressed impact of DSSE performance on the different type of meters 

and their locations. The authors concluded that power flow meters are the best among the 

current magnitude and voltage magnitude meters, based on the performance results of DSSE. 

The power flow meters and current meters improve the performance of DSSE when they are 

placed near the source. The voltage measurements improve the performance of DSSE when 

placed away from the source.  

Li [25], investigated the stochastic results of DSSE and the deviation of voltage and 

power flow based on meter locations. The results show that the voltage deviation increase when 

the location of meters is away from the substation. The estimated deviation of power flow 
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increases once the device is far away from the substation and is also dependent on the deviation 

of the Pseudo measurements errors. The authors also investigated the load correlation and the 

results show that the higher the degree of load correlation, the lower the estimated voltage 

deviation will be. 

The meter placement problem deals mainly with the determining of location, type, and 

an optimal number of meters with the desired accuracy of DSSE [26]. These three aspects are 

dependent on one another and also depends on the objective function, which is used to 

formulate the meter placement problem. Based on these aspects, different combinations of 

objectives have been proposed for the meter placement problem. Muscas et al. [27] proposed 

meter placement using dynamic programming based step-by-step approach for DSSE, 

minimization of the weighted mean value of variances of quantities is considered as an 

objective. Singh et al. [28], using an ordinal optimization algorithm (OOA), formulated a meter 

placement method to minimize the probability of relative state estimation errors. Likewise, 

several authors have attempted meter placement problem as single-objective optimization 

approach using conventional optimization methods [29]-[30]. The conventional optimization 

method may not handle the mixed variable optimization problems, struck at local optima, 

which requires the existing of objective function and constraint function derivatives. The 

limitation of conventional optimization methods can be overcome with alternative optimization 

techniques such as evolutionary optimization techniques, which can handle nonlinear, non-

differentiable, real-world complex problems, highly constrained, high dimensionality 

problems, and discrete optimization problems.  

In papers [31]-[33], covered an extensive review of distribution system state estimation 

and meter placement problem. However, much of the literature deals with single objective 

based optimal meter placement in distribution system state estimation. On the contrary, studies 

on multi-objective based optimal meter placement in distribution system have been few in 

literature. 

In practical planning studies, while placing meters in distribution system, the decision-

makers require to meet multiple objectives and the trade-off solutions among different 

objectives are more useful in taking a sensible decision. Therefore, meter placement is 

modelled as a multi-objective problem rather than single objective problem for practical 

applications. 
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Junqi Liu et al. [34] proposed weighted-sum-based multi-objective optimization for the 

trade-off between Phasor Measurement Units (PMUs) and Smart Metering (SM). In this 

optimization problem, the cost of PMUs and SM, relative voltage magnitude deviation, and 

voltage phase angle deviation are assigned with weights and then minimized the resultant 

weighted sum of the objective function using genetic algorithm. Linear Scalarization or 

Weighted-sum-based multi-objective optimization is used for solving the meter placement 

problem [35]-[40], in which each objective is assigned a non-negative weight, such that the 

sum of all the weights must become unity. However, the weighted sum based multi-objective 

methods fails to provide trade-off solutions. Moreover, in the case of concave Pareto fronts, 

weighted-sum-based multi-objective optimization gives the solutions, which are optimal in one 

of the objectives [41].  

2.3 Multi-Objective Evolutionary Algorithms 

There are many multi-objective paradigms because all different types of multi-objective 

problems cannot be solved by a single method [42]. The MOEAs are classified into four 

categories: i) Pareto dominance based ii) decomposition based iii) indicator based and iv) 

model based MOEAs.  

1. Pareto Dominance based MOEAs: The dominance based MOEAs select the feasible 

solutions based on dominance order ranking. Apart from the selection of candidates, 

dominance methods use the secondary ranking method to improve the diversity of the Pareto 

front solutions. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [43] is popular 

among this category. NSGA-II employs non-dominated sorting (NDS) method to identify the 

nondominated solutions and crowding distance is applied to preserve the population diversity. 

Strength Pareto evolution algorithm 2 (SPEA2) [44] and Pareto envelop-based selection 

algorithm-II (PESA-II) [45] are the other Pareto dominance based MOEAs. These algorithms 

show better performance in handling the multi-objective problems with two and three 

objectives. The main drawback of these methods is with increase in number of objectives the 

performance of MOEA deteriorates rapidly and may cause the loss of diversity in pareto front 

[46]. To overcome these limitations, many researchers proposed algorithms with modifications 

in design of Pareto based MOEA such as Grid dominance based evolutionary algorithms [47] 

and knee point driven evolutionary algorithm [48].  

2. Weighted Sum based MOEAs: The weighted sum based MOEAs are the basic form of the 

decomposition based MOEAs. In these methods, the objectives are assigned with weights and 
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added together to form a single objective function. The sum of all the weights should equal to 

one, so that each objective will gets its equal influence on the resultant objective value. Then 

the resultant objective function is solved same as the single objective optimization problem. 

These methods are simple in formulation of the optimization problem and converts the multi-

objective problem into a single objective problem. The conventional or single objective 

heuristics which are useful to solve the single objective optimization problems can be directly 

applied to these problems. However, choosing right weight values for each objective is subject 

to the problem dependent. However, the limitation of these methods is that the choice of weight 

can influence the final optimal value of the MOEA.                                                                                                     

3. Decomposition based MOEAs: The decomposition based MOEAs decomposes multi-

objective problem into several single objective solved simultaneously. MOEA based on 

decomposition (MOEA/D) [49] decomposes the objective space into several sub-problems and 

neighborhoods defined through weight vectors. Dynamic weight based evolutionary 

algorithm[50], multiple single objective Pareto sampling algorithm-II [51] and multi-objective 

genetic local search algorithms [52] are the other methods based on decomposition. Whereas, 

with the uniform weight vectors these methods may not follow the shape of the Pareto front 

and it will adversely effect the performance of the MOEA [53].  

4. Indicator based MOEAs: Indicator based MOEAs selection is guided by the performance 

indicator which measures the solution set performance characteristics and serves as selection 

criteria. Zitzler and Kunzli [54] proposed first indicator based evolutionary algorithm based on 

a predefined binary indicator. This method introduced the basic framework for indicator based 

MOEAs. Many authors proposed indicator based MOEAs such as generational distance and ϵ-

dominance-based (GDE-MOEA) [55], hyper volume based MOEA [56] and R2 indicator-

based many-objective metaheuristic-II (MOMBI-II) [57]. Several performance indicators are 

proposed through several indicator based MOEAs such as predefined binary indicator, R2 

indicator, generational distance (GD) [58], inverted generational distance (IGD) [59], hyper 

volume (HV) indicator [60] and so on [61]- [63].  

5. Model based MOEAs:  The traditional MOEAs such as Pareto based, dominance based, 

and indicator based MOEAs are built on fixed heuristic rules. Therefore, in evolution process 

these MOEAs may not adapt to the changes in evolutionary environment. The model based 

MOEAs are designed to replace the traditional operators such as selection, reproduction, and 

fitness evaluations with machine learning models. This provides the ability to learn the 



Chapter 2  Literature review 

23 
 

environment of evolutionary process by building the learning models from the candidate 

solutions of current generation. For training of the models, candidate solutions of the current 

generation in evolution process are used as sample data. The models can be replaced with the 

operators of traditional MOEAs such as reproduction, fitness evaluation and selection. These 

methos can be designed to estimate the distribution of candidate solutions. These are used as 

reproduction operator to generate the additional candidate solutions from the inverse model to 

map the objective space to decision space. when the optimization problems are computationally 

complex, or the fitness function is unknown then machine learning models are used as surrogate 

fitness functions. Bayesian multi-objective optimization algorithm (BMOA) [64], naive 

mixture-based multi-objective iterated density estimation evolutionary algorithm (MIDEA) 

[65] uses machine learning models for selections process to estimate the distribution of 

candidate solutions. Giagkiozis and Fleming proposed inverse-model based MOEA using 

Radial Basis Function Neural Networks (RBFNNs) [66] to map the objective space to decision 

space. Singh et al. proposed a surrogate-assisted simulated annealing algorithm (SASA) to 

evaluate the fitness function [67]. Similarly, many authors proposed model based MOEAs [68]-

[70] and in-depth review can be found in [71].  

Moreover, in all modern evolutionary algorithms the balance between exploration and 

exploitation is a critical issue for better performance of the algorithm. Exploration refers to the 

global search process in objective space whereas exploitation refers to a local search around 

the neighborhood of an optimal or near-optimal solution. Exhaustive exploration increases the 

convergence time and excessive exploitation causes algorithm to be struck at a local optimum 

point and may not reach near the global optimal solution. Therefore, proper balance is required 

between exploration (global search) and exploitation (local search).  

In general, multi-objective evolutionary algorithms (MOEAs) are designed to handle 

conflict goals, that minimize the distance between solutions and Pareto front (i.e., convergence) 

and maximize the distribution of solutions along Pareto front (i.e., diversity) [72]. The balance 

between convergence and diversity is a critical issue for obtaining qualitative and diverse trade-

off solutions.  

2.4 Meter Placement Problem using Multi-Objective Evolutionary Algorithms 

 In [73], the authors proposed a Pareto-based non-dominated sorting hybrid multi-

objective evolutionary optimization technique to minimize total network configuration cost, 

average relative percentage error of bus voltage magnitude, and voltage angle estimates. 

Similarly, the same authors extended their work with different objective functions using hybrid 
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heuristic dominance based multi-objective optimization for meter placement in distribution 

system state estimation [74]-[76]. However, with the increase in objectives, the objective space 

in size increases. Therefore, almost all solutions become non-dominated with one another. This 

deteriorates the selection pressure towards the set of all Pareto-optimal vectors, known as 

Pareto front (PF), and may even cause the loss of the population diversity in the evolutionary 

process to a certain extent and slows down the convergence speed of multi-objective 

optimization problem [77]. 

The shape of Pareto front of the problem to be addressed has a significant impact on 

MOEA's performance [78], [79]. Whereas, neither dominance-based nor decomposition-based 

MOEAs can handle irregular Pareto fronts. The objective values are not continuous in objective 

space, due to the combinatorial nature of problem [80]. As a result, objective space is discrete 

and Pareto front is also discontinuous in nature [81]. 

On the other hand, the observability analysis can be classified as i) topological 

observability ii) numerical observability and iii) hybrid or path-graph based observability 

analysis [82]. Topological observability analysis is based on graph theory, and it involves 

combinatorial computational complexity. Whereas the numerical observability is based on 

decomposing of the Jacobian matrix. If the linearly independent rows of the Jacobian matrix 

are equal or greater than the number of state variable, then the system is observable for a given 

set of measurement otherwise unobservable. In recent years, the numerical observability of 

distribution systems has received increased attention. Ratmir Gelagaev et al. [83] proposed a 

numerical observability analysis in distribution system by taking the X/R ratio impact on the 

decomposition of the Jacobian matrix. Moreover, in literature, numerical observability is not 

fully explored in distribution system meter placement problem. 

2.5 Aims and Objectives: 

The aim of the research to handle the issues with meter placement problem in the active 

distribution system in a multi-objective framework. The thesis addresses the issue with 

combinatorial optimization, discontinuous and irregular Pareto fronts, initial population 

diversity, search ability of the multi-objective evolutionary algorithms, and minimization of set 

of pseudo measurements to enhance the performance of state estimation with a set real 

measurement.  The aims of the thesis is as follows: 

• Day by day distribution system network is changing and gaining attention due to 

increase in addition of renewable energy sources into the system. The operation and 

control of distribution system became a significant area to research to address the 
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challenges posed by the changes in distribution network. An efficient monitoring and 

control algorithms need to be implemented to operate and address the challenges in 

distribution system. 

• Distribution system as passive network, required few meter to operate the distribution 

system. With addition of distributed generation, the monitoring and control need to be 

accurate and efficient. Moreover, to monitor the active and dynamic distribution system 

a efficient metering infrastructure is required.  

• As the meter placement problem is a offline study, the decision maker needs to inspect 

as many as possible  trade-off solutions which are feasible in economically and 

techinically. Therefore, a robust multi-objective solutions need to be addressed for 

meter placement in distribution system.  

• The addition of renewable sources transform the distribution system operation and 

behaviour. The intermittent nature of renewable sources pose the cahllenges and 

introduces uncertainty in operatio of the system. The dynamic behaviour and 

uncertainty of the renewable sources need to be addressed in the meter placement of 

distribution system. 

• The distribution system neeed to adopt the new technology and efficient metering 

technologies to provide better performace. The new devices like D-PMUs and IEds 

need to be considered to formulate meter placement for the distribution system and to 

get the improved performacnes of state estimation. 

Objectives: 

The objective of the research work is as follows: 

• A new hybrid multi-objective evolutionary optimization algorithm based on 

decomposition and local dominance is proposed for the meter placement in 

distribution state estimation. 

• A new indicator based multi-objective evolutionary algorithm is proposed for meter 

placement in active distribution system. 

• A new inverse model-based multi-objective evolutionary algorithm with adaptive 

reference point method is proposed for meter placement in distribution system state 

estimation. 

• The trade-off between D-PMUs and IEDs are considered to formulate the meter 

placement problem using inverse model-based multi-objective evolutionary 
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algorithm. Numerical observability method is used to minimize the number of 

Pseudo measurements. 

 

2.6 Motivation 

Apart from the advantages reported in the literature available, there are certain limitations. 

The disadvantages are listed as follows: 

• In the literature, the meter placement problem is mostly formulated as a single objective 

optimization problem [26]-[30], whereas the practical meter placement problem deals with 

more than one objective, and the trade-off solutions play a significant role in taking a 

decision in distribution system planning.  

• The weighted-sum based multi-objective approach [35]-[40] is simple to formulate and 

solve for the multi- objective problem. This approach transforms the multi-objective 

problem into a single objective problem with the aggregation of weighted objectives. Apart 

from the advantages, the main limitations are: (i) this approach is incapable of dealing with 

non-convex Pareto Front (PF). In other words, the approach provides the solutions which 

are optimal in one of the objectives for non-concave PF and (ii) the weight values assigned 

to the objective functions, largely influence the optimal solutions. 

• The dominance (Pareto) based MOEAs [73]-[76] are gaining in popularity as they 

overcome the limitations of weighted-sum based MOEAs. The solutions are ranked based 

on Pareto order, instead of weighted objectives, which improves the convergence of 

MOEA. Then, the crowding distance method is applied to ensure the diversity of the 

solutions in the Pareto front. Apart from the advantages, the Pareto-based MOEAs have 

limitations: (i) dominance-based methods might be difficult to guarantee a measure of 

convergence and difficult to achieve very regular spacing of solutions in the Pareto front. 

(ii) With an increase in objective space, almost all solutions in a population become 

nondominated with one another [46]. (iii) Due to the presence of dominance resistance 

solutions [47], selection pressure deteriorates and may even lead to the loss of population 

diversity in the evolutionary process, and it deteriorates the performance of MOEA [48] 

and (iv) the Pareto dominance may not provide any guarantee that the solution obtained is 

an optimal solution, as there is no measure of performance throughout the evolutionary 

process.  

• To overcome the issues with weighted objectives in weighted-sum-based MOEAs, in 

decomposition-based MOEAs the objective functions are scalarized with the weight 

vectors. Then, the multi-objective problem is transformed into several single objective 
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optimization problems [49]. The disadvantages of decomposition based MOEAs are, that 

(i) they require a priori knowledge of the Pareto front position in the objective space and 

with increase in the objective space size the number of weight vectors required might grow 

rapidly, even if the Pareto front is of low dimension. (ii) The weight vectors are uniformly 

distributed in decomposition based MOEAs. If the shape of Pareto front is irregular 

(disconnected, degenerated, and with sharp tails), then the best approximation of the Pareto 

front with uniform weight vectors cannot be obtained [53]. 

• Most of MOEAs use population or external archive to store non-dominated solutions 

obtained in each generation [84]. In general, only a limited number of diverse non-

dominated solutions can be achieved in each generation, in most of population based 

MOEAs. However, the additional diverse solutions can be obtained by properly designing 

the reproduction operator in MOEA.  

• Meter placement is fundamentally a combinatorial optimization problem, where the 

combination of meter set may not provide a continuous objective value in objective space 

[80]. Therefore, (i) the objective space is discrete in nature and (ii) the distribution of Pareto 

front is discontinuous and irregular in nature. 

• The performance of MOEA strongly influences the shape of Pareto front of the problem to 

be solved [53], [79]. In other words, most of the MOEAs can deal with only regular Pareto 

front, and not just with the irregular (disconnected, degenerated, and with sharp tails) Pareto 

fronts. 

• In distribution system, state estimation performance can be enhanced using the meter 

placement problem and it is handled in literature in two ways using i) topological 

observability and ii) numerical observability, by adding Pseudo measurements. Using 

topological observability-based meter placement, the total number of meters required is 

around one third of the number of nodes in distribution system [85]. Whereas, using the 

pseudo-measurement-based meter placement method the number of meters required is very 

less than the topological observability-based meter placement method. The advantage of a 

smaller number of meters is due to the additional Pseudo measurements that are supplied 

along with real measurements.  

• However, the drawback with pseudo-measurement-based meter placement is the accuracy 

of state estimation suffers due to the huge error associated with Pseudo measurements. The 

minimum number of Pseudo measurements that are needed to be added to the measurement 

set is not addressed in the literature.  
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The research work addressed the gaps in literature and propsed new hybrid multi objective 

meter placement problem in distribution system to over come the limitations with single 

objective and weighted-sum-based MOEAs [26-40]. The work compared the different types of 

MOEA such as Pareto based, Dominace based, indicator based and model based MOEAs and 

used to formulate the meter placement problem. The thesis addresses the issue with 

combinatorial optimization, discontinuous and irregular Pareto fronts, initial population 

diversity, search ability of the multi-objective evolutionary algorithms, and minimization of set 

of pseudo measurements to enhance the performance of state estimation with a set real 

measurement. 

2.7 Contributions 

The objective of the thesis is to design multi-objective framework to handle the issues with the 

meter placement problem in distribution system. 

The contributions of the thesis as follows: 

• A new hybrid multi-objective evolutionary optimization algorithm based on 

decomposition and local dominance is proposed for the meter placement in distribution 

state estimation. To achieve qualitative and quantitative diverse trade-off solutions in 

Pareto optimal front, decomposition and dominance techniques are hybridised. In this 

approach, the population is initialized with the Binomial distribution-based Monte 

Carlo method, as the meter placement problem is a combinatorial optimization problem. 

Diversity improvement is the main goal of the Binomial distribution-based Monte Carlo 

method, as a consequence, it also improves the convergence. 

• A new indicator based multi-objective evolutionary algorithm is proposed for meter 

placement in active distribution system. An inverted generational distance indicator 

with noncontributing solution detection (IGD-NS) indicator is used to evaluate the 

performance of the solution set and used as selection criterion. The IGD-NS indicates 

the diversity and convergence of the solution set and minimizes the number of solutions 

that have no impact on the indicator value. The objective discretization method is 

employed to improve the convergence and diversity of the proposed method, as each 

objective value spread on its own range of possible values. It enhances the search ability 

of MOEA and decreases the non-dominated solutions in population. The shape of the 

Pareto front influences the performance of a multi-objective evolutionary algorithm. 

Therefore, the proposed work employed a reference point method, which adaptively 
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update the reference points to follow the Pareto front shape. These reference points 

serve as priori knowledge of the approximate optimal Pareto front and in the calculation 

of performance indicator. The cost of meters and state estimation errors are considered 

as objectives to form the multi-objective optimization problem. Moreover, the impact 

of meter placement is investigated for various types of renewable sources and different 

measurement uncertainties. 

• A new inverse model-based multi-objective evolutionary algorithm with adaptive 

reference point method is proposed for meter placement in distribution system state 

estimation. Inverse model generates the additional non-dominated candidate solutions 

by sampling the objective distribution. It improves the search efficiency and diversity 

of Pareto front. Meter placement is a combinatorial optimization problem consist of 

binary decision variables. Therefore, inverse model is realized by classification as it 

maps non-dominated solution from integer domain objective space to the binary 

domain decision space. Each meter location is represented as a label to model the binary 

string in decision space, as meter locations belong to multiple labels simultaneously. 

Therefore, inverse model is realized using multi-label Gaussian classification. The 

combination of meter locations may not provide continuous non-dominated solutions 

in Pareto front. As a consequence, discontinues Pareto front is formed. The performance 

of MOEA is affected by the shape of Pareto front. Therefore, adaptive reference point 

method is employed to follow the shape of the Pareto front. Conflicting objectives such 

as minimizing the cost of metering infrastructure and error in state estimates is 

considered, and the inverse model based multi-objective framework is used to achieve 

an optimal meter placement solution in an active distribution network by considering 

the measurement uncertainty and different types of renewable sources. 

• An inverse model based many-objective evolutionary optimization is designed using 

four objectives as minimization of distribution level Phasor measurement units (D-

PMUs) cost, minimization of intelligent electronic devices (IEDs) cost, minimization 

of root mean square errors of voltage magnitude and minimization of root mean square 

errors of voltage angle. Multi-label Gaussian classification is used to map the objective 

space and binary decision space in the inverse model. The trade-off between D-PMUs 

and IEDs are considered to formulate the meter placement problem. Numerical 

observability method is used to minimize the number of Pseudo measurements for a 

given set of real measurements, which are generated by evolutionary optimization. 
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2.8 Thesis Organization 

The thesis is organized as follows: 

Chapter 1 introduces the distribution system state estimation and its importance in monitoring 

and operation of the network. It briefly describes about the necessity of meter placement and 

the impact of renewable energy penetration in the distribution system. It describes the basics 

of meter placement and distribution system state estimation.  

Chapter 2 provides a detailed literature review on the meter placement problem in distribution 

system and discusses the existing methods of the research topic. It provides various methods 

used to formulate the meter placement problem such as single objective and multi-objective 

frameworks and discusses the different optimization techniques to handle the problem.  

Following an extensive literature review on the topic, the motivation of the proposed 

research work is presented, then objectives, contributions, and the organization of the thesis 

are presented.  

Chapter 3 describes a new hybrid multi-objective evolutionary optimization algorithm based 

on decomposition and local dominance for meter placement in distribution system state 

estimation. The trade-off between three objectives is considered, which are minimizing the cost 

of the meters, average relative percentage error (ARPE) of voltage magnitude, and ARPE of 

voltage angle. As the meter placement problem is a combinatorial optimization, the Binomial 

distribution-based Monte Carlo method is utilized to initialize the population, which aims to 

improve the diversity, as a consequence it improves the convergence. The results of the 

proposed method are compared with a multi-objective evolutionary algorithm based on 

decomposition (MOEA/D), Non-dominated sorting genetic algorithm-II (NSGA-II) and with 

multi-objective hybrid particle swarm optimization- krill herd algorithm (PSO-KH),  multi-

objective hybrid estimation of distribution algorithm- interior point method (EDA-IPM) and 

demonstrated on PG&E 69-bus distribution system and Indian Practical 85-bus distribution 

system. 

Chapter 4 presents a new indicator-based multi-objective evolutionary algorithm (MOEA) 

using the objective discretization method for meter placement in active distribution system. As 

the meter placement problem is a combinatorial optimization, a combination of measurement 

sets produces a discrete objective space. Therefore, the objective discretization method has 

been adopted to improve the performance of MOEA. The proposed MOEA is an indicator-

based method based on inverted generational distance indictor with noncontributing solution 
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detection (IGD-NS) and with adaptive reference point method. The performance of MOEA 

mostly depends on the Pareto front shape, therefore the proposed method employs an adaptive 

reference point approach to follow the shape of the Pareto front. Moreover, the effect of 

distributed generation is investigated on distribution system state estimation performance for 

different measurement uncertainty as well as for various distributed renewable generations. 

The meter placement problem is modeled as a multi-objective problem with the objectives 

consisting of minimization of total meter cost and state estimation errors. The versatility of the 

proposed method is demonstrated on PG&E 69-bus distribution system and Indian Practical 

85-bus distribution system. The results obtained are compared to existing MOEAs, to 

demonstrate the superiority of the proposed method over other methods. 

Chapter 5 addresses a new inverse model-based multi-objective evolutionary algorithm for 

meter placement in active distribution system state estimation. The inverse model maps the 

non-dominated solution from objective space to decision space and is realized using multi-

label Gaussian classification. The additional solutions are generated by sampling from the 

inverse model, which improves the search efficiency and diversity of Pareto front solutions. 

The combinatorial nature of the meter placement problem may produce a discontinuous Pareto 

front. Therefore, the adaptive reference point method is employed to adjust the reference points 

such that they follow the discontinuous Pareto front. The meter placement is designed as a 

multi-objective problem with conflict objectives such as meter cost, the estimated error of 

voltage magnitude, and voltage angle. The proposed method is tested under different real 

measurement uncertainties and for passive and active distribution networks. Different types of 

renewable sources are considered in the active distribution system. The superiority of the 

proposed method is validated by comparing it with other multi-objective evolutionary 

algorithms and tested on PG&E 69-bus distribution system and Indian Practical 85-bus 

distribution system. 

Chapter 6 proposes many-objective evolutionary optimization for meter placement in active 

distribution system based on numerical observability. The meter placement problem can be 

formulated i) based on topological observability, in which the meter placement depends on the 

connectivity of the network, on the other hand, ii) the network can be made numerically 

observable by adding all node power injections as Pseudo measurements and formulated as 

combinatorial optimization with state estimation accuracy as an objective. The second 

approach is more popular as it ensures the accuracy of state estimates and requires a small 

number of real measurements compared to topological observability. Moreover, the addition 
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of Pseudo measurements improves the convergence of state estimation and ensures the 

observability of the network. Whereas, the huge errors associated with Pseudo measurements 

deteriorate the performance of state estimation. Therefore, for the first time, in the meter 

placement problem, numerical observability method is used to select the minimum number of 

Pseudo measurements to ensure the observability and improve the accuracy of the state 

estimation for a given set of real measurement combinations. The meter placement problem is 

designed as many-objective evolutionary optimization with four objectives as i) cost of D-

PMUs ii) cost of IEDs iii) root mean square error of voltage magnitude and iv) root mean 

square error of voltage angle. The proposed many-objective evolutionary optimization is 

utilizing the inverse model that uses multi-label Gaussian process classification as a model to 

generate meter locations mapped to objective space, which enhances the search ability and 

diversity of evolutionary optimization. The impact of distributed generation, as well as various 

real measurement uncertainties, are taken into account to validate the proposed method, which 

is tested using the PG&E 69-bus distribution system and Indian Practical 85-bus distribution 

systems. 

Chapter 7 summarizes the research contribution, findings, and observations on the proposed 

research work. Then it presents the scope for the future work that can be preceded in the topic. 

2.9 Summary 

This chapter provides existing literature on meter placement in distribution system. With the 

penetration of renewable energy sources, distribution system operation becomes more 

challenging. The state estimation plays a vital role in distribution system operation and control. 

The characteristics of distribution system required to formulate the specific algorithms for 

distribution system state estimation (DSSE). This chapter discusses the different DSSE 

solutions in literature.   

 DSSE performance is mainly depends on redundancy of measurements and 

observability of the network. Current distribution network has limited number of meters in the 

network, in spite of having large size of the network. To make network observable additional 

meters need to be placed optimally with in the financial feasibility. This chapter discusses the 

impact of meter placement due to different factors such as type of meters, location of meters 

and so on. This chapter provides multi-objective meter placement problem related existing 

research and presents the discussion on various types of multi-objective evolutionary 



Chapter 2  Literature review 

33 
 

algorithms. Furthermore, motivation, contributions and organization of thesis are presented in 

this chapter.   
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Chapter 3  

Multi-Objective Meter Placement in Distribution System State Estimation 

Using Hybrid Decomposition and Local Dominance Method 

3.1 Introduction 

In recent years, the distribution system is adopting changes and advancements of smart 

grid technologies and becoming more dynamic in behavior as it is changing from passive to an 

active network, due to the penetration of Distributed Generation (DG). These changes are 

necessary to enhance the real-time monitoring and control actions of the distribution system. 

The network states are required to be monitored and accurately estimated as they are fed as 

input to different control functions such as network reconfiguration, volt-var control, 

restoration so on. The best estimate of states is obtained using state estimation (SE), which 

filters the errors from raw measurement data. The accuracy of the state estimation is subject to 

the redundancy of measurements and the network observability. In distribution system, the 

existing measurement devices are few as the number of nodes is very large. Therefore, with 

the existing inadequate measurement set, the distribution network is unobservable. To resolve 

this issue, Pseudo measurements are added to the measurement set in Distribution System State 

Estimation (DSSE) process to achieve the observability, and it improves the convergence of 

DSSE. However, the low accuracy of Pseudo measurements propagates uncertainty in state 

variables. As a consequence, the accuracy of DSSE results suffer. Therefore, to improve the 

performance of DSSE, an appropriate number and type of additional real measurements are 

required to be deployed in distribution system at proper nodes. 

This chapter proposed the meter placement problem in distribution system state 

estimation with a multi-objective evolutionary optimization algorithm based on decomposition 

and local dominance. The proposed optimal meter placement problem considered the allocation 

of power flow meter (PM) and Voltage magnitude meter (VMM) devices, as they are 

economical and readily available compared to Phasor Measurement Units (PMU) and 

Distribution level Phasor Measurement Units (D-PMUs). The meter placement is mainly a 

combinatorial optimization problem, with an increase in distribution network size, the 

placement locations increase, because of which individual candidate solution (chromosome) 

size also increases. Therefore, the diversity of the initial population may not be assured with a 

long binary chromosome. The work utilizes the Binary distribution-based Monte Carlo method 

to initialize the population with better distribution, which improves diversity, therefore it 
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improves the convergence, which is a by-product of this method. The main contributions of the 

work are as follows: 

i. A new hybrid multi-objective evolutionary optimization algorithm based on 

decomposition and local dominance is proposed for the meter placement in distribution 

state estimation.  

ii. To achieve qualitative and quantitative diverse trade-off solutions in Pareto optimal 

front, decomposition and dominance techniques are hybridized.  

iii. The proposed work initializes the population with the Binomial distribution-based 

Monte Carlo method, as the meter placement problem is a combinatorial optimization 

problem. Diversity improvement is the main goal of the Binomial distribution-based 

Monte Carlo method; therefore, it improves the convergence, which is a by-product of 

this method. 

3.2 Problem Formulation  

The proposed multi-objective evolutionary algorithm based meter placement problem 

considered the minimization of three objective functions: i) total cost of measurement devices 

(J1) ii) the average relative percentage error (ARPE) of voltage magnitude (J2) and iii) the 

average relative percentage error (ARPE) of voltage angle (J3). The objectives that were 

considered can be described as follows: 

           𝑀𝑖𝑛 𝐽1 = ∑ 𝐶𝑃𝑀,𝑖
𝑛𝑙
𝑖=1  . 𝑈𝑃𝑀,𝑖 + ∑ 𝐶𝑉𝑀𝑀,𝑗

𝑛
𝑗=1  . 𝑈𝑉𝑀𝑀,𝑗 = 𝑋 𝐶𝑇 

Where 𝑋 = [𝑈𝑃𝑀 , 𝑈𝑉𝑀𝑀] 𝑎𝑛𝑑  𝐶 = [𝐶𝑃𝑀, 𝐶𝑉𝑀𝑀] 

(3.1) 

𝑀𝑖𝑛𝐽2 =
1

𝑚
∑

1

𝑛
𝑚

(∑
𝑉𝑖

𝑡 − 𝑉̂𝑖

𝑉𝑖
𝑡

𝑛

𝑖=1

) × 100 

(3.2) 

 

𝑀𝑖𝑛 𝐽3 =
1

𝑚
∑

1

𝑛
𝑚

(∑
𝛿𝑖

𝑡 − 𝛿𝑖

𝛿𝑖
𝑡

𝑛

𝑖=1

) × 100 

(3.3) 
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Subjected to constraints of prespecified limits of voltage magnitude and voltage angle relative 

deviation as 1% and 5%, respectively for 95% of simulated cases [30]. The constraints are 

expressed as follows 

𝑔1 = |
𝑉𝑖

𝑡 − 𝑉̂𝑖

𝑉𝑖
𝑡 | < 1% 

(3.4) 

𝑔2 = |
𝛿𝑖

𝑡 − 𝛿𝑖

𝛿𝑖
𝑡 | < 5% 

(3.5) 

Where J1, J2, J3 are three objective functions, n, nl are the number of nodes and lines in 

distribution system, m is the scenarios considered for Monte Carlo simulation, CPM, Cvmm 

represents the relative normalized costs of power flow measurement and voltage magnitude 

measurement devices. The proposed work is considered VMM as a default measurement. 

Therefore, the normalized cost of VMM and PM are considered the same per unit device and 

considered normalized cost as 1 per unit device. UPM and UVMM indicate the locations of power 

flow meter represented as ‘1’ in case of a device placed at a particular node or line and 

described as ‘0’ otherwise. Where, g1, and g2 are inequality constraints of relative voltage 

magnitude and voltage angle limits, Vt, 𝑉̂, 𝛿𝑡 and 𝛿 are the true value of voltage magnitude, 

estimated voltage magnitude, the true value of voltage angle, and estimated voltage angle, 

respectively. Branch current based distribution system state estimation (BC-DSSE) algorithm 

is used to estimate the state variables such as branch current magnitude and angle along with 

slack bus voltage magnitude and slack bus voltage angle [16]-[17].  

The next section describes the solution methodology of the proposed hybrid multi-objective 

evolutionary algorithm based on decomposition and local dominance method for meter 

placement in distribution system state estimation. 

3.3 Methodology 

The proposed multi-objective evolutionary algorithm (MOEA) combines the 

decomposition and non-dominance sorting techniques for the selection of local solutions [49], 

[86]. The non-dominance sorting and decomposition techniques are adopted from NSGA-II 

[43], MOEA/D [49] algorithms and combined to exploit their advantages and to balance 

between convergence and diversity of solutions in Pareto Front. 
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The MOEAs give trade-off solutions in objective space and are distributed on the Pareto 

front. The NSGA-II ranks each solution using non-dominated sorting based on the Pareto 

dominance order. Whereas decomposition based MOEA (MOEA/D) employs weight vectors 

to decompose the multi-objective optimization problem into several subproblems. Then 

optimize the subproblems simultaneously. The neighborhoods are formed based on the distance 

between weight vectors. The neighborhood information is used to select the solutions in each 

population evolution. Penalty based intersection (PBI) method is used to assign each solution 

a relative fitness value [49]. The PBI is expressed as follows: 

𝑃𝐵𝐼(𝑋|𝑤, 𝑧∗) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑔𝑏𝑖𝑝(𝑋|𝑤, 𝑧∗) = 𝑑1 + 𝜃𝑑2 

𝑤ℎ𝑒𝑟𝑒 𝑑1 =
‖(𝑧∗ − 𝐹(𝑋)𝑇 . 𝑤)‖

‖𝑤‖
 

𝑑2 = ‖𝐹(𝑋) − (𝑧∗ − 𝑑1. 𝑤)‖ 

Where 𝑋 = [𝑈𝑝𝑓 , 𝑈𝑉𝑀𝑀] 𝑎𝑛𝑑 𝐹(𝑋) = [𝐽1, 𝐽2, 𝐽3] 

(3.6) 

Where z* is the ideal point, w is the weight vector associated with solution X, θ is the penalty 

factor. The combined PBI method and dominance are used to select the local solutions of 

neighborhood defined by a weight vector.  

3.4 The Proposed Algorithm 

The proposed algorithm generates an initial population randomly of size ‘N,’ with binary 

strings indicating the locations of power flow measurements on each line. The uniformly 

distributed weight vectors are generated using a systematic sampling approach (SSA) [87]. 

Each individual in the population is assigned weight vectors and attached to a neighborhood. 

Then the mating parents are chosen from the neighboring region with a selection probability 

of ‘δ’ using the minimum angle criteria. The value of selection probability ′𝛿′ typically 

assigned as 0.8.  The angle criterion is used to find the nearest neighbors of weight vectors. 

The closest neighbors are selected with a minimum value of the angle between the weight 

vectors. Each weight vector is assigned with a neighborhood-based on the angle. For each 

weight vector, a pair of mating parents are selected from neighborhood-based on associated 

weight vectors, in the mating procedure. If there is no individual in the selected nearby region, 

then the mating parent is chosen from the whole population. The angle criteria used to select 
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the neighboring subregion for each weight vector [86]. The angle criteria are expressed as 

follows: 

tan𝜑 =
𝑑2

𝑑1
 

𝑤ℎ𝑒𝑟𝑒 𝑑1 =
‖𝑤𝑖

𝑇 . 𝑤𝑗‖

‖𝑤𝑗‖
 

𝑎𝑛𝑑 𝑑2 = ‖𝑤𝑖 − 𝑑1

𝑤𝑗

‖𝑤‖
‖ 

𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1, 2, …… ,𝑁 𝑎𝑛𝑑 𝑖 ≠ 𝑗 

(3.7) 

Where w is the weight vector, φ is the angle between d1 and d2, N is the size of the population 

and equal to the number of weight vectors. 

The genetic operators such as two-point crossover and mutation are applied to reproduce 

the new offspring population. Old and new populations are combined and divided into ‘N’ 

subpopulation by comparing each solution using PBI method (3.6) and non-dominated sorting 

method for local solutions of neighborhood defined by a weight vector. Then the elitist 

selection process is applied to ‘N’ subpopulations to choose competent individuals. This 

process is repeated until the termination criterion is met. This method used a maximum number 

of generations as termination criteria. A fuzzy min-max method is used to determine the 

optimal solution from the final Pareto optimal front [88].  

3.5 The Binomial Distribution based Monte Carlo Method for Population 

Initialization 

The meter placement problem is a combinatorial optimization problem. A better-distributed 

combination of meter locations in the initial population improves the diversity of solutions in 

the objective space. The diversity of the initial population improves the searching operation of 

the problem; therefore, convergence improves; this is a by-product of the Binomial 

distribution-based Monte Carlo method. The authors in [89], initialized the population using a 

normal distribution with upper and lower limits as probability scaling parameters. However, in 

this combinatorial optimization problem, the normal distribution is not appropriate to generate 

the initial population. The distribution with continuous variables can be expressed using a 

normal distribution. However, the meter placement problem is basically a combinatorial 
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optimization problem. The placement of measurement devices is represented with binary 

variables (𝑋 = [𝑈𝑝𝑓 , 𝑈𝑉𝑀𝑀]) as specified in equation (3.1). Where, X indicates the meter 

placement in a binary variable as ‘1’ when the meter is placed in a specific location, otherwise 

with ‘0’. Thus, the Binomial distribution is suitable to represent the binary variables. Therefore, 

the proposed method utilized Binomial distribution to generate an initial population. The 

Binomial distribution models the trials of repeated experiments with a constant probability of 

success of each trial. The Binomial distribution is expressed as follows: 

𝑓(𝑙|𝑁, 𝑝) = (
𝑁
𝑙
) 𝑝𝑙(1 − 𝑝)𝑙;    

(3.8) 

Where 𝒍 is equal to the length of 𝑿, and 𝒘𝒉𝒆𝒓𝒆 𝑿 = [𝑼𝒑𝒇 , 𝑼𝑽𝑴𝑴], 𝒍 is the number of 

outcomes in ‘n’ trials of a Bernoulli process with a probability of success ‘p.’  

The meter placement problem is a combinatorial optimization; therefore, each meter 

placement can be considered as one trial in Binomial distribution. The set of measurements 

obtained from each chromosome can be represented in the binary string as ‘X’ vector in 

objective (3.1). The length of the binary string depends on the size of the distribution network. 

Therefore, the length of ‘X’ vector in (3.1) is treated as a total number of trials in the Binomial 

distribution. However, in distribution system, the increase in the number of meters, the 

accuracy of DSSE increases. But, at the same time, a large number of meter installation may 

not be a solution, as it increases the cost. The proposed multi-objective algorithm aims to find 

optimal solutions; the combination of initial meters affects the quality of solution and 

convergence. The combination of meters should be better distributed in the initial population 

so that the diversity of individuals improves. Therefore, the Binomial distribution models the 

combination of meters, with better distribution of the initial population through Monte Carlo 

simulation.  

To model binomial distribution, the probability of success ‘p’ needs to be defined. In [85] 

suggested that the number of meters required for a distribution system to be topologically 

observable is one third (33%) of the distribution network size. The authors have also shown 

that, with Pseudo measurements, only 20% of meters are required for numerical observability. 

Thus, in this work, the population is initialized with 15% extra meters with topological 

observability, that is, 48% of network size, is considered as an initial number of meters. These 

number of meters were distributed in the initial population with Binomial distribution with the 

probability of success ‘p’ being 48%. 
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The multi-objective evolutionary algorithms (MOEAs) are inherently designed to 

handle conflict goals, that minimize the distance between solutions and Pareto front (i.e., 

convergence) and maximize the distribution of solutions along Pareto front (i.e., diversity). The 

balance between convergence and diversity is a critical issue for obtaining qualitative and 

diverse trade-off solutions. 

Diversity is the main goal of the Binomial distribution-based Monte Carlo method. This 

improvement in diversity arises a question of balance between diversity and convergence, to 

examine the same, this work investigated the convergence and diversity improvement in 

MOEA. The proposed algorithm with the Binomial distribution-based Monte Carlo method 

improved diversity and convergence compared to the conventional proposed method. The 

algorithm was run several times to test performance characteristics with the initial population 

generated by the Binomial distribution-based Monte Carlo method. To show the versatility of 

the proposed Binomial distribution-based Monte Carlo method, the performance (diversity and 

convergence) characteristics are investigated, which is based on the performance metric 

Inverted Generational Distance (IGD). The definition of IGD [59], [90] is as follows: 

𝐼𝐺𝐷(𝑃, 𝑃∗) =
∑ 𝑚𝑖𝑛𝑦∈𝑃 𝑑𝑖𝑠(𝑥, 𝑦)𝑥∈𝑃∗

|𝑃∗|
 

(3.9) 

Where P is objective function values of non-dominated solutions, 𝑃∗ is the set of uniformly 

distributed weight vectors sampled from the Pareto optimal front and 𝑑𝑖𝑠(𝑥, 𝑦) represents the 

Euclidean distance between solutions 𝑥 𝑎𝑛𝑑 𝑦. IGD metric calculates the average minimum 

distance from each weight in 𝑃∗ to those in 𝑃, which measures the convergence and diversity 

of solution set 𝑃. A small value of IGD indicates a better convergence and diversity of solution 

set  𝑃. 



Chapter 3  Multi-Objective Meter Placement using 

Decomposition and Local Dominanace algorithm 

  

43 
 

 

Fig. 3.1: Indian Practical 85-bus distribution system: The performance characteristics with 

and without the Binomial Distribution based Monte Carlo simulation method. 

The performance characteristics of the proposed algorithm for a typical trial are shown 

in fig. 3.1. The IGD performance metric measures the diversity and convergence of the 

proposed MOEA. It is observed from fig. 3.1 that, the proposed MOEA with Binomial 

distribution-based Monte Carlo simulation yield better convergence and diversity compared to 

without Binomial distribution-based Monte Carlo simulation. 

The pseudo-code of the proposed hybrid multi-objective evolutionary algorithm-based 

decomposition and local dominance method as follows: 

Initialization: Generate initial population (Pt) with size N. Each candidate of the 

population generates the random number of power flow measurement devices and their 

location. Generate the uniformly distributed weight vectors using SSA [87], and the 

number of weight vectors using SSA is calculated as follows: 

𝑁(𝐷,𝑀) = (
𝐷 + 𝑀 − 1

𝑀 − 1
)  𝑓𝑜𝑟 𝐷 > 0 

(3.10) 
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Where D is the number of divisions along with each objective coordinate, and M is the 

number of objectives. 

Then find the objective values for each population candidate by running DSSE and 

check the violation of constraints (3.4) and (3.5). If any objective is violating the 

constraints, then the objective is added with a penalty (CV(x)) as follows: 

𝐶𝑉(𝑥) = ∑〈𝑔𝑗(𝑥)〉

𝐽

𝑗=1

 

(3.11) 

Where 𝑔𝑗(𝑥) are inequality constraints, 〈𝑔𝑗(𝑥)〉 takes absolute values of  𝑔𝑗(𝑥) if 

𝑔𝑗(𝑥) < 0, and ‘0 ‘otherwise. 

Then find neighbors with minimum angles for each weight vector using angle criteria 

(3.7) and find the minimum values for all the objectives to form the current ideal point. 

Check for Stopping Criteria and continue for further steps.   

Reproduction: Select the N pairs of mating parents based on angle criteria. For each 

weight vector, a pair of mating parents are chosen with a probability of δ. Apply the 

two-point crossover for N pairs of mating parents. Apply the binary mutation to 

generate a new population (Qt). 

Partition of the combined population: The old (Pt) and new (Qt) population are 

divided into N subpopulation. Each subpopulation contains Ni individuals based on the 

partition. The partition is dividing using comparing the candidates using PBI value. 

Compare two individuals x and y, which are closest with associated weight vectors to 

divide into N subpopulations. If x dominates y return true else fasle otherwise compare 

PBI of both candidates and return the minimum PBI value candidate. 

  

Elitist Selection Procedure: From ‘N’ partitions of population, the elitist candidates 

are selected for next-generation population Pt+1. Select the individual from each 

partition of the population until it does not exceed the population size ‘N.’ If the 

population size is less than ‘N,’ then chose randomly from the partitioned population.  
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Apply the fuzzy min-max method [88] for the final Pareto front and print the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialization: Generate initial population (Pt) and the uniformly 

distributed weight vectors using SSA [87] using (3.10). 

 

Find the objective values for each population candidate by 

running DSSE and check the violation of constraints (3.4) and 

(3.5). If any objective is violating the constraints, then the 

objective is added with a penalty (CV(x)) using (3.11). 

 

find neighbors with minimum angles for each weight vector using 

angle criteria (3.7) and find the minimum values for all the 

objectives to form the current ideal point. 

Check for stop 

criteria 

Reproduction: Select the N pairs of mating parents based on angle 

criteria. Apply the two-point crossover, the binary mutation and 

generate a new population (Qt). 

 

Partition of the combined population: The old (Pt) and new (Qt) 
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x Dominates y 

y Dominates x 

PBI (x|w, z*) < PBI (y|w, z*) 

Add x candidate  Add y candidate  

Add x candidate  

Add y candidate  

Elitist Selection Procedure: From ‘N’ partitions of population, the 

elitist candidates are selected for next-generation population Pt+1. 

While (until (Nt+1 + Ni) <N) 

Add Ni individual in ith partition to Pt+1 

population. Nt+1 = Nt+1 + Ni ; i=i+1; 

 

Set Nt+1=0; i=1; 
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Fig. 3.2: Flowchart of propsed algorithm. 

3.6 Simulation and Test Conditions 

The proposed method is simulated by placing the power flow measurement devices and 

voltage magnitude meter. Voltage magnitude measurement device is considered as default 

measurement and the main aim of the proposed work is to place power flow measurements in 

distribution system. The active and reactive power is assumed to be obtained from a single 

power flow meter. In this study, a voltage magnitude meter (VMM) is placed at the substation 

and considered as default measurements. For SE, BC-DSSE [16]-[17] algorithm is used to 

estimate the states of the system for each set of measurements from the proposed algorithm. 

For different measurement uncertainties, Monte Carlo simulations assess the satisfactory 

performance of SE in terms of voltage magnitude and voltage angle, with prespecified limits 

of 1% and 5%, respectively, within 95% simulation cases. If the prespecified limits are 

violated, then the corresponding objective function is added with a penalty. In this work, 100 

different network operating scenarios are considered, and each scenario is simulated for 1000 

Monte Carlo trials with normally distributed measurement uncertainties to check the voltage 

If ((N- Nt+1)>0)          

Add N- Nt+1 individual randomly next 

partition to Pt+1 population 

Apply the fuzzy min-max method [88] for the final Pareto front and 

print the results. 

 

Stop 

D 

B 

A 
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magnitude and angle constraint violations. Further, the following assumptions are considered 

for the proposed method: 

i. Voltage magnitude measurement at the slack bus and one power flow meter at 

the first line are considered as default measurements, and it is supplied with 1% 

accuracy.  

ii. Virtual measurements, on the other hand, are zero bus injection measurements, 

which are supplied by the operator [26]. The virtual measurements are considered 

as the measurements with no error [19]. These are the measurements at the nodes 

such as switching stations, where the power injection is equal to zero. These are 

treated as very accurate measurements that are no need to be measured physically. 

These measurements are virtually treated as measurements with no error that are 

supplied with low variance value. Virtual measurements are provided with a small 

value of standard deviation in the order of 10-8 [26].  

iii. To test the performance of the algorithm with large errors, Pseudo measurements 

are provided with a maximum error of 50% [91].  

iv. The proposed algorithm is tested for various measurement uncertainty levels by 

considering the real measurements with varied accuracy of 1%, 3%, and 5%. 

v. To check the voltage magnitude and angle constraint violations (4) and (5), 1000 

Monte Carlo trials are carried out for different load conditions of 100 scenarios 

[73]. 

Furthermore, the parameters used for the proposed algorithm, MOEA/D, and NSGA-II 

are tabulated in Table-3.1. Different population sizes are tested, and it is observed that for 3 

objectives, the population size with 100, is suitable to get the near-optimal solutions. The 

population size is considered as 100, whereas for decomposition-based methods the population 

size is decided based on the weight vectors, which are generated from the Systematic Sampling 

Approach (SSA) [87]. For the proposed method and MOEA/D, with three objectives, the 

population size is chosen 91 after the SSA. The number of divisions along each objective 

coordinate chosen as 12 (D=12), whereas the neighborhood size is chosen as 20 (T=20). The 

neighborhood size is chosen as 20% of the population size [49]. Divisions along each objective 

coordinate are chosen based on Das and Dennis Systematic Sampling Approach (SSA) [87] for 

the given population size and the number of objectives. With three objectives, D becomes 12 

for the population size of 91 as (
𝟏𝟐 + 𝟑 − 𝟏 

𝟑 − 𝟏
) = 𝟗𝟏 from (3.10). 
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Different Crossover and Mutation rates are tested and chosen Crossover rate (Pc) 

is 1.0, Mutation rate (Pm) is 0.05 for which it gives the better performance of the 

MOEA. 

Table 3.1: Parameter values of the proposed algorithm, MOEA/D, NSGA-II 
Algorithm Control Parameters 

The Proposed algorithm Number of objectives (M) =3, Population size after SSA =91, the number of 

divisions along with each objective coordinates D=12, the neighborhood size 

T=20, Crossover rate (Pc)=1.0, Mutation rate (Pm)=0.05, the maximum number 

of generations=50 

MOEA/D[49] Number of objectives (M) =3, Population size after SSA =91, the number of 

divisions along with each objective coordinates D=12, the neighborhoods size 

T=20, Crossover rate (Pc)=1.0, Mutation rate (Pm)=0.05, the maximum number 

of generations=50 

NSGA-II[43] Number of objectives (M) =3, Population size =100, Crossover rate (Pc)=0.8, 

Mutation rate (Pm)=0.01, maximum number of generations=50 

The real measurements have errors in the range of 1-5%. Pseudo measurements are based 

on historical data or provided by the operator based on experience. Therefore, Pseudo 

measurements are associated with huge errors in the range of 20- 50%. This proposed work 

assumed Pseudo measurements are with maximum value as 50% accuracy and real 

measurements are varied with 1%, 3% and 5% of the error to test the versatility of the proposed 

algorithm for different measurement uncertainties. 

3.7 Results and Discussions 

The performance of the proposed hybrid multi-objective evolutionary algorithm is verified on PG&E 

69-bus distribution system and Indian Practical 85-bus distribution system.  

For all figs. 3.2 to 3.7 the repeating captions are specified as given here:(a) objective-J2 

average relative percentage error (ARPE) of voltage magnitude Vs. objective-J3 average 

relative percentage error (ARPE) of voltage angle. (b) objective-J2 average relative percentage 

error (ARPE) of voltage magnitude Vs. the number of power flow meters (c), objective-J3 

average relative percentage error (ARPE) of voltage angle Vs. the number of power flow 

meters.  

3.7.1 PG&E 69-bus Distribution System  

The proposed algorithm has been tested on PG&E 69-bus distribution system [92], which 

has 68 lines, 21 zero bus injection nodes, and total real and reactive power load of 3.802 MW, 

2.692 MVAR, respectively. The zero bus injections are modeled as virtual measurements, and 
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one VMM and one PM devices are considered as default measurements on the slack bus and 

first-line, respectively.  

The performance of the proposed algorithm is tested by varying the measurement 

uncertainty of real meters with an accuracy of 1%, 3%, and 5%. The results are tabulated in 

Table-3.2, and the corresponding comparative plots of objectives are shown in figs. 3.3, 3.4, 

and 3.5. The results show that, with 1% accuracy of real measurements, for the proposed 

algorithm, the total number of measurements required is 6, including default measurements, 

the average relative percentage error of voltage magnitude is 0.0014%, and the average relative 

percentage error of voltage angle is 0.4547%. For MOEA/D, NSGA-II algorithms, including 

default measurements, a total of 8 and 9 meters were needed, respectively. The average relative 

percentage error of voltage magnitude, the average relative percentage error of voltage angle 

for MOEA/D, NSGA-II is 0.0019%, 0.6025%, and 0.0038%, 1.6474%, respectively. Similarly, 

for 3% and 5% of measurement uncertainty, the proposed algorithm performed better than 

MOEA/D and NSGA-II. The proposed method was compared with algorithms in the literature, 

PSO-KH, EDA-IPM. For PSO-KH, EDA-IPM with 1% measurement accuracy, the number of 

meters required is 6 and 6, respectively. The proposed method also required the same number 

of meters, that is, 6, but when compared with the average relative percentage error of voltage 

magnitude and the average relative percentage error of voltage angle, the proposed method 

gives better performance. The proposed algorithm also yielded better performance with 3% 

and 5% of metrological uncertainty when compared to PSO-KH, EDA-IPM. The numerical 

results, as shown in Table-3.2. 

When the Pareto fronts are observed from figs. 3.3, 3.4, and 3.5, real measurement 

accuracy with 1%, 3%, and 5%, the proposed algorithm performed better than MOEA/D and 

NSGA-II, in terms of convergence and diversity of candidate solutions in the Pareto optimal 

front. However, MOEA/D converges better than NSGA-II, but the diversity in Pareto front is 

lower as it converges to the best candidates of repeated solutions. The Non-dominated sorting 

and dominance are combined in the proposed algorithm, it converged quickly, and the 

candidate solution quality is also improved as it was evident from the results shown in figs. 

3.3, 3.4 and 3.5.  
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Fig. 3.3: PG&E 69-bus distribution system optimal Pareto-front plots: Real measurements 

with an accuracy of 1% and Pseudo measurements with an accuracy of 50%. 
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Fig. 3.4: PG&E 69-bus distribution system optimal Pareto-front plots: Real measurements 

with an accuracy of 3% and Pseudo measurements with an accuracy of 50%. 
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Fig. 3.5: PG&E 69-bus distribution system optimal Pareto-front plots: Real measurements 

with an accuracy of 5% and Pseudo measurements with an accuracy of 50%. 
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Table 3.2: PG&E 69-bus distribution system: Optimal location of the power flow meters 

under different metrological errors 
Metrological 

error (in %) 

Algorithm Location of 

Power flow 

meters (Line 

numbers) 

Number 

of power 

flow 

meters 

Objective function values Maximum 

error in 

Voltage 

Magnitude 

(in %) 

Maximum 

error in 

Voltage 

angle 

(in %) 

J1 

Cost of 

meters 

(1 per 

unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

1 Proposed 

algorithm 

1,5,13,30,54 5 6 0.0014 0.4547 0.0158 5.1732 

MOEA/D 

[49] 

1,6,11,28,43,53,

62 

7 8 0.0019 0.6025 0.0388 5.8273 

NSGA-II 

[43] 

1,4,10,11,12,42,

55,68 

8 9 0.0038 1.6474 0.0523 6.8294 

PSO-KH 

[73] 

1, 7, 24, 54, 66 5 6 0.0028 0.4947 0.0381 5.7922 

EDA-IPM 

[75] 

1, 3, 7, 24, 51 5 6 0.0025 0.4821 0.0201 5.2137 

3 Proposed 

algorithm 

1,10,14,17,37, 

56 

6 7 0.0017 0.4906 0.0289 5.5293 

MOEA/D 

[49] 

1,9,13,26,37,46,

59, 64 

8 9 0.0055 0.9750 0.0411 5.9032 

NSGA-II 

[43] 

1,7,14,29,32,47,

53,60 

8 9 0.0118 1.5566 0.0612 7.3214 

PSO-KH 

[73] 

1, 11, 18, 43, 52 5 6 0.0053 0.9782 0.0417 5.9154 

EDA-IPM 

[75] 

1, 11, 19, 43, 52 5 6 0.0051 0.9657 0.0317 5.7321 

5 Proposed 

algorithm 

1,9,13, 26, 31, 

46, 60 

7 8 0.0023 0.6288 0.0476 5.7682 

MOEA/D 

[49] 

1,9,13,19,30,34, 

47, 63 

8 9 0.0032 1.2314 0.0547 6.3262 

NSGA-II 

[43] 

1,3,8, 14, 29, 36, 

39, 45, 53, 60, 

63, 66 

12 13 0.0049 1.7634 0.0645 9.2437 

PSO-KH 

[73] 

1, 7, 14, 21, 28, 

33, 49, 53, 61 

9 10 0.0058 1.1491 0.0523 6.3172 

EDA-IPM 

[75] 

1, 7, 14, 19, 28, 

33, 47, 53, 61 

9 10 0.0056 1.1273 0.0513 6.2379 
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3.7.2 Indian Practical 85-bus Distribution System 

The proposed method has also been investigated on Indian Practical 85-bus distribution 

system [93], which has 84 lines, 26 zero injection nodes, and a total load of real and reactive 

power of 2.574 MW and 2.622 MVAR, respectively. The zero bus injections are modeled as 

virtual measurements, and one VMM and one PM devices are considered as default 

measurements on the slack bus and first-line, respectively. 

The proposed algorithm is simulated by placing the power flow meters with accuracies of 

1%, 3%, and 5%, and the results are tabulated in Table-3.3. The corresponding comparative 

plots of objectives are shown in figs. 3.6, 3.7, and 3.8. The proposed algorithm required a total 

of 7 meters, including default measurements, whereas MOEA/D and NSGA-II required 10 and 

11 meters, respectively. The average relative percentage error of voltage magnitude, the 

average relative percentage error of voltage angle for the proposed method, MOEA/D, NSGA-

II is 0.0337%, 0.0385%, 0.0338%, and 0.7153%, 1.2964%, 0.8526%, respectively. In all cases 

of meter uncertainty with 1%, 3%, and 5%, the proposed algorithm performed better compared 

to MOEA/D and NSGA-II. For PSO-KH and EDA-IPM with 1% measurement accuracy, the 

number of meters required is 8. The proposed method only needed 7 meters, and when 

compared with average relative percentage error of voltage magnitude and average relative 

percentage error of voltage angle, the proposed method gives better performance even with 3% 

and 5% uncertainty cases. The results are shown in Table-3.3. 

When the Pareto fronts were observed from figs. 3.6, 3.7, and 3.8 for meter accuracy with 

1%, 3% and 5%, the proposed algorithm performs better than MOEA/D and NSGA-II, in terms 

of convergence and diversity of candidate solutions in Pareto optimal front. From the results, 

it is observed that with an increase in uncertainty of real measurements, the number of meters 

required increased, to get the satisfactory performance of DSSE in terms of voltage magnitude 

and voltage angle limits. 
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Fig. 3.6: Indian Practical 85-bus distribution system optimal Pareto-front plots: Real 

measurements with an accuracy of 1% and Pseudo measurements with an accuracy of 50%. 
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Fig. 3.7: Indian Practical 85-bus distribution system optimal Pareto-front plots: Real 

measurements with an accuracy of 3% and Pseudo measurements with an accuracy of 50%. 
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Fig. 3.8: Indian Practical 85-bus distribution system optimal Pareto-front plots: Real 

measurements with an accuracy of 5% and Pseudo measurements with an accuracy of 50%. 

Ke Li [35] investigated the change in real-time measurement accuracy influences the 

results of estimation, it evident that the effect is different for different locations. The effect will 

depend on the network structure. Therefore, the change in metrological error percentage has a 

different effect on different locations. Consequently, the meter location varies with change in 

real measurement accuracy. Haibin Wong et al. [36] also examined the issue of measurement 

error impact on the location of meters. The authors had shown that with the change in 

measurement error for different locations, based on meter type, the accuracy of distribution 

system state estimation varies. The same can be observed from the results, with a change in 

effect the location of the measurements. It is obvious that the device measurement uncertainties 

are specified by manufacturers. Whereas the proposed work investigated the impact of meter 

placement for different measurement uncertainties. 

When the results of PG&E 69-bus distribution system and Indian Practical 85-bus 

distribution system are observed, the proposed algorithm performed better than decomposition-
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based algorithm MOEA/D, Non-dominated Sorting based NSGA-II, and apart from that, it 

showed better results compared with other algorithms in the literature, such as PSO-KH and 

EDA-IPM MOEAs in terms of convergence and diversity of Pareto front as well as in the 

quality of solutions. 

Table 3.3: Indian Practical 85-bus distribution system: Optimal location of the power 

flow meters under different metrological errors 
Metrological 

error (in %) 

Algorithm Location of Power 

flow meters (Line 

numbers) 

Number 

of power 

flow 

meters 

Objective function values Maximum 

error in 

Voltage 

Magnitude 

(in %) 

Maximu

m error in 

Voltage 

angle 

(in %) 

J1 

Cost of 

meters (1 per 

unit device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

1 Proposed 

algorithm 

1,6,11,26,30,63 6 7 0.0337 0.7153 0.1534 5.0432 

MOEA/D 

[49] 

1,7, 16, 19, 27, 30, 

47, 59, 72 

9 10 0.0385 1.2964 0.1673 5.1723 

NSGA-II 

[43] 

1,6, 7, 18, 23, 33, 

35, 56, 67, 69 

10 11 0.0338 0.8526 0.2089 6.1247 

PSO-KH 

[73] 

1, 13, 18, 26, 75, 79, 

84 

7 8 0.0385 1.1737 0.1853 5.1722 

EDA-IPM 

[75] 

1, 13, 19, 25, 75, 78, 

84 

7 8 0.0383 1.0952 0.1692 5.0660 

3 Proposed 

algorithm 

1,2, 5, 10, 30, 56, 67 7 8 0.0448 0.9184 1.7034 5.1763 

MOEA/D 

[49] 

1,8, 16, 17, 24, 28, 

33, 62, 65 

9 10 0.0551 1.2506 0.2322 5.6224 

NSGA-II 

[43] 

1,4, 8, 15, 25, 32, 

54, 55, 66, 74, 84 

11 12 0.0522 1.3259 0.2650 7.4781 

PSO-KH 

[73] 

1, 17, 22, 30, 36, 73, 

81 

7 8 0.0438 1.3355 0.2347 5.5217 

EDA-IPM 

[75] 

1, 34, 40, 46, 52, 53, 

67, 69 

8 9 0.0427 1.0433 0.2117 5.2365 

5 Proposed 

algorithm 

1,7, 26, 32, 39, 45, 

57, 79, 84 

9 10 0.0492 1.4288 0.2431 5.3256 

MOEA/D 

[49] 

1,6, 8, 26, 32, 44, 

54, 55, 69, 74, 83 

11 12 0.0783 1.7764 0.3011 5.8867 

NSGA-II 

[43] 

1,4, 6, 9, 26, 30, 49, 

59, 63, 71, 80 

11 12 0.0884 1.7494 0.3297 8.1215 

PSO-KH 

[73] 

1, 16, 21, 24, 33, 69, 

77, 79 

8 9 0.0439 1.2855 0.2896 5.9407 

EDA-IPM 

[75] 

1, 12, 20, 43, 50, 68, 

75, 83 

8 9 0.0464 1.4298 0.2896 5.4821 
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3.8  Summary  

An optimal meter placement in distribution system state estimation using a new hybrid multi-

objective evolutionary algorithm based on decomposition and local dominance is proposed in 

this chapter. Minimizing the cost of measurement devices, average relative percentage error of 

voltage magnitude and average relative percentage error of voltage angle are the three 

objectives, that are considered to evaluate the proposed algorithm. The hybridization of 

decomposition and dominance techniques improved the convergence and diversity of solutions 

in the Pareto front. As the meter placement is a combinatorial optimization problem, the 

population of the proposed algorithm is initialized using the Binomial distribution-based Monte 

Carlo method, which improved the diversity of Pareto front. Diversity improvement is the main 

goal of the Binomial distribution-based Monte Carlo method; therefore, it improves the 

convergence, which is a by-product of this method. The competent results of the proposed 

algorithm compared with algorithms such as MOEA/D, NSGA-II, PSO-KH, and EDA-IPM for 

various load demands and uncertainty of measurement devices. 

 The Pareto dominance and decomposition based MOEAs may not provide any 

guarantee that the obtained solution is an optimal, as there is no measure of performance 

throughout the evolutionary process. Whereas, in indicator based MOEAs, performance metric 

measures the performance (convergence and diversity) of a solution set and serves as selection 

criterion. The indicator based MOEAs overcomes the limitation of Pareto based MOEAs and 

decomposition based MOEAs. Therefore, chapter 4 proposes an indicator based MOEA for 

meter placement in active distribution system. 
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Chapter 4  

Multi-Objective Meter Placement in Active Distribution System State 

Estimation using Objective Discretization and Indicator-Based Algorithm 

with Adaptive Reference Point Method 

4.1 Introduction 

 

Pareto dominance-based MOEAs are designed to address the drawbacks of weighted-sum 

MOEAs. The solutions are ranked based on Pareto order, which improves the convergence of 

MOEA, and the crowding distance approach is used to assure that the solutions are diverse. 

Besides the advantages, drawback of Pareto-based MOEAs is that the increase in objectives 

deteriorates the selection pressure and may cause a reduction in population diversity and 

convergence. Whereas, in decomposition-based MOEAs, the multi-objective problem is 

transformed into several single objective optimization problems. The drawbacks of 

decomposition-based MOEAs are: (i) The weight vectors are uniformly distributed in 

decomposition-based MOEAs. With uniformly distributed weight vectors the best 

approximated Pareto solutions may not be obtained for irregular (degenerated, disconnected, 

and with sharp tails) shape Pareto front. (ii) Even if the Pareto front is of low dimension, the 

number of weight vectors may rise exponentially with the objective space size. Moreover, 

Pareto dominance and decomposition based MOEAs may not provide any guarantee that the 

solution obtained is an optimal solution, as there is no measure of performance throughout the 

evolutionary process. 

This chapter proposes a method with objective discretization and indicator-based multi-

objective optimization to overcome the above drawbacks. The combination of meter set in each 

generation of evolution algorithm results in a discrete objective space. Therefore, the proposed 

method utilizes the objective discretization method, which improves the performance 

(convergence and diversity) of MOEA. In combinatorial multi objective optimization problem, 

a large possible combination of solutions in decision space is mapped to the different ranges of 

objective values. It means that different objective functions have different granularities (width 

of discretization intervals). The discretization of objective space improves the performance of 

combinatorial multi-objective evolutionary algorithm, as it improves the search ability of 
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MOEA and reduces the non-dominated solutions in population. The indicator measures the 

performance of a solution set and serves as selection criterion. The indicator based MOEAs 

overcomes the limitation of Pareto based MOEAs, because they improve the selection pressure. 

As the evolution process is guided by a performance indicator, it ensures that the best solutions 

are found throughout the evolutionary process. The proposed method is based on inverted 

generational distance indicator with noncontributing solution detection (IGD-NS) performance 

metric, which indicates the performance of solution set in terms of convergence and diversity, 

while also minimizing the number of noncontributing solutions in population. The 

noncontributing solutions are the nondominated solutions, which are away from any reference 

point and do not contribute to the value of the performance metric. The IGD-NS calculation 

requires a priori knowledge of approximate Pareto front. A study reveals that the shape of 

Pareto front, strongly influences the performance of MOEAs [53]. Therefore, the proposed 

method utilizes an adaptive reference point approach to follow the approximate Pareto front 

shape. The work has following main contributions: 

i. The objective discretization method is employed to improve the convergence and 

diversity of the proposed method, as each objective value spread on its own range of 

possible values. It enhances the search ability of MOEA and decreases the non-

dominated solutions in population. 

ii. A new indicator based multi-objective evolutionary algorithm is proposed for meter 

placement in active distribution system. An inverted generational distance indicator 

with noncontributing solution detection (IGD-NS) indicator is used to evaluate the 

performance of the solution set and used as selection criterion. The IGD-NS indicates 

the diversity and convergence of the solution set and minimizes the number of solutions 

that have no impact on the indicator value.  

iii. The shape of the Pareto front influences the performance of a multi-objective 

evolutionary algorithm. Therefore, the proposed work employed a reference point 

method, which adaptively update the reference points to follow the Pareto front shape. 

These reference points serve as priori knowledge of the approximate optimal Pareto 

front in the calculation of performance indicator. 

iv. The cost of meters and state estimation errors are considered as objectives to form the 

multi-objective optimization problem. Moreover, the impact of meter placement is 
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investigated for various types of renewable sources and different measurement 

uncertainties. 

4.2 Problem Formulation 

The multi-objective meter placement problem is formulated using three objectives: i) 

minimizing the cost of meters (J1) ii) minimizing the average relative percentage error (ARPE) 

of voltage magnitude (J2) and iii) minimizing the average relative percentage error (ARPE) of 

voltage angle (J3). The objectives are given as follows: 

                                            𝑀𝑖𝑛 𝐽1 = ∑ 𝐶𝑃𝑀,𝑖
𝑛𝑙
𝑖=1  . 𝑈𝑃𝑀,𝑖 + ∑ 𝐶𝑉𝑀𝑀,𝑗

𝑛
𝑗=1  . 𝑈𝑉𝑀𝑀,𝑗 

(4.1) 

𝑀𝑖𝑛 𝐽2 =
1

𝑚
∑

1

𝑛
𝑚

(∑
𝑉𝑖

𝑡 − 𝑉̂𝑖

𝑉𝑖
𝑡

𝑛

𝑖=1

) × 100 

(4.2) 

𝑀𝑖𝑛 𝐽3 =
1

𝑚
∑

1

𝑛
𝑚

(∑
𝛿𝑖

𝑡 − 𝛿𝑖

𝛿𝑖
𝑡

𝑛

𝑖=1

) × 100 

(4.3) 

The constraints considered are voltage angle relative deviation and voltage magnitude 

relative deviation. The boundaries are one percentage and five percentage for voltage 

magnitude and angle, respectively. The constraints violations are calculated for 95 percentage 

of simulated scenarios [30]. The following are the constraints: 

𝑔1 = |
𝑉𝑖

𝑡 − 𝑉̂𝑖

𝑉𝑖
𝑡 | < 1% 

(4.4) 

𝑔2 = |
𝛿𝑖

𝑡 − 𝛿𝑖

𝛿𝑖
𝑡 | < 5% 

(4.5) 
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4.3 Methodology 

Indicator based MOEAs use an indicator to measure the performance of a solution set to 

guide the search process. An enhanced inverted generational distance with noncontributing 

solution detection (IGD-NS) indicator is used to assess the convergence and diversity of the 

MOEA. The proposed MOEA is based on IGD-NS with adaptive reference point method [94]. 

There are several performance indices in literature such as hypervolume (HV) [60], R2 

indicator [61], generational distance (GD) indictor and inverted generational distance (IGD) 

indicator [59] so on. These indicators are used to measure the performance of a solution set and 

adapted as selection criteria in MOEAs.  

Inverted generational distance (IGD) [59] metric indicates the convergence and diversity of 

a solution set. Some of the nondominated solutions, which do not have any nearest neighboring 

reference points, are always ignored in the calculation of the IGD metric. These omitted non-

dominated solutions do not contribute to the value of the IGD metric. Therefore, these are 

called noncontributing solutions in non-dominated solutions of the Pareto optimal front 

solution set. Considering the noncontributing solutions, the inverted generational distance with 

noncontributing solution detection (IGD-NS) [94] is expressed as follows: 

𝐼𝐺𝐷 − 𝑁𝑆(𝑃, 𝑃∗) = ∑ 𝑚𝑖𝑛𝑦∈𝑃 𝑑𝑖𝑠(𝑥, 𝑦)

𝑥∈𝑃∗

+ ∑ 𝑚𝑖𝑛𝑥∈𝑃∗  𝑑𝑖𝑠(𝑥, 𝑦′)

𝑦′∈𝑃′

 

(4.6) 

Where 𝑷′ is the set of noncontributing solutions in population 𝑷, which is not closest to any 

reference point 𝑷∗. The first term in equation (4.6) is identical to IGD metric, which assesses 

the diversity and convergence of solution set P. Apart from that, the second term in equation 

(4.6), is an addition of the minimum distance from each noncontributing solution to the 

reference point 𝑷∗. This indicator decreases the number of noncontributing solutions in 𝑷′. A 

set of reference points, sampled from the Pareto front, are used in the calculation of IGD-NS 

metric. These reference points serve the purpose of a priori knowledge of approximate Pareto 

front. The reference points are adaptively updated as per the approximate Pareto front shape 

obtained in each generation. Thus, the adaptive reference points reflect the shape, irrespective 

of the regularity or discontinuity of Pareto front shape. The reference points are added or 

removed to preserve the diversity of candidate solutions. The proposed algorithm is discussed 

in the next section. 



Chapter 4  Multi-Objective Meter Placement using  

Objective Discretization and Indicator based 

algorithm 

  

67 
 

4.4 The Proposed Indicator based Multi-Objective Evolutionary Algorithm with 

Adaptive Reference Point Method Stage 1 

The proposed algorithm is based on enhanced inverted generational distance indicator (IGD-

NS), which is a measure of the diversity and convergence of candidate solution set, minimizing 

the noncontributing candidate solutions in the nondominated solutions. The proposed approach 

updates the reference points adaptively to track the Pareto front. For each generation, the two 

reference point sets and two solution sets are preserved and updated. The reference point sets 

contain initial reference point set (R) and updated reference point set (𝑅′) and population sets 

comprise of the present population (P) and the solution set of contributing nondominated 

solution of Archive population (A).  

Initial population is randomly generated with a size of ‘N’, as a binary string indicating the 

meter locations. Systematic Sampling Approach is used to obtain uniformly distributed 

reference points (R) [87]. 

The mating pool is selected from the population based on tournament selection using the 

IGD-NS metric as fitness. Then the reference points (R) and current population (P) and archive 

population (A) are normalized to bring them into the same range so that the uniformly 

distributed reference points generate uniformly distributed solutions irrespective of the range 

of different objective values [95].  

The crossover is applied to generate the offspring from mating parents. Binary mutation 

operator is used to preserve the diversity of the population. 

The solutions are stored in archive populations (A), and repeated and dominated solutions 

are removed from it. Then the reference points are updated using angle criteria. The extreme 

solutions are preserved in archive population to uphold the diversity of population. The location 

of reference points near the extreme points are adjusted using minimum value of product of 

ideal point and reference point (𝑍∗𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). At least one reference point is discovered closest to the 

solutions then the identified reference points are transferred to a new archive population (𝐴′). 

Remaining solutions are filled until the minimum size of (|𝑅|, |𝐴|) reaches the size of new 

archive population. Then again, the reference points are updated using minimum angle criteria 

using the current population. 

Finally, the environmental selection is based on the elitist strategy applied to the combined 

population of off-springs and parent population. First, the combined population is sorted using 
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efficient nondominated sorting (ENS) [96]. Then the all the candidate solutions in the (k-1) 

fronts are directly selected for next-generation (Q), and the IGD-NS indicator is used to select 

the candidate solutions from the kth front. Where k is the minimum number fronts such that the 

number of candidate solutions up to kth front is less than or equal to the size of the population 

(N). For each candidate solution in front-k, the performance metric IGD-NS value is obtained 

using (4.6), and the candidate with the minimum value of IGD-NS is deleted from the front-k. 

Then the IGD-NS value is again calculated for the remaining candidate solutions in front-k 

until the remaining solutions reach the size of (N-Q).  

Step-by-Step Process of the Proposed Algorithm Stage-1 

Algorithm 1: The stage-1 of the proposed algorithm using indicator based 

multi-objective evolutionary algorithm with adaptive reference point 

method: 

1 // Initialization // 

Step 1: Initialize the population randomly of size ‘N’ as binary string 

representing the placement of power flow meter location on the 

distribution system. Systematic Sampling Approach (SSA) [87] used 

to produce uniformly distributed reference points (R) as follows: 

𝑁(𝐷,𝑀) = (
𝐷 + 𝑀 − 1

𝑀 − 1
)  𝑓𝑜𝑟 𝐷 > 0 

Where D is the number of divisions per objective coordinate, and M 

denotes the number of objectives. 

2 Initialize solution sets P, 𝐴′ and reference point sets 𝑅, 𝑅′.Copy 

solution sets and reference sets as follows:  

𝐴′ ← 𝑃;  𝑅′  ← 𝑅; 

 

3 

Step 3:  

While (“Stopping Criteria”) do 

4   // Mating Pool Selection // 

for i = 1 to M           // M is number of objectives 

5  𝑓𝑖(𝑝) =  𝑓𝑖(𝑝) − 𝑚𝑖𝑛𝑞∈𝑃𝑓𝑖(𝑞),      ∀𝑝 ∈ 𝑃 

       //𝑓𝑖(𝑝) ith objective value of 𝑝 

6 End for 

7 Calculate the fitness of each candidate solution using (4.6) 

Fitness = IGD-NS (P, R) 

Initialize the selected population (S), select the mating parents 

based on tournament selection 

8  for i = 1 to N 

9  Randomly select p, q from population P 

10 if Fitness (p) > Fitness (q) 

11  S = S U P(p) 

12 Else 

13  S = S U P(q) 

14 End if 

15 End for  
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16 Step 4. Two-point crossover is applied to generate offspring 

from mating parents. Then, binary mutation is used to produce a 

new population (Q).  

Combined archive population with new offspring population  

 𝐴 = 𝐴 ∪ 𝑄 

17 // Reference point Adaptation// 

Step 5: // the reference point set, archive population (A), current 

population (P) and are normalized  

18  for i= 1 to M 

19  𝑧𝑖
∗ = 𝑚𝑖𝑛𝑝∈𝑃𝑓𝑖(𝑝) 

 𝑧𝑖
𝑛𝑎𝑑 = 𝑚𝑎𝑥𝑝∈𝑃𝑓𝑖(𝑝) 

 𝑓𝑖(𝑝) =  𝑓𝑖(𝑝) − 𝑧𝑖
∗,   ∀ 𝑝 ∈ 𝐴 ∪ 𝑃  

 𝑅𝑖
𝑗
= 𝑅𝑖

𝑗
∗ (𝑧𝑖

𝑛𝑎𝑑 − 𝑧𝑖
∗), ∀ 𝑗 𝜖 {1, …… , |𝑅|} 

20 End for  

21 Step 6: // Archive population (A) updation // 

from ‘A’ remove the repeated and dominated solutions  

22 Step 7: // To preserve the extreme end solutions in Pareto front, 

reference points near extreme solutions are adjusted // 

Initialize  𝑅′ 
23  For r ϵ R 

24  𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝜖𝐴‖𝐹(𝑝)‖ sin (𝑧∗𝑟⃗⃗⃗⃗⃗⃗ , 𝐹(𝑝))    

 𝑟𝑖
′ =

𝑟𝑖

‖𝑟‖
 . ‖𝐹(𝑝)‖ cos (𝑍∗𝑟⃗⃗ ⃗⃗ ⃗⃗  , 𝐹(𝑝)) , ∀𝑖 ∈

 {1,2, …… ,𝑀} 
𝑅′ ← 𝑅′  ∪  {𝑟′}                                                           

25 End for  

26 Step 8:  

Initialize empty archive population 𝐴′and contributing solution 

𝐴𝑐𝑜𝑛 

𝐴𝑐𝑜𝑛 = {𝑝𝜖𝐴| ∃𝑟 𝜖 𝑅: 𝑑𝑖𝑠(𝑟, 𝐹(𝑝)) = 𝑚𝑖𝑛𝑞𝜖𝐴 𝑑𝑖𝑠(𝑟, 𝐹(𝑞))} 

  𝐴′ = 𝐴′ ∪ 𝐴𝑐𝑜𝑛 

27 Step 9: // fill 𝐴′ from A and 𝐴′ // 
//fill remaining space until the size less than minimum size of R 

or A// 

28  While ( 𝐴′ size < min (R or A size)) do 

29  𝑅′ = 𝑅′  ∪ (𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈(𝐴′\ 𝑅′)𝑚𝑖𝑛𝑟∈𝑅′ arccos(𝑟, 𝐹(𝑝))) 

30 End while 

31 Determine the closest reference points to the contributing 

solutions (𝐴𝑐𝑜𝑛). Make a copy in 𝑅′. 

𝑅′ = 𝑅′ ∪ {𝑟𝜖𝑅| ∃𝑝𝜖 𝐴𝑐𝑜𝑛 ∶ 𝑑𝑖𝑠(𝑟, 𝐹(𝑝)) = 𝑚𝑖𝑛𝑠𝜖𝑅(𝑠, 𝐹(𝑝))} 

Remaining space in 𝑅′ copied with candidate solutions from the 

new archive 𝐴′ until the minimum of (|𝑅|, |𝐴′|) size is reached, 

with reference points being in 𝑅′,  having a maximum of 

minimum acute angel between reference values and 

corresponding objective value of 𝑅′and 𝐴′, respectively.  

32  While (size (𝑅′) < min(size(R), size (𝐴′))) do 

33  𝑅′ = 𝑅′  ∪ (𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈(𝐴′\ 𝑅′)𝑚𝑖𝑛𝑟∈𝑅′ arccos(𝑟, 𝐹(𝑝))) 
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34 End while 

35 Step 10: // preserve the extreme end solutions // 

Initialize the empty 𝑅′ 
36  for r ϵ R 

37  𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝜖𝑃‖𝐹(𝑝)‖ sin (𝑧∗𝑟⃗⃗⃗⃗⃗⃗ , 𝐹(𝑝)) 

 𝑟𝑖
′ =

𝑟𝑖

‖𝑟‖
 . ‖𝐹(𝑝)‖ cos (𝑍∗𝑟⃗⃗ ⃗⃗ ⃗⃗  , 𝐹(𝑝)) , ∀𝑖 ∈

 {1,2, …… ,𝑀} 
𝑅′ ← 𝑅′  ∪  {𝑟′}                                                    

38 End for 

39 // Environmental Selection// 

Step 11:  combine the population P and offspring population Q, 

apply elitist selection. 

40 P= P U Q 

41  for i= 1 to M 

42  𝑓𝑖(𝑝) =  𝑓𝑖(𝑝) − 𝑚𝑖𝑛𝑞∈𝑃𝑓𝑖(𝑞),      ∀𝑝 ∈ 𝑃 

43 End for 

44 Step 12: sort the combined population using efficient 

nondominated sorting (ENS) [96]. 

45 Step 13: choose the number of fronts such that it satisfies the 

condition k= |⋃ 𝐹𝑟𝑜𝑛𝑡𝑖
𝑘
𝑖=1 | ≥ 𝑁 

46 Step 14: copy all the (k-1) fronts candidate solutions into 

population ‘O’  

47 Step 15: choose the remaining solutions from the kth front until 

the population size reaches the size ‘N’ using the performance 

metric IGD-NS (4.6) 

48  While size (Front) > N – size(O) 

49  𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑝 𝑤𝑖𝑡ℎ 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝐺𝐷 − 𝑁𝑆 𝑣𝑎𝑙𝑢𝑒 

𝑝 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝜖 𝐹𝑟𝑜𝑛𝑡𝑘 𝐼𝐺𝐷 − 𝑁𝑆(𝐹𝑟𝑜𝑛𝑡𝑘{𝑝}, 𝑅′) 

 Delete the p solution from the Front 

 

50 End while 

51 𝑂 = 𝑂 ∪ 𝐹𝑟𝑜𝑛𝑡𝑘                                                               
 Assign the current population with ‘O’; P= O 

52 End while 
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Start 

Initialization: Initialize the population randomly of size ‘N’ as binary string 

representing the placement of power flow meter location on the distribution 

system. generate uniformly distributed reference points (R) using Systematic 

Sampling Approach (SSA) [87]. Initialize solution sets P, 𝐴′ and reference point 

sets 𝑅, 𝑅′. 

 

Check 

Stopping 

Criteria 

Mating Pool Selection 

for i = 1 to M                                                            // M is number of objectives 

       𝑓𝑖(𝑝) =  𝑓𝑖(𝑝) − 𝑚𝑖𝑛𝑞∈𝑃𝑓𝑖(𝑞),      ∀𝑝 ∈ 𝑃        //𝑓𝑖(𝑝) ith objective value of 𝑝 

 

 Initialize the selected population (S), select the mating parents based on 

tournament selection 

 

 

 

 

  

  

 

 

 

if Fitness (p) > Fitness (q) 

 

i = 1; 

Randomly select p, q from population P 

 

S = S U P(p) S = S U P(q) 

 

i<= N 

i = i+1; 

A B 

C 
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Fig. 4.1: Flow chart of stage 1 of the proposed algorithm 

4.5 Stage 2 of the Proposed Algorithm with Objective Discretization 

The meter placement method is generally designed as combinatorial optimization problem. 

The objective function values of combinatorial optimization problem are discrete in nature, due 

to the large possible combination of solutions in decision space being mapped to the small 

possible values in objective space. In multi objective problems, each objective function has a 

Two-point crossover is applied to generate offspring from mating parents. Then, binary 

mutation is used to produce a new population (Q). Combined archive population with 

new offspring population  𝐴 = 𝐴 ∪ 𝑄 

 

 

 

  

  

 

 

 

Reference point Adaptation: The reference point set, archive population (A), current 

population (P) and are normalized. 

  

  

 

 

 

Archive population (A) updation: from ‘A’ remove the repeated and dominated 

solutions.  

  

 

 

 

Environmental Selection: combine the population P and offspring population Q, 

apply elitist selection. sort the combined population using efficient nondominated 

sorting (ENS) [96]. 

 

 

 

choose the number of fronts such that it satisfies the condition k= |⋃ 𝐹𝑟𝑜𝑛𝑡𝑖
𝑘
𝑖=1 | ≥ 𝑁. 

copy all the (k-1) fronts candidate solutions into population ‘O’. choose the remaining 

solutions from the kth front until the population size reaches the size ‘N’ using the 

performance metric IGD-NS (4.6). Assign the current population with ‘O’; P= O 

 

 

A fuzzy min-max method is employed to obtain the final trade-off solution [88]. 

 

 End 

C 

A B 
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different possible range of values. That means some objective functions have different 

granularity or width of discretization interval. The appropriate granularity or discretization of 

objective space improves the performance of combinatorial multi-objective evolutionary 

algorithm [80]. It also improves the search ability of MOEA and reduces the non-dominated 

solution in the population [81]. 

The objective space discretization is performed before an efficient nondominated sorting 

(ENS) method in environmental selection in the proposed method (stage 1). The efficient 

nondominated sorting (ENS) method is modified with strong Pareto dominance for ranking the 

solutions. Before the discretization, the objective values are normalized to an interval [0,1]. 

The different granularities are tested to choose the resolution of decimal places of normalized 

objective values and reserved for four decimal (granularity) values for objectives of the average 

relative error percentage (AREP) of voltage magnitude (J2) and the average relative error 

percentage (AREP) of voltage angle (J3). Whereas, the first objective (J1), number of meters is 

an integer value, therefore no discretization is applied. The pseudo code of the proposed 

algorithm stage 2 is given as follows: 

 

 

 

 NO 

  

 

 

 

 

 

 

 

 

Mating Pool Selection: select the mating parents based on tournament selection. 

Check Stopping 

Criteria 

Apply two-point crossover, binary mutation and produce a new population (Q). 

Combined archive population with new offspring population. 

 

Reference point Adaptation: The reference point set, archive population (A), current 

population (P) and are normalized. 

  

  

 

 

 

Archive population (A) updation: from ‘A’ remove the repeated and dominated 

solutions.  

  

 

 

 

Initialization: Initialize the population and uniformly distributed reference points (R). 

Initialize solution sets P, 𝐴′ and reference point sets 𝑅, 𝑅′. 

 

 

 

Start 

Stop 

YES 

Fig. 4.2. Flow chart of stage of the proposed algorithms 
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The main aim of MOEA is to balance between the convergence and diversity, which are 

conflict objectives. To show the versatility of the proposed method with objective 

discretization, the performance (convergence and diversity) characteristics are investigated 

using inverted generational distance (IGD) performance indicator. The IGD indicator [59] is 

defined as follows: 

𝐼𝐺𝐷(𝑃, 𝑃∗) =
∑ 𝑚𝑖𝑛𝑦∈𝑃 𝑑𝑖𝑠(𝑥,𝑦)𝑥∈𝑃∗

|𝑃∗|
                                             (4.7) 

Where P is the objective values of non-dominated solutions, 𝑃∗ denotes the collection of 

uniformly distributed reference points taken from the Pareto optimum front, and the Euclidean 

distance between solutions 𝑥 𝑎𝑛𝑑 𝑦 is denoted by dis (x, y). IGD metric calculates the average 

minimum distance from each reference point in 𝑃∗ to those in 𝑃, which measures the 

convergence and diversity of solution set 𝑃. A lower IGD value indicates that the higher the 

convergence and diversity of solution set  𝑃. 

 

Fig. 4.3: Indian Practical 85-bus distribution system: The convergence and diversity measure 

with and without the objective discretization method. 
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The IGD performance indicator assesses the performance characteristics of the proposed 

algorithm. Fig. 4.3 depicts the convergence and divergence characteristics for a typical trial of 

the proposed algorithm. The proposed method with objective discretization method provides 

better performance characteristics compared to without objective discretization method, as 

shown in fig. 4.1. The enhancement in performance characteristics is due to the improvement 

in the search ability of MOEA and reduction the non-dominated solutions in population, caused 

by the discretization of objective values. 

4.6 Simulation and Test Conditions 

One power flow meter (PM) and a voltage magnitude meter (VMM) is located on the first 

line and at the slack bus, respectively. These meters are considered as default measurements. 

The active and reactive power flows are assumed to be acquired from a single PM. The 

proposed method is simulated by deploying PM meters at different locations on distribution 

network. The BC-DSSE [16]-[17] method is used to estimate the states for meter locations, 

which are generated by the proposed method. Monte Carlo simulation evaluate the acceptable 

performance of state estimation in terms of voltage magnitude and voltage angle for different 

measurement uncertainties, with prespecified state estimation error limitations of 1% and 5%, 

respectively, within 95 percent simulated scenarios. If the predefined limitations are exceeded, 

a penalty is applied to the corresponding objective function. voltage magnitude and angle 

constraint violations are evaluated by considering 100 different network operating scenarios, 

each of which is simulated for 1000 Monte Carlo trials with normally distributed measurement 

errors. In addition, the following assumptions are considered:  

i. The default measurements are provided with 1% measurement uncertainty.  

ii. Standard deviation of virtual measurements (zero bus injections) is considered in the 

order of 10-8.  

iv. Pseudo measurements with a maximum error of 50% are supplied to test the efficacy 

of proposed method with huge errors. 

v. The population size is considered to be 100 for NSGA-II, whereas for the proposed 

method with and without discretization, the population size is obtained using the 

Systematic Sampling Approach (SSA), which generates uniformly distributed 

reference points. In addition, Table-4.1 gives the parameters that are used in the 

proposed algorithm, and NSGA-II [43]. 
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Different population sizes are tested, and it is observed that for 3 objectives, the 

population size with 100, is suitable to get the near-optimal solutions. Therefore, population 

size is considered as 100, whereas for indicator-based methods the population size is decided 

based on the weight vectors, which are generated from the Systematic Sampling Approach 

(SSA) [87]. Different Crossover and Mutation rates are tested and chosen Crossover rate (Pc) 

is 1.0, Mutation rate (Pm) is 0.05 for which it gives the better performance of the MOEA. 

Table 4.1: Parameters used in the proposed algorithm and NSGA-II 

Algorithm Control Parameters 

The Proposed 

algorithm with and 

without objective 

discretization 

Number of objectives (M) are three, Population size after SSA is 91, the 

neighborhood size T is 20, the number of divisions per objective coordinates 

D is 12, maximum number of generations are 100, Crossover rate (Pc) is 

1.0, Mutation rate (Pm) is 0.05. 

NSGA-II [43] total objectives (M) are 3, size of population is 100, Crossover rate (Pc) is 

0.8, Mutation rate (Pm) is 0.01, maximum number of generations are 100. 

 

4.7 Results and Discussions 

By evaluating different network scenarios, this work explores the effect of meter placement 

on distribution network. In addition, various types of renewable energy sources had been 

investigated. Table-4.2 provides the size and location of different types of renewable energy 

sources such as DG generating only active power, DG generating active power and absorbing 

reactive power from the network, and DG generating both active and reactive power. In this 

work, DGs are modelled as a dispatchable generation. The position of DGs is determined based 

on minimum voltage deviation and power loss in the network [73]. The effectiveness of the 

proposed algorithm is verified on PG&E 69-bus distribution system and Indian Practical 85-

bus distribution system. The obtained results are compared to NSGA-II [43], and other methods 

such as with multi-objective hybrid PSO Krill herd algorithm (PSO-KH) [73], multi-objective 

hybrid estimation of distribution algorithm- interior point method (EDA-IPM) [75], dynamic 

programming (DP) [38] and ordinal optimization algorithm (OOA) [28]. 
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Table 4.2: Location and size of different types of distributed generation 

Test System Bus Number 

DG type and Capacity (MW) base value 

Type-1 

(P) 

Type-2 

(P-jQ) 

Type-3 

(P+jQ) 

PG&E 69-bus Distribution 

System 

50 0.180 0.180-j 0.087 0.180+j 0.087 

61 0.270 0.270-j0.130 0.270+j0.130 

Indian Practical 85-bus 

Distribution System 

45 0.277 0.235-j 0.145 0.235+j0.145 

61 0.290 0.246-j0.152 0.246+j0.152 

 

For all figs. 4.3 to 4.13 the repeating captions are specified as given here:(a) objective-J2 

average relative percentage error (ARPE) of voltage magnitude Vs. objective-J3 average 

relative percentage error (ARPE) of voltage angle. (b) objective-J2 average relative percentage 

error (ARPE) of voltage magnitude Vs. the number of power flow meters (c), objective-J3 

average relative percentage error (ARPE) of voltage angle Vs. the number of power flow 

meters.  

4.7.1 PG&E 69-bus Distribution System 

The proposed algorithm is tested on PG&E 69-bus distribution system [92], which has 68 

lines, 21 zero bus injection nodes, and total real and reactive power load of 3.802 MW, 2.692 

MVAR respectively. The zero bus injections are modeled as virtual measurements, and one 

VMM, one power flow meter at substation and one power flow meter is placed at each 

distribution generator, which are considered as default measurements.  

The proposed algorithm for meter placement problem is investigated with 1%, and 5% real 

measurement uncertainty and optimal Pareto front plots are shown in figs. 4.4 and 4.5, 

respectively.  The results correspond to objective values and performance of state estimation 

without DG, which are tabulated in Table-4.3. The proposed algorithm with objective 

discretization with 1% accuracy of real measurements, requires 6 meters including the default 

measurements, whereas the proposed algorithm without objective discretization, and NSGA-II 

require 6 and 9 respectively. The average  relative percentage error (ARPE) of voltage 

magnitude and ARPE of voltage angle for the proposed method are 0.0008% and 0.2641%, 

respectively. Whereas, ARPE of voltage magnitude and voltage angle for NSGA-II are 

0.0038% and 1.6474%, respectively. Whereas the existing method in literature such as PSO-

KH, EDA-IPM requires 6 meters, same as the proposed method, whereas, DP and OOA 

methods require 7 and 8 meters respectively. In terms of objective values quality the proposed 

method shows the superiority as shown in Table-4.3. 

Similarly, with 5% real measurement uncertainty the proposed method shows superiority 
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in terms of quality of solutions and as well as the number of meters required.  

 

 

 

Fig. 4.4: PG&E 69-bus distribution system Optimal Pareto-front plots: Real measurements 

with an accuracy of 1% and Pseudo measurements with an accuracy of 50% without DG (OD- 

Objective Discretization method) 
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Fig. 4.5: PG&E 69-bus distribution system Optimal Pareto-front plots: Real measurements 

with an accuracy of 5% and Pseudo measurements with an accuracy of 50% without DG (OD- 

Objective Discretization method)

Table 4.3: PG&E 69-bus distribution system: Optimal location of the power flow meters 

under different metrological errors for without DG. 
Metrological 

error (in %) 

Algorithm Power flow meters 

location(Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of meters 

(1 per unit 

device) 

J2 

ARPE of voltage 

magnitude 

J3 

ARPE of voltage 

angle 

1  Proposed 

algorithm 

with OD* 

1, 13, 32, 43, 55 5 6 0.0008 0.2641 

Proposed 

algorithm 

without OD*  

1, 5, 13, 30, 54 5 6 0.0014 0.4547 

NSGA-II 

[43] 

1, 4, 10, 11, 12, 42, 

55, 68 

8 9 0.0038 1.6474 
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PSO-KH 

[73] 

1, 7, 24, 54, 66 5 6 0.0028 0.4947 

EDA-IPM 

[75] 

1, 3, 7, 24, 51 5 6 0.0025 0.4821 

DP [38] 1, 11, 18, 33, 41, 57 6 7 0.0042 0.7861 

OOA [28] 1, 9, 17, 29, 42, 51, 

57 

7 8 0.0051 0.9292 

5 Proposed 

algorithm 

with OD* 

1, 15, 29, 40, 47, 56 6 7 0.0020 0.3458 

Proposed 

algorithm 

without OD*  

1, 9, 13, 26, 31, 46, 

60 

7 8 0.0023 0.6288 

NSGA-II 

[43] 

1, 3, 8, 14, 29, 36, 

39, 45, 53, 60, 63, 66 

12 13 0.0049 1.7634 

PSO-KH 

[73] 

1, 7, 14, 21, 28, 33, 

49, 53, 61 

9 10 0.0058 1.1491 

EDA-IPM 

[75] 

1, 7, 14, 19, 28, 33, 

47, 53, 61 

9 10 0.0056 1.1273 

DP [38] 1, 7, 16, 29, 34, 46, 

53, 59, 61,65 

10 11 0.01512 1.8727 

OOA [28] 1, 11, 17, 26, 31, 39, 

47, 53, 58, 63 

10 11 0.0223 1.7821 

*OD - Objective Discretization method 

 

The proposed algorithm for meter placement problem in the active distribution system is 

investigated with 1%, and 5% real measurement uncertainty and the Pareto optimal plots are 

shown in fig. 4.6 to 4.7, respectively.  The results for DG type-1 (P), are tabulated in Table-

4.4. The proposed algorithm with objective discretization with 1% accuracy of real 

measurements, requires 8 meters including the default measurements at each DG and on the 

first line, whereas proposed algorithm without objective discretization, NSGA-II, PSO-KH, 

EDA-IPM, DP and OOA requires 9,  12, 8, 8, 9 and 11 respectively. The average  relative 

percentage error (ARPE) of voltage magnitude and ARPE of voltage angle for proposed 

method are 0.0011% and 0.3122%, respectively, whereas for proposed algorithm without 

objective discretization, NSGA-II, PSO-KH, EDA-IPM, DP and OOA are 0.0015%, 0.0044%, 

0.0011%, 0.0018%, 0.0037%, 0.0049% and 0.3458%, 0.7954%, 0.2653%, 0.3125%, 0.9127%, 

0.8357% respectively. As the proposed method shows superiority with the majority of 

algorithms. Whereas, in the case of 5% real measurement uncertainty, when compared to all 
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the methods the proposed method shows superiority in terms of quality of solutions and as well 

as the number of meters required. Similarly, the proposed method is tested for DG type-2, type-

3 and the optimal Pareto fonts are shown in fig. 4.8 and 4.9, respectively. The performance of 

all the algorithms is tabulated in Table 4.5 and 4.6 for DG type-2 and type-3, respectively.  

 
Fig. 4.6: PG&E 69-bus distribution system Optimal Pareto-front plots: Real measurements 

with an accuracy of 1% and Pseudo measurements with an accuracy of 50% with DG Type-1 

(P) (OD- Objective Discretization method) 
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Fig. 4.7: PG&E 69-bus distribution system Optimal Pareto-front plots: Real measurements 

with an accuracy of 5% and Pseudo measurements with an accuracy of 50% with DG Type-1 

(P) (OD- Objective Discretization method)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4  Multi-Objective Meter Placement using  

Objective Discretization and Indicator based 

algorithm 

  

83 
 

Table 4.4: PG&E 69-bus distribution system: Optimal location of the power flow meters 

under different metrological errors  with DG Type-1(P) 
Metrological 

error (in %) 

Algorithm Location of Power 

flow meters(Line 

numbers) 

Number of  

power flow 

meters 

Objective function values 

J1 

Cost of meters (1 

per unit device) 

J2 

ARPE of voltage 

magnitude 

J3 

ARPE of voltage angle 

1  Proposed 

algorithm 

with OD* 

1, 13, 30, 41, 56 5 8 0.0011 0.3122 

Proposed 

algorithm 

without 

OD*  

1, 10, 15, 29, 44, 52 6 9 0.0015 0.3458 

NSGA-II 

[43] 

1, 12, 18, 30, 41, 

48, 52, 53, 60 

9 12 0.0044 0.7954 

PSO-KH 

[73] 

1, 49, 52, 59, 67 5 8 0.0011 0.2653 

EDA-IPM 

[75] 

1, 49, 52, 60, 68 5 8 0.0018 0.3125 

DP [38] 1, 23, 38, 49, 51, 63 6 9 0.0037 0.9127 

OOA [28] 1, 16, 27, 33, 39, 

52, 61, 63 

8 11 0.0049 0.8357 

5 Proposed 

algorithm 

with OD* 

1, 14, 32, 42, 47, 55 6 9 0.0017 0.4698 

Proposed 

algorithm 

without 

OD*  

1, 15, 30, 43, 47, 55 6 9 0.0031 0.4663 

NSGA-II 

[43] 

1, 9, 15, 23, 30, 36, 

43, 46, 58 

9 12 0.0087 0.9465 

PSO-KH 

[73] 

1, 3, 17, 25, 34, 42, 

50, 63 

8 11 0.0063 1.0587 

EDA-IPM 

[75] 

1, 3, 17, 24, 33, 41, 

50, 63 

9 12 0.0051 1.1122 

DP [38] 1, 11, 14, 23, 37, 

44, 59, 63, 67 

9 12 0.0238 1.6345 

OOA [28] 1, 11, 19, 26, 31, 

39, 49, 52, 61, 

63 

10 13 0.0321 1.7952 

*OD - Objective Discretization method 
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Fig. 4.8: PG&E 69-bus distribution system optimal Pareto front plots: Real measurements 

with an accuracy of 1% and Pseudo measurements with an accuracy of 50% with DG Type-2 

(P-jQ) (OD- Objective Discretization method) 
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Fig. 4.9: PG&E 69-bus distribution system optimal Pareto front plots: Real measurements 

with an accuracy of 1% and Pseudo measurements with an accuracy of 50% with DG Type-3 

(P+jQ) (OD- Objective Discretization method) 
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Table 4.5: PG&E 69-bus distribution system: Optimal location of the power flow meters 

with 1% measurement uncertainty with DG Type-2(P-jQ). 
Algorithm Location of 

Power flow 

meters(Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

Proposed algorithm 

with OD* 
1, 14, 29, 41, 

55 

5 8 0.0014 0.3800 

Proposed algorithm 

without OD*  
1, 9, 12, 28, 

29, 41      

6 9 0.0023 0.2507 

NSGA-II [43] 1, 16, 21, 31, 

37, 40, 44, 58 

8 11 0.0064 0.8544 

EDA-IPM [75] 1, 5, 24, 37, 

42 

5 8 0.0069 1.1807 

DP [38] 1, 7, 15, 41, 

56, 66 

6 9 0.0085 1.6137 

OOA [28] 1, 5, 13, 14, 

20, 43, 54, 

56, 57 

9 12 0.0088 0.9864 

*OD - Objective Discretization method 

Table 4.6: PG&E 69-bus distribution system: Optimal location of the power flow meters 

with 1% measurement uncertainty with DG Type-3(P+jQ). 
Algorithm Location of 

Power flow 

meters(Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage angle 

Proposed 

algorithm with 

OD* 

1, 13, 31, 40, 

58 

5 8 0.0012 0.5714 

Proposed 

algorithm without 

OD*  

1, 9, 15, 30, 

55 

5 8 0.0014 0.7799 

NSGA-II [43] 1, 9, 13, 22, 

26, 29,40, 55, 

68 

9 12 0.0039 1.2852 

EDA-IPM [75] 1, 11, 32, 45, 

51 

5 8 0.0067 0.9864 

DP [38] 1, 25, 31, 38, 

65, 67, 68 

7 10 0.0115 1.7095 
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OOA [28] 1, 6, 10, 19, 35, 

45, 63, 64 
8 11 0.0094 1.4584 

*OD - Objective Discretization method 

 

When the Pareto fronts in fig. 4.2 to 4.7 are observed, the proposed algorithm with 

objective discretization shows the evenly distributed diverse solutions as compared to proposed 

algorithm without objective discretization and NSGA-II. The discontinuities in Pareto fronts 

are clearly noticeable in all the plots in fig 4.2 to 4.7. Whereas, the irregularities in Pareto fronts 

are less in the proposed method Pareto fronts as compared to other methods.  

4.7.2 Indian Practical 85-bus Distribution System 

Indian Practical 85-bus distribution test system is used to validate the proposed method. 

Indian Practical 85-bus distribution system has a total load of 2.574 MW and 2.622 MVAR 

[93].  

The effectiveness of proposed method is verified with 1%, and 5% measurement error, and 

the optimal Pareto fronts are given in fig 4.10 and 4.11, respectively. Table-4.7 presents the 

obtained results corresponding to without DG case, in terms of objective values and number of 

meters required. The proposed algorithm with and without the objective discretization, with 

1% measurement error, both gives 7 meters including the default measurements. On the other 

hand, NSGA-II, EDA-IPM, PSO-KH, DP and OOA require 11, 8, 8, 9 and 10, respectively. In 

terms of average relative percentage error (ARPE) of voltage magnitude (J2) and voltage angle 

(J3), the proposed method with objective discretization yields better outcomes compared with 

the proposed method without objective discretization and the other MOEAs such as, NSGA-

II, PSO-KH, EDA-IPM, DP and OOA. When compared to all the other methods, in terms of 

objective values and total meters the proposed method outperforms others. Furthermore, for 

5% measurement error, the proposed method with objective discretization demonstrates 

versatility in terms of quality of solutions and total number of meters. The results show that 

when the real measurement uncertainty increases, the number of meters required increases. 
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Fig. 4.10: Indian Practical 85-bus distribution system optimal Pareto-front plots: 1% error 

in real measurements and 50% error in Pseudo measurements without DG (OD- Objective 

Discretization method) 
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Fig. 4.11: Indian Practical 85-bus distribution system optimal Pareto-front plots:: 5% 

error in real measurements and 50% error in Pseudo measurements without DG (OD- Objective 

Discretization method) 

Table 4.7: Indian Practical 85-bus distribution system: Optimal location of the power flow 

meters different measurement uncertainty without DG. 
Metrological 

error  (in %) 

Algorithm Position of PMs 

(Line numbers) 

Number 

of  power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters 

(1 per 

unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE 

of 

voltage 

angle 

1  Proposed 

algorithm 

with OD* 

1, 10,17, 24,30,57 6 7 0.0281 0.6552 
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Proposed 

algorithm 

without OD*  

1, 8, 9, 30, 57, 67 6 7 0.0286 0.7074 

NSGA-II [43] 1,6,7,18,23,33,35

,56,67,69  

10 11 0.0338 0.8526 

PSO-KH [73] 1, 13, 18, 26, 75, 

79, 84 

7 8 0.0385 1.1077 

EDA-IPM [75] 1,13,19,25,75,78,

84 

7 8 0.0383 1.0952 

 DP [38] 1, 13, 21, 32, 37, 

47, 51, 54 

8 9 0.0444 1.5213 

 OOA [28] 1, 9,16, 43, 62, 

69, 70, 72, 76 

9 10 0.0579 1.2356 

5 Proposed 

algorithm 

with OD* 

1, 24,28,33,59,71 6 7 0.0451 0.9845 

Proposed 

algorithm 

without OD* 

1, 8,17, 27, 32, 57 6 7 0.0499 1.1709 

NSGA-II [43] 1, 4, 6, 9, 26, 30, 

49, 59, 63, 71, 80  

11 12 0.0884 1.7494 

PSO-KH [73] 1, 16, 21, 24, 33, 

69, 77, 79 

8 9 0.0439 1.2855 

EDA-IPM [75] 1,12,20,43,50,68,

75, 83 

8 9 0.0464 1.4298 

 DP [38] 1, 7, 14, 19, 33, 

39, 42, 48, 53, 59, 

61 

11 12 0.0518 1.6239 

 OOA [28] 1, 18, 21, 23, 34, 

36, 37, 61, 63, 75, 

76 

11 12 0.0466 1.3689 

*OD - Objective Discretization method 
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Fig. 4.12: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

1% error in real measurements and 50% error in Pseudo measurements with DG Type-1 (P) 

(OD- Objective Discretization method) 
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Fig. 4.13: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

5% error in real measurements and 50% error in Pseudo measurements with DG Type-1 (P) 

(OD- Objective Discretization method) 

Table 4.8: Indian Practical 85-bus distribution system: Optimal location of the power flow 

meters different measurement uncertainty with DG Type-1(P) 
Metrological 

error  

(in %) 

Algorithm Position of PMs 

(Line numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters 

(1 per 

unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE 

of 

voltage 

angle 

1 Proposed 

algorithm 

with OD* 

1, 18, 24, 56, 62 5 8 0.0265 0.6543 
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Proposed 

algorithm 

without 

OD* 

1, 7, 25, 29, 57 5 8 0.0276 0.6903 

NSGA-II 

[43] 

1, 7 ,11, 24, 27, 31, 

39, 67 

8 11 0.0323 1.1849 

EDA-IPM 

[75] 

1, 9, 23, 28, 44 5 8 0.0367 1.0473 

 DP [38] 1,10,33,46, 58, 

63,71,77, 79 

9 12 0.0580 1.0967 

 OOA [28] 1, 11, 14, 16, 32, 42, 

54, 70 

8 11 0.0574 1.0841 

5 Proposed 

algorithm 

with OD* 

1, 17,24, 33,57, 63 6 9 0.0326 0.9494 

Proposed 

algorithm 

without 

OD* 

1, 17, 24, 29, 30, 56 6 9 0.0337 0.9728 

NSGA-II 

[43] 

1,16,17,19,26,39, 

46, 62, 77 

9 12 0.0582 1.9197 

EDA-IPM 

[75] 

1, 9, 17, 28, 42, 62, 

79 

7 10 0.0400 1.1001 

 DP [38] 1,14,15,18,22,27, 

47, 54, 72 

9 12 0.6683 1.3053 

 OOA [28] 1,31,46,48,58,62,65,

67, 77,78 

10 13 0.6742 1.3053 

*OD - Objective Discretization method 

The proposed algorithm with objective discretization method for DG type-1 (P) case is 

evaluated with 1%, and 5% measurement error, and the optimal Pareto fronts are given in figs. 

4.12 and 4.13, respectively. Table-4.8 presents the findings for DG type-1 (P). The proposed 

algorithm with and without the objective discretization, with 1% measurement error, both 

requires total 8 meters. On the other hand, NSGA-II, EDA-IPM, DP and OOA requires 11, 8, 

12, and 11 meters, respectively. The average relative percentage error (ARPE) of voltage 

magnitude (J2) and ARPE of voltage angle (J3) for the proposed method with and without the 

objective discretization, are 0.0265%, 0.6543%, and 0.0276%, 0.6903%, respectively. On the 

other hand, for NSGA-II, EDA-IPM, DP and OOA the ARPE of voltage magnitude (J2) and 

voltage angle (J3) are 0.0323%, 0.0367%, 0.0580%, 0.0574% and 1.1849%, 1.0473%, 
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1.0967%, 1.0841%, respectively. When the proposed method with objective discretization is 

compared with the proposed method without objective discretization and EDA-IPM, requires 

the same number meters. Moreover, the proposed method with objective discretization 

outperforms in terms of average relative percentage error (ARPE) of voltage magnitude (J2) 

and voltage angle (J3) as shown in Table-4.8. Furthermore, in the case of a 5% measurement 

error, the proposed method with objective discretization outperforms all other methods in terms 

of solution quality as well as the number of meters required.  

 

Fig. 4.14: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

1% error in real measurements and 50% error in Pseudo measurements with DG Type-2 (P-jQ) 

(OD- Objective Discretization method) 

 

It has been noticed that when real measurement uncertainty increases, the meters required 

increases. It is worth noting that, when compared to passive network, active network voltage 
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magnitude and angle error are reduced. The reason for this is that the DG provides the active 

power to nearby loads, where power drawn from the main feeder is reduced. Therefore, the 

degree of error related to power flow measurement reduces. The proposed method is also 

verified for DG type-2 and type-3, and corresponding final Pareto fonts displayed in fig. 4.14, 

4.15 and corresponding results are tabulated in Tables 4.9 and 4.10. 

 

Fig. 4.15: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

1% error in real measurements and 50% error in Pseudo measurements with DG Type-3 (P+jQ) 

(OD- Objective Discretization method) 
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Table 4.9: Indian Practical 85-bus distribution system: Optimal location of the power flow 

meters with 1% measurement uncertainty for DG Type-2(P-jQ). 
Algorithm Position of PMs 

(Line numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

Proposed 

algorithm with 

OD* 

1,17, 25, 31, 57, 63 6 9 0.0270 0.8380 

Proposed 

algorithm 

without OD* 

1, 17, 25, 30, 57, 65 6 9 0.0305 0.8697 

NSGA-II [43] 1, 16, 19, 23, 27, 30, 

49, 54, 67 

9 12 0.0533 1.2292 

EDA-IPM [75] 1, 17, 25, 29, 34, 58, 

60 

7 10 0.0386 1.1584 

DP [38] 1, 23, 30, 37, 40, 62, 

75 

7 10 0.0408 1.3911 

OOA [28] 1, 3, 9, 14, 20, 52, 

54, 62, 69 

9 12 0.0387 1.2929 

*OD - Objective Discretization method 

Table 4.10: Indian Practical 85-bus distribution system: Optimal location of the power 

flow meters with 1% measurement uncertainty for DG Type-3(P+jQ). 
Algorithm Position of PMs 

(Line numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

Proposed 

algorithm 

with OD* 

1, 16, 17, 30, 59, 66 6 9 0.0436 1.1079 

Proposed 

algorithm 

without OD* 

1, 16, 17, 26, 29, 56 6 9 0.0440 1.1104 

NSGA-II [43] 1, 23, 24, 50, 57, 62, 

66, 70 

8 11 0.0708 1.8956 
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EDA-IPM [75] 1, 23, 31, 49, 58, 59, 

61 

7 10 0.0500 1.1191 

DP [38] 1, 18, 25, 35, 66, 70, 

76, 82 

8 11 0.0513 1.2059 

OOA [28] 1, 14, 33, 37, 41, 65, 

83, 84 

8 11 0.0534 1.3162 

*OD - Objective Discretization method 

4.8 Summary 

This work proposed a new MOEA using objective discretization and indicator-based 

approach, which is based on IGD-NS performance indicator. Because of combinatorial nature 

of meter placement problem, the objective space is discrete in nature. To enhance the 

performance of the proposed method, objective discretization method was adopted, with 

different granularity along the objectives, so that it enhances the search ability of MOEA and 

decreases the non-dominated solutions in population. IGD-NS indicator measures diversity and 

convergence of solution sets and guides the evolution process in MOEA. The indicator IGD-

NS can reduce the non-dominated solutions with no contribution to the indicator value. As the 

performance of MOEA depends on the approximate Pareto front shape, the proposed method 

employed a reference point method, which adaptively updates the reference points to follow 

the Pareto front shape. Moreover, the proposed method improves the performance 

characteristics of MOEA, enhances search ability, provides uniformly distributed solutions on 

Pareto front, and follow the irregular Pareto front. In addition, the effect of meter placement on 

various categories of renewable sources is addressed. 

In practical applications, a greater number of non-dominated solutions are required with 

a high degree of diversity. Most of MOEAs use population or external archive to store non-

dominated solutions obtained in each generation. In general, only a limited number of diverse 

non-dominated solutions can be achieved in each generation, in most of population based 

MOEAs. Moreover, all the conventional MOEAs are designed based on fixed heuristic rules. 

Therefore, in evolution process these MOEAs may not adapt to the changes in evolutionary 

environment. However, the additional diverse solutions can be obtained by properly designing 

the reproduction operator in MOEA. Using machine learning model as reproduction operator, 

many diverse solutions can be generated directly as needed in the objective space. This 

provides the ability to learn the environment of evolutionary process by building the learning 

models from the candidate solutions of current generation. Therefore, chapter 5 proposes an 

inverse model based MOEAs for meter placement problem in active distribution system. 
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Chapter 5  

Multi-Objective Meter Placement in Active Distribution System State 

Estimation using Inverse Modeling based on Multi-label Gaussian Process 

Classification Algorithm with Adaptive Reference Point Method 

5.1 Introduction 

The model based MOEAs are designed to replace the traditional operators such as selection, 

reproduction, and fitness evaluations with machine learning models. This provides the ability 

to learn the environment of evolutionary process by building the learning models from the 

candidate solutions of current generation. Candidate solutions of current generation in 

evolution process used as sample data for training of the models. 

This chapter proposed an inverse model based multi-objective evolutionary algorithm 

with adaptive reference point method. In practical applications, a greater number of non-

dominated solutions are required with a high degree of diversity. Using inverse model, many 

such solutions can be generated directly as needed in the objective space. Inverse model maps 

non-dominated solutions from objective space to decision space. 

Most of the MOEAs, such as dominance-based, decomposition-based and indicator based 

MOEAs are designed based on developing the effective fitness calculation or selection process 

to solve the multi-objective optimization problems. Whereas the model based evolutionary 

algorithms focuses primarily on effective reproduction process, which explicitly improves the 

connectedness and regularity property [97] in distribution of Pareto solutions. The 

connectedness property improves the search efficiency of MOEA.  

Inverse model estimates the conditional probability of decision variables, for given 

objective values. Meter cost and estimation error in voltage magnitude and angle are considered 

as objectives for the meter placement problem. The meter locations on each distribution 

network node, are represented as binary value. Therefore, decision space consists of 

combination of meters in binary variables. The objective space consists of integer values. The 

classification model is employed to map the integer value objective space to binary value 

decision space. The output consists of meter combinations represented as binary string, where 

meter locations belong to multiple labels simultaneously. Therefore, the proposed method uses 

the multi-label Gaussian Classification for inverse model [98]   
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The main contributions of this work, are as follows: 

i. A new inverse model-based multi-objective evolutionary algorithm with adaptive 

reference point method is proposed for meter placement in distribution system state 

estimation. Inverse model generates the additional non-dominated candidate 

solutions by sampling the objective distribution. It improves the search efficiency 

and diversity of Pareto front. 

ii. Meter placement is a combinatorial optimization problem consist of binary decision 

variables. Therefore, inverse model is realized by classification as it maps non-

dominated solution from integer domain objective space to the binary domain 

decision space. Each meter location is represented as a label to model the binary 

string in decision space, as meter locations belong to multiple labels 

simultaneously. Therefore, inverse model is realized using multi-label Gaussian 

classification. 

iii. The combination of meter locations may not provide continuous non-dominated 

solutions in Pareto front. Consequently, discontinues Pareto front is formed. The 

performance of MOEA is affected by the shape of Pareto front. Therefore, adaptive 

reference point method is employed to follow the shape of the Pareto front.  

iv. Conflicting objectives such as minimizing the cost of metering infrastructure and 

error in state estimates is considered, and the inverse model based multi-objective 

framework is used to achieve an optimal meter placement solution in an active 

distribution network by considering effect of the measurement uncertainty and 

different types of renewable sources. 

5.2 Problem Formulation: 

The objectives considered for meter placement are : minimizing i) cost of measurement 

devices (J1) ii) the average relative percentage error (ARPE) of voltage magnitude (J2) and iii) 

the average relative percentage error (ARPE) of voltage angle (J3). The objectives that are 

considered are described as follows: 

Min J1 = ∑ CPM,i
nl
i=1  . UPM,i + ∑ CVMM,j

n
j=1  . UVMM,j                          (5.1) 

Min J2 =
1

m
∑

1

nm (∑
Vi

t−V̂i

Vi
t

n
i=1 ) × 100                                                 (5.2) 

Min J3 =
1

m
∑

1

nm (∑
δi
t−δ̂i

δi
t

n
i=1 ) × 100                                                 (5.3) 
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Subject to constraints of prespecified limits are considered as 1% and 5% of voltage magnitude 

and voltage angle relative deviation, respectively for 95% of simulated cases [30], the 

constraints are presented as follows: 

g1 = |
Vi

t−V̂i

Vi
t | < 1%                                                               (5.4) 

g2 = |
δi
t−δ̂i

δi
t | < 5%                                                               (5.5) 

Where n and nl are the number of nodes and lines in distribution system, m is the number of 

Monte Carlo simulation cases, CPM and Cvmm represents the relative normalized costs of power 

flow meters (PM) and voltage magnitude meter (VMM). The normalized cost of VMM and 

PM are considered to be the same per unit device cost for comparison purpose and normalized 

cost is assumed to be 1 unit per device.  UPM and UVMM represents the locations of measurement 

devices as binary variables. When the device is placed at node or on line, then the meter 

location is represented as ‘1’ and ‘0’ otherwise. Where, g1 and g2 are inequality constraints of 

relative voltage magnitude and voltage angle error limits, Vt, V̂, δt and δ̂ are the true value of 

voltage magnitude, estimated value of voltage magnitude, the true value of voltage angle, and 

estimated value of voltage angle respectively. 

5.3 Methodology: 

The proposed method uses inverse model based multi-objective evolutionary algorithm 

with adaptive reference point method. In practical applications, a greater number of non-

dominated solutions are required with a high degree of diversity. Using inverse model, many 

such solutions can be generated directly as needed in the objective space. Inverse model maps 

non-dominated solutions from objective space to decision space. 

Most of the MOEAs, such as dominance-based, decomposition-based and indicator based 

MOEAs are designed based on developing the effective fitness calculation or selection process 

to solve the multi-objective optimization problems. Whereas, the model based evolutionary 

algorithms focuses primarily on effective reproduction process, which explicitly improves the 

connectedness and regularity property [97] in  distribution of Pareto solutions. The 

connectedness property improves the search efficiency of MOEA.  

This model estimates the conditional probability of decision variables, for given objective 

values. Meter cost and estimation error in voltage magnitude and angle are considered as 

objectives for the meter placement problem. The meter locations on each distribution network 

node, are represented as binary value. Therefore, decision space consists of combination of 
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meters in binary variables. The objective space consists of integer values. The classification 

model is employed to map the integer value objective space to binary value decision space. 

The output consists of meter combinations represented as binary string, where meter locations 

belong to multiple labels simultaneously. Therefore, the proposed method uses the multi-label 

Gaussian Classification for inverse model [98].   

 The algorithm is divided into three stages for simplicity and better understanding. The 

stage-1 describes the multi-objective evolutionary algorithm using inverse model and stage-2 

explains the proposed multi-objective evolutionary algorithm using inverse model with 

adaptive reference point method, stage-3 discusses the inverse model realized by Multi-label 

Gaussian Process Classification. The meter placement problem is basically a combinatorial 

optimization problem, as a large combination of possible solutions, makes the search space 

large and complex. Therefore, the objective space is irregular and discontinuous. As a 

consequence, the Pareto front is discontinuous. Therefore, the adaptive reference point method 

is employed to adjust the reference vectors according to the Pareto front solutions. Moreover, 

the adaptive reference point method improves search ability of the MOEA and enhances the 

performance. 

 The multi-objective evolutionary algorithm using inverse model (stage-1) comprises 

initialization, partition of population, selection, inverse model and reproduction phases.  

i. Initialization: Initially, the population with size ‘N’, is randomly generated with binary 

string, which represents the meter locations on each node or line of distribution system. 

The uniformly distributed reference points are generated using Systematic Sampling 

Approach (SSA) as follows: 

N(D,M) = (
D + M − 1

M − 1
)  for D > 0                                                     (5.6) 

Where D is the number of divisions along with each objective coordinate, and M is the 

number of objectives. 

ii. Partition of Population: Then the population is divided into K subpopulations. The 

proposed method divides population is based on objective space. On the other hand, 

division of population is done in reference space in most of decomposition based 

MOEAs. The partition of population is based on minimum acute angle method 

expressed as follows: 

kt = argmint=1,2,…,K
St⃗⃗⃗⃗ 

‖St⃗⃗⃗⃗ ‖
× vt⃗⃗  ⃗                                          (5.7) 



Chapter 5  Multi-Objective Meter Placement using       

Inverse Model based Algorithm 

104 
 

The solution St
⃗⃗  ⃗ is belongs to the 𝑡th partition, when the acute angle between unit solution 

St
⃗⃗  ⃗ and weight vector vt⃗⃗  ⃗ is minimum, where t = 1,2, … , K and operator x gives the sine 

function values between unit solution St
⃗⃗  ⃗ and weight vector vt⃗⃗  ⃗. Then non-dominated 

sorting and selection process are performed on the K subpopulations.  

iii. Inverse Model: Multi-label Gaussian classification is used to estimate the conditional 

probability of decision variables, for given objective variables. Gaussian Process is 

used widely for supervised learning. It gives information about the pattern of 

distribution over function, which is modelled in terms of mean and variance as a 

function of input variables [87]. The Pareto front solutions (objective) values are 

considered as input and the meter locations are considered as output labels in multi-

label Gaussian classification. Each meter location is treated as a classification label. 

Therefore, multi-label classification is used for inverse model.  

Random grouping method is employed before the inverse model, where 

multiple decision variables are randomly grouped together to be estimated as output 

using each objective through inverse model. In general, the random grouping method 

is used for handling the large scale optimization problems [99], [100]. It is difficult to 

estimate the m-input and n-output multivariate inverse model directly. This method 

reduces the number of inverse models  required and also enhances the scalability of the 

algorithm. Using the random grouping technique, the m-by-n multivariate model can 

be decomposed into m-by-n univariate inverse models to estimate the distribution of 

conditional probability P(Y|X). In the model, Y refers to output labels and X to input 

values. Let X be the collection of  input variables and Y is the output labels. X is the 

set of instances of ‘m’ objective vales {x1, x2, …xi, …, xm} and Y is the class labels 

(meter locations) and yi ϵ {0, 1} represented by binary variables. Then the training set 

T is given by {(X1, Y1), (X2, Y2), ….., (Xn, Yn)}. If the output labels are independently 

sampled over the training set  then the conditional probability can be expressed as 

p(Y|X) = ∏ p(yi|xj)
n
i=1                                            (5.8) 

The above equation can be approximated using the random grouping method, and it 

introduces the additive Gaussian noise due to the decomposition from multivariate 

model to univariate model. Then the approximated expression can be as follows 

p(Y|X) ≈ ∏ p(yi|xj)
n
i=1 +∈j,i                                      (5.9) 

Where ∈j,iis additive noise in the model and therefore, the above conditional probability 

can be estimated using Gaussian process classification.  
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To map the distribution of input variables,  a latent function is used to quash the 

response to limit the interval in between [0,1]. The squashing function used is  sigmoid 

function σ(t), where it is defined as  

σ(t) =  
1

1+e−t
                                                       (5.10) 

The classification model is represented with the conditional probability of output y for 

given sample input x as follows: 

p(y = 1| x) =  σ(f(x))                                            (5.11) 

All the sample labels are generated independently, conditioned on latent function f(x) 

for each training samples i=1,2,…, n. Then the joint probability is given by 

p(y|f) = ∏ p(yi|f(xi))
n
i=1 = ∏ σ(yifi)

n
i=1                         (5.12) 

The prediction probability over latent function f is given by Bayes’ rule as follows: 

p(f|x, y) =
p(y|f)p(f|x)

p(y|x)
                                        (5.13) 

Then the marginal probability is given by  

p(y|X) = ∫p(y|f)p(f|x)df                                            (5.14) 

Where the likelihood distribution p(f|x) is non-Gaussian and makes the integration 

analytically intractable. Then, the solution is determined using  Laplace approximation 

method [101].  

The Gaussian Process can be applied over latent function f(x) as the distribution in term 

of mean (m(x)) and variance (K(x, x’)) as given below: 

f(x)~Gp(m(x), K(x, x′))                                           (5.15) 

where the covariance function K is given by  

K = KX(x, x′)⨂Kf                                              (5.16) 

Where Kx is covariance between x and x’, and Kf gives the correlation among the labels 

and operator ⨂ denotes Kronecker product. The Kx is calculated as: 

KX(x, x′) = ∑
1

nxnx′
x∈X,x′∈X′

Kx(x, x
′) 

where Kx(x, x
′) = e

−
‖x−x′‖2

δ2                                      (5.17) 

Where nx, nx’ are dimensions of X and X’, δ is the width parameter, which is in taken 

in between 1 to 2. Then the joint distribution can be written as  

p(f|X, Y, Kf) = 𝒩(f|m(x), KX⨂Kf)                            (5.18) 

Then the prediction probability over the test sample X∗can be given by the join 

probability over f(x), f(X∗), which are denoted as f, f∗  
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p(f∗, f|X, Y, X∗, Kf) =  𝒩([
f∗
f
] | [

m(X∗)

m(X)
] , [

K∗∗ K∗

K∗
T K

]⨂Kf)             (5.19) 

Where K** =Kx(X*,X*), K* =Kx(X*,X). The distribution over latent function f* is given 

by approximating the likelihood distribution using Laplace approximation [101] as 

p(f∗|X, Y, f, X∗, Kf) =  𝒩(f∗|(K∗
TK−1⨂If)f̂, (K∗∗ − K∗

TK−1K∗)⨂Kf +

(K∗
TK−1⨂If)A

−1(K∗
TK−1⨂If)

T (5.20) 

Where f̂ = argmax p(f|X, Y, Kf) and A = −∇∇log p(f|X, Y, Kf)|f=f̂, then the predicted 

output is given by 

p(y∗ = 1| X, Y, X∗, Kf) = ∫σ(f∗) p(f∗|X, Y, f, X∗, Kf)df∗             (5.21) 

The above integral is analytically not computable, because of non-linearity of the latent 

function. Therefore, the approximation [102] is given by 

p(y∗ = 1| X, Y, X∗, Kf) ≈ σ(m/√1 +
πs2

8
)                         (5.22) 

Where m and s are mean and variance of p(f∗|X, Y, f, X∗, Kf) respectively. 

The whole process is dependent on Kf,  with the algorithm is divided into two steps as 

estimation step and maximization step. In estimation step, initially Kf is assumed to be 

unity matrix and then the mean f̂ is calculated. In maximization step for a given f̂ value 

from previous step, the value of Kf is updated. Once the both steps are within the 

specified tolerance levels the mean and variance of marginal probability over f∗ is 

calculated, following which the predicted values are calculated for the test samples. The 

test inputs are uniformly generated within the interval of objj
min to objj

max. Where objj 

is jth objective value and j=1,2,…M, and M is the number of objective values. The 

pseudo algorithm for multi-label Gaussian process classification is given in stage-3. 

iv. Reproduction: The new offspring population is generated by sampling from the 

inverse model. The mutation operation is performed on the new offspring population. 

Then the offspring population and old population are combined to form the next 

generation. The final optimal solution from the trade-off solutions is obtained using a 

min-max fuzzy method [88]. 

The algorithm in stage-1 performs better with regular Pareto fronts, while in case of 

irregular and discontinuous Pareto fronts, the performance deteriorates. This is due to the 

uniformly distributed reference points being unable to follow the approximate Pareto front. On 

the other hand, the meter placement is a combinatorial optimization problem, where a large 

combination of decision variables leads to discontinuous nondominated solutions on Pareto 
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front. The adaptive reference point method [94] is employed, to adjust the reference point to 

follow the irregular and discontinuous approximate Pareto front. This improves the 

performance of the MOEA. Stage-2 algorithm incorporates the adaptive reference point 

method to the stage-1 algorithm, which enhance the performance of the MOEA.      

i. Adaptive Reference Point Method: There are two solution sets and two reference 

point sets are maintained separately for each generation. The solution sets consist of the 

current population (P) and the Archive population (A), while the reference sets consist 

uniformly generated reference point set (R) and adaptively adjusted reference point set 

(R′) are maintained and updated for each generation. Initially, the Archive population 

(A) and adaptively adjusted reference point set (R′) are copied from the current 

population (P) and uniformly generated reference point set (R) respectively.  

The Archive population (A) and adaptively adjusted reference point set (R′) are 

updated for each generation. First, the redundant and dominated solutions are deleted 

from the archive population (A). Then the reference points (R′) are adjusted based on 

the Archive population (A), by selecting the minimum value of objective value with 

minimum angle criteria. The extreme end solutions on the Pareto front, are preserved 

to maintain the diversity of the population; this is done by adjusting the location of 

extreme solutions and their associated reference point locations. The minimum 

orthogonal projection of objective values and reference points to the product vector of 

ideal point (Z∗) and reference point (Z∗r⃗⃗⃗⃗ ⃗⃗⃗⃗ ) are used to adjust the location of extreme end 

solutions on PF and their associated reference points, respectively. Then the 

contributing solutions, which are nearest to at least one reference point, are identified 

and copied into a new archive population(A′). The remaining new archive population 

(A′) space is filled in by candidate solutions from A or A′, until A′ reaches the maximum 

size of a minimum of (|R|, |A|) size. The candidate solutions with a maximum of the 

minimum acute angle between two candidate solutions are selected for new archive 

population (A′). The reference points are adaptively updated according to the new 

archive population (A′). The closest reference points to the contributing solution are 

copied into adaptively adjusted reference points (R′). Then the remaining reference 

points of R′ are filled with the reference points associated with candidate solutions from 

the new archive A′ one by one until the minimum of (|R|, |A′|) size is reached. The 

selection of reference points to update R’, is based on the maximum value of minimum 

acute angel between objective value in A′ and the corresponding reference values in R′. 
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Then the reference points (R′)  are adjusted based on the current population (P), by 

selecting the minimum value of objective value with angle criteria. 

5.4 Stage wise Process of the Proposed Algorithm:  

Stage-1: The multi-objective evolutionary algorithm using inverse model 

Step 1: Initialization: 

The population (P) with population size ‘N’, is initialized randomly with meter locations as decision variables.  

The uniformly distributed reference points (R) are generated using Systematic Sampling Approach (SSA) [87].   

  

Step 2: // Main loop// 

While (“Stopping Criteria is not satisfied”) do 

Step-3:  Population Partition:  

The population is partitioned into K subpopulations using minimum acute angle method using 

(5.7). Then non-dominated sorting and selection is performed on the K subpopulations. 

Step 4: for k = 1 to K 

  Inverse Model: the decision variables are grouped using random grouping method. 

then the objective space is mapped onto decision space using multi-label Gaussian 

classification as shown in stage-3. Then the inverse model is trained to get the 

estimated output distribution. 

Step 5: Reproduction:  

The new offspring population (Q) is generated by sampling the estimated output 

distribution from the inverse model. Then the mutation operation is performed. 

 End for   

Step 6: Update the new generation: 

The offspring population (Q) and population (P) are combined to form the next generation 

population. 

 End while  

 

 

 

 

 

Stage-2: The multi-objective evolutionary algorithm using inverse model with adaptive reference point method 

Step 1: Initialization: The population (P) with population size ‘N’, is initialized randomly with meter locations as 

decision variables.  The uniformly distributed reference points (R) are generated using Systematic Sampling 

Approach (SSA).  Initialize Archive population (A) and adaptive a reference point set (R′). copy the population 

(P), Reference point set (R) to the archive population (A) and adaptive reference point set (R’) respectively. 

Step 2: // Main loop// 

While (“Stopping Criteria is not satisfied”) do 

Step-3:  Population Partition: The population is partitioned into K subpopulations through minimum acute 

angle method using (5.7). Then non-dominated sorting and selection is performed on the K 

subpopulations. 

Step 4:  for k = 1 to K 

   Inverse Model: the decision variables are grouped using random grouping method. then 

the objective space is mapped onto decision space using multi-label Gaussian process 

classification as shown in stage-3. Then the inverse model is trained to get the estimated 

output distribution. 

Step 5:   Reproduction: The new offspring population (Q) is generated by sampling the estimated 

output distribution from the inverse model. Then the mutation operation is performed. 

  End for   

 // Reference point Adaptation method// 

Step 6:  // Normalize the current population (P), archive population (A) and reference point set 

  for i= 1 to M 

   // M is number of objectives // 

zi
∗ = minp∈Pfi(p)        

//fi(p) are objective values belonging to population P// 

fi(p) =  fi(p) − zi
∗,   ∀ p ∈ A ∪ P  

Ri
j
= Ri

j
∗ (zi

nad − zi
∗), ∀ j ϵ {1, …… , |R|}   

  End for   

Step 7:  // Update Archive population (A) // 
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Delete the redundant and dominated candidate solutions from ‘A’ 

Step 8:  // adjust the location of a reference point set (R) to preserve the extreme end solutions in PF// 

Initialize the empty R′ 
For every r belongs to R 

  

   p = argminpϵA‖F(p)‖ sin (z∗r⃗⃗⃗⃗  ⃗, F(p)) 

ri
′ =

ri

‖r‖
 . ‖F(p)‖ cos (Z∗r⃗⃗⃗⃗⃗⃗ , F(p)) , ∀i ∈  {1,2, …… ,M} 

R′ ← R′  ∪  {r′}                                                                                
  End for   

Step 9:  // identify contributing solutions (Acon) in A// 

Initialize empty contributing solution Acon and archive population A′ 

Acon = {pϵA| ∃r ϵ R: dis(r, F(p)) = minqϵA dis(r, F(q))} 

  A′ = A′ ∪ Acon 

 

Step 

10: 

 // fill remaining space in A′ from A and A′ // 
//fill until the size less than minimum size of R or A// 

 

  While (size (A′) < min(size(R), size(A))) do 

   A′ = A′  ∪ (argmaxp∈(A\ A′)minq∈A′ arccos(F(p), F(q))) 

  End while 

  // identify the reference points near to the contributing solutions Acon and current population P// 

Identify the reference points which are nearest to the contributing solutions Acon copy them to R′ 

R′ = R′ ∪ {rϵR| ∃pϵ Acon ∶ dis(r, F(p)) = minsϵR(s, F(p))} 

Step 

11: 

 Update the new generation:  

The offspring population (Q) and population (P) are combined to form the next generation population. 

 End while 

 

 

 

Stage-3: Multi-label Gaussian process classification 

//Training// 

Step 1: Input: X, Y, K 

Initialization: Initialize estimated latent function f̂ with unit 

vector of size testing sample output Y and initialize Kf  as 

identity matrix with the size of number of labels ‘L’.  

Step 2: Estimation step: for given Kf estimate the f̂ . 
Step 3: Then apply logarithm for marginal likelihood function and 

calculate its value for estimated f̂, and if the values are within 

the tolerance (t0) then go to step 4 or else go to step 2. 

Step 4: Maximization step: for a given f̂ from estimation step, update 

the Kf.  

Step 5: if the difference between the two Kf values of consequent loops 

is smaller than tolerance (t1) then go to next step 6 or else go to 

step 2. 

//Testing// 

Step 6: Input: X*, X, Y, K, Kf, f̂ 
Calculate the mean and variance. 

Step 7: predict the output. 
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Fig. 5.1: Flowchart of the proposed algorithm.  

 

start 

Initialization: The population (P) with population size ‘N’, is initialized randomly with meter locations as decision 

variables.  The uniformly distributed reference points (R) are generated using Systematic Sampling Approach (SSA) [87].   

 

 

Stopping 

Criteria 

Population Partition: The population is partitioned into K subpopulations using minimum acute angle method using 

(5.7). Then non-dominated sorting and selection is performed on the K subpopulations.  

 

 k =1 

 

k<=K 

Inverse Model: the decision variables are grouped using random grouping method. then the objective space is mapped 

onto decision space using multi-label Gaussian classification. Then the inverse model is trained to get the estimated 

output distribution. 

 

Reproduction: The new offspring population (Q) is generated by sampling the estimated output distribution from the 

inverse model. Then the mutation operation is performed. 

k =k+1 

 

Update the new generation: The offspring population (Q) and population (P) are combined to form the next generation 

population. 

End A 

B 

B 

A 

C 

C 
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5.5 Simulation and Test Conditions: 

The BC-DSSE [16], [17] is supplied with substation measurements, virtual measurements, 

and pseudo-measurements, to obtain observable measurement set for the proposed method. For 

the proposed method, the following assumptions are considered:  

i. Voltage magnitude meter at the reference bus is treated as substation measurements. 

Substation measurements are provided with 1% accuracy. A power flow meter is 

placed at each DG for active distribution system. These measurements are considered 

as default measurements. 

ii. A small value of the standard deviation is supplied with virtual measurements, in the 

order of 10-8.  

iii. The performance of the proposed algorithm is tested with large uncertainty in Pseudo 

measurements. The huge errors are considered with a maximum error of 50% in 

Pseudo measurements.  

iv. The power flow meters and voltage meters are supplied with 1% and 5% error with 

Gaussian distribution.  

The objective values are obtained using Monte Carlo simulations under different 

measurement uncertainties and the following assumptions are considered  

i. Monte Carlo simulation is carried out with 1000 trials for different load conditions 

for 100 scenarios [37] with each measurement set in population. 

ii. The objectives of voltage magnitude error and voltage angle error are calculated and 

the constraint violation (5.6) and (5.7) is calculated for 95% simulation cases.   

In addition, the parameters used for the proposed algorithm, MOEA/D [49], and 

NSGA-II [43] are shown in Table-5.1. The population size is considered to be 100, while the 

population size is determined on the basis of the weight vectors created from the Systematic 

Sampling Approach (SSA) for decomposition-based methods. For the proposed method, and 

MOEA/D, with three objectives, the population size is chosen is 91 after the Systematic 

Sampling Approach (SSA). For all the methods the maximum number of generations are 

taken as 50. Different Crossover and Mutation rates are tested and chosen Crossover rate 

(Pc) is 1.0, Mutation rate (Pm) is 0.05 for which it gives the better performance of the MOEA. 

Table 5.1:  Parameters of the proposed algorithm, MOEA/DLD, MOEA/D and NSGA-II 
Algorithm Control Parameters 

The Proposed algorithm, 

MOEA/D [49]  

Crossover rate (Pc)=1.0, Mutation rate 

(Pm)=0.05.  

NSGA-II [43] Population size =100, Crossover rate (Pc)=0.8, 

Mutation rate (Pm)=0.01.  



Chapter 5  Multi-Objective Meter Placement using       

Inverse Model based Algorithm 

112 
 

 

5.6 Results and Discussions 

The competence of proposed MOEA is verified on PG&E 69-bus distribution system and 

Indian Practical 85-bus distribution system. This work considered different types of scenarios, 

such as the impact of meter placement in passive as well as active distribution network have 

been investigated. Moreover, different types of renewable sources in active network are 

considered such as DG generating only active power to the network, DG generating active 

power and absorbing reactive power from the network, and DG generating both active and 

reactive power (Table-5.2). The distributed generation is assumed as dispatch-able and 

modelled as a stochastic variable. The details of distributed generation size, location, and types 

are given in Table-5.2. The DG locations on the distribution system, are at 50, 61 nodes on 

PG&E 69-bus distribution system, and at 45, 61 nodes on Indian Practical 85-bus distribution 

system, are decided based on optimal power loss and voltage deviation [75]. The proposed 

method is compared with MOEA based on decomposition (MOEA/D) [49], non-dominated 

sorting genetic algorithm (NSGA-II) [43], on existing multi-objective methods such as multi-

objective hybrid estimation of distribution algorithm- interior point method (EDA-IPM) [75]. 

Table 5.2: Distributed generation size and locations 

Test System 
Bus 

Number 

DG type and Capacity (MW) base value 

Type-1 

(P) 

Type-2 

(P-jQ) 

Type-3 

(P+jQ) 

PG&E 69-bus Distribution 

System 

50 0.180 0.180-j 0.087 0.180+j 0.087 

61 0.270 0.270-j0.130 0.270+j0.130 

Indian Practical 85-bus 

Distribution System 

45 0.277 0.235-j 0.145 0.235+j0.145 

61 0.290 0.246-j0.152 0.246+j0.152 

 

For all figs. 5.1 to 5.12 the repeating captions are specified as given here:(a) objective 

function-J2 average relative percentag error e (ARPE) of voltage magnitude Vs. objective 

function-J3 average relative percentage error (ARPE) of voltage angle. (b) objective function-

J2 average relative percentage error (ARPE) of voltage magnitude Vs. the number of power 

flow meters (c) objective function-J3 average relative percentage error (ARPE) of voltage 

angle Vs. the number of power flow meters.  

5.6.1 PG&E 69-bus Distribution System 

The proposed algorithm is tested on PG&E 69-bus distribution system [92], which has 21 

zero bus injection nodes treated as virtual measurements, and a total real power load of 3.802 

MW and one VMM, one power flow meter at substation and one power flow meter is placed 

at each DG, and these are considered as default measurements. Two renewable energy sources 
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are located on the 50th and 61th bus.  

The proposed algorithm for meter placement problem is investigated with 1%, and 5% real 

measurement uncertainty.  The results correspond to objective values and performance of state 

estimation without DG, as shown in Table-5.3. The obtained Pareto fronts obtained are shown 

in fig. 5.2 and 5.3 for 1%, and 5% real measurement uncertainty, respectively.  The proposed 

algorithm with and without adaptive reference point method, with 1% accuracy of real 

measurements, requires 5 meters including the default measurements, whereas MOEA/D, and 

NSGA-II require 7 and 8 respectively. The average  relative percentage error (ARPE) of 

voltage magnitude and ARPE of voltage angle for the proposed method with and without 

adaptive reference point method, are 0.0011%, 0.0012%  and 0.3477%, 0.4725%, respectively. 

The ARE of voltage magnitude and voltage angle in percentage for MOEA/D and NSGA-II 

are 0.0019%, 0.0038% and 0.6025%, 1.6474%, respectively.  The existing method in literature 

such as PSO-KH, EDA-IPM require 6 meters, the quality of the proposed method is far superior 

as shown in Table-5.3. 

Similarly, with 5% real measurement uncertainty the proposed method shows superiority 

in terms of estimated error of voltage magnitude, angle and as well as the number of meters 

required. 
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Fig. 5.2: PG&E 69-bus distribution system optimal Pareto-front plots: under 1% 

uncertainty in real measurements 50% uncertainty in Pseudo measurements for without DG 

(AR –Adaptive reference point method) 
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Fig. 5.3: PG&E 69-bus distribution system optimal Pareto-front plots: under 5% 

uncertainty in real measurements 50% uncertainty in Pseudo measurements for without DG 

(AR –Adaptive reference point method) 
 

Table 5.3: P&G 69-bus distribution system: Optimal location of the power flow meters 

under different measurement uncertainty for without DG. 
Metrological 

error (in %) 

Algorithm Location of 

Power flow 

meters (Line 

numbers) 

Number of 

power flow 

meters 

Objective function values 

J1 

Cost of meters 

(1 per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

1  Proposed 

algorithm 

with AR* 

7, 10, 31, 42 4 5 0.0011 0.3477 

Proposed 

algorithm 

without AR* 

4, 32, 45, 58 4 5 0.0012 0.4725 

MOEA/D [49] 6, 11, 28, 43, 53, 

62 

6 7 0.0019 0.6025 

NSGA-II [43] 4, 10, 11, 12, 42, 

55, 68 

7 8 0.0038 1.6474 
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PSO-KH [73] 1, 7, 24, 54, 66 5 6 0.0028 0.4947 

EDA-IPM [75] 1, 3, 7, 24, 51 5 6 0.0025 0.4821 

5 Proposed 

algorithm 

with AR* 

10, 15, 29, 42, 46 5 6 0.0020 0.4555 

Proposed 

algorithm 

without AR* 

15, 30, 32, 44, 48, 

54 

6 7 0.0025 0.5066 

MOEA/D [49] 1, 9, 13, 19, 30, 34, 

47, 63 

8 9 0.0032 1.2314 

NSGA-II [43] 1, 3, 8, 14, 29, 36, 

39, 45, 53, 60, 63, 

66 

12 13 0.0049 1.7634 

PSO-KH [73] 1, 7, 14, 21, 28, 33, 

49, 53, 61 

9 10 0.0058 1.1491 

EDA-IPM [75] 1, 7, 14, 19, 28, 33, 

47, 53, 61 

9 10 0.0056 1.1273 

(AR* - Adaptive Reference Point Method) 

The proposed algorithm for meter placement problem in the active distribution system 

is investigated with 1%, and 5% real measurement uncertainty and the Pareto optimal plots are 

shown in figs. 5.4 to 5.5, respectively.  The results of DG type-1 (P), are tabulated in Table-

5.4. The proposed algorithm with and without adaptive reference point method,  with 1% 

accuracy of real measurements, requires 8 meters including the default measurements at each 

DG and on the first line, whereas MOEA/D, NSGA-II, PSO-KH, and EDA-IPM requires 10, 

12, 8 and 8 respectively. The average  relative percentage error (ARPE) of voltage magnitude 

and ARPE of voltage angle for  the proposed method is 0.0009%, 0.0012% and 0.3018%, 

0.3366% respectively, whereas for MOEA/D, NSGA-II, PSO-KH and EDA-IPM the values 

are 0.0020%, 0.0044%, 0.0011%, 0.0018% and 0.3813%, 0.7954%, 0.2653%, 0.3125% 

respectively. As the proposed method shows superiority with the other algorithms. In the case 

of 5% real measurement uncertainty, when compared to other methods, the proposed method 

shows superiority in terms of estimated error of voltage magnitude, angle and as well as the 

number of meters required. Similarly, the proposed method is tested for DG type-2, type-3 and 

the optimal Pareto fonts are shown in figs. 5.6 and 5.7, respectively. The performance of all 

the algorithms is tabulated in Table 5.5 and 5.6 for DG type-2 and type-3, respectively.  
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Fig. 5.4: PG&E 69-bus distribution system optimal Pareto-front plots: under 1% 

uncertainty in real measurements 50% uncertainty in Pseudo measurements with DG Type-1 

(P) (AR –Adaptive reference point method) 
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Fig. 5.5: PG&E 69-bus distribution system optimal Pareto-front plots: under 5% 

uncertainty in real measurements 50% uncertainty in Pseudo measurements with DG Type-1 

(P) (AR –Adaptive reference point method). 

Table 5.4: P&G 69-bus distribution system: Optimal location of the power flow meters 

under different measurement uncertainty for DG Type-1(P). 
Metrological 

error (in %) 

Algorithm Location of Power 

flow meters (Line 

numbers) 

Number 

of power 

flow 

meters 

Objective function values 

J1 

Cost of meters 

(1 per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

1  Proposed 

algorithm 

with AR* 

14, 28, 32, 41, 57 5 8 0.0009 0.3018 

Proposed 

algorithm 

without 

AR* 

12, 27, 32, 41, 57 5 8 0.0012 0.3366 

MOEA/D 

[49] 

6, 14, 31, 33, 44, 45, 

57 

7 10 0.0020 0.3813 

NSGA-II 

[43] 

9, 12, 18, 30, 41, 48, 

52, 53, 60 

9 12 0.0044 0.7954 
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PSO-KH 

[73] 

1, 49, 52, 59, 67 5 8 0.0011 0.2653 

EDA-IPM 

[75] 

1, 49, 52, 60, 68 5 8 0.0018 0.3125 

5 Proposed 

algorithm 

with AR* 

9, 14, 28, 29, 44, 47 6 9 0.0017 0.3187 

Proposed 

algorithm 

without 

AR* 

12, 13, 46, 55, 58, 60 6 9 0.0023 0.4321 

MOEA/D 

[49] 

6, 10, 14, 16, 30, 43, 

54 

7 10 0.0042 0.5244 

NSGA-II 

[43] 

8, 9, 15, 23, 30, 36, 

43, 46, 58 

9 12 0.0087 0.9465 

PSO-KH 

[73] 

1, 3, 17, 25, 34, 42, 

50, 63 

8 11 0.0063 1.0587 

EDA-IPM 

[75] 

1, 3, 17, 24, 33, 41, 

50, 63 

9 12 0.0051 1.1122 

(AR* - Adaptive Reference Point Method) 

 

 
Fig. 5.6: PG&E 69-bus distribution system optimal Pareto-front plots: under 1% 

uncertainty in real measurements 50% uncertainty in Pseudo measurements with DG Type-2 

(P-jQ) (AR –Adaptive reference point method). 
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Table 5.5: P&G 69-bus distribution system: Optimal location of the power flow meters 

with 1% measurement uncertainty for DG Type-2(P-jQ). 
Algorithm Location of Power 

flow meters (Line 

numbers) 

Number 

of power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters 

(1 per 

unit 

device) 

J2 

ARPE of voltage 

magnitude 

J3 

ARPE of voltage 

angle 

Proposed algorithm 

with AR* 

6, 9, 28, 30, 42 5 8 0.0008 0.2399 

Proposed algorithm 

without AR* 

4, 5, 27, 29, 38 5 8 0.0013 0.2474 

MOEA/D [49] 7, 13, 30, 40, 45, 57, 

63, 68 

8 11 0.0019 0.3991 

NSGA-II [43] 7, 16, 21, 31, 37, 40, 

44, 58 

8 11 0.0064 0.8544 

EDA-IPM [75] 1, 5, 24, 37, 42 5 8 0.0069 1.1807 

(AR* - Adaptive Reference Point Method) 
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Fig. 5.7: PG&E 69-bus distribution system optimal Pareto-front plots: under 1% 

uncertainty in real measurements 50% uncertainty in Pseudo measurements with DG Type-3 

(P+jQ) (AR –Adaptive reference point method). 

 

Table 5.6: P&G 69-bus distribution system: Optimal location of the power flow meters 

with 1% measurement uncertainty for DG Type-3(P+jQ). 

Algorithm 
Location of Power flow 

meters (Line numbers) 

Number 

of power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 per 

unit device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

Proposed 

algorithm with 

AR* 

8, 32, 42, 54 4 7 0.0010 0.7257 

Proposed 

algorithm without 

AR* 

6, 30, 37, 56 4 7 0.0011 0.7501 

MOEA/D [49] 4, 11, 31, 42, 56 5 8 0.0034 0.6430 

NSGA-II [43] 4, 9, 13, 22, 26, 29, 40, 55, 68 9 12 0.0039 1.2852 

EDA-IPM [75] 1, 11, 32, 45, 51 5 8 0.0067 0.9864 

(AR* - Adaptive Reference Point Method) 
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5.6.2 Indian Practical 85-bus distribution system 

The proposed method has been investigated on Indian Practical 85-bus distribution system 

[93], which has 84 lines, 26 zero injection nodes, and a total load of real and reactive power of 

2.574 MW and 2.622 MVAR respectively. The zero bus injections are modeled as virtual 

measurements, and one VMM at the slack bus, one power flow meter on the first line, and one 

power flow meter are placed at each DG, which is considered as default measurements. 

The proposed algorithm is tested with 1%, and 5% real measurement uncertainty and the 

corresponding Pareto fronts are shown in figs. 5.8 and 5.9, respectively.  The results correspond 

to objective values and performance of state estimation without DG, which are tabulated in 

Table-5.7. The proposed algorithm with and without adaptive reference point method, with 1% 

accuracy of real measurements, requires 7 meters including the default measurements, while 

MOEA/D, and NSGA-II require 10 and 11 respectively. The average  relative percentage error 

(ARPE) of voltage magnitude and ARPE of voltage angle for the proposed method are 

0.0278%, 0.0298% and 0.6894%,  0.7099% respectively. The ARPE of voltage magnitude and 

voltage angle for MOEA/D and NSGA-II are 0.0385%, 0.0338% and 1.2964%, 0.8526%, 

respectively.  The existing methods in literature such as PSO-KH, EDA-IPM requires 8 meters, 

and ARPE of voltage magnitude and ARPE of voltage angle of 0.0385%, 0.0383% and 

1.1737%, 1.0952%, respectively. The proposed method is superior in terms of objective value 

quality and number of meters when compared to all the methods as shown in Table-7. 

Similarly, with 5% real measurement uncertainty the proposed method shows superiority in 

terms of estimated error of voltage magnitude, angle and as well as the number of meters 

required. It is observed from the results that the number of meters required increases with an 

increase in uncertainty in real measurement. 
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Fig. 5.8: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

Real measurements with an accuracy of 1% and Pseudo measurements with an accuracy of 

50% without DG (AR –Adaptive reference point method). 
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Fig. 5.9: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

Real measurements with an accuracy of 5% and Pseudo measurements with an accuracy of 

50% without DG (AR –Adaptive reference point method). 

 

Table 5.7: Indian Practical 85-bus distribution system: Optimal location of the power 

flow meters under different measurement uncertainty for without DG. 

Metrological 

error (in %) 
Algorithm 

Location of 

Power flow 

meters (Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 per 

unit device) 

J2 

ARPE of voltage 

magnitude 

J3 

ARPE of 

voltage angle 

1  Proposed 

algorithm 

with AR* 

8, 17, 24, 33, 

56, 59 

6 7 0.0278 0.6894 

Proposed 

algorithm 

without 

AR* 

6, 7, 11, 28, 

30, 59 

6 7 0.0298 0.7099 

MOEA/D 

[49] 

1,7, 16, 19, 

27, 30, 47, 59, 

72 

9 10 0.0385 1.2964 
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NSGA-II 

[43] 

1,6, 7, 18, 23, 

33, 35, 56, 67, 

69  

10 11 0.0338 0.8526 

PSO-KH 

[73] 

1, 13, 18, 26, 

75, 79, 84 

7 8 0.0385 1.1737 

EDA-IPM 

[75] 

1, 13, 19, 25, 

75, 78, 84 

7 8 0.0383 1.0952 

5 Proposed 

algorithm 

with AR* 

9, 16, 17, 24, 

32, 56, 63 

7 8 0.0351 0.9056 

Proposed 

algorithm 

without 

AR* 

16, 17, 25, 

32, 34, 59, 72 

7 8 0.0413 1.2671 

MOEA/D 

[49] 

1,6, 8, 26, 32, 

44, 54, 55, 69, 

74, 83  

11 12 0.0783 1.7764 

NSGA-II 

[43] 

1,4, 6, 9, 26, 

30, 49, 59, 63, 

71, 80  

11 12 0.0884 1.7494 

PSO-KH 

[73] 

1, 16, 21, 24, 

33, 69, 77, 79 

8 9 0.0439 1.2855 

EDA-IPM 

[75] 

1, 12, 20, 43, 

50, 68, 75, 83 

8 9 0.0464 1.4298 

(AR* - Adaptive Reference Point Method) 
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Fig. 5.10: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

Real measurements with an accuracy of 1% and Pseudo measurements with an accuracy of 

50% with DG Type-1 (P) (AR –Adaptive reference point method). 

 

The proposed algorithm for meter placement problem in the active distribution system 

for DG type-1 is investigated with 1%, and 5% real measurement uncertainty and the Pareto 

optimal plots are shown in figs. 5.10 to 5.11, respectively.  The results for DG type-1 (P), are 

tabulated in Table-5.8. The proposed algorithm with and without adaptive reference point 

method, with 1% accuracy of real measurements, requires 8 and 8 respectively,  meters 

including the default measurements at each DG and on the first line, whereas MOEA/D, 

NSGA-II, PSO-KH, and EDA-IPM requires  9, 11, 8 and 8 respectively. The average  relative 

percentage error (ARPE) of voltage magnitude and ARPE of voltage angle for the proposed 

method are 0.0263% and 0.6144%, respectively. Whereas, for MOEA/D, NSGA-II, PSO-KH 
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and EDA-IPM are 0.0323%, 0.0347%, 0.0347%, 0.0367% and 1.1407%, 1.1849%, 1.0013%, 

1.0473% respectively. The proposed method is superior to the majority of algorithms already 

in use or available. In the case of  5% real measurement uncertainty, when compared to all the 

methods the proposed method shows superiority in terms of estimated error of voltage 

magnitude, angle and as well as the number of meters required. It is observed that the number 

of meters required increases with an increase in real measurement uncertainty. 

Similarly, the proposed method is tested for DG type-2, type-3 and the optimal Pareto 

fonts are shown in fig. 5.12 and 5.13, respectively. The performance of all the algorithms is 

tabulated in Table 5.9 and 5.10 for DG type-2 and type-3, respectively. 

 

Fig. 5.11: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

Real measurements with an accuracy of 5% and Pseudo measurements with an accuracy of 

50% with DG Type-1 (P) (AR –Adaptive reference point method). 
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Table 5.8: Indian Practical 85-bus distribution system: Optimal location of the power flow 

meters under different measurement uncertainty for with DG Type-1(P). 

Metrological 

error (in %) 
Algorithm 

Location of 

Power flow 

meters (Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

1  Proposed 

algorithm with 

AR* 

7, 10, 29, 47, 56 5 8 0.0263 0.6144 

Proposed algorithm 

without AR* 

7, 11, 30, 56, 63 5 8 0.0271 0.7298 

MOEA/D [49] 3, 6, 24, 31, 69, 

78 

6 9 0.0389 1.1407 

NSGA-II [43] 4, 7, 11, 24, 27, 

31, 39, 67 

8 11 0.0323 1.1849 

PSO-KH [73] 1, 9, 27, 33, 44  5 8 0.0347 1.0013 

EDA-IPM [75] 1, 9, 23, 28, 44 5 8 0.0367 1.0473 

5 Proposed 

algorithm with 

AR* 

9, 16, 18, 24, 31, 

57 

6 9 0.0268 0.8289 

Proposed algorithm 

without AR* 

7, 16, 31, 40, 57, 

71 

6 9 0.0345 1.0716 

MOEA/D [49] 13, 17, 25, 26, 

66 

5 8 0.0588 1.4948 

NSGA-II [43] 8, 16, 17, 19, 26, 

39, 46, 62, 77 

9 12 0.0582 1.9197 

PSO-KH [73] 1, 9, 19, 28, 46, 

62, 79 

7 10 0.0419 1.2124 

EDA-IPM [75] 1, 9, 17, 28, 42, 

62, 79 

7 10 0.0400 1.1001 

(AR* - Adaptive Reference Point Method) 
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Fig. 5.12: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

Real measurements with an accuracy of 1% and Pseudo measurements with an accuracy of 

50% with DG Type-2 (P-jQ) (AR –Adaptive reference point method). 
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Fig. 5.13: Indian Practical 85-bus active distribution system optimal Pareto-front plots: 

Real measurements with an accuracy of 1% and Pseudo measurements with an accuracy of 

50% with DG Type-3 (P+jQ) (AR –Adaptive reference point method). 

 

Table 5.9: Indian Practical 85-bus distribution system: Optimal location of the power flow 

meters with 1% measurement uncertainty for with DG Type-2(P-jQ). 

Algorithm 

Location of Power 

flow meters (Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of voltage 

magnitude 

J3 

ARPE of 

voltage angle 

Proposed 

algorithm with 

AR* 

7, 8, 26, 57, 60 5 8 0.0320 0.9213 

Proposed 

algorithm 

without AR* 

5, 17, 24, 31, 59 5 8 0.0337 0.9642 

MOEA/D [49] 3, 6, 23, 26, 29, 33, 

38, 45, 57, 65, 83 

11 14 0.0321 0.9418 
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NSGA-II [43] 13, 16, 19, 23, 27, 

30, 49, 54, 67 

9 12 0.0533 1.2292 

EDA-IPM [75] 1, 17, 25, 29, 34, 

58, 60 

7 10 0.0386 1.1584 

 

Table 5.10: Indian Practical 85-bus distribution system: Optimal location of the power flow 

meters with 1% measurement uncertainty for with DG Type-3 (P+jQ). 

Algorithm 

Location of Power 

flow meters(Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of voltage 

magnitude 

J3 

ARPE of 

voltage angle 

Proposed 

algorithm with 

AR* 

8, 15, 16, 17, 31, 59 6 9 0.0404 1.2104 

Proposed 

algorithm 

without AR* 

10, 16, 17, 26, 29, 

56 

6 9 0.0440 1.2204 

MOEA/D [49] 5, 8, 14, 15, 16, 17, 

32, 36, 67 

9 12 0.0546 1.2980 

NSGA-II [43] 6, 23, 24, 50, 57, 

62, 66, 70 

8 11 0.0708 1.8956 

EDA-IPM [75] 1, 23, 31, 49, 58, 

59, 61 

7 10 0.0500 1.1191 

(AR* - Adaptive Reference Point Method) 

The inverse model reproduces the addition non-dominated solutions from the estimated 

conditional probability, which improves the search efficiency of MOEA. From the results it is 

evident that the proposed method out performs compared to other methods, in terms of 

estimated error of voltage magnitude, angle and number of meters required. When the Pareto 

fronts in figs. 5.2 to 5.13 are examined, the proposed method shows the evenly distributed 

diverse solutions on optimal Pareto front as compared to the proposed method without adaptive 

reference point method, MOEA/D and NSGA-II Pareto fronts. The discontinuities in Pareto 

fronts are clearly noticeable in all the plots from figs. 5.2 to 5.13. These discontinuities are due 

to the combinatorial nature of the meter placement problem, may not provide continuous values 

in objective space. When the shape of the Pareto front is irregular (disconnected, degenerated, 

and with sharp tails), uniformly distributed reference points in MOEA/D, unable to obtain the 

best approximation to Pareto front. As the reference points are adaptively adjusted in the 

proposed method, the distribution of reference points reflects the shape of the approximate 

optimal Pareto front and maintains evenly distributed non-dominated solutions on Pareto front. 

Moreover, the results obtained show the efficiency of the proposed algorithm in terms of 

estimated error of voltage magnitude, angle, minimum number of meters,  diversity, and 

distribution of solutions on the Pareto front. 
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5.7 Summary 

This work proposed a new inverse model based multi-objective evolutionary algorithm 

for meter placement in active distribution system state estimation. Inverse model maps the 

candidate solution in Pareto front from objective space to decision space. The decision space 

is a binary value string, which represents the meter locations and objective values are in integer 

domain. To map the binary space to integer domain, the inverse model is realized by multi-

label Gaussian process classification. The inverse model is used as reproduction operator to 

generate additional candidate solutions from estimated distribution of conditional probability. 

The main benefit of inverse model is to generate samples that are directly belong in desired 

objective space and improved search efficiency of the evolutionary algorithm. As the meter 

placement problem is combinatorial optimization, the Pareto front is discontinuous. Therefore, 

the reference points are adjusted using adaptive reference point method, so that the reference 

points follow shape of the approximate Pareto front, which improves the performance of the 

proposed algorithm. The meter placement in an active distribution system is modelled as multi-

objective problem of conflicting objectives such as the accuracy of state estimation and the 

cost of the meter configuration to achieve the optimal solution. 

In distribution system, state estimation performance can  be enhanced using the meter 

placement problem and it is handled in two ways using i) topological observability and ii) made 

numerically observable by adding Pseudo measurements. The second method, made 

numerically observable by adding Pseudo measurements, is widely used to formulate the meter 

placement problem in distribution system.  The power injection measurements at all the nodes 

are modeled as Pseudo measurements, and these are fixed set of measurements considered in 

meter placement problem. The drawback with pseudo measurement based meter placement is 

the accuracy of state estimation suffers due to the huge error associated with Pseudo 

measurements. The minimum number of Pseudo measurements that are needed to be added to 

the measurement set is not addressed in the literature. Therefore, chapter 6 proposes a multi-

objective meter placement in distribution system using numerical observability to find the 

minimum number of Pseudo measurements for given set of real measurements.     
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Chapter 6  

Many Objective Meter Placement in Active Distribution System State 

Estimation based on Numerical Observability Method 

6.1 Introduction 

The distribution system contains a large number of nodes, to make the system observable, 

the measurement devices need to be installed almost at each node, which is economically not 

suitable. Therefore, meters need to be installed at appropriate locations optimally. The 

additional meters are required to improve the observability of the network and redundancy of 

measurements, which enhances the performance of state estimation. In distribution system, 

state estimation performance is upgraded using the meter placement problem and it is handled 

in literature in two ways using i) topological observability and ii) made numerically observable 

by adding Pseudo measurements. Using topological observability based meter placement, the 

total number of meters required is around one third of the number of nodes in distribution 

system. Whereas, using the pseudo measurement based meter placement method the number 

of meters required is very less than the topological observability based meter placement 

method. The advantage of a smaller number of meters is due to the additional Pseudo 

measurements that are supplied along with real measurements. 

To improve the performance of state estimation, additional real measurements were added 

along with the fixed Pseudo measurements using the optimal meter placement method. The 

drawback with pseudo measurement based meter placement is the accuracy of state estimation 

suffers due to the huge error associated with Pseudo measurements. The minimum number of 

Pseudo measurements that are needed to be added to the measurement set is not addressed in 

the literature.   

This chapter proposes many-objective evolutionary optimization for meter placement 

problem in an active distribution system based on numerical observability. In general, the 

Pseudo measurements are fixed, and all the node injections are modeled as Pseudo 

measurements. Whereas, with fixed Pseudo measurements, state estimation accuracy degrades, 

and the number of actual measurements required to achieve the desired state estimation 

accuracy rises. The evolutionary optimization process only selects combination of real 

measurements, without changing the fixed Pseudo measurements, so that the formulated 

objectives are optimized. For the first time, this work proposes the numerical observability to 
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select the minimum number of Pseudo measurements for a given set of real measurements, 

which satisfies the observability of the network. By choosing the minimum number of Pseudo 

measurements the accuracy of state estimation increases and the number of real measurements 

also reduces. The trade-off between distribution leve Phasor measurement units (D-PMUs) and 

intelligent electronic devices (IEDs) are considered to formulate the meter placement problem. 

When the objectives increase above three, then most of the multi-objectives fail to perform 

effectively, as the objective spaces increase. Therefore, many-objective evolutionary 

algorithms are utilized to overcome the issues with multiple objectives. A many-objective 

optimization is designed to handle the minimization of the number of meters of D-PMUs and 

IEDs along with minimization of root mean square errors of voltage magnitude and voltage 

angle as objectives. The meter placement problem is a combinatorial optimization, the decision 

space consists of the binary values which represent the meter locations and objective space in 

integer values. Therefore, to map the integer objective domain to the binary decision domain, 

a multi-label Gaussian process classifier as an inverse model generates the additional solution 

sets in the decision space. Therefore, a many-objective inverse model based evolutionary 

optimization is used to formulate meter placement problem in distribution system. The main 

contributions are as follows: 

i. For the first time, the numerical observability method is used to minimize the 

number of Pseudo measurements for a given set of real measurements, which are 

generated by evolutionary optimization. 

ii. An inverse model based many-objective evolutionary optimization is designed 

using four objectives as minimization of D-PMUs cost, minimization of IEDs cost, 

minimization of root means square errors of voltage magnitude and minimization 

of root mean square errors of voltage angle. Multi-label Gaussian process 

classification is used to map the objective space and binary decision space in the 

inverse model. 

iii. The trade-off between D-PMUs and IEDs are considered to formulate the meter 

placement problem. 

6.2 Problem Formulation: 

The many objective meter placement problem is designed using objectives: minimizing 

i) cost of D-PMUs (J1) ii) cost of IEDs (J2) and iii) the root mean square error of voltage 
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magnitude (J3) and iv) the root mean square error of voltage angle (J4). The objectives are 

mathematically represented as follows: 

𝑚𝑖𝑛 J1 = ∑ CD−PMU,i
n
i=1  . 𝑃D−PMU,i                                            (6.1) 

𝑚𝑖𝑛 𝐽2 = ∑ 𝐶𝐼𝐸𝐷,𝑖. 𝑃𝐼𝐸𝐷,𝑖
𝑛𝑙
𝑖=1                                                         (6.2)     

𝑚𝑖𝑛 J3 =
1

m
∑ √

1

𝑛
(∑ (Vi

t − V̂i)2n
i=1 )𝑚

𝑗=1                                        (6.3) 

𝑚𝑖𝑛 J4 =
1

m
∑ √

1

𝑛
(∑ (δi

t − δ̂i)2n
i=1 )𝑚

𝑗=1                                         (6.4) 

Where CD-PMU, CIED are the cost of distribution level PMUs and IEDs respectively. The per-

unit cost of D-PMU is considered as 0.3 and IED is considered as 0.6 [74], [103]. PD-PMU, PIED 

are the positions in binary values of D-PMUs and IEDs respectively. Whereas, Vt, δt are true 

values and 𝑉̂, 𝛿 are estimated values of states. The number of Monte Carlo Scenarios are 

denoted by 𝑚, the number of nodes and lines are denoted by 𝑛, 𝑛𝑙. 

6.3 Numerical Observability Method: 

The numerical observability method is based Gram-Schmidt on orthogonalization approach of 

rows of Jacobian [104]. The numerical observability method determines the orthogonal basis 

of Jacobian matrix rows. If the number of vectors in the basis is equal to (n-1), then the system 

is observable. The Gram-Schmidt process provides the linearly independent vectors V= span 

{v1, v2, …., vn} and the orthogonalization process is using the projections on linearly 

independent vectors which gives the projection of linearly independent vector Vi onto the row 

hj in the Jacobian matrix. The projection operator is expressed as follows:  

                                          𝑝(ℎ𝑗) = (ℎ𝑗 . 𝑉𝑖)𝑉𝑖                                                       (6.5) 

The error of each projection is calculated, and based on the maximum error value of projection 

the next row is selected from the Jacobean matrix. In distribution system, Gain matrix is used 

for calculating the linearly dependent rows as the Gain matrix is symmetric matrix [83]. Then, 

the linearly independent vector is determined using the selected row. The error projection is 

evaluated as follows: 

𝑒𝑗 = ‖ℎ𝑗 − 𝑝(ℎ𝑗)‖                                                    (6.6) 

The stopping criterion is based on the error of projection, if it is less than or equal to 10-7, then 

the process is terminated. When the linearly independent vectors V consists of (n-1) vectors 
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then the system is observable otherwise unobservable. if the system is unobservable for a given 

set of measurements, then the additional Pseudo measurements are determined by using 

previous linearly independent vectors V using the Gram-Schmidt process until it reaches the 

stopping criteria (projection error ≤ 10-7). The power injections are at each node with 50% error 

are modeled as Pseudo measurements and Jacobean is formulated with Pseudo measurements 

and projection of rows on linearly independent vectors is calculated, and projection errors are 

calculated to select the Pseudo measurements. This procedure gives the minimum number of 

Pseudo measurements for a given set of real measurements.  

6.4 Many-Objective Evolutionary Optimization using Inverse Model: 

The proposed method uses model based many-objective evolutionary optimization. The 

locations of measurements are represented with binary values, and the objectives are in integer 

values. Multi-label Gaussian Process classification [98] generates additional non-dominated 

solutions, which improves the diversity of the population. The inverse model is realized by 

Gaussian process classification by mapping the objective space to the meter location binary 

decision space. Then in the reproduction process, the offspring population is produced from 

the inverse model. The detailed algorithm is provided step by step as follows: 

Step 1: Initialization: The initial population with meter locations of D-PMUs and IEDs is 

generated randomly. The Systematic Sampling Approach is used to create uniformly dispersed 

reference points [87].  

Step 2: Numerical Observability Method: The power injections at all the nodes are modeled 

as Pseudo measurements. The real measurements (D-PMUs and IEDs) along with Pseudo 

measurements are supplied to the numerical observability to determine the minimal number of 

Pseudo measurements for a given set of real measurements.  

Step 3: State Estimation: State estimation is evaluated for a given set of the substation 

measurements, virtual measurements, minimum set of Pseudo measurements, and real 

measurements. The state estimation is executed for the ‘m’ number of Monte Carlo simulations 

for different measurement errors.  

Step 4: Partition of Population: The population is divided into K subpopulations using 

the minimum acute angle criteria and it expressed as follows: 

kt = 𝑎𝑟𝑔𝑚𝑖𝑛t=1,2,…,K

St⃗⃗⃗⃗ 

‖St⃗⃗⃗⃗ ‖
× vt⃗⃗  ⃗                                                     (6.7) 
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The candidate of population St
⃗⃗  ⃗ is added to partition t, when the acute angle between unit St

⃗⃗  ⃗ and 

reference vector vt⃗⃗  ⃗ is minimum, where t = 1,2, … , K. Then non-dominated sorting is applied 

on the K subpopulations.  

Step 5: Gaussian Process Classification based Inverse model: The multi-label Gaussian 

process classification is used to map the integer objective space to binary decision space [29]. 

The model involves of the estimation step and maximization step. The estimation step estimates 

the latent function for a given covariance function where the maximization step updates the 

covariance function for the estimated latent function.  

Step 6: Reproduction:  Samples from the inverse model are used to produce the additional 

offspring. The mutation operator is applied then the offspring and old population are combined 

to produces the next generation. Then, using the adaptive reference point method, the reference 

points are adaptively modified based on the new population to follow the discontinuous Pareto 

front [105]. Then the trade-off objective optimal value is selected using the fuzzy min-max 

method [88]. The flow chart of the proposed many-objective evolutionary method is given in 

fig. 6.1.  
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Fig. 6.1: Flow chart of the proposed numerical observability method based meter placement. 
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6.5 Simulation and Test Conditions: 

Monte Carlo simulations are used to determine the objective values and constraint violations 

for different uncertainties of measurements. the Monte Carlo trials are considered as 1000 for 

100 different network conditions [22]. The error percentage of different types of measurements 

are considered as follows: 

Default measurements: Voltage measurement and power flow measurements at slack 

bus and first line are considered as default measurements. In active distribution system 

at each DG one power flow measurement is considered as the default measurement. 

The error is considered as 1%. 

Virtual measurements: Zero bus injections are modeled as virtual measurements with 

10-8 as the variance of measurement. 

Real Measurement: D-PMUs and IEDs are placed using the proposed method with 

the percentage error is 1% and 5%.  

Pseudo measurements: All the power injections at each node are modeled as Pseudo 

measurements with 50% error. The minimum set of Pseudo measurements are 

identified using numerical observability method. 

6.6 Results and Discussion: 

The proposed method is verified on PG&E 69-bus and Indian Practical 85-bus distribution test 

system and tested for 1% and 5% real measurement error accuracy. The effect of renewable 

energy sources is considered and modeled as DGs, which produces active power. The details 

of distributed generation locations and their base values are given in Table 6.1. These DG 

positions were chosen based on the least amount of power loss and voltage deviation [75].  

Table 6.1: Distributed generation size and locations 
Test System Bus Number DG base value (MW) 

PG&E 69-bus 

Distribution System 

50 0.180 

61 0.270 

Indian Practical 85-bus 

Distribution System 

45 0.277 

61 0.290 

 

The proposed method is compared with EDA-IPM [75] and NSGA-II [75], both methods have 

considered PMUs and IEDs, and authors in EDA-IPM considered the cost of PMUs as 1 per 

unit and IEDs as 0.6 per unit. The PMU considered is not distribution level PMU (D-PMU). 

Therefore, the authors considered the cost of the PMU is 1 per unit. Whereas the proposed 

method considered D-PMUs with 0.3 per unit cost and IEDs with the same cost as 0.6 per unit. 
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In EDA-IPM and NSGA-II considered only three objectives, not considered the four 

objectives. To asses the performance of D-PMU a 1% Total Vector Error (TVE) is considred 

as per the IEEE synchrophasor standards (IEEE C37.118.1a-2014). The total vector error is 

defined as folows   

𝑇𝑜𝑡𝑎𝑙 𝑉𝑒𝑐𝑡𝑜𝑟 𝐸𝑟𝑟𝑜𝑟 (𝑇𝑉𝐸) =  
|𝑋̅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑋̅𝑇ℎ𝑒𝑜𝑟𝑎𝑡𝑖𝑐𝑎𝑙|

𝑋̅𝑇ℎ𝑒𝑜𝑟𝑎𝑡𝑖𝑐𝑎𝑙

 

(6.8) 

Where 𝑋̅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured voltage from the D-PMU after state estimation and 

𝑋̅𝑇ℎ𝑒𝑜𝑟𝑎𝑡𝑖𝑐𝑎𝑙 is the theoratical voltage from load flow. The maximum total vector error for given 

D-PMUs are taken as the performace benchmark for given measurement set obtained from the 

proposed algorithm. 

6.6.1  PG&E 69-bus Distribution System:  

The proposed algorithm with numerical observability method and without numerical 

observability method is verified on PG&E 69-bus distribution system, the details of distribution 

system is given in [92]. The meter placement is evaluated for 1% and 5% of errors in real 

measurements. The Pareto fronts of different objectives are shown in figs. 6.2 and 6.3 

correspond to the 1% and 5% errors with DG. For 1% error, the proposed algorithm with 

numerical observability shows superiority as it improves the accuracy of state estimates as 

objective J3(root mean square error of voltage magnitude) and objective J4(root mean square 

error of voltage angle) and the number of D-PMUs and IEDs. The proposed method with 

numerical observability requires 2 D-PMUs and 3 IEDs and having minimum state estimate 

error as J3 equals 5.1892e-05 and J4 equals 2.9641e-06 when compared to proposed method 

without numerical observability, EDA-IPM, and NSGA-II. Similarly, the same can be 

observed with 5% of error case. The results of with DG case are given in Table-6.2. The same 

hold with the without DG case for 1% and 5% errors, the Pareto fronts are given in figs. 6.4, 

6.5, and results are tabulated in Table 6.3. 
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Fig. 6.2: PG&E 69-bus distribution system optimal Pareto-front plots: with 1% error in 

real measurements and Pseudo measurements with an accuracy of 50% with DG 
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Fig. 6.3: PG&E 69-bus distribution system optimal Pareto-front plots: with 5% error in 

real measurements and Pseudo measurements with an accuracy of 50% with DG.  
 

Table 6.2: PG&E 69-bus distribution system: Optimal location of the D-PMUs and IEDs 

under different measurement uncertainty for with DG  
Measurem

ent error 

(in %) 

Algorithm Location 

of D-

PMUs 

(Node 

numbers) 

Location 

of IEDs 

(Line 

numbers) 

Objective function values Maximum  

TVE J1 

Per 

unit 

cost of 

D-

PMUs 

J2 

Per unit 

cost of 

IEDs 

J3 

Root 

mean 

square 

error of 

Voltage 

magnitud

e (in p.u.) 

J4 

Root mean 

square 

error of 

Voltage 

angle  

(in p.u.) 

1  Proposed 

algorithm 

with 

Numerical 

Observability 

17, 29 47,50,60 0.6 1.8 5.1892e-

05 

2.9641e-06 0.001015 

Proposed 

algorithm 

4, 17, 23, 

29 

14, 34, 41, 

50, 56 

1.2 3 5.9751e-

05 

3.6186e-06 0.003012 
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without 

Numerical 

Observability 

EDA-IPM [75] 27,62 1,2,4 2 1.8 0.0098 - - 

NSGA-II [75] 21,27,34,

49,57 

1,6,37 5 1.8 0.0129 - - 

5 Proposed 

algorithm 

with 

Numerical 

Observability 

41, 55 3, 18, 25, 

32, 48, 58, 

64 

0.6 4.8 2.5419e-

05 

3.2065e-06 0.001952 

Proposed 

algorithm 

without 

Numerical 

Observability 

12, 36, 43, 

54 

10,16, 22, 

33, 41, 66, 

68 

1.2 4.8 3.7612e-

05 

3.7129e-06 0.004107 

EDA-IPM [75] 27,67 1,2,3,8,25,

29,57,65 

2 4.8 0.0152 - - 

NSGA-II [75] 14,17,36,

44 

1,7,9,13,14

,17,31,32,3

9, 

47,54,60,6

3 

4 7.8 0.0182 - - 
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Fig. 6.4: PG&E 69-bus distribution system optimal Pareto-front plots: with 1% error in 

real measurements and Pseudo measurements with an accuracy of 50% without DG. 
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Fig. 6.5: PG&E 69-bus distribution system optimal Pareto-front plots: With 5% error in 

real measurements and Pseudo measurements with an accuracy of 50% without DG. 

 

Table 6.3: PG&E 69-bus distribution system: Optimal location of the D-PMUs and IEDs 

under different  measurement uncertainty for without DG. 
Measureme

nt error (in 

%) 

Algorithm Location 

of D-

PMUs 

(Node 

numbers

) 

Locatio

n of 

IEDs 

(Line 

number

s) 

Objective function values Maximum  

TVE J1 

Per unit 

cost of  

D-PMUs 

J2 

Per 

unit 

cost of 

IEDs 

J3 

Root 

mean 

square 

error of 

Voltage 

magnitud

e (in p.u.) 

J4 

Root mean 

square 

error of 

Voltage 

angle  

(in p.u.) 

1  Proposed 

algorithm with 

Numerical 

Observability 

10, 13 38, 44, 

61, 65 

0.6 2.4 5.8139e-

05 

2.7467e-06 0.001148 
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Proposed 

algorithm 

without 

Numerical 

Observability 

4, 17, 23, 

29 

14, 34, 

41, 56, 

59 

1.2 3 6.2604e-

05 

3.6742e-06 0.001840 

5 Proposed 

algorithm with 

Numerical 

Observability 

10, 16, 

37, 54, 56 

38, 44, 

61, 65, 

68 

1.5 3 3.2505e-

05 

1.0601e-06 0.002114 

Proposed 

algorithm 

without 

Numerical 

Observability 

6, 17, 25, 

50, 53 

4, 14, 17, 

20, 46, 

51 

1.5 3.6 3.5477e-

05 

2.9895e-06 0.003015 

 

6.6.2 Indian Practical 85-bus Distribution System:  

The proposed method with and without numerical observabilitymethod  is verified on Indian 

Practical 85-bus distribution system, the details of which can be found in [93]. The results of 

DG for 1% and 5% error case Pareto fronts are displayed in figs. 6.5 and 6.6 and the results are 

tabulated in Table-6.4. The obtained results show the effectiveness of the method using 

numerical observability method, as it produces fewer state estimate errors (J3= 6.2508e-05 and 

J4 = 1.4338e-06) and a smaller number of meters required as compared to the proposed method 

without numerical observability method, EDA-IPM, and NSGA-II. Similarly, the same can be 

observed with 5% of error case. The without DG case is presented in Table 6.5 and the Pareto 

fronts are given in figs. 6.7 and 6.8. 
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Fig. 6.6: Indian Practical 85-bus distribution system optimal Pareto-front plots: With 1% 

error in real measurements and Pseudo measurements with an accuracy of 50% with DG. 
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Fig. 6.7: Indian Practical 85-bus distribution system optimal Pareto-front plots: With 5% 

error in real measurements and Pseudo measurements with an accuracy of 50% with DG. 

Table 6.4: Indian Practical 85-bus distribution system: Optimal location of the D-PMUs 

and IEDs with 1% measurement uncertainty for with DG. 
Measurem

ent error 

(in %) 

Algorithm Location 

of D-

PMUs 

(Node 

numbers) 

Location 

of IEDs 

(Line 

numbers) 

Objective function values Maximum 

TVE J1 

Per unit 

cost of  

D-PMUs 

J2 

Per unit 

cost of 

IEDs 

J3 

Root 

mean 

square 

error of 

Voltage 

magnitud

e  (in 

p.u.) 

J4 

Root mean 

square 

error of 

Voltage 

angle  

(in p.u.) 

1  Proposed 

algorithm 

with 

Numerical 

Observabil

ity 

11, 77 18, 75, 82 0.6 1.8 6.2508e-

05 

1.4338e-06 0.003154 

Proposed 

algorithm 

55, 73, 77 27, 75, 

79, 82 

0.9 2.4 8.0282e-

05 

5.2922e-06 0.005415 
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without 

Numerical 

Observabili

ty 

EDA-IPM 

[75] 

42,71,78 1,2 3 1.2 0.0096 - - 

NSGA-II 

[75] 

72,76 1,8,14,43, 

47,69 

2 3.6 0.0136 - - 

5 Proposed 

algorithm 

with 

Numerical 

Observabil

ity 

41, 55, 66, 

82 

24, 37, 

49, 65, 84 

1.2 3.0 3.2140e-

05 

5.1532e-06 0.004821 

Proposed 

algorithm 

without 

Numerical 

Observabili

ty 

19, 26, 44, 

60, 80 

18, 26, 

35, 40, 

54, 75 

1.5 3.6 4.1850e-

05 

5.3851e-06 0.005619 

EDA-IPM 

[75] 

27, 42, 60, 

62, 70, 75 

1,3,5 6 1.8 0.0146 - - 

NSGA-II 

[75] 

39,52,61,6

5, 71,76, 

79,82 

1,3,5,6,34

,37 

8 3.6 0.0202 - - 
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Fig. 6.8: Indian Practical 85-bus distribution system optimal Pareto-front plots: With 1% 

error in real measurements and Pseudo measurements with an accuracy of 50% without DG 
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. 

 
Fig. 6.9: Indian Practical 85-bus distribution system optimal Pareto-front plots: With 5% 

error in real measurements and Pseudo measurements with an accuracy of 50% without DG. 

 

Table 6.5: Indian Practical 85-bus distribution system: Optimal location of the D-PMUs 

and IEDs under different measurement uncertainty for without DG. 
Measureme

nt error  

(in %) 

Algorithm Location 

of D-

PMUs 

(Node 

numbers) 

Location 

of IEDs 

(Line 

numbers

) 

Objective function values Maximum 

TVE J1 

Per 

unit 

cost of 

D-

PMUs 

J2 

Per 

unit 

cost 

of 

IEDs 

J3 

Root 

mean 

square 

error of 

Voltage 

magnitud

e  (in 

p.u.) 

J4 

Root mean 

square 

error of 

Voltage 

angle  

(in p.u.) 

1  Proposed 

algorithm with 

Numerical 

Observability 

52, 71 35, 49, 

55, 79 

0.6 2.4 6.1882e-

05 

3.6390e-06 0.004105 

Proposed 

algorithm 

without 

14,51, 71 32, 49, 

52, 55, 

77 

0.9 3.0 6.3180e-

05 

3.2118e-06 0.004817 
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Numerical 

Observability 

5 Proposed 

algorithm with 

Numerical 

Observability 

24, 44, 74, 

83 

38, 41, 

54, 60, 

69, 79, 

82 

1.2 4.2 3.9395e-

05 

4.0684e-06 0.005214 

Proposed 

algorithm 

without 

Numerical 

Observability 

24, 32, 39, 

74, 83 

36, 49, 

54, 60, 

69, 74, 

79, 82 

1.5 4.8 4.0557e-

05 

4.3857e-06 0.006142 

 

The obtained results show the proposed method with numerical observability improves the 

accuracy of state estimation. This is evident from objectives J3 and J4 when compared with all 

other methods. This in turn leads to reducing the number of meters required. The greater 

number of solutions crowded together can be found in all the Pareto front plots from fig. 6.2 to 

6.9, which is due to the multi-label Gaussian process classification inverse model, which 

improved the diversity and search ability of the evolutionary algorithm.  

6.7 The Comparision of Proposed Methods 

This thesis proposed four multi-objective meter placement methods for distribution system 

state estimation. In chapter 3, Decomposition and Local dominace base MOEA with 

Binomial Distribution Mante Carlo simulations (DLD-MOEA-BDMC) method is proposed.  

In chapter 4 Indicator Based MOEA using Objective Discretization (IB-MOEA-OD) method 

is proposed and chapter 5 proposed a Model Based MOEA using Adaptive Reference point 

method (MB-MOEA-AR). All the three methods addresses the same objective functions: 

minimization of i) cost of measurement devices (J1) ii) the average relative percentage error 

(ARPE) of voltage magnitude (J2) and iii) the average relative percentage error (ARPE) of 

voltage angle (J3). Whereas, in this chapter a inverse model based many-objective 

evolutionary algorithm is proposed with different objective functions. Therefore, results of 

first three proposed methods are summarised as follows: 

6.7.1 PG&E 69-bus Distribution System  

For PG&E 69-bus distribution system, without DG case the propsed IB-MOEA-OD gives the 

better results as compared to others, whereas in contrary in with DG (Type-1, Type-2, and Type 

3) cases the proposed MB-MOEA-AR provides better results in most of the cases. The results 

without DG case is presented in Table 6.6. DG type-1, DG type-2 and DG type-3 cases are 

tabulated in Tables 6.7, 6.8, and 6.9, respectively. 
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Table 6.6: PG&E 69-bus distribution system: Summary of different proposed 

algorithms: Optimal location of the power flow meters under different metrological errors 

for without DG 

Metrological 

error (in %) 

Algorithm Location of Power 

flow meters (Line 

numbers) 

Number of 

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of voltage 

magnitude 

J3 

ARPE of 

voltage angle 

1 

 

Proposed 

DLD-MOEA-

BDMC 

algorithm 

(chapter 3) 

1,5,13,30,54 5 6 0.0014 0.4547 

Proposed IB-

MOEA-OD 

algorithm  

(chapter 4) 

1, 13, 32, 43, 55 5 6 0.0008 0.2641 

Proposed IM-

MOEA-AR 

algorithm  

(chapter 5) 

7, 10, 31, 42 4 5 0.0011 0.3477 

5 

 

Proposed 

DLD-MOEA-

BDMC 

algorithm 

(chapter 3) 

1,9,13, 26, 31, 46, 

60 

7 8 0.0023 0.6288 

Proposed IB-

MOEA-OD 

algorithm 

(chapter 4) 

1, 15, 29, 40, 47, 56 6 7 0.0020 0.3458 

Proposed  IM-

MOEA-AR 

algorithm  

(chapter 5) 

10, 15, 29, 42, 46 5 6 0.0020 0.4555 
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Table 6.7: PG&E 69-bus distribution system: Summary of different proposed 

algorithms: Optimal location of the power flow meters under different metrological errors  

with DG Type-1(P) 
 

Metrological 

error (in %) 

Algorithm Location of 

Power flow 

meters(Line 

numbers) 

Number of  

power flow 

meters 

Objective function values 

J1 

Cost of meters 

(1 per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage angle 

1  Proposed IB-MOEA-OD 

algorithm  

(chapter 4) 

1, 13, 30, 41, 

56 

5 8 0.0011 0.3122 

Proposed IM-MOEA-

AR algorithm  

(chapter 5) 

14, 28, 32, 41, 

57 

5 8 0.0009 0.3018 

5 Proposed IB-MOEA-OD 

algorithm  

(chapter 4) 

1, 14, 32, 42, 

47, 55 

6 9 0.0017 0.4698 

Proposed IM-MOEA-

AR algorithm  

(chapter 5) 

9, 14, 28, 29, 

44, 47 

6 9 0.0017 0.3187 

 

Table 6.8: PG&E 69-bus distribution system: Summary of different proposed 

algorithms: Optimal location of the power flow meters with 1% measurement uncertainty 

with DG Type-2(P-jQ). 
Algorithm Location of 

Power flow 

meters(Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters 

(1 per 

unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of voltage 

angle 

Proposed IB-

MOEA-OD 

algorithm 

(chapter 4) 

1, 14, 29, 41, 55 5 8 0.0014 0.3800 

Proposed 

IM-MOEA-

AR 

algorithm 

6, 9, 28, 30, 42 5 8 0.0008 0.2399 



Chapter 6  Many-Objective Meter Placement based on  

Numerical Observability Method 

 

157 
 

(chapter 5) 

 

Table 6.9: PG&E 69-bus distribution system: Summary of different proposed 

algorithms: Optimal location of the power flow meters with 1% measurement uncertainty 

with DG Type-3(P+jQ). 
Algorithm Location of 

Power flow 

meters(Line 

numbers) 

Number 

of  

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters 

(1 per 

unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

Proposed 

IB-MOEA-

OD 

algorithm 

(chapter 4) 

1, 13, 31, 40, 

58 

5 8 0.0012 0.5714 

Proposed 

IM-MOEA-

AR 

algorithm  

(chapter 5) 

8, 32, 42, 54 4 7 0.0010 0.7257 

 

6.7.2 Indian Practical 85-bus Distribution System 

For Indian Practical 85-bus distribution system, with and without DG cases the propsed MB-

MOEA-AR gives the better results in most of the cases as compared to others. The results 

without DG case is presented in Table 6.10. DG type-1, DG type-2 and DG type-3 cases are 

tabulated in Tables 6.11, 6.12, and 6.13, respectively. 

Table 6.10: Indian Practical 85-bus distribution system: Summary of different proposed 

algorithms: Optimal location of the power flow meters under different metrological errors 

without DG 

Metrological 

error (in %) 

Algorithm Location of Power 

flow meters (Line 

numbers) 

Number of 

power flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 per 

unit device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

1 

  

Proposed DLD-

MOEA-BDMC 

algorithm 

1,6,11,26,30,63 6 7 0.0337 0.7153 
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(chapter 3) 

Proposed IB-MOEA-

OD algorithm  

(chapter 4) 

1, 10,17, 24,30,57 6 7 0.0281 0.6552 

Proposed IM-

MOEA-AR 

algorithm  

(chapter 5) 

8, 17, 24, 33, 56, 59 6 7 0.0278 0.6894 

5 

 

Proposed DLD-

MOEA-BDMC 

algorithm 

(chapter 3) 

1,7, 26, 32, 39, 45, 

57, 79, 84 

9 10 0.0492 1.4288 

Proposed IB-MOEA-

OD algorithm  

(chapter 4) 

1, 24,28,33,59,71 6 7 0.0451 0.9845 

Proposed IM-

MOEA-AR 

algorithm 

(chapter 5) 

9, 16, 17, 24, 32, 56, 

63 

7 8 0.0351 0.9056 

 

Table 6.11: Indian Practical 85-bus distribution system: Summary of different proposed 

algorithms: Optimal location of the power flow meters different measurement uncertainty with 

DG Type-1(P) 
Metrological 

error  

(in %) 

Algorithm Position of 

PMs (Line 

numbers) 

Number 

of 

power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

1 Proposed IB-

MOEA-OD 

algorithm  

(chapter 4) 

1, 18, 24, 56, 62 5 8 0.0265 0.6543 

Proposed IM-

MOEA-AR 

algorithm 

(chapter 5) 

7, 10, 29, 47, 56 5 8 0.0263 0.6144 
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5 Proposed IB-

MOEA-OD 

algorithm  

(chapter 4) 

1, 17,24, 33,57, 

63 

6 9 0.0326 0.9494 

Proposed IM-

MOEA-AR 

algorithm 

(chapter 5) 

9, 16, 18, 24, 31, 

57 

6 9 0.0268 0.8289 

Table 6.12: Indian Practical 85-bus distribution system: Summary of different proposed 

algorithms: Optimal location of the power flow meters with 1% measurement uncertainty for 

DG Type-2(P-jQ). 
Algorithm Position of PMs 

(Line numbers) 

Number 

of power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J3 

ARPE of 

voltage 

angle 

Proposed IB-

MOEA-OD 

algorithm  

(chapter 4) 

1,17, 25, 31, 57, 63 6 9 0.0270 0.8380 

Proposed IM-

MOEA-AR 

algorithm 

(chapter 5) 

7, 8, 26, 57, 60 5 8 0.0320 0.9213 

Table 6.13: Indian Practical 85-bus distribution system: Summary of different proposed 

algorithms: Optimal location of the power flow meters with 1% measurement uncertainty for 

DG Type-3(P+jQ). 
Algorithm Position of PMs 

(Line numbers) 

Number 

of power 

flow 

meters 

Objective function values 

J1 

Cost of 

meters (1 

per unit 

device) 

J2 

ARPE of 

voltage 

magnitude 

J1 

Cost of 

meters (1 

per unit 

device) 

Proposed IB-

MOEA-OD 

algorithm  

(chapter 4) 

1, 16, 17, 30, 59, 66 6 9 0.0436 1.1079 
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Proposed IM-

MOEA-AR 

algorithm 

(chapter 5) 

8, 15, 16, 17, 31, 59 6 9 0.0404 1.2104 

 

6.8 Summary 

A many objective meter placement using numerical observability method is proposed for 

distribution system state estimation. In general, all the power injections are modeled as Pseudo 

measurements. A fixed number of Pseudo measurements deteriorates the accuracy of state 

estimation. Therefore, the minimum number of Pseudo measurements is determined using the 

numerical observability method for a given combination of real measurements. This approach 

improves the performance of meter placement by decreasing the state estimation errors and 

decreases the number of real measurements required. An inverse model-based many-objective 

evolutionary optimization is used to formulate meter placement, which maps the integer 

objective space to discrete decision space and produces combination of meter locations based 

on the inverse model, which is realized using multi-label Gaussian process classification. This 

improves the search ability of evolutionary optimization and provides diverse solutions in 

population. The effectiveness of the proposed method is tested for the active and passive 

distribution networks and with different measurement uncertainties. 
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Chapter 7  

Conclusions 

7.1 General 

In this thesis, an optimal meter placement of meters such as power flow meters, distribution 

level Phasor measurement units (D-PMUs) and intelligent electronic devices (IEDs) for active 

distribution system state estimation has been investigated using new multi-objective 

evolutionary algorithms. This thesis explores the new multi-objective frameworks such as 

decomposition based multi-objective evolutionary algorithms (MOEAs), indicator based 

MOEAs and model based MOEAs and their application in meter placement problem. 

Furthermore, optimal allocation of meters are obtained for passive and active distribution 

networks under various operating scenarios. This chapter presents the important findings 

proposed in this thesis and discusses future extensions of the proposed research work. 

7.2 Summary of Important Findings:  

This research work inspects the multi-objective meter placement problem and addresses the 

issues with combinatorial optimization, discrete and discontinuous Pareto fronts, population 

initialization using Binomial distribution-based Monte Carlo trails, search ability and diversity 

issues as well as reducing the Pseudo measurements using numerical observability method are 

addressed. The following conclusions are arrived from the research work carried out and 

reported in previous chapters of this thesis. 

i. An optimal meter placement in distribution system state estimation using a new hybrid 

multi-objective evolutionary algorithm based on decomposition and local dominance is 

proposed. 

• Minimizing the cost of measurement devices, average relative percentage error of 

voltage magnitude and average relative percentage error of voltage angle are the three 

objectives, that are considered to model the multi-objective meter placement problem.  

• The hybridization of decomposition and dominance techniques improved the 

convergence and diversity of solutions in the Pareto front.  

• As the meter placement is a combinatorial optimization problem, the population of the 

proposed algorithm is initialized using the Binomial distribution-based Monte Carlo 

method, which improved the diversity of Pareto front. Diversity improvement is the 

main goal of the Binomial distribution-based Monte Carlo method and also improves 

the convergence. 
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• The results of the proposed method are compared with multi-objective evolutionary 

algorithm based on decomposition (MOEA/D), Non-dominated sorting genetic 

algorithm-II (NSGA-II) and with multi-objective hybrid particle swarm optimization- 

krill herd algorithm (PSO-KH),  multi-objective hybrid estimation of distribution 

algorithm- interior point method (EDA-IPM) and demonstrated on PG&E 69-bus 

distribution system and Indian Practical 85-bus distribution system. 

ii. A new indicator based MOEA using objective discretization method is proposed to find the 

optimal locations of power flow meter in active distribution system in presence of various 

types of DGs. 

• As the meter placement problem  is a combinatorial nature, the objective space is 

discrete. Therefore, to enhance the performance of the proposed method, objective 

discretization method was adopted, with different granularity along the objectives, so 

that it enhances the search ability of MOEA and decreases the non-dominated solutions 

in population.  

• MOEA is an indicator-based method with inverted generational distance indictor, 

including  non-contributing solution detection (IGD-NS), which measures diversity and 

convergence of solution sets and guides the evolution process. The indicator IGD-NS 

can reduce the non-dominated solutions with no contribution to the indicator value.  

• As the performance of MOEA depends on the approximate Pareto front shape, the 

proposed method employed a reference point method, which adaptively updates the 

reference points to follow the Pareto front shape.  

• Moreover, the proposed method improves the performance characteristics of MOEA, 

enhances search ability, provides uniformly distributed solutions on Pareto front, and 

follow the irregular Pareto front.  

• The versatility of the proposed method is demonstrated on PG&E 69-bus distribution 

system and on Indian Practical 85-bus distribution system. The results obtained are 

demonstrate the superiority of the proposed method over NSGA-II  and other methods 

such as with multi-objective hybrid PSO Krill herd algorithm (PSO-KH), multi-

objective hybrid estimation of distribution algorithm- interior point method (EDA-

IPM), dynamic programming (DP) and ordinal optimization algorithm (OOA). 

iii. A new inverse model based multi-objective evolutionary algorithm is proposed for meter 

placement in active distribution system state estimation.  
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• Inverse model maps the candidate solution in Pareto front from objective space to 

decision space. The decision space is a binary value string, which represents the meter 

locations and objective values are in integer domain. To map the binary space to integer 

domain, the inverse model is realized by multi-label Gaussian classification. 

• The inverse model is used as reproduction operator to generate additional candidate 

solutions from estimated distribution of conditional probability. The main benefit of 

inverse model is to generate samples that are directly belong in desired objective space 

and improved search efficiency of the evolutionary algorithm.  

• As the meter placement problem is combinatorial optimization, the Pareto front is 

discontinuous. Therefore, the reference points are adjusted using adaptive reference 

point method, so that the reference points follow shape of the approximate Pareto front, 

which improves the performance of the proposed algorithm.  

• The meter placement in an active distribution system is modelled as multi-objective 

problem of conflicting objectives such as the accuracy of state estimation and the cost 

of the meter configuration to achieve the optimal solution.  

iv. A many objective meter placement using numerical observability is proposed for an active 

distribution system.  

• In general, the power injections are modelled as Pseudo measurements. A fixed number 

of Pseudo measurements deteriorates the accuracy of state estimation. Therefore, The 

minimum number of Pseudo measurements is determined using the numerical 

observability for a given combination of real measurements. This approach improves 

the performance of meter placement by decreasing the state estimation errors and 

decreases the number of real measurements required.  

• An inverse model-based many-objective evolutionary optimization is used to formulate 

meter placement problem, which maps the integer objective space to discrete decision 

space and produces combination meter locations based on the model realized using 

multi-label Gaussian process classification. This improves the search ability of 

evolutionary optimization and provides diverse solutions in population. 

•  The meter placement problem is designed as many-objective evolutionary optimization 

with four objectives as i) cost of D-PMUs, ii) cost of IEDs, iii) root mean square error 

of voltage magnitude, iv) and root mean square error of voltage angle. 
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• The impact of distributed generation, as well as various real measurement uncertainties, 

are taken into account in order to validate the proposed method, which is tested using 

the PG&E 69-bus and Indian Practical 85-bus distribution test systems. 

7.3 Scope of the Future Work 

The research work in future can be extended on the following aspects: 

• The meter placement can be extended for formulating robust meter placement to handle  

meter malfunctions and measurement tampering aspects to enhance the security in 

cyber-physical systems.    

• Big data, data analytics techniques and machine learning methods can be utilised to 

model the multi-objective framework design to adopt the problem specific and 

computationally complex problems like meter placement problem. 

• The meter placement can be extended to multi-level decentralized distribution system 

state estimation study in smart grid environment. Since only a limited number of real-

time measurements are present at primary and secondary distribution network and 

distributed generation sites, load estimates at unmeasured buses remote from substation 

need to provide saticifactory state estimation results. The proposed algorithm can be 

applied in either grid connected mode or island mode and can effectively identify the 

breakerstatus errors at substations and feeders. 

• Further, the meter placement problem can take into account the system contingencies 

such as phasor failures, the PMU losses and the branch outage under the influence of 

distributed generation. 
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Appendix-A 

PG&E 69-bus distribution system data 

Number of buses: 69  

Number of lines: 68  

Bus voltage: 12.66kV  

Total active power load: 3.80MW   

Total reactive power load: 2.69 MW  

 

Fig. A.1: Single-line diagram of PG&E 69-bus system 

 
Table A.1: Line data of PG&E 69-bus distribution system 

Line No. From To R 

(in pu) 
X 

(in pu) 

1 1 2 3.12E-06 7.49E-06 

2 2 3 3.12E-06 7.49E-06 

3 3 4 9.36E-06 2.25E-05 

4 4 5 0.00016 0.00018 

5 5 6 0.00228 0.00116 

6 6 7 0.00238 0.00121 

7 7 8 0.00058 0.00029 

8 8 9 0.00031 0.00016 

9 9 10 0.00511 0.00169 

10 10 11 0.00117 0.00039 

11 11 12 0.00444 0.00147 

12 12 13 0.00643 0.00212 

13 13 14 0.00651 0.00215 

14 14 15 0.0066 0.00218 

15 15 16 0.00123 0.00041 

16 16 17 0.00234 0.00077 
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17 17 18 2.93E-05 9.98E-06 

18 18 19 0.00204 0.00068 

19 19 20 0.00131 0.00043 

20 20 21 0.00213 0.0007 

21 21 22 8.73E-05 2.87E-05 

22 22 23 0.00099 0.00033 

23 23 24 0.00216 0.00071 

24 24 25 0.00467 0.00154 

25 25 26 0.00193 0.00064 

26 26 27 0.00108 0.00036 

27 3 28 2.75E-05 6.74E-05 

28 28 29 0.0004 0.00098 

29 29 30 0.00248 0.00082 

30 30 31 0.00044 0.00015 

31 31 32 0.00219 0.00072 

32 32 33 0.00524 0.00176 

33 33 34 0.01066 0.00352 

34 34 35 0.0092 0.00304 

35 3 36 2.75E-05 6.74E-05 

36 36 37 0.0004 0.00098 

37 37 38 0.00066 0.00077 

38 38 39 0.00019 0.00022 

39 39 40 1.12E-05 1.31E-05 

40 40 41 0.00454 0.00531 

41 41 42 0.00193 0.00226 

42 42 43 0.00026 0.0003 

43 43 44 5.74E-05 7.24E-05 

44 44 45 0.00068 0.00086 

45 45 46 5.62E-06 7.49E-06 

46 4 47 2.12E-05 5.24E-05 

47 47 48 0.00053 0.0013 

48 48 49 0.00181 0.00442 

49 49 50 0.00051 0.00126 

50 8 51 0.00058 0.0003 

51 51 52 0.00207 0.0007 

52 9 53 0.00109 0.00055 

53 53 54 0.00127 0.00065 

54 54 55 0.00177 0.0009 

55 55 56 0.00176 0.00089 

56 56 57 0.00992 0.00333 

57 57 58 0.00489 0.00164 

58 58 59 0.0019 0.00063 

59 59 60 0.00241 0.00073 
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60 60 61 0.00317 0.00161 

61 61 62 0.00061 0.00031 

62 62 63 0.00091 0.00046 

63 63 64 0.00443 0.00226 

64 64 65 0.0065 0.00331 

65 11 66 0.00126 0.00038 

66 66 67 2.93E-05 8.73E-06 

67 12 68 0.00461 0.00153 

68 68 69 2.93E-05 9.98E-06 

 

 

Table A.2: Load data of PG&E 69-bus distribution system 
Bus 

No. 
P 

(in pu) 
Q 

(in pu) 

1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 0 0 

6 0.0026 0.0022 

7 0.0404 0.03 

8 0.075 0.054 

9 0.03 0.022 

10 0.028 0.019 

11 0.145 0.104 

12 0.145 0.104 

13 0.008 0.0055 

14 0.008 0.0055 

15 0 0 

16 0.0455 0.03 

17 0.06 0.035 

18 0.06 0.035 

19 0 0 

20 0.001 0.0006 

21 0.114 0.081 

22 0.0053 0.0035 

23 0 0 

24 0.028 0.02 

25 0 0 

26 0.014 0.01 

27 0.014 0.01 

28 0.026 0.0186 

29 0.026 0.0186 
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30 0 0 

31 0 0 

32 0 0 

33 0.014 0.01 

34 0.0195 0.014 

35 0.006 0.004 

36 0.026 0.0186 

37 0.026 0.0186 

38 0 0 

39 0.024 0.017 

40 0.024 0.017 

41 0.0012 0.001 

42 0 0 

43 0.006 0.0043 

44 0 0 

45 0.0392 0.0263 

46 0.0392 0.0263 

47 0 0 

48 0.079 0.0564 

49 0.3847 0.2745 

50 0.3847 0.2745 

51 0.0405 0.0283 

52 0.0036 0.0027 

53 0.0043 0.0035 

54 0.0264 0.019 

55 0.024 0.0172 

56 0 0 

57 0 0 

58 0 0 

59 0.1 0.072 

60 0 0 

61 1.244 0.888 

62 0.032 0.023 

63 0 0 

64 0.227 0.162 

65 0.059 0.042 

66 0.018 0.013 

67 0.018 0.013 

68 0.028 0.02 

69 0.028 0.02 
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Appendix-B 

Indian Practical 85-bus distribution system data 

Number of buses: 85  

Number of lines: 84  

Bus voltage: 11kV  

Total active power load: 2.5708MW   

Total reactive power load: 2.6218 MW  

 

Fig. B.1: Single-line diagram of Indian Practical 85-bus distribution system 

 
Table B.1: Line data of Indian Practical 85-bus distribution system 

Line 

No. 
From To R 

(in pu) 
X 

(in pu) 

1 1 2 0.0009 0.0006 

2 2 3 0.0013 0.0009 

3 3 4 0.0018 0.0012 

4 4 5 0.0009 0.0006 

5 5 6 0.0036 0.0025 

6 6 7 0.0022 0.0015 

7 7 8 0.0099 0.0068 

8 8 9 0.0009 0.0006 

9 9 10 0.0049 0.0034 
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10 10 11 0.0045 0.0031 

11 11 12 0.0045 0.0031 

12 12 13 0.0049 0.0034 

13 13 14 0.0022 0.0015 

14 14 15 0.0027 0.0018 

15 2 16 0.006 0.0025 

16 3 17 0.0038 0.0016 

17 5 18 0.0068 0.0028 

18 18 19 0.0053 0.0022 

19 19 20 0.0038 0.0016 

20 20 21 0.0068 0.0028 

21 21 22 0.0128 0.0053 

22 19 23 0.0015 0.0006 

23 7 24 0.0075 0.0031 

24 8 25 0.0038 0.0016 

25 25 26 0.003 0.0012 

26 26 27 0.0045 0.0019 

27 27 28 0.0023 0.0009 

28 28 29 0.0045 0.0019 

29 29 30 0.0045 0.0019 

30 30 31 0.0023 0.0009 

31 31 32 0.0015 0.0006 

32 32 33 0.0015 0.0006 

33 33 34 0.0068 0.0028 

34 34 35 0.0053 0.0022 

35 35 36 0.0015 0.0006 

36 26 37 0.003 0.0012 

37 27 38 0.0083 0.0034 

38 29 39 0.0045 0.0019 

39 32 40 0.0038 0.0016 

40 40 41 0.0083 0.0034 

41 41 42 0.0023 0.0009 

42 41 43 0.0038 0.0016 

43 34 44 0.0083 0.0034 

44 44 45 0.0075 0.0031 

45 45 46 0.0075 0.0031 

46 46 47 0.0045 0.0019 

47 35 48 0.0053 0.0022 

48 48 49 0.0015 0.0006 

49 49 50 0.003 0.0012 

50 50 51 0.0038 0.0016 

51 48 52 0.0113 0.0047 

52 52 53 0.0038 0.0016 
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53 53 54 0.0045 0.0019 

54 52 55 0.0045 0.0019 

55 49 56 0.0045 0.0019 

56 9 57 0.0023 0.0009 

57 57 58 0.0068 0.0028 

58 58 59 0.0015 0.0006 

59 58 60 0.0045 0.0019 

60 60 61 0.006 0.0025 

61 61 62 0.0083 0.0034 

62 60 63 0.0015 0.0006 

63 63 64 0.006 0.0025 

64 64 65 0.0015 0.0006 

65 65 66 0.0015 0.0006 

66 64 67 0.0038 0.0016 

67 67 68 0.0075 0.0031 

68 68 69 0.009 0.0037 

69 69 70 0.0038 0.0016 

70 70 71 0.0045 0.0019 

71 67 72 0.0015 0.0006 

72 68 73 0.0098 0.0041 

73 73 74 0.0023 0.0009 

74 73 75 0.0083 0.0034 

75 70 76 0.0045 0.0019 

76 65 77 0.0008 0.0003 

77 10 78 0.0053 0.0022 

78 67 79 0.0045 0.0019 

79 12 80 0.006 0.0025 

80 80 81 0.003 0.0012 

81 81 82 0.0008 0.0003 

82 81 83 0.009 0.0037 

83 83 84 0.0083 0.0034 

84 13 85 0.0068 0.0028 

 

Table B.2: Load data of Indian Practical 85-bus distribution system 

Bus 

No. 
P 

(in pu) 
Q 

(in pu) 

1 0 0 

2 0 0 

3 0 0 

4 0.056 0.0571 

5 0 0 

6 0.0353 0.036 

7 0 0 

8 0.0353 0.036 
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9 0 0 

10 0 0 

11 0.056 0.0571 

12 0 0 

13 0 0 

14 0.0353 0.036 

15 0.0353 0.036 

16 0.0353 0.036 

17 0.112 0.1143 

18 0.056 0.0571 

19 0.056 0.0571 

20 0.0353 0.036 

21 0.0353 0.036 

22 0.0353 0.036 

23 0.056 0.0571 

24 0.0353 0.036 

25 0.0353 0.036 

26 0.056 0.0571 

27 0 0 

28 0.056 0.0571 

29 0 0 

30 0.0353 0.036 

31 0.0353 0.036 

32 0 0 

33 0.014 0.0143 

34 0 0 

35 0 0 

36 0.0353 0.036 

37 0.056 0.0571 

38 0.056 0.0571 

39 0.056 0.0571 

40 0.0353 0.036 

41 0 0 

42 0.0353 0.036 

43 0.0353 0.036 

44 0.0353 0.036 

45 0.0353 0.036 

46 0.0353 0.036 

47 0.014 0.0143 

48 0 0 

49 0 0 

50 0.0363 0.037 

51 0.056 0.0571 
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52 0 0 

53 0.0353 0.036 

54 0.056 0.0571 

55 0.056 0.0571 

56 0.014 0.0143 

57 0.056 0.0571 

58 0 0 

59 0.056 0.0571 

60 0 0 

61 0.112 0.1143 

62 0.056 0.0571 

63 0.014 0.0143 

64 0 0 

65 0 0 

66 0.056 0.0571 

67 0 0 

68 0 0 

69 0.056 0.0571 

70 0 0 

71 0.0353 0.036 

72 0.056 0.0571 

73 0 0 

74 0.056 0.0571 

75 0.0353 0.036 

76 0.056 0.0571 

77 0.014 0.0143 

78 0.056 0.0571 

79 0.0353 0.036 

80 0.056 0.0571 

81 0 0 

82 0.056 0.0571 

83 0.0353 0.036 

84 0.014 0.0143 

85 0.0353 0.036 
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