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ABSTRACT

Unbundling of vertically integrated electric utility, ever increasing load demand and in-
tegration of various intermittent resources made the electric grid more dynamic than ever. The
current SCADA systems cannot provide the real time visibility of the system due to its low report-
ing rates. The measurement unit called Phasor Measurement Unit(PMU) invented by Prof. Arun
Gandhi Phadke has the ability to monitor Electric Grid at higher sampling time than SCADA mea-
surements. Therefore, their deployment and application in Power system state estimation becomes
a need of the hour. To optimally integrate the PMUs and to use them in state estimation, existing
methodologies and models were analyzed and proposed new strategies for deploying PMUs and
new models for using deployed PMUs in PMU only assisted state estimation and in hybrid power

system state estimation.

This dissertation describes two new methods for providing multiple solutions while de-
ploying PMUs into the power system. The proposed strategies provide the entire feasible solution
space which gives the observability of the power system by working on binary connectivity ma-
trix of the system. From the feasible solution space, multiple optimal solutions are obtained. The
drawback of topology based optimal PMU placement(OPP) method -I is overcame in topology
based OPP method -II. In addition, normalized Bus observability index and normalized System
observability redundancy index are presented to overcome the drawback of system observability

redundancy index(SORI) and bus observability index(BOI).

Further, this dissertation introduces a new estimator called Quadratically decaying expo-
nential criterion for a power system which is completely observable by PMUs. Quadratic-constant
(QC) robust estimator has been improved to make it suitable for linear state estimation. The con-
stant part of the estimator after the break-even point is changed to decaying exponential, termed as
Quadratically decaying exponential criterion. The proposed Quadratically- decaying exponential
criterion (QE) is tested on IEEE 14, 30, 57 and 118- bus systems for two cases. (a) measurement
data having only Gaussian noise (b) with corrupt measurement data. It is demonstrated that the

proposed estimator is able to suppress the bad data and exhibiting better estimation accuracy and

vil



computational performance compared to least absolute value(LAV) and WLSE.

Next, a linear sequential hybrid state estimator is developed for integrating both SCADA
and PMU measurements. In stage 1, the state of the power system is obtained using only SCADA
measurements, with the help of the proposed linear model. In stage 2, state of power system is es-
timated using both PMU measurements and the intermediate state vector obtained in the first stage.
During the instances when only PMU measurements are available, SCADA pseudo measurements
are computed with the help of the previous instant state vector. The proposed method is tested
on IEEE 14-bus, IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems. The proposed method
estimation accuracy is superior compared with traditional state estimator, pseudo measurement,
and ANN based methods and competing with two stage hybrid state estimators. The computa-
tional efficiency of the proposed method is far superior than traditional state estimator, pseudo

measurement-based method and two stage hybrid state estimators.

Finally, a linear single stage hybrid state estimator is developed for utilizing both SCADA
and PMU measurements in the power system state estimation. With the help of previous instant
state vector, SCADA measurements are transformed. The transformed measurements show a linear
relationship with the state vector like PMU measurements. The transformed measurements and
PMU measurements are used for estimating the states with the help of a linear model. The proposed
state estimator is tested on IEEE 14- Bus, 30-Bus, 57- Bus and 118-Bus test systems. From the
results, It is evident that the proposed estimator exhibits better accuracy and less computational
time compared with traditional SCADA based WLS estimator and two stage hybrid state estimator.

The proposed method is also able to track the system state in all PMU reporting rates.
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Chapter 1

Introduction

Unbundling of vertically integrated electrical utility, participation of various independent players
in the electricity markets, integration of renewables for meeting ever increasing load demand and
the necessity to decrease carbon footprints are making power grid more dynamic than ever before.
Therefore, real time wide-area monitoring, protection and control (WAMPAC) of power system
have become very essential. The preparedness of WAMPAC is not adequate with reference to
traditional Supervisory Control and Data Acquisition (SCADA) system and its associated asyn-

chronized measurements, because of its low reporting rate.

Synchronized Measurement Technology (SMT) with the help of Global Positioning Sys-
tem (GPS) and advancement in phasor estimation techniques has led to innovation in Phasor Mea-

surement Unit (PMU). PMU will further enhance the propensity of WAMPAC.

A time synchronized phasor is called Synchrophasor. The measurement device which
measures the synchrophasor is called Phasor Measurement Unit(PMU). PMU is essentially a digital
recorder with synchronizing capability. A PMU installed at any node measures voltage phasor at
that node, some or all branch current phasors incident to the node based on the availability of
channel capacity, frequency and rate of change of frequency. Placement of multiple PMUs can
enable coordinated system wide measurements. PMUs can also time stamp, record and store the

phasor measurements of power system events. The basic features associated with PMU compared



with the SCADA measurements are given in tablel.1. Therefore, the deployment of PMUs into the
system and their assistance in power system state estimation process will enhance the visibility of

power system.

Table 1.1: Comparison of SCADA and PMU data

SCADA Data PMU Data
Scan rate:2s Scan rate:25-30 samples/s
Gives only magnitude measurements Gives Phasor measurements
Not fast enough to respond to dynamic behavior Fast enough to depict the system behavior
Time stamping for specific values and instances | Completely time tagged data with GPS synchronization

This chapter presents the literature review on PMU deployment methods into the power

system and synchrophasor assisted power system state estimation.
The following investigations have been carried out:
1. Literature review on optimal PMU placement(OPP) strategies
2. Literature review on PMU only assisted power state estimation techniques

3. Literature review on hybrid power system state estimation techniques

1.1 Literature review on optimal PMU placement strategies

Depending on the availability of channels, PMUs measure time synchronized phasor of voltage at
the installed bus and all or some of the current phasors of incident lines . Due to high installation
costs, non- availability of communication infrastructure, it is not necessary to install PMUs at each
bus to make the system observable. Also data management associated with the PMUs due to their
high reporting rate, is also limiting the use of PMUSs. Therefore, for optimal PMU placement, a

suitable methodology is needed.



In recent past, many researchers have attempted the OPP problem either by using tradi-
tional techniques or meta- heuristic techniques for providing solution for optimal PMU placement

problem.

In [1], a two stage method was proposed. In the first stage, a bisecting search is used
to choose the number of PMUs and in the second stage, simulated annealing technique is used to
select the location of PMUs which makes the system observable. Non dominated sorting genetic
algorithm is used in [2] for obtaining pareto optimal solutions to the OPP problem considering
minimization of number of PMUs and maximization of redundancy as objectives. It is first of its

kind with reference to both multi-objective formulation and providing pareto optimal solutions.

In paper [3] , with the help of the topology of the network, binary connectivity matrix
BC is formulated and with this, constraints of the objective function i.e minimization of number of
PMUs are formed. It also discusses the procedure for formulation of additional constraints such as,
conventional measurements and zero injection measurements. Integer linear programming is used

for solving the formulated objective with constraints.

In [4] constraint formulation for conventional power flow, injection measurements and zero in-
jection buses is proposed for OPP problem. In [5] constraints formulation is presented by relaxing
the assumption of unlimited channel capacity of PMUs and the results are presented for different

channel limits. It is the first article which considered channel limits for solving OPP problem.

[6] proposed an OPP method by considering minimization of the number of PMUs and max-
imization of redundancy. These two objectives are transformed into a single quadratic function.
This quadratic objective function with constraints is solved using integer quadratic programming.
It also describes how to modify constraints with reference to N-1 line outage and PMU outage. A
weighted sum multi-objective approach is reported in [7] by considering two objectives which are
mentioned in [6]. This multi-objective formulation is solved using binary particle swarm optimiza-

tion.



The concept of criticality is introduced in [8] and it is proposed to identify the critical buses
which need to be monitored. It also suggested that the selection of number of the critical buses
should be low. PMUs are preassigned only at the identified critical buses. Objective function and
constraints are formulated in such a way that, the identified critical buses set should be a sub set of

an OPP set.

Modified binary PSO with integrated mutation strategy is proposed in [9] to optimize weighted
sum multi-objective formulation for optimal PMU placement problem. Optimal solution for vari-
ous cases such as channel limits, line outage and loss of PMU is also presented. Exponential binary
PSO algorithm is proposed in [10] to provide multiple solutions to the optimal PMU placement
problem. The main aim of this paper is to provide multiple solutions to the planning engineers in
selecting the OPP set satisfying other applications. [11] proposed a recursive tabu search method
for optimizing the single objective function consisting of weighted sum of the multi-objectives as
discussed above. It also proposed a numerical observability method for checking observability.
Bio-geography based optimization algorithm is used in [12] for providing pareto optimal solu-
tion to the multi-objective PMU placement problem. OPP problem is optimized using genetic
algorithm in [13] by formulating six objectives and converting them into a single objective. The
reliability of OPP solution is improved by accounting loss of measurement. In [14] OPP problem
is formulated as a binary semi-definite programming problem. It is solved using binary integer
programming. OPP solution to the same problem considering channel limits is reported in [15].
In [16] the concept of depth of unobservability is presented to find PMU placement sets for dif-
ferent depth of unobserabilities with the help of the graph theory based tree search technique. It
also discusses the simulated annealing technique based PMU placement strategy considering com-
munication constraint. The concept of multi-staging to the OPP problem is introduced for the first
time. In [17] System observability redundancy index(SORI) and Bus observability index(BOI) are
modeled. OPP solution is obtained using ILP. These indices are used for providing a multi-staging

strategy which maximizes observability in the early installation stages.



Five indices such as Voltage stability monitoring, Tie-line oscillation monitoring, Angular stabil-
ity monitoring, Improved state estimation and availability of communication are proposed in [18].
These five indices are evaluated for each PMU location and using fuzzy TOPSIS, ranking is given
to each PMU location. Multi-staging installation of PMUs has been done based on the descending

order of the ranking.

In [19] number of PMUs was selected and for the chosen PMUs, all possible combina-
tions are generated. Each combination is checked for observability. Those combinations which
satisfy observability are the optimal PMU placement solutions. If observability condition is not
met, the number of PMUs is increased and the process is repeated. The main aim of this exhaustive

search is to provide a benchmark model for OPP solutions.

Topological observability mayn’t always lead to numerical observability. The proposed method
in [20] first obtained OPP solutions which satisfy topological observability. Numerical observabil-
ity of each solution was checked. The OPP solution which satisfied the numerical observability

was taken as final solution.

In [21] PMU relocation scheme is proposed to maximize the percentage of observability at each
stage. This scheme is proposed by considering the idea of residual amount of allocated budget in
previous stage which is not sufficient for procurement of PMU. This is used for relocating PMU
in order to maximize percentage of observability at that stage. In [22] optimal solution is obtained
under normal case and under the presence of single or multiple flow measurements by applying
improved binary artificial bee colony algorithm on placement problem. [23] Two objectives, ob-
servability and state estimation accuracy are taken for formulating multi-objective approach for
providing solution to the OPP problem. [24] reformulated OPP problem by considering various
contingencies and solved the problem using constriction factor- particle swarm optimization(CF-
PSO). [25] solved the optimal PMU placement problem using hybridized PSO - Gravitational
search algorithms. [26] optimal solution was obtained by considering state estimation accuracy
variance as one of the objectives. [27] provided the optimal solution under preexisting condition of

SCADA measurements by considering various contingencies.
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All the earlier works reported have rendered a single solution considering system observ-
ability as the main criteria. Solutions dispensed by them are also restricted to only a single objec-
tive. In [10], the significance of multiple optimal solutions was well articulated and presented for
OPP problem. But, this method fails to obtain all multiple optimal solutions available for the OPP
problem. [28] proposed Binary Taguchi bat algorithm by uniting Taguchi and binary bat algorithms
for providing multiple optimal solutions and optimal solution for unequal installation cost. In [29]
Multiple optimal solutions are provided using binary particle swarm optimization. [30] proposed a
two phase branch and bound algorithm for obtaining multiple optimal solutions. [31] proposed a
new index called WAMS data traffic index. OPP problem considering data traffic index is solved
for multiple optimal solutions using Genetic algorithm along with minimum spanning tree(MST)
method. MST is used for modifying the unobservable solution into observable solutions. But, these

methods fail to obtain all multiple optimal solutions available for OPP problem.

The following observations are made from the literature review on optimal PMU place-
ment strategies. OPP solutions using classical and meta-heuristic techniques has been attempted
by several researchers. OPP has also been attempted considering two or more objectives. The need

for multiple optimal solutions was discussed and attempted, but has not been thoroughly explored.

1.2 Literature review on PMU assisted state estimation tech-

niques

For obtaining reliable states of the power system in the energy management system, state estimation
is an indispensable tool since its introduction by Fred Schweppe [32]. State estimation plays a

major role in smart grid and its advancement is the need of the hour.

Weighted least squares state estimation(WLSE) technique is the predominantly employed
technique because of its computationally inexpensive nature. WLSE provides very accurate esti-
mation if the measurement set contains only Gaussian noise. But in the presence of bad data, it

fails to provide reliable estimation and is unable to detect and eliminate bad data. For detecting and



identifying bad data, various algorithms are proposed in [33-36]. The largest normalized residual

test is the frequently employed technique [37].

Apart from these, many robust estimators have been proposed. The comparison of some
alternative estimators such as Least absolute value(LAV) [38], Quadratic- Linear(QL), Quadratic-
Constant(QC), Least trimmed squares (LTS), Least median of squares(LMS) [39] and Least mea-
surements rejected (LMR) are presented in [40]. It is concluded that, LAV and QC estimators are
computationally efficient. In the presence of Gaussian noise LMR and QL estimators are on par

with WLSE. Under the presence of corrupt measurements QL and QC are performing better.

Initially, different solutions are obtained using different essential sets. The optimal solu-
tion out of these is the one which has maximum agreement with the remaining measurements [41].
In [42] measurement uncertainties are modeled as inequality constraints. While finding the solu-
tion, constraints satisfaction is maximized using Genetic algorithm. Though both methods are ro-
bust against leverage and bad measurements, they take heavy computational time and do not have
noise filtering ability. Gaussian kernel is used as a objective function, maximization of which leads
to maximization of correntropy between estimated solution and measurement set [43]. Par-zen
window selection is deciding the optimality of the solution and convexity of the objective function.
Normal measurement rate is optimized by formulating the objective function as a maximization
problem and solved using interior point method [44]. Though it is a non-convex problem, it is
designed as a two stage problem to overcome the local maxima problem. Local maxima is over-
came to a large extent by using first stage solution as a initial solution in the next stage. Laplace
kernel, which is based on the maximum correntropy criterion is used as a objective function. This
enhanced the performance of Maximum exponential square(MES) but could not completely over-
come the drawbacks of it [45]. Maximum exponential absolute value(MEAV) mathematical prop-
erties and theoretical basis is given and it is demonstrated that computational time is reduced by
reducing the order of the correction equation and the number of fill-ins to make it suitable for
large size systems. Maximum normal measurement rate(MNMR) algorithm is improved using a
three step procedure: 1) measurements are maximized by approximately optimizing solution 2)
To further maximize the normal measurement rate, consistency check has been done for abnormal

measurements 3) To effectively filter noise, WLS is performed on normal measurements. Due to



multiple steps, computational time of the proposed algorithm is very large [46]. In [47] the non-
convexity problem of MNMR is removed by using Hyperbolic cosine function instead of sigmoid
function, to achieve greater computational efficiency than MNMR. In [48] robust multi-objective
state estimator is proposed by combining LAV and Mixed integer programming(MIP) to overcome
the individual drawbacks associated with them. LAV is good at removing bad data and has the
ability to filter measurements, MIP is good at removing leverage measurements. In [49] a practical
rectangular pulse function is designed with the help of hyperbolic tangent function to maximize
normal measurements. The computational efficiency of the rectangular pulse function method is
higher compared with WLS, LAV, Mixed integer non-linear programming(MINP) and Maximum

constraints satisfaction(MCS).

Though PMU is superior in performance compared to SCADA measurements, the cost
of PMU and it’s associated communication infrastructure cost has limited the deployment of PMU
in power system. In recent times, power systems have been populating with PMUs. Under the
assumption that, PMUs provide complete observability of the power system, the relation between
the measurement set and state variables change from non-linear to linear. Because of this linearity,
the iterative nature of WLSE changed to non-iterative, further decreasing the computational time.
In a similar manner, computational time of the robust state estimators also decreased, interestingly

competing with WLSE . This made the researchers to have a re-look on robust estimators.

In [50], LAV based robust estimator performance with respect to completely PMU based
power system state estimation is investigated. It is concluded that WLSE performs better com-
putationally as well as from an estimation accuracy point of view than LAV under the presence
of Gaussian noise. In the presence of corrupt measurements LAV is automatically suppresses bad
data while showing superiority in computationally as well as in terms of estimation accuracy. With
respect to leverage measurements, LAV too failed to give a good performance. Scaling method is
introduced for removing PMU leverage measurements. Though QC has better bad data suppres-
sion ability, its potential with respect to PMU assisted power system state estimation has not been

exploited.

LAV based estimator is proposed in [50] though performing better compared with WLSE.



The computational efficiency of LAV is very low compared with WLSE. Therefore, the search for

a good robust estimator which has low computational time is the need of the hour.

The following observations are made from the literature review on PMU only assisted
power system state estimation. The linear relation between PMU measurements and state estima-
tion is drastically decreasing the computational time of the robust estimators. In the literature ,
only LAV based robust state estimator has been applied for PMU assisted power system state es-
timation. The efficacy of the other robust estimators was not explored with respect to PMU only

assisted power system state estimation.

1.3 Literature review on hybrid power system state estimation

techniques

Traditionally, state estimation is performed with the help of SCADA measurements. But, after the
invention of phasor measurement unit, its deployment into the power system is happening all over
the world. The PMUs deployed until now have not been able to provide complete observability
of the system, as both SCADA and PMUs will coexist up to a certain period. Therefore, in order
to exploit the best features associated with PMU measurements while doing state estimation with
SCADA measurements, hybrid state estimation techniques are required. Many hybrid state estima-
tion techniques are proposed in the literature to incorporate PMU measurements with traditional

SCADA measurements.

In [51] two alternative approaches are proposed for including phasor measurements in
state estimation. The first approach combines phasor measurements with SCADA measurements
after converting measurements from polar to rectangular form. The second approach is formu-
lated as a post processing linear estimation model considering estimated state vector from SCADA
measurements and PMU measurements. It is concluded that, estimated state vector co-variances
obtained from both methods are equal. For processing phasor measurements using second alterna-

tive approach requires some new software module in addition to the existing module. [52] proposed



a two pass approach. The state vector obtained from the first pass using traditional measurements
is mixed with phasor measurements in second pass to get the final states with the help of linear
model. In [53] a novel non-linear hybrid state estimation model is proposed considering SCADA
measurements, voltage phasors and branch current phasors. The procedure for transforming error

co-variance of the received polar measurements into rectangular form is also presented.

In [54] a non-linear hybrid state estimator is proposed considering SCADA measurements
and converted phasor voltage and current measurements into flow measurements. For estimating
the state vector at only PMU reporting rates a pre estimating method is proposed by simulating
a connection matrix between unobserved states and observed states. The pre estimated state is
used as an initial state vector for improving convergence and reducing computational burden of
the estimator. In [55] the aforementioned algorithm is compared with sequential estimator. In
[56] three methods were proposed for inclusion of phasor current measurements in hybrid state
estimator. 1. Inclusion of phasor current measurements in polar form 2. Inclusion of phasor
current measurements in rectangular form 3. Inclusion of phasor current measurements in pseudo
voltage measurements. It is concluded that inclusion of phasor current measurements in rectangular
form(method 2) is most accurate of all. In [57] concept of pseudo flow measurements is proposed

for integrating PMU measurements with traditional estimators.

[58] presented a constrained non-linear hybrid state estimator model considering buses
observed by two PMU s as equality constraints. An unscented transformation approach is presented
for transforming polar current phasors either to rectangular form or to pseudo voltage measurement
form. This constrained non-linear hybrid state estimator is giving more accurate estimations than
without constraints. In [59] two kinds of adaptive neural network based hybrid state estimation
approaches were proposed for visualizing the power system in all PMU reporting rates. In [60] the
ill-condition problem of Jacobian matrix during initial iteration of non-linear hybrid state estimator
considering phasor measurements in polar form is eliminated by processing first iteration with

rectangular phasor measurements.

In [61] a three stage state estimator is proposed. In the first stage, SCADA based state

estimation has been carried out using the existing software module. The second stage PMU based
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linear state estimation has been done using distinct state estimation module. From both stages,
estimated states are fusioned together to get the final estimate by applying Bar Shalom Campo
fusion theory for fusioning multi rate sensors. In the second stage, full observability is obtained
by using prior estimated states along with PMU measurements. Though the proposed method
seems like a three stage procedure, computationally it takes very low time compared with simul-
taneous hybrid non-linear state estimator. In [62] a Tikhonov regularization approach is proposed
for suppressing numerical ill-conditioning problem aroused in hybrid state estimators. In [63] in
the first step, all available PMU measurements are used for generating pseudo measurements and
updating the predicted pseudo measurements using Kalman filter. In the second step, non-linear
estimator is used for obtaining states of the system considering conventional and pseudo measure-
ments. [64] proposed a hybrid state estimator for effectively tracking the momentary changes in
the power system. This is not possible only with SCADA measurements. When both PMU and
SCADA measurements are available, it uses WLS estimator. When only PMU measurements are
available, Weighted Least Absolute Value(WLAV) is used by considering some old SCADA mea-
surements for making the system completely observable. In [65] an Unscented Kalman filter is
used for predicting intermediate SCADA measurements in the not reporting intervals of SCADA
measurements. These predicted measurements and PMU measurements are utilized in hybrid state
estimation. An iterative kalman filter is used for predicting SCADA measurements in [66]. In [67]
tracking hybrid state estimator is proposed. Critical pseudo measurements are identified for using
them in SCADA not reporting intervals. These critical pseudo measurements are updated using

Kalman filter based very short term load forecasting technique.

In [68] a hybrid tracking estimator is proposed with the help of interpolation matrix. In-
terpolation matrix is updated only if any abnormality is found in the system. This is done to reduce
the computational complexity. In [69], a radial basis network is used to forecast the intermedi-
ate SCADA measurements. The states are estimated by using PMU measurements and forecasted
SCADA measurements with the help of extended Kalman filter technique.In [70] three stage hybrid
fast state estimator is proposed to reduce computational time and for improving estimation accu-
racy. Bad data processing has been done in the intermediate stage. Final estimates are obtained in

the third stage using fusion theory. In [71] neural network based very short term load forecasting
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has been carried out and forecasted load is used in hybrid dynamic state estimation. In [72] pseduo
voltage and current phasor measurements are used for performing linear state estimation in only
PMU reporting rates. Non-linear state estimation has been done for estimating states when both
SCADA and PMU data are available. [73] Least Absolute Value(LAV) based intermediate linear
state estimation model is proposed for mixing both SCADA and PMU measurements. In [74] Se-
quential quadratic programming based hybrid state estimator is proposed for tracking the states of
the system in the entire PMU measurement reporting intervals. In [75] the power flow and injection
measurements are converted into branch current and node injection currents phasors. These con-
verted measurements along with PMU measurements are used in linear robust model to estimate

the state of the power system.

The following observations are made from the literature review on hybrid power system
state estimation strategies. In the literature, the approximate linear variation in between two succes-
sive PMU reporting intervals has not been explored. The efficacy of robust estimators with respect

to hybrid state estimator needs to be further explored.

1.4 Dissertation objectives and technical contributions

As discussed in the introduction section, for critical monitoring of the power system, there is a
strong need of tools which are able to monitor the power system at a much higher rate than SCADA.
PMU is the measurement device which plays a major role in revitalizing entire WAMPAC system.
Therefore, in this thesis, the deployment of PMUs and its application in power system state es-
timation are investigated. Based on observations made from the literature review, the following

objectives are considered:
1. To look for a PMU placement strategy which provides complete set of multiple optimal
solutions.

2. To propose an effective PMU only assisted state estimation model which enhances key char-

acteristics of state estimation.
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3. To develop a linear hybrid state estimation model by integrating both PMU and SCADA

measurements

By working on the above mentioned objectives, the following contributions are made:

* As a first contribution, two new techniques are proposed for providing multiple optimal so-
lutions, which work only on binary connectivity matrix. The proposed techniques aim to

provide complete set of multiple optimal solutions.

* As asecond contribution, a state estimation model called Quadratically decaying exponential

criterion is proposed for PMU only assisted power system state estimation.

* As a third contribution, a two stage linear sequential hybrid state estimation model is pro-

posed for integrating both PMU and SCADA measurements.

* Finally, as a fourth contribution, a linear single stage hybrid state estimation model is pro-

posed for integrating both PMU and SCADA measurements.

1.5 Organization of the dissertation

The dissertation is presented in seven chapters. The current chapter introduces synchrophasors
and discusses the necessity of their deployment for application in power system state estimation.
Literature review on optimal PMU placement strategies, PMU only assisted power system state
estimation and hybrid power system state estimation techniques, their summary, research objectives

of the thesis, its contributions and finally the organization of the thesis are presented.

Chapter 2 introduces a novel topology based method- I for optimal PMU placement prob-

lem for providing multiple optimal solutions.

Chapter 3 proposes a novel topology based method-II to overcome the drawback of topol-

ogy based method-I and providing multiple optimal solutions for various cases such as line con-
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tingency, loss of PMU and considering channel limits and also presented modified BOI and SORI

indices.

Chapter 4 introduces a new state estimation model called synchrophasor assisted power
system state estimation using quadratically decaying exponential criterion and the comparison sec-
tion to know the efficacy of the proposed method with the recently developed LAV based syn-

chrophasor assisted power system state estimation.

Chapter 5 unveiled a new linear sequential hybrid model for integrating both PMU and
SCADA measurements and its effectiveness in comparison with sequential hybrid state estimator

and SCADA based traditional estimator.

Chapter 6 presents a new linear single stage hybrid model for integrating both PMU and
SCADA measurements and its efficacy when compared with two stage hybrid state estimator and

classical state estimator.

Finally, chapter 7 offers conclusions and future scope of the thesis.
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Chapter 2

Multiple Solutions for Optimal PMU
Placement Using a Topology-Based Method
-1

2.1 Introduction

In [10], the significance of multiple optimal solutions for OPP problem was well articulated and
resulting multiple optimal solutions were presented. This method however fails to obtain, all the

multiple optimal solutions available for the OPP problem.

To overcome the above said drawback, this chapter proposes a novel topology based
method-I for obtaining complete set of multiple optimal solutions available for the OPP problem.
The outcome of the method is to present all the available multiple optimal solutions by working on

the binary connectivity matrix without using any traditional or meta-heuristic technique.

15



2.2 Illustration of Topology Based OPP Method -I

This section presents the illustration of topology based method-I for optimal PMU placement prob-
lem. The methods available in the literature formulated OPP problem as a minimization problem.

Typical objective function of the OPP problem reported in the literature is given in equation(2.1).

N
F(X) = Cruu, =i 2.1)
i=1
Subjected to
Rank(H;)=N

(or)
BC.X=b
Where

Cpyu, Installation cost of PMU at it bus

1 PMUisinstalledati®™bus

Z;
0 otherwise
N Number of buses
H Design matrix
BC Binary connectivity matrix
b unit vector having Nx1 size
X Nx1 size vector having x; as an entity

The topology based OPP method-I is illustrated using a 7- bus system shown in figure.
2.1. The proposed method works on the binary connectivity matrix to generate the feasible solution

space. Binary connectivity matrix of the 7-bus system is given in equation (2.3).
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Figure 2.1: 7 BUS SYSTEM.

2.2.1 Formation of binary connectivity matrix

Binary connectivity matrix(BC) is a square matrix having size NxN. Where N is the number of
buses of the system. The BC matrix for base case is given in equation(2.3). For a 2-3 line contin-
gency case the BC(2,3) and BC(3,2) entities of the BC matrix are zero and is given in equation(2.4).
At any bus the number of lines connected to the bus exceeds the channel limit of the PMU. In this
case measuring of total line phasor measurements is not possible. Therefore “c; ways are possible.
Where Ic is the number of lines connected and cl is the channel limit. For considering channel limit
into formulation of BC matrix “c,; rows will add in place of corresponding row of BC matrix and
is reported in [S]. For a 7 - bus system considering channel limit 3 at bus 2 will add 4 rows in place

of row 2 and is given in equation(2.5).

(
1 if i=j

BCii =41 if i and j are connected (2.2)

0 otherwise
\
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Starting from row 1 of the binary connectivity matrix given in equation(2.3). There are
two PMU installation possibilities for making the bus 1 observable. i.e 1 and 2 . The number

of possibilities of first row will decide how many trees need to be formed and act as roots of the
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solution trees. First form tree 1, placing PMU at bus 1 makes bus 1 observable and acts as a
root node of the tree 1. Placing PMU at bus 1 makes bus 2 also observable. This can be sensed
by checking the continuity of ones at that particular column of the placed PMU in the binary
connectivity matrix. In this case, placing PMU at bus 1 has continuity of ones upto the second
row. i.e placement of PMU at bus 1 makes observable both bus 1 and bus 2. In order to make
3rd bus also observable, look for number of non-zero entities(means number of possibilities) of
the corresponding row of the binary connectivity matrix. In this case, number of possibilities is 4.
These four possibilities will act as branch end nodes of the root node. Placing the PMU at any one
of these possibilities makes bus 3 observable and again look for continuity of ones. The PMU thus
placed will observe the corresponding row number buses upto where it has continuity of ones. The

above said process repeats until it reaches last row of the binary connectivity matrix.

This process is repeated for all remaining identified root nodes nodes. Once the complete
tree is formed, each path of the tree from start node to end node will act as a feasible solution to
OPP problem. The formulated trees are shown in figure.2.2 and 2.3 for 7-bus system. The feasible

solution space for the 7-bus system is given in table.2.1
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Table 2.1: Feasible solution space for the 7-bus system

No of PMUs | No of solutions Placement sites

2 2 2-4,2-5

3 10 1-2-4, 1-2-5, 1-3-4, 1-4-6, 2-3-4, 2-3-5, 2-4-6, 2-5-6, 2-4-7, 2-5-7

4 21 1-2-3-4, 1-2-3-5, 1-2-4-6, 1-2-5-6, 1-2-4-7, 1-2-5-7, 1-3-4-7, 1-3-4-6,

1-3-4-5, 1-3-5-7, 1-4-6-7, 1-4-5-6, 1-5-6-7, 2-3-4-7, 2-3-4-6

2-3-4-5, 2-3-5-7, 2-3-5-6, 2-4-6-7, 2-4-5-6, 2-5-6-7

5 17 1-2-3-4-7, 1-2-3-4-6, 1-2-3-4-5, 1-2-3-5-7, 1-2-3-5-6, 1-2-4-6-7

1-2-4-5-6, 1-2-5-6-7, 1-3-4-6-7, 1-3-4-5-6, 1-3-5-6-7, 1-4-5-6-7

2-3-4-6-7, 2-3-4-5-6, 2-3-5-6-7, 2-3-4-5-7, 2-4-5-6-7

6 6 1-2-3-4-6-7, 1-2-3-4-6-7, 1-2-3-4-5-6, 1-2-3-5-6-7, 1-2-3-4-5-7,

1-2-4-5-6-7, 1-3-4-5-6-7

2.3 Algorithm of proposed topology based method- I

2.3.1 Description of the variables

Node vector(n): It is a vector which stores column number of non-zero elements corresponding to

the selected row.

Ex:n=[1200000]

Depth of penetration vector(d): It is a vector which stores row number upto which stored column

number in 'n’ is having continuity of ones. Apart from that it also stores the information about

how many times this vector needs to be visited in d(nc, N+1) entity and how many times it has

already visited in d(nc, N+2) entity
Ex:d=[230000020]

Temporary solution updater(s): Initially s is initialized as a 1xN zero vector, Which stores
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solution temporarily.

Ex:s=[1000000]

Final solution updater(fs): Initially fs is initialized as a 1xN zero vector, Which stores final

solution.
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Figure 2.2: Tree 1
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Figure 2.3: Tree 2

The flow chart of the proposed topology based OPP method-I is given in figure.2.4.

2.4 Case study and Results

The efficacy of the proposed method is tested on IEEE 14-Bus and 30-Bus systems for base case.

For coding the proposed algorithm MATLAB software is used.

From table.2.2 , the proposed method is providing all 5 optimal solutions for IEEE-14
Bus system where as EBPSO method provided only four optimal solutions. From the results, it
is observed that the proposed method has the ability to provide complete set of multiple optimal

solutions.
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Read the system line data

From the line data form the bi-

nary connectivity matrix(BC)

Initialize n, d, s, fs ‘

Initialize address vector nc=1,
ncl=nc-1 and update the n

and d by using 1st row of BC

l

Calculate the error

err=d(nc, n+1)-d(nc, n+2)

Increment d(nc, n+2) and nc, ini-

h

tialize nct® row of n, d and update s

Yes
Decrement If the updating element in n is having
& ncl .
fic & ne corresponding d=N then update fs
No nc=0
Update ncl=ncl+1 P
Yes

Figure 2.4: Flow chart of Topology based OPP method-I
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Table 2.2: Comparison of proposed method with literature for IEEE-14 Bus system

Method No of PMUs | No of solutions Placement sites
Proposed method 4 5 2-6-7-9, 2-6-8-9, 2-7-11-13,
2-7-10-13, 2-8-10-13
EBPSO [9] 4 4 2-6-7-9, 2-6-8-9,
2-7-10-13, 2-8-10-13

From table.2.3, for IEEE-30 bus system, the proposed method is providing 734 solutions,

Out of which only 5 solutions are presented in the table.2.3. Where as all the methods in the

literature provided single optimal solution. All solutions provided in the literature are the subset of

the multiple optimal solution space obtained by the proposed method.

Table 2.3: Comparison of proposed method with literature for IEEE-30 Bus system

Method No of PMUs | No of solutions Placement sites
10 734 3-5-8-9-10-12-19-23-25-30,
2-4-6-9-10-12-15-18-25-27,
Proposed method 1-2-6-9-10-12-15-19-25-27,
1-2-6-9-10-12-15-18-25-27,
2-4-6-9-10-12-15-19-25-27
ILP based [6], IMS MBPSO [10] 10 1 2-4-6-9-10-12-15-19-25-27
BPSO [7] 10 1 2-4-6-9-10-12-15-18-25-27
BSP [14] 10 1 1-2-6-9-10-12-15-18-25-27
Exhaustive search [19] 10 1 1-2-6-9-10-12-15-19-25-27
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By running the proposed algorithm one will get complete feasible solution space to an
OPP problem. This feasible solution space will be pruned to get complete set of multiple optimal
solutions. Obtaining optimal solution using meta-heuristic techniques or classical techniques will

give one solution in every run. Multiple runs may or may not give different optimal solutions.

The proposed method obtained multiple optimal location of PMUs without using any
conventional or heuristic optimization techniques and by working only on the binary connectivity
of the matrix. From the results, it is observed that the optimal PMU placement problem is having
many global optimal points rather than single global optimal point. Therefore, OPP problem is
a specialized optimization problem having many global optimal solutions. The proposed method
guarantees complete set of multiple global optimal solutions. These multiple optimal solutions
would give the operator freedom to choose an optimal solution which has a good fit to the consid-

ered other minor objectives.

2.5 Summary

This chapter proposed a novel topology based OPP method- I for providing multiple optimal solu-
tions. The proposed method purely works on binary connectivity matrix without using any heuristic
or conventional optimization technique. The proposed method has the ability to provide complete
set of optimal solutions. Multiple optimal solutions would give the choice to the operators to choose
an optimal solution which has good fit to the considered other minor objectives rather than provid-
ing a single optimal solution. From the results, it is observed that the optimal PMU placement
problem is having many global optimal points rather than single global optimal point. Therefore,
OPP problem is a specialized optimization problem having many global optimal solutions. The
proposed method guarantees complete set of multiple global optimal solutions. As the algorithm
progresses the solution vector length is increasing. Because of this, computers with low RAM
capacity are not sufficient to run the algorithm for higher order systems. The drawback of the pro-
posed method is that, it fails to get multiple solutions for different cases such as line contingency,

loss of PMU and considering channel limit.
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Chapter 3

Multiple Solutions for Optimal PMU
Placement Using a Topology Based Method
-11

This chapter proposes a novel topology based method -II for obtaining complete set of
multiple optimal solutions available for the OPP problem and overcomes the drawback of Topol-
ogy based method-I. This method come up with all available multiple optimal solutions by work-
ing on the binary connectivity matrix without using any traditional or meta-heuristic technique.
Apart from that, this chapter also discusses the drawback of Bus Observability Index(BOI ) and
System Observability Redundancy Index(SORI) presented in [17] and to overcome, a normalized

BOI(NBOI) and SORI(NSORI) are proposed.

3.1 Illustration of Topology based OPP Method -11

The topology based OPP method-1I is illustrated using a 7- bus system as shown in Fig. 2.1. The
proposed method works on the binary connectivity matrix to generate the feasible solution space.

Binary connectivity matrix of the 7-bus system shown in figure.2.1 is given in equation (3.1).
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(110000 0]

1110011

0111010
BC=|0011101 3.1)

0001100

0110010

010100 1]

Starting from the last row of the binary connectivity matrix. In order to make seventh
bus of the system observable, number of possible PMU placements are 2,4 and 7. Therefore, the
number of feasible solutions to make the seventh bus observable are three. S is the solution vector

and is given in equation(3.2).

01 000O0O0°O
S=10001000 (3.2)
000O0O0O01

In order to make 6" bus observable, the number of possible PMU placements are 2,3 and
6, which is evident from the 6" row of binary connectivity matrix. To make both 6'* and 7*" buses
observable, the number of feasible solutions are 3x3 i.e 9. Therefore, the solution vector to make

both buses observable is given in equation(3.3)
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(010000 0]
0110000
0101000
0100010
S=10100001 (3.3)
0011000
0010001
0001010
(000001 1]

From the 5" row of binary connectivity matrix and to make 5, 6'* and 7"* buses observable
number of feasible solutions are 9x2 i.e 18. After removing the repeated solutions out of 18. the

Solution vector S is given in equation(3.4)
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(00001 11]
0001010
0001011
0001110
0010101
0011000
0011001
0011100
S=10100100 (3.4)
0100101
0100110
0101000
0101001
0101010
0101100
0110100
(0011100 0|

Similarly to make 4", 37, 2"¢ & 1% buses observable along with 5, 6" and 7" number of
feasible solutions are 63. The entire feasible set of 63 solutions for the 7 bus system is reported
in Table.3.1. Once feasible PMU placement set is obtained for any given system, by considering

utility requirements, one can choose optimal solution satisfying the desired objectives.
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Table 3.1: Feasible PMU placement space for 7 bus system

No of PMUs | No of solutions Placement sites
2 2 2-4,2-5
3 11 1-2-4, 1-2-5, 1-3-4, 1-4-6, 2-3-4, 2-3-5, 2-4-5, 2-4-6, 2-5-6, 2-4-7, 2-5-7
4 23 2-5-6-7, 2-4-6-17, 2-4-5-7, 2-4-5-6, 2-3-5-7, 2-3-5-6, 2-3-4-7, 2-3-4-6, 2-3-4-5, 1-5-6-7, 1-4-6-7, 1-4-5-6,

1-3-5-7, 1-3-4-7, 1-3-4-6, 1-3-4-5, 1-2-5-7, 1-2-5-6, 1-2-4-7, 1-2-4-6, 1-2-4-5, 1-2-3-5, 1-2-3-4

5 19 2-4-5-6-7, 2-3-5-6-7, 2-3-4-6-7, 2-3-4-5-7, 2-3-4-5-6, 1-4-5-6-7, 1-3-5-6-7, 1-3-4-6-7, 1-3-4-5-7,

1-3-4-5-6, 1-2-5-6-7, 1-2-4-6-7, 1-2-4-5-7, 1-2-4-5-6, 1-2-3-5-7, 1-2-3-5-6, 1-2-3-4-7, 1-2-3-4-6, 1-2-3-4-5

6 7 2-3-4-5-6-7, 1-3-4-5-6-7, 1-2-4-5-6-7, 1-2-3-5-6-7, 1-2-3-4-6-7, 1-2-3-4-5-7, 1-2-3-4-5-6

7 1 1-2-3-4-5-6-7

3.2 Algorithm of the proposed method

3.2.1 Description of Variables
Formation of binary connectivity matrix:

Binary connectivity matrix is a square matrix having size NXN, Where N is the number of buses in

the system.
(

1 if i=j

BCij =<1 if i and j are connected (3.5)

0 otherwise

Solution matrix (S):

Solution matrix is the matrix containing all the previous solutions and is updated according to a

(Non Zero Vector) NZV. Initially it is initialized as a 1XN zeros matrix.
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Non Zero Vector (NZV):

NZV is a vector which stores column position of the non zero elements of i row of a binary

connectivity matrix.

3.2.2 Procedure for updating solution vector

Consider the 7 bus system as mentioned in above section and its binary connectivity matrix. The

solution vector to make 7" bus observable is given in equation(3.2) i.e

0100000
S=10001000 (3.6)
000O0O0O01

NZV corresponding to 6" row of binary connectivity matrix is
NZV =2 3 6 (3.7)

NZV contains three elements. Therefore S needs to be updated three times

Sota = (3.8)

15" updation:

Snew = Pold (39)

Set the NZV (1,1) column of S, as unity column.

0100000
Snew=10 101 0 0 0 (3.10)
01 00O0O0T1

32



S = Snew (3.11)

274 ypdation:

Snew = Sold (3.12)

Set the NZV (1, 2) column of S, as unity column.

0110000
Spew=10 01 1 0 0 0 (3.13)
0010001

Add S to S

01 00O0O0O

01 01000

01 00O0O01
S = (3.14)

01 10000

001 10O0O0

001 0O0O01

37¢ updation:

Snew = Sold (315)

Set the NZV (1, 3) column of S,,.,, as unity column.

0100010
Spew=5=10001 010 (3.16)
000O0O0T11

Add Sye to S
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Therefore S is completely updated for the NZV of 6 row and is given in equation(3.17). Similarly

do for the same for all remaining rows to get the complete feasible solution space.

The flowchart of the proposed algorithm for obtaining all feasible solutions is shown in

figure.3.1. The proposed algorithm provides complete feasible solution space. The procedure for

obtaining optimal multiple solutions from the feasible solutions for base case, single line contin-

gency, loss of PMU and considering channel limits is given in subsections.3.2.3-3.2.6.

3.2.3 Procedure for obtaining multiple solutions having maximum redun-

dancy

1. Prune the solutions which have minimum number of PMUs.

2. Calculate the NSORI of pruned solutions.

3. Prune solutions which have maximum NSORI

4. The Pruned solutions are the multiple solutions.
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’ Read the line data ‘

Form the binary con-

nectivity(BC) matrix

Initialize the solution

matrix S with ze-

ros having size 1XN

Calculate the NZV

of the it" row

l

For each NZV element,

update the solution matrix S

l
Yes

No

Decrement i, i=i-1

Figure 3.1: Flow chart of the proposed algorithm
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3.2.4 Procedure for obtaining multiple solutions for N-1 line contingency

1. Generate N-1 line contingencies.
2. Formulate the BC matrix for each line contingency like as given subsection.2.2.1.
3. Prune the solutions which satisfy BC.X = b from the feasible solutions.

4. Set feasible solution space as a pruned solution space and repeat the steps 2 & 3 for all

remaining contingencies.

5. Follow the procedure given in 3.2.3 for obtaining multiple solutions having maximum redun-

dancy for obtaining multiple solutions

3.2.5 Procedure for obtaining multiple solutions PMU loss case

1. Set all elements of b equal to 2
2. Prune the solutions which satisfy BC.X = b from the feasible solutions.

3. Follow the procedure given in 3.2.3 for obtaining multiple solutions having maximum redun-

dancy for obtaining multiple solutions

3.2.6 Procedure for obtaining multiple solutions considering channel limits
1. Form the BC matrix for the considered channel limit like as reported in [5] and reproduced
in subsection.2.2.1.
2. Prune the solutions which satistfy BC.X = b from the feasible solutions.

3. Follow the procedure given in 3.2.3 for obtaining multiple solutions having maximum redun-

dancy for obtaining multiple solutions

36



3.2.7 NBOI and NSORI

The drawback of SORI is that, it is not aimed at maximizing individual redundancies. To overcome

normalized SORI and BOI indices are proposed.

Normalized BOI(NBOI):

NBOI of i*" bus is the ratio of the number of PMUs observing the bus to the number of lines(])
connected to that bus plus one.

NBOI; = p/(l; + 1) (3.18)

Where, p - Number of PMUs observing i*" bus

Normalized SORI(NSORI):

It is the cumulative sum of NBOI of all buses

N
NSORI = Z NBOI; (3.19)

i=1

To intuitively understand this drawback, two feasible solutions 1-4-5-6 & 1-3-5-7 of 7
Bus system are given in table.2.1. From the figure.2.1, it is evident that buses 1, 2, 3,4, 5,6 & 7
can have maximum redundancies 2, 5, 4, 4, 2, 3 & 3. From table 3.2, solution 1 and solution 2
both have equal SORI. The individual bus redundancies of solution 2 are unevenly distributed. In
case of solution 1, the distribution of individual redundancies have more uniformity compared with
solution 2. Therefore, solution 1 is the best between them. This is not displayed in SORI index
but clearly visible from NSORI. NSORI is maximum for a solution which has at most uniformity
in NBOTI’s of all buses. In other words, the solution with maximum NSORI exibits cumulative
redundancy superiority as well as individual bus redundancy superiority. SORI however failed to

detect this feature.
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Table 3.2: NBOIs and NSORI of the solutions having equal SORI

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 SORI(NSORI)
Solution | BOI(NBOI) | BOI(NBOI) | BOI(NBOI) | BOI(NBOI) | BOI(NBOI) | BOI(NBOI) | BOI(NBOI)
1-4-5-6 1(0.5) 2(0.4) 2(0.5) 2(0.5) 2(1) 1(0.33) 1(0.33) 11(3.56)
1-3-5-7 1(0.5) 3(0.6) 1(0.25) 3(0.75) 1(0.5) 1(0.33) 1(0.33) 11(3.26)

3.3 Results and discussions

The proposed method was tested on IEEE 14- bus and 30-bus systems and studied for four cases.

1. Base case

2. Single line contingency

3. Loss of PMU

4. Considering channel limits (3, 4 and 5)

The minimum number of PMUs required and the corresponding number of multiple so-

lutions available for various cases are reported in table. 3.3 for IEEE 14 & 30- bus systems. In

case of IEEE 14-Bus system, a whole set of 6181 feasible solutions are obtained from the proposed

algorithm. Solutions reported in table.3.4 are part of the feasible solution set. Similarly, for [IEEE

30-bus system the whole set of 126786561 feasible solutions are obtained.

3.3.1 IEEE 14-Bus system

Table.3.4 reports multiple optimal solutions for base case, line contingency and loss of PMU while

maintaining observability and maximizing redundancy for IEEE 14-bus systems. In order to show-

case the effectiveness of multiple solutions, other objectives like direct monitoring of generator

buses and weak buses are added in remarks for the solutions presented.
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Table 3.3: Number of solutions obtained for various cases

Test cases IEEE 14 IEEE 30
No of PMUs | No of solutions | No of PMUs | No of solutions
Base case 4 5 10 858
Line contingency 7 6 15 72
Loss of PMU 9 8 21 1080
Channel limt 3 6 14 11 99
Channel limit 4 4 1 10 252
Channel limit 5 4 4 10 528

1, 2, 3, 6 and 8 are generator buses of IEEE 14- bus system, 12, 13, 14 and 9 are weak

buses [10], while the complete set of multiple optimal solutions for 3 cases is presented in Table.3.4.

Base case

A total of 5 multiple optimal solutions are obtained. Solution 2,6,7,9(S57)has highest SORI &
NSORI, monitoring directly two generator buses and also one weak bus. While solution 2,6,8,9(.55)
is monitoring three generator buses and one weak bus. If direct monitoring of generator buses and

weak buses is the priority while installing the PMUs, the solution 2,6,8,9(53) is the optimal one.

Line contingency

A total of 6 multiple optimal solutions are obtained. Solution 1,3,6,7,9,11,13(S7) has the highest
SORI & NSORI, monitoring two weak buses and also one generator bus directly. While solution

1,3,6,8,9,11,13(S3) is monitoring two generator and two weak buses.
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Loss of PMU
A total of 8 multiple optimal solutions are obtained. Solution 2,4,5,6,7,8,9,11,13(.51) has high-

est SORI & NSORI and is monitoring three generator and two weak buses. While solution

1,2,3,6,7,8,9,11,13(.57) is monitoring all generator buses and two weak buses.
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Table 3.4: Optimal locations of PMUs for the IEEE 14 - Bus system while maintaining observabil-

ity and maximizing redundancy

Test case No of solutions Optimal Locations SORI | NSORI Remarks
Base case 5 2,6,7,9(5) 19 4.95 Maximum SORI
2,6,8,9(S3) 17 4.58 Generator buses monitoring priority
2,7,11,13(S5) 16 4.33 | monitoring weak bus and generator monitoring
2,7,10,13(Sy) 16 4.33 weak bus monitoring
2,8,10,13(S5) 14 3.96 | monitoring weak bus and generator monitoring

minimum SORI

Line contingency 6 1,3,6,7 ,9,11,13(S7) 27 7.13 Maximum SORI

generator monitoring

1,3,6,7,9,10,13(S5) 27 | 713 Maximum SORI

1,3,6,8,9,11,13(S3) 25 6.76 Monitoring generator buses

& weak buses

1,3,6,8,9,10,13(Sy) 25 6.76 -

1,3,6,7,10,13,14(S5) | 25 | 6.63 .

1,3,6,7,10,12,14(S5) | 24 6.3 .

Loss of PMU 8 2,4,56,7,8,9,11,13(S;) 39 10.13 three generator & two weak buses

2,4,5,6,7,8 .9,10,13(53) | 39 10.13 -

2,3,5,6,7,8 .9,11,13(S5) | 36 | 9.48 -

2,3,5,6,7,8,9,10,13(S4) 36 9.48 -

1,2,4,6,7,8,9,11,13(S5) 37 9.76 -

1,2,4,6,7,8,9,10,13(S¢) 37 9.76 -

1,2,3,6,7,8,9,11,13(57) 34 9.11 All generator buses

9 & 13 are weak buses

1,2,3,6,7,8,9,10,13(Ss) 34 9.11 -
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3.3.2 IEEE 30-Bus system

Table.3.5 reports multiple solutions for base case, line contingency and loss of PMU while main-
taining observability and maximizing redundancy for IEEE 30-bus system. In order to showcase
the effectiveness of multiple solutions, other minor objectives like direct monitoring of generator

buses and weak buses are added as remarks for the solutions presented.

Table 3.5: Optimal locations of PMUs for the IEEE 30 - bus system while maintaining observability

and maximizing redundancy

Test case No of solutions Optimal Locations SORI | NSORI Remarks
out of total solutions
Base case 4(858)! 2,4,6,9,10,12,15,20,25,27(5,) 52 13.3 -
2,4,6,9,10,12,15,19,25,27(55) 52 13.5 Maximum NSORI
2,4,6,9,10,12,15,18,25,27(S55) 52 13.3 -
1,5,8,10,11,12,15,20,25,27(S4) 41 1143 1,5,8 and11 are generator buses
line contingency 4(72)* 2,3,7,8,9,10,12,15,17,19,22,24,25,27,30(.51) 62 16.74 -
2,3,7,8,9,10,12,15,17,19,22,24,25,27,29(S,) 62 16.74 -
2,3,7,8,9,10,12,15,16,19,22,24,25,27,30(S3) 62 16.77 -
2,3,7,8,9,10,12,15,16,19,22,24,25,27,29(S,) 62 16.77 -
loss of PMU 5(48(1080))° 2,3,4,6,7,9,10,11,12,13,15,17,18,20,22,24,25,26,27,28,30(S1) 85 22.64 -
2,3,4,5,6,9,10,11,12,13,15,16,18,19,22,24,25,26,27,28,30(S5) 85 22.93 5 is the generator bus
2,3,4,5,6,9,10,11,12,13,15,16,18,19,22,24,25,26,27,28,30(S3) 85 22.93 5 is the generator bus
1,2,4,5,6,9,10,11,12,13,15,16,18,19,22,24,25,26,27,28,30(S,) | 85 22.93 | 1,5,11 and 13 are generator buses
1,2,4,5,6,9,10,11,12,13,15,16,18,19,22,24,25,26,27,28,29(S5) 85 22.93 | 1,5,11 and 13 are generator buses

! 4 out of 858 solutions are presented
2 4 solutions have maximum SORI out of 72 solutions

3 Out of 1080 solutions 48 solutions have maximum SORI and only 5 solutions are reported

1,2,5,8, 11 and 13 are generator buses of IEEE 30-bus system.
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Base case

A total of 858 optimal solutions are obtained. Only four solutions are presented in table.3.5. 3
solutions have maximum SORI. But only one solution has maximum NSORI. This is where the
advantage of NSORI lies compared to SORI. The solutions having maximum SORI fail to monitor

generator buses. But the 4" optimal solution is monitoring 4 generator buses though it has less

NSORI.

Line contingency

A total of 72 optimal solutions are obtained. 4 solutions are presented in the table.3.5 having

maximum SORI. Out of 4 only 2 solutions have maximum NSORI.

Loss of PMU
A total of 1080 solutions are obtained. 48 solutions have maximum SORI, out of them only 4

solutions have maximum NSORI. The 4" and 5 solutions have maximum SORI and NSORI and

they also monitor 4 generator buses directly.
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3.3.3 Considering Channel limits

Table 3.6: Optimal locations of PMUs for the IEEE 14 & 30 - Bus system considering channel

limits
Test system | channel limit Optimal Locations
IEEE 14 3 2,5,79,11,13
2,5,6,7,9,14
2,5,6,7,9,13
2,5,6,7,9,12
4 2,6,7,9
5 2,7,11,13
2,7,10,13
2,6,8,9
2,6,7.9
IEEE 30 3 2 .,4,6,9,10,12,15,20,24,25,27

2,4,6,9,10,12,15,20,22,25,27

2,4,6,9,10,12,15,19,24,25,27

4 2,4,6,9,10,12,15,20,25,27

2,4,6,9,10,12,15,19,25,27

2,4,6,9,10,12,15,18,25,27

5 2,4,6,9,10,12,15,20,25,27

2,4,6,9,10,12,15,19,25,27

2,4,6,9,10,12,15,18,25,27
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Table.3.6 presented some of the multiple optimal solutions obtained considering PMU channel
limits 3,4 and 5 for base case. The total number of multiple optimal solutions obtained for the

considered channel limits is given in Table.3.3

3.3.4 Validation of the proposed method

Table 3.7: Comparison of results with various methods for base case

Methodology IEEE 14 IEEE 30
#PMUs | #%olutions | #PMUs | #%solutions
Exhaustive search [19] 4 1 10 1
ILP based [6] 4 1 10 1
BPSO [7] 4 1 10 1
BSP [14] 4 1 10 1
MBPSO [9] 4 1 10 1
EBPSO [10] 4 4 - -
TBBA [28] 4 3 10 4
MO-BPSO [29] 4 5 10 11
MINLPBB [30] 4 5 10 10
GA-MST [31] 4 5 10 24
Proposed Method 4 5 10 858

4 # number of

Table.3.7 is presented for validating the proposed method with conventional mathematical opti-
mization and Meta-heuristic techniques. From table.3.7 it is evident that, other than the proposed

method no method has claimed to achieve complete set of multiple optimal solutions. Hence, the
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proposed method has the ability to obtain complete set of multiple solutions. Meta-heuristic algo-
rithms ensure one global optimal solution at a time. They are good if the objective function has
only one global optimal solution. The OPP problem is a multi global optimal problem under single
objective case(minimization of number of PMUs) and also under two objective cases(minimization
of number of PMUs and maximization of redundancy). Meta- heuristic algorithms will provide one
global optimal point in one run. There is no guarantee of getting all multiple global optima points
with meta-heuristic algorithms by running them several times. The proposed method will provide

all global optimal points in single run.

Once the multiple optimal solution set is available, one solution can be easily chosen
based on the required objectives. In this thesis, only generator monitoring and weak bus monitoring
has been taken as a other minor objectives to explain the significance of multiple optimal solutions.
Only one run of the proposed algorithm come up with complete set of feasible solutions. From that
set, one can pick the optimal solution which meets the required objectives. It is also observed that,
optimal PMU placement problem is a multiple global optima problem even while considering two

objectives. OPP is a specialized optimization problem having multiple global optimal solutions.
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3.4 Summary and Comments

In this chapter, a novel Topology based Optimal PMU placement method-II is proposed to obtain
the whole set of the multiple optimal solutions. The proposed method works only on binary con-
nectivity matrix of the system without using any classical or meta-heuristic optimization technique.
Once multiple optimal solution set is available, the solution which best fits the utility sub - ordinate
objectives like direct monitoring of generator and weak buses ,etc can be selected. The proposed
method ensures global optima. From the results, it is observed that OPP problem is a special
optimization problem having multiple global optimal solutions. In addition, this chapter also pro-
posed normalized BOI(NBOI) and SORI(NSORI). Unlike SORI, the solution which has maximum
NSORI has maximum individual bus redundancy uniformity. NSORI also has the ability to further
prune multiple solutions. As the algorithm progresses, the solution matrix length increases. Due to
this, personal computers having medium RAM capacity are not sufficient to run the algorithm for
large power systems. This method is robust for placement of PMU’s in multi-area power systems.

The advantage of obtaining the biopsy of solution space in one run cannot be overlooked.
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Chapter 4

Synchrophasor assisted Power System State
Estimation with a Quadratically-decaying

Exponential Criterion

4.1 Introduction

In recent times, power systems have been populating with PMUs. Under the assumption that,
PMUs provide complete observability of the power system, the relation between the measurement
set and state variables change from non-linear to linear. Because of this linearity, the iterative
nature of WLSE changed to non-iterative, further decreasing the computational time. In a similar
manner, computational time of the robust state estimators also decreased, interestingly competing

with WLSE . This made the researchers to have a re-look on robust estimators.

In this chapter, Quadratic-constant estimator is studied. An improved version is presented
to make it superior and suitable for PMU assisted state estimation. The Quadratic-Constant(QC)
estimator had been proposed in [76]. Section. 4.2 describes the objective function modeling. The
objective function is given by equation(4.2). The QC characteristics are shown in figure.4.1. Break

even point(7;) is the point at which characteristics of the QC estimator will change from quadratic to
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constant. The probable values of break even point such as 2.5, 3, ..5 are given based on engineering
judgment. It showed that QC estimator has excellent ability to suppress bad data and ensure robust

convergence characteristics though it has non-convex objective function.

In [77] the concept of variable break even point is introduced by fixing initial and final
break even point with constant step length. It enhanced the bad data suppression ability. In [78] the
problem of misidentification and unidentification is observed. To overcome this a variable break
even point with variable step lengths at different convergence levels is proposed. It is observed
that bad data had been suppressed even with moderate redundancy. The above discussed methods
are suitable for SCADA assisted power system state estimation because of the iterative nature of
the solution process. Except fixed break-even point QC, it is not possible to implement these QC

variants for a measurement set having linear relation with state variables.

This chapter proposed a Quadratically-decaying Exponential criterion by changing the
constant part of the QC into decaying exponential. This has been achieved by giving exponentially
decaying weightage to the corresponding normalized residuals after break-even point. Before the
break-even point the objective function is similar to quadratic and after the break-even point it is

like a decaying exponential.

4.2 Objective function modeling

It is assumed that, the power system is completely observable by PMUs. The relationship between

measurements and state variables is given in equation(4.1)
Z1=HX +e¢ 4.1)

Where,
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Z 2mx1 PMU measurement vector includes
real and imaginary parts of voltage and line current phasors
X 2nx1 state vector
H:R"— R™ Linear vector function maps
state vector to measurement vector(design matrix)

€ 2mx1 error vector

1/2)r? |r| <m
Cilr) = (1/2)ri® |ril <, 42)

(1/2)72  ril = 7

N
J(r) = Z WiCi(r;) (4.3)
i—1

The Quadratic-Constant estimator objective function for one measurement is given in
equation(4.2) and the characteristics are shown in figure.4.1. In equation(4.2) r; is the normalized
residue of i measurement and 7; is the break-even point. Objective function of QC is given in
(4.3). From the discussion in section 4..1, it is evident that only fixed point QC is suitable for PMU
assisted state estimation. Giving zero weight to measurements after break even point is working
well for iterative algorithms. But for non iterative algorithms, it makes the system occasionally

unobservable because of misidentification or divergence in the solution.

[ e(r:)

—Ti Ti T

Figure 4.1: Quadratic- Constant characteristics
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The idea of the proposed formulation is, if the formulated objective function has the abil-
ity to give less weightage to measurements which are having high residue and more weightage
to measurements which are having low residue. The influence of measurements which have high
residue on the estimation will be less. i.e suppressing bad data ability is incorporated. Therefore,
to achieve the same, constant weighting to the measurements is transformed into a function of nor-
malized residues of the measurements. The weight function chosen is the exponentially decaying
function given by equation(4.4). Here 4 * 7 is the breakeven point. For removing the leverage
measurements from the measurement set, scaling concept has been used [50]

_®

Decaying exponential
WLS

c(r;)

—4 T 4% T

Figure 4.2: Quadratic- decaying Exponential criterion characteristics

1 |Tz| S 4 % T
W(r;) = 4.4)

eIl gl > 4%

The formulated objective function for one measurement is the product of the square of
residual and the weight function given in equation(4.4). This is given in equation(4.5). Charac-
teristics of WLS, weight function and the resultant characteristics of the proposed estimator are
shown in figure.4.2 . The proposed criterion is named as Quadratically-decaying Exponential crite-
rion(QE). The characteristics of the QE estimator are non-convex in nature. The objective function

of the proposed estimator is given in (4.6). The flowchart of the proposed estimator is shown in
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figure.4.3
Ci(ry) = (1/2)W (ri)rs 4.5)

J(z) = Z Ci(ry) (4.6)

4.2.1 Relationship with WLS estimator

In the absence of corrupt measurements in the measurement set, normalized residues of the mea-

surements are less than the break-even point. The additional weight function value becomes unity.

N
J(@) = Wi (4.7)
i=1

From (4.7), it can be concluded that the proposed method in the absence of corrupt data is nothing

but WLS estimator.

4.2.2 Comparison with Quadratic-Constant Criterion

The proposed Quadratically decaying exponential criterion and QC estimator both will work on
break even point. The QC estimator is not suitable for PMU based state estimation where as QE is

modelled for PMU based state estimation.

The inclusion of measurements which violate break-even point thersold and assigning
exponentially decaying weightage, make the proposed QE estimator giving scope to the suspicious
measurements also, when participating in the state estimation. This enhances the noise filtering
ability of the proposed estimator. It is observed that, application of QC to PMU based state esti-
mation provides less accurate results under the presence of Gaussian noise and diverged solution

under the presence of corrupt data.

The compared methods are presented in the following subsections to make the chapter

self sufficient.
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Read the measurement
data and line data

’ Perform WLSE ‘

Calculate the normalized

residues of measurements

Assign T(Here, 7 = 0.75)

Update the weights using weight

function given in equation(4.4)

’ Perform WLSE ‘

Figure 4.3: Flow chart of the proposed estimator

4.2.3 PMU assisted linear WLS state estimator

WLS state estimator is the most widely used method for processing measurements [1]. It is the
best estimator for processing mesurement set which contains Gaussian noise. With respect to con-
ventional measurements the solution process of WLS is non- iterative. In case of purely PMU
measurement assisted state estimation, solution process of WLS is non-iterative and is given be-
low. The relationship between the state vector and PMU measurement set is linear and is given
in equation(4.8). Where [ is called as a design matrix. The column entities of ; for different
measurements such as real and imaginary parts of voltage and current measurements are given from
equation(4.10) to equation(4.13)

Z1=H X +r (4.8)
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Z,=z" Z9* (4.14)

XT=1¢ . ep . en fi oo fo o [N (4.15)

The non- iterative solution is computed using equation(4.16) as is given below

X = (HiwH) *HI'wZ, (4.16)

Where
Z" real part of measurement set
Z' imaginary part of measurement set
H  design matrix
e real part of state vector
f  imaginary part of state vector
r  residual vector

W weight matrix or inverse of covariance matrix

4.2.4 PMU assisted LAV based state estimator

LAYV based state estimator [50] minimizes the sum of absolute residuals of the measurement set
while obtaining solution vector. The objective function of LAV based state estimator is given

below:

2m
For) =" Iri (4.17)
i=1
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With the help of equation(4.8) and equation(4.17) the objecive function of LAV based state estima-
tor is reformulated and is given below
min  c’|ry
Z1—HX =r (4.18)

By rearranging the above equations and defining some strictly positive variables, the LAV problem
can be expressed as a linear programming problem. The following equations are rewritten with

respect to rearranged objective function

min  cy 4.19)

My = (4.20)

y=>0 (4.21)

c=1[Z, Op) (4.22)
M=[H -H I -I" (4.23)
y=1[re x u v’ (4.24)
b=z (4.25)

T =T, — Xp (4.26)
r=u-—v 4.27)

Where
Z, 1x2n vector, zeros are the entities of the vector
O,, 1x2m vector, ones are the entities of the vector
T,  1xn vector
Tp 1xn vector
u Ixm vector

\Y 1xm vector
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4.3 Case Study and Results

In this section, case study is conducted on IEEE 14, 30, 57 & 118-bus test systems. Simulations
were carried out using PC with 4GB RAM and Windows 10 operating system. The algorithm is
implemented in PYTHON language, SPYDER IDE platform.

Simulation results for two cases viz, measurement data having only Gaussian noise and
corrupted measurement data is tested on IEEE 14, 30, 57 & 118 - bus systems.. However, IEEE 14
and 30-bus system are used to show the estimation accuracy of the QE estimator and IEEE 57 and

118-bus system are used to show the computational performance of the QE estimator.

True values of the measurement set are obtained by running load flow study using MAT-
POWER software [4]. 100 sets of measurement data are simulated by adding Gaussian errors
having standard deviation of 0.001. Voltage magnitude and phase angle mean square error for each
simulation is computed using equation(4.28). The proposed method used 7=0.75 to fix the break
event point at 3. In case of QC estimator 7 itself is a break even point and it is set to 3. In case of

proposed method however 4 7 is the break even point.

N
MSE = (1/N) Z(xgstimated _ x@rue)z (428)

=1
4.3.1 IEEE 14 and 30-bus system

For comparing estimation accuracy of the QE estimator with WLSE and LAV IEEE 14 & 30-bus
systems are used considering two cases such as measurement data having only Gaussian noise and
corrupt measurement data. PMU locations are taken like in [1] for IEEE 30-Bus system and for
IEEE 14-Bus system are considered like in [5]. For IEEE 30-Bus system, line current measure-
ments 1-2, 2-4 and 15-18 are corrupted by setting them to zero and for IEEE 14-Bus system, line

current measurements 1-2, 2-5, 7-9 are corrupted by setting them to zero.

Table.4.1 presents the estimation accuracy comparison of QE estimator with WLSE &
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LAV for IEEE 14-bus system considering measurement data having only Gaussian noise. True
values of the states are given for ascertaining closeness of estimated values with the actual values.
From the table.4.2 it is observed that considering corrupt data, the estimation accuracy of QE
estimator closely follows true values. WLSE & LAV estimated values have largely deviated from

true values i.e they are unable to suppress the bad data.

Table 4.1: Comparison of estimation accuracy of QE estimator with WLSE & LAV for IEEE 14-

bus system considering only Gaussian noise

Bus number True Values WLSE LAV QE

V(pu) d(degrees) V(pu) o(degrees) V(pu) 0(degrees) V(pu) d(degrees)
1 1.06 | -1.20819¢-18 | 1.0606 | -0.000528455 | 1.06069 | -0.00193394 | 1.06045 | 0.00655356
2 1.04 -4.9261 1.04037 -4.92362 1.04039 | -4.92384 | 1.04043 | -4.91931
3 1.0002 -12.7264 1.00062 -12.7156 1.00057 | -12.7154 1.0006 -12.705
4 1.00708 -10.2472 1.00755 -10.2482 1.00743 | -10.2473 1.00747 | -10.2433
5 1.01098 -8.71647 1.0118 -8.71485 1.01196 | -8.71624 | 1.01139 | -8.71359
6 1.05882 -14.2635 1.05953 -14.2578 1.05959 -14.258 1.05929 | -14.2647
7 1.05006 -13.3631 1.05048 -13.3682 1.05042 -13.368 1.05042 | -13.3746
8 1.07848 -13.3631 1.07927 -13.3659 1.07923 | -13.3657 1.0788 | -13.3743
9 1.04422 -14.9789 1.04441 -14.9774 1.04436 | -14.9773 1.04457 -14.987
10 1.03928 -15.1442 1.03933 -15.1459 1.03931 -15.1459 1.03934 | -15.1526
11 1.04542 -14.8378 1.04588 -14.8315 1.0459 -14.8315 1.04579 | -14.831
12 1.04381 -15.1357 1.04429 -15.139 1.04433 | -15.1391 1.044 -15.1555
13 1.03893 -15.2166 1.03952 -15.2126 1.03956 | -15.2127 1.0394 | -15.2161
14 1.02372 -16.1054 1.0243 -16.0917 1.02429 | -16.0917 | 1.02431 -16.1
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Table 4.2: Comparison of estimation accuracy of QE estimator with WLSE & LAV for IEEE 14-

bus system considering corrupt measurement data

Bus number True Values WLSE LAV QE

V(pu) d(degrees) V(pu) | d(degrees) | V(pu) | d(degrees) | V(pu) d(degrees)
1 1.06 | -1.20819¢-18 | 1.04706 | -2.45518 | 1.05546 | -1.13358 | 1.05991 | 0.00981172
2 1.04 -4.9261 1.03807 | -5.10833 | 1.04026 | -4.92614 | 1.04026 | -4.93138
3 1.0002 -12.7264 0.9996 | -12.8286 | 1.00049 | -12.7098 | 1.00063 | -12.7189
4 1.00708 -10.2472 1.00719 | -10.2787 | 1.00735 | -10.245 | 1.00763 | -10.2517
5 1.01098 -8.71647 1.01244 | -8.56052 | 1.01125 | -8.71715 | 1.01081 | -8.71929
6 1.05882 -14.2635 1.05991 | -14.1601 | 1.05908 | -14.2611 | 1.05923 | -14.2596
7 1.05006 -13.3631 1.04947 | -13.5935 | 1.05028 | -13.3629 | 1.0505 -13.3636
8 1.07848 -13.3631 1.07832 | -13.5124 | 1.07883 | -13.3629 | 1.07901 | -13.3632
9 1.04422 -14.9789 1.04515 | -14.7989 | 1.0444 | -14.9798 | 1.04463 | -14.9816
10 1.03928 -15.1442 1.03995 | -15.0207 | 1.03949 | -15.1427 | 1.03955 | -15.1444
11 1.04542 -14.8378 1.04613 | -14.7318 | 1.04549 | -14.8436 | 1.04559 | -14.8436
12 1.04381 -15.1357 1.04466 | -15.0416 | 1.04388 | -15.1535 | 1.0441 -15.1368
13 1.03893 -15.2166 1.03983 | -15.1173 | 1.03926 | -15.21 1.03933 | -15.2086
14 1.02372 -16.1054 1.02445 | -15.9715 | 1.02368 | -16.0896 | 1.02399 | -16.1111
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Figure 4.4: Comparison of Voltage magnitude MSE of QE with WLSE & LAV for IEEE 30-bus

system considering only Gaussian noise
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Figure 4.5: Comparison of Phase angle MSE of QE with WLSE & LAV for IEEE 30-bus system

considering only Gaussian noise

The voltage magnitude and phase angle MSE for IEEE 30-Bus system considering Gaus-
sian noise are presented in figures.4.4 & 4.5. Voltage magnitude MSE of WLSE is found to be
less compared with QE & LAV . Phase angle MSE of QE is less compared with WLSE. i.e even
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under normal case also, QE estimator is competing with WLSE. This feature of QE competing with
WLSE under the presence of Gaussian noise is because of using WLSE in the proposed method.
The proposed method is tuning the weights of measurements in the WLSE in such a way as to

suppress bad data.
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Figure 4.6: Comparison of Voltage magnitude MSE of QE with WLSE & LAV for IEEE 118-bus

system considering corrupt measurement data
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Figure 4.7: Comparison of Phase angle MSE of QE with WLSE & LAV for IEEE 118-bus system

considering corrupt measurement data
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4.3.2 1EEE 57 and 118-bus system

For comparing computational performance of the proposed estimator with WLSE & LAV IEEE

57 and 118-bus systems are used considering two cases such as measurement data having only

Gaussian noise and corrupt measurement data. PMU placement for loss of PMU case [5] is taken

as a measurement set for both systems. Line current measurements 2-12, 3-5, 32-114, 42-49, 49-

66, 70-75, 87-86, 100-106 and voltage measurements at buses 61, 84 and 106 and line current

measurements 1-2, 1-17 and 9-12 are corrupted for generating bad data for IEEE 118 and 57-Bus

systems.

Table 4.3: Comparison of Voltage magnitude and phase angle MSE of QE with WLS and LAV

Test System | Estimator considering Gaussian noise considering Corrupt data
Magnitude | Phase angle CPU Magnitude | Phase angle CPU
MSE(pu) | MSE(degrees) time(sec) MSE(pu) | MSE(degrees) time(sec)
IEEE14 QE 0.000372 0.006145 0.000455sec 0.00038 0.006228 0.000432sec
WLSE 0.0002818 0.006336 0.000405sec 0.00672 1.26 0.000347sec
LAV 0.000348 0.00796 0.022sec 0.00135 0.303 0.027sec
IEEE 30 QE 0.000613 0.00964 0.00071sec 0.00066 0.00994 0.00069sec
WLSE 0.000549 0.0106 0.00058sec 0.00364 0.2304 0.00059sec
LAV 0.000669 0.0106 0.034sec 0.001213 0.018688 0.0334sec
IEEE57 QE 0.00039735 0.00975 0.0028535sec | 0.0003932 0.009963 0.0022sec
WLSE 0.0002414 0.008039 0.00066sec 0.002733 0.5 0.0011sec
LAV 0.00033677 0.01306 0.25sec 0.00122284 0.192 0.2745sec
IEEE118 QE 0.00034 0.0035 0.0146sec | 0.00045864 0.00716 0.0126sec
WLSE 0.000114 0.0049 0.0025sec 0.057 0.62 0.0023sec
LAV 0.00022 0.0059 5.36sec 0.019 1.14 5.4sec

From the table.4.3, computational time of WLSE further shoots up when used in coor-

dination with any bad data detection and re estimation techniques like largest normalized residues

62



test. Computational time of WLSE depend on the number of bad measurements. The more the bad
measurements, the more will be the time. QE estimator computational performance is independent
of the number of corrupt measurements in the measurement set. It is evident that, LAV estimator is
computationally inefficient compared with QE. Voltage magnitude MSE and phase angle MSE of

QE under the presence of corrupt data is very less compared to LAV and WLS estimators.

The box plot of QE, WLS & LAV Voltage magnitude MSE and Phase angle MSE error
for 1000 simulations considering bad data is shown in figures.4.6 & 4.7. Though LAV estimator is
performing on par with QE in many instances, Voltage magnitude and Phase angle MSE box plot
of LAV contain some outliers with large deviations. The above discussion further illustrates the
usefulness of Quadratically-decaying Exponential Criterion(QE) based estimator for systems with

only PMU measurements.

Figure.4.8 shows the relationship between computational time and order of system. It is

evident that, the proposed method is computationally efficient and superior than LAV estimator.

LAV
—e— QE
—6— WLSE

Computational time(sec)

3.47 1074

T T
20 40 60 80 100 120
Order of the test system

Figure 4.8: Comparison of computational time of QE with WLSE & LAV while increasing order

of the system
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4.4 Summary and Comments

This chapter explored the ability of robust estimators under assumption that entire power system
is observable by PMUs. The Quadratic-Constant criterion based estimator is studied and improved
to make it suitable for PMU assisted state estimation. The proposed criterion is termed Quadratic-
decaying Exponential criterion. The estimation accuracy of QE estimator is competing with the
WLSE under the presence of Gaussian noise and its performance is superior under the presence
of corrupt data. The computational performance of the QE estimator is little lower compared with
WLSE under the presence of Gaussian noise and superior under the presence of corrupt data. The
computational performance of the QE estimator is independent of the number of bad measurements
in the measurement set. The estimation accuracy of LAV compared with QE had some outliers with
large deviation from median and the computational performance increases greatly with the order of
the system compared with QE. Therefore, the proposed QE estimator exhibits superior performance

compared with LAV estimator.

64



Chapter 5

Linear tracking sequential hybrid power

system state estimator

5.1 Introduction

The PMUs deployed until now have not been able to provide complete observability of the sys-
tem, as both SCADA and PMUs will coexist up to a certain period. Therefore, in order to exploit
the best features associated with PMU measurements while doing state estimation with SCADA
measurements, hybrid state estimation techniques are required. Many hybrid state estimation tech-
niques are proposed in the literature to incorporate PMU measurements with traditional SCADA

measurements.

This chapter proposes a linear tracking Sequential hybrid power system state estimator.
In stage 1, the state of the power system is obtained using only SCADA measurements, with the
help of the proposed linear model. In stage2, the state of the power system is estimated using both
PMU measurements and state vector obtained in the first stage. During the instances when only
PMU measurements are available, SCADA pseudo measurements are computed with the help of

previous instant state vector.
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5.2 Classical SCADA based state estimation

In classical SCADA based SE(SCADASE), the measurements and state vector follow non-linear

relation reported in [22] and equation(5.1) shows the relationship
Zs=h(X)+e (5.1)

Where Z; is the SCADA measurement vector consisting of real and reactive power injections, real
and reactive power flows and voltage magnitude measurements. X is the state vector and e is the
error vector. It is assumed that, the errors of SCADA measurements follow Gaussian distribution
and are independent of each other. The real power and reactive power injections, real power and

reactive power flow injections and voltage magnitude equations are given from equation(5.2)-(5.6)

N
P, = (612; + f;)Gpp + Z Gpglepeq + fpfq) + Bpg(foeq — epfy) (5.2)
i=1
N
Qp = _(@Z + pr)Bpp + Z Gpq(foeq — epfq) — Bpglepeq + fpfq) (5.3)
i=1
P, = (ef, + fg)glinek — glineg(epeq + fofq) — blinex(freq — €pfy) (5.4)

Qpg = —(ef, + fg)(YCp + bliney,) — gliney(freq — epfq) + blineg(epeq + fofy) (5.5)

V, = (/e + f2 (5.6)
XT: €1 .. € .. EN f1 .. fp . fN (57)

By minimizing the following objective function, the optimal estimates of the system are obtained

and is given in equation(5.8)
J(X) = [Zs = W(X)]"R™YZ — h(X)] (5.8)

Where R is the error covariance matrix. First order optimality condition is used for obtaining the

iterative solution vector and is given in equation(5.9) for k'* iteration.
AX), = [H'WH| '"H"WAZ, (5.9)
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Where H is the mx2N jacobian matrix and the iterative process will be terminated after

attaining the pre-specified convergence limit.

5.3 Sequential hybrid state estimation

A sequential synchrophasor assisted hybrid state estimator is proposed in [51,52,55] by combining
both PMU and SCADA measurements. It is also called two stage state estimator. In the first stage,
SCADA measurement based WLS state estimator is used to obtain the state vector. In stage 2 the
states obtained in the previous stage and PMU measurements are used in the linear state estimation
to get the final states. Stage2 estimator model is given [55]. Equation(5.10) is used for obtaining

the final states of the system in a non-iterative way.

X = [HIWH, | 'HIwW Z, (5.10)

Where H, is the design matrix. Z; is the measuremet vector which includes stagel state

vector and PMU measurements.

5.4 Linear Sequential hybrid state estimation model

This section presents a new linear sequential hybrid state estimation model for estimating the states
of the power system. SCADA measurements consist of voltage magnitude measurements, real and
reactive power flows and real and reactive power injections. PMU measurements include volt-
age and branch current phasors. The refresh rate of PMU measurements is 1-2 cycles where as
SCADA measurements it is 2-5seconds. i.e PMU measurements update rate(p) is 100 times faster
than SCADA measurements update rate(S) for the above given minimum update rate of SCADA

measurements shown in Figure.5.1.
The proposed method is estimating states of the system by adapting two stage proce-
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Figure 5.1: Reporting time of SCADA and PMU data

dure. Stagel processes only SCADA measurements and in stage2 PMU measurements along with

processed stagel state vector is used for estimating the final state of the system.

5.4.1 Stagel: SCADA measurements processing

In stage 1, SCADA measurements are processed to get the intermediate state vector. This is based
on the assumption that load variations occuring in the power system in between the two PMU
reporting rates are following linearity. Therefore, by expanding the equation(5.1) using Taylor’s
series will get equation(5.11). The column entities of jacobian matrix for different measurements
such as real and reactive power injections, real and reactive power flows and voltage magnitude are

given from equation(5.13) to equation(5.16)

AZ =HAX +e (5.11)
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Ae, e

Ae e

M4 (5.12)

Afl €

Af, e

AfN €
Zi - ij
Zi = Qinj
Zi = P (5.13)
Zi - Qflow
Zi = Vmag
Zi = P’inj
Zi = Qinj
Z; = Pfiow (5.14)
Zi = CQflow
Zi = Vmag



quep + qufp Zz = ]Dinj
Goafo — Bpe€yp Zi = Qinj
Oh;
de, =\ —glinege, — blinerf, Zi = Pfiow (5.15)
—gliney f, + blinere, Z; = Q fiow
0 Z’L = Vmag
\
(
qufp — quep Zz - Pinj
—Gpeep — Bpyfy Zi = Qinj
Oh;
5F, = | ~9linewfy + blinere, Zi = P, (5.16)
glinege, + bliney f, Zi = Q flow
0 Zz = Vmag
\
AZ =7 — Zea/x, (5.17)

In equation.5.11 AX is the difference between the present state and previous state.
AZ =H[X — Xy +e (5.18)

Take H X to the left hand side of equation.5.18

AZ+HXy=HX +e (5.19)

AZ + H X, given in equation.5.19 is termed as 2"
" =HX +e (5.20)

Therefore, Z7°" is

Zrew = AZ + HX, (5.21)
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The relationship between Z7““ and state vector becomes linear. As equation(5.21) is linear, the
solution vector can be obtained in a single step and the process becomes non-iterative. The inter-

mediate state vector Xj,,; is computed using equation(5.22)

th — (HTW—IH)—IHTW—IZ;ww (522)

5.4.2 Stage2: PMU measurements processing

In stage2, for processing both PMU measurements and intermediate state vector, linear state esti-
mation model proposed in [50] and reproduced in subsection.4.2.3 is used for obtaining the final

states of the system.

5.4.3 Pseudo SCADA measurements generation

As PMUs are only available in limited number, PMU measurements alone can’t give complete
observability of the system. Therefore, for tracking the system state in all PMU measurement re-
porting arrivals, pseudo measurements are required to be generated during two successive SCADA
reporting intervals. Previous time instant estimated state vector is used for obtaining the pseudo
SCADA measurements. The flowchart of the proposed linear sequential hybrid state estimator is

shown in figure.5.2

5.4.4 Linear sequential hybrid estimator step by step procedure

» Stage 1

1. Get the SCADA measurements and previous instant state vector

2. Process the measurements using proposed linear model

3. Check for presence of bad data using largest normalized residue test

4. If presence of bad data is found repeat step2 by eliminating the detected bad measure-

ments
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Figure 5.2: Flow chart of the linear sequential hybrid state estimator
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5. Evaluate the intermediate state vector
» Stage 2

1. Take PMU measurements and intermediate state vector as a input.
2. Process the measurements using linear state estimation model

3. Estimate the final states of the power system

5.5 Case study and results

The effectiveness of the proposed linear sequential hybrid state estimator is tested on IEEE 14,
30, 57 and 118-Bus test systems. Newton-Raphson power flow algorithm is used for generating
true values of the measurement set. Gaussian errors having standard deviations ogcapa = 0.01 &
opyu = 0.001 are correspondingly used. It is assumed that SCADA measurements arrival rate is
25 times slower than PMU measurements. Python programming with SPYDER IDE environment
is used for coding the proposed algorithm. Mean square errors(MSE) of voltage and phase angle

for every simulation are computed using equation(5.23).

’L

N
MSE — 1/N Z estimated __ true)2 (523)
=1

All bus voltage magnitude measurements, real and reactive power flow measurements and real
and reactive power injection measurements are considered as SCADA measurements for all test

systems.

For comparing the proposed method with ANN based method [59], the training of the
radial basis function neural network(RBFNN) is done with 200 load variation patterns of real time
load curve data taken from PJM market [79] . For every load variation corresponding set of PMU
measurements and estimated state vector are recorded. These are used for training the ANN net-
work. The input to RBFNN is measurement set and output is state vector. MATLAB nntool box is

used for implementing RBFNN based power system state estimation using PMU measurements.
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5.5.1 IEEE 14- Bus system & 30- Bus system

For IEEE 14- Bus system, 4 PMUs are required to make the system completely observable. For
checking the efficacy of the proposed linear sequential hybrid state estimator(LSHSE) only two

PMU locations are considered in this study.

100 simulations are carried out by considering one time instant load change from previous
to present instant. MSE variations of the voltage for all runs are plotted in figure.5.3. From the plots,
it is observed that estimation accuracy of the ANN based method is very inferior compared with

other techniques including proposed method for the considered PMU locations.
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Figure 5.3: Comparison of voltage magnitude MSE of proposed LSHSE with SCADASE, ANN,
Pseduo based & SHSE for IEEE 14-bus system

For IEEE 30- Bus system, ten PMUs are needed for making system completely observ-
able. For checking the effectiveness of the proposed LSHSE only five PMU locations are consid-

ered in this study.

100 simulations are carried out by considering one time instant load change from previous
to present instant. MSE variations of the voltage and current for all runs are plotted in figure.5.4 and

5.5. From the plots, it is observed that estimation accuracy of the proposed method is competing
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with sequential hybrid state estimator. MSE variations of the proposed method are coinciding with
the sequential hybrid state estimator for all simulation runs and is superior than traditional estimator

and pseduo measurement based method [57].
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Figure 5.4: Comparison of voltage magnitude MSE of proposed LSHSE with SCADASE, Pseudo
based & SHSE for IEEE 30-bus system
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Figure 5.5: Comparison of Phase angle MSE of proposed LSHSE with SCADASE, Pseudo based
& SHSE for IEEE 30-bus system
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5.5.2 1IEEE 57-Bus & IEEE 118-Bus system

For IEEE 57-Bus system, 17 PMUs are needed for making system completely observable. 8 PMU
locations are considered for testing the effectiveness of the proposed linear sequential hybrid state

estimator.

For IEEE 118-Bus system, 32 PMUs are needed for making the system completely ob-
servable. 17 PMU locations are considered for testing the effectiveness of the proposed linear

sequential hybrid state estimator(LSHSE).

100 simulations are carried by considering one time instant load change from previous to
present instant. MSE variations of the voltage and current for all runs are plotted in figure.5.6 and
5.7. From the plots, it is observed that estimation accuracy of the proposed method is competing
with sequential hybrid state estimator. The same kind of responses are reported for IEEE 57-Bus
system. MSE variations of the proposed method are either better or coinciding with the sequential
hybrid state estimator for all simulation runs and is superior than the traditional estimator and

pseudo measurement based method.
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Figure 5.6: Comparison of voltage magnitude MSE of proposed LSHSE with SCADASE, Pseudo
based & SHSE for IEEE 118-bus system
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Table 5.1: Comparison of Voltage magnitude and phase angle MSE of proposed LSHSE with SHSE , Pseudo measurement based

method, SCADASE

Test SCADASE SHSE Pseduo based method LHSE
system VMSE PMSE Time VMSE PMSE Time VMSE PMSE Time VMSE PMSE Time
IEEE14 | 0.00251889 | 0.0933072 | 0.007619sec | 0.00216176 | 0.079611 | 0.0101sec | 0.00222505 | 0.0819069 | 0.007619sec | 0.00216207 | 0.0795978 | 0.0048sec
IEEE 30 | 0.00228392 | 0.117233 | 0.0199sec 0.0017368 | 0.0876459 | 0.0196sec | 0.00189804 | 0.0892479 | 0.0199sec | 0.00173643 | 0.0876563 | 0.0061sec
IEEE 57 | 0.00226102 | 0.137517 | 0.0389sec | 0.000963133 | 0.0496114 | 0.0718sec | 0.00199334 | 0.435973 | 0.0389sec | 0.000940506 | 0.0487705 | 0.0146sec
IEEE 118 | 0.00107783 | 0.0657681 | 0.1786sec | 0.000958556 | 0.0580434 | 0.2218sec | 0.00743882 1.6109 0.1786sec | 0.000803559 | 0.0458205 | 0.0405sec




From the table.5.1 , The proposed linear sequential hybrid state estimator(LSHSE) es-
timation accuracy is better than the traditional non-linear method and competing with sequential
hybrid state estimator. The estimation accuracy of the pseudo measurement based method is dete-
riorating as the order of the system is increasing. Due to the non-iterative nature of the proposed

method, computational time is drastically reduced compared with other three methods.

5.5.3 Sensitivity analysis

Sensitivity analysis [80] is done on the proposed method for different PMU measurements and
SCADA measurements standard deviation variations. State variance obtained for different combi-
nations of +£50% variation of standard deviation of PMU and SCADA measurements is presented
in table.5.2. It is observed that, the state variance of proposed LSHSE is less compared with
SCADASE. The influence of variation of standard deviation of SCADA measurements is high

compared with standard deviation of PMU measurements on the state variance.

Table 5.2: Sensitivity analysis comparison of proposed LHSE with SCADASE & SHSE

oscapa | opmu | SCADASE SHSE LHSE
0.005 | 0.0005 | 0.0010972 | 0.000546229 | 0.000546229
0.01 0.0005 | 0.00219501 | 0.00102612 | 0.00102612
0.015 | 0.0005 | 0.00329338 | 0.00149456 | 0.00149456
0.005 0.001 | 0.00109726 | 0.000588619 | 0.000588619
0.01 0.001 | 0.00219411 | 0.00109246 | 0.00109246
0.015 0.001 | 0.00329125 | 0.00157717 | 0.00157717
0.005 | 0.0015 | 0.00109726 | 0.000617386 | 0.000617386
0.01 0.0015 | 0.00219434 | 0.00113965 | 0.00113965
0.015 | 0.0015 | 0.00329114 | 0.00163869 | 0.00163869
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Figure 5.8: Comparison of computational time of proposed LSHSE with SCADASE and SHSE

with increasing order of the system

Comparison of computational time of the proposed method with traditional estimator and
sequential hybrid state estimator is plotted in figure.5.8. It is observed that, the proposed method
is computationally efficient and superior than SCADASE estimator and sequential hybrid state

estimator.

5.6 Summary and comments

In this chapter, a linear sequential hybrid state estimator(LSHSE) is proposed to efficiently utilize
the limited number of PMUs deployed into the system along with existing SCADA measurements.
This paper proposed a linear mathematical model by assuming that, in between the two PMU
reporting rates the load variations are following linearity. In stagel, proposed linear model is used
for processing SCADA measurements to compute the intermediate state vector. In stage 2, linear
SE model is used for processing both PMU measurements and the intermediate states obtained
in stage 1 to get the final states of the power system. The estimation accuracy of the proposed
method is better compared with the traditional estimator, pseudo measurement based method, ANN

based method and is competing with sequential hybrid state estimator. The proposed method is
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non-iterative and computationally very efficient compared with the traditional estimator, pseudo
measurement based method and sequential hybrid state estimator. Finally, the proposed method
is exhibiting better performance than sequential hybrid state estimator or two stage hybrid state

estimator.
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Chapter 6

Linear tracking single stage hybrid power

system state estimator

6.1 Introduction

This chapter explored the idea of single stage linear hybrid state estimator by combining the trans-

formed SCADA measurements in chapter 5 with PMU measurements.

6.2 Modeling of Linear hybrid state estimator

This section presents a linear single stage hybrid state estimation model(LHSE) for estimating the
states of power system considering both SCADA and PMU measurements. From the discussion in
chapter 5, it is evident that the transformed SCADA measurements are also having linear relation
with state vector. These transformed measurements are combined with PMU measurements to get

a single stage hybrid model. The transformed SCADA measurements are given in equation(6.1)

Zgcapa = HX + e (6.1)
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The relationship between PMU measurements and state vector is linear and is given in equation.6.2
Zy=H X +e (6.2)

Combining the modeled new SCADA measurement set with PMU measurement set gives

Znew
Z SCADA 6.3)
Zy
Therefore, the new design matrix is
H
Hnew = (64)
H,

Znew 18 the new measurement set including both transformed SCADA and PMU measurements. It

has a linear relation with state vector and is given in equation(6.5)
Znew = HpewX + € (65)

By applying weighted least square technique, the state vector solution is given in equation.6.6. It

is non- iterative.

X=HL W Hy) " HEL W Zpe (6.6)
W, 0

W = 0w (6.7)
2

Where W is the weight matrix or inverse co-variance matrix. W and W5 are inverse co-variance

matrices for SCADA and PMU measurements.

6.2.1 Pseudo SCADA measurement generation

It is known that, PMU measurements alone can’t give complete observability of the system. For
tracking the state of the power system in the instances of SCADA not reporting intervals, SCADA
measurements are calculated using previous state vector of the power system. The calculated

SCADA measurements are used as pseudo measurements in SCADA not reporting intervals.
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Figure 6.1: Flow chart of the linear hybrid state estimator

The flow chart of the proposed linear hybrid estimator is shown in figure.6.1. When both
SCADA and PMU data are available, state vector is obtained using the proposed linear technique.
If only PMU data is available, SCADA measurements are predicted with the help of previous
instance state vector. Obtain the state vector using proposed linear hybrid state estimator using

PMU measurements and predicted pseudo SCADA measurements
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6.3 Results and discussions

The efficacy of the proposed linear hybrid state estimator is evaluated on IEEE 14 ,30, 57 and 118-
Bus test systems. True values of the measurements are generated using N-R power flow algorithm.
100 sets of measurement data are simulated by adding Gaussian errors having standard deviations
opyu = 0.001 & 0scapa = 0.01. It is assumed that PMU measurements reporting rate is 25 times
faster than SCADA measurements reporting rate. For programming the proposed algorithm in PC,
Python SPYDER IDE platform is used. Voltage magnitude and phase angle mean square error for

each simulation is computed using equation(6.8)

N
MSE — 1/N Z estimated __ true)Q (68)
=1

6.3.1 IEEE 14- Bus system & 30- Bus system

For IEEE 14-Bus system, 13 injections and 24 line flows are taken as SCADA measurements [5]
these being Ps, Pio, Pis, Fs, Py, Pio, Pi3, Q15, @3, Qo, Q6 Q10, @13, Pos, Psa, Pars Po, P2,
Ps13, Po11, Prs, Pz, Poi0, Pora, Pr213, Q23, @52, Qa7 Qa9, Qe12, Qe13, Qo115 Q7s, @37, Qo105 Qo14,

(21213 4 PMU measurements are required for making the system completely observable(2,7,11,13)
through PMUs. only 2 PMUs(2, 13) are considered for testing the proposed linear hybrid state

estimator.

For IEEE 30- Bus system, all real and reactive power injections, all real and reactive
power flows and all bus voltage magnitude measurements are taken as SCADA measurements. 10
PMUs are required for making system completely observable. Only 5 PMUs(2, 6, 10, 15 ,25) are

considered for testing the proposed linear hybrid state estimator.

100 simulations are run by considering one time instance load change from previous to
present instant . The proposed method Voltage magnitude MSE and Phase angle MSE variations for
all runs are plotted in figure.6.2 and 6.3 for IEEE 14-bus system. It is observed that, the proposed

method is performing better than the traditional estimator and two stage hybrid state estimator.
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Similar responses are observed for IEEE 30-Bus system.
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Figure 6.2: Comparison of voltage magnitude MSE of proposed LHSE with SCADASE & 2HSE
for IEEE 14-bus system

025, SCADASE
2HSE
—@— LHSE
L 0.2
wn
p=
20.15
[«Y))
g
9 0.1 |
[a+1
= *J\ M A
| I AT
b PR
07 T

T T T T T
0 20 40 60 80 100
Number of simulations run

Figure 6.3: Comparison of Phase angle MSE of proposed LHSE with SCADASE & 2HSE for
IEEE 14-bus system
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6.3.2 IEEE 57- Bus system & IEEE 118-Bus system

For IEEE 57- Bus system, all real power flows(80), reactive power flows(80), voltage magni-
tude(57) measurements are taken as SCADA measurements. 17 PMU measurements are required
for making system completely observable(1,4,6, 9,15,20,24,28,30,32,36,38,41,47,51,53,57). But,
only 8 PMUs (1, 6, 24, 38, 57, 41, 51, 53) are taken for testing the proposed linear hybrid state

estimator.

For IEEE 118-Bus system, all real and reactive power injections, all real and reactive
power flows and all voltage magnitude measurements are taken as SCADA measurements. 32
PMUs are required for making the system completely observable. Only 17 PMUs are considered

for testing the proposed linear hybrid state estimator.

100 simulations are run by considering one time instance load change from previous to
present instant . The proposed method Voltage magnitude MSE and Phase angle MSE variations
for all runs are plotted in figures.6.4 and 6.5. It is observed that, the proposed method is performing
better than the traditional estimator and two stage hybrid state estimator. Similar responses are

observed for IEEE 118-Bus system.
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Figure 6.4: Comparison of voltage magnitude MSE of proposed LHSE with SCADASE & 2HSE
for IEEE 57-bus system
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Figure 6.5: Comparison of Phase angle MSE of proposed LHSE with SCADASE & 2HSE for
IEEE 57-bus system
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Table 6.1: Comparison of Voltage magnitude and phase angle MSE of proposed LHSE with 2HSE and SCADASE

Test System SCADASE 2HSE LHSE
VMSE PMSE Computational time VMSE PMSE Computational time VMSE PMSE Computational time
IEEE 14 | 0.00246782 | 0.0916694 0.007619sec 0.00160932 | 0.0670478 0.0101sec 0.00088168 | 0.0397719 0.00298sec
IEEE 30 | 0.00234384 | 0.114783 0.0199sec 0.00140954 | 0.0703057 0.0196sec 0.000828491 | 0.041867 0.00936sec
IEEE 57 | 0.00208864 | 0.130758 0.0389sec 0.000602425 | 0.0157629 0.0718sec 0.000418998 | 0.016595 0.0208sec
IEEE 118 | 0.00100078 | 0.0640778 0.1236sec 0.000917665 | 0.0385209 0.1198sec 0.000424498 | 0.0219884 0.046sec




From table.6.1 , it is apparent that the estimation accuracy of the proposed linear hybrid
state estimator(LHSE) is better than the traditional non-linear method and two stage hybrid state
estimator. Due to the non-iterative nature of the proposed method, computational time is drastically

reduced.

6.3.3 Tracking ability of the proposed algorithm

The proposed method is tested for load variations of upto 60 seconds interval of the load curve.
The load curve data is taken from the PJM market [28] and is given in figure.6.6. Normalized load

curve data is used for determining the actual load curve data of the IEEE 118-Bus test system.
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Figure 6.6: Daily load curve of IEEE 118 - Bus system
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Figure 6.7: Comparison of voltage magnitude MSE of proposed LHSE with SCADASE & 2HSE
for a duration of 60 seconds for IEEE 118 - Bus system
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Figure 6.8: Comparison of phase angle MSE of proposed LHSE with SCADASE & 2HSE for a
duration of 60 seconds for IEEE 118 - Bus system
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Figure 6.9: Comparison of voltage magnitude MSE of proposed LHSE and 2HSE for a duration of
60 seconds in all PMU reporting intervals for IEEE 118 - Bus system
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Figure 6.10: Comparison of phase angle MSE of proposed LHSE and 2HSE for a duration of 60
seconds in all PMU reporting intervals for IEEE 118 - Bus system
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Table 6.2: Salient features of the LHSE and SCADASE
Feature LHSE SCADASE

Relation with measurements Linear Non-linear

Measurements considered PMU & SCADA | Only SCADA

Estimation accuracy More Less

Computational time Less More

Solution process Non-iterative Iterative
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Figure 6.11: Comparison of computational time of LHSE with SCADASE while increasing order

of the system

100 simulations are run for every instant of load change during 60 seconds interval of the
load curve. The proposed method voltage magnitude MSE and phase angle MSE variation during
60 second interval for all SCADA measurement reporting rates are plotted in figures.6.7 & 6.8 and
for all PMU measurements the reporting rates are plotted in figure.6.9 & 6.10. The comparison of
MSESs with traditional estimator and two stage hybrid state estimator for all SCADA reporting rates

are shown in figures.6.7 and 6.8 and for all PMU reporting rates in figures.6.9 & 6.10.
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The voltage magnitude MSE and phase angle MSE of the proposed method per 100 sim-
ulations per every instance during 60 seconds interval of the load curve are given in figure.6.7 &
6.8. The voltage magnitude MSE and phase angle MSE of the proposed method per 100 simula-
tions at every instance during the 60 second interval of the load curve in all PMU reporting rates
are given in figures.6.9 & 6.10. It is observed that the proposed method has the ability to track
the system in all PMU reporting rates. The salient features of the proposed method are compared
with the traditional estimator and given in table.6.2. The computational time comparison plot of
the proposed method versus traditional estimator and two stage hybrid state estimator is given in
figure.6.11. It is observed that the proposed method is computationally efficient and superior than

SCADASE estimator and two stage hybrid state estimator.

6.4 Summary and Comments

This chapter proposed a linear hybrid state estimator by integrating PMU and SCADA measure-
ments. A linear single stage state estimation model is proposed by assuming variations in the power
system in between the two successive PMU reporting rates are following linearity. The estimation
accuracy of the proposed method is better than traditional non-linear SCADA based estimator and
two stage hybrid state estimator. The proposed method is non-iterative, as it is having linear re-
lationship between the states and measurements. The computational time of the proposed method
is 4 to 5 times lower than that of the traditional state estimator and two stage hybrid state estima-
tor. Therefore, the proposed method not only shows better estimation accuracy and computational

superiority, it also has the ability to track in all PMU reporting rates.
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Chapter 7

Conclusions and Future Scope

7.1 Conclusions

The present day power system demands a more effective WAMPAC system for it’s monitoring in a
better manner than the existing one. Since, SCADA measurements reporting rates are much slower,
with SCADA alone utilities can’t meet effective monitoring requirement. Recently introduced
PMUs reporting rates are much faster than SCADA measurements and are also more accurate. The
objective of the present study is 1) to provide better PMU deployment models into the power system
state estimation, ii) to provide effective models for PMU only assisted state estimation techniques
and iii) to provide hybrid state estimation models for utilizing PMU and SCADA measurements in

the power system state estimation. The following contributions are made.

In chapter 2, a topology based OPP method- I is proposed. The proposed method pro-
vides multiple optimal PMU locations without using any conventional or heuristic optimization
techniques by working only on the binary connectivity matrix. The drawback of the proposed
method is that it failed to get multiple solutions for different cases such as line contingency, loss of

PMU and considering channel limit.

In chapter 3, a novel topology based Optimal PMU placement method-II is proposed to
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obtain a whole set of multiple optimal solutions. The proposed method works only on binary con-
nectivity matrix of the system without using any classical or meta-heuristic optimization technique.
Once multiple optimal solution set is available, the solution which best fits the utility sub - ordinate
objectives like direct monitoring of generator and weak buses ,etc can be selected. The proposed
method assures global optima. From the results, It is observed that OPP problem is a special
optimization problem having multiple global optimal solutions. In addition, this chapter also pro-
posed normalized BOI(NBOI) and SORI(NSORI). Unlike SORI, the solution which has maximum
NSORI has maximum individual bus redundancy uniformity. NSORI also has the ability to further
prune multiple solutions. As the algorithm progresses, the solution matrix length increases. Due
to this, personal computers having medium RAM capacity are not sufficient to run the algorithm
for large power systems. But, this method is robust for placement of PMUs in multi-area power

systems. The advantage of obtaining the biopsy of solution space in one run cannot be overlooked.

Chapter 4 explored the ability of robust estimators under assumption that entire power
system is observable by PMUs. The Quadratic-Constant criterion based estimator is studied and
improved to make it suitable for PMU assisted state estimation. The proposed criterion is termed
as Quadratic-decaying Exponential criterion. The estimation accuracy of the QE estimator is com-
peting with WLSE under the presence of Gaussian noise and its performance is superior under the
presence of corrupt data. The computational performance of the QE estimator is little low com-
pared with WLSE under the presence of Gaussian noise and superior under the presence of corrupt
data. The computational performance of the QE estimator is independent of the number of bad
measurements in the measurement set. The estimation accuracy of LAV compared with QE had
some outliers with a large deviation from median and the computational performance increases
greatly with the order of the system compared with QE. Therefore, the proposed estimator exhibits

superior performance compared with LAV estimator.

In chapter 5, a linear sequential hybrid state estimator is proposed to effectively utilize
the limited number of PMUs deployed in the power system along with existing SCADA measure-
ments. It is assumed that, in between the two PMU reporting rates the load variations are following
linearity. In stagel, a linear model is proposed for processing SCADA measurements to compute

the intermediate states. In stage 2, linear SE model is used for processing both PMU measure-
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ments and the intermediate states obtained in stage 1 to get the final states of the power system.
The estimation accuracy of the proposed method is better compared with traditional estimator and
is competing with sequential hybrid state estimator. The proposed method is both non-iterative
and computationally very efficient. The proposed method is exhibiting better performace than the

Sequential hybrid state estimator or two stage hybrid state estimator

Chapter 6 proposed a linear hybrid state estimator by integrating PMU and SCADA
measurements. The linear single stage state estimation model is proposed by assuming that, the
variations in the power system in between the two successive PMU reporting rates are follow-
ing linearity. The estimation accuracy of the proposed method is better than the traditional non-
linear SCADA based estimator and two stage hybrid state estimator. The proposed method is
non-iterative, as it is having a linear relationship between the states and measurements. The com-
putational time of the proposed method is 4 to 5 times less than the traditional state estimator and
two stage hybrid state estimator. Therefore, the proposed method not only shows better estimation

accuracy and computational superiority, it also has the ability to track all PMU reporting rates.

7.2 Future Scope

This thesis can be further extended in the following areas

* The topology based optimal PMU placement strategies will generate very large matrix as
the order of the system increases. The mechanism to reduce the size or eliminate some

unimportant nodes is very essential.

* A method or mechanism is required for appropriate selection of break even point 7 with

varying system sizes.

» Application of the proposed topology based methods for deployment of PMUs for providing

security to cyber attacks and for multi- area state estimation.

» Application of the proposed quadratically decaying exponential criterion for integrating both
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PMU and SCADA measurements and for PMU only assisted multi-area state estimation.

» The feasibility testing of the proposed methods with respect to distribution system state esti-

mation and micro grid state estimation has to be further examined.
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