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Abstract

As going with the present trend, the number of components on the On-chip archi-

tectures have been increased drastically when compared with previous years. The types

of On-chip architectures were distinguished into 3 types, namely: a) System on Chip

(SoC), b) Multi-Processor System on Chip (MPSoC), and c) Network on Chip (NoC).

SoC offers products with high complexity, high computational capacity and high-value

semiconductor. One of the core aspects of assessing a network’s performance is the effi-

ciency of on-chip architectures. Due to the increase of the perpetual scaling in the VLSI

technology, cores are getting less complex. As a result, many cores are incorporated onto a

single processor for simultaneous development and performance enhancement, leading to

the origination of MPSoC and NoC architectures. In the development of high-performance

parallel processors, multiprocessing chips (MPSoC) play a crucial role. The NoC accom-

modate modularly and the scalable nature and its contribution to the most efficient on-chip

communication possibly leads to NoC-based multiprocessor systems. In the NoC design
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Abstract

architecture, one of the pre-eminent part is the routing algorithm which assures a low

communication latency makes the implementation of the hardware effortless and a high

network throughput.

This thesis proposes an efficient core mapping algorithm named BMAP, which involves

a standard topology selection and customization of NoC platforms. The proposed algo-

rithm was applied to various benchmark applications as case studies and was compared

with previous algorithms. A great improvement in reliability, delay, area and power was

observed where minimal objective function is achieved even for larger complex networks in

2D topologies. The SPLASH-2 Benchmark synthesis provides the performance evaluation

of the proposed mapping, where the experimental outcomes reveals that the performance

metrics such as Speed-up Execution Time increased by 40%, 30% and 20%, Latency re-

duced by 42%, 34% and 28%, Energy efficiency improved by 36%, 30%, 26% and Power

consumption reduced by 32.6%, 28.2%, and 26.4% when compared with NMAP, MMAP,

and EMAP algorithms respectively.

The proposed ACM, mainly involves in two steps 1) Core mapping and 2) Spare core

placement. The core mapping methodology considered the complete performance eval-

uation for different routing algorithms. The proposed ACM can dynamically react and

recover from the failed core through spare core replacement to maintain system functional-

ity. Before performing the core mapping, we need to find out the mapping region through

NAD and PVR. The Weighted Communication Energy (WCE) for each mapped region is

been calculated, so therefore, the obtained minimum WCE provides the best core map-

ping. Once the mapping is completed, if a fault occurs at any core, perform the fault

diagnosis method, which determines the location of the damaged resource and correct

the error using error detection and correction mechanism. If the faults occur even after

applying the fault diagnosis method, perform task migration using spare core placement.

Mapping simulations executed on the NoC Simulator (Noxim), adjusted to perform a

re-enactment for various routing algorithms, such as XY, WEST-FIRST, NORTH-LAST,

and ODD-EVEN routings. A significant improvement observed in energy consumption,
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average delay, and throughput in the proposed work compared with existing algorithms.

The proposed adaptive core mapping algorithm is synthesized and simulated using Vivado

Design Suite 2018.3 and verified on the Kintex-7 FPGA KC705 board. The results im-

plicate a dramatic decrease in area, power consumption, and an increase in throughput.

The core mapping is applied to the PARSEC Benchmark using GEM5 simulator which

outperform the latency and system performance.

In this Fault-tolerant mapping algorithm (FTMAP) is implemented that focuses pre-

dominantly on replacing the faulty cores and assessing the communication and the ex-

ecution time of the network by employing it on various multimedia benchmarks. Each

mapped core is associated with a router, i.e. responsible for the data transfer from source

via destined core. In contrast, the unmapped cores will be available as the free spare cores.

During the application task execution, the permanent faults were addressed through the

proposed fault-tolerant mechanism, where the faulty cores were substituted with the near-

est accessible free core to perform the tasks smoothly and efficiently. Considering the

failure probabilities, FTMAP provides the outcomes of NFT, 1FT and 2FT that improves

the system’s performance, minimizes the communication energy and the execution time.

In this an efficient mapping strategy implemented on the real-time embedded applica-

tions named ERTEAM. In this algorithm, based on the minimum Node Average Distance

(NAD) the mapping region is finalized, ensuring the overall mapping area reduced. The

PE’s mapped according to the minimum communication energy in the selected mapping

region. This research evaluated a set of embedded applications, which reveals a reduction

in latency at 12.3% against BBPCR and 8.4% against SBMAP. The simulation time re-

duces at an average of 19% against BBPCR and 9.6% against SBMAP. The throughput

increases at an average of 14.5% against BBPCR and 7.8% against SBMAP and reduces

the communication energy by 15.6% against BBPCR and 5.2% against SBMAP.

Index Terms: System on Chip (SoC), Network on Chip (NoC), Core, Application

Core Mapping, Spare Core Placement, Fault tolerance, Failure Recovery, Processing Core

Failure, Performance metrics, Kintex-7 FPGA KC705 Evaluation Kit.
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Chapter 1

Introduction

This chapter highlights challenges in computer platform design and introduces the Network

on-Chip concept. We also give an overview of the research presented in the thesis and

outline the authors contributions to the enclosed papers

1.1 Challenges in computing platform design

Embedded applications have grown in popularity and demand as chip technology has

evolved, particularly System on Chip (SoC) prevailing due to its compactness. A new

ecosystem has originated for semiconductor devices, which allows complex tasks and fea-

tures to be integrated into a single package, referred to as SoC. As per International Tech-

nology Roadmap for Semiconductors, named ITRS 2.0, an emerging ecosystem comprises

heterogeneous implementation with electronic components linked to various application

domains, including High-Performance Computing (HPC), IoT, Big Data, including Cloud

Computing [1]. The architecture utilized in SoC design is bus-based structures that could

not evolve well as an application’s communication needs an expansion. The communication

between the cores of these architectures is accomplished through the following techniques,

namely (i) Bus based approach, i.e. intended as a traditional method that permits the

communication of each core at a time which generally utilized in SoC-based architectures,

(ii) Point to Point communication links contains a designated link to each core to com-

municate with the other core, which generally utilized in MPSoC based architectures, and

(iii) Router-based communication utilized in NoC architectures [2], [3].
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Multiple processors can be integrated on a single chip evolving as MPSoC’s (Multi

Processor System on Chip), that involves tens or hundreds processor elements, memory

blocks, ASIC acceleration engines to be inter-connected together on chip. Each process-

ing element performs its tasks in a parallel way taking the advantage of the parallelism

either in task, thread or system level. Many recent chips have already switched to the

paradigm of multi-core based platform for this purpose. For example, in [4], [5], [6] a

16-core heterogeneous digital base band IC for MIMO 4G Software Defined Radio (SDR)

is proposed. Their proposed NoC-based prototype doubles the throughput and consumes

only 39% power over the previous MPSoC solutions. Another example is the Intel 80-tile

Teraflops processor [7], which is a homogeneous NoC-based CMP platform and delivers

up to 1.28 TFlops of performance. Therefore, MPSoC based architectures provide great

improvement in the performance and reduces the energy dissipation.

The Network on Chip (NoC) connectivity approach is developed as a solution to resolve

the limitations of communication, performance metrics and energy efficiency [8], [9]. NoC

is mainly classified into two types based on its characteristics: 1) General purpose and 2)

Application specific. The communication between the cores are dynamically designed for

the application specific NoC [10].

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Point-to-Point
Interconnect

Total Wire length
<100cm

Shared Bus

<100 meters

Communication
Network

NOC

>1 Km

Core 1
Core 1

Core 2

Core 2

Core 3

Core 3

Core 4

Core 4

Core 5

Core 6

Core 5

Figure 1.1: The trend of on-chip interconnection.
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1.2 NoC for multi-core communication

NoC provides a versatile and customizable communication network that substitutes

designated point-to-point connectivity among the cores, resulting in inter-core communi-

cation [11], [12]. The communication between the cores is achieved through the routers

linked to each core. In evaluating the performance of the multi-core architectures, NoC

router efficiency plays a prominent role [13], [14]. The NoC architectures comprise of three

main processes for the application design, namely; (i) Scheduling Tasks, (ii) Application

Partition, and (iii) Mapping the application. Every task in a directed graph is allocated

to the separate cores during the task scheduling stage. Perhaps, the timeline of their

operations is specified whenever two tasks along the same core are scheduled. After com-

pleting this stage, the core graph and the communication energy between the vertex’s are

obtained. The next stage involves the application mapping of the cores, where each core

is mapped onto the available PE [15].

Figure 1.1 represents the trend of on-chip interconnection and compares the total wire

length under different technology nodes [16]. For the NoC-based multicore system, besides

the latency and throughput improvement, it also brings the following advantages:

1) High reliability: For Multicore systems, the complex system is highly susceptible

to faults [17]. Compared to point-to-point dedicated links and buses, NoC can achieve

higher reliability by providing redundant paths among the cores. If some of the cores fell

into permanent or temporary faults, the other cores can be utilized to remap the packets

to the destinations and hence packet acceptance rate will not drop dramatically.

2) Modular design : NoC provides sufficient bandwidth for communication, while

the processors can be designed without considering the network; therefore it supports

modularity design [18]. Moreover, the global clock synchronization is not necessary in

NoC which increase the overall system yield [19].

3) Global asynchronous, locally synchronous (GALS) design: For multicore systems,

it is difficult to distribute a single clock over thousands processor cores. To deal with these

issues, NoC offers a good platform for the GALS design style because each tile (processor

elements and the cores) can work separately within its own clock domain. By employing

GALS design, multiple Voltage-Frequency islands can be developed in different regions of

NoC so as to achieve lower power consumption [19].

4) Power and area efficiency: Compared to the buses, the arbitration time for con-

tention is much smaller as each core only needs to handle local contention scenario [17].
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Therefore, large buffers to store the unserved packets are not needed in NoC cores, which

result in a more compact core mapping and reduces the area/power overhead. For power

dissipation, because the buses are connected to all the cores in the system, while the links

in NoC only need to connect two neighboring cores. Therefore, with proper floorplanning,

NoCs uses shorter wire length and occupies less load per transition [17]. Moreover, NoCs

provide a variety of efficient power management strategies to further reduce power. This

is because the NoC can be partitioned into sub-networks and each region can be powered-

off or slowed down via dynamic voltage and frequency scaling (DVFS) individually [17].

High power efficiency can be achieved without significant degradation in the overall system

performance.

1.2.1 Network Terminology

Some network terminologies which are commonly used are described below.

Message : The message is actual data to be transferred from source core to destination

core in NoC. The size of message may be fixed or variable and it depends on the application.

Packet : The message can be broken into several packets. Packet is a small formatted

block that can be transmitted from a source core to destination core. The packet can

move independently in the network. Every packet consists of control information and data

(payload). The packet header carries the control information. The size of packet may be

fixed or variable.

Flow Control Digit (Flit) : A packet may be broken down into several flits. The size

of flit consist usually one or several bytes. It fits the storage resources in switches in the

network.

Physical Transfer Digit (Phit) : It is the smallest physical unit of information at

physical layer. It consists of a constant number of bits. It is transferred as a unit across a

channel from one router to the next router. Size of phit may or may not be equal to the

size of flit.

Communication units clearly shown in Figure 1.2
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Figure 1.2: Communication Units.

1.2.2 Basic Advantages of NoC

NoC design paradigm has many advantages over the previous paradigm of bus SoC

interconnection. The following subsections discuss the basic advantages of NoC design

paradigm and how those advantages contribute to the electronic devices industry [20].

1.2.2.1 Scalability

Scalability is the ability to increase the number of modules on the SoC. In bus based

SoC, it takes long time to add new function units to an existing design because designers

had to design and test the system from scratch. Bus arbitration, data integrity, loads, and

others have to be tested. In NoC, adding new modules or function units became easier.

You only have to add a new router and connect this router to the network by small bus

or even connect the module to an existing router depending on the network design. On
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the other hand, companies can buy a ready designed and tested functions, IPs from other

third-party companies and commercial off-the shelf (COTS) modules from IP vendors then

use them in their projects. That effectively reduces the strong pressure time-to-market

(TTM) demand. So, scalability is the ability to increase the number of modules easily by

just inserting a router and a network interface and we do not have to rebuild the design

from scratch (placing the modules and routing the buses) to extend our design.

1.2.2.2 Reusability

The concept of reusability emerged with NoC, where in order to design a totally new

product or a new application, designers may use many simple predesigned modules to

make larger systems. This concept can reduce time of design and test where designers do

not have to think about new architectures or testing the system from scratch, and instead,

they test the interconnection communication in the network. In other words, reusability

means design once and use many. Reusability and scalability reduces the time of testing

the design by just testing the traffic instead of testing all the system specially the low level

modules.

1.2.2.3 Reduced Communication Delay

Contrary to the nature of communication in bus based SoC where only one commu-

nication channel can be established between two nodes at a time. Connecting a SoC as

a network enabled the nodes to establish many successful communication channels every

time slot. That in most cases reduces the communication latency and the total operation

time.

1.2.2.4 Reduced Communication Power Consumption

In bus based SoC, every message has to be delivered to all nodes on the bus, and

every node has to check whether the message is destined to its own or not. But in NoC,

messages are routed inside the network only to its destination by the communication

routers. That reduces the unwanted power consumption in transmitting the messages to

unwanted destination and also the power consumption in checking the destination in each

node.
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1.3 NoC Architecture

NoC Architecture contains three main elements [21] such as 1) Processing Core, 2)

Network Interface and 3) Router, clearly represented in Figure 1.3.

Figure 1.3: NoC Architecture.

1.3.1 Processing Core

The cores in NoC communicate with each other through interconnection links using a

technique named packet-based switching. The processing cores in NoC are mainly classified

into 3 types based on its action [22], which is clearly depicted in Figure 1.4.

Figure 1.4: Processing Core Types.

1) Regular Core: The regular core is further classified into 2 types namely; Failed

and Non-Failed core. The Failed cores can either be transient faults or permanent faults
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whereas the Non-Failed cores are divided into either free or a busy core. Therefore, all

such type of cores are considered as the regular cores [23].

2) Spare Core: It is responsible for recovering the failed cores in a network. Suppose

if any of the core gets failed permanently in an application, the spare core is replaced in

the place of the faulty core to complete the tasks of the faulty core. Therefore, all such

spare cores are responsible for serving the tasks of failed cores [23], [24].

3) Manager Core: It contains the status of the busy cores present in the network and

performs task migration to the spare core, whenever a faulty core occurs. Therefore, these

type of cores are termed as manager core [23].

The communication between the core and the router are carried out through the

network interface as well as each router is connected with the neighboring router in order

to form a packet based NoC architecture.

1.3.2 Network Interface

The term network interface is basically defined as the communication between the

core and the router that primarily performs the data packetization and depacketization

as shown in Figure 1.5. The data is portioned into packets on basis of certain length

which transmits them to the connected network, this is termed as packetization [25]. At

the receiving terminal end, the depacketisation is responsible to reconnect the fragmented

packets from router [26].

Figure 1.5: Basic Network Interface.
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1.3.3 Router

Router is one of the main element and is called as the heart for the NoC architecture.

Basically router contains five number of input and the output ports each, out of 5 ports, 4

ports are aligned in the directions such as north, east, west, and south, whereas the other

port is between the local core and router. Every input port contains ’V’ virtual channels

(1:V demultiplexer, V:1 multiplexer), hence in router as it contains 3 virtual channels it

is considered as 1:3 demultiplexer, 3:1 multiplexer. The router can utilize virtual channels

as buffers to store the packets and each virtual channel contains its own state (virtual

channel state). The router’s control logic is made up of router computation (RC), virtual

channel allocation (VA), and switch allocation (SA), which are in need of verifying that

all of a packet’s required resources were assigned to the downstream router [27]. The

connection between the routers input and output ports, allowing packets to transit from

an input port’s buffer to a downstream router more efficiently is performed by the Crossbar

switch (XB). The four phases of router pipeline are RC, VA, SA, and XB. A packet in

NoC contains one head flit that allocates the resources for a packet, one or more body

flits which comprises of packet payload and one tail flit that free up the packet resources

[28]. In order to decrease the latency of a network, we implemented a VIP based Virtual

channel architecture which improves the system performance as well. This is applied on

4x4 mesh based NoC and the simulated outcomes were more favorable than wormhole

routing design.

1.4 NoC Topology

The physical architecture and interconnections among nodes and routers in the NoC

network are determined by the term topology. The number of hops or the routers required

for the transfer of message via source to destination can be determined using the topol-

ogy. The network’s length is determined that impacts the latency and also determines the

throughput. Topology enables alternative pathways among nodes, allowing traffic to be

distributed equally over the NoC, lowering network latency and increasing network con-

nection bandwidth usage [29]. The different types of NoC topology are Mesh (M), Torus

(T), Ring (R), Polygon (P), Binary tree (BT), 2-ary 3-fly (BFT23), 2-ary 2-stage clos

(CLOS), 2-ary 2-fly (BFT22), clearly shown in Figure 1.6.
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Figure 1.6: NoC Topologies: (a) Mesh (M), (b) Torus (T), (c) Ring (R), (d) Polygon
(P), (e) Binary tree (BT), (f) 2-ary 3-fly (BFT23), (g) 2-ary 2-stage clos (CLOS), (h)

2-ary 2-fly (BFT22).

1.5 Challenges in the Design of NoC

The application mapping is considered one of the key elements for improving the per-

formance parameters and reducing the communication energy of the network [30]. The

application mapping is considered as an example for the NP-hard optimization issue and

is further classified into two categories, namely; (i) Static mapping and (ii) Dynamic

mapping, where static mapping contains static paths which are used for transferring in-

formation from specific source via destination and doesn’t contain the network’s current

state. Dynamic mapping actions were decided based on the network’s current state, and

paths among both source and destination can evolve over time based on the traffic re-

quirements. The failure probability has been increased, which results as one of the main

10



Chapter 1: Introduction

drawback of NoC. Furthermore, due to the complexity of production and testing the sys-

tem configuration, effective communication is a key challenge, that results more number

of faults [31], [32]. The faults in a network are classified into 3 types namely: (i) Transient

faults, (ii) Intermittent faults and (iii) Permanent faults, where the faults appeared can be

resolved permanently are termed as transient faults, the faults that occurring frequently

are termed as intermittent faults and finally the permanent faults are persistent that can

be replaced to perform the assigned tasks. The fault-tolerant methods can be used to

overcome the faults in a network [33], [34].

1.6 NoC and Application model

In this section, we discuss about the background of multi-applications, NoC Core

graph, topology, the assessment of reliability, energy, and performance of the NoC system.

The background of application core mapping is discussed, where NoC core graph and

topology acts as its input. Every application has multiple parallel tasks. By using static

analysis, the data traded among cores can probably be regulated. The data indicate how

frequently a packet is transmitted between the source and destination in the network.

1.6.1 Background

As presented in [35], the communication rate between the vertices denoted by a core

graph [36]:

Definition 1: An Application Core Graph is a directed graph ACG(V, E) as shown

in Figure 1.7 (a). ‘V’ represents the vertex (∀Vi ∈ V ) and the tasks as in the vertex are

assigned to the same IP, each directed edge ‘eij ’ in E characterizes the communication

from vertex Vi to vertex Vj , while ‘W(eij)’ characterizes communication rate from vertex

Vi to vertex Vj .

According to [37], the connectivity and communication of the NoC is represented by

a topology graph [38]:

Definition 2: The architecture of the NoC platform (concentrated on cores only)

is presented in Figure 1.7 (b). The NoC is represented as topology graph TG ( IP, D),

where IP represents the core. ∀txy ∈ IP, ‘txy’ represents the xth row and yth column of the
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tile, ‘D’ represents the communication distance ∀IPij ∈ D, and ‘IPij ’ denotes the distance

between core (IPi) and core (IPj).

Figure 1.7: (a) An example of ACG, (b) An example of NoC.

1.6.2 Application Mapping and Scheduling

An efficient real-time embedded application mapping problem is defined as:

Definition 3: Given a set of Application Core Graph (ACG), A = ACG(V, E) and

NoC Topology Graph (NTG),T = TG ( IP, D) , finding a mapping function M(IP, D) that

maps an IP core ipi ∈ IP in the ACG to a PE in the NoC.

∀Vi ∈ V,

∀IPi ∈ IP,

Ω(Vi) ∈ IP,

Vi 6= Vj ⇒ Ω(Vi) 6= Ω(Vj)

∀IPij ∈ D

Let eij ∈ E be mapped to some Vxy ∈ IP then Vxy = Ω(IPi)∈ D.

The above mentioned core graph ACG(V, E), and the topology TG(IP, D) are con-

sidered as the primary inputs for application mapping. Each node present in the task

graph i.e. vi ∈ { V } is allocated to the free cores present in the topology based on the

designed algorithm in order to minimize the total communication energy. It is important

that the number of free cores present in the selected topology should always be more, when
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compared to the total number of nodes/vertices present in the selected task graph [39]. It

is mathematically represented in Eq. (1.1).

Vn ≤ IP (cf ) (1.1)

where Vn is represented as number of nodes or vertices in task graph and IP(cf ) is

represented as number of free cores in selected topology.

1.6.3 Efficiency Model

In this section, we mainly discuss the evaluation of reliability, communication energy

and the performance metric. Each mentioned metric plays a vital role in the assessment

of application core mapping.

1.6.3.1 Reliability Assessment

Reliability is assessed in two steps: 1) Identifying the most favorable mapping algo-

rithm with respect to performance and weighted communication energy and 2) Assessing

the reliability of faulty core mapping. The reliability of fault core mapping of the ith faulty

core among the number of failed cores ‘n’ for a particular application is represented by

RAi,n. The reliability of core mapping for an application [40] is as follows:

RA =
N∑
n=0

M∑
i=1

RAi,nPI,n (1.2)

Where PI,n denotes the faulty probability when the ith faulty core occurs, which is indi-

cated in Eq. (1.3), and I indicates a set of ‘n’faulty cores for the ith faulty condition.

PI,n =

N∏
j=1,j∈I

(pj)

N∏
j=1,j /∈I

(1− pj) (1.3)

Where Pj represents the faulty probability of the jth core.

Then the reliability is normalized by a normalization factor NR, which is obtained

above equation when considering the network that can tolerate the maximum number of

faulty links. The normalized reliability is defined as
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NR = R/NR (1.4)

1.6.3.2 Evaluation of Communication Energy

Communication energy is considered as the distance between two tiles or nodes [41].

It is calculated as the sum of differences between their corresponding modules determines

the distance among two vertices, i.e. Vi and Vj , where Vi having parameters as (x1, y1)

and Vj having parameters as (x2,y2).

Therefore, the Weighted Communication Energy (WCE) calculated as mentioned in

Eq. (1.5).

WCE =
∑
∀ti∈{T}

W (Eij)× {|(x2 − x1)|+ |(y2 − y1)|} (1.5)

where W (Eij) is illustrated as the communication weight between any two nodes in a

network.

Problem 1 : To find out total communication energy of the network (CETotal).

To perform the mapping of an NoC application, let’s consider task graph G(V, E),

and the topology N(IP, D); find the mapping function MF : V → IP , where vi ∈ { V }
and ipij ∈ IP.

Let us map the respective vi to ipij .

⇒ MF(vi) = IP (cf ) ∀ vi 6= vj : MF(vi) 6= MF(vj)

The total communication energy (CETotal) is given as

CETotal =
∑

∀vi∈{V }

W (Eij)×Xij (1.6)

CETotal =
∑

∀vi∈{V }

W (Eij)× {|(x2 − x1)|+ |(y2 − y1)|} (1.7)
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where the distance between two nodes vi and vj , with vi parameters as (x1, y1) and vj

parameters as (x2, y2) is represented as Xij and W (Eij) as communication energy between

two nodes.

1.6.3.3 Evaluation of Performance

The throughput and latency considered important metrics for performance improve-

ment [42]. Since network congestion significantly impacts latency, avoiding congestion for

each node is an efficient way to minimize latency. Simultaneously, less congestion will re-

sult in increased throughput. As a result, the bandwidth limitation, which is interrelated

to congestion, is considered the performance limitation. Therefore, the communication vol-

umes for each node managed through bandwidth restrictions, so congestion is diminished,

and performance, including latency and throughput, is guaranteed [43].

Throughput is considered to be the first order performance metrics in systems. It is

the maximum traffic from the network that can be cleared.

Throughput =
(number of completed messages X packet length)

(number of cores X total times)
(1.8)

In our experiment, we expected the message length to be equal to packet length. The

number of completed messages denotes the number of messages that successfully reach

the destination. Packet length is measured in terms of flits/phits. The number of cores

denotes the number of cores involved in a given application, and total time is the time

between the first message transmission and last message reception.

1.7 Importance of Application Core Mapping

Application core mapping is considered as one of the key factor in order to improve the

performance of the real-time NoC applications. Based on the requirements the application

mapping can be either a static or a dynamic. NoC provides the required resources to

establish the communication between the cores and computing the application. The NoC

application comprises of various elements such as DSP’s, FPGA’s, IP cores, Memory

blocks, CPU’s. Due to the increase in the transistors on a single On-chip, there is a

high probability of faults in an application which results in core crashes, non-transmission

of network messages etc. So, in order to decrease the faults and improve the system

performance, the spare core replacement methodology is proposed.
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1.8 Problem Statement

In this research work, we proposed a real-time embedded application core mapping

techniques. It incorporates a core graph unit, which is responsible for mapping and

scheduling the core graph on the NoC architecture. In order to increase the performance

and reduce the communication energy of the NoC applications, mainly concentrated on 3

main approaches: 1) Core mapping, 2) Spare core replacement (enhances the reliability

of the processor) and 3) Fault-tolerant core mapping. In this research, we proposed two

types of mapping, one is system level mapping using preliminaries like Nodes Average

Distance (NAD) and Placing unmapped Vertices Region (PVR). Another is BMAP algo-

rithm which provides an efficient application core mapping. After providing an effective

core mapping, the spare core replacement is used for replacing the spare core (free core)

in the place of faulty core that helps in continuing the tasks of the faulty cores, resulting

in the completion of the assigned tasks and run the applications smoothly. This leads to

the performance improvement of an application along with other metrics. Fault tolerance

unit collects all the fault information from the mapped NoC platform and provides various

solutions for different faults.

1.9 Authors Contributions

The thesis is based on a collection of papers. The detailed materials, experiments,

results and other related work are referred to the papers. In the following, we summarize

the enclosed papers highlighting the authors contributions. These papers are also listed

in the publications.

• International Journals:

1. Aruru Sai Kumar and T.V.K. Hanumantha Rao, “Scalable benchmark syn-

thesis for performance evaluation of NoC core mapping,” Microprocessors and

Microsystems, 2020.(Elsevier, SCI Indexed)

This paper proposes an efficient core mapping technique that is used for cus-

tomizing the NoC platforms and synthesizing the SPLASH-2 benchmark for

producing scalable performance evaluation. This algorithm comprises of stan-

dard selection of the topology and performing the efficient core mapping. This

mapping algorithm outperformed the performance metrics such as Speed-up
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Execution Time increased by 40%, 30% and 20%, Latency reduced by 42%,

34% and 28%, Energy efficiency improved by 36%, 30%, 26% and Power con-

sumption reduced by 32.6%, 28.2%, and 26.4% when compared with NMAP,

MMAP, and EMAP algorithms respectively.

Authors Contribution: The author developed and proved the algorithm, for-

mulated the problem, wrote the program, conducted experiments and wrote the

manuscript. The implementation and experiments were conducted on Noxim

Simulator.

2. Aruru Sai Kumar and T.V.K. Hanumantha Rao, “An Adaptive Core Map-

ping Algorithm on NoC for Future Heterogeneous System-on-Chip,” Computers

and Electrical Engineering, 2021. (Elsevier, SCI Indexed)

This paper proposes an Adaptive Core Mapping technique comprising map-

ping cores and spare core replacement on NoC. The ACM technique showed

an increased performance for various sizes of NoC cores. The experiments con-

ducted on 6 x 6 mesh NoCs revealed that the adaptive core mapping technique

exhibited greater throughput, lesser delay, and energy consumption than other

related algorithms. The current research also addressed the spare core place-

ment issue, which replaces the faulty core with the available free core, therefore

enhancing the reliability of the processor. An experimentation environment

verified on the Kintex-7 FPGA KC705 board, which elucidates the faulty cores,

recovery cores and spare cores in the network. The results implicate a dramatic

decrease in area, power consumption, and an increase in throughput, which

illustrates the efficiency of the proposed ACM algorithm.

Authors Contribution: The author formulated an adaptive core mapping

(ACM) algorithm, wrote the program, conducted experiments and wrote the

manuscript. The implementation and experiments were conducted on Kintex-7

(KC705) FPGA board.

3. Aruru Sai Kumar and T.V.K. Hanumantha Rao, “Performance Assessment

of Adaptive Core Mapping for NoC-based architectures,” International Journal

of Embedded Systems, 2021. (Inderscience Publishers, ESCI and Scopus

Indexed) (Accepted)
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In this paper, we implemented an Adaptive Core Mapping technique comprises

of mapping cores, where the mapping region is obtained from NAD and PVR,

whereas the communication energy between the cores obtained through WMD.

The sequence for mapping the cores implemented through the lowest commu-

nication energy, i.e. in ascending order and this mapping technique applied

to the PARSEC benchmark suite for the evaluation. The Proposed Adaptive

Core Mapping technique evaluated using the GEM5 Simulator. The simulated

outcome of this technique has outperformed both the latency and system perfor-

mance compared with FASA, FARM, and NMAP techniques. The simulations

and synthesis carried out through the Vivado Design Suite 2018.3 outperformed

the metrics such as total latency, power consumption and the core mapping time

compared to other algorithms.

Authors Contribution: The author formulated the system level core map-

ping algorithm. wrote the program, conducted experiments and wrote the

manuscript. The implementation and experiments were conducted on GEM5

Simulator.

4. Aruru Sai Kumar and T.V.K. Hanumantha Rao, “Performance and Com-

munication Energy constrained Embedded Benchmark for Fault Tolerant Core

Mapping onto NoC architectures,” International Journal of Ad Hoc and Ubiq-

uitous Computing, 2021. (Inderscience Publishers, SCI Indexed)

(Accepted)

In this paper, an effective algorithm named as FTMAP (Fault-tolerant map-

ping algorithm), that exemplifies the core mapping on the basis of selected task

graph, and replaces the faulty cores with the available free core termed as core

replacement. This implementation focuses predominantly on the replacement

of the faulty cores and assessing the communication as well as the execution

time of the network by employing it on various multimedia benchmarks. The

experimentation was carried out for NFT, 1FT, 2FT where the communication

energy and execution time were outperformed.

Authors Contribution: The author proposed a fault-tolerant core mapping

(FTMAP) algorithm, developed solutions for the minimization of the commu-

nication energy and execution time using Noxim Simulator, conducted the case

study, and wrote the manuscript.

18



Chapter 1: Introduction

5. Aruru Sai Kumar and T.V.K. Hanumantha Rao, “An Efficient Real-Time

Embedded Application Mapping For NoC Based Multiprocessor System on

Chip,” Wireless Personal Communications, 2021. (Springer, SCI Indexed)

(Under Review)

In this paper an efficient mapping strategy was implemented on the real-time

embedded applications named ERTEAM. In this algorithm, based on the min-

imum Node Average Distance (NAD) the mapping region is finalized, ensuring

the overall mapping area reduced. The PE’s mapped according to the minimum

communication energy in the selected mapping region. The resultant outcome

of the proposed mapping technique provides low latency, less simulation time,

less communication energy and the overall throughput increased compared to

BBPCR and SBMAP when applied to the mentioned embedded real-time ap-

plications.

Authors Contribution: The author developed the idea, implemented the

proposed techniques, conducted experiments using Noxim Simulator, and wrote

the manuscript.

• International Conferences:

1. Aruru Sai Kumar and T.V.K. Hanumantha Rao, “An efficient low latency

router architecture for mesh based NoC,” International Conference on Commu-

nications, Signal Processing and VLSI (IC2SV-2019), NIT Warangal, India,

pp. 241-248, 2019.

In this paper, a Virtual router architecture is introduced which yields low la-

tency resulting in improving the performance of a network. The proposed VIP

based VC architecture for a 4x4 mesh NoC has experimented for 128-bit wide

system targeting up to 250 MHz. The experimental outcome exhibits a low

latency that requires 500 to 600 cycles on an average with respect to other

router architecture. This outperforms 33% of low latency when compared to

the Wormhole router architecture.

Authors Contribution: The author contributed with the idea, evaluated

experimentation methods, and wrote the manuscript.
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2. Aruru Sai Kumar and T.V.K. Hanumantha Rao, “Efficient Core Mapping on

Customization of NoC Platforms,” IEEE International Symposium on Smart

Electronic Systems (iSES-2019), NIT Rourkela, India, pp.57-62, 2019.

This paper proposes an efficient core mapping technique and customization of

NoC platforms are presented. The proposed mapping algorithm was assessed

by applying it to different NoC benchmarks. The proposed algorithm incorpo-

rates standard topology selection and efficient core mapping. This algorithm

was evaluated and compared with previous algorithms, and a great improve-

ment in reliability, delay, area and power was observed where minimal objective

function is achieved even for larger complex networks in 2D topologies.

Authors Contribution: The author contributed with the problem formula-

tion, conducted the experiments of various topologies using Noxim Simulator

and wrote the manuscript.

3. Aruru Sai Kumar, T.V.K. Hanumantha Rao and B. Naresh Kumar Reddy,

“Exact Formulas for Fault Aware Core Mapping on NoC Reliability,” IEEE

17th India Council International Conference (INDICON-2020), New Delhi,

India, pp. 1-5, 2020.

In this paper, the exact formulas for the functional metrics in core mapping

of the fault aware and failure probability in NoC were derived. Particularly to

decrease the area of the mapping utilizing NAD & PVR, communication cost

efficiently measured utilizing weighted communication energy. In the process of

mapping the core, suppose if any of the faults that occurred at any of the cores

effectively find out faulty core using failure probability. Finally, this metrics

best in regard to reliability for core mapping of the fault aware in Network on

Chip.

Authors Contribution: The author discussed the problem formulation of

the functional metrics utilized for the core mapping in NoC, and wrote the

manuscript.
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1.10 Thesis Overview

In our work, we investigated the core mapping and fault tolerance issues on NoC.

We studied relevant works in application core mapping, spare core replacement and

the fault-tolerance techniques used in Network-on-Chips (Chapter 2); Efficient Core

Mapping using BMAP Algorithm (Chapter 3); Adaptive Core Mapping and its Hard-

ware verification (Chapter 4); Fault-Tolerant Core Mapping (Chapter 5); Efficient

Real-Time Embedded Application Mapping (Chapter 6); Conclusion and Future

work (Chapter 7). To be more precise, the outline and contributions of this thesis

are summarized below:

Chapter 2 : Literature Survey

This chapter provides the related works of core mapping techniques and the fault-

tolerant mechanism for the real-time embedded NoC applications, spare core replace-

ment and the FPGA-based NoC Models.

Chapter 3 : Efficient Core Mapping using BMAP Algorithm

This chapter presents the Efficient BMAP algorithm and explains about the core

mapping, standard topology selection, the customization of NoC platforms and eval-

uating the proposed approach through SPLASH-2 Benchmarks. This technique im-

proves the performance and cost metrics of the system.

Chapter 4 : Adaptive Core Mapping and its Hardware verification

This chapter presents the Adaptive core mapping (ACM) and spare core replace-

ment, which explains the mapping of the application and replace the faulty core

with spare core. The Hardware verification of the proposed ACM is synthesized

through Kintex-7 FPGA KC705 board. The results implicate a dramatic decrease

in area, power consumption, and an increase in throughput, which illustrates the

efficiency of the proposed ACM algorithm. The experimental evaluation for the pro-

posed core mapping carried through the PARSEC benchmark suite by using GEM5

Simulator.

Chapter 5 : Fault-Tolerant Core Mapping

This chapter presents the Fault-Tolerant Core Mapping technique (FTMAP), focuses

predominantly on the replacement of the faulty cores and employing it on multime-

dia benchmarks. This outperforms the improvement in the communication energy

and execution time.

Chapter 6 : Efficient Real-Time Embedded Application Mapping

This chapter presents the Efficient Real-Time Embedded Application Mapping en-

titled as ERTEAM, which provides an efficient mapping strategy implemented on
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the real-time embedded applications. The resultant outcomes of proposed algorithm

provides low latency, less simulation time, increased throughput and less communi-

cation energy.

Chapter 7 : Conclusion and Future work

A consolidation of the results is presented in this chapter. The results indicate that

the proposed methodologies provide a great improvement in the terms of system

performance and the communication energy between the cores. Also presents the

two possible extensions to the current research work.
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Literature Survey

Several publications have highlighted the need for solutions to pressing problems in

various domains in the broad area of Network on Chips. This chapter introduces

relevant works in the real-time embedded and fault-tolerant core mapping techniques

used in Network on Chips, effects of communication on energy and performance

trade-offs in Multi Processors, spare core replacement and FPGA based NoC models.

In order to optimise various factors,such as performance, communication energy

consumption and chip area or a combination of them, several mapping techniques

have been discussed (like Re-mapping, Re-configuration, fault-aware methodologies

and spare core).

2.1 Mapping Algorithms

Chang et al., [44] introduced a framework called ETAHM which is used for solving

task mapping and scheduling through ACO while producing the effective use of

performance and energy consumption. This is used for allocating the tasks for a

multi-processor NoC which is targeted to be composed of inner list scheduling and

the outer evaluation loops. This provides less energy consumption and likely more

power computation.

Wooyoung Jang et al., [45] proposed an A3MAP approach where the scheduling

tasks are compatible mapped on a mesh NoC platform that targets general-purpose

computing. This is for both homogeneous and heterogeneous cores regarding regular

and irregular mesh. In this method, tasks are mapped to a respective core, which

eliminates the problems by reducing the traffic amount. The quality of task mapping
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is measured by the total distortion of metric embedding. Through this formulation,

A3MAP can map a task adaptively to any different sized tile on a custom network.

Ou He et al., [46] proposed the UNISM algorithm, which involves unified task

scheduling and mapping on various NoC architectures. It is used for various NoC

architectures, including regular mesh, irregular mesh, and custom networks, where

both the task scheduling and core mapping operations are performed. A new labelled

graph is implemented which provides the calculation of communication energy as

well as latency. The results outperform the execution time and energy consumption.

Area-overhead is considered as one of the limitation that the designer have to pay

to gain reconfigurabilty feature.

Xinyu Wang et al., [47] introduced a method which is a novel mapping strategy on

the basis of discrete PSO mechanism that minimizes the communication cost with

less CPU time and evenly distributes communication over a chip. The stability

analysis is presented which provides the robust behavior of this algorithm.

Ahmed A. Morgan et al ., [48] introduced a methodology (GAOPT) that is a GA

based technique for optimizing the NoC architectures. This technique mainly deals

with the performance metrics and cot metrics. Initially this algorithm selects the

best standard topology followed by the application core mapping on these selected

topology. This technique is applied on all the NoC benchmarks and the experimental

outcomes outperforms the metrics such as area, power, delay and reliability. This

algorithm requires extra computation time for finding out the optimum mapping

when compared with NMAP and MMAP.

Pradeep Kumar Sharma et al., [49] implemented a mapping algorithm, i.e., a heuris-

tic for low time complexity application of weighted graph containing acceptable band-

width constraints, which minimizes the consumption of communication energy for

a 2-D mesh. The approach mainly deals with lower time complexity to reduce the

communication energy. The two techniques involved in this research for mapping an

application are constructive mapping and reallocation. These techniques are respon-

sible for providing a better outcome in reducing communication energy compared to

other related techniques. This proposed algorithm limits only for 2-D Mesh topolo-

gies but does not consider other topologies.

Srinivasan Murali et al., presented a fast core mapping approach on an NoC platform

with respect to bandwidth constraints termed as the NMAP algorithm [50]. This

algorithm is for a single minimum path and split-traffic routing by taking bandwidth

constraint into consideration through reducing the Delay. The traffic in NoC was
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split, having significant savings in the bandwidth and cost metric. This NMAP

methodology can’t be applied to dynamic mapping due to its high run time overhead

and is applied to only mesh topology.

Amirali Habibi et al., introduced a mapping algorithm named MMAP [51], this

is utilized in considering the Multicast along with the unicast communication flows.

Initially the bandwidth values are characterized and these values along with the NoC

configuration are considered as inputs for various heuristic mapping techniques. This

technique improved performance and energy saving for synthetic as well as the CMP

applications.

BNK Reddy et al., proposed an energy-efficient mapping algorithm named EMAP

[52], which is used for mapping the cores in a network by considering the constraints

of the communication. This improved in minimizing the total communication en-

ergy. The hardware verification is also performed for the proposed algorithm on

Kintex-7 (KC705) FPGA board. The resultant outcome provides less hardware uti-

lization as well as power consumption. This EMAP algorithm does not provide less

communication energy for large size networks and results in more complexity.

Chen Wu et al.,[53] proposed a CoREP methodology which is used to optimize the

reliability, energy consumption and the performance for the NoC architectures. Fur-

ther an efficient mapping technique is introduced which provides an optimal mapping

solution. The experimental outcomes outperform the reliability, throughput, energy

efficiency and latency. If this proposed algorithm is extended to 3-D topologies,

then there will be high probability for the link failures and results in more thermal

dissipation.

Pradip Kumar Sahu et al., [53] proposed a mapping methodology which involves the

PSO and ILP techniques. Initially to map the cores in an application in 2D and

3D mesh based NoC architectures the PSO technique is utilized. Later the obtained

communication metric is compared with the exact methods of ILP. The obtained

outcomes show an improvement in communication cost and less CPU time.

Upadhyay et al.,[55] proposed a two phase PSO for MoT topology on the basis of

multiple application mapping. Initially by the combination of multiple applications

the mapping is performed. Later the cores are reconfigured to the nearest routers.

The experimental results show a significant improvement in communication cost.

During the reconfiguration of cores onto the routers, there might be a high probability

of faults in a network.
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Bing Li et al.,[56] implemented a runtime mapping that is a thermal-aware algo-

rithm that optimizes the overall performance for 3D NoC. The available core regions

restored through the defragmentation algorithm introduced in this mapping. The

experimental outcomes reveals that the running time is decreased to 48% and the

communication cost to 44%.

LI Guangshun et al.,[57] implemented a mechanism for mapping the irregular IPs

embedded on a regular 2D mesh topology for NoC architectures. The core principle

is to break down each big IP into several smaller dummy IPs, each of which can

move into a single tile, reducing energy consumption and avoiding congestion.

Weichen Liu et al.,[58] proposed a TopoMap algorithm for the SMART NoC ar-

chitectures to improve performance. The topology of the architecture is selected

dynamically based on the configuration by the thermal aware task mapping algo-

rithm.

Guoyue Jiang et al.,[59] developed a mapping strategy based on the BB algorithm

to provide both the core and the communication mapping. The application mapping

contains packet switching, circuit switching as well as virtual circuit switching. This

scheme reduces the overall latency and the energy of the hybrid NoC and optimizes

the overall mapping. As the application mapping is done statically, the cores are

allocated one after the other which increases the time complexity of the system.

Leibo Liu et al.,[60] proposed a BBPCR algorithm to find the optimal mapping

for an application. Firstly, a PCM model that is highly accurate and flexible de-

veloped, containing both the energy and reliability parameters. Later, using this

model, BBPCR is implemented for figuring out the best mapping solution for an

application. Therefore, it significantly impacts the improvement of reliability, low

energy consumption, and low latency. This technique does not resolve the failures

occurred in a network and also does not provide a fault tolerant network.

Sarzamin Khan et al., [61] implemented the SBMAP mechanism by considering band-

width constraints to minimize energy consumption and computational complexity.

This mapping mechanism used the modular systematic searching technique. The sys-

tem is divided into small possible modules and performs the mapping on it, resulting

in high performance and less simulation time. SBMAP algorithm is applicable only

for mesh and torus, it is not resilient to all the other topologies.
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2.2 Spare core placement

Fatemeh Khalili et al., [62] developed a Fault Aware Spare Core Allocation entitled

as FASA, is used to map the cores and replace the free core in place of the faulty core

dynamically known as spare core replacement which improves reliability. Before the

execution of the mapping technique, the preliminaries such as WMD, ANT and UNV

are calculated. This results in the reduction of fault contamination area, enhancing

performance compared to FARM.The communication energy also decreased through

this technique. The limitation of this FASA is the Communication energy saving

and performance improvement for low and high traffics is not significant.

Chen-Ling Chou et al., [63] introduced a Fault Aware Resource Management (FARM)

at its system level, which is used to map the cores and dynamically embed the free

cores at the faulty position. Initially, the failure probability is investigated based

on that the spare core replacement is explored. Next the metrics such as network

contention and the system fragmentation is measured by finding out the performance

impact. Finally, the proposed mapping algorithm is evaluated. The technique pro-

vides high reliability, performance and low energy consumption. FARM tries to

locate spare cores near processing cores, which have high probability to get failed.

P.V Bhanu et al., [64] proposed a technique to provide a fault-tolerant system and

verified it through both simulations and FPGA validation. Firstly, the mapping

of an application on the Torus topology is performed through the mathematical

formulation of ILP and PSO to resolve the issues of fault tolerant mapping. A NoC

router architecture named Virtual channel is proposed which is used for the FPGA

implementation. The experimental evaluation were performed on the multimedia

and synthetic application benchmarks. The scaling of the router faults have shown

a significant impact.

Naresh Kumar Reddy Beechu et al., [65] proposed a technique named as FTCM in the

system level entitled as Fault tolerance core mapping. The technique is composed

of two parts, initially, the core are mapped onto the NoC network based on the

ascending order of communication energy. The mapping region is finalized based on

the calculation of NAD and PVR. After mapping the cores, if any core in a network

fails, initially error detection and correction mechanism is performed to resolve the

faulty cores. Even after applying it, if core still fails then the spare core replacement

is performed. The experimental results outperforms the communication energy and

system performance. The reliability and area are the two constraints for this method,

as area increases and reliability decreases.
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2.3 FPGA-based NoC Models

FPGAs are programmable devices that are used to implement digital circuits. They

have traditionally been used to prototype circuit designs for final-stage verification.

Modern FPGAs have the dynamic logic capacity to execute a whole digital onto one

chip, due to advancements in processing technologies. FPGAs provide two benefits

against software simulators as a performance test platform for NoCs. Firstly, a signif-

icant number of specialised function units may take use of the fine-grained parallelism

for NoC simulation. Secondly, the profusion of wires accessible to interconnect the

function units conveniently accommodates the high volume of communication which

is costly to develop inside a coarse-grained thread architecture. FPGA-based NoC

models could therefore be substantially faster compared to the software simulation.

Genko et al., [66] describes a configurable traffic generators and receptors-based

emulation platform which drives a 6-switch NoC and therefore is 2600 times fast

when compared to the SystemC simulation from the similar network. Since this

platform allows you to configure traffic patterns and statistics counters, modifying

the network configuration needs re-synthesising the emulator.

Yana E. Krasteva et al., [67] introduces DRNoC, a solution that avoids this require-

ment by taking advantage of Xilinx FPGA’s partial reconfigurability. Every grid

slot in the DRNoC host FPGA which can be dynamically modified to introduce a

new element to mimic multiple networks.Partial reconfiguration, on the other hand,

involves a unique design flow that imposes area overheads and this is also limited to

a few devices. Therefore, the DART’s configuration interface is generally based on

the generic shift register, as well as it is adaptable to any FPGA.

NoCem [68] increases the density of the emulation when compared to the design of

Genko et al., [66]. By eliminating the details of router pipeline as well as virtual

channels, a 9-node mesh topology can be implemented on just a single FPGA. We

choose a clean layout for every DART Router rather than compromising such crucial

details such as: each have several input ports and a single output port, and in a

simulated router, it replicates all-to-all switching by routing one input port for every

DART cycle. The FPGA-based architecture and the modelled NoC architecture are

not distinguished in any of the mentioned NoC assessment platforms. As an outcome,

the emulator should always be updated as well as the FPGA synthesis place-route

processes should be performed to examine a another distinct NoC. This technique is

time consuming and requires large number of labor. Furthermore, it do not permit
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the trade-off of emulation performance for other key parameters like the area of the

implementation.

Wolkotte et al., [69] virtualizes a router on FPGA that perform the performance or

the area trade-off. Iterating numerous circumstances by the router type simulates a

NoC with various routers. An off-chip ARM processor manages the emulation of the

N-node network and saves N contexts for the router model. This method enables for

a considerably more complex router model, while modifying the router settings typ-

ically needs hardware modifications. Furthermore, the ARM/FPGA communication

link off-chip is a performance constraint.

Naresh Kumar Reddy Becchu et al., [70] proposed a FTNoC algorithm entitled as

Fault tolerance Network On Chip, which mainly involves in mapping the cores and

scheduling on the NoC architectures. The fault tolerant unit gathers all the infor-

mation regarding the faults in a mapped network and therefore provides different

solutions to overcome the different faults. The hardware verification is carried out

through the Kintex-7 FPGA board to evaluate the FTNoC algorithm. The exper-

imental outcomes outperform the area reduction, system performance and power

consumption. This algorithm is limited for only few faults and does not specify the

fault type and number of faults it can deal.

These studies evaluated the overall benefits and drawbacks of the defective core

mapping in NoC. Earlier research has mostly emphasized on the fault model notation

for the core, error detection, and spare core position identification. As a result of the

mapping algorithm as well as spare core placement, the fault contamination area is

reduced while energy is conserved and performance is improved. Proposed algorithm

is verified on Kintex-7 (KC705) FPGA board. It also works with both random as

well as distributed core graphs.

2.4 Fault-Tolerant Core Mapping

Lei Zhang et al., [71] introduced a task mapping mechanism that indulges a variation

aware scheme that contains two stages. Initially, multiple mapping approaches were

created through the genetic and static task mapping algorithm which outperforms

the performance metrics. Secondly, during the run time execution, one among the

various mapping approaches is selected as the efficient mapping approach which out-

performs the communication cost. The proposed method takes into the consideration

of the core symmetry as well as the topology modifications.
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Zheng Wang et al.,[72] proposed a divide and conquered mechanism to build up a

commercial fault tolerant architecture through fault tolerance concept which reduces

the total edges, and it also imposes the rerun mechanism when faults occurred during

the task execution. In this paper the generic graph is divided into number of simple

subgraphs that could be processed separately. This approach is validated using a

task mapping algorithm which is based on exhaustive search and also the failure

injections were verified that shows the efficiency of this approach.

Colin Bonney et al.,[73] implemented APG which provides various fault tolerant

mapping approaches for NoC application. This utilizes a multi-objective mapping

mechanism known as EA and injected various faults to determine the overall perfor-

mance impact. The remapping mechanism is followed in this implementation, i.e., if

any faults occur during the task execution, it again reruns to obtain the new map-

ping structure. This exhibited a significant improvement in terms of performance

metrics.

Navonil Chatterjee et al.,[74] proposed an effective mapping strategy of fault-tolerant,

where the tasks that need to be executed in an application are induced dynam-

ically, where the incoming tasks stagnant time were manipulated to indulge the

fault-tolerant mechanism in which the faulty core reallocated with the free core.

An appropriate fault tolerant technique is chosen by keeping in mind that periodic

features of application tasks remain unknown at the outset. This proposal had a

significant improvement in achieving the deadlines of the tasks and the network

latency.

Fatemeh Khalilia et al.,[75] provided a heuristic mapping technique that is fault-

tolerant on an NoC system architecture. After performing the core mapping using

the heuristic technique, the spare core location is identified for every ACG (Appli-

cation core graph) by taking into the consideration of transient faults as well as the

permanent faults in a network. The execution of mapping technique and providing

exact spare core placement, there was an improvement in terms of failure reduction,

resource allocation during the failure of tasks, system performance and minimization

of communication energy.

Suleyman Tosun et al., [76] introduced an algorithm termed FTTG, which mainly

concentrated on the irregular topologies by providing a fault-tolerant mechanism.

This technique provides at least 2 distinct paths, where every router in a topology

access other router in those distinct paths. If there is any failure in a specific path, the

specified topology picks up another route for mapping the application. It exhibited a

significant outcome on the topologies respective to the fault-tolerant compared with
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the irregular topologies of non-fault tolerant in metrics such as performance, lower

communication between cores, and area. FTTG can only generate one-fault tolerant

topologies and cannot be applied toward generating multiple-fault tolerant network

topologies.

Song Chen et al., [77] implemented the K-FTTG mapping methodology and the link

failures of the physical NoC and the failures between the switches. In this method,

where the ILP technique provides the required topology for the specific application,

next to the sizes of the network port were minimized, and the issue of sharing the

ports was resolved using the heuristic methodology. This technique reduces the

overall energy consumption of the cores. K-FTTG does not resolve the failures, if

any hardware faults occur in the switches or links. This method does not depend on

the fault diagnosis methodology.

Naresh Kumar Reddy Becchu et al.,[78] proposed a EMAP algorithm entitled as

energy-efficient fault-aware core mapping which mainly concentrated on mapping of

the cores in an application through communication rate constraints and providing the

spare core replacement. Initially the core mapping is performed using the functional

metrics such as NAD, PVR and WCE. After the core mapping, the faults in the

network are identified through the failure probability, where if faults occur, the error

detection and correction mechanism is applied. Even if the faults persist, then spare

core replacement is performed. This outperforms the reduction in area (A), power

consumption for NoC architectures (PNoC) and improves system performance.

2.5 Summary

This chapter provides the literature survey of the research work that involves the core

mapping of the real-time embedded NoC applications, the spare core replacement

when the faults occurs, the fault-tolerant core mapping technique and FPGA-based

NoC Models.
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Efficient Core Mapping using

BMAP Algorithm

In general, the objective of application core mapping is to determine the distribution

of set of tasks across set of cores in order to enhance the design metrics. The ap-

plication mapping contains two inputs namely; 1) application and 2) NoC platform.

An application is comprised of a number of tasks that can run concurrently. Data

or control interdependence among tasks are represented through inter-task commu-

nications.

The compute and communication resources required to complete the application

are provided by a NoC. On-chip processing elements (PEs) for a heterogeneous NoC

could include CPUs, embedded memory blocks, DSPs, video processors, FPGAs and

other IP cores. Application mapping is becoming increasingly crucial in enhancing

system efficiency and lowering energy usage as the number of integrated cores on

various core architectures grows, as does the complexity of parallel processing com-

puting.

This chapter provides an efficient core mapping technique that involves standard

topology selection by providing a customized NoC platform. The proposed algorithm

was applied to various application benchmarks [48] (such as AV, VOPD, MPEG-4,

MWD) and SPLASH-2 Benchmarks as case studies compared with previous algo-

rithms. The main contribution of this research paper is to improve the performance

of the NoC architecture and had a great improvement in reliability, delay, area and

power where minimal objective function is achieved even for larger complex networks

in 2D topologies along with the evaluation of benchmark synthesis. Both the random

and distributed core graphs are applicable in this research work.
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3.1 BMAP Algorithm

In this research work, we focused on an efficient mapping algorithm named as BMAP,

which exhibits the topology selection. Each and every NoC benchmark could be

interpreted through the core graph, which is termed as an Application Core Graph

(ACG). The core graphs for various benchmarks of NoC are illustrated in Figure

3.1. BMAP considers ACG and the NoC platform as its inputs. The application

core graph comprises the number of core elements with its traffic characteristics,

respectively. A directed graph that is derived from the ACG contains vertices and

the communication rate between two individual vertices, i.e., expressed in MB/s.

In our research work, various NoC topologies are presented in Figure 1.6. BMAP

algorithm applied to all architectures and selected the most favorable NoC platform

according to the functional metrics. Algorithm 1 clearly explains the mapping of

ACG on the NoC platform.

Figure 3.1: Core graphs for various NoC benchmarks [48] (a) AV, (b) VOPD, (c)
MPEG-4, (d) MWD.

BMAP provides a propitious platform for NoC by considering reliability, delay,

power, and area metrics. The proposed BMAP algorithm is applied to all the men-

tioned NoC architectures, and with the result obtained from the functional metrics,

a propitious platform for NoC was determined. Initially, the functional metrics, i.e.,

Reliability, Delay, Power, and Area, are calculated independently. Later, to rep-

resent the objective function, all the acquired metric values (such as Area, Power,

Delay) are multiplied and divided by the reliability, thereby providing an objective

function from the obtained calculated values [48]. If the obtained objective function

is minimal, then that core mapping is resulted as the best mapping.
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Algorithm 1 BMAP Algorithm

Input: Let C be the order set (descending order of communication rate) of
vertices;

Let IP be the set of cores;
Let TG be the given NoC platform;

Output: Core mapping (CM);

foreach c ∈ { C } do
Find the core ip ∈ IP such that ip has the maximum number of neighboring
free cores in the TG;

if multiple cores are available then
Find the maximum neighboring free core ip ∈ IP by considering all
neighboring cores (free, busy, and failed cores) of the TG;

else
Map the vertex c onto ip in the TG;

end
Update C by eliminating c;
if min > objective function F then

min←objective function F ;
BestCM← CM;

end

end

3.2 Demonstration of BMAP through a Case study

The proposed BMAP algorithm extended as the chromosomes for all architectures

mentioned in Figure 3.1, the approach considered these architectures to be integer

vectors as illustrated in Figure 3.2. The input for the proposed algorithm comprises

of vertices and cores in the NoC platform. The vertices are selected based on the

maximum communication energy with their neighbors and the cores are selected that

are free and interact with neighboring free cores.

In Figure 3.2, the first vertex is selected as C9 as it contains the highest communi-

cation energy when compared to its neighbors and was mapped to the fifth position

(second row, second column) because it communicated with more number of free

cores in the NoC platform. From Figure 3.2(a), we can see that C9 is communicated

with four neighboring cores such as C2, C4, C5, C6 and are placed in an order accord-

ing to their maximum communication energy. The other vertices are also selected

in the same procedure according to their next maximum communication with the

neighbors which is in the order (C5, C4, C2, C6, C3, C1, C7, C8) and these were

mapped to the next maximum communicating free cores. If the communicating free
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Figure 3.2: Example of core mapping. (a) MWD benchmark. (b) 3 x 3 2D-Mesh
architecture.

cores are multiple then we select the maximum free core by considering the status

of all the neighboring free cores i.e. free, busy or failed cores and map accordingly.

The proposed algorithm maps the remaining vertices of neighboring cores by im-

plementing same iterative process. Eventually, core mapping of minimal objective

function i.e. ‘F’was accomplished on NoC platform termed as the best core mapping.

3.3 Experimental Results

The proposed BMAP algorithm is applied on the four benchmarks presented in

Figure 3.1. The benchmarks mentioned above are intended for four real applications

with distinct core numbers: Audio-Video (AV) application consists of 18 cores, 16

cores for the VOPD application, 12 cores for the MPEG-4 decoder and 9 cores for

the MWD application. The efficient core mapping pattern was determined through

the C++ program, and the simulation results performed on a Noxim simulator [79].

3.3.1 Customization of NoC Platforms

The primary goal of the proposed mapping algorithm is to determine the foremost

suitable norm topology of NoC to any specific application. The eight topologies

discussed in Figure 1.6, were evaluated according to their metrics to assess the best

of them. The functional metrics that were used in the evaluation are Reliability,
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Delay, Power and Area. Table 3.1 provides the result of four metrics for the eight

topologies included in the research work. This is acheived by taking the average of

all the respective topology values to its corresponding functional metric in terms of

percentage. The topology present in the first row of every metric is considered as

the best topology for that corresponding benchmark. As mentioned above, to obtain

minimal objective function the reliability metric should be high when compared to

other metrics which is clearly depicted in Table 3.1. On basis of the calculation, the

obtained best topology along with the other topologies are described individually in

percentage terms.

Let’s examine each and every metric and provide the best topology for a specific

application as illustrated below.

3.3.1.1 Reliability

The term reliability is calculated when the data packet gets transmitted from source

to the destination even in the midst of noise. The faster the data gets transmitted in

such network, the more reliable it becomes. Table 3.1 that represents the reliability

factor for all the topologies to the mentioned NoC applications. For the reliability

metric, the ‘T’ topology demonstrates the most desirable performance on reliability.

3.3.1.2 Delay

The term delay is defined as the traffic time in transferring the data packets from the

source to the destination is evaluated in terms of delay. Mostly delay is categorized

into two types: a) arbitrary delay and b) propagation delays, where the propagation

delays are caused due to the links and de-serializing/serializing with the routers via

NI. The lesser the delay, faster the data transmission. Table 3.1 that represents the

delay factor for all the topologies to the mentioned NoC applications. The ‘BFT22’

topology demonstrates the most minimal delay that resulted in Delay metric.

3.3.1.3 Power

The term power is distinguished as the longer the time required for communicating

between the cores requires more power to be consumed. In NoC, mostly the links

between the cores and the routers consumes more power. Table 3.1 that represents

the power factor for all the topologies to the mentioned NoC applications. The
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Table 3.1: Comparison among various topologies for all metrics for the four application
benchmarks.

Metric Benchmark
AV VOPD MPEG4 MWD

Topology % Topology % Topology % Topology %

Reliability CLOS 100 CLOS 100 T 100 T 100
BFT23 85 T 90 M 80 CLOS 90
BFT22 65 P 80 P 65 M 80
T 60 M 78 CLOS 50 BFT22 80
M 55 BFT22 70 BFT22 35 BFT23 75
P 40 R 60 R 30 R 70
BT 35 BFT23 55 BFT23 25 BT 65
R 30 BT 50 BT 20 P 65

Delay BFT23 100 BFT22 100 M 100 M 100
BFT22 105 R 105 BFT22 103 BFT22 102.6
BT 109 M 109 P 106 T 105
M 114 P 115 R 107 CLOS 107
R 118 T 119 T 108 BFT23 108
P 120 BFT23 123 BFT23 110 R 109
T 121 BT 127 CLOS 112 BT 110
CLOS 126 CLOS 129 BT 120 P 112

Area BT 100 BT 100 BT 100 BT 100
R 108 R 109 R 111 R 118
BFT22 110 BFT22 116 BFT22 119 BFT22 127
M 114 M 129 M 132 M 138
P 123 P 138 P 143 P 149
T 146 T 149 T 151 T 158
BFT23 158 BFT23 165 BFT23 169 BFT23 172
CLOS 176 CLOS 186 CLOS 189 CLOS 192

Power BFT22 100 R 100 R 100 R 100
BT 101 BFT22 105 BFT22 108 BFT22 115
R 102 M 108 M 112 M 119
BFT23 105 P 116 P 123 P 129
M 119 BT 125 BT 134 BT 142
P 147 BFT23 149 BFT23 159 BFT23 162
T 152 T 174 T 194 T 215
CLOS 208 CLOS 214 CLOS 245 CLOS 234

Note: The % is calculated for each metric with regards to that of the best topology.
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minimal consumption of the power was achieved by ‘R’ topology which was resulted

in power metric.

3.3.1.4 Area

As the number of components are increasing exponentially for On Chip Networks,

the area (A) is getting increased. Mostly, the routers and the links in the network

consumes more area same as the power. The efficient usage of the components leads

to lesser area consumption. Table 3.1 that represents the area (ANoC) for all the

topologies to the mentioned NoC applications. The minimal consumption of the

area was achieved by ‘BT’ topology which was resulted in area metric. Eventually,

compared to the other topologies, ‘CLOS’ topology accomplished a most desirable

performance and cost respectively.

3.3.2 Outcome of SPLASH-2 Benchmark Synthesis

The SPLASH-2 suite consists of a mixture of complete applications and computa-

tional kernels [80]. The SPLASH-2 benchmarks are FFT , radix, radiosity, ocean

(contiguous), cholesky, lu(contiguous), water-nsquared, raytrace, ocean, water-spatial

and barnes. In this research for the SPLASH-2 Benchmarks, we considered 11 work-

loads; out of these, 7 workloads comes under high performance computing namely

Ocean-c, Cholesky, Lu, Water-N, Ocean, Water-S, and Barnes. Radiosity and Ray-

Trace workloads comes under Graphics, FFT workload is of signal processing and

Radix is general applications. Noxim Simulator [79] is used for performing these

simulation outcomes, where each workload is evaluated against the other compared

algorithms. Therefore, proposed BMAP algorithm and different algorithms listed

in Table 3.2 illustrating about Characteristics and optimization of the various algo-

rithms as follows:

Table 3.2: Characteristics of various algorithms and optimization algorithm

Algorithm Optimization

NMAP [50] Initialization & Iteration Shortest path

MMAP [51] bandwidth requirements Energy saving
& priority of communication flows

EMAP [52] Mapping and Swapping Low communication Energy

Proposed Algorithm Efficient Mapping Improvement in Performance
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The proposed BMAP algorithm is compared with NMAP [50], MMAP[51] and

EMAP [52] over the NMAP baseline. During the comparison with other algorithms

regarding synthesis of SPLASH-2 benchmarks, below are the following metrics ob-

tained while executing individual workloads as well as its average workloads using

BMAP algorithm which outperformed when compared to other mapping algorithms.

3.3.2.1 Speed-up Execution Time

It is defined as an improvement in the speed while executing various tasks in an

application. The average improvement observed when compared with other algo-

rithms are explained in Table 3.3, where the Speed-up Execution Time in BMAP

has improved up to 40% when compared to NMAP, 30% when compared to MMAP

and 20% when compared with EMAP. The simulated results of Speed-up Execution

Time is shown in Figure 3.3.

Figure 3.3: Comparison Results of Speed-up Execution Time using SPLASH-2 bench-
marks.

3.3.2.2 Latency

It is defined as the time required for the packets to get transferred from one to

other. The average reduction of time required observed when compared with other

algorithms are explained in Table 3.3, where the Latency was reduced by 42% when
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compared to NMAP, 34% when compared to MMAP and 28% when compared with

EMAP. The simulated results of Latency are shown in Figure 3.4.

Figure 3.4: Comparison Results of Latency using SPLASH-2 benchmarks.

3.3.2.3 Energy efficiency

It is defined as utilizing minimal amount of energy during a task execution, which

results in energy saving. The average improvement observed when compared with

other algorithms are explained in Table 3.3, where the Energy efficiency was improved

by 36% when compared to NMAP, 30% when compared to MMAP and 26% when

compared with EMAP. The simulated results of Energy efficiency are shown in Figure

3.5.

3.3.2.4 Power consumption

It is defined as in any On-chip networks, the power utilized between the cores and

routers. Therefore, reducing the power consumption provides better outcomes. The

average reduction observed when compared with other algorithms are explained in

Table 3.3, where the Power consumption was reduced by 32.6% when compared to

NMAP, 28.2% when compared to MMAP and 26.4% when compared with EMAP.

The simulated results of Power consumption are shown in Figure 3.6.
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Figure 3.5: Comparison Results of Energy efficiency using SPLASH-2 benchmarks.

Figure 3.6: Comparison Results of Power consumption using SPLASH-2 benchmarks.

Table 3.3 represents the evaluation of Speed-up Execution Time, Latency, Energy

efficiency, and Power consumption of the proposed BMAP algorithm against NMAP,

MMAP, and EMAP over the NMAP baseline for SPLASH-2 benchmarks.
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Table 3.3: Comparative analysis of BMAP against NMAP, MMAP and EMAP over the
NMAP baseline for SPLASH-2 benchmarks.

BMAP BMAP BMAP
against against against
NMAP[50] MMAP[51] EMAP[52]

Speed-up Execution Time 40% 30% 20%
Latency 42% 34% 28%
Energy efficiency 36% 30% 26%
Power Consumption 32.6% 28.2% 26.4%

3.4 Summary

In this chapter, an efficient core mapping technique and customization of NoC plat-

forms are presented. The proposed algorithm incorporates standard topology selec-

tion and efficient core mapping. This algorithm was evaluated and compared with

previous algorithms, and a great improvement in reliability, delay, area and power

was observed where minimal objective function is achieved even for larger complex

networks in 2D topologies. During the SPLASH-2 benchmark synthesis, the simu-

lated outcomes exhibit that BMAP effectively improves performance by reducing the

execution time with low Latency against NMAP, MMAP, and EMAP algorithms.
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Adaptive Core Mapping and its

Hardware verification

Reliable core mapping on NoC depends on the functional metrics. We propose that

an application must be mapped to the NoC platform. Each application has numerous

processes running in the background. By using static analysis, the data traded among

cores can be probably be regulated. The data indicate how frequently a packet

is transmitted between the source and destination in the network. However, our

problem is to map the cores onto the mesh-based NoC platform by using functional

metrics and optimizing formulas.

This chapter provides an implementation of an Adaptive core mapping (ACM) tech-

nique, with the inputs as a core graph (CG) and NoC topology. The mapping as

well as scheduling of the core graph onto the NoC architecture is handled by the core

graph unit. Through mapping the application core graph to the free and non-faulty

processor cores, this unit keeps the core graph information of the application model

updated. In the mapping algorithm, vertices are mapped to tiles on NoC based on

preliminaries like Weighted Communication Energy (WCE), Nodes Average Distance

(NAD) and Placing unmapped Vertices Region (PVR). It tries to decrease conflicts

between running applications on NoC by determining a mapping region for cores.

If there is any probability of failures occurred in the system, the ACM technique

migrates the tasks of the failed cores to free core through spare core replacement,

which improves the system reliability. This technique exhibited greater throughput,

lesser delay, and energy consumption when compared to other related algorithms.

The latency and system performance is outperformed when applied on PARSEC
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benchmarks and also the hardware verification of the proposed ACM is carried out

on FPGA Kintex-7 KC705 board.

4.1 Functional Metrics used for Core Mapping

The three main functional metrics used for the core mapping are: a) Weighted

Communication Energy (WCE), b) Node Average Distance (NAD) and finally, c)

Placing unmapped Vertices Region (PVR).

Each of these metrics have a significant place in performing the mapping of cores in

NoC. NAD and PVR plays an important role for selecting the region of mapping in a

NoC platform and whereas, WCE is utilized for the communication cost. So, based

on the calculation of WCE for each mapped region, the minimum WCE is considered

as the best and the final core mapping. Let us examine each of the functional metrics

mentioned:

4.1.1 Weighted Communication Energy (WCE)

The WCE is used for calculating the communication energy of any two nodes or

vertices present in a NoC application [78].

The Energy is directly proportion to the Distance. So let us indicate it as

E ∝ D (4.1)

Hence, the Communication Energy is also directly proportion to the distance be-

tween the nodes. It is indicated as E(eij).

The distance is calculated from one point to the other point while following the

square grid-path. The Distance between any two nodes or vertices is given as (Vi,

Vj)

where Vi parameters are (x1,y1), Vj parameters are (x2,y2)

So now the distance between the two nodes or vertices are calculated as

Distance = |(x1 − x2)|+ |(y1 − y2)| (4.2)

As per Eq. (4.1), the communication energy is directly proportional to the distance

calculated between two nodes is given as follows:
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E(eij) ∝ |(x1 − x2)|+ |(y1 − y2)| (4.3)

E(eij) = W (eij)× {|(x1 − x2)|+ |(y1 − y2)|} (4.4)

Where W(eij) is given as a constant, which is also termed as the Communication

weight between any two vertices. Therefore, this is the calculation of the Weighted

Communication Energy(WCE) metric which is used for calculation of the commu-

nication energy between the nodes or vertices.

4.1.2 Node Average Distance (NAD)

The metric NAD is defined as the Longest shortest path for any of the two selected

nodes of a network. It states that path between the two selected nodes in a network

is considered to be minimal [78].

The average distance for two selected nodes (NAD) in NoC, having X*Y size is com-

puted as illustrated below Eq. (4.5)

NAD = 1
3 [(X - 1/X) + (Y - 1/Y)]

NAD =
X + Y

3
. (1− 1

XY
) (4.5)

Therefore, this is the calculation of the Node Average Distance metric which is used

for calculating the smallest region in the network.

4.1.3 Placing unmapped Vertices Region (PVR)

Placing unmapped vertices in a region is dependent upon the situation and was

derived in Eq. (4.6)[78]. The cores that are unmapped are indicated as ‘Cum’and

the unmapped Vertices were indicated as ‘Vum’

Cum > Vum (4.6)

Cum = Vum + S (S ∈ [1, n])
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The total number of the free cores present in ACG should be more when compared

to the total number of vertices, which results in successfully mapping the ACG for

every NoC size. If the above mentioned constraint is not satisfied then it results

to a unsuccessful core mapping. To map the cores in ACG successfully for any

NoC sizes, the prerequisite is the total number of free cores need to be more when

compared with the total number of the vertices present in ACG. Therefore, this is

the calculation of the Placing unmapped Vertices Region metric which is used for

calculating the mapping region for a network [78].

4.2 Proposed Adaptive Core Mapping

There should be a mechanism to prevent faulty cores from being used in the adaptive

core mapping performance evaluation on NoC. The proposed ACM comprises two

processes; one is mapping the cores based on application, whereas the other is spare

core placement. After mapping the core, if a fault occurs at any core, follow the

fault diagnosis method, which determines the location of the damaged resource and

correct the error using error detection and correction mechanism. If the faults occur

even after applying the fault diagnosis method, perform task migration using spare

core placement.

4.2.1 Core Mapping

To perform an application core mapping, let us consider the NoC platform of mesh

topology and a Core graph (CG) as inputs. The number of free cores present in

the NoC platform should be more than the number of vertices in CG. The mapping

region is obtained from the calculation of NAD and PVR functional metrics. Once

mapping region is finalized, the cores are mapped on to the selected NoC topology

in the sequence of the lowest communication energy. Algorithm 2 clearly explains

the core mapping technique of proposed ACM.

4.2.2 Spare Core Placement

After mapping the cores, if fault occurs at any core, follow fault diagnosis method

which determines the location of the damaged resource and error is being corrected

through error detection and correction mechanism (it means transient/ intermittent

faults). In case, if the faults occur even after applying the fault diagnosis method
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Algorithm 2 Adaptive Core Mapping

Input: Let V be the order set (ascending order of communication with vertices)
Let T be the set of tiles
Let M be the core mapping region ;

Output: Core mapping (ACM);

foreach m ∈ { M } do
Calculate NAD and PVR region ;

end
foreach v ∈ { V } do

if Selected tile = v0 (First tile of lowest communication with neighbors) then
Map the tile at the corner side of NAD region;

else
Select the neighboring position of the previous mapped core ;
if multiple neighboring tiles are present then

Select the tile t ∈ T i.e. corner of NAD region which is free, non-busy,
and non-failed cores of M ;

else
Map the vertex v onto t in M at the corner position of NAD and
change the status of tile as BUSY ;

end

end
Update V by eliminating v;
Calculate the WCE for the mapped region
if minimum WCE > WCE then

minimum WCE ← WCE
BestCM← CM

end

end

(it means permanent faults), perform task migration using spare core placement as

illustrated in Figure 4.1.

Spare core placement technique has five steps.

1. Initial communication energy is assumed to be zero.

2. Spare core is located close to the faulty core and calculate communication energy

using Eq. (4.4).

3. Consequential communication energy is added to the initial communication

energy.

4. This process is repeated for all cores in mapping region.

5. At last position of spare core is selected. Which has a lowest communication

energy surrounded by all the obtainable free cores.
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Figure 4.1: Block diagram for the proposed methodology

4.3 Demonstration of ACM through a Case study

Figure 4.2 elucidates the process of mapping the spare core placement of ACM. A

simple application core graph illustrated in Figure 4.2(a); this core graph is repre-

sented onto a 6 x 6 NoC platform, as illustrated in Figure 4.2(b). By considering

the above inputs, let us elaborate the mapping technique i.e. illustrated in Algo-

rithm 2. This mapping is applied on the mesh topology of specific NoC size. By the

values obtained from the calculation of Eq. (4.5), construct the NAD region in the

respective mapping region. Here, the mapping region depicted in blue, preferably 3

x 3 region sized. In the 3 x 3 region, seven free unmapped cores, one fault core, and

one busy core are present. This 3 x 3 region perfectly satisfies the unmapped cores

for efficient mapping. The vertices which are having least communication energy are

been set in an ascending order (V2, V0, V3, V4, V1) respectively.
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Figure 4.2: Spare core placement: (a) An example CG, (b) 6 x 6 mesh NoC, (c) ACM
Mapping algorithm, (d) ACM Spare core placement, (e) FASA algorithm, (f) FARM

algorithm, and (g) NMAP algorithm.

Once the NAD region in obtained, map the vertex V2 (i.e. having the least communi-

cation energy, so considered as the first vertex) at the corner of the NAD region as per

the proposed algorithm which improves the performance comparatively illustrated

in Figure 4.2(c). After mapping the first vertex to the corner of NAD, the other

remaining vertices are mapped at the neighbor position of the previously mapped

vertex or tile which is free, non-busy and non-failed. Once the tile is mapped, it is

marked as BUSY core. If there are multiple free neighbor positions, then consider

the corner position of the NAD and map it accordingly. The same iterative process

continuous until all the vertices are mapped. Finally, the total communication en-

ergy of this core mapping is minimum which resulting as the best core mapping in

terms of performance characteristics of NoC.

Here, after post completion of mapping the cores, every free core that exists acts
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as spare core, but a spare core can be assigned only based on the faulty cores. N

number of spare cores are required when there are N faulty cores in NoC platform.

After performing the core mapping as illustrated in Algorithm 2, there are two more

tiles or vertices (t01, t11) as free cores. These cores can be utilized as spare cores

if any of the failure cores occur. The result of the ACM spare placement shown in

Figure 4.2(d). Figure 4.2(e–g) represents FASA [62], FARM [63], and NMAP [50]

algorithms.

4.4 Experimental Analysis of various routing types

Noxim simulator is used to calculate the performance of proposed Adaptive Core

Mapping (ACM). It is a cyclical-accurate NoC simulator written in System C and

determines the delay, throughput and energy consumption. Permutation and com-

bination of different inputs in 6 x 6 NoC platform is tabulated and for each set, a

systematic experiment is realized on Noxim Simulator [79]. For this evaluation, 1-flit

packet and 1-flit buffer was considered. The channel is 128 bit and for every 128

cycles, it is cleared.

4.4.1 Delay

Delay is one of the finest performance metrics in systems. Generally, a Delay is

termed as the total amount of time required for a message or a packet to be trans-

mitted from the source to its respective destination. It is a deterministic function

of the transmission rate. The delays achieved in different routing algorithms namely

XY, WEST-FIRST, NORTH-LAST and ODD-EVEN routing were shown in Figure

4.3. Significant improvement was observed in the proposed ACM when compared to

FASA [62], FARM[63] and NMAP [50].

4.4.2 Throughput

Throughput is considered as the main metric in system performance. It is the max-

imum amount of data conveyed per unit time. The experimental data indicates a

relation of throughput with different parameters of the system as mentioned in the

Eq. (4.7).

Throughput =
(number of completed messages X packet length)

(number of cores X total times)
(4.7)

As it can be distinguished from Eq. (4.7), the throughput is directly proportional to

the total number messages of completed and length of the message or packet while,
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Figure 4.3: PIR vs Average Delay considering different routing types in 6 x 6 mesh
network.

its relation is in inverse with the total number of clock cycles and total number of

cores present in the application.

The throughput achieved in different routing algorithms such as XY, WEST- FIRST,

NORTH-LAST and ODD-EVEN routing is shown in the Figure 4.4. ACM spare core

placement exhibited better improvement when compared to FASA [62], FARM [63]

and NMAP [50].

4.4.3 Energy Consumption

The total energy is determined as the energy consumed between cores and routers.

The total energy ε (t) is calculated as:

ε (t) =

N∑
i=1

α (t)Ei +

Nf∑
j=1

α (t)Ej (4.8)

where N determines number of cores, α (t) is termed as number of bits that reaches

till time t. E is energy consumed while transferring bits, which is dependent on NoC
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Figure 4.4: PIR vs Throughput considering different routing types in 6 x 6 mesh net-
work.

platform. Nf is number of failed cores.

In XY, WEST-FIRST, NORTH-LAST and ODD-EVEN routing shown in the Figure

4.5, energy consumption decreases under ACM spare core placement when compared

to FASA [62], FARM [63] and NMAP [50]. This significance could be clarified

through large number of packets produced when there is an increase in the injection

rate. ACM has less delay, energy consumption and high throughput values when

compared to other related algorithms. The above mentioned figures clearly explain

the overall routing patterns in which the proposed ACM technique shows greater

throughput, lesser delay and reduced energy consumption than FASA [62], FARM

[63] and NMAP [50].

The efficiency of the ACM technique is evaluated through the experimental result

that demonstrates the performance on both real and simulated applications is dis-

cussed independently. The following are the Real applications used in our technique:

MWD, Video object plane decoder(VOPD) and MPEG4 decoder. The number of

vertices are taken in the range of 4 to 20 in our application core graph. In this
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Figure 4.5: PIR vs Energy Consumption considering different routing types in 6 x 6
mesh network.

paper, a 6 x 6 sized network is considered and delay, throughput and energy con-

sumption were calculated under two conditions (1 failed core and 2 failed cores) for

ACM against FASA, FARM and NMAP as demonstrated in Table 4.1, Table 4.2 and

Table 4.3. Significant improvement was observed in ACM compared to FASA [62],

FARM [63] and NMAP [50].

Table 4.1: Performance Improvement of ACM and FASA

ACM against FASA
1 Failed Core 2 Failed Cores

Test case
( No of Cores)

Arch
(M x N)

Delay
(%)

Throughput
(%)

Energy
Consumption (%)

Delay
(%)

Throughput
(%)

Energy
Consumption (%)

MPEG4
Decoder (12)

6 x 6 12.9 13.2 13.5 14.7 15.1 14.9

MWD (12) 6 x 6 12.6 12.9 13 13.9 14.4 14.6

VOPD (16) 6 x 6 13.6 14.5 13.9 15.2 15.9 15.5

The effect of the core failure in the performance of ACM in the above example

(Refer Figure 4.2) is illustrated in Figure 4.6. The throughput is shown in ‘Y’ axis

and packet injection rate is shown in ‘X’ axis. Here when the faulty core prospects

increase, then the throughput decrease. This is due to the reason that when cores are
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Table 4.2: Performance Improvement of ACM and FARM

ACM against FARM
1 Failed Core 2 Failed Cores

Test case
( No of Cores)

Arch
(M x N)

Delay
(%)

Throughput
(%)

Energy
Consumption (%)

Delay
(%)

Throughput
(%)

Energy
Consumption (%)

MPEG4
Decoder (12)

6 x 6 14.1 14.6 14.9 16 16.4 16.2

MWD (12) 6 x 6 13.4 13.8 13.6 14.8 15.2 14.9

VOPD (16) 6 x 6 14.7 15.2 14.9 16.4 17.2 16.8

Table 4.3: Performance Improvement of ACM and NMAP

ACM against NMAP
1 Failed Core 2 Failed Cores

Test case
( No of Cores)

Arch
(M x N)

Delay
(%)

Throughput
(%)

Energy
Consumption (%)

Delay
(%)

Throughput
(%)

Energy
Consumption (%)

MPEG4
Decoder (12)

6 x 6 15.4 16 16.4 18.2 18.6 18.4

MWD (12) 6 x 6 14.2 15.2 14.8 15.9 16.6 16.2

VOPD (16) 6 x 6 15.8 16.4 16.6 18.2 19.4 18.6

more, spare cores are highly exploited compared to before, as in the above discussed

manner, spare core can be placed near to the application core graph which results

in increased throughput and ultimately increased performance.

Figure 4.6: Throughput for different faulty cores in 6 x 6 mesh network

4.5 Benchmark Evaluation

For benchmark applications, the experimental evaluation was constructed with re-

spect to PARSEC benchmark suit (Blackscholes, Facesim, Vips and Swaptions) [81].
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A reasonable NoC platform using GEM5 [82] simulator was fabricated to assess the

proposed approach. It had 36 processing elements, on which the application mapping

was modelled. For mapping and scheduling the application on NoC platform, dif-

ferent injection rate was used. Same ACG and platform were used for other related

algorithms.

On account of core mapping algorithm, the communication latency between the

entire system performance and mapping cores has a drastic change. Figure 4.7,

clearly shown on-chip communication latency for PARSEC benchmark applications.

The proposed ACM approach expressively improves the communication efficiency

when compared to FASA [62], FARM [63] and NMAP [50].

Figure 4.7: Comparison of communication latency with different packet injection rates
considering PARSEC benchmark applications.

With respect to the application performance as shown in Figure 4.8, proposed ap-

proach in ACM can expressively improve system performance compared to FASA

[62], FARM [63] and NMAP [50].
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Figure 4.8: Comparison of system performance with different packet injection rates
considering PARSEC benchmark applications.

4.6 Hardware Verification

Hardware verification is also as important as the implementation. Everything that

is designed must be tested and verified because otherwise there is no certainty that

the design behaves as specified. Verification can take the time of the whole design

process. This section describes the verification of Adaptive core mapping on NoC

and comparing with previous techniques.

The proposed Adaptive Core Mapping (ACM) is coded in Verilog HDL, synthesized

and simulated in Vivado Design Suite 2018.3 [83]. As shown in Figure 4.9, FPGA

board Kintex 7 (KC705) board is the target device which is used for synthesis [84].

An FPGA switch acts as input whereas the LEDs act as output. In the current

research, vertices are considered as switches and NoC platform cores are considered

as LEDs. The faults present in the mapping core are represented through the switch

on board (where ‘1’ denotes as no fault and ‘0’ denotes a fault). The proposed ACG

comprises of 5 vertices only, so this requires five input switches for Kintex 7 FPGA

board, in order to represent those 5 vertices described above (V4, V3, V2, V1, and
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Figure 4.9: FPGA based Verification Platform.

V0) and also the output LEDs as (t01, t11, t02, t03, t23, t12 and t13) indicating NoC

core. As per the output LEDs listed above, the first 2 (i.e., t01, t11) are considered

spare cores. If any core gets failed even after recovery, the faulty core gets replaced

with the nearest spare core. A red LED glow which is designated as ‘1’ is used

indicating the successful transfer of data (i.e., there is no fault in the presented core)

and the LED off is designated as ‘0’ which indicates that the faults occurred at the

core. If any faults occur, recovery cores get executed for verifying and to correct the

code using error correction code (Hamming code). Even if the fault happens after

the detection and correction mechanism (using Hamming code), then the failed core

tasks gets migrated to the available spare core. Spare core distinguishes efficiently

for each incoming application in terms of number and their positions.

Experimental data is tabulated in Table 4.4. When analyzing the acquired results,

if the NoC platform contains no faults, the data gets transferred as per the ACG

shown in row 1. In row 2, V0 core fails due to which the recovery core verifies and

corrects the core using error correction code (hamming code). V2 core fails even after

applying the hamming code which results in migration of V2 core tasks to the spare

core position (t11) which is clearly shown in row 3. In row 4, faults can recover alike

row 2. Using spare cores, the row 5 faults can be avoided.
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Table 4.4: Experimental tabulation of data after FPGA based verification for different
cores.

Input Switches
(V4, V3, V2, V1, V0)

Output LED
(t01, t11, t02, t03, t23, t12, t13)

Faulty Cores Recovery Cores Spare Cores

11111 0011111 None None None
11110 0011111 t13 t13 None
11011 0111011 t23 None t11
10101 0011111 t03 & t12 t03 & t12 None
01011 1101011 t02 & t23 None t01 & t11

4.6.1 Comparative Results

In order to precisely calculate latency and mapping time of proposed ACM and

FASA [62], FARM [63] & NMAP [50] Vivado Design Suite 2018.3 is utilized.

Table 4.5 indicates the total latency, longest path latency represented through clock

cycles and the mapping time represented in terms of milliseconds (ms). These ex-

perimental results reveal that the ACM algorithm is better than FASA [62], FARM

[63] & NMAP [50].

Table 4.5: Experimental results on the 6 x 6 Mesh NoC.

ACM FASA FARM NMAP

Total latency (clock cycles) 74016 79987 82356 85879
Longest path latency (clock cycles) 24167 31011 34269 37301
Mapping time (ms) 99986 100143 102789 108149

In order to accurately estimate the metrics of the ACM such as area, performance

and the power and also the other related algorithms, Vivado Design Suite 2018.3

was utilized. The evaluated area, performance and power of the proposed ACM

were compared with the other algorithms such as FASA [62], FARM [63] and NMAP

[50], as tabulated in Table 4.6. One of the main advantage of the proposed ACM

over the other related algorithms is the area efficiency, area is computed in the form

of number of logic blocks. Regarding power analysis, ACM utilizes XY routing al-

gorithm, where packets get distributed along the minimum hop paths in a network.

The performance that is obtained is evaluated as throughput of a network. The

results that are obtained for the area and power consumption of ACM algorithm

decreased by an average of 7.2% and 9.75%, 11.36% and 10.54%, and 12.4% and

11.11% when compared to FASA [62], FARM [63], and NMAP [50]. The improve-

ment of performance by an average of 12.5%, 14.7%, and 18% when ACM algorithm

is compared to FASA [62], FARM [63], and NMAP [50]. It is visible that ACM al-

gorithm is an efficient core mapping outperformed with related algorithms. Finally,
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the system results reveal that the simulation and hardware verification is absolutely

reliable.

Table 4.6: Evaluation of area, power consumption and throughput of ACM against
FASA,FARM and NMAP.

ACM ACM ACM
against against against
FASA FARM NMAP

Area 7.2% 11.36% 12.4%
Power Consumption (W) 9.75% 10.54% 11.11%
Throughput (Gbps) 12.5% 14.7% 18%

By analyzing the test results, if faults are not present in the platform, data is directly

transmitted as per the ACG. Otherwise the fault diagnosis mechanism is applied

which tries to recover faulty cores through error detection and correction mechanism.

Even if the faulty core exists the spare core replacement occurs. The test data results

reveal that hardware verification and simulation results are completely consistent.

4.7 Summary

In this chapter, we implemented an Adaptive Core Mapping (ACM) technique com-

prising the mapping cores and spare core replacement on NoC. The ACM technique

showed an increased performance for various sizes of NoC cores. The experiments

conducted on 6 x 6 mesh NoCs revealed that the adaptive core mapping technique

exhibited greater throughput, lesser delay, and energy consumption than other re-

lated algorithms. The current research also addressed the spare core placement issue,

which replaces the faulty core with the available free core, therefore enhancing the

reliability of the processor.

Apart from this evaluation, the sequence for core mapping is initiated from the

lowest communication energy and applied to the PARSEC benchmark using GEM5

Simulator. The obtained results show a significant improvement in latency and sys-

tem performance. An experimentation environment verified on the Kintex-7 FPGA

KC705 board, which elucidates the faulty cores, recovery cores and spare cores in

the network. The results implicate a dramatic decrease in area, power consump-

tion, and an increase in throughput, which illustrates the efficiency of the proposed

ACM algorithm. Any core mapping techniques of the network can utilize the ACM

methodology to enhance the system performance.
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Fault-Tolerant Core Mapping

Expanding the number of transistors as well as wires packed onto a single chip allows

for the development of more complex electronic devices as semiconductor fabrication

technology advances. Scaling effects, such as the reduced transistor dimensions, the

decrease of critical charge, the increase of clock frequency and the increase of the

power density, intensify the frailty of electronic devices to environmental variations,

which also has a negative impact on long-term chip lifetime and consequently accel-

erates the occurrence of faults of the circuit. Fault-tolerance becomes an essential

design objective for critical digital systems, especially those in highly specialized

fields. One of the key factor for the implementation of the best application mapping

strategy is, it should be fault tolerant, which finally results in the improvement of

overall performance of a system.

This chapter presents the Fault-tolerant core mapping (FTMAP) which is responsible

for tracking cores in the mapped NoC platform and storing the information collected

from the mapped NoC platform in the memory unit. This technique effectively

maps the vertices on the network and finalize the mapping based on the minimum

communication energy.The obtained output is considered as the best core mapping

by assessing the communication as well as the execution time of the network by

employing it on various multimedia benchmarks. Based on the failure probability,

the faults in a network can be identified priory during the mapping process. Based

on the obtained failure probabilities, the core that has the highest probability will

be moved to the nearest free core respectively. The experimentation was carried

out for NFT, 1FT, 2FT where the communication energy and execution time were

outperformed.
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5.1 Faults classification

A defect is the failure of a component in one layer of a computer network, which

could be separated into numerous layers. It could be a computer defect within

applications or software platforms, or even a hardware defect caused by radiation or

wear-out defects in the silicon chip, causing the chip to malfunction. Faults relate

to the failure of integrated circuits in this thesis. While performing the mapping

process, many faults could emerge onto cores. Faults within integrated circuits

are categorised into two groups based on its duration time: 1) Transient faults and

2) Permanent faults; intermittent faults are sometimes included as a third category.

If the faults are occurred repeatedly it is termed as transient and if the faults last

for longer period it is termed as permanent

FAULTS UPPER LAYERS

FAULTS ERRORS FAILURES

C

REG

CHIP

circuit/chip

malfunction

Figure 5.1: Relationship between faults, error and failure.

The relation between three commonly utilized terms in fault-tolerance literature:

fault, error, and failure is depicted in Figure 5.1. Errors are manifestations of faults.

Errors in integrated circuits are described as failures collected by memory com-

ponents (like C-elements within asynchronous circuits), which further divided into

two types: transient and permanent. Faults were required for mistakes to occur,

although not all faults result in errors because many are hidden during its propa-

gation. If mistakes are not addressed, they might produce circuit or chip output

malfunctions, or even a circuit failure, which can lead to problems in higher layers of

61



Chapter 5: Fault-Tolerant Core Mapping

a computer network (like the operating system or application software level), where

detection and correction can be much more difficult and expensive. To handle with

various fault conditions, a multi-layer, fault-tolerant architecture shielding a com-

puter network from the bottom circuit to the high software level is necessary. The

thesis focuses on fault tolerance at the semiconductor level to minimize chip defects

as well as avoid chip failures.

Transient Faults

Single Bit 

Upset
Multi-Bit 

Upset
(SBU) (MBU)

Single Event

Upset(SEU)

transient errors

(Soft errors)

Transient Errors

Alpha particles Cosmic rays

Radiation

CROSS TALK

POWER SUPPLY NOISE

ELECTROMAGNETIC INTERFERENCE

ELECTROSTATIC DISCHARGE

A B A belongs to B   A belongs to B   BA

Positive Fault
0

1

0

1

Negative Fault

Figure 5.2: Sources of transient faults.

5.1.1 Transient faults

The susceptibility of electronic devices to environmental fluctuations increases as

NoC size dimensions, clock frequency, integrated circuit density, and also critical

charge decrease, greatly increasing the probability of transient failures. As Figure

5.2 describes, transient faults could be caused by a variety of factors. A bit-flip, often

described as glitch, is a common transitory defect symptom that is either favorable

or unfavorable. When memory components collect them, they normally last a short

time creating soft errors which are non-permanent as well as non-recurring.

5.1.2 Permanent faults

Permanent faults (also known as hard faults) are divided into two categories based

on its occurrence time: 1) manufacturing faults and 2) operational hard defects.
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Permanent Faults

permanent Errors

MANUFACTURING DEFECTS

ELECTROMIGRATION

TIME DEPENDENT DIELECTRIC BREAK DOWN

HOT CARRIER INJECTION
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0
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OTHER AGEING PROCESS
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Figure 5.3: Sources of permanent faults.

Production faults can occur throughout the chip manufacturing, resulting in a re-

duction of chip yield. To improve chip yield, defect-tolerance methods are applied.

This type of permanent problem is becoming less common as chip manufacturing

techniques evolve which is clearly depicted in Figure 5.3.

5.1.3 Intermittent faults

The intermittent faults are defined as the a faults that appear, then vanishes, again

reappears, and vanishes back. These are the most aggravating component defects.

This type of faults is exemplified by a fragile connection.

5.2 Probability of Faults

The rate of failure for the processing core is modelled using FTMAP. The failure

probability is evaluated same as in Fault Aware Resource Management (FARM) &

Fault Aware Spare Allocation (FASA) which is illustrated in Eq. (5.1) [85].

Fxy(t) = 1− e−(λxyt) (5.1)

Where Fxy(t) is the failure probability of the processing core, which is located in the

xth row and yth column and ‘t’ is the life time of NoC. λxy is the failure rate, which

is a measure of failure per unit of time. As the failure rate increases, it reduces the

lifetime, and it becomes constant until breakdown.
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The failure rate is computed by multiplying the total number of failures with the

complete operating time. Failure rate (λxy) is inversely proportional to the total

core hours as well as the acceleration factor.

λxy ∝ (
1

TCH.AF
) (5.2)

Where the total core hours (TCH) are calculated by multiplying the number of units

by the total time. AF represents for acceleration factor, which is the Arrhenius

equation’s test time multiplier. When a device is operated at a high temperature,

the AF value is obtained which can be calculated through the given Eq. (5.3) [86].

AF = e(E/KTxy) (5.3)

E = Activation Energy (eV) of the failure mode.

K(Boltzmann Constant) = 8.617 x 10−5 eV/O K

Txy = Temperature of the core, which is located at the xth row and yth column.

λxy =
1

TCH
. e

(− E
KTxy

)
(5.4)

Where
1

TCH
is a constant, denoted by ‘Z’

λxy = Z . e
(− E

KTxy
)

(5.5)

Constant ‘Z’is calculated as the failure rate per cycle for each processing core oper-

ating at a useful life of 10−9 under a typical core temperature i.e., 55 ◦C.

5.3 FTMAP Algorithm

This section incorporates the proposed fault-tolerant core mapping strategy(FTMAP)

in order to improve the performance of the system. In this FTMAP algorithm, we

calculate the communication energy and execution time. From the obtained commu-

nication energy’s of the respective core mapping, we find the minimal communication

energy which is formulated as below:

Problem 1 : To find out the minimum communication energy (CEmin).

Let’s consider task graph G(T, E), and the topology N(P, D); perform the mapping

function MF : T → P , where ti ∈ { T } and pij ∈ P, and calculate the total
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communication energy and minimum communication energy which can be obtained

from Eq. (5.6) and Eq. (5.7).

CETotal =
∑
∀ti∈{T}

W (Eij)×Xij (5.6)

The mapping function and total communication energy is explained in Problem 1,

whereas, the minimum communication energy is illustrated in Eq. (5.7).

CEmin = min{CE : CE ∈ CETotal} (5.7)

The proposed FTMAP Algorithm is clearly depicted in Algorithm 3. The inputs

considered as part of this algorithm are i)Task graph and ii)NoC topology, where

the task graph contains various nodes representing the tasks, which can be mapped

and scheduled on NoC topology based on minimum communication energy. The

output will be considered as the best core mapping.

5.4 Demonstration of FTMAP through a Case study

This section provides the elucidation of proposed Fault-Tolerant Core Mapping

(FTMAP) depicted in Algorithm 3. The cores are mapped on the NoC topology

based on its minimum communication energy. During the task mapping and schedul-

ing, if any of the core or processing element is failed, those tasks can be migrated

to another free core or PE according to their communication energy. Figure 5.4(a)

illustrates the application task graph which contains six tasks, Figure 5.4(b) provides

the structure of 6 x 6 mesh NoC topology. On the basis of Algorithm 3, initially,

the tasks present in the Figure 5.4(a) were mapped in different ways illustrated in

Figure 5.4(c) to Figure 5.4(f), and perform the calculation of communication energy

for each set of mapping. Finally, from the obtained total communication energy of

various mappings, select the mapping which has the minimum communication en-

ergy as represented in Figure 5.4(g). If any of the core gets failed, the tasks of the

specific failed core were migrated to the nearest available free or manager cores in

the NoC platform. The high probability of failure cores were given in the order as

V1, V4, V0, V3, V2 and V5.
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Algorithm 3 FTMAP Algorithm

Input: Task Graph G = (T,E) ;
NoC Topology N = (P,D) ;

Output: N = (P,D) Best FT CoreMapping(FTMAP) and Scheduling NoC
Topology ;

foreach mapping graph do
Calculate Communication Energy ;

end
for ti ∈ { T } do

Task Type = get category of task(ti) ;
Allocate ti to PE ;
Update Communication Energy ;
if Task Allocation PE = busy then

Allocate ti to another PE (which is neighboring position of previous PE) ;
Assign Execution time of ti on PEsel ;
Update Communication Energy ;

end
else if Task Allocation PE = failed then

Migrate ti to nearest free PE ;
Calculate migration time and execution time ;
Update Communication Energy ;

end
Compute Total Communication Energy(E(eij)) and Processor Execution time
;

if CEmin > E(eij) then
CEmin ← E(eij) ;
Best FT CoreMapping(FTMAP) ← FT CoreMapping ;

end

end
return Best FT CoreMapping(FTMAP) ;

5.4.1 Calculation of Communication Energy

The calculation for the total communication energy of a network is performed by

using Eq. (4.4) [78].

For NFT, the communication energy is calculated as follows:

CETotal = CE01 + CE02 + CE13 + CE14 + CE25 + CE34

CE01 = 200 X (|(1− 0)|+ |(1− 1)|) = 200

( Here, E01 weight is 200, From Fig. 4(g), V0 parameters are (0, 1), simlarly V1

parameters are (1, 1) )

CE02, CE13, CE14, CE25, and CE34 calculated like CE01

CE02 = 200 X (|(0- 0)|+ |(2- 1)|) = 200
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Figure 5.4: FTMAP Algorithm: (a) An example of Application Task Graph, (b) 6 x 6
mesh NoC, (c - f) Various mapping ways obtained through proposed algorithm and (g)

Best FT Core Mapping.

CE13 = 100 X (|(2- 1)|+ |(0- 1)|) = 200

CE14 = 300 X (|(2- 1)|+ |(1- 1)|) = 300

CE25 = 300 X (|(1- 0)|+ |(2- 2)|) = 300

CE34 = 200 X (|(2- 2)|+ |(1- 0)|) = 200

CETotal= 200 + 200 +200 +300 +300 +200 = 1400.

Similarly, the CETotal for 1FT and 2FT are calculated same as NFT by considering

the failure probabilities. For 1FT, V1 is reallocated to the nearest free core, where

for 2FT, V4 is reallocated to next neighboring free core. Communication energy (µJ)

of proposed Fault tolerance mapping algorithm with respect to NFT, 1FT, and 2FT

denote the results of non-fault tolerance, one-fault tolerance, and two-fault tolerance

tabulated in Table 5.1.
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Table 5.1: Communication Energy (µJ) of NFT, 1FT, and 2FT on NoC.

Proposed FTMAP algorithm NFT 1FT 2FT

Communication Energy 1400 1800 2000

5.5 Experimental Results

In this section, we evaluate the proposed fault tolerance mapping algorithm by com-

paring it with the other related works (FTTG [76], K-FTTG [77]). The proposed

methodology has also been examined through simulating the task graphs on differ-

ent sizes of 5 x 5, 6 x 6, 10 x 10 and 20 x 20 mesh NoC platforms. Utilizing TGFF

[87], numerous configurations of synthetic applications have been developed. The

real multimedia benchmarks used as part of this research are namely, 1. MPEG4,

2. VOPD, 3. MWD, 4. 263dec, 5. 263enc, and 6. Mp3dec. Table 5.2 represents the

characteristics view of multimedia application models [88]. Noxim simulator [79] is

used for simulation, which is a cyclical accurate System C simulator for NoC systems.

We have simulated the proposed FTMAP algorithm and other related works (FTTG

[76], K-FTTG [77]) by taking into consideration of specified multimedia benchmarks

i.e. referred in Table 5.2.

Table 5.2: Multimedia Benchmark Properties

Benchmark Vertices Edges Application Domain

MPEG4 12 13 MPEG4 Decoder

VOPD 16 20 Video Object Plane Decoder

MWD 12 12 Multi Window Display

263dec 14 15 H.263 Decoder

263enc 12 12 H.263 Encoder

Mp3dec 13 13 Mp3 Decoder

Table 5.3: Multimedia Benchmarks Communication Energy (µJ) of Proposed algorithm
when compared to FTTG and K-FTTG with respect to NFT, 1FT, and 2FT.

Benchmarks
FTTG [76] K-FTTG [77] Proposed Algorithm

NFT 1FT 2FT NFT 1FT 2FT NFT 1FT 2FT

MPEG4 5013 5874 6906 4804 5136 5564 4608 4926 5206

VOPD 4955 5485 6695 4725 5028 5288 4488 4766 5010

MWD 1568 1834 2486 1426 1682 2086 1362 1524 1869

263Dec 28.5 41.5 54.5 25.5 38 46.5 23.5 32 38.5

263Enc 376 512 764 328 488 698 298 424 586

Mp3dec 25.4 38.8 49.6 23.2 34.2 44.6 21 29.8 36
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Figure 5.5: Comparison of Communication energy for different failed cores by consid-
ering Multimedia benchmarks among FTTG, K-FTTG, and Proposed FTMAP.

Table 5.3 clearly explains the communication energy with respect to NFT, 1FT,

and 2FT that denotes the results of non-fault tolerance, one-fault tolerance, and

two-fault tolerance respectively. The proposed algorithm signifies the reduction of

communication energy efficiency by an average of 8%, 6% when compared to FTTG

[76], K-FTTG [77] with respect to NFT, 12%, 9% reduction of communication energy

efficiency when compared to FTTG [76], K-FTTG [77] with respect to 1FT,and 14%,
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Figure 5.6: Comparison of Execution time for different failed cores by considering Mul-
timedia benchmarks among FTTG, K-FTTG, and Proposed FTMAP.

10% reduction of communication energy efficiency when compared to FTTG [76], K-

FTTG [77] with respect to 2FT as depicted in Figure 5.5.

Performance is evaluated as the entire processors execution time, which contains

executing task time, waiting time and migration time (when faults occur). Execution

time of proposed algorithm is compared with the other two algorithms(FTTG [76],

K-FTTG [77]) with respect to NFT, 1FT, and 2FT tabulated in Table 5.4. The

proposed algorithm shows the reduction of execution time by an average of 18%,
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Table 5.4: Multimedia Benchmarks Execution Time (s) of Proposed algorithm when
compared to FTTG and K-FTTG with respect to NFT, 1FT, and 2FT.

Benchmarks
FTTG [76] K-FTTG [77] Proposed Algorithm

NFT 1FT 2FT NFT 1FT 2FT NFT 1FT 2FT

MPEG4 1.38 12.5 68 1.222 10.92 62.402 1.06 8.63 49.8

VOPD 1.2 9.2 45.6 1.005 7.355 39.522 0.95 5.98 32.86

MWD 1.28 7.13 132.8 1.102 5.754 124.97 1.05 4.969 109.998

263Dec 1.3 40.2 996.3 1.216 38.389 952.4 1.09 31.64 886.8

263Enc 0.92 3.98 42.24 0.785 3.226 36.62 0.704 2.59 29.8

Mp3dec 1.08 7.34 144.14 0.810 6.235 134.18 0.746 5.4 122.6

Table 5.5: Evaluation of Communication Energy and Execution time of FTMAP against
FTTG and K-FTTG Algorithms with respect to NFT, 1FT, and 2FT.

Performance Metric
FTMAP against FTTG [76] FTMAP against K-FTTG [77]
NFT 1FT 2FT NFT 1FT 2FT

Communication Energy (µJ) 8% 12% 14% 6% 9% 10%

Execution time (s) 18% 24% 26% 13% 19% 21%

13% when compared to FTTG [76], K-FTTG [77] with respect to NFT, 24%, 19%

reduction of the execution time when compared to FTTG [76], K-FTTG [77] with

respect to 1FT, 26%, 21% reduction of execution time when compared to FTTG

[76], K-FTTG [77] with respect to 2FT as shown in Figure 5.6. These results clearly

show that proposed fault tolerance methodology(FTMAP) effectively reduces the

communication energy and execution time of the network illustrated in Table 5.5.

5.6 Summary

In this chapter, provided the implementation of FTMAP algorithm, which performs

the effective mapping that is fault tolerant in order to reduce the overall communi-

cation energy and the execution time. This algorithm emphasizes the mapping of

the cores on the basis of selected task graph and mainly focuses on the replacement

of faulty cores in a network. The simulation outcomes outperform the reduction of

communication energy by an average of 8%, 12%, 14% with respect to NFT, 1FT,

2FT when compared to FTTG and 6%, 9%, 10% with respect to NFT, 1FT, 2FT

when compared to K-FTTG and execution time by an average of 18%, 24%, 26%

with respect to NFT, 1FT, 2FT when compared to FTTG and 13%, 19%, 21% with

respect to NFT, 1FT, 2FT when compared to K-FTTG.
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Efficient Real-Time Embedded

Application Mapping

The primary responsibility of any mapping technique is to map the tasks to the cores

available in the chosen topology. Then, the mapping of an application allows to per-

form the tasks as mapped accordingly and provide the suitable output. Application

mapping is the strategy used for efficiently mapping the cores. Each core present

in the core graph is mapped to each vertex on the NoC platform sequentially. The

method of applying the core mapping differs from one to another. As the number

of cores is increasing drastically, many mapping techniques came into existence to

provide a reliable result. So, it is essential to follow certain rules by considering the

critical shortcomings in the present NoC methodologies to design a efficient applica-

tion mapping. The mapping of cores performed in two ways, namely static mapping

and dynamic mapping. Based on the requirement, the designers can choose their

respective mapping for their NoC architecture.

In this chapter, implemented an Efficient Real-Time Embedded Application Mapping

i.e. (ERTEAM), which initially identifies the minimum Node Average Distance

(NAD) and maps the vertices in this region on the basis of minimum communication

energy. This algorithm is evaluated a set of real-time embedded applications [87]

such as H264 encoder (H264 enc), MP3 decoder (MP3 dec), Network processing

(NP), MPEG2 encoder (MPEG2), Multimedia Systems (MMS), Video object plan

decoder (VOPD). This algorithm outperforms the latency, throughput, simulation

time and communication energy when compared with the BBPCR [60] and SBMAP

[61].
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6.1 ERTEAM Algorithm

The proposed ERTEAM Algorithm is clearly depicted in Algorithm 4. This mapping

algorithm mainly requires Application core graph which resembles any NoC appli-

cation and a mesh based NoC topology. Consider the ACG and NoC topology as an

input and perform the core mapping. Initially, before performing the core mapping,

calculate the NAD for the mapping region. After the mapping region is finalized,

arrange the vertices based on the minimum communication energy. Now map the

vertices on the PE and calculate the communication energy. For every mapping, up-

date the communication energy and if the total communication energy is less than

the minimum communication energy, it is considered as best core mapping.

Algorithm 4 ERTEAM Algorithm

Input: Network Core Graph (NCG) G = (P,A) ;
NoC Architecture Graph (NAG) A = (C,D) ;

Output: NoC Architecture Mapping Graph (NMG) = M(C,D) ;
M: Mapping Region ;

foreach mapping region do
Calculate Effective Region ;
{
Select Effective Region corresponding to the min Node Average Distance
(NAD) ;
}

end
Initialize Mapping ;
min cost = ∞ ;
do

Calculate Core Bandwidth (BW) ;
Calculate Communication Distance (CD) ;
Calculate Communication Energy (CE) ;
{
CE = BW ×CD
}
if min CE = Total CE ;
then Total Communication Energy < min Communication Energy

end
Core Mapping = min CE mapping ;
Total CE (WCE) =

∑
BW(Pi,Pj) × CD(Ci,Cj)

while Next Mapping ;
return Best Communicative Mapping with lowest Communication Energy ;
Calculate Core Mapping Execution Time ;
Calculate Latency and Throughput ;
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6.2 Demonstration of ERTEAM through a Case study

Proposed core mapping algorithm explained in Algorithm 4. Network core graph

(NCG) and NoC architecture graphs (NAG) are acts as input, NoC Architecture

Mapping Graph (NMG) as output. Initially, select the efficient mapping region us-

ing minimum Node average distance (NAD), reducing the mapping area. Then,

Processing Element (PE’s) in NCG mapped on efficient mapping region in NoC ac-

cording to the minimum communication energy. A simple example clearly explained

in Figure 6.1. A simple network core graph has shown in Figure 6.1(a) and 5 x 5

NoC Architecture Graph shown in Figure 6.1(b). As the number of vertices is 7 in

the NCG, the efficient mapping region is selected based on NAD, preferably a size

3 x 3 region shown in Figure 6.1(c). Finally, NCG vertices mapped on 3 x 3 region

according to the minimum communication energy of the network shown in Figure

6.1(d).

Figure 6.1: ERTEAM Algorithm: (a) An example of Application Task Graph, (b) 5
x 5 mesh NoC, (c) Mapping region obtained through minimum NAD, and (g) Efficient

ERTEAM Core Mapping.
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6.3 Experimental Results

In this section, we conduct sets of comprehensive experiments to evaluate the ef-

fectiveness of the ERTEAM algorithm, mapping performance and communication

energy. The mentioned metrics are compared with state-of-the-art approaches on

embedded applications. A set of embedded applications exploited for evaluation.

Application names and their numbers of cores are shown in Table 6.1 [87]. The best

mapping pattern found using a C++ program, the simulations carried out on Noxim

simulator [79].

Table 6.1: Specifications of Embedded Applications.

Application No. Cores Network Size

H264 encoder (H264 enc) 36 6 x 6

MP3 decoder (MP3 dec) 16 4 x 4

Network processing (NP) 16 4 x 4

MPEG2 encoder (MPEG2) 16 4 x 4

Multimedia Systems (MMS) 16 4 x 4

Video object plan decoder (VOPD) 16 4 x 4

For all of the following simulations, Network Core Graph and NoC Architecture

Graph are identical. This research methodology evaluates performance metrics such

as Latency, Simulation Time, Throughput, and Communication Energy.

6.3.1 Latency

The time taken by the packet’s header flit to migrate between any source to destina-

tion in the network referred to as latency. According to network congestion, latency

frequently involves a packet’s waiting time between any source to the destination

node, illustrated in Eq. (6.1).

Latency =
1

K

K∑
n=1

(Ln) (6.1)

K = Total number of packets reaching their destination cores. Ln = The clock cycle

latency for the nth node.

Table 6.2 explains the obtained latency of the proposed algorithm ERTEAM (in

terms of cycles) compared to the BBPCR [60] and SBMAP [61]. Therefore, the

graphical representation of the latency depicted in Figure 6.2.
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Figure 6.2: Latency of the proposed algorithm ERTEAM (in terms of cycles) compared
to the BBPCR and SBMAP.

Table 6.2: Latency of the proposed algorithm for various embedded applications.

Latency (Cycles)

Application BBPCR SBMAP ERTEAM

H264 encoder (H264 enc) 29 28.2 27.4

MP3 decoder (MP3 dec) 36.2 34.6 31.8

Network processing (NP) 37.9 36.7 32.6

MPEG2 encoder (MPEG2) 34.1 32.9 30.1

Multimedia Systems (MMS) 41.3 39.6 36.9

Video object plan decoder (VOPD) 47.1 45.8 42

6.3.2 Simulation Time

The term simulation time is defined as the overall time required by the system

to execute the tasks during the mapping of cores, known as the simulation time

or the execution time. Thus, lesser simulation time provides an increase in the

performance of the system. Table 6.3 illustrates the obtained simulation time of the

proposed algorithm ERTEAM (in terms of seconds) compared to the BBPCR [60]

and SBMAP [61]. Therefore, the graphical representation of the simulation time

depicted in Figure 6.3.
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Figure 6.3: Simulation Time of the proposed algorithm ERTEAM (in terms of seconds)
compared to the BBPCR and SBMAP.

Table 6.3: Simulation time of the proposed algorithm for various embedded applications.

Simulation Time (s)

Application BBPCR SBMAP ERTEAM

H264 encoder (H264 enc) 18 16 14

MP3 decoder (MP3 dec) 27 24 21

Network processing (NP) 33.5 31 29

MPEG2 encoder (MPEG2) 31 28 26

Multimedia Systems (MMS) 36.5 34 31

Video object plan decoder (VOPD) 38.5 37 34

6.3.3 Throughput

Throughput considered as one of the important parameters regarding the perfor-

mance of the system. It represents the maximum amount of information that

transferred in a given amount of time. Therefore, the mathematical formulation

for throughput illustrated in Eq. (6.2).

Throughput =
Rp

N ×Np
(6.2)

Where, Rp = total number of received packets, N = the total number of cores, Np

= number of clocks cycles lapsed from the first generated packet to the last received

packet.
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Figure 6.4: Throughput of the proposed algorithm ERTEAM (in terms of cycles/pack-
ets) compared to the BBPCR and SBMAP.

Table 6.4 describes the resultant throughput of the proposed algorithm ERTEAM

(in terms of cycles/packets) compared to the BBPCR [60] and SBMAP [61], whereas

the graphical representation of throughput depicted in Figure 6.4.

Table 6.4: Throughput of the proposed algorithm for various embedded applications.

Throughput (Cycles/ Packets)

Application BBPCR SBMAP ERTEAM

H264 encoder (H264 enc) 0.042 0.047 0.054

MP3 decoder (MP3 dec) 0.048 0.052 0.058

Network processing (NP) 0.084 0.09 0.098

MPEG2 encoder (MPEG2) 0.08 0.086 0.092

Multimedia Systems (MMS) 0.084 0.09 0.096

Video object plan decoder (VOPD) 0.078 0.084 0.089

6.3.4 Communication Energy

The term Communication Energy defined as the sum of differences between their

respective modules establishes the distance between any two nodes in a chosen topol-

ogy of a network. Table 6.5 illustrates the communication energy of the proposed

algorithm ERTEAM (in terms of µJ) compared to the BBPCR [60] and SBMAP

[61]. Therefore, the graphical representation of the communication energy depicted

in Figure 6.5.
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Figure 6.5: Communication Energy of the proposed algorithm ERTEAM (in terms of
µJ) compared to the BBPCR and SBMAP.

Table 6.5: Communication Energy of the proposed algorithm for various embedded
applications.

Communication Energy (µJ)

Application BBPCR SBMAP ERTEAM

H264 encoder (H264 enc) 2700 2400 2200

MP3 decoder (MP3 dec) 3100 2800 2600

Network processing (NP) 3400 3100 3000

MPEG2 encoder (MPEG2) 3200 2900 2700

Multimedia Systems (MMS) 3700 3400 3300

Video object plan decoder (VOPD) 3900 3600 3500

Table 6.6 demonstrates the evaluation of the metrics for the proposed ERTEAM

algorithm against the BBPCR [60] and SBMAP [61]. The reduction of latency

improved by an average of 12.3% and 8.4% against BBPCR [60] and SBMAP [61],

the overall simulation time reduced to 19%, 9.6% compared to BBPCR [60] and

SBMAP [61]. Furthermore, the throughput of ERTEAM improved by an average

of 14.5%, 7.8% compared to BBPCR [60] and SBMAP [61] and the communication

energy reduced to 15.6%, 5.2% against BBPCR [60] and SBMAP [61].
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Table 6.6: Evaluation of latency, simulation time, throughput and communication en-
ergy of ERTEAM against BBPCR and SBMAP.

ERTEAM ERTEAM
against against
BBPCR [60] SBMAP [61]

Latency (Cycles) 12.3% 8.4%
Simulation Time (s) 19% 9.6%
Throughput (Cycles/ Packets) 14.5% 7.8%
Communication Energy (µJ) 15.6% 5.2%

6.4 Summary

In this chapter, implemented a mapping strategy entitled Efficient Real-Time Em-

bedded Application Mapping (ERTEAM) that is applied to real-time embedded

applications to improve the system performance. This implementation chooses the

mapping region based on the minimum Node Average Distance (NAD). After pro-

viding the mapping area, the PE’s are embedded in the arrangement of minimum

communication energy between the cores. The execution time is calculated after ob-

taining the best core mapping as an output. The resultant outcome of the proposed

mapping technique provides low latency, less simulation time, less communication

energy and the overall throughput increased compared to BBPCR and SBMAP when

applied to the mentioned embedded real-time applications.
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Conclusion and Future work

The customization of on-chip network architectures lies at the heart of reducing

the communication energy and enhancing the performance of NoC-based systems.

In this dissertation, we proposed core mapping, spare core replacement and fault

tolerance methods. The method was proposed at the system-level to allow for a best

mapping. Comparative analysis were carried out as a proof of concept to explain

the significance of our contributions. We believe that our contributions could help

reducing the communication energy and improving the performance of the underlying

architectures for modern communication-intensive SoC applications.

7.1 Conclusion

In this thesis, we concentrated on the efficient core mapping technique named as

BMAP which mainly deals with the standard topology selection and the customiza-

tion of NoC platforms. This proposed technique is applied on various benchmarks

applications that has shown a great improvement reliability, delay, area and power

whereas a minimal objective function is achieved for complex networks in 2D topolo-

gies. The performance evaluation is carried out through the synthesis of SPLASH-2

Benchmark using Noxim simulator which outperformed its metrics such as Speed-up

Execution Time increased by 40%, 30% and 20%, Latency reduced by 42%, 34%

and 28%, Energy efficiency improved by 36%, 30%, 26% and Power consumption re-

duced by 32.6%, 28.2%, and 26.4% when compared with NMAP, MMAP, and EMAP

algorithms respectively.

The proposed ACM technique involves in mapping the cores and also the spare core

replacement. To perform core mapping, initially we need to figure out the mapping
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region using the NAD and PVR functional metrics. After the mapping region is final-

ized, the core mapping is performed. If any faults occurred at a core, fault diagnosis

method is applied which provides the damaged core location and correct it using the

error detection and correction mechanism. Even after applying the method, if faults

occur then the spare core replacement is performed where the tasks of the failed core

are migrated to the free spare core improving the system reliability. The experiments

conducted on 6 x 6 mesh NoCs revealed that the adaptive core mapping technique

exhibited greater throughput, lesser delay, and energy consumption than other re-

lated algorithms. The proposed algorithm is applied to the PARSEC benchmark

using GEM5 Simulator, where the obtained results show a significant improvement

in latency and system performance. An experimentation environment verified on the

Kintex-7 FPGA KC705 board, which elucidates the faulty cores, recovery cores and

spare cores in the network. The results implicate a dramatic decrease in area, power

consumption, and an increase in throughput, which illustrates the efficiency of the

proposed ACM algorithm.

The fault-tolerant mapping technique known as FTMAP mainly focuses on find-

ing out the failure probability in a core mapping network and provide the solution

through migrating the faulty core to the nearest free core. This provides the evalu-

ation of communication energy and the execution time of the network by employing

it on various multimedia benchmarks. The experimental outcomes reveal that it

reduces the communication energy by 8%, 12%, 14% with respect to NFT, 1FT,

2FT compared to FTTG and 6%, 9%, 10% with respect to NFT, 1FT, 2FT when

compared to K-FTTG. The reduction of the execution time has also outperformed

by 18%, 24%, 26% with respect to NFT, 1FT, 2FT compared to FTTG and 13%,

19%, 21% with respect to NFT, 1FT, 2FT when compared to K-FTTG.

The proposed ERTEAM entitled as Efficient Real-Time Embedded Application Map-

ping provides a core mapping technique that initially identifies the minimum Node

Average Distance (NAD) and maps the vertices in this region on the basis of min-

imum communication energy for NoC applications. This algorithm is evaluated a

set of real time embedded applications which outperforms the latency, throughput,

simulation time and communication energy. The experimental outcomes reveals a

reduction in latency at 12.3% against BBPCR and 8.4% against SBMAP. The simu-

lation time reduces at an average of 19% against BBPCR and 9.6% against SBMAP.

The throughput increases at an average of 14.5% against BBPCR and 7.8% against

SBMAP and reduces the communication energy by 15.6% against BBPCR and 5.2%
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against SBMAP. The limitation that was observed during the execution of the pro-

posed techniques is the area overhead. Due to the performance improvements, this

factor can be ignored.

7.2 Future Work

This research work could be extended in two ways. The first is an expansion of this

research into 3D NoCs to attain reliability. The 3D design adds a whole new level

of complexity towards the equation of factors to be taken into account to attain re-

liability. Because of the natural stacking in 3D, hotspots become a serious difficulty

which must be addressed. Additionally, because the baseline system is developed in

three dimensions, thorough analysis of the core mapping of the protection system

which is incorporated to accomplish fault tolerance is required. The complete evalu-

ation of a 2D designed protection system against a 3D designed protection system as

a result, reliability improvement obtained and also communication energy expense

should be included in the analysis of fault tolerance. The current work is primar-

ily focused on achieving fault tolerance core mapping for NoC based system. The

second possible extension to this work is apply fault tolerance mechanism to entire

NoC (core, router and network interface).
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Evaluation

A.1 Reliability Assessment

The reliability of a system is determined in 2 stages: 1) Determining the best map-

ping technique in terms of effectiveness as well as weighted communication energy,

and 2) determining overall reliability for core mapping with a faulty core. The re-

liability for the ith condition of all M possibilities when n links are faulty is given

by

Ri,n =
∑
SD

RSDi FSDi (A.1)

where RSDi is the reliability of the source (S) to destination (D) under the ith fault

condition, and FSDi indicates communication between S and D. Which is defined by

FSDi =

{
1 aSD ∈ A
0 aSD 6∈ A

}
(A.2)

Since the reliability (RNoC) varies when the faulty condition changes, it is important

to consider all faulty conditions. Let PI,n denotes the faulty probability when the ith

faulty core occurs, which is indicated below, and I indicates a set of ‘n’faulty cores

for the ith faulty condition.

PI,n =

N∏
j=1,j∈I

(pj)

N∏
j=1,j /∈I

(1− pj) (A.3)

Where Pj represents the faulty probability of the jth core.
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The reliability of fault core mapping of the ith faulty core among the number of failed

cores ‘n’ for a particular application is represented by RAi,n. The reliability of core

mapping for an application is as follows:

RA =

N∑
n=0

M∑
i=1

RAi,nPI,n (A.4)

The reliability can then be normalized by a normalization factor NR, that is calcu-

lated using the equation above while addressing the network with the most defective

links. The normalized reliability is defined as

NR = R/NR (A.5)

A.2 Evaluation of Latency

Latency gets categorized into 3 elements throughout this work: 1) communica-

tion time between sender to receiver, 2) fault-related waiting time, as well as 3)

congestion-related waiting time.

The basic communication time refers to the time it takes for the head flit to travel

from source towards destination.

LCi,n =
∑
SD

[twd
SD
i + tr(d

SD
i + 1)]FSDi (A.6)

where tr and tw represent the time consumption of transporting a flit through a router

and a link, respectively, and FSDi is defined in reliability concept. It is anticipated

that once the head flit encounters a broken link, the head flit would be transferred

to next cycle again. The transmission of such head flit would be attempted for each

subsequent cycle till the connection fault is cleared. As a result, the average wait

time was utilized to calculate the waiting time incurred by a bad (faulty) connection

j.

LFj = limT→∞((pj) + 2(p2j ) + 3(p3j ) + ........+ T (pTj )) =
pj

(1− pj)2
(A.7)

where pj is the failure probability of link j and T means the cycles the head flit must

wait. The first-in-first-out (FIFO) queue is used to alleviate congestion, so every
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router is treated like a server inside the queue. Whenever the transmitter and receiver

are known, data packet is sent to the certain router using predetermined routing

methods. There will be only 1 server at every queue inside this situation. Adaptive

routing methods, on the other hand, allow the data packet to choose whether router

can be used based network’s current state.

This indicates here that packet is ready to be served by several hosts. As a result, the

G/G/m-FIFO priority queue is being used to calculate the waiting time of conges-

tion, because the inter-arrival time as well as processing times are both considered

independent general probabilities. Using the Allen–Cunneen formula, the waiting

time of the uth source point to the vth destination point is can be calculated

WTu→v =
WT0

(1−
∑U

x=u ρx→v)(1−
∑U

x=u+1 ρx→v)
(A.8)

Then the latency for the ith faulty condition of nth core being faulty is calculated by

Li,n = LCi,n +
∑
SD

[ dSD
i∑
k=1

WT
R(K)
U(K)→V (K) +

dSD
i∑
j=1

LFL(j)

]
FSDi (A.9)

where R(K) is the function to obtain the index of the Kth core on the communication

path of S and D, U(K) and V(K)are the functions to obtain the index of the source

core and destination core, and L(j) is the function to obtain the number of the jth

link. When all the faulty conditions are taken into account, the total latency is then

calculated by

L =

N∑
n=0

M∑
i=1

Li,nPi (A.10)
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NoC Simulators

There seem to be a variety of assessment tools and approaches available to help in

NoC research. Every tool strives to address one or more areas of NoC architec-

ture space exploration, such as vertex configuration, topology configuration, routing

algorithms, virtual channels, Data Transmission needs, benchmarks, and results eval-

uation.

Several NoC emulators were developed for NoC assessment as well as design space

exploration. A collection of NoC emulators as well as tools accessible to model

and analyze various kinds of NoC is provided by Cristinel Ababei et al., [89] and

Achballah et al., [90]. We’ll look at something and examine a few of the source

code NoC emulators throughout this part. Every simulator does have its own set of

capabilities, as well as certain limits. One of the most typical challenges in choosing

the correct NoC emulator is that existing tools were usually powerful in some areas

while lacking with others. The NoC simulator can indeed be categorized into two

groups:

(1) General network simulators that can be used for NoC simulations (e.g. NS2, NS3,

Omnet++, Wattch, Hotspot, Netsim, Gem5 Simulator, Graphite, Hornet, Opnet,

Fusionsim).

(2) Specific NoC simulators, which are explicitly designed for NoC simulation (e.g.

BookSim, HNOCS, WormSim, Ocsim, Vnoc, Matrics, SICOSY, Tpzsimul, Garnet,

SUNMAP, Ocintsim, Noxim, Nostrum, Nirgam, Occn, Nocsim, NoCTweak, At-

las, Gpnocsim, Xmulator, NONMAP, ReliableNoC, MapoNoC, Phoenixsim, Access

Noxim and ORION).
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The NoC simulator may have the following input parameters:

(1) Configuration options: The type of application traffic simulated by the NoC

tool is defined by configuration settings. Synthetic traffic patterns or integrated soft-

ware traces might be used. It may additionally have a simulation seed value, a log

file for simulation results, a warm-up period for the network to consolidate, and a

simulation program execution decision.

(2) Synthetic options: The size and kind of topology for traffic, such as 2D

mesh, as well as the type of synthetic traffic pattern, such as random, transpose,

bit-complement, bit-reverse, bit-shuffle, bit-rotate, and hotspot routers, are defined

by synthetic options. Hotspots are network routers that accept packetized data at a

faster pace than they can process.

(3) Embedded application traces: Embedded applications, such as a VOPD,

multimedia system, multi window display, MPEG4 decoder, and E3S benchmarks,

are genuine application task graphs employed in the simulation.

(4) Mapping option: Mapping option such as near-optimal mapping (NMAP),

simulating annealing (SA), branch and bound (BB) should also be included for ob-

taining optimised latency, throughput and energy consumption.

(5) Traffic options: The amount of flits injected by each core every cycle (flit injec-

tion rate), the probability distribution of the interval between two injected packets,

packet length, and flits per packet selection are all available traffic settings.

(6) Router settings: The type of router, such as wormhole router, virtual channel

router, shared queues router, bufferless router, and circuit-switched router, is deter-

mined by the router settings. It also specifies the pipeline type, number of pipeline

stages, and buffer depth, among other things.

(7) Routing options: Options for routing XY dimension-ordered routing, west-

first, north-last, and odd-even (OE) minimum adaptive routing are examples of

routing algorithms. It may also feature output port selections such as X dimension

first, dimension closest to the destination first, dimension farthest from the destina-

tion first, round-robin among output ports, output port with greatest credit first,

switching arbitration policy, and inter router link length.

(8) Technology settings: It includes CMOS technology process (e.g. 90, 65, 45,

32, 22 nm), clock frequency and supply voltage selection.

(9) Measurement options: Throughput, power, delay, latency, and energy con-

sumption are among the output measuring metrics. Before hardware implemen-

tation, the output performance parameters forecast the characteristics of the NoC

multicore system.
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B.1 Noxim Simulator

SystemC was used to create Noxim [91], a NoC simulator. It offers a command-

line interface (CLI) that allows you to parametrize different NoC modules. Network

size, routing algorithm, buffer size, injection rate, as well as traffic pattern could

all be customized in Noxim. During synthesized traffic conditions, Noxim exclu-

sively permits mesh topology including wormhole routers. The outcomes of the NoC

assessment are measured in units of throughput, latency, as well as energy consump-

tion. Maximum data packets transmitted or received, average global throughput,

maximum and minimum global delay, power consumption, as well as other complete

assessment parameters can be examined [79].

B.2 GEM5 Simulator

Gem5 is a tool [82] to simulate hardware architecture with different components such

as cores, memories and buses. Gem5 supports the most commercial ISA: ARM, AL-

PHA, MIPS, PowerPC, SPARC and x86 (64 bits) and it is written primarily in C++

and Python. When starting a simulation, it is possible to modify various parame-

ters such as core type, core number, memory type and size, cache size, associativity,

disk image, and kernel. With this configuration, gem5 will simulate our architecture

allowing us to execute applications and give us various output files containing the

exact simulated configuration as well as statistics like the numbers of access to the

memories, the execution times, and the transactions during the simulation, etc.
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Appendix C

KC705 Evaluation Board

C.1 Overview

The Kintex R©-7 FPGA KC705 evaluation board offers a hardware environment for

creating and testing architectures for the Kintex-7 XC7K325T-2FFG900C FPGA.

The KC705 board has DDR3 SODIMM memory, an 8-lane PCI Express R© interface,

a tri-mode Ethernet PHY, general purpose I/O, and a UART interface, which are all

standard features in embedded computing systems. FPGA Mezzanine Cards (FMCs)

can be connected to either of the two VITA-57 FPGA mezzanine connections on the

board to offer additional functionalities. FMCs with a high pin count (HPC) and a

low pin count (LPC) are available. For a comprehensive list of features, see KC705

Board Features [84]. Each feature’s specifics are shown below:

C.2 KC705 Board Features

– Kintex-7 XC7K325T-2FFG900C FPGA

– 1 GB DDR3 memory SODIMM

– 128 MB Linear Byte Peripheral Interface (BPI) flash memory

– 128 Mb Quad Serial Peripheral Interface (SPI) flash memory

– USB JTAG via Digilent module

– Clock generation

1. Fixed 200 MHz LVDS oscillator (differential)

2. Inter-integrated circuit (I2C) programmable LVDS oscillator (differential)

3. SMA connectors (differential)
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4. SMA connectors for GTX transceiver clocking

– GTX transceivers

1. FMC HPC connector (four GTX transceivers)

2. FMC LPC connector (one GTX transceiver)

3. SMA connectors (one pair each for TX, RX, and REFCLK)

4. PCI Express (eight lanes)

5. Ethernet PHY SGMII interface (RJ-45 connector)

– PCI Express endpoint connectivity

– SFP+ Connector

– 10/100/1000 tri-speed Ethernet PHY

– USB-to-UART bridge

– High-Definition Multimedia Interface TM (HDMI) technology codec

– I2C bus

1. I2C mux

2. I2C EEPROM (1 KB)

3. HDMI codec

4. FMC HPC connector

5. FMC LPC connector

6. SFP+ connector

7. I2C programmable jitter-attenuating precision clock multiplier

– Status LEDs

– User I/O

1. USER LEDs (eight GPIO)

2. User pushbuttons (five directional)

3. CPU reset pushbutton

4. User DIP switch (4-pole GPIO)

5. LCD character display (16 characters x 2 lines)

– Switches

1. Power on/off slide switch

2. FPGA PROG B pushbutton switch

– VITA 57.1 FMC HPC Connector

– VITA 57.1 FMC LPC Connector
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– Power management

– XADC header

– Configuration options

1. Linear BPI flash memory

2. Quad SPI flash memory

3. USB JTAG configuration port

4. Platform cable header JTAG configuration port

C.3 KC705 Board Component Descriptions

KC705 board components as shown in Figure C.1 and component description clearly

mentioned in Table C.1.
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